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Introduction

Automated verification and model checking

Computerised and electronic systems are now part of our every day life: administration,
commerce, communication, education, energy, health, media or transportation. The ever
increasing number of electronic devices goes in pair with an ever increasing number of
challenges. Among the most famous ones we find cryptography, privacy, bugs and design
flaws. Errors in critical systems (such as in aeronautic, banking, energy, health and
weaponry) have a heavy human or economic cost and every new one has made software
verification more and more essential. Among hundreds of faulty softwares we highlight
four:

e The Therac-25 accident was among the first failures to gain public attention. Therac-
25 was a radiation therapy machine used in the 1980’s to treat cancer in Canada
and the USA. Between 1985 and 1987, a programming error caused multiple pa-
tients to receive massive overdose of radiation. These overdoses resulted in multiple
deaths and a degradation of some patients’ condition. Leveson and Turner detail
their finding about the incident in [32].

e Ariane 5 was a rocket launcher developed by the ESA (European Space Agency).
During its first test flight in 1996, the rocket was prematurely terminated due to an
integer-overflow error. The CNES commission charged to investigate the accident
made their conclusion available [34], we quote its conclusion.

The failure of the Ariane 501 was caused by the complete loss of guidance
and altitude information 37 seconds after start of the main engine ignition
sequence (30 seconds after lift-off). This loss of information was due to
specification and design errors in the software of the inertial reference
system.

The extensive reviews and tests carried out during the Ariane 5 Devel-
opment Program did not include adequate analysis and testing of the
inertial reference system or of the complete flight control system, which
could have detected the potential failure.

They also suggest to:



Organise, for each item of equipment incorporating software, a specific
software qualification review. The Industrial Architect shall take part in
these reviews and report on complete system testing performed with the
equipment.

Review all flight software (including embedded software), and in partic-
ular : Identify all implicit assumptions made by the code and its justifi-
cation documents on the values of quantities provided by the equipment.
Check these assumptions against the restrictions on use of the equipment.
Verify the range of values taken by any internal or communication vari-
ables in the software. Solutions to potential problems in the on-board
computer software, paying particular attention to on-board computer
switch over, shall be proposed by the project team and reviewed by a
group of external experts, who shall report to the on-board computer
Qualification Board.

Set up a team that will prepare the procedure for qualifying software,
propose stringent rules for confirming such qualification, and ascertain
that specification, verification and testing of software are of a consistently
high quality in the Ariane 5 program. Including external RAMS [editor’s
note: Reliability, Availability, Maintainability and Safety| experts is to
be considered.

e In 2004 a blackout occurs on north-east regions of the north american sub-continent.
A simple blackout cascaded into a massive and generalised power outage due to a
software bug in the alarm system. The USA-Canada power system outage task
force in its official report [22] draws the following technical recommendations.

Develop and deploy IT management procedures: CAs’ and RCs’ I'T and
EMS support personnel should develop procedures for the development,
testing, configuration, and implementation of technology related to EMS
automation systems and also define and communicate information secu-
rity and performance requirements to vendors on a continuing basis

Implement controls to manage system health, network monitoring, and
incident management: I'T and EMS support personnel should implement
technical controls to detect, respond to, and recover from system and
network problems. Grid operators, dispatchers, and I'T and EMS support
personnel should be provided the tools and training to ensure that the
health of IT systems is monitored and maintained.

The wish for better reliability can also be found in one of their institutional recom-
mendations:

DOE [editor’s note: U.S.A Department of Energy| should expand its



research agenda, and consult frequently with Congress, FERC, NERC,
state regulators, Canadian authorities, universities, and the industry in
planning and executing this agenda.

More investment in research is needed to improve grid reliability, with par-
ticular attention to improving the capabilities and tools for system mon-
itoring and management. Research on reliability issues and reliability-
related technologies has a large public-interest component, and govern-
ment support is crucial.

Study of air traffic control, the airline industry, and other relevant in-
dustries for practices and ideas that could reduce the vulnerability of the
electricity industry and its reliability managers to human error.

The mention of the air traffic control and airline industry is not without importance.
Aeronautics and space related industries have been the leading force in research on
software verification for many years. The joint task force believes results devel-
oped for aeronautics may transfer to the energy sector, an opinion shared by most
people in the verification community that lead to the development of quantitative
verification at the turn of the new millennium.

e We finish on a more recent case: the ExoMars Schiaparelli. Schiaparelli EDM
lander was a sonde in the ExoMars mission of the ESA (European Space Agency)
and ROSCOSMOS (Russian Space Programm). The sonde was supposed to land
in a plain of Mars on 19 October 2016. Schiaparelli however crashed on the surface
of Mars due to a software malfunction. The full investigation will be conducted
early 2017 but a preliminary report indicates that the Inertial Measurement Unit
(IMU) worked a second longer than expected. When merged into the system, the
additional informations made Schiaparelli believe its altitude was negative which
then caused an early release of the parachute.

Checking for bugs and unwanted behaviour is usually done in one of three ways:
testing for error (by generating an adequate battery of tests to run on the software),
checking for proof of correctness (finding a formal /mathematical proof that there cannot
be errors within the software’s code) and exploring all the potential executions of the
system. In this thesis, we will exclusively focus on the latter technique.

Checking for a proof of correct behaviour through the exploration of all potential
executions can usually be decomposed in two questions: “How do I want my system to
behave 7" (specification) and “Does my system behave as expected?” (model checking).
This two-step method evidently requires a common framework able to handle multiple
problems at once and resulted in the development of formal verification: methods work-
ing for classes of systems and set of properties respecting a predetermined formalism.
Checking for a given property to hold on a given system can then be done by:

1. Specifying the system in a model (a formal representation of the system).
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Figure 1: Model checking

2. Specifying the property in a known formalism (a condition to validate or disapprove
an execution of the system).

3. Checking the property expressed adequately in the chosen formalism onto the
model. We find here the usual questions of time and space efficient algorithms.

4. Transposing the answer from the formal method of the previous step to our system
and property.

Figure[l]illustrates the idea. The model abstraction on the left part of the figure represents
the first step, the logical abstraction on the right part mirrors the second point and the
checking procedure at the bottom represents the last two steps.

Specifications for closed systems

A closed system is either an electronic component or a software that does not receive
nor alter its environment past the initial conditions. Simple examples can be found in
programs calculating standard mathematical functions: the program looks at the entry,
does some calculations and returns the result. By opposition, an open system interacts
and is influenced by its environment. Any electronic device modifying its behaviour based
on the surrounding atmospheric conditions is, de facto, an open system.
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The verification of closed systems has been extensively developed in the last fifty years.
Numerous models have been proposed to represent closed system in a formal way: graphs,
transition systems, Petri-nets. . . ; similarly, multiple formalisms have been associated with
each of these models. To express complex properties, researchers often rely on [logics:
a set of properties that can all be built by following some common rules. Temporal
logics extend propositional logics with modalities in order to specify some properties of
executions of the programs. With temporal logics, one can express properties like the
one of Figure |2 (with an adapted syntax to make the formula readable).

( . .
There exists an execution
1

that will eventually satisfy p
Gyp') ?

1 and

3

that, at every step, satisfies p’
0 4

E(Fp
1 2

w|>

Figure 2: A temporal formula for closed systems.

Formulas for closed systems are to be interpreted on transition systems, i.e. directed
graphs labelled with atomic propositions. Temporal logics can be decomposed in three
non-disjoint families: branching time logics (see CTL [16]), linear time logics (like LTL
[44]) and fixed-point modal logics (such as the p-calculus L, see [57]). The linear time
logics target a single execution of the system while the branching time logics focus on
multiple executions with, usually, simpler objectives. It is possible to combine both
aspects (as in CTL" [16]). The fixed-point modal logics are, as the name suggest, based
on fixed-point operator.

Specification for open systems

Open systems are software or electronic devices that receive informations and interact
with their environment. In closed systems, formulas express properties of paths or sets
of paths (for instance, one can say that all executions of the system are safe) . With
multiple agents, each agent has a specific behaviour (or strategy) and the execution is
determined by the mash-up of all strategies. We can represent the environment by an
agent of the system, whose behaviour can be erratic. Logics have then to integrate these
agents in their syntax. We give in Figure [3| an adaptation to open systems of the formula
given in the closed-system section, C' represents a coalition, i.e. a set of agents.

Almost none of the models for closed systems can be used to model open systems;
several formalisms have therefore been developed. The usual models for open systems
are turn-based and concurrent game structures, both adapted from transition systems to
integrate the possible existence of multiple agents. Similarly, many logic formalisms used
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( There exist strategies for the agents of C' such that
1
no matter the strategies of the other agents,
1
(CY (FpAGY) the resulting path will eventually satisfy p
1 2 3 4 2

and
3

at every step, satisfy p/
L 4

Figure 3: An adaptation of the formula of Figure 2| to open systems.

to specify closed systems properties have been extended to work on open systems. Over
the years, the CTL and CTL" temporal logics have been adapted respectively as ATL and
ATL" and the p-calculus L, have been extend in an alternating version AL,. (see [2]).

Multiple agents with multiple objectives

In this thesis, we move away from the traditional works on open systems where a device
is responding to its environment to study multi-objective properties on multi-agent sys-
tems. An example can be found in simulation softwares: we may wish to study different
simulations and check which properties they share and what differentiates them from one
another. The simulations may share some common behaviours (from agents with fixed
strategies) while differing in some others (agents representing the environment).

Many difficulties arise when the goal of an agent depends from the behaviour, and
therefore the goals, of other agents. Most techniques developed to handle single objective
specifications usually work by assuming the worst behaviour possible from the environ-
ment and finding a solution for it. This however cannot be done in multi-objective
specifications as the optimal behaviour for an objective may not be optimal for another
one. The question then moves on asking if an agent has a behaviour working for all its
objectives while not disrupting the others.

Often the system asks for a conjunction of objectives: everyone must be able to
satisty its desires. Conjunctions are relatively easy to handle, see [4] for example where
goals are made from a conjunction of a LTL and energy constraints. As we will see,
the difficulty rises drastically when we move away from conjunctions to more complex
boolean combinations of objectives. The way the different goals of a system limit each
agent behaviour will be the heart of this thesis.
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Outline

This thesis focus on a singular formalism adapted to multi-agents systems with multiple
objectives: the Strategy Logic SL. We mainly work on two issues:

e algorithms for the model checking problem, i.e. algorithms that take as input a
formula ¢ in SL and a multi-agent system G, and find if ¢ holds on G.

e the semantics of SL.

In the first chapter, we do a survey of the existing formalisms for multi-agent systems.
At the end of the survey, we present SL and its main fragments (among which SL[BG]).
We formally introduce the model checking problem in the second chapter. We also outline
some complexity results surrounding SL, among which we find two of importance: the
algorithm developed for SL model checking in [39] by Mogavero, Murano, Perelli and
Vardi, and the lower bound we developed for SL[BG| model checking.

As we will see in details, strategies within SL are quantified as first-order variables
before being assigned to the agents of the system. Strategy translations allow us to move
strategies along a history p. Similarly, a valuation translation translate a set of strategies
along p. SL semantics translate not only strategies assigned to some agents but also the
strategies stored in the variables that have yet to be assigned to someone. In the third
chapter, we study SL under a new notion of valuation translation where only strategies
assigned to agents are shifted along p. We call these new translations floating, they give
a new semantic FSL (Floating Strategy Logic) to SL. After introducing formally FSL, we
highlight the differences in expressiveness with SL and study in details its model checking
complexity.

The fourth chapter focuses on extending SL with quantitative constraints. There exist
multiple kinds of constraints, we focus on two of them: the ones that can express equality
and periodicity (we call them one-counter constraints), and the ones using upward-closed
sets (energy constraints).

SL is a multi-objective logic and (as the name suggests) can handle multiple objectives
at once. These objectives may spread along different paths corresponding to multiple
executions of the system. The authors of [39] highlighted an interesting feature of SL:
the choice of a strategy z;, on a given history p may depend on the choice of another
strategy =, made on another history m. We say there is a side dependency of x; on
2,. They also wonder when and why these dependencies appear. The second part of this
thesis (chapters five to seven) is devoted to this question, often referred as the dependency
problem. Chapter five introduces the problem, maps the different dependencies and study
the impacts of each dependency. Chapter six pursues this study by adding a new type
of dependency to bypass the quantification order on prefixes of the current history. The
seven (and last) chapter focuses on a promising fragment of SL.

Figure [4] highlights the different relations between the
chapters. An arrow from chapter a to chapter b means that 3
notions developed in chapter a are used in chapter b. In
particular, the second part of the thesis (chapters five to l—2—4
seven) must be read linearly. 5o

Figure 4: Reading order.
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Chapter 1

State of the art

We present here a survey on different formalisms for multi-agent systems. This sets the
context in which Strategy Logic (the subject of this thesis) emerged. We start with a brief
introduction to temporal logics for closed systems: w-regular automata, CTL, LTL, CTL*
and L,. Next, we discuss the first formalisms for open systems, namely w-regular winning
conditions, ATL, ATL" and AL,. These logics suffer from a lack of expressiveness due to
two severe drawbacks: forced commitment and forced discard. We explain each problem
and detail some possible answers (GL, CATL, BSIL for the first and IATL, ATL,., QL,, for
the second). Finally, we define the Strategy Logic SL and position it in the constellation
of all the formalisms for multi-agent systems.

1.1 Temporal logics for closed systems

1.1.1 w-regular automata

We briefly discuss w-regular automata. Though not a logic per say, w-regular automata
can also express temporal properties. There exists many kinds: Biichi, co-Biichi, parity,
Rabin, Street, Muller... We however only present Biichi and parity automata, the ones
used in this thesis.

Definition 1.1 (Automaton).
An automaton is a tuple A == (5,5, A, so) where S is the state space, ¥ the input alphabet,
A Sx Y — 2° the transition function and sy the initial state.

An automaton is complete and deterministic whenever |A(s,§)| = 1 for any s € S
and any £ € ¥. A word over ¥ is a (finite or infinite) sequence w := (w;);<; where
L € NU {oco} and w; € ¥. A path in an automaton N is a sequence (s;);en of states.
We say that a word w over X is compatible with a path 7 := (s;);en of an automaton N
using Y as its input alphabet whenever s;.1 € A(s;, w;) for any ¢ < L. For any path 7
in a automaton A, we write Inf(7) for the set of states that appear an infinite number of
times in 7.

17
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Biichi condition A Biichi automaton is a tuple N := (A, Q) made of an automaton
A= (5,3, A sg) and a set Q C S of states. A word w over X is accepted by N whenever
there exists a path 7 compatible with v and

Inf(m) N2 # 0

Parity conditions A parity automaton D is also a tuple N := (A4, Q) but here Q is a
mapping S — N assigning an integer to each state. A word to over ¥ is accepted by D
whenever there exists a path m compatible with tv for which the maximal parity visited
infinitely often is even, i.e.

3 € 9N E|S. € Ihf(ﬂ) with Q(s) =1 |
Vi >, Vs € Inf(m) we have Q(s) # j

Both conditions will become useful on multiple occasions in this thesis, mainly because
of Theorem [1.3] (page linking LTL formulas to these automata.

1.1.2 Temporal logics on transition systems
Transition Systems

Transition systems are standard to represent the operational semantics of closed systems.

Definition 1.2 (Transition system).

A transition system is a tuple ST = (AP, S, <, labels, so) where AP is a set of atomic
propositions, S is a finite set of states, — C Sx S is a transition function, labels : S — 24P
s a labelling function and sy € S the initial state.

There exists many other models, transitions systems are however the standard one
for checking temporal properties of potential executions. They also are sufficient for the
three main closed-system temporal logics CTL, LTL and L,.

We model an execution of the closed system under consideration by a path in its
associated transition system. A path in a transition system ST := (AP,S, <, labels, sq)
is an infinite sequence (s;);eny where for any i € N s; € S and (s;,8;41) €—. We use
the standard notations 7 (i) to refer to the i element of a path 7 and for any s € S we
denote by Path, the set of all paths in ST starting from s.

Branching time logic: CTL

The first formalism we introduce is the computation tree logic CTL. It was designed in
1982 by Clarke and Emerson [16] to synthetize synchronization skeletons, an abstraction
of concurrent programs. Its formulas are built upon a set AP of atomic propositions by
the following grammar:

CTL>¢ == ploVe| 9| EX¢| AXG[9EU¢[4AUG
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CTL formulas are evaluated at a state s of a transition system S7T. Its satisfaction
relation = is boolean, meaning that it either evaluates to true (that we write T) if the
formula holds on the transition system or false (written L) if it does not. We define it
inductively and start with the boolean combinations:

ST,sEovVed & ST,sE¢orST,sE¢
ST,S}:_‘¢ = ST78|#¢

The V and — operators are the standard boolean operators from propositional logic with
semantics adapted to CTL. We can retrieve the conjunction A with the standard trans-
lation ¢ A ¢ = —(—¢ V —¢'). We can also define the universal true T within the logic by
T := pV —p and the universal false 1. by L := — T. The other operators’ semantics obey
the following rules:

ST,sE=p & p € labels(s)
ST,sE= EX¢ & 3¢ €S with (s,8') €~ and ST, E ¢
ST,sE AX¢ & Vs eSst. (s,8) €~ it holds ST,s' | ¢
ST,sE¢EU¢ <« Fpe Path, 3i € N with ST, p(i) = ¢

and ¥j < i it holds ST, p(j) k= &
ST,sE¢® AU¢ << Vpe Path, 3i € N with ST, p(i) = ¢

and Vj < i it holds ST, p(j) = ¢/

CTL is a branching-time logic, meaning it may express prop-
erties about multiple executions of the system. For example the
formula EX p; A (T EU py) expresses the existence of a first 7

execution that will lead in one step to a state labelled by p; ‘%

and the existence of a second execution (potentially the same @/
as the first one) that will eventually see a state labelled by ps.

The formula holds from sy on the transition system depicted on p2
Figure|1.1

Since any temporal modality requires a fresh quantification Figure 1.1: A transition
over paths, the logic is actually not very expressive. For exam- system
ple, we cannot express the existence of an execution that sees
infinitely often two different atomic propositions [21]. To get more precise properties
about the path within a transition system, we need another formalism.

Linear time logic: LTL

Introduced in 1977 by Pnueli [44], LTL (for linear-time temporal logic) has no branching
capabilities and focuses on a single execution of the system. In compensation, it may
express more complex path properties than CTL. Given a set AP of atomic propositions,
its formulas obey the syntax

LTL> ¢ = ploVe |9 [Xo[oUo
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Unlike CTL, LTL formulas are evaluated relatively to a path p and a position 7 of p.
The semantics of the boolean operators are the same as in CTL, the semantics of the
other operators are defined by:

ST,p,ikE=Dp & p € labels(p(i))
ST.piEXe & ST,pitlEo
ST,pilE¢'Uéd <« 3 eNwith ST, p,i = ¢
and Vj < i’ it holds ST, p,j E ¢’

The U operator is referred to as “Until” and the X operator is called “Next”. We will
also refer to the two of them as temporal operators. From the U operator we can build
three other temporal modalities: the “Future” operator F, the “Release” operator R and
the “Global” operator G.

F¢:=TUg OR ¢ = ~(=pU ¢ G¢:=—F ¢

The potential nesting of temporal operators and boolean operators allows for more
complex properties than the ones of CTL. For example, the formula G (Fp A Fp') ex-
presses that the path evaluated sees the atomic propositions p and p’ an infinite number
of times. This cannot be done in CTL [2I]. There also exists a strong correlation between
LTL formulas and both Biichi and parity automata['}

Theorem 1.3 (Gerth, Peled, Vardi and Wolper [24] plus Piterman [43]).

For any LTL formula ¢ over a set AP of atomic propositions, there exists a Biichi au-
tomaton N, and a deterministic parity automaton Dy over the alphabet 24F such that for
any word vo over 24F the following are equivalent

e 1w (viewed as a path) satisfies ¢
e v is accepted by Ny

e v is accepted by Dy

Merging CTL and LTL: CTL"

We can merge LTL and CTL to get a logic capable of reasoning on multiple paths where
each requirement is an LTL formula. CTL" combines the temporal operators of LTL with
the paths quantifiers of CTL through the following grammar.

CTL">¢ == ploVe|-9¢| Ep| Ap
o = Vel | XeleUp|o

!There exists many papers on the transition from LTL to Biichi automaton: [23], [49] and [60] for
example.



21

We can see a separation within the grammar. The ¢-type formulas derive from CTL.
They are evaluated relatively to a state s of a transition system ST so we refer to them
as state formulas. They obey the following semantics

ST,skE=p & p € labels(s)
ST,sE Ep < dp e Pathg with ST,p,0 E ¢
ST,sE= Ap <& Vp e Pathg it holds ST,p,0 E ¢

The p-type formulas derive from LTL and are about a path property, we call them path
formulas. They obey the following semantics:

ST,.p,iEXp & ST,pi+lEg
ST,p,ilEUp & I e€Nwith ST, p, i

and Vj <7’ it holds ST,p,j E ¢
ST.pikd & ST.pi)Eo

Counsider the formula A(F p;) A E(G (F ps)), it translates to “All paths will eventually
reach a state labelled by p; and there exists a path that sees ps an infinite number of
times”. We retrieve the branching aspects of CTL (with two properties about two distinct
paths) and the expressiveness of LTL (with the imbrication of temporal operators).

Fix-point logics: L,

Other kinds of formalisms are possible. Among the most famous, we find fix-point log-
ics and the p-calculus. The p-calculus (L, for short) extends propositional logic with
“least” and “greatest” fix-point operators. L, formulas are build upon a set AP of atomic
propositions and a set V of variables, they obey the following rules:

L.o2¢ == pl|Z]oVe|-olla. ¢ |puZ ¢

with p € AP and Z € V; considering a formula uZ. ¢, every occurrence of Z in ¢ must
be positive (i.e. under an even number of negations).

The formulas in L, are evaluated relatively to transition systems enriched by actions,
i.e. a transition system ST = (AP, S, Act, <, labels, sg) with an additional set Act of new
elements (the actions) and where the transition function <: S x Act — S is deterministic
and takes into account the actions. Unlike CTL, LTL or CTL", its satisfaction relation [-]
computes a function [-] : ¢ — 2° returning a set of states instead of a truth value. Tt is
defined inductively relatively to an interpretation y : ¥V — 25 of the variables in V by

[ply :={s €S |p e labels(s)}
[Z] :={s€S|sex(2)}
[[¢ \4 ﬁbl]]x = [[¢]]x U Hﬁbl]]x
[=¢]x == S\[]x
lla]. ¢], :={s €S |Vs €S, if (s,a,s') €= then s" € [¢],}

[1Z. ¢l == {T €S| [¢lxiz/m € T}
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with [Z/T] meaning that we substitute every Z by T.

The operator puZ. ¢ is the least fix-point. Likewise to the other temporal logics we
can retrieve the A operator using V and —. We can also get two other modalities vZ.¢
and (a)¢ respectively dual of uZ. ¢ (making it the greatest fix-point) and [a]. ¢.

(a) = —la]. = vZ. 6= ~pZ. [Z/~7]

1.2 Temporal logics for open systems

As we move to open systems, we need to update both the models and the formalisms.

1.2.1 Multi-agents models
Concurrent and turn-based game structures

Concurrent?| and turn-based games are the usual models used for open and multi-agent
systems.

Definition 1.4 (Concurrent game structure).

A concurrent game structure (CGS for short) is a tuple G := (AP, Agt, Q, Act, A, labels)
where AP is a non-empty and finite set of atomic proposition, Agt is a non-empty and
finite set of agents, Q is a non-empty and finite set of states, Act is a non-empty set of
actions, A : Q x Act"®" — Q is a transition function and labels : Q — 2°P is a labelling
function.

Intuitively, the state space Q of a CGS represents the different status of the system and
the agents represent different parts of the system. The actions then express the possible
interactions between the agents. Finally the labelling adds some atomic informations, in
particular the bits needed to specify the good behaviour of the system.

Remark 1.5. In some works an initial state is added to the definition of CGS. In this
thesis, we deal with multiple objectives at the same time. Fach objective may be evaluated
at a different state from the others, hence the notion of initial state is not particularly
relevant here and would only extend notations. For theses reasons, we omit it in our

definition of CGS.

Remark 1.6. In the definition of a CGS, the action set is common to all agents. However,
when building a CGS, we will need on multiple occasions to assign a given action a; to a
gwen agent Ay. This can be done by giving a fixed behaviour for the interactions of aq with
the other agents. For example, we can build our game such that (within the transition
function) all the agents but Ay interact with ay as they would with another action ay. This
way, an agent different from Ay has no use for ay, he can always play as equivalently.
We then refer to a1 as an action exclusive to agent Aj.

2The notion of concurrency in computer science usually refers to the ability to decompose a system
into components whose executions can be done in any order: see for example the concurrency related
problems in Petri nets [I9]. While concurrent games allow a certain form of concurrency, they are more
often used to model some notion of simultaneity.
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A second model called turn-based game structures, can be seen as a restriction of
CGS, where each state is controlled by a single agent. Turn-based game structures are
simpler and more intuitive than their concurrent counter-parts but may sometimes lack
expressiveness. For example they cannot convey any notion of simultaneity concerning
the choices of the agents.

Definition 1.7 (Turn-based game structure).
A turn-based game structure is a CGS G = (AP, Agt, Q, Act, A, labels) where for each
state g € Q there exists an agent A such that

Vm,m' € Act*¥™M N Yo e Act A(gmU{A = a}) = Alg,m' U{A — a})

The agent A is then called the owner of q.

Histories, paths and strategies

To simulate an execution of the system, a pebble is placed on the state representing
the initial status of the system. At time ¢ each agent plays an action, the resulting set
of actions, sometimes referred as a decision, combined with the pebble’s current state
determine a new state for the pebble through the transition function. The sequence of
states visited by the pebble as time passes determines the evolution of the system.

Definition 1.8 (History and paths).
A history in a game G := (AP, Agt, Q, Act, A, labels) is a finite sequence (¢;)i<r (L € N)
of states such that for any i < L there exists d € Act™8* such that A(gi,d) = i1

A path in G is an infinite sequence (¢;)ien of states such that for any i € N there exists
d € Act"®" such that A(q;, d) = qiy1.

Note that a history does not include the actions played. A path represents an execu-
tion of the system (running forever) while a history can be seen as the beginning of an
execution that has yet to be completed. We denote by Histg and Pathg respectively the
sets of histories and paths of G. For any history p, we also write Ist(p) for the last state
of p. Finally, given either a history or a path p := (¢;)i<r (with L € NU {oc0}) and an
integer j < L, we write p<; for the finite prefix (¢;)i<; of p and p(j) for the element g;.
As is customary, the singular and generalised concatenation of histories will respectively
be denoted by the symbols p - p" and ILic;(p;).

We use the notion of strategy to model the different behaviour of the agents. In this
thesis, strategies will be with infinite memory and deterministic, meaning no memory
restriction but no randomness.

Definition 1.9 (Strategy).
A strategy in o game G := (AP, Agt, Q, Act, A, labels) is a (potentially partial) function
0 : Histg — Act taking a history and returning an action.

We write Stratg for the set of strategies on G. A strategy is often reliant on a small
subset of all the informations carried by the history in input. For example it may look
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only at the last state of the history, the reactive synthesis community (another name for
people working with systems reacting to their environment) call such strategies positional
as they only depend on the position of the pebble. For reason that will become obvious
in Chapter [3] strategies are defined on all histories, independently of any starting state.

We refer as a context the assignment of a strategy to each agent. Formally, a context
is a function x : Agt — Stratg . We can then define the outcome of a game.

Definition 1.10 (Outcome).
Let G := (AP, Agt, Q, Act, A, labels) be a game, q one of its states and x a context. The
outcome out(x,q) := (qi)ien+ of x from q is the unique path where ¢; = q and Vi € N*,
Giv1 = A(qi, d;) where d; € Act™®' is the function assigning an action to each agent by
following x on history (g )i <;-

Example

In 2005, the three french mobile operators , SFR and Bouygues-telecom were
found guilty of fixed-price fraud and respectively fined for 220, 256 and 58 millions euros.
The fixed price fraud (FPF for short) consists in multiple companies agreeing to freeze
their products’ prices, making the concurrency (in the economic sense) disappear. In
most countries, including France, this practice is illegal. We present some of the notions
developed above through a naive model for the FPF applied to two of the three operators
(for simplicity), for example and SFR.

We model the FPF through the following CGS G := (AP, Agt, Q, Act, A, labels) where

e The agents are the two operators and SFR.

e An operator can either push a new offer on the market, represented by the ccr
action, or stay idle, represented by the frz action. The set of actions then consists
of Act := {cer, frz}.

e The atomic propositions represent each company policy regarding any reduction of
its prices. The set AP is made of four propositions p?rz, p}?rz, p9, and pS,.. The
proposition p4 represents the fact that the company A has adopted the policy B.

e The state space Q is composed of only four states, each representing a potential
status of our two operators mobile market. Formally, we set Q := {q.. | x,% €
{frz,cer}}. The state qpp.cer for example tell us that is not trying to
lower its prices while SF'R is. Such situation is preferable for SFR and undesirable
for , as it will lose clients in benefits to its concurrent. Obviously, many
parameters come into play before engaging new offers in the mobile market; but for
all purposes in this example, we assume that at any time either of the companies
may, if it wishes, lower its price.

o A state q. . (with x,x € {frz,ccr}) is labelled by {pp?}.



(frz,cer) (cer, cer)

, fr2)
(frz,cer) \

(cer, cer

(frz, frz) (cer, frz)

Figure 1.2: The game G representing the mobile operator market

e The transition function A is rather intuitive, it simply updates any change of mind

) (cer, frz)
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of the operators. As often, the formal definition is tedious, we refrain from giving

it and refer to Figure [1.2]

Our initial state (at time ¢t = 1) iS Geercers as we assume both companies to be in

concurrence at the beginning of the simulation. Consider the following scenario: at time
t = 2 through a shady meeting, representatives of both companies gather and agree to
freeze their prices from the time ¢t = 3. At time ¢t = 4, regulatory authorities catch the
subterfuge. , fearful of heavy sanctions immediately issues new offers with lower
prices while SFR waits until the end of £ = 5 to do so. The whole situation can be

represented by the path:
t= 1 2 3 4 5 6

Qeer,cer- Geerycer- Qfrz, frz- Qfrz, frz- Qeer,frz- Qeer,cer-

! AN
FPF \ caught

Initial state

Instead of a shady meeting, can build a strategy d° trying to obtain a tacit
form of fixed-price market. Take the following behaviour: if SFR has not provided any
new offer for the last two time-units then postpones any plan reducing its prices;

if SFR has put a new offer to attract customers in the last two time-units then

pushes forward a concurrent answer. This can be modeled by the following 6 strategy:

on a history p := (¢;)i<z of length L,
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e if either ¢(L — 1) or ¢(L) has the proposition p3, it means that SFR has put a low
price offer and must do the same so §°(p) = cer.

e if neither ¢(L — 1) nor ¢(L) has p3, , will try to create a tacit frozen market
and postpone its new deals, so §°(p) = frz.

Now, consider a second strategy 6° for SFR that puts a new offer every 4 time-unit. The
context where plays along §° and SFR plays along §° will produce the following
infinite outcome

t= 1 2 3 4 5 6 7

checks the last 2 states and acts accordingly

qeer,cer- Yeer, - eer, ~Gfrefrz- Qfrz,cer- Qeer,frz- Qeer, frz-
A

A A A A
]
T s s ‘*“*—i\\/’é:/ *****

Initially . . .
SFR waits 3 time-unit before new offer
both have

new offers

1.2.2 Formalisms
w-regular conditions

We briefly discuss how the w-regular conditions described before can be adapted for
CGS. Consider a CGS G := (AP, Agt, Q, Act, A, labels). Likewise to words, for any history
p € Histg we write Inf(p) for the set of states that appear an infinite number of time in p.

A Biichi condition over G is a set 2 C S of states. We then say that a coalition
C C Agt satisfies the condition {2 from a state ¢;,; in G when there exist strategies for
each member of C such that no matter the other agents’ strategies, the resulting outcome
p starting from g;,,; satisfies

Inf(p) N Q # 0

A parity condition over a CGS G is a mapping 2 : Q — N assigning an integer to
each state. A coalition C' C Agt can satisfy the condition () from a state ¢;,; when there
exists strategies for each member of C' such that no matter the other agents’ strategies,
the resulting outcome p starting from ¢;,,; satisfies

4 € 9N, dg € Inf(p) with Q(q) =i |
Vq € Inf(p) we have Q(q) > i
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The alternating time temporal logics ATL and ATL"

There are three basic logics for open systems: ATL, ATL* and AL, (also called AMC in [2],
we however rebrand it in AL, to pair with the symbol L, for the p-calculus). We start
with the easiest ones ATL and ATL*. Proposed by Alur, Henzinger and Kupferman in
2002 [2] they can be seen for all purposes as the adaptations of CTL and CTL" to open
systems. ATL* formulas are build upon a set AP of atomic propositions and a set Agt of
agents through the grammar

ATL* 3¢ == ploVveo| o] (Che with C' C Agt
p o= eVe e[ Xe[eUp|¢

We retrieve the next (X) and until (U) operators from LTL and the decomposition
in state and path formulas of CTL*. Its semantics are defined similarly except for the
quantifiers (C))¢. To ease the reading, and because ATL" is not at the heart of this
thesis, we only give an informal definition of the quantifiers semantics.

There exists a set of strategies for the agents of C' so
ST,sE{(Che < that, given any set of strategies for the agents of
Agt\C, the resulting outcome p satisfies ST,p | ¢

The logic ATL is the fragment of ATL" obtained by restricting the grammar of path
formulas to ¢ = ¢ | X ¢ | ¢U ¢. for example, the formula ({A;, A3})F p is in ATL
and expresses the existence of a strategy for the coalition of A; and A, that produces (no
matter the other agents strategies) an outcome that will eventually see p.

AL, an alternating version of the p-calculus

Alur, Henzinger and Kupferman also proposed in [2] an extension of the p-calculus L,
to work on CGS. They call it the alternating p-calculus AL,. Also a fix-point logic, it
follows the syntax of L,. Defined relatively to a set AP of atomic proposition, a set Agt
of agents and a set V of variables, its syntax is dictacted by the rules below.

AL, 2 ¢ == p|Z|oVo|-d|(Cho|pnZ. ¢

The satisfaction relation [-] for AL, formulas is still defined relatively to an interpre-
tation y of the variables and as a function [-] : ¢ — 25. All operators but (C))¢ have
the same semantics as in L,. The new operator semantics are defined by

(there exists an action a 4 for each agent A € C
such that against any other actions ag of the

[(CHoly :={s €S| { agents B € Agt\C, the state }
A(q, (A1 = aa,,...,B1 = ap,,...))

| belongs in [¢]




28

A (&)

quantification over

|
A

a coalition C' C Agt / \

implicit universal quan-
[Ast\CT  [AGN\CT o over agne LASENCT [Agt\C]

temporal

(& (2 Y1 (e

property

Figure 1.3: On the right an ATL formula and on the left what cannot be done neither in
w-regular conditions nor in any ATL, ATL" or AL,.

1.3 Commitment issues in multi-agents logics

In the formalisms for closed systems, to simulate potential executions of the system we use
quantifications over the potential paths in the model. These path quantifications, either
implicit as in LTL or explicit as in CTL, are of two forms: “is there a path such that...” and
“for all paths it holds...”. In the formalism for open systems, the path quantifications are
replaced by strategy quantifications (“is there a strategy for coalition C such that...”). In
all the open-system formalisms defined above, after each strategy quantification there are
other implicit strategy quantifications making all properties expressible in the following
form

Are there strategies (actions for AL,) for agents Ay, ... such that for all
strategies (actions for AL,) for agents By, ... the resulting outcome satisfies
some temporal property 7

This makes the branching possibilities of ATL, ATL* and AL, very similar to the ones of
CTL, CTL" and L,: a boolean combination of formulas, each about a given outcome. The
different branches have nothing in common: an agent may act in a way in one branch
and completely change its behaviour in another. This inability for different branches of
a formula to share some common behaviour is what we call the commitment issue, each
strategy obtained through quantification is committed to a single temporal objective.
Figure illustrates the issue: on the left we can see the possibilities of ATL and on the
right a property not expressible with what we have presented so far. We present below
some new formalisms to address this issue.

GL

A first way to bypass the commitment issue is to add branching between the existential
and (implicit) universal quantifications, like in the right part of Figure [1.3] This was the
approach chosen by Alur, Henzinger and Kupferman in [2]| for their game logic GL. GL
formulas are build by a three steps syntax: state formulas ¢, tree formulas ¢ and path
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formulas ¢.

GL2¢ == p|-d|dpVeol|(CY with C' C Agt
v on= [PV | Ep
p = ¢loeleVe | Xp|leUep
The semantics of the atomic propositions and boolean operators is similar to the ones
of all the logics we have already presented. We recall that a context is a partial function
associating strategies with agents. The (C)y operatOIE] is an existential quantification for
the agents in the coalition C' that sets a context for tree formulas. To define explicitly
a context y in which an agent A follows a strategy ¢ while another agent B follows ¢,

we use the notation x := {A — §; B — §'}. Then, the operator (C) has the following
semantics:

G.q ): <C>77/) {3(51 .. (5|O\ S Stratg with G, ¢ }:{A1—>517---,A\C|—>5\C\} P

where Ay, ... Ajg| are the agents of C

Tree formulas are defined relatively to the unwinding of the game. An unwinding of a
game G from a state ¢ is the infinite tree 7g obtained with ¢ at the root and where the
children of a node are its successors. The Ey operator is an existential quantification
over the paths in 7g.

G,qF Ep <« dpe Pathy, coherent with x with G, p = ¢

Path formulas’ semantics are defined relatively to a path in the same way as in LTL.

BSIL

Another approach to the commitment problem, proposed by Wang, Huang and Yu in
2011 with their basic strategy interaction logic BSIL [63], is to add an operator (+C')
to extend the current context. BSIL also decomposes its grammar in three parts: state
formulas ¢, branching formulas ¢/ and path formulas .

BSILS¢ == p|—¢|oVe|(C)y  with C C Agt
Vo= = [V Y [ (+OW | @
p = Xo|oUo

As in GL, state formulas define an initial context; however branching formulas are
used to branch properties upon the current context or to refine it.

G,q = A(C)y & J01...0)c) € Stratg with G,q (4,614,058} ¥

G.q =y ¢ & Vp € Pathg coherent with x, it holds G, p E ¢

3The symbol (C) is for the existential quantification of the agents in C' with an additional implicit
universal quantification on Agt\C. When we wish to avoid the implicit universal quantification, as in
GL, we use the symbol (C).
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The formula on the right of Figure [1.3| can be expressed in BSIL by

~(+Agt\C) i
(@) 4 A
~(+Agt\C) ¢,

CATL, a version of ATL with effective commitment

A different approach to the commitment problem is to treat the strategies in an explicit
manner rather than through the scope of quantifications. For this, the logic CATL,
developed by van der Hoek, Jamroga and Wooldridge in 2005 [59] extends ATL by adding
an operator €(J, A)¢ to assign a strategy d to the agent A. The strategy 0 is not the
results of a quantification but rather has to be explicitly given by the context.

ploVeo =g (+C)Go | (+C)X ¢ | (+O)F ¢
(+C)oU ¢ | (+C)9R ¢ | €5, A)¢ A€ Agt

At the beginning the context is empty. The (+C)¢O¢ and (+C)d¢ type formulas
(for © € {U,R} and ¢ € {X,F G }) act as a concatenation of the (+C') operator from
BSIL extending the current context and of LTL temporal operators (F,U,G,X and R).
The new operator €(9, A)¢ obeys the following semantics

ga q ’:X 6(57 A)(b < g7 q ’:xU{A—NS} ¢

Note that unlike most logics, CATL formulas can be evaluated relatively to some strate-
gies given as parameters. CATL algorithms then work under assumptions such as “the
strategies used are positional” or “the strategies used have a memory of size \”.

CATL> ¢ == {

1.4 Revocation issues in multi-agents logics

We have seen through the commitment issue that

when working with open systems, it is useful to branch 1,1

formulas in a more refined way than with closed sys- 2,0 ,

. 2,2 —— p

tems. In particular we may force some shared be-

haviour between different simulations. A somewhat

similar problem occurs linearly. 0, % @
To illustrate the problem, we extend an example D

proposed by Agotnes, Goranko and Jamroga in [1]. 0 »_,@

Consider the CGS of Figure [1.4] with two agents A f

and B and an action set {0,1,2} common to both 7

agents. We wish to express the following property Figure 1.4: A CGS with two

agents A and B, with three ac-

tions 0, 1 and 2, and where ¢

serves as initial state.

N =

Agent A has a behaviour that always
sees p, no matter what the choices of B
are, but may at every moment decide to
go to p'.
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The intuitive way to express this in ATL is by the following formula:

¢ = (A4) G A (A)F D)

The property is however ambiguous: should we requantify the strategy of B when A
starts to deviate towards p'? Formula ¢ works only if B is supposed to requantify its
strategy, in this case there is no solution and ¢ does not hold on the CGS of Figure [1.4]
If we wish to preserve the strategy B has chosen, the property should hold on the game.
Indeed, the strategy of agent B is fixed and is included in the current context, therefore
when A requantifies its strategy it may assume knowledge of B strategy. However ¢ does
not hold on the game and therefore fails to capture the second possibility. We need a
more expressive formalism than ATL. In fact none of the logics we have presented so far
(ATL, ATL", BSIL, CATL, AL,,) can manage this problem. There exist some solutions but
they are all dependent on the game (which we purposely kept simple).

The problem in the example above comes from the incapability for an agent (A) to
revoke its strategy without forcing other agents (B) to do the same. The incapability to
requantify the strategies for some of the agents while keeping the current strategies for
the other agents is what we call the revocation problem and what we investigate in this
section.

ATL with irrevocable strategies

One solution to the revocation issues is to force every agent existentially quantified to
keep its strategy when a nested quantification occurs. This is what Agotnes, Goranko
and Jamroga did in 2007 [I] with their irrevocable version IATL of ATL. The grammar of
IATL is the same as ATL:

IATLS ¢ == p[oV |9 | (Che
p u= X¢|oUo
Formulas in IATL are evaluated relatively to a context y initially empty (before the first

quantifier) and that grows with each quantifier. Compared to ATL, only the semantics of
the (C))p operator is modified.

301, ...05 € Stratg such that for any strategies for the
Gg.¢ = (Chy « agents of Agt\C' the resulting context with x satisfies

g7 q }ZXU{A1~>51,.‘.AA~)6A} 90
where Ay, ... A, are the agents of C' that have yet to be assigned a strategy in x (meaning
A; & dom(x)). The context x can only be refined by a quantifier.
ATL with strategy context

This approach was refined by Brihaye, Da Costa, Laroussinie and Markey in 2009 [10]
where the notion of context was pushed further by explicitly adding a operator ) C'({(¢ to
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revoke the strategies assigned to the agents of a coalition C'. Formally, they define a logic
ATL,. based upon the following grammar:

ATLee 2 ¢ u= ploVe| =0 [ )C(e | (Chy  with O C Agt
p = oleVele|Xel[eUy
The semantics are somewhat similar to IATL with the exception that (like ATL and

ATL™) a quantification over a coalition C relatively to a context y also requantifies the
strategies of dom(x) N C:

301, ...0¢| € Stratg such that for any strategy for the
G, (Chy < agents of Agt\(C Udom(x))the resulting context with

X Sa‘tISﬁeS g7 q ):X\Agt\CU{Al—NSl7'-'A|C|_>§\C\} (}9

Note that the strategies from implicit universal quantifications do not override the strate-
gies in x. The semantics of the new operator ) C'((¢ release the strategies assigned to C":

Gg.q }:x>>c<<¢ & G.q }:X\Agt\c’ ¢

The quantified p-calculus QL,

In a completely different way, the quantified p-calculus QL,, also solves the revocation
problem. Developed in 2003 [48], Riedweg and Pinchinat idea was to add quantifications
over atomic propositions to the p-calculus. The concept of quantification over atomic
propositions was initially proposed in 1983 [53] by Sistla for LTL (see also [54]). The
grammar of QL, follows the one of L, with the addition of a quantification block (with
boolean operators) before the L, formula.

QL,>¢ == Fpdp|-d|oVo|ep
Lyo2¢ s=plZ|eVe|-p|la. o|vZ ¢

QL,, (like L,) formulas are interpreted on transitions systems relatively to an inter-
pretation x of the variables. The ¢ layer semantics are such that

There exists a transition system 7S, such that

TS,,s =y ¢ where TS, is a transition system with

the same state space and transitions functions, and where
p' € labelsrs(s) & p' € labelsrs, (s) for any p’ € AP\{p}

TS, sk 3.0 &

While defined over transition systems, the quantified p-calculus can model CGS through
the use of proposition quantifications. QL, is also a superset of QCTL" (CTL" extended
with quantifications over the atomic propositions) and QCTL* has been shown in [31]]
to have an expressive power similar to ATL,.. So, by transitivity, QL, is more expres-
sive than ATL,.. As said before, ATL,. is an answer to both the commitment and the
revocation problems so QL, has the same answer to these problems.
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1.5 Strategy Logic

Strategy Logic (SL for short) is another formalism for expressing temporal properties on
multi-agent systems. While offering another way to solve the commitment and revocation
problems, SL innovates by treating the strategies as first-order variables (in the spirit of
the first-order logic FO [33]).

A first version of SL was proposed in [I5] by Chatterjee, Henzinger and Piterman. In
this thesis, we call it CHP-SL. CHP-SL is an answer to the commitment problem similar
to BSIL, with the additional possibility to nest temporal operators like LTL formulas
instead of a single operator. CHP-SL was then extended by Mogavero, Murano, Perelli
and Vardi [39]. We call Strategy Logic (SL) this second version. For most purposes
CHP-SL is (in spirit but not formally) another form of BSIL} For this reason we only
give the syntax and semantics of the enhanced version.

1.5.1 Strategy translations, valuations and valuations transla-
tions

Before formally defining SL we need some new notions to manipulate strategies. As
explained in Section [I.2.1] to simulate an execution of the system within a game, the
agents force a pebble to move along the states and the path of the pebble describes an
execution of the system. After ¢ time units, the sequence of states visited by the pebble
defines a history p and the strategies used by the agents make their choices at time ¢
based on p. To handle with ease the evolution of a strategy along a history, we use the
notion of strategy translationsﬂ

Definition 1.11 (Strategy translation).
For a history p and a strategy 6 both on a common game G, we call the translation 65 of
0 along p the partially defined strategy

67 (p") == 0(p.p') for any history p' starting in a successor of Ist(p)

A particularity of SL is to treat strategies as first-order elements. For this, strategies
are stored in variables in a way similar to the first-order logic. For the rest of this section,
we fix a set V of variables.

Definition 1.12 (Valuation).
A wvaluation x over a set Agt of agents and a set V of variables is a partial function
X : AgtUV — Stratg.

Intuitively, the strategies stored in the variables represent the behaviours under con-
sideration while the strategy associated with an agent represents its effective behaviour.
The notion of valuation is nothing more than an extension of contexts to handle variables.
We can then extend the notion of strategy translation to valuations.

4CHP-SL was the first one, introduced in 2007, while BSIL dated from 2011. The model checking of
BSIL is however better than the one of CHP-SL, making it easier to use in practice.

5The strategy translation of § along a history p is a similar concept to the classical one of strategy
induced by another strategy in a sub-tree on games played on trees [42].
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Definition 1.13 (Valuation translation).
Given a game G, a valuation x over Agt and )V where Agt is the set of agents of a game
G, and a history p € Histg, we define the valuation translation x4 by

Vo € (AgtU V) N dom(x) x7(x) = x(z)z

Sometimes, we will need to have a closer look at some specific choices. We define the
notion of move vector to model a strategy choices at a given time.

Definition 1.14 (Move vector).

A move vector over a set D C Agt is a partial function m : D — Act mapping each
element of the domain to an action; if D = Agt we simply refer to m as a move vector
and omit its domain.

When Agt C dom(), each agent has an assigned behaviour. From a game G, one of
its states ¢ and a valuation x with Agt C dom(y), we can launch a simulation and get an
outcome. We update the notion of outcome (defined page to work with valuations

Definition 1.15 (Outcome).

Fiz a game G := (AP, Agt, Q, Act, A, labels), one of its states q and a valuation x with
Agt C dom(x). We define the outcome out(x,q) := (¢;)ien of X from q by the unique path
where

® do=4¢g

o VieN, qi1 = Agi, d;) where d; € Act*®" is the move vector defined for all agent
A € Agt by di(A) == x(A)((q5)5<i)-

1.5.2 Strategy Logic

We are finally ready to define the logic at the heart of this manuscript. SL is built upon
a set Agt of agents, a set AP of atomic propositions and a set V of variables. SL formulas
are constructed by the following grammar:

SL3 ¢ = 3n.¢ | assign(A,2).6 | 4V o | ~6| sUS | X | p

where z € V is a variable, A € Agt is an agent and p € AP is an atomic proposition.

The operator assign(A, z) will be referred to as an assignment of z to A while we
retrieve some form of strategy quantification in the 3z operator. The until (U ) and next
(X') operators are similar to their eponymous parts in LTL.

In order to define the semantics of SL we need several intermediary notions. The
notation free(¢) represents the set of free agents and variables of a formula ¢ that have
yet to be associated with a strategy before ¢ can be evaluated. It is defined inductively
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as follows,
free(p) =@ forallpe AP free(X ¢) = Agt U free(o)
free(—¢) = free(o) free(p U ) = Agt U free(¢) U free(y))
free(¢p V ) = free(¢) Ufree(yp)  free(Jz. ¢) = free(¢) \ {x}

free(¢) if A ¢ free(o)

fi ign(A,x). ¢) =
ree(assign(A, v). ¢) {(free(gb) U{z})\ {4} otherwise
We then say that ¢ is closed whenever free(¢) = @.

Notations. For the sake of formality, we define the notation used for updating a valua-
tion. For a valuation x on a game G, a variable x and a strategy s on G, the notation
X[zss] TePTESENLS the (unique) valuation where

o for any x' # x such that ¥’ € dom(x), we have X[q(2') = x(2')
o for any x' # x such that ¥’ & dom(x), we have ¥’ & dom(x|z4)

® Xz—s] (l’) =S

Formulas of SL are evaluated on a concurrent game G := (AP, Agt, Q, Act, A, labels) at
a state ¢ with respect to a valuation y where the sets of agents and atomic propositions
of the formula and the game coincide.

