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Introduction générale

1 Contexte et motivation

Non seulement la structure hiérarchisée du tissu osseux mais aussi son hétérogénéité et son
anisotropie, caractéristiques propres à la plupart des matériaux vivants, rendent en pratique
impossible la définition d’un modèle déterministe fiable de ses propriétés matérielles.

Du fait de la complexité de cette structure hiérarchisée, montrée schématiquement sur la
Fig. 1 (Rho et al., 1998), des approches multi-échelles sont nécessaires pour décrire les propriétés
mécaniques du tissu osseux à l’échelle de l’organe en prenant en compte son organisation et sa
composition aux échelles sous-jacentes.

Figure 1 : Structure hiérarchisée de l’os, de l’échelle de l’organe à celle du nanomètre.

Dans cet esprit, de nombreuses méthodes, dites d’homogénéisation, ont été proposées per-
mettant de déduire les propriétés effectives (ou encore efficaces) du tissu osseux en combinant
opportunément les propriétés mécaniques de ses constituants essentiels. Ces méthodes peuvent
être regroupées en deux classes principales : les méthodes analytiques (et semi-analytiques) et
celles purement numériques. Parmi les premières, on trouve les méthodes d’homogénéisation en
champs moyen (dites aussi micro-mécaniques) (Suquet, 1997; Hellmich et al., 2004) et asymp-
totique (Aoubiza et al., 1996; Predoi-Racila and Crolet, 2008; Parnell et al., 2012; Rohan et al.,
2012) ainsi que d’autres techniques ad hoc (Yoon and Cowin, 2008). Dans la seconde classe, on
peut inclure les approches cherchant à identifier les propriétés efficaces d’un milieu hétérogène
par la solution de problèmes aux limites équivalents à travers des méthodes numériques telles
que la méthode aux éléments finis (FEM) (Barkaoui and Hambli, 2011, 2014; Chen et al., 2017)
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1. Contexte et motivation

ou la méthode de la transformée de Fourier rapide (FFT) (Moulinec and Suquet, 1998; Brisard
and Dormieux, 2010; Monchiet and Bonnet, 2012).

Figure 2 : Exemples de modèles du tissu osseux basés sur l’imagerie : micro-mécanique,
méthode aux éléments finis, transformée rapide de Fourier

Les informations sur la microstructure osseuse demandées par ces méthodes peuvent être
obtenues par des techniques expérimentales diverses parmi lesquelles les techniques d’imagerie
occupent une place de choix (voir Fig. 2). Celles-ci sont basées essentiellement sur l’analyse de
la propagation d’ondes acoustiques (Naili et al., 2010; Haiat et al., 2011) ou électro-magnétiques
(Nuzzo et al., 2002) dans le tissu osseux. En particulier, les différents types de tomographie aux
rayons X permettent de caractériser la morphologie et la constitution du tissu osseux in vitro à
des échelles spatiales allant du millimètre au nanomètre. Cependant, comme le montre la Fig. 3
(Liebl et al., 2015), cette caractérisation présente d’évidentes limites in vivo du fait des doses
maximales de rayonnement admissibles en clinique.

Figure 3 : Images prises par tomodensitométrie (CT-scan) de la partie proximale du fémur
humain in vivo (à gauche) et in vitro (à droite).

La résolution spatiale des scanners cliniques actuellement disponibles est limitée à la cen-
taine de micromètres (Burghardt et al., 2011). Bien que cette résolution soit vraisemblablement
amenée à s’améliorer dans les années à venir suivant les avancées technologiques des disposi-
tifs d’imagerie, elle ne permet pas aujourd’hui d’obtenir des informations précises aux échelles
sub-millimétriques, comme cela est souvent demandé par les modèles multi-échelles. Il s’ensuit
que, lorsque des images in vivo sont utilisées pour extraire des informations sur la microstruc-
ture osseuse, les incertitudes affectant celles-ci posent des questions sur la fiabilité des résultats
produits par les modèles qui les utilisent comme données d’entrée.

Dans une démarche d’aide au diagnostic clinique, l’objectif de cette thèse est de développer
une modélisation robuste pour obtenir les propriétés élastiques du tissu osseux à l’échelle de
l’organe en intégrant l’incertitude des mesures expérimentales issues de l’imagerie.
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La théorie des probabilités offre le cadre et les outils nécessaires pour traiter toute sorte
d’incertitude dans la modélisation des données expérimentales et des modèles mécaniques. Ces
outils fondamentaux, perfectionnés au cours des dernières cinquante annéees, ont permis d’ap-
procher plusieurs problèmes scientifiques comme la modélisation des processus stochastiques et
des champs aléatoires (Doob, 1953; Gikhman and Skorokhod, 1979; Krée and Soize, 1986; Kapur
and Kesavan, 1992), des processus de diffusion et des équations différentielles stochastiques (Itô
and McKean, 1965; Arnold, 1973; Gikhman and Skorokhod, 1979; Khasminskii, 2011; Rozanov,
2013; Krée and Soize, 1986), ainsi que le traitement de signaux aléatoires (Soi, 1993).

Contrairement à d’autres domaines de la mécanique et du génie civil, l’application des ap-
proches stochastiques aux sciences du vivant est très récente et n’a pas, jusqu’à présent, exprimée
tout son potentiel. C’est précisément dans ce cadre que se situe ce travail de thèse.

Le point de départ de notre travail a été un modèle multi-échelle du tissu osseux basé sur
l’imagerie qui a été développé récemment dans notre laboratoire (Sansalone et al., 2010). Ce
modèle utilise des images obtenues par rayonnement synchrotron pour décrire la composition du
tissu osseux au travers des échelles, puis la théorie de la micro-mécanique des milieux continus
pour déduire les variations de ses propriétés élastiques à l’échelle de l’organe. Les images obte-
nues au synchrotron permettant une description précise du tissu osseux à l’échelle de la dizaine
de micromètres, ce modèle est foncièrement de nature déterministe. Le cœur de notre travail de
recherche a porté sur la prise en compte des incertitudes expérimentales au sein de ce modèle et
dans la quantification de leurs effets au travers des échelles. Pour cela, les paramètres incertains
du modèle ont été traités comme des variables, voire des champs, aléatoires dont on a cherché
à donner une représentation stochastique aussi objective que possible. Pour construire les lois
de probabilité desdites variables aléatoires, notre choix s’est orienté sur le principe du maximum
d’entropie (MaxEnt). La modélisation stochastique du tissu osseux a ainsi été abordée en s’ap-
puyant d’une part sur la micro-mécanique des milieux continus et d’autre part sur le principe du
maximum d’entropie. C’est cette association qui a donné naissance au paradigme Matryoshka.

Par paradigme Matryoshka (introduit dans le titre de la thèse) nous entendons :
Toute procédure complexe, constituée par plusieurs étapes non banales, ayant pour objectif de
reproduire un comportement physique spécifique incertain.

Cette définition inclut en même temps la modélisation stochastique des matériels à travers :

1. l’application de diverses méthodes d’homogénéisation (micro-mécanique, FEM, FFT) à
des données expérimentales incertaines ;

2. la modélisation directe des propriétés mécaniques aléatoires (matrices et champs de ma-
trices d’élasticité aléatoires).

2 Organisation du manuscrit

Le corps de ce document est composé de quatre chapitres, chacun desquels développe de façon
autonome le sujet de la modélisation stochastique du tissu osseux par rapport à des questions
spécifiques et représente un article publié (chapitre 1), soumis (chapitre 2) ou en cours de soumis-
sion (chapitres 3 et 4). Les chapitres 1 à 3 abordent le sujet de la modélisation des incertitudes
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2. Organisation du manuscrit

Figure 4 : Image d’une Matryoshka, plus communément appelée poupée russe.

sur des données expérimentales obtenues par micro-tomographie et leurs effets sur les résultats
des modèles d’homogénéisation. Cela constitue une première déclinaison du paradigme Matryo-
shka où l’incertitude présente au niveau expérimental est propagée d’une échelle à l’autre des
modèles multi-échelles. Le résultat (tenseur élastique aléatoire) à chaque échelle peut être vu
comme une couche de la Matryoshka. Le chapitre 4 aborde le sujet de la construction des pro-
priétés mécaniques de l’os de façon indépendante à travers la construction directe des matrices
ou des champs aléatoires. La procédure proposée permet de construire des champs aléatoires
de tenseurs élastiques ayant des propriétés matérielles données (classe de symétrie, corrélation
spatiale) comme résultat d’une opportune séquence d’opérations. Celle-ci, à nouveau, peut être
vue comme une déclinaison différente du paradigme de Matryoshka.

2.1 Résumé des chapitres

2.2 Chapitre 1

Le premier chapitre décrit en détail le cadre méthodologique général associant micro-mécanique
des milieux continus et modélisation stochastique par le principe MaxEnt. Une première version
du modèle micro-mécanique stochastique est également proposée. En partant du modèle micro-
mécanique déterministe du tissu osseux cortical dont la description multi-échelles est montrée
sur la Fig. 5, les fractions volumiques décrivant la composition du tissu osseux aux différentes
échelles ont été considérées comme des paramètres incertains connus uniquement en termes
statistiques (valeur moyenne et dispersion, estimées à partir d’images obtenues par rayonnement
synchrotron). Ces paramètres incertains ont donc été modélisés comme des variables aléatoires
dont les lois de probabilité ont été obtenues par application du principe MaxEnt.

Ce modèle micro-mécanique stochastique a permis de caractériser les propriétés élastiques
hétérogènes et anisotropes du tissu osseux à l’échelle de l’organe en termes statistiques (valeur
moyenne, dispersion, intervalles de confiances ...). Cette démarche a été validée en la comparant
avec la méthode d’homogénéisation numérique par éléments finis, plus raffinée mais énormément
plus lourde en termes de calcul. Le modèle stochastique s’est avéré très précis pour ce qui
concerne des valeurs moyennes des coefficients élastiques. Cependant, des erreurs par excès ont
été observées sur les intervalles de confiance, traduisant le fait que les effets des incertitudes
expérimentales ont été surestimés sur les coefficients élastiques du tissu osseux.

Ces erreurs observées sur les intervalles de confiance ont motivé les études conduites dans
les chapitres 2 et 3. Afin de mieux comprendre les mécanismes de propagation des incertitudes,
notre étude a été réalisée en deux étapes : nous nous sommes d’abord concentrés sur la matrice
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Figure 5 : Modèle simplifié de l’os cortical utilisé dans la thèse.

osseuse (ou ultrastructure) (voir chapitre 2) pour élargir ensuite notre analyse jusqu’au tissu
cortical en prenant en compte la porosité Haversienne (voir chapitre 3).

2.3 Chapitre 2

Dans ce chapitre, nous nous sommes focalisés sur la matrice solide du tissu osseux (l’ultrastruc-
ture montrée sur la Fig. 5) pour explorer les différents choix de modélisations envisageables
et les mécanismes de propagation des incertitudes correspondants. Le concept proposé dans
le chapitre 1 modélise les fractions volumiques comme des variables aléatoires statistiquement
indépendantes, la valeur moyenne et la dispersion de chaque fraction volumique étant fixées sur
la base de statistiques expérimentales calculées à l’échelle de la dizaine de micromètres. Dans
ce chapitre, nous avons questionné ces deux choix. Tout d’abord, quelle est la meilleure façon
pour décrire l’incertitude dans la composition de la matrice osseuse ? Et ensuite, à quelle échelle
devrait-on effectuer les mesures expérimentales pour alimenter le modèle stochastique ?

Concernant la première question, nous avons étudié deux cas de figures en considérant comme
paramètres incertains les fractions volumiques (du collagène dans l’ultrastructure et du minéral
dans la mousse minérale) ou bien la densité minérale du tissu (TMD). Celle-ci est liée directement
aux niveaux de gris des images et permet, moyennant une relation empirique, de calculer les
deux fractions volumiques. De fait, la TMD représente une variable observable contrairement aux
fractions volumiques qui sont déduites à partir de celle-ci. Si introduire l’incertitude directement
sur les fractions volumiques amène à des fluctuations statistiquement indépendantes des teneurs
en collagène et minéral, introduire l’incertitude sur la TMD amène à une corrélation entre
ces fluctuations. Cette étude démontre que la propagation de l’incertitude sur les coefficients
élastiques de l’ultrastructure est essentiellement la même dans les deux cas.

La deuxième question a trait à la résolution spatiale des dispositifs d’imagerie qu’on de-
vrait utiliser pour obtenir les données d’entrée du modèle. Dans le chapitre 1, les statistiques
expérimentales sur la composition de la matrice osseuse ont été obtenues à l’échelle de la dizaine
de micromètres, soit la taille du voxel des images. Nous avons considéré ici un cas de figure
plus proche de la réalité clinique, à savoir des statistiques expérimentales relatives à l’échelle de
plusieurs centaines de micromètres. On remarquera que cela correspond à la taille du volume
élémentaire représentatif (RVE) du tissu cortical. Les modèles stochastiques correspondant à ces
deux choix de calibration produisent des résultats semblables en termes de valeurs moyennes mais
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fort différents en termes de dispersions des coefficients élastiques. En particulier, le deuxième
s’avère bien plus précis et capable de prédire correctement les intervalles de confiance. Cette
étude démontre que la résolution spatiale des scanners cliniques est suffisante pour obtenir des
informations statistiques fiables sur les propriétés élastiques de l’ultrastructure.

Ce résultat prometteur de ce chapitre a été utilisé comme base de départ pour l’étude menée
dans le chapitre 3 où cette analyse a été étendue jusqu’à l’échelle du tissu osseux en prenant en
compte l’incertitude expérimentale sur la porosité haversienne (HP).

2.4 Chapitre 3

Dans le chapitre 3, les propriétés efficaces de l’os cortical ont été estimées à partir de la
modélisation stochastique de deux seules variables aléatoires : la densité minérale du tissu (TMD)
et la la porosité haversienne (HP). Les résultats du modèle micromécanique stochastique issu
du couple (TMD, HP) ont été comparés : (i) avec un modèle micromécanique nominal obtenu
en alimentant le modèle micromécanique avec les valeurs moyennes du couple (TMD, HP) et
(ii) avec deux modèles plus raffinés basés sur la FEM et la méthode FFT. Plusieurs études
comparatives on été menées dans ce chapitre. D’abord ont été comparés entre eux (i) les deux
modèles micromécaniques (stochastique et nominale), puis (ii) les deux modèles détaillés (FEM
et FFT) et enfin (iii) le modèle stochastique et les modèles FEM et FFT.

Le tenseur d’élasticité du modèle nominal s’est avéré très proche de la valeur moyenne
des réalisations du modèle stochastique avec des différences inférieures à 0.1%. Ceci permet
d’affirmer que le modèle nominal, même si équipé de la seule information moyenne sur les
variables du modèle, donne une très bonne approximation du comportement élastique moyen
de l’os corticale. Nous avons également étudié la relation entre le couple (TMD, HP) et les
coefficients élastiques efficaces. Grâce à l’inégalité de Jensen, nous avons pu caractériser a priori
les erreurs par excès ou par défaut entre les valeurs moyennes du modèle stochastique et les
résultats du modèle nominal.

Parmi les méthodes numériques, la FEM demeure l’approche standard pour l’homogénéisation.
Appliquée à des RVE de tissu cortical, elle peut en décrire de façon plus ou moins précise, en
fonction du maillage obtenu, la morphologie et la distribution de la TMD. Moins connue que la
FEM, l’approche par la FFT offre une alternative très intéressante car elle peut être directement
appliquée aux images brutes en utilisant les voxels des images comme éléments du maillage, et
cela avec des temps de calcul réduits par rapport à la FEM. Appliquées à quelques dizaines de
RVE de tissu cortical, les deux méthodes ont montré en général des résultats similaires (notam-
ment pour le module d’Young axial dans la direction de l’axe anatomique de l’os) bien que des
différences importantes ont pu être observées sur des RVE spécifiques.

Il est à noter que les tenseurs élastiques du tissu cortical obtenus par les modèles mi-
cromécaniques sont isotropes transverses alors que ceux obtenus par FEM et FFT sont ani-
sotropes. Nous avons quantifié l’écart entre ces deux classes de symétrie sur chaque RVE en
projetant les tenseurs anisotropes obtenus par FEM et FFT sur les sous-classes d’orthotropie,
puis d’isotropie transverse. Les différences entre les normes de Frobenius des tenseurs de départ
et des tenseurs projetés étant de l’ordre de quelques pourcents, ceci justifie de façon indirecte
les hypothèses faites par les modèles micromécaniques. En outre, pour chaque RVE, les résultats
des modèles FEM et FFT ont été comparés avec ceux d’un modèle micromécanique équivalent
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(c’est-à-dire, alimenté avec les valeurs de HP et TMD moyenne du RVE). Les différences ob-
servées étant de l’ordre de quelques pourcents pour la plupart des modules élastiques, ceci
justifie le bien-fondé des hypothèses simplificatrices de l’approche micromécanique. Enfin, les
valeurs moyennes et les intervalles de confiances du modèle micromécanique stochastique ont
été comparés avec les résultats obtenus par FEM et FFT. Un excellent accord a été trouvé pour
l’ensemble des coefficients élastiques du tissu osseux. Ces observations montrent que le modèle
stochastique présenté dans ce chapitre est capable de donner une représentation fiable et précise
des propriétés élastiques du tissu cortical et il a le potentiel pour devenir un outil numérique
d’aide au diagnostic clinique.

2.5 Chapitre 4

Dans le chapitre 3, une première tentative de classification (donc d’identification) de la classe
de symétrie matérielle de l’os cortical a été esquissée. Le modèle multi-échelle défini a permis
d’approcher presque complètement la classe de symétrie matérielle obtenue par un calcul rela-
tivement précis. Le résultat à chaque échelle produit un tenseur élastique appartenant a une
classe de symétrie bien définie laquelle est isotrope pour la mousse minérale, isotrope transverse
pour l’ultra-structure et le tissu cortical.

Toutefois, le problème de la construction d’un tenseur élastique aléatoire fluctuant à l’intérieur
d’une classe de symétrie matérielle donnée est un problème indépendant des méthodes d’ho-
mogénéisation. Ainsi, la solution de ce problème pourraient, en particulier, être utile dans le
cadre général des méthodes d’homogénéisation. En effet, les réalisations aléatoires obtenues par
la procédure issue de la solution de ce problème pourraient être utilisées comme données d’entrée
dans tout autres châınes d’homogénéisations.

La solution de ce problème général a été décrite par Soize et ses co-auteurs dans une série de
travaux parus récemment (Soize, 2006; Guilleminot and Soize, 2013) pour ne citer que les travaux
fondateurs. Certains compléments sur les classes de symétrie isotrope transverse et orthotrope
sont proposés dans le chapitre 4 ainsi que l’application de la méthode au cas de l’homogénéisation
des matériaux vivants.

La solution de ce problème réside dans l’application du principe du maximum d’entropie au
cas des matrices aléatoires qui exhibent une symétrie donnée. La solution proposée permet aussi,
avec une seule étape supplémentaire, de construire des champs de matrices aléatoires avec une
symétrie donnée et une longueur de corrélation spatiale donnée. La méthode de construction de la
matrice aléatoire est composée d’une suite d’opérations, en générale non linéaires, opportunément
choisies pour relaxer les contraintes que la solution doit satisfaire dans l’utilisation du principe du
maximum d’entropie. Pour cette raison, la méthode proposée est à l’image de la de-construction
d’une poupe russe (Matryoshka) laquelle, même dans son appellation, fait écho à la construction
mathématique utilisée (Matrice-Matryoshka).

La procédure a été appliquée pour construire les propriétés mécaniques de la mousse minérale
isotrope obtenue par la méthode d’homogénéisation dans le chapitre 3. L’information dispo-
nible est le tenseur élastique moyen et sa dispersion. Un exemple de champ aléatoire de cette
mousse minérale avec une longueur de corrélation donnée est aussi présenté. Enfin, les relations
nécessaires pour appliquer la procédure à d’autres classes de symétries matérielles, isotrope
transverse et orthotrope, utiles pour l’os cortical sont décrites.
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Abstract

Accurate and reliable assessment of bone quality requires predictive methods which could probe
bone microstructure and provide information on bone mechanical properties. Multiscale mod-
elling and simulation represent a fast and powerful way to predict bone mechanical properties
based on experimental information on bone microstructure as obtained through X-ray based
methods. However, technical limitations of experimental devices used to inspect bone mi-
crostructure may produce blurry data, especially in in vivo conditions. Uncertainties affecting
the experimental data (input) may question the reliability of the results predicted by the model
(output). Since input data are uncertain, deterministic approaches are limited and new mod-
elling paradigms are required. In this chapter, a novel stochastic multiscale model is developed
to estimate the elastic properties of bone while taking into account uncertainties on bone com-
position. Effective elastic properties of cortical bone tissue were computed using a multiscale
model based on continuum micromechanics. Volume fractions of bone components (collagen,
mineral, and water) were considered as random variables whose probabilistic description was
built using the Maximum Entropy principle. The relevance of this approach was proved by
analysing a human bone sample taken from the inferior femoral neck. The sample was im-
aged using synchrotron radiation micro-computed tomography. 3-D distributions of Haversian
porosity and tissue mineral density extracted from these images supplied the experimental in-
formation needed to build the stochastic models of the volume fractions. Thus, the stochastic
multiscale model provided reliable statistical information (such as mean values and confidence
intervals) on bone elastic properties at the tissue scale. Moreover, the existence of a simpler
“nominal model”, accounting for the main features of the stochastic model, was investigated. It
was shown that such a model does exist and its relevance was discussed.
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Chapter 1. Stochastic multiscale modelling of cortical bone elasticity based on high-resolution imaging

1.1 Introduction

At the organ scale, bone is organised in two compartments: the cortical and trabecular com-
partments, both contributing to bone strength (Manske et al., 2009). Bone strength depends
on both bone quantity and bone quality (Donnelly, 2011). Bone quantity refers to the amount
of bone mass. Bone quality is a more subtle and hazy feature (Bouxsein, 2003) encompassing
multiple parameters, but, in general, it refers to the volumetric composition and microarchi-
tecture of bone. Indeed, bone is a complex material showing a hierarchical structure spanning
several length scales, from the molecular scale to the organ one (Rho et al., 1998; Hulmes, 2002;
Fratzl et al., 2004). Loss of bone mass or abnormal microarchitecture—often associated to bone
diseases such as osteoporosis—may lead to reduced bone strength and increased risk of fracture.

In clinical practice, the bone mineral density (BMD) at the hip—as measured with Dual X-
ray absorptiometry (DXA) techniques—is still considered as the gold standard for assessing the
risk of fracture. However, BMD only measures bone mass (i.e. bone quantity) but is unable to
assess microstructural features such as volumetric bone composition and microarchitecture (i.e.
bone quality). Several studies have shown Haversian Porosity (HP) and Tissue Mineral Density
(TMD) to be among the most relevant determinants of bone strength and associated fracture
risk (Burr, 2004; Currey, 1988; Bell et al., 1999; Vajda and Bloebaum, 1999; Bousson et al., 2001;
Crabtree et al., 2001; Sasso et al., 2008; Zebaze et al., 2010). HP and TMD describe different
features of bone microstructure. HP refers to the volume fraction of Haversian and Volkmann’s
canals (typical diameter of several tens to a few hundreds micrometres) in bone tissue. TMD
represents the degree of mineralisation of the solid bone matrix (Boivin and Meunier, 2002;
Bouxsein et al., 2010).

In the femoral neck, a critical anatomical site for osteoporotic fractures, osteoporotic bone
structure is characterised by progressive thinning of the cortical shell and loss of trabecular
mass (Mayhew et al., 2005). Spatial variations of HP and TMD in the femoral hip region induce
heterogeneity of cortical bone at the organ scale (Bensamoun et al., 2004b,a; Yamato et al., 2006;
Sasso et al., 2007, 2008; Mathieu et al., 2013). This heterogeneity strongly affects the mechanical
response of bone as it was widely documented by studies on ultrasonic wave propagation (Haiat
et al., 2009; Naili et al., 2010; Haiat et al., 2011; Grimal et al., 2014) and nanoindentation (Yao
et al., 2011; Vayron et al., 2012, 2014).

Establishing reliable mathematical relationships between available experimental data (BMD,
HP, TMD ...) and mechanical properties (stiffness, strength ...) is important to predict the
fracture risk. In this respect, multiscale modelling and simulation approaches can be useful to
account for the specific volumetric composition and organisation of bone components at each
scale. Several multiscale approaches have been proposed to model the mechanical properties of
bone tissue, including continuum micromechanics (Hellmich et al., 2004b; Fritsch and Hellmich,
2007; Grimal et al., 2011b; Parnell et al., 2012), asymptotic homogenisation (Aoubiza et al.,
1996; Parnell et al., 2012; Predoi-Racila and Crolet, 2008), and other techniques (Yoon and
Cowin, 2008a,b; Ghanbaria and Naghdabadi, 2009).

Recently, a multiscale model based on continuum micromechanics was proposed by our
group to estimate the elastic properties of bone tissue (Sansalone et al., 2010, 2012a,b). The
experimental information was obtained using synchrotron radiation micro-computed tomography
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(SR-µCT) which provided a 3-D mapping of the HP and TMD with a spatial resolution of about
10 µm. The SR-µCT images were used to determine the heterogeneous composition of bone
and, in turn, to compute the heterogeneous elastic properties of one (Sansalone et al., 2010,
2012b) or several (Sansalone et al., 2012a) bone samples obtained from the inferior femoral neck
of elderly patients.

Experimental information which can be obtained in vivo through standard medical devices
such as DXA devices or quantitative CT (QCT) is much less accurate. Lack of accuracy is
related to a low spatial resolution and polyenergetic X-ray beam. In any case, the lower the
accuracy of the experimental data, the higher the uncertainty affecting the values of the derived
modelling parameters. Uncertainty on the modelling parameters increases with zooming down
into the nanostructure of bone. Current in vivo experimental techniques cannot easily provide
accurate information about the morphology, volumetric content, spatial arrangement and me-
chanical behavior of bone components. For instance, orientation of the collagen as well as size,
shape and organization of the hydroxyapatite mineral in the bone lamellae remain largely uncov-
ered. (Collagen and mineral are the two major components of bone solid matrix.) Only recent
breakthroughs in synchrotron tomographic imaging have given access to direct 3-D information
on the bone structure at the nanoscale level (Langer et al., 2012; Varga et al., 2013).

Dealing with uncertain data requires new modelling paradigms. There exist several ap-
proaches to take into account such uncertainties among which the theory of probability (Arnold,
1973; Feller, 1971; Halmos, 1976; Krée and Soize, 1986) has proved, during last decades, its
efficiency and robustness. In particular, the Maximum Entropy (MaxEnt) principle (Jumarie,
2000; Kapur and Kesavan, 1992) was successfully applied to several problems of elasticity to
build robust probability distributions of random variables and random fields ensuring both the
mathematical and the physical consistency of the probabilistic descriptions (Soize, 2006, 2008,
2001; Guilleminot et al., 2011; Guilleminot and Soize, 2012, 2013a,b).

Uncertainties of model parameters is an important problem in biomechanics at all scales.
Modelling uncertainties and computing stochastic responses may be useful to assess robustness of
subject-specific predictive models in musculoskeletal biomechanics (Valente et al., 2014). Aiming
at characterising the mechanical properties of bone in vivo, both hierarchical structure of bone
and the uncertainties existing on experimental data should account for. So far, there are only a
few research works having addressed these two issues at once. A stochastic multiscale method
based on asymptotic homogenisation theory was recently proposed to take into account the
uncertainties caused by image-based modelling and trabecular stiffness orientation in predicting
the elastic moduli of trabecular bone (Basaruddin et al., 2015). Another contribution was
recently proposed by our group by introducing a stochastic treatment of the elastic properties of
bone components in a multiscale model of bone solid matrix based on continuum micromechanics
theory (Sansalone et al., 2014). Therein, in the framework of a parametric probabilistic approach,
elastic coefficients of bone components were considered as random variables and their probability
density functions (PDFs) obtained using the MaxEnt principle.

In this chapter, we address the complementary issue of uncertainty on volumetric bone
composition. Aiming at moving toward in vivo applications, uncertainty on subject-specific
bone microstructure have to be taken into account to estimate the mechanical properties of
bone. In this respect, two main goals will be pursued in this work.
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Chapter 1. Stochastic multiscale modelling of cortical bone elasticity based on high-resolution imaging

The first goal of this chapter is to describe a new modelling approach suitable to estimate
bone elastic properties while taking into account uncertainties on the composition of bone mi-
crostructure. Following the ideas set forth in the scope of uncertain elastic properties of bone
components (Sansalone et al., 2014), we will develop a stochastic multiscale model of cortical
bone by introducing a stochastic treatment of the volume fractions of bone components in the
multiscale model of bone developed by our group (Sansalone et al., 2010). PDFs of the volume
fractions will be constructed using the MaxEnt principle and available experimental data. Our
experimental data are represented by statistical information on the 3-D distributions of HP and
TMD obtained by analysis of high resolution SR-µCT images of one bone sample of the inferior
femoral neck of an elderly patient. It will be shown that this approach can effectively describe
the elastic properties of cortical bone at the organ scale. The final outcome of the model is given
in terms of expected values, confidence intervals and other statistics of these properties.

Granted the suitability of the stochastic model, the second goal is to understand whether a
simpler description is possible. To this aim, we will assess to which extent the stochastic model
could be described by a simpler, deterministic model. Indeed, the computational cost of the
stochastic model is quite high and there is an interest for computationally spare alternatives. We
will focus on two questions: Does a simpler model exist, providing “good” estimates of expected
elastic properties of bone? If so, how accurate and reliable are these estimates? We will show
that such a model exists and discuss its relevance.

The chapter is organized as follows. The stochastic multiscale model of bone is presented
in Sec. 1.2. This section is introduced by a brief presentation of the experimental data used to
develop the model. Then, the theoretical development and the solution algorithm of the stochas-
tic multiscale model are presented in detail. A simpler nominal model and a Finite Element
model are also presented. Numerical results are thoroughly presented in Sec. 1.3 bringing up
the relevance of the different modelling approaches proposed. In Sec. 1.4 the findings of this
study are discussed focusing on the two goals set forth. Limitations and further developments
are also addressed. Eventually, in Sec. 3.4 the conclusions of this work are drawn, focusing on
the two goals set forth, and its limitations and further developments are discussed.

1.2 Materials and methods

1.2.1 Experimental data

Preparation and imaging of the bone sample

The experimental procedure for preparing and imaging the bone sample was thoroughly pre-
sented elsewhere (Sansalone et al., 2010). We recall here below the key points for sake of
completeness and refer to that paper for more details.

A bone sample was extracted from the inferior femoral neck of a 79 year old patient dur-
ing standard hemiarthroplasty. The bone sample was imaged using synchrotron radiation
micro-computed tomography (SR-µCT) at the European Synchrotron Radiation Facility (ESRF,
Grenoble, France). The sample was imaged at the ID19 beamline using a monochromatic X-ray
beam tuned at 25KeV . The 3-D image was reconstructed using a customized Filtered Back
Projection algorithm developed at ESRF. The outcome was a 3-D grayscale (range: [0, 255])
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mapping of the linear attenuation µ of the monochromatic X-ray beam at 25KeV . The recon-
struction was performed in a volume of interest of 660×660×523 isotropic voxels (size 10.13 µm).
The 3-D volume reconstructed is shown in Fig. 1.1. A Cartesian frame is also shown. The unit
vector e3 is aligned with the axis of the femoral neck and the unit vectors e1 and e2 lie in the
plane of the cross section of the sample.

Figure 1.1: Reconstructed 3-D model of the bone sample and Cartesian frame.

The grayscale 3-D mapping was analysed in order to separate two regions: the voids (Haver-
sian Porosity (HP) and space surrounding the sample) and the solid matrix of bone. Voxels
having a grayscale level higher than a fixed threshold were assigned to the bone matrix region,
whereas the others were assigned to the void region. In this study, the threshold was fixed to
130. (The value of the threshold was found not to significantly affect the elastic coefficients
of bone tissue as predicted by the model described below in Sec. 1.2.2.) Grayscale levels in
the bone matrix region were converted in a 3-D voxel-wise mapping of Tissue Mineral Density
(TMD) thanks to the linear relationship existing between the X-ray beam attenuation µ and the
TMD, reading µ = 3.32×TMD + 0.51, where µ is expressed in cm−1 and the TMD is expressed
in g/cm3. This expression was calibrated using the theoretical values for hydroxyapatite and
water at 25KeV of the DABAX database. A detailed description of the segmentation process
can be found in the appendix of Sansalone et al. (2010).

Data analysis: HP and TMD

In previous work (Sansalone et al., 2010, 2012b), HP and TMD were analysed in radial Regions
of Interest (RoIs) and axial slices (radial and axial directions refer to the anatomical axis of
the sample). The thickness of RoIs and slices was 50 voxels (i.e. about half a millimetre). In
this work, a finer analysis is performed. HP and TMD have been analysed in several cubic
Representative Volume Elements (RVEs) with edges of about half a millimetre (equal to the
thickness of the RoIs and slices of our previous studies).

SimpleWare 5.0 ScanIP+ TM software was used to extract and analyse NRVE = 12 cubic
RVEs from the 3-D model of the bone sample. Positions of the RVEs were chosen in order
to span the whole cortical region of the sample, see Fig. 1.2. RVEs were extracted at about
1.5 mm from the periosteum (distance measured with respect to the centre of the RVEs) and at
different hoop and axial positions with respect to a cylindrical frame centred at the anatomical
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axis of the bone sample. Let θ be the angular coordinate in the cross section plane (e1, e2)
and z be an abscissa along the femoral neck axis e3. Coordinates of the centre of the RVEs
were set at θ ∈ {−40,−20, 0, 20}◦ (with 0◦ being the inferior axis of the femoral neck) and
z ∈ {1.5, 3.5, 5.5} mm (distance from the distal part of the sample). RVEs were oriented
following a circular arc corresponding to the anatomical hoop direction of the sample.

Figure 1.2: From left to right: Three cross-sections of the bone sample at z = 150, 350, 550 µm,
respectively. RVEs are marked by green squares (colors in online version).

Each RVE was analyzed to compute its HP and TMD. The HP is meaningful at the scale
of the tissue whereas the TMD is defined at the voxel scale (within the solid bone matrix only)
and is heterogeneous within each RVE. Therefore, one scalar value of HP and a 3-D voxel-wise
distribution of TMD were obtained for each RVE. All the RVEs were also analysed collectively
to obtain experimental information representative of the whole cortical region. Recalling that
one RVE represents one material point at the organ scale, hereinafter terms local and global will
refer to one RVE and all the RVEs, respectively.

Then, several experimental databases were constituted: (i) One global database collecting
the NRVE values of HP; (ii) One local database for each RVE collecting the voxel-wise values
of TMD within the solid matrix; let N i

vox be the number of TMD values for the i-th RVE;
(iii) One global database of TMD gathering the TMD databases of all the RVEs, for a total of
Nvox =

∑NRVE
i=1 N i

vox voxel-wise values of TMD. Note that the NRVE databases (ii) refer to one
RVE whereas the two databases (i) and (iii) refer to the whole cortical region.

These experimental databases were further used to compute the volume fractions of bone
components as explained in Sec. 1.2.2. Moreover, statistics on the experimental databases of
HP and TMD were computed. In particular, the mean values and dispersions of experimental
data will be referred to as µexp(•) and δexp(•), respectively, where • is either HP or TMD.

1.2.2 Model

A stochastic multiscale model of cortical bone was developed by introducing a stochastic treat-
ment of some modelling parameters (volume fractions of bone components) in the deterministic
multiscale model proposed in previous work by our group (Sansalone et al., 2010, 2012a,b).
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Deterministic multiscale model of cortical bone

A multiscale model was recently proposed by our group to study bone elasticity at the organ scale
(Sansalone et al., 2010). Extending the ideas set forth by Hellmich and coworkers (Hellmich
et al., 2004a), the model uses a continuum micromechanics approach (Suquet, 1997; Nemat-
Nasser and Hori, 1999) to estimate elastic properties of cortical bone at the tissue scale. In the
framework of continuum micromechanics, the homogenised elastic tensor chom of a multiphase
medium can be computed by solving the equation (Sansalone et al., 2014):

g(chom; {fr}, {cr}) = 0 , r = 1, . . . , Nph (1.1)

where {fr} and {cr} are the volume fractions and elastic tensors of the Nph constituent phases,
respectively.

The multiscale model considers three scales below the organ scale: the cortical tissue (char-
acteristic length of several hundred micrometres), made of cylindrical pores embedded in the
bone ultrastructure—the solid bone matrix; the ultrastructure (several micrometres), made of
cylindrical collagen molecules embedded in a mineral foam; and the mineral foam (few hundred
nanometres), made of hydroxyapatite (HA) crystals interpenetrated by water-filled spaces. All
the components were considered as elastically isotropic and their properties were taken from
Kotha and Guzelsu (2000). The multiscale model is depicted in Fig. 1.3 where the four scales
and the three homogenisation steps (see below) are sketched.

Figure 1.3: Sketch of the multiscale model.

The following cascade of formal problems—corresponding to three homogenisation steps—
has to be solved in order to compute the elastic tensor of cortical tissue ccort:

gSC
I (cfoam; {f foam

HA , f foam
w }, {cHA, cw}) = 0 → cfoam , (1.2)

gMT
II (cultra; {fultra

col , fultra
foam}, {ccol, cfoam}) = 0 → cultra , (1.3)

gMT
III (ccort; {f cort

pore, f
cort
ultra}, {cpore, cultra}) = 0 → ccort . (1.4)

Superscripts SC and MT refer to the Self-Consistent and Mori-Tanaka schemes, respectively,
which are used at the different scales to compute the homogenised elastic tensors. The Self-
Consistent scheme is implicit. Therefore, Eq. (1.2) has to be solved iteratively for cfoam. The
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Mori-Tanaka scheme is explicit. Therefore, Eq. (1.3) and Eq. (1.4) can be explicitly solved for
cultra and ccort, respectively.

In Eq. (1.2), f foam
HA and f foam

w = 1− f foam
HA are the volume fractions of HA mineral and water

in the mineral foam, respectively. In Eq. (1.3), fultra
col and fultra

foam = 1 − fultra
col are the volume

fractions of collagen and mineral foam in the ultrastructure, respectively. In Eq. (1.4), f cort
pore

and f cort
ultra = 1− f cort

pore are the volume fractions of the Haversian pores and ultrastructure in the
cortical tissue, respectively. A similar notation is used for the elastic tensors. Thus cHA, cw,
ccol, and cpore are the elastic tensors of the HA mineral, water, collagen, and Haversian pores,
respectively. Moreover cfoam, cultra, and ccort are the homogenised elastic tensors of the mineral
foam, ultrastructure, and cortical tissue, respectively.

Probabilistic model of the uncertain volume fractions

Using deterministic models assumes that the modelling parameters are well identified. However,
most of the time, only partial information is available on these parameters and their actual
values, obtained through experimental measurements, are uncertain. Among others approaches,
probability theory provides an effective and robust framework to take into account such uncer-
tainties (Feller, 1971; Arnold, 1973; Halmos, 1976; Krée and Soize, 1986).

In the framework of a parametric probabilistic approach, uncertainties on a modelling pa-
rameter x are taken into account by replacing x by a real-valued random variable X. (Hereafter,
capital letters will refer to random variables.) It is assumed that the probability law of X is
defined by a Probability Density Function (PDF) x 7→ pX(x) on R (the set of the real numbers).
The construction of the probability law of the random variables must be carefully carried out
in order to embed the available statistical information on x and to respect well-posedness of the
elasticity problem. In this work, the construction of the probabilistic model is carried out by
using the MaxEnt principle (Jaynes, 1957a,b; Jumarie, 2000; Kapur and Kesavan, 1992; Soize,
2001). In the context of the information theory, entropy has been introduced as a measure of
the uncertainty for probability distributions (Shannon, 1948) and the MaxEnt principle consists
in maximizing this entropy subjected to constraints defined by the available information. The
entropy associated to the PDF pX is defined as:

S(pX) = −
∫
R
pX(x) log (pX(x)) dx (1.5)

The MaxEnt principle was used to model uncertainties on the elastic moduli of bone com-
ponents in previous work (Sansalone et al., 2014). Hereinafter, the same strategy is used to
account for uncertainties on the volume fractions only. Let x be either of the volume fractions
f foam

HA , fultra
col , and f cort

pore. Thus, the uncertain variable x is modelled by a random variable X with
PDF pX . The available information on X is assumed to be: (i) The support of X is SX = [0, 1];
(ii) The mean value of X is µX ; (iii) The dispersion of X is δX = σX/µX , where σX is the
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standard deviation of X. The normalisation condition of the PDF and above constraints read:∫
[0,1]

pX(x) dx = 1 , (1.6)∫
[0,1]

x pX(x) dx = µX , (1.7)∫
[0,1]

x2 pX(x) dx = (1 + δ2
X) · µ2

X . (1.8)

In our case, the MaxEnt principle consists in maximising the entropy in Eq. (1.5) subject to
constraints in Eqs. (1.6)-(1.8). The ensuing form of the PDF turns out to be:

pλ
?

X (x) = 1[0,1](x) e−λ
?
0−λ?1 x−λ?2 x2 , (1.9)

where the vector λ? = {λ?0, λ?1, λ?2} collects the Lagrange multipliers associated to the constraints
in Eqs. (1.6)-(1.8), respectively. It can be shown that λ? can be obtained by minimising the
Hamiltonian function defined by:

H(λ) :=λ0 + λ1 µX + λ2 (1 + δ2
X)µ2

X +

∫
[0,1]

e−λ0−λ1 x−λ2 x
2
dx . (1.10)

Therefore, the solution vector λ? reads:

λ? = arg min
λ∈R3

H(λ) , (1.11)

where the operator arg min stands for the argument of the minimum.

Stochastic multiscale model of cortical bone

The stochastic multiscale model of cortical bone is constructed by substituting the volume
fractions f foam

HA , fultra
col , and f cort

pore by the random variables F foam
HA , F ultra

col , and F cort
pore in Eq. (1.2)

(homogenisation step I), Eq. (1.3) (homogenisation step II), and Eq. (1.4) (homogenisation step
III), respectively. Thus, the stochastic versions of these equations read:

gI(Cfoam;F foam
HA , {cHA, cw}) = 0 → Cfoam , (1.12)

gII(Cultra;F ultra
col , {ccol,Cfoam}) = 0 → Cultra , (1.13)

gIII(Ccort;F
cort
pore, {cpore,Cultra}) = 0 → Ccort . (1.14)

For sake of simplicity, only the independent random volume fractions were introduced in
the above equations. Since the volume fractions are random variables, the homogenised elastic
tensors of the mineral foam (Cfoam), ultrastructure (Cultra) and cortical tissue (Ccort) turn out
to be random tensors.
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Nominal multiscale model of cortical bone

The stochastic multiscale model can be compared with a nominal model obtained using nominal
values of the volume fractions. The nominal model would refer to the whole cortical region.
Therefore, nominal values of the volume fractions were set to their global experimental mean
values. Using these input data in the deterministic model of Eqs. (1.2)-(1.4), the nominal elastic
tensors are obtained:

gI(c
µ
foam;µexp(f foam

HA ), {cHA, cw}) = 0 → c
µ
foam , (1.15)

gII(c
µ
ultra;µexp(fultra

col ), {ccol, c
µ
foam}) = 0 → c

µ
ultra , (1.16)

gIII(c
µ
cort;µexp(f cort

pore), {cpore, c
µ
ultra}) = 0 → c

µ
cort , (1.17)

where cµfoam, cµultra, and c
µ
cort are the nominal elastic tensors of the mineral foam, ultrastructure,

and cortical tissue, respectively.

Model parameters

The multiscale model previously described allows estimating the effective elastic tensor of an
RVE of cortical bone (tissue scale) based on the local values of some modelling parameters de-
scribing the local bone microstructure. In this work cubic RVEs are considered, see Sec. 1.2.1.
Modelling parameters are the elastic tensors and volume fractions of bone elementary compo-
nents. Additional assumptions are made on the geometric arrangement of bone components
at the different scales (Sansalone et al., 2010), leading to different expressions of the Eshelby
tensors (Eshelby, 1957; Suvorov and Dvorak, 2002) underlying functions gI, gII, and gIII.

For sake of simplicity, all the bone components were considered as linearly elastic, isotropic
materials. Elastic tensors of HA mineral (cHA), water (cw), and collagen (ccol) were constructed
using data taken from Kotha and Guzelsu (2000). Moreover, Haversian pores were considered
as saturated by water, thus cpore = cw.

Volume fractions f foam
HA , fultra

col , and f cort
pore were computed based on experimental measures

of HP and TMD (Sansalone et al., 2010). Values of HP and TMD were analysed: (i) in each
RVE—in order to obtain local statistical information representative of one RVE; (ii) gathering
the data of all the RVEs—in order to obtain global statistical information representative of the
whole cortical region.

Individual RVEs were analysed first. Within each RVE, the volume fraction of Haversian
pores, f cort

pore, is equal to the HP. Thus one value of f cort
pore is obtained for each RVE. Moreover, fultra

col

and f foam
HA were computed from the voxel-wise 3-D distribution of TMD, leading to a voxel-wise

3-D distribution of these volume fractions in the bone solid matrix. First, volume fractions of
collagen, HA and water were computed at the scale of the ultrastructure:

fultra
HA = TMD/ρHA ,
fultra

col + fultra
HA + fultra

w = 1 ,
fultra

col

fultra
w

= 0.36 + 0.084 e6.7fultraHA ,

(1.18)

where ρHA is the mass density of the HA and the third equation is an empirical relation obtained
through measurements of volume fractions in demineralised bone (Broz et al., 1995). Then,
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volume fractions of HA and water were computed at the scale of the mineral foam as:
f foam

HA =
fultra

HA

fultra
HA + fultra

w

,

f foam
w =

fultra
w

fultra
HA + fultra

w

.

