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CONTRIBUTION À L’ÉTUDE DE L’ÉQUATION DE

BOLTZMANN HOMOGÈNE
∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼

Résumé

Dans cette thèse, on étudie principalement l’équation de Boltzmann homogène 3D
pour les potentiels durs et les potentiels modérément mous et l’équivalence entre
une EDS à sauts et l’EDP correspondante. En particulier, on calcule le spectre
multifractal de certains processus stochastiques, on étudie le caractère bien-posé et
la propagation du chaos pour l’équation de Boltzmann.

Dans le premier chapitre, on étudie les propriétés trajectorielle pathologiques du
processus stochastique (Vt)t≥0 représentant l’évolution de la vitesse d’une particule
typique dans un gaz modélisé par l’équation de Boltzmann pour les potentiels durs
ou modérément mous. Nous montrons que ce processus est multifractal et qu’il
a un spectre déterministe. Pour les potentiels durs, nous donnons aussi le spectre
multifractal du processus Xt =

∫ t
0
Vsds, représentant l’évolution de la position de

la particule typique.

Dans le deuxième chapitre, nous étudions l’unicité de la solution faible à l’équation
de Boltzmann dans la classe de toutes les solutions mesures, pour les potentiels
modérément mous. Ceci nous permet aussi d’obtenir un taux quantitatif de propa-
gation du chaos pour le système de particules de Nanbu.

Enfin, dans le troisième chapitre, nous étendons le travail de Figalli [22] pour
étudier la relation entre une EDS à sauts et l’équation de Fokker-Planck corre-
spondante. On montre que pour toute solution faible (ft)t∈[0,T ] de l’EDP, il existe
une solution faible de l’EDS dont les marginales temporelles sont données par la
famille (ft)t∈[0,T ].

Mots-clefs: Théorie cinétique, Équation de Boltzmann, Analyse multifractale, Dimension de
Hausdorff, Systèmes de particules, Propagation du chaos, Distance de Wasserstein, Existence
et unicité, Solutions faibles, EDS à sauts, EDP non-locale.
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CONTRIBUTION TO THE STUDY OF THE HOMOGENEOUS

BOLTZMANN EQUATION

∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼

Abstract

This thesis mainly studies the 3D homogeneous Boltzmann equation for hard po-
tentials and moderately soft potentials and the equivalence between some jumping
SDE and the corresponding PDE. In particular, we compute the multifractal spec-
trum of some stochastic processes, study the well-posedness and the propagation
of chaos for the Boltzmann equation.

The purpose of the first chapter is to study the pathwise properties of the stochastic
process (Vt)t≥0, representing the time-evolution of the velocity of a typical particle
in a gas modeled by the Boltzmann equation for hard or moderately potentials. We
show that this process is multifractal and has a deterministic spectrum. For hard
potentials, we also give the multifractal spectrum of the process Xt =

∫ t
0
Vsds,

representing the time-evolution of the position of the typical particle.

The second chapter is devoted to study the uniqueness of the weak solution to the
Boltzmann equation in the class of all measure solutions, in the case of moderately
soft potentials. This allows us to obtain a quantitive rate of propagation of chaos
for Nanbu particle system for this singular interaction.

Finally in the third chapter, we extend Figalli’s work [22] to study the relation
between some jumping SDE and the corresponding Fokker-Planck equation. We
prove that for any weak solution (ft)t∈[0,T ] of the PDE, there exists a weak solution
to the SDE of which the time-marginals are given by the family (ft)t∈[0,T ].

Keywords: Kinetic theory, Boltzmann equation, Multifractal analysis, Hausdorff dimension,
Particle systems, Propagation of Chaos, Wasserstein distance, Existence et uniqueness, Weak
solutions, Jumping SDEs, non-local PDEs.
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Chapter 0

Introduction

0.1 Presentation of the thesis

In this thesis, we study mainly the multifractal nature of the Boltzmann process in Chapter 1,
the uniqueness and propagation of chaos of the equation for singular interactions in Chapter 2,
and the relationship between some SDE and some PDE in Chapter 3.

0.1.1 Multifractal Analysis

Tanaka [57] associated a Markov process (Vt)t≥0, solution to a Poisson-driven stochastic dif-
ferential equation, to the weak solution (ft)t≥0 of the Boltzmann equation for the case of
Maxwellian molecules. Such a process, called the Boltzmann process, represents the time-
evolution of the velocity of a typical particle. Then Fournier and Méléard extended Tanaka’s
probabilistic interpretation to non-Maxwellian molecules in [30]. In particular, Fournier re-
cently built the stochastic processes related to Boltzmann’s equation in [24, Section 5] for
γ ∈ (−1, 1) with the usual notation, see below (the Maxwellian case is γ = 0). Roughly speak-
ing, he proved that for any weak solution (ft)t≥0 to the Boltzmann equation, one can associate
a Boltzmann process for hard potentials (γ ∈ (0, 1)), and for moderately soft potentials, one
can also construct such a process for some weak solution to the Boltzmann equation. From
both theoretical and physical standpoints, we study the fluctuation of regularity of the sample
paths of this velocity process when γ ∈ (−1, 1) in Chapter 1 and we prove it is the same as
that of a well-chosen Lévy process, studied by Jaffard [41], though it is absolutely not a Lévy
process. Besides, we also considered the position process when γ ∈ (0, 1) which enables us to
well understand how the particle behaves.

The main tool to investigate the regularity of the sample paths of stochastic processes is
multifractal analysis, which was initiated by Orey and Taylor [49] and Perkins [50] to study
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2 CHAPTER 0. INTRODUCTION

fast and slow points of Brownian motion. The Hölder regularity of Brownian motion is al-
most surely everywhere 1/2, while the situation is totally different for Lévy processes since its
Hölder regularity depends on the point under consideration. Indeed, there is a continuum of
possible values for the Hölder exponent of a general Lévy process. Jaffard [41] showed that
the sample paths of most Lévy processes are multifractal functions and they have almost surely
deterministic spectrum of singularities. Then Barral, Fournier, Jaffard and Seuret [6] stud-
ied a very specific ad-hoc Markov process, defined by a Poisson-driven stochastic differential
equation, showing that some quite simple processes may display a random non-homogeneous
spectrum. Following this, Yang [64] extended their methods to a much more general class of
Markov processes, namely, rather general diffusions with jumps. The objects we investigate in
Chapter 1 are other important physical examples. The main difficulty is the loss of indepen-
dence and stationarity. To overcome this, we chose some good jumps of the process, estimated
the increment of the process by a special process, analysed the jump times and distinguished
the oscillating singularities, by using stochastic analysis and wavelet methods.

0.1.2 Uniqueness for the Boltzmann equation with moderately soft po-
tentials

The existence and uniqueness of a weak solution, i.e. solution in the sense of distributions,
to the Boltzmann equation for different potentials has been widely studied in recent decades.
The global existence of the weak solution for all potentials was concluded by the seminal
work of Villani [59], with very few assumptions on the initial data (finite energy and entropy),
using some compactness methods. Uniqueness was studied for different potentials with quite
different assumptions, by, among others, Desvillettes, Fournier, Mouhot, Mischler, Wennberg,
etc. In Chapter 2, we prove a better uniqueness result for all measure solutions for a collision
kernel without angular cutoff and for moderately soft potentials (singular, γ ∈ (−1, 0)). This
is also very important when studying particle systems. In particular, the convergence (without
rate) can be derived almost directly from this uniqueness result, since the tightness is very
easy. Previous uniqueness results in this case were assuming a few regularity of the solution,
which we completely remove. The main difficulty is singularity. We borrowed some ideas from
[27], while relies on regularization, tightness, martingale problems and coupling methods. We
obtained a stability estimate, combining a truncation technique. There is no doubt that the
situation is more complicated because we dealt with jump processes.
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0.1.3 Propagation of chaos for the Boltzmann equation with moderately
soft potentials

From both physical and numerical standpoints, we also considered propagation of chaos, which
refers to the convergence of the empirical measure of a particle system to the solution to a non-
linear equation, initiated in Kac’s work [43] in 1956. He considered the convergence of a toy
particle system to the solution to the Boltzmann equation. Kac’s particle system is similar to
the one studied in the present thesis (named Nanbu’s system), but each collision modifies the
velocities of the two involved particles, while in Nanbu’s system, only one of the two particles
is deviated. Hence, Kac’s system is physically more meaningful. Concerning propagation of
chaos for these two particle systems for non-singular interaction, there are many references,
see [16, 23, 32, 35, 36, 45, 46, 51, 56]. Concerning the Boltzmann equation, after some early
seminal works by Sznitman [56], Graham-Méléard [35] and a very recent breakthrough by
Mischler-Mouhot [46], Fournier-Mischler [32] recently proved the propagation of chaos at rate
N−1/4 for the Nanbu system in the case of hard potentials without cutoff. Concerning singular
interaction, there are only very few results, see [37] for the Vlasov equation, [28] for the 2D
Navier-Stokes equation, [34] for the 2D subcritical Keller-Segel equation and [27] for the Lan-
dau equation. In this thesis, we consider the propagation of chaos with singular interaction for
the Nanbu particle systemin Chapter 2. We make use of the Wasserstein distance with quadratic
cost. Following Tanaka’s methods in [57], we construct some processes solving some non lin-
ear stochastic differential equations driven by Poisson measure and then couple them with the
particle system. To our knowledge, this is the first chaos result (with rate) for soft potentials,
but we cannot study Kac’s system since we haven’t found a suitable coupling.

0.1.4 Equivalence between jumping SDEs and non-local PDEs

Probabilistic representations of partial differential equations are powerful tools to study the an-
alytic properties of the equation (well-posedness, regularity,...) since it allows us to use a lot
of probabilistic tools. One of them is relying on nonlinear stochastic differential equation in
the sense of McKean. In the remarkable work [22], Figalli established the equivalence between
continuous SDEs with rough coefficients and related Fokker-Planck equations by martingale
problem theory. Concerning the homogeneous Boltzmann equations, the first (partial) result
for uniqueness was obtained by Tanaka for Maxwell molecules, and afterwards it was extended
to more general cases and also to the Landau equation. It is then natural to ask for a general
relationship between jumping SDEs and PDEs. In Chapter 3, we extended Figalli’s result to
jump processes, by proving the equivalence between some jumping SDEs with rough coeffi-
cients and non-local PDEs (Fokker-Planck or Kolmogorov forward). Roughly speaking, we
prove that given any weak solution (ft)t∈[0,T ] to the PDE, there exists a weak solution to the
SDE, whose family of time marginals is given by (ft)t∈[0,T ]. As a corollary, we deduce: 1)
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existence for the PDE is equivalent to (weak) existence for the SDE; 2) uniqueness in law for
the SDE implies uniqueness for the PDE. The proof is much more technically involved, though
we followed closely the global strategy of [22].

Some results of Ethier and Kurtz’s work [20] (extended later by Horowitz and Karandikar
[38] and by Bhatt and Karandikar [10]) explained in spirit that if some SDE has a unique
solution (in law) for any deterministic initial condition, then the corresponding PDE has a
unique weak solution for any reasonable initial condition. Our result is much stronger since no
uniqueness is required for the SDE.

Our main motivation for this chapter is the uniqueness for some nonlinear PDEs. For
example, if we study the Boltzmann equation, it directly implies that, for any solution f to
the nonlinear equation, we can associate a solution X to the corresponding linear SDE with
additionally Xt ∼ ft for all t. In other words, X solves the nonlinear SDE. This was crucial
when studying more singular nonlinear equations, such as the Landau or Boltzmann equations
for moderately soft potentials, see [27] and [63].

0.2 The Boltzmann equation

In this subsection, we introduce the main mathematical objects we consider in the following
two chapters.

The Boltzmann equation. The Boltzmann equation is the main model of kinetic theory. It
describes the time evolution of the density ft(x, v) of particles with position x ∈ R3 and
velocity v ∈ R3 at time t ≥ 0, in a gas of particles interacting through binary collisions.
We consider a 3-dimensional spatially homogeneous case, that is, the gas is initially spatially
homogeneous. This property propagates with time, and ft(x, v) does not depend on x. Then
ft(v) solves

∂tft(v) =

∫
R3

dv∗

∫
S2
dσB(|v − v∗|, θ)[ft(v′)ft(v′∗)− ft(v)ft(v∗)], (0.1)

where

v′ =
v + v∗

2
+
|v − v∗|

2
σ, v′∗ =

v + v∗
2
− |v − v∗|

2
σ, (0.2)

and θ is the deviation angle defined by cos θ = v−v∗
|v−v∗| · σ. The cross section B(|v − v∗|, θ) ≥

0 depends on the type of interaction between particles. In this thesis, we assume that the
interaction is the important physical inverse power laws interactions: two particles located at a
distance r collide due to a repulsive force proportional to 1/rs for some s > 2. Then the cross
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section B(|v − v∗|, θ) can be written by (see Cercignani [15]),

B(|v − v∗|, θ) sin θ = |v − v∗|γβ(θ), γ =
s− 5

s− 1
,

where β : (0, π]→ R+ is a measurable function satisfying, near 0,

β(θ) ∼ θ−1−ν , with ν =
2

s− 1
satisfying γ + ν > 0.

According to [3], we may assume that β = 0 on [π/2, π].

One usually calls hard potentials when s > 5 (i.e. γ > 0), Maxwellian potentials when
s = 5 (i.e. γ = 0), soft potentials when 2 < s < 5 (i.e. −3 < γ < 0) and Coulomb when s = 2

(i.e. γ = −3). For many details on the physical and mathematical theory of the Boltzmann
equation, one can see [2, 17, 58, 60].

Parameterization. We now introduce a suitable spherical parameterization of (0.2) as in [31].
For each x ∈ R3 \ {0}, we consider a vector I(x) ∈ R3 such that |I(x)| = |x| and I(x) ⊥ x.
We also set J(x) = x

|x| ∧ I(x), where ∧ is the vector product. Then the triplet ( x
|x| ,

I(x)
|x| ,

J(x)
|x| ) is

an orthonormal basis of R3. Then for x, v, v∗ ∈ R3, θ ∈ (0, π], ϕ ∈ [0, 2π), we set
Γ(x, ϕ) := (cosϕ)I(x) + (sinϕ)J(x),

v′(v, v∗, θ, ϕ) := v − 1−cos θ
2

(v − v∗) + sin θ
2

Γ(v − v∗, ϕ),

a(v, v∗, θ, ϕ) := v′(v, v∗, θ, ϕ)− v,
(0.3)

then we write σ ∈ S2 as σ = v−v∗
|v−v∗| cos θ + I(v−v∗)

|v−v∗| sin θ cosϕ+ J(v−v∗)
|v−v∗| sin θ sinϕ. We observe

at once that Γ(x, ϕ) is orthogonal to x and has the same norm as x, from which it is easy to
check that

|a(v, v∗, θ, ϕ)| =
√

1− cos θ

2
|v − v∗|. (0.4)

Weak solutions. We denote by P(R3) the set of probability measures on R3 and for q > 0,
we set

Pq(R3) = {µ ∈ P(R3) : mq(µ) <∞} with mq(µ) :=

∫
R3

|v|qµ(dv).

Definition 0.2.1. A measurable family of probability measures (ft)t≥0 on R3 is called a weak
solution to (0.1) if it satisfies the following two conditions:

• For all t ≥ 0,∫
R3

vft(dv) =

∫
R3

vf0(dv) and
∫
R3

|v|2ft(dv) =

∫
R3

|v|2f0(dv) <∞. (0.5)
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• For any bounded globally Lipschitz function φ ∈ Lip(R3), any t ∈ [0, T ],∫
R3

φ(v)ft(dv) =

∫
R3

φ(v)f0(dv) +

∫ t

0

∫
R3

∫
R3

Aφ(v, v∗)fs(dv∗)fs(dv)ds (0.6)

where

Aφ(v, v∗) = |v − v∗|γ
∫ π/2

0

β(θ)dθ

∫ 2π

0

[φ(v + a(v, v∗, θ, ϕ))− φ(v)]dϕ.

Noting that |a(v, v∗, θ, ϕ)| ≤ Cθ|v − v∗| and that
∫ π/2

0
θβ(θ)dθ <∞, we easily check that

|Aφ(v, v∗)| ≤ Cφ|v − v∗|1+γ ≤ Cφ(1 + |v − v∗|2), so that everything is well-defined in (0.6).

0.3 The Multifractal Nature of Boltzmann Processes

0.3.1 The Boltzmann process
In the first chapter of the thesis, the main objects we deal with are a solution to some SDE
associated to (0.1), called the Boltzmann process, and the position process. The Boltzmann
process represents the time evolution of the velocity of a typical particle in 3-dimension. It is
defined on some probability space (Ω,F , (Ft)t≥0,P), and is a solution to the following SDE

Vt = V0 +

∫ t

0

∫
R3

∫ π/2

0

∫ 2π

0

∫ ∞
0

a(Vs−, v, θ, ϕ)1{u≤|Vs−−v|γ}N(ds, dv, dθ, dϕ, du), (0.7)

where N(ds, dv, dθ, dϕ, du) is a Poisson measure on [0,∞)×R3× (0, π/2]× [0, 2π)× [0,∞)

with intensity dsfs(dv)β(θ)dθdϕdu, where (ft)t≥0 is a weak solution to (0.1) and where V0 is
a F0-measurable random variable with law f0. Here a is the increment of velocity defined in
(0.3). Of course, the associated position process (Xt)t∈[0,1] is defined by Xt =

∫ t
0
Vsds.

The Boltzmann process is well-defined thanks to [24, Proposition 5.1] which we recall now.

Proposition 0.3.1. Let f0 be a probability measure with m2(f0) <∞.

• If γ ∈ (0, 1), for any weak solution (ft)t≥0 to (0.1) starting from f0 and satisfying for all
p ≥ 2, all t0 > 0, supt≥t0 mp(ft) <∞, there exist a probability space (Ω,F , (Ft)t≥0,P),
a (Ft)t≥0-Poisson measure N(ds, dv, dθ, dϕ, du) on [0,∞)× R3 × (0, π/2]× [0, 2π)×
[0,∞) with intensity dsfs(dv)β(θ)dθdϕdu and a càdlàg (Ft)t≥0-adapted process (Vt)t≥0

satisfying L(Vt) = ft for all t ≥ 0 and solving (0.7).

• If γ ∈ (−1, 0], assume additionally that f0 with mp(f0) <∞ for some p > 2. There exist
a probability space, a Poisson measure N and a càdlàg adapted process (Vt)t≥0 as in the
previous case, satisfying L(Vt) = ft for all t ≥ 0 and solving (0.7).
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Sample path properties of stochastic processes are widely studied since 1970s, there are
variety of tools to measure the regularity, among which pointwise and local Hölder exponents
are the most recurrent tools used in the literature. Here, we adopt the former one which is
defined below.

Definition 0.3.2. A locally bounded function g : [0, 1]→ R3 is said to belong to the pointwise
Hölder space Cα(t0) with t0 ∈ [0, 1] and α /∈ N, if there exist C > 0 and a polynomial Pt0 of
degree less than bαc, such that for some neighborhood It0 of t0,

|g(t)− Pt0(t)| ≤ C|t− t0|α, ∀ t ∈ It0 .

The pointwise Hölder exponent of g at point t0 is given by

hg(t0) = sup{α > 0 : g ∈ Cα(t0)},

where by convention sup ∅ = 0.

In order to describe the size of the set of singularities of a function or a process, we introduce
the level sets of the Hölder exponent, called the iso-Hölder sets of a function or a process. For
example, we consider a function g, the iso-Hölder sets of g are denoted, for any h ≥ 0, by

Eg(h) = {t ≥ 0 : hg(t) = h}.

As we know, the Hölder exponent lacks of stability, and therefore do not completely char-
acterize the local regularity of a function or a stochastic process at a given point. We thus need
the notion of Hausdorff dimension.

Definition 0.3.3. Let A ⊂ Rd and 0 ≤ s ≤ d. The s-dimensional Hausdorff measure of A is
defined by

Hs(A) = lim
ε→0
Hs
ε(A) = lim

ε→0
inf

{
+∞∑
i=1

|Ai|s : A ⊂
+∞⋃
i=1

Ai and |Ai| ≤ ε

}
.

The limit exists sinceHs
ε(A) is increasing. Finally the Hausdorff dimension of A is defined by

dimH(A) := inf{s ≥ 0 : Hs(A) = 0} = sup{s ≥ 0 : Hs(A) = +∞},

and by convention dimH ∅ = −∞.

Brownian motion, the most important stochastic process, was studied by Orey and Taylor
[49] and Perkins [50], and it turns out that almost surely for all t ∈ [0, 1], hB(t) = 1/2. It is
universal in probability, but it proved to be too restrictive to model a number of phenomena.
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Hence general classes of processes with wider range of behaviors rapidly appeared in the prob-
ability literature, such as fractional Brownian motion, multifractional Brownian motion and
Lévy processes. Recently, the multifractal behaviour of some rather general (jumping) Markov
processes has been studied by Yang [64]. Here, we study the Boltzmann process (Vt)t≥0 defined
by (0.7).

Let us now recall Jaffard’s work [41], which provides us the main ideas for studying the
multifractal spectrum of the Boltzmann process (Vt)t≥0 in Chapter 1. Let X be a Lévy pro-
cess and α be the upper index of Blumenthal-Getoor [11] of X . Then Jaffard proved that the
multifractal spectrum of X is almost surely,

DX(h) =

{
αh if h ∈ [0, 1/α],

−∞ if h > 1/α.

Glancing at the shape of the jumping SDE (0.7) satisfied by (Vt)t≥0, one can easily get con-
vinced that it should behave like a Lévy process, although it of course lacks of the independence
and stationarity properties. We now write the multifractal spectrum of (Vt)t≥0.

Theorem 0.3.4. We consider some γ ∈ (−1, 1), some ν ∈ (0, 1) with γ + ν > 0. We consider
some initial condition f0 with m2(f0) < ∞ and assume that it is not a Dirac mass. If γ ∈
(−1, 0], we moreover assume that f0 with mp(f0) < ∞ for some p > 2. Almost surely, for all
h ≥ 0,

DV (h) =

{
νh if 0 ≤ h ≤ 1/ν,

−∞ if h > 1/ν.
(0.8)

We obtain the same spectrum as Lévy process though (Vt)t≥0 is not Lévy process. We
now state the main strategies for getting this spectrum. We first bound the law of (Vt)t≥0 from
below which enables us to choose some independent jump points from all the jumps. These
well-chosen jump points constitute the Poisson random measure which allows us to use Shepp’s
lemma to get a random cover of time interval [0, 1]. This random cover implies that the Hölder
exponent is bounded by 1/ν. The main difficulty is to get the lower bound for Hölder exponent.
Compared to Lévy processes, we have two main problems: (1) the Markovian dynamic of V is
no longer homogenous since ft(dv) appears in the intensity of Poisson measure, (2) the nearby
future of V at each instant depends on the current state of V . We thus need to handle a delicate
study of the small jumps. We make use of a number of ideas found in the recent work of
Balança [5].

0.3.2 The position process
In Chapter 1, we also study the multifractal spectrum of the position process Xt =

∫ t
0
Vsds for

t ∈ [0, 1] for hard potentials. We first give a definition.
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Definition 0.3.5. Let g : [0, 1] → R3 be a locally bounded function and let G(t) =
∫ t

0
g(s)ds.

For all h ≥ 0, we introduce the sets

Ecusp
g (h) = {t ∈ Eg(h) : hG(t) = 1+hg(t)} and Eosc

g (h) = {t ∈ Eg(h) : hG(t) > 1+hg(t)}.

The times t ∈ Ecusp
g (h) are refered to as cusp singularities, while the times t ∈ Eosc

g (h)

are called oscillating singularities. Observe that Eg(h) = Ecusp
g (h) ∪ Eosc

g (h), the union being
disjoint: this follows from the fact that obviously, for all t ∈ [0, 1], hG(t) ≥ hg(t) + 1.

We now exhibit the multifractal spectrum of the position process.

Theorem 0.3.6. Let γ ∈ (0, 1) and ν ∈ (0, 1). We consider some initial condition f0 with
m2(f0) < ∞ and assume that it is not a Dirac mass. We consider a Boltzmann process
(Vt)t∈[0,1] defined by (0.7) and introduce the associated position process (Xt)t∈[0,1] defined by

Xt =

∫ t

0

Vsds. Almost surely, for all h ≥ 0,

DX(h) =

{
ν(h− 1) if 1 ≤ h ≤ 1

ν
+ 1,

−∞ if h > 1
ν

+ 1 or 0 ≤ h < 1.

During the proof, we also get the following.

Theorem 0.3.7. Under the assumptions of Theorem 0.3.6, we have almost surely:

• for all h ∈ [1/(2ν), 1/ν), dimH

(
Eosc
V (h)

)
≤ 2hν − 1,

• for all h ∈ [0, 1/(2ν)) ∪ (1/ν,+∞], Eosc
V (h) = ∅,

• for all h ∈ [0, 1/ν], dimH

(
Ecusp
V (h)

)
= hν.

Here again, this work is strongly inspired by the work of Balança [5].

0.4 Uniqueness and propagation of chaos for the Boltzmann
equation with moderately soft potentials

In this chapter, we establish a stability principle for 3D homogeneous Boltzmann equation (0.1)
in the case of moderately soft potentials (γ ∈ (−1, 0)). We also study the Nanbu stochastic
particle system which approximates the weak solution.

The Boltzmann equation was devised by Boltzmann [12] in 1872 to depict the behaviour
of a dilute gas. We consider 3D homogeneous case, which describes the time evolution of the
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density ft(v) of particles with velocity v ∈ R3 at time t ≥ 0. The particles interact via binary
collisions. These collisions are supposed to be elastic, i.e. mass, momentum and kinetic energy
are preserved in a collision process. Here the collision kernel B(|v − v∗|, θ) is supposed to be
in the following form:

B(|v − v∗|, θ) sin θ = |v − v∗|γβ(θ),

∃ 0 < c0 < c1, ∀ θ ∈ (0, π/2), c0θ
−1−ν ≤ β(θ) ≤ c1θ

−1−ν ,

∀ θ ∈ [π/2, π], β(θ) = 0,

(0.9)

for some ν ∈ (0, 1), and γ ∈ (−1, 0) satisfying γ + ν > 0. We now introduce, for θ ∈ (0, π/2)

and z ∈ [0,∞),

H(θ) =

∫ π/2

θ

β(x)dx and G(z) = H−1(z). (0.10)

Under (0.9), it is clear that H is a continuous decreasing function valued in [0,∞), so it has
an inverse function G : [0,∞) 7→ (0, π/2) defined by G(H(θ)) = θ and H(G(z)) = z. For
x, v, v∗ ∈ R3, θ ∈ (0, π], ϕ ∈ [0, 2π), recalling a(v, v∗, θ, ϕ) introduced in parameterization
(0.3), we define

c(v, v∗, z, ϕ) = a[v, v∗, G(z/|v − v∗|γ), ϕ] and cK(v, v∗, z, ϕ) := c(v, v∗, z, ϕ)1{z≤K}.

Here, we use a substitution that θ = G(z/|v−v∗|γ) in order to remove the velocity-dependence
|v − v∗|γ in the rate. Next, we introduce the definition of Wasserstein distance.

Definition 0.4.1. For g, g̃ ∈ P2(R3), letH(g, g̃) be the set of probability measures on R3 ×R3

with first marginal g and second marginal g̃. We then set

W2(g, g̃) = inf

{(∫
R3×R3

|v − ṽ|2R(dv, dṽ)
)1/2

, R ∈ H(g, g̃)

}
.

We can also define the Wasserstein distance in an equivalent form:

W2(g, g̃) = inf
{
E[|X − Y |2]1/2, X ∼ g, Y ∼ g̃

}
.

This is the Wasserstein distance with quadratic cost. It is well-known that the infimum is
reached. And more precisely, if g has a density, there is a unique R ∈ H(g, g̃) such that
W2

2 (g, g̃) =
∫
R3×R3 |v − ṽ|2R(dv, dṽ) (see Villani [61, Theorem 2.12]).

0.4.1 The stability principle
The purpose of the second work of this thesis is to establish a strong/weak stability estimate for
the Boltzmann equation for γ ∈ (−1, 0) in L∞

(
[0,∞),P2(R3)

)
, which implies a uniqueness
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result. This is solved by a probability method, introduced by Tanaka [57]. Let us first recall
the well-posedness result of [33, Corollary 2.4] (more general existence results can be found in
[59]).

Theorem 0.4.2. Assume (0.9) for some γ ∈ (−1, 0), ν ∈ (0, 1) with γ + ν > 0. Let q ≥ 2

such that q > γ2/(γ + ν). Let f0 ∈ Pq(R3) with
∫
R3 f0(v)| log f0(v)|dv < ∞ and let p ∈

(3/(3 + γ), p0(γ, ν, q)), where

p0(γ, ν, q) =
q − γ

q(3− ν)/3− γ
∈ (3/(3 + γ), 3/(3− ν)). (0.11)

Then (0.1) has a unique weak solution f ∈ L∞
(
[0,∞),P2(R3)

)
∩ L1

loc

(
[0,∞), Lp(R3)

)
.

We extend the above uniqueness result to the all measure solutions in L∞
(
[0,∞),P2(R3)

)
.

Theorem 0.4.3. Assume (0.9) for some γ ∈ (−1, 0), ν ∈ (0, 1) satisfying γ + ν > 0. Let
q ≥ 2 such that q > γ2/(γ + ν). Assume that f0 ∈ Pq(R3) has a finite entropy, more pre-
cisely that

∫
R3 f0(v)| log f0(v)|dv < ∞. Let p ∈ (3/(3 + γ), p0(γ, ν, q)), recall (0.11), and

(ft)t≥0 ∈ L∞
(
[0,∞),P2(R3)

)
∩ L1

loc

(
[0,∞), Lp(R3)

)
be the unique weak solution to (0.1)

given by Theorem 0.4.2. Then for any other weak solution (f̃t)t≥0 ∈ L∞
(
[0,∞),P2(R3)

)
to

(0.1), we have, for any t ≥ 0,

W2
2 (ft, f̃t) ≤ W2

2 (f0, f̃0) exp
(
Cγ,p

∫ t

0

(1 + ‖fs‖Lp)ds
)
.

In particular, we have uniqueness for (0.1) when starting from f0 in the space of all weak
solutions.

Our uniqueness result is thus much better. The major difficulty comes from the singular
interaction and the absence of regularity of the weak solution, that cannot compensate the sin-
gularity of the coefficients. To overcome this, we adopt some ideas of Fournier-Hauray in [27],
which concerns the simpler case of the Landau equation with moderately soft potentials. Let
us recall that the Landau equation was derived by Landau in 1936. It has some links with
the Boltzmann equation. Indeed, when γ ∈ (−3, 1], the Landau equation can be seen as an
approximation of the corresponding Boltzmann equation in the asymptotics of grazing colli-
sions. Villani [59] proves the convergence of the Boltzmann equation to the Landau equation,
together with the existence of solutions to the Landau equation in the whole range. When
γ = −3 (Coulomb interaction), it replaces the Boltzmann equation.

The main idea to prove the theorem is to construct a suitable coupling between two weak
solutions to (0.1). Let (ft)t≥0 be the strong solution to (0.1) (i.e. the one of Theorem 0.4.2,
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which is slightly regular) and let (f̃t)t≥0 be a weak solution in L∞
(
[0,∞),P2(R3)

)
. We first

build (Xt)t≥0 with L(Xt) = f̃t solving

Xt = X0 +

∫ t

0

∫ 1

0

∫ ∞
0

∫ 2π

0

c
(
Xs−, X

∗
s (α), z, ϕ

)
M(ds, dα, dz, dϕ),

where (X∗t )t≥0 is a measurable α-process with law f̃t, and M(ds, dα, dz, dϕ) is a Poisson
measure.

The existence of the process (Xt)t≥0 is not easy and we only build a weak solution. The
difficulty is mainly due to the singularity of the interaction, which cannot be compensated by
some regularity of f̃t, because f̃t is any weak solution. We thus use the strategy of [22] (which
deals with continuous diffusion processes). We introduce f̃ εt = f̃t ∗φε, where φε is the centered
Gaussian density with covariance matrix εI3. We write the PDE satisfied by f̃ εt and associate,
for each ε ∈ (0, 1), a solution (Xε

t )t≥0 to some SDE. Since both the SDE and the PDE (with
ε ∈ (0, 1) fixed) are well-posed (because the coefficients are regular enough), we conclude that
L(Xε

t ) = f̃ εt . Next, we prove that the family {(Xε
t )t≥0, ε ∈ (0, 1)} is tight using the Aldous

criterion [1]. Finally, we consider a limit point (Xt)t≥0, as ε → 0, of {(Xε
t )t≥0, ε ∈ (0, 1)}.

Since L(Xε
t ) = f̃ εt , we deduce that L(Xt) = ft for each t ≥ 0. Then, we classically make use

of martingale problems to show that (Xt)t≥0 is indeed a solution of the desired SDE.

On the other hand, we plan to build a ft-distributed process which couples with the above
process (Xt)t≥0 with the same Poisson measure M(ds, dα, dz, dϕ). More precisely, we intend
to associate to (ft)t≥0 the strong solution (Wt)t≥0 to the SDE, driven by M(ds, dα, dz, dϕ),
with ft-distributed α-process (W ∗

t )t≥0 coupled with (X∗t )t≥0. This should be possible, using
that (ft)t≥0 is slightly regular. But unfortunately, we fail in proving the strong existence of such
a process, because there is a problem of parameterization of the sphere, already encountered
by Tanaka [57]. We thus introduce a truncated SDE (with a finite number of jumps per unit of
time), namely,

WK
t = W0 +

∫ t

0

∫ 1

0

∫ K

0

∫ 2π

0

c(WK
s−,W

∗
s (α), z, ϕ+ ϕs,α,K)M(ds, dα, dz, dϕ).

Here ϕs,α,K is some well-chosen angle, that allows us to overcome the problem of the sphere
parametrization, see Lemma 2.2.2, due to Tanaka, in Chapter 3. This equation of course has
a unique strong solution (WK

t )t≥0, because it is a discrete equation (with finitely many jumps
per unit of time).

Finally, we prove that WK
t goes in law to ft for each t ≥ 0, we thus have

W2
2 (ft, f̃t) ≤ lim sup

K→∞
E[|WK

t −Xt|2].
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Then using the Itô formula, some results in Chapter 3 and some technical and very precise
computations, we conclude that

lim sup
K→∞

E[|WK
t −Xt|2] ≤ W2

2 (f0, f̃0) exp

(
Cγ,p

∫ t

0

(
1 + ‖fs‖Lp

)
ds

)
,

which completes the proof.

0.4.2 The Nanbu particle system

In Chapter 2, we also consider the problem of propagation of chaos for some finite stochastic
particle system, which means that the empirical measure of the particle system converges to the
unique solution of the Boltzmann equation. Precisely, we consider the simple particle system
introduced by Nanbu [48] in 1983. It is a non-symmetric particle system in the sense that at
each collision event, only one of the two involved particles is deviated. Since we deal with a
non cutoff cross section, which means that there are infinitely many jumps with a very small
deviation angle, we study a truncated version of Nanbu’s particle system as in [32].

In [32], Fournier and Mischler give an almost optimal explicit rate of convergence for the
Boltzmann equation with γ ∈ [0, 1] for Nanbu’s system using non-linear stochastic differential
equations driven by Poisson measure. Their approach is very technical and the coupling that
they built is extremely meaningful for our case.

We now describe the main strategy to get the propagation of chaos rate. Let f0 ∈ P(R3),
K ≥ 1 and N ≥ 1. We consider the unique strong solution (ft)t≥0 to (0.1), a family of
random variables (V i

0 )i=1,...,N with common law f0 and a family of i.i.d. Poisson measures
(Mi(ds, dα, dz, dϕ))i=1,...,N . Then we build the family of i.i.d. ft-distributed Boltzmann pro-
cesses (W 1

t , ...,W
N
t )t≥0 solving, for i = 1, ..., N ,

W i
t = V i

0 +

∫ t

0

∫ 1

0

∫ ∞
0

∫ 2π

0

c(W i
s−,W

∗
s (α), z, ϕ)Mi(ds, dα, dz, dϕ). (0.12)

We then couple the family (W 1
t , ...,W

N
t )t≥0 with the particle system (V 1

t , ..., V
N
t )t≥0, which is

a strong solution to

V i
t = V i

0 +

∫ t

0

∫ 1

0

∫ ∞
0

∫ 2π

0

cK(V i
s−, V

j(s,α)
s− , z, ϕ)Mi(ds, dα, dz, dϕ), (0.13)

i = 1, . . . , N , the indice K indicating the level of truncation. Of course, j(s, α) has to be
uniform in {1, ..., N} (if α is uniformly distributed on [0, 1]), and we couple j(s, α) andW ∗

s (α)

in such a way that V j(s,α)
s− and W ∗

s (α) are as close as possible, as in [32, Lemma 4.3]. Actually,
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we need to introduce some intermediate couplings, and there are also some problems of sphere
parameterization as previously mentioned.

Once we built the suitable coupling, we then compute W2
2 (µN,Kt , µNWt

), where µN,Kt =
1
N

∑N
i=1 δV it , µNWt

= 1
N

∑N
i=1 δW i

t
. However, we observe from the stability principle that a

regularized empirical measure (i.e. µ̄NWt
= µNWt

∗ψεN ) is necessary, with a small parameter εN .
Here ψε = (3/(4πε3))1{|x|≤ε} . Hence, a new difficulty appears: we have to bound the Lp-norm
of this regularized empirical measure. While, the statistics knowledge tells us that it should
be bounded by ‖ft‖Lp with high probability, for each t fixed, but we need something uniform
(locally) in time, so we have to use some continuity arguments, which is not so easy since the
processes are of jump type. At the end, we establish the following result.

Theorem 0.4.4. Consider the assumption (0.9) for γ ∈ (−1, 0), ν ∈ (0, 1) with γ + ν > 0 and
f0 ∈ Pq(R3) for some q > 8 with a finite entropy. Let (ft)t≥0 be the unique weak solution to
(0.1) given by Theorem 0.4.2. For each N ≥ 1, K ∈ [1,∞), let (V i,K

t )i=1,...,N be the unique
solution to (0.13). We denote the associated empirical measure by µN

VN,K
t

= N−1
∑N

i=1 δV i,Kt
.

Then for all T > 0,

sup
[0,T ]

E[W2
2 (µN

VN,K
t

, ft)] ≤ CT,q

(
1 +N−(1−6/q)(2+2γ)/3 +K1−2/ν +N−1/2

)
.

To our knowledge, the obtained quantitive rate of chaos is the first result for a singular
Boltzmann equation (i.e. with γ < 0). However, it is not sharp and deals with the Nanbu
system, which is simpler than Kac’s system.

0.5 On the equivalence between some jumping SDEs with
rough coefficients and some non-local PDEs

In [22], Figalli study the main relations between the (continuous) SDE

dX = b(t,X)dt+ σ(t,X)dBt,

and the corresponding (local) Fokker-Planck equation

∂tft = −
∑
i

∂i(bift) +
1

2

∑
ij

∂ij(aijft) = 0,

where the coefficients b : [0, T ] × Rd 7→ Rd and σ : [0, T ] × Rd 7→ S+
d (the set of symmetric

nonnegative d× d real matrices) are measurable and bounded. Also, a(t, x) := σ(t, x)σ∗(t, x)
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and B is an d-dimensional Brownian motion. He proved that whenever we have existence of
a solution (ft)t∈[0,T ] to the PDE, there exists at least one martingale solution (Xt)t∈[0,T ] of the
SDE such that Xt ∼ ft for all t ∈ [0, T ].

The purpose of the third chapter is to extend such a result to jumping SDEs and their corre-
sponding (non-local) Fokker-Planck equations.

Let b : [0, T ] × Rd 7→ Rd, σ : [0, T ] × Rd 7→ S+
d and h : [0, T ] × E × Rd 7→ Rd be

measurable functions. The space E is endowed with a σ-field E and with a σ-finite measure µ.
Let P(Rd) be the set of probability measures on Rd and

P1(Rd) = {f ∈ P(Rd) : m1(f) <∞} with m1(f) :=

∫
Rd
|x|f(dx).

We define L∞
(
[0, T ],P1(Rd)

)
as the set of all measurable families (ft)t∈[0,T ] of probability

measures on Rd such that sup[0,T ] m1(ft) <∞. We assume

Assumption 0.5.1. There is a constant C such that for all (t, x) ∈ [0, T ]× Rd,

|σ(t, x)|+ |b(t, x)|+
∫
E

|h(t, z, x)|µ(dz) ≤ C(1 + |x|).

We consider the d-dimensional stochastic differential equation on the time interval [0, T ]

Xt = X0 +

∫ t

0

b(s,Xs) ds+

∫ t

0

σ(s,Xs) dBs +

∫ t

0

∫
E

h(s, z,Xs−)N(ds, dz), (0.14)

where (Bt)t∈[0,T ] is a d-dimensional Brownian motion and N(ds, dz) is a Poisson measure
on [0, T ] × E with intensity measure ds µ(dz). The Fokker-Planck (or Kolmogorov forward)
equation associated to (0.14) is

∂tft + div(b(t, ·)ft) =
1

2

d∑
i,j=1

∂ij([σ(t, ·)σ∗(t, ·)]i,jft) + Ltft, (0.15)

where Ltft : Rd 7→ R is defined by duality as∫
Rd

(Ltft)(x)ϕ(x)dx =

∫
Rd

∫
E

[ϕ(x+ h(t, z, x))− ϕ(x)]ft(x)dx

for any reasonable ϕ : Rd 7→ R. We use the notation∇ = ∇x, div=divx and ∂ij = ∂2
xixj

.

We are not able, at the moment, to study a more general jumping SDE with infinite variation
jump part, i.e. an SDE driven by a compensated Poisson measure. Here is the main result of
Chapter 3.
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Theorem 0.5.2. Suppose Assumption 0.5.1 and consider any weak solution (ft)t∈[0,T ] to (0.15)
such that f0 ∈ P1(Rd). There exist, on some probability space (Ω,F , (Ft)t∈[0,T ],P), a d-
dimensional (Ft)t∈[0,T ]-Brownian motion (Bt)t∈[0,T ], a (Ft)t∈[0,T ]-Poisson measure N(dt, dz)

on [0, T ]× E with intensity measure dt µ(dz), these two objects being independent, as well as
a càdlàg (Ft)t∈[0,T ]-adapted process (Xt)t∈[0,T ] solving (0.14) and such that L(Xt) = ft for all
t ∈ [0, T ].

If (Xt)t∈[0,T ] is a solution to (0.14) with ft = L(Xt), a simple application of the Itô formula
implies that the family (ft)t∈[0,T ] is a weak solution to (0.15). Hence, we can deduce that

• The existence of a (weak) solution (Xt)t∈[0,T ] to (0.14) such thatL(X0) = f0 is equivalent
to the existence of a weak solution (ft)t∈[0,T ] to (0.15) starting from f0.

• The uniqueness (in law) of the solution (Xt)t∈[0,T ] to (0.14) with L(X0) = f0 implies the
uniqueness of the weak solution (ft)t∈[0,T ] to (0.15) starting from f0.

Our proof uses a smoothing procedure introduced in [22]. Roughly speaking, we first in-
troduce f εt = ft ∗ φε, where φε is the centered Gaussian density with covariance matrix εId.
We write the PDE satisfied by f εt . In some sense, this PDE is rather complicated because its
coefficients depend on ft itself. However, these coefficients seen as fixed functions, we can
associate to this PDE a solution (Xε

t )t≥0 to some SDE. Since both the SDE and the PDE (with
ε ∈ (0, 1) fixed) are well-posed (because the coefficients are regular enough), we conclude that
L(Xε

t ) = f εt . Next, we prove that the family {(Xε
t )t≥0, ε ∈ (0, 1)} is tight using the Aldous

criterion [1]. Finally, we consider a limit point (Xt)t≥0, as ε → 0, of {(Xε
t )t≥0, ε ∈ (0, 1)}.

Since L(Xε
t ) = f εt , we deduce that L(Xt) = ft for each t ≥ 0. Then, we classically make use

of martingale problems to show that (Xt)t≥0 is indeed a solution of the desired SDE.



Chapter 1

The Multifractal Nature of Boltzmann
Processes

This work was published in Stochastic Process. Appl. 126 (2016), no. 8, 2181–2210.

We consider the spatially homogeneous Boltzmann equation for (true) hard and moderately
soft potentials. We study the pathwise properties of the stochastic process (Vt)t≥0, which de-
scribes the time evolution of the velocity of a typical particle. We show that this process is
almost surely multifractal and compute its spectrum of singularities. For hard potentials, we
also compute the multifractal spectrum of the position process (Xt)t≥0.

1.1 Introduction

The Boltzmann equation is the main model of kinetic theory. It describes the time evolution
of the density ft(x, v) of particles with position x ∈ R3 and velocity v ∈ R3 at time t ≥ 0,
in a gas of particles interacting through binary collisions. In the special case where the gas
is initially spatially homogeneous, this property propagates with time, and ft(x, v) does not
depend on x. We refer to the books by Cercignani [15] and Villani [60] for many details on the
physical and mathematical theory of this equation, see also the review paper by Alexandre [2].

Tanaka gave in [57] a probabilistic interpretation of the case of Maxwellian molecules:
he constructed a Markov process (Vt)t≥0, solution to a Poisson-driven stochastic differential
equation, and such that the law of Vt is ft for all t ≥ 0. Such a process (Vt)t≥0 has a richer
structure than the Boltzmann equation, since it contains some information on the history of
particles. Physically, (Vt)t≥0 is interpreted as the time-evolution of the velocity of a typical
particle. Fournier and Méléard [30] extended Tanaka’s work to non-Maxwellian molecules,
see the last part of paper by Fournier [24] for up-to-date results.

17
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In the case of long-range interactions, that is when particles interact through a repulsive
force in 1/rs (for some s > 2), the Boltzmann equation presents a singular integral (case
without cutoff). The reason is that the corresponding process (Vt)t≥0 jumps infinitely often, i.e.
the particle is subjected to infinitely many collisions, on each time interval. In some sense, it
behaves, roughly, like a Lévy process.

The Hölder regularity of the sample paths of stochastic processes was first studied by Orey
and Taylor [49] and Perkins [50], who showed that the fast and slow points of Brownian motion
are located on random sets of times, and they showed that the sets of points with a given
pointwise regularity have a fractal nature. Jaffard [41] showed that the sample paths of most
Lévy processes are multifractal functions and he obtained their spectrum of singularities. This
spectrum is almost surely deterministic: of course, the sets with a given pointwise regularity
are extremely complicated, but their Hausdorff dimension is deterministic. Let us also mention
the article by Balança [5], in which he extended the results (and simplified some proofs) of
Jaffard [41].

What we expect here is that (Vt)t≥0 should have the same spectrum as a well-chosen Lévy
process. This is of course very natural (having a look at the shape of the jumping SDE satisfied
by (Vt)t≥0). There are however many complications, compared to the case of Lévy processes,
since we lose all the independence and stationarity properties that simplify many computations
and arguments. We will also compute the multifractal spectrum of the position process (Xt)t≥0,
defined by Xt =

∫ t
0
Vsds, which appears to have multifractal sample paths as well.

By the way, let us mention that, though there are many papers computing the multifractal
spectrum of some quite complicated objects, we are not aware of any work concerning general
Markov processes, that is, roughly, solutions to jumping (or even non jumping) SDEs. In
this paper, we study the important case of the Boltzmann process, as a physical example of
jumping SDE. Of course, a number of difficulties have to be surmounted, since the model is
rather complicated. However, we follow, adapting everywhere to our situation, the main ideas
of Jaffard [41] and Balança [5].

Let us finally mention that Barral, Fournier, Jaffard and Seuret [6] studied a very specific
ad-hoc Markov process, showing that quite simple processes may have a random spectrum that
depends heavily on the values taken by the process.

1.1.1 The Boltzmann equation

We consider a 3-dimensional spatially homogeneous Boltzmann equation, which depicts
the density ft(v) of particles in a gas, moving with velocity v ∈ R3 at time t ≥ 0. The density
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ft(v) solves

∂tft(v) =

∫
R3

dv∗

∫
S2
dσB(|v − v∗|, cos θ)[ft(v

′)ft(v
′
∗)− ft(v)ft(v∗)], (1.1)

where

v′ =
v + v∗

2
+
|v − v∗|

2
σ, v′∗ =

v + v∗
2
− |v − v∗|

2
σ, and cos θ =

〈 v − v∗
|v − v∗|

, σ
〉
. (1.2)

The cross section B(|v − v∗|, cos θ) ≥ 0 depends on the type of interaction between parti-
cles. It only depends on |v − v∗| and on the cosine of the deviation angle θ. Conservations of
mass, momentum and kinetic energy hold for reasonable solutions and we may assume without
loss of generality that

∫
R3 f0(v)dv = 1. We will assume that there is a measurable function

β : (0, π]→ R+ such that
B(|v − v∗|, cos θ) sin θ = |v − v∗|γβ(θ),

∃ 0 < c0 < C0, ∀ θ ∈ (0, π/2], c0θ
−1−ν ≤ β(θ) ≤ C0θ

−1−ν ,

∀ θ ∈ (π/2, π), β(θ) = 0,

(1.3)

for some ν ∈ (0, 1), and γ ∈ (−1, 1) satisfying γ+ ν > 0. The last assumption on the function
β is not a restriction and can be obtained by symmetry as noted in the introduction of [3].
Note that, when particles collide by pairs due to a repulsive force proportional to 1/rs for some
s > 2, assumption (1.3) holds with γ = (s − 5)/(s − 1) and ν = 2/(s − 1). Here we will be
focused on the cases of hard potentials (s > 5), Maxwell molecules (s = 5) and moderately
soft potentials (3 < s < 5).

Next, we give the definition of weak solutions of (1.1). We introduce a notation beforehand.
Let f be any probability measure on R3, and we denote

mp(f) =

∫
R3

|v|pf(dv).

Definition 1.1.1. Assume (1.3) is true for some ν ∈ (0, 1), γ ∈ (−1, 1). A measurable fam-
ily of probability measures (ft)t≥0 on R3 is called a weak solution to (1.1) if it satisfies the
following two conditions.

• For all t ≥ 0,∫
R3

vft(dv) =

∫
R3

vf0(dv) and
∫
R3

|v|2ft(dv) =

∫
R3

|v|2f0(dv) <∞. (1.4)

• For any bounded globally Lipschitz-continuous function φ : R3 → R, any t ≥ 0,∫
R3

φ(v)ft(dv) =

∫
R3

φ(v)f0(dv) +

∫ t

0

∫
R3

∫
R3

LBφ(v, v∗)fs(dv∗)fs(dv)ds, (1.5)
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where v′ and θ are defined by (1.2), and

LBφ(v, v∗) :=

∫
S2
B(|v − v∗|, cos θ)(φ(v′)− φ(v))dσ.

The existence of a weak solution to (1.1) is now well established (see [59] and [44]). In
particular, when γ ∈ (0, 1), it is shown in [44] that for any f0 with m2(f0) < ∞, there exists
a weak solution (ft)t≥0 to (1.1) satisfying supt≥t0 mp(ft) < ∞ for all p ≥ 2, all t0 > 0. Some
uniqueness results can be found in [33].

1.1.2 The Boltzmann process
We first parameterize (1.2) as in [31]. For each x ∈ R3 \ {0}, we consider the vector

I(x) ∈ R3 such that |I(x)| = |x| and I(x) ⊥ x. We also set J(x) = x
|x| ∧ I(x), where ∧ is the

vector product. The triplet ( x
|x| ,

I(x)
|x| ,

J(x)
|x| ) is an orthonormal basis of R3. Then for x, v, v∗ ∈ R3,

θ ∈ [0, π), ϕ ∈ [0, 2π), we set
Γ(x, ϕ) := (cosϕ)I(x) + (sinϕ)J(x),

v′(v, v∗, θ, ϕ) := v − 1−cos θ
2

(v − v∗) + sin θ
2

Γ(v − v∗, ϕ),

a(v, v∗, θ, ϕ) := v′(v, v∗, θ, ϕ)− v.
(1.6)

Let us observe at once that Γ(x, ϕ) is orthogonal to x and has the same norm as x, from which
it is easy to check that

|a(v, v∗, θ, ϕ)| =
√

1− cos θ

2
|v − v∗|. (1.7)

Definition 1.1.2. Let (ft)t≥0 be a weak solution to the Boltzmann equation (1.1). On some
probability space (Ω,F , (Ft)t≥0,P), we consider a F0-measurable random variable V0 with
law f0, a Poisson measure N(ds, dv, dθ, dϕ, du) on [0,∞)× R3 × (0, π/2]× [0, 2π)× [0,∞)

with intensity dsfs(dv)β(θ)dθdϕdu. A càdlàg (Ft)t≥0-adapted process (Vt)t≥0 with values in
R3 is then called a Boltzmann process if it solves

Vt = V0 +

∫ t

0

∫
R3

∫ π/2

0

∫ 2π

0

∫ ∞
0

a(Vs−, v, θ, ϕ)1{u≤|Vs−−v|γ}N(ds, dv, dθ, dϕ, du). (1.8)

From Proposition 5.1 in [24], we have slightly different results for different potentials: when
γ ∈ (0, 1), i.e. hard potentials, we can associate a Boltzmann process to any weak solution to
(1.1), but when γ ∈ (−1, 0), i.e. moderately soft potentials, we can only prove existence of a
weak solution to (1.1) to which it is possible to associate a Boltzmann process.

Proposition 1.1.3. Let f0 be a probability measure with m2(f0) < ∞. Assume (1.3) for some
γ ∈ (−1, 1), ν ∈ (0, 1).
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• If γ ∈ (0, 1), for any weak solution (ft)t ≥ 0 to (1.1) starting from f0 and satisfying

for all p ≥ 2, all t0 > 0, sup
t≥t0

mp(ft) <∞,

there exist a probability space (Ω,F , (Ft)t≥0,P), a (Ft)t>0-Poisson random measure
N(ds, dv, dθ, dϕ, du) on the space [0,∞)×R3×(0, π/2]×[0, 2π)×[0,∞) with intensity
dsfs(dv)β(θ)dθdϕdu and a càdlàg (Ft)t≥0-adapted process (Vt)t≥0 satisfying L(Vt) =

ft for all t ≥ 0 and solving (1.8).

• If γ ∈ (−1, 0], assume additionally that f0 with mp(f0) <∞ for some p > 2. There exist
a probability space, a Poisson measure N and a càdlàg adapted process (Vt)t≥0 as in the
previous case, satisfying L(Vt) = ft for all t ≥ 0 and solving (1.8).

The Boltzmann equation depicts the velocity distribution of a dilute gas which is made up
of a large number of molecules. So, the corresponding Boltzmann process (Vt)t≥0 represents
the time evolution of the velocity of a typical particle. When this particle collides with another
one, its velocity changes suddenly. It is thus a jump process.

1.1.3 Recalls on multifractal analysis
In this part, we recall the definition of the main objects in multifractal analysis.

Definition 1.1.4. A locally bounded function g : [0, 1]→ R3 is said to belong to the pointwise
Hölder space Cα(t0) with t0 ∈ [0, 1] and α /∈ N, if there exist C > 0 and a polynomial Pt0 of
degree less than bαc, such that for some neighborhood It0 of t0,

|g(t)− Pt0(t)| ≤ C|t− t0|α, ∀ t ∈ It0 .

The pointwise Hölder exponent of g at point t0 is given by

hg(t0) = sup{α > 0 : g ∈ Cα(t0)},

where by convention sup ∅ = 0. The level sets of the pointwise Hölder exponent of the function
g are called the iso-Hölder sets of g, and are denoted, for any h ≥ 0, by

Eg(h) = {t ≥ 0 : hg(t) = h}.

We now recall the definition of the Hausdorff measures and dimension, see [21] for details.

Definition 1.1.5. Given a subset A of R, given s > 0 and ε > 0, the s-Hausdorff pre-measure
Hs
ε using balls of radius less than ε is given by

Hs
ε(A) = inf

{∑
i∈J

|Ii|s : (Ii)i∈J ∈Pε(A)

}
,
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where Pε(A) is the set of all countable coverings of A by intervals with length at most ε. The
s-Hausdorff measure of A is defined by

Hs(A) = lim
ε→0
Hs
ε(A).

Finally the Hausdorff dimension of A is defined by

dimH(A) := inf{s ≥ 0 : Hs(A) = 0} = sup{s ≥ 0 : Hs(A) = +∞},

and by convention dimH ∅ = −∞.

We use the concept of spectrum of singularities to describe the distribution of the singular-
ities of a function g.

Definition 1.1.6. Let g : [0, 1] → R3 be a locally bounded function. The spectrum of sin-
gularities (or multifractal spectrum) of g is the function Dg : R+ → R+ ∪ {−∞} defined
by

Dg(h) = dimH(Eg(h)).

The iso-Hölder sets Eg(h) are random for most studied stochastic processes, but stochastic
processes such as Lévy processes [41], Lévy processes in multifractal time [7] and fractional
Brownian motion have a deterministic multifractal spectrum. In the case of a Lévy process, it
is easy to see that because of the Blumenthal 0-1 law and the Markov property, these Hausdorff
dimensions are deterministic.

1.1.4 Main Results
Now, we give the main results of this paper.

Theorem 1.1.7. We assume (1.3) for some γ ∈ (−1, 1), some ν ∈ (0, 1) with γ + ν > 0. We
consider some initial condition f0 with m2(f0) < ∞ and assume that it is not a Dirac mass.
If γ ∈ (−1, 0], we moreover assume that f0 with mp(f0) < ∞ for some p > 2. We consider a
Boltzmann process (Vt)t∈[0,1] as introduced in Proposition 1.1.3. Almost surely, for all h ≥ 0,

DV (h) =

{
νh if 0 ≤ h ≤ 1/ν,

−∞ if h > 1/ν.
(1.9)

The condition that f0 is not a Dirac mass is important: if V0 = v0 a.s. for some deterministic
v0 ∈ R3, then Vt = v0 for all t ≥ 0 a.s. (which is a.s. a C∞ function on [0,∞)).

It is obvious from the proof that the spectrum of singularities is homogeneous: we could
prove similarly that a.s., for any 0 ≤ t0 < t1 <∞, all h ≥ 0, dimH(EV (h)∩ [t0, t1]) = DV (h).
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Finally, it is likely that the same result holds true for very soft potentials. However, there
are several technical difficulties, and the proof would be much more intricate.

Now we exhibit the multifractal spectrum of the position process. For simplicity, we only
consider the case of hard potentials.

Theorem 1.1.8. We assume (1.3) for some γ ∈ (0, 1) and some ν ∈ (0, 1). We consider some
initial condition f0 with m2(f0) < ∞ and assume that it is not a Dirac mass. We consider a
Boltzmann process (Vt)t∈[0,1] as introduced in Proposition 1.1.3 and introduce the associated

position process (Xt)t∈[0,1] defined by Xt =

∫ t

0

Vsds. Almost surely, for all h ≥ 0,

DX(h) =

{
ν(h− 1) if 1 ≤ h ≤ 1

ν
+ 1,

−∞ if h > 1
ν

+ 1 or 0 ≤ h < 1.
(1.10)

This result is very natural once Theorem 1.1.7 is checked: we expect that at some given
time t, the pointwise exponent of X is the one of V plus 1. However, this is not always true.
Balança [5] has shown that such an oscillatory phenomenon do occur for Lévy processes, but
on a very small set of points.

Definition 1.1.9. Let g : [0, 1] → R3 be a locally bounded function and let G(t) =
∫ t

0
g(s)ds.

For all h ≥ 0, we introduce the sets

Ecusp
g (h) = {t ∈ Eg(h) : hG(t) = 1+hg(t)} and Eosc

g (h) = {t ∈ Eg(h) : hG(t) > 1+hg(t)}.
(1.11)

The times t ∈ Ecusp
g (h) are referred to as cusp singularities, while the times t ∈ Eosc

g (h)

are called oscillating singularities. Observe that Eg(h) = Ecusp
g (h) ∪ Eosc

g (h), the union being
disjoint: this follows from the fact that obviously, for all t ∈ [0, 1], hG(t) ≥ hg(t) + 1. We will
prove the following.

Theorem 1.1.10. Under the assumptions of Theorem 1.1.8, we have almost surely:

• for all h ∈ [1/(2ν), 1/ν), dimH

(
Eosc
V (h)

)
≤ 2hν − 1,

• for all h ∈ [0, 1/(2ν)) ∪ (1/ν,+∞], Eosc
V (h) = ∅,

• for all h ∈ [0, 1/ν], dimH

(
Ecusp
V (h)

)
= hν.

Actually, we will first prove Theorem 1.1.10 which, together with Theorem 1.1.7, implies
Theorem 1.1.8.
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1.2 Localization of the problem
In the following sections, we consider a Boltzmann process (Vt)t∈[0,1] associated to a weak

solution (ft)t∈[0,1] to (1.1), and driven by a Poisson measure N(ds, dv, dθ, dϕ, du) on [0, 1] ×
R3 × (0, π/2]× [0, 2π)× [0,∞) with intensity dsfs(dv)β(θ)dθdϕdu.

For B ≥ 1, setting HB(v) = |v|∧B
|v| v, we define, for t ∈ [0, 1],

V B
t := V0+

∫ t

0

∫
R3

∫ π/2

0

∫ 2π

0

∫ ∞
0

a(HB(Vs−), v, θ, ϕ)1{u≤|HB(Vs−)−v|γ}N(ds, dv, dθ, dϕ, du),

(1.12)
where a is defined in (1.6). We define the corresponding position process, for t ∈ [0, 1], as

XB
t =

∫ t

0

V B
s ds. (1.13)

In the rest of the paper, we will check the following two localized claims.

Proposition 1.2.1. Let B ≥ 1 be fixed. We assume (1.3) for some γ ∈ (−1, 1), some ν ∈ (0, 1)

with γ + ν > 0. We consider the localized process introduced in (1.12). Almost surely, for all
h ≥ 0,

DV B(h) =

{
νh if 0 ≤ h ≤ 1/ν,

−∞ if h > 1/ν.

Proposition 1.2.2. Let B ≥ 1 be fixed. We assume (1.3) for some γ ∈ (0, 1), some ν ∈ (0, 1).
We consider the localized process (V B

t )t≥0 defined in (1.12). Then almost surely,

• for all h ∈ [1/(2ν), 1/ν), dimH

(
Eosc
V B(h)

)
≤ 2hν − 1,

• for all h ∈ [0, 1/(2ν)) ∪ (1/ν,+∞], Eosc
V B(h) = ∅,

• for all h ∈ [0, 1/ν], dimH

(
Ecusp
V B

(h)
)

= hν.

Once these propositions are verified, Theorems 1.1.7 and 1.1.10 are immediately deduced.

Proof of Theorems 1.1.7 and 1.1.10. Since sup[0,1] |Vt| < +∞ a.s. (because V is a càdlàg pro-
cess), the event ΩB = {sup[0,1] |Vt| ≤ B} a.s. increases to Ω as B increases to infinity. But
on ΩB, we obviously have that (V B

t )t∈[0,1] = (Vt)t∈[0,1]. Hence on ΩB, it holds that for all
h ∈ [0,+∞], DV (h) = DV B(h), dimH(Eosc

V (h)) = dimH(Eosc
V B(h)) and dimH(Ecusp

V (h)) =

dimH(Ecusp
V B

(h)). The conclusion then follows from the above two propositions.

We thus fix B ≥ 1 for the rest of the paper.
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1.3 Study of the velocity process

1.3.1 Preliminaries
First, we need to bound ft from below. The following lemma is purely deterministic.

Lemma 1.3.1. There exist a, b, c > 0, such that for any w ∈ R3, any t ∈ [0, 1],

ft(Hw) ≥ b, (1.14)

where Hw = {v ∈ R3 : |v − w| ≥ a, |v| ≤ c}.

Proof. As f0 is not a Dirac mass, there exist v1 6= v2 such that v1, v2 ∈ Suppf0. We set
a = |v1−v2|

6
.

Step 1. We first show that there exists b > 0, such that for all w ∈ R3, t ∈ [0, 1], ft({v :

|v − w| ≥ a}) ≥ 2b. First, if |w| ≥
√

2m2(f0) + a =: M , recalling that m2(ft) = m2(f0) for
all t ≥ 0,

ft({v : |v − w| ≥ a}) ≥ ft({v : |v| ≤ |w| − a}) = 1− ft({v : |v| > |w| − a})

≥ 1− m2(f0)

(|w| − a)2
≥ 1− m2(f0)

2m2(f0)
=

1

2
.

Next, we consider a bounded nonnegative globally Lipschitz-continuous function φ : R+ →
[0, 1], such that for all v > 0, 1B(0,a)c(v) ≥ φ(|v|) ≥ 1B(0,2a)c(v), and define F (t, w) =∫
R3 φ(|w− v|)ft(dv). We know that t 7→ F (t, w) is continuous for each w ∈ R3 by Lemma 3.3

in [24]. Moreover, F (t, w) is (uniformly in t) continuous in w by the Lipschitz-continuity of φ.
So F (t, w) is continuous on [0, 1] × R3. Since for all t > 0, Suppft = R3 by Theorem 1.2 in
[24], we get F (t, w) ≥ ft(B(w, 2a)c) > 0, ∀ (t, w) ∈ (0, 1]×B(0,M). When t = 0, recalling
that v1, v2 ∈ Suppf0 and a = |v1−v2|

6
, we easily see that for all w ∈ R3, either B(v1, a) ⊂

B(w, 2a)c or B(v2, a) ⊂ B(w, 2a)c, whence F (0, w) ≥ min{f0(B(v1, a)), f0(B(v2, a))} > 0.
Since [0, 1] × B(0,M) is compact and F (t, w) is continuous, there exists b1 > 0, such that
ft(B(w, a)c) ≥ F (t, w) ≥ b1 for all (t, w) ∈ [0, 1] × B(0,M). So we conclude by choosing
b = min(1

2
, b1)/2.

Step 2. We now conclude. Using Step 1,

ft({v : |v − w| ≥ a, |v| ≤ c}) ≥ ft({v : |v − w| ≥ a})− ft({v : |v| > c}) ≥ 2b− m2(f0)

c2
.

So, we complete the proof by taking c =
√

m2(f0)
b

.
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1.3.2 Random fractal sets associated with the Poisson process
First, we introduce some notations. Recall that hV B , EV B , DV B respectively the Hölder

exponent, iso-Hölder set and spectrum of singularities of the Boltzmann process (V B
t )t∈[0,1].

The notation L represents the Lebesgue measure. J designates the set of the jump times of
the process V B, that is,

J := {s ∈ [0, 1] : |∆V B
s | 6= 0}.

For m ≥ 1, we also introduce

Jm := {s ∈ J : |∆V B
s | ≤ 2−m}, J̃m := {s ∈ J : 2−m−1 < |∆V B

s | ≤ 2−m}.

For δ > 0 and m ≥ 1, we define the sets

Amδ :=
⋃
s∈Jm

[s− |∆V B
s |δ, s+ |∆V B

s |δ], Ãmδ :=
⋃
s∈J̃m

[s− |∆V B
s |δ, s+ |∆V B

s |δ].

Finally, for δ > 0, we define

Aδ = lim sup
m→+∞

Amδ = lim sup
m→+∞

Ãmδ . (1.15)

The main result of this subsection states that

Proposition 1.3.2. We have a.s. the following properties:

(1) for all δ ∈ (0, ν), Aδ ⊃ [0, 1],

(2) there exists a (random) positive sequence (εm)m≥1 decreasing to 0, such that

L
(
A∗ν

⋂
[0, 1]

)
= 1,

where we use the notation A∗δ = lim supm→+∞ Ã
m
δ(1−εm), for all δ ∈ (0,∞).

Remark 1.3.3. We observe at once that for any δ > δ′ > 0, Aδ ⊂ A∗δ ⊂ Aδ′ .

We study Aδ because of the following heuristics: if t ∈ Aδ with δ large, then t is rather
close to many large jump times of V B, so that V B will not be very regular at t. On the contrary,
if t only belongs to those Aδ’s where δ is small, then this means that t is rather far away from
the jumps of V B, so that V B will be rather regular at t.

We introduce A∗δ (which resembles very much Aδ) for technical reasons, mainly because
at the critical value δ = ν, we cannot prove (and it may be false) that Aν has full Lebesgue
measure.

The rest of this subsection is devoted to proving this proposition. We first recall the Shepp
lemma, first discovered in [53], in the version used in [41].
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Lemma 1.3.4. We consider a Poisson measure π(ds, dy) =
∑

s∈D δ(s,ys) on [0, 1]× (0, 1) with
intensity dsµ(dy), where µ is a measure on (0, 1). We consider the set U = ∪s∈D(s−ys, s+ys).
If ∫ 1

0

exp

(
2

∫ 1

t

µ((y, 1))dy

)
dt = +∞,

then almost surely, [0, 1] ⊂ U .

We write N =
∑

s∈D δ(s,vs,θs,ϕs,us), where vs, θs, ϕs, us are the quanta corresponding to the
jump time s ∈ D . For convenience, we consider this Poisson measure by adding a family
of independent variables (xs)s∈D , which are uniformly distributed in [0, 1] and independent of
vs, θs, ϕs, us, so thatO :=

∑
s∈D δ(s,vs,θs,ϕs,us,xs) is a Poisson measure on [0, 1]×R3×(0, π/2]×

[0, 2π]× [0,∞)× [0, 1] with intensity dsfs(dv)β(θ)dθdϕdudx. According to Lemma 1.3.1, we
know that fs(Hw) ≥ b for all s ∈ [0, 1] and all w ∈ R3. Then we can get the following lemma.

Lemma 1.3.5. For m ≥ 1, we introduce

J ′m :=

{
s ∈ D : us ≤ dγ, vs ∈HHB(Vs−), θs ≤ K2−m, xs ≤

b

fs(HHB(Vs−))

}
,

where K = 1/(B + c) and where d = a (if γ ∈ (0, 1)) or d = B + c (if γ ∈ (−1, 0]). Then we
have

J ′m ⊂ Jm and
⋃
s∈J ′m

[
s−

(aθs
4

)δ
, s+

(aθs
4

)δ]
⊂ Amδ . (1.16)

Proof. We recall that, for all s ∈ [0, 1], |HB(Vs−)| =
∣∣∣ |Vs−|∧B|Vs−| Vs−

∣∣∣ ≤ B and that vs ∈HHB(Vs−)

implies that |HB(Vs−) − vs| ≥ a and |vs| ≤ c. Then for all m ≥ 1, for all s ∈ J ′m, we have
(recall (1.7))

|∆V B
s | =

√
1− cos θs

2
|HB(Vs−)− vs|1{us≤|HB(Vs−)−vs|γ}

≤ θs|HB(Vs−)− vs| ≤ K2−m(B + c) = 2−m,

i.e. J ′m ⊂ Jm.

In addition, for all s ∈ J ′m, using that |HB(Vs−) − vs| ≥ a, that 1 − cos θ ≥ θ2/8 on
(0, π/2], and that the indicator equals 1, we have

|∆V B
s | =

√
1− cos θs

2
|HB(Vs−)− vs|1{us≤|HB(Vs−)−vs|γ} ≥

aθs
4
.

Indeed, the indicator equals 1 because we always have us ≤ dγ ≤ |HB(Vs−) − vs|γ (if γ ∈
(0, 1), then |HB(Vs−)− vs| ≥ a and d = a, while if γ ∈ (−1, 0], then |HB(Vs−)− vs| ≤ B + c

and d = B + c). Since |∆V B
s | ≥ aθs/4 and J ′m ⊂ Jm, the lemma follows.
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Lemma 1.3.6. Let m ≥ 1 and δ > 0 be fixed. The random measure

µδm(ds, dy) =
∑
s∈J ′m

δ(s,(aθs/4)δ)

is a Poisson measure on [0, 1]× (0,∞) with intensity ds hδm(y)dy, where

hδm(y) =
8πdγb

aδ
β
(4

a
y1/δ

)
y

1
δ
−11{y≤(aK2−(m+2))δ∧(aπ/8)δ}.

Moreover, we have

c1y
−1− ν

δ 1{y≤(aK2−(m+2))δ∧(aπ/8)δ} ≤ hδm(y) ≤ C1y
−1− ν

δ 1{y≤(aK2−(m+2))δ∧(aπ/8)δ},

for some constants 0 < c1 < C1 (depending on B, δ).

Proof. By Jacod-Shiryaev [40] [Chapter 2, Theorem 1.8], it suffices to check that the com-
pensator of the random measure µδm(ds, dy) is dshδm(y)dy, i.e., for any predictable process
W (s, y),∫ t

0

∫ ∞
0

W (s, y)(µδm(ds, dy)− dshδm(y)dy)

=

∫ t

0

∫
R3

∫ π/2

0

∫ 2π

0

∫ ∞
0

∫ 1

0

W (s, (aθ/4)δ)× 1{v∈HHB(Vs−), θ≤K2−m, u≤dγ , x≤b/fs(HHB(Vs−))}

×O(ds, dv, dθ, dϕ, du, dx)−
∫ t

0

∫ ∞
0

W (s, y)hδm(y)dsdy

is a local martingale. Recalling that O(ds, dv, dθ, dϕ, du, dx) is a Poisson measure with inten-
sity dsfs(dv)β(θ)dθdϕdudx, we know that∫ t

0

∫
R3

∫ π/2

0

∫ 2π

0

∫ ∞
0

∫ 1

0

W (s, (aθ/4)δ)1{v∈HHB(Vs−), θ≤K2−m, u≤dγ , x≤b/fs(HHB(Vs−))}

×
(
O(ds, dv, dθ, dϕ, du, dx)− dsfs(dv)β(θ)dθdϕdudx

)
is a local martingale. Thus, we only need to prove that∫ t

0

∫
R3

∫ π/2

0

∫ 2π

0

∫ ∞
0

∫ 1

0

W (s, (aθ/4)δ)1{v∈HHB(Vs−), θ≤K2−m, u≤dγ , x≤b/fs(HHB(Vs−))}

× dsfs(dv)β(θ)dθdϕdudx

=

∫ t

0

∫ ∞
0

W (s, y)hδm(y)dsdy.
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Actually,∫ t

0

∫
R3

∫ π/2

0

∫ 2π

0

∫ ∞
0

∫ 1

0

W (s, (aθ/4)δ)1{v∈HHB(Vs−), θ≤K2−m, u≤dγ , x≤b/fs(HHB(Vs−))}

× dsfs(dv)β(θ)dθdϕdudx

=2πdγb

∫ t

0

∫ π/2

0

W (s, (aθ/4)δ)1{θ≤K2−m}dsβ(θ)dθ.

Using the substitution y = (aθ/4)δ, we conclude that the intensity of µδm is indeed dshδm(y)dy.
From (1.3), we can easily get the bounds for hδm(y).

Now, we give the

Proof of Proposition 1.3.2. We start with (1) and thus fix δ ∈ (0, ν). By Lemma 1.3.6, we
know that the random measure µδm =

∑
s∈J ′m

δ(s,(aθs/4)δ) is a Poisson measure on [0, 1]× (0, 1)

with intensity ds hδm(y)dy, where

hδm(y) ≥ c1y
−1− ν

δ 1{y≤(aK2−(m+2))δ∧(aπ/8)δ}.

Clearly, for all m ≥ 1, δ ∈ (0, ν),∫ 1

0

exp

(
2

∫ 1

t

∫ 1

y

hδm(z)dzdy

)
dt =∞,

since 2
∫ 1

t
(
∫ 1

y
hδm(z)dz)dy ≥ 2c1

δ2

(ν−δ)ν t
1− ν

δ . Applying Lemma 1.3.4, we deduce that almost
surely, for all m ≥ 1,

[0, 1] ⊂
⋃
s∈J ′m

[
s−

(aθs
4

)δ
, s+

(aθs
4

)δ]
.

Consequently, almost surely,

[0, 1] ⊂ lim sup
m→+∞

⋃
s∈J ′m

[
s−

(aθs
4

)δ
, s+

(aθs
4

)δ]
.

Recalling (1.15) and (1.16), we deduce that [0, 1] ⊂ Aδ almost surely.

We next prove (2). We set m1 = 1. By (1), we have a.s.

[0, 1] ⊂ Aν(1−1/2) ⊂
⋃

m≥m1

Ãmν(1−1/2).

Hence we can find m2 > m1 such that

L

( ⋃
m1≤m<m2

Ãmν/2
⋂

[0, 1]

)
≥ 1− 1

2
.
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Similarly, we have almost surely, [0, 1] ⊂ Aν(1−1/3) ⊂
⋃
m≥m2

Ãmν(1−1/3), therefore we can find
m3 > m2 such that

L

( ⋃
m2≤m<m3

Ãmν(1−1/3)

⋂
[0, 1]

)
≥ 1− 1

22
.

By induction, we can find an increasing sequence (mj)j≥1 such that, for all j ≥ 2,

L

 ⋃
mj−1≤m<mj

Ãmν(1−1/j)

⋂
[0, 1]

 ≥ 1− 1

2j−1
.

So, from the Fatou lemma, we have

L

lim sup
j→+∞

⋃
mj−1≤m<mj

Ãmν(1−1/j)

⋂
[0, 1]


≥ lim sup

j→+∞
L

 ⋃
mj−1≤m<mj

Ãmν(1−1/j)

⋂
[0, 1]

 ≥ 1.

We now put εm = 1
j

for m ∈ [mj−1,mj) and note that

lim sup
j→+∞

⋃
m∈[mj−1,mj)

Ãmν(1−εm) = lim sup
m→+∞

Ãmν(1−εm).

The conclusion follows.

1.3.3 Study of the Hölder exponent of V B

We now study the pointwise Hölder exponent of the localized Boltzmann process V B.

Definition 1.3.7. For all t ∈ [0, 1], the index of approximation of t is defined by

δt := sup{δ > 0 : t ∈ Aδ}.

For all t ∈ [0, 1], the index of approximation of t reflects directly the relation between t and
jump times of V B. If δt is large, then t is close to many large jumps of V B.

Remark 1.3.8. Recalling Remark 1.3.3 and Proposition 1.3.2, we see that almost surely, for
all t ∈ [0, 1], δt = sup{δ > 0 : t ∈ A∗δ} and δt ≥ ν.

If t ∈ J , we know that hV B(t) = 0. Then for t ∈ [0, 1] \ J , we claim that the Hölder
exponent is the inverse of the index of approximation.
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Proposition 1.3.9. Almost surely, for all t ∈ [0, 1] \ J , hV B(t) = 1/δt.

To prove this claim, we need the following two lemmas. The first lemma, that will give the
upper bound for hV B(t), can be found in [41] and is as follows.

Lemma 1.3.10. Let f : R → R3 be a function discontinuous on a dense set of points and let
t ∈ R. Let (tn)n≥1 be a real sequence converging to t and such that f has left and right limits
at each tn. Then

hf (t) ≤ lim inf
n→∞

log |f(tn+)− f(tn−)|
log |tn − t|

.

For the lower bound of hV B(t), we will use Lemma 1.3.11 below, that relies on some ideas
of [5]. We first introduce, for m > 0, the following two processes:

V B,m
t :=V0 +

∫ t

0

∫
R3

∫ π/2

0

∫ 2π

0

∫ ∞
0

a(HB(Vs−), v, θ, ϕ) 1{u≤|HB(Vs−)−v|γ}

× 1{|a(HB(Vs−),v,θ,ϕ)|≤2−m}N(ds, dv, dθ, dϕ, du),

ZB,m
t :=

∫ t

0

∫
R3

∫ π/2

0

∫ 2π

0

∫ ∞
0

θ|HB(Vs−)− v|1{u≤|HB(Vs−)−v|γ}

× 1{θ|HB(Vs−)−v|/4≤2−m}N(ds, dv, dθ, dϕ, du).

We can immediately observe that the process ZB,m
t is almost surely increasing as a function of

t. We also notice that a.s., for all x, y ∈ [0, 1],∣∣V B,m
x − V B,m

y

∣∣ ≤ ∣∣ZB,m
x − ZB,m

y

∣∣ . (1.17)

This comes from the inequality θ|HB(Vs−)− v|/4 ≤ |a(HB(Vs−), v, θ, ϕ)| ≤ θ|HB(Vs−)− v|,
which follows from (1.7).

Lemma 1.3.11. There exists some constant CB > 0, such that

(1) for all δ > ν, all m ≥ 1,

P

[
sup

x,y∈[0,1],|x−y|≤2−m

∣∣∣V B,m
δ

x − V B,m
δ

y

∣∣∣ ≥ m2−m/δ

]
≤ CBe

−m/4, (1.18)

(2) for all m ≥ 1, all λ ∈ [0, 2m],

E
[
eλZ

B,m
1

]
≤ eCBλ2−m(1−ν)

. (1.19)



32 CHAPTER 1. THE MULTIFRACTAL NATURE OF BOLTZMANN PROCESSES

Proof. We first prove (1.18). Setting λ = 3 × 2m/δ, recalling (1.17) and that Z
B,m

δ
t is almost

surely increasing in t, we get

P

[
sup

x,y∈[0,1],|x−y|≤2−m

∣∣∣V B,m
δ

x − V B,m
δ

y

∣∣∣ ≥ m2−m/δ

]

≤ P

[
sup

x,y∈[0,1],|x−y|≤2−m

∣∣∣ZB,m
δ

x − ZB,m
δ

y

∣∣∣ ≥ m2−m/δ

]

≤
2m−1∑
k=0

P
[(
Z
B,m

δ

(k+1)2−m − Z
B,m

δ

k2−m

)
≥ m2−m/δ

3

]

≤
2m−1∑
k=0

e−mE
[
exp

{
λ
(
Z
B,m

δ

(k+1)2−m − Z
B,m

δ

k2−m

)}]
=:

2m−1∑
k=0

e−mIk.

We then set
Jk(t) := E

[
exp

{
λ
(
Z
B,m

δ

t+k2−m − Z
B,m

δ

k2−m

)}]
.

Observe that Ik = Jk(2
−m). For all t ≥ 0, we have, by the Itô formula,

Jk(t) = 1 + 2πE

[∫ t+k2−m

k2−m

∫
R3

∫ π/2

0

exp
{
λ
(
Z
B,m

δ
s − ZB,m

δ

k2−m

)}
(eλθ|HB(Vs)−v| − 1)

× |HB(Vs)− v|γ1{θ|HB(Vs)−v|/4≤2−m/δ}β(θ)dθfs(dv)ds

]
.

From λθ |HB(Vs)− v| ≤ 4λ2−m/δ = 12, we have eλθ|HB(Vs)−v| − 1 ≤ Cλθ|HB(Vs) − v| for
some positive constant C. Using this estimate and recalling (1.3), we get

Jk(t) ≤1 + CλE

[∫ t+k2−m

k2−m

∫
R3

∫ π/2

0

exp
{
λ
(
Z
B,m

δ
s − ZB,m

δ

k2−m

)}
× θ−ν |HB(Vs)− v|γ+11{θ|HB(Vs)−v|/4≤2−m/δ}dθfs(dv)ds

]
.

Moreover,

|HB(Vs)− v|γ+1

∫ π/2

0

θ−ν1{θ|HB(Vs)−v|/4≤2−m/δ}dθ

≤ C|HB(Vs)− v|γ+1(|HB(Vs)− v|2m/δ)ν−1

≤ C|HB(Vs)− v|γ+ν2m(ν−1)/δ.
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Since γ + ν ∈ (0, 2) by assumption, we have |HB(Vs) − v|γ+ν ≤ C(1 + |v|2 + |HB(Vs)|2),
whence

Jk(t) ≤ 1 + Cλ2m(ν−1)/δE

[∫ t+k2−m

k2−m

∫
R3

exp
{
λ
(
Z
B,m

δ
s − ZB,m

δ

k2−m

)}
× (1 + |HB(Vs)|2 + |v|2)fs(dv)ds

]
.

Since |HB(Vs)| ≤ B, and by (1.4), we have a.s.∫
R3

(1 + |HB(Vs)|2 + |v|2)fs(dv) ≤ 1 +B2 +m2(f0).

Using finally that λ 2m(ν−1)/δ = 3× 2mν/δ, we find that for all t, a.s.

Jk(t) ≤ 1 + CB2mν/δ
∫ t

0

Jk(s)ds .

Hence Jk(t) ≤ exp(CB2mν/δt) by the Gronwall inequality, so that Ik = Jk(2
−m) ≤

exp(CB2−m(1− ν
δ

)) ≤ CB because δ ≥ ν. Finally,

P

[
sup

x,y∈[0,1],|x−y|≤2−m

∣∣∣V B,m
δ

x − V B,m
δ

y

∣∣∣ ≥ m2−m/δ

]
≤

2m−1∑
k=0

e−mIk ≤ CB e
−m2m ≤ CB e

−m/4.

This completes the proof of (1.18). We only sketch the proof of (1.19), since it is very similar.
First, by Itô Formula,

E
[
eλZ

B,m
t

]
= 1 + 2πE

[∫ t

0

∫
R3

∫ π/2

0

eλZ
B,m
s
(
eλθ|HB(Vs)−v| − 1

)
|HB(Vs)− v|γ

× 1{θ|HB(Vs)−v|/4≤2−m}β(θ)dθfs(dv)ds

]
.

Since λθ|HB(Vs)− v| < 4 (because λ ≤ 2m), a similar computation as previously shows that

E
[
eλZ

B,m
t

]
≤ 1 + CBλ2m(ν−1)E

[∫ t

0

eλZ
B,m
s ds

]
≤ 1 + CBλ2m(ν−1)

∫ t

0

E[eλZ
B,m
s ]ds.

Owing to the Grönwall inequality, we deduce that E[eλZ
B,m
t ] ≤ eCBλ2m(ν−1)t. Taking t = 1, we

obtain the conclusion.
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Now, we can proceed to the

Proof of Proposition 1.3.9. Upper Bound. Here we prove that for all t ∈ [0, 1], it holds that
hV B(t) ≤ 1/δt. To this end, we check that for all δ > 0, all t ∈ Aδ, hV B(t) ≤ 1/δ. Let
thus δ > 0 and t ∈ Aδ. By definition of Aδ, for all m ≥ 1, there exists tm ∈ J , such that
|tm − t| ≤ |∆V B

tm|
δ and |∆V B

tm| ≤ 2−m. From Lemma 1.3.10, we directly deduce that

hV B(t) ≤ lim inf
m→∞

log |∆V B
tm|

log |tm − t|
≤ lim inf

m→∞

log |∆V B
tm |

log |∆V B
tm |δ

=
1

δ
.

Lower Bound. In this part we show that almost surely, for all t ∈ [0, 1] \ J , hV B(t) ≥ 1/δt. To
get this, we need to check that for all δ > ν, if t /∈ Aδ, then hV B(t) ≥ 1/δ. Let thus δ > ν and
t /∈ Aδ.

By Lemma 1.3.11-(1) and Borel-Cantelli’s lemma, there almost surely exists m0 ≥ 1 such
that for all m > m0, for all x, y ∈ [0, 1] satisfying |x− y| ≤ 2−m,

|V B,m/δ
x − V B,m/δ

y | ≤ m2−m/δ. (1.20)

Since t /∈ Aδ, there exists m1 > m0, such that for all s ∈ J satisfying |∆V B
s | ≤ 2−m1 , we

have
|s− t| > |∆V B

s |δ. (1.21)

For all r ∈ [0, 1], we define

Um1
t,r :=

∑
s∈[t∧r,t∨r]∩J

|∆V B
s | 1{|∆V Bs |>2−m1},

and we observe that
|V B
t − V B

r | ≤ |V
B,m1
t − V B,m1

r |+ UB,m1
t,r .

Since t /∈ J and since the process V B has almost surely a finite number of jump greater than
2−m1 , we can almost surely find ε1 > 0 such that, for all r ∈ (t− ε1, t+ ε1), Um1

t,r = 0.

Next, we put ε2 = 2−m1−1. Then for each r ∈ (t−ε2, t+ε2), we setmr = blog2
1
|t−r|c > m1,

for which 2−mr−1 < |t− r| ≤ 2−mr . Then for all r ∈ (t− ε2, t+ ε2), we write

|V B,m1
t − V B,m1

r | ≤ |V B,mr/δ
t − V B,mr/δ

r |+
∑

s∈[t∧r,t∨r]∩J

|∆V B
s | 1{2−mr/δ<|∆V Bs |≤2−m1}.

According to (1.21), for s ∈ [t∧r, t∨r]∩J , |∆V B
s | ≤ 2−m1 implies that |4V B

s | < |s−t|1/δ ≤
|r − t|1/δ ≤ 2−mr/δ, whence the second term

∑
s∈[t∧r,t∨r]∩J |∆V B

s | 1{2−mr/δ<|∆V Bs |≤2−m1} van-
ishes.
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To summarize, we have checked that for all r ∈
(
t− (ε1 ∧ ε2), t+ (ε1 ∧ ε2)

)
,

|V B
t − V B

r | ≤
∣∣∣V B,mr/δ
t − V B,mr/δ

r

∣∣∣.
Furthermore, since mr > m0, we conclude from (1.20) that, still for r ∈

(
t − (ε1 ∧ ε2), t +

(ε1 ∧ ε2)
)

,

|V B
t − V B

r | ≤ mr2
−mr/δ ≤ 21/δ

log 2
log
( 1

|t− r|

)
|t− r|1/δ.

This implies that hV B(t) ≥ 1/δ and ends the proof.

1.3.4 Hausdorff dimension of the sets A∗δ
Now, we compute the Hausdorff dimension of A∗δ , which will be used for giving the spec-

trum of singularities and the proof of Proposition 1.2.1 in the next subsection.

Proposition 1.3.12. Almost surely, for all δ > ν,

dimH(A∗δ) = ν/δ andHν/δ(A∗δ) = +∞.

To check this proposition, we need the mass transference principle, proved in [9], Theorem
2 (applied in dimension k = 1 and with the function f(x) = xα).

Lemma 1.3.13. Let α ∈ (0, 1) be fixed. Let {Fi = [xi − ri, xi + ri]}i∈N be a sequence of
intervals in R with radius ri → 0 as i→ +∞. Suppose that

L (lim sup
i→+∞

Fα
i ∩ [0, 1]) = 1,

where Fα
i := [xi − rαi , xi + rαi ]. Then,

Hα(lim sup
i→+∞

Fi ∩ [0, 1]) = Hα([0, 1]) = +∞.

Proof of Proposition 1.3.12. Lower Bound. We fix δ > ν. For all m ≥ 1, we set

Nm := ]J̃m = ]{s ∈ J : 2−m−1 < |∆V B
s | ≤ 2−m}.

We can write J̃m = {Tm1 , ..., TmNm}, ordered chronologically. Then we define a sequence
(Fδ,j)j≥1 of intervals as follows. For j ≥ 1, there is a unique m ≥ 1 and i ∈ {1, 2, ..., Nm}
such that j =

∑m−1
k=0 Nk + i and write

Fδ,j :=
[
Tmi − |∆V B

Tmi
|δ(1−εm), Tmi + |∆V B

Tmi
|δ(1−εm)

]
,
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where εm is defined in Proposition 1.3.2. By this way, we get a sequence of intervals (Fδ,j)j≥1

of radius tending to 0 and such that, for all α > 0, lim supj→+∞ F
α
δ,j = A∗αδ (this is obvious by

definition of A∗δ , see Remark 1.3.3). Particularly, taking α = ν
δ
∈ (0, 1), we get

lim sup
j→+∞

F
ν/δ
δ,j = A∗ν .

Thus by Proposition 1.3.2-(2),

L
(

lim sup
j→+∞

F
ν/δ
δ,j ∩ [0, 1]

)
= 1.

Consequently, by Lemma 1.3.13, we have

Hν/δ
(

lim sup
j→+∞

Fδ,j ∩ [0, 1]
)

= +∞,

that is,
Hν/δ

(
A∗δ ∩ [0, 1]

)
= +∞.

ThenHν/δ(A∗δ) = +∞ and dimH(A∗δ) ≥ ν/δ.

Observing that the family of intervals F ν/δ
δ,j does not depend on δ, we can clearly ap-

ply Lemma 1.3.13 simultaneously for all δ > ν and we conclude that a.s., for all δ > ν,
Hν/δ(A∗δ) = +∞ and dimH(A∗δ) ≥ ν/δ.

Upper Bound. Let δ > ν be fixed. To get the upper bound for dimH(A∗δ), we show first that
a.s., dimH(Aδ) ≤ ν

δ
. For all m ≥ 1,

Nm =
∑
s∈J

1{2−m−1<|∆V Bs |≤2−m} ≤
∑
s∈J

2m+1|∆V B
s |1{|∆V Bs |≤2−m} ≤ 2m+1ZB,m

1 .

This estimate is obtained by using (1.17). Then

P[Nm ≥ m2mν ] ≤ P[ZB,m
1 ≥ 1

2
m2m(ν−1)].

Setting λ = 2m(1−ν), we get

P[ZB,m
1 ≥ 1

2
m2m(ν−1)] = P[λZB,m

1 ≥ m/2] ≤ e−
m
2 E[eλZ

B,m
1 ].

Since λ = 2m(1−ν) ≤ 2m, we infer from Lemma 1.3.11-(2) that

E[eλZ
B,m
1 ] ≤ CB.
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Hence we obtain
P[Nm ≥ m2mν ] ≤ CBe

−m/2.

According to the Borel-Cantelli lemma, we know that, almost surely there exists M > 0 such
that, for all m > M , Nm < m2mν .

Next, by definition of Ãkδ ,⋃
k≥m

Ãkδ ⊂
⋃
k≥m

⋃
s∈J̃k

[s− 2−kδ, s+ 2−kδ],

so, recalling Definition 1.5, for all α > 0, and all m > M , a.s.,

Hα
2−mδ+1

( ⋃
k≥m

Ãkδ

)
≤ 2α

∑
k≥m

Nk2
−kδα ≤ 2α

∑
k≥m

k2k(ν−δα).

But recalling (1.15), Aδ ⊂
⋃
k≥m Ã

k
δ , whence, for all α > 0, and all m > M , a.s.,

Hα
2−mδ+1(Aδ) ≤ 2α

∑
k≥m

k2k(ν−δα).

Consequently,

Hα(Aδ) = lim
m→+∞

Hα
2−mδ+1(Aδ) ≤ 2α lim

m→+∞

∑
k≥m

k2k(ν−δα).

It follows thatHα(Aδ) = 0 for all α > ν/δ. Thus, dimH(Aδ) ≤ ν/δ by Definition 1.1.5. Since
A∗δ ⊂ Aδ′ for any δ′ ∈ (0, δ), we easily conclude that, a.s.,

dimH(A∗δ) ≤ ν/δ.

We have shown that for all δ > ν, a.s., dimH(A∗δ) ≤ ν/δ. Using the a.s. monotonicity of
δ 7→ A∗δ , it is not hard to conclude that a.s., for all δ > ν, dimH(A∗δ) ≤ ν/δ.

1.3.5 Spectrum of singularity of V B

Using Proposition 1.3.9, we can easily get the following relationship between EV B(h) and
A∗δ .

Proposition 1.3.14. Almost surely, for all h > 0,

EV B(h) =
( ⋂
δ∈(0,1/h)

A∗δ

)
\
( ⋃
δ>1/h

A∗δ

)
.

and
EV B(0) =

( ⋂
δ∈(0,∞)

A∗δ

)
.
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Remark 1.3.15. Due to Remark 1.3.3, Proposition 1.3.14 also holds when replacing every-
where A∗δ by Aδ.

We now can finally give the

Proof of Proposition 1.2.1. We first deal with the case where h ∈ (0, 1/ν]. By Propositions
1.3.14 and 1.3.12,

DV B(h) = dimH

(
EV B(h)

)
≤ dimH

( ⋂
δ∈(0,1/h)

A∗δ

)
≤ inf

δ∈(0,1/h)
dimH(A∗δ) = hν.

On the other hand, we observe that (recall that δ 7→ A∗δ is decreasing)

DV B(h) = dimH

(
EV B(h)

)
≥ dimH

(
A∗1/h \ (

⋃
δ>1/h

A∗δ)
)
.

But

Hhν
(
A∗1/h \ (

⋃
δ>1/h

A∗δ)
)

= Hhν(A∗1/h)−Hhν
( ⋃
δ>1/h

A∗δ

)
.

For all δ > 1/h, dimH(A∗δ) = ν
δ
< hν, thus Hhν(A∗δ) = 0. Moreover, recalling that A∗δ is

decreasing when δ > ν, hence
Hhν

( ⋃
δ>1/h

A∗δ

)
= 0.

Next, Proposition 1.3.12 (if hν < 1) and Proposition 1.3.2 (if hν = 1) imply that

Hhν(A∗1/h) > 0.

Consequently, dimH

(
A∗1/h \ (∪δ>1/hA

∗
δ)
)
≥ hν, whence finally, DV B(h) ≥ hν. We have

checked that for h ∈ (0, 1/ν], it holds that DV B(h) = hν.

When h = 0, we immediately get, using Proposition 1.3.12, that

dimH

(
EV B(0)

)
= dimH

( ⋂
δ∈(0,∞)

A∗δ

)
≤ inf

δ∈(0,∞)

ν

δ
= 0.

Since furthermore EV B(0) ⊃ J is a.s. not empty, we conclude that dimH

(
EV B(0)

)
= 0.

Finally, when h > 1
ν
, we want to show that dimH

(
EV B(h)

)
= −∞, i.e. that EV B(h) = ∅.

This claim immediately follows from Remark 1.3.8 and Proposition 1.3.9, since for all t ∈
[0, 1] \ J , hV B(t) = 1

δt
≤ 1

ν
, and for t ∈ J , hV B(t) = 0.
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1.4 Study of the position process
The goal of this last section is to prove Proposition 1.2.2. We thus only consider the case of

hard potentials γ ∈ (0, 1). Since XB
t =

∫ t
0
V B
s ds, we obviously have a.s., for all t ∈ [0, 1],

hXB(t) ≥ 1 + hV B(t). (1.22)

Recall that by Definition, t ∈ Eosc
V B(h) if hXB(t) > 1 + hV B(t) and t ∈ Ecusp

V B
(h) if hXB(t) =

1 +hV B(t). Inspired by the ideas of Balança [5], we will prove several technical lemmas to get
Proposition 1.2.2.

1.4.1 Preliminaries
For any m > 0 and any interval [r, t] ⊂ [0, 1], we set

Hm
[r,t] := ]{s ∈ [r, t] ∩ J : |∆V B

s | ≥ 2−m}. (1.23)

Lemma 1.4.1. For any m ≥ 1 and any interval [r, t] ⊂ [0, 1],

(1) we have
Hm

[r,t] ≤ Rm
[r,t],

where Rm
[r,t] =

∫ t
r

∫
R3

∫ π/2
0

∫ 2π

0

∫∞
0

1{θ(B+|v|)≥2−m}1{u≤(B+|v|)γ}N(ds, dv, dθ, dϕ, du);

(2) and, with a > 0 introduced in Lemma 1.3.1 (this actually holds true for any value of
a > 0),

Hm
[r,t] ≥ Sm[r,t],

where Sm[r,t] =
∫ t
r

∫
R3

∫ π/2
0

∫ 2π

0

∫∞
0

1{|v−HB(Vs−)|≥a}1{θ≥2−m+2/a}1{u≤aγ}N(ds, dv, dθ, dϕ, du).

Proof. By definition of V B, see (1.12), we have

Hm
[r,t] =

∫ t

r

∫
R3

∫ π/2

0

∫ 2π

0

∫ ∞
0

1{|a(HB(Vs−),v,θ,ϕ))|≥2−m}1{u≤|HB(Vs−)−v|γ}N(ds, dv, dθ, dϕ, du).

Then the claims immediately follow from θ
4
|HB(V )− v| ≤

∣∣a(HB(V ), v, θ, ϕ
)∣∣ ≤ θ(B+ |v|),

see (1.7), and |HB(V )− v|γ ≤ (B + |v|)γ .

Remark 1.4.2. It follows from their definitions that Sm[r,t] and Rm
[r,t] are Ft-measurable, that

Rm
[r,t] is independent of Fr and is a Poisson variable with parameter λm[r,t], where

λm[r,t] =

∫ t

r

∫
R3

∫ π/2

0

∫ 2π

0

∫ ∞
0

1{θ(B+|v|)≥2−m}1{u≤(B+|v|)γ}dsfs(dv)β(θ)dθdϕdu. (1.24)

Using (1.3) and that m2(fs) = m2(f0) for all s ∈ [0, 1], one easily checks that there exists a
constant CB > 0 such that λm[r,t] ≤ CB2mν |t− r| for all m > 0 and all 0 ≤ r ≤ t ≤ 1.
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Indeed,

λm[r,t] ≤ 2πC0

∫ t

r

∫
R3

∫ π/2

0

1{θ(B+|v|)≥2−m}(B + |v|)γθ−1−νdsfs(dv)dθ

≤ C

∫ t

r

∫
R3

2mν(B + |v|)γ+νdsfs(dv)

≤ 2mνC

∫ t

r

∫
R3

(1 +B2 + |v|2)dsfs(dv)

≤ CB2mν |t− r|.

1.4.2 Refined study of the jumps

The goal of this part is to prove the following crucial fact.

Proposition 1.4.3. Fix ε > 0 and set α = ν(1 − 2ε) and β = ν(1 + 4ε). Almost surely, there
exists M ≥ 1, such that for all m ≥ M , for all t ∈ [0, 1], there exists tm ∈ B(t, 2−mα) such
that |∆V B

tm| ≥ 2−m and there is no other jump of size greater than 2−m(1+ε) in B(tm, 2
−mβ/3).

We start with an intermediate result.

Lemma 1.4.4. Fix ε > 0, α = ν(1−2ε) and β = ν(1+4ε). For any interval I = [t0, t3) ⊂ [0, 1]

with length 2−mβ , divide I = [t0, t1) ∪ [t1, t2) ∪ [t2, t3) into three consecutive intervals with
length 2−mβ/3. Consider the event

Am,εI = {Hm(1+ε)
[t0,t1) = 0} ∩ {Hm(1+ε)

[t1,t2) = Hm
[t1,t2) = 1} ∩ {Hm(1+ε)

[t2,t3) = 0}.

There exist some constants cB > 0 and mε > 0 such that, for all m ≥ mε, all intervals
I ⊂ [0, 1] with length 2−mβ ,

P[Am,εI |Ft0 ] ≥ cB2−4mνε. (1.25)

Proof. We introduce A1 = {Hm(1+ε)
[t0,t1) = 0}, A2 = {Hm(1+ε)

[t1,t2) = Hm
[t1,t2) = 1} and A3 =

{Hm(1+ε)
[t2,t3) = 0}, so that Am,εI = A1 ∩ A2 ∩ A3.

Step 1. First we write, since A1 ∩ A2 ∈ Ft2 ,

P[Am,εI |Ft0 ] = E
[
1A1∩A2P[A3

∣∣Ft2 ]
∣∣Ft0

]
.

But using Lemma 1.4.1 and Remark 1.4.2,

P[A3

∣∣Ft2 ] =P
[
H
m(1+ε)
[t2,t3) = 0

∣∣∣Ft2

]
≥ P

[
R
m(1+ε)
[t2,t3) = 0

∣∣∣Ft2

]
= exp(−λm(1+ε)

[t2,t3) ) ≥ 1

2
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for all m large enough (depending only on ε), since λm(1+ε)
[t2,t3) ≤ CB2mν2−mβ/3 ≤ CB2−3mε/3.

Consequently, for all m large enough (depending only on ε > 0), we a.s. have

P[Am,εI |Ft0 ] ≥
1

2
P[A1 ∩ A2|Ft0 ]. (1.26)

Step 2. We next write

P[A1 ∩ A2|Ft0 ] = E
[
1A1P[A2|Ft1 ]

∣∣∣Ft0

]
.

But using again Lemma 1.4.1,

A2 ={Hm
[t1,t2) ≥ 1} \ {Hm(1+ε)

[t1,t2) ≥ 2} ⊃ {Sm[t1,t2) ≥ 1} \ {Rm(1+ε)
[t1,t2) ≥ 2}.

Thus,
P
[
A2|Ft1

]
≥ P

[
Sm[t1,t2) ≥ 1

∣∣Ft1

]
− P

[
R
m(1+ε)
[t1,t2) ≥ 2

∣∣Ft1

]
.

First, by Remark 1.4.2,

P
[
R
m(1+ε)
[t1,t2) ≥ 2

∣∣Ft1

]
=1−

(
1 + λ

m(1+ε)
[t1,t2)

)
exp

(
− λm(1+ε)

[t1,t2)

)
≤
(
λ
m(1+ε)
[t1,t2)

)2

≤ CB2−6mνε.

Next, we put Yt := Sm[t1,t) for t ≥ t1 and observe, according to Itô’s Formula, that

1{Yt=0} = 1 +

∫ t

t1

∫
R3

∫ π/2

0

∫ 2π

0

∫ ∞
0

1{|v−HB(Vs−)|≥a}1{u≤aγ}1{θ≥2−m+2/a}

×
(
1{Ys−+4Ys=0} − 1{Ys−=0}

)
N(ds, dv, dθ, dϕ, du)

= 1−
∫ t

t1

∫
R3

∫ π/2

2−m+2/a

∫ 2π

0

∫ aγ

0

1{|v−HB(Vs−)|≥a}1{Ys−=0}N(ds, dv, dθ, dϕ, du).

Hence, for all t ≥ t1,

d

dt
E
[
1{Yt=0}

∣∣Ft1

]
= −E

[∫
R3

∫ π/2

2−m+2/a

∫ 2π

0

∫ aγ

0

1{|v−HB(Vt)|≥a}1{Yt=0}ft(dv)β(θ)dθdϕdu
∣∣∣Ft1

]
.

Using (1.3) and Lemma 1.3.1 (which implies that fs({v ∈ R3 : |v −HB(Vs)| ≥ a}) ≥ b > 0

a.s. for all s ∈ [0, 1]), we easily deduce that

d

dt
E
[
1{Yt=0}

∣∣Ft1

]
≤ −κ2mνE

[
1{Yt=0}

∣∣Ft1

]
,
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for some positive constant κ. Integrating this inequality, we deduce that a.s., for all t ≥ t1,

E
(
1{Yt=0}

∣∣Ft1

)
≤ exp{−κ2mν(t− t1)}.

Consequently,

P
[
Sm[t1,t2) ≥ 1

∣∣Ft1

]
= 1− E

(
1{Yt2=0}

∣∣Ft1

)
≥ 1− exp{−κ2mν(t2 − t1)} = 1− exp{−κ2−4mνε/3}.

Finally, for all m large enough (depending only on ε), we a.s. have

P
[
A2|Ft1

]
≥ 1− exp{−κ2−4mνε/3} − CB2−6mνε ≥ cB2−4mνε.

Step 3. Finally, exactly as Step 1, we obtain that for all m large enough,

P[A1|Ft0 ] ≥
1

2
.

Step 4. It suffices to gather Steps 1, 2 and 3 to conclude the proof.

Proof of Proposition 1.4.3. We thus fix ε > 0 and consider α and β as in the statement. For
m > 0, we introduce the notation rm = 2−mβ/3. We also introduce the number q2

m :=

b2m(β−α)c, the length `m := q2
m2−mβ (we have `m ≤ 2−mα and `m ' 2−mα) and the num-

ber q1
m := b1/`mc+ 1 (we have q1

m ' 2mα). We consider a covering of [0, 1] by q1
m consecutive

intervals Im1 , . . . , I
m
q1m

with length `m. Next, we divide each Imi into q2
m consecutive intervals

Imi,1, . . . , I
m
i,q2m

with length 2−mβ . Finally, we divide each Imi,j into three consecutive intervals
with length rm, writing Imi,j = [tmi,j, t

m
i,j + rm) ∪ [tmi,j + rm, t

m
i,j + 2rm) ∪ [tmi,j + 2rm, t

m
i,j+1). We

consider the event

Ami,j ={Hm(1+ε)
[tmi,j ,t

m
i,j+rm) = 0} ∩ {Hm(1+ε)

[tmi,j+rm,t
m
i,j+2rm) = Hm

[tmi,j+rm,t
m
i,j+2rm) = 1}

∩ {Hm(1+ε)
[tmi,j+2rm,tmi,j+1) = 0}.

According to Lemma 1.4.4, we know that if m is large enough (depending only on ε), a.s., for
all i, j

P[Ami,j|Ftmi,j
] ≥ cB2−4mνε. (1.27)

We now consider, for each i, the event

Km,i =

q2m⋂
j=1

(Ami,j)
c.



1.4. STUDY OF THE POSITION PROCESS 43

Then, we easily deduce from (1.27), together with the fact that Ami,1, . . . , A
m
i,j−1 ∈ Ftmi,j

for all
j = 1, . . . , q2

m − 1, that

P(Km,i) ≤ (1− cB2−4mνε)q
2
m ≤ (1− cB2−4mνε)2m(β−α)−1.

Thus for m large enough (depending only on ε), we conclude that

P(Km,i) ≤ exp
(
− cB2−4mνε2m(β−α)

)
= exp

(
− cB22mνε

)
.

Next, we introduce the event Km =
⋃q1m
i=1 Km,i. Clearly, for m large enough, (allowing the

value of the constant cB > 0 to change)

P(Km) ≤ q1
m exp(−cB22mνε) ≤ exp(−cB22mνε).

Finally, using the Borel-Cantelli lemma, we conclude that there a.s. exists M > 0 such that for
all m ≥ M , the event Kc

m is realized (whence for all i = 1, . . . , q1
m, there is j ∈ {1, . . . , q2

m}
such that Ami,j is realized). This implies that a.s., for all m ≥ M , for all t ∈ [0, 1], considering
i ∈ {1, . . . , q1

m} such that t ∈ Imi and j ∈ {1, . . . , q2
m} such thatAmi,j is realized, V B has exactly

one jump greater than 2−m(1+ε) in the time interval Imi,j , this jump is greater than 2−m and
happens at some time tm located in the middle of Imi,j (more precisely, the distance between tm
and the extremities of Imi,j is at least rm). We clearly have |tm−t| ≤ `m ≤ 2−mα, |∆V B

tm | ≥ 2−m,
and V B has no other jump of size greater than 2−m(1+ε) in B(tm, rm) ⊂ Imi,j . The proof is
complete.

1.4.3 Uniform bound for the Hölder exponent of XB

We show here thatDXB(h) = −∞ for all h > 1+1/ν. We use a general result for primitives
of discontinuous functions. It based on Proposition 1 in [4], recalled in the following lemma.

Lemma 1.4.5. Let η > 0 and let N > η be an integer. Let g : R → R be a locally bounded
function and let ψ be a C∞ compactly supported function with its N first moments vanishing,
i.e.
∫
R x

kψ(x)dx = 0 for k = 0, . . . , N − 1. The wavelet transform of g is defined by

Wψ(g, a, b) =
1

a

∫
R
g(t) ψ

(
t− b
a

)
dt. (1.28)

If g ∈ Cη(t0), then there exists a constant C > 0 such that for all a > 0, all b ∈ [t0− 1, t0 + 1],

|Wψ(g, a, b)| ≤ C (aη + |t0 − b|η) . (1.29)

Now, we give the following general result. For any function g : R → R, and any interval
I ⊂ R, we set

oscI(g) = sup
x∈I

g(x)− inf
x∈I

g(x).
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Lemma 1.4.6. Let g : [0,∞)→ R be a càdlàg function, discontinuous on a dense set of points,
letG(t) =

∫ t
0
g(s)ds. Let t > 0 and let (tm)m≥1 be a sequence of discontinuities of the function

g converging to t. For all s ∈ R, all m ≥ 1, we define

gm(s) = g(s)− Jm1{s≥tm}, (1.30)

where Jm = g(tm+) − g(tm−). Assume that for all m ≥ 1, there exist rm > 0 and δm > 0

such that

osc[tm−rm, tm+rm](gm) ≤ δm and lim
m→+∞

δm
|Jm|

= 0. (1.31)

Then

hG(t) ≤ lim inf
m→+∞

log
(
rm|Jm|

)
log
(
|tm − t|+ rm

) . (1.32)

Proof. Let ϕ be a positive C∞ function, supported on [0, 1] satisfying
∫
R ϕ(x)dx = 1.

For k ≥ 1, let ψk(t) = ϕ(k)(t), it is clear that ψk is C∞, supported on [0, 1] and that its k
first moments vanish, so it is a wavelet.

We now pick an integerN such thatN−2 is larger than the right hand side of (1.32), and we
denote by cN(a, b) := WψN (g, a, b) and CN+1(a, b) := WψN+1

(G, a, b) the wavelet transforms
of g and G using the wavelet ψN and ψN+1, respectively. An integration by parts shows that

cN(a, b) = −1

a
CN+1(a, b). (1.33)

We fix θ ∈ (0, 1) such that ψN−1(θ) > 0. It follows from (1.30) that cN(rm, tm − θrm) =

Pm +Qm, where

Pm =
1

rm

∫ +∞

−∞
Jm1{s≥tm}ψN

(
s− tm + θrm

rm

)
ds

=
Jm
rm

∫ +∞

tm

ψN

(
s− tm + θrm

rm

)
ds = −JmψN−1(θ)

and

Qm =
1

rm

∫ +∞

−∞
gm(s)ψN

(
s− tm + θrm

rm

)
ds

=
1

rm

∫ +∞

−∞
(gm(s)− gm(tm))ψN

(
s− tm + θrm

rm

)
ds,
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where we used that ψN has a vanishing integral. Observing that

supp

(
ψN

(
· − tm + θrm

rm

))
⊂ [tm − rm, tm + rm]

and recalling (1.31), we deduce that |Qm| ≤ 2‖ψN‖∞δm. As a conclusion,

|cN(rm, tm − θrm)| ≥ |Pm| − |Qm| ≥ ψN−1(θ)|Jm| − 2‖ψN‖∞δm ≥ c|Jm|

for all m large enough, since limm→+∞
δm
|Jm| = 0 by assumption. Then we obtain according to

(1.33),
|CN+1(rm, tm − θrm)| ≥ crm|Jm|. (1.34)

Assume that G ∈ Cη(t) for some η > lim infm→+∞[log(rm|Jm|)/[log(|tm − t|+ rm)]. We
apply Lemma 1.4.5 with g = G, ψ = ψN+1, a = rm, b = tm − θrm. Hence, there is a constant
C such that for all m,

|CN+1(rm, tm − θrm)| ≤ C (rηm + |t− tm + θrm|η) ≤ C(rm + |t− tm|)η.

This contradicts (1.34), so necessarily (1.32) hold true.

We next apply this lemma to our position process to get a uniform upper bound for all
pointwise Hölder exponents of XB.

Proposition 1.4.7. Almost surely, for all t ∈ [0, 1], the Hölder exponent of XB satisfies

hXB(t) ≤ 1 +
1

ν
. (1.35)

Proof. We fix ε > 0 and set α = ν(1 − 2ε) and β = ν(1 + 4ε). We show that a.s., hXB(t) ≤
(1 + β)/α for all t ∈ [0, 1]. This clearly suffices since ε > 0 can be chosen arbitrarily small.

Proposition 1.4.3 shows that there a.s. exists M > 0, such that for all m ≥ M , for all
t ∈ [0, 1], there exists tm ∈ B(t, 2−mα) such that |∆V B

tm | ≥ 2−m and such that there is no other
jump of size greater than 2−m(1+ε) in B(tm, rm), with rm := 2−mβ/3.

We now fix t ∈ [0, 1]. Up to extraction, one can assume that the first coordinate Ṽ B
s of the

three-dimensional vector V B
s satisfies |∆Ṽ B

tm| ≥ 2−m/3. We now apply Lemma 1.4.6 with g =

Ṽ B and rm = 2−mβ/3. We thus introduce gm(s) = g(s)−∆Ṽ B
tm1{s≥tm}. Since V B (and so Ṽ B

s )
has no jump with size greater than 2−m(1+ε) within the interval B(tn, rn) = (tm−rm, tm+rm),
we observe that

oscB(tn,rn)(gm) ≤ 2× sup
x,y∈[0,1],|x−y|≤2−mβ

|V B,m(1+ε)
x − V B,m(1+ε)

y |.
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Next, using Lemma 1.3.11-(1) (with δ = β/(1 + ε) > ν) and the Borel-Cantelli Lemma,
we deduce that there is a.s. M ′ > 0 such that, for all m ≥ M ′, all 0 < x < y < 1 with
|x− y| < 2−mβ , |V B,m(1+ε)

x − V B,m(1+ε)
y | ≤ mβ2−m(1+ε). That is,

oscB(tn,rn)(gm) ≤ 2mβ2−m(1+ε).

Since furthermore limm→+∞
2mβ2−m(1+ε)

|∆Ṽ Btm |
≤ limm→+∞

2mβ2−m(1+ε)

2−m/3
= 0, we can apply Lemma

1.4.6 with δm = 2mβ2−m(1+ε):

hXB(t) ≤ lim inf
m→+∞

log
(
rm|∆Ṽ B

tm |
)

log(|tm − t|+ rm)
≤ lim inf

m→+∞

log
(

2−m(1+β)/9
)

log(2.2−mα)
=

1 + β

α
.

We used that rm|∆Ṽ B
tm| ≥ (2−m/3)(2−mβ/3) and that |tm − t| + rm ≤ 2−mα + 2−mβ/3 ≤

2.2−mα. This ends the proof.

1.4.4 Study of the oscillating singularities of XB

To characterize more precisely the set of oscillating times, we first give the following
lemma.

Lemma 1.4.8. Let δ > ν, ε > 0 and k ∈ N satisfy δ > ν(1 + ε)(k + 1)/k. For all m ∈ N,
let (Imj )j=1,...,b2mδc+1 be the covering of [0, 1] composed of successive intervals of length 2−mδ.
Almost surely, there exists M ≥ 1 such that for all m ≥M , for all j = 1, . . . , b2mδc, recalling
(1.23),

H
m(1+ε)
Imj ∪Imj+1

≤ k, (1.36)

Proof. Using Lemma 1.4.1 and Remark 1.4.2,

P
(
H
m(1+ε)
Imj ∪Imj+1

> k
)
≤ P

(
R
m(1+ε)
Imj ∪Imj+1

> k
)
≤

+∞∑
`=k+1

(λ
m(1+ε)
Imj ∪Imj+1

)`

`!
e
−λm(1+ε)

Im
j
∪Im
j+1 ≤ (λ

m(1+ε)
Imj ∪Imj+1

)k+1,

where the value of λm(1+ε)
Imj ∪Imj+1

is given by equation (1.24). But, since the length of Imj ∪ Imj+1 is

2.2−mδ, we apply the upper bound found for λm[r,s] in Remark 1.4.2 in order to get λm(1+ε)
Imj ∪Imj+1

≤
2CB2mν(1+ε)−mδ, so that

P
(
H
m(1+ε)
Imj ∪Imj+1

> k
)
≤ 2CB21+m(k+1)(ν(1+ε)−δ).

Consequently,

P
( b2mδc+1⋃

j=1

{
H
m(1+ε)
Imj ∪Imj+1

> k
})
≤ 2CB2mδ2m(k+1)(ν(1+ε)−δ) = 2CB2−mk(δ−ν(1+ε)(k+1)/k).
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By assumption, this is the general term of a convergent series. We conclude thanks to the
Borel-Cantelli lemma.

We first study the case where h ∈ [0, 1/(2ν)).

Lemma 1.4.9. Almost surely, for all h ∈ [0, 1/(2ν)), Eosc
V B(h) = ∅.

Proof. According to (1.22), it is sufficient to check that for h ∈ [0, 1/(2ν)], for all t ∈ EV B(h),
hXB(t) ≤ 1 + h. We fix ε > 0 so small that there exists δ ∈ (max{2ν(1 + ε), 1/(h+ ε)}, 1/h).
Next, we fix t ∈ EV B(h). By Remark 1.3.15, we know that t ∈ A1/(h+ε). Hence for all
n ≥ 1, we can find mn ≥ n and tn ∈ J̃mn (that is |∆V B

tn | ∈ (2−mn−1, 2−mn ]) such that
|tn−t| ≤ |∆V B

tn |
1/(h+ε) ≤ 2−mn/(h+ε). Applying Lemma 1.4.8 with k = 1 (since δ > 2ν(1+ε)),

we deduce that V B has no other jump of size greater than 2−mn(1+ε) in B(tn, 2
−mnδ).

As we did before, up to extraction, we can e.g. assume that the first coordinate Ṽ B of V B

satisfies |∆Ṽ B
tn | ≥ 2−mn/3 for all n ≥ 1.

We then apply Lemma 1.4.6 with g(s) = Ṽ B
s and gn(s) = g(s) − ∆Ṽ B

tn 1{s≥tn}, with the
choices rn = 2−mnδ and δn = mnδ2

−mn(1+ε). It indeed holds true that limn→+∞ δn/|∆Ṽ B
tn | = 0

and, thanks to Lemma 1.3.11-(1) (which is licit because δ/(1 + ε) > ν) and the Borel-Cantelli
Lemma, we deduce that a.s., for all n sufficiently large,

oscB(tn,rn)(Ṽ
B
s ) ≤ sup

x,y∈[0,1],|x−y|≤2−mnδ
|V B,mn(1+ε)
x − V B,mn(1+ε)

y | ≤ mnδ2
−mn(1+ε).

We conclude from Lemma 1.4.6 that

hXB(t) ≤ lim inf
n

log
(
rn|∆Ṽ B

tn |
)

log(|tn − t|+ rn)
≤ lim inf

n

log
(

2−mn(1+δ)/3
)

log(2.2−mn/(h+ε))
= (1 + δ)(h+ ε).

We used that rn|∆Ṽ B
tn | ≥ (2−mn/3)2−mnδ while |tn − t| + rn ≤ 2−mn/(h+ε) + 2−mnδ ≤

2.2−mn/(h+ε). Letting ε → 0 (whence δ → 1/h), we conclude that hXB(t) ≤ 1 + h as de-
sired.

Before computing the dimension of Eosc
V B(h) when h ∈ [1/(2ν), 1/ν), we need to count

those jump times that are very close to each other.

Lemma 1.4.10. For ε > 0 and m > 0, denote by 0 < T ε,m1 < · · · < T ε,mKε,m < 1 the successive
instants of jumps of V B with size greater than 2−m(1+ε). For δ > 0, we introduce

N δ,ε
m =

Kε,m∑
i=1

1{T ε,mi −T ε,mi−1≤2−mδ}
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with the convention that T ε,m0 = 0. For any fixed ε > 0 and δ > 0, there a.s. exists M > 0 such
that for all m > M ,

N δ,ε
m ≤ 2−mδ+2mν(1+2ε).

Proof. Recalling Lemma 1.4.1, we see that {T ε,m1 , . . . , T ε,mKε,m} ⊂ {S
ε,m
1 , . . . , Sε,mLε,m}, where

0 < Sε,m1 < · · · < Sε,mLε,m are the successive instants of jump of the counting process Rm(1+ε)
[0,t] .

Consequently,

N δ,ε
m ≤ Ñ δ,ε

m :=

Lε,m∑
i=1

1{Sε,mi −Sε,mi−1≤2−mδ}.

By Remark 1.4.2, we know that Rm(1+ε)
[0,t] is an inhomogeneous Poisson process with intensity

bounded by CB2m(1+ε)ν . Consequently,

P
[
Lε,m ≥ 2mν(1+2ε)

]
≤ 2−mν(1+2ε)CB2m(1+ε)ν ≤ CB2−mνε.

Hence, applying the Borel-Cantelli lemma, we know that almost surely, there exists M ′ ≥ 1

such that for all m ≥M ′,

Lε,m ≤ 2mν(1+2ε) and thus N δ,ε
m ≤

2mν(1+2ε)∑
i=1

1{Sε,mi −Sε,mi−1≤2−mδ}.

But for all i ≥ 1, Sε,mi − Sε,mi−1 is bounded from above by an exponential random variable
with parameter CB2m(1+ε)ν , so that P(Sε,mi − Sε,mi−1 ≤ 2−mδ) ≤ 1− exp(−CB2m(1+ε)ν2−mδ) ≤
CB2m(1+ε)ν−mδ and thus

P
( 2mν(1+2ε)∑

i=1

1{Sε,mi −Sε,mi−1≤2−mδ} ≥ 2−mδ+2mν(1+2ε)
)
≤ 2mδ−2mν(1+2ε)2mν(1+2ε)CB2m(1+ε)ν−mδ

= CB2−mνε.

By the Borel-Cantelli lemma again, there exists a.s. a constant M ′′ > 0 such that for all
m ≥M ′′,

2mν(1+2ε)∑
i=1

1{Sε,mi −Sε,mi−1≤2−mδ} ≤ 2−mδ+2mν(1+2ε).

As a conclusion, a.s. we have N δ,ε
m ≤ 2−mδ+2mν(1+2ε) for all m ≥ M ′ ∨ M ′′. Choosing

M = M ′ ∨M ′′ completes the proof.

Now we treat the case where h ∈ [1/(2ν), 1/ν).

Proposition 1.4.11. Almost surely, for h ∈ [1/(2ν), 1/ν), dimH

(
Eosc
V B(h)

)
≤ 2hν − 1.
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Proof. We divide the proof into several steps.

Step 1. For any fixed ε > 0, δ ∈ (ν, 2ν] and m ≥ 1, we consider the sets

Fm(δ, ε) =
⋃

{i:T ε,mi −T ε,mi−1≤2−mδ}

(
[T ε,mi−1 − 2−mδ, T ε,mi−1 + 2−mδ] ∪ [T ε,mi − 2−mδ, T ε,mi + 2−mδ]

)
,

where the family T ε,mi has been introduced in Lemma 1.4.10, and the associated limsup set

G(δ, ε) = lim sup
m→+∞

Fm(δ, ε).

For every n ≥ 1,
⋃
m≥n Fm(δ, ε) forms a covering of G(δ, ε) by sets of diameter less than

2−nδ+2, and Lemma 1.4.10 allows to bound by above the cardinality of such sets. Hence,
choosing s > 2ν(1+2ε)

δ
− 1, a.s. for every n large enough one has

Hs
2−nδ+2(G(δ, ε)) ≤

∑
m≥n

2−mδs+2sN δ,ε
m ≤

∑
m≥n

22s2−m(s+1)δ+2mν(1+2ε).

We deduce that limn→+∞Hs
2−nδ+2(G(δ, ε)) = 0, henceHs(G(δ, ε)) = 0. Therefore,

dimH

(
G(δ, ε)

)
≤ 2ν(1 + 2ε)

δ
− 1.

Step 2. Here we fix h ∈ [1/(2ν), 1/ν), we consider ε > 0 such that 1/[(h+ ε)(1 + ε)] > ν,
we set δε = 1/(h+ ε) and we prove that Eosc

V B(h) ⊂ G(δε, ε).

We consider t ∈ EV B(h) \ G(δε, ε) and we show that hXB(t) = 1 + h, which will imply
indeed that t ∈ Ecusp

V B
(h).

Since t /∈ G(δε, ε), there exists N ≥ 1 such that for all m ≥ N , t /∈ Fm(δε, ε). Moreover,
for any 0 < η ≤ ε, since t ∈ EV B(h), by Remark 1.3.15, we know that t ∈ Aδη (because
δη = 1/(h + η) < 1/h), so that for all n ≥ 1, there exist mn ≥ n and tn ∈ B(t, 2−mnδη) such
that |∆V B

tn | ≥ 2−mn . Observing that Fm(δη, η) ⊂ Fm(δε, ε) since 0 < η ≤ ε and δη ≥ δε. Hence
t /∈ Fmn(δη, η) (for all n large enough), whence, there is also no other jump in B(t, 2−mnδη)

with size greater than 2−mn(1+η).

As in the previous proofs, up to extraction, we deduce that |∆Ṽ B
tn | ≥ 2−mn/3 for all n,

where Ṽ B is one of the three coordinates of V B. Since V B (and so Ṽ B ) has no jump with size
greater than 2−mn(1+η) in B(tn, 2

−mnδη), we may use Lemma 1.3.11-(1) (because δη/(1 + η) =
1

(h+η)(1+η)
≥ 1

(h+ε)(1+ε)
> ν) and the Borel-Cantelli Lemma, we deduce that a.s. for all n

sufficiently large, setting rn = 2−mnδη ,

oscB(tn,rn)(Ṽ
B) ≤ 2× sup

x,y∈[0,1],|x−y|≤2−mnδη
|V B,mn(1+η)
x − V B,mn(1+η)

y | ≤ 2mnδη2
−mn(1+η).



50 CHAPTER 1. THE MULTIFRACTAL NATURE OF BOLTZMANN PROCESSES

Moreover,

lim
n→+∞

2mnδη2
−mn(1+η)

|∆Ṽ B
tn |

≤ lim
n→+∞

2mnδη2
−mn(1+η)

2−mn/3
= 0.

Applying Lemma 1.4.6 with g = Ṽ B, rn = 2−mnδη and δn = 2mnδη2
−mn(1+η), we obtain

hXB(t) ≤ lim inf
n→+∞

log
(
rn|∆Ṽ B

tn |
)

log(rn + |tn − t|)
≤ lim inf

n→+∞

log
(

2−mn(1+δη)/3
)

log(2.2−mnδη)
=

1 + δη
δη

= 1 + h+ η

(1.37)
because rn|∆Ṽ B

tn | ≥ 2−mn(1+δη)/3 and rn + |tn − t| ≤ 2.2−mnδη . Since (1.37) is satisfied for
any 0 < η ≤ ε, then a.s. hXB(t) ≤ 1 + h. That is, Eosc

V B(h) ⊂ G(δε, ε).

Step 3. From step 2 we deduce that Eosc
V B(h) ⊂

⋂
ε↓0G(δε, ε). Hence,

dimH

(
Eosc
V B(h)

)
≤ dimH

(⋂
ε↓0

G(δε, ε)
)

= inf
ε↓0

(
2ν(1 + 2ε)(h+ ε)− 1

)
= 2hν − 1.

This ends the proof.

1.4.5 Conclusion

Proof of Proposition 1.2.2. First, we now from Proposition 1.2.1 thatEV B(h) = ∅ for h > 1/ν,
so that obviously Eosc

V B(h) = ∅. If now h = 1/ν, then we deduce from Proposition 1.4.7 that
Eosc
V B(h) = ∅, simply because a.s., for all t ∈ [0, 1], hXB(t) ≤ 1 + 1/ν.

As shown in Lemma 1.4.9, we also know that Eosc
V B(h) = ∅ for all h ∈ [0, 1/(2ν)) and as

seen in Proposition 1.4.11, dimH(Eosc
V B(h)) ≤ 2hν − 1 for all h ∈ [1/(2ν), 1/ν).

It remains to verify that for all h ∈ [0, 1/ν], dimH(Ecusp
V B

(h)) = hν . If h ∈ [0, 1/(2ν)) or
h = 1/ν, it is obvious becauseEosc

V B(h) = ∅ and by Proposition 1.2.1. If next h ∈ [1/(2ν), 1/ν),
it follows from the fact that Ecusp

V B
(h) = EV B(h) \ Eosc

V B(h) with dimH(EV B(h)) = hν (by
Proposition 1.2.1) and dimH(Eosc

V B(h)) ≤ 2hν − 1 < hν.

Finally, we verify that Theorems 1.1.7 and 1.1.10 imply Theorem 1.1.8.

Proof of Theorem 1.1.8. For any h ∈ [1, 1 + 1/ν], we have EX(h) ⊃ Ecusp
V (h − 1), whence

dimH(EX(h)) ≥ dimH(Ecusp
V (h− 1)) = (h− 1)ν by Theorem 1.1.10.

Next we obviously have a.s., for all t ∈ [0, 1],

hX(t) ≥ hV (t) + 1, (1.38)
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whence EX(h) ⊂
⋃
h′≤h−1EV (h′). We thus infer from Theorem 1.1.7 that EX(h) = ∅ when

h < 1. But when h ∈ [1, 1+1/ν], recalling Proposition 1.3.14 and the fact thatA∗δ is decreasing
with δ, we deduce that

⋃
h′≤h−1EV (h′) ⊂

⋃
h′≤h−1

⋂
δ∈(0,1/h′) A

∗
δ ⊂

⋂
δ<h−1A

∗
δ . Whence we

derive dimH(EX(h)) ≤ (h− 1)ν from Proposition 1.3.12.

It only remains to verify that EX(h) = ∅ when h > 1 + 1/ν. But in such a case, we know
from Proposition 1.4.7 that EXB(h) = ∅, whence EX(h) =

⋃+∞
B≥1EXB(h) = ∅.
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Chapter 2

Uniqueness and propagation of chaos for
the Boltzmann equation with moderately
soft potentials

This work is re-submitted after revision required by Ann. Appl. Probab.

We prove a strong/weak stability estimate for the 3D homogeneous Boltzmann equation
with moderately soft potentials (γ ∈ (−1, 0)) using the Wasserstein distance with quadratic
cost. This in particular implies the uniqueness in the class of all weak solutions, assuming only
that the initial condition has a finite entropy and a finite moment of sufficiently high order. We
also consider the Nanbu N -stochastic particle system which approximates the weak solution.
We use a probabilistic coupling method and give, under suitable assumptions on the initial
condition, a rate of convergence of the empirical measure of the particle system to the solution
of the Boltzmann equation for this singular interaction.

2.1 Introduction

2.1.1 The Boltzmann equation

We consider a 3-dimensional spatially homogeneous Boltzmann equation, which depicts the
density ft(v) of particles in a gas, moving with velocity v ∈ R3 at time t ≥ 0. The density
ft(v) solves

∂tft(v) =

∫
R3

dv∗

∫
S2
dσB(|v − v∗|, θ)[ft(v′)ft(v′∗)− ft(v)ft(v∗)], (2.1)

53
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where

v′ =
v + v∗

2
+
|v − v∗|

2
σ, v′∗ =

v + v∗
2
− |v − v∗|

2
σ, (2.2)

and θ is the deviation angle defined by cos θ = v−v∗
|v−v∗| ·σ. The collision KernelB(|v−v∗|, θ) ≥ 0

depends on the type of interaction between particles. It only depends on |v − v∗| and on the
cosine of the deviation angle θ. Conservations of mass, momentum and kinetic energy hold for
reasonable solutions and we may assume without loss of generality that

∫
R3 ft(v)dv = 1 for all

t ≥ 0.

2.1.2 Assumptions

We will assume that there is a measurable function β : (0, π]→ R+ such that
B(|v − v∗|, θ) sin θ = |v − v∗|γβ(θ),

∃ 0 < c0 < c1, ∀ θ ∈ (0, π/2), c0θ
−1−ν ≤ β(θ) ≤ c1θ

−1−ν ,

∀ θ ∈ [π/2, π], β(θ) = 0,

(2.3)

for some ν ∈ (0, 1), and γ ∈ (−1, 0) satisfying γ + ν > 0.

The last assumption β = 0 on [π/2, π] is not a restriction and can be obtained by symmetry
as noted in the introduction of [3]. This assumption corresponds to a classical physical exam-
ple, inverse power laws interactions: when particles collide by pairs due to a repulsive force
proportional to 1/rs for some s > 2, assumption (2.3) holds with γ = (s − 5)/(s − 1) and
ν = 2/(s− 1). Here we will focus on the case of moderately soft potentials, i.e. s ∈ (3, 5).

2.1.3 Some notations

Let us denote by P(R3) the set of probability measures on R3 and by Lip(R3) the set of
bounded globally Lipschitz functions φ : R3 7→ R. When f ∈ P(R3) has a density, we
also denote this density by f . For q > 0, we set

Pq(R3) = {f ∈ P(R3) : mq(f) <∞} with mq(f) :=

∫
R3

|v|qf(dv).

We now introduce, for θ ∈ (0, π/2) and z ∈ [0,∞),

H(θ) =

∫ π/2

θ

β(x)dx and G(z) = H−1(z). (2.4)

Under (2.3), it is clear that H is a continuous decreasing function valued in [0,∞), so it has
an inverse function G : [0,∞) 7→ (0, π/2) defined by G(H(θ)) = θ and H(G(z)) = z.
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Furthermore, it is easy to verify that there exist some constants 0 < c2 < c3 such that for all
z > 0,

c2(1 + z)−1/ν ≤ G(z) ≤ c3(1 + z)−1/ν , (2.5)

and we know from [25] that there exists a constant c4 > 0 such that for all x, y ∈ R+,∫ ∞
0

(G(z/x)−G(z/y))2dz ≤ c4
(x− y)2

x+ y
. (2.6)

Let us now introduce the Wasserstein distance with quadratic cost on P2(R3). For g, g̃ ∈
P2(R3), let H(g, g̃) be the set of probability measures on R3 × R3 with first marginal g and
second marginal g̃. We then set

W2(g, g̃) = inf

{(∫
R3×R3

|v − ṽ|2R(dv, dṽ)
)1/2

, R ∈ H(g, g̃)

}
.

Here the infimum is actually a minimum, for more details on this distance, one can see [61,
Chapter 2].

2.1.4 Weak solutions

We now introduce a suitable spherical parameterization of (2.2) as in [31]. For each x ∈
R3 \ {0}, we consider a vector I(x) ∈ R3 such that |I(x)| = |x| and I(x) ⊥ x. We also
set J(x) = x

|x| ∧ I(x), where ∧ is the vector product. Then the triplet ( x
|x| ,

I(x)
|x| ,

J(x)
|x| ) is an

orthonormal basis of R3. Then for x, v, v∗ ∈ R3, θ ∈ (0, π], ϕ ∈ [0, 2π), we set
Γ(x, ϕ) := (cosϕ)I(x) + (sinϕ)J(x),

v′(v, v∗, θ, ϕ) := v − 1−cos θ
2

(v − v∗) + sin θ
2

Γ(v − v∗, ϕ),

a(v, v∗, θ, ϕ) := v′(v, v∗, θ, ϕ)− v,
(2.7)

then we write σ ∈ S2 as σ = v−v∗
|v−v∗| cos θ + I(v−v∗)

|v−v∗| sin θ cosϕ+ J(v−v∗)
|v−v∗| sin θ sinϕ, and observe

at once that Γ(x, ϕ) is orthogonal to x and has the same norm as x, from which it is easy to
check that

|a(v, v∗, θ, ϕ)| =
√

1− cos θ

2
|v − v∗|. (2.8)

Let us now give the definition of weak and strong solutions to (2.1).

Definition 2.1.1. Assume (2.3) is true for some ν ∈ (0, 1), γ ∈ (−1, 0) with γ + ν > 0. A
measurable family of probability measures (ft)t≥0 is called a weak solution to (2.1) if it satisfies
the following two conditions:
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• For all t ≥ 0,∫
R3

vft(dv) =

∫
R3

vf0(dv) and
∫
R3

|v|2ft(dv) =

∫
R3

|v|2f0(dv) <∞. (2.9)

• For any bounded globally Lipschitz function φ ∈ Lip(R3), any t ∈ [0, T ],∫
R3

φ(v)ft(dv) =

∫
R3

φ(v)f0(dv) +

∫ t

0

∫
R3

∫
R3

Aφ(v, v∗)fs(dv∗)fs(dv)ds (2.10)

where

Aφ(v, v∗) = |v − v∗|γ
∫ π/2

0

β(θ)dθ

∫ 2π

0

[φ(v + a(v, v∗, θ, ϕ))− φ(v)]dϕ.

We observe that |Aφ(v, v∗)| ≤ Cφ|v − v∗|1+γ ≤ Cφ(1 + |v − v∗|2) from |a(v, v∗, θ, ϕ)| ≤
Cθ|v − v∗| and

∫ π/2
0

θβ(θ)dθ <∞, (2.10) is thus well-defined.

Definition 2.1.2. Assume (2.3) is true for some ν ∈ (0, 1), γ ∈ (−1, 0) with γ + ν > 0.
A measurable family of probability measures (ft)t≥0 is called a strong solution to (2.1) if
(ft)t≥0 ∈ L1

loc

(
[0,∞), Lp(R3)

)
.

Let us now recall the well-posedness result of (2.1) in [33, Corollary 2.4] (more general
existence results can be found in [59]).

Theorem 2.1.3. Assume (2.3) for some γ ∈ (−1, 0), ν ∈ (0, 1) with γ + ν > 0. Let q ≥ 2

such that q > γ2/(γ + ν). Let f0 ∈ Pq(R3) with
∫
R3 f0(v)| log f0(v)|dv < ∞ and let p ∈

(3/(3 + γ), p0(γ, ν, q)), where

p0(γ, ν, q) =
q − γ

q(3− ν)/3− γ
∈ (3/(3 + γ), 3/(3− ν)). (2.11)

Then (2.1) has a unique weak solution f ∈ L∞
(
[0,∞),P2(R3)

)
∩ L1

loc

(
[0,∞), Lp(R3)

)
.

The explicit value of p0(γ, ν, q) are not properly stated in [33, Corollary 2.4]. However,
following its proof (see the end of Step 3), we see that f ∈ L1

loc

(
[0,∞), Lp(R3)

)
as soon

as 1 < p < 3/(3 − ν) and −γ(p − 1)/(1 − p(3 − ν)/3) < q. This precisely rewrites as
p ∈ (1, p0(γ, ν, q)).
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2.1.5 The particle system
Let us now recall the Nanbu particle system introduced by [48]. It is the (R3)N -valued Markov
process with infinitesimal generator LN defined as follows: for any bounded Lipschitz function
φ : (R3)N 7→ R and v = (v1, ..., vN) ∈ (R3)N ,

LNφ(v) =
1

N

∑
i 6=j

∫
S2

[φ(v + (v′(vi, vj, σ)− vi)ei)− φ(v)]B(|vi − vj|, θ)dσ,

where vei = (0, ..., v, ..., 0) ∈ (R3)N with v at the i-th place for v ∈ R3.

In other words, the system contains N particles with velocities v = (v1, ..., vN). Each pair
of particles (with velocities (vi, vj)), interact, for each σ ∈ S2, at rate B(|vi − vj|, θ)/N . Then
one changes the velocity vi to v′(vi, vj, σ) given by (2.2) but vj remains unchanged. That is,
only one particle is changed at each collision.

The fact that
∫ π

0
β(θ)dθ = ∞ (i.e. β is non cutoff) means that there are infinitely many

jumps with a very small deviation angle. It is thus impossible to simulate it directly. For this
reason, we will study a truncated version of Nanbu’s particle system applying a cutoff procedure
as [32], who were studying the Nanbu system for hard potentials and Maxwell molecules,
and [16], who were dealing with the Kac system for Maxwell molecules. Our particle system
with cutoff corresponds to the generator LN,K defined, for any bounded Lipschitz function
φ : (R3)N 7→ R and v = (v1, ..., vN) ∈ (R3)N , by

LN,Kφ(v) =
1

N

∑
i 6=j

∫
S2

[φ(v + (v′(vi, vj, σ)− vi)ei)− φ(v)]B(|vi − vj|, θ)

× 1{θ≥G(K/|vi−vj |γ)}dσ, (2.12)

with G defined by (2.4).

The generator LN,K uniquely defines a strong Markov process with values in (R3)N . This
comes from the fact that the corresponding jump rate is finite and constant: for any configura-
tion v = (v1, ..., vN) ∈ (R3)N , it holds thatN−1

∑
i 6=j
∫
S2 B(|vi−vj|, θ)1{θ≥G(K/|vi−vj |γ)}dσ =

2π(N − 1)K. Indeed, for any z ∈ [0,∞), we have
∫
S2 B(x, θ)1{θ≥G(K/xγ)}dσ = 2πK, which

is easily checked recalling that B(x, θ) = xγβ(θ) and the definition of G.

2.1.6 Main results
Now, we give our uniqueness result for the Boltzmann equation.

Theorem 2.1.4. Assume (2.3) for some γ ∈ (−1, 0), ν ∈ (0, 1) satisfying γ + ν > 0. Let
q ≥ 2 such that q > γ2/(γ + ν). Assume that f0 ∈ Pq(R3) with a finite entropy, i.e.
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R3 f0(v)| log f0(v)|dv < ∞. Let p ∈ (3/(3 + γ), p0(γ, ν, q)), recall (2.11), and (ft)t≥0 ∈
L∞
(
[0,∞),P2(R3)

)
∩L1

loc

(
[0,∞), Lp(R3)

)
be the unique weak solution to (2.1) given by The-

orem 2.1.3. Then for any other weak solution (f̃t)t≥0 ∈ L∞
(
[0,∞),P2(R3)

)
to (2.1), we have,

for any t ≥ 0,

W2
2 (ft, f̃t) ≤ W2

2 (f0, f̃0) exp
(
Cγ,p

∫ t

0

(1 + ‖fs‖Lp)ds
)
.

In particular, we have uniqueness for (2.1) when starting from f0 in the space of all weak
solutions in the sense of Definition 2.1.1.

The novelty of Theorem 2.1.4 is that no regularity at all is assumed concerning f̃ . In
particular, we have uniqueness among all weak solutions, while in [33], uniqueness is proved
only in the class of weak solutions lying in L∞

(
[0,∞),P2(R3)

)
∩ L1

loc

(
[0,∞), Lp(R3)

)
for

some p > 3/(3 + γ).

Next, we write the following conclusion concerning the particle system.

Theorem 2.1.5. Assume (2.3) for some γ ∈ (−1, 0), ν ∈ (0, 1) with γ + ν > 0. Let q > 6

such that q > γ2/(γ + ν) and let f0 ∈ Pq(R3) with a finite entropy. Let (ft)t≥0 be the
unique weak solution to (2.1) given by Theorem 2.1.3. For each N ≥ 1, K ∈ [1,∞), let
(V i

t )i=1,...,N be the Markov process with generator LN,K (see (2.12)) starting from an i.i.d.
family (V i

0 )i=1,...,N of f0-distributed random variables. We denote the associated empirical
measure by µN,Kt = N−1

∑N
i=1 δV it . Then for all T > 0,

sup
[0,T ]

E[W2
2 (µN,Kt , ft)] ≤ CT,q

(
N−(1−6/q)(2+2γ)/3 +K1−2/ν +N−1/2

)
.

We thus obtain a quantitive rate of chaos for the Nanbu’s system with a singular interaction.
To our knowledge, this is the first result in this direction. However, there is no doubt this rate
is not the hoped optimal rate N−1/2 like in the hard potential case [32].

2.1.7 Known results, strategies and main difficulties

Let us give a non-exhaustive overview of the known results on the well-posedness of (2.1)
for different potentials. First, the global existence of weak solution for the Boltzmann equa-
tion concerning all potentials was concluded by Villani in [59], with rather few assumptions
on the initial data (finite energy and entropy), using some compactness methods. However,
the uniqueness results are less well-understood. For hard potentials (γ ∈ (0, 1)) with angu-
lar cutoff (

∫ π
0
β(θ)dθ < ∞), there are some optimal results obtained by Mischler-Wennberg

[47], where they gave the existence of a unique weak L1 solution to (2.1) with the minimal
assumption that

∫
R3(1 + |v|2)f0(v)dv < ∞. This was extended to weak measure solutions
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by Lu-Mouhot [44]. For the difficult case without angular cutoff, the first uniqueness result
was obtained by Tanaka [57] concerning Maxwell molecules (γ = 0). See also Toscani-Villani
[58], who proved uniqueness for Maxwell molecules imposing that

∫ π
0
θβ(θ)dθ < ∞ and that∫

R3(1 + |v|2)f0(dv) <∞. Subsequently, Desvillettes-Mouhot [18] (relying on a weighted W 1
1

space) and Fournier-Mouhot [33] (using the Wasserstein distance W1) successively gave the
uniqueness and stability for both hard potentials (γ ∈ (0, 1]) and moderately soft potentials
(γ ∈ (−1, 0) and ν ∈ (0, 1)) under different assumptions on initial data. For moderately soft
potentials, the result in [33] is much better since they use less assumptions on the initial con-
dition than [18]. Finally, let us mention another work [25], where Fournier-Guérin proved a
local (in time) uniqueness result with f0 ∈ Lp(R3) for some p > 3/(3 + γ) for the very soft
potentials (γ ∈ (−3, 0) and ν ∈ (0, 2)).

In this paper (Theorem 2.1.4), we obtain a better uniqueness result in the case of a collision
kernel without angular cutoff when γ ∈ (−1, 0) and ν ∈ (0, 1 − γ), that is, the uniqueness
holds in the class of all measure solutions in L∞

(
[0,∞),P2(R3)

)
. This is very important when

studying particle systems. For example, a convergence result without rate would be almost
immediate from our uniqueness: the tightness of the empirical measure of the particle system
is not very difficult, as well as the fact that any limit point is a weak solution to (2.1). Since
such a weak solution is unique by Theorem 2.1.4, the convergence follows. Such a conclusion
would be very difficult to obtain when using the uniqueness proved in [33], because one would
need to check that any limit point of the empirical measure belongs to L1

loc([0,∞, Lp(R3)) for
some p > 3/(3 + γ), which seems very difficult.

In order to extend the uniqueness result for all measure solutions, extra difficulty is in-
evitable and the methods of [25, 33] will not work. However, Fournier-Hauray [27] provide
some ideas to overcome this, in the simpler case of the Laudau equation for moderately soft
potentials. Here we follow these ideas, which rely on coupling methods. Consider two weak
solutions f and f̃ in L∞

(
[0,∞),P2(R3)

)
to (2.1), with possibly two different initial conditions

and assume that f is strong, in the sense that it belongs to L1
loc

(
[0,∞), Lp(R3)

)
. First, we

associate to the weak solution f̃ a weak solution (Xt)t≥0 to some Poisson-driven SDE. This
uses a smoothing procedure as in [22, 27], but the situation is consequently more complicated
because we deal with jump processes. Next, we try to associate to the strong solution f a strong
solution (Wt)t≥0 to another SDE (driven by the same Poisson measure as (Xt)t≥0), as [27] did.
But we did not manage to do this properly and we had to use a truncation procedure which
though complicates our computation. Then, roughly, we estimate W2

2 (ft, f̃t) by computing
E[|Xt −Wt|2] as precisely as possible.

The terminology propagation of chaos, which is equivalent to the convergence of the em-
pirical measure of a particle system to the solution to a nonlinear equation, was first formulated
by Kac [43]. He was studying the convergence of a toy particle system as a step to the rigor-
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ous derivation of the Boltzmann equation. Kac’s particle system is similar to the one studied
in the present paper, but each collision modifies the velocities of the two involved particles,
while in Nanbu’s system, only one of the two particles is deviated. Hence, Kac’s system is
physically more meaningful. Afterwards, McKean [45] and Grünbaum [36] extended Kac’s
ideas to study the chaos property for different models with bounded collision kernels. Sznit-
man [56] then showed the chaos property (for Kac’s system without rate) for the hard spheres
(γ = 1 and ν = 0). Following Tanaka’s probabilistic interpretation for the Boltzmann equa-
tion with Maxwell molecules, Graham-Méléard [35] were the first to give a rate of chaos for
(2.1), concerning both Kac and Nanbu models, for Maxwell molecules with cutoff (γ = 0 and∫ π

0
β(θ)dθ < ∞), using the total variation distance. Fontbona-Guérin-Méléard [23] first gave

explicit rates for Nanbu type diffusive approximations of the Landau equation with Maxwell
molecules by coupling arguments, using theW2 distance. Recently, some important progresses
have been made. First, Mischler-Mouhot [46] obtained a uniform (in time) rate of convergence
of Kac’s particle system of order N−ε (for Maxwell molecules without cutoff) and (logN)−ε

(for hard spheres, i.e. γ = 1 and ν = 0), with some small ε > 0, in W1 distance between
the joint law of the particle system and f⊗Nt . This result, entirely relying on analytic methods,
is noticeable, although the rates are clearly not sharp. Then, Fournier-Mischler [32] proved
the propagation of chaos at rate N−1/4 for the Nanbu system and for hard potentials without
cutoff (γ ∈ [0, 1] and ν ∈ (0, 1)) using the W2 distance. Finally, as mentioned in Section
1.5, Cortez-Fontbona [16] used two coupling techniques and theW2 distance for Kac’s system
and obtained a uniform in time estimate for the Boltzmann equation with Maxwell molecules
(γ = 0) under some suitable moments assumptions on the initial datum. Let us mention that
the time-uniformity uses the recent nice results of Rousset [51].

In this paper (Theorem 2.1.5), we obtain, to our knowledge, the first chaos result (with
rate) for soft potentials (which are, of course, more difficult), but it is a bit unsatisfying: (1)
we cannot study Kac’s system (which is physically more reasonnable than Nanbu’s system)
because it is not readily to exhibit a suitable coupling; (2) our consideration is merely for
γ ∈ (−1, 0), since some basic estimates in Section 2 do not hold any more if γ ≤ −1; (3) our
rate is not sharp. However, since the interaction is singular, it seems hopeless to get a perfect
result.

In terms of the propagation of chaos with a singular interaction, there are only very few
results. In one dimension, Bossy-Talay [13] and Jourdain [42] concerned the viscous Burg-
ers equation and a viscous scalar conservation law by a family of stochastic particles with a
discontinuous interaction kernel (i.e. particles interact through the Heaviside function). Let
us also mention the work of Cépa-Lépingle [14] which considered the very singular Brownian
motion model introduced by Dyson [19]. For high dimensions, Hauray-Jabin [37] considered
a deterministic system of particles interacting through a force of the type 1/|x|α with α < 1, in
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dimension d ≥ 3, and proved the mean field limit and the propagation of chaos to the Vlasov
equation. Also, Fournier-Hauray-Mischler [28] proved the convergence of the vortex model to
the 2D Navier-Stokes equation with a singular Biot-Savart kernel using some entropy dissipa-
tion technique. Following the method of [28], Godinho-Quiñinao [34] proved the propagation
of chaos of some particle system to the 2D subcritical Keller-Segel equation. For the very
subcritical case for this equation, Fournier-Jourdain [29] proved the existence for the particle
system and that its flow of empirical measures converges to a weak solution of the Keller-Segel
equation. Recently, Fournier-Hauray [27] proved propagation of chaos for the 3D Landau equa-
tion with a singular interaction (γ ∈ (−2, 0)) for the Nanbu diffusive particle system using the
W2 distance. Actually, they gave a quantitative rate of chaos when γ ∈ (−1, 0), while the
convergence without rate was checked when γ ∈ (−2, 0) by the entropy dissipation technique.

Roughly speaking, to prove our propagation of chaos result, we consider an approximate
version of our stability principle, with a discrete Lp norm as in [27]. Here, we list the main dif-
ficulties: The trajectory of a typical particle related to the Boltzmann equation is a jump process
so that all the continuity arguments used in [27] have to be changed. In particular, a detailed
study of small and large jumps is required. Also, the solution to the Landau equation lies in
L1
loc

(
[0,∞), L2(R3)

)
, while the one of the Boltzmann equation lies in L1

loc

(
[0,∞), Lp(R3)

)
for

some p smaller than 2. This causes a few difficulties in Section 2.5, because working in Lp is
slightly more complicated.

2.1.8 Arrangement of the paper and final notations

In Section 2, we give some basic estimates. In Section 3, we establish the strong/weak stability
principle for (2.1). In Section 4, we construct the suitable coupling. In Section 5, we bound the
Lp norm of a blob approximation of an empirical measure in terms of the Lp norm of the weak
solution. Finally, in Section 6, we prove the convergence of the particle system.

In the sequel, C stands for a positive constant whose value may change from line to line.
When necessary, we will indicate in subscript the parameters it depends on.

In the whole paper, we consider two probability spaces by Tanaka’s idea for the probabilistic
interpretation of the Boltzmann equation in Maxwell molecules case: the first space is the
abstract space (Ω,F ,P) and the second is ([0, 1],B([0, 1]), dα).
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2.2 Preliminaries
Above all, let us recall that for γ ∈ (−1, 0), p > 3/(3 + γ) and f ∈ P(R3) ∩ Lp(R3), it holds
that

sup
v∈R3

∫
R3

|v − v∗|γf(dv∗) ≤ sup
v∈R3

∫
|v−v∗|≤1

|v − v∗|γf(dv∗) + sup
v∈R3

∫
|v−v∗|≥1

|v − v∗|γf(dv∗)

≤ 1 + Cγ,p‖f‖Lp(R3), (2.13)

where Cγ,p = supv∈R3 [
∫
|v−v∗|≤1

|v − v∗|pγ/(p−1)dv∗]
(p−1)/p = [

∫
|v∗|≤1

|v∗|pγ/(p−1)dv∗]
(p−1)/p <

∞, since p > 3/(3 + γ) by assumption.

Let us now classically rewrite the collision operator by making disappear the velocity-
dependence |v − v∗|γ in the rate using a substitution.

Lemma 2.2.1. We assume (2.3) and recall (2.4) and (2.7). For z ∈ [0,∞), ϕ ∈ [0, 2π),
v, v∗ ∈ R3 and K ∈ [1,∞), we define

c(v, v∗, z, ϕ) := a[v, v∗, G(z/|v − v∗|γ), ϕ] and cK(v, v∗, z, ϕ) := c(v, v∗, z, ϕ)1{z≤K}.

(2.14)
For any φ ∈ Lip(R3), any v, v∗ ∈ R,

Aφ(v, v∗) =

∫ ∞
0

dz

∫ 2π

0

dϕ[φ(v + c(v, v∗, z, ϕ))− φ(v)]. (2.15)

For anyN ≥ 1, K ∈ [1,∞), v = (v1, ..., vN) ∈ (R3)N , any bounded measurable φ : (R3)N 7→
R,

LN,Kφ(v) =
1

N

∑
i 6=j

∫ ∞
0

dz

∫ 2π

0

dϕ[φ(v + cK(vi, vj, z, ϕ)ei)− φ(v)]. (2.16)

This lemma is stated in [32, Lemma 2.2] when γ ∈ [0, 1], but the proof does not use this
fact: it actually holds true for any γ ∈ R. Next, let us recall Lemma 2.3 in [32] which is an
accurate version of Tanaka’s trick in [57]. Here, we adopt the notation (2.7).

Lemma 2.2.2. There exists some measurable function ϕ0 : R3×R3 7→ [0, 2π) such that for all
X, Y ∈ R3, all ϕ ∈ [0, 2π),

|Γ(X,ϕ)− Γ(Y, ϕ+ ϕ0(X, Y )| ≤ |X − Y |.

The rest of the section is an adaption of [32, Section 3], which assumes that γ ∈ [0, 1], to
the case where γ ∈ (−1, 0). When compared with [25], what is new is that in the inequalities
(2.17) and (2.18) below, only |v − v∗|γ appears (while in [25], there is |v − v∗|γ + |ṽ − ṽ∗|γ).
This is very useful to get a strong/weak stability estimate: we will be able to use the regularity
of only one of the two solutions to be compared. Let us mention that it seems impossible to
extend our ideas to the more singular case where γ ≤ −1.
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Lemma 2.2.3. There is a constant C such that for any v, v∗, ṽ, ṽ∗ ∈ R3, any K ≥ 1,∫ ∞
0

∫ 2π

0

|c(v, v∗, z, ϕ)− c(ṽ, ṽ∗, z, ϕ+ ϕ0(v − v∗, ṽ − ṽ∗))|2dϕdz (2.17)

≤C(|v − ṽ|2 + |v∗ − ṽ∗|2)|v − v∗|γ∫ ∞
0

∫ 2π

0

(
|v + c(v, v∗, z, ϕ)−ṽ − cK(ṽ, ṽ∗, z, ϕ+ ϕ0(v − v∗, ṽ − ṽ∗))|2 − |v − ṽ|2

)
dϕdz

(2.18)

≤C(|v − ṽ|2 + |v∗ − ṽ∗|2)|v − v∗|γ + C|v − v∗|2+2γ/νK1−2/ν∫ ∞
0

∫ 2π

0

|cK(v, v∗, z, ϕ)|2dϕdz ≤C|v − v∗|γ+2,

∫ ∞
0

∣∣∣∣∫ 2π

0

cK(v, v∗, z, ϕ)dϕ

∣∣∣∣ dz ≤ C|v − v∗|γ+1

(2.19)∫ ∞
0

∫ 2π

0

|c(v, v∗, z, ϕ)|2dϕdz ≤C|v − v∗|γ+2,

∫ ∞
0

∣∣∣∣∫ 2π

0

c(v, v∗, z, ϕ)dϕ

∣∣∣∣ dz ≤ C|v − v∗|γ+1

(2.20)

Proof. For x > 0, we set ΦK(x) = π
∫ K

0
(1 − cosG(z/xγ))dz and ΨK(x) = π

∫∞
K

(1 −
cosG(z/xγ))dz. We introduce the shortened notation x = |v − v∗|, x̃ = |ṽ − ṽ∗|, ϕ0 =

ϕ0(v − v∗, ṽ − ṽ∗), c = c(v, v∗, z, ϕ), cK = cK(v, v∗, z, ϕ) = c1{z≤K}, c̃ = c(ṽ, ṽ∗, z, ϕ + ϕ0)

and c̃K = cK(ṽ, ṽ∗, z, ϕ+ ϕ0) = c̃1{z≤K}.

Step 1. We first verify that ΦK(x) ≤ Cxγ and that |ΦK(x) − ΦK(x̃)| ≤ C|xγ − x̃γ|.
First, we immediately see that ΦK(x) ≤ π

∫∞
0
G2(z/xγ)dz = xγπ

∫∞
0
G2(z)dz which implies

the first point (recall (2.5)). To check the second point, it suffices to verify that FK(x) =∫ K
0

(1− cosG(z/x))dz has a bounded derivative (uniformly in K ≥ 1). But we have FK(x) =

x
∫ K/x

0
(1− cosG(z))dz so that

|F ′K(x)| ≤
∫ ∞

0

(1− cosG(z))dz + x(K/x2)(1− cosG(K/x)) ≤ C + (K/x)G2(K/x),

which is uniformly bounded by (2.5).

Step 2. Proceeding as in the proof of [32, Lemma 3.1], we see that
∫∞

0

∫ 2π

0
|cK |2dϕdz =

x2ΦK(x), which is bounded by Cxγ+2 by Step 1. Also, recalling (2.7) and (2.14), using that∫ 2π

0
Γ(X,ϕ)dϕ = 0, we see that we have

∫ 2π

0
cKdϕ = −π(v − v∗)(1− cosG(z/xγ)), whence∫∞

0
|
∫ 2π

0
cKdϕ|dz = xΦK(x) ≤ Cxγ+1 by Step 1. All this proves (2.19), from which (2.20)

follows by letting K increase to infinity.

Step 3. Let us denote by IK =
∫ K

0

∫ 2π

0
|c − c̃|2dϕdz, by JK =

∫ K
0

∫ 2π

0
(|v + c − ṽ − c̃|2 −

|v − ṽ|2)dϕdz and by LK =
∫∞
K

∫ 2π

0
(|v + c − ṽ|2 − |v − ṽ|2)dϕdz. Proceeding exactly as in
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the proof of [32, Lemma 3.1], we see that JK ≤ AK1 + AK2 and LK ≤ AK3 , where

AK1 = 2xx̃

∫ K

0

(
G(z/xγ)−G(z/x̃γ)

)2

dz,

AK2 =
[
|v − ṽ|+ |v∗ − ṽ∗|

]
|(v − v∗)ΦK(x)− (ṽ − ṽ∗)ΦK(x̃)|,

AK3 = (x2 + 2|v − ṽ|x)ΨK(x).

Also, IK = JK − 2(v − ṽ) ·
∫ K

0

∫ 2π

0
(c − c̃)dϕdz and, as seen in the proof of [32, Lemma

3.1],
∫ K

0

∫ 2π

0
cdϕdz = −(v − v∗)ΦK(x), so that IK ≤ JK + AK4 with

AK4 = 2|v − ṽ||(v − v∗)ΦK(x)− (ṽ − ṽ∗)ΦK(x̃)|.

First, we immediately deduce from (2.6) that

AK1 ≤ 2c4xx̃
(xγ − x̃γ)2

xγ + x̃γ
≤ 2c4(x− x̃)2 min (xγ, x̃γ) ≤ C(|v − ṽ|2 + |v∗ − ṽ∗|2)|v − v∗|γ.

For the second inequality, we used that |xγ−x̃γ| ≤ |x−1−x̃−1|(x∧x̃)1+γ (because γ ∈ (−1, 0))
so that

xx̃
|xγ − x̃γ|2

xγ + x̃γ
≤ (xx̃)1+|γ| |x−1 − x̃−1|2(x ∧ x̃)2γ+2

x|γ| + x̃|γ|
≤ (xx̃)|γ|−1 |x− x̃|2(xx̃)1+γ

x|γ| + x̃|γ|
=
|x− x̃|2

x|γ| + x̃|γ|
,

which is indeed bounded by (x− x̃)2 min (xγ, x̃γ).

We now verify that AK2 ≤ C
(
|v− ṽ|2 + |v∗− ṽ∗|2

)
|v− v∗|γ . By Step 1, for any X, Y ∈ R3,

|XΦK(|X|)− Y ΦK(|Y |)| ≤ |Y ||ΦK(|X|)− ΦK(|Y |)|+ |X − Y |ΦK(|X|)

≤ C|Y |
∣∣∣|X|γ − |Y |γ∣∣∣+ C|X − Y ||X|γ.

Since again |xγ − x̃γ| ≤ |x−1− x̃−1|(x∧ x̃)1+γ , we conclude that |XΦK(|X|)− Y ΦK(|Y |)| ≤
C|X − Y ||X|γ , whence

AK2 ≤ C
[
|v − ṽ|+ |v∗ − ṽ∗|

]
|(v − v∗)− (ṽ − ṽ∗)|min{xγ, x̃γ}

as desired.

We next observe that AK4 ≤ 2AK2 .

Finally, we see that ΨK(x) ≤ C
∫∞
K
G2(z/xγ)dz ≤ C

∫∞
K

(z/xγ)−2/νdz = Cx2γ/νK1−2/ν

and that ΨK(x) ≤ C
∫∞

0
G2(z/xγ)dz ≤ C

∫∞
0

(1 + z/xγ)−2/νdz = Cxγ according to (2.5) ,
which imply ΨK(x) ≤ C min{xγ, x2γ/νK1−2/ν}. Hence,

AK3 = (x2 + 2|v − ṽ|x)ΨK(x) ≤ C|v − ṽ|2|v − v∗|γ + C|v − v∗|2+2γ/νK1−2/ν ,
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because 2|v − ṽ|x ≤ |v − ṽ|2 + x2 and x2ΨK(x) ≤ Cx2+2γ/νK1−2/ν .

The left hand side of (2.18) is nothing but JK +LK , which is bounded by AK1 +AK2 +AK3 :
(2.18) is proved. Finally, the left hand side of (2.17) equals limK→∞ IK and we know that
IK ≤ AK1 +AK2 +AK4 , which is (uniformly in K) bounded by (|v − ṽ|2 + |v∗ − ṽ∗|2)|v − v∗|γ
as desired.

2.3 Stability

In this section, we first introduce an auxiliary space ([0, 1],B([0, 1]), dα), and a stochastic pro-
cess defined on the latter space is called an α-processes and we denote the expectation on [0, 1]

by Eα and the laws by Lα. Our goal of this section is to prove Theorem 2.1.4.

Let us first give the outline of the proof. Let (ft)t≥0 be the strong solution to (2.1) and let
(f̃t)t≥0 be a weak solution. We first build (Xt)t≥0 with L(Xt) = f̃t solving

Xt = X0 +

∫ t

0

∫ 1

0

∫ ∞
0

∫ 2π

0

c
(
Xs−, X

∗
s (α), z, ϕ

)
M(ds, dα, dz, dϕ),

where (X∗t )t≥0 is a measurable α-process with law f̃t, and M(ds, dα, dz, dϕ) is a Poisson
measure. This process (Xt)t≥0 can be interpreted as the velocity of a typical particle. Each
time it has a jump, say at some time t, it means that the typical particle has collided with
another particle, of which the velocity is independent and represented by X∗t . Of course, X∗t
has to be f̃t-distributed.

The existence of the process (Xt)t≥0 is not easy and we only build a weak solution. The
difficulty is mainly due to the singularity of the interaction, which cannot be compensated
by some regularity of f̃t, because f̃t is any weak solution. We thus use the strategy of [22]
(which deals with continuous diffusion processes). We introduce f̃ εt = f̃t ∗ φε, where φε is the
centered Gaussian density with covariance matrix εI3. We write the PDE satisfied by f̃ εt and
associate, for each ε ∈ (0, 1), a solution (Xε

t )t≥0 to some SDE. Since both the SDE and the PDE
(with ε ∈ (0, 1) fixed) are well-posed (because the coefficients are regular enough, see Lemma
2.3.4), we conclude that L(Xε

t ) = f̃ εt . Next, we prove that the family {(Xε
t )t≥0, ε ∈ (0, 1)} is

tight using the Aldous criterion [1]. Finally, we consider a limit point (Xt)t≥0, as ε → 0, of
{(Xε

t )t≥0, ε ∈ (0, 1)}. Since L(Xε
t ) = f̃ εt , we deduce that L(Xt) = f̃t for each t ≥ 0. Then,

we classically make use of martingale problems to show that (Xt)t≥0 is indeed a solution of the
desired SDE.

Next, we would like to associate to (ft)t≥0 a solution (Wt)t≥0 to the SDE, driven by the
same Poisson measure M , with ft-distributed α-process (W ∗

t )t≥0 coupled with (X∗t )t≥0, that
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is,

Wt = W0 +

∫ t

0

∫ 1

0

∫ ∞
0

∫ 2π

0

c
(
Ws−,W

∗
s (α), z, ϕ+ ϕ0(Xs− −X∗s (α),Ws− −W ∗

s (α))
)

×M(ds, dα, dz, dϕ),

where the ft-distributed W ∗
t is optimally coupled with X∗t for each t ≥ 0. Unfortunately, we

cannot prove that such a process exists, because of the term ϕ + ϕ0(Xs− − X∗s (α),Ws− −
W ∗
s (α)). Such a problem was already encountered by Tanaka [57], and we more or less solve

it as he did, by introducing, for all K ≥ 1,

WK
t = W0 +

∫ t

0

∫ 1

0

∫ ∞
0

∫ 2π

0

cK(WK
s−,W

∗
s (α), z, ϕ+ ϕs,α,K)M(ds, dα, dz, dϕ)

with ϕs,α,K = ϕ0(Xs− − X∗s (α),WK
s− −W ∗

s (α)) as a coupling SDE. This equation of course
has a unique strong solution (WK

t )t≥0, but the computation becomes more complicated.

Finally, we observe that

W2
2 (ft, f̃t) ≤ lim sup

K→∞
E[|WK

t −Xt|2],

because WK
t goes in law to ft for each t ≥ 0.

Using the Itô formula, we find

E[|WK
t −Xt|2] = E[|W0 −X0|2] + E

[∫ t

0

∫ 1

0

∆K
s (α)dαds

]
,

where

∆K
s (α) :=

∫ ∞
0

∫ 2π

0

(
|WK

s −Xs + cK,W (s)− cX(s)|2 − |WK
s −Xs|2

)
dϕdz

with the shortened notation

cK,W (s) := cK
(
WK
s ,W

∗
s (α), z, ϕ+ ϕs,α,K

)
and cX(s) := c

(
Xs, X

∗
s (α), z, ϕ

)
.

Then we deduce from Section 2 that

∆K
s (α) ≤ C(|WK

s −Xs|2 + |W ∗
s (α)−X∗s (α)|2)|WK

s −W ∗
s (α)|γ

+ C|WK
s −W ∗

s (α)|2+2γ/νK1−2/ν .

It is then not too hard to conclude, using technical computations, that

lim sup
K→∞

E[|WK
t −Xt|2] ≤ W2

2 (f0, f̃0) exp

(
Cγ,p

∫ t

0

(
1 + ‖fs‖Lp

)
ds

)
,
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which completes the proof.

We first state the following result, of which the proof lies at the end of the section.

Proposition 2.3.1. Assume (2.3) for some γ ∈ (−1, 0), ν ∈ (0, 1) with γ+ν > 0. Consider any
weak solution (f̃t)t≥0 ∈ L∞

(
[0,∞),P2(R3)

)
to (2.1). Then there exists, on some probability

space, a random variableX0 with law f̃0, independent of a Poisson measureM(ds, dα, dz, dϕ)

on [0,∞)× [0, 1]× [0,∞)× [0, 2π) with intensity dsdαdzdϕ, a measurable family (X∗t )t≥0 of
α-random variables such that Lα(X∗t ) = f̃t and a càdlàg adapted process (Xt)t≥0 solving

Xt = X0 +

∫ t

0

∫ 1

0

∫ ∞
0

∫ 2π

0

c
(
Xs−, X

∗
s (α), z, ϕ

)
M(ds, dα, dz, dϕ) (2.21)

and such that for all t ≥ 0, L(Xt) = f̃t.

We are unfortunately not able to say anything about uniqueness (in law) for this SDE, except
if f̃ is a strong solution, and this is precisely the reason why things are complicated. We really
need to use the ideas of [22] to produce, for (f̃t)t≥0 given, a solution (Xt)t≥0 of which the time
marginals are (f̃t)t≥0.

Proposition 2.3.2. Assume (2.3) for some γ ∈ (−1, 0), ν ∈ (0, 1) with γ + ν > 0, that
f0 ∈ Pq(R3) for some q ≥ 2 such that q > γ2/(γ + ν) and that f0 has a finite entropy. Fix
p ∈ (3/(3 + γ), p0(γ, ν, q)). Let (ft)t≥0 ∈ L∞

(
[0,∞),P2(R3)

)
∩ L1

loc

(
[0,∞), Lp(R3)

)
be the

corresponding unique weak solution to (2.1) given by Theorem 2.1.3. Consider also the Poisson
measure M , the process (Xt)t≥0 and the family (X∗t )t≥0 built in Proposition 2.3.1 (associated
to another weak solution (f̃t)t≥0 ∈ L∞

(
[0,∞),P2(R3)

)
. Let W0 ∼ f0 (independent of M ) be

such that E[|W0 − X0|2] = W2
2 (f0, f̃0) and, for each t ≥ 0, an α-random variable W ∗

t such
that Lα(W ∗

t ) = ft and Eα[|W ∗
t −X∗t |2] =W2

2 (ft, f̃t). Then for K ≥ 1, the equation

WK
t = W0 +

∫ t

0

∫ 1

0

∫ ∞
0

∫ 2π

0

cK(WK
s−,W

∗
s (α), z, ϕ+ ϕs,α,K)M(ds, dα, dz, dϕ), (2.22)

with ϕs,α,K = ϕ0(Xs− − X∗s (α),WK
s− − W ∗

s (α)), has a unique solution. Moreover, setting
fKt = L(WK

t ) for each t ≥ 0, it holds that for all T > 0,

lim
K→∞

sup
[0,T ]

W2
2 (fKt , ft) = 0. (2.23)

Remark 2.3.3. As recalled in the previous section, the infimum in the definition of Wasserstein
distance is actually a minimum. Since the strong solution ft ∈ P2(R3) has a density for all
t ≥ 0, there is a unique Rt ∈ H(ft, f̃t) such that W2

2 (ft, f̃t) =
∫
R3×R3 |v − ṽ|2Rt(dv, dṽ)

(see Villani [61, Theorem 2.12]). We then know that (t, α) 7→ (W ∗
t (α), X∗t (α)) can be chosen

measurable from Fontbona-Guérin-Méléard [23, Theorem 1.3].
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Proof. For any K ≥ 1, the Poisson measure involved in (2.22) is actually finite (because
cK = c1{z≤K}), so the existence and uniqueness for this equation is obvious. It only remains
to prove (2.23), which has already been done in [25, Lemma 4.2], where the formulation of the
equation is slightly different. But one easily checks that (WK

t )t≥0 is a (time-inhomogeneous)
Markov process with the same generator as the one defined by [25, Eq. (4.1)], because for all
bounded measurable function φ : R3 7→ R and all t ≥ 0, a.s.,∫ 1

0

∫ ∞
0

∫ 2π

0

[
φ(w + cK(w,W ∗

t (α), z, ϕ+ ϕ0(Xt− −X∗t (α), w −W ∗
t (α)))− φ(w)

]
dϕdzdα

=

∫ 1

0

∫ ∞
0

∫ 2π

0

[
φ(w + cK(w, v, z, ϕ))− φ(w)

]
dϕdzft(dv)

by the 2π-periodicity of cK (in ϕ) and since Lα(W ∗
t ) = ft.

Now, we use these coupled processes to conclude the

Proof of Theorem 2.1.4. We consider a weak solution (f̃t)t≥0 to (2.1), with which we associate
the objects M , (Xt)t≥0, (X∗t )t≥0 as in Proposition 2.3.1. We then consider f0 satisfying the
assumptions of Theorem 2.1.3 and the corresponding unique weak solution (ft)t≥0 belonging to
L∞
(
[0,∞),P2(R3)

)
∩L1

loc

(
[0,∞), Lp(R3)

)
(with p ∈ (3/(3+γ), p0(γ, ν, q))) and we consider

(WK
t )t≥0, (W ∗

t )t≥0 built in Proposition 2.3.2 for any K ≥ 1. We know that W2
2 (f0, f̃0) =

E[|W0 −X0|2] and thatW2
2 (ft, f̃t) = Eα[|W ∗

t −X∗t |2] for all t ≥ 0. Using that WK
t ∼ fKt and

Xt ∼ f̃t for each t ≥ 0, we deduce from (2.23) that for all t ≥ 0,

W2
2 (ft, f̃t) ≤ lim sup

K→∞
E[|WK

t −Xt|2] =: Jt. (2.24)

Next, we focus on the time interval [0, T ] for any fixed T > 0, and split the proof into several
steps.

Step 1. By the Itô formula, we know that

E[|WK
t −Xt|2] = E[|W0 −X0|2] + E

[∫ t

0

∫ 1

0

∆K
s (α)dαds

]
,

where

∆K
s (α) :=

∫ ∞
0

∫ 2π

0

(
|WK

s −Xs + cK,W (s)− cX(s)|2 − |WK
s −Xs|2

)
dϕdz

with the shortened notation

cK,W (s) := cK
(
WK
s ,W

∗
s (α), z, ϕ+ ϕs,α,K

)
, cX(s) := c

(
Xs, X

∗
s (α), z, ϕ

)
.
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We then show that

∆K
s (α) ≤ C(|WK

s −Xs|2 + |W ∗
s (α)−X∗s (α)|2)|WK

s −W ∗
s (α)|γ

+ C|WK
s −W ∗

s (α)|2+2γ/νK1−2/ν , (2.25)

and

∆K
s (α) ≤C|WK

s −W ∗
s (α)|γ+2 + C|Xs −X∗s (α)|γ+2

+ C|WK
s −Xs|

(
|WK

s −W ∗
s (α)|γ+1 + |Xs −X∗s (α)|γ+1

)
. (2.26)

First, Lemma 2.2.3 (inequality (2.18)) precisely tells us that (2.25) holds true. Next, we observe
that

∆K
s (α) ≤2

∫ ∞
0

∫ 2π

0

(|cK,W (s)|2 + |cX(s)|2)dϕdz

+ 2|WK
s −Xs|

∣∣∣ ∫ ∞
0

∫ 2π

0

(cK,W (s)− cX(s))dϕdz
∣∣∣.

Hence, using (2.19) and (2.20), the proof of (2.26) is concluded.

Step 2. Set κ(γ) = min((γ + 1)/|γ|, |γ|/2) > 0. We verify that there exists a constant
C(T, f0, f̃0, f) > 0 (depending on T , m2(f0), m2(f̃0),

∫ t
0
‖fs‖Lpds), such that for all ` ≥ 1

(and all K ≥ 1),
I i,`t ≤ C(T, f0, f̃0, f)`−κ(γ), i = 1, 2, 3, 4,

where

I1,`
t := E

[ ∫ t

0

∫ 1

0

|WK
s −W ∗

s (α)|γ+2 1{|WK
s −W ∗s (α)|γ≥`}dαds

]
,

I2,`
t := E

[ ∫ t

0

∫ 1

0

|Xs −X∗s (α)|γ+2 1{|WK
s −W ∗s (α)|γ≥`}dαds

]
,

I3,`
t := E

[ ∫ t

0

∫ 1

0

|WK
s −Xs||WK

s −W ∗
s (α)|γ+1 1{|WK

s −W ∗s (α)|γ≥`}dαds
]
,

I4,`
t := E

[ ∫ t

0

∫ 1

0

|WK
s −Xs||Xs −X∗s (α)|γ+1 1{|WK

s −W ∗s (α)|γ≥`}dαds
]
.

Since γ ∈ (−1, 0) and κ(γ) ≤ (γ + 2)/|γ|, we have

I1,`
t ≤ `−(γ+2)/|γ|T ≤ `−κ(γ)T.

Similarly,

I3,`
t ≤ `−(γ+1)/|γ|

∫ t

0

E
[
|WK

s −Xs|
]
ds.
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Using (2.9) for (ft)t≥0 and (f̃t)t≥0, (2.23), and that m2(fKs ) ≤ 2m2(fs) + 2W2
2 (fs, f

K
s ), we

know that E
[
|WK

s −Xs|
]
≤ C(1 +m2(fKs ) +m2(f̃s)) ≤ C(T, f0, f̃0). Hence,

I3,`
t ≤ C(T, f0, f̃0)`−κ(γ).

Since γ + 2 ∈ (1, 2), it follows from the Hölder inequality that

I2,`
t ≤ E

[(∫ t

0

∫ 1

0

|Xs −X∗s (α)|2dαds
) γ+2

2
(∫ t

0

∫ 1

0

1{|WK
s −W ∗s (α)|γ≥`}dαds

) |γ|
2

]

≤ CE

[(∫ t

0

(|Xs|2 +m2(f̃s))ds
) γ+2

2
(∫ t

0

∫ 1

0

|WK
s −W ∗

s (α)|γ

`
dαds

) |γ|
2

]

Since Lα(W ∗
s ) = fs, we have

∫ 1

0
|WK

s −W ∗
s (α)|γdα =

∫
R3 |WK

s −v|γfs(dv) ≤ 1+Cγ,p‖fs‖Lp
by (2.13), so that

I2,`
t ≤`γ/2

(
1 +

∫ t

0

(
E[|Xs|2] +m2(f̃s)

)
ds
)(∫ t

0

(
1 + Cγ,p‖fs‖Lp

)
ds
) |γ|

2

≤`γ/2
(

1 + 2m2(f̃0)T
)(

1 +

∫ t

0

(
1 + Cγ,p‖fs‖Lp

)
ds
)
≤ C(T, f̃0, f)`−κ(γ).

For I4,`
t , we use the triple Hölder inequality to write

I4,`
t ≤ E

[ ∫ t

0

|WK
s −Xs|2ds

] 1
2 × E

[ ∫ t

0

∫ 1

0

|Xs −X∗s (α)|2dαds
] 1+γ

2

× E
[ ∫ t

0

∫ 1

0

1{|WK
s −W ∗s (α)|γ≥`}dαds

] |γ|
2
.

Thus I4,`
t ≤ C(T, f0, f̃0, f)`−κ(γ): use that E[|Xs|2] = Eα[|X∗s |2] = m2(f̃0), that m2(fKs ) ≤

2m2(fs) + 2W2
2 (fs, f

K
s ) as before and treat the last term of the product the same as we study

I2,`
t .

Step 3. According to Step 1, we now bound ∆K
s (α) by (2.25) when |WK

s −W ∗
s (α)|γ ≤ `

and by (2.26) when |WK
s −W ∗

s (α)|γ ≥ `:

E[|WK
t −Xt|2]

≤ E[|W0 −X0|2] + C
4∑
i=1

I i,`t + CK1−2/νE
[ ∫ t

0

∫ 1

0

|WK
s −W ∗

s (α)|2+2γ/νdαds
]

+ CE
[ ∫ t

0

∫ 1

0

(|WK
s −Xs|2 + |W ∗

s (α)−X∗s (α)|2) min
(
|WK

s −W ∗
s (α)|γ, `

)
dαds

]
.
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It then follows from Step 2 that for all ` ≥ 1, all K ≥ 1,

E[|WK
t −Xt|2] ≤ W2

2 (f0, f̃0) + C(T, f0, f̃0, f)`−κ(γ) (2.27)

+ CK1−2/νE
[ ∫ t

0

∫ 1

0

|WK
s −W ∗

s (α)|2+2γ/νdαds
]

+ CE
[ ∫ t

0

∫ 1

0

|WK
s −Xs|2|WK

s −W ∗
s (α)|γdαds

]
+ CE

[ ∫ t

0

∫ 1

0

|W ∗
s (α)−X∗s (α)|2 min

(
|WK

s −W ∗
s (α)|γ, `

)
dαds

]
.

Since γ + ν > 0, it holds that 2 + 2γ/ν > 0. As a consequence, like in Step 2,

E
[ ∫ t

0

∫ 1

0

|WK
s −W ∗

s (α)|2+2γ/νdαds
]
≤ CT [1 + E[|WK

s |2] +m2(f0)] ≤ C(T, f0, f̃0),

which gives

lim
K→∞

K1−2/νE
[ ∫ t

0

∫ 1

0

|WK
s −W ∗

s (α)|2+2γ/νdαds
]

= 0.

Moreover, we recall that a.s.
∫ 1

0
|WK

s −W ∗
s (α)|γdα ≤ 1 + Cγ,p‖fs‖Lp as in Step 2, whence

E
[ ∫ t

0

∫ 1

0

|WK
s −Xs|2|WK

s −W ∗
s (α)|γdαds

]
≤
∫ t

0

E[|WK
s −Xs|2](1 + Cγ,p‖fs‖Lp)ds.

Letting K →∞, by dominated convergence, we find (recall (2.24))

lim sup
K

E
[ ∫ t

0

∫ 1

0

|WK
s −Xs|2|WK

s −W ∗
s (α)|γdαds

]
≤
∫ t

0

Js(1 + Cγ,p‖fs‖Lp)ds.

Next, it is obvious that for each ` ≥ 1 fixed, for all s ∈ [0, T ], all α ∈ [0, 1], the func-
tion v 7→ min(|v − W ∗

s (α)|γ, `) is bounded and continuous. By (2.23), we conclude that
limK→∞ E

[
min

(
|WK

s −W ∗
s (α)|γ, `

)]
= E

[
min

(
|Ws−W ∗

s (α)|γ, `
)]

and, by dominated con-
vergence, that, still for ` ≥ 1 fixed,

lim
K→∞

E
[ ∫ t

0

∫ 1

0

|W ∗
s (α)−X∗s (α)|2 min

(
|WK

s −W ∗
s (α)|γ, `

)
dαds

]
=

∫ t

0

∫ 1

0

|W ∗
s (α)−X∗s (α)|2E

[
min

(
|Ws −W ∗

s (α)|γ, `
)]
dαds.

But since Ws ∼ fs, we have, for each α fixed, E[min (|Ws −W ∗
s (α)|γ, `)] ≤

∫
R3 |W ∗

s (α) −
v|γfs(dv) ≤ 1 + Cγ,p‖fs‖Lp by (2.13). Furthermore, we have

∫ 1

0
|W ∗

s (α) − X∗s (α)|2dα =
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Eα[|W ∗
s −X∗s |2] =W2

2 (fs, f̃s) ≤ Js. All in all, we have checked that

lim
K→∞

E
[ ∫ t

0

∫ 1

0

|W ∗
s (α)−X∗s (α)|2 min

(
|WK

s −W ∗
s (α)|γ, `

)
dαds

]
≤ C

∫ t

0

Js(1 + ‖fs‖Lp)ds.

Gathering all the previous estimates to let K →∞ in (2.27): for each ` ≥ 1 fixed,

Jt ≤ W2
2 (f0, f̃0) + C(T, f0, f̃0, f)`−κ(γ) + C

∫ t

0

Js(1 + ‖fs‖Lp)ds.

Letting now `→∞ and using the Grönwall lemma, we find

Jt ≤ W2
2 (f0, f̃0) exp

(
Cγ,p

∫ t

0

(
1 + ‖fs‖Lp

)
ds

)
.

SinceW2
2 (ft, f̃t) ≤ Jt, this completes the proof.

It remains to prove Proposition 2.3.1. We start with a technical result.

Lemma 2.3.4. Assume (2.3) for some γ ∈ (−1, 0), some ν ∈ (0, 1) with γ + ν > 0 and
recall that the deviation function c was defined by (2.14). Consider f ∈ P2(R3) and φε(x) =

(2πε)−3/2e−|x|
2/(2ε). Set f ε(w) = (f ∗ φε)(w).

(i) There exists a constant C > 0 such that for all x ∈ R3, all ε ∈ (0, 1),∫
R3

∫
R3

∫ ∞
0

∫ 2π

0

|c(v, v∗, z, ϕ)|φε(v − x)

f ε(x)
dϕdzf(dv)f(dv∗) ≤ C

(
1 +

√
m2(f) + |x|

)
,

(ii) For all ε ∈ (0, 1), all R > 0, there is a constant CR,ε > 0 (depending only on m2(f))
such that for all x, y ∈ B(0, R),∫

R3

∫
R3

∫ ∞
0

∫ 2π

0

|c(v, v∗, z, ϕ)|
∣∣∣∣φε(v − x)

f ε(x)
− φε(v − y)

f ε(y)

∣∣∣∣ dϕdzf(dv)f(dv∗) ≤ CR,ε|x− y|.

Proof. We start with (i) and set Iε(x) =
∫
R3

∫
R3

∫∞
0

∫ 2π

0
|c(v, v∗, z, ϕ)|φε(v−x)

fε(x)
dϕdzf(dv)f(dv∗).

Using (2.8) and (2.5), we see that |c(v, v∗, z, ϕ)| ≤ G(z/|v − v∗|γ)|v − v∗| ≤ C(1 + z/|v −
v∗|γ)−1/ν |v − v∗|. Hence

Iε(x) ≤C
∫
R3

∫
R3

∫ ∞
0

(1 + z/|v − v∗|γ)−1/ν |v − v∗|
φε(v − x)

f ε(x)
dzf(dv)f(dv∗)

=C

∫
R3

∫
R3

|v − v∗|1+γ φε(v − x)

f ε(x)
f(dv)f(dv∗).
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Using now that |v − v∗|1+γ ≤ 1 + |v|+ |v∗|, we find

Iε(x) ≤C
∫
R3

∫
R3

(1 + |v|+ |v∗|)
φε(v − x)

f ε(x)
f(dv)f(dv∗)

≤C
(

1 +
√
m2(f) +

∫
R3 |v|φε(v − x)f(dv)

f ε(x)

)
.

To conclude the proof of (i), it remains to study Jε(x) = (f ε(x))−1
∫
R3 |v|φε(v − x)f(dv). We

introduce L :=
√

2m2(f), for which f(B(0, L)) ≥ 1/2 (because f(B(0, L)c) ≤ m2(f)/L2).
Using that {v ∈ R3 : |v| ≤ 2|x|+ L} ∪ {v ∈ R3 : |v − x| ≥ |x|+ L} = R3, we write

Jε(x) =

∫
R3 |v|φε(v − x)f(dv)∫
R3 φε(v − x)f(dv)

≤ 2|x|+ L+

∫
|v−x|≥|x|+L |v|φε(v − x)f(dv)∫
|v−x|≤|x|+L φε(v − x)f(dv)

.

Since φε is radial and decreasing,∫
|v−x|≥|x|+L

|v|φε(v − x)f(dv) ≤ φε(|x|+ L)
√
m2(f)

and ∫
|v−x|≤|x|+L

φε(v − x)f(dv) ≥ φε(|x|+ L)f(B(x, |x|+ L)) ≥ φε(|x|+ L)/2

owing to the fact that B(0, L) ⊂ B(x, |x|+ L). Hence,

Jε(x) ≤ 2|x|+ L+ 2
√
m2(f) ≤ 2|x|+ 4

√
m2(f)

and this completes the proof of (i).

For point (ii), we set

∆ε(x, y) =

∫
R3

∫
R3

∫ ∞
0

∫ 2π

0

|c(v, v∗, z, ϕ)||Fε(x, v)− Fε(y, v)|dϕdzf(dv)f(dv∗),

where Fε(v, x) := (f ε(x))−1φε(v − x). Exactly as in point (i), we start with

∆ε(x, y) ≤ C

∫
R3

∫
R3

|v − v∗|1+γ|Fε(v, x)− Fε(v, y)|f(dv)f(dv∗)

≤ C

∫
R3

(1 +
√
m2(f) + |v|)|Fε(v, x)− Fε(v, y)|f(dv)

≤ C|x− y|
∫
R3

(1 +
√
m2(f) + |v|)

(
sup

a∈B(0,R)

|OxFε(v, a)|
)
f(dv)
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for all x, y ∈ B(0, R). But we have

OxFε(v, a) =
1

ε

φε(v − a)
∫
R3(v − u)φε(u− a)f(du)

(f ε(a))2
. (2.28)

Indeed, recalling that φε(x) = (2πε)−3/2e−|x|
2/(2ε), we observe that

Oxφε(v − x) =
1

ε
(v − x)φε(v − x) and Oxf

ε(x) =
1

ε

∫
R3

φε(u− x)(u− x)f(du).

Since Fε(v, a) := (f ε(a))−1φε(v − a), we have

OxFε(v, a) =
Oxφε(v − a)f ε(a)− φε(v − a)Oxf

ε(a)

(f ε(a))2

=
φε(v − a)

ε

(v − a)f ε(a)−
∫
R3 φε(u− a)(u− a)f(du)

(f ε(a))2

=
φε(v − a)

ε

∫
R3 φε(u− a)(v − a)f(du)−

∫
R3 φε(u− a)(u− a)f(du)

(f ε(a))2
,

whence (2.28). Using now that Jε(a) = (f ε(a))−1
∫
R3 |u|φε(u − a)f(du) ≤ 2|a| + 4

√
m2(f)

as proved in (i),

|OxFε(v, a)| ≤ 1

ε

φε(v − a)

f ε(a)

∫
R3(|v|+ |u|)φε(u− a)f(du)

f ε(a)

≤ 1

ε

φε(v − a)

f ε(a)

(
|v|+ 2|a|+ 4

√
m2(f)

)
.

But we know that φε(x) ≤ (2πε)−3/2 and that

f ε(a) ≥
∫
|v−a|≤|a|+L

φε(v − a)f(dv) ≥ φε(|a|+ L)f(B(a, |a|+ L)) ≥ φε(|a|+ L)/2

since B(0, L) ⊂ B(a, |a|+ L). Hence,

sup
a∈B(0,R)

|OxFε(v, a)| ≤ 2

ε
e(R+L)2/(2ε)

(
|v|+ 2R + 4

√
m2(f)

)
.

Consequently, for all x, y ∈ B(0, R),

∆ε(x, y) ≤ 2C

ε
e(R+L)2/(2ε)|x− y|

∫
R3

(
1 +

√
m2(f) + |v|

)(
|v|+ 2R + 4

√
m2(f)

)
f(dv)

≤ CR,ε|x− y|,

where CR,ε depends only on R, ε and m2(f) (recall that L :=
√

2m2(f)).
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Finally, we end the section with the

Proof of Proposition 2.3.1. We consider any given weak solution (f̃t)t≥0 ∈ L∞([0,∞),P2(R3))

to (2.1) and we write the proof in several steps.

Step 1. We introduce φε(x) = (2πε)−3/2e−|x|
2/(2ε) and f̃ εt (w) = (f̃t ∗ φε)(w). For each

t ≥ 0, we see that f̃ εt is a positive smooth function. We claim that for any ψ ∈ Lip(R3),

∂

∂t

∫
R3

ψ(w)f̃ εt (dw) =

∫
R3

f̃ εt (dw)Ãt,εψ(w),

where

Ãt,εψ(w) =

∫
R3

∫
R3

∫ ∞
0

∫ 2π

0

[ψ(w + c(v, v∗, z, ϕ))− ψ(w)]
φε(v − w)

f̃ εt (w)
dϕdzf̃t(dv∗)f̃t(dv).

(2.29)
Indeed, f̃ εt (w) =

∫
R3 φε(v − w)f̃t(dv) since φε(x) is even. According to (2.10) and (2.15), we

have

∂

∂t
f̃ εt (w) =

∫
R3

∫
R3

∫ ∞
0

∫ 2π

0

[φε(v − w + c(v, v∗, z, ϕ))− φε(v − w)]dϕdzf̃t(dv∗)f̃t(dv)

=

∫
R3

∫ K

0

∫ 2π

0

[∫
R3

φε(v − w + c(v, v∗, z, ϕ))f̃t(dv)− f̃ εt (w)

]
dϕdzf̃t(dv∗)

+

∫
R3

∫
R3

∫ ∞
K

∫ 2π

0

[φε(v − w + c(v, v∗, z, ϕ))− φε(v − w)]dϕdzf̃t(dv∗)f̃t(dv)

for any K ≥ 1. We thus have, for any ψ ∈ Lip(R3),

∂

∂t

∫
R3

ψ(w)f̃ εt (dw)

=

∫
R3

∫
R3

∫ K

0

∫ 2π

0

∫
R3

φε(v − w + c(v, v∗, z, ϕ))ψ(w)f̃t(dv)dϕdzf̃t(dv∗)dw

−
∫
R3

∫
R3

∫ K

0

∫ 2π

0

ψ(w)f̃ εt (w)dϕdzf̃t(dv∗)dw

+

∫
R3

∫
R3

∫
R3

∫ ∞
K

∫ 2π

0

[φε(v − w + c(v, v∗, z, ϕ))− φε(v − w)]ψ(w)dϕdzf̃t(dv∗)f̃t(dv)dw.

Using the change of variables w − c(v, v∗, z, ϕ) 7→ w, we see that the first integral of the RHS
equals ∫

R3

∫
R3

∫ K

0

∫ 2π

0

∫
R3

φε(v − w)ψ(w + c(v, v∗, z, ϕ))f̃t(dv)dϕdzf̃t(dv∗)dw.
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Consequently,

∂

∂t

∫
R3

ψ(w)f̃ εt (dw)

=

∫
R3

∫
R3

∫ K

0

∫ 2π

0

[∫
R3

ψ(w + c(v, v∗, z, ϕ))
φε(v − w)

f̃ εt (w)
f̃t(dv)− ψ(w)

]
f̃ εt (w)dϕdzf̃t(dv∗)dw

+

∫
R3

∫
R3

∫
R3

∫ ∞
K

∫ 2π

0

[φε(v − w + c(v, v∗, z, ϕ))− φε(v − w)]ψ(w)dϕdzf̃t(dv∗)f̃t(dv)dw

=

∫
R3

∫
R3

∫ K

0

∫ 2π

0

∫
R3

[ψ(w + c(v, v∗, z, ϕ))− ψ(w)]
φε(v − w)

f̃ εt (w)
f̃t(dv)dϕdzf̃t(dv∗)f̃

ε
t (dw)

+

∫
R3

∫
R3

∫
R3

∫ ∞
K

∫ 2π

0

[φε(v − w + c(v, v∗, z, ϕ))− φε(v − w)]ψ(w)dϕdzf̃t(dv∗)f̃t(dv)dw.

Letting K increase to infinity, one easily ends the step.

Step 2. We set Ft,ε(v, x) = (f̃ εt (x))−1φε(v − x). For a given Xε
0 with law f̃ ε0 , and a given

independent Poisson measureN(ds, dv, dv∗, dz, dϕ, du) on [0,∞)×R3×R3×[0,∞)×[0, 2π)×
[0,∞) with intensity dsf̃s(dv)f̃s(dv∗)dzdϕdu, there exists a pathwise unique solution to

Xε
t = Xε

0 +

∫ t

0

∫
R3

∫
R3

∫ ∞
0

∫ 2π

0

∫ ∞
0

c(v, v∗, z, ϕ)1{u≤Fs,ε(v,Xε
s−)}N(ds, dv, dv∗, dz, dϕ, du).

(2.30)
This classically follows from Lemma 2.3.4, which precisely tells us that the coefficients of
this equation satisfy some at most linear growth condition (point (i)) and some local Lipschitz
condition (point (ii)).

Step 3. We now prove that L(Xε
t ) = f̃ εt for each t ≥ 0. We thus introduce gεt = L(Xε

t ). By
the Itô formula, we see that for all ψ ∈ Lip(R3),

∂

∂t

∫
R3

ψ(w)gεt(dw)

=

∫
R3

gεt(dw)

∫
R3

∫
R3

∫ ∞
0

∫ 2π

0

(
ψ(w + c(v, v∗, z, ϕ))− ψ(w)

)
Ft,ε(v, w)dϕdzf̃t(dv∗)f̃t(dv)

=

∫
R3

gεt(dw)Ãt,εψ(w).

Thus (f̃ εt )t≥0 and (gεt)t≥0 satisfy the same equation and we of course have gε0 = f̃ ε0 by construc-
tion. The following uniqueness result allows us to conclude the step: for any µ0 ∈ P2(R3),
there exists at most one family (µt) ∈ L∞loc

(
[0,∞),P2(R3)

)
such that for any ψ ∈ Lip(R3),

any t ≥ 0, ∫
R3

ψ(w)µt(dw) =

∫
R3

ψ(w)µ0(dw) +

∫ t

0

ds

∫
R3

µs(dw)Ãs,εψ(w). (2.31)
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This must be classical (as well as Step 2 is), but we find no precise reference and thus make
use of martingale problems. A càdlàg adapted R3-valued process (Zt)t≥0 on some filtered
probability space (Ω,F ,Ft,P) is said to solve the martingale problem MP (Ãt,ε, µ0, Lip(R3))

if P ◦ Z0 = µ0 and if for all ψ ∈ Lip(R3), (Mψ,ε
t )t≥0 is a (Ω,F ,Ft,P)-martingale, where

Mψ,ε
t = ψ(Zt)−

∫ t

0

Ãs,εψ(Zs)ds.

According to [10, Theorem 5.2] (see also [10, Remark 3.1, Theorem 5.1] and [38, Theorem
B.1]), it suffices to check the following points to conclude the uniqueness for (2.31).

(i) there exists a countable family (ψk)k≥1 ⊂ Lip(R3) such that for all t ≥ 0, the closure
(for the bounded pointwise convergence) of {(ψk, Ãt,εψk), k ≥ 1} contains {(ψ, Ãt,εψ), ψ ∈
Lip(R3)},

(ii) for each w0 ∈ R3, there exists a solution to MP (Ãt,ε, δw0 , Lip(R3)),

(iii) for each w0 ∈ R3, uniqueness (in law) holds for MP (Ãt,ε, δw0 , Lip(R3)).

The fact that (2.30) has a pathwise unique solution proved in Step 2 (there we can of course
replace Xε

0 by any deterministic point w0 ∈ R3) immediately implies (ii) and (iii). Point (i) is
very easy (recall that ε > 0 is fixed here).

Step 4. In this step, we check that the family ((Xε
t )t≥0)ε>0 is tight in D([0,∞),R3). To do

this, we use the Aldous criterion [1], see also [40, p 321], i.e. it suffices to prove that for all
T > 0,

sup
ε∈(0,1)

E
[

sup
[0,T ]

|Xε
t |
]
<∞, lim

δ→0
sup
ε∈(0,1)

sup
S,S′∈ST (δ)

E
[
|Xε

S′ −Xε
S|
]

= 0, (2.32)

where ST (δ) is the set containing all pairs of stopping times (S, S ′) satisfying 0 ≤ S ≤ S ′ ≤
S + δ ≤ T .

First, since Xε
t ∼ f̃ εt = f̃t ? φε, we have E[|Xε

t |2] ≤ 2(m2(f̃t) + 3ε) ≤ 2m2(f̃0) + 6. Thus
for any T > 0, using Lemma 2.3.4-(i),

E
[

sup
[0,T ]

|Xε
t |
]

≤ E
[
|Xε

0|
]

+ E
[ ∫ T

0

∫
R3

∫
R3

∫ ∞
0

∫ 2π

0

|c(v, v∗, z, ϕ)|φε(v −X
ε
s)

f̃ εs(X
ε
s)

dϕdzf̃s(dv)f̃s(dv∗)ds
]

≤ E
[
|Xε

0|
]

+ CE
[∫ T

0

(1 + |Xε
s|) ds

]
≤ CT .
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Furthermore, for any T > 0, δ > 0 and (S, S ′) ∈ ST (δ), using again Lemma 2.3.4-(i),

E
[
|Xε

S′ −Xε
S|
]

≤ E
[∫ S+δ

S

∫
R3

∫
R3

∫ ∞
0

∫ 2π

0

|c(v, v∗, z, ϕ)|φε(v −X
ε
s)

f̃ εs(X
ε
s)

dϕdzf̃s(dv)f̃s(dv∗)ds

]
≤ CE

[∫ S+δ

S

(1 + |Xε
s|)ds

]
≤ CE

[
δ sup

[0,T ]

(1 + |Xε
s|)

]
≤ CT δ.

Hence (2.32) holds true and this completes the step.

Step 5. We thus can find some (Xt)t≥0 which is the limit in law (for the Skorokhod
topology) of a sequence (Xεn

t )t≥0 with εn ↘ 0. Since L(Xεn
t ) = f̃ εnt by Step 3 and since

f̃ εnt → f̃t by definition, we have L(Xt) = f̃t for each t ≥ 0. It only remains to show that
(Xt)t≥0 is a (weak) solution to (2.21). Using the theory of martingale problems, see Jacod
[39, Theorem 13.55], it classically suffices to prove that for any ψ ∈ C1

b (R3), the process
ψ(Xt)− ψ(X0)−

∫ t
0
Bsψ(Xs)ds is a martingale, where

Btψ(x) =

∫ 1

0

∫ ∞
0

∫ 2π

0

(
ψ(x+ c(x,X∗t (α), z, ϕ))− ψ(x)

)
dϕdzdα.

But since Lα(X∗t ) = f̃t, this rewrites (recall (2.15))

Btψ(x) =

∫
R3

∫ ∞
0

∫ 2π

0

(
ψ(x+ c(x, v∗, z, ϕ)− ψ(x)

)
dϕdzf̃t(dv∗) =

∫
R3

Aψ(x, v∗)f̃t(dv∗).

We thus have to prove that for any 0 ≤ s1 ≤ ... ≤ sk ≤ s ≤ t ≤ T , any ψ1, ..., ψk ∈ C1
b (R3),

and any ψ ∈ C1
b (R3),

E[F(X)] = 0,

where F : D([0,∞),R3) 7→ R is defined by

F(λ) =
( k∏
i=1

ψi(λsi)
)(
ψ(λt)− ψ(λs)−

∫ t

s

Brψ(λr)dr
)
.

We of course start from E[Fεn(Xεn)] = 0, where, recalling (2.29),

Fε(λ) =
( k∏
i=1

ψi(λsi)
)(
ψ(λt)− ψ(λs)−

∫ t

s

Ãr,εψ(λr)dr
)
.

We then write∣∣∣E[F(X)]
∣∣∣ ≤ ∣∣∣E[F(X)]− E[F(Xεn)]

∣∣∣+
∣∣∣E[F(Xεn)]− E[Fεn(Xεn)]

∣∣∣.
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On the one hand, we know from [24, Lemma 3.3] that (x, v∗) 7→ Aψ(x, v∗) is continuous
on R3 × R3 and bounded by C |x − v∗|γ+1. We thus easily deduce that F is continuous at
each λ ∈ D([0,∞),R3) which does not jump at s1, ..., sk, s, t (this is a.s. the case of X ∈
D([0,∞),R3) because it has no deterministic time jump by the Aldous criterion). We also
deduce that |F(λ)| ≤ C(1 +

∫ t
0

∫
R3 |λr − v∗|γ+1f̃r(dv∗)dr). Using that 0 < γ + 1 < 1, that

supε∈(0,1) E[sup[0,T ] |Xε
t |] < ∞ by Step 4 and recalling that Xεn goes in law to X , we easily

conclude that |E[F(X)]− E[F(Xεn)]| tends to 0 as n→∞.

On the other hand, since |F(λ)−Fε(λ)| ≤ C|
∫ t
s
(Brψ(λr)− Ãr,εψ(λr))dr| and Xε

r ∼ f̃ εr ,∣∣∣E[F(Xεn)]− E[Fεn(Xεn)]
∣∣∣

≤C
∫ t

s

E
[∣∣∣ ∫

R3

∫ ∞
0

∫ 2π

0

∫
R3

ψ(Xεn
r + c(v, v∗, z, ϕ))[φεn(v −Xεn

r )

f̃ εnr (Xεn
r )

f̃r(dv)− δXεn
r

(dv)
]
dϕdzf̃r(dv∗)

∣∣∣]dr
=C

∫ t

s

∣∣∣ ∫
R3

∫ ∞
0

∫ 2π

0

∫
R3

∫
R3

ψ(w + c(v, v∗, z, ϕ))[
φεn(v − w)f̃r(dv)− f̃ εnr (w)δw(dv)

]
dwdϕdzf̃r(dv∗)

∣∣∣dr.
But we can write ∫

R3

∫
R3

ψ(w + c(v, v∗, z, ϕ))f̃ εnr (w)δw(dv)dw

=

∫
R3

ψ(w + c(w, v∗, z, ϕ))f̃ εnr (w)dw

=

∫
R3

∫
R3

ψ(w + c(w, v∗, z, ϕ))φεn(v − w)f̃r(dv)dw,

so that∣∣∣E[F(Xεn)]− E[Fεn(Xεn)]
∣∣∣

≤C
∫ t

s

∣∣∣ ∫
R3

∫ ∞
0

∫ 2π

0

∫
R3

∫
R3

[
ψ(w + c(v, v∗, z, ϕ))− ψ(w + c(w, v∗, z, ϕ))

]
φεn(v − w)f̃r(dv)dwdϕdzf̃r(dv∗)

∣∣∣dr
=C

∫ t

s

∣∣∣ ∫
R3

∫ ∞
0

∫ 2π

0

∫
R3

∫
R3

[
ψ(w + c(v, v∗, z, ϕ+ ϕ0(v − v∗, w − v∗)))

− ψ(w + c(w, v∗, z, ϕ))
]
φεn(v − w)f̃r(dv)dwdϕdzf̃r(dv∗)

∣∣∣dr.
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The last equality uses the 2π-periodicity of c. We now put

Rn(v, v∗, z, ϕ) :=

∫
R3

[
ψ(w + c(v, v∗, z, ϕ+ ϕ0(v − v∗, w − v∗)))

− ψ(w + c(w, v∗, z, ϕ))
]
φεn(v − w)dw,

and show the following two things:

(a) for all v, v∗ ∈ R3, all z ∈ [0,∞) and ϕ ∈ [0, 2π), limn→∞Rn(v, v∗, z, ϕ) = 0;

(b) there is a constant C > 0 such that for all n ≥ 1, all v, v∗ ∈ R3, all z ∈ [0,∞) and
ϕ ∈ [0, 2π),

|Rn(v, v∗, z, ϕ)| ≤ C
(
1 + |v − v∗|

)
(1 + z)−1/ν ,

which belongs to L1([0, T ] × R3 × R3 × [0,∞) × [0, 2π), drf̃r(dv∗)f̃r(dv)dzdϕ) because
(f̃t)t≥0 ∈ L∞([0, T ],P2(R3)) by assumption.

By dominated convergence, we will deduce that limn→∞

∣∣∣E[F(Xεn)] − E[Fεn(Xεn)]
∣∣∣ = 0

and this will conclude the proof.

We first study (a). Since ψ ∈ C1
b (R3), we immediately observe that∣∣∣ψ(w + c(v, v∗, z, ϕ+ ϕ0(v − v∗, w − v∗)))− ψ(w + c(w, v∗, z, ϕ))

∣∣∣ (2.33)

≤ Cψ

∣∣∣c(v, v∗, z, ϕ+ ϕ0(v − v∗, w − v∗))− c(w, v∗, z, ϕ)
∣∣∣.

Recalling that

c(v, v∗, z, ϕ) = −1− cosG(z/|v − v∗|γ)
2

(v − v∗) +
sinG(z/|v − v∗|γ))

2
Γ(v − v∗, ϕ),

we have∣∣∣c(v, v∗, z, ϕ+ ϕ0(v − v∗, w − v∗))− c(w, v∗, z, ϕ)
∣∣∣

≤| cosG(z/|v − v∗|γ)− cosG(z/|w − v∗|γ)|
2

|v − v∗|+
|1− cosG(z/|w − v∗|γ)|

2
|v − w|

+
| sinG(z/|v − v∗|γ)− sinG(z/|w − v∗|γ)|

2
|Γ(v − v∗, ϕ+ ϕ0)|

+
| sinG(z/|w − v∗|γ)|

2
|Γ(v − v∗, ϕ+ ϕ0)− Γ(w − v∗, ϕ)|.

Using that |Γ(v − v∗, ϕ+ ϕ0)| = |v − v∗| and Lemma 2.2.2, we obtain∣∣∣c(v, v∗, z, ϕ+ ϕ0(v − v∗, w − v∗))− c(w, v∗, z, ϕ)
∣∣∣

≤C|G(z/|v − v∗|γ)−G(z/|w − v∗|γ)||v − v∗|+ C|v − w|.
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We deduce from (2.4) that |G′(z)| = 1/β(G(z)) ≤ C by (2.3), whence∣∣∣c(v, v∗, z, ϕ+ ϕ0(v − v∗, w − v∗))− c(w, v∗, z, ϕ)
∣∣∣

≤ Cz
∣∣|v − v∗||γ| − |w − v∗||γ|∣∣|v − v∗|+ C|v − w|.

Using again the inequality |xα− yα| ≤ |x− y|(x∨ y)α−1 for α ∈ (0, 1), and x, y ≥ 0, we have∣∣|v − v∗||γ| − |w − v∗||γ|∣∣ ≤ |v − w||v − v∗||γ|−1.

We thus get∣∣∣c(v, v∗, z, ϕ+ ϕ0(v − v∗, w − v∗))− c(w, v∗, z, ϕ)
∣∣∣ ≤ C(z|v − v∗||γ| + 1)|v − w|.

Consequently,

Rn(v, v∗, z, ϕ) ≤Cψ(z|v − v∗||γ| + 1)

∫
R3

|v − w|φεn(v − w)dw,

which clearly tends to 0 as n→∞. This ends the proof of (a).

For (b), start again from (2.33) to write∣∣∣ψ(w + c(v, v∗, z, ϕ+ ϕ0(v − v∗, w − v∗)))− ψ(w + c(w, v∗, z, ϕ))
∣∣∣

≤
∣∣∣ψ(w + c(v, v∗, z, ϕ))− ψ(w)

∣∣∣+
∣∣∣ψ(w)− ψ(w + c(w, v∗, z, ϕ))

∣∣∣
≤ Cψ(|c(v, v∗, z, ϕ)|+ |c(w, v∗, z, ϕ)|).

Moreover, since |c(v, v∗, z, ϕ)| ≤ G(z/|v− v∗|γ)|v− v∗| ≤ C|v− v∗|(1 + |v− v∗||γ|z)−1/ν by
(2.8) and (2.5), we observe that

Rn(v, v∗, z, ϕ) ≤C|v − v∗|(1 + |v − v∗||γ|z)−1/ν

+ C

∫
R3

|w − v∗|(1 + |w − v∗||γ|z)−1/νφεn(v − w)dw.

Since 1 + |v − v∗||γ|z ≥
(
1 ∧ |v − v∗||γ|

)
(1 + z) for z ∈ [0,∞),

|v − v∗|(1 + |v − v∗||γ|z)−1/ν ≤ |v − v∗|(1 + z)−1/ν
(
1 ∧ |v − v∗||γ|

)−1/ν
.

Using that |γ|/ν < 1, we deduce that

|v − v∗|(1 + |v − v∗||γ|z)−1/ν ≤
(
1 + |v − v∗|

)
(1 + z)−1/ν .

As a conclusion,

Rn(v, v∗, z, ϕ) ≤ C
(

1 + |v − v∗|+
∫
R3

|w − v∗|φεn(v − w)dw
)

(1 + z)−1/ν ,

which is easily bounded (recall that εn ∈ (0, 1)) by C(1 + |v|+ |v∗|)(1 + z)−1/ν as desired.
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2.4 The coupling

2.4.1 Main ideas of the proof of Theorem 2.1.5

The proof of Theorem 2.1.5 is very technical, so let us exhibit the main ideas. We consider the
unique strong solution (ft)t≥0 to (2.1) given in Theorem 2.1.3. We first couple (W 1

t , ...,W
N
t )t≥0

(i.i.d copies of (Wt)t≥0 solution to the SDE associated to (ft)t≥0) and the Nanbu particle system
(V 1

t , ..., V
N
t )t≥0 in such a way that, roughly, as soon as possible, each time W i

t has a jump
c(W i

t−,W
∗
t (α), z, ϕ), V i

t also has a jump cK(V i
t−, V

j
t , z, ϕ) with V j

t as close as possible to
W ∗
t (α). So, we construct a coupling between W ∗

t (α) (with law ft) and V j
t (with law µN,Kt ) in

Lemma 2.4.2 as Fournier-Mischler [32], see also [23]. Unfortunately, there are many problems:
we have to use in a complicated way the function ϕ0 of Lemma 2.2.2, and to use an intermediate
coupling between the empirical measure of the V i

t ’s and the W i
t ’s.

To get the convergence rate, we roughly apply the stability principle in Theorem 2.1.4, and
find thatW2

2 (µN,Kt , µNWt
) should be bounded by (some natural error terms)×

exp
(
Cγ,p

∫ t
0
(1 + ‖µNWt

‖Lp)ds
)

, but it is not correct since the empirical measure does not have

a finite Lp norm. We thus consider a regularized version (i.e. µ̄NWt
= µNWt

∗ ψεN ), with a small
parameter εN . Here ψε = (3/(4πε3))1{|x|≤ε} . This introduces some additional error terms, but
we are able to bound, uniformly in N , the Lp-norm of µ̄NWt

. This is difficult, but not surprising.
Indeed, it is well-known from statistics that, if (X1, ..., XN) are i.i.d with density g ∈ Lp, then
‖ 1
N

∑N
i=1 δXi ∗ ψεN‖Lp ≤ 2‖g‖Lp with high probability if εN is well-chosen. So for each fixed

t ≥ 0, we apply such a principle, but we need to get something similar (localy) uniformly in
time. For this, we use some continuity properties of the W i

t ’s, and again this is complicated
since they are only càdlàg.

Now we have all this in mind, we realize that we also need to take into account the regu-
larization (by convolution with ψεN ) when introducing the coupling between the V i

t ’s and the
W i
t ’s.

2.4.2 The coupling

To get the convergence of the particle system, we construct a suitable coupling between the
particle system with generator LN,K defined by (2.16) and the realization of the weak solution
to (2.1), following the ideas of [32].

Lemma 2.4.1. Assume (2.3) for some γ ∈ (−1, 0), ν ∈ (0, 1) with γ + ν ∈ (0, 1). Let N ≥ 1

be fixed. Let q ≥ 2 such that q > γ2/(γ + ν). Let f0 ∈ Pq(R3) with a finite entropy and let
(ft)t≥0 ∈ L∞

(
[0,∞),P2(R3)

)
∩L1

loc

(
[0,∞), Lp(R3)

)
(with p ∈ (3/(3+γ), p0(γ, ν, q))) be the

unique weak solution to (2.1) given by Theorem 2.1.3. Then there exists, on some probability
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space, a family of i.i.d. random variables (V i
0 )i=1,...,N with common law f0, independent of

a family of i.i.d. Poisson measures (Mi(ds, dα, dz, dϕ))i=1,...,N on [0,∞) × [0, 1] × [0,∞) ×
[0, 2π), with intensity dsdαdzdϕ, a measurable family (W ∗

t )t≥0 of α-random variables with
α-law (ft)t≥0 and N i.i.d. càdlàg adapted processes (W i

t )t≥0 solving, for each i = 1, · · · , N ,

W i
t = V i

0 +

∫ t

0

∫ 1

0

∫ ∞
0

∫ 2π

0

c(W i
s−,W

∗
s (α), z, ϕ)Mi(ds, dα, dz, dϕ). (2.34)

Moreover, W i
t ∼ ft for all t ≥ 0, all i = 1, . . . , N . Also, for all T > 0,

E
[

sup
[0,T ]

|W 1
t |q
]
≤ CT,q. (2.35)

Proof. Except for the moment estimate (2.35), it suffices to apply Proposition 2.3.1. A simpler
proof could be handled here because we deal with the strong solution f ∈ L∞

(
[0,∞),P2(R3)

)
∩

L1
loc

(
[0,∞), Lp(R3)

)
. We now prove (2.35), which is more or less classical. We thus fix q ≥ 2.

It is clear that∣∣|v + c(v, v∗, z, ϕ)|q − |v|q
∣∣ ≤ Cq

(
|v|q−1 + |c(v, v∗, z, ϕ)|q−1

)
|c(v, v∗, z, ϕ)|.

Due to (2.8) and (2.5), |c(v, v∗, z, ϕ)| ≤ |v−v∗|, |c(v, v∗, z, ϕ)| ≤ (1+z/|v−v∗|γ)−1/ν |v−v∗|,
whence ∫ ∞

0

∫ 2π

0

∣∣|v + c(v, v∗, z, ϕ)|q − |v|q
∣∣dϕdz

≤ Cq

∫ ∞
0

∫ 2π

0

(
1 + |v|q−1 + |v∗|q−1

)
(1 + z/|v − v∗|γ)−1/ν |v − v∗|dϕdz

= Cq
(
1 + |v|q−1 + |v∗|q−1

)
|v − v∗|1+γ

≤ Cq
(
1 + |v|q + |v∗|q

)
, (2.36)

because 0 < 1+γ < 1. It then easily follows from the Itô formula and Lα(W ∗
t ) = ft = L(W 1

t )

that

E
[

sup
[0,t]

|W 1
s |q
]
≤ E[|V 1

0 |q] + Cq

∫ t

0

∫ 1

0

E
[
1 + |W 1

s |q + |W ∗
s (α)|q

]
dαds

≤ E[|V 1
0 |q] + Cq

∫ t

0

(
1 + E[sup

[0,s]

|W 1
u |q]
)
ds.

We thus conclude (2.35) by the Grönwall lemma.

Next, let us recall [32, Lemma 4.3] below in order to construct our coupling.
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Lemma 2.4.2. Consider (ft)t≥0 and (W ∗
t )t≥0 introduced in Lemma 2.4.1 and fix N ≥ 1. For

v = (v1, v2, ..., vN) ∈ (R3)N , we introduce the empirical measure µNv := N−1
∑N

i=1 δvi . Then
for all t ≥ 0, all v ∈ (R3)N and all w ∈ (R3)N• , with (R3)N• := {w ∈ (R3)N : wi 6=
wj ∀ i 6= j}, there are α-random variables Z∗t (w, α) and V ∗t (v,w, α) such that the α-law of
(Z∗t (w, ·), V ∗t (v,w, ·)) is N−1

∑N
i=1 δ(wi,vi) and

∫ 1

0
|W ∗

t (α)− Z∗t (w, α)|2dα =W2
2 (ft, µ

N
w).

Remark 2.4.3. We know from [23] and the fact that ft has a density for each t ≥ 0 that the
map (t,v,w, α) 7→

(
Z∗t (w, α), V ∗t (v,w, α)

)
can be chosen measurable.

Observe that Lα(Z∗t (w, ·)) = µNw and Lα(V ∗t (v,w, ·)) = µNv for all fixed t ≥ 0, v ∈ (R3)N

and w ∈ (R3)N• . No regularity of Z∗t (w, α) or V ∗t (v,w, α) is required in any of their variables.

Owing to technical reasons, we need to introduce some more notations.

Notation 2.4.4. We consider an α-random variable Y with uniform distribution on B(0, 1)

(independent of everything else) and, for ε ∈ (0, 1), t ≥ 0, α ∈ [0, 1], v ∈ (R3)N and w ∈
(R3)N• , we set W ∗,ε

t (α) = W ∗
t (α) + εY (α) and V ∗,εt (v,w, α) = V ∗t (v,w, α) + εY (α). It holds

that Lα(W ∗,ε
t ) = ft ∗ ψε and Lα(V ∗,εt (v,w, ·)) = µNv ∗ ψε, where ψε(x) = (3/(4πε3))1{|x|≤ε}.

At last, we built a suitable realisation for the particle system.

Lemma 2.4.5. Consider all the objects introduced in Lemmas 2.4.1-2.4.2 and Notation 2.4.4.
Set Ws = (W 1

s , ...,W
N
s ), which a.s. belongs to (R3)N• (because fs has a density for all s ≥ 0).

Fix K ≥ 1 and ε ∈ (0, 1). There is a unique strong solution (Vt)t≥0 = (V 1
t , ..., V

N
t )t≥0 to, for

i = 1, ..., N ,

V i
t = V i

0 +

∫ t

0

∫ 1

0

∫ ∞
0

∫ 2π

0

cK(V i
s−, V

∗
s (Vs−,Ws−, α), z, ϕ+ ϕi,α,s)Mi(ds, dα, dz, dϕ),

(2.37)
where ϕi,α,s := ϕ1

i,α,s + ϕ2
i,α,s + ϕ3

i,α,s with

ϕ1
i,α,s =ϕ0

(
W i
s− −W ∗

s (α),W i
s− −W ∗,ε

s (α)
)
,

ϕ2
i,α,s =ϕ0

(
W i
s− −W ∗,ε

s (α), V i
s− − V ∗,εs (Vs−,Ws−, α)

)
,

ϕ3
i,α,s =ϕ0

(
V i
s− − V ∗,εs (Vs−,Ws−, α), V i

s− − V ∗s (Vs−,Ws−, α)
)
.

Moreover, (Vt)t≥0 is a Markov process with generator LN,K . If f0 ∈ Pq(R3) for some q ≥ 2,
then E

[
sup[0,T ] |V 1

t |q
]
≤ CT,q (this last constant not depending on N,K nor ε ∈ (0, 1)).

Proof. Since cK = c1{z≤K}, the Poisson measures involved in (2.37) are finite. Hence the
existence and uniqueness results hold for (2.37). Next, we check that (Vt)t≥0 is a Markov
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process with generator LN,K : for all bounded measurable function φ : (R3)N 7→ R, all t ≥ 0,
a.s.,

N∑
i=1

∫ 1

0

∫ ∞
0

∫ 2π

0

[
φ(v + cK(vi, V

∗
t (v,w, α), z, ϕ+ ϕi,α,t)ei)− φ(v)

]
dϕdzdα

=
N∑
i=1

∫ 1

0

∫ ∞
0

∫ 2π

0

[
φ(v + cK(vi, V

∗
t (v,w, α), z, ϕ)ei)− φ(v)

]
dϕdzdα

=
N∑
i=1

N−1

N∑
j=1

∫ ∞
0

∫ 2π

0

[
φ(v + cK(vi, vj, z, ϕ)ei)− φ(v)

]
dϕdz

=N−1
∑
i 6=j

∫ ∞
0

∫ 2π

0

[
φ(v + cK(vi, vj, z, ϕ)ei)− φ(v)

]
dϕdz,

This is nothing but LN,Kφ(v), recall Lemma 2.2.1. We used the 2π-periodicity of cK in ϕ for
the first equality, that Lα(V ∗t (v,w, ·)) = µNv for the second one, and that cK(vi, vi, z, ϕ) = 0

for the last one.

Finally, we verify that sup[0,T ] E
[
|V 1
t |q
]
≤ CT,q if f0 ∈ Pq(R3) for some q ≥ 2: it immedi-

ately follows from the Itô formula, (2.36) and exchangeability that

E
[
|V 1
t |q
]
≤ E[|V 1

0 |q] + Cq

∫ t

0

∫ 1

0

E
[
1 + |V 1

s |q + |V ∗s (Vs,Ws, α)|q
]
dαds

≤ E[|V 1
0 |q] + CqN

−1

N∑
i=1

∫ t

0

E
[
1 + |V 1

s |q + |V i
s |q
]
ds

≤ E[|V 1
0 |q] + Cq

∫ t

0

E
[
1 + |V 1

s |q
]
ds,

The Grönwall lemma allows us to complete the proof.

Remark 2.4.6. The exchangeability holds for the family {(W i
t , V

i
t )t≥0, i = 1, ..., N}. Indeed,

the family {(W i
t )t≥0, i = 1, ..., N} is i.i.d. by construction, so that the exchangeability follows

from the symmetry and pathwise uniqueness for (2.37).

2.5 Bound in Lp of a blob approximation of an empirical
measure

An empirical measure cannot be in some Lp space with p > 1, so we will consider a blob
approximation, inspired by [27, Proposition 5.5] and [37]. But we deal with a jump process, so
we need to overcome a few additional difficulties.
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First, the following fact can be checked as Lemma 5.3 in [27] (the norm and the step of the
subdivision are different, but this obviously changes nothing).

Lemma 2.5.1. Let p ∈ (1, 2) and (ft)t≥0 ∈ L∞
(
[0,∞),P2(R3)

)
∩ L1

loc

(
[0,∞), Lp(R3)

)
such

that m2(ft) = m2(f0) for all t ≥ 0.

(i) There is a constant Mp > 0, such that for all t ≥ 0, ‖ft‖Lp ≥Mp.

(ii) For any T > 0, we can find a subdivision (tN` )KN+1
`=0 satisfying 0 = tN0 < tN1 < · · · <

tNKN ≤ T ≤ tNKN+1, such that sup`=0,...,KN
(tN`+1 − tN` ) ≤ N−2 with KN ≤ 2TN2 and∫ T

0

hN(t)dt ≤ 2

∫ T

0

‖ft‖Lpdt,

with hN(t) =
∑KN+1

`=1 ‖ftN` ‖Lp1{t∈(tN`−1,t
N
` ]}.

The goal of the section is to prove the following crucial fact.

Proposition 2.5.2. Assume (2.3) for some γ ∈ (−1, 0), ν ∈ (0, 1) with γ + ν > 0. Let
q ≥ 2 such that q > γ2/(γ + ν) and let p ∈ (3/(3 + γ), p0(γ, ν, q)) ⊂ (1, 3/2). Consider
f0 ∈ Pq(R3) with a finite entropy and (ft)t≥0 ∈ L∞

(
[0,∞),P2(R3)

)
∩ L1

loc

(
[0,∞), Lp(R3)

)
the corresponding unique solution to (2.1) given by Theorem 2.1.3. Consider (W i

t )i=1,...,N,t≥0

the solution to (2.34) and set µNWt
= N−1

∑N
1 δW i

t
. Fix δ ∈ (0, 1), set εN = N−(1−δ)/3 and

define µ̄NWt
= µNWt

∗ ψεN , where ψε was defined in Notation 2.4.4. Finally, fix T > 0 and
consider hN built in Lemma 2.5.1. We have

P
(
∀t ∈ [0, T ], ‖µ̄NWt

‖Lp ≤ 13500
(
1 + hN(t)

))
≥ 1− CT,q,δN1−δq/3.

Throughout the section, we fix N ≥ 1, δ ∈ (0, 1), and εN = N−(1−δ)/3 and adopt the
assumptions and notations of Proposition 2.5.2. We also put r = p/(p− 1).

In order to extend [27, Proposition 5.5], it is necessary to study some properties of the paths
of the processes defined by (2.34). Following Lemma 3.11 in [62], we introduce, for each
i = 1, . . . , N ,

W̃ i
t = V i

0 +

∫ t

0

∫ 1

0

∫ ∞
0

∫ 2π

0

c(W i
s−,W

∗
s (α), z, ϕ)1{|c(W i

s−,W
∗
s (α),z,ϕ)|≤N−1/3} (2.38)

×Mi(ds, dα, dz, dϕ).

Lemma 2.5.3. For all T > 0,

P
[

sup
[0,T ]

|W 1
t | ≤ N δ/3, sup

s,t∈[0,T ],|s−t|≤N−2

|W̃ 1
t − W̃ 1

s | ≥ εN

]
≤ CTN

2e−N
δ/3

.
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Proof. Let us denote by p̃ the probability we want to bound.

Step 1. We introduce

Z1
t =

∫ t

0

∫ 1

0

∫ ∞
0

∫ 2π

0

G
(
z/|W 1

s− −W ∗
s (α)|γ

)
|W 1

s− −W ∗
s (α)|

× 1{
G
(
z/|W 1

s−−W ∗s (α)|γ
)
|W 1

s−−W ∗s (α)|/4≤N−1/3

}M1(ds, dα, dz, dϕ).

It is clear that Z1
t is almost surely increasing in t, and that a.s., for all s, t ∈ [0, T ],

|W̃ 1
t − W̃ 1

s | ≤ |Z1
t − Z1

s |, (2.39)

since for any v, v∗ ∈ R3 (recall (2.8))

G
(
z/|v − v∗|γ

)
|v − v∗|/4 ≤ |c(v, v∗, z, ϕ)| ≤ G

(
z/|v − v∗|γ

)
|v − v∗|.

We now consider the stopping time τN = inf {t ≥ 0 : |W 1
t | > N δ/3} and deduce from (2.39)

and the Markov inequality that

p̃ ≤ P
[

sup
[0,T ]

|W 1
t | ≤ N δ/3, sup

s,t∈[0,T ],|s−t|≤N−2

|Z1
t − Z1

s | ≥ εN

]
≤ P

[
sup

s,t∈[0,T ],|s−t|≤N−2

|Z1
t∧τN − Z

1
s∧τN | ≥ εN

]
.

Since [0, T ] ⊂
⋃bN2T c
k=0 [k/N2, (k + 1)/N2) and ZN

t is almost surely increasing in t, we deduce
that on {sups,t∈[0,T ],|s−t|≤N−2 |Z1

t∧τN − Z1
s∧τN | ≥ εN}, there exists k ∈ {0, 1, ..., bN2T c} for

which there holds
(
Z1

((k+1)N−2)∧τN − Z
1
(kN−2)∧τN

)
≥ εN/3. Hence,

p̃ ≤
bN2T c∑
k=0

P
[(
Z1

((k+1)N−2)∧τN − Z
1
(kN−2)∧τN

)
≥ εN

3

]

≤
bN2T c∑
k=0

e−N
δ/3E

[
exp

{
3N1/3

(
Z1

((k+1)N−2)∧τN − Z
1
(kN−2)∧τN

)}]

=:

bN2T c∑
k=0

e−N
δ/3

Ik.

Step 2. We now prove that Ik is (uniformly) bounded, which will complete the proof. We
put

Jk(t) =: E
[
exp

{
3N1/3

(
Z1

(t+kN−2)∧τN − Z
1
(kN−2)∧τN

)}]
.
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It is obvious that Ik = Jk(N
−2). Applying the Itô formula, we find

Jk(t)

= 1 + 2πE
[ ∫ (t+kN−2)∧τN

(kN−2)∧τN

∫ 1

0

∫ ∞
0

exp
{

3N1/3
(
Z1
s − Z1

(kN−2)∧τN

)}
×(

e3N1/3G
(
z/|W 1

s−W ∗s (α)|γ
)
|W 1

s−W ∗s (α)| − 1
)
1{

G
(
z/|W 1

s−W ∗s (α)|γ
)
|W 1

s−W ∗s (α)|/4≤N−1/3

}dzdαds
]
.

Since 3N1/3G
(
z/|W 1

s −W ∗
s (α)|γ

)
|W 1

s −W ∗
s (α)| ≤ 12 (thanks to the indicator function), we

have

e3N1/3G
(
z/|W 1

s−W ∗s (α)|γ
)
|W 1

s−W ∗s (α)| − 1 ≤ CN1/3G
(
z/|W 1

s −W ∗
s (α)|γ

)
|W 1

s −W ∗
s (α)|

for a positive constant C. Then using (2.5), we see that

1{
G
(
z/|W 1

s−W ∗s (α)|γ
)
|W 1

s−W ∗s (α)|/4≤N−1/3

} ≤ 1{z≥CNν/3|W 1
s−W ∗s (α)|γ+ν−|W 1

s−W ∗s (α)|γ}.

Hence,

Jk(t)

≤ 1 + CN1/3E
[ ∫ (t+kN−2)∧τN

(kN−2)∧τN

∫ 1

0

∫ ∞
0

exp
{

3N1/3
(
Z1
s − Z1

(kN−2)∧τN

)}
×
(

1 + z/|W 1
s −W ∗

s (α)|γ
)−1/ν

|W 1
s −W ∗

s (α)|1{z≥CNν/3|W 1
s−W ∗s (α)|γ+ν−|W 1

s−W ∗s (α)|γ}dzdαds
]
.

But, we have

|W 1
s −W ∗

s (α)|
∫ ∞

0

(
1 + z/|W 1

s −W ∗
s (α)|γ

)−1/ν

1{z≥CNν/3|W 1
s−W ∗s (α)|γ+ν−|W 1

s−W ∗s (α)|γ}dz

=CN−(1−ν)/3|W 1
s −W ∗

s (α)|ν+γ

≤CN−(1−ν)/3(1 + |W 1
s |2 + |W ∗

s (α)|2)

since γ + ν ∈ (0, 1). Using now that
∫ 1

0
|W ∗

s (α)|2dα = m2(f0) and that |W 1
s | ≤ N δ/3 for all

s ≤ τN , we conclude that

Jk(t) ≤ 1 + CNν/3(1 +m2(f0) +N2δ/3)

∫ t

0

Jk(s)ds

≤ 1 + CN (ν+2δ)/3

∫ t

0

Jk(s)ds.

It follows from the Grönwall lemma that Jk(t) ≤ exp (CN (ν+2δ)/3t), and thus that Ik =

Jk(N
−2) is uniformly bounded, because (ν + 2δ)/3 < 2 (recall that ν ∈ (0, 1) and δ ∈

(0, 1)).
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Next, we study the large jumps of (W 1
t )t≥0.

Lemma 2.5.4. There exists C > 0 such that for any ` ∈ {1, ..., KN + 1},

P
[
∃ t ∈ (tN`−1, t

N
` ] : |∆W 1

t | > N−1/3
]
≤ CN−(2−ν/3).

Proof. Let us fix ` and set A = {∃ t ∈ (tN`−1, t
N
` ] : |∆W 1

t | > N−1/3}. After noting that

A =

{∫ tN`

tN`−1

∫ 1

0

∫ ∞
0

∫ 2π

0

1{|c(W i
s−,W

∗
s (α),z,ϕ)|>N−1/3}M1(ds, dα, dz, dϕ) ≥ 1

}
,

we have

P(A) ≤ E

[∫ tN`

tN`−1

∫ 1

0

∫ ∞
0

∫ 2π

0

1{|c(W 1
s−,W

∗
s (α),z,ϕ)|>N−1/3}M1(ds, dα, dz, dϕ)

]
by the Markov inequality. But, (2.8) and (2.5) tell us that |c(v, v∗, z, ϕ)| ≤ C(1 + z/|v −
v∗|γ)−1/ν |v − v∗|. Hence,

P(A) ≤ 2πE
[ ∫ tN`

tN`−1

∫ 1

0

∫ ∞
0

1{C(1+z/|W 1
s−W ∗s (α)|γ)−1/ν |W 1

s−W ∗s (α)|>N−1/3}dzdαds
]

≤ 2πE
[ ∫ tN`

tN`−1

∫ 1

0

∫ ∞
0

1{z<CNν/3|W 1
s−W ∗s (α)|γ+ν}dzdαds

]
= CNν/3E

[ ∫ tN`

tN`−1

∫ 1

0

|W 1
s −W ∗

s (α)|γ+νdαds
]
.

Finally, using that |W 1
s − W ∗

s (α)|γ+ν ≤ 1 + |W 1
s |2 + |W ∗

s (α)|2 and that
∫ 1

0
|W ∗

s (α)|2dα =

E[|W 1
s |2] <∞, we conclude that P(A) ≤ CNν/3(tN`+1 − tN` ) ≤ CNν/3−2 as desired.

Lemma 2.5.5. For ` = 1, ..., KN + 1, we introduce

I` = {i ∈ {1, ..., N} : ∃ t ∈ (tN`−1, t
N
` ] such that |∆W i

t | > N−1/3}, (2.40)

and the event

Ω1
T,N =

{
∀i ∈ {1, .., N}, sup

[0,T ]

|W i
t | ≤ N δ/3 and sup

s,t∈[0,T ],|s−t|≤N−2

|W̃ i
t − W̃ i

s | ≤ εN

}
⋂ {

∀` = 1, ..., KN + 1, #(I`) ≤ Nε
3/r
N

}
.

Then we have
P[Ω1

T,N ] ≥ 1− CT,q,δN1−qδ/3.
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Proof. We write Ω1
T,N = Ω1,1

T,N ∩ Ω1,2
T,N , where

Ω1,1
T,N :=

{
∀i ∈ {1, .., N}, sup

[0,T ]

|W i
t | ≤ N δ/3 and sup

s,t∈[0,T ],|s−t|≤N−2

|W̃ i
t − W̃ i

s | ≤ εN

}
,

Ω1,2
T,N :=

{
∀` = 1, ..., KN + 1, #(I`) ≤ Nε

3/r
N

}
,

Step 1. Here we estimate P[(Ω1,1
T,N)c]. Using the Markov inequality, (2.35) and Lemma

2.5.3, we get

P[(Ω1,1
T,N)c]

≤ N P
[{

sup
[0,T ]

|W 1
t | ≤ N δ/3 and sup

|s−t|≤N−2

|W̃ 1
t − W̃ 1

s | ≤ εN

}c]
= N P

[
sup
[0,T ]

|W 1
t | ≥ N δ/3

]
+N P

[
sup
[0,T ]

|W 1
t | ≤ N δ/3 and sup

|s−t|≤N−2

|W̃ 1
t − W̃ 1

s | ≥ εN

]
≤ N E

[
sup
[0,T ]

|W 1
t |q
]
N−qδ/3 + CT N

3e−N
δ/3 ≤ CT,qN

1−qδ/3.

Step 2. We now prove that P[(Ω1,2
T,N)c] ≤ CT exp (−N δ). For any fixed ` ∈ {1, ..., KN +1},

we introduce A`N = {∃ t ∈ (tN`−1, t
N
` ] : |∆W 1

t | > N−1/3}. Then we observe that #(I`) follows
a Binomial distribution with parameters N and P(A`N). Using again the Markov inequality, we
observe that

P[(Ω1,2
T,N)c] ≤

KN+1∑
`=1

P
[
#(I`) ≥ Nε

3/r
N

]
≤

KN+1∑
`=1

E[exp
(
#(I`)

)
] exp (−Nε3/rN ).

But,

E[exp (#(I`))] = exp
(
N log(1 + (e− 1)P(A`N))

)
≤ exp

(
N(e− 1)P(A`N)

)
.

Hence,

P[(Ω1,2
T,N)c] ≤

KN+1∑
`=1

exp
(
N(e− 1)P(A`N)

)
exp (−Nε3/rN ).

We know from Lemma 2.5.4 that P(A`N) ≤ CN−(2−ν/3), hence NP(A`N) ≤ CN−1+ν/3 ≤ C.
We thus deduce that

P[(Ω1,2
T,N)c] ≤ C(KN + 1) exp(−Nε3/rN ) ≤ C(2TN2 + 1) exp(−Nε3/rN ) ≤ CT exp(−N δ),

since Nε3/rN = N1/p+δ/r and since 1/p+ δ/r > δ. This ends the proof.
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We now give the

Proof of Proposition 2.5.2. Consider the partition PN of R3 in cubes with side length εN and
its subset Pδ

N consisting of cubes that have non-empty intersection with B(0, N δ/3). Then we
observe that #(Pδ

N) ≤ (2(N δ/3+εN)ε−1
N )3 ≤ 64N δε−3

N = 64N . We split the proof into several
steps.

Step 1. For (x1, ..., xN) ∈ (B(0, N δ/3))N and (y1, ..., yN) ∈ (B(0, N δ/3))N , we set

I = {i ∈ {1, .., N} : |xi − yi| > εN},

and denote the empirical measure of y = (y1, ..., yN) ∈ (R3)N by µNy = N−1
∑N

i=1 δyi . The
goal of this step is to show that

‖µNy ∗ψεN‖Lp ≤
( 3

4π

)1/r #(I)

Nε
3/r
N

+3375
(
N−pε

−3(p−1)
N

∑
D∈Pδ

N

(#{i ∈ {1, ..., N} : xi ∈ D})p
)1/p

.

Indeed, recalling that ψε(x) = (3/(4πε3))1{|x|≤ε}, we observe that

µNy ∗ ψεN (v)

=
1

N

N∑
i=1

ψεN (v − yi)1{|xi−yi|>εN} +N−1

N∑
i=1

ψεN (v − yi)1{|xi−yi|≤εN}

=
1

N

∑
i∈I

ψεN (v − yi) +
3

4πNε3N
#
{
i ∈ {1, ..., N} : yi ∈ B(v, εN), |yi − xi| ≤ εN

}
≤ 1

N

∑
i∈I

ψεN (v − yi) +
3

4πNε3N
#
{
i ∈ {1, ..., N} : xi ∈ B(v, 2εN)

}
.

Hence,

µNy ∗ψεN (v) ≤ 1

N

∑
i∈I

ψεN (v−yi)+
3

4πNε3N

∑
D∈Pδ

N

#
{
i ∈ {1, ..., N} : xi ∈ D

}
1{D∩B(v,2εN )6=∅}.

We then deduce that

‖µNy ∗ ψεN‖Lp

≤ 1

N
‖
∑
i∈I

ψεN (· − yi)‖Lp +
3

4πNε3N
‖
∑
D∈Pδ

N

#{i ∈ {1, ..., N} : xi ∈ D}1{D∩B(·,2εN )6=∅}‖Lp .

Since ‖ψεN (· − yi)‖Lp = ( 3
4π

)1/rε
−3/r
N , we have

1

N
‖
∑
i∈I

ψεN (· − yi)‖Lp ≤
1

N

∑
i∈I

‖ψεN (· − yi)‖Lp ≤
( 3

4π

)1/r #(I)

Nε
3/r
N

.
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On the other hand, let A := ‖
∑

D∈Pδ
N

#{i ∈ {1, ..., N} : xi ∈ D}1{D∩B(·,2εN )6=∅}‖Lp , then

Ap =

∫
R3

( ∑
D∈Pδ

N

#{i : xi ∈ D}1{D∩B(v,2εN )6=∅}

)p
dv

=

∫
R3

( ∑
D,D′∈Pδ

N

#{i : xi ∈ D}#{i : xi ∈ D′}1{D∩B(v,2εN )6=∅,D′∩B(v,2εN )6=∅}

)p/2
dv

≤
∫
R3

∑
D,D′∈Pδ

N

(
#{i : xi ∈ D}

)p/2(
#{i : xi ∈ D′}

)p/2
1{D∩B(v,2εN ) 6=∅,D′∩B(v,2εN )6=∅}dv

because p ∈ (1, 2). From x2 + y2 ≥ 2xy and a symmetry argument, we see that

Ap ≤
∑
D∈Pδ

N

(#{i : xi ∈ D})p
∫
R3

1{D∩B(v,2εN )6=∅}
∑

D′∈Pδ
N

1{D′∩B(v,2εN )6=∅}dv.

But, for each v ∈ R3,
∑

D′∈Pδ
N
1{D′∩B(v,2εN )6=∅} = #{D′ ∈Pδ

N : D′ ∩ B(v, 2εN) 6= ∅} ≤ 53.

And for each D ∈ Pδ
N , {v ∈ R3 : D ∩ B(v, 2εN) 6= ∅} is included by a ball of radius 3εN .

Therefore,
∫
R3 1{D∩B(v,2εN )6=∅}dv ≤ 4π(3εN)3/3. Hence,

Ap ≤ 534π(3εN)3

3

∑
D∈Pδ

N

(
#{i : xi ∈ D}

)p
.

Consequently,

‖µNy ∗ ψεN (v)‖Lp

≤
( 3

4π

)1/r #(I)

Nε
3/r
N

+
3

4πNε3N
A

≤
( 3

4π

)1/r #(I)

Nε
3/r
N

+
( 3

4π

)1/r
(15)3/p

(
N−pε

−3(p−1)
N

∑
D∈Pδ

N

(
#{i : xi ∈ D}

)p)1/p

.

Since (15)3/p ≤ 153 = 3375, this ends the step.

Step 2. In this step, we extend the proof of [27, Step 3-Proposition 5.5] to show that there
are some constants C > 0 and c > 0 (depending on δ and Mp of Lemma 2.5.1) such that for all
fixed t ∈ [0, T + 1],

P[(Ω2
t,N)c] ≤ C exp (−cN δ/r),

where

Ω2
t,N =

N−pε−3(p−1)
N

∑
D∈Pδ

N

(
#{i ∈ {1, ..., N} : W i

t ∈ D}
)p
≤ 2p+1‖ft‖pLp

 .
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To this end, we introduce, for D ∈Pδ
N , AD = #{i : W i

t ∈ D}. Then AD ∼ B(N, ft(D)) and
we have

P(AD ≥ x) ≤ exp(−x/8) for all x ≥ 2Nft(D). (2.41)

Indeed, P(AD ≥ x) ≤ e−xE[exp(AD)] = e−x exp[N log(1 + ft(D)(e− 1))] ≤ e−x exp[N(e−
1)ft(D)]. If x ≥ 2Nft(D), we thus have

P(AD ≥ x) ≤ exp[−x+ x(e− 1)/2] ≤ exp(−x/8).

Next, it follows from the Hölder inequality that

‖ft‖pLp ≥
∑
D∈Pδ

N

∫
D

|ft(v)|pdv ≥ ε
−3p/r
N

∑
D∈Pδ

N

(ft(D))p.

On the other hand, we observe from #(Pδ
N) ≤ 64N δε−3

N that

‖ft‖pLp ≥ 64−1N−δε3N
∑
D∈Pδ

N

‖ft‖pLp .

Using the two previous inequalities, we find that

2p+1‖ft‖pLp ≥
∑
D∈Pδ

N

(
2pε
−3p/r
N (ft(D))p + 2p64−1N−δε3N‖ft‖

p
Lp

)
.

Consequently, on (Ω2
t,N)c, we have∑

D∈Pδ
N

ApD > Npε
3(p−1)
N 2p+1‖ft‖pLp

≥ Npε
3(p−1)
N

∑
D∈Pδ

N

(
2pε
−3p/r
N (ft(D))p + 2p64−1N−δε3N‖ft‖

p
Lp

)
,

so that there is at least one D ∈Pδ
N with

ApD ≥ Npε
3(p−1)
N

[
2pε
−3p/r
N (ft(D))p + 2p64−1N−δε3N‖ft‖

p
Lp

]
.

Hence,

P[(Ω2
t,N)c] ≤

∑
D∈Pδ

N

P
(
AD ≥ Nε

3/r
N

[
2pε
−3p/r
N (ft(D))p + 2p64−1N−δε3N‖ft‖

p
Lp

]1/p)
.

But we can apply (2.41), because

xN := Nε
3/r
N

[
2pε
−3p/r
N (ft(D))p + 2p64−1N−δε3N‖ft‖

p
Lp

]1/p
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enjoys the property that xN ≥ Nε
3/r
N [2pε

−3p/r
N (ft(D))p]1/p = 2Nft(D):

P[(Ω2
t,N)c] ≤

∑
D∈Pδ

N

exp(−xN/8).

Using that xN ≥ Nε
3/r
N (2p64−1N−δε3N‖ft‖

p
Lp)

1/p = cN δ/r‖ft‖Lp , that #(Pδ
N) ≤ 64N and

that ‖ft‖Lp ≥Mp, we deduce that

P[(Ω2
t,N)c] ≤

∑
D∈Pδ

N

exp(−cN δ/r‖ft‖Lp/8)

≤ 64N exp(−cMpN
δ/r/8) ≤ C exp(−cMpN

δ/r/10).

This ends the step.

Step 3. We finally consider the event

ΩT,N = Ω1
T,N ∩ (∩KN+1

`=1 Ω2
tN` ,N

),

where Ω1
T,N is defined in Lemma 2.5.5, and the sequence (tN` )KN+1

`=0 satisfying 0 = tN0 < tN1 <

... < tNKN ≤ T ≤ TNKN+1, with KN ≤ 2TN2 and supi=0,...,KN
(tN`+1 − tN` ) ≤ N−2 is built in

Lemma 2.5.1. We also recall that hN(t) =
∑KN+1

`=1 ‖ftN` ‖Lp1{t∈(tN`−1,t
N
` ]}.

According to Lemma 2.5.5 and Step 2, we see that

P[Ωc
T,N ] ≤ P[(Ω1

T,N)c] +

KN+1∑
`=1

P[(Ω2
tN` ,N

)c]

≤ CT,q,δN
1−qδ/3 + C(KN + 1) exp (−cN δ/r) ≤ CT,q,δN

1−qδ/3.

Finally, we show that on ΩT,N , for all t ∈ [0, T ], ‖µ̄NWt
‖Lp ≤ 13500(1 +hN(t)). Recall that

W̃ i
t is defined by (2.38) and that I` is given by (2.40), we have

(i) for all i = 1, ..., N , and for all t ∈ [0, T + 1], W i
t ∈ B(0, N δ/3) (according to Ω1

T,N );

(ii) for all ` = 1, ..., KN + 1, all t ∈ (tN`−1, t
N
` ], all i ∈ {1, ..., N} \ I`, |W i

t − W i
tN`
| =

|W̃ i
t − W̃ i

tN`
| ≤ εN , and #(I`) ≤ Nε

3/r
N (by definition of W̃ i and I` and thanks to Ω1

T,N );

(iii) For all ` = 1, ..., KN + 1, N−pε−3(p−1)
N

∑
D∈Pδ

N

(
#
{
i ∈ {1, ..., N} : W i

tN`
∈ D

})p
≤

2p+1‖ftN` ‖
p
Lp (according to ∩KN+1

`=1 Ω2
tN` ,N

).
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Using Step 1 with µ̄NWt
= µNWt

∗ ψεN , we deduce that on ΩT,N , for all t ∈ [0, T ], choosing
` such that t ∈ (tN`−1, t

N
` ], we have

‖µ̄NWt
‖Lp ≤

( 3

4π

)1/r#(I`)

Nε
3/r
N

+ 3375
(
N−pε

−3(p−1)
N

∑
D∈Pδ

N

(#{i ∈ {1, ..., N} : W i
tN`
∈ D})p

)1/p

≤1 + 3375.2(p+1)/p‖ftN` ‖Lp

=1 + 3375.2(p+1)/phN(t).

This completes the proof, since 3375.2(p+1)/p ≤ 3375.4 = 13500.

2.6 Estimate of the Wasserstein distance
This last section is devoted to the proof of Theorem 2.1.5. In the whole section, we assume
(2.3) for some γ ∈ (−1, 0), ν ∈ (0, 1) with γ + ν > 0. We consider q > 6 such that
q > γ2/(γ + ν), f0 ∈ Pq(R3) with a finite entropy, and (ft)t≥0 the unique weak solution to
(2.1) given by Theorem 2.1.3. We fix p ∈ (3/(3 + γ), p0(γ, ν, q)) and know that (ft)t≥0 ∈
L∞
(
[0,∞),P2(R3)

)
∩ L1

loc

(
[0,∞), Lp(R3)

)
.

We fix N ≥ 1, K ≥ 1 and put εN = N−(1−δ)/3 with δ = 6/q. Consider (V i
t )t≥0 for

i = 1, . . . , N , defined by (2.37) with the choice ε = εN . We know by Lemma 2.4.5 that
(V i

t )i=1,...,N,t≥0 is a Markov process with generator LN,K , see (2.12), starting from (V i
0 )i=1,...,N ,

which is an i.i.d. family of f0-distributed random variables. We set µNVt
= N−1

∑N
1 δV it . So

the goal of the section is to prove that

sup
[0,T ]

E[W2
2 (µNVt

, ft)] ≤ CT,q

(
N−(1−6/q)(2+2γ)/3 +K1−2/ν +N−1/2

)
. (2.42)

We consider (W i
t )t≥0, for i = 1, . . . , N defined by (2.34) and recall that for all t ≥ 0, the family

(W i
t )i=1,...,N is i.i.d. and ft-distributed.

First, we introduce the following shortened notations:

cW (s) := c(W 1
s ,W

∗
s (α), z, ϕ),

cNW (s) := c(W 1
s ,W

∗,εN
s (α), z, ϕ+ ϕ1

1,α,s),

cNV (s) := c(V 1
s , V

∗,εN
s (Vs,Ws, α), z, ϕ+ ϕ1

1,α,s + ϕ2
1,α,s),

cNK,V (s) := cK(V 1
s , V

∗,εN
s (Vs,Ws, α), z, ϕ+ ϕ1

1,α,s + ϕ2
1,α,s),

cK,V (s) := cK(V 1
s , V

∗
s (Vs,Ws, α), z, ϕ+ ϕ1,α,s),

with the notations of Section 4. Let us now prove an intermediate result.
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Lemma 2.6.1. There is C > 0 such that a.s.,

IN0 (s) + IN1 (s) + IN2 (s) + IN3 (s)

≤Cε2+2γ
N + C|W 1

s − V 1
s |2 + CK1−2/ν

∫ 1

0

|W 1
s −W ∗,εN

s (α)|2+2γ/νdα

+ C

∫ 1

0

(
|W 1

s − V 1
s |2 + |W ∗

s (α)− V ∗s (Vs,Ws, α)|2
)
|W 1

s −W ∗,εN
s (α)|γdα.

where

IN0 (s) :=

∫ 1

0

∫ ∞
0

∫ 2π

0

(
2(W 1

s − V 1
s ) · (cNW (s)− cNK,V (s)) + |cNW (s)− cNK,V (s)|2

)
dϕdzdα,

IN1 (s) :=

∫ 1

0

∫ ∞
0

∫ 2π

0

2(W 1
s − V 1

s ) ·
(
cW (s)− cNW (s) + cNK,V (s)− cK,V (s)

)
dϕdzdα,

IN2 (s) :=

∫ 1

0

∫ ∞
0

∫ 2π

0

|cW (s)− cNW (s) + cNK,V (s)− cK,V (s)|2dϕdzdα,

IN3 (s) :=

∫ 1

0

∫ ∞
0

∫ 2π

0

2
(
cNW (s)− cNK,V (s)

)
·
(
cW (s)− cNW (s) + cNK,V (s)− cK,V (s)

)
dϕdzdα.

Proof. First recall that |W ∗,εN
s (α) − V ∗,εNs (Vs,Ws, α)|2 = |W ∗

s (α) − V ∗s (Vs,Ws, α)|2, see
Notation 2.4.4. It thus follows from (2.18) (with v = W 1

s , v∗ = W ∗,εN
s (α), ṽ = V 1

s and
ṽ∗ = V ∗,εNs (Vs,Ws, α)) that

IN0 (s) ≤ C

∫ 1

0

(
|W 1

s − V 1
s |2 + |W ∗

s (α)− V ∗s (Vs,Ws, α)|2
)
|W 1

s −W ∗,εN
s (α)|γdα

+ CK1−2/ν

∫ 1

0

|W 1
s −W ∗,εN

s (α)|2+2γ/νdα.

Next, we study IN1 (s). As seen in the proof of Lemma 2.2.3,∫ ∞
0

∫ 2π

0

c(v, v∗, z, ϕ)dϕdz = −(v − v∗)Φ(|v − v∗|),

and ∫ ∞
0

∫ 2π

0

cK(v, v∗, z, ϕ)dϕdz = −(v − v∗)ΦK(|v − v∗|),

where Φ(x) = π
∫∞

0
(1− cosG(z/xγ))dz and ΦK(x) = π

∫ K
0

(1− cosG(z/xγ))dz. Then,

IN1 (s) = 2(W 1
s − V 1

s ) ·
∫ 1

0

[
−
(
W 1
s −W ∗

s (α)
)
Φ
(
|W 1

s −W ∗
s (α)|

)
+
(
W 1
s −W ∗,εN

s (α)
)
Φ
(
|W 1

s −W ∗,εN
s (α)|

)
−
(
V 1
s − V ∗,εNs (Vs,Ws, α)

)
ΦK

(
|V 1
s − V ∗,εNs (Vs,Ws, α)|

)
+
(
V 1
s − V ∗s (Vs,Ws, α)

)
ΦK

(
|V 1
s − V ∗s (Vs,Ws, α)|

)]
dα.
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But we have checked that |XΦK(|X|)− Y ΦK(|Y |)| ≤ C|X − Y ||X|γ for any X, Y ∈ R3 in
the proof of Lemma 2.2.3, and it of course also holds true that

|XΦ(|X|)− Y Φ(|Y |)| ≤ C|X − Y ||X|γ.

Thus

IN1 (s)

≤C|W 1
s − V 1

s |
∫ 1

0

[
|W ∗

s (α)−W ∗,εN
s (α)||W 1

s −W ∗,εN
s (α)|γ

+ |V ∗,εNs (Vs,Ws, α)− V ∗s (Vs,Ws, α)||V 1
s − V ∗,εNs (Vs,Ws, α)|γ

]
dα

=C|W 1
s − V 1

s |
∫ 1

0

|εNY (α)|
[
|W 1

s −W ∗
s (α)− εNY (α)|γ

+ |V 1
s − V ∗s (Vs,Ws, α)− εNY (α)|γ

]
dα

≤C|W 1
s − V 1

s |2 + Cε2N

∫ 1

0

|Y (α)|2
[
|W 1

s −W ∗
s (α)− εNY (α)|2γ

+ |V 1
s − V ∗s (Vs,Ws, α)− εNY (α)|2γ

]
dα.

But Y is independent of (W ∗
s , V

∗
s (Vs,Ws, ·)) and it holds that

sup
x∈R3

∫ 1

0

|x− εNY (α)|2γ|Y (α)|2dα ≤
∫ 1

0

|εNY (α)|2γ|Y (α)|2dα = Cε2γN

by recalling that γ ∈ (−1, 0) and that Y is uniformly distributed on B(0, 1), so that finally,

IN1 (s) ≤ C|W 1
s − V 1

s |2 + Cε2+2γ
N .

For IN2 (s), we first write IN2 (s) ≤ A+B, where

A = 2

∫ 1

0

∫ ∞
0

∫ 2π

0

|cW (s)− cNW (s)|2dϕdzdα

and

B = 2

∫ 1

0

∫ ∞
0

∫ 2π

0

|cNK,V (s)− cK,V (s)|2dϕdzdα.

We first apply (2.17) with with v = W 1
s , v∗ = W ∗,εN

s (α), ṽ = W 1
s and ṽ∗ = W ∗

s (α):

A ≤ C

∫ 1

0

|W ∗
s (α)−W ∗,εN

s (α)|2|W 1
s −W ∗,εN

s (α)|γdα

= Cε2N

∫ 1

0

|Y (α)|2|W 1
s −W ∗

s (α)− εNY (α)|γdα.
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Using that supx∈R3

∫ 1

0
|x − εNY (α)|γ|Y (α)|2dα ≤

∫ 1

0
|εNY (α)|γ|Y (α)|2dα = CεγN and ar-

guing as in the study of IN1 (s), we conclude that A ≤ Cε2+γ
N ≤ Cε2+2γ

N . The other term
B is treated in the same way (observe that (2.17) obviously also holds when replacing c by
cK = c1{z≤K}).

We finally treat IN3 (s). It is obvious that

IN3 (s) ≤
∫ 1

0

∫ ∞
0

∫ 2π

0

|cNW (s)− cNK,V (s)|2dϕdzdα + IN2 (s).

But ∫ ∞
0

∫ 2π

0

|cNW (s)− cNK,V (s)|2dϕdz

=

∫ K

0

∫ 2π

0

|cNW (s)− cNV (s)|2dϕdz +

∫ ∞
K

∫ 2π

0

|cNW (s)|2dϕdz.

Applying first (2.17) with v = W 1
s , v∗ = W ∗,εN

s (α), ṽ = V 1
s and ṽ∗ = V ∗,εNs (Vs,Ws, α), we

find that ∫ K

0

∫ 2π

0

|cNW (s)− cNV (s)|2dϕdz

≤C
(
|W 1

s − V 1
s |2 + |W ∗,εN

s (α)− V ∗,εNs (Vs,Ws, α)|2
)
|W 1

s −W ∗,εN
s (α)|γ

=C
(
|W 1

s − V 1
s |2 + |W ∗

s (α)− V ∗s (Vs,Ws, α)|2
)
|W 1

s −W ∗,εN
s (α)|γ.

Moreover, as seen in the proof of Lemma 2.2.3,∫ ∞
K

∫ 2π

0

|cNW (s)|2dϕdz = |W 1
s −W ∗,εN

s (α)|2ΨK(|W 1
s −W ∗,εN

s (α)|),

where ΨK(x) = Φ(x)− ΦK(x) ≤ C
∫∞
K
G2(z/xγ)dz ≤ Cx2γ/νK1−2/ν . Hence,∫ ∞

K

∫ 2π

0

|cNW (s)|2dϕdz ≤ C|W 1
s −W ∗,εN

s (α)|2+2γ/νK1−2/ν .

All this shows that

IN3 (s) ≤IN2 (s) + C

∫ 1

0

(
|W 1

s − V 1
s |2 + |W ∗

s (α)− V ∗s (Vs,Ws, α)|2
)
|W 1

s −W ∗,εN
s (α)|γdα

+ CK1−2/ν

∫ 1

0

|W 1
s −W ∗,εN

s (α)|2+2γ/νdα

and this ends the proof.
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To prove our main result, we need the following estimate which can be found in [26, Theo-
rem 1].

Lemma 2.6.2. Fix A > 0 and q > 4. There is a constant CA,q such that for all f ∈ Pq(R3)

verifying
∫
R3 |v|qf(dv) ≤ A, all i.i.d. family (Xi)i=1,...,N of f -distributed random variables,

E

[
W2

2

(
f,N−1

N∑
i=1

δXi

)]
≤ CA,qN

−1/2.

Proposition 2.6.3. Fix T > 0 and recall that hN was defined in Lemma 2.5.1. Consider the
stopping time

σN = inf{t ≥ 0 : ‖µ̄NWt
‖Lp ≥ 13500(1 + hN(t))},

where µ̄NWt
= µNWt

∗ ψεN with ψεN (x) = (3/(4πε3N))1{|x|≤εN} and µNWt
= N−1

∑N
1 δW i

t
. We

have for all T > 0,

sup
[0,T ]

E[|W 1
t∧σN − V

1
t∧σN |

2] ≤ CT (ε2+2γ
N +K1−2/ν +N−1/2).

Proof. We fix T > 0 and set uNt = E[|W 1
t∧σN − V

1
t∧σN |

2] for all t ∈ [0, T ]. By the Itô formula,
we have

uNt = E
[ ∫ t∧σN

0

∫ 1

0

∫ ∞
0

∫ 2π

0

(
|W 1

s − V 1
s + cW (s)− cK,V (s)|2 − |W 1

s − V 1
s |2
)
dϕdzdα

]
= E

[ ∫ t∧σN

0

∫ 1

0

∫ ∞
0

∫ 2π

0

(
2(W 1

s − V 1
s ) · (cW (s)− cK,V (s))

+ |cW (s)− cK,V (s)|2
)
dϕdzdα

]
= E

[ ∫ t∧σN

0

(
IN0 (s) + IN1 (s) + IN2 (s) + IN3 (s)

)
ds
]
,

where INi (s) was introduced in Lemma 2.6.1 for i = 0, 1, 2, 3. We know from Lemma 2.6.1
that

uNt ≤Ctε
2+2γ
N + C

∫ t

0

uNs ds+ C(JN1 (t) + JN2 (t) + JN3 (t)),

where

JN1 (t) =E
[ ∫ t∧σN

0

∫ 1

0

|W 1
s − V 1

s |2|W 1
s −W ∗,εN

s (α)|γdαds
]
,

JN2 (t) =E
[ ∫ t∧σN

0

∫ 1

0

|W ∗
s (α)− V ∗s (Vs,Ws, α)|2|W 1

s −W ∗,εN
s (α)|γdαds

]
,

JN3 (t) =K1−2/νE
[ ∫ t∧σN

0

∫ 1

0

|W 1
s −W ∗,εN

s (α)|2+2γ/νdαds
]
.



100 CHAPTER 2. UNIQUENESS AND CHAOS FOR THE BOLTZMANN EQUATION

First, we have
JN3 (t) ≤ CK1−2/νt.

Indeed, it suffices to use that |W 1
s −W ∗,εN

s (α)|2+2γ/ν ≤ C(1 + |W 1
s |2 + |W ∗,εN

s (α)|2) (because
2 + 2γ/ν ∈ (0, 2)), that |W ∗,εN

s (α)|2 ≤ 2 + 2|W ∗
s (α)|2 (because εN ∈ (0, 1) and Y takes its

values in B(0, 1)) and finally that E[|W 1
s |2] =

∫ 1

0
|W ∗

s (α)|2dα = m2(f0).

Next, Lα(W ∗,εN
s ) = fs ∗ ψεN , so that

∫ 1

0
|W 1

s − W ∗,εN
s (α)|γdα ≤ 1 + Cγ,p‖fs ∗ ψεN‖Lp

by (2.13) (recall that p > 3/(3 + γ) is fixed since the begining of the section). Of course,
‖fs ∗ ψεN‖Lp ≤ ‖fs‖Lp , and we conclude that

JN1 (t) ≤ Cγ,p

∫ t

0

(1 + ‖fs‖Lp)uNs ds.

On the other hand, using the exchangeability and that W ∗,εN
s (α) = W ∗

s (α) + εNY (α), with
Y (α) independent of W ∗

s (α) and V ∗s (Vs,Ws, α) introduced in Notation 2.4.4, we have

JN2 (t) = E
[ ∫ t∧σN

0

∫ 1

0

|W ∗
s (α)− V ∗s (Vs,Ws, α)|2N−1

N∑
i=1

∣∣∣W i
s − εNY (α)−W ∗

s (α)
∣∣∣γdαds]

= E
[ ∫ t∧σN

0

∫ 1

0

|W ∗
s (α)− V ∗s (Vs,Ws, α)|2

×
(∫

R3

∫
R3

|w − x−W ∗
s (α)|γψεN (x)µNWs

(dw)dx
)
dαds

]
= E

[ ∫ t∧σN

0

∫ 1

0

|W ∗
s (α)− V ∗s (Vs,Ws, α)|2

(∫
R3

|w −W ∗
s (α)|γµ̄NWs

(dw)
)
dαds

]
.

But
∫
R3 |W ∗

s (α)− w|γµ̄NWs
(dw) ≤ Cγ,p(1 + ‖µ̄NWs

‖Lp) by (2.13), so that

JN2 (t) ≤ Cγ,pE
[ ∫ t∧σN

0

∫ 1

0

(1 + ‖µ̄NWs
‖Lp)|W ∗

s (α)− V ∗s (Vs,Ws, α)|2dαds
]
.

We now deduce from Lemma 2.4.2 that∫ 1

0

|W ∗
s (α)− V ∗s (Vs,Ws, α)|2dα

≤ 2

∫ 1

0

(
|W ∗

s (α)− Z∗s (Ws, α)|2 + |Z∗s (Ws, α)− V ∗s (Vs,Ws, α)|2
)
dα

= 2W2
2 (fs, µ

N
Ws

) + 2
1

N

N∑
i=1

|W i
s − V i

s |2.
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Using the exchangeability and that ‖µ̄NWs
‖Lp ≤ 13500(1 + hN(s)) for all s ≤ τN , it holds that

JN2 (t) ≤ C

∫ t

0

(1 + hN(s))E[W2
2 (fs, µ

N
Ws

)]ds+ C

∫ t

0

(1 + hN(s))uNs ds.

We thus have checked that

uNt ≤ Ct(ε2+2γ
N +K1−2/ν) + C

∫ t

0

(
1 + hN(s)

)
E
[
W2

2 (fs, µ
N
Ws

)
]
ds

+ C

∫ t

0

(
1 + ‖fs‖Lp + hN(s)

)
uNs ds.

But for each t ≥ 0, the family (W i
t )i=1,...,N is i.i.d. and ft-distributed. Furthermore, we have

sup[0,T ] E[|W 1
t |q] <∞ (q > 6) by (2.35). Hence Lemma 2.6.2 tells us that

sup
[0,T ]

E
[
W2

2 (fs, µ
N
Ws

)
]
≤ CTN

−1/2. (2.43)

Using the Grönwall lemma, we deduce that

sup
[0,T ]

uNt ≤ CT

(
ε2+2γ
N +K1−2/ν +N−1/2

∫ T

0

(1 + hN(s))ds

)

× exp
(
C

∫ T

0

(1 + ‖fs‖Lp + hN(s))ds
)
.

But
∫ T

0
hN(s)ds ≤ 2

∫ T
0
‖fs‖Lpds by Lemma 2.5.1-(ii). And f ∈ L1

loc

(
[0,∞), Lp(R3)

)
. We

thus conclude that

sup
[0,T ]

uNt ≤ CT
(
ε2+2γ
N +K1−2/ν +N−1/2

)
as desired.

Now, we give the

Proof of Theorem 2.1.5. As explained at the beginning of the section, we only have to prove
(2.42). Recall that σN = inf{t ≥ 0 : ‖µ̄NWt

‖Lp ≥ 13500(1 + hN(t))}, that q > 6 and that
δ = 6/q. It is clear that P[σN ≤ T ] ≤ CT,q,δN

1−qδ/3 = CT,qN
−1 from Proposition 2.5.2. Then

for t ∈ [0, T ], we write

sup
[0,T ]

E[W2
2 (µNVt

, ft)] ≤ 2 sup
[0,T ]

E[W2
2 (µNVt

, µNWt
) +W2

2 (µNWt
, ft)]

≤ 2 sup
[0,T ]

E[W2
2 (µNVt

, µNWt
)] + CTN

−1/2
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by (2.43). But, by exchangeability, we have

E[W2
2 (µNVt

, µNWt
)] ≤ E

[
N−1

N∑
i=1

|W i
t − V i

t |2
]

= E[|W 1
t − V 1

t |2].

Moreover,

E[|W 1
t − V 1

t |2] ≤ E[|W 1
t∧σN − V

1
t∧σN |

2] + E[|W 1
t − V 1

t |21{σN≤T}]
≤ CT (ε2+2γ

N +K1−2/ν +N−1/2) + CE[|W 1
t |4 + |V 1

t |4]1/2(P(σN ≤ T ))1/2,

by Proposition 2.6.3 , and the Cauchy-Schwarz inequality. Noting that E[|W 1
t |4] ≤ CT by

(2.35), and that E[|V 1
t |4] ≤ CTE[|V 1

0 |4] by Lemma 2.4.5, we deduce that

E[|W 1
t − V 1

t |2] ≤ CT,q(ε
2+2γ
N +K1−2/ν +N−1/2).

All in all, we have proved that

sup
[0,T ]

E[W2
2 (µNVt

, ft)] ≤ CT,q(ε
2+2γ
N +K1−2/ν +N−1/2).

This is precisely (2.42), since ε2+2γ
N = N−(1−6/q)(2+2γ)/3, with εN = N−(1−δ)/3 and δ = 6/q.



Chapter 3

On the equivalence between some jumping
SDEs with rough coefficients and some
non-local PDEs

This work was written in collaboration with Nicolas Fournier.

We study some jumping SDE and the corresponding Fokker-Planck (or Kolmogorov for-
ward) equation, which is a non-local PDE. We assume only some measurability and growth
conditions on the coefficients. We prove that for any weak solution (ft)t∈[0,T ] of the PDE, there
exists a weak solution to the SDE of which the time marginals are given by (ft)t∈[0,T ]. As a
corollary, we deduce that for any given initial condition, existence for the PDE is equivalent
to weak existence for the SDE and uniqueness in law for the SDE implies uniqueness for the
PDE. This extends some ideas of Figalli [22] concerning continuous SDEs and local PDEs.

3.1 Introduction

We consider the d-dimensional stochastic differential equation posed on some time interval
[0, T ]

Xt = X0 +

∫ t

0

b(s,Xs) ds+

∫ t

0

σ(s,Xs) dBs +

∫ t

0

∫
E

h(s, z,Xs−)N(ds, dz), (3.1)

where (Bt)t∈[0,T ] is a d-dimensional Brownian motion and N(ds, dz) is a Poisson measure
on [0, T ] × E with intensity measure ds µ(dz). The coefficients b : [0, T ] × Rd 7→ Rd, σ :

[0, T ] × Rd 7→ S+
d and h : [0, T ] × E × Rd 7→ Rd are supposed to be at least measurable.

The space E is endowed with a σ-field E and with a σ-finite measure µ and S+
d is the set

103
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of nonnegative symmetric d × d real matrices. The Fokker-Planck (or Kolmogorov forward)
equation associated to (3.1) is

∂tft + div(b(t, ·)ft) =
1

2

d∑
i,j=1

∂ij([σ(t, ·)σ∗(t, ·)]i,jft) + Ltft, (3.2)

where Ltft : Rd 7→ R is defined by∫
Rd

(Ltft)(x)ϕ(x)dx =

∫
Rd

∫
E

[ϕ(x+ h(t, z, x))− ϕ(x)]ft(x)dx

for any reasonable ϕ : Rd 7→ R. We use the notation∇ = ∇x, div=divx and ∂ij = ∂2
xixj

.

Let P(Rd) be the set of probability measures on Rd and

P1(Rd) = {f ∈ P(Rd) : m1(f) <∞} with m1(f) :=

∫
Rd
|x|f(dx).

We define L∞
(
[0, T ],P1(Rd)

)
as the set of all measurable families (ft)t∈[0,T ] of probability

measures on Rd such that sup[0,T ] m1(ft) <∞.

3.1.1 Main result
We will suppose the following conditions.

Assumption 3.1.1. The functions σ : [0, T ]×Rd 7→ S+
d , b : [0, T ]×Rd 7→ Rd and h : [0, T ]×

E × Rd 7→ Rd are measurable and there is a constant C such that for all (t, x) ∈ [0, T ]× Rd,

|σ(t, x)|+ |b(t, x)|+
∫
E

|h(t, z, x)|µ(dz) ≤ C(1 + |x|).

We set a(t, x) = σ(t, x)σ∗(t, x), which satisfies |a(t, x)| ≤ C(1 + |x|2).

Definition 3.1.2. Suppose Assumption 3.1.1. A measurable family (ft)t∈[0,T ] of probability
measures on Rd is called a weak solution to (3.2) if for all ϕ ∈ C2

c (Rd), all t ∈ [0, T ],∫
Rd
ϕ(x) ft(dx) =

∫
Rd
ϕ(x) f0(dx) +

∫ t

0

∫
Rd

[Asϕ(x) + Bsϕ(x)] fs(dx) ds, (3.3)

with the diffusion operatorAsϕ(x) := b(s, x) ·∇ϕ(x)+ 1
2

∑d
i,j=1 aij(s, x)∂ijϕ(x) and the jump

operator Bsϕ(x) :=
∫
E

[
ϕ(x+ h(s, z, x))− ϕ(x)

]
µ(dz).

We will check the following facts in the appendix, implying in particular that (3.3) makes
sense.
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Remark 3.1.3. Suppose Assumption 3.1.1.

(i) For ϕ ∈ C2
c (Rd), sup[0,T ]×Rd(|Asϕ(x)|+ |Bsϕ(x)|) <∞.

(ii) Any weak solution (ft)t∈[0,T ] to the equation (3.2) starting from f0 ∈ P1(Rd) belongs to
L∞([0, T ],P1(Rd)).

(iii) If f0 ∈ P1(Rd), the weak formulation (3.3) automatically extends to all functions
ϕ ∈ C2(Rd) such that (1 + |x|)[|ϕ(x)|+ |∇ϕ(x)|+ |D2ϕ(x)|] is bounded.

Point (iii) is far from optimal, but sufficient for our purpose. Our main result reads as
follows.

Theorem 3.1.4. Suppose Assumption 3.1.1 and consider any weak solution (ft)t∈[0,T ] to (3.2)
such that f0 ∈ P1(Rd). There exist, on some probability space (Ω,F , (Ft)t∈[0,T ],P), a d-
dimensional (Ft)t∈[0,T ]-Brownian motion (Bt)t∈[0,T ], a (Ft)t∈[0,T ]-Poisson measure N(dt, dz)

on [0, T ]× E with intensity measure dt µ(dz), these two objects being independent, as well as
a càdlàg (Ft)t∈[0,T ]-adapted process (Xt)t∈[0,T ] solving (3.1) and such that L(Xt) = ft for all
t ∈ [0, T ].

For (Xt)t∈[0,T ] a solution to (3.1) and for ft = L(Xt), a simple application of the Itô formula
(to compute

∫
Rd ϕ(x)ft(dx) = E[ϕ(Xt)] with ϕ ∈ C2

c (Rd)) shows that the family (ft)t∈[0,T ] is
a weak solution to (3.2). The following corollary is thus immediately deduced from Theorem
3.1.4.

Corollary 3.1.5. Suppose Assumption 3.1.1 and fix f0 ∈ P1(Rd).

(i) The existence of a (weak) solution (Xt)t∈[0,T ] to (3.1) such that L(X0) = f0 is equivalent
to the existence of a weak solution (ft)t∈[0,T ] to (3.2) starting from f0.

(ii) The uniqueness (in law) of the solution (Xt)t∈[0,T ] to (3.1) with L(X0) = f0 implies the
uniqueness of the weak solution (ft)t∈[0,T ] to (3.2) starting from f0.

In almost all models arising from applied sciences, the jump operator is given under the
form Bsϕ(x) =

∫
F

[ϕ(x + g(s, y, x)) − ϕ(x)]κ(s, y, x)ν(dy), meaning that when in the po-
sition x at time s, the process jumps to x + g(s, y, x) at rate κ(s, y, x)ν(dy). Here F is
a measurable space endowed with a σ-finite measure ν and we have two measurable func-
tions g : [0, T ] × F × Rd 7→ Rd and κ : [0, T ] × F × Rd 7→ R+. Introducing E =

F × R+, µ(dy, du) = ν(dy)du and h(s, (y, u), x) = g(s, y, x)1{u≤κ(s,y,x)}, one easily ver-
ifies that Bsϕ(x) =

∫
E

[ϕ(x + h(s, (y, u), x)) − ϕ(x)]µ(dy, du). Our results thus apply if∫
F
|g(s, y, x)|κ(s, y, x)ν(dy) ≤ C(1 + |x|).
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3.1.2 Motivation

Stochastic differential equations with jumps are now playing an important role in modeling and
applied sciences. We refer to the book of Situ [54] for all basic results and a lot of possible
applications. The book of Jacod [39] contains many important results about weak and strong
existence and uniqueness, relations between SDEs and martingale problems, etc. See also the
survey paper of Bass [8].

Existence for PDEs is often more developed than for SDEs, so Theorem 3.1.4 might be
useful to derive some new weak existence results for the SDE (3.1).

Our main motivation is the uniqueness for some nonlinear PDEs, for which the use of non-
linear (in the sense of McKean) SDEs has proved to be a powerful tool. For example, the first
(partial) uniqueness result concerning the homogeneous Boltzmann for long range interactions
was derived by Tanaka [57]. He was studying the simplest case of Maxwell molecules. Un-
fortunately, he was only able to prove the uniqueness in law of the nonlinear SDE associated
to the Boltzmann equation. Horowitz and Karandikar [38] were able to deduce the uniqueness
for the (same) Boltzmann equation proceeding as follows. Let us recall that the original equa-
tion writes ∂tft = Q(ft, ft), for some quadratic nonlocal operator Q. For f a solution, they
consider the linear PDE ∂tgt = Q(gt, ft), with unknown g satisfying g0 = f0. They prove
uniqueness in law for the (linear) SDE associated to this PDE (for any initial condition). They
deduce, extending some results of Ethier and Kurtz [20, Chap.4, Propositions 9.18 and 9.19],
the uniqueness for the linear PDE (for any initial condition). So the unique solution (with
g0 = f0) to ∂tgt = Q(gt, ft) is f itself. Consequently, the time marginals of the solution X
to the linear SDE (when X0 ∼ f0), which solve ∂tgt = Q(gt, ft) are necessarily (ft)t∈[0,T ].
Thus X actually solves the nonlinear SDE. Since uniqueness in law holds for the nonlinear
SDE by Tanaka [57], they deduce that there is at most one solution to the Boltzmann equation
∂tft = Q(ft, ft), for some given reasonable initial condition f0.

Let us recall that the above mentioned results of Ethier and Kurtz (extended by Horowitz
and Karandikar [38, Theorem B1] and by Bhatt and Karandikar [10, e.g. Theorems 4.1 and
5.2 ]) state in spirit that if some SDE has a unique solution (in law) for any deterministic initial
condition, then the corresponding PDE has a unique weak solution for any reasonable initial
condition.

Our result is much stronger, since it does not require at all uniqueness for (3.1). If, for
example, studying the Boltzmann equation, it directly implies that, to any solution f to the
nonlinear equation (seen here as a solution to the linear equation ∂tgt = Q(gt, ft)), we can
associate a solution X to the corresponding linear SDE with additionally Xt ∼ ft for all t. In
other words, X solves the nonlinear SDE. This might look anodyne, but this was crucial when
studying more singular nonlinear equations, such as the Landau or Boltzmann equations for
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moderately soft potentials, see [27] and [63]. Indeed, in such cases, we really need to use some
physical symmetries to prove uniqueness : it is absolutely not clear that uniqueness holds for
the linear PDE ∂tgt = Q(gt, ft), since one really uses that the two arguments ofQ are the same.

We hope the above discussion shows that Theorem 3.1.4 is an interesting variation of the
mentioned results of Ethier and Kurtz [20]. As already said, the method we use was initiated
by Figalli [22] for continuous SDEs (h = 0) with bounded coefficients. The boundedness
assumption was relaxed in [27, Appendix B]. A special jumping SDE (with a = b = 0 and
a special jump operator) was considered in [63] to study a singular homogeneous Boltzmann
equation. We decided to write down the general case in the present paper. We did not want
to assume some boundedness of the coefficients, although it complicates the proofs without
introducing new deep ideas, because it is very useful for practical purposes.

Finally, as explained in the next subsection, we are not able to prove a general result when
the jump part of the SDE has infinite variations, and this is a rather important limitation.

3.1.3 Strategy of the proof and plan of the paper
At many places, the situation is technically more involved, but the global strategy is exactly the
same as that introduced by Figalli [22, Theorem 2.6]. Let (ft)t∈[0,T ] be a given weak solution
to (3.2).

I. In Section 3.2, we introduce f εt = ft ? φε, where φε is the centered Gaussian density with
covariance matrix εId. We compute the PDE satisfied by f εt : we find that ∂tf εt +div(bε(t, ·)ft) =
1
2

∑
i,j ∂i,j(a

ε
i,j(t, ·)ft) + Lεtf εt , for some coefficients aε, bε and some jump operator Lεt. Let us

mention that aε(t, ·), bε(t, ·) and Lεt of course depend on ft.

II. Still in Section 3.2, we prove that aε, bε and the coefficient of the jump operatorLε satisfy
(i) the same linear growth conditions as a, b, L, uniformly in ε ∈ (0, 1),
(ii) some (non-uniform) local Lipschitz conditions.

III. In Section 3.3, we use II to build, for each ε ∈ (0, 1), a solution (Xε
t )t∈[0,T ] to some

SDE of which the Fokker-Planck equation is the PDE satisfied by (f εt )t∈[0,T ]. Since both the
SDE and the PDE (with ε ∈ (0, 1) fixed) are well-posed (because the coefficients are regular
enough), we conclude that L(Xε

t ) = f εt . Indeed, the time marginals of (Xε
t )t∈[0,T ] satisfy the

same PDE as (f εt )t∈[0,T ].

IV. Still in Section 3.3, we prove that the family {(Xε
t )t∈[0,T ], ε ∈ (0, 1)} is tight. This is

rather easy from the Aldous criterion [1], using only II-(ii).

V. In Section 3.4, we finally consider a limit point (Xt)t∈[0,T ], as ε→ 0, of {(Xε
t )t∈[0,T ], ε ∈

(0, 1)}. Since L(Xε
t ) = f εt by III, we deduce that L(Xt) = ft for each t ∈ [0, T ]. It then
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remains to show that (Xt)t∈[0,T ] is a weak solution to (3.1) and we classically make use of
martingale problems. Since the coefficients a, b, h are possibly rough, we have to approximate
them by some continuous (in x) coefficients ã, b̃, h̃. We use that we already know the time
marginals of (Xt)t∈[0,T ]: we can take ã(t, ·), b̃(t, ·) and h̃(t, ·, z) close to a(t, ·), b(t, ·) and
h(t, ·, z) in L1(ft).

The proof of Remark 3.1.3 is written in an appendix.

To conclude this paragraph, let us mention a few difficulties. The regularized jump opera-
tor, in its weak form writes

∫
Rd L

ε
tf
ε
t (y)ϕ(y)dy =

∫
Rd
∫
Rd
∫
E

[ϕ(y + h(t, z, x)) − ϕ(y)]φε(x −
y)f εt (dx)dy. We found no regular Poisson representation of the associated SDE. We use an in-
dicator function, see (3.4). This is why we are not able to treat the case of an infinite variation
jump term: we do not know how to prove that a SDE like (3.4), with a compensated Poisson
measure and some weaker condition on h (something like

∫
E
|h(s, z, x)|2µ(dz) ≤ C(1+ |x|2)),

is well-posed.

Although this should be classical since the coefficients are rather regular for ε ∈ (0, 1)

fixed, we found no reference about the uniqueness for the PDE satisfied by (f εt )t∈[0,T ] (see
Lemma 3.2.1). We have not been able to write down a deterministic proof. We thus use that the
corresponding SDE is well-posed (for any deterministic initial condition) and we apply a result
of Horowitz and Karandikar [38].

3.1.4 Convention

During the whole paper, we always suppose Assumption 3.1.1 and that f0 ∈ P1(Rd). We use
the generic notation C for a positive finite constant, of which the value may change from line to
line. It is allowed to depend only on the dimension d, on the parameters a, b, h, E, µ, T of our
equations, and on the weak solution (ft)t∈[0,T ] to (3.2) under study. When a constant depends
on another parameter, we indicate it in subscript. For example, Cε is a constant allowed to
depend only on a, b, h, E, µ, T, (ft)t∈[0,T ] and on ε.

3.2 Regularization

We introduce the following regularization procedure, as Figalli in [22], see also [63].

Lemma 3.2.1. For (ft)t∈[0,T ] ∈ L∞([0, T ],P1(Rd)) a weak solution to (3.2) and ε ∈ (0, 1), we
set

f εt (y) :=

∫
Rd
φε(x− y)ft(dx) = (ft ? φε)(y) with φε(x) = (2πε)−d/2e−|x|

2/(2ε).
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Then for any test function ψ ∈ C2
c (Rd), any t ∈ [0, T ],∫

Rd
ψ(y) f εt (y)dy =

∫
Rd
ψ(y) f ε0(y)dy +

∫ t

0

∫
Rd

[As,εψ(y) + Bs,εψ(y)] f εs(y)dyds,

with

At,εψ(y) =bε(t, y) · ∇ψ(y) +
1

2

d∑
i,j=1

aεij(t, y)∂ijψ(y),

Bt,εψ(y) =

∫
E

∫
Rd

[
ψ(y + h(t, z, x))− ψ(y)

]
F ε
t (x, y) ft(dx)µ(dz),

where

aε(t, y) :=

∫
Rdφε(x− y)a(t, x)ft(dx)

f εt (y)
,

bε(t, y) :=

∫
Rdφε(x− y)b(t, x)ft(dx)

f εt (y)
,

F ε
t (x, y) :=

φε(x− y)

f εt (y)
.

Proof. It is obvious that f εt (y) > 0 for each (t, y) ∈ [0, T ] × Rd. We first apply (3.3) with the
choice ϕ(x) = φε(x − y) (with some fixed y ∈ Rd), which is licit by Remark 3.1.3-(iii). We
then integrate the obtained equality against ψ ∈ C2

c (Rd). This gives∫
Rd
ψ(y)f εt (y)dy =

∫
Rd
ψ(y)f ε0(y)dy +

∫ t

0

(Is + Js)ds,

where

It :=

∫
Rd

∫
Rd
ψ(y)Atφε(x− y)ft(dx)dy and Jt :=

∫
Rd

∫
Rd
ψ(y)Btφε(x− y)ft(dx)dy.

First,

It =

∫
Rd

∫
Rd
ψ(y)b(t, x)·∇φε(x−y)ft(dx)dy+

1

2

∫
Rd

∫
Rd

d∑
i,j=1

ψ(y)aij(t, x)∂ijφε(x−y)ft(dx)dy.

But we have
∫
Rdψ(y)∇φε(x − y)dy =

∫
Rd φε(x − y)∇ψ(y)dy as well as

∫
Rd ψ(y)∂ijφε(x −
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y)dy =
∫
Rd φε(x− y)∂ijψ(y)dy, so that

It =

∫
Rd

∫
Rd
φε(x− y)b(t, x) · ∇ψ(y)ft(dx)dy

+
1

2

∫
Rd

∫
Rd

d∑
i,j=1

aij(t, x)φε(x− y)∂ijψ(y)ft(dx)dy

=

∫
Rd
bε(t, y) · ∇ψ(y)f εt (y)dy +

1

2

∫
Rd

d∑
i,j=1

aεij(t, y)∂ijψ(y)f εt (y)dy

=

∫
Rd
At,εψ(y)f εt (y)dy

as desired. For the jump term, we use a similar computation as in [63, Proposition 3.1]. Since
µ is σ-finite, there exists a non-decreasing sequence (En)n≥1 ⊂ E such that

⋃∞
n=1En = E and

µ(En) <∞ for each n ≥ 1. We fix n and write

Jt =

∫
Rd

∫
Rd

∫
En

ψ(y)φε(x− y + h(t, z, x))µ(dz)ft(dx)dy

−
∫
Rd

∫
Rd

∫
En

ψ(y)φε(x− y)µ(dz)ft(dx)dy

+

∫
Rd

∫
Rd

∫
E\En

ψ(y)
[
φε(x− y + h(t, z, x))− φε(x− y)

]
µ(dz)ft(dx)dy .

Using the change of variables y − h(t, z, x) 7→ y, we see that∫
Rd
ψ(y)φε(x− y + h(t, z, x))dy =

∫
Rd
ψ(y + h(t, z, x))φε(x− y)dy,

and consequently,

Jt =

∫
Rd

∫
Rd

∫
En

[
ψ(y + h(t, z, x))− ψ(y)

]
φε(x− y)µ(dz)ft(dx)dy

+

∫
Rd

∫
Rd

∫
E\En

ψ(y)
[
φε(x− y + h(t, z, x))− φε(x− y)

]
µ(dz)ft(dx)dy.

Observe now that

|ψ(y + h(t, z, x))− ψ(y)|φε(x− y) ≤ C|h(t, z, x)|φε(x− y) ∈ L1(µ(dz)ft(dx)dy)

and |ψ(y)[φε(x − y + h(t, z, x)) − φε(x − y)]| ≤ Cε|ψ(y)||h(t, z, x)| ∈ L1(µ(dz)ft(dx)dy):
this uses that ψ ∈ C2

c (Rd), Assumption 3.1.1 and that ft ∈ P1(Rd). We thus can let n→∞:

Jt =

∫
Rd

∫
Rd

∫
E

[
ψ(y + h(t, z, x))− ψ(y)

]
φε(x− y)µ(dz)ft(dx)dy =

∫
Rd
Bt,εψ(y)f εt (y)dy,

which completes the proof.
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Let us now give some growth and regularity estimates on the regularized coefficients.

Lemma 3.2.2. Let (ft)t∈[0,T ] ∈ L∞([0, T ],P1(Rd)) be a weak solution to (3.2) and recall that
aε, bε, F ε were introduced in Lemma 3.2.1.

(i) There exists a constant C > 0 such that for all ε ∈ (0, 1), all y ∈ Rd, all t ∈ [0, T ],

|bε(t, y)|+ |aε(t, y)|1/2 +

∫
Rd

∫
E

|h(t, z, x)|F ε
t (x, y)µ(dz)ft(dx) ≤ C (1 + |y|).

(ii) For all ε ∈ (0, 1) and R > 0, there is CR,ε > 0 such that for all y1, y2 ∈ B(0, R), all
t ∈ [0, T ],

|bε(t, y1)− bε(t, y2)|+ |aε(t, y1)− aε(t, y2)|+ |[aε(t, y1)]1/2 − [aε(t, y2)]1/2|

+

∫
Rd

∫
E

|h(t, z, x)||F ε
t (x, y1)− F ε

t (x, y2)|µ(dz)ft(dx) ≤ CR,ε |y1 − y2|.

Proof. We start with (i). By Assumption 3.1.1,

|bε(t, y)|+ |aε(t, y)|1/2 +

∫
Rd

∫
E

|h(t, z, x)|F ε
t (x, y)µ(dz)ft(dx)

≤C
∫
Rd φε(x− y)(1 + |x|) ft(dx)

f εt (y)
+ C

[∫
Rd φε(x− y)(1 + |x|)2 ft(dx)

f εt (y)

]1/2

=:CIε(t, y) + CJε(t, y).

Since for y fixed, [f εt (y)]−1φε(x − y)ft(dx) is a probability measure, we infer from Cauchy-
Schwarz that Iε(t, y) ≤ Jε(t, y). We thus only have to prove that [Jε(t, y)]2 ≤ C(1 + |y|2). Let
L := 2 sup[0,T ] m1(ft) + 2. We use that

1 + |x| ≤ 1 + |y|+ |x− y| ≤ 1 + 2|y|+ L+ |x− y|1{|x−y|>|y|+L}

to write

[Jε(t, y)]2 ≤2

∫
Rd(1 + 2|y|+ L)2φε(x− y)ft(dx)

f εt (y)
+ 2

∫
|x−y|≥|y|+L |x− y|

2φε(x− y)ft(dx)

f εt (y)

≤2(1 + 2|y|+ L)2 + 2
(|y|+ L)2φε(|y|+ L)

f εt (y)
.

For the second term, we used that |y| + L ≥ 2 ≥
√

2ε and that z 7→ |z|2 φε(z) is radially
symmetric and decreasing on {|z| ≥

√
2ε}. To conclude the proof of (i), it suffices to note that

f εt (y) ≥
∫
|x−y|≤|y|+L

φε(x− y) ft(dx) ≥ φε(|y|+ L) ft(B(y, |y|+ L)) ≥ φε(|y|+ L)/2
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because z 7→ φε(z) is radially symmetric decreasing and because

ft(B(y, |y|+ L)) ≥ ft(B(0, L)) ≥ 1/2,

since ft(B(0, L)c) ≤ m1(ft)/L ≤ 1/2.

For point (ii), it suffices to prove that∇yb
ε(t, y),∇ya

ε(t, y), D2
ya

ε(t, y) are locally bounded
on [0, T ]×Rd, as well asGε(t, y) :=

∫
Rd
∫
E
|h(t, z, x)||∇yF

ε
t (x, y)|µ(dz)ft(dx). No uniformity

in ε is required here. By Stroock and Varadhan [55, Theorem 5.2.3], the local boundedness of
D2
ya

ε(t, y) implies that of∇y([a
ε(t, y)]1/2).

First, one easily checks that y 7→ (f εt (y))−1 is of class C∞ for each t ∈ [0, T ] and that
it is locally bounded, as well as its derivatives of order 1 and 2, on [0, T ] × Rd. This uses in
particular the lower bound f εt (y) ≥ φε(|y|+ L)/2 proved a few lines above.

Recall that by definition, we have aε(t, y) = (f εt (y))−1
∫
Rd φε(x − y)a(t, x)ft(dx) and

bε(t, y) = (f εt (y))−1
∫
Rd φε(x − y)b(t, x)ft(dx). Recall finally that |a(t, x)| + |b(t, x)| ≤

C(1 + |x|2). So concerning aε and bε, our goal is only to check that

Kε(t, y) :=

∫
Rd

[|∇yφε(x− y)|+ |D2
yφε(x− y)|](1 + |x|2)ft(dx)

is locally bounded on [0, T ]× Rd. But using that (1 + |z|2)[|∇φε(z)| + |D2φε(z)|] is bounded
on Rd, we deduce that [|∇yφε(x − y)| + |D2

yφε(x − y)|](1 + |x|2) ≤ Cε(1 + |y|2), whence
Kε(t, y) ≤ Cε(1 + |y|2).

Next, one has |∇yF
ε
t (x, y)| ≤ Cε(f

ε
t (y))−2[φε(x−y)|∇f εt (y)|+f εt (y)|∇φε(x−y)|]. Using

again that f εt is smooth and positive, the goal concerning Gε is to verify that

Lε(t, y) :=

∫
Rd

∫
E

|h(t, z, x)|[φε(x− y) + |∇φε(x− y)|]µ(dz)ft(dx)

is locally bounded. By Assumption 3.1.1,

Lε(t, y) ≤
∫
Rd

[φε(x− y) + |∇φε(x− y)|](1 + |x|)ft(dx) ≤ Cε(1 + |y|)

as previously, because (1 + |z|)[φε(z) + |∇φε(z)|] is bounded.

3.3 Study of the regularized equations

In this section, we build a realization of the regularized weak solution (f εt )t∈[0,T ].
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Proposition 3.3.1. Let (ft)t∈[0,T ] ∈ L∞([0, T ],P1(Rd)) be a weak solution to (3.2) and fix
ε ∈ (0, 1). Consider (f εt )t∈[0,T ] and aε, bε, F ε defined in Lemma 3.2.1 and put σε(t, y) :=

(aε(t, y))1/2. Consider a random variable Xε
0, a d-dimensional Brownian motion (Bs)s∈[0,T ]

and a Poisson measure N(ds, dz, dx, du) on [0, T ]× E × Rd × [0,∞) with intensity measure
ds µ(dz) fs(dx) du, these three objects being independent. We work with the filtration gener-
ated by Xε

0, B,N .

(i) There is a pathwise unique càdlàg adapted solution (Xε
t )t∈[0,T ] to

Xε
t =Xε

0 +

∫ t

0

bε(s,Xε
s)ds+

∫ t

0

σε(s,Xε
s)dBs

+

∫ t

0

∫
E

∫
Rd

∫ ∞
0

h(s, z, x)1{u≤F εs (x,Xε
s−)}N(ds, dz, dx, du). (3.4)

(ii) There is a constant C (not depending on ε) such that E[sup[0,T ] |Xε
t |] ≤ C(1 +E[|Xε

0|]).

(iii) If L(Xε
0) = f ε0 , then L(Xε

t ) = f εt for all t ∈ [0, T ].

Proof. (i) The existence of a pathwise unique solution to (3.4) is more or less standard, because
of the linear growth and local Lipschitz properties of the coefficients proved in Lemma 3.2.2.
We only prove pathwise uniqueness, the existence being shown similarly, using a localization
procedure (to make the coefficients globally Lipschitz continuous) and a Picard iteration. Con-
sider two solutions (Xε

t )t∈[0,T ] and (X̃ε
t )t∈[0,T ] to (3.4) withXε

0 = X̃ε
0 and introduce the stopping

time τR := inf{t ∈ [0, T ] : |Xε
t | ∨ |X̃ε

t | ≥ R}, for R > 0, with the convention that inf ∅ = T .
Using the Burkholder-Davis-Gundy inequality for the Brownian part, we find

E
[

sup
[0,t∧τR]

|Xε
s − X̃ε

s|
]

≤ E
[ ∫ t∧τR

0

|bε(s,Xε
s)− bε(s, X̃ε

s)|ds+ C
(∫ t∧τR

0

|σε(s,Xε
s)− σε(s, X̃ε

s)|2ds
)1/2

+

∫ t∧τR

0

∫
E

∫
Rd
|h(s, z, x)||F ε

s (x,Xε
s)− F ε

s (x, X̃ε
s)|fs(dx)µ(dz)ds

]
.

By Lemma 3.2.2-(ii), we deduce that

E
[

sup
[0,t∧τR]

|Xε
s − X̃ε

s|
]
≤CR,εE

[ ∫ t∧τR

0

|Xε
s − X̃ε

s|ds+
(∫ t∧τR

0

|Xε
s − X̃ε

s|2ds
)1/2]

≤CR,ε(t+
√
t)E
[

sup
[0,t∧τR]

|Xε
s − X̃ε

s|
]
.

We deduce that E[sup[0,tR∧τR] |Xε
s−X̃ε

s|] = 0, where tR > 0 is such thatCR,ε(tR+
√
tR) = 1/2.

But then, the same computation allows us to prove that E[sup[tR∧τR,(2tR)∧τR] |Xε
s − X̃ε

s|] = 0,
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etc, so that we end with E[sup[0,T∧τR] |Xε
s − X̃ε

s|] = 0 for each R > 0. Since limR→∞ τR = T

a.s. (because (Xε
t )t∈[0,T ] and (X̃ε

t )t∈[0,T ] are assumed to be a.s. càdlàg and thus locally bounded
on [0, T ]), we conclude that E[sup[0,T ] |Xε

s − X̃ε
s|] = 0, which was our goal.

(ii) Using the Burkholder-Davis-Gundy inequality for the Brownian part, we find, for t ∈
[0, T ],

uεt := E
[

sup
[0,t]

|Xε
s|
]
≤E[|Xε

0|] + E
[ ∫ t

0

|bε(s,Xε
s)|ds

]
+ CE

[( ∫ t

0

|σε(s,Xε
s)|2 ds

)1/2]
+ E

[ ∫ t

0

∫
E

∫
Rd
|h(s, z, x)|F ε

s (x,Xε
s−)fs(dx)µ(dz)ds

]
.

Inserting the estimates proved in Lemma 3.2.2-(i), we find, for some constant C not depending
on ε ∈ (0, 1) nor on E[|Xε

0|],

uεt ≤ E[|Xε
0|] + CE

[ ∫ t

0

(
1 + |Xε

s|
)
ds+

(∫ t

0

(1 + |Xε
s|2) ds

)1/2]
≤ uε0 + C(t+

√
t)(1 + uεt).

With t0 > 0 such thatC(t0+
√
t0) = 1/2, we conclude that uεt0 ≤ 2uε0+1. One checks similarly

that uε2t0 ≤ 2uεt0 + 1 ≤ 4uε0 + 3. Repeating the argument, we end with uεT ≤ 2bT/t0c+1uε0 +

2bT/t0c+1 − 1.

(iii) We now assume that L(Xε
0) = f ε0 and we set gεt := L(Xε

t ). A direct application of the
Itô formula shows that for all t ∈ [0, T ], recalling the notation of Lemma 3.2.1,∫

Rd
ψ(y) gεt(dy) =

∫
Rd
ψ(y) f ε0(dy) +

∫ t

0

∫
Rd

[As,εψ(y) + Bs,εψ(y)] gεs(dy)ds.

Recalling Lemma 3.2.1 again, (f εt )t∈[0,T ] solves the same equation. The following uniqueness
result will thus complete the proof of (iii): for any ν0 ∈ P(Rd), there exists at most one
measurable family (νt)t∈[0,T ] of probability measures such that for all ψ ∈ C2

c (Rd) and all
t ∈ [0, T ],∫

Rd
ψ(y) νt(dy) =

∫
Rd
ψ(y) ν0(dy) +

∫ t

0

ds

∫
Rd
νs(dy) [As,εψ(y) + Bs,εψ(y)] . (3.5)

This must be classical (because the coefficients are rather regular), but we found no reference
and thus make use of martingale problems. A càdlàg adapted Rd-valued process (Yt)t∈[0,T ] on
some filtered probability space (Ω,F , (Ft)t∈[0,T ],P) is said to solve MPε(ν0) if L(Y0) = ν0

and if

ψ(Yt)−
∫ t

0

[
As,εψ(Ys) + Bs,εψ(Ys)

]
ds



3.3. STUDY OF THE REGULARIZED EQUATIONS 115

is a martingale for all ψ ∈ C2
c (Rd). Due to Horowitz and Karandikar [38, Theorem B1], the

following points imply uniqueness for (3.5). Here C0(Rd) is the set of continuous functions
from Rd to R vanishing at infinity.

(a) C2
c (Rd) is dense is C0(Rd) for the uniform convergence topology,

(b) (t, y) 7→ At,εψ(y) + Bt,εψ(y) is measurable for all ψ ∈ C2
c (Rd),

(c) for each t ∈ [0, T ], At,ε + Bt,ε satisfies the maximum principle,
(d) there exists a countable family (ψk)k≥1 ⊂ C2

c (Rd) such that for all t ∈ [0, T ],

{(ψk,At,εψk + Bt,εψk), k ≥ 1} ⊃ {(ψ,At,εψ + Bt,εψ), ψ ∈ C2
c (Rd)}

where the closure in the left-hand side is under the bounded pointwise convergence,
(e) for each y0 ∈ Rd, there exists a unique (in law) solution to MPε(δy0).

Points (a) and (b) are obvious. The SDE associated to MPε is precisely (3.4): (Yt)t∈[0,T ]

solves MPε(ν0) if and only if it is a weak solution to (3.4) and L(Y0) = ν0, see Jacod
[39, Theorem 13.55], see also [38, Theorem A1]. Thus (e) follows from (i). For (c), as-
sume that ψ ∈ C2

c (Rd) attains its maximum at y0. Then Bt,εψ(y0) ≤ 0 (this is immediate)
and At,εψ(y0) ≤ 0 (because ∇ψ(y0) = 0 and, since a(t, y0) is symmetry and nonnegative,∑

i,j aij(t, y0)∂ijψ(y0) ≤ 0). It only remains to prove (d). Consider any countable subset
(ψk)k≥1 ⊂ C2

c (Rd) dense in C2
c (Rd): for ψ ∈ C2

c (Rd) with Supp ψ ⊂ B(0,M), there exists
(ψkn)n≥1 with Supp ψkn ⊂ B(0, 2M) such that

lim
n→∞

(‖ψ − ψkn‖∞ + ‖∇(ψ − ψkn)‖∞ + ‖D2(ψ − ψkn)‖∞) = 0 .

We will prove more than needed, namely that (i) limn→∞ sup[0,T ] ‖At,εψkn−At,εψ‖∞ = 0, and
(ii) limn→∞ sup[0,T ] ‖Bt,εψkn − Bt,εψ‖∞ = 0.

By Lemma 3.2.2,

|At,ε(ψkn − ψ)(y)|

≤ ‖∇(ψkn − ψ)‖∞ |bε(t, y)|1{|y|≤2M} +
1

2
‖D2(ψkn − ψ)‖∞ ‖aε(t, y)‖1{|y|≤2M}

≤ C‖∇(ψkn − ψ)‖∞ + C‖D2(ψkn − ψ)‖∞,

which tends to 0, implying (i). We next write, using that Supp (ψkn − ψ) ⊂ B(0, 2M),

|(ψkn − ψ)(y + h(t, z, x))− (ψkn − ψ)(y)| ≤1{|y|≤4M}‖∇(ψkn − ψ)‖∞|h(t, z, x)|
+ 21{|y|≥4M}‖ψkn − ψ‖∞1{|y+h(t,x,z)|≤2M}.

Observing that

1{|y|≥4M,|y+h(t,z,x)|≤2M} ≤ 1{|y|≥4M,|h(t,z,x)|≥|y|/2} ≤ 1{|y|≥4M}
2|h(t, z, x)|
|y|

,
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we deduce that

|Bt,ε(ψkn − ψ)(y)| ≤1{|y|≤4M} ‖∇(ψkn − ψ)‖∞
∫
E

∫
Rd
|h(t, z, x)|F ε

t (x, y) ft(dx)µ(dz)

+ 1{|y|≥4M}‖ψkn − ψ‖∞
∫
E

∫
Rd

2|h(t, z, x)|
|y|

F ε
t (x, y) ft(dx)µ(dz).

Recalling that
∫
E

∫
Rd |h(t, z, x)|F ε

t (x, y) ft(dx)µ(dz) ≤ C(1 + |y|) by Lemma 3.2.2, we find

|Bt,ε(ψkn − ψ)(y)|

≤ 1{|y|≤4M}C(1 + |y|)‖∇(ψkn − ψ)‖∞ + 1{|y|≥4M}C
1 + |y|
|y|

‖ψkn − ψ‖∞

≤ C‖∇(ψkn − ψ)‖∞ + C‖ψkn − ψ‖∞
and the conclusion follows.

Lemma 3.3.2. For (ft)t∈[0,T ] ∈ L∞([0, T ],P1(Rd)) a weak solution to the equation (3.2) and
ε ∈ (0, 1), consider the process (Xε

t )t∈[0,T ], with Xε
0 ∼ f ε0 , introduced in Lemma 3.3.1. The

family {(Xε
t )t∈[0,T ], ε > 0} is tight in D([0, T ],Rd) and any limit point (Xt)t∈[0,T ] satisfies

P(∆Xt 6= 0) = 0 for all t ∈ [0, T ].

Proof. We use the Aldous criterion [1], see also Jacod and Shiryaev [40, p. 356], which implies
tightness and that any limit point (Xt)t∈[0,T ] is quasi-left-continuous and thus has no determin-
istic jump time. It suffices to check that

(i) supε∈(0,1) E[sup[0,T ] |Xε
t |] <∞,

(ii) limβ→0 supε∈(0,1) sup(S,S′)∈ST (β) E[|Xε
S′ −Xε

S|] = 0, where ST (β) is the set of all pairs
of stopping times (S, S ′) satisfying 0 ≤ S ≤ S ′ ≤ S + β ≤ T a.s.

Point (i) has already been checked in Lemma 3.3.1-(ii), since E[|Xε
0|] = m1(f ε0) ≤ m1(f0)+√

dε. Next, for S, S ′ ∈ ST (β) and ε ∈ (0, 1), we have

E[|Xε
S′ −Xε

S|] ≤E
[ ∫ S+β

S

|bε(s,Xε
s)| ds

]
+ E

[∣∣∣ ∫ S′

S

σε(s,Xε
s) dBs

∣∣∣]
+ E

[ ∫ S+β

S

∫
E

∫
Rd
|h(s, z, x)|F ε

s (x,Xε
s) fs(dx)µ(dz) ds

]
≤C E

[ ∫ S+β

S

(
1 + |Xε

s|
)
ds
]

+ CE
[( ∫ S′

S

|σε(s,Xε
s)|2ds

)1/2]
,

where the last inequality follows from Lemma 3.2.2-(i) and the Burkholder-Davis-Gundy in-
equality. But |σε(s, x)|2 ≤ C|aε(s, x)| ≤ C(1 + |x|2) by Lemma 3.2.2-(i) again, whence

E[|Xε
S′ −Xε

S|] ≤ C E
[ ∫ S+β

S

(1 + |Xε
s|) ds+

(∫ S+β

S

(1 + |Xε
s|2)ds

)1/2]
.
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Hence E[|Xε
S′ − Xε

S|] ≤ C(β +
√
β)E[sup[0,T ](1 + |Xε

s|)] ≤ C(β +
√
β), which ends the

proof.

3.4 Conclusion
As Figalli [22], we will need some continuous (in x) approximations of a, b and h.

Lemma 3.4.1. Let (ft)t∈[0,T ] ∈ L∞([0, T ],P1(Rd)) be a weak solution to (3.2). For all ρ > 0,
we can find ã : [0, T ] × Rd 7→ S+

d and b̃ : [0, T ] × Rd 7→ Rd, both continuous and compactly
supported, a set A ∈ E such that µ(A) <∞, and a measurable function h̃ : [0, T ]×E×Rd 7→
Rd, continuous on [0, T ] × Rd for each z ∈ E, such that h̃(t, z, x) = 0 for all (t, z, x) ∈
[0, T ]× Ac × Rd and∫ T

0

∫
Rd

[ |a(t, x)− ã(t, x)|
1 + |x|

+|b(t, x)− b̃(t, x)|+
∫
E

|h(t, z, x)−h̃(t, z, x)|µ(dz)
]
ft(dx)dt < ρ.

Proof. For a and b, this follows from the fact, see Rudin [52, Theorem 3.14], that contin-
uous functions with compact support are dense in L1([0, T ] × Rd, dtft(dx)), and that both
a(t, x)/(1 + |x|) and b(t, x) belong to this space by Assumption 3.1.1.

Since h ∈ L1([0, T ]×E×Rd, dtµ(dz)ft(dx)) by Assumption 3.1.1 and since µ is σ-finite,
we can find A ∈ E such that µ(A) <∞ and

∫ T
0

∫
Ac

∫
Rd |h(t, z, x)|ft(dx)µ(dz)dt < ρ/3.

Next, can find a simple function g =
∑N

n=1 αn1Sn , with αn ∈ R∗, Sn ∈ B([0, T ]×Rd)⊗E ,
such that

∫ T
0

∫
A

∫
Rd |g(t, z, x)− h(t, z, x)|ft(dx)µ(dz)dt < ρ/3.

But for S ∈ B([0, T ] × Rd) ⊗ E and ε > 0, there is ϕS,ε : [0, T ] × Rd × E 7→ R,
measurable, continuous on [0, T ] × Rd for each z ∈ E and such that

∫ T
0

∫
A

∫
Rd |1{(t,z,x)∈S} −

ϕS,ε(t, z, x)|ft(dx)µ(dz)dt < ε. Indeed, when S = C × D with C ∈ B([0, T ] × Rd) and
D ∈ E , it suffices to consider ψ continuous on [0, T ] × Rd such that

∫ T
0

∫
Rd |1{(t,x)∈C} −

ψ(t, x)|ft(dx)dt < ε/µ(A) and to set ϕS,ε(t, z, x) = ψ(t, x)1{z∈D}. The general case follows
from the monotone class theorem.

Finally, h̃(t, z, x) =
∑N

n=1 αnϕSn,ρ/(3|αn|2n)(t, z, x)1{z∈A} is measurable and continuous in
(t, x) for each z ∈ E. Writing

|h(t, z, x)− h̃(t, z, x)| ≤|h(t, z, x)|1{z∈Ac} + |g(t, z, x)− h(t, z, x)|1{z∈A}

+
N∑
n=1

|αn||ϕSn,ρ/(3|αn|2n)(t, z, x)− 1{(t,z,x)∈Sn}|1{z∈A},

we conclude that
∫ T

0

∫
E

∫
Rd |h(t, z, x)− h̃(t, z, x)|ft(dx)µ(dz)dt < ρ as desired.
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We now can give the

Proof of Theorem 3.1.4. Let (ft)t∈[0,T ] ∈ L∞([0, T ],P1(Rd)) be a weak solution to (3.2). For
each ε ∈ (0, 1), consider (f εt )t∈[0,T ] introduced in Lemma 3.2.1 and the process (Xε

t )t∈[0,T ] intro-
duced in Lemma 3.3.1-(iii). By Lemma 3.3.2, we can find a sequence (Xεn

t )t∈[0,T ] converging
in law to some process (Xt)t∈[0,T ]. Since we know from Lemma 3.3.1 that L(Xεn

t ) = f εnt for
each t ∈ [0, T ], each n ≥ 1 and since f εnt goes weakly to ft as n → ∞ by construction, we
deduce that for all t ∈ [0, T ], L(Xt) = ft. It thus only remains to verify that X := (Xt)t∈[0,T ]

is a (weak) solution to (3.1). According to the theory of martingale problems, see Jacod [39,
Theorem 13.55], it classically suffices to prove that for any ψ ∈ C2

c (Rd), the process

ψ(Xt)− ψ(X0)−
∫ t

0

[
Asψ(Xs) + Bsψ(Xs)

]
ds

is a martingale in the filtration Ft = σ(Xs, s ≤ t). Our goal is thus to check that for any
0 ≤ s1 ≤ · · · ≤ sk ≤ s ≤ t ≤ T , any ψ1, . . . , ψk ∈ Cb(Rd) and any ψ ∈ C2

c (Rd), we have
E[K(X)] = 0, where K : D([0, T ],Rd) 7→ R is defined by

K(λ) :=
( k∏
i=1

ψi(λsi)
)(
ψ(λt)− ψ(λs)−

∫ t

s

[
Arψ(λr) + Brψ(λr)

]
dr
)
.

We fix ρ > 0 and consider ã, b̃ and h̃ introduced in Lemma 3.4.1. We introduce Ãs and B̃s
exactly as in Definition 3.1.2 with ã, b̃ and h̃ instead of a, b and h. We define ãε, b̃ε, Ãs,ε and
B̃s,ε exactly as in Lemma 3.2.1, with everywhere ã, b̃ and h̃ instead of a, b and h. Finally, we
define K̃ (resp. K̃ε, resp. Kε) exactly asK withAr and Br replaced by Ãr and B̃r (resp. by Ãr,ε
and B̃r,ε, resp. by Ar,ε and Br,ε).

First, E[Kεn(Xεn)] = 0. Indeed, since Xε = (Xε
t )t∈[0,T ] solves (3.4), by the Itô formula,

ψ(Xε
t )−

∫ t

0

[Ar,ε(Xε
r) + Br,ε(Xε

r)]dr

=ψ(Xε
t )−

∫ t

0

bε(r,Xε
r) · ∇ψ(Xε

r)dr −
1

2

d∑
i,j=1

∫ t

0

aεij(r,X
ε
r)∂ijψ(Xε

r)dr

−
∫ t

0

∫
E

∫
Rd

[
ψ(Xε

r + h(s, z, x))− ψ(Xε
r)
]
F ε
s (x,Xε

r)fr(dx)µ(dz)dr

is a martingale, which implies the claim. We thus may write, for each n ≥ 1,

|E[K(X)]| ≤|E[K(X)]− E[K̃(X)]|+ |E[K̃(X)]− E[K̃(Xεn)]|
+ |E[K̃(Xεn)]− E[K̃εn(Xεn)]|+ |E[K̃εn(Xεn)]− E[Kεn(Xεn)]|.
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We now study the four terms. We denote by M a constant such that Supp ψ ⊂ B(0,M).
We also define φ(z) = (2π)−d/2e−|z|

2/2, so that φε(z) = ε−d/2φ(ε−1/2z).

Step 1. Here we prove that limn→∞ E[K̃(Xεn)] = E[K̃(X)]|. Since Xεn goes in law to X
by construction, it suffices to verify that K̃ is bounded and a.s. continuous at X .

Since ã, b̃ and h̃ are continuous in space and time, we easily deduce that (r, x) 7→ Ãrψ(x)

and (r, x) 7→ B̃rψ(x) are continuous and bounded on [0, T ] × Rd. For Ãrψ(x) = b̃(r, x) ·
∇ψ(x) + 1

2

∑
i,j ãij(r, x)∂ijψ(x) this is obvious, and for B̃rψ(x) =

∫
E

[ψ(x + h̃(r, z, x)) −
ψ(x)]µ(dz) =

∫
A

[ψ(x + h̃(r, z, x)) − ψ(x)]µ(dz), this follows from the Lebesgue theorem,
because ψ is bounded and µ(A) <∞.

We easily deduce that K̃ is bounded, and that it is continuous at each λ ∈ D([0, T ],Rd)

which does not jump at s1, . . . , sk, s, t. This is a.s. the case of X , see Lemma 3.3.2.

Step 2. Here we check that ∆1 := |E[K(X)] − E[K̃(X)]| ≤ Cρ for some constant C. We
have, since Supp ψ ⊂ B(0,M),

|K(λ)− K̃(λ)| ≤C
∫ t

0

[|Arψ(λr)− Ãrψ(λr)|+ |Brψ(λr)− B̃rψ(λr)|]dr

≤C
∫ t

0

(
|a(r, λr)− ã(r, λr)|+ |b(r, λr)− b̃(r, λr)|

)
1{|λr|<M}dr

+ C

∫ t

0

∫
E

|h(r, z, λr)− h̃(r, z, λr)|µ(dz)dr.

Using now that 1{|x|<M} ≤ C(1 + |x|)−1 and that L(Xr) = fr for each r ∈ [0, T ], we conclude
that

∆1 ≤C
∫ t

0

∫
Rd

( |a(r, x)− ã(r, x)|
1 + |x|

+ |b(r, x)− b̃(r, x)|
)
fr(dx)dr

+ C

∫ t

0

∫
E

∫
Rd
|h(r, z, x)− h̃(r, z, x)|fr(dx)µ(dz)dr.

This is smaller than Cρ by Lemma 3.4.1.

Step 3. Now we verify that for all n ≥ 1, ∆n
2 = |E[K̃εn(Xεn)]−E[Kεn(Xεn)]| ≤ Cρ. As in

Step 2,

∆n
2 ≤C

∫ t

0

∫
Rd

( |aεn(r, y)− ãεn(r, y)|
1 + |y|

+ |bεn(r, y)− b̃εn(r, y)|
)
f εnr (y)dy dr

+ C

∫ t

0

∫
E

∫
Rd

∫
Rd
|h(r, z, x)− h̃(r, z, x)|φεn(x− y)

f εnt (y)
fr(dx) f εnr (y)dy µ(dz) dr.
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Recalling (see Lemma 3.2.1) that aεn(r, y)f εnr (y) =
∫
Rd φεn(x − y)a(r, x)fr(dx), and that

ãεn(r, y)f εnr (y) =
∫
Rd φεn(x − y)ã(r, x)fr(dx) and similar formulas for bεn(r, y)f εnr (y) and

b̃εn(r, y)f εnr (y), we find

∆n
2 ≤C

∫ t

0

∫
Rd

∫
Rd

( |a(r, x)− ã(r, x)|
1 + |y|

+ |b(r, x)− b̃(r, x)|
)
φεn(x− y)fr(dx)dy dr

+ C

∫ t

0

∫
E

∫
Rd

∫
Rd
|h(r, z, x)− h̃(r, z, x)|φεn(x− y) fr(dx)dy µ(dz) dr.

But
∫
Rd φεn(x− y)dy = 1 and, since 1+|x|

1+|y| = 1 + |x|−|y|
1+|y| ≤ 1 + |x− y| ≤ 2 + |x− y|2,∫

Rd

(1 + |x|)φεn(x− y)dy

1 + |y|
≤
∫
Rd

(2 + |x− y|2)φεn(x− y)dy = 2 + dεn ≤ 2 + d.

Consequently,

∆n
2 ≤C

∫ t

0

∫
Rd

( |a(r, x)− ã(r, x)|
1 + |x|

+ |b(r, x)− b̃(r, x)|
)
fr(dx)dr

+ C

∫ t

0

∫
E

∫
Rd
|h(r, z, x)− h̃(r, z, x)|fr(dx)µ(dz)dr,

which is smaller than Cρ by Lemma 3.4.1.

Step 4. Finally, we check that limn→∞ |E[K̃(Xεn)] − E[K̃εn(Xεn)]| = 0. We first observe
that |E[K̃(Xεn)]− E[K̃εn(Xεn)]| ≤ C (In + Jn), where

In := E
[ ∫ t

0

|Ãr,εnψ(Xεn
r )− Ãrψ(Xεn

r )|dr
]

and Jn := E
[ ∫ t

0

|B̃r,εnψ(Xεn
r )− B̃rψ(Xεn

r )|dr
]
.

Since ψ ∈ C2
c (Rd) and since L(Xεn

r ) = f εnr , we have

In ≤ C

∫ t

0

∫
Rd

(
|b̃εn(r, y)− b̃(r, y)|+ |ãεn(r, y)− ã(r, y)|

)
f εnr (y)dy dr

≤ C

∫ t

0

∫
Rd

∫
Rd

(
|b̃(r, x)− b̃(r, y)|+ |ã(r, x)− ã(r, y)|

)
φεn(x− y) fr(dx) dydr.

because [b̃εn(r, y)− b̃(r, y)]f εnr (y) =
∫
Rd φεn(x−y)b̃(r, x)fr(dx)−

∫
Rd φεn(x−y)b̃(r, y)fr(dx),

with a similar formula concerning ã. Using finally the substitution y = x+
√
εnu, we find

In ≤ C

∫ t

0

∫
Rd

∫
Rd

(
|b̃(r, x)− b̃(r, x+

√
εnu)|+ |ã(r, x)− ã(r, x+

√
εnu)|

)
φ(u) fr(dx) dydr.

Hence limn In = 0 by dominated convergence, since ã and b̃ are continuous and bounded.
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By the same way, since f εnr (y) =
∫
Rd φεn(x− y)fr(dx),

Jn = E
[ ∫ t

0

∣∣∣ ∫
E

∫
Rd

[
ψ(Xεn

r + h̃(r, z, x))− ψ(Xεn
r )
]φεn(x−Xεn

r )

f εnr (Xεn
r )

fr(dx)µ(dz)

−
∫
E

[
ψ(Xεn

r + h̃(r, z,Xεn
r ))− ψ(Xεn

r )
]
µ(dz)

∣∣∣dr]
= E

[ ∫ t

0

∣∣∣ ∫
E

∫
Rd

[
ψ(Xεn

r + h̃(r, z, x))− ψ(Xεn
r + h̃(r, z,Xεn

r ))
]

× φεn(x−Xεn
r )

f εnr (Xεn
r )

fr(dx)µ(dz)
∣∣∣dr]

≤ CE
[ ∫ t

0

∫
E

∫
Rd

[
1 ∧

∣∣∣h̃(r, z, x))− h̃(r, z,Xεn
r )
∣∣∣]φεn(x−Xεn

r )

f εnr (Xεn
r )

fr(dx)µ(dz)dr
]

because ψ and∇ψ are bounded. Using that L(Xεn
r ) = f εnr , the substitution y = x+

√
εnu and

the fact that h̃(r, z, x) = 0 if z /∈ A,

Jn ≤ C

∫ t

0

∫
A

∫
Rd

∫
Rd

[
1 ∧ |h̃(r, z, x)− h̃(r, z, y)|

]
φεn(x− y) fr(dx) dyµ(dz)dr

= C

∫ t

0

∫
A

∫
Rd

∫
Rd

[
1 ∧ |h̃(r, z, x)− h̃(r, z, x+

√
εnu))|

]
φ(u) fr(dx) dyµ(dz)dr.

Hence limn Jn = 0 by dominated convergence, since h is continuous in x and since µ(A) <∞.

Conclusion. Gathering Steps 1, 2, 3 and 4, we find that |E[K(X)]| ≤ Cρ. Since ρ can be
chosen arbitrarily small, we conclude that E[K(X)] = 0, which completes the proof.

3.5 Appendix

Proof of Remark 3.1.3. First, it is very easy, using only that a and b are locally bounded on
[0, T ] × Rd, to show that Atϕ(x) is uniformly bounded as soon as ϕ ∈ C2

c (Rd). The case of
Btϕ is more complicated. We consider ϕ ∈ C2

c (Rd) and M > 0 such that Supp ϕ ⊂ B(0,M)

and we write

|Btϕ(x)| ≤1{|x|≤2M}||∇ϕ||∞
∫
E

|h(t, z, x)|µ(dz) + 1{|x|≥2M}

∫
E

|ϕ(x+ h(t, z, x))|µ(dz).

We observe that |ϕ(x+ h(t, z, x))| ≤ ||ϕ||∞1{|x+h(t,z,x)|≤M} and that

1{|x|≥2M,|x+h(t,z,x)|≤M} ≤ 1{|x|≥2M,|h(t,z,x)|≥|x|/2} ≤ 1{|x|≥2M}
2|h(t, z, x)|
|x|

.
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Since
∫
E
|h(t, z, x)|µ(dz) ≤ C(1 + |x|) by assumption, we conclude that

|Btϕ(x)| ≤ 1{|x|≤2M}C||∇ϕ||∞(1 + |x|) + 1{|x|≥2M}
C||ϕ||∞(1 + |x|)

|x|
,

which is bounded. We have proved point (i).

We next prove (ii). We put ϕ(x) = (1 + |x|2)1/2, which satisfies

1 + |x|
2

≤ ϕ(x) ≤ 1 + |x|, |∇ϕ| ≤ 1 and |D2ϕ| ≤ C

ϕ
.

We also introduce an increasing C2 function χ : R+ 7→ R+ such that χ(r) = r for r ∈ [0, 1]

and χ(r) = 2 for r ≥ 2. We thus have

r ∧ 1 ≤ χ(r) ≤ 2(r ∧ 1), |χ′(r)| ≤ C1{r≤2} and |χ′′(r)| ≤ C1{1≤r≤2}.

We then set, for n ≥ 1 and x ∈ Rd, ψn(x) = nχ(ϕ(x)/n), which satisfies

ϕ ∧ n ≤ ψn ≤ 2(ϕ ∧ n), |∇ψn| ≤ C1{ϕ≤2n} and |D2ψn| ≤
C

ϕ
1{ϕ≤2n}.

Consequently, for all s ∈ [0, T ], since |b(s, ·)| ≤ Cϕ and |a(s, ·)| ≤ Cϕ2 by Assumption 3.1.1,

|Asψn| ≤ |b(s, ·)||∇ψn|+ |a(s, ·)||D2ψn| ≤ Cϕ1{ϕ≤2n} ≤ C[ϕ ∧ (2n)] ≤ Cψn.

We next claim that

∆n(s, z, x) = |ψn(x+ h(s, z, x))− ψn(x)| ≤ C|h(s, z, x)|ψn(x)

ϕ(x)
. (3.6)

First, if ϕ(x) ≤ 4n, then we only use that ∇ψn is uniformly bounded to write ∆n(s, z, x) ≤
C|h(s, z, x)|, whence the result because ψn(x) ≥ ϕ(x) ∧ n ≥ ϕ(x)/4. Second, if ϕ(x) ≥
4n (whence |x| ≥ 4n − 1 ≥ 3n), since ψn is constant (with value 2n) on B(0, 2n)c and
bounded on Rd by 2n, we can write ∆n(s, z, x) ≤ 4n1{|x+h(s,z,x)|≤2n} ≤ 4n1{|h(s,z,x)|≥|x|/3} ≤
12n|h(s, z, x)|/|x|. But 12n = 6ψn(x) and |x| ≥ ϕ(x)− 1 ≥ ϕ(x)/2, whence the result.

We deduce from (3.6), using Assumption 3.1.1, that

|Bsψn(x)| ≤ C
ψn(x)

ϕ(x)

∫
E

|h(s, z, x)|µ(dz) ≤ C
ψn(x)

ϕ(x)
(1 + |x|) ≤ Cψn(x).

Applying (3.3) with the test function ψn − 2n ∈ C2
c (Rd), for which of course (As + Bs)(ψn −

2n) = (As + Bs)ψn, and using that f0 and ft are probability measures, we find∫
Rd
ψn(x)ft(dx) =

∫
Rd
ψn(x)f0(dx) +

∫ t

0

∫
Rd

(Asψn(x) + Bsψn(x))fs(dx)ds

≤
∫
Rd
ψn(x)f0(dx) + C

∫ t

0

∫
Rd
ψn(x)fs(dx)ds.
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Since f0 ∈ P1(Rd) by assumption and since 0 ≤ ψn(x) ≤ 2|x|+ 2, supn≥1

∫
Rd ψn(x)f0(dx) <

∞. We thus conclude, by the Gronwall Lemma, that supn≥1 supt∈[0,T ]

∫
Rd ψn(x)ft(dx) < ∞,

which clearly implies that (ft)t∈[0,T ] ∈ L∞([0, T ],P1(Rd)), because limn→0 ψn(x) = ϕ(x) ≥
|x|.

For point (iii), we introduce a family of functions χn ∈ C2
c (Rd), for n ≥ 1, such that

1{|x|≤n} ≤ χn(x) ≤ 1{|x|≤n+1} and such that |Dχn(x)|+ |D2χn(x)| ≤ C1{|x|∈[n,n+1]}. We then
consider ϕ ∈ C2(Rd) as in the statement, i.e. such that (1 + |x|)[|ϕ(x)|+ |∇ϕ(x)|+ |D2ϕ(x)|]
is bounded. Of course, ϕχn ∈ C2

c (Rd) for each n ≥ 1, so that we can apply (3.3). We then let
n→∞. Since ϕ is bounded, we obviously have limn

∫
Rd ϕ(x)χn(x)ft(dx) =

∫
Rd ϕ(x)ft(dx).

Next, we want to prove that limn

∫ t
0

∫
Rd [As(ϕχn)(x)+Bs(ϕχn)(x)]fs(dx)ds =

∫ t
0

∫
Rd [Asϕ(x)+

Bsϕ(x)]fs(dx)ds. By dominated convergence and since (ft)t∈[0,T ] ∈ L∞([0, T ],P1(Rd)) by
(ii), it suffices to prove that for all s ∈ [0, T ], x ∈ Rd,

(a) supn |As(ϕχn)(x)| ≤ C(1 + |x|), (b) limnAs(ϕχn)(x) = Asϕ(x),
(c) supn |Bs(ϕχn)(x)| ≤ C(1 + |x|), (d) limn Bs(ϕχn)(x) = Bsϕ(x).

Point (a) is easy: since |a(s, x)| + |b(s, x)| ≤ C(1 + |x|2) by Assumption 3.1.1 and since
χn, Dχn, D

2χn are uniformly bounded,

|As(ϕχn)(x)| ≤ C(1 + |x|2)(|D(ϕχn)(x)|+ |D2(ϕχn)(x)|)
≤ C(1 + |x|2)(|ϕ(x)|+ |Dϕ(x)|+ |D2ϕ(x)|),

which is bounded by C(1 + |x|) by assumption. Point (b) is not hard, using that

lim
n
∇(ϕχn)(x) = ∇ϕ(x) and lim

n
∂ij(ϕχn)(x) = ∂ijϕ(x)

for each x ∈ Rd.

Next,∇(ϕχn) is uniformly bounded, so that

|(ϕχn)(x+ h(s, z, x))− (ϕχn)(x)| ≤ C|h(s, z, x)|

and thus |Bs(ϕχn)(x)| ≤ C
∫
E
|h(s, z, x)|µ(dz) ≤ C(1 + |x|) by Assumption 3.1.1, whence

(c). Also, by dominated convergence, since limn χn(y) = 1 for all y ∈ Rd,

lim
n
Bs(ϕχn)(x) = lim

n

∫
E

[(ϕχn)(x+ h(s, z, x))− (ϕχn)(x)]µ(dz)

=

∫
E

[ϕ(x+ h(s, z, x))− ϕ(x)]µ(dz),

which is nothing but Bsϕ(x) as desired.
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