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Abstract

The Earth’s oceans are stratified in density by temperature and salinity gradients.
The interaction of tidal currents with ocean bottom topography results therefore
in the radiation of internal gravity waves into the ocean interior. These waves are
called internal tides and their dissipation owing to nonlinear wave breaking plays
an important role in the mixing of the abyssal ocean, and hence in the large-scale
ocean circulation.
In this context we investigate the generation of internal waves by oscillating ob-
jects of different idealized geometries as a model of barotropic flow over ocean
topography, and consider linear as well as nonlinear effects on these waves re-
sulting from interactions with the object and from wave–wave interactions. The
relatively novel contribution of this thesis is the investigation of three-dimensional
flow aspects that were accessible with our experimental approach, and are generally
difficult to investigate by numerical and analytical modelling.
First we investigate the wave structure of the first and higher harmonics for an
oscillating spheroid, emitting diverging waves. Higher harmonics are generated by
nonlinear instability at the surface of the object together with nonlinear effects
in the zone of intersection of the primary beams. They may intersect and focus,
therefore increase in energy, and become dominant over the first harmonic. The
horizontal structures of both, first and higher harmonics are determined.
We then consider waves generated by an oscillating torus, that are converging
to a focal point. Outside this focal region experimental results and theoretical
predictions are in good agreement, but in the focal region the wave amplitude is
twice as large as it is close to the torus, leading to local nonlinear wave amplification
and incipient wave breaking for large oscillation amplitudes. As a result, the
propagation of the first harmonic waves is found to be hindered in the focal region.
A standing pattern forms, while new waves are generated and emitted away from
this focal region.
A larger torus has been tested at the Coriolis platform to compare the focusing of
internal gravity, inertia–gravity and inertial waves in a low viscous regime. Owing
to the complexity of the focal region, a second harmonic is observed even at low
oscillation amplitude. The vertical vorticity field of internal gravity waves exhibits
a dipolar structure in the focal zone, which transforms in the rotating case into
a “Yin–Yang-shaped” monopolar vortex structure. The overall structure of the
inertial wave beams is close to that for internal gravity waves, though relatively
more intense.





Résumé

Les océans de la Terre sont stratifiés en densité par les gradients de température
et de salinité. L’interaction des courants de marée avec la topographie du fond
océanique entrâıne donc le rayonnement des ondes de gravité interne dans l’intérieur
de l’océan. Ces ondes sont appelées marées internes et leur dissipation due à le
déferlement des ondes nonlinéaires joue un rôle important dans le mélange de
l’océan abyssal, et donc dans la circulation océanique à la grande échelle.

Dans ce contexte, nous étudions la génération des ondes internes par l’oscillation
d’objet de différentes géométries simplifiées afin de modéliser le marée barotropique
sur la topographie océanique et considérons les effets linéaires et nonlinéaires sur
ces ondes résultant d’interactions avec l’objet et entre ces ondes. La contribution
relativement nouvelle de cette thèse est l’étude des aspects de flux tridimensionnels
qui étaient accessibles avec notre approche expérimentale, et sont généralement
difficiles à étudier par modélisation numque et analytique.

Nous étudions d’abord la structure des ondes fundamentale et des harmoniques
supérieur pour un sphéröıde oscillant, émettant des ondes divergentes. Les har-
moniques supérieures sont générées par l’instabilité non linéaire à la surface de
l’objet avec des effets nonlinéaires dans la zone d’intersection des faisceaux fun-
damentales. Ils peuvent se croiser et se concentrer, donc augmenter d’énergie,
et devenir dominant sur les ondes fundamentales. On détermine les structures
horizontales des ondes fundamentale et des harmoniques supérieures.

Subséquemment, nous considérons les ondes générées par un tore oscillant,
qui convergent vers un point focal. En dehors de cette région focale, les résultats
expérimentaux et les prédictions théoriques sont en bon accord, mais dans la région
focale, l’amplitude de l’onde est deux fois plus grande que près du tore, conduisant
à une amplification locale nonlinéaire et à un déferlement des onde pour les grandes
amplitudes d’oscillations. En conséquence, la propagation des ondes fundamen-
tales se trouve entravée dans la région focale. L’onde stationnaire se forme alors
que de nouvelles ondes sont générées et émises de cette région focale.

Un tore plus grand a été testé sur la plate-forme Coriolis pour comparer la
focalisation des ondes de gravité internes, inertie–gravité et des ondes inertielles
dans un régime faiblement visqueux. En raison de la complexité de la zone focale,
une seconde harmonique est observée même quand l’amplitude d’oscillation est
faible. Le champ de vorticité verticale des ondes de gravité interne présente une
structure dipolaire dans la zone focale, qui se transforme dans le cas tournant
en une structure de vortex “Yin–Yang”. La structure globale des faisceaux des
ondes inertiels est proche de celle pour des ondes de gravité internes, bien q’elle
est relativement plus intense.
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Chapter 1

Introduction

Voyez cet océan,
monsieur le professeur,
n’est-il pas doué d’une vie réelle?

J. Verne, Vingt mille lieues sous
les mers

1.1 Waves in the ocean and atmosphere

The investigation of internal waves in stratified and/or rotating fluids is relevant
to geophysics, climatology and technical physics, among others. It is not only im-
portant for the general knowledge of the atmosphere and the ocean, but also for
practical problems related to shipping and aeronautics. The history of internal
wave studies goes back to 250 years, if one takes into account the notes of Franklin
(1769) describing waves at the oil–water interface. One of the first dynamical effects
of internal waves that has been observed is the so-called “dead water” phenomenon:
the transport of energy and momentum from a ship propeller to nonlinear interfa-
cial waves between two water layers. The dead water effect slowed down or stopped
the ships driven at those time by direct thrust with small power, in particular Nor-
wegian fisher boats in fjords. At the end of the nineteenth century the famous
Norwegian polar explorer F. Nansen described his observations of the dead water
phenomenon during the oceanographic expedition of the ship Fram in the North
Atlantic in 1893–1896 (Nansen, 1897). He noted that this effect takes place when
a fresh water layer is on top of a salt water layer. The famous meteorologist V. F.
K. Bjerknes made the hypothesis that the loss of ship velocity described by Nansen
might be caused by wave generation at the interface between the two water layers.
Later, this hypothesis has been proved by V. W. Ekman, who made experiments in
a density-stratified fluid (Ekman, 1906). Ekman showed that a self-propelled object
moving with a small speed close to the interface of two layers of different densities
generates internal waves which neutralize most of the engine power. In the ocean, as
a rule, internal waves are always generated by some natural phenomenon whenever



14 Chapter 1. Introduction

(a) (b)

Figure 1.1: Internal wave generation in the ocean and atmosphere: (a) lee
waves generated by wind over Amsterdam Island (Indian ocean), image from
the NASA Earth Observatory (http://earthobservatory.nasa.gov/IOTD/view.
php?id=6151), (b) the internal tide generated by the interaction of the barotropic
tide with ocean bottom topography.

there are two layers of fluid with different densities, and they usually have impressive
characteristics: amplitudes of tens of meters, wavelengths from a few meters to sev-
eral kilometers, and periods from minutes to hours. These are special types of waves,
called interfacial waves, between two layers of different density. Below we consider
the waves which propagate through the continuously stratified fluid interior and owe
their existence to the effects of rotation and/or density stratification. This wider
class of waves is called internal waves, in contrast to waves at the water surface,
and can be generated by perturbations in stratified fluids (internal gravity waves),
rotating fluids (inertial waves) and in rotating stratified (inertia-gravity waves).

For a very long time the structure of the abyssal ocean could not be investigated:
electromagnetic waves do not propagate through the water and the visualisation of
the ocean interior via classical techniques (such as optical Doppler) is not possible.
As a result, the first internal waves were observed in the atmosphere. A well-
known example is the lee waves generated by wind over hills or mountain ranges
(see Figure 1.1a). Lee waves propagate through the atmosphere to distances of
hundreds of kilometers and can be observed from space due to cloud formation
at the wave crests. Three important characteristics for their generation are the
stratification of the atmosphere (in temperature), the flow speed and the obstacle
(mountain or island) size. Intersections of lee waves generated behind islands due
to strong continuous wind current form complicated atmospheric structures. In the
case when the obstacle has nearly equal dimensions perpendicular and parallel to
the flow, lee waves form a horseshoe or wedge-like shape.

In the 1950s, technical progress allowed to make the first qualitative measure-
ments of internal waves, showing the input of internal waves into the ocean dynamics
and leading the way to modern oceanography. Before that, the ocean was believed
to be slowly and weakly changing in time and space, while in practice it is a com-
plicated combination of space and time scales. Understanding of the role of internal
waves in the changing ocean leads to different view of its dynamics and physics, such

http://earthobservatory.nasa.gov/IOTD/view.php?id=6151
http://earthobservatory.nasa.gov/IOTD/view.php?id=6151
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as the connection between internal waves and turbulence in view of ocean mixing.
As a whole, it gradually has been recognized (see e.g. Turner, 1973) that internal

gravity waves play an important role in the dynamics of both, the atmosphere and
oceans, being responsible for significant transport of momentum and energy through
density-stratified fluids.

1.2 Stratification and mixing in the ocean

In the world’s oceans the vertical and horizontal distributions of temperature, salin-
ity and pressure are constantly changing, with some processes increasing the density
gradients while others are continuously mixing them. Figure 1.2 shows the main pro-
cesses that are responsible for the ocean stratification, including solar radiation and
heat transport, precipitation and evaporation, ice melting and freezing, fresh water
income from rivers, all contributing to stratify the ocean.

Precipitation and evaporation affect the salinity of the ocean, as well as fresh
water input from rivers and melting ice in the Northern and Southern Poles. Cold
water from the poles also changes the ocean temperature and together with heat-
ing from the sun form the temperature gradient. These processes are not equally
performing in different parts of oceans and at different depths, and cause different
water masses with in between them strong gradients in temperature and salinity.
Gradients can be positive (so that the density increases with height) or negative, and
the stratification is respectively stable and unstable. The formation of density gra-
dients is opposed by mixing processes that homogenize these gradients. Mixing can
be molecular, turbulent and convective. The main mixing processes are represented
in Figure 1.2 and are briefly discussed below.

Molecular mixing is due to diffusion processes. Local instabilities can occur
because salt diffuses slower than heat, leading to mixing over layer depths of tens
of meters (double diffusion). In the particular case when the layer of cold fresh
water lies below the warmer salty layer, so-called salt fingering can be observed.
Salt fingering processes occur in the upper ocean central waters, like below the
Mediterranean salt tongue or east of Barbados (see e.g. Kunze, 1990).

Convection occurs in the ocean when the surface layer becomes denser than the
water below due to its cooling or salinity increase (by evaporation or ice formation).
It can be observed together with turbulent mixing or without it, affecting the cir-
culation and properties of water masses. Convective mixing affects the ocean in
the vertical direction. The most intensive convection takes place in winter, when
surface cooling leads to mixing of an isothermal surface layer with a depth of about
a hundred meters (see e.g. Killworth, 1983).

In view of large-size ocean currents, even at low velocity, most currents have a
high Reynolds number and are therefore rather turbulent. Kilometers-wide ocean
currents have a large effect on ocean mixing. Currents transport cold water from
the Pole to the Equator and warm water the other way round, and thus help to
stabilise the Earth’s temperature. Due to instabilities, water masses may break off
from the ocean current and result in eddies drifting across the ocean basin with a
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speed of about 4 kilometers per day. They are visible at the ocean surface from the
satellite data but their structure is three-dimensional and reaches the pycnocline.
These eddies contain water of different salinity or temperature which mixes into
their surroundings. This mixing is generally horizontal. Mesoscale eddies result
from boundary currents like the Gulf Stream due to instability of sheared motion.

Large scale turbulent motions occur in the ocean upper layer due to the wind
stress. The resulting surface waves have sizes that range from small ripples to
tsunamis. Surface waves can propagate and transport energy over large distances,
and their breaking causes mixing of the ocean surface layer. Frictional coupling
of wind and ocean surface water, called Ekman transport, together with Earth’s
rotation effect (through the Coriolis force), generates net motion of the surface
fluid perpendicular to the wind direction In combination with the restriction on
lateral movement caused by bottom Ekman transport generates up- or down-welling.
Ekman up- and down-walling occur close to coasts as well as in the open ocean. An
example of the latter is equatorial upwelling, with the cold water rising to the surface
and thus destabilising the stratification (Wyrtki, 1981).

A thin surface layer of about 100 m depth is well-mixed by the precesses men-
tioned above. This layer is separated from the deep ocean by a salinity or tem-
perature jump, called pycnocline or thermocline. Significant change in density
is caused by dense gravity currents generated at the continental shelves or semi-
enclosed basins. Instability caused by the large density difference in the Antarctic
continental slope results in Kelvin-Helmholtz structures and thus into intensive mix-
ing. The rest of the ocean is stratified by temperature and salinity. Internal waves,
that transport energy from the surface to the ocean interior, can be generated by
perturbations at the surface boundary layer. These waves can break, transforming
energy to small scales.

1.3 The internal tide

1.3.1 Importance

Recent estimations have indicated, though, that the most important generation of
internal waves and relevant mixing comes from tidal forcing. The global energy
rate of lunar and solar tides is 3.7 TW. In the deep ocean internal gravity waves
of a special type known as internal or baroclinic tides are generated by the inter-
action of the barotropic tidal currents with bottom topography (oceanic ridges and
mountains, see Figure 1.1b). The most accurately known tide is the principal lunar
semi-diurnal M2 tide which is noticeable almost everywhere in all oceans. Calcula-
tions of the internal tidal generation were performed for continental slopes (Baines,
1982) and deep bottom topography (Bell, 1975b). The transfer of barotropic tidal
energy into internal tidal energy was estimated as less then 1% for continental slopes
(Baines, 1982) and as 10% for bottom relief in the deep ocean (Bell, 1975b). This
estimation has been later corrected. Based on the model of Baines (1982) the am-
plitude of the semi-diurnal internal tide was calculated from energy flux estimations
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by Morozov (1995) for most underwater ridges and compared with measurement re-
sults, collected with moored current and temperature meters giving the possibility
to calculate the M2 amplitude by dividing the semi-diurnal temperature amplitude
by the temperature gradient. Large internal wave amplitudes were found when the
barotropic tide was perpendicular to the ridge. The resulting map, presenting the
M2 amplitudes in the world’s oceans, is presented in Figure 1.3(a). Calculations
from these amplitude estimations suggested that the total rate of energy dissipa-
tion by the baroclinic tide is about 1.1 TW. This value is overestimated since it is
calculated using the entire water depth for mass flux calculation (Munk & Wunsch,
1997). Refined theoretical estimations have been presented by Nycander (2005) and
Melet et al. (2013). Egbert & Ray (2000) empirically estimated the tidal energy
dissipation using satellite altimetry data, which gives direct access to tidal eleva-
tions. The resulting map is presented in Figure 1.3(b) and the global rate of energy
dissipation from the barotropic to the baroclinic tide is estimated to be 0.9 TW.
This is nevertheless 30% of the total dissipation of the barotropic tide. In turn this
0.9 TW energy is converted and dissipated. Munk & Wunsch (1998) estimate that
0.2 TW of energy dissipation is due to the generation of secondary internal waves
and 0.7 TW due to turbulence. Later Wunsch & Ferrari (2004) noted once again
that the majority of energy dissipates due to internal waves. These values clearly
indicate that the transfer of tidal energy into mixing is relevant to the general circu-
lation in the oceans, and since it may affect the temperature of global currents also
of interest to climate modelling (Wunsch & Ferrari, 2004; Ferrari & Wunsch, 2008).

Another form of oceanic internal wave that has recently received some attention is
the lee waves generated by the interaction of geostrophic flows, such as the Atlantic
Circumpolar Current, with bottom topography (see Nikurashin & Ferrari, 2011;
Scott et al., 2011). The global energy content of these waves, hence their contribution
to mixing, is however smaller, of about 0.2 to 0.4 TW. Accordingly these waves were
not taken into account in the present work.

Garrett & Kunze (2007) considered the processes of internal tidal generation
and propagation for different topographies and fluid depths. It was shown that
wave breaking can occur close to regions of internal wave generation as well as far
away from obstacles, where internal tides interact with continental shelves or other
waves. Compared to the processes mentioned in section 1.2, tidal mixing is the
major mixing process in the ocean, which is why it is one of the main interest in
ocean dynamics at present.

1.3.2 Modelling

Much of our knowledge of the underlying physics of internal wave generation, prop-
agation, decay and interaction with the topography comes from theoretical and
experimental studies of simplified generic problems. In laboratory experiments we
study internal tides either in the reference frame of the bottom topography, so the
barotropic tude oscillates back and forth over it, or in the reference frame of the
barotropic tide, so the bottom topography plays the role of an oscillating wave gen-
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Figure 1.3: Internal tides in the world’s ocean: (a) amplitudes of internal waves
calculated from the linear model of Baines (1982), image from Morozov (1995);
(b) energy loss rate estimated from satellite altimeter data, Egbert & Ray (2001);
Garrett & Kunze (2007).
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erator. The equivalence between the two setups has been considered by Boyer &
Zhang (1990a,b), who showed that it holds to lowest order in an expansion with the
topography as a perturbation. The topography can be modelled with obstacles of
simplified geometry. Continental slopes either fixed in a barotropic current (Baines
& Fung, 1985; Gostiaux et al., 2007; Pairaud et al., 2010; Lim et al., 2010) or oscil-
lating in a fluid at rest (Guo & Davies, 2003; Zhang et al., 2008) have been used,
together with oscillating ridges (Matsuura & Hibiya, 1990; Peacock et al., 2008;
Echeverri et al., 2009; Dossmann et al., 2011). Depending on the relation between
the topographic slope and the wave slope, the topography can be subcritical or su-
percritical (Baines & Fung, 1985), namely have a slope smaller or larger than the
slope of the wave, which depends on the frequency of barotropic oscillations. The
generation of internal tide is particularly effective around the critical points, where
the wave rays are tangent to the topography (Baines, 1986), as verified experimen-
tally in the above investigations.

Bell (1975a,b) described theoretically the internal tide as a linear monochromatic
internal wave by considering small topographic slope and height, and a fluid of
infinite depth and uniform buoyancy frequency N . An analytical estimate was made
of the barotropic to baroclinic energy conversion rate. Llewellyn Smith & Young
(2002) extended this estimate to finite depth, and applied it to ridges of Gaussian,
exponential, or witch-of-Agnesi shape, finding that the conversion rate is higher for
larger seamounts and about 104 W for an average seamount. Later the estimate was
extended to finite topographic slope by series expansion (Khatiwala, 2003), Fourier
expansion (Balmforth et al., 2002) or Green’s function approach (Pétrélis et al.,
2006; Balmforth & Peacock, 2009; Echeverri & Peacock, 2010), and to a vertical
barrier (Llewellyn Smith & Young, 2003). Finally it has recently been found that,
at given oscillation frequency and fluid depth, specific topographies can prevent
conversion to take place (Maas, 2011).

1.4 Waves in rotating and/or stratified fluids

Ocean processes take place in particular physical and geographical conditions, too
complex to be analytically described by any existing mathematical apparatus. In-
stead we introduce approximations, to understand the current state of the ocean and
predict its future behavior. Here we investigate the general properties of internal
waves in the presence of both rotation and stratification, based on §4.4 and Part I of
the Epilogue of Lighthill (1978) and §§10.4 and 11.1 of Brekhovskikh & Goncharov
(1994). We start by linearizing the equations of motion of an incompressible inviscid
non-diffusive fluid, for small perturbations of the velocity, pressure and density, in
the form

∂u

∂t
= − 1

ρ̄0

∂P

∂x
+ fv, (1.1)

∂v

∂t
= − 1

ρ̄0

∂P

∂y
− fu, (1.2)
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∂w

∂t
= − 1

ρ̄0

∂P

∂z
− ρ

ρ̄0

g, (1.3)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (1.4)

and
∂ρ

∂t
=
ρ̄0

g
N2w. (1.5)

Equations (1.1)-(1.3) are the momentum equations, (1.4) the continuity equation
and (1.5) the incompressible equation of state, for the components (u, v, w) of the
velocity in a system of Caresian coordinates (x, y, z) of vertical z-axis, the pressure
disturbance P and the density disturbance ρ, with ρ0(z) the background density
of mean value ρ̄0. For simplicity the Boussinesq approximation has been used (see
Boussinesq, 1903) so that the variations of density are ignored everywhere except in
equation (1.3) where they are multiplied by the acceleration of gravity g. Physically
this corresponds to neglecting the inertial effects of the density variations compared
to the buoyancy forces that they create. In these conditions the background density
arises through the Brunt-Väisälä or buoyancy frequency

N =

√
− g

ρ̄0

∂ρ0(z)

∂z

in equation (1.5), which is the frequency of oscillation of a fluid particle, displaced
from its equilibrium position where its weight is balanced by the Archimede’s force
exerted by the surrounding fluid. In the following N will be assumed constant,
corresponding to a linear stratification.

From equations (1.3) and (1.5) we obtain

∂2w

∂2t
= − 1

ρ̄0

∂2P

∂z∂t
−N2w, (1.6)

which together with equations (1.1), (1.2) and (1.4) provide the governing equations
for inertia–gravity waves. Assuming an infinite domain in all directions, the solutions
of these linear system with constant coefficients may be sought in the form of plane
waves:

u = u′ expi(kx+ly+mz−ωt),

v = v′ expi(kx+ly+mz−ωt),

w = w′ expi(kx+ly+mz−ωt),

P = P ′ expi(kx+ly+mz−ωt),

where (k, l,m) are the components of the wave vector ~k and ω is the oscillation
frequency. Substituting these expressions into the governing equations we obtain

iωu′ + fv′ − ik

ρ̄0

P ′ = 0, (1.7)
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fu′ − iωv′ + il

ρ̄0

P ′ = 0, (1.8)

ku′ + lv′ +mw′ = 0, (1.9)

(ω2 −N2)w′ − mω

ρ̄0

P ′ = 0. (1.10)

The contribution of (1.7), (1.8) and (1.10) gives

u′ =
ωk + if l

ω2 − f 2

P ′

ρ̄0

,

v′ =
ωl − ifk
ω2 − f 2

P ′

ρ̄0

,

w′ =
ωm

ω2 −N2

P ′

ρ̄0

.

The remaining (1.9) becomes

ω2(k2 + l2 +m2) = N2(k2 + l2) + f 2m2,

and provides the dispersion relation for inertia–gravity waves

ω =

√
f 2
m2

κ2
+N2

κ2
H

κ2
, (1.11)

with κ =
√
k2 + l2 +m2 and κH =

√
k2 + l2 the moduli of the wave vector ~k and

its horizontal projection ~kH , respectively. If we introduce the angle θ of the wave
vector to the horizontal by

m = κ sin θ,

κH = κ cos θ,

the dispersion relation can be written in the form

ω =

√
f 2 sin2 θ +N2 cos2 θ. (1.12)

and defines the range of frequencies in which internal waves can propagate: 0 < ω <
N for pure internal gravity waves (when f = 0), 0 < ω < f for pure inertial waves
(when N = 0) and min(f,N) < ω < max(f,N) for inertia–gravity waves.

From equation (1.9) it follows that the wave vector is perpendicular to the fluid
velocity vector, so that internal waves are transverse.

The same is true of the energy propagation velocity, as is seen by calculating the
phase velocity ~cp and group velocity ~cg, defined by

~cp =
ω

κ

~k

κ
,

~cg = ~∇kω,
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respectively. These follow from (1.11) as

~cp =

√
N2κ2

H + f 2m2

κ2

(k, l,m)

κ
,

~cg =
N2 − f 2

κ2

κHm√
N2κ2

H + f 2m2

(km, lm,−κ2
H)

κHκ
.

Phase and group velocities are orthogonal, namely ~cp ·~cg = 0. Since ~cg is the energy
propagation velocity, we conclude that the waves propagate along rays parallel to
the planes of constant phase and inclined at the angle

θ = arccos

√
ω2 − f 2

N2 − f 2

to the vertical. For pure internal gravity waves (f = 0) the phase and group ve-
locities have horizontal components of the same sign and vertical components of
opposite signs, for pure inertial waves (N = 0) the vertical components have iden-
tical signs and the horizontal components opposite signs, and for inertia–gravity
waves the situation is as for internal gravity waves when f < N and as for inertial
waves when N < f .

The relative importance of the effects of rotation and gravity can be quantified
by introducing the Rossby radius of deformation

Ro = (Nh)/f,

with h the typical vertical scale. This number characterizes the horizontal scale at
which rotation and buoyancy play equally important roles in the evolution of waves
generated by some disturbance. In thed following, except for experiments taking
place at the Coriolis platform in section 2.4 and chapter 6, Ro will be much larger
than the horizontal scale of the experiments. Accordingly the waves will be pure
internal gravity waves, simply called internal waves below.

1.5 Generation of internal waves by oscillating

objects

1.5.1 Two-dimensional waves

Over the past decades, the mechanisms of internal wave generation have been studied
in detail for oscillating objects of various idealised geometries. Oscillations of a body
at the frequency ω in a linearly stratified fluid of buoyancy frequency N , with ω < N ,
generate internal wave beams inclined at the angle

θ = arccos(ω/N) (1.13)

to the vertical, which is the direction of energy propagation at the group velocity.
Accordingly, two-dimensional internal waves have a St. Andrew’s cross shape, first
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(a) (b)

Figure 1.4: Internal waves generated by an elliptic cylinder: (a) theoretical pre-
dictions by Hurley (1997) of inviscid wave beams forming a St. Andrew’s Cross
delimited by the vertical rays tangent to the cylinder above and below; (b) experi-
mental visualisations by Sutherland & Linden (2002) of the vertical density gradient
(top) and it’s temporal derivative (bottom).

observed experimentally by Görtler (1943) and later Mowbray & Rarity (1967) for a
circular cylinder. Quantitative progress, however, had to wait for three decades. A
linear theory describing the structure of the waves generated by the small rectilinear
vibrations of an elliptical cylinder has been developed for inviscid (Hurley, 1997)
and viscous (Hurley & Keady, 1997) fluids (Figure 1.4a). Experiments on internal
waves were performed by Sutherland et al. (1999, 2000) and Sutherland & Linden
(2002) for a vertically oscillating elliptical cylinder and by Zhang et al. (2007) for a
horizontally oscillating circular cylinder to examine the characteristics of both, the
strong and weak forcing regimes. These experiments were similar to the pioneering
investigations of Mowbray & Rarity (1967) but allowed to measure the amplitude of
internal waves everywhere in space and time and thus compare results with the linear
viscous theory (Hurley & Keady, 1997) (Figure 1.4b). The theoretical predictions
were shown in good agreement with the experimental results but overpredicted the
wave amplitude and underpredicted the width of the wave beams. The reason for
this was identified as the viscous boundary layer generated around the cylinder in
the experiments, which is not taken into account by the linear theory.

Internal tidal beams forming a St. Andrew’s Cross have been observed experi-
mentally for a wide range of topographies, either fixed in an oscillating barotropic
flow or oscillating in a fluid otherwise at rest, in a variety of studies listed earlier
in section 1.3.2. Figure 1.5 illustrates the results of two studies, for a continental
slope (Gostiaux et al., 2007) and an isolated ridge (Dossmann et al., 2011), both
supercritical. Two arms of the Cross are generated for the slope, and four arms for
the ridge. In the ocean, the first observations of internal tidal beams were done over
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(a) (b)

Figure 1.5: Experimental internal tide generated by (a) barotropic flow over a model
continental slope (Gostiaux et al., 2007) and (b) oscillation of a Gaussian ridge in
a fluid at rest (Dossmann et al., 2011). The plotted quantity is the filtered first
harmonic of the vertical density gradient.

Figure 1.6: Cross-slope (left) and along-slope (right) horizontal velocity amplitude
measured by ADCP (Acoustic Doppler Current Profiler) over the continental slope
in the Bay of Biscay (Lam et al., 2004).

the continental slope in the Bay of Biscay by Pingree & New (1989) and Pingree
& New (1991), using contact measurements; they were complemented later by re-
mote acoustic measurements by Lam et al. (2004) and Gerkema et al. (2004). These
are illustrated in Figure 1.6 and exhibit the same structure reproduced later in the
laboratory by Gostiaux et al. (2007).

The origin of internal waves as well as their propagation, interaction and breaking
cannot be well understood by linear theory. With slight increase of the oscillation
amplitude we turn to a weakly nonlinear regime where the wave fields exhibit not
only the original oscillation frequency but also higher harmonics. The experiments
of Mowbray & Rarity (1967) have shown that the dispersion relation (1.13) admits
the generation of a propagative n-th harmonic component with frequency nω if
nω < N . Two mechanisms have been considered theoretically for the generation of
higher harmonics. The first mechanism, appropriate for subcritical topography, is
advection by the nonlinear boundary conditions, investigated by Bell (1975a) for the
large–amplitude oscillations of flat topography of infinitesimal slope (Figure 1.7a).
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The n-th harmonic wave amplitude is found proportional to the n-th derivative of the
topographic slope, so that the fundamental wave is proportional to the topographic
slope, the second harmonic wave is proportional to the topographic curvature, etc.
Also, for weak nonlinearity, the n-th harmonic amplitude is found proportional to
the n-th power of the oscillation amplitude. The second mechanism, appropriate
for supercritical topography, is the nonlinear interaction of colliding and reflecting
wave beams, investigated by Tabaei et al. (2005) using a small amplitude expansion.
With this mechanism, the n-th harmonic amplitude is also proportional to the n-
th power of the amplitude of the oscillation amplitude. These nonlinear effects
are especially visible in the numerical simulations by Lamb (2004) and Korobov &
Lamb (2008) of the barotropic horizontal oscillations over supercritical topography.
Figure 1.8 shows a variety of nonlinear interactions among internal waves. In the
regions of wave interaction, such as the intersections between waves and boundary
layers, between two primary wave beams (tangent to the topography) and between
one such beam and its reflection at a boundary, secondary nonlinear beams appear
with different inclination to the vertical.

Reflection on the slope has been studied experimentally by Rodenborn et al.
(2011) to examine the dependence of the second harmonic on the bottom slope and
thus verify the theoretical predictions. For the particular case when two primary
wave beams have the same vertical direction of propagation (as shown in Figure 1.7b)
and intersect, the theory of Tabaei et al. (2005) predicts the generation of four
secondary wave beams. Jiang & Marcus (2009) have predicted theoretically and
verified numerically that only two of these secondary wave beams are compatible
with the radiation condition (see Figure 1.7b).

For a vertically oscillating elliptical cylinder, Sutherland & Linden (2002) ob-
tained, for large oscillation amplitudes, secondary waves at the zone of superposition
of propagating upward and downward primary waves. The origin of these second
harmonic waves is hypothetically either the fundamental wave–wave interaction, or
the interaction of waves with boundary layers. Similar nonlinear effects have been
observed in experiments by Zhang et al. (2007) for a horizontally oscillating cir-
cular cylinder, but for small oscillation amplitudes. These second harmonic waves
were generated by the interaction of fundamental waves as predicted by Tabaei
et al. (2005). However, the second harmonic observed by Zhang et al. (2007) at the
boundary of the cylinder has not been discussed and is supposed to be generated
at the viscous boundary layer of the cylinder (see the discussion in chapter 3 of this
thesis).

1.5.2 Three-dimensional waves

Three-dimensional internal waves have a more complex structure. The internal wave
generation process in three dimensions has been studied experimentally by Flynn
et al. (2003) for a vertically oscillating sphere, experimentally and numerically by
King et al. (2009) for the horizontal oscillations of a hemisphere lying on a flat
plane, and numerically by King et al. (2010) for the horizontal oscillations of a
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(a) (b)

Figure 1.7: Generation of higher harmonics according to: (a) analytical predictions
of Bell (1975a) and (b) theoretical predictions of Tabaei et al. (2005) for colliding
waves. The latter image illustrates the scenario when the two internal wave beams
have the same vertical direction of propagation; the solid lines show the incident
beams, the dashed lines the four secondary beams predicted by Tabaei et al. (2005),
and the red dashed lines show the only two secondary beams allowed by the radiation
conditions according to Jiang & Marcus (2009).

Figure 1.8: Reflection and intersection of internal waves and generation of higher
harmonics, numerical simulation of Lamb (2004).
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(a) (b)

Figure 1.9: Internal waves in three dimensions: (a) internal wave cone generated
by the horizontal oscillations of a hemisphere, (b) velocity amplitude at different
conical cross sections showing a maximum in the forcing plane φ = 0 (image from
King et al., 2009).

Gaussian seamount. It has been shown that three-dimensional internal wave fields
are qualitatively similar to two-dimensional internal wave fields. This is in agreement
with Munroe & Lamb (2005), who found for internal tides that despite the three-
dimensionality of the topography, most of the total wave energy is radiated in the
tidal forcing direction. However King et al. (2009) showed that this directivity is
superposed on a conical wave structure, which is the three-dimensional analogue of
the two-dimensional St. Andrew’s Cross (see Figure 1.9a, b). They also discovered
that three-dimensional topography produces a strong mean flow perpendicular to
the oscillations of the tidal flow, leading to a large-scale horizontal circulation. In
the out-of-forcing plane a second harmonic has been observed.

Theoretically the internal wave generation by a horizontally oscillating sphere has
been considered by Voisin et al. (2011) and compared with experiments at low oscil-
lation amplitude, measuring the vertical velocity component. The theory included
viscous effects and showed good agreement with experimental results. Experiments
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(a) (b) (c)

Figure 1.10: Horizontal structure of the vertical wave amplitude of internal waves
generated by a horizontally oscillating sphere: (a) total vertical amplitude (first and
second harmonic), and Fourier-filtered (b) first and (c) second harmonic components
(image from Ermanyuk et al., 2011). The design of the axis (x, y, z) is the same as
in Figure 1.9.

at moderate oscillation amplitude have been performed to show the transition to
nonlinearity (Ermanyuk et al., 2011). The radiation patterns of the propagative
first and second harmonics have been studied in some detail. They are presented
in Figure 1.10 showing the dipolar and quadrupolar structures of the first and sec-
ond harmonics, respectively. For these harmonics, the two-dimensional theories of
Bell (1975a) and Tabaei et al. (2005) remain valid in three dimensions, with slight
modifications (Bell, 1975b; Akylas & Karimi, 2012). Their common prediction that
the variation of the wave amplitude with the oscillation amplitude is linear for the
first harmonic, quadratic for the second, and cubic for the third, has been verified
and approved. The first three-dimensional quantitative measurements of all three
velocity components for the internal waves generated by an oscillating sphere has
been performed by Ghaemsaidi & Peacock (2013). The results show good agreement
with the linear three-dimensional viscous theory of Voisin et al. (2011).