(1.19)

For the i-th RVE, the outcome is one value of f cort
pore and two databases collecting the N i

vox

values of fultra
col and f foam

HA at each voxel of the solid matrix. Statistics on these databases were
computed, namely the mean values µexp(•) and dispersions δexp(•), with • ∈ {fultra

col , f foam
HA }.

The data of all the RVEs were further gathered to obtain three global databases of the
volume fractions. The global database of f cort

pore was made of the NRVE items, whereas the

global databases of fultra
col and f foam

HA were made of Nvox items. Statistics on these databases were
computed, namely the mean values µexp(•) and dispersions δexp(•), with • ∈ {f cort

pore, f
ultra
col , f foam

HA }.
These global experimental statistics were used as available information to build the stochastic
model of the random volume fractions described in Sec. 1.2.2, see Step I of the solution algorithm
described in Sec. 1.2.2.

It should be noted that the multiscale model described above requires individual phases to
be homogeneous within the RVE at each scale. This implies that only one value of f foam

HA , fultra
col

and f cort
pore can be considered for the whole solid matrix of the RVE. Since f foam

HA and fultra
col are

heterogeneous within the RVE, an effective value has to be selected to make computations. In
the deterministic case, it is customary to take the local mean values as representative of the
underlying heterogeneous distributions. This was the choice made in our nominal model of
Sec. 1.2.2.

Numerical solution of the stochastic multiscale model

The system of stochastic equations Eqs. (1.12)-(1.14) was solved in three steps.

Step 1 / PDFs of the random volume fractions. First, the PDFs of the random volume
fractions F cort

pore, F
ultra
col , and F foam

HA were determined. This requires computing the parameters λ?0,
λ?1 and λ?2 appearing in Eq. (1.9). This step was performed using the built-in optimisation
functions of Matlab (version R2007b) software to solve the constrained optimisation problem
in Eq. (1.11) and obtain the solution vector λ? = {λ?0, λ?1, λ?2}. Constraints associated with
Eqs. (1.7)-(1.8) require the mean values and dispersions of the random volume fractions. The
mean value and dispersion of the random volume fraction X (any of F cort

pore, F
ultra
col , and F foam

HA )

were estimated by the global statistics of the experimental values of x (any of f cort
pore, f

ultra
col , and

f foam
HA ), that is we set:

µX :=µexp(x) , δX := δexp(x) . (1.20)

Step 2 / Statistically independent realisations of the random volume fractions.
Second, a large numberN of statistically independent realisations of the random volume fractions
were computed using the Monte Carlo method (Knuth, 1981; Rubinstein, 1981). In particular,
the pseudo-inverse method (Devroye, 1986) was used to sample the support of the random
volume fractions (the unit interval) according to the PDF given in Eq. (1.9) and with the
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values of λ computed in the previous step. In brief, statistically independent realisations X(ai)
(i = 1, . . . , N) of random variable X are obtained as:

X(ai) =
(
FλX

)−1
(U(ai)) , (1.21)

where FλX(x) =
∫ x

0 p
λ
X(ξ) dξ is the cumulative density function of X and U(ai) is a realisation

of a uniform random variable U with values in [0, 1]. The outcome was three databases of
N statistically independent realisations of the random volume fractions, that is: {F foam

HA (ai)},
{F ultra

col (ai)}, and {F cort
pore(ai)}.

Statistical estimators of the statistics of the random volume fractions F foam
HA , F ultra

col , and F cort
pore

were computed using these databases. In particular, the statistical estimators of the mean value,
standard deviation, and dispersion of the random volume fraction X are defined as:

µN (X) =
1

N

N∑
i=1

X(ai) , (1.22)

σN (X) =

{
1

N − 1

N∑
i=1

(X(ai)− µN (X))2

} 1
2

, (1.23)

δN (X) =
σN (X)

µN (X)
. (1.24)

Convergence of the statistical estimators of the mean values and dispersions (µN (X) and
δN (X)) toward the mean values and dispersions (µX and δX) of the random volume fractions was
assessed. This allowed estimating the number N ′ of realisations needed for achieving convergence
of the statistical estimators in terms of volume fractions.

Step 3 / Homogenisation: stochastic model. Third, N ′ statistically independent
realisations of the random elastic tensors were computed. For each statistically independent re-
alisation ai (i = 1, . . . , N ′) of the random volume fractions, statistically independent realisations
of the homogenised elastic tensors of the mineral foam, ultrastructure, and cortical tissue were
obtained by solving the following formal equations successively:

gI(Cfoam(ai);F
foam
HA (ai), {cHA, cw}) = 0 → Cfoam(ai) , (1.25)

gII(Cultra(ai);F
ultra
col (ai), {ccol,Cfoam(ai)}) = 0 → Cultra(ai) , (1.26)

gIII(Ccort(ai);F
cort
pore(ai), {cpore,Cultra(ai)}) = 0 → Ccort(ai) . (1.27)

The outcome was three databases of N ′ statistically independent realisations of the ho-
mogenised elastic tensors, that is {Cfoam(ai)}, {Cultra(ai)}, and {Ccort(ai)}.

Statistical estimators of the statistics (mean values, dispersions, confidence intervals ...) of
the random elastic tensors Cfoam, Cultra, and Ccort were computed using these databases as
in Eqs. (1.22)-(1.24). It is worth noting that the mean value and dispersion of the random
elastic tensors are not known. However, as long as convergence is reached in terms of volume
fractions after N ′ independent realisations, it was assumed that the same would hold for the
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Figure 1.4: Algorithm used for solving the stochastic multiscale model.

elastic tensors. Thus, statistics of the random elastic tensors were set to the statistical estimators
computed after N ′ independent realisations, namely:

µY :=µN ′(Y ) , δY := δN ′(Y ) , (1.28)

with Y ∈ {Cfoam,Cultra,Ccort}.
The algorithm for computing Ccort(ai) is schematically depicted in Fig. 1.4 and was im-

plemented in a Matlab (Matlab) code. It is worth noting that each elastic tensor Ccort(ai) is
the effective elastic tensor of a fictitious RVE characterised by homogeneous volume fractions
F foam

HA (ai), F
ultra
col (ai), and F cort

pore(ai).

Step 4 / Homogenisation: nominal model.

Eventually, the nominal model of Eqs. (1.15)-(1.17) was used to compute the homogenised
nominal elastic tensors of the mineral foam, ultrastructure and cortical tissue, that is c

µ
foam,

c
µ
ultra, and c

µ
cort, respectively. Nominal elastic tensors were compared with the mean values of

the random elastic tensors, that is µCfoam
, µCultra

, and µCcort , respectively.

Comparison was made with respect to individual elastic moduli. Let yµ be a nominal elastic
modulus of cµcort, Y the corresponding random elastic modulus of Ccort, and µY the mean value
of Y . Elastic moduli yµ and µY were compared by computing their relative difference:

err(yµ) =

∣∣∣∣yµ − µYµY

∣∣∣∣ . (1.29)

Finite element model

Each RVE was modelled using the Finite Element (FE) Method. A tetrahedral mesh of the 3-D
geometric model was generated using SimpleWare 5.0 FE+ TM software. The meshing process
adapted the mesh size to the geometry of the Haversian pore and solid matrix (ultrastructure)
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regions and accounted for the heterogeneous distribution of TMD in the solid matrix. The mesh
was then exported to a text file adapted for COMSOL Multiphysics r (version 4.2a) software.
A COMSOL Multiphysics r script was developed to compute the effective elastic tensor of
the RVE. To this aim, six boundary problems of linear elasticity were solved corresponding to
homogeneous axial and shear strains on the boundary of the RVE. The FE model was made of
about 3×105 Lagrangian FEs with quadratic interpolation. For each RVE, the script performed
the following steps:

1. Reading the mesh file exported by SimpleWare FE+ TM.

2. Converting the grayscale level of each mesh element into volume fractions of collagen, HA
mineral and water at the ultrastructural level, see Eq. (1.18).

3. Computing the elastic tensor of each mesh element of the solid matrix (cultra) based on the
volume fractions computed above and by performing the first two homogenisation steps
described in Sec. 1.2.2, see Eqs. (1.2)-(1.3).

4. Setting the elastic tensor of the mesh elements belonging to the Haversian pore region to
cw.

5. Applying six Dirichlet boundary conditions (BCs) on the whole boundary of the RVE
corresponding to homogeneous boundary strains, namely three 1-D axial and three simple
shear strains, and solving the corresponding linear elasticity problem using a stationary
solver.

6. Postprocessing the results of the FE computations to compute the effective elastic tensor
of the RVE, cFEM

cort .

7. Exporting the results of the FE computations (in particular, the tensor cFEM
cort ) to an Excel

spreadsheet.

8. Extracting the relevant elastic moduli from the tensor cFEM
cort .

1.3 Results

1.3.1 Volume fractions

In Tab. 1.1 we show the experimental mean values (µexp) and dispersions (δexp) of HP, TMD,
and volume fractions of bone components for individual RVEs (local statistics) and for all the
RVEs together (global statistics, last but one row).

The HP of all the RVEs but two is comprised between 4% and 9%, what is quite usual for
cortical bone. In two cases (RVEs ]9 and ]10), the HP is unusually high (about 20% and 15%,
respectively). The TMD of each RVEs and the global mean value of TMD are all about 1 g/cm3.
The TMD distributions of RVEs ]9 and ]10 do not significantly differ from those of the other
RVEs. As reported in Sansalone et al. (2012b), the local TMD slightly decreases in the axial
direction when moving from the distal to the proximal part of the sample (that is, for increasing
values of z at fixed values of θ).
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RVE (z, θ) HP TMD fcort
pore fultra

col f foam
HA

µexp δexp µexp δexp µexp δexp µexp δexp µexp δexp
[mm, ◦] [%] [-] [g/cm3] [-] [-] [-] [-] [-] [-] [-]

1 (5.5,−40) 6.47 N/A 0.98 0.0627 0.0647 N/A 0.354 0.0135 0.504 0.0696
2 (3.5,−40) 6.49 N/A 1.02 0.0622 0.0649 N/A 0.357 0.0135 0.528 0.0689
3 (1.5,−40) 4.15 N/A 1.05 0.0543 0.0415 N/A 0.359 0.0117 0.544 0.0601
4 (5.5,−20) 5.26 N/A 0.96 0.0703 0.0526 N/A 0.352 0.0151 0.492 0.0781
5 (3.5,−20) 6.21 N/A 0.98 0.0677 0.0621 N/A 0.354 0.0146 0.508 0.0752
6 (1.5,−20) 8.46 N/A 1.02 0.0649 0.0846 N/A 0.357 0.0139 0.530 0.0719
7 (5.5, 0) 8.80 N/A 0.96 0.0795 0.0880 N/A 0.352 0.0170 0.493 0.0882
8 (3.5, 0) 5.91 N/A 1.00 0.0685 0.0591 N/A 0.355 0.0147 0.516 0.0760

9 * (1.5, 0) 20.7 N/A 1.02 0.0800 0.207 N/A 0.357 0.0138 0.530 0.0708
10 * (5.5, 20) 15.5 N/A 0.98 0.0707 0.155 N/A 0.354 0.0152 0.505 0.0785
11 (3.5, 20) 5.89 N/A 1.03 0.0579 0.0589 N/A 0.358 0.0125 0.534 0.0641
12 (1.5, 20) 7.39 N/A 1.02 0.0649 0.0739 N/A 0.357 0.0138 0.530 0.0719

All 8.44 0.571 1.00 0.0715 0.0844 0.571 0.356 0.0154 0.518 0.0794
All but * 6.50 0.216 1.00 0.0717 0.0650 0.216 0.356 0.0155 0.518 0.0796

Table 1.1: Spatial averages and dispersions of experimental values of HP, TMD, and volume
fractions of bone constituents for individual RVEs, the whole ensemble, and the whole ensemble
but RVEs ]9 and ]10. Location of RVEs refers to the (z, θ) coordinates described in Sec. 1.2.1.
N/A: Not applicable.

The same remarks as for the HP and TMD apply to the volume fraction of the Haversian
pores in the tissue (f cort

pore) on the one side and to the volume fractions of the collagen in the

ultrastructure (fultra
col ) and of the mineral in the mineral foam (f foam

HA ) on the other side. Based on
the data reported in Tab. 1.1, the standard deviations of the volume fractions (computed with
respect to all the 12 RVEs) are: σexp(f cort

pore) = 0.0482, σexp(fultra
col ) = 0.0055, and σexp(f foam

HA ) =

0.0411. It can be noticed that the standard deviations of f cort
pore and f foam

HA are quite similar
although their dispersions are not.

Experimental mean values and dispersions of the volume fractions f cort
pore, f

ultra
col , and f foam

HA

in the last but one row of Tab. 1.1 (row “All”) were used as input data for the probabilistic
models of the random volume fractions F cort

pore, F
ultra
col , and F foam

HA . A total of N = 106 statistically
independent realisations of each volume fraction were computed.

Approximations of the PDFs of the random volume fractions are shown in Fig. 1.5. Red,
green and blue lines represent the distributions of the statistically independent realisations of
F cort

pore, F
ultra
col , and F foam

HA , respectively. Red, green and blue knots and dotted vertical lines depict

the corresponding mean values. The realisations F ultra
col (ai) stay very close to the mean value of

F ultra
col , while the realisations F cort

pore(ai) and F foam
HA (ai) spread out, according to the larger values

of the standard deviations of F cort
pore and F foam

HA . Note that the dispersion—the ratio between the
standard deviation and the mean value—is a relative marker of spreading of data and smaller
values of dispersion do not necessarily lead to tighter distributions.

Convergence of the statistical estimators of the mean values (µN ) and dispersions (δN ) of
the random volume fractions toward the mean values (µ) and dispersions (δ) was assessed. It
is worth recalling that statistics of the random volume fractions were set to the experimental
statistics in the last but one row of Tab. 1.1, that is µ = µexp and δ = δexp. The magnitudes of
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Figure 1.5: PDFs of the random volume fractions estimated on the basis of N = 106 statistically
independent realisations. Red, green and blue solid lines represent the distributions of the
statistically independent realisations of F cort

pore, F
ultra
col , and F foam

HA , respectively. Red, green and
blue knots and dotted vertical lines depict the corresponding mean values. (Colors in online
version.)

the relative errors between experimental statistics (taken as references) and statistical estimators
after N = 106 statistically independent realisations were smaller than 0.1%. This validated the
random generator in Eq. (1.21) used for constructing the statistically independent realisations
of the random volume fractions. The statistical estimators of the mean values and dispersions of
the random volume fractions are shown in Fig. 1.6 as a function of the number n of realisations.
Red, green and blue lines and bars refer to F cort

pore, F
ultra
col , and F foam

HA , respectively. Plots in
the left and right columns refer to the mean values and dispersions, respectively. On the top,
the statistical estimators of the mean values (µn) and dispersions (δn) of the random volume
fractions are depicted by solid lines in semi-logarithmic scale. Moreover, the mean values (µ)
and dispersions (δ) of the random volume fractions are depicted by dashed lines. As the number
of realisations n increases, the statistical estimators (µn and δn) are computed on larger and
larger databases {F cort

pore(ai)}n, {F ultra
col (ai)}n, and {F foam

HA (ai)}n and converge to the statistics (µ
and δ) of the random volume fractions as n→ N . On the bottom, the magnitudes of the relative
errors of the statistical estimators of the mean values and dispersions, err(µn) = |(µn−µ)/µ| and
err(δn) = |(δn−δ)/δ|, respectively, are shown in logarithmic scale. Exponential trend lines (dark
coloured lines) are also shown. It can be noticed that the relative errors on the mean values
and dispersions become smaller than 1% and 0.1% after 104 and 105 statistically independent
realisations, respectively.

1.3.2 Elastic moduli

A total of N ′ = 105 runs of the multiscale model were performed using the database of volume
fractions previously built. The outcome was a database of N ′ statistically independent real-
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Figure 1.6: Statistics of the random volume fractions and their statistical estimators as a function
of the number of realisations. Red, green and blue lines, bars and symbols refer to F cort

pore,

F ultra
col , and F foam

HA , respectively. Diamonds, triangles and circles refer to F cort
pore, F

ultra
col , and F foam

HA ,
respectively. On the top: Mean values and dispersions (straight dashed lines) and their statistical
estimators (solid lines). On the bottom: Magnitude of the relative errors of the statistical
estimators of the mean values and dispersions. Dark coloured lines are exponential trend lines.
(Colors in online version.)

isations of random elastic tensors of the cortical tissue, {Ccort(ai)}, with i = 1, . . . , N ′. The
nominal elastic tensor of the cortical tissue, cµcort, was also computed. In view of the assump-
tions made in Sec. 1.2.2, tensors cµcort and {Ccort(ai)} turn out to be transversely isotropic, the
isotropy plane being the cross-section of the femoral neck.

Statistics of the random elastic moduli were computed. The nominal elastic moduli were
compared with the mean values of the random moduli to assess the relevance of the nominal
model.

In view of the transverse isotropy of Ccort, we focused on the axial moduli in the cross-section
(Y1) and along the axis (Y3) of the femoral neck, the shear moduli in the cross-section (G12)
and in the sagittal plane (G13 = G23), and the lateral contraction moduli in the cross-section
(V12 = V21) and in the sagittal plane (V13 = V23), that is the contraction in the cross-section
plane due to a unit extension in the axial direction. Subscripts {1, 2, 3} refer to the Cartesian
frame in Fig. 1.1. Note that axial and lateral contraction moduli correspond to the Young’s
modulus and Poisson ratio, respectively, for an isotropic material.

Statistics of the random elastic moduli, nominal elastic moduli and relative differences as
in Eq. (1.29) are reported in Tab. 1.2. The differences between the mean values of the random
elastic moduli and the nominal elastic moduli are always smaller than 10%. Therefore, the
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Stochastic model Y1 Y3 G12 G13 V12 V13

[GPa] [GPa] [GPa] [GPa] [−] [−]

Mean value 5.6416 7.5952 2.0485 2.3228 0.3917 0.2629
Std. deviation 2.3751 3.8096 0.8983 1.1055 0.0505 0.0542
Dispersion [-] 0.4210 0.5016 0.4385 0.4759 0.1288 0.2062
2.5% quantile 1.7007 1.8900 0.5767 0.5968 0.3341 0.1826
25% quantile 3.9172 4.6905 1.3949 1.5023 0.3643 0.2216
75% quantile 7.1296 9.9348 2.6044 3.0019 0.4091 0.3000
97.5% quantile 10.8355 16.2558 4.0361 4.8067 0.4777 0.3742

Nominal model yµ1 yµ3 gµ12 gµ13 vµ12 vµ13
[GPa] [GPa] [GPa] [GPa] [−] [−]

5.4358 7.0657 1.9619 2.1861 0.3854 0.2546

Relative difference err(yµ1 ) err(yµ3 ) err(gµ12) err(gµ13) err(vµ12) err(vµ13)
Eq. (1.29) [%] [%] [%] [%] [%] [%]

3.6478 6.9717 4.2281 5.8888 1.6178 3.1668

Table 1.2: Statistics of the random moduli, nominal elastic moduli, and their relative differences
(Eq. (1.29)). Random moduli - Y1: axial modulus in the cross-section plane; Y3: axial modulus
along the axis of the femoral neck; G12: shear modulus in the cross-section; G13 = G23: shear
modulus in the sagittal plane; V12 = V21: lateral contraction modulus in the cross-section;
V13 = V23: lateral contraction modulus in the sagittal plane (i.e., contraction in the cross-
section plane due to a unit extension in the axial direction). Subscripts {1, 2, 3} refer to the
Cartesian frame in Fig. 1.1. Dispersion values are dimensionless. Nominal moduli and relative
differences follow the same notation.

deterministic elastic tensor computed through the nominal model provides a quite reasonable
approximation of the random elastic tensor computed through the stochastic model. Moreover,
leaving aside parallel programming, the computational time required to compute the (determin-
istic) nominal elastic tensor is N ′ orders of magnitude smaller than that required to estimate
the random elastic tensor of the stochastic model. (The stochastic model requires additional
computational time to store the large amount of data of the N ′ realisations and compute statis-
tics.)

The axial modulus along the axis (Y3, on the top) and the shear modulus in the cross-section
plane (G12, on the bottom) of the femoral neck, are shown in Fig. 1.7. Red crosses refer to the
realisations of the random elastic moduli. Straight lines refer to the statistics of the random
moduli (which do not depend on the realisations) and to the nominal model. Solid, thick-dashed
and thin-dashed brown lines refers to the mean values, 50% and 95% confidence intervals of the
random moduli, respectively. Confidence intervals are plotted based on the quantiles given in
Tab. 1.2. Solid black lines refer to the nominal elastic moduli.

The statistical estimators of the mean values and confidence intervals of the random elas-
tic moduli Y3 and G12 are presented in Fig. 1.8 as a function of the number of realisations n.
Statistical estimators of the mean values and dispersions of the random elastic moduli converge
towards the mean values and dispersions of the random elastic moduli as the number of indepen-
dent realisations increases (n→ N ′). (Recall that statistics of the random elastic moduli are set
to the statistical estimators computed on N ′ = 105 statistically independent realisations.) As
for the volume fractions, convergence is almost achieved after n = 104 statistically independent
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Figure 1.7: Axial (left) and shear (right) elastic moduli along the axis and in the cross section
of the femoral neck, that is Y3 and G12, respectively. Red crosses refer to the realisations of the
random elastic moduli. Brown straight lines refer to the statistics of the random elastic moduli.
Solid, thick-dashed and thin-dashed straight brown lines refer to the mean values, 50% and 95%
confidence intervals of the random moduli, respectively. Solid black straight lines refer to the
nominal elastic moduli. (Colors in online version.)

realisations, the relative errors of the statistical estimators being smaller than a few percent.
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Figure 1.8: Axial (left) and shear (right) moduli along the axis and in the cross section of
the femoral neck, that is Y3 and G12, respectively. Solid, thick-dashed and thin-dashed brown
lines refer to the statistical estimators of the mean values, 50% and 95% confidence intervals of
the random elastic moduli, respectively. Solid black straight lines refer to the nominal elastic
moduli. (Colors in online version.)

In Fig. 1.9 the estimated PDFs of the realised elastic moduli are presented. Solid, thick
dashed and thin dashed brown lines refer to the averages, 50% and 95% confidence intervals of
these random moduli, respectively. Solid black lines refer to the nominal elastic moduli. The
PDFs of the random elastic moduli are quite asymmetric and do not show a Gauss-like shape.

Results of the multiscale models were compared with a reference FE model. FE estimates
of the elastic tensors, cFEM

cort (j) with j = 1, . . . , 12, were computed for the 12 RVEs identified
in Sec. 1.2.1. Unlike elastic tensors Ccort(ai)—which represent fictitious RVEs with idealised
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Figure 1.9: Approximations of PDFs of the random elastic moduli. Vertical brown straight
lines refer to the statistics of the random elastic moduli. Solid, thick-dashed and thin-dashed
brown lines refer to the mean values, 50% and 95% confidence intervals of these random moduli,
respectively. Solid black straight lines refer to the nominal elastic moduli. (Colors in online
version.)

pore geometry and homogeneous ultrastructure, each FE tensor cFEM
cort (j) accounts for the specific

Haversian pore geometry and heterogeneous ultrastructure of one actual RVE. Therefore, tensors
cFEM

cort (j) should be regarded as references for the multiscale model to be compared with. First
of all, the accuracy of the multiscale model was assessed for the 12 RVEs. The homogenised
elastic tensor of each RVE was computed using the deterministic, homogenised model presented
in Sec. 1.2.2 and taking the HP and mean value of TMD of the RVE (see Tab. 1.1) as input data.
The deterministic, homogenised model provided results very similar to those of the FEM model.
The relative differences of the Frobenius norms of the homogenised and FE elastic tensors were
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smaller than a few percent for all the 12 RVEs (data not shown).

Comparison between the stochastic model, the nominal model and the FE model is shown
in Fig. 1.10. Results of the FE model are represented by blue circles in Fig. 1.10. Solid, dashed
and dotted brown lines refers to the averages, 95% and 50% confidence intervals of the random
moduli, respectively. Solid black lines refer to the nominal elastic moduli. The elastic moduli of
all the 12 RVEs were found to fall within the 95% confidence interval of the stochastic model.
Moreover, most of these elastic moduli were found to fall within the 50% confidence interval of
the stochastic model. Three RVEs show some elastic moduli falling out of the 50% confidence
interval, namely RVEs ]3, ]9, and ]10. These RVEs are characterised by lowest (RVE ]3) and
highest (RVEs ]9 and ]10) values of HP, leading to highest and lowest elastic moduli, respectively.

1.4 Discussion

Multiscale modelling and simulation are powerful methods to predict bone mechanical proper-
ties as long as information on bone organisation and composition at different structural scales
is available. Experimental information on microstructural features can be accounted for in mul-
tiscale models and FE simulations (Bourne and van der Meulen, 2004; Hellmich et al., 2008;
Sansalone et al., 2010; Wagner et al., 2011; Sansalone et al., 2012b; Blanchard et al., 2013;
Graeff et al., 2013; Sreenivasan et al., 2013). In particular, Haversian porosity (HP) and min-
eral content of bone matrix (TMD) are known to relate with the mechanical properties of bone
(Burr, 2004). Information on HP and TMD can be provided by experimental measurements at
the relevant scales, i.e. a few hundreds micrometres and several micrometres for the HP and
TMD, respectively. X-Ray based devices are commonly used in scientific research and clinical
practice to probe bone microstructure. Advanced imaging techniques as SR-µCT can provide
quite accurate information on bone microstructure at the micrometric scale or even below (Nuzzo
et al., 2002; Bousson et al., 2004) but are limited to in vitro studies on small human bone sam-
ples. Medical devices currently used in clinical practice, such as DXA devices or QCT scans,
have much coarser spatial resolution (typically one mm to several hundreds µm) and cannot
provide as much accurate information. More recently, improved 3-D imaging techniques have
been introduced such as µ-CT, high-resolution peripheral quantitative µ-CT (HR-pQCT), and
multidetector CT (MDCT) (Burghardt et al., 2011). These techniques allow imaging bone in
vivo with spatial resolution ranging from a few to several hundreds micrometres. Last gener-
ation µCTs allow ex vivo examinations of human specimens as big as entire vertebrae, with
spatial resolutions in the 10 µm range, which opens a new way for looking at entire bones in
3-D (Perilli et al., 2012). However, technical limitations related to image quality, radiation dose
considerations, and subject motion make it hard to obtain accurate information on HP and
TMD through these techniques in in vivo conditions. Technology is rapidly evolving in the field
of medical imaging and improvements can be expected in next years or decades. However, at
the present, in vivo medical images turn out to be too much blurred for extracting accurate
information on bone microstructure. Uncertainties affecting available in vivo information on
bone microstructure may question the reliability of results obtained by multiscale models using
these data as entry (Valente et al., 2014). As long as input data are uncertain, deterministic
approaches may become unreliable and new modelling paradigms are required.
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Figure 1.10: Comparison between the elastic moduli of the actual RVEs and the statistics of
the random elastic moduli. Blue circles refer to the 12 RVEs in Tab. 1.1. Solid, thick-dashed
and thin-dashed brown lines refer to the mean values, 50% and 95% confidence intervals of
the random moduli, respectively. Solid black straight lines refer to the nominal elastic moduli.
(Colors in online version.)

1.4.1 The multiscale model: a compromise between accuracy and simplicity

The multiscale description of bone used in this study was developed in order to achieve a good
compromise between accuracy (in the predicted elastic coefficients) and simplicity (required
by the limited available experimental information). Both nominal and stochastic multiscale
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models use continuum micromechanics theory and rely on the same assumptions in terms of
microstructural organisation of bone at the different scales (mineral foam, ultrastructure, cortical
tissue). Limitations related to these assumptions as well as experimental validation have been
discussed in previous studies (Sansalone et al., 2010, 2012b). Some of this hypothesis have been
investigated by other authors by comparing model predictions with experimental values.

Direct comparison with experimental data is not possible. On the one side, we were not able
to perform mechanical testing. On the other side, comparison with data available in literature
is tricky since elastic moduli strongly depend on microstructural features (namely the TMD)
which we could not find in literature.

RVE size. A cornerstone of any homogenisation model is the concept of RVE. The size of
our RVE was chosen looking at the dependency of the elastic coefficients of the cortical tissue–
as predicted by the nominal model–on the RVE size (data not shown). It was found that the
minimum RVE size should be about half a millimetre. This value is coherent with the findings
of other authors (Grimal et al., 2011a) who have addressed this issue using different approaches.
Moreover, within the RVE, our model assumes homogeneous material properties around the
pores at the tissue scale. This assumption is supported by acoustic measures which revealed a
small variation of elastic properties of bone matrix at the millimetre scale (Granke et al., 2011).

Microarchitecture. Both Haversian pores (at the tissue scale) and collagen (at the ultra-
structural scale) were assumed to be of cylindrical shape and aligned with the femoral neck axis.
However, Haversian pores have a more complex geometry (see Fig. 1.2) and collagen orientation
changes from one lamella to another (Reisinger et al., 2011; Spiesz et al., 2011; Granke et al.,
2013). Moreover, mineral particles (at the mineral foam scale) were assumed to be spherical
whereas they are actually platelets with thickness of a few nanometres and length and width
of a few to several tens of nanometres (Rho et al., 1998; Deuerling et al., 2009). While on the
one hand our hypothesis of cylindrical pores at the tissue scale seems reasonable (Granke et al.,
2015), our assumptions at the lower scales (aligned collagen fibers and spherical mineral parti-
cles) may lead to inaccurate predictions (Deuerling et al., 2009). Other micro- and nano-scale
features such as the morphology of the lacuno-canalicular network and the mineralisation at the
nanoscale can affect bone elasticity, strength and failure (Tai et al., 2008; Langer et al., 2012;
Schrof et al., 2014). All these microarchitectural features should be investigated and their effects
on the tissue level properties assessed.

How many scales? The usefulness of a detailed description of bone micro- and nanostruc-
ture below the tissue scale is a matter of debate. Our model considers three microstructural levels
below the organ and lies in between two families of approaches. On the one side, some authors
used very detailed descriptions of bone hierarchical structure (Yoon and Cowin, 2008a,b; Fritsch
and Hellmich, 2007) which fit quite well with experimental measures at different microstructural
scales. However, these approaches need experimental input data which are hardly available in
a subject-specific study. Other authors suggested that simpler models, basically based on the
porosity at the tissue level (Dong and Guo, 2006; Granke et al., 2011, 2015), could be enough to
catch the main elastic properties of bone. In this case, some discrepancies between experimental
measures and model predictions were observed which could be attributed to variations in the
elastic properties of microstructural features of bone (Dong and Guo, 2006; Granke et al., 2015).
This interpretation is coherent with our findings (e.g. RVEs n. 1 and 2 which have quite similar
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HP and different TMD, see Tab. 1.1).

1.4.2 The stochastic multiscale model: a comprehensive description of bone

The first goal of this work was to develop a modelling strategy taking into account the uncertain
composition of bone. To this aim, a stochastic multiscale model of cortical bone was developed.
To the best of our knowledge, this is the first attempt to compute the elastic properties of
cortical bone taking into account simultaneously its multiscale structure and the experimental
uncertainty on the amount of its elementary components. The deterministic multiscale model
of Sansalone et al. (2010, 2012b) was extended in a stochastic framework by treating the volume
fractions of bone components as random variables. The non-Gaussian probabilistic models of
the volume fractions were obtained using the MaxEnt principle. The experimental information
needed to construct the PDFs of the volume fractions was obtained through high-resolution
SR-µCT images of the inferior part of a human femoral neck sample. Image analysis of several
RVEs in the cortical part of the sample allowed computing the mean value and dispersion of
each volume fraction. The stochastic multiscale model was used to quantify the uncertainties
relative to the random elastic tensor of cortical tissue and its mean value. Statistics of random
elastic moduli (mean value, standard deviation, confidence interval ...) were compared with the
nominal elastic moduli on the one side and with detailed FE models of the RVEs on the other
side.

The stochastic model turns out to provide a reliable representation of the elastic properties of
cortical tissue. All the FE results fall within the 90% confidence interval of the stochastic model.
Moreover, all the FE results fall within the 50% confidence interval of the stochastic model but a
few exceptions (3 RVEs out of 12, characterised by an unusually high or low HP), see Fig. 1.10.
It should be noted that the outcome of the stochastic model has to be regarded in statistical
terms. As long as bone composition at a given anatomical location is known in statistical terms
(e.g. average and dispersion), it provides reliable information about the expected value of the
local elastic properties and the confidence interval of that estimate. One might expect the
elastic moduli of roughly half of the actual RVEs to fall within the 50% confidence interval of
the stochastic model. However, this latter seems to provide a much safer envelop. Fig. 1.10
shows that between 75% and 100% of the actual RVEs fall within the 50% confidence interval.
This might be due to the information introduced in the MaxEnt principle. This information
would lead to PDFs of the random volume fractions which are more spread out than those of
the actual volume fractions. On the one side, some information might be missing: For instance,
the bounds 0 and 1 could be considered as repulsive values. On the other side, estimates of
mean value and dispersion of random volume fractions could be improved: For instance, instead
of considering them as experimentally known values, they could be computed by solving an
optimisation problem based on the maximum likelihood principle.

1.4.3 The nominal model: a simple and accurate estimate of expected elastic
moduli

The second goal of this chapter was to identify whether a simpler model exists providing results
comparable to those of the stochastic multiscale model. Indeed, while providing a comprehen-
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sive representation of bone elasticity, the stochastic model presents some drawbacks which may
prevent its direct application for end-user clinical purposes. First of all, the stochastic model
requires a high computational time. In this study, the computational time on a standard desktop
computer was about half an hour to generate the database of N = 106 volume fractions and half
a day to perform N ′ = 105 runs of the three-step homogenisation procedure. Despite this time is
quite reasonable for research purposes, it might be not for end-user clinical purposes. Parallelis-
ing the computer code would reduce the computational cost. (Roughly speaking, computational
time would be divided by the number of parallel processors.) However, this is not worth con-
sidering in clinical practice. Moreover, the stochastic model requires both the mean values and
the dispersions of the volume fractions to be estimated, which might not be straightforward.
Therefore, the interest for a faster and simpler model is apparent. A candidate meeting these
requirements is the nominal model introduced in Sec. 1.2.2. The nominal model only needs the
mean values of the volume fractions as input data and provides run-time results. Nominal elastic
moduli stay quite close to the mean values of the random elastic moduli, with differences of a
few percent, see Tab. 1.2. As long as errors smaller than 10% are acceptable, the nominal model
provides a “good” estimate of expected bone elastic moduli. However, it should be reminded
that the nominal model is intrinsically unable to provide information about the reliability of
these estimates—a shortcoming of any deterministic approach.

1.4.4 Whole bone: heterogeneity vs. homogeneity

Another shortcoming of the nominal model lies in the fact that it cannot account for the het-
erogeneity of bone at the organ scale. Our experimental data cover the whole cortical region.
Then, one should be allowed to use these data to analyse the whole cortical region. The stochas-
tic model would use these data (namely, the mean values and dispersions of the bone volume
fractions) to generate a random distribution of elastic tensors at each point of the bone cortex.
This result should be regarded in a statistical sense: the spatial distribution of elastic tensors
generated by the stochastic model will be statistically equivalent to the spatial distribution of
actual elastic tensors.

Both HP and TMD–and therefore elastic properties–of bone tissue are heterogeneously dis-
tributed at the organ scale. The stochastic model could be used to generate a heterogeneous
distribution of elastic properties statistically equivalent to the actual one and therefore to set
up a FE analysis at the organ scale. The elastic properties of each FE meshing the bone could
be randomly generated by the stochastic model. In general, the randomly generated elastic
properties of each FE will be different from the actual ones (which are related to the local values
of HP and TMD). However, the spatial distributions of randomly generated and actual elastic
tensors will be statistically equivalent. In other words, one would obtain the same macroscopic
results (such as maximum displacement or limit load) from FE meshes with either heterogeneous
randomly-generated elastic properties or heterogeneous actual elastic properties.

By contrast, the nominal model would predict the same elastic response at each point of
the bone. Using the nominal model to set up a FE analysis of the whole bone would lead
to homogeneous material properties everywhere in the mesh. Is this simplification acceptable?
Fig. 1.10 shows that the values of the elastic moduli of individual RVEs obtained through the FE
model can be quite different from the elastic moduli predicted by the nominal model (as well as
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the mean values of the stochastic model), the relative errors approaching 50% in some cases. The
average errors on the axial and shear moduli are about 20% and those on the lateral contraction
moduli are slightly smaller than 10%. Indeed, bone turns out to be highly heterogeneous at the
organ scale and the elastic properties can vary considerably within a distance of a few millimetres
(as in the bone sample considered in this study), see e.g. the axial modulus along the femoral
neck axis of RVEs ]10 (z = 5.5 mm, θ = 20◦, yFEM

3 ' 5 GPa) and ]11 (z = 3.5 mm, θ = 20◦,
yFEM

3 ' 9 GPa). Therefore, attention should be paid in considering bone as homogeneous at
the organ scale.

1.4.5 Limitations and future research directions

To conclude, a few remarks on the scope and limitations of the proposed modelling strategy are
in order. Some limitations of our study are related to the multiscale description of bone and the
associated modelling choices. Some of these issues were addressed in Sec. 1.4.1 and thoroughly
discussed in previous work (Sansalone et al., 2010, 2012b). Other limitations are more closely
related to the stochastic treatment of modelling variables and will be discussed here below.

Statistical population. First of all, only 12 RVEs were considered in this study. This
makes largely unreliable the values of the experimental (global) statistics of f cort

pore. A larger
number of RVEs should be used to improve accuracy and reliability of the experimental statistics
of f cort

pore. For instance, the global mean value of HP is higher than 8% and its global dispersion is
higher than 0.5—a quite high value corresponding to a standard deviation of almost 5%. Such
high values of the global mean value and dispersion are mainly due to the contribution of RVEs
]9 and ]10. Excluding these RVEs from the statistical analysis (last row), the global mean value
of HP drops to 6.5% and its global dispersion to 0.2 (corresponding to a standard deviation of
1.4%). By contrast, experimental statistics on fultra

col and f foam
HA are computed on large numbers

of voxel-wise values (N i
vox ∼ 105 and Nvox > 106 for local and global statistics, respectively).

Therefore, no significant errors are expected on those statistics. It should also be noted that
this study considered just one bone sample from one anatomical site of one donor. Different
results may be obtained for different anatomical sites or donors of different ages or pathological
conditions. A longitudinal and cross-sectional study is needed in order to assess the suitability
of this approach and the conclusions of this study on different statistical populations.

Statistical independence. Experimental volume fractions f foam
HA , fultra

col , and f cort
pore are

computed based on two pieces of experimental information (HP and TMD), see Sec. 1.2.2. Ex-
perimental statistics of f foam

HA , fultra
col , and f cort

pore fed the stochastic models of the random volume

fractions F foam
HA , F ultra

col , and F cort
pore, respectively, which were considered as statistically indepen-

dent. Nevertheless, statistical dependence may exist between these random variables. In order
to take statistical dependence into account in the MaxEnt principle, objective information is
needed. This information could be provided by analysing the dependence (e.g. correlation) pos-
sibly existing between the experimental variables. This issue was not investigated yet. Therefore,
statistical independence remains a safe hypothesis in the framework of the MaxEnt principle.

Random variables vs. random fields. Volume fractions are modelled as random vari-
ables without spatial correlation. Should this model be used to generate a FE mesh at the
organ scale, no relationship would exist between the elastic properties of adjacent points. This
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1.4. Discussion

is largely unrealistic. As previous studies have shown, elastic moduli in the femoral neck are
not only heterogeneous—as already underlined—but also show a global tendency to decrease
radially from the periosteum inwards (Sansalone et al., 2010, 2012a) and axially from the dis-
tal to the proximal part of the femoral neck (Sansalone et al., 2012b). These variations have
been shown to be related to the anatomical variations of HP—increasing from the periosteum
inward—and TMD—decreasing from the distal to the proximal part. Moreover, at each point
of the femoral neck, the values of HP and TMD may correlate, which would induce dependency
between the volume fractions. All these features should be taken into account in the stochastic
model of volume fractions and are addressed in a forthcoming work.

Random elastic properties and microarchitecture. Moreover, only the volume frac-
tions were considered as random parameters. Both elastic properties and geometric organisation
of bone components were fixed to some reference values. However, aiming at patient-specific
modelling, modelling of both these features needs to be improved and included in a comprehen-
sive model where all the parameters are described according to the available information. On
the one side, elastic coefficients of bone components were already modelled as random variables
in previous work (Sansalone et al., 2014). Randomness in the values of the elastic coefficients
accounts for the imperfect knowledge of the effective elastic behavior of bone components at
the nanoscale. In that work, all the bone components were considered as elastically isotropic.
For sake of coherency, we made the same assumption in this work. However, at the least col-
lagen should be considered transversely isotropic (Hellmich et al., 2004a)—as already done in
previous work of our group (Sansalone et al., 2010). On the other side, the idealised microarchi-
tecture assumed in this study should be revisited to comply with a more realistic description.
Again, a stochastic treatment might be useful to account for the limited data available on bone
microarchitecture.

Validation. Furthermore, the stochastic model needs to be validated at the organ scale.
At the present, only a numerical validation was performed for each RVE (data not shown). The
stochastic model is expected to produce an accurate description of the overall elastic response
at the organ scale. Experimental or detailed numerical results at the organ scale are required
to prove the reliability of model predictions.

In vivo experimental data. Eventually, this study was based on high resolution SR-
µCT images which allowed obtaining a detailed description of bone microstructure and accurate
statistical information on HP and TMD in a small bone sample. Aiming at translating this ap-
proach to in vivo conditions, some critical issues arise concerning the experimental data. On the
one side, the physics of imaging (for instance, dose in X-ray CT) limits the spatial resolution of
clinical CT scanners. Peripheral CT scans can achieve a spatial resolution of about 80 µm. How-
ever, the spatial resolution of clinical scanners for imaging spine and hip is of several hundreds of
micrometres, which is inadequate for highly accurate cortical measurements (Genant and Jiang,
2006). On the other side, clinical applications cannot be restricted to small anatomical sites
as in this study. Imaging whole organs (or large parts of them) with a resolution of several
micrometres requires managing very big data. Nowadays, the need for accurate measurements
at the microstructural scale on whole bones constitutes a critical bottleneck for the approach
proposed in this work to be transferred to clinical practice. In order to overcome this difficulty,
a robust protocol is necessary to retrieve statistical information at the finer scales—required
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Chapter 1. Stochastic multiscale modelling of cortical bone elasticity based on high-resolution imaging

by the model—from measurements at the coarser scales—typical of medical devices. The im-
provement of imaging resolution would become non-essential if useful information from bone
microarchitecture, such as heterogeneity of spatial mineral distribution, can be extracted from
the low-resolution images. Several multi-modal studies exist which compare and correlate exper-
imental data coming from different imaging techniques (Grampp et al., 1997; Heilmann et al.,
1998; Rossini et al., 1998; Genant et al., 2000; Apostol et al., 2006; Bagi et al., 2006; Chappard
et al., 2006; Engelke et al., 2009; Guglielmi et al., 2011; Itô, 2000; Nishiyama and Boyd, 2011;
Link, 2012; Baum et al., 2013; Lewiecki, 2013). These studies point out the difficulty to retrieve
accurate microstructural information from 2-D or 3-D medical devices. Recently, a stochastic
approach was proposed to examine 2-D DXA images and quantitatively assess the heterogeneity
of spatial mineral distribution (Dong and Wang, 2013) opening the way to further studies in
this direction.

1.5 Conclusion

Lack of patient-specific data and uncertainties affecting available information on bone mi-
crostructure, especially in vivo and at the small scales of its hierarchical structure, may question
the reliability of results provided by models based on these experimental input data. In order to
overcome these difficulties, we proposed in this chapter a novel modelling approach taking into
account both the hierarchical structure of bone and the uncertainty existing on the experimental
data. The hierarchical structure of bone is accounted for using a continuum micromechanics
approach. Uncertain experimental data are treated as random variables and their probability
distributions are built using the MaxEnt principle. The outcome is a stochastic multiscale model
which uses statistics (mean and dispersion) on experimental measures of bone composition to
provide statistics (mean, dispersion, confidence intervals, ...) on the elastic properties of the
cortical tissue. The stochastic multiscale model was validated against detailed FE calculations
and proved to describe correctly the heterogeneous elastic properties of cortical tissue at the
organ scale. A simpler nominal multiscale model was also proposed which may be useful when
heterogeneity can be neglected. Experimental input data of this study were provided by SR-µCT
images of a femoral neck sample. These images provided detailed statistics on bone composition
which were used for both the stochastic multiscale model and the FE analysis. This work is a
first step in patient-specific modelling and several limitations exist which will be addressed in
future work. Some limitations are related to the modelling (spatial correlation of experimental
data and uncertainty on the microarchitecture are not accounted for) and others to the technol-
ogy of the clinical devices which, at present, cannot provide the experimental data required by
the model.
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elastic properties of bone matrix
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sub-millimeter scale can provide reliable statistics of elastic properties of bone matrix. Biome-
chanics and modeling in mechanobiology, (submitted) Nov. 2016.