G.qE=xp < p € labels(q)
qu):X¢v¢l ~ gJQ):X¢Org7Q):X¢/
gaQ):X_'QS = gan;éxd)

If free(¢) \ {x} C dom(x), then
G,q =y Jx.¢ < 36 € Stratg such that G, ¢ |=yzs) @
Additionally, given A € Agt, if (free(¢) \ {A}) U {z} C dom(x) then

G.qlyassign(A,x).0 & G, asx@) @

If Agt U free(¢) U free(¢)) € dom(x) then x produces a unique outcome 7 from g, i.e.
7 := out(x,q) (as explained page [34). We can translate the valuation x based on this
outcome: for any integer j, we write X7 for x7=. We then let

g7q ):X X¢ g g7OUt(X7q)<1) ):X? ¢
G.aFy9U¢ < Tk eN. G out(x,q)(k) [y, ¢ and
VjieN.0<j<k= G out(x,q)(j) Frs ¢
As in LTL we use the abbreviations T for the universal true, L for the universal false,

F ¢ for the future operator (TU¢) and G ¢ for the always operator (—F —¢). We also
write Vz.¢ for the universal strategy quantification (—3z.—¢).
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1.5.3 The nested and boolean goal fragments SL[NG] and SL[BG]

Like often in model checking and complexity related problems, a high expressiveness
induces serious drawbacks. SL grammatically allows many things :

e the capacity to handle multiple objectives at once:
Va.Vy. 32’ ((assign(Al7 x).assign(Ay, y)F p1) V (assign(Ay, 2').assign( Ay, y)F p2)>

where Agt = {A;, Ao} and AP = {p1,p2}

e multiple agents may share common strategies: in the following formula, the strategy
z is assigned to both A; and As.

Yy Va.3z. <(assign(A1, x).assign(As, 2)F p1) V (assign(Ay, z).assign( Ay, y)Fp2)>

e the possibility to redefine a strategy midway through the simulation:

Va.3y. assign(A;, z).assign(As, y)F (p1 A 3a'assign(Ay, 2')F p,)

For this reason, one may wish to restrict SL to simplify both algorithms and reasoning.
One way, proposed in [39], is to streamline the formulas by using the notion of goals.
A goal is a sub-formula composed of an assignment followed by a temporal objective
expressed with LTL operators or other (nested) goals. The idea is to create a fragment
SL[NG] of SL that does not allow partial re-quantifications once the simulation has started,
allowing for a clear separation of the quantifications on one side and the assignments and
the temporal operators on the other side.

The SL[NG] fragment

A formula will be in SL[NG] whenever we can regroup the quantifications in blocks in
such a way that any new block marks the beginning of a closed sub-formula. As a
counter-example, take the formula below

Va.3y. assign(A;, z).assign(As, y)F (p1 A Iz'assign(Ay, 2')F ps)
There are two blocks of quantifications: Vz.3y and Jz’; the sub-formula
Jz'assign(Ay, 2')F py

is not closed (the agent A, is free) therefore the second block is partial and the overall
formula will not be in SL[NG].

To simplify the grammar of SL[NG], we use the notion of flatness. A logic will be
called flat when it does not allow closed sub-formulas. We first define the flat fragment
SLING]’ of SL[NG] before giving the complete grammar.
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Remark 1.16. More generally, for all purposes in this thesis, closed sub-formulas are
seen as atomic propositions: given a game G and one of its state q, a closed formula ¢
either evaluate to true or false on q independently of the current valuation. We can then
create a new atomic proposition py and label the states of the game with py, whenever ¢
holds true. Model checking algorithms then may proceed inductively by solving the deepest
closed sub-formula ¢, labelling accordingly the game with a new atomic proposition py and
replacing ¢ in the main formula by py,. Members of the verification community frequently
assimilate closed sub-formulas in their logics with atomic propositions, we simply continue
this trend.

Definition 1.17 (Nested goals strategy logic, SL[NG]).
Flat nested goal formulas are build upon the following rules:

SLINGI 3 ¢ == 3u.¢ | Va.¢| &
§ =EVEIENE]B
B = assign(A,x).0 | ¢
p m=pVe|lpleUp|Xep|[p|B

where x € V s a variable, A € Agt is an agent and p € AP is an atomic proposition.
SLING] (non flat logic) allows closed SLING] formulas in its grammar at the atomic
proposition level (i.e. in o-type formulas).

We can now clearly see some notion of goal appearing in SL[NG]: the 5 type sub-
formulas. A closed formula of SL[NG] is then a block of quantification followed by a
boolean combination of goals (with potentially some nested goals within).

The SL[BG] fragment

Recently another fragment called SL[BG] has gained importance. It further restricts
SLING] by forbidding assignments past the start of the simulation, ensuring that each
agent keeps to its initial strategy. More precisely, SL[BG] aims at creating formulas of
the following form: ©&(5;pi)i<n where p is a block of quantifications, £ is a boolean
combination and for all ¢ < n, (; is a block of assignments while ; is a LTL formula.

Definition 1.18 (Boolean goal strategy logic, SL[BG]).
The flat boolean goal fragment SL[BG]’ has the grammar

SLIBGI 5 ¢ == 3u.¢ |Vu.¢ | €
§ u=EVE[ENE|B
B = assign(A,x).0 | ¢
o m=pVol-p[pUp|Xp|p

The non-flat fragment SL[BG] allows closed SL[BG] formulas in its grammar at the
atomic proposition level (i.e. in p-type formulas).
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Further restrictions of the boolean combination (£ type formulas) are possible. As
we will see later, a deeper look into the boolean combinations yields interesting results.
Among the possible restrictions, we identify three major ones.

e SL[1G], introduced in [38], restricts SL[BG] to a unique goal. (The flat fragment of)
SL[1G] is defined from the grammar of SL[BG] by skipping the £ line. More precisely,
¢ type sub-formulas must avoid any boolean operator i.e. must be of form & 1= f3

e SL[CG], introduced in [40], is the fragment where only conjunctions of goals are
allowed. Formally, (the flat fragment of) SL[CG] is defined from the grammar of
SL[BG] with the restriction below on the &’s type sub-formulas £ := & AE | 5

e Similarly, SL[DG] only allows disjunctions of goals, i.e. £ :=¢V E | f.

1.5.4 Examples

We give two examples to illustrate the expressive power of SL and of its fragments.

Nash equilibrium The first example is the existence of a pure (qualitative) Nash
equilibrium (with LTL objectives (¢;)1<i<n) and was proposed in [39]. It works no matter
the game and can be expressed in SL[BG] as

Jx1, . . YY1, Y. /\ assign(Aj,xj)#i(assign(Ai,yi)goi = assign(Ai,a:i)gpi),

1<i<n

where for the sake of readability we merge n strategy assignments into a single one.
In such a formula, (z;)1<i<, is the strategy profile we are looking for, and (v;)1<i<n are
intended to be the possible deviations of the agents. The formula states that if some
agent can change his strategy and achieve his goal, then his goal is already met in the
original strategy profile, thus making said strategy profile a Nash equilibrium.

Dominating strategies Consider a CGS G with two agents A and B. We say that a
strategy ¢ is dominating another strategy ¢’ relatively to an agent A and an objective ¢
when there is no behaviour for B for which ¢’ leads to ¢ but d does not.

Fix a valuation y that stores a strategy ¢ in a variable x:

X = {z1 — ¢}

Then ¢ is dominating any other strategy for agent A relatively to ¢ when the following
formula holds true on G relatively to the valuation x

Vao. (Jus. assign(A, z3). assign(B,z2). ¢) = (assign(A, z;). assign(B,z2). ¢)
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1.5.5 Expressiveness of SL fragments

Excluding SL[1G], all fragments allows two executions of the system to share some com-
mon behaviour. For instance, take the SL[CG] formula

Jxq. Vag. Vas. (assign(A, xq).assign(B, z2)F p A assign(A, x1).assign(B, z3)F p')

The strategy stored in z; is common to A in both goals (assign(A, x1).assign(B, x2)F p
and assign(A, x1).assign(B, z3)F p’). This way, all fragments but SL[1G] offer a solution
to the commitment problem. On the other hand, SL[1G] focuses on a single execution
of the system; therefore, the commitment issue does not apply (does not make sense) in
SL[1G].

Only the full logic SL permits partial quantification within an outcome. the fragment
SL[NG] allows for the goals to change; therefore a player can change its strategy, but only
among the one quantified before the start of the execution. In all the other fragments,
in each execution of the system, an agent must stick to its assigned strategy (which does
not prevent an agent to have two different strategies in two different executions). This
way, SL provides a complete solution to the revocation issue and SL[NG] only a partial
answer. The other fragments do not touch the issue.

1.6 Summary

We sum up the relations between the different logics in Figure[1.5] A solid arrow L — L’
denotes that L' is at least as expressive as L, i.e. for any formula ¢ € L we can find an
equivalent formula ¢’ € L’ in the sense that

For any concurrent game structure G and any state q of G GagkEo & GqE¢

A dashed arrow L --» L’ denotes the existence of a polynomial reduction from L to L/,
i.e there is a transformation 7 taking as input a formula ¢ € L, a model M adapted to
L and one of its state, and returning a formula ¢’ of L', a model M’ adapted to L’ and
a state ¢’ of M’ in polynomial time of ¢ and M such that

MagEo & M, dEJ

There are also a few results distinguishing the logics that do not appear on Figure[1.5]
First, in [2] it was proved that GL is not more expressive than AL,. For example, GL
cannot express that all even states along a path are labeled p without imposing some
condition on the odd states while AL, can. The authors of [I0] proved that AL, is not
more expressive than ATL,.. In particular AL, cannot distinguish between alternating-
bisimilar models while ATL,, canﬂ. Combining the two, we get that AL, has a very
distinct expressive power compared to either GL or ATL,..

6A bisimulation is a binary relation between transition systems that associate systems that behave
similarly. We do not formally define the notion of bisimulation (nor the one of alternating-bisimulation)
and refer to [36] and [55] for surveys.
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Chapter 2

Complexity of SL

In this chapter we go over the complexity results known on SL. In the theoretical frame-
work of SL, two questions come of interest: the first one, the satisfiability problem, asks
for an algorithm to check if there is some game on which a formula given in input is satis-
fiable or if the formula is structurally incoherent; the second, the model checking problem,
asks for an algorithm taking as inputs a formula and a game that returns whether the
formula holds on the game. We define formally both problems though we will mostly
focus on the second one.

Definition 2.1 (Satisfiability problem).
The satisfiability problem for a logic L ask for an algorithm that takes as input a formula
¢ € L and returns whether there is some CGS G such that ¢ holds on G.

Definition 2.2 (Model checking problem).
The model checking problem for a logic L asks for an algorithm that takes as input a
formula ¢ € L and a CGS G, and returns whether ¢ holds on G.

We are looking for which complexity class the model checking and satisfiability prob-
lems belong. We do not define complexity classes and refer the interested reader to |3}, 52].
We now focus on the model checking problem. We however recall the existing results
about the satisfiability of SL, its sub-logics and a few other game-related temporal logics.

Initially developed on transition systems, LTL can easily be adapted to games: can
an agent enforce that the outcome satisfies the LTL formula no matter the decisions of
the other agents? Pnueli and Rosner found in 1989 [45] that LTL on games admits a
2-EXPTIME-complete model checking. This result was applied in [2] to get the following
theorem.

Theorem 2.3 (Alur, Henzinger and Kupferman [2]).
ATL" model checking and satisfiability are both 2-EXPTIME-complete.

Other techniques were applied for solving the SL[1G] satisfiability problem. The result
is however similar, as shown by the theorem below. In particular, SL[1G] satisfiability is
not more complex than ATL" or LTL (on games).

41
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Theorem 2.4 (Mogavero, Murano, Perelli and Vardi [38§]).
SL[1G] satisfiability is 2-EXPTIME-complete.

While there is no formal proof of the undecidability of SL[BG] satisfiability, it can
easily be derived from the undecidability of the satisfiability problems for other logics.
QCTL [18] is a temporal logic whose expressiveness is similar in many way to that of
SL[BG] (it is also very similar to ATL,. expressiveness). QCTL satisfiability can be reduce
to SL[BG] satisfiability relatively easily. In [30] QCTL satisfiability was proven undecid-
able, we can then use the reduction from QCTL to SL[BG] to get the same undecidability
for SL[BG]. Due to its high expressiveness, this result is not a surprise. As show by
Theorem we regain decidability in the SL[1G] fragment.

Theorem 2.5. SL[BG] (and therefore SL) satisfiability problem is undecidable

For the rest of this chapter, we focus on the model checking problem of SL and its
sub-logics.

2.1 SL upper bound

In [39], Mogavero, Murano, Perelli and Vardi developed an algorithm for SL model check-
ing.

Theorem 2.6 (Mogavero, Murano, Perelli and Vardi [39]).

The model checking problem for SL is in NONELEMENTARY with respect to the size of
the formula. It is in (k+ 1)-EXPTIME for SLING] formulas with k or less quantifier
alternations.

The algorithm acts in a fashion similar to the well-known decidability result for MSO
on infinite binary trees (also known as S2S). The proof presented in [56] builds a Biichi
tree automaton by iteration on the formula. The emptiness of the final automaton is then
equivalent to the validity of the MSO formula on the infinite binary tree. For SL model
checking, the proof also proceeds by building an automaton by induction on the formula
and by solving the emptiness problem of the automaton at the last step. The Biichi tree
automaton is however replaced by an alternating parity tree automaton. The proof is
rather long, we therefore provide only a sketch of it. The curious reader may refer to the
original paper for more details.

Sketch of proof.
We start with two definitions:

Definition 2.7. A tree over the state space Q is a tuple T := (T,E) where T C Q" is
the set of nodes (with each node a finite sequence over Q); E: T — 2T is a transition
function such that for any t,t' € T, if t' € E(t) then |t'| = |t| + 1;

A Y-labelled tree T is a tuple T := (X, T, E, labels) where (T, E) is a tree, 3 is the
input alphabet and labels : T — X is a labelling function associating an input symbol with
each node of the tree.
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Figure 2.1: Correspondence between a valuation x on a game G, and a labelled unwinding
of G.

Definition 2.8. The unwinding of a CGS G = (AP, Agt, Q, Act, A, labels) is an (unla-
belled) tree T := (T, E) where T is built upon the state space Q of G and such that for
anyt e T,

t.q € E(t) if and only if there ewists d € Act*®" such that A(Ist(t),d) = ¢’

Consider a SL formula ¢, a game G, a set V of variables and a valuation y over G and
V. We let T be the infinite tree representing the unwinding of G. The valuation y can
be put in correspondence with a labelling of T over the alphabet Act®®, where the label
of a state ¢ in a branch ¢ of T represents the action choices of x(t) when ¢ is viewed as a
history of G. Figure [2.1] illustrates the idea.

The model checking procedure of SL uses this idea to build an appropriate alternating
parity tree automaton by a bottom-up induction on the formula. At step ¢’ (for a sub-
formula ¢’ of ¢), the algorithm produces an automaton Ny based on ¢’ own sub-formulas.
This automaton Ny encodes the game G by accepting only unwindings of G and obeys
the following property.

Proposition 2.9. For any valuation x with dom(x) = free(¢'), writing Tgom(y) for the
labelled tree in correspondence with x (with Act®™™) the set of labels), then

(], Gini IZX ¢/ = 7;Iom(x) S ‘C(N¢’)

Sub-formulas made of an LTL operator are handled using standard techniques, for ex-
ample the ¢;U ¢, operator uses the decomposition ¢oV (1 AX (61U ¢2)). A sub-formula
¢ = assign(A, x). ¢" starting with an assignment simply modifies the automaton Ny of
¢” built at previous steps by updating the transition function according to assign(A, x).
A sub-formula ¢’ = Jx. ¢" proceeds by a projection of the Ny automaton. There re-
mains the case of the boolean operators. The V and — operators are handled through
the standard union and intersection of automata. Finally, the — operator is handled
through complementation of parity tree automata with a standard technique (also devel-
oped in [43]). Then, at the last step of the induction we get a parity tree automaton N,
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such that
G, gmi =9 < 3T €Treeys.t T € LIN)

where T'reey is the set of unwindings of G. The equivalences can be solved by using
standard techniques to solve the emptiness of tree automata in time a®, where a is the
number of state of NV, and b is the number of indexes. An algorithm can be found in [29).

The algorithm over SL[NG]: The first operator of a closed formula can only be either
a quantification or an atomic proposition (otherwise the formula has some free variable or
free agent or is not syntactically in SL[NG]). The last possibility makes ¢ trivial and we
set it aside. If ¢ starts by a universal quantification, we can solve the model checking for
its negation —¢ and reverse the result to get ¢’s model checking. We can therefore assume
without loss of generality that ¢ is of form ¢ = Jx. ¢/. This existential quantification at
the start allows us to stop the induction the step before ¢ and get an automaton Ny

G lini=0 & G ¢ & IT €Treey st T € LINy)

The automata built at the initial step of the induction are of size exponential in the
formula and polynomial in the game. For sub-formulas starting by all but a —¢’ operator,
the automaton built at step « is of size polynomial in the automata build at steps less than
. The only step where the automaton increases in a non polynomial factor compared
to the size of the automata previously built is for sub-formulas starting with the —¢’
operator. Then, the build-up is exponential in the size of the automaton of ¢'.

Using the V and A operator we may modify any SL[NG] formula to push the negation
either between quantifiers or at the atomic propositions’ level. The size of the automaton

for the modified formula then grows only through quantifier alternation and we retrieve
the complexity result of Theorem [2.6] for SL[NG]. O

2.2 Data complexity

The data complexity of an algorithm is the complexity relative to the size of the game
given as input. In the model checking procedure for SL exposed above, the size of the
parity tree automaton respectively to the size of the game grows exponentially with each
quantifier alternation. The data complexity is therefore a tower of exponentials of height
equal to the number of quantifier alternations and final exponent a polynomial in the size
of the game.

Definition 2.10.
We define the function Tower: N x N — N by induction. Initially Tower(a,0) := a while
Tower(a,b+1) := 9 Tower(ab) ot the induction step. This encodes towers of exponentials of

the form 92"
To be precise, the order of magnitude of SL data complexity (for the model check-

ing problem) is Tower(k, P(|G|)) with k& the number of quantifier alternations and P a
polynomial. The authors of [39] made a calculation error and claimed a data complexity
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in PTIME for their SL model checking algorithm, the algorithm however provides only a
NONELEMENTARY data complexity.

Theorem 2.11. SL model checking data complezity is in NONELEMENTARY.

With this rectification, we provide a proof of hardness for the data model checking of
SL[BG] (hence also SL). We show that the data complexity of SL[BG] model checking is
PH-hard(as in hard for each level of the polynomial hierarchy).

Theorem 2.12. The data complexity of SL[BG] model checking is PH-hard.

Proof. We prove that it is hard for each level of the boolean formulas hierarchy, Theo-
rem [2.12) will follow. SL expressiveness in general is heavily linked to QCTL expressiveness
and its data complexity is known to be PH-hard. We could have worked by a reduction
from QCTL towards SL to prove Theorem [2.12 We instead opt for a more direct (and
shorter) approach, by a reduction towards the satisfiability problem for quantified boolean
formulas.

Quantified boolean formulas

Definition 2.13 (Quantified boolean formulas in conjunctive normal form).
Fiz an infinite set V = {v1, ...} of boolean variables. A quantified boolean expression in
conjunctive normal form over V is a formula build upon the following grammar:

CNF-SAT> ¢ == Fv ¢ |Yv. ¢ |( where v is any variable of V.

¢ == CAC|n
n o= nVnlY
Y o= v | -w

We reuse standard vocabulary: 1 type formulas are called literals, n formulas are
called clauses and ( formulas are called conjunctions. Quantified boolean formulas over a
set V of variables are evaluated over a (partial) interpretation int : V — {T, L} and are
true when int evaluates ¢ to T. Given a pre-existent interpretation ¢nt, the Jv ¢ operator
asks for the existence of an interpretation int’ agreeing with int on any variable different
from v such that int’ evaluates ¢ to T. The Vv. ¢ operator asks for each interpretation
int’ agreeing with int on all variables different from v to be so int’ evaluates ¢ to true.
Over an interpretation int of domain V), boolean operators are standard.

For any positive integer k, formulas with k£ quantifier alternations or less, starting by
a block of existential quantifications and where all variables are quantified, form the set
SPAT of formulas. The satisfiability problem for a formula ¢ € 3747 asks whether ¢
evaluate to T from the empty alternation; this problem is known to be complete for X7
(the k existential level of the polynomial hierarchy).

I hardness of SL[BG] model checking

Lemma 2.14. SL[BG] (and thus SL[NG] and SL) model checking with respect to the size
of the game is X1 -hard.
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Proof. We first define a formula ¢ (independently of any ¥¥ formula) on the sets AP :=
{piit; Doar, 0k, no} of atomic propositions and Agt := {{A ,\V|,[Ir/ , } of agents:

(aSSign(/\ » Us \ y 23 lr 7w*—>7© 7x)Fplit
VAN

assign(A,y; V., zlr ,we; © L 2)F poor
¢ :=dr.Jw,,.Fw., Yy Vz.Vys.3zy. A
<assign(/\ sV 2l we; © L, 2)F ok
G assign(A ,yn; V20 lr  we,; © 2)F ok:>

Fix a boolean expression ® := Jvy ... Ju,. /\igl VjSJ l; ; with I, J two sets of integers
and where [; ; is a literal build on the variables {vi,...,v,}. From ®, we derive a con-
current game G := (AP, Agt, Q, Act, A, labels) represented in Figure AP and Agt are
the same as in ¢.

e The state space Q is composed of an initial state g;,;, of three states (ok,no,var;)

per variable in {v;...,v,} and of one state lit; ; per literal [; ; of ®.
e The agent Ir has two actions {+,<=}. /A has I actions: 1,...,I and V. has J
actions: 1,...,J. Finally ) has two actions: ok, Gno.

e On the initial state g;,;, A depends on the actions of lr , A and V . The agent [r
decide if we go to the left (to the variable states with the action <) or right (to the
literal states with the action —) part of the game as in Figure . If Ir chooses
left, A goes from the initial state to the state representing the variable present in
l; j; if lr. goes to the right, A goes to the [it; ; literal state.

On a variable state var;, the decision is done by () who can play a,; to go to the
ok state and a,, to go to the no state.

e The variable states are labelled by p,.. while the literal states are labelled with the
common proposition py;. We also label the ok states with an eponymous atomic
proposition and do the same for the no states. Finally for any 7, j we label the state
lit; ; by ok if [; ; is a variable in ® and by no if [; ; is the negation of a variable.

We now have the game and the formula. It remains to prove the correctness of the
reduction, i.e.
® evaluates to T < G, qini = ¢

Proof of the left-to-right implication Assume there is an interpretation int that
evaluates ® to T, we must prove that G, ¢, = ¢. We define a strategy 0;,; for )

by following the choices of int: on wvar;, d;x plays to ok if int(v;) = T and to no if
int(v;) = L. We also define two strategies ., and 0., for Ir that play respectively the
action <-4 and the action —. Write

X ={2 = Sty we, = Oy wey, — 0}
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labelled ok if l1,1 is a variable and

ok no if l11 is a negation of a variable
, .
4_\ l’ “
1,7 ith H
no (i)} w . ;
,

lij € {v1, w1} (—,1,1) .
~

ok \ / .
>@ Qini ll?fl7 j
no / \\

{(«,14,7)} with (=,1,J) .
ok li,j € {vn,wn} S~
‘_/

no

«--labelled pyar --~ «--- labelled py; ----

Figure 2.2: Game G used in lemma ’s proof. Not all actions appear on the figure.

Trivially, we get

aSSign( Y, NV 2 Ir w.—>, )Fplzt
G, Qini Ex YyV2Vys.3zy. < A (2.1)

assign(A ,y; V., 2300, we; @, 2)F puay
Now, because int is a working interpretation for ®, for any ¢ € [ there exists some
integer j(i) € J depending on i -that we shorten to j in the following when ¢ is clear of

context- such that int evaluates [;; to T. Fix any strategy o, for A and write ¢ for the
action played by d, on g;,;. We let &, be the strategy for V' that plays j(i) and write

X = xU{ys = 0n;9v — Oy}

The assignment assign(A ,yx; V., 2v;lr w0, x) applied to y/ produces an outcome
that goes to the literal state lit; ; while a55|gn(/\ yns Vo 2y e swe; O o) applied to x/
produces an outcome to the variable state var(i, 7), where var(z, j) is the variable present
in /; ;. This means that

o either [;; = v(i,j): then ok € labels(lit; ;). As int evaluates [;; to T and [;; =
v(i, j), int evaluates v(i,7) to T and by construction of d;,;, d;n(var(i, j)) = ok.

e orl; j = —~x(i,7): then no € labels(lit; ;). Moreover int evaluates [; ; to T hence int
evaluates v(i,j) to L and 0z, (var(i,j)) = no.

In both cases, the equivalence below holds.

assign(A ,yn; V 2y e ,we; &, x). Fok
& assign(A L yn; Vo, 2y e w0 o). Fok
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Combining this equivalence with Formula (2.1]), we get that if ® is satisfiable then

Proof of right-to-left implication Now, assume that there is a working strategy ;.
and that for any J, we can find a working strategy d,. We can deduce an interpretation
int that evaluates true on ®. To find the working literal, given ¢ € I, we assign the
strategy that plays 7 to y,. We can then use the hypothesis to find a answer strategy oy
and deduce from it an integer j that ensures [; ; to be evaluated to T by i¢nt. In the end,
if G, qini = &, we can find a suitable interpretation int that evaluates ¥ to T.

We get that G, ¢in; = ¢ if and only if we can find a suitable interpretation int that
evaluates W to T. This ensures the correctness of our reduction. SAT being NP -hard and
the SL[BG] formula being independent from the CNF-SAT formula, the data complexity
of SL[BG] model checking must also be NP-hard. O

The same idea used to prove Lemma [2.14] can be applied to extend it to the whole
polynomial hierarchy.

Theorem 2.12. The data complexity of SL[BG] model checking is PH-hard.

2.3 A lower bound for SL[BG]

In this section, we prove that the model checking problem for SL[BG| is Tower-hard
(the complexity class Tower is the class of problems of complexity bounded by a tower
of exponentials, whose height is an elementary function of the input [50]). We actually
prove the result for (the flat fragment) SL[BG]’, closing a question left open in [39]. The
proof is an extend version of the one presented in [7].

Theorem 2.15. SL[BG] model checking is Tower-hard.

We prove this result by encoding the satisfiability problem for QLTL into the model
checking problem for SL[BG]. QLTL is the extension of LTL with quantification over
atomic propositions [53]: formulas in QLTL are of the form ® = Vp,3ps...Vp,—13p,. ¢
where ¢ is in LTL. Notice that we only consider strictly alternating formulas for the
sake of readability. The general case can be handled similarly. Formula Jp. ¢ holds true
over a word w: N — 2AP if there exists a word w': N — 24P with w'(i) N (AP \ {p}) =
w(i) N (AP \ {p}) and w’ |= ¢ for all 7. Universal quantification is defined similarly. we
then say that ® is satisfiable if there is a word on which & holds.

As an example, consider the formula ® := Vp;3p, G (p1 < X py). Formula @ is sat-
isfiable. Indeed, consider any word w : N — 2AP resulting of the universal quantification
over p;. Define w’ : N — 2P such that for any i € N, p; € w(i) if and only if p, € w'(4)
and (if i > 1) po € w'(7) if and only if po € w(i —1). The word w’ satisfies G (p; < X p2),
therefore the word w satisfies Ip, G (p1 < X py) and P is satisfiable.
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It is well-known that satisfiability of QLTL is Tower-complete [54]. We reduce the
satisfiability of QLTL into a model checking problem for a SL[BG] formula involving n +4
agents (where n is the number of quantifiers in the QLTL formula), and three additional
quantifier alternations.

2.3.1 SL lower bound

Before developing this technical encoding, we first present an example of a reduction to
SL, which already contains most of the intuitions of our reduction from QLTL to SL[BG].
Counsider the QLTL formula

p
— ' D ¢ =Vp.3pe. G (p2 & Xp1).

a
/ : \_‘plg
5 To solve the satisfiability problem of this formula via

\ SL, we use the three-agent turn-based game depicted
/ on Figure 2.3 In that game, Agent controls the
Gold state s, while Agents and Red control

the square states a; and as, respectively. Fix a strat-

d

Figure 2.3: The 3-agent turn- egy of Agent : this strategy will be evaluated
based game for the reduction to only in Orange state a;, hence after histories of the
SL model checking form s"-a;. Hence a strategy of Agent can be
seen as associating with each integer n a value for p;.
In other words, a strategy for Agent defines

a labeling of the time line with atomic proposition p;. Similarly for Agent Red and
proposition ps.

It remains to use this correspondence for encoding our QLTL formula. We have to ex-
press that for any strategy o of Agent , there is a strategy dz.q of Agent Red
under which, at each step along the path that stays in s forever, Agent can enforce
X 2p, if and only if he can enforce X 2p; one step later. In the end, the formula reads as
follows:

V. assign( ,x1). Jxo. assign(Red, x5). Jx3. assign( ,T3).
® A Jxs. assign( ,T3). XQ@
Gle (2.2)

X (Jx3. assign( ,T3). X2@)

One may notice that the above property is not in SL[BG]: for instance, the sub-formula
Jxs. assign( ,z3). X*(py) is not closed.

2.3.2 SL[BG] lower bound

We provide a new construction, refining the ideas above, in order to reduce QLTL satis-
fiability to SL[BG] model checking.
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O phpz O —p1, P2 Nyl’m
P1,P2 —P1,P2

¥, P1, P2 ¥, P11, P2 @, 7P1, P2 Y, P1, P2

P2
v vw
1, P2 9 DY —P1,DP2 —P1, P2 2 D% Pp1,D2
%
P1, 7p2

®Y, D1, P2 ¥, 7P1, P2 —Y,P1, P2 Y, P1,P2
D1, ﬁpz p1, 72 U
P1, P2 D1, P2 Pp1,P2

Figure 2.4: Biichi automaton for G (p2 < X p;)

Refining SL lower bound

In order to do so, we take another approach for encoding the LTL formula, since our
technique of encoding ps with Jz3. assign( ,r3). X 2@ is not compatible with getting
a formula in SL[BG]. Instead, we will use a Biichi automaton encoding the formula;
another agent, say Agent Oak, will be in charge of selecting states of the Biichi automaton
at each step. Using the same trick as above in the game structure on the left of Figure[2.5]
a strategy for Agent Oak can be seen as a mapping from N to states of the Biichi
automaton. Our formula will ensure that this sequence of states is in accordance with
the atomic propositions selected by the square agents in states a;, and that it forms an
accepting run of the Biichi automaton.

) ) O
¥, 7P1, P2 ®, P1, P2 D

0 0 S o
@, P01, P2 @, P1, D2 O/ \_'plg [
—$,P1, P2 Y, D1, P2 \ @'

0 0

7Y, P, P2 [ TP, TP, D2 ' ' U

) )

Figure 2.5: The concurrent game for the reduction to SL[BG] model checking.

For our example, an eight-state Biichi automaton associated with the (LTL part of
the) QLTL formula is depicted on Figure 2.4l Notice that smaller automata exist for this
property (for instance, the four states on the right could be merged into a single one),
but for technical reasons in our construction, we require that each state of the Biichi
automaton corresponds to a single valuation of the atomic propositions, hence the number
of states must be a multiple of 24Pl Accordingly, we augment our game structure of
Figure with eight extra states, as depicted on the left of Figure 2.5 Again, a strategy
of Agent Oak (controlling state b) defines a sequence of states of the Biichi automaton.
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oo (s, a,7)"

V(S(rl‘(:;('?n a
35(()3/(11/ v
Eldi(]reen Q
35(, ‘yan

¢ i &
El(;i]reen « 3

Cyan
doy v 5
353(221;(11 Q - @
Fgchi s b
Fonp s a

Figure 2.6: Visualization of the strategies selected by W, on history (s, o, 7)*.

It then remains to “synchronise” the run of the Biichi automaton with the valuations
of the atomic propositions, selected by the agents controlling the square states. This
is achieved by taking the product of the game we just built with two extra one-agent
structures, as depicted on the right of Figure 2.5l The product gives rise to a concurrent
game, where one transition is taken simultaneously in the main structure and in the
OliveGreen and BlueGreen structures. In this product, as long as Agent remains
in s and Agent Green remains in «, a strategy of Agent C'yan (controlling state 7) either
remains in ~ forever, or it can be characterised by a value n € N. Similarly, as long
as Agent remains in s and Agent C'yan remains in v, a strategy of Agent Green
(controlling state «) either loops forever in «, or can be uniquely characterised by a
pair (k,p;), where k is the number of times the loop over « is taken before entering
state (3; corresponding to p; € AP.

Our construction can then be divided in two steps:

e first, with any strategy of Agent Green (characterised by (k,p;) for the interesting
cases), we associate auxiliary strategies of Agents , Green and C'yan satisfying
certain properties, that can be enforced by an SL[BG] formula W,,. Figure
should help visualising the associated strategies. In particular, strategies 6, /", &y
and 0{"°" characterise position k + 1 (which will be useful for checking transitions
of the Biichi automaton), while dg;,. and d,p"" are Agent strategies that go
either to the Biichi part or to the proposition part of the main part of the game.

e Then, using those strategies, we write another SL[BG] formula to enforce that the
transitions of the Biichi automaton are correctly applied, following the valuations
of the atomic propositions selected in the square states, and that an accepting state
is visited infinitely many times.

The construction of the game structure Gg depicted on Figure is readily extended to
any number of atomic propositions, and to any Biichi automaton. We now explain how
we build our SL[BG] formula replacing Formula (2.2), and ensuring correctness of our
reduction.
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Specifying auxiliary strategies

We begin with simple constructions to select specific strategies, independently of the
choice of the valuations for the atomic propositions. In the rest of this proof, we name
strategy variables after the name of the agent who will be assigned that strategy; for
instance, 65/“" (that we use below) is the strategy of Agent C'yan that always plays to 7.
Our assignment operator will thus take only a strategy as argument, as the associated
agent will be clear from the name of the strategy. Also, agents with no assigned strategies
may have any strategy.

We consider the following formula, which we denote W, in the sequel, in which
we write 3 as a shorthand for \/, _xp Bi:

Green Cyan Green Cyan Green Cyan Green
Yo 305, 3(0; Jpieap. 302V 30T 36 305" Fgen-
Green
35557, 36501, 6L Gl Green,

acc

assign(év ’(Séh,sen’ (5;}/(1”)' G (_|5) (@1)
AN
assign(dggep:, 677", 650, [G(ans) vV (ans)U(BAD)] (2)
AN
assign (0, ", 657" 60). [G(aAs) V (ans)U(BAD)] (3)
/\ , v
assign (8, osreen L, [G (ans) V (ans)U(BA b)] (1)
VAN
assign(Gpp ', 07" 60). [G(aAs) V (ans)U (\/pieAP Bi N a)] (¢5)
VAN
aSSign(éBﬁchia 5(#@(—171’ 5(:',1/m[). G (5<:>5> (§06)
AN
. Green ¢Cyan
A, e [aSSIgn((SBﬁchi,(Si B GEeNAN Gﬂ@.]
(07)
A (
aSSign(5+ ’5_(;7‘(%(71’ 5;();/(1”)‘ F 5
aSSign(aBﬁchia 5(17’6671,, 6(()(;1/41/1). FB = A
\aSSign<5Bﬁchi7 (%gremrz? 6(;//(111). F (6 A _'5)
)
AN
assign((gacc 7555:26877,7 5(;;/(”/)‘ F 6
aSSign(éBﬂchia 5(}'1’@,(’,71’ 5((),0"1/(117). Fﬂ = A (909)
| assign(d55.s, 052, 6C0). F (6 A —B)
VAN
assign(6, ", 55:"”“, 5;”“”). G(-sepfed) (p10)
([assign (Tasens 357", 027). F (5 A )] =
[assign(5+ ,657'(%(111,’ 51,1/(1/1)' CYU(S]) (Qpll)

We now explain how this formula holds true in the product game of Figure [2.5]
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whichever strategies are assigned to the square agents and to Agent Oak. Actually,
it only associates, with each strategy 09" (quantified universally at the beginning of

the formula) a set of strategies that “synchronize” with

(i)

(i)

(i)

(xi)

6(}'7’(’,877, .

strategy 0/ always plays to v, whatever the history of the game (Formula (p,));

strategy dgien must be such that, for all p of the form (s, a, v)7, it holds 04 (p) = s
as long as 6“"°"(p) = «, and dg;i(p) = b when (if ever) §“7“"(p) # a (For-
mula (pa)));

with similar ideas, strategy 0" must be such that, for all p of the form (s, a,v),
it holds 6."/(p) = s as long as 6Y"“"(p) = «, and 6.""(p) = b when (if ever)

5557'(%(:” (p) 7§ o (Formula )7

also, strategy 4. must be such that, for all p of the form (s,«,~)’, it holds
J (P) = S as IOIlg as (5("7’“‘”’(p) = q, and 5acc (p) — b when (1f GVGI‘) 5(:7’6871(p) ?é o

acc acc acc

(Formula (p4)));

similarly, strategy 955"/ (p) = s when 67" (p) = a, and dxp " (p) = a; when (if ever)
5(:1‘(1@1L(p) — Bl (Formula ),

similarly, strategy 02V (p) = ~ as long as 6“"“"(p) = a, and 6-Y*"(p) = § when
(if ever) 69" “"(p) = f3; for some i (Formula combined with item [(ii)));

using similar ideas, it must be the case that §°"“"(p) = a as long as 6~/ (p) = 7,
and 6;"°"(p) = B; when (if ever) 62V""(p) = ¢ (Formula (ip7)). Combining this
with item it must be the case that 6{7““"(p) = « as long as §“7““"(p) = v, and
6¢reen(p) = B; when (if ever) 67" (p) #

if 697"(p) = B; for some p = (s,,7)? and for some 4, then §{""(p') = B for
some p' = (s,,7)* and some [. Moreover, the last part of Formula imposes
that & > j;

strategy 05" satisfies the same condition as above (possibly for a different value

of k) (Formula (p));

strategy 0./ (p) = 7 as long as 6¢"°"(p) = a, and 0,"""(p) = & when (if ever)
6$"6‘5f1(p) = f3; for some ¢ (Formula ((p10)). Similarly,vstrategy 6, (p) = s as long
as 67" (p) = a, and 07" (p) = —~a when (if ever) 67" (p) = f; for some i;

finally, Formula imposes that 6,/ plays ¢ (for the first time) exactly one step
after 97" has played 3 (for the first time). This also imposes the same property
for the first time at which 697" plays ;. By item We know that 6, """ plays &
(for the first time) after 6", Assume 6,""" plays to & on (s,a,v)* for the first
time and 6“7°" plays to a f; on (s,a,v)/. Take for 67" the strategy playing to
B; for the first time after (s, ,~)?™, then the first formula holds. If k& # j + 1 the
second formula does not hold and neither does Formula (y1,]).
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Figure page pl| summarises the constraints imposed by the formulas above on the
selected strategies.

Enforcing correct transitions

We now focus on the Biichi automaton simulation. We look for a strategy of Agent Oak
that will mimic the run of the Biichi automaton, following the valuation of the atomic
propositions selected by the square agents A; to A,,. We also require that the run of the
Biichi automaton be accepting.

The formula ¥ enforcing these constraints is as follows EL with () the state space of
the Biichi automaton and g;,; its initial state :

VoA, 3542, | Y5An-1, 3540, 350k assign (41, 542, ..., §An-1, §An §Ok §Cuany

/\ /\ (assign (dggeni» 0; ") F q) < (assign(dggen» 95" )F ) (p12)
Pi,p; EAP q€Q
/\ al
assign (Oggeni» 077" (X b = X *gins) (¢13)
VAN
Ageq assign (g, 077"). Fq = \/ assign(8, ", 6¢7"). F ¢ (p14)
q'esucc(q)
/\ Y,
assign(9,.. .0 )-\/  Faq (#15)
q€accept(Q)
VAN

Aicnr ((assign(ds " 077"). Fpy) =

(assign(Oggenis 077°"). \/ F Q)) (¢16)
g€Q|p;¢labelsg
AN

/\ ((aSSign((SAP 75(;“1672) Fpi) = (aSSig"(éauchia5”“”)- \/ FQ)> (¢17)

pi EAP gEQ)|pi€labelsq
We now analyze formula W:

(xii) Formula (p12)) requires that strategy 6“** returns the same move after any history
of the form (s, o, )% (b, B;,7), whichever 3; has been selected by 5 ";

(xiii) Formula ensures the initial state in the run of the Biichi automaton. The
universal quantification of §°7“" force §°** to preventively chose the appropriate
state while items and ensure that the outcome is of the correct shape
according to our encoding, namely (s, a, )’ (b, 8;,7) for some i;

(xiv) Items and ensure that the outcome of (Lc , §¢reen and 657" loops one
more time on (s, ,7) than the outcome of dg;i, 6" and 65."". Formula (p14)

'We notice that W is not syntactically in SL[BG], as some assignments appear before quantifications
in U,,.. However, quantifiers in W,,, could be moved before the assignments of W.
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then additionally requires that two consecutive states of the run of the Biichi au-
tomaton indeed correspond to a transition.

(xv) Similarly, items and ensure that the outcome of .7/ 657" and 6.V loops
more time on (s, @,v) than the outcome of dg;i:, 6" and 65"". Formula (p15)
then states that for any position (selected by §“7““"), there exists a later position

(given by 65°“") at which the run of the Biichi automaton visits an accepting state.

(xvi) Items and ensure that 0,5 and g, loop the same number of time on
(s, ,7). Formulas and then constrain the state of the Biichi automaton
to correspond to the valuation of the atomic propositions selected. Because of the
universal quantification over 67", this property will be enforced at all positions
and for all atomic propositions;

Correctness of the reduction

It remains to prove the correctness of the construction. For this we establish a correspon-
dence between words over 2P and valuations of domain {§41,... 64"}, The correspon-
dence follows the idea described at the beginning of the proof: a word w: N — 2P is in
correspondence with the valuation y,, where

VEeNVI<i<n pi€wk) < Xw(éAi((s,a,’y)k.(ai,ﬁi,fy))) =p;

In the following we write W, ,ap for the sub-formula corresponding to the part of ¥
without the quantifiers coding the atomic propositions V641, 3642, ... V§4n-1. 354, We
also denote @1, the LTL part of the QLTL formula ®. The lemmas below state the
correctness of the construction in two steps. Their proofs, which can be found in the
annex (page , are based on the correspondence described above.

Lemma 2.16. A word w satisfies ;71 if and only if G, (s,0,7) Ex. Ynoap with X, the
valuation corresponding to w.

Lemma 2.17. Formula ® is satisfiable if and only if Formula V holds true in state (s, o, 7y)
of the game Gg.

The Lemma handles the correctness of the construction based on the corre-
spondence described above between words and valuations. In a standard fashion, the
Lemma extends Lemma by taking care of the quantifications over the atomic
propositions. It also proves the correctness of our reduction and concludes the proof of
Theorem [2.15]

Closing remarks

SL[BG] and several other fragments were defined in [40, 41] with the aim of getting more
tractable fragments of SL. In particular, the authors advocate for the restriction to be-
havioural strategies: this forbids strategies that prescribe actions depending of what other
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strategies would prescribe later on, or after different histories. Non-behavioural strate-
gies are thus claimed to have limited interest in practice; moreover, they are suspected
of being responsible for the non-elementary complexity of SL model checking. Our hard-
ness result strengthens the latter claim, as SL[BG] is known for not having behavioural
strategies. In the second part of the thesis, we will study behavioural strategies and more
generally dependencies in SL[BG].

We had to rely on a Biichi automaton instead of
directly using the original LTL formula directly in the p2‘ pz‘
SL[BG] formula. This is because we need to evaluate
the formula not on a real path of our game structure, (j(j([j([j([f
but on a sequence of “unions” of states. The figure on o e 5 5
the right represents this situation for the game struc-
ture of Figure the path on which the LTL formula
is evaluated is given by the orange and red circle states, which define the valuations for p;
and ps.

2.4 Conclusion

Model Checking Satisfiability
Formula | Data Formula
SL Upper Bound NONELEMENTARY [39]
Lower Bound || TOWER ‘ PH-hard
U Bound n (k + 1)-EXPTIME for
SL[NG] | -bPerboun k quantifier alternations [39] UNDECIDABLE
and
SL{BG] Lower Bound | | TOWER PH-hard
SL[1G] Upper Bound 2-EXPTIME-complete [3§]
Lower Bound (PTIME-complete for the model checking data complexity)

Table 2.1: Complexities of SL and its fragments.

We can see on Table that SL[NG] and SL[BG] model checking complexities are
high while the satisfiabilities are outright undecidable. The TOWER lower bound we
developed in Section for SL[BG] proves that we cannot do much better. It would
be interesting to close the gap in the data complexity between the NONELEMENTARY
upper bound and the PH lower bound. The SL model checking algorithm proceeds by a
bottom up induction using the state space of the game in the basic case; there may exists
a potential solution in a similar algorithm that proceed without using the game in the
basic case.

To regain a decent complexity (if we may call 2-EXPTIME decent), the only solution
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is to heavily restrict the logic. Satisfiability of SL[1G], the fragment with a unique ob-
jective, is 2-EXPTIME-complete. While never proved formally, the technics developed by
Mogavero, Murano, Perelli and Vardi in [38] for the satisfiablity problem may be adapted
to get a 2-EXPTIME algorithm for the model checking problem. We will also provide our
own algorithm in Chapter [5



58

2.A Annex

Lemma 2.16. A word w satisfies ;7 if and only if G, (s,0,7) Fxw Ynoap with X, the
valuation corresponding to w.

Proof. Write w := (w;);ey for the word w : N — 24P A/ for the Biichi automaton
associate with &t and A, for its transition function.

Proof of left-to-right implication Assume that w € L(N), then there exists a path
7 in N witnesses that w is accepted by N, i.e. 7(1) is the initial state of N, 7 € L(N)
and

VieN  Ay(r(j),w()) =7 +1) (2.3)
We define a strategy d°** for Agent Oak. For any k, we set

07" (s, 7)) := 7 ()

We can then follow the choices explained in Section to complete x,, into a
complete valuation y that satisfies the goals of Wa,,. It remains to check that y satisfies
the Formulas to (p17). Formula holds de facto by the choices made in Wayy. 7
is, by definition, a proper path of NV so by items [(xiii)| and [(xiv)], Formulas (¢13)) and
must hold. Similarly, as 7 is accepting and because of item [(xv)| Formula [p;5| must also
hold. Finally, by construction of 6“°* and as explained in item |(xvi), Formulas

and (17) must be true.

Proof of right-to-left implication For the converse implication, we assume that
w & L(N), and towards a contradiction we further assume that

g7 (S7 «, ’Y) ):Xw \I]noAP (24)

Fix a strategy 09?* for Agent Oak and let x be a complete valuation resulting from
the interplay between the quantifications that extend ,, and use °?*. First, as described
in Section the behaviour of all strategies existentially quantified in Wa,x is imposed
by the goals within Wa,, and the universally quantified strategies within Way, (namely
gereen 557 and 6G7"). If the strategies of x do not follow the rules imposed by Wa,,
and x(697°"), x(65 ") and x(657°“") then there must exist some goal in Wa,, that does
not hold. This means that ¥,,op does not hold either and we get a contradiction with
Formula (2.4). So for the rest of the right-to-left implication, we assume that x is working
for the goals of Wp,y.

Similarly to the left-to-right implication, the strategy 6“** describes a sequence of
state (m;)jen in NV through the following equality

0" ((s,0,7)") = 7(j)

Items |(xiii)| and |(xiv)| ensure that 7 is a proper path, starting in the initial state g,
of N. Ttems makes sure 7w is accepted by N. Finally, item establishes a
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correspondence between the word w and the path 7. Combining items to [(xvi)} we
get that w is accepted by N which contradicts the hypothesis we made at the start of
the implication. So the hypothesis w & £(N) and the Formula are contradictory
and the right to left implication must hold. O]

Lemma 2.17. Formula ® is satisfiable if and only if Formula U holds true in state (s, o, 7y)
of the game Gg.

Proof. We proceed by induction on the number of atomic propositions. For this proof we
write U; for the formula consisting of U without the quantifications V641, ... Q,;_16%!
and ®; for the sub-formula of ® that withdraws the quantifications Vpy,...,Q;_1pi_1.
The induction aims to prove that

w satisfies ®; < Go, (5, 0,7) Fy, Vi (2.5)

where w : N — 2P1Pi-1 ig g word, Y, is the valuation associate with w as described in
Section [2.3.2] and with i ranging from n to 0.

The initial case (i = n, ; = ¢ 1 and ¥; = ¥,,,ap) has already be done by Lemmam
and only the induction case remains. For the i** step, by induction hypothesis For-
mula holds for 7 + 1.Without loss of generality we assume that ); = 3, the case
(); = V is similar. First, consider a word w and assume that w satisfies ®;. Then there
exists a function w; : N — {p;, 0} such that w’ := wUw; satisfies ®;,_;. Then by induction
hypothesis, Gs, (s, ,7) =y, Vi This implies that there exists a strategy (xw (647)) that
extends x,, in X" and such that Gg, (s, @, ) =, V;. We get the left-to-right implication of
the i step of the induction. The right-to-left implication works similarly, and we use the
working strategy 6% to create a word w; : N — {p;, 0} handling the atomic proposition
p;. Having both implications, we deduce that the equivalence in Formula holds. We
can then conclude the induction. The case with ¢ = 0 gives us the lemma. O
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Chapter 3

Floating strategy logic

Consider a network of several clients, who may ask a central server for access to a shared
resource. One (or several) user(s) can turn the clients on and off, and when turned on,
each client then requests access to the resource. The server then has two objectives: one
is to enforce that no two clients access the resource at the same time, whatever the clients
do; the second property is that the clients must have a strategy that each of them can
apply when turned on, and that ensures access to the resource (by collaborating with
the server). This, in SL (with adapted syntax to make the formula readable), would be
written

FOserver- FOclient- 1 server applies dserver then [( always mutual exclusion)

A (always ( if client applies dcjien: then eventually access ))}

Intuitively, when assigned, the strategy dcjient should start on an empty history as it
has no knowledge of requests made by the other users to the server; however in SL the
history of a strategy is preserved from the moment of its quantification. SL is limited
in its expressiveness by its semantics forcing strategies to retain the history from the
moment they were quantified.

The importance of this semantic choice has been under-considered in all SL related pa-
pers. We can indeed propose a second semantics making another choice, where the client
has no knowledge about the history prior to being assigned a strategy. Both semantics
are interesting but they model different phenomenons; as we will see the semantics also
has an heavy impact on the model checking problem.

We propose a framework to handle this issue and study its algorithmic possibilities
and limitations. We start in Section[3.1] by changing the definition of valuation translation
and reworking SL semantics into a new logic FSL to take into account the aforementioned
semantical subtlety. We then focus on the model checking problem. In Section we
show that FSL[NG] (the nested goal fragment of FSL) is undecidable while in Section
we highlight a decidable fragment FR-FSL[NG] whose expressiveness is between SL[BG]
and FSL[NG].