1.5.3 Generalization

The generation of internal waves by oscillating objects remains a topic of active
interest worldwide, with new avenues of research opened every few years. One such
avenue is numerical simulation, pioneered by King et al. (2009, 2010) for a sphere
and recently applied to a cylinder by Winters & Armi (2013) and again to a sphere
by Bigot et al. (2014). Waves in rotating fluids have been less studied, but have the
structure similar to waves in stratified nonrotating fluids. For inertial waves in a
rotating nonstratified fluid, the St. Andrew’s Cross has been observed for a cylinder
by Cortet et al. (2010) and a wave cone for a disk by Oser (1958) and Messio et al.
(2008). For inertia–gravity waves in a rotating stratified fluid, the wave cone has
similarly been observed by Peacock & Weidman (2005).
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Finally, all these oscillating objects produce separate wave beams without offer-
ing any control either on the relative intensity of the beams, or the wave profiles
through them. To overcome that limitation, a new wave generator has been de-
veloped by Gostiaux et al. (2007), composed of oscillating plates and allowing the
generation of a single wave beam with a well-defined sinusoidal profile. The gen-
erator design has later been modified and refined by Mercier et al. (2010). The
generator has since been used, customized and improved by several research groups
worldwide, and applied to a variety of problems, to mention but a few: the prop-
agation of wave beams (Grisouard et al., 2013; Ghaemsaidi et al., 2016; Allshouse
et al., 2016), their interaction (Smith & Crockett, 2014), their instability (Bourget
et al., 2013, 2014; Maurer et al., 2016) and the formation of attractors (Scolan et al.,
2013; Brouzet et al., 2016a,b).

1.6 Internal wave focusing

A main interest in internal wave dynamics is the conversion of wave energy into
mixing and small-scale dissipation due to a rich variety of mechanisms including
wave–wave and wave–current interactions, and overturning motions. Several scenar-
ios have been considered for the energy concentration of internal waves in localised
zones. Dauxois & Young (1999) investigated the theory of near-critical reflection
of internal gravity waves on a slope. Reflected waves are focused: the width of the
wave beam decreases after reflection so that the energy density increases owing to
energy conservation. The critical case of internal wave generation when the topo-
graphic slope equals the wave propagation angle has been considered numerically
by Gayen & Sarkar (2010). The kinetic energy density of internal waves generated
at the slope is 15 times larger than that of the incident barotropic tide.

In closed basins multiple reflections can lead to the formation of wave attractors
along which energy is concentrated (see e.g Maas et al., 1997; Lam & Maas, 2008).
As a first approach, the problem has been considered linearly, giving an idea of the
generation mechanisms of geometric focusing. The transition to nonlinear effects
has been studied experimentally (Scolan et al., 2013; Brouzet et al., 2016a) showing
higher harmonic generation and mixing of the stratification.

Another scenario for energy concentration is the two-dimensional intersection
and interaction of wave beams, that can be either separate (see for example Teoh
et al. 1997 and Smith & Crockett 2014) or arising from double-ridge (Echeverri
et al., 2011; Xing & Davies, 2011; Klymak et al., 2013) or multiple-ridge (Zhang
& Swinney, 2014) configurations. Luzon Strait in the South China Sea is such a
double-ridge system (see Figure 1.13a), where interference-induced dissipation has
been observed in the field by Alford et al. (2011), predicted numerically by Buijsman
et al. (2012) and reproduced in the laboratory by Mercier et al. (2013).

A last two-dimensional scenario is internal wave refraction at horizons of high
density gradient, investigated by Mathur & Peacock (2009). Variations in the strat-
ification affect the properties of the wave beam, such as width and direction of
propagation, leading also to wave reflection at the zones of high density gradients.
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(a) (b) (c)

Figure 1.11: Zones of high wave amplitude from circular Gaussian topography, for
(b) the in-phase component and (c) out-of-phase component (from Bühler & Muller,
2007)).

Three-dimensionality offers the possibility of a new type of geometric focusing,
by the convergence of azimuthal wave rays. This phenomenon was first noticed
for an oscillating sphere by Appleby & Crighton (1987), who introduced the term
“focusing singularity”. It has hardly been investigated experimentally, though: wave
focusing may occur near an oscillating hemisphere (see Figure 3 in King et al.,
2009), and a Gaussian mountain (see Figure 3(e) in King et al. 2010), but it was
not discussed. This is because the focusing effect increases with the radius and
size of the oscillating object since more energy is transported to the focal zone, but
in general its effect is negligible in small scale laboratory experiments with small
oscillating spherical objects. First experiments with a 60 cm diameter vertically
oscillating torus revealed a strong vortical motion with wave overturning and local
mixing in the focal zone (unpublished results, Flór 1997). Theoretically internal
wave focusing has been studied by Bühler & Muller (2007) for an inviscid fluid with
an oscillating ring having subcritical Gaussian generatrix. The study considered for
the first time the effect of geometric focusing into localised regions of high wave
amplitude (see Figure 1.11). For a circular Gaussian hill and also for horse-shoe
topography the mean flow localised in regions of wave dissipation was considered by
Grisouard & Bühler (2012). In a similar experiment in a rotating fluid conducted at
LEGI, inertial waves were shown to generate turbulence in the focal zone (Duran-
Matute et al., 2013). The breaking of these waves played an important role for the
transport of momentum, and the generation of columnar vortices that are typical
for two-dimensional turbulence (see Figure 1.12).

Such three-dimensional focusing is suspected in Luzon Strait, where three-dimensional
simulations accounting for the horizontal curvature of the double-ridge system ex-
hibited much larger energy dissipation compared with earlier two-dimensional mech-
anisms (Buijsman et al., 2014). Internal wave focusing has been recently observed
in submarine canyons by Vlasenko et al. (2016) (Figure 1.13b). In addition to ob-
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(a) (b) (c)

Figure 1.12: Inertial wave focusing by a vertically oscillating torus: (a) numerical
calculations; (b) and (c) experimental results in terms of instantaneous velocity and
velocity amplitude, respectively (from Duran-Matute et al., 2013).

servations of trapped waves the problem was considered numerically for an idealized
canyon in two- and three-dimensional cases. This study showed the importance of
three-dimensional focusing, giving much higher energy concentration. The scenario
described by Vlasenko et al. (2016) could be similar to mechanisms at the so-called
Tore seamount close to Portugal (see Figure 1.13c). This crater is thought to result
from meteoritic impact and has a torus shape (Ribeiro, 2002, chapter 5). It isolates
a water column of 1.2 km height, which is homogenous (Peliz et al., 2009) and could
be mixed due to breaking of focusing internal waves.

Apart from the above mentioned studies, the geometric focusing of internal waves
deserves further attention in the context of ocean mixing and momentum transport
in the Earth’s oceans. In this context, a horizontal oscillation is more appropriate.
The horizontal oscillation direction also gives a direction to the overturning motions
in the focal region, and therefore generates a mean flow that may be relevant to
ocean applications (see Bühler, 2009).

1.7 This thesis

The present manuscript develops the three-dimensional experimental study in five
chapters. Chapter 2 describes the measurement methods usually used for the lab-
oratory study of internal waves, and the present experimental setup. The two
methods used for the present research are Particle Image Velocimetry (PIV) and
Laser Induced Fluorescence (LIF). The tools used for data analysis, namely Fourier
decomposition, complex demodulation and time frequency representation are also
discussed.

In chapter 3 we continue the experimental study of the spatial structure of in-
ternal waves generated by a sphere (Ermanyuk et al., 2011) by considering different
spheroids. Three major questions are
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(a) (b) (c)

Figure 1.13: Bathymetry in (a) the Luzon Strait (from Buijsman et al., 2014) and
(c) the Tore Seamount (from Peliz et al., 2009); (b) three-dimensional numerical
simulation of wave focusing in submarine canyon (from Vlasenko et al., 2016); .

• What is the spatial structure of the n-th harmonic internal wave?

• How does the spatial structure of the waves depend on the features of the wave
generator (such as orientation and slope)?

• What is the mechanism of higher harmonic generation (nonlinear boundary
layer, interaction or intersection of the fundamental wave beams)?

In the case of a vertically axisymmetric spheroid, the experimental results are com-
pared to the predictions of an adaptation of the three-dimensional theory of Voisin
et al. (2011).

Chapters 4 and 5 are dedicated to the focusing of internal gravity waves by
horizontally oscillating tori of small scale, so that Stokes numbers St = a2ω/ν =
O(100), with a the minor radius of the torus, ω the oscillation amplitude and ν the
fluid viscosity. The linear regime is considered in chapter 4 and compared with the
linear two-dimensional approach based on theory of Hurley & Keady (1997) and
with the three-dimensional theory of Voisin (2016). The internal wave energy is
investigated as a function of the Keulegan–Carpenter number Ke = A/a, with A
the oscillation amplitude. We look at the mechanisms of wave focusing in general
in order to understand

• How does the wave amplitude and slope amplify?

• What is the contribution of each part of the torus?

• How good are the two- and three-dimensional theoretical predictions?

Chapter 5 focuses on the nonlinear effects due to internal wave focusing. We
consider high oscillation amplitudes and introduce a new focusing number, which is
a Ke-number corrected for the convergence/divergence of waves. We obtain wave
breaking in the focal region and further generation of new waves from the focal zone.
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Both evanescent and propagative higher harmonics are observed in the focal region.
Their structure and generation mechanism are of interest. The vertical mean flow
generated in the focal zone appears to affect the structure of the wave beams, which
is also shown.

The last chapter 6 is a separate study of internal wave focusing in a stratified
and/or rotating fluid at the large-scale Coriolis platform, with St = O(1000). The
problem is fully nonlinear even for low oscillation amplitude. We compare internal
gravity waves with the predictions of linear theory. Assuming a turbulent boundary
layer, the linear theory is also calculated taking into account an eddy viscosity. We
look at the difference between internal gravity, inertia–gravity and inertial waves
and discuss the effect of rotation on the structure of the focal zone.

In the conclusion, the results are summarised and the perspectives discussed.



Chapter 2

Experimental setup and procedure

2.1 Measurements of internal waves

In laboratory experiments the reference frame of the barotropic tidal current is gen-
erally used, hence the fluid is at rest while the obstacle is oscillating at a given
frequency ω. The experiments are conducted in a transparent tank filled with lin-
early salt-stratified fluid (so the buoyancy frequency N is constant, see Figure 2.1a).

There are different techniques to measure internal wave motions in such a fluid.
Two-dimensional internal wave fields have first been visualised via non-intrusive
techniques, including Schlieren (Görtler, 1943; Mowbray & Rarity, 1967), shown
in Figure 2.1b, interferometry Peters 1985; Makarov et al. 1990) and Moire fringes
(Ivanov, 1989; Sakai, 1990). These techniques, though yielding high-resolution vi-
sualisations of the phase patterns, require high-quality optical windows in the test
tank walls, with fairly limited field of view. Another disadvantage is related to the
difficulty of performing quantitative measurements of the wave field parameters.

The advent of digital image processing has allowed an effective access to the quan-
titative measurement of density-gradient or velocity fields. The synthetic Schlieren
technique, still non-intrusive, has been proposed by Sutherland et al. (1999) and

(a) (b) (c)

Figure 2.1: (a) Typical experimental setup (Mowbray & Rarity, 1967) and visuali-
sation of the St. Andrew’s Cross by (b) the Toepler–Schlieren technique (Mowbray
& Rarity, 1967) and (c) synthetic Schlieren technicue (Mercier et al., 2008).
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(a) (b)

Figure 2.2: (a) Internal waves generated by a horizontally oscillating cylinder mea-
sured with the PIV technique (Zhang et al., 2007); (b) wake generated by a horizon-
tally translating sphere visualised with the LIF technique (Hopfinger et al., 1991).

Dalziel et al. (2000), and applied to a number of two-dimensional problems by
Sutherland & Linden (2002), Ermanyuk & Gavrilov (2005, 2008), Mercier et al.
(2008) as shown in Figure 2.1c, Thomas et al. (2009) and Clark & Sutherland (2009).
It is based on the fact that a salt concentration in water modifies its refractive in-
dex. For a linearly stratified fluid the refractive index is also a linear function of the
depth. A light ray passing through the media with such refractive index is bent with
an angle, which is directly related to the density gradient. However, in nonlinear
experiments when vertical mixing occurs, the average density profile is changed and
the wave measurements are distorted. In three-dimensional problems the sinthetic
Schlieren technique can be used directly for the measurement of optical distortions
integrated along the light ray path (Peacock & Weidman, 2005). A quantitative
measurement of axisymmetric internal wave fields, such as for instance those emit-
ted by a vertically oscillating sphere, has been made possible by combining synthetic
Schlieren with tomographic inversion (Flynn et al., 2003; Onu et al., 2003). An ap-
plication to a vertically translating sphere in a uniformly stratified fluid is described
in Yick et al. (2007). The theoretical possibility of a tomographic inversion for an
arbitrary nonaxisymmetric disturbance has been discussed in Décamp et al. (2008)
but remains to be implemented. An alternative technique of optical tomography is
described in Hazewinkel et al. (2011) with application to internal-wave attractors.

Alternatively, internal waves can be measured from particle motions using Par-
ticle Image Velocimetry (PIV), which is intrusive. Accurate PIV measurements in
a continuously stratified fluid require a dense and uniform distribution of particles.
However, the preparation of particles matching a given density distribution is of-
ten a very elaborate process. Particles are selected such that they are advected by
the flow without having inertia. Of course, once this problem is resolved, two- and
three-dimensional internal wave fields can be easily measured with the PIV method,
as shown in Figure 2.2(a) borrowed from Zhang et al. (2007).
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A technique for the observation of isopycnal displacements, based on the defor-
mation of fluorescent dye lines and shown in Figure 2.2(b) has been introduced in
Hopfinger et al. (1991) and first used for quantitative measurement in Flór et al.
(2002). An algorithm to process the experimental dye lines and determine their
displacement with sub-pixel accuracy has made the automation of this density mea-
surement possible (Ermanyuk et al., 2011; Voisin et al., 2011). The advantage of this
technique compared to PIV measurements is the higher resolution. The method is
Lagrangian, thus it allows to study effects more precisely. However, the fluorescent
dye line method, hereinafter called LIF for Laser-Induced Fluorescence, can provide
only with information about the vertical velocity field. In the case when horizon-
tal effects are dominant, the PIV technique is more appropriate. In the present
research, several of these experimental techniques have been used, their implemen-
tation is described in the next section.

2.2 Experiments in the small tank

2.2.1 General setup

Experiments were carried out in a plexiglas square tank with working depth of
97 cm and horizontal dimensions 97× 97 cm2. The experimental setup is shown in
Figure 2.3.

(a) (b)

Figure 2.3: Sketch of the experimental setup: (a) front view and (b) side view,
with the seeded particles as light grey dots and the laser plane shown in green. The
mobility of the laser plane in the y-direction allows for the measurement of successive
planes, and the reconstitution of the horizontal wave field.

The tank was filled to the depth 85 ± 3 cm with a linearly salt-stratified fluid
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using the conventional double-bucket technique (Fortuin, 1960; Oster & Yamamoto,
1963). The double-bucket system consists of two communicating vessels having a
total volume of 1 m3, that is comparable to the volume of the experimental tank
(Figure 2.4a). One vessel is filled with salt water, and the other with fresh water,
the salt water being obtained by mixing brine, stored in a lower vessel, with fresh
water in order to achieve the desired density for a particular stratification.

Generally, the mechanism of the double-bucket system is as follows. Part of the
salt water is pumped through the bottom of the salt water vessel to the experimental
tank, while another part recirculates back to the vessel through the top. At the same
time the fresh water flows into the salt water vessel and reduces the salinity of the
fluid. Therefore, during this process the pumped salt water is replaced with fresh
water and is mixed in the salt water vessel. The experimental tank is filled via the
hosepipe with the salt fluid, of continuously decreasing density, until both vessels
of the double-bucket system are nearly empty and the density is approaching that
of fresh water. We denote by ρ1, V1 and ρ2, V2 the density and fluid volume in the
vessels with fresh and salt water, respectively (Figure 2.4a), taking into account
that the density of the salt water and the volumes are functions of time, in the form
ρ2(t), V1(t) and V2(t). The constant flow rates Q1 and Q2 are respectively between
the two vessels and in the hosepipe connecting the system with the experimental
tank. If we consider volume conservation

dV2(t)

dt
= Q1 −Q2, (2.1)

we can derive the volume of salt water, V2(t) = V2(0)− (Q2 −Q1)t, and substitute
it inside the mass conservation equation

d[ρ2(t)V2(t)]

dt
= ρ1Q1 − ρ2(t)Q2, (2.2)

to derive the differential equation for the salt water density ρ2(t);

dρ2(t)

dt
−Q1

ρ1 − ρ2(t)

V2(0)− (Q2 −Q1)t
= 0. (2.3)

Thus the evolution of ρ2(t) is

ρ2(t) = ρ1 − [ρ1 − ρ2(0)]

[
1− Q2 −Q1

V2(0)
t

]Q2/(Q2−Q1)

. (2.4)

Now, the experimental tank is filled from above, though a special device consisting
of sponged attached tho thin foam sheets, the size of A3 paper sheets, floating at
the surface of the fluid (Figure 2.4b). This device avoid mixing in the tank during
filling, with the sponges controlling the flow and the foam sheets minimizing the
disturbances in the fluid. With this setup, the vertical position a at which the
incoming fluid of density ρ(t) is deposited is

z(t) =
Q2

D
t,
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(a) (b)

(c)

Figure 2.4: Small-tank experiments: (a) double-bucket system; (b) filling device
including two foam sheets with sponges in the experimental tank; (c) LIF visuali-
sations with dye lines illuminated by a vertical laser sheet.

with D the horizontal cross-section of the experimental tank. Substituting this
expression into equation (2.4), we obtain the fluid density in the experimental tank
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as a function of z,

ρ2(z) = ρ1 − [ρ1 − ρ2(0)]

[
1− Q2 −Q1

V2(0)

D

V2(0)

]Q2/(Q2−Q1)

, (2.5)

which is linear only if Q1/(Q2−Q1) = 1 and thus Q1 = Q2/2. To obtain this relation
between the flow rates, we used two vessels of equal size connected from below and
controlled the flow rate Q2 with a pump. Properly done, this procedure gives a
linear density profile in the experimental tank over the entire depth if ρ1 < ρ2(0),
except for two boundary layers at the surface of the fluid and at the bottom of the
tank. For our experimental tank the process of filling takes approximately 11 hours
excluding the preparation of water in the salt water vessel.

The stratification profile was calculated from the density of fluid samples taken at
different heights in the fluid and measured with an Anton Paar Density meter. The
buoyancy frequency was defined as N = [(−g/ρ) dρ/dz]1/2 with g the gravitational
acceleration and ρ(z) the density distribution over the vertical coordinate z.

A remark should be made about stratification by salinity and temperature gra-
dients. The oceans are stratified due to the presence of gradients in temperature
and salinity. In a small scale laboratory experiment the stratification by salinity
is more preferable than by temperature. The salt concentration can be controlled
more easily than temperature, which changes due to surrounding conditions, and
the salt diffusivity is smaller (by two orders of magnitude) than that of temperature.
In all cases, evaporation at the surface has a perturbing effect on the stratification.
Working with a salinity of about 5-8% allows to neglect this influence of the tem-
perature difference. Experience shows, nevertheless, that winter experiments are
always better; hence, it is of use to keep the temperature in the experimental room
low, so as to reduce the evaporation and the temperature gradient within the fluid.

2.2.2 Wave generation

Internal waves were generated by the horizontal oscillations of a plexiglas object.
As objects we have used a sphere of radius a, an oblate and a prolate spheroid of
equatorial radius a and polar radius b, with a = 3.125 cm the same as for the sphere,
and tori of minor radius a = 1, 1.5 and 2 cm and major radius b (Figure 2.5). The
aspect ratio, defined as ε = b/a, is 1/2 for the oblate spheroid, 1 for the sphere, 2 for
the prolate spheroid, 5, 9 and 34 for three tori. These parameters are also presented
in Table 2.1. Objects were attached to a pendulum of length l = 180 cm, and the
oscillations of the pendulum at frequency ω were driven by a crank mechanism. The
oscillation amplitude, A, was small compared to the length of the pendulum, and
the motion was therefore in good approximation horizontal and sinusoidal. The two
side walls of the tank perpendicular to the direction of oscillation were covered with
a mesh of 5 cm thickness to avoid wave reflections.

Wave visualisation required illumination with a laser sheet. A continuous 2 W
laser with wavelength λ = 512 µm was used, the laser beam passed through a semi-
cylindrical lens and the resulting laser sheet reflected at an inclined mirror below or
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(a) (b) (c) (d)

Figure 2.5: Oscillating objects: (a) sphere; (b) prolate and (c) oblate spheroids; (d)
torus.

Object Axis of revolution a (cm) b (cm) ε

Sphere (S) 3.125 3.125 1
Prolate spheroid (V) vertical (Z) 3.125 6.25 2
Prolate spheroid (H) horizontal (X) 3.125 6.25 2
Oblate spheroid (V) vertical (Z) 1.56 3.125 1/2
Oblate spheroid (H) horizontal (X) 1.56 3.125 1/2
Oblate spheroid (45◦) horizontal, 45◦ 1.56 3.125 1/2

“Thin” torus vertical 1.5 13.5 9
“Thick” torus vertical 2 10 5
“Big” torus vertical 1 34 34

Table 2.1: Definitions and dimensions of oscillating objects. In the cases of the
sphere and spheroids a and b define the equatorial and polar radii, respectively, and
in the case of the tori a and b correspond to the minor and major radii, respectively,
ε = b/a is the aspect ratio.

behind the tank as shown in Figure 2.3. This mirror was attached to a computer–
controlled step motor, of which the use is explained in the next section. Images
were recorded by a 10-bit JAI digital camera with CCD of 1380 x 1030 pixels and a
12-bit Dalsa camera with CCD of 1024 x 1024 pixels. The positions of the cameras
and the laser sheets will be described more precisely for each series of experiments
in the next sections.

Throughout all experiments a Cartesian coordinate system has been used, with
origin at the centre of the object, z-axis pointing vertically upwards, and horizontal
axes x and y along and perpendicular to the direction of oscillation, respectively
(Figure 2.5). Non-dimensional coordinates X, Y and Z have been introduced, de-
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fined as

(X, Y, Z) =
(x, y, z)

a
,

and the velocity components (u, v, w) have similarly been normalized as

(U, V,W ) =
(u, v, w)

Aω
.

Each set of experiments, presented in Table 2.2, is characterized by four nondimen-
sional parameters,

ε =
b

a
,

ω

N
, St =

ωa2

ν
, Ke =

A

a
,

respectively the aspect ratio defining the geometry of the object, the frequency
ratio defining the angle of propagation of the waves, the Stokes number defining
the intensity of viscous effects and the Keulegan-Carpenter number defining the
intensity of nonlinear effects, where ν is the viscosity of the fluid and N its buoyancy
frequency. Through all the rest of this thesis the small-tank experiments will be
named according to the nomenclature defined in Table 2.2, such as A1, A2, and so
forth.

2.2.3 Wave visualisation and data processing for PIV mea-
surements

The waves were visualised using two different methods. The first method was two-
dimensional Particle Image Velocimetry (PIV) which allows to measure the velocity
field of the flow. Practical recommendations on optimum particle size and seeding
are presented in Westerweel (1997). The fluid was seeded with Orgasol R© 30µm
particles of density ρ = 1.2kg/m3. To illuminate particles two positions of laser
sheet were performed.

In experiments A2, B1 and B2 the waves were visualised with a vertical laser
sheet parallel to the direction of oscillation (Figure 2.3a). The position of the sheet
was driven by a computer-controlled step motor and allowed for the recording of
sequences of vertical planes. To measure period-averaged quantities and determine
the amplitudes of the Fourier components of the signal in a vertical plane, the sheet
was kept fixed during one oscillation period, and then moved with a prescribed
increment ∆y = 0.5 cm to the next position, until enough vertical planes were
obtained to reconstruct the three-dimensional wave field by spline interpolation.
These measurements were taken after 20 oscillation periods, which is the typical
duration required to exclude the effects of internal-wave transients (Voisin, 2003;
Ermanyuk & Gavrilov, 2005; Voisin et al., 2011). For experiments D,E,G3, H3 and
K the vertical laser sheet was kept fixed in the central plane (Y = 0) and passed
through the transparent bottom of the tank. Long time series (up to 60 oscillation
periods) were taken starting from the beginning of the oscillations.

For all experiments with a vertical laser sheet, a camera was set in front of the
tank as shown in Figure 2.3(b). Images of the illuminated particles were taken



2.2. Experiments in the small tank 43
M

et
h

o
d

O
b

je
ct

ε
ω
/N

S
t

K
e

F
o

Y
Z

E
x
p
A

1
L

IF
S

p
h

er
e

(S
)

1
0.

76
,

0.
41

5
0
3
,

2
7
1

0
.2

7
0

to
6
.1

-5
.0

9
E

x
p
A

2
L

IF
S

p
h

er
e

(S
)

1
0.

26
1
0
1

0
.6

9
,

1
.3

7
0

to
5
.5

-1
.1

1
,-

1
.3

7
E

x
p
A

3
P

IV
S

p
h

er
e

(S
)

1
0.

27
2
9
0

0
.2

2
,

0
.3

7
,

0
.5

2
,

0
.8

4
0

to
3
.2

-1
.5

E
x
p
B

1
P

IV
P

ro
la

te
(V

)
2

0.
29

,
0.

39
3
1
1
,

4
1
8

0
.2

2
,

0
.3

9
,

0
.5

8
,

0
.8

3
0

to
3

-2
.7

5
E

x
p
B

2
P

IV
P

ro
la

te
(H

)
2

0.
29

3
1
1

0
.1

6
,

0
.3

3
,

0
.6

,
0
.7

6
0

to
3

-1
.2

5
E

x
p
C

1
P

IV
P

ro
la

te
(H

)
2

0.
36

4
1
7

0
.7

5
0

to
7

0
to

-2
.5

E
x
p
C

2
P

IV
P

ro
la

te
(H

)
2

0.
45

4
3
0

0
.5

0
-1

0
to

2
E

x
p
D

P
IV

P
ro

la
te

(V
)

2
0.

45
4
3
0

0
.5

0
-6

.3
to

4
.5

E
x
p
E

P
IV

O
b

la
te

(V
)

1/
2

0.
34

5
4
1

0
.5

6
-8

to
8

-2
E

x
p
F
1

L
IF

O
b

la
te

(V
)

1/
2

0.
4,

0.
8

3
0
0
,

6
0
1

0
.6

1
7

0
to

5
-6

.5
to

-1
.2

8
E

x
p
F
2

L
IF

O
b

la
te

(H
)

1/
2

0.
4,

0.
8

3
0
0
,

6
0
1

0
.6

1
7

0
to

5
-1

.7
4

E
x
p
F
3

L
IF

O
b

la
te

(4
5
◦ )

1/
2

0.
4,

0.
8

3
0
0
,

6
0
1

0
.6

1
7

0
to

5
-1

.6
9

E
x
p
G

1
L

IF
T

or
u

s
9

0.
80

1
4
2

0
.1

9
,

0
.4

1
,

0
.0

3
9
,

0
.0

8
,

0
-1

.8
4

to
-2

1
.8

0
.6

5
,

0
.8

4
,

1
.1

0
.1

3
,

0
.1

7
,

0
.2

3
E

x
p
G

2
L

IF
T

or
u

s
9

0.
81

1
4
4

0
.1

7
,

0
.4

3
,

0
.6

2
0
.0

4
,

0
.0

8
,

0
.1

4
0

to
1
0

-3
.6

E
x
p
G

3
P

IV
T

or
u

s
9

0.
8
0

1
6
4

0
.2

1
,

0
.5

7
,

0
.0

4
3
,

0
.1

2
,

0
-1

to
-1

6
.7

5
0
.7

8
,

1
.0

6
,

1
.2

6
0
.1

6
,

0
.2

2
,

0
.2

6

E
x
p
H

1
L

IF
T

or
u

s
5

0.
81

2
5
6

0
.1

5
,

0
.3

,
0
.0

3
6
,

0
.0

8
,

0
-1

.8
8

to
-1

6
.8

8
0
.5

2
,

0
.7

2
0
.1

4
,

0
.2

0
E

x
p
H

2
L

IF
T

or
u

s
5

0.
81

2
5
6

0
.1

3
,

0
.2

9
0
.0

3
6
,

0
.0

8
0

to
5
.5

-3

E
x
p
H

3
P

IV
T

or
u

s
5

0.
80

2
9
2

0
.1

9
,

0
.4

1
,

0
.0

5
3
,

0
.1

1
,

0
-1

to
-1

0
.8

8
0
.6

,
0
.9

5
,

1
.2

0
.1

6
,

0
.2

6
,

0
.3

3
E

x
p
I

L
IF

T
or

u
s

5
0.

41
1
2
9

0
.3

3
,

0
.5

8
0
.0

5
8
,

0
.1

0
0

to
1
0

-1
.8

7
to

-1
4
.8

7
E

x
p
J

P
IV

T
or

u
s

5
0.

60
2
8
5

0
.3

,
1
.2

5
0
.0

7
2
,

0
.3

0
-1

0
to

1
0

-6
.7

E
x
p

K
L

IF
&

P
IV

T
or

u
s

34
0.

79
6
5

0
.3

5
,

0
.7

5
,

0
.0

3
6
,

0
.0

7
6
,

0
0

to
-7

0
1
.0

,
1
.3

,
1
.6

0
.1

0
,

0
.1

3
,

0
.1

6
E

x
p
L

P
IV

T
or

u
s

9
0.

39
7
2

0
.6

0
.0

7
5

-1
1

to
1
1

-3

T
ab

le
2.

2:
E

x
p

er
im

en
ta

l
p
ar

am
et

er
s

fo
r

th
e

sm
al

l-
ta

n
k

ex
p

er
im

en
ts

in
te

rm
s

of
th

e
ob

je
ct

s,
n
on

d
im

en
si

on
al

n
u
m

b
er

s
an

d
n
on

d
im

en
si

on
al

co
or

d
in

at
es

in
tr

o
d
u
ce

d
in

se
ct

io
n

2.
2.

2.
T

h
e

fo
cu

si
n
g

w
av

e
n
u
m

b
er

F
o

is
in

tr
o
d
u
ce

d
in

ch
ap

te
r

5.
1.



44 Chapter 2. Experimental setup and procedure

with a time interval such that the maximum in-plane displacement of the particles
was smaller than one fourth of the interrogation window size, and the out-of-plane
displacement smaller than one fourth of the laser sheet thickness. For the imaging
area used in this setup, 1 pixel corresponded to approximately 0.37 mm.

In experiments C, J and L the particles were illuminated with the horizontal laser
sheet passed through the side of the tank (Figure 2.3b). Different horizontal planes
were recorded at different depths by shifting the inclined mirror to a certain vertical
position for illumination. For these measurements the thickness of the laser sheet
was increased in order to determine the displacement of the particles. Increasing
the laser sheet thickness allowed to follow the illuminated particles for a sufficiently
long time to use PIV images taken through the bottom of the tank (see Figure 2b).

The particle displacement was obtained by cross-correlating two successive im-
ages using standard PIV techniques (Fincham & Delerce, 2000). For the PIV calcu-
lations, the UVMAT/CIVx software packages developed at LEGI were used1. Each
image was divided in boxes of a preselected size. The size of one box was large
enough to observe a recognizable pattern, and small enough to present little per-
turbations of the pattern shape between two successive images. The pattern was
generated with seeded particles, so that the algorithm could determine its position
by calculating the correlation coefficients and selecting their maximum. The velocity
was estimated by dividing the obtained displacement pattern by the time interval ∆t
defined by the acquisition frequency. Each PIV calculation provides two components
of the velocity field: the longitudinal horizontal velocity, û, and the vertical veloc-
ity, ŵ, when the laser sheet was positioned vertically, and the longitudinal, û, and
transverse, v̂, horizontal velocities, when the laser sheet was positioned horizontally.
Hereinafter a hatˆwill denote a velocity component measured by PIV.

The signal obtained by the experimental procedure is periodic in time since
the main motion is due to waves. Thus, it is possible to separate it into different
components that oscillate at different frequencies (harmonics of the fundamental
oscillation frequency). The most convinient way of performing the separation is to
use Fourier filtering based on Fourier transformation. The analytical form of Fourier
transform of a signal f(t) is

F (ω) =

∫ +∞

−∞
f(t) expiωt dt, (2.6)

with t the time and ω the frequency. This transform allows to interpret the signal
f(t) as a sum of an infinite number of harmonic functions with specific amplitudes
and phases. Thus, for any continuous function it is possible to define a discrete
function (spectrum) represented by an infinite series of harmonics. For digital pro-
cessing the discrete form of the Fourier transform (DFT) is used, defined on the
time interval [0, T ] as

fn = f

(
nT

N

)
, Fk =

N

T
F

(
2πk

T

)
=

N−1∑

n=0

fne
2πik n

N , (2.7)

1http://www.legi.cnrs.fr/web/spip.php?article763

http://www.legi.cnrs.fr/web/spip.php?article763
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with N the length of the signal, n = 1, . . . N − 1 and k = 0, . . . , N − 1 (Van Loan,
1992). For faster computation the Fast Fourier Transform (FFT) algorithm included
in the Matlab package is used. An FFT computes the discrete Fourier transform
of a sequence by factorizing the DFT matrix into a product of sparse (mostly zero)
factors. This algorithm reduces the complexity of the computation from O(N2) for
a DFT to O(N logN) for the FFT.