59



Chapter 2. Tissue mineral density measured at the sub-millimeter scale provides reliable statistical estimates
of elastic properties of bone matrix

Abstract

Reliability of multiscale models of bone is related to the accuracy of the experimental information
available on bone microstructure. X-ray based imaging techniques allow to inspect bone struc-
ture and mineralization in vitro at the micrometer scale. However, spatial resolution achievable
in vivo is much coarser and can produce blurry, uncertain information on bone microstructure.
Working with uncertain data calls for new modeling paradigms able to propagate uncertainty
through the scales. In this chapter we investigate the effects of uncertain bone mineralization
on the elastic coefficients of the bone matrix. To this aim, some stochastic concepts were devel-
oped and compared with one another in order to identify the best way to account for uncertain
input data. These concepts step from a deterministic micromechanical model of bone matrix
which was extended in order to account for uncertain bone composition. Uncertainty was intro-
duced by assuming to know only mean value and dispersion of the parameters describing bone
composition. Thus, these parameters were modeled as random variables and their distribution
functions were obtained using the Maximum entropy (MaxEnt) principle. Either the tissue
mineral density (TMD) or the ensuing volume fractions of collagen and mineral were used to
describe uncertain bone composition. Moreover, mean value and dispersion were estimated at
the scales of either ten or a few hundreds micrometers, representative of standard in vitro and
in vivo spatial resolutions, respectively. Analysis of these modeling concepts suggests that TMD
measured at the sub-millimeter scale can be used to obtain reliable statistical information about
the elastic coefficients of bone matrix.
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2.1 Introduction

Characterizing bone mechanical properties has been–and still is–a major issue due to the com-
plexity of bone hierarchical structure (Rho et al., 1998) and the difficulty to inspect it, especially
in vivo. Clinical measures such as bone mineral density (BMD) are unable to fully explain bone
quality and strength (Dall’Ara et al., 2013). Since the pioneering work of Currey in the eighties
(Currey, 1988), the relevance of Haversian porosity (HP) and tissue mineral density (TMD, i.e.
the degree of mineralization of the bone matrix) has been acknowledged and increasingly inves-
tigated (Bousson et al., 2004). On the one side, the progress made in recent decades has been
made possible by the development of new imaging and mechanical techniques with increased
power and resolution (Currey, 2009). On the other side, theoretical and computational modeling
has offered unique opportunities to interpret and understand experimental measures.

Nowadays, finite element (FE) simulations represent a standard approach to investigate
stress/strain distribution as well as to estimate effective elastic properties of bone at several
scales (Blanchard et al., 2013; Granke et al., 2015; Zadpoor and Weinans, 2015; van Rietber-
gen and Ito, 2015; Pottecher et al., 2016). Additional insights can be provided by multiscale
techniques accounting for bone heterogeneity and anisotropy. Among others, homogenization
theory (Predoi-Racila and Crolet, 2008; Parnell et al., 2011) and continuum micromechanics
(Hellmich et al., 2004) were successfully used to compute bone elastic properties using constitu-
tive and morphological information on the elementary constituents of bone (basically collagen,
mineral, and water). More recently, modeling approaches were coupled with high-resolution
micro-computed tomography (µCT) imaging to derive 3D maps of elastic properties of bone
samples ex vivo (Hellmich et al., 2008; Sansalone et al., 2010). A major difficulty in transposing
these approaches to the clinical practice is related to obtaining reliable input data using standard
clinical devices. Indeed, clinical CT scans may provide blurry data which these approaches, being
deterministic in nature, cannot properly deal with. In particular, they are intrinsically unable
to quantify the effects of the uncertainty affecting the input data onto the model predictions.

Uncertainty quantification in multi-scale modeling of composites has been recently faced
by means of stochastic approaches aiming at mimicking the key features of typical experimen-
tal data, with a given degree of accuracy. Among others, we recall the Maximum Likelihood
principle, the Maximum Entropy (MaxEnt) principle (Soize, 2001), and the polynomial chaos
decomposition (Soize and Ghanem, 2004)). In particular, the MaxEnt principle has been re-
cently used by our group to model uncertain input data in a continuum micromechanical model
of bone elasticity. In our previous work, the focus was set on either the elastic properties (Sansa-
lone et al., 2014) or the volume fractions (VFs) (Sansalone et al., 2016) of bone constituents. In
this latter work, uncertainty on VFs was estimated from the 3D spatial distribution of HP and
TMD in a bone sample harvested from the inferior femoral neck of an elderly patient. The sam-
ple was imaged using synchrotron radiation µCT (SR-µCT) with a spatial resolution of about
10 µm. Despite this resolution is quite standard in ex vivo imaging, it is hardly achieved by
clinical scans in vivo which have typical spatial resolution of about 100 µm or less (Burghardt
et al., 2011). SR-µCT images were then analyzed to obtain statistical information (mean value
and dispersion) about the distribution of HP and TMD in the cortical tissue. HP was measured
with a spatial resolution of about 500 µm micrometers–i.e. the typical size of a representative
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volume element (RVE) of cortical tissue (Grimal et al., 2011). TMD was measured with a spatial
resolution of about 10 µm–i.e. the voxel size. Feeding the stochastic model with this statistical
information allowed simulating an uncertainty scenario where HP and TMD were assumed to be
known just in statistical terms. The model allowed propagating the uncertainty on input data up
to the tissue scale and estimating mean value and confidence intervals of the elastic coefficients
of the cortical tissue. These latter were compared with detailed micro-finite element analysis
(µFEA) of several RVEs of the sample–to be considered as reference values. The stochastic
model succeeded in predicting the mean value of the elastic coefficients but not the confidence
intervals which turned out to be larger than expected (almost all the µFEA results felt within
the 50% confidence predicted by the stochastic model). Therefore, the effects of the uncertainty
affecting HP and TMD (input) were somehow overestimated in the computed elastic coefficients
(output).

The main goal of this chapter is to improve the results of Sansalone et al. (2016) and pro-
vide more reliable estimates of bone elastic coefficients–in particular, more realistic confidence
intervals–based on uncertain compositional data. Implications on the related experimental is-
sues will be also discussed. The focus will be set on the solid matrix of bone–also referred to as
ultrastructure (US)–and two main questions will be investigated.

The first question concerns the choice of the variables describing the composition of the
US. In quantitative µCT images, information on US composition is carried by the gray level
(GL) of the voxels. GL is linearly related to the mineral content of the voxels, that is the
TMD. This latter, in turn, allows computing the VFs of collagen, mineral and water in the US
(Broz et al., 1995). In a deterministic framework, TMD and VFs are related by a one-to-one
relation and US composition is equivalently described in terms of either choice. As soon as
US composition is uncertain, both TMD and VFs can be described as random variables with
statistics (such as mean value and dispersion) defined by the available experimental data. In a
stochastic framework, choosing either TMD or VFs as primary modeling variables may not be
equivalent. In this chapter we will compare these choices in order to identify the more suitable
approach.

The second question concerns the scale at which experimental measures should be made in
order to obtain reliable values of the US elastic moduli. This question is related to an hypothesis
underlying the continuum micromechanical model used in (Sansalone et al., 2010) to compute
the elastic coefficients of bone, namely the assumption of homogeneous US within each RVE–i.e.
at the tissue scale. In order to comply with this hypothesis, the actual, heterogeneous US of
each RVE was replaced with an effective, homogeneous US obtained by spatial average of the
actual US voxels (i.e., the voxels belonging to the US). This approach was then extended by
(Sansalone et al., 2016) to build a stochastic model of the US. In short, a database of Nvox > 106

voxels was generated by collecting all the US voxels of a dozen of RVEs of cortical tissue; then,
statistics of this experimental database were used to build a stochastic model of the US. Each
realization of this model is meant to represent the homogeneous US of a virtual RVE. Thus, this
model uses input data at the voxel scale to produce output results at the RVE scale. In this
chapter we will investigate this point in detail by comparing the results of stochastic models of
US based on voxel-scale and tissue-scale experimental data.

The work is organized as follows. In Sec. 2.2 we will first present our experimental data.
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Then, we will present the theoretical development and numerical implementation of four stochas-
tic concepts, focusing on a new, TMD-based stochastic model of bone US. We will thoroughly
present and discuss our numerical results in Sec. 2.3 underlining the differences between the dif-
ferent modeling approaches with respect to the two main questions raised before (TMD-based
vs. VF-based modeling; voxel-scale vs. RVE-scale statistics). Finally, in Sec. 2.4 we will draw
the conclusions of this work and set forth future research directions.

2.2 Materials and Methods

2.2.1 Imaging

For sake of clarity, we resume here the main steps of the imaging protocol and refer to Sansalone
et al. (2016) for more details. A bone sample, extracted from the inferior femoral neck of a
79-year-old patient undergoing standard hemiarthroplasty, has been imaged using synchrotron
radiation micro-computed tomography (SR-µCT) at the European Synchrotron Radiation Facil-
ity (ESRF, Grenoble, France). Image reconstruction was performed in a volume of interest (VoI)
of 660×660×523 isotropic voxels (voxel size 10.13 µm). The outcome was a 3-D gray-level (GL)
map (GL range: [0, 255]) of the linear attenuation coefficient of the monochromatic X-ray beam.
Regions corresponding to Haversian pores (HP) and ultrastructure (US) were identified by fixing
a GL threshold q = 130, so as GL ranges associated to HP and US were set to GLHP := [0, q]
and GLUS := [q + 1, 255], respectively.

Since SR-µCT images are quantitative, GL of US voxels can be related to the mineral content,
i.e. the tissue mineral density (TMD) (Nuzzo et al., 2002) through an affine relation:

TMD = c0 + c1 ×GL . (2.1)

Coefficients c0 and c1 in Eq. (2.1) depend on the specific imaging device and have to be calibrated
with respect to phantoms of known composition. In this study:

c0 = −0.5082

3.319
and c1 =

5.5

255× 3.319
. (2.2)

2.2.2 Representative volume elements

Several representative volume elements (RVEs) were selected in the cortical part of the VoI.
Following Sansalone et al. (2016), RVEs were taken as cubic regions with edge length of 50
voxels, i.e. about 0.5 mm. 3-D geometric models of the RVEs were obtained using SimpleWare
5.0 ScanIP software (Simpleware 5.0 ScanIP+, 2012) at about 1.5 mm from the periosteum
(distance measured with respect to the center of the RVEs) and at different hoop and axial
positions with respect to a cylindrical frame centered at the anatomical axis of the bone sample.
The bone sample and the location of the RVEs are presented in Fig. 2.1, where the unit vector
e3 is aligned with the axis of the femoral neck and the unit vectors e1 and e2 lie in the plane of
the cross section of the sample. Blue RVEs in Fig. 2.1 (NRVE = 12) were used to calibrate the
model, whereas light blue RVEs were used for validation purposes.
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Figure 2.1: On the left: Segmented bone sample; blue lines denote a cylindrical surface at
approximately 1.5 mm from the periosteum. On the right: Location of the RVEs (unit of
length: µm); the centers of RVEs lie on the cylindrical surface sketched on the left.

RVEs are represented in detail in Fig. 2.2. Colors refer to the GLs of the voxels, with HP
voxels in blue and US voxels in yellow to red. Symbols z and θ refer to the axial and hoop
coordinates of the centers of the RVEs, respectively. The axial coordinate z is the distance of
the center of the RVE from the distal part of the sample (z = 0). The hoop coordinate θ is the
angle measured counterclockwise with respect to the inferior axis of the sample (θ = 0).

2.2.3 Experimental compositional data: HP and TMD

Information on the composition of the cortical tissue was obtained by analyzing the RVEs
selected for calibration purposes (blue RVEs in Fig. 2.1). This dataset constitutes a systematic
sampling of the overall population of cortical RVEs and was used to infer statistics (namely,
mean value and dispersion) of HP and TMD in the cortical tissue.

HP was measured at the RVE scale (500 µm, also referred to as tissue scale), leading to
one value of HP per RVE, by dividing the number of voxels with GL in GLHP by the total
number of voxels of the RVE. TMD was measured at the voxel scale (10 µm, also referred to
as US scale), leading to a 3-D heterogeneous distribution of TMD in each RVE, by means of
Eq. (2.1). Moreover, effective values of TMD at the RVE scale, named TMD, were computed by
averaging the voxel-wise distribution of TMD within the US of each RVE, leading to one value
of TMD per RVE. These latter were assumed to represent RVE-scale measures. Databases were
then constituted collecting all this experimental compositional information, namely: a database
DBexp

HP collecting the NRVE values of HP at the RVE scale; a database DBexp

TMD
collecting the

NRVE values of TMD at the RVE scale; and a database DBexp
TMD collecting the Nvox > 106 values

of TMD at the voxel scale (all the US voxels of all the RVEs).

Statistical information on the composition of the whole cortical tissue was inferred by the
descriptive statistics of these databases. Let X be either of HP, TMD, or TMD, whose ex-
perimental measures xi (i = 1, . . . , N) are collected in the database DBexp

X . (N = NRVE for
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Figure 2.2: Representation of the RVEs. Colors refer to the GLs of the original images. Asterisks
indicate the RVEs used for calibration purposes.

HP and TMD and N = Nvox for TMD.) Mean value, standard deviation, and dispersion of X,
named µexp

X , σexp
X , and δexp

X , respectively, were estimated through the corresponding descriptive
statistics:

µexp
X :=µNX , σexp

X :=σNX , and δexp
X := δNX , (2.3)

where:

µNX = 1
N

∑N
i=1 xi ,

σNX =
(

1
N−1

∑N
i=1

(
xi − µNX

)2)1/2
,

δNX =
σNX
µNX

.

(2.4)
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2.2.4 Hierarchical description of bone and volume fractions

Following Sansalone et al. (2010), a multiscale description of cortical bone was adopted. At the
scale of several hundreds micrometers (tissue scale), cortical tissue was considered as made up
of Haversian pores, HP, embedded in a solid matrix called ultrastructure, US. At the scale of
a few tens micrometers (US scale), US was considered as made up of collagen fibers embedded
in a mineral foam (MF). Eventually, at the scale of several tens nanometers (referred to as MF
scale), MF was considered as a mixture of mineral and water.

Experimental data obtained in Sec. 2.2.3 were used to compute bone composition at each
scale in terms of volume fractions (VFs). The procedure is sketched in Fig. 2.3 and resumed
here below.

Figure 2.3: Sketch of the procedure for evaluating the TMD and VFs within each RVE.

Tissue scale. Within each RVE, the HP directly provides the VFs of pores (fCort
HP = HP) and

solid matrix (fCort
US = 1−HP) in the cortical tissue.

US scale. For each US voxel, the VF of the mineral can be directly computed from the local
value of TMD. In order to obtain the VFs of collagen and water, an empirical relation was
added (Broz et al., 1995), leading to the system of nonlinear equations:

fUS
HA =

TMD

ρHA
,

fUS
Col + fUS

HA + fUS
W = 1 ,

fUS
Col

fUS
W

= 0.36 + 0.084× exp(6.7× fUS
HA) ,

(2.5)

where fUS
HA, fUS

Col, and fUS
W are the VFs of the hydroxyapatite (HA) mineral, collagen, and

water in the US, respectively, and ρHA = 3 g/cm3 is the mass density of the mineral. For

each RVE, the effective VFs of mineral, collagen, and water in the US (named f
US
HA, f

US
Col,

and f
US
W , respectively) were also computed from TMD following the same procedure.
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MF scale. For each US voxel, the VFs of mineral and water in the MF (named fMF
HA and fMF

W ,
respectively) were computed as:

fMF
HA =

fUS
HA(

fUS
HA + fUS

W

) ,
fMF

W =
fUS

W(
fUS

HA + fUS
W

) . (2.6)

For each RVE, the same relations were used to compute the effective VFs of mineral and

water in the MF (named f
MF
HA and f

MF
W , respectively).

Focusing on the two questions set in the introduction, hereinafter we will be concerned with
the US and MF. Bone composition at the US scale was characterized by fUS

Col, with its complement
fUS

MF = fUS
HA + fUS

W = 1− fUS
Col being the VF of the MF in the US. In turn, composition of the MF

was characterized by fMF
HA , with fMF

W = 1− fMF
HA . For the sake of brevity, Eqs. (2.5)-(2.6) can be

reduced to: {
fUS

Col ≡ fII = f̂II (TMD) ,

fMF
HA ≡ fI = f̂I (TMD) ,

(2.7)

highlighting that both VFs are computed from the TMD. Similar relations apply when consid-
ering the effective mineralization of bone US, namely:{

f
US
Col ≡ f II = f̂II

(
TMD

)
,

f
MF
HA ≡ f I = f̂I

(
TMD

)
.

(2.8)

Databases of VFs were constituted by analyzing the RVEs selected for calibration purposes.
This led, on the one side, to databases DBexp

fII
and DBexp

fI
containing the Nvox voxel-wise values

of VFs of collagen in the US and of mineral in the MF, respectively; and on the other side, to
databases DBexp

f II
and DBexp

f I
containing the NRVE RVE-wise values of the corresponding effective

VFs. Descriptive statistics of these databases were further computed using Eqs. (2.4) to infer
statistical information on the VFs which were meant to be representative of the whole cortical
tissue.

2.2.5 Stochastic modeling of uncertain composition of bone US

Image-based mechanical models of bone can be affected by the accuracy of input data obtained
through image analysis. In this work, the focus is set on the uncertainty affecting the composition
of bone US in the multiscale framework described in Sec. 2.2.4.

This section is devoted to modeling the uncertain composition of bone US. Following the
approach of Sansalone et al. (2016), probability theory is used to account for this uncertainty and
parameters describing US bone composition are modeled as random variables with prescribed
statistics provided by experimental measures. Different modeling assumptions will be considered
leading to four different stochastic descriptions of uncertain bone composition: (i) On the one
side, bone composition will be described in terms of either TMD or VFs (Sec. 2.2.5); (ii) On
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the other side, stochastic models will be built using either voxel-scale or RVE-scale statistical
information (Sec. 2.2.5).

Information about bone composition will be further used in Sec. 2.2.6 to estimate the elastic
coefficients of bone using a micromechanical model. Two features of this model have to be
kept in mind in our stochastic modeling, namely: (i’) the micromechanical model uses as input
data the VFs at each scale and (ii’) bone US is assumed to be homogeneous within each RVE.
First, in view of (i’), both TMD-based and VF-based approaches will be concerned with the
uncertainty on the VFs. In a VF-based approach, uncertainty directly affects the VFs. In a
TMD-based approach, uncertainty affects the TMD and is then propagated to the VFs through
Eqs. (2.7). Second, in view of (ii’), each realization of the stochastic models is meant to represent
the composition of the homogenous matrix of one RVE, irrespective of the scale (either voxel or
RVE) of the underlying experimental data.

TMD-based and VF-based approaches require building specific stochastic models for the
random variable modeling the uncertain TMD (to be called random TMD for short and denoted
TMD) and for the two random variables modeling the uncertain VFs fI and fII (to be called
random VFs for short and denoted FI and FII, respectively), respectively. In previous work
(Sansalone et al., 2016), a VF-based approach was proposed and the stochastic models of the
random VFs were obtained using the Maximum Entropy (MaxEnt) principle. Here below, the
same strategy is used to obtain the stochastic model of the random TMD needed in a TMD-based
approach.

Stochastic model of TMD

In the RVE, the experimental TMD is heterogeneous in space at the RVE scale. Nevertheless,
hereinafter, we are not interested in modeling the spatial variations of the TMD at the RVE
scale. This would require modeling the TMD as a random field {θ̃(M)}M∈RVE and defining the
whole system of its marginal laws. Rather, we introduce in this section a stochastic model of
the random TMD which is homogenous in space within the RVE. Let us assume that the TMD
is a stationary random field {θ̃(M)}M∈RVE. Consequently, the marginal law x 7→ pθ̃(M)(M ;x)

of the random field {θ̃(M)}M∈RVE is actually independent of the spatial coordinate M and can
be written as pθ̃(M)(x). We then model the random TMD as a random variable TMD whose

probability density function pTMD is such that pTMD(x) = pθ̃(M)(x).

The MaxEnt principle (Jaynes, 1957a,b; Soize, 2001) allows building a probability density
function (PDF) pX(x) of a random variable X by maximizing the Shannon’s entropy (Shannon,
1948) under a set of constraints. Shannon’s entropy measures the uncertainty associated to
a probability distribution. Therefore, it is minimal for Dirac-distributed random variables and
maximal for uniformly distributed random variables. The general form of the Shannon’s entropy
is:

S(pX) =

∫
SX

− ln(pX(x)) pX(x) dx . (2.9)

Constraints represent the available information on X and can be expressed in terms of
its statistical moments. Specifically, available information on X was assumed to be given in
terms of its support SX , mean value µX and standard deviation σX–or, equivalently, dispersion
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δX = σX/µX . Let E(f(X)) be the expected value of a function f :

E(f(X)) =

∫
<
f(X)× pX(x)dx , (2.10)

where < is the real axis. Then, the following constraints were imposed:

(Ci) E(fi(X)) = mi , i = 0, . . . , 2 , (2.11)

with
f0(x) = 1SX (x) , m0 = 1 ;
f1(x) = x , m1 = µexp

X ;
f2(x) = x2 , m2 = (µexp

X )2 ×
(
1 + (δexp

X )2
)
.

(2.12)

In the above equations, 1SX is the support function of X and µexp
X and δexp

X are experimental
statistics. Constraint (C0) is the normalization condition on the PDF of X. Constraints (C1)
and (C2) set the values of the two first momenta of X through the available experimental
information. This is equivalent to enforce the mean value and dispersion of X to be equal to
their corresponding experimental values, i.e. µX = µexp

X and δX = δexp
X .

Let TMD be the random variable modeling the TMD. It turns out that STMD is the image of
GLUS (the range of GLs associated to the US) through Eq. (2.1), i.e. STMD ' [0.7, 1.5] g/cm3;
moreover, constraints (C1) and (C2) read µTMD = µexp

TMD and δTMD = δexp
TMD, respectively, where

µexp
TMD and δexp

TMD are the experimental statistics computed in Sec. 2.2.3 on a voxel-wise basis.
The solution of the above constrained maximization problem provides the PDF of TMD, whose
expression reads (Soize, 2004):

pTMD(x) := 1STMD(x)e−(λ0+λ1x+λ2x2), (2.13)

where λ0, λ1, and λ2 are Lagrange multipliers associated to the constraints in Eqs. (2.11).
The procedure leading to this result is detailed in App. A. The PDF coming from this specific
problem turns out to be the truncation of the PDF of a Gaussian random variable on the support
STMD. Note that this expression is of the same exponential form as those of the random VFs
obtained in Sansalone et al. (2016) using a VF-based approach.

Numerical solution of the stochastic models

Let X be a primary random variable, i.e. the random TMD in a TMD-based approach or a
random VF in a VF-based approach, and pX its PDF. Numerical solution of the stochastic
model is performed by means of a Monte-Carlo numerical solver which requires computing a
large number of statistically independent (s.i.) realizations of X by sampling pX . Sampling
was performed using the pseudo-inverse method (Devroye, 1986). This procedure is detailed in
App. A.

Mean value and dispersion of X were estimated by means of the statistical estimators in
Eqs. (2.4), with xi ≡ X(ai), i.e. the i-th s.i. realization of X. The number of realizations was
fixed so as to achieve convergence of these statistical estimators to the corresponding experi-
mental values. Let the absolute and relative errors be defined as:

∆N (∗X) := ∗NX −∗
exp
X , ∆N

%(∗X) :=
∆N (∗X)

∗exp
X

, (2.14)
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where ∗NX and ∗exp
X are descriptive and experimental statistics (mean value µX , dispersion δX ,

...) of X and N is the number of s.i. realizations of X. Convergence was assumed to be achieved
as soon as the errors ∆N

%(µX) and ∆N (δX) became smaller than a fixed threshold. Hereinafter,
Ns.i.r. will denote the number of s.i. realizations needed to achieve convergence.

Realizations of X were collected for further analysis, leading to the constitution of database
DBTMD in the TMD-based approach and of two databases DBFI

and DBFII
in the VF-based

approach.

TMD-based vs. VF-based approaches

Composition of bone US can be described in terms of either VFs (fUS
Col and fMF

HA ) or TMD.
The two approaches are largely equivalent in a deterministic framework since Eqs. (2.7) are
one-to-one mappings between individual values of TMD and VFs for a large range of values of
TMD (up to about TMD ≈ 1.35, i.e. fUS

Col ≈ 0.371 and fMF
HA ≈ 0.715). However, in a stochastic

framework, the two approaches are based on different experimental data and therefore lead to
different descriptions of the uncertain bone composition.

In the TMD-based approach, the primary random variable is TMD, whose stochastic model
is based on experimental statistics of TMD at the voxel scale–namely mean value µexp

TMD and
dispersion δexp

TMD. In order to describe bone composition at the MF and US scales, the random
VFs associated to TMD, hereinafter named F dI and F dII, have to be computed. (Superscript d
denotes that F dI and F dII are derived random variables.) Thus, for each s.i. realization TMD(ai),
the corresponding values of the random VFs, named F dI (ai) and F dII(ai), can be computed
through Eqs. (2.7): {

F dII(ai) = f̂II (TMD(ai)) ,

F dI (ai) = f̂I (TMD(ai)) .
(2.15)

Note that F dI and F dII are not s.i. from each other being both computed from TMD.

In the VF-based approach (Sansalone et al., 2016), the primary random variables are FI and
FII, whose stochastic models are based on experimental statistics of VFs at the voxel scale–
namely mean values µexp

fI
and µexp

fII
and dispersions δexp

fI
and δexp

fII
. Realizations of FI and FII

describe bone composition at the MF and US scales, respectively. Moreover, they can be used
to compute the corresponding values of the random TMD, hereinafter named TMDd. More
precisely, realizations FI(ai) and FII(ai) can be inserted in Eqs. (2.5)(a-b) and Eq. (2.6)(a) to
compute the corresponding value TMDd(ai). Note that the empirical relation in Eq. (2.5)(c) is
not used to compute TMDd(ai) since FI(ai) and FII(ai) are realizations of s.i. random variables.

Voxel-scale vs RVE-scale approaches

Stochastic models of TMD, FI and FII were obtained using voxel-scale experimental measures.
The same approach was used to obtain stochastic models of these random variables based on
experimental data at the RVE scale. A superposed bar will denote these new random variables.
Random variables modeling the uncertain, effective TMD and VFs at the RVE scale will be
therefore denoted TMD, F I, and F II, respectively. In a TMD-based approach, the stochastic
model of TMD was obtained based on the mean value µexp

TMD
and dispersion δexp

TMD
of TMD.
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S.i. realizations of TMD were collected in the database DBTMD. In a VF-based approach, the
stochastic models of F I and F II were obtained based on the statistics of f I (µexp

f I
and δexp

f I
) and

f II (µexp

f II
and δexp

f II
), respectively. S.i. realizations of F I and F II were collected in databases

DBF I
and DBF II

, respectively.

2.2.6 Continuum micromechanical models of bone ultrastructure

Elastic coefficients of bone US were computed using a continuum micromechanics approach
based on the hierarchical description of bone presented in Sec. 2.2.4. The model is depicted in
Fig. 2.4. Following the concept I proposed by Hellmich et al. (2004), bone US (solid matrix
embedding the Haversian canals at the tissue scale) is modeled as cylindrical collagen inclusions
embedded in a MF. In turn, this latter is modeled as a disordered mixture of mineral and water
spherical particles.

Figure 2.4: Sketch of the multiscale model. Cortical tissue (on the left) and ultra-structure (US,
in the middle) are represented in the cross section plane of the bone sample, orthogonal to the
axis of the Haversian canals. Haversian canals and collagen fibers are modeled as cylindrical
inclusions in the cortical tissue and US, respectively. Mineral foam (MF, on the right) is modeled
as a disordered mixture of mineral and water spherical particles (orientation is not meaningful).

Continuum micromechanics allows computing the effective (or homogenized) elastic proper-
ties of a material of matrix/inclusion type based on the VFs, elastic properties and geometrical
arrangement of the constituent phases (Suvorov and Dvorak, 2002). In compact form, the
homogenization procedure reads:

g• (chom; {fr} , {cr}) = 0, r = 1, . . . , Nr , (2.16)

where fr and cr are the VF and the 4-th order elastic tensor of phase r, Nr is the number of
phases, and chom is the homogenized 4-th order elastic tensor. Information on the shape and
spatial arrangement of the phases is encoded in the function g. When a matrix phase is clearly
identified, g should encode the Mori-Tanaka (MT) approximation. When phases interpenetrate
with one another, g should encode the self-consistent (SC) approximation.

Aiming at computing the effective elastic properties of bone US, two homogenization steps
are concerned, namely: (I) computing the effective elastic tensor of the MF, cMF, based on the

71



Chapter 2. Tissue mineral density measured at the sub-millimeter scale provides reliable statistical estimates
of elastic properties of bone matrix

VFs and elastic tensors of mineral and water; and (II) computing the effective elastic tensor of
the US, cUS, based on the VFs and elastic tensors of collagen and MF. Therefore, the whole
homogenization procedure reads:

gI (cMF; fI, {cHA, cW}) = 0 → cMF ,
gII (cUS; fII, {cCol, cMF}) = 0 → cUS ,

(2.17)

where the mappings gI and gII encode the SC and MT approximations suitable for the MF and
US, respectively; c• is the elastic tensor of the material • (subscripts are self-explaining); and
fI and fII are the VFs of the mineral in the MF and of the collagen in the US, respectively
(see Sec. 2.2.4). For sake of simplicity, we assumed both water, mineral, and collagen to be
isotropic materials using the data of Kotha and Guzelsu (2000). Thus, MF and US turn out
to be isotropic and transversely isotropic materials, respectively. We refer to Sansalone et al.
(2010, 2016) for more details on the homogenization procedure.

The above general framework was used to develop four stochastic and two deterministic
micromechanical modeling concepts which are resumed in Tab. 2.1 and described in the next
sections.

Concept Exp. data Scale of exp. meas. Primary rnd. var. Ref.

VF/Vox
{µexp

fI
, δexpfI

} and

{µexp
fII
, δexpfII

} 10 µm
FI and
FII

Sansalone et al. (2016)

TMD/Vox {µexp
TMD, δ

exp
TMD} 10 µm TMD New

VF/RVE
{µexp

fI
, δexp
fI
} and

{µexp

fII
, δexp
fII
} 500 µm

F I and

F II
New

TMD/RVE {µexp

TMD
, δexp

TMD
} 500 µm TMD New

Nominal/Vox
µexp
fI

and

µexp
fII

10 µm Deterministic Sansalone et al. (2016)

Nominal/RVE
µexp

fI
and

µexp

fII

500 µm Deterministic New

Table 2.1: Stochastic and nominal modeling concepts.

Stochastic micromechanical models of bone ultrastructure

The micromechanical model presented above was used to quantify the effects of uncertain bone
composition on the elastic coefficients of bone US. To this aim, parameters describing bone
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composition in the model, i.e. the VFs of the mineral in the MF and of the collagen in the
US were modeled as random variables while keeping fixed the elastic tensors (cCol, cHA, and
cW), shape and spatial arrangement (mappings gI and gII) of constituent phases. Since VFs are
random variables, elastic tensors of MF and US turn out to be random tensors too.

Let XI and XII be the random VFs of the mineral in the MF and of the collagen in the US,
respectively, and let CMF and CUS be the random elastic tensors of MF and US, respectively,
resulting from the homogenization procedure. Realizations CMF(ai) and CUS(ai) of the random
elastic tensors were computed using realizations XI(ai) and XII(ai) of the random VFs as input
data of the micromechanical model encoded in Eqs. (2.17):

gI (CMF(ai);XI(ai), {cHA, cW}) = 0 → CMF(ai) ,
gII (CUS(ai);XII(ai), {cCol,CMF(ai)}) = 0 → CUS(ai) .

(2.18)

It can be noticed that CMF(ai) and CUS(ai) belong to the same elastic symmetry groups
than cMF and cUS. Thus, CMF and CUS are isotropic and transversely isotropic random tensors,
respectively.

Realizations of the random VFs can be obtained using either a VF-based approach or a TMD-
based approach. Moreover, experimental data underlying either approach can be obtained either
at the voxel or at the RVE scale. Therefore, four stochastic concepts were drawn up which are
described here below.

VF/Vox concept. Concept VF/Vox is a stochastic micromechanical model describing un-
certain US composition in terms of FI and FII, whose stochastic models are based on
experimental measures at the voxel scale. Random elastic tensors of the MF and US were
computed by means of Eqs. (2.18) with XI(ai) ∼ FI(ai) and XII(ai) ∼ FII(ai). This con-
cept corresponds to the one proposed in previous work of our group (Sansalone et al.,
2016).

TMD/Vox concept. Concept TMD/Vox is a stochastic micromechanical model describing
uncertain US composition in terms of TMD, whose stochastic model is based on exper-
imental measures at the voxel scale. Random elastic tensors of the MF and US were
computed by means of Eqs. (2.18) with XI(ai) ∼ F dI (ai) = f̂I(TMD(ai)) and XII(ai) ∼
F dII(ai) = f̂II(TMD(ai)).

VF/RVE concept. Concept VF/RVE is a stochastic micromechanical model describing un-
certain US composition in terms of F I and F II, whose stochastic models are based on
experimental measures at the RVE scale. Random elastic tensors of the MF and US were
computed by means of Eqs. (2.18) with XI(ai) ∼ F I(ai) and XII(ai) ∼ F II(ai).

TMD/RVE concept. Concept TMD/RVE is a stochastic micromechanical model describing
uncertain US composition in terms of TMD, whose stochastic model is based on experimen-
tal measures at the RVE scale. Random elastic tensors of the MF and US were computed

by means of Eqs. (2.18) with XI(ai) ∼ F
d
I (ai) = f̂I(TMD(ai)) and XII(ai) ∼ F

d
II(ai) =

f̂II(TMD(ai)).
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Statistical analysis of random elastic coefficients

Realizations of the random elastic tensors CMF and CUS were further analyzed to retrieve
relevant statistical information.

First, individual random elastic moduli were investigated. Specifically, statistics of the rele-
vant random elastic moduli were estimated through the descriptive statistics of their realizations,
Eqs. (2.4), i.e. µX ' µNs.i.r.

X , σX ' σNs.i.r.
X , and δX ' δNs.i.r.

X , with X being a random elastic mod-
ulus. Convergence of the statistical estimators was assessed. In view of the symmetry properties
of CMF (isotropic) and CUS (transversely isotropic), relevant elastic coefficients are:

MF: Young modulus (Y ) and Poisson coefficient (ν);

US: axial moduli in the longitudinal (Y3) and transverse (Y1) directions; shear moduli in the
sagittal (G13) and cross section (G12) planes; and lateral contraction coefficients in the
sagittal (either of ν13 or ν31) and cross section (ν12) planes of the bone sample.

Then, global fluctuations of the random elastic tensors around their mean values were investi-
gated introducing a scalar measure of dispersion. Each 4-th order elastic tensor C was expressed
in Kelvin’s form as a 6× 6 positive definite square matrix [C]. Thus, the scalar dispersion of a
random matrix [C] was defined as:

d[C] =

√
E
(
‖ [C]− µ[C]‖2F

)
‖µ[C]‖2F

, (2.19)

where ‖ ∗ ‖F is the Frobenius’ norm of ∗. The mean value µ[C] and the scalar dispersion d[C] of
[C] were estimated using the statistical estimators:

µN[C] = 1
N

∑N
k=1 [C(ak)] ,

dN[C] =

√
1
N

∑N
k=1 ‖[C(ak)]−µN

[C]
‖2F

‖µN
[C]
‖2F

.
(2.20)

It can be noticed that, thanks to the closure property of the elastic symmetry groups, the
mean value of the random tensor C belongs to the same elastic symmetry group than the
realizations of this latter. Thus, µCMF

and µCUS
are isotropic and transversely isotropic tensors,

respectively.

Nominal micromechanical model of bone ultrastructure

Two deterministic, nominal models referring to the voxel and RVE scales, respectively, were
developed for comparison purposes. The two nominal models were obtained by using the mean
values of the VFs measured at the voxel scale (µexp

fI
and µexp

fII
) and at the RVE scale (µexp

f I
and

µexp

f II
), respectively, as input data of the homogenization procedure in Eqs. (2.17). Hereinafter,

the nominal elastic tensors of MF and US will be named cMF and cUS, respectively.

Nominal elastic tensors were compared with the mean values of the random elastic tensors,
that is µCMF

and µCUS
. Let y be a nominal elastic modulus and µY the mean value of the
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corresponding random modulus. Elastic moduli y and µY were compared by computing their
relative difference:

∆(y, µY ) :=

∣∣∣∣y − µYµY

∣∣∣∣ . (2.21)

2.3 Results & Discussion

2.3.1 Statistical results

Statistics of experimental databases are resumed in Tabs. 2.2-2.4. Tab. 2.2 contains the voxel-
scale statistics of TMD, fI, and fII (databases DBexp

TMD, DBexp
fI

, and DBexp
fII

). These data refer to
all the solid voxels of all the RVEs. RVE-wise voxel-scale statistics are also shown in Tab. 2.3.
RVE-wise mean values of TMD, fI, and fII reported in this table correspond to the RVE-scale
values of TMD, f I, and f II, respectively. Eventually, Tab. 2.4 contains the RVE-scale statistics
of HP, TMD, f I, and f II (databases DBexp

HP , DBexp

TMD
, DBexp

f I
, and DBexp

f II
).

Mean values of TMD reported in Tab. 2.3 are comprised in the range [0.957, 1.046] g/cm3 that
represents a tiny interval with respect to the whole range of values of the TMD corresponding to
the solid voxels: [TMD(GL = 131),TMD(GL = 255)] = [0.618, 1.504] g/cm3. The dispersion of
the TMD within each RVEs (δexp

TMD, Tab. 2.3) vary between 0.054 and 0.080, proving an uneven
scattering of the TMD at the voxel scale from one RVE to another. The mean values of the
mineralization at the voxel scale (µexp

TMD, Tab. 2.2) and at the RVE scale (µexp

TMD
, Tab. 2.4) are

quite similar (differences appear at the fourth significant digit). This is related to the fact that
most of the RVEs have similar numbers of solid voxels. Conversely, the dispersion of the TMD
at the voxel scale (δexp

TMD, Tab. 2.2) is about 2.6 times higher than at RVE scale (δexp

TMD
, Tab. 2.4)

showing that voxel-scale TMD values are much more scattered than RVE-scale TMD values.
The same trend is observed with respect to the dispersion of TMD within each RVE (δexp

TMD,
Tab. 2.3) which turn out to be 2 − 3 times higher than the dispersion of TMD. This is due to
the fact that RVE-scale values of TMD are already average values; therefore, statistics of TMD
get rid of most of voxel-scale fluctuations of TMD. It can be shown that, in an idealized case
where each RVE would have the same HP (and thus, TMD of each RVE would be computed by
averaging always the same number of voxel-scale TMD values), the dispersion of TMD at the
RVE scale would be necessarily smaller than that of TMD at the voxel scale. The same trend
is observed in the actual RVEs, although they have different values of HP.

The same considerations made for the mean value and dispersion of the TMD apply to the
volume fractions. The mean values of the VFs of the mineral in the mineral foam and of the
collagen in the ultrastructure are quite the same at both the voxel and RVE scales (Tab. 2.2
and Tab. 2.4, respectively), whereas dispersions at the voxel scale are 2 to 3 times higher than
at the RVE scale. At both scales, the dispersion of the mineral VF is slightly higher to that of
the TMD, whereas the dispersion of the collagen VF is 5 times smaller, proving that scattering
of mineral content is much higher than that of collagen and that collagen content shows a weak
dependency on the mineralization. This agrees with the idea that collagen content does not
noticeably change in bone tissue after its initial formation, whereas mineral content increases
with aging by progressive replacement of water (Fratzl et al., 1993).
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Table 2.2: Experimental statistics at the voxel scale (databases DBexp
TMD, DBexp

fI
, and DBexp

fII
).

The last row of the table indicates the modeling concepts using these data.
TMD [g/cm3] fMF

HA [−] fUS
Col [−]

µexp δexp µexp δexp µexp δexp

0.999 0.073 0.517 0.080 0.355 0.016

TMD/Vox VF/Vox

Table 2.3: Experimental statistics at the voxel scale for each RVE.
HP [−] TMD [g/cm3] fMF

HA [−] fUS
Col [−]

RVE θ [◦] z [mm] µexp δexp µexp δexp µexp δexp

1 -40 1.5 0.041 1.046 0.054 0.544 0.060 0.359 0.012
2 -40 3.5 0.065 1.018 0.062 0.528 0.069 0.357 0.014
3 -40 5.5 0.065 0.977 0.063 0.504 0.070 0.354 0.014
4 -20 1.5 0.085 1.021 0.065 0.530 0.072 0.357 0.014
5 -20 3.5 0.062 0.983 0.068 0.508 0.075 0.354 0.015
6 -20 5.5 0.053 0.955 0.070 0.492 0.078 0.352 0.015
7 0 1.5 0.207 1.009 0.080 0.522 0.089 0.356 0.017
8 0 3.5 0.059 0.997 0.068 0.516 0.076 0.355 0.015
9 0 5.5 0.088 0.957 0.079 0.493 0.088 0.352 0.017
10 20 1.5 0.074 1.022 0.064 0.530 0.071 0.357 0.014
11 20 3.5 0.059 1.029 0.058 0.534 0.064 0.358 0.012
12 20 5.5 0.155 0.978 0.071 0.505 0.079 0.354 0.015

TMD f I f II

2.3.2 Parameters of the stochastic and nominal models

Data in Tab. 2.2 and Tab. 2.4 have been used to build the four stochastic and two nominal
modeling concepts listed in Tab. 2.1.

Each stochastic concept requires computing the PDFs of the relevant primary random vari-
able(s). Eq. (2.13) provides the general form of these PDFs for both the TMD (see Sec. 2.2.5)
and the VFs (Sansalone et al., 2016). Therefore, the solution of the stochastic model of any
primary random variable requires computing the optimal values of the Lagrange multipliers λ0,
λ1, and λ2. Computations were made using the procedure outlined in App. A and results are
shown in Tab. 2.5.

Nominal models at the voxel and RVE scales have been developed by using the mean values
of VFs reported in Tab. 2.2 and Tab. 2.4, respectively. Although they are conceptually different,
these values are pretty the same and the two nominal models provide essentially the same results.

2.3.3 TMD/Vox and VF/Vox concepts

This section focuses on the results of concepts TMD/Vox and VF/Vox which are based on
experimental statistics of TMD and VFs, respectively, measured at the voxel scale.
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Table 2.4: Experimental statistics at RVE scale (databases DBexp

TMD
, DBexp

f I
, and DBexp

f II
). The

last row of the table indicates the modeling concepts using these data.
HP [−] TMD [g/cm3] f

MF

HA [−] f
US

Col [−]

µexp δexp µexp δexp µexp δexp µexp δexp

0.084 0.547 0.999 0.028 0.517 0.031 0.355 0.006

TMD/RVE VF/RVE

Table 2.5: Optimal Lagrange multipliers for the four modeling concepts.
Concept Primary rnd. var. λ0 λ1 λ2

VF/Vox
FMF

HA 7.4993× 101 −2.9877× 102 2.8887× 102

FUS
Col 2.0448× 103 −1.1531× 104 1.6222× 104

TMD/Vox TMD 9.3360× 101 −1.9026× 102 9.5193× 101

VF/RVE
F

MF
HA 4.6717× 102 −1.8193× 103 1.7592× 103

F
US
Col 1.2916× 104 −7.2712× 104 1.0230× 105

TMD/RVE TMD 5.8086× 102 −1.1679× 103 5.8442× 102

Convergence of the statistical estimators

Convergence plots of the statistical estimators of the mean values and dispersions of the primary
random variables–i.e. the random TMD in the TMD/Vox concept (green lines) and the random
VFs in the VF/Vox concept (red lines)–are shown in Fig. 2.5. Therein, the relative error on
the mean values and the absolute errors on the dispersions (Eq. (2.14)) are plotted against the
number of realizations of the random variables in log-log scale. The errors decrease following
similar trends in all cases. Convergence was assumed to be achieved after 105 realizations, when
the errors on both the mean values and dispersions became smaller than 10−4.

Figure 2.5: TMD/Vox and VF/Vox concepts. Convergence of the statistical estimators of
the random TMD in the TMD/Vox concept (green lines) and of the random VFs in the VF/Vox
concept (red lines). On the left: relative error on the mean values; On the right: absolute error
on the dispersions.
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Figs. 2.6-2.7 show that, after 105 realizations, convergence is also achieved for the statistical
estimators of the random elastic moduli. Green and red lines refer to the TMD/Vox and VF/Vox
concepts, respectively. Solid and dashed lines refer to the mean values and 50% confidence
intervals, respectively. Moreover, black lines refer to the nominal model. Fig. 2.6 refers to the
Young modulus and Poisson coefficient of the MF. Figs. 2.7 refers to the axial modulus Y3 and
lateral contraction coefficient ν31 of the US (subscripts refer to the frame in Fig. 2.1).

Figure 2.6: TMD/Vox and VF/Vox concepts. Convergence of the statistical estimators
of some random elastic moduli of the MF. On the left: Young modulus; On the right: Poisson
coefficient. Green and red lines refer to the TMD/Vox and VF/Vox concepts, respectively. Solid
and dashed lines refer to mean values and 50% confidence intervals, respectively. Black lines
refer to the nominal model.