61
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[4% 3$77
0 is stored

q----7° To---q
in variable =

p “assign(A4, z)” P
_ 0 is assigned from ____ |

starts with q . t A q’ . starts with
history d(p) ) v o agen .\ ) history d(¢')
in Strategy Logic in Floating Strategy Logic

Figure 3.1: Strategy knowledge about history in Strategy Logic and Floating Strategy
Logic.

3.1 Definition

One way to solve the issue described above is to translatd| only the strategies of the
agents but not the ones of the variables. This way we ensure that when an agent is
assigned a strategy stored in a variable midway through the simulation, the said strategy
has no knowledge of the history. Figure [3.1]illustrates the concept.

Definition 3.1 (Floating valuation translations).
Given a valuation x over a game G, a set of variables ¥V and a history p in G, we define
the floating valuation translation x , by

_)

Vo € Agtndom(x), x , (z) := x(z)5
X

(z) == x(x)
The floating strategy logic FSL obey the same grammar as SL:

FSL> ¢ == Jx.¢|assign(4,2).0|oVo|—d|oUd | X |p

but the semantics of the temporal operators and quantifications are modified.
Firstly, we want the temporal operators to use floating translations. Fix a valuation
x with Agt U free(¢) U free(¢’) C dom(x); as before x produces a unique outcome p. We
write x ; for x,_, and let
- —

Xg,
Vo e VNdom(x), x,
RN

G.a X6 & Gl 0

gaq >:X£

7 U < dkeN.
G,q =y ¢ U {VjEN.0§j<k:>gaQI:xj¢/

Secondly, a strategy is not bound to its history and therefore not bound to its initial
state: it may be quantified on a state ¢y and applied at state ¢;, and thus must be

l“Translate” as in strategy translation, see Section m
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defined on suffixes of ¢p but also on suffixes of ¢;. To maintain a rigorous definition of
FSL’s semantics, we adapt the semantics of quantifications to add the initial state onto
the historyf?] If free(¢) \ {z} C dom(x), then

G,q Fx Jr.¢ & 30 € Stratg such that G, q Fymsy) ¢

We call FSL[NG] the fragment of FSL using the same grammar as SL[NG], we recall
the grammar of the flat fragment:

FSLING] 2 ¢ == 3z.¢ | Vz.¢ | ¥
§ i=8EVE[Eng|p
B = assign(A,z).0 | ¢
p i=pVelpleUp[Xelp|p
The two semantics (with usual valuation trans-

lation or with floating valuation translation) coin-
cide in SL[BG]. We recall that SL[BG] formulas are

Floating Usual

translations translations

made by a series of quantifications followed by a FSL . SL
boolean combination of goals (assignment followed '

by LTL operators) and that there is no assignment :
possible after the first temporal operator outside of FSLING] ','“‘\ SLING]

closed sub-formulas. This means that when apply-
ing a formula ¢ € SL[BG] to a game G from a state
(ini, the strategies used in a SL[BG] formula are all

. N
. ~
. ~
e ~
...... Il

assigned on ¢;,;. The strategies stored in the vari-
ables are never assigned outside ¢;,; and whether we
translate them (as the usual valuation translation)
or not (as in the floating valuation translation) does
not matter, see Figure |3.2

SL[BG]

Translations of the strategies stored
in variables don’t matter

Figure 3.2: The two semantics.

Client/Server interaction. We return to the
example given in the introduction of this chapter. Consider the formula (still with an
adapted syntax to make the formula readable)

FOserver- FOclient- 1 server applies dserer then [( always mutual exclusion)

A (always ( if client applies dcjient then eventually access ))}

but within the semantics of FSL. When the client connects to the server, i.e. when dgjient
is applied, he has no knowledge of the previous actions of the server (as dcjent has the
current state for history). FSL’s semantics therefore seem an appropriate answer to the
problem exposed in the introduction to this chapter.

2This is a technical detail. A strategy usually starts on the empty history ¢ and is defined (at a meta
level) relatively to an initial state. We just make the initial state appear clearly in the history. In FSL
strategies are never evaluated on ¢.
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3.2 Undecidability of FSL[NG]

The high expressive power of these new semantics implies an undecidable model checking
of FSL. In [§], we proved FSL model checking to be undecidable Here, we improve the
proof to work in FSL[NG] and for formulas with a single quantifier alternation.

Theorem 3.2. The model checking problem for closed FSLING] formulas is undecidable.

Proof. We do a reduction from the halting problem for deterministic two-counter au-
tomata, known to be undecidable to FSL[NG] model checking.

Deterministic two-counter automata

Definition 3.3. A deterministic two-counter automaton is a tuple M = (S, E, sy, sp,)
where S is the state space, sy is an initial state of Qg and s, € Quq s a halting state.
E:S— {c,} x {SUSx S} is the transition function. Transitions of form E(s) = (¢, s')
increment the counter ¢ and go to s', while transitions of form E(s) = (¢, s',s") either go
to ' if the counter ¢ equals O or decrement ¢ and go to s” if ¢ > 0.

A configuration of M is a triple (s,c1,c2) € S x N x N, with the initial configuration
being (sp,0,0). A history is then a finite sequence of configurations that follows the rules
of E, while a path is an infinite sequence, also following the rules of E.

The halting problem for two-counter automata takes as input an automaton M and
asks if there exists a path in M that eventually reaches the halting state.

Theorem 3.4. (Minsky [37])
The halting problem for two-counter automata is undecidable.

The reduction

Let M = (S, E,so,sn) be a two-counter automaton. We start by building a turn-based
game G := (AP, Agt, Q, Act, A, labels) before explaining the idea behind our reduction.

e There are two agents in Agt: Decider (represented below in the ) states) and
Checker (represented in the | | states).

e The set of atomic propositions is AP := {pmain, Pra JU{Ds | $ € S}UU].G{LQ}{ij,pé L }.

e The state space is Q := (J,cq{57 .50 } U Uje{l 2}{gé g ,gi}, with two states per
element of S (we will call them the main states) and one gadget per counter, each
having three states.

e For each s € 9, there is a transition from s, to sq ; from s, to gé for any j € [1,2];
and from sg to s’ whenever E(s) = (cj, ') or E(s) = (c;, 5, s”) for some j € {1,2}
and some s” € S.

We also add transitions inside the gadgets: from gé to ¢’ , from ¢’ to gé, from

gé to ¢, from ¢’ to ¢ and a loop over ¢/, for any j € [1,2]. See Figure
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counter(1) counter(2)

Figure 3.3: The game G.

e We label each main square state s, (for s € S) with p, and each main state with
Pmain- Moreover both copies (| and ) ) of the halting state s;, of M are labelled
with ppa:. Finally, we label the three states of each gadget with an eponymous
proposition.

e We also identify an initial state for G: ¢;,; is the copy of the initial state sy of

M.

The intuition is for Decider () ) to recreate an accepting path of M in the “main
part” of G and for Checker (| | ) to check for any error. The main difficulty lies in the
counters updates: for this task we will “store” a counter into a strategy and check it
later on to ensure proper incrementation/decrementation. More precisely given a path

main tOr Decider that will try to create the

path m:= pl .pL p? .p2 ... and encode the first (resp. second) counter at step j through
! (resp. g2 .g%) after history p! .pf ...p g5 (resp.

pl pl ... ¢ .g%). For this encoding to work, we need to ensure that &, satisfies the

initial conditions on the counter, deals correctly with the zero-test edges and updates the
counters correctly.

p=pl.p?. .. in M we associate a strategy o',

the number of time it loops on g .g

The formula

Before going into details, we give the main formula so the reader can see the order in the
quantifications.

77Dcode A 77Dinit A Qﬁzero

® e,
¢ = I pgin- 3o 30 1. 30 2. 37,00 VT oy {/\%ZJA Aty
ccep pdate

Each sub-formula serves a specific purpose and we provide the definitions below with
some comments before proving the correctness of the reduction. Within the name of each
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variable we make obvious the intended agent. The z;,,, variable will be assigned to both
agents, as allowed by FSL syntax. It simplifies the formula and avoids adding another
variable, the result however still holds if we forbid strategy sharing between two agents.
To shorten the formulas, we abbreviate “Decider” to “Dec” and “Checker” to “Che”.

Preliminary work

We start by some preliminary work. The formula 1.,4. ensures that any realisation of
dz . must always play to the main states and that any realisation of Jz g from the s

states must play to gé. Formally, ¥coge := V2 g0 N 2 450 A2, With

)
L 5 i= assign(Dec, x, . y Too)-G Prnain
C) )
2 o i= assign(Dec, x, . ,2,).G [(\/ps ) = assign (e, 2, ,0)X g5 |
seS
3 & . 2
code := assign(Dec, x, . o) -G [(\/ p, ) = assign( ,x%gQ)Xgo]
SES
Trivially, we have
Proposition 3.5. Given four strategies 0%y, O 0, and 0_, o, we have that
g Qini }: gmn §2am; Too 0003 m%gl_ﬂsﬁgl? 2} ]6/1\3 wcode

and 6., follows the main states and for j € {1,2} and
on history s plays to ¢’.

if and only if the outcome of 0%
any s.. state (s € S), §

—gJ
Consider a strategy 6. intended for the variable x?nam It defines a (unlque) se-
quence (s°, ¢, ch)ien of (SxNU{o0} x NU{oo )N where s = &5, . (s! RN . 1) and for
j € {1,2}, ¢} is the number of time 69 . loops on gé .g’ after history s 55 .8 .gé.

We use the sequence to encode the counter values.

The initial conditions
We define the formula 1;,,;; below to ensure that both counters are initialised to zero.

: e
Vinit 1= /\ assign(Dec, x,, . VT ) X 2 gL
je{1,2}
)

Proposition 3.6. Fiz four strategies e 0., and 6_> » such that they satisfy

main? Yoo’ Y—g
AVETES P! e Write (s', ¢, cy)ien for the sequence associated with oo i and 0, in (S x
NU {oo} x NU{cc})N. Then
1_ 1
mit & =cy=0.
g Qini ’7 gam 62a1n; o Oy 33_)[]1%5_,91% w_)qgﬂé_,qg} ¢zmt 1 2
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Proof. Assume

g ini ): O 5@ . ) . ¢im't (31)

Tmain main’ OOH(SOO’ x;)01*>6*>!117 m%g24>§—rg2}

Because of Proposition 3.5, the outcome of {25 = — 553mm, T, — 0.} starts as

qml.go, and because of Formula , it continues as qml.gO .g% and therefore ¢} = 0.

The same idea can be applied to show that ¢} = 0. The other direction is similar: if
Formula (3.1]) does not hold, then ¢} # 0 or ¢} # 0. O

The zero tests

We deﬁne the formula ..., below. Its role is to ensures that whenever the outcome of
{D(( xmazn’
i+1, 6, encodes at step i the value 0 on the gadget 1(resp. 2). The fact that the
counter encoded at step i + 1 is 0 will be ensured in the incrementation/decrementation

step later on.

r. } takes a zero-test edge on counter 1 (resp. 2) between step i and

ANX?2
Vsero 1= /\ assign(Dec, xamm Ty). G (ps. Py) =
jss st assign(C /e, v, 5 )(X go AX2g)
Jje{1,2}

E(S):(cjvS/vS”)

Proposition 3.7. Fiz four strategies 0 Ooos 5_>91 and 5_>92 such that they satisfy
N,cin3) Yeoae- Write (8%, ¢t cb)ien for its associated sequence in (Sx NU{oo} x NU{oo})N.

Then

main’

g Gini ): O (50

mazn main’ Too

) } wZCTO

—00g; T —0 ;T —0
[e R _)gl —>g2 —g

—gl’

& VieNVje{l,2}Vs"eS E(s') = (¢j, s, 8") = c;'- =0
Proof. Assume that

g qlnz ): O 50 ¢Z€TO (32)

X O s Boo 000 ‘Tﬁgl —>6Hgl; mﬁg2_>6ﬂg2}

and that there exists s” € S, i € N and j € {1,2} with E(s") = (¢;, "', s"). After 2
steps, the outcome of {65, 0.} will satisfy (p, AX 2p,, ). This means, by Formula (3.2),

that at step 2, it must also satisfy assign( (X gO A X2’ ) which implies that

%gJ
¢ = 0 by definition of ¢,

The converse implication is done similarly by assuming that Formula does not
hold and deducing some 4, j and s” such that E(s’) = (c;, s""",s”) and ¢, # 0. O
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The path encoded reaches the halting state in M

We set
o
Y Aceept = assign(Dec, T, i  Too)-F Dhan

The proof of the following proposition is straightforward thus omitted.

Proposition 3.8. Fix two strategies 60 and §

ain s and write (s*, ¢4, cb)ien for the asso-

ciated sequence of 6o, and 6.,

gqu):O =80 e ey

mazn main’

wAccept ~ dieN Phait € /abe/s(si)

Storing counter values within strategies

To check the counter updates, we store them within a strategy using the specificity of
FSL[NG]. First, for j € {1,2} we define the following open formula

%
NX g}

fggal := assign( _W) X assign( s Toount ) F
Nassign(Dec, xi(;p ) {

X ﬁgi
NX g

We can compare the number of times two strategies dv, and dcount> iNtended respectively

main

o ‘
for the variables x,,,;, and x,,..» loop respectively on gO and ¢’ .

Proposition 3.9. Fiz i € N, j € {1,2} and a history p that travels through the main
)
where 5120}; always plays from gé to g’ . Write (s', ¢}, cb)ien for the associated sequence

of 62 and 0,

main

states and finishes in a p, states. Fiz any four strategics 0 Ocount ONd o

main’ “ oo’ loop

(@)

TCount — 0 ; w 5loop }

— 0 Count> xloop

X —{De(—>5

maww oo}

Then

ol 1 ‘
g, go ):Xp Foal & Ocouns loops ¢f times on g’

Proof. Assume that d.,,,,, loops c'f‘ times on ¢’ . Then, reusing the X, notation for the

floating valuation translation, the outcome of {Dec — 60, .; = (Omain) g7 } from
‘o
—

gO will loop c|p| times on go .¢’. before seeing go then gL (as 69 stops looping after

main

|jp| times). Hence

g,gé ’:xﬁ assign(C'he,x_, ;). X (assign( s Toount) F (gé /\Xg‘i))
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e .
Moreover, if we assign 5 to T1h0p after |p| steps then, because ¢, is also done

loop
looping and keeps its history, dc,,,; Will send the outcome to ¢} . Hence

gvgjo ’:Xi ijgal

and the < implication of Proposition holds. The other way is similar and Proposi-
tion B.9 must hold. O

Test for incrementation and decrementation

Using formulas similar to Wégah we can test if the strategy stored in z.,,, loops one

more or one less time than the one stored in xgmm.
(9, ANX g}
I .= assign X assign T .F X 3¢’
wfnc g ( —>gJ) g ( Count) /\assign(Dec, xic;p ) ij_]
\ N g1
(9), ANX g}
\ »“loop /* A ngi

Similarly to Proposition [3.9, we get

Proposition 3.10. Fiz i € N, j € {1,2} and a history p that travels through the main
)

states and finishes in a p, states. Fiz any four stmtegzes R S Y, 5loop

where 5zaop always plays from gé to ¢ and from ¢’ to go. Write (%, ci, cb)ien for the
associated sequence of 5mam and
6} 5]
X = {D6C - 6mazn’ - 500’ LCount — 5Count; xloz;p - 5loo7p }
Then

ol

g’g(J) ):Xg w%nc g 5Count ZOOPS C + 1 times on gj

14

g’g(]) ):X& wi)ec And 5C’ount ZOOPS C — 1 times on gj

Updating counter values

Using the work done above, we can now specify the formula encoding proper counters
updates.

z/JUpdate = /\ assign(Dec, x%ain; >xoo)G <w= A er A w*)

Jje{1,2}
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Number of steps 1 1+ 2
Outcome of 65 6. p Se Su 5¢
5 . +———— on history p.sg ——— Loop ¢! times
SCount ON empty history R Loop ¢ times
52(”” ——— on history p.sg .5p .5 ——— Loop ¢! times
SCount ON empty history L Loop ¢! times
Figure 3.4: Testing for an incrementation of the first counter at step .
where
Yy = (ps NX?py) = szggal = X2,
5,/ [E(5)=(c;,s")
o= N (e AXp) = Ul = X0
5,5'[E(s)=(c;,5")
Y= (Pe NXPpy) = Vg = XU,

Figure illustrates the idea. d,,,,; loops the same number of time when assigned

after history p.sg and after history p.sq .s .36. This is due to the floating semantics of
FSL and is not true in SL. The strategy 0
of times &

allows us to check for proper update of a counter values.

count Canl then be used to compare the number

loops after history p.sg and after history p.sq .s .sé). This comparison

Correctness of the reduction

This terminates the definitions of the intermediary formulas. Using the propositions

provided in each part, we establish a correspondence between the existence of a working

strategy 05, in G and the existence of an accepting path in M. This is done through

the following proposition.

Proposition 3.11. There is an accepting path in M if and only if G, Gini = ¢

Proof. Assume there is an accepting path (¢f,ci, ch)ien. Let 6o

main

be a strategy with

. . . . . O
associated sequence (¢, ¢, é);en (intended for 25 ). Let also 0__, 0,15 0,42 and Gy,
be four strategies such that

g7 Qini ):X wcode
where
L— O O . . . . O k) O )
X = {xmain - 6main7 Loy = 5007 ‘CE—>gl — 5—>gl7 Z'—>92 - 6—>g2’ xlaep - 6l00p }
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Then, because (¢, ci,ch)ien is an accepting path and because of Propositions , ,
3.8 3.9 and [3.10, we have that

g; Gini ):x ¢init AN wzero A ¢Accept A ¢Update

For the reverse implication, assume there is no accepting path and fix any five strate-
)

) o .
81€S 0yginy Oogs 0,15 0, 2 and 0y, . Write
. o o | . . .9, 9,
X = {xmain — 5main’ Tog = 5oo? L_g1 - 6~>g1’ Ty g2 - 6~>g2’ Lioop - 5l00p }

If G, Gini oy Voode, trivially G, gini oy Ycode N WVinit A zero A Accept N VUpdate. SO We assumme
ga Qini ):X 77DCode-

Let (¢', ¢, c))ien be the sequence associated with 6. .
cannot be an accepting path. There are two possibilities:

By hypothesis, (¢', ¢!, cb)ien

e First possibility, it is a path but it does not reach an accepting state. In this case,

by Proposition 3.8, G, gini Fy ¥ accept-

e Second possibility, (¢°, ¢}, ¢});en does not correspond to a valid path.

— If it fails a zero test then by Proposition we have that G, Gini 5y Vsero-

— If it does not have the proper initial values for the counters, then by Proposi-

tion we have that G, ¢ini =y Yinit-
— If it fails to update one of the counters, then by Propositions and we
have that G, g;n; b’éx YUpdate-

In any case, 69 is not an adequate strategy and therefore G, ¢;n; = - O

main

This last proposition proves the correctness of our reduction and therefore gives us
Theorem m

3.3 Decidability of FR-FSL[NG]

The undecidability of FSL[NG] model checking comes from the ability to compare strategy
choices on multiple histories. One way to gain decidability on a fragment of FSL is to
force a reassignment of all agents. This ensures that comparison of strategies can only
be done on a common history: as we reassign all the agents at every reassignment, any
two agents at any moment in the game and on any branch of the formula will always
share a common history. Figure [3.5] shows the differences. With FSL we can correlate
the choices of a strategy on the orange history with the choice on the red history by
checking the outcome they produces in combination with an annex strategy on a fixed
history (represented by the gold arrow on fixed history ¢). In SL the comparison of two
strategies happens on the same history hence we cannot compare the choices made by a
strategy on the orange and red histories. In this section, we define a fragment FR-FSL[NG]
between FSL[NG] and FSL[BG] (which we recall coincides with SL[BG]) and prove that its
model checking is decidable.
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FSL[NG] FR-FSLING]
q0 q q0 q
s . s ~ _x
e \‘ A s -
q .7 We can compare the q -7
' ‘ , -

/ choices on the -- and -- / We cannot compare when

histories by comparing we reassign every agent.
q q . .

______ " both outcomes with Comparison with the annex
/ \‘ -- / \

the -- choice on ¢ strategy must happen on the

same history

Figure 3.5: The differences between FSL[NG] (on the left) and FR-FSL[NG] (on the right).

Definition 3.12 (FSL[NG] with full reassignments: FR-FSL[NG]).
A flat FR-FSLING] formula over a set of agents Agt := {A1, ... Ax} and a set of variables
V= {zy,...} obey the grammar

FR-FSLING] 5 ¢ = 3z.¢ | V.| €
§ u=EVEIENE]B
B = assign(A1, z1;...; Ay, T)).0
p s=pVol|apleUp | Xe|pl|s

where x,x1,...,x\ are variables in V.

For the sake of readability and because any assignment must reassign all the agents,
we regroup the assign() operators to work on all agents at once. As usual, the non flat

fragment allows closed formulas at the same level as atomic propositions. The semantics
follow the ones of FSL and FSL[NG].

Consider the two closed formulas below where A and B are two agents:

¢1 :=3x1 . Vay.dxs. assign(A,xl;B,xg).(Fp/\ assign(B,xg)G—'p)
¢9 :=3w1.Vr9.3x3. assign(A, x1; B,xg).(Fp/\ assign(A, zy; B,SL’g).G“p)

In ¢, we can see two goals: a standard goal assign(A, z1; B, x3). (F pAassign(B, z3).G —|p)
and a nested goal assign(B,x3).G —p within the standard one. Formula ¢; is not in
FR-FSL[NG] because assign(B, z3).G —p does not reassign the strategy of agent A. The
strategies of agents A and B are running on different histories. On the other hand, ¢, is
in FR-FSL[NG], the nested goal assign(A, x1; B, x3).G —p reassigns every agent and their
histories run on the same history. This common history makes all the difference.

Theorem 3.13. The model checking problem for closed formulas of (the flat fragment)
FR-FSLING] with k alternations is in (k + 2)-EXPTIME.

Proof. The proof consists in a reduction to SL[BG] model checking, known to be decidable
(see Chapter [2). The idea is to lift the floating fully reassigned nested goals into the
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game in order to get something belonging to SL[BG]. We can then check the new formula
through SL[BG] model checking algorithm. The central idea at the heart of FR-FSL[NG]
can be expressed through the following lemma.

Lemma 3.14. Fiz a game H, a goal ¢ in FR-FSL[NG] (hence starting by a full reas-
signment) and a valuation x in H with free(v)) C dom(x). Then, for any history 7 in
H,

H,Ist(m) =y, 0 & H,Ist(m) =, ¢

The proof follows from the semantics of FSL where all agents are reassigned a new
strategy on empty history, and from the fact that the strategies used by the agents at
step 7 all share a common history. The lemma does not hold for nested goals of FSL[NG],
where there may be two strategies assigned to two different agents that progress based
on different histories (a first strategy assigned to an agent at some previous point with a
non-empty history and a newly assigned strategy that has no history).

Consider a game G := (AP, Agt, Q, Act, A, labels) and an initial state ¢;,; of Q. Con-
sider also a FR-FSL[N G]b formula ¢ := p&(Va;)aep;n) icpsn,] With o a quantification prefix,
with & a boolean combination of goals where every nested goal is fully reassigned, with
D € N the maximal depthrf] of the nested goals of ¢, with A\; the number of goals at
depth d, and with tq1y,...,%4,) the list of goals at depth d. For example in the
formula below on two agents A and B:

Fpl/\

assign(A, z1; B, x3). assign(A, z3; B, x4) {

Fpg\/

Jxy. Vg, dzg. Vo
1- VT, JT3. Vg assign(A, x1; B, x9).F py

assign(A, z1; B, x4).G —p3

the maximal depth of the nested goals is three; each sub-formula starting by an assignment
is a new goal. At depth three there is a unique goal assign(A, z1; B, z2)F p;. At depth two
there is also a unique goal assign(A, x3; B, x4)F ps V (assign(A, x1; B, z2)F p1). At depth
one there are two goals:

assign(A, x1; B, z3). <Fp1 A (assign(A, x3; B, x4).(F po V assign(A, z1; B,xg).Fpl))>
assign(A, z1; B, x4).G —p3

Building the game
We start by defining a game H := (AP, Agty,, Qz, Acty, Ay, labelsy) as follows

o Agty, := Agt U {Decc}. The agents of H are the agents of G plus a Decider agent

3The depth of reassignment of a goal ¢ is the number of (full) reassignments containing 1. A goal 1
appearing just after the quantification block is at depth 1 while a nested goal v’ within ¢ is at depth 2.



74

H
e \
al]im',fA afD,fA

QAqy,fa

G, fa copy

G, fi1 copy

Figure 3.6: The game H where A = Q x {(d,i) |d < D, i < \;}

o Qu = {qt YUl | ¢ €Q, fe{0,1}UdId=D, i<Xa}1  the state space is made
of one initial state ¢}t, and of {0, 1}@{(d)ld=D. i<Aa} copjies of Q.

o Acty == ActU {a,s | ¢ € Q, f € {0,1}¥{@dI=D i<Aa}Y - The actions of G (Act)
are accessible to any non-decider agent. We also add an action for each couple
(¢, f) € Q x {0, 1}@x{(dD)ld<D, i<Aa} " 4] exclusive to the decider agent.

o Ay :=:In ¢, only plays and only the a, ;’s actions are activated. If Decider
plays a, s the game moves to the g state within the f copy of Q. Within a copy of
Q, the a, s actions are deactivated and Ay follows A (the transition function of G).

e labelsy, : For any f € {0, 1}@{@ddld<D, <A} and any state ¢ of the f copy, we
label ¢/ as ¢ in g and add the labels p; and p,. For example, given ¢ € Q and
f € {0,1}A@d)ld=D, i<Aa} " we have labelsy (¢f) = labels(q) U {ps, p,}-

Figure illustrates the construction. It remains to specify the formula we use and to
prove the correctness of our reduction.

Specifying the formula

The main idea behind our reduction is to transfer the validity of the nested goal to the
choice of a copy of Q. Then, using Lemma [3.14] we can enforce the correct choice with
an SL[BG] formula.

The formula ¢™ of our reduction is defined by

. ssign(Dati) X 4 S ranapilvd
o™ = p. Jwggn, Hyeq (322, A

A /\jG (1;2] wiode

2<d<D, i<\y

where I,cq(JzL),) represents a sequence of existential quantifiers, one per state of Q.
The sub-formula A Je1:2] @’ . transfers the validity of the nested goal through the choice

code



75

of which copy of Q the strategy of z s, must go. We define them formally below, where
[ is any assignment present in ¢. By the nature of A, which assignment [ is chosen does
not matter, it is just a technicality to assign a strategy to each agent.

Nyeqassign(Dec, x27). X p,

1
A\ /\fe{o,l}Qx{(d,mng, i<Ag} {

code *

aSSign< ) xCopy)'ﬁpr
= assign(Dec, x5).BX py

assign( ,25). X g

2 .
code /\ ~

(9,d,9)|9€Q, d<D, i<Aq assign( 7xCopy)‘X Vf\f(q diy=1DPf

Correctness of the reduction

We start by a purely technical proposition whose proof is a consequence of the definition
of !

code"

Proposition 3.15. Let x be a valuation defined on the variables in ¢™. Then the fol-
lowing are equivalent

o for any q € Q x(x5)(aly;) plays to q in the f copy of Q and X(vcey,)(aly:) plays
to the copy of gini in the [ copy of Q.

H 1
hd g7qzm ’:X code

The strategy stored in z,,, must choose a copy of the game. Which copy it chooses
defines a function f taking as input a state ¢ and the indexes d and ¢ representing a goal,
and returning a truth value.

We write Var(p) for the set of variables appearing in p. For a history p in G, we
define p/ as the history in H where p/(i) is the copy of the p(i) state in the f copy of Q.
For a valuation X in G of domain dom(X) = Var(p), we define a valuation X* of domain
dom(X*) = Var(p) in H and where for any x € Var(p) and any history p in G

X7 (2) (gii-p") = X(2)(p)

Trivially, X7 is a properly defined valuation. We can then prove the main step in the
correctness of our reduction.

Proposition 3.16. Fiz a valuation X in G of domain dom(X) = Var(p). Then we have
G, Gini Fx E(Wai)aen;n) icing of and only if

assign( o). X ¢ [ vf|f(d,i):1 pf/¢d,i:| 9<d<D
»*“Co . 1<ihy
H, i Az ooy ge(F22,) . N Pgini

A /\]6 (1;2] 77Dt]:ode
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Proof. Assume G, @in; Fx (Vai)dep:n) icping- We deduce from X a function f € {0, 1}@{(ddldsD, isAa}
such that
flg,d,i) =1 < G,qFEx Y, (3.3)
We define d¢,,, to play ag,,, , i.e. to go to the copy of g;n; in the f copy of Q. We also
set 01, to play aq ¢ for any ¢ € Q. Finally we write x for the valuation

—q
X = XU {xCopy - 5Capy} U U{x—>q - 6—>q }
q€Q

Our choices plus Proposition gives

H#]%z ):X iode (34)

Moreover, again by construction of X7 and definition of y,

H7 qz;tn ):X aSSign( ) x%q )X wd,i = g, q ):x r(/}d,i
& flg,d,i) =1 (by Formula
SO
H? qz;tn ):X wgode (35)
Finally, the hypothesis G, ¢ini [Fx §(Vai)acp;p) icf;n,] gives

H H H X
.. = . L. |: Z} -
7qznz X aSSIgn( 7xCopy) p‘hnz /\6 ff(>/.)_1 pf/w(L 2<d<D, i<y (3 6)

The combination of Formulas (3.4), (3.5) and (3.6)) gives the left-to-right way of Propo-
sition B.16l

Conversely, the right-to-left implication is somewhat similar. Assume the right-hand
side of the equivalence to hold and let X be any valuation resulting from the interplay
within p. Write x for a working valuation that extends X by giving strategies to x5,
and the z’s variables. Write f for the copy chosen by X (2 ¢juc.) (¢2:;). Because of ¢}

code
and Proposition the choices of 22" are set to play to ¢ in the f copy of Q. Then
because 5 and 13 hold,

H. i oy assign(Dec, sl )X s & flg,dyi) =1
Now, by definition of X*,

q

G,q Fxva; & flg,di)=1
hence
G,qlEx i & M, b=y assign(Dec, 2l ) Xy,
Combining this with the hypothesis

» Qini Fx aSSIgn( ) xCopy) (qunz A ff(>/) lpf/lbd, 2<d<D, i</\d)

we get that G, Gini Fx §(Va,i)den;n] iciing- O
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It remains to handle the quantifications within . We will proceed by induction but
first we need some notations. We write p := (Q;z;)1<i<; where @Q; € {3,V} and, for any
J <, we define ¢>; as the sub-formulas of ¢ without Q12 ...Q;_1x;_:.

Proposition 3.17. For any 1 < j < [+ 1 and any valuation X_; over dom(X.;) :=
{z1,..., 251}, we have

G Gini ):xq o> & H, qz;lzi |:3€’<*j ¢,"2{j

Proof. We proceed by induction on j. The initial step (j = [ + 1) was done in Proposi-
tion So only the induction step (1 < j <) remains. We assume that by induction
we have

H H
gu Gini ’:3€<j+1 ¢Zj+1 g HJ Qini ’:f{gj+1 ¢2j+1 (37)

and aim to prove that G, ¢ Fx_, ¢>; < H, qlt ):xgj ¢7§j.

We treat the case where ; = 3, the case with (); =V is similar. For the left-to-right
implication, assume that G, gin; Fx_; ¢>;; then there is §; such that G, gini Fx_,ufe;—s;)
¢>;11 and therefore, by induction hypothesis ~Formula (3.7)-, we get

H, %ﬂm‘ ):x”gju{zjééj?"} ng]
with 5;{($)(q3fu-.pf) = 5;"(x)(p) for any history p in G. We can then infer
H7qz?;£n' Fae’gj Jz;. 72{3'+1
and  H, gl o %,

The right to left way is similar hence omitted. In the end we get the induction step
and, by induction principle, we can conclude the proof of Proposition [3.17] O

We can then deduce the correctness of our reduction (expressed by the proposition
below) from Proposition [3.17 applied to j = 1.

Proposition 3.18.
Gogimi =0 = H.ql = o

We recall that the algorithm proposed in Chapter 2| for SL[BG] model checking works
in time (k4 1)-EXPTIME for formulas with % alternations (see Theorem [2.6] page [42)).
The size of the SL[BG] formula ¢’ is exponential in the size of G (the original game), in
the maximal depth of ¢ and in the number of nested goals in ¢; the others parameters are
polynomial in the size of ¢. We can therefore solve the model checking of FR—FSL[NG]|7
formulas with k& alternations in (k + 2)-EXPTIME, one exponential more than SL[BG]. [

We recall that SL[BG] is a fragment of FR-FSL[NG]. So, with the hardness proofs
developed for SL[BG] in Sections [2.2| and we cannot hope for a fundamentally better
complexity. At best we can reduce it by an exponential so that FR-FSL[NG] upper bound
matches the one known for SL[BG]. Note that Theorem can be trivially extend to the
non flat fragment by using a labelling algorithm (a la CTL) and applying Theorem m
in an inductive fashion. Hence

Theorem 3.19. The model checking of FR-FSLING] with formula of k alternations is in
(k + 2)-EXPTIME.
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Floating Usual

translations

SL € NONELEMENTARY [59]

translations

Undecidable FSL

Undecidable FSL[NG]

NONELEMENTARY 3> FR- FSL[NG] 2 /

I‘.)’{)l NONELEMENTARY > SI—[BG] Translations of the strategies stored

in variables don’t matter

SL[NG] € NONELEMENTARY [3J]

o m m e mmmmmmmmo=o=

Figure 3.7: Inclusion graph with the different semantic choices and the model checking
complexity.

3.4 Conclusion

Overall view: In this chapter we have highlighted an important subtlety of SL seman-
tics related to the notion of wvaluation translation. We proposed in Section a new
variant FSL of SL that tackles the aforementioned problem. FSL has the same grammar
as SL, only the notions of valuation translations and strategies are adapted. FSL and SL
coincide on their common fragment SL[BG]. We then proved in Section [3.2) that FSL[NG]
(the equivalent of SL[NG] within the framework of FSL) admits an undecidable model
checking. As shown in Section decidability can be regained when forcing the reas-
signment to be total; for this we defined a fragment FR-FSL[NG] of FSL. Figure |3.7|sums
up our work.

On a more refined level: The undecidability of FSL[NG] holds for the set of for-
mulas with one quantifier-alternation and for games with only two agents. Outside of
FR-FSL[NG] decidability, regaining decidability takes us away from the framework defined
by SL and related logics. For example we may look at formulas without quantifier alter-
nation but this essentially takes us away from closed systems. Indeed, while working with
one quantifier-alternation formulas does not technically take us away from multi-agent
CGS, we can easily draw connections with existing results for closed systems and from
automata theory. We believe the model checking to be decidable though we do not give
a formal proof.

A second possibility is to consider the number of agents allowed to reassign their
strategies. In the undecidable FSL and FSL[NG], any subset of Agt may reassign its
strategies; in the decidable FR-FSL[NG], all agents are forced to reassign. In the proof of
undecidability for FSL[NG] model checking, both agents reassign their strategies, it may
be interesting to know about the decidability status of FSL where only a single agent
is allowed to do so. The essence of the undecidability proof explained at the beginning
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of Section and on Figure (page [72)) is still possible if a single agent is allowed
reassignment. However, the gadget used to prove SL[NG] undecidability in Section
needs both agents to reassign their strategies: to check for proper incrementation of
the counters, the agent Dec needs to be reassigned while for the decrementation, it is
the agent who needs reassignment. Torn between these two arguments, we do not
conjecture one way or the other on the decidability of FSL[NG] where a single agent is
allowed to reassign its strategies.
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Chapter 4

Quantitative Strategy Logic

Many computerised systems have internal quantitative aspects: systems managing energy
grids, computer softwares with loops... The standard (qualitative) formalisms usually
fail to model properly such systems. The verification community therefore developed
adaptations of existing formalisms to handle quantitative aspects. So far, all our results
have been on CGS, hence qualitative. We take a look at what can be done to adapt SL
and its sub-logics to express quantitative constraints.

Quantitative verification of open systems is a well-studied domain with many branches.
Among the most famous ones, we find energy games [13] [14], mean-payoff games [64, [14],
alternating-VASS [46], counter-games [5], pushdown-games [62], timed games [6] and hy-
brid games [27]. Each one corresponds to a type of quantitative systems, to which we
often add other conditions (imperfect information, probabilistic edges...). Often an al-
gorithm working for one model fails in another. For this reason there is a large (too large,
some may say) number of algorithms, each adapted to a different model representing a
different type of quantitative open systems.

In this chapter, we focus on two of them: energy games and counter games. For each
model, we give a brief introduction, update the model, add adequate constraints to the
logic, discuss the choices we made and provide some complexity results.

4.1 With counters

Counters are omnipresent in programming, even without considering mathematical for-
mulas. Indeed, every loop is handled through a counter (as explained in [5]) and it is
therefore not surprising to find a large literature on systems with counters [3], [5I]. The
usual framework consists in adding weights on the transitions of the model (be it a graph
or an automaton). Counter constraints are then appended either on the transition of the
model (as with zero-test edges in counter automata) or in the formalism for the prop-
erties (as in weighted MSO, see [20]). Figure shows the idea with a LTL formula
and a two-counter constraint (3,2) < (¢1,¢2). Here we adopt the second approach, note
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nevertheless that in SL both are equivalent’]

P (0,0) p (0,0)
TN o—
P’ 4
(=1,-1) —1)

(37 2) ﬁ (01762)

(1,1) oo
o) 2% .02 \
(1,1) O

Fp/\G(p’:>(3,2)§(cl,cg)) Fp

Figure 4.1: The two ways to work with quantitative constraints: on the left, constraints
are on the formula and on the right, constraints are on the game.

Many things are known for closed systems with counters. However, when working with
open systems, there exist fewer results and many questions remain open. We highlight
the three most important results for our work. First, reachability in counter games
with two agents is undecidable; this is a consequence of the undecidability of two-counter
machines [37]. Second, as shown by Serre in [51], reachability, Biichi and parity conditions
are PSPACE-complete in one-counter games. Finally, ATL" model checking was shown to
be 2-EXPTIME-complete in [61].

We first adapt our framework by defining weighted concurrent game structures and
by extending SL with counter constraints. Then, in Section we prove a periodicity
result for the satisfaction relation. Finally we study in Section the expressiveness
of SL with counter constraints through a correspondence with MSO theory on ordinals.

4.1.1 Adding counter constraints to SL
Adding weights to CGS

Definition 4.1 (Weighted Concurrent Game Structure with weights: WCGS).
An n-dimensional Weighted Concurrent Game Structure (n-WCGS) is a tuple G =
(AP, Agt, Q, Act, A, Weights, labels) where AP, Agt, Q, Act, A, and labels represents the
same notions as in (qualitative) CGS, and where Weights : Q x Act*®' — {~1,0,1}" is a
function that assigns n integers (called weights) to each transition of A.

A Weighted Concurrent Game Structure (WCGS) is an n-WCGS for some strictly
positive integer n.

'Tn the sens of a polynomial reduction from the framework with constraints on the transitions of the
model toward the one with constraints onto the logic formalism, and vice-versa. We do not provide a
proof however.
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To simplify the proofs, we chose to use only 0, —1 and 1 weights, we could have also
chosen weights in Z. Choosing Z and encoding the weights in binary may however affect
the complexity by an exponential factor. Haase, Kreutzer, Ouaknine and Worrell studied
this question in [26] for one-counter automata.

Beside CGS, we also need to adapt the notions we used in previous chapters. For an
n-WCGS structure G, a configuration is a pair (¢q,c) € Q x N™ of a state and a tuple of
n non-negative integers. A history (resp. path) is a sequence (g;, ¢;);<r of configurations
where L € N (resp. L = o0), for any ¢ < L (resp. i € N) ¢; € N* and such that for
any i < L —1 (resp. i € N) ¢;41 = A(g;,my), and ¢4 = ¢; + Weights(q;, m;) for some
m; € Act"®. All other notions are defined similarly to the ones of Chapter [1| using the
new notions of histories and paths.

Remark 4.2. For the sake of tradition, we ask for all weights to stay above 0. Although
there may exists results that are impacted by such restriction [{7], this is not the case
of the results presented in this thesis. In particular, in this case, the periodicity result
(Theorem of Section still holds and one can prove a similar theorem for negative
values.

Adding constraints to SL

In conjunction with the addition of weights on CGS, we extend SL by allowing it to
express numerical constraints on the weights.

Definition 4.3 (Counter Constraints).

A counter constraint on n weights is a subset S of N™ made of a (finite) union of periodic
sets of integers: sets of the form a + b-N" for a fized initial threshold vector a and a
period vector b, both in N™.

This definition of constraints allows us to express standard counter constraints like
ent < (4,5,2) (by taking b= (0,...,0)) but also more advanced constraints?

Definition 4.4 (Strategy logic with counter constraints: cSL).

The logic cSL is built upon a number n of weights, a set Agt of agents, a set AP of
atomic propositions and a set 'V of variables. Its formulas are structured by the following
grammar:

cSLe ¢ == FJu.¢|assign(A,x).¢| oV o || oUp | X |p|lente S

with x € V a variable, A € Agt an agent and p € AP an atomic proposition, and where S
15 a counter constraint on n weights.

The notions of free agents and variables for cSL are the same as in SL, with the
addition of the condition

free(ecnt € S) = @ for all counter constraint S

2The notion of period used here (numerical constraints on the weights) is to be dissociated with the
one of Section [4.1.2] (related to the potential initial values of the initial configuration). There is some
degree of connection between the two but the two notions are clearly distinct.
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Formulas of cSL based on n weights are evaluated on an n-WCGS structure G, at a
configuration (¢,c) of G and relatively to a valuation y. The semantics of all but the
cnt € S operator is the same as in SL, using the state ¢ and the updated notions of
histories and paths. The cnt € S operator has the following semantic rule:

G,(¢,c) ExyenteS & ceS

Example 4.5. An example of 2-WCGS with an unique player A can be found on the left
of Figure[4.1. Let ¢ be the following cSL formula:

¢ = Jx. assign(A,z)Fp A G (p = (3,2) < (a1, 2))

On can see that starting from the node at the bottom, ¢ does not hold on the game.
Indeed, while a p labelled state p can be eventually reached, the path must pass through
the p' labelled state and its counter will be 0. Hence the second conjunct will not be
satisfied and ¢ will not hold.

The model checking problem for c¢SL is defined similarly to the one for SL (see Chap-
ter [2| for a formal definition). Since Minsky’s result [37], it is well known that reachability
in two-counter machines is undecidable and therefore so is the reachability problem in
n-WCGS where n > 2 (see [9] for more results on reachability in counter games that keep
weights above 0).

Theorem 4.6. cSL model checking over WCGS s undecidable.

As a consequence, cSL cannot have a decidable model checking without restricting
the number of weights. On the other hand, the undecidability result fails when automata
have only a single counter. For this reason, we focus on games with a unique weight.
We call a 1-WCGS any concurrent game structure with one weight and 1cSL the fragment
of cSL built using a single weight. Finally, we extend the definition of SL and all its
fragments with counter constraints on a single weight. In particular, the (flat) fragment
1cSL[BG]” analogue of SL[BG]” follows the grammar:

1SL[BG) 3 ¢ = Jz.¢ | V. | €
§ n=EVE|ENE]B
B = assign(A,x).0| ¢
o 2= eVe|p|pUp|Xp|p|cnte$S

As usual, the full fragment 1cSL[BG] is obtained by allowing closed 1cSL[BG] formulas at

the level of the atomic propositions. We call 1cLTL the set of formulas of type ¢ in the
grammar of 1cSL[BG]".

4.1.2 Periodicity of 1cSL[BG]

In this section, we prove a periodicity property for 1cSL[BG]. We recall that Tower is the
function Tower: N x N — N taking two entries a, b and returning the integer equals to a
tower of exponentials of height b and value a, see page 44| for the formal definition.
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Theorem 4.7. Let G be a 1-WCGS, and ¢ be a 1cSL[BG] formula. Then there ezists
a threshold A > 0 and a period A > 0 for the truth value of ¢ over G. That is, for
every configuration (q,c) of G with ¢ > A, for every k € N, G, (q,¢) = ¢ if and only if

G.(gctk-A) o
Furthermore the order of magnitude for A + A is bounded by

Q2"

Tower< max ng, max kg+1
0cSubForm(¢)  6€SubForm()

where @ is the state space of G, SubForm(¢) is the set of 1cSL[BG] sub-formulas of ¢, kg is
the number of quantifier alternations in 6, and ng is the number of different assignments
used in 6.

A result similar to the one of Theorem should be mentioned: Goller and Lohrey
showed in [25] that CTL admits exponential thresholds and periods, where the exponent
is made of the left imbrication of the E - U- operators. The verification community
usually focuses on complexity results but rarely on combinatorial ones, therefore periodic
properties are unusua]ﬂ

Proof. We first prove this property for the flat fragment 1cSL[BG]b, and then extend it to
the full 1cSL[BG]. To keep the proof readable we moved the proof of some intermediary
results to the annex (page and replace it with a sketch. The rest of this section is
devoted to the proof of Theorem |4.7]

The flat fragment 1cSL[BG]’

We fix a 1-WCGS G and a formula ¢ := Qi1 ... Qrzr. £(5ipi)1<i<n in lcSL[BG]b7 where
for every 1 < j <k, we have (); € {3,V} (assuming quantifiers strictly alternate), ¢ is a
Boolean formula over n atoms, and for every 1 < i < n, ; is a complete assignment for
the agents’ strategies, and ¢, is a 1cLTL formula. We write M for the maximal constant
appearing in one of the finite sets describing a counter constraint S appearing in ¢.

For every 1 < i < n, we let D; be a deterministic (one counter) parity automaton
that recognises formula ;. This is the standard LTL to deterministic parity automata
construction of Theorem (page in which quantitative constraints are seen as atoms.
A run of G is read in a standard way, with the additional condition that quantitative
constraints labelling a state should be satisfied by the counter value when the state is
traversed (a state can be labelled by a constraint cnt € S, with S arbitrarily complex—
it does not impact the description of the automaton).

The proof proceeds by showing that, above some threshold, the truth value of ¢
is periodic w.r.t. counter values. To prove this, we define an equivalence relation over

3The verification community solves the model checking of quantitative temporal logics almost exclu-
sively by a reduction to the emptiness of a given automata. The periodicity properties are then hidden
within the algorithm solving the emptiness of the automata. On a personal note, I believe that working
exclusively with automata techniques is not sufficient to fully understand the underlying behaviour of
the quantitative logics. While the proof of Theorem uses of automata, their roles are reduced to
transforming the LTL goals in parity conditions.
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counter values that generates identical strategic possibilities (in a sense that will be made
clear later on).

Definition of an equivalence relation Fix a configuration v = (¢, ¢) in G, pick for
every 1 < i < n astate d; in the automaton D;, and define the tuple D = (d;, . ..,d,). For
every valuation xj, for variables {z1,...,x;}, we define the level-0 identifier Id,, (v, D) as:

Idy, (v, D) = {i ’ 1 <i < n and out(B;(xx),7) is accepted by D; from di}

where [;(xx) is the valuation obtained by assigning a strategy from xj to each agent
in Agt following f;.

Assuming we have defined level-(k — j + 1) identifiers Id,, (v, D) for every partial
valuation x4 for variables {x1,...,7;11}, we define the level-(k — j) identifier Id, (v, D)
for every partial valuation y; for variables {x1,...,z;} as follows:

ldy, (v, D) := {ldy,., (7, D) ‘ Xj+1 18 a valuation for {z1,..., 2,11} that extends y;}.

There is a unique level-k identifier for every configuration v = (¢, c¢) and every D,
which corresponds to the empty valuation. It somehow contains full information about
what kinds of strategies can be used in the game (this is a hierarchical information set,
which contains all level-j identifiers for j < k).

We will first give a characterization of the construction of identifiers, which will help
understand how it can be used; we then count how many values the level-k identifier can
take, from which our period will be derived.

Characterization We inductively define the following boolean property:

PEP (xi, X&) (¢, ¢): (truth value of) Id,, (g, ¢), D) = ld\ ((¢,¢), D)
and for every 0 < j < k,
Vo1 Fuj. ]P)ZLDj—l(Xj U{vj1}, x5 U{vja (e, ) and

]P)ZLDJ(Xj’ X;)(C, C,) : { / q,D / / /
VUJ'H- Fvj41. Pij—l(Xj U v}, X; U {UjJrl})(ca )

This property reads a bit like an alternating equivalence between ¢ and ¢’. Tt allows
to characterize equivalent configurations w.r.t. the identifier predicate.

Lemma 4.8. Fiz some 0 < j < k and some partial valuations x; and x’; for variables
{z1,...,2;} from (q,c) and (q,c), respectively. The following two properties are equiva-
lent:

o Ide<<Q7C>7D) = klx;((Q; C,)7D>

o P47 (. x))(e. )
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Proof. We show the equivalence by induction on 0 < j < k, starting from j = k, where
the equivalence precisely corresponds to the definition.

Assume Idy; ((q,¢), D) = ldy:((q,c), D) for some 0 < j < k. By definition, it means
that for every extended valuation x;1 of x;, there exists an extended valuation x’, ; of X/
(and conversely) such that Id, ., ((¢q,c), D) = Idy,  ((¢,c), D). By induction hypothesis,

it holds ]P)(]iLDj—l(Xj‘f'l?X;’ 41)(e, ). Since this holds for all appropriate quantifications,
we get that IP’Z’_DJ.(X]-, Xj)(c,c’) holds as well. The converse is similar. O

Let P be the least common multiple of all the periods appearing in periodic constraints
used in formula ¢. We define the following equivalence on counter values:

c~c ifand only if ¢=¢ mod P and VD. Vq. Idy((q,c), D) = dy((q, ), D).

Combinatorics. Given a configuration (¢,c) and a tuple D, the number of possible
values for the level-0 identifier is Tower(n, 1), and for the level-j identifier it is Tower(n, j+
1). Hence, the number ind. of equivalence classes of the relation ~ satisfies

alw;l olél
ind. < P - (Tower(n, k + 1))(|Q|'H1Sién2 ) < P - (Tower(n, k + 1))(|Q|.2 )

with |Q| the number of states in G. We let M = M +ind. 4+ 1. By the pigeon-hole
principle, there must exist M < A < A’ < M such that A ~ A’.

Periodicity property We define A = A’ — A, and now prove that A is a period for ¢
for counter values larger than or equal to A. Assume that v = (¢, c) is a configuration
such that ¢ > A, and define 4" = (¢, c+A) (note that ¢ + A > A’). We show that G, v = ¢
if and only if G,+' = ¢.

Notations. For the rest of this proof, we fix the following notations:

1. if p is a run starting with counter value a > c, then either the counter always
remains strictly above ¢ along p (in which case we say that p is fully above c), or
it eventually hits value c, and we define p\. for the smallest prefiz of p such that
Ist(p\.) has counter value c;

2. let p be a run that is fully above M, and let c be the least counter value appearing
in p. For every v > M — ¢, we write Shift,(p) for the run p' obtained from p by
shifting the counter value by v. It is a well-defined run since the counter values
along p' are also all above M hence above 0.

3. if D is a tuple of states of the deterministic automata (D;)1<i<n, and if p is a finite
run of G that is fully above M, then we write D, for the image of D after reading p.

We first show an easy result:

Lemma 4.9. Let p be a finite run, and p' = Shift s (p). Let D be a tuple of states of
the automata (D;)1<i<n. Then, p is fully above A iff p' is fully above A’. In case both
conditions are wrong, it holds that p{ », = Shift,a(p\a). Furthermore, in the first case,
D,, = D,y whereas in the second case, D, . = D+p/\A/-



88

Proof. The two first properties are obvious by definition of Shift,, (since A’ = A + A).

Since A > M, all counter values along both histories are larger than M, and hence,
two corresponding configurations along p and p’ satisfy the same non-modulo counter
constraints. The period A is a multiple of P, the lem of all the periods, hence two
corresponding configurations along p and p’ also satisfy the same modulo constraints.
Finally, all atomic propositions are equivalently satisfied at two corresponding positions
along p and p'. Fix 1 < i < n. Since D; is deterministic, using the above arguments, we
get the last results. O]

Let 0 < j < k. We assume that x; and x/; are two valuations for {z1,...,z;}, and D

is a tuple of states of the D;’s. We write ]R([;j )(Xj, x;) if the following property holds for
any run p from ~:

’
!
Y

(i) if p is fully above A (or equivalently, if p" = Shift, 5 (p), which starts from +/, is fully
above A’), then for every 1 < g < j, x;(z,)(p) = X(7,)(0');

(ii) if p is not fully above A (equivalently, if p’ = Shift,,(p) is not fully above A’), then
we decompose p (resp. p') w.r.t. A (resp. A') and write p = pya-pand p' = p{ 57
Then:

~ ) -

Ay 5t(p,0). D) = e st ). D)
with D = Dipn = D“’QA" Recall that Xipz shifts all strategies in valuation y;
after the prefix p\ o (that is, x; is the strategy such that ij(w) = x;j(p\a - ) for

every ).

We can see in the R property an extension of the P property. We can then get a result
similar to Lemma for R.
Lemma 4.10. Fiz 0 < j < k, and assume that Ra’jw,)(xj,xg) holds true. Then:
1. for every strategy v for x;11 from vy, one can build a strategy T (v) for xj1q1 from +'
D,j+1 .
such that R(%{;L) O ULvh, x5 U{T (v)}) holds true;
2. for every strategy v' for xj11 from v, one can build a strategy T (V') for x4
from ~ such that R(Z?f)l(xj U{T (")}, X U{v'}) holds true.
Sketch of proof. The idea is the following: either we are in case , in which case identical
(but shifted) strategies can be applied; or we are in case , in which case identical
(but shifted) strategies can be applied until counter value A (resp. A’) is hit, then the

equality of identifiers allows to apply equivalent strategies. The construction is illustrated
in Figure [4.2] O

We use this lemma to transfer a proof that v =y ¢ to a proof that 7/ =y ¢. We de-
compose the proof of this equivalence into two lemmas:
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ShlftA

0l A
o N3

5 7 identical (but shifted) strategies
[

Figure 4.2: Construction in Lemma m (case (ii))

Lemma 4.11. Fiz D° for the tuple of initial states of the D;’s. Assume that va (x, X)
holds (for full valuations x and X'). Let 1 < i < n, and write p = out(B;(x),~) and
P =out(Bi(x'),7)- Then p = ; if and only if p' = ;. In particular, v =, £(Bipi)1<i<n
if and only if v' =y E(Bipi)i<i<n-

Sketch of proof. As long as runs are above A (resp. A’) they visit states that satisfy ex-
actly the same atomic properties (atomic propositions and counter constraints), hence
they progress in each D; along the same run. When value A (resp. A’) is hit, they are
generated by strategies that have the same level-0 identifiers, which precisely means they
are equivalently accepted by each D;. Hence both outcomes satisfy the same formulas ¢;
under the valuation G;(x) (resp. B:(x'))- O

We finally show the following lemma. The proof proceeds by induction on the valua-
tion, and by notlcing that the hypothesis A ~ A’ precisely implies the induction property
at level 0 (i.e RD (0, 0)).

(v:7")
Lemma 4.12. v =y ¢ if and only if v' ¢ ¢.

This allows us to conclude with the following corollary:

Corollary 4.13. A is a period for the satisfiability of ¢ for configurations with counter
values larger than or equal to A.

2l¢|
Furthermore, A + A is bounded by M+ P - (Tower(n, k 4 1))@ Thzi<? "

Remark 4.14. Note that the above proof of existence of a period, though effective (a pe-
riod can be computed by computing the truth of identifier predicates), does not allow for
an algorithm to decide the model checking problem. One possible idea to lift that peri-
odicity result to an effective algorithm would be to bound the counter values; however
things are not so easy. In Figure[{.9, equivalent strategies from A and A’ might generate
runs with (later on) counter values larger than A or A’ (despite the filled representations
staying below the thresholds, counter values of equivalent strategies are not bounded). The

decidability status of 1cSL[BG] (and of 1¢SL[BG]) model checking remains open.
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Extension to 1cSL[BG]

We explain how we can extend the previous periodicity analysis to the full logic 1cSL[BG].
Let ¢ be a fixed formula of 1cSL[BG]

¢ = Q1x1 ... QrTy - f(ﬁz’%’)lgign

with the same notations than the ones at the beginning of the previous subsection, but
now ¢; can use closed formulas of 1cSL[BG] as sub-formulas.

Let W, be the set of closed sub-formulas of 1cSL[BG] that appear directly under the
scope of some ;. We will replace sub-formulas of U4 by other formulas involving only
(new) atomic propositions and counter constraints. Pick ) € W,. Let A, and Ay be the
threshold and the period mentioned in Corollary for 1. For every location ¢ of the
game, the set of counter values ¢ such that (q,c) = 1 can be written as the union Sff of
a finite (non periodic) set for the values smaller than A, and of a periodic set Ay for the
values above A,. Note that we know such a set exists, even though there is (for now)
no effective procedure to express it. The size of S;ﬂ is 1 (we do not take into account the
complexity of writing the precise sets used in the constraint). Expand the set of atomic
propositions AP with an extra atomic proposition for each location, say p, for location g,
which holds only at location ¢q. For every ¢ € W,, replace that occurrence of ¢ in ¢
by formula A c;p, — (cnt € S:f). This defines formula ¢/, which is now a 1cSL[BG]’
formula, and holds equivalently (w.r.t. ¢) from every configuration of G. The size of ¢’ is
that of ¢. We apply the result of the previous subsection and get a proof of periodicity
of the satisfaction relation for ¢’, hence for ¢.

It remains to compute bounds on the overall period A, and threshold Ay. The modulo
constraints in ¢’ involve periods Ay (¢ € U,), and the constants used are bounded by
Ay. So the maximal constant My appearing in ¢’ is bounded by max(maxyecw(Ay), My)
where My is the maximal constant used in ¢, and the l.c.m Py of the periods appearing
in ¢’ is the Le.m. of the periods used in ¢ (call it P4) and of the Ay’s (for ¢ € Wy): hence
Py < Py - maxyey,(Ay)?l Hence for formula ¢/, we get

¢’
A¢/ —+ A¢/ S M¢/ + P¢/ . TOWGI’(?’L¢, k¢ + 1)|Q|.22 +1

We infer the following order of magnitude for A, + Ay, where wy, = maxycy, wy:
@l
wy ~ wy, + MY (&% Ay Tower(ng, kg 4 1)/91%

Il
~ M‘f‘ -w‘\lﬂ - Tower(ng, kg + 1)|Q"22

Using notations of Theorem the order of magnitude can therefore be bounded by

ol 9l

Q-2
Tower ( max ng, max kg+ 1)
feSubForm(¢) 0eSubForm(¢)
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Remark 4.15. Note that this proof is non-constructive, even for the period and the
threshold, since it relies on the model checking of sub-formulas, which we do not know
how to do. We can nevertheless effectively compute a threshold and a period by taking the
l.c.m. of all the integers up to the bound over the period and threshold given in this proof.
The model checking problem of 1cSL[BG] (and its effectivity) remains an important open
problem.

4.1.3 An application of 1cSL[BG]: MSO(w", <)

As said before, while we have a periodicity property, we cannot derive a model checking
algorithm for 1cSL[BG|. In this section, we assume that such an algorithm exists and
works in “reasonable” time and we use this to improve the validity problem of MSO
over (w”, <). This problem is shown to be decidable in [12] using automata over linear
orderings, but this requires complementing those automata, which has doubly-exponential
complexity Hence globally the validity problem of MSO over (w*, <) can be decided in
time Tower(|¢|, 2k + ¢), where ¢ is the MSO formula, & is the number of alternations in
the quantifications of ¢ and c is a positive constant. Other algorithms are known for
MSO over (w’, <), running in time Tower(|@|, k + ¢), see [11] for more details. However,
as explained in [IT], the technique they employ, based on tree automata, cannot extend
to (w¥, <), since it would contradict the fact that any tree-automatic ordinal is less than
o

We propose a reduction from the validity problem of MSO over (w*, <) toward the
model checking problem of 1cSL[BG] over 1-WCGS. This implies that any algorithm for
1cSL[BG]’s model checking working in time Tower(|¢|, k+c) where ¢ is an SL[BG] formula,
k is the number of alternations of quantifications in ¢ and c is any constant, will improve
the complexity of the validity problem of MSO over (w*, <). The periodicity property of
Section makes the existence of such algorithm for 1cSL[BG] very likely and we have
good hope of finding it in the near future.

A note on ordinals

We assume basic knowledge about ordinals and refer to [28] for further details. An ordinal
is a well-ordered set. It is either 0 (or §)), or the successor of an ordinal o, which we write
a + 1, or a limit ordinal. The first limit ordinal, denoted w, is identified with the set of
natural numbers. For any two ordinals o and £, it holds that a < g if and only if a € .
Also, any ordinal « is equal to {5 | 8 < a}. In the following, we will be interested in w*,
and we will write equivalently o € w” or a@ < w®.

The Cantor normal form of ordinals w.r.t. w [28] allows to (abusively)[] write any
ordinal ) < a < w¥ in a unique way as a sum

a = whn, + wp_lnp_l + o+ wlng +ng

where p and all the n;’s are non-negative integers, and n, is positive. By extension,
we write ) = 0, (that is, p = 0 and ng = 0). In the above writing, we call p the degree

4The standard normal form would remove terms where n; = 0.
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of o and write deg(a) = p. We then write cnf(a) for the tuple (ngeg(a), - - -, 7o) associated
with this writing.

This writing does not allow for easy computation of the addition of two ordinals
(which we do not need in the sequel), but it allows to very easily compare two ordinals.
Indeed, given a, § € w*, the following holds: a < § if and only if one of the two following
conditions hold:

o deg(a) < deg(p), or

o deg(a) = deg(f3) and cnf(ar) <y cnf(f) where <y, is the lexicographic order, with
standard order over the integers.

MSO over ordinals

The logic MSO is defined inductively as follows:
MSO3® = (z<y)| X(z)| P |PVP|IX -D|Tz-P

where x,y are first-order variables (ranging over elements) and X is a second-order vari-
able (ranging over sets of elements). Let ® be an MSO formula. A variable x (resp. X) is
free in ® whenever it is not under the scope of a corresponding quantification. The for-
mula is closed whenever it has no free variable. It is then also called a sentence.

Let &(Xy,..., Xy, 21,...,2;) be an MSO formula with free second-order variables

X1,..., Xy and free first-order variables x4, ..., ;. In our context, it is interpreted over
a tuple (Py,..., Py, a1,...a;), where P, C w¥ and a; € w*, with the standard inductive
semantics:

o (a1,09) E (1 < x9) if and only if oy < ay;

e (P o) X(z)if and only if a € P;

o (P,....,P,a1,...q0) F - ®(Xy,..., Xy, 21,..., 2 x) if and only if there is a € w¥
such that (Py,..., Py,a1,...q,a) E®(Xq,..., Xy, 21,...,2,2);

o (P,....,P,a1,...qq) = 3IX - ®(Xy,..., Xs, X, 21,...,27) if and only if there is
P C w¥ such that (Py,..., Py, Pay,...a,a) E O(Xq,..., X, X, 2q,. .., 20);

e Boolean combinations have their standard semantics.

The validity problem

Given a sentence ¢ in MSO, the validity problem asks whether ® is true over (w“, <).
We recall that there exists an algorithm for the validity of MSO over (w*, <) working in
time Tower(|¢|, 2k + ¢) where ¢ is the MSO formula, k is the alternation height of the
formula and c is a constant; it was shown using automata over linear orderings [12].
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Theorem 4.16. Assume that there exists an algorithm for 1cSL[BG] model checking
problem working in time Tower(|p|,k + ¢) for a formula ¢ with k alternations of quan-
tifications, for some fized constant c. Then the logic MSO over (w*, <) can be decided
in time Tower(|®|,k + ¢) for a formula ® with alternation-height k and where c is the
constant of the 1cSL[BG]’s algorithm.

Proof. The proof uses a reduction to 1cSL[BG] over a fixed game. Many elements are
similar to Theorem (page [48)). Let

Q=1 Xy...QnXn Qni1Thtr - - Quiprr. V(Xa, .o, X, Thgry -, Thga)

be a sentence of MSO in prenex normal form. For every i, we have @); € {3,V}. The X;
are second-order variables, whereas the x; are first-order variables; the X; and the x; are
the only free variables of W.

The proof consists in building a fixed concurrent game G (independent of the for-
mula ®) and a formula ¢ such that G | ¢ if and only if @ is true over w®.

The game G has three agents (Dec), Follower (Fol) and (50).
It is the concurrent product of the two graphs depicted in Flgure [4.3] That is, a state of G
is a pair (z,y) with = € {a,b, ¢, D,no,yes} and y € {a’,V/, ¢, d'}, and there is a concurrent
move from (z,y) to (z’,y') whenever there is a move from x to 2’ in the left arena and a
move from y to ¢’ in the right arena; actions are given to the agent to which belongs the
corresponding state. For instance, there is a concurrent move from (a, a’) to (b, d') whose
first action belongs to Agent and second action to Agent Fol. The weights in G is
taken from the left-hand side arena.

1 0
O Qo ()
c b

Figure 4.3: Game G is the concurrent product of these two arenas

An ordinal o € w* will be encoded by the finite outcome
pa = (¢, VP2 (a,a) (b, b)) (a,a) (b, V)" ... (a,d)(b,b))™(D,d)

where p = deg(a) and cnf(a) = (n,,...,ng). The convention for encoding @ is to use the
finite outcome py = (¢, d)*(a,a’)(D,d’). Starting from weight 0, we realize that, along p,,
the weight is p+1 just before leaving (¢, ¢’), and is back to 0 when reaching (D, d’). An in-
finite outcome p is said to encode an ordinal a whenever p,, is a prefix of p (independently
of what happens after p,).
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We define the winning condition 2,4 as follows: a run in G is in €4 if and only if
L. it starts in (¢, ¢’) with weight 0

2. it visits (¢, ) at least twice

3. it visits only states in {(a,a’), (b,0), (¢, ')} until reaching (D, d’)

4. when it reaches (D, d’), the weight is 0

5. if the weight when reaching (a,a’) for the first time is positive, then it should
visit (b, ') immediately after.

This winning condition can be expressed in 1cLTL as follows:

(c,d)Nent € {0} A X (c,()
Vo =4 A ((a,d) Vv (b,6)V (c,d)) U ((D,d) Aent € {0})
A (e,d)U ((a, a/) A (ent € {0} V X (b, b’))>

Lemma 4.17. Let o = (07, 0!, 0°") be a valuation giving a strategy to each of the three
agents, and p be its unique outcome. Then p belongs to Qory (o equivalently satisfies 1q)
if and only if it encodes an ordinal . The value a is independent of the strateqy o,
and we then say that (07, o) encodes ordinal af

Proof. Let p be the infinite outcome of the valuation (", ¢! o) from (c, ).

e Assume p = 1q. Then, just looking at the discrete part of formula ¢, we get that

p € (c,d)2(c, ) (a,d) ((a, a') + (b, b'))*(D, d) ((no, d')* + (yes, d’)‘”)

Now, if p+2 is the number of visits to (¢, ¢’) in the beginning of p, the weight before
the first visit to (a,a’) is p + 1, and then, the number of visits to (a,a’) is p + 1
since the accumulated weight must be 0 when reaching (D, d’). So we can write:

p=(c,d)P(a,d)(b,b)"(a,d")(b,b)"(a,d’)...(a,a")(b,t)) (D d)p

for some suffix p' € {(no,d')¥, (yes,d')*} and integers n,,...,ng. Furthermore, if
p > 0 then, by the fifth point in ¢q’s definition, n, > 0. If n, > 0, then it
implies that p encodes the (unique) ordinal ) < o < w* with deg(er) = p and
enf(a) = (np, ..., ng). If n, =0 (in which case p = 0 as well), p encodes ().

Note that the strategy ¢ has no impact on the above prefix of p, and hence on
the ordinal being encoded.

e Assume p encodes an ordinal a. Then formula ¢ obviously holds along p.

>Somehow those two strategies agree on “playing o
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From now on, we will write (o), o1°") for a pair of strategies that encodes ordinal a.
All the results will be independent of the choice of these strategies.
We now show how we compare two ordinals by playing the strategies of the two

different ordinals, as follows:

Lemma 4.18. Fiz two ordinals o, B € w*, and let 07" be a strategy of agent SO. Let p
be the outcome of (o, ,agol, o) from (c,c) and define ¢, 19 and 15 the following LTL
formulas

Uy = ( \/ (i7 Z,)) U (CL, b/) Uy = (C, C,) U (CL, a/) Y3 1= (C, C,) U (CL, Cl)

i€{a,b,c}

Assume deg(a) = deg(B). Then oo < [ if and only if p satisfies 1r;

Furthermore deg(a) = deg(8) if and only if p satisfies 1.

Similarly, deg(«) < deg(3) if and only if p satisfies 15
e As a consequence, a < [ if and only if p satisfies o =13V (g A 1y).

Proof. Since (., o) (resp. (05, 05”)) encodes a (resp. (), it holds that the outcome

paeY
of (0,03, 07") (resp. (05, 05", 0°")) satisfies 1.

Now, if deg(a) = deg(3) ' 5, then the two strategies together generate (c,d)’*(a,a).
Now, as long as cnf(«) and cnf(3) agree, they generate the corresponding expected out-
come. The first time they disagree, it will lead either to (a,b’) (in case enf(a) < enf(5))
or to (a’,b). This paragraph allows to infer the various properties of lemma m O]

We now explain how we encode sets of ordinals (for second-order variables in the
logic). Tt will be the role of Agent SO, which should play from state D to yes (resp. no)
whenever the ordinal played so far is (resp. is not) in the encoded set. Let A C w* be a
set of ordinals and o, be a strategy of Agent 5. We say that this strategy encodes A
if the following conditions hold: o, ' (p,) = yes if @« € A and 0, ' (p,) = no if @ ¢ A (the
value of o, (p) when p ¢ {p. | @ € w¥} is irrelevant). There is not a unique encoding
of every second-order set, but a family of such encodings. Nevertheless, any choice that
satisfies the above will be correct. The following lemma is then straightforward:

Lemma 4.19. Let A C w¥, and o, be a corresponding strategy for Agent . Let
a € w* and p be the outcome of (ol ol o°). Then, a € A if and only if p satisfies

I o )

the formula v so dof F yes.

We now explain how we transform the MSO formula into a 1cSL[BG] formula

P = Qle c. QhXh- Qh+1xh+1 c. Qh—&-lxh-i-l- \I’(Xl, c. ,Xh,ZL‘}H_l, e 7$h+l)

We first focus on the block of quantifiers, and then on the quantifier-free formula W.
We define the transformation 7 as follows:

e 7(3X;) =3r, " (it will later be assigned to Agent 50))
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o T(VX;)=Vr" (it will later be assigned to Agent 50)

o T (3z;) = 3/ I7L° (strategy 7, will later be assigned to Agent and strategy
7ol to Agent Fol)

o T (Vr;) = V7 Vil (strategy 7, will later be assigned to Agent and strategy
71" to Agent Fol)

o T(Qu Qv') = T(Qu) T(Q'v') where @, Q" are existential or universal quantifica-
tions, and v, v’ are first-order or second-order variables.

We will need to check that strategies 7, and 7.° do actually encode ordinals, and
that 7° and 7.°! agree when quantifying existentially. We will also need to restrict the
universal quantifications blocks such as V7" V7:°! in T to actually encode a common
ordinal. For that, we define the two following formulas, assuming that I3 (resp Iy) is the
subset of indices ¢ in {1,...,l} such that variable x; is existentially (resp. universally)
quantified in ®:

ke = [\ assign(Dec, 7, Fol 71%) hg  (with x € {3,V}).

1€l

We now define the transformation 7 to the quantifier-free formula U(Xy, ..., Xy, x1,. .., 27).

We proceed inductively on the structure of the formula as follows:
Uy VW) =T (W) VT (V)
—U) ==T(¥)

X;(z;)) = assign(Dec, 7. Fol, 701 SO, 7.9 bso

J [ 7

T(
T(
T(
T (i

1

< x;) = assign(Dec, 7, Fol, 7;°) 4o

Finally, we define T (®) as follows:

1{3/\

b) = Xq... X
T(®) :=T(@Q:1X1...QnXnQni1Th i1 Qh—HIh—H){Kv:>T(\I}(Xh,..,Xh7$h+1,...,$h+l>)

Lemma 4.20. Let ((¢,c),0) be the initial configuration of G. The sentence ® is true if
and only if G, ((¢,c),0) = T (D).

Proof. In this proof, for the sake of readability, instead of writing G, ((¢,¢'),0) =, 6
(as given by the semantics of the logic), we will assume implicitly G and ((c, ), 0), and
simply write x = 0.

Let Ay,..., Ay and apyq, ..., an be realisations for the second-order and first-order
variables (over w”). We first notice, applying Lemma [4.17] that:

Fol Fol
(UAI 10045 %00 Tapgyo 0 Tapgy ah+l> = K3 A Ry
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Also, it follows from Lemmas [4.18 and [4.19] that:

(Ala"'7Ah7ah+17"'7ah+l) ): W iff

(UAI,...,UAh,aahH,UEZIH,...,UahH, EQL)):T( (X1, ooy Xy Thaty -y xpey))  (4.1)

For a subset I' C {h+1,...,h + 1}, we write xI' (x € {3,¥}) for the formula

/\ assign(Dec, 7 Fol, 7%) ¢

ielnl’

Notations. To simplify reading, we will use the following notations:

o (Ap ), Gati,hrg) for the realisation profile (Ay, ..., Ap,apsrs - -, Qnyy)
,Fol ; Fol Fol
o (UA[1 w Tap e ) for the valuation (04, ..., 04,04, 00l s Oat,:Oapy,)

® QUhtjr1,h+) T h+jt+1,h41 for the quantification Qnyji1Thijir - . QriTh

We will now show by a downward induction on j (0 < j <) that for all realisations
Ay, ..., Ay for the second-order variables and ap.1,...,ap4; for the j first first-order
variables, the following holds:

(An)s A1 htg) B Qurjr1Thajat - - - Quyrtng Y iff
Zh+j+1/\ (42)

Fol k3
<O-A[1,h]’0- h+1(i)l+1]) ): T(Qh+]+1xh+]+1 Qh-‘rla?h-i-l) {HVZ}I‘F]"‘FI — T(qj)

The first part of the proof shows the case j = [ through Formula (4.1). We fix
0 < 7 <l and we assume the condition expressed in Formula (4.2)) to hold for j. We will
show it for j — 1. We distinguish between two cases:

o Case Qp4; = 3. We first assume that the formula below holds

(A pgs At hri—11) F 3004 Qi+ bt ) Tt j by ¥

Let ap; be a realisation of xj,; such that

(Ans Qg1 haj—1)s @) F Qrjrthi)Tinrjrinry ¥

By induction hypothesis, this implies:

>h 1 >h+j+1
(O-A[l,h]7o-a[h+7]1;:(l)bl+j]> |: T(Q[h+j+1,h+l}m[h+j+17h+l}) (’fa It N (’f\7 IR T(‘I’)))

Fol —=Fol

Hence, by assigning o, (resp. o, ) to 7,}; (resp. 7,5 ;), we get:

h+j
’fa VAN

(0a o0 ) 33T T Qg1 b 1Tt 4 1,04)) >h
[1,h]7 7 Qlh41,h+j—1] J J v +J = T(\Ij)
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since those strategies properly encode an ordinal ajy; (hence the part of k3 corre-
sponding to x4, holds true under that assignment).

Conversely, assume that

LSRN
,Fol —Fol 3
(UA[I,,LV%[HLHJ-_I]) = EITh—i—jEITh+jT(Q[h+j+1,h+l]x[h+j+1,h+l]) o 2hti T(D)
v

There exist assignments 7" and 7" for 7} +; and ?}j‘jrlj such that:

>h+j
K3 TIA

(A1 e a2 ! ") = T(QmtitrhdThit1ntt) | Shiy
[1,h)7 7 @lh+1,h+5—1]° ’ J J K2 +j - T(\I/)

Now, due to formula /ﬁ%hﬂ (Lemma , it holds that there is an ordinal aj;
such that n"* and " encode aj ;. We can then rewrite:

(@ 1 Tapro) B T(Qhgs L ps T j1,n41) (,ﬁzhﬂH A (k" = T(‘I’))>

A[h+41,h+j

By induction hypothesis we get:

(An), A thrg) F Qi+t Tiasjrr ey ¥

Hence:

(A[l,hba[hﬂ,hﬂfl]) ): 393h+jQ[h+j+1,h+l}x[h+j+1,h+l] v

Case Qp1; = V. First assume that

(A s @ppr1,prj—1)) B VTt Quit i+t hr Tt j+1,p4y) ¥ (4.3)
and toward a contradiction, assume that

>h+j
K3 TIA

JFol —Tol
(UA[Lh]aUa[hHLj_l]) o~ vTthjVThoﬂ'T(Q[h+j+1,h+l]37[h+j+1,h+l]) {thﬂ = T(D)
v

This means there exists realisations 1" and 7' for 7,5 and 7}, such that
>h+j
K3 I

(Ga,, a0 TN B T Qs b h T g 1hr]) . ohos
[1,h)]? 7 Olh41,h+j—1]° ’ Ko +J = T(‘I’)

We distinguish between two cases:

— Case (0", 7" | Héthj}. This pair of strategy encodes an ordinal ay;. Due
to assumption (4.3)), it holds that:

(A[1,h],a[h+1,h+j—1],ah+j) F Q[h+j+1,h+z1$[h+j+1,h+z1 v
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By induction hypothesis, we get:

7 >h+7 >h+j
(UA[l,h]vaa[hizlﬂ]) = T (Qhtj41,h+Thtjt1,h+1)) (lﬁ TN (RS = T(‘If))>

which implies

>h+j
PELTIN

(04 2 Tapr ot /i ") e T(Qurtjr ) Thag+1.04) § Sha
[1,n]? 7 Qlh41,h+5—-1]" ’ K2 +j — T(‘I’)

Contradiction.

— Case (", 7" K& £ This implies that:

(O-A[Lhwo'a[h#i(f)irjfl]’n vﬁm) Pé T(Q[h+j+1,h+l]x[h+j+1,h+l]) (’fazhﬂ)

which is meaningless since we can always find encodings of ordinals.

We conclude that the assumption was wrong, hence:

>hetj
RESaEIN

,Fol —Tol
(UA[l,h}aUa[hHLj,l]) = VTh+jVTh()+jT<Q[h+j+1,h+l]$[h+j+1,h+l]) {thﬂ- — T(0)
v

Assume now that

>h+j
,Fol —Fol ) ] R A
(O—A[l,h]’aa[h+l,h+jfl]> ): VTh—ijTh-&-jT(Q[h+J+1,h+l]I[h+J+1,h+l]) {/ﬂ;h—kj - T(‘If)
This holds in particular when 7,); and ﬁ(jrlj encode an arbitrary ordinal, which
allows to conclude by induction hypothesis.

Getting rid of second-order quantifications is made using a bijection between strategies
of Agent and assignments of second-order variables (Lemma 4.19)). This concludes
the proof. n

By this reduction, we can deduce a procedure for the MSO(w*, <) validity problem
from an algorithm for 1cSL[BG]’s model checking. The size of formula 7 (®) is linear in the
size of @, and the number of alternations is identical. Therefore, an algorithm that works
in time Tower(|¢|, k + ¢) for a 1cSL[BG] formula ¢ with k alternations of quantifications
(and ¢ a fixed constant) will give a procedure in Tower(|®|, k + ¢) for a MSO formula @
with % alternations of quantifications. This concludes the proof of Theorem [4.16] O

Remark 4.21. The current construction does not extend to ordinals higher than w* since
there is no Cantor normal form based on w for larger ordinals.
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4.2 With energies

In Minsky’s proof of undecidability for reachability in two-counter machines, two aspects
appear essential: having at least two counters and being able to test equality of each
counter with 0. To get around the undecidability, we have two main possibilities: working
with a single weight or simplifying the constraints which are allowed. In Section we
studied the first option, we now focus on the second one. Energy constraints are a weaker
form of quantitative assertions, the idea is similar to counter constraints as it works on
weighted games but limits the constraints to upward-closed sets and their complements

In contrast with counters, reachability (or objectives characterised through w-regular
conditions) is decidable in multi-dimensional energy games. In this section, we propose an
adaptation of SL with energy assertions and prove its multi-dimensional model checking
to be undecidable.

4.2.1 Adding energy constraints to SL[BG]

We reuse WCGS (see definition in Section when working with energy assertions; in
particular, we keep a definition of path that forbid strictly negative weight{] We start by
defining energy constraints formally. For this, we recall that an upward-closed set S of N"
is a set such that if (s1,...,s,) € S then (s;+11,...,8,+1,) € S for any (i1,...,4,) € N™.

Definition 4.22 (Energy Constraints).
An energy constraint on n weights is an upward-closed subset S of N".

By taking S = N" we retrieve the constraint that all weights should be non-negative.
We can now update SL with the new constraints.

Definition 4.23 (Strategy logic with energies: eSL).

The logic eSL is built upon a dimension n, a set Agt of agents, a set AP of atomic
propositions and a set V of variables. Its formulas are to be evaluated on a n-WCGS
using Agt and AP respectively as their set of agents and atomic propositions. The eSL
formulas are constructed using the following grammar:

eSLe ¢ = Fx.¢|assign(A,x).¢ | oV || U | X |p|ente S

with S an energy constraint, p an atomic proposition, x a variable of V and A an agent
of Agt.

We recall the semantics of the cnt € S operator, which is unchanged from the one
used for cSL (SL with counters constraints):

G,(g,c) EyenteS & ceS

6Many of the works in the literature (|4} 14} [13]) use constraints forbidding any of the weights to
become negative. We can however be more liberal and ask for the weights to belong to upward-closed
sets or complements of upward-closed sets without loss of generality. We can easily establish polynomial
reductions from one framework to the other.

"However, similarly to the previous sections, this has no impact on the results developed below.
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Remark 4.24. We draw a parallel between energy constraints, eSL[BG] and energy games
in the sense that we aim to keep all the energies above a given threshold in all our goals.
This type of constraints were the first ones studied in energy games. Research around
energy games has since then moved towards more complex questions (parameters, cost
minimisation. .. ). The parallel with energy games however stops there and it is unclear
whether the more advanced questions make sense when coupled with SL.

We also define the (flat) analogue eSL[BG]” of SL[BG]” by

eSL[BG] 3 ¢ = Ju.¢ | Va0 | €
§ n=E8ANEEVEB
B = assign(A,z).0 | ¢
pu=peVelap|pUp|Xe|p|ctesS

We get eSL[CG]’, the enriched version of SL[CG]’, by taking the grammar of eSL[BG] and
restraining ¢-type formulas to £ ==& A€ | 5. As always, the full fragments allow closed
formulas at the atomic propositions’ level.

4.2.2 Model checking of eSL[BG]

As reachability is decidable in multi-dimensional energy games (see [I4] for an algo-
rithm), we hoped that eSL[BG] would be decidable. The theorem below proves that we
were wrong and shows that the conjunctive fragment eSL[CG] is already sufficient to get
undecidability.

Theorem 4.25. The eSL[CG] model checking problem over 2-WCGS is undecidable

Proof. The proof consists in a reduction from the halting problem for deterministic two-
counter automata. We recall the definition below and remind the reader that the halting
problem for two-counter automata is undecidable (Minsky [37]).

Definition 3.3. A deterministic two-counter automaton is a tuple M = (S, E, sy, sp)
where S is the state space, sy is an initial state of Qrg and s, € Qaq 1S a halting state.
E:S— {c,a} x{SUSx S} is the transition function. Transitions of form E(s) = (¢, s')
increment the counter ¢ and go to s', while transitions of form E(s) = (¢, s',s") either go
to s’ if the counter ¢ equals 0 or decrement ¢ and go to s" if ¢ > 0.

Fix a two-counter automaton M := (S, E, sy, s;,) with two counters ¢; and ¢;. Without
loss of generality, we assume M to have no self loop.
Building the game

We start by defining a 2-WCGS G := (AP, Agt, Q, Act, A, labels). Figure [4.4|illustrates the
construction. Formally, we set

e There are two agents (Dec) and Checker (Che) in Agt.
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1
Qeheck

1
Qcheck

______

Figure 4.4: The two-counter automaton M on the left and the concurrent game G on the
right.

e The state space Q is the union of S plus 2 new states: ¢',..,. and ¢* .-

e The actions set Act is made of five actions: axq, a—o, Guait, aper and a2y, The
first two actions belong to Agent and the last three to Agent Che.

e There is no transition from g}y, and ¢4, For ¢ € S and a move vector m :
Act®® A(g,m) is defined as follows:

— if Che plays al, ., resp. a%, ..., then A(q,m) := g, ., resp. A(q,m) := @2 oo-

— if Che plays @ then there is a unique transition leaving ¢ (when viewing ¢
as a state of M)

« if it is of the form E(q) = (c,¢'), meamng it is an incrementing edge on
counter ¢, then we set A(q,m) :=

« if it is of the form E(q) = (¢, ¢/, ¢ ), meaning it is a zero test or decremen-
tation on counter ¢, then either plays a—o and we set A(q,m) := ¢’ or
plays a-( then we set A(q,m) := ¢".

e The weights of the transitions in G follow the weights of M. We also create a weight
(—1,0), resp. (0, —1), on the edges going to ¢ ..., T€SP. % -

o We label the states of G that are accepting in M by an atomic proposition pgc.
Qoeer and @3, are respectively labelled by pl, .. and p?,_ ... We label each state
of S by an eponymous proposition, for example a state ¢ will be labelled p?. For
any counter ¢ and any transition of the form E(q) = (c,¢’), we label both ¢ and ¢’
by Pe(q)=(c,¢)- Similarly, for any transition of the form E(q) = (c,¢’, ¢"), we label g,

q" and ¢" by Pe(g)=(c.q'.q")-

e We use the notation ¢;,; to talk about the starting state sy of M in the context of

il

8This is mostly a question of terminology: do we see the states of M in G as copies or as the same
entity? To avoid confusion and to make clear which structure we are working on, we choose the first
option and use the ¢;,; notation. For the partisans of the second approach, for all purposes sg = Gin;-
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Building the formula

[t remains to specify an eSL[CG] formula to complete the reduction. We give the fi-
nal formula so the reader can get a general idea before proving the correctness of the
reduction.

¢ = 3.131. VJIQ. 1/11 /\¢2 /\’Lﬂg

where

1y := assign( ,x1; Che, x9). G (ﬁp}:heck A ﬁpgheck) = F poce

P! N\ PE(g)=(c1,4',a”)

A X (pq// /\pE(q):(cl7q/7q//)) = cnt € N\{O} x N
A X thlzheck

PN PE(g)=(c2,a',a”)

A X (" A Pegy=(eaa) ¢ = ot € N x N\{0}
\ A X 2p§heck

o = assign(Dec, z1; Che, x9). G /\

4,9,',9" €S

4

P? A PE(g)=(c1,¢'.¢")

—F ¢ A X (7 A DPe(g)=(c1,q.9"))

(A X2plyeae A ent € N\{0} x N
Y3 := assign(Dec, x1; Che, xg). ¢ A
(a

PN PE(g)=(ca,0' a")

-F A X (pq A pE(q):(CQ,q’,q”))

(A X2p20 A ent € N x N\{0}

Correctness of the reduction

Consider a strategy o for . We associate with 6" a sequence p := (g, ¢, cb)ien
with ¢!, s € Z of configurations of G defined by ¢;11 = 6" (p<;) and where the values
¢ and 4™ are updated accordingly to the weights on the transition from ¢’ to ¢"*! (due
to the determinism of M, there can only be one transition from ¢' to ¢"*'). Note that
0" does not have access to the two new states, it only decides between the two choices
offered by the branching (that corresponds to a zero test in M). This implies that the
sequence p always stays in the copy of M, therefore §"“(p<;) is always defined and p is
properly defined. Note that it may be the case that 6““ does not follow zero tests. In
particular, if a value ¢} (or ¢}) is in Z — N then p is not a (well-defined) path.

Because p never reaches ¢, ., and ¢?,_.., we can see it as a sequence of configurations
in M. The proposition below characterises when p can be seen as a proper path in M.

Proposition 4.26. The sequence p is the unique path in M if and only if for any strategy
5 it holds { — 87 Che — 69"} satisfies 1y and )3
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Proof. First, assume that p is the proper path in M, meaning p takes the zero-test edges
appropriately:

Vje{l,2} Vie N [E(qz-) = (¢}, gi+1,4") for some ¢" € S] = =0 (4.4)
Vie{l1,2} VieN [E(qi) = (¢j,q, giy1) for some ¢’ € S] =¢ >0 (4.5)
§¢he and writing x := {x; — §7°; xy — 092}, it holds

G, (Gini» (0,0)) =y 2 A3 (4.6)

Indeed, consider an integer i where a zero test E(g;) = (¢, ¢i11,¢”) occurs on counter j.
If 5" plays to piheck after ¢ + 1 steps, because the zero edges are taken accordingly, we
must have C‘Z = 0 and therefore 1 can only reach p‘zheck at step ¢ + 2 with a null value
in the j counter and formula 13 must hold at step i. Also, X (pq” A DE(q)=(ca,q',q")) 1S DOt
verified and vy trivially holds, hence Formula (4.6) is satisfied at step i. If p(i + 1) = ¢”,
we can apply the inverse reasoning and Formula still holds at step <.

Then, for any strategy

Now, assume that p is not a proper path of M. As said before, p always stays within
the copy of M and never reaches ¢, . and ¢ .. So, the first components of each
element of p form a sequence of states in M. The only way for p not to be a path
is to wrongly manage the counter, i.e. an error in the decisions of 6. We treat the
case where p went by the non-zero first counter transition with a null first counter, the
inverse case and the ones with the second counter are similar. There is ¢y € N such that
E(q:,) = (c1,¢, Giyr1) for some ¢ € S and with c}(c;) = 0. The path p is of the form
(considering the first counter)

((]17 17 1) T (qm: 1vczzo)'<qm+lv0a*)'<Qéheck’ 0’*) s

50 G, (Gini,0,0) W&, ¥3 and G, (Gini,0,0) =, ¥2 A 5. This combined with the previous
paragraph gives us Proposition [4.26] ]

It remains to characterise when p is accepting, which is done in the proposition below.
The proof is straightforward hence omitted.

Proposition 4.27. Fiz two strategies 6" and 6 such that, writing x = {x1 —
57 g — 69}, it holds

gv (Q'mm (07 O)) ):x ¢2 A 1P3 A QSSign( y L1 0]1’67 1'2). G (_'piheck A _'pgheck)

Write p for the sequence of configurations associated with 6", then p sees an accepting

state if and only if G, (Gini, (0,0)) =y ¢1.
From there, by combining Propositions and |4.27], we get that

There exists a strategy ¢ such that
G, (Gini, (0,0)) Fpay—svecy Yoo, ¥y Athy Aths

which concludes the proof of Theorem [4.25] ]

The unique path in M is accepting < {
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Remark 4.28. The game used in Theorem[].25 is concurrent. The same result holds on
weighted turn-based games. The proof would just decompose sequentially the choices of
Che and by adding some extra states.

Theorem [4.25]does not rely on complex numerical constraints: each constraint asks for
one of the energies to be positive. This is enough to get an undecidable model checking
problem for eSL[CG]. The result holding for WCGS with only two agents shows that there
is little hope to regain decidability without restraining ourselves to a unique weight or
going for WCGS with one agent (which brings us back to closed systems). For the model
checking over WCGS with a single weight, we believe eSL[BG] to be decidable. Energy
constraints are (by definition) strictly less expressive than counter constraints and, as said
in Section we believe 1cSL[BG] (the development of SL[BG] with counter constraints
on WCGS with a single weight) to be decidable.

One possibility is to force energy constraints to appear under the scope of an even
number of negation, still allowing constraints on upward-closed sets but forbidding their
negations. Without the complements of upward-closed sets, we can check (using the
technique developed to prove Theorem that configurations of the form (g, 0, c3) and
(q,c1,0) take the zero-test edges properly. We however cannot enforce proper behaviour
for configurations of other forms without the complements of upward-closed sets. What
happens to the undecidability of eSL[CG] is then unclear and worth investigating.

4.3 Conclusion

Like most temporal logics for multi-agents systems, SL can be enriched with quantitative
constraints. These constraints can be of many kinds. We have proposed two versions:
one with counter constraints (cSL) and the other with energy constraints (eSL).

The model checking of cSL on WCGS with more than two counters is trivially unde-
cidable. We tried in Section to get a decidability result for cSL on 1-WCGS (WCGS
with a single counter) but failed to design an algorithm. We however managed to prove
a periodicity property for the satisfaction relation. This gives us hope to find in the near
future a working algorithm.

We have also shown in Section a potential application of c¢SL on 1-WCGS by
forging a correspondence with MSO on ordinals. While the lack of algorithm for cSL
makes this correspondence only theoretical, it highlights the large expressive power of
cSL, even on 1-WCGS: without much difficulty, cSL can encode well-ordered sets, and
especially w® which cannot be encoded through tree automata.

With the decidability of reachability in multi-dimensional energy games, we had hope
that the eSL[BG] model checking problem would be decidable. Our aspirations however
died in Section when we found eSL[CG] (the conjunctive fragment of eSL[BG]) to
be undecidable. It seems that not much can be done for eSL and its expressiveness is too
powerful to ever regain decidability. The only three options would be to restrict ourselves
to a single objective (some eSL[1G] type of logic), to restrict ourselves to a single weight
or to force energy constraints to be under a even number of negation (i.e. forbidding the
complements of upward-closed sets).
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4.A Annex

We give the full proof of the intermediary results (Lemma Lemma and Lemma|4.12)
used to prove the periodicity theorem of Section [4.1.2] (page which we recall below

Theorem 4.7. Let G be a 1-WCGS, and ¢ be a 1cSL[BG] formula. Then there exists
a threshold A > 0 and a period A > 0 for the truth value of ¢ over G. That is, for
every configuration (q,c) of G with ¢ > A, for every k € N, G, (q,¢) = ¢ if and only if

ga(Q7C+kA) >: ¢
Furthermore the order of magnitude for A + A is bounded by

Q22

Tower( max ng, max ky+ 1)
0 SubForm(¢) 0 SubForm(¢)

where Q is the state space of G, SubForm(¢) is the set of 1cSL[BG] sub-formulas of ¢, ky is

the number of quantifier alternations in 0, and ngy is the number of different assignments

used in 6.

Lemma 4.10. Fiz 0 < j < k, and assume that R@’@,)(Xj,xg) holds true. Then:

1. for every strategy v for x;11 from 7y, one can build a strategy T (v) for x;41 from +'

such that Ra’?f)l(xj U{vh X U{T (v)}) holds true;

2. for every strategy v' for x;11 from +', one can build a strategy T '(v') for x4
from ~ such that Rg’%l(xj UL{T (")}, X U{v'}) holds true.

Proof. We prove the first property. The second property is proven similarly by replacing
Shift_, with ShiftJrA.

We fix a new strategy v for variable z;; from . We define the lifted strategy 7 (v)
for variable x;,, (which we will add to valuation x’;) from " as follows:

e for every (finite) p’ from ' that is a prefix along which the counter is always larger
than A, we define 7 (v)(p') = v(p), where p = Shift_,(p") (note that in that case,
the counter is always larger than A along p, and p starts at configuration 7), so
this is well-defined;

e if p' hits value A', then decompose p’ w.r.t. A" as p{ o, - p'. Similarly, decompose
p = Shift_x(p) w.r.t. A, yielding p = p\a - p. It is not difficult to see that p A =
Shift_x(p{ o/). By hypothesis, it holds

dy,,, (st(pa), D) = ldy,__(Ist(pl 1), D))

PUAY
(with D = Doyy = Doyt )
By Lemma [4.§ we find a strategy " from Ist(p{ »,) for variable z;, such that

o uthg (st(pra), D) = ldy,__ vy (Ist(pl o), D).

P\ A

We then define 7 (v)(p') = v'(p'). The property R@’ﬁr)l (x;U{v}, x;U{T (v)}) holds.
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The construction made in the above lemma is illustrated in Figure [4.5]

~'= Shifts ()

» ®
~ A
. ~
identical (but shifted) strategies
A/ ° ~
A
A o -

Figure 4.5: Construction in Lemma m (case (ii))

Lemma 4.11. Fiz D° for the tuple of initial states of the D;’s. Assume that jojylf) (x, X)
holds (for full valuations x and x'). Let 1 < i < n, and write p = out(B;(x),~) and
P =out(Bi(x'),7). Then p = ; if and only if p' = ;. In particular, v =, £(Bipi)1<i<n

if and only if v =y E(Bipi)1<i<n-
Proof. We distinguish between two cases:

e Assume that p is fully above A. By definition of property Rg:;:f)(x, X'), it holds

that p’ = Shift,(p). Applying Lemma to all prefixes of p and p’ (which are all
above A, resp. A’), we get that they follow the same paths in all automata D;’s,
hence for each 1 <1i < n, p = iff p' = 1.

e Assume that p is not fully above A. Then, by definition of property Raogff)(x, X),
p' is not fully above either, and p{ o, = Shift, A (p\a). Also,

14y (Ist(pya), D) = Iy (Ist(gl ). D)

p\A/

with D = DY

O n = Dg“"/m' (by Lemma .

There exists some location ¢ such that Ist(p\a) = (¢,A) and Ist(p\ o) = (4, 4A"),
and by definition of the id, this means that for every 1 < i < n, the two following
properties are equivalent:

- p= OUt(ﬁi(Xm)7 (¢,A)) is accepted by D; from d;
-9 = out(ﬁg(x’p,—>), (q, A’)) is accepted by D; from d;
A

We conclude by noticing that p = p\a -0 and p' = p{ 5, - 0/, which are then equiva-
lently accepted or rejected by each of the D;.



108

Lemma 4.12. v =y ¢ if and only if v' ¢ ¢.

Proof. For every 0 < j <k, we write ¢; = Q11211 ... Qi §(Bl¢z)1<z<n
We show by induction that if x; and x’; are valuations such that ]R )(X], X;) holds,
then v =, ¢; if and only if +/ |:xj b,

This holds for full valuations xj and x) by applying Lemma [4.11] Assume it holds at
rank j + 1 with 1 < j < k; we show it for j. Assume x; and X/ are valuations such that

R(77 )(X], X;) holds and 7 [=,; ¢;. We distinguish two cases:

e Case ()11 = 3. Pick a strategy v;,1 for variable x;,; such that v =y 00,4, @j11-

Applying Lemma {4.10, choose strategy v}, such that ]RD j;rl(xj U {UJ_H} X; U

v holds. Applying the induction hypothesm we deduce that ~/ Ufw
J+1 x5

(TRe;
Pjt1-

e Case ()41 = V. Pick a strategy UJH for variable ;1 from +'. Applying Lemma m,
choose strategy v;;; such that ]RD ’J,;rl(xj UA{vj1}, X; U {vj,,}) holds. Applying
the induction hypothesis, we deduce that ~/ ):x’-U{v‘;H} G it v By U010} it
The last relation is valid, hence 7' =i

et Pt

We conclude the proof by noticing that Rg:%(@, () holds since A ~ A'. O
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The dependency problem in SL[BG]
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Chapter 5

Introduction to the dependency
problem

In the quantifiers” semantics, the strategy assigned to a variable x on a history p depends
on all the other strategies quantified before it in their entirety. These dependencies are
rather unusual, make the semantic of the quantifiers counter-intuitive and prevent us
from making local decisions. The example below illustrates the issue.

Fix two agents [ | and (), two atomic propositions p; and p, and four variables xa,
25, 34 and y5. Consider the game G on Figure We define a SL[BG] formula ¢,
below.

(aSSIgn<D » L4 »Ya )Fpl
a b < assign(],25: (), ys )F
/N YN do :=Va', Yy, Ias Iy . gn( B vs )F p2)
D1 P2 D1 D2 A
. |,
Figure 5.1: A game G. assign(l], 25; (), yp )F O
¢1

One can see that using the intuitive semantic given in Chapter[I], ¢ holds on G from g;y;.
For example, using the name of a variable for the strategy assigned to it, if QJE]; (Gini) = a
and ), (¢ins.a) = p, then we can set 25 (gini) = b and y5 (gini-b) = p1. The outcome of

{«"s, 4, } does not see p; so the first goal is not satisfied and the outcome of {25, yp }
eventually sees b but not ps so the second goal is not satisfied but the third is. This makes
the equivalence between the first two goals hold as well as the third goal, satisfying ¢;.

Now, assume xa (Gini) = a and y 4 (gini-a) = p1, we can take xDB (Gini) = b and yg (gini.b) =
p2. Unlike previously, all three goals are satisfied and both the equivalence and the

conjunction hold, making ¢, true. A similar reasoning can be done when ') (¢in;) = b.
In the end, the overall formula ¢, is satisfied by G.

In the reasoning above, one can notice that the choice of y; on the history gi,;.b
depends on what y, decided to play on ¢;,;.a. In particular, the choice of yz on a history

111
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Va4 Vya Jys
/ \ 7 2l
// \\ / \
/ \ / \
/ \ / \
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/ \ / \
O /O N /O
/ \ / \
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// \\ / 7 \
/ / .
/ \ / \
O / \ / o\

\ dependency on a

different history

Figure 5.2: Dependencies from the existential variable y; on the universal variable v, .

depends on the choice of y, on another history. Figure illustrates the situation: there
is an unnatural influence of y, on y; . Indeed, in some practical cases, the strategy y, can
be only partially revealed and we may therefore wish not only that y, exists but also to

build it using a limited amount of information from y, . Finding when these dependencies
appear is what Mogavero, Murano, Perelli and Vardi refer as finding elementary witnesses
in [39].

