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Abstract

Horizontal axis wind turbines (HAWT) are one of the most efficient renewable energy sources.
In order to extract the maximum power per machine and reduce the overall energy extraction
cost, the main design solution is the increase of the rotor size. Modern designs account for
rotor diameters up to 160 m, and even longer blades are expected for next the generation
of machines. Due to the attached design constraints, this rotor up-scaling implies the con-
sideration of more flexible blades. Under the action of the aerodynamic loading this leads
to considerable blade deformations, that can influence the rotor performance. This coupled
phenomenon linking fluid and structure physics is generally referred to as Fluid Structure
Interaction (FSI), or in this case as aeroelasticity. The aeroelasticity of HAWT blades cannot
be considered as a static phenomenon. Indeed the presence of the tower induces an important
flow unsteadiness, that leads to a dynamic deformation of the blades. This phenomenon is
known as the dynamic aeroelasticity.

Industry standards for the aeroelastic simulations of wind turbine rotors have historically
relied on simplified engineering models. For classical machine designs, these approaches
offer a very good computational efficiency and an acceptable accuracy in the flow prediction.
The precision of engineering models is however limited when dealing with large HAWT
rotors, due to the existence of highly skewed flows and heavy flow detachments. The main
motivation of this PhD thesis was to develop a set of high flow fidelity numerical tools to
be used for the study of large rotor HAWT aeroelasticity. A Computational Fluid Dynamics
(CFD) methodology was implemented and tested within the FINE™/Turbo software, edited
by NUMECA International.

Two new developments resulting from this PhD research work were introduced to extend
the capabilities of the solver on wind turbine rotor analysis. On the one hand, a new mesh
deformation method was developed in order to accommodate wind turbine blades deflection
in aeroelastic simulations. An innovative combination of consolidated technologies allowed
to achieve a good trade-off between deformed mesh quality, scalability and computational
cost. The deformation of multi-million 3D meshes was reduced from several days to several
minutes when compared to previously existing approaches. On the other hand, a 2-way cou-
pling FSI methodology to be applied in the study of HAWTs rotors dynamic aeroelasticity
was implemented. In order to maximize the efficiency of the method, both the fluid and the
structure were solved in the harmonic domain.

To explore the capabilities of the performed developments in a wind energy context, a
comprehensive analysis of the DTU 10MW RWT was carried out. The permutation of struc-
tural flexibility and flow unsteadiness modeling lead to four different numerical analyses:
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steady aerodynamics, static aeroelasticity, unsteady aerodynamics and dynamic aeroelas-
ticity. The first two types of simulations were carried out on an isolated rotor framework,
while for the rest the full machine was considered (also accounting for the tower geometry).
Steady aerodynamics computations already revealed the complexity of the rotor flow. Im-
portant three-dimensional flow patterns were observed around blades and hub geometries.
When performing Static aeroelasticity computations blade tip displacements up to 8.73% of
the total blade radius were predicted. This significant blade deflection had a direct impact on
the loads computed at the high span range of the blade. At the maximum studied wind speed,
a total reduction of the mechanical power coefficient of 1.34% was found, while the thrust
coefficient was decreased in 2.25%. The performed unsteady aerodynamics computations
were able to capture the complex interaction between rotor and tower flows. The presence
of the tower had a direct impact on rotor performance, with a decrease of around 5% of the
time-averaged thrust and 8% of the time-averaged power. Due to the flow unsteadiness, rel-
ative fluctuation amplitudes of 1% for the thrust and 2% for the power were also observed.
Finally, dynamic aeroelasticity computations revealed that the blade flexibility decreased the
rotor loads fluctuations related to the blade-tower alignment event.

The developed methodology was shown to be able to answer to different design questions
such as the installation of flow control devices and the definition of the blade prebending
law. The reduced computational cost attached to the final platform also enables its direct
introduction into the wind energy market.
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Chapter 1

Motivation and global thesis goal

1.1 Motivation

Horizontal axis wind turbines (HAWTs) are one of the most efficient renewable energy
sources. In order to extract the maximum power per machine and reduce the overall energy
extraction cost, the main design solution is the increase of the HAWT rotor size. Figure 1.1
shows the historical and predicted rotor diameter evolution from 1985. As it can be observed,
modern big rotor diameters are bigger than the biggest commercial airplane ever manufac-
tured.

Figure 1.1: Wind turbines rotor evolution [source: UpWind Consortium (2011)]

A HAWT implies a very complex aerodynamic scenario for designers, since it is a highly
three-dimensional and rotatory flow problem. In addition and due to the nature of the wind,
the inflow conditions are constantly varying. This makes very difficult their estimation, re-
quiring the use of physical or statistical models built from data coming from the wind turbine
potential locations [Azad et al. (2014)]. The resulting dynamic loading conditions are very
constraining from a structural point of view. Blade manufacturers should certify that their
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design will withstand the expected dynamic loads, both in extreme and fatigue conditions
during the whole machine lifetime, which typically ranges from 20 to 30 years [Hau (2006)].
Modern blades are mainly manufactured with composite fiber materials, due to their benefits
in terms of mechanical properties and weight [Hau (2006)]. Indeed a special attention is put
in the last design parameter, which has a direct impact both in the manufacturing and installa-
tion costs and in the final power production. This is specially true for big rotor wind turbines,
since the weight of the blades scales approximately with the cubic of the radius. To illus-
trate this relation, Figure 1.2a shows the results of the WindPACT project obtained by Griffin
and Zuteck (2001). Available data for commercial HAWTs up to a rotor radius of 40 m is
included (triangular markers), together with a numerical prediction of higher radius values
(straight and dashed lines). An approximately cubic evolution is observed, and the predicted
blade designs accounting for a 60 m length were related to a weight of 30 tones. To minimize
the blade weight and increase its performance regarding the flapwise bending, structural en-
gineers will tend to equip HAWTs with thick airfoils, specially at low span range [Schubel
and Crossley (2012)]. The impact of the airfoils thickness on the total blade mass predicted
by Griffin and Zuteck (2001) is depicted in Figure 1.2b. A reduction of the blade weight of
10% was expected when increasing the airfoils thickness of approximately 30%. This pref-
erence for thicker airfoils is inevitably in conflict with the flow performance of the blade,
since they show less aerodynamic efficiency. This classical structure versus aerodynamics
trade-off, also present in other industries such as automotive or aeronautics, is complexified
in the framework of modern HAWTs by two additional factors. First, a strongly coupled
physics is expected due to the low-weight and the slenderness of the blades. Indeed, the
aerodynamic loading resulting from the flow around the rotor blades is highly influenced by
the elastic blades deformation, and vice versa. This interaction between flow and structure
physics is often referred to as Fluid Structure Interaction (FSI). For modern designs, due to
this aerodynamic loading, blade tip deflections up to 10% of the blade length are expected
[Resor (2013); Wirz and Johnson (2011)]. Hence, aerodynamic loads can not be computed
by assuming a rigid structure. In addition, the structural response is highly influenced by
the blade aerodynamic loading to consider. Secondly, modern HAWT rotors are designed
to work at higher Reynolds numbers (in the range [107,1.5×107]), where little experimen-
tal data is available. Current aerodynamic loads prediction techniques are based on scaling
of previous experiences at lower Reynolds numbers and the results of Computational Fluid
Dynamics (CFD) models.
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(a) Observed (triangles) and estimated (straight and dashed lines)
blade weight in tones. Results are expressed as a function of rotor
radius in meters

(b) Estimated blade weight reduction factor as a function of the blade
thickness at 25% of the span. Results refer to a 5MW blade with a
radius of 60.2 m

Figure 1.2: Results of the WindPACT project [source:Griffin and Zuteck (2001)]

1.2 Global thesis goal

In order to approach this highly coupled problem, industry standards for multi-physics wind
turbine rotors aeroelastic simulations have historically relied on simplified engineering mod-
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els. For classical machine designs, these approaches offer a very good computational effi-
ciency and an acceptable accuracy in the flow prediction. The precision of engineering mod-
els is however limited when dealing with big HAWT rotors, due to the existence of highly
skewed flows and heavy flow detachments. The main motivation of this PhD thesis is to de-
velop a set of high flow fidelity numerical tools to be used during the HAWT rotor design
stage. This methodology should be able to take into account the blade deformation due to the
FSI and the unsteadiness of the flow due to the rotor-tower flow interactions. Special atten-
tion is put in the industrialization of the method, both from a robustness and efficiency point
of view. In order to contextualize the subjects covered by this work, a brief literature survey
is included in Section 2.1. A description of the flow solver used in this study can be found
in Section 2.2. The main objectives of this PhD thesis are then discussed in Section 2.3.1.
Finally, Section 2.3.2 contains an outline of this document.

1.3 PhD funding and dissemination

The content of this PhD covers the research performed at NUMECA International under
the academic supervision of the University of Mons, during the period from April 2013 to
April 2016. This work was funded by the European Commission (EC) through a Marie
Skłodowska-Curie scholarship and in the framework of the project FP7-PEOPLE-2012-ITN
309395 MAREWINT (new MAterials and REliability in offshore WINd Turbines technol-
ogy), see: http://marewint.eu/. The main objective of the MAREWINT project is to pro-
mote transversal research in the fields on structural mechanics, fluid mechanics, risk analysis
and reliability analysis in order to increase the competitiveness of next generation wind tur-
bines. As dissemination is another important milestone of the MAREWINT project, the
results of this research were partially published in several conferences and technical papers.
In the publications Mesh deformation tool for Offshore Wind Turbines fluid-structure inter-
action [Horcas et al. (2014)] and Hybrid Mesh Deformation Tool for Offshore Wind Turbines
Aeroelasticity Prediction [Horcas et al. (2015b)], the theoretical basis of a new mesh defor-
mation algorithm were presented and applied to the deflection of a large HAWT blade. In
A new, high fidelity offshore wind turbines aeroelasticity prediction method with significant
CPU time reduction [Horcas et al. (2015a)] and CFD Study of DTU 10MW RWT Aeroelastic-
ity and Rotor-Tower Interactions [Horcas et al. (2016a)], a complete characterization of the
static aeroelasticity of a HAWT rotor was shown, together with the first unsteady results of
a full machine configuration. A comprehensive analysis of these unsteady computations was
finally published in Rotor-tower interactions of DTU 10MW reference wind turbine with a
non-linear harmonic method [Horcas et al. (2016b)], including a comparison between both
time marching and harmonic methodologies.

http://marewint.eu/


Chapter 2

Literature review

2.1 Literature review

Following literature review covers most part of the subjects related to this research. Firstly,
the basic principle of wind power extraction of a horizontal axis wind turbine is presented in
Section 2.1.1. An overview of the computational tools used for HAWT aerodynamic loads
prediction is then provided in Section 2.1.2, including simplified engineering models and the
more sophisticated Computational Fluid Dynamics (CFD) approach. The concept of aeroe-
lasticity and Fluid Structure Interaction (FSI) is introduced by means of its influence on
HAWT applications in Section 2.1.3. The different structural models used for HAWT simu-
lations are described in Section 2.1.4. Final sections are strictly related to CFD applications,
which is the focus of the present research. An exhaustive description of mesh deformation
algorithms in given in Section 2.1.5. In Section 2.1.6, previous HAWT CFD studies are
compiled, focusing in two particular problems: aeroelasticity and rotor-tower interactions.

2.1.1 Basic principle of a Horizontal Axis Wind Turbine

The main objective of a turbine is the extraction of kinetic energy from the wind passing
through the rotor, and its a posteriori transformation into electricity [Burton et al. (2001)]. Its
basic principle, as for most part of rotating machines, can be explained by means of the airfoil
theory [Hau (2006)], as it is illustrated in Figure 2.1a. At every radial position of the blade r,
the relative incoming flow velocity Vr can be understood as a combination of an axial velocity
vaxial and a tangential driven velocity component ωr (where ω stands for the angular veloc-
ity). This leads to a relative angle of attack α , which has to be considered in combination
with the blade pitch angle υ . This incidence will drive the resultant aerodynamic force gener-
ated by the airfoil, that can be decomposed in the classical lift and drag contributions (being
normal and parallel to Vr, respectively). However, from a rotor point of view it is interesting
to express the resulting force in terms of the direction of rotation, leading to the tangential
and axial loads distinction. The role of the former force is to generate the machine torque,
that will be translated into power by the HAWT generator (Figure 2.1b). The integration of
the axial load on the blade leads to the so-called rotor thrust. The thrust can be understood
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as a residual load, since it will not contribute to the power generation but will be translated as
moments on the tower base.

(a) Airfoil detail

(b) Global overview

Figure 2.1: Basic principle of a horizontal axis wind turbine [source: Hau (2006)]
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The so-called actuator disc model, originally introduced by Froude (1889) as an extension
of the works of Rankine (1865), allows to characterize the fundamental flow phenomena to
be expected in a HAWT operation. Let consider a one-dimensional model of an ideal rotor
(assuming infinite blades, no hub and no axial thickness), as performed in Hansen (2008). The
rotor is modeled by means of a permeable actuator disc, which slows the upstream velocity V0

to a value of u at the rotor and u1 at the wake (see Figure 2.2). Assuming no compressibility
effects, due to the slow down induced by the extraction of kinetic energy by the rotor the
application of the mass conservation implies a divergence of the streamlines. The disc load
is obtained by a discontinuous pressure drop over the rotor. The Bernoulli equation can be
applied downstream and upstream of the rotor position xrotor, in order to relate pressure and
velocity evolutions.

Figure 2.2: Schema of an ideal rotor flow (assuming infinite blades and no hub). Source: Hansen
(2008)

The axial induction factor a is defined by the relation between the upstream and the rotor
velocities:

u = (1−a)V0 (2.1)

In the context of this ideal rotor, expressions for the rotor thrust T and rotor power P can be
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theoretically derived [see Hansen (2008)], and related to the axial induction factor:

T =Ct
1
2

ρ0V 2
0 πR2 , (2.2)

P =Cp
1
2

ρ0V 3
0 πR2 , (2.3)

with:

Ct = 4a(1−a) , (2.4)

Cp = 4a(1−a)2 , (2.5)

where Ct refers to the rotor thrust coefficient, Cp to the rotor power coefficient and R to the
rotor radius.

The maximum power coefficient Cp can be computed by differentiation of its expression:

dCp

da
= 4(1−a)(1−3a) (2.6)

Which becomes null for the non trivial solution a = 1
3 , corresponding to Cp,max =

16
27 ≃ 0.59.

This theoretical maximum power coefficient for ideal wind turbines is known in the literature
as the Betz limit [Betz (1920)].

2.1.2 Wind turbine loads prediction

In order to estimate rotor loads, HAWT designers traditionally employ the so-called engineer-
ing models [Abedi et al. (2013)]. Among others, these approaches include the Blade element
momentum theory (BEM), the vortex method, the panel method and the actuator models.
These approaches are characterized by a reduced computational cost and they rely in the sim-
plification of the rotor aerodynamics by means of different hypothesis. A complete review of
these methods was provided in Hansen et al. (2006). Due to the efficiency improvement of
the more sophisticated Computational Fluid Dynamics (CFD) methods, they start to be con-
sidered as an alternative for design purposes. CFD methods, which were initially employed
in aeronautics back in the 80’s, can account for complex fluid phenomena such as 3D effects,
compressibility, turbulence and unsteadiness.

BEM method

The BEM method was first developed by Glauert (1935), combining the one-dimensional
momentum theory and blade element concepts in order to locally estimate rotor loads. The
distributed aerodynamics loads on the blade are computed at different cross-sections, each
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one related to an airfoil and assumed to be independent. Every airfoil is related to a lift, drag
and moment coefficients evolution in function to the Reynolds number. Airfoil data is usually
based either on wind tunnel experimental results or two-dimensional numerical modes. BEM
base formulation has been improved along with wind turbines evolution, thanks the intro-
duction of additional sub-models [Heege et al. (2013); Jonkman and Buhl Jr. (2007)]. These
modifications aim to estimate the effect local phenomena as hub and tip losses, dynamic in-
flow (inertial effects related to pitch control), skewed flow, dynamic stall, etc. The accuracy
of BEM method is however limited when dealing with big HAWT rotors due to the existence
of highly skewed 3D flows, heavy flow detachments and important blade deflections.

Vortex and panel methods

Both vortex and panel methods were developed in order to obtain a detailed description of
the three-dimensional flow around the wind turbine. The common hypothesis for these ap-
proaches is the consideration of an inviscid flow, which limits their modeling capabilities. In
the vortex method the rotor blades, trailing vorticity and shed vorticity in the wake are mod-
eled by means of lifting lines or lifting surfaces [Thomson (1966)]. Induced velocities around
the blades are computed based on the strength and position of the vortices by means of the
Biot-Savart law. In the panel method the blade surface is discretized in a set of singularities,
consisting in a combination of sources and dipoles. The Green’s theorem is then used in order
to obtain an integral representation of a potential flow [Hess (1975)].

Actuator models

The classical actuator disc methodology of Froude (1889) and Rankine (1865) was already
described in Section 2.1.1. In this approach the rotor is modeled by means of a permeable
disc. Many authors have extended this technique in order to work in combination with the
solution of the Navier-Stokes equations or the Euler equations (described in Section 2.1.2), by
including the average blade loading predicted by the disc rotor into the momentum equation
[Calaf et al. (2010); Meyers and Meneveau (2010); Prospathopoulos et al. (2009)]. This
hybrid method is often referred as the generalized actuator disc model. The geometry of
the blades is not resolved, and the aerodynamic forces are computed based on previously
determined airfoil characteristics (as for the BEM approach). This is the reason why the
generalized actuator disc model is mainly used as a high flow fidelity tool for the study of
wind turbine wakes and wind farms aerodynamics. Two additional approaches that follow
the same hybrid philosophy of the generalized actuator disc can be found in the literature,
aiming to extend its modeling capabilities: the actuator line and the actuator surface models.
In the actuator line model the loading is not averaged over the complete disk but it is exerted
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on lines that represent the wind turbine blades, making it time dependent [Sørensen and Shen
(2002)]. The actuator surface model has been mainly applied to vertical axis wind turbines
and it can be understood as an extension of the actuator line approach. In this case the
blades are represented by planar surfaces, requiring as an input the pressure and skin-friction
distribution of every airfoil [Shen et al. (2007)]. In order to have a more detailed insight of
the aforementioned actuator models, the reader is referred to the review article of Sanderse
et al. (2011).

CFD methods

Fluids behavior is governed by the conservation laws of the mass, the momentum and the
energy. The mathematical expression of these laws is referred as the Navier-Stokes equa-
tions, which constitutes a system of five fully-coupled time-dependent differential equations
[Hirsch (2007)]. Navier-Stokes equations, which are the basis of almost all CFD approaches,
can be expressed in a general, integral conservative form for a control volume Ω as:

∂

∂ t

∫
Ω

UdΩ+
∮

S

(
F⃗I − F⃗V

)
·dS⃗ =

∫
Ω

QdΩ (2.7)

being U the vector of conservative variables of mass, momentum and energy:

U =


ρ

ρvx

ρvy

ρvz

ρE

 (2.8)

F⃗I the vector of inviscid fluxes:

F⃗I =


ρ v⃗

ρ v⃗vx + p⃗ex

ρ v⃗vy + p⃗ey

ρ v⃗vz + p⃗ez

ρ v⃗E + p⃗v

 (2.9)
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F⃗V the vector of viscous fluxes, accounting for the contribution of the viscous shear stress
tensor τττv and the heat conduction flux q⃗c:

F⃗V =


0

τv
xx⃗ex + τv

xy⃗ey + τv
xz⃗ez

τv
xy⃗ex + τv

yy⃗ey + τv
yz⃗ez

τv
xz⃗ex + τv

yz⃗ey + τv
zz⃗ez

τττ v⃗v+ q⃗c

 (2.10)

and Q the vector of source terms, which can vary depending on the targeted application. In a
general form, it includes the external forces f⃗e and the heat source qh:

Q =


0

ρ fe,x

ρ fe,y

ρ fe,z

ρ f⃗e⃗v+qh

 (2.11)

To close the Navier-Stokes equations, the choice of a fluid constitutive law is required (in or-
der to define an expression of the shear stress module). Under the hypothesis of a Newtonian
fluid in local thermodynamic equilibrium, τττv can be expressed as:

τ
v
i j = µ

[(
∂v j

∂xi
+

∂vi

∂x j

)
− 2

3

(
∇⃗ · v⃗

)
δi j

]
(2.12)

Where µ is the dynamic molecular viscosity.
Navier-Stokes equations are fully-coupled and highly non-linear. Different approxima-

tions can be made for their solution, depending on the targeted flow complexity and domain
of application. Most popular approaches are described in sections below. For a complete and
detailed description of each of them, the reader is referred to Hirsch (2007).

Inviscid flow Navier-Stokes equations can be simplified supposing zero viscosity and zero
thermal conductivity, leading to the so called Euler equations. It is equivalent of assuming
F⃗V = 0 in Equation 2.7. Usually, this assumption is valid in regions located far from wall
boundaries, where thin and attached boundary layers are found. If the hypothesis of irrota-
tionality is also made, the flow model can be even more simplified and it can be solved by
means of a potential solution.

Laminar flow Navier-Stokes equations describe both laminar and turbulent flows. For the
former case (corresponding to low Reynolds numbers), Equation 2.7 can be solved without
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any additional considerations. The contribution of F⃗V is then carried out exclusively by the
laminar viscosity.

Turbulent flow At high Reynolds numbers, the solution of the Navier-Stokes equations
requires the consideration of turbulence [Sagaut et al. (2006)]. This phenomenon can be
understood as an instability of the laminar flow, due to the important contribution of the iner-
tial fluid forces. Turbulence starts by the generation of large-scale turbulent eddies, caused by
mean velocity gradients. These structures, in their turn, generate smaller eddies. This process
is known as the kinetic energy cascade, and it is repeated till the viscous effects of the very
small eddies dissipate their turbulence energy into heat (see Figure 2.3). Figure 2.4 shows a
typical energy cascade, described by the evolution of the kinetic energy per mass unit E with
respect to the wave number χ (defined as the inverse of the eddies length scale).

Production

Mean flow

Energy 
cascade

From large to 
small eddies

Dissipation

Vicosity

Figure 2.3: Turbulence phenomenon, sketch of eddies evolution

The Navier-Stokes equations constitute a system of five equations with five unknown
variables. Assuming that the boundary conditions are also known, this system can be directly
solved even in a turbulent regime. This approach is referred as Direct Numerical Simulation
(DNS), which allows to get an accurate three-dimensional and time-dependent description
of all the turbulent scales of the kinetic energy cascade without requiring any additional hy-
pothesis [Orszag (1970)]. However, the number of mesh nodes required for the application
of such a method scales with O

(
Re3

L
)
, where ReL refers to the Reynolds number based on

the spatial integral scale [Sagaut and Deck (2009)]. This limitation makes impossible the
introduction of DNS in the today’s study of industrial flows, where typical Reynolds numbers
range from 106 to 109. In order to overcome this problem, several numerical approaches
based on the modeling of turbulent eddies have been developed. The Large Eddy Simula-
tion (LES) method decomposes the flow field between large and small turbulent scales by
applying a spatial filter [Smagorinsky (1963)]. While the former are directly resolved, the
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Figure 2.4: Kinetic energy cascade sketch, reproduced from Sagaut et al. (2006)

latter are taken into account through the use of a model. The delimiter between resolved and
modeled scales is known as the cut-off wave number. Even if the LES is computationally
less expensive that the DNS, its application to industrial flows is also limited by the required
computational resources. Indeed, the resolution of the large scales is still very demanding
in terms on near-wall mesh refinement [Sagaut and Deck (2009)]. As an affordable alterna-
tive for the prediction of turbulence, industrial flows computation traditionally relied in the
Reynolds-Averaged Navier-Stokes (RANS) approach. This methodology allows to obtain a
statistical representation of the time-averaged flow at a reduced computational cost, assuming
that the natural frequencies of the aerodynamic loading are much lower than the characteris-
tic frequencies of turbulence. In this case, the resolved part of the kinetic energy cascade of
Figure 2.4 corresponds to an empty spectrum, since all the turbulent scales are modeled.

In RANS approach, flow variables A are decomposed into a time averaged Ā and fluctu-
ating part A′, with:

Ā (⃗x, t) =
1
T

∫ T
2

− T
2

A (⃗x, t + ι)dι (2.13)

Where the averaging time T should be large enough with respect to the time scale of the
turbulent fluctuations, but small enough with respect to all other time-dependent effects. For
compressible flows and in order to avoid the product of different flow variables fluctuations,
a density-weighted averaged use to be introduced [Hirsch (1990)]:

A = Â+A′′ =
ρA
ρ̄

+A′′ (2.14)
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Applying the time averaging to the density and pressure variables of Equation 2.7, and the
density-weighted averaging to the energy, velocity and temperature, the resulting U vector
and the fluxes contribution can be written as:

U =


ρ̄

ρ̄ v̂x

ρ̄ v̂y

ρ̄ v̂z

ρ̄Ê

 , (2.15)

F⃗I − F⃗V =


ρ̄ ˆ⃗v

ρ̄ ˆ⃗vv̂x + p̄⃗ex

ρ̄ ˆ⃗vv̂y + p̄⃗ey

ρ̄ ˆ⃗vv̂z + p̄⃗ez

ρ̄ ˆ⃗vÊ + p̄ ˆ⃗v

−


0

−ρ v⃗′′v′′x
−ρ v⃗′′v′′y
−ρ v⃗′′v′′z
−ρH ′′⃗v′′

−


0

τ̄v
xx⃗ex + τ̄v

xy⃗ey + τ̄v
xz⃗ez

τ̄v
xy⃗ex + τ̄v

yy⃗ey + τ̄v
yz⃗ez

τ̄v
xz⃗ex + τ̄v

yz⃗ey + τ̄v
zz⃗ez

τττ v⃗v+ ¯⃗qc

 (2.16)

The second term of Equation 2.16 introduces complementary stresses with respect to the
laminar formulation, due to the consideration of turbulent fluctuations. In particular, the
additional components of the momentum equation resulting from the averaging process are
referred to as the Reynolds stresses τττR =−ρv′′i v′′j , while for the energy equation the turbulent
heat flux vector appeared ¯⃗qt = −ρH ′′⃗v′′. The Reynolds stresses are usually added to the
effects of the viscous shear stress tensor in the so-called total shear stress vector τττ = τττv+τττR,
so the fluxes can be further simplified as:

F⃗I − F⃗V =


ρ̄ ˆ⃗v

ρ̄ ˆ⃗vv̂x + p̄⃗ex

ρ̄ ˆ⃗vv̂y + p̄⃗ey

ρ̄ ˆ⃗vv̂z + p̄⃗ez

ρ̄ ˆ⃗vÊ + p̄ ˆ⃗v

−


0

τ̄xx⃗ex + τ̄xy⃗ey + τ̄xz⃗ez

τ̄xy⃗ex + τ̄yy⃗ey + τ̄yz⃗ez

τ̄xz⃗ex + τ̄yz⃗ey + τ̄zz⃗ez

τττ v⃗+ ¯⃗q

 (2.17)

where the total turbulent heat flux ¯⃗q = ¯⃗qc −ρh′′⃗v′′ combines the effect of the heat conduction
flux and the turbulent heat flux.

From a mathematical point of view, the turbulence related contributions add several un-
knowns to the system without providing any additional equation. Hence, a closure model is
needed in order to relate these new quantities to the averaged flow variables. This is the role
of the so-called turbulence models. RANS turbulence models are based on approximations
of different complexity, which are tuned thanks to available experimental data. A common
solution for all targeted flows has not been found, and the choice of a turbulence model still
relies on previous experiences on similar flow problems. As a reference, some of the most
popular turbulence models (ordered by complexity), are summarized in Table 2.1.
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Table 2.1: Examples of RANS turbulence models

Type of model Examples

Algebraic Cebeci & Smith [Smith and Cebeci (1967)], Baldwin-Lomax [Baldwin and Lo-
max (1978)]

One-equation Spalart-Allmaras (SA) [Spalart and Allmaras (1992)]
Two-equations k-ε [Launder and Sharma (1974)], k-ω [Wilcox (1988)], k-ω SST [Menter1993]
Four-equations v2 − f [Durbin (1995)]

When the flow cannot be considered as statistically stationary, Reynolds averaging is
not equivalent to time-averaging. This is the reason why several adaptations of the RANS
equations in order to account for time dependence have been proposed, often referred as
unsteady RANS (or URANS). These modifications are only applicable when the flow field
is characterized by a separation of time scales between the unsteadiness of the mean field
and the unsteadiness of turbulent fluctuations. The new solution algorithm increases the
computational time of the RANS approach, but it is required for the solution of unsteady
flows. However, the mesh and time-requirements for URANS are less constraining than the
ones for the LES method, since the former technique only deals with mean-flow unsteadiness.

Figure 2.5 compiles the presented CFD approaches regarding their cut-off wavenumber
in the kinematic energy cascade.

log(E)

log(ϰ)

DNS

RANS

LES

Figure 2.5: Kinetic energy cascade sketch, reproduced from Sagaut et al. (2006). Includes CFD tech-
niques cut-off wavenumbers (left hand region is to be resolved, while right hand is modeled)

In order to provide a CFD solution able to resolve large eddies at an affordable compu-
tational time, several authors tried to combine the LES and RANS approaches [Sagaut et al.
(2006)]. These methods are known as hybrid RANS/LES. One of the most popular algorithms
in this category is the so-called Detached Eddy Simulation (DES), proposed by Spalart et al.
(1997). In the DES method, the small structures attached to the wall are modeled by means
of RANS, while large eddies present in the separated region are solved via de LES technique.
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To illustrate the hardware requirements of each of the introduced CFD approaches, Fig-
ure 2.6 depicts the necessary resources in order to perform a simulation of a complete aircraft
wing. As it can be observed the DNS methodology is still too computationally expensive,
requiring machines operating at speeds in the range of zetta flops (which are expected to be
available in the 2040s decade).
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Figure 2.6: Theoretical hardware requirements for the different CFD methods when performing a
complete aircraft wing simulation. Includes the year of first performed/expected simulation. Adapted
from Biswas (2005)

2.1.3 Aeroelasticity issues in wind turbines

The concept of aeroelasticity refers to all the effects derived from the mutual interaction of
aerodynamic loads and solid deformation. It can be seen as a subset of the so-called Fluid-
Structure Interaction (FSI) field, which considers also other sources of fluid loading (such as
hydrodynamics). Collar (1946) proposed to classify the aeroelastic effects depending on the
nature of the forces involved in every phenomenon:

• Aerodynamic forces

• Elastic forces

• Inertial forces
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If only aerodynamic and elastic forces are involved in a given aeroelastic effect, it is referred
as static [Bisplinghoff et al. (1995)]. When the action of inertial forces is also to be con-
sidered, the effect is dynamic. The application of the so-called Collar’s diagram for aircraft
design purposes is depicted in Figure 2.7.

SSA

DSA
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D
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F B Z

Dynamic 
aeroelasticity

Static 
aeroelasticity Aerodynamic

force

Elastic
force

Inertial
force

Field of
dynamic stability 

Field of
mechanical vibrations

Figure 2.7: Collar’s diagram applied to aircraft design, adapted from Bisplinghoff et al. (1995). SSA:
Aeroelastic effects on static stability, L: Load distribution, C: Control effectiveness, D: Divergence, R:
Control system reversal, F : Flutter, B: Buffeting, Z: Dynamic response, DSA: Aeroelastic effects on
dynamic stability

Load distribution refers to the redistribution of aerodynamic loads due to the static defor-
mation of the structure. The concept of Divergence appears when the structural deformations
under aerodynamic loading induce higher aerodynamic loading itself, and a static equilibrium
cannot be reached. Both effects should be considered for HAWTs [Bottasso (2011)].

In the framework of aircraft design, the Dynamic loading refers to the transient response
of structural components under the application of dynamic loads such as gusts, landing ma-
neuvers, abrupt control motions, etc. For HAWTs, Dynamic loading is expected not only for
particular loading scenarios (e.g. gusts and wind direction changes), but also during nom-
inal operation. Indeed, both the atmospheric boundary layer and the presence of the tower
introduce a considerable azimuthal dependence of blade loading. Therefore flow unsteadi-
ness during the the blade revolution is expected. Wind turbine blades are characterized by
having low structural damping, leading to potential problems with regards to the dynamic
aeroelasticity. In addition, modern rotor blades are made of composite materials, and the
structural damping is harder to estimate, depends on meteorological conditions and is sub-
stantially modified with aging [Hansen et al. (2006)]. Under certain operational conditions,
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HAWT dynamic aeroelasticity can reach to an instable situation, where the amplitude of
blades deflection increases in time. This situation could end up with the structural failure of
the blade or with an eventual contact with the tower. In HAWTs most part of these destructive
phenomena correspond to the so-called aeroelastic instabilities, which are characterized by
being excited by the structural deformation itself. Examples of these effects during wind tur-
bines operation are the flapwise instability and the edgewise instability [Hansen et al. (2006)].
Parked conditions are considered to be more problematic due to their particular loading sce-
nario, leading to potential aeroelastic instabilities involving side-to-side motion of the tower,
edgewise motion of the rotor blades and yawing of the platform [Bir and Jonkman (2007)].

Flutter is a very important aspect to consider during the design stage of a high speed
aircraft [Bisplinghoff et al. (1995)]. It is caused by a positive feedback between the structure
deformation and the aerodynamic loading. Even if classical flutter has not been observed
in HAWT blades, the increase in the bending-torsion coupling related to rotor up-scaling
motivates the consideration of this phenomenon in modern designs [Hansen et al. (2006)].

2.1.4 Structural modeling of wind turbines

When performing aeroelastic computations, a model of the HAWT structure is required. As
for the aerodynamics loads, several approaches can be found in the literature with regards
to wind turbines structure modeling, accounting for different levels of complexity. In the
modal approach, the structure is represented by its natural frequencies and mode shapes
[Debrabandere et al. (2011)]. These are determined prior to the aeroelastic simulation, either
by computation with a Finite Element Method (FEM) structure solver or by experiments.
In practice only the first eigen modes are considered, assuming that high frequency modes
will not be excited by aerodynamic loads. The main advantage of the modal approach is its
computational efficiency, since the number of Degrees Of Freedom (DOF) to be solved is
drastically reduced. In addition, the filtering of high eigen frequencies allows to decrease the
time resolution when considering dynamic simulations.

More sophisticated approaches are based on FEM models of the wind turbine compo-
nents. Most part of these use one-dimensional beam models in order to represent the blades.
Both Euler-Bernoulli and Timoshenko formulations have been used in wind energy [Timo-
shenko (1921, 1953)]. Other applications of finite elements in this context include the full
FEM representation of the blade and the use of super-elements [Heege et al. (2011)].

The impact of the blade deformations linearization hypothesis was assessed by Larsen
et al. (2004). Geometrical non-linearities led to more important blade tip deflections, causing
a reduction of rotor loads. In particular, for the studied mega-watt sized HAWT a maximum
power deviation of 2.5% was computed.
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2.1.5 Mesh deformation algorithms in CFD

In the framework of CFD methods, different approaches can be followed in order to model
Fluid-Structure Interaction (FSI) problems. The most intuitive one is the so-called monolithic
approach, where fluid Navier-Stokes equations are solved together with structural equations
at every time-step [Hron and Turek (2006)]. However, this approach faces several implemen-
tation problems:

• Historical reasons

– Technological consolidation is a very important issue when dealing with numer-
ical methods applied in the industry. The development of fluids and structures
simulation codes have followed almost independent paths all along their history.
Nowadays software industry is offering reliable packages for either Computa-
tional Fluid Dynamics (CFD) or Computational Structural Mechanics (CSM)
simulations. The integration of these type of codes in an unified multi-physics
package at an industrial level use to be impracticable.

• Numerical reasons:

– Solving the structural problem is usually less computationally expensive than the
fluid solution. Mixing both formulations in a monolithic scheme prevents the
benefit of this computational time saving.

– The time-scales for the fluid and the structure-related effects can be very differ-
ent. The implementation of a monolithic approach will force to use the smallest
required time-step for both physics, adding an unnecessary computational cost to
the aeroelastic simulation.

Due to the mentioned limitations, the most commonly used approach in industrial applica-
tions is the so-called staggered scheme [Felippa et al. (1977)]. In this case, fluid and structural
problems are solved separately. Interfaces information is exchanged in order to ensure conti-
nuity of the variables and compatibility of the charges.

In the framework of FSI, one of the main challenges is to handle structural deflections
during the simulation. Three different methodologies have been identified in the literature
when dealing with this problem:

• Body-fitted approach [Löhner and Yang (1996); Quaranta et al. (2008)]: In this case,
fluid mesh is re-adapted at every time-step following structural deflections.

• Chimera methods [Benek et al. (1985)]: In this approach, a body-fitted fine mesh
around each object is independently created. Usually, it is employed when dealing
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with objects in relative motion compared to each other. The fluid solution is computed
by a sequential iteration over the overlapping sub-domains. It allows to reduce the
complexity involved in fluid mesh re-adaptation of the classical body-fitted approach.

• Immersed/embedded boundary methods [Löhner et al. (2004)]: The fluid mesh is
considered as fixed and a special formulation is added for moving boundaries. Hence,
no mesh re-adaptation is needed.

The present research is focused on a body-fitted approach. In this scenario, the modification
of the CFD mesh in order to re-adapt to the new fluid domain due to the deformation of the
blade wall becomes one of the most important numerical issues to face. The quality of the
resulting adapted mesh should ensure a good communication between CFD and CSM codes
along the blades wall interface, and fulfill the necessary fluid solver requirements for the next
flow simulation.

A fast and reliable tool is then needed to carry out this numerical operation at every time
step. Two main approaches have been followed in the literature in order to achieve this goal:

• Mesh deformation: Structural deflections are propagated into the new fluid domain.
Fluid mesh topology and connectivity is kept during this operation (see Figure 2.8).

• Re-meshing: A new fluid mesh is generated taken into account the new CFD domain.
This approach use to be less efficient from a computational time point of view. In
addition, the automation of the mesh generation process and the interpolation of the
flow between two consecutive meshing is not a trivial development.

(a) Original mesh (b) Deformed mesh after forced pitching

Figure 2.8: Schematic representation of the mesh deformation around a moving boundary (in red).
Source: Lefrançois (2008)
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Only the mesh deformation subject was assessed in this work. Following sections describe
the state-of-the art concerning this problem. A main distinction is made between the mesh
connectivity and the point-by-point schemes.

Mesh connectivity schemes

These methods are based on fluid mesh connectivity, so in the notion of element. Its imple-
mentation use to be topologically and element type dependent. In many cases, the solution
of a linear system issued from the numerical discretization of a theoretical model is required.
Due to the connectivity notion inherent to these methods, its parallelization is often not trivial
in an industrial implementation.

Elliptic smoothing A pure diffusion mechanism is used in this type of fluid mesh deforma-
tors. The most simple approach is to apply a Laplacian operator to our deformation, in order
to isotropically diffuse moving walls movement into the inner fluid mesh. A local variable
diffusion coefficient is however needed in order to restrict the diffusion of cells prone to high
distortion [Löhner and Yang (1996)]. Even with this model enhancement, mesh folding can-
not be prevented. The reason why new and more sophisticated (and computationally costly)
approaches were set-up, such us the biharmonic operator [Helenbrook (2003); Wick (2011)].

Spring analogy In this method, fluid mesh nodes are assumed to be connected by a network
of springs [Bartels (1999); Batina (1989)]. In order to ensure the deformed mesh quality, a
heterogeneous distribution of spring stiffness is set-up, based on a geometric quantity such
as the length of the edge. Initial formulation of the method was only accounting for trans-
lational springs, hence it was unable to prevent edge cross-overs (see Figure 2.9). Several
improvements have been proposed in order to add the concept of mesh rotations in the origi-
nal formulation:

• Torsional springs [Degand and Farhat (2002); Farhat et al. (1998); Maruyama et al.
(2002)]

• Semi-torsional springs [Blom (2000); Zeng and Ethier (2005)]

• Ball-vertex springs [Acikgoz and Bottasso (2007)]

• Ortho-semi-torsional [Markou et al. (2007)]

Even if these methods considerably increase the robustness of the spring analogy, a compu-
tational time over-head has to be considered in their implementation.



22 Literature review

(a) Original mesh (b) Base spring analogy (c) Semi-torsional springs

Figure 2.9: Performance of the spring analogy of Blom (2000) in the mesh deformation of an airfoil
unstructured mesh when a 45 deg pitch is imposed. (a): Original mesh. (b): Detail of the trailing edge,
base spring analogy mesh deformation. (c): Detail of the trailing edge, enhanced formulation of the
spring analogy by introducing semi-torsional springs

Elastic analogy Originally introduced by Lynch and O’Neill (1980), in this approach we
assume the mesh as an elastic continuum, with linear elastic properties. In order to prevent
mesh folding, an heterogeneous distribution of elastic properties use to be defined (see Fig-
ure 2.10). Several criteria have been analyzed in the literature in order to stiffen the cells that
are more prone to inversion.

• Cell geometry [Johnson and Tezduyar (1994)]

• Distance to the wall [Chiandussi et al. (2000)]

• Cell distortion [Bar-Yoseph et al. (2001)]

• Strain field [Hsu and Chang (2007)]

The resulting methodology is rated as significantly more robust with respect to the spring
analogy approach but more computationally demanding.

Other connectivity-based methods Alternative less mature connectivity-based methods
have been studied by several authors:

• Advancing front: Gerhold and Neumann (2008)

• Cell layering technique: Carvallo et al. (1997)

• Bi-elliptic operator: Wang and Hu (2012)
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(a) Leading edge, original (b) Global view, original (c) Trailing edge, original

(d) Leading edge, homogeneous (e) Global view, homogeneous (f) Trailing edge, homogeneous

(g) Leading edge, heterogeneous (h) Global view, heterogeneous (i) Trailing edge, heterogeneous

Figure 2.10: Performance of the elastic analogy of Hsu and Chang (2007) in the mesh deformation
of an airfoil unstructured mesh when a 45 deg pitch is imposed. (a), (b), (c): Original mesh. (d), (e),
(f): Deformed mesh assuming homogeneous elastic properties. (g), (h), (i): Deformed mesh assuming
heterogeneous elastic properties (variable Young’s modulus)

Point-by-point schemes

Point-by-point schemes are based on the concept of nodes, and no mesh connectivity is re-
quired. This is the reason why they use to be topologically independent and easier to paral-
lelize, allowing a more flexible and efficient implementation.

Radial basis functions Originally described by De Boer et al. (2007), this method uses
the displacement of the moving walls in order to build an interpolation function, expressed
as a sum of radial basis functions. The method can easily handle big deformations, and the
resulting mesh quality use to be very close to the undeformed one. It is also easy to implement
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and parallelize. However and as it will be shown in this document, its problems of scalability
make the cost of this method unaffordable for industrial configurations (where multi-million
meshes are expected). Indeed, a matrix inversion is involved in the application of this method,
having an attached complexity of O(nb

3), where nb refers to the number of boundary nodes
to consider.

Inverse distance weighting This mesh deformation method was proposed by Witteveen
(2010) as an alternative to the Radial basis functions interpolation. The theoretical basis of
the method were already established by Shepard (1968) in the framework of geographical in-
formation systems. As it is based on an explicit interpolation, no matrix inversion is required
for this approach. This considerable computational time saving with respect to the Radial
basis functions interpolation makes this approach very attractive. A moderate reduction in
terms of resulting mesh quality should however be considered.

Delaunay graph mapping Introduced by Liu et al. (2006), in this method the Delaunay
graph of the boundary nodes is used as a basis of the interpolation. This approach offers a
very high efficiency for moderate deformations, but limitations has been found when dealing
with large displacements and rotations.