Figure 2.7: TMD/Vox and VF/Vox concepts. Convergence of the statistical estimators of
some random elastic moduli of the US. On the left: axial modulus Y3; On the right: lateral
contraction coefficient ν31 (subscripts refer to the frame in Fig. 2.1). Green and red lines refer to
the TMD/Vox and VF/Vox concepts, respectively. Solid and dashed lines refer to mean values
and 50% confidence intervals, respectively. Black lines refer to the nominal model.

Therefore, unless otherwise specified, descriptive statistics computed on Ns.i.r. = 105 realiza-
tions were used hereinafter to estimate the statistics of the random variables.
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TMD and VFs

Scattered values and PDFs of the random TMD and VFs related to concepts TMD/Vox (in
green) and VF/Vox (in red) are shown in Fig. 2.8. Subplot (a) shows the realizations of the
random VFs. Red dots represent the realizations of the pairs (FI(ai), FII(ai)) generated by
the VF/Vox concept and green dots represent the realizations of the pairs (F dI (ai), F

d
II(ai))

generated by the TMD/Vox concept, with i = 1, . . . , Ns.i.r.. The blue line corresponds to the
analytical relationship between the two VFs encoded in Eqs. (2.7) and used in the TMD/Vox
concept to compute a pair of VFs from one realization of random TMD. Not surprisingly, all the
pairs (F dI (ai), F

d
II(ai)) generated by the TMD/Vox concept lie on this blue line since they are

both computed from TMD(ai) by means of Eqs. (2.7). By contrast, the pairs (FI(ai), FII(ai))
generated by the VF/Vox concept spread around this line. This is coherent with the hypothesis
made in the VF/Vox concept, where the VFs were modeled as s.i. random variables. From this
hypothesis follows that the joint distribution (or joint PDF) of the pair of random VFs (FI, FII)
is the product of their marginal ones. Since the marginal distributions of the random VFs are
truncated Gaussian distributions (see Sec. 2.2.5), the joint distribution is a truncated bell-shaped
surface leading to the quasi-elliptical scattering of (FI(ai), FII(ai)) observed in Fig. 2.8/(a).
Subplots (b)-(d) show the PDFs of the random TMD and VFs obtained through the TMD/Vox
(green lines) and VF/Vox (red lines) concepts as well as the experimental PDFs (blue lines). The
PDFs of the random VFs provided by the two concepts are very similar to each other (subplots
(c)-(d)) although some differences exist with respect to the experimental PDF. By contrast,
looking at the random TMD (subplot (b)), the PDF of TMD computed in the TMD/Vox concept
appears to approximate the experimental PDF better than that of TMDd computed in the
VF/Vox concept. This latter appears more spread out and has larger tails. This may be related
to the different correlation between pairs of VFs in the two concepts. In the TMD/Vox concept,
the two random VFs are nonlinearly correlated since both of them depend on the random TMD.
Therefore, in a given event ai, small/high values of F dI (ai) are always associated to small/high
values of F dII(ai)–both of them resulting from small/high values of TMD(ai). By contrast, in the
VF/Vox concept, the two random VFs are completely uncorrelated being s.i. random variables.
Therefore, in a given event ai, small/high values of FI(ai) can be associated to any value of
FII(ai).

The above conclusions are supported by analyzing the differences between the statistics of
the stochastic concepts and of the experimental data after reaching convergence of the statistical
estimators (in the sense of Sec. 2.3.3). Fig. 2.9 represents the relative errors of the mean values
and dispersions of the random TMD and VFs related to concepts TMD/Vox (green bars) and
VF/Vox (red bars), respectively, estimated through Eq. (2.14) on the basis of 106 realizations.
As expected, statistics of the primary random variables (i.e., TMD in the TMD/Vox concept and
VFs in the VF/Vox concept) approximate very well the corresponding experimental statistics.
Conversely, statistics of the derived random variables (i.e., VFs in the TMD/Vox concept and
TMD in the VF/Vox concept, denoted by a star in Fig. 2.9) are affected by higher errors. It
is worth noting that, although the TMD/Vox and VF/Vox concepts show some differences in
terms of statistics of TMD, they provide quite the same statistics with respect to the VFs.
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Figure 2.8: TMD/Vox and VF/Vox concepts. Scattered values and PDFs of the random
TMD and VFs based on experimental data at the voxel scale. (a) Scatter plot of the realizations
of the random VFs in concepts TMD/Vox (green dots) and VF/Vox (red dots) and analytical
relationship between the two VFs encoded in Eqs. (2.7) (blue line). (b)-(d) PDFs of the TMD and
of the random VFs in concepts TMD/Vox (green lines) and VF/Vox (red lines) and experimental
PDF (blue lines).

Elastic coefficients

Statistics of the random elastic moduli of MF and US predicted by concepts TMD/Vox and
VF/Vox are shown in Tab. 2.6 and Tab. 2.7, respectively. Deterministic values predicted by the
nominal model are shown as well. The two concepts provide very similar statistics for all the
elastic coefficients. This can be explained noting that the statistics of the VFs (the only random
parameters entering the computation of the elastic moduli, see Eqs. (2.18)) in the two concepts
are very similar, see Fig. 2.9 and the discussion at the end of the previous section. A difference of
about 10% is observed between the mean values of the elastic moduli and their nominal values at
both the MF and US scales. This difference is due to the nonlinear relationship existing between
the VFs and the elastic coefficients introduced by the homogenization procedure. Therefore,
homogenized elastic coefficients based on the mean values of the VFs (nominal model) are not
equivalent to the mean values of the homogenized elastic coefficients based on the realizations of
the VFs (stochastic models). The dispersions of the elastic moduli turn out to be much higher
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Figure 2.9: TMD/Vox and VF/Vox concepts. Relative error on the mean values (on the
left) and absolute error on the dispersions (on the right) of the random TMD and VFs after
106 realizations, see Eq. (2.14). Green and red bars refer to TMD/Vox and VF/Vox concepts,
respectively. Symbols ∗ denote the derived random variables (i.e., VFs in the TMD/Vox concept
and TMD in the VF/Vox concept).

than those of the TMD and VFs (Tab. 2.2). Since fMF
HA is the main determinant of the elastic

moduli, small variations of fMF
HA induce large variations of the elastic moduli. Therefore, the

realizations of the elastic moduli are more scattered than those of the TMD and VFs.

In order to get an overall picture of the fluctuations of the random elastic tensors around
their mean values, the scalar dispersions of the corresponding random matrices were estimated
through Eqs. (3.2.46) with N = Ns.i.r.. Results are summarized in Tabs. 2.8. These statistics
show that the TMD/Vox and VF/Vox concepts predict very close values for the scalar dispersions
of the random elastic tensors of both the MF and US. Moreover, it can be noticed that these
scalar dispersions decrease along the sequence of the homogenization steps (Fig. 2.4; Step 1:
MF, Step 2: US). This is basically due to the small dispersion of FUS

Col. This result can be proven
explicitly if a simple rule-of-mixture is used for computing the homogenized elastic tensors–see
App. C for more details.

Figs. 2.10-2.11 show the PDFs (subplots (a)-(b)) and scattered values (subplots (c)-(d)) of
some random elastic moduli of the MF and US. PDFs predicted by TMD/Vox and VF/Vox
concepts (subplots (a)-(b), green and red lines, respectively) are very similar to each other.
However, both concepts do not provide accurate representations of the PDFs obtained by ho-
mogenizing all the actual voxel-scale data (blue lines). This confirms the observations made
with respect to Tabs. 2.6-2.7. Subplots (c)-(d) show the scattering of the random elastic moduli.
Blue lines depict the relationships between the TMD and the elastic moduli when making use of
Eqs. (2.7). As expected, the realizations of the random elastic moduli of the TMD/Vox concept
(green dots) lie on these lines. Conversely, the realizations of the VF/Vox concept (red dots)
scatter around these lines. Therefore, although the PDFs of the two concepts are very similar
to each other, scattering of the results is quite different.
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Table 2.6: TMD/Vox and VF/Vox concepts. Elastic properties of the MF: nominal model
and statistics (Ns.i.r. = 105 realizations) of the stochastic concepts TMD/Vox and VF/Vox. Y :
Young modulus; G: shear modulus; ν: Poisson coefficient.

Y [GPa] G [GPa] ν [−]

Nominal model 10.3525 3.9479 0.3111

TMD/Vox concept

Mean value 11.3259 4.3622 0.3228
err(yµ∗ ), Eq. (2.21) 9.4024 10.4936 3.7476

Dispersion 0.5813 0.6041 0.1444

25% quantile 6.2835 2.3305 0.2870
75% quantile 15.3440 5.9611 0.3481

5% quantile 2.4940 0.8808 0.2681
95% quantile 23.6145 9.3108 0.4158

VF/Vox concept

Mean value 11.3368 4.3664 0.3226
err(yµ∗ ), Eq. (2.21) 9.5071 10.6008 3.6846

Dispersion 0.5772 0.5998 0.1443

25% quantile 6.3228 2.3459 0.2870
75% quantile 15.3558 5.9659 0.3476

5% quantile 2.4826 0.8766 0.2682
95% quantile 23.5549 9.2867 0.4160

2.3.4 TMD/RVE and VF/RVE concepts

This section focuses on the results of concepts TMD/RVE and VF/RVE which are based on
experimental statistics of TMD and VFs, respectively, measured at the RVE scale.

Convergence of the statistical estimators

Convergence of statistical estimators of the statistics of the random variables was first assessed.
As in Sec. 2.3.3, it turned out that convergence was achieved afterNs.i.r. = 105 realizations. Thus,
descriptive statistics computed on Ns.i.r. = 105 realizations were used hereinafter to estimate the
statistics of the random variables.

As a matter of example, Figs. 2.12 show the convergence plots for the statistical estimators
of the mean value and 50 % confidence interval of some random elastic moduli of the US, namely
the axial modulus Y3 and the lateral contraction coefficient ν31 (subscripts refer to the frame
in Fig. 2.1). Green and red lines refer to the TMD/RVE and VF/RVE concepts, respectively.
Moreover, black lines refer to the nominal model.

TMD and VFs

Scattered values and PDFs of the random effective TMD and VFs corresponding to concepts
TMD/RVE (in green) and VF/RVE (in red) are shown in Fig. 2.13. Fig. 2.13(a) shows the
realizations of the random effective VFs. Red dots represent the realizations of the pairs
(F I(ai), F II(ai)) generated by the VF/RVE concept and green dots represent the realizations

of the pairs (F
d
I (ai), F

d
II(ai)) generated by the TMD/RVE concept, with i = 1, . . . , Ns.i.r.. The
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Table 2.7: TMD/Vox and VF/Vox concepts. Elastic properties of the US: nominal model
and statistics (Ns.i.r. = 105 realizations) of the stochastic concepts TMD/Vox and VF/Vox. Yi:
axial modulus in the direction i; Gij : shear modulus in the plane ij; νij : lateral contraction
coefficient in the plane ij; Subscripts refer to the frame in Fig. 2.1.

Y1 [GPa] Y3 [GPa] G12 [GPa] G13 [GPa] ν12 [−] ν13 [−]

Nominal model 6.5274 7.6356 2.4368 2.5681 0.3393 0.2746

TMD/Vox concept

Mean value 6.7602 8.2322 2.5288 2.7232 0.3489 0.2828
err(yµ∗ ), Eq. (2.21) 3.5666 7.8129 3.7744 6.0380 2.8259 3.0055

Dispersion 0.4219 0.5090 0.4336 0.4747 0.1392 0.2001

25% quantile 4.6671 5.0229 1.7241 1.7562 0.3295 0.2390
75% quantile 8.6012 10.8113 3.2348 3.5310 0.3535 0.3224

5% quantile 2.5709 2.5681 0.9201 0.9203 0.3197 0.2080
95% quantile 11.8295 16.0255 4.4818 5.0885 0.3971 0.3880

VF/Vox concept

Mean value 6.8018 8.2730 2.5453 2.7401 0.3487 0.2825
err(yµ∗ ), Eq. (2.21) 4.2030 8.3477 4.4516 6.6952 2.7527 2.8908

Dispersion 0.4261 0.5106 0.4381 0.4783 0.1428 0.1996

25% quantile 4.6725 5.0345 1.7263 1.7589 0.3290 0.2391
75% quantile 8.6576 10.8681 3.2572 3.5535 0.3534 0.3216

5% quantile 2.5655 2.5627 0.9184 0.9186 0.3187 0.2088
95% quantile 11.9912 16.1657 4.5464 5.1537 0.3968 0.3876

Table 2.8: TMD/Vox and VF/Vox concepts. Scalar dispersions of the random elastic
tensors of MF and US.

Concept d[CMF] d[CUS]

TMD/Vox 0.4640 0.3412

VF/Vox 0.4606 0.3454

blue line corresponds to the analytical relationship between the two VFs encoded in Eq. (2.7)

and used in the TMD/RVE concept to compute the pair (F
d
I (ai), F

d
II(ai)) from one realization

TMD(ai) by means of Eqs. (2.8). Similarly to Fig. 2.8(a), all the pairs (F
d
I (ai), F

d
II(ai)) gener-

ated by the TMD/RVE concept lie on this line whereas the pairs (F I(ai), F II(ai)) generated by
the VF/Vox concept spread around it. Figs. 2.13(b)-(d) show the PDFs of the random effective
TMD and VFs obtained using the TMD/RVE (green lines) and VF/RVE (red lines) concepts.
The PDFs of the random effective VFs corresponding to the TMD/RVE and VF/RVE concepts
(Figs. 2.13(c)-(d)) are very similar to each other. By contrast, some differences appear between

the PDFs of TMD (concept TMD/RVE) and TMD
d

(concept VF/RVE) depicted in Fig. 2.13(b).
These results are qualitatively similar to those observed at the voxel-scale in Sec. 2.3.3, namely
in Figs. 2.8(b-d).
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Figure 2.10: TMD/Vox and VF/Vox concepts. Random elastic moduli of the isotropic
mineral foam predicted by the TMD/Vox (green data) and VF/Vox (red data) concepts. PDFs
(first row, subplots (a)-(b)) and scattered values (second row, subplots (c)-(d)) of the Young
modulus (left column) and Poisson coefficient (right column). Blue lines in subplots (a)-(b) refer
to the PDFs obtained by homogenization of the actual voxel-scale data. Blue lines in subplots
(c)-(d) depict the relationship between the TMD and the elastic moduli when using Eq. (2.5)(c);
moreover, black crosses depict the results of the nominal model.

Elastic coefficients

Statistics of the random elastic moduli of MF and US (concepts TMD/RVE and VF/RVE) are
shown in Tab. 2.9 and Tab. 2.10, respectively. Deterministic values predicted by the nominal
model are shown as well. Mean values and dispersions predicted by the two concepts are very
similar to each at both the MF and US scales. Mean values of the elastic moduli predicted
by the stochastic models stay quite close to the results of the nominal model, with differences
smaller than 2%. The dispersion of all the axial and shear moduli is about 0.2, which is almost

7 times higher than that of f
MF
HA (see Tab. 2.4), showing the same trend observed in Sec. 2.3.3

for concepts TMD/Vox and VF/Vox.

As for voxel-based concepts, the TMD/RVE and VF/RVE concepts predict very similar
values for the scalar dispersion of the random elastic tensors of both the MF and US. Results
are summarized in Tab. 2.11.

Figs. 2.14-2.15 show the PDFs (subplots (a)-(b)) and scattered values (subplots (c)-(d)) of
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Figure 2.11: TMD/Vox and VF/Vox concepts. Random elastic moduli of the transversely
isotropic ultrastructure predicted by the TMD/Vox (green data) and VF/Vox (red data) con-
cepts. PDFs (first row, subplots (a)-(b)) and scattered values (second row, subplots (c)-(d)) of
elastic moduli Y3 (left column) and ν31 (right column); Subscripts refer to the frame in Fig. 2.1.
Blue lines in subplots (a)-(b) refer to the PDFs obtained by homogenization of the actual voxel-
scale data. Blue lines in subplots (c)-(d) depict the relationship between the TMD and the
elastic moduli when using Eq. (2.5)(c); moreover, black crosses depict the results of the nominal
model.

some random elastic moduli of the MF and US, respectively. PDFs predicted by TMD/RVE
and VF/RVE concepts (subplots (a)-(b), green and red lines, respectively) are almost indistin-
guishable. Subplots (c)-(d) show the scattering of the random elastic moduli obtained through
the TMD/RVE (green dots) and VF/RVE (red dots) concepts. Blue lines depict the relation-
ships between the TMD and the elastic moduli when making use of Eqs. (2.7). Scattered elastic
moduli of RVE-scale concepts follow the same trend observed in voxel-scale concepts: On the
one side, results of the TMD/RVE concept lie on the blue lines; On the other side, results of the
VF/RVE concept scatter around these lines. Once again, the PDFs of the elastic moduli of the
TMD/RVE and VF/RVE concepts are very similar but the individual realizations are scattered
differently.
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Figure 2.12: TMD/RVE and VF/RVE concepts. Convergence of the statistical estimators
of the mean value (solid lines) and 50 % confidence interval (dashed lines) of some random elastic
moduli of the ultrastructure. On the left: axial modulus Y3; On the right: lateral contraction
coefficient ν31 of the bone US (subscripts refer to the frame in Fig. 2.1). Green and red lines
refer to the TMD/RVE and VF/RVE concepts, respectively. Black lines refer to the nominal
model.

2.3.5 Voxel-scale vs. RVE-scale concepts

Results of voxel-based and RVE-based concepts are quite different. This is mostly related to the
dispersion of the underlying experimental data. Voxel-scale TMD and VFs data are much more
dispersed than RVE-scale data. Scattering of TMD and VFs data at the voxel and RVE scales
reflects the variation of ultrastructure composition at the scale of several micrometers and of
several hundreds micrometers, respectively. Since each value of TMD at the RVE scale is the
spatial average of a large number (about 105) of voxel-scale data, RVE-scale data are necessarily
less dispersed than voxel-scale data.

Statistics of elastic moduli predicted by voxel-scale and RVE-scale concepts are affected by
the dispersion of the underlying input data. Actually, as the dispersion decreases, realizations
of the random TMD and VFs tend to cluster around their experimental mean values and,
therefore, realizations of the random elastic moduli tend to gather around the corresponding
nominal value. This has two main consequences. On the one side, the mean values of the
elastic moduli predicted by the RVE-scale concepts are closer to the nominal elastic moduli
than those predicted by voxel-scale concepts. For instance, the differences between the nominal
elastic modulus Y3 of the US and the corresponding mean values predicted by the TMD/RVE
and TMD/Vox concepts are about 1.08% and 7.81%, respectively (see Tab. 2.10 and Tab. 2.7).
On the other side, the dispersion and confidence intervals of the elastic moduli predicted by the
RVE-scale concepts are significantly smaller than those of the voxel-scale concepts. For instance,
the dispersions of the elastic tensors predicted by the RVE-based concepts are less than half of
those predicted by the voxel-based concepts, see Tab. 2.8 and Tab. 2.11.

It is worth comparing the statistics of voxel-based and RVE-based stochastic concepts with
the elastic moduli of individual RVEs predicted by the (deterministic) micromechanical model–
hereinafter called RVE-wise elastic moduli for short. Following Sansalone et al. (2016), these
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Figure 2.13: TMD/RVE and VF/RVE concepts. Scattered values and PDFs of the random
TMD and VFs based on experimental data at the RVE scale. (a) Scatter plot of the realizations
of the random VFs in concepts TMD/RVE (green dots) and VF/RVE (red dots) and analytical
relationship between the two VFs encoded in Eq. (2.7) (blue line). (b)-(d) PDFs of the random
TMD and VFs corresponding to concepts TMD/RVE (green lines) and VF/RVE (red lines);

latter were computed using the RVE-wise values of TMD as input data for the homogenization
model described in Sec. 2.2.6. Fig.2.16 compares the statistics of some elastic moduli predicted
by the TMD/RVE concept with the corresponding RVE-wise elastic moduli. It can be noticed
that these latter (blue and light blue circles, referring to the blue and light blue RVEs depicted
in Fig. 2.1 and constituting the calibration and validation sets, respectively) are evenly scattered
around the mean values predicted by the TMD/RVE concept (solid green lines). It can also be
noticed that these mean values are well approximated by the nominal values (solid black lines).
Moreover, 50% and 90% confidence intervals (thick and thin green dashed lines) contain almost
half and almost all the RVE-wise values, respectively. Therefore, the 50% and 90% confidence
intervals seem to be slightly smaller and larger, respectively, than one would expect. These
errors may be due to the small number of individual RVE-wise values. In any case, predictions
of the RVE-based concepts turn out to be much better than those of the voxel-based concepts
which largely overestimate the confidence intervals (e.g., see Fig. 10 in Sansalone et al. (2016)
referring to the VF/Vox concept).
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Table 2.9: TMD/RVE and VF/RVE concepts. Elastic properties of the MF: nominal model
and statistics (resulting from Ns.i.r. = 105 realizations) of the stochastic models of concepts
TMD/RVE and VF/RVE. Y : Young modulus; G: shear modulus; ν: Poisson coefficient.

Y [GPa] G [GPa] ν [−]

Nominal model 10.3525 3.9479 0.3111

TMD/RVE concept

Mean value 10.4914 4.0082 0.3136
err(yµ∗ ), Eq. (2.21) 1.3409 1.5271 0.7905

Dispersion 0.2591 0.2719 0.0590

25% quantile 8.5463 3.2256 0.3001
75% quantile 12.2465 4.7097 0.3247

5% quantile 6.3432 2.3540 0.2873
95% quantile 15.2562 5.9256 0.3474

VF/RVE concept

Mean value 10.5186 4.0191 0.3134
err(yµ∗ ), Eq. (2.21) 1.6041 1.8024 0.7207

Dispersion 0.2574 0.2701 0.0586

25% quantile 8.5953 3.2452 0.3001
75% quantile 12.2599 4.7151 0.3243

5% quantile 6.3649 2.3625 0.2873
95% quantile 15.2536 5.9245 0.3471

2.4 Conclusion

In this chapter we investigated the effects of uncertain experimental data (input) on the elastic
moduli of bone matrix (output). To this aim, we considered uncertain input data as random
variables and used probability theory to build the related probability laws. These stochastic
models were introduced in a micromechanical model of bone matrix to obtain a stochastic
description of the elastic properties of this latter.

Several sources of uncertainty can arise in image-based multiscale modeling of bone: com-
position, geometry, microarchitecture, and so on and so forth. In this work we focused on the
composition of bone matrix and applied our strategy to a cortical bone sample taken from the
inferior femoral neck of an elderly patient. Basically, we started from images obtained with a
spatial resolution of 10 µm (referred to as voxel scale) to compute elastic properties of bone
matrix at the scale of a few hundreds micrometers (referred to as RVE scale). Our work was
developed in three main parts: first, the statistical analysis of experimental data; second, the
stochastic modeling of bone compositional parameters; third, the micromechanical modeling in
a stochastic framework.

Statistical analysis. Gray-levels of the images led to a voxel-scale, 3D distribution of Tissue
Mineral Density (TMD) which, in turn, allowed computing the volume fractions (VFs) of
elementary constituents of bone at each scale. The voxel-wise distribution of TMD was fur-
ther averaged to obtain effective RVE-scale compositional information. Eventually, mean
values and dispersions of TMD and VFs at both voxel- and RVE-scale were computed.

Stochastic models. We artificially introduced uncertainty in our data by assuming bone com-
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Table 2.10: TMD/RVE and VF/RVE concepts. Elastic properties of the US: nominal
model and statistics (resulting fromNs.i.r. = 105 realizations) of the stochastic models of concepts
TMD/RVE and VF/RVE. Yi: axial modulus in the direction ei; Gij : shear modulus in the plane
(ei, ej); νij : lateral contraction coefficient in the plane (ei, ej); Subscripts refer to the frame in
Fig. 2.1.

Y1 [GPa] Y3 [GPa] G12 [GPa] G13 [GPa] ν12 [−] ν13 [−]

Nominal model 6.5274 7.6356 2.4368 2.5681 0.3393 0.2746

TMD/RVE concept

Mean value 6.5530 7.7183 2.4472 2.5895 0.3402 0.2773
err(yµ∗ ), Eq. (2.21) 0.3915 1.0834 0.4262 0.8307 0.2534 1.0151

Dispersion 0.1796 0.2249 0.1847 0.2054 0.0216 0.0916

25% quantile 5.7276 6.4772 2.1300 2.2116 0.3350 0.2589
75% quantile 7.3308 8.8425 2.7456 2.9357 0.3445 0.2933

5% quantile 4.6963 5.0613 1.7352 1.7684 0.3296 0.2400
95% quantile 8.5658 10.7557 3.2212 3.5142 0.3532 0.3230

VF/RVE concept

Mean value 6.5733 7.7434 2.4552 2.5982 0.3400 0.2771
err(yµ∗ ), Eq. (2.21) 0.7037 1.4118 0.7524 1.1699 0.2070 0.9177

Dispersion 0.1814 0.2258 0.1866 0.2070 0.0218 0.0907

25% quantile 5.7406 6.5005 2.1350 2.2179 0.3349 0.2589
75% quantile 7.3526 8.8663 2.7540 2.9447 0.3444 0.2926

5% quantile 4.6931 5.0630 1.7341 1.7678 0.3292 0.2402
95% quantile 8.6198 10.8062 3.2424 3.5357 0.3531 0.3226

Table 2.11: TMD/RVE and VF/RVE concepts. Scalar dispersions of the random elastic
tensors of MF and US.

Concept d[CMF] d[CUS]

TMD/RVE 0.2033 0.1462

VF/RVE 0.2022 0.1479

position to be known only in statistical terms. Thus, stochastic models of uncertain TMD
and VFs were set up by means of the Maximum Entropy (MaxEnt) and using the experi-
mental statistics of TMD and VFs, respectively, as input data.

Micromechanical modeling. We developed four stochastic micromechanical concepts by in-
troducing the stochastic models developed above in the micromechanical model of bone
matrix. The four concepts correspond to considering as primary random variables ei-
ther the TMD or VFs, each of them based on either voxel-scale or RVE-scale statistical
information.

Comparison of these four concepts allowed investigating the two main questions set in this
chapter.
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Figure 2.14: TMD/RVE and VF/RVE concepts. Random elastic moduli of the MF
predicted by the TMD/RVE (green data) and VF/RVE (red data) concepts. PDFs (first row,
subplots (a)-(b)) and scattered values (second row, subplots (c)-(d)) of the Young modulus
(left column) and Poisson coefficient (right column). Blue lines in subplots (c)-(d) depict the
relationship between the TMD and the elastic moduli when making use of Eqs. (2.7); moreover,
black crosses depict the results of the nominal model.

2.4.1 TMD-based vs. RVE-based concepts

TMD-based and VF-based concepts provided very similar results in terms of statistics (mean
value, dispersion, confidence intervals) of the elastic moduli. Some differences were observed
with respect to the scattering of the elastic moduli. This is related to the way VFs are modeled
in VF-based and TMD-based concepts. Random VFs describing uncertain bone composition are
perfectly independent in VF-based concepts whereas they are perfectly dependent on each other
in TMD-based concepts. Therefore, the two concepts describe two limit situations, the actual
one being likely in between. In order to obtain a more realistic description of the random VFs,
one could introduce some noise in the nonlinear relationship relating the VFs in the TMD-based
concepts, i.e. Eq. (2.5)(c). By doing this, VFs will be described as weakly dependent random
variables. Nevertheless, no noticeable effects are expected in terms of statistical description of
the elastic moduli.

In the end, in authors’ opinion, a TMD-based approach should be preferred since it introduces
uncertainty on one observable variable (the TMD is linearly related to the gray level, that is to
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Figure 2.15: TMD/RVE and TMD/RVE concepts. Random elastic moduli of the trans-
versely isotropic ultrastructure predicted by the TMD/RVE (green data) and VF/RVE (red
data) concepts. PDFs (first row, subplots (a)-(b)) and scattered values (second row, subplots
(c)-(d)) of elastic moduli Y3 (left column) and ν31 (right column); Subscripts refer to the frame
in Fig. 2.1. Blue lines in subplots (c)-(d) depict the relationship between the TMD and the
elastic moduli when making use of Eqs. (2.7); moreover, black crosses depict the results of the
nominal model.

the X-ray absorption of the bone matrix) whereas a VF-based approach introduces uncertainty
on two latent variables (the VFs of collagen and mineral) which are inferred from the TMD
through a mathematical model.

2.4.2 Voxel-scale vs. RVE-scale concepts

Concepts based on statistical information at the RVE scale proved to perform much better
than concepts based on statistical information at the voxel scale. More precisely, RVE-scale
concepts provided an accurate statistical description of the elastic moduli at the RVE scale,
whereas voxel-scale concepts highly overestimated their scattering. This is mainly related to
the fact that the dispersion of TMD at the voxel-scale is much higher than at the RVE scale.
These results point out that, as long as elasticity of bone matrix is concerned, one should
use experimental information at the scale of several hundreds micrometers–a spatial resolution
achievable by clinical CT scanners–and get rid of finer-scale variability.
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Figure 2.16: Elastic moduli of the ultrastructure. Comparison between the elastic moduli of
actual RVEs (blue and light blue circles, see Fig. 2.1) and the corresponding statistics predicted
by the TMD/RVE concept (green lines; solid, thick-dashed and thin-dashed lines refer to mean
values, 50% and 90% confidence intervals, respectively). Black lines depict the nominal values.

Eventually, it is worth noting that these results can impact organ-scale models. In image-
based Finite Element (FE) simulations of whole bone, material properties of bone are often
considered heterogeneous at the organ scale but homogeneous within each FE (Hellmich et al.,
2008; Zysset et al., 2013; Li et al., 2015; Zadpoor and Weinans, 2015; Pahr and Zysset, 2016).
Since the typical size of the FEs is of the same order of magnitude than that of our RVE, our
results support this assumption. It is worth noting that most of numerical methods devoted to
simulate bone at the organ scale lean on similar assumptions.

2.4.3 Limitations and perspectives

Because of the nature of the two above questions, in this work we focused on the bone solid
matrix of cortical bone. However, from a practical point of view, what matters are the elastic
properties of the cortical tissue–i.e. bone matrix and Haversian pores. Therefore, the approach
proposed in this work needs to be extended to the organ scale to obtain a stochastic description
of the effective elastic properties of the cortical tissue. This work will be presented in the next
chapter.

Because of the small size of the bone sample studied in this work, calibration and validation
of RVE-scale concepts were limited. In future work, larger samples–perhaps whole organs–will
be studied in order to check the reliability of our approach over large populations.

Furthermore, in this work TMD and VFs were considered as random variables. This approach
neglects any spatial correlation at the organ-scale. As soon as spatial patterns exist, these
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should be accounted for by modeling TMD and VFs as random-fields. Indeed, it was shown
that patterns of Haversian porosity and TMD do exist in the femoral neck (Sansalone et al.,
2010, 2012). Considering large bone samples will likely increase the need for moving towards
this new modeling approach.

Eventually, results of this work, highlighting the relevance of images with spatial resolution
compatible with clinical CT scanners, open the way to possible clinical applications. It should
be noticed that the RVE-scale data used in this paper were obtained by averaging a wealth of
voxel-scale data (about 105 measures per RVE). Averaging procedure reduces the noise possibly
affecting the original measures, therefore leading to an increased signal-to-noise ratio (SNR)
at the RVE scale. Therefore, the SNR of the derived RVE-scale data used in this paper is
likely higher than that of native RVE-scale data, i.e. data directly measured at the RVE scale.
Thus, images obtained with a spatial resolution as coarse as 500 µm (i.e., the RVE size) will
likely lead to blurrier data and increased dispersion of RVE-scale data. A good compromise
might be obtained by using images with an intermediate spatial resolution. Images with spatial
resolution of about 100 µm (which can be achieved by some clinical CT devices (Burghardt et al.,
2011)) would provide more than 100 measures per RVE. Therefore, RVE-scale data obtained
by averaging these measures are likely to have a sufficiently high SNR and therefore could be
suitably used to compute the elastic properties of bone matrix at the tissue-scale. This is a key
point which needs to be further investigated in order to move towards clinical applications of
our work.
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2.5 Appendix

A Numerical solution of the stochastic model

Construction of the PDF by means of the MaxEnt principle

Let X be a random variable. The general expression of its PDF pX maximizing the Shannon’s
entropy in Eq. (2.9) under the constraints in Eqs. (2.11) reads (Soize, 2004):

pX(x) := 1SX (x)e−(λ∗0+λ∗1x+λ∗2x
2) , (2.22)

where λ∗0, λ∗1, and λ∗2 are Langrange multipliers associated to the constraints in Eqs. (2.11).
Numerical values of these Langrange multipliers can be conveniently obtained by reformulating
the initial constrained maximization problem. Actually, since the Shannon’s entropy has the
role of a Lagrangian, the problem of maximizing the functional in Eq. (2.9) under the set of
constraints in Eq. (2.12) is equivalent to finding the optimal vector of Lagrange multipliers
λλλ∗ := [λ∗0, λ

∗
1, λ
∗
2] that minimizes the corresponding Hamiltonian function H, that is:

λλλ∗ := arg min
λλλ
H (λλλ) , (2.23)

with

H (λλλ) := λ0 + λ1 × µX + λ2 ×
(
1 + δ2

X

)
µ2
X +

∫
SX

e−(λ0+λ1x+λ2x2) dx . (2.24)

where µX and δX represent the available information (mean value and dispersion, respectively)
on X.

The research of the optimal vector of Lagrange multipliers λλλ∗ has been accomplished using
the built-in optimization functions of Matlab software (MATLAB, 2010). Convergence of the
optimization problem depends on the initial guess of the control variable, i.e. the vector λλλ(0) =

[λ
(0)
0 , λ

(0)
1 , λ

(0)
2 ]. A “good” initial guess can be set using a heuristic. For a PDF like that defined

in Eq. (2.22), the proximity of the mode and the mean value of X and the integrability condition
of the PDF lead to the following choice for the initial guess:

λ
(0)
2 > 0 ,

λ
(0)
1 = −2µexp

X λ
(0)
2 ,

λ
(0)
0 = ln

(∫
SX

e−(λ
(0)
1 x+λ

(0)
2 x2) dx

)
.

(2.25)

Then, the problem of choosing an initial guess vector λλλ(0) reduces to choosing the initial guess

of λ
(0)
2 only. This choice can be guided by noticing that larger values of λ

(0)
2 are associated with

smaller values of the dispersion δX . Therefore, a simple parametric study allows selecting a

suitable value for λ
(0)
2 .
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Generation of statistically independent realizations

In order to obtain a set of statistically independent realizations of the random variable X, the
PDF pX in Eq. (2.22) has been sampled using the pseudo-inverse method Devroye (1986). Let:

FX(x) =

∫ x

inf SX

pX(y) dy (2.26)

be the repartition function (RF) of X. Firstly, the pseudo-inverse (FX)−1 of the RF was
numerically computed. Then, N realizations of a uniform random variable U with values in
[0, 1] was computed, say U(ai) with i = 1, . . . , N . Eventually, N realizations X(ai) of X were
computed as:

X(ai) = (FX)−1 (U(ai)) . (2.27)

B Closure of the symmetry group under average operator

The concepts, we recall in the following, are borrowed from sect.14, 15, 16 of (Podio Guidugli,
2000). Classification of a linear elasticity tensor c consists in the research of the set of antisym-
metric tensor Q representing rotation (Q ∈ Rot) satisfying the relation :

QcEQT = cQEQT ∀E ∈ Sym (2.28)

having E the role of the symmetric part of the gradient of the deformation (E ∈ Sym).

For a given c, the collection Gc of admissible Q ∈ Rot satisfying the eq. 4.3.1 is called
symmetry group of c. It should be proven that Gc is a group ( we refer to sect.16 (Podio Guidugli,
2000) complete proof) but for the purposes of this article we will focus only on the closure
properties of such set Gc under the operation of sum. For this is sufficient to show that for any
couple c, d of elastic tensor satisfying the 4.3.1 the sum tensor f := c + d verifies it too :

Q(c + d)EQT = Q(c)EQT + Q(d)EQT =
= cQEQT + dQEQT =
= (c + d)QEQT .

(2.29)

This result allows to infer that: given the set of realizations C(ai), i = 1, . . . , N belonging to
the same symmetry group Gc, the stochastic estimator µ̂N[C] of the mean value E ([C]), resulting

by the Kelvin’s representation of C(ai), i = 1, . . . N stays in the same symmetry group ( eq. ).

Q
(
µ̂N[C]

)
EQT = Q

(
1
N

∑N
k=1 C(ai)

)
EQT =

=
(

1
N

∑N
k=1 C(ai)

)
QEQT

= µ̂N[C]Q[E]QT

(2.30)

In the specific context of the model presented in this work, the last result means that :

1. since the realizations CMF (ai) of the self-consistent scheme belong to the group of sym-
metry of the isotropic class then the µ̂N[CMF ] belongs to the isotropic class;
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2. since the realizations CUF (ai) of the Mori-Tanaka scheme belong to the group of symmetry
of the transverse isotropic class ( with t.i. axe e3 ) then the µ̂N[CUS ] belongs to the transverse

isotropic class ( with t.i. axe e3).

The preceding results justify the comparison between the characteristic elastic moduli of the
same isotropic class of µ̂N[C∗] of each step of the homogenization procedure presented in this work
and the relative nominal model.

Finally we remark that, even than we have theoretically shown, the µ̂N[CUS ] should stay in
the same isotropic class of the realizations used for calculating it, numerical approximations due
to the application of homogenization schemes (SC and MT) and summation could affect the
verification of the announced property. For this reason, the results shown in this work verify
the condition of proximity given by the eq. (2.31) for ε < 10−13

‖P
(
µ̂N[C∗]

)
− µ̂N[C∗]‖F < ε (2.31)

where P(C) is the projection of C on the vectorial space defined by the base of the isotropic
group Gc whom C must belong to.

C Dispersion parameter of rules of mixtures

Derivation of the dispersion of Voigt approximation

Let cV oigta be the resulting elastic tensor of the Voigt approximation of a composite constituted
by two phases having respectively elastic tensors ci, i = 1, 2 and volume fractions fi, i = 1, 2:

cV oigta = f1 × c1 + f1 × c2 (2.32)

Let’s suppose to evaluate the Voigt approximation for the random case where both volume frac-
tions of the constituents are considered constants, but the elastic tensor of one of two phases(read
i = 2) is considered uncertain, i.e. :

CV oigt
a = f1 × c1 + f2 ×C2 . (2.33)

Firstly we evaluate :

µ[Ca] = E{[Ca]} = f2 × µ[C2] + [d1]

‖µ[Ca]‖2F = ‖ [d1] ‖2F + f2
2 × ‖µ[C2]‖2F + 2f2 × tr

{
[d1]µ[C2]

} (2.34)

where we renamed [d1] = f1 × [c1]. Then :

E
{
‖ [Ca]− µ[Ca]‖2F

}
= E

{
tr
{(

[Ca]− µ[Ca]

)2}}
=

= E
{
f2

2 × tr
{(

[C2]− µ[C2]

)2}}
=

= f2
2 × E

{
tr
{(

[C2]− µ[C2]

)2}} (2.35)

Finally :
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δ2
[Ca]V oigt

=
E{‖[Ca]−µ[Ca]‖

2
F}

‖µ[Ca]‖
2
F

=

=
f22×E

{
tr
{
([C2]−µ[C2])

2
}}

‖[d1]‖2F+f22 ‖µ[C2]
‖2F+2f2×tr{[d1]µ[C2]}

=

=
f22 ‖µ[C2]

‖2F×δ
2
[C2]

‖[d1]‖2F+f22 ‖µ[C2]
‖2F+2f2×tr{[d1]µ[C2]}

=

= δ2
[C2] ×

1
1+(‖[d1]‖2F+2f2×tr{[d1]µ[C2]})/f22 ‖µ[C2]

‖2F
=

< δ2
[C2]

(2.36)

where the fact tr
{

[d1]µ[C2]

}
> 0 is due to the positive definiteness of the square symmetric

matrices [d1] and µ[C2]. Indeed: named A and B respectively the positive square roots of [d1]
and µ[C2]

tr
{

[d1]µ[C2]

}
= tr {AABB} = tr

{
(AB)TAB

}
=
∑
ij

(AB)2
ij > 0 . (2.37)

D Other results on TMD and VF/Vox concept

97



Bibliography

Bibliography

R. Blanchard, A. Dejaco, E. Bongaers, and C. Hellmich. Intravoxel bone micromechanics for
microct-based finite element simulations. J. Biomech., 46(15):2710–2721, 2013.

V. Bousson, F. Peyrin, C. Bergot, M. Hausard, A. Sautet, and J.D. Laredo. Cortical bone in the
human femoral neck: three-dimensional appearance and porosity using synchrotron radiation.
J. Bone Miner. Res., 19(5):794–801, 2004.

J.J. Broz, S.J. Simske, and A.R. Greenberg. Material and compositional properties of selectively
demineralised cortical bone. Journal of Biomechanics, 28(11):1357–1368, 1995.

A.J. Burghardt, T.M. Link, and S. Majumdar. High-resolution computed tomography for clinical
imaging of bone microarchitecture. Clin. Orthop. Relat. Res., 469(8):2179–2193, 2011.

J.D. Currey. The effect of porosity and mineral content on the young’s modulus of elasticity of
compact bone. Journal of Biomechanics, 21(2):131–139, 1988.

J.D. Currey. Measurement of the mechanical properties of bone. a recent history. Clin. Orthop.
Relat. Res., 467:1948–1954, 2009.

E. Dall’Ara, B. Luisier, R. Schmidt, M. Pretterklieber, F. Kainberger, P. Zysset, and D. Pahr.
Dxa predictions of human femoral mechanical properties depend on the load configuration.
Medical Engineering & Physics, 35(11):1564–1572, 2013.

L. Devroye. Non Uniform Random Variate Generation. Springer Verlag, New York, 1986.

P. Fratzl, N. Fratzl-Zelman, and K. Klaushofer. Collagen packing and mineralization. an x-ray
scattering investigation of turkey leg tendon. Biophysical Journal, 64(1):260–266, 1993.

M. Granke, Q. Grimal, W.J. Parnell, K. Raum, A. Gerisch, F. Peyrin, A. Säıed, and P. Laugier.
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Abstract

In previous chapter, we proposed a stochastic model to describe the elasticity of bone matrix
(so-called ultrastructure, US) based on basic statistical information on the tissue mineral density
(TMD). This information was obtained by analyzing high-resolution images of a human femoral
neck realized by means of synchrotron radiation micro-computed tomography (SR − µCT).
In this chapter, we extend this study by focusing at the upper scale where cortical bone is
described as a two-phase mixture made up of water-filled Haversian pores (HP) embedded in
the surrounding solid US. The goal of this work is to develop a stochastic model of cortical bone
elasticity accounting for the effect of uncertainty affecting both phases, the US via the TMD
and the HP.

Experimental information was assumed to be given in terms of mean values and dispersions
of the average TMD (denoted TMD) and HP at the millimeter scale. To this aim, SR − µCT
images were used to extract several representative volume elements (RVEs) spanning the whole
cortical tissue which, in turn, were analyzed to obtain the required statistical information on
TMD and HP. This information has been used for constructing a stochastic multiscale model
of cortical bone based on the Maximum Entropy (denoted MaxEnt) principle. This stochastic
multiscale model is used in the estimation of the effective elastic properties of cortical bone (CB-
SµM) based on continuum micromechanics (µM). In parallel, a deterministic nominal multiscale
model of cortical bone (CB-NµM) was developed by using as input data the mean values of
TMD and HP. The elastic moduli estimated with CB-NµM has been compared with the average
value of the same counterpart obtained with the CB-SµM model. The two estimates differ for
less than 1%, proving the robustness of the CB-SµM model. Moreover, the accuracy of the
SµM stochastic model has been tested. Estimations of the cortical bone elasticity of each RVE
with the µM (cylindrical HP and homogeneous US), has been compared with other estimation
obtained through others homogenization techniques: finite elements (FEM) and fast Fourier
transform (FFT), both able to account for the real morphology of Havesian porosity and the
heterogeneity of the ultrastructure. Results show that: 1- the transverse isotropic (TI) elastic
µM model correctly approximates the FEM and FFT estimates (∼98% TI); 2- the µM model
accurately estimates the axial modulus (Y3) in longitudinal direction and the lateral contraction
ratio ν31.
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3.1 Introduction

Assessment of mechanical properties of bone in vivo represents a challenging and complex prob-
lem because of the hierarchical and heterogeneous structure of bone material as well as for its
capability to adapt its material properties to the superimposed mechanical and biochemical
stimuli (Cowin, 2001).

Zooming from the organ scale down, bone elementary components (basically collagen, min-
eral, and water) give rise to different structural patterns. Aiming at predicting the overall
behavior of bone, several methods have been proposed to account for this hierarchical structure
such as homogenization methods (Crolet et al., 1993; Racila and Crolet, 2007; Parnell et al.,
2011; Rohan et al., 2012) mean-field approximations (Parnell et al., 2011; Hellmich et al., 2004),
Finite Element (FE) numerical simulations (Barkaoui and Hambli, 2011, 2014) and many others.

All these methods require information about the constitutive behavior, relative amount and
spatial arrangement of the structural units at each scale considered in the description of bone.
Although this information can be obtained in vitro using different techniques (mechanical test-
ing, chemical analysis, imaging) with a relatively high level of accuracy, it is still challenging to
access detailed information about the microstructural organization of bone in vivo. Since relia-
bility of model predictions rely on the accuracy of input data, the issue of dealing with uncertain
data becomes of main importance in view of clinical applications. Moreover, in the framework of
a computer-aided, patient-specific analysis, not only accuracy and reliability but also simplicity
and elaboration time should be accounted for. In this context, it does make sense to develop
a reliable, fast and easy-to-use model using minimal information about patient-specific bone
microstructure.