Consider a formula ¢ := Q1x1, ... Qix;. £(5;¢5)1<j<n- A strategy 6 stored in a variable
x; is said local when it depends only on the current history and the choices of the variables
quantified before x; on said history. The question of elementary witnesses formally asks
which SL[BG] formulas can be solved using only strategies with local choices for the
existentially quantified variablesﬂ In other words, we aim to find formulas where the
situation illustrated on Figure does not happen.

In this chapter, we give a layout of the situation, propose a framework (adapted
from [39]) and highlight a few results. As we will see, the notion of elementary witness
developed in [39] is not sufficient for a thorough study of the problem. In later chapters,
we will study the dependency problem in a broader sense.

5.1 A partial classification of the dependencies

We start by formally defining the notions at the heart of the dependency problem. Given
a history p = (¢;)i<r where L € N, we recall that a prefix of p is a history of the form
p' = (¢;)i<ry where L' < L. We also recall that an extension of p is any history of the
form p” := (¢;)i<r» where L” > L. We write Pref<, for the set of all prefixes of p including
p and Pref_, for the set of strict prefixes of p. We also regroup all the other histories

within the notion of counter-factual history:

Definition 5.1 (Counter-factual history).
Given two different histories p and 7, we say that m is counter-factual of p whenever
15 neither a prefix nor an extension of p.

nitially introduced in [39], the authors formulate the problem in a different manner through the use
of mathematical objects. We will explain and refine their idea in Section later on.
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We highlight three kinds of possible dependencies and explore their usage to model
open and multi-agents systems. More kinds are possible, we restrict ourselves to the ones

we believe are the most interesting.
The first kind is called local dependency: it happens

when a strategy y on a history p requires knowledge of
the choices from strategies quantified before y on prefixes ~ (0.0) (1,0)

of p or on pitself. Local dependencies are rather common (1,1
with CGS, they order who has knowledge of what within /
a state or a history. For example, consider the game of 0
Figure [5.3| with two actions 0 and 1, and two agents A
and B. From g¢;,;, A aims to reach a p-labelled state
while B tries to avoid it. The agent who announces his
strategy first loses: if A talks first, B may play the same 1)
action as A, forcing a transition towards the state not

Figure 5.3: A game G with two
agents and two actions (0 and

labelled by p. On the other hand if B is the first notifying his choice, A can choose the
opposite action, ensuring that the transition results in the p-labelled state. Which agent
(or in SL[BG] which strategy) discloses his choice first can be modelled by choosing an
appropriate quantification order, thus creating local dependencies. Note however that,
due to the quantifier alternation, SL[BG] is not the best logic to deal with simultaneous

decision makings.
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The second kind of dependency is the one described in the introduction of this chapter:
a strategy on a given history that depends on choices made by previously quantified
strategies on counter-factual histories. We call it side dependency. Such dependencies
may represent some knowledge from one component behaviour (in counter-factual plays)
that is accessible to another component (the play under consideration). They may also
represent some weak form of concurrency (a side thread can be executed before the
current one and therefore we can assume some knowledge about how such thread went),
but there exist better models for this. In most multi-agents systems, these dependencies
cannot happen and therefore these systems cannot be modelled through CGS and SL[BG]
formulas. Therefore, the main interest in studying these dependencies is to know when
they appear to expand the class of practical problems that can effectively be solved
through SL[BG] model checking. It may also give some information about the intrinsic
difficulty of certain formulas.

The third kind of dependency is when an existential strategy y on history 7 depends
on the choice made by a previously quantified strategy x on an extension 7.7’ of 7, we
call it future dependency. Future dependencies, like local ones, represent some knowledge
accessible to an agent at a given time, here about future decision. They may appear
when the system we aim to model has some intrinsic limitations, or when there are some
formal and predetermined protocols interspersed in the system. More often than not and
unlike local influences, future dependencies are a burden preventing many problems to
be solved through SL[BG] model checking procedure. Unfortunately we will see that they
appear frequently. These three kinds are illustrated in Figure [5.4]

5.2 Formal framework

A framework proposed to investigate this issue is to represent the existential choices
through mathematical objects that we call maps. We rediscover and extend the concept
of dependence maps introduced in [38, [39] into a more general framework adapted to the
three kinds of dependencies we highlighted before. The idea is similar to the Skolemisation
of first-order formulas [I7]: representing the existentially quantified variables as functions
of the universally quantified variables. The notion of “there exists a strategy such that
for all strategy. .., it holds & where £ is a boolean combination of goals is transformed in
“there exists a map satisfying £”. We can then apply adequate restrictions on the maps
to model the dependencies.

Choosing to work with dependence maps allows us to treat the strategy quantifications
as a bloc, in a somewhat global fashion. Other frameworks are possible and we could
have worked with one similar to what we used in Chapter [I| to define SL; however such
framework conveys the idea that strategies are individual elements and does not simplify
the notations.

Treating the dependency problem for the full SL[BG]| greatly complexifies definitions;
we therefore focus exclusively on (the flat fragment) SL[BG]” and recall its grammar below.
To ease the reading of Chapters [5| to [7, we remove the flat symbol.
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SL[BG] > ¢ :=Fz.¢ | V.00 | £
§u=EVEIENE]B
p = assign(A,x).0 | ¢
pr=pVelp|leUp|[Xe|p

As we have seen with the definition in Chapter |1} all SL[BG] formulas have their quan-
tifications grouped together at the beginning and can be written in the following formf]

¢ = (Qiz;)i<i f(ﬁj%‘)jgn

where for any i <[, Q; € {3,V} and x; € V (with x; # xy for any i # ¢'), £ is a boolean
combination, for any j < n, ; is a sequence of assignments and ¢, is an LTL formula
over AP. We write p := (Q;x;)1<i<; and, to simplify the notations, we assume without
loss of generality that V = {z; | 1 < i < [}. We also write V¥ := {z; | Q; = V} and
V3= {x; | Q; = 3} respectively for the universally and existentially quantified variables
of p.

5.2.1 Maps

We refer to a function 6 as a p-map (or simply map when @ is clear of context) if it is of
form

6 : (Hist — Act)”” — (Hist — Act)¥ or equivalently 6 : (VY — Strat) — (V — Strat)

and satisfies 0(w)(z;)(p) = w(x;)(p) for any w : (Hist — Act)¥”, any universally quantified
variable ; € VY and any history p. A map therefore defines the strategies existentially
quantified in function of the universally quantified strategies.

We can forcibly remove certain influences by applying adequate restrictions on the
maps. Local dependencies are allowed in all cases: the use of CGS makes it mandatory
to handle who has which information within a state and, as explained in Section [5.1] not
much can be done in CGS without them. We define two parameters: S, F' respectively for
the side and future dependencies. We can then draw four sub-types of maps by choosing
parameters among S and F: {M(#,Q) | & € {0,5}, © € {0, F'}} where a M(#,Q)

map has the additional restriction:

Vp € Hist, Vz; € V
Vwy, wy @ (VY — Strat)

} (ClLocal) A c(a) AC(©)) = (B(wn)(@:)(p) = Ows)(w:)(p) )

with

2Without loss of generality, we assume the variables to be used in at most a single quantification. We
further assume them to be ordered: i is quantified before x5 which is itself quantified before x3 and so
on.
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C(0): empty condition (always satisfied)

C(Local): w; and ws coincide on VY N [x1;2;_1] and on p, i.e.
Yy e VN ezl V< p wi(y)(p) = waly)(p)

e C(S): wy and wy coincide on V¥ N [z1;2;_1] and on side histories of p (side), i.e
Vy € V¥ N [z1;2;_1]. Vi counter-factual of p w1 (y) (i) = wa(y) (1)

e C(F): wy and w; coincide on VY N [z1;7;_1] and on extensions of p (future), i
Yy € VYN [y 7_1]. Vi extension of p w;(y)(p) = wa(y) (1)

The case of M(S, F') maps can be simplified by asking that for any x; € V and any
two valuations wy,wy: (VY — Strat) that coincide on variables (zy)y;, it holds that
O(wy)(x;) = 0(ws)(z;). The semantics of Chapter |1 then corresponds to the existence of
a M(S, F) map.

The framework may seem technical but is rather intuitive when referring to Figure 5.4l
By definition, a M(S,0) or M(0, F') map will also be of type M (S, F') and a cardinality
argument suffices to show that these inclusions are strictf]|

Example 5.2. A M(S,F) map 0 for a formula Vx,.3xoVes.3xy. ¢ is a function that
maps pairs of strategies (for universally-quantified variables x1 and x3) to pairs of strate-
gies (for existentially-quantified variables xo and x4) and that respects the order of quan-
tifiers: here x4 is only allowed to depend on xq, but may depend on its entirety.

Example 5.3. A M(0,0) map 6 for Vr;.3x9.Varz.3z4. ¢ can be seen as a function making
local choices. The strategy stored in xo on a history m may only depend on the value of
x1 on m and its prefives. Similarly, the choice of x4 on ™ may only depend on the values
of xr1 and x3 on 7 and its prefizes.

5.2.2 Satisfaction relations

We can then define four satisfaction relations (="*))acip sy, 0eqo,ry using the concept
of maps. First, consider a map 6 and a function w: (VY — Strat). The image 0(w)
of § by w defines a valuation. In the following, when writing f=g(.), we simply mean
the satisfaction relation (}=,) of Chapter 1| on valuation #(w). To define the four new
satisfaction relations, we treat the quantifications as blocks and given a (closed) SL[BG]

formula (szz)zgl 5(6j§0j)].§n7 we set

30 € M(#,Q)
g,q ):M(*’Q) (Qizi)i<i f(ﬁj%’)jgn < Vw: (V¥ = Strat)
G,q ):B(w) g(ﬂjgpj%gn

For a fixed game G and a SL[BG]| formula ¢ := (Q;x;)i< g(ﬁjgoj) <y & M(#,Q) map
0 relative to (Q;z;):<; for some given parameters #, Q is called a M(Q Q) witness of ¢

3Equivalently, one can build a M(S, F') map that is not M(S,0).
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holding true on G whenever
Yw: (Vv — Strat) g7 q ):g(w) 6(5]'@]‘)]571

The satisfaction relation =*(5) then redefines the satisfaction relation = of Chap-
ter [1/in terms of maps. This equivalence between M ) and = corresponds to the work
done by Mogavero, Murano, Perelli and Vardi in [39] (though we formalise it slightly dif-
ferently).

Remark 5.4. It is important to notice that only the quantifier operators have multiple
possible semantics. The semantics of the assignments, of the boolean and of temporal
operators are unchanged.

5.2.3 Can a formula and its syntactic negation both hold on a
game 7

Notations. We write Q,; ==V if Q; = 3 and Q; =3 if Q; = V. Given a SL[BG] formula
o= (sz'L)zgl f(ﬁj@j)jgn; we then define —¢ := (szz)zgl ﬁf(ﬁj%‘)jén'

The use of maps to define the four relations (E"®*9) with & € {0, S} and O €
{0, F'}) allows us to properly monitor the different influences. There is however a draw-
back: consider a SL[BG] formula ¢ = (Q;z;)i<i€(5;%;)j<n and two parameters #, O re-
spectively in {(), S} and {0, F'}; from the definition, nothing prevents ¢ and —¢ to both
hold on a game. Indeed, there may well be two M(#, Q) maps 6 relative to (Q;z;)i<
and @ relative to (Q;7;)i<; such that

Vw: (Vv - Strat) g.q }:9(1”) g(ﬁjgoj)jgn
Yw: (Va — Strat) g,q Fé(w) ﬁf(ﬁj%)jgn
The theorem below shows that this cannot happen.

Theorem 5.5. For any formula ¢ in SL[BG], any game G, any initial state ¢;,; and any
two parameters #, D respectively in {0, S} and {0, F'}, it holds that

G, Gini )ZM("Q?) o = G, i FAM(Q,Q?) —

Proof. Consider the original satisfaction relation = defined in Chapter . By definition
of the — operator, if G, gini = ¢ holds, then G, gin; & —¢. As said before, = corresponds
to EMSF) and therefore

G, Qini ):M(S’F) o = G, Gin %M(S’F) ) (5.1)

Toward a contradiction, assume that Theorem does not hold. There must exist two
parameters # € {0, S} and © € {0, F'} such that

G, Gini V) 6 and G, g EM®) g (5.2)
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Figure 5.5: The idea behind Theorem for ¢ := dxy Vao.dx3.Vay. §(ﬁjg0j)

jsn’

Now, a M(#, Q) map can be seen as a M(S, F') map, hence

G, Qini ):M("@) ¢ and G, Qi ):M(Q,@) -
4 ]
g7 Gini ):M(S’F) gb and g’ Qini ):M(S,F) _‘¢

The last line is in contradiction with Equation (5.1)), therefore Equation (5.2)) must be
false and Theorem [.5] must hold. O

There is another way, more intuitive, to understand Theorem [5.5] Consider a formula
¢ = (Qiz;)i< §(ﬁjgpj)j<n and suppose that both G, ¢ini EM*Y) ¢ and G, gin; MY

—¢. Then there are two M(#, Q) maps ¢ and 0 relative respectively to (Qz;)i<; and
(Qix:)i<; Witnessing respectively that G, gii EM*Y) ¢ and G, gini EM*Y) =9, ie.

Vw: (VY — Strat) G, q Faw) §(ﬁj¢j)j§n
and Vvw: (V7 — Strat) G, q ):é(m) _‘g(ﬁj%‘)

Jj<n

We can then confront 6 and 0 to get a valuation y of domain dom(y) = {z; | i < I}
such that 0(xpv) = x and 6(x|y2) = x. This means that x must satisfy both 5(5jg0j)j§n
and ﬁf(ﬂjgpj)ﬂn, this is impossible (Remark . An intuition of this can be found
in Figure [5.5] This idea of confronting maps for a formula and its negation will be

particularly interesting in later chapters.

5.2.4 Can a formula and its negation both fail to hold on a game ?

One can also wonder if it is possible for neither a formula nor its negation to hold on a
game. The correspondence between = and =M gives us the following lemma.

Lemma 5.6. For any formula ¢ in SL[BG], any game G and any initial state G, it
holds that

G, Qini %M(S’F) o = G, n ):M(S’F) ¢
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D2 D1 D2 P1 0
Figure 5.6: The games of Lemma on the left and of Lemma on the right.

1

The situation is however more complex for the other three relations, as illustrated by
the two lemmas below.

Lemma 5.7. There ezists a formula ¢ in SL[BG], a game G and an initial state g;,; such
that for any © € {0, F'}, it holds that

Gy Gini MO 6 and G, s MO -0

Proof. Fix a parameter Q € {0, F'}. Consider the formula below and the one-player game
on the left of Figure [5.6]

assign(( ), x). Fp, < assign(C ) ,y). Fpy
¢ :=Vrdy <A
assign(C ) ,y). FB

We start by proving that G, gin; M) ¢. Trivially, the strategy y(gi,;) must play to
B for ¢ to be satisfied. Now, if z(g;n;) plays to A, the strategy y needs side dependencies
of £(gini-A) to play adequately on ¢;,;. B, and this dependency is not allowed in M ((), Q)
maps.

On the other hand, G, g EM®Y) —¢. Indeed, whatever the choice of z we can
find a strategy y such that ¢ holds. So whatever the M(0, Q) map 6 for —¢, there will
always exist a function @ such that 6(w) fails to satisfy the conjunction of equivalences
of goals. O

Lemma 5.8. There ezists a formula ¢ in SL[BG], a game G and an initial state q;y; such
that for any & € {0, S}, it holds

G, Gini V™D 6 and G, gini D g

Sketch of proof. The proof works in a fashion similar to the one of Lemma [5.7], this time
using the game on the right of Figure [5.6| and the formula below.

¢ = Vax.Jy. (assign(C ), x). Fp; < assign(C ) ,y). Fpo)
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This situation (Where If a formula fails to hold on a
neither a formula nor M(S, ) game, its negation must hold.
its negation hold) occurs
whenever an existential
strategy can make a lucky
guess in order to success-
fully satisfy the formula
but lacks some dependen-
cies in order to ensure
success.

M(S, 0) M(O, F)

Both a formula and its negation

M(0,0) can fail to hold on the same game.

5.2.5 What do these relations represent 7

The previous section raises an obvious question: are the relations poorly defined 7 We
recall that

30 € M(#,Q)
G.q EM* (Qiri)i<i f(ﬁj%’)jgn & Vw: (V7 - Strat)
G,q Fow) f(ﬁj%’)jgn

This definition entails two important things. The first one is obvious, the existentially
quantified strategies are allowed the dependencies given by the parameters & and Q.
Second, the universally quantified strategies are allowed a complete knowledge of the
map through the universal quantification over w. Indeed, consider a quantification block
Vx; dxo. In the satisfaction relation, the universal quantification over the functions of
the form (Hist — Act){‘”l} creates an omniscience of x; about the way xo will answer z;
choices. In other words, xz; has knowledge that “If x; plays such that..., then xy will
play such that...”. Note however that xs still depends on z;.

In this chapter and the followings, it will be important not to overinterpret what a
formula holding onto a game means for a given relation. For example, “G, g;n; ):M(@’F )
(Qizi)i<i€(Bj;)j<n” states that there exists a behaviour for the existentially quantified
strategies of (Q;z;);<; that uses only (local and) future dependencies and that satisfies
£(Bj¢j)j<n no matter what the universally quantified strategies play. On the other hand,
“G, Qini =MOF) (@xi)igpg(ﬁj%)jgn” does not means that the universally quantified
strategies of (Q;z;);<; have an (omniscient) answer for all M((), F') behaviour of the
existentially strategies. It states the existence of a M((), F') behaviour for the universally
quantified strategies of (Q;z;)i<; to avoid £(5;¢;) <n against all (omniscient) behaviour
of the existentially quantified strategy of (Q;z;)i<;. The syntactic negation of a formula
reverses the roles of the quantifiers but also the knowledge associated with them. This
implies that the syntactic and semantic negations differ and gives us results such as the
ones of Section £.2.4

To cope with the possibility for neither a formula nor its syntactic negation to hold,
it is important to understand that inputs are two dimensional. The first dimension is the
quantification block while the second is the set of dependency parameters (0, S, F'). What
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a negation means is therefore ambiguous: should we consider negation of the quantifiers,
negation of the dependencies or negation of both? We opt for the first option. More
precisely, we choose to give the universally quantified strategies the knowledge of the
map to echo the implicit universal quantification in ATL*. This choice is reminiscent
of the (usually implicit) omniscience of the environment in worst-case analysis of open-
systems. The framework is adapted to our goal, a worst-case verification of multi-agents
systems, but also incomplete. Other approaches are possible; for example, we could have
add other parameters to handle the dependencies of the universal strategies. In such a
framework, the negation would be on both the quantifiers and the parameters.

5.3 Narrowing SL[BG]

The subject of dependencies was studied in [40, 41]; the authors showed that side and
future dependencies can be removed from SL[BG| formulas based on conjunctions and
disjunctions of goals. They however forgot to take into account the lack of knowledge
that strategies have on prefixes of the current historyﬁ As we will see later on, this
impacts significantly the results. The ideas and ways of restricting SL[BG]b however
look promising. They introduced four fragments of SL[BG] by restricting the boolean
combination of goals after the quantifiers block.

e SL[1G], introduced in [38], restrict SL[BG] to a unique goal. (The flat fragment)
SL[lG]b is defined from the grammar of SL[BG]b by skipping the £ line. More pre-
cisely, &’s type sub-formulas must avoid any boolean operator, i.e. must be of form

Eu=0.
Sl_[lG]b S¢ = Jr.¢g|Vr.o|€
¢ = 8
[ = assign(A,x). B¢
p = 20|V | XpleUp|p

e SL[CG], introduced in [40], is the fragment where only conjunctions of goals are
allowed. Formally, (the flat fragment) SL[CG]’ is defined from the grammar of
SL[BG]b with the restriction below on the £’s type sub-formulas £ := & A€ | B.

e Similarly, SL[DG] only allows disjunctions of goals, i.e. £ i==€V E | B.

e SL[CG] and SL[DG] have been further extended into SL[AG] [41], where limited
alternation of goals are allowed. Formally, (the flat fragment of) this logic is defined

4More precisely, a strategy = on a history p does not have knowledge of what strategies quantified
after = played on prefixes of p. This implies that z(p) does not have knowledge of which goals are still
active on p and which goals have deviated on other histories.
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as follows:

SLIAGI 3 ¢ == Ju.¢ | Voo | €
§ n=ENBIEVEIB
B = assign(A,x). B |
p = ploVe | XelpUep|p

Notice that the formula (that we recall below) used to characterise qualitative Nash
equilibrium in Section is not (syntactically) in SL[AG]. Indeed, its boolean combi-
nation of goals is a conjunctions of implication (i.e. a conjunctions of disjunctions) and
therefore cannot be expressed linearly, as required in SL[AG].

Az, xn YY1, Y /\ assign(A;, ;)4 (assign(Ai, y;)i = assign(A;, xi)%),

1<i<n

5.4 Needed dependencies

As exposed in the introduction of this chapter, there are unnatural and unexpected
dependencies between strategies in the same quantifier block of a SL[BG] formula. In
this section, we study the cases where certain dependencies are needed in order to satisfy
SL[BG] formulas. For this, we consider the different logics exposed in Section and
prove that the four satisfaction relations are distinct from one another with respect to
these logics. We will also see later cases where we can suppress some of the dependencies.

5.4.1 Future dependencies

We start by showing that some formulas require future dependencies to be satisfied. The
condition for them to appear is rather thin as even the most simple formulas have them.

Lemma 5.9. There exist a formula ¢ € SL[DG], a turn-based game G and one of its
states @;n; such that

® G, Gini %M(@’w) ¢ and G, QGini |:M((Z),F) o
® G, Gini %M(Sﬂ) ¢ and G, qin; =M ¢
Proof. Take the game of Figure on two agents and [_], and the following formula
assign(C ) ,y; [0, 24). Fpy
¢ :=Vy.Irxa VgV
aSSign( ,y;l:‘,fljB). sz

First, note that by construction of ¢ and G, no side dependency is possible. Indeed,
only the variable x4 is existentially quantified and may have side dependencies. x4 is
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however only relevant on the state ¢;,;, and due to the acyclic nature of G, ¢;,; can only
appear at the root of a history. At the root there is no possible counter-factual play and
therefore no side dependency.

Take & € {0, S}, we start by proving G, ¢ EM®) ¢. By definition of M(#, F), x4
has knowledge of what y would play on suffixes after ¢;,;. So, if y goes from a to p; then
x4 goes from ¢;,; to a and the first goal is satisfied, making ¢ hold. If y goes from a to
pe and from b to py, x4 goes from ¢;,; to b and the first goal is satisfied. There remains
the last case where y goes from both a and b to py, then no matter the universal choice
of xp, the second goal will be satisfied and ¢ will hold true (we can take any choice for
I‘A) .

Next in order is to prove that G, gini =M ®? ¢. As no future dependency is permitted,
x4 does not have any knowledge of y choices. If x4 decides to play from ¢;,; to a, then
for y going from a to p, and from b to p; and xp going to b, neither objective will be
satisfied; if x4 decides to play from ¢;,; to b then for y going from a to p; and from b to
p2 and zp going to a, again neither objective will be satisfied. So the choice of 4 on g;p;

needs knowledge of what y plays on suffixes after ¢i,; and G, gin; =M ®? 6. O
b — D2 b — D2
X X
a — P1 a — D1
(a) A turn-based game with two agents. (b) Another turn-based game but with

three agents.

Figure 5.7: Different games used in Lemmas and

Lemma 5.10. There exist a formula ¢ € SL[CG], a turn based game G and one of its
states q;n; such that

i gannz l?éM(Sﬂ) gb and gannz ’:M(S,F) ¢
L g)Q’an %M(@,F) ¢ and g?Qan }:M(S,F) ¢

Proof. Consider the game on Figure with three agents .l and , and the
SL[CG] formula

aSSign( 7y;D7$A; 7Z)‘ Fpl
¢ :=Vy.dz.dzs.dxp ¢ A

aSSign( 7y;DaxB; 7Z>' Fp2

We start by proving that G, gini EM) ¢. Note that as both future and side depen-
dencies are allowed, both x4 and zg but also z may depend on the choices of y(g;n;.a). If
Y(Gini-a) = p1 then we set x4 (¢ini) = a, 5(qini) = b and z(qn;.b) := pa2, in the end both
goals are satisfied. On the other hand if y(gin;.a) = pa, we set £a(qini) := b, Tp(Gini) := a



124

P1 <~ (0,0,%) (x,%,1) — D1

0,1,
i ) e
(]‘70’*)

~
p2 - (Lla*) (*,*,0) — p2
Figure 5.8: A concurrent game G where Agt := {{Al ,[B/,( ) } and Act = {0, 1}.

and z(qn;.b) := p1. Again both goals are satisfied. From this we can build a M(S, F)
witness of G, gin; EM3) ¢,

We then prove that G, gin; MY ¢. This time, 24 and 2 cannot depend on the
value of y(gin;.a); only z can. First if x4(¢imi) = (i), one of the goals will not
be satisfied (no matter y and z). Now, if 24(¢ini) = a and zp(¢y;) = b then having
Y(Gini-a) = p2 means that the first goal does not hold. Finally, if z4(¢mn;) = b and
x5(Gini) = a, for y(qin;.a) = p1, the second goal will not hold. This ensures that x4 and
xp need knowledge for ¢;,; on what y plays on ¢;,;.a and therefore G, g;p; %M(S’@) ¢ and
the first point of Lemma holds.

We show now that G, ¢;n; %M(@’F) ¢. Here, x4 and xp may depend on y but z may
not. Assuming z(¢;,;.b) = py then if y(q;n;.a) = p1, the second goal cannot hold no matter
x4 and xg. On the contrary, if z(gi,;.b) = po then with y(gin.a) = p2, we get that the
first goal cannot hold. Hence, side dependencies are mandatory and G, g;p; %M(@’F) o.
Combining this with G, gi,; EMSF) ¢ (proved for the first point) gives us the second
point of Lemma [5.10] O

Lemma 5.11. There exist a formula ¢ € SL[CG], a concurrent game G and one of its
states Qi such that G, qini MY ¢ and G, qips EMOF) 6.

Proof. Consider the game on Figure [5.8with three agents [A, [B and (), and two actions
1 and 0. Agents and play concurrently in state g¢;,; while agent controls the
circle state. Consider also the SL[CG] formula

aSSign( 7$A;7xlB; 7y) Fpl
¢ =Yy 3zt 328 328 { A
aSSign( 7xA;7$§; ay) Fp?

We start by proving that G, g, EM®F) ¢. As future dependencies are allowed,
knowledge of y(gii.a) can be assumed when building x4, 28, 8. Tf y(qini.a) = 1, then
we set 2 (qini) = 1, 22(gins) = 0 and 22(g;n;) = 1. The first goal goes to a and p;
while the second goes to py thus making the conjunction holds. If y(gi.i.a) = 0, we set
22(Gins) := 0, 22 (gini) := 0 and 28 (g;n;) := 1. The first goal goes to p; and the second to
a and po. Whatever the choice made by y, we have a solution hence we have a M((), F)
witness that G, g, =M ¢,

It remains to show that G, gy EM@Y 6. We proceed by contradiction. Assume
there is a M(0,®) map A witnessing ¢ on G. By nature of A, A(z4) is independent of
y choices. If 2(gin;) = 1 then with y(gin.a) = 0 there is no way to ensure the first goal.
Similarly, if 24(gin;) = 0 then with y(gini.a) = 1 we cannot ensure the second goal. So
the hypothesis must be false and G, gin; @9 ¢. n
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5.4.2 Side dependencies

We then tackle the cases where side dependencies are needed.

Lemma 5.12. There exist a formula ¢ € SL[DG], a turn-based game G and one of its
states @;n; such that

e G, Gini MO ¢ and G, gins M0 ¢
® G, Gini l#M(@’F) ¢ and G, Gini FM(S’F) ¢

Proof. Consider the game of Figure [5.7b| and the formula

assign(l], z4; 0,y L 2)F py
¢ :=Vy.dzVraVrp ¢V

assign(l], 25,y 0 L 2)F o

First, note that in Figure and ¢ there can be no future dependencies; hence proving
the first point will immediately imply the second. We begin by showing that G, g;,; =59
¢. Side dependencies are allowed, hence z may depend on the choice of y. If y(gini-a) = p1,
then we set z(qini.b) := p1; whatever the choice of x4, the first goal holds. On the
other hand, if y(gini-a) = p2, we set z(qimi-b) := po and for any choice of xp, the sec-
ond goal holds. We can then combine these two cases to build a M (S, () witness that
g; Qini }:M(Sﬂ) ¢

It remains to prove that G, ¢;,; %M(MD ¢. In the present case, z cannot depend on the
choices of y. Assume z(gin;.b) = p1 then for y(gini-a) = p2, Ta(gini) = a and xp(gin;) = b,
neither of the objectives holds. Similarly, if z(gin;.0) = p2 then with y(gini.a) = p1,
Ta(gini) = b and xp(gini) = a, neither of the objectives holds. This means that z needs
knowledge of y choices and that G, gin; M@0 6. O

5.5 Removable dependencies

5.5.1 M(S,0) and M((),D) coincide on SL[CG]

Lemma shows that there are some SL[DG] formulas on which adequate behaviours
must rely on side dependencies. The case of SL[CG] is however different.

Theorem 5.13. For any concurrent game G, any state ¢in; of G and any formula ¢ €
SL[CG],
g7 Gini ):M(S,Q)) gb Rt g7 Qini ):M(@@) ¢

Proof. Fix any game G, any state ¢;,; of G and any SL[CG] formula ¢ of the form

¢ = (Qizi)i<t |\ Be;

Jjsn
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with @;z; a quantification, (; an assignment and ¢; an LTL formula. Assuming that
G, qins MO 6, there exists A a M(S, () witness of ¢ holding on G from g, i.e.

Y @ (Histg = Act)” G, qini Faw) [\ Bivs (5.3)

Jj<n

We create a M(0, () map A’ and prove it is a M((, ) witness of ¢ on G. For this,
choose any fixed function wy : (Histg — Act)¥’. Given another function w’ : (Histg —
Act)VV and a history p, we write w; for the function equal to w’ on p and its prefixes and
equal to wy elsewhere (i.e on extensions and counter-factual histories of p). We then set,
for any variable z; € V,

A'(w')(z5)(p) = Alwp)(x;)(p)

A’ is indeed a M(0,)) map: on a history p, we fixed universal choices on counter-
factual histories of p to be “as in” wy before using A (on input made of w', z;, p, the
values of w’ on counter-factual play do not influence the definition of wy) hence we do
not import the side dependencies from A.

It remains to prove that A’ is a witness for G, g =M@Y ¢. Toward a contra-
diction, assume this is not the case. Then there exists some w; : (Histg — Act)”’
such that G, Gini Far(uw)) /\an Bjpj. In particular there is some j, € [1,...n| such
that G, Gini FEarw) Bjowjo- Let mj = out(B),(A'(w1)), Gini) be the outcome obtained
when applying the assignments of ;, to the valuation A’(w;). We build another func-
tion w, : (Hists — Act)”” equal to w; (for any variable) on any prefix of 7, and
equal to wg on any other history. By construction, for any prefix 7r§’0 of 7j, we have
that A'(w;)(z;)(7}) = A(wa)(x;)(7},) hence 7, is also equal to out(8;,(A(w2)), Gini),
the outcome obtained when applying (3, on A(ws). This immediately implies that
G, Gini FEn(ws) Bio®io thus G, qini FEAws) /\an Bp; which is a contradiction with For-
mula (5.3). So, A’ is a M((),() witness of ¢ on G and therefore G, gini EM®) ¢ and
Theorem [5.13 holds. O

5.5.2 The case of SL[1G]

SL[1G] formulas are in many ways similar to ATL", the main differences are the ability
to share strategies among multiple agents and having multiple quantifier alternations (as
opposed to only one in ATL*). The ability to share strategies does not amount to much:
we can always merge agents sharing a common strategy in a new game, slightly modify
the formula to suppress the strategy-sharing aspects, then solve the new game with the
modified formula in order to deduce whether the original formula holds on the original
gamd’| The expressive powers of both logics are closely related though not equal, and
allowing more than one quantifier alternation does not seem to impact the complexity
results (though there may be differences in the refined complexity). For example, SL[1G]

5The fact that we only have one goal is essential as it means that within a formula, an agent can only
have one strategy (or more precisely only one strategy that is not overridden by some other strategy).
With multiple goals, two agents may share strategies within one goal but not within the other, then the
correctness of the reduction collapses.
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satisfiability was proven 2-EXPTIME-complete in [38], the same as ATL" satisfiability
(relatively to the = satisfaction relation, or equivalently —see Section the [=MSF)
satisfaction relation).

We prove that, as foxﬁ ATL", to build a correct behaviour for a SL[1G] formula we do
not need any side or future information. Due to the similar expressive power of SL[1G]
and ATL", this is not surprising. For the theorem below, we could have adapted to
the model checking problem the techniques developed in [38] and used to solve SL[1G]
satisfiability. We however chose to develop a new proof: the method presented below will
become useful later on.

Theorem 5.14. For any SL[1G] formula ¢, any concurrent game G and any state gi,; of
g,
v‘ < {Q), S} vO S {®7F} ngznz }:M(W,ﬂ) ¢ = g,qu }:M("O) gb

Proof. Consider a game G, one of its state ¢;,,; and let ¢ = (Q;z;)i<; Be be a SL[1G]
formula where @); is a quantification and Sy forms a goal with £ a total assignment and
@ an LTL objective. We prove the following equivalence:

G, Gini ):M(S’F) o & G G }:M(M) 0] (5.4)

The other cases will be inferred from it: equivalences involving other kind of maps can
all be deduced from Equivalence simply by seeing a M(#,Q) map as a M(S, F)
map, then applying the equivalences above. For the same reason, we have the right-to-
left implication for free, hence to prove Theorem it remains to show the left-to-right
implication of Equivalence .

Specifying a turn-based parity game H

We start by defining some specific turn-based arenas that in some way will “flatten” the
game and formula. Figure illustrates the construction. First, relatively to G and ¢
we define the following turn-based finite tree-like arena, which we call cluster:

e there are two players P35 and F,.

e the set of states is Syuster := {Mm € Act® | 0 < |m| < [}, thereby defining a tree of
depth [ + 1 with directions Act. A state m in Sguseer With |m| < [ belongs to Pj if
and only if Qn+1 = 3. To whom the states with |m| = [ belong does not matter.

e there is a transition from each m of size strictly less than [ to all m-a for all a € Act.
In particular, the empty word € € S.user is the starting node of the cluster, and it
has no incoming transitions, while all words of length [ have no outgoing transitions;

A leaf in such a cluster represents a move vector of domain V = {z; | 1 <i <[}: the
leaf m represents the move vector m where m(z;) = m(i).

6There exists no formal proof of it but it can be derived from the standard algorithm for ATL* model
checking.
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¢ = dxy. Vao. dus. Be
(O: 3 quantification and [: V quantification
Two actions a and b

m Transition

oRoNORO
A original

aaa aab aba abb baa bab bba bbb game

cluster

Figure 5.9: On the left: representation of a cluster. On the right: the overall shape of H.

We denote by D a deterministic parity automaton over 27 associated with ¢. We
also write d;,; for the initial state of D. We let succ(d,q) be the function associating
with each d € D its successor upon reading the labelling labels(q) where ¢ is a state of G.
Using the notion of clusters, we define a turn-based parity game H as follows:

e the players are the same as before: P5, Py.

e for each state ¢ of G and each state d of D, H contains a copy of a cluster which
we call the (¢, d) cluster. For any m € Act” with |m| <[, we refer to the state m of
the (g, d) cluster as the (¢, d, m) state.

e the transitions in H are of two types:

— internal transitions in the clusters are preserved;

— consider a state (¢, d, m) where m is a leaf. If there exists a state ¢’ such that
¢ = A(q,mg) where mg : Agt — Act is the move vector over Agt defined by
mg(A) = m(i—1) where x; = B(A) (i.e. applying the choices of m according to
B in G leads from ¢ to ¢'), then we add a transition from (¢,d, m) to (¢, d’, ¢)
where d’ = succ(d, ¢').

e the set of priorities are the same as in D and each (gq,d, m) state has the same
priority as d.

Correspondence between paths in G and in H

There is not a clear one-to-one correspondence between the histories in H and the ones in
G, however there exists nevertheless some degree of connection. We introduce the notion
of lanes before going into the details.

Definition 5.15. A lane in G is a tuple (p,u,i,t) made of a history p := (¢;)j<a (for
some integer a); a function u : V x Pref., — Act; an integer i € [0;1]; a function
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t: [xy; 2] = Act (with the convention that t =0 if i = 0); and such that

where m; 1V — Act is the move vector over V

Vi<a T(g,B(m;)) = qin { with m;(z) = u(z)(p<;)

We can build a one-to-one application HtoG), between histories in H and lanes in
G. On a history 7 in H, of shape

™= Hj<a<H0§i§l<q]‘7 dj, mj,i))-Hogigb(Qaa da, ma,i)
of length a.(l + 1) + b with 0 < b < [+ 1, we define HtoGp,(m) by
HtoG () := ((¢j)j<ar U, b, 1)

with w:V xPref., — Act t:VNz;z) — Act
Va' < a (Ii7 (Qj)jga’) = My, Vi < b Z; = Mg

The application HtoGpy, is clearly injective (two different histories will correspond to two
different lanes), but also surjective. To prove it, we build the reciprocal function GtoH,,
from a lane ((¢;);<a, u,%,t), we set GtoHpn((4;) j<a, U, @, t) :== m where 7 is a history in H
of length a.(l + 1) + |dom(t)| + 1 of shape

7= Ijca (Mozizi (45, dj, w(wi, (4)57<5)) ) Moizo (das da, 123, (5)52a))

where d; is the vector of states reachable through (g;/),<;

Because of the coherence condition imposed on lanes (see their definition), we get
that the transition between clusters of GtoHp,((q;)j<a, u,,t) are valid relatively to the
transition table of H. GtoHp,((¢;);<as U, %, t) is therefore a valid history in H and GtoH .,
is well defined. From the definitions, one can easily check that

Vm € Histy GtOHpth(HtOGpth(ﬂ')) =T
and deduce that GtoH,, is the inverse function of HtoG,,; therefore

Proposition 5.16. The application HtoGpy, s a bijection between lanes of G and histo-
ries in H, and GtoH,y, is its inverse function.

Extending the correspondence to strategies

We can use the HtoG), correspondence to describe another correspondence HtoG be-
tween positional strategies for P3 in H and M((, ) maps in G. We recall that a map
0 is a function (Hist; — Act)¥” — (Histg — Act)V taking three inputs: a function
w : (Histg — Act)””, a variable z; and a history m. We also recall that if Q; =V, then
O(w)(x;)(p) = w(z;)(p), hence we will only define HtoG for the existentially quantified
variables. Moreover, by the nature of M((,0) maps (see Section [5.2)), if we consider a
variable x; for the second argument of 6, the first entry of # can be simplified to a function
of type w : Pref<, x V¥ N [z1; x;] — Act. This simplifies the definition of HtoG.
Formally, the application HtoG takes as input a positional strategy o for player P5 in
H and returns a M(),0) map. The value of HtoG(8)(w)(x;)(r) is defined by induction:
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e initial step (empty history):

— initial step (z; assuming z; € V3): We set HtoG(8)(w)(z1)(g) = d(e).

— induction step (7; assuming z; € V7): As the history and the variable
are fixed, the only variable part of the input for the map we are building is
a function w : {e} x VY N [zy;2,1]) — Act. From z; and w we create a

function t;,, : [z1;7;_1] — Act that associates to x € V¥ the action w(z)(e)

and to x € V7 the action §(w)(x)(g). We can then create the lane lane;,, =
(6,0, —1,;,) and define

HtoG(0)(w)(x;)(e) := 6(GtoHpn(lane; )

e induction step (non empty history): we work on a history 7 assuming we have
define HtoG(§) on prefixes of m. Like before, the history and the variable are fixed
and the only changing part of the input is a function w of type Pref, x (V' N
[Il; ZL‘Z‘_1D — Act.

— initial step (z; assuming z; € V3): We set HtoG(8)(w)(z1)(m) = 6(q)
where q = (Ist(7), d., ) is the state of H with d, the state reached by = in D
(the deterministic parity automaton associated with the goal of ¢).

— induction step (z; assuming z; € V7): From z; and w, we create a function
tiw : VN [x1;21] — Act where t;,, associate to z € V¥ the action w(z) and
to x € V7 the action O(w)(z)(r). We can then create the lane lane;,, =
(m,0,i —1,t;,,) and define

HtoG(0)(w)(x;)(m) := d(GtoHu(lane; ,,))

Because § is positional, feeding the empty function in lane;,, for the second
component of the input is without consequence. Indeed, the second component
of lane; ,, in GtoH,(lane;,,) only describes the actions played on 7 until the
last state and these actions have no influences (because § is positional).

At the end of the induction, we get a map that by construction has no side nor future
dependency. Figure [5.10)]illustrates the construction.
Concluding the proof

The winner of the parity game H gives us informations about G.

Proposition 5.17. Assume that Ps is winning in H and let § be a positional winning
strategy, then the M(0,0) map HtoG(8) is a witness that G, gm; =0 6.

Proof. Assume that P5 is winning in H. Toward a contradiction, assume further that
HtoG(6) is not a witness of G, i =M@Y ¢; then

There is wp : (Histg — Act)”” such that G, gin; ?{/[t(o%%)(wo) By (5.5)
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Part of G

W

bba

\b
b/ \bb
A

baa bab bba bbb
b The input is (w, x3, Gini-g2.q3) with
Ve w : (Histg — Act)Y” such that
ba bb w(zz)(e) = b
/\ \ w(@)(%m’-%) = b
baa  bab bba bbb w(22)(Gini-q2-q3) = a

From HtoG(J) on prefixes
of Gini, g2.q3, we build a lane

\ lane = (Qini-q2-G3, U, 2,t)

b
SN HtoG(6)(w)(x3)(qini-q2-93) = 6(GtoH ,(lane))

A

‘aaa  qab/ aba abb baa bab bba bbb

d(GtoHp,(lane))

On H

On g

Figure 5.10: From H to G on the formula Jz1. Vo, Jxs. assign(Ay, x1; Ag, x9; A3, 3) 0.

We use wq to build a strategy 6 for P, in #. Given a history p in H of the form

p

Hj<a(H0§i§l(q]'7 dj, mj,i)) ~H0§i§b(Qaa g, ma,i)

we define m = I1;<,(q;) and set 0(p) := wo(zp11)(n).

Write 1 = (g;)jen for the outcome of S(HtoG(d)(wp)) in G. Then, by construction
of 9, the outcome of § and § in H will pass through the clusters (gj,d;)jen, with d; the
state reached by (g;);<; in the automaton D associated with the LTL formula . Now,
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because of Formula (5.5), we get that n does not satisfy ¢ and therefore the outcome of
0 and ¢ does not satisfy the parity condition. This is in contradiction with § being the
winning strategy of P5. In the end, HtoG(8) must be a witness that G, g, =100 ¢, O

We are now ready to prove the left-to-right implication of Equation (5.4), that we
recall below

G, Gini ):M(S’F) o & G G ):M(w’@) o) ()

We assume that G, g EF) ¢. Turn-based parity games are positionally deter-
mined, meaning that one of the players is winning and that this player has a positional
winning strategy. First of two possibilities, P is winning. We then let § be his positional
winning strategy. By Proposition , HtoG(6) is a witness that G, ;i =M ¢ and
therefore the left-to-right implication of Equation (5.4)) must hold. Second possibility, Py
is winning. Then we do a similar reasoning with P; and —¢ as we did with P53 and ¢.
We get that G, g =MD =g, therefore G, gin; EMEF) —¢. Now combining this with
Theorem [5.5] we get a contradiction with the hypothesis G, gini =) ¢. Therefore Ry
cannot be winning and the left-to-right implication of Equation (5.4) must hold.

As said at the beginning of the proof, the right-to-left implication is given by definition
and from Equation (5.4) we deduce Theorem [5.14] O

Corollary 5.18. SL[IG] model checking is 2-EXPTIME-complete for any of the four
satisfaction relations (EM®) with & € {0, S} and © € {0, F}).

Proof. Given a formula ¢, we can build the parity game H in time 2270 for some
polynomial P. The game H has 927 o |G| states and 2904 indexes for some other
polynomial ). It can then be solved in time polynomial in the number of states and
exponential in the number of indexes [56] which gives us a 2-EXPTIME algorithm. [

5.6 Conclusion

In this chapter, we highlighted problems about dependencies in SL[BG], proposed a frame-
work to study them and presented a few results. The work developed in this chapter
draws similarities in spirit with the independence-friendly logic [35] and the dependence
logic [58] (two extensions of FO to handle dependency problems). The temporal aspects
of SL[BG] however pushed us toward a different framework.

As shown in Section future dependencies are needed even for simple SL[CG] or
SL[DG] formulas. The case of side dependencies is however different and we can remove
side dependencies when we forbid future ones with SL[CG] formulas. A compilation of
our results obtained so far can be found in Figure [5.11]



IZM(SEF )
# SL[CG] (lem [5.10) # SL[CG] (lem [5.10)
# SL[DG] (lem [5.9) # SL[DG] (lem [5.12)
= SL[1G] (thm [5.14) = SL[1G] (thm [5.14)
):M(S,VJ) ):M(Q),F)
\ # SL[CG] (lem|[5.11)*
= SL[CG] (thm [5.13) o
#SLIDG] (lem [.12) iy P N

\ / * : Only on concurrent games

):M(M) Unknown on turn-based games

Figure 5.11: The inclusion graph of the four satisfaction relations.

133



134



Chapter 6

Unordered prefix dependencies

As we have seen in the previous chapter, when we consider formulas outside SL[1G], we
can remove side dependencies in a single case and future dependencies are needed. The
proofs of Lemmas and (pages to leave us little hope to improve
our results: the quantifier block is simple (2 alternations at most), the goals are trivial
(reachability), the boolean combination is a simple disjunction of two elements and the
games are turn-based (with the exception of Lemma [5.11)).

Nonetheless, Theorem|[5.13| (stating that =39 and M9 are equivalent on SL[CG])
suggests that side dependencies are easier to remove than future ones. Moreover, in
Lemma (showing that =M9 and M@ are not equivalent on SL[DG]), there
exists a potential improvement. We recall the game and formula on Figure [6.1]

b —~ b2 aSSign(D y LA » Ys 7Z)Fp1
>< ¢ :=Vy.dzNVNr,Vrg. ¢V
a — N

assign(I7], x50, y; & L 2)F p2
Figure 6.1: The game and formula of Lemma ’s proof.

Consider a valuation x where the strategies d,, 9., 0, and d,, are assigned respectively
to the variables y, z, x4 and zp. In the proof, 0, must rely on the choices of d,(gini-a)
because it does not know which goal will reach ¢;,;.b. This incapacity for a strategy to
know which goal is active when making a choice is not without consequences. If we add
to 0, the information (through some sort of black box/oracle) about the choices of x4
and xp, the formula becomes true. In this case, this corresponds to a change in the
quantification order and we can rewrite the formula as

assign(l], 2400y, 2)F
Vy Ve, Veg.dz< VvV

aSSign<D » LB v Y5 7Z)Fp2

There are however cases where we could want to add this information but cannot
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rewrite the formula. For example take the game and formula of Figure [6.2] One can see
that

e the formula ¢ does not hold (for all four satisfaction relations =M |=MESF)
):M((Z),F) and ):M((Z),@))'

e the formula is still false for =59 when we add an (intuitive and informal) notion
of oracle giving to y the choices of z4(gin;) and xp(gini)-

e the modified formula with quantifiers Vz 4. V. Jy, where Jy is moved at the end of
the quantifier block, is however true for =59, This is due to y having knowledge
of ZA(Gini-a) and z(qin;-a).

(assign(l], 74; ) ,y)Xa
<~
b — D Lassign(C], 250 ,y)Xa
>< ¢ =JdyVe,Nep Vv
lal— P2 (assign(IT], 2450, y)F py
<~

\aSSign(D » LB >y)Fp2

\

Figure 6.2: A game and formula where we cannot reorder the quantifications

Rewriting the formula adds more information to y than what we want. The quantification
order does not take into account the temporality that a strategy has relatively to the game:
x4 and xp are not only interesting on ¢;,; but also on ¢;,;.a, and modifying the order of
the quantifiers means modifying the order on both ¢;,; and ¢;,;.a. Therefore, reordering
the quantifications is not a sufficient solution.

For a strategy o0 trying to make a choice on a history p, the information about which
goals are still active on p can be added by making available the actions played by all
the active strategies on prefixes of p. The present chapter explores this idea; for this
we extend the previous framework and find when we can remove the dependencies in a
similar fashion to the previous chapter.

6.1 Extending the current framework

We proceed by adding a new kind of influence: unordered prefidl It appears when a
strategy y on history 7w wishes to have information on the choices made on any strict
prefix of 7 by strategies quantified before y but also from strategies quantified after y.

l“Unordered prefix” as we add the knowledge of all strategies on all prefixes of the current history ,
no matter the order of the quantifications
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Remark 6.1. The knowledge of the actions played by all strategies on prefizes of the
current history m is equivalent to adding informations about which objectives are on m and
which ones have deviated from the expected behaviour. Indeed, consider a full valuation
x and a SL[BG] formula ¢. With the knowledge of X\prer.,, for each assignment 3 we can
check by a step by step procedure that 7 is a prefiz of out(B(x),7(1)). Note however that
what happens to the objectives that deviated is not known (see Figure .

Expected behaviour

Possible failure Cy

-~ -~

common to all components

Correction C3
Possible failure C1

Figure 6.3: The component C'5 has knowledge of C} and (), failures and acts accordingly.

In a way, unordered prefix dependencies make the timeline of the game more impor-
tant than the timeline of the quantifications: as we move through the game, knowledge
of previous steps must be available in their entirety (whatever the order of the quan-
tifications) to the system so it can make its choice. This adds up to side and future
dependencies.

We update the notion of maps presented in Section We reuse the notations g for
the block of quantifiers under consideration, V for the variables of p, V7 for the variables
of V universally quantified in o and V7 for the ones existentially quantified. We recall
that a p-map (or simply map when g is clear of context) is a function

6 : (Hist — Act)”” — (Hist — Act)” or equivalently 6 : (VY — Strat) — (V — Strat)

with 0(w)(z;)(p) = w(x;)(p) for any w : (Hist — Act)Y’, any universally quantified
variable z; € V¥ and any history p.

