N

N

Combining SysML and SystemC to Simulate and Verify
Complex Systems
Abbas Abdulazeez Abdulhameed

» To cite this version:

Abbas Abdulazeez Abdulhameed. Combining SysML and SystemC to Simulate and Verify Com-
plex Systems. Systems and Control [cs.SY]. Université de Franche-Comté, 2016. English. NNT:
2016BESA2045 . tel-01562826

HAL Id: tel-01562826
https://theses.hal.science/tel-01562826
Submitted on 17 Jul 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-01562826
https://hal.archives-ouvertes.fr

PP | M

‘These de Doctorat

école doctorale sciences pour I'ingénieur et microtechniques

UNINERSITE DEMF RIA NIC HIE -J€ OfM TUE

Combining SysML and SystemC to
Simulate and Verity Complex Systems

A dissertation presented by

ABBAS ABDULAZEEZ ABDULHAMEED

and submitted to the
Université de Franche-Comté
in partial fulfillment of the Requirements for obtaining the degree

DOCTOR OF PHYLOSOPHY

Speciality : Informatique

Defended in public on 04 March 2016 in front of the Jury composed from :

Emmanuel GROLLEAU Rapporteur Professeur, LISI, ISAE-ENSMA,
Université de Poitiers

Vincent POIRRIEZ Rapporteur Professeur, LAMIH, Université de
Valenciennes

Mamoun FILALI AMINE Examinateur Directeur de Recherche CNRS, IRIT,
Université de Toulouse

Hassan MOUNTASSIR Directeur de thése Professeur, DISC/Femto-ST, Université de
Franche-Comté

Ahmed HAMMAD Co-Encadrant de these MDC, DISC/Femto-ST, Université de
Franche-Comté

Bruno TATIBOUET Co-Encadrant de thése MDC, DISC/Femto-ST, Université de

Franche-Comté

Er LT

FC

UMIVERSITE
DE FRAMNTHE-CO T

UNIVERSITE DE FRANCHE-COMTE

RAPPORT DE SOUTENANCE DE DOCTORAT

Spécialité : INFORMATIQUE

Mam et prenom du candidat - ABDULHAMEED Abbas Abdulazeez

Date &t lieu de naissance | 14071973 a Bagdad (Irak)

Date de soutenance ; 04 mars 2016 Heure : 14h00

Nom du Présidentdu jury © | fw ent POIRRIER

M. Abbas Abdulazesz Abdulhameed a présenté son travail de facon claire. Il a montré sa connaissance d'un
domaine trés viste tant théorique gue technologique allant de I'ingénierie des modéles aux méthodes de
vérification et de validation. Il 3 expesé ses contributions dans le processus de transformations des modéles
d'exigences, exprimés en SysML, vers les modédes cibles : valldation avec SystemC et verification en logique

temporelle.

Les réponses aux questions diverses et nombreuses ont été honnétes. Le jury a appréclé la quantité de travail

fourni et les compétences acquises durant la thése.

En conséquence, le jury décerne |e titre de docteur en Informatique de I'Université de Franche-Comté avec la
renticn trés honorable 8 M. Abbag Abdulazeez Abdulhamesd.

Moms et signatures des membres du jury

M. Emmanuel GROLLEAU (Prolesseur des wniersités) - Laborataire

M. Vincent POIRRIEZ (Frofesseur des unsversiiés) — Laboralpina
d'Automatique, de Macanigue at d'Informalique Indusirielles et Humaines
= Université d& Valenciennes

Rapporteur

M. Marmoun FILAL] AMINE - (Chargé de mcherches, GHRS) - Institut
de Recherche &n Informatique de Towlouse = Universilé de Toulouse
TMambre

M. Ahmed HAMMAD (Maitre de conférencas) — Institut FEMTO-5T —
Depanemenl Informatique et Syskémes Complexes — Université de
Franche-Combé .

Mamibre

M. Hassan MOUNTASSIR (Prafesseur des universibés) = Instilut
FEMTO-5T — Département Infommatique &l Sysiémes Complesss -
Université de Franche-Combé |

Membre i

W

i

K. Bruno TATIBOUET (Mailtre de canférences) = Instiug FEMTO-5T =
Départarmant Informatigue el Sysigmes Complexes — Universilé de
Francha-Combd

Membre c

Le conseil scientifique de 'Ecale Dactarale Sciences Pour lngénicur of Microtechniques & décidé gue les Flisitations ne seraient plus

afiritwsies,

Faita: BESANCON Le: (,[

% 16

Acknowledgments

Here I would like to thank everyone, whose help and participation made this thesis
possible. First of all, I wish to express the deepest gratitude and respect to my thesis
supervisor Dr. Hassan MOUNTASSIR and my co-supervisors Dr. Ahmed HAMMAD and
Dr. Bruno TATIBOUET. Words are broken me to express my appreciation. Their skills,
their scientific rigidity, and clairvoyance taught me a lot. Indeed, I thank them for their
organizations, and expert advice provide me they knew throughout these four years and
also for their warm quality human, and in particular for the confidence they have granted
to me.

I would nevertheless like to thank more particularly proudly Prof. Messaoud Rahim,
professor in the University of Yahia Fares Medea, for his advisers and his scientific expert
who helped and guided me a lot for the completion of this thesis.

I extend my warmest thanks to the Minister of Higher Education and Scientific Research
in Iraq represented by Campus France, the University of Mustansiriyah, and the Univer-
sity of Franche-Comté, for their co-operation to finance this thesis.

My gratitude and my thanks go to the crew members of VESONTIO for the friendly and
warm atmosphere in which it supported me to work. Therefore thanks to Oscar Carrillo,
Jean-Marie Gauthier, Pierre-Cyrille Heam, Hamida Bouaziz, Hana M'Hemdi, and to
whom I missed their names.

My gratitude and my thanks go to the crew members of DISC for the friendly and warm
atmosphere in which it supported me to work. Therefore, Thanks Olga Kouchnarenko,
director of DISC (Informatique des systemes complexes) department in Besancon, Do-
minique Menetrier, Jean-Michel Caricand, Laurent Steck and to all other people ifI forget
his name. For their unwavering support and encouragement.

Finally, Iwant to thank my dear friends including Bassam Alkindy, Huda Al-nayyef, Bashar
Al-Nauimi, Lemia Louail, who shared my hopes and studies, which made me comfort in
the difficult moments and with whom I shared unforgettable moments of events.

vil

Dedication

To my wife Yusra, with my love that gave me strength to go through the most difficult
moments of my studies.

Iam also addressing the strongest thanksgiving words to my parents, my sisters and their
families, my brothers and their families, and to my lovely family, for their support and
encouragement during the thesis in long years of studies. Their affection and trust lead
me and guide me every day.

Thank you, Mom, Dad, for making me what I am today.

X

List of Acronyms

BDD Block Definition Diagram.

EMF Eclipse Modeling Framework.

MBSE Model-Based Systems Engineering.
IBD Internal Block Diagram.

INCOSE International Council on Systems Engineering.
OMG Object Management Group.

PD Parametric Diagram.

RD Requirement Diagrams.

SCV SystemC Verification Standard.
SCNSL SystemC Network Simulation Library.
SE Systems Engineering.

SMD State Machine Diagram.

SPIN Simple Promela Interpreter.

SysML Systems Modeling Language.

UML Unified Modeling Language.

xi

I

1

I

Context, Motivations and Related Works

Introduction
1.1 Motivations L.
1.2 Problem Description
1.3 Objectivesofthesis
1.4 Contributions
1.5 Publications
1.6 Outlineofthethesis
Related Works
2.1 Introduction
2.2 Modelling of Complex Systems
2.2.1 Semi-Formal Languages
2.2.2 FormalLanguages

2.2.3 Hardware Description Languages
2.3 Validation of SysMLDesigns
2.3.1 Verification of SysML Designs
2.4 Verification of SystemC Designs
2.4.1 With SystemC Environment
2.4.2 Translation to Model Checking and Tools

2.5 SUMMAIY v v vt e e e

Scientific Context

Related Concepts
3.1 Model Verification and Validation

3.2 SystemsEngineeringand MBSE
3.21 SysML,

3.2.2 SysMLEnvironment

Contents

o o o o o 8 o3 =

8 &=

2

CONTENTS

xiv
3.2.3 SysML Architecture
3.2.4 BenefitsofusingSysML
3.3 Simulation and validation with SystemC
3.3.1 SystemC Language Architecture
3.3.2 SystemC Simulation Environment.
3.4 Verification with Model-Checking
3.4.1 Temporallogic
3.42 Promela
3.4.3 Model-CheckersTools
3.5 Model-Driven Engineering
3.5.1 Eclipse Modeling Framework
3.5.2 Model Transformationwith ATL
3.5.3 Code genrationwith Acceleo
3.6 Conclusion

4 The Traffic Light Case Study

4.1 Introduction

4.2 Functional and Non-functional Requirements

4.3 Requirement Analysis .

4.4 SysMLModelofCaseStudy

4.5 Conclusion

III Contributions

5 Simulating SysML Specification using SystemC

5.1 Introduction

5.2 From SysML to SystemC

5.2.1 Model /MetaModel Transformation
52.2 SysMLMeta-Model
5.2.3 SystemCMeta-Model
5.2.4 Model Transformation Technology
5.2.5 Transforming SysMLinto SystemC
5.2.6 Rulesfor Transformation.
5.2.7 SystemC Model Transformation to SystemCCode

5.3 Validation by Simulation

CONTENTS

7

5.4

5.5

5.3.1 SystemCSimulation
5.3.2 SystemC Network Simulation Library
5.3.3 TracesGeneration
Experiments withthecasestudy.
5.4.1 Combine SysMLto SystemC
5.4.2 Simulation o

Conclusion o i e e e

Comparison of Verification techniques of SystemC models

6.1
6.2

6.3
6.4
6.5
6.6
6.7

Introduction
Techniques for SystemC Verification
6.2.1 Verification by SystemC Libraries
6.2.2 Verification by Libraries Integrated to SystemC
6.2.3 Verification through Model-checkingTools
UPPAALandTCTL i i
Transformation of SystemC Model for UPPAAL Verification
[lustrationonthecasestudy
Classification of Verificationin SystemC

Conclusion e

Transformation of SysML Specification into Promela-SPIN

7.1
7.2
7.3

7.4

7.5

Introduction
Approach e
From SysMLtoPromela
7.3.1 PromelaMetaModel
7.3.2 TransformationProcess
7.3.3 SysML To Promela Transformation
7.3.4 Mapping Rules for the Transformation
7.3.5 ThePromelaModel
7.3.6 Conversion Promela model to PromelaCode
Verification usingthe SPINTool
7.4.1 LTLModelChecking
7.4.2 Verification L
Illustrationonthecasestudy
7.5.1 Combine SysMLtoPromela

7.5.2 Functional Requirements

XV

Xvi CONTENTS

7.5.3 Verification of LTL properties oR

7.6 Conclusion o]

IV Conclusions and Future works @
8 Conclusion and Perspectives @
8.1 Main Contributions e e 3

8.2 Futurework e e e e e A

Context, Motivations and Related Works

Introduction
Contents
1.1 Motivations a
1.2 Problem Description 0 g
1.3 Objectives of thesis g
1.4 Contributions g
1.5 Publications a
1.6 Outline of the thesis a

Nowadays, the use of models to design complex industrial systems increases continually.
These models help in verifying the correctness of applications, in the earlier phases, by
analyzing the possible failures and risks.

Systems Engineering (SE) [Blanchard etal.,1990], is an interdisciplinary field that
emerged as an efficient way to manage the development complexity. The most prominent
of the model is the application of accurate visual modelling systems and best practices to
SE activities. Throughout the System Development Life Cycle (SDLC), SE activities include
requirements analysis, verification, functional analysis, allocations, performance anal-
ysis, and system architecture specification. Model-Based Systems Engineering (MBSE)
[Wymore, 1993], is a methodology for designing systems using computer models. MBSE
focuses on defining customer needs and required functionality early in the development
cycle. A model specification proceeds with design synthesis and system validation, while
it considered the entire problem, including functional and non-functional requirements,
verification, tests, and costs. Over the last few decades, MBSE has become especially im-
portant in the analysis and synthesis of critical and complex systems.

The Systems Modelling Language (SysML) [OMG, 2012], was proposed by the Interna-
tional Council on Systems Engineering (INCOSE)Y, and was standardized by the Object
Management Group (OMG). SysML is a graphical modelling language that allows mod-
elling to specify and design complex systems. It models the software side of such systems
as well as their hardware side. SysML is well suited for describing the system at early de-
sign phases, and this is due to its simplicity and its graphical notations. However, SysML
is a semi-formal language that lacks the formal semantic to support validation and verifi-
cation techniques.

In a model-based development process, verification and validation techniques are sup-
ported to better understand models and to evaluate model properties that are stated im-
plicitly in the model. The verification and validation processes assist the correct specifi-

thttp:/ /www.incose.org/

4 CHAPTER 1. INTRODUCTION

cation of models and exploring other modelling alternatives.

However, a specification using SysML in the process of verification and validation is miss-
ing. Many technologies and methods that are used in verification and validation stages
of systems do already exist and have been standardized, from formal verification, simula-
tion, and /or with testing techniques [Kleijnen, 1995], [Debbabi et al., 2010].

SystemC [Aynsley, 2006], is an open-source system-level design language based on C++
that has its own simulation kernel. By combining SysML with SystemC, we benefit from
SysML for describing complex systems and from the simulation capabilities provided by
the SystemC environment. This can be achieved by transformation of SysML diagrams
into SystemC models.

Simulation is a conventional technique for the analysis of specifications of complex sys-
tems [Kelton et al., 2000]. Simulation-based approaches ensure that a finite number of
user-defined system paths meet the wanted specification. It is approximately inexpensive
regarding execution time, butit only validates the behaviour of a system for one particular
computation path. For that, simulation is a technique that enables to verify some specific
execution traces of a system.

Model-checking [Clarke et al., 1999] is an automated technique that, given a finite-state
model of a system and formal properties, systematically checks whether this property
holds in that model. Providing a methodology for formal verification of SysML specifica-
tions with model-checking based techniques is very appropriate for ensuring the validity
of the designed system, fundamentally regarding their behavioural requirements.

In this thesis, we propose combining contributions to validate SysML specifications using
simulation and verification techniques. This chapter is organized as follows, Section 1.1
presents the motivations of this thesis. Then, Section 1.2 describes the problem statement.
Section 1.3 lists the objectives of this dissertation. Later, Section 1.4 and 1.5 provides a
general overview of the proposed approach and describes the main contributions of this
thesis. Finally, Section 1.6 presents the thesis overview.

1.1 Motivations

The correct design of complex and critical systems remains challenging for the engineers.
Bugs in a design that are not detected in early design stages can be extremely expensive.
Therefore, the development of complex and critical systems requires verification and val-
idation techniques to enable the detection and the correction of system models. For every
modelling stage, we need to make sure that the system is implemented in conformity with
the initial requirements.

Formal methods are techniques that are used to model complex systems as math-
ematical objects. Building an accurate mathematical model of a complex system,
it is practicable to verify the system properties in a more exact style than practical
testing[Bodeveix et al., 2005]. Our aim is the combination of formal methods with en-
gineering application in such a way that all development, reasoning and analysis is an ap-
plication of formal methods. Formal techniques can be applied to design verified models,
but there is no clear reason.

Therefore, formal methods must be applicable exclusively to the evolution of information
systems. Verification techniques are proposed to verify and validate the system designs.

1.2. PROBLEM DESCRIPTION 5

However, formal descriptions can be difficult to construct, to read and to understand, es-
pecially for non-experts. SysML is a semi-formal language, which appears to offer an in-
teresting compromise, especially when we provide for this latter a methodology for veri-
fying and validating systems designed with it.

In this thesis, we use SysML, SystemC and model-checking techniques. SysML to target
systems described in a high level of abstraction. SystemC environment to validate prop-
erties by simulation. And model-checking to verify system properties with formal meth-
ods.

SysMLis amodelling language that permits to obtain a specification of a complex systems
including requirement, structural and behavioural parts.

SystemC language is a preferred alternative to the traditional languages and its simula-
tion kernel is an important aspect designed to evaluate the system behaviours through
simulations.

The model-checking technique enabled to verify properties over a formal model by en-
suring satisfy every possible state of the system. Therefore, its applied combination
with transformation function requirements to verify and validate complex systems spec-
ified by SysML model. In fact, the increasing importance of critical applications has
stimulated research work on modelling techniques that combine SysML with model-
checking tools, such as SPIN (Simple Promela Interpreter) [Holzmann, 1997] and UPPAAL
[Larsen et al., 1997].

1.2/ Problem Description

To design complex systems, we need a methodology supported by a high-level language
for specifying and modelling the different aspects of the system including requirements,
structure, and behaviour.

SysML is a UML profile for specifying and modelling complex systems, and formal se-
mantics to provide verification and validation of systems design. To combine verifica-
tion and validation with SysML, the design phases of the development of complex systems
constitutes the main issue of this thesis. Verification and validation of SysML specifica-
tions need to adopt well-established verification techniques such as formal verification
and simulation. The solutions for the problematic of thesis consists in combining simu-
lation and formal verification methods with SysML.

e How to identify, semi-formalize, and structure informal complex system require-
ments using SysML models?

e How SysML can be combined with SystemC, to validate non-functional require-
ments of the complex systems?

e How SysML can be combined with model-checking to provide formal verification of
system functional requirements?

6 CHAPTER 1. INTRODUCTION

1.3/ Objectives of thesis

This work intends to support the application of the MBSE paradigm in the sub-areas of
model-based design, as well as model-based verification and validation. It combines
SysML specifications with SystemC to simulate modeled behaviors. Moreover, SysML is
combined with model-checking methods to apply formal verification and validation tech-
niques. The strategy developed in this work enables to create system design models from
semi-formal specifications like SysML, which is converted and implemented in a formal
environment. We use formal verification to check requirements of the complex system
model.

The verification and validation process is done by simulation for non-functional proper-
ties and by formal verification for ensuring the satisfaction of functional requirements.
Based on various definitions available in this thesis, we define the process of designing
and creating a system model specification that can be simulated and formally verified.
Through specific conditions we can evaluate the behaviour of the corresponding real sys-
tem.

In this thesis, we define the set of activities related to the specification and the verifica-
tion approach used to assess the correction of complex systems design. The improve-
ments, brought by SysML, have allowed increasing its popularity in the industrial and
academic environment. A SysML specification of a system is represented by Require-
ment Diagrams, Behavioral Diagrams, which describe the dynamic operation of the sys-
tem such as the State Machine Diagram (SMD), and Structural diagrams describe the sys-
tem in static mode. In the later, blocks are modeled by three diagrams, the Block Defi-
nition Diagram (BDD), which defines the architecture of the blocks and their performed
operations, and the Internal Block Diagram (IBD) with the Parametric Diagram (PD) used
to define the ports of each block and connectors between them linking their ports.

The design refinement of a system is an important concept in SysML. While it is based on
a development method that can begin from an abstract level, towards more detailed lev-
els that can end in an implementation from SystemC environment to simulation or from
model-checking to verification.

1.4/ Contributions

In this thesis, we propose contributions that aim to design, verify and validate complex
systems. These contributions enable to answer the challenges presented in the above sec-
tion. We present in Figure El] a diagram representing our contributions (numbered as 1,
2, 3, and 4) to SysML specifications, SystemC environment and model-checking.

The first one is oriented towards the definition of a SysML-based approach by analyzing
requirements, it identifies the concepts and the type of use that such language has to sup-
port. Such requirements are addressed by the model for requirements and specifications.
We create a formal model of the problem domain, which describes the behavioral and
structural characteristics of the environment where the problem is discovered.

Premier, we have to create the SysML diagrams for specifying the system structure, re-
quirement, and behavior. Then, the SysML diagrams are mapped into SystemC modules.
We execute the simulation with SystemC code in order to obtain the trace of behavior.

1.4. CONTRIBUTIONS

Structural Diagram

bdd, ibd, par stm

Behavioral Diagram

Requirement Diagram
functional, non-functional

Simulation

LTL, (T)CTL
Properties

Verification

Promela /SPIN
Model-Checking

Verification

UPPAAL

(timed automata)

Figure 1.1: The proposed of approach

This trace is then analyzed to validate the system. Then, the derived SystemC specifica-
tion is mapped into model-checking UPPAAL. Properties to verify by model-checking are
derived from SysML Requirements Diagram.

Starting from these basic concepts, we propose an approach that consists in using par-
ticular SysML diagrams and elements for describing different aspects of the require-
ments. According to the SysML specification, the language can also be combined with
other systems to define properties that SysML alone cannot express. Since SysML lacks
a support for expressing temporal properties expressed in Linear Temporal Logic (LTL)
[Pnueli, 1977] or Time Computation Tree Logic (TCTL) [Alur et al., 1990], we need to com-
bine it with a formal language for the specification and analysis of complex systems.

The significant role among the complex systems design team members as an unambigu-
ous, precise, and concise specification. Syntax and semantics of SysML are semi-formal,
and thus it gives us the opportunity to verify the performance principles formally at an
early stage of the combined systems design process.

SystemC specifications are executable, and thus they can be validated by simulation for
different scenarios using the C++ compiler. The specifications can be verified formally

8 CHAPTER 1. INTRODUCTION

using model-checking tools such as Promela/SPIN using non-time properties or UPPAAL
using timed automata.

Manual or automated theorem proving of SysML models can be prepared such as LTL and
(T)CTL. These formal verifications are increasing the confidence in the correctness, of the
final created system. Moreover, SystemC environment can make validation cases which
can be used for simulation.

In summary, the thesis contributions are as follows:

e We have defined a set of semantic and transformation syntax rules to combine
SysML specification with SystemC.

e We have defined a set of semantic and transformation syntax rules to combine
SysML specification with Promela/SPIN.

e We have defined a set of rules to specify transformation by graphical model-
checking and developed an algorithm to generate SPIN or UPPAAL descriptions
from SysML requirements (requirement diagrams).

e We have developed a SystemC model for the automatic generation of SystemC spec-
ifications to simulate and validate the system.

o We have applied our approach in a case study specification to validate its feasibility.

The general process of our approaches consists of several stages. In first place, the mod-
elling with SysML diagrams that will be the source models for the transformation. More-
over, a combination of SysML diagrams with SystemC executable specification is pre-
sented. It describes a transformation from SysML structure diagrams and behaviour dia-
grams to SystemC code, based on XMI files and XSLT style sheets.

We transform SysML specifications Promela models to validate the designed systems by
using the model-checker SPIN. The requirement properties are converted to LTL formula
and verified with SPIN.

The major proposals can be summarized as follows:

e We propose an approach that consists in using particular SysML diagrams and ele-
ments for describing different aspects of the specification from functional or non-
functional requirements of the problem domain. A traffic light system is taken as a
reference case study and is used to demonstrate our practical application (see Con-
tribution 1 on figure E]]) [Berrani et al., 2013].

o We propose an approach to validate SysML specifications by simulation. In this
approach, a sub-part of SysML diagrams is transformed into SystemC executable
models, and then these are used to simulate the system properties to validate the
satisfaction of its non-functional requirements (see Contribution 2 on figure @)
[Abdulhameed et al., 2014a].

e We compare the techniques and tools that may be used to provide verification of Sys-
temC models. Moreover, we classify the existing methodologies according to their
capabilities and integration with the SystemC environment, we used techniques to
transformation SystemC model to Uppaal for verification (see Contribution 3 on fig-
ure @) [Abdulhameed et al., 2014b)].

1.5. PUBLICATIONS 9

1.5

e We propose an approach to validate SysML specifications using formal verifica-

tion. Inthis approach, SysML state machine diagrams are transformed into Promela
models, and then these are used to verify the functional requirements of the speci-
fied system. These requirements are expressed as properties in temporal logic for-
mulas and then verified in SPIN model-checker (see Contribution 4 on figure @)
[Abdulhameed et al., 2015].

Publications

The work presented in this thesis has been already published in national and international
conferences. In the following, we list the references for the published articles:

1.6

e Abdulhameed, A., Hammad, A., Mountassir, H., & Tatibouet, B. (2014, January). An

approach based on SysML and SystemC to simulate complex systems. In Model-
Driven Engineering and Software Development (MODELSWARD), 2014 2nd Interna-
tional Conference on (pp. 555-560). IEEE.

Abdulhameed, A., Hammad, A., Mountassir, H., & Tatibouet, B. (2014, Juin). An Ap-
proach Combining Simulation and Verification for SysML using SystemC and Up-
paal. In CAL 2014, 8éme conférence francophone sur les architectures logicielles,
page 9 pages, Paris, France.

Abdulhameed, A., Hammad, A., Mountassir, H., & Tatibouet, B. (2015, April). An ap-
proach to verify SysML functional requirements using Promela/SPIN. In Program-
ming and Systems (ISPS), 2015 12th International Symposium on (pp. 1-9). IEEE.

Outline of the thesis

The chapters of this thesis are organized as follows:

In Chapters 2 and 3, we present a bibliographic review containing various proposals
and methodologies for modelling and design of complex systems using SysML and
SystemC. These chapters also present the fundamental concepts and definition for
the development of the following chapters.

In Chapter 4, we present a traffic light system, taken as a reference case study and
used to demonstrate our practical application. We use particular SysML diagrams
and elements for describing different aspects of the requirements specification.

In Chapters 5 and 7, we show the application of the methodology and the advanced
tool in some case studies, and an evaluation of the obtained results.

In Chapter 6, we present a comparison between the techniques that can be used to
provide verification of SystemC models. The SystemC design is transformed into
Uppaal automata.

In Chapter 8, we present the conclusion of our work and we outline the future works
of the thesis.

2

Related Works

Contents
2.1 Imtroduction L 1M}
2.2 Modelling of Complex Systems 1w
2.3 Validation of SysML Designs 3
2.4 Verification of SystemC Designs 2
2.5 SUMMATY o oo e o

2.1/ Introduction

The objective of this chapter is to exhibit the related works of this dissertation. This chap-
ter is divided into three parts modelling, validation, and verification of complex systems.
First, we discuss the relevant work of different languages to specify complex systems. Sec-
ond, we present the relevant work of validation by simulation of complex systems using
SystemC. Third, we focus on works to verify SystemC designs using such environment
and existing transformation processes to perform model-checking. Finally, we present a
summary of the related work.

There are three levels of component specification:

e The informal specification describes the component in the natural language that
needs to be transformed into code by an engineer.

¢ The semi-formal specification uses several descriptive languages or other represen-
tation. In this specification, a component behavior description is less ambiguous.
The majority of specification standards today are semi-formal, as for instance SysML
and UML.

o Formal specification permits to describe the behavior of a given computing system
following some accurate approach. A specification is a model of a system that con-
tains a description of its requirements and what needs to be implemented.

2.2/ Modelling of Complex Systems

In this part, we present challenges for integrating and evaluating the difference between
semi-formal and formal specification techniques. In addition, we present several spec-

11

12 CHAPTER 2. RELATED WORKS

ification formalisms, similarities and differences, as well as possibilities for combining
such techniques. The first critical aspect of component-based software development is
the specification that describes the functionality and behavior of the component.

2.2.1/ Semi-Formal Languages

The OMG defines UML as follows: ““The Unified Modeling Language (UML) is a graphi-
cal language for visualizing, specifying, constructing, and documenting the artifacts of a
software-intensive system. The UML offers a standard way to write a system’s blueprints,
including conceptual things such as business processes and system functions as well
as concrete things such as programming language statements, database schema, and
reusable software components”. According to [Rumbaugh et al., 1999], UML is a general
graphical modelling language for the development of systems.

UMLis theleading modelling language in the field of systems engineering and has gained
much tool support. The tool support for UML influences positively its usability and read-
ability, which enables the efficient building of systems. Despite the fact that UML is mostly
used with object-oriented systems, it has the capability to develop other types of systems
through its flexible extension mechanism or profiles.

SysML [OMG, 2012] is a graphical modelling language based on UML and was adopted by
the OMG, It is a graphical modeling language for specifying, analyzing, and designing
complex systems.

2.2.2/ Formal Languages

In [Mueller, 2013, Snook et al., 2006], formal specification is specified written in a formal
language where a formal language is either a rigorous mathematical model or simply a
standard programming or specification language. By particular application, formal spec-
ifications are idea execution by code evaluation. In all states, formal specifications are for
mental performance by code review and for passing the specification around to members
of a design team. In most states only subsets of formal specification languages, e.g. Zand
Vienna Development Method (VDM) [Jackson, 1985], are machine executable. The formal
method indicates the application of at least one formal specification language.

The term formal method tends to elicit the strong reaction from software engineers and
computing academics. Either a response of enthusiasm extending to the claim the formal
techniques will become the newly accepted of software engineering, or a reaction of doubt
about the research bias of much formal methods work.

Formal methods are often used during system design when the degree of confidence in the
prescribed system behavior, extrapolated from a finite number of the test is high. Formal
methods are frequently applied in the design of complex concurrent or reactive systems.