In some experiments data were recorded at sequences of vertical planes: one
period per plane. The Fourier filtering was applied for these experimental data to
decompose fundamental and higher harmonics. More detailed description is pre-
sented below in this section.

Another possible algorithm for filtering the waves of a particular frequency is
temporal filtering, which is the part of the complex demodulation approach based
on Hilbert transformation and first applied to internal waves by Mercier et al. (2008).
The following steps are involved:

• Fourier transform of the signal in time. This leads to a frequency spectrum
having maximum peaks associated with waves of different frequencies. Here
we determine the working frequency ωn, with n = 0 for the mean flow, n = 1
for the fundamental frequency, n = 2 for the second harmonic and so forth,
around which we perform the filtering.

• Multiplication of the spectrum by a Hamming window h(n) = α−βcos
(

n
N−1

)
,

with α = 0.54 and β = 1−α = 0.46. In signal processing, a window function is
a mathematical function that is zero-valued outside some chosen interval. The
cosine window proposed by Richard W. Hamming is optimized to minimize
the maximum side lobe. The constants are approximations of α = 25/46
and β = 21/46, respectively. In our case the Hamming window is centered
around the working frequency and has a small frequency width, and therefore
it isolates one specific frequency.

• Generation of the complex signal by the inverse temporal Fourier transform.

A similar technique can be applied in order to filter in space by performing the
spatial Fourier transform and choosing a working wave vector. Together, spatial
and temporal filtering allow to identify a wave with particular (ω, k,m). This is
practical for the identification of plane internal waves in space and time.

The complex demodulation in time has been applied to the long time series of
experimental data (since long enough series are required for the calculation of Hilbert
transforms with sufficient accuracy). The real part of the resulting complex signal is
the filtered n-th harmonic, and its modulus is the amplitude of this harmonic. The
velocity amplitude is averaged over 8-15 oscillation periods recorded after reaching
the steady regime. In the following a filtered n-th harmonic, either by Fourier or
complex demodulation, will be denoted with a subscript n, for example Ûn.
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2.2.4 Wave visualisation and data processing for LIF mea-
surements

The second visualisation method was the method of fluorescent dye planes intro-
duced by Hopfinger et al. (1991) for the qualitative measurements of vertical fluid
displacement and Flór et al. (2002) for quantitative measurements (Figure 2.4c).
A set of equidistant dye planes was generated by slowly displacing a rake of hor-
izontally spanned cotton wires through the fluid. These cotton wires were soaked
in a fluorescent dye solution and dried before the experiment. The dye planes were
illuminated with a moving vertical laser sheet parallel to the direction of oscillation.
Data processing was performed with a cross-correlation technique (Voisin et al.,
2011; Ermanyuk et al., 2011). The light intensity I(z) along a vertical line across
the laser-illuminated fluorescein planes varies as a sequence of Gaussian peaks su-
perposed with a weak random noise. To determine the position of each maximum
we calculate the cross-correlation of the experimental signal with a Gaussian

G(z, z′, s0) = exp
− (z−z′)2

2s0 /(
√

2πs0),

defined as

C(z′) =

∫
I(z)G(z, z′, s0)dz.

In practice, the correlation is calculated for discrete values with an increment of 1
pixel, i.e.

Ck =
N−1∑

n=0

GnIn+k.

To reduce the computation time, the Gaussian function G(z, z′, s0) is calculated once
for N points, with N = 4s0 to ensure that the tails of the function are sufficiently
close to zero, and with centre at z′ = 2s0 so that

Gn = G(n, 2s0, s0).

Subpixel interpolation is performed: three upper points at each local maximum of
Ck are used to calculate the coefficients of a parabolic fit, allowing the position
of the maxima to be determined analytically, with an accuracy of approximately
0.05 pixel.

Prior to the onset of the oscillation, the dye planes were scanned by a laser sheet
in the otherwise quiescent fluid to obtain the reference state ζ(0) for each dye plane.
The vertical displacement of this dye line, ζt, was measured at a certain position in
time t either from two successive images

ζt(t) = ζ(t+ δt)− ζ(t),

or with respect to the reference state ζt(0), yielding

ζt(t) = ζ(t)− ζ(0).
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(a) (b) (c)

Figure 2.6: Cross-correlation algorithm for LIF processing; (a) original image, (b)
light intensity profile I(z), (c) resulting image.

The local slopes of the dye lines in the plane XZ are defined as

S(t) = arctan

(
∂ζt

∂x

)
.

In practice they were evaluated as

S(t) = arctan

(
∆ζt

∆x

)
, (2.8)

where ∆x should be sufficiently large compared to the accuracy of measurement
of the vertical displacement ζt and sufficiently small compared to the radius of the
object, a, to resolve the details of the wave profile. The vertical displacements were
evaluated as average values over vertical stripes of the width of several pixels (as
described in Ermanyuk et al., 2011; Voisin et al., 2011), which defines the horizontal
spatial resolution of the data. This gave, for example, ∆x = 5 (≈ 0.253 cm)
and 8 pixels (≈ 0.339 cm) for the thick torus in experiment H1 and thin torus in
experiment G1, respectively.

To reconstruct the three-dimensional distribution of the vertical displacement, a
series of images was acquired for different positions in the y-direction. Therefore,
the mirror reflecting the laser light (see Figure 2.3a) was moved by a computer-
controlled step motor with a prescribed increment ∆y = 0.8 cm. At each position
the mirror remained fixed during one period of oscillation. This allowed to acquire
time-series suitable for subsequent Fourier analysis and evaluation of amplitudes of
n-th harmonic components of the signal.

Time-series of vertical displacements ζt(ti) were analyzed using three different
methods. With the first method, the amplitudes of the n-th harmonic components
ζn and Sn of the signals were determined via Fourier filtering of time-series. Similar
analysis has been used in Voisin et al. (2011) and Ermanyuk et al. (2011). This type
of data processing is particularly useful for linear or weakly non-linear processes
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when the first few harmonics are dominant and can be clearly identified. With
the second method, the amplitudes ζrms and Srms were evaluated as the period-
averaged r.m.s. of the corresponding time-series multiplied by 21/2 (Sutherland &
Linden, 2002). In principle, this quantity takes into account the contribution of
all harmonics in the signal. However, owing to the period-averaging procedure
the r.m.s. value cannot precisely capture the extreme values of wave amplitude and
wave slope, which may instantly occur at a particular phase of oscillation. Of special
interest are the extreme slopes which can trigger incipient overturning in the case
when the wave crests become steep. Therefore, a third method of data processing
was introduced. The time-series ζ(ti) and s(ti) measured at each point were sorted
to find the maximum values ζmax = max |ζt(ti)| and Smax = max |s(ti)|.

Thus with these three methods, next to the values ζn, ζrms and ζmax, the slopes
Sn, Srms and Smax were measured in degrees (after taking the arctangent) allowing to
explicitly study the transition of the wave system to overturning. The displacement
amplitudes were normalized generally with the oscillation amplitude A, or for the
torus in the case when only the focal region was of interest, with the minor radius
of the torus a.

PIV and LIF measurements have their advantages and limits, that we discuss in
the next section.

2.3 Choice of the visualisation technique for high

wave slopes

2.3.1 A note on Eulerian and Lagrangian approaches

Fluid motion can be described with two approaches. Using the Euler approach,
one considers a fixed set of points in space, ~x = (x1, x2, x3). At different times
t different fluid particles travel through each point, each particle with a specific
velocity ~u depending on the time t and position ~x, yielding a velocity field ~u(~x, t).
In the Lagrangian approach one considers a fixed set of fluid particles, of position
~ξ0 = (ξ0,1, ξ0,2, ξ0,3) at an initial time t0. For a complete description of the fluid
motion it is necessary to know the trajectory of all particles, i.e., the position of
each particle at any ulterior point in time t > t0. This means that for each particle
we need to know the equation of its trajectory ~ξ = ~ξ(t), and the velocity follows

then as ~u = d~ξ/dt. Each particle differs from another in its initial position, ~ξ0, and
therefore this value is included in the equation of the trajectory of the particle as
a parameter, ~ξ = ~ξ(t, ~ξ0). Lagrangian coordinates are parameters that characterize
each point of the medium and do not change during the process. Thus, the Lagrange
approach is based on the description of the history of motion of each fluid particle
separately. In practice such a description is more complex than the Euler approach
in terms of fluid motion equations, but is also more detailed when applied to wave
visualisation.
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2.3.2 PIV and LIF measurements of wave focusing

In this section we investigate the difference between PIV and LIF measurements,
in the particular case of wave focusing by the big torus in K (aspect ratio ε =
34) applying both techniques of visualisation at the same time. The oscillation
amplitude A is large comparing to the minor radius of the torus a, i.e. the Keulegan-
Carpenter number is Ke = 1.3. Two cameras are used, one to recognise particles and
the other the fluorescein, both illuminated by a vertical laser sheet. Schematically,
the propagation of wave beams generated by the big torus in a fluid of finite depth
H = 89 cm is shown in Figure 2.7(a) with a red square defining the camera view.
Wave focusing is obtained, with divergent wave beams absorbed by grids at each
side wall and convergent wave beams focusing on the axis X = Y = 0. In addition
to the focal zone of the direct waves radiated by the torus at Z = −45, a second
focal zone of waves reflected at the surface is observed close to the torus at Z = −15,
together with two zones of beam intersection on the sides at Z = −30.

Figures 2.7(b,c) show the distributions of vertical, Ŵ1, and horizontal, Û1, veloc-
ity amplitudes, respectively, obtained with PIV measurements in the vertical plane
Y = 0 parallel to the direction of oscillation. The amplitude is amplified in both focal
zones, forming two symmetric structures of roughly elliptic shape for the vertical ve-
locity, and one structure also of roughly elliptic shape for the horizontal velocity. In
the two regions of beam intersection the amplification is not symmetric, but inclined
downwards toward the axis. Patterns of vertical displacement amplitude, ζ1/A, and
wave slope, S1, obtained with LIF measurements are presented in Figures 2.7(d)
and (e), respectively. The structure of the vertical displacement is similar to that
for the vertical velocity amplitude (Figure 2.7c), consistent with the linear theory
according to which, for tune dependence as exp−iωt, we have w = ∂ζ/∂t = −iωζ.
Wave slopes are maximized in both focal zones and zones of beam intersection.
In Figure 2.8 distribution of vertical velocity and displacement amplitudes along
the direction of oscillation X are presented for different vertical distances from the
torus. It can be seen that there is no particular energy loss due to reflection at the
surface, as the magnitudes of the velocity and displacement amplitude in the focal
zone (Figure 2.8b, 0 < X < 10) and in zones of wave beam intersection (Figure 2.8c,
15 < X < 20) remain the same. The effects of wave focusing will be discussed
in detail in chapters 4 and 5. Here we only consider the differences in the wave
measurement techniques.

The comparison of the results of LIF (a Lagrangian approach) and PIV (an
Eulerian approach) is presented in Figure 2.8 for the vertical displacement and ver-
tical velocity amplitude, respectively. The PIV technique provides with qualitative
results of two velocity components Û and Ŵ while quantitatively profiles of the
amplitude in the focal zone. They are systematically lower than the LIF results in
the high gradient zones (around, X = 5 in Figure 2.8b and X = 20 in Figure 2.8c).
With increasing oscillation amplitude, the slopes become steeper and the difference
between results of LIF and PIV techniques increases. Since we may expect that for
steep slopes LIF measurements are more precise than the PIV results, this graph
indicates the error made with PIV measurements. The choice of the wave mea-
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(a)

Ŵ1 Û1

(b) (c)

ζ1/A S1

(d) (e)

Figure 2.7: (a) Schematic illustration of the wave beams generated by the oscillation
of the torus (ε = 34). Red rectangle shows the experimental field of view. Patterns
in the vertical plane Y = 0 of (b) the vertical velocity, Ŵ1, and (d) the vertical
displacement amplitude, ζ1/A; (c) the horizontal velocity amplitude, Û1, and (e)
the wave slope, S1. The patterns (b,c) were obtained by PIV and the patterns (d,e)
by LIF. [Exp K from Table 2.2]
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(a) (b)

(c) (d)

Figure 2.8: Distribution of the vertical velocity Ŵ1 and vertical displacement ζ1/A
amplitudes at (a) Z = −7, (b) Z = −15, (c) Z = −27 and (d) Z = −33. Blue
and red dots correspond to PIV and LIF measurements, respectively. [Exp K from
Table 2.2]

surement method plays therefore an important role for the investigation of wave
focusing.

2.4 Experiments at the Coriolis platform

A set of experiments were conducted at the Coriolis rotating platform at LEGI,
which is the largest rotating platform in the world. The total platform diameter is
16 m, the tank diameter 13 m and the maximum fluid height 1 m (Figure 2.9). The
platform is designed for the experimental modelling of geophysical processes in the
presence of background rotation and/or density stratification. Specially designed
topographies can be also installed. The large scale of the platform allows to study
ocean dynamics with weak viscous effects, hence at high Stokes number St , which
is not the case in the small tank described in the previous section. The maximum
rotation speed of the filled platform is 2 rotations per minute.

For experiments on wave focusing, a torus consisting of four plexiglas sectors was
cut in half horizontally and fitted upside down on a plexiglas plate kept at the surface
of the fluid (Figure 2.10a). To investigate partial focusing two of these sectors were
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(a)

(b)

Figure 2.9: The Coriolis platform: (a) generic view, illustrating the large tank
diameter of 13 m (photothèque CNRS M. Fresillon); (b) side view of the present
setup with the torus at the centre and the laser on the right.
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(a) (b)

Figure 2.10: (a) Parameters of the torus used as a wave generator at the Coriolis
platform: a = 15 cm, b = 75 cm; (b) schematic view of internal waves generated by
the torus.

removed from the plate to obtain a half–torus. The torus or half–torus, which is
of major radius b = 75 cm and minor radius a = 15 cm, was located at the centre
of the platform and oscillated horizontally with various amplitudes A = 2.5, 5, 10
and 15 cm, which were either small or comparable with the minor radius. For this
large torus, depending on the oscillation frequency, the Stokes number is estimated
to be 3800 < St < 6800. For such large Stokes numbers, we expect the internal
wave beams to be bimodal (namely with two maxima across each beam), implying
a complex structure of the focal region.

The Cartesian coordinate system was the same as for the small tank, with origin
at the centre of the torus at the free surface. The coordinates X, Y and Z are
normalized similarly with the minor radius a.

Three types of waves were considered: internal gravity, inertia-gravity and in-
ertial waves. Depending on the wave type the platform, which either stood still or
rotated, was filled with a linearly stratified fluid or a homogeneous fluid, and filled
to a depth of H = 90 cm. Special attention was paid to the fluid level in the rotating
case. With the rotation the free surface of the fluid is parabolic ensuring equilibrium
between the centrifugal and pressure forces. The vertical position of the torus was
adapted when the rotation speed was modified. Stratification was measured with
two conductivity probes providing with temperature and salinity profiles as shown
on Figure 2.11.

For the wave visualisation standard two-dimensional PIV measurements or vol-
ume PIV measurements were performed. For the stratified fluid 5 liters of 200 µm
polystyrene particles were used. In the stratified rotating case, smaller 60 µm
Orgasol R© particles were chosen. Depending on the choice of PIV technique, the
laser sheet was positioned either horizontally or vertically. The vertical laser sheet
was fixed parallel to the direction of oscillation and illuminated particles in the cen-
tre plane of the torus. Images were taken with a 12-bit Dalsa camera with CCD
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(a) (b)

Figure 2.11: (a) Salinity profile versus depth, z, obtained with two conductivity
probes; (b) choice of parameters for volume PIV measurements, where PosI and
PosF correspond to the initial and final vertical positions of the laser sheet, Dtp is
the delay between two volume scans of the same pair, needed for return of the laser
sheet to PosI, Dtv is the period between two pairs of scans, Dtc is the period of
correlation between two scans of the same pair.

of 1024 × 1024 pixels located on the side of the platform (see Figure 2.10b and
Figure 2.12b).

Volume PIV measurements required specific setup and specific settings of the
laser and camera. The laser sheet was positioned horizontally and was driven verti-
cally by a computer-controlled motor. The high-speed Falcon camera with CCD of
2432 × 1728 pixels was located at the top and took images of illuminated particles
inside the torus. The camera settings and the motor were controlled by special soft-
ware designed with LabView. The parameters for the camera and the laser motion,
introduced in the software are shown schematically in Figure 2.11(b). The laser
sheet was moved between defined initial position PosI and final position PosF .
The distance between these positions was 35± 3 cm depending on the experiment.
Volume measurements were performed around the zone of wave focusing. The time
interval between images in one volume was about 20 µs and the parameters (distance
and time intervals) were chosen so that the period of correlation (Dtc) between two
volumes was maximum 1 s. Each volume scan was performed in pairs, so as to allow
this correlation. The time interval between two volume pairs was defined to be 3 s,
so as to ensure the return of the laser sheet at its initial position.

The data were analyzed with the home made UVMAT/CIVx program2. The
correlation was calculated between two images taken at the same level, i.e. two
images from volumes in the same pair. The horizontal velocity components û and v̂
were obtained directly from the data and the vertical velocity was calculated from
the continuity equation

∂w

∂z
= −

(
∂u

∂x
+
∂u

∂y

)
.

2http://www.legi.cnrs.fr/web/spip.php?article763

http://www.legi.cnrs.fr/web/spip.php?article763
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(a)

(b)

Figure 2.12: Experimental setup: (a) top view of the platform during an experiment
with horizontal laser sheet, (b) schematic setup.



56 Chapter 2. Experimental setup and procedure

Further treatment included frequency filtering and spectrum analysis described in
the previous section.

The experimental parameters are shown in Table 2.3. Experiments 1.1-4 were
conducted in a linearly stratified fluid of buoyancy frequency N and experiments
2.1-2 in a linearly stratified and rotating fluid of buoyancy frequency N and inertial
frequency f . Experiment 3 was conducted in a rotating fluid of inertial frequency f .
Experiments 4.1-3 were performed in the linearly stratified nonrotating fluid with
the half–torus oriented either perpendicular (symmetric half–torus in Table 2.3) or
parallel (asymmetric half–torus in Table 2.3) to its direction of oscillation. The
definitions of the parameters are the same as in the previous section.
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Chapter 3

Generation of higher harmonic
waves by spheroids

Oscillating bodies in stratified fluids may emit higher harmonics in addition to the
fundamental waves. The three-dimensional structure of these harmonics is not yet
well known. In this chapter we consider the generation of higher harmonic waves by
bodies of different curvatures, represented by an oscillating sphere and oblate and
prolate spheroids oriented horizontally or vertically. Experimental observations are
compared with the linear theory of Voisin et al. (2011) in the axisymmetric case of
an oblate spheroid of vertical axis, and with the nonlinear theoretical predictions
according to Bell (1975a) for wave generation by boundary advection, and Tabaei
et al. (2005) and Jiang & Marcus (2009) for wave generation at wave beam intersec-
tion. Measurements of the horizontal flow field allow us to make hypotheses about
the horizontal structure of the n-th harmonic radiation patterns. These measure-
ments are performed using LIF and PIV techniques. An additional set of experi-
ments, visualising horizontal planes close to the oscillating objects, was performed
for a better understanding of mechanisms that are responsible for the generation of
higher harmonics.

3.1 Structure of first and higher harmonics gen-

erated by a sphere

In a uniformly stratified fluid, the oscillation of a body with a vertical axis of rev-
olution generates internal waves that propagate along double cones, tangent to the
body above and below, with apices on the axis and generatrices inclined at the
angle θ to the vertical, defined from the dispersion relation (1.13). This relation
admits the generation of a propagative n-th harmonic component of the wave field
if nω/N < 1 (Figure 3.1). The effective generation of the n-th harmonic requires
an appropriate choice of the non dimensional oscillation amplitude Ke = A/a and
frequency ω/N . Obviously, Ke should be large enough for the amplitude of the n-th
harmonic, proportional to Ken, to be observable. Based on the knowledge of the
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(a) (b) (c)

Figure 3.1: Schematic structure of fundamental and higher harmonic waves for
(a) 1/2 < ω/N < 1, (b) 1/3 < ω/N < 1/2 and (c) 1/4 < ω/N < 1/3. The domain
of interest corresponding to the innermost wave cone is shown in light grey.

behavior of the first harmonic (also called fundamental wave in the text below), a
plausible conjecture for the frequency tuning can be formulated. It is known that
for oscillating circular cylinders and spheres the maximum power radiated by the
first-harmonic waves is found in the range of ω/N between 0.7 and 0.8, regardless
of the oscillation direction (Voisin et al., 2011). We make the conjecture that this
prediction remains true for the n-th harmonic, irrespective of its actual generation
mechanism, so that generation is most effective when 0.7 < nω/N < 0.8, and that
the particular geometry of the wave field has little influence on it. This condition
was used for the frequency tuning in the present experiments.

The spatial structure of the first and second harmonics emitted by an oscillating
sphere has been studied in Ermanyuk et al. (2011), who showed the first harmonic to
be dipolar, with a radiation pattern as cosφ with φ the azimuthal angle measured
from the X-direction of oscillation, and the second harmonic to be quadrupolar,
with radiation pattern as cos 2φ. Here we restrict ourselves to a demonstration of
the dipolar (Figure 3.2a) and quadrupolar (Figure 3.2b) radiation patterns for the
cases when the oscillation amplitude is low. Wave visualisation is performed with the
LIF technique, and the low signal level leads to a maximum vertical displacement
of the dye lines between two successive images well below 1 pixel (Voisin et al.,
2011; Ermanyuk et al., 2011). These examples demonstrate the robustness of the
experimental technique.

Figure 3.3(a) shows the distribution of the first harmonic component of the ver-
tical displacement amplitude ζ1/A (see the definition of ζn and the nondimensional
coordinates X, Y, Z in section 2.2.3), for a horizontal cross section of the wave cone
for the case corresponding to Figure 3.1(a). The wave cone in this experiment has
its generatrices inclined at θ(1) = 41◦ to the vertical. The characteristic two bean-
like shape of the cross section represents a dipolar wave pattern which agrees well
with the theoretical variation of the velocity amplitude as cosφ (Voisin et al., 2011).
This implies maximum radiation along the longitudinal x-direction and no radiation
along the transverse Y -direction.
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(a) (b) (c)

Figure 3.2: Horizontal structure of dipolar, quadrupolar and octupolar internal
waves. The annular propagation of the waves from the conical geometry in Figure 3.1
and the 2n-polar radiation pattern as cos(nφ) are represented in light grey and their
combination in dark grey.

Figure 3.3(b)shows the distribution of the second harmonic component of the
vertical displacement amplitude ζ2/A for the same conditions as in Figure 3.3(a)
but after changing the frequency ratio from ω/N = 0.76 to ω/N = 0.41. The fre-
quency 2ω/N ≈ 0.8 corresponds to effective generation of the second harmonic and
yields a wave cone with generatrices inclined at θ(2) = 35◦ to the vertical, while the
generatrices for the first harmonic are inclined at θ(1) = 66◦ (see Figure 3.1b). The
three-dimensional structure of the corresponding wave pattern is quadrupolar (see
Figure 3.3b), with maximum radiation along the X- and Y -directions and cos(2φ)
shaped azimuthal variation.

The amplitude of higher harmonics is lower than that of the fundamental wave,
as has been shown in Ghaemsaidi & Peacock (2013) in terms of the total velocity
field, including the three velocity components. In order to increase the wave ampli-
tude of the third harmonic we increase the oscillation amplitude Ke from 0.27 to
1.56 (see Figure 12a in Ermanyuk et al., 2011). The distribution of the third har-
monic amplitude ζ3/A is shown in Figure 3.4. The characteristic angles of the wave
cones for these experimental conditions are θ(1) = 75◦, θ(2) = 59◦ and θ(3) = 39◦

(see Figure 3.1c). To obtain the third harmonic wave the frequency was tuned at
3ω/N ≈ 0.8. The camera sampling frequency was set at one frame per second yield-
ing 36 frames per period, which is a sufficient number to resolve the third harmonic.
An octupolar structure is clearly visible, with 6 azimuthal poles implying an ampli-
tude variation as cos(3φ). More detailed investigation on the structure of the third
harmonic wave will be presented in section 3.3.

The present observations show that the spatial structure of the first three har-
monics of the wave field are respectively dipolar, quadrupolar and octupolar. Ac-
cording to this trend we expect that for the n-th harmonic wave a radiation pattern
of multipolar order 2n, varying as cos(nφ) and having 2n azimuthal lobes in the
horizontal plane. Because of the complexity of this structure and narrowness of
the wave cone it is less obvious to visualize the radiation patterns for higher wave
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(a) (b)

Figure 3.3: Radiation patterns of the vertical displacement amplitude for an oscil-
lating sphere at Ke = 0.27: (a) dipolar pattern ζ1/A for the first harmonic wave,
corresponding to the upper half of Figure 3.2(a); (b) quadrupolar pattern ζ2/A for
the second harmonic wave, corresponding to the upper half of Figure 3.2(b). The
horizontal cross section of the wave field is taken at Z = −5.09, with the X-axis ori-
ented along the direction of oscillation and the Y -axis toward the camera. [Exp A1

from Table 2.2]

(a) (b)

Figure 3.4: Octupolar radiation pattern of the vertical displacement amplitude ζ3/A
of the third harmonic wave corresponding to the upper half of Figure 3.2c for an
oscillating sphere with (a) Ke = 1.35 at Z = −1.37 and (b) Ke = 0.69 at Z = −1.11.
[Exp A2 from Table 2.2]
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modes.
The numerical results described in Lamb (2004) and Korobov & Lamb (2008),

illustrated in Figure 1.8 show that the internal wave structure is due to the inter-
play of first and higher harmonics in the vertical plane. The here-presented results
show that, in addition, the complexity of the wave structure in the horizontal plane
increases with the harmonic wave number. The interaction of multipolar radiation
patterns may lead to complex interference patterns above realistic bottom topogra-
phies.

3.2 Wave generation by a spheroid

3.2.1 Comparison with the linear theory

Three dimensional theoretical predictions for a sphere by Voisin et al. (2011) can
be extended to a spheroid of vertical axis, equatorial radius a, polar radius b and
aspect ration ε = b/a, oscillating horizontally at the frequency ω < N , with position
(A, 0, 0) sin(ωt+ Θ).

In nondimensional Cartesian coordinates (X, Y, Z) = (x, y, z)/a the normalised
velocity components (U, V,W ) = (u, v, w)/(Aω) are given by:

U =
2iε cos2 θ sin θ√
cos2 θ + ε2 sin2 θ

e−i(ωt+Θ)
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∫ ∞

0

dK,Kj1

(
K
√

cos2 θ + ε2 sin2 θ
)

×
[

X2

X2 + Y 2
J2

(
K
√
X2 + Y 2 cos θ

)
− J1

(
K
√
X2 + Y 2 cos θ

)

K
√
X2 +X2 cos θ

]

× exp

(
− K3|Z|

2St sin θ

)
exp(−iK|Z| sin θ), (3.1)
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(a) (b)

(c) (d)

Figure 3.5: Theoretical calculations from equations (3.1), (3.2) (left column) and
experimental results (right column) for (a,b) the longitudinal, Û1, and (c,d) the
transversal, V̂1 horizontal velocity amplitudes for an oblate spheroid (V) of ε = 1/2
at Z = −2. [Exp E from Table 2.2]

where j1(x) = (sinx)/x2 − (cosx)/x a spherical Bessel function, J2(x) a cylindrical
Bessel function, and

D(Υ ) =
1

1 + Υ 2

[
1− Υ√

1 + Υ 2

(
i
π

2
+ arcsinhΥ

)]
,

with
Υ = ε tan θ.

Figure 3.5 represents the patterns of longitudinal, Û1, and transversal, V̂1, hor-
izontal velocity components for an oblate spheroid (V) of aspect ratio ε = 1/2 as
measured with the PIV technique and calculated from the theory (equations 3.1 and
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3.2) in the horizontal plane Z = −1. The longitudinal velocity amplitude is maximal
at the centre. The transverse component has a “clover-like” structure and is zero at
the centre. Figure 3.5 shows good agreement between theoretical and experimental
results.

The patterns of vertical displacement amplitude obtained from equation (3.3)
and LIF measurements are shown in Figures 3.6(a) and (b), respectively for an
oblate spheroid (V). Again, good agreement is obtained between the theory and the
experiment close to the object (Figure 3.7a,b) even for high oscillation amplitude
(Ke = 0.617). However, experiments show that the waves are bimodal even far away
from the object while the linear theory predicts the transition to a unimodal struc-
ture (Figure 3.7c,d). From these results we conclude that increasing of oscillation
amplitudes decreases viscous effects.

(a) (b)

Figure 3.6: Patterns of the vertical displacement amplitude ζ1/A in XZ-plane ob-
tained from (a) the theoretical calculations (equation 3.3) and (b) LIF measurements
for the oblate spheroid (V). [Exp F1 from Table 2.2]

3.2.2 First and second harmonics

Experiments F1−3 involve an oblate spheroid oscillating horizontally at the ampli-
tude Ke = 0.617, with it’s axis in three different orientations. Figure 3.8 shows
horizontal cross-sections of the vertical displacement amplitudes of the first har-
monic (right column, ω/N = 0.8) and second harmonic (left column, ω/N = 0.4)
for the three configurations. For ω/N > 0.5 and high oscillation amplitudes Ke, the
higher harmonics, if present due to onset of nonlinear effects, are evanescent. This
regime allows us to study the fundamental wave separately. As has been shown
previously for a Gaussian seamount (Holloway & Merrifield, 1999; Munroe & Lamb,
2005) and for a sphere (Ermanyuk et al., 2011; Voisin et al., 2011), the horizontal
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(a) (b)

(c) (d)

Figure 3.7: Distributions of the vertical displacement amplitude ζ1/A along the
direction of oscillation X, obtained at (a) Z = −1.28, (b) Z = −2.30, (c) Z = −3.32
and (d) Z = −4.35 for the oblate spheroid (V). The solid lines represent the
theoretical calculations (equation 3.3), and the dots the experimental measurements.
[Exp F1 from Table 2.2]

distribution exhibits a dipolar radiation pattern in all three cases. The dependence
of the vertical displacement distribution on the geometry of the body can clearly be
seen in Figure 3.8 (right column) as well as in Figure 3.9(a), where a comparison
of the profiles at Y = 0 is presented. Here the symmetry of the body plays a role:
in experiments F1 and F2 the bodies are symmetric with respect to the Y Z-plane,
while in case F3 the body is rotated by 45◦ hence loses this symmetry. We can
observe that the distribution of vertical velocity is symmetric in experiments F1 and
F2 while the plane of symmetry has been rotated by the same angle for experiment
F3.

Oscillations at the frequency ω/N = 0.4 (< 0.5) admit the propagation of a
second harmonic along with the fundamental wave. Figure 3.9(b) presents the ex-
perimental amplitude profiles of the second harmonic for experiments F1−3. The
second harmonic depends on the object’s shape in the same way as described previ-
ously for the first harmonic. More detailed analysis of higher harmonics generation
will be presented in section 3.3.
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(a)

(b)

(c)

Figure 3.8: Horizontal cross-sections of the vertical displacement amplitude for the
oblate spheroid oscillating at Ke = 0.617 (a) at Z = −1.28 for the configuration (V)
namely with the spheroid axis oriented along the direction Z, (b) at Z = −1.74 for
the configuration (H) namely with the spheroid axis oriented along the direction X,
(c) at Z = −1.69 for the configuration (45◦), namely with the spheroid axis in the
XY -plane at 45◦ to the direction X. The left and right columns represent the first
ζ1/A and the second ζ2/A harmonic amplitudes, respectively. [Exp F1 − F3 from
Table 2.2]

The profiles on Figure 3.9 show also that the vertical displacement amplitude in
experiment F2 is smaller than in experiment F1. Since the experimental parameters
were kept constant, the geometry of the body (size and slope with respect to the X-
and Y - directions) is seen to affect the amplitude.

Together with the results obtained by Ermanyuk et al. (2011) and Voisin et al.
(2011) this investigation provides more detailed information about the horizontal
structure of internal waves in the ocean. The amplitude of the first and higher har-
monics depends on the slope of the underwater mountain, the horizontal distribution
depends on its shape and on the direction of the barotropic tide oscillation.
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(a) (b)

Figure 3.9: Experimental profiles of the vertical displacement amplitudes of (a)
the first harmonic (fundamental wave) and (b) the second harmonic for the oblate
spheroid. Blue, black and purple symbols represent the results for the configurations
(H), (V) and (45◦), respectively, as defined for Figure 3.8. [Exp F1 − F3 from
Table 2.2]

3.3 Mechanisms of higher harmonic generation∗

3.3.1 Vertical structure

The wave patterns emitted by a horizontally oscillating prolate spheroid of aspect
ratio ε = 2 are shown in Figure 3.10 for the cases when the spheroid axis is either
horizontal and along the direction of oscillation (prolate spheroid (H)), or vertical
(prolate spheroid (V)). The change in the orientation of the spheroid allows for the
study of different curvatures of the oscillating object, so as to discriminate between
the different possible mechanisms of higher harmonic generation, illustrated in Fig-
ure 3.11. Either the higher harmonic waves result from the nonlinear interaction of
the fundamental waves in the zones where their beams intersect, as modelled theo-
retically by Tabaei et al. (2005) and Jiang & Marcus (2009), or the higher harmonic
waves are produced by nonlinear boundary advection at the surface of the object, as
modelled by Bell (1975a) for subcritical object of infinitisimal slope. For this second
mechanism, when the object is supercritical, second harmonic generation will take
place at the critical points ε2 = 1 where the slope s of the object is equal to the
slope of the second harmonic wave, i.e.