As we did in Section [5.2] we can forcibly remove some given dependencies by applying
restrictions on the maps. We reuse the four conditions C(Local), C((}), C(S) and C(F)
defined in Section and define an additional one C(P) for unordered prefix dependen-
cies.

e C(0): empty condition (always satisfied)

C(Local): wy and wy coincide on V¥ N [z1;2;_1] and on p, i.e.
Yy e V' [z 2] Ve < p o wi(y)(p) = wa(y) (1)

e C(S): wy and wy coincide on V¥ N [z1;2;_1] and on side histories of p (side), i.e.
Vy € VYN [21; 2;-1]. Vi counter-factual of p  wy(y) (1) = waly) (1)

e C(F): w; and w; coincide on VY N [z1;7;_1] and on extensions of p (future), i.e.
Yy € VYN [z 251]. Vi extension of p wy(y)(p) = wa(y) (1)
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Local
dependencies// \

/m\

Side

Future

dependencies

/@ = E\
Unordered

prefixes

1 O

ik

Figure 6.4: The four kinds of dependencies
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e C(P): O(wy) and O(wy) coincide on strict prefixes of p (unordered prefix), i.e.
Vi <p.VyeV Ow)y)(n) = 0(w)(y)(u)

We can redefine the type of maps of Section to which we add the parameter P to
signify the addition of unordered prefix dependencies. Formally a M(#,Q, P) map is a
map such that

Vp € Hist, Vz; € V C(Local) ANC(#) )
=0 i =0 i
Yy, wy (VV N Strat)} ( A C(Q?) /\C(P) (w1)(96 )(P) (wz)(I )(P)

To avoid confusion, we also rename the four maps (M(#, Q))acqo,sy,0eq0.73 of Sec-
tion by (M(W,9,0))acio,51,0¢c(0,7} to make explicit the lack of unordered prefix de-
pendencies.

The new condition to handle unordered prefix dependencies

Vi <p.VyeV 0(w)(y)(p) = 60(ws)(y)(u)

is a formal way to indicate the knowledge of what all strategies played on prefixes of p:
upon two entries wy, wo, the choices of an existentially quantified strategy x; can differ
between 6(w;)(x;)(p) and O(ws)(x;)(p) only if at some prefix p of p, 6(w;) and O(ws) give
two different outputs.

As we did in Section we define a new satisfaction relation per kind of map. Given
a closed formula (Q;z;);< 5(5J‘<Pj)j§n in SL[BG], we set

30 € M(#,Q0, &)
G, q EM®O® Q1)< f(ﬁj%‘)jgn = Vw: (V¥ — Straty,)
G.4q Fow) f(ﬁj%‘)jgn

A note on other frameworks

In Section [5.2.5] we explained why we chose to use maps. Another reason for maps
is that they naturally adapt to the addition of actions on the paths. This is not the
case of all frameworks; consider one where the universal and existential strategies are
treated one after the other (as in the original semantic presented in Chapter [1)). This
framework could not handle more than one quantifier alternation without running into
a paradox. Figure presents the problem: to define xs(gini.a) we need x1(gini-a.p), to
define x1(gin;.a.p) we need x4(gini.a) thus also x3(gin.a) and xo(gin;.a); we loop indefinitely.
This is due to the two timelines: game and formula. The framework therefore must follow
one of three options:

e the universal strategies are not treated equally to the existential ones.

e privilege the timeline of quantifications: in case of loop, suppress unordered prefix
dependencies

e privilege the timeline of the game: in case of loop, suppress side and future depen-
dencies.
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Figure 6.5: Why can’t both universal and existential strategies be treated equally when
making available all the actions.

Our framework (maps) follow the first choice: the universal strategies are all quantified
at the same time, as a bloc. In Figure [6.5] we ask for a map 6 that receive both z; and
x3 at the same time; the local dependency of x3 on x5 disappears thus breaking the loop.

6.2 The negation problem

6.2.1 Can a formula and its syntactic negation both hold on a

game 7
Side and future dependencies both follow the order of quan-
tifications and override the timeline of the game (omni-
science about the future); on the other hand unordered /-\
prefix dependencies follow the timeline of the game but @ @
override by definition the order of the quantifications (once / M \

again see Figure . This difference (about which timeline
to override) between side/future and unordered prefix in-
fluences is not without consequences. We find ourselves in Figure 6.6: A game G
a situation similar to the one described along Sections [5.2.4

and (pages and [120). We recall that the odd behaviour of the (syntactic) nega-
tion results from the two dimensions of the inputs (in the quantifier block and in the

dependency parameters).
Lemma 6.2. There exists a game G, a state q of G and a SL[BG] formula ¢ such that
G, Qini ):M(S’F’P) ¢ and G, Qini ’:M(S’F’P) —¢

Proof. Consider the turn-based game on Figure with two agents [ ] and ( ), and ¢
the SL[BG] formula below.

D1 D2 D3 P4

assign([], y1; 0, 21)F po = assign(l], yo; 0, 20)F py
(z) = Vxl.ElylElyg.Elxz A\
assign(D y 0, 2)Fps = assign(D Y2 xe)Fpy
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In the following, we regroup the four quantifications in the usual notation p. We also
write ¢ for the first implication and 5 for the second one. We first prove that

30 € M(S, F, P) Vw : (Histg = Act)”" G, qini Fow) U1 A 2 (6.1)

Consider a function w : (Histg — Act){®} as input. To build 6, we decompose by
cases based upon the choice of x; on the history ¢;n;.qo.

o If w(x1)(qini-q2) = po then both ¥ (¢ins) and yo(qin:) play to g while 29(gini-g2) plays
to p1. This ensures that the outcomes of {{ ) — z1;[[] — ytand {1 — x93 —
Y2} will respectively see py and py, ensuring G, gini Fo(w) Y1 A ¢2. Note that 3, and
y2 use future dependencies to gather knowledge of w(x1)(¢ini-q2)-

o If w(x1)(qGini-q2) = p3 then y1(qini) plays to qo, ya(qini) play to gz and x2(qini-q3)
plays to ps. The outcomes of { — a0 — i} and { — o —

Yo} will respectively see ps and p4, ensuring G, gini Fow) Y1 A ¥2. Beside future
dependencies from y; and yo on w(z1)(gini-g2), we also have a side dependency from

To ON w($1)(€lz‘m‘-Q2)-

o If w(x1)(¢ini-q2) = p1 then no matter what xo, y1, yo play, the outcome of { —
x1;[] — y1} will see neither py nor ps, ensuring G, ¢ini Fo@w) Y1 A ¥a.

We can then merge all three cases into a single M (S, F, ) map to ensure that (6.1])
holds.

It remains to show that, writing @ := Jxy. Yy;. Vyo. Vo,
30 € M(S, F, P) Vw : (Histg — Act){vr 222} G, Gini }:é(w) =)y V by (6.2)

As we are looking for a M (S, F, P) map, to decide the action of z1 on gini.q2 Or Gini-gs,
we may assume knowledge of what vy, y» played on ¢;,;. Again we proceed by cases.

o If yo plays to go then x1(gini-g2) = *1(¢ini-q3) := p3, this makes the outcome of
{C) — x;I] — y1} see p3 while the choices of y, ensure that {¢ ) — xo; ] — 4o}
will not see P4 thus g, Qini ):g(m) _\77Z11 V _\77Z12.
e Similarly, if y, plays to g3 then choosing x1(gini-g2) = 1(Gini-gs) = po ensures
G, Gini Faa) ~1 V .
Again, merging the cases into a single M(0,}, P) map we get that (6.2]) holds. O
In a sense, the first among {x;} and {z3,y1, 92} to declare its choices will lose. In the
spirit of Section [5.2.4] Lemma [6.2] shows that what we could expect to be the syntactic
negation does not correspond to the semantic negation. This discrepancy between a

formula and its negation raises an obvious question: for which formulas ¢ € SL[BG] can
we ensure that, whatever the game G,

G, Gini FM("Q") (Qﬂi)igl f(ﬁj%‘)jgn = G, qini %M(*’Q’*) (@lﬁ)zgz ﬁf(ﬁj@j)jgn
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where & € {0, S}, © e {0, F'} and & € {0, P}?

As we have seen in Section [5.2] this is already the case for M(0,0,0), M(0, F,0),
M(S,0,0) and M(S, F,()). The two lemmas and theorem below complete the answer.
We provide only a sketch of proof for Lemma [6.3| and move the proof of Lemma in

annex (page [153).

Lemma 6.3. There exists a game G, one of its states qin; and a SL[BG] formula ¢ such
that

G, Gini }:M(@’F’P) ) and G, Gini ):M(Q),F,P) —¢

Sketch of proof. The proof consists in taking the formula ¢ defined below and use it over
the game of Figure (page [123).

¢ = Vy. Jza. Vap. (assign(C),y; [0, 24). Fpy Vassign(C,y; [0, 25). Fp,)
Then one can easily build two witnesses to ensure that both G, ¢, %M(@’F’P) ¢ and

ga Gini ):M(Q)’F’P) _‘¢- [

Lemma 6.4. There exists a game G, one of its states qin; and a SL[BG] formula ¢ such
that

g7 Gini ):M(SJD,P) Qb and ga Gini )ZM(S,QP) _'¢

Note that while both Lemmas|[6.3 and [6.4] imply Lemmal6.2, Lemmal6.2 has the merit
of using all three parameters of the EM3P) satisfaction relation, hence the result on
=MSEP) g not a gimmick heritage from the other relations.

Theorem 6.5. For any game G, any initial state qi,;, any formula ¢ in SL[BG], it holds
G, Gini EMOOD) ¢ = G g EMOOP) g

Proof. The idea, similarly to what we explained after Theorem (page [117), is to
assume that both a formula and its negation hold on the same game from the same
state, to deduce two witnesses and to confront them. The only change lies in the way
we confront the maps as their nature has changed. First, we write V := {z; | i < n},
V3= {2; | Q; = 3} and V" := {z; | Q; = V}. Now, assume that both formulas below
hold:

G, Gini EMPVP)(Qix)ict E(Biei)i<n  and G, i EMPP) (Qizi)ict ~E€(B105)j<n
We then have two M(, 0, P) maps 6 and 6 such that
Vw : (Histg = Act)”" G, ini Foww) €(5505)<n (6.3)
V@ : (Histg = Act)” G, dini Fgm) —€(Bi0s)i<n (6.4)

We confront 6 with @ to get a contradiction: we build a valuation y of domain V
inductively (Figure [6.7] gives an intuition):
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0(x1) : (Histg — Act)  0(x5) 0(x3) 0(xq)

----------------------------- A

/ \ /Bulldmg the valuation )\ / \

Figure 6.7: How to confront § and 6, two M(, ), P) maps

e consider the empty history €. For any x; € V and having build x on ¢ for any z;
where i’ < i, then

— if 2, € V3, we set x(2;)(¢) == 0(Uy<i Xje and o) (%:)(€)
—if x; € Vv, we set X((L‘z)( ) a(Ui’<i Xle and xl/)(xz)(‘g)

Because 6 and 6 are M(0, 0, P) maps, feeding them with (J,_; X|c and 2, 18 sufficient.

e consider a history p where x has been defined on any prefix of p, for any z € V
and any prefix p’ of p. For a variable x; € V, having build x on p for any z; where
i’ < i, then we define x,; to be the valuation

X<(psi) = X|Prefo, U U x(zi)(p)
i <i
— if z; € V7, we then set x(z;)(p) := H(Xﬁ(p,i))(xi)(p)
— if 2; € VY, we then set x(x;)(p) := g(xg(m))(xi)(p)

Again, because § and 6 are M((),(), P) maps, feeding them a partial first entry is
sufficient.

Now, by construction, 6(xpv) = Q(X‘Va) = x. Then, by Formulas and (6.4), we
have both G, ¢in; =y (ﬁj%)jgn and G, gini =y —f(ﬂjgo])ﬁn which is a contradlctlon O

6.2.2 Can a formula and its negation both fail to hold on a game
?

The three lemmas below outline the possibilities for both a formula and its negation to
fail on a game relatively to the satisfaction relations with unordered prefix dependencies.
The situation is akin to Chapter [5

Lemma 6.6. There ezists a formula ¢ in SL[BG], a game G and an initial state g;n; such
that for any © € {0, F'}, it holds that

G, Gini EMOOD) 6 and G, gy EMOOD) =g
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Proof. Similar to the one of Lemma (page [119), same game and same formula.  [J

Lemma 6.7. There ezists a formula ¢ in SL[BG], a game G and an initial state q;,; such
that for any & € {0, S}, it holds that

G, qini MDY 6 and G, qiy EMSOP) g
Proof. Similar to the one of Lemma (page [119), same game and same formula. [

Lemma 6.8. For any formula ¢ in SL[BG], any game G and any initial state q;,
G, Gini %M(S’F’P) o = G, Qn ’:M(S,F,P) —¢

Proof. Due to the correspondence of EM&F9) and |= (the original relation defined in
Chapter [1)), at least one of ¢ and —¢ must hold on G relatively to =30 The one
that holds for =MSE0) also holds for MSP), O

6.3 Needed and avoidable dependencies

We start by an adaptation of Lemma (page in Section to the case with
unordered prefix dependencies. The proof of the result below is similar to the one of
Lemma [5.9] we simply add that, by construction, unordered prefix dependencies cannot
play a role.

Lemma 6.9. There exist a formula ¢ € SL[DG], a turn-based game G and one of its
states @;n; such that

o G, ini EMOUP) ¢ and G, gy EMOEE) ¢

® G Gini I#M(S’@’P) ¢ and G, qini EMELP) ¢

Similarly, we can adapt the first part of Lemma|5.10] (page[123)) to satisfaction relations
with unordered prefix dependencies. However the second part of Lemma [5.10| cannot be
adapted to work with =MORP) and EMEEP): ynordered prefix dependencies can replace
the role of side dependencies thus making side dependencies non essential’l Reusing the
game and formula of Lemma ’s proof, we get G, gin; =MOFP) ¢,

Lemma 6.10. There exist a formula ¢ € SL[CG], a turn based game G and one of its
states Q;n; such that

G, Qini %M(S’Q’P) ¢ and G, Gini ):M(S’F’P) o

ZPage the strategies x4 and xp dispatch one goal on ¢;,;.a and the other on ¢;,;.b based on the
choices of y such that the goal passing through g¢;,;.a is satisfied. In Chapter [5] the strategy z used side
dependency to play the opposite of y and satisfy the goal passing through g;,;.b. With knowledge of the
actions played on ¢;,;, the strategy z knows the goal active on ¢;p,;.b and thus can deduce the choice of
y without side dependencies.
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The proofs of Lemma and Theorem (page and [125]) also extend to

unordered prefix dependencies, hence:

Lemma 6.11. There exist a formula ¢ € SL[CG], a concurrent game G and one of its
states Qini such that G, gini MOV ¢ and G, ging EMOFT) 6.

Theorem 6.12. For any formula ¢ € SL[CG], any concurrent game G and any state ¢in;
of G,
G, Gins EMEUD) 6 = G g EMOOD)

With methods and models similar to the ones of Section [5.4) we study the remaining
cases.

b — D2 b — D2
X X
a — P a — P
(a) A turn-based game with two agents. (b) Another turn-based game.

Figure 6.8: The games used in Lemmas and .

Lemma 6.13. There exist a formula ¢ € SL[CG], a turn-based game G and one of its
states qin; such that for all & € {0, S} and all Q € {0, F} it holds G, qin; =M™ ¢ and
G, qini MO .

Proof. Take the game G of Figure 6.8al and the following formula

aSSign( ' Y5 D axA)‘ Fpl
(b = Hy.va.EL’KB A

assign(C ) ,y; [, 25). Fpo

By construction of ¢ and G, no side and future dependencies are needed hence we treat
all items at once. Take & € {0, S} and O € {0, F}. We prove G, ¢i,; EM*YF) ¢. As
unordered prefix dependencies are allowed, y(gini-a) and y(gin;.b) may assume knowledge
of what x4 played on ¢n;. If x4(qini) = a then we set xp(gin;) = b (zp having a
local influence from x4), y(qini-a) = p1 and y(gini-b) = p2. One can then see that both
objectives hold. On the other hand, if z4(gini) = b, we set 5(¢ini) = a, Y(¢ini-a) = D2
and y(gini-b) = p1; again both goals will hold. We can then build a M(#,Q, P) map
witnessing that G, gin; =90 ¢,

Now, if ¢ was to admit a M(#, 9, ()) map as witness, then which strategy y prescribes
in a (resp. in b) would not depend on the values of x 4. If Y(gini-a) = y(Gini-b) then trivially
one of the two goals will not be satisfied. If y(gin;.a) = p1 then for x4(gin;) = b, the first
goal is not satisfied. Finally, if y(qini.a) = p2 and y(gini.b) = p1 then for x4(qin;) = a, the
first goal is not satisfied. So knowledge on the prefixes for strategies quantified before is
required to build an adequate y. O
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Lemma 6.14. There exist a formula ¢ € SL[DG], a turn-based game G and one of its
states Qi such that for any & € {0, S} and any © € {0, F'}, it holds G, qini V' *99 ¢
and g’ Yini ):M(Q,Q?,P) ¢

Proof. Take the game of Figure [6.8b| and the following formula

assign(C,y; 000, w430, 2). Fpy
¢ = dyVr, VNeg.Vz< Vv

aSSign( 73/;57373; 72)' Fp2

Again, by construction of ¢ and G, no side and future dependencies are possible hence
we do all items at once: fix # € {0,S} and © € {0, F'}. We start by showing that
G, Qini FM("O’P). To build a strategy on ¢;,;.a, y has knowledge of what x4 and xp
played on the prefix ¢;ni, if ©a(¢ini) = 5(¢ini) = a then whatever the choice of y, one of
the goals will be satisfied. Similarly, if z4(gini) = 5(qin;) = b then whatever the choice
of z, one of the goals will be satisfied. Two cases remain, the first is when x4(gini) = a
and xp(gini) = b, then by taking y(gin;.a) playing to p; the first goal will be achieved;
the second is when 2 4(gini) = b and xp(gin;) = a then taking y(gin;.a) = po ensures the
second objective. Hence G, gj,; =P,

Next in order is to show that G, g M *99. To build y on gi.a, we do not have
knowledge of the choices of x4 and xp. Assume we set y(g;n;.a) = p1 then x4 can play
to b, xp to a and z to py and neither of the goals will be satisfied. On the other hand,
if y(qini.a) = po then x4 can play to a, xp to b and z to p; and, again, neither of the
goals will be satisfied. Hence G, gini F=M*Y? and knowledge on the prefixes is needed
to ensure ¢. O

6.4 Moving informations through the two timelines

The addition of unordered prefix dependencies to the side and future ones gives rise to
original situations. As we will see with the theorem below, we can use them to pass
informations that one formerly thought to be inaccessible.

Theorem 6.15. There ezist a concurrent game G, one of its states qy; and a SL[DG]
formula ¢ such that

® G, Qini I#M(@’@’P) ¢ and G, Qini ):M(S,U),P) o.
o G, Gini EMOEP) b and G, qiy EMSED) ¢,
PTOOf Consider the game g of Figure with 6 agents D ) @ ) @ ’ ) 1 and 2 .

Each agent can only influence the state represented in its name, for example (1) and (2
are the only agents having an influence on the state named c. To ease the reading we
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Figure 6.9: A concurrent game G.

only represented the actions of the active agents on the transitions. We define a SL[DG]
formula

¢ =3l Al 32l vy . Tl vay . Fe

. i @ \&}
assign ( 7xp1;®7x1 §@7372 O D 22, ) Fpy
V

: o O] \O]
aSSIgn(Dvxp2;®7xl ;@7% ;O a2, 2, ). Fpy

For the first point, Table induces a M(S, ), P) witness of G, gin; =) ¢ and
Table proves that G, i FEM©@OP) ¢, The first table gives a description of each
existentially quantified strategy (on the state it is active on) based upon the choice of
the two universally quantified strategies (z, and :1:2Q ). We also indicate the knowledge
of each strategy on the right. Table does a case-by-case analysis to show that,
whatever the M(0), ), P) map chosen, it cannot be a witness of ¢ holding on G from ¢;,;
for ):M(Q),@,P)'

We can get the second point simply by noticing that future dependencies may only in-
tervene for z” but do not modify the results, hence G, gin; =) ¢ and G, gin; EMOFP)

¢ O
Intuitively, the proof of Theorem [6.15 shows that we can pass the information of a
universal variable xQQ to an existential variable xlg on the same history, despite xlg being

quantified before :152O This comes from having a state ¢ privileging the timeline of the

game and the states a, b privileging the timeline of the quantifiers. Figure illustrates
the reasoning: the choice of xQO is passed to x using side dependencies (by the timeline
of the quantifications), then to z; using unordered prefix dependencies (by the timeline
of the game), next to =, using local dependencies (if z, refuses to carry the choice of

a:g, the formula is trivially satisfied), and back to 5610 using side dependencies (by the
timeline of the quantifications).

We use the actions in the transition from b to c to hide the information about xQO . We
could have also passed the information using the objectives instead of the actions, hence
Theorem still holds for turn-based games. Indeed, we can add a new goal 1,44 that
carries the information from b to c: if 9,44 goes from b to ¢, this means 9320 (Gini-a) =1

and if it goes from b to some new state branching from b, it means xQQ (Gini-a) = 0. In a



148

w Ty 0O 0 1 1
Vz) 2 o 1 0 1
&M 0 0 0 0 Depend on nothing
0(w) &mm 11 1 1 Depend on nothing
(3z) Ty 0o 1 0 1 Depend on &w_ﬁ %w_m and z (z; =z )
&HO 0 0 1 1 | Dependon &m: &m@ x and z, AHHO =T, )
x 0o 1 0 1 Depend on &mt &mw and &MO (x = &,MOV
rosult Goal 1 | ok no no ok
Goal 2 | no ok ok no
(a) Building the map 0 to prove G, gin; =M5%P) in Theorem E
if ﬁmw =0 if HM =1 if &M =0 and Hmw =
if AaHO =0) |if GSO =1) |if (x; =0) | if (z; =1) | Case with MSO =0 and z; =0 ; other cases are similar
w Ty - - 0 1 0
zy 1 0 - - 1
o - - 1 1 0
]
0(w) T 0 0 - - 1
xr - - - - -
o 0 1 _ _ 0
T, - - 0 1 0
Goal 1 Gini-a- Gini-a-0 Gini-b.c.0) Gini-b.c.() Gini-a-0
result no no no no no
no no no no no

Agwwoibmmé@.i vm\,\:sws% :bﬂrmoEB E Variables amH and &mm depend on nothing. Variable z~ depends on &WH and amm. Variable
WH o, 2 and 2" . In particular, uﬁO and z; are effectively independent of w.

&HO depends on z,; and amw. Variable z; depends on x

plr “p2

Table 6.1: Tables used for the proof of Theorem E
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Figure 6.10: Idea behind Theorem m

broader sense, the choice of the framework (adding the full sequence of actions) does not
impact the result of Theorem [6.15] as long as a strategy can know which goals are active
on the current history.

This passing of informations using both timelines (of the game and the quantifiers)
can also be done when there is a single goal. The idea of Theorems and (below)
are similar to the one of Theorem and we move the proofs to annexes and

(pages and [158).

Theorem 6.16. There exist a concurrent game G, one of its states qim; and a SL[I1G]
formula ¢ such that G, gin; EFMOEP) ¢ and G, gy EMEFE) ¢,

Theorem 6.17. There exist a formula ¢ € SL[1G] and a concurrent game structure G
such that

L4 gaQini I?éM((D’F’@) §Z5 and g?Qini ):M(@,F,P) ¢
e G, Gini %M(@,@,P) ¢ and G, Ging ):M((B,F,P) &
o G, Gini EMEED ¢ and G, gy EMEED) ¢

® G, Gini I#M(S’Q)’P) ¢ and G, Qini ’:M(S,F,P) ¢

The hope we had to suppress some of the dependencies (by adding unordered pre-
fix dependencies) dies with theorems [6.15] [6.16| and [6.17] Theorems and are
particularly interesting: they show that even for a single objective, adding information
about the actions played on a history gives rise to some unexpected behaviour. This
comforts us in the idea that future and side dependencies are a hassle: making the ac-
tions of all variables available has the side effect of bypassing quantification order. Note
that Theorems and cannot be adapted to LTL as we need more than one quan-
tifier alternation. They can however be adapted for other logics: BSIL, CATL, ATL,.
and CHP-SL (the first version of SL, see [I5]). The proofs use the same games as The-
orems [6.16] and but adapt the formulas to the syntax of these logics. Concerning
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the dependency problem, the combination of Theorems |6.15] [6.16| and [6.17] means that
adding information about the history is not enough to suppress the impact of side and
future dependencies.

6.5 Additional results on SL[1G]

Theorem 6.18. For any SL[1G] formula ¢, any concurrent game G and any state gin; of
g,
G, Qini ):M(Q’Q’P) o & G, Gni ):M((Z),@,@) o

Proof. The right-to-left part of the equivalence is trivially satisfied. The proof of the left-
to-right implication is for the most part similar to the one of Theorem m (page .
We build the same game H and draw the same correspondences. We only change the
paragraph “Concluding the proof”. We recall Proposition [5.17], which is the result we get
at the end of the construction.

Proposition 5.17. Assume that P53 is winning in H and let & be a positional winning
strategy, then the M((),0) map HtoG(d) is a witness that G, gy =) ¢,

We assume that G, g;n; ):M(M’P ) ¢. Turn-based parity game are positionally deter-
mined, meaning that one of the player has a positional winning strategy. First of two
possibilities, P5 is winning. We then let § be a positional winning strategy for P;. By
Proposition , HtoG(6) is a witness of G, gin; =20 ¢ and the left-to-right implica-
tion holds. Second possibility, Py is winning. Then, we do a similar reasoning with P, and
—¢ as we did with P3 and ¢, we get G, gini =1%%9 =4 and therefore G, gi,; EMOOP) =g,
Now combining this with Theorem (page , we get that G, gin; M O0P) ¢ which is
in contradiction with the hypothesis made at the start of the proof. Therefore R, cannot
be winning in H and the left-to-right implication of the equivalence must hold. O]

In a similar vein to Corollary (page [132)), we get

Corollary 6.19. The model checking problem of SL[1G] formulas relatively to the =MO0.F)
satisfaction relation is 2-EXPTIME-complete.

Theorem 6.20. For any SL[1G] formula ¢, any concurrent game G and any state gin; of
g,
G, Qini ):M(S’m’m) o < G, Gini ):M(S’W’P) ¢

Proof. G, gini =MD ¢ if and only if G, i EM®P9 ¢ (Theorem [5.13) if and only if
G, Qins EMODP) ¢ (Theorem 6.18)) if and only if G, gini =M30F) ¢ (Theorem [6.12). O

6.6 Conclusion

Pushed by the disappointing results of Chapter [5| we extended the framework: a strategy
0 choosing an action on a history p has access to all the actions played by all the strate-
gies on strict prefixes of p (we call this additional information unordered prefix). In this
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M(S, F, P) Allow both timelines.
M(S, F,0) M(S,0,P) M(0, F, P)
M(S,0,0) M(D, F,0) M(0,0, P)
Timeline of the
M(0,0,0) Timeline of the game.
quantifications.

Figure 6.11: Which maps follow which timeline.

framework, the combination of side and future dependencies with unordered prefix depen-
dencies gives rise to some unexpected results: certain dependencies cannot be suppressed
in SL[1G], a formula and its negation can both hold onto the game (see Figures
and [6.12). While the framework makes it possible (and understandable), the result is
still surprising because, in essence, we just made the actions played earlier available in
their entirety to the strategies. Ultimately, adding all the actions played on the prefix of
the current history does not help us remove some of the dependencies. Our results are
summed up on Figure [6.13

Both a formula and

M(S, F, P) its negation may hold

on the same game.

M(S, F, D) M(S,0, P) M(D, F, P)

M(S,0,0) M(D, F, D) M(®,0, P)

If a formula holds on a
M(0,0,0)

game, its negation does not.

Figure 6.12: When can a formula and its (syntactic) negation hold both hold on a game?
When can a formula and its (syntactic) negation hold both fail to hold on a game?
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M(S, F,0)

# SL[CG] (lem [5.10}
# SL[DG] (lem |5

= SL[1G] (thm [5.14]

# SL[CG] (lem [6.13]
# SL[DG] (lem [6.14]
# SL[1G] (thm[6.17}*

# SL[CG] (lem [6.13
# SL[DG] (lem [6.14
= SL[1G] (thm [5.20}

# SL[CG] (lem [5.10

% SL[DG] (lem
= SL[1G] (thm

= SL[CG] (thm [5.13]
# SL[DG] (lem[5.12]

5.12

5.14

M(S,F, P)

# SL[CG] (lem [6.10}
# SL[DG] ( _mB
# SL[1G] (thm|[6.17]

# SL[CG] (lem|[5.11}*
# SL[DG] (lem

= SL[1G] (thm [5.14]

M(D,0,0)

M(S,0, P)
/\EUQ (lem [6.9]

# SL[DG] (thm [6.15
# SL[1G] (thm[6.16]

M(0, F, P)

# SL[1G] (thm[6.17}*

# SL[CG] (lem[6.13) = SL[CG] ( s:d
# SL[DG] (lem l # SL[DG] (thm l

7 Stic] (eI /

4 SL[CG] (lem [6.13
# SL[DG] (lem|[6.14
= SL[1G] (thm [6.18]

% : Only on concurrent games
Unknown on turn-based games

Figure 6.13: Inclusion graph of the different satisfaction relations
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6.A Annex A

Lemma 6.4. There exists a game G, one of its states ¢, and a SL[BG] formula ¢ such
that

G, Gini )ZM(S’(D’P) ) and G, Qini ’:M(S,Q),P) -

Proof. First, we consider the turn-based game of Figure and the state g;,,; as starter.
The game has four agents [ | , , ,O and () , and six atomic propositions
P1, P2, P3, P4, P55 Pé- Second, we define ¢

¢ =Vao. V. Vos. Jxy. Jos. Jxg. J21. Jyi. Yus. Jvg. Yws. Jws. V. ¢

(¢1 S Ps A ;é{
v /N
with ¢/ = by 1y c>  m ps Do
Vs oY Npa = s NSV ,/ \
\ g < 1y Pt 0 P2 D3
Figure 6.14: Game of Lemma
and
Wy = assign(T], 215,200y @ wy; @ 0s) Fpy
1y = assign([], x9; ), 213 ,yl;Q,wz;O,v5)Fp2
g = assign([], x3; (), 215 7y1;Q ,ws; O, vs) Fps
Yy = assign(l], 2450, 245 7y1;Q s w; O, v5) Fpy
Y5 := assign(l], 25,0, 21 7y1;Q>?U2§O,Us)Fp5
Y = assign([], ;) , 213 7y1;Q ,wa; O, v6) Fpg

A witness that G, gins FMYP) (Qix:)i<t £(Bjp;) j<n can be derivated from Figure m
and a witness that G, gy EMOOP) (Qi:)ici —€(Bjp;)j<n can be derivated from Fig-
ure [6.16] We present the variables following the order of the quantifications. An existen-
tially quantified variable then depends on the variables universally quantified on the left
(with an exception of y;(gin.A.C) in the first table which also depends on z4(gin.A)).

We have also made the different dependencies appear in red in both figures.
O



v | 3 1 v | 3 [ v 1 3 1 v ]

9(Gini) 1(Gini) .\

Ta(Gini)  3(Gini) SS::\»OV. V5(Qini- D) 06(qini-D) w2(qini-B) w3(qini-B) 24(qini-A)
@HAQi:. . v

5 (Gini) 6 (Gini)
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*i % A A, *, * C,0 1, s
or x,x, B
D5 D6 Y1, s
A A D C
A% D T 1 D6 D5 1, g, 73, 75, 7hs (OK no matter 1)4)
D5 D6 D2 D3 1, Y2, 3, 4, Y5, Yo
M - b - b - b - ) b
B.B.D B.B.D D5 D6 P3 jZ P1, ~P2, 3, 7y, Y5, Y
D6 Ps P2 p3 1, Yo, 03, 74, s, e
Do ps..--""" D3 P2 Unordered Prefix %1, =g, b3, =thg, =1b5, =16
Pa---"77 Do P2 P3 Y1, 2, Y3, Y, Ps, Ye
PR ~
TN D5 De6 D3 D2 2N @ijgwul_@w;\&u@m“@m
B,A,D A B,D C,pp Pa)
T Y L Pe s P2 p3 ~- V1, Y2, 3,14, 75, e
Pe P5..--""" D3 P2 Unordered Prefix Y1, ~2, b3, P, s, e
|@m\\\\\\\ Pe b2 b3 /// J@T@wu@wulﬁb?gm“ﬁbm
(=== ~
PN D5 D6 P3 D2 s =1, o, b3, by, s, g
A A B, D r Py O
B,AD 1 Qy,s\ De D5 D2 D3 ¢ =1, P2, 3, 7y, 5, g
D6 D5 P3 P2 —1, ~pa, Tp3, 2y, 5, g
T~ local — “local — local

Figure 6.15: Interactions between strategies in rmBBmEE order to prove G, gini EM0) (Quzi)ict E(Bjp;) j<n-




155

9pIS+1e20]

USRS wa&@v E“svm:\,\H‘ "h ¢/ aa0ad 03 I9pIo EE RUIWO UI SOI39)RI)S UWooM)o( SUOIIORIUT 9T"Q 9INJI ]

- OPIS+1e00]
(Bt 303301 OU JQ) I ‘S Veh T T D) ed __---a9d) - -
A 7’ \\\ /’\ \\‘\‘ III/
o A . ops ~ _eoop T T
S -7 od 1do Nagv ava
- - L 1
(8p 18910W OU M) 9P ‘G T ‘T T ' vd ) €d \\|||._\ od, a---o N
Moo -7 A \\\\\ IIII
O S “Lep s, op1s - ; resop =~ N
SO - od 0o 10 ¥ vd ,J_Qbmwfn avag
- 1 1
(£ 10930 OU Q) 9t ‘S T TR TR | D ) ed 9d ey Pt .
AN eemmmmm @AV IOVEY AV
Ip ‘S T AR ed--"" @D I0xVd=== === 4
S T B T (v ) ~.. ed IO ed g av'a
N ST ___ Tea0] . I
Sh S ‘T Teh SN\ TTmmmmeT od \\\\\\quO‘
S Eqh T Th .. ed - 0O ¥gxwox'yx aqav'g
DTN _reoor 77
ShCh Th T Tmeel L o--- ed v vd
(wh)9z  (“h)Sx
(v *b) =
Q\..@:N@vﬁN Amsgvvmg Am@:s@vms AQ.E.@@v@@ AQ%E@va i A.s:.svvmﬁ A.:S@kuw
T WIH) T
I A | E | A | E A | E




156

6.B Annex B

Theorem 6.16. There exist a concurrent game G, one of its states qi; and a SL[I1G]
formula ¢ such that G, gin; M OEP) ¢ and G, gini EMEFD) ¢,

Proof. The idea is very similar to the one used in the proof of Theorem [6.15] Consider
once again the game G of Figure that we recall on Figure with 6 agents [ ], @ ,

, <, (1 and (2. We recall that each agent can only influence the state represented
in its name, for example (1) and (2) are the only agents having an influence on the state
c. We define a SL[1G] formula

¢ = dx, .VxQ.EleQ.VxQO.EIx REa
assign(D,xD;®,x?;@,x§; Ty 1 7371 ) 2 7I2 ) F(pl \/p2)

As we did in Theorem [6.15] we present the proof through two Tables: and [6.2D]
On the first one, we detail how to build a witness 6 by specifying 6(w) in function of w;
we give the dependencies on the right and the result at the bottom. On the second table,
we do a case analysis to prove that G, g;n; %M(Q’F’P) ¢; again the dependencies allowed
appear on the right and the result, case by case, at the bottom.

O
0,0 0,0
1
Pl B
0 o 1 0
a Qini b — ¢
[ 1
@ 0,1 0,1 D
2
1,0 1,0

Figure 6.17: The game of Figure used in Theorems and .

Note that z” uses a future dependency, hence Theorem cannot be extended
to the case of ML) and =MOOP) - Theorem even showed that =M0P) and
=MO@O.P) are equivalent.
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6.C Annex C

Theorem 6.17. There exist a formula ¢ € SL[1G] and a concurrent game structure G
such that

o G, Gini EMOED 6 and G, gii =MOFP) ¢
o G, Gini EMOLP) b and G, gy EMOEP) ¢
o G, Gini EMEED ¢ and G, g EMEED) ¢

® G, Gini %M(S’w’m ¢ and G, Qini %M(SEP) )

*,%,0,0 1,0, %, *

Db <—W (—‘ d )P
*, %, 1,0 1,1, %, %
. . Ty ﬁ E b A
C
Gims *,%,0,1 0,0, %, * f
D by <—J e )p
*,x, 1,1 0,1,%,*

Figure 6.18: The game G used in Theorem ’s proof.

Proof. Consider the game of Figure with four agents (1), (2), and [2], and two
actions 0, 1. We define a SL[1G] formula ¢

¢ = Fxy. Vao. Jxs. Vay. assign(L,x3;2) 23 [0, 21512, 25)Fp

Proving G, ¢ini EM@FP) ¢: To do so we specify a M(0), F, P) witness:

e To specify z3(¢in;) we may assume knowledge of x5 on gjp;.c through the future
dependencies. We then can set x3(gini) = 1 — 22(Gini-C)-

e To specify x1(gini-c) we may assume knowledge of x3/xy on ¢,; through the un-
ordered prefix dependencies. We simply set x1(gini-c) = 1 — 24(Gini)-

From this we can get a coherent M((), F, P) map 6. It remains to check if it is an
appropriate witness, for this we refer to Table [6.3]

T1(¢ini-€) | ©2(Qini-¢) | 3(Qini) | Ta(qini) || Result
1 0 1 0 ok (d)
0 0 1 1 ok (bs)
1 1 0 0 | ok (by)
0 1 0 T | ok (o)

Table 6.3: Checking if # is a witness of ¢
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Proving G, gini MO ¢: If we forbid future dependencies, x3(gin;) may not rely
on any knowledge to make its choice. Assume that you have § a M((), (), P) map with
O(w)(x3)(¢in;) = 1 no matter w. 6 has two possibilities:

e cither O(w)(z1)(gini-c) = 1 for w’s with w(x4)(gini) = 0. Then for wy with wo(x4)(Gini) =
0 but also wo(x2)(gini.c) = 1, O(wp) will lead the goal to f and fail.

o or O(w)(z1)(gin;.c) = 0 for w’s with w(z4)(gini) = 0. Then taking wo with wo(24)(gini) =
0 but also wo(x2)(gini.c) = 0 also leads 6(wy) to f and fail.

In either cases, 0 is not a witness. The case with 6(w)(x3)(gin;) = 0 is similar. In the
end, G, gini MO0 ¢

Proving G, g EMOED ¢: If we forbid unordered prefixes dependencies, x1(gini.c)
may not relies on what has been played on ¢;,;. Consider a M((, F,()) map 0. Either
O(w)(x1)(gini-c) = 1 or O(w)(x1)(gini-c) = 0, no matter w. Take the first case, again we
decompose by cases:

o cither 6(w)(z3)(qini) = 1 for w’s with w(x2)(gini.c) = 1. Then for wy with wo(x2)(gini.c) =
1 and wo(24)(gini) = 0, O(wo) leads to f

e or O(w)(x3)(gini) = 0 for w’s with w(x2)(gin:.c) = 1. Then for wo with wg(z2)(gini.c) =
1 and wo(z4)(gini) = 1, O(wp) also leads to f.

In both cases we need the unordered prefix dependencies to satisfy ¢.

Notice that by construction of the formula and the game there cannot be side depen-
dencies. So, from the three previous paragraphs we can easily deduce all the points of
the theorem. O]
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Chapter 7

The SL|EG] fragment

In the previous chapter, we have seen that adding all the actions on the history (via
unordered prefix dependencies) leads to unexpected consequences. In particular, one can
override the order of quantification locally by using the side or future dependencies in
conjunction with the actions made available; this can even be done with SL[1G] formulas.
The previous chapter fell short: we wanted to suppress side dependencies by adding the
actions played onto the histories F_:], but in the end this cannot be done.

In this chapter we show a strong correlation between the ability to satisfy a formula
¢ without side or future dependencies and the possibility for both ¢ and —¢ to hold on
a game. More precisely we define a fragment SL[EG] of SL[BG] for which the following
theorem holds. We also show that SL[EG] is maximal for Theorem [7.1]

Theorem 7.1. Consider a formula ¢ € SL[EG], a game G, a state qy; of G and two
parameters & € {0, S} and Q € {0, FY. If G, Gini EM*YP) ¢ and G, qi; M) ¢
then G, ini =100F) ¢,

A more fashionable way to state Theorem is to say that when a formula ¢ €
SL[EG] holds and its syntactic negation does not, we can remove both side and future
dependencies. A naive approach would be to assume that if G, g, EM@9P) ¢, then
G, Qins EMODP) ¢ and therefore G, g EM®9F) —¢. However from G, gin; MO0F) ¢,
we cannot deduce G, @i }:M(@’@’P) —¢; indeed, we may be in one of those cases where
neither ¢ nor =¢ hold on G for =M©®%F)  Hence Theorem [7.1]is not trivial.

Theorem cannot be extended as an equivalence between the possibility for both
a formula and its negation to hold and the capacity to remove side dependencies. There
are cases where both ¢ and —¢ hold on a game for =MS0F) and where we can remove
side dependencies from one of the two. Indeed, consider the game (that we refer to as G
in the following) and formula (referred to as ¢) in the proof of Theorem [6.15] (page [L46).
We have G, gini EMEUP) ¢ (as proven in the proof) and G, gy EM@OF) —¢ (this can
easily be checked).

!Formally we use unordered prefix dependencies but as explained during Chapter @ the framework
is equivalent to adding all the actions played before on the histories.
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7.1 Semi-stable sets and SL[EG]

Before defining our logic, we first fix some notations: for n € N, we let {0, 1}" be the set
of mappings from [1,n] to {0,1}. We write 0" (or O if the size n is clear) for the function
that maps all integers in [1,n] to 0, and 1" (or 1) for the function that maps [1,n] to 1.
For f € {0,1}" and k < n, fj14 is the restriction of f to [1,k]. The size of f € {0,1}"
is defined as |f| = > ..., f(i). For two elements f and g of {0,1}", we write f < g
whenever f(i) = 1 implies g(i) = 1 for all i € [1,n]. Given B" C {0,1}"*, we write
1B ={g € {0,1}" | 3f € B". f < g}. Aset F* C{0,1}" is upward closed if F" = 1F™.
Finally, we also define the following operators:

fri—1—f(i) fAg:i—min{f(:),g(:)} fYg:ir— max{f(i),g(i)}.

As a way to to get the reader accustomed to these three operators, we start with a
simple lemma.

Lemma 7.2. For any f,g9,s € {0,1}", (f A s)V (g AS)=(f ALs)V(gA3).

Proof. Consider some 1 < i < n, then

(fAs)V(gAS)(i) =1 < (fAs)V(gAF)() =1
& s(i)=1= f(i)=0and s(i) =0=g(i) =0
& s(i)=1= f(i)=1and s(i) =0=g(i) = 1
S (Frs)V(gAs)() =1

[
In order to define SL[EG], we introduce the notion of semi-stable subset of {0, 1}™:

Definition 7.3. A set F™ C {0,1}" is semi-stable if for any f and g in F™, it holds that
Vs e {0,1}" (fAS)Y(gAS)€F" or(gAs)Y (fAS)eF™

Example 7.4. Obviously, {0,1}" is semi-stable, as well as the empty set. For n = 2,
the set {(0,1),(1,0)} is easily seen not to be semi-stable: taking f = (0,1) and g = (1,0)
with s = (1,0), we get (f A s) Y (g AS) =(0,0) and (g A s) Y (f A3S) = (1,1). Similarly,
{(0,0), (1, 1)} is not semi-stable. It can be checked that any other subset of {0,1}? is
semi-stable.

We now define SL[EG]. As for SL[BG] and its fragments, we focus on its flat fragment,
which is defined as follows:

SLIEG] 2 ¢ == Va.¢|Fz.¢| &
§ = F"((Bi)i<i<n)
f = assign(A,x). B |
p o= |V Xe|leUp|p
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where p ranges over AP, n ranges over N and for each n, F™ ranges over a set F" of
semi-stable subsets of {0,1}". The semantics of the F'™ operator is defined as

g;q ’:X Fn((ﬁz)zgn> = Elf € F" where f(l) =1iff g,q ):X Bi

Notice that if F™ would range over all subsets of {0,1}", then this definition would
exactly correspond to SL[BG]. Similarly, the case where F" = {1"} corresponds to SL[CG],
while F™* = {0,1}" \ {0"} gives rise to SL[DG]. Both {1} and {0,1}" \ {0"} are semi-
stable, hence SL[CG] C SL[EG] and SL[DG] C SL[EG].

Example 7.5. Consider the formula of Example expressing the existence of a Nash
equilibrium. For two agents, it can be written as

(assign(A1, y1; A2, x2).01) = (assign(As, x1; Az, x2).01)
Elxl.Eng.Vyl.Vyg N (71)
(assign(Ay, 1; Ag, ya).p2) = (assign(Ar, x1; Az, T2).(2)

This formula has four goals, and it corresponds to the set

F*={(1,1,1,1),(0,1,1,1),(1,1,0,1),(0,1,0,1),(0,0,1,1), (1,1, 0,0),
(0,0,0,1),(0,1,0,0),(0,0,0,0) }

Taking f = (1,1,0,0) and g = (0,0,1,1), with s = (1,0,1,0) we have (f As)Y (g A3) =
(1,0,0,1) and (g A s) Y (f A3) =(0,1,1,0), which are not in F*. Hence Formula
is not syntactically in SL[EG]. We conjecture that the existence of Nash equilibria cannot
be expressed in SL[EG].

7.2 Expressiveness of SL[EG]

We now investigate the relative expressiveness of SL[EG] w.r.t the (flat) fragment SL[AG]
of SL[BG], defined in Section To this aim, pick ¢ € SL[BG] with n goals, and write
¢ = . (i) 1<i<n, Where p is the quantification part, and & is a boolean combination of
the goals (¢;)1<i<n. We define

Fe={f €{0,1}" [ £(f) evaluates to true}.

Proposition 7.6. For any formula ¢ € SL[AG] with n goals, F¢'is semi-stable.

Proof. Take ¢ € SL[AG] with n goals. By definition of SL[AG], the boolean formula £ of ¢
may be written in one of the following two ways:

E(xi)1<i<n = &' ((xi)1<icn—1) A Ty,

E(@i)i<i<n = & (%) 1<izn—1) V Tp
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As a consequence, we are in one of the following two cases:

FY={f | f(n) =1 and fy, € Fy~ (7.2
Fe = {f | f(n) =1} U{g | g(n) = 0 and g,y € F5~" (73

By induction on n, we prove that such sets are semi-stable. The base case, forn = 1, is
trivial. Now, assume that the result holds up to step n— 1, and pick a formula ¢ € SL[AG]
with n goals (for n > 2). We first consider the case where £ = £'((2;)1<i<n—1) A Zn. Then
FP={f]f(n)="1and f, = Fgf_l}, and by induction hypothesis Fgf_l is semi-stable.
Pick any two elements f and g in F’, and any s € {0,1}". Let s’ = s;1,,_1) € {0,1}"7,
[ = fun-1 and ¢ = g 1. Since f(n) = g(n) = 1, we have [(f A s) Y (g A3)|(1) =
[(g A s) Y (f A35)](1) =1. Moreover, [(f As)Y (g A3)|pn1=(f As)Y (¢ As), and
(g A 8)Y (f AS)]pn1= (g A )Y (f As). Since Ff’}’l is semi-stable, it contains one
of these two elements, so that one of (f A 5) Y (g A5) and (g A s) Y (f A3)isin F7.

The case where £ = &' ((z;)1<i<n—1) V @, relies on similar arguments: assuming that
F71 is semi-stable, we pick two elements f and ¢ in Fg, and s € {0,1}™. In case
f(n)=1or g(n) =1, thenone of (f As)Y (g A3)and (g As)Y (f AS) takes value 1 in n,
and thus belongs to F¢'. Otherwise, the argument is similar to the case of conjunctive
formulas. O]

It follows that any formula in SL[AG] can be written as a formula in SL[EG]. One can
wonder if the converse translation is possible, which would mean that SL[EG] and SL[AG]
would have the same expressive power. The answer is negative:

Proposition 7.7. Fizn =3 and let H" = {(1,1,1),(1,1,0),(1,0,1),(0,1,1)}. Then H"
is semi-stable, and for any formula ¢ = @. §(Vi)i1<i<n in SLIAG], we have F' # H™.

Proof. That H" is semi-stable is easily obtained by brute force. Now, for any formula ¢ =
©& in SL[AG], (21, x2, x3) must be in one of the following four forms:

& (x1,x2) N 23 & (x1,22) N 3

& (w1, 9) V 3 & (w1, 9) V —3

Again, it is easily checked that none of these cases can give rise to exactly H": for
instance, in the first case, (1,1,0) would not belong to F[*, while the last case would
allow (0,0,0) to be in H™. O

7.3 Properties of SL[EG]

We exhibit some properties of semi-stable sets of valuations. In particular, we show that
semi-stable sets can be rearranged by flipping bits into an upward-closed set. We fix an
index n for the rest of this section.
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7.3.1 Closure under bit flipping

Fix a vector b € {0,1}". We define the operation flip,: {0,1}" — {0,1}" that maps any
vector f to (f A b) Y (f A b). In other terms, flip, flips the i-th bit of its argument if
b; = 0, and keeps this bit unchanged if b; = 1. Notice that flip, is a permutation of {0, 1}".
Notice also that flipy(f) = f and flip;(f) =1 for all f € {0,1}".

The following lemma shows that flipping bits preserves semi-stability. This is a natural
property for our logic, since flipping bits corresponds to negating goals. More precisely, for
b € {0,1}", open formulas F™((5;. ¢i)1<i<n) and flip,(F™)((8:. ©})1<i<n), Where ¢} = ¢;
if b(i) = 1 and ¢} = —; if b(i) = 0, are equivalent.

Lemma 7.8. If F" C {0,1}" is semi-stable, then so is flip,(F").