In [Abrial et al., 1998], the B method/language is considered to be a combination of **Pas-
cal and Z" with some extensions for refinement. The B method/language is based on a
hierarchical stepwise refinement and decomposition of a problem. After initial informal
specification of requirements, an abstraction is made to capture, in a first formal specifi-
cation, essential properties of a system.

For instance, these could be the main safety properties in a safety critical system. This

2.2. MODELLING OF COMPLEX SYSTEMS 13

high-level abstract specification is made more concrete and more detailed in steps. The
specification can be refined either by modifying the data structures used to represent the
state information and/or by changing the shapes of the operations that act upon these
data structures.

In [Mason et al., 2004], the authors defined effective traceability in systems engineering
environments. The issue is raised by the fact that engineers use a range of notations to
describe complex systems. From natural language to graphical notations such as stat-
echarts to languages with formal semantics such as SystemC, VDM-SL [Plat et al., 1992].
Most have tool support, although a shortage of well-defined integration approaches suc-
ceeds to inconsistencies and limits traceability between their corresponding datasets and
internal models.

2.2.3/ Hardware Description Languages

In this section, we introduce the VHDL-AMS, Verilog-AMS, Modelica, and SystemC Hard-
ware Description Languages. These languages are used in the industry to model complex
systems. Moreover, the comparison between different hardware description languages
concerning the abstraction level of the description.

SystemC [Aynsley, 2006], is an open-source system-level design language based on C++
that has its own simulation kernel. SystemC, as an object-oriented approach to model-
ing systems, is easily modifiable to augment its. The core language consists of macros for
modeling fundamental components of hardware designs, such as modules and signals.
SystemC also provides hardware-oriented data types like 4-valued logic and arbitrary-
precision integers.

VHDL-AMS is the result of an IEEE effort to extend the VHDL language to support the
modeling and the simulation of analog and mixed-signal systems. The effort culminated
in 1999 with the release of the IEEE standard 1076.1-1999 [Shahdad, 1986]. Verilog-AMS,
on the other hand, is intended to be an extension of the Verilog HDL language also to sup-
port the modeling and the simulation of analog and mixed-signal systems. Verilog is a
digital HDL that has been released in 1995 as IEEE standard 1365-1995.

Modelica [Fritzson et al., 1998] is an object-oriented language for describing Differential
Algebraic Equation (DAE) systems combined with discrete events. Such models are ide-
ally suited for representing flows of energy, materials, signals, or other continuous inter-
actions between system components.

MATLAB stands for MATrix LABoratory [Houcque, 2005], Matlab is a high-performance
language for technical computing. Itintegrates computation, visualization, and program-
ming environment. Furthermore, MATLAB is a modern programming language environ-
ment, it has sophisticated data structures, contains built-in editing and debugging tools,
and supports object-oriented programming. These factors make MATLAB an excellent
instrument for complex systems.

In [Bonanome, 2001], the authors present the comparison between different hardware de-
scription languages. In general, Verilogis better suited for structural designs, as it permits
better control of modules within the same abstraction layers, even though it lacks basic
hierarchy management. SystemC nature is behavioral, which can make it harder to syn-
thesize than Verilog.

Verification processin larger designsis shorter for SystemC, asno C/C++ simulation needs

14 CHAPTER 2. RELATED WORKS

to be implemented, hence decreasing the time to market. In Figure @ we see that Sys-
temC allows engineers to design both hardware and software components. Itis possible to
focus on the actual functionality of the system more than on its implementation details.
It allows consistent changes to the design, enabling an efficient evaluation of different ar-
chitecture alternatives including the separation between the hardware and software im-
plementation. SystemC is also characterized by a high-performance speed. Note that this
high speed is not only due to the SystemC simulation engine itself, but it is also effected
by the high abstraction level used for SystemC environments for system descriptions.

Requirements

Architecture

Hw/Sw

|
|
|
[Behaviour @L
}Functional Verification K‘\
|
|
|

Test-bench \

RTL \\;ef\\og yro-
Gates \

Transistors —

Figure 2.1: Hardware Description Languages and Abstraction Levels

2.3/ Validation of SysML Designs

In this section, we present related work about the combination of SysML with SystemC.
The employment of the application of formal analysis techniques and particularly model-
checking to SysML/ UML has been a very dynamic field of research in recent years.

In [Bhaduri et al., 2004], the authors give a comprehensive survey of research that ap-
plies model-checking to state machines, in which different model checkers including
SMV, FDR [Leuschel et al., 2001] (Failures Divergences Refinement) and Promela/SPIN
have been employed to achieve the verification of the properties of the designed systems.
We additionally present related work concerning UML/SysML model translation to such
languages.

In [Vanderperren et al., 2012], the authors defined a design methodology and develop-
ment flow for the hardware, based on a UML4SystemC profile and encompassing different
levels of abstraction. Both SystemC/C profiles are same groups of modeling constructs
designed to lift the programming features including structural and behavioral character-
istics of the two coding languages to the UML modeling level.

In [Prevostini et al., 2007], the authors present an approach required to some methodolo-
gies that will support to minimize the time and improve the quality of design. SysML-
based designs are attracting since they permit to model complex systems using platform-

2.3. VALIDATION OF SYSML DESIGNS 15

independent languages. Therefore, it is desirable to design a system without knowing
which part of the system will be performed in hardware or software.

In [Jain et al., 2012, Riccobene et al., 2012], the authors propose SystemC profile, which is
a consistent set of modeling constructs designed to lift both structural and behavioral
attributes of the SystemC language to SysML level. It provides means for software and
hardware engineers to improve the current industrial complex systems, design methodol-
ogy joining the capabilities of SysML and SystemC to operate at system-level by including
events and time attributes. The combination is based on a mapping from SysML to the Sys-
temC for the structural and behavioral aspects. The refined co-design flowing starts from
a SysML description at a high abstraction level of design. Moreover, it proceeds through
a series of refined SystemC models to lower abstraction levels of design.

In [Mura et al., 2008, Espinoza et al., 2009], the SysML and Modeling and Analysis of Real
Time and Embedded (MARTE) profiles are tested and compared. Both profiles are well
suited for the description of embedded systems, although focusing on different aspects.
Their goal is to use SysML to describe systems at a high level of abstraction and to provide
diagrams for requirements specification.

There are more software tools not presented here that encapsulate the scope of SysML to
SystemC code generation, such as:

e The Altova UModel [Scholtz et al., 2013], that designs application models and gen-
erates code and project documentation, and then refines designs and completes the
round trip by regenerating the code. That makes visual software design practical for
any project.

e The Enterprise Architect software [Nikiforova et al., 2012], supports advanced MDA
transformations using easy to edit transform templates, with generation and reverse
engineering of source code for SystemC language, this can quickly develop detailed
solutions from abstract models.

e Artisan Studio [Bombino et al., 2012]. The software for all model driven develop-
ment, they use models to communicate design decisions in SysML, with leveraging
Automatic Code Synchronizer (ACS) and Transformation Development Kit.

2.3.1/ Verification of SysML Designs

The calling for the application of formal analysis techniques and particularly model-
checking to SysML/UML specification is a very active field of study. The technical use of
functional verification is mainly manual and empirical. The limits of these practices are
being developed by the increase in complexity of the systems being validated. Another
difficult challenge is posed by the need to keep the pace with continuously evolving re-
quirements.

In [Bhaduri et al., 2004], the authors give a comprehensive survey of researchers that ap-
ply model-checking to state machines. With different model checkers including SMV,
FDR [Leuschel et al., 2001] and SPIN have been employed to achieve the verification of the
properties of the designed systems.

Latella et al. [Latella et al.,1999] show a translation method from UML state machines
to Promela. They only enable a model to contain a single state machine. In another
translation by Mikk [Gnesi et al., 2002], the input model is not UML state machines,

16 CHAPTER 2. RELATED WORKS

except Statecharts, that is a related formalism with different semantics. The work in
[Goldsby et al., 2006] shows a tool called vVUML that converts UML to Promela.

Most of these works have the limitation that no data characteristics can stay associated
with objects or state machines. For that, there is no action language, and the only possi-
ble effect of a transition is to send signals with no parameters.

The Hugo project [Knapp, 2002] supports SPIN as a back-end to verify UML models. The
initial Promela translation was only possible for small models and the current version of
the tool follows ideas similar to these in vUML. To the best of our knowledge, the transla-
tion is undocumented. The OMEGA [Ober, 2004], project has created a set of tools focus-
ing on real-time properties. The method is based on translating UML to the " "IF" interme-
diate language that has several model-checking back ends.

The Rhapsody UML verification environment [Schinz, 2004], continues model-checking
of UML state machines by evaluating the models into the input language of the Verifi-
cation Interacting with Synthesis (VIS) explanatory model checker. All UML constructs
are approved, and the action language is a subset of C++. The specializations that are not
compatible include postponed events and do activities.

In [Beato et al., 2004, Kwon, 2000, Hai-yan et al., 2001], the authors define a model trans-
formation from UML Statecharts to Symbolic Model Verifier (SMV) input language
through an intermediate language and verify the system properties specified in CTL by
invoking SMV. The current events are including the formal verification of a simplified
directory-based cache coherence protocol in UML Statecharts.

In [AlRawashdeh et al., 2014, /Al Obisat, 2012], the work concerns the ability to improve
the definition of UML models in the logic of formal methods, where the model checker
for theorem provers can run on these graphical diagrams. As this analysis, are combined
conversion tool described Hugo/RT into our tool MUML that can support to map the
model specifications and properties into Promela.

In [Pedroza et al., 2011, Apvrille et al., 2013], the authors defined a SysML-based environ-
ment named AVATAR. It can capture both safety and security related elements in the same
SysML model. TTool, an open-source SysML/UML Toolkit, provides AVATAR editing ca-
pabilities. The designer may formally and directly verify those properties with the well-
established UPPAAL and ProVerif toolkits, respectively. TTool supports AVATAR, includ-
ing its security extensions. Therefore, the TTool is the open-source toolkit from category,
transforming a SysML/AVATAR model into timed automata, and model-checking the lat-
ter using UPPAAL [Ma et al., 2014].

In [Miyamoto et al., 2012], the authors proposed the automatic conversion from the early
stages design by UML to Promela including LTL formulae. This combination enables to
perform model-checking from UML models. Therefore, model-checking can be easily per-
formed without re-encoding the model and providing numerical formulae.

In [Ando et al., 2013] the authors proposed a formalization of SysML state machine dia-
grams in which the diagrams are translated into (CSP#) processes that could be verified
by the PAT model checker.

In [Hammad et al., 2002] the authors define a model transformation from extracted
graphic elements from B specification to make it more understandable to the beginner.
These visual elements are explained ina UML statechart diagram. In every B specification,

2.4. VERIFICATION OF SYSTEMC DESIGNS 17

the machine is associated to a package of UML classes and every variable of the machine
is associated to a class.

In object-oriented modelling, a statechart diagram is connected with a class of the model.
So, one obtains two additional views of the development:

e The UML view that describes in a synthetic and intuitive way the various aspects
of the future system allowing a perfect understanding. Moreover, documentation
of the model builds allows the validation of the B specification by an expert of the
domain, not mastering B.

e The B view that defines in a precise and rigorous way all the components of the sys-
tem allowing a fine analysis and understanding of the model without ambiguity.

For now, this study is limited to the extraction of diagrams from a subset of the B lan-
guage. In [Bousse et al., 2012] the authors show a method consisting in a harmonization
of SysML concepts with a recognized subset of the B method, using semantic similarities
between both languages. This work is a first experiment limited to simple data structures
and without making real use of the B method refinement abilities. The both languages
propose must include coordination to preserve semantics during the transformation, but
such protection is not proven.

Moreover, this work lacks the effective support of traceability using SysML technique also
errors classified by the Bmethod cannot be clearly combined to the primary SysML model.
Additional work will extend this Validation and Verification (V&YV) approach to other Do-
main Specific Modeling Languages (DSMLs) and formal methods, with a particular con-
centrating on bidirectional conversion for traceability and reflecting identified mistakes
on the original model.

2.4/ Verification of SystemC Designs

We introduce simulation and model-checking techniques and their advantages for the
verification and validation of systems during the design phases. We use these techniques
to provide a verification of SystemC designs which is a subject of many research.

Formal verification is the act of proving or disproving the correctness of a system with
respect to a certain formal specification or property. In model-checking, the specification
is in the form of a logic formula, which is determined with respect to a semantic model
provided by animplementation. We present these libraries and their applications to verify
SystemC designs and some techniques tools.

2.4.1/ With SystemC Environment

The SystemC libraries developed to provide verification are limited and do not allow the
verification of temporal properties. Considering this issue, a verification library is built
on the top of SystemC libraries to enable the verification of temporal properties.

In [GroBe et al., 2007], the SystemC Verification Standard (SCV) library provides a com-
mon set of APIs for transaction-based verification, constrained randomization, weighted

18 CHAPTER 2. RELATED WORKS

randomization, and exception handling. By using a generic data, it enables the library
to manipulate arbitrary data types in a consistent way. It includes C/C++ built-in types,
SystemC environment and user-defined composite types and enumerations. The areas
covered by SCV are as follows:

e Data Introspection (similar to Verilog PLI but for C++ data structures).

¢ Randomization and management for reproducibility of simulation runs.

Constrained randomization and Weighted randomization.

Transaction Monitoring and Recording.

Sparse Array Support.

In [Kasuya et al., 2007], the Native SystemC Assertion (NSCa) is developed to implement
reliable verification support in SystemC. The assertion engine contains temporal asser-
tion primitives similar to SystemVerilog Assertion (SVA) [Bustan et al., 2012, as well as
primitives to construct assertions for transaction-level models at higher levels of abstrac-
tion. The NSCa package includes a total coverage analysis ability so a user can measure
the effectiveness of property classification checks.

NSCa implements two types of assertion coverage mechanism. Moreover, Assertion Path
Coverage (APC) and Assertion Activation Coverage (AAC), works at a property level. This
ability in NSCa collects different levels of statistics that can be used by users to recognize
further the failures of assertions. The information provided by AAC is how many times
a property has been activated, and the property check passed or failed and checked failed
when simulating the property.

In [Oliveira et al., 2012], the System Verification Methodology Library (SVM) is upper-level
of TLM library for SystemC, which is based on the OVM-SC library. SystemC application of
an Open Verification Methodology (OVM) [Glasser, 2009], was enhanced to the Universal
Verification Methodology (UVM) [Piccolboni et al., 2014).

The SVM Library improves the OVM/UVM for SystemC, by adding features based on the
OVM for SystemVerilog version 2.2.1. The libraries provided are the Assertion, Random-
ization/Constraints and Coverage, to support advanced RTL/TLM for SystemC. The out-
line details of the functional coverage implementation of the SVM as a SystemC library,
which is based in the following areas covered in SVM are the following:

e Checked expressiveness a formal hierarchical composition of a functional coverage
metric shall be enabled.

¢ Interoperability to collect and evaluate functional coverage with no modification of
the SystemC kernel are allowed.

¢ Model environment dependencies the functional coverage facility shall not rely on
the SCV.

e TLM verification multiple specific sampling per delta cycle shall be supported to al-
low coverage of all and post transaction event coverage.

o Assertions are characterizing behavior between two events.

2.4. VERIFICATION OF SYSTEMC DESIGNS 19

In [Haedicke et al., 2012], the Constrained RAndom Verification Environment (CRAVE) is
a new library for constrained random simulation generator. The structure of CRAVE has
been designed to fit C++ and SystemC ordinarily. To overcome the limitations of SCV, the
CRAVE library provides the following characteristics:

e Constraint specification of API is automatic specify random variables, and random
objects have been expanded.

e Dynamic constraints and data structures constraints can be controlled dynamically
at run-time.

e Enhanced usability inline constraints can be formulated and modified incremen-
tally at run-time.

e BDD-based and SAT/SMT-based techniques have been combined for constraint-
solving.

In [Tabakov et al., 2012], the authors present CHIMP. It is a tool for assertion-based dy-
namic verification of SystemC models, by using LTL. The assertion declares a property
about the entire execution trace of the Model-Under-Verification (MUYV). The trace prop-
erty is an LTL formula interpreted over the infinite trace. However, a simulation cannot
be run for infinite time. The simulation traces for SystemC model is finite. Therefore, the
monitor thatis created from a trace property can have three possible results, * " PASS, FAIL,
and UNDETERMINED".

The latter case occurs when there is some future obligation that is not satisfied with the
finite simulation. Each assertion is converted to a C++ monitor class. Through the exe-
cution of the MUYV, a single case of each monitor class is created in the illustration phase
before the simulation phase begins. The number of monitor cases is equal to the number
of trace properties to verify.

In [Ferro et al., 2010], the authors present ISIS, which enables the runtime Assertion-
Based Verification (ABV) [Barnat et al., 2013], ABV is a simulation environment during a
particular simulation run, and ever a cycle when both the read and the write signals active.
ABV of SystemC TLM virtual platforms " “timed or untimed, clocked or unclocked" for ver-
ifying behavior and requirements. This technique has also been improved to support the
PSL modeling that enables the use of " “global” auxiliary variables in assertions.

The prototype tool called “"ISIS", which implements all these features, is an academic tool
that answers the need for ABV at the system level. Given temporary properties that cap-
ture the intended requirements, ISIS automatically instruments the SystemC TLM design
with ad hoc checkers.

Through simulation, the checker provides information about the satisfaction of the asser-
tion. Properties that the design under development must verify can be specified by Prop-
erty Specification Language (PSL) [Foster et al., 2005], which is used to define logical and
temporal properties. It inputs PSL assertions and performs the automatic construction of
TLM-oriented SystemC monitors to build a structure from basic components.

The monitors are automatically linked to the designs. This instrumented design is com-
piled using the SystemC library of primitive monitors. SystemC simulator can then be run
on this combination of modules, the monitors inform about the satisfaction of the prop-
erties during simulation.

20 CHAPTER 2. RELATED WORKS

2.4.2/ 'Translation to Model Checking and Tools

In this part, we provide a brief display of the concepts that use the SystemC for formal
verification.

In [GroBeetal.,2010], the authors present SystemC Induction-based VErifier for
transaction-level models (SCIVER), a formal property checker for SystemC TLM models
using simple assertions. SCIVER supports the verification of high-level properties such
as the effect of performance or whether the execution is only started after a certain event.
The properties are specified using a variant of PSL with support for TLM primitives. They
convert the SystemC model together with the property deduction to a C model. After
that, the induction based verification method is applied to the C model.

The SCIVER is not only enabled to detect a property violation but also to prove its absence.
The SystemC TLM model produces the formalization of the design specification. This first
TLM model is ordinarily untimed, and then will be sequentially refined by combining tim-
ing information to a timed TLM model, that in turn is repeated down to RTL. The different
types of properties and the respective monitoring logic are explained.

e Simple safety properties: concern values of variables of the TLM model at any time
during the execution.

¢ Transaction properties: can be used to reason about a transaction effect.

e System-level properties: focus on the order of occurrences of event notifications and
transactions.

In [Razavi et al., 2011}, the authors present SYSFIER, to formalize SystemC semantics and
to provide a mixed environment for modeling and verification of SystemC designs. The
parts of this mixed environment are called Afra, the formalized semantics of SystemC in
the context of Rebeca semantics. Rebeca (Reactive Objects Language) is an object and
event driven based modeling language. The main components of Afra are:

Sytra creates Rebeca models from SystemC models based on the advanced formal-
ism.

KaSCPar is used to analyze the SystemC models, the output of this parser is an XML
file describing the SystemC model.

The Rebeca model is then created using this XML file.

Modern is a direct model checker of Rebeca.

SyMon (SystemC Model-checking Engine) is a verification engine customized for
verification of Rebeca models obtained from SystemC codes.

In [Cavada et al., 2014], the authors present KRATOS. These software model checker for
SystemC. Kratos permits to verify safety properties, in the form of program assertions by
supporting verification in two ways. Firstly, by relying on the translation from SystemC
designs to sequential C programs. Kratos can perform model-checking over the resulting
C programs utilizing the symbolic lazy predicate abstraction technique.

2.5. SUMMARY 21

By implementation algorithm called ESST (Explicit-Scheduler/Symbolic-Threads) also,
S3ST can combine specific state techniques to deal with the SystemC Scheduler with Sym-
bolic techniques to support the **SC_Threads". The Kratos is built on top of NuSMV and
MathSat and uses state SMT-based techniques for program abstractions and refinements.

In [Chou et al., 2012], the authors present Symbolic Data and Suspended Status (SDSS),
the formulation interpreting SystemC designs with timed language constructs as Kripke
structures. By this formulation, it applies symbolic model-checking to the Bounded
Model Checking (BMC) techniques. Within BMC, the transition system is increasingly sig-
nificant degrees that may extend to time and allows to constraint resources.

The SystemC is scheduler logic as formulas directly. Alternatively, the embed the algo-
rithm of SystemC scheduler in SDSS to enumerate further all possible scheduling of run
threads. SystemC designs converted into timed language constructs to Kripke structures
and proposes a symbolic model-checking approach for verifying SystemC designs. The
main variation is that the scheduler is not included in the encoding of SDSS.

In [Fernandez et al., 1996], the authors present Construction and Analysis of Distributed
Processes (CADP). These tools include many apparatus useful for formal verification and
feedback. The main instrument is an explicit model checker. CADP provides numerous
tools, among them:

e A step-by-step, interactive, and random simulator.
e A model checker that creates an explicit representation of the state space.
e Property checker for various temporal logics.

e Equivalence checker and LTS minimization tools.

The typical entry point for CADP is the language LOTOS. The ISO standard LOTOS is a pro-
cess algebra used to specify concurrent asynchronous processes by communicating and

synchronizing rendezvous on gates. The verification structure is based on a new System-
C/TLM front-end for CADP, called **"TLM.open".

The ""TLM.open" front-end consists ofa C/C++library implementing two interfaces. First,
TLM.open produces and executes a subset of the OSCI SystemC library, including mod-
ules, events, TLM ports, and processes (**SC_METHOD" only). Second, **TLM.open" im-
plements the OPEN/CASAR interface.

The CADP verification toolbox is optimized for asynchronous processes. SystemC/TLM
models use asynchronous processes, but SystemC programs model a system at a lower
level of abstraction and use synchronous processes. To verify synchronous processes sym-
bolic model checker based on BDD or SAT, are in general more efficient than CADP. Also,
““TLM.open" can be used for absolute SystemC programs, but is not the most effective
tool.

2.5/ Summary

In this chapter, we presented some related works concerning the proposals of this the-
sis. We showed that semi-formal specifications utilized several specificlanguages or other

22 CHAPTER 2. RELATED WORKS

representation to design. [Antonis et al., 2008] base their work SysML requirements like
we do in this thesis. They use Event-B to verify requirements and we use UPPAAL model-
checker. In another translation by Mikk [Gnesi et al., 2002], the input model is not UML
state machines, but Statecharts, which is a similar formalism.

The are utility through combining SysML with SystemC. The attempts by using the des-
tination SysML is to display system architects, the [Riccobene et al., 2012], the synthesis
is based on a mapping from the SysML to the SystemC for the structural and behavioral
aspects. The SystemC libraries developed for providing a verification are limited and do
not allow the verification of temporal properties. Though, its current provider is limited
to SystemVerilog language that often requires the confusing use of multi-language sim-
ulation environment in particular for interaction with SystemC-based TLM models. In
[Oliveira et al., 2012], the library SVM is upper-level of TLM library for SystemC. The effi-
ciency of state exploration and model-checking methods depend heavily on the size of the
state design.

[1

Scientific Context

23

3

Related Concepts

Contents
3.1 Model Verification and Validation 3
3.2 Systems Engineering and MBSEo 2
3.3 Simulation and validation with SystemC C1
3.4 Verification with Model-Checking 3
3.5 Model-Driven Engineeringo um|
3.6 Conclusion

3.1/ Model Verification and Validation

One key goal of model-based development is to enable analysis of the system, therefore
ascertaining the property of the system already at model level. Instances of such proper-
ties are deadlock freedom, time consistency and limited storage resources. While build-
ing up a concurrent object-oriented application, deadlock freedom of the interaction is
frequently a dominant requirement. The timing constancy is of importance for real-time
systems. On that level, it must be assured that certain calculations are enabled before
specified time span. Verification and Validation focus on verifying requirements prop-
erties for different purposes. Properties to be verified differ according to the nature of
models e.g. non-functional or functional and to the stage in the evolution process (e.g.
specification or code generation time) [Cao et al., 2011].

Furthermore, there are also limitations depending on the applied verification and vali-
dation techniques from testing, model-checking, formal proof, and runtime verification.
However, there is no one-to-one association between requirements properties and pur-
poses of techniques. For verification of properties, a suitable formal verification tool (e.g.
model-checker) has to be chosen capable of verifying the characteristics associated with
the requirement properties [Adrion et al., 1982].

Verification is the process of ensuring that the model behaves as designed, generally by
debugging for dynamic verification or through animation. Verification is necessary but
not sufficient for validation, and a model may be verified but not valid. For validation
of properties, tests, check the compatibility of the system under test to a specification by
simulating and testing.

Validation confirms that no significant difference exists between the model and the
real system which is model reflects reality. Validation can be achieved through sta-

25

26 CHAPTER 3. RELATED CONCEPTS

tistical analysis, for instance, markov-chain or stochastic models. Additionally, appar-
ent validity may be obtained by having the model reviewed and supported by an expert
[Oberkampf et al., 2010].

However, when the application, validation is often combined with verification, particu-
larly during data analysis used for the system being modeled. If a comparison of system
analysis and model results indicates that the effects made by the model is close to obtain-
ing from the system, then the implemented model is taken up to be both a verified imple-
mentation of the assumptions and a valid representation of the system.

To specify, design and implement complex systems, it is necessary to decompose them
into subsystems. A system may be composed of hardware and/or software parts. These
heterogeneous systems can be modeled by SysML [Friedenthal et al., 2008], which is
based on UML. To implement these systems, we use MDA (Model Driven Architecture)
[OMG,] approach to transform PIM (Platform Independent Model) into PSM (Platform
Specific Model), like SystemC [Aynsley, 2006], Modelica [Fritzson et al., 1998], or VHDL
[Shahdad, 1986].

A model-driven transformation is a set of mapping rules that describe how parts of a given
source model map to their corresponding parts in a target domain model. SysML models
objectiveisto enable the description of a system at a high level of abstraction while provid-
ing graphical views of its requirements, structure and behaviour. A model can be used to
design embedded HW/SW systems that support some methods diagram to a complexity of
modern designs such as abstraction, project and design reuse. The transformation SysML-
based modelling into SystemC [Bombino et al., 2012] environment is allowed to enabling
specified the static and the dynamic system analysis.

SystemC is a language standardized by the ANSI. It consists of several C++ classes (li-
braries) that enable the description of concurrent systems in an event-based paradigm.
It can describe systems at executable specification level [Riccobene et al., 2009)].

The main purpose of modelling activity is validation. Model validation techniques involve
simulating the model under recognized input conditions and comparing the model out-
put with the system output. This model intended for a simulation study is a mathematical
model developed with the help of simulation software. SysML is lacking formalization for
the required validation. The combined use of SysML and SystemC is a good way to satisfy
the needs of simulation.

The issue is as follows: how simulation and verification can be combined to validate the
characteristics of some parts or of the whole system, its functionality or its performance.

Simulation can help to validate performance requirements, but the proof of system func-
tionalities requires the use of formal verification methods. Combining SysML and Sys-
temC is not enough to validate these systems. Sometimes, it is necessary to validate func-
tional requirements by using techniques like model-checking. So far, SysML and SystemC
do not supply tools for verification activities.

In this approach, the combination of the model-checking Spin/Uppaal
[Zervoudakis et al., 2013], allows to complete the process of validation. The Spin/Uppaal
is an integrated tool environment for modelling, validation and verification of real-time
systems modelled as networks of timed automata.

3.2. SYSTEMS ENGINEERING AND MBSE 27

3.2/ Systems Engineering and MBSE

Systems Engineering (SE) is a structured technical design and management process used
in the design, development, production and operation of large-scale complex systems. It
concerns conception, design, prototyping, implementation/realization, and administra-
tion. Throughout these phases, SE is a multidisciplinary approach that focuses on the sys-
tem asawhole. Like many other engineering disciplines, SE is supported by some systems
concepts and standards.

For instance, the primary mission of the INCOSE [Honour, 1998] is ““to advance the
body politic of the technical production and practice of systems engineering in industry,
academia, and government by promoting interdisciplinary, face approaches to produce
technologically appropriate solutions that meet societal needs".

The design aspect of SE focuses on finding viable solutions to given problems in the set-
ting of a generic solution domain. Therefore, it can be described as many tasks relating to
the subsystem decomposition, the target hardware platform, the data storehouse, and the
equivalents. In addition, SE permits to identify the proposed solution the design model
usually details, the required or existing structural and behavioral aspects that are created
during a requirement analysis phase.

MBSE philosophy has started to play a significant role in the definition of system model
characteristics. The integration of MBSE methodology within the project of complex sys-
tems has found a prolific environment in the context of SE. The MBSE models functions
for an efficient management of all the phases that characterize a system. MBSE provides a
framework to facilitate sharing. In the future, MBSE also holds the potential to automate
the construction of integrated analyses models.