Restricting our interest to modeling bone elasticity, analytical and semi-analytical methods
often make use of a simplified description of bone in terms of morphology (structural units
can be described by simple geometrical entities such as spheres, cylinders, ellipsoids, etc.) and
elastic symmetry of its essential constituents (mineral is often modeled as an isotropic material,
water as a compressible fluid, and collagen as either an isotropic or transversely isotropic mate-
rial). Starting from these “universal” morphological and constitutive assumptions, the spatial
heterogeneity of elastic properties of bone is described in terms of the relative amounts of its
essential constituents. These approaches lead to relatively easy-to-use and time-efficient models
which also proved to be accurate as long as input data (relative amount of bone constituents)
are known. However, being inherently deterministic in nature, these models cannot provide any
clue about the reliability of their predictions nor on the effects of uncertainty possibly affecting
the input data or the model assumptions.

As far as we know, the effects of uncertain morphology of bone microstructure has not been
investigated so far. Recently, Sansalone et al. (2014) discussed the issue of uncertain elastic
properties of bone constituents at the nanoscale and propagated this uncertainty upwards to
quantify its effects on the elastic properties of the bone solid matrix (so-called ultrastructure,
US). Another pretty unexplored issue concerns the interfaces between different structural units,
which are commonly assumed to be in perfect adhesion.

The issue of bone composition, related to the spatial heterogeneity and distribution of bone,
seems to have received more attention in the biomechanical community. For instance, it has
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been shown that bone mineralization density distribution (BMDD) is a reliable fingerprint of
the health state of bone (Ruffoni et al., 2007) Assessing bone composition at microstructural
scales requires experimental devices with suitable spatial resolution. In this context, X-ray based
methods occupy a central place in clinics–where Dual-energy X-ray absorptiometry (DXA) is still
the golden standard to diagnose and follow osteoporosis–as well as in research–where different
types of micro-computed tomography (µCT) can be used to reveal tiny details of bone micro-
and nano-structure. These methods can detect the attenuation of a radiative source due to the
absorption of an interposed medium. In bone, attenuation is basically related to the mineral
density. Synchrotron radiation µCT (SR − µCT) is nowadays the more reliable technology to
inspect bone morphology and composition at the micro- and nano-scale in vitro (Apostol et al.,
2006; Langer et al., 2012). Last generation µCT devices also allow qualitative and quantitative
assessment of bone at the micro-scale in vitro and, to a limited extent, in vivo (Burghardt
et al., 2011). Due to X-ray dose limitations, in vivo human imaging has a spatial resolution
limited to about one hundred micrometers and is restricted to analysis of structural parameters.
These limitations make it impossible to obtain accurate information on bone composition at sub-
millimeter scales in vivo and call for new modeling approaches capable to account for uncertain
input data.

Our group has recently started investigating the propagation of uncertainty related to bone
composition through the scales (Sansalone et al., 2016). Adopting the simplified representation
of bone proposed in Sansalone et al. (2010), uncertain bone composition was assumed to be
known in terms of statistics (mean value and dispersion) of volume fractions (VFs) computed
from experimental data at the scale of about ten micrometers. Uncertain VFs were modeled as
random variables and their stochastic models were obtained by means of the Maximum Entropy
(MaxEnt) principle. Eventually, random VFs were introduced in a micromechanical model to
compute statistics of bone elastic moduli of the cortical bone. These statistics turned out to
overestimate the actual elastic moduli. In further work (Gagliardi et al., 2016 (submitted), it
was shown that the elastic coefficients of bone US are better represented by using the Tissue
Mineral Density (TMD) to describe bone composition and using experimental data at the scale
of several hundreds micrometers (that is, the size of the Representative Volume Element, RVE,
of cortical bone). The average TMD at this scale was referred to as TMD. In here, we aim at
extending this analysis by investigating the propagation of uncertainty up to the tissue scale.
Specifically, the stochastic model of US defined as TMD/RVE concept in (Gagliardi et al., 2016
(submitted) is combined with a stochastic model of the Haversian porosity (HP) in order to
obtain a stochastic micromechanical model of the cortical bone.

The purpose of this work is manifold:

� To analyze the combined effect of the variations of the pair (HP,TMD) on the elasticity of
cortical bone;

� To validate the stochastic micromechanical model by comparison with more refined nu-
merical models.

The first goal was achieved by using the pair (HP,TMD) to describe bone composition. Both
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HP and TMD were modeled as statistically independent random variables and their probability
density functions (PDFs) were obtained by means of the MaxEnt principle fed with experimental
statistical information (mean value and dispersion) at the tissue scale. This information has been
estimated by analyzing a set of RVEs issued from SR−µCT images of the inferior femoral neck
of an elderly patient. Eventually, the stochastic micromechanical model described in this work
results from introducing this stochastic description of the pair (HP,TMD) in the micromechanical
model proposed by Sansalone et al. (2010).

The second goal was achieved by comparing the statistics of the elastic moduli of cortical
bone predicted by the stochastic micromechanical model with the elastic moduli of actual RVEs
computed using detailed microstructural models based on the Finite Element Method (µFE)
(Crolet et al., 1993; Granke et al., 2015) and on the Fast Fourier Transform (µFFT) (Moulinec
and Suquet, 1998; Brisard and Dormieux, 2010; Monchiet and Bonnet, 2012; Monchiet, 2015).
Both these models can account for the actual pore morphology and heterogeneity of bone RVEs.
which have been set up accounting the morphology of the Haversian porosity and the variability
of the solid matrix existent in the reference µCT dataset.

After this introduction on the rationale for studying the estimations of bone elasticity, the
chapter is organized as follows. First, Sec. 3.2 describes the materials and methods employed in
this study. The section starts with discussing our experimental data on bone composition and
the related statistical information; then, an overview of some techniques providing the effective
elastic properties of an heterogeneous material is presented, namely continuum micromechanics,
FEM and FFT method. Eventually, several micromechanical and microstructural models of
cortical bone elasticity are presented, including a new stochastic micromechanical model based
on (HP,TMD) is detailed. Then, Sec. 3.3 is devoted to describing the results obtained through
all these models. The results of the stochastic model are presented first. The effects of the gray-
level threshold chosen to separate HP from US in the SR − µCT images are then investigated.
Eventually, results of microstructural models based on the FEM and FFT method are presented
and compared with those of the stochastic model. Finally, Sec. 3.4 draws the conclusions of this
work and set the way ahead for future research.

3.2 Material and Methods

3.2.1 Hierarchical description of cortical bone

A four-scale description of cortical bone was proposed in (Sansalone et al., 2010). Below the
organ scale, at the scale of several hundreds micrometers (tissue scale), cortical bone (CB) was
considered as constituted of Haversian pores (HP) embedded in a solid matrix called ultrastruc-
ture (US). At the scale of a few tens micrometers (US scale), US was considered as made up
of collagen (Col) fibers embedded in a mineral foam (MF). Eventually, at the scale of several
tens nanometers (referred to as MF scale), MF was considered as a mixture of mineral (HA for
Hydroxyapatite) and water (W). The model is depicted in Fig. 3.1.
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Figure 3.1: Multi-scale description of cortical bone.

3.2.2 What information on cortical bone from µCT?

Gray levels (GL) in µCT images are related to the linear attenuation coefficient (LAC) of the
X-ray beam passing through an interposed medium. The LAC is the fraction of attenuated
incident photons per unit thickness of a material. In bone, attenuation is basically due to the
mineral whereas the contribution of collagen and water is negligible. Therefore, the intensity of
the LAC is related to the tissue mineral density (TMD) (see Fig. 3.2). An affine relationship
exists between GL in SR-µCT images and TMD of bone, reading:

TMD = T̂MD (GL) = c0 + c1 ×GL , (3.2.1)

where TMD designates the value of the affine function T̂MD (GL) for the value GL, coefficients
c0 and c1 depend on the specific imaging device and have to be calibrated with respect to
phantoms of known composition. In this study, coefficients c0 and c1 are given by Nuzzo et al.
(2002):

c0 = −0.5082

3.319
and c1 =

5.5

255× 3.319
. (3.2.2)

By inspecting a typical SR-µCT image, it is possible to distinguish regions corresponding to
Haversian porosity (HP) and ultrastructure (US). By fixing a threshold q for the GLs of the HP,
the whole range of GLs, GL := [0, 255], can be split into the ranges of GLs referring to HP and
US voxels: GLHP := [0, q) and GLUS := [q, 255], respectively. Then, two pieces of information
are embedded in quantitative µCT images, i.e. the mineralization of the ultrastructure obtained
through Eq. (3.2.1) and the value of the HP (relative number of voxels having a GL given by
gli in GLHP):

HP =

∑
i 1GLHP

(gli)∑
i 1GL(gli)

, (3.2.3)

where 1I(x) represents the characteristic function of the set I. Furthermore, tracing the prob-
ability density function (PDF) of the realizations of the grey levels GL, it is noticeable that the
HP is approximated by the area under the PDF(GL) restricted to the domain GL ≤ q, (i.e.
HP ∼ P(GL ≤ q)).

107



Chapter 3. Estimation of bone-elasticity. A priori influence of the couple TMD-HP by a model based on µCT
Imaging. A multi-techniques validation.

Figure 3.2: Experimental information obtained from SR-µCT images. (a) Typical graylevel
cross section; Haversian porosity (HP) and ultrastructure (US) correspond to black and gray
regions, respectively. (b) Typical RVE, i.e. cubic region with edge length of 50 voxels ∼ 0.5 mm;
GLs are represented using the “jet” color-map of Matlab. (c) GL distribution in the RVE and
threshold q between HP and US. (d) TMD distribution in the US and average value TMD.

It is worth noting that HP and TMD are defined at different scales. On the one side, HP
is defined at the tissue scale and was measured on a RVE-wise basis (see inset (b) in Fig. 3.2
depicting a typical RVE is taken as a cubic region with edge length = 50 voxels ∼ 0.5 mm).
On the other side, TMD is defined at the US scale and was measured on a voxel-wise basis (see
inset (d) in Fig. 3.2, voxel size = 10.13 µm). Moreover, starting from the TMD distributions of
each RVE, tissue-scale average values of TMD, denoted TMD, can be computed. Therefore, the
pair (HP,TMD) collects experimental measures referring at the tissue scale.

3.2.3 Experimental data from SR− µCT imaging

Experimental data are collected using the protocol described in our previous studies (Gagliardi
et al., 2016 (submitted; Sansalone et al., 2016). For sake of completeness, the main steps are
reported here below.

A bone sample, extracted from the inferior femoral neck of a 79-year-old patient undergo-
ing standard hemiarthroplasty, has been imaged using synchrotron radiation micro-computed
tomography (SR − µCT) at the European Synchrotron Radiation Facility (ESRF, Grenoble,
France). Image reconstruction was performed in a volume of interest (VoI) of 660 × 660 × 523
isotropic voxels (size 10.13 µm). The outcome was a 3-D GL mapping (GL range: [0, 255]) of
the linear attenuation coefficient of the monochromatic X-ray beam. Regions corresponding to
Haversian pores (HP) and ultrastructure (US) were identified by fixing a lower threshold q = 131
for US voxels (see Sec. 3.2.2 for more details).

After segmentation of the bone sample with Simpleware ScanIP software (Simpleware 5.0
ScanIP+, 2012) 35 representative volume elements (RVEs) were selected in the cortical part of
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the VoI spanning the sample in the axial and hoop direction. Following Sansalone et al. (2016),
RVEs were taken as cubic regions with edge length of Nvox = 50 voxels, i.e. about 0.5 mm. 3-D
models of the RVEs were extracted from the bone sample at about 1.5 mm from the periosteum
(distance measured with respect to the center of the RVEs) and at different hoop and axial
positions with respect to a cylindrical frame centred at the anatomical axis of the bone sample,
avoiding volume overlapping. The global reference frame on the bone sample, the local reference
frame on a RVE and the location of the RVEs are presented in Fig. 3.3. For the global reference,
the unit vector e3 is aligned with the axis of the femoral neck and the unit vectors e1 and
e2 lie in the plane of the cross section of the sample. For the local reference, the first axis
et is aligned to the tangential direction formed by the circumferential line (see Fig. 3.3), the
second axis er is oppositely aligned to the radial vector of the sample and the third axis ez is
aligned to e3 of the global reference. The origin of the local frame is placed at the center of the
RVE. Coordinates x3 and θ refer to the axial and hoop coordinates of the centers of the RVEs,
respectively. The axial coordinate x3 is the distance of the center of the RVE from the distal
part of the sample (x3 = 0). The hoop coordinate θ is the angle measured counterclockwise with
respect to the inferior axis of the sample (θ = 0). We refer to Gagliardi et al. (2016 (submitted)
for a more detailed picture of these RVEs. The complete dataset, statistically representing the
whole VoI, has been divided in two parts. A calibration subset (Calib dataset, red RVEs in
Fig. 3.3) consisting of 12 RVEs, has been used to obtain input data (statistics of HP and TMD)
for the stochastic and nominal models (see Sec. 3.2.4). The remaining 23 RVEs have been used
for validation purposes (Ctrl dataset, light red RVEs in Fig. 3.3). The complete dataset has
been used to build microstructural µFE and µFFT models.

Figure 3.3: Global and local reference frames on the bone sample and on a typical RVE, respec-
tively, and localization of the RVEs (red and light red cubes refer to Calib and Ctrl datasets,
respectively). See text for more details.
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3.2.4 Statistical information on HP and TMD from SR− µCT images

Information on the composition of the cortical tissue was obtained by analyzing the Calib dataset
of RVEs. This dataset constitutes a systematic sampling of the overall population of cortical
RVEs and was used to estimate the statistics (namely, mean value and dispersion) of HP and
TMD in the cortical tissue. A database consisting of RVE-wise pairs (HP,TMD) was constituted.
Within each RVE, the HP and the voxel-wise distribution of TMD were computed by means of
Eqs. (3.2.1)-(3.2.3). Then, the voxel-wise distribution of TMD was averaged to compute TMD.

Statistics (namely, mean value, standard deviation, and dispersion) of the database of
(HP,TMD) RVE-wise values were computed and assumed to be representative of the tissue-
scale composition of the whole cortical tissue. In the framework of a parametric probabilistic
approach, the uncertainty on a measured variable real-valued random variable X. Hereafter,
capital letters will refer to random variables. Let X be either of HP or TMD, and let µexp

X , σexp
X

and δexp
X be the set of known statistics (the mean value, standard deviation, and dispersion of

X, respectively). Their values were estimated through the respective stochastic estimators µ̂NX ,

σ̂NX and δ̂NX , reading:

µ̂NX = 1
N

∑N
k=1 xk ,

σ̂NX =
[

1
N−1

∑N
k=1

(
xk − µ̂NX

)2] 1
2
,

δ̂NX =
σ̂NX
µ̂NX ,

(3.2.4)

where xi is the i-th experimental measure of X and N is the number of measures. As long as
measures xi are statistically representative of the whole cortical tissue, descriptive statistics in
Eq. (3.2.4) provide an accurate estimate of the overall experimental statistics:

µexp
X ∼ µ̂NX , σexp

X ∼ σ̂NX , and δexp
X ∼ δ̂NX . (3.2.5)

3.2.5 Volume fractions of essential constituents

The measures of HP and TMD have been used to compute the (average) volume fractions (VFs)
of each phase at each level of the hierarchical description of bone introduced in Sec. 3.2.1. The
procedure was already described in Gagliardi et al. (2016 (submitted) and is summarized here
below for sake of completeness.

CB-scale. Within each RVE of cortical bone (CB), the VF of HP (denoted by φCB
HP) was com-

puted as the relative number of voxels with GL ∈ GLHP (see Eq. (3.2.3)). Then, the VF
of the ultrastructure (US) turns out to be: φCB

US = 1− φCB
HP.

US-scale. VFs of hydroxyapatite (HA), collagen (Col), and water (W) in the ultrastructure
(US) φUS

HA, φUS
Col, and φUS

W , respectively–were computed from TMD by solving the nonlinear
system (Broz et al., 1995): 

φUS
HA = TMD

ρHA
,

φUS
HA + φUS

Col + φUS
W = 1 ,

φUS
Col

φUS
W

= α+ β × exp (γ × φUS
HA) ,

(3.2.6)
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where α = 0.36, β = 0.084 and γ = 6.7 (see Broz et al. (1995)). First, φUS
HA was di-

rectly computed by dividing TMD by the mass density of the mineral (ρHA = 3 g/cm3),
i.e. (3.2.6)/1. Then, φUS

Col and φUS
W are computed by supplementing the volume balance

equation (see Eq. (3.2.6)/2) with an empirical relation (see Eq. (3.2.6)/3) proposed by
Broz et al. (1995).

MF-scale. VFs of mineral and water in the mineral foam (MF) have been evaluated from their
counterparts at the US scale by simply preserving their relative amount after downscaling:

φMF
HA =

φUS
HA

(φUS
HA+φUS

W )
,

φMF
W =

φUS
W

(φUS
HA+φUS

W )
.

(3.2.7)

Bone composition at the US and MF scales is fully described by φUS
Col and φMF

HA , respectively.
These VFs are both computed from TMD by solving Eq. (3.2.6) and Eq. (3.2.7) which can be
restated implicitly as:

φUS
Col = φ̂US

Col(TMD) , φMF
HA = φ̂MF

HA(TMD) . (3.2.8)

Figure 3.4: Sketch of the procedure for evaluating the HP, TMD, and VFs in a RVE.

3.2.6 Overview on the homogenization

Homogenization is concerned with the problem of computing the effective mechanical properties
of an heterogeneous medium. Restricting our attention to linearly elastic materials occupying a
representative volume element (RVE), the problem can be stated as follows.

Let Ω be the region of the three-dimensional space occupied by the RVE, c (x) (x ∈ Ω) the
4th-order elastic tensor field describing the point-wise elastic properties of the heterogeneous
material. Thus, the point-wise constitutive relation reads:

S (x) := c (x) : E (x) , (3.2.9)

where the symbol “:” between two tensors denotes a double contraction of adjacent indexes
of any couple of tensors, S (x) is the 2nd-order stress tensor field and E (x) is the 2nd-order
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infinitesimal strain tensor field, that is the symmetric part of the gradient of the displacement
field u(x):

E (x) := Sym(∇u(x)) ≡ ∇u(x) + (∇u(x))T

2
. (3.2.10)

where ∇ is the gradient operator, (?)T is the transpose operator and Sym(?) is the symmetry
operator as defined by the relation (3.2.10).

Moreover, let S∗ and E∗ be the spatial averages of S (x) and E (x), respectively, that is:

S∗ := 〈S (x)〉Ω , E∗ := 〈E (x)〉Ω , 〈∗〉Ω :=
1

|Ω|

∫
Ω

[∗](x) dx . (3.2.11)

Then, the homogenization problem consists in looking for a 4th-order elastic tensor c∗ such
that:

S∗ = c∗ : E∗, for all admissible pair (S∗,E∗) (3.2.12)

In the above statement, admissibility of average stress and strain refers to the underlying
stress and strain fields which are required to be the solution of the boundary value problem
(BVP) at the RVE scale: {

∇ · S (x) = 0, ∀x ∈ Ω ,

f [u(x), t(x)] = 0 ∀x ∈ ∂Ω ,
(3.2.13)

where ∇· is the divergence operator, t is the boundary traction, ∂Ω is the boundary of the
domain Ω and f is an operator which allows to specify the boundary conditions. The equation
in the system (3.2.13) is known as the equilibrium equation of elasticity at which is associated
with boundary conditions.

The expression of the boundary conditions in Eq. (3.2.13) is intentionally left implicit because
it depends on the specific BVP (e.g. prescribed displacement, traction, periodicity ...) to be
solved in order to compute c∗.

Hereinafter, Kelvin representation (denoted by brackets) will be widely used for representing
stress, strain and elasticity tensors (see appendix A). Thus, 2nd-order stress and strain tensors
will be represented as 6-dimensional vectors and elasticity tensors as 6× 6 symmetric matrices.
For instance, the Kelvin form of the homogenized elastic law in Eq. (3.2.12) reads:

S∗11
...√

2S∗12

 =


C∗1111 · · ·

√
2C∗1112

...
. . .

...√
2C∗1112 · · · 2C∗1212

 ·


E∗11
...√

2E∗12

 . (3.2.14)

It is worth noting that Eq. (3.2.14) shows clearly that c∗ is fully determined from 6 linearly
independent pairs ([S∗] , [E∗]).

Continuum micromechanics

Continuum micromechanics provides estimates of the homogenized elasticity tensor c∗ of het-
erogeneous materials with microstructure of matrix-inclusion type. We recall here the main
ingredients of continuum micromechanics and refer to Suquet (1997); Nemat-Nasser and Hori

112



3.2. Material and Methods

(1999); Zaoui (2002) for further details. Continuum micromechanics is based on the solution
of the matrix-inclusion problem provided by Eshelby in the fifties (Eshelby, 1957). Eshelby’s
solution describes the elastic fields (strain, stress) generated by one ellipsoidal inclusion in an
infinite isotropic elastic matrix under homogeneous strain/stress boundary conditions at infinity.
Eshelby’s solution was further extended to inclusions of different shapes, including cylinders and
penny-shaped cracks (Laws, 1985), and to anisotropic matrices (Laws, 1977). General formulæ
for dealing with ellipsoidal inclusions in an anisotropic solid can be found in Suvorov and Dvorak
(2002).

Micromechanical homogenization–i.e. homogenization theory based on continuum micromechanics–
can estimate the homogenized elastic tensor of a RVE made up of several phases with different
distributions and shapes, whether or not organized in a matrix/inclusion-like microstructure.
The homogenized elastic tensor turns out to be a weighted sum over the phases:

c∗ =
∑
r

φr cr : ar , (3.2.15)

where φr is the volume fraction of phase r, cr and ar are the 4th-order elasticity and localization
tensors of phase r, respectively. Note that the following condition is required

∑
r=0,(Np−1) φr = 1

where (Np − 1) is the total number of phases.

The localization tensor resumes the relation between the microscopic strain field E (x) and
the macroscopic strain E∗, i.e. E (x) = ar(x) : E∗.

It can be shown that the expression of ar reads (Hellmich et al., 2004):

ar =
(
i + p0

r : (cr − c0)
)−1

:

 ∑
s=0,Np−1

φs
(
i + p0

s : (cs − c0)
)−1

−1

, (3.2.16)

where c0 represents the elasticity tensor of the matrix phase embedding all other phases; i is the
4th order symmetric identity tensor (with iijhk = 1/2 (δihδjk + δikδjh), δij being the components
of the Kronecker operator); p0

r is the so-called Hill tensor of the phase r embedded in the effective
matrix. The expression of this latter depends on the shape of the phase r and on the elastic
symmetry of the matrix. Explicit expressions of p0

r have been developed in some special cases
(e.g. cylindrical or spherical inclusions in transversely isotropic matrix) but, in general, the Hill
tensor has to be computed numerically (Suvorov and Dvorak, 2002).

The choice of the value of c0 leads to different estimates of c∗. Among others, two estimates
are relevant to the context of this study. The Mori-Tanaka (MT) estimate (Nemat-Nasser and
Hori, 1999) is well suited when the material microstructure is made up of uniformly dispersed
inclusions in a homogeneous matrix. In this case, the effective matrix is an actual, well identified
phase and therefore c0 = cmatrix. Then, the MT estimate of c∗ can be readily computed from
Eq. (3.2.15). The Self-Consistent (SC) estimate (Nemat-Nasser and Hori, 1999) is well suited
when no actual matrix can be identified but the microstructure is rather made of interpenetrating
(continuous or discontinuous) phases. In this case, the effective matrix is assumed to be the
homogenized material itself and therefore c0 = c∗. It follows that the SC estimate of c∗ shall
be computed iteratively since c∗ appears on both sides of Eq. (3.2.15).
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Looking at the structure of bone at each scale considered in this study, the SC scheme can
be used to estimate the effective elastic tensor of the MF, then the MT scheme to estimate those
of the US and of the CB. The expression of the SC estimate of c∗ for a two-phase material such
as the MF reads:

c∗ =
[
φ0c0 :

(
i + pSC0 : (c0 − c∗)

)−1
+ φ1c1 :

(
i + pSC1 : (c1 − c∗)

)−1
]

:

:
[
φ0

(
i + pSC0 : (c0 − c∗)

)−1
+ φ1

(
i + pSC1 : (c1 − c∗)

)−1
]−1

,
(3.2.17)

where the subscripts 0 and 1 refer to the matrix and inclusion phases, respectively. Moreover,
the expression of the MT estimate of c∗ for a two-phase material such as the US and the CB
reads:

c∗ =
[
φ0 c0 : i + φ1 c1 :

(
i + pMT

1 : (c1 − c0)
)−1
]

:

:
[(
φ0 c0 : i + φ1 c1 :

(
i + pMT

1 : (c1 − c0)
)−1
)]−1

.
(3.2.18)

For the sake of synthesis, Eqs. (3.2.17)-(3.2.18) have been rewritten more compactly as:

gsch (c∗; {φr} , {cr}) = 0, r = 0, . . . , Np − 1 , (3.2.19)

where gsch refers to the application of the scheme sch (i.e. SC or MT) to the homogenized
elastic tensor c∗, from φr and cr, the volume fraction and elastic tensor respectively, of the
phase r. Note that the application gsch also depends upon the Hill tensor which is computed
numerically (Suvorov and Dvorak, 2002).

Homogenization by Finite Element Method (FEM)

The finite element method (FEM) consists in the solution of a suitable weak formulation of
the problem defined from Eq. (3.2.13) for a specific set of boundary conditions (prescribed
displacement, traction, periodicity ...). More details on this standard technique can be found in
Zohdi and Wriggers (2001).

In this work, the boundary condition used in the problem (see Eq. (3.2.13)) is given by:

u = E∗x ∀x ∈ ∂Ω , (3.2.20)

where E∗ is a given strain tensor independent of x.
A weak formulation is obtained from the equilibrium equations of elasticity and this boundary

condition. From this formulation, the FEM is used to resolve this problem which leads to the
solution in displacement field u(x). This field displacement allows to determine the strain field
E (x) from Eq. (3.2.10) and the stress field S (x) from Eq. (3.2.9). The effective elastic properties
of an heterogeneous RVE is obtained by a judicious choice of six sets of uniform displacements
(KUBC, for kinematic uniform BC) boundary conditions following a well-documented procedure
(see e.g. Zohdi and Wriggers (2001)) that amounts to simulating longitudinal traction tests in
every direction. These computations yield a linear system of 36 equations, whose solutions form
the components of the elasticity tensor c∗ which defines the effective elastic properties of a
heterogeneous RVE.
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The boundary value problem in each RVE was solved with the commercial finite element
code (Comsol Multiphysics (COMSOL Multiphysics, 2015)). The equations of linearized elas-
ticity were discretized on an unstructured mesh of tetrahedral elements with characteristic size
h. Comsol Multiphysics does not assign stiffness values to each element individually but uses
a function which returns the local elastic coefficients at arbitrary coordinates (x1, x2, x3). The
shape functions used in the discretized equations of linearized elasticity are Lagrange interpola-
tion polynomials of second degree.

Homogenization by Fast Fourier Transform (FFT) method

One of the main advantages of Fast Fourier Transform-based methods (Moulinec and Suquet,
1998) presented below is that they directly use numerical images of the microstructure, and all
fields of interest (stress, strain, ...) are computed at every pixel of the image. Another important
feature is that the required cpu time is roughly proportional to the size of the image (in pixels
or voxels).

The FFT method is applied to solve the problem (3.2.13). To this aim, first of all a particular
version of the equilibrium equation has to be defined. In general, the FFT method can be
performed by means of the assignation of periodic boundary conditions to the strain field or
to antiperiodic condition to the stress field. For simplicity, we describe the case of periodic
conditions prescribed on the strain field.

As already mentioned, in order to compute the effective elastic tensor c∗ of a heterogeneous
RVE, 6 problems have to be solved corresponding to 6 linearly independent boundary conditions.

The problem consists in finding the displacement field u(x) such that:
∇ · S (x) = 0, ∀x ∈ Ω

S (x) = c (x) : E (x) , ∀x ∈ Ω

u(x)−E∗x periodic for all x ∈ ∂Ω

(3.2.21)

By addition and subtraction of a homogeneous test elastic tensor c0, the problem can be
turned in:

S (x) = c0 : E (x) + P (x) with P (x) := (c (x)− c0) : E (x) . (3.2.22)

The tensor P (x) is the so-called polarization tensor field. The equation (3.2.22) represents the
stress field in a prestressed homogeneous medium. If P (x) is supposed to be known, the solution
of the new problem defined by:

∇ · (c0 : E (x)) = −∇ · (P (x)) , (3.2.23)

is given by the strain field defined by:

E (x) = E∗ −
(
Γ0 (x) ∗P (x)

)
, or E (x) +

{
Γ0 (x) ∗ [c (x)− c0] : E (x)

}
= E∗ . (3.2.24)

where Γ0 is the Green operator for strains associated to the material characterized by the elastic
tensor c0. This equation is known as Lippman-Schwinger equation. Moreover, in this equation,
the symbol “∗” designates the convolution operator which is defined by:

(g1 ∗ g2)(x) :=

∫
Ω
g1(x− y)g2(y)dy =

∫
Ω
g2(x− y)g1(y)dy (3.2.25)
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where g1 and g2 are 2 functions. Equation (3.2.24) can be solved for E (x) by transforming the
problem in the Fourier space:{

Ê(ξ) = −Γ̂0(ξ) : P̂(ξ) ∀ξ 6= 0 ,

Ê(0) = E∗ ,
(3.2.26)

where the Fourier transform is denoted by a hat superimposed on the quantity.
Equation (3.2.26) can be stated for any test material –i.e. irrespective of the symmetry class

of c0. However, assuming c0 to be isotropic, Γ̂0 can be represented as:

Γ̂0
khij(ξ) =

1

4µ0|ξ|2
(δkiξhξj + δhiξkξj + δkjξhξi + δhjξkξi)−

λ0 + µ0

µ0(λ0 + 2µ0)

ξiξjξkξh
|ξ|4

, (3.2.27)

where λ0 and µ0 are the Lamé’s coefficients characterizing the elastic tensor c0 of the homoge-
neous test material.

Equation (3.2.24) is an implicit expression of E (x) to be solved iteratively. A iterative
scheme allows to resolve the problem:{

[E (x)](0) = E∗ ,

[E (x)](n+1) = E∗ −
{

Γ0 (x) ∗ [P (x)](n)
}
, [P (x)](n) = [c (x)− c0] : [E (x)](n) .

(3.2.28)

At each iteration, four steps are performed:

1. the polarization tensor field [P (x)](n) is evaluated in the Fourier space as
[
P̂(ξ)

](n)
;

2. the Fourier problem, defined by:
[
Ê(ξ)

](n+1)
= −Γ̂

0
(ξ) :

[
P̂(ξ)

](n)[
Ê(0)

](n+1)
= E∗

(3.2.29)

is solved for
[
Ê(ξ)

](n+1)
;

3. then, [E(x)](n+1) is computed as the inverse Fourier transform of
[
Ê(ξ)

](n+1)
.

4. eventually, [S (x)](n+1) is computed by means of the elastic law [S (x)](n+1) = c (x) :

[E (x)](n+1)

The above procedure is iterated as long as the current estimate of the stress field does not satisfy
the bulk balance and stops when the error, defined as:

ε(n) =

1√
|Ω|
‖ ∇ · ({S (x)}(n)) ‖L2

‖〈{S (x)}(n)〉Ω‖F
, (3.2.30)
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becomes smaller than a fixed threshold. I is worthy to observe that, by means of the Parsival
identity applied to the stress tensor field S (x)(n), the value of the error ε(n) can be estimated
already at the previous step with respect of his Fourier transform Ŝ(n), as :

ε(n) ≡ ‖ ξ × Ŝ(ξ)(n) ‖L2

‖Ŝ(0)(n)‖F
. (3.2.31)

3.2.7 Elastic properties of essential constituents

The models presented in this work are described as mixtures of three essential constituents which
are mineral (hydroxyapatite), water and collagen. Elastic properties of these three constituents
are supposed to be known and their values were adapted from Hellmich et al. (2004) and reported
in Tab. 3.1. Specifically, the mineral and the water have been assumed as isotropic materials
(with bulk modulus K, shear modulus G, Young’s modulus Y and Poisson’s ratio ν). Water has
been assumed as a compressible fluid with zero shear modulus. (In the FEM models of cortical
bone, in order to avoid numerical problems, the shear modulus of water filling the Haversian
pores was assumed much smaller than its bulk modulus.) Collagen has been assumed as a
transversely isotropic material with the axis of symmetry aligned with the pore direction (see
the e3-direction in Fig. 3.3).

Table 3.1: Elastic properties of essential constituents of bone.

water (MF) K = 2.3 [GPa] G = 0 [Pa]

(HP / µ-mech.& FFT ) K = 2.3 [GPa] G = 0 [Pa]

(HP / FEM ) K = 2.3 [GPa] G = 1 [MPa]

HA Y = 120 [GPa] ν = 0.27 [−]

Collagen c1111 = 11.7 [GPa]

c3333 = 17.9 [GPa]

c1122 = 5.1 [GPa]

c1133 = 7.1 [GPa]

c1313 = 3.3 [GPa]

3.2.8 Stochastic micromechanical (SµM) model of cortical bone

The variability of the elastic properties of the cortical bone at the tissue scale can be described
by introducing a suitable stochastic model of the input data

(
TMD,HP

)
in the micromechanical

model described in Sec. 3.2.6. Hereinafter, this will be referred to as a stochastic micromechanical
(SµM) model of cortical bone. A robust model of CB should reproduce at most the information
officially declared on a typical input data.

Stochastic models of TMD and HP

Scattering of the experimental measures of TMD and HP in the region of interest are represented
in Fig. 3.5. Analysis of the Calib dataset (solid circles in Fig. 3.5) shows a low correlation between

117



Chapter 3. Estimation of bone-elasticity. A priori influence of the couple TMD-HP by a model based on µCT
Imaging. A multi-techniques validation.

TMD and HP with a correlation coefficient r(TMD,HP) = 0.0915.

Figure 3.5: Scatter plot of the pairs of measures
(
TMD,HP

)
for each of RVEi related to the

Calib (solid circles) and Ctrl (empty circles) datasets.

Uncertainty on the actual values of TMD and HP was accounted for by modeling them as
random variables. Let X := (X1, X2) be the random vector modeling the pair

(
TMD,HP

)
.

In view of the very small correlation between TMD and HP, X1 and X2 can be modeled as
statistically independent random variables. Then, the probability density function (PDF) of X,
denoted by pX(x), reads:

pX(x) ≡ pX1(x1)× pX2(x2), (3.2.32)

where pX1(x1) and pX2(x2) are PDFs of X1 and X2 respectively.
The expression of each pXi(xi) (with i = 1, 2) was obtained by means of the Maximum-

Entropy (denoted by MaxEnt) principle. The MaxEnt principle (Jaynes, 1957a,b) allows build-
ing the PDF pX(x) of a random variable X by maximizing the measure of uncertainty given by
the Shannon’s entropy (Shannon, 1948) under a given set of constraints. These latter can be
stated in terms of preservation of some statistics of X which are assumed to represent the only
available information. The general form of the Shannon’s entropy for the random variable X
reads:

S(pX) =

∫
SX

− ln(pX(x)) pX(x) dx (3.2.33)

where ln designates the natural logarithm function and SX is the support of the function pX(x).
The constraints are expressed by prescribing the expected values of a set of functions fi of the
random variable X, i.e.:

E(fi(X)) = Fi, i = 1, . . . , n, (3.2.34)

where

E(f(X)) =

∫
R
f(x) · pX(x) dx , (3.2.35)

where R is the real axis and Fi is prescribed condition.
It is worth noting that Shannon’s entropy of a random variable with value in a compact sup-

port, attains its maximum value for the uniform variable on that support. At the opposite side,
for constant random variables, whose PDF is the Dirac’s distribution, the Shannon’s entropy
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attains its minimum value (i.e.−∞). Since a deterministic variable can be seen as a constant
random variable, this provides the interesting interpretation of the nominal model described in
Sec. 3.2.9.

In the context of this work, the available information on X was assumed to be given in
terms of its support SX , mean value µX and standard deviation σX–or, equivalently, dispersion
δX = σX/µX . Thus, the constraints defined in Eq. (3.2.34), are specified by taking:

f0(x) = 1SX (x) , F0 = 1 ;

f1(x) = x , F1 = µexp
X ;

f2(x) = x2 , F2 = (µexp
X )2 ×

(
1 + (δexp

X )2
)
.

(3.2.36)

where 1SX (x) is the characteristic function of SX and µexp
X and δexp

X are experimental statistics.
The constraint f0 is the normalization condition on the PDF of X. Constraints f1 and f2 fix
the values of the two first moments of X through the available experimental information. This
is equivalent to enforce the mean value and dispersion of X to be equal to their corresponding
experimental values, i.e. µX = µexp

X and δX = δexp
X . In particular, the support of X1 has been

set to the image of the range of GLs associated to the US (GLUS) through Eq. (3.2.1), i.e.
SX1 = [0.7; 1.5]; and the support of X2 has been set to SX2 = [0, 1].

Since the Shannon’s entropy plays the role of a Lagrangian, the problem of maximizing the
functional in Eq. (3.2.33) under the system of constraints in Eqs. (3.2.36) is equivalent to find the
optimal vector of Lagrange multipliers (ML) λ∗ := [λ∗0, λ

∗
1, λ
∗
2] that minimizes the corresponding

Hamiltonian H, that is:
λ∗ = arg min

λ
H (λ) , (3.2.37)

where the operator arg min designates argument of the minimum and, the Hamiltonian H (λ) is
defined by:

H (λ) := λ0+λ1×µ̂(X)+λ2×
(

1 + δ̂2(X)
)
µ̂2(X)+

∫
SX

exp
{
−
(
λ0 + λ1 + λ2x

2
)}
dx . (3.2.38)

The solution of the above constrained maximization problem leads to the PDF of X, reading:

pλ
∗

X (x) := 1SX (x) exp
{
−
(
λ∗0 + λ∗1x+ λ∗2x

2
)}
. (3.2.39)

Note that the PDF coming from this specific problem corresponds to the truncation of the
PDF of the Gaussian random variable G (µg, σg) (with σg = 1/(2λ2), µg = −λ1 × σg) on the
support SX .

Numerical solution of the stochastic models of TMD and HP

The problem (3.2.37) has been solved in two steps.

Step 1/ Definition of the PDF of TMD and HP.
Firstly, the PDFs of TMD and HP have been computed. This step implies the research

of the optimal vector of Lagrange’s multipliers λ∗ := [λ∗0, λ
∗
1, λ
∗
2] minimizing the Hamiltonian

functional H given by Eq. (3.2.38). This operation has been accomplished using the built-in
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optimization functions of MATLAB software (MATLAB, 2010). The minimum of unconstrained
multivariable function is obtained by using a derivative-free method.

The convergence of any optimization problem depends on the choice of the first guess λ(0) =

[λ
(0)
0 − 1, λ

(0)
1 , λ

(0)
2 ]. Setting a “good” initial guess should be performed using some heuristic. It

is possible to show that for a PDF like that defined by Eq. (3.2.39), the proximity of the mode
to the mean value of X and the integrability conditions lead to the following choice for the first
guess λ(0): 

λ
(0)
1 := a× λ(0)

2 , where a = −2µX ,

λ
(0)
2 > 0, λ

(0)
1 < 0,

λ
(0)
0 = ln

(∫
SX

exp−(λ
(0)
1 x+ λ

(0)
2 x2) dx

)
.

(3.2.40)

Moreover, increasing the value of λ
(0)
2 induces a reduction of the dispersion δX .

Step 2/ Collection of statistically independent realizations of TMD and HP
A set of statistically independent realizations of TMD and HP were computed using the

pseudo-inverse method (Devroye, 1986). Let X be any of X1 or X2 and F λ
∗

X (x) the repartition
function of X i.e.:

F λ
∗

X (x) =

∫ x

inf SX

pλ
∗
X (y) dy . (3.2.41)

Firstly, the pseudo-inverse
(
F λ
∗

X

)−1
of the repartition function was numerically computed. Then,

a large number N of realizations of a uniform random variable U with values in [0, 1] were
collected. Eventually, for each realization U(ai) (with i = 1, . . . , N), a realization of X was
computed as:

X(ai) =
(
F λ
∗

X

)−1
(U(ai)) . (3.2.42)

Stochastic micromechanical model of cortical bone elasticity

Stochastic description of the uncertainty of cortical bone (CB) composition can be obtained
by means of the realizations X1(ai) and X2(aj) (with i, j = 1, . . . , N) of the random variables
modeling the uncertain TMD and HP, respectively. The use of two different indexes underlines
the statistical independence between the realizations of X1 and X2. Starting from these input
data, the stochastic model of the elastic tensor of CB has been constructed in two steps.

In a first step, realizations of the random elastic tensors of the mineral foam (MF) and ultra-
structure (US) were computed using the procedure proposed in Gagliardi et al. (2016 (submit-
ted). In short, the realizations X1(ai) (random TMD) were used to compute the corresponding
values of random VFs at the US and MF scales through Eqs. (3.2.6)-(3.2.7) (hereinafter, capital
letters will denote random VFs):{

ΦUS
HA(ai) = φ̂US

HA(X1(ai)), ΦUS
Col(ai) = φ̂US

Col(X1(ai)), ΦUS
W (ai) = φ̂US

W (X1(ai)),

ΦMF
HA(ai) = φ̂MF

HA(X1(ai)), ΦMF
W (ai) = φ̂MF

W (X1(ai)).
(3.2.43)

In turn, these values of random VFs were used to compute the realizations of the random elastic
tensors of the MF and US through Eq. (3.2.17) and Eq. (3.2.18), respectively. Using the synthetic
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form of Eq. (3.2.19), these equations read:

gSC
I

(
CMF(ai); ΦMF

HA(ai), {cHA, cW}
)

= 0 leads to CMF(ai) ,

gMT
II

(
CUS(ai); ΦUS

Col(ai), {cHA,CMF(ai)}
)

= 0 leads to CUS(ai) .
(3.2.44)

In a second step, realizations of the random elastic tensor of CB were computed by using the
realizations X2(aj) (random HP) and CUS(ai) as input data of Eq. (3.2.18). Using the synthetic
form of Eq. (3.2.19), these equations read:

gMT
III (CCB(ai, aj);X2(aj), {cW,CUS(ai)}) = 0 leads to CCB(ai, aj) . (3.2.45)

We observe here that all the realizations of the stochastic tensors stay in the same symmetry
group of their deterministic counterparts; CMF(ai) is isotropic whereas CUS(ai) and CCB(ai, aj)
are transversely isotropic. Moreover, thanks to the closure property of the elastic symmetry
groups, also the mean values of these stochastic tensors stay in the same symmetry classes (see
the appendix in (Gagliardi et al., 2016 (submitted)).

Statistical analysis of random elastic coefficients

An overall picture of the elasticity of bone at all scales (mineral foam, ultrastructure and cortical
tissue) can be given in terms of statistics of individual moduli or whole tensors. On the one side,
statistics (mean value, dispersion and confidence intervals) of elastic moduli were estimated by
means of the stochastic estimators in Eq. (3.2.4). On the other side, mean value and scalar
dispersion of a random tensor C (named µ[C] and δ[C], respectively, by making use of Kelvin
representation for µ[C]) were estimated through the statistical estimators (Gagliardi et al., 2016
(submitted):

µN[C] = 1
N

∑N
k=1 [C(ak)] ,

δN[C] =

√
1
N

∑N
k=1 ‖[C(ak)]−µN

[C]
‖2F

‖µN
[C]
‖2F

,
(3.2.46)

where ‖ · ‖F is the Frobenius’ norm of a square matrix. The scalar dispersion δ[C] represents a
global measure of the fluctuations of [C] around its mean value µ[C].

3.2.9 Nominal micromechanical (NµM) model of cortical bone

A nominal micromechanical (NµM) model of cortical bone was developed corresponding to the
mean model of the stochastic micromechanical SµM model. First, RVE-wise values of TMD and
HP were averaged on the Calib dataset (µ(TMD) = µexp

TMD
, µ(HP) = µexp

HP ) and used to obtain
average values of the VFs of bone constituents by means of the relations introduced in Sec. 3.2.5:

µexp
HP → φCB

HP = φ̂CB
HP

(
µexp

HP

)
,

µexp

TMD
→

 φUS
HA = φ̂US

HA

(
µexp

TMD

)
, φUS

Col = φ̂US
Col

(
µexp

TMD

)
, φUS

W = φ̂US
W

(
µexp

TMD

)
,

φMF
HA = φ̂MF

HA

(
µexp

TMD

)
, φMF

W = φ̂MF
W

(
µexp

TMD

)
.

(3.2.47)
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Then, these average VFs were used to compute the nominal elastic tensors of MF, US and CB
by means of Eq. (3.2.19), reading:

gSC
I

(
cMF;φMF

HA , {cHA, cW}
)

= 0 leads to cMF ,

gMT
II

(
cUS;φUS

Col, {cHA, cMF}
)

= 0 leads to cUS ,

gMT
III

(
cCB;φCB

HP, {cW, cUS}
)

= 0 leads to cCB .