Proof. We assume that F™™ is semi-stable. Take f’ = flip,(f) and ¢’ = flip,(g) in flip,(F™),
and s € {0,1}". Then

(F'Axs) Y (g A5) = ((f Ab) Y (fAD) As)Y (((gAd)Y (GAD)) AT)
A

(((f A 5) Y (g A5) Ab) Y (((f A s) Y (GAF)) AD)

Write = (f L s) Y (g A5) and = (f A s) Y (g A 5). By Lemmal[7.2} 5 =@a. We then
have

(f'As)Y (¢ A5)=(aAb)Y (@AD)
— flip,(a). (7.4)

This computation being valid for any f and g, we also have

(g As)Y (f'AS)=(yAb)Y (FAD)

— flipy(7) (7.5)
with v = (g A s) Y (f A'S). By hypothesis, at least one of @ and v belongs to F™, so that
also at least one of (f' A s) Y (¢ A3) and (¢’ A s) Y (f' A'S) belongs to flip,(F™). O

Corollary 7.9. F™ is semi-stable if, and only if, its complement is.

Proof. Assume F™ is not semi-stable, and pick f and g in F™ and s € {0, 1}" such that
none of « = (f As) Y (g AS)andy= (g As)Y (fAS)arein F". It cannot be the case
that g = f, as this would imply o = f € F". Hence o # . We claim that o and v are
our witnesses for showing that the complement of F” is not semi-stable: both of them
belong to the complement of F, and (o A s) Y (7 A'S) can be seen to equal f, hence it
is not in the complement of F™. Similarly for (v A s) Y (¢ A S) = g. O

7.3.2 Transformation into upward-closed set

Lemma 7.10. If F™ C {0, 1}" is semi-stable, then for any s € {0,1}" and any non-empty
subset H™ of F™, it holds that

df e H". Yge H". (f As) Y (g A 5) € F™.
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Proof. For a contradiction, assume that there exist s € {0,1}" and H" C F" such that,
for any f € H", there is an element g € H™ for which (f A s) Y (¢ A 35) ¢ F". Then there
must exist a minimal integer 2 < A < |H"| and A elements {f; | 1 < i < A} of H" such
that

VI<i<A—=1(firs)Y (fiz1 AS) € F"and (fx As)Y (fi AS) & F".

By Corollary , the complement of F™ is semi-stable. Hence, considering (fy_1 A $) Y
(fx A5)and (fy A s) Y (f1 AS), one of the following two vectors is not in F™:

([(ra X s) Y (A LS As) Y ([(fxAs)Y (fL AF)]AS)
(S As) Y (fLras)]As) Y ([(fror As) Y (frAB)]AS)

The second expression equals fy, which is in F™. Hence we get that (fy_1 A s) Y (f1 A3)
is not in F, contradicting minimality of \. O]

Lemma 7.11. For any semi-stable set F", there exists B € {0,1}" such that flipg(F™)
15 upward closed.

Proof. The lemma trivially holds for F™ = () thus, in the following, we assume F™ to be
non-empty. For 1 < i < n, let s; € {0,1}" be the vector such that s;(j) = 1 if, and
only if, j = 7. Applying Lemma we get that for any 4, there exists some f; € F"
such that for any f € F™, it holds

(fi A si) Y (f A5;) € F™ (7.6)

We fix such a family (f;)i<, then define g € {0,1}" as g =Y |, (fi A si), i.e. g(i) = fi(7)
for all 1 <7 < n. Starting from any element of F'* and applying Equation ([7.6) iteratively
for each 7, we get that g € F™. Since g A s; = f; A s;, we also have

VfeF" (g Asi) Y (fAS)eF"
By Equation (7.3)), since flip,(¢) = 1, we get
VfeF" (1 A s5) Y (flip,(f) A 5;) € flip, (F™). (7.7)

Now, assume that flip,(F™) is not upward closed: then there exist elements f € F" and
h & F" such that flip (f)(i) = 1 = flip,(h)(i) = 1 for all i. Starting from f and iteratively
applying Equation for those i for which flip,(h)(7) = 1 and flip,(f)(i) = 0, we get
that flip,(h) € flip,(F") and h € F™. Hence flip,(F") must be upward closed. O

Remark 7.12. Notice that being upward closed is not a sufficient condition for being
semi-stable. Consider for instance the set F™ = 1{(0,0,1,1);(1,1,0,0)}. Then F™ is
not semi-stable: taking f = (0,0,1,1) and g = (1,1,0,0), and s = {1,0,0,1}, we get
(fAs)Y (gA3)=(0,1,0,1) ¢ F" and (g A s) Y (f AS)=(1,0,1,0) ¢ F".
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7.3.3 Ordering {0,1}"
Consider F™ C {0,1}" and s € {0,1}", for any h € {0,1}", we define

F*(h,s) :={h" €{0,1}" | (h A s) Y (W L 5) € F"}
and, writing £ for the complement of F™,
Fr(h,s) :={h' € {0,1}" | (h A s) Y (b A 5) € F"}

Trivially F*(h, s) F"(h,s) = 0 and F*(h,s)|JF*(h,s) = {0,1}". If F" is a semi-
stable set, then the family (F™(h, s))nefo,13» Obeys certain properties:

Lemma 7.13. Fiz a semi-stable set F™ and s € {0,1}". For any hy, hy € {0,1}", either
Fn(hla S) - ]Fn(hQa S) or Fn(h27 S) - II-‘-1%(]117 S)'

Proof. Assume that the two relations do not hold: there are b} € F"(hy, s)\F"(h2, s) and
hYy € F™(hg, s)\F™(hq, s). We then have:

(hy As) Y (W, A3) € F"  (hy A s) Y (B}, A3) & F"
(hg A 8) Y (hy A5) € F" (hi As) Y (hy A5) & F"

Now consider (hy A ) Y (R} A'S), (he A s)Y (hy, AS) and s. As F™ is semi-stable, one
of the two following vectors is in F™ :

((h1 & s) Y (W) A5) As) Y ((ha A s) Y (R AS) AS)
((ha & s) Y (hy AS) As) Y ((ha As)Y (R AS)AS)

The first vector is equal to (hy A s) Y (hy A 5) and the second to (hy A s) Y (h} A 5) and
both are supposed to be in F", we get a contradiction. O

Given a semi-stable set F'™ and s € {0,1}" , we can use the inclusion relation of
Lemma to defines a quasi-order relation <™ over the elements of {0,1}".

Definition 7.14. Fiz F™ semi-stable and s € {0,1}". We define <I"C {0,1}" x {0,1}"
so that hy <" hy iff F*(hy,s) C F(hy,s). In particular, hy <1 hy whenever either
hi € F™ or hy € F™.

To ease the reading, whenever F" is clear from context, we write <, instead of <.
Reflexiveness and transitivity of <, follows from the reflexiveness and transitivity of the
inclusion relation C. We use the usual notations <, =4, > and =, respectively for the
strict, the inverse, the strict of the inverse quasi orders and the equality up to quasi-order,
all derived from =;. Intuitively, <, orders the elements of {0,1}" based on how “easy”
it is to complete their restriction to s so that the completion belongs to F™. Figure
shows an application while Figure gives an illustration of two orders.



168

F3 (

- (07*7*) _<(1,0,0) (17*7*) and
(10 Con L) T {((*,mA<of1,1>>v((o,*fmu,o,o»eF"

( 7070) (07 170) (07071) then ((‘k.ﬁ 1, 1) A (Oq l l)) Y ((1,*,*) A (1.00)) e "

(0,0,0)

Figure 7.1: Link between the F™(h, s)’s sets and the orders.

(L L1)

21,00 4 21,10

(1,1,0) (1,0,1) (0,1,1)

(0, %, *)

( 70,0) (07170) (0>0> 1) ( ,0) (0.]0,1)

(0,0, %)

19)8dIK)

(0,0,0) (0,0,0)

Figure 7.2: An illustration with F?3 := {(1,1,1);(1,1,0);(1,0,1);(0,1,1);(1,0,0)} of the
orders =(1,0,0) and =(1,1,0)-

Remark 7.15. To avoid new notations, we defined =<5 over {0,1}" x {0,1}" but only
the indezes on which s takes value 1 are of interest: given hy,hy € {0,1}" such that
(fi As) = (fa X s), we have F(f1,s) = F(fa,s) and fi =5 fo. The fact that all orders
belong to the same product set {0,1}" x {0, 1} allows us to easily compare elements of
{0,1}" on multiple orders. The other option would have been to work with order over
{0, 1} x {0, 1}!; we would then have need some new operations to navigate between the
sets {0,1} and {0, 1}

Lemma 7.16. Given a semi-stable set F", s1,s9 € {0,1}" such that s; A s = 0 and
f,9 €40,1}" such that f =5, g and f =<5, g. Then f =5,vs, g-

Proof. Because f =, g and f =, g, we have
Vi € {1,2} Vh € {0,1}" (fAs)Y(hAS)EF" = (gAhs;) Y (hAS)eF" (7.8)

Counsider i’ € {0,1}" such that a := (f A (s1 Y s2)) Y (W' A (s1 Y sg)) is in F". Define the
element h := o A 53, then (f A s2) Y (h AS2) = (f A(s1Y 82) Y (B A(s1Y s2)) € F™
Using with sy and h, we get 8 := (g A s2) Y (h A S3). As s; A s5 = 0, we can write
B=(fAs1)Y(gAsg) Y (K A(s1Y s9)) € F™

Now consider h = 8 A7, we have (f As;) Y (hAS) =3 € F". Using with s; and
h, we get (g A (s1Y s2)) Y (R A (s1Y 82)) € F™. Therefore F"(f, s1 Y s9) CF"(g,s1 Y s2)
a'nd f jsﬂ(sz g. D

Y
A
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7.4 Side dependencies in SL[EG]

This section is devoted to the proof of Theorem [7.1] which we recall below.

Theorem 7.1. Consider a formula ¢ € SL[EG], a game G, a state qin; of G and two
parameters & € {0, S} and O € {0, F}. If G, Gini EM*®9P) ¢ and G, gy N ®O) ¢
then G, gini ML) ¢,

We fix a concurrent game G = (AP, Agt, Q, Act, A, labels) and consider a closed SL[EG]

formula
¢ = (Qizi)r1<i<i- F"((Bjp))1<j<n)

where forany 1 <i <[, Q; € {3,V},and forany 1 < j <n, §;: Agt > {z; |1 < j <l}is
a full assignment and ¢, is a LTL formula. We also write V := {x; | 1 <i <[}, V" := {z; |

Q; =V} and V¥ := {x; | Q; = 3}. Finally, following Lemmas and [7.11] we assume
that F'™ is upward closed (even if it means negating some of the LTL objectives).

Outline of the proof

The proof is quite long and technical, therefore we first sketch it to give its intuition
to the reader. The idea at the heart of our proof is that, when making a decision for
an existentially quantified variable z; on a history p, we have knowledge of which goals
are still active on p (as opposed to which ones have deviated) through the unordered
prefix dependencies. We then represent the set of goals enabled on p (according to a
given context) by an element s of {0,1}" and use the quasi-order <; to get a clear cut
hierarchy of the potential results. This way, when making a decision for x; on p, we have
a set of ordered potential results and just act to achieve the highest possible.

Sketch of proof

1. We define a set {Ds, | s,h € {0,1}"} of parity automata. Given a path p, we can
associate an element & € {0, 1}" such that k(i) = 1 iff p satisfy ;. An automaton
D, accepts a path p iff b <, k. The intuitive idea is that D accepts a path p if
and only if p produces a result at least as good as h relatively to <.

2. Using these automata, we define two new sets of operators: T'§/2% and T’y for s, h €
{0, 1}" and some parameters d, Y that will be defined later on. The I'*%* operators
are used to encode the {D,p}s nefo1)» automata while the Ffff,r operators handle
the junction between the different I'*** operators. The operators are essential
to the step below; as we will see in the technical proof, they are however rather
technical and therefore we cannot provide much intuition about them.

3. We highlight some specific elements b, of {0,1}" where ¢ is a state of G, d
represents some knowledge about the history and s is a set of active goals. A b, 4 s
element represents the best we can hope to achieve relatively to <, when we consider
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a history p finishing in ¢, carrying the information on d and where s represents the
set of active goals on p.

The construction of the b elements is done inductively based on the size of s: we
start with |s| = 1 toward |s| = n and use the elements defined at previous steps
to decide if we should keep the goals active in s together or if we should separate
them from one another.

4. We then produce two M(0,(, P) maps 6 and 0. Using the b elements built at the
previous step, the map 6 deduces an optimal strategy in order to satisfy ¢. 6 is in
some way (made clear within the technical proof) an optimal map for ¢. Similarly,
0 is the best map to avoid the satisfaction of ¢.

5. Finally, we show the following lemma:

Lemma 7.17. There erists a valuation x of domain V such that 0(x,v) = x and

0(xpv=) = x. Moreover x satisfies

Gogimi = Tim = Yw: (Histg = Act)”" G, qimi Fow) F™ (859 1<j<n
G, qini Fox —Upe = Y@ : (Histg = Act)” G, qini Fgay P (Bi0s)1<i<n

We can then apply a simple reasoning to get Theorem Assume that G, g;,,; =M®9P)
¢ and G, qin; EM®OP) =p. If G, Gini |Ex —Lpn, then by the second point of
Lemma 0 would be a witness that G, gin; ):M(m’@’P) —¢ and it would hold that

G, Gini EM®VP) =4, S0 G, gini = T'pn and using Lemma once again, we get
that 0 is a witness that G, g =MO0P) ¢,

7.4.1 Automata

We build a large set of deterministic parity word automata over 2AP. For s € {0,1}" and
h € {0,1}", we let D} be a deterministic parity automaton accepting exactly the words
over 2AP along which the following formulaP| holds:

Vo A e (7.9)

ke{0,1}™  j s.t.
h =s k (kAs)(j)=1

where a conjunction over an empty set (i.e., if (k A s)(j) = 0 for all j) is true. As an
example, take s € {0,1}" with |s| = 1, writing j for the index where s(j) = 1, for any
h € {0,1}" we get that D, is universal iff there is £ =, h with k(j) = 0; otherwise
D, accepts the set of words over 247 along which ¢; holds.

2Likewise to Section [7.3.3] to retain a rigorous definition and avoid too many notations we use
k € {0,1}" despite k being in essence an element of {0,1}/*l: indeed k only matters in Formula (7.9) on
the indexes j where s(j) = 1, therefore only on |s| indexes.
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Write D = {D;,, | s € {0,1}", h € {0,1}"} for the set of automata just defined. A
vector of states of D is a function associating with each automaton D € D one of its
states. We write VS for the set of all vectors of states of D. Let d be a vector of states
of D and let ¢ be a state of G. We set succ(d, ¢) to be the function associating with each
D € D the successor of d(D) upon reading the labelling labels(q) of ¢; we also extend
succ to take an input (d,p) and to return the state reachable by p from d. As usual,
a path (¢;)ien in G is accepted by an automaton D of D whenever its labels sequence
(labels(g;)):en is accepted by D. We use the customary notation £(D) for the set of words
accepted by an automaton D. Finally we denote by E(ngh) the set of words that are
accepted by D, starting from the state d(Dsp,).

Proposition 7.18. The following holds for any s € {0,1}" :
1. for any hy, he € {0,1}" where hy =<5 ha, we have L(Dsp,) 2 L(Dsp,).

2. Dsgo 15 universal.
3. for any h € F™, D1, accepts the words satisfying \/fan /\j st f(j)=1Pi-

Proof. The first and third points are immediate. In Formula (7.9) applied to h = 0, take
k = 0 in the disjunction; then the conjunction is empty thus trivially true and therefore
D, o accepts any word over 24P O]

7.4.2 Supervising goals going on different paths

Using the automata in D, we define two new families of temporal operators for the proof of
Theorem [7.I] Their semantics differ from the until and next operators: they are relative
to the values of a valuation on the variables and are not asking to assign a strategy to
each agent. The first family of operators simply transfers the conditions of the automata
of D onto an operator for a later usage. For any d € VS and any two s, h in {0,1}", the
parity operator thgc,’j obeys the following semantic: given a context y with ¥V C dom(x)

and a state g of G,

| S ifinite i Vi <n, s(j) =1=out(B(x),q) = p
Guk Tt e g h e
5 G from ¢ with

p e ‘C(Dg,h)

Intuitively, the outcome of the assignments enabled by s must follow a common path that
is accepted by DY, .

The main difficulty of SL[EG] (or SL[BG] more generally) lies in the separation of the
different goals along different histories. The second batch of operators must tackle this

difficulty but before defining them, we need some formalism (we recall that Q is the set
of states of G and VS is the set of all vectors of states of D):

3We recall that the different maps introduced in Chapters [5| and [6] are for finding suitable behaviour
for the quantifications and that there is a common semantics to all temporal and boolean operators,
therefore there is only one satisfaction relation (}=) for the I'*** operators.
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mj += out(S3;(x), q)

m; = out(B;(x), q) outcome of q, s=(1,1,1)
outcome of §;(x) from ¢ B;(x) from ¢
g5 = (1,0,1) P
p=T1 =3 R 2 T, T3
1 step!
c ﬁ(Dg,h) v q1 q2
_ G.q By TiZy with
g7q ’:X F;’flfg T>7= {((07170>7q17d1) ; (<17071>7QQ7d2)}

Figure 7.3: The I'*** and I'**? operators.

Definition 7.19. A partition of an element s € {0,1}" is a set {s, | 1 < kK < A} of two
or more elements of {0, 1}" with s1 Y ... Y sy = s and where for any two k # ' and any
J < n we have s,(j) =1 = s,.(j) =0.

An extended partition of s is a set T 1= {(Sx, Gx,dx) € {0,1}" x Qx VS| 1 <k <
A, A > 2} with (Sq)s<x @ partition of s.

Note that we only consider nontrivial partitions. We write Part(s) for the set of all
extended partitions of s. If |s| =< 1, then Part(s) = ). For any d € VS, any s in {0,1}"
and any set of partitions T of s, the condition FZ? v looks for the assignments enabled
by s to all follow a common history p for some time then partition themselves according
to some partition in Y. Its semantics are defined upon a context y with ' C dom(x) and
a state ¢ of G by the formula below. Figure gives an intuition on both operators.

'Vj <n,
s(j)=1=p¢€ Pref<0ut(ﬂj (x),9)

€T 3 Nve < |r|, vj <n,

finite history , )
in G from ¢ sx(4) = 1= qs = A(Ist(p), m;) with

such that VA € Agt, mj(A) = x(ﬁj(A% p)

G Fx Taor

Vi < |7|, applying succ inductively

\from d on the path p.q, leads to dj

7.4.3 Finding optimal elements
By an induction on |s| ranging from 1 to n,

1. for every s with |s| = a, every h € {0,1}" and every d € VS, we define a new
temporal operator [y, based on the T'*"* and I'**? operators.

The I'***’s operators handle the case where all goals stay on the same path; the
['**P’s operators handle the case where the goals split in different directions. The



173

operator I'g 5, will regroup both possibilities and ask that starting with information
d, the goals of s do at least as good as h for <.

2. for every s with |s| = «, every d € VS and every state ¢ of G, we define an element
bg.as of {0,1}".
The b, 45 element carries the information about the highest h € {0, 1}" possible for
=, so that the operator I'y s 5, is satisfied.

3. if a # n, for all s € {0,1}" with |s|] = a+ 1 and all 7 € Part(s), we define yet
another element ¢, of {0, 1}".

The ¢’s elements carry information about previous step of the induction in the form
of an element of {0,1}". Past the initial step, c¢,, is used to determine the b’s
elements of the form b, , ;.

This induction allows us to condense information about the best course possible in
the form of elements of {0,1}": the b’s and ¢’s elements. Theses elements will then be
used to build an optimal behaviour in later sections.

Initial step (o =1)
1. For any d € VS and any two s,k of {0,1}" with |s| = 1 we set Iy, := T'5i.

2. For any state ¢ of G, any d € VS and any s € {0,1}" with |s| = 1, there is a
maximal element b, 4, € {0,1}" for the order <, such that

G, q EMOLP) (Qizi)i<i<t Taspya. (7.10)

By Proposition DZO is universal; therefore, for any complete valuation Yy,
G,q =y Tas0. This trivially implies that any M(0,0, P) map A is a witness that
Formula holds for b, 4 = 0. So there is at least one element of {0,1}" to
fill the role of b, 4+ for Formula and, because =, is a total quasi order, there
must exist a maximal element. On the other hand, unicity is not guaranteed : if
hl =5 hg then ,C(D&hl) = ,C(D&hz) thus Fd,s,hl = Fd,s,hg and

G.q ):M(m’m’P) (Qizi)i<i<i Taspy < Goq ’:M(@’Q’P) (Qizi)1<i<i Tasps

Characterisation 0,4 € {0,1}" is an element such that
(a) G,q EMOOP) (Qia:)1<i<t Tasp, s
(b) for any h € {0,1}" with b, 4, <, h, we have G, ¢ EMODP) (Quz:)1<i<) Tasn

3. Fix some s € {0,1}" with |s| = 2 and an extended partition 7 := {(sx, ¢x, dx) | 1 <
k < 2} of s. By definition of 7, for any x < 2 we have [s,| < |s| =2 1ie. |s.] =1
thus by, 4, 5. have been defined just before. We define ¢, ; by

Csr = (81 A bq1,d1,81) Y (32 A bq2,d2752)
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The partition 7 models a possible way for the goals to split; ¢, » then regroups the b
elements adequate to 7 in a single element of {0, 1}". Ergo ¢, , carries information
about the best that can be achieved just after the goals split along 7. The ¢,
belonging to {0,1}", we can compare it to other elements of {0,1}" carrying other
information using the quasi-orders of Section [7.3.3] Using these comparisons, we
will then deduce an optimal approach.

Induction step (1 < a < n)

The induction step is slightly more involved.

1. For any d € VS and any two s, h of {0, 1}" with |s| = a, we define an operator I'y 5,
by
Lasn = théc,lj Vv FZ?T where T := {7 € Part(s) | h =5 ¢s,}
We recall that ¢, was defined at the previous step of the induction. Figure
gives an intuition.

2. As before, for any ¢, any d € VS and any s € {0,1}" with |s| = a, there is a
maximal element b, 4, € {0,1}" for the order <, such that

G,q EMYP) (Qix:)1<i<i Tasp, a (7.11)

Similarly to the initial step, we show that such an element b, ., exists by proving
that Formula (7.11) holds for b, 45 = 0. F" is upward closed so 0 is a minimal
element of <, (no matter s) and for any 7 € Part(s), 0 =, ¢;,. Now, consider
any given complete valuation y. First of two possibilities: after some finite history
p, X splits the outcomes of the goals enabled by s into different paths following a
partition 7y, then we get

G.qEx Loy for Y= {7 €Part(s) | 0 =, ¢, } = Part(s)

Second possibility: all the outcomes (enabled by s) follow the same infinite path.
Dy is universal (Proposition so we get G,q =, T, This means that,
whatever the value of x, it holds that G, q =, I'qs0. Hence, as for the initial case,
any M(0,0, P) map is a witness that Formula holds for T'y,o. As for the
initial step, unicity is not guaranteed : if hy =, hy then L£(D;p,) = L(Dsp,) thus
Dotk =g and by <, ¢ 7 iff hy =, ¢ 7, 50

G,q EMOOP) (Qizi)i<i<i Taspy < Guq =M00.7) (Qizi)1<i<i Taspo

Characterisation b,4, € {0,1}" is an element such that

(a) G,q FM((D’@’P) (Qizi)i<i<i Fd,s,bq,d,s
(b) for any h € {0,1}" with b, 4, <, h, we have G, ¢ EMOOP) (Quz:)1<i<i Tasn
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Qini i+ The goals v; with
A hypothetical his- \) ,'I s(j) = 1 separate )
tory leading to ¢ in /v according to a //’
G and d in D / ," partition 7 made /

of (s1,q1,d1) and :\
(s2,q2,d2) q

): Fd1751,b1 }: Fd27327b2

—— ET Fadn 10 o (b Asn) X (b2 A s2) ————

: : stick sep
= T'g s 5 iff either = Fd,s,h or = Fd,s,h

Figure 7.4: The I'y 5, operator

3. In the case of a < n, fix some s € {0,1}" with |s| = a+1 and an extended partition
T = {(Sx, G, d) | 1 <k < A, A > 2} of s. By definition of 7, for any x < \ we
have |s,| < |s| = @+ 1, and the element b,, 4. s, has been defined on previous steps
of the induction. We define ¢, . by

Csr = (31 A blh,dl,s1) Y. Y (SA A b‘lk’dkvsk)

Intermediary results

We now focus on results derived from the elements defined previously.

Lemma 7.20. For any state q, any d € VS and any s € {0,1}", there is a M(0,0, P)
map 0q.4.s for (Qir;)1<i<i witnessing that

g’ q I:M(Q’Q’P) (Qil’i)lgiﬁl Fd,s,bq,d,s

There is another M(0,0, P) map 0q.4s for (Qiv;)1<i<) witnessing that

G,q EMYYE) Qi) 1<icy /\ —Lgsn

bg,d,s=<sh

The proof of the first part is an immediate consequences of the definitions of the b’s
elements. Combining the optimality of the b’s elements with Theorem gives us the
second part.

We also highlight a peculiar I' operator whose parameters are set by ¢. In the big
induction, we inductively defined both the I'”s operators, the b’s elements and the ¢’s
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elements. In a way, ['g» is what we find at the very top of the induction. Notice that for
any two f, f' € I, we have f =; f" and thus £(D; ) = L(D;,;). By definition of the
stk operators, for d € VS, T8 = T5/i%,. We then set

stick __ stick _ stick sep
e = Tgpay and - Tpe = Tpa® V Ty,
where f is any element in F™, d;,; is the initial vector of states and with Tpn := {7 €

Part(1) | c1, € F"}. Thus the operator I'p is the element of the T' family of operators
where d is the initial vector of state, s = 1 and h is an element of F™.

The same way we highlighted I'p» in the family of all I’s operators, we highlight
two M(0,0, P) maps o1 and p7. The map o1 corresponds to ¢, 4,,,1 While the map o1
corresponds to 9, 4

ini, L

ANty

Lemma 7.21. If G, ¢;n; EM@0P) (Qiwi)1<i<i U'pn, then o1 witness that G, @i [=M©@0.P)
(Qizi)i<i<il'pn. If G, Gini %M(Q’Q’P) (Qizi)1<i<i T'pn, then 01 witness that G, ¢ini FM(Q’Q’P)
(Qiﬂfz’)lgigf‘FFﬂ-

Proof. The first case is a simple application of Lemma For the second case, as-
sume that G, gini EMO0P) (Qiw;)1<i<) Tpns this implies that by, 4.1 ¢ F". We can
then apply Lemma to an element f € F" to get that gy witnesses G,q =M©O0.F)
(@mi)lgigﬁf‘d7s7f. Now by definition of I" 7= this means that o7 also witnesses G, ¢ini ):M(VJ,@,P)
(Qi%)lgigl“rm- O

7.4.4 Assembling optimal M((), (), P) maps

Having done this preliminary work, we may now build two M ((), (), P) maps @ and 6 to
define a behaviour respectively for (Q;z;)1<i<; and (Qz;)1<i<;. They are optimal (in a
sense that will become clear later) respectively for F"((8;¢;)1<j<n) and F™((B;0;)1<j<n)-
To define the two maps, we start on the root and progress inductively along the histories.
Given a history p and a function w : (Hist — Act)Vv, we can know which goal is still
following p. Indeed, assume 6 has been defined on strict prefixes of p, we say that a goal
;= Bjp; is active on p w.r.t 6(w) whenever

with m; : Agt — Act is defined by

vi <ol Alp(i),mi) = p(i +1) {\m € Agt, mi(A) = 0(w)(3;(4))(p<:)

Under these circumstances, we denote by s, g € {0,1}" the unique element such that
Spow)(J) = 1 iff B; is active on p w.r.t O(w).

The idea behind 6 is to combine together the maps defined in Lemmas and [7.21]
We start by defining 6 that aims to satisfy (Q;x:)i<i F™(Bj¢;)i<n-

o If 7; € VY, we must set 0(w)(x;)(p) := w(z;)(p) whatever the inputs w : (Hist —
Act)Vv and p € Hist by definition of maps (of any kind).
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e If z; € V3, we use the maps defined in Lemmas and [7.21] Consider a history p,
a function w : (Hist — Act)¥” and a variable z; € V such that 6 has been defined on
strict prefixes of p. Then, 6 being already defined on strict prefixes of p and having
unordered prefix dependencies, we can know the active goals on p for 6(w), and we
represent them by an element s, g, of {0,1}". We decompose p in two parts p
and ps (p = p1.p2) such that ps represents the part of p that is followed by exactly
the goals of s, (), i.e. p1 is the maximal prefix such that s, gw) 7 Sp.6(w

— First of two possibilities: s,g.,) = 1 and p; = €. Then ¢ follows the map 0,
of Lemma [7.21] and we set 6(w)(z;)(e) := o1(w)(z;)(e).

— Second possibility: s, ) 7 1 and p; is not empty. The map ¢ then regroups
the important mformatlon of py in the vector of state d,, := succ(dip, p1) of
D. The behaviour of 8 on p then follows the maps of Lemma (.20, meaning

that we set 0(w)(x:)(p) = Gust(o1).dp, 5.0 (W7 ) (i) (P2)-

_ Having defined 6, we proceed similarly to define 0, a M((),0, P) map trying to ensure
F™(Bj5) j<n-
o If 2; € V7, we must set 0(w)(z;)(p) := w(x;)(p) whatever the inputs w : (Hist —
Act)¥” and p € Hist by definition of maps.

o If z; € VY, consider a history p, a function w : (Hist — Act)¥” and a variable
x; € V such that # has been defined on strict prefixes of p. We proceed again
by decomposing p in two parts p; and ps such that p; is the maximal prefix with

Sprb(w) 7 Spim):
— if 8,00 = 1 and p; is empty, we set 6(w)(z;)(¢) := 01(W)(x;)(e).

— if Sp.0(w 7& 1 and p; is non-empty, we set 9( )(z:)(p) = m(@a)(zi)(pz)
with d = succ(dini, p1)-

7.4.5 Optimality of § and 0

Under the assumption that only one of ¢ and —¢ can hold on G under M(#, O, P) maps,
0 is in a sense an optimal map for F™(8;p;)1<j<n while @ is optimal for F(8;¢;)1<j<n-
The lemma below formalises this optimality property and characterises when 6 can ensure
F"(Bjpj)1<j<n and when @ can ensure F"(S;¢;)1<j<n. The proof can be found in the

annex (page [182).

Lemma 7.17. There erists a valuation x of domain V such that 0(xpv) = x and
§<X\V3) = x. Moreover x satisfies

gaqmi }ZX FF” = VYw: (Histg — ACt) g Qini F@(’w n( P >l<]<n
gaqmi ):X _'FF” = Yw: (HiStg — ACt) Q Qini ):G(w ( 90])1<]<n
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We can now prove Theorem . Assume that G, gin; EM®PP) ¢ and G, gin; M ®9P)
—¢. If G, Gini Ex —L'pn, then by the second point of Lemma , 0 would be a witness
that G, gini EM9P) =g and it would hold that G, gini V™) =¢. S0 G, Gini =y Tpn
and using Lemma once again, we get that 6 is a witness that G, g;,; M@0 6.
This concludes the proof of Theorem [7.1

7.4.6 Closing remarks on SL[EG] complexity

From our work, we can also deduce a 2-EXPTIME algorithm for the model checking of
SL[EG] relatively to =M©@0.P),

Theorem 7.22. The model checking problem of SLIEG] formulas relatively to the =00.F)
satisfaction relation is 2-EXPTIME-complete.

Proof. We reuse the notations in the proof of Theorem [7.1] (Sections to[7.4.5)). The
proof consists in building a procedure to check if G, ¢ =, I'pr holds; we can then
deduce if G, gini EM@9P) ¢ holds by using Lemma [7.17, The procedure is given in the

annex (page [185).

Lemma 7.23. Consider s in {0,1}" and assume that we know the values of all by 4 &
for all s € {0,1}" with |s'| < |s|, ¢ € Q and d' € V5. We then have a 2-EXPTIME
algorithm that computes

e the truth value of G,q EMOYP) (Qix)i<iciTasn for any ¢ € Q, d € VS and
h € {0,1}".

o the value of by s for any d € VS and g € Q.

Sketch of proof. The proof consists in finding the potential candidates in {0, 1}" for b, 4
and choosing the optimal one for <;. Each candidate is checked by building and solving a

parity game based on the ideas developed for Theorems and [6.5] (pages [127 and [142)).
O]

The operator ['pn is defined as a special case (see Section of the family of all
['’s operators based on the b’s elements. We can then use the procedure of Lemma [7.23
to build the b’s elements, define I'*", check the truth value of G, ¢in; =, ['pn and deduce
if G, gini MO0 ¢,

In the end, we need to build and solve at most 2".|Q|.2"'2‘¢‘ parity games. The state
space of each game is of size two exponential in the size of the formula and polynomial
in the size of the game. The number of indexes is exponential in the size of the formula.
Using standard techniques to solve parity game we retrieve a 2-EXPTIME algorithm for
Lemma and for SL[EG] model checking relatively to E=M@%F) We can derive a
matching lower bound from the 2-EXPTIME lower bound of ATL* model checking.

O
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q¢ qu
N N
P1l 4qu P2( Ge2 D1l qua D2 Qu2

o O O O

Figure 7.5: The two-agents turn-based game G

7.5 Maximality of SL[EG]

In this section, we prove that SL[EG] is, in a sense, the maximal fragment of SL[BG]
possible for the results of Theorem [7.I} we prove that if F™ is not semi-stable, we can
build a formula that holds true in a given game for MS8F) where its negation does
not hold for =M %P) but where we cannot remove side dependencies.

Theorem 7.24. For any n € N* and any non-semi-stable set F™ there ezists a SL[BG]
formula ¢ built on F™, a game G and a state q;n; of G such that

g7 Qini |:M(S7®’P) ¢ and g’ Qini %M(S,@,P) —|¢ and g’ Qini [;,QM(@,@,P) ¢

Proof. We consider the two-agents game G depicted on Figure with two agents [
and (). Let F™ be a non-semi-stable set over {0, 1}". Then there must exist fi, fo € F",
and s € {0,1}", such that (fi A s) Y (fo A5) ¢ F™and (fo As)Y (fi AS) ¢ F™. We then
let

¢ = VytD VyE Vo, dz, - F"(Bie1,- .., Bnn)

where
5 = assign(],y, : (O ,x, ) ifs(i)=1
" assign(T], oL O Lx)) ifs(i)=0
and
FpiVEpy if fi(i) = fo(i) =
_ ) Fp; if fi(i) =1and fo(1) =0
7T Fo if f,(i) = 0 and fo(i) = 1
false if f1(i) = f2(i) =

It is not hard to check that the following holds:

Lemma 7.25. Let p be a mazimal run of G from qu;. Let k € {1,2} be such that p
visits a state labelled with px. Then for any 1 < i < n, we have p = ¢; if, and only if,

fe(i) =1
We obtain

Proposition 7.26. G, g;,; =M% ¢
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Proof. Let o, be a strategy for ytD , and let o, for yE. Let 7 be a strategy for =, . Note
that only the value 7(qin; - 0¢(gini)) is important for ¢ since x, is only applied jointly
with 7, . Let k € {1,2} be such that the state reached by applying 7:(qini - o¢(qini)) is
labelled with py.

We then define the strategy 7, for , by 7u(Gini-qu) = qur and 7, (¢ini-q:) = g Note
that there is a potential side dependency of strategy 7, w.r.t. ;. We now prove that, if x
is such that

Xy )=0  xw)=0. x)=7n x@,)=".
then:
g7 Gini ):X Fn(ﬂlsaly s 75n¢n)

Fix an integer 1 <7 < n. Let x be t if s(i) = 1 and u otherwise. The outcome p' of {{T]
04, — 7.} (which corresponds to binding ©;) iS ¢ini¢xqsr- Applying Lemma El, we get
that p' = ¢; if, and only if, fy(i) = 1. This shows that F™(B1¢1,. .., Bn¢n) is true, which
concludes our proof} O

As mentioned in the proof above, satisfaction of ¢ in G from ¢;,,; uses strategies with
side dependencies. We will now show that this is indeed required.

Proposition 7.27. G, g EMO0P) ¢

Proof. Towards a contradiction, assume that ¢ is satisfied in G from ¢;,; using only
strategies without side dependencies.

We let oy (resp. o,,) be the strategy that maps history ¢ to ¢, (resp. ¢,). We fix
strategy 7, such that 7;(qini - @) = qu1- There is a strategy 7, (without side dependencies)
such that

g, Gini ):X Fn(51%017 e 75“9071)

where xy maps ytD to oy, y  to oy, x, tom and z, to T,.

Since x,, is only jointly applied with yE, the only important information about 7, is
its value on history ¢in;0.(Gini) = Giniqu- Because there is no side dependency, this value
is independent on the value of 74(giniq:) = Tt(¢iniot(qini)). In particular, writing x’ for the

context obtained from x by replacing x(y,’ ) = 7 with 7/, where 7/(¢iniq:) = s, We also
have

g7 Qini }:y Fn(ﬁl@l; s 7Bn§0n)

Let v and v’ be the elements in {0, 1}" representing the values of the goals (51¢1, - - ., Bnpn)
under x and y’. Then v and v’ are in F". However:

o If Tu(Qim’Qu) = Qul; then v = (fl A §) Y (fg A S).
o If 74(qini@s) = @2, then v = (f1 A s) Y (f2 A 3).

In both cases, by hypothesis, this does not belong to F", which is a contradiction. O

“Note that there is no unordered prefix dependency and we could have shown G, gi,; =M300) ¢,
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Only one point remains,

Proposition 7.28. G, g M) —¢

Proof. Consider a M(S, 0, P) map 0 over 3y, Iy, 3z, Vz, . Fix a function w : (Hist —

Act)®s and write p for the outcome of {11 — 0(w)(y; );:() — 6(w)(z, )}. The choices

of 6 on ytD, yE and z, do not depend on =z, , therefore p is independent of w. Let
k € {1,2} be such that p visits a state labelled p; and write wy, for the function such

that wi(z, )(Gini-q:) = qu and Wx(z,, )(qini-qu) = @x- Then the element v in {0,1}"
representing the values of (811, ... Bnen) under 6(wy) can either be

v=(fiA3) Y (fi As)=hi
or v=_fo AS)Y (fa AS)=fo

and both are in F. Therefore, 6 is not a witness of G, g;n; ="30P) < and G, gin; EMNELD)
=0 O

With Propositions [7.26], [7.27] and [7.28 we conclude the proof of Theorem [7.24) O

7.6 Conclusion

Theorem shows that for any formula ¢ € SL[EG], when allowing unordered prefix
dependencies and under the hypothesis that ¢ holds but —¢ does not, we can remove
side and future dependencies. We have also seen that this result is the best we can
do. It would therefore be interesting to find a characterisation for the case when both a
formula and its negation hold on a game. Using this characterisation and Theorem [7.1],
we could then obtain a large class of inputs (game and formula) on which we can remove
the side and future dependencies. This class would also admit a 2-EXPTIME-complete
model checking: all the steps in Theorem are constructive and their combination
gives an algorithm 2-EXPTIME in the formula and PTIME in the game for the =M ©@.0.P)
satisfaction relation (see Section [7.4.6).



182

7.A Annex A

Lemma 7.17. There erists a valuation x of domain V such that 0(xpv) = x and
g(xwa) = X. Moreover x satisfies

G ini Ex Ten = Vw: (Histg = Act)” G, gini Foqu) F"(8j5)1<j<n

g7 Qini ’:X _'FFn = Yw: (HiStg — ACt’)V3 Q, Qini ’:g(@) ﬁ(ﬁjgpj)lgjgn

Proof. Both 6 and 0 are M((),(), P) maps, we can therefore apply the technique used in
the proof of Theorem to get a valuation x such that 6(x,v) = x and 6(xp3) = x.

It remains to prove the two implications, we start by proving the first one. In the
following, assume that

We first fix some notations specific to this proof then prove some intermediary results.

Notations. For a fized parameter w : (Histg — Act)Y”,
e we call 7§ the outcome out(3;(0(w)), Gini)-
e we set f* to be the {0, 1}" element such that f*(j) = 1 iff 7} satisfy p;.

o [ikewise to when we defined 6 in Section for any history p we call s,,, the
{0,1}™ element such that s,.,(j) = 1 iff out(B;(6(w)), gini) follows p.

e finally, we define R” C {0,1}" x Histg, the relation such that (s,p) € RY if and
only if s = S, and p is minimal (meaning for any prefiz p' of p, (s,p") ¢ R™).

Proposition 7.29. For any w : (Histg — Act)w, using the notations presented above, it

holds

Vs € {0,1}". Vp € Histg. (s,p) €ERY = bis(p).da,s =s [
where d, := succ(d;n;, p) (the vector of states accessible by p from the initial vector of
states).

Proof. Fix some w : (Histg — Act)vv, we proceed by induction on the size of s from 1 to
n.

The initial case (|s| = 1) Consider any history p such that (s, p) € R”. As|s| =1 and
(s,p) € R™, there is a unique goal, say [3;,¢,, following p. By definition of 0, 7;, = p.n
where 7 is the outcom obtained through 3, (0ist(s).4,,s(w7)) starting in Ist(p).

_ _ stick :
Note that because |s| = 1, Lay s by ay e = Fzﬁybusqp),d‘,,s' The map oist(p),d,,s i a

M(0,0, P) witness that G, g, =100 (Qixi)léz‘Slep,s,busqp),dp,s= therefore it also wit-
nesses that G, g =000 (Qz:)1<i<i 15 . By definition of the I'**** operators,

P> 7b|st(p),dp,s

Swhich can be written in the following barbaric way: out(B;, (0ist(p),d,,s (W7 )), Ist(p))
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this implies that all its outcomes are accepted by the automaton D% ; in particular,

5Dst (), dp

7 is accepted by D%

S blst(p) dp, s’

. accepts paths which give better results for the objectives
for

The automaton Ds‘;
Ist(p),dp,

(ngoj)ﬂ —1 than bist(p).d,.s- In our case this means that f* does better than bi(,)
S, Le. blst ),dp,s _s f

psS

The induction step (|s| = a) We assume that the Proposition holds for elements
s of size |s| < a. Consider for the induction step a history p such that (s, p) € R".

e Either there exists a common (infinite) path 7 such that for any j with s(j) = 1,
m; = p.n, i.e. all goals enabled by s always follow the same path p.n. We then apply
the same reasoning as done in the initial case and deduce bist(p)dq,,s =s f*-

e Or, somewhere after p, the goals enabled by s split themselves along some extended
partition 7 = (Sx, ¢x, dx)w<r. We call n the history from the last state of p to the
point where the goals split from each other; formally n is obtained by applying

B; (0ist(p).a,,s(ws)) where j is such that s(j) = 1.
We recall the notation for ¢, , from Section [7.4.3]

Csr =

)

(51 A bql,d1751) Y. (S/\ A bQMdA,SA)

The map Op(p),a,,s Witnesses that G, lst(p) M@0

reach only a partition 7 such that

Fd,s,bust(m,dwv therefore n may

blst ),dp,s js Cs,r (713)
For any k < A\ we have (s, p.n.qx) € R", and using the induction hypothesis we get

Sk A by, s Sse [© (7.14)

so, using Lemma (page [168) repeatedly on the (s,).<) and Inequality we
obtain

51 A bfh,dl,sl j51 fw
= (51 A bq1,d1751) Y <S2 A bq27d2752) j51Y82 fw

= (51 A bq1,d1781) Y. Y (3)\ A qu,d,\,s)\) jS1Y---Y8>\ f*
= Cor 2o [
Combined with Inequality [7.13, we get bist(p).d,,s =s Cs.r = [

This concludes the induction and the proof of Proposition [7.29] O
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Proposition 7.30. b 1€

Gini dini,

Proof. Towards a contradiction, assume that b,, , 4.1 € F™. Then, by definition of the
i dinis1 elementﬂ G, Qin; EMOOP) (Qixi)1<i<i I'pn. Applying this to Lemma , we
have that the map 97 (and therefore § which act as g7 before goal goes on different paths)
witness G, qini FEMOYP) (Qi1)1<i<) Tpn. This immediately implies that G, gini =y [rn
which is in contradiction with the Hypothesis [7.12 O]

With these preliminary results, we are now ready to prove the first implication of the
lemma. Consider a function w : (Histg — Act)". By Proposition applied to w, 1,
e we get that by, 4..,1 =1 f*. Now by Proposition [7.30} b, 4...1 € F", therefore the
element f*“ which is greater than b 1 for <71 must also be in F", which is equivalent
t0 G, Gini Fow) F"(Bj)1<j<n-

The second implication of the lemma works similarly: produce an equivalent to
Lemma for 6, use the left side of the implication and Lemma to get a counterpart
to Proposition [7.30, and deduce the right hand side of the implication.

Qini dini,

]

6See the definitions and explanations between Lemma, and Lemma page m
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7.B Annex B

Lemma 7.23. Consider s in {0,1}" and assume that we know the values of all by 4 &
for all s € {0,1}" with |s'| < |s|, ¢ € Q and d' € V5. We then have a 2-EXPTIME
algorithm that computes

e the truth value of G,q ):M(Q)’@JD) (Qixi)1<i<ilasn for any ¢ € Q, d € VS and
h € {0,1}".

o the value of by s for any d € VS and g € Q.

Proof. The proof has many elements similar to the ones of Theorems (page [127)
and [6.5| (page [142)), where we showed that M) [=MO00) apq |=MOLP) are equiva-
lent over SL[1G].

Checking the first point

We build a parity game H as we did in Theorem [5.14] only adapting the transitions and
parities to I'y 5 ,. We shorten the automaton Dgh to D in the following. Using the notion
of clusters defined in the proof of Theorem (page |127), we define H by

e there are two players: P3, P;.

e for each state ¢ of G and each state d of D, H contains a copy of a cluster which
we call the (¢, d) cluster. For any m € Act® with |m| <[, we refer to the state m of
the (g, d) cluster as the (¢, d, m) state. We also add two new states Geyen and gogq-

e the transitions in H are of three types:

— internal transitions in the cluster are preserved;
— consider a state (¢, d, m) where m is a leaf.

x If there exists a state ¢ such that

mg, : Agt — Act
Vi<n 5(j) = 1= ¢ = A(g,mp;) where{ mg (A) =m(i—1)

/

L.e. applying the choices of m according to ; in G leads from ¢ to ¢'.
Then we add a transition from (¢, d, m) to (¢, d', ) where d’ = succ(d, ¢).

« If there exists a partition 7 of s such that for any k < |7|

mg, : Agt — Act
A(g,mp;) = qx  where ¢ mg (A) =m(i—1)

with z; = §;(A)
succ(d, q,) = dy

bq,d,s js Cs,r
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L.e. the goals enabled by s partition themselves from ¢ based on m along
a partition whose c element is above b,4,. Then we add a transition
from (q,d, m) t0 Geyen-

x If there exists a partition 7 such that

mg, : Agt — Act
A(g,mp,) = g where ¢ mg (A) =m(i —1)

with z; = (;(A)
succ(d, q,) = dy

Cs s bq,d,s

L.e. the goals enabled by s partition themselves from ¢ based on m along
a partition whose ¢ element is below b,4s. Then we add a transition
from (q,d, m) t0 Qoqa-

e the set of priorities are the same as in D and each (q,d, m) state has the same
priority as d. We also label the states ¢epen, and goqq respectively by an even and an
odd parity.

In the end, using the same arguments as the ones in the proof of Theorem [5.14]
we get that if P; wins the parity game H, we can build a M (0,0, ) map that witnesses
G,q EM000) (Qii)1<i<ila s and therefore also witnesses G, ¢ =M@0.P) (Qizi)1<i<ilasn-
On the other hand if Py wins H, there is a M(, 0, §) witness that G, ¢ =M@Y (Q,2:)1<ic—T s
Combining this with Theorem [6.5, we ge that G, g— MO0 (Qixi)1<i<ilas.n-

Checking the second point
We recall that an element b, 45 € {0,1}" is such that

1. G, q FMOYP) (Qizi)1<ici Dasp,
2. for any h € {0,1}" with b, 45 <5 h, we have G, g pM©@0.P) (Qiri)1<i<i Lasn

We can check G, ¢ %M(@’@’P) (Qii)1<i<i Lasp for all h € {0,1}". The element b, 4, is the
maximal h relatively to <, for which it holds. The algorithm for the second point derives
from the algorithm of the first point.

O

"Rigorously, Theorem is not proved for formulas with the new operator I'y 5 5. The proof however
also works without modifications.



Conclusion

In this thesis, we investigated the complexity and the semantics of Strategy Logic (SL).
Unlike others temporal logics for multi-agent systems, SL dissociates strategies from play-
ers. This dissociation is one of the keys of SL expressiveness; for example, a strategy o
can be created at a time ¢ and used at a later time ¢’. Another important aspect of SL is
the possibility for complex interplay between the different executions of the system. In
ATL", there are no strategy-sharing aspects between two executions of the system; the
executions are totally dissociated from one another. SL on the other hand allows an agent
to share its strategy in two executions. SL is therefore a very expressive logic and a good
framework to reason about temporal properties of multi-agents systems.

Complexity

As always, the large expressive power of SL leads to poor complexity results. Mogavero,
Murano, Perelli and Vardi showed that SL admits an undecidable satisfiability problem
and a decidable but NONELEMENTARY model checking problem; we present their algo-
rithm in Chapter 2] We also complete the picture with our own results: SL is at least
PH-hard with respect to the size of the game and the SL[BG] fragment cannot admit an
ELEMENTARY algorithm (thus the complexity of SL[BG] is no better than the one of
SL). Some gaps remain in SL complexity when considering formulas with a fixed num-
ber of alternations and matching the lower and upper bound would greatly improve the
understanding of SL. In particular, results on the complexity relative to the size of the
game would precise the usability of SL for practical cases; until then SL remains mainly
a theoretical framework.

The time between creation and usage

Sometimes in temporal verification, a strategy ¢ must be created at a time ¢ and used at
a later time t’. At a time t” > t/, SL semantics then considers that § must have knowledge
of the history between ¢’ and ¢ but also between ¢ to ¢’. In Chapter 3| we argued that the
situation where ¢ is deprived the knowledge of what happened between t and ¢’ is more
adequate to model server/client interactions. For this, we created an alternative version
FSL of SL and study in depth its complexity. Theorems [3.2] and show that a large
part of the logic unfortunately becomes undecidable under the new semantics.

In the end, the choice of the logic depends on the practical problem. A property
where a strategy ¢ is created and used at different times should be modelled in SL if the
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knowledge between creation and usage is available to d, and in FSL if this knowledge is
not available to 0. If all strategies are created and used at the same time, the fragment
SL[BG] (where the two semantics intersect) is probably the best candidate.

Strategy dependencies

Most extensions of ATL* are subject to knowledge-based problems: about the goals of
other agents, about the histories on which strategies are evaluated, about the other agents
strategies... Along Chapters [5] to [7, we investigated the degree of knowledge needed
about the universally quantified strategies in order to build the ones which are existen-
tially quantified. There exist many subtleties and one must be careful when dealing with
the dependencies between strategies choices. For example, on our journey to cartography
dependencies, we found that adding all the actions played on the current history com-
plicates the situation greatly. In some case, it allows to transfer informations between
strategies. In particular, Theorems|6.15][6.16|and [6.17]) show that one can locally override
the order of the quantifications. The result not only holds for SL[BG], but also for all
extensions of ATL" that allow three or more quantifier alternations.