Other point-to-point methods Alternative less mature point-to-point methods have been
studied by several authors:

• Surface influence technique: Allen (2007)

• Disk relaxation: Zhou and Li (2013)

• Neural networks: Stadler et al. (2011)

Auxiliary algorithms

Several technologies has been developed in order to enhance the performance of the already
presented methodologies. These methods cannot be considered as stand-alone approaches,
but they play an important role in the resulting mesh quality and/or the computational effi-
ciency of the whole mesh deformation process

Transfinite Interpolation Transfinite Interpolation (TFI) method was initially developed
for mesh generation purposes by Gordon and Hall (1973). Several authors have adapted this
technique in the framework of structured multi-block meshes [Ding et al. (2014),Gopalakrish-
nan and Tafti (2009) and Tsai et al. (2001)]. In this context, the application of the transfinite
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interpolation requires the computation of the block corners displacement as an input. This
task is usually performed by one of the traditional mesh deformation methods presented in
this chapter. Block corners displacements are then used in order to compute the new posi-
tion of block edges by linear interpolation, based on original node clustering information. A
similar procedure is followed in order to computed deformed block faces (see Figure 2.11).
When dealing with 3D meshes, the TFI can be also applied to compute the displacement of
the block inner nodes. The application of the transfinite interpolation to mesh deformation
problems offers a very fast solution for cases accounting for small displacements. However,
due to the purely linear nature of this approach, the quality of the resulting mesh could be
highly distorted if important rotations are present in the considered deformation.

Original mesh

Original corner positions

New corner positions 
(from spring analogy)

Computation of deformed
edges with TFI

Computation of deformed
face with TFI

Figure 2.11: Schematization of the transfinite interpolation applied to mesh deformation. Adapted
from Gopalakrishnan and Tafti (2009)

Quaternion algebra The quaternions algebra was introduced by Samareh (2002), aiming
to consider the concept of rotations on mesh deformation approaches. In this case, the quater-
nions were applied in combination with Transfinite Interpolation and Spring Analogy tech-
niques. Quaternion algebra is used to compute the rotations of the elements at the boundary,
in order to interpolate this information into the inner mesh.

Hybrid methodologies

Presented methods can be classified based on their performance regarding:

• Computational efficiency

• Topological flexibility
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• Resulting mesh quality

• Implementation complexity

• Required input data

As seen in previous sections, there is not an universal mesh deformation method being able
to combine both efficiency and resulting mesh quality for every considered mesh. The reason
why many authors have focused their effort in combining existing technologies, in order to
profit from the benefits of each one of them and to avoid their limitations. Table 2.2 lists
some of the hybrid mesh deformation methods found in the literature and ordered by date of
publication. Among these numerical strategies, three main philosophies can be distinguished:

• Reduce the computational cost of Elastic analogy or Radial Basis Functions by incor-
porating sophisticated numerical methods either before or after the application of these
classical approaches.

• Application of different algorithms for the movement of boundary layers and for the
rest of the mesh.

• Deformation based on Transfinite Interpolation thanks to the pre-computation of block
displacements via another technique (most popular approach when dealing with struc-
tured grids).

2.1.6 Overview of some CFD applications for Horizontal Axis Wind
Turbines analysis

Horizontal Axis Wind Turbine (HAWT) aerodynamics is characterized by massive separation
and complex three-dimensional effects. These phenomena cannot be properly modeled by
simplified engineering approaches, such as the widely used Blade Element Momentum (BEM)
method [Heege et al. (2013); Jonkman and Buhl Jr. (2007)]. This limitation has motivated the
introduction of high fidelity flow modeling methods based on Computational Fluid Dynamics
(CFD). Traditional CFD applications to HAWTs analysis are based on steady flow rotor-only
simulations (where only blades, hub and nacelle geometries are considered). Thanks to the
problem periodicity when assuming an incoming wind aligned with the rotor axis and uniform
upstream flow conditions, a single blade passage is considered. These simulations allow to
characterize the local flow behavior around the wind turbine and its impact on global rotor
performance with a reduced computational effort. However, by omitting the tower geometry
the main source of flow unsteadiness is also neglected. Indeed, due to the proximity of the
HAWT rotor to the tower, the generation of complex unsteady flow phenomena is expected.
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Table 2.2: Hybrid mesh deformation methods found in the literature

Author/s Short description

Dubuc et al. (2000) Vertex interpolation based on rigid body motion + Trans-
finite Interpolation

Gopalakrishnan and Tafti
(2009); Tsai et al. (2001)

Spring analogy for vertex displacement + Transfinite In-
terpolation

Martineau and Georgala
(2004)

Fast rigid body motion initialization followed by the ap-
plication of the Elastic analogy in order to improve re-
sulting mesh quality

Kholodar et al. (2005) Particular treatment for viscous boundary layers based
on surface vectors readjustment followed by torsional
springs analogy

Lefrançois (2008) Elastic analogy in combination with a sub-mesh ap-
proach in order to reduce the total computational cost of
this technique

Morton and McDaniel
(2009)

The viscous mesh is rigidly moved together with the mov-
ing wall, followed by either a surface influence or Delau-
nay graph method for the rest of the mesh

Ko et al. (2010) Elastic Analogy in a macro-element + Transfinite Inter-
polation

Abgrall et al. (2012) Elastic analogy enhanced by NURBS technologies

Kowollik et al. (2013) Radial basis function based on a reduced deformation
field + Delaunay graph mapping for exact surface recon-
struction

Ding et al. (2014) Radial basis function based on block corners + Transfi-
nite Interpolation

This mechanism is often referred to as rotor-tower interactions. A considerable amount of
scientific material regarding the application of CFD techniques to HAWT rotor-only analysis
has been produced. A complete compilation of these works can be found in the review paper
of Sumner et al. (2010). The number of publications approaching the study of rotor-tower
interactions is however very limited. Due to the historical upscaling of HAWTs in order to
increase the produced energy per machine, important blade deflections are also expected for
modern designs, motivating the need of an elastic blades modeling in CFD computations.

Following literature survey compiles the CFD works concerning HAWTs unsteady aero-
dynamics and HAWTs aeroelasticity. Due to the lack of publicly available industrial config-
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urations, most part of previous work is based on the so-called academic or reference wind
turbines. Only the publications relying on rotor-resolved approaches are included in this sec-
tion due to their potential use for local HAWT design and their direct relation with this PhD
work. However, CFD methods are also used in other type of wind turbine analysis such as
the study of wake meandering, the effects of the atmospheric boundary layer, the interaction
between the different machines integrating a wind farm, etc. In this context the LES method-
ology has become very popular during the last decade, due to their modeling capabilities
regarding anisotropic flows and its less dissipative nature [Mehta et al. (2014)]. Because of
hardware limitations, current LES publications in the context of HAWTs use to rely on one of
the actuator models described in Section 2.1.2 to simulate the rotor. Examples of these LES-
based computations are the study of the atmospheric turbulence of Backaert et al. (2014), the
gust impact analysis of Norris et al. (2012), the tandem configuration research performed by
Chatelain et al. (2013) or the works of Meyers and Meneveau (2010) and Churchfield et al.
(2012) concerning complete wind farms. The last publication was found to be particularly
demanding due to the number of HAWTs considered and their proximity, requiring the use
of one million of hours and 4096 processors.

In order to contextualize each of the HAWTs mentioned in this literature survey, Table 2.3
compiles their main geometrical and operational parameters. Details of the numerical set-up
of the presented works are given in Appendix A.

NREL Phase VI

The first complete reference HAWT was the NREL Phase VI, a 10 m rotor diameter model
published by the National Renewable Energy Laboratory (NREL). A description of the whole
NREL Phase VI assembly can be found in Hand et al. (2001), together with the results of an
experimental test campaign performed at the NASA Ames wind tunnel. Time-accurate blade
pressure measurements were produced in these experiments for a wide range of operating
conditions. Five-hole probes were also installed in order to measure local flow angles at
different radial locations. Finally, strain-gauge measurements provided information of total
torque and flap and edge moments at the blade root. A blind code comparison was carried
out in order to compare the predictions of several aeroelastic BEM codes against the obtained
experimental data [Simms et al. (2001)]. An important scatter was observed for the differ-
ent simulations results, even for the most supposedly easy-to-predict operating points. For
example for the uniform inflow speed conditions aligned with the rotor axis, rotor power pre-
dictions ranged from 25% to 175% with respect to the experimental value. This experience
revealed the complexity of the flow and the necessity of high resolution numerical tools in
order to characterize the flow. The NREL Phase VI has served as a basis for the validation of
almost every CFD code applied to HAWT analysis, confirming the potential of this approach.
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A lot of material have been compiled regarding the influence of turbulence and transition
modeling, as well as the dependence between the flow behavior and the considered operating
point. In this context, three different working regimes were characterized based on the nature
of the suction side separation bubble: pre-stall or low speed, transitional and deep-stall or
high speed (see Figure 2.12). A complete overview of the already performed works con-
cerning NREL Phase VI rotor-only studies can be found in the review paper of Hansen et al.
(2006) , and in the more recent works of Aranake (2013); Potsdam and Mavriplis (2009);
Suárez and Doerffer (2015); Yelmule and Anjuri (2013).

(a) Pre-stall regime (wind speed of 7 m.s-1)

(b) Transitional regime (wind speed of 10 m.s-1)

(c) Deep-stall regime (wind speed of 13 m.s-1)

Figure 2.12: Friction streamlines of the NREL Phase VI simulations performed by Suárez and Doerffer
(2015) for the different operating regimes

First studies concerning unsteady CFD simulations of this HAWT were carried out by Le
Pape and Lecanu (2004). Initial RANS simulations were performed using the multigrid multi-
block structured solver elsA, developed by Onera [Cambier and Gazaix (2002)]. Even if the
tower was not included in the computational domain, the convergence problems encountered
for high wind speeds required the use of an URANS approach. A three-dimensional behavior
of the flow was observed (in particular, the spreading of low span range stall towards the
blade tip due to the radial centrifugal forces). A frequency analysis of the computed results
identified clear vortex shedding related to the blade flow separation. A more complete charac-
terization of the NREL Phase VI unsteadiness was performed by Zahle et al. (2009). URANS
computations were performed using the multigrid multi-block structured solver Ellypsis3D,
developed in collaboration between DTU and Risø [Sørensen (1995)]. In this work the whole
wind turbine assembly in a downwind configuration was considered, including the tower. The
shedding phenomenon was not only observed for the rotor blades, but also all along the tower
height. Significant blade load fluctuations due to the existence of the tower were computed,
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reaching up to 40% of the freestream level. Lynch (2011) studied the whole HAWT upwind
assembly in the framework of his PhD thesis. Both URANS and zonal hybrid RANS/LES
technologies were compared. The unstructured solver FUN3D, developed by NASA Lang-
ley, was used [NASA (2015)]. For nominal operation conditions, both approaches offered a
good agreement with respect to experimental data, even if the URANS solution was found
to be more dissipative. While tower vortex shedding was found in all the studied working
points, this phenomenon was only clearly identified on the blade for high wind speeds (see
Figure 2.13). Wang et al. (2012) also performed URANS simulations of the upwind config-

Figure 2.13: Vorticity of the NREL Phase VI, illustrated by means of the Q-criterion isosurfaces for a
value of 0.1. URANS computation of Lynch (2011) at 15 m.s-1.

uration for the whole HAWT operating range. The pimpleDyMFoam solver from the open
source code OpenFoam was used [Weller et al. (1998)]. Wind speeds from 5 m.s-1 to 25
m.s-1 were studied. Especially at high wind, a strong interaction between blade tip vortices
and tower vortices was observed. Vortex shedding was also identified on the blades. Hsu
et al. (2014) studied the rotor-tower interactions of the upwind configuration. An in-house
code was used, based on an Arbitrary Lagrangian Eulerian residual-based Variational Multi-
scale formulation of the Navier–Stokes equations (ALE-VMS) [Bazilevs et al. (2007)]. First
steady rotor-only computations showed a good agreement with respect to available experi-
mental data. Same situation was reproduced when introducing the tower and comparing the
simulation results against the measured azimuthal evolution of the mechanical power. For this
unsteady computation, a 8% of mechanical power decay was predicted due to the blade/tower
alignment event. Li (2014) also based his analysis in an upwind configuration, including the
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tower. The multi-block structured solver CFDShip-Iowa was used, which is developed by
the University of Iowa [Paterson et al. (2003)]. Results from URANS and DES approaches
were compared and validated against experimental data. A good agreement between both
methodologies was found at low wind speed. When assessing a deep-stall operating point,
URANS approach was unable to model the periodic shedding of the blade suction surface
separation bubble predicted by the DES. The only works accounting for a structural model
of the NREL PHASE VI blade were performed by Carrión (2014). A mesh of the whole
assembly in upwind configuration was studied. URANS computations were performed using
the multi-block structured solver HMB2, developed by the University of Liverpool [Barakos
et al. (2005)]. The structure was modeled by means of the modal approach. As expected
for the size of this HAWT and the mechanical properties of the equipped blades, simulations
showed very small blade tip displacement fluctuations (in the order of millimeters).

MEXICO

The 4.5 m rotor diameter MEXICO wind turbine was defined in a project founded by the Eu-
ropean Commission [Schepers and Snel (2007)]. Open section wind tunnel experiments were
performed in order to provide experimental data of the HAWT operation. Blade pressure and
loads were computed, together with a description of the flow field around the rotor and in the
near-wake region obtained by means of Particle Image Velocimetry (PIV) techniques. This
wind turbine model extended the possibilities for CFD code validation purposes, especially
when focusing in wake analysis. A complete review of the performed simulations can be
found in Schepers et al. (2012), and more recently in the PhD thesis of Carrión (2014). In
this last publication, the static aeroelasticity of the MEXICO rotor was studied. RANS simu-
lations were performed using HMB2, and modeling the rotor blades as beams. As expected,
small blade deflections were computed (with out-of-plane blade tip deflections in the order
of millimeters), and a negligible impact on total rotor loads is presumed.

NREL 5MW

With a diameter of 126 m, the NREL 5MW was the first big rotor reference HAWT [Jonkman
et al. (2009)]. It has been used for both research and code validation purposes. In particular,
the NREL 5MW has served as a basis for a series of aeroelastic packages code-to-code com-
parison projects focused in the study of bottom-fixed and floating offshore configurations.
These actions are referred as OC3, OC4 and OC5 projects [Jonkman and Musial (2010);
Jonkman et al. (2012); Robertson et al. (2013, 2015)]. Due to the important aeroelastic ef-
fects expected during the operation of this machine, previous unsteady CFD computations
included a structural model of the rotor. In this context we can find the dynamic aeroelastic-
ity works of Hsu and Bazilevs (2012). The adopted computational approach was based on the
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combination of ALE-VMS formulation of the Navier–Stokes equations and a NURBS-based
Isogeometric Analysis (IGA) for structure modeling. Due to blade flexibility, approximate
blade deflection amplitudes of 0.5 m were observed for the blade tip out-of-plane displace-
ment (see Figure 2.14). Yu and Kwon (2014) performed aeroelastic computations of the
NREL 5MW assembly using an in-house code. Both RANS and URANS methods were em-
ployed, accounting for a beam-based blade model. For the former approach, an out-of-plane
blade tip deformation of approximately 4.7 m was computed for the rated speed operating
point. When passing to time marching simulations, a maximum value of 5 m was observed.
A significant reduction of blade loads was also found due to blade deflection. Li (2014)
studied this HAWT mounted on a spar buoy platform designed in the framework of the OC3
project [Jonkman (2010)]. Blade flexibility was modeled by means of multi-body dynamics
elements via the commercial software Virtual.Lab Motion [Siemens (2015)]. URANS simu-
lations were performed with the CFDShip-Iowa solver, including both air and water phases.
In order to assess the capabilities of the developed methodology, CFD results were compared
against other aeroelastic codes from OC3 project participants [Jonkman et al. (2012)]. For
the constant inflow of 8 m.s-1 operating point, out-of-plane blade tip deflections of the order
of 3.5 m were computed. Blade vortex shedding was identified as a lagging mechanism of
the rotor loads.

Figure 2.14: Blade tip displacement parallel to the rotor axis for the computations of the NREL 5MW of
Hsu and Bazilevs (2012), as a function of the time. Solid lines correspond to full machine simulations,
while dashed lines refer to rotor-only computations. The arrows displayed at the bottom of the image
mark every blade-tower alignment event
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Industrial wind turbines

Zahle and Sørensen (2008) studied the unsteady aerodynamics of the whole assembly of an
industrial HAWT, referenced as SIEMENS 3.6MW. URANS simulations were performed us-
ing Ellypsis3D. The two objectives of this work were to analyze the impact of non uniform
upstream conditions due to the presence of the atmospheric boundary layer on rotor perfor-
mance and to characterize the effects of rotor-tower interactions. Results showed that the
consideration of a non-uniform wind speed inflow leads to an important azimuthal depen-
dence of blade forces. When evaluating flow unsteadiness of the complete rotor and tower
assembly, important vortex shedding structures were identified near the blade root, where
sections were almost cylindrical. This effect was also observed for the tower region below
the rotor disc. Computed rotor thrust and torque showed approximate decays of 1% and 2%
due to the blade-tower alignment event (see Figure 2.15). Zahle and Sørensen (2011) studied

Figure 2.15: Normalized rotor thrust and torque for the last two revolutions of a simulation of the
SIEMENS 3.6MW wind turbine [source: Zahle and Sørensen (2008)]

the unsteady flow phenomenon related to blade root separation of the NKT 500/41 rotor. Both
RANS and URANS computations were performed using Ellypsis3D. Results were compared
against an experimental campaign which results can be found in Diznabi (2009), together
with a description of this HAWT. For steady simulations a good agreement with respect to
experimental data was found, except for high wind speeds. At this operational range, RANS
model showed an overprediction of the mechanical power up to an approximate value of 26%.
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The authors attributed this discrepancy to the inability of RANS models to properly predict
stall, in particular at the blade span region equipped with thick airfoils. When analyzing
URANS results, important vortex shedding was identified at low blade span range. With this
approach, the discrepancy in the predicted mechanical power was found to be even higher
than the one computed with RANS.

Next generation HAWTs

Over the past few years, a continuous upscaling of new HAWT rotor diameters has been
observed [UpWind Consortium (2011)]. To provide the research community with a repre-
sentative design of current and near-future big rotor HAWTs, several reference wind turbine
models have been recently proposed. The first effort in this line was the Sandia 100-m all-
glass baseline blade model SNL-100-00, a 100 m long blade design published by Sandia
National Laboratories [Griffith and Ashwill (2011)]. The SNL-100-00 was designed to pro-
vide 13.2 MW when being installed in a 3-bladed rotor. A structural model description based
on composite materials is also included in the definition document. Corson et al. (2012) per-
formed a numerical analysis in order to study the static and dynamic aeroelasticity of this
blade. Both RANS and DES methods were employed, using the commercial unstructured
solver AcuSolve, developed by Altair [ACUSIM (2009)]. Important mean blade deflections
were computed in static conditions, with a maximum out-of-plane tip deflection of 5.5 m.
The performed dynamic simulations aimed to characterize the flutter phenomenon on this
blade, but no aeroelastic instability could be captured.

Recently, Bak et al. (2013) have presented a complete reference wind turbine represen-
tative of next generation machines. This model, created from a collaboration between DTU
Wind Energy and Vestas, is referred to as the DTU 10MW RWT. A special attention was put
in blade design optimization, in order to increase the stiffness and global rotor performance
based on aerodynamic, aero-servo-elastic and structural considerations. The complete geo-
metrical and structural characteristics of this HAWT have been been made publicly available
from the site https://dtu-10mw-rwt.vindenergi.dtu.dk, including the blades, the nacelle and
the tower for an onshore configuration. Zahle et al. (2014) provided a complete aerodynamic
characterization of this machine in a rotor-only configuration, using the Ellypsis3D solver.
RANS simulations of the whole machine operating range were performed. Results coming
from a CFD computation at 10 m.s-1 and 8.06 RPM were used to recompute airfoil char-
acteristic curves in a 3D framework. This airfoil data was injected in a BEM-based rotor
model in order to evaluate the differences of this method performance with respect to the
original 2D CFD based information. Clear improvements on BEM loads prediction capa-
bilities were observed, especially at low span range, where the CFD computations revealed
a highly three-dimensional flow (see Figure 2.16). In a second part of the study, the DES
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method was employed in an off-design operating point. This loadcase corresponded to stand-
still conditions, and it accounted for important flow misalignment in yaw. Vortex shedding
was identified on the blade, having a direct impact on the predicted loads due to its spanwise
correlation. This issue was identified by the authors as a potential cause of vortex-induced
vibrations.

The DTU 10MW RWT was adopted as a common wind turbine for all the researches
performed within the framework of the MAREWINT project. In the D5.4 deliverable [Leble
et al. (2015)], the results of the HMB2 simulations performed by the University of Liverpool
were compiled. Both rigid and flexible blades configurations were analyzed. The results of
this work are discussed together with the findings of the present research in Section 5. In
order to contextualize each of the aforementioned HAWTs, Table 2.3 compiles their main
geometrical and operational parameters.

Figure 2.16: Friction streamlines of the DTU 10MW RWT blade suction surface at 10 m.s-1 and 8.06
RPM [source: Zahle et al. (2014)]

Table 2.3: Summary of horizontal wind turbines characteristics
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Manufacturer Ref. Ref. Ref. Siemens Nordtank Ref. Ref.
Public experimental data Yes Yes No No No No No
Number of blades 2 3 3 3 3 3 3
Rotor diameter [m] 10.06 4.5 126 107 41 200 178.3
Rated power [kW] 19.8 14.9 5000 3600 500 13200 10000
Hub height [m] 12.19 5.3 90 90 - 146.4 119
Tower diameter top [m] 0.41 0.5 3.87 3 - - 5.5
Tower diameter base [m] 0.61 0.5 6 4.5 - - 8.3
Distance blade tip/tower [m] 1.40 1.85 10.54 9 - - 18.26

Ref. refers to reference wind turbines, not industrially exploited
†: NREL Phase VI parameters refer to the S sequence in an upwind configuration

‡: Tower not defined/Presented simulations did not include the tower in the computational domain
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2.2 Overview of FINE™/Turbo solver

The developments and simulations performed within the scope of this PhD were based in the
CFD package FINE™/Turbo [NUMECA International (2013b)]. In order to contextualize the
capabilities of the solver prior to this research, a brief description is included in this section.
The emphasis is put in the numerical methods concerned by unsteady aerodynamics and FSI
analysis. References to previous solver validations concerning both topics are also included.

FINE™/Turbo solver is a three-dimensional, density-based, structured, multi-block finite
volume code. The discretization in space is based on a cell centered control volume approach.
Both upwind schemes and central schemes are available. The latter method is used in this
research, in combination with with Jameson type artificial dissipation [Jameson et al. (1981)].
A four-stage explicit Runge-Kutta scheme is applied for the temporal discretization. Multi-
grid method [Brandt (1982)], local time-stepping and implicit residual smoothing [Zhu et al.
(1993)] are used in order to speed-up the convergence for steady computations.

2.2.1 Unsteady computations

In FINE™/Turbo solver, time marching unsteady computations are performed using the dual
time steeping approach described in Jameson (1991). For complex geometries, the required
computational time in order to perform this type of simulations is often difficult to fit in
an industrial work-flow. This is the reason why an alternative and less costly methodology
was implemented. The Non-linear Harmonic (NLH) approach, introduced by He and Ning
(1998) and industrialized by Vilmin et al. (2006), allows to drastically reduce the required
computational time. In the NLH method, the instantaneous conservative flow variables U =

(ρ,ρvx,ρvy,ρvz,ρE) are decomposed into a time-averaged value Ū and a sum of unsteady
perturbations U ′

n, assumed to be periodic:

U (⃗x, t) = Ū (⃗x)+∑
n

U ′
n (⃗x, t) , (2.18)

A Fourier decomposition is applied to each of the periodic perturbations. Hence, the pertur-
bation U ′

n can be written as a finite sum of Nh time harmonics:

U ′
n (⃗x, t) =

Nh

∑
k=1

[
Ũk (⃗x)eIkωt +Ũ−k (⃗x)e−Ikωt

]
= 2

Nh

∑
k=1

[
Ũk

Recos(kωt)−Ũk
Imsin(kωt)

]
,

(2.19)
where the harmonic amplitudes Ũk and Ũ−k are complex conjugates defined by the real part
Ũk

Re and the imaginary part Ũk
Im and related to the nth perturbation. For the particular case

of rotating machinery applications the fundamental harmonic, corresponding to k = 1, is
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associated to the so-called Blade Passing Frequency (BPF).
The NLH formulation is obtained by introducing this variable decomposition into the un-

steady Reynolds-Averaged Navier-Stokes equations presented in Section 2.1.2. The resulting
expression, that can be found in Appendix B together with a detailed derivation of the NLH
method, is referred to as decomposed Navier-Stokes equations in this section. Two new sets
of equations are then obtained, corresponding to the time-mean and harmonic contributions
of every conservation law.

To derive the NLH mean equations, the time-averaged of the decomposed Navier-Stokes
equations is considered. This procedure is similar to the Reynolds averaging summarized in
Section 2.1.2, but in this case the unsteady perturbations are periodic and their magnitude is
assumed to be more important than the turbulent fluctuations. The resulting expression can
be written using a compact finite-volume formulation as follows:

∂U
∂ς

Ω+ ∑
cell faces

(
F⃗I − F⃗V

)
· S⃗ = QΩ , (2.20)

with:

F⃗I · S⃗ =


ρ v⃗⃗S

ρ v⃗v̄xS⃗+ pSx

ρ v⃗v̄yS⃗+ pSy

ρ v⃗v̄zS⃗+ pSz

ρHv⃗⃗S

+


0

(ρ v⃗)′ v′xS⃗
(ρ v⃗)′ v′yS⃗

(ρ v⃗)′ v′zS⃗
(ρH)′ v⃗′S⃗

 ; F⃗V · S⃗ =


0

τxxSx + τxySy + τxzSz

τxySx + τyySy + τyzSz

τxzSx + τyzSy + τzzSz

τττ v⃗⃗S+ q⃗S⃗

+


0
0
0
0

τττ ′⃗v′S⃗


(2.21)

where the second terms of F⃗I · S⃗ and F⃗V · S⃗ expressions correspond to the deterministic stresses.
These are present due to the non-linearity of the formulation, as the Reynolds stresses ap-
peared in the derivation of the RANS equations in Section 2.1.2. The role of the deterministic
stresses is then to account for the contribution of the flow unsteadiness into the time-mean
flow equations.

In the baseline formulation, the set of NLH harmonic equations is derived by retaining the
first-order fluctuation terms of the decomposed Navier-Stokes equations. By casting into the
frequency domain, a set of conservation laws is obtained for each harmonic. Using a compact
finite-volume formulation as omitting the harmonic index, these can be written as follows:

∂Ũ
∂ς

Ω+ IωŨΩ+ ∑
cell faces

−̃→
F I · S⃗− ∑

cell faces

−̃→
F V · S⃗ = Q̃Ω , (2.22)
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with:

−̃→
F I · S⃗ =


ρ̃ v⃗⃗S

ρ v⃗ṽxS⃗+ ρ̃ v⃗v̄xS⃗+ p̃Sx

ρ v⃗ṽyS⃗+ ρ̃ v⃗v̄yS⃗+ p̃Sy

ρ v⃗ṽzS⃗+ ρ̃ v⃗v̄zS⃗+ p̃Sz

ρ̃Hv⃗⃗S+ρH˜⃗v⃗S

 ;
−̃→
F V · S⃗ =


0

τ̃xxSx + τ̃xySy + τ̃xzSz

τ̃xySx + τ̃yySy + τ̃yzSz

τ̃xzSx + τ̃yzSy + τ̃zzSz

τττ˜⃗v⃗S+ τ̃ττ v⃗⃗S+ ˜⃗qS⃗

 (2.23)

Recently, Debrabandere (2014) extended the baseline NLH formulation to the consideration
of the interaction between the harmonics of the flow. This was achieved by removing the first-
order linearization performed prior to the derivation of Equation 2.22. This enhancement
introduced several crossing terms in the harmonic equations, aiming to capture high non-
linearities of the flow. However a computational overhead was observed after this extension,
reaching up to a factor two for traditional applications.

Being the starting point of the NLH method derivation the Reynolds-Averaged Navier-
Stokes equations, both q⃗ and τττ contain stresses related to the turbulent effects that need of
a closure model. In the NLH approach implemented in FINE™/Turbo solver, this is task
is carried out by means of one of the following linear eddy viscosity turbulence models:
Baldwin-Lomax, Spalart-Allmaras, k-ε , k-ω or k-ω SST. Both the laminar and eddy viscosi-
ties are computed based on the time-mean flow variables, assuming that they are unaffected
by the unsteady fluctuations.

As for the RANS approach, the obtained harmonic equations are only space-dependent.
The solution of the system is performed by the integration of the the pseudo-time ς , via the

introduction of the derivatives ∂U
∂ς

and ∂Ũ
∂ς

. This transformation from time-dependent equa-
tions into steady ones justifies the computational time saving attributed to the NLH approach.
In addition the NLH methodology applied to rotating machinery problems only requires the
meshing of a single blade passage, while unsteady time marching computations usually need
a full rotor and stator mesh. The NLH belongs to a family of techniques often referred as
non-linear frequency methods. Other examples of these approaches are the Harmonic Bal-
ance [Hall et al. (2002)] and the Non-Linear Frequency Domain [McMullen (2003)].

2.2.2 Fluid solid interaction

Several developments aiming to extend FINE™/Turbo capabilities in order to deal with FSI
problems in turbomachinery applications were performed in the PhD thesis of Debrabandere
(2014). Three different methods were implemented, accounting for different approximations
regarding the flow and structural models (see Table 2.4). A main distinction was made con-
cerning the type of coupling between both physical models:



2.2 Overview of FINE™/Turbo solver 39

• 1-way coupling: A prescribed deformation is applied to the structure, and a new flow
solution is computed based on this new position.

• 2-way coupling: In this integrated approach, a mutual interaction between the fluid and
the structure is assumed. Structural deformation is first computed based on an initial
flow solution. Since the updated position of the structure changes the flow properties,
a new solution of the Navier-Stokes equations is required. This sequence is repeated in
an iterative way, till the interaction between both physical models stabilizes.

Table 2.4: FINE™/Turbo methods for FSI computations

Flow model Structure model Coupling

Method_CSM Steady/Time marching CSM 2-way coupling
Method_MOD Steady/Time marching Modal approach 1-way coupling/2-way coupling
Method_MODH NLH Modal approach 1-way coupling

The aim of Method_CSM and Method_MOD was to provide a 2-way coupling solution for
steady and time marching computations. In the Method_CSM method, FINE™/Turbo was
extended in order to perform FSI simulations in combination with a Computational Struc-
tural Mechanics (CSM) code. The coupling of both physics was ensured by exchanges of
information performed by the MpCCI software, developed by Fraunhofer Institute for AL-
gorithms and Scientific Computing (SCAI) (2012). In Method_MOD, the structural model
was simplified by means of the modal approach. As the mode shapes were defined on a FEM
mesh, some interpolation issues between structure and fluid data may occur [see Fenwick
and Allen (2007)]. In order to avoid this, the mode shapes were interpolated onto the fluid
mesh prior to the coupled computation as suggested by Sayma et al. (2000). The objective of
Method_MODH was to provide a 1-way coupling solution for the NLH solver. The structural
deformation was prescribed via an adaptation of the modal basis of Method_MOD in order
to work in the harmonic domain. More details about Method_MODH are included in Chap-
ter 4. In order to deal with the unsteady time evolution of the fluid mesh deformation, all
the aforementioned methods required the adaptation of the solver formulation to an Arbitrary
Lagrangian-Eulerian (ALE) framework [Hughes et al. (1981)]. In addition, a mesh deforma-
tion approach based on the radial basis functions was developed. This algorithm was first
implemented in a steady/time marching context, and then adapted to a harmonic formulation
to be used in Method_MODH.

2.2.3 Relevant solver validations

The validation of FINE™/Turbo capabilities for HAWTs analysis was previously assessed
by other authors, mainly based on the NREL Phase VI reference model. In all these pub-
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lications, rotor-only RANS simulations were performed and compared against experimental
data (see Appendix A for more details of the numerical set-up). First complete validation was
performed by Fan and Kang (2009). A good agreement with experimental results was found
for both Spalart-Almaras and k-ω SST turbulence models. A better converge was observed
for the latter model when assessing operating points where large separation occurred. The
authors also pointed out the necessity of accounting for the nacelle geometry in order to ob-
tain accurate results. The work of Elfarra et al. (2014) aimed to design an optimize a winglet
geometry installed at the NREL Phase VI blade tip. An initial validation of FINE™/Turbo
capabilities was also performed. A good agreement with experimental data was found for the
whole operating range. For the particular case of the 15 m.s-1 (deep-stall region), important
tangential forces discrepancies with respect to the experimental results were observed. These
were assumed to be related to either experimental or numerical causes. Indeed, the authors
argued that an important measurement error should be considered for the tangential loads,
due to its relative low value with respect to the normal loads and to the sparseness of the
blade pressure taps. Additionally, the complete flow separation experienced by the blade at
this operating point could be limiting for the capabilities of the used turbulence model. The
final winglet design proposed by the authors predicted an increase in the mechanical power
of around 9%. A more recent validation was described in the works of Suárez and Doerffer
(2015) and Suárez et al. (2015). Very small discrepancies with respect to experimental data
were computed for low (pre-stall) and high (deep-stall) wind speeds. Blade separation and
rotor wake were also accurately modeled for the mentioned conditions. For the particular
case of the 10 m.s-1 operating point (transitional case) important differences were found,
probably due to the fully turbulent nature of the model used. Figure 2.17 compiles the rotor
power computed in the aforementioned simulations, where the dispersion of the results for
wind speed higher than 10 m.s-1 is clearly observed. As pointed out by Fan and Kang (2009),
these differences could be explained by the sensitivity of the numerical model to the CFD
domain, the mesh and the turbulence model.

The NLH method was validated for a wide range of turbomachinery applications. Jo-
hann and Swoboda (2007) studied a 4.5-stage high-speed compressor. The NLH modeling
capabilities regarding blade rows interaction was highlighted, as well as its computational
efficiency. Kunzelmann et al. (2011) applied the NLH method in a 1.5-stage low-speed com-
pressor. Simulations were able to predict the beneficial effects of air injection observed in
the experiments. Crosh et al. (2011) presented a validation of a turbine (including the cas-
ing), where NLH computations were able to reproduce the blade surface pressure variations
obtained experimentally. Comparisons between NLH and classical time marching unsteady
solutions were also performed for compressors [Guidotti and Turner (2009); Hembera et al.
(2009)] and turbines [Crosh et al. (2009); Green et al. (2012); Nordwall et al. (2008)]. Good
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Figure 2.17: Total mechanical power of the NREL Phase VI computed by previous rotor-only
FINE™/Turbo simulations. Comp. I: Fan and Kang (2009), Comp. II: Elfarra et al. (2014), Comp.
III: Suárez and Doerffer (2015). Experimental results account for the considered error bars

comparisons between both approaches were obtained, with considerable computational sav-
ings attributed to the NLH approach (ranging from one to two orders of magnitude). In order
to exemplify the level of agreement of NLH and time marching simulations, Figure 2.18
depicts the normalized static pressure fluctuations on a high-pressure turbine computed by
Crosh et al. (2009). In this particular validation, a time saving factor of 10 could be attributed
to the NLH method. Validations of the FSI methodology were included in Debrabandere
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Figure 2.18: Normalized static pressure fluctuations transient for a high-pressure turbine, computed
with both NLH and time marching methods. Results are compared with experimental data. Source:
Crosh et al. (2009)
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(2014). The flutter boundary of the AGARD 445.6 wing was studied using Method_MOD.
Computed results were validated against the experimental data compiled in Yates (1987).
Method_MODH was used in a flutter investigation of the turbine cascade STFC 11 [Fransson
et al. (1999)]. A very good agreement with experimental results was found for the design
flow conditions.

2.3 PhD objectives and outline

2.3.1 Objectives

An accurate rotor loads prediction is essential in order to design a HAWT. To reduce the over-
all costs, the loads estimation at preliminary design phases relies in the virtual prototyping of
the machine. For classical wind turbines, simplified engineering methods offer a very good
computational efficiency and an acceptable accuracy in the flow prediction. As pointed out
by the literature survey, the precision of these approaches is however limited when dealing
with big HAWT rotors due to the existence of highly skewed flows, heavy detachments and
important blade deflections due to FSI. Hence, the use of more sophisticated Computational
Fluid Dynamics (CFD) techniques is justified. The introduction of CFD in the wind energy
industry is currently facing an important bottleneck: the required engineering and computa-
tional time. This last remark brings to the main goal of this PhD research. The CFD package
FINE™/Turbo, traditionally used for turbomachinery applications, was extended in order to
perform high fidelity HAWT rotor flow analysis at a reduced computational time. In par-
ticular, two challenging problems were tackled: the rotor aeroelasticity and the rotor-tower
interactions. While the former issue requires the consideration of blade flexibility in FSI sim-
ulations, the introduction of the tower in the computational domain needs of an unsteady flow
solution. The permutation of both problems leads to the four types of simulations studied in
this work (Table 2.5). To illustrate the performance of the developed solutions, the DTU
10MW RWT reference wind turbine was studied. The expertise issued from this analysis was
compiled as set of advices, aiming to guide the use of the developed methodology in future
work.

Table 2.5: Relation between numerical models and type of simulations studied in this research

Flow model
Steady Unsteady

Blade model
Rigid Steady aerodynamics Unsteady aerodynamics
Flexible Static aeroelasticity Dynamic aeroelasticity
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RANS methodology was applied for steady flow computations. Regarding unsteady so-
lutions, the use of the NLH approach was considered for the first time in the framework of
HAWT analysis. Both technologies correspond to an improvement of the current wind en-
ergy standard tools. At the same time, they are computationally less expensive than other
CFD approaches implying the partial or complete resolution of the turbulence spectrum (see
Figure 2.19). Spalart-Allmaras turbulence model was used in all the performed computa-
tions, chosen by its robustness and simplicity [Spalart and Allmaras (1992)]. The study of
the influence of turbulence and transition modeling is out of the scope of this work.

Computational
effort

PhD goal

Current standard

Computationally 
demanding

Resolved
Physics

RANS

DNS

URANS

Hybrid RANS/LES

LES

NLH

BEM

Figure 2.19: Classification of numerical approaches for HAWT rotor loads prediction regarding their
computational cost and flow physics modeling capabilities. Adapted from Sagaut et al. (2006)

The assessment of rotor aeroelasticity requires the consideration of the blade flexibility.
In order to reduce the required computational time of FSI simulations, blade structure was
modeled by means of a Reduced Order Model (ROM) based on the modal approach. Static
aeroelasticity was studied by performing 2-way coupling computations with a steady flow
formulation. The impact of loads distribution on the blade deflection and the final rotor
performance was analyzed. Dynamic aeroelasticity was studied by means of an innovative
2-way coupling methodology based on the NLH approach. The aim was to study the effects
of dynamic loading on rotor loads and harmonic blade deflections. The analysis of aeroelastic
instabilities is out of the scope of this research.
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2.3.2 Outline

Even if FINE™/Turbo is already consolidated as a standard in the turbomachinery industry,
its adaptation to the study of HAWTs requires of additional implementations. In particular,
two new developments regarding the aeroelastic capabilities of the solver were performed:

• Improvement of mesh deformation algorithms: To account for FSI phenomena, the
discretized fluid domain needs to be re-adapted to structural deformations, motivat-
ing the application of mesh deformation algorithms. Strong requirements need to be
considered when dealing with the important blade deflections expected for big rotor
HAWTs. An efficient hybrid mesh deformation algorithm was developed within the
framework of this research and described in Chapter 3.

• 2-way coupling harmonic aeroelasticity: When performing a FSI simulation, blade
deformations can be either imposed (1-way coupling) or computed based on the aero-
dynamic loading (2-way coupling). The implementation of the latter option into the
harmonic solver of FINE™/Turbo for its application in HAWT dynamic aeroelasticity
analysis is detailed in Chapter 4.

Together with preliminary test cases, the performance of both developments was assessed
when being applied to the analysis of the DTU 10MW RWT. The study of this wind turbine
is split in two chapters:

• Rotor-only simulations: In Chapter 5, the DTU 10MW rotor is analyzed assuming
a steady flow relative to the rotor, as well as uniform upstream conditions. In a first
approach, rotor blades were considered as rigid. In a second step, the implemented
hybrid mesh deformation method was applied in order to study the static aeroelasticity
of the rotor.

• Full machine simulations: A set of computations were performed accounting also for
the DTU 10MW RWT tower, and included in Chapter 6. In order to properly capture
the rotor-tower interaction effects, high fidelity unsteady computations were required.
As for the isolated rotor configuration, both rigid and flexible simulations were carried
out. For the latter case, the use of all the new developments performed within the
framework of this research was needed.

Finally Chapter 7 compiles the main conclusions extracted from this PhD work, along with
suggested future work.



Chapter 3

Development of a mesh
deformation tool for external
aerodynamics applications

In the context of Fluid-Structures Interaction (FSI) simulations based on body-fitted mesh
approaches, the re-adaptation of the fluid mesh following structural deflections is required
at every time-step. In order to avoid the computational time and implementation problems
attached to a re-meshing process, the so-called mesh deformation algorithms have become a
popular alternative for most of applications. In terms of mesh deformation, the requirements
of big rotor HAWTs aeroelastic analysis were away from the capabilities of FINE™/Turbo
prior to this PhD work. Indeed, the deformation magnitude to consider in wind energy with
respect to the classical flutter phenomenon found in turbomachinery field is completely dif-
ferent. Table 3.1 illustrates this fact, by comparing the deflections at the nominal operating
points for:

• DTU 10-MW wind turbine [Bak et al. (2013)]: static conditions results issued from
this research and included in Section 5

• STCF-11 axial turbine [Fransson et al. (1999)]: results from Debrabandere (2014)

Table 3.1: Comparison of aeroelastic deflections in turbomachinery and wind energy industries. Num-
ber of mesh nodes refer to a single blade passage

Parameter STCF-11 DTU 10-MW

Number of mesh nodes 2.8×105 7.2×106

Chord at tip (c) 59 mm 0.6 m
Tip displacement (d) 3.3×10−2 mm 7.74 m
Ratio d/c 6.66×10−3 12.9

In addition, the number of mesh nodes typically needed for a wind turbine simulation is
considerably higher than the meshes used in turbomachinery. In this chapter, a set of new
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developments regarding the adaptation of FINE™/Turbo mesh deformation methods to this
new aeroelastic scenario is presented. As it will be shown, there is always a trade-off between
obtained deformed mesh quality and the computational cost attached to every method. Since
this trade-off is usually highly affected by the considered application, it uses to drive the
choice of the mesh deformation method. The numerical context expected for Horizontal Axis
Wind Turbine (HAWT) rotors deformation can be characterized as:

• Dealing with structured, multi-block and multi-grid meshes (requirements directly com-
ing from FINE™/Turbo)

• External aerodynamics application

• Accounting for multi-million meshes

• Possible existence of boundary layer meshes (important near-wall nodes clustering)

• Large displacements and rotations are expected in the blade deflection

• Blade geometry accounting for sharp edges (at the tip and the trailing edge)

3.1 Mesh quality criteria

The role of the mesh deformation algorithms is to re-adapt the mesh of the CFD domain to
new boundaries displacement without modifying its quality. Hence, it is important to define
some qualitative quality criteria prior to the description of the methods. In this research,
discussions about the mesh quality will be based on the parameters computed by NUMECA
International software. Since their definition can vary with respect to other software, they are
introduced in this section.

The orthogonality (OR) is a criterion ranging from 0 deg to 90 deg that measures the
minimum angle between the edges of every cell. When the angle between two edges is
greater than 90 deg, the supplementary angle is taken. The aspect ratio (AR) is a quality
criterion that aims to measure the differences in the edges length for a given cell face (see
Figure 3.1a). The best case scenario occurs when all the edges of a face do have the same
length, corresponding to an aspect ratio of 1. Finally, the expansion ratio (ER) is a criterion
that estimates the size variation between every two adjacent cells of a given mesh direction
(see Figure 3.1b). As for the aspect ratio, the optimum expansion ratio corresponds to 1. It is
not simple to state which are the values of these criteria that ensure a good quality mesh, since
there is a strong dependence with the targeted application and the CFD solver to be used. As
a general rule, a mesh built for industrial purposes can be considered as acceptable when
the minimum orthogonality is higher that 15 deg, the maximum aspect ratio is below 5000
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and the expansion ratio is smaller than 3. However, there is always a trade-off between the
number of grid points and the mesh quality, that is especially constraining for large problems
(as most part of external aerodynamics applications). In particular, the maximum aspect ratio
for these configurations when using a structured mesh solver use to go above 5000 at the
vicinity of the boundary layer. This local deterioration of the mesh quality is assumed to be
acceptable since at the boundary layer the gradients in the streamwise direction are relatively
small when compared to the transverse gradients.

a

c

x=(a+b)/2

b

d

y=(c+d)/2

AR=max(x,y)/min(x,y)

(a) Aspect ratio (AR)

x=(a1+a2+a3+a4)/4

y=(b1+b2+b3+b4)/4

ER for the direction K:

ER(K)=max(x,y)/min(x,y)

K

a1

a4
a2

a3

b1

b4 b2

b3

(b) Expansion ratio (ER)

Figure 3.1: Definition of the mesh quality criteria used in this research

3.2 Base test case

The performance of each mesh deformation method is illustrated through a simple applica-
tion in following sections. For this purpose, the two-dimensional Vortex Induced Vibrations
(VIV) test case [Hübner et al. (2004)] was considered. This model established a simplified
numerical scenario to test the presented mesh deformation algorithms, and it accounted for
large displacements and rotations. The existence of sharp edges and boundary layer clustering
was also found to be very constraining, as it is shown further on in this document.

A mesh accounting for 1.2×105 nodes and 6 blocks was used, based on previous works
of Debrabandere (2014). A first cell of 2.0×10−6 m thickness was imposed along the walls,
to ensure a proper boundary layer capture. Figure 3.2 illustrates the original considered mesh.
In order to impose a geometrical deflection, the 1-way coupling modal approach developed
by Debrabandere (2014) and described in Section 2.2.2 was employed. The modal shapes
and eigen frequencies of the beam, compiled also in the PhD work of Debrabandere (2014),
were used in order to linearize the structure behavior. In particular, a significant deflection
was imposed based on the first bending mode. The resulting deformed beam, illustrated in
Figure 3.3, is representative of the maximum deflection computed during the VIV analysis
performed in the aforementioned PhD work.
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(a) Global view (b) Beam tip detail

Figure 3.2: VIV test case, original mesh

Original
geometry

Deformed
geometry

Figure 3.3: VIV test case, original and deformed geometries

3.3 Existing mesh deformation algorithms

Several mesh deformation tools were already present in FINE™/Turbo prior to this research
[NUMECA International (2013b)]. In particular, a point-by-point scheme based on Radial
basis function (RBF) interpolation has been proved as a robust and high quality tool for a
wide variety of applications [De Boer et al. (2007)]. The RBF method uses the displacement
of the boundary nodes in order to construct an interpolation function f (⃗xre f ) as a sum of
Radial Basis Functions:

x⃗ = x⃗re f + f (⃗xre f ) = x⃗re f +
nb

∑
b=1

αbφ
(
∥ x⃗re f − x⃗re f ,b ∥

)
+ p

(⃗
xre f
)
, (3.1)
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with:

• x⃗ the deformed mesh node position

• x⃗re f the original mesh node position

• x⃗re f ,b the original mesh position of boundary node b

• nb the total number of boundary nodes

• αb interpolation coefficients

• φ the Radial Basis Function (in this case, Thin Plate spline)

• p(⃗xre f ) a first order polynomial

The interpolation coefficients αb are computed based on the displacements of the boundary
nodes: (

F P
PT 0

)(
ααα

βββ

)
=

(
∆∆∆xb

0

)
(3.2)

with:

• F the matrix of RBF evaluated at the boundary nodes

• P the matrix of the polynomials evaluated at the boundary nodes

• ααα the vector of interpolation coefficients

• βββ the vector of the polynomial p(⃗x) coefficients

• ∆∆∆xb the vector of the displacements of the boundary nodes x⃗b − ⃗xre f ,b

The solution of the linear system of Equation 3.2 is usually performed in FINE™/Turbo
via the inversion of the coefficients matrix. Figure 3.4 illustrates the performance of the
presented RBF approach when dealing with imposed large displacements in the VIV test
case (see Section 3.2). A very good mesh quality of the deformed mesh was observed. The
RBF method is however limited by its scalability. As stated by Bos et al. (2013), the cost
of calculation of the interpolation coefficients scales with O(nb

3) and the new coordinates
evaluation with O(nbni), where ni is the number of inner mesh nodes and nb the number of
boundary mesh nodes. This is the reason why it is hardly applicable to multi-million three-
dimensional meshes. Prior to this PhD work, the only alternative of the solver when dealing
with big industrial meshes in external aerodynamics applications was the so-called Laplacian



50 Development of a mesh deformation tool for external aerodynamics applications

(a) Global view (b) Beam tip detail

Figure 3.4: VIV Test Case, Radial Basis Functions deformation

smoothing [NUMECA International (2013b)]. With this method, new mesh nodes position
are calculated by solving the linear system:

∇⃗ · (ω∇⃗
(⃗
x− x⃗re f

)
) = 0 , (3.3)

where ω is a local diffusivity factor aiming to preserve the final mesh quality by limiting the
deformation of small volume cells.

This method shows a very good scalability with respect to the number of mesh nodes.
However and even if the diffusion process is controlled by ω , the limitations of the Lapla-
cian smoothing when dealing with large displacements have been extensively described in the
literature [Arabi et al. (2012); Hermansson and Hansbo (2003); Karman Jr. (2010)]. In par-
ticular the mesh folding is often observed around concave regions as illustrated in Figure 3.5,
where the same views of Figure 3.4 were kept. This mesh folding involves the existence of
the so-called negative volume cells (i.e. one or several edges intersect an opposite face), that
can lead to erroneous solutions or to the divergence of the CFD solver.

3.4 Development of an Inverse Elliptic Smoother

In the context of HAWTs rotor blades, two important constraints from the mesh deformation
point of view are converging:

• Multi-million nodes, external aerodynamics meshes: An important number of bound-
ary nodes are expected, decreasing the efficiency of interpolation-based techniques
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(a) Global view (b) Beam tip detail

Figure 3.5: VIV Test Case, Laplacian Smoothing deformation

• Large blade deflections including sharp edges: Requiring the use of accurate tools in
order to avoid mesh folding

This combined numerical scenario does not correspond to the one found in turbomachinery,
the historical application of FINE™/Turbo. First experiences showed that RBF had a pro-
hibitive cost when applied to HAWT rotors FSI predictions, while the Laplacian smoothing
could not avoid mesh folding around the blade. The development of a fast and robust method
for HAWTs rotor blades mesh deformation was then necessary. A connectivity-based ap-
proach was chosen from the very beginning, in order to profit from its good scalability prop-
erties. In this context, the performance of the already existing Laplacian smoother tried to be
improved by moving to a formulation based on an inverse mapping. This section describes
the implemented model and its performance.

3.4.1 Base model

Inspired in the coordinates mapping techniques used in grid generation, a curvilinear form
of the Laplacian Smoothing (Equation 3.3) was obtained. The main philosophy of this
technique is the expression of the original problem in physical coordinates (x,y,z) to logi-
cal/computational ones (ξ ,η ,ζ ). As stated by Karman Jr. (2010), the solution of the elliptic
operator via a direct mapping in the computational space leads to possible grid crossing, due
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to the lack of cross derivative terms:

∆x =
∂ 2x
∂ξ 2 +

∂ 2x
∂η2 +

∂ 2x
∂ζ 2 = 0 , (3.4)

∆y =
∂ 2y
∂ξ 2 +

∂ 2y
∂η2 +

∂ 2y
∂ζ 2 = 0 , (3.5)

∆z =
∂ 2z
∂ξ 2 +

∂ 2z
∂η2 +

∂ 2z
∂ζ 2 = 0 , (3.6)

A so-called inverse mapping becomes more interesting from the numerical point of view:

∆ξ =
∂ 2ξ

∂x2 +
∂ 2ξ

∂y2 +
∂ 2ξ

∂ z2 = 0 , (3.7)

∆η =
∂ 2η

∂x2 +
∂ 2η

∂y2 +
∂ 2η

∂ z2 = 0 , (3.8)

∆ζ =
∂ 2ζ

∂x2 +
∂ 2ζ

∂y2 +
∂ 2ζ

∂ z2 = 0 , (3.9)

Figure 3.6 illustrates graphically the aimed coordinates transformation. It should be remarked
that one of the advantages of the computational domain is that, in addition to the Cartesian
topology of the mesh, an homogeneous mesh size is also considered. This numerical property
becomes very interesting in order to simplify the involved quantities derivatives.

Figure 3.6: Inverse curvilinear transformation overview [source: Acosta and Acosta (2015)]
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Let approach Equation 3.7 in its two-dimensional form in order to evaluate the capabilities
of this methodology in a simplified numerical scenario:

∂ 2ξ

∂x2 +
∂ 2ξ

∂y2 = 0 , (3.10)

∂ 2η

∂x2 +
∂ 2η

∂y2 = 0 , (3.11)

Assuming x = x(ξ ,η) and y = y(ξ ,η), the chain derivative rule can be applied to Equa-
tion 3.10 in order to get:

β1
∂ 2x
∂ξ 2 +2β2

∂ 2x
∂ξ ∂η

+β3
∂ 2x
∂η2 = 0 , (3.12)

β1
∂ 2y
∂ξ 2 +2β2

∂ 2y
∂ξ ∂η

+β3
∂ 2y
∂η2 = 0 , (3.13)

with β1, β2, β3 being:

β1 =

(
∂ξ

∂x

)2

+

(
∂ξ

∂y

)2

, (3.14)

β2 =
∂ξ

∂x
∂η

∂x
+

∂ξ

∂y
∂η

∂y
, (3.15)

β3 =

(
∂η

∂x

)2

+

(
∂η

∂y

)2

, (3.16)

In order to express the physical derivatives in terms of computational derivatives, it is inter-
esting to consider the Jacobian of the transformation J:

J = |J|=

∣∣∣∣∣ ∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

∣∣∣∣∣= ∂x
∂ξ

∂y
∂η

− ∂x
∂η

∂y
∂ξ

, (3.17)

Indeed, by introducing Equation 3.17 into the definitions of β1, β2 and β3, the following
expression is obtained:

β1 =

(
∂ξ

∂x

)2

+

(
∂ξ

∂y

)2

= J2
γ1 = J2

[(
∂x
∂ξ

)2

+

(
∂x
∂η

)2
]
, (3.18)

β2 =
∂ξ

∂x
∂η

∂x
+

∂ξ

∂y
∂η

∂y
=−J2

γ2 =−J2
[

∂x
∂ξ

∂y
∂ξ

+
∂x
∂η

∂y
∂η

]
, (3.19)

β3 =

(
∂η

∂x

)2

+

(
∂η

∂y

)2

= J2
γ3 = J2

[(
∂y
∂ξ

)2

+

(
∂y
∂η

)2
]
, (3.20)
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Under the hypothesis of J ̸= 0, Equation 3.12 and Equation 3.13 can be then rewritten in
terms of γ1, γ2 and γ3 as:

γ1
∂ 2x
∂ξ 2 −2γ2

∂ 2x
∂ξ ∂η

+ γ3
∂ 2x
∂η2 = 0 , (3.21)

γ1
∂ 2y
∂ξ 2 −2γ2

∂ 2y
∂ξ ∂η

+ γ3
∂ 2y
∂η2 = 0 , (3.22)

Equation 3.21 and Equation 3.22 are known as the Winslow equations, and the coefficients
γ1, γ2, and γ3 are referred to as the metric coefficients.

3.4.2 Implementation details

A linear system based on Equation 3.21 and Equation 3.22 was built, based on the finite
differences discretization accounting for centered stencils proposed by Karman Jr. (2010).
For the system solution, a Jacobi solver based on Richardson-Iteration was implemented.
Even if it is a simple solution technique, it allowed an easy parallelized implementation.
Being the system to solve:

A⃗x = b⃗ , (3.23)

By defining D as the diagonal matrix of A, the update of the solution at every k+1 iteration
depending on the preceding one can be written as:

x⃗k+1 = ψD−1(⃗b− A⃗xk)+ x⃗k , (3.24)

Where ψ is a factor <1.0 acting as an under relaxation factor of the solution process, and
D−1 is the preconditioning of the matrix (Jacobi preconditioner).

The developed linear solver was enhanced with the following additional features in order
to speed-up its convergence:

• Multi-grid solution: performed in different mesh coarsening levels, transferring their
computed residuals at every iteration

• Parallelization based in a Multi-block approach: The solution of every block can be
performed by a different processor. Residuals at block connections are averaged at
every time step thanks to Message Passage Interface (MPI) techniques.

Dirichlet boundary conditions were used for both fixed and moving walls. In order to take
into account the non-linearity of the system, γ1,γ2,γ3 were recomputed at every iteration
based on new node coordinates.



3.4 Development of an Inverse Elliptic Smoother 55

3.4.3 Base results

First experiences were devoted to confirm the potential of the new implemented Winslow
smoothing when dealing with important imposed deflections. Let consider first a Carte-
sian homogeneous grid of 1x1 m where we apply an imposed motion by means of Dirichlet
boundary conditions (Figure 3.7). Both Laplacian and Winslow smoothing operators were
applied in order to compute the deformed mesh of this simple test case (see Section 3.3 and
Section 3.4.1 respectively). The resulting deformed meshes are depicted in Figure 3.8. The
existence of mesh folding shown in Figure 3.8a for the Laplacian smoothing is coherent with
previous observations for the VIV test case (Figure 3.5). As stated before, this numerical
limitation is related to the presence of sharp edges and highly concave regions. The spatial
coupling introduced in the solution process of the Winslow smoother was able to avoid the
existence of mesh folding, even if near-wall orthogonality was not kept (Figure 3.8b).

However, when passing to more complex deformation scenarios (accounting for two-
dimensional deflections and rotations), the developed Winslow smoother was also very lim-
ited. Figure 3.9 shows an important mesh folding when considering the VIV test case of
Section 3.2.

Figure 3.7: Original Cartesian mesh (in blue). Black crosses refer to the imposed displacements
through Dirichlet boundary conditions

3.4.4 Model improvement: diffusion control

Analogously to the base Laplacian smoother of Equation 3.3, a local diffusion positive factor
ω(x,y) was included in the Inverse Elliptic operator:

∇⃗ · (ω∇⃗ξ ) = 0 , (3.25)

∇⃗ · (ω∇⃗η) = 0 , (3.26)
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Laplacian

(a) Laplacian smoothing (b) Winslow smoothing

Figure 3.8: Deformed Cartesian homogeneous meshes. Crosses refer to imposed displacements

Figure 3.9: VIV test case, deformed mesh with Winslow smoothing

That can be written as:

ω∆ξ +
∂ω

∂x
∂ξ

∂x
+

∂ω

∂y
∂ξ

∂y
= 0 , (3.27)

ω∆η +
∂ω

∂x
∂η

∂x
+

∂ω

∂y
∂η

∂y
= 0 , (3.28)

Equation 3.27 corresponds to the inverse mapped form of the well known Poisson equation,
established by Winslow (1981). Analogously to the derivation of the base model in Sec-
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tion 3.4.1, it can be further simplified under the hypothesis of J ̸= 0 as:

γ1
∂ 2x
∂ξ 2 −2γ2

∂ 2x
∂ξ ∂η

+ γ3
∂ 2x
∂η2 =− J

ω
(

∂ω

∂ξ

∂y
∂η

− ∂ω

∂η

∂y
∂ξ

) , (3.29)

γ1
∂ 2y
∂ξ 2 −2γ2

∂ 2y
∂ξ ∂η

+ γ3
∂ 2y
∂η2 =

J
ω
(

∂ω

∂ξ

∂x
∂η

− ∂ω

∂η

∂x
∂ξ

) , (3.30)

Equation 3.29 was solved using the procedure described in Section 3.4.2. New terms intro-
duced by ω heterogeneity were understood as right hand side terms. As suggested by Masud
et al. (2007), the value of ω was chosen to be inversely proportional to the original mesh cells
volume. Even if the mesh folding was avoided, the impact on the original mesh size distribu-
tion did not fulfill the requirements of an a posteriori CFD computation (Figure 3.10), due to
the significant modification of the boundary layer first cell thickness.

Figure 3.10: VIV test case, deformed mesh with Winslow smoothing with local diffusion of Masud
et al. (2007)

3.4.5 Related work and conclusion

The limitation in terms of diffusion control of the implemented Winslow Smoothing are known
in other field of applications. In mesh generation, the Thomas-Middlecoff approach has been
taken by many authors [Agoes Moelyadi (2006); Eça (1999); Masters (2011)], modifying
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Equation 3.21 and Equation 3.22 as:

γ1

(
∂ 2x
∂ξ 2 +P

∂x
∂ξ

)
+ γ3

(
∂ 2x
∂η2 +Q

∂x
∂η

)
= 0 , (3.31)

γ1

(
∂ 2y
∂ξ 2 +P

∂y
∂ξ

)
+ γ3

(
∂ 2y
∂η2 +Q

∂y
∂η

)
= 0 , (3.32)

with P( ∂x
∂ξ

, ∂x
∂η

, ∂y
∂ξ

, ∂y
∂η

) and Q( ∂x
∂ξ

, ∂x
∂η

, ∂y
∂ξ

, ∂y
∂η

) being the so-called control functions.
The role of P and Q is to locally control the diffusion process by imposing the prevalence

either of mesh orthogonality, initial cell volume or other parameters. A common practice
consists in computing P and Q at the domain boundaries and interpolate their values into
the inner mesh. To best of author’s knowledge, the only successful adaptation of these mesh
generation techniques in a pure deformation scenario was carried out by Yigit et al. (2008),
inspired by the formulation of Spekreijse (1995). A very good performance when dealing
with large displacement and rotations was achieved for two-dimensional applications. How-
ever, the complexity of the algorithm was considerably increased, involving several interpo-
lation and solution steps. Due to the high implementation and computational times attached
to these sophisticated techniques, new formulations for near-wall orthogonality and mesh
folding control were foreseen in the present PhD work.

3.5 Development of the Elastic Analogy

Previous experiences trying to avoid the limitations of the Laplacian Smoothing when deal-
ing with large deformations and sharp edges did not manage to ensure a good quality of the
deformed mesh (see Section 3.4). In order to explore the possibilities of other connectivity-
based mesh deformation methods, an implementation of the Elastic analogy (ELA) was fore-
seen. In this approach, near-wall orthogonality can be controlled thanks to the coupled nature
of the linear elastic equations to solve. This section includes details about this implementa-
tion, together with a discussion regarding the capabilities of the approach.

3.5.1 Base model

The developed algorithm is based on the Elastic Analogy described by Jasak and Weller
(2000). In this case, the diffusion mechanism is controlled by considering the CFD mesh
as an elastic continuum. Let assume a 3D Eulerian notation, together with the following
considerations:

• A direct Cartesian orthonormal frame, fixed to the reference system attached to the
observer and with its origin in O
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• A simulation time t

• A fixed positioning vector x⃗

Considering a force d f⃗ (⃗n, x⃗, t,dS) applied to a material surface dS, the stress vector over the
plan with normal vector n⃗ can be defined as:

σ⃗ = lim
dS→0

d f⃗ (⃗n, x⃗, t,dS)
dS

, (3.33)

As in a real material, these stresses can be propagated in all directions. The stress tensor σσσ

(also known as Cauchy tensor) with respect to R can be then introduced as:

σσσ (⃗x, t) =

σxx(⃗x, t) σxy(⃗x, t) σxz(⃗x, t)
σyx(⃗x, t) σyy(⃗x, t) σyz(⃗x, t)
σzx(⃗x, t) σzy(⃗x, t) σzz(⃗x, t)

 , (3.34)

In this continuum mechanics context, Newton’s second law can be written as:

∇⃗ ·σσσ (⃗x, t)+ρ (⃗x, t )⃗b(⃗x, t) = ρ (⃗x, t )⃗a(⃗x, t) , (3.35)

where:

• b⃗(⃗x, t) refers to the long range forces field (also named as body forces). In this category
we find electric, magnetic and gravity forces

• ρ (⃗x, t) refers to the volume masses field

• a⃗(⃗x, t) refers to the accelerations field

Assuming that no long range forces are present in the targeted application, the static equi-
librium (no accelerations) will be driven by the following simplification of Equation 3.35:

∇⃗ ·σσσ = 0⃗ , (3.36)

The simplest way to relate the stress tensor σσσ with the strain tensor εεε is the linear hypothesis.
This implies that a a completely elastic behavior will be reproduced in the continuum. For
structure analysis application, this hypothesis is valid only when dealing with small defor-
mations. However, since in this work the aim was not to accurately solve a solid mechanics
problem but to have a robust and efficient mesh deformation method, the linearity assumption
did not imply any constraint. If a completely isotropic behavior is also assumed, the Hooke
law can be established as:

σσσ = λTr(εεε)III +2µεεε , (3.37)
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where III refers to the unit tensor and λ and µ correspond to the so-called Lame Coefficients,
that can be directly related to the elastic properties (Young Modulus and Poisson Ratio) given
to the continuum:

µ =
E

2(1+ν)
, (3.38)

λ =
νE

(1+ν)(1−2ν)
, (3.39)

Let us define now u⃗ as the deformation vector between an unconstrained situation charac-
terized by x⃗re f and the deformed position x⃗. Under the already assumed hypothesis of small
deformations, εεε and u⃗ can be related as:

εεε =
(∇u⃗)T +∇u⃗

2
, (3.40)

By introducing Equation 3.40 in Equation 3.37, the static equilibrium condition of Equa-
tion 3.36 can be expressed in terms of the deformation vector u⃗ as:

∇⃗ · [λ (⃗∇ · u⃗)III +µ((⃗∇ · u⃗)T + ∇⃗ · u⃗)] = 0 , (3.41)

3.5.2 Implementation details

A finite volume discretization of Equation 3.41 was used in order to reproduce the elastic
equations of the fictitious material. By applying this expression all along a control volume V
(i.e. the deforming domain):∫ ∫ ∫

V
(⃗∇ · [λ (⃗∇ · u⃗)III +µ((⃗∇ · u⃗)T + ∇⃗ · u⃗)])dV = 0 , (3.42)

Using the divergence theorem and assuming a surface S for the control volume and its normal
vector n⃗: ∫ ∫

S
(λ (⃗∇ · u⃗)⃗I +µ((⃗∇u⃗)T + ∇⃗u⃗)) · n⃗d S⃗ = 0 , (3.43)

Equation 3.43 can be also expressed in tensor notation as:

∫ ∫
S

λ
∂ui

∂xi
dS j +µ

∂u j

∂xi
dSi +µ

∂ui

∂x j
dSi = 0 , (3.44)

As it can be seen in Equation 3.44, the divergence and transposed gradient terms of Equa-
tion 3.43 are the responsible of the coupling of spatial directions of the deformation. A linear
system was built based on Equation 3.43, and solved with the Jacobi approach already de-
scribed in Section 3.4.2. No coefficients re-computation was needed in this case, since the
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elastic properties of the material were computed based on the original mesh.

3.5.3 Base results

The first application of the developed model to the considered VIV test case also lead to mesh
folding around beam tip (see Figure 3.11).

(a) Global view (b) Beam tip detail

Figure 3.11: VIV Test Case, Elastic Analogy deformation, homogeneous elasticity

As stated by many authors [Stein et al. (2003); Yang and Mavriplis (2005)], a completely
elastic material with homogeneous structural properties does not ensure a non-folded de-
formed mesh. Hence, it was decided to improve the presented model by the implementation
of additional elasticity control mechanisms.

3.5.4 Model improvement: heterogeneous elasticity

Under the presence of large displacements, the performance of the base formulation of the
Elastic Analogy is drastically reduced. The most popular approach found in the literature
in order to overcome this limitation consists in replacing the initial fictitious homogeneous
material by one based on a spatial distribution of its elastic properties. Table 3.2 summarizes
previous works performed by other other authors in this context. Four main strategies can be
distinguished:

• Distribution of E based on geometrical properties of the original mesh

• Distribution of ν based on geometrical properties of the original mesh
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Table 3.2: Elasticity control strategies of the Elastic Analogy in the literature

Young Modulus E Poisson Ratio ν

Quaranta et al. (2008) E ∝
1

lmin
Constant

Yang and Mavriplis (2005)
Biedron and Thomas (2009)
Yamazaki et al. (2010)

E ∝
1

Vol ,E ∝
1
d Constant

Truong et al. (2008) E ∝
1

Vol Constant

Stein et al. (2003)
Amirante et al. (2012)

E ≡ f (J,αs,αv) ν ≡ f (J,αs,αv)

Bartels (2005) E ∝
1

1−e−a·d 0.0

Lund et al. (2001) E ∝
1

da Constant

Nielsen and Anderson (2002) Constant ν ∝
1
Λ

Hsu and Chang (2007)
Chiandussi et al. (2000)
Hsu et al. (2004)

Based on a first homogeneous simulation

lmin: Minimum edge length in the element, Vol: Cell volume (cell surface in 2D applications)
d: Distance to wall, J: Element Jacobian, Λ : Cell aspect ratio

αs,αv: Surface and volume change rate coefficient (user input)

• Computation of E and ν based on the results of a previous homogeneous computation

• Re-computation of the elastic properties during the deformation process based on ele-
ments Jacobian

In order to reduce the computational time of the developed elastic analogy, only the first
two strategies were considered in this PhD work. For the presented implementation, the
distribution showing a higher robustness for the whole range of expected applications was
based on E ∝

1
Vol ,E ∝

1
d . The value of ν was set to a constant value.

Since the impact of ν on the deformed mesh quality is case dependent, it is understood
as an end-user input in the actual implementation. The Young modulus distribution can be
controlled by specifying the ratio between its maximum and minimum values in the whole
mesh Emax/Emin. Finally and for flexibility purposes, the end-user can base the distribution
of E either on the original mesh volume or on the wall distance mapping. This choice should
be performed according to the topology to study, especially when dealing with the existence
of boundary layer meshes.

A good resulting mesh quality could be obtained for the considered VIV test case with
ν = 0.25 and Emax/Emin = 105 (see Figure 3.12). Since in this case the minimum cell volumes
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were located at the vicinity of our walls, no remarkable differences were observed between
the deformed mesh for E ∝

1
Vol and E ∝

1
d distributions.

(a) Global view (b) Beam tip detail

Figure 3.12: VIV Test Case, Elastic Analogy deformation

Table 3.3 illustrates the performance of the developed method against the results of the
already existing RBF development (see Section 3.3). Only a slight decrease in the overall Or-
thogonality was observed, corresponding to a relative difference of 3.21%. More interesting
remarks could be performed from the computational cost point of view:

• Computational time prior to the deformation process (tde f ,pre): Even at this mesh size,
the Elastic Analogy was considerably less expensive than the RBF method (around
27 times). This fact was related to the required matrix inversion involved in the RBF
approach, and could become even more constraining in a multi-million meshes context
(see Section 3.3).

• Allocated memory (Mem.): Memory consumption was higher for the Elastic Analogy,
since the whole linear system needed to be allocated. In particular, a relative increase
of 26% was observed. However, the on-disk memory storage related to the matrix
inversion of the RBF approach could become constraining for bigger meshes.

• Computational time during the deformation process (tde f ,call): The cost of solving the
linear system of the Elastic Analogy was still to high, due to the combination of a very
simple solution process (i.e. the Jacobi solver) and a very important initial excitation.
This numerical issue is assessed in future sections.
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Table 3.3: Mesh quality of original and deformed VIV mesh, Elastic analogy results

Def. method
OR AR ER Computational Data

Min. Max. Max. #Proc tde f ,pre tde f ,call Mem.

Original 43.6 1.09×104 1.95 - - - -
RBF 43.0 1.09×104 1.95 3 0.0300 0.0030 163
ELA 42.2 1.09×104 1.95 3 0.0011 1.0670 205

OR: Orthogonality [deg], AR: Aspect Ratio, ER: Expansion Ratio
Mem.: Max. memory allocated [MB], divided by number of processors #Proc

tde f ,pre: Mesh deformation CPU time [min] per Proc spent in preprocessing (once per simulation)
tde f ,call : Mesh deformation CPU time [min] per Proc spent at every call of the method

Influence of ν value

In the actual implementation, a simple diagonal matrix preconditioning was implemented
(see Section 3.4.2). Since increasing ν reduced the diagonal dominance of the system, nu-
merical instabilities were found for values in the range [0.35,0.5]. In general, a larger value
of ν allows a greater deformation of the mesh before the appearance of folding [Baker and
Carvallo (1999)]. This numerical behavior was verified for our base test case, as shown in
Figure 3.13 (a closer zoom is shown in order to properly analyze the results). A value of
Emax/Emin = 105 was kept for all the computations.

(a) ν = 0 (b) ν = 0.15 (c) ν = 0.25

Figure 3.13: VIV Test Case, Elastic Analogy deformation, impact of ν on beam tip

In this case, increasing the value of ν did not have any important effect on resulting mesh
quality for values higher than 0.25.
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Influence of Emax/Emin value

Figure 3.14 shows the impact of Emax/Emin when fixing ν = 0.25. The mechanism against
mesh folding related to the heterogeneous distribution of E was activated from a certain
value of Emax/Emin. Increasing the value of the maximum Young modulus did not improve
the quality of the deformed mesh, as also observed for ν .

(a) Emax/Emin = 102 (b) Emax/Emin = 105 (c) Emax/Emin = 108

Figure 3.14: VIV Test Case, Elastic Analogy deformation, impact of Emax/Emin on beam tip

3.5.5 Related work and conclusion

The Elastic analogy allowed to accommodate large displacements, including rotations, in
a highly demanding two-dimensional numerical scenario. Its performance with respect to
the deformed mesh quality was rated as sufficient for the a posteriori CFD computations.
However, the computational time required for the linear system solution was still constraining
for the targeted industrial applications.

Two main strategies can be followed in order to reduce the computational time required
by the Elastic analogy:

• Improve linear system solver: both the matrix preconditioning and the solution pro-
cess could be improved by adopting more sophisticated approaches [Augarde et al.
(2006); Barral et al. (2014)]. This development can be very challenging from an im-
plementation point of view, especially in terms of parallelization.

• Improve initial solver solution: The efficiency of the actual solution process was
highly reduced when the initial solution was far from the targeted deformed mesh.
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Hence, a fast pre-computation of an initial solution could considerably reduce the ac-
tual solution time under the presence of large structural displacements.

In addition, the elastic model could be enhanced by improving the capabilities of the method
when dealing with large displacements and/or rotations. In this line, already used concepts
in animation industry for graphics deformation could be adapted to a CFD environment.
Previous experiences in co-rotational elasticity can be found in the works of Bender and Deul
(2013), Georgii and Westermann (2008), Hauth and Strasser (2004) and Zhu et al. (2010),
while the studies of Gao et al. (2002) and Matthias et al. (2002) were focused in modeling
specific material non-linearities.

3.6 Development of a Hybrid mesh deformation method

As seen in Section 3.5, the developed Elastic Analogy suffered from a very high numeri-
cal cost when dealing with large boundary displacements. Among the suggested possible
improvements listed in Section 3.5.5, it was decided to focus the development efforts in pro-
viding a better initial solution for the solver in order to speed up its convergence.

Let consider the mesh deformation of the VIV. Figure 3.15 shows the initial solution of the
developed Elastic analogy method. As it can be observed, only the Dirichlet boundary con-
ditions were imposed, while the mesh blocking remained undisplaced. Hence, the solution
algorithm had to first diffuse the deformation of the block surrounding the beam, lowering
its efficiency. In a more adequate initial solution mesh blocks should be already moved (tak-
ing into account boundaries displacement), prior to the start of the Elastic analogy iterative
solution. This new situation will allow to speed-up the convergence of the Jacobi solver.

Original
geometry

Deformed
geometry

Figure 3.15: Initial solution of the Elastic Analogy solver, issued from the application of the imposed
Dirichlet boundary conditions. VIV test case
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The aim of this development was then to generate an improved initial solution of the
Elastic analogy solver. For this purpose, a combination of light mesh deformation techniques
is foreseen, leading to a hybrid mesh deformation scheme.

3.6.1 Base model

One of the methods involved in the deformation of structured meshes is the so called Trans-
Finite interpolation (TFI). This technique, originally implemented for mesh generation pur-
poses, can be seen as a three-dimensional linear reconstruction of the original mesh clustering
based on blocks displacement. The TFI cannot be considered as a deformation method itself,
but as a complementary tool in the whole process. Its reduced computational time makes it
very attractive as an intermediate or final step in the complete mesh deformation tool. How-
ever and since no rotations are included in the TFI formulation, reduced control on final cells
orthogonality can be achieved. Hence, deformed mesh quality is deteriorated in the context of
large displacements accounting for rotations. This limitation was overcome in the presented
implementation by the application of the Elastic analogy solver.

Since the TFI is not able to work as a stand-alone mesh deformator, an additional tech-
nique was required in order to provide the necessary block deformation input. In this context,
the use of the already existing RBF algorithm was foreseen. In order to reduce the compu-
tational cost of this step, only block corners were included in the interpolation basis. The
position of the inner-mesh block corners was then updated based on the imposed motion, and
used as an input for the TFI algorithm.

The whole numerical chain of this new hybrid method can be summarized as:

RBF Mesh block corners placed at domain boundaries serve as a base for the Radial Ba-
sis Functions Interpolation of interior mesh block corners. This topologically-based
nodes selection allows us to reduce the important computational time attached to RBF
approach.

TFI Block edges, faces and interior points are computed based on Transfinite Interpolation,
in order to have a complete approximate mesh before improving its quality with the
ELA approach.

ELA Interior block nodes are then updated by means of an Elastic Analogy based on the
reference mesh, in order to improve resulting mesh quality. During this step, the nodes
laying on block corners and edges are considered as fixed.

Figure 3.16 illustrates the described methodology trough the VIV test case.
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�� ��RBF

• Radial Basis Function

• Only block corners considered

• Imposed deformation

• Computed deformation

w�

�� ��TFI

• TransFinite Interpolation

• Computes new edges (1D-TFI)

• Computes new faces (2D-TFI)

• Computes new inner nodes (3D-TFI)

w�
�� ��ELA

• Elastic Analogy

• Optional step

• Accounts for rotations

• Improves mesh quality

Figure 3.16: Mesh Hybrid method schema
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3.6.2 Implementation details

Together with the adaptation of the RBF development in order to work with a block corners
basis, the implementation of the TFI approach was required in order set-up the suggested
hybrid methodology. Details about this development are included in this section.

The arc-length based approach originally suggested by Soni (1985) was implemented.
The method has been successfully applied both for mesh generation [Smith (1999)] and mesh
deformation purposes [Lai et al. (2003)].

Let us consider a structured mesh segment going from point A to B. The arc-length of an
interior point i can be defined as:

li =
i

∑
j=A+1

|xre f , j − xre f , j−1| , (3.45)

where xre f corresponds to the first dimension of the nodes reference position vector x⃗re f . The
total arc-length of the segment can be also defined as:

LBA =
B

∑
j=A+1

|xre f , j − xre f , j−1| , (3.46)

Then, new edge interior points coordinates can be computed by performing a linear interpo-
lation:

xi − xre f ,i =

[
1− li

LBA

](
xA − xre f ,A

)
+

[
li

LBA

](
xB − xre f ,B

)
, (3.47)

The same methodology was repeated in all the directions.
As performed by Lai et al. (2003), this 1D-edges interpolation can be easily extrapolated

to a 2D-faces version for block surface interpolation or to 3D-volumes for block interior nodes
recomputation. The combination of these 1D/2D/3D interpolators allows then to remap the
blocks starting from the deformed position of block corners as follows:

• 1D-TFI: Taking as an input the new coordinates of the block corner nodes, interpolates
new edge nodes position.

• 2D-TFI: Taking as an input the new coordinates of the block edge nodes, interpolates
new face nodes position.

• 3D-TFI (only in 3D cases): Taking as an input the new coordinates of the block face
nodes, interpolates new inner nodes position.
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3.6.3 Base results

In order to increase the efficiency of the developed hybrid method in the absence of a vio-
lent deformation, it can be launched with or without the optimization step performed by the
Elastic analogy. In this document, these two possibilities are referred to as:

• RBF+TFI: Block corners are moved via RBF, and the TFI is used to generate the final
deformed mesh

• RBF+TFI+ELA: Block corners are moved via RBF, and the TFI is used to generate an
initial solution for the Elastic analogy solver, aiming to improve final deformed mesh
quality

For the particular application of the VIV test case, the ELA step became necessary in order
to preserve near-wall orthogonality (Figure 3.17 and Figure 3.18).

(a) Global view (b) Beam tip detail

Figure 3.17: VIV Test Case, RBF+TFI deformation

This fact was verified when analyzing the performance of both RBF+TFI and
RBF+TFI+ELA methodologies, compiled in Table 3.4. Indeed, the RBF+TFI numerical
chain was not able to keep the original mesh quality, both in terms of orthogonality and
aspect ratio. However, the needed computational resources used were lower than with any
other approach. The complete hybrid method RBF+TFI+ELA resulted in a higher quality
deformed mesh. In addition, its computational cost was considerable lower than the classical
Elastic analogy approach, which was the objective of this development.
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(a) Global view (b) Beam tip detail

Figure 3.18: VIV Test Case, RBF+TFI+ELA deformation

Table 3.4: Mesh quality of original and deformed VIV mesh, Hybrid method results

Def. method
OR AR ER Computational Data

Min. Max. Max. #Proc tde f ,pre tde f ,call Mem.

Original 43.6 1.09×104 1.95 - - - -
RBF 43.0 1.09×104 1.95 3 0.0300 0.0030 163
ELA 42.2 1.09×104 1.95 3 0.0011 1.0670 205
RBF+TFI 30.5 1.17×104 1.95 3 0.0000 0.0001 154
RBF+TFI+ELA 37.3 1.08×104 1.95 3 0.0012 0.0233 206

OR: Orthogonality [deg], AR: Aspect Ratio, ER: Expansion Ratio
Mem.: Max. memory allocated [MB], divided by number of processors #Proc

tde f ,pre: Mesh deformation CPU time [min] per Proc spent in preprocessing (once per simulation)
tde f ,call : Mesh deformation CPU time [min] per Proc spent at every call of the method

3.6.4 Related work and conclusion

A hybrid method based on the combination of existing mesh deformation techniques was im-
plemented. The main philosophy was the creation of a fast mesh based on the TransFinite
Interpolation, which takes into account pre-computed block corners displacement via Radial
Basis Functions interpolation. The mesh issued from this process can be optionally opti-
mized by the application of an Elastic analogy algorithm. For the particular VIV test case,
the whole chain RBF+TFI+ELA obtained an acceptable deformed mesh quality at a lower
computational cost than the traditional Elastic Analogy. The application of the developed
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methodologies in a wider range of applications is studied in following sections.
Similar hybrid methods can be found in the literature:

• Ding et al. (2014): Radial basis function based on block corners + Transfinite Interpo-
lation

• Gopalakrishnan and Tafti (2009); Tsai et al. (2001): Spring analogy for vertex dis-
placement + Transfinite Interpolation

In all the mentioned publications, the deformed mesh quality issued from the TFI was sat-
isfactory for the considered structural deflections. In the presented development, the ELA
step aimed to extend the capabilities of this type of methodologies to a wider range of ap-
plications, while ensuring a high deformed mesh quality, especially when considering large
imposed rotations.

3.7 Additional test cases

In this section, the performance of the developed mesh deformation methods within the
framework of this research are analyzed. In this context, the combination of test case and
specific structural deflection is referred to as Design Load Case (DLCs). The choice of the
presented DLCs was driven by the final objective of the new algorithms: the deformation of
multi-million HAWTs meshes. In order to evaluate the behavior of the different approaches
under large displacements, a static moving walls deflection was imposed. The FSI modal
approach described in Section 2.2.2 was used for this purpose. The analysis of the different
DLCs focuses in the performance of the mesh deformation methods, without any considera-
tion regarding the CFD modeling.

3.7.1 FFA-w3-241

This 2D test case was based on the FFA-w3-241 24.1% relative thickness airfoil, which is
equipped by the DTU 10MW RWT at the blade tip [Bak et al. (2013)]. This model was
found to be very interesting from the development point of view, since it reproduces in two
dimensions the problems in mesh deformation that are foreseen for wind turbine blades. The
numerical scenario established by the FFA-w3-241 profile can be summarized as:

• External two-dimensional aerodynamics

• Mesh accounting for fine boundary layer clustering

• Large moving walls displacements, including sharp edges
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The geometry is characterized by asymmetric pressure and suction sides and a blunt trail-
ing edge. A coarser version of the publicly available mesh described in Bak et al. (2013)
was used in this study. It consists on a C-mesh topology accounting for 1.6×104 nodes (see
Figure 3.19). A first cell of 2.2×10−6/chord thickness was considered in the boundary layer,
and the farfield was placed at around 30 chords from the airfoil.

(a) Leading edge (b) Global view (c) Trailing edge

Figure 3.19: FFA-w3-241 original mesh

Two different DLCs were defined by means of an imposed rigid motion of the airfoil
geometry. They are referred to as forced pitch up and forced pitch down, and described in the
following sections.

DLC1: Forced Pitch Up

A 30 deg pitch up was imposed to the FFA-w3-241 airfoil, involving an important displace-
ment with respect to the original position (see Figure 3.20).

Deformed
geometry

Original
geometry

Figure 3.20: Superposition of original FFA-w3-241 mesh and rotated geometry, DLC1
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As already observed for the VIV test case, the Laplacian Smoothing was not able to
avoid the existence of mesh folding near the trailing edge for such an important rotation
(Figure 3.21).

(a) Leading edge (b) Global view (c) Trailing edge

Figure 3.21: FFA-w3-241 deformed mesh, Laplacian Smoothing, DLC1

The rest of studied mesh deformation methodologies were able to provide a non-folded
resulting grid. Their performance are summarized in Table 3.5. Information concerning the
computational time prior to the deformation process is not included due to the small size of
the considered grid.

Table 3.5: Mesh quality of original and deformed FFA-w3-241 mesh, DLC1

Def. method
OR AR ER Computational Data

Min. Max. Max. #Proc tde f ,call Mem.

Original 43.7 9.19×105 1.55 - - -
RBF 40.3 9.37×105 1.55 1 0.016 33.74
ELA 28.2 8.07×105 1.65 1 0.047 43.50
RBF+TFI 14.1 9.17×105 1.66 1 0.000 33.48
RBF+TFI+ELA 25.0 9.17×105 1.58 1 0.010 43.47

OR: Orthogonality [deg], AR: Aspect Ratio, ER: Expansion Ratio
Mem.: Max. memory allocated [MB], divided by number of processors #Proc

tde f ,pre: Mesh deformation CPU time [min] per Proc spent in preprocessing (once per simulation)
tde f ,call : Mesh deformation CPU time [min] per Proc spent at every call of the method

The impact on deformed mesh quality could be mainly observed based on the minimum
orthogonality (OR), which was related to the cells near the trailing edge. Indeed, the manage-
ment of rotations of each deformation method explained this quality reduction. Even if the
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less computationally expensive method was the RBF+TFI, the lack of rotations of the linear
interpolation resulted in an unacceptable orthogonality near the walls (Figure 3.22).

(a) Leading edge (b) Global view (c) Trailing edge

Figure 3.22: FFA-w3-241 deformed mesh, RBF+TFI, DLC1

Near-wall orthogonality could be improved by adding a final ELA step in the hybrid
deformation approach (Figure 3.23). The computational time of the whole RBF+TFI+ELA
sequence was lower than a direct evaluation of the Elastic Analogy, thanks to the proper
initialization of the linear system solver.

(a) Leading edge (b) Global view (c) Trailing edge

Figure 3.23: FFA-w3-241 deformed mesh, RBF+TFI+ELA, DLC1

However and due to the small number of nodes of the studied mesh, RBF was offering
a computational cost equivalent to RBF+TFI+ELA. Additionally, this method resulted in the
highest quality deformed mesh (Figure 3.24).
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(a) Leading edge (b) Global view (c) Trailing edge

Figure 3.24: FFA-w3-241 deformed mesh, RBF, DLC1

DLC2: Forced Pitch Down

In order to ensure that the conclusions made in previous DLC were independent on the sign
of the rotation, a -30 deg pitch was imposed to the geometry (Figure 3.25). Table 3.6 shows

Deformed
geometry

Original
geometry

Figure 3.25: Superposition of original FFA-w3-241 mesh and rotated geometry, DLC2

the performance of every mesh deformation method for this DLC. The capabilities of the
different mesh deformation methods were equivalent to the observed ones for the DLC1 case
(see Table 3.5). Same remarks concerning resulting mesh quality could be also made for this
DLC (Figure 3.26, 3.27, 3.28). Hence, it could be concluded that the developed algorithms
had the same behavior disregarding the rotation sign.
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Table 3.6: Mesh quality of original and deformed FFA-w3-241 mesh, DLC2

Def. method OR AR ER Computational Data

Min. Max. Max. #Proc tde f ,pre tde f ,call Mem.

Original 43.7 9.19×105 1.55 1 - - -
RBF 42.8 9.37×105 1.55 1 0 0.016 33.74
ELA 38.5 8.10×105 1.49 1 0 0.047 43.50
RBF+TFI 13.9 9.17×105 1.65 1 0 0.000 33.48
RBF+TFI+ELA 35.1 9.17×105 1.47 1 0 0.010 43.47

OR: Orthogonality [deg], AR: Aspect Ratio, ER: Expansion Ratio
Mem.: Max. memory allocated [MB], divided by number of processors #Proc

tde f ,pre: Mesh deformation CPU time [min] per Proc spent in preprocessing (once per simulation)
tde f ,call : Mesh deformation CPU time [min] per Proc spent at every call of the method

(a) Leading edge (b) Global view (c) Trailing edge

Figure 3.26: FFA-w3-241 deformed mesh, RBF+TFI, DLC2

(a) Leading edge (b) Global view (c) Trailing edge

Figure 3.27: FFA-w3-241 deformed mesh, RBF+TFI+ELA, DLC2
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(a) Leading edge (b) Global view (c) Trailing edge

Figure 3.28: FFA-w3-241 deformed mesh, RBF, DLC2

Concluding Remarks

The FFA-w3-241 test case has illustrated the performance of the different developed methods
in 2D configurations, including large moving walls displacement induced by large rotations.
Even if at this mesh size the low computational effort of RBF did not require shifting to
another mesh deformation method, the numerical chain RBF+TFI+ELA was rated as a good
alternative. This hybrid approach was able to keep near-wall orthogonality at an equivalent
Central Process Unit (CPU) cost.

3.7.2 AGARD 445.6 wing

This 3D test case is based on the AGARD 445.6 wing experimentally studied by Yates (1987),
and it is representative of a HAWT application. The AGARD 445.6 wing is equipped with a
NACA 65A004 airfoil, and it accounts for a root chord of 0.5587 m, a quarter-chord sweep
angle of 45 deg, a half wing span L of 0.762 m and a tapper ratio of 0.6. The model aims
to analyze the performance of the developed mesh deformation tools in a numerical scenario
that can be summarized as:

• External three-dimensional aerodynamics

• Multi-block structured mesh

• Multi-million mesh, accounting for boundary layer clustering

• Large moving walls displacements, including sharp edges

A Navier-Stokes mesh accounting for 3.0×106 nodes and 14 blocks was used, based on
previous works of Debrabandere (2014) for High Reynolds simulations. A first cell of 10−4m
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thickness was imposed, corresponding to a factor of 1.79×10−4 with respect to the root
chord. Figure 3.29 illustrates the created mesh around the wing.

Figure 3.29: AGARD 445.6 mesh detail

Structural model

In order to impose a wing deflection, the 1-way coupling FSI modal approach described
in Section 2.2.2 was used. First 4 natural frequencies and mode shapes of the AGARD
445.6 wing were directly obtained from the experimental data published by Yates (1987),
see Table 3.7. Two different DLCs were analyzed, referred to as forced bending and forced
twist.

Table 3.7: AGARD 445.6 wing modes

Mode ID. Frequency [Hz] Description

1 9.6 1st bending
2 38.2 1st torsion
3 48.3 2nd bending
4 91.5 2nd torsion

DLC1: Forced bending

A pure bending deflection was imposed, based on the maximum deflections computed by
Debrabandere (2014). The 1st bending mode was excited for this purpose (see Table 3.7). A
maximum wing tip deflection of 3.95 cm was observed (corresponding to 5.2% of the half
span L). Figure 3.30 shows a superposition of original and deflected wing geometries.
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(b) Detail of blade tip

Figure 3.30: Original (red) and deformed (grey) AGARD 445.6 wing, DLC1

The performance of the developed mesh deformation methods is illustrated in Table 3.8.
As already mentioned, classical RBF methods suffered from an unacceptable computational
time. This important CPU cost was related to the needed matrix inversion, performed in a pre-
processing stage. An estimation of this CPU cost, together with the needed memory to store
the coefficients matrix is also included in Table 3.8. Both RBF+TFI and RBF+TFI+ELA
did not distort original mesh quality. Indeed, due to the low magnitude of the deforma-
tion, the resulting meshes of these two methods were equivalent to the original one (Fig-
ure 3.31, 3.32, 3.33).

Table 3.8: Mesh quality of original and deformed AGARD 445.6 wing mesh, DLC1

Def. method OR AR ER Computational Data

Min. Max. Max. #Proc tde f ,pre tde f ,call Mem.

Original 77.1 132.0 1.15 - - - -
RBF - - - - ∼36050 - ∼15700
RBF+TFI 77.1 132.0 1.15 7 0.00 0.04 528
RBF+TFI+ELA 77.1 132.0 1.15 7 0.16 9.5 1530

OR: Orthogonality [deg], AR: Aspect Ratio, ER: Expansion Ratio
Mem.: Max. memory allocated [MB], divided by number of processors #Proc

tde f ,pre: Mesh deformation CPU time [min] per Proc spent in preprocessing (once per simulation)
tde f ,call : Mesh deformation CPU time [min] per Proc spent at every call of the method
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(a) Original mesh (b) RBF+TFI (c) RBF+TFI+ELA

Figure 3.31: AGARD 445.6 spanwise cut at wing tip vicinity, original and deformed meshes (DLC1)

(a) Original mesh (b) RBF+TFI (c) RBF+TFI+ELA

Figure 3.32: AGARD 445.6 leading edge at 90% span, original and deformed meshes (DLC1)

(a) Original mesh (b) RBF+TFI (c) RBF+TFI+ELA

Figure 3.33: AGARD 445.6 trailing edge at 90% span, original and deformed meshes (DLC1)
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It can be concluded that for this particular DLC and due to the lack of important induced
mesh rotations, the additional computational effort attached to the ELA step of the developed
hybrid method is not required. Hence, the RBF+TFI can be seen as a very computationally
efficient solution for small to moderate blade deflections. Indeed, only a few seconds were
needed in order to deform the mesh with this approach. Due to the important amount of
boundary nodes to consider, the inversion of the matrix involved in the application of the full
RBF method will require of around 25 days in a single processor.

DLC2: Forced twist

In order to evaluate the performance of the developed methods in an extreme deformation en-
vironment, a non-realistic heavy twist deflection was imposed by exciting the 1st twist mode
(see Table 3.7). Figure 3.34 shows a superposition of the original and deflected wing geome-
tries. The performance of the developed mesh deformation methods is illustrated in Table 3.9.

(a) Side view (b) Top view

Figure 3.34: Original (red) and deformed (grey) AGARD 445.6 wing, DLC2

As already mentioned, classical RBF methods suffered from an unacceptable computational
time. Same remarks done for DLC1 regarding resulting mesh quality and computation details
could be made in this case. Even under this important forced deflection, both RBF+TFI and
RBF+TFI+ELA hybrid approaches gave overall resulting mesh qualities which were equiva-
lent to the original grid. However a local improvement of the near-wall mesh orthogonality
could be attributed to the ELA step. This is illustrated in Figure 3.35, 3.36, 3.37 by means of
the cross section meshed at 90% of the wing span.
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Table 3.9: Mesh quality of original and deformed AGARD 445.6 wing mesh, DLC2

Def. method OR AR ER Computational Data

Min. Max. Max. #Proc tde f ,pre tde f ,call Mem.

Original 77.1 132.0 1.15 - - - -
RBF - - - - ∼36050 - ∼15700
RBF+TFI 77.1 132.0 1.15 7 0.00 0.04 528
RBF+TFI+ELA 77.1 132.0 1.15 7 0.16 9.5 1530

OR: Orthogonality [deg], AR: Aspect Ratio, ER: Expansion Ratio
Mem.: Max. memory allocated [MB], divided by number of processors #Proc

tde f ,pre: Mesh deformation CPU time [min] per Proc spent in preprocessing (once per simulation)
tde f ,call : Mesh deformation CPU time [min] per Proc spent at every call of the method

(a) Original mesh

(b) Def. RBF+TFI (c) Def. RBF+TFI+ELA

Figure 3.35: AGARD 445.6 wing profile at 90% span, deformed meshes (DLC2)

Concluding Remarks

The AGARD 445.6 wing test case has illustrated the benefits of the developed hybrid methods
when dealing with multi-million 3D cases. Both RBF+TFI and RBF+TFI+ELA approaches
offered a very interesting trade-off between resulting mesh quality and needed computational
effort. As a global remark, it could be concluded that under small to moderate deflections
(such as structural vibrations), the RBF+TFI did not modify the original near-wall orthog-
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(a) Original mesh (b) Def. RBF+TFI (c) Def.
RBF+TFI+ELA

Figure 3.36: AGARD 445.6 leading edge at 90% span, deformed meshes (DLC2)

(a) Original mesh (b) Def. RBF+TFI (c) Def.
RBF+TFI+ELA

Figure 3.37: AGARD 445.6 trailing edge at 90% span, deformed meshes (DLC2)

onality of the mesh. When important wing deflections need to be assessed (i.e. extreme
DLCs), the last ELA step is required to ensure an accurate a posteriori CFD computation.

3.8 Comments about the CPU cost and the mesh size

Table 3.10 compiles the total CPU cost of the mesh deformation process for the developed
RBF+TFI and RBF+TFI+ELA hybrid methods, together with the results of the traditional
RBF approach. All the cases studied in this chapter were listed as a function of the number
of mesh nodes: the FFA-w3-241 airfoil (Section 3.7.1), the VIV configuration (Section 3.6)
and the AGARD 445.6 wing (Section 3.7.2). Additionally, the results concerning the study
of the DTU 10MW RWT wind turbine presented in Section 5.3.2 were also included to have
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a reacher estimation of the methods scalability. The CPU time is presented in seconds, and it
was normalized by the number of nodes of each of the considered grids. It can be observed

Table 3.10: Summary of mesh deformation methods CPU cost for each of the studied cases. Values
were normalized by the number of nodes of each grid

Considered Grid Mesh deformation methods CPU cost [s/node]

Case #Nodes RBF RBF+TFI RBF+TFI+ELA

FFA-w3-241 1.6×104 6.00×10−5 3.75×10−11 3.75×10−5

VIV 1.2×105 1.65×10−5 5.00×10−8 1.23×10−6

AGARD 445.6 3×106 7.21×10−1 8.00×10−7 1.93×10−4

DTU 10MW RWT 7.2×106 3.20 2.33×10−5 3.12×10−3

that for all the meshes, the RBF+TFI was found to be at least two orders of magnitude faster
than the rest of approaches. For small meshes such as the FFA-w3-241 or the VIV, the use of
the classical RBF approach could still be foreseen, especially when considering its capacity to
handle large deflections. However when passing to big 3D meshes like the AGARD 445.6 or
the DTU 10MW RWT the problem of scalability of this mesh deformation method became
evident. This is illustrated in Figure 3.38, where a graphical representation of the results
of Table 3.10 is depicted. The problems of scalability of the RBF motivates the use of the

Figure 3.38: CPU cost of the different mesh deformation methods as a function of the number of grid
nodes. A logarithmic scale was used for the abscissae

RBF+TFI or the RBF+TFI+ELA approaches as an alternative for this large meshes, when
facing small to moderate or large deflections respectively. For the particular case of the DTU
10MW RWT, where the CPU cost of the RBF corresponded to 3.2 s per grid node, a total
mesh deformation time of 267 days is to be expected. As it will be shown in Section 5.3.2, the
RBF+TFI method was able to deal with the deformation of this wind turbine blade at normal
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operation with a high quality resulting grid and a total CPU cost of less than 3 minutes.

3.9 Conclusions and future work

A new hybrid method for the deformation of multi-block structured meshes of large HAWT
rotors was implemented. A combination of consolidated technologies allowed to achieve a
good trade-off between deformed mesh quality, scalability and computational cost. In partic-
ular, the developed methodology consisted of a first application of the Radial Basis Function
(RBF), using only the block corners in the interpolation. This allowed to considerably reduce
the computational cost attached to the matrix inversion involved in this method when being
applied to the whole mesh. The new corner positions of the multi-block structured mesh
were used as an input for the Transfinite Interpolation (TFI) in order to generate a deformed
grid of the whole CFD domain. The quality of this first deformed mesh could be optionally
improved by the application of the Elastic analogy (ELA). This last step was only necessary
when dealing with large displacements and/or large rotations.

An industry-oriented implementation reduced the input needed from the end-user, and
ensured the scalability of the method with the number of processors thanks to a MPI-based
parallelization. The performance of the developed approach was illustrated in this chapter
by means of several mesh deformation scenarios, ranging from academic 2D cases to a 3D
mesh around the complete AGARD 445.6 wing. For the latter case the computational cost
of the traditional RBF approach in the whole mesh was rated as prohibitive, since the inver-
sion of the coefficients matrix required about 25 days. The developed hybrid deformation
methodology was found to be a very efficient alternative for this constraining case. Indeed
both RBF+TFI and RBF+TFI+ELA approaches were able to deform the whole CFD domain
without any mesh folding. A very reduced computational cost was also needed (2 seconds
and 10 minutes respectively). The choice between these two hybrid methods should be made
based on the expected deformations magnitude. Indeed, it was shown that under the exis-
tence of large displacements and large rotations, the final ELA step was necessary in order
to grantee the near-wall orthogonality of the original mesh. The application of this method-
ology to a complete HAWT rotor is presented further on in this document in Chapter 5 and
Chapter 6.

Future work could be devoted to improve the elastic model included in the method. Ad-
ditionally, the involved linear interpolator could be also ameliorated in order to take into
account mesh induced rotations. This new feature could avoid the use of the last Elastic
analogy step, that is the most computationally demanding. One of the possibilities in order
to model mesh rotations is the implementation of quaternions algebra, already used in the
animation industry by other authors [Johnson (2003); Kavan et al. (2006)].



Chapter 4

Extension of the Non-Linear
Harmonic method for 2-way
coupling FSI simulations

As introduced in Section 2.1.6, the CFD analysis of big rotor HAWTs requires the consid-
eration of both flow unsteadiness and blade flexibility. The solution of the unsteady flow
equations by means of a time marching approach is often too computationally expensive to
be fit in the industrial work-flow of a HAWT design. This is the reason why the use of the fre-
quency domain technique referred as the Non-Linear Harmonic method (NLH) was adopted
in this research [Vilmin et al. (2006)]. In the NLH method the time-dependent Navier-Stokes
equations are replaced by a set of harmonic equations, which are less computationally expen-
sive to solve. Due to the strong mutual interaction between the fluid loads and the blade de-
flections, the consideration of the rotor flexibility requires of a 2-way coupling FSI approach.
The integration of such a coupling in a frequency domain flow solver forces the aeroelastic
equilibrium equations to be formulated in the harmonic domain as well. While many stud-
ies have been conducted regarding the 2-way coupling FSI problem with a time marching
approach, only a few researchers have tackled this topic in the harmonic domain. Most part
of these publications focused in the study of Limit Cycle Oscillations (LCO) by means of
the Harmonic balance method. In this approach, a harmonic formulation of the aeroelastic
equilibrium is included in the CFD solver. Its solution is performed in an iterative way, un-
der the assumption of known structure deformations or known flow conditions (i.e. Reynolds
and Strouhal numbers). To this group belong the works of Dowell et al. (2008) and Besem
(2015) about the vortex induced vibrations of cylinders, the F-16 fighter studies of Thomas
et al. (2004) and Thomas et al. (2005), and the elastically mounted airfoil analysis included
in Thomas et al. (2002) and Liu et al. (2005). A more versatile approach was proposed in
Blanc et al. (2010), where the so-called Time-Harmonic Balance (THB) method was used.
Even if the assumption of periodic flows is still made in the THB technique, the solution of
the unsteady Navier-Stokes equations is performed by means of several steady computations
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running in parallel and coupled by a source term. Each of these simulations represents a given
time-step (or snapshot) and they can be solved by means of usual time-domain flow solvers.
This allows to solve the aeroelastic equations in a steady-like way for every snapshot. The
final deformation transients can be then recomputed by means of harmonic interpolation of
each of these solutions.

This chapter describes the development of an innovative 2-way coupling FSI approach
integrated in the NLH solver of FINE™/Turbo. The structure was modeled by means of
a Reduced Order Model (ROM), described by its modal shapes and eigen values. In order
to be adaptable to a wide range of potential applications, a generalized formulation of the
aeroelastic coupling was adopted. In this way the structure deformations are understood as a
set of additional harmonics to be solved by the NLH method, without requiring an a priori
estimation of their value. The diffusion of these structural deflections into the whole CFD grid
was performed with a harmonic adaptation of a hybrid mesh deformation method developed
within the scope of this PhD and presented in Chapter 3. The works of Debrabandere (2014)
regarding the implementation of FSI methods based on the modal approach were taken as
an starting point of this development, an they are briefly described in Section 4.1. Due to
the lack of experimental data regarding the dynamic aeroelasticity of large rotor HAWTs,
the accuracy and performance of the developed methodology are validated in this chapter
in the framework of the Vortex Induced Vibrations (VIV) of a two-dimensional cylinder in
transverse oscillations.

4.1 Existing FSI methods in FINE™/Turbo

As previously introduced in Section 2.2.2, several FSI methods were implemented in
FINE™/Turbo in the framework of the PhD thesis of Debrabandere (2014). Of particular
interest to this research is the so-called modal approach, that assumes a structure model
based on a set of eigen frequencies and modal shapes. The modal approach was used in
FINE™/Turbo in order to perform 1-way and 2-way coupling FSI simulations when dealing
with time marching flow solutions. In addition, Debrabandere (2014) extended the capa-
bilities of the NLH method for 1-way coupling computations. The details of these three
approaches are briefly described in this section.
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4.1.1 Time marching modal approach

In solid mechanics, the inertial reaction of a solid M ∂ 2u⃗
∂ t2 is related to the difference between

the external and internal forces ( f⃗S and i⃗S respectively):

M
∂ 2u⃗
∂ t2 = f⃗S − i⃗S (4.1)

where:

• M refers to the mass matrix

• u⃗ is the deformation vector, defined from the original node coordinates to the displaced
position

When considering a linear system, Equation 4.1 can be written as:

M
∂ 2u⃗
∂ t2 +C

∂ u⃗
∂ t

+Ku⃗ = f⃗S (4.2)

where:

• C refers to the damping matrix

• K refers to the stiffness matrix

Under the assumption of undamped free vibrations, Equation 4.2 can be written as:

M
∂ 2u⃗
∂ t2 +Ku⃗ = 0⃗ (4.3)

In order to have non-trivial solution, Equation 4.3 should satisfy the condition:

det(K−λM) = 0 (4.4)

Corresponding to an eigenvalue problem, where every solution λk can be related to the so-
called natural frequencies of the structure fk:√

λk = 2π fk = ωk (4.5)

For every eigenvalue λk, an associated eigen vector φ⃗k, often referred as the structure mode
shape, can be computed by means of:

Kφ⃗k = λkMφ⃗k (4.6)
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Since we are dealing with a linearized version of the structure, every deformation can be
expressed in terms of the mode shapes basis:

u⃗ =
nmodes

∑
k=1

qkφ⃗k (4.7)

Equation 4.7 can be expressed in its matricial form as:

u⃗ = φφφ q⃗ (4.8)

By injecting Equation 4.8 into Equation 4.2

Mφφφ
∂ 2q⃗
∂ t2 +Cφφφ

∂ q⃗
∂ t

+Kφφφ q⃗ = f⃗S (4.9)

Or equivalently:

φφφ
T Mφφφ

∂ 2q⃗
∂ t2 +φφφ

T Cφφφ
∂ q⃗
∂ t

+φφφ
T Kφφφ q⃗ = φφφ

T f⃗S (4.10)

Expressing Equation 4.10 in a basis of scaled mode shapes φφφ s such as φφφ T
s Mφφφ s = I, it can be

further simplified [see for instance He and Fu (2001)]:

I
∂ 2q⃗
∂ t2 +φφφ

T
s Cφφφ s

∂ q⃗
∂ t

+diag
[
ω

2
k
]

q⃗ = φφφ
T
s f⃗S (4.11)

In the absence of damping Equation 4.11 becomes uncoupled for every mode k, making the
solution of the system easier. This simplification is no longer possible with the consideration
of the damping through the so-called generalized damping matrix or modal damping matrix
Cg =φφφ T

s Cφφφ s, since generally it is not diagonal. As exposed by Felippa (2016), there are three
main approaches to tackle this problem. In the first approach, known as Direct Time Integra-
tion (DTI), the Equation 4.2 is numerically integrated in time. This allows to keep the original
damping matrix without any additional assumption or modal basis transformation. Even if the
problem is approached without any loss of generality, the DTI method has the disadvantage
of being complex to implement. In addition it requires the complete damping matrix as an
input, which may not be available. The second approach for solving this structural problem is
referred to as complex eigen system, since it usually implies the appearance of complex mode
shapes and frequencies. The main philosophy is to transform Equation 4.11 into the state
space in order to obtain two diagonal matrices that contain the matrices M, C and K. Both
the state space transformation and the introduction of the complex mode shapes, which are
difficult to physically interpret, significantly difficult the solution of the system. More details
regarding this transformation can be found in the PhD thesis of Adhikari (2000). Finally,
the third approach works with the original Equation 4.11 but assuming a diagonal damping
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matrix. On the one hand this diagonalization method uncouples the system in a very straight-
forward manner, simplifying its solution. On the other hand it allows the direct use of the
undamped mode shapes and natural frequencies, that can be easily computed with the help
of a CSM solver and do have a physical interpretation. These two factors motivated the se-
lection of the diagonalization method in Debrabandere (2014). Indeed, for large systems the
diagonalization approximation was found to be one order of magnitude faster than the com-
plex eigen system approach [Adhikari (2000)]. However, the diagonalization of Cg implies a
certain level of approximation. As a general rule, the simplifications performed within this
method do not considerably effect the solution when the system is related to a light damping
(i.e. when ξk << 1). Several authors have proposed indexes that tried to quantify the error of
the diagonalization approach by methods based on modal phase difference, modal polygon
areas, system response, etc. For a detailed review of this indexes the reader is referred to the
PhD thesis of Adhikari (2000). There are two main types of diagonalization methods: the
modal damping and the Rayleigh damping. In the modal damping the generalized damping
matrix is supposed to have the form Cg = diag [2ξkωk], where the ξk parameter is known as
the damping ratio or damping factor of the mode k. After the introduction of this simplified
expression into Equation 4.11, the system can be uncoupled for every mode k as:

∂ 2qk

∂ t2 +2ξkωk
∂qk

∂ t
+ω

2
k qk = φ⃗

T
k,s f⃗S (4.12)

In the absence of experimental results or when the mechanisms of the damping are not com-
pletely understood (i.e. the C matrix is not available), the estimation of ξk for every mode
remains the only possibility. These guesses rely on previous experiences with similar struc-
tures and configurations. Typical damping factors of structures are in the range of 1% to
5%, and they use to increase together with the frequency. In the alternative diagonalization
technique, the Rayleigh damping [Rayleigh (1877)], the damping is assumed to be a linear
combination of the mass and stiffness matrix: C = β1M+β2K. Introducing this expression
into Equation 4.11, it can be decoupled as:

∂ 2qk

∂ t2 +2
[

1
2

(
β1

ωk
+β2ωk

)]
ωk

∂qk

∂ t
+ω

2
k qk = φ⃗

T
k,s f⃗S (4.13)

The expression β1/ωk +β2ωk is then acting as the effective damping factor of the Rayleigh
damping. While the former term aims to damp the lower frequencies of the system, the latter
is responsible of the high frequency damping. The main advantage of the Rayleigh damping is
the estimation of the damping factor of all the modes by choosing its value for two particular
frequencies and solving for β1 and β2. However, this automatic computation can eventually
lead to over-damping of the low or the high frequency range.
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Due to its generality, the modal damping approach summarized in Equation 4.12 was
chosen by Debrabandere (2014). The end user was requested to introduce the linearized be-
havior of the structure by means of the values of ωk, ξk and φ⃗k,s for every mode. Those were
obtained prior to the FINE™/Turbo FSI simulation, usually by means of a modal analysis
performed with a CSM solver. Since the points containing the modal shapes information do
not necessarily correspond to the position of the CFD mesh nodes, an additional interpola-
tion step is required. In the implementation of Debrabandere (2014), the radial basis function
(RBF) interpolation was used for this pre-processing task. Two time marching FSI methods
based on the modal approach were implemented, corresponding to the 1-way coupling (im-
posed boundary displacements) and 2-way coupling (where the new boundary positions were
computed based on the fluid loads). Both methodologies could be easily applied to steady
computations by understanding them as unsteady simulations accounting for a single time
step.

1-way coupling

For the 1-way coupling approach, the end user is required to enter a set of generalized dis-
placements qk transients as an input. The solid deformation is directly computed based on
Equation 4.8, and diffused into the complete CFD mesh by means of mesh deformation algo-
rithms.

2-way coupling

In this case the solid deformation needs to be recomputed based on f⃗S, corresponding to the
fluid loading. This recomputation is only performed at specific flow inner iterations intervals,
chosen by the end-user thanks to the parameter ITCPL. The resulting iterative solution pro-
cedure for a total number of flow inner iterations NIT E, a time step ∆t and a total simulation
time ttotal is summarized in Figure 4.1.

Different approaches can be used in order to solve Equation 4.12 [Debrabandere (2014)].
For the particular case of an undamped steady application, time derivatives vanish and the
direct solution is:

qk =
φ⃗ T

k,s f⃗S

ω2
k

(4.14)
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Initial flow solution (t=0)

ite=1

Solve time domain

Navier-Stokes equations

ite%ITCPL=0?

Mode shapes & frequencies Compute f⃗S

Mode shapes interpolation Compute q⃗ with Eq. 4.12

Compute u⃗ with Eq. 4.8

Mesh deformation

ite=ite+1

ite=NITE?

t=t+∆t

t=ttotal?

Computation is finished

no

yes

no

yes

no

yes

Figure 4.1: Time marching FSI, 2-way coupling with the modal approach

4.1.2 NLH modal approach

The NLH base line formulation was previously adapted to a FSI context by Debrabandere
(2014). As a result of the introduction of the mesh deformation, additional terms should be
considered for both time mean and harmonic equations during the NLH solution. The time
marching 1-way coupling methodology described in Section 4.1.1 was adapted to a NLH
formulation, assuming the same modal representation of the structure. Equation 4.8 was re-
written in a harmonic context by expressing qk by means of time-averaged and fluctuation
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contributions (q̄k + q′k). The translation of generalized displacement harmonics into solid
boundaries deformation could be then performed as:

u⃗ =
nmodes

∑
k=1

qkφ⃗k (4.15)

ũ|h =
nmodes

∑
k=1

q̃k|hφ⃗k (4.16)

Where u⃗ refers to the time-averaged deformation and ũ|h to the value of the hth harmonic
contribution. In the 1-way coupling approach, the user is required to enter the following
information for every considered mode k:

• The time-averaged generalized displacement q̄k

• Real and imaginary components of q̃k|h for every harmonic h

This input allows the direct evaluation of Equation 4.15 for the computation of time-mean
and harmonic deformations. In order to diffuse the imposed solid boundaries harmonic dis-
placements into the CFD mesh, the extension of the RBF mesh deformation method in the
harmonic frequency domain was also required. This was achieved by independently applying
the RBF interpolators to time-averaged and harmonic displacements.

4.2 Development of a 2-way coupling NLH method

The implementation of the 2-way coupling approach in the NLH method required the integra-
tion of an aeroelastic equilibrium equation. For this development, it was decided to extend the
formulation of the time marching 2-way coupling modal approach presented in Section 4.1.1
to the harmonic domain. This procedure accounted for two main benefits. On the one hand
a generalized formulation was kept, being able to adapt to a wide range of potential applica-
tions. On the other hand, it ensured the same aeroelastic coupling for both time marching and
NLH approaches. As for the time marching version, the main limitation of this NLH 2-way
coupling modal approach relies on the linearization of the structure behavior.

The derivation of the NLH method version of the aeroelastic equilibrium equation starts
by expressing the generalized displacements and the fluid loads of Equation 4.12 as their
time-averaged and harmonic contributions. For the kth mode, the following equation is ob-
tained:

∂ 2
(
q̄k +q′k

)
∂ t2 +2ξkωk

∂
(
q̄k +q′k

)
∂ t

+ω
2
k
(
q̄k +q′k

)
= φ⃗

T
k,s

(
f⃗S + f⃗S

′)
(4.17)
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Developing all the terms:

∂ 2q̄k

∂ t2 +
∂ 2q′k
∂ t2 +2ξkωk

∂ q̄k

∂ t
+2ξkωk

∂q′k
∂ t

+ω
2
k q̄k +ω

2
k q′k = φ⃗

T
k,s f⃗S + φ⃗

T
k,s f⃗S

′
(4.18)

Considering that the temporal derivative of a time-averaged quantity is null:

∂ 2q′k
∂ t2 +2ξkωk

∂q′k
∂ t

+ω
2
k q̄k +ω

2
k q′k = φ⃗

T
k,s f⃗S + φ⃗

T
k,s f⃗S

′
(4.19)

4.2.1 Time-mean equations for the aeroelastic equilibrium

Time-mean equation can be derived by time-averaging Equation 4.19:

ω
2
k q̄k = φ⃗

T
k,s f⃗S (4.20)

Leading to:

q̄k =
φ⃗ T

k,s f⃗S

ω2
k

(4.21)

4.2.2 Harmonic equations for the aeroelastic equilibrium

By casting into the frequency domain, Equation 4.19 becomes, for the hth harmonic:

I2
ω

2
h q̃k|h +2Iξkωkωhq̃k|h +ω

2
k q̃k|h = φ⃗

T
k,s
˜⃗fS|h (4.22)

Leading to:

q̃k|h =
φ⃗ T

k,s
˜⃗fS|h

ω2
k + I2ω2

h +2Iξkωkωh
=

φ⃗ T
k,s
˜⃗fS|h

ω2
k −ω2

h +2Iξkωkωh
(4.23)

4.2.3 Deformations computation

Once the generalized displacements are computed by means of Equation 4.21 and Equa-
tion 4.23, the solid boundaries deformation can be directly recovered as performed for the
1-way coupling NLH approach:

u⃗ =
nmodes

∑
k=1

qkφ⃗k (4.24)

˜⃗u|h = nmodes

∑
k=1

q̃k|hφ⃗k (4.25)
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In order to diffuse solid boundaries displacement into the whole CFD mesh, the RBF+TFI
hybrid mesh deformation method presented in Section 3.6 was extended in order to work
in a harmonic framework. As suggested by Debrabandere (2014), developed interpolation
routines were independently applied to the time-averaged and real and imaginary harmonic
components of computed boundaries deformation. This is illustrated in Figure 4.2. The
values of ˜⃗u|h and u⃗ computed at the boundaries of the structure were used as an input for
this harmonic mesh deformation process. A first application of the RBF was performed,
using only the block corners in the interpolation. The new corner positions of the multi-block
structured mesh were then used as an input for the TFI in order to generate a deformed grid
of the whole CFD domain. This last process was performed in three-steps: re-computation
of the block edges by a 1D version of the TFI, re-computation of the block faces with a
2D extension of this algorithm, and finally the application of a 3D TFI to compute the new
position of the block inner nodes.

Time-averaged 
deformation

Harmonic
deformation

RBF 
(only corners)

1D TFI 2D TFI 3D TFI
(3D meshes)

Interior corners 
computation

New edges
computation

New faces
computation

Interior nodes
computation

Boundary
deformation

Figure 4.2: Schema of the harmonic adaptation of the hybrid mesh deformation method for NLH-based
simulations

4.2.4 Implementation details

The harmonic structural equation was implemented in the solver via the re-computation of
q̄ and q̃ based on fluid loads (see Equation 4.21 and Equation 4.23). In order to ensure the
stability of the code under the presence of important deformations, an under-relaxation factor
γ ≤ 1 was introduced in the update of computed generalized displacements between two
consecutive iterations i and i−1:

q̄k
i = γ q̄k

i +(1− γ) q̄k
i−1 (4.26)

q̃k|ih = γ q̃k|ih +(1− γ) q̃k|i−1
h (4.27)

Generalized displacements re-computation was only performed at specific flow iterations in-
tervals, chosen by the end-user thanks to the parameter ITCPL in the FINE™/Turbo interface.
The solution was rated as converged when the flow variables residuals criteria was satisfied
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and the generalized displacements were stabilized. The resulting iterative solution proce-
dure for a total number of flow iterations NIT E, structural modes NMODES and harmonics
NHARMO is summarized in Figure 4.4.

4.3 Validation case: 2D cylinder

To the best of author’s knowledge, no experimental data regarding the dynamic aeroelasticity
of large rotor HAWTs was available when this PhD research was carried out. As an alterna-
tive for the validation of the presented harmonic FSI 2-way coupling methodology, the use
of a simple two-dimensional geometry was considered. To simplify the numerical set-up,
a non-rotating problem was targeted. An alternative source of flow unsteadiness was then
required for the application of the NLH method, rather than the rotor/stator or rotor/rotor
interactions. In this context the so-called vortex shedding phenomenon was selected. In par-
ticular, a validation test case consisting on a cylinder mounted on a single degree of freedom
elastic system which is excited by vortex shedding is presented here (see Figure 4.3). To
focus in the testing of the proposed FSI strategy, the eventual influences of the turbulence
modeling were avoided by only considering simulations in the laminar regime.

Incoming flow

Laminar vortex shedding

Elastic system

Figure 4.3: Validation test case for 2-way coupled approach

In order to achieve a deep understanding of the flow prior to this final validation, a step-
by-step approach was followed. Both the targeted problem and the used numerical methods
were complexified as shown in Table 4.1. For all the stages concerning flow unsteadiness,
both NLH and time marching computations (based on dual-time stepping of Jameson (1991))
were performed.
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Initial solution (Steady or NLH computation)

ite=1

Solve NLH Navier-Stokes equations

ite%ITCPL=0?

Compute f⃗S

Mode shapes & frequencies k=1

Mode shapes interpolation Compute qk with Eq. 4.21 and Eq. 4.26

h=1

Compute ˜⃗fS|h
Compute q̃k|h with Eq. 4.22 and Eq. 4.27

h=h+1

h=NHARMO?

k=k+1

k=NMODES?

Compute u⃗ and ũ with Eq. 4.24 and Eq. 4.25

Time-averaged and harmonic mesh deformation

ite=ite+1

ite=NITE?

Computation is finished

no

yes

yes

no

yes

no

no

yes

Figure 4.4: NLH FSI, 2-way coupling with the modal approach
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Table 4.1: Summary of the step-by-step validation process for the harmonic FSI 2-way coupling ap-
proach. LNS acronym refers to Laminar Navier-Stokes

Cylinder motion Flow Fluid methods FSI methods Reference

Fixed Steady Steady (LNS) N/A Section 4.3.3
Fixed Unsteady Time marching

(LNS), NLH (LNS)
N/A Section 4.3.4

Forced motion Unsteady Time marching
(LNS), NLH (LNS)

1-way coupling Section 4.3.5

Free oscillation
(elastic system)

Unsteady Time marching
(LNS), NLH (LNS)

2-way coupling Section 4.3.6

4.3.1 Scope of the problem

Under certain flow conditions, the flow passing a circular cylinder separates leading to a
pattern of unsteady swirling vortices, often referred as von Karman street or vortex shedding.
The nature of this phenomenon is governed by the Reynolds number (Re), defined as:

Re =
DU∞

ν
(4.28)

Where D is the diameter of the cylinder, U∞ is the freestream velocity and ν is the kinematic
viscosity of the fluid.

For Re values lower than approximately 5, no recirculation is observed. This situation,
sketched in Figure 4.5a, is often referred as creepy flow. For 5 ≲ Re < 40, stationary down-
stream vortices are observed, remaining attached to the cylinder (Figure 4.5b). In the range
40<Re<150, the generation of a laminar von Karman street appears (Figure 4.5c). After
this value, the shed vortices starts to transition from laminar to turbulent. At approximately
Re=300, the von Karman street is already fully turbulent. The same behavior is observed up
to Re ≲ 3×105 (Figure 4.5d). When increasing Re after this region, the laminar boundary
layer starts to transition towards a turbulent state. The cylinder wake becomes narrower and
disorganized, and the vortex shedding is not observed (Figure 4.5e). A re-establishment of the
turbulent vortex street is found again for Re ⩾ 3.5×106, where a turbulent boundary layer is
also noticed (Figure 4.5f). In order to avoid the uncertainties that turbulence could introduce
in the presented validation, only the Re range corresponding to the laminar von Karman street
generation is considered.

The natural frequency of shed vortices fshnat is determined by the Strouhal number (St),
a dimension-less parameter that in the context of a cylindrical shape can be written as Equa-
tion 4.29. The value of St has shown a direct dependency with the considered Reynolds
number, as shown in Figure 4.6. In the laminar vortex shedding region, a monotonic increase
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(a) Re <5 (b) 5 ≲ Re < 40 (c) 40 ≤ Re < 150

(d) 150 ≤ Re ≲ 3×105 (e) 3×105 ≲ Re < 3.5×106 (f) Re ⩾ 3.5×106

Figure 4.5: Regimes of flow across a cylinder, reproduced from Lienhard (1966)

of the St value with respect to Re is observed. A stabilization of St around 0.2 is expected
when the turbulence on the wake is completely developed. When the laminar to turbulence
transition appears in the boundary layer of the cylinder, the computation of St showed an
important dispersion (due to the absence of a clear Von Karman street). When the vortex
shedding re-appears for Re ⩾ 3.5×106, Strouhal numbers higher than 0.2 are to be consid-
ered.

St =
D fshnat

U∞

≡ f (Re) (4.29)

Generated vortices can induce unsteady forces, leading to potentially dangerous vibrations
on the structure. This problem is known in the literature as Vortex induced vibrations (VIV).
Many authors have studied the VIV phenomenon by imposing a harmonic cylinder oscilla-
tion characterized by an AF amplitude and a forced frequency fF [see the review paper by
Williamson and Govardhan (2004)]. In this configuration, a regime of synchronization (also
referred as lock-in) was first observed by Bishop and Hassan (1964). In the lock-in region, the
von Karman shedding frequency fshed synchronizes with fF , leading to a unique character-
istic frequency for the aeroelastic system. Outside of this region, the shedding phenomenon
occurs at the natural frequency of shed vortices fshnat , which does not necessarily correspond
to fF . As shown in Figure 4.7, the existence of the lock-in effects depends on both the am-
plitude of the forced oscillations and the ratio between the forced frequency and fshnat .
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Figure 4.6: Strouhal number evolution with respect to the Reynolds number [source:Lienhard (1966)]

fF/fshnat

AF/D

10

Lock-in
No

Lock-in
No

Lock-in

Figure 4.7: Sketch of the lock-in region for a forced oscillation cylinder, adapted from Spiker et al.
(2006)

The complexity of the VIV phenomenon is highly increased when considering a freely
oscillating cylinder. Several authors have assessed this topic, both from experimental and
numerical points of view, by attaching a cylinder to an elastic system, composed by one or
several springs. Of particular interest to this research are the so-called transversal oscilla-
tions, where the spring is installed normal to the incoming flow. In such context, the cylinder
amplitudes present a strong dependency with the fluid behavior. Maximum amplitude values
were found to occur under the so-called lock-in conditions, understood here as a synchro-
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nization of the oscillator frequency with the shedding frequency of the flow [Griffin et al.
(1973)]. In the laminar regime, it was found that the maximum amplitude of a cylinder un-
dergoing transverse oscillations is approximately 60% of its diameter. The existence of a
limit in the computed oscillations was justified by Mittal and Kumar (2001) by means of
three different mechanisms in the flow. First, the loads exerted by the fluid are reduced under
the existence of high amplitude motions. Secondly, the appearance of additional frequencies
in the fluid loads spectra. Thirdly, a slight frequency shifting of the shedding frequency with
respect to the oscillator frequency (referred as detuning). The properties of the elastic system
are also an aspect to consider due to its important impact on cylinder oscillations. Williamson
and Govardhan (2004) compiled a set of experimental and computational results in the lami-
nar regime that revealed a strong dependency of the structural damping ratio and the cylinder
mass on the measured oscillations. The maximum displacements were observed for low val-
ues of the product of the reduced mass and the structural damping of the oscillator. Cylinder
oscillation amplitudes not only depend on the properties of the oscillator but also on the flow
conditions. This fact was highlighted in the experimental works of Anagnostopoulos and
Bearman (1992). A strong dependency with the considered Reynolds number was showed,
since the lock-in phenomenon was triggered by the conditions of the flow. The combined
impact of the Reynolds number and the damping ratio in the aeroelastic response of the sys-
tem was reviewed in the thesis of Klamo (2007). The use of the so-called effective stiffness
k∗e f f was suggested as a way to compare the results of two different systems undergoing VIV
transversal oscillations. This dimensionless parameter accounts for the combined effects of
the cylinder mass, as well as the stiffness and damping of the oscillator. The effective stiffness
was found to collapse the maximum amplitudes of the different performed experiments at a
value of k∗e f f =2.5, regardless the conditions of the flow or the elastic system. The values of
those maximum amplitudes were found to have a dependency on both the Reynolds number
and the damping.

4.3.2 Problem set-up

A 2D mesh was generated around a D diameter cylinder, reproduced from the works of
Hakimi (1997). This base grid accounted for a total of 28.340 nodes and was based on a
OH topology (see Figure 4.8). A first cell height of 10−4D was imposed around the cylinder
wall. The compressible laminar Navier-Stokes equations were solved for all the presented
simulations. A subsonic regime was assumed, with maximum Mach numbers of approxi-
mately 0.5 for the considered compressible flow conditions. The fluid was considered to be
thermodynamically perfect. An arbitrary span of L was assumed for the computation of the
cylinder loads.
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6D 6D 17D

6D

6D

Y

X

Figure 4.8: Cylinder mesh, D refers to the cylinder diameter

4.3.3 Steady computations, fixed cylinder

In order to analyze the influence of the grid on the computed results, several variants of
the Base mesh presented in Section 4.3.2 were created. The number of points of the O-
block was modified in order to create a finer mesh (referred as Fine) and two coarser grids
(Coarse and Vcoarse). The first cell height was also modified according to the number of grid
points. A detail of the mesh around the cylinder for each of these configurations is included
in Figure 4.9.

(a) Vcoarse (13652 nodes) (b) Coarse (18548 nodes)

(c) Base (28340 nodes) (d) Fine (47924 nodes)

Figure 4.9: Mesh detail around the cylinder for the different considered variants
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Steady computations were performed for each variant at Re=75,80,120 and 150. The
value of Cp at the wall was computed, being:

Cp =
p− p∞

1
2 ρU∞

(4.30)

where p is the pressure at the wall, p∞ the free-stream pressure and ρ the fluid density.
Figure 4.10 depicts the predicted Cp values for Re=75 and Re=150 as a function of the

angle θ , that is shown in Figure 4.11. The well known solution for a potential flow is also
included in Figure 4.10 for reference. The effects of mesh refinement could be noticed when
comparing the results of Vcoarse with the other grid variants. In fact, an indistinguishable
Cp evolution was observed for Coarse, Base and Fine configurations. All simulations ex-
hibited a plateau at the vicinity of θ=180 deg. This behavior is not present in the inviscid
potential solution, that assumes an irrotational flow. Indeed, downstream flow separation

(a) Re=75 (b) Re=150

Figure 4.10: Evolution of Cp coefficients at the wall for different mesh variants. Includes analytical
solution for potential flow, where Cp = 4

(
1− sin2 (θ)

)
. Markers do not correspond to data sampling

Y

X

θ

Figure 4.11: Definition of θ

was observed for all the performed simulations. To illustrate this issue, a visualization of
the flow corresponding to the Base mesh computation at Re=75 is displayed in Figure 4.12.
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Symmetrical downstream vortices were observed, as it is illustrated in the flow streamlines
and the vorticity field ∇× v = ∂vy

∂x − ∂vx
∂y (Figure 4.12a and Figure 4.12b respectively). These

recirculations were found to have a direct influence on the pressure around the cylinder, as it
is depicted in Figure 4.12c.

(a) Streamlines (b) Vorticity

(c) Static Pressure

Figure 4.12: Flow visualization for steady computation at Re=75, Base mesh. Vorticity isolines dis-
played every 1000 s-1. Solid lines represent block lines. Static pressure isolines displayed every 400
Pa.

Table 4.2 compiles the Drag coefficient values computed for each of the performed com-
putations, defined as:

CD =
Fx

1
2 ρU2

∞LD
(4.31)

where Fx the force oriented in streamwise direction of the upstream flow.
Stabilized values were observed for Coarse, Base and Fine variants, with differences of

less than 0.3%. Figure 4.13 shows a graphical representation of this fact, where the computed
values were normalized by the CD of the Base configuration at Re=75. A reduction on the
predicted drag was observed when increasing the Reynolds number, with a total drop of 17%
when passing from Re=75 to Re=150. From the presented results, it can be concluded that
the Base mesh offered an accurate flow prediction at the studied Reynolds number range with
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regards to the grid refinement. However, the comparison of the computed stabilized CD values
with the experimental reference included in Table 4.2 shows discrepancies ranging from 12%
to 23% and being more important at higher Reynolds. This drag reduction predicted by the
simulations is related to the effects of the flow unsteadiness, than could not be captured with
a steady solution. Indeed, the flow behavior presented in Figure 4.12 does not account for the
vortex shedding phenomenon, that will be modeled in Section 4.3.4 by means of harmonic
and time marching unsteady computations.

Table 4.2: Mesh dependency study on CD for steady cylinder computations. Experimental values
estimated from Wieselberger (1921)

CD Re=75 Re=80 Re=120 Re=150

Vcoarse 1.451 1.426 1.279 1.210
Coarse 1.312 1.288 1.151 1.089
Base 1.312 1.288 1.150 1.089
Fine 1.308 1.284 1.148 1.086
Experimental 1.481 1.459 1.367 1.344

Figure 4.13: Computed CD for the studied meshes, normalized by the value of the Base variant at
Re=75

4.3.4 Unsteady computations, fixed cylinder

First unsteady computations assumed a fixed cylinder. Both NLH and time marching compu-
tations were performed, starting from the already converged steady solutions of Section 4.3.3.
Four Reynolds numbers in the range [75,150] were studied. For the NLH approach, the impact
of the number of harmonics on the computed results was also assessed. Table 4.3 summarizes
the performed experiences.
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Table 4.3: Fixed cylinder, summary of performed computations (highlighted in grey)

Numerical approach Re=75 Re=80 Re=120 Re=150

NLH 1 harmo

NLH 2 harmo

NLH 3 harmo

Time marching

NLH computations

First NLH computations accounted for a single harmonic. The solved frequency (i.e. the
solved Strouhal number) was imposed prior to the run of the computation. In opposition
to rotating machinery applications, where flow unsteadiness is related to the blade passing
frequency (BPF), the frequency of the Von Karman street could not be directly pre-computed
for this test case. In order to solve this issue, an iterative shedding frequency identification
strategy known as the phase error method was used. This technique was initially developed
by Spiker et al. (2006) when applying the Harmonic balance method to the same test case,
and subsequently used for similar purposes in Spiker et al. (2009) and Besem (2015).

Let consider the results of a Re=75 simulation with a solved Strouhal number of 0.139,
obtained based on an a priori estimation. An undamped periodic oscillatory behavior of
the harmonic lift acting on the cylinder was observed during the NLH solver iterations (see
Figure 4.14). Based on the observations of Spiker et al. (2006), this fact reveals that the
solved frequency did not correspond to the natural shedding frequency fshnat for these flow
conditions.

(a) Real part (b) Imaginary part

Figure 4.14: Fixed cylinder, harmonic lift vs. solver iterations, Re=75, solved St=0.139
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We can define now the phase change per iteration ∆α of a harmonic quantity Q̃ as the
phase difference between two subsequent iterations i and i−1:

∆α(Q̃)|i = α(Q̃)|i −α(Q̃)|i−1 , (4.32)

α(Q̃) = atan
(

Q̃|Im

Q̃|Re

)
, (4.33)

Where Re and Im refer to the real and imaginary parts of the harmonic quantity, respectively.
The ∆α related to the harmonic of the cylinder lift force was found to be stable after 300
iterations (see Figure 4.15). As for the Harmonic balance approach, converged ∆α(F̃y) val-

Figure 4.15: Fixed cylinder, ∆α(F̃y) [deg] vs. solver iterations, Re=75, solved St=0.139

ues showed a quasi-linear dependence with respect to the solved St. This allowed to identify
the natural Strouhal number Stshnat , corresponding to fshnat , by an iterative process (see Fig-
ure 4.16). The minimization of |∆α(F̃y)| was considered as converged when a value lower
than 0.1 deg was found. For this particular configuration, a value of |∆α(F̃y)| of 0.06 deg
was computed after four NLH computations, corresponding to a final Stshnat=0.147. For this
simulation, the oscillation of the harmonic lift force observed in Figure 4.14 vanished. The
numerical stability of this final computation could be equivalently observed during the sim-
ulation, since the residuals of the harmonics showed faster decay slopes. This remark is in
accordance with the application of the phase error methodology on the Harmonic balance
performed by Besem (2015).
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Stshnat

Figure 4.16: Fixed cylinder, stabilized ∆α(F̃y) for different solved Strouhal numbers, Re=75

The same phase error methodology was successfully applied to other Reynolds numbers
and to multi-harmonic simulations (also accounting for the harmonics of the solved St). The
consideration of the interactions between the harmonics of the flow was adopted as a stan-
dard for all the multi-harmonic NLH computations presented in this chapter [Debrabandere
(2014)]. For all the cases, the ∆α(F̃y) identification criteria was based on the 1st considered
harmonic. Figure 4.17 shows the performance of the phase error method for all the analyzed
configurations. As also observed by Spiker et al. (2006), a shifting towards higher Stshnat

values was found when passing from 1 to 2 harmonics. The consideration of a third harmonic
did not change the predicted Stshnat .

Figure 4.17: Fixed cylinder, stabilized ∆α(F̃y) for different solved Strouhal and Reynolds numbers
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Time marching computations

For the time marching computations, the physical time step was chosen in order to be approx-
imately 1/60 fshnat . This time resolution is equivalent to a 3 harmonics NLH computation,
assuming a minimum representation of 20 points per period. In order to allow the flow to
develop a total simulation time of ≃ 40/ fshnat was used, corresponding to 40 periods of the
expected vortex shedding phenomenon. Between every time step, 200 inner iterations were
performed. Contrary to the NLH method, the fshnat value can be considered as an output of
the time marching simulations, and it can be computed via the signal processing of the last
periods. An uncertainty should be considered for this computation, being proportional to the
ratio between the used time step and the signal period.

Prediction of the natural shedding frequency

For the considered Reynolds number range, the identified Stshnat are compared against the ex-
periments of Williamson (1996) and Fey et al. (1998) in Figure 4.18. The estimated percentile
differences with respect to the latter reference are compiled in Table 4.4. To contextualize
the results of this research, Figure 4.18 also includes a set of simulations performed by other
authors. For the case of the time marching approach, the uncertainties in the computation
of Stshnat related to the simulation time step are considered by means of an error range. As
a general trend, all the computations included in Figure 4.18 do exhibit an underestimation
of the shedding frequency, probably due to the non consideration of three-dimensional flow
effects. The Stshnat shifting observed in the application of the NLH phase error method for
multi-harmonic simulations was found to reduce the difference with respect to the experi-
mental references.

Both multi-harmonic NLH and time marching approaches obtained a similar evolution
regarding the Reynolds number. For both approaches, the differences with respect to the ex-
perimental values seemed to increase together with the Reynolds number, with values in the
range of [4%,7%] for Re=120 and Re=150. As this behavior was common for both method-
ologies, it is suspected to be related to the impact of the computational model parameters. A
feasible explanation could be the influence of the mesh size of the downstream block, that
was not considered in the mesh sensibility study presented in Section 4.3.3. Indeed, the im-
pact of the farfield resolution in the prediction of the Strouhal number was already pointed
out in McMullen (2003). Another possible cause could be the influence of the size of the
domain, as mentioned in Besem (2015) and Placzek et al. (2009).

Regarding other authors works, the results of McMullen (2003) with the Non-Linear
Frequency Domain technique showed an almost perfect agreement with the present research
results at Re=120 and Re=150. Nevertheless, the Harmonic balance method computations
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of Spiker et al. (2006) were found to be closer to the experimental references, supporting the
hypothesis of the influence of the mesh or the computational domain size in the results of this
research.

Figure 4.18: Fixed cylinder, comparison of identified Stshnat . NLH and TM stand for the Non-Linear
Harmonic and time marching computations performed in the present study, respectively. Exp. I refers
to the experimental data from Williamson (1996). Exp. II refers to the experiments of Fey et al. (1998).
Comp I. refers to the computational results of Spiker et al. (2006) using the Harmonic balance method.
Comp. II refers to the computational results of McMullen (2003) using the Non-Linear Frequency
Domain.

Table 4.4: Estimated relative St differences [%] with respect to Williamson (1996)

Re=75 Re=80 Re=120 Re=150

NLH 1 harmo -2.38 -3.93 -8.87 -11.66
NLH 2 harmo - -0.97 -3.96 -6.66
NLH 3 harmo - - - -7.16
Time marching - [-2.17,0.43] [-7.45,-4.82] -

Load coefficients analysis

For unsteady simulations, lift and drag coefficients can be decomposed into a time-averaged
value and a fluctuating part. Denoting both components by the superscripts ¯ and ’ respec-
tively and assuming a null time-averaged lift coefficient due to the symmetry of the vortex
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shedding phenomenon, it can be written:

CD(t) = C̄D +C′
D(t); (4.34)

CL(t) =C′
L(t); (4.35)

Figure 4.19 shows the computed CD and CL for several NLH and time marching computa-
tions, normalized by the maximum observed fluctuation values C′

D,max and C′
L,max. For the

drag coefficient, the averaged value C̄D was also subtracted from the transient signal. As an
immediate observation, a different main frequency was observed for both CD and CL . In-
deed, the analysis of the harmonic content these signals revealed that while the lift force was
dominated by the first harmonic, the drag fluctuations were only captured by the second one.

(a) NLH, 1 harmonic (b) NLH, 2 harmonics

(c) NLH, 3 harmonics (d) Time marching

Figure 4.19: Fixed cylinder, lift and drag coefficients evolution for several computations. The time-
averaged value was removed from CD. The two last periods are shown for the time marching simulation.
Markers do not represent data sampling
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This fact is depicted in Figure 4.20 by means of the results of the NLH computations. This
frequency decoupling was already described in Placzek et al. (2009) and Ji et al. (2011), and
it explains the increase of Stshnat prediction accuracy of multi-harmonic NLH simulations.
The insignificant contribution of the third harmonic on lift and drag fluctuations could also
justify its small impact on the prediction of Stshnat . Finally, for both NLH and time marching
computations a similar phase shifting was observed between lift and drag loads transients.
The same described pattern was repeated in all the performed simulations.

(a) Lift (b) Drag

Figure 4.20: Harmonic amplitudes for fixed cylinder loads at Re=150. First point corresponds to
Stshnat , followed by its harmonics. Ordinates expressed in logarithmic scale

Obtained cylinder loads were compared against experimental references. The Root Mean
Square (RMS) values of the lift coefficient are shown in Figure 4.21a. An important scatter
is observed in the experimental data, related to the complexity of the shedding phenomenon.
However, it can be concluded that performed computations properly captured the evolution
of RMS (CL) with respect to the Reynolds number. Considerable discrepancies were observed
for the single harmonic NLH computations with respect to the rest of the performed simula-
tions. As pointed out in Figure 4.20, this issue is certainly due to the non consideration of
the second harmonic, that also lead to an underestimation of Sshnat . A fair agreement was
also found when comparing NLH and time marching methodologies with the results of the
Harmonic Balance method computations of Spiker et al. (2006), with maximum observed
differences of around 13%.

Averaged drag coefficients are displayed in Figure 4.21b. The estimated percentile dif-
ferences with respect to the experiments of Wieselberger (1921) are compiled in Table 4.5.
A good agreement between experimental and computational data was found for both time
marching and NLH methods, even when considering a single harmonic in the latter ap-
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proach. Bigger differences were observed at high Reynolds numbers, with a maximum of
3% at Re=150. These results revealed the impact of the flow unsteadiness in the mean drag
prediction, since the steady computations of Section 4.3.3 showed discrepancies between
13% and 23% with respect to the same experimental references.

(a) RMS (CL) (b) CD

Figure 4.21: Fixed cylinder, validation of computed load coefficients with the NLH and time marching
methods. Exp. I refers to the experiments collected by Norberg (2001). Exp. II refers to the experiments
included in Wieselberger (1921). Exp. III refers to the experiments of Hoerner (1965). Comp. I refers
to the numerical simulations of Spiker et al. (2006) with the Harmonic Balance method

Table 4.5: Fixed cylinder, estimated CD relative differences [%] with respect to Wieselberger (1921)

Re=75 Re=80 Re=120 Re=150

NLH 1 harmo -0.41 -0.17 -0.65 1.90
NLH 2 harmo - -0.48 2.15 3.05
NLH 3 harmo - - - 2.31
Time marching - -0.88 1.37 -

No data concerning the harmonic drag fluctuation was found in the literature for validation
purposes. The results of the performed computations showed CD fluctuations two order of
magnitudes smaller than CL, being more important at higher Reynolds numbers. For future
references, the computed values of C′

D,max are summarized in Table 4.6, together with the
corresponding CD and C′

L,max coefficients.
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Table 4.6: Summary of load coefficients for fixed cylinder computations

Re CD C′
D,max 10−2 C′

L,max

NLH 1 harmo 75 1.476 0.040 0.327
NLH 1 harmo 80 1.464 0.040 0.335
NLH 2 harmo 80 1.459 1.877 0.259
Time marching 80 1.440 0.921 0.250
NLH 1 harmo 120 1.356 0.040 0.372
NLH 2 harmo 120 1.395 1.880 0.463
Time marching 120 1.380 1.807 0.406
NLH 1 harmo 150 1.360 0.052 0.542
NLH 2 harmo 150 1.376 1.835 0.494
NLH 3 harmo 150 1.366 2.431 0.499

Vortex shedding analysis

For both time marching and NLH computations, the shedding pattern was found to be qual-
itatively the same for the whole studied Re range. To illustrate this fact, Figure 4.22 shows
the vorticity contours of the NLH reconstructed solution at Re=120 for different considered
phases ϕ . Corresponding images for the time marching simulation are also included, based
on the last computed period. Since flow phase was not uniquely defined in this case, the
time marching solution corresponding to ϕ=0 was chosen by visual comparison with NLH
results. For both approaches, vortices were alternately shed from the upper and lower parts
of the cylinder every half a period. Shed structures are in accordance with the computations
in the laminar regime performed by other authors [Besem (2015); Placzek et al. (2009)]. It
is important to remark that the NLH solution (accounting for 2 harmonics) predicted two
vorticity peaks per vortex. This issue was found to be related to the inherent limitation of the
NLH method in the prediction of stepwise fluctuations. A similar behavior can be found in
the works of McMullen (2003) when using a single harmonic with the Non Linear Frequency
Method. It is interesting to exemplify this concept in the more simplistic scenario of a step
function. Figure 4.23 shows how a harmonic signal can approximate such a function depend-
ing on the considered number of harmonics. Due to the discontinuity present at t/T =0, an
infinite number of harmonics is theoretically needed to reproduce the step function behavior.
Harmonic solutions accounting for 2 and 3 harmonics can already estimate the change in the
averaged values of t/T <0 and t/T >0. Nevertheless an oscillatory behavior is still observed,
where the peaks and valleys of the maximum considered frequency can be identified. Even
if the studied vortex shedding phenomenon is less constraining than this ideal case, a similar
behavior was observed for the NLH simulations. To illustrate this fact, Figure 4.24 compares
the NLH solutions at Re=150 when considering 1,2 and 3 harmonics. It can be observed that
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the solution of more harmonics lead to the prediction of smoother vorticity structures. For
the particular case of the 3 harmonics computation, a single peak per vortex could be iden-
tified, and the computed vorticity structures could be directly comparable with the results of
the time marching simulations. This difference on the shedding pattern between the 2 and
3 harmonics NLH computations did not seem to have a significant impact on the computed
cylinder loads coefficients (see Section 4.24).

(a) ϕ=0, NLH (b) ϕ=0, time marching

(c) ϕ= π

2 , NLH (d) ϕ= π

2 , time marching

(e) ϕ=π , NLH (f) ϕ=π , time marching

(g) ϕ= 3π

2 , NLH (h) ϕ= 3π

2 , time marching

Figure 4.22: Vorticity contours of fixed cylinder, NLH (2 harmonics) and time marching computations
at Re=120. Solutions at similar phases are displayed. Isolines increment corresponds to 1000 s-1. Solid
lines represent block lines, and the cross sign is included at the center of the initial cylinder position
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Figure 4.23: Approximation of an step function of height A and width T by means of a harmonic
function accounting for different number of harmonics. Markers do not represent data sampling

(a) 1 harmonic (b) 2 harmonics (c) 3 harmonics

Figure 4.24: Vorticity contours of fixed cylinder, NLH computations at Re=150. Solutions at similar
phases are displayed. Isolines increment corresponds to 1000 s-1. Solid lines represent block lines, and
the cross sign is included at the center of the initial cylinder position

4.3.5 1-way coupling

After the validation of fixed cylinder computations in Section 4.3.4, both NLH and time
marching methodologies were assessed in a forced motion context for the particular case of
Re=80. Starting from already converged steady simulations, a harmonic cylinder displace-
ment in y direction was imposed. Only real part harmonic content was considered, with an
amplitude A and a forced frequency fF . Hence, the imposed motion Dy could be written as:

Dy(t) = D′
y(t) = Acos(2π fF t) (4.36)

Only the study of the so called lock-in region was considered in this research. The lock-in
regime is characterized by a single fundamental frequency in the flow, which corresponds
to the imposed cylinder motion frequency fF [Besem (2015); Placzek et al. (2009)]. The
existence of the lock-in depends on both the imposed amplitude A and the ratio between
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the forced frequency fF and the natural shedding frequency fshnat . Four computations were
performed in this study, which parameters are compiled in Table 4.7. In order to allow a direct
comparison with the experiments of Tanida et al. (1973), the imposed displacement amplitude
was fixed to be 14% of the cylinder diameter. In theory all the computations were assumed to
be in the lock-in region, as it is illustrated in Figure 4.25 by means of a comparison with the
experiments of Koopmann (1967) at Re=100. However, this hypothesis was verified during
the simulation for both time marching and NLH methodologies, as it is shown later on in this
document.

Table 4.7: Forced cylinder motion, summary of performed computations

Numerical approach Re A/D fF / fshnat

NLH 80 0.14 0.91

NLH 80 0.14 1.00

NLH 80 0.14 1.06

Time marching 80 0.14 1.00

Figure 4.25: Forced cylinder motion, position of performed computations with respect to the lock-in
region of Exp. I, issued from the experiments of Koopmann (1967) at Re=100. TM stands for the time
marching approach

NLH computations

Based on the results of Section 4.3.4 for the fixed cylinder configuration, only simulations
accounting for 2 harmonics were considered. The mesh was deformed via the harmonic
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formulation of the RBF+TFI method (see Section 3.6). For all the performed simulations,
very small ∆α(F̃y) converged values were, in the order of 10−6 deg, were obtained (see
Equation 4.33 for the definition of this parameter). This fact revealed the existence of a
lock-in phenomenon with the imposed frequency fF .

Time marching computation

The same time-step and simulation procedure of the fixed cylinder case described in Sec-
tion 4.3.4 was used. Mesh was deformed via the RBF+TFI method. The signal processing of
the lift coefficient transient verified the existence of a lock-in phenomenon with the imposed
frequency fF .

Loads coefficients analysis

Figure 4.26 shows CD and CL for the performed NLH and time marching (TM) computations,
superposed to the imposed displacement Dy. For the drag coefficient, the averaged value C̄D

was subtracted from the transient signal. All variables were normalized by the maximum
observed fluctuation values. As for the fixed cylinder case, the frequency of the computed
lift corresponded to fF and the drag to 2 fF . At fF/ fshnat=1.00, both NLH and time march-
ing simulations predicted a similar phase shift between the three illustrated signals (being
fshnat the shedding frequency in the absence of motion). Important differences between the
phases of CL and Dy could be observed when comparing the other two NLH computations.
Indeed, the relative phase of these two variables determines the role that the flow is playing in
this aeroelastic phenomenon. To better illustrate this aspect, Figure 4.27 shows the evolution
of CL with respect to Dy, often referred in the literature as the phase portraits or Lissajous
curves. For fF/ fshnat=0.91, maximum cylinder displacements corresponded to negative lift
coefficients, and vice-versa. Hence, the force exerted by the fluid was in opposition to the
cylinder movement. It is concluded that the fluid was acting as an energy dissipation mecha-
nism or, equivalently, that it exerted a positive aerodynamic damping [Placzek et al. (2009);
Tanida et al. (1973)]. The inclination of the phase portrait was reversed when analyzing the
fF/ fshnat=1.06 NLH simulation. As a consequence, the fluid was expected to transfer energy
into the system by means of a negative aerodynamic damping, leading to an unstable config-
uration. Both TM and NLH computations showed a similar behavior at fF/ fshnat=1.0, with
almost flat phase portraits. Another interesting indicator of the fluid behavior is the imagi-
nary part of the first harmonic of the lift coefficient C̃L|Im,1, which is out of phase with respect
to the imposed cylinder motion Dy. In Figure 4.28 the results issued from this research are
compared against the experimental data from Tanida et al. (1973) and the numerical simu-
lations of Spiker et al. (2006), expressed as a function of the reduced frequency ( fF D)/U .
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(a) NLH, fF/ fshnat =0.91 (b) NLH, fF/ fshnat =1.06

(c) NLH, fF/ fshnat =1.00 (d) TM, fF/ fshnat =1.00

Figure 4.26: Forced cylinder motion, lift and drag coefficients evolution superposed to Dy. Curves
are normalized by the corresponding maximum oscillation amplitude. The time-averaged value was
removed from CD. The two last periods are shown for the time marching simulation. Markers do not
represent data sampling

The NLH computations were able to predict the increase of C̃L|Im,1 related to the growth
of the energy transfer already observed in the analysis of the phase portraits. In addition, a
fair agreement was found with the time marching simulation at fF/ fshnat=1.0, with a relative
difference of 7%. However, underestimations of approximately 20% with respect to the ex-
perimental reference were found. This could be explained by comparing the natural shedding
frequency computed in this research and the one observed in Tanida et al. (1973). Indeed,
at Re=80 both NLH and time marching predicted Stshnat=0.152, while in the experiments a
value of 0.129 was recorded. This discrepancy of 18% could explain the shifting of the ob-
tained results towards lower values of the imaginary lift coefficient. The hypothesis of the
influence of Sshnat on the obtained results is supported when analyzing the computational re-
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(a) NLH, fF/ fshnat =0.91 (b) NLH, fF/ fshnat =1.06

(c) NLH, fF/ fshnat =1.00 (d) TM, fF/ fshnat =1.00

Figure 4.27: Forced cylinder motion phase portraits. Markers do not represent data sampling

sults of Spiker et al. (2006), that predicted a natural Strouhal number of approximately 0.149.
Additional simulations should be performed in order to compare the performance of the time
marching method for fF/ fshnat=0.91 and fF/ fshnat=1.06. Additionally, it could be interesting
to evaluate the modeling capabilities of the presented numerical set-up while assessing the
drop of C̃L|Im,1 near the end of the lock-in region, related to a sudden phase lag as reported in
Tanida et al. (1973).

The center of the lock-in region was also characterized by an increase of the computed
time averaged and fluctuating drag. The values of these coefficients are compiled in Table 4.8
for future references, together with the computed C′

L,max.
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Figure 4.28: Forced cylinder motion, evolution of the imaginary part of first harmonic of CL with
respect to the imposed oscillation frequency fF at Re=80. Exp. I refers to the experimental data from
Tanida et al. (1973). Comp. I refers to the simulations of Spiker et al. (2006) with the Harmonic
Balance

Table 4.8: Summary of load coefficients for forced motion computations

Cylinder motion ( fF D)/U CD C′
D,max C′

L,max

NLH, fF/ fshnat =0.91 0.139 1.467 0.016 0.110
NLH, fF/ fshnat =1.00 0.152 1.565 0.049 0.247
TM, fF/ fshnat =1.00 0.152 1.563 0.057 0.321
NLH, fF/ fshnat =1.06 0.161 1.543 0.045 0.582

Vortex shedding analysis

For both time marching and NLH computations, the shedding pattern was found to be qual-
itatively the same. Upper part vortices were shed during the ascending movement of the
cylinder, while the release of lower part vortices took place during the descent. Figure 4.29
shows the vorticity contours of the NLH reconstructed solution for fF/ fshnat=1.00 depend-
ing on the imposed cylinder deformation Dy. Equivalent time steps for the time marching
simulation are also included. The observed common shedding pattern corresponds to the 2S
mode described by Khalak and Williamson (1999) (where two vortex per period are shed).
Both NLH and time marching computations showed a very similar wake generation. The
two peaks per period captured by the former approach were also found for the fixed cylinder
configuration and discussed in Section 4.3.4. This behavior should not be confused with the
so called 2P mode (4 vortex per period), that has not been previously observed in the laminar
regime [Khalak and Williamson (1999)]. For the NLH computations, the consideration of
different fF/ fshnat values did not modify the structure of the shed vortices (see Figure 4.30).
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(a) Dy=0.14D, NLH (b) Dy=0.14D, time marching

(c) Dy=0 (descending), NLH (d) Dy=0 (descending), time marching

(e) Dy=-0.14D, NLH (f) Dy=-0.14D, time marching

(g) Dy=0 (ascending), NLH (h) Dy=0 (ascending), time marching

Figure 4.29: Vorticity contours of forced cylinder motion, NLH (2 harmonics) and time marching com-
putations at Re=80, fF/ fshnat=1.00. Isolines increment corresponds to 1000 s-1. Solid lines represent
block lines, and the cross sign is included at the center of the initial cylinder position

4.3.6 2-way coupling

In order to validate the implemented FSI 2-way coupling harmonic module, the single degree
of freedom aeroelastic system sketched in Figure 4.31 was analyzed. This problem is referred
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(a) fF/ fshnat =0.91 (b) fF/ fshnat =1.00 (c) fF/ fshnat =1.06

Figure 4.30: Vorticity contours of forced cylinder motion, NLH computations (2 harmonics) at Re=80
and Dy=0.14D. Isolines increment corresponds to 1000 s-1. Solid lines represent block lines, and the
cross sign is included at the center of the initial cylinder position

to in the literature as the Vortex Induced Vibrations (VIV) of a cylinder in transversal oscil-
lation [Griffin et al. (1973)]. All the computations were performed at Re=120, using both
NLH and time marching approaches and starting from an already converged steady simula-
tion described in Section 4.3.3. The elastic system was characterized by a natural frequency
of oscillation fk and a damping ratio ξ , both understood as an input of the numerical set-up.
The same mass m was considered for all the simulations. In order to allow the comparability
with other experiments, it is interesting to express this variable in terms of the reduced mass
m∗, here defined as in Shiels et al. (2001):

m∗ =
m

1
2 ρD2L

(4.37)

with m∗ fixed to 7.49 for all the simulations, ρ being the fluid density, D the cylinder diameter
and L the span.

Y

Xck

m
Flow direction

Figure 4.31: Sketch of the elastic system attached to the cylinder in free oscillation

Most part of previous computations concerning the study of this phenomenon in the lam-
inar regime were validated against Anagnostopoulos and Bearman (1992). In these exper-
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iments, the mass and the damping ratio of the elastic system were fixed, and the evolu-
tion of the computed cylinder displacements and aeroelastic frequencies with the considered
Reynolds number was analyzed. In this context, we can find the computations of Besem
(2015) and Dowell et al. (2008) with the Harmonic Balance method. This validation ap-
proach was found to be limited for the comparison of the performance of both NLH and time
marching methods, due to the differences in the computed Stshnat and the impact of the elastic
mounting properties on the system behavior. A more insightful analysis regarding all the pa-
rameters concerned by the VIV phenomenon and its influence on the cylinder displacements
was given in the inspiring numerical studies of Shiels et al. (2001) and Placzek et al. (2009)
at Re=100. The milestone of both researches was the relation of the cylinder response to the
so called effective stiffness k∗e f f , that combines the effects of the spring stiffness, the damp-
ing and the cylinder mass. Even if k∗e f f does not account for the influence of the Reynolds
number, it was found to be a very useful parameter to reduce the aeroelastic behavior of dif-
ferent VIV systems, even at the limits of zero mass and/or zero damping. In particular, k∗e f f

is defined as:
k∗e f f = k∗−4π

2 f ∗2m∗ (4.38)

where k∗ is the dimensionless rigidity of the cylinder and f ∗ refers to the non-dimensioning
of the observed shedding frequency fshed :

k∗ =
k

1
2 ρU2

∞L
; (4.39)

f ∗ =
fshedD
U∞

; (4.40)

In this research, the impact of three different aspects of the VIV phenomenon were analyzed:

• The numerical methodology: NLH 2-way coupling and time marching 2-way coupling

• The rigidity of the spring: by means of the ratio fk/ fshnat , where fshnat refers to the
natural shedding frequencies computed for the fixed cylinder case in Section 4.3.4

• The structural damping ratio of the elastic system ξ

In particular, the test cases matrix presented in Table 4.9 was performed.

Time marching computations

The same numerical set-up used for the forced oscillation simulation of Section 4.3.5 was
used for the free oscillation time marching computations. Time marching 2-way coupled
simulations were performed based on the modal approach. The modal shapes were normal-
ized based on the cylinder mass. The shedding frequency fshed was computed by signal
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Table 4.9: Matrix of free oscillation computations. NLH refers to the configurations studied with the
Non Linear Harmonic approach. TM refers to time marching method computations

fk/ fshnat
ξ , (structural damping ratio)

0 0.0012 0.03 0.1 0.2

0.76 TM
0.99 TM
1.00 NLH NLH NLH NLH
1.01 TM
1.06 TM TM TM,NLH TM
1.20 TM TM
1.22 NLH

processing of the last periods of the lift transient, which showed a limit cycle oscillation for
all the considered cases. As for the fixed cylinder simulations an error should be attached
to this estimation, related to the used time step. However and for the sake of simplicity,
presented results do not consider this uncertainty. Figure 4.32 shows the obtained fshed as
a function of the structural damping, normalized by the considered spring frequency fk and
natural shedding frequency of the fixed cylinder fshnat . It is important to remark that fshed

did not necessarily correspond to neither fk nor fshnat . In addition and in accordance with
previous observations of Klamo (2007) and Williamson and Govardhan (2004), the effect
of the damping tended to decrease the value of fshed . Both considerations will be evaluated
by means of its impact on k∗e f f (and consequently on the cylinder response) later on in this
document.

(a) fshed/ fk (b) fshed/ fshnat

Figure 4.32: Free oscillation cylinder, evolution of the shedding frequency fshed with respect to the
damping for time marching computations



4.3 Validation case: 2D cylinder 127

NLH computations

Based on the results of Section 4.3.4 for the fixed cylinder configuration, only simulations
accounting for 2 harmonics were considered. The new developed 2-way coupled harmonic
modal approach was used (see Section 4.2), assuming the same modal shapes as previously
performed time marching simulations. As a general practice, 300 iterations of the lami-
nar Navier-Stokes equations were performed between every call to the harmonic structural
Equation 4.23 (ITCPL=300). The computation of the generalized displacements was under-
relaxed with a factor of 0.7 in order to avoid abrupt displacements prior to the convergence
of the harmonic loads (γ=0.7). Mesh was deformed via the harmonic formulation of the
RBF+TFI. As for the fixed cylinder case, the first solved harmonic frequency (correspond-
ing to fshed) was not known a priori. On the contrary to the fixed configuration the choice
of an inappropriate fshed was not manifested as a considerable value of |∆α(F̃y)|, that used
to remain below 0.1 deg. However an oscillatory behavior was found for the first harmonic
of the cylinder displacement D̃y for every solution of the harmonic structural equation. The
value of the corresponding phase shift ∆α(D̃y) showed a stabilization after a certain number
of iterations (see Figure 4.33).

Figure 4.33: Free oscillation cylinder ∆α(D̃y) [deg] vs. solver iterations, corresponding to the NLH
computation at fk/ fshnat=1.0 and ξ =0.0012 solved for a frequency ̸= fshed . Markers correspond to every
call to the harmonic structural equation

Inspired in the procedure followed for the identification of fshnat , an iterative method-
ology was set-up in order to minimize the phase change of the first deformation harmonic
between every deformation step, |∆α(D̃y)|. A maximum of 1 deg was chosen as a conver-
gence criteria. This technique was applied to all the NLH computations in order to find the
fshed corresponding to every configuration (see Figure 4.34). As for the fixed cylinder case,
a quasi linear evolution was observed.
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Figure 4.34: Free oscillation cylinder, stabilized ∆α(D̃y) for different NLH (2 harmonics) computa-
tions as a function of fshed/ fk

Numerical instabilities were found in the first applications of this shedding frequency
identification methodology for the computations with fshed/ fk at the vicinity of 1 (corre-
sponding to the resonance of the structure with the aerodynamic loads). This issue was
assumed to be related to the behavior of the harmonic structural equation when assessing
fshed ≃ fk with low damping coefficients. Indeed, Equation 4.23 can be rewritten as:

q̃k|h =
φ⃗ T

k,s

4π2 f 2
k
(F1− IF2) ˜⃗fS|h (4.41)

With:

F1 =
1−Λ2

(1−Λ2)2 +4ξ 2
k Λ2

;F2 =
2ξkΛ

(1−Λ2)2 +4ξ 2
k Λ2

;Λ =
fh

fk
(4.42)

Equation 4.41 is not defined for the particular case of ξ =0.0 and Λ=1.0. For our application,
the latter equality is translated as fshed= fk when considering the first harmonic. For configu-
rations close to this limit, important amplification factors should be considered between fluid
loads and generalized displacements. This fact is illustrated in Figure 4.35, where F1 and F2
factors are shown as a function of Λ and ξ .
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(a) F1 (b) F2

Figure 4.35: Evolution of F1 and F2 factors as a function of α and the damping ratio

In our case, where Λ reached values up to 1.003 with ξ ≤ 0.1, even slight fluctuations of
the harmonic loads during the development phase of the flow lead to unphysical generalized
displacements. This issue could be overcome by the modification of ITCPL and γ parameters
for the concerned simulations. In particular, the combination of ITCPL=10 and γ=0.1 offered
a very good stability. The simulations corresponding to the final identified fshed verified the
double criteria defined in this study (|∆α(F̃y)|<0.1 deg and |∆α(D̃y)|<1 deg). The frequency
shifting related to ξ already observed for the time marching computations was reproduced
(see Figure 4.36).

(a) fshed/ fk (b) fshed/ fshnat

Figure 4.36: Free oscillation cylinder, evolution of the shedding frequency fshed with respect to the
damping for NLH computations (2 harmonics)
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The influence of k∗e f f

In free oscillation conditions, the prediction of the cylinder displacement amplitude showed
an important dependence with both the flow conditions and the considered structural damping
[Klamo (2007)]. In order to be able to compare both NLH and time marching results the so
called effective stiffness k∗e f f was used in this study, as defined in Shiels et al. (2001) and
Placzek et al. (2009). The value of k∗e f f is always understood as an output of the simulation,
due to its dependence to the shedding frequency fshed . Table 4.10 compiles the computed
fshed and k∗e f f in the performed simulations, together with the cylinder loads coefficients
CL and CD and the observed cylinder displacements Dy. Figure 4.37a shows the maximum

Table 4.10: Summary of free oscillation cylinder variables. All quantities are non-dimensional

Input variables Output variables

fk/ fshnat ξ ( fshedD)/U∞ C̄D C′
D,max C′

L,max D′
y,max/D k∗e f f

TM

0.76 0.03 0.152 1.37 0.023 -0.219 0.091 -2.24
0.99 0.03 0.164 1.78 0.364 0.220 0.417 -0.02
1.01 0.03 0.164 1.81 0.368 0.199 0.427 0.42

1.06

0 0.173 1.93 0.525 0.149 0.509 0.15
0.0012 0.172 1.93 0.521 0.154 0.506 0.20
0.03 0.171 1.85 0.394 0.280 0.429 0.35
0.2 0.168 1.56 0.110 0.552 0.161 0.67

1.20 0 0.175 2.00 0.373 0.893 0.500 2.60
0.03 0.175 1.86 0.371 0.909 0.397 2.61

NLH 1.00

0 0.174 1.59 0.041 0.148 0.256 -0.59
0.0012 0.174 1.59 0.041 0.147 0.255 -0.58
0.03 0.172 1.57 0.029 0.167 0.233 -0.43
0.1 0.171 1.54 0.036 0.305 0.169 -0.29

1.06 0.03 0.178 1.63 0.074 0.145 0.258 0.01
1.22 0.03 0.185 1.54 0.088 0.906 0.296 3.27

observed cylinder displacement, expressed as a function of k∗e f f . Results are compared with
the computations of Shiels et al. (2001) and Placzek et al. (2009) at Re=100. An amplification
of the displacement amplitudes can be observed in the range k∗e f f =[0,5]. Due to its similarity
with the forced oscillations mechanism, this region is often referred as the lock-in region.
Based on the obtained results in this research, it is convenient to divide this area into three
different sub regions: the pre lock-in region, the full lock-in region and the post lock-in region,
which are also illustrated in Figure 4.37a. The pre lock-in region starts at the vicinity of
k∗e f f =0, and it corresponds to the beginning of the amplitude amplification. Both NLH and
time marching approaches were able to predict this phenomenon, and their results followed
the trend established by other authors computations. The full lock-in region refers to the
area where the highest displacements were computed (i.e. D′

y,max/D>0.4). Only simulations
based on the time marching approach laid in this region. Computed amplitudes were in
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fair agreement with Shiels et al. (2001) and Placzek et al. (2009). However, two important
remarks should be made. On the one hand, the full lock-in region computed in this research
was found to be narrower than the one predicted by other authors. This fact could be attributed
to the uncertainty in the prediction of fshed . As it was observed in Section 4.3.4 regarding the
computation of the fixed configuration shedding frequency fshnat , numerical aspects such as
the size of the domain or the mesh resolution could influence this estimation. Another feasible
explanation to the k∗e f f shifting could be the difference in the considered Reynolds number,
which is not taken into account by the effective stiffness parameter and can have an impact
on the width of the lock-in region. On the other hand, Shiels et al. (2001) and Placzek et al.
(2009) predicted a maximum normalized displacement slightly higher than 0.58, while in
this PhD work it seemed to be 0.509. Nevertheless the latter assumption should be confirmed
by performing additional time marching simulations laying in the range k∗e f f =[1,2.5], where
maximum vibrations are expected [Klamo (2007)]. This last comment also concerns the NLH
method computations. Finally, the post lock-in region is defined as the area where the cylinder
amplitudes start to decrease below D′

y,max/D=0.4. The post lock-in region was predicted by
both NLH and time marching approaches. Computed amplitudes also support the hypothesis
of a narrower lock-in region with respect to the results of Shiels et al. (2001) and Placzek
et al. (2009).

Figure 4.37b shows the values of C′
L,max as a function of k∗e f f . The increase of the lift

fluctuations in the pre lock-in and full lock-in regions predicted by Shiels et al. (2001) and
Placzek et al. (2009) was reproduced by both NLH and time marching methodologies. The
points laying in the post lock-in region were found to be shifted to lower k∗e f f with respect
to the results of both authors. This issue is probably related to the narrower lock-in region
computed by the NLH and time marching simulations.

Figure 4.37c depicts a comparison of the average drag coefficients as a function of k∗e f f .
As for the harmonic lift, a monotonic increase of CD was obtained by Shiels et al. (2001)
and Placzek et al. (2009) in the pre lock-in and full lock-in regions. This behavior was re-
produced by both NLH and time marching computations. Contrary to the lift fluctuation, a
fair agreement with respect to the references was also found for the computations performed
after the drag crisis. It should be noticed that in Shiels et al. (2001) and Placzek et al. (2009)
simulations the drop in C′

L,max was delayed with respect to the C̄D crisis.
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Pre lock-in region

Post lock-in region

Full lock-in region

(a) D′
y,max/D

(b) C′
L,max (c) C̄D

Figure 4.37: Computed variables for free oscillation cylinder as a function of k∗e f f . NLH (2 harmonics)
and time marching computations (TM) at Re=120. Comp. I combines the computations of Shiels et al.
(2001) and Placzek et al. (2009) at Re=100

Flow analysis

The lock-in region was characterized by a shedding frequency fshed very close to the spring
frequency fk (see Figure 4.38a). This observation was already made by Placzek et al. (2009)
and Mittal and Kumar (2001), and it is the reason why such a name was suggested. The
evolution of fshed normalized by fshnat is illustrated in Figure 4.38b. The values issued from
this research are compared against the results of Shiels et al. (2001) and Placzek et al. (2009),
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showing a very similar trend. Outside of the lock-in, the shedding frequency corresponds to
fshnat . The increase of the cylinder displacements observed in the pre lock-in and full lock-in
regions is accompanied by a rise in the fshed/ fshnat ratio. Maximum cylinder displacements
were predicted for fshed/ fshnat=[1.2,1.3] by Shiels et al. (2001) and Placzek et al. (2009).
This fact was not captured in our simulations, revealing that additional configurations should
be analyzed in order to have a deeper knowledge of the modeling capabilities of the presented
methodology in the full lock-in region. Finally, a decrease of fshed/ fshnat is expected in the
post lock-in region, till a value of 1.0 is achieved.

(a) fshed/ fk (b) fshed/ fshnat

Figure 4.38: Computed frequencies for free vibration cylinder as a function of k∗e f f . NLH (2 harmon-
ics) and time marching computations (TM) at Re=120. Comp. I combines the computations of Shiels
et al. (2001) and Placzek et al. (2009) at Re=100

Figure 4.39 shows CD and CL for several of the performed NLH and time marching com-
putations, superposed to the imposed displacement Dy. As it can be observed, a limit cycle
oscillation was predicted for all the computations that used the latter method. The harmonic
content of these signals is included in Figure 4.40, and the corresponding phase portraits
can be found in Figure 4.41. The transients of Figure 4.39a and Figure 4.39b correspond to
time marching and NLH computations laying in the pre lock-in region, respectively. For both
simulations the frequency of CL was found to be centered at fshed , while the drag force fluctu-
ations contribution was carried out by 2 fshed . In addition, CL and Dy were found to be out of
phase. As it was already discussed for the forced oscillation configuration described in Sec-
tion 4.3.5, in this situation the fluid is assumed to act as an aerodynamic damper. This fact can
be verified in Figure 4.41a and Figure 4.41b, by means of the orientation of the corresponding
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phase portraits. The full lock-in region was characterized by the re-synchronization of Dy and
CL, together with the appearance of an extra frequency into the latter coefficient (Figure 4.39c,
Figure 4.39d and Figure 4.39e). This additional frequency was found to be 3 fshed (see Fig-
ure 4.40), in accordance with the observations of Placzek et al. (2009). The orientation of the
phase portraits revealed that the flow was injecting energy into the cylinder oscillation, justi-
fying the important amplification of the computed displacements (Figure 4.41c, Figure 4.41d
and Figure 4.41e). Finally, in the post lock-in region the contribution of the 3 fshed component
progressively disappeared (Figure 4.39f and Figure 4.39g). The analysis of the phase por-
traits revealed that the fluid was still exerting a negative damping into the cylinder oscillation
for both NLH and time marching methodologies, even if more ovoid shapes were obtained
(Figure 4.41f and Figure 4.41g).

For all the performed simulations, the shedding pattern was found to be qualitatively the
same and equivalent to the previously observed for the forced oscillations configuration. Up-
per part vortices were shed during the ascending movement of the cylinder, while the release
of lower part vortices took place during the descent. A total of two vortices were shed per pe-
riod, corresponding to the so-called 2S mode. Figure 4.42 displays the vorticity contours for
the simulations included in previous graphs at the instant of maximum cylinder displacement.
The increase of k∗e f f lead to the stretching of the vortices, in accordance with the observations
of Placzek et al. (2009). This is assumed to be related to the attached growth of fshed (see
Figure 4.38b), since the velocity of convection of the shed structures was common for all the
performed simulations.
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(a) TM, fk
fshnat

=0.76, k∗e f f =-2.24 (b) NLH, fk
fshnat

=1.00, k∗e f f =-0.43

(c) TM, fk
fshnat

=1.06, k∗e f f =0.35 (d) TM, fk
fshnat

=1.06, k∗e f f =0.20

(e) TM, fk
fshnat

=1.20, k∗e f f =2.60

Figure 4.39: Free oscillation cylinder, lift and drag coefficients evolution superposed to Dy. Pre lock-in
region: (a), (b) , Full lock-in region: (c), (d), (e) , Post lock-in region: (f), (g). NLH simulations account
for 2 harmonics. Markers do not represent data sampling. Continued on next page. . .
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(f) TM, fk
fshnat

=1.20, k∗e f f =2.61 (g) NLH, fk
fshnat

=1.22, k∗e f f =3.27

Figure 4.39: Free oscillation cylinder, lift and drag coefficients evolution superposed to Dy. Pre lock-in
region: (a), (b) , Full lock-in region: (c), (d), (e) , Post lock-in region: (f), (g). Markers do not represent
data sampling. Concluded

Figure 4.40: Free oscillation cylinder, harmonic content of lift coefficient. NLH simulations account
for 2 harmonics
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(a) TM, fk
fshnat

=0.76, k∗e f f =-2.24 (b) NLH, fk
fshnat

=1.00, k∗e f f =-0.43

(c) TM, fk
fshnat

=1.06, k∗e f f =0.35 (d) TM, fk
fshnat

=1.06, k∗e f f =0.20

(e) TM, fk
fshnat

=1.20, k∗e f f =2.60

Figure 4.41: Free oscillation cylinder phase portraits. Pre lock-in region: (a), (b) , Full lock-in region:
(c), (d), (e) , Post lock-in region: (f), (g). NLH simulations account for 2 harmonics. Markers do not
represent data sampling. Continued on next page. . .
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(f) TM, fk
fshnat

=1.20, k∗e f f =2.61 (g) NLH, fk
fshnat

=1.22, k∗e f f =3.27

Figure 4.41: Free oscillation cylinder phase portraits. Pre lock-in region: (a), (b) , Full lock-in region:
(c), (d), (e) , Post lock-in region: (f), (g). Markers do not represent data sampling. Concluded.

(a) TM, fk/ fshnat =0.76, k∗e f f =-2.24 (b) NLH, fk/ fshnat =1.00,k∗e f f =-0.43

(c) TM, fk/ fshnat =1.06, k∗e f f =0.35 (d) TM, fk/ fshnat =1.06, k∗e f f =0.20 (e) TM, fk/ fshnat =1.20, k∗e f f =2.60

(f) TM, fk/ fshnat =1.20, k∗e f f =2.61 (g) NLH, fk/ fshnat =1.22, k∗e f f =3.27

Figure 4.42: Vorticity contours of free cylinder motion at maximum displacement. Pre lock-in region:
(a), (b) , Full lock-in region: (c), (d), (e) , Post lock-in region: (f), (g). Isolines increment corresponds
to 1000 s-1. Solid lines represent block lines, and the cross sign is included at the center of the initial
cylinder position
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4.4 Comments about the computational time

Table 4.11 summarizes typically obtained CPU factors for the fixed cylinder configuration,
defined as ThNp

Nn
. With Th the computational time in hours, Nn the number of mesh points in

millions and Np the number of processors (that was fixed to 1 for all the performed simula-
tions). Similar values were observed for the 1-way and 2-way coupling simulations, since the
time required for the update of the cylinder position was found to be negligible with respect
to the cost of the solution of the Navier-Stokes equations. The computed ratio between the
CPU factor of a time marching solution and a NLH simulation accounting for 2 harmonics
is approximately 4.7. This remark directly shows that in the scope of the study of locked-in
forced oscillations (see Section 4.3.5), the NLH approach was more efficient than the time
marching method. Nevertheless, the analysis of both fixed and free oscillation configurations
by means of the NLH method required of an iterative frequency identification process (Sec-
tion 4.3.4 and Section 4.3.6). Since generally from 3 to 6 NLH computations were involved
in this process, this method cannot be seen as an alternative to the time marching simulations
from an efficiency point of view. Two clarifications should be made in this context. First, that
the developed iterative approach could be eventually automatized in the CFD code, allowing
to perform a single computation at the correct shedding frequency. A similar technique was
implemented in the Non-Linear Frequency Domain method by McMullen et al. (2006), where
the shedding frequency was computed by means of a minimization of the unsteady residuals.
Secondly, that the conclusions issued from this test case regarding the computational time
will certainly change when assessing other VIV problems.

Table 4.11: CPU factor for the cylinder simulations

NLH (1 harmo) NLH (2 harmo) NLH (3 harmo) Time marching

39.51 69.85 91.70 326.3

4.5 Conclusion

In this section, the development of a 2-way FSI coupling method based on a generalized har-
monic formulation was presented. Fluid loads were first computed with the NLH technique.
A modal representation of the structure allowed then to estimate boundaries deformation, that
were diffused into the whole CFD mesh by means of a harmonic version of the RBF+TFI hy-
brid mesh deformation method introduced in Section 3. A complete validation of this new
development was conducted by studying the Vortex Induced Vibrations (VIV) phenomenon
of a two-dimensional cylinder. Only the laminar regime was considered, in order to isolate
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the uncertainties in the prediction of the turbulence from the observations of the study. Dur-
ing this validation, the modeling capabilities of the proposed numerical method were also
compared against a classical time marching approach (based on dual-time stepping). This
task was performed in three steps of increasing complexity.

In the first stage of the validation, the cylinder was considered as fixed. For that fixed
cylinder and in order to identify the natural shedding frequency of the flow for further NLH
computations, the phase error method described in Spiker et al. (2006) was used. Similar
predictions in terms of cylinder loads and shedding pattern were made by both NLH and time
marching approaches. Concerning the Strouhal number, both methods showed an under-
prediction with respect to available experimental data at high laminar Re. This discrepancy
reached up to 7% when evaluating Re=150, and it is assumed to be related to the numerical
model parameters. In particular, both the influence of the size of the domain and the mesh
refinement of the downstream block could be assessed in future studies.

For the second step of the validation, a harmonic displacement law with frequency fF

was imposed to the cylinder geometry (1-way coupling). For both NLH and time marching
methods, a lock-in of the shedding frequency with respect to fF was observed. For that
forced cylinder oscillation, the NLH approach showed an under-prediction of the harmonic
lift of 7% with respect to the time marching solution, probably related to the differences in
the estimation of the Strouhal number.

The final step of the validation concerned the free oscillation of the cylinder based on the
computed fluid loads (2-way coupling). This set-up was achieved by mounting the cylinder
on a single degree of freedom elastic system, allowing to move transversally to the incoming
flow. In order to identify the frequency of cylinder oscillations in the NLH computations,
an adaptation of the phase error method used in the first validation step was proposed. NLH
and time marching results were compared against other authors simulations. Special atten-
tion was put in the understanding of the mechanisms driving the vortex induced vibrations
phenomenon, and in particular in the so-called lock-in zone. Both NLH and time marching
methodologies were able to predict the evolution of the cylinder response and the characteris-
tics of the shed wake. However, small differences were observed with respect to the reference
computations, probably related to the effects of the Reynolds numbers and to the differences
in the prediction of the shedding frequency. Further studies will be needed in order to as-
sess the capabilities of both approaches in the full lock-in region. For the particular case of
the NLH method, the consideration of 3 harmonics are required based on the results of this
research.

Two important contributions can be extracted from the development and the numerical
simulations included in this chapter. On the one hand, it constitutes a detailed analysis of the
performance of the NLH method when dealing with vortex shedding modeling. It was shown
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that the uncertainty in the value of the shedding frequency can be bypassed by the application
of an iterative simulation process. Even if this approach has several limitations from the
industrialization point of view, it opens the door to a potential development concerning the
automatic shedding frequency identification. On the other hand, it describes the first 2-way
coupling module based on the NLH method. As for the fixed cylinder case, it was shown
that the identification of the aeroelastic frequency can be performed by means of an iterative
process.

The application of this new technology into a wind energy context can be found later on
in this document in Section 6.3. In opposition to the cylinder case, the use of the harmonic 2-
way coupling NLH on wind turbines assumes that the main source of unsteadiness is carried
out by the blade passing frequency. Hence, the application of a frequency identification
process is not required. It should be also reminded that wind turbines use to operate at high
Reynolds numbers, where important turbulent effects are to be expected. Since those are taken
into account in the fluid loads computed by the NLH approach, the proposed FSI harmonic
methodology is assumed to be applicable for wind turbine analysis without implying any
additional limitations.





Chapter 5

DTU 10MW RWT Rotor-only
analysis

Due to the continuous upscaling of modern HAWTs, important aeroelastic effects are to be
expected. Traditional CFD approaches do not consider the flexibility of the rotor. How-
ever, blade deflections can have a non negligible impact on the machine performance, and
a possible blade-tower impact should be considered at the design stage. This requires the
consideration of rotor structural models in the CFD computations, as well as FSI effects.
Due to the lack of publicly available industrial configurations, previous studies concerning
wind turbines aeroelasticity are based on the so-called academic or reference designs. In this
group we find the works of Corson et al. (2012) for the SNL-100-00 blade and the studies
of the NREL 5MW performed by Hsu and Bazilevs (2012) and Yu and Kwon (2014). In
all these publications, blade deflections were found to have a direct impact on the final rotor
performance.

In this chapter, a complete characterization of the DTU 10MW RWT aeroelasticity in a
rotor-only context is presented. A brief description of this machine is included in Section 5.1.
A Reynolds Averaged Navier Stokes (RANS) approach was used in order to perform steady
simulations of the relative flow field of this HAWT. The rotor was considered either as rigid
or flexible. For the latter case, the consideration of a blade structure sub-model was necessary.
Mesh deformation was carried out by the 3-steps hybrid method described in Chapter 3.

First computations included in Section 5.2 were based on the standard DTU 10MW RWT
rotor, assuming a rigid configuration. Straight blades were considered, equipped with the
so-called Gurney flaps devices at low span range [5%,40%]. Obtained results were compared
with 3D CFD simulations performed by other authors. In Section 5.3, static aeroelasticity
computations were performed by means of a 2-way coupling FSI approach. The behavior
of the structure was linearized by means of its natural frequencies and deformed shapes.
The same methodology was used in Section 5.4 to compare the performance of this standard
blade with a “clean” variant, where Gurney flaps were removed. Both rigid and flexible
rotor configurations were studied. In order to analyze the DTU 10MW RWT rotor in a more
assembly-oriented configuration, additional simulations accounting for blades pre-cone and
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pre-bending were performed and their results are included in Section 5.5.
In all the simulations included in this chapter, turbulence was considered by means of

Spalart-Allmaras model [Spalart and Allmaras (1992)]. A brief study of the turbulence mod-
eling sensitivity for the pre-cone and pre-bent blade configuration is also included is Ap-
pendix C, by means of a comparison with the k-ω SST model [Menter (1993)]. The same
flow separation regions and blade deformations were observed for both turbulence models.
Even if a direct impact on the computed rotor performance was observed, the trends predicted
by the Spalart-Allmaras and the k-ω SST models regarding the effects of aeroelasticity and
rotor speed were consistent.

5.1 The DTU 10MW RWT

The DTU 10 MW RWT is a variable pitch, variable speed and upwind HAWT [Bak et al.
(2013)]. It was designed as an upscaling of the NREL 5MW reference wind turbine [Jonkman
et al. (2009)]. The blade design was however modified by equipping FFA-W3-xxx airfoil se-
ries. The main parameters characterizing the DTU 10MW RWT are summarized in Table 5.1.
In Figure 5.1, the 3D view of the DTU 10MW RWT whole assembly included in Bak et al.
(2013) is reproduced.

R=89.166 m

 ⌀5.6 m

119 m

Figure 5.1: 3D view of DTU 10MW RWT

Parameter description Parameter Value

Cut in wind speed 4 m.s-1

Cut out wind speed 25 m.s-1

Rated wind speed 11.4 m.s-1

Rated power 10 MW
Number of blades 3
Rotor total radius (R) 89.166 m
Min. rotor speed 6 RPM
Max. rotor speed 9.6 RPM
Hub diameter 5.6 m
Hub height 119 m
Rotor mass 227.962 kg
Nacelle mass 446.036 kg
Tower mass 982.765 kg
Tower diameter top 5.5 m
Tower diameter base 8.3 m
Tower clearance 18.26 m

Table 5.1: DTU 10MW RWT main parameters
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The DTU 10MW RWT tower is made from steel. The blades structure is based on glass
fiber reinforced composites and balsa wood. The radial evolution of the blade geometrical
properties is depicted in Figure 5.2. The low span range accounted for thicker airfoils. A
maximum chord of 6.2 m was designed for r=25 m. In order to adapt the incidence of the
blade to the tangential velocity, a twist law was also defined. The blade root cross section
was assumed to be perfectly cylindrical, followed by a transition towards the FFA-W3=xxx
airfoil series. At low span ranges [5%,40%], Gurney flaps were installed in order to increase
the aerodynamic performance of the blade. These devices consisted in smooth wedge shapes
located at the blade trailing edge, as it is depicted in Figure 5.3. A representation of the cross
section shapes evolution of the DTU 10MW RWT blade is shown in Figure 5.4. The Gurney
flap device can be identified for the section at r=23.528 m.

(a) Chord (b) Twist

(c) Thickness (d) Relative thickness

Figure 5.2: Radial evolution of the DTU 10MW RWT blade geometrical parameters. A blade sketch
is included at every plot for clarity purposes
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(a) Global view (b) Trailing edge zoom

Figure 5.3: FFA-w3-360 airfoil, equipped by the DTU 10MW RWT at low span. Comparison of
the original shape and its modification after the introduction of the Gurney flaps. Coordinates are
normalized by the chord c. Markers do not represent data sampling

Figure 5.4: Cross sections of DTU 10MW RWT blade for different radii. Markers do not represent
data sampling. A sketch of the cross sections location on the blade span was added for clarity purposes

Two blade variants of the DTU 10MW RWT blade geometry were defined in Bak et al.
(2013), considering a straight and a pre-bent axis. As it will be discussed in Section 5.5,
the latter geometry constitutes a more realistic scenario when dealing with flexible blades.
The pre-bending law is illustrated in Figure 5.5. A complete FEM model of the straight
blade structure was also described in Bak et al. (2013), and it is publicly available for direct
download. The commercial package Abaqus was used for this task [Simulia (2008)]. External
and internal geometries of the blade and composite layup were modeled by means of 8-node
layered shell elements. The adhesive connecting the suction side shell and the pressure side
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86.336 m

3.332 m

Prebent
blade axis

Hub

2.8 m

Rotor axis

Straight
blade axis

Figure 5.5: DTU 10MW RWT blade axis prebending

shell was modeled by means of hexahedral elements. The whole FEM model accounted for a
total of 35.000 elements and 104.000 nodes. In order to properly define the composite layup,
the blade was split into 11 circumferential regions and 100 radial regions. A 3D view of the
whole FEM model is depicted in Figure 5.6.

(a) Radial segment

(b) Whole assembly

Figure 5.6: DTU 10MW RWT straight blade FEM model. Reproduced from Bak et al. (2013). (a):
Detail of every radial segment, accounting for 11 circumferential regions. (b): Global view of the
assembly, including the 100 radial segments
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5.2 Steady aerodynamics, original geometry

The first set of performed CFD computations was based on the straight variant of the DTU
10MW RWT rotor, assuming the blades as rigid. The original blade geometry defined in Bak
et al. (2013) was considered, accounting for the Gurney flaps at low span range. This rotor-
only configuration was also studied with other 3D RANS solvers. The results of Ellypsis3D
can be found in the DTU 10MW RWT definition document [Bak et al. (2013)], and the
simulations of the HMB2 solver were compiled in the MAREWINT project deliverable D5.4
[Leble et al. (2015)]. In order to assess the sensitivity of the developed model, the results
issued from this research were compared against both references. The whole 0 deg pitch
operating range of the DTU 10MW RWT was considered for this code to code comparison.

5.2.1 Methodology

The considered rotor geometry accounted for the DTU 10MW RWT straight blade at 0 deg
pitch. Both the nacelle and the hub were also taken into account, based on their original
definition. Figure 5.7c shows a 3D view of the complete rotor. Autogrid5™ structured grids
generator was used in order to perform a 3D mesh [NUMECA International (2013a)]. Only
one blade passage was meshed, assuming rotational periodicity boundary conditions for the
radial surfaces. The rest of boundary conditions, referred in this document as externals,
relied in the subsonic far-field formulation described in Hirsch (1990). Figure 5.7a shows a
3D view of the computational domain, including the blocking topology of the generated mesh
(solid lines). Flow inlet and outlet were located at 2.2 and 3.1 blade radius from the nacelle
respectively. In order to avoid the alignment of the fluid speed and the external boundary
conditions, those accounted for an expansion angle in the longitudinal direction. A scaled
sketch of the computational domain is included in Figure 5.7b.

The generated mesh accounted for a total of 7.2×106 nodes and 24 blocks. A first cell
height of 10−4 m was imposed at the boundary layer of the blade, in order to target y+ values
of less than 10 at the first inner cell as suggested in NUMECA International (2013b). This
height value corresponds to approximately 1.1×10−6 R. Figure 5.8 shows a global overview
of the mesh. For clarity purposes the three blades are displayed, and 1 out of 2 grid lines are
skipped. In Figure 5.9a, the cross-section mesh at mid-span is illustrated. The geometry of
Gurney flaps at 20% of span together with the surrounding cross-section mesh is shown in
Figure 5.9b.
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Rotational
periodicity

External boundary
conditions

Rotor

(a) Computational domain, 3D view

Rotation Axis

External Boundary Conditions

Blade 

Nacelle

2.2R 3.1R

Hub

2.2R

2.9R
Direction of the flow 

(b) Computational domain, scaled sketch
(c) Geometry

Figure 5.7: Geometry and computational domain for the straight blade rotor-only simulations. In (a),
one of the periodic boundary conditions was removed to allow the visualization of the interior.

(a) Global view (b) Detail of nacelle and low blade span range

Figure 5.8: DTU 10MW RWT surface mesh overview (displayed 1 every 2 grid lines)
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(a) 50% span (b) 20% span

Figure 5.9: DTU 10MW RWT cross-section meshes, 20% and 50% span

The fluid was modeled as a perfect gas. The Spalart-Allmaras turbulence model [Spalart
and Allmaras (1992)] was used for the RANS simulations, enhanced by Merkle precondi-
tioner [Merkle et al. (1998)]. A multigrid approach was followed in order to speed-up the
computations. Different operating points of the DTU 10MW RWT wind turbine at 0 deg
pitch were analyzed, as defined in Bak et al. (2013). These points are listed in Table 5.2. To

Table 5.2: DTU 10MW RWT aerodynamic load cases definition

DLC Identifier Wind speed [ms-1] RPM

FT_WSP07 7 6.000
FT_WSP08 8 6.426
FT_WSP09 9 7.229
FT_WSP10 10 8.032
FT_WSP11 11 8.836

contextualize the expected flow behavior, the radial evolution of the Reynolds number and
Mach number at 11 ms-1 are illustrated in Figure 5.10. Those coefficients were computed
based on the relative flow velocity and axial chord. A maximum value of Re=1.28×107 is
observed at the loads production region of the blade (r/R=0.58). The blade tip Mach number
corresponded to 0.24. Hence, no compressibility effects were expected.

5.2.2 Flow visualization at 11 ms-1

The imposed first cell hight along the blade was considered as sufficiently small with regards
to the requirements of the Spalart-Allmaras turbulence model, since the y+<10 criterion was
satisfied for all the performed computations. A number of nodes ranging from 30 to 40 laid
in the boundary layer for the blade sections at the vicinity of the blade tip. Figure 5.11 dis-
plays y+ around different blade sections, normalized by the corresponding axial chord c. A
maximum value of 6.3 is observed for r/R=0.9. Flow separation was observed at the low
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Re (x107) [-]

(a) Reynolds number (Re) (b) Mach number (M)

Figure 5.10: DTU 10MW RWT, relative Mach and Reynolds numbers radial evolution at nominal
operating point

Figure 5.11: Computed y+ values at different cross sections of the DTU 10MW RWT blade. A sketch
of the cross sections location on the blade span was added for clarity purposes

blade span range. Figure 5.12 shows the surface restricted streamlines for different cross
sections. At r/R=0.2, two trailing edge recirculation bubbles can be observed. The flow sep-
aration can be better understood by means of the friction streamlines of the blade surfaces
(see Figure 5.13). Both pressure surface and suction surface separation bubbles were identi-
fied. While the former ranged from r=14.9 m to r=20.3 m (r/R=[0.17,0.23]), the latter spread
from the blade hub up to r=39.7 m (r/R=0.45). This last remark is in-line with the Ellip-
Sys3D computations performed by Zahle et al. (2014), where the suction surface separation
was found up to an approximate radius of 30 m (r/R=0.34). It is important to remark that
the computed pressure surface separation bubble was highly three-dimensional. Indeed the
recirculation was dragged in the radial direction toward the blade tip, due to the centrifugal
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Figure 5.12: DTU 10MW RWT, surface restricted relative velocity streamlines for blade sections at
r/R=0.1 (red), r/R=0.2 (green) and r/R=0.9 (black). A sketch of the cross sections location on the blade
span was added for clarity purposes

r[m]

(a) Pressure surface

r[m]

(b) Suction surface

Figure 5.13: Blade friction streamlines at 11 ms-1 along blade surfaces, showing flow separation re-
gions for both the pressure side and the suction side

effects. This effect is graphically put in evidence in Figure 5.14, via the streamlines of the
incoming flow at ∼r/R=0.1. This 3D behavior of the flow could be hardly modeled with pure
2D approaches, such as the BEM method, justifying the use of CFD for this analysis. Finally,
Figure 5.15 displays the streamlines of the incoming flow at the blade tip. The tip vortex can
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be clearly identified, as well as the expansion of the wake due to the capture of kinetic energy
performed by the rotor (as illustrated by means of the actuator disc model in Section 2.1.1).

(a) Global view (b) Blade zoom

Figure 5.14: DTU 10MW RWT, relative velocity streamlines at low span

(a) Global view

(b) Blade zoom

Figure 5.15: DTU 10MW RWT, relative velocity streamlines at the vicinity of blade tip
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5.2.3 Rotor performance

Figure 5.16 shows the computed rotor loads for all the considered operating points, com-
pared with RANS simulations performed by other authors. The different solutions captured
a similar monotonic increase of both thrust and power for the considered operating range.
The HMB2 solution seemed to systematically over predict both quantities when compared to
the results of Ellypsis3D and the values obtained with FINE™/Turbo in this research. The
differences between the last two solvers is quantified in Table 5.3. For all the considered
wind speeds, the maximum percentile difference was smaller than 1.5%. Hence, it can be
concluded that both methodologies do predict a similar flow solution. Due to the lack of
experimental data of the DTU 10MW RWT, no further conclusions can be made regarding
their accuracy. Since different operating points are considered in this section, it is interest-

(a) Total thrust (b) Mechanical power

Figure 5.16: DTU 10MW RWT total rotor loads versus wind speed, original straight blade with Gurney
flaps. Comp. I refers to the Ellypsis3D computations included in Bak et al. (2013). Comp. II refers to
the HMB2 results included in Leble et al. (2015)

Table 5.3: Computed DTU 10MW RWT rotor loads compared with Bak et al. (2013) simulations,
original straight blade with Gurney flaps

Operating point Thrust [kN] Power [MW]

Current
research

Bak et al.
(2013)

Diff [%] Current
research

Bak et al.
(2013)

Diff [%]

FT_WSP08 804.6 817.0 1.5 3.886 3.848 -1.0
FT_WSP09 1022.9 1036.6 1.3 5.562 5.497 -1.2
FT_WSP10 1266.4 1282.6 1.3 7.660 7.561 -1.3
FT_WSP11 1539.6 1555.0 1.0 10.024 10.088 0.63
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ing to express the rotor thrust and mechanical power in terms of the global thrust coefficient
Ct |global and global mechanical power coefficient Cp|global :

Ct |global =
BT

0.5ρU2
∞πR2 ,Cp|global =

BτΩ

0.5ρU3
∞πR2 (5.1)

where T stands for the thrust force generated per blade, τ is the torque per blade, B stands
for the number of blades, U∞ is the incoming fluid speed, ρ is the fluid density, R is the total
blade span and Ω is the rotating speed.

Ct |global and Cp|global are depicted in Figure 5.17. Due to the adaptation of the rotor
speed for the considered operating points, an almost constant evolution of both coefficients is
expected. This corresponds to the power production range of the machine. Due to the normal-
ization of the rotor loads, the gap between the different numerical solutions is emphasized.
This is especially true for the value of Cp|global . In order to analyze the local differences

(a) Global thrust coefficient (b) Global power coefficient

Figure 5.17: DTU 10MW RWT global coefficients versus wind speed, original straight blade with
Gurney flaps. Comp. I refers to the Ellypsis3D computations included in Bak et al. (2013). Comp. II
refers to the HMB2 results included in Leble et al. (2015)

between the presented methodologies, the local evolution of thrust and mechanical power
coefficients is shown in Figure 5.2. The expressions of Ct |local and Cp|local used in Johansen
et al. (2007) were adopted. For every considered blade segment s centered at a radius r and
with a length of ∆r, they can be written as:

Ct |local =
BTs

0.5ρU2
∞2πr∆r

,Cp|local =
rBτsΩ

0.5ρU3
∞2πr∆r

(5.2)

where Ts and τs are the the thrust and mechanical power generated by the segment s.
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The loads production range of the DTU 10MW RWT was identified to be approximately
between 40% and 80% of the span. In this region, the performed computations showed
an overestimation with respect to the results of Ellypsis3D. This gap was found to be less
pronounced for Ct |local . Between r/R=0.3 and r/R=0.4, the three compared CFD simulations
showed an overshoot of the thrust, even it was less important for the case of FINE™/Turbo.
This is related to the presence of the Gurney flaps, as it is discussed later on in this document
in Section 5.4. HMB2 and FINE™/Turbo predicted an increase of both local coefficients at
span values lower than 30%. This fact could be related to the influence of the hub and nacelle
geometries, that were not present in the EllipSys3D rotor geometry.

(a) Local thrust coefficient (b) Local power coefficient

Figure 5.18: DTU 10MW RWT local load coefficients at 11 ms-1, original straight blade with Gurney
flaps. Comp. I refers to the Ellypsis3D computations included in Bak et al. (2013). Comp. II refers to
the HMB2 results included in Leble et al. (2015). Markers do not represent data sampling

5.2.4 Influence of the mesh

In order to verify results mesh independence, presented rotor loads have been compared
against the ones computed in a coarser mesh. This new spatial discretization has been created
by merging every 8 cell volumes of the base (fine) mesh. The total number of the generated
coarse mesh was 9.5×105 nodes (approximately 1/8 th of the base mesh). As shown in Ta-
ble. 5.4, observed rotor loads difference was below 5% for all the studied operational range,
concluding that the fine mesh provides accurate enough results for the type of analysis to
perform. Higher discrepancies were found for low wind speed range.



5.3 Static aeroelasticity, original geometry 157

Table 5.4: Computed loads for fine and coarse meshes in function of the operating point

Operating point
Thrust [kN] Power [MW]

Coarse Fine Diff [%] Coarse Fine Diff [%]

FT_WSP07 636.9 651.7 2.3 2.519 2.635 4.6
FT_WSP08 788.7 804.6 2.0 3.742 3.886 3.8
FT_WSP09 1009.5 1022.9 1.3 5.416 5.562 2.7
FT_WSP10 1259.4 1266.4 0.6 7.535 7.660 1.7
FT_WSP11 1543.2 1521.8 -1.4 10.169 10.036 -1.3

5.3 Static aeroelasticity, original geometry

In Section 5.2, rotor-only simulations of the straight DTU 10MW RWT rotor geometry were
presented. The assumption of rigid blades was made. Results showed a fair agreement when
compared to other CFD computations, both from the global and local loads perspectives.
During the operation of the DTU 10MW RWT, important rotor deflections are expected due
to the size and the slenderness of the blade. These deformations may have an impact on the
rotor performance. This is the reason why another set of simulations of the straight variant of
the DTU 10MW RWT original blade was performed, also accounting for its flexibility. This
set-up corresponds to the analysis of the static aeroelasticity of the DTU 10MW RWT, since
the flow was considered as steady.

5.3.1 Methodology

The same mesh and fluid computational settings described in Section 5.2.1 were kept for
the static aeroelasticity simulations of the original straight blade. The behavior of the struc-
ture was linearized by means of its natural frequencies and deformed shapes. To reduce
the computational cost attached to FSI simulations, only the first six frequencies of the ob-
tained modal basis were used to model blade flexibility. An iterative procedure fluid sim-
ulation/structure deformation allowed to find the final static deformed blade and flow be-
havior after several steps. The details of this 2-way coupling approach were described in
Section 4.1.1. The hybrid mesh deformation method developed within this PhD thesis was
used in order to re-adapt the grid to the deflected blade geometry (see Section 3.6). As for
the rigid configurations, all the operating points listed in Table 5.2 were studied.
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Blade structural model

To obtain a set of modal shapes and natural frequencies of the blade structure, different modal
analysis of the FEM model provided by Bak et al. (2013) were performed. The commer-
cial package Abaqus was used for this task [Simulia (2008)]. First computation assumed a
clamped root and a non-rotating blade. Obtained natural frequencies are compared in Ta-
ble 5.5 with the results of HAWC2 [Larsen and Hansen (2007)], a third party software based
on Blade Element Momentum (BEM) theory. The details of the HAWC2 model of the DTU
10MW RWT together with the predicted structure frequencies are also included in the report
of Bak et al. (2013).

Table 5.5: DTU 10MW RWT blade modes, comparison in the absence of rotation

Natural Frequency [Hz] Isolated blade modes

Abaqus HAWC2 Identifier Description

0.61 0.61 1 1st flap
0.96 0.93 2 1st edge
1.75 1.74 3 2nd flap
2.88 2.76 4 2nd edge
3.58 3.57 5 3rd flap
5.71 5.69 6 1st torsion
5.75 - 7 Mixed flap/torsion
6.16 6.11 8 4th flap
- 6.66 9 3rd edge

A mixed mode was found between 1st torsion and 4th flap. No pure 3rd edge mode was
identified within the considered frequency range. These differences could be explained by
the complexity of the structural models used for natural frequencies extraction. As it will be
shown later on in this document, the high order modes did not have a significant impact on
blade deformation for the considered operating points.

Additional simulations were performed by considering the blade rotation of each op-
erating point in the modal analysis. This allowed to include the centrifugal effects in the
computed modal basis, in order to take them into account in the FSI simulations. A slight
structural frequencies shift was observed due to the consideration of the centrifugal stiffen-
ing. This effect is illustrated in Figure 5.19, where the variations of blade frequencies against
non-rotating frequency are plotted at every RPM. Even if this frequency shifting is not as
important as in other rotatory applications including large blade deformations (such as heli-
copters), a non-negligible value is observed for the first modes. As an example a difference
up to 6.12% was found for the first mode at 9.6 RPM.
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Figure 5.19: Evolution of DTU 10MW RWT blade frequencies in function of rotational speed (first six
modes plotted)

5.3.2 Blade deformation at 11 ms-1

Figure 5.20 shows the computed blade deflection at 11 ms-1, superposed to the original (i.e.
undeformed) geometry. The resulting blade deformation was mainly dominated by first flap-
ping mode. The measured blade tip deflection normal to the rotor axis dn was 0.9%R, while
the deformation parallel to the rotor axis dp was found to be 8.73%R (7.78 m). The latter
value is considerably high due to the dimensions of the DTU 10MW RWT. For example, the
equivalent deformation computed by Carrión (2014) for the NREL Phase VI was 0.59%R
(29.7 mm). For the particular case of 11 ms-1, both RBF+TFI and RBF+TFI+ELA hybrid
mesh deformation methods were evaluated (see Section 3.6). Table 5.6 illustrates the per-
formance of both approaches. An estimation of the computational cost of a classical Radial
Basis Function (RBF) based deformation is included for comparison purposes. As already
pointed out in in Chapter 3, the CPU cost attached to the RBF when dealing with multi-
million meshes was found to be prohibitive.
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Figure 5.20: Static blade deflection of the DTU 10MW RWT at 11 ms-1

Table 5.6: Mesh quality of original and deformed DTU 10MW blade mesh

Def. method
OR AR ER Computational Data

Min. Max. Max. #Proc tde f /tsim Mem.

Original 15.2 41700 1.66 - - -
RBF - - - - ∼400.0 ∼15630
RBF+TFI 15.2 47200 1.66 9 0.003 1385
RBF+TFI+ELA 15.2 47200 1.66 9 0.39 3706

OR: Orthogonality [deg], AR: Aspect Ratio, ER: Expansion Ratio
tde f /tsim: Ratio between total mesh deformation and fluid simulation times

Mem.: Max. memory allocated [MB], divided by number of processors #Proc

The grid computed by the RBF+TFI method already kept the original overall mesh quality
parameters. Regarding the the blade sections mesh, both RBF+TFI and RBF+TFI+ELA
approaches computed very similar deformed grids (Figure 5.21, 5.22). This fact is related
to the absence of a significant twist deflection. The additional computational effort of the
Elastic Analogy (ELA) step could be justified by looking at the local mesh quality around the
blade. Near-wall orthogonality was improved by the introduction of the Elastic Analogy in
spanwise direction (Figure 5.23). Even if this slight improvement did not change the results
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of the aeroelastic computations for the studied operating points, its was decided to use the
RBF+TFI+ELA mesh deformation method as a standard for all the FSI analysis presented in
this chapter

(a) Original mesh (b) Def. RBF+TFI (c) Def. RBF+TFI+ELA

Figure 5.21: DTU 10MW RWT leading edge at 90% span, original and deformed meshes

(a) Original mesh (b) Def. RBF+TFI (c) Def. RBF+TFI+ELA

Figure 5.22: DTU 10MW RWT trailing edge at 90% span, original and deformed meshes
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(a) Original mesh (b) Def. RBF+TFI (c) Def. RBF+TFI+ELA

Figure 5.23: DTU 10MW RWT spanwise cut near tip region, original and deformed meshes

5.3.3 Rotor performance

Figure 5.24 shows the evolution of the computed total rotor loads by means of the presented
2-way coupling FSI approach, referred to as flexible. The results of the steady computa-
tions presented in Section 5.2.3 are reproduced and labeled as rigid. The computed loads by
HMB2 are also included for both rigid and flexible blade configurations. For both HMB2
and FINE™/Turbo solvers, the consideration of the blade flexibility lead to a decrease of
the computed rotor load coefficients. For the latter solver, the difference seemed to increase
with regards to the wind speed. For the particular case of 11 ms-1, FINE™/Turbo predicted a
reduction of 1.34% of Cp|global and 2.25% of Ct |global . This difference was magnified for the
HMB2 solver, probably due to the fact that the elastic configuration did not account for the
first 35% of the blade span.

The local evolution of thrust and power coefficients at 11 ms-1 is depicted in Figure 5.25.
Both HMB2 and FINE™/Turbo predicted a slight increase of the loads at the vicinity of
r/R=0.5. However, this gain of Cp|global and Ct |global was not able to counteract the decrease
observed for high span ranges (r/R>0.6).

The drop of the loads at the high span was related to the important deformation expe-
rienced by the blades at this region (see Figure 5.26). The proportionality of the blade de-
flection with the considered wind speed also explained the higher difference in the computed
loads for the rigid and flexible configurations. At 11 ms-1, both FINE™/Turbo and HMB2
predicted a similar radial evolution of the blade deflection. The increase of the deformation
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magnitude predicted by HMB2 was certainly related to the systematic overprediction of the
rotor thrust, even when considering the blades as rigid.

(a) Global Thrust coefficient (b) Global Mechanical Power coefficient

Figure 5.24: DTU 10MW RWT global coefficients versus wind speed, rigid and flexible configurations
of the original blade. Comp. II refers to the HMB2 results included in Leble et al. (2015)

(a) Local thrust coefficient (b) Local power coefficient

Figure 5.25: DTU 10MW RWT local loads coefficients at 11 ms-1 for flexible and rigid configurations.
Comp. II refers to the HMB2 results included in Leble et al. (2015). Markers do not represent data
sampling
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(a) Blade axis displacement parallel to rotor
axis

(b) Blade axis displacement normal to rotor
axis

Figure 5.26: DTU 10MW RWT blade axis deformation in function of normalized radius for the original
straight blade. Comp. II refers to the HMB2 results included in Leble et al. (2015)

5.4 Impact of Gurney flaps

Original DTU 10MW RWT blade geometry is equipped with the so-called Gurney flaps. This
device, originally developed for race car applications, consists on a small plate located at the
trailing edge. It is used to increase the lift produced by the airfoil when operating in sepa-
rated flow conditions. A low drag penalty is also expected. First studies characterizing the
performance of this passive device were performed by Liebeck (1978). Figure 5.27 repro-
duces the conclusions of this work. The beneficial effects of the Gurney flaps installation
were explained by the re-attachment of the suction side flow close to the trailing edge. The
performance improvement related to the presence of the Gurney flap was verified by several
subsequent experimental studies based on relatively thin airfoils and accounting for sharp
trailing edges. To this group belong the work of Jeffrey et al. (2000) [relative thickness of
12.5%], the study of Troolin et al. (2006) [15%] and the research performed by Storms and
Jang (1994) [12%]. Cole et al. (2011) performed an exhaustive experimental comparison
of different Gurney flap geometries installed for several airfoils, which maximum relative
thickness ranged from 8% to 10.9%. It was concluded that under the existence of massive
upstream separation (covering between 20% to 30% of the airfoil surface), the effectiveness
of the Gurney flaps was reduced. This led, in some cases, to the reduction of the maximum lift
coefficient when compared to the corresponding clean geometries. In Prospathopoulos et al.
(2014), a numerical investigation was conducted in order to study the performance of large
HAWT blades at low span, where thick airfoils are equipped. Unsteady 2D CFD URANS
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simulations based on the k-ω SST turbulence model were carried out, assuming fully turbu-
lent conditions. The increase of the thickness was found to reduce the generated lift and drag
in the post-stall region. Additionally, thick airfoils separation happened at lower angles of
attack. For the FFA-w3-360 airfoil, that accounts for a maximum relative thickness of 36%,
the effect of the Gurney flap was also studied. An increase in the slope of the lift coefficient
over the linear range was predicted when compared to the original airfoil geometry, together
with a higher maximum lift.

Trailing edge Opposite sign
vortices

Separation Bubbles

(a) Clean trailing edge

Trailing edge

Gurney flap

Opposite sign
vortices

Upstream
Separation Bubble

(b) Trailing edge accounting for a Gurney flap

Figure 5.27: Expected effects on trailing edge flow due to Gurney flaps installation

In the original DTU 10MW RWT blade geometry, Gurney flaps are equipped at low blade
span [5%,40%] in order to improve the performance of this region. Due to the thickness of
blade profiles and incoming flow properties, important separation effects are expected at the
power production operating range. The wedge shaped variant used for the DTU 10MW RWT
Gurney flap is also known in the literature as trailing edge wedge or divergent trailing edge.
The behavior of this type of flow control device was previously analyzed by several authors
by studying non-rotating airfoils. In Timmer and van Rooij (2003), several wind tunnel ex-
periments were performed aiming to understand the effect of different Gurney flap shapes
on the generated lift and drag loads. The DU 93-W-210 airfoil was used, which maximum
relative thickness is 21% (see Figure 5.28a). The tests showed an increase of the maximum
generated lift with an attached reduction of the maximum lift-to-drag ratio, regardless the
considered Gurney flap shape. The experiments also revealed that there was no difference
between the performance of the airfoil equipped with a traditional Gurney flap and the wedge
shape variant based on an isosceles triangle. This was explained by the fact that the wedge
was filling the place otherwise taken by the upstream separation bubble. The study of the rest
of wedge shapes of Figure 5.28a showed that increasing the upstream wedge length tended to
attenuate the benefits of the Gurney flap, by decreasing the maximum lift and increasing the
maximum lift-to-drag ratio with respect to the traditional geometry. Analogous observations
regarding the almost equivalent behavior between wedge shaped and traditional Gurney flap
geometries were stated in Salcedo et al. (2006) (see Figure 5.28b). In this work 2D CFD
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RANS computations using k-ω SST model and accounting for transition were performed,
in order to study several airfoils with maximum relative thickness ranging from 8% to 24%.
Similar CFD simulations were performed by Mohammadi and Doosttalab (2012) for the 25%
thick DU 91-W2-250 airfoil equipped with the wedge shaped Gurney flap depicted in Fig-
ure 5.28c. These computational results also verified the expected Gurney flaps behavior, with
an increase of the lift coefficients for all the studied angles of attack and a reduction of the
maximum lift-to-drag ratio.

(a) Experiments of Timmer and van Rooij
(2003)

(b) CFD computations of Salcedo et al. (2006) (c) CFD computations of Mohammadi
and Doosttalab (2012)

Figure 5.28: Examples of wedge shaped Gurney flaps studied by other authors

The global impact of the installation of the wedge shaped Gurney flaps for the DTU
10MW RWT is claimed to be an increase of 1.2% of the total mechanical power at the de-
sign operating point [Zahle et al. (2013)]. This section aims to evaluate this result by a 3D
computational study, since no prior experiences were found in the literature supporting this
statement.

5.4.1 Methodology

In order to evaluate the impact of the Gurney flaps installation, the load cases of Table 5.2
were studied again in a geometry with clean trailing edges. Both rigid and flexible blades
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were considered in the new computations. For the latter configuration, the first 6 modes of
the ROM described in Section 5.3.1 were used in order to account for blade flexibility. A new
mesh was generated with the same characteristics as the one described in Section 5.2.1, but
based on a variant geometry of the DTU 10MW RWT, where the Gurney flaps were replaced
by the unmodified blade profiles definition. This new mesh will be referred in this document
as as no-Gurney or as NG. For clarity purposes, the one initially created in Section 5.2.1
based on the original geometry of the DTU 10MW RWT is referred to as Gurney or G. In
order to illustrate the differences between G and NG configurations, Figure 5.29 displays a
cross section of the mesh corresponding to a 25% of blade span.

(a) G cross section mesh (b) G trailing edge

(c) NG cross section mesh (d) NG trailing edge

Figure 5.29: Cross-section meshes at 25% span for G (Gurney) and NG (no-Gurney) configurations

5.4.2 Flow visualization at 11 ms-1

In order to check if the Gurney flaps flow control mechanism illustrated in Figure 5.27 was
reproduced in the DTU 10MW RWT geometry, a detailed analysis of the rigid configuration
at 11 ms-1 was performed. Figure 5.30 shows a comparison of the cross-section streamlines
at a radius of 22.3 m (r/R=0.25). The generation of the pressure surface separation bubble
was visible for the G configuration. A detailed view of this phenomenon is included in Fig-
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ure 5.30b. The suppression of the suction surface recirculation, expected after the installation
of the Gurney flaps, was not observed. This behavior was found for the whole low span range,
as it can be deduced from the comparison of blade surface streamlines of Figure 5.31a. and
Figure 5.31b. Indeed, the removal of the Gurney flaps led to a slight decrease of the maximum
radius of the suction surface separation (passing from 39.7 m for G to 38.1 m for NG). In
addition, the flow around the pressure surface of NG remained attached for the whole blade
span, except for a small recirculation bubble located at r=[14.9,20.3] m (see Figure 5.31d). A
similar flow pattern was observed for all the operating points of Table 5.2.

(a) G (Gurney), global view (b) G (Gurney), pressure side zoom

(c) NG (no-Gurney), global view (d) NG (no-Gurney), pressure side zoom

Figure 5.30: Cross-section streamlines at 11 ms-1 for r=22.3 m (r/R=0.25). Rigid simulations of G
(Gurney) and NG (no-Gurney) configurations

5.4.3 Rotor performance

The benefits of the no-Gurney NG configuration on flow behavior had a direct impact on
global rotor performance. Figure 5.32 shows the global thrust and mechanical power coeffi-
cients computed for both G and NG configurations. The results for rigid and flexible blade
models are included. The installation of the Gurney flaps resulted in a decrease of the me-
chanical power and an increase of the thrust for both rigid and flexible configurations. At
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Figure 5.31: Friction streamlines at 11 ms-1 for suction and pressure surfaces (referred as SS and PS
respectively). Rigid simulations of G (Gurney) and NG (no-Gurney) configurations. Flow separation
regions can be observed on both the pressure side and the suction side for both configurations

11 ms-1 and for the rigid blade model, Cp|global was reduced in 1.4% while an increase of
0.8% was observed for Ct |global . As for the original blade geometry, the consideration of the
blade flexibility lead to a decrease of the rotor loads computed for the NG variant. In per-
centage terms, these reductions were found to be very similar. This fact could be explained
by analyzing the computed blade deflections, since no significant differences between both
configurations were found (see Figure 5.33).

Based on the presented results, a decrease of the performance of the DTU 10MW RWT
rotor is expected after the integration of the Gurney flaps. This issue can be explained by the
massive separation observed at the suction side of the airfoil (even for the clean airfoil geom-
etry), as pointed out by Cole et al. (2011). The important region covered by the suction side
bubble is at the same time related to the significant thickness of the DTU 10MW RWT blade,
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(a) Global Thrust coefficient (b) Global Mechanical Power coefficient

Figure 5.32: Global load coefficients in function of wind speed for G (Gurney) and NG (no-Gurney)
configurations

as suggested by Prospathopoulos et al. (2014). Indeed the airfoils located in the recirculation
areas are related to a relative thickness ranging from 30% to 99% (see Figure 5.2d), and they
also account for considerably wide blunt trailing edges. To the best of author’s knowledge,
no previous experiments or simulations supporting the use of Gurney flap for this type of
geometries were carried out. Another plausible cause for the inefficiency of the Gurney flaps
could be the role played by the axial flow, that was neglected in all the experiments described
in Section 5.4 (since they assumed a non-rotating framework). Other alternatives in order to
avoid the observed flow separation can be found in the literature. In Gaunaa et al. (2013), the
use of leading edge slats at low span regions r/R = [0.8,0.32] was studied. Troldborg et al.
(2015) considered the installation of vortex generators in order to control flow separation.

5.5 Impact of prebending and precone

The distance between the blade tip and the tower is often referred in the wind energy context
as the tower clearance. In order to increase this gap (especially when dealing with big rotors),
wind turbine designers use to introduce three geometrical considerations on the assembly:

• Tilt angle: Angle between rotor axis and tower

• Precone angle: Angle between blade axis and rotor axis

• Prebending: Blade deflection towards the incoming wind direction imposed during
the blade design stage
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(a) Blade axis displacement parallel to rotor
axis

(b) Blade axis displacement normal to rotor axis

Figure 5.33: DTU 10MW RWT blade deformation in function of normalized radius. G (Gurney) and
NG (no-Gurney) configurations. For clarity purposes, only the second half of the blade is shown

The DTU 10MW RWT accounts for all of them, as shown in Figure 5.34a, where a sketch
from the definition document of Bak et al. (2013) is reproduced. The geometrical effects of
prebending, tilt and preconing are highlighted. In an operating wind turbine, the combination
of all these modifications will try to align the deformed blade with the tower, as shown in
Figure 5.34b. The aim of this section is to analyze how these geometrical considerations
will impact rotor performance. The results of the already studied straight configuration were
compared against a new and more realistic variant, accounting for tower clearance increase
devices.

5.5.1 Methodology

Based on the conclusions of Section 5.4, new simulations were based on a blade geome-
try without Gurney flaps. The study was carried out in a rotor-only context, as a starting
point for full machine computations. In order to explore the whole 0 deg operating range
of the machine, the load cases from Table 5.2 were analyzed again and compared with the
straight-NG configuration results. Both rigid and flexible blades were analyzed. For the latter
configuration, mesh deformation relied in the hybrid method summarized in Section 3.6

A new mesh was generated with the same characteristics as the one described in Sec-
tion 5.2.1. Since the introduction of the tilt angle was not compatible with the angular peri-
odicity hypothesis for steady state flow simulations, only the prebending and the preconing
were considered. Based on the design specifications from Bak et al. (2013), the new consid-
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Figure 5.34: Sketch of the DTU 10MW RWT whole assembly

ered geometry was generated by the application of the following geometrical operators on the
standard DTU 10MW RWT configuration:

1. Application of the prebending law definition on the straight blade (see Figure 5.5)

2. Application of the 2.5 deg precone angle to the already prebent blade

Figure 5.35 illustrates both straight and prebent-precone variants of the DTU 10MW RWT
rotor, as considered in FINE™/Turbo.

Blade structural model

Due to the significant geometrical modifications performed on the new prebent-precone blade,
a new set of natural structural frequencies and mode shapes was required. The methodology
described in Section 5.4 was used in order to perform modal analysis for each one of the
considered RPM. The same blade modes identified for the straight blade were observed for
the new geometry. As previously shown in Figure 5.19 for the straight configuration, a small
RPM dependency was observed. In Figure 5.36, the relative variations of natural frequencies
corresponding to both configurations are compared. They are normalized by the frequency
of the non-rotating straight blade. The evolutions of the frequencies with the rotation speed
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Figure 5.35: Comparison of straight and prebent-precone configurations, DTU 10MW RWT rotor

were very similar. Only a constant shift between straight and prebent-precone configuration
was observed. This shift tended to increase with the mode number. As for the computations
of the straight blade, only the first 6 frequencies of the computed modal basis were used to
model the rotor flexibility in the FSI simulations.

Figure 5.36: Evolution of DTU 10MW RWT blade frequencies in function of rotational speed, straight
and prebent-precone blades (first six modes plotted)
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5.5.2 Rotor performance

Figure 5.37 shows the blade deformations for the flexible simulations of the prebent-precone
rotor. Computed deformations were slightly higher than the ones corresponding to the straight
rotor and previously displayed in Figure 5.33. However, higher deformed blade tip/tower dis-
tances were observed for the prebent-precone configuration, due to its more conservative
initial tower clearance. In order to illustrate this fact, Figure 5.38 shows the reference (i.e.
undeformed) and deformed blade axis coordinates for each of the presented aeroelastic com-
putations. A global view is provided as well as a close zoom in order to properly contextualize
the magnitude of the deformations. For the prebent-precone configuration, a blade tip/blade
root alignment was observed for for the 10 m.s-1 simulation. This operating point is indeed
very close to the rated speed of the machine (11.4 ms-1), verifying the prebending law defined
at the design stage. Computed global mechanical power coefficients of straight and prebent-

(a) Blade axis displacement parallel to rotor
axis

(b) Blade axis displacement normal to rotor
axis

Figure 5.37: DTU 10MW RWT blade deformation in function of normalized radius for the prebent-
precone configuration

precone configurations are shown in Figure 5.39, together with a diagram superposing ref-
erence and deformed rotor geometries at 11 ms-1. When considering the blades as rigid, a
decrease in power was observed when introducing blade prebending and preconing. At 11
ms-1, this reduction corresponded to 1.24%. As previously discussed in Section 5.4.3, the
consideration of the blade flexibility led to a decrease of the computed straight blade power.
This trend was reversed for the prebent-precone configuration, since the effect of flexibility
tended to deform the blade towards a more orthogonal geometry with respect to the incoming
flow (Figure 5.39b). The power produced by the rigid straight blade showed an overpredic-
tion with respect to the flexible prebent-precone configuration for the whole studied operating
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range. A maximum relative difference of 0.7 % was observed for 8 ms-1. An analogous plot
regarding rotor global thrust coefficient is included in Figure 5.40. Lower thrust values were
computed for the prebent-precone configuration with respect to the straight rotor. At 11 ms-1,
a relative reduction of 2.1% was observed. No significant differences between flexible and
rigid simulations were observed for the prebent-precone configuration.

As a global conclusion, presented results show that aeroelastic analysis of DTU 10MW
RWT cannot be performed without considering the prebending and the preconing of the
blades. Indeed, even if it does not largely affect the natural frequencies of the blade, its
shape modification significantly influences the performance of the wind turbine. In addition
the straight rigid blade (that use to be taken as a basis for the design stage), lead to a system-
atic overprediction of the power with respect to the more realistic prebent-precone flexible
configuration.

Closest
tower edge

Reference
blade axis

(a) Straight rotor (global view)

Closest
tower edge

Reference
blade axis

(b) Prebent-precone rotor (global view)

(c) Straight rotor (zoom) (d) Prebent-precone rotor (zoom)

Figure 5.38: Reference and deformed DTU 10MW RWT blade axis coordinates with respect to closest
tower edge
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(a) Global mechanical power coefficient

Incoming flow direction

(b) View of deformed blades
at 11 ms-1

Figure 5.39: Global mechanical power coefficient of the DTU 10MW RWT rotor, effects of
prebending-preconing and flexibility

(a) Global Thrust coefficient

Incoming flow direction

(b) View of deformed blades
at 11 ms-1

Figure 5.40: Global thrust coefficient of the DTU 10MW RWT rotor, effects of prebending-preconing
and flexibility

5.6 Computational cost

Table 5.7 summarizes the computational time required to perform the simulations included
in this chapter. A complete characterization of an operating point, including both rigid and
both flexible evaluations, could be performed in 24 hours on a modern computer. It should be
reminded that all the performed simulations used a single blade passage of the rotor, thanks
to the spatial periodicity of rotation.
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Table 5.7: Total computational resources per analysis,rigid and flexible approaches

Rigid Flexible

Millions of nodes (Nn) 7 7

#Processors (Np) 8 8

CPU hours (Th) 8 16

CPU factor ( ThNp
Nn

) 9 18

5.7 Conclusions and future work

A numerical model for the study of DTU 10MW RWT rotor aerodynamics was set-up, allow-
ing the analysis of local flow effects in a completely three-dimensional environment. In a first
step, the hypothesis of rigid blades was made. Obtained results at 0 deg pitch operating points
were successfully compared with simulations performed by other authors. In particular, max-
imum discrepancies in terms of rotor loads of 1.5% were observed with respect to the results
of Bak et al. (2013) with EllipSys3D. The initial set-up was extended by including a struc-
tural model of the rotor in order to account for FSI effects. The blade was represented by its
natural frequencies and deformed mode shapes. 2-way coupling simulations were performed
in oder to assess the static aeroelasticity of the rotor. In order to accommodate the important
observed blade deflection, the hybrid mesh deformation RBF+TFI+ELA method presented
in Section 3.6 was successfully used. The maximum computed blade tip deformation in the
rotor axis direction was observed at 11 ms-1 and corresponded to 8.73% of the rotor radius.
This significant blade deflection had a direct impact on the loads computed at the high span
range of the blade. At 11 ms-1, a total reduction of the mechanical power coefficient of 1.34%
was found, while the thrust coefficient was decreased by 2.25%.

The same developed numerical model was used for the study of two different aspects
related to the rotor design:

• The impact of Gurney flaps installation on the blade was discussed. No re-attachment
of the suction surface separation bubble was observed after the introduction of these
devices, and a wider pressure surface recirculation zone was identified. The evaluation
of the total mechanical power and thrust showed that Gurney flaps reduced the global
performance of the DTU 10MW RWT rotor for all the considered operating points.
This remark could be made for both rigid and flexible configurations. At 11 ms-1, the
installation of the Gurney flaps lead to a reduction of the power coefficient Cp|global of
1.4%, while the thrust coefficient Ct |global was increased by 0.8%. It was concluded
that a decrease of the performance of the DTU 10MW RWT rotor is expected after the
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integration of the Gurney flaps.

• The results of a prebent-precone rotor were also compared with the standard straight
configuration. When considering the blades as rigid, the combination of both geometri-
cal modifications led to a decrease of the computed rotor loads. At 11 ms-1, reductions
of 1.24% of Cp|global and 0.7% of Ct |global were observed. When analyzing the corre-
sponding flexible blade configurations, the effect of aeroelasticity on rotor performance
was reversed. Indeed, while a reduction in the generated power was observed for the
deformed straight rotor, an increase was found for the prebent-precone configuration.
This inversion was explained by the deformed rotor geometries, since for the prebent-
precone simulations the blade flexibility tended to recover the orthogonality with re-
spect to the incoming flow. It was also shown that the consideration of a straight rigid
blade lead to an overprediction of the Cp|global when compared to the more realistic
prebent-precone configuration. A maximum relative difference of 0.7 % was observed
for 8 ms-1. It was concluded that the aeroelastic analysis of DTU 10MW RWT cannot
be performed without considering the prebending and the preconing of the blades.

As a future work a systematic investigation in the whole operating range of velocities could
be performed, including lower and higher wind speeds, in order to evaluate the performance
of the presented methodology when considering other angles of attack and pitch angles. Ad-
ditionally, the sensitivity of the developed model to different parameters such as the size of
the CFD domain could be assessed.



Chapter 6

DTU 10MW RWT Full Machine
analysis

The aim of this chapter is to analyze the unsteady effects introduced by the presence of the
tower in the DTU 10MW RWT assembly. These works can be seen as a continuation of the
complete aeroelastic characterization of the rotor flow already presented in Section 5. Due
to the proximity of the HAWT rotor with respect to the tower, the generation of complex
unsteady flow phenomena interacting with the mast is expected. This mechanism is often
referred as rotor-tower interaction, and it is driven by the so-called Blade Passing Frequency
(BPF) (i.e. the rotor frequency multiplied by the number of blades of the HAWT).

Regarding unsteady flow simulations, industry has relied on a straightforward variant of
RANS methodology, often referred as Unsteady Reynolds-Averaged Navier Stokes (URANS).
The required computational time in order to perform a URANS simulation of a complex ge-
ometry is however difficult to fit in an industrial work-flow. An alternative methodology was
explored in this chapter. The Non-linear Harmonic (NLH) approach presented by Vilmin
et al. (2006) allows to drastically reduce the required computational time of turbulent un-
steady simulations. In the NLH method, unsteady flow perturbations are Fourier decomposed.
Navier-Stokes equations are then cast in the frequency domain, leading to the extraction of
a set of transport equations for each harmonic. The number of calculated harmonics is an
input for the method, and drives the accuracy of the results in time and space. For the ap-
plication of the NLH approach, only a single blade passage mesh is required. Therefore
an additional CPU time and memory reduction is introduced when compared to a classical
URANS approach, that requires a full rotor meshing. To the best of the authors’ knowledge,
no prior research concerning the flow analysis of complete HAWTs by means of high fidelity
frequency domain approaches has been published. However, some publications based on the
application of the Harmonic balance technique to representative wind turbine airfoils can be
found in the literature [Campobasso et al. (2014a,b); Howison and Ekici (2014)].
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6.1 Methodology

In this chapter, three different numerical approaches were used in a complementary manner:

• RANS: Preliminary analysis of the flow and assessment of mesh dependency

• NLH: Characterization of DTU 10MW RWT flow unsteadiness

• URANS: Comparison of the accuracy and computational effort of this technology
against the NLH method

All the performed simulations were based on a rotor configuration representing an optimal
DTU 10MW RWT operating point. This point is characterized by an incoming wind speed
of 10.5 m.s-1, a rotor speed of 8.836 RPM and a 0 deg pitch. Spalart-Allmaras turbulence
model was used [Spalart and Allmaras (1992)]. As a first approach and in order to keep the
rotational periodicity of the problem, the incoming wind is assumed to be aligned with rotor
axis. In terms of structural model, two different configurations were analyzed:

• Rigid blades: Initial NLH and URANS computations were devoted to characterize
unsteady aerodynamics of a rigid rotor. This works are described in Section 6.2.2 and
Section 6.2.3 respectively.

• Flexible blades: The dynamic aeroelasticity problem is assessed in Section 6.3.2 by
considering a modal representation of the rotor structure in both NLH and URANS
approaches. For both methods, blade deflection was estimated based on computed
fluid loads (2-way coupling approach).

Due to the lack of available experimental data, the study focuses in the phenomenological
description of the observed global and local flow phenomena. Results are also discussed
from a qualitative point of view, and compared against previous numerical experiences in
other wind turbine models.

6.1.1 Considered geometry

Figure 6.1 illustrates the main geometrical properties of the studied DTU 10MW RWT as-
sembly, based on its definition from Bak et al. (2013). The rotor axis was co-linear with the
Z axis. A tilt angle of 5 deg was considered between rotor and tower axes. Blades accounted
for a pre-cone angle of 2.5 deg, as well as a distributed pre-bending. Based on the disadvan-
tageous effects on rotor performance found in the previous study of Section 5.4, Gurney flaps
were removed from the blade geometry.

In order to present the unsteady results of this chapter, the normalized time t/T was used.
In this context, t is defined as the already lapsed time in the current revolution and T refers
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to the period of rotation. The DTU 10MW RWT operates in clockwise rotation, and it was
assumed that at t/T=0 one of the blades was aligned in its down position with the tower
axis. This particular blade, displayed in red in Figure 6.1, is referred in this document as the
observed blade.

t/T=0.25

t/T=0

t/T=0.5

Y

X

r

t/T=0.75

Ø=7.5 m

Sense of rotation

(a) Front view

Z

Y

R=88.8 m

114.1 m
5 deg

18.14 m

(b) Side view

Figure 6.1: Sketch of the DTU 10MW RWT assembly

6.1.2 Considered meshes and computational domains

The structure grid generator Autogrid5™ [NUMECA International (2013a)] was used in or-
der to create three different meshes:

• 1B: Devoted to rotor-only analysis, this mesh accounted for a single blade passage
of the DTU 10MW RWT, including original nacelle and hub geometries. A first cell
height of 10−4 m was imposed at the boundary layer of the blade, in order to target
y+ values of less than 10 at the first inner cell [NUMECA International (2013b)]. This
height value corresponds to approximately 1.1×10−6 R.

• 1B-1T: This mesh can be seen as an adaptation of the 1B grid to perform NLH method
simulations of the whole DTU 10MW RWT assembly. A radial rotor/stator interface
crossing the nacelle was defined in order to allow the introduction of the tower mesh.
The same blade grid topology of 1B was used, and a single blade passage was meshed
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for the rotor. A 360 deg grid was generated for the tower side, also accounting for a
first cell height of 10−4 m.

• 3B-1T: The final goal of this mesh was the study of the whole DTU 10MW RWT
assembly by means of the URANS method. It was created by repeating the rotor blade
passage of 1B-1T thrice, keeping the same tower side mesh. It led to a 360 deg mesh
at both sides of the rotor/stator interface, as it is required for the application of the
URANS approach.

For all the considered meshes, the same computational domain size was considered (see
Figure 6.2). Flow inlet and outlet were respectively located at 2.2 and 3.2 blade radius from
the origin of coordinates. Non-periodic boundary conditions, referred to as externals, relied
in the subsonic far-field formulation described in Hirsch (1990). A contraction angle was
considered in the longitudinal direction of the domain. This angle was assumed to be the tilt
angle, in order to achieve an orthogonal intersection with the tower axis. In order to explore
the impact of the spatial discretization on our results, a coarse version of each mesh was also
considered. Coarse variants were created by merging each 8 volume cells of the base/fine
mesh into 1 (2 in each direction). Table 6.1 summarizes the main parameters characterizing
all the described configurations.

Figure 6.3 shows the surface meshes for every configuration. Figure 6.4 displays the
cross-section meshes corresponding to the grid line closest to r/R=0.5 (i.e. half of blade
span). For clarity purposes, the coarse mesh variants are displayed in both figures.
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(b) 1B, scaled sketch
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(d) 1B-1T, scaled sketch
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(e) 3B-1T, 3D view
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Figure 6.2: Description of the computational domains for 1B, 1B-1T and 3B-1T meshes. Solid lines
represent mesh blocking. In (a) and (c), one of the periodic boundary conditions was removed to allow
the visualization of the interior of the domain. In (c) and (e), the domain of the tower side was set to
translucent to get a clearer visualization
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Table 6.1: Description of the different DTU 10MW RWT meshes

1B 1B-1T 3B-1T

Meshed sector [deg], rotor side 120 120 360
Meshed sector [deg], tower side - 360 360
Millions of nodes, Fine variant 7 13 25
Millions of nodes, Coarse variant 0.95 1.8 3.3

(a) 1B mesh (b) 1B-1T mesh (c) 3B-1T mesh

Figure 6.3: Detail of the DTU 10MW RWT surface meshes. Coarse variants

(a) 1B mesh (b) 1B-1T and 3B-1T meshes

Figure 6.4: DTU 10MW RWT cross-section meshes, grid line closest to r/R=0.5. Coarse variants
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6.2 Unsteady aerodynamics of rigid rotor

In this section, the unsteady aerodynamics of the DTU 10MW RWT is studied. The rotor was
assumed to be rigid. Preliminary steady RANS computations are included in Section 6.2.1.
Those simulations aimed to compute the rotor loads in a rotor-only configuration and to
evaluate the sensitivity of the mesh. In Section 6.2.2, the unsteady results computed with
the NLH method are discussed. A especial attention was put in the analysis of the influence
of the number of harmonics. Finally, Section 6.2.3 includes a comparison of the modeling
capabilities observed for the NLH and URANS methodologies.

6.2.1 Steady RANS results

Steady RANS simulations were performed based on the three meshes described in Sec-
tion 6.1.2 and their corresponding fine and coarse variants. The rotor was assumed to be
rigid. When considering both 1B-1T and 3B-1T meshes, the rotor/stator interface relied on
a mixing plane formulation, enabling steady RANS computations. For all simulations, a flow
separation was identified at the low span region of the blade suction surface (up to an approx-
imate radius of 40 m, r/R=0.45). A pressure surface recirculation bubble was also observed
for the range r=[14,22] m (r/R=[0.16,0.25]). To illustrate this issue, Figure 6.5 shows the sur-
face streamlines around the blade for the fine variant of the 1B mesh. This flow pattern was
found to be in a good agreement with the results for a straight blade configuration of Zahle
et al. (2014), where the suction surface separation extended to up to r=32.3 m (r/R=0.36).

r[m]

(a) Suction surface

r[m]

(b) Pressure surface

Figure 6.5: DTU 10MW RWT surface streamlines corresponding to 1B mesh and fine variant RANS
computation
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Table 6.2 lists the rotor loads for every considered mesh, computed via the static pressure
integration around the three blades. For both 1B-1T and 3B-1T meshes, a loads decay that
can be attributed to the introduction of the tower is observed. For the fine mesh variant, this
decrease corresponded to approximately 5% of the rotor-only thrust and 6% of the power.
Regarding the effect of mesh refinement, computed loads for the fine mesh showed reductions
lower than 3.3% when compared to the corresponding coarse variant results.

Table 6.2: Computed steady rotor loads for every considered mesh and their corresponding variants

Mesh
Thrust [kN] Power [kW]

coarse fine diff. [%]† coarse fine diff. [%]†

1B 1478.8 1440.4 -2.6 9664.5 9570.0 -1.0
1B-1T 1404.3 1362.7 -3.0 9130.6 8996.3 -1.5
3B-1T 1406.8 1360.5 -3.3 9155.1 8979.6 -1.9

†: diff. refers to the observed load variation when passing from coarse to fine mesh variants

6.2.2 Unsteady NLH results

To study the unsteady flow behavior, the NLH method was applied on the 1B-1T whole as-
sembly mesh described in Section 6.1.2. The fine discretization level was adopted, assuming
a rigid rotor. A full non-matching non-reflecting approach was used for the modeling of the
unsteady behavior of the rotor/stator interface [Vilmin et al. (2006)]. First solved rotor har-
monic was located at 0.15 Hz, corresponding to the considered rotational speed. Since the
DTU 10MW RWT has a 3-bladed rotor, a frequency of 0.45 Hz was observed for the first
tower harmonic.

As it can be observed in Figure 6.1, the blade-tower alignment is a very specific event
both in time and space. This fact increases the total number of harmonics needed for an
NLH computation for a good modeling, since this parameter drives the spatial and frequency
resolution of the method. To evaluate the dependency of the total number of harmonics
several computations were run, accounting for 1, 3, 6 and 9 harmonics respectively. They
will be referred in this document as 1 h, 3 h, 6 h and 9 h simulations. Even if flow variables
are solved in the frequency domain, NLH results can be easily reconstructed in time in order
to perform a more comprehensive post-processing of the unsteady periodic flow. This process
is referred in this document as the time solution reconstruction.

Flow characterization

The complexity of this unsteady problem could be already pointed out with the visualization
of the flow at a given time. Figure 6.6 illustrates the iso-surfaces of Q-criterion for a value
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of 0.5 of the time reconstructed solution at t/T=0.5 (corresponding to a half rotation). The
Q-criterion Qc [Jeong and Hussain (1995)] is defined as:

Qc =
1
2
[
∥ΩΩΩ∥2 −∥SSS∥2] , (6.1)

with ΩΩΩ and SSS being the antisymmetric and symmetric parts of the velocity gradient tensor ∇⃗v:

ΩΩΩ =
1
2

[
∇⃗v− (∇⃗v)T

]
,

SSS =
1
2

[
∇⃗v+(∇⃗v)T

]
, (6.2)

Important vortical structures could be observed downstream of the tower. These were present
all along the tower height, becoming more important while increasing the total number of
harmonics of the computation. For 6 h and 9 h simulations, high vorticity regions were
identified at low blade span range (where the DTU 10MW RWT is equipped with thicker
airfoils). The generation of blade tip vortex was clearly observed for all the simulations. It
should be mentioned that due to the nature of the numerical approach, those were rapidly
dissipated downstream. However, the influence of the wake development on the predicted
loads is assumed to be negligible, as observed by Carrión (2014) for the MEXICO wind
turbine rotor. The interaction of the blade tip vortex with the tower led to an important
increase of downstream vorticity, due to the instability generated after its break.

The observed vorticity for the 6 h and 9 h simulations at low blade span can be attributed
to the shedding phenomenon. Figure 6.7 shows the streamlines around the observed blade
for a r=20 m cross-section and different time reconstructed solutions (r/R=0.22). The low
span suction side recirculation already identified in the rotor-only RANS computations of
1B (see Figure 6.5), was shed from the blade for 6 h and 9 h simulations. This effect was
especially visible when the blade approached the tower (i.e. for t/T=0.00 and t/T=0.76). As
a consequence, important pressure fluctuations along the suction surface and at the vicinity
of the trailing edge were observed for 6 h and 9 h. Figure 6.8 shows the reconstruction of
this flow variable at t/T=0.00, where the effect of blade shedding led to a local increase of
around 100 Pa. A decrease of the airfoil lift is then expected for 6 h and 9 h, having a direct
impact on the generated rotor power. A similar vortex shedding phenomenon was identified
downstream of the tower all along its height.
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(a) 1 h (b) 3 h (c) 6 h (d) 9 h

Figure 6.6: Iso-surface of 0.5 Q-criterion for the time reconstructed solutions at t/T=0.50

(a) 1 h, t/T=0.00 (b) 1 h, t/T=0.24 (c) 1 h, t/T=0.50 (d) 1 h, t/T=0.76

(e) 3 h, t/T=0.00 (f) 3 h, t/T=0.24 (g) 3 h, t/T=0.50 (h) 3 h, t/T=0.76

(i) 6 h, t/T=0.00 (j) 6 h, t/T=0.24 (k) 6 h, t/T=0.50 (l) 6 h, t/T=0.76

(m) 9 h, t/T=0.00 (n) 9 h, t/T=0.24 (o) 9 h, t/T=0.50 (p) 9 h, t/T=0.76

Figure 6.7: Relative velocity streamlines around the observed blade for a r/R=0.22 cross-section and
different time reconstructed solutions
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Figure 6.8: Static pressure around the observed blade for a r/R=0.22 cross-section, t/T=0.00. Values
centered at 101.300 Pa

The observed unsteady flow phenomena had a direct impact on the pressure around the
HAWT structure. This implication could be already identified in the results of the 1 h simu-
lation. Figure 6.9 displays the amplitude of the first pressure harmonic on the DTU 10MW
RWT assembly for this computation. Low span pressure fluctuations were identified on both
tower and blade surfaces. For the latter case, a maximum value of 136 Pa was computed. At
high r, important harmonic content was also found on the blade suction side. Additionally,
the impact of the blade tip vortex on the tower also led to an increase of pressure fluctuations.

(a) Front view (b) Rear view

Figure 6.9: Amplitude of first pressure harmonic on DTU 10MW RWT surface, 1 h simulation
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Blade and rotor loads

In order to assess the impact of the total number of harmonics on the blade shedding mod-
eling, the radial evolution of blade loads harmonic amplitudes is displayed in Figure 6.10
and Figure 6.11. This unsteady phenomenon could be identified for 6 h and 9 h simulations,
where an important high frequency contribution was found for r/R<0.34. Peak amplitudes up
to 0.55 kN/m of blade thrust and 4 kW/m of power were computed, being located around the
6th harmonic for 6 h and at the 5th harmonic for 9 h. Figure 6.12 shows the Strouhal numbers
(St) of the corresponding frequencies, computed based on the relative flow velocity and axial
chord. In order to contextualize the presented results, values related to cylindrical shapes
and estimated based on the works of Lienhard (1966) are also included. A good agreement
was observed between this reference and the central span of the shedding region observed
for 9 h (where St=0.25). This remark is in line with the observations made by Le Pape and
Lecanu (2004) for the NREL Phase VI wind turbine, where it was concluded that the main
frequency of torque oscillations was comparable to the frequency of the separations behind
a cylinder. At the center of the shedding region of 6 h, a Strouhal number of 0.37 was ob-
served. This value was found to be particularly high, pointing towards a potential influence
of the truncation effects for this simulation. Blade shedding also led to a decrease in the
time-averaged power produced by the blade. This fact is illustrated in Figure 6.13b, where
at r/R=0.22 6h and 9 h show an approximate reduction of 36% with respect to the NLH sim-
ulations accounting for less harmonics. Regarding the time-averaged thrust (Figure 6.13a),
only the 9 h computation showed a considerable thrust reduction related to this phenomenon.
A maximum decease of around 20% when compared to the other NLH computations was
observed at r/R=0.29. For both plots, the results of the rotor-only RANS simulation of the 1B
fine mesh variant are included. The potential effect related to the existence of the tower could
be observed all along the blade span, leading to smaller thrust and power values.
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(a) 1 h (b) 3 h (c) 6 h (d) 9 h

Figure 6.10: Amplitude of blade thrust harmonics [kN/m] as a function of blade radius r/R [-]

(a) 1 h (b) 3 h (c) 6 h (d) 9 h

Figure 6.11: Amplitude of blade power harmonics [kW/m] as a function of blade radius r/R [-]
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Figure 6.12: St as a function of radius within the range of observed shedding. Rectangle represents
reference values for a cylindrical shape, estimated based on Lienhard (1966) results for the considered
Re

(a) Thrust (b) Power

Figure 6.13: Radial evolution of time-averaged blade loads. Markers do not correspond to data sam-
pling

To evaluate the combined effect of all the blades on the DTU 10MW RWT performance,
rotor loads were reconstructed in time (Figure 6.14 and Figure 6.15). These transients were
computed by integrating time-averaged and harmonic blade loads for different span ranges.
The contribution of the harmonic content of the three blades was taken into account by the
application of a time shifting in the reconstruction. Indeed, the rotor load F for a lapsed time
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t can be obtained by means of blade load harmonics f̃ and time-averaged value f̄ as:

F = 3 f̄ +2
Nh

∑
h=1

[
f̃ h
Recos(hωt)− f̃ h

Imsin(hωt)
]

+2
Nh

∑
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))
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Imsin
(
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, (6.3)

Where f̃ h
Re and f̃ h

Im are the real and imaginary parts of the hth blade load harmonic, f̄ refers to
its time-averaged value, Nh is the total number of harmonics and ω the rotor angular velocity.
By applying simple trigonometric identities, Equation 6.3 can be rewritten as:

F = 3

(
f̄ +2

Nh

∑
h=1

Ah

)
, (6.4)

With:

Ah =
2
3

[
f̃ h
Recos(hωt)− f̃ h

Imsin(hωt)
][1

2
+ cos

(
h

2π

3

)]
, (6.5)

By evaluating cos
(
h 2π

3

)
, Ah can be expressed as a function of the harmonic order h as:

Ah =

{
f̃ h
Recos(hωt)− f̃ h

Imsin(hωt) if h mod 3 = 0
0 if h mod 3 ̸= 0

(6.6)

From Equation 6.6 it can be concluded that only the harmonics which order is a multiple
of the number of blades do contribute to rotor loads fluctuation. For those frequencies, the
influence of blade fluctuation on the rotor is indeed multiplied by the number of blades. In
order to analyze the impact of blade shedding in an isolated manner, three different post-
processing are presented:

• 0<r<0.5R: Integration of the inner half of the rotor, where blade shedding was ob-
served

• 0.5R<r<R: Integration of the outer half of the rotor, responsible of the most part of
the generated loads. In this region, flow unsteadiness was mainly dominated by the
first harmonic (i.e. the blade-tower alignment event)

• Whole rotor: Considers the complete rotor (inner and outer halves)
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For all the plots, the corresponding result for the rotor-only RANS simulation based on the
1B fine mesh variant is included. All the performed NLH computations showed a decrease
in the computed time-averaged loads with respect to this reference. These reductions are
summarized in Table 6.3. At the inner half of the rotor the blade shedding phenomenon

(a) 0<r<0.5R (b) 0.5<r<R

(c) Whole rotor

Figure 6.14: Rotor thrust [kN] time evolution. Markers do not correspond to data sampling

Table 6.3: Time-averaged rotor loads reduction due to the consideration of the tower

Thrust decrease [%] Power decrease [%]

0<r<0.5R 0.5R<r<R Whole rotor 0<r<0.5R 0.5R<r<R Whole rotor

1 h 6.24 2.22 3.20 11.5 4.21 6.13
3 h 8.94 2.35 3.95 12.5 3.51 5.75
6 h 10.5 2.28 4.28 20.8 3.15 7.54
9 h 13.4 2.23 4.95 22.6 2.99 7.85
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(a) 0<r<0.5R
]
(b)
0.5<r<R

(c) Whole rotor

Figure 6.15: Rotor power [kW] time evolution. Markers do not correspond to data sampling

induced considerable load fluctuations for 3 h, 6 h and 9 h computations, which were triggered
every blade-tower alignment event (t/T=0, 1

3 ,
2
3 ). For the particular case of 9 h, a relative

amplitude of 3.5% was observed for the thrust oscillation, while a 6.7% was computed for
the power. As deduced from Equation 6.6 a flat evolution was found for the case of 1 h,
since a single harmonic was solved. An important time-averaged rotor power decrease was
also attached to the blade shedding, reaching up to 22.6% with respect to the corresponding
rotor-only values. For the outer half of the blade, where no blade shedding occurred, the
consideration of more harmonics led to an improvement in the modeling of the loads decay
related to the blade-tower alignment. Even if this effect is very specific in time and space,
NLH computations showed a good agreement in terms of load oscillations and time-averaged
values when using 3,6 and 9 harmonics. Relative amplitudes of approximately 0.7% and 1.7%
were obtained for thrust and power fluctuations, respectively. In the time reconstruction of the
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whole rotor loads, the observed effects for the inner and outer rotor halves were combined.
Although different transient patterns were computed for 6 h and 9 h simulations due to the
blade shedding modeling, a reasonable agreement in terms of relative fluctuation amplitudes
was found (around 1% for rotor thrust and 2% for the power). Regarding time-averaged loads,
the capture of the blade shedding for the 6 h and 9 h computations introduced an additional
decay with respect to the other simulations. For the particular case of 9 h, total decreases of
4.95% in rotor thrust and 7.85% in power were computed.

Computational cost

Table 6.4 compiles the computational time of the presented simulations. For contextualizing
purposes, an estimation of the time needed to perform a URANS simulation based on the
fine mesh variant of 3B-1T is also included. The most computationally expensive of the
performed NLH simulations, 9 h, was carried out in 5 days with the use of 128 processors.
This represents only 9.6% of the computational time required for a URANS simulation.

Table 6.4: Total computational resources per analysis for the fine mesh

1 h 3 h 6 h 9 h URANS
(Estimated)

Millions of nodes (Nn) 13 13 13 13 25

#Processors (Np) 64 64 64 128 128

Comp. time, hours (Th) 24 48 96 120 ∼1250

Comp. factor ( ThNp
Nn

) 118 236 473 1118 ∼6400

6.2.3 Comparison with URANS unsteady results

The URANS method was evaluated in order to compare its performance with the already
presented NLH technology in Section 6.2.2. Due to the considerable computational effort
required for the application of URANS on the fine mesh, the coarse variant of 3B-1T was
used instead. In order to assess the impact of mesh refinement on the obtained solution,
URANS results were compared against NLH computations based on both fine and coarse
discretization. NLH simulations accounted for a total of 6 harmonics, and they are designated
in this section as 6h fine and 6h coarse respectively. Note that 6h fine corresponds to the
simulation labeled as 6 h in Section 6.2.2.

For the URANS coarse simulation, the domain-scaling approach was used in order to
model the rotor/stator interface. A time-step of 0.01 s was chosen, equivalent to an increase
in the rotor position of 0.5 deg for the considered period of revolution. Assuming a minimum
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of 20 points per period, this time resolution can properly model up to 36 rotor harmonics.
1000 inner iterations per time-step were performed. To completely develop the flow solu-
tion, 6 preliminary revolutions were computed before analyzing the results of the revolution
presented in this chapter. This is illustrated in Figure 6.16 by means of the evolution of
the rotor loads during the complete time marching simulation, where a stabilization of both
thrust and power was observed from the 5th revolution. A decrease of the rotor loads is also
observed with regards to the initial solution, that corresponded to a fully converged steady
RANS computation. This fact is discussed and quantified further on in this chapter.

Analyzed 
revolution

Flow development

(a) Rotor thrust

Analyzed 
revolution

Flow development

(b) Rotor power

Figure 6.16: URANS coarse, rotor loads as a function of the performed revolutions

Flow characterization

Figure 6.17 illustrates the iso-surfaces of Q-criterion for a value of 0.5 at t/T=0.50. Dissi-
pative effects related to the mesh resolution were clearly observed when comparing 6h fine
with 6h coarse/URANS coarse results. Nevertheless, the same vortical structures could be
identified for every simulation, regardless their mesh refinement level. It should be remarked
that for the coarse grid variant, the NLH harmonic solution showed a clearer representation
of the tip vortex when compared to URANS coarse. This could be related to the total simu-
lation time that was considered for the time marching computation. Indeed, even if the loads
for URANS coarse were rated to be stabilized (as shown in Figure 6.16), the proper study of
the wake vortical structures could require the increase of the number of the revolutions de-
voted to the development of the flow. This is in line with the remark made for the Q-criterion
visualizations of the NLH simulations of Figure 6.6, stating that the influence of the wake
development on the loads is assumed to be very small.
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(a) 6h fine (b) 6h coarse (c) URANS coarse

Figure 6.17: Iso-surface of 0.5 Q-criterion at t/T=0.50 [including URANS coarse]

Blade and rotor loads

Figure 6.18 and Figure 6.19 show the radial evolution of blade loads harmonic amplitudes for
6h coarse and URANS coarse. For the latter simulation, the harmonic content was computed
via the Fourier Transform of the corresponding transient solutions. For clarity purposes only
the results of this Fourier Transform up to the 9th harmonic are shown, since no significant
blade loading content was found for higher frequencies. Low span blade shedding was ob-
served for both methodologies. For 6h coarse, peak amplitudes attached to this phenomenon
corresponded to the 5th harmonic (as observed for 6h fine in Section 6.2.2). The URANS
coarse solution revealed a blade shedding located at the 6th harmonic (as previously seen for
9 h). 6h coarse showed a considerable overall load fluctuations overestimation with respect
to the URANS coarse computation. At the vicinity of the blade shedding phenomenon, an ap-
proximate multiplication factor of 2 was observed. A better agreement was found in terms of
time-averaged blade loads, which are displayed in Figure 6.20. The results of 6h fine are also
included in order to illustrate the effect of mesh refinement, which are especially important
at low span due to the existence of blade shedding.
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(a) 6h coarse (b) URANS coarse

Figure 6.18: Amplitude of blade thrust harmonics [kN/m] as a function of r/R [-], with URANS coarse

(a) 6h coarse (b) URANS coarse

Figure 6.19: Amplitude of blade power harmonics [kW/m] as a function of r/R [-], with URANS coarse
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(a) Thrust (b) Power

Figure 6.20: Radial evolution of time-averaged blade loads, including URANS coarse. Markers do not
correspond to data sampling

As performed in Section 6.2.2, Figure 6.21 and Figure 6.22 illustrate thrust and power
time evolutions for different rotor segments. The corresponding result for the rotor-only
RANS simulation based on the 1B coarse mesh variant is also displayed. Time-averaged
loads reductions experienced by 6h coarse and URANS coarse with respect to this reference
are summarized in Table 6.5.

At the inner half of the blade (0<r<0.5R), considerably higher load oscillations were
observed for 6h coarse. Multiplication factors of 3.0 and 1.9 were found for thrust and power
fluctuations, respectively. In addition, the predicted time-averaged rotor thrust decay due to
the introduction of the tower was found to be very dissimilar (3.39% for 6h coarse and 6.02%
for URANS coarse). These important discrepancies should be analyzed in detail in future
studies. Regarding the NLH computation, the role that the deterministic stresses play in the
time-mean equations should be analyzed in deep, together with the impact of the harmonics
interaction in the computation of the shedding. Regarding the time marching computation, it
could be also interesting to evaluate the influence of the total simulation time on the modeling
of local aspects of the flow related to the shedding. A better agreement was found when
considering the outer half of the blade (0.5R<r<R), where this unsteady phenomenon did not
occur. Even if the 6h coarse low span load fluctuations overestimation was still observed
when analyzing the whole rotor, a fair agreement with URANS coarse results was found.
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(a) 0<r<0.5R (b) 0.5R<r<R

(c) Whole rotor

Figure 6.21: Rotor thrust [kN] time evolution, including URANS coarse. Markers do not correspond to
data sampling

Table 6.5: Time-averaged rotor loads reduction due to the consideration of the tower, including URANS
coarse

Thrust decrease [%] Power decrease [%]

0<r<0.5R 0.5R<r<R Whole rotor 0<r<0.5R 0.5R<r<R Whole rotor

6h coarse 3.39 0.92 1.53 8.28 1.78 3.45
URANS coarse 6.02 0.89 2.16 7.99 0.96 2.77
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(a) 0<r<0.5R (b) 0.5R<r<R

(c) Whole rotor

Figure 6.22: Rotor power [kW] time evolution, including URANS coarse. Markers do not correspond
to data sampling

Computational cost

Table 6.6 compiles the simulations that are discussed in this section, together with the infor-
mation of their required computational effort. The estimation of the URANS fine computa-
tion, already shown in Section 6.2.2, was reproduced for reference. The computational time
employed for 6h coarse only represented 7.7% of the resources needed to perform URANS
coarse simulation. It should be reminded that the simulation time specified for URANS coarse
accounts for 6 preliminary revolutions devoted to the development of the flow. As suggested
in Section 6.2.3, additional initial revolutions should be considered in order to achieve a sim-
ilar representation of the wake vortical structures predicted by 6h coarse. This will imply a
computational overhead for the time marching simulation, making the NLH approach even
more attractive from this point of view.
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Table 6.6: Total computational resources per analysis [including URANS]

6h fine URANS fine 6h coarse URANS coarse

Computational method NLH URANS NLH URANS

Mesh 1B-1T 3B-1T 1B-1T 3B-1T

Mesh variant fine fine coarse coarse

Millions of nodes (Nn) 13 25 1.8 3.3

#Processors (Np) 64 128 64 128

Comp. time, hours (Th) 96 ∼1250 27 350

Comp. factor ( ThNp
Nn

) 473 ∼6400 960 13576

6.3 Dynamic aeroelasticity

In Section 6.2.2 and Section 6.2.3, unsteady computations of the DTU 10MW RWT whole
machine were presented. All simulations relied in the hypothesis of rigid blades. In this
section, the dynamic periodic deformation of the blades due to the rotor flexibility was in-
troduced. The structure was linearized by means of its modal shapes and natural frequen-
cies. Both NLH and URANS computations were performed, starting from already converged
RANS solutions. The aeroelastic model was based in a 2-way coupling approach. This
comparison has a double objective. On the one hand, to estimate the importance of blade
flexibility on rotor loads prediction. On the other hand, to assess the capabilities of the de-
veloped FSI 2-way coupling harmonic module in the context of a HAWT application (see
Section 4). Due to the time constraints of this research, the study was based on Very coarse
variants of the 1B-1T and 1B-3T meshes presented in Section 6.1.2. Those were created by
merging each 8 volume cells of the Coarse configuration into 1. The same operating point
as the simulations previously presented in this chapter was studied. Prior to the evaluation of
rotor flexibility, rigid computations based on the Very coarse mesh variants were performed
and they are presented in Section 6.3.1.

6.3.1 Rigid simulations

First computations assumed a rigid blade. Concerning the URANS method, 60 angular posi-
tions per revolution were computed. Between each time step, 100 inner flow iterations were
performed. In order to allow the development of flow unsteadiness, four complete rotations
were simulated before analyzing the solution. Only one harmonic was considered for the
NLH simulation, corresponding to the Blade Passing Frequency (BPF) for the considered
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operating point.
Figure 6.23 shows time-averaged loads computed for the observed blade by both ap-

proaches. As previously observed for the Coarse mesh results in Section 6.2.3, the NLH
method predicts a lower mechanical power and a higher thrust. When integrating the loads
evolution all along the span, relative differences of -3.8 % and 0.5 % were respectively ob-
served. Due to the consideration of a single harmonic, an azimuth independent rotor power
and thrust were computed (see Equation 6.6). This is the reason why the observed blade tran-
sients were analyzed instead (see Figure 6.24). Similar peak-to-valley load variations were
computed by both NLH and URANS methodologies. These fluctuations represented approx-
imately 3% of the generated blade thrust and 8% of the mechanical power. A shifting in the
computation of the minimum and maximum loads azimuthal position of around 0.15 t/T was
also observed for the NLH simulation.

(a) Thrust [kN/m] (b) Power [kW/m]

Figure 6.23: DTU 10MW RWT, radial evolution of time-averaged blade loads for rigid configuration.

(a) Thrust [kN] (b) Power [kW ]

Figure 6.24: DTU 10MW RWT, observed blade loads for rigid configuration.
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6.3.2 Flexible simulations

For the flexible simulations, 2-way coupling computations were performed for both NLH
and URANS methods. A simplified version of the blade structural model presented in Sec-
tion 5.5.1 was used, accounting for a single mode (i.e. the 1st flap). No structural damping
was considered, and the mesh deformation was carried out by means of the RBF+TFI ap-
proach developed with the scope of this PhD thesis.

Figure 6.25 shows the computed deflections of the observed blade axis, both at half span
and at the blade tip. A good agreement between URANS and NLH approaches was found
in terms of the predicted averaged displacements, with relative differences of around 5% for
all the cases. The increase in the averaged deflection predicted by the NLH method is coher-
ent with the rigid loads comparison previously shown in Figure 6.24, since the 1st flapping
mode is mainly excited by the thrust force. Both methods also predicted similar deforma-
tion fluctuations, with relative amplitudes of around 2%. The impact of blade deflection on

(a) Parallel to rotor axis, r/R=0.5 (b) Parallel to rotor axis, r/R=1.0

(c) Normal to rotor axis, r/R=0.5 (d) Normal to rotor axis, r/R=1.0

Figure 6.25: DTU 10MW RWT, leading edge deformation transients at half span (left) and at blade tip
(right). Markers do not represent data sampling
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rotor performance is illustrated in Figure 6.26, were observed blade loads for both rigid and
flexible approaches are compared. For both NLH and URANS methods, the consideration
of blade flexibility results in a decrease in blade averaged mechanical power of around 16%.
The decrease on averaged thrust is observed for both methodologies, even if it was found to
be more important for the URANS simulation. For this method an approximate relative de-
crease of 10 % was found, while the NLH approach predicted 5%. For both methodologies,
the consideration of blade flexibility also lead into an attenuation of computed load fluctua-
tion amplitudes. However, this effect seemed to be magnified for the harmonic simulation.

(a) Thrust [kN] (b) Power [kW ]

Figure 6.26: DTU 10MW RWT, observed blade loads for rigid and flexible configurations. Markers
do not represent data sampling

6.3.3 Influence of number of modes and harmonics

In order to assess the impact of the considered number of structural modes and harmonics on
the NLH FSI 2-way coupling approach, two additional computations were performed. The
first one, referred as 2 harmos 1 mode, accounted for a total number of two harmonics and
a structural mode (i.e. the 1st flap). The second one, referred here as 2 harmos 2 modes,
accounted for two harmonics and two structural modes (i.e. the 1st flap and the the 1st edge).
Figure 6.27 shows the azimuthal evolution of blade axis deflections at half span and blade
tip positions. It can be observed that the consideration of a second harmonic led to a fluc-
tuation pattern closer to the one found by the URANS approach and previously illustrated
in Figure 6.25. The position of the predicted displacement peaks and valleys seemed to be
improved as well. As expected, the consideration of the 1st edgewise mode had an important
impact on the displacement normal to rotor axis. In particular, a relative decrease of 18%
was found for the blade tip position, while a 30% was observed at half span. In Figure 6.28,
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the observed blade loads evolution of the performed computations are depicted. While the
consideration of an additional harmonic had an impact on the predicted time-averaged loads,
the introduction of the edgewise mode did not significantly modified the blade loading.

(a) Parallel to rotor axis, r/R=0.5 (b) Parallel to rotor axis, r/R=1.0

(c) Normal to rotor axis, r/R=0.5 (d) Normal to rotor axis, r/R=1.0

Figure 6.27: DTU 10MW RWT, leading edge deformation transients at half span (left) and at blade tip
(right) for different NLH method parameters

(a) Thrust [kN] (b) Power [kW ]

Figure 6.28: DTU 10MW RWT, observed blade loads for different NLH method parameters
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6.4 Conclusions and future work

In this chapter, the first complete computational study of a whole HAWT assembly by means
of the NLH method was presented. This approach was able to capture the complex unsteady
aerodynamics related to the rotor-tower interactions of the DTU 10MW RWT reference wind
turbine.

First computations assuming a rigid rotor were performed. From a global point of view
the presence of the tower had a direct impact on rotor performance, justifying the numerical
analysis of the full machine. Decreases of around 5% for the time-averaged rotor thrust and
8% for the time-averaged power were computed. These reductions are in line with previous
studies based on other HAWTs [Carrión (2014); Hsu et al. (2014); Hsu and Bazilevs (2012);
Li (2014)]. Local unsteady flow patterns around the whole DTU 10MW RWT assembly were
also characterized, including the rotor, the hub, the nacelle and the tower. In particular, both
blade and tower shedding phenomena were identified. Additionally, the interaction of the
blade tip vortex with the tower led to an increase of pressure fluctuations. The results ob-
tained with the NLH method were also compared against the widely used URANS approach.
Due to the high computational resources required for the latter method, the benchmark was
performed for a coarser grid level. Even if the effect of the mesh discretization did have an
impact on the accuracy of the computed results, the comparison showed a fair agreement in
the effects captured by both technologies. In terms of computational cost, the NLH method
was found to be around 10 times faster than the URANS approach on a coarse mesh. A
similar time saving is to be expected when evaluating finer meshes.

From a numerical perspective, two different aspects were found to be particularly con-
straining for the application of the NLH method. On the one hand, the time and space speci-
ficity of the blade-tower alignment event is theoretically requiring the use of a high number
of harmonics. On the other hand, the modeling of the high frequency blade shedding phe-
nomenon observed at low span is needed. In order to independently study both effects and
their combined impact on the DTU 10MW RWT performance, three different total loads
post-processing were presented (corresponding to the analysis of the inner and outer halves
of the rotor and its whole geometry). Regarding the blade-tower alignment event, the study
of the outer half of the rotor showed similar loads for the computations accounting for 3, 6
and 9 harmonics. A good agreement was also found when comparing the NLH results of this
part of the rotor against the URANS methodology. The modeling of the blade shedding by
means of the NLH method was found to be more challenging. Indeed, only the simulations
accounting for a total number of 6 and 9 harmonics were able to capture this high frequency
phenomenon. For the former case the main contribution to load fluctuations was performed
by the 6th harmonic (0.88 Hz), while for the latter it corresponded to the 5th (0.74 Hz). As an
initial explanation for this discrepancy, the truncation effects of the 6 harmonics computation



6.4 Conclusions and future work 209

(due to the proximity of the blade shedding and cut-off frequencies) were pointed out. This
hypothesis was supported by the frequency analysis of the URANS solution, that also located
this effect at 0.74 Hz. Moreover, the Strouhal numbers related to this harmonic order were
found to be in a good agreement the expected value for a cylindrical shape, as previously
observed by Le Pape and Lecanu (2004). An important impact on time-averaged loads was
also attributed to this unsteady effect, since power reductions up to 22.6% were obtained for
the inner half of the rotor. The combined effect of blade-tower alignment and blade shedding
could be observed in the time evolution of the whole rotor loads. For the simulations account-
ing for a high number of harmonics, relative fluctuation amplitudes of 1% for the thrust and
2% for the power were computed. This unsteadiness, that can not be captured with isolated
rotor simulations, considerably affects final rotor performance. Future work concerning the
unsteady aerodynamics of the rigid rotor could assess the influence of the size of the domain
in the presented results. In particular, it could be of interest to use a non cylindrical mesh
accounting for the geometry of the ground and the atmospheric boundary layer.

Finally, to account for the periodic FSI, the dynamic aeroelasticity of the rotor was as-
sessed by performing preliminary computations on a very coarse mesh. The NLH 2-way
coupling approach proposed in Section 4 was successfully compared against flexible URANS
computations. For both approaches, mean blade deflection was found to have an important
impact on computed rotor thrust and mechanical power. Additionally, the consideration of
blade flexibility decreased rotor loads fluctuations related to the blade-tower alignment event.
Future work could be devoted to analyze the generality of these preliminary conclusions by
performing dynamic aeroelastic computations on the fine grid configuration, and accounting
for a complete structural sub-model.





Chapter 7

General conclusions

The presented PhD work focused in the numerical analysis of large rotor Horizontal Axis
Wind Turbine (HAWT) rotor flows. An initial literature review of the state of the art of
numerical methods used in the wind energy sector allowed to identify two important and
challenging fields for this research. On the one hand, the low weight and the slenderness of
modern wind turbine blades leads to very important blade deflections due to the aerodynamic
loading. This requires the consideration of the so-called Fluid Solid Interactions (FSI) in
the used numerical method. On the other hand, accounting for rotor-tower interactions also
demands the modeling of flow unsteadiness.

This thesis developed an innovative methodology by extending the capabilities of the
Computational Fluid Dynamics (CFD) package FINE™/Turbo, edited by NUMECA Inter-
national. Two new developments were implemented in this solver, aiming to tackle wind
turbine rotor analysis problems. On the one hand, a new mesh deformation method was de-
veloped in order to accommodate wind turbine blades deflection in aeroelastic simulations.
On the other hand, a 2-way coupling FSI methodology to be applied in the study of HAWTs
rotors dynamic aeroelasticity was implemented. This development aimed to take into account
the combination of both flow unsteadiness and blade flexibility at an affordable computational
time.

The development of the new mesh deformation methodology was motivated by two par-
ticularities inherent to the targeted application. First, the expected blade deflections for large
HAWT rotors is significantly more important than the blade deformations observed for turbo-
machinery applications. Secondly, the size of the CFD mesh of a HAWT rotor use to account
for several millions of nodes. While the former issue forced the mesh deformation method
to be robust, the latter required of an efficient approach in order to be computationally af-
fordable. An innovative combination of consolidated technologies allowed to achieve a good
trade-off between deformed mesh quality, scalability and computational cost. The developed
hybrid mesh deformation method for multi-block structured meshes consisted of a first appli-
cation of the Radial Basis Function (RBF), using only the block corners in the interpolation.
This allowed to considerably reduce the computational cost attached to the matrix inversion
involved in this mesh deformation method when being applied to the whole mesh. The new
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corner positions were used as an input for the Transfinite Interpolation (TFI) in order to gen-
erate a deformed mesh of the whole multi-block structured mesh of the CFD domain. The
quality of this first deformed mesh could be optionally improved by the application of the
Elastic analogy (ELA). This last step was only necessary when dealing with large displace-
ments and/or large rotations. The performance of the developed approach was illustrated in
Chapter 3 by means of several mesh deformation scenarios, ranging from academic 2D cases
to a 3D mesh around the complete AGARD 445.6 wing. For the latter case the computational
cost of the traditional RBF approach in the whole mesh was rated as prohibitive, since the
inversion of the coefficients matrix required about 25 days. The developed hybrid deforma-
tion methodology for multi-block structured meshes was found to be a very good alternative
for this constraining case. A high quality deformed mesh could be computed in less than 10
minutes, even when dealing with large deflections.

The development of an innovative 2-way coupling FSI approach in the framework of the
Non-Linear Harmonic (NLH) method was presented in Chapter 4. A general formulation of
the harmonic aeroelastic coupling between the fluid and the structure physics was proposed.
This allowed to reduce the needed computational time with respect to traditional time march-
ing solutions. The mesh deformation was carried out by a harmonic adaptation of the hybrid
mesh deformation methodology also developed within the scope of this thesis. A complete
validation of this new implementation was conducted by studying the Vortex Induced Vibra-
tions (VIV) phenomenon of a two-dimensional cylinder in the laminar regime. The cylinder
was mounted on a single degree of freedom elastic system, allowing to move transversally to
the incoming flow due to the generation of the vortex shedding. During this validation, the
modeling capabilities of the proposed numerical method were also compared against time
marching simulations performed within this PhD work and by other authors. The VIV phe-
nomenon was influenced by both the properties of the flow (the Reynolds number and the
Strouhal number) and the elastic properties of the elastic mounting (the mass, the spring
stiffness and the damping ratio). All these factors were interrelated and drove the resulting
amplitude of oscillations and the aeroelastic frequency (corresponding both to the frequency
of oscillation and to the observed flow frequency). Since the aeroelastic frequency was not
known prior to performing the NLH computations, it was identified by means of an itera-
tive phase error method. Both 2-way coupling NLH and time marching methodologies were
able to predict the evolution of the cylinder response and the characteristics of the shed wake
in the so-called lock-in zone. However, small differences were observed with respect to the
reference computations, probably related to the effects of the Reynolds numbers and to the
differences in the prediction of the shedding frequency.

To explore the capabilities of the performed developments in a wind energy context, a
comprehensive analysis of the DTU 10MW RWT was carried out. The permutation of struc-
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tural flexibility and flow unsteadiness modeling lead to four different numerical analyses:
steady aerodynamics, static aeroelasticity, unsteady aerodynamics and dynamic aeroelastic-
ity. The first two types of simulations were carried out in a rotor-only framework, while for
the rest the full machine was considered (also accounting for the tower geometry).

Steady aerodynamics computations already revealed the complexity of the rotor flow.
Important three-dimensional flow patterns were observed around blades and hub geometries.
Computed rotor loads were successfully compared against the results from other authors
simulations. When performing static aeroelasticity computations, the blade structure was
linearized by means of its modal shapes and natural frequencies. The hybrid mesh deforma-
tion method implemented within this PhD work was successfully used in order to deform the
whole CFD grid. Blade tip displacements up to 7.78 m were computed, corresponding to
8.73% of the total blade radius. This significant blade deflection had a direct impact on the
loads computed at the high span range of the blade. At the maximum studied wind speed,
a total reduction of the mechanical power coefficient of 1.34% was found, while the thrust
coefficient was decreased by 2.25%. These modifications of the aerodynamic performance
induced by the aeroelastic interactions highlight the benefit and the importance of being able
to perform efficient simulations accounting for FSI. The same methodology was used in order
to study two particular design related problems: the influence of the Gurney flaps devices on
the rotor performance and the impact of the rotor pre-bending and pre-cone.

Unsteady aerodynamics computations relied on the Non-Linear Harmonic (NLH) ap-
proach. This PhD work constituted the first application of such a method in a large rotor
HAWT context. The NLH was able to capture the complex unsteady aerodynamics related
to the rotor-tower interactions. A study of the number of harmonics was performed in order
to highlight its influence on the NLH results. From a global point of view, the presence of
the tower had a direct impact on rotor performance, justifying the numerical analysis of the
full machine. Decreases of around 5% of the time-averaged rotor thrust and 8% of the time-
averaged rotor power were computed. Local unsteady flow patterns around the whole DTU
10MW RWT assembly were also characterized. In particular, both blade and tower shedding
phenomena were identified. The results of the NLH method were also compared against the
widely used URANS approach. The comparison showed a fair agreement in the effects cap-
tured by both technologies. In terms of computational cost the NLH method was found to be
around 10 times faster than the URANS approach, making the NLH simulations affordable
to the present industry requirements. Two different aspects were found to be particularly con-
straining for the application of the NLH method, requiring the use of a considerable number
of harmonics. On the one hand, the time and space specificity of the blade-tower alignment
event. On the other hand, the modeling of the high frequency blade shedding phenomenon
observed at low span. While the rotor loads decay related to the former issue was already
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properly estimated with the consideration of 3 harmonics, the modeling of the blade shed-
ding effects required 9 harmonics. The combined effect of blade-tower alignment and blade
shedding introduced an important azimuthal dependency on the rotor loads. For the simula-
tions accounting for a high number of harmonics, relative fluctuation amplitudes of 1% for
the thrust and 2% for the power were computed. This unsteadiness, that can not be captured
with isolated rotor simulations, considerably affects the final rotor performance. Finally, the
2-way coupling NLH module developed in the scope of this PhD work allowed to perform
dynamic aeroelastic computations based on a coarse mesh, where the combined effect of flow
unsteadiness and blade flexibility was assessed. In the performed preliminary computations,
the mean blade deflection was found to have an important impact on the computed rotor
thrust and mechanical power (as previously observed in static conditions). Additionally, the
consideration of blade flexibility decreased rotor loads fluctuations related to the blade-tower
alignment event.

This PhD has shown overall a whole computational framework for the design of large
rotor HAWTs within the FINE™/Turbo software. It is mainly addressed to wind turbine
manufacturers aiming to improve their blades design or to extract detailed aerodynamic in-
formation for extreme and fatigue loads analysis. The developed platform allows to perform
both rotor-only and full machine computations accounting for either flexible or rigid rotor
blades. The reduced computational cost attached to the developed methodology makes it af-
fordable for an industrial use and enables its direct introduction into the wind energy market.
This is in line with the aims of the MAREWINT project, that funded this research through
a Marie Skłodowska-Curie scholarship. Indeed, the use of sophisticated but computationally
affordable modeling techniques during the wind turbine design stage can not only reduce the
costs associated to its construction, but also improve its reliability. In particular, the study of a
given operating point in isolated rotor conditions could be performed in 24 hours with the use
of 8 modern processors. Even if the full machine simulations were considerably more costly
(5 days on 120 processors), they were found to be one order of magnitude more efficient than
traditional time marching CFD approaches. This time saving of the NLH methodology can
be attributed to the introduction of a harmonic based solution of both the unsteady flow and
the aeroelastic coupling. This PhD work constituted the first experience in the implementa-
tion of such an approach for the study of a complete HAWT assembly. Future work could be
devoted to extend the presented dynamic aeroelastic analysis of the DTU 10MW RWT and to
systematically explore the performance of the developed methodology on other wind turbine
models. In addition, it could be interesting to include the structural model of the tower in
order to analyze a complete flexible assembly.
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Appendix A

Numerical set-up of previous
HAWT CFD studies

Table A.1 summarizes the computational set-up of the wind turbine CFD computations men-
tioned in the literature review of Section 2.1.6. The acronyms used, ordered by columns, are
presented below:

• WP: Working points

– FL: Flutter analysis

– NOP: Normal operation

– SS: Standstill

– YM: Yaw misalignment

• Type: Simulation type

– st: Static simulations

– dyn: Dynamic simulations

• Fluid: Flow numerical model

– Numerical method

* ALE: Arbitrary Lagrangian Eulerian formulation [Hughes et al. (1981)]

* DDES: Delayed Detached Eddy simulation [Spalart et al. (2006)]

* DDES-SST: Delayed detached eddy simulation based on k-ω SST [Gritskevich et al.
(2012)]

* DES-SST: Zonal detached eddy simulation [Menter and Kuntz (2004)]

* HR-LES: Zonal hybrid RANS/LES approach [Sanchez-Rocha et al. (2006)]

* VMS: Residual-based variational multiscale formulation of the Navier–Stokes equa-
tions and turbulence modeling [Bazilevs et al. (2007)]

– Turbulence models
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* k-ε: Turbulence model of Launder and Sharma (1974)

* k-ω: Turbulence model of Wilcox (1988)

* k-ω SST: Turbulence model of Menter (1993)

* SA: Spalart-Allmaras turbulence model of Spalart and Allmaras (1992)

• Struct.: Blade structural model

– BEAM: Non-linear beam-based structural model

– IGA: NURBS-based Isogeometric Analysis

– MBD: Multi-Body Dynamics

– ROM: Reduced Order Model of the blade, represented by its natural frequencies and
mode shapes

• Def.: Mesh deformation algorithms

– DO: Dynamic overset [Carrica et al. (2007)]

– ELA: Elastic analogy

– TFI: Transfinite Interpolation

– N/A: Not applicable

– SPRA: Spring Analogy
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Table A.1: Summary of the computational set-up for the HAWT simulations presented in Section 2.1.6

HAWT Author/s Solvers Mesh WP Type Fluid Struct. Def.

NREL PHASE VI

Le Pape and Lecanu
(2004)

elsA 1 blade NOP st RANS, k-ω SST Rigid N/A

Le Pape and Lecanu
(2004)

elsA 1 blade NOP dyn URANS, k-ω
SST

Rigid N/A

Zahle et al. (2009) Ellypsis3D 2 rotor blades
and tower

NOP dyn URANS, k-ω Rigid N/A

Lynch (2011) FUN3D 2 blades, nacelle
and tower

NOP dyn URANS, k-ω
SST

Rigid N/A

Lynch (2011) FUN3D 2 blades, nacelle
and tower

NOP,YM dyn HR-LES Rigid N/A

Wang et al. (2012) OpenFoam 2 blades, nacelle
and tower

NOP dyn URANS, k-ω
SST

Rigid N/A

Hsu et al. (2014) In-house 2 blades NOP st ALE-VMS Rigid N/A

Hsu et al. (2014) In-house 2 blades, nacelle
and tower

NOP dyn ALE-VMS Rigid N/A

Li (2014) CFDShip-
Iowa

2 blades, ap-
prox. nacelle,
approx.tower

NOP dyn URANS, k-ω
SST

Rigid N/A

Li (2014) CFDShip-
Iowa

2 blades, ap-
prox. nacelle,
approx.tower

NOP dyn DDES-SST Rigid N/A

Carrión (2014) HMB2 2 blades, nacelle
and tower

NOP dyn URANS, k-ω
SST

ROM SPRA+TFI

Continued on next page. . .
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HAWT Author/s Solvers Mesh WP Type Fluid Struct. Def.

Fan and Kang
(2009)

FINE™/Turbo 1 blade (infinite
hub)

NOP st RANS, SA & k-
ω SST

Rigid N/A

Elfarra et al. (2014) FINE™/Turbo 1 blade (infinite
hub)

NOP st RANS, k-ε Rigid N/A

Suárez and Doerffer
(2015); Suárez et al.
(2015)

FINE™/Turbo 1 blade (infinite
hub)

NOP st RANS, SA & k-
ω SST

Rigid N/A

MEXICO Carrión (2014) HMB2 1 blade (infinite
hub)

NOP st RANS, k-ω BEAM SPRA+TFI

NREL 5MW

Hsu and Bazilevs
(2012)

In-house 3 blades, nacelle
and tower

NOP dyn ALE-VMS IGA ELA

Yu and Kwon
(2014)

In-house 1 blade NOP st RANS, k-ω SST BEAM SPRA

Yu and Kwon
(2014)

In-house 3 blades, approx.
nacelle, tower

NOP dyn URANS, k-ω
SST

BEAM SPRA

Li (2014) CFDShip-
Iowa

3 blades, approx.
nacelle, tower
and spar buoy

NOP dyn URANS, k-ω
SST

MBD DO

SNL-100-00
Corson et al. (2012) AcuSolve 1 blade, approx,

nacelle
NOP st RANS, SA ROM ELA

Corson et al. (2012) AcuSolve 1 blade, approx.
nacelle

FL dyn DDES ROM ELA

DTU 10MW RWT
Zahle et al. (2014) Ellypsis3D 3 blades (no

prebending, no
precone)

NOP st RANS, k-ω SST Rigid N/A

Continued on next page. . .
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HAWT Author/s Solvers Mesh WP Type Fluid Struct. Def.

Zahle et al. (2014) Ellypsis3D 1 blade (no
prebending, no
precone)

SS+YM dyn DES-SST Rigid N/A

SIEMENS 3.6MW Zahle and Sørensen
(2008)

Ellypsis3D 3 blades and
tower

NOP dyn URANS, k-ω Rigid N/A

NKT 500/41
Zahle and Sørensen
(2011)

Ellypsis3D 3 rotor blades
and nacelle

NOP st RANS, k-ω-
SST

Rigid N/A

Zahle and Sørensen
(2011)

Ellypsis3D 3 rotor blades
and nacelle

NOP,YM dyn URANS, k-ω-
SST

Rigid N/A

Concluded





Appendix B

NLH formulation

In this appendix, the derivation of the baseline NLH formulation is detailed. Let start by con-
sidering the unsteady Reynolds-Averaged Navier-Stokes equations presented in Section 2.1.2,
where the indexes issued from the Reynolds averaging were removed for the sake of simplic-
ity:

∂

∂ t

∫
Ω

UdΩ+
∮

S

(
F⃗I − F⃗V

)
·dS⃗ =

∫
Ω

QdΩ (B.1)

with:

U =


ρ

ρvx

ρvy

ρvz

ρE

 , F⃗I =


ρ v⃗

ρ v⃗vx + p⃗ex

ρ v⃗vy + p⃗ey

ρ v⃗vz + p⃗ez

ρ v⃗E + p⃗v

 , F⃗V =


0

τxx⃗ex + τxy⃗ey + τxz⃗ez

τxy⃗ex + τyy⃗ey + τyz⃗ez

τxz⃗ex + τyz⃗ey + τzz⃗ez

τττ v⃗+ q⃗

 (B.2)
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Decomposing every variable into time-mean and harmonic contributions:

∂

∂ t

∫
Ω



ρ +ρ ′

ρvx +(ρvx)
′

ρvy +(ρvy)
′

ρvz +(ρvz)
′

ρE +(ρE)′


dΩ

+
∮

S



ρ v⃗+(ρ v⃗)′(
ρ v⃗+(ρ v⃗)′

)
(vx + v′x)+(p+ p′) e⃗x(

ρ v⃗+(ρ v⃗)′
)(

vy + v′y
)
+(p+ p′) e⃗y(

ρ v⃗+(ρ v⃗)′
)(

vz + v′z
)
+(p+ p′) e⃗z(

ρE +(ρE)′
) (⃗

v+ v⃗′
)
+(p+ p′)

(⃗
v+ v⃗′

)


·dS⃗

−
∮

S



0

(τxx + τ ′xx) e⃗x +
(
τxy + τ ′xy

)
e⃗y +

(
τxz + τ ′xz

)
e⃗z(

τxy + τ ′xy
)

e⃗x +
(
τyy + τ ′yy

)
e⃗y +

(
τyz + τ ′yz

)
e⃗z(

τxz + τ ′xz
)

e⃗x +
(
τyz + τ ′yz

)
e⃗y +

(
τzz + τ ′zz

)
e⃗z

(τττ +τττ ′)
(⃗
v+ v⃗′

)
+
(⃗
q+ q⃗′

)


·dS⃗

=
∫

Ω

(
Q+Q′)dΩ

(B.3)
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Performing intermediate multiplications:

∂

∂ t

∫
Ω



ρdΩ+ρ ′dΩ

ρvxdΩ+(ρvx)
′dΩ

ρvydΩ+(ρvy)
′dΩ

ρvzdΩ+(ρvz)
′dΩ

ρEdΩ+(ρE)′dΩ



+
∮

S



ρ v⃗dS⃗+(ρ v⃗)′dS⃗

ρ v⃗vxdS⃗+ρ v⃗v′xdS⃗+(ρ v⃗)′ vxdS⃗+(ρ v⃗)′ v′xdS⃗+ pdSx + p′dSx

ρ v⃗vydS⃗+ρ v⃗v′ydS⃗+(ρ v⃗)′ vydS⃗+(ρ v⃗)′ v′ydS⃗+ pdSy + p′dSy

ρ v⃗vzdS⃗+ρ v⃗v′zdS⃗+(ρ v⃗)′ vzdS⃗+(ρ v⃗)′ v′zdS⃗+ pdSz + p′dSz

ρEv⃗dS⃗+ρEv⃗′dS⃗+(ρE)′ v⃗dS⃗+(ρE)′ v⃗′dS⃗+ p⃗vdS⃗+ p⃗v′dS⃗+ p′⃗vdS⃗+ p′⃗v′dS⃗



−
∮

S



0

τxxdSx + τ ′xxdSx + τxydSy + τ ′xydSy + τxzdSz + τ ′xzdSz

τxydSx + τ ′xydSx + τyydSy + τ ′yydSy + τyzdSz + τ ′yzdSz

τxzdSx + τ ′xzdSx + τyzdSy + τ ′yzdSy + τzzdSz + τ ′zzdSz

τττ v⃗dS⃗+τττ v⃗′dS⃗+τττ ′⃗vdS⃗+τττ ′⃗v′dS⃗+ q⃗dS⃗+ q⃗′dS⃗


=
∫

Ω

QdΩ+Q′dΩ

(B.4)
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B.1 Time-mean equations

To derive the NLH mean equations, we consider the time-averaged of Equation B.4:

∂

∂ t

∫
Ω



ρdΩ

ρvxdΩ

ρvydΩ

ρvzdΩ

ρEdΩ


+
∮

S



ρ v⃗dS⃗

ρ v⃗vxdS⃗+(ρ v⃗)′ v′xdS⃗+ pdSx

ρ v⃗vydS⃗+(ρ v⃗)′ v′ydS⃗+ pdSy

ρ v⃗vzdS⃗+(ρ v⃗)′ v′zdS⃗+ pdSz

ρEv⃗dS⃗+(ρE)′ v⃗′dS⃗+ p⃗vdS⃗+ p′⃗v′dS⃗



−
∮

S



0

τxxdSx + τxydSy + τxzdSz

τxydSx + τyydSy + τyzdSz

τxzdSx + τyzdSy + τzzdSz

τττ v⃗dS⃗+τττ ′⃗v′dS⃗+ q⃗dS⃗


=
∫

Ω

QdΩ

(B.5)

Considering that the temporal derivative of a time-averaged quantity is null, the first term can
be removed:

∮
S



ρ v⃗dS⃗

ρ v⃗vxdS⃗+(ρ v⃗)′ v′xdS⃗+ pdSx

ρ v⃗vydS⃗+(ρ v⃗)′ v′ydS⃗+ pdSy

ρ v⃗vzdS⃗+(ρ v⃗)′ v′zdS⃗+ pdSz

ρEv⃗dS⃗+(ρE)′ v⃗′dS⃗+ p⃗vdS⃗+ p′⃗v′dS⃗


−
∮

S



0

τxxdSx + τxydSy + τxzdSz

τxydSx + τyydSy + τyzdSz

τxzdSx + τyzdSy + τzzdSz

τττ v⃗dS⃗+τττ ′⃗v′dS⃗+ q⃗dS⃗


=
∫

Ω

QdΩ

(B.6)
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Equation 2.7 is usually written as:

∮
S



ρ v⃗dS⃗

ρ v⃗vxdS⃗+ pdSx

ρ v⃗vydS⃗+ pdSy

ρ v⃗vzdS⃗+ pdSz

ρEv⃗dS⃗+ p⃗vdS⃗


+
∮

S



0

(ρ v⃗)′ v′xdS⃗

(ρ v⃗)′ v′ydS⃗

(ρ v⃗)′ v′zdS⃗

(ρE)′ v⃗′dS⃗+ p′⃗v′dS⃗


−
∮

S



0

τxxdSx + τxydSy + τxzdSz

τxydSx + τyydSy + τyzdSz

τxzdSx + τyzdSy + τzzdSz

τττ v⃗dS⃗+ q⃗dS⃗



−
∮

S



0

0

0

0

τττ ′⃗v′dS⃗

=
∫

Ω

QdΩ

(B.7)

where the first term is often referred as the Linearized inviscid fluxes, the second as the In-
viscid deterministic stress (present in the time-mean equations due to the non-linearity of the
formulation), the third one as the Viscous fluxes and τττ ′⃗v′dS⃗ as the Viscous deterministic stress.
It is to be observed that the role of the deterministic stresses is to account for the contribution
of the flow unsteadiness into the time-mean flow equations, similarly to the function that the
Reynolds stresses play in the RANS formulation presented in Section 2.1.2. Equation B.7 is
often expressed in terms of the Enthalpy variable H, defined as H = E + pV :

∮
S



ρ v⃗dS⃗

ρ v⃗vxdS⃗+ pdSx

ρ v⃗vydS⃗+ pdSy

ρ v⃗vzdS⃗+ pdSz

ρHv⃗dS⃗


+
∮

S



0

(ρ v⃗)′ v′xdS⃗

(ρ v⃗)′ v′ydS⃗

(ρ v⃗)′ v′zdS⃗

(ρH)′ v⃗′dS⃗


−
∮

S



0

τxxdSx + τxydSy + τxzdSz

τxydSx + τyydSy + τyzdSz

τxzdSx + τyzdSy + τzzdSz

τττ v⃗dS⃗+ q⃗dS⃗



−
∮

S



0

0

0

0

τττ ′⃗v′dS⃗

=
∫

Ω

QdΩ

(B.8)
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Using a compact finite-volume formulation, Equation B.8 can be written for every cell as:

∑
cell f aces

F⃗I · S⃗− ∑
cell f aces

F⃗V · S⃗ = QΩ (B.9)

with:

F⃗I · S⃗ =


ρ v⃗⃗S

ρ v⃗vxS⃗+ pSx

ρ v⃗vyS⃗+ pSy

ρ v⃗vzS⃗+ pSz

ρHv⃗⃗S

+


0

(ρ v⃗)′ v′xS⃗
(ρ v⃗)′ v′yS⃗

(ρ v⃗)′ v′zS⃗
(ρH)′ v⃗′S⃗

 (B.10)

F⃗V · S⃗ =


0

τxxSx + τxySy + τxzSz

τxySx + τyySy + τyzSz

τxzSx + τyzSy + τzzSz

τττ v⃗⃗S+ q⃗S⃗

+


0
0
0
0

τττ ′⃗v′S⃗

 (B.11)

A pseudo-time dependence is finally added in Equation B.9 by the introduction of a pseudo-
time ς derivative term:

∂U
∂ς

Ω+ ∑
cell f aces

(
F⃗I − F⃗V

)
· S⃗ =

∂

∂ς


ρ

ρvx

ρvy

ρvz

ρE

Ω+ ∑
cell f aces

(
F⃗I − F⃗V

)
· S⃗ = QΩ (B.12)
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B.2 Harmonic equations

To derive the set of harmonic equations let consider again Equation B.4, but only retaining
first-order fluctuation terms:

∂

∂ t

∫
Ω



ρdΩ+ρ ′dΩ

ρvxdΩ+(ρvx)
′dΩ

ρvydΩ+(ρvy)
′dΩ

ρvzdΩ+(ρvz)
′dΩ

ρEdΩ+(ρE)′dΩ



+
∮

S



ρ v⃗dS⃗+(ρ v⃗)′dS⃗

ρ v⃗vxdS⃗+ρ v⃗v′xdS⃗+(ρ v⃗)′ vxdS⃗+ pdSx + p′dSx

ρ v⃗vydS⃗+ρ v⃗v′ydS⃗+(ρ v⃗)′ vydS⃗+ pdSy + p′dSy

ρ v⃗vzdS⃗+ρ v⃗v′zdS⃗+(ρ v⃗)′ vzdS⃗+ pdSz + p′dSz

ρEv⃗dS⃗+ρEv⃗′dS⃗+(ρE)′ v⃗dS⃗+ p⃗vdS⃗+ p⃗v′dS⃗+ p′⃗vdS⃗



−
∮

S



0

τxxdSx + τ ′xxdSx + τxydSy + τ ′xydSy + τxzdSz + τ ′xzdSz

τxydSx + τ ′xydSx + τyydSy + τ ′yydSy + τyzdSz + τ ′yzdSz

τxzdSx + τ ′xzdSx + τyzdSy + τ ′yzdSy + τzzdSz + τ ′zzdSz

τττ v⃗dS⃗+τττ v⃗′dS⃗+τττ ′⃗vdS⃗+ q⃗dS⃗+ q⃗′dS⃗


=
∫

Ω

(
Q+Q′)dΩ

(B.13)
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Expressing the Inviscid terms in terms of H:

∂

∂ t

∫
Ω



ρdΩ+ρ ′dΩ

ρvxdΩ+(ρvx)
′dΩ

ρvydΩ+(ρvy)
′dΩ

ρvzdΩ+(ρvz)
′dΩ

ρEdΩ+(ρE)′dΩ



+
∮

S



ρ v⃗dS⃗+(ρ v⃗)′dS⃗

ρ v⃗vxdS⃗+ρ v⃗v′xdS⃗+(ρ v⃗)′ vxdS⃗+ pdSx + p′dSx

ρ v⃗vydS⃗+ρ v⃗v′ydS⃗+(ρ v⃗)′ vydS⃗+ pdSy + p′dSy

ρ v⃗vzdS⃗+ρ v⃗v′zdS⃗+(ρ v⃗)′ vzdS⃗+ pdSz + p′dSz

ρHv⃗dS⃗+(ρH)′ v⃗dS⃗+ρHv⃗′dS⃗



−
∮

S



0

τxxdSx + τ ′xxdSx + τxydSy + τ ′xydSy + τxzdSz + τ ′xzdSz

τxydSx + τ ′xydSx + τyydSy + τ ′yydSy + τyzdSz + τ ′yzdSz

τxzdSx + τ ′xzdSx + τyzdSy + τ ′yzdSy + τzzdSz + τ ′zzdSz

τττ v⃗dS⃗+τττ v⃗′dS⃗+τττ ′⃗vdS⃗+ q⃗dS⃗+ q⃗′dS⃗


=
∫

Ω

(
Q+Q′)dΩ

(B.14)
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By casting into the frequency domain, the equations of the hth harmonic can be written as:

Iωh

∫
Ω



ρ̃|hdΩ

ρ̃vx|hdΩ

ρ̃vy|hdΩ

ρ̃vz|hdΩ

ρ̃E|hdΩ


+
∮

S



ρ̃ v⃗|hdS⃗

ρ v⃗ṽx|hdS⃗+ ρ̃ v⃗|hvxdS⃗+ p̃|hdSx

ρ v⃗ṽy|hdS⃗+ ρ̃ v⃗|hvydS⃗+ p̃|hdSy

ρ v⃗ṽz|hdS⃗+ ρ̃ v⃗|hvzdS⃗+ p̃|hdSz

ρ̃H|h⃗vdS⃗+ρH˜⃗v|hdS⃗



−
∮

S



0

τ̃xx|hdSx + τ̃xy|hdSy + τ̃xz|hdSz

τ̃xy|hdSx + τ̃yy|hdSy + τ̃yz|hdSz

τ̃xz|hdSx + τ̃yz|hdSy + τ̃zz|hdSz

τττ˜⃗v|hdS⃗+ τ̃ττ|h⃗vdS⃗+ ˜⃗q|hdS⃗


=
∫

Ω

Q̃|hdΩ

(B.15)

The first term is referred as the Frequency source term, the second as the Inviscid fluxes and
the third as Viscous fluxes. ωh is the angular velocity related to the hth harmonic. Using a
compact finite-volume formulation, Equation B.15 can be written for every cell as:

IωhŨ |hΩ+ ∑
cell f aces

−̃→
F I |h · S⃗− ∑

cell f aces

−̃→
F V |h · S⃗ = Q̃|hΩ (B.16)

where:

−̃→
F I |h · S⃗ =


ρ̃ v⃗|hS⃗

ρ v⃗ṽx|hS⃗+ ρ̃ v⃗|hvxS⃗+ p̃|hSx

ρ v⃗ṽy|hS⃗+ ρ̃ v⃗|hvyS⃗+ p̃|hSy

ρ v⃗ṽz|hS⃗+ ρ̃ v⃗|hvzS⃗+ p̃|hSz

ρ̃H|h⃗v⃗S+ρH˜⃗v|hS⃗

 (B.17)

−̃→
F V |h · S⃗ =


0

τ̃xx|hSx + τ̃xy|hSy + τ̃xz|hSz

τ̃xy|hSx + τ̃yy|hSy + τ̃yz|hSz

τ̃xz|hSx + τ̃yz|hSy + τ̃zz|hSz

τττ˜⃗v|hS⃗+ τ̃ττ|h⃗v⃗S+ ˜⃗q|hS⃗

 (B.18)
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As done for the time-mean equations, a pseudo-time derivative term is finally introduced
in Equation B.16:

∂Ũ
∂ς

Ω+ IωhŨ |hΩ+ ∑
cell f aces

−̃→
F I |h · S⃗− ∑

cell f aces

−̃→
F V |h · S⃗ = Q̃|hΩ (B.19)



Appendix C

Turbulence model sensitivity for
Rotor-only computations

Due to the absence of an experimental database for DTU 10MW RWT simulations valida-
tion, a detailed analysis of the impact of the turbulence modeling was not considered in this
research. Because of its simplicity and robustness, all the presented simulations were based
on the Spalart-Allmaras turbulence model [Spalart and Allmaras (1992)]. In this section, the
results of the application of the so-called k-ω SST turbulence model [Menter (1993)] on the
prebent-precone computations of Section 5.5 are discussed. The k-ω SST turbulence model
was employed for HAWT rotor analysis by many authors, since it is considered a good option
when dealing with massive separations and important recirculations [Menter et al. (2003)].
This model combines k-ω and k-ε philosophies for the near wall and the rest of the domain
respectively.

The whole 0 deg operating range from Table 5.2 was considered in this study. Both rigid
and flexible configurations were analyzed. For the latter configuration, mesh deformation
relied in the hybrid method summarized in Section 3.6.

For the rigid simulations, same suction and pressure separation bubbles were identi-
fied for both turbulence models, as illustrated in Figure C.1 for the 11 ms-1 operating point
(FT_WSP11).

When accounting for flexible blades, the observed deformation differences between the
two considered turbulence models was in the order of centimeters (Figure C.2), representing
less than 0.1% of the radius of the rotor. Higher discrepancies were found for low wind
speeds.

Figure C.3 illustrates the results on rotor performance for both turbulent models. Even
if non negligible differences were found, both approaches showed a similar influence of the
wind speed evolution and the blade flexibility. This justifies the use of the Spalart-Allmaras
model in the present PhD research, which focus was the development of new methodologies
for the study of HAWTs aeroelasticity.
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r[m
]

(a) SS-SA

r[m
]

(b) SS-SST

r[m
]

(c) PS-SA

r[m
]

(d) PS-SST

Figure C.1: Friction streamlines at 11 ms-1 for suction and pressure surfaces (referred as SS and PS
respectively). Rigid simulations of prebent/precone blade without Gurney flaps. SA refers to Spalart-
Allmaras turbulence model. SST refers to k-ω SST turbulence model
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(a) Blade axis displacement, global view (b) Blade axis displacement, high span zoom

Figure C.2: DTU 10MW RWT blade deformation parallel to the rotor axis for the prebent/precone
configuration without Gurney flaps. Results are expressed as a function of normalized radius. SA refers
to Spalart-Allmaras turbulence model. SST refers to k-ω SST turbulence model

(a) Global thrust coefficient (b) Global power coefficient

Figure C.3: DTU 10MW RWT global coefficients versus wind speed, prebent/precone blade without
Gurney flaps. SA refers to Spalart-Allmaras turbulence model. SST refers to k-ω SST turbulence model
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