Inengineering and sciences, models emphasize certain properties of interest to efficiently
and practically communicate or identify results. In this context, models are complex sys-
tem expressions of designs. MBSE uses a graphical language to generate and record de-
tails about system requirements, design, analysis, verification, and validation. Despite
the current focus of MBSE to represent the structure, function and behavior of systems,
there is a need of verification and validation using formal executable models from speci-
fications. In doing so, MBSE has the following benefits:

e Integration of multiple modelling domains across system life cycle.
e Development of a formalized practice of SE through the use of models.
e Improvement of communication between stakeholders.

e Enhancement of knowledge capture and reuse.

3.2.1/ SysML

SysML is a modelling language specified by the OMG. It is a graphical modelling lan-
guage, with semi-formal semantics, which purpose is to improve UML-based complex
systems development processes with the system engineering method. SysML is a UML
profile [Hause et al., 2010]. The environment Specification and provides a standard mod-
eling language to support the specification, analysis, design, verification and validation
of a broad range of complex systems which are not necessarily software based. SysML

28 CHAPTER 3. RELATED CONCEPTS

modifies UML diagrams, such as the class diagram and the composite diagram, which be-
come the block definition diagram and the internal block diagram respectively. There-
fore, SysML does not include the UML object diagram, timing diagram, and deployment
diagram.

3.2.2/ SysML Environment

A standard system modeling language, such as SysML, is required to express fundamental
systems engineering concepts. Such concepts include system composition, interconnec-
tions with interfaces, functions, state-based behavior, and parametric aspects of a system.
The language has a capacity to express system concepts in the form of model. Moreover,
in productivity improvements through is reuse of models across projects and throughout
the lifetime cycle. Other benefits are the ability to automate tasks such as change impact
analysis, which is increased assurance that the data is valid and complete.

The main focus of the SysML community has been on the integration of SysML mod-
els into other engineering tools. There has been significant progress integrating system
models with software design, particularly for software developers with UML models since
SysML is based on UML profile. Also, considerable progress has been made integrating
SysML with engineering analysis and simulation using various integration methods and
instruments.

SysML has been combined extensively with requirements management tools. There has
been progress integrating SysML with product lifecycle management and hardware de-
signtools [dos Santos Soares et al., 2011]. SysMLbrings semantics to the UML metamodel.
The creation is defined logical formalism that can be supporting the model for a broad
range of analytical abstraction and model-checking. Validation requires the model to be
logically consistent. In addition, it permits to investigate the effects of a requirement de-
sign change or the assessment of how a failure could propagate through a system. The
language and tools must also mix with a various range of equation solvers and execution
environments that incorporate the capture of quantitative information.

3.2.3/ SysML Architecture

SysML diagrams are divided into three pillars i.e. structure, behavior, and requirement.
Structural pillar provides the hierarchical picture of a model and gives the guideline re-
garding the application of block, parts, connectors, and ports. The behavioral pillar in-
cludes of data flows, interactions, activity flow and state machine. Moreover, pillar con-
tains sequence modeling.

SysML is defined by nine diagrams, classified into three subgroups: Structural, Behav-
ioral and Requirement diagrams. Figure@ describes this categorization and the modi-
fication degree of the diagrams on their UML counterparts. As specified on the follow-
ing diagram, SysML reuses a subset of UML2.3 (UML4SysML) and defines its extensions.
Therefore, SysML includes nine diagrams instead of the thirteen diagrams from UML2.3,
making it a smaller language.

3.2. SYSTEMS ENGINEERING AND MBSE 29

SysML
Diagram
Behavior Requirement Structure
Diagram Diagram Diagram
A

[| |

Activity Sequence State Machine Use Case Block Definition Internal Block Package
Diagram Diagram Diagram Diagram Diagram Diagram Diagram
A

Parametric
Diagram

Not required by
SysML

SysML'S extensions to

Figure 3.1: SysML Diagram category

Requirement Diagram

The Requirements Diagram (RD) displays requirements, packages, other classifiers, test
cases, rationales, and relationships. The possible relationships available for requirements
diagrams are containments, deriveReqt and requirement dependencies ~“Copy", ~"Re-
fine", *"Satisfy”, “"Trace", and " "Verify". RD is used to reflect the relationships of other
models. It assists in better organizing requirements and also shows the various kinds of

relationships between different requirements.

An extra advantage of using this diagram is to standardize the way of specifying require-
ments through a defined semantics. As a direct consequence, SysML allows the repro-
duction of requirements as model parts, which mean that requirements are part of the
system architecture [Laleau et al., 2010]. The RD provides modeling constructs to repre-
sent text-based requirements and relate them to other modeling elements. These require-
ment modeling constructs are intended to supply a bridge between traditional require-
ment management tools and other SysML models.

Block Definition Diagram

The Block Definition Diagram (BDD) is used to define block characteristics in terms of their
structural and behavioral features, such as properties and operations. To represent the
state of the system, and its behavior the basic structural element are aiming at specifying
hierarchies and interconnections of the system to be modeled. A blockis specified by parts
and flow ports. The physical elements of the block are referred to Parts, and the interfaces
of the block referred to Flow ports [Hause et al., 2010].

The constraint block permits to define constraints, such as equations or inequalities,
while specifying the involved parameters and variables. The mathematical relationship
can be used to constrain value properties of blocks. The purpose of constraint blocks is as
follows:

30 CHAPTER 3. RELATED CONCEPTS

o To assess the validity of system values in an operating system.

e To perform engineering analysis during the design stage of the life cycle.

The variables are called constraint parameters. They represent quantities, and so they are
typed most often by value types.

Internal Block Diagram

The Internal Block Diagram (IBD) is based on UML composite structure diagrams and
includes restrictions and extensions as defined by SysML. An IBD captures the internal
structure of a block in terms of properties and connections between properties. A block
includes properties so that its values, parts, and references to other blocks can be speci-
fied.

However, whereas an IBD created from a block will only display the inner elements of a
classifier (**Parts”, " *Ports”, and * Connectors"), each property is described as a part, and
ports are used to specify allowable types of interaction. They are connected by the in-
teractions between them, such as software operations, discrete state transitions, flows of
inputs and outputs, or continuous interactions. That particular block is the context of the
diagram SysML permits any property (part) shown in an IBD display compartments within

the property (or part) symbol. There are two types of ports in SysML:

o Standard port specifies the services that a block provides to the environment, i.e.,
with other blocks, as well as the services that the owning block requires from its
environment. The specification of the services is checked by typing the standard
port by the provided and/or required interfaces.

e Flow ports are interaction points through which the information flows are ex-
changed between blocks. The interaction points between block and parts supports
the integration of behavior and structure, a flow specification is created to express
the type of data that can flow through the port.

Parametric Diagram

The Parametric Diagram (PD) enables to express mathematical relationships between pa-
rameters. In the PD, the ““Ports" are constraint parameters and the ““Connections" are
binding connectors. A constraint property is an instance of a constraint block. Its con-
straint parameters are next bound to other constraint parameters or properties of blocks.
The semantics of a binding connector indicate a mathematical equations between the
block properties or constraint parameters being connected. This mathematical equation
is a causal relationship.

The PD is a SysML specific modeling method that allows the combination of constraints
or equations into the model for analysis purpose. These constraints are illustrated by pa-
rameters and rules that describe the evolution of these parameters related to each other.

3.3. SIMULATION AND VALIDATION WITH SYSTEMC 31

State Machine Diagram

The State Machine Diagrams (SMD) are used to specify the state-based behavior of any
component whose behavior can be expressed. They describe possible sequences of states
and actions through which the modeled element can proceed during its lifetime as the
results of reacting to discrete events [Machida et al., 2011]. The SMD defines a set of con-
cepts that can used for modeling discrete behavior through finite state transition systems.
The state machine describes the behavior as the state history of an object in terms of its
transitions and states. A block includes operations so that its values, parts, and references
execution blocks can be specified.

noss

Through the (*"Transition”, " “Entry”, and " "Exit"), the states are specified along with the
associated event and guard conditions. In addition to expressing the behavior of a part
of the system, state machines can also be used to express the method protocol for parts of
the complex systems. These two kinds of state machines are referred to here as behavioral
state machines and protocol state machines. The state machines contain one or more re-
gions that include vertices (" “states”) and transitions. A composite state has nested states
that can be sequenced or concurrent [OMG, 2012].

3.2.4/ Benefits of using SysML

The SysML model differs from conventional drawing tools in the following three specific
ways:

e SysML presents the capture and description of numerical values and quantities for
the application of International Organization for Standardization (ISO) Quantities,
Dimension, Units, and Values standards. It enables any SysML model of a system to
be checked to guarantee that the units are complete and consistently defined.

e Conventional drawing and simulation tools provide text and diagram based docu-
mentation of models, but they require the semantics and detail provided by SysML.
The strength of SysML is the robust semantics and detail captured for formal spec-
ifications. It becomes significant when using the SysML model as a source of infor-
mation for analysis and simulation tools.

e Once a system is distributed in SysML the model provides a consistent body of
knowledge about the system. The SysML model can be used to interface and inter-
operate with other tools and data sources.

3.3/ Simulation and validation with SystemC

Simulation is a common technique for the analysis of specifications of complex systems
[Rowson et al., 1994]. Simulation can be defined to confirm the eventual real behavior of
the selected system model. It is used for performance optimization by creating a model
of the system and functions. We can analysis the estimation and assumption of the real
system by using simulation results. Simulation is relatively inexpensive in terms of exe-
cution time, but it only validates the behavior of a system for one particular computation
path. Simulation models are intensively used to solve problems and to assist designers.

32 CHAPTER 3. RELATED CONCEPTS

The description of a design may be simulated to produce and study its behavior. The sim-
ulation is not a complete representation of the operation, design, analysis, transactions
and outputs generated.

The simulation has described the evaluations limiting those representations, and other
abilities needed to satisfy the user requirements. A simulation has provided an interac-
tive, graphical environment for modeling, simulating, and analyzing dynamic systems. It
enables rapid construction of virtual prototypes to explore design concepts at any level of
detail with minimal effort.

SystemC [Aynsley, 2006, Boutekkouk, 2010], is an open-source system-level design lan-
guage based on C++ that has its own simulation kernel. SystemC has a run-time sched-
uler that handles both the synchronization and scheduling of concurrent processes. The
designers can apply object-oriented capabilities to hardware design. SystemC allows to
work at a higher level of abstraction, enabling extremely active, more dynamic architec-
tural trade-off analysis and design [Mello et al., 2010]. There are five major extensions
that SystemC provides to model hardware:

o A notion of time.

Support for hardware data types.

Module hierarchy and organization.

e Concurrency.

Communication between different modules and processes.

3.3.1/ SystemC Language Architecture

The architecture of SystemC environment is illustrated in Figure@. The core of the lan-
guage is composed of three layers. The lower layer is a Discrete-Event (DE) event driven
simulator. SystemC model implementation is defined to allow the development of differ-
ent simulators with the same functionality. The middle layer defines classes that provide
the semantic, structural, functional, communication and data typing facilities required
for hardware and software systems modeling and design.

About the top part of the core of SystemC language, several language extensions are not
yetstandardized. These extensions are being developed by Open SystemC Initiative (OSCI)
working groups. SystemC environment uses specific construction and executes the sim-
ulation kernel whose semantics is the first subject covered by the IEEE standard.

Time may be assigned to processes for performance analysis purposes, this timing does
not accurate cycle but rather describes the time to generate or consume data or to model
buffering or data access. The behavior of the interfaces between modules is described us-
ing communication protocols. These classes of models are used to explore architectures,
for evidence of algorithms and performance modeling and analysis.

The SystemC processes execute concurrently and may suspend on " “wait ()" statements.
Such processes require their private, independent performance unit called *“sc_thread".
When the only signal triggering process is the clock signal, we obtain clocked thread pro-
cess call ““sc_cthread"” certain processes do not require an independent execution stack.
Processes that cannot be suspended on ““wait ()" statement are termed "~ “sc_method".

3.3. SIMULATION AND VALIDATION WITH SYSTEMC 33

AMS Synthesis SCV
(Analog and Mixed Subset (Verification Library)
Signal)

TLM
(Transaction Level Modeling)

EXTENSIONS

Core Language Predefined Channel
Classes Classes

(Module, Processes, Sensitivity,
Events, Time, Ports, Interfaces, | | (Signal, Buffer,Clock,

Channels, Attributes) FIFO, Mutex, Semaphore)

Data Types Utility Classes
(Integers, Logic
and Vectors, (Simulation
Fixed-Point) Control, Tracing)

‘ Elaboration and Simulation Semantics ‘
SYSTEMC CORE (IEEE Std 1666 ™ - 2011)

| 3 |
BASE LANGUAGE

Figure 3.2: Architecture of SystemC platform

These processes are executed in zero simulation time and return control back to the sim-
ulation kernel.

Modules are defined by deriving from the SystemC library class *“sc_module”. Modules
define connection points called "“ports” as data members. A port is instantiated from
the class " “sc_port” or a class derived from this category. Ports can be connected through
channels. Several primary channels are defined in the SystemC class library and are de-
rived from the class *“sc_prim_channel”. The module hierarchy of a model is created dur-
ing the execution of the explanation phase of the model utilizing objects instantiated from
classes that derive from *“sc_module”, *“sc_port”, or *“sc_prim_channel”. All these build-
ing blocks have the same base class called " “sc_object”. When this program is compiled

and linked with the SystemC library, an executable version of the model is produced.

This executable can be used to simulate and to verify the model dynamically. A SystemC
program should not define the main function because this main function is defined inside
the SystemC library. The program should define a * “sc_main" function instead. This func-
tion must create and initialize the module hierarchy and call the SystemC library function
““sc_start” to start the simulation of the model.

During the execution of a model, the elaboration phase starts with the performance
of the main function the library. This function performs some initializations and then
calls the *“sc_main"” function which is defined by the developer. This function creates
and initializes the module hierarchy by instantiating the top-level module and channel
objects and their connections. The constructors of these objects are executed, and these
constructors can create and initialize submodules, ports, processes, channels, with their
connections.

Listing @ presents the SystemC modules illustrated in Figure@. The modules represent
hardware blocks of the SystemC model. In this example, **Adder" is the module name.
The module consists of the input ports " "x,y", and the output port *“z". Moreover, SystemC
processes describe the implementation of the module. A module may have more than one

34 CHAPTER 3. RELATED CONCEPTS

SystemC process. For this particular example, " calculate” is the SystemC process. There
are three different types of SystemC processes. The kind of the process and its sensitivity
list defined in the constructor of the module. A *“sc_method" processis a SystemC process
that is called by the SystemC scheduler whenever a signal changes in its sensitivity list. It
cannotbe suspended and resumed. A *“sc_thread" onthe other hand, isa SystemC process
that can be suspended and resumed through *“wait ()" calls and event notifications.
There are two files *".h", for ports, functions, variables, and processes declaration and one
“*.cpp’, for process and functions implementation, " systemc.h" designates the SystemC
library file. The code can be seen in Listing @

main.cpp
Add.h Add.cpp

m int E _

Figure 3.3: Declaration ports with a module

3.3. SIMULATION AND VALIDATION WITH SYSTEMC 35

Listing 3.1: adder.h with adder.cpp

// file (adder.h)
include "systemc.h"
SC_MODULE (Adder) {
sc_in<int> x;
sc_in<int> y;
sc_out<int> z;
void calculate ();
SC_CTOR (Adder){
SC_THREAD(calculate);
sensitive <<x<<y;
}
}

//file (adder.cpp)

include adder.h

void Adder::calculate (){
z= X + V;
wait ();

Transaction-level modeling

Transaction-level modeling (TLM) [Cai et al., 2003], is a technique for illustrating a system
by using function calls that define a set of events over a set of channels. TLM is a library
implemented as a layer on top of SystemC. It is flexible enough to model components and
systems at many different levels of abstractions:

e Loosely-timed: the model uses transactions corresponding to a complete read or
write across a bus or network to physical hardware. That provides timing at the level
of the individual transaction.

e Approximately-timed: the model breaks down transactions into some phases cor-
responding much more closely to the phasing of particular hardware protocols.

However, careful choice of the abstraction level and associated methodology is necessary
to ensure practical gains for design teams. In a TLM-based design flow, the system is a
principal model in high-level to check the functionality disregarding details related to the
target architecture.

Register Transfer Level Modeling

The Register Transfer Level (RTL) [Calazans et al., 2003]. Is a high-level executable design
allowing to simulate the behaviors of the complex systems efficiently before synthesiz-
ing the RTL hardware description generating from SystemC TLM specifications. The RTL
is a modeling style that corresponds to digital hardware synchronized by clock signals.
This modeling technique is used within languages such as Verilog and VHDL. Therefore,
it supports practical hardware synthesis tools. In the RTL style, all communications be-
tween processes occur through signals. The processes may either represent sequential

36 CHAPTER 3. RELATED CONCEPTS

logic, in which case they are sensitive to a clock edge, or they may describe combinational
logic, in which case they will be sensitive to all inputs.

The ports in RTL module correspond to wires in the real-world operation of the module.
The RTL domain, on the other hand, describes the clock cycle by data flow of the hardware
at the register level and can be synthesized. Therefore, the design process often implies
a manual translation step from behavioral to RTL with baseline testing to verify proper
operation of the RTL design. A high-level executable design allows to simulate the behav-
iors of the complex system efficiently before synthesizing the RTL hardware description
generating verification from SystemC TLM specifications.

3.3.2/ SystemC Simulation Environment

The SystemC simulation systems [Benini et al., 2003], kernel handles the scheduling and
synchronization of SystemC processes. The simulation execution depends on two types of
procedures that are scheduling and the event handler routines. The scheduling operation
is a significant task since it creates and classifies events in time. In SystemC, the event
utilizes three data structures: state variables, event list, and clock.

A simulation process is intended to model a specification entity in the simulation with
a well-defined behavior. The behavioral description of the entity is encapsulated by the
process, defining the actions performed by the process throughout its lifetime. Figure
describes the execution semantics of the scheduler.

The execution of the scheduler can be split into two major phases the *“sc_start()" and the
“*sc_stop()". The simulation starts with *“sc_start()", also stops when the simulator both
has no more events to process or when " “sc_stop()" is called.

The simulation begins with the initialization phase when every process runs once, then
alternates between evaluation and update phases. When no such available to operation
controls exists, the simulator starts the *"Update phase”, signal values are updated to the
values computed during the evaluate phase.

At this point, if there are any suspended delayed notifications, the simulator enters **De-
layed notification phase” to define that processes are available to run due to the delayed
notifications and responses to the *“Evaluate phase". Unless, if there are timed notifica-
tions, the simulator step inside " "Timed notification phase" anywhere it advances the cur-
rent simulation time to the initial pending timed notification and reemerges the " "Evalu-
ate phase". If there are no timed notifications, the simulation is finished. It is during the
evaluation phase that processes run, and during the update phase that signals values and
other primitive channels are updated. The scheduling algorithm implies the existence of
three loops resulting from immediate, delta, and timed notifications, as follows:

e The immediate notification loop is restricted to the evaluation phase.

e The delta notification loop takes the path of the evaluation phase, followed by the
update phase and go back to the evaluation phase. This loop advances the simula-
tion by one delta cycle.

¢ The timed notification loop takes the path of the evaluation phase, followed by the
update phase and back to the evaluation phase. Thisloop advances simulation time.

3.4. VERIFICATION WITH MODEL-CHECKING 37

The order in which runnable processes execute is undefined. Immediate notification re-
sults from a call to the *“sc_event::notify ()" event with no argument. A delta notification
results from with a zero delay. A timed notification results from a call to " “sc_event_timed
()" with a delay greater than zero.

SC_Start ()

Initialization Phase

Il

Evaluation Phase Run all runnable processes
J L (immediate notification loop)

(Delta cycle loop) Update Phase

’ 10

Run every process once

Update primitive channels

Timed notification loop

i

Advance Time

1

SC_Stop () J_|_

M Done ‘

Figure 3.4: SystemC Simulation Kernel

3.4/ Verification with Model-Checking

Model-checking [Sreemani et al., 1996, Blanc et al., 2010] is an automated technique that,
given a finite-state model of a system and formal properties, systematically checks
whether this property is satisfied in that model. Model-checking is a software verification
technique that uses the model of the software application and tries to verify certain prop-
erties on the software model. Model-checking processis composed of the designed system
model, properties definition, running the model checker and analyzing the results.

Model-checking verification techniques use models representing the possible system be-
havior in a mathematically precise and unambiguous manner. Verifying an accurate
model of the system, usually leads to the detection of ambiguities, incompleteness, and
inconsistencies in informal system specifications. Such problems are only discovered at a
much later stage of the design. A model checker is usually composed of three main parts:

e Property specification language: based on a temporal logic.

e Model specification language: a formal notation for encoding the system to be ver-
ified as a finite-state transition system, i.e., the model.

e Verification procedure: an exhaustive intelligent search of the model state space
that determines whether the specification is satisfied or not.

38 CHAPTER 3. RELATED CONCEPTS

Validation methods have both advantages and limitations. Model-checking is used to find
anumber of errors with a low cost of application compared to techniques like mathemati-
cal demonstration. The latter requires the knowledge of mathematical approaches to pro-
vide and support tools.

Model-checking defines a set of algorithms for verifying a formula written in temporal
logic. The behavior of a complex system is specified by a transition system. The proper-
ties to check are of two types:

e Safety properties: stipulate that something bad will never happen.

o Liveness properties: stipulate that something suitable will eventually occur.

3.4.1/ Temporal Logic

Temporal logic [Clarke et al., 1986], is a logical structure for specifying and verifying the
correctness of computer programs. However, due to their correspondence to natural
language, their expressivity, and the structure of off-the-shelf algorithms for model-
checking, temporal logic has the possibility to affect several other areas of engineering.

The requirements or specifications are expressed as Linear Temporal Logic (LTL)
[Pnueli, 1977] formulas. LTL is the leading technique for the specification of temporal
rules. And the Computation Tree Logic (CTL) [Alur et al., 1990] is the base of logical for-
malisms for program specification and verification because of its intuitive syntax and its
very reasonable complexities. The LTL extends propositional logic with the four operators
““always(OA)" (condition holds always in the future), ** Eventually(¢A)" (condition holds
sometime in the future), **NextXA" (condition holds in the next cycle), **Until(A U B)"
(condition A holds until condition B, afterwards do not care), **Or(A || B)", " And(A&B)",
and ““Nor(!1A)".

Spin provides an automatic translator from LTL formulae into Buchi automata. In case
the system violates a property, the trace of actions leading to an invalid state, or a cycle is
reported. The incorrect trace can be replayed, on the Promela source, by a guided simula-
tion.

3.4.2 Promela

PROMELA (PRocess/PRotocol MEta LAnguage) [Mikk et al., 1998] is a verification model-
ing language that can describe hardware and software systems. It is used to build Promela
models that can be interpreted by the SPIN model checker. SPIN can generate a C program
that can perform a verification of the model. Various safety and liveness properties can
be verified such as deadlocks, non-executable code and finding non-progress cycles.

Promela programs consist of three different elements: processes, message channels, and
variables. Promela code can be interpreted by the C preprocessor and therefore itis also al-
lowed to use macros in Promela models. Formerly a Promela model is parsed by SPIN, and
the C preprocessor first expands macro calls. The main part ofa Promela model consists of
proctypes with statements. An instantiation of a proctype referred to as a process, which
created on initialization of a run, or other processes can dynamically create it. Statements
are executed in sequential order inside a process, but processes can interleave with each
other.

3.4. VERIFICATION WITH MODEL-CHECKING 39

Listing @ presents a Promela module named " “SenderRe" with a list of messages (mtype)
““msgo, msgl, acko, ack1”, and the channels " "to_sndr, to_rcvr". Moreover, the processes
(proctype) is called " *Sender, Receiver” which are sensitive to *“mtype." For each Promela
module we have used a label, named "“again” in each proctype and a ““goto" statement,
with the usual semantics.

3.4.3/ Model-Checkers Tools

The formal validation of information systems specification is of particular interest in MDE
and programming, for that the object at synthesizing an implementation of a system from
models. Therefore, if the synthesis algorithms are correct, one only needs to validate the
models to produce conventional systems. The information systems of MDE specification
languages usually does not have any dedicated model checker and the check is a long pro-
cess. Although, several model checkers already exist, and it is simple to choose a special-
ized existing tool with support in the model-checking domain.

Different types of temporal logics are used by model-checking tools to express properties
of a system as logical formulas to be verified on the system design. Most of the model-
checking tools use either linear time or branching time logics. The requirements proper-
ties that can be expressed in either of these logics can also be expressed in the other one
also. However, some of the tools use different types of logic to formulate the properties.

40 CHAPTER 3. RELATED CONCEPTS

Listing 3.2: Promela file SenderReceiver.pml

mtype = { msgo, msgl, acko, acki };
chan to_sndr = [2] of { mtype };
chan to_rcvr = [2] of { mtype };

active proctype Sender ()
{
again: to_rcvr!msgi;
to_sndr?acki;
to_rcvr !msgo;
to_sndr?acko;

goto again

}
active proctype Receiver ()
{
again: to_rcvr?msgl;
to_sndr!acki;
to_rcvr?msgo;
to_sndr!acko;

goto again

}

The specific state model checkers, like CADP [Fernandez et al., 1996], SPIN, and FDR2, use
an explicit representation of the transition system associated with a model specification.
The NuSMV symbolic model checker represent the transition system as a boolean for-
mula. However, limited model checker, like NuSMV [Cimatti et al., 2000] and Alloy con-
sider traces of a maximal length of the system and represent them using a boolean for-
mula.

The constraint satisfaction model checkers is used logic programming to verify the for-
mula. The SPIN, CADP, NuSMV and ProB [Leuschel et al., 2003] are supports linear time
also called LTL is a temporal modal logic with modalities that refer to time.

The Branch time also called CTL is branching-time logic. Its model of time is a structure
like a tree where the future is not determined. There are different ways in the future that
can be followed as the selected future path. In CTL, it can be specified that when an ini-
tial state is true, then all possible executions of a program avoid some undesired state or
condition.

SPIN

SPIN (Simple Promela Interpreter) [Holzmann, 1997] is a model checker tool for automat-
ing the verification of modeled systems. SPIN is used to trace logical design errors in dis-
tributed systems design. Such designs are operating systems, switching systems, data,
and communications protocols, additional concurrent algorithms, for railway signaling
protocols.

The tool can check the logical compatibility of a specification. It reports possible dead-
locks, flags incompleteness, unspecified receptions, and unwarranted assumptions about
the relative speeds of processes. It can be accepted as a full LTL model-checking system,
supporting all correctness requirements expressible in linear time temporal logic. How-
ever, it can also be used as an efficient verifier for more basic safety and liveness proper-
ties.

3.5. MODEL-DRIVEN ENGINEERING 41

UPPAAL

UPPAAL [Havelund et al., 1997], is a verification tool for a Timed Automata-based mod-
eling language. In addition to heavy clocks, the tool supports both simple and complex
data types like delimited integers and arrays as well as synchronization through shared
variables and actions. The specification language supports deadlock, safety, liveness, and
response properties.

UPPAAL is able to generate characteristic traces witnessing a submitted safety property
[Behrmann et al., 2004]. UPPAAL supports three options for diagnostic trace generation:
some trace leading to the goal state, the shortest trace with the minimum number of tran-
sitions, and fastest trace with the shortest accumulated time delay.

3.5/ Model-Driven Engineering

Model-Driven Engineering (MDE) [Kent, 2002] is an approach that focuses on creating
and exploiting domain models specific to application domains rather than on algorithmic
concepts. A model is meant to abstract notions of the physical world and is an instance
of a metamodel that defines an entire class of models. Models can be used as means to
understand better the problem domain, but can also be a part of a more complex process
of automated code generation. According to the level of detail, the code can be gener-
ated from the models, ranging from system structures to complete. The plan is to make
sure that each working system uses the most appropriate language for the application do-
main. Further, the necessary is manipulating models to combine different domains per-
spectives. The main idea of the approach is that a software system is specified at various
levels of abstraction using different modelling languages and that this specification is it-
eratively transformed into a particular model or implementation.

3.5. sclipse Modeling Framewor
3.5.1/ Eclipse Modeling Framework

Eclipse Modeling Framework (EMF)? is integrated to the Eclipse Development Environ-
ment, which creates tools based on structured models for code generation. The meta-
models are created using the EMF Ecore tool. The input tool for the metamodel receives
an XML file based on the XMI structure generated previously.

EMF project is a modeling framework and code generation facility for building tools and
other applications based on a structured data model. Many tools in modelling, metamod-
elling and MDE are based on EMEF. In particular, we used Ecore tools for metamodelling.
A powerful Eclipse plugin for the Papyrus? modeler is available to model any kind of EMF
model, especially UML and related modeling languages as SysML.