In simple requests, such as w-regular conditions or ATL* formulas, the strategies only
need local knowledge. In systems where choices are made locally (within a state), we
must forcefully forbid any dependency, otherwise a specification could be erroneously
interpreted as true. On the other hand, when a strategy obeys a known and public
protocol, other strategies can depend on it on its entirety. Finally, global objectives must
allow a total dependence between the strategies. Consider the scenario of an electronic
attack on a system. The attacker may repeat the attack numerous times, gathering
information about the system. He may then guess the protocol in place. To model such
knowledge, the strategies of the attack must have a total knowledge of the strategies of
the system to the point of overriding the order of the quantifications.

Long term perspectives

Among the challenges of this thesis, the dependency problem between strategies stands
out. Many logics are introduced in the literature, but semantical aspects are often omit-
ted, and only the decidability of the satisfiability and model checking problems are con-
sidered. A deeper look at SL revealed many subtleties and all extensions of ATL* have
taken the same approach to dependencies: everything is allowed as long as it does not
mess the order of the quantifiers. I hope that the second part of this thesis gives in-
sight into these subtleties, and is convincing the reader that semantical aspects are really
important.

The framework proposed in Chapters 5| and [ has its merits: it treats the quantifica-
tions as a compact block and allows to bypass the order of the quantifications. However,
it also suffers from severe drawbacks: the syntactic negation is completely dissociated
from the semantic negations. Indeed, the semantic negation swaps the role of existential
and universal strategies but it does not change the knowledge they have about each other;
the syntactic negation reverses both. As shown in Chapter[7], the syntactic negation plays



an important role in the dependency problem. It would be worth developing a framework
better at handling the two notions of negations. Potential answers could be found in the
works on the independence-friendly logic and the dependence logic.

Another imperfection of the framework is that universally quantified strategies are
allowed an important degree of knowledge by the universal quantification on all functions
of the form (Hist — Act)vv. In the manuscript, we do not investigate what happens
when both universal and existential strategies are severely limited in their knowledge of
other strategies. A deeper look into this issue would complete our work in an appropriate
manner.
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Glossary

f A g Function of {0, 1}" x{0,1}" — {0, 1}" such that f A g(i) = 1 if and only if f(i) =1
and g(i) = 1.

f Y g Function of {0, 1} x {0, 1}" — {0, 1}" such that fY g(i) = 1 if and only if f(i) =1
or g(i) = 1.

7 - p Singular concatenation of two histories m and p.

IT;c7(m;) Concatenation of the histories (m;);e; following the order on 1.
> Flat fragment of. ...

0= Strategy obtained by d=(p) = d(7.p).

X7 Valuation obtained by y=(z) = x(z)» for any agent or variable x.
X Valuation obtained by yz(z) = x(x)= for any agent z.

1B Upward closure of a set B (of N or {0,1}").

Act Set of all actions.

Agt Set of all agents.

AP Set of all atomic propositions.

dom(x) Domain of definition of .

flip, Function of {0,1}" — {0,1}" such that flip,(f) = (f A b) Y (f A b).
free(¢) Free variables and free agents of ¢.

Histg Set of all histories in G.

Inf(7) Set of states appearing infinitely often in 7.

L(N) Language of N (set of all words accepted by N).

labels Labelling function.

Ist(7) Last state of 7.
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out(x,q) Outcome produced by x starting from g.

Part(s) Set of all partitions of s (as defined in the proof of Theorem [7.1)).
Pathg Set of all paths in G.

Pref-, Set of all prefix of p including p..

Pref_, Set of all prefix of p excluding p..

Shift, () History obtained by shifting the counter values in 7 by a factor v.
Stratg Set of all strategies possible in G.

Tower(a,b) Function returning a tower of exponential of height b and input a.
V3 Set of existentially quantified variables (of a formula or a quantifier block).
VY Set of universally quantified variables (of a formula or a quantifier block).
VS Set of vector of states in the proof of Theorem [7.1]

Weights Weight function of a WCGS.
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Introduction

Les systémes électroniques et numériques ont envahi nos vies: administration, armée,
éducation, énergie, médias, santé, transports. L’augmentation du nombre de ces systémes
créé de nombreux défis, des plus connus comme la cryptographie ou les problémes de
confidentialité aux plus obscurs comme les problémes de concurrence ou de compteur. ..

Il existe trois principales méthodes pour assurer du bon comportement de ces systémes:
tester, trouver un certificat de bon fonctionnement et explorer I'arbre des possibilités.
Cette thése se concentre principalement sur cette derniére approche. Il convient alors
de se poser deux questions: “Qu’est ce qu'un bon comportement de mon systéme ?”
(spécification) et “Mon systéme peut-il sortir de ce comportement ?” (vérification). Le
travail du chercheur est alors de développer un cadre de travail capable de s’appliquer a
un grand nombre de cas pratiques, il serait coliteux de redévelopper un algorithme pour
chaque systéme. Une fois le cadre fixé, la procédure (connue sous le nom de “model-
checking”) pour vérifier le comportement d’un systéme est la suivante:

1. Spécifier le systéme dans un modéle mathématique (représentation formelle).

2. Transcrire la propriété en une formule d’un formalisme connu (une condition qui
approuve ou invalide I’exécution du systéme).

3. Vérifier que la formule est vraie dans le modéle en explorant les diverses possibilités.
On retrouve ici les questions autour de 'efficacité des algorithmes.

4. Transposer la réponse de ’étape précédente au cas pratique.

Systémes multi-agents

La vérification de systémes monolithiques ou de systémes & deux agents (un agent représen-
tant le systéme électronique et 'autre représentant ’environnement) est relativement bien
comprise. Le cas des systémes multi-agents est en revanche moins bien compris. La mod-
élisation des systémes multi-agents se fait généralement par des jeux sur des graphes,
chaque agent est alors représenté par un joueur. Dans cette thése, nous considérons des
systémes avec un nombre fini mais arbitrairement grand d’agents. La difficulté est alors
d’incorporer les objectifs de chaque agent dans un systéme global, cohérent et sans dys-
fonctionnement. La maniére dont les différents objectifs des différents agents limitent
leurs comportements et impactent le systéme seront au centre de notre étude.
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Plan du manuscrit

Cette thése se concentre sur I’étude du formalisme connu sous le nom de “Strategy Logic”
(SL). Cette logique est un langage de premier ordre pour raisonner sur les liens unis-
sant plusieurs exécutions d’un méme systéme possédant un nombre arbitraire (mais fini)
d’agents. Notre travail tourne autour de deux problémes:

e trouver des algorithmes pour le model-checking (étant donnés un systéme et une
formule, la formule est-t-elle vérifiée sur le jeu 7).

e étudier les choix sémantiques faits dans la définition de SL, ainsi que leur con-
séquences.

La thése est organisé en deux partie regroupant respectivement quatre et trois chapitres.
La premiére partie présente et explore SL dans ses grandes lignes. La seconde se concentre
sur le probléme des dépendances entre stratégies dans un fragment (SL[BG]) de SL.

Le premier chapitre présente les différents formalismes présents dans la littérature
et utilisés pour la vérification de systémes multi-agents. On y retrouve une définition
formelle de SL et de ses principaux fragments. Le second chapitre explore la complexité
des problémes de satisfiabilité et de model-checking de SL. Dans le troisiéme chapitre,
nous nous intéressons aux probléme d’historique qui apparaissent quand une stratégie est
créée a un instant ¢ mais utilisée seulement & un instant ¢ (avec ¢’ > t). Enfin, dans le
quatriéme chapitre, nous explorons les versions quantitatives de SL, avec compteurs et
énergies.

Les chapitres de la seconde partie (cing a sept) sont exclusivement consacrée aux
problémes de dépendances entre stratégies. Partant d’une quantification “Pour tout 1,
il existe x5”, il s’agit de cartographier les choix de x; que x5 a besoin de connaitre pour
répondre de maniére appropriée.
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Part 1: “Strategy Logic”

ATL" et Strategy Logic (chapitre 1)

Il existe de nombreux formalismes pour décrire les systémes multi-agents: ATL, ATL",
BSIL, IATL, ATL,,., GL ... Cependant, dans cette thése nous nous intéressons a un seul
d’entre eux: la Strategy Logic (SL).

Modéles pour systémes multi-agents

Définition (Jeux concurrents).

Un jeu concurrent (“concurrent game structure”, CGS) est un n-uplet G := (AP, Agt, Q, Act, A, labels)
ot AP est un ensemble non-vide et fini de propositions atomiques, Agt est un ensemble

non-vide et fini d’agents, Q est un ensemble non-vide et fini d’états, Act est un ensemble

non-vide d’actions, A : Q x Act"¢" — Q est une fonction de transition et labels : Q — 2P

une fonction d’étiquetage.

L’exécution du systéme est alors représentée en posant une pierre sur un état initial et
en la faisant bouger dans le jeu. Au temps ¢, chaque agent joue une action et ’ensemble
des actions jouées définit un mouvement qui déplace la pierre d’état en état. La suite des
états visités représente alors I’évolution du systéme.

Définition (Historiques et chemins).

Un historique dans un jeu G = (AP, Agt, Q, Act, A\, labels) est une suite finie d’états

(¢:)i<r (L € N) telle que pour tout i < L, on peut trouver d € Act*®" avec A(g;, d) = qis1.
Un chemin dans G est une suite infinie d’états (q;)ien tel que pour tout i € N, il existe

d € Act*®" avec A(q;, d) = qiy1.

Pour représenter les comportements des différents agents, nous utilisons la notion de
stratégie. Pour cette theése, les stratégies seront déterministes et auront une mémoire
infinie.

Définition (Strategy).
Une strategie dans un jeu G := (AP, Agt, Q, Act, A, labels) est une fonction (potentielle-
ment partielle) 0 : Histg — Act qui associe une action & chaque historique.

Une valuation (sur un ensemble Agt d’agents et un ensemble V' de variables) attribue
une stratégie a chaque variable ou agent.
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Définition (Un résultat).

Soit G := (AP, Agt, Q, Act, A, labels) un CGS, q un de ses étals et x une valuation. Le
résultat out(x,q) = (q:)ien+ de x depuis q est unique chemin avec 1 = q et Vi € N¥,
¢iv1 = Algi,d;), ou d; € Act*8t est une fonction qui assigne une action & chaque agent
en suivant x sur Uhistorique (q;)i<;.

La Strategy Logic

SL est construit sur un ensemble d’agents Agt, un ensemble de propositions atomiques
AP et un ensemble de variables V. Sa grammaire est la suivante:

SL>¢ u= Ju.¢|assign(A,z).¢0 | oV [=¢[¢U¢ [ X |p

avec x € V une variable, A € Agt un agent et p € AP une proposition atomique.
Les opérateurs assign(A, x) et 3z sont respectivement appelés assignation de x a A et
quantification existentielle de x.

Avant de définir la sémantique de SL, nous devons parler des variables et agents libres
d’une formule. L’ensemble des variables et agents libres dans une formule ¢ est noté
free(¢) et représente les éléments qui n’ont pas encore de stratégies. free(¢) est définie
inductivement par

free(p) = @ pour tout p € AP free(X ¢) = Agt U free(9)
free(—¢) = free(¢) free(p Uv)) = Agt U free(o) U free(w))
free(¢p V 1) = free(¢) U free(1)) free(z. @) = free(p) \ {z}

_ | free(o) si A ¢ free(o)
free(assign(4, ). ¢) = {(free(gb) U{z)\ {4} sinon

Quand free(¢) = &, on parle alors de formule fermée.

Les formules de SL sont évaluées sur un CGS G := (AP, Agt, Q, Act, A, labels) & un état
q relativement & une valuation x (et tel que les ensembles d’agents et de propositions
atomiques de la formule coincident avec ceux du CGS).

G.qaFxp & p € labels(q)
G.aExoVed & GalEydouG gl ¢
gaQ):X_'gb = gan?éxgb

Si free(¢) \ {z} € dom(x), alors

G.q by Jr.¢ & 30 € Stratg tel que G,q Fypmsg @

De plus, étant donné A € Agt, si (free(¢) \ {A}) U {z} C dom(x) alors

G,q Fyassign(A,7).9 & G,q Fyasy@) ¢
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Si Agt U free(¢) U free(yp) € dom(x) alors x produit un chemin résultat = depuis g, i.e.
7 = out(x, q). Pour tout entier j, on note X7 la valuation xz—. Ensuite,

qu }:X X¢ <~ g7OUt(X7Q)(]‘) ):X—f 925
G.q Fx oU ¢ < Ik eN. G out(x,q)(k) ):x? ¢’ et
VieN. 0<j<k= G, out(x,q)(j) ):x7 ¢

Les fragments (plats) SL[NG] et SL[BG]

A travers la thése, nous étudierons aussi des fragments de SL. Le premier fragment
d’importance est le fragment SL[NG] avec des objectifs imbriqués (Nested Goals). Une
formule de SL[NG] regroupera les quantifications par blocs de sorte quun nouveau bloc
marque le début d’une formule fermée.

Définition (SL avec objectifs imbriqués, SL[NG]).

SLINGP 5 ¢ == Fu.¢ | Vo6 | &
§ u=EVE[ENE|B
B = assign(A,x).0 | ¢
p =9V |pleUp|[Xe|p|B

avec x € V une variable, A € Agt un agent et p € AP une proposition atomique.

Les fameux objectifs de SL[NG] sont les sous-formules de type §. Une formule de ce
fragment est alors décomposable en un bloc de quantifications suivies d’une combinaison
booléenne d’objectifs (potentiellement imbriqués).

Si I'on enléve la possibilité d’imbriquer les objectifs, on obtient le fragment & objectif

booléen, SL[IBG] (Boolean Goals).

Définition (SL avec objectifs booléens, SL[BG]).

SLIBG] 5 ¢ = Jx.¢ | V.| €
§ u=8gVE[ENnE|B
B = assign(A,x).0 | ¢
p u=pVe|p[eUp|Xe|p
On peut aussi restreindre les combinaisons booléennes et obtenir de nouveaux frag-

ments: SL[1G] avec un unique objectif, SL[CG] qui n’autorise que des conjonctions d’objectifs,
ou encore SL[DG| qui n’autorise que des disjonctions d’objectifs.
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Complexité (chapitre 2)

Dans ce chapitre, nous présentons des résultats de complexité sur SL (certains développés
dans cette thése, d’autres venant de différents auteurs de la communauté scientifique). 1l
existe deux questions principales:

Définition (Satisfiabilité).

Le probléeme de satisfiabilité d’une logique L demande [’existence d’un algorithme qui
prend en entrée une formule ¢ € L et qui répond est-ce qu’il existe un CGS sur lequel ¢
est vraze.

Définition (Model-checking).
Le probleme de model-checking pour une logique £ demande un algorithme qui prend en
entrée une formule ¢ € L et un jeu G, et qui répond si ¢ est vraie sur G.

I’ensemble des résultats connus sont présentés dans le tableau ci-dessous. Les résul-
tats de borne inférieure du model-checking relativement au jeu (PH-hard) pour SL, SL[NG]
et SL[BG], et de borne inférieure pour SL[BG] relativement & la formule sont développés
dans la theése. Les autres résultats sont issus de la littérature scientifique sur SL.

Model Checking Satisfiability
Formula | Data Formula
SL Upper Bound NONELEMENTARY [39]
Lower Bound | | TOWER [39] |
Uoser Bownd In (k + 1)-EXPTIME for
SL[NG] | -bPerboun k quantifier alternations [39] UNDECIDABLE
and
SL{BG] Lower Bound
SL[1G] Upper Bound 2-EXPTIME-complete [3§]
Lower Bound (PTIME-complete for the model checking data complexity)

Résultats de complexité. En , les aboutissements de la thése.

La sémantique flottante de SL (chapitre 3)

Prenons ’exemple d’un serveur qui propose a plusieurs clients ’accés a une ressource. Le
serveur doit s’assurer de deux choses. Un, qu’a tout moment, ’accés a la ressource n’est
possible qu’a au plus un client. Deux, qu’il existe un protocole pour chaque client qui lui
assure l'accés (éventuellement) & la ressource (pourvu que le client collabore). Ecrit dans
SL, cela donne la formule suivante:

FOeerveur- Fclient. S1 serveur utilise dsepveyr alors [( Toujours exclusion mutuelle)

A ( toujours ( si client utilise dcjiene alors éventuellement accés ))}
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Intuitivement, au moment ou la stratégie dcient €st assignée, elle devrait avoir un
historique vide. En particulier, dqient ne devrait pas avoir connaissance des demandes
faites par les autres clients. Cependant, la sémantique de SL donne cette information. En
effet, les stratégies ont des historiques qui commencent au moment de leur quantification
et non de leur assignation. Ce choix limite 'expressivité de SL.

L’importance de ce détail sémantique a été longtemps sous-évalué par la communauté
scientifique. Dans ce chapitre, nous proposons une nouvelle sémantique (nommée flot-
tante) dans laquelle les stratégies tirent leurs historiques depuis leurs assignations (par
opposition a leurs quantifications). Nous étudions ensuite la complexité et I’algorithmique
qu’entraine ce changement. La situation peut étre illustrée par le dessin suivant.

((31,77
Q- 0 est stockée - g
dans =z
commence '0} “assign @’ x?” p commence
avec g - 0 es% a’s&gnee g avec
historique de z & l'agent A (\\) historique
d(p.q) o o 6(q')
Strategy Logic Floating Strategy Logic

Connaissance des historiques dans les deux sémantiques.

Définitions de la version flottante FSL de SL

Définition (Translations (de valuations) flottantes).
Pour une valuation x sur un jeu G, pour un ensemble V de variables et pour un historique
p dans G, on définit la translation flottante x , par

%

Vo € AgtNdom(x), x , ()

(1) =

Xg,
Vo e VNdom(x), X,
N

La version flottante FSL de SL obéit & la méme grammaire que SL, seule la sémantique
des opérateurs temporels change.

FSL> ¢ == Jr.¢|assign(4,2).0|oVo|—d|oUd | X |p

Fixons une valuation x avec Agt U free(¢) U free(¢’) C dom(x). En utilisant la trans-
lation flottante sur y, comme dans la sémantique originale, on obtient un unique chemin
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Translations flottantes 'Translations classiques

Indécidable FSL

Indécidable FSL[NG]

SL  Non-Elémentaire [39]

SLING]  Non-Elémentaire [3]

B == ==

B9 Non-Elémentaire SL[BG] Les deux notions se recoupent

Graphe d’inclusion et complexité.

résultant p. On note alors x ; pour x,_, et on définit la sémantique de X et U par
= =

gaq’:XXQs ~ g’q):xggb

g7q ’:Xﬁ

’ U & dJdke N
GqFx¢U¢ {VjeN.0§j<k:>gaQI:xJ‘¢,

On note FSL[NG] le fragment de FSL qui reprend la grammaire de SL[NG]. On note
aussi FR-FSL[NG] le fragment de FSLING] qui force une réassignation de chaque agent
lors de 'utilisation de 'opérateur assign (par opposition & seulement une réassignation
d’une partie des agents).

Les deux sémantiques (originale et flottante) coincident sur SL[BG]. On rappelle que
les formules de SL[BG] sont formées d’un bloc de quantifications suivi par une combinaison
booléenne d’objectifs (assignations suivies d’opérateurs temporels). Il ne peut donc pas
y avoir d’assignation aprés un opérateur temporel. La quantification et 'assignation
d’une variable ont lieu au méme moment. De fait, la sémantique choisie n’a donc plus
d’importance dans SL[BG].

Résultats de complexité

Les résultats de complexité sont représentés dans la Figure en haut de cette page. On peut
voir que FSL admet un model-checking indécidable et que seul le fragment FR-FSL[NG] ad-
met un algorithme. Ce petit changement sémantique a donc d’importantes conséquences
algorithmiques.

Ces subtilités sémantiques dans SL et SL[NG] (ainsi que les résultats de complexité)
nous laissent a penser que SL[BG] est le fragment a privilégier pour la suite, celui-ci étant
relativement plus simple.
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Aspects quantitatifs dans SL (chapitre 4)

De nombreux systémes possédent des contraintes quantitatives: gestion des ressources,
grilles d’énergies, programmes avec des boucles. .. Les formalismes qualitatifs et mono-
lithiques ne peuvent gérer ces aspects. La communauté scientifique a donc développé de
nouveaux outils. Ici, nous nous intéressons aux adaptations possibles de SL pour traiter
les aspects quantitatifs.

La vérification des systémes ouverts quantitatifs est bien avancée et posséde de mul-
tiple branches: jeux a énergies, jeux a coit moyen, VASS alternants, jeux a piles, jeux
temporisés, jeux hybrides... Chacun de ces formalismes permet de modéliser un type de
systéme différent. Dans ce chapitre, nous nous intéressons a deux d’entre eux: les jeux a
compteurs et les jeux a énergies. Dans un premier temps, il convient d’adapter les jeux
sur lesquels nous travaillons.

Ajouter des poids aux jeux

Définition (Jeux avec des poids: WCGS (weighted concurrent game structures)).
Un jeu a n-poids est un uplet G := (AP, Agt, Q, Act, A, Weights, labels) ou AP, Agt, Q,
Act, A, et labels représentent les méme notions que dans le cas qualitatif, et ot Weights :
Q x Act*®' — {—1,0,1}" est une fonction de poids qui associe n entiers dans {—1,0,1}
(les fameux poids) & chaque transition de A.

On notera par WCGS un jeu a n-poids, pour tout entier n > 0.

Hormis les jeux, d’autres notions doivent étre adaptées. Fixons un WCGS G. Une
configuration est un couple (¢, c) € Q x N™ composé d’un état et d'un n -uplet d’entiers
positifs ou nuls. Un historique (resp. chemin) est une suite (g;, ¢;)i<1, de configurations o
L € N (resp. L = o0), pour tout i < L (resp. i € N) ¢; € N™ et tel que pour tout ¢ < L—1
(resp. i € N) qip1 = A(gi,m;), et ciq = ¢ + Weights(g;, m;) pour un m; € Act®®". Les
autres concepts sont inchangés mais se basent sur ces nouvelles définitions d’historique
et de chemin.

Ajouter des contraintes de compteurs a SL

Les compteurs sont omniprésents en l'informatique, notamment de par les boucles dans
les programmes. Il existe donc une volumineuse littérature sur la vérification de systéme
a compteurs. Pour notre travail, nous placerons les contraintes de compteurs dans la
logique (SL). Notons qu’il aurait été possible de les ajouter sur les transitions du jeu
(cela revient grosso-modo au méme).

Il existe quelques résultats d’importance sur les systémes a compteurs. Premiérement,
I’accessibilité dans les jeux & deux compteurs et plus est indécidable. Dans les jeux a un
unique compteur, cette accessibilité devient PSPACE. D’autre part, le model checking de
ATL" est 2-EXPTIME complet.

Définition (Contraintes de compteurs).
Une contrainte de compteur sur n poids est un sous-ensemble S de N" fait d’une union
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(finie) d’ensembles periodiques d’entiers ( ensembles de forme a+b-N", pour un vecteur
a fixé et un vecteur de période b, tous deux dans N™).

Définition (cSL, Strategy Logic avec des contraintes de compteurs).

La logique cSL est construite sur un nombre n de poids, un ensemble Agt d’agents, un
ensemble APde propositions atomiques et un ensemble V de variables. Sa grammaire est
la suivante:

cSLe ¢ == Fx.¢|assign(A,x).¢ | oV || oUp | X |p|lente S

ot x €V est une variable, A € Agt un agent, p € AP une proposition atomique et S une
contrainte atomique sur n poids.

La notion d’agent et de variable libre est similaire a SL, avec I’addition ci-dessous
pour les contraintes:

free(cnt € S) = @ pour toute contrainte S

De méme, la sémantique des opérateurs déja dans SL est conservée. On y ajoute celle
des contraintes:

G.(¢g,c) ExenteS & ceS

Comme précisé plus haut, le model-checking de cSL est, dans le cas général, indécid-
able. Une solution potentielle est de réduire le nombre de poids & un; pour la question de
I’accessibilité, cela raméne la décidabilité. Nous nous intéressons donc particulierement
a cSL avec un unique poids; on notera alors la logique 1cSL. De plus, nous nous con-
tenterons d’étudier le fragment SL[BG|; une étude de la logique entiére serait trop long
(particuliérement il fallait traiter les deux sémantiques, flottante et originale). Dans
cette thése, nous avons développé deux résultats:

Théoréme. Soit G un 1-WCGS, et ¢ une formule de 1cSL[BG]. Il existe alors un seuil
A > 0 et une période A > 0 pour la valeur de vérité de ¢ sur G. C-a-d pour toute
configuration (q,c) de G avec ¢ > A, pour tout k € N, G, (q,¢) = ¢ si et seulement si
G,(qc+k-N)Eo.

De plus la somme A + A\ est majorée par

Q22!
Tower( max Mg max kg +1

9cSubForm(¢) € SubForm(s)
ot Q est l’ensemble d’états de G, SubForm(¢) est 'ensemble des sous-formules de ¢, kg
est le nombre d’alternance des quantifications dans 6, et ng est le nombre d’assignations

dans 0.

Théoréme. Faisons l’hypothése de l'existence d’un algorithme pour le model-checking de
1cSLIBG] qui travaille en temps Tower(|¢|, k + ¢) sur une formule ¢ a k alternance de
quantifications, pour une constante ¢ fizée. Alors, la logigue MSO sur le modéle (w*, <)
peut étre décidée en temps Tower(|®|, k + ¢) pour une formule ® avec k alternance et ot
c est la constante de l'algorithme pour 1cSL[BG].
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Ajouter des contraintes d’énergies a SL

A linverse des contraintes de compteurs, le couple accessibilité plus contraintes d’énergies
ne meéne pas a l'indécidabilité dans les jeux avec deux poids ou plus. A travers cette
partie, nous allons essayer de savoir si cela s’applique aussi a SL enrichie des contraintes
d’énergies.

Un ensemble S de N” est “clos par le haut” si, dés que (s1,...,s,) € S, il est vrai que
(s1411,...,8, +1i,) €S pour tout (i1, ...,4,) € N

Définition (Contraintes d’énergies).

Une contrainte d’énergies sur n poids est un ensemble S of N clos par le haut.

Définition (eSL, Strategy logic avec contraintes d’énergies).
Les formules d’eSL sont construites similairement a cSL, sur la grammaire suivante:

eSLe ¢ == Ju.¢|assign(A,x).¢ | oV o || oUp | X |p|lente S
mais ot S est une contrainte d’énergie.

La sémantique est la méme que pour cSL, seul le type de contrainte change.

En utilisant les restrictions vues précédemment, on peut ainsi définir le fragment
eSL[BG] de eSL. Nous nous intéresserons aussi au fragment conjonctif, dont la grammaire
(du fragment plat) est rappelée ci-dessous.

eSL[CG) 3 ¢ = Fu.¢p | Va.p | &
£ =ENE|B
f = assign(A,x).0 | ¢
pu=pVelap|pUp|Xp|[p|ente$S

Comme dit précédemment, ’accessibilité dans les jeux multi-dimensionnels a éner-

gies est décidable. Nous avions donc bon espoir que le model-checking de eSL[BG] soit
décidable lui aussi. Il n’en est rien, comme le prouve le résultat de la thése ci-dessous.

Théoréme. Le model-checking de eSL[CG] sur les 2-WCGS est indécidable
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Part 2: “Problémes de dépendances
dans SL[BG]”

Dépendances dans SL (chapitres 5 et 6)

Dans la sémantique des quantifications, une stratégie § dépend de toutes les stratégies
quantifiées avant elle dans leurs totalités. Cela rend la synthése de o difficile et force le
systéme a utiliser beaucoup de mémoire. Cela a aussi un coté contre-intuitif. L’exemple
ci-dessous illustre le probléme.

Fixons deux agents [| et (), deux propositions atomiques p; et p, ainsi que quatre

variables xi, x%, Yy, et yg. Considérons le jeu G de la figure ainsi que la formule ¢, de
SL[BG] définies ci-dessous:

(assign () 24 5y )E py
& assign([], 2 uyB)FPQ)
A

a b G0 1= ‘v’xg NMyy .Hx% Ayg .

assign (], 2'5; ),y )F b

1

On peut voir que, suivant la sémantique donnée précédemment, ¢y est vraie sur G
depuis I’état initial qimﬂ

En y regardant de plus prés, la formule ¢, oblige la stratégie de y5 sur I'historique
ini-b & dépendre du choix de y, sur I'historique g;,;.a. On voit apparaitre une dépendance
d’une stratégie sur une autre dans sa globalité; la figure de la page suivante illustre la
situation. Comprendre quand et pourquoi ces dépendances apparaissent nous permettrait
de mieux aborder les problémes mémoire dans SL[BG] et aiderait grandement le procédé
de modélisation en vue d’applications pratiques.

Avant toute chose, certaines définitions sont nécessaires. En premier lieu, nous rap-
pelons les notions de préfixes et d’extensions. Pour un historique p = (¢;)i<z fixé ou
L € N, un préfixe de p est un historique de forme p’ := (¢;)i<z- ot L’ < L. Une extension

8Le détail est donné dans la thése, mais nous laissons la vérification en exercice pour ce résumé
substantiel en frangais
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VT4 Vya Jys
VAR Name!
/ \ / \
/ \ / \
/ \ / \
/ \ / \
/ \ / \
O /O f O
/ \ / \
/ \ // \\
// \\ / 7 \
/ \ / 2
/ \ // \\
O / \ / o\

\ dépendance sur un

historique & coté

Dépendance de yg sur y, .

de p est un historique de forme p"” := (¢;)i<z» ou L” > L. Dans la suite nous écrirons
Pref<, pour 'ensemble des préfixes de p, p inclus, et Pref., pour ce méme ensemble ex-
cluant p. Nous regroupons ’ensemble des historiques n’étant ni préfixe ni extension dans
la notion d’historique “a coté”.

Définition (Historique a coté).
Pour deux historiques p et w, on dit que 7 est un historique & coté de p quand ce n’est ni
un préfize ni une extension de p.

Nous identifions quatre types de dépendances et explorons leurs impacts respectifs sur
SL[BG]. Plutét qu’une longue explication, nous les présentons a travers une illustration:
la figure de la page suivante. Des détails sur chacune d’entre elles sont donnés dans la
these.

Pour étudier ces dépendances, nous réutilisons et améliorons un cadre présent dans
la littérature: les “maps”. L’idée reprend les concepts de la Skolémisation de la logique
du premier ordre. L’astuce est de représenter les choix existentiels comme la réponse
aux choix universels a travers une fonction (une map en anglais). On peut alors encoder
les différentes dépendances en appliquant des restrictions a la dite fonction. La notion
de “il existe une stratégie tel que pour toute stratégie... telle que le contexte résultant
satisfait ...” du bloc de quantifications devient alors “il existe une map qui pour toute
entrée retourne un contexte satisfaisant ...”.

Pour des raisons de place, nous ne définirons pas les maps dans ce résumé et renvoyons
a la theése.

En utilisant ces maps, nous pouvons construire des relations de satisfaction adaptées
aux différentes dépendances: ():M("O))‘E{@,SL veqo,r}- Pour une formule (Q;2;)i< f(ﬁjnpj)
fermée de SL[BG], on pose

3 une map 6 avec restrictions M(#, Q) telle que

G.q EM*(Qizi)i< f(ﬁj%)jgn At

le contexte x résultant satisfait

g; q }:X g(ﬁj()&j)jgn
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Dépendance
locale / / \

Dépendance

de coté

Dépendance @

future
I 1l
/@ 0 [4 b \
Dependance

sur

préfixe non-

ordonné

Les quatre types de dépendance
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La map 6 est en quelque sorte un témoin d’un comportement possible des stratégies
existentielles en fonction des stratégies universelles. La relation de satisfiabilité =M(51)
redéfinit alors celle présentée au début du résumé (}=).

Remarque. Notons que seule la sémantique des quantifications change (4 travers l'utilisation
des maps), mais pas celle des autres opérateurs.

Complications regardant la notion de négation

L’étude des dépendances nous oblige a décomposer les relations entre les différentes straté-
gies. Cela a quelques effets indésirables. Le principal est que la notion de négation n’est
plus aussi évidente que dans les cas simples (ATL" par exemple). Quand on considére
la négation d’une formule, que fait-on avec les dépendances? Faut-il les inverser aussi ?
Faut-il les laisse tel-quel? La négation est donc & deux dimensions. On a ainsi plusieurs
notions de négation et il faut faire attention a ce qu’on fait. On peut se retrouver avec
des résultats comme celui dessous (aprés la figure).

G.q ’:_VM(Sy@) (szz)zgl £<6j90j)j§n

G, q M 1Q:2:)i<i £(Biep5)

Jjsn

La notion de négation devient plus complexe.

Lemme. Il eziste une formule ¢ de SL[BG], un jeu G ainsi qu’un état initial q;n; tel que,
pour tout Q € {0, F'},

G, Gini %M((Z),@) [0) et G, Qini %M(Q),@) ¢

Combinaisons booléennes

Suivant une idée présente dans la littérature, nous décomposons SL[BG] selon plusieurs
fragments basés sur le type de combinaisons booléennes d’objectifs. Il y a trois fragments
d’intérét:

e SL[1G] est le fragment le plus simple. Il restreint SL[BG] a n’avoir qu’un seul objectif.

Dans sa grammaire, la ligne £ devient £ 1= (.
SL[1G]’ > ¢ = Fu.¢|Va.d | &
¢ = B

[ = assign(A,x). B |
p = pleVe|XelpUep|p
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e SL[CG] ne permet que des conjonctions d’objectifs; la ligne £ devient alors € 1=

ENELB.

e Similairement, SL[DG] n’autorise que des disjonctions d’objectifs.

A la fois la formule et sa
M(S, F, P)
négation peuvent étre vraies.
M(S, F,0) M(S,0, P) M(D, F, P)
M(S,0,0) M(D, F', 0) M(0,0, P)
Si la formule est vraie,
M(0,0,0)

sa négation est fausse.

Situation regardant la négation

Résultats

Plutét qu'un long texte, pour ce résumé nous opterons pour une option visuellement
plus simple, plus propre. L’ensemble des résultats est donc représentés a travers les deux
figures ci-dessus et de la page suivante.

Le fragment SL[EG] (chapitre 7)

Nous poursuivons notre étude des dépendances dans SL. Nous nous intéresserons en
particulier aux trois résultats ci-dessous. Ceux-ci reposent sur une restriction algébrique
de SL[BG]: les ensembles semi-stables, et un nouveau fragment: SL[EG].

Théoréme. Fizons une formule ¢ € SL[EG], un jeu G, un élat gy de G et deux
parametres &4 € {0, S} et O € {0, F}Y. Si G, qini FM*YP) ¢ et G, qins M) ¢
alors G, gini EMOO) ¢,

Théoréme. Pour tout n € N* et tout ensemble non-semi-stable F", il existe un formule
¢ de SL[BG] construite sur F™, un jeu G et un état q;p; de G tel que

gv Gini )ZM(S,QLP) ¢ et ga Qini I?éM(S’&P) _'¢ et g7 Gini %M(Q)?@’P) Qb

Théoréme. Le model checking de SL[EG] pour la relation =MO0P) de satisfaction est
2-EXPTIME-complete.
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# SL[CG] (lem [6.13]
# SL[DG] (lem [6.14]
# SL[1G] (thm[6.17}*

M(S, F,0)

# SL[CG] (lem [5.10}
# SL[DG] (lem |5
= SL[1G] (thm [5.14] # SL[CG] (lem[6.13
#SL[DG] (lem [6.14
= SL[1G] (thm [6.20]

# SL[CG] (lem [5.10

% SL[DG] (lem
= SL[1G] (thm

= SL[CG] (thm [5.13]
# SL[DG] (lem[5.12]

Graphe d’inclusion des différentes sémantiques.

5.12

5.14

M(S,F, P)

# SL[CG] (lem [6.10}
# SL[DG] ( _mB
# SL[1G] (thm|[6.17]

# SL[CG] (lem|[5.11}*
# SL[DG] (lem

= SL[1G] (thm [5.14]

M(D,0,0)

Les références correspondent a

# SL[DG] (thm [6.15
# SL[1G] (thm[6.16]

M(S,0, P)
/\EUQ (lem [6.9]

# SL[CG] (lem[6.13) = SL[CG] (thm[6.12]
# SL[DG] (lem l # SL[DG] (thm I

7 Stic] (eI /

4 SL[CG] (lem [6.13
# SL[DG] (lem|[6.14
= SL[1G] (thm [6.18]

M(0, F, P)

# SL[1G] (thm[6.17}*

* : Seulement sur jeux concurrent
Inconnu sur jeux a tours

leur numérotation dans le manuscrit de thése.
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Ces résultats ont plusieurs conséquences. La principale est de fournir un fragment
(SL[EG]) avec un model-checking en 2-EXPTIME pour la relation =M@%F) Une seconde
est de montrer que des restrictions algébriques permettent de limiter les dépendances.

Nous débutons par des notations: pour n € N, on note {0, 1}" ’ensemble des fonctions
de [1,n] dans {0, 1}. On note aussi 0" (ou 0 si n est clair) pour la fonction qui associe tout
entier de [1,n] & 0, et 1™ (ou 1) pour celle qui leur associe toujours 1. Pour f € {0,1}"
et £ < n, fux sera la restriction de f a [1,k]. La taille de f € {0,1}" est définie par
|fl = > 1<ic, f(i). Pour deux f et g dans {0,1}", on dit que f < g quand f(i) =1
implique g(i) = 1 pour tout i € [1,n]. Pour B C {0,1}", on écrit 1B™ = {g € {0,1}" |
df € B™. f < g}. Un ensemble F™ C {0,1}" sera dit clos par le haut quand F"™ = 1F".
Enfin, on définit les opérateurs suivants:

frim 11— f(i) fAg:i—min{f(:),g(:)} fYg:ir— max{f(i),g(7)}.

Pour définir SL[EG], le fragment au coeur des trois résultats cités plus haut, on intro-
duit la notion de sous-ensemble semi-stable:

Définition. Un ensemble F™ C {0,1}" est semi-stable si pour tout f et g dans F", il
est vrai que

Vs e {0,1}" (fAS)Y(gAS)€F" or(gAs)Y (fAS)eF™

Exemple. Clairement, {0,1}" est semi-stable, comme [’ensemble vide. Pour n = 2,
Pensemble {(0,1),(1,0)} n’est pas semi-stable: il suffit de prendre f = (0,1) et g = (1,0)
avec s = (1,0), on a alors (f As) Y (g AS) =(0,0) et (g As)Y (fAS)=(1,1). De méme,
{(0,0),(1,1)} n'est pas semi-stable. Tout autre sous-ensemble de {0,1}* est semi-stable.

Nous pouvons maintenant définir le fragment SL[EG]:

SLIEG] 5 ¢ == Va.¢ |36 ¢
§ = F"((Bi)i<i<n)
[ = assign(A,x). B
p = —p|leVe|Xe|leUe|p

avec p dans AP, n dans N et pour tout n, F™ est un ensemble semi-stable de {0,1}". La
sémantique de ™ est alors

G.q = F'((Bi)icn) & 3f € FMavee f(i) =11 G,q = B

Si F™ n’avait pas la restriction semi-stable, on retrouverait alors la logique SL[BG].
Le cas ou F'™ = {1"} correspond a SL[CG], tandis que F™ = {0,1}"\ {0"} donne SL[DG].
Puisque {1"} et {0,1}™ \ {0"} sont semi-stables, on a SL[CG] C SL[EG] and SL[DG] C
SL[EG].
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Exemple. Considérons la formule de existence d’un équilibre de Nash. Pour deux
agents, cela donne

(assign( Ay, y1; Ag, 12).01) = (assign(Ar, 215 Az, 22).¢1)
(assign(Ay, x1; Ag, y2).p2) = (assign(Ar, x1; Ag, T2).02)

La formule a quatre objectifs et est en correspondance avec ’ensemble

F*={(1,1,1,1),(0,1,1,1),(1,1,0,1),(0,1,0,1),(0,0,1,1), (1,1, 0,0),
(0,0,0,1),(0,1,0,0),(0,0,0,0) }

Cet ensemble n’est pas semi-stable et donc la formule n’est pas syntaziquement dans SL[EG].

Gréce a sa définition algébrique, SL[EG] admet des propriétés intéressantes, par ex-
emple un ensemble F™ est semi-stable si et seulement si son complément ’est aussi. Une
autre propriété d’importance est 'existence de pré-ordres qui classent les objectifs par
ordre d’importance.

Pour voir cela, nous avons besoin de nouvelles notations. Pour un ensemble F" C
{0,1}", un s € {0,1}" et un h € {0,1}", on définit

F*(h,s) :={h € {0,1}" | (h A s) Y (" A 5) € F"}
et (en écrivant F" pour le complément de F™),
Fo(h,s) :={h € {0,1}" | (h A s) Y (k' A 3) € F"}
Trivialement, F*(h, s) (F*(h,s) = 0 et F*(h, s) JF"(h, s) = {0, 1}

Lemme. Si F" est semi-stable, alors la famille (F"(h,s))nefo1y» est tel que pour tout
hy, hy € {0,1}", soit F"(hy,s) C F"(hg, s) soit F"(hy,s) C F"(hy, s).

On peut alors utiliser I'inclusion du lemme précédant des pré-ordres < sur les élé-
ments de {0, 1}".

Définition. On définit <I"C {0,1}" x {0,1}" de sorte que Iy =" hy ssi F(hy, s) C
F(hy, s). En particulier, hy <" hy deés lors que hy € F™ ou hy € F™.

Dans la suite, F™ est fixé et nous utiliserons la notation simplifiée <, pour faciliter
la lecture. L’intuition derriére < est d’ordonner les éléments de {0,1}" en fonction de
la facilité & les compléter en un élément de F™. Les figures de la page suivante illustrent
'idée.

Lemme. Fizons un ensemble semi-stable F™, s1,s5 € {0,1}" tel que s; A s = 0 et
f,9€40,1}" tel que f <4, g et f =g, g. Alors, [ =g vs, G-

Ces pré-ordres peuvent alors étre utilisés pour prouver les trois résultats présentés au
début de la section. L’idée étant qu'une stratégie existentielle peut utilisé le pré-ordre
approprié pour choisir I’action la mieux adaptée. Nous reportons les preuves a (la version
compléte) la theése.
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F3 (@\

~ o ) (0,%,%) <100 (1,%%) et
(1,1,0)  (1,0,1) ( S {((*,1,1) A (0,1,1)) ¥ ((0,%,%) A (1,0,0)) € F™
(L6000 o1 a0 (611 A 0L1)Y (1Lxx) £ (1,0,0) € F"

(0,0,0)

Lien entre F™(h, s) et les pré-ordres.

=(1,0,0) =(1,1,0)
(1,1,1)
1,0 (1,0,1) (0,1,1
( ) ( ) ( ) (0,5,%)
=
(1,0,0))(0,1,0) (0,0,1) z (0,0,%) (0.1,0) (0,0,1)
&
(0,0,0) 2 (0,0,0)

Un exemple avec F? := {(1,1,1);(1,1,0);(1,0,1);(0,1,1);(1,0,0)} et les pré-ordres
=1,00) € 2(1,1,0)-
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Conclusion

Cette thése porte sur les problémes de sémantique et de complexité dans la Strategy
Logic (SL). SL tire sa particularité de la dissociation entre stratégies et agents; cette
dissociation joue un role central dans 'expressivité de la logique. Il est par exemple
possible de créer une stratégie a un temps t et de 'appliquer & un autre temps t’. On
peut aussi exprimer des liens complexes entre les exécutions potentielles du systéme: on
peut forcer un agent a agir suivant le méme comportement dans deux exécutions tout
en laissant les autres agents changer de stratégies entre les deux exécutions. De maniére
générale, SL est une logique possédant un grand pouvoir d’expression. Cela en fait un
cadre idéal pour travailler sur les aspects temporels des systémes multi-agents.

Complexité: Comme toujours, une grande expressivité va de paire avec une mau-
vaise complexité. En particulier, Mogavero, Murano, Perelli et Vardi ont montré que la
satisfiabilité de SL est indécidable et que son model-checking est (décidable mais) non-
élementaire. A travers cette thése, nous avons complété le tableau. Premiérement nous
avons trouvé une borne inférieure TOWER au fragment SL[BG]; ce faisant, la complex-
ité du fragment SL[BG] rejoint celle de SL. Deuxiémement nous avons montré que le
model-checking relatif a la taille du systéme (pour une formule fixée) est dure pour tout
les niveaux de la hiérarchie polynomiale. Il reste malheureusement un écart important
entre les bornes supérieures et inférieures (TOWER et PH) du model-checking de SL et
SL[BG] relativement a la taille du systéme. Résoudre ce décalage permettrait d’améliorer
les applications pratiques de SL.

Phase entre la création et 'utilisation d’une stratégie: Il se peut qu'une stratégie
0 soit créée & un temps t mais appliquée seulement aprés un temps de latence au moment
t' (avec t' > t). Dans ce cas, SL considére que 0 au moment t” (t” > t') a non seulement
connaissance de I’évolution du systéme entre ¢’ et ¢ mais aussi entre ¢ et ¢'. Dans cette
thése, nous argumentons pour un autre choix sémantique: d ne pourrait alors connaitre
que I’évolution du systéme entre t’ et t”, le passage entre t et t' lui serait inaccessible.
Une telle sémantique (que nous nommons FSL) serait particuliérement adaptée aux in-
teractions client/serveur et aux problémes d’ouverture et de fermeture de sessions. Cette
différence sémantique n’avait jusqu’alors pas été identifiée. Facheusement, le model-
checking de FSL est indécidable. Nos résultats identifient la frontiére entre décidabilité
et indécidabilité dans FSL. En particulier, nous identifions un fragment dont le model-
checking est décidable.

225



Dépendances entre stratégies: La plupart des extensions d’ATL* sont sujettes a des
problémes sémantiques d’accés a 'information (sur I'historique du systéme, sur les straté-
gies des autres agents, sur la différentiation des états du systéme...). Dans la seconde
partie de la thése, nous étudions le degré de connaissance sur les stratégies universelles
nécessaire pour synthétiser les stratégies existentielles. Pour de simple requétes, les in-
formations nécessaire ne sont que locales. A linverse, si on considére des propriétés
plus complexes, le degré d’information sur les choix des autres stratégies créé différentes
sémantiques.

Les résultats présentés dans cette thése permettent de connaitre précisément les dif-
férentes sémantiques possibles. Nous identifions aussi un fragment, SL[EG], de SL qui
admet un model-checking 2-EXPTIME. SL[EG] est basé sur différentes restrictions al-
gébriques, cela laisse a penser 'existence d’élégant résultats basés sur des méthodes com-
binatoires et algébriques.

Réflexions et Perspectives: Le probléme de dépendance entre stratégies universelles
et existentielles a été peu étudié. Il est pourtant central a la compréhension de SL (et des
systémes multi-agents de maniére générale). La communauté scientifique délaisse majori-
tairement ce probléme pour se concentrer sur les résultats de complexité. Ainsi, I'immense
majorité des travaux utilise la méme sémantique: une stratégie avec une connaissance to-
tale des stratégies quantifiées avant elle. Ce choix est particuliérement malheureux pour
deux raisons. Premiérement car, comme montré dans cette thése, les questions de dépen-
dance entre stratégies dans les systémes multi-agents induisent de nombreuses subtilités.
Deuxiémement car la majorité des applications industrielles ne se modélisent pas avec
cette sémantique. Ainsi une majorité des travaux académiques sur SL qui n’abordent pas
les dépendances ne resteront que théorique.

En vue d’une diffusion de la vérification des systémes multi-agents dans I'industrie, il
convient d’approfondir notre connaissance des problémes de dépendance. En particulier,
il est impératif de simplifier le cadre mathématique, d’étudier les différentes sémantiques
possibles (relativement aux différentes dépendances) et, pour chacune, de développer des
algorithmes adaptés.
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Abstract

With the proliferation of computerised devices, software verification is more prevalent than
ever. Since the 80’s, multiple costly software failures have forced both private and public actors
to invest in software verification. Among the main procedures we find the model-checking,
developed by Clarke and Emerson in the 80’s. It consists in abstracting both the system into a
formal model and the property of expected behaviour in some logical formalism, then checking
if the property’s abstraction holds on the system’s abstraction. The difficulty lies in finding
appropriate models and efficient algorithms.

In this thesis, we focus on one particular logical formalism: the Strategy Logic SL, used to
express multi-objectives properties of multi-agents systems. Strategy Logic is a powerful and
expressive formalism that treats strategies (i.e. potential behaviours of the agents) like first-
order objects. It can be seen as an analogue to first-order logic for multi-agents systems. Many
semantic choices were made in its definition without much discussion. Our main contributions
are relative to the possibilities left behind by the original definition.

We first introduce SL and present some complexity results (including some of our owns). We
then outline some other semantic choices within SL’s definition and study their influence. Third,
we study the logic’s behaviour under quantitative multi-agents systems (games with energy and
counter constraints). Finally, we adress the problem of dependencies within SL[BG], a fragment
of SL.

Keywords: game theory, strategy logic, model-checking, formal methods. ..

Résumé

De nombreux bugs informatiques ont mis en lumiére le besoin de certifier les programmes in-
formatiques et la vérification de programmes a connu un développement important au cours
des quarante derniéres années. Parmi les méthodes possibles, on trouve le model checking,
développé par Clarke et Emerson dans les années 80. Le model checking consiste a trouver un
modéle abstrait pour le systéme et un formalisme logique pour le comportement puis a vérifier si
le modéle vérifie la propriété exprimée dans la logique. La difficulté consiste alors a développer
des algorithmes efficaces pour les différents formalismes.

Nous nous intéresserons en particulier au formalisme logique de Strategy logic SL, utilisée sur
les systémes multi-agents. SL est particuliérement expressif de par son traitement des stratégies
(comportements possibles pour les agents du systéme) comme des objets du premier ordre. Dans
sa définition, divers choix sémantiques sont faits et, bien que ces choix se justifient, d’autres
possibilités n’en sont pas plus absurdes: tel ou tel choix donne telle ou telle logique et chacune
permet d’exprimer des propriétés différentes. Dans cette thése, nous étudions les différentes
implications des différents choix sémantiques.

Nous commencerons par introduire SL et préciserons ’étendue des connaissances actuelles.
Nous nous intéresserons ensuite aux possibilités non explorées par la sémantique originale. Nous
étudierons aussi la logique sur des systémes quantitatifs (ajout de contraintes d’énergie et de
contraintes de compteurs). Finalement, nous examinerons la question des dépendances dans

SL[BG] (un fragment de SL).

Mots-clefs: théorie des jeux, strategy logic, model-checking, méthodes formelles. . .
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