εi =
s√

ω2
i /(ω

2
i −N2)

= 1,

with i = 1, 2 for the first and the second harmonics, respectively (ω2 = 2ω1).
For the prolate spheroid (H) in the left column of Figure 3.10, one notices the

generation of second harmonic waves on the sides at Z = 0, at the intersections of

∗This section is a modified version of the article “Generation of higher harmonic waves on
spheroids”, in preparation for submission, and reproduced in Appendix A.
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(a) (b)

(c) (d)

(e) (f )

Figure 3.10: Snapshot patterns of vorticity (color) and velocity (vector field) in the
vertical plane of symmetry Y = 0 for the wave field generated by a prolate spheroid
(H) (left column) and a prolate spheroid (V) (right column); (a,b) total wave field,
(c,d) first harmonic and (e,f ) second harmonic. [Exp C2 and D from Table 2.2]
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(a) (b)

Figure 3.11: Schematic distribution of the first and second harmonic waves gen-
erated by a prolate spheroid of (a) horizontal axis (H) and (b) vertical axis (V).
The solid lines represent the fundamental wave rays and the dashed lines the second

harmonic rays; the dots correspond to the critical points εi = s/
√

ω2
i

ω2
i−N2 = 1 at

which the wave rays are tangent to the spheroid, with i = 1, 2 for the first harmonic
(green dots) and second harmonic (red dots), respectively. Fundamental and second
harmonic generation is shown from the critical points εi and from the points of fun-
damental beam intersection; of the latter the harmonic waves that are not observed
in the experiment are represented by grey lines. The horizontal grey line determine
the vertical position of the fundamental beam intersection Z∗.

the fundamental waves. In agreement with the theory of Tabaei et al. (2005) and
Jiang & Marcus (2009), only second harmonic waves are generated that propagate
away from the obstacle. The waves below (and above) the spheroid, by contrast,
are generated at the boundary and appear to have their origin at the critical points
ε2 = 1, then intersect below the spheroid. In this zone the waves focus and therefore
amplify in wave energy (Figure 3.10e). However, this zone is closer to the object
than one may expect from the dispersion relation (1.13) for a second harmonic wave
(see the sketch in Figure 3.11). The responsible mechanism for the shift of the focal
zone seems to be a strong overturning motion near the boundary layer close to the
area (−1 < X < 1, Z = −1). This motion deflects the second harmonic waves
emanating from the critical points, and is clearly visible in Figure 3.10(e) and in
the horizontal plane views in Figure 3.12, obtained for slightly different parameters
and discussed in greater detail in section 3.3.2.

Near the focal point (X,Z) ≈ (0,−3) its effect vanishes and the second harmonic
waves propagate again with the inclination predicted by the dispersion relation.
Since our oscillating object is not axisymmetric, the focal zone gets a complex shape
and the focal point turns into a curve (see Figure 9 in Bühler & Muller, 2007). In
order to verify the possibility of overturning, one can base the Richardson number
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on the boundary layer thickness at the surface of the object, δz, i.e.

Ri =
N2

(Aω/δz)2
,

with Ri < 1/4 for shear instability according to theory of Miles (1961). For the ve-
locity and stratification in this experiment, this corresponds to a threshold boundary
layer thickness of δz < 0.35 cm. In view of the here much thinner boundary layer,
the overturning below the spheroid is likely to occur. However we observe similar
effects for very high Stokes numbers as described in chapter 6.

For the prolate spheroid (V) in the right column of Figure 3.10, the results,
obtained for the same stratification, amplitude and oscillation frequency, show again
the generation of fundamental and second harmonics at critical points. However,
the intersection of the fundamental waves at Z = 0 does not result in the generation
of a second harmonic wave. Since this intersection is at a larger distance from
the spheroid, the wave amplitude may have decreased significantly along its path.
Zhang et al. (2007) also notice that the second harmonics disappear for weaker wave
amplitudes. The sketches of the wave patterns in Figure 3.11(a) and (b) resume the
observations.

3.3.2 Horizontal structure

Complementary experiments were conducted to determine the position of higher
harmonic generation using a horizontal laser sheet at the lower boundary of the
spheroid at Z = −1 and in the zone of primary beam intersection Z∗ (see the
horizontal line in Figure 3.11a) calculated from formulas (3.14) in Hurley (1997) as

Z∗ =
√

cot2 θ + ε2.

The associated value ∆Z = |Z − Z∗| appears to be too small for the sphere (ε = 1,
ω/N = 0.41, ∆Z = 0.1) but for the prolate spheroid (H) of ε = 2 oscillating with
frequency ω/N = 0.4 this distance is large enough for measurements (∆Z = 0.33).

The distributions of amplitudes of the first and the second harmonics of the
horizontal velocity Û in the horizontal plane at Z = −1 are presented in Figure 3.12.
The second harmonic close to the object has a quadrupolar structure (−2 < X < 2).
The second harmonics at |X| = 4 and |X| = 6 are in agreement with the vertical
structure shown in Figure 3.10(e) and correspond respectively to the outgoing wave
beam generated at the critical point ε2 = 1 and the wave beam generated in the
zone of fundamental wave intersection at Z = 0. Figure 3.13 (a) shows that the
amplitude of the second harmonic wave has its maximum close to the surface of the
spheroid and decreases with the distance from the object.

To determine the wave spectrum generated by the prolate spheroid (H) and its
evolution with time (Bourget et al., 2013), a time–frequency representation described
in Flandrin (1998) is used, namely, for the velocity u,

Qu(t, ω) =

〈∣∣∣∣
∫ +∞

−∞
dτ u exp−iωτ h(t− τ)

∣∣∣∣
2
〉

xy or xz

, (3.4)
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(a) (b)

Figure 3.12: Radiation patterns for (a) the first and (b) the second harmonic wave
of the horizontal longitudinal velocity Û at the boundary (Z = −1) of the oscillating
prolate spheroid (H). [Exp C1 from Table 2.2]

Figure 3.13: Profiles of the second harmonic of horizontal velocity amplitude Û2

along the X-axis, at Z = −1 (black dots), Z = −1.47 (dark grey dots) and Z =
−1.91 (light gray dots) for the prolate spheroid (H). [Exp C from Table 2.2]

where h(t) = 0.54−0.46 cos
(
2π t

T

)
is a smoothing Hamming window and the average

is taken over an interrogation area in either the xy-plane or the xz-plane.
Figure 3.14 shows the time–frequency spectrum of the horizontal velocity û av-

eraged in space inside a small horizontal rectangle (−2 < X < 2,−1 < Y < 1) at
Z = −1. The first two harmonics are propagative (ω/N < 1), with their genera-
tion starting at t = 0, and their frequency remaining constant for all 40 oscillation
periods; all higher harmonics are evanescent (ω/N > 1). The development of these
evanescent waves is visible in Figure 3.14 over 0 < T < 10.

Figure 3.15 shows that in addition to the second harmonic frequency (ω2 =
0.9 rad/s) waves are generated at a slightly lower frequency around ω2− ≈ 0.8 rad/s.
We notice that the frequency interval between these waves increases with time.
The presence of an additional frequency in the time–frequency diagram confirms
the deviation of the second harmonic observed in Figure 3.10(e) below the prolate
spheroid (H).

The normalized kinetic energy E was calculated from the vertical and horizontal
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Figure 3.14: Time–frequency spectrum log10(Qu(t, ω)/Q0) for the horizontal lon-
gitudinal velocity û generated by the prolate spheroid (H) in the horizontal plane
Z = −1. The spectrum is averaged over the area −2 < X < 2, −1 < Y < 1,
T = (ωt)/2π and Q0 = max[Qu(t, ω1)]. [Exp C1 from Table 2.2].

Figure 3.15: Time–frequency spectrum log10(Qw(t, ω)/Q0) for the vertical velocity
ŵ generated by the prolate spheroid (H) in the vertical plane Y = 0. The spectrum
is averaged over the area −2.5 < X < 2.5, −4 < Z < −1, T = (ωt)/2π and
Q0 = max[Qw(t, ω1)]. [Exp C2 from Table 2.2]

longitudinal velocity components for waves generated by prolate spheroid (H) in the
vertical plane Y = 0, where the transverse velocity component is 0 (see Figure 3.5)
and averaged over the −b < X < b for all −6 < Z < −1:

E =

〈
1
2

[
(û

(i)
a )2 + (ŵ

(i)
a )2

]〉
x

1
2
(Aω)2

. (3.5)

The distribution of averaged kinetic energy along the vertical axis Z is shown in
Figure 3.16 for the first and second harmonics. The fundamental wave energy has
its maximum close to the object boundary and linearly dissipates with distance
Z. The energy of the second harmonic wave has two maxima: one close to the
object (Z = −1) and in the zone of secondary beam intersection (Z = −2.3, see
Figure 3.10e). Due to focusing the second harmonic is dominant for −6 < Z < −3.
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Figure 3.16: Distribution of the kinetic energy E defined by eq. (3.5) of the first
harmonic (dots) and second harmonic (circles) along Z in the plane Y = 0 for the
prolate spheroid (H). [Exp C2 from Table 2.2]

(a) (b)

Figure 3.17: Octupolar radiation pattern corresponding to the upper half of Fig-
ure 3.2(c), for (a) the horizontal velocity amplitude of the third harmonic wave, Û3,
and (b) the vertical velocity amplitude of the third harmonic wave, Ŵ3 at Ke = 0.52
and Z = −1.66. [Exp A3 from Table 2.2]

Distributions of the third harmonic component emitted by the sphere (S) are
shown in Figure 3.17 for the horizontal velocity Û3 and the vertical velocity Ŵ3,
complimenting the LIF measurements presented earlier in Figure 3.4. The third
harmonics frequency is estimated as 3ω/N ≈ 0.8. An octupolar structure is clearly
visible, with 6 azimuthal lobes implying on amplitude variation as sin(3φ) for the
horizontal velocity amplitude and cos(3φ) for the vertical velocity amplitude.

The distribution of the amplitudes of the third harmonic along the X-axis is pre-
sented in Figure 3.18 for objects of different curvature: sphere (S), prolate spheroid
(V) and prolate spheroid (H). The horizontal axis is normalized as X = x/L, where
L is the length scale in the direction of oscillation, i.e. L = a in the case of the sphere
(S) and prolate spheroid (V), and L = b in the case of the prolate spheroid (H). All
six azimuthal lobes of the third harmonic generated by the sphere have the same
form, size and amplitude distribution but in the case of the prolate spheroid (V),
the amplitude of the azimuthal lobes along the X-axis is smaller compared to the
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(a) (b)

Figure 3.18: Profiles of the third harmonic of the (a) horizontal, Û3, and (b) vertical,
Ŵ3, velocity fields at Y = 0. Dots, circles and stars correspond to results for
the oscillating sphere (S) measured at Z = −1.66, for the prolate spheroid (V)
at Z = −2.4 and for the prolate spheroid (H) at Z = −1.66, respectively, for
Ke = 0.56 ± 0.04. Note, the vertical distance to the boundary of the object is the
same in all cases, but Z values vary because of the scaling. [Exp A3 and B1,2 from
Table 2.2]

amplitude of the same lobes for the sphere (0.4 < X < 1 for Û3 and 0.9 < X < 1.2
for Ŵ3). We notice that the structure of the wave pattern approximately scales
with the slope of the object. The amplitude of the higher harmonic waves changes
significantly with the shape of the object, and is higher for “steeper” objects.

The dependance of the extreme values of the amplitudes of the first three har-
monics on the oscillation amplitude is presented in Figure 3.19. The logarithmic
representation shows that the amplitudes of the horizontal velocity Û and vertical
velocity Ŵ are independent of the oscillation amplitude for the normalized funda-
mental wave, and vary as Ke and Ke2 for the normalized second and third harmonics,
respectively, implying variations as Ke,Ke2 and Ke3 for the original dimensional ve-
locities, respectively. This trend is in agreement with the two-dimensional theories
of Bell (1975a), Tabaei et al. (2005) and Jiang & Marcus (2009), and with previous
experimental studies on fundamental and second harmonic waves generated by an
oscillating sphere (Ermanyuk et al., 2011).

3.4 Conclusions

In view of former observations on the relevance of the fundamental wave and higher
harmonics (Ermanyuk et al., 2011; Ghaemsaidi & Peacock, 2013), a note should be
made on higher harmonics in three-dimensional flows. In the two-dimensional case
the energy content of the higher harmonics is usually relatively low, as demonstrated
for the second harmonic in Zhang et al. (2007). However, in the three-dimensional
case, the amplitude of the second harmonic can be higher than the amplitude of the
first for a sphere (Ermanyuk et al., 2011) or comparable to it for Gaussian topogra-
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(a) (b)

Figure 3.19: Variations of the peak magnitudes of the first three harmonics with
oscillation amplitude Ke for the (a) horizontal, Û , and (b) vertical, Ŵ , velocity
fields. First, second and third harmonics are represented with light gray, dark gray
and black color, respectively, and compared with the theoretical predictions for the
sphere (solid light gray line), and with the linear regressions for Û2 and Ŵ2 (dashed
dark grey lines) and Û3 and Ŵ3 (dashed black lines). The dots, circles and squares
correspond to results for the oscillating sphere (S), prolate spheroid (V) and prolate
spheroid (H), respectively. [Exp A3 and B1,2 from Table 2.2]

phy over a flat bottom (King et al., 2010). The reason for this difference is related to
the fact that, at low oscillation frequencies ω/N and fixed amplitude Ke, the power
P of internal waves that are generated by horizontally oscillating bodies varies as
(ω/N)2 for a circular cylinder and (ω/N)5 for a sphere (Voisin et al., 2011), and
similar asymptotic behavior is valid for elliptic cylinders and spheroids (Ermanyuk,
2002). Accordingly, at low frequency ω/N and fixed Ke the amplitude of the first,
linear harmonic is much smaller in three dimensions than in two and can more easily
be overtaken by the amplitude of the higher, nonlinear harmonics. Therefore, for
low oscillation frequencies ω/N , that are relevant to geophysical applications, we
may have a situation where the fundamental wave generated by barotropic flow over
three-dimensional topography is weak while a higher n-th harmonic is strong. Recip-
rocally, higher harmonics are of interest for three-dimensional topography because
of their high energy content under appropriate conditions. The azimuthal harmonic
wave structure may have an influence on the energy and mass fluxes in the vicinity
of underwater mountains.

In this study we have shown that fundamental and second harmonic waves are
generated at critical points at the boundaries in agreement with former observations
(Zhang et al., 2007). Intersections of the fundamental wave beams lead to the
generation of second harmonic waves, when their wave amplitude exceeds a certain
threshold (Tabaei et al., 2005; Jiang & Marcus, 2009). When the amplitude of
oscillation exceeds this threshold, the consequent nonlinear overturning motion also
leads to the generation of higher harmonics that appear weakly trapped near the
region of generation. Further research is needed to show the threshold amplitude for



3.4. Conclusions 77

which these nonlinear motions emit higher harmonic wave beams. It is also shown
that in agreement with previous observations (Ermanyuk et al., 2011) and theoretical
predictions (Bell, 1975a) the amplitude of the first three harmonics grows linearly,
quadratically and cubically, respectively, with increasing oscillation amplitude.





Chapter 4

Internal wave focusing by a
horizontally oscillating torus:
linear aspects∗

In the ocean, mountain ridges occur more frequently than isolated mountains. Os-
cillations of the barotropic tide over a curved mountain ridge can cause not only
diverging waves which gradually decrease with distance due to viscosity, but also
converging waves which increase in amplitude with distance from the ridge toward a
focal region. To generate focusing internal waves, a torus (ring) having a vertical axis
of revolution oscillated horizontally in a linearly stratified fluid. Such a configuration
produces both diverging and converging internal waves. As in a classical situation
considered in previous studies of three-dimensional flows (Flynn et al., 2003; King
et al., 2009; Voisin et al., 2011; Ermanyuk et al., 2011) for spherical geometry, di-
verging waves decrease with distance owing to viscosity and the cross-section of the
wave cone increases. In contrast the converging waves increase in amplitude with
distance from the ring toward the focal region, where high wave amplification and
breaking may be expected. At moderate Reynolds numbers typical for laboratory
experiments this trend is opposed by viscous dissipation. Turbulence has been ob-
served in the focal region of inertial waves generated by a vertically oscillating torus
in a rotating fluid conducted at LEGI (Duran-Matute et al., 2013). The breaking of
these waves played an important role for the transport of momentum, and the gen-
eration of columnar vortices that are typical for two-dimensional turbulence. Apart
from the above mentioned studies, the geometric focusing of internal waves deserves
further attention in the context of ocean mixing and momentum transport in the
Earth’s oceans.

In this chapter an experimental study on internal waves emitted by a horizontally
oscillating torus in a linearly stratified fluid is presented. Two internal wave cones
are generated with the kinetic energy focused at the apices of the cones above and
below the torus where the wave amplitude is maximal. Internal waves are measured

∗This chapter is a modified version of the article “Internal wave focusing by a horizontally
oscillating torus”, accepted for publication in J. Fluid Mech. and reproduced in Appendix B
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(a) (b)

Figure 4.1: Geometry of the torus: (a) view in a vertical plane and (b) three-
dimensional view defining the coordinate system.

via precise tracking of the distortion of horizontal fluorescein-dye planes created in
the tank prior to the experiments and illuminated by a vertical laser sheet. The
distortion of the dye planes gives direct access to the Lagrangian measurement of
local wave amplitudes and wave slopes. Complementary measurements have been
taken with the PIV technique.

4.1 Theoretical considerations

In this section we first consider the two-dimensional theory of Hurley & Keady
(1997) adapted to the three-dimensional case of the torus as a simple approach
of the features of converging wave beams. The next step is to consider the fully
three-dimensional theory.

4.1.1 Two-dimensional theory

We consider a torus of which the geometrical parameters are defined in Figure 4.1.
The torus is submerged into a uniformly stratified fluid of buoyancy frequency N .
The shape of the generatrix is circular with diameter 2a, and b is the radius of the
circle of the centres cross-sections. A Cartesian coordinate system (see Figure 4.1b)
is introduced, with the z-axis pointing upwards. The origin of the coordinate system
O is taken at the mean position of the center of the torus which undergoes recti-
linear harmonic oscillations with frequency ω. The non-dimensional geometry can
be characterized by the aspect ratio ε = b/a. We assume that the torus is slender,
i.e. ε is large. The non-dimensional coordinates X, Y and Z are introduced after
normalization of x, y and z with the radius of the generatrix, a.

Let us consider first the vertical oscillations of the torus with amplitude A, which
is assumed to be small compared to a so that the Keulegan–Carpenter number
Ke = A/a � 1 and the waves are linear. The Stokes number St = ωa2/ν, with
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ν the kinematic viscosity, is assumed to be sufficiently large, i.e. St � 1. In the
experiments described below, St = O(100) which guarantees a sufficiently small
non-dimensional boundary layer thickness δ/a. This allows the boundary layer to
be neglected, so the forcing at the torus is of inviscid free-slip type and viscosity
affects only the propagation of the waves. To construct an approximate solution
we use an approach similar to the strip theory in marine hydrodynamics (Newman,
1977a,b).

Suppose that each radial cross-section of the torus oscillates vertically and gen-
erates internal wave beams described by equation (3.7) in Hurley & Keady (1997)
for a cylinder. For brevity this equation is not reproduced here. Indeed, the as-
sumptions Ke � 1 and St � 1 are in agreement with Hurley & Keady (1997). This
linear solution plays a role of an “inner” solution, which is approximately valid at
each radial cross-section φ = const, where φ is the azimuthal angle in the cylindrical
coordinate system (r, z, φ), with r = (x2 + y2)1/2. For vertical oscillations the prob-
lem is axisymmetric and all cross-sections φ = const are equivalent. Without loss
of generality we consider oscillations in the plane xOz (see Figure 4.1). The stream
function for a single cylinder,

ψ1
HK(x, z, t) = Ψ1

HK(x, z) exp(−iωt),

is constructed as a sum of four stream functions describing the four beams of the
St. Andrew’s Cross wave pattern (see Sutherland et al., 1999)

Ψ1
HK(x, z) = Ψ+

l + Ψ+
r + Ψ−l + Ψ−r , (4.1)

where the superscripts + and − refer, respectively, to the upper and lower half-
plane, whereas the subscripts l and r refer, respectively, to the beams propagating
to the left and the right.

For the second cylinder the solution Ψ2
HK(x, z) is analogous. Assuming that b/a

is sufficiently large, the solution for the system of two cylinders can be written as

ΨHK(x, z) = Ψ1
HK(x, z) + Ψ2

HK(x, z), (4.2)

where the appropriate choice of signs and phases in eq. (4.1) assure that both
cylinders oscillate vertically and in phase. The instantaneous vertical displacement
of fluid particles due to the oscillation of the two cylinders is then evaluated as

ζtHK(x, z, t) = (i/ω) exp(−iωt)
d

dx
ΨHK(x, z). (4.3)

The corresponding distribution of wave amplitudes is denoted as ζHK(x, z).
Further, we introduce the geometric correction factor for convergence (diver-

gence) of the wave field. Let us consider a point C with coordinates (xC , zC) in
the two-dimensional wave field generated by a system of two cylinders. The den-
sity of the energy flux at point C is proportional to the wave amplitude squared
(ζHK(xC , zC))2. Since the torus is slender, we can equate the energy fluxes due to
internal waves emitted by vertical oscillations of a torus of major radius b and minor
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radius a, and due to a system of two cylinders (see Figure 4.1) of radius a and length
πb. We obtain then

(ζ(rC , zC))2πrC = (ζHK(xC , zC))2πb,

where rC = xC at φ = 0. Finally, we obtain in non-dimensional cylindrical coordi-
nates

ζ(R,Z) = (R/ε)−1/2ζHK(R,Z), (4.4)

where R = r/a. The term (R/ε)−1/2 assures a proper decay of the wave amplitude
at infinity.

Let us note that in the case of vertical oscillations of two cylinders the wave
amplitude ζHK(x, z) is symmetric with the respect to the vertical axis x = 0 and
non-zero at x = 0. Therefore the approximate solution predicts a divergence of wave
amplitudes of the form of X−1/2 in the focal region at X → 0. This result shows
that near-field interactions should be taken into account in this zone in order to
develop a more advanced linear theory. Also, in realistic situations, one can expect
strong spatially localized non-linear effects in forms of vertical jets. Such effects have
been indeed observed for inertial waves in Duran-Matute et al. (2013) and have been
shown to create a localized turbulence zone due to a cascade of instability events.

Now, let us adapt the same approach in the spirit of strip theory (Newman,
1977a,b) to a slender torus undergoing horizontal oscillations with amplitudeA along
the x-axis. The local forcing is then taken as a projection of horizontal oscillations on
the radial coordinate in the form A cosφ. Obviously, equations (4.1)–(4.3) remain
valid in the case of horizontal oscillations of a system of two cylinders, with the
important difference that the signs and phases of motions in wave beams should
now be chosen such that the wave amplitude ζHK(x, z) = 0 at x = 0 and the
instantaneous wave profiles are anti-symmetric with respect to the vertical axis
x = 0. The geometric conversion introduced in (4.4) remains valid but now, owing
to azimuthal modulation of the wave field, eq. (4.4) for wave amplitudes transforms
into

ζ(R,Z, φ) = (R/ε)−1/2ζHK(R,Z)| cosφ|.
For horizontal oscillations, ζHK(R,Z) is proportional to R at a fixed Z in a small

vicinity of R = 0, and therefore ζ(R,Z, φ) is proportional to R1/2 as R tends to 0.
Thus, the wave amplitude remains limited but the wave slope tends to the vertical.
This qualitatively indicates a possibility of overturning in the focal region, which is
a qualitatively different behaviour compared to the case of vertical oscillations.

To characterize the forcing of internal waves, the Keulegan-Carpenter number
Ke = A/a is often used (see e.g. Voisin et al., 2011; Ermanyuk et al., 2011). Though
this number characterizes the non-linearity close to the torus, it does not take into
account the geometric effect of focusing at larger distances from the torus. Supposing
that in the focal zone the wave motion can be confined to a zone with radius a, the
amplitude may increase to

ζcorr = ζHK(b/a)1/2 = ζHKε
1/2
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i.e. with a factor ε1/2 due to focusing. The same correction factor has been in-
troduced earlier in Bühler & Muller (2007). Note that the above-described theory
neglects the near-field wave interactions in the focal region. Also, the viscous damp-
ing in the above solution is adapted from Hurley & Keady (1997), and therefore
neglects additional shear close to the focal region. Therefore it is expected to pro-
vide a quantitative estimate with a reasonable accuracy only in the vicinity of the
torus. The effects of finite values of Ke, St and ε in experiments are discussed below.

4.1.2 Three-dimensional theory

In this section we present the three-dimensional theory for the horizontally oscillat-
ing torus developed by Voisin (2016). This theory considers a ring torus of centre
O, vertical axis Oz, minor radius a, major radius b and aspect ratio ε = b/a, oscil-
lating at the frequency ω < N along the x-axis with position (A, 0, 0) sin(ωt + Θ),
and takes into account the kinematic viscosity ν. The regime is linear, such that
Ke � 1, the torus thin, such that ε � 1, and the fluid weakly viscous, such that
St � 1.

In nondimensional coordinates (X, Y, Z) = (x, y, z)/a, the velocity field (u, v, w)
has nondimensional components (U, V,W ) = (u, v, w)/(ωA) given by

U = iπε cos θ sin θe−i(ωt+Θ−θ)
∫ ∞

0

dKKJ1(K)J0(Kε cos θ) exp

(
− K3|Z|

2St sin θ

)

×
[
J2

(
K
√
X2 + Y 2 cos θ

) X2

X2 + Y 2
− J1

(
K
√
X2 + Y 2 cos θ

)

K
√
X2 + Y 2 cos θ

]

× exp(−iK|Z| sin θ), (4.5)

V = iπε cos θ sin θe−i(ωt+Θ−θ)
∫ ∞

0

dKKJ1(K)J0(Kε cos θ) exp

(
− K3|Z|

2St sin θ

)

× J2

(
K
√
X2 + Y 2 cos θ

) XY

X2 + Y 2
exp(−iK|Z| sin θ), (4.6)

W = πε cos2 θe−i(ωt+Θ−θ) signZ

∫ ∞

0

dKKJ1(K)J0(Kε cos θ) exp

(
− K3|Z|

2St sin θ

)

× J1

(
K
√
X2 + Y 2 cos θ

) X√
X2 + Y 2

exp(−iK|Z| sin θ), (4.7)

where J0 and J1 denote Bessel functions. The associated distributions of vertical
and horizontal velocity amplitudes in XZ-plane for a torus with b/a = 5 is shown
in Figures 4.2(a,c).

With ζ = iw/ω the vertical displacement of fluid particles, the isopycnal planes
have slopes

Sx =
∂ζ

∂x
= iKe

∂W

∂X
, (4.8)
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Sy =
∂ζ

∂y
= iKe

∂W

∂Y
(4.9)

along the x- and y-axes, respectively, where

∂W

∂X
= −πε cos3 θe−i(ωt+Θ−θ) signZ

∫ ∞

0

dKK2J1(K)J0(Kε cos θ) exp

(
− K3|Z|

2St sin θ

)

×
[
J2

(
K
√
X2 + Y 2 cos θ

) X2

X2 + Y 2
− J1

(
K
√
X2 + Y 2 cos θ

)

K
√
X2 + Y 2 cos θ

]

× exp(−iK|Z| sin θ), (4.10)

∂W

∂Y
= −πε cos3 θe−i(ωt+Θ−θ) signZ

∫ ∞

0

dKK2J1(K)J0(Kε cos θ) exp

(
− K3|Z|

2St sin θ

)

× J2

(
K
√
X2 + Y 2 cos θ

) XY

X2 + Y 2
exp(−iK|Z| sin θ). (4.11)

The distribution of wave slope amplitude in the XZ-plane for the same torus is
shown in Figure 4.2(f ).

4.2 Linear regime: comparison with linear theory

The predictions of the linear theory are now compared with experimental results
in the linear regime, i.e. for low oscillation amplitude, represented by Keulegan–
Carpenter number Ke ≈ 0.15. Three tori are used, of aspect ratios ε = 5, 9 and 34,
called thick, thin and big tori, respectively, in the following; the actual dimensions
of these tori are presented in Table 2.1. Figure 4.2 shows theoretical calculations
for the thick torus obtained with equations (4.5), (4.7) and (4.8) (first column) and
experimental results available from LIF (second column) and PIV (third column) in
the central plane parallel to the direction of oscillation, Y = 0. Experimental data
are filtered via Fourier (LIF) and frequency (PIV) filtering and the first harmonic
is presented, denoted by a subscript 1 in the following. Focusing of internal waves
is obtained. The oscillation of the torus generates diverging beams outside the
torus (|X| > 5) and converging beams which increase in amplitude toward the
focal zone. At low Ke the amplified vertical displacement, ζ1/A ( corresponding
to the LIF measurements in Figure 4.2d), and velocity, Ŵ1 (corresponding to the
PIV measurements in Figure 4.2e), amplitudes forming two symmetrical elliptic-
shaped structures in the focal region due to the symmetry of the problem. The
amplified horizontal velocity amplitude Û1 (Figure 4.2b) forms an elliptic-shaped
structure in the centre of the focal region. Patterns in Figure 4.2 quantitatively
demonstrate that experimental results are well compared with three-dimensional
theoretical predictions.

Experimental results are also presented in Figure 4.3(a) for the thin torus with
ε = 9 in terms of the vertical amplitude displacement ζ1 and wave slope S. Note also
that the waves in the focal zone have a unimodal structure, i.e. there is a single wave
beam due to the dominant effect of viscosity, in contrast to the bimodal structure
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often observed very near to oscillating objects, while viscosity is secondary (for a
discussion see e.g. Voisin et al., 2011). Though the general flow evolution was very
similar to that of the thick torus (Figure 4.2, third column), its larger radius a
implied a larger Stokes number (260 instead of 150) causing a rather bimodal wave
structure near the torus which turned into a single beam near the focal region. In
the case of very large tori, however, one may expect a multi focal region because of
the bimodal wave structure. In view of the range of accessible Stokes numbers, this
was not observed in the present experiments.

Figures 4.4(a) and (b) show the distribution of the amplitudes of horizontal
velocity Û1 and vertical velocity Ŵ1, obtained with PIV, along the direction of
oscillation X close to the torus (Z = −1.88, red symbols) and in the focal zone
(Z = −7.88, blue symbols) for the thick torus oscillating with low amplitude Ke =
0.19. LIF results are presented with crosses for the vertical displacement amplitude
and solid lines show the predictions of the linear theory of section 4.1.2. The vertical
velocity amplitude in the focal zone obtained with PIV is significantly lower than
theoretical predictions while the LIF results are in very good comparison with the
theory. The same behavior is obtained for the horizontal velocity amplitude in the
focal zone. The horizontal velocity profile has a high slope close to the torus for
the converging beam (X = 3); there, a difference between the PIV results and the
theory are also noticeable. For the diverging beam (5 < X < 10) the experimental
results are in very good comparison with the linear theory. Difference between PIV
and LIF measurements has also been discussed in section 2.3.

Figure 4.5 shows the wave amplitude profile across the wave beam in the plane
XZ for a range of distances |Z| from the centre of the thin torus up to the middle of
the focal zone. Good agreement of the experiment with the theory of section 4.1.1
is observed at low values of Ke, and close to the torus. Thus, a simple geometric
correction is fully sufficient for quantitative description of the main effects due to
convergence (divergence) of the waves in the vicinity of a curved elongated body.
Thereby it provides a consistent framework for the quantitative interpretation of the
experimental results almost everywhere in the wave field, except in the focal region.

For the focal region, the theory shows that focusing amplifies the wave amplitude
to a factor 3, in qualitative agreement with the correction factor ε1/2 introduced in
Bühler & Muller (2007). This can be observed in Figure 4.5(f ) (|Z| = 12.51) from
the comparison of the calculated wave amplitudes for the torus (solid line) and the
reference case of the two parallel cylinders of infinite length (dashed line). The
experimental wave amplitudes in the focal zone are significantly lower (roughly by
30%) than the theoretical estimate. Indeed the theory of section 4.1.1 neglects the
near-field interference between the wave components from the different azimuthal
planes in the focal zone, leading to unrealistic infinite wave slopes at the vertical
Z-axis.

The linear theory of section 4.1.2 considers these three-dimensional effects and
describes the wave behavior well compared with experimental results even in the
focal region.
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(a)

(b)

(c)

(d)

Figure 4.3: Contour plots of the displacement amplitude ζ1/A (left column) and
wave slope amplitude S1 (right column) in the XZ-plane, for the thin torus of ε = 9
oscillating at (a) Ke = 0.19; (b) 0.41 and (c) 0.65; (d) contour plots of ζmax/A and
Smax for Ke = 0.65. [Exp H1 from Table 2.2]



88
Chapter 4. Internal wave focusing by a horizontally oscillating torus: linear

aspects

(a) (b)

Figure 4.4: Distribution of (a) horizontal and (b) vertical velocity amplitude along
the direction of oscillation X, close to the torus at Z = −1.88, (red symbols) and in
the focal zone at Z = −7.88, (blue symbols and black crosses, corresponding to PIV
and LIF data, respectively). The theoretical predictions of section 4.1.2 are shown
with solid lines. [Exp H1,3 from Table 2.2]

4.3 Weakly nonlinear effects

4.3.1 Wave pattern in the XZ-plane

Figure 4.3(a–c) shows the typical evolution of the first harmonic wave patterns for
different oscillation amplitude, represented by the Keulegan-Carpenter number Ke,
in terms of contours of the vertical displacement amplitude ζ1/A, and wave slope
S1. For comparison Figure 4.3(d) represents the unfiltered wave fields in terms of
ζmax/A and Smax. A higher level of noise is observed for these non filtered max-
type quantities. Figures 4.3(c) and (d) show a high resemblance indicating that
at moderate oscillation amplitude, the dominant contribution to the wave field is
represented by the first harmonic wave obtained after Fourier filtering, as can be
expected since higher harmonics are evanescent for this forcing.