3.5.2/ Model Transformation with ATL

Model Driven Architecture (MDA) [Soley et al., 2000] defines the approach to Informa-
tion Technology system specification that separates the selection of functionality from
the specification of the implementation of that functionality on a particular technology

Yhttp:/ /www.eclipse.org/modeling /emf/
2http:/ /www.eclipse.org/papyrus/

42 CHAPTER 3. RELATED CONCEPTS

platform. MDA approach enables a model that determines some system functionality to
realize on multiple platforms through additional standards for mapping. MDA is defined
by the OMG, which promotes the use of the MOF (Meta Object Facility). The MOF is a for-
malism of metamodel description.

Many languages and tools have been proposed to specify and execute transformation
programs. OMG issued the Query/View/Transformation request for proposal (QVT)
[Gardner et al., 2003], to define a standard transformation language. Despite a final spec-
ification, the area of model transformation continues to be a subject of intense research.
In parallel with the OMG process some model transformation approaches have been pro-
posed both by academia and industry. The models, constructs, tool support, and mod-
eling approaches, distinguish the proposals with a certain suitability for a certain set of
problems. However, the demand for model transformation is increasing due to the high
demand for tool integration, reconfigurability feature, and information reusability.

The models in MDA can be of metamodels of description or metamodels of the transfor-
mation. MDA advocates the development of three types of models:

e Computation Independent Model (CIM): this model represents the highest level of
abstraction. It defines the system requirements and the context in which it will op-
erate while the details of the software structure and realization are hidden or not
determined.

¢ Platform Independent Model (PIM): this model describes the specifications of the
system, but does not show details of the use of its platform or of a particular tech-
nology.

e Platform Specific Model (PSM): this model describes the details and characteristics
absent from the PIM. It must be modified to specify the implementation of the sys-
tem in a single technology platform.

Asthese different types of models describe various levels of abstraction of the similar sys-
tem, MDA supports the use of transformation mechanisms allowing the transformation
of the CIM to PIM and the PIM to PSM. A model-to-text transformation is an algorithm
that accepts an instance of a metamodel and generate text in an appropriate concrete syn-
tax. We use MDA concepts and techniques in our work to combine SysML with SystemC
or SysML with Promela.

The Atlas Transformation Language (ATL) was introduced by the Atlas Group and the TNI-
Valiosys Company [Bézivin et al., 2003]. ATL aims at providing a practical implementa-
tion of the MOF/QVT standard. Therefore it provides a transformation engine that allows
transforming any given source model to a specified target model.

However, to perform the transformation, the user has to specify an appropriate ATL pro-
gram based on some correct relation and implementation metamodels. ATL is based on
rules that are either matched in a declarative way or called in an imperative way. In ad-
dition to rules, ATL provides so-called helpers (similar to Java methods for instance) in a
declarative style.

These helpers are used later in the rules to implement the real transformation. ATL sup-
ports unidirectional model transformation. However, it is possible to implement bidirec-
tional transformation through the explicit implementation of both transformation sides.
In ATL transformation, the source model has read-only access, while the target model

3.6. CONCLUSION 43

has write-only access. This kind of transformation execution is called *“source-target-
execution". For every source, the target elements are produced. Traceability sections are
also created in this state. In the second state, all the bindings for the created target ele-
ments are executed. ATL resolution algorithm and execution of lazy rules are applied if
necessary. The algorithm does not suppose any rules order, target elements creation for
a source, and target elements initialization.

3.5.3/ Code genration with Acceleo

Acceleo® is an implementation of the OMG Model to Text Language (M2T) standard
and an implementation of the MOF Models to Text Transformation (MOFM2T) standard
[OMG, 2008]. It is a template-based code generator with an advanced IDE. The frame-
work defines its language. The generator files consist of modules and templates. The Ac-
celeo can be interpreted as an object oriented language where the modules are the classes,
and the templates are the methods inside a module. Acceleo is a language code genera-
tor which allows generating structured file from an EMF model, the output is a text that
can be a programming language or other formalism. Acceleo requires defining an EMF
metamodel and a model conforming to metamodel that will result into text.

3.6/ Conclusion

In this chapter, we presented SysML since it becomes one of the most used modeling lan-
guagesin the MBSE field and since it meets the needs of engineers to describe all aspects of
complex systems. SysML is a language intended for the systems engineering community
based in UML and allows designers to model not only structural and behavioral properties
but also to organize the requirements.

SystemC is a modeling language that can be used to describe embedded systems at differ-
ent abstraction levels. An open-source SystemC simulator is available. However, simula-
tion is not the only purpose for which a SystemC model can be used.

Model-Checking can be used to determine the validity of formulas written in some tem-
poral logic on a behavioral model of a system. Model-Checking tools are effective as the
debugging helper for industrial designs and are fully automated.

3www.eclipse.org/acceleo/

4

The Traffic Light Case Study

Contents
4.1 Introduction e
4.2 Functional and Non-functional Requirements a3
4.3 Requirement Analysis 413]
4.4 SysML Model of Case Study 2
4.5 Conclusion 5%

4.1/ Introduction

In this chapter, we propose to use SysML language, to define the architecture of require-
ments that relate to the safety, verify, and WSN energy consumption of the crossroads
system. This system is the pivot case study of this thesis.

A SysML specification of a system is described by requirement diagrams, structural dia-
grams, and behavior diagrams. Our approach is based on processing an incremental re-
finement from an abstract level toward more detailed levels. In our case, it is a question
of replacing an abstract block in a specification by a composition of blocks preserving its
structural properties and its behavioral properties. Structural diagrams of SysML describe
the system in static mode, and behavioral diagrams describe the dynamic operation of the
system. We note that the term used in SysML for components modeling is block, three di-
agrams, namely the BDD, IBD, and PD, enable to define and instantiate blocks. The BDD
defines the architecture of the blocks with their operations. The IBD, is used to define the
ports of each block and to connect them through their ports. The PD enables to express
mathematical relationships between parameters. In Figure @ we show the position of
the contribution presented in this chapter, regarding the contributions of this thesis.

4.2/ Functional and Non-functional Requirements

The requirements can be classified depending on the kind of condition or capability that
they describe. The classification is not standardized, but it is agreed that functional re-
quirements specify a function that a system or system component has to perform, and that
non-functional requirements specify how well the system should perform its intended
functions.

45

46 CHAPTER 4. THE TRAFFIC LIGHT CASE STUDY

Behavioral Diagram
stm

Requirement Diagram
functional, non-functional

Structural Diagram
bdd, ibd, par

e e Lo :

!

®

Figure 4.1: The phase one of thesis

One requirement in a software requirements specification may be associated with one or
more other requirements in that specification. Relationships can be of a particular type
that more accurately defines how the requirements are related. Using unknown relation-
ship types may produce deficiency results in requirements engineering.

For example, during change impact analysis Requirements Engineering (RE) may have to
analyze manually all requirements in a software requirements specification. RE is a spe-
cific discipline of the software engineering. The RE process is recognized as being the
most critical process in software development. The functional and non-functional re-
quirements has the external interface definitions and constraints. Figure @ presents a
classification of the possible types of the requirements specification.

4.3/ Requirement Analysis

Requirements analysis [Gunter et al., 2000] is the primary stage in the systems engineer-
ing process and software development process. Its include responsibilities that enter
into the identification of conditions or requirements to meeting a new design system or

4.4. SYSML MODEL OF CASE STUDY 47

Requirements Specifications

R

External ‘ Functional ‘ Non-Functional ’ Data

Interfaces i
A Requirements Requirements Requirements
Requirements

Constraints ’

User
Requirements

Business
Requirements

Business Quality
Rules Attributes

Figure 4.2: A classification of the requirements specification types

change product taking into account. The possible inconsistent requirements of the var-
ious stakeholders, such as users or beneficiaries. Requirements analysis is critical to the
completion of the system design.

The requirements must be testable, related to identify business needs or opportunities,
actionable, measurable, and defined to alevel of detail adequate for system design. The re-
quirements of the complex systems can be functional and non-functional. Requirements
analysis needs explanation and description of functional requirement and design con-
straints. Functional requirements specify quantity * “how many", quality "~ "how good",
coverage how far”, timelines " “when and how long", and availability " “how often". De-
sign constraints describe those factors that limit design flexibility, like environmental
conditions or limits support against internal or external warnings and contract, regula-
tory standards.

Requirements express what an application is meant to do. They do not attempt to ex-
press how to accomplish these functions. The set of requirements for the system should
describe the functional and non-functional requirement so that they are recognizable by
system users who do not have detailed technical knowledge. Functional requirements
are linked with specific functions, tasks or behaviour the system must do while non-
functional requirements are constraints on several attributes of these functions or tasks.

4.4/ SysML Model of Case Study

Vehicular traffic is continuously growing around the world, particularly in large urban
areas. The resulting congestion has become a major concern to transportation specialists
and decision makers. The passage priority associated with eventual changing way would
produce bottlenecks. The solution adopted by traffic operators to manage distribution is
signalized systems (tricolor and bicolor lights). The traffic lights installed in crossings are

48 CHAPTER 4. THE TRAFFIC LIGHT CASE STUDY

used to adjust the vehicle movements. They are controlled by a system that synchronizes
the color changes of the different junction lights. The traffic-light colors are managed by a
controller that depends on the number of vehicles waiting to cross the junction. The time
of each phase and the duration of a cycle lights (red-green-yellow) is specified by the traffic
center of the town. This center supervises all street intersections. Figure E illustrates the
crossroads environment [IBerrani etal., 201j].

R

Controller

Sensor
Node

Figure 4.3: Crossroads system environment

The conception of this work, we focused on the Wireless Sensor Network (WSN) energy
consumption. For that, we must analyze our case study to concentrate on the study of this
parameter. The retained hypotheses that enable us to classify and simplify the studied
system are the following:

1. The sensors used on the roads aim to control the traffic lights and interact with the
controller.

2. The traffic light colors are red, green and yellow.
3. The system failures are not treated to simplify the case studied here.

4. The electricity network gives energy to the video traffic detection camera and the
tricolor signal lights.

4.4. SYSML MODEL OF CASE STUDY 49

5. The video traffic detection camera, detects the vehicles at a distance that is fixed
through the devices installations.

6. Theimage sensor can estimate the vehicle numbers waiting for cross the junction.

7. The pedestrian crossing and the communication between the controller and the
traffic center are not studied to simplify the case considered here.

We assume that the crossing has two roads (North with South and East with West) in both
directions. The four traffic-light units are designated such as North_Light, South_Light,
East_Light and West_Lights, according to figure @ The system specifications are as fol-
lows:

1. The system must be economic: The energy consumption should be minimized.

2. The system must be compatible with traffic laws: The control design should be ac-
cording to the current traffic laws.

3. The system must be efficient:

e Ifthelightis green, it changes to the yellow color only if there are approaching
vehicles on the other road and its light time is completed.

e All sensor messages pass through a controller.

e The period of the traffic signal depends on the number of vehicles waiting on
every road.

e This period should be long enough for finishing the queue of vehicles.
4. The system must be safe:

e Thetraffic North Lightand South_Light are in the same color, and itis the same
for East_Light and West_Lights.

e When North Light and South_Light are green, the East_Light and West_Lights
are red.

e When North_Light and South_Light are red, the East_Light and West_Lights are
green or yellow.

e When the controller sends a demand to change color, all crossing lights should
change their color concurrently.

WSN Modeling

The WSN modeling is motivated by many factors, which include mistake sensitivity, scala-
bility, sensor network topology, production costs, operating environment, hardware con-
straints, transmission media and power consumption. These factors are important be-
cause they serve to direct the design of the WSN protocols and algorithms. Also, they can
be used to compare different WSN architectures.

Furthermore, the possibilities of WSN applications are supported, but the difficulties that
platform for display are not limited various and not complexity also. Among the funda-
mental issues, which the WSN non-functional properties represent, we can specify the
energy consumption, the communication security, the automatic configuration, etc.

50 CHAPTER 4. THE TRAFFIC LIGHT CASE STUDY

Through this project, we study the WSN energy consumption that is a large extent de-
pendent on the prototype of the node. These nodes are designed to the plan to maximize
their life expectancy. In [Kossiakoff et al., 2011, Odey et al., 2012], the authors described
an energy consumption model for WSN. The basic feature of this model is its accuracy in
evaluating the energy consumption. Therefore, this model allows the estimation of the
overall lifetime of the WSN exactly. For this design, we adopted this energy consumption
model in our study.

Tomodel the power consumption of WSN, we have simplified the present power consump-
tion characteristics with the accessible. Power consumption defined according to a simi-

IR NNen

lar and linear function in Primary states *'i" and when in changes between two states " i

IR

and "'j". The energy " E;" consumed through a single Evening to Primary state " "i" rely on
the power consumption " P;" of the implicit electronic circuitry and the time " 7;" spent
in that state and were modeled as:

El‘ = P,‘ X Tj
The transmit state energy consumption model *"E,," is given as:
Eix = Py X Ty

The receiver is active and receiving the data packet from the transmitter some distance
away. We model the energy consumed when a receiver is active *"E,," as:

Erx = Prx>< Trx

The energy consumption in idle state " E;4," is modeled as " "E;," and " " E," but in the ab-
sence of payload overhead or decoding costasin ""E;,"and " E,,".

Eigie = Pigte X Tigye

To get a complete energy consumption model for the transceiver, this energy consump-
tion should also be factored into our calculation. Energy " E,," in sleep state is given as:

Eslp = Pslp X Tslp

We present the Transceiver energy consumption as an aggregation of the energy con-
sumption of the basic states (active and sleep) and the transition states. We present the
transceiver energy consumption " Ej.4,s." as:

Elransc = Etx + Erx + Eidle + Ese + Eslp

Our complete transceiver energy model is shown in @

4.4. SYSML MODEL OF CASE STUDY o1

The Requirement Diagram

This diagram is employed to represent the requirements of the designed system. From
the case study, we have identified two main requirements that relate to the safety and the
longevity of the system. Figure @ shows the requirement diagram of monitoring junc-
tion system. For example, the element (Id=R1) expresses that the traffic lights on both
ways that form the junction are different all the time.

The constraint that describes the requirement is considered like an invariant of the block
"“Controller_System". To show how the requirements of the *“CrossRoad" system are pre-
sented in an RD. The RD that contains three requirements **CrossRoadRequirement”, a
test case " StateMachine Light" represented as state machine diagram. Moreover, the
block *“Controller_System" which represent the traffic light system. In this diagram, we
show that the requirement * CrossRoadRequirement” is composed of the two " Traffic
lights colors" and " "No_Deadlock”. The state of ID: " "R1 and R2" are satisfied by the block
**Controller_System" and verified by the state machine **StateMachine_Light".

«Requirement:
CrossRoeadRequirement
wRequirement:

id=R0
text=The system must ensure traffic in
the junction without accidents

]

«Requirement: «Requirement:
Traffic lights colors No_Deadlock

uRequirementsn uRequirementxn
id=R1 id=R2
text=when the Morth_and _South ligths 57| text=The traffic light system must be
are green, the East_and_West lights 27| deadlock free
must be red . ’

NS o A
]

) -
] [, - 4
' Weri e e
1 T Satisfy = ———

1

1

1

|

1

1

\ —— - —_——
1

I

StateMachine_TrafficLight Block: TrafficLightController

Figure 4.4: Crossroads System Requirement

The Block Definition Diagram

The block definition diagram provides a structural description of the studied system. The
main block that represents the cross-road monitoring system consists of six blocks. The
first block “"Crossroads” is the most abstract level of the modeling. It represents the sys-
tem as a whole. Moreover, it is composed of four sub-blocks **Controller_System, Vehi-
cles, NorthandSouthLights and EastandWestLights" and sub-sub blocks " Timer, Road.-

52

CHAPTER 4. THE TRAFFIC LIGHT CASE STUDY

Sensor, and Camera". Figure @ illustrates the crossroads top level modeling.

«blocks
CrossRoad
properties
+ Initialize
- operations «blocks
«DI0CK» " i
Vehic| constraints EastandWestlLights
8 IC.ES properties
properties
o operations
operations E_W._TrafficLight(
Random_Mumber:Boolean()
- constraints
constraints
«blocks
“blocks Controller _System «block»
roperties MNorthandSouthLights
Road_Sensor — prop R
properties operations
H TrafficLightController() operations
t =
D CoPera 1ons - MN_S_TrafficLight()
etect Car(constraints :
constraints ? constraints
block «blocks
« D OCK» .
/_/' Tirmer
Came.ra properties
properties + Restart
operations operations
constraints canstraints

Figure 4.5: Global system structure

This outspread sensor node consists of a simple sensor node, an additional sensing unit
““camera” and an actuator " trafficlights". The simple sensor node block includes several
units * " Senser_Memory, Sensor_Processing, Sensor_Battery, and Sensor_Radio” with sub-
block Transmitter and Receiver. Figure @ shows the constraint block of *"Transcevier_-
Energy" of sensor environment.

The Internal Block Diagram

The IBD is a white box view of a block. It explains the system internal structure in terms of
ports, parts and connectors. These parts are joined by connectors that connect their ports.
IBD represents the internal formation of the Crossroads block. As shown in the diagram,
the port management allows moving the direction of Controller System and the Port of
other parts i.e. “"NorthandSouthLights, EastandWestLights". Figure @ shows the IBD
diagram.

The Parametric Diagram

The PDis a SysML explicit modeling method that enables the integration of constraints or
equations into the model in the analysis plans. These constraints are specified by param-
eters and rules that explain the evolution of these parameters associated with each other.

4.4. SYSML MODEL OF CASE STUDY

=) Pre: EDouble
B Trx: Time
=) Erx: EDouble

constraints
{7} {Em = Prx ¥ Tre}

Transcevier_Energy

(=] Ptx: EDouble
(=] The: Time

(= Pidle: EDouble
(=] Tidle: Time
(=) Pslp: EDouble
(= Tslp: Time

(=1 Pil: PoseArray

«constraints

«constrainte

<constraints Parmeters rameters
Receive_State = Prx: EDouble Bl Phx: ED?.ME
Farameters (=) Tre: Time =

il Ttx: Time
[Etx: EDouble

Transmit_State

constraints
{2} {Etx = P * Tt}

93

[Tij: Time:
(=) Etransc: EDouble

constrains

]

<constraint
Transition_State

[memetes |

=l Tij: Time

i Pil: PoseArray

[E1 Ese: EDouble

constraints

<constraints <constraints <constraintr {7} {Ese =R Ti}
Idle_State [Sleep_state Energy_Model
Forameters Farameiers ==

[Pidel: EDouble [l Pslp: EDouble (=) Etx: EDouble

(=) Tidel: Time =l Tslp: Time

[Erx: EDouble
(=) Eidle: EDouble
[Ese: EDouble

(=) Eslp: EDouble
(= Etransc: EDouble

[Eidel; EDouble [Eslp: EDouble

constraints constraints
{7} {Eidel = Pidel * Tidel} {2} {Eslp = Pslp * Tslp]

Constramts
{7} {Etransc= Etx + Ent + Eidle + Ese + Esip}

Figure 4.6: Sensor Block constraint

=blacks
CrossRoad

E_W_Lights =parts

: NorthandSouthli

Camer

«parts
: Controller _System

Detect E_W_Lights

sparts
: Road_ Sensor

wparks
: EastandWestLights

Camer

M_5_Lighits

5

Restrat

Restrat

Figure 4.7: IBD of Crossroads

The main goal of our outline is to study the WSN energy consumption. So, we adopted the
energy consumption model proposed in [Kossiakoff et al., 2011].

In the framework of this model, we can distinguish several sources of energy consump-
tion, such as the transmitter, the receiver, the sensor, the processor, the memory, and the
actuator.

We assume that the electricity networks supply the actuator (trafficlight unit) and the sen-
sor unit (additional sensing unit-camera). However, we disregard the energy consumed
by the processor because we have not identified operations such as a requisition, the pro-
cessor does compressions or treatments.

We have also disregarded the energy consumed by the memory because the sensor node
does not save data at its level. However, we maintained the energy consumed due to the

54 CHAPTER 4. THE TRAFFIC LIGHT CASE STUDY

data transmission, the data reception and the changing of the operating mode transient
energy. In Figure@, we present the parametric diagram transmitter that illustrates the
energy consumed by this element. Also, this diagram includes the transmitter of transient
energy.

Moreover, this diagram includes the communication model that explains the state of the
transmission channel between the sensor node and the controller. Further, the paramet-
ric diagrams of the processor, the memory, the receiver, and the battery are defined as the
parametric diagram transmitter.

par [null] Transcevier Energy [Energy_Parametric_Diagram])

=] Ptx: EDouble Nstraintpropertyl: Transmit_Sta
Ptx: EDouble ?(

{Etx = Pbu* Tt}

[]

Etx: EDouble

= Ttx: Time Ttx: Time

panstraintproperty2: Receive_Stats \

Prx ED ﬂe {Erx = Prx * Trx}

(=1 Prx: EDogble Erx: EDouble
Trx: Time l:

L]

/

onstraintproperty3: ldle_Stat:
Fidel: EDouble

= Trx: Time

constraintproperty®: Energy_Model
Etx EDO‘GE property o \
:I {Etransc= Etx + Erx + Eidle + Ese + Eslp}

{Eidel = Pidel * Tidel}
Eidel: EDoy

L

e

Erx: EDguble

:I Etransd: EDouble
. E—E
=] Pslp: EDouble :I

nstraintpropertyd: Sleep_Sta (=] Etransc: EDouble
ble

Pslp: EDy
=1 Tslp: Time :I {Eslp = Pslp * Tslp}

Eslp: EDoubple

Eslp: ECfouble

]
A

Ese: EDouble

Tslp: Ti

=1 Pij: PoseArray

f((nstraintpropertys: Transition_5ta

[]

Pij: Poselrray

i T [Ese = Pij * Tij}
= Tij: Time

Tij: Time

L]

Ese: EDouble

A

Figure 4.8: PD Sensor constraint

The State Machine Diagram

The SMD describes the behaviour of the SysML block using a state automaton, and it
presents the potential sequences of states and actions that a block can handle during its
lifetime in reaction to discrete events signals. The behaviour of the" " Controller_System"
block is described through SMD. The diagram shows the state of operation " " TrafficLight-
Controller".

The default state is the next state if no transition condition is satisfied as shown in state
““Init_State". If the state has any unconditional transition, then assigning default state to
next state is omitted as shown in case *"NS_G_State".

4.5. CONCLUSION 95

Figure @ shows the SMD diagram. The timer for the crossfires is managed by a controller
system at each start up. However, the timer initializes a clock that measures the dura-
tion of each crossfire color "““red (38 Sec.), yellow (5 Sec.), and green (33 Sec.)". Then it
sends the value to NorthandSouthLights and EastandWestLights, based on the given en-
tries *"NorthRed, North Yellow,.. WestGreen".

StateMachine_TrafficLightController

Initial/Restart

Init_State After 1 Sec
/do Activity N,S=R and E,W=R

EW_G_State NS_G_State
/do Activity N,S=R and E;W=Y /do Activity N,5=G and EW=R
Jentry Activity Wait 5 Sec Jentry Activity Wait 33 Sec

After 1 Sec

After 15ec

After 1 Sec

EW_Y_State NS_V_State
fdo Activity NS=R and EW=6 fdo Activity N,S=Y and EW=R
Jentry Activity Wait 33 Sec fentry Activity Wait 5 Sec
After 1 Sec EW.R_State After 1 Sec
fdo Activity N,S=R and EW=R

Figure 4.9: SMD of Controller System block

In our case study, we have characterized the operations done by the sensor node compo-
nents to count the consumed energy. For this, we suppose that the sensor node processing
unit receives the lane status number of vehicles on the road from the further sensing unit
camera. Following, the processor forwards this data to the transmitter (RF) to send it to
the controller.

However, once the receiver (RF) receives a message from the controller, the message will
be send immediately to the processor. Then, the processor extracts the command signals
from the receiving message and sends them to the actuator trace-lights. During our study,
we assumed that for each sending or receiving message, the processor changes its state at
least once. This supposition allows us to calculate the processing unit transient energy.

4.5/ Conclusion

We have shown in this chapter, how to semi-formal model except for the SMD specify sys-
tems. We created a SysML model which describes the structure and the behavior of the
environment and the system. The issue has discovered the requirement properties of the
system. Then, we used a refinement relation between SysML system blocks, described by
structural and behavioral diagrams. The refinement in SysML is an essential concept, and
it is based on the development of a process from an abstract level towards more detailed
levels.

[T]

Contributions

57

D

Simulating SysML Specification using
SystemC

Contents
5.1 Introduction e}
5.2 From SysML to SystemC 0. (18
5.3 Validation by Simulation 0oL (813
5.4 Experiments with the case study (e
5.5 Conclusion =

5.1/ Introduction

The complexity of heterogeneous systems has increased during last years. One challenge
of designing these systems is to deal with the application of methodologies based on MDE.
Complex systems can be built through different model transformations of their descrip-
tions. In our case, we use SysML as the starting point to describe systems in a high-level
of abstraction, and SystemC language, as the target, is chosen as an alternative to the tra-
ditional languages, because it has a simulation kernel that is an important aspect that al-
lows the designer to evaluate the system behaviors through simulations. In this chapter,
we propose a methodology to validate complex systems specified with SysML language by
translating them into SystemC models.

The main objective is to describe a methodology to model and enable the analysis and val-
idation of systems. The models permit the specification of requirements, structure, and
behaviors of a system. They may be used to validate the characteristics of some parts or
the overall designed system, e.g. its functionality or its performances. In this section, we
define system validation by simulation after translation in SystemC of SysML specifica-
tions.

The proposed approach is decomposed into three stages:

o First we use the Papyrus modeling tool to create the SysML diagrams **BDD, IBD, PD,
and SMD" for specifying the complex system requirements, structure, and behavior.

e Second, based on MDE, we propose to use ATL (meta-model based transformation
language) to automatically transform SysML models into SystemC models. More-

99

60 CHAPTER 5. SIMULATING SYSML SPECIFICATION USING SYSTEMC

over, we propose to use Acceleo to generate SystemC code from the SystemC model
previously generated.

e Finally, we run the simulation of the SystemC code in order to obtain execution
traces. These traces are used to validate the system.

Figure E]] summarizes the main steps of the proposed approach.

SysML
BDD/IBD/PAR [| Jrsfomaton - SystemC
/STM rules Metamodel
Metamodel i\
QINIG I
i Conforms To| : ' " i |Conforms To :
) v
BDD/IBD/PAR SvstemC
Sysl\/IL _ /STM AL ——| SystemC
Diagrams - Model Model
ATLC II\
SysML
Acceleo
No lu
o e e serssessssssssssssss SystemC
Validation Yes ¢ Simulation Code

Figure 5.1: Methodology flow for SysML to SystemC transformation approach

5.2/ From SysML to SystemC

In this section, we propose a MDE transformation approach to map SysML into SystemC
environment. We focus on defining how and which BDD, IBD, PD, and SMD elements are
transformed to formalize behavioral aspects and to preserve the structural representation
ofthe system. Then, we define the mapping rules used to create a SystemC model from the
SysML BDD, IBD, PD, and SMD.

5H.2.1 Model /MetaModel Transformation

Model transformation represents the heart of an MDE activity in the development pro-
cess. A model represents one or more particular aspects of the system under design,
maintenance or in an operational context. A model is written in the language of one par-
ticular metamodel. The metamodel acts as a candidate to extract some relevant aspects
from a system and to disregard all other specifics. There are many possibilities to define

5.2. FROM SYSML TO SYSTEMC 61

metametamodel. Ordinarily, the definition is reflexive, i.e. the metametamodel is self-
defined.

The metametamodel layer forms the foundation for the metamodeling architecture. The
primary goal of this layer is to define the language for specifying metamodel. A meta-
model is conform to the metametamodel ifand only if each of its elements has its metaele-
ment defined in the metametamodel. For example, metametaobjects in the metameta-
modeling layer are MetaClass, MetaAttribute, and MetaOperation [Othman et al., 2013].
The source model is transformed through ATL transformation rules to generate the tar-
get model. Figure @ abstracts the main steps of our approach, and gives an overview
of the process of model transformation. In a simple scenario of a model transformation,
some transformation rules are defined with respect to both source and target metamod-
els [Czarnecki et al., 2006]. These transformation rules define the mapping between the
model elements of both metamodels. The model transformation engine then reads the
source model that is compliant to the source metamodel and executes the transforma-
tion rules to create the target metamodel that conforms to the target metamodel. The

Source Metamodel Target Metamodel
Transformation
o Rules
= :Il L’:
A
1
1
A «executesn /;1\
1
I ! 1
I 1
«conformsTo», Transformation | «conformsTo»
! Engine '
] A A T

*.0
)< S

A £7 Sreads» «writes» A

Source Model Target Model

Figure 5.2: Model Transformation approach

model is an abstract view of reality and conforms to a metamodel that precisely defines
the concepts presented at this level of abstraction. The metamodeling method means that
a metamodel is used to specify the model that consists of SysML diagrams with SystemC
environment.

5.2.2/ SysML Meta-Model

SysML meta-model is defined in terms of its underlying UML, on which SysML is based.
With the adoption of UML in the SysML specification, UML class diagrams have been used
to produce the SysML metamodel diagram throughout this section. These diagrams are
the same as if the would be generated if using SysML. The metamodel itself is associated

62 CHAPTER 5. SIMULATING SYSML SPECIFICATION USING SYSTEMC

with the modelling elements within the SysML, how they are constructed and how they re-
late to one another. The full UML metamodel on which SysML is based is highly complex
and, to someone without much SysML or UML experience, can be completely impenetra-
ble. Metamodels are displayed in highly simplified versions of the actual metamodel to
support information and to group different phases of the model according to each dia-
gram.