(3.2.48)

3.2.10 Micro-finite element (µFE) model of cortical bone

Finite element (FE, see Sec. 3.2.6) models of bone microstructure, referred to as µFE models,
were used to compute the effective elastic properties of all the RVEs (Calib and Ctrl datasets)
represented in Fig 3.3. These models accounted for the actual morphology of the RVEs and a
simplified representation of their heterogeneous elastic properties.

The numerical procedure, shortly reported in (Sansalone et al., 2016), is outlined here below.
Starting from a structured isotropic regular mesh (503 cubic voxels points) of the RVE, a coarser
tetrahedral mesh was generated using Simpleware software (Simpleware 5.0 ScanIP+, 2012)
for reducing the computational cost. The region corresponding to the US (voxels with GL
in GLUS) was divided in nph subregions by dividing the whole set of GL-range GLUS in nph

equal subsets GL(n)
US , with n = 1, . . . , nph. Grey levels in each subregion were further replaced

by their mean value. The region corresponding to the HP and the subregions corresponding
to the US were meshed by preserving mesh coherence between adjacent regions. The mesh
and the GLs associated to each subregion were exported to COMSOL Multiphysics software
(COMSOL Multiphysics, 2015). COMSOL Multiphysics was used with 2nd order Lagrangian
finite elements based on the geometric mesh exported by Simpleware. Elastic properties of
the FE were assigned based on their GLs. Material properties of finite elements belonging to
the HP region were given by the elastic properties of water resumed in Tab. 3.1. Continuum
micromechanics was used to compute the elastic properties of the FEs belonging to US regions.
Specifically, the GL of each US region was converted in TMD (see Eq. (3.2.1)) and then in VFs
of bone constituents at the MF and US scales (Eqs. (3.2.6)-(3.2.7)) which, in turn, were used to
compute the elastic tensors of the MF and US (Eqs. (3.2.48), steps I and II).

The number nph of US subregions was defined by performing a preliminary parametric study
and looking for stabilization of FE results with respect to nph. Results obtained for 8 and 16
subregions being quite similar, the value nph = 8 was used hereinafter.

3.2.11 Micro-Fast Fourier Transform (µFFT) model of cortical bone

Models of bone microstructure based on the Fast Fourier Transform (FFT, see Sec. 3.2.6),
referred to as µFFT models, were used to compute the effective elastic properties of all the
RVEs (Calib and Ctrl datasets) represented in Fig 3.3. These models accounted for the actual
morphology and heterogeneous distribution of elastic properties of the RVEs.

Calculations were performed by using the CraFT software (Composite response and Fourier
Transforms) (Moulinec and Suquet, 1998). Each RVE was represented as a vector collecting the
GLs of all the N = N1 × N2 × N3 = 503 = 125000 voxels of the RVE. A threshold q = 131
was used to separate the voxels belonging to the US from those belonging to the HP. Elastic
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properties of water (see Tab. 3.1) were given to the voxels belonging to the HP. The material
properties associated with the voxels belonging to the US were computed applying the fist two
step of the continuum micromechanics model to those volume fractions corresponding to the
specific grey level. Specifically, the GL of each voxel was converted in TMD (see Eq. (3.2.1))
and then in VFs of bone constituents at the MF and US scales (see Eqs. (3.2.6)-(3.2.7)) which,
in turn, were used to compute the elastic tensors of the MF and US (see Eqs. (3.2.48), steps I
and II).

The determination of the effective macroscopic elastic properties of any RVE is accomplished
if the 36 components cij of any representation of the elastic tensor c∗ are defined. We have
estimated c∗ column by column evaluating 6 stress vectors S∗ results corresponding to 6 linearly
independent strain assignations E∗ according to the algorithm described in sect. 3.2.6. The
calculation have been run until the error from equilibrium condition (see Eq. (3.2.30)) reduced
to < 10−4.

The six strain tests E∗ are expressed in the Kelvin representation:

[E∗] = [E∗]1, [E
∗]2, [E

∗]3, [E
∗]4, [E

∗]5, [E
∗]6 =



1

0

0

0

0

0
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0

0
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0
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0
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0

1


,

(3.2.49)
where [E∗]i for i = 1, ..., 6 designates the test given homogeneous strain.

3.3 Results and discussion

The presentation of the results is organized as follows: first, the numerical set up of the stochastic
models of TMD and HP is described; second, results of the stochastic micromechanical (SµM)
model of cortical bone are shown and compared with those of the nominal micromechanical
(NµM) model; then, the results of the microstructural µFE and µFFT models are presented;
eventually, the SµM model is validated against the µFE and µFFT models and its accuracy
assessed.

3.3.1 Numerical set up of the stochastic models of TMD and HP.

Experimental statistics of TMD and HP (estimated through Eqs. (3.2.4)-(3.2.5)) are reported
in Tab. 3.2. Data refer to the Calib dataset. The average value of HP is 8.4%–a normal result in
healthy subjects whose typical HP is in the range [5%−10%]. Since the mineralization can vary
significantly from one anatomical site to another (we have observed values of TMD of about
1.2 g/cm3 in µCT images of human fibula, data not shown), the value of average mineralization
of about 1 g/cm3 is to be considered site- and patient-specific. It is worth noting that the
dispersion of TMD is very low (< 0.05), while that of HP is quite high (> 0.5).
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Table 3.2: Experimental statistics of the Calib dataset.

HP [−] TMD [g/cm3]

µexp δexp µexp δexp

0.084 0.547 0.999 0.028

Data in Tab. 3.2 have been considered as the available information about TMD and HP and
used to obtain the PDFs of the associated random variables. The optimal Lagrangian multipliers
defined in the PDFs of Eq. (3.2.39) are obtained through the minimization problem given by
Eq. (3.2.37):

λ∗
TMD

= [580.86, −1167.89, 584.42],

λ∗HP = [−1.23, −22.45, 153.22].
(3.3.1)

Convergence of the statistical estimators of the mean value and dispersion of the stochastic
models of TMD and HP towards the experimental values has been tested looking at the absolute
and relative errors defined by:

∆N (·)X =

[
(̂·)

N

X − (·)expX

]
, ∆N

rel (·)X =
∆N (·)X

(·)expX

, (3.3.2)

where (·)X is a statistic of X. Convergence plots of the relative errors of the mean values and
of the absolute errors of the dispersions are shown in Fig. 3.6. Convergence is assumed to be
reached after N = 105 realizations when all the errors are smaller than 10−3. This result was
further validated looking at the convergence of the statistical estimators of the statistics of the
elastic moduli of CB (see Fig. 3.7). In Fig. 3.7, the confidence interval (denoted by CI) is shown.
Therefore, hereinafter, statistics of the stochastic models will refer to N = 105 realizations.

Figure 3.6: Convergence plots of the stochastic models of TMD (green lines with ‘x’ markers)
and HP (dark red lines with ‘o’ markers): Relative error of the mean values (on the left) and
absolute error of the dispersions (on the right) as a function of the number of realizations.
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Figure 3.7: Convergence plots of the random elastic moduli of CB (green lines): Mean values
and confidence intervals of the axial modulus Y3 (on the left) and of the lateral contraction ratio
ν31 (on the right) as a function of the number of realizations. Black lines depict the nominal
values. Subscripts refer to the frames depicted in Fig. 3.3.

3.3.2 Stochastic and nominal micromechanical models of cortical bone elas-
ticity

Statistics of the random elastic moduli (SµM model, N = 105 realizations) and corresponding
nominal values (NµM model) are reported in Tab. 3.3. The relative differences between the
stochastic estimators of the mean values and the nominal values of all the elastic moduli are
smaller than 1% (and even smaller than 0.1% for the ratio ν31). This shows that the nominal
model constitutes an accurate description of the mean elastic behavior of the cortical bone.

Table 3.3: Elastic moduli of cortical bone: nominal values and statistics (resulting fromN = 105

realizations) of the stochastic model.

Elastic moduli Y1(≡ Y2) Y3 G12 G13(≡ G23) ν12(≡ ν21) ν13 ν31

Units [GPa] [GPa] [GPa] [GPa] [−] [−] [−]

Nominal model 7.84 10.00 2.94 3.12 0.333 0.280 0.356

SM of (TMD,HP)

Mean value 7.91 10.10 2.97 3.15 0.336 0.279 0.358

∆N
rel -0.01 -0.01 -0.01 -0.01 -0.009 0.003 -0.003

Std Dev 1.55 1.71 0.63 0.64 0.027 0.016 0.014

Dispersion ([-]) 0.20 0.17 0.21 0.20 0.080 0.056 0.039

25% quantile 5.50 7.49 1.99 2.15 0.296 0.252 0.336

75% quantile 8.93 11.20 3.39 3.57 0.353 0.290 0.366

5% quantile 6.81 8.88 2.52 2.70 0.317 0.268 0.348

95% quantile 10.57 13.07 4.06 4.24 0.383 0.304 0.382

2.5% quantile 5.11 7.09 1.83 1.98 0.292 0.247 0.333

97.5% quantile 11.15 13.73 4.30 4.47 0.394 0.307 0.388
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An analysis of the Tab. 3.3 shows that the mean values of all the random moduli (except
for ν13) overestimate the corresponding nominal moduli. This can be explained by a qualitative
analysis of Fig. 3.12 (a complete picture is shown in Fig. 3.14) and making use of the Jensen’s
inequality reported in App. C. In particular, these figures show that the surfaces representing
the elastic moduli as a function of the model random variables (TMD,HP) are convex (except
for ν13, which is concave) in the 99% confidence region of the space (TMD×HP) (i.e. the region
of the space (TMD× HP) containing 99% of the realizations of the elastic moduli). Therefore,
by making use of the Jensen’s inequality, it is possible to conclude that the nominal value of
each elastic modulus (except for ν13) underestimates the mean value of the realizations of its
stochastic counterpart. Moreover, this result will hold true also by changing the stochastic
models of TMD and HP as long as the 99% confidence region does not change noticeably.

Mean values and scalar dispersions (see Eq. (3.2.46)) of the elastic tensors of MF, US and
CB are reported in Tab. 3.4 and Tab. 3.5, respectively. These two pieces of information (µ̂N[C∗]
and δ̂N[C∗]) constitutes the minimal necessary parameters for defining elastic tensors in the same

symmetry class (see (Guilleminot and Soize, 2013)) and could be useful in further works.
The elastic tensors of MF, US and CB can be represented as linear combinations of the base

tensors of their respective symmetry classes (see Appendix B). The mean values of the base
coefficients (i.e. the coefficients of the linear combinations) predicted by the SµM model are
reported in Tab. 3.4.

Table 3.4: Mean values of the base coefficients (see Appendix B) of the random elastic tensors
of MF, US and CB.

Coeffs of [C∗] ∈ Iso c1 c2

(≡ 3×K) (≡ 2×G)

units [GPA] [GPA]

µ̂N[CMF ] 27.701 8.016

Coeffs of [C∗] ∈ TI(e3) c1 c2 c3 c4 c5

units [GPA] [GPA] [GPA] [GPA] [GPA]

µ̂N[CUS]
15.734 19.334 9.542 7.392 7.421

µ̂N[CCB ] 14.382 16.890 8.499 5.944 6.292

The scalar dispersions of the elastic tensors of MF, US and CB are reported in Tab. 3.5. It
can be noted that the scalar dispersion decreases when upscaling from the MF scale to the US
scale–likely because of the weak dispersion of collagen (see Gagliardi et al. (2016 (submitted)
for more details) then increases again when upscaling to the CB scale–likely because of the large
dispersion of HP (see Tab. 3.2).

Table 3.5: Scalar dispersions of the random elastic tensors of MF, US and CB.

δ̂N[CMF] δ̂N[CUS] δ̂N[CCB]

0.2033 0.1265 0.1435
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3.3.3 Results of the µFE and µFFT models

The FEM and FFT methods have been applied to all the RVEs (35 RVEs overall, 12 in the
Calib dataset and 23 in the Ctrl dataset).

Both models produce anisotropic effective elastic tensors for the CB. Let c be an anisotropic
elastic tensor. It was projected onto the classes of transversely isotropic and orthotropic tensors
to investigate to what extent CB can be considered as a transversely isotropic material. In what
follows, the transversely isotropic and orthotropic symmetry classes are denoted by TI for which
the transverse axis is e3-direction and O respectively. Let [c] be the Kelvin’s 2-order matrix
representation of the elastic 4-th order tensor c, let PS([c]) with S ∈ {TI, O} (see appendix B)
be the projected matrix on the class of material symmetry S and, ES([c]) the distance of [c]
from PS([c]):

PS([c]) :=
n∑
i=1

[c] · [bi]
‖ [bi] ‖2F

[bi] , ES([c]) :=
‖PS([c])− [c])‖F

‖ [c] ‖F
. (3.3.3)

where n represents the dimension of the symmetry class S. Since the value of ES([c]) is in the
interval [0, 1], it represents a measure of the distance of the tensor c from the symmetry class
S. Moreover, since the symmetry class O includes the one of TI, it turns out that EO([c]) ≤
ETI([c]). Errors ETI(∗) and EO(∗) in the FEM and FFT simulations of the 35 RVEs are depicted
in Fig. 3.9. For both methods, the mean values of ETI(∗) and of EO(∗) are about 2% and 1.5%,
respectively. The FFT estimation generally returns slightly more anisotropic tensors. In both
methods, highest errors are observed in the RVE #21 (ETI(∗) ∼ 12% and EO ∼ 4%), which is
the most porous RVE (HP > 20%), and then in RVEs #35 (HP = 15.5%) and #6. These RVEs
are shown in Fig. 3.8.

Figure 3.8: Reconstruction of the most anisotropic RVEs.

Base coefficients and relevant elastic moduli of the projection PTI([c]) are reported in Tab. 3.8
and Tab. 3.9

Relative differences between the elastic moduli provided by the two methods are shown in
Fig. 3.10. Lowest differences (most of time smaller than 5%) are observed for the axial modulus
Y3 and contraction ratio ν31. Concerning this latter, the highest difference is found in RVE #6
(about 6%). Differences in the axial moduli Y1 and contraction ratios ν13 and ν12 are smaller
than 10% excepting the RVE #35. Shear moduli G13 and G12 show differences smaller than 20%
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Figure 3.9: Distance of the anisotropic elastic tensors of the RVEs obtained by means of the
µFFT and µFE models from transverse isotropy (on the left) and orthotropic (on the right)
symmetry classes.

on all RVEs expect for RVEs #21 and #35. The high differences observed between µFE and
µFFT results in the RVEs #21, #35 and #6 could be explained by the fact that they present
big pores on their boundaries. This circumstance could introduce a big approximation in the
periodic boundary displacement considered by the FFT method.

Average differences between the µFE and µFFT estimates of the elastic moduli are reported
in Tab. 3.6. It can be noticed that, even including the RVEs #21, #35, and #6 (for which
the highest differences can be observed), the average differences between the two models remain
often quite limited. In particular, the average difference is (1) negligible (< 1%) for Y3 and
ν31, (2) quite small (5%) for Y1, ν13 and ν12 and, (3) noticeable for G12 and G13(> 10%).
Focusing on the sign of these variations, we observe that most of times results of the µFE
model overestimate those of the µFFT model (axial and shear moduli and ν13). The opposite
happens for ν31 and ν12 ratios. The origin of these differences, especially with respect to the
contraction ratios and shear moduli, can have various interpretations. First, the two models are
based on different representations of the heterogeneous microstructure of the RVEs. Whereas the
µFFT model accounts for voxel-wise heterogeneity of the RVE and each voxel inherits its elastic
properties based on its own GL (see Sec. 3.2.11), the µFE model considers a (small) number of
homogeneous (sub)regions in the solid matrix and all the FEs inherit the elastic properties of the
region that they belong to (see Sec. 3.2.10). Moreover, the two methods do not solve the same
homogenization problem. Indeed, the µFE model solves BVPs with prescribed homogeneous
strain on the boundary ( i.e. u(x) = E∗x for all x ∈ ∂Ω ) whereas the µFFT model solves
BVPs with prescribed periodic strain (i.e. u(x)−E∗x periodic for all x ∈ ∂Ω). Eventually, it
should be pointed out that the µFFT method could be affected by the mesh density (here 503

points).

Computational time

From the point of view of computational time, the µFE model, despite its simplified represen-
tation of the RVEs, takes longer than the µFFT model. On a standard desktop computer, µFE
simulations last about half an hour per RVE whereas µFFT simulations only a few minutes.
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Figure 3.10: Elastic moduli of cortical bone. Differences between µFE and µFFT estimations
on individual RVEs (crosses) and average differences (solid lines).

Table 3.6: Average differences between the µFE and µFFT estimations of the elastic moduli of
cortical bone.

Elastic moduli Y1 Y2 Y3 G12 G13 G23 ν12 ν13 ν31

%− avg
(
yFEM−yFFT

/yFFT

)
4.5 4.6 0.7 13.3 5.6 8.8 -5.92 3.08 -0.6271

3.3.4 Validation of the SµM of cortical bone: by comparison with the µFE
and µFFT estimates

In this section, the results of the stochastic micro-mechanical model will be compared with
the approximations given by the FEM and FFT methods. Firstly, a RVE-wise analysis of the
differences between the FFT and FEM approximations will be presented, then the FEM and
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FFT results will be compared with the bounds defined by the confidence intervals and regions
of the model.

RVE-wise distance from FEM and FFT estimations Each CB realization of the stochastic
micro-mechanical model is the result of the application of the micro-mechanical model to a
fictitious, idealized CB-RVE consisting in the 2-phase defined by a specific assignation of the
couple (TMD,HP). In Fig. 3.11, we report the relative differences between the finer estimations
(FEM, FFT) of the database of 35 RVEs and the realizations of the SµM model corresponding
to the real couple (TMD,HP) associated to each RVE. In Tab. 3.7 is reported the average values
of the two set of errors.

Table 3.7: Stochastic model of Cortical bone approximation to µFE and µFFT estimations of
elastic properties. Average value of the relative difference.

Elastic moduli Y1 Y2 Y3 G12 G13 G23 ν12 ν13 ν31

%− avg
(
yFEM−ySµM

ySµM

)
0.3 -1.3 0.6 -0.6 -1.0 -2.3 0.64 -0.27 0.0047

%− avg
(
yFFT−ySµM

ySµM

)
-3.9 -5.5 -0.2 -11.0 -6.0 -9.7 7.06 -3.20 0.6544

From Tab. 3.7, we observe that generally the average error committed approximating the
FEM reference model with the SµM model is lower than the FFT counterpart. The relative
distance from the FEM-approximation is lower than 3% for each elastic modulus. Except for
the shear moduli G12, G13 and G23, the most of elastic moduli are not very distant form the
FFT (about 5 − 10%) or, even returns no substantial difference (Y3 and ν31) with the FEM-
approximation. In general terms, the Tab. 3.7 however confirms that the SµM approximation
overestimate the FFT approximation (except for the ν12 ratio).

3.3.5 Accuracy of the stochastic model

In the preceding subsection, we underlined the average global distance of the set of RVE-wise
predictions of the stochastic model. In this section we want to put this distance in the right per-
spective. For this reason, in Fig. 3.12, we plot the estimation of elastic moduli of the calibration
subset of RVEs by FEM, FFT and SµM as function of the common information (TMD,HP),
against the background represented by the transformation of the confidence region at 50%, 95%
and 99% of the SµM model driven by (TMD,HP). The 95% confidence region of the stochastic
model is able to envelope the most of the FEM and even the FFT estimates of the calibration
dataset. Similarly, the 50% confidence region contains approximately the 50% results of the
control set.

Figure 3.12 highlights also that the most of the worst approximations (i.e. #21 with HP 20%
and #35 with HP 15%), being very close to the boundary of the 95% confidence region, could
be considered outliers.

The same figure also shows how the elastic moduli are differently influenced by the TMD
and HP. More specifically, the elastic moduli are more influenced by the TMD than the HP.
Indeed, the intersections between the 99% confidence region and the two parametric study (two
thin black lines) for the µ(HP)-fixed study µ(TMD)-fixed line gives one insight of the difference.
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For each parametric study, the minimum and maximum value of the elastic modulus can be
estimated and the gap (max-min) of these values has been be compared. The highest gap in the
moduli of Y1, Y3, G31, G21 and ν31 is attained for the µ(HP)-fixed study (variation of the TMD).
Otherwise, the highest gap in the moduli ν12 and ν13 appears in the µ(TMD)-fixed study.

This remark allows to observe that the variations Y1, Y3, G31, G21 and ν31 moduli, in statis-
tical terms, are mainly implied by that of TMD. In other terms, the value of TMD represents
the main determinant of the elastic moduli listed above, because the estimates resulting from
considering the same level of HP (µ(HP)) for every RVEs would not differ significantly from
that which considers each RVE to have a different value of HP. This constat is based on the
confidence region obtained via the SµM model based on minimal information about the variables
(TMD,HP) and could not be directly given by the very exiguous database of the calibration
dataset.

Figure 3.11: Relative differences of the FEM and FFT estimate from the SµM model. Axial
modulus in the direction of bone axis (Y3) and lateral contraction ratio (ν31).

Moreover, Fig. 3.13 shows the results of the FFT, FEM and SµM estimations for the whole
dataset (calibration and control) and the confidence intervals of the stochastic model. As ev-
idenced by this figure, the 95% confidence interval covers, not only, the 95% of the FEM and
FFT estimations for the calibration dataset (Calib dataset), but also the control dataset (Ctrl
dataset). This result shows that a stochastic model based on minimal information about two
measures (TMD,HP) is able to reproduce the variability of a studied region of the cortical bone
(at such a distance by the periosteum) and to capture finer estimation by FE and FFT methods
for the most of elastic moduli (except for G12).
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Figure 3.12: Comparison of the estimation of the elastic moduli as function of TMD and
HP measure : (1) parametric study (gray surface); (2) region of the surface corresponding to
the 50%, 95% and 99% confidence intervals of the stochastic model (green area with multiple
transparencies); (3) estimations of the 12 RVEs by µFE (blue dots); (4) FFT (red triangles);
(5) Nominal model (+).

3.4 Conclusion and perspective

In this chapter, a stochastic model of cortical bone based on the theory of micromechanical
homogenization and the MaxEnt principle applied to a very exiguous information on TMD and
HP measures estimated from µCT, has been presented. It has been shown that the information
on the first two moments (mean and dispersion) for both TMD and HP measures at the resolu-
tion of scale (RVE) is sufficient for setting geometric-idealized model, able to compete with finer
estimations. At millimeter scale, the choice of the Mori-Tanaka scheme for the homogenization
with cylindrical inclusions allows to reproduce the same degree of anisotropy that the detailed
models. Indeed, it has been shown that the transverse isotropic class of materials is the correct
model, since it covers the 98% of the effective tensor estimated with both FE and FFT models.
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Figure 3.13: Axial modulus in the direction of bone axis Y3 and lateral contraction ratio ν31

The class of orthotropic materials, benefiting of 4 more parameters, improve only of 1% the
performances of the transverse isotropic class. Again, the stochastic model, contrarily to the FE
and FFT methods applied to the same database, is able to determine confidence intervals and
regions. These remarks allow to consider the SµM as the first main benchmark to be applied
before any deeper analysis on bone tissues. Furthermore, the confidence regions estimated with
this method provides the probability landscape of the main six elastic moduli and represents a
tool a priori for the interpretation of results given by other homogenization techniques. Finally,
our simple SµM based on the HP and mean value of the TMD(TMD) at the millimeter scale
allows to verify that the most relevant factor in the estimation of elastic properties of cortical
bone is given by the TMD. Nevertheless, in terms of perspectives, the current model based on
the (TMD,HP) at millimeter RVE scale can be ameliorated including other interesting features
as the correlation length of the main random variables (TMD,HP) and other statistical con-
straints (f2(x) = log(x)) allowing to improve the likelihood of the probability density function
determined by the MaxEnt principle to the experimental one.
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3.5 Appendix

A Kelvin’ representation of a 4th-order tensor

The elastic tensor c is defined as a 4th-order tensor in the tridimensional space describing the
linear relation between the strain tensor E and the stress tensor S. This relation takes the form:

S = c : E, Sk` = ck`mnEmn, (3.5.1)

where the symbol “:” between two tensors denotes a double contraction of adjacent indexes of
tensors of rank two and higher.

The 3 symmetry conditions (minor and major) must be considered on the elastic tensor c
(Podio-Guidugli, 2000):

ck`mn = ck`nm, ck`mn = c`kmn, ck`mn = cmnk`. (3.5.2)

The second and fourth rank tensors in three dimensions are represented in a Euclidian six-
dimensional space as vectors and tensors, respectively. To this end, the representation adopted
in this work is called the Kelvin’s representation in which the new indexes I et J vary in the
set {1, ..., 6} such as I = (k, `) and J = (m,n) where the indices k, `,m and n vary in the set
{1, ..., 3}. The relation between these indices is the following 1 = (1, 1), 2 = (2, 2), 3 = (3, 3), 4 =
(2, 3), 5 = (1, 3) and 6 = (1, 2). So, the symmetric matrix c̃ associated with c is defined via
these components by:

c̃IJ = ck`mn. (3.5.3)

The linear relation between the strain and stress vectors takes the form:

S11

S22

S33√
2S13√
2S23√
2S12


=



c̃11 c̃12 c̃13

√
2c̃14

√
2c̃15

√
2c̃16

c̃21 c̃22 c̃33

√
2c̃24

√
2c̃25

√
2c26

c̃31 c̃32 c̃33

√
2c̃34

√
2c̃35

√
2c̃36√

2c̃41

√
2c̃42

√
2c̃43 2c̃44 2c̃45 2c̃46√

2c̃51

√
2c̃52

√
2c̃53 2c̃54 2c̃55 2c̃56√

2c̃61

√
2c̃62

√
2c̃63 2c̃64 2c̃65 2c̃66





E11

E22

E33√
2E13√
2E23√
2E12


(3.5.4)

The transformation of the three-dimensional second rank tensor components to six-dimensional
vector components is directly assured by these relations and vice versa. In particular, it has
been shown in (Mehrabadi and Cowin, 1990) that the 2 and the

√
2 factors introduced on certain

moduli of c̃ ensure that c̃ is a tensor in Euclidian six-dimensional space. In addition, the
√

2 fac-
tor on the vectors S̃ (whose the components are defined by [S11, S22, S33,

√
2S13,

√
2S23,

√
2S12])

or Ẽ guarantees that the scalar product of the six dimensional vectors is equal to the trace of
the product of the corresponding second rank tensors S̃ · Ẽ = Tra(ST E) where Tra and ”T” are
is the trace and transposition operators, respectively

In the text body, the notation tilde has been dropped.
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B Representation of classes of material symmetry

In this section, we resume the representation of the symmetry class of isotropic materials used
(1) for describing the result of micro-mechanical homogenization and (2) for approaching the
problem of the classification of the results of the FE and FFT methods. For a wider overview
on other symmetry classes we refer to the works of (Walpole, 1984) and (Guilleminot and Soize,
2013). In our presentation, N represent the number of necessary and sufficient coefficients ci
and elements of the orthogonal base (but generally non orthonormal) {bi} for the complete
definition of a isotropic symmetry class, denoted by S. For instance N = 5 for a material in the
transverse isotropic symmetry class, N = 9 for the orthotropic one and N = 2 for an isotropic
one, and so on. This decomposition in the base is given by:

cS :=
N∑
i=1

ci bi . (3.5.5)

Isotropic material

An isotropic material is completely defined by two coefficients c1 and c2 and its base:

[b1]ijkl = (1/3)δijδkl

[b2]ijkl = [i]ijkl − [b1]ijkl
(3.5.6)

where [i] denotes the fourth-order symmetric identity tensor (which is defined by the relation
[i]ijkl = 1/2(δijδkl + δikδjl)) and δij designates the Kronecker’s symbol.

The two coefficients c1 and c2 can be related with other couples of coefficients as Lamés
coefficients, or in the alternative way with Young’s modulus and Poisson’s ratio, according well
known functions. For instance, it results that c1 = 3 ×K and c2 = 2 × G where K and G are
respectively the bulk and shear moduli.

Transverse Isotropic material

A transverse isotropic material is completely defined by the direction of its axe of symmetry,
hereafter noted en. Once en has been assigned, any transverse isotropic tensor is fully defined
by:

p = en ⊗ en, b1 = p⊗ p;

q = i− p, b2 = q⊗ q;

b3 = 1√
2

(p⊗ q + q⊗ p) ;

b4 = q� q− b2;

b5 = i� i− b1 − b2 − b4;

(3.5.7)

where the i represents the second order identity tensor and the products ⊗ and � operate as:

(g ⊗ f)ij = gifj ;

[p⊗ q]ijkl = [p]ij [q]kl ;

[p� q]ijkl = 1
2

(
[p]ik [q]jl + [p]il [q]jk

)
.

(3.5.8)
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Throughout this work, the Haversian Porosity has been assumed to be aligned in the e3

direction and the direction of the collagen molecules aligned to the direction of the HP. As
consequence of the Mori-Tanaka scheme (MTs) of cylindrical inclusions in the e3 direction and
the micro-mechanical model of the Ultra-Structure transverse isotropic in the direction en = e3.
For the same reason, the application of the MTs to the cylindrical pores and the ultrastructure
matrix produce a transverse isotropic (in the en = e3 direction) model of cortical bone.

We note TI(en) the set of elastic tensors belonging to the symmetry transverse isotropic with
axe en.

Orthotropic material

An orthotropic material is defined as a function of an orthonormal base described from the
3 vectors a,b and c. The nine base-tensors of 4-th order are given as function of its axis of
symmetry. The general representation is given by:

b1 = e11, e11 = (a⊗ a)⊗ (a⊗ a);

b2 = e22, e22 = (b⊗ b)⊗ (b⊗ b);

b3 = e33, e33 = (c⊗ c)⊗ (c⊗ c);

b4 =
(
e12 + e21

)
/2, e12 = (a⊗ a)⊗ (b⊗ b)

e21 = (b⊗ b)⊗ (a⊗ a);

b5 =
(
e23 + e32

)
/2, e23 = (b⊗ b)⊗ (c⊗ c)

e32 = (c⊗ c)⊗ (b⊗ b);

b6 =
(
e13 + e31

)
/2, e13 = (a⊗ a)⊗ (c⊗ c)

e31 = (c⊗ c)⊗ (a⊗ a);

[b7]ijkl = (aibj + ajbi) · (akbl + albk);

[b8]ijkl = (bicj + bjci) · (bkcl + blck);

[b9]ijkl = (aicj + ajci) · (akcl + alck).

(3.5.9)

where the used products are defined in Eq. (3.5.8). We denote by O the set of elastic tensors
belonging to the orthotropic symmetry class with respect to the axis (a,b, c). This class is
denoted by O(a,b, c).

C Jensen’ inequality

Let X be a d-dimensional random vector, h a convex function (respectively concave), Y a
random variable defined by the image of X through h (i.e. Y = h(X) ), then:

h(E(X)) ≤ E(Y ) = E(h(X)), (h(E(X)) ≥ E(Y ) = E(h(X)). (3.5.10)

For detail on the proof see (Jacod and Protter, 2003).
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Table 3.8: Estimation by FFT methods. Projection onto the transverse isotropic subspace TIen
.

FFT
RVE θ z %err. c1 c2 c3 c4 c5 Y1 Y3 G12 G13 ν12 ν13

# [deg] µm [−] [GPa] [GPa] [GPa] [GPa] [GPa] [GPa] [GPa] [GPa] [GPa] [−] [−]

1 -40 550 0.80 17.951 20.779 9.887 7.980 8.397 10.50 13.25 3.99 4.20 0.32 0.27

2 -40 450 2.38 15.684 17.861 8.790 6.235 6.822 8.41 11.36 3.12 3.41 0.35 0.26

3 -40 350 0.79 15.492 18.029 8.928 6.305 6.746 8.47 11.07 3.15 3.37 0.34 0.27

4 -40 250 1.71 14.178 17.075 8.650 5.811 5.987 7.79 9.80 2.91 2.99 0.34 0.28

5 -40 150 1.33 13.140 15.642 8.146 4.904 5.153 6.70 8.90 2.45 2.58 0.37 0.28

6 -30 550 3.64 14.744 16.990 8.458 5.754 6.193 7.81 10.53 2.88 3.10 0.36 0.26

7 -30 450 1.16 15.787 18.078 8.928 6.337 6.763 8.53 11.38 3.17 3.38 0.35 0.26

8 -30 350 0.99 15.253 18.147 9.028 6.490 6.743 8.61 10.76 3.25 3.37 0.33 0.28

9 -30 250 1.05 14.663 17.467 8.826 6.111 6.211 8.13 10.20 3.06 3.11 0.33 0.28

10 -30 150 0.61 13.229 15.980 8.365 5.069 5.178 6.88 8.85 2.53 2.59 0.36 0.29

11 -20 550 2.64 15.407 17.243 8.584 5.812 6.215 7.93 11.13 2.91 3.11 0.36 0.25

12 -20 450 2.48 14.789 17.152 8.614 5.919 6.138 7.96 10.46 2.96 3.07 0.34 0.27

13 -20 350 1.13 13.429 15.997 8.275 5.087 5.332 6.94 9.15 2.54 2.67 0.36 0.28

14 -20 250 2.13 13.119 15.678 8.186 4.889 5.157 6.69 8.85 2.44 2.58 0.37 0.28

15 -20 150 0.99 12.204 14.705 7.887 4.235 4.367 5.88 7.97 2.12 2.18 0.39 0.28

16 -10 550 2.84 15.437 17.784 8.805 6.150 6.551 8.30 11.08 3.07 3.28 0.35 0.26

17 -10 450 2.23 14.598 17.057 8.588 5.764 6.113 7.79 10.27 2.88 3.06 0.35 0.27

18 -10 350 1.56 14.103 16.407 8.370 5.338 5.638 7.28 9.83 2.67 2.82 0.36 0.27

19 -10 250 2.79 12.481 14.684 7.763 4.253 4.520 5.94 8.38 2.13 2.26 0.40 0.27

20 -10 150 1.40 12.569 15.230 8.105 4.523 4.622 6.23 8.26 2.26 2.31 0.38 0.28

21 0 550 12.22 12.914 13.412 7.027 3.479 4.259 5.11 9.23 1.74 2.13 0.47 0.20

22 0 450 3.04 14.077 16.203 8.200 5.279 5.638 7.22 9.93 2.64 2.82 0.37 0.26

23 0 350 1.16 14.226 16.794 8.558 5.494 5.856 7.47 9.87 2.75 2.93 0.36 0.27

24 0 250 2.99 12.753 14.940 7.881 4.351 4.710 6.08 8.60 2.18 2.36 0.40 0.26

25 0 150 1.76 11.788 13.895 7.531 3.701 3.936 5.26 7.71 1.85 1.97 0.42 0.26

26 10 550 2.22 16.214 18.645 9.122 6.706 7.131 8.96 11.75 3.35 3.57 0.34 0.26

27 10 450 2.40 15.080 17.400 8.664 5.903 6.384 8.00 10.77 2.95 3.19 0.36 0.26

28 10 350 1.90 13.584 15.996 8.196 5.177 5.505 7.05 9.39 2.59 2.75 0.36 0.27

29 10 250 2.70 12.482 14.789 7.820 4.333 4.720 6.03 8.35 2.17 2.36 0.39 0.27

30 10 150 2.11 11.949 14.169 7.605 3.981 4.199 5.58 7.87 1.99 2.10 0.40 0.27

31 20 550 2.38 15.945 17.775 8.974 6.290 6.687 8.42 11.41 3.14 3.34 0.34 0.26

32 20 450 2.53 15.085 16.962 8.454 5.624 6.250 7.70 10.87 2.81 3.12 0.37 0.25

33 20 350 2.34 16.318 18.915 9.227 6.893 7.289 9.17 11.82 3.45 3.64 0.33 0.27

34 20 250 1.24 14.275 16.933 8.509 5.741 5.989 7.74 10.00 2.87 2.99 0.35 0.27

35 20 150 3.38 11.809 13.160 7.083 3.281 3.701 4.80 8.00 1.64 1.85 0.46 0.23

µ - - 2.26 14.193 16.513 8.401 5.406 5.746 7.35 9.91 2.70 2.87 0.37 0.27

D Tables of the FFT and FEM results

E Supplementary figures

F Effects of the threshold q on HP, TMD and nominal elastic moduli

Results of the stochastic and nominal micromechanical models may depend on the value of the
threshold q discriminating the GLs attributed to the HP and US regions. In this section, this
dependence is investigated with respect to the nominal model.

The variations of the elastic moduli of the CB for the nominal model, when changing the
threshold q in the range [116, . . . , 146] are reported in Tab. 3.10. The results in this table show
that the statistics of HP and TMD are sensitive with respect to the value of q. More precisely,
as the value of q increases, (1) the mean values of both HP and TMD increase; and (2) the
dispersion of HP increases whereas that of TMD decreases. Moreover, it can be noticed that the
relative variation, denoted by %-Var, of the statistics of HP is much higher than that of TMD.

Interestingly, unlike HP and TMD, the nominal elastic moduli appear to be quite insensitive
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Table 3.9: Estimation by FEM methods. Projection onto the transverse isotropic subspace TIen
.

FEM
RVE θ z %err. c1 c2 c3 c4 c5 Y1 Y3 G12 G13 ν12 ν13

# [deg] µm [−] [GPa] [GPa] [GPa] [GPa] [GPa] [GPa] [GPa] [GPa] [GPa] [−] [−]

1 -40 550 0.91 17.918 20.773 9.892 8.286 8.500 10.75 13.21 4.14 4.25 0.30 0.27

2 -40 450 1.82 15.763 17.843 8.770 6.622 7.049 8.77 11.45 3.31 3.52 0.32 0.27

3 -40 350 1.28 15.543 17.975 8.901 6.561 6.878 8.69 11.13 3.28 3.44 0.32 0.27

4 -40 250 1.30 14.260 17.077 8.640 6.013 6.209 7.98 9.89 3.01 3.10 0.33 0.29

5 -40 150 0.74 13.042 15.498 8.081 5.094 5.308 6.86 8.83 2.55 2.65 0.35 0.29

6 -30 550 2.18 15.222 17.575 8.637 6.577 6.918 8.66 10.98 3.29 3.46 0.32 0.27

7 -30 450 1.14 15.808 18.135 8.949 6.660 7.013 8.82 11.39 3.33 3.51 0.32 0.27

8 -30 350 0.91 15.226 18.152 9.029 6.734 6.879 8.82 10.73 3.37 3.44 0.31 0.29

9 -30 250 0.86 14.648 17.413 8.801 6.166 6.351 8.18 10.20 3.08 3.18 0.33 0.29

10 -30 150 0.31 13.270 16.005 8.361 5.268 5.374 7.07 8.90 2.63 2.69 0.34 0.29

11 -20 550 0.95 15.449 17.659 8.739 6.597 6.880 8.69 11.12 3.30 3.44 0.32 0.27

12 -20 450 1.61 14.654 17.126 8.603 6.114 6.382 8.12 10.33 3.06 3.19 0.33 0.28

13 -20 350 0.73 13.423 15.933 8.221 5.379 5.564 7.20 9.18 2.69 2.78 0.34 0.29

14 -20 250 1.50 13.303 15.826 8.213 5.274 5.490 7.08 9.04 2.64 2.75 0.34 0.29

15 -20 150 0.67 12.200 14.635 7.840 4.457 4.598 6.09 8.00 2.23 2.30 0.37 0.29

16 -10 550 1.70 15.658 18.121 8.917 6.809 7.054 8.95 11.27 3.40 3.53 0.31 0.28

17 -10 450 1.68 14.591 17.037 8.567 6.027 6.316 8.03 10.28 3.01 3.16 0.33 0.28

18 -10 350 1.58 14.090 16.518 8.409 5.820 6.011 7.73 9.81 2.91 3.01 0.33 0.28

19 -10 250 1.41 12.659 14.979 7.844 4.867 5.049 6.57 8.55 2.43 2.52 0.35 0.28

20 -10 150 0.86 12.616 15.253 8.087 4.800 4.878 6.50 8.33 2.40 2.44 0.35 0.29

21 0 550 5.20 12.987 14.215 7.337 5.035 5.451 6.71 9.20 2.52 2.73 0.33 0.27

22 0 450 2.13 14.168 16.308 8.226 5.743 6.069 7.67 10.02 2.87 3.03 0.34 0.27

23 0 350 0.58 14.283 16.843 8.530 5.937 6.161 7.89 9.96 2.97 3.08 0.33 0.28

24 0 250 2.24 12.777 14.842 7.817 4.620 4.934 6.33 8.66 2.31 2.47 0.37 0.27

25 0 150 1.17 12.137 14.232 7.591 4.365 4.602 5.98 8.09 2.18 2.30 0.37 0.28

26 10 550 1.62 16.391 18.901 9.209 7.214 7.506 9.46 11.90 3.61 3.75 0.31 0.27

27 10 450 1.50 15.176 17.659 8.760 6.565 6.828 8.63 10.83 3.28 3.41 0.31 0.28

28 10 350 1.58 13.663 16.098 8.231 5.586 5.817 7.44 9.45 2.79 2.91 0.33 0.28

29 10 250 1.11 12.689 15.088 7.887 4.936 5.159 6.65 8.57 2.47 2.58 0.35 0.29

30 10 150 1.21 11.961 14.213 7.607 4.362 4.551 5.95 7.89 2.18 2.28 0.36 0.29

31 20 550 1.86 15.705 17.856 8.820 6.523 6.924 8.67 11.35 3.26 3.46 0.33 0.27

32 20 450 1.79 15.293 17.241 8.539 6.302 6.728 8.37 11.06 3.15 3.36 0.33 0.27

33 20 350 1.92 16.016 18.558 9.102 6.999 7.294 9.19 11.55 3.50 3.65 0.31 0.28

34 20 250 0.97 14.166 16.691 8.423 5.920 6.170 7.86 9.92 2.96 3.08 0.33 0.28

35 20 150 3.45 12.077 13.850 7.323 4.430 4.718 6.02 8.20 2.21 2.36 0.36 0.27

µ - - 1.50 14.252 16.632 8.426 5.847 6.103 7.78 9.98 2.92 3.05 0.33 0.28

to the variations of q. Actually, a variation of q of more than 20% induces variations of the
nominal elastic moduli smaller than 3%. This result can be interpreted as follows. By recalling
that HP and TMD are directly related to the volume fraction of the porosity and to the stiffness
of the ultrastructure, respectively, increasing the value of q leads to two counteracting effects:
on the one side, bone tissue becomes more porous (thus “softer”) and on the other side its solid
matrix becomes “stiffer”. These two effects turn out to compensate each other leading to pretty
insensitive effective elastic moduli of the homogenized medium.
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Table 3.10: Effects of the variations of q on the first and second order statistics of HP, TMD
and nominal elastic moduli of cortical bone.

q TMD(q) µexp
HP δexpHP µexp

TMD δexpTMD

[-] g/cm3 [-] [-] g/cm3 [-]

Ref.M. 131 0.6982 0.0844 0.5714 0.9992 0.0293

%-Var 22.90 27.92 25.00 16.30 0.65 4.23

Elastic moduli Y1 Y3 G12 G13 ν12 ν13

[GPa] [GPa] [GPa] [GPa] [−] [−]

Ref.M. 7.842 9.997 2.941 3.120 0.333 0.280

%-Var 1.19 1.34 1.70 0.50 2.10 2.82
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To what extent can cortical bone millimeter-scale elasticity be predicted by a two-phase com-
posite model with variable porosity? Acta biomaterialia, 12:207–215, 2015.

J. Guilleminot and C. Soize. On the statistical dependence for the components of random
elasticity tensors exhibiting material symmetry properties. Journal of Elasticity, 111(2):883–
901, 2013.

C. Hellmich, J. Barthelemy, and L. Dormieux. Mineral-collagen interactions in elasticity of bone
ultrastructure - a continuum micromechanics approach. European Journal of Mechanics -
A/Solids, 23:783–810, 2004.

J. Jacod and P. E. Protter. Probability Essentials. Springer Science & Business Media, 2003.

E.T. Jaynes. Information theory and statistical mechanics. Physical Review, 106(4):620–630,
1957a.

E.T. Jaynes. Information theory and statistical mechanics. Physical Review, 108(2):171–190,
1957b.

M. Langer, A. Pacureanu, H. Suhonen, Q. Grimal, P. Cloetens, and F. Peyrin. X-ray phase
nanotomography resolves the 3d human bone ultrastructure. PLoS One, 7(8):e35691, 2012.

N. Laws. The determination of stress and strain concentrations at an ellipsoidal inclusion in an
anisotropic material. Journal of Elasticity, 7(1):91–97, 1977.

N. Laws. A note on penny-shaped cracks in transversely isotropic materials. Mechanics of
Materials, 4(2):209–212, 1985.

MATLAB. version 7.11 (R2010b). The MathWorks Inc., Natick, Massachusetts, 2010.

M.M. Mehrabadi and S.C. Cowin. Eigentensors of linear anisotropic elastic materials. Q. J.
Mech. Appl. Math., 43(1):15–41, 1990.

V. Monchiet. Combining FFT methods and standard variational principles to compute bounds
and estimates for the properties of elastic composites. Computer Methods in Applied Mechan-
ics and Engineering, 283:454–473, 2015.

V. Monchiet and G. Bonnet. A polarization-based FFT iterative scheme for computing the
effective properties of elastic composites with arbitrary contrast. International Journal for
Numerical Methods in Engineering, 89(11):1419–1436, 2012.

H. Moulinec and P. Suquet. A numerical method for computing the overall response of nonlin-
ear composites with complex microstructure. Computer Methods in Applied Mechanics and
Engineering, 157:69 – 94, 1998. ISSN 0045-7825.