The wave amplitudes close to the torus are roughly two times smaller than the
wave amplitudes in the focal region, but the wave slopes close to the torus and in
the focal region are comparable. The onset of overturning occurs therefore not only
in the focal region but also near to the torus. It should be noted that this latter
overturning is rather due to the steep slope of the circular cross-section, an effect that
would most likely be absent for a Gaussian shaped torus. At low Ke the amplified
wave amplitude in the focal region forms then two symmetric structures having an
elliptical shape due to the anti-symmetry of the instantaneous wave profiles with
respect to the Y Z-plane, where the wave amplitude is zero. As Ke increases, these
regions of maximum amplitude slightly shift into the Z-direction away from the
torus. The nonlinear evolution of the wave field is well visible in terms of wave
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(a) (b)

(c) (d)

(e) (f )

Figure 4.5: Vertical displacement amplitude ζ1/A as a function of X in the plane
Y = 0, at different heights Z below the centre of the torus, namely (a) Z = −1.84,
(b) Z = −1.84 zoomed in including negative values of X (the centreline of the torus
is at X = 0); (c) Z = −4.48, (d) Z = −7.17, (e) Z = −9.84, and (f ) Z = −12.51.
The focal zone is located at Z = −11.2. The dashed and solid green lines represent,
respectively, the theoretical prediction (eq. 4.3) for two oscillating cylinders and the
prediction (eq. 4.4) corrected for convergence; the red lines show the prediction (eq.
4.7) of the three-dimensional theory. The black, grey and light grey dots correspond
to the LIF experimental measurements at Ke = 0.19, 0.41 and 0.65, respectively.
[Exp G1 from Table 2.2]
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slopes. At low Ke the focal region (Figure 4.3b) has a nearly elliptic shape. As Ke
increases, the focal region takes a spearhead-like shape (Figures 4.3f, h), indicating
the higher shear in the outer part of the focal region, and incipient overturning. As
a consequence, the waves are hindered by nonlinear effects in the focal region.

The experimental data presented in Figure 4.5 provide a qualitative informa-
tion on the non-linear trends in the wave amplitude as function of the oscillation
amplitude Ke. With increasing Ke, the normalized wave amplitude of the first har-
monic, ζ1/A, typically decreases almost everywhere in the wave field except in the
focal region: the amplitude profiles marked by light grey and dark grey symbols
are consistently lower than the profiles marked by black symbols. This trend is in
agreement with the non-linear trends observed for the two- (Zhang et al., 2007) and
three-dimensional (Voisin et al., 2011; Ermanyuk et al., 2011) cases. The opposite
trend is seen in Figure 4.5(f ) in the focal region at |Z| = 12.51 where higher normal-
ized wave amplitudes ζ1/A correspond to higher Ke. Thus, a linear extrapolation of
the low-amplitude experimental data to a high-amplitude case should be done with
care: it tends to underestimate the wave amplitudes in localized zones of the focal
region and to overestimate the wave amplitudes in all other regions of the wave field.
Interestingly, in the middle of the focal region, located around |Z| = 11.2, the linear
scenario applies in a remarkably wide range of A as discussed below.

It is worth to make a special remark concerning the data presented in Fig-
ure 4.5(b). The low-amplitude standing-wave pattern seen close to the centre of
the torus can hardly be interpreted within a linear approach. The whole inner re-
gion delimited by the conical wave beams emitted by the torus seems to undergo
a weak resonant motion. Its amplitude is typically an order of magnitude smaller
than the amplitude of the main wave beams but at high oscillation amplitude A it
is high enough to deform the straight wave beams (compare the form of isolines of
wave amplitudes in the first column of Figure 4.3 at low and high amplitudes). The
mechanism providing the energy flux to this motion is unclear and will be considered
elsewhere.

The typical cross-sections of the total velocity amplitude at Y = 0 are shown
in Figure 4.6 (left column) for the thick torus obtained with the PIV technique.
Results are shown in terms of the total velocity

|U1| =
√

(Û1)2 + (Ŵ1)2.

A note should be made on the calculations of this velocity. The standard PIV tech-
nique gives two velocity components: the vertical velocity Ŵ and the longitudinal
horizontal velocity Û . Results are presented in the vertical plane through the centre
of the torus parallel to the direction of oscillation. As shown in Figure 5.8(c) in
section 5.2, the transverse horizontal velocity V̂ is zero in this plane in the case of
a non-rotating stratified fluid.

The total velocity amplitude is strongly amplified in the focal region. There is
a standing wave in the horizontal direction and a propagating wave in the vertical
direction. In the linear case two regions of highest amplitude are located symmet-
rically on either side of the Z-axis in the focal zone and have an elliptic shape.
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(a)

(b)

(c)

Figure 4.6: Experimental wave patterns in the XZ-plane for the thick torus with

ε = 5 in terms of the total velocity amplitudes, |U1| =
√
Û2

1 + Ŵ 2
1 , (left column) and

the vertical velocity Ŵ0 of the zero frequency component, phase averaged over 10
oscillation periods (right column). Images (a), (b) and (c) correspond to Ke = 0.19,
0.41 and 0.6, respectively. [Exp H3 from Table 2.2]
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(a) (b)

Figure 4.7: Distribution of (a) horizontal velocity amplitude Û1 and (b) vertical
velocity amplitude Ŵ1 along the direction of the wave beam ξ, with C the focal zone
centre (X = 0, Y = 0, Z = −6.5); light grey, dark grey and black dots represent
PIV data for Ke = 0.19, 0.6 and 1.2, respectively (ε = 5, ω/N = 0.8, Exp H3 in
Table 2.2), black crosses show LIF data for Ke = 0.3 (ε = 5, ω/N = 0.81, Exp H1

in Table 2.2). Theoretical predictions are shown with solid lines.

Hence, the contribution of the vertical velocity is larger than that of horizontal ve-
locity. At moderate oscillation amplitude the regions of high velocity amplitude
shift along the Z-axis away from the torus, increasing the cross-section of the wave
cones which continue to propagate after focusing. This effect is most likely caused
by the generation of a vertical mean flow in the focal zone for moderate oscillation
amplitude, due to symmetry of the object and horizontal direction of oscillation.
Filtered zero-frequency flow Ŵ0, averaged over 10 oscillation periods after reaching
the stable regime 20 oscillation periods after the beginning of oscillations, is shown
in Figure 4.6 (right column). This flow can represent either standing waves in the
focal region or a mean flow propagating vertically away from the torus. For low
oscillation amplitude the zero-frequency flow is negligibly small (Figure 4.6a, right
column). With increasing oscillation amplitude this flow is generated in the focal
zone and close to the torus, its maxima is Ŵ ∗

0 = Ŵ ∗
1 /6 (see Figure 4.6c). The mean

flow in the focal zone can be responsible for local changes in the stratification and
therefore, shift the focal zone vertically away from the torus.

The distributions of vertical and horizontal velocity amplitude along the direction
ξ of the converging wave beam are shown in Figure 4.7(a) and (b), respectively, for
the thick torus. Three different oscillation amplitudes are considered Ke = 0.19, 0.6
and 1.2. The results show a high velocity amplitude close to the torus, which slightly
decreases due to viscous effects and subsequently increase due to focusing near the
focal region. Due to the symmetry of the problem and the horizontal oscillations of
the torus the vertical velocity amplitude is zero at the centre C of the focal zone and
has two peaks on either sides. The horizontal velocity amplitude has its maximum
in the centre C (note that for the vertically oscillating torus the structure of the
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horizontal and vertical velocity is converse). With increasing oscillation amplitude
the nondimentional velocity amplitude in the focal zone grows (as in Figure 4.5f ),
but decreases beyond a certain value of Ke larger than 1. The possible explanations
could be breaking of waves and loss of energy close to the torus or PIV calculations
error for high velocity.

4.3.2 Wave pattern in the XY -plane

To study the azimuthal distribution of the wave amplitude, the wave fields in the
XY -plane were reconstructed from series of images taken particularly in experiments
G2 and H2 of Table 2.2. Figures 4.8 and 4.9 show the contours of wave amplitude
ζ1/A and associated radial distributions ζ1(R)/(A cosφ) for the first harmonic wave
close to the torus, with φ the angle with respect to the plane of symmetry. With this
scaling, the data are found to collapse reasonably well on a more or less common
curve, for both tori (see Figures 4.8a and 4.9b). We also note that the agreement
with the linear theory presented in section 4.1.1 is within an error of about 10%
for both cases. For the thick torus (see Figure 4.9a) the shape of the wave is
slightly different due to its bimodal character. Also here the theoretical prediction
remains quite reasonable (note that the original theory of Hurley & Keady (1997),
used in section 4.1.1, takes this and related viscous effects into account). For larger
oscillation amplitudes, the theoretical prediction is systematically higher than the
measured values due to nonlinear effects that are shown to deform the straight wave
rays (see Figures 4.3c). With increasing azimuthal angle φ the wave amplitude
decreases and therefore also the energy radiated by the torus. The departure of the
observed profiles for φ tending to 90◦ arises partially due to higher noise-to-signal
ratio for these waves, and partially due to the fully three-dimensional nature of
the flow. For azimuthal angles close to 90 degrees the cosine variation of the wave
amplitude with the azimuthal angle is therefore no longer valid, especially for a thick
torus.

4.4 Conclusions

In this chapter we presented an experimental study of linear and weakly nonlinear in-
ternal wave focusing by an oscillating torus. Experiments were performed for Stokes
numbers between 150 and 260 implying weakly viscous regime. To characterise the
focusing wave energy the Keulegan–Carpenter number Ke was used. Experimental
profiles in the vertical plane of oscillation show that the horizontal and vertical veloc-
ities form one elliptic-shaped structure and two symmetric elliptic-shaped structures
in the focal zone, respectively. The results show amplification of the wave ampli-
tude toward the focal zone. The wave slopes close to the torus and in the focal
zone are comparable. The experimental results were compared with the predictions
of two linear theories. The first two-dimensional theory is based on the viscous
theory of Hurley & Keady (1997) corrected for the convergence and divergence of
the wave beams. Experiments and theory are in good comparison for the diverging
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Figure 4.8: Contours of the normalized wave amplitude ζ1/A (left panel) and the
corresponding radial distributions ζ1(R)/(A cosφ) (right panel) close to the thin
torus (ε = 9) at Z = −3.6 for (a) Ke = 0.17 and (b) Ke = 0.63, where R = r/a is
the non dimensional radial coordinate. The black solid line corresponds to eq. (4.7)
and the dashed line corresponds to eq. (4.4). [Exp G2 from Table 2.2]

wave beams and close to the torus, though the theory overestimates the amplitude
in the focal zone. The second three-dimensional theory was inspired by the theory
for an oscillating sphere (Voisin et al., 2011). These calculations compare well with
the experimental results. Azimuthal distributions of wave profiles have also been
measured. It is found that the wave amplitude varies as the cosine of the azimuthal
angle with good accuracy at low amplitude of oscillations in the case of the torus of
aspect ratio 9, which can be considered as a sufficiently “thin” one. At lower aspect
ratio, for the torus with ε = 5, a fully three-dimensional theory is required.

The studies on internal wave generation by underwater ridges usually assume
that the effect of curvature is small, and that the wave field can be evaluated from a
two-dimensional theory applied locally to a selected cross-section of the bottom to-
pography. Our case represents a model of a curved ridge which shows the importance
of the focusing effect.

Further, as we increased the oscillation amplitude we observed that the focal
zone shifted down away from the torus, possibly due to the generation of a mean
flow in the focal region. Nonlinear wave amplitude amplification close to the torus
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Figure 4.9: As in Figure 4.8 for the thick torus (ε = 5), with (a) Ke = 0.13 and
(b) Ke = 0.29 at Z = −3.0, where R = r/a is the non dimensional radial coordinate.
The solid black line corresponds to predictions of three-dimensional theory and the
dashed line corresponds to eq. (4.4). [Exp H2 from Table 2.2]

and in the focal zone, that is observed at moderate oscillation amplitude might cause
local overturning and mixing. These strongly nonlinear aspects of wave focusing are
considered in chapter 5.
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Chapter 5

Internal wave focusing by a
horizontally oscillating torus:
nonlinear effects

In the previous chapter we have considered mainly linear aspects of wave focusing.
For small oscillation amplitudes and limited variation in aspect ratio ε = b/a, the
Keulegan–Carpenter number Ke represented the variation in wave amplitude and
slope well. Beyond a certain amplitude of oscillation (Ke = 0.5), nonlinear effects
are expected which are considered in this chapter. In view of the different focusing
effects with torus size we introduce a focusing wave number Fo, instead of the
Keulegan–Carpenter number Ke, that takes into account the convergence of the
waves. Wave amplitudes and isopycnal slopes are investigated as functions of Fo
and show wave breaking at a critical value Fo = 0.09. The Richardson number
Ri is defined in two ways, with the first based on the horizontal shear from PIV
measurements and the second based on the baroclinic vorticity calculated from LIF
results. The latter Richardson number appears to be proportional to the cotangent
of the isopycnal slope S. The effect of wave breaking in the focal zone is considered
together with the generation and structure of higher harmonics in the focal zone
and close to the torus.

5.1 Wave breaking and mean flow

5.1.1 Maximum wave amplitude and overturning

We define the extreme values of the vertical displacement amplitudes ζ∗max/a and
ζ∗1/a and isopycnal slopes S∗max and S∗1 in Figure 5.1 (see the definitions of ζmax,
ζ1, Smax and S1 in section 2.2.4). The variation of the maximum displacement
and maximum slope with the Keulegan–Carpenter number Ke are presented in
Figures 5.2(a) and (b), respectively, for both tori. The overall good agreement
between ζ∗max/a and ζ∗1/a confirms, as mentioned in chapter 4, the dominance of the
first harmonic wave. For larger Ke the increasing wave steepness and the increasing
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(a) (b)

Figure 5.1: LIF measurements of the amplitudes of (a) the vertical displacement
and (b) the isopycnal slope in the central plane according to the definitions given in
section 2.2.4 for the thin torus at Ke = 0.41. Open circles indicate the first harmonic
filtered values (ζ1/a, S1) and filled circles the unfiltered max-type estimates (ζmax/a,
Smax). The represented level is the focal zone at Z = −11.2 for 0 < X < 6 (open
and filled circles). The symbol ∗ refers to the extrema plotted in Figure 5.2. [Exp G1

from Table 2.2]

difference between S∗max and S∗1 (see Figure 5.2b) suggest the presence of nonlinear
effects. From the experimental images incipient overturning is observed at Ke = 0.81
and Ke = 1.1 for the thick and thin tori with ε = 5 and ε = 9, respectively (see
Figure 5.3).

To characterize the forcing of internal waves we used the Keulegan–Carpenter
number. Although this number remains relevant close to the torus, it does not
take into account the geometric effect of focusing at larger distances from the torus
since the torus radius b introduces an extra dimension that is relevant for the wave
amplitude. Supposing that the oscillation region can reduce to a minimal radius a,
the amplitude may increase to ζcorr = ζHK(b/a)1/2 = ζHKε

1/2 i.e. with a factor ε1/2

due to focusing (see the theoretical considerations in section 4.1.1). As mentioned
in chapter 4, for a Gaussian-shaped torus, Bühler & Muller (2007) obtained the
same increase of the amplitude with ε1/2. Conversely, to generate a wave with this
amplitude in the focal zone with an object that is simply connected in space, the
object should oscillate with amplitude ζcorrε

−1/2. Taking further into account the
variation of the displacement amplitude with the propagation angle as sin1/2 θ cos θ
for the generation at each cylindrical cross-section (see Voisin et al., 2011), we obtain
instead of the Keulegan–Carpenter number a number Fo for an imaginary object in
the focal zone,

Fo =
A

a

(
b

a

)−1/2

sin1/2 θ cos θ =
A

a
ε−1/2 sin1/2 θ cos θ.

For ω = 0 and ω = N , the focusing effect tends to zero and it is maximal for θ = 45o.
We will call this number the focusing wave number.
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(a) (b)

Figure 5.2: Maximum (a) vertical displacement and (b) maximum isopycnal slope
against Ke. Filled and open symbols are as in Figure 5.1 with circles for the thin
torus at Z = −11.2, squares for the thick torus at Z = −7, and diamonds for the
big torus at Z = −45.

(a) (b)

Figure 5.3: Dye visualisation (before data processing) of the overturning of the
isopycnal lines in the plane of symmetry for experiments with large-amplitude os-
cillations, for (a) the thin torus at Ke = 0.818 and (b) the thick torus at Ke = 1.1;
in both cases Fo ≈ 0.09.

The evolution of the maximum isopycnal slope against Fo is presented in Fig-
ure 5.4(a). The focusing number includes corrections for the focusing of wave energy
and the direction of propagation. It depend on the major radius of the torus b, and
therefore the isopycnal slopes obtained for all three tori with ε = 5, 9 and 34 collapse
on one line. This result suggests the focusing number as an appropriate nondimen-
sional parameter for converging waves when the oscillation amplitude is large. The
trend in the data in Figure 5.4(a) clearly shows that wave breaking can be expected
for Fo = 0.22. Indeed, from the dye images shown in Figure 5.3, we recognise well-
developed overturning regions in the wave pattern. As expected, these regions are
located close to the surface of the torus and in the focal region, corresponding to
the zones of high local slopes which can be identified in Figure 4.3.
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(a) (b)

Figure 5.4: (a) Same as Figure 5.2(b), but against Fo. (b) Richardson numbers
Ri from PIV data (grey symbols) for experiments G3 (circles), H3 (squares) and K
(diamonds), and Riwave from LIF data (black symbols) for experiments G1 (circles),
H1 (squares) and K (diamonds) with parameters given in Table 2.2. The vertical
gray lines denote the value of Fo corresponding to the onset of overturning.

5.1.2 Richardson number

With the PIV data in the focal region, the horizontal shear and thus the local
Richardson number in the wave can be calculated as

Ri =
N2

(∂û1/∂z)2
,

where the stratification N is measured at the start of the experiment; the vertical
gradient in velocity is measured from the PIV velocity data over a typical grid
distance of ∆z = 4 pixels (≈ 0.3 cm). The values of this number are displayed in
grey in Figure 5.4(b). Asymptotic limit of Ri ≈ 0.25, corresponding to overturning
in stratified shear flows (see Miles, 1961), is reached when the focusing wave number
Fo approaches a value between 0.20 and 0.25 for tori of different aspect ratios.

Miles criterion was developed for a flow with vorticity due to the presence of
a shear flow, and no baroclinic vorticity in its basic state. For the critical value
of Ri = 0.25, vorticity of the shear flow is accumulated by the Kelvin–Helmholtz
instability until breaking occurs. In the present experiments there is no shear flow,
and the instability is not of the Kelvin Helmholtz type. However, the amplitude
of the waves is represented by baroclinic vorticity. This amplitude (or baroclinic
vorticity) is continuously increased due to the focusing of wave energy, until the
critical value is reached and breaking occurs. Though the sources of vorticity and
mechanism for overturning are essentially different, the present results suggest that
the criterion and, as shown below, the critical value are the same.

The LIF method allowed to precisely measure the isopycnal slope S expressed
in degrees after taking arctan, for the tori of different aspect ratios. Observations
of visualizations showed a nearly linear dependence for Fo < 0.15 with the waves
remaining linear and passing almost without modification through the focal region.
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Small changes with respect to the linear regime were found to occur for Fo around
0.15, whereas for approximately Fo > 0.22 the onset of wave breaking was observed
and the waves were hindered to pass through the focal region. From this isopycnal
slopes one can derive directly the local wave-Richardson number which can be de-
fined as the ratio between the buoyancy frequency, N2, and the y-component of the
baroclinic vorticity of the wave, yielding in the Boussinesq approximation

Riwave = N2

(∇p×∇ρ
ρ2

)−1

y

≈ N2

−gρ ∂ρ
∂x

=
∆x

∆z

∣∣∣
ρ=const

=
1

S

where the index y indicates the y component of the baroclinic vorticity vector.
In Figure 5.4(b) the wave Richardson number is displayed as a function of the
focusing wave number Fo. Even though it is derived in a different manner, it shows
also that wave breaking is reached when Riwave ≈ 0.25 at Fo ≈ 0.22 in coherence
with the observations from the PIV measurements and shear instability. This local
Richardson number indicates the maximum slope which an isopycnal plane may
have before it becomes unstable and overturns. This overturning is found to occur
for an isopycnal slope of S ≈ 75◦ (see Figure 5.4b), where the slope is measured over
a horizontal lengthscale δx (see section 2.2.4) near X = 0.

5.1.3 Effects of wave breaking in the focal zone

In order to investigate the wave pattern in the focal zone of the first harmonic wave,
the spatio–temporal evolution was recorded for a line across this zone, and repre-
sented in so-called Hövmöller (space–time) diagrams in Figures 5.5(a,b). For small
oscillation amplitudes (see Figure 5.5a, Fo = 0.3) the wave pattern can still be con-
sidered linear and this region represents a standing wave. The corresponding energy
spectrum shows that all the energy is in the first harmonic wave (see Figure 5.5c).
For large oscillation amplitudes corresponding to Fo = 0.3, however, the wave break-
ing in the focal region is found to emit a specific wave spectrum with most energy
again in the first harmonic wave, and a non negligible signal of higher harmonics
(see Figure 5.5b and d). Note that since ω/N = 0.6, these higher harmonics are
evanescent in contrast to the propagating waves shown in Figure 5.7. The energy
in the second harmonic evanescent wave is about 1/5th of the first harmonic wave,
corresponding to the ratio in the velocity amplitudes represented in Figure 5.5. The
energy of the higher harmonics appears to decrease almost exponentially with the
harmonic order. Further details of this spectrum and the turbulence in the focal
region will be considered in chapter 6.

5.2 Higher harmonics

When oscillations take place at the frequency ω, in addition to the fundamental first
harmonic wave at frequency ω, the dispersion relation admits the radiation or higher
harmonic waves with frequencies nω, where n = 2, 3 . . . and nω < N (see Mowbray
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(a) (b)

(c) (d)

Figure 5.5: Spatio–temporal (Hövmöller) diagram of the horizontal velocity in the
focal zone (Z = −6.7, Y = 0) for the thick torus with (a) Fo = 0.072, and (b)
Fo = 0.3, for ω/N = 0.6. Five periods of the first harmonic wave are presented
starting from the 20th period, when the steady regime has been reached. Images
(c) and (d) represent the variations of the energy spectrum |EU | normalized with
the velocity of oscillation with the nondimensional frequency ω/N . [Exp J from
Table 2.2]

& Rarity, 1967). For ω > N/2 all higher harmonics are evanescent but for ω < N/2
some of them are able to propagate. Here, experiments with ω/N < 0.5 allows us
to study the focusing of both first and second harmonic waves.

5.2.1 Vertical structure

Unlike the case of an isolated wave beam, nonlinear effects can turn out to be
particularly important in the case of beam intersection. Filtering the frequency 2ω
reveals an evanescent second harmonic localized in the focal region for moderate
amplitude of oscillation, Ke = 0.78, as shown in Figure 5.6. Tabaei et al. (2005)
and Jiang & Marcus (2009) have studied in detail the different structures of colliding
waves and secondary beams resulting from their quadratic interactions. The angle
between the fundamental wave and the second harmonic wave has to be

θ2 = (θ1
1 − θ2

1)/2
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(Tabaei et al., 2005), where θ1
1 and θ2

1 are the angles between the group velocity vec-
tors of the fundamental waves and the horizontal plane. In the present configuration,
the focal region consists of four interactions described in Tabaei et al. (2005), each
causing the appearance of secondary beams. In the present experimental conditions
the angle θ1

1 between the fundamental waves and the horizontal is close to 45◦, so
that the angle θ2 between the second harmonic wave and the horizontal plane is 90◦

(see the schematic picture in Figure 5.6c). The observations of the second harmonic
wave in the focal zone is in agreement with those theoretical predictions.

(a) (b)

(c)

Figure 5.6: Distributions of the second harmonic of (a) the horizontal velocity am-
plitude Û2 and (b) the vertical velocity amplitude Ŵ2. (c) Schematic predictions of
higher harmonic generation in the zones of primary beam intersections according to
theory of Tabaei et al. (2005) and corrections of Jiang & Marcus (2009); blue and
red arrows correspond to the group velocity vectors cg1 of the first and cg2 of the
second harmonic wave. [Exp G3 from Table 2.2]

For effective generation of a propagative second harmonic the oscillation fre-
quency was tuned to ω/N = 0.42. Figure 5.7(a) shows the wave pattern that we
may expect for the first harmonic together with the observed filtered first harmonic
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displacement amplitude from the LIF measurements for the thick torus, with a neat
amplification of the amplitude in the focal zone. The second harmonic component
produces a significant contribution to the total wave field (see Figure 5.7b). The
lines indicate the expected second harmonic wave pattern and the waves expected
from wave intersections (see Tabaei et al., 2005). Only the wave rays with nega-
tive vertical group velocity which allow for the generation of secondary beams are
represented (Jiang & Marcus, 2009). The second harmonic wave has a maximum
amplitude that is 2.3 times smaller than that for the first harmonic, and is present
over a much larger area; it is therefore not less important. From the vertical and
horizontal structure of this second harmonic, displayed in Figures 5.7(b) and (c),
respectively, we notice that the second harmonic wave maxima has a complicated
structure. It appears difficult to explain the observed second harmonic waves with
the intersections of the first harmonic waves. The details of these intersections will
be investigated in more detail in the next section. Well below this region (at Z = −7
to −10) the second harmonic wave has a quadrupolar structure.

Figure 5.7: Side views of the experimental ray pattern (grey contours) and expected
ray pattern (lines) for (a) the first harmonic amplitude ζ1/A and (b) the second
harmonic amplitude ζ2/A emerging respectively from the oscillating torus and ray
intersections, for the thick torus at ω/N = 0.41 and Ke = 0.58; (c) Top views of the
second harmonic amplitude ζ2/A at the levels Z = −3, −5, −7, −9 and −11 from
top to bottom. [Exp I from Table 2.2]
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5.2.2 Horizontal structure

For detailed investigations of the second harmonic generated close to the torus (as in
the upper image of Figure 5.7c) complementary PIV experiments with a horizontal
laser sheet have been performed for the thin torus oscillating with frequency ω/N =
0.39. Figure 5.8 shows their results at the zone of first harmonic beam intersection
(Z = −3) in terms of the amplitudes of the longitudinal horizontal velocity Û (upper
row), and the transverse horizontal velocity V̂ (lower row). The first harmonic is
presented in the left column. The zone of amplification of the longitudinal velocity
is clearly seen at the centre of the focal region (Figure 5.8a) and has an elliptic
shape. The transverse component has a clover-like structure in the focal zone with
zero velocity amplitude in central planes parallel and perpendicular to the direction
of oscillation (Figure 5.8c, Y = 0, X = 0). These features of the transverse velocity
component have been used in section 4.3 for the calculations of the total velocity in
the central plane parallel to the direction of oscillation (Y = 0).

The time-frequency spectrum (see section 3.3.2, equation 3.4) for two horizontal
components of the velocity shows higher harmonic generation in the focal zone of the
fundamental wave (see Figure 5.9). The first and second harmonics are propagative,
whereas all higher harmonics are evanescent. Starting from the second harmonic, a
small variation of the frequency with time can be noticed; first and second harmonics
start to be generated at t = 0, while the third and higher harmonics appear later
after 4 to 10 oscillation periods. One can notice a temporary generation of waves
of frequencies ωi∗ = 0.22, 0.44, 0.66 . . .. The contribution of these waves to the flow
field is negligible comparing to the first and second harmonic. Their generation
mechanism is not clear.

Figure 5.10 shows the Hövmöller diagrams for the horizontal velocity component
Û . For the first harmonic, standing waves are obtained in the focal zone as described
in sections 4.3 and 5.1. The time-space diagram for the second harmonic is presented
as a key to understand its structure in the focal zone of the fundamental waves.
The phase velocity vectors in Figure 5.10(b) show that the second harmonic waves
are generated below the torus and in the focal zone, which is in agreement with
the structure obtained in Figures 5.7(b,c). In the horizontal plane Z = −3 the
amplitude of these second harmonics is as in the right column of Figure 5.8.

5.3 Conclusions

In this chapter we have considered the nonlinear aspects of internal wave focusing.
To characterise the wave field in relation to the forcing, the focusing wave number
Fo has been introduced. For different levels in the fluid and for tori of different
sizes, the isopycnal slope measurements have been found to collapse as a function
of this number. A linear wave regime has been discerned for Fo < 0.04, whereas
non-linear effects start to occur at values close to Fo ≈ 0.04. Wave breaking occurs
for Fo ≈ 0.09, corresponding to a local (shear) Richardson number Ri = 0.25, in
accordance with the classical theory of shear instability. This value coincides with
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Figure 5.8: Amplitude patterns for the first harmonic (left column) and the second
harmonic (right column); (a,b) the longitudinal horizontal velocity Û and (c,d) the
transverce horizontal velocity V̂ . Black circles indicate the position of the thin
torus. Measurements are taken in the zone of first harmonic intersection at Z = −3.
[Exp L from Table 2.2]

the Richardson number calculated from the wave steepness. Wave breaking occurs
for an isopycnal slope of θ = 75◦.

When the waves break in the focal region, radiation of waves has been observed
away from the focal zone. In addition, higher harmonics are generated in the focal
region. The evanescent and propagative second harmonics generated at the intersec-
tions of the fundamental (first harmonic) waves have been studied in some details.
Their generation is in agreement with the theory of Tabaei et al. (2005) corrected
by Jiang & Marcus (2009). The propagating second harmonic waves focus as well,
resulting in a complex vertical and horizontal structure. The amplitude amplifies in
the focal zone. The maximum amplitude of the second harmonic waves in the focal
region is found to be about 2.3 times weaker than that of the first harmonic wave.
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(a) (b)

Figure 5.9: Time–frequency spectra log10(Qu,v(t, ω)/Q0) for the (a) longitudinal
velocity component û and (b) transverse velocity component v̂ in the focal zone Z =
−3 for the thin torus, with Q defined by equation (3.4) and Q0 = max[Qu,v(t, ω1)].
[Exp L from Table 2.2]

(a) (b)

Figure 5.10: Spatio-temporal (Hövmöller) diagram for (a) the first and (b) the
second harmonic of the longitudinal horizontal velocity Û in the focal zone (Z = −3,
Y = 0) for the thin torus. The data are presented for five periods of oscillation
starting from the 14th when the steady regime has been reached. Black arrows show
the phase velocity vectors. [Exp L from Table 2.2]





Chapter 6

High Stokes number wave focusing
by a circular ridge: Internal,
inertial and inertia–gravity waves∗

Wave focusing by a horizontally oscillating torus is considered as a possible sce-
nario for energy concentration in localized zones representing hot spots for incipient
overturning in the oceans. Important mixing of stratification due to internal wave
focusing has been observed by Buijsman et al. (2014) in Luzon Strait in the South
China Sea, and may be a cause for the mixing observed by Peliz et al. (2009) at
Tore Seamount in the West Iberia Margin.

First experiments on geometric focusing have been conducted by Duran-Matute
et al. (2013) who obtained wave turbulence in the focal region for a vertically oscil-
lating torus in a rotating fluid. In chapter 4 we showed with a horizontally oscillating
torus in a linearly stratified fluid that at low Stokes numbers St ≈ 200 the wave
amplitude increases toward the focal region, forming one zone of amplitude ampli-
fication. In this zone one expects overturning and mixing of waves.

The present experimental results were obtained for a much larger torus of minor
radius a = 15 cm and major radius b = 75 cm mounted at the Coriolis platform,
of 13 m diameter, giving access to large Stokes numbers 3800 < St < 6800. They
report some new aspects of the dynamics of internal focusing waves in rotating and
stratified fluids, and the possibility of wave breaking in the focal region.

Internal waves are generated according to the dispersion relation

ω =

√
f 2 sin2 θ +N2 cos2 θ, (6.1)

with θ the angle between the wave beam and the vertical. Depending on whether
the fluid is stratified and still (N 6= 0, f = 0), or stratified and rotating (N 6=
0, f 6= 0), or homogeneous and rotating (N = 0, f 6= 0), we shall refer to the
waves as internal gravity, inertia–gravity or inertial, respectively. In the present

∗This chapter is a complemented version of the communication “High Stokes number wave
focusing by a circular ridge: Internal, inertial and inertia–gravity waves” presented at the 8th (San
Diego, Int. Symp. Strat. Flows, August 29–September 1, 2016) and reproduced in Appendix C

109



110
Chapter 6. High Stokes number wave focusing by a circular ridge: Internal,

inertial and inertia–gravity waves

experiments we consider the angle θ to be fixed (≈ 60◦) for all types of waves for
better comparison. In the case of internal gravity waves this angle corresponds to
ω/N = arccos θ = 0.51, so that all harmonics but the first are evanescent (Mowbray
& Rarity, 1967).

6.1 Internal gravity waves

6.1.1 Comparison with the linear theory

The linear theory described in Voisin (2016) and recalling in section 4.1.2 allows
us to calculate the amplitude of internal gravity waves which may be expected for
high Stokes number St = (ωa2)/ν = 4500, with ν = 0.01 cm2/s the molecular
viscosity. These results are presented in Figure 6.1 (a) for the horizontal Û1 and
vertical Ŵ1 velocity components in the vertical plane Y = 0, and show the bimodal
structure of the wave beams. Comparing the theory in Figure 6.1(a) with the
experimental results in Figure 6.1(c), one notices a difference in structure. This
difference can be caused by mixing in the turbulent boundary layer at the surface
of the torus. The theoretical formulas can be therefore recalculated with an eddy
viscosity νeddy = 0.4 cm2/s � ν. The eddy viscosity was selected manually in
accordance with two criteria: the maximum velocity value and thickness of the focal
zone (see Figure 6.2). The results are presented in Figure 6.1(b) and show slightly
better agreement with the experiment in Figure 6.1(c): in both, the focal zone
is formed of two zones of amplitude amplification at the centre for the horizontal
velocity and four zones of amplitude amplification for the vertical velocity. But the
beams in the experiments remain narrower than predicted with the theory, and the
focal region is confined to an area two times smaller.