5.2.3/ SystemC Meta-Model

A SystemC metamodel is structured by using modules which are derived from the base
class ““sc.module” [MKuster et al., 2012]. The module can interface with other modules
by ports. These ports can be interconnected using channels. A port requires an interface
that must be provided by the external channel that is bound to the port. An export, on
the other hand, provides an interface which is implemented by the internal channel that
communicates to the export. One or more processes define the behavior of a module. As
can be seen in Figure é all building blocks for the module hierarchy are derived from
the base class ““sc_object”.

5.2.4/ Model Transformation Technology

The general process of our approach consists of several stages and the modelling with
SysML diagrams that will be the source of model transformations. In this work, we
consider the transformation of four diagrams: BDD, IBD, PD, and SMD. Principal, run
is based on model transformation *"Model2Model", by exploiting the ATL language
[Vieira et al., 2014]. ATL tools implemented in an Eclipse plugin support the fundamen-
tally associated tasks: editing, compiling, executing, and debugging. The application of
this methodology with ATL is mainly based on:

e The definition of the source and target metamodel.
e The definition of transformation.

e The definition of the source model that conforms to source metamodel.

An ATL transformation module has many input models and one output model partic-
ularly. It contains some of the rules that describe the mapping from source elements
to target elements. ATL defines two different types of rules the "“called rules” and the
““matched rules”. A matched rule allows matching some of the model elements of a
source model and to generate from them some distinct target model elements. Compared
to matched rules a called rule has to be invoked from an ATL imperative block to be exe-
cuted. ATL necessary code can be defined within either the action block of matched rules
or the body of the called rules. In ATL, models and model types are bound to concrete
models and metamodels at run time. ATL does not perform any type checking at com-
pile time. Just at run time, ATL resolves meta-classes and properties by their name in the
bound metamodel. An ATL is composed of two sections:

e The "“from" section, which defines constraints on the source element.

¢ One or more " "to" sections, which defines how target elements are initialized from
source elements.

63

5.2. FROM SYSML TO SYSTEMC

< <enumeration>
2 Direction

= inout

= in

— out

E SCModel

= name : EString

<<enumeration> >
2 interface_type

= sc_signal_in_if

= sc_signal_inout_if
= sc_fifo_in_if

= sc_fifo_out_if

= sc_mutex_if

- sc_semaphore_if

]
0.1 ¥ ownerscModel

0.*

H SC_object

scObjects

= name : EString
= basename : EString

ownerScObject

sc_channel

H SC_Channel

0.1

ownerScPort

]
0.1

ownerSCModule

0.1

0.*| sc_modules

H sC_MODULE

0.1

chid_elements

= name : EString

sc_constructor

H SC_constructor

= name : EString

0.

0.* | port

H Sc_Port

E PrimitiveChannel

H HierarchicalChannel

@ nextTrigger()

= name : EString
= interface : interface_type

= name : EString
= type : EString
= direction : Direction

0.1

]

0.+ | Interface

H Interface

= EAttributed

ownersCModule 0.1
ownersCModule 4
0.1 0.1| ownerscmocdule

0.7 | processes
H SC_process

= name : EString

= body : EString

E Method E Thread Cthread

Figure 5.3: Metamodel of SystemC Model

64 CHAPTER 5. SIMULATING SYSML SPECIFICATION USING SYSTEMC

5.2.5/ Transforming SysML into SystemC

UML and SysML models element are the sources to generate SystemC model elements.
The " SysML2SystemC" module has one output model named “OUT” of model type " " MM-
SystemC" and one input model “"IN", which is also of model type *"MMSysML" and
""MMUML". Though creating a target item " “from" source part, ATL retains a traceabil-
ity link between the two elements. This link is used to initialize a target item in the " "to"
match as seen in Listing 5.1.

Listing 5.1: Rule UML/SysML to SystemC transformation module

—— @nsURI MMSysML=http ://www. eclipse .org/papyrus/o.7.0/SysML
—— @nsURI MMUML=http : / /www. eclipse . org/uml2/3.0.0/UML

—— (@path MMSystemC=/22—-07-ATLpro/Metamodels/SystemC. ecore
module Transformation;

create OUT : MMSystemC from IN : MMSysML, IN1 : MMUML;

rule Model2SCModel{
from sysml: MMUML! Model (
sysml. oclIsTypeOf (MMUML! Model)

)

to scModel: MMSystemC!SCModel (
name <-— sysml.name

)

}
rule Package BDD2SystemC_Main {
from

BDD :MMUML! Package (
BDD. oclIsTypeOf (MMUML! Package)
)

Top : MMSystemC! SC_object (
name <- BDD.name,
ownerScModel <— BDD.getModel ()

to

rule StandarPort2SystemC_SC_Port{
from
standarport : MMSysml! FlowPort
to
sc_port : MMSystemC!Sc_Port (
name <- standarport.name,
type <— standarport.type.name,
direction <- standarport.direction,
ownerSCModule <— standarport.owner

5.2.6/ Rules for Transformation

The SysML diagrams are created using the Papyrus [Lanusse et al., 2009] tool. Papyrus is
a graphical tool that captures SysML diagrams. We begin with a system description given

5.2. FROM SYSML TO SYSTEMC 65

by the RD, BDD, IBD, PD and SMD. These will be the input of our transformation. This
model will describe the requirements, structural and behavioral information about the
system.

For the target language, in this case SystemC, there are different possible translations of
the considered semantics with the behavioral concepts of SystemC environment. The fol-
lowing translation rules were chosen:

1. Structuralviewbya SysMLBDD and an IBD ofthe top-level block used to encapsulate
the overall hierarchical design. Moreover, the IBDs for the design of each compound
block synchronization with the associated BDDs for the block types definition. The
basic mapping between SysML and SystemC is:

e SysML Blocks — SystemC Modules.
e SysML Flow Ports — SystemC ports.

2. Behavioral view by a SysML SMD of the overall system functionality associated with
the top-level block to model input, output, sequences, and conditions, for coordi-
nating the inner blocks behaviors.

3. A SystemCThreads are used to allow parallel states activation semantics.

4. Aboolean signal represents the activation of each state, more than one state can be
active at the same time.

5. A SystemCThreads are sensitive each one to another by notification to represent ev-
ery event trigger that can fire transition from the associated state.

6. The variable last trigger that identifies the last trigger fired as an enumerated value
is instantiated.

7. The trigger fire is implemented as an event notification and as a change of the last
trigger variable.

8. In SystemCThreads, condition statements are used to represent the guards used in
SMD.

All the states are sensitive when a trigger is released, and the active triggered transition is
executed if the corresponding guarding conditions are true.

Through these concepts, we may apply basic mapping between SysML elements and Sys-
temC elements. This mapping is defined in the TableE

5.2.7/ SystemC Model Transformation to SystemC Code

Acceleo is a tool that implements the MOF Model to Text Transformation Language
(MOFMZ2T) standard [Specification, 2008]. MOFM2T is a transformation language that
takes some structured model as input and produces a textual output. Acceleo is a code
generator that enables to generate structured file from an EMF model [Lazar et al., 2010].
The output is a text that can be a programming language or other formalism. Acceleo
requires defining an EMF metamodel, and a model conforming to the metamodel that

66 CHAPTER 5. SIMULATING SYSML SPECIFICATION USING SYSTEMC

Table 5.1: Mapping between SysML BDD, IBD, PD, and SMD with SystemC

H SysML elements ‘ SystemC Model H
Package, constraint Block Package, Module-Core, Class
Requirement Boolean expression, Assertion
Flow-Specification, Value-type Channel, type
Flow-Property, Flow-port Interface- Channel
Connector flux Equation channel
Constraint Property Equation
Operation Event, Processes
State State of the process(case statement)
Peudostate State of the process(condition statement)
Transition Action of the process(action statement)
Do activity Action of the process(event statement)

will result in text. The transformation language is defined using templates. For exam-
ple, Acceleo can take an Ecore model generated by SystemC as input, and generate native
SystemC application code by template transformation.

We have the metamodel and model of SystemC for the purpose of code generation. In the
first line of Acceleo code, we import the metamodel so that the generator knows the struc-
ture of our model. The concept to define Acceleo is called template, and it is the smallest
unit identified in a template file. To allow setting the main reference for the workflow to
collect information from the necessary to model code generation.

To perform code generation from models, we have used the Acceleo technology. As seen
in Listing @ this language uses an approach based on templates, which can be seen as a
piece of code that creates reserved namespaces containing expressions on entities. The
source models are being used to inject model information in predefined templates. They
are ordinarily implemented as modules of meta code and expansion rules, that select and
print string reverse with valid code semantics or non-executable text such as XML.

5.3/ Validation by Simulation

Simulation approaches are at the heart of many methodologies. Simulation techniques
are traditional and beneficial tools for debugging, verifying and validating systems.
They are implemented sequentially at each phase in the design flow. A set of simulation
models is constructed to represent behaviors of various components or the whole system.
Through the implementation of these simulation models, the result values for given
inputs patterns are created and observed. The correctness and quality of output values
are evaluated to ensure that specified requirements have been affected in the models.
These results can also help designers to explore and trade off between different designs
alternatives through simulation experiments. The behavior of the simulation does not
depend on the distribution in which the processes are executed at each step in simulation
time.

5.3. VALIDATION BY SIMULATION 67

Listing 5.2: Acceleo which produces the output SystemC module

[comment encoding = UTF-8 /]

[##%+ The documentation of the module generateSCModel.

/]

[module generateSCModel(' 'http://www.femto—st. fr/disc/systemC.ecore)]
[file (aSCModel.name+'.h', false, 'UTF-8')]

[for (aSCObject : SC_object| aSCModel.scObjects)]

[template public generateSCObject(aSCObject : SC_object)]

public SC_module [aSCObject.name/] {

[for (aSCModule : SC.MODULE | aSCObject.chid_elements)]
[generateSCModule (aSCModule) /]

[/for]
}
[/template]

[template public generateSCModule (aSCModule : SC.MODULE)]

SCModule [aSCModule.name/] = new SCModule ();

[for (aSCModule : SC.MODULE | aSCModule.sc_modules)]
[generateSCModule (aSCModule) /]

[/for]

[for (aSCPort : Sc_Port | aSCModule. port)]
[generatePort(aSCPort)/]

[/for]

[for(aProcesses : SC_process | aSCModule. processes)]
[generateProcesses(aProcesses)/]

[/for]

[/template]

[template public generatePort(aSCPort : Sc_Port})]
sc_[aSCPort.direction /] <[aSCPort.type.toString()/]> [aSCPort.name/];
[/template]

[template public generateProcesses(aProcesse : SC_process)]
sc_[aProcesse .name/] <[ownerscmodule.ownerSCModule /],

[/template]

5.3.1/ SystemC Simulation

The SystemC simulation kernel relies on the notion of delta cycles. A delta cycle is com-
posed of an evaluation phase and an update phase. The kind used for modeling primitive
channels cannot change immediately. By dividing the two stages of assessment and up-
date, itis possible to guarantee determinism. The event happens at given simulation time.
The time starts at zero and moves forward only, time increments are based on the default
time unit and the time resolution. Three main concepts are being used as following:

e Initialization: is the first step in the SystemC scheduler. Each process is performed
once during initialization, and each thread process is executed until a wait state-
ment is encountered.

68 CHAPTER 5. SIMULATING SYSML SPECIFICATION USING SYSTEMC

e Elaboration: is defined as the execution of the *“sc_main()" function from its entry
point to the first invocation of *“sc_start()".

e Simulation: SystemC simulator regulates the timing and the order of process exe-
cution, deal with event notification and manages updates to channels. The supports
concept of " “delta cycles”, which consists of the execution of evaluation and update
phases. The number of delta cycles for every simulation time will depend on the
same simulation.

In SystemC, the featured event strategy typically uses three data structures from the state
variables, the event list, and the clock. The simulation execution depends on two types
of procedures by the called scheduling and the event handler routines. The scheduling
operation is an important task since it creates and classifies events in time. A simulation
process is intended to model an appropriate entity in the simulation with a well-defined
specific behavior. The behavioral description of the object is encapsulated by the process,
defining the actions performed by the process throughout its existence.

System-level design techniques have proposed to use high-level abstraction methods to
design hardware and software concurrently in a unified environment. SysML model and
simulation are key techniques to describe, validate, analyze and verify complex systems.
In various SysML model and simulation approaches, the SystemC environment has be-
come the real standard.

5.3.2/ SystemC Network Simulation Library

SystemC Network Simulation Library (SCNSL) [Fummi et al., 2008] is interposed between
SystemC and standard C++ libraries and the classes that the developers will realize.

The SystemC libraries and SCNSL start from system specifications. The primary model
can be described at different levels of abstractions as the RTL and the TLM levels or with
combinations of parts of different level. On this initial model, we can build the verifica-
tion systems that will establish the validity of the final product. From this initial model,
the process continues to improve the system, developing the final product in all three do-
mains. SCNSL is an efficient tool, both for flexibility and performances, in comparison to
the ones already in existence.

0.3.3 Traces Generation

The Value Change Dump (VCD) trace format [Windisch et al., 2013, is the only trace for-
mat supported by basic SystemC standard. This trace format records value changes of
complex systems over time. The SystemC standard defines a programming interface or
API (Application Programming Interface) to finish.

The processing is performed only once to generate a ~"trace.vcd" file containing the se-
quence of instruction and data addresses from execution, and this trace file is then used
repeatedly as the input to the more detailed simulation. This file trace can then be used
with the tool such as GTKwave to visualize the activity of the model in the form of timing
diagrams. The main advantage of this trace format is to be supported by the majority of
complex systems design tools.

5.4. EXPERIMENTS WITH THE CASE STUDY 69

5.4/ Experiments with the case study

In this section, we will discuss the case study presented in Chapter 4, proving the effec-
tiveness of our approach to specify and validate the behavior of road intersection signals.
The tooled approach, previously presented, was used. Figure @ illustrates the crossroads
top-level modeling. We have identified two main requirements that relate to the safety
and the longevity for power consumption of the system in Figure @ that shows the re-
quirement diagram of monitoring junction system. The BDD includes six blocks the first
block, named CrossRoad, represents the system. As a whole, it is composed of three sub-
blocks (**Controller System, NorthandSouthLights, and EastandWestLights")and sub-sub
blocks (" “Timer, Road Sensor, and Camera").

The internal structure of the Crossroads block is represented by IBD. The diagram shows
the flow ports, the port management allows continuous moving the direction of Con-
troller System and the port of other parts (i.e. **NorthandSouthLights and EastandWest-
Lights"). Figure @ shows the IBD diagram. In Figure@, we present the parametric dia-
gram transmitter that illustrates the energy consumed by this element.

Moreover, the Figure @ shows the SMD diagram. The timer for the crossfires is managed
by a controller system that at each starts up. However, to initialize a clock that measures
the duration of each crossfire color *“red (38 Sec.), yellow (5 Sec.), and green (33 Sec.)".

5.4.1/ Combine SysML to SystemC

We will focus on how to perform and what are the parameters used to affect the implemen-
tation. The mapping methodology is used to create SystemC code from SysML diagrams.
The Figures @P@ and show the SysML2SystemC code.

5.4.2/ Simulation

After the SystemC code is successfully generated from the SysML representation of
the Crossroads system (Figure @ @ and @), the subsequent step is to simulate the
generated SystemC design.

SystemC standard tracing facilities are based on VCD trace format. For communication,
the action is recorded in the trace format. It is required that the exchange value be differ-
ent from the current value of the thread or method, and the change in value has a duration
of at least a delta-cycle. In Figure @ we show the simulation results.

This simulation platform has been used to ensure that the packets are routed correctly to
their destination under the Crossroads system. The simulation trace shows the state for
each light as true or false values through the time. They can validate that no green light
on North and South lights is turned on when there is also a green light on the East and
West lights. It is highlighted by this timetable that the request packet and the response
take different routing nodes at their destination.

The IDEA1 tool [Galos et al., 2013] is a discrete event simulator based on SystemC and C++
language. Itis originally based on SCNSL existence in the IDEA1 simulation platform that
can run simulations on heterogeneous sensor nodes that compose a network. We used

70 CHAPTER 5. SIMULATING SYSML SPECIFICATION USING SYSTEMC

main.cc Controller.cpp Controller.h” > EIES TR EETE R

ablocks
CrossRoad (Unknown Scope)
properties
el [e - S#include "systemc.h”
gperations «blocks
block
‘: nicl : constraints EastandWestLights SC_MODULE (Controller_System) {
Dr:lle‘r:l;s \ EISEEE /
operations cdin<bool clock ¢
operations E W Traffic I‘)"/ A b l N
Random_NumberBoolean() - : sc_in<bool> reset ;
e I ~_ethstraints sc_in<bool> enable;
«Blocks
o Contrller_System ublocks sc_signal<bool> roadlNorthRed;
Rn‘:os(" properties NarthandSouthLights sc_signal<bool> roadlNorthYellow;
ad_Sensor LW properties sc_signal<bool> roadlNorthGreen;
properties operations -
TrafficLightController) operations
. CUPE'RW'H o M_S_TrafficLightl) sc_signal<bool> roadlSouthRed;
atect Car) constraints =
constraints constraints sc_signal<bool> roadlSouthYellow;
T TC_TIENalIibooIy Tos0ISoutnareen;
wblockn sc_signal<bool> road2EastRed;
ublodks > Timer sc_signal<bool> road2EastYellow;
Camera properties sc_signal<bool> road2EastGreen;
e + Restart
operations operations sc_signal<bool> road2WestRed;
constraints L constraints | sc_signal<bool> road2WestYellow;

sc_signal<bool> road2WestGreen;

sc_trace_file* trafficControllerTraces;

int state ;

vold switches () ;
void defineTraces () ;
void closeTraces () ;
vodid initlights () ;

5C_CTeR(Controller_System)
{
infccigins(y;
SC_THREAD(TrafficlLightController);

sensitive << clock.pos();

H
i

Figure 5.4: Code generation from BDD and IBD to SystemC

the IDEA1 tools to implementation WSN environment.

In Figure @ we show that the behaviour WSN consists of four nodes and a wireless chan-
nel with control. That simulation of this test gives a VCD trace. The case study consist of
four nodes, and one coordinator is deployed to compose a WAN network with a star topol-
ogy.

All the nodes can directly communicate with the coordinator. It uses IEEE 802.15.4 slot-
ted Carrier Sense Multiple Access with Collision Avoidance (CSMA-CA) algorithm to ac-
cess the channel. The sensor nodes environment periodically get values every second and
transmit data over the network. Each transmission includes two data bytes. Sensor nodes
enter sleep mode as long as they can, and the coordinator is always awake.

We can monitor the coordinator nodes microcontroller, and radio frequency unit states
Receive, Transmit, Active, Sleep CooMCUState stand for coordinator microcontroller
state, Cooradiostate is the radio frequency coordinator state.

For classical nodes, states of microcontroller and radio frequency unit are also detailed
with ““mcustate 0" and "“radiostate 0" for “'node 0" and " “mcustate 3" and " radiostate
3" for “"node 3". The coordinator microcontroller is always Active. At time 410 ms, coor-
dinator radio frequency unit sends a packet Transmit, node 0 radio frequency unit is in
Receive mode, node3 is in power down mode 0.

Then, radiostateo sends an acknowledgement Transmit, and then enters Sleep mode. As
no more processing is required, the microcontroller of node 0 enters Sleep mode. Node

5.4. EXPERIMENTS WITH THE CASE STUDY

Controller.cpp* X Ji8

|+ TrafficLightController
T

Statelachine TrafficLightCantroller

=l void TrafficLightController::initLights () {
Intial festat
i

[state = 0 ;
roadlNorthRed = false;

Init Sate road1lNorthGreen = true;
Hter 15
roadlNorthYellow = false;
roadlSouthRed = false;
roadlSouthGreen = true;
roadlSouthYellow = false;
road2EastRed = true;
road2EastGreen = false;
s road2EastYellow = false;
Adter 1Sec road2WestRed = true;

Jdo Actity NS=Rand EW=R

EW_6 Sate
{do Actity NS=R and EW=Y
Jestay Actity Wait 3 Sec

N5 6, State
[do Activity N.S=6 and E W=R
fentry Actiity Wait 33 Sec

BLY St NS Y Sate road2iestGreen = false;
fdo ctvity NS=R. and EW=G 1do Actvty N =Y and EW=R road2WestYellow = false;
fentry Actiity Wart 33 Sec Jentry Activity Wait 5 Sec ¥ |

B // Below function implements actual controller logic

After15¢¢ After15ec

EWR e
do Actity NS

= Jvoid TrafficlLightController::switches () {
while (true) {
if (state == @) {

state = 1 ;

roadlNorthGreen = false;
roadlNorthyellow = true ;
road1SouthGreen = false ;
roadlSouthYellow = true ;

wait (4, SC_SEC) ;

¥
else if (state == 1) {
ctate = 9 -
00% « ¢

Figure 5.5: Code generation from SMD to SystemC

TR oeneicbatiny.cpp’ X

(Unknown Scope)

fuoid GenericBattery::th_radioTx()

sc_time beginTime, endTime;
while(1)
{

15 par{rui] Trensceier Energy Energy Parametic Diagrri .
L pary t Energy Energy | Dizgr IJ walt(e_tx)

5 e EDuutie . beginTime = sc_time_stamp();
- [m_spontanecusRadioConsumption = m_RF_EMIT_CURRENT;

B {Bxm Pt T
= T Time o

Ime

wait(e_radioStateChanged);

endTime = sc_time_stamp();

m_energyTx += m_spontanecusRadioConsumption®™ m_SUPPLY VOLTAGE
* (endTime.to_seconds() - beginTime.to_seconds());

m_spontanecusRadicConsumption = @;

L1

s

=foid GenericBattery::th_radioRx()

sc_time beginTime, endTime;
while(1)

{
\ wait{e_rx);
beginTime = sc_time_stamp();

m_spontaneousRxConsumption = m_RF_RECEIVE_CURRENT;

wait(e_radioStateChanged);

endTime = sc_time_stamp();

m_energyRx += m_spontaneousRxConsumption® m_SUPPLY_VOLTAGE *_
(endTime.to_seconds() - beginTime.to_seconds());

& Brans: Dauble

m_spontanecusRxConsumption = @;
Ese EDouble

h

“lvoid GenericBattery::th_radioPowerDown()

[Pi: PoseAmay
Lt ¢ T sc_time beginTime, endTime;
| - PoseAmay - while(1)
[Ese =By Ta} i
& Tij Time

wait(e_radioPowerDown);

]

Ese: EDuuble

beginTime = sc_time_stamp();
m_spontanecusRadioSleepConsumption = m_RF_POWER_DOWN_CURRENT;

wait(e_radioStateChanged);

endTime = sc_time_stamp();
m_energyRadicSleep += m_spontaneousRadioSleepConsumption®_
[n_SUPPLY_VOLTAGE * (endTime.to_seconds() - beginTime.to_seconds());

Figure 5.6: Code generation from PD to SystemC

72 CHAPTER 5. SIMULATING SYSML SPECIFICATION USING SYSTEMC

Signals Waves
Time
Clock
EastGreen
EastRed
EastYellow
NorthGreen
NorthRed
Morthyellow
SouthGreen
SouthRed
SouthYellow
WestGreen
WestRed
WestYellow

Figure 5.7: Timing chart showing the activity of a Crossroads simulation

3 wakes up at 420 ms. after a calibrating phase, the microcontroller is Active, radio fre-
quency unit is in Receive mode.

Signals Waves
Time ;

CooRadioSI =0
CooRadioS0 =0
CooRadioSleep =0
CooSleep =0
radiostated[4:0] =30
radiostatel[4:0] =30
radiostate2[4:0] =30
radiostate3[4:0] =30
Cooradiostate[4:0] =30
RadioCSO =0
RadioCS1=0
RadioCS2 =0
RadioCS3 =0
back0ffStartd =0
back0ffStartl=0
back0ffStart2 =0
back0ffStart3 =0
mcustated[4:0] =73
mcustatel[4:0] =54
mcustate2[4:0] =54
mcustate3[4:0] =54
radioINTO =0
radioINTL1 =0
radioINT2 =0
radioINT3 =0
radioSleepd =0
radioSleepl =0
radioSleep2 =0
radioSleep3 =0
radiowWaked =0
radiowWakel =0

Figure 5.8: Graph from code simulation WSN behaviour

.5/ Conclusion

Ut

In this chapter, we have presented our approach to simulate and validate complex systems
from SysML models. Formal models of SysML blocks were acquired by applying transfor-

5.5. CONCLUSION 73

mation rules by ATL tool for mapping metamodel SysML diagrams with metamodel Sys-
temC. We have proposed a model transformation from block definition diagram, internal
block diagram, parametric diagram, and state machine diagram to SystemC model. Fi-
nally, we used the simulation in SystemC environments to verify SysML non-functional
requirements from the requirement diagram to validate the designed system.

O

Comparison of Verification techniques of
SystemC models

Contents
6.1 Introduction 3
6.2 Techniques for SystemC Verification 3
6.3 UPPAAL and TCTL o ras
6.4 Transformation of SystemC Model for UPPAAL Verification ED
6.5 Ilustration on the case study E2
6.6 Classification of Verification in SystemC E3
6.7 Conclusion e Ed

6.1/ Introduction

SystemC is an efficient system-level modelling language and simulation platform pro-
posed to increase the abstraction level of embedded systems design. However, as the de-
sign of systems turns more complex, the exploration of design on a high abstraction level
becomes more important than ever. In particular, they are the significant issue, the com-
parison between the techniques that can be used to provide verification for SystemC mod-
els. To ensure the correctness of systems designed with SystemC environment we need
verification techniques, such as UPPAAL model-checking, within the SystemC designs.

We propose a verification approach guided by the requirement relationships, such as sat-
isfy with the model elements, to verify non-functional requirements over SystemC mod-
els. We propose to adapt the approach proposed by [Pockrandt et al., 2012a]. We propose
to apply verification over SystemC models using the UPPAAL model-checker. Therefore,
we propose to convert SystemC models into UPPAAL models.

6.2/ Techniques for SystemC Verification

SystemC is a modeling language that can be used to describe embedded systems at dif-
ferent abstraction levels. However, simulation is not the only thing for which a SystemC
model can be used. Tools that satisfy these needs must have a SystemC front-end that can
retrieve the dynamically generated hierarchy and its behavior from the model. A SystemC

75

7T6CHAPTER 6. COMPARISON OF VERIFICATION TECHNIQUES OF SYSTEMC MODELS

model must be chosen or developed. This section is dedicated to the presentation of the
most used techniques for the verification of SystemC designs. All these techniques intend
to help the system designer to develop correct SystemC designs. These techniques may be
classified into three categories:

e Techniques based on SystemC library environment.
e Techniques that link SystemC library with other verification libraries.
e Techniques that translate SystemC models to other formalisms.
Given a system to design with SystemC and a specification of its requirements, in the Fig-

ure El] we illustrate the techniques that may be used to provide a validation of its SystemC
design.

System Specification
Description (Req. Properties)

SystemC model

Standard Integrated Model y
Libraries Libraries ~ Checking Tools

Verification/ Simulation Va

LN

Not
decidableJ Yes

No
Diagnostic

Figure 6.1: Overview techniques for SystemC verification

6.2.1/ Verification by SystemC Libraries

To provide verification mechanisms in SystemC, two libraries have been developed: the
SystemC Verification Standard library and the Native SystemC Assertion library. In this
section, we present how these libraries can be used to verify SystemC designs.

NSCa

The assertion temporal fundamentals in NSCa derived from SVA. In this, assertion level
evaluations take place on every clock. By application, NSCa can build simplistic to com-
plex property sequence to verification when executing interfaces and/or protocol-level
checks in several lines required in SystemC environment. NBridge-SVA, a bidirectional
NSCato SVA, is packaged including NSCa to provide a bridge between NSCa and SVA. The
Figure @ illustrates the comprehensive transaction cycle in a system level based design.

6.2. TECHNIQUES FOR SYSTEMC VERIFICATION 7

!r ______________ : - :, ________________ :
: : a — .

i NSCa Source ﬂ:—> Translator :‘ Compicl::r7Linker \I\‘

i or | : /4 \ : NSCa

: SystemC : CPP : / : Goverage
R | mereSee oo toer

E Assertion / Chechers : : SystemC Simulator :
e M e J

Figure 6.2: Assertion flow for NSCa

SCV library

The SystemC Verification Standard (SCV) library provides a common set of APIs for
transaction-based verification, constrained randomization, weighted randomization, and
exception handling. As a result of this, the random data types can be used in variable
recording, transaction recording, constraints, randomization, and other functions. By
transaction is based verification from transaction recording. The transaction recording
ability in the verification standard allows to capture transaction level activities during
simulation. By a callback mechanism, these activities can be monitored by another Sys-
temC module at runtime, or can be used recorded into a database for visualization, debug-
ging, and post simulation analysis.

Furthermore, randomization allows a large number of stimuli to be generated with less
manual effort than directed checking. To improve service coverage and to focus on spe-
cific appearances of the design, constraints or weights typically are used in the random-
ization. While many real test benches may use ““rand ()" from the C library to create a
random integer. The verification standard supports randomization of several data type
through the use of the data introspection facility. Data objects of temporary data types
can be randomized during the application of *“scv_smart_ptr". For example, a random

value for an ““sc_uint < 8 >", *'sc_uint < 12 >" can be generated using the code shown in
Listing @

The SCV also provides a simple database to store and investigate verification results and
gives simple SystemC to VHDL simulator linkage mechanism. The compatible mecha-
nism for errors is processing and debugging error detection mechanism.

SCNSL

SystemC Network Simulation Library is interposed between SystemC and standard C++
libraries and the classes that the developers will realize.
The SystemC libraries and SCNSL starting from the system specifications. The primary

model can be described at different levels of abstractions as the RTL and the TLM levels
or with combinations of parts of different levels. On this initial model it can be built

the verification systems that will establish the validity of the final product. From this
initial model, the process continues to improve the system, developing the final product
in all three domains at once. Usually SCNSL is a functional tool, both for flexibility

7T8CHAPTER 6. COMPARISON OF VERIFICATION TECHNIQUES OF SYSTEMC MODELS

and performances. SCNSL demonstrates a high perspective for accurate system-level
simulation of WSN systems, and its architecture and language are well suited. SCNSL
models include nodes and network separately.

Listing 6.1: simple random mechanism

#include <scv.h>
#define RND_SEED 1
class packet_t

{

public

sc_uint <8> addr;
sc_uint <12> data;
unsigned payload|[2];
}

SCV_EXTENSIONS (packet_t)

{

public:

scv_extensions< sc_uint<8> > addr;
scv_extensions< sc_uint<i12> > data;
scv_extensions< unsigned [2] > payload;

int sc.main (int argc, charx argv][])

{

scv_smart_ptr<packet_t> pkt_p("packet”);
scv_shared_ptr.

<scv_random>_rand_p (new scv_random ("gen", RND_SEED));
pkt_p—>set_random (rand_p });

cout << "Packet Pre Random: " << endl;
cout << "Packet Post Random: " << endl;
pkt_p—>print ();

return oO;

}

6.2.2/ Verification by Libraries Integrated to SystemC

The SystemC libraries developed to provide a verification are limited and do not allow the
verification of temporal properties. At this issue, several techniques have been proposed,
like **CRAVE, CHIMP, and ISIS". They have been developing some verification libraries
built on the top of SystemC libraries for enabling the verification of temporal properties.
In the section, we present one of these libraries and its applications to verify SystemC de-
signs.

SVM

The SVM Library improves the OVM/UVM for SystemC, by adding features based on the
OVM for SystemVerilog version 2.2.1. Additionally, the figure @ show the structure of the

6.3. UPPAAL AND TCTL 79

SVM library packages, which integrate libraries to provide Assertion, Randomization /-
Constraints and Coverage, to support advanced RTL/TLM for SystemC. The outline de-
tails of the functional coverage implementation of the SVM as a SystemC library, which is
based in the following areas covered in SVM.

...........

Verification Methodology Library - Randomization -
et e e e s . and
. Register - | Constraints
Structural Stimulus . Abstraction .
Components Sequence | : Layer . |ttt)
. Assertions
Library base
Factory : : Test-Bench
Automation SIIENE Control

Coverage

OSCI SystemC / C++

Figure 6.3: Structure of SVM libaray

6.2.3/ Verification through Model-checking Tools

Model-checking tools are well-known techniques that allow verification of systems. Em-
ploying this technique to provide a verification of SystemC designs is the subject of many
pieces of research. At this issue, several techniques has been proposed, like " SPIN,
SCIVER, SYSFIER, KRATOS, SDSS,and CADP" We will explain in the next section, the
method proposed to verify SystemC designs using projects and tools *"UPPAAL".

6.3/ UPPAAL and TCTL

The model checker Uppaal based on the theory of timed automata was presented in
[Soliman et al., 2012]. It is a combined tool environment for modeling, validation, and
verification of real-time systems modeled as networks of timed automata, extended with
datatypes (bounded integers, arrays, etc...). Uppaal model comprises three parts: *“global
declarations”, * parameterized timed automata” and a " “system declaration". The global
declarations segment has global variables, constants, channels and clocks. The timed au-
tomata templates describe timed automata that can be instantiated with different param-
eters to model similar process. In the system declaration, the templates are instantiated,
and the system to be composed is given as a list of timed automata.

In UPPAAL, validation is done by graphical simulation and verification is done by auto-
matic model-checking. In the simulation, the modeled system is executed interactively

S8OCHAPTER 6. COMPARISON OF VERIFICATION TECHNIQUES OF SYSTEMC MODELS

and is observed whether the system satisfies the expected behavior or not. UPPAAL uses
finite state automata extended with clock and data variables.

Two main parts of UPPAAL are the graphical user interface and a model checker engine.
Graphical user interface is performed in Java language and is executed on the user end.
Model checker engine is advanced C++ and is also executed on the user workstation, but
UPPAAL offers the flexibility of running the engine on a separate machine that is more
powerful and can be referred as the server.

Model checker engine applies on-the-fly searching technique in combination with the
symbolic technique that makes the verification problem reduced to the problem of solv-
ing simple constraints system. UPPAAL can also generate a problem trace automatically,
that can be used to diagnose the problem and can also be used to explain why a property
is or is not satisfied by the described system.

UPPAAL verification engine supports requirements based on the Computation Tree Logic
(CTL) [Friesen, 2011], manually support the implementation of formal verification tech-
niques, the changing requirements formalized are into Time Computation Tree Logic
(TCTL) properties [Alur et al., 1990]. TCTL is an extension of CTL, which allows analyzing
several possible states of a system. The requirement that overtaking must not last longer
than two-time units can be expressed by referencing the clock *“c" within the TCTL for-
mula AG- (overtaking A c> 2).

TCTL formulas ® are defined by the following grammar:
Q:: =plx+c<yly+d| 2|1V P | EQ1UPy |AD U, | 2. for

e proposition p € P.
e clocksx,yeC.
e specification clocksze Cy C C.

e non-negative integer constantsc, d € N.

The formalization of requirements in Uppaal is based on TCTL formulas. The temporal
operators G and F correspond to the UPPAAL operators [| and (). As a restriction of the
original TCTL syntax. UPPAAL does not support nested path quantifiers, the only excep-
tion is UPPAAL additinal — — > operator. A formula p — —>¢ coorresponds to the formula
A[] (p imply A<> q).

All nested formulas are restricted to so-called state properties, consisting of time and data
constraints, as well as activity constraints on certain locations. Time constraints are ex-
pressible by a direct reference to the value of a clock in the underlying network of timed
automata. A clock local to a certain process is referenced by the statement process.clock.
UPPAAL does not support additional specification clocks.

The activity of a certain location for a process is expressible by the statement pro-
cess.location. Besides references to clocks, UPPAAL also enables its data variables to be
part of state properties, whereas a local variable is referenced by process.variable. As a
specification feature, the deadlock statement allows for the specification of progress exe-
cution requirements.

6.4. TRANSFORMATION OF SYSTEMC MODEL FOR UPPAAL VERIFICATION 81
6.4/ Transformation of SystemC Model for UPPAAL Verification

To provide a formal verification of SystemC designs, we use existing tools to transform,
by a sequence of refinement steps, a SystemC design into an Uppaal automata. Our
objective is to analyze a SystemC design with model-checking techniques. As shown
in Figure ’6_4| the tool STATE (SystemC to Timed Automata Transformation Engine)
[Pockrandt et al., 2012b], is used to transform an abstract SystemC design into a Uppaal
model and the Uppaal model-checker is used to check properties expressed as temporal
logic formulas.

Verification results express satisfaction or no satisfaction of properties. If a property is
not satisfied, the Uppaal model checker additionally generates a feedback, which can be
used for debugging purposes. The feed-back can also be visualized and animated in the
Uppaal tool to understand where the problem appears.

Not satisfied

o
SystemC Design @ | satisfied

Checker

] Verification
Transformation Tool (STATE)

Transformation Internal Optimization
Engine Representation Engine

Figure 6.4: Methodology Model Transformation SystemC to Uppaal

We will focus on how to perform and what are the parameters used to affect the implemen-
tation. Also, has been defining the requirement and structure SystemC model to generate
a UPPAAL environment. The mapping methodology uses the STATE tools to create UP-
PAAL code from SystemC diagrams. Figures @ shows the SystemC2UPPAAL code.

The approach in STATE takes a SystemC design as input and generate a corresponding Up-
paal model as output. As a front-end for SystemC, we used the Karlsruhe SystemC Parser
(KaSCPar). The KaSCPar parses a given SystemC design and produces an Abstract Syntax
Tree (AST) in XML. The AST in XML serves as input for STATE, which creates an Uppaal
model that is also in XML format and that can be utilized as input for the Uppaal environ-
ment. In STATE, the transformation of a given SystemC design is performed in two phases.
First, the transformation engine constructs an Uppaal model from the given AST of the
SystemC design. Second, the optimization engine performs several optimizations on that.
When, a UPPAAL model is written and can be used as input for the UPPAAL model.

82CHAPTER 6. COMPARISON OF VERIFICATION TECHNIQUES OF SYSTEMC MODELS

TrafficLightTestBench.cpp Controller.cpp™ x fe-DIGIEA

NY |~ TrafficLightController
cn<h ¥
Sl void TeafficlishtContrallac::initlishts () {
state = @ ;
roadlNorthRed = false;
roadiNorthGreen = true;
roadlNorthyellow = false;
2! - road1SouthRed = false;
é—'—_""_—'_——_ roadlSouthGreen = true;
roadlsouthvellow = false;
road2EastRed = true;
road2EastGreen = false;
road2EastYellow = false;
road2iestRed = true;
NR cn<3g road2WestGreen = false;

road2westYellow = false;

I3

// Below function implements actual controller logic

= void TrafficlightController::switches ()
while (true) {
if (state == @) {

state = 1 ;
roadlNorthGreen = false;
roadlNorthYellow = true ;
roadlSouthGreen = false ;
roadlSouthYellow = true ;

- wait (4, SC_SEC) ;

}
else if (state == 1) {

00% - <

Jutput

Show output from: | -| |

Figure 6.5: Code generation SystemC to Uppaal

6.5/ Illustration on the case study

The general process of our approach consists of several stages, modeling with SystemC
environment that will be the source of transformation models. First, we transform the
requirements properties of the Crossroads system to CTL, manually support the imple-
mentation of formal verification techniques, the dynamic requirements are formalized
into TCTL properties.

To verify the requirements of the Crossroads system, the verification of SystemC func-
tional requirements by translating SystemC model into formal models. Requirements are
expressed into temporal logic properties expressed in TCTL. Primary, we verify that the
system is deadlock free. We express this property in TCTL by the formula **AG not dead-
lock". Then, we verify time properties. As example, we verify that both *"NorthandSouth
Lights"and " "EastandWest Lights" cannot stay in yellow color more than 5 seconds, which
is expressed in TCTL as:

e AG (NorthSouth.NY imply NorthSouth.cn<5).

e AG (EastWest.SY imply EastWest.cs<5)).

Then, we verify that both NorthandSouth Lights and EastandWest Lights cannot stay in
red color more than 38 seconds, which we express in TCTL as:

e EG(NorthSouth.cn>38).

e EG(EastWest.c>38).

Figure @, we present Uppaal environment, where Uppaal automata, properties and their
verification results are shown.

6.6. CLASSIFICATION OF VERIFICATION IN SYSTEMC 83

| Editeur I Simnulateur I Sirmnulateur concret| Werifieur |

Apercu
E[]NC0T OEa0look o
E[] {(EastWest.c3>38)
E[] {(HorthScuth.cn>38)
AE[] (EastWest.c3<38)
A[] (NorthSouth.cn<38)

1]

0000
m

Requéte
Allnot (MorthSouth.MNG and EastWest SG)

Commentaire

Status

Allnot deadlock

Werification/noyau/temps total écoulé: 0s f 0s / 0,002s,

Pics dutilisation de la mémoire permanente fvirtuelle: {0}KB [/ {1}KB.
La propriete est satisfaite.

Allnot (MorthSouth.MG and EastWwest.SG)
Werification/noyau/temps total écoulé: 0s f 0s / 0,002s,

Pics dutilisation de la mémoire permanente fvirtuelle: {0}KB [/ {1}KB.
La propriéte est satisfaite.

E[l(EastWest.cs=33)

Werification/noyau/temps total écoulé: 0s /0,015 f0,002s,

Pics dutilisation de la mémoire permanente fvirtuelle: {0}KB [/ {1}KB.
La propriété n'est pas satisfaite.

E[](MorthSouth.cn =38)

Werificationfnoyau/temps total écoulé: 0s f 0s / 0,003s,

Pics dutilisation de la mémoire permanente fvirtuelle: {0}KB [/ {1}KB.
La propriété n'est pas satisfaite.

A[l(Eastwest.cs<38)

verification/noyau/temps total écoulé: 0s f 0s / 0,002s,

Pics dutilisation de la mémoire permanente fvirtuelle: {0}KB [/ {1}KB.
La propriéte est satisfaite.

Al (MorthSouth.cn<38)

Werification/noyau/temps total écoulé: 0s f 0s / 0,002s,

Figure 6.6: Verification in Uppaal environment

6.6/ Classification of Verification in SystemC

Studies and associated tools presented in this chapter show that providing verification for
SystemC has an increasingly importance. They intend to introduce a verification mecha-
nism to assess the correctness of SystemC designs. As shown in Figure @ we can group
the proposed techniques into three classes.

We find in the first class the SystemC verification libraries. Specifically, the SystemC
verification standard library, which constrained randomization, weighted randomization
and transaction monitoring. It allows a large number of stimulus to be generated with
limited manual resolution than directed checking. The Native SystemC assertion library
that is an assertion path coverage and assertion activation coverage, as well as primitives
to construct assertions for transaction-level models at higher levels of abstraction. The
provided timed /untimed properties, transactional and bus cycle accurate.

The second class provides the verification of SystemC design through external libraries
which use SCV. The tactics of this class enhance the library for SystemC, integrate li-
braries to provide Assertion, Randomization/Constraints and Coverage, to support ad-
vanced RTL/TLM for SystemC. As examples, ISIS enabled the runtime ABV of SystemC
TLMvirtual platforms " “untimed or timed, clocked, or unclocked", for verifying behaviour

84CHAPTER 6. COMPARISON OF VERIFICATION TECHNIQUES OF SYSTEMC MODELS

Verification in SystemC environment

SystemC Libraries Projects & Tools
SystemC Network |SystemC Verification | | Native SystemC * SPIN
Simulator Library Assertion Library « UPPAAL
Library (SCNSL) (Scv) (NSCa) Transformation| ¢ SCIVER
— « SYSFILER
| | | | - KRATOS
, + SDSS
Library Integration + CADP

With SystemC

SVM
CRAVE
CHIMP
ISIS

Figure 6.7: Classification SystemC Verification

and requirements. The technique has also been improved to support the PSL modeling
layer that enables the use of " “global” auxiliary variables in assertions.

As another example, CRAVE is a new library for constrained random stimuli generation,
provided with SCV in new API, dynamic constraints and improved in line usability. The
advantages include dynamic constraint specification and management, enhanced usabil-
ity and much faster constraint-solving based on a portfolio approach. Asanother example
ISIS, it inputs PSL assertions and performs the automatic construction of TLM-oriented
SystemC monitors, built compositionally from primitive components.

Moreover, CHIMP includes automatic generation of monitors from temporal assertions,
automatic instrumentation. The monitors that are generated from a trace property can
have three possible outcomes, pass, fail, and undetermined, an assertion states a property
about the entire execution trace of the MUV. Automatically the monitors are linked to the
designers, this instrumented design is compiled using the SystemC library of primitive
monitors.

The SystemC simulator can then be run on this combination of modules. The monitors in-
form about the satisfaction of the properties during simulation, the runtime ABV of Sys-
temC TLM virtual platforms untimed or timed, clocked or unclocked.

The approaches of the third class are based on translating SystemC design into other for-
malisms, such as Model-Checking. In these approaches, properties to verify are described
using LTL, CTL, and beneficial approach for developing reliability system designs. Here
we summarize the systems discussed above.

As examples, KRATOS is a software model checker for sequential and threaded C pro-
grams. Kratos verifies safety properties in the form of program assertion, provides two
different analyses for verifying SystemC designs: *“sequential” and " concurrent analy-
ses". The sequential analysis, based on the lazy predicate abstraction, verifies the C pro-
gram resulting from the sequential of the SystemC design. The concurrent analysis, based

6.7. CONCLUSION 85

on the novel ESST algorithm, combines explicit state techniques with lazy predicate ab-
straction to verify threaded C program that models a SystemC design.

As another example SDSS, is the formulation interpreting SystemC designs with timed
language constructs as Kripke structures. With this formulation, apply symbolic model-
checking to the Kripke structure BM defined in the previous section.

Table El] provides the feature comparison between these techniques. We classified the ex-
isting approaches into three classes: SystemC Verification Standard, combine with other
library verification and transaction SystemC design to other formal language dependence
of some rule mapping and methodology. To use tools to assertion and verification prop-
erties system.

Table 6.1: Comparison of SystemC with all techniques
H Libraries-Tools ‘ Assertion ‘ Model-checking ‘ Randomize-Constraint H

NSCa Yes No Yes
SCV Yes No Yes
SVM Yes No Yes
CRAVE No No Yes
SPIN Yes Yes No
UPPAAL Yes Yes No
ISIS Yes No No
SCIVER Yes Yes No
SYSFIER No Yes No
KRATOS Yes Yes No
CHIMP Yes No No
SDSS No Yes Yes

CADP No Yes Yes

We think that the verification of SystemC designs by SystemC libraries are not yet mature
and need more development to support the verification of temporal properties. For that,
the approaches based on translating SystemC design into other formal languages is more
efficient.

6.7/ Conclusion

We have illustrated in this chapter our proposal for verifying complex systems designed
in SystemC environment, we have many techniques of verification approaches used in
SystemC models. The practicability of our verification approach was illustrated by a case
study that describes a traffic light system. We have specified the system using SystemC
environment. Then, from these specifications, a SystemC model with different formulas
and methodologies is used to achieve verification and validation of requirement speci-
fication, which is vital for a successful software development project. We classified the
existing approaches into three groups of classification. SCV standard is amalgamate with
other library verification and performance SystemC design to another formal language.
Which dependence from rule and methodology is used to assertion and verification func-
tion properties of the complex systems.

The practicability of our verification approach was illustrated by a case study that describe

86CHAPTER 6. COMPARISON OF VERIFICATION TECHNIQUES OF SYSTEMC MODELS

a traffic light system. We have specified the system using SystemC models. Then, the
UPPAL model-checker was used to achieve the verification.

We think that verification and validation of SystemC designs through SystemC verifica-
tion standard libraries is not yet mature and need more development to support the ver-
ification of temporal properties. For that, the approaches based on translating SystemC
design into other formal languages is more efficient.

[

Transformation of SysML Specification
into Promela-SPIN

Contents
7.1 Introduction e Ea
7.2 Approach B2
7.3 From SysML to Promela E9
7.4 Verification using the SPIN Tool 0
7.5 Illustration on the case study g3
7.6 Conclusion =

7.1/ Introduction

Ensuring the correction of heterogeneous and complex systems is an essential stage in
the process of engineering systems. In this chapter, we suggest an approach to verify
and validate complex systems specified by SysML language. We transform SysML spec-
ifications into Promela models to validate the designed systems by model-checking SPIN
[Holzmann, 1997]. The requirements properties are transformed to Linear Temporal Logic
(LTL) formulae verified by SPIN environment. In Figure @, we show the position of the
contribution presented in this chapter, regarding the contributions of this thesis.

We propose a verification approach guided by the requirement relationships, such as
““verify”, with the model elements, to verify functional requirements with state machine
diagrams. To using an abstraction that separates the system down into smaller state ma-
chines can perform it simpler to understand, and can develop our ability to use the ad-
vantage of similarities between the different methods. The state machine diagram is
converted into Promela model. The proposed translation is implemented in ATL. From
the SysML requirements, we extract LTL properties, which we verify by the SPIN model-
checker.

7.2/ Approach

One purpose of modeling is to enable the analysis, verification and validation of systems.
Models may describe requirements, structure and behaviors of a designed system. They

87

88CHAPTER 7. TRANSFORMATION OF SYSML SPECIFICATION INTO PROMELA-SPIN

Behavioral Diagram
stm

Requirement Diagram
functional, non-functional

Structural Diagram
bdd, ibd, par

Promela /ISPIN
Model-Checking

®

Figure 7.1: Methodology flow for approach

may be used to validate the characteristics of some part or the designed system, e.g. its
functionality or its performances. In this section, we define a group of activities related to
our approach to specify, verify and validate formal SysML specifications.

In this approach, SysML state machine diagrams are converted into Promela models, and
then used to verify the functional requirements of the system. These requirements are
expressed as temporal logic formulas and verified using the SPIN model-checker.

Figure @ summarizes the main steps of the proposed approach. First, we create the SysML
diagrams ""RD, BDD, and SMD", to specify the system requirements, structure, and be-
havior. Second based on MDE, we develop a transformation technique to map SMD into
Promela. Then, we describe the SysML requirements as a result of LTL temporal logic.
Therefore, we analyze, and verify the requirements using the SPIN model-checker tool.
Our verification approach will be subject to the " verifying" relationships between re-
quirements, blocks and state machine diagrams.

7.3. FROM SYSML TO PROMELA 89

SysML
STM Transformation Promela
<>
Metamodel rules Metamodel
A A
asescsnsencansenes NORIG e
! Conforms To|: Conforms To
) v
SysML > STM L ATL —— Promela
Diagrams Model Model
S ATLO 1*
| SysML
SysML esesnsenes Acceleo
Manually ' PrE_r}fLrty
RD W
Model J(
"""""" No i < Promela
. " H Spin =
: Error : : Code
fensnsnnas . Spin.}
O . <=
promela
Valldatlon enabling telecom services

Figure 7.2: Methodology flow for approach

7.3/ From SysML to Promela

In this section, we propose a transformation technique according to MDE to map SMD into
Promela.

We focus on defining how and what are the transformed SMD elements to formalize be-
havioral aspects and to preserve the structural representation of the system. After that,
we define the mapping rules used to create a Promela model from the SysML SMD.

7.3.1 Promela MetaModel

The source metamodel represents the SysML metamodel, and the target metamodel will
represent the Promela metamodel [McUmber et al., 2001]. Both are carried out under the
metamodel formalized of EMFE. The different stages of implementation are shown in the
Figure @

7.3.2/ Transformation Process
The general process of our approach consists of several stages, beginning modification

with SysML diagrams that will be the source of transformation models. In this work, we
consider the conversion of two diagrams: RD and SMD. First, we describe the RD to LTL

90CHAPTER 7. TRANSFORMATION OF SYSML SPECIFICATION INTO PROMELA-SPIN

[T |
e
g
@
2
3
L)
2
LLIST
m| m
o
s
g o
= 1
s | 777 :
. &
- m g
E ® %
hes” o+
g b
°
S @ <)
2 | El
N & & b g |
a— 2 = & & =
8 Bl X o B
m o o 2
I &
5
= S -
2 8 #
-
4 i w'
! K1 2.
&
m T =
~ g
E " m| =
ol w ES
S g:l N
g e 8]
- o - ¥
B] = 2
= 3 E 2 g =
E E @ 2 o o
& 3 g B 1
Lo} L] =l 7 =
| m o | & a1 g &
(o] w " | = =
g o o] oo m &
= S w 3 2 3
a o a8 =
17 o a1 g
g] g 4 ' 5y
B = — £ = B
@ g - & 3
-3 [3
= | L=}
@ o o
3 m| = [l
o] -]
m ; ‘Q
s g Bl Tl
= £y g o HIE
A g 2 2
o o & &
LT ¥ g lg
o El
m m " 8
: o |- 5 |8
g I g 3 S =
H 8]) & N
2 Lch = 3 € a
g = | o 3
=] w E_ s = A —-
o £ g3 & 2| |4
= 1] o |2 =+ o] 5]
= B = |B g g
H 7 H a
ES =
=
o
I3
A
. ®
T Tl) |
funn]
] = E
g L5 o o
[E
= g L o -
: Ed] g
g g L] g
|| 3] = S)
— i g [T g2
m| o z 5] = &
o] 57 B i
£ g b = E
H = '* o 2 §
[=4 m| g E
I = 0 LLIE] 2
B =l m B
. 7 g m T &
= = = =)
g l|@ m g
R = EN
n] (<) =
T HHRE 3 B
Ll m| = g
g &
B
5 Ll
2
5
=
L

Figure 7.3: Metamodel of Promela

manually. Second, based on model transformation ~*Model2Model", and by exploiting
the ATL language, we transform SysML models to Promela models.

The application of this methodology with ATL is based on the definition of the source and
target metamodel, and description of transformation. Finally, the definition of the source
model that conforms to source metamodel. ATL is a transformation language based on
the Eclipse framework. ATL provides three kinds of rules namely matched rule, called
rule, and lazy rule.

7.3. FROM SYSML TO PROMELA 91

The ATL matched rules allow to specify which source model element must be matched,
the number and the type of the generated model elements and the way these target model
elements must be initialized from the matched source elements. Inverse to matched rules
called rules enables to generate target model element from imperative code. This kind of
rule must be called from an ATL imperative block. Also, a called rule can accept param-
eters. Finally, lazy rules can be called from matched rules. ATL allows to write methods
with parameters and return type. These ATL functions are called helpers. They make it
possible to define factorized ATL code. The rule of ATL are obligatory elements from to
syntax:

e A pattern on the source model " from" with a possible constraint.

e One or more grounds of the target model " "to" that explain how target elements are
initialized from the corresponding source element.

7.3.3/ SysML To Promela Transformation

The metamodel UML and SysML have to satisfy the subset for animation described in
Chapter 5. This metamodel depicts all the information that concern classes, instances,
state-machines, associations, links, and behaviours. Table @ summarizes the mapping
between SysML elements and out pivot metamodel. Although creating a target item from
source part, ATL retains a traceability link between the two elements. This link is used
to initialize a target item in the *"to" match as seen in Listing @ The ATL code shows
an example of the rules used in the ATL model to transform the SysML SMD to Promela
description.

7.3.4/ Mapping Rules for the Transformation

SysML diagrams are created using the Papyrus [Lanusse et al., 2009] tool, to combine
SysML and Promela. The commencement of a system description given as the input
conditions of extending the model with the SMD is to introduce and transform be-
havioral information about the system. The target language, in this case, Promela are
different possible translations of the considered semantics with the behavioral concepts
of Promela [McUmber et al., 2001]. The following translation rules are chosen:

92CHAPTER 7. TRANSFORMATION OF SYSML SPECIFICATION INTO PROMELA-SPIN

Listing 7.1: Rule SysMI model to Promal model

—— @nsURI MMSysML=http : //www. eclipse .org/papyrus/0.7.0/SysML
—— @nsURI MMUML=http : / /www. eclipse . org/uml2/3.0.0/UML

module SMDtoPromela;

create OUT : MMPromela from IN:MMSysML, IN1: MMUML;

helper context MMUML! NamedElement def: getModel () -
: MMUML! Model =
if self.owner.ocllsTypeOf (MMUML! Model) then
self.owner

else

self.owner. getModel ()
endif;
rule ModelzModel {
from

UML_Model : MMUML! Model
to

Promela_Model : MMPromela!Model ()
}

rule Class20bjectProctype {
from
UML_Class: MMUML! Class
to
Promela_ObjectProctype: MMPromela! Object
_Proctype (
ownerModel <-— UML_Class.getModel ()

}

abstract rule State2State {
from
UML_State : MMUML! State
to
promela_State : MMPromela! State (

rule CompositeState2ProcType extends State2State {
from

UML _State :MMUML! State (UML_State.isComposite)
to

promela_ProcType: MMPromela! Proctype (

)

e A SMD is mapped into Promela.
¢ A Promela Proctype is used to allow parallel states activation semantics.

e Aboolean signal represents the activation of each state, more than one state can be
active at the same time.

7.3. FROM SYSML TO PROMELA 93

e A Promela Proctype are sensitive each one to another by notification to represent
every event trigger that can fire transition from the associated state.

e In Promela Proctype, condition statements are utilized to represent the guards used
in SMD.

By applying these rules, the basic mappings of SMD elements into Promela specifications
are as defined in Table El!

Table 7.1: Mapping between SMD and Promela

H SysML/SMD ‘ Promela/Spin H
Object Proctype
Instance Variable Variable
Association Channel
Generalization Duplicated Proctype
State State Block
Composite State Proctype
Concurrent Composite State | Concurrent Proctype
Transition Messages/ Assignments

7.3.5/ The Promela Model

The syntax of Promela is C-like. This section describes the Promela syntax that is involved
in the translation. The main task of the Promela interpreter is to maintain the environ-
ment. The environment is the sum of all variables, proctypes, and channels and character-
izes system states. Equal environments are equivalent to same states. The model checker
uses the interpreter to build up the state space.

Therefore, it repeatedly makes calls to the interpreter. Each call has as input the current
environment and delivers as output all executable transitions plus the subsequent envi-
ronments. In a deterministic model, there is only one possible computation. Therefore,
for a concurrent or non-deterministic model, checking all possible computations involves
performing the program and backtracking all over the selection of the next statement
to execute. One of the ways that SPIN archives efficiency is by generating an optimized
model called a verifier for each Promela model. The structure verifies in Promela envi-
ronment as:

Generate the verifier from the Promela source code.

Verifier is a program written in C structure.

Compile the verifier relating environment C compiler.

Execute to verify a result of the accomplishment of the verifier is a report that all
computations are correct or else that some computation contains an error.

94CHAPTER 7. TRANSFORMATION OF SYSML SPECIFICATION INTO PROMELA-SPIN

7.3.6/ Conversion Promela model to Promela Code

The last step of the proposed MDA approach concerns the Promela code generation using
the Acceleo technology which is an open source code generator from the Eclipse Foun-
dation. It executes the MDA approach to develop the application from EMF based mod-
els. The Acceleo language is an application of the MOF Models to Text Transformation
(MOFMZ2T).

Once this definition is done, we can implement the code generator in our previous ex-
ample. We have the metamodel and model of Promela for code generation, and we need
to create an Acceleo project and configure the workflow necessary to automatically gen-
erate Promela code from the Promela model. Hence, we have defined Acceleo templates
to match Promela model elements with the Promela syntax. In the first line of Acceleo
code, we are importing the metamodel so that the generator knows the structure of our
model. The important concept within Acceleo is called **Template”, it is the smallest unit
identified in a template file.

7.4/ Verification using the SPIN Tool

The SPIN tool for checking the satisfaction of the extracted LTL properties in the Promela
model derived from the state machine diagrams. Our approach was organized by the
““verify" relationships between requirements, blocks and state machine diagrams. Ver-
ification in SPIN is a three-step process Figure @

* deadlocks
____—— =+ assertion

model | ‘ property * liveness properties
spin.exe l l
[Verifier generator] [LTL translator]
/ |
* random
» interactive
* guided

—_——————————»

'\

Error

Figure 7.4: The architecture of SPIN

7.5. ILLUSTRATION ON THE CASE STUDY 95

7.4.1/ LTL Model Checking

Linear Temporal Logic (LTL) is a linear-time logic that provides operators for describing
events along a single computation path. They offer the possibility to describe events that
will eventually become true, a fact that cannot be expressed in first-order logic. LTL for-
mulas are inductively defined as follows:

e Every p; € AP (atomic propsitions) is an LTL formula.
e LTLis complete under the boolean operations -, — , A, and V.
o If p; isan LTL formula, then X,, G, and F, are LTL formulas.

e If p; and ¢ are LTL formulas, then ¢1 U @9 and ¢;1 R @9 are LTL formulas.

An important step in model-checking is to phrase the properties that should be verified
at a model. Linear temporal logics are often the first choice, because they can express
two main types of properties easily " “safety"” properties and " "liveness"” properties. Safety
properties state that something bad never happens (G- ¢) and liveness properties state
that something good keeps happening (G(¢; — F ¢2)). Therefore we open the ““Check
LTL Formula" option and type in our LTL formula. Note that Promela expressions have to
be put into braces/{....... }.

For example, we would like to check the safety property is:

G(- {turn==C}).

7.4.2/ Verification

To verify the requirements of the Crossroads system, the verification of SysML functional
requirements by translating SysML diagrams into formal models. So, we consider the
SysML requirement diagram, the block definition diagram. Our verification approach is
guided by the requirement relationships, such as *“verify"”, with the model elements, to
verify functional requirements on state machine diagrams.

7.5/ Illustration on the case study

To represent the behavior of the “*Controller_System" block by SMD " StateMachine_-
Light". The diagram shows the state of traffic light colors as managed by the " Traffi-
cLightController” operation. From the default state, the system changes to the " Init -
State" state. The light colors can be in one of six states: ““Init_State”, "NS_G_State"”, ""NS_-
Y State”, ""EW _R State”, *"EW_Y State” and ~"EW_G_State". It can respond to the events
north with south lights and east with west lights.

Note that not all events are valid in all states; for example, if a light is **NS_G_State", you
cannot change it until you *"NS_Y _State" it. Also, notice that a state transition can have a
guard condition attached, so the system changes from one state to another according the
transition conditions (guards).

96CHAPTER 7. TRANSFORMATION OF SYSML SPECIFICATION INTO PROMELA-SPIN

Default is the next state if no transition condition is satisfied as shown in state *"Init -
State". If the state has any unconditional transition line, then assigning default state to
next state is omitted as shown in case " ‘Init_State"”, we see that the next state conditions
appear in the generated Promela code according to the assigned priority. Consider the
following situations where:

"*NS" and’"WE" are two inputs for a state machine.

“tif (NS==1) and (WE==0) NextState = NS_G_State"
““else if (NS==1) NextState = NS_Y _State"

Ifboth *"NS and EW are 0", then NextState is dependent on the order of the appearance of
the conditions in the code. Figure @ shows the SMD diagram.

StateMachine TrafficLightContraller

Initial/Restart

Init_State Ater 1 Sec
/do Activity N,5=R and EW=R

EW_G_State NS_G_State
{do Activity N5=R and EW=Y Jdo Activity N,5=G and EW=R
fentry Activity Wait 5 Sec Jentry Activity Wait 33 Sec

After1 Sec

After 1 Sec

After 1 Sec

EW_Y _State
fdo Activity N,S=R and EW=6

NS_Y State

Jdo Activity N,S=Y and E\W=R

Tentry Activity Wait 5 Sec

[entry Activity Wait 33 Sec

After 1 Sec EW R _State After 1 Sec
/do Activity N,5=R and EW=R

Figure 7.5: SMD of Controller System block

7.5.1/ Combine SysML to Promela

We will focus on how to perform and what are the parametersused to affect the implemen-
tation. As well as after has been defining the requirement, structure, and behaviour mod-
eling to generate a Promela environment. The mapping methodology is used to create
Promela code from SysML diagrams. Figures @ demonstrate the SysML2SystemC code.

7.5. ILLUSTRATION ON THE CASE STUDY 97

#define A (Light_NorthSouth ==NSG)

#define B (Light_EastWest ==EWG)

#define C (Light_NorthSouth ==NSR)

mtype = {Rns,Rew, EWR, EWG, EWY, NSG, NSY,NSR};
mtype Light_NorthSouth = EWR;

mtype Light_EastWest= NSG;

chan q = [0] of { mtype }

active proctype NorthSouth () {

do

\ = g?Rns -> Light_NorthSouth = EWG ;
~ A\ g!Rew -> Light_NorthSouth = EWY ;
=i

Statebaching TraffclightContrall

Init_State
£da Activty NS=R and EW=R

NS_G_state
7do Actiity N.S=6 and £ WsR

Jentry Actrity Wait 33 Sec

(NSY_State
/do Activiay N,S=¥ and EW=R

Fentry Actvity Wik Sec

EW_Y_Sute
Jdo Activity N S=R and EW=6

T - Light_NorthSouth == EWY ->Light_NorthSouth = EWR
fi;

e 15ec Od

3
active proctype EastWest() {
d

o
= g!Rns -> Light_EastWest= NSR
= g?Rew -> Light_EastWest = NSG ;
=if

- Light_EastWest == NSG -> Light_EastWest = NSY
fi;

od
. r:g:l:'i"hm"‘"; “Requirement.. 1}
s cobors No Desdiock tpt { ([(A& B
B s st o155 { () (A)
e gm:.nth:hzmi\r)‘m-t:gm? : ______———-‘:7 x;s;hﬂi:r:!ﬁmg"'“ﬂ“"‘ IELd Ithpd {([[(C)}
must not green 41‘, 1t D4 {(E] (IC))}

A

v S - —— !

X R, ——=ay
\ i !
. S
StateMachine_TrafficLight Block: TrafficLightController

Figure 7.6: Code generation from RD and SMD to Promela

7.5.2/ Functional Requirements

There are two major properties we can prove about programs: safety and liveness. They
are also referred to as invariance and eventuality, respectively. Defining between the two
types of properties is helpful because different techniques can be used to prove each type.
For example, the understanding advantage of the structure of safety properties can be
used to optimize assume-guarantee reasoning. That appears a safety property holds in-
volves an invariance argument while liveness properties require a model of justifying.

After defining the flags to track the execution state of the system, LTL properties can be
written as boolean expressions over the flags. In our approach, we propose to transform
SysML requirements to LTL properties by respecting this formalism with flags.

Furthermore, in Figure @ we detail the safety requirements of the crossroads. For ex-
ample, the requirement (Id=R1) expresses that the traffic lights on both roads that form
the junction are different all the time. The constraint that represents the requirement is
considered like an invariant of the block *“Controller_System". To show how the require-
ments of the **CrossRoad" system are presented in an RD. The RD that contains three re-
quirements (" *CrossRoadRequirement”), a test case (" *StateMachine _Light") represented
as SMD and the block (**Controller_System") which represent the traffic light system. In
this diagram, we show that the requirement (**CrossRoadRequirement”) is composed of
the two (" Traffic lights colors”) and (" "No_Deadlock”). The state of ID: R1 and R2 are sat-
isfied by the block (**Controller System") and verified by the state machine (" StateMa-
chine_Light").

98CHAPTER 7. TRANSFORMATION OF SYSML SPECIFICATION INTO PROMELA-SPIN

wRequirement:
CrossRoadRequirement
wRequirements

id=R0
text=The system must ensure traffic in
the junction without accidents

e

«Requirements» «Requirement-
Traffic lights colors No_Deadlock

«Requirementn aRequirementn
id=R1 id=R2
text=when the North_and _South ligths 77 text=The traffic light system must be
are green, the East_and_West lights P deadlock free
must be red ’

N o N
v ~ .

|
I
|
I
|
I
N == - i I |
I
|

StateMachine_TrafficLight Block: TrafficLightController

Figure 7.7: Crossroads System Requirement

7.5.3/ Verification of LTL properties

To verify the requirements of the Crossroads system, the verification of SysML functional
requirements by translating SysML diagrams into formal models. Requirements are ex-
pressed into temporal logic properties expressed in LTL. First, we verify that the system is
deadlock free. We express this property by the formula: **[]! deadlock”. Others, we verify
temporal properties. As example, we guarantee that both North with South Lights and
East with West Lights can not stay in yellow color, which is expressed in LTL as:

o [[(((Light_NorthS oth==NS G))&&(!((Light_EastWest == EWQG))).
o [|(((Light_NorthS oth==NS G))||(!((Light_EastWest == EWG))).

Then, we verify that both NorthandSouth Lights and EastandWest Lights cannot stay in
red color. This is expressed in LTL as:

o [[((Light_NorthS oth==NSR)).
o [|(!(Light_EastWest==EWR)).

In Figure @ we present the SPIN environment and the obtained diagnostic for the
Promela model properties and their verification results.

7.6/ Conclusion

We have illustrated in this chapter our proposed methodology to verify and validate com-
plex systems designed with SysML functional requirements over SysML blocks. To solve

7.6. CONCLUSION 99

Safety Storage Mode Search Mode

" safety &+ exhaustive {+" depth-first search

W + invalid endstates [deadlock) ™ + minimized automata (slow) ¥ + partial order reduction

W+ assertion violations ™ + collapse compression ™ + bounded context switching

™+ xrfxs assertions " hash-compact " bitstate/supertrace with bound: |0

Liveness Mever Claims I + iterative search for short trail
C non-progress cycles " do not use a never claim or Itl property " breadth-first search
& acceptance cycles % useclaim ¥ + partial order reduction
™ enforce weak fairness constraint claim name (opt): |p2 ¥ report unreachable code
Run | pan.out

1 #define A (Light_NorthSouth ==NSG) never clam
2 #define B (Light_EastWest ==EWG) assertion violati
3 #define C (Light_NorthSouth ==NSR) acceptance cycl
4 #define D (Light_EastWest ==EWR) invalid end state:
5 mtype = {Rns,Rew, EWR, EWG, EWY, NSG, NSY,NSR
S State-vector 32 byte, depth reached 51, errors:
[mtype Light_NorthSouth = EWR, 4 tored
7 mtype Light_EastWest= NSG; matched
8 chan q = [0] of { mtype }) 5 ored+matched)
g active proctype NorthSouth () { 0 atomic step
10 do hash conflicts: resolved)
11 = g?Rns -= Light_NorthSouth = EWG
12 = glRew -= Light_NorthSouth = EWY ; Stats on memory usage (in Megabyt
13 o 0.002 equivalent men age fo
14 = Light_NorthSouth == EWY -=Light_NorthSouth = EW 0.285 actual memol
R 64.000 memory
15 fi; memory
16 od 5 total actual memory u
17
18 active proctype EastWest() {
19 do unreached in proctype NorthSouth
20 - glRns -> Light_EastWest= NSR ; Traffic_Liaght-02-02 pml:17, state 12,
21 = g?Rew -+ Light_EastWest = NSG ; 5
22 =i :
23 = Light_EastWest == NSG -» Light_EastWest = NSY i .pml:26, state 12,
24 fi; (10f1
25 od unreached in claim p
26 1 rtmp:17, state 10, "-end-"
27 ithp1 £ ([(A && IB))}
28 thp2 { (0] (A]| 1A}
29 ithp3 L ([(C N apsed time 0 seconds
30 Ithpd £ (0 (1C N Mo errors found — did you verify all claims?
3 thpS (0 (D N}

Figure 7.8: verification results

this issue, we have converted requirements into formal properties using linear tempo-
ral logic. LTL properties were then verified by a formal model of a SysML block. Formal
models of SysML blocks were obtained by applying the approach of rule mapping to trans-
form SysML state machine diagrams into Promela descriptions. Finally, we used the SPIN
model checker tools to verify LTL properties over the Promela descriptions.

[V

Conclusions and Future works

101

S

Conclusion and Perspectives

We have presented in this thesis an approach to jointly use simulation and model-
checking for verification and validation purposes. These techniques are combined to raise
confidence during the design of complex systems.

In this approach, we propose a methodology based on SysML models combined with Sys-
temC and Promela/SPIN, to specify and validate a complex systems. This approach is
based on Model Driven Engineering techniques to firstly translate SysML models to Sys-
temC with the aim of simulation and to map SysML behavioral diagrams to Promela/SPIN
in order to verify some temporal properties extracted from the requirements.

Within this conclusion, we summarize the obtained results and we present some discus-
sions about our work. We address in the Figure @ the proposed approach and the future
work.

Therefore, there are two challenges that a designer must solve:

e How to integrate formal aspects within SysML specifications to build reliable sys-
tems, for both specifications and requirements?

e How to combine simulation and verification approaches to validate complex sys-
tems described by SysML models? How to ensure that the functional and the non-
functional requirements are satisfied by the system under design?

8.1/ Main Contributions

In this dissertation we have focused on the use of SysML and SystemC languages as al-
ternatives to specify, simulate and verify complex systems. SysML is popular and allows
the modeling of software and hardware components with a high level of abstraction by
ignoring the details of the implementation.

Combining verification and simulation techniques to verify requirements in reliable ap-
plicationsis very important. To achieve this goal, we have proposed an approach that take
into account functional and non-functional requirements. Functional properties are ver-
ified with model-checkers and non-functional properties are simulated.

Specifically, our purposes consist in using particular SysML diagrams and elements to
describe different aspects of the specification from functional or non-functional require-
ments.

103

104 CHAPTER 8. CONCLUSION AND PERSPECTIVES

Requirement Diagram
functional, non-functional

Structural Diagram Behavioral Diagram
bdd, ibd, par stm

l Expression
LTL, (T)CTL
Simulation Verification Properties

Trace to
errors

UPPAAL
... .. | (timed automata)
Verification

Validate

NO diagnostic

®

Figure 8.1: Our perspectives

To demonstrate the feasibility of the approach, a trafficlight system is taken as a reference
case study and is used for simulation and verification of properties.

In this thesis, we have presented three contributions. The first one is the starting point of
the two others contributions:

¢ Using Model-driven engineering for transformations. We have used Model Driven
engineering approaches to translate SysML diagrams to SystemC executable speci-
fications. Globally, the work describes a transformation from SysML structure dia-
grams (Block Definition Diagram, Internal Block Diagram, and Parametric Diagram)
and behavior diagrams (State machine diagram) to SystemC model. These transla-
tions are based on metamodels rules and implemented within the Eclipse frame-
work. We decided to use the Papyrus modeling environment to design SysML mod-
els. Then we have used ATL and Acceleo to translate SysML models into SystemC.
SystemC code is generated automatically and is used for simulation. We have illus-
trated the practicability of our approach with a case study about a traffic-light sys-
tem.

8.2.

8.2/

FUTURE WORK 105

Verification of functional properties. In a first time, we have used the STATE tool to
transform a SystemC module as an input for the Uppaal model-checker in order to
verify timed automata properties. The obtained Uppaal automata seems to be not
usable for our purposes. Also, in a second time, we have proposed an approach to
verify SysML functional requirements expressed as LTL properties over state ma-
chine diagrams. As SysML is a semi-formal language, we have proposed a transla-
tion of state machine diagrams into Promela model. This translation is based on
model transformation and is implemented in Eclipse platform using Papyrus, ATL
and Acceleo.

From the SysML requirements diagram, we have extracted LTL properties. Then, we
have used the SPIN tool for checking the satisfaction of the extracted LTL properties
in the Promela model. Our verification approach is guided by the " “satisfy" and the
““verify" relationships between requirements, blocks and state machine diagrams.

Future work

The work of this thesis targeted the main issue: how to integrate formal specifications dur-
ing the design of complex systems using SysML specifications? Requirements diagrams
describe functional and non-functional properties of the system. Our contributions ad-
dressed some solutions and a feasible approach to build reliable SysML is proposed. To
complete these results, we have identified some perspectives and future work.

e Combining SysML and MARTE for timed non functional properties.

In reliable systems, it is crucial to specify a system in accord with functional and
non functional requirements. To achieve this goal, we have proposed an approach to
specify the system architecture with the SysML requirements diagram for untimed
requirements. So, asa future work, itisinteresting to address timed properties using
the UML/MARTE profile with SysML.

Extending the approach using Sequences Diagrams for verification.

In our approach we have specified the system using SysML requirements, block def-
inition and state machine diagrams. From these specifications, a Promela model
with LTL formulas is derived. It would be interesting to investigate other diagrams
like the sequence diagram to generate Promela model. Indeed, it would be possible
to specify synchronous messages between components in order to verify commu-
nication protocol, for instance, between the components of a complex system. In
this case we may use the SPIN model-checker to verify some properties over these
protocols.

In addition, other languages may be envisaged to describe temporal properties. In-
deed, it would be interesting to do a strong survey about existing temporal lan-
guages. Which permits to mathematically describe temporal properties.

Investigating results feedback to SysML specifications.

Asdepicted on Figure @ we plantoinvestigate onreverse engineering or back engi-
neering techniques. Indeed, it would be useful to feedback results from simulation
or model-checkers into the SysML specifications. It would be a strong asset for both

106 CHAPTER 8. CONCLUSION AND PERSPECTIVES

the traceability of the requirements and their maturity. In addition, it would be pos-
sible to feedback errors or bugs that are detected during simulation and verification.
The main goal is to assess the validity of the requirements and of the model at the
soonest in the verification and validation process. With this approach, the designer
can iterate the process until the specifications are correct.

e A (semi-)automatic tooled process for simulation and verification.

We plan to develop a tooled process that supports the automatic simulation and
model-checking activities. This tooled appraoch may be composed of tools that en-
able the following processes:

1. Automatic translation of SysML diagrams into Promela language and auto-
matic verification of LTL properties with the SPIN model-checker.

2. Automatic translation of SysML diagrams into SystemC language and auto-
matic verification of properties using the UPPAAL model-checker.

3. Automatictranslation of informal requirements (text) to formal properties. For
instance, it would be possible to use pattern recognition to translate informal
sentences into LTL or CTL.

Finally, we plan to perform extensive experiments on industrial case study to evalu-
ate the scalability of the proposed approach.

Bibliography

[Abdulhameed et al., 2014a] Abdulhameed, A., Hammad, A., Mountassir, H., et Tatibouet,
B. (2014a). An approach based on SysML and SystemC to simulate complex systems.
In Model-Driven Engineering and Software Development (MODELSWARD), 2014 2nd
International Conference on, pages 555--560. IEEE.

[Abdulhameed et al., 2014b] Abdulhameed, A., Hammad, A., Mountassir, H., et Tatibouét,
B. (2014b). An approach combining simulation and verification for sysml using sys-
temcand uppaal. In CAL 2014, 8eme conférence francophone sur les architectures logi-
cielles, page 9 pages, Paris, France.

[Abdulhameed et al., 2015] Abdulhameed, A., Hammad, A., Mountassir, H., et Tatibouet, B.
(2015). An approach to verify SysML functional requirements using Promela/SPIN. In
Programming and Systems (ISPS), 2015 12th International Symposium on, pages 1--9.
IEEE.

[Abrial etal., 1998] Abrial, J.-R., et Mussat, L. (1998). Introducing dynamic constraints in B.
In B'98: Recent Advances in the Development and Use of the B Method, pages 83--128.
Springer.

[Adrion et al.,1982] Adrion, W. R., Branstad, M. A., et Cherniavsky, J. C. (1982). Valida-
tion, verification, and testing of computer software. ACM Computing Surveys (CSUR),
14(2):159--192.

[Al Obisat, 2012] Al Obisat, E M. (2012). Using Spin Model Checker for Learning the Se-
mantics of UML Models. International Journal of Computer Science and Telecommu-
nications, 3:7--10.

[AlRawashdeh et al., 2014] AlRawashdeh, H., Idris, S., et Zin, A. M. (2014). Using Model
Checking Approach for Grading the Semantics of UML Models. pages 122--129.

[Alur et al., 1990] Alur, R., Courcoubetis, C., et Dill, D. (1990). Model-checking for real-time
systems. In Logic in Computer Science, 1990. LICS'90, Proceedings., Fifth Annual IEEE
Symposium on e, pages 414--425. IEEE.

[Ando et al., 2013] Ando, T., Yatsu, H., Kong, W,, Hisazumi, K., et Fukuda, A. (2013). For-
malization and Model Checking of SysML State Machine Diagrams by CSP#. In Compu-
tational Science and Its Applications--ICCSA 2013, pages 114--127. Springer.

[Antonis et al., 2008] Antonis, K., et Voros, N. S. (2008). System level design of telecom
systems using formal model refinement: Applying the B method/language in practice.
Journal of Systems Architecture, 54(1):287--304.

[Apvrille et al., 2013] Apvrille, L., et de Saqui-Sannes, P. (2013). Static analysis techniques
to verify mutual exclusion situations within sysml models. In SDL 2013: Model-Driven
Dependability Engineering, pages 91--106. Springer.

107

108 BIBLIOGRAPHY

[Aynsley, 2006] Aynsley, D. J. (2006). Ieee standard systemc language reference manual.
IEEE Computer Society Std, 1666.

[Barne}t etal., 2013] Barnat, J., Brim, L., Havel, V., Havlicek, J., Kriho, J., Lenc¢o, M., Rockai,
P, Still, V., et Weiser, J. (2013). DiVinE 3.0--an explicit-state model checker for multi-
threaded C & C++ programs. In Computer Aided Verification, pages 863--868. Springer.

[Beato et al., 2004] Beato, M. E., Barrio-Solérzano, M., Cuesta, C. E., et de la Fuente, P.
(2004). UML automatic verification tool (TABU). SAVCBS 2004 Specification and Veri-
fication of Component-Based Systems, page 106.

[Behrmann et al., 2004] Behrmann, G., David, A., et Larsen, K. G. (2004). A Tutorial on Up-
paal. In Bernardo, M., et Corradini, E, editors, Formal Methods for the Design of Real-
Time Systems: 4th International School on Formal Methods for the Design of Computer,
Communication, and Software Systems, SFM-RT 2004, number 3185 in LNCS, pages
200--236. Springer--Verlag.

[Benini et al., 2003] Benini, L., Bertozzi, D., Bruni, D., Drago, N., Fummi, E, et Poncino, M.
(2003). SystemC cosimulation and emulation of multiprocessor SoC designs. Com-
puter, 36(4):53--59.

[Berrani et al., 2013] Berrani, S., Hammad, A., et Mountassir, H. (2013). Mapping SysML
to modelica to validate wireless sensor networks non-functional requirements. In Pro-
gramming and Systems (ISPS), 2013 11th International Symposium on, pages 177--186.
IEEE.

[Bézivin et al., 2003] Bézivin, J., Dupé, G., Jouault, E, Pitette, G., et Rougui, J. E. (2003). First
experiments with the ATL model transformation language: Transforming XSLT into
XQuery. In 2nd OOPSLA Workshop on Generative Techniques in the context of Model
Driven Architecture, volume 37.

[Bhaduri et al., 2004] Bhaduri, P.,, et Ramesh, S. (2004). Model checking of statechart mod-
els: Survey and research directions. arXiv preprint cs/0407038.

[Blanc et al., 2010] Blanc, N., et Kroening, D. (2010). Race analysis for SystemC using model
checking. ACM Transactions on Design Automation of Electronic Systems (TODAES),
15(3):21.

[Blanchard et al., 1990] Blanchard, B. S., Fabrycky, W. J., et Fabrycky, W. J. (1990). Systems
engineering and analysis, volume 4. Prentice Hall Englewood Cliffs, New Jersey.

[Bodeveix et al., 2005] Bodeveix, J., Filali, M., Lawall, J. L., et Muller, G. (2005). Formal
Methods Meet Domain Specific Languages. In Integrated Formal Methods, 5th Interna-
tional Conference, IFM 2005, Eindhoven, The Netherlands, November 29 - December 2,
2005, Proceedings, pages 187--206.

[Bombino et al., 2012] Bombino, M., et Scandurra, P. (2012). A model-driven co-simulation
environment for heterogeneous systems. International Journal on Software Tools for
Technology Transfer, pages 1--12.

[Bonanome, 2001] Bonanome, G. (2001). Hardware description languages compared: Ver-
ilog and SystemC. Department of Computer Science, Columbia University.

BIBLIOGRAPHY 109

[Bousse et al., 2012] Bousse, E., Mentré, D., Combemale, B., Baudry, B., et Katsuragi, T.
(2012). Aligning SysML with the B method to provide V&V for systems engineering.
In Proceedings of the Workshop on Model-Driven Engineering, Verification and Vali-
dation, pages 11--16. ACM.

[Boutekkouk, 2010] Boutekkouk, F. (2010). Automatic SystemC code generation from UML
models at early stages of systems on chip design. International Journal of Computer
Applications, 8(6):10--17.

[Bustan et al., 2012] Bustan, D., Korchemny, D., Seligman, E., et Yang, J. (2012). SystemVer-
ilog assertions: Past, present, and future SVA standardization experience. Design &
Test of Computers, IEEE, 29(2):23--31.

[Caietal., 2003] Cai, L., et Gajski, D. (2003). Transaction level modeling: an overview. In
Proceedings of the 1st IEEE/ACM/IFIP international conference on Hardware /software
codesign and system synthesis, pages 19--24. ACM.

[Calazans et al., 2003] Calazans, N., Moreno, E., Hessel, F,, Rosa, V., Moraes, E., et Carara, E.
(2003). From VHDL register transfer level to SystemC transaction level modeling: a
comparative case study. In Integrated Circuits and Systems Design, 2003. SBCCI 2003.
Proceedings. 16th Symposium on, pages 355--360. IEEE.

[Caoetal., 2011] Cao, Y., Liu, Y., et Paredis, C. J. (2011). System-level model integration
of design and simulation for mechatronic systems based on SysML. Mechatronics,
21(6):1063--1075.

[Cavada et al., 2014] Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli,
A.,Mover, S., Roveri, M., et Tonetta, S. (2014). The NUXMV symbolic model checker. In
Computer Aided Verification, pages 334--342. Springer.

[Chou et al., 2012] Chou, C.-N., Ho, Y.-S., Hsieh, C., et Huang, C.-Y. (2012). Symbolic model
checking on SystemC designs. In Design Automation Conference (DAC), 2012 49th
ACM/EDAC/IEEE, pages 327--333. IEEE.

[Cimatti et al., 2000] Cimatti, A., Clarke, E., Giunchiglia, E, et Roveri, M. (2000). NuSMV: a
new symbolic model checker. International Journal on Software Tools for Technology
Transfer, 2(4):410--425.

[Clarke et al., 1986] Clarke, E. M., Emerson, E. A., et Sistla, A. P. (1986). Automatic veri-
fication of finite-state concurrent systems using temporal logic specifications. ACM
Transactions on Programming Languages and Systems (TOPLAS), 8(2):244--263.

[Clarke et al., 1999] Clarke, E. M., Grumberg, O., et Peled, D. (1999). Model checking. MIT
press.

[Czarnecki et al., 2006] Czarnecki, K., et Helsen, S. (2006). Feature-based survey of model
transformation approaches. IBM Systems Journal, 45(3):621--645.

[Debbabi et al., 2010] Debbabi, M., Hassaine, E, Jarraya, Y., Soeanu, A., et Alawneh, L.
(2010). Verification and Validation in Systems Engineering: Assessing UML/SysML De-
sign Models. Springer Science & Business Media.

[dos Santos Soares et al., 2011] dos Santos Soares, M., Vrancken, J., et Verbraeck, A. (2011).
User requirements modeling and analysis of software-intensive systems. Journal of
Systems and Software, 84(2):328--339.

110 BIBLIOGRAPHY

[Espinoza et al., 2009] Espinoza, H., Cancila, D., Selic, B., et Gérard, S. (2009). Challenges in
combining SysML and MARTE for model-based design of embedded systems. In Model
Driven Architecture-Foundations and Applications, pages 98--113. Springer.

[Fernandez et al., 1996] Fernandez, J.-C., Garavel, H., Kerbrat, A., Mounier, L., Mateescu, R.,
et Sighireanu, M. (1996). CADP a protocol validation and verification toolbox. In Com-
puter Aided Verification, pages 437--440. Springer.

[Ferro etal., 2010] Ferro, L., et Pierre, L. (2010). ISIS: Runtime verification of TLM plat-
forms. In Advances in Design Methods from Modeling Languages for Embedded Sys-
tems and SoC'’s, pages 213--226. Springer.

[Foster et al., 2005] Foster, H., Marschner, E., et Wolfsthal, Y. (2005). IEEE 1850 PSL: The
next generation. In DVCon'os: Design and Verification Conference and exhibition.
Citeseer.

[Friedenthal et al., 2008] Friedenthal, S., Moore, A., et Steiner, R. (2008). OMG Systems
Modeling Language (OMG SysML™) Tutorial. In INCOSE International Symposium,
volume 18, pages 1731--1862. Wiley Online Library.

[Friesen, 2011] Friesen, A. (2011). On Challenges in Enterprise Systems Management and
Engineering for the Networked Enterprise of the Future. In Enterprise Interoperability,
pages 1--2. Springer.

[Fritzson et al., 1998] Fritzson, P, et Engelson, V. (1998). Modelica—a unified object-
oriented language for system modeling and simulation. In ECOOP’98—Object-
Oriented Programming, pages 67--90. Springer.

[Fummi et al., 2008] Fummi, E, Quaglia, D., et Stefanni, E. (2008). A SystemC-based frame-
work for modeling and simulation of networked embedded systems. In Specification,
Verification and Design Languages, 2008. FDL 2008. Forum on, pages 49--54. IEEE.

[Galos et al., 2013] Galos, M., Mieyeville, E, Navarro, D., et O'Connor, I. (2013). SystemC
fine-grained HW--SW fully heterogeneous WSN simulation and UML metamodel be-
havioural extraction. Analog Integrated Circuits and Signal Processing, 77(2):123--133.

[Gardner et al., 2003] Gardner, T., Griffin, C., Koehler, J., et Hauser, R. (2003). A review of
OMG MOF 2.0 Query/Views/Transformations Submissions and Recommendations to-
wards the final Standard. In MetaModelling for MDA Workshop, volume 13, page 41.
Citeseer.

[Glasser, 2009] Glasser, M. (2009). Open Verification Methodology Cookbook. Springer
Publishing Company, Incorporated, 1st edition.

[Gnesi et al., 2002] Gnesi, S., Latella, D., et Massink, M. (2002). Modular semantics for a
UML statechart diagrams kernel and its extension to multicharts and branching time
model-checking. The Journal of Logic and Algebraic Programming, 51(1):43--75.

[Goldsby et al., 2006] Goldsby, H., Cheng, B. H., Konrad, S., et Kamdoum, S. (2006). A visu-
alization framework for the modeling and formal analysis of high assurance systems.
In Model Driven Engineering Languages and Systems, pages 707--721. Springer.

[Grofie et al., 2007] Grofle, D., Ebendt, R., et Drechsler, R. (2007). Improvements for con-
straint solving in the SystemC verification library. In Proceedings of the 17th ACM Great
Lakes symposium on VLSI, pages 493--496. ACM.

BIBLIOGRAPHY 111

[GroBe et al., 2010] Grofe, D., Le, H. M., et Drechsler, R. (2010). Proving transaction and
system-level properties of untimed SystemC TLM designs. In Formal Methods and Mod-
els for Codesign (MEMOCODE), 2010 8th [EEE/ACM International Conference on, pages
113--122. [EEE.

[Gunter et al., 2000] Gunter, C., Gunter, E. L., Jackson, M., Zave, P, et others (2000). A
reference model for requirements and specifications. In Requirements Engineering,
2000. Proceedings. 4th International Conference on, page 189. IEEE.

[Haedicke et al., 2012] Haedicke, E, Le, H. M., Grofie, D., et Drechsler, R. (2012). CRAVE:
An advanced constrained random verification environment for SystemC. In System on
Chip (SoC), 2012 International Symposium on, pages 1--7. IEEE.

[Hai-yan et al., 2001] Hai-yan, C., Wei, D., Ji, W,, et Huo-wang, C. (2001). Verify UML state-
charts with SMV. Wuhan University Journal of Natural Sciences, 6(1-2):183--190.

[Hammad et al., 2002] Hammad, A., Tatibouét, B., Voisinet, J.-C., et Weiping, W. (2002).
From a B specification to UML statechart diagrams. In Formal Methods and Software
Engineering, pages 511--522. Springer.

[Hause et al., 2010] Hause, M., Stuart, A., Richards, D., et Holt, J. (2010). Testing safety crit-
ical systems with SysML/UML. In Engineering of Complex Computer Systems (ICECCS),
2010 15th IEEE International Conference on, pages 325--330. IEEE.

[Havelund et al., 1997] Havelund, K., Skou, A., Larsen, K. G., et Lund, K. (1997). Formal mod-
eling and analysis of an audio/video protocol: An industrial case study using UPPAAL.
In Real-Time Systems Symposium, 1997. Proceedings., The 18th IEEE, pages 2--13. IEEE.

[Holzmann, 1997] Holzmann, G. J. (1997). The model checker SPIN. IEEE Transactions on
software engineering, (5):279--295.

[Honour, 1998] Honour, E. C. (1998). INCOSE: history of the International Council on Sys-
tems Engineering. Systems Engineering, 1(1):4--13.

[Houcque, 2005] Houcque, D. (2005). Introduction to matlab for engineering students.
Northwestern University.

[Jackson, 1985] Jackson, M. (1985). Developing ada programs using the Vienna develop-
ment method (VDM). Software: Practice and Experience, 15(3):305--318.

[Jainetal., 2012] Jain, V., Kumar, A., et Panda, P. (2012). Exploiting UML based validation
for compliance checking of TLM 2 based models. Design Automation for Embedded
Systems, 16(2):93--113.

[Kasuya et al., 2007] Kasuya, A., et Tesfaye, T. (2007). Verification Methodologiesin a TLM-
to-RTL Design Flow. In Proceedings of the 44th Annual Design Automation Conference,
DAC'07, pages 199--204.

[Kelton et al., 2000] Kelton, W.D,, et Law, A. M. (2000). Simulation modeling and analysis.
McGraw Hill Boston.

[Kent, 2002] Kent, S. (2002). Model driven engineering. In Integrated formal methods,
pages 286--298. Springer.

112 BIBLIOGRAPHY

[Kleijnen, 1995] Kleijnen, J. P. (1995). Verification and validation of simulation models. Eu-
ropean Journal of Operational Research, 82(1):145--162.

[Knapp, 2002] Knapp, A., M. S. (2002). Model checking and code generation for UML state
machines and collaborations. In Proceedings of 5th Workshop on Tools for System De-
sign and Verification Report 2002-11, Reisensburg, Germany, Institut fur Informatik,
Universitat Augsburg.

[Kossiakoff et al., 2011] Kossiakoff, A., Sweet, W. N., Seymour, S., et Biemer, S. M. (2011).
Systems engineering principles and practice, volume 83. John Wiley & Sons.

[Kwon, 2000] Kwon, G. (2000). Rewrite rules and operational semantics for model check-
ing UML statecharts. In UML 2000—The Unified Modeling Language, pages 528--540.
Springer.

[Laleau et al., 2010] Laleau, R., Semmak, F., Matoussi, A., Petit, D., Hammad, A., et Tati-
bouet, B. (2010). A first attempt to combine SysML requirements diagrams and B. In-
novations in Systems and Software Engineering, 6(1-2):47--54.

[Lanusse et al., 2009] Lanusse, A., Tanguy, Y., Espinoza, H., Mraidha, C., Gerard, S., Tessier,
P, Schnekenburger, R., Dubois, H., et Terrier, F. (2009). Papyrus uml: an open source
toolset for mda. In Proc. of the Fifth European Conference on Model-Driven Architec-
ture Foundations and Applications (ECMDA-FA 2009), pages 1--4. Citeseer.

[Larsen et al.,1997] Larsen, K. G., Pettersson, P, et Yi, W. (1997). UPPAAL in a nutshell.
International Journal on Software Tools for Technology Transfer (STTT), 1(1):134--152.

[Latella et al., 1999] Latella, D., Majzik, L., et Massink, M. (1999). Automatic verification of a
behavioural subset of UML statechart diagrams using the SPIN model-checker. Formal
Aspects of Computing, 11(6):637--664.

[Lazar et al., 2010] Lazar, C., Lazar, ., Parv, B., Motogna, S., et Czibula, I. (2010). Tool Sup-
port for f{UML Models. Int. J. of Computers, Communications & Control, 5(5):775--782.

[Leuschel et al., 2003] Leuschel, M., et Butler, M. (2003). ProB: A model checker for B. In
FME 2003: Formal Methods, pages 855--874. Springer.

[Leuschel et al., 2001] Leuschel, M., Currie, A., et Massart, T. (2001). How to make fdr spin
Itl model checking of csp by refinement. In FME 2001: Formal Methods for Increasing
Software Productivity, pages 99--118. Springer.

[Maetal.,2014] Ma, X., Rinast, J., Schupp, S., Gollmann, D., Turau, V., Kwiatkowska, M.,
Mangharam, R., et Weyer, C. (2014). Evaluating on-line model checking in uppaal-smc
using a laser tracheotomy case study. In MCPS, pages 100--112.

[Machida et al., 2011] Machida, E, Andrade, E., Kim, D. S., et Trivedi, K. S. (2011). Candy:
Component-based availability modeling framework for cloud service management us-
ing sysml. In Reliable Distributed Systems (SRDS), 2011 30th [EEE Symposium on, pages
209--218. IEEE.

[Mason et al., 2004] Mason, P,, Cosh, K., et Vihakapirom, P. (2004). On structuring formal,
semi-formal and informal data to support traceability in systems engineering environ-
ments. In Proceedings of the thirteenth ACM international conference on Information
and knowledge management, pages 642--651. ACM.

BIBLIOGRAPHY 113

[McUmber et al., 2001] McUmber, W. E., et Cheng, B. H. (2001). A general framework for
formalizing UML with formal languages. In Proceedings of the 23rd international con-
ference on Software engineering, pages 433--442. IEEE Computer Society.

[Mello et al., 2010] Mello, A., Maia, I, Greiner, A., et Pecheux, E (2010). Parallel simulation
of SystemC TLM 2.0 compliant MPSoC on SMP workstations. In Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2010, pages 606--609. IEEE.

[Mikk et al., 1998] Mikk, E., Lakhnech, Y., Siegel, M., et Holzmann, G. J. (1998). Implement-
ing statecharts in PROMELA/SPIN. In Industrial Strength Formal Specification Tech-
niques, 1998. Proceedings. 2nd IEEE Workshop on, pages 90--101. IEEE.

[Miyamoto et al., 2012] Miyamoto, N., et Wasaki, K. (2012). AnIntegrated Design and Verifi-
cation Environment Handling the Transformation from Upstream Design to the Model
Checking Process. International Journal of Advancements in Computing Technology,
4(14).

[MKuster et al., 2012] MKuster, A. V., Burger, A., et Rosenstiel, O. B. W. (2012). Meta-
Modelling the SystemC Standard for Component-based Embedded System Design. In
Proceedings of the 1st International Workshop on Metamodelling and Code Generation
for Embedded Systems (MeCoES), S, pages 35--40.

[Mueller, 2013] Mueller, W. (2013). How do they apply in embedded system design? UML-B
Specification for Proven Embedded Systems Design, page 1.

[Mura et al., 2008] Mura, M., Panda, A., et Prevostini, M. (2008). Executable models and
verification from marte and sysml: a comparative study of code generation capabilities.
In Proceedings of MARTE Workshop (DATE08), Munich, Germany.

[Nikiforova et al., 2012] Nikiforova, O., Pavlova, N., Gusarovs, K., Gorbiks, O., Vorotilovs, J.,
Zaharovs, A., Umanovskis, D., Sejans, J., et others (2012). Development of the Tool for
Transformation of the Two-Hemisphere Model to the UML Class Diagram: Technical
Solutions and Lessons Learned. In Proceedings of the 5th International Scientific Con-
ference ,,Applied Information and Communication Technology, pages 11--19.

[Ober, 2004] Ober, I, G. S. O. 1. (2004). Validation of UML models via a mapping to com-
municating extended timed automata. In Proceedings of 11th International SPIN Work-
shop on Model Checking of Software, 2004. Volume LNCS 2989.

[Oberkampfet al., 2010] Oberkampf, W. L., et Roy, C. J. (2010). Verification and validation
in scientific computing. Cambridge University Press.

[Odey et al., 2012] Odey, A.]J., et Li, D. (2012). Low power transceiver design parameters for
wireless sensor networks.

[Oliveira et al., 2012] Oliveira, M. E, Kuznik, C., Le, H. M., Grof}e, D., Haedicke, E, Mueller,
W., Drechsler, R., Ecker, W., et Esen, V. (2012). The system verification methodology
for advanced TLM verification. In Proceedings of the eighth IEEE/ACM/IFIP interna-
tional conference on Hardware/software codesign and system synthesis, pages 313--
322. ACM.

[OMG, 2008] OMG (2008). Mof model to text transformation language.

[OMG, 2012] OMG (2012). OMG Systems Modeling Language (OMG SysML™) Version 1.3.

114 BIBLIOGRAPHY

[OMG,] OMG, M. Guide, Version 1.0. 1, 2003. Object Management Group, page 62.

[Othman et al., 2013] Othman, S., Beydoun, G., Clarke, R., et Opper, S. (2013). DM model
transformations framework. In 24th Australasian Conference on Information Systems
(ACIS), pages 1--12. RMIT University.

[Pedroza et al., 2011] Pedroza, G., Apvrille, L., et Knorreck, D. (2011). Avatar: A sysml envi-
ronment for the formal verification of safety and security properties. In New Technolo-
gies of Distributed Systems (NOTERE), 2011 11th Annual International Conference on,
pages 1--10. IEEE.

[Piccolboni et al., 2014] Piccolboni, L., et Pravadelli, G. (2014). Simplified stimuli genera-
tion for scenario and assertion based verification. In Test Workshop-LATW, 2014 15th
Latin American, pages 1--6. IEEE.

[Plat et al., 1992] Plat, N., et Larsen, P. G. (1992). An overview of the ISO/VDM-SL standard.
ACM Sigplan Notices, 27(8):76--82.

[Pnueli, 1977] Pnueli, A. (1977). The temporal logic of programs. In Foundations of Com-
puter Science, 1977., 18th Annual Symposium on, pages 46--57. IEEE.

[Pockrandt et al., 2012a] Pockrandt, M., Herber, P., Gross, H., et Glesner, S. (2012a). Opti-
mized Transformation and Verification of SystemC Methods. Electronic Communica-
tions of the EASST, 53.

[Pockrandt et al., 2012b] Pockrandt, M., Herber, P., Gross, H., et Glesner, S. (2012b). Opti-
mized Transformation and Verification of SystemC Methods.

[Prevostini et al., 2007] Prevostini, M., et Zamsa, E. (2007). Sysml profile for soc design
and systemc transformation. ALaRI, Faculty of Informatics University of Lugano via
G. Buffi, 13(5).

[Razavietal., 2011] Razavi, N., Behjati, R., Sabouri, H., Khamespanah, E., Shali, A., et Sir-
jani, M. (2011). Sysfier: Actor-based Formal Verification of SystemC. ACM Trans. Em-
bed. Comput. Syst., 10(2):19:1--19:35.

[Riccobene et al., 2012] Riccobene, E., et Scandurra, P. (2012). Integrating the SysML and
the SystemC-UML profiles in a model-driven embedded system design flow. Design
Automation for Embedded Systems, pages 1--39.

[Riccobene et al., 2009] Riccobene, E., Scandurra, P, Bocchio, S., Rosti, A., Lavazza, L., et
Mantellini, L. (2009). Systemc/c-based model-driven design for embedded systems.
ACM Transactions on Embedded Computing Systems (TECS), 8(4):30.

[Rowson et al., 1994] Rowson, J., et others (1994). Hardware/software co-simulation. In
Design Automation, 1994. 31st Conference on, pages 439--440. IEEE.

[Rumbaugh et al., 1999] Rumbaugh, J., Jacobson, I., et Booch, G. (1999). The uml reference
manual. New York: Addison-Wesley, 1:999.

[Schinz, 2004] Schinz, I., T. T. M. C. W. B. (2004). The Rhapsody UML verification environ-
ment. In Proceedings of SEFM, IEEE Computer Society (2004), pages 174--183.

BIBLIOGRAPHY 115

[Scholtz et al., 2013] Scholtz, B., Calitz, A., et Snyman, I. (2013). The usability of collabo-
rative tools: application to business process modelling. In Proceedings of the South
African Institute for Computer Scientists and Information Technologists Conference,
pages 347--358. ACM.

[Shahdad, 1986] Shahdad, M. (1986). An overview of VHDL language and technology. In
Proceedings of the 23rd ACM/IEEE Design Automation Conference, pages 320--326.
IEEE Press.

[Snook et al., 2006] Snook, C., et Butler, M. (2006). UML-B: Formal modeling and design
aided by UML. ACM Transactions on Software Engineering and Methodology (TOSEM),
15(1):92--122.

[Soley et al., 2000] Soley, R., et others (2000). Model driven architecture. OMG white pa-
per, 308(308):5.

[Soliman et al., 2012] Soliman, D., Thramboulidis, K., et Frey, G. (2012). Transformation of
Function Block Diagrams to UPPAAL timed automata for the verification of safety ap-
plications. Annual Reviews in Control, 36(2):338--345.

[Specification, 2008] Specification, O. A. (2008). MOF Model to Text Transformation Lan-
guage.

[Sreemani et al., 1996] Sreemani, T., et Atlee, J. M. (1996). Feasibility of model checking
software requirements: A case study. In Computer Assurance, 1996. COMPASS'96, Sys-
tems Integrity. Software Safety. Process Security. Proceedings of the Eleventh Annual
Conference on, pages 77--88. IEEE.

[Tabakov et al., 2012] Tabakov, D., Rozier, K. Y., et Vardi, M. Y. (2012). Optimized temporal
monitors for SystemC. Formal Methods in System Design, 41(3):236--268.

[Vanderperren et al., 2012] Vanderperren, Y., Mueller, W,, He, D., Mischkalla, E, et De-
haene, W. (2012). Extending UML for Electronic Systems Design: A Code Generation
Perspective. In Design Technology for Heterogeneous Embedded Systems, pages 13--
39. Springer.

[Vieira et al., 2014] Vieira, A., et Ramalho, E. (2014). Metrics to Measure the Change Impact
in ATL Model Transformations. In Product-Focused Software Process Improvement,
pages 254--268. Springer.

[Windisch et al., 2013] Windisch, A., Monjau, D., Schneider, T., Mades, J., Glesner, M., et
Ecker, W. (2013). A VHDL-Centric Mixed-Language Simulation. System-on-Chip
Methodologies & Design Languages, page 37.

[Wymore, 1993] Wymore, A. W. (1993). Model-based systems engineering, volume 3. CRC
press.

[Zervoudakis et al., 2013] Zervoudakis, E, Rosenblum, D. S., Elbaum, S., et Finkelstein, A.
(2013). Cascading verification: an integrated method for domain-specific model check-
ing. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineer-
ing, pages 400--410. ACM.

1.1

2.1

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

6.1
6.2
6.3

List of Figures

The proposed ofapproach, @
Hardware Description Languages and AbstractionLevels 2
SysMLDiagramcategory oot vt 7Y
Architecture of SystemCplatform, 33
Declaration portswithamodule 34
SystemC SimulationKernel, . 37
The phaseoneofthesis aKs}
A classification of the requirements specificationtypes 1w
Crossroads system environment 1K}
Crossroads System Requirement 61
Global system structure 62
Sensor Block constraint o oL b3
IBDofCrossroads o i it b3
PDSensorconstraint oo
SMD of Controller Systemblock 3%}
Methodology flow for SysML to SystemC transformation approach i
Model Transformationapproach 61
Metamodel of SystemCModel 63
Code generation from BDD and IBD to SystemC [
Code generation from SMD to SystemC ral
Code generation from PD to SystemC ral
Timing chart showing the activity of a Crossroads simulation (2
Graph from code simulation WSN behaviour (2
Overview techniques for SystemC verification s}
AssertionflowforNSCa rari
Structure of SVMlibaray L . rae]

118

6.4
6.5
6.6
6.7

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

8.1

LIST OF FIGURES

Methodology Model Transformation SystemCto Uppaal 28]
Code generation SystemCtoUppaal K2
Verification in Uppaal environment B3
Classification SystemC Verification R4
Methodology flow forapproach
Methodology flow forapproach K9
Metamodel of Promela o g0
The architectureof SPIN g4
SMD of Controller Systemblock 13|
Code generation from RD and SMDtoPromela g7
Crossroads System Requirement g8
verificationresults L. oL L L 09

Ourperspectives e [

List of Tables

5.1 Mapping between SysML BDD, IBD, PD, and SMD with SystemC GO
6.1 Comparison of SystemC with all techniques RA
7.1 Mapping between SMDandPromela, a3

119

Document generated with IATX and:
the IXTEX style for PhD Thesis created by S. Galland --- http://www.multiagent.fr/ThesisStyle
the tex-upmethodology package suite --- http://www.arakhne.org/tex-upmethodology/

http://www.multiagent.fr/ThesisStyle
http://www.arakhne.org/tex-upmethodology/

Heterogeneous Systems are complex and become very critical. These systems integrate software and
hardware components with intensive interaction between them. In this context, there is a strong
necessity to develop methodologies and techniques to specify and validate these systems.

In engineering, the requirements are the expression of needs on what a particular product or a service
should be or to make. They are used most of the time in a formal sense in the systems engineering.
In this kind of systems, several types of requirements are present: non-functional requirements such
as the performance and the reliability and functional requirements such as the liveliness. To validate
these requirements of a system, an environment to simulate and to check the properties is essential.

In our work, we propose a methodology based on SysML combined with SystemC and Promela/SPIN
to specify and validate complex systems. This approach is based on Model Driven Engineering
techniques to firstly translate SysML models to systemC with the aim of simulation and to map
SysML behavioral diagrams to Promela/SPIN in order to verify temporal properties extracted from
the requirements. The approach is experimented on case studies to demonstrate its feasibility.

SysML specifications, Block diagrams, Model Driven Engineering MDE, SystemC, Simulation, Ver-
ification, Requirements, LTL properties, Model-Checking, Promela/SPIN, STATE tool, UPPAAL.

De nombreux systémes hétérogenes sont complexes et critiques. Ces systemes integrent du logiciel
et des composants matériels avec des interactions fortes entre ces composants. Dans ce contexte, il
est devenu absolument nécessaire de développer des méthodologies et des techniques pour spécifier
et valider ces systémes.

Dansl'ingénierie des systemes, les exigences sont 'expression des besoins quun produit spécifique ou
un service doit réaliser. Elles sont définies formellement a de nombreuses occasions dans l'ingénierie
des systémes complexes. Dans ce type de systeme, deux catégories d'exigence sont présentes : les
exigences non-fonctionnelles telles que la performance et la fiabilité, les exigences fonctionnelles
telles que la vivacité. Pour valider ces exigences, un environnement permettant de simuler et vérifier
ces propriétés est essentiel.

Dans notre travail, nous proposons une méthodologie basée sur SysML et combinée avec SystemC
et Promela/SPIN pour spécifier et valider des systemes complexes. Cette approche est basée sur
l'ingénierie dirigée par les modeéles pour premiérement traduire des modéles SysML en SystemC afin
de réaliser des simulations et deuxiémement traduire des diagrammes d'état SysML en Promela/SPIN
afin de vérifier des propriétés temporelles extraites des exigences. Cette approche est expérimentée
sur une étude de cas pour démontrer sa faisabilité.

Spécifications SysML, Diagrammes de block, Ingénierie Dirigée par les Modéles IDM, SystemC,
Simulation, Vérification, Exigences, Propriétés LTL, Model-Checking, Promela/SPIN, STATE tool,
UPPAAL.

M Ecole doctorale SPIM 16 route de Gray F - 25030 Besangon cedex
W tél. +33 (0)3 81 66 66 02 M ed-spim@univ-fcomte.fr B www.ed-spim.univ-fcomte.fr n

	I Context, Motivations and Related Works
	1 Introduction
	1.1 Motivations
	1.2 Problem Description
	1.3 Objectives of thesis
	1.4 Contributions
	1.5 Publications
	1.6 Outline of the thesis

	2 Related Works
	2.1 Introduction
	2.2 Modelling of Complex Systems
	2.2.1 Semi-Formal Languages
	2.2.2 Formal Languages
	2.2.3 Hardware Description Languages

	2.3 Validation of SysML Designs
	2.3.1 Verification of SysML Designs

	2.4 Verification of SystemC Designs
	2.4.1 With SystemC Environment
	2.4.2 Translation to Model Checking and Tools

	2.5 Summary

	II Scientific Context
	3 Related Concepts
	3.1 Model Verification and Validation
	3.2 Systems Engineering and MBSE
	3.2.1 SysML
	3.2.2 SysML Environment
	3.2.3 SysML Architecture
	3.2.4 Benefits of using SysML

	3.3 Simulation and validation with SystemC
	3.3.1 SystemC Language Architecture
	3.3.2 SystemC Simulation Environment

	3.4 Verification with Model-Checking
	3.4.1 Temporal Logic
	3.4.2 Promela
	3.4.3 Model-Checkers Tools

	3.5 Model-Driven Engineering
	3.5.1 Eclipse Modeling Framework
	3.5.2 Model Transformation with ATL
	3.5.3 Code genration with Acceleo

	3.6 Conclusion

	4 The Traffic Light Case Study
	4.1 Introduction
	4.2 Functional and Non-functional Requirements
	4.3 Requirement Analysis
	4.4 SysML Model of Case Study
	4.5 Conclusion

	III Contributions
	5 Simulating SysML Specification using SystemC
	5.1 Introduction
	5.2 From SysML to SystemC
	5.2.1 Model /MetaModel Transformation
	5.2.2 SysML Meta-Model
	5.2.3 SystemC Meta-Model
	5.2.4 Model Transformation Technology
	5.2.5 Transforming SysML into SystemC
	5.2.6 Rules for Transformation
	5.2.7 SystemC Model Transformation to SystemC Code

	5.3 Validation by Simulation
	5.3.1 SystemC Simulation
	5.3.2 SystemC Network Simulation Library
	5.3.3 Traces Generation

	5.4 Experiments with the case study
	5.4.1 Combine SysML to SystemC
	5.4.2 Simulation

	5.5 Conclusion

	6 Comparison of Verification techniques of SystemC models
	6.1 Introduction
	6.2 Techniques for SystemC Verification
	6.2.1 Verification by SystemC Libraries
	6.2.2 Verification by Libraries Integrated to SystemC
	6.2.3 Verification through Model-checking Tools

	6.3 UPPAAL and TCTL
	6.4 Transformation of SystemC Model for UPPAAL Verification
	6.5 Illustration on the case study
	6.6 Classification of Verification in SystemC
	6.7 Conclusion

	7 Transformation of SysML Specification into Promela-SPIN
	7.1 Introduction
	7.2 Approach
	7.3 From SysML to Promela
	7.3.1 Promela MetaModel
	7.3.2 Transformation Process
	7.3.3 SysML To Promela Transformation
	7.3.4 Mapping Rules for the Transformation
	7.3.5 The Promela Model
	7.3.6 Conversion Promela model to Promela Code

	7.4 Verification using the SPIN Tool
	7.4.1 LTL Model Checking
	7.4.2 Verification

	7.5 Illustration on the case study
	7.5.1 Combine SysML to Promela
	7.5.2 Functional Requirements
	7.5.3 Verification of LTL properties

	7.6 Conclusion

	IV Conclusions and Future works
	8 Conclusion and Perspectives
	8.1 Main Contributions
	8.2 Future work