140



Bibliography

S. Nemat-Nasser and M. Hori. Micromechanis: overall properties of heterogeneous materials.
Applied Mathematics and Mechanics. North-Holland, 2nd edition, 1999.

S. Nuzzo, F. Peyrin, P. Cloetens, J. Baruchel, and G. Boivin. Quantification of the degree
of mineralization of bone in three dimensions using synchrotron radiation microtomography.
Med. Phys., 29(11):2672–2681, 2002.

W.J. Parnell, M.B. Vu, Q. Grimal, and S. Naili. Analytical methods to determine the effective
mesoscopic and macroscopic elastic properties of cortical bone. Biomech Model Mechanobiol,
39(21):5659–5678, 2011.

P. Podio-Guidugli. A Primer in Elasticity, volume 58. Kluwer Academic Publishers, 2000.

M. Racila and J.M. Crolet. Nano and macro structure of cortical bone: Numerical investigations.
Mechanics of Advanced Materials and Structures, 14(8):655–663, 2007.

E. Rohan, S. Naili, R. Cimrman, and T. Lemaire. Multiscale modeling of a fluid saturated
medium with double porosity: Relevance to the compact bone. Journal of the Mechanics and
Physics of Solids, 60(5):857–881, 2012.

D. Ruffoni, P. Fratzl, P. Roschger, K. Klaushofer, and R. Weinkamer. Bone mineralization
density distribution as a fingerprint of the mineralization process. The Bone, 40:1308–1319,
2007.

V. Sansalone, S. Naili, V. Bousson, C. Bergot, F. Peyrin, J.D. Laredo, and G. Haiat. Deter-
mination of the heterogeneous anisotropic elastic properties of human femoral bone: from
nanoscopic to organ scale. J. Biomech., 43(10):1857–1863, 2010.

V. Sansalone, S. Naili, and C. Desceliers. A stochastic homogenization approach to estimate
bone elastic properties. Comptes Rendus Mecanique, 342(5):326–333, 2014.

V. Sansalone, D. Gagliardi, C. Desceliers, V. Bousson, J.D. Laredo, F. Peyrin, G. Häıat, and
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Figure 3.14: Comparison of the estimation of the elastic moduli as function of TMD and HP
measure: (1) - parametric study (gray surface); (2) - region of the surface corresponding to
the 50%; 95%; 99% confidence intervals of the of stochastic model ( green area with multiple
transparencies); (3) - estimations of the 12 RVEs by µFE (blue dots); (4) - FFT (red triangles);
(5) - Nominal model (+).
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Figure 3.15: Comparison of the estimation of the elastic moduli as function of TMD and HP
measure : (1) - parametric study (gray surface); (2) - region of the surface corresponding to
the 50%; 95%; 99% confidence intervals of the of stochastic model ( green area with multiple
transparencies); (3) - estimations of the 12 RVEs by µFE (blue dots); (4) - FFT (red triangles);
(5) - Nominal model (+).
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Figure 3.16: Comparison of estimation of elastic moduli as function of TMD and HP measure
: 1 - Nominal model (black line) 2 - Average value of random realization of the Stoc. TMD-
HP model, 3 - 50% and 95% Confidence interval of the Stoc. TMD-HP model 4 - µFE model
realization
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The Matr-yoshka paradigm.
Stochastic model for random
matrices and fields with symmetry
properties. Application to bone
tissue.
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Abstract

Bone tissue naturally presents heterogeneous mechanical properties which can vary not only from
one person to another but also inside the same tissue. At a given anatomical site, mechanical
properties can vary significantly but smoothly at the millimeter scale as well as at the deeper
scales depending on the local bone microstructure. Representation of these local variations is a
crucial issue for setting input data in reliable biomechanical models of bone.

Accurate assessment of spatial variations of bone microstructure can be hardly achieved using
currently available imaging techniques. Therefore, there is a need for new modeling paradigms
capable to account for uncertain experimental data.

Aiming at describing uncertain bone elastic properties, in this work we present a method for
defining the random fields of elastic tensors for certain material symmetry classes of elasticity
tensors currently found in bone tissue modeling. The solution of the problem allowing to obtain
the random fields of elastic tensors has been given in the general framework of the theory of
stochastic tensors–possibly represented as random matrices. The proposed construction allows
to take into account the spatial heterogeneity via correlation length parameters. Simulations
have been performed from the statistics of the first two moments (mean and variance or of de-
rived quantities) obtained from SR−µCT (synchrotron radiation micro-computed tomography)
images. The proposed method allows to reproduce correctly the mean value and dispersion of
the elastic tensor (without exiting from the material symmetry class). This point constitutes an
extension of other works existing in literature.
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Chapter 4. The Matr-yoshka paradigm.
Stochastic model for random matrices and fields with symmetry properties. Application to bone tissue.

4.1 Introduction

The aim of this work is to describe a robust and flexible method for constructing a random
elastic tensor satisfying specific symmetry material properties. The focus will be set on the
material symmetry classes currently found in modelling of bone tissue, i.e. isotropy, transverse
isotropy, and orthotropy (see for instance (Gagliardi et al., 2016 (submitted)).

The general method has been developed by Soize and coworkers in a recent series of papers
(see for instance (Guilleminot and Soize, 2013a,b, 2012; Soize, 2008)). In (Guilleminot and Soize,
2013a), the subject has been directly presented in terms of random fields of matrices expressing
specific material symmetry properties (see Mehta (1991) for a general presentation of random
matrix theory and (Soize, 2005) for its application in the context of linear elasticity theory). The
overall methodology has been developed from the Maximum Entropy principle and information
theory (Shannon, 1948; Jaynes, 1957a,b). In this chapter, we will proceed differently. We will
present the subject placing greater emphasis on the general architecture and highlighting step
by step the motivation of the different choices. The introduction of the spatial dependence in
the method will be introduced afterwards.

Moreover, the original work of (Guilleminot and Soize, 2013a) introduced two sources of
uncertainties in the representation of the random matrices (or random matrix fields). The first
source produces a random matrix fluctuating in the prescribed symmetry group that the material
is supposed to belong to; the second one is fully anisotropic. Such a parametrization offers
some flexibility for both direct simulations and inverse identification thanks to the possibility
to uncouple and separately control the levels of statistical fluctuations of the two sources of
uncertainties. However, in the scope of this work, the material symmetry class is supposed
to be already identified. Thus, we are only concerned with the part of the method describing
the fluctuations inside a prescribed symmetry group, whereas the anisotropic contribution has
been neglected. The reader interested in this latter topic can refer to Guilleminot and Soize
(2013a) and find even more information in Soize (2006), where the subject is discussed more
extensively. In any case, the anisotropic material symmetry class will be recalled separately in
sec. 4.2.2 because it represents the base of the methodology and contains all the key-points to
be discussed throughout the next sections.

The method for producing a random elasticity matrix with prescribed symmetry properties
consists in a sequence of non-linear operations involving other random matrices, similarly to the
assembling of a typical Russian doll called Matryoshka. Therefore, this method can be seen as
the application of random Matrix-Matryoshka paradigm (or simply Matr-yoshka paradigm).

The work is presented following step by step a Matryoshka’s deconstruction procedure. The
study is organized as follows. First, the weakest definition of a probability density function for an
anisotropic tensor is specified and the basic problem is fixed. The general tool of the maximum
entropy principle (denoted by MaxEnt) is delineated in its most general version. Then, the
method allowing to assign a tensor to remain in a subspace of the material symmetry classes is
presented. Specifically, it is shown how the formulation of the MaxEnt problem is applied to
the underling random matrices. Finally, the general procedure is applied to the three material
symmetry classes (isotropic, transversely isotropic and orthotropic) of interest for modelling the
bone tissue.
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4.2 The general problem

In this study, we will respect almost integrally the notations adopted in (Guilleminot and Soize,
2013a). Therefore, some slight typographical adaptation has been necessary.

We denote by R the set of real numbers and R+ := [0,+∞) the set of positive real numbers.
For any vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in Rn, we designate by x·y =

∑n
i xiyi

the Euclidean inner product in Rn and by ‖ • ‖ the norm ‖x‖2 = x · x.

Mn (R) denotes the set of all (n × n) square real matrices and MS
n (R) the subset of the

symmetric ones. M+
n (R) denotes the subspace of symmetric-positive-definite matrices with

the property M+
n (R) ⊂ MS

n (R) ⊂ Mn (R). The notations det (•), tr(•) and (•)T designate
respectively operators of determinant, trace and transposition of the matrices. Let [A] and [B]
be 2 matrices in Mn (R), we denote by 〈[A], [B]〉 := tr

(
ATB

)
the inner product in Mn (R).

We designate by ‖[A]‖F the Frobenious’ (or Hilbert-Schmidt) norm of the matrix [A] obtained
from the inner product (‖[A]‖2F := tr

(
ATA

)
). Second order tensors are noted in bold letter (for

instance, p); [p] designates the matrix representation of the tensor p. Fourth order tensors are
denoted by the blackboard font style as c. Its matrix representation is denoted by [c]. For any
second order tensor p and q, the symbol � denotes the symmetrized tensor product defined by

the relation [p� q]ijkl = 1
2

(
[p]ik [q]jl + [p]il [q]jk

)
.

Random variables are denoted by capital letters, vectors by capital letters in a bold font
style and matrices by capital letters in a calligraphic and bold font style. The generic random
anisotropic elastic tensors is only slightly different. The operator of expected value of the random
quantity • in the brackets is denoted by E(•) whatever it represents (variable, vector or matrix).

4.2.1 Motivation and minimal available information

In this part, we want to set-up the material symmetry class of generalized non-parametric
probabilistic problem for random matrices. Specifically, we consider a random matrix [C] taking
its values in the set of positive-definite matrices M+

n (R). The matrix [C] can represent (with
n = 6) the random elastic tensor C. The minimal problem which we are interested is to
produce a set of realization {[ci] ∈M+

n (R) , i = 1, . . . , Nr}, where Nr is the realization number,
representing the elastic tensor C by matching with the assignation of its first and second order
statistics defined by the mean value µ[C] (sometimes here noted as [C]) and the dispersion δ[C]

defined by:

µ[C] = E([C]), δ2
[C] =

E
(
‖ [C]− µ[C]‖2F

)
‖µ[C]‖2F

. (4.2.1)

For sake of clarity, we recall that a random matrix (RM) [A] having a finite expected value
is called integrable (first order RM, denoted as [A] ∈ L1 ), if it has a finite expectation value
of ‖ [A] ‖2F it is called square-integrable (second order RM, denoted by [A] ∈ L2). A RM [C]
fulfilling the requirements defined in Eq. (4.2.1) will necessarily belong to the set L1 ∩ L2.

Let {[ci] , [ci] ∈M+
n (R) , i = 1, . . . , N} be a generic set of matrix representing the realizations

of a random matrix [C], the first and second order statistics defined by Eq. (4.2.1) can be
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approximated by the respective stochastic estimators defined by:

µ̂N[C] =
1

N

N∑
k=1

ck δ̂N[C] =

√√√√ 1
N−1

∑N
k=1 ‖ [ck]− µ̂N[C]‖

2
F

‖µ̂N[C]‖
2
F

. (4.2.2)

In general, for any set of matrix realizations {[Ai] , i = 1, . . . , N} of any random matrix [A],
an index Iα measuring the proximity of the set of these realizations from those of the target
random matrix [C] can be defined as:

J α([A]) = (1− α)
‖µ̂N[A] − µ

N
[C]‖F

‖µ[C]‖F
+ α
|δ̂N[A] − δ[C]|

δ[C]
(4.2.3)

where α ∈ [0, 1].
In the current practice, the requirement on the parameter of dispersion defined by Eq. (4.2.1)

can be replaced by the following one:

E {ln [det ([C]))]} = ν[C] (4.2.4)

where ν[C] is an assigned constant such as ν[C] <∞ and ln is the natural logarithm. Indeed, it can
be shown that the relation (4.2.4) implies the square-integrability of the random matrix [C] (and
its inverse (Soize, 2000)). This means that (at least implicitly) the assignation of the parameter
δ[C] can be fixed through a suitable choice of the parameter ν[C] (with δ[C] = δ̂N[C](ν[C]) where

δ[C] designates the value of the function δ̂N[C] for the value (ν[C])) and vice-versa (see Guilleminot

and Soize (2012) for instance). Therefore, this implicit relation can be used for calibrating δ[C]

via ν[C]. Consequently, the index defined by Eq. (4.2.3) can be replaced by the one expressed
in terms of the proximity to the parameter ν[C] (see Soize (2000) for more details).

Even if that is not really necessary for defining the solutions of the assigned isotropy problem
in the following section, we will introduce to the reader to the general anisotropic problem
because it represents the archetypal framework which we will refer to in the next sections.

4.2.2 Anisotropic problem from a minimal available information

The general problem of the construction of a random matrix expressing the properties of an
elastic tensor (anisotropic case) can be set-up in the following terms.

We are interested in the construction of the probability distribution P[C] defined by probability
density function (hereafter denoted by PDF) p[C] ([c]) of a second order random matrix [C], the
support S of which, is represented by the open subset of M+

n (R) and the measure (volume
element) is denoted by d [C]:

[c] ∈ S 7→ p[C] ([c]) ∈ R+ P[C] := p[C] ([c]) d [C] ,

∫
S=M+

n (R)
p[C] ([c]) d [C] = 1. (4.2.5)

Since S is the set of symmetric-positive matrices, some algebra shows that d [C] can be
related to the product measure of its n × (n + 1)/2 diagonal and upper diagonal elements as
d [C] = 2n(n−1)/4

∏
1≤i,j≤n d [C]ij (see Soize (2000)).
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It is worthy to remark (already now) that this possibility to define the measure-element in S
as a function of the measure elements in a real space having as dimension the maximal number of
degree of freedom of the symmetrical matrix (Rn×(n+1)/2) is a key-ingredient that systematically
will appear in the next sections.

The general problem of the research the PDF of a random matrix with available information
on the first and second moment can be synthesized by the following system:

E{1S ([C])} = 1,

E([C]) = µ[C], where µ[C] ∈M+
n (R)

E{ln [det ([C]))]} = ν[C],
∣∣ν[C]

∣∣ <∞ (4.2.6)

where 1S (•) denotes the characteristic function of the set S.

Since the problem defined by the system (4.2.6) can generally admit an infinite solution, we
need of a method to choose one of them. The Maximum Entropy (denoted by MaxEnt) principle
which has been introduced firstly by Jaynes (Jaynes, 1957a,b) allows to select this PDF, among
all possible candidates as the one that maximizes a measure of uncertainty represented by the
Shannon’s entropy. This cost function has been introduced by Shannon some year before in the
the context of information theory (Shannon, 1948). The Shannon’s entropy in the case of the
random matrix theory can be defined as:

E
{
p[C] ([c])

}
:= −

∫
S

ln
(
p[C] ([c])

)
p[C] ([c]) d [C] . (4.2.7)

The PDF satisfying the MaxEnt principle is then defined by:

p∗[C] ([c]) = arg max
p∈Cadm

E
{
p[C] ([c])

}
(4.2.8)

where the operator arg max designates argument of the maximum, Cadm represents the set of
positive integrable PDF fulfilling the constraint of the available information given by (4.2.6).
In the constrained optimization problem given by (4.2.8), the Shannon’s entropy plays the role
of the Lagrangian and the constrains can classically taken into account by using Lagrange’s
multipliers method. According to this method, an augmented Lagrangian denoted by Laug can
be set-up by adding to the Lagrangian E the suitable internal-product (〈•, •〉) between each
constraint and quantities of the same specie (variables, vector, matrices), called Lagrange’s
multipliers (see Luenberger (1969) or (Kirk, 2004)).

The constraints given by (4.2.6) can be summarized by defining a function f : S 7→ R ×
M+
n (R)× R and a target value f tar ∈ R×M+

n (R)× R as:

f ([c]) =
{
f (0),

[
f(1)
]
, f (2)

}
([c]) := {1, [c] , ln [det ([c]))]} , f tar =

{
1, µ[c], ν[c]

}
. (4.2.9)

Than, the available information turns to be defined by:∫
S
f ([c]) p[C] ([c]) d [C] = f tar. (4.2.10)
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The augmented Lagrangian is defined by:

Laug
(
p[C]

)
= E

(
p[C]

)
−
{

(λ(0) − 1)
[∫
S p[C] − 1

]
+

+
〈[

Λ(1)
]
,
[∫
S [f] p[C] − µ[c]

]〉
+
(
1− λ(2)

) [∫
S f

(2)p[C] − ν[C]

]}
.

(4.2.11)

where the volume measure and the integration variable have been omitted for matter of com-
pactness. The Lagrange’s multipliers associated to the constrained given by (4.2.10) have been
respectively denoted by (λ(0) − 1),

[
Λ(1)

]
and (1 − λ(2)). The calculus of variation (i.e. Euler-

Lagrange equation) applied to (4.2.11) implies that the solution of the MaxEnt optimization
problem defined by (4.2.8) must have necessarily taken the following shape:

p
{λ(0),[Λ(1)],λ(2)}
[C] ([c]) = c0 × 1M+

n (R) ([c])× det ([C])λ
(2)−1 × exp

{
−
〈[

Λ(1)
]
, [c]

〉}
, (4.2.12)

where we have introduced the normalization constant c0 = exp
{
−λ(0)

}
.

The expression p
{λ(0),[Λ(1)],λ(2)}
[C] ([c]), represents a family of functions parametrized by{

λ(0),
[
Λ(1)

]
, λ(2)

}
and if it is integrable and normalized, it represents a probability density

function. If p{λ(0),[Λ](1),λ(2)} is supposed to be integrable as the normalization constant c0, and
consequently, the parameter λ(0) can be always implicitly fixed as a function of the other pa-
rameters

[
Λ(1)

]
, λ(2). Therefore, the integrability condition is uniquely based on the existence

of a non-empty set Dλ ⊆
{{[

Λ(1)
]
, λ(2)

}
,
{[

Λ(1)
]
, λ(2)

}
∈Mn × R

}
(Mn being the set of the

squared matrices of dimension n) where the parameters λ(2) and
[
Λ(1)

]
can be picked. For-

tunately, Dλ is not empty because PDF defined by (4.2.12) is integrable for λ(2) > 0 and[
Λ(1)

]
∈ M+

n (R) (see Siegle’s integral and generalized Gamma function in (Soize, 2000)). Fi-
nally, the constraints on the first and second order are satisfied if there exists some suitable
combination {

(
λ(2)

)∗
,
[
Λ(1)

]∗} ∈ Dλ. Thanks to some algebra (Cholesky’s decomposition of a
definitive positive matrix and characteristic function of the random matrix [C] (Soize, 2000)) it
can be found that these optimal parameters should satisfy the explicit relation with the data
µ[C] and δ[C]:

δ[C] =

 1

n− 1 + 2
(
λ(2)

)∗
1 +

tr
(
µ[C]

)2
tr
(
µ2

[C]

)
 , µ[C] =

n− 1 + 2
(
λ(2)

)∗
2

{[
Λ(1)

]∗}−1
.

(4.2.13)
Similarly, but simpler, the dependencies between the target values and optimal Lagrange’s

multipliers will appear for a specific material symmetry class.
In the next section we will approach the solution of the problem of defining the PDF of a

random matrix fluctuating in a prescribed space of symmetry.
More specifically, in the proposed procedure, the application of the MaxEnt principle is

gradually displaced from the level of the final non-Gaussian result ([M]) to the level of the
Gaussian component-vector (Ξ) shown in Fig. 4.1. In other terms, the procedure is disassembled
from outer layer of the Matryoshka scheme to the most intern one.
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4.3. Constraint on the subspace of a material symmetry class

Figure 4.1: Scheme for the construction of the matrix representation of a random elastic tensor
fluctuating inside a prescribed material symmetry class.

4.3 Constraint on the subspace of a material symmetry class

The concepts, we recall in the following, are borrowed from sect. 14, 15 and 16 of (Podio-
Guidugli, 2000). The classification of a linear elasticity tensor c consists in the search of the set
of antisymmetric tensor Q representing rotation satisfying the relation:

Q(cE)QT = c(QEQT ) ∀E ∈MS
3 (4.3.1)

having E the role of the symmetric part of the gradient of the deformation (E ∈ MS
3 ). For a

given tensor c, the collection Gc of admissible Q satisfying (4.3.1) is called symmetry group of
c. Hereafter the subset of M+

n (R) representing a tensor c that belongs to an assigned subset of
symmetry will be denoted by Msym

n (R) ([c] ∈Msym
n (R)).

Let us suppose that the random matrix M+
n (R)-valued [C] coincides with some Msym

n (R)-
valued random matrix [M] exhibiting a prescribed symmetry (with his mean value M ≡ C).
The available information to be submitted to the MaxEnt Principle can be updated to:

[M] -Max-Ent :


S[M] = Msym

n (R)

E{[M]} = [M]

E{ln (det ([M]))} = ν

. (4.3.2)

Let {bi}Ni=1 be the N elements of the orthogonal base representing the chosen symmetry
class, for instance, N = 2 for the isotropic symmetry class, N = 5 for the transverse isotropic
symmetry class, N = 9 for the orthotropic symmetry class, . . . , N = 21 for the fully anisotropic
case. Let {[bi]}Ni=1 their matrix representation in Msym

n (R) then the random matrix [M] can be
decomposed on these matrix-base as combination of an N -dimensional random vector defined
by M := (M1, . . . ,MN ) as follows:

[C] ≡ [M] =

N∑
i=1

Mi [bi] . (4.3.3)
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Since the base is fixed once and for all, the PDF of [M] (p[M]) is fully characterized by
that of M (pM ) provided with the preservation of the positivity constraint (the support of M
is given by SM = C+) of its linear combination with the base matrices (see Eq. (4.3.9))

C+ :=

{
m ∈ RN ,m 6= 0 |

N∑
i=1

mi [bi] is positive definite

}
. (4.3.4)

Equivalently, the information on the mean value of the random matrix [M] can be transferred
to the mean value of the random vector M :

[M] = E{[M]} = E{
N∑
i=1

Mi [bi]} =
N∑
i=1

E{Mi} [bi] =
N∑
i=1

M i [bi] , M = (M1, . . . ,MN ).

(4.3.5)

The constraint (4.3.4) is sufficient (see square-root matrix theorem (Gurtin, 1982)) for
splitting any realization of the square matrix [M] in the product of its square-root matrix

[M] = [M]1/2 [M]1/2.

The same decomposition applied to the main value [M] suggests another path:

[M] = [M]1/2 [M]1/2 = [M]1/2 [In] [M]1/2 (4.3.6)

where In denotes the matrix identity of dimension n. Indeed, it is possible to define an auxiliary
random matrix [N ] satisfying the condition:

[M] = [M]1/2 [N ] [M]1/2 (4.3.7)

and representable on the same base of [M]. Once the mean value of M is fixed, the MaxEnt
problem can be transferred to the normalized random matrix [N ].

4.3.1 Constraint on the subspace of a material symmetry class for the nor-
malized random matrix

The MaxEnt problem problem given by (4.3.2) can be replaced by:

[N ] -Max-Ent :


S[N ] = Msym

n (R)

E{[N ]} = [In]

E{ln (det ([N ]))} = νN , |νN | < +∞
. (4.3.8)

where νN is a quantity derived of ν from [M]. So, there exists a random vector N := (N1, . . . , )
such that:

[N ] =
N∑
i=1

Ni [bi] . (4.3.9)

Note that in the one-dimension case if N = X and M = aX, with the relation a ∈ R then
νN = νM − ln(a).
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4.3. Constraint on the subspace of a material symmetry class

The random matrix [N ] is defined on the same support as [M]. Nevertheless, a non-linear
transformation allows to relax this constraint (see further in this section).

The construction of [N ] can be indirectly provided by defining again another random matrix
[G] and setting [N ] as the matrix exponential of [G]:

[N ] = expm [G] , (4.3.10)

where expm( •) denotes the matrix exponential.

The existence of this matrix is ensured by the Prop. 2.1 given in (Guilleminot and Soize,
2013a) that we reported below.

Let [N ] ∈Msym
n (R) and {bi}Ni=1 be the matrix basis of Msym

n (R). Then there exists a unique

symmetric [G] ∈ span
(
{bi}Ni=1

)
such that:

[N ] = expm [G]. (4.3.11)

Note that the use of [G] supplies many advantages:

1. the definite positivity of [N ] is automatically ensured by the matrix exponential such as
expm (•);

2. [G] must not be necessarily positive definite;

3. [G] can be expanded on the same base as [N ] such as [G] =
∑N

i=1Gi [bi]

4. the coefficients Gi, i = 1, . . . , N of [G] are no longer constrained in proper subset of the
real numbers.

Therefore, the MaxEnt problem for [N ] as a function of [G] turns to be:

[N ] ([G]) -Max-Ent :

 E
{
expm

(∑N
i=1Gi [bi]

)}
= [In]

E
{

ln
[
det
(
expm

(∑N
i=1Gi [bi]

))]}
= νN , |νN | < +∞

(4.3.12)

Setting ti := tr([bi]) and applying some algebraic manipulations, the expression (4.3.12) can
be simplified in:

[N ] ([G]) -Max-Ent :

 E
{
expm

(∑N
i=1Gi [bi]

)}
= [In]

E
{∑N

i=1Giti

}
= νN , |νN | < +∞

. (4.3.13)

Note that in (4.3.13) the PDF of [N ] is obtained as a function of the PDF of the random
vector G.

The Max-Ent problem defined by (4.3.13) can be solved as usually (see sect. 4.2.2) by intro-
ducing two Lagrange’s multipliers

[
Λ(1)

]
and λ(2) which allow to take into account all constraints
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given by
[
Λ(1)

]
∈M+

n (R), λ(2) ∈ R). Moreover, a dimensional argument shows that a good rep-

resentation of
[
Λ(1)

]
has to belong to the subset Msym

n (R) ⊂M+
n (R). This remark implies that

it can be expanded on the same base than [N ]:[
Λ(1)

]
=

N∑
i=1

λ
(1)
i [bi] . (4.3.14)

Following the same path that the one of the fully anisotropic case (see sect. 4.2.2), the
solution of the MaxEnt problem must have the following algebraic expression:

pG(g) = c0 exp

{
−

〈
[Λ(1)], expm

(
N∑
i=1

gi [bi]

)〉
− λ(2) ·

N∑
i=1

giti .

}
(4.3.15)

As usually, the expression (4.3.15) represents a PDF if it is integrable and normalized. For this
reason, an admissible set of the Lagrange’s multipliers involved in (4.3.15) has to be defined.

For a matter of clarity, we list the LM in a vector denoted by λ :=
[
λ

(1)
1 , λ

(1)
1 , . . . , λ

(1)
N , λ(2)

]
.

The admissible set of the LM is denoted by Dλ ⊂ RN+1. It could be shown that Dλ is defined

by λ such that
[
Λ(1)

]
∈Msym

n (R) and λ(2) < 1 (see Guilleminot and Soize (2013a)).

Finally, before to define how to generate G, note that this procedure (see next section) can
be in principle used for N but it would perform less efficiently because the samples can fall
outside from the support of [N ] and should be rejected (see sect. 3.2.2 in (Guilleminot and
Soize, 2012) for instance).

4.3.2 Generation of the random vector G

The probability density function found for the random vector G gives a simplest algebraic
expression than the one of [N ] (see Eq. 2.34 in (Guilleminot and Soize, 2013a)). Indeed, it is
possible to isolate a function of G occurring as argument of the exponential function to interpret
and to use as potential -function in a Fokker-Planck-like (see Soize (1988)) convection-diffusion
equation whose stationary solution (steady-state) will fit with the PDF of G (provided with
some more technical hypothesis). In this case, the potential function is given by:

Φλ (u) =

{〈
N∑
i=1

λ
(1)
i [bi] , expm

(
N∑
i=1

ui [bi]

)〉
+ λ(2) ×

N∑
i=1

uiti

}
. (4.3.16)

Let Zλ be the random vector defined by the PDF pλ(u) : RN 7→ R+ given by:

pλ(u) = cλ exp−Φλ (u) (4.3.17)

(evidently Zλ ≡ G). It could be shown that, under some additive hypothesis on the the
potential Φλ (see below), Zλ can be obtained as steady state (in Markovian sense) stochastic
process driven by a specific Itô’s stochastic differential equation.

Let (Θ, T ,P) be an probability space. Let W =
(
W 1(r), . . . ,WN (r)

)
be a normalized-RN

Wiener process (see Lamberton and Lapeyre (2007); Krée (2012)) defined on (Θ, T ,P), i.e. a
RN valued centred second order Gaussian process having the following properties:
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1. W (0) = 0 almost surely;

2. W is a continuous process;

3. W has independent increments i.e. (W (r)−W (s)) ⊥ (W (s)−W (t)) ∀ 0 ≤ r ≤ s ≤ t;

4. the increments follow the Gaussian distribution given by (W (s)−W (s)) ,∼ N (0, t − s)
∀ 0 ≤ s ≤ t.

Note that sometimes called directly Brownian motion (Baldi, 1984; Gardiner, 1985), referring
to his archetypal physical application.

The properties just recalled are sufficient to rigorously characterize the expression of the
stochastic differential dW (r) and use the Itô’s calculus.

Let (U , V ) a Markov stochastic process defined by (Θ, T ,P) with values in RN × RN and
indexed by r ∈ R+ satisfying the Itô’s stochastic differential equation (ISDE):

∀r ∈ R+,

{
dU(r) = V (r) dr

dV (r) = −∇uΦλ (U(r)) dr − (f0/2)V (r) dr +
√
f0dW (r)

(4.3.18)

with the initial condition given by (U(0), V (0)) ≡ (U0, V 0) almost surely where U0 and V 0

are two given deterministic vectors of RN . The operator ∇u designates the gradient involving
differentiation with respect to the coordinate u. The parameter f0 is a free parameter (f0 >
0) allowing to increase speed of convergence towards an eventual steady state, by killing the
transient part of the evolution of the (U , V ) (see Soize (2008)).

Assumed the existence of the stationary distribution for the (U(r), V (r)) : pλS(du, dv) =
ρλS(u,v) du dv (where ρλS denotes its density). It can be shown that ρλS coincides with the steady
state solution the Fokker-Planck-equation (FkPE) (see Soize (2008) for details) reported below:

∑N
j=1

∂
∂uj

{
vjρ

λ
SFkP (u,v)

}
+
∑N

j=1
∂
∂vj

{(
− ∂
∂uj

Φλ (u)− (f0/2)vj

)
ρλSFkP (u,v)

}
+

−f0

2

∑N
j=1

∂2

∂v2j
ρλSFkP (u,v) ∀(u,v) ∈ RN × RN

(4.3.19)

The necessary conditions for this identification are:

u 7→ Φλ (u) continuous on RN ,
u 7→ ‖∇uΦλ (u) ‖RN is locally bounded function on RN

inf‖u‖RN>R Φλ (u)→ +∞ as R→ +∞
infu∈RN Φλ (u) = Φmin, Φmin ∈ R∫
RN ‖∇uΦλ (u) ‖RNpλ(u) du <∞

(4.3.20)

Under the conditions (4.3.20), the FkPE (4.3.19) has an unique stationary-solution given by:

ρλSFkP (u,v) = c̃λ exp−
{
Hλ(u,v)

}
, Hλ(u,v) =

1

2
‖v‖2RN + Φλ (u) (4.3.21)
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where Hλ represents the Hamiltonian associated with the FKPE and c̃λ is the normalization
constant of the joint distribution. Finally, taking the marginal density in u from the joint PDF
(4.3.21), we obtain the wished result:

∀u ∈ RN , pλ(u) := cλ exp−Φλ (u) ≡
∫
RN

ρλSFKP (u,v) dv ≡
∫
RN

ρλS(u,v) dv (4.3.22)

or in other terms the stationary marginal PDF of U coincides with that of the PDF of Zλ or
again U(r) converges in probability to Zλ:

lim
r→+∞

U(r)
p−→ Zλ. (4.3.23)

We can conclude ultimately that the random vector G can be deduced from the trajectories
of stochastic process U(r) driven by the Wiener process {W (r), r > 0} according to the ISDE
(4.3.18). This implicit relation between G and {W (r), r > 0} can be depicted by an implicit
(measurable) operator T :

G = T ({W (r), r > 0}) . (4.3.24)

Discretization scheme for the ISDE

Many schemes can be used to approximate (4.3.18). For instance, the most direct choice is the
explicit Euler’s scheme (see (Soize, 2008) or (Guilleminot and Soize, 2012)).

In this work, the Störmel-Verlet scheme (see (Verlet, 1967)) has been used as in Guilleminot
and Soize (2013a). The Störmer-Verlet scheme was used in (Verlet, 1967) in the same form
as centred finite differences for describing efficiently the motion of a big system of particles
(∼ 1000) interacting through the classical Lennard-Jones potential until achieving its steady
states. It is not strange that the same scheme could be useful for other Hamiltonian systems
as that described by (4.3.18) and even more for managing random correlated fields involving a
large number of points (see the section on Random fields).

For the case of Eq. (4.3.20), the Störmel-Verlet approximation is given by:

rk = (k − 1)∆r, ∀k = 1, 2...

Uk = U(rk),

V k = V (rk),

W k = W (rk),

a = f0∆r
4 ,


Uk+1/2 = Uk + ∆r

2 V
k(

Lk
)
j

= −
{
∂φλ(u)
∂uj

}
u=Uk

, j = 1, . . . N

V k+1 = a−1
a+1V

k + ∆r
1+aL

k+1/2 +
√
f0∆W k+1

Uk+1 = Uk+1/2 + (∆r/2)V k

(4.3.25)

where ∆r denotes the sampling step, rk the discrete time variable, ∆W k+1 is the Gaussian
independent increment of the Wiener process between rk+1 and rk and is got as:

∆W k+1 := W (rk+1)−W (rk) :=
√

∆rΞk+1 , ∀k ≥ 1 (4.3.26)

where Ξk+1 represents the (k + 1)-th copy of a RN valued second-order normalizes Gaussian
vector Ξ.
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The solution Zλ should be thought as:

Zλ := lim
∆r↓0

(
lim
rk→∞

U(rk)

)
(4.3.27)

and G as the result of a measurable operator T̃ acting on the normalized Gaussian vector
Ξ:

G = T̃
({

Ξk, k ≥ 1
})

. (4.3.28)

Finally, there is another practical reason to prefer this scheme to the standard one. Only
one iteration of this scheme is needed to transmit the random information from ∆W k to Uk

(being a second order differential equation, the standard scheme would need two iterations).

Remarks on convergence to the target In section 4.3.2, we discussed the procedure for
generating the the random vector G. Here we want to remark some crucial aspect concerning
these procedure. G coincides with Zλ for λ fixed in the admissible set Dλ, and this identification
is allowed only provided by Eq. (4.3.20) (that are defined λ-wisely). Whereas we are interested
to search the optimal λ∗ making G match the constraints Eq. (4.3.13), then the conditions
Eq. (4.3.20) have to be checked for any λ in Dλ.

4.3.3 Estimation of mathematical expectation

Convergence to the stationary regime

In order to compute the optimal Lagrange’s multipliers λ∗, the left side of the constraint on the
available information (see Eq. (4.3.13)) has to be estimated. This estimation can be performed
considering ns independent realizations Zλ(θ1),Zλ(θ2), . . . ,Zλ(θns)) of the random variable
Zλ obtained by

Zλ(θl) := U(r, θl) l = 1, . . . , ns, (4.3.29)

for r sufficient large. In the real calculation, however, the previous relation is replaced by the
discrete version of U(r, θl) :

Zλ(θl) := U(rk, θl) = Uk(θl) l = 1, . . . , ns, (4.3.30)

with k sufficient large, where Uk is defined in (4.3.25). In practice, two positive integers have
to be fixed: M,M0 < M (106 and 105 for instance) and the discrete ISDE (4.3.25) is solved for
rk = (k − 1)∆r on the interval [0, (M − 1)∆r]; the instant r0 = (M0 − 1)∆r is considered as
the first instant for which the stationary regime is reached. The convergence to the stationary
solution of the ISDE can be characterized by the map : k 7→ convMes(k), k = 1, . . . ,M

convMes(k) :=
1

k

k∑
i=1

‖U i(θl)‖2 . (4.3.31)

Therefore the maps defined in Eq. (4.3.31) is used for fixing M0.

159



Chapter 4. The Matr-yoshka paradigm.
Stochastic model for random matrices and fields with symmetry properties. Application to bone tissue.

Sampling for mathematical expectation

Let f (g) be the function that resume the left side of Eq. (4.3.13).

f (g) =
{[
f(1)
]
, f (2)

}
(g) =

{
N∑
i=1

gi [bi] ,
N∑
i=1

giti

}
(4.3.32)

The constraint in Eq. (4.3.32) is then defined by :

E {f (G)} = {In , νN } . (4.3.33)

Two possible strategies are available for computing the mathematical expectations E {f (g)}.

Ergodic method

The first one can be obtained by invoking the ergodic theorem for the process defined by the
Eq. (4.3.18). According to the property of ergodicity, a stochastic process will not change its
statistical properties with time and its moments (such as the mathematical expectation) can be
deduced sampling a single, sufficiently long trajectory of the process (Peebles et al., 2001). In
other terms the space-average can be replaced by the time-average:

E
{
f
(
Zλ
)}

= lim
T→+∞

1

T

∫ T

0
f (U(r, θl)) dr (4.3.34)

where U(r, θl) and f are defined respectively by Eq. (4.3.30) and Eq. (4.3.33). In practice the
E
{
f
(
Zλ
)}

can be estimate by the tail (beyond the stationary regime) of a discrete trajectory
of the ISDE:

ÊERG
{
f
(
Zλ
)}

=
1

M −M0 + 1

M∑
k=M0

f
(
Uk(θl)

)
. (4.3.35)

Monte Carlo method

The second method and more traditional and robust one is represented by the Monte Carlo
method. According to this approach, the average value of any function of a random vector
can be estimate by averaging the results of of the application of this function to independent
realizations of the random vector. In our case, the random vector is the Zλ in the stationary
regime. Let ns independent realizations Zλ(θ1),Zλ(θ2), . . . ,Zλ(θns)) of the random variable
Zλ defined in Eq. (4.3.29) then, the mathematical expectation Ê

{
f
(
Zλ
)}

is defined by

E
{
f
(
Zλ
)}

= lim
ns→+∞

1

ns

ns∑
l=1

f
(
Uk(θl)

)
. (4.3.36)

In practice ns (with ns sufficiently high) trajectories of the ISDE have to be computed until
r0, then average is estimated on the collection of these last ns values :

ÊMC
{
f
(
Zλ
)}

=
1

ns

ns∑
l=1

f
(
UM0(θl)

)
. (4.3.37)
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Remark
The ergodic method demand to stock only one trajectory and consequently is less expensive in
terms of allocation of memory than the Monte-Carlo method. The first one demands to select
the tail of a trajectory after having estimated the stationary regime on the same trajectory.
This necessarily need that the definition of stationary regime is given on the single trajectory.
Moreover, the estimation by ergodic method appers to be per se not parallelizable. Otherwise
the MC estimation is performed through independent trajectories that can be naturally be
assigned to an independent computational process. The stationary limit can be checked in
this case observing the stabilization of the estimate of Eq. (4.3.37) as function of M0. For the
research of the optimal λ∗, for the random matrix problem, both technique can be profitably
used. For the random matrix problem (see next section) one estimation of Ê

{
f
(
Zλ
)}

have to
be computed for each single point; in this case the memory became the computation bottleneck
and the ergodic method could be privileged.

4.4 From random matrix to random fields

In a typical scenario of modeling heterogeneous materials, a spatial domain Ω ∈ Rd, where
d = 1, 2, 3, is given and the mechanical properties of a mesh M := {xi, xi ∈ Ω} have to be
assigned to all the nodes of a mesh. Let’s suppose that the properties of each point xi of this
mesh belong to the same class of isotropy and imagine that they were produced randomly, then
the list of all properties of the mesh would represent one realization of a random fields with
assigned symmetry. Let {[M] (x), x ∈ Ω} note the random field with assigned symmetry class.
The good news is that such a basic realization of the random field can be simply built assigning
to each point a realization of a the random matrix [M] previously defined. The bad news
is that, since the realizations are independent (as a function of independent Gaussian vectors
Ξ), their assembly in form of field-realization will be spatially independent (and than spatially
uncorrelated). Another step of the Matr-yoska paradigm is required. The properties of the
random field {[M] (x), x ∈ Ω} with spatial correlation can be built as a result of the injection
of spatially correlated Gaussian field {Ξ(x), x ∈ Ω}. Different strategies are available to produce
this random field and can depend on the number of points of the field (Soize, 2006).

4.4.1 Small or moderate number of points

For small or moderate number of points standard techniques can be applied. Let np be the
number of points, the standard approach involves the definition of the covariance matrix [C]l ∈
Mnp relying each component of the field Ξl(xi), l = 1, . . . , N in terms of their relative distance:

[C]lij = Rl(xi − xj) (4.4.1)

modulated by an autocorrelation function Rl such that:

y ∈ Rd, Rl(y) := E
(

Ξl(x+ y)Ξl(x)
)
, (Rl(0)) = 1), lim

|y|→+∞
Rl(y) = 0. (4.4.2)
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Each component of the correlated random field Ξl(x) is got as a function of an uncorrelated

random field Ξ̃l
l
(x) (as that earlier presented) in this way:

Ξl(x) = [L]Ξ̃l
l
(x) (4.4.3)

where [L] is factor-matrix resulting by the Cholesky’s factorization of the covariance matrix

([C]l = [L]l
T

[L]l).

4.4.2 Large number of points

For fields with a large number of points an approach derived from the signal theory can be
followed. In this case the autocorrelation function Rl(y) can be assigned by applying the Inverse
Fourier Transform of the power spectral density (PSD) function Sl(k) of the Gaussian field
Ξl(x):

Rl(y) =

∫
Rd

exp {i〈y, k〉}Sl(k) dk . (4.4.4)

The previous operation gives explicit solution of Rl(y) in some noteworthy case. For instance,
an useful choice for Rl can be given by:

Rl(y) =
d∏
i=1

rlj(yj), y = (y1, y2, . . . , yd) ∈ Rd (4.4.5)

with the relations:

rlj(yj) :=


(

2Llj
πyj

)2

sin

(
πyj
2Llj

)2

∀yj 6= 0 ;

1 if yj = 0 .

(4.4.6)

where Llj , j = 1, . . . d are constant parameters allowing to scale spatially Rl(y) and conse-
quently can be interpreted as autocorrelation lengths.

The PDF corresponding to the autocorrelation function Rl(y) is given by:

Sl(k) =
∏d
j=1 s

l
j(kj)

slj(kj) :=


Llj
π

(
1−

∣∣∣∣kjLljπ ∣∣∣∣) if

∣∣∣∣kjLljπ ∣∣∣∣ < 1

0 otherwise

j = 1, . . . , d

(4.4.7)

Each function slj(kj) is a rescaled version of the function:

q(τ) :=

{
(1− |τ |) |τ | < 1

0 otherwise
(4.4.8)

that can be discretized, by symmetrically discretizing the interval (−1, 1).
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4.4. From random matrix to random fields

Then, fixing a even integer ν the discrete version the interval (−1, 1) is given by the sampling
point τ1, . . . τν with constant step ∆ = 2/ν:

τβ = −1 +

(
β − 1

2

)
2

ν
, β = 1, . . . ν . (4.4.9)

The discretized version of the variable kj is then given by kjβ = π
τβ
Llj

, and the corresponding

values slj (kjβ) are given by:

slj (kjβ) =
Llj
π∆

Sβ , Sβ =
2

ν
q (τβ) , β = 1, . . . ν . (4.4.10)

Given the mesh-points M :=
{
x1, . . . , xnp : xj ∈ Ω ⊂ Rd

}
, let xi = (x1

i , . . . , x
np
i ), i = 1, . . . , d

denote the list formed by the component i of all mesh-points; then the ν-order approximation
Ξ̂
ν

of the field Ξ on the mesh M is got by the expression:

Ξ ∼ Ξ̂
ν

(Ψβ1...βd ,Φβ1...βd) =
∑ν

β1=1 . . .
∑ν

β1=1

√
2Sβ1 × · · · × Sβ1 · ln

√
−Ψβ1...βd ·

· cos
{

Φβ1...βd + π
L1
τβ1x1 + · · ·+ π

Ld
τβdxd

} (4.4.11)

as a function of a set of uniform independent random variables {Ψβ1...βd , Φβ1...βd}β1...βd such
that Ψβ1...βd ∼ U[0,1],Φβ1...βd ∼ U[0,2π].

Some example of one component of the the random fields Ξ̂
ν

is depicted in Fig. (4.2).

The three examples have been produced according with the following settings:

(a) Ω = [0, 4]3, L1 ≡ L2 ≡ L3 = 1, np = 4913, ν = 30 ;

(b) Ω = [0, 2]× [0, 4]× [0, 6], L1 = 1, L2 = 2, L3 = 3, np = 3825, ν = 10 ;

(c) Ω = [0, 10]3, L1 ≡ L2 = 1, L3 = 10, np = 68921, ν = 10 .

To highlight the smoothness of the spatial gradient of the Gaussian field, the iso-surfaces are
traced.

Remark The construction of random fields of matrix with assigned symmetry is follows quite
straightforwardly that of homologous random matrices. We recall briefly the step chain to be
accomplished.

Algorithm for the random matrices

1. collect Gaussian independent random variable
{
Ξk, k ≥ 1

}
;

2. fix the ML λ and run a number of trajectory (according to the choice of the the Ergodic
or Monte-Carlo estimation) of the discrete ISDE Zλ = T̃

({
Ξk, k ≥ 1

})
;
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Figure 4.2: Drawing of some example of realization of random field with spatial correlation.
Three iso-surfaces of these fields are plotted.

3. fit the ML λ∗ to make the cost-index match the prescribed constraints G = Zλ
∗

=
T̃
({

Ξk, k ≥ 1
})

;

4. evaluate N (G) ;

5. reconstruct M from N .

Algorithm for the random matrix fields

1. collect a set of Gaussian independent Random Fields
{{

Ξk(x), x
}
, k ≥ 1

}
;

2. fix the ML λx and run a number of trajectory (according to the choice of the the Er-
godic or Monte-Carlo estimation) of the discrete ISDE for each point x of the field:
Zλx = T̃

({
Ξk(x), k ≥ 1

})
;
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3. fit the ML λ∗x to make the cost-index match the prescribed constraints G(x) = Zλ
∗
x =

T̃
({

Ξk(x), k ≥ 1
})

.

4. evaluate N (x) form G(x) ;

5. reconstruct M(x) from N (x).

4.5 Applications to random matrices

In this next sections, we will apply the procedure recalled in the previous section to some
specific classes. Hereafter, the notation [•] denotes the Kelvin’s representation of the tensors
(see Appendix A). The reason for doing so is that the multiplication tables in symmetry-groups
provided by Walpole can be used directly.

4.5.1 Isotropic class

Any isotropic elastic tensor can be expanded on a base of two orthogonal tensors {bi}2i=1 (see
Appendix B):

[M] = M1 [b1] +M2 [b2] , with M1,M2 > 0. (4.5.1)

From Walpole (1984), we know that b1 and b2 are commutative projectors such as:

I = b1 + b2, (4.5.2)

where I denotes the 4th-order identity tensor whose the definition is given in Appendix B. These
operators satisfy the multiplication rules:

(bi)
2 = bi, i = 1, 2 and b1b2 = b2b1 = o (4.5.3)

We want to show that there exists [G] satisfying expression (4.3.10) in the isotropic case.
Let’s suppose that exists [G] = G1 [b1] +G2 [b2] than by definition we have:

expm[G] =
∑∞

k=0
[G]k

k! = [i] + [G]1 + [G]2

2! + · · · =
= [i] + (G1 [b1] +G2 [b2]) + (G1[b1]+G2[b2])2

2! + · · · =
= [b1] + [b2] +

(
G1 [b1] + (G1[b1])2

2! + . . .
)

+
(
G2 [b2] + (G2[b2])2

2! + . . .
)

=

=
(

1 +G1 + (G1)2

2! + . . .
)

[b1] +
(

1 +G2 + (G2)2

2! + . . .
)

[b2]

= expG1 [b1] + expG2 [b2] .

(4.5.4)

Then, given [N ] = N1 [b1] + N2 [b2], it exists [G] such that [N ] = expm[G] and can be
expanded on the same base. The coefficients of [N ] = N1 [b1] +N2 [b2] can be rewritten as:

N1 = expG1, N2 = expG2. (4.5.5)

The PDF of [N ] (G) is obtained particularizing the expression of the potential Eq. (4.3.16) to
the current case:
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Φλ (g) =
{〈∑N

i=1 λ
(1)
i [bi] , expm

(∑N
j=1 gj [bj ]

)〉
+ λ(2) ×

∑N
i=1 giti

}
=
{〈∑N

i=1 λ
(1)
i [bi] ,

∑N
j=1 exp gj [bj ]

〉
+ λ(2) ×

∑N
i=1 giti

}
=
{∑N

i=1 λ
(1)
i exp gi(t

2)i + λ(2) ×
∑N

i=1 giti

} (4.5.6)

where we have (t2)i = tr[bi]
2.

In the isotropic case, thanks to Eq. (4.5.3), it results that:

tr[bi]
2 ≡ tr[bi], tr[b1] = 1, tr[b2] = 5. (4.5.7)

The potential and its gradient become:

Φλ (u) =
{(
λ

(1)
1 expu1 + λ(2)u1

)
+ 5

(
λ

(1)
2 expu2 + λ(2)u2

)}
, (4.5.8)

∇uΦλ (u) =

[
λ

(1)
1 expu1

5× λ(1)
2 expu2

]
+ λ(2)

[
1

5

]
. (4.5.9)

The final form of the PDF is therefore:

pλG(g) := cλ exp−
{(
λ

(1)
1 exp g1 + λ(2)g1

)
+ 5

(
λ

(1)
2 exp g2 + λ(2)g2

)}
. (4.5.10)

For a fixed λ = [λ
(1)
1 , λ

(1)
2 , λ(2)], the PDF pλG(g) is obtained as stationary measure of (4.3.18)

according to the potential given by Eq. (4.5.9). The proof of existence of the stationary solution
associated with this potential (i.e. verification of Eq. (4.3.25)) is given in the Appendix of
Guilleminot and Soize (2013a).

Nevertheless, a generic λ does not solve yet the MaxEnt problem for [N ] (G). The condition
(4.3.13) written for the isotropic case has the following form:

{
E{[N ] (G)} = E{N1 (G)} [b1] + E{N2 (G)} [b2]

[I6] = [b1] + [b2] = 1 [b1] + 1 [b2]

E{1×G1 + 5×G2} = ν[N ]

(4.5.11)

and then we get the final system:

E{expG1} = 1,

E{expG2} = 1,

E{G1}+ 5× E{G2} = ν[N ].

(4.5.12)

The final value for the PDF pλ
∗
G ofG is found by minimizing a strictly convex penalty function

(Iα (λ) , α ∈ (0, 1)) of the distance of the generic pλG from the target defined by Eq. (4.5.12)
over the admissibility set of Lagrange’s multipliers:

λ∗ = arg min
λ∈Dλ

Iα (λ) , Iα (λ) := (1− α)
||ê(λ)− e||2

||e||2
+ α

(
ν̂[N ](λ)− ν[N ]

)2
ν2

[N ]

(4.5.13)
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where e and ν[N ] are the right side of the constraints defined by (4.5.12); ê(λ) and ν̂[N ] represent
the Monte Carlo estimation of the left side of (4.5.12) according to the choice of a sampling
method for the ISDE (using the ergodicity of this ISDE or simply the independence of its
trajectories (see sect. 4.3.3).

The admissible set of the LM in this case is defined by:

Dλ =
{
λ =

[
λ

(1)
1 , λ

(1)
1 , λ(2)

]
∈ R3, λ

(1)
1 , λ

(1)
2 > 0, λ(2) < 0

}
. (4.5.14)

The admissible set given by (4.5.14) for the ML is found by analysing the form of the PDF
(4.5.10) by imposing its integrability. First, the PDF can be separated in the product of two
functions depending on only one variable of g1 or g2, highlighting the stochastic independence
of the two components of the random vector G:

pλG(g) : = p

{
λ
(1)
1 ,λ(2)

}
G1

(g1)× p
{
λ
(1)
2 ,λ(2)

}
G2

(g2)

p

{
λ
(1)
1 ,λ(2)

}
G1

(g1) = cG2 × exp
{
−
(
λ

(1)
1 exp g1 + λ(2)g1

)}
p

{
λ
(1)
2 ,λ(2)

}
G2

(g2) = cG2 × exp
{
−5×

(
λ

(1)
2 exp g2 + λ(2)g2

)} (4.5.15)

where cG1 and cG2 are normalization constants such that cG1 × cG2 = cλ. Second, by applying
the transformation [G1, G2]→ [N1, N2] (4.5.5), we can obtain the PDF of N1 and N2 as:

p

{
λ
(1)
1 ,λ(2)

}
N1

(y) = cG1 × 1R+(y)× exp (−λ(1)
1 y)× y−λ(2)−1

p

{
λ
(1)
2 ,λ(2)

}
N2

(y) = cG2 × 1R+(y)× exp (−5λ
(1)
2 y)× y−5λ(2)−1

(4.5.16)

and, by comparison with the PDF of a Gamma random variable Y ∼ Γα,β (which is integrable
for α, β > 0)

pY (y) :=
1

Γ(α)
1R+(y)

yα−1 exp (−y/β)

βα
, (4.5.17)

where Γ(α) is the Gamma function which is obtained from:

N1 ∼ Γα1,β1 , with (α1, β1) =

(
−λ(2), 1

λ
(1)
1

)
N2 ∼ Γα2,β2 , with (α2, β2) =

(
−5× λ(2), 1

5×λ(1)2

) (4.5.18)

and the integrability condition λ
(1)
1 , λ

(1)
2 > 0, λ(2) < 0.

Remark Since the expected value of a Gamma random variable Y ∼ Γα,β is given by E{Y } =
αβ, the constraints on the expected value of N1 and N2 turns to a parametric constraint among
the ML parameters:

λ
(1)
1 = −λ(2)/N1 = −λ(2) , λ

(1)
2 = −λ(2)/N2 = −λ(2) . (4.5.19)
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These conditions have be satisfied by the optimal ML. It is would verified only in the idealized
case consisting in estimation on a huge set if samples of the ISDE in a perfectly stationary
solution. Nevertheless, since the condition allows to drive a 3d-space of parameter from only the
parameter λ(2), it is useful for selecting appropriately good initial solution for the optimization
procedure. Moreover, it is worthy to note that the condition (4.5.19) somehow represents an
homologue condition of that found for the anisotropic case in (4.2.13).

Remark We recall that we want to collect realizations of the [M] random matrix. Each of
them can be reconstructed in this way:

[M] (ak) = M1N1(ak) [b1] +M2N2(ak) [b2] . (4.5.20)

The cost index in (4.5.13) is defined with respect to the parameter to the ν[N ] that indirectly
fixes the constraint δ[M]. Nevertheless, we are really interested to fix this last parameter then
a modified version of the index function is needed to complete the problem. We propose to use
the following one:

Jα (λ) := (1− α)
||ê(λ)− e||2

||e||2
+ α

(
δ̂[M](λ)− δ[M]

)2

δ2
[M]

(4.5.21)

where δ[M] can be can be directly expressed as a function of N1, N2,M1 and M2. Firstly,
we can note that the square of Frobenius’ norm of the matrix representation [M ] of an isotropic
tensor can be written as:[

nisoF
]2

(m) := ‖ [M ] ‖2F ≡ (t2)1 × (m1)2 + (t2)2 × (m2)2 = 1× (m1)2 + 5× (m2)2 (4.5.22)

where m = [m1, m2] is the vector of the coefficients of its expansion on the basis. Then, we
obtain the wished expression:

δ̂2
[M] (λ) =

Ê(‖[M]−[M]‖2F )
‖[M]‖2F

=
Ê
{
[nisoF ]

2
([M1(N1−1),M2(N2−1)])

}
[nisoF ]

2
([M1M2])

=

=
Ê{(M1)2(N1−1)2+5(M2)2(N2−1)2}

(M1)2+5(M2)2 .

(4.5.23)

Using this specific expression for the dispersion of a matrix instead of the standard one is
evidently more advantageous in terms of computational time because it doesn’t requires any
computation of the whole matrix and neither matrix multiplications. The current definition of
dispersion has been applied in the section on numerical results. Equivalent versions of (4.5.22)
can be found for the other isotropy classes.

4.5.2 Transversely isotropic class

Firstly, we will pay attention to specializing (4.3.13) to the current case. We will proceed
fixing the symmetry axis en in the third direction e3 the specific transverse isotropic group
hereafter has been noted as TI(e3) (the 4-th order representation is given in Appendix B. Note
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that is not restrictive because any other representation can be reduced to this choice by the
composition with two independent rotations of the Euclidean space. The matrix representation

associated with the current subset is noted as MTI(e3)
6 . Specifically, we will refer to the Kelvin’s

representation in the next calculation. Since the transversely isotropic material class, as any
group of symmetry, includes the identity, the first step for setting the available information is to
give the representation (by projecting) of the identity in that subspace (or at least in the chosen
representation). This means find the N i coefficients in the following expression:

I6 = [N ] = E{[N ]} =
5∑
i=1

N i [bi] N i := E{Ni} . (4.5.24)

Since the representation {[bi]}Ni=1 is orthogonal but not orthonormal, we obtain:

N i =
〈I6, [bi]〉
‖ [bi] ‖2F

=
ti

(t2)i
(4.5.25)

Therefore, for the subspace MTI(e3)
6 , we obtain:

{ti}5i=1 = {1, 1, 0, 2, 2} ,
{
t2i
}5

i=1
= {1, 1, 2, 2, 2} (4.5.26)

and the coefficients of the identity are given by:

{N i}
5
i=1 = {1, 1, 0, 1, 1} . (4.5.27)

From the multiplication rules on MTI(e3)
6 in Kelvin’s notation (see (Walpole, 1984)), we know

that for any matrix [A] ∈ MTI(e3)
6 is possible to give the following symbolic expression on this

coefficients, reflecting the underlying algebra:

[A] := {[A123], A4, A5} , [A123] :=

[
A1 A3

A3 A2

]
(4.5.28)

provided by this commutative multiplication rule with any other matrix B ∈MTI(e3)
6 :

AB = {[A123][B123], A4B4, A5B5} (4.5.29)

The previous expression is sufficient for ensuring that:

expm{A} = {expm{[A123]}, expA4, expA5 .} (4.5.30)

Than let {Ni}5i=1 be the coefficients of [N ] (N4, N5 > 0, [N 123] > 0) exists another set of
coefficients {Gi}5i=1 defining [G] on the same base of [N ] such that [N ] = expm[G] and their
coefficients can be arranged according to Eq. (4.5.30). The same evidently results for the target
{N i}

5
i=1. The information constraint on the first moment can be resumed as:

E



[
N1 N3

N3 N2

]
N4

N5

 = E


expm

[
G1 G3

G3 G2

]
expG4

expG5

 =


[

1 0

0 1

]
1

1

 . (4.5.31)
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The constraint on the second moment, by means of Eq. (4.5.26), turns to:

E{G1 +G2 + 2(G4 +G5)} = ν[N ] . (4.5.32)

Equations (4.5.31) and (4.5.32) represent the homologue conditions of Eq. (4.5.12) for the
transverse isotropic case.

Let’s focus now on the specification of the potential function Eq. (4.3.16). We consider the
original form:

Φλ (u) =

{〈[
Λ(1)

]
, expm

(
N∑
i=1

ui [bi]

)〉
+ λ(2) ·

N∑
i=1

uiti

}
. (4.5.33)

The LM
[
Λ(1)

]
, as already remarked, belongs to the same subspace of its counterparts MTI(e3)

6

than it can be rewritten in the form defined by (4.5.29) as:

[
Λ(1)

]
:=
{[

Λ
(1)
123

]
,Λ

(1)
4 ,Λ

(1)
5

}
,
[
Λ

(1)
123

]
:=

[
λ

(1)
1 λ

(1)
3

λ
(1)
3 λ

(1)
2

]
, (4.5.34)

with det
[
Λ

(1)
123

]
> 0,Λ

(1)
4 > 0,Λ

(1)
5 > 0.

Applying (4.5.26) and (4.5.29) to the dual product of
[
Λ(1)

]
and [N ], we obtain the first

part of the expression at (4.5.33):〈[
Λ(1)

]
, [N ]

〉
=
〈[

Λ
(1)
123

]
, [N 123]

〉
+ 2λ4N4 + 2λ5N5 (4.5.35)

and the potential turns to be:

Φλ (u) =

〈[
λ

(1)
1 λ

(1)
3

λ
(1)
3 λ

(1)
2

]
, expm

[
u1 u3

u3 u2

]〉
+

+2λ
(1)
4 expu4 + 2λ

(1)
5 expu5 + λ(2)[u1 + u2 + 2(u4 + u5)]

(4.5.36)

This gradient becomes :

∇uΦλ (u) =





λ
(1)
1 n1(g) + λ

(1)
3 n3(g)

λ
(1)
2 n2(g) + λ

(1)
3 n3(g)(

λ
(1)
1 + λ

(1)
2

)
n3(g) + λ

(1)
3 (n2(g) + n3(g))

2λ
(1)
4 n4(g)

2λ
(1)
5 n5(g)


|g=u

+ λ(2)


1

1

0

2

2





T

(4.5.37)

where (n1, n2, n3, n4, n5) depend on (g1, g2, g3, g4, g5) through:[
n1 n3

n3 n2

]
= expm

{[
g1 g3

g3 g2

]}
, n4 = exp g4, n5 = exp g5 . (4.5.38)
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The final result can be expressed more compactly as:

∇uΦλ (u) = λT



n1 n3

n2 n3

n3 n3 n1 + n2

n4

n5

1 1 0 2 2


(u) (4.5.39)

The admissibility set for the LM is defined by:

Dλ = { λ = [λ
(1)
1 , λ

(1)
2 , λ

(1)
3 , λ

(1)
4 , λ

(1)
5 , λ(2)] ∈ R6 :

λ
(1)
1 λ

(1)
2 −

(
λ

(1)
3

)2
> 0,

λ
(1)
4 , λ

(1)
5 ,−λ(2) > 0,

λ
(1)
4 = λ

(1)
5 = −λ(2)

} (4.5.40)

where the conditions λ
(1)
4 , λ

(1)
5 ,−λ(2) > 0, λ

(1)
4 = λ

(1)
5 = −λ(2), as in the isotropic case, come

from the observation that:

Ni ∼ Γαi,βi for i = 4, 5 where (αi, βi) =

(
−2λ(2),

1

2λ(1) i

)
. (4.5.41)

The proof of the existence of the stationary solution associated to this potential should be
verified (see Eq. (4.3.20)). Actually, it can be shown that numerical solutions for λ in Dλ
attains stationary regime for standard indicators of convergence. As in the isotropic case, the
Frobenious’s norm can be used to define a version of the dispersion depending by the coefficient
of the matrix [N ] and the constants of [M]:[

nTI
F

]2
(m) := ‖ [M ] ‖2F ≡ 1×

(
(m1)2 + (m1)2

)
+ 2×

(
(m3)2 + (m4)2 + (m5)2

)
(4.5.42)

where we have used the expression of the trace defined by (4.5.26).

4.5.3 Orthotropic class

The construction of the information constraints and the potential function in the orthotropic
case is exactly the same as that found for the transverse isotropic case. In the following we
report only the final results and the main variations. An orthotropic material, as all others
symmetry classes, is completely defined by its base. This, in turns is completely defined by
three orthonormal axis (a,b, c). Hereafter, we will refer to O(a,b, c) to indicate the set of
elastic tensors belonging to the Orthotropic symmetry with respect to the axis (a,b, c). In the
next calculation have been performed on O(e1, e2, e3). The matrix representation associated to

the current subset is noted as MO(e1,e2,e3)
6 . As before, we used the Kelvin’s representation in the

next calculation. As usual, the first step is the representation of the identity matrix on the 9
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elements of the orthotropic base (see Appendix B). The coefficients of I6 (and then of [N ]) are
found as a function of the trace of [bi] and [bi]

2 for i = 1, . . . , 9:

{ti}9i=1 = {1, 1, 1, 0, 0, 0, 1, 1, 1} ,
{
t2i
}9

i=1
= {1, 1, 1, 2, 2, 2, 1, 1, 1} (4.5.43)

N i =
ti

(t2)i
, {N i}

9
i=1 = {1, 1, 1, 0, 0, 0, 1, 1, 1} . (4.5.44)

For any [A] ∈ MO(e1,e2,e3)
6 , from (Guilleminot and Soize, 2013b), we know that is possible

to give an symbolic expression of its coefficients (equivalent to Eq. (4.5.28) in the transversely
isotropic case), reflecting the underlying algebra (4.5.45) and repeat the same steps seen for
(4.5.30):

{[A1,...,6] , A7, A8, A9} , [A]1,...,6 =

 A1 A4 A6

A2 A5

Sym A3

 . (4.5.45)

Let [N ] be the random matrix valued in MO(e1,e2,e3)
6 , whose the mean value is given by [N ].

Let {Ni}9i=1 be its coefficients then by (4.5.45), it admits the representation given by:

{[N 1,...,6] , N7, N8, N9} , [N 1,...,6] =

 N1 N4 N6

N2 N5

Sym N3

 (4.5.46)

and, since the matrix is definite positivity, their coefficients must satisfy N7, N8, N9 >
0, [N 1,...,6] > 0. In the same way exists [G] such that [N ] = expm[G] and can be decom-
posed on the same base of [N ]. The set of its coefficients {Gi}9i=1 can be equivalently arranged
as:

{[G1,...,6] , G7, G8, G9} , [G1,...,6] =

 G1 G4 G6

G2 G5

Sym G3

 . (4.5.47)

The constraint on the first moment can be resumed as:

E



 N1 N4 N6

N2 N5

Sym N3


N7

N8

N9


= E



expm

 G1 G4 G6

G2 G5

Sym G3


expG7

expG8

expG9


=



 1 0 0

0 1 0

0 0 1


1

1

1


. (4.5.48)

The constraint on the second moment, by means of (4.5.43), turns to:

E{G1 +G2 +G3 +G7 +G8 +G9} = ν[N ] . (4.5.49)
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Let’s focus now on the specification of the potential function (4.3.16). As before, the La-

grange’s multipliers associated with [N ] belong to MOrtho(e1, e2, e3)
6 and benefit form the algebraic

decomposition:

{[
Λ

(1)
1,...,6

]
, λ

(1)
7 , λ

(1)
8 , λ

(1)
9

}
,
[
Λ

(1)
1,...,6

]
=

 λ
(1)
1 λ

(1)
4 λ

(1)
6

λ
(1)
2 λ

(1)
5

Sym λ
(1)
3

 . (4.5.50)

As consequence of (4.5.46), (4.5.47) and (4.5.50), the potential function assumes the algebraic
form:

Φλ (u) =

〈 λ
(1)
1 λ

(1)
4 λ

(1)
6

λ
(1)
2 λ

(1)
5

Sym λ
(1)
3

 , expm
 u1 u4 u6

u2 u5

Sym u3

〉+

+λ
(1)
7 expu7 + λ

(1)
8 expu8 + λ

(1)
9 expu9+

+λ(2)[u1 + u2 + u3 + u7 + u8 + u9]

(4.5.51)

Its gradient assumes the form given by:

∇uΦλ (u) = λT



n1 n4 n6

n2 n4 n5

n3 n5 n6

n4 n4 n1 + n2 n6 n5

n5 n5 n6 n2 + n3 n4

n6 n6 n5 n4 n1 + n3

n7

n8

n9

1 1 1 1 1 1



(u) (4.5.52)

where (n1, n2, n3, n4, n5, n6, n7, n8, n9) depend on (g1, g2, g3, g4, g5, g6, g7, g8, g9) through: n1 n4 n6

n2 n5

Sym n3

 = expm


 g1 g4 g6

g2 g5

Sym g3


 ,

n7 = exp g7,

n8 = exp g8,

n9 = exp g9

. (4.5.53)

The admissibility set for the LM is defined by:

Dλ = { λ = [λ
(1)
1 , λ

(1)
2 , λ

(1)
3 , λ

(1)
4 , λ

(1)
5 , λ

(1)
6 , λ

(1)
7 , λ

(1)
8 , λ

(1)
9 , λ(2)] ∈ R10 :

det
[
Λ

(1)
1,...,6

]
> 0,

λ
(1)
7 , λ

(1)
8 , λ

(1)
9 ,−λ(2) > 0,

λ
(1)
7 = λ

(1)
8 = λ

(1)
9 = −λ(2)

} (4.5.54)

173



Chapter 4. The Matr-yoshka paradigm.
Stochastic model for random matrices and fields with symmetry properties. Application to bone tissue.

where the conditions λ
(1)
7 = λ

(1)
8 = λ

(1)
9 ,−λ(2) > 0 and λ

(1)
7 = λ

(1)
8 = λ

(1)
9 = −λ(2), as in the

isotropic case, come from the remark that:

Ni ∼ Γαi,βi for i = 7, 8, 9 where (αi, βi) =

(
−λ(2),

1

λ(1) i

)
. (4.5.55)

As in thetransversely isotropic case, the Frobenious’s norm can be used to define a version
of the dispersion depending on the coefficient of the matrix [N ] and the constants of [M]:[

northoF

]2
(m) : = ‖ [M ] ‖2F

≡ 1×
(
(m1)2 + (m2)2 + (m3)2 + (m7)2 + (m8)2 + (m9)2

)
+

+2×
(
(m4)2 + (m5)2 + (m6)2

) (4.5.56)

where we have used the expression of the trace defined in (4.5.43).

4.6 Numerical results

The procedure detailed in the preceding section has been applied to some case of study.

4.6.1 Examples of random matrices for the isotropic material class

The following elaborations refer to the statistics collected in the previous chapter starting from
stochastic homogenization method. In this chapter, a four-scale description of cortical bone was
proposed in (Sansalone et al., 2010). Below the organ scale, at the scale of several hundreds
micrometers (tissue scale), cortical bone (CB) was considered as constituted of Haversian pores
(HP) embedded in a solid matrix called ultrastructure (US). At the scale of a few tens microm-
eters (US scale), US was considered as made up of collagen (Col) fibers embedded in a mineral
foam (MF). We re-proposed them in Tab. 4.1.

Table 4.1: Average tensors of three homogenized materials: mineral foam (MF), ultra-structure
(US) and cortical bone (CB). Coefficients of the representations on the respective basis.

Coeff.s of [C∗] ∈ Iso c1 c2

(≡ 3×K) (≡ 2×G)

units [GPA] [GPA]

µ̂N[CMF ] 27.701 8.016

Coeffs of [C∗] ∈ TrIso(e3) c1 c2 c3 c4 c5

units [GPA] [GPA] [GPA] [GPA] [GPA]

µ̂N[CUS]
15.734 19.334 9.542 7.392 7.421

µ̂N[CCB ] 14.382 16.890 8.499 5.944 6.292

We applied the Matr-yoshka paradigm to the case of isotropic mineral foam detailed in
Tab. 4.1. The available information is defined by (M1,M1) = (27.701, 8.016) [GPa] and δ[M] =
0.2033. The trajectories of the discrete ISDE have been computed with the parameters given
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Table 4.2: Overall measure of variation of stochastic tensor of for mineral-foam (MF), ultra-
structure (US) and cortical bone (CB), resulting from the stochastic model.

δ̂N[CMF] δ̂N[CUS] δ̂N[CCB]

0.2033 0.1265 0.1435

by ∆r = 10−3, f0 = 1 with the initial condition U0 = (0, 0) and V 0 = (0, 0). The Lagrange’s
Multipliers have been initially fixed to the values:

λinit = [λ
(1)
1 , λ

(1)
2 , λ(2)] , λ

(1)
1 = λ

(1)
2 = −λ(2) = 5.0700., (4.6.1)

The convergence to the stationary solution of the ISDE has been confirmed evaluating the
map k 7→ convMES(k) defined by (4.3.31) on the interval k ∈

{
1, . . . , 10× 106

}
. Figure 4.3

depicts the evolution of the map k 7→ convMES(k) and that of its maximum and minimum
values. It is seen that the convergence of the stochastic process is obtained for M0 ≥ 106. The
optimization of the Lagrange’s multipliers has been then performed with respect this choice of
parameters M0 = 1 × 106, M = 2 × 106 and the ergodic estimation (4.3.35) has been used for
approximating the constraints. Figure 4.4 shows the probability density functions for the vector
[G1, G2] on the interval [M0,M ] corresponding to the initial LM. The first instants of evolution
of [Uk

1,V
k] after k = M0 have been depicted too. The index cost used for fitting the LM is

given by (4.5.21) with the definition of dispersion given by (4.5.23), where the parameter α has
been fixed to a value of 0.6. The unconstrained-optimization Matlab-function fminsearch(•) has
been used for minimizing the cost-index with respect to λ. The solution Lagrange multipliers
are found to be λ∗ = [4.4828, 4.4631,−4.4631] corresponding to a value of the index function of
J0.6 (λ∗) = 2.55 × 10−6. More details on the estimations of the constraints are synthesized in
Tab. 4.3.

Figure 4.3: Evolution of the map k 7→ convMes(k) defined by (4.3.31) for k = 1, . . . , 107.
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Figure 4.4: PDF of the couple [G1, G2] corresponding to the initial Lagrange’s multiplier(left)
on the interval k ∈ [M0,M ]. Evolution of the couple [Uk

1,V
k] for the first instants after k =

M0(right).

Table 4.3: Results of the optimization of the index function through MATLAB Optimization
toolbox. Evolution of the cost index defined by (4.5.21).

λinit λ∗

5.0700 4.4828

5.0700 4.4631

−5.0700 −4.4631

Target value estim. estim.

E{expG1} 1 1.0019 0.9977

E{expG2} 1 1.0015 1.0017

δ[M] 0.2033 0.1921 0.2038

Index Index

6.0632e-04 2.5493e-06

[M]- Target value estim. estim.

M1 27.701 27.7529 27.6383

M2 8.016 8.0283 8.0298

δ[M] 0.2033 0.1921 0.2038

4.6.2 Example of the random field for isotropic material class

In this section, we want to give an example of a realization of random field for the isotropic case.
As in the homologous section on the isotropic matrix, we model the mineral foam corresponding
to the Tab. 4.1. Specifically we want to depict one realization of the resulting field corresponding
to the bulk and shear moduli (K(x) and µ(x) respectively) as function of their mean values ( k
and µ) and the realization of the ISDE to the Gaussian fields with correlation lengths. In the
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current study, the domain Ω = [0, 4]3 has been regular discretized in np = 173 = 4913 points

and the approximations K̂(x)
ν

and µ̂(x)
ν

have been computed. We summarized below the key
steps performed to complete this task. We recall that the matrix field [M] (x):

[M] (x) = M1(x) [b1] +M2(x) [b2] , [M] (x) = [M]1/2 [N ] (x) [M]1/2 (4.6.2)

Thanks to the specific structure of the representation of the isotropic basis, M1(x) and
M2(x) are the auto-values of multiplicity 1 and 5 relative to orthogonal spaces (the spheric and
deviatoric one) than, the operation of square root returns simply

[M]1/2 =
√
M1 [b1] +

√
M2 [b2]

thanks to the product rule, we obtain:

[M] (x) = M1N1(x) [b1] +M2N2(x) [b2] =

= 3 kN1(x)︸ ︷︷ ︸
K(x)

[b1] + 2µN2(x)︸ ︷︷ ︸
µ(x)

[b2] = (4.6.3)

The bulk and shear fields formally result from the expression given by:

K(x) = kN1(x) = k expG1(x) µ(x) = µN1(x) = k expG1(x) . (4.6.4)

The realization of the field G(x) = [G1, G2](x) in the previous expression is found as usually
by applying (4.3.28) given by G = T̃

({
Ξk, k ≥ 1

})
.

Specifically, an approximation Ξ̂
ν

of the 2-dimensional Gaussian field Ξ on the cubic regular

mesh has been computed. Both his components Ξ̂1
ν
(x), Ξ̂2

ν
(x) have been simulated with the

same autocorrelation length L1 = L2 = L3 = 1 and parameter ν = 30 (see sect. 4.4).

The realization of the approximation Ĝ(x)ν has been computed by applying one iteration of
the discretized isotropic- ISDE with the optimal LM found for random isotropic matrices (see

previous section) to the Ξ̂
ν
.

{
Ξ̂
ν
, x
}
→ 1-step-iso.-ISDE→

{[
Û(x)

ν
, V̂ (x)

ν](1)
, x

}
→
{
Ĝ(x)

ν
, x
}(1)

. (4.6.5)

Finally, the realization
{
K̂(x)

ν
, x
}(1)

and
{
µ̂(x)

ν
, x
}(1)

have been found by:

{
K̂(x)

ν
, x
}(1)

=
{
k exp

{
Ĝ1(x)

ν
,
}
, x
}(1){

µ̂(x)
ν
, x
}(1)

=
{
µ exp

{
Ĝ2(x)

ν
,
}
, x
}(1) , . (4.6.6)

The results concerning the bulk and shear fields are depicted in Fig. 4.5.
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Figure 4.5: Random fields with spatial correlation. Regular discretization of the set Ω = [0, 4]3

in np = 4913 points. On the top the components of the auxiliary Gaussian random fields Ξ̂1
ν
(x)

and Ξ̂2
ν
(x) simulated with the same autocorrelation length L1 = L2 = L3 = 1 and parameter

ν = 30. On the bottom the realizations of the bulk modulus random field K(x) and the
shear modulus random field µ(x) corresponding to the auxiliary random fields. The isosurfaces
corresponding to the estimated quantiles q = 5%, 25%, 50%, 75% and 95% are added.

4.7 Conclusion and perspective

In this chapter, a general framework (re-baptised Matr-yoska paradigm) of the modeling random
matrices and fields exhibiting assigned material symmetry has been exposed. The method intro-
duced by other authors (Guilleminot and Soize, 2013a) has been applied to isotropic composite of
the nanometric mineral foam ensuring the matching with statistical constraints becoming from
other studies (micro-mechanical homogenization). The optimization of Lagrange’s multipliers
has been applied to an original cost function specifically simplified for the isotropic case. The
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method, even though, was originally defined for all symmetry classes, (Guilleminot and Soize,
2013a) has been applied to the isotropic class. Here, we provided the necessary calculation (gra-
dient of the potential function, admissibility domain for the Legrange’s multipliers) for being
applied in future in modeling other typical classes concerned in bone anisotropy (transversely
isotropic and orthotropic material symmetry classes).

4.8 Appendix

A Kelvin’ representation of a 4th-order tensor

The elastic tensor c is defined as a 4th-order tensor in the tridimensional space describing the
linear relation between the strain tensor E and the stress tensor S. This relation takes the form:

S = c : E, Sk` = ck`mnEmn, (4.8.1)

where the symbol “:” between two tensors denotes a double contraction of adjacent indexes of
tensors of rank two and higher.

The 3 symmetry conditions (minor and mayor) must be considered on the elastic tensor c
(Podio-Guidugli, 2000):

ck`mn = ck`nm, ck`mn = c`kmn, ck`mn = cmnk`. (4.8.2)

The second and fourth rank tensors in three dimensions are represented in a Euclidian six-
dimensional space as vectors and tensors, respectively. To this end, the representation adopted
in this work is called the Kelvin’s representation in which the new indexes I et J vary in the
set {1, ..., 6} such as I = (k, `) and J = (m,n) where the indices k, `,m and n vary in the set
{1, ..., 3}. The relation between these indices is the following 1 = (1, 1), 2 = (2, 2), 3 = (3, 3), 4 =
(2, 3), 5 = (1, 3) and 6 = (1, 2). So, the symmetric matrix c̃ associated with c is defined via
these components by:

c̃IJ = ck`mn. (4.8.3)

The linear relation between the strain and stress vectors takes the form:

S11

S22

S33√
2S13√
2S23√
2S12


=



c̃11 c̃12 c̃13

√
2c̃14

√
2c̃15

√
2c̃16

c̃21 c̃22 c̃33

√
2c̃24

√
2c̃25

√
2c26

c̃31 c̃32 c̃33

√
2c̃34

√
2c̃35

√
2c̃36√

2c̃41

√
2c̃42

√
2c̃43 2c̃44 2c̃45 2c̃46√

2c̃51

√
2c̃52

√
2c̃53 2c̃54 2c̃55 2c̃56√

2c̃61

√
2c̃62

√
2c̃63 2c̃64 2c̃65 2c̃66





e11

E22

E33√
2E13√
2E23√
2E12


(4.8.4)

The transformation of the three-dimensional second rank tensor components to six-dimensional
vector components is directly assured by these relations and vice versa. In particular, (Mehrabadi
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and Cowin, 1990) have shown that the 1/2 factor introduced on the three shear moduli ofc̃ en-
sures that c̃ is a tensor in Euclidian six-dimensional space. In addition, the

√
2 factor on the

vectors S̃ whose the components are defined by [S11, S22, S33,
√

2S13,
√

2S23,
√

2S12] or Ẽ guar-
antees that the scalar product of the six dimensional vectors is equal to the trace of the product
of the corresponding second rank tensors S̃ · Ẽ = Tra(S E) where Tra is the trace operator.

In the text body, the notation tilde has been dropped.

B Representation of classes of material symmetry

In this section, we resume the representation of the symmetry class of isotropic materials used
(1) for describing the result of micro-mechanical homogenization and (2) for approaching the
problem of the of classification of the results of the FE and FFT methods. For a wider overview
on other isotropic classes we refer to the works of (Walpole, 1984) and (Guilleminot and Soize,
2013b). In our presentation, N represent the number of necessary and sufficient coefficients
ci and elements of the orthogonal base (but generally non orthonormal) {bi} for the complete
definition of a isotropic symmetry class, denoted by S. For instance N = 5 for a material in the
transverse isotropic symmetry class, N = 9 for the orthotropic one and N = 2 for an isotropic
one, and so on. This decomposition in the base is given by:

cS :=
N∑
i=1

ci bi . (4.8.5)

Isotropic material

An isotropic material is completely defined by two coefficients c1 and c2 in its base:

[b1]ijkl = (1/3)δijδkl

[b2]ijkl = [I]ijkl − [b1]ijkl
(4.8.6)

where [I] denotes the fourth order symmetric identity tensor : [I]ijkl = 1/2(δijδkl + δikδjl) and
δij designates the Kronecker’s symbol.

The projectors bq, q = 1, 2 satisfy the relation:

(bq)
2 = bq, q = 1, 2. (4.8.7)

Indeed, for q = 1, we have:[
b2

1

]
ijmn

=
∑3

k`

(
1
3δijδk`

) (
1
3δk`δmn

)
= 1

9δijδmn
∑3

kl δk` =

= 1
9δijδmn × 3 = 1

3δijδmn = [b1]ijmn
(4.8.8)

The two coefficients c1 and c2 can be related with other couples of coefficients as Lamés
coefficients, or in the alternative way with Young’s coefficient and Poisson’s ratio, according
well known functions. For instance, it results that c1 = 3×K and c2 = 2×G where K and G
are respectively the bulk and shear moduli.
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Transversely isotropic material

A transversely isotropic material is completely defined by the direction of its axe of symmetry,
hereafter noted en. Once en has been assigned, any transverse isotropic tensor is fully defined
by:

p = en ⊗ en, b1 = p⊗ p;

q = i− p, b2 = q⊗ q;

b3 = 1√
2

(p⊗ q + q⊗ p) ;

b4 = q� q− b2;

b5 = i� i− b1 − b2 − b4;

(4.8.9)

where the i represents the second order identity tensor and the products ⊗ and � operate as:

(g ⊗ f)ij = gifj ;

[p⊗ q]ijkl = [p]ij [q]kl ;

[p� q]ijkl = 1
2

(
[p]ik [q]jl + [p]il [q]jk

)
.

(4.8.10)

Throughout this work, the Haversian Porosity has been assumed to be aligned in the e3

direction and the direction of the collagen molecules aligned to the direction of the HP. As
consequence of the Mori-Tanaka scheme (MTs) of cylindrical inclusions in the e3 direction and
the micro-mechanical model of the Ultra-Structure transverse isotropic in the direction en = e3.
For the same reason, the application of the MTs to the cylindrical pores and the ultrastructure
matrix produce a transverse isotropic (in the en = e3 direction) model of cortical bone.

We note TI(en) the set of elastic tensors belonging to the symmetry transverse isotropic with
axe en.

Orthotropic material

An orthotropic material is defined as a function of an orthonormal base described from the
3 vectors a,b and c. The nine base-tensors of 4-th order are given as function of its axis of
symmetry. The general representation is given by:
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b1 = e11, e11 = (a⊗ a)⊗ (a⊗ a);

b2 = e22, e22 = (b⊗ b)⊗ (b⊗ b);

b3 = e33, e33 = (c⊗ c)⊗ (c⊗ c);
b4 =

(
e12 + e21

)
/2, e12 = (a⊗ a)⊗ (b⊗ b)

e21 = (b⊗ b)⊗ (a⊗ a);

b5 =
(
e23 + e32

)
/2, e23 = (b⊗ b)⊗ (c⊗ c)

e32 = (c⊗ c)⊗ (b⊗ b);

b6 =
(
e13 + e31

)
/2, e13 = (a⊗ a)⊗ (c⊗ c)

e31 = (c⊗ c)⊗ (a⊗ a);

[b7]ijkl = (aibj + ajbi) · (akbl + albk);

[b8]ijkl = (bicj + bjci) · (bkcl + blck);

[b9]ijkl = (aicj + ajci) · (akcl + alck).

(4.8.11)

where the used products are defined in Eq. (4.8.10). We denote by O the set of elastic tensors
belonging to the orthotropic symmetry class with respect to the axis (a,b, c). This class is
denoted by O(a,b, c).
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Biomécanique 2015 28-30 October 2015 Paris FRA.

� D. Gagliardi, V. Sansalone, C. Desceliers, G. Häıat and S. Naili, Prise en compte des
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Abstract

The hierarchical structure of bone tissues, as well as the heterogeneity and anisotropy of its
physical properties and the uncertainty on in vivo experimental measures make it impossible
to establish a deterministic reliable model of bone mechanical properties. Aiming at providing
a valuable aide to diagnostics in orthopaedic, the purpose of this thesis is to develop a robust
mechanical model able to account for the experimental uncertainty.

Therefore we developed a multi-scale stochastic model, based on continuum micromechan-
ics and maximum entropy principle which has proved effective predicting the heterogeneous
and anisotropic elastic properties of bone tissue at the organ scale accounting for experimental
uncertainty affecting image-based input data.

Aiming to clarify the mechanism of propagation of these uncertainties through the chosen
principal multi-scale model, others versions have been analyzed. First, the principal model,
which uses the volume fractions of the essential constituents (mineral, water, collagen), as pri-
mary variables, has been analyzed scale-by-scale (mineral foam, ultra-structure, cortical bone).
The effect of the chosen homogenization methods and volume fractions on the resulting com-
posites (as layers of a random Matryoshka) have been discussed. Thanks to this analysis, this
model has been simplified and relied directly to the measures straightly accessible form medical
imaging of the bone: the tissue mineral density (TMD) and the haversian porosity (HP) and
their calibration at sub-millimeter scale. This version of the stochastic model, proved to be as
accurate as the proceeding one and, more effective in the description of the bone.

Finally, the stochastic model of bone has been completed with the direct modeling of the
elastic tensors of the involved materials. For this purpose, the random matrix theory has been
applied. This theory can be seen as another declination of the matryoshka paradigm. In this
case, the uncertainty on the random tensor propagate from the inside (random germ) to outside
(each layer of random matrix) through a suitable sequence of nonlinear operations. Thanks to
the proposed decomposition, at once, the isotropic material class of the resulting material and
his spatial variability has been included in the model.

Keywords: Stochastic modeling, Multi-Scale models, Homogenization methods, Continuum
micromechanics, Elasticity, Uncertainty quantification, Maximum entropy (Max-Ent) principle,
Bone, Tissue mineral density, Haversian porosity, Microtomography.





Résumé

Non seulement la structure hiérarchisée du tissu osseux mais aussi son hétérogénéité, son
anisotropie et les incertitudes expérimentales de mesures liées aux matériaux vivants rendent en
pratique impossible la définition d’un modèle déterministe fiable de ses propriétés matérielles.
Dans une démarche d’aide au diagnostic clinique, l’objectif de cette thèse est de développer
une modélisation robuste desdites propriétés à l’échelle de l’organe en intégrant l’incertitude
expérimentale de mesures.

Pour ce-faire, nous avons développé un modèle multi-échelle stochastique basé sur le principe
du maximum d’entropie et des méthodes d’homogénéisation en champs moyens (micromécanique)
qui s’est montré capable de prédire les propriétés matérielles du tissu osseux à l’échelle de l’or-
gane en prenant en compte les incertitudes expérimentales de données issues de l’imagerie. Dans
la perspective d’identifier le mécanisme de propagation de l’incertitude à travers le modèle multi-
échelle, plusieurs versions de ce modèle ont été analysées.

Le modèle principal utilise comme variables primaires la fraction volumique des constituants
essentiels (le minéral, l’eau et le collagène) pour lesquelles une discussion est proposée échelle
par échelle en examinant leur effet sur les propriétés effectives à chaque échelle. Cette description
est à l’image d’une matryoshka, plus communément appelée poupée russe, via l’aspect multi-
échelle. Chaque matryoshka est une série de poupées de tailles décroissantes placées les unes
à l’intérieur des autres. Grâce à cette analyse, cette version du modèle a pu être liée de façon
directe aux mesures expérimentales issues de l’imagerie médicale que sont la densité minérale
du tissu (TMD) et la porosité haversienne (HP) de l’os cortical lors d’une calibration à l’échelle
millimétrique. Cette version a été validée en utilisant plusieurs méthodes numériques telles que
la méthode aux éléments finis et la méthode de la transformée de Fourier rapide. On a ainsi pu
non seulement évaluer la précision de la méthode proposée mais aussi analyser le processus de
transfert d’incertitudes entre les échelles.

Enfin, la modélisation stochastique de l’os cortical a été complétée en introduisant des champs
de tenseurs d’élasticité des matériaux impliqués dans le processus d’homogénéisation pour l’ob-
tention des propriétés effectives. L’incertitude est introduite via un tenseur aléatoire et se pro-
page spatialement en respectant des longueurs de corrélation et en une suite de réalisations. Ici
encore, cette approche peut être vue comme une déclinaison des matryoshka via les champs de
tenseurs d’élasticité qui se déclinent dans la procédure stochastique.

Mots clefs : Modélisation Stochastique, Modélisation Multi-Échelle, Élasticité, Méthodes d’Ho-
mogénéisation, Micromécanique, Quantification de l’Incertitude, Principe du maximum d’entro-
pie (Max-Ent), Os, Densité minérale du tissu, porosité Haversienne, Microtomographie.
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