Another specificity of the experimental wave beams is the origin of generation.
The upper critical ray delimiting the wave beam is vertically shifted downwards
compared with the theoretical calculations, and with the experimental and numerical
observations for a hemisphere (King et al., 2009). As a consequence, the upper part
of the focal zone is lower than predicted. This shift is caused by the turbulent
motion close to the surface of the fluid and to the mounting plate (as also observed
for the prolate spheroid in chapter 3). However the lower part of the focal region
is well predicted by the linear theory calculated with the eddy viscosity νeddy (see
Figure 6.1b and c at Z = −3 for the horizontal velocity and Z = −2.5 for the
vertical velocity).

6.1.2 Effects of increasing oscillation amplitude

The evolution of the first harmonic velocity patterns for different oscillation am-
plitudes Ke is presented in Figure 6.3 in terms of the velocity amplitude for the
oscillation frequency ω/N = 0.51. For the low oscillation amplitude, Ke = 0.16, the
velocity amplitude is strongly amplified in the focal zone. Surprisingly, in contrast
to the observations for low Stokes numbers in chapter 4, the normalised velocity
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Û1 Ŵ1

Figure 6.1: Horizontal velocity amplitude Û1 (left column) and vertical velocity
amplitude Ŵ1 (right column) for internal gravity waves in the vertical plane of
symmetry Y = 0 at Ke = 0.17: (a) theoretical predictions based on molecular
viscosity; (b) theoretical predictions based on an eddy viscosity ν = 0.4 cm2/s; (c)
experimental results after filtering the first harmonic. The occurrence of spurious
maxima at Z = 0 in the theory is discussed in Voisin (2016). [Exp 1.3 from Table 2.3]

Figure 6.2: Comparison of the horizontal velocity amplitude Û1 obtained experimen-
tally (black circles) with predictions of the linear theory calculated with the molec-
ular viscosity ν = 0.01 cm2/s (green line) and with an eddy viscosity ν = 0.4 cm2/s
(red line). The data are presented at Z corresponding to the highest value of the
velocity amplitude, i.e Z = −1.5 for the theory and Z = −2.2 for the experiment.
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amplitude in the focal region decreases as the normalised oscillation amplitude Ke
increases. Most likely energy loss is caused by wave breaking in the focal region and
close to the object. Also the structure of the focal region is different: the two zones
of amplitude amplification of the horizontal velocity amplitude merge into one, and
the four zones of amplitude amplification of the vertical velocity shift along the
wave beams away from the centre (see Figure 6.3). Mean flow is generated in the
focal zone, its structure being similar to that obtained in chapter 4 for the verti-
cal velocity. In the present experiments also the horizontal mean flow is nonzero
(Figure 6.4). From this point onwards only experimental results obtained at low
oscillation amplitude Ke = 0.17 will be presented in the rest of this chapter.

Û1 Ŵ1

Figure 6.3: Amplitude patterns of the horizontal velocity Û1 (left column) and the
vertical velocity Ŵ1 (right column) in the vertical plane of symmetry Y = 0 with
Ke = 0.17, 0.33, 0.66 and 1 From top to bottom. [Exp 1.2 from Table 2.3]

6.2 Vorticity field

The difference between the internal waves generated in stratified and/or rotating
fluid is studied by considering the horizontal and vertical vorticity fields. In the
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Û0 Ŵ0

(a) (b)

Figure 6.4: Amplitude patterns of the (a) horizontal velocity Û0 and (b) vertical
velocity Ŵ0 of the mean flow in the vertical plane of symmetry Y = 0, for Ke = 0.66.
[Exp 1.2 from Table 2.3]

presence of rotation (Figure 6.5b), inertia–gravity wave motion is found over a bigger
region than for internal gravity waves. This is because the waves propagate in beams,
with edges at the critical rays tangent to the torus and to its image at the surface.
For inertia–gravity waves, these rays turn out to be further apart than for internal
gravity waves. The reason for this is unclear, but seems connected with the boundary
layer at the mounting plate supporting the torus, since this is where reflection takes
place. As a consequence, there are four clearly identifiable separate zones of critical
ray intersection in Figure 6.5(b), compared with one single diamond-shaped zone of
intersection of wave beams in Figure 6.5(a). The vertical vorticity field of internal
gravity waves exhibits a dipolar structure in the focal zone, which transforms for
inertia–gravity waves into a “Yin–Yang-shaped” structure (Figure 6.5d,e). The
overall structure of the inertial wave beams (Figure 6.5c) resembles that for internal
gravity waves. The overturning motion in the focal region is intense, and results
there in a vertically standing inertial wave motion with alternating red-blue vorticity
(McEwan, 1973).

The three-dimensional view of the vertical vorticity field was reconstructed from
the Volume PIV measurements, and its iso-surfaces are presented in Figures 6.6 (a)
and (b) for internal gravity and inertia–gravity waves, respectively. The presence of
a dipolar vortex for the nonrotating stratified fluid demonstrates nonlinear effects
in the focal zone of internal gravity waves (Figure 6.6a). The vorticity structure
for inertia–gravity waves reveals that the positive and negative vortices are twisted
around each other (Figure 6.6b) due to the presence of background motion. This
motion takes place through 2/3 of the depth. The Rossby radius of deformation was
calculated as Ro = (Nh)/f , with h = 2H/3 and H = 90 cm, and predicts the size
of the vortex to be 150 cm, close to what has been observed.
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Figure 6.5: Instantaneous velocity vectors together with (a-c) instantaneous hori-
zontal transverse vorticity ξy/N or ξy/f in the vertical plane of oscillation Y = 0
at Ke = 0.17 (the color scale is the same in all three images), and (d,e) vertical
vorticity ξz/N in the horizontal plane through the centre Z = −4 of the focal zone
for internal gravity waves (the color scale is the same in both images) [Exp 1.2 and
1.4 from Table 2.3]

6.3 Kinetic energy

Patterns of the normalized total kinetic energy

E =
1

2

Û2
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internal gravity wave inertia-gravity wave

(a) (b)

Figure 6.6: Isosurface of the instantaneous vertical vorticity field ξz/N = ±0.6,
reconstructed from the volume PIV measurements for (a) internal gravity waves
and (b) inertia–gravity waves. Red and blue colors indicate positive and negative
vorticities, respectively. The horizontal section of the torus at Z = 0 is shown with
black curves. [Exp 1.4 from Table 2.3]

in the vertical plane of symmetry Y = 0, obtained with Volume PIV technique are
presented in Figures 6.7(a) and (b) for internal gravity and inertia-gravity waves,
respectively. As expected, the energy of the internal gravity waves is amplified in the
diamond-shaped focal region. In the presence of rotation the focal region changes
its structure. In addition to the one zone of amplitude amplification in the centre
observed for internal gravity waves, the energy is focused above this zone closer to
the torus and at both sides of the initial zone (see Figure 6.7b).

The distribution of horizontally averaged total kinetic energy is shown in Fig-
ure 6.8. The energy of internal gravity waves increases toward the focal zone, having
its maxima at Z = −3. For inertia–gravity waves an amplification is observed close
to the torus (Z = −1.5) and in the focal zone (Z = −3), where the wave energy is
nearly equal to that for internal gravity waves.

6.4 Time–frequency representation

Figures 6.9(a) and (b) show the time–frequency representation of the horizontal
velocity û (see chapter 3, eq. (3.4) for details) averaged over a small area close to the
torus and in the focal zone, respectively. Close to the torus the first two harmonics
of internal gravity waves appear. In the focal zone the nonlinear interactions result
even for low oscillation amplitude Ke = 0.17 in the generation of evanescent higher
harmonics after four oscillation periods. From the experimental results we notice
that with the present sizes of the object and experimental tank nonlinear effects
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internal gravity wave inertia-gravity wave

(a) (b)

Figure 6.7: Total kinetic energy of (a) internal gravity waves and (b) inertia–
gravity waves in the vertical plane of symmetry, Y = 0, obtained with volume PIV
technique. [Exp 1.4 and 2.2 from Table 2.3]

Figure 6.8: Vertical distribution of total kinetic energy averaged along the horizontal
in the area (−5 < X < 5,−5 < Y < 5) that is inside the vertical projection of the
torus, for experiments 1.4 (blue dots) and 2.2 (red dots) from Table 2.3.

always take place in the focal region, by contrast with the observations at lower
sizes in chapter 4.

The time–frequency diagram calculated for the density signal from a conductivity
probe in the focal zone is in agreement with the same representation for the velocity
(Figure 6.10a). It can be seen that higher harmonics vary in time but in average
remain at their frequency nω/N . Fourier filtering of the density signal (Figure 6.10b)
shows that the density amplitude normalised with the buoyancy frequency, ρ∗/N ,
has a maximum at the fundamental frequency and decreases nearly exponentially
with increasing harmonic frequency nω/N for internal gravity as well as for inertia–
gravity waves. This result is in agreement with that obtained from the velocity field
(Figure 6.9b) which also shows qualitatively a decrease in energy with increasing
frequency nω/N . Therefore, the energy distribution is similar for internal gravity
and inertia–gravity waves.
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(a) (b)

Figure 6.9: Time–frequency spectrum log10(Qu(t, ω)/Q0) for internal gravity waves
in the plane Y = 0 at Ke = 0.17, with Q0 = max[Qu(t, ω1)] and T = (ωt)/2π.
The horizontal velocity û is averaged over (a) the near-field area −5 < X < −4,
−1.7 < Z < −1 and (b) the focal area−1 < X < 1, −4 < Z < −2.6. [Exp 1.2 from
Table 2.3]

(a) (b)

Figure 6.10: Data obtained with the conductivity probe in the focal zone of internal
gravity waves at Ke = 0.17: (a) Time–frequency representation for internal grav-
ity waves, obtained as in Figure 6.9(b); (b) Fourier-filtered density amplitude ρ∗

against normalized oscillation frequency, ω/N . Blue and red dots represent results
for internal gravity and inertia–gravity waves, respectively. [Exp 1.2 from Table 2.3].

6.5 Conclusions

In this chapter we have investigated the focusing of internal waves by an oscillating
torus in the presence of both rotation and stratification, for high Stokes numbers
St = O(1000). The experiments were performed at the large Coriolis platform, 13 m
in diameter, using a big torus (a = 15 cm, b = 75 cm). The results showed that the
wave generation and propagation regime is nonlinear even for the smallest oscillation
amplitude. The wave beams were seem to have a bimodal structure and the focal
region to consist of several zones of velocity amplitude amplification. The internal
gravity waves generated for small oscillations of the torus were compared with the
linear theory, considering the eddy viscosity at the boundary layer of the torus.
Though a slight difference in the focal zone structure has been obtained, the theory
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and experiments matched well. We expected the same growth of the velocity ampli-
tude with the oscillation amplitude as in previous observations described in chapter
5. Surprisingly, with the present experimental conditions, the velocity amplitude
of internal waves decreased with increasing oscillation amplitude and changed its
structure in the focal region.

Comparing the vorticity fields obtained for internal gravity, inertia–gravity and
inertial waves, we notice changes in the wave and focal zone structures. For internal
gravity waves the overturning motion is localized in the focal zone, while for the
inertial waves it is spread over the entire depth. Inertia-gravity waves overturning
motion localized in four zones of wave beam intersection. The vertical vorticity field
showed dipolar motion in the focal zone that transformed in the presence of rotation
into a “Yin–Yang-shaped” structure.

The total kinetic energy was investigated for internal gravity and inertia–gravity
waves. Without rotation the energy was concentrated in the focal zone, while in the
presence of rotation high energy was also observed close to the torus and in both
sides of the focal region.

With the time–frequency analysis we obtained the generation of higher harmonics
in the focal zone. Their energy decreased exponentially with the harmonic order n.



General conclusions

An experimental study of the generation of internal waves has been performed for
different three-dimensional bodies.

In this thesis I have continued the earlier study of an oscillating sphere (Er-
manyuk et al., 2011; Voisin et al., 2011) by investigating the horizontal oscillations
of spheroidal objects. Based on an extension of the theoretical calculations of Voisin
et al. (2011) to the axisymmetric case of an oblate spheroid of vertical axis, good
agreement was found with experimental results obtained with Laser Induced Flu-
orescence (LIF) in the vertical plane and Particle Image Velocimetry (PIV) in the
horizontal plane. Several more elaborate configurations have been considered to
understand the dependence of the velocity amplitude distribution of the waves on
the shape and orientation of the object. It has been shown that the horizontal am-
plitude distribution for oblate spheroids of horizontal and vertical axes is similar to
that for a sphere. The distribution is wider when axis is vertical compared to when
it is horizontal, and the normalized amplitude is lower. Turning the axis at an angle
to the direction of oscillation in the horizontal plane turns by the same angle the
horizontal amplitude distribution.

Several aspects on higher harmonic wave generation near oscillating boundaries
of various slope have been considered. In particular, fundamental and second har-
monic waves are generated at the critical points of the boundaries, in agreement
with former observations (Zhang et al., 2007). In addition, a separate set of second
harmonic waves is generated at the intersections of the fundamental wave beams,
when their wave amplitude exceeds a certain threshold (Tabaei et al., 2005; Jiang
& Marcus, 2009). As the amplitude increases, the nonlinear overturning motion
close to the boundary also leads to the generation of higher harmonics that appear
weakly trapped near the region of generation. Further research is needed to show
the threshold amplitude for which this nonlinear motions emit higher harmonic wave
beams.

The highest amplitudes were obtained for the object with the strongest slope
(a prolate spheroid of vertical axis). Thus, in the ocean, the propagation of inter-
nal tides and their amplitude depend not only on the direction of oscillation and
frequency of the barotropic tide but also on the slope and curvature of the bottom to-
pography as well. According to the theory of Bell (1975a), which is two-dimensional
and applies to topographies of infinitesimal slope, the first three harmonics depend
on the oscillation amplitude linearly, quadratically and cubically, respectively and
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are proportional to the first, second and third derivatives of the topographic pro-
file, hence to the slope, curvature and derivative of the curvature, respectively. The
same dependence on the oscillation amplitude was observed in three dimensions for
a sphere and for a prolate spheroid in our experiments, but a third harmonic was
also observed for the sphere despite its constant curvature.

The horizontal structure of the higher harmonics has been studied for a sphere
and for a prolate spheroid. It has been shown that the radiation patterns of the first
three harmonics are dipolar, quadrupolar and octupolar, respectively. According to
this trend we expect for the n-th harmonic wave a radiation pattern of multipolar
order 2n having 2n azimuthal poles in the horizontal plane. Because of the com-
plexity of this structure and narrowness of the wave, as well as their weakness in
amplitude compared to the fundamental, it is less obvious to visualize the radiation
patterns for higher wave modes.

The geometric focusing of internal waves generated by a horizontally oscillating
torus has then been investigated. Experiments were conducted in the weakly viscous
regime, i.e. for Stokes numbers between 150 and 260. In a first approach we used
the Keulegan-Carpenter number Ke to characterise the amplitude of focusing, thus
neglecting the amplification of the waves due to the effect of focusing. Though these
results are satisfactory, the focusing leads actually to a strong amplification of the
wave amplitude along its ray path, with a maximum wave amplitude at the focal
point where wave breaking can be expected for certain oscillation amplitudes. To
characterise the focused wave field, a focusing number Fo has been introduced, and
for different levels in the fluid and different size tori, the wave amplitude has been
found to collapse as a function of this number. A linear wave regime is discerned
for Fo < 0.15, whereas non-linear effects start to occur at values close to Fo ≈ 0.15.
Wave breaking occurs for Fo ≈ 0.22, corresponding to a local (shear) Richardson
number Ri = 0.25, in accordance with classical theory for shear instability. This
value coincides with the Richardson number calculated from the wave steepness.
Wave breaking occurs for an isopycnal slope of θ = 75◦.

As a first approximation, the field of focusing waves has been approached by mak-
ing use of the two-dimensional theory of Hurley & Keady (1997) that was adapted
by including a term for the wave convergence. This theory shows qualitative agree-
ment with the observed wave field, and gives reasonable quantitative results up to a
vertical distance from the torus of 5 times its radius. However, there is an increasing
discrepancy between the data and the theory when approaching the focal zone, for
the entire range of wave amplitudes. This difference is about 30% and indicates that
the present theory is not satisfactory for the study of the focal region.

After Fourier filtering the wave amplitude, the three-dimensional structure of
the second harmonic waves has been identified. This structure is quadrupolar in the
focal zone. Some of the observed maxima in the wave field of the second harmonic
wave suggest that intersections of wave rays also emit waves, in agreement with the
theory of Tabaei et al. (2005). The maximum amplitude of the second harmonic
waves in the focal region is found to be about 2.3 times weaker than that of the first
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harmonic wave.
Focusing of internal wave energy is a rather recent subject, and opens perspec-

tives to new ways of generating waves and turbulence in the ocean. The overturn-
ing in the present experiments has been observed at moderate Reynolds numbers
when internal waves are strongly damped by viscous effects. Similarly, internal-
wave breaking over other shapes of curved topography (see Bühler & Muller, 2007)
may serve as an effective mechanism for the generation of “hot spots” responsible
for abyssal mixing. The use of the number Fo and the measurements based on
wave steepness allow us to make more precise estimations of the relevance of wave
breaking due to wave focusing.

For a realistic bottom topography the effects of viscosity are small (see the dis-
cussion in Voisin et al., 2011). We may consider whether wave breaking is likely
to occur or not, using the above focusing number. For a M2 tidal oscillation fre-
quency of approximately 12 hours and a typical ocean stratification one obtains
ω/N ≈ 0.3 corresponding to an angle of wave propagation of 17◦. Considering
a large mountain 1 km height, 1 km minor radius and 60 km major radius, so
that a = 1 km and b = 60 km, we obtain for the critical oscillation amplitude
Ac ≈ 0.22

√
ab/(sin1/2 θ cos θ) = 874 m, which is of the same order as the tidal

excursions which are typically of 100 m. Note that this critical value might be over-
estimated since viscous effects in the present laboratory flow (Stokes number O(102))
are much stronger than in the ocean (Stokes number O(108)). Smaller mountains
with smaller values of a and b require also smaller critical amplitudes. Thin large
ridges as well as thick small ridges of realistic sizes can thus be expected to cause
overturning waves due to focusing. The recent observation of intense mixing in
the Mid-Atlantic Ridge (see Dale & Inall, 2015) near a spur-shaped mountain not
known as a “hot spot” for mixing, seems to correspond well with this category of
wave breaking due to focusing.

In order to consider high Stokes number waves, experiments have been performed
at the Coriolis platform. We have measured the three-dimensional wave structure for
internal gravity, inertial and inertia–gravity waves. In contrast to our expectations,
for these high Stokes numbers the amplitudes of the vertical and horizontal velocities
decrease with increasing oscillation amplitude, possibly due to wave breaking close
to the oscillating torus. Wave amplification occurs in the focal zone rather at low
oscillation amplitudes. For high oscillation amplitudes an energy spreading along
the wave beam is observed. The horizontal vorticity field has a similar structure
for internal gravity and inertial waves, though the intensity of the motion is higher
for inertial waves and the vorticity spreads through the entire depth due to energy
loss by diapycnal mixing. In the presence of both rotation and stratification, four
vortices have been observed in the focal region. The vorticity field demonstrates
the presence of nonlinear effects in the focal zone which cause the dipolar motion to
be deformed by the background rotation into a “Yin–Yang-shaped” structure. For
inertia–gravity waves this motion is twisted and spreads through 2/3 of the fluid
depth. The size of the vortex corresponds to the Rossby radius of deformation.
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(a) (b)

Figure 6.11: Non-axisymmetric wave focusing by a horizontally oscillating half-
torus, oriented perpendicular to the X-direction, at ω/N = 0.8, ε = 9 and St = 148:
patterns of the vertical displacement amplitude in the vertical plane Y = 0 for (a)
Ke = 0.19 and (b) Ke = 0.84.

Spectral analysis of the velocity and density in the focal zone shows the gener-
ation of higher harmonics in zones of intersection of the fundamental wave beams.
Most of the energy is in the fundamental wave, whereas the higher harmonics are
evanescent and their energy decreases exponentially. Our large scale experiment,
providing Stokes number of 4500, generates turbulence in the focal region, a source
of mean flow generation and mixing. The effect of this turbulence on the wave beam
can be taken into account by means of an eddy viscosity.

Perspectives

The experiments at the Coriolis platform have revealed new aspects of nonlinear
internal wave focusing at high Stokes number, not observed in smaller-scale ex-
periments at lower Stokes number. For example, the wave turbulence obtained in
small-scale experiments for inertial waves (Duran-Matute et al., 2013) was not ob-
served at the Coriolis platform. Clearly, further investigation of the problem is
required.

The importance of the three-dimensionality of wave focusing can be confirmed
by looking at the non-axisymmetric case of the oscillations of a half-torus. In the
vertical central plane one obtains a wave beam with amplitude increasing toward
the focal zone and decreasing afterward, as seen in Figures 6.11(a) and (b) showing
the wave amplitude obtained from a LIF experiment in the small tank with a thin
half-torus of dimensions a = 1.5 cm and b = 13.5 cm oscillating with Ke = 0.19 and
0.84, respectively. Focusing is clearly observed despite the absence of two opposite
interfering beams as in Figure 4.1, thereby showing that focusing is a product of
the horizontal curvature of the wave generator, through the interference of beams
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(a)

(b)

Figure 6.12: Patterns of the horizontal (left column) and vertical (right column)
velocity amplitude in the vertical plane Y = 0 for the filtered (a) first harmonic and
(b) mean flow. Experimental parameters: Exp 4.3 in Table 2.3.

propagating in different azimuthal planes. The waves continue to propagate after
focusing, bending at high oscillation amplitudes into an arc shape with a peak in the
focal region. A possible explanation is the horizontal net transport of momentum
away from the focal zone, which could not be observed in the axisymmetric focusing
by a full torus.

Experiments with a half-torus differently oriented with respect to the forcing
direction have been performed at the Coriolis platform (experiments 4.1 to 5.2 in
Table 2.3). A first set of experiments used a vertical laser plane. The patterns of
horizontal and vertical velocity amplitudes are presented in Figure 6.12. Horizontal
mean flow generation is observed in the focal zone (Figure 6.12 b) and divide the first
harmonic wave beam in two after focusing, one propagating at the angle according
to the dispersion relation and another propagating along the direction of the mean
flow (Figure 6.12 a).

Experiments 4.2 and 5.2 with Volume PIV should provide more detailed infor-
mation about nonlinear effects in the focal zone. It is also of interest to compare
waves generated by “symmetric” and “asymmetric” half-tori, oriented perpendicular
and parallel to the direction of oscillation, respectively. In the latter case generation
of a horizontal mean flow perpendicular to the direction of oscillation away from
the half-torus is expected. Clearly, the Coriolis platform setup for wave focusing is
promising and deserves more study.
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Abstract9

Oscillating bodies in stratified fluids may emit higher harmonics in addition to the fundamental10

waves. The three dimensional structure of these higher harmonics is not yet well known. Here we11

consider higher harmonics of the internal wave field as generated by different horizontally oscillating12
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fundamental wave beams, and at the critical points of the topography where the topographic slope14

equals the wave slope. The velocity amplitude of the fundamental, second and third harmonic wave15

grow respectively linearly, quadratically or with the power 3 with the scaled oscillation amplitude16

A/a, with a the radius of the object. Higher harmonics are generated by nonlinear instability at17
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a radiation diagram corresponding to a multipole of order 2n, with 2n directions of propagation.22

PACS numbers: 92.10.hj,47.55.Hd,47.35.Bb23

∗ natalia.shmakova@legi.cnrs.fr

1



(a) (b) (c)

FIG. 1. Horizontal structure of dipolar, quadrupolar and octupolar internal waves. The annular

propagation of the waves and the 2n-polar radiation pattern as cos(nφ) are represented by light

gray and their combination by dark gray.

I. INTRODUCTION24

Internal waves are generated by the barotropic tide in the Earth ocean and are known to25

play an important role for its energy balance [1–4]. Motivated by this application, in a large26

number of studies, the oscillation of idealized bodies of different shapes in a linear stratified27

fluid has been investigated. Seen from the reference frame of the fluid, the wave generation28

by an oscillating body is comparable to that of the interaction of the barotropic tide with29

bottom topography. Most well known are the classical experiments of Mowbray and Rarity30

[5], which show that, the dispersion relation for internal waves generated by a cylinder,31

oscillating with frequency ω in a linearly stratified fluid with buoyancy frequency N , admits32

for the propagation of n-th harmonic component [5] of the wave field if nω < N . Though33

linear wave theory for elliptic cylinders [6, 7] adequately predicts the observed fundamental34

wave [8], the higher harmonics, as shown by Sutherland and Linden [9] and Zhang et al. [10],35

seem to be due to fully nonlinear dynamics. Korobov and Lamb [11] showed numerically36

that the interaction between the fundamental wave and higher harmonics in the vicinity of37

an underwater mountain ridge creates a complex fine-scale structure over the entire fluid38

depth.39

In three dimensions, such as for the waves generated by an oscillating sphere, higher40

harmonics have a non-trivial distribution of wave amplitudes in the azimuthal direction41

in addition to the structure demonstrated by Korobov and Lamb [11]. For this geometry,42

2



the linear theory has been described and experimentally verified [12]. A detailed study on43

the radiation pattern of the propagative first and second harmonics has been performed44

in Ermanyuk et al. [13]. It was shown that first and second harmonics have respectively45

dipolar and quadrupolar radiation patterns. The shapes of these patterns are shown in46

Fig. 1 together with the octupolar radiation pattern. The existence of high harmonics has47

also been demonstrated for an isolated Gaussian hill by King et al. [14]. It is however not48

possible to extrapolate the experimental data obtained in King et al. [14] and Ermanyuk et49

al. [13] to predict the azimuthal structure of the n-th harmonic.50

The aim of the present paper is to consider the generation of higher harmonic internal51

waves near topography of different curvature, here represented by an oscillating sphere,52

and a prolate spheroid oriented horizontally or vertically. Experimental observations are53

compared with the theoretical predictions according to Bell [15] for the waves on curved54

boundaries, and Tabaei et al. [16] and Jiang and Marcus [17] for the wave generation55

at wave beam intersections. The measurements of the horizontal flow field allow us to56

make hypothesis about the horizontal structure of the n-th harmonic radiation patterns.57

Measurements are performed using the PIV technique. An additional set of experiments,58

visualizing horizontal planes close to the oscillating objects, was performed for a better59

understanding of mechanisms that are responsible for the generation of higher harmonics.60

II. EXPERIMENTAL SETUP AND DATA PROCESSING61

Experiments were conducted in a plexiglass square tank with working depth of 97 cm and62

horizontal dimensions 97 × 97 cm2 filled to a depth of 90 cm with a linearly stratified fluid63

[see Fig. 2(a,b)]. Salt was used as stratifying agent and tap water as working fluid. The64

stratification was measured by taking density samples at different heights in the fluid. A65

least square fit provided the density gradient and the related value of the buoyancy frequency66

N(z) = [−(g/ρ)(dρ/dz)]1/2, with g the gravity acceleration and ρ(z) the density distribution67

with the vertical coordinate z. In the present experiments N = 1±0.08 rad/s. The kinematic68

viscosity in experiments was constant, ν = 1.1 mm2/s. Waves were generated by horizontally69

oscillating a plexiglass spheroid of equatorial radius a and polar radius b, attached to a70

pendulum of length 1.3 m. The aspect ratio for the spheroids was b/a = 1 (sphere) and71

b/a = 2 (prolate spheroid) with a = 3.125 cm in both cases [Fig. 2(c–e)]. The surface of72
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(a) (b)

(c) (d) (e)

FIG. 2. Schematic views of the experimental setup: (a) front view with vertical laser plane; (b)

side view with horizontal laser plane. Geometry of oscillating objects: (c) sphere (S), prolate

spheroid with (d) vertical axis of revolution, (V), and (e) horizontal axis of revolution, (H).

the spheroids was painted black to avoid reflections of the laser light. The oscillations of73

the pendulum were driven by a crank mechanism. The motion was in good approximation74

horizontal and sinusoidal, with amplitude A and frequency ω. Wave absorbers were placed75

along the tank walls perpendicular to the plane of oscillation, effectively suppressing wave76

reflections. The wave pattern generally became steady after 10 oscillation periods.77

To measure the velocity field a two-dimensional particle image velocimetry (PIV) tech-78

nique was used. The size of visualization window was 36 × 36 cm2 and 53 × 53 cm2 for79
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vertical and horizontal plane, respectively. Images were recorded with a 12-bit DALSA dig-80

ital camera with CCD matrix of 1024 × 1024 pixels. Prior to the experiment, the fluid81

was seeded with Orgasol R© 30 µm particles of density ρ = 1.2 kg/m3. During the experi-82

ment, the particles were illuminated with either a vertical, or a horizontal laser sheet. The83

vertical laser sheet passed through the transparent bottom of the tank and was parallel to84

the direction of oscillation as shown in Fig. 2(a). Different vertical planes could be illumi-85

nated by moving the inclined mirror on the traverse mechanism. The position of the sheet86

was computer-controlled and allowed for the recording of sequences of planes. To measure87

period-averaged quantities and determine the amplitudes of the Fourier components of the88

signal in a vertical plane, the sheet was kept fixed during one oscillation period, and then89

moved 0.5 cm to the next position, until enough vertical planes were obtained to reconstruct90

the three-dimensional wave field by spline interpolation. The horizontal laser sheet passed91

through the side wall and its vertical position was controlled by shifting the inclined mirror92

shown in Fig. 2(b). In order to process the data with Fourier transform techniques [18, 19]93

(and in particular with the Hilbert transform) long time series were taken.94

In the experiments, successive images of the wave field were taken at time intervals95

∆t = 0.2 s. This interval was chosen to be sufficiently small compared to the period of96

oscillations so that the number of images per period was large, i.e., between 56 and 84. The97

particle displacement was obtained by cross correlating two successive images using the CIV98

velocity image correlation algorithm (UVMAT/CIVx [20]). Fourier decompositions of time99

series of horizontal, u(t), and vertical, w(t), velocity were used to separate the fundamental100

wave and its higher harmonics. For the vertical plane the amplitude of horizontal, ua, and101

vertical, wa, velocity was defined as root-mean-square of u(t) and w(t), respectively. The102

absolute value of Hilbert transformation of u(t) and w(t) was taken in the horizontal plane.103

The non-dimensional coordinates (X, Y, Z) = (x, y, z)/L are used, with the x- and y-axes104

respectively parallel and perpendicular to the direction of oscillation of the spheroids, as105

shown in Fig. 2 (c) and (x, y, z) = (0, 0, 0) at the center of the object at rest. L is the106

lengthscale in the direction of oscillation, i.e. L = a in case of sphere (S) and prolate107

spheroid with vertical axis of revolution (V), and L = b in case of the prolate spheroid108

having a horizontal axis of revolution (H). Non dimensional horizontal (longitudinal) and109

vertical velocity amplitudes, are respectively given by Ua = ua/Aω and Wa = wa/Aω.110
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III. RESULTS111

In a uniformly stratified fluid, the oscillation of a body generates internal waves that112

propagate along a double cone, with the apex located in the center of the body and the113

generatrices inclined at the angle114

θ = arccos Ω (1)115

to the vertical, were Ω = ω/N is the frequency ratio [21]. The dispersion relation (1) admits116

for the generation of a propagative n-th harmonic component of the wave field if nΩ < 1.117

The horizontal structure of the first and the second harmonic has been studied in Ermanyuk118

et al. [13].119

The effective generation of the n-th harmonic requires an appropriate choice of the non120

dimensional oscillation amplitude A/a, and oscillation frequency Ω. Obviously, A/a should121

be large enough for the amplitude of the n-th harmonic, proportional to (A/a)n, to be122

observable. Based on the knowledge of the behavior of the first harmonic, a plausible123

conjecture for the frequency tuning can be formulated. It is known that for oscillating124

circular cylinders and spheres the maximum power radiated by the first-harmonic waves is125

found in the range of Ω between 0.7 and 0.8, regardless the oscillation direction [12]. Since the126

particular geometry of the wave field has little influence on the frequency corresponding to127

the maximum radiated power, we can make a conjecture that the n-th harmonic, irrespective128

of its actual generation mechanism, is most effectively generated when 0.7 < nΩ < 0.8. This129

condition was used for the frequency tuning in the present experiments.130

A. Vertical structure131

The wave patterns emitted by a horizontally oscillating prolate spheroid are shown in

Fig. 3 with its long axis horizontal at the left [prolate spheroid (H)], and its long axis

vertical at the right [prolate spheroid (V)]. This change in the position of the spheroid

allows for the study of different curvature topography with the stratification. At the left

column of Fig. 3, one notices the generation of second harmonic waves at Z = 0 at the

intersections of the fundamental waves. In agreement with the theory of Tabaei et al. [16]

and Jiang and Marcus [17] only fundamental and second harmonic waves are generated that

propagate away from the obstacle. The waves below (and above) the spheroid are generated
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(a) (b)

(c) (d)

(e) (f )

FIG. 3. Snapshot patterns of vorticity (color) and velocity (vector field) of the wave field in the

vertical plane of symmetry generated by a prolate spheroid H (left column) and a prolate spheroid

V (right column); (a,b) total (fundamental and second harmonic), (c,d) first harmonic and (e,f )

second harmonic. Experimental parameters: N = 0.89 rad/s, Ω = 0.44, A/a = 0.5.
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(a) (b)

FIG. 4. (a,b) Schematic distribution of the first and second harmonics of waves generated by

prolate spheroid (H) and (V), respectively; dots correspond to critical points ε = s/

√
ω2
i

ω2
i−N2 = 1,

with i = 1, 2 for the first (green dots) and second (red dots) harmonic, respectively. Fundamental

and second harmonic generation is shown from the the critical points εi, and as predicted by theory

[16, 17]; of the latter the harmonic waves that are not observed in the experiment are represented

by gray lines. The horizontal gray line determine the vertical position of fundamental wave beams

intersection Z∗.

at the boundary, and appear to have their origin at the critical points, where the slope of

the topography s equals the slope of the harmonic wave, i.e.

εi =
s√

ω2
i /(ω

2
i −N2)

= 1,

i = 1, 2 for the first and the second harmonics, respectively (ω2 = 2ω1) [Fig. 4 (a)]. Second

harmonic wave beams emitted from the critical points ε2 = 1 intersect below the spheroid.

In this zone the waves focus and therefore amplify in wave energy [Fig. 3 (e)]. However, this

zone is closer to the object then one may expect from the dispersion relation θ = arccos(2Ω)

(see sketch in Fig. 4) for a second harmonic wave. In view of the weak slope of the topography

Bell’s theory [15] could apply and be responsible for harmonic emission. Both waves are well

visible also in horizontal plane views in Fig. 5 (a) and (b), for slightly different parameters.

However, the absence at a larger distance of a second harmonic wave beam being emitted

from the point (X,Z) = (0,−1) on the spheroid suggests nonlinear effects. There is a

nonlinear interaction between the second harmonic wave emitted at the critical point and

the overturning motion near the boundary layer. As a consequence this wave is deviated
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(a) (b)

FIG. 5. Radiation patterns for (a) the first and (b) the second harmonic wave of the horizontal

longitudinal velocity field at the boundary (Z = −1) of the oscillating prolate spheroid (H).

Experimental parameters A/a = 0.75, N = 1.08 rad/s, Ω = 0.4.

first horizontally. Near the focal point (X,Z) = (0,−3) this wave propagates again in

the direction of the second harmonic wave. One can base the Richardson number on the

boundary layer thickness at the surface of the object δz, i.e.

Ri =
N2

[(Aω)/δz]2
,

with Ri < 1/4 for shear instability according to Miles’ [22] theory on shear instability. For132

the velocity and stratification in this experiment, this corresponds to a threshold boundary133

layer thickness of δz < 0.35. In view of the much thinner boundary layer, the overturning134

below the spheroid is likely to occur.135

At the right column of Fig. 3, the results are shown for the vertically positioned prolate136

spheroid (V), for the same stratification, amplitude and oscillation frequency. Again fun-137

damental and second harmonics are generated at critical points. However, the intersection138

of the fundamental waves at Z = 0 does not result in the generation of a second harmonic139

wave. Since this intersection is at a larger distance from the spheroid, the wave amplitude140

may have decreased significantly along its path. Zhang, King and Swinney [10] also notice141

that the second harmonics disappear for weaker wave amplitudes. The sketches of the wave142

patterns in Fig. 4(a) and 4(b) resume the observations.143
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(a) (b)

FIG. 6. (a) Profiles of second harmonic of horizontal velocity field at Z = −1 (black dots),

Z = −1.47 (dark gray dots) and Z = −1.91 (light gray dots) for oscillating prolate spheroid (H).

Data obtained at Y = 0 with A/a = 0.75, N = 1.08 rad/s, Ω = 0.4. (b) Distribution of the

kinetic energy E = C ·

〈
0.5

[
(u

(i)
a )2+(w

(i)
a )2

]〉
x

0.5(Aω)2l
of the first (dots) and second (circles) harmonic along

Z. Experimental parameters: A/a = 0.5 and Ω = 0.45.

B. Horizontal structure144

Complementary experiments were conducted to determine the position of higher har-145

monic generation using horizontal laser sheet at Z = −1 and in the zone of primary beam146

intersection Z∗ [see the horizontal line in Fig. 4 (a)]. Z∗ is calculated from formulas (3.14) in147

Hurley [6]. This value appears to be too small for the sphere (∆Z = 0.1) but for the prolate148

spheroid (H) oscillating with frequency Ω = 0.4 and amplitude A/a = 0.75 this distance is149

large enough for measurements (∆Z = 0.33).150

Distributions of amplitudes of the first and the second harmonics of the horizontal velocity151

U/(Aω) in the horizontal plane at Z = −1 are presented in Fig. 5. The second harmonic152

close to the object has a quadrupolar structure (−2 < X < 2). The second harmonics at153

|X| = 4 and |X| = 6 are in agreement with the vertical structure shown in Fig. 3 (e) and154

correspond respectively to the out-coming wave beams generated at the critical point ε2 = 1155

and the wave beam generated in the zone of fundamental wave intersection at Z = 0. Figure156

6(a) shows that the amplitude of the second harmonic wave has its maximum close to the157

surface of the spheroid and decreases with the distance from the object.158

To determine the wave–spectrum generated by the prolate spheroid (H) and its evolution159
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(a) (b)

FIG. 7. Time-frequency diagram for the waves generated by the prolate spheroid (H), color bar

shows (a) log10(SU (t, ω)/S(t, ω0)) averaged over −2 < X < 2, −1 < Y < 1 in the horizontal

plane Z = −1 for the horizontal longitudinal velocity u; experimental parameters: A/a = 0.75 and

Ω = 0.4. (b) log10(SW (t, ω)/S(t, ω0)) measured in −2.5 < X < 2.5, Y = 0 and −4 < Z < −1 for

the vertical velocity w. Experimental parameters: A/a = 0.5 and Ω = 0.45.

with time [23] a time-frequency representation described in Flandrin [19] is used:160

S(t, ω) =

〈∣∣∣∣
∫ +∞

−∞
du u exp−iωu h(t− u)

∣∣∣∣
2
〉

xy

, (2)161

where h(t) = 0.54 − 0.46 cos(ωt) is a Hamming window and the average is taken over an162

interrogation area xy.163

Figure 7(a) shows the time–frequency diagram for the logarithm of S averaged in space164

inside small rectangle (−2 < X < 2,−1 < Y < 1, Z = −1). Under experimental conditions165

the first two harmonics are propagative, with their generation starting at t = 0, and their166

frequency remaining constant for all 40 oscillation periods; all higher harmonics are evanes-167

cent. The development of these evanescent waves is visible in Fig. 7(a) 0 < T < 10, Ω > 1.168

Figure 7(b) shows that in addition to the second harmonic frequency (ω2 = 0.9 rad/s) waves169

are generated at lower frequency ω2− ≈ 0.8 rad/s. We notice that the frequency interval170

between these waves increases with time.171

The normalized total kinetic energy E was integrated in the horizontal for all Z:

E = C ·
〈
0.5

[
(u(i)a )2 + (w(i)

a )2
]〉
x

0.5(Aω)2l
,

where C = 4πab+(a−b)2
a+b

is an approximate solution of integration over an ellipse, and l = 2b,172

for waves generated by prolate spheroid (H). The distribution of averaged kinetic energy173

along the vertical axis Z is shown in Fig. 7(b) for the first and second harmonics. The174
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(a) (b)

FIG. 8. Octupolar radiation pattern corresponding to the upper half of Fig. 1(c): gray levels

visualize (a) the horizontal velocity amplitude of the third harmonic wave U
(3)
a , and (b) the vertical

velocity amplitude of the third harmonic wave W
(3)
a . Experimental parameters: oscillating sphere

with a = 3.125 cm, A/a = 0.91 at Z = −1.66, N = 1 rad/s, Ω = 0.27.

fundamental wave energy has it’s maximum close to the object boundary and linearly dissi-175

pates with distance Z. The energy of the second harmonic wave has two maxima: one close176

to the object (Z = −1) and in the zone of two secondary beams intersection [Z = −2.3,177

see Fig. 3(e)]. Due to focusing the second harmonic dominates over the first harmonic178

component for −6 < Z < −3.179

Distributions of the third harmonic component emitted by the sphere (S) of the horizontal180

longitudinal velocity U (3)
a , and the vertical velocity W (3)

a , are shown in Fig. 8. The third181

harmonics frequency is estimated as 3Ω ≈ 0.8. An octupolar structure is clearly visible, with182

6 azimuthal poles implying the amplitude variation as sin(3φ) for the horizontal velocity183

amplitude and cos(3φ) for the vertical velocity amplitude.184

The distribution of the amplitudes of the third harmonic along the X-axis is presented185

in Fig. 9 for objects of different curvature: sphere (S), prolate spheroid with vertical axis of186

revolution (V) and prolate spheroid with horizontal axis of revolution (H). All six azimuthal187

poles of the third harmonic generated by the sphere have the same form, size and amplitude188

distribution but in the case of an oscillating prolate spheroid (V), the amplitude of the189

azimuthal poles along the X-axis is smaller compared to the amplitude of the same poles for190

the sphere (0.4 < X < 1 for U (3)
a and 0.9 < X < 1.2 for W (3)

a ). We notice that the structure191

of the wave pattern approximately scales with the slope of the object. The amplitude of the192

higher harmonic waves changes significantly with the shape of the object, and is higher for193
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(a) (b)

FIG. 9. Profiles of the third harmonic of (a) horizontal (U
(3)
a ) and (b) vertical (W

(3)
a ) velocity field

at Y = 0. Dots, circles and stars correspond to results for the oscillating sphere (S) (measured at

Z = −1.66), prolate spheroid (V) (Z = −2.4) and prolate spheroid (H) (Z = −1.66), respectively.

Experimental parameters: A/a = 0.65, N = 1 s−1, Ω = 0.27. (The vertical distance to the

boundary of the object is the same in all cases, but Z values vary because of the scaling).

’steeper’ objects.194195

The dependance of extreme values of non dimensional amplitudes of first three harmon-196

ics on the non dimensional oscillation amplitude is presented in Fig. 10. The logarithmic197

representation shows that the amplitude of horizontal (Ua) and vertical (Wa) velocity is in-198

dependent of the oscillation amplitude for the normalized fundamental wave, and varies as199

A/a and (A/a)2 for the normalized second and third harmonics, respectively. This trend is200

in agreement with the two-dimensional theory of Bell [15] and previous experimental studies201

on fundamental and second harmonic waves generated by an oscillating sphere [13].202

In view of former observations on the relevance of the fundamental wave and higher203

harmonics [13, 24], a note should be made on higher harmonics in three-dimensional flows.204

In the two-dimensional case the energy content of the higher harmonics is usually relatively205

low, as demonstrated for the second harmonic in Zhang et al. [10]. However, in the three-206

dimensional case, the amplitude of the second harmonic can be higher than the amplitude207

of the first for a sphere [13] or comparable to it for Gaussian topography over a flat bottom208

[14]. The reason for this difference is related to the fact that, at low oscillation frequencies Ω209

and fixed amplitude A/a, the power P of internal waves that are generated by horizontally210

oscillating bodies varies as Ω2 for a circular cylinder and Ω5 for a sphere [12], and similar211
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(a) (b)

FIG. 10. Variations of the peak magnitudes of the first three harmonics with oscillation amplitude

A/a for (a) horizontal (Ua) and (b) vertical (Wa) velocity field. First, second and third harmonics

are represented with light gray, dark gray and black color, respectively, and compared with theo-

retical predictions for the sphere (solid light gray line), and linear regressions for U
(2)
a (W

(2)
a ) and

U
(3)
a (W

(3)
a ) (dashed dark gray and black lines). Dots, circles and squares correspond to results for

oscillating sphere (S), prolate spheroid (V) and prolate spheroid (H), respectively. N = 1 rad/s,

Ω = 0.27.

asymptotic behavior is valid for elliptic cylinders and spheroids [25]. Accordingly, at low212

frequency Ω and fixed A/a the amplitude of the first, linear harmonic is much smaller in213

three dimensions than in two and can more easily be overtaken by the amplitude of the214

higher, nonlinear harmonics. Therefore, for low oscillation frequencies Ω, that are relevant215

to geophysical applications, we may have a situation where the fundamental wave generated216

by barotropic flow over three-dimensional topography is weak while a higher n-th harmonic217

is strong. Reciprocally, higher harmonics are of interest for three-dimensional topography218

because of their high energy content under appropriate conditions. The azimuthal harmonic219

wave structure may have an influence on the energy and mass fluxes in the vicinity of220

underwater mountains.221

IV. CONCLUSIONS222

In this study, several aspects on higher harmonic wave generation near oscillating bound-223

aries of varying slope have been considered. In particular, fundamental and second harmonic224
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waves are generated at the critical point at the boundaries in agreement with former ob-225

servations [10]. Intersections of the fundamental wave beams lead to the generation of226

second harmonic waves, when their wave amplitude exceeds a threshold [16, 17]. When the227

amplitude of oscillation exceeds a certain threshold, the nonlinear overturning motion also228

leads to the generation of higher harmonics that appear weakly trapped near the region229

of generation. Further research is needed to show the threshold amplitude for which this230

nonlinear motions emit higher harmonic wave beams. It is also shown that in agreement231

with previous observations [13] and theoretical predictions [15] the amplitude of the first232

three harmonics grows linearly, quadratically and cubically, respectively, with increasing of233

oscillation amplitude.234

Further, the present observations show that the spatial structure of the radiation pat-235

tern of the first three harmonics of the wave field is respectively dipolar, quadrupolar and236

octupolar. According to this trend we expect that for the n-th harmonic wave radiation237

pattern of multipolar order 2n has 2n azimuthal poles in the horizontal plane. Because of238

the complexity of the structure and narrowness of the wave it is less obvious to visualize the239

radiation patterns for higher wave modes.240

The numerical results described in Korobov and Lamb [11] show the internal wave struc-241

ture that is due to the interplay of first and higher harmonics in the vertical plane. The242

here presented results show that, in addition in the horizontal plane, the complexity of the243

horizontal wave structure increases with the harmonic wave number. The interaction of mul-244

tipolar radiation patterns may lead to complex interference patterns above realistic bottom245

topographies.246
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This paper presents an experimental study on internal waves emitted by a horizontally
oscillating torus in a linearly stratified fluid. Two internal wave cones are generated with
the kinetic energy focused at the apices of the cones above and below the torus where
the wave amplitude is maximal. Their motion is measured via tracking of distortions of
horizontal fluorescein-dye planes created prior to the experiments, and illuminated by a
vertical laser sheet. The distortion of the dye planes gives a direct access to the Lagrangian
displacement of local wave amplitudes and slopes, and in particular, allows to calculate
a local Richardson number. In addition Particle Image Velocimetry (PIV) measurements
are used. Maximum wave slopes are found in the focal region and close to the surface
of the torus. As the amplitude of oscillations of the torus increases, wave profiles in the
regions of maximum wave slopes evolve non-linearly toward local overturning.

A theoretical approximation based on the theory of Hurley & Keady (1997) is presented
and shows, for small amplitudes of oscillation, a very reasonable agreement with the
experimental data. For the focal region the internal wave amplitude is found to be
overestimated by the theory.

The wave breaking in the focal region is investigated as a function of the Keuligan-
Carpenter number, Ke = A/a, with A the oscillation amplitude, and, a the short radius
of the torus. A linear wave regime is found for Ke < 0.4, nonlinear effects start at
Ke ≈ 0.6 and breaking for Ke > 0.8. For large forcing, the measured wave amplitude
normalized with the oscillation amplitude decreases almost everywhere in the wave field,
but increases locally in the focal region due to nonlinear effects. Due to geometric focusing
the amplitude of the wave increases with

√
ε, with ε = b/a, and b is the mean radius of

the torus. The relevance of wave focusing due to ocean topography is discussed.

Key words: Ocean mixing, internal wave focusing, wave breaking, stratified fluids.

1. Introduction

In the oceans, the interaction of the tidal motion with the bottom topography is
continuously generating internal waves (Bell 1975; Vlasenko et al. 2005; Garrett & Kunze
2007). There is a reasonable agreement about the global rate of energy of 3.7 TW from
lunar and solar tides, of which about 1TW is converted into the baroclinic tide (Morozov
1995; Garrett & Kunze 2007). The transfer of this energy into mixing is relevant to the

† ermanyuk@hydro.nsc.ru, natalia.shmakova@legi.grenoble-inp.fr, jan-bert.flor@legi.cnrs.fr
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general circulation in the oceans, and is therefore also of interest to climate modelling
(Wunsch & Ferrari 2004; Ferrari & Wunsch 2008).

Over the past decades, the mechanism of internal wave generation has been studied
in some detail for oscillating objects of various idealised geometries. Most well known
are the classical flow visualisations of Mowbray & Rarity (1967) of wave rays emitted
by an oscillating cylinder in the shape of a St Andrews-cross. Linear theory for two-
dimensional internal waves generated by the oscillation of an elliptical cylinder of Hurley
(1997) and Hurley & Keady (1997) was shown to be in good agreement with quantitative
experimental results (see Sutherland et al. 1999, 2000; Sutherland & Linden 2002;
Ermanyuk 2000; Ermanyuk & Gavrilov 2002). For ridges of Gaussian, exponential, or
witch-of-Agnesi shape Llewellyn Smith & Young (2002) extended analytic estimates of
Bell (1975) to compare internal tidal conversion rate, an approach that later has been
applied to the waves generated by a vertical barrier (Llewellyn Smith & Young 2003). The
ridge- and plateau-type geometries of specific shape are shown to generate no propagating
internal waves for certain frequencies and depths (Maas 2011).

Three dimensional effects of internal waves are particularly considered in King et al.
(2009). For a horizontally oscillating hemisphere they revealed the conical structure of
wave beams and asymmetric bi-modal structure. For moderate forcing, a flow perpendic-
ular to the forcing direction was found, leading to a large-scale horizontal circulation. The
internal wave pattern generated by a horizontally oscillating sphere was compared with
the three dimensional linear theory in Voisin et al. (2011). This theory included viscous
effects and showed good agreement with experiments at low oscillation amplitude, and
also allowed to better investigate the transition from bi-modal to uni-modal waves. At
moderate oscillation amplitude, the propagative first and second harmonics were shown to
have radically different horizontal patterns and are respectively of dipole and quadrupole
type in the horizontal plane (Ermanyuk et al. 2011). More complex geometries have also
been considered. Bühler & Muller (2007) developed the linear theory for the oscillation
of a ring with a subcritical Gaussian generatrix, and consider for the first time the effect
of geometric focusing of wave energy into localised regions of high wave amplitude. Some
examples on this effect of focusing are given. For a circular Gaussian hill and horse-shoe
topography also the mean flow localised in regions of wave dissipation are considered
(Grisouard & Bühler 2012).

As mentioned above, a main interest in internal wave dynamics is the conversion of
wave energy into mixing and small-scale dissipation due to a rich variety of mechanisms
including wave-wave and wave-current interactions, and overturning motions. Several
scenarios have been considered for the energy concentration of internal waves in localised
zones, of which we recall the most recurrent ones: i) nearly critical reflection at continental
slope (e.g. Dauxois & Young 1999; Gayen & Sarkar 2010), ii) energy concentration
at attractors (Maas et al. 1997; Echeverri et al. 2011; Scolan et al. 2013; Guo &
Holmes-Cerfon 2016), iii) internal wave refraction at horizons of high density gradient
(e.g. Mathur & Peacock 2009), iv) interaction of wave beams in two dimensions (Teoh
et al. 1997; Xing & Davies 2011; Zhang & Swinney 2014), and, as mentioned above, v)
geometric focusing by three dimensional topography (Bühler & Muller 2007; Grisouard
& Bühler 2012), recently also observed near canyons (Vlasenko et al. 2016; Dale & Inall
2015).

These latter studies (v) are novel compared to the various types of two dimensional
focusing because of the convergence of the internal wave rays. Similarly as lightwaves
passing through a convex lens the wave rays converge to a focal point, adding a funda-
mentally new aspect to the internal wave dynamics. Conservation of energy flux through
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Figure 1. Geometry of the torus: in (a) view in vertical plane and (b) three-dimensional view
defining the coordinate system.

a surface which reduces with distance, implies a continuous increase of energy density
along the rays towards the focal point and a decrease after passing through it.

Geometric focusing of internal wave energy has hardly been investigated experimen-
tally. Wave focusing may occur near an oscillating hemisphere (see figure 3 in King et al.
2009), and Gaussian mountain (see figure 3(e) in King et al. 2010), but was not discussed.
The focusing effect increases with the radius and size of the oscillating object since more
energy is transported to the focal zone, but in general its effect is negligible in small
scale laboratory experiments with small oscillating spherical objects and has therefore
not been reported before. First experiments with a 60 cm diameter vertically oscillating
torus revealed a strong vortical motion with wave overturning and local mixing in the
focal zone (unpublished results, Flór 1997). In a similar experiment in a rotating fluid,
inertial waves showed to generate turbulence in the focal zone (Duran-Matute et al.
2013). In the context of the tidal motion in the oceans, a horizontal oscillation is more
appropriate. The horizontal oscillation direction also gives a direction to the overturning
motions in the focal region, and therefore generates a mean flow that may be relevant to
ocean applications (see Bühler 2009).

In the present paper we investigate the wave pattern generated by a horizontally
oscillating torus, the criterion for the onset of wave breaking, and observations of the
nonlinear aspects of the wave generation in the focal region. We focus on the linear and
weakly nonlinear regime, and consider the second harmonic generation and mean flow
aspects in a separate contribution. The oscillating torus (or ring) generates “outward”
moving diverging waves, and “inward” converging waves. As is known from previous
studies on the oscillation of three-dimensional objects of spherical geometry (see Flynn
et al. 2003; King et al. 2009; Voisin et al. 2011; Ermanyuk et al. 2011), diverging waves
gradually decrease in amplitude with distance due to the increasing cross-section of
the wave cone and viscous dissipation. For the present flows under consideration, the
diverging waves are indeed relatively weak. The converging waves, however, increase
in amplitude with distance from the torus toward the focal regions, leading to wave
amplification and breaking.

In the next section §2, theoretical considerations are presented on the focusing of
internal waves. The description of the experimental installation and techniques is given
in §3 of the present paper. The results of experiments with internal waves are described
in §4, and the main results and possible oceanic applications are presented in §5.

2. Theoretical considerations

We consider a torus of which the geometrical parameters are defined in figure 1. The
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torus is submerged into a uniformly stratified fluid with the buoyancy frequency N =

[(−g/ρ) ∂ρ/∂z]
1/2

, where ρ(z) is the density distribution in z-direction and g is the gravity
acceleration. The shape of the generatrix is circular with diameter 2a, and b is the radius
of the centres of the circular cross-sections. A Cartesian coordinate system (see figure 1b)
is introduced, with the z-axis pointing upwards. The origin of the coordinate system O is
taken at the mean position of the center of the torus which undergoes rectilinear harmonic
oscillations with frequency ω. The non-dimensional geometry can be characterized by
the aspect ratio ε = b/a. We assume that the torus is slender, i.e. ε is large. The non-
dimensional coordinates X, Y and Z are introduced after normalization of x, y and z
with the radius of the generatrix, a.

Let us consider first the vertical oscillations of the torus with amplitude A, which is
assumed to be small compared to a so that the Keulegan-Carpenter number Ke = A/a�
1. The Stokes number defined as β = ωa2/ν, with ν the kinematic viscosity, is assumed
to be sufficiently large, i.e. β � 1. In the experiments described below, β = O(100)
which guarantees a sufficiently small non-dimensional boundary layer thickness δ/a. To
construct an approximate solution we use an approach similar to the strip theory in
marine hydrodynamics (Newman 1977b,a).

Suppose that each radial cross-section of the torus oscillates vertically and generates
internal wave beams described by equation (3.7) in Hurley & Keady (1997). For brevity
this equation is not reproduced here. Indeed, assumptions Ke = A/a� 1 and β � 1 are
in agreement with Hurley & Keady (1997). This linear solution plays a role of an “inner”
solution, which is approximately valid at each radial cross-section φ = const, where φ is
an azimuthal angle in the cylindrical coordinate system (r, z, φ), with r = (x2 + y2)1/2.
For vertical oscillations the problem is axisymmetric and all cross-sections φ = const
are equivalent. Without loss of generality we consider oscillations in the plane xOz (see
figure 1). The stream function for a single cylinder,

ψ1
HK(x, z, t) = Ψ1

HK(x, z) exp(iωt),

is constructed as a sum of four stream functions describing the four beams of the St.
Andrew-cross wave pattern (see Sutherland et al. 1999)

Ψ1
HK(x, z) = Ψ+

l + Ψ+
r + Ψ−l + Ψ−r , (2.1)

where the superscripts + and − refer, respectively, to the upper and lower half-plane,
whereas the subscripts l and r refer, respectively, to the beams propagating to the left
and the right.

For the second cylinder the solution Ψ2
HK(x, z) is analogous. Assuming that b/a is

sufficiently large, the solution for the system of two cylinders can be written as

ΨHK(x, z) = Ψ1
HK(x, z) + Ψ2

HK(x, z), (2.2)

where the appropriate choice of signs and phases in eq. 2.1 assure that both cylinders
oscillate vertically and in-phase. The instantaneous vertical displacement of fluid particles
due to the oscillation of two cylinders is then evaluated as

ζtHK(x, z, t) = (i/ω) exp(iωt)
d

dx
ΨHK(x, z). (2.3)

The corresponding distribution of wave amplitudes is denoted as ζHK(x, z).
Further, we introduce the geometric correction factor for convergence (divergence) of

the wave field. Let us consider a point C with coordinates (xC , zC) in the two-dimensional
wave field generated by a system of two cylinders. The density of the energy flux at
point C is proportional to the wave amplitude squared (ζHK(xC , zC))2. Since the torus
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is slender, we can equate the energy fluxes due to internal waves emitted by vertical
oscillations of a torus of mean radius b and small radius a, and due to a system of two
cylinders (see figure 1) of radius a and length πb. We obtain then

(ζ(rC , zC))2πrC = (ζHK(xC , zC))2πb,

where rC = xC at φ = 0. Finally, we obtain in non-dimensional cylindrical coordinates

ζ(R,Z) = (R/ε)−1/2ζHK(R,Z), (2.4)

where R = r/a. The term (R/ε)−1/2 assures a proper decay of the wave amplitude at
infinity.

Let us note that in the case of vertical oscillations of two cylinders the wave amplitude
ζHK(x, z) is symmetric with the respect to the vertical axis x = 0 and non-zero at x = 0.
Therefore the approximate solution predicts a divergence of wave amplitudes of the form
of X−1/2 in the focal region at X → 0. This result shows that near-field interactions
should be taken into account in this zone in order to develop a more advanced linear
theory. Also, in realistic situations, one can expect strong spatially localized non-linear
effects in forms of vertical jets. Such effects have been indeed observed for inertial waves
in Duran-Matute et al. (2013) and have been shown to create a localized turbulence zone
due to a cascade of instability events.

Now, let us adapt the same approach in the spirit of strip theory (Newman 1977b,a)
to a slender torus undergoing horizontal oscillations with amplitude A along the x-axis.
The local forcing is then taken as a projection of horizontal oscillations on the radial
coordinate in form A cosφ. Obviously, equations (2.1)–(2.3) remain valid in the case of
horizontal oscillations of a system of two cylinders, with the important difference that
the signs and phases of motions in wave beams should now be chosen such that the
wave amplitude ζHK(x, z) = 0 at x = 0 and the instantaneous wave profiles are anti-
symmetric with respect to the vertical axis x = 0. The geometric conversion introduced
in (2.4) remains valid but now, owing to azimuthal modulation of the wave field, eq. (2.4)
for wave amplitudes transforms into

ζ(R,Z, θ) = (R/ε)−1/2ζHK(R,Z)| cos θ|.
For horizontal oscillations, ζHK(R,Z) is proportional to R at a fixed Z in a small

vicinity of R = 0, and therefore ζ(R,Z, θ) is proportional to R1/2 as R tends to 0.
Thus, the wave amplitude remains limited but the wave slope tends to the vertical.
This qualitatively indicates a possibility of overturning in the focal region, which is a
qualitatively different behaviour compared to the case of vertical oscillations.

To characterize the forcing of internal waves, the Keulegan-Carpenter number Ke =
A/a is often used (see e.g. Voisin et al. 2011; Ermanyuk et al. 2011). Though this number
characterizes the non-linearity close to the torus, it does not take into account the
geometric effect of focusing at larger distances from the torus. Supposing that in the
focal zone the wave motion can be confined to a zone with radius a, the amplitude may
increase to ζcorr = ζHK(b/a)1/2 = ζHKε

1/2 i.e. with a factor ε1/2 due to focusing. The
same correction factor has been introduced earlier in Bühler & Muller (2007). Note that
the above-described theory neglects the near-field wave interactions in the focal region.
Also, the viscous damping in the above solution is adapted from Hurley & Keady (1997),
and therefore neglects additional shear close to the focal region. Therefore it is expected
to provide a quantitative estimate with a reasonable accuracy only in the vicinity of the
torus. The effects of finite values of Ke, β and ε in experiments are discussed below.

When oscillating an obstacle with frequency ω, in addition to the fundamental first
harmonic wave oscillating at frequency ω, the dispersion relation admits wave radiation
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Figure 2. Sketch of the experimental set-up: (a) front view and (b) side view, with the light grey
lines the fluorescein dye planes and the laser plane shown in dark grey. (X,Y, Z) = (x, y, z)/a
are the nondimensional coordinates. The torus oscillates in the X-direction (plane of view), Z
is in the vertical direction. The mobility of the laser plane in the Y -direction allows for the
measurement of successive planes, and the reconstitution of the horizontal wave field.

for higher harmonics with frequencies nω, where n = 2, 3..., were ωn < N (see Mowbray
& Rarity (1967)). In contrast, for ω > N/2 all higher harmonics are evanescent. In the
experiments described below the value of Ω = ω/N > 0.5 so that the higher harmonics
are evanescent and the effect due to focusing of the first-harmonic waves emitted by the
torus can be studied in isolation.

3. Experimental set-up and measurement procedure

3.1. Experimental set-up

To measure the evolution of wave amplitudes and slopes with distance from the ring we
use the Laser Induced Fluorescein (LIF) techniques (for details see Voisin et al. 2011;
Ermanyuk et al. 2011).

This technique is based on the accurate tracking of distortions of iso-density surfaces
(fluorescent dye planes), and allows to measure the amplitude of the vertical velocity
with a very high precision. Since dye tracers are followed in time the recording is of
Lagrangian type, in contrast with Eulerian-type techniques (PIV or Synthetic Schlieren)
usually employed in experimental studies on waves. For waves of small amplitude the
two types of measurements yield essentially the same results. As the wave amplitude
increases, Lagrangian measurements allow to study the evolution of wave profiles toward
overturning via direct measurement of wave slopes. Complementary PIV measurements
provided information about profiles of horizontal velocity and its distribution over a
horizontal plane.

Two tori have been used in the present experiments, a ”thin ring” with a = 1.5 cm and
b = 13.5 cm, and a “thick ring” with a = 2 cm and b = 10 cm. The aspect ratio ε = b/a
is respectively equal to 9 for the “thin”, and 5 for the “thick” one. At the experimental
value of frequency ω = 0.65 rad/s the Stokes numbers are β = 150 and 260 respectively
for the thin and the thick torus.
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Method ε Ke Ω N s−1 Z Zfocal Y
Exp A LIF 9 0.19; 0.41; 0.65; 0.84; 1.1 0.80 0.72 −1.84 to −21.8 -11.2 0
Exp B LIF 5 0.15; 0.3; 0.52; 0.72 0.81 0.72 −1.88 to −16.88 -5.5 0
Exp C LIF 9 0.17; 0.43; 0.62 0.81 0.72 −3.6 -11.2 0 to 10
Exp D LIF 5 0.13; 0.29 0.81 0.72 −3 -5.5 0 to 5.5
Exp F PIV 5 0.19; 0.41; 0.6; 0.95; 1.2 0.80 0.83 −1 to −10.88 -4.7 0
Exp G PIV 9 0.21; 0.57; 0.78; 1.06; 1.26 0.80 0.83 −1 to −16.75 -7.8 0

Table 1. Experimental parameters, with ε = b/a the torus aspect ratio, Ke = A/a the
Keulegan-Carpenter number and Ω = ω/N , where A and ω are respectively the oscillation
amplitude and frequency, and Zfocal corresponds to the geometrical point of intersection of the
wave rays. The buoyancy frequency, N , is represented in dimensional values.

The experiments are conducted in a plexiglas 100 cm cubic tank filled to a working
depth of 90 cm with a linearly salt-stratified fluid using the conventional double-bucket
technique (see figure 2). The stratification profile is calculated from the density of fluid
samples taken at different heights in the fluid and measured with an Anton Paar Density
meter. The values of the buoyancy frequency N are listed in Table 1.

Internal waves are generated by a horizontally oscillating plexiglas torus that is painted
black to avoid laser light reflections. It is attached to the end of a pendulum of length
l = 180 cm, and the oscillations of the pendulum at frequency ω are driven by a crank
mechanism. The oscillation amplitude, A, of the torus is small compared to the length
of the pendulum, and the motion is therefore in good approximation horizontal and
sinusoidal. The two side walls perpendicular to the direction of the oscillation of the
cylinder are covered with a mesh of 5 cm thickness to avoid wave reflections. In some cases
also the bottom and the back wall were covered with wave absorbers, but no difference in
results could be noticed. After 10 oscillation periods the wave pattern reaches the steady-
state in the region of interest. Measurements are taken after 20 oscillations, which is the
typical duration used to exclude the effects of internal-wave transients (see Voisin 2003;
Ermanyuk & Gavrilov 2005, 2008; Voisin et al. 2011).

For the method of fluorescein dye planes (first employed in Hopfinger et al. (1991) and
Flór et al. (2002)), a set of equidistant dye planes is generated by slowly displacing a
rake of horizontally spanned cotton threads through the fluid. These cotton threads are
soaked in a concentrated fluorescein solution and dried before the experiment. The dye
planes are illuminated with a vertical laser sheet parallel to the direction of oscillations.
The data processing is performed with a version of cross-correlation technique described
in Voisin et al. (2011) and Ermanyuk et al. (2011), from which the vertical displacements
of the dye lines are determined with the accuracy of approximately 0.05 pixel. The laser
sheet is perpendicular to the dyeplanes and shows therefore dyelines on the recordings
(see figure 9).

Prior to the onset of the oscillations, the horizontal dye planes are scanned by a laser
sheet in the otherwise quiescent fluid to obtain the reference state ζ0 for each dye plane.
The vertical displacement of these dyelines, ζ ′, is measured at a certain position in time
with respect to the reference state ζ0, i.e. ζ ′(x, t) = ζ ′ − ζ ′0 (the prime is to note that
this value does not necessarily correspond to a particle displacement). The local slopes
of wave profiles in plane XZ are measured as s(t) = arctan(dζ(t)/dx). In practice the
slope at position (X,Z) is evaluated as

s(t) = arctan(∆ζ(t)/∆x), (3.1)

where ∆x should be sufficiently large compared to the accuracy of measurement of
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vertical displacements ζ(t) and sufficiently small compared to the radius of the generatrix
a to resolve the details of wave profiles. The wave slope represents a sensitive and
physically important measure of the baroclinic torque of the wave, caused by the shear.
This slope is related to the Richardson number and is therefore an indication for
overturning, as is discussed further in §4.4. As described in Voisin et al. (2011) and
Ermanyuk et al. (2011), the vertical displacements are evaluated as the average values
over vertical stripes of width of several pixels, which defines the horizontal spatial
resolution of the experimental data. In the present experiments ∆x is taken equal to
the horizontal spatial resolution, with ∆x = 5 (≈ 0.253 cm) and 8 pixels (≈ 0.339 cm)
for respectively the “thin” and the “thick” torus.

To reconstruct a quasi three-dimensional distribution of the wave amplitudes (note that
the velocity in y-direction is not measured), a series of images was acquired for different
positions in y-direction. Therefore, the mirror reflecting the laser light (see figure 2) was
moved by a computer-controlled step motor with a prescribed increment ∆y = 0.8 cm. At
each position the mirror remained fixed during one period of oscillation. This allowed to
acquire time-series suitable for subsequent Fourier analysis and evaluation of amplitudes
of harmonic components.

For the Particle Image Velocimetry (PIV) measurement the algorithm of Fincham &
Delerce (2000) was used, and the optimum particle size and seeding density of Westerweel
(1997) were followed. The fluid was seeded with Orgasol R© 30 µm particles of density
ρ = 1.2 kg/m3, illuminated with a vertical and horizontal laser sheet. The particle
displacement was obtained using the UVMAT/CIVx software package developed at LEGI
†. Successive images are taken with a time increment of ∆t = ti+1 − ti = 0.5 s, which is
kept constant in all experiments.

3.2. Data analysis and parameters

Time-series of vertical displacements ζ(ti) are analyzed using three different methods.
With the first method, the amplitudes of the n-th harmonic components of the signal
ζn and Sn are determined via Fourier filtering of time-series. Similar analysis has been
used in Voisin et al. (2011) and Ermanyuk et al. (2011). This type of data processing is
particularly useful for linear or weakly non-linear processes when the first few harmonics
are dominant and can be clearly identified. With the second method, the amplitudes
ζrms and Srms are evaluated as the period-averaged r.m.s. of the corresponding time-
series multiplied by 21/2 (Sutherland & Linden 2002). In principle, this quantity takes
into account the contribution of all harmonics in the signal. However, owing to the period-
averaging procedure the r.m.s. value cannot precisely capture the extreme values of wave
amplitude and wave slope, which may instantly occur at a particular phase of oscillation.
Of special interest are the extreme slopes which can trigger incipient overturning in
the case wave crests become steep. Therefore, a third method of data processing was
introduced. Time-series ζ(ti) and s(ti) measured at each point were sorted to find the
maximum values of ζmax = max |ζ(ti)| and Smax = max |s(ti)|.

Thus with these three methods, next to the values ζn, ζrms and ζmax, the slopes Sn,
Srms and Smax were measured in degrees allowing to explicitly study the transition of
the wave system to overturning. The wave amplitudes are normalized generally with the
oscillation amplitude, A, or in case only the focal region is of interest, the generatrix of
the torus, a. The governing parameters of experimental runs performed in this study are
presented in Table 1.

† http://www.legi.cnrs.fr/web/spip.php?article763
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4. Results and discussion

4.1. Wave pattern in XZ-plane

Figure 3(a-c) shows the typical evolution of the first harmonic wave patterns for
different oscillation amplitude, represented by the Keulegan-Carpenter number Ke, in
terms of contours of wave amplitude ζ1/A, and contours of wave slope S1. For comparison
figure 3(d) represents the unfiltered wave fields in terms of ζmax/A and Smax. A higher
level of noise is observed for these non filtered max-type quantities. Figures 3(c) and (d)
show a high resemblance indicating that at moderate oscillation amplitude, the dominant
contribution to the wave field is represented by the first harmonic wave obtained after
Fourier filtering, as can be expected since higher harmonics are evanescent for this forcing.

Wave amplitudes close to the torus are roughly two times smaller than the wave
amplitudes in the focal region, but the wave slopes close to the torus and in the focal
region are comparable. The onset of overturning occurs therefore not only in the focal
region but also near to the torus. It should be noted that this latter overturning is rather
due to the steep topography, an effect that would most likely be absent for a Gaussian-
shaped torus. At low Ke the amplified wave amplitude in the focal region forms then
two symmetric ellipses due to the anti-symmetry of the instantaneous wave profiles with
respect to Y Z plane, where the wave amplitude is zero. As Ke increases, these regions
of maximum amplitude slightly shift into the Z-direction away from the torus. The non-
linear evolution of the wave field is well visible in terms of wave slopes. At low Ke
the focal region (figure 3b) is nearly elliptic. As Ke increases, the focal region takes a
spearhead-like shape (figure 3f, h), indicating the higher shear in the outer region of
the focal region, and incipient overturning. As a consequence, the waves are hindered by
nonlinear effects in the focal region.

Note also that the waves in the focal zone have a unimodal structure, i.e. there is a
single wave beam due to the presence of viscosity in contrast to the bimodal structure
often observed very near to oscillating objects (for a discussion see e.g. Voisin et al.
(2011)). Though the general flow evolution was very similar to that of the thick torus
(ε = 5), its larger generatrix a implied a larger Stokes number, (260 instead of 150)
causing a rather bimodal wave structure near the torus which turned into a single beam
near the focal region. In the case of very large tori, however, one may expect a multi focal
region because of the bimodal wave structure. In view of the range of accessible Stokes
numbers, this was not observed in the present experiments.

4.2. Comparison of measurements with linear theory

Figure 4 shows the wave amplitude across the wave beam measured in plane XZ at
different distances Z from the centre of the torus. The experimental distributions of the
scaled amplitude, ζ1(X)/A for the torus with ε = 9 are presented for a range of |Z| values
up to the middle of the focal zone. Good agreement with the theory described in §2 is
observed at low values of Ke, and close to the torus. Thus, a simple geometric correction
is fully sufficient for quantitative description of the main effects due to convergence
(divergence) of waves in the vicinity of a curved elongated body. Thereby it provides a
consistent framework for quantitative interpretation of the experimental results almost
everywhere in the wave field, except the focal region.

For the focal region, the theory shows that focusing amplifies the wave amplitude to
a factor 3, in qualitative agreement with the correction factor ε1/2 introduced in Bühler
& Muller (2007). This can be observed in figure 4(f ) (|Z| = 12.51) from the comparison
of the calculated wave amplitudes for the torus (solid line) and the reference case of the
two parallel cylinders of infinite length (dash line). The experimentally measured wave
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Figure 3. Contour plots of the wave amplitude ζ1/A (left column) and wave slope S1 (right
column) in the XZ-plane, with (a,b) Ke = 0.19; (c,d) 0.41 and (e,f ) 0.65. (g,h) contour plots
for ζmax/A and Smax for Ke = 0.65. Exp A, with torus aspect ratio ε = 9. Data is obtained
from LIF measurements.
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Figure 4. Normalized wave amplitude ζ1/A for Exp A at different heights Z below the centre
of the torus, with (a) Z = −1.84, (b) Z = −1.84 zoomed in including negative values of X (the
centre line of the torus is at X = 0); (c) Z = −4.48; (d) −7.17; (e) −9.84, and (f ) −12.51.
The focal zone is located at Z = −11.2. The dashed and drawn lines represent, respectively,
the theoretical profile (eq. (2.4)) obtained for two oscillating cylinders, and the profile corrected
for convergence; black, grey and light grey dots correspond respectively to Ke = 0.19; 0.41 and
0.65. Data is obtained from LIF experiments.

amplitudes in the focal zone are significantly lower (roughly by 30%) than the theoretical
estimate. Indeed the theory presented in §2 neglects the near-field interactions between
the wave components in the focal zone, leading to unrealistic infinite wave slopes at the
vertical axis Z.

The experimental data presented in figure 4 provide a qualitative information on the
non-linear trends in the wave amplitude as function of the oscillation amplitude Ke.
With increasing Ke, the normalized wave amplitude of the first harmonic, ζ1/A typically
decreases almost everywhere in the wave field except the focal region: the amplitude
profiles marked by light grey and grey symbols are consistently lower than the profiles
marked by black symbols. This trend is in agreement with the non-linear trends observed
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for the two- (Zhang et al. 2007) and three-dimensional (Voisin et al. 2011; Ermanyuk et al.
2011) cases. The opposite trend is seen in figure 4(f ) in the focal region at |Z| = 12.51
where higher normalized wave amplitudes ζ1/A correspond to higher Ke. Thus, a linear
extrapolation of the low-amplitude experimental data to a high-amplitude case should
be done with care: it tends to underestimate the wave amplitudes in localized zones of
the focal region and to overestimate the wave amplitudes in all other regions of the wave
field. Interestingly, in the middle of the focal region, located around |Z| = 11.2, the linear
scenario applies in a remarkably wide range of A as discussed below in Section 4.4.

It is worth to make a special remark concerning the data presented in figure 4(b). The
low-amplitude standing-wave pattern seen close to the centre of the torus can hardly be
interpreted within a linear approach. The whole inner region delimited by the conical
wave beams emitted by the torus seems to undergo a weak resonant motion. Its amplitude
is typically an order of magnitude smaller than the amplitude of the main wave beams
but at high oscillation amplitude A it is high enough to deform the straight wave beams
(compare the form of isolines of wave amplitudes in the first column of figure 3 at low
and high amplitudes). The mechanism providing the energy flux to this motion is unclear
and will be considered elsewhere.

4.3. Wave pattern in XY -plane

To study the azimuthal distribution of the wave amplitude, the wave fields in the XY
plane were reconstructed from series of images taken particularly in experiments Exp C
and Exp D of Table 1. Figures 5 and 6 show the contours of wave amplitudes and the
normalized radial distributions of the vertical velocity amplitude of the first harmonic
wave, ζ1(R)/(A cosφ) close to the torus, with φ the angle with respect to the plane of
symmetry. For this scaling, the data is found to collapse reasonably well on a more or less
common curves, for both tori (see figures 5a, 6a). Also we note that the agreement with
the linear theory presented in section 2 is within an error of about 10% for both cases. For
the thick torus (see figure 6a) the shape of the wave envelope is slightly different due to its
bimodal character. Also, here the theoretical prediction is still quite reasonable (note that
the original theory of Hurley & Keady (1997), used in section 2 takes bimodality and
related viscous effects into account). For larger oscillation amplitudes, the theoretical
prediction is systematically higher than the measured values due to nonlinear effects.
With increasing azimuthal angle, φ , the wave amplitude decreases, and therefore also the
energy radiated by the torus. The departure of the observed profiles from the theoretical
curve φ tending to 90◦ arises partially due to higher noise-to-signal ratio for these waves,
and partially due to the fully three-dimensional nature of the flow. For azimuthal angles
close to 90 degrees the cosine variation of wave amplitudes with the azimuthal angle is
therefore no longer valid, especially for a thick torus.

4.4. Nonlinear effects: Maximum wave amplitude and overturning

The variation of the maximum wave amplitude and maximum slope (measured as in
figures 7a, b) with the Keulegan-Carpenter number Ke, are presented in respectively
figures 8(a) and (b) for both tori. The overall good agreement between ζ∗max/a and ζ∗1/a
confirms once again the expected dominance of the first harmonic wave for this forcing
frequency (ω/N > 0.5). For larger Ke the increasing wave steepness and the increasing
difference between S∗max and S∗1 (see figure 7b) suggest the presence of nonlinear effects.
Incipient overturning is observed at Ke = 0.81 and Ke = 1.1 for tori with ε = 5 and ε = 9,
respectively. From the dye images shown in figure 9, we indeed recognise well-developed
overturning regions in the wave pattern. As expected, these regions are located close to
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the surface of the torus and in the focal region, corresponding to the zones of high local
slopes which can be identified in figure 3.

PIV measurements show (see figure 10a) that in the focal region, the horizontal velocity
of the first harmonic wave in the direction of oscillation is of the same magnitude as the
vertical velocity. With the PIV data in the focal region, the horizontal shear and thus
the local Richardson number in the wave can be calculated as

Ri =
N2

(∂û1/∂z)2
,

where the stratification N is measured at the start of the experiment; the vertical gradient
in velocity is measured from the PIV velocity data over a typical grid distance of ∆z =
4 pixels (≈ 0.3 cm). The values of the this Ri -number are displayed in grey in figure 10(b).
Asymptotically a value of Ri ≈ 0.25 is reached when Ke approaches a value between 0.8
and 1 for different aspect ratio tori, corresponding for overturning in stratified shear flows
(see Miles 1961).

Miles criterion is developed for a flow with vorticity due to the presence of a shear flow,
and no baroclinic vorticity in its basic state. For the critical value of Ri = 0.25, vorticity
of the shear flow is accumulated by the Kelvin Helmholtz instability until breaking
occurs. In the present experiments there is no shear flow, and the instability is not
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of the Kelvin Helmholtz type. However, the amplitude of the waves is here represented
by baroclinic vorticity. This amplitude (or baroclinic vorticity) is continuously increased
due to focusing of wave energy, until the critical value is reached and breaking occurs.
Though the sources of vorticity and mechanism for overturning are essentially different,
the present results suggest that the criterion and, as shown below, the critical value are
the same.

The LIF method allowed to precisely measure the wave slope of the wave for the dif-
ferent aspect ratio tori. Observations of visualizations showed a nearly linear dependence
for Ke < 0.4 with the waves remaining linear and passing almost without modification
through the focal region. Small changes with respect to the linear regime were found
to occur for Ke around 0.6, whereas for approximately Ke > 0.8 the onset of wave
breaking is observed and waves are hindered to pass through the focal region. From this
wave steepness one can derive directly the local wave-Richardson number which can be
defined as the ratio between the buoyancy frequency N2, and the y-component of the
baroclinic vorticity of the wave. This yields in the Boussinesq approximation,

Riwave = N2

(∇p×∇ρ
ρ2

)−1

y

≈ N2

−gρ ∂ρ∂x
=
∆x

∆z

∣∣∣
ρ
=

1

tanS
(4.1)

where the index y indicates the y component of the baroclinic vorticity vector. In
figure 10(b) the wave Richardson number is displayed as a function of Ke. Even though
it is derived in a different manner, it shows also that wave breaking is reached when
Riwave ≈ 0.25 at Ke ≈ 0.8 in coherence with the observations and the PIV measurements
and shear instability. This local Richardson number indicates the maximum slope which
an isopycnal plane may have before it becomes unstable and overturns. This overturning
corresponds to a wave slope of θ ≈ 75o (see figure 8b), the wave slope being measured
over a horizontal lengthscale δx (see section 3.1) near X=0 (see figure 11).

5. Conclusions

This paper considers the first experimental results on the geometric focusing of internal
waves generated by a horizontally oscillating torus in a linearly stratified fluid. Experi-
ments are conducted in the weakly viscous regime, i.e. for Stokes numbers between 150
and 260. The focusing leads to a strong amplification of the wave amplitude along its
ray path with a maximum wave amplitude in the focal point where wave breaking is
expected for certain oscillation amplitudes.

A linear wave regime is discerned for Ke < 0.4, whereas non-linear effects start to
occur at values close to Ke ≈ 0.6. Incipient wave breaking occurs around Ke ≈ 0.8,
corresponding to a local (shear) Richardson number Ri = 0.25, in accordance with
classical theory for shear instability. This value coincides with the Richardson number
calculated from the wave steepness. Wave breaking occurs for a wave slope of θ = 75◦.
Nonlinear aspects, as well as the generation of higher harmonics, that occur for these
amplitudes, and the effect of higher Stokes numbers are presently under consideration
and will be presented elsewhere.

As a first approximation, the focusing wave-field has been approached by making use
of the two-dimensional theory of Hurley & Keady (1997) that was adapted by including
a term for the wave convergence. This theory shows qualitative agreement with the
observed wave field, and gives reasonable quantitative results up to a vertical distance of
5 times the tore radius from the tore centre. However, there is an increasing discrepancy
between the data and the theory when approaching the focal zone (see figure 4), for the
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entire range of wave amplitudes. This difference is about 30% and indicates that the
present theory is not satisfactory for the study of the focal region. A three dimensional
viscous theory is at present in preparation (Bruno Voisin, personal communications).

Focusing of internal wave energy is a rather recent subject, and opens perspectives
to new ways of generating turbulence in the ocean. The overturning in the present
experiments has been observed at moderate Reynolds numbers when internal waves
are strongly damped by viscous effects. At higher Reynolds numbers the overturning is
expected to be more likely to occur. Therefore, internal-wave breaking over other shapes
of curved topography (see Bühler & Muller 2007) may serve as an effective mechanism
for the generation of ’hot spots’ responsible for abyssal mixing. The measurements based
on wave steepness allow us to make more precise estimations of the relevance of wave
breaking due to wave focusing.

For a realistic bottom topography the effects of viscosity are small. Using the geometric
correction for focusing, we may consider whether wave breaking is likely to occur or not.
For a M2 tidal oscillation frequency of approximately 12 hours and a typical stratification
in the ocean one obtains Ω ≈ 0.3 corresponding to an angle of wave propagation of 17
degrees. Considering a large mountain of 2000 m height, and curvature 120 km, i.e.
a = 1 km, and b = 60 km, the oscillation amplitude in the focal region is amplified with
a factor ε1/2, implying for a typical tidal excursions of O(100 m) a wave amplitude of
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approximately 800 m. This amplitude is comparable to the size of the generatrix a, which
is in turn comparable to the width of internal wave beams. Since the amplitude and the
beam width becomes of the same order of magnitude in the focal zone, an overturning can
be expected. Note that topographies with nearly-critical local slopes can generate very
narrow wave beams, increasing the probability of overturning events even at low Ω typical
for the ocean, where Ω ≈ 0.1. Thin large ridges as well as thick small ridges of realistic
sizes can thus be expected to cause overturning waves due to focusing. Geometric wave
focusing could therefore be a candidate for the explanation of recently observed intense
mixing regions near spur-shaped mountains (see e.g. Dale & Inall 2015).
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Duran-Matute, M., Flór, J.-B., Godeferd, F. S. & Jause-Labert, C. 2013 Turbulence

and columnar vortex formation through inertial-wave focusing. Phys. Rev. E 87,
041001(R).

Echeverri, P., Yokossi, T., Balmforth, N. J. & Peacock, T. 2011 Tidally generated
internal-wave attractors between double ridges. J. Fluid Mech. 669, 354–374.

Ermanyuk, E. V. 2000 The use of impulse response functions for evaluation of added mass
and damping coefficient of a circular cylinder oscillating in linearly stratified fluid. Exp.
Fluids 28, 152–159.
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Abstract
We consider the focusing and breaking of internal waves generated by the horizontal
oscillations of a very large torus mounted at the Coriolis platform, of 13 m diameter.
The platform was filled with a linearly stratified fluid and rotated at a constant speed, or
stood still to investigate, respectively, inertia–gravity or internal gravity waves. The wave
field was measured using 2D or 3D PIV. The large torus size gives access to large Stokes
numbers. Nonlinear effects and turbulence are observed in the focal region, but they
can be described by linear theory with an eddy viscosity. Spectrum analysis shows the
generation of higher harmonics in the focal zone even at low oscillation amplitude. The
vertical vorticity field of internal gravity waves exhibits a dipolar structure in the focal
zone, which transforms in the rotating case into a “Yin–Yang-shaped” structure. The
overall structure of the inertial waves is close to that of internal gravity waves, though
the overturning motion in the focal region is relatively intense.

1 Introduction

The generation of internal waves by oscillating objects is a long-standing subject of re-
search in fluid mechanics and has its main applications in the Earth’s oceans and atmo-
sphere. In particular, in relation to ocean mixing, internal tides and their overturning have
received considerable recent interest (Morozov, 1995; Garrett and Kunze, 2007). Internal
tides are believed to transport energy through the ocean interior, and their breaking to
cause energy dissipation estimated to be 1 TW .

In the laboratory, generally, waves are generated by two-dimensional objects such as
cylinders and ridges, or three-dimensional objects such as spheres and ellipsoids. These
are all simply connected objects. We consider a doubly connected object, the torus,
which opens up a new possibility: wave focusing, to be considered as a possible scenario
for energy concentration in localized zones representing hot spots for incipient overturning
in the oceans. Different types of wave focusing exist, for instance when waves reflect on a
boundary, in attractors or near density interfaces. Spontaneous geometric focusing may
occur for forcing with a specific geometry, like a torus (Bühler and Muller, 2007; Grisouard
and Bühler, 2012). Important mixing of stratification due to internal wave focusing of
this latter type has been observed by Buijsman et al. (2014) in Luzon Strait, and may be
a cause for the mixing observed by Peliz et al. (2009) at Tore seamount.

First experiments on geometric focusing have been conducted by Duran-Matute et al.
(2013) who obtained wave turbulence in the focal region for a vertically oscillating torus
in a rotating fluid. Ermanyuk et al. (2016) showed with a horizontally oscillating torus
in a linearly stratified fluid that at low Stokes numbers St ≈ 200 the wave amplitude
increases toward the focal region, forming one zone of amplitude amplification. In this
zone one expects overturning and mixing of waves.
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(a) (b)

Figure 1: (a) Top view of the experimental setup at the Coriolis platform; (b) geometry of the torus with
parameters and notations.

The present experimental results were obtained for a much larger torus of minor radius
a = 15 cm and major radius b = 75 cm, giving access to large Stokes number St ≈ 4500.
They report some new aspects of the dynamics of internal focusing waves in rotating and
stratified fluids, and the possibility of wave breaking in the focal region.

2 Experimental setup

Experiments were conducted at the Coriolis platform, a cylindrical tank 13 m in diameter
and 1 m of working depth (figure 1a). The platform, which either stood still or rotated,
was filled with water linearly stratified in density by salinity to a depth H = 90 cm.
The stratification was measured with two conductivity probes, moving up and down by a
computer-controlled motor. The buoyancy frequency was kept constant for experiments

in the stratified fluid at N =
(
−g
ρ
dρ
dz

)1/2
= 0.5 rad/s, where ρ(z) is the density profile

along the vertical axis, and g is the gravity. In the rotating case the inertial frequency
was fixed at f = 0.2 rad/s.

In all experiments, waves were generated by the horizontal oscillations of a torus of minor
radius a = 15 cm and major radius b = 75 cm. The oscillations had frequency ω and
amplitude A. The torus, made of plexiglas, was cut in half horizontally and fitted upside
down on a plexiglas plate kept at the surface of the fluid (see figure 1b). A Cartesian
coordinate system is introduced with origin at the centre of the torus, x and y-axes
parallel and normal to the direction of oscillations, respectively, and z-axis normal to the
free surface. The coordinates X, Y and Z are normalized with the minor radius a.

Waves were visualized with Particle Image Velocimetry (PIV) (Westerweel, 1997) and
Volume PIV techniques. For that the fluid was seeded with polystyrene particles of
200 µm in the stratified case, and with Orgasol R© 60 µm particles in the rotating case. For
a standard PIV measurement the particles were visualised with a vertical laser sheet in
the centre plane parallel to the direction of oscillation (Y = 0). Images were taken with a
12-bit Dalsa camera of CCD 1024×1024 px. The visualisation of volumes was performed
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with a horizontal laser sheet moving vertically up and down and the motion of the laser
sheet was controlled by a motor. Images in volumes were taken by a Falcon high speed
camera with resolution 2432× 1728 px.

3 Results

Internal waves are generated according to the dispersion relation

ω =

√
f 2 sin2 θ +N2 cos2 θ, (1)

with θ the angle between the wave beam and the vertical. Depending on whether the
fluid is stratified and still (N 6= 0, f = 0), or stratified and rotating (N 6= 0, f 6= 0), or
homogeneous and rotating (N = 0, f 6= 0), we shall refer to the waves as internal gravity,
inertia–gravity or inertial, respectively. In the present experiments we consider the angle
θ to be fixed (≈ 60◦) for all types of waves for better comparison. In the case of internal
gravity waves this angle corresponds to ω/N = arccos θ = 0.51, so that all harmonics but
the first are evanescent (Mowbray and Rarity, 1967). Measurements are performed at a
nondimensional oscillation amplitude A/a = 0.17 for all experiments, which is as close as
possible given the setup to the tidal oscillation amplitude in the real ocean.

3.1 Vorticity field

The difference between the internal waves generated in stratified and/or rotating fluid
is studied by considering the horizontal and vertical vorticity fields. In the presence of
rotation (figure 2b), inertia–gravity wave motion is found over a bigger region than for
internal gravity waves. This is because the waves propagate in beams, with edges at the
critical rays tangent to the torus and to its image at the surface. For inertia–gravity
waves, these rays turn out to be further apart than for internal gravity waves. The reason
for this is unclear, but seems connected with the boundary layer at the mounting plate
supporting the torus, since this is where reflection takes place. As a consequence, there are
four clearly identifiable separate zones of critical ray intersection in figure 2 (b), compared
with one single diamond-shaped zone of intersection of wave beams in figure 2 (a). The
vertical vorticity field of internal gravity waves exhibits a dipolar structure in the focal
zone, which transforms for inertia–gravity waves into a “Yin–Yang-shaped” structure
(figure 2d,e). The overall structure of the inertial wave beams (figure 2c) resembles
that for internal gravity waves. The overturning motion in the focal region is intense,
and results there in a vertically standing inertial wave motion with alternating red-blue
vorticity (McEwan, 1973).

The three-dimensional view of the vertical vorticity field was reconstructed from the
Volume PIV measurements, and its isosurfaces are presented in figures 3 (a) and (b)
for internal gravity and inertia–gravity waves, respectively. The presence of a dipolar
vortex for the nonrotating stratified fluid demonstrates nonlinear effects in the focal zone
of internal gravity waves (figure 3a). The vorticity structure for inertia–gravity waves
reveals that the positive and negative vortices are twisted around each other (figure 3b).
This motion takes place through 2/3 of the depth. The Rossby radius of deformation
was calculated as R = (Nh)/f , with h = 2H/3, and predicts the size of the vortex to be
150 cm, close to what has been observed.
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Figure 2: Instantaneous velocity vectors together with (a-c) instantaneous horizontal transverse vorticity,
ξy/N or ξy/f , in the vertical plane of oscillation Y = 0 (the color scale is the same in all three images),
and (d,e) vertical vorticity, ξz/N , in the horizontal plane through the centre Z = −4 of the focal zone
for internal gravity waves (the color scale is the same in both images).

(a) (b)

Figure 3: Isosurface of the instantaneous vertical vorticity field ξz/N = ±0.6, reconstructed from the
volume PIV measurements for (a) internal gravity waves and (b) inertia–gravity waves. Red and blue
colors indicate positive and negative vorticities, respectively. The horizontal section of the torus at Z = 0
is shown with black curves.
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Figure 4: Horizontal velocity amplitude U1 (left column) and vertical velocity amplitude W1 (right
column) internal gravity waves in the vertical plane of symmetry Y = 0: (a) theoretical predictions
based on molecular viscosity; (b) theoretical predictions based on eddy viscosity ν = 0.4 m2/s; (c)
experimental results after filtering the first harmonic. The occurrence of spurious maxima at Z = 0 in
the theory is discussed in Voisin (2016).

3.2 Comparison with the linear theory

The linear theory described in Voisin (2016) allows us to calculate the amplitude of internal
gravity waves which may be expected for high Stokes number St = (ωa2)/ν = 4500, with
ν = 0.01 cm2/s the molecular viscosity. These results are presented in figure 4 (a) for the
horizontal longitudinal U1 and vertical W1 velocity components in the vertical plane Y =
0, and show the bimodal structure of the wave beams. Comparing this with experimental
results in figure 4 (c), one notices a difference in structure. This difference can be caused by
mixing in the turbulent boundary layer at the surface of the torus. Theoretical formulas
can be therefore recalculated with an eddy viscosity νeddy = 0.4 cm2/s � ν. These
results are presented in figure 4 (b) and show better agreement with the experiment
in figure 4 (c). The focal zone is formed of two zones of amplitude amplification in the
centre for the horizontal velocity and four zones of amplitude amplification for the vertical
velocity. Another specificity of the experimental wave beams is the origin of generation.
The upper critical ray delimiting the wave beam is vertically shifted downwards compared
with the theoretical calculations, and with the experimental and numerical observations
for a hemisphere (King et al., 2009). As a consequence, the upper part of the focal zone
is lower than predicted. This shift is caused by the turbulent motion close to the surface
of the fluid and to the mounting plate. However the lower part of the focal region is well
predicted by the linear theory calculated with eddy viscosity νeddy (see figure 4b and c at
Z = −3 for the horizontal longitudinal velocity and Z = −2.5 for the vertical velocity).

The internal gravity and inertia–gravity waves are compared in terms of the vertical
distribution of the horizontally averaged total kinetic energy. Amplification is observed in
the focal zone in the stratified case, and also close to the surface in the rotating stratified
case (figure 5a).
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(a) (b)

Figure 5: (a) Vertical distribution of total kinetic energy averaged along the horizontal; (b) Fourier-
filtered density amplitude ρ∗ against normalized oscillation frequency, Ω = ω/N , based on conductivity
data from the probe in the focal zone. Blue and red dots represent results for internal gravity and
inertia–gravity waves, respectively.

3.3 Time-frequency representation

The time–frequency representation (see e.g. Flandrin, 1999) is performed for the horizontal
longitudinal velocity u:

S(t, ω) =

〈∣∣∣∣
∫ +∞

−∞
du u exp−iωu h(t− u)

∣∣∣∣
2
〉

xy

, (2)

where h(t) = 0.54 − 0.46 cos(ωt) is a Hamming window. Figures 6 (a) and (b) show the
result averaged over a small area close to the torus and in the focal zone, respectively.
Close to the torus the first two harmonics of internal gravity waves appear. In the focal
zone the nonlinear interactions result even for low oscillation amplitude A/a = 0.17 in the
generation of evanescent higher harmonics after four oscillation periods. From the exper-
imental results we notice that with the present sizes of the object and experimental tank
nonlinear effects always take place in the focal region, by contrast with the observations
at lower sizes by Ermanyuk et al. (2016). Fourier filtering of the density signal obtained
with a conductivity probe in the focal zone (figure 5b) shows that the density amplitude
normalised with the buoyancy frequency, ρ∗/N , has a maximum at the fundamental fre-
quency and decreases nearly exponentially with increasing harmonic frequency nω/N for
internal gravity as well as for inertia–gravity waves. This result is in agreement with that
obtained from the velocity field (figure 6b) which also shows qualitatively a decrease in
energy with increasing frequency nΩ. Therefore, the energy distribution is similar for
internal gravity and inertia–gravity waves.

4 Conclusions

We have measured the 3D wave structure for internal gravity, inertial and inertia–gravity
waves. The horizontal vorticity field has a similar structure for internal gravity and inertial
waves, though the intensity of the motion is higher for inertial waves and the vorticity
spreads through the entire depth due to energy loss by diapycnal mixing. In the case of
both rotation and stratification four vortices have been observed in the focal region. The
vorticity field demonstrates the presence of nonlinear effects in the focal zone which cause
dipolar motion. For inertia–gravity waves this motion is twisted and spreads through
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(a) (b)

Figure 6: Time–frequency diagram of log10(SU (t, ω)/S(t, ω0)) for internal gravity waves. The horizontal
velocity u is averaged over areas (a) −5 < X < −4, Y = 0, −1.7 < Z < −1 (near field) and (b)
−1 < X < 1, Y = 0, −4 < Z < −2.6 (focal zone). The experimental parameters are N = 0.5 rad/s,
ω/N = 0.51, A/a = 0.17 and the normalized variables are Ω = ω/N and T = (ωt)/2π.

2/3 of the fluid depth. The size of the vortex is well predicted by the Rossby radius of
deformation.

Spectral analysis of the velocity and density in the focal zone shows the generation of
higher harmonics due to wave beam interaction. Most of the energy is in the funda-
mental wave, whereas the higher harmonics are evanescent and their energy decreases
exponentially.

Our large scale experiment, providing Stokes number of 4500, generates turbulence in the
focal region, a source of mean flow generation and mixing. The effect of this turbulence
on the wave beam can be taken into account by means of an eddy viscosity.
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Ermanyuk, E. V., Flór, J.-B. & Voisin, B. 2011 Spatial structure of first and
higher harmonic internal waves from a horizontally oscillating sphere. J. Fluid
Mech. 671, 364–383.



178 References

Ermanyuk, E. V. & Gavrilov, N. V. 2005 Duration of transient processes in
the formation of internal-wave beams. Dokl. Akad. Nauk 404, 771–774.

Ermanyuk, E. V. & Gavrilov, N. V. 2008 On internal waves generated by large-
amplitude circular and rectilinear oscillations of a circular cylinder in a uniformly
stratified fluid. J. Fluid Mech. 613, 329–356.

Ferrari, R. & Wunsch, C. 2008 Ocean circulation kinetic energy: Reservoirs,
sources, and sinks. Annu. Rev. Fluid Mech. 41, 253–282.

Fincham, A. & Delerce, G. 2000 Advanced optimization of correlation imaging
velocimetry algorithms. Exp. Fluids 29, 13–22.

Flandrin, P. 1998 Time–Frequency/Time–Scale Analysis . Academic Press.
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