
HAL Id: tel-01563302
https://theses.hal.science/tel-01563302v1

Submitted on 17 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Shift spaces on groups : computability and dynamics
Sebastián Andrés Barbieri Lemp

To cite this version:
Sebastián Andrés Barbieri Lemp. Shift spaces on groups : computability and dynamics. Computation
and Language [cs.CL]. Université de Lyon, 2017. English. �NNT : 2017LYSEN021�. �tel-01563302�

https://theses.hal.science/tel-01563302v1
https://hal.archives-ouvertes.fr

Numéro National de Thèse : 2017LYSEN021

Thèse de Doctorat de l’Université de Lyon

opérée par,

l’École Normale Supérieure de Lyon

École doctorale InfoMaths No 512
École doctorale en Informatique et Mathématiques de Lyon

Spécialité de doctorat : Informatique

Soutenue publiquement le 28 juin 2017 par,

Sebastián Andrés BARBIERI LEMP

Shift spaces on groups:

computability and dynamics
Calculabilité et dynamique des sous-décalages sur des

groupes

Devant le jury composé de :

Berthé, Valérie Directrice de Recherche, Université Paris Diderot - Paris 7 rapporteure

Marcus, Brian Professeur, University of British Columbia rapporteur

Petite, Samuel Mâıtre de Conférences, Université de Picardie Jules Verne rapporteur

Aubrun, Nathalie Chargée de Recherche, ENS de Lyon co-encadrante

De Cornulier, Yves Chargé de Recherche, Université Paris-Sud membre

Ghys, Étienne Directeur de Recherche, ENS de Lyon membre

Jeandel, Emmanuel Professeur des Universités, Université de Lorraine membre

Thomassé, Stéphan Professeur des Universités, ENS de Lyon directeur

Résumé

Les sous-décalages sont des ensembles de coloriages d’un groupe définis en
excluant certains motifs, et munis d’une action de décalage. Ces objets ap-
paraissent naturellement comme discrétisations de systèmes dynamiques :
à partir d’une partition de l’espace, on associe à chaque point de ce-dernier
la suite des partitions visitées sous l’action du système.

Plusieurs résultats récents ont mis en évidence la riche interaction entre la
dynamique des sous-décalages et leur propriétés algorithmiques. Un exem-
ple remarquable est la classification des entropies des sous-décalages mul-
tidimensionnels de type fini comme l’ensemble des nombres récursivement
énumérables à droite. Cette thèse s’intéresse aux sous-décalages avec une
approche double : d’un côté on s’intéresse à leurs propriétés dynamiques
et de l’autre on les étudie comme des modèles de calcul.

Cette thèse contient plusieurs résultats : une condition combinatoire suff-
isante prouvant qu’un sous-décalage dans un groupe dénombrable est
non-vide, un théorème de simulation qui réalise une action effective d’un
groupe de type fini comme un facteur d’une sous-action d’un sous-décalage
de type fini, une caractérisation de l’effectivité à l’aide de machines de
Turing généralisées et l’indécidabilité du problème de torsion pour deux
groupes, qui sont invariants de systèmes dynamiques.

Comme corollaires de nos résultats, nous obtenons d’abord une preuve
courte de l’existence de sous-décalages fortement apériodiques sur tout
groupe dénombrable. Puis, dans le cas d’un produit semi-direct de la
grille bidimensionnelle avec un groupe de type fini avec problème du mot
décidable, nous montrons que le sous-décalage obtenu est de type fini.

Abstract

Shift spaces are sets of colorings of a group which avoid a set of forbid-
den patterns and are endowed with a shift action. These spaces appear
naturally as discrete versions of dynamical systems: they are obtained by
partitioning the phase space and mapping each element into the sequence
of partitions visited by its orbit.

Several breakthroughs in this domain have pointed out the intricate rela-
tionship between dynamics of shift spaces and their computability prop-
erties. One remarkable example is the classification of the entropies of
multidimensional subshifts of finite type as the set of right recursively
enumerable numbers. This work explores shift spaces with a dual ap-
proach: on the one hand we are interested in their dynamical properties
and on the other hand we study these objects as computational models.

Four salient results have been obtained as a result of this approach: (1) a
combinatorial condition ensuring non-emptiness of subshifts on arbitrary
countable groups; (2) a simulation theorem which realizes effective actions
of finitely generated groups as factors of a subaction of a subshift of finite
type; (3) a characterization of effectiveness with oracles using generalized
Turing machines and (4) the undecidability of the torsion problem for two
group invariants of shift spaces.

As byproducts of these results we obtain a simple proof of the existence of
strongly aperiodic subshifts in countable groups. Furthermore, we realize
them as subshifts of finite type in the case of a semidirect product of a d-
dimensional integer lattice with a finitely generated group with decidable
word problem whenever d > 1.

Sommaire

Résumé 2

Abstract 3

Introduction en français v

Introduction in english xiv

1 Shift spaces 1

1.1 Subshifts in groups . 2
1.1.1 Symbolic morphisms . 4
1.1.2 Dynamical properties . 6

1.2 Classes of subshifts . 9
1.2.1 Subshifts of finite type . 9
1.2.2 Sofic subshifts . 14
1.2.3 Effectively closed subshifts . 16

2 Free actions and densities in subshifts 24

2.1 Non-empty strongly aperiodic subshifts 25
2.1.1 Lovász local lemma . 27
2.1.2 A non-empty strongly aperiodic subshift over {0, 1} in any

countable group. 28
2.1.3 A graph-oriented construction and some computational properties 29

2.2 Realization of densities . 33

3 A simulation theorem for actions of finitely generated groups 43

3.1 Introduction: simulation theorems . 43
3.2 Substitutions and Toeplitz configurations 47

3.2.1 Substitutions . 47
3.2.2 Toeplitz configurations . 49

3.3 The simulation theorem . 50
3.3.1 A set of Z2-substitutions which are permuted by actions of

Aut(Z2). 51
3.3.2 Encoding configurations in Toeplitz sequences. 54
3.3.3 Proof of Theorem 3.7 . 57

3.4 Consequences and remarks . 62

i

3.4.1 The simulation theorem for expansive effective dynamical systems 63
3.4.2 Existence of strongly aperiodic SFT in a class of groups ob-

tained by semidirect products 65
3.4.3 A generalization and comments on the size of the extension . . 67

4 A new notion of effectiveness for subshifts in groups 68

4.1 The One-or-less subshift . 69
4.2 G-effectiveness and G-machines . 70

4.2.1 Application: a simulation theorem with oracles 78
4.3 Separating sofic and effective subshifts 84

5 Computability in group invariants of shift spaces 89

5.1 Two group invariants of shift spaces 91
5.2 Computability properties . 94

5.2.1 Computability in the topological full group 97
5.2.2 Computability in the automorphism group 105

Conclusions et perspectives en français 112

Conclusions and perspectives 115

A Computability 117

A.1 Languages and Turing machines . 117
A.2 Computable functions, sets and numbers 120

A.2.1 Oracles and reductions . 121

B Group Theory 123

B.1 Basic definitions . 123
B.1.1 Group homomorphisms . 124
B.1.2 Free groups and presentations 125
B.1.3 Cayley graph and generator metrics 126
B.1.4 Recursive presentations and the word problem 126

B.2 Classes of groups . 129
B.2.1 Abelian groups . 129
B.2.2 Amenable groups . 129
B.2.3 Residually finite groups . 131

C Dynamical Systems 132

C.1 Dynamical systems and topological morphisms 132
C.2 Expansive, equicontinuous and distal systems 133
C.3 Entropy . 135

Bibliography 137

ii

List of Figures

1 Une partition de X en deux sous-ensembles, et le codage associé de
l’orbite de x ∈ X . vi

2 Une configuration d’un Z2-sous-décalage défini par motifs interdits. . vii
3 Le graphe de dépendance des chapitres. xii
4 Diagrammes indiquant proportionnellement les connaissances requises

pour chacun des chapitres. xiii
5 A partition of X into two parts and a coding of the orbit of x ∈ X . . xv
6 A configuration of a Z2-subshift defined by forbidden patterns. xvi
7 The dependence graph of the chapters xx
8 Pie charts indicating the percentage of knowledge required in each

subject for every chapter . xxi

1.1 A configuration x ∈ {�,�}Z
2/20Z2

and its image by σ(10,18). 2
1.2 The majority rule sliding block code acting on a Z2 configuration. . 4
1.3 From left to right: An aperiodic, periodic, strongly periodic and uni-

form configuration in {�,�}Z
2
. 6

1.4 A configuration in the Ledrappier subshift. 10
1.5 If the set C is interpreted as a finite set of colors, a Wang tile defined

by a tuple (tN , tW , tS, tE) of colors and can be represented as shown. 12
1.6 A tileset τ and a partial valid tiling of the plane. 12
1.7 The transformation of a forbidden pattern into a Wang tile. 13
1.8 SFT extension for X≤1 in the case of a free group. 15
1.9 Configuration in the mirror shift and technique showing non-soficity. . 19

2.1 The set of Robinson tiles up to rotation and reflection. 25
2.2 A macrotile appearing in the Robinson tiling. 26
2.3 Two colorings of C5. The left is not square-free and the right one is. . 30
2.4 In green, an example of 2-covering and 2-separating set in PSL(2,Z) ∼=

Z/2Z∗Z/3Z. Green vertices are at distance at least 3 from each other,
and every vertex is at distance at most 2 from a green vertex. 35

2.5 A covering forest of G. In the left section of the image the edge struc-
ture is emphasized by writing the parent functions explicitly. In the
right section we remark the cluster structure for g ∈ A2. 37

2.6 A path from an element h of Cn(g) to g which inductively proves the
inclusion Cn(g) ⊂ BS(g, 1

2
(5n − 1)). 38

iii

3.1 A substitution rule r generating a side of Koch’s snowflake [Koc06]. . 47
3.2 First four iterations of the Sierpiński triangle substitution. 48
3.3 The patterns or order 3 and 4 of sv for v = (1, 1). 52
3.4 The diagram for the proof of Theorem 3.15. 64

4.1 A fixed head transition of an F2-machine. 73
4.2 A moving head transition of a Z2-machine. 73
4.3 Construction of the machine M as a multiple head G-machine. 76
4.4 Example of a configuration of Y2 for the group Z2 with the canonical

generators. The symbols 0, 1 and 2 are represented by the colors ,
and respectively. 79

4.5 A typical configuration in U ⊆ ({•, ⋆,⊕,⊲} ∪ S)× {0, 1, 2}G×Z. Sym-
bols on the left side of the picture correspond to the first coordinate of
the configuration, and the part in {0, 1, 2}G×Z is on the right. On the
example, the bottom ⊕ is the n-th appearence after ⋆. 81

4.6 A sofic subshift which doubles its period. 84

5.1 Basic coding of the construction. The outer ring of 1s (blue) codes the
boundary of the cell and the state. The middle ring of 0s separates the
zones. The inner ring (green) codes the information. 101

5.2 An example of macrotile M(t) of side M = 6. The red arrows rep-
resent the function left(t) = (1, 0) while the blue arrows represent
right(t) = (0, 1). The bottom left black square represents b5,1 = 1. . 103

5.3 A finite word in A∗ is divided into zones by the third tape. The dashed
lines separate each zone and the colours indicate which tape is being
pointed at by the arrow next to the state. 109

5.4 Every zone is wrapped around as a conveyor belt, where φ(T) acts as
if it were T seeing a periodic word. 110

A.1 A Turing machine transition where δ(�, q) = (�, r,+1). 118
A.2 A representation of the transition function of a machine deciding L. . 119

C.1 The application of Arnold’s cat transformation on “The Hermitage
Court Outrunner Cat” by Eldar Zakirov 132

iv

Introduction

Dans sa définition classique, un système dynamique consiste en un couple (X, T),
où X est un ensemble et T : R+ × X → X est une fonction décrivant l’évolution
des éléments de X au cours du temps. Ces objets mathématiques sont intéressants
non seulement en tant que tels, mais aussi parce qu’ils permettent de décrire des
phénomènes physiques, comme par exemple le comportement du système solaire,
l’évolution d’un écosystème au cours du temps, les variations de concentration d’un
molécule donnée dans un mélange chimique soumis à la chaleur, ou encore la trajec-
toire d’une particule chargée dans un champ magnétique.

D’un point de vue strictement mathématique, il n’y a aucune justification théorique
à limiter l’étude des systèmes dynamiques à ceux définis avec un temps continu :
un système peut tout aussi bien être analysé à pas de temps discrets. De plus,
si l’évolution du système est reversible, alors son action peut être modélisée par un
groupe abstrait agissant sur l’ensemble X. Cette modification est tout à fait naturelle
si l’on s’intéresse à l’action conjointe de plusieurs homéomorphismes T1, . . . , Tn, qui
en plus d’agir sur le même espace X satisfont un ensemble de relations R. Ces ac-
tions et leurs relations peuvent s’exprimer par l’action d’un groupe T : G y X
où G ∼= 〈T1, . . . , Tn | R〉 et T (Ti1 · · · · · Tik , x) = Ti1 ◦ · · · ◦ Tik(x). Par exemple, si
la seule relation T1 ◦ T2 = T2 ◦ T1 existe, alors l’action conjointe de T1 et T2 peut
être étudiée comme une Z2-action sur X. Ceci justifie pleinement l’étude du cas
général, pour un système dynamique, d’un groupe dénombrable arbitraire agissant
sur l’espace.

Ces systèmes peuvent se révéler difficiles à étudier, et tout un panel d’outils a
été développé afin d’améliorer leur compréhension. Une approche particulièrement
intéressante considère une partition finie de l’ensemble X, et code chaque élément de
l’ensemble X par la suite des partitions visitées par son orbite. On retrouve cette
idée originellement dans les travaux d’Hadamard [Had98], qui étudie les géodésiques
de surface de courbure négative. Cette idée sera fréquemment réutilisée par la suite,
mais la première étude véritablement dédiée à cette technique se trouve dans le travail
fondateur de Morse et Hedlund [HM38]. Leur article ≪Symbolic dynamics≫ présente
la première description systématique de ce qui était jusqu’alors une technique utilisée
de manière sporadique pour étudier les propriétés de récurrence dans les systèmes
dynamiques.

Avant d’introduire la dynamique symbolique dans le cas général, définissons plus
précisément ce qui est entendu par codification d’un système dynamique par une
partition. Prenons le cas particulier où T est une Z-action par homéomorphismes
d’un espace topologique compact X et P = {P1, . . . , Pn} est une partition d’ouverts-
fermés de X. Considérons la fonction ϕ : X → {1, . . . , n}Z définie par

ϕ(x)(n) = i ⇐⇒ T n(x) ∈ Pi.

• T−1(x)

•x • T (x)

•T 2(x)

•T 3(x)

•T 4(x)

ϕ(x) = . . .
-1 0 1 2 3 4

. . . ∈ { , }Z

Figure 1: Une partition de X en deux sous-ensembles, et le codage associé de l’orbite
de x ∈ X

Cette fonction ϕ associe à chaque élément x de X la suite d’étiquettes qui décrit
les éléments de la partition visités par x sous l’action de l’homéomorphisme T , comme
illustré sur la Figure 5. Considérons à présent l’ensemble de toutes les suites obtenues
comme un codage

ϕ(X) =
{
y ∈ {1, . . . , n}Z | ∃x ∈ X, y = ϕ(x)

}
.

Cet ensemble ϕ(X) présente deux propriétés intéressantes. D’abord, ϕ(X) est
fermé pour la topologie produit. Ensuite, si on munit {1, . . . , n}Z de la fonction σ qui
décale une suite vers la gauche, on otient que σ(ϕ(x)) = ϕ(T (x)) et donc que ϕ(X)
est invariant par l’action du décalage. Cela fait de (ϕ(X), σ) lui-même un système
dynamique.

Selon la partition choisie, le système codé (ϕ(X), σ) présentera plus ou moins
d’intérêt par rapport au système initial (X, T). Si la partition triviale à un seul
élément est utilisée, alors le système codé ne contiendra qu’une seule configuration,
ce qui est inintéressant. Il est néanmoins possible de montrer qu’une grande classe de
systèmes dynamiques, ceux pour lesquels X est un espace topologique de dimension
zéro et où l’action T est expansive, peut être codée de façon à préserver toutes les
propriétés dynamiques du système initial.

Etudier les systèmes dynamiques à travers leurs codages confère un double bénéfice.
D’une part, un homéomorphisme T potentiellement compliqué est remplacé par un
simple décalage sur un ensemble de suites, et donc la complexité de T se retrouve en-
codée dans la topologie du codage. D’autre part, si le système codé peut se représenter
de façon finie, il devient possible de l’étudier sous l’angle de la calculabilité.

La dynamique symbolique étuide les systèmes dynamiques à travers leurs codages.
Ces objects sont appelés espaces de décalages ou encore sous-décalages. D’un point
de vue moderne, on peut comprendre les sous-décalages comme des ensembles de
coloriages d’un groupe G par un alphabet finiA qui soient à la fois fermés et invariants

vi

par décalage. Il est intéressant de noter que tout sous-décalage peut aussi se décrire
d’un point de vue combinatoire, comme l’ensemble des coloriages de G qui évitent un
ensemble de coloriages finis.

Plus précisément, un motif est un coloriage d’une partie finie d’un groupe. Par
exemple, si on considère le groupe additif (Z2,+) et l’alphabet A = { , , }, deux
exemples de motifs avec supports respectifs F1 = {(0, 0), (1, 0)} et F2 = {(0, 0), (0, 1)}

sont et . A partir d’un ensemble de motifs, on peut définir un sous-décalage
comme l’ensemble des coloriages dans lesquels aucun décalage de ces motifs n’apparait.
Par exemple, un coloriage appartenant au sous-décalage défini par les deux motifs ci-
dessus est présenté sur la Figure 6. A partir de maintenant, nous utiliserons le term
≪configurations≫ pour parler de coloriages.

Figure 2: Une configuration d’un Z2-sous-décalage défini par motifs interdits.

Cette description des sous-décalages à l’aide de motifs interdits donne lieu à trois
classes de sous-décalages, que l’on peut classer par complexité croissante de l’ensemble
des motifs interdits qui les définissent. La première classe est la classe des sous-
décalages de type fini (SFT), ceux que l’on peut définir par une liste finie de motifs
interdits (l’exemple précédent en fait donc partie). La deuxième classe est celle des
sous-décalages sofiques, qui s’obtiennent comme facteurs de SFT par une une fonction
qui ne dépend que d’un voisinage fini. Enfin on définit la classe des sous-décalages
effectivement fermés, qui sont les sous-décalages que l’on peut définir à l’aide d’un
ensemble récursivement énumérable de motifs interdits.

Les sous-décalages ont été particulièrement étudiés dans le cas de Z-actions, et
la majorité des principaux résultats connus à ce jour concernant ces objets se trouve
dans [LM95]. En particulier, les SFT et sous-décalages sofiques possèdent une car-
actérisation à l’aide de graphes étiquetés, et leurs entropies sont exactement les mul-
tiples rationnels positifs de logarithmes de nombres de Perron [Lin84]. De plus, les
sous-décalages de type fini contiennent toujours des configurations périodiques, et de

vii

nombreux invariants dynamiques peuvent être calculés de façon effective à l’aide de
leur description finie. Cependant, même si ces objets sont bien compris, des questions
ouvertes subsistent, comme celle de savoir si on peut décider de manière algorithmique
si deux sous-décalages sont topologiquement conjugués, autrement dit s’ils sont in-
distingables du point de vue de la dynamique topologique [Boy08].

Plus récemment, les Zd-sous-décalages pour d ≥ 2 ont reçu une attention par-
ticulière de la part de la communauté [BS08, BS09, PS14, KM13]. De nombreuses
propriétés satisfaites par les sous-décalages de type fini de dimension 1 ne le sont
pas en dimension supérieure. Par exemple, il existe des SFT de dimension 2 qui ne
contiennent aucune configuration périodique [Ber66, Rob71, Kar96] ou même seule-
ment des configurations non-récursivess [Han74, Mye74]. De façon similaire, un SFT
de dimension 1 avec une entropie suffisament grande se factorise sur l’ensemble de
toutes les configurations, alors qu’on sait montrer que ce n’est pas nécessairement le
cas en dimension supérieure [BPS10]. Du point de vue de la calculabilité, le problème
de décider si un sous-décalage défini par un ensemble fini de motifs interdits est non
vide devient indécidable [Ber66]. Une explication possible à ce résultat surprenant
est que les SFT et sous-décalages sofiques de dimension supérieure sont très proches
des sous-décalages effectivement fermés de dimension moindre.

Un résultat d’Hochman [Hoc09] montre que tout système dynamique sur un en-
semble de Cantor peut, s’il est effectivement fermé, se réaliser comme la sous-action
d’un SFT de dimension 3. Ce résultat a été amélioré de manière significative dans le
cas particulier des sous-décalages, pour lesquels on sait montrer que tout sous-décalage
effectivement fermé sur Z peut être obtenu comme la sous-action projective d’un SFT
sur Z2. En d’autres termes, cela signifie que des sous-décalages unidimensionnel com-
plexes peuvent apparaitre comme les projections horizontales d’un sous-décalage de
dimension 2 très simple. Une consquence fondamentale de ces résultats est le travail
novateur de Hochman et Meyerovitch [HM10], qui montre que l’ensemble des nom-
bres que l’on peut obtenir comme entropie topologique de SFT de dimension 2 est
exactement l’ensemble des nombres récursivement énumérables à droite. Ce résultat
illustre parfaitement les liens forts entre systèmes dynamiques multidimensionnels et
notions de calculabilité.

Ces dernières années, les sous-décalages définis sur des groupes quelconques ont
gagné en intérêt, comme l’attestent les récents travaux [Pia06, Pia08, Kri07b, FT15,
CP15, LP16]. Dans ce contexte général, des phénomèmes encore plus compliqués
peuvent surgir. Par exemple, si le groupe G n’est pas résiduellement fini, il n’est
plus vrai que l’ensemble des configurations périodiques est dense dans l’ensemble de
toutes les configurations [CSC09]. De plus, si G devient plus complexe d’un point de
vue calculabilité, il peut devenir impossible de détecter de manière algorithmique si
un codage de motif est cohérent [ABS17]. Il est donc intéressant de s’interroger sur
les propriétés de groupe responsables de ces comportements. Par exemple, on peut
montrer que pour des groupes récursivement présentés, des sous-décalages de type
fini ne contenant aucune configuration périodique peuvent exister, à condition que le
groupe ait un problème du mot décidable [Jea15]. Des questions de calculabilité sur
des sous-décalages définis sur un groupe de type fini ont été étudiés à de multiples
reprises ces dernières années [BS13, Coh17, ST15, Jea15].

viii

L’objectif de cette thèse est de comprendre en profondeur la nature des interac-
tions entre propriétés dynamiques et propriétés de calculabilité des sous-décalages sur
des groupes. En particulier, nous nous attaquons aux problèmes suivants : réaliser
certaines structures dans des groupes, comme des sous-décalages ne contenant au-
cune configuration périodique, ou bien des sous-décalages avec densités uniformes
; le problème de simuler une action effectivement fermée sur un ensemble de Can-
tor par une action plus simple sur un groupe plus grand ; définir un bon modèle
de calcul sur des groupes avec problème du mot indécidable ; comprendre les pro-
priétés de calculabilité de certains invariants classiques de sous-décalages, comme le
groupe d’automorphismes ou encore le groupe plein topologique, et en particulier la
décidabilité des problèmes du mot et de torsion.

Principales contributions

Un résultat dû à Miller [Mil12] donne une condition combinatoire sur un en-
semble de mots interdits qui suffit à assurer que le Z-sous-décalage qu’il définit
est non vide. Notre premier résultat généralise la condition de Miller au cas d’un
groupe dénombrable arbitraire : nous donnons ainsi une condition combinatoire sur
un ensemble de motifs interdits qui, si elle est vérifiée, garantit la non vacuité du
sous-décalage qu’il définit. Cette condition est obtenue en appliquant une technique
fréquemment utilisée en théorie des graphes : la version asymétrique du lemme lo-
cal de Lovász. Nous appliquons cette condition à une suite bien choisie de mo-
tifs pour obtenir une preuve non constructive de l’existence d’un sous-décalage non
vide fortement apériodique sur un alphabet à deux symboles, et ce pour un groupe
dénombrable arbitraire. Nous donnons ainsi une preuve plus courte du résultat prin-
cipal de [GJS09]. De plus, en appliquant à nouveau le lemme local de Lovász, nous
parvenons à montrer une version effectivement fermée, c’est-à-dire un sous-décalage
dont les motifs interdits peuvent être donnés à l’aide d’une machine de Turing, de ce
résultat dans le cas d’un groupe de type fini avec problème du mot décidable. Nous
nous intéressons également à la question de l’existence pour les groupes de type fini
d’un sous-décalage ayant la propriété de densité uniforme pour un certain choix de
partie génératrice. Cette fois-ci, le lemme local de Lovász ne s’applique pas, mais
nous contournons le problème et répondons à cette question par l’affirmative dans
le cas des groupes de croissance sous-exponentielle. Nous utilisons pour cela une
construction combinatoire basée sur des ensemble de Delone.

Nous démontrons ensuite un analogue dynamique du théorème de Highman [Hig61]
pour les groupes récursivement présentés, à savoir que toute action effectivement
fermée d’un groupe de type fini G sur un ensemble de Cantor peut être réalisée comme
le facteur d’une sous-action d’un sous-décalage de type fini défini sur un groupe de
la forme Z2 ⋊ G. Pour se faire, nous utilisons des techniques provenant des sub-
stitutions multidimensionnelles et des suites de Toeplitz. Parmi ces techniques, on
peut notamment citer le fameux théorème de Mozes [Moz89] établissant qu’un sous-
décalage défini par une substitution multidimensionnelle est le facteur d’un SFT, ainsi
que le théorème de simulation dû à Aubrun et Sablik [AS13], et qui montre que tout
Z-sous-décalage effectivement fermé peut être réalisé comme la sous-action projective
d’un facteur d’un Z2-SFT.

ix

Nous appelons ce dernier résultat ≪théorème de simulation≫, car il permet de
simuler des systèmes dynamiques compliqués comme des sous-actions de systèmes plus
simples. Nous utilisons par la suite ce théorème comme une bôıte noire, qui permet
de produire des SFT avec des caractéristiques particulières. En particulier, nous
appliquons ce théorème au sous-décalage fortement apériodique effectivement fermé,
dont nous avons montré l’existence précédemment, et obtenons ainsi une preuve de
l’existence de sous-décalages de type fini fortement apériodiques pour tout groupe
de la forme Z2 ⋊ G, à la seule condition que le groupe G soit de type fini et ait un
problème du mot décidable. En particulier, notre résultat donne une nouvelle preuve
de l’existence de SFT fortement apériodique non vide sur le groupe d’Heisenberg
discret.

Le problème du mot cherche à répondre à la question algorithmique suivante :
existe-t-il un algorithme qui décide si un mot sur une présentation récursive est égale
à l’identité du groupe ? Dans cette partie, nous changeons radicalement de point de
vue pour adopter celui des modèles de calcul, et nous intéressons à une nouvelle classe
de sous-décalages : celle des sous-décalages G-effectivement fermés. Ces-derniers sont
définis par un ensemble de motifs interdits que l’on peut énumérer à l’aide d’une ma-
chine de Turing modifiée, dont on a augmenté la puissance de calcul en lui adjoignant
le problème du mot du groupe G comme oracle. Nous montrons plusieurs propriétés
remarquables de cette classe, qui font de la G-effectivité un candidat crédible pour
définir une notion d’effectivité sur les groupse de type fini. Nous montrons de plus que
ces sous-décalages sont caractérisés par une classe naturelle de machines de Turing
généralisées, qui au lieu de calculer sur un ruban bi-infini utilisent le graphe de Cayley
du group comme ruban, et dont la tête de lecture se déplace selon un ensemble fini
de générateurs. Nous montrons aussi que cette classe est strictement séparée de celle
des sous-décalages sofiques dans trois cas : les groupes moyennables, les groupes avec
une infinité de bouts et les groupes récursivement présentés avec problème du mot
indécidable.

Nous nous interrogeons aussi sur la possibilité d’un théorème de simulation pour
des sous-décalages G-effectivement fermés. Cette classe de sous-décalages n’est pas
stable par sous-dynamique projective, néanmoins nous montrons l’existence d’un sous-
décalage G×Z-effectif universel, au sens où le produit de celui-ci avec un sous-décalage
de type fini peut simuler n’importe quel sous-décalage G-effectivement fermé, pourvu
que ce dernier contienne un G-SFT comme sous-système. Pour le montrer, nous
utilisons pleinement la caractérisation des sous-décalages G-effectivement fermés à
l’aide de machines de Turing généralisées, ainsi qu’une construction combinatoire
utilisant des ensembles de Delone.

Enfin nous nous intéressons à deux groupes qui, à isomorphisme près, sont des in-
variants de systèmes dynamiques par conjugaison topologique : le groupe d’automorphismes
et le groupe plein topologique. Le premier, le groupe d’automorphismes, est l’ensemble
de tous les homéomorphismes de l’espace qui commutent avec l’action. Il a été parti-
culièrement étudié dans le cas du décalage plein sur Zd ; dans ce cas particulier, il est
plus souvent exprimé et étudié comme le groupe des automates cellulaires réversibles.
Le deuxième, le groupe plein topologique, est formé de tous les homéomorphismes
de l’espace pour lesquels l’action sur une configuration x peut s’écrire sous la forme

x

φ(x) = T s(x)(x), où s : X → G est une fonction continue. Nous étudions ces deux
groupes à travers le prisme de la théorie de la calculabilité : nous donnons d’abord
des conditions suffisantes pour qu’ils soient récursivement présentés, et dans ce cadre
nous nous intéressons à deux langages formels, le problème du mot et le problème de
torsion.

Concernant le problème du mot, nous donnons des conditions suffisantes pour
qu’il soit décidable dans ces deux groupes. Le problème de torsion s’interroge sur
l’existence d’un algorithme qui décide si un mot sur une présentation récursive représente
un élément de torsion, c’est-à-dire un élément g ∈ G tel que gn = 1G pour un
certain n ≥ 1. Pour le problème de torsion, les conditions suffisantes que nous
exhibons sont différentes pour les deux groupes. Nous montrons d’abord que le
groupe d’automorphismes d’un Z-décalage plein contient une sous-groupe de type
fini avec problème de torsion indécidable, alors que le problème de torsion du groupe
topologique de n’importe quel Z-sous-décalage sofique est décidable. Les deux groupes
ont par contre des propriétés similaires en dimension supérieure. Par exemple ils ont
tous deux problème de torsion indécidable pour un Zd-décalage plein dès que d ≥ 2.

Organisation du manuscrit

Afin d’étudier les riches interactions entre théorie de la calculabilité et dynamique,
nous avons largement pioché des concepts et techniques au sein de quatre domaines :
théorie de la calculabilité, systèmes dynamiques, combinatoire et théorie des groupes.

Le présent manuscrit est organisé en cinq chapitres, eux-mêmes suivis de trois
annexes. Ces-dernières doivent être vues comme des lexiques enrichis sur la théorie
de la calculabilité, la théorie des groupes et la dynamique topologique, dans lesquels
le lecteur pourra trouver les définitions de concepts classiques de chacun de ces do-
maines. Il n’est pas attendu une lecture linéaire de ces annexes, mais plutôt que
le lecteur s’y réfère tout au long des chapitres pour y trouver des références qui lui
manqueraient.

Le premier chapitre présente les sous-décalages, définit de façon précise les notions
de dynamique symbolique sur des groupes et en montre les résultats fondamentaux.
La plupart du contenu de ce chapitre se retrouve donc ailleurs dans la littérature,
ou bien fait partie du folklore du domaine. La seule contribution nouvelle es trouve
dans la dernière sous-partie, consacrée aux sous-décalages effectivement fermés sur des
groupes de type fini. Ces derniers résultats sont tirés d’un article en collaboration
avec Nathalie Aubrun et Mathieu Sablik [ABS17].

Les quatre chapitres suivants présentent les résultats obtenus durant cette thèse.
Ils sont organisés comme suit.

Le Chapitre 2 se compose de deux parties. Dans la première, nous présentons
un lemme combinatoire pour montrer la non vacuité de sous-décalages, ainsi que
les preuves de l’existence d’un sous-décalage fortement apériodique pour un groupe
dénombrable, et de l’existence d’un sous-décalage fortement apériodique effectif pour
un groupe de type fini avec problème de mot décidable. Dans la seconde partie, nous
présentons une construction combinatoire d’un sous-décalage qui réalise des densités
uniformes pour un groupe de croissance sous-exponentielle. Les résultats présentés

xi

dans ce chapitre sont identiques à ceux obtenus en collaboration avec Nathalie Aubrun
et Stéphan Thomassé [ABT15].

Le Chapitre 3 est entièrement consacré à notre théorème de simulation. Il débute
par une introduction présentant à la fois les résultats de Highman et de Hochman,
ainsi que les ingrédients de la preuve utilisant les subsitutions multidimensionnelles
et les sous-décalages Toeplitz. Nous énonçons ensuite le théorème principal, en
présentons les détails de la preuve et mentionnons enfin quelques unes de ses conséquences.
Ces résultats proviennent principalement du travail de l’auteur avec Mathieu Sab-
lik [BS17].

Le Chapitre 4 concerne l’étude de notre modèle étendu de G-effectivité pour des
sous-décalages sur des groupes de type fini. Nous commençons par illustrer les limites
de cette notion sur un exemple: le sous-décalage One-or-less X≤1. Cet exemple motive
notre nouveau modèle, que nous présentons. Puis nous donnons une caractérisation
de notre modèle par des G-machines en termes de calculabilité, et présentons dans ce
cadre notre théorème de simulation. Nous terminons le chapitre par une discussion
sur la séparation de deux classes de sous-décalages, les sous-décalages sofiques et les
sous-décalages effectifs, sur trois classes de groupes. Ces résultats proviennent aussi
de l’article [ABS17].

Enfin dans le Chapitre 5 nous nous intéresssons aux aspects de calculabilité, à
la fois dans le groupe d’automorphismes et le groupe plein topologique. Nous com-
mençons par introduire ces concepts, et donnons la définition de trois langages formels
s’appuyant sur ces concepts. Nous portons une attention particulière à définir ces trois
langages dans le cas où les groups ne sont pas de type fini. Enfin, nous étudions ces lan-
gages pour chacun des deux groupes, en commençant par le groupe plein topologique
et en terminant par le groupe d’automorphismes. Les résultats présentés ici sont une
adaptation par l’auteur de travaux en commun avec Jarkko Kari et Ville Salo [BKS16].

Chapitre 1

Chapitre 2

Chapitre 3

Chapitre 4

Chapitre 5

Annexe 1

Annexe 2

Annexe 3

Figure 3: Le graphe de dépendance des chapitres.

Certains chapitres peuvent être lus indépendemment des autres. Dans la Figure 7,
nous montrons comment ils dépendent les uns des autres, et quelles annexes les con-
cernent. Les flèches en pointillés partant d’une annexe indiquent que cette annexe
contient des définitions ou concepts classiques utilisés dans le chapitre pointé par la

xii

flèche. Les flèches pleines partant d’un chapitre indiquent que des résultats de ce
chapitre sont nécessaires à la compréhension du chapitre pointé par la flèche.

Afin de donner au lecteur une idée du contenu de chaque chapitre, nous représentons
chacun d’eux par un diagramme montrant dans quelles proportions il appartient
à différents domaines. Il ne s’agit bien évidemment pas d’une mesure objective,
mais plutôt d’un aperçu du contenu de chacun selon l’auteur. Ces diagrammes sont
présentés dans la Figure 8.

30%
10%

20%

40%

Dynamique

Calculabilité
Théorie des groupes

Combinatoire

Chapter 2

20%

60%

20%

Chapter 3

20%

60%

10%

10%

Chapter 4

30%

40%
40%

Chapter 5

Figure 4: Diagrammes indiquant proportionnellement les connaissances requises pour
chacun des chapitres.

Conventions

• L’ensemble des nombres naturels N contient 0.

• Sauf mention contraire, une action de groupe est une action à droite. Un graphe
de Cayley est un graphe de Cayley à droite.

• On suppose qu’un ensemble générateur d’un groupe contient l’identité et est
stable par inverse.

• Par défaut les groupes sont notés multiplicativement, sauf dans le cas d’un
groupe abélien ou on préférera la notation additive.

xiii

Introduction

From a classical perspective, dynamical systems consist of a pair (X, T) where X is
a set and T : R+×X → X is a function which describes the evolution of elements of X
in time. Not only are they interesting as mathematical objects, but also paramount in
the modeling of physical phenomena: the behavior of the solar system, the evolution
of an ecosystem in time, changes in the concentration of a molecule on a chemical
substance subject to heat, the trajectory of a charged particle in a magnetic field,
etc.

From a mathematical point of view, there is no theoretical imperative restricting
the study of dynamical systems exclusively to continuous time: a system can also
be analyzed in discrete time jumps. What is more, if the evolution of the system is
reversible in time, then the action can be modeled by an abstract group acting over X.
This modification is quite natural if one is interested in the joint action of several
homeomorphisms T1, . . . , Tn of the same space X, which furthermore satisfy a set of
relations R. These actions and their relations can be expressed by the joint group
action T : Gy X where G ∼= 〈T1, . . . , Tn | R〉 and T (Ti1 ·· · ··Tik , x) = Ti1 ◦· · ·◦Tik(x).
For instance, if the relation T1 ◦T2 = T2 ◦T1 holds, then the joint action of T1 and T2
can be studied as a Z2-action over X. It is therefore natural to study the general case
of an arbitrary countable group acting over the space.

These systems can be quite difficult to study and several tools have been developed
in order to better understand them. A particularly interesting approach is to partition
the set X into finitely many parts and subsequently code each element of the set as the
sequence of partitions visited by its orbit. This idea can be traced back to the work of
Hadamard [Had98], who used it to study geodesics on surfaces of negative curvature.
Although the technique was used by many over the years following the development
of Hadamard, the first study specifically dedicated to this technique was described
in the founding article by Morse and Hedlund [HM38]. Their “Symbolic dynamics”
constituted the first systematic description of what had been, until that point, a
technique sporadically used to study recurrence properties in dynamical systems.

Before introducing symbolic dynamics in the general case, we define more precisely
what we mean by a codification of a dynamical system by a partition. We consider
the special case where T is a Z-action by homeomorphisms of a compact topological
space X and P = {P1, . . . , Pn} is a clopen partition of X. Consider the function
ϕ : X → {1, . . . , n}Z which is defined by:

ϕ(x)(n) = i ⇐⇒ T n(x) ∈ Pi.

The function ϕ associates each element x of X to a sequence of labels describing
which set of the partition is visited by the orbit of x under the homeomorphism T as

• T−1(x)

•x • T (x)

•T 2(x)

•T 3(x)

•T 4(x)

ϕ(x) = . . .
-1 0 1 2 3 4

. . . ∈ { , }Z

Figure 5: A partition of X into two parts and a coding of the orbit of x ∈ X

shown in Figure 5. Now, consider the set of all the sequences obtained by a coding

ϕ(X) =
{
y ∈ {1, . . . , n}Z | ∃x ∈ X, y = ϕ(x)

}

There are two interesting properties of ϕ(X): first, ϕ(X) is closed for the product
topology; second, if we endow {1, . . . , n}Z with the function σ which shifts a sequence
to the left, we obtain that σ(ϕ(x)) = ϕ(T (x)) and thus ϕ(X) is invariant under the
shift action. This makes (ϕ(X), σ) a dynamical system on itself.

The interest of the coded system (ϕ(X), σ) with respect to the original dynamical
system (X, T) depends on the partition. If the trivial partition with only one element
is chosen, then the coded system contains only one configuration, which is not of
much interest. Nevertheless, it can be shown that a large class of dynamical systems,
namely, those where X is a zero-dimensional topological space and the action T is
expansive, can be coded in a way that their dynamics are completely preserved.

Studying dynamical systems through their codings presents two remarkable ad-
vantages. On the one hand, a potentially complicated homeomorphism T is replaced
by a simple shift over a set of sequences and hence the complexity is instead encoded
in the topology. On the other hand, if the coded system can be represented in a finite
manner, it becomes amenable to be analyzed with computability tools.

Symbolic dynamics is the discipline which studies the dynamical systems obtained
through codings. These objects are called shifts spaces or subshifts. From a modern
viewpoint, we can understand subshifts as sets of closed and shift invariant colorings
of a group G by a finite alphabet A. What is interesting is that each subshift can
also be described in a combinatorial way as the set of colorings of G which avoids a
set of finite colorings.

More specifically, a pattern is a coloring of a finite subset of a group. For instance,
if we consider the additive group (Z2,+) and the alphabet A = { , , }, two ex-
amples of patterns with supports F1 = {(0, 0), (1, 0)} and F2 = {(0, 0), (0, 1)} are

respectively and . From a set of patterns, one can define a subshift as the set

xv

of all colorings such that no translation of these patterns appears. For instance, one
such coloring belonging to the subshift defined by the two patterns above is shown on
Figure 6. From now on we shall refer to colorings in a subshift as “configurations”.

Figure 6: A configuration of a Z2-subshift defined by forbidden patterns.

The previous description of shift spaces through forbidden patterns gives rise
to three classes of subshifts that can be described by them in increasing levels of
complexity: the first is the class of subshifts of finite type (SFT), which are those
that can be defined by a finite list of forbidden patterns as the previous example.
The second is the class of sofic subshifts, which can be obtained as factors of SFTs
through a function which depends only on a finite neighborhood. Finally, there is the
class of effectively closed subshifts, which can be defined by a recursively enumerable
set of forbidden patterns.

Shift spaces have been thoroughly studied in the case of Z-actions, most of the core
results of that theory can be found in [LM95]. In particular, SFTs and sofic subshifts
are characterized by labeled graphs and their entropies correspond to nonnegative
rational multiples of logarithms of Perron numbers [Lin84]. What is more, they always
contain periodic configurations and several dynamical invariants can be computed
effectively from their finite descriptions. Even if they are well understood, there are
still open questions, such as whether it can be algorithmically decided if two subshifts
are topologically conjugate, that is, if they are indistinguishable from the point of view
of topological dynamics [Boy08].

More recently, Zd-subshifts for d ≥ 2 have begun to gain interest in the com-
munity [BS08, BS09, PS14, KM13]. Several properties which are satisfied by one-
dimensional subshifts of finite type no longer hold in higher dimensions. For instance,
there exist two-dimensional SFTs which contain no periodic configurations [Ber66,
Rob71, Kar96] or which only contain non-recursive configurations [Han74, Mye74].
Also, a one-dimensional SFT with sufficiently large entropy always factorizes onto the

xvi

set of all configurations, while it has been shown that this is not always the case in
higher dimensions [BPS10]. From a computability point of view, the problem of de-
ciding if a subshift defined by a finite set of forbidden patterns is non-empty becomes
undecidable [Ber66]. One explanation for these phenomena happening is the fact
that multidimensional SFTs and sofic subshifts are very close to lower dimensional
effectively closed subshifts.

A result by Hochman [Hoc09] showed that every effectively closed dynamical sys-
tem over a Cantor set can be realized as a factor of a subaction of a Z3-SFT. This
result was subsequently improved in the case of shift spaces where it was shown that
every effectively closed Z-subshift can be obtained as a projective subaction of a Z2-
SFT. In simple words, this means that complicated one-dimensional shift spaces can
appear as the horizontal projections of a very simple two-dimensional subshift. A
fundamental consequence which can be obtained from these results is the ground-
breaking theorem of Hochman and Meyerovitch [HM10], where the set of numbers
which can be achieved as topological entropies of two dimensional subshifts of finite
type is characterized as the set of numbers which are right recursively enumerable.
This clearly exemplifies the intricate relation between multidimensional dynamical
systems and computability concepts.

In the recent years, subshifts defined on arbitrary groups have also gained at-
tention, see for instance [Pia06, Pia08, Kri07b, FT15, CP15, LP16]. In this general
case, even more complicated phenomena can happen. For instance, if the group G is
not residually finite, it is no longer true that the set of periodic configurations form a
dense set with respect to the set of all configurations [CSC09]. Moreover, if G becomes
computationally harder, it might not even be possible to algorithmically recognize if
a codification of a pattern is consistent [ABS17]. Nevertheless, it remains interest-
ing to analyze which specific group properties are responsible for these behaviors.
For instance, it can be shown that for recursively presented groups, subshifts of finite
type with no periodic configurations can only exist if the word problem of the group is
decidable [Jea15]. In fact, these last few years many articles have investigated compu-
tational aspects of subshifts on finitely generated groups [BS13, Coh17, ST15, Jea15].

The objective of this thesis to deepen the understanding of the interplay between
dynamic and computability properties of shift spaces in groups. In particular, we
tackle the following problems: realizing structures in groups, such as subshifts with
no periodic configurations and subshifts with uniform density; the problem whether an
effectively closed action over a Cantor set can be simulated as part of a simpler action
on a larger group; the question of what is a good model of computation on groups
where the word problem becomes undecidable; and the computability properties of
famous group invariants of shift spaces, such as the automorphism group and the
topological full group. In particular, we study the decidability of their word and
torsion problems.

Main contributions

A result by Miller [Mil12] gives a combinatorial condition over sets of forbidden
words which is enough to ensure that the Z-subshift defined by them is non-empty.

xvii

Our first result is a generalization of Miller’s condition to the case of arbitrary count-
able groups. Namely, we derive a combinatorial condition on sets of forbidden pat-
terns, which if satisfied, gives a guarantee of the non-emptiness of the subshift defined
by them. This is obtained by the application of a technique frequently used in graph
theory: the asymmetrical version of Lovász local lemma. We apply this condition
to a specific sequence of patterns to give a non-constructive proof of the existence
of strongly aperiodic non-empty subshifts over a two symbol alphabet in arbitrary
countable groups, thus giving a short proof of the main result of [GJS09]. Further-
more, using again Lovász local lemma, we are able to obtain an effectively closed
version –that is, one whose forbidden patterns can be described by Turing machines–
of this result in the case of finitely generated groups with decidable word problem.
We also delve into the question of whether a subshift having uniform density with
respect to a fixed set of generators exists in every finitely generated group. Although
the technique with Lovász local lemma cannot be applied in this case, we manage
to give a positive answer in the case of groups of sub-exponential growth, where an
explicit combinatorial construction based on Delone sets is presented.

Following this, we prove a dynamical analogue of Highman’s theorem [Hig61] for
recursively presented groups, namely, that every effectively closed action of a finitely
generated group G over a Cantor set can be realized as a factor of a subaction of
a subshift of finite type defined on a group of the form Z2 ⋊ G. In order to show
this, we use techniques sprouting from multidimensional substitutions and Toeplitz
sequences, notably the theorem by Mozes [Moz89] showing that any subshift generated
by a multidimensional substitution is a factor of an SFT, and the simulation theorem
by Aubrun and Sablik [AS13] showing that every effectively closed Z-subshift can be
realized as a projective subaction of a factor of a Z2-SFT.

We call this previous result a “simulation theorem” as it allows to simulate com-
plicated dynamical systems as subactions of simple ones. We subsequently use our
simulation theorem as a black box to produce SFTs with peculiar characteristics.
Notably, we apply this theorem to the effectively closed strongly aperiodic subshift
obtained before to obtain a proof of the existence of strongly aperiodic subshifts of
finite type for any group of the form Z2 ⋊ G, subject only to the condition that G
is finitely generated and has decidable word problem. In particular, this gives a new
proof that the discrete Heisenberg group admits non-empty strongly aperiodic SFTs.

The word problem concerns the following algorithmic question: can an algorithm
be given which decides whether a word on a recursive presentation is equal to the
identity of the group? The next object studied here takes a sharp turn towards the
model of computation viewpoint. Here, a class of subshifts which we call G-effectively
closed is studied. These objects are defined by a set of forbidden patterns which can
be enumerated by a Turing machine with the extra power of an oracle to the word
problem of the group G. We show that this class has several remarkable properties
which make it a good candidate for a notion of effectiveness in finitely generated
groups. Furthermore, we show that these subshifts can be characterized by a natural
class of generalized Turing machines, which instead of performing computation on a
bi-infinite tape, use the Cayley graph of a group and move according to a finite set
of generators. We furthermore show that this class is strictly separated from that of

xviii

sofic subshifts in three cases: amenable groups, groups with infinitely many ends and
recursively presented groups with undecidable word problem.

We also study the possibility of a simulation theorem for G-effectively closed
subshifts. Although we show that this class is not stable by projective subdynamics,
we prove that there exists an universal G× Z-effective subshift, such that a product
of itself with a subshift of finite type can simulate any G-effectively closed subshift
as long as it contains a G-SFT as a subsystem. In order to show this we strongly use
the characterization of G-effectively closed subshifts by generalized Turing machines
and a combinatorial construction using Delone sets.

Finally we study two groups, which up to isomorphism, are invariants of dynamical
systems under topological conjugacy: the automorphism group and the topological
full group. The first consists of all homeomorphisms of the space which commute
with the action. This group is largely studied in the case of a full Zd-shift, where it is
more commonly known as the group of reversible cellular automata. The second one
is formed by all homeomorphisms of the space for which the action on a configuration
x has the form φ(x) = T s(x)(x) for a continuous function s : X → G. We tackle these
groups from a computability perspective: first we give sufficient conditions for them
to be recursively presented, and when in that case, we focus our study on two formal
languages: the word problem and the torsion problem.

With respect to the word problem we give sufficient conditions for it to be de-
cidable in these two groups. On the other hand, the torsion problem concerns the
existence of an algorithm which decides if a word on a recursive presentation repre-
sents a torsion element, that is, a g ∈ G such that gn = 1G for some n ≥ 1. Here the
answer is different for both groups. On the one hand, we show that the automorphism
group of any full Z-shift contains a finitely generated subgroup with undecidable tor-
sion problem, while the torsion problem of the topological full group of any sofic
Z-subshift is decidable. Nonetheless, we also show that for Zd with d ≥ 2 both the
topological full group and automorphism groups of a full Zd-shift have undecidable
torsion problem.

Organization of the manuscript

In order to study this rich interplay between computability and dynamics a large
variety of methods were drawn from four areas: computability, dynamical systems,
combinatorics and group theory.

The manuscript is organized into five chapters along with three appendixes. The
three appendixes are meant as extended glossaries on computability theory, group
theory and topological dynamics where the basic definitions can be found. These
appendixes are not meant to be read linearly, but mostly to consult references which
are either used sporadically or are common knowledge of the theory.

The first chapter concerns shift spaces and is intended as a place to carefully define
the basic notions and prove the fundamental results of symbolic dynamics on groups.
Most of the contents of it are either found in the literature or are folklore proofs. The
only part which is novel is the last subsection dedicated to effectively closed subshifts
in finitely generated groups. The latter results come from an article of the author in
collaboration with Nathalie Aubrun and Mathieu Sablik [ABS17].

xix

The following four chapters present the results obtained during this thesis. They
are organized thematically as follows:

In Chapter 2 is divided into two parts. In the first one, we present the combinato-
rial lemma to prove non-emptiness of subshifts, followed by the proofs of the existence
of strongly aperiodic subshifts in both the countable case and the effective version
for finitely generated groups with decidable word problem. In the second part we
present a combinatorial construction of a subshift which realizes uniform densities in
any group with sub-exponential growth. The result presented are the same as those
obtained in collaboration with Nathalie Aubrun and Stéphan Thomassé [ABT15].

Chapter 3 is dedicated to present our simulation theorem. It begins with an in-
troduction presenting both Highman’s and Hochman’s results and the facts about
multidimensional substitutions and Toeplitz subshifts needed for the proof of the
theorem. Following this, we state the main theorem and present its proof in de-
tail. Finally, some consequences of the theorem are presented. The results here are
principally from the work of the author with Mathieu Sablik [BS17].

Chapter 4 concerns the study of our extended model of G-effectiveness for sub-
shifts in finitely generated groups. We begin by exhibiting the limitations of effectively
closed subshifts by means of an example: the One-or-less subshift X≤1, thus moti-
vating and introducing our new model. We proceed to characterize our model by
G-machines in computability terms, and then we present our simulation theorem in
this context. We finish the chapter by discussing the separation of sofic and effective
subshifts in three classes of groups. These results also come from [ABS17].

Finally, in Chapter 5 we tackle the computability aspects of both the automor-
phism group and the topological full group. We begin by introducing them, and three
formal languages that can be defined upon them. We take special care to address
these languages in the case where the groups are not finitely generated. Finally, we
study these languages in both cases, presenting first the case of the topological full
group and finishing with the automorphism group. These result are an adaptation of
the author of a joint work with Jarkko Kari and Ville Salo [BKS16].

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Appendix 1

Appendix 2

Appendix 3

Figure 7: The dependence graph of the chapters

Some of the chapters can be read independently from the others. In Figure 7
we show how they depend on each other, and which annexes concern them. The

xx

dashed arrows from the annexes indicate that they give support to the chapter by
providing definitions of well known concepts, while the straight arrows indicate that
some results from the starting node are required to understand the pointed node.

In order to give an idea to the reader of what are the contents of each chapter, we
can represent each one of them as a pie chart showing what percentage of the chapter
belongs to each domain. It does not represent any objective measure but only the
subjective view of the author. This is shown on Figure 8

30%
10%

20%

40%

Dynamics
Computability
Group theory

Combinatorics

Chapter 2

20%

60%

20%

Chapter 3

20%

60%

10%

10%

Chapter 4

30%

40%
40%

Chapter 5

Figure 8: Pie charts indicating the percentage of knowledge required in each subject
for every chapter

Conventions

• The set of natural numbers N starts from 0.

• Every group action is a left group action unless stated otherwise. Every Cayley
graph is a right Cayley graph.

• Whenever considering a finite set of generators of a group, we assume it is closed
by inverses and that it contains the identity.

• Groups are written multiplicatively by default, unless it is an abelian group in
which case the additive notation is used.

xxi

Chapter 1

Shift spaces

Symbolic dynamics is the discipline which studies a specific type of dynamical sys-
tem called a subshift or shift space. From a modern viewpoint, shift spaces can be
understood as sets of colorings of a group G by a finite alphabet A equipped with
the shift action, which associates to each coloring its translate by an element of the
group. The sets of colorings which form subshifts can be either defined as subsets of
the product space AG that are both closed for the product topology and invariant
under the shift action, or equivalently, as a set of colorings of a group G by some
finite alphabet A that respect local constraints given by forbidden patterns.

Shift spaces have been thoroughly studied in the case of Z-actions, most of the core
results of that theory can be found on [LM95]. More recently, Zd-subshifts for d ≥ 2
have begun to gain interest in the community [Hoc09, PS14, BPS10, Pav12, KM13]
and since the work of Hochman and Meyerovitch [HM10], where the set of numbers
which can be achieved as topological entropies of two dimensional subshifts of finite
type is completely classified, the interest on the subject has substantially increased.
In the recent years, subshifts defined on arbitrary groups have gained attention, see
for instance [Pia06, Pia08, Kri07b, FT15, CP15, LP16]. Very recent results also tackle
computational aspects of subshifts on finitely generated groups [BS13, Coh17, ST15,
Jea15].

The purpose of this chapter is to give a formal introduction to shift spaces defined
on groups and fix the notations for the subsequent chapters. The hope of the author is
that this introductory chapter will serve future researchers interested in the subject as
a place where basic definitions and folklore proofs for the general setting of subshifts
over groups can be found. In this perspective, the objects introduced here will be
copiously accompanied by examples from the literature.

The structure of this chapter is the following: We begin by introducing subshifts
over groups from both a topological and a combinatorial point of view, and the differ-
ent symbolic morphisms between them. Following that, we present a few dynamical
notions for these objects which will be used in the next chapters. We end this chap-
ter by introducing three important classes of subshifts: Subshifts of finite type, sofic
subshifts and effectively closed subshifts.

1

1.1 Subshifts in groups

Let A be a non-empty finite set and G a group. The set AG := {x : G→ A} consists
of all functions from G to A. We can think of AG as the set of colorings of the group
G by elements of A. We refer to the set A as an alphabet and its elements a ∈ A are
called symbols . We also use the word configuration to denote an element x ∈ AG and
use the notation xg instead of x(g) to refer to the symbol at position g ∈ G.

The set AG is endowed with the left group action σ : G×AG → AG given by

σ(g, x)h := xg−1h.

We refer to σ as the shift action. We also use the notation σg(x) to denote σ(g, x).

σ(10,18)

Figure 1.1: A configuration x ∈ {�,�}Z
2/20Z2

and its image by σ(10,18).

Definition 1.1. The dynamical system (AG, σ) is called the full G-shift.

Remark. There are four possibilities when defining σ as a group action: one could
either define σg(x)h as xg−1h, xgh, xhg−1 or xhg. The first and the fourth define
left group actions, while the second and the third are right group actions. From a
theoretical point of view, the choice is arbitrary, though ours is based on the fact that
we prefer right Cayley graphs (see Definition B.14), as extending words to the right is
more common. A left action by left multiplication behaves correctly as a translation
with respect to this graph. The only downside is that σ does not correspond to the
left shift in Z but to the right shift.

We endow the set AG with the product of the discrete topology on A. By Ty-
chonoff’s theorem, AG is a compact space and a clopen subbase is given by the cylin-
ders [a]g := {x ∈ AG|xg = a}. In the case where G is a countable group AG becomes

a metric space and the product topology is generated by the metric d̃ : AG×AG → R

defined by d̃(x, y) = 2− inf{n∈N | xgn 6=ygn} where (gn)n∈N is an enumeration of G. If
G is finitely generated this metric can be replaced by d : AG × AG → R where
d(x, y) = 2− inf{|g|S | g∈G, xg 6=yg} and |g|S is a word metric associated to a finite set S
of generators of G.

We say that a finite subset F ⊂ G is a support . Given two supports F, S we denote
by FS the set FS := {fs | f ∈ F, s ∈ S} and by F k = {f1, . . . fk | ∀1 ≤ i ≤ k, fi ∈
F}. A pattern with support F is an element p ∈ AF and we write supp(p) = F
to say that the support of p is F . We also denote the cylinder generated by p in

2

position g as [p]g :=
⋂

h∈F [ph]gh, and [p] := [p]1G . We say that a pattern p appears in
a configuration x ∈ AG and write p ⊏ x if there exists g ∈ G such that x ∈ [p]g. We
say that a pattern q is a subpattern of p and write q ⊏ p if there exists g ∈ G such
that [p] ⊂ [q]g.

Definition 1.2. A subshift is a subset X ⊂ AG which is closed and shift-invariant,
that is, ∀g ∈ G, σg(X) ⊂ X.

Remark. In all formality, given the fact that we are dealing with dynamical systems,
we should be writing (X, σ) to denote a subshift. Nevertheless we prefer to omit the
action to ease the notation. We also speak of G-subshift to make the group explicit
when dealing with subshifts over different groups. This notation is of special use in
Chapter 3.

Equivalently, we can define a subshift as the set of all configurations in AG which
avoid a set of forbidden patterns.

Proposition 1.1. Let X ⊂ AG. The following are equivalent:

(1) X is a subshift.

(2) There exists a set F of patterns such that

X = AG \
⋃

p∈F ,g∈G
[p]g.

(3) There exists a set F of patterns such that X = {x ∈ AG | p ⊏ x =⇒ p /∈ F}.

Proof. It is straightforward to show that (2) and (3) are equivalent and that any set
of the form (2) is closed and shift-invariant. Let X be a subshift. As the cylinders
form a subbase, we can write

X = AG \
⋃

i∈I

(
⋂

j∈Ji
[aj]gj

)
= AG \

⋃

i∈I
[pi]

where pi =
⋂

j∈Ji [aj]gj is a cylinder. Therefore X is the complement of an union
of cylinders. As X is shift-invariant we have σg(X) = X for every g ∈ G, hence we
obtain:

X = AG \
⋃

i∈I,g∈G
[pi]g.

which proves (2) by setting F :=
⋃

i∈I{pi}.

Definition 1.3. The language L(X) of a subshift X ⊂ AG is the set of patterns p
that appear in a configuration of X, that is, [p] ∩X 6= ∅. In particular L(AG) is the
set of all patterns.

For any finite support F ⊂ G we also define the language restricted to the support
F as LF (X) := L(X) ∩ AF .

Remark. In the case where G = Z we can identify connected patterns with words in
A∗. This justifies the usage of the word language to speak about the set of patterns
appearing in a subshift.

3

1.1.1 Symbolic morphisms

Let X ⊂ AG and Y ⊂ BG be subshifts. A map φ : X → Y is said to be shift
commuting (in the literature, for example in [CSC09], this property is also called
G-equivariant) if for every g ∈ G then φ ◦ σg = σg ◦ φ.

Definition 1.4. A continuous shift-commuting map φ : X → Y between two sub-
shifts is called a morphism.

A surjective morphism is called a factor map and we write the existence of a factor
map from X to Y by X ։ Y . If there is a factor map from X to Y we say that Y
is a factor of X and that X is an extension of Y . A bijective morphism is called a
conjugacy and the fact that two subshifts are conjugate is written X ∼= Y .

This definition of morphism is just a special case of Definition C.3 from the dy-
namical systems appendix. What is particular about the case of symbolic systems
is that morphisms can be characterized combinatorially. Let A,B be alphabets and
F ⊂ G be a support and consider a local map Φ : AF → B which sends patterns in AF

to symbols in B. We can define a map φ : AG → BG given by φ(x)g = Φ(σg−1
(x)|F).

Any function φ defined in such a way is called a sliding-block code.

Example 1.1. Let X = {�,�}Z
2

be the full Z2-shift on two symbols. The majority
rule map φ is the sliding-block code defined by Φ : {�,�}{−1,0,1}

2
→ {�,�} where

Φ(p) is defined as the symbol which appears the most in p. In Figure 1.2 the majority
rule is applied to a configuration. The left red rectangle indicates the support of Φ
and the right one its image.

φ

Figure 1.2: The majority rule sliding block code acting on a Z2 configuration.

Theorem 1.2 (Curtis-Lyndon-Hedlund [Hed69]). Let X ⊂ AG,Y ⊂ BG be subshifts
and φ : X → Y be a map. Then φ is a morphism if and only if φ is a sliding block
code.

Proof. Let φ be a sliding block code. By definition there exists a local map Φ : AF →
B such that for every g ∈ G we have φ(x)g = Φ(σg−1

(x)|F). Then

(σh ◦ φ(x))g = φ(x)h−1g = Φ(σg−1h(x)|F) = Φ(σg−1

(σh(x))|F) = (φ ◦ σh(x))g.

Therefore φ is shift-commuting. Let p ∈ L(BG) be a pattern. By definition it can be
written as a finite intersection of cylinders [b]g for b ∈ B. As φ−1([b]g) = {x ∈ AG |

4

σg−1
(x)|F ∈ Φ−1(b)} is open, we conclude that φ−1([p]) is open. As the cylinders form

a basis of the topology we conclude that the preimage of any open set is open and
therefore φ is continuous.

Conversely, π1G : BG → B defined by π1G(y) := y1G is continuous in the product
topology. Therefore π1G ◦ φ is also continuous. Consider the sets Ux,R = {x′ ∈ X |
x′|R = x|R, π1G ◦φ(x) = π1G ◦φ(x′)} where R ⊂ G is a support and x ∈ X. Obviously
x ∈ Ux,R and therefore these sets form an open cover of AG. By compactness we can
extract a finite subcover Uxi,Ri

and define F :=
⋃

i∈I Ri. Given two configurations
x, x′ ∈ X which coincide in F we have by definition that π1G ◦ φ(x) = π1G ◦ φ(x′),
therefore there is a well defined function Φ : LF (X) → B such that for any x ∈ X
then Φ(x|F) = φ(x)1G . Extend Φ to AF arbitrarily. As φ is shift invariant we get
that

φ(x)g = (σg−1

◦ φ(x))1G = (φ ◦ σg−1

(x))1G = Φ(σg−1

(x)|F)

which concludes the proof.

Remark. The original proof appeared in a paper of Hedlund [Hed69] where he credited
Curtis and Lyndon as co-discoverers, it was originally presented only for G = Z but
their proof already contained the essentials. The version presented in this thesis is
an adaptation of the proof in [CSC09].

This is a good time to introduce a useful construction called the Higher-block
subshift, which enables the possibility to reduce the existence of factor maps to an
equivalent version where the local function has trivial support. Formally: A sliding-
block code φ is said to be a 1-block code if it is defined by a function Φ : AF → B
where F = {1G}. That is, Φ is just a relabeling of the alphabet.

Definition 1.5. Let X ⊂ AG be a subshift and let F ⊂ G be a support containing
1G. We define the higher-block subshift X [F] ⊂ (AF)G as the set

X [F] := {y ∈ (AF)G | ((yg)1G)g∈G ∈ X and ∀h ∈ F, (yg)h = (ygh)1G}.

Proposition 1.3. Let X ⊂ AG be a subshift. Then X ∼= X [F].

Proof. Let φ : X [F] → X be the 1-block code defined by the local function Φ :
AF → A such that Φ((af)f∈F) = a1G . The condition ((yg)1G)g∈G ∈ X implies that
φ(X [F]) ⊂ X. Surjectivity comes from the fact that for any x ∈ X the configuration
(σg−1

(x)|F)g∈G belongs to X [F] and is sent to x. Finally, given y, y′ ∈ X [F] such that
φ(y) = φ(y′) we obtain that ∀g ∈ G and f ∈ F then

(yg)f = (ygf)1G = φ(y)gf = φ(y′)gf = (y′gf)1G = (y′g)f .

Therefore y = y′ and φ is injective.

For every sliding block code φ : X → Y with local function Φ : AF → B we
can consider a conjugacy ψ : X [F] → X and a 1-block code φ̂ : X [F] → Y defined
by φ̂ = φ ◦ ψ. This means that for every extension of a subshift Y we can ask for
a conjugate version X̂ := X [F] of X which extends Y by a 1-block code. This is
particularity useful when doing proofs as it simplifies computations.

5

X̂

X Y

φ̂
ψ

φ

We denote the monoid of all endomorphisms φ : X → X as End(X) and the
group of automorphisms by Aut(X). In the case where X is the full G-shift we say
φ ∈ End(AG) is a cellular automaton. A cellular automaton is said to be reversible if
there exists another cellular automaton τ such that φ ◦ τ = τ ◦ φ = id. The previous
theorem characterizes reversible cellular automatons as automorphisms of the full
G-shift. These objects play an important part in Chapter 5.

1.1.2 Dynamical properties

In this subsection we introduce a few dynamical properties of subshifts. The notion of
conjugacy between two dynamical systems amounts to saying that from a dynamical
point of view, they are indistinguishable. In this setting, when stating that a property
is dynamical, it is meant that it is an invariant of conjugacy, that is to say, if two
subshifts are conjugate and one satisfies the property then the other also does. Some
of these are particular cases of those presented in Appendix C, but their extended
usage in the following chapters justifies their introduction here.

Given a configuration x ∈ AG we denote its orbit by Orbσ(x) = {σg(x) | g ∈ G}
and its stabilizer by Stabσ(x) = {g ∈ G | σg(x) = x}.

Definition 1.6. A configuration x ∈ X is:

• Aperiodic if σg(x) = x =⇒ g = 1G.

• Periodic if there exists g ∈ G \ {1G} such that σg(x) = x.

• Strongly periodic if |Orbσ(x)| <∞.

• Uniform if there is a ∈ A such that ∀g ∈ G, xg = a.

Figure 1.3: From left to right: An aperiodic, periodic, strongly periodic and uniform
configuration in {�,�}Z

2
.

6

Example 1.2. In Figure 1.3 we show four examples of configurations. In the leftmost
one, there is no apparent period so this could be part of an aperiodic configuration.
In the second one there is a period in direction v = (1, 1). In the third one, the
configuration is a bi-infinite checkerboard and |Orbσ(x)| = 2. The last configuration
is uniform.

Definition 1.7. A subshift X ⊂ AG is:

• Weakly aperiodic if X contains no strongly periodic configurations.

• Strongly aperiodic if the shift action is free, that is, X contains no periodic
configurations: ∀x ∈ X, Stabσ(x) = {1G}.

The notion of strong aperiodicity implies that of weak aperiodicity. They are the
same in the case where every non-trivial subgroup of G has finite index in G. For
instance, if G = Z both notions coincide.

Example 1.3. Let Rα : Z y R/Z be the rotation of of angle α ∈ R where Rn
α(x) :=

x+nα mod 1. We can consider the set Xα of all bi-infinite sequences ϕ(x) ∈ {0, 1}Z

such that there exists x ∈ R/Z such that ϕ(x)n = 1 ⇐⇒ Rn(x) ∈ [0, α).
If α ∈ R \Q then Xα is called a Sturmian subshift and α is called its slope. It is

a classical example of a strongly aperiodic subshift.

In Chapter 2 we introduce a technique which allows us to construct strongly
aperiodic subshifts in arbitrary countable groups. This construction is once again
used in Chapter 3 to get a much sharper result for subshifts of finite type.

Definition 1.8. A subshift X ⊂ AG is said to be:

• Irreducible if σ acts transitively on X, that is, if for every pair of patterns
p, q ∈ L(X) there exists x ∈ X such that p ⊏ x and q ⊏ x.

• Minimal if for every closed and shift invariant Y ⊂ X either Y = ∅ or Y = X.

In the case of a countable group, the language L(X) of any subshift is countable,
therefore in the case of an irreducible subshift X one could enumerate its patterns
p1, p2, . . . and construct a sequence (xn)n∈N such that ∀i ≤ n pi ⊏ xn. By definition,
any accumulation point of (xn)n∈N satisfies that Orbσ(x) = X. This gives an equiv-
alent definition of irreducible subshifts as those which admit a configuration x ∈ X
satisfying Orbσ(x) = X.

For minimal subshifts, the previous property is in fact held by every configuration.

Proposition 1.4. Let X ⊂ AG be a subshift. Then X is minimal if and only if
∀x ∈ X Orbσ(x) = X.

Proof. Let x ∈ X. Then Y = Orbσ(x) is a closed and shift invariant subset of X. If
X is minimal then either Y = ∅ or Y = X, as x ∈ Y we have Y = X. Conversely,
let Y ⊂ X be closed and shift-invariant and suppose Y 6= ∅. Then ∃x ∈ X ∩ Y and
thus X = Orbσ(x) ⊂ Y , therefore Y = X.

7

A notion which is not directly used in the following chapters but that nonetheless
appears in several examples is the topological entropy. It is a conjugacy invariant
which gives a measure of how complex a dynamical system is. We begin by giving a
definition in the case of a Z-subshift.

Definition 1.9. Let X ⊂ AZ be a subshift. Its topological entropy is given by:

htop(X) := lim
N→∞

1

N
log(|L{0,...,N−1}(X)|).

The limit in the above definition always converges because the function f(n) =
|L{0,...,n−1}(X)| is subadditive. Moreover, using Fekete’s subadditive lemma it can be
shown that htop(X) = infN≥1

1
N

log(|L{0,...,N−1}(X)|).

Example 1.4. Let AZ be the full shift. As there are no restrictions |L{0,...,N−1}(X)| =
|A|N and thus

htop(AZ) = log(|A|).

Example 1.5. The set of configurations:

XFib := {x ∈ {0, 1}Z | xn = 1 =⇒ xn+1 = 0}

is called the Golden-mean shift or the Fibonacci shift. It is the set of all bi-infinite
sequences where two 1s never appear next to each other. Let LN := |L{0,...,N−1}(X)|,
in order to count LN one can separate them in those ending in a 0 (there are exactly
LN−1) and those ending in a 1 (must be preceded by a 0 and thus there are LN−2).
We obtain that LN satisfies the Fibonacci recurrence LN = LN−1 + LN−2 starting

from L1 = 2 , L2 = 3. Therefore we have that |L{0,...,N−1}(X)| =
(1+

√
5

2
)N+2−(1−

√
5

2
)N+2

√
5

and thus htop(XFib) = log(1+
√
5

2
).

In the case of a general group the notion of entropy is more subtle. Two properties
of the topological entropy of Z-actions that would be desirable in the general case are
that the full shift AZ has entropy htop(AZ) = log(|A|) and that factor maps reduce
the entropy. Ornstein and Weiss [OW87] produced a seemingly bizarre example of a
factor map between the full shift on two symbols and the full shift on four symbols in
the free group F2. This example shows that a general entropy theory must forcefully
abandon one of these properties. Nevertheless, in the case of amenable groups the
standard theory generalizes nicely.

Definition 1.10. Let G be a countable amenable group and X ⊂ AG a subshift.
The topological entropy of X is given by:

htop(X) := lim
n→∞

1

|Fn|
log(|LFn

(X)|)

where (Fn)n∈N is any Følner sequence (see Definition B.22).

As in the case of a Z-subshift, the limit always exist and does not depend on
the Følner sequence. Here this fact follows from the Ornstein-Weiss lemma [OW87]

8

which is a generalization of Fekete’s lemma to amenable groups. In this case, one
can also show that the entropy is equal to the infimum. In fact Downarowicz et
al [DFR15] showed that it can be obtained as the infimum over all finite supports:
htop(X) = infF⊂G,|F |<∞

1
|F | log(|LF (X)|).

In the case of a non-amenable group there is no general entropy theory. However,
it is noteworthy to say that there is a far-reaching generalization in the case of sofic
groups developed by Bowen [Bow10] and generalized to the topological setting by
Kerr and Li [KL11]. In this case the entropy depends on a sofic approximation of the
group.

1.2 Classes of subshifts

In this section three important classes of subshifts are introduced. It is straightforward
to show that if a group G is countably infinite, then the set of all subshifts over a
fixed finite alphabet is uncountable, even if we quotient by conjugacy (see Exercise
4.3.7 from [LM95]). It is therefore interesting to explore what is the class of subshifts
we can get when we restrict to a countable set where every element can be defined
by a finite amount of information. This brings us to three classes that are widely
studied in the literature: subshifts of finite type, sofic subshifts and effectively closed
subshifts.

1.2.1 Subshifts of finite type

The class of subshifts of finite type (SFT) consists of all subshifts which can be defined
by a finite set of forbidden patterns. In this sense it is one of the simplest classes that
can be defined. In the case where G = Z these objects are well understood and can
be characterized as the set of bi-infinite walks in a subgraph of a De Bruijn graph,
see for instance [LM95]. In this case, almost all properties are well understood with
a remarkable exception being the conjugacy problem [Boy08] which asks whether it
can be algorithmically decidable if two SFTs are dynamically conjugate.

In the case where G = Zd with d ≥ 2, it turns out that subshifts of finite type
become much more complicated. While in Z every SFT contains periodic configu-
rations there are Z2-SFTs which are strongly aperiodic [Rob71, Kar96]. Also, given
a set of forbidden words it is decidable whether a Z-subshift defined by that set is
empty –it amount to finding a cycle in a graph– while in Z2 that same problem is
undecidable [Ber66, Rob71]. Said otherwise, there is no general algorithm deciding if
a finite set of forbidden patterns yields a non-empty subshift.

Even though we claim that the class of SFTs is very simple, in the literature
there are classes that are even more restrictive. For instance, if we endow the finite
alphabet A with a finite group structure and ask X ⊂ AG to be also a group with
pointwise composition we obtain the class of group shifts . In the case where G = Zd

it can be proven that they form a subclass of SFTs [KS88]. Another subclass of SFTs
which has been lately studied is the one of Hom-shifts [CM16] where subshifts are
defined as the set of graph homomorphisms from the Cayley graph of Zd to some finite

9

undirected graph. Analogously, they can be defined as the class of nearest neighbor
subshifts which are invariant under automorphisms of the Cayley graph of Zd.

In this section we introduce subshifts of finite type in the setting of general groups,
show some examples, and prove a few results which will be useful in the following
chapters.

Definition 1.11. A subshift X ⊂ AG is of finite type (SFT) if there exist a finite set
F ⊂ L(AG) of forbidden patterns such that X = XF .

Example 1.6. Let XFib be the Golden-mean shift from Example 1.5. XFib is a subshift
of finite type as X = XF for F = {11}.

Example 1.7. Let G = Z2 and A = Z/2Z. The set of configurations

XLed := {x ∈ (Z/2Z)Z
2

| ∀(i, j) ∈ Z2, x(i,j) + x(i+1,j) + x(i,j+1) = 0}

is called the Ledrappier shift [Led87] or the three dot system. It is an SFT and an
example of a configuration can be seen in Figure 1.4.

Figure 1.4: A configuration in the Ledrappier subshift.

The first important property of subshifts of finite type is that they form a conju-
gacy class.

Proposition 1.5. Let X ⊂ AG and Y ⊂ BG be subshifts. If X ∼= Y and X is an
SFT then Y is also an SFT.

Proof. Let φ : Y → X be a conjugacy, ψ : X → Y its inverse and FX a finite set of
forbidden patterns defining X. Without loss of generality, we can choose a support
F ⊂ G such that Φ : BF → A is the local map defining φ, Ψ : AF → B is the local
map defining ψ and 1G ∈ F . For a pattern p ∈ AR define Φ−1(p) ⊂ BRF as the set

10

of patterns q of support RF such that ∀r ∈ R and ∀f ∈ F , Φ({qrf}f∈F) = pr. We
claim that Y is defined by the finite set of forbidden patterns

FY :=
⋃

p∈F
Φ−1(p) ∪

(
BF 2

\ LF 2(Y)
)
.

First, let y ∈ Y and suppose there is q ∈ FY such that q ⊏ y. As y ∈ Y we have
q /∈ BF 2

\LF 2(Y) and thus q must be of the form Φ−1(p) for some p ∈ FX . Let g ∈ G
such that y ∈ [q]g, by definition we obtain that for each r ∈ supp(p),

φ(y)gr = Φ(σ(gr)−1

(y)|F) = Φ({qrf}f∈F) = pr.

Therefore p ⊏ φ(x). As p ∈ FX and φ(x) ∈ X this gives a contradiction and hence
for each q ⊏ y we have q /∈ FY .

Conversely, let y ∈ BG such that each q ⊏ y does not belong to FY . By definition
of FY , we have that φ(y) does not contain patterns in FX and thus φ(y) ∈ X and
thus ψ ◦ φ(y) ∈ Y . A priori, it might happen that ψ ◦ φ(y) 6= y. Nevertheless,

ψ(φ(y))g = Ψ(σg−1

(φ(y))|F)

= Ψ(φ(σg−1

(y))|F)

= Ψ(Φ({σf−1g−1

(y)|F}f∈F))

= Ψ ◦ Φ(σg−1

(y)|F 2)).

As ψ◦σ acts as the identity in Y , then forcefully it acts as the identity in each pattern
appearing in some configuration in Y , more precisely, in any pattern in LF 2(Y). By
definition of FY , we have that σg−1

(y)|F 2 ∈ LF 2(Y) and therefore Ψ(Φ(σg−1
(y)|F 2)) =

yg from where we conclude that y ∈ Y .

Definition 1.12. Let S be a finite subset of a group G. A subshift X ⊂ AG is said
to be nearest neighbor with respect to S if there exists a set F ⊂ L(AG) such that
X = XF and every pattern p ∈ F satisfies supp(p) = {1G, s} for some s ∈ S. Such a
set of forbidden patterns is also said to be nearest neighbor.

Nearest neighbor subshifts can be interpreted as colorings of the Cayley graph
Γ(G,S) such that for each edge {g, gs} the choices of color are restricted according
to the nearest neighbor set of forbidden patterns.

Example 1.8. The set X = {x ∈ AG | ∀g ∈ G, ∀s ∈ S, xg 6= xgs} of graph colorings
by A of the Cayley graph Γ(G,S) is a nearest neighbor subshift.

Example 1.9. A Wang tile is a 4-tuple t = (tN , tW , tS, tE) ∈ C4 where C is a finite set.
It represents a unit square whose edges are colored according to the tuple interpreting
the letters N,S,W,E as North, South, West and East respectively. See Figure 1.5.

A set τ ⊂ C4 of Wang tiles is called a tileset . We say x : Z2 → τ is a valid tiling
of the plane by τ if and only if for every (i, j) ∈ Z2:

x(i, j)N = x(i, j + 1)S and x(i, j)E = x(i+ 1, j)W .

11

tS

tN
tW tE

Figure 1.5: If the set C is interpreted as a finite set of colors, a Wang tile defined by
a tuple (tN , tW , tS, tE) of colors and can be represented as shown.

Said otherwise, a valid tiling is an assignment of tiles from τ to every position
of Z2 such that adjacent Wang tiles share the same color over adjacent edges, see
Figure 1.6. The set of all valid tilings by a tileset is a nearest neighbor Z2-subshift
for S = {(1, 0), (−1, 0)(0, 1), (0,−1)}.

Figure 1.6: A tileset τ and a partial valid tiling of the plane.

Every nearest neighbor subshift is of finite type, indeed, any set F satisfying the
constrains satisfies |F| ≤ |A|2|S|. The converse is false. For instance, the sequence of
Z-subshifts {Xn}n∈N where Xn ⊂ {0, 1}

Z is defined by Fn = {1n} is a countable set
of subshifts of finite type which satisfy that 1n−1 ∈ L(Xn) \

⋃
m<n L(Xm). Therefore

an infinite number of them are forcefully not nearest neighbor. Nevertheless, every
subshift of finite type is conjugate to a nearest neighbor subshift.

Before showing that result in generality, we illustrate informally in Figure 1.7
how this conjugacy works in the case we would like to turn a Z2 subshift into an
equivalent set of Wang tiles. As the set of forbidden patterns is finite, there exists a
big enough n ∈ N such that the support of every forbidden pattern is contained in
[0, n]2. Then one can construct the set of colorings of [0, n]2 which do not contain
forbidden patterns and turn each one of them into Wang tiles which through their
adjacency colors force two contiguous patterns to overlap. This technique gives a
one to one correspondence between the set of valid tilings of the Wang tiles and the
configurations in the original subshift which can be shown to be a conjugacy.

Proposition 1.6. Every subshift of finite type is conjugate to a nearest neighbor
subshift.

12

→

Figure 1.7: The transformation of a forbidden pattern into a Wang tile.

Proof. Let F be a finite set of forbidden patterns defining XF ⊂ AG and let F :=
{1G}∪

⋃
p∈F supp(p) which is finite because G is finitely generated. By Proposition 1.3

we have that X ∼= X [F]. The subshift X [F] is easily shown to be a nearest neighbor
subshift with respect to F . Indeed, the condition “∀h ∈ F, (yg)h = (ygh)1G” can
be coded by the patterns p with support {1G, h} such that (p1G)h 6= (ph)1G and the
condition “((yg)1G)g∈G ∈ X” is achieved forbidding all p̃ ∈ AF such that p̃|supp(p) = p
for some p ∈ F .

In the case where G is a finitely generated group, this result can be made stronger
in the following sense:

Proposition 1.7. If G is finitely generated by the set S then every subshift of finite
type is conjugate to a nearest neighbor subshift with respect to S.

Proof. Let F be a finite set of forbidden patterns defining XF ⊂ AG and consider
N := maxh∈supp(p),p∈F |h|S and F := BS(1G, N) be the ball of size N in the Cayley
graph Γ(G,S). Again we have that X ∼= X [F]. We claim X [F] is a nearest neighbor
subshift with respect to S.

Similarly to the previous proof, the condition “((yg)1G)g∈G ∈ X” is achieved for-
bidding all p̃ ∈ AF such that p̃|supp(p) = p for some p ∈ F . The condition “∀h ∈
F, (yg)h = (ygh)1G” is this time coded by all patterns with support p with support
{1G, s} such that there exists g ∈ BS(1G, N) ∩ BS(s,N) such that (p1G)g 6= (ps)s−1g.
Indeed, if h ∈ F then we can write h =G s1, · · · , sn ∈ S

n for some n ≤ N and we
have that (y1G)h = (ys1)s−1

1 h, (ys1)s−1
1 h = (ys1s2)s−1

2 s−1
1 h, etc. Iterating this we obtain:

(y1G)h = (ys1,··· ,sn)s−1
n ,··· ,s−1

1 h = (yh)1G .

Another interesting property of subshifts of finite type is that in the case of a
countable group action they are a dense subset for the Hausdorff topology on the set
of all subshifts over a fixed alphabet. Formally, we say a sequence of subshifts (Xn)n∈N
converges to X ⊂ AG if for every finite support F ⊂ G then LF (Xn)→ LF (X).

Proposition 1.8. Let G be a countable group and A an alphabet. Then the set
of all SFTs with alphabet A is dense in the set of all subshifts with alphabet A .
Furthermore, every subshift can be obtained as an intersection of SFTs.

13

Proof. As G is countable, we can enumerate all supports of F in a sequence (Fn)n∈N.
Let X ⊂ AG be a subshift and consider Fn :=

⋂
m≤nA

Fm \ LFm
(X) and Xn := XFn

.
By definition each Xn is an SFT and (Xn)n∈N → X and as the sequence is nested we
get

⋂
n∈NXn = X.

1.2.2 Sofic subshifts

A disadvantage of SFTs is that their image under a factor map is not necessarily
an SFT. It is natural to consider the smallest class of subshifts which contains all
subshifts of finite type and is closed under factors. The resulting class is the one
of sofic subshifts. The term was coined by Weiss [Wei73] and comes from Hebrew
meaning “finite”. The same term is used to refer to the class of sofic groups [Wei00]
which contains both amenable and residually finite groups.

As with subshifts of finite type, the properties of sofic subshifts are rather well
understood in the case G = Z, but several open questions still remain in the multi-
dimensional case. For instance, it is known that topological entropy decreases under
factor maps. In the case of Z-subshifts every sofic subshifts admits an SFT extension
with the same entropy. The question of whether every Z2 sofic subshift admits an
equal entropy SFT extension is still open although it is known that SFT extensions
with arbitrarily close entropy can always be found [Des06].

Definition 1.13. A subshift Y is sofic if it is a factor of an SFT. That is, if there
exists an SFT X and a factor map φ : X ։ Y .

Sofic subshifts are faithful to the philosophy of being defined with a finite amount
of information. Indeed, they just add the codification of the local function Φ which
defines the factor. Furthermore, they can always be regarded as relabellings of some
SFT by choosing a conjugate higher block extension as in Proposition 1.3.

Example 1.10. The subshift X≤1 := {x ∈ {0, 1}G | 1 ∈ {xg, xh} =⇒ g = h}
containing at most one appearance of 1 is a sofic subshift if G = Z. Indeed, one
can consider the alphabet A = {←,♥,→} with the set of forbidden words F =
{♥ ←,♥♥,→ ♥,→←}. This generates a subshift where all configurations are either
uniform arrow configurations or of the form · · · ←← ♥ →→ The 1-block code
φ : XF ։ X≤1 that sends ♥ to 1 and {←,→} to 0 factors onto X≤1.

If G is now the free group of rank 2 then again X≤1 is a sofic F2-subshift by an
analogous construction which is shown in Figure 1.8. In Chapter 4 it will be shown
that there are groups where X≤1 is not sofic.

Proposition 1.9. The property of being a sofic subshift is invariant under conjugacy

Proof. Let Z ∼= Y and Y be a sofic subshift. By definition, there exists an SFT X and
a factor map φ : X ։ Y . Let ψ : Y → Z be a conjugacy and consider ψ ◦φ : X → Z.
By defintion ψ ◦ φ is a factor map, therefore Z is a sofic subshift.

Example 1.11. Let G be a finitely generated group and S a set of generators of G
such that S−1 ⊂ S. The even shift Seven ⊂ {0, 1}

G is the set of all configurations

14

s1

s2

♥← →

↑

↓

←

↑

↓

→

↑

↓

↑

← →

↓

← →

s1

s2

10 0

0

0

0

0

0

0

0

0

0

0 0

0

0 0

φ

Figure 1.8: SFT extension for X≤1 in the case of a free group.

x such that any maximal finite connected component of x−1(1) ⊂ G in the Cayley
graph Γ(G,S) has even size. Said otherwise, each finite connected component of ones
has even size.

Seven can be shown to always be sofic, the proof below is folklore to the best of
the author’s knowledge, though the statement that it is an easy exercise appears in a
short note by Hochman describing a related open problem: whether the analogously
defined odd shift Sodd is sofic for G = Zd and the canonical set of generators. This
problem still remains open for d ≥ 3.

Proposition 1.10. If G is infinite, Seven is sofic and not an SFT.

Proof. Suppose Seven is an SFT, let F be a finite set of forbidden patterns such that
XF = Seven and let F =

⋃
p∈F supp(p). Let N = maxf∈F |f |S and consider ĝ ∈ G

such that M := |ĝ|S > 2N and M is even. As G is infinite this element exists. Now
consider a geodesic G := {1G = g0, g1, . . . , gM = ĝ} from 1G to ĝ. The indicator
function 1G of G is not in Seven because G = (1G)−1(1) is connected in Γ(G,S) and
has odd size. Nevertheless 1G ∈ XF . Indeed, as M > 2N then for every g ∈ G and
F ′ ⊂ F we have that either ĝ /∈ gF ′ or 1G /∈ gF ′. As 1G can be repaired by either
turning the symbol at 1G or ĝ to 0 we conclude that σg−1

(1G)|F ′ ∈ L(Seven) /∈ F and
thus 1G ∈ XF , a contradiction.

To see that Seven is sofic we construct an SFT extension XF and a 1-block code
φ : XF ։ Seven. Consider the finite set of functions (ϕi)i∈I with ϕi : S → {0, 1} such
that |ϕ−1i (1)| is either 0 or an odd number. Now consider the alphabet A = {ϕi, i ∈ I}
and the subshift XF ⊆ AG given by F =

⋃
s∈S Fs where Fs := {p ∈ A{1G,s} | p1G(s) 6=

ps(s
−1)}. The intuition behind this is that each element of A represents either a 0, or

a vertex of a graph with odd degree which must match correctly in every direction.
Finally, consider the 1-block code φ given by the local function that maps ϕ ≡ 0 to
0 and any other ϕ ∈ A to 1.

Let x ∈ XF and suppose there is a finite maximal component C ⊂ φ(x)−1(1).
Then for each g ∈ C we have that xg is not the ϕ ≡ 0 function. By definition of
F and the handshaking lemma we have that

∑
g∈C,s∈S xg(s) is even, but for each g

15

we have
∑

s∈S xg(s) is odd, therefore we conclude that |C| must be even and thus
φ(x) ∈ Seven.

Conversely, let y ∈ Seven. By compactness of {0, 1}G it is sufficient to construct
for each support F a configuration x ∈ XF] such that φ(x)|F = y|F . Let ŷ be a
configuration such that ŷ|F = y|F , ŷ−1(1) ⊂ FS and ŷ ∈ Seven. Such a configuration
can be obtained by deleting 1s in FS \F . For each connected component C ⊂ ŷ−1(1)
take a covering tree in Γ(G,S). If every node in the covering tree has odd degree
interpret them as elements of A and we are done, if not, take a vertex in the covering
tree that has even degree and remove it. As the number of vertices in the tree is even,
there must exist an odd number of subtrees that have odd degree. By reconnecting
this vertex to every such odd component (we use a symbol from A), we obtain a
forest of subtrees where each has an even number of vertices and the total number of
vertices with even degree has been reduced by one. Iterating this procedure yields a
forest where every node has odd degree and thus a covering of the component that
can be realized by elements of A. This produces x ∈ XF such that φ(x) = ŷ and thus
φ(x)|F = y|F . Therefore φ is surjective.

Sofic subshifts are of special importance in Z2 as they form a class big enough to
contain several subshifts of dynamical importance [Moz89, AS13]. In Chapter 3 this
fact will be made precise and used as the main tool for Theorem 3.7.

1.2.3 Effectively closed subshifts

Recently, the use of computability theory has become essential in the study of sub-
shifts of finite type. For example, in Zd for d ≥ 2 the possible entropies of SFTs
are characterized as the set of right recursively enumerable numbers [HM10]. This
type of results comes from the possibility to encode Turing machines inside Zd-SFTs.
The study of such results led to the introduction of the class of effectively closed
Zd-subshifts, defined by a recursively enumerable set of forbidden patterns. This
class was introduced by Hochman [Hoc09] who showed that they admit an almost
trivial isometric extension which is a subaction of a Zd+2-SFT. The construction was
improved with two different techniques [AS13, DRS10] to get a realization in sofic
Zd+1-subshifts as projective subdynamics. Thus with an increase of one of the di-
mension, effectively closed Zd-subshifts are very close to sofic subshifts. Hochman’s
result suggests that if we play with the structure on which subshifts are defined,
some strong links between sofic and effectively closed subshifts may emerge. This
problematic is the core of Chapter 3.

When considering subshifts defined on the group Z, patterns with connected sup-
ports can be identified as words over a finite alphabet. In that context a subshift
X ⊂ AZ is effectively closed if there is a recursively enumerable set of forbidden
words that defines it. The objective of this last part of the introductory chapter is
to generalize this definition to the class of finitely generated groups. On Zd, a finite
pattern is no longer a word, but can be easily coded as a word – via any recursive bi-
jection between Zd and Z. Then effective Zd-subshifts correspond to subshifts which

16

can be defined by a set of forbidden patterns that admits a recognizable set of codings.
In groups with undecidable word problem this recursive bijection does not exist.

One way to tackle that problem is to use the set of word representations on a
finitely generated group to define effectively closed subshifts through the formalism
of pattern codings. Even though this gives a clean and practical definition, it will
be seen that the class of subshifts it defines starts losing properties when the word
problem of the group is not decidable. In Chapter 4 a broader class of subshifts which
avoids this problem is studied.

In the remainder of this section, all groups are finitely generated. We show that
this class can be defined either by recursively enumerable or decidable sets of pattern
codings, that it contains all subshifts of finite type and that it is stable under finite
intersections. We also show that under the assumption that the underlying group is
recursively presented this class can be defined using a maximal sets of pattern codings,
it is stable under factors, finite unions and projective subdynamics. Therefore showing
that in this case the class of effectively closed subshifts contains all sofic subshifts and
is invariant under conjugacy.

Definition 1.14. Let G be a finitely generated group and A an alphabet. A pattern
coding c is a finite set of tuples c = (wi, ai)i∈I where wi ∈ S

∗ is a word in the generators
of G and ai ∈ A is a symbol.

For a pattern coding c we define its associated cylinder [c] :=
⋂

(w,a)∈c[a]w. We say

that a pattern coding is consistent if [c] 6= ∅. Equivalently, c is consistent if for every
pair of tuples such that wi =G wj then ai = aj. For a consistent pattern coding c we
define the pattern p(c) ∈ AF where F =

⋃
i∈I wi and p(c)wi

= ai.

Example 1.12. Let BS(1, 2) ∼= 〈a, b | ab = ba2〉 be a Baumslag-Solitar group and
A = {0, 1}. Then the pattern coding

(ǫ, 0) (b, 1) (a, 1)
(ab, 0) (ba2, 0) (ba, 1)

is consistent, since all the words above on S = {a, b, a−1, b−1} represent different
elements in G except for ab and ba2 that are assigned the same symbol. The pattern
it defines is:

1

0

1 0

1

1G a

b ba ab=ba
2

But the pattern coding

(ǫ, 0) (a2, 1) (bab−1a, 1)
(a, 1) (ba, 1) (abab−1, 0)

is inconsistent since words abab−1 and bab−1a represent the same element in G but
are assigned different symbols.

17

Definition 1.15. A set of pattern codings C is said to be recursively enumerable if
there is a Turing machine which takes as input a pattern coding c and accepts it if and
only if c ∈ C. It is said to be decidable if both C and its complement are recursively
enumerable.

Definition 1.16. A subshift X ⊂ AG is effectively closed if there is a recursively
enumerable set of pattern codings C such that:

X = XC := AG \
⋃

g∈G,c∈C
[c]g.

Note that implicitly we define effectively closed subshifts for finitely generated
groups without specifying the set of generators. The specific choice of the set of
generators S is irrelevant as one can easily translate one in terms of the other. Notice
that inconsistent pattern codings do not contribute to the union, and that consistent
ones satisfy [c]g = [p(c)]g. Therefore, the subshift defined by a set of pattern codings
C only depends on the set of consistent ones, in the sense that if p(C) := {p(c) | c ∈ C}
is the set of patterns defined by the consistent pattern codings of C then XC = Xp(C).

Example 1.13. Consider the alphabet A = { , , } and the set of configurations
Xmirror such that the following forbidden patterns do not appear.

F :=
{

, , ,
}
∪
⋃

w∈A∗

{
w , w wR , w wR

}
,

where wR denotes the reverse of the word w.
This subshift is called the Mirror shift . It consists of all configurations such

that if a red symbol appears, then the whole vertical line is red (this line is called
the mirror) and no other position has red symbols. If a mirror appears, then both
sides of the mirror must be reflexions of each other, see Figure 1.9 for an example
of a configuration. Xmirror is easily seen to be effectively closed, while it can be
proven that it is not sofic. Indeed, if S is the canonical set of generators of Z2, then
|Bn+1 \ Bn|/|Bn| tends to 0 as n goes to infinity. From this it is possible to deduce
that in a suitable SFT extension of the mirror shift, there are two different patterns
sharing the same boundary which yield different patterns in the mirror subshift. As
shown in Figure 1.9, switching a pattern for the other produces a point outside the
subshift yielding a contradiction. In Chapter 4 we generalize this same technique to
arbitrary amenable groups in Theorem 4.14.

We could also define the class of effectively closed subshifts by the existence of
a decidable set of pattern codings rather than a recursively enumerable one. This
justifies the usage of the word “effectively”. The following proposition is commonly
known to hold true in G = Zd. Here we present a general version which works in
every finitely generated group.

Proposition 1.11. Let X ⊂ AG be an effectively closed subshift. Then there exists
a decidable set of pattern codings C such that X = XC.

18

y1 ∈ Xmirror

P1P̃1

y2 ∈ Xmirror

P2P̃2

ỹ /∈ Xmirror

P2P̃1

x1 ∈ X

Q1

x2 ∈ X

Q2

x̃ ∈ X

Q2

↓ φ ↓ φ ↓ φ

Figure 1.9: Configuration in the mirror shift and technique showing non-soficity.

Proof. Let C ′ a recursively enumerable set of pattern codings such that X = XC′ .
If C ′ is finite the result is trivial. Otherwise there exists a recursive enumeration
C ′ = {c0, c1, . . . }. For a pattern coding c we define its length as |c| = max(w,a)∈c |w|.
For n ∈ N let Ln = maxk≤n |ck| and define Cn as the finite set of all pattern codings
c which satisfy the following properties:

• Every w ∈ S∗ with |w| ≤ Ln appears in exactly one pair in c.

• (w, a) ∈ c implies that |w| ≤ Ln.

• If (w, a) ∈ cn then (w, a) ∈ c.

That is, Cn is the set of all pattern codings which are completions of cn up to every
word of length at most Ln in every possible way. Consider C =

⋃
n∈N Cn. Clearly it

satisfies that X = XC. We claim it is decidable.
Consider the algorithm which does the following on input c: It initializes n to 0.

Then it enters into the following loop: First it produces the pattern coding cn. If
Ln > |c| it rejects the input. Otherwise it calculates the set Cn. If c ∈ Cn then it
accepts, otherwise it increases the value of n by 1.

As Ln is increasing and cannot stay in the same value indefinitely this algorithm
eventually ends for every input.

In what follows we will show which are the liberties one can take when choosing
a defining set of pattern codings and the structural properties of this class.

Proposition 1.12. Let G be a finitely generated group and A be an alphabet with at
least two symbols. The following are equivalent:

1. G is recursively presented.

2. WP(G) is recursively enumerable.

3. The set of inconsistent pattern codings is recursively enumerable.

19

Proof. The equivalence between the two first statements is evident. Let G have re-
cursively enumerable word problem. As u =G v ⇔ uv−1 =G 1G the set of inconsistent
pattern codings is recursively enumerable. Indeed, for n ∈ N, a Turing machine on
input c can simulate iteratively for n steps the machine recognizing WP(G) applied
to uv−1 for every pair (u, a), (v, b) ∈ c with a 6= b ∈ A and accept if this procedure
accepts for some n. Conversely, given w ∈ S∗, it suffices to give as input to the
machine recognizing the inconsistency of the pattern codings c = {(ǫ, a), (w, b)} with
a 6= b ∈ A in order to recognize if w =G 1G.

Lemma 1.13. Let X ⊂ AG be an effectively closed subshift. If G is recursively
presented then it is possible to choose C to be a recursively enumerable and maximal
– for inclusion – set of pattern codings such that X = XC.

This lemma is fundamental for the rest of the section and parts of Chapter 3
and 4. In what remains of this chapter, every time the statement of a result requires
as hypothesis that a group G is recursively presented, it is because its proof uses the
existence of a recursively enumerable and maximal set of pattern codings for some
effectively closed G-subshift.

Proof. A pattern coding c belongs to the maximal set C defining X if and only if
X ∩ [c] = ∅. Let c ∈ C and C ′ a recursively enumerable set such that X = XC′ . Then:

[c] =
⋂

(w,a)∈c
[a]w ⊂

⋃

c′∈C′,g∈G

⋂

(w′,a′)∈c′
[a′]gw′ .

By compactness we may extract a finite open cover indexed by c′i, gi such that:

[c] ⊂
⋃

i≤n
[c′i]gi (1)

Note that each of these gi can be represented as a finite word in S∗. Now let T
be the Turing machine which does iteratively for n ∈ N the following:

• Runs n steps the machine T1 recognizing WP(G) for every word in S∗ of length
smaller than n.

• Runs n steps the machine T2 recognizing C ′ for every pattern coding defined on
a subset of words of S∗ of length smaller than n.

• Let ∼n be the equivalence relation for words in S∗ of length smaller than n such
that u ∼n v if uv−1 has been already accepted by T1. Let Cn be the pattern
codings already accepted by T2. If every word in c has length smaller than n
check if the following relation is true under ∼n:

⋂

(w,a)∈c
[a]w ⊂

⋃

c′∈Cn,|u|≤n

⋂

(w′,a′)∈c′
[a′]uw′

If it is true, accept, otherwise increase n by 1 and continue.

20

Let m be the max of all |w| such that (w, a) ∈ c, and |w′| such that (w′, a′) ∈ c′i and
all |gi|. By definition, there exists an N ∈ N such that every c′i for i ≤ n is accepted
and every word representing 1G of length smaller than 2m is accepted. This means
that at stage N relation (1) is satisfied and T accepts c. If c is not in the maximal
set, the machine T never accepts.

Remark. Lemma 1.13 is no longer true if G is not recursively presented. Indeed, the
maximal set of pattern codings defining the full shift is given by the set of all incon-
sistent pattern codings, which is recursively enumerable if and only if G is recursively
presented by Proposition 1.12.

Proposition 1.14. The class of SFTs is contained in the class of effectively closed
subshifts.

Proof. Let X be an SFT. Then X = XF for a finite set F . For each p ∈ F consider
a pattern coding cp such that p(cp) = p and let C = {cp | p ∈ F}. Clearly X = XC
and as C is finite it is recursively enumerable.

Proposition 1.15. The class of effectively closed subshifts is closed by finite inter-
sections.

Proof. Let X = XCX and Y = YCY be effectively closed subshifts. Without loss of
generality suppose X, Y ⊂ AG (same alphabet) and note that:

X ∩ Y =

(
AG \

⋃

g∈G,c∈CX
[c]g

)
∩

(
AG \

⋃

h∈G,c′∈CY

[c′]g

)

= AG \
⋃

g∈G,c∈CX∪CY
[c]g

= XCX∪CY

Therefore, it suffices on input c to launch the Turing machines recognizing CX and
CY in parallel and accept if either of them accepts.

The previous result obviously does not extend to countable intersections. By
Proposition 1.8 every subshift is obtainable as an intersection of SFTs. If Propo-
sition 1.15 were true for countable unions we would conclude that all subshifts are
effectively closed. But there is an uncountable number of subshifts on a fixed alpha-
bet, and effectively closed subshifts clearly constitute a countable set, so there must
be one that is not effectively closed.

Proposition 1.16. For a recursively presented group the class of effectively closed
subshifts is closed by finite unions.

Proof. Let X = XCX and Y = YCY be effectively closed subshifts. As G is recursively
presented we can suppose CX and CY are maximal as in Lemma 1.13 As in the previous
proof we can show:

X ∪ Y = AG \

 ⋃

g∈G,c∈CX

⋂

(w,a)∈c
[a]gw

 ∩

 ⋃

g∈G,c∈CY

⋂

(w,a)∈c
[a]gw

21

Thus, as these sets are maximal we have X ∪Y = XCX∩CY . It suffices therefore to
launch both Turing machines and accept if both accept.

Proposition 1.17. For recursively presented groups the class of effectively closed
subshifts is closed under factors.

Proof. Let X ⊂ AG be an effectively closed subshift. As G is recursively presented,
the recursively enumerable set of pattern codings CX can be chosen to be maximal
by Lemma 1.13. Consider a factor code φ : X ։ Y defined by a local function
Φ : AF → B with F = {f1, . . . , f|F |} where f1, . . . , f|F | are words of S∗.

As φ is surjective, for each b ∈ B then |Φ−1(b)| > 0. Therefore we can associate
to a pair (w, b) a non-empty finite set of pattern codings

Cw,b = {(wfi, pfi)i=1,...,|F | | p ∈ Φ−1(b)}.

That is, Cw,b is a finite set of pattern codings over A representing every possible
preimage of b. For a pattern coding c = (wi, bi)i≤n where bi ∈ B we define:

Cc = {
⋃

(w,b)∈c
c̃w,b | c̃w,b ∈ Cw,b}.

That is, Cc is the finite set of pattern codings formed by choosing one possible
preimage for each letter. This set has the property that if Φ is applied pointwise then
Φ(p(Cc)) = {p(c)}. Let T be the Turing machine which on input c runs the machine
recognizing CX on every pattern coding in Cc. If it accepts for every input, then T
accepts c. Let CY be the set of pattern codings accepted by T . We claim Y = YCY .

Let y ∈ YCY a sequence of finite supports such that Fn ր G. For each pattern
coding c such that p(c) = y|Fn

, there is a pattern coding cn ∈ Cc which does not belong
to CX . As CX is maximal we have that [p(cn)]∩X 6= ∅. Extracting a configuration xn
from [p(cn)]∩X we obtain a sequence (xn)n∈N. By compactness there is a converging
subsequence with limit x̃ ∈ X. By continuity of φ we have that y = φ(x̃) ∈ Y .
Conversely if y ∈ Y there exists x ∈ X such that φ(x) = y. Therefore for every finite
F ′ ⊂ G and pattern coding c with p(c) = y|F ′ there exists a pattern coding c̃ ∈ Cc
such that p(c̃) = x|F ′F . Therefore, c /∈ Cy and thus y ∈ YCY .

Corollary 1.18. For a recursively presented group the following are true:

• The class of effectively closed subshifts is invariant under conjugacy.

• The class of effectively closed subshifts contains all sofic subshifts.

We do not know if the previous results extend to the general case where G is not
recursively presented. The main obstruction is that without that hypothesis there is
no control on the representations of the finite set F which defines the local rule of
the factor. As an example, consider a 1-block code φ. In order to detect forbidden
patterns by using the recursively enumerable set defining X we would need to touch
all possible representations of F = {1G}, which is exactly the word problem of the
group WP(G).

22

Definition 1.17. Let H ≤ G be a subgroup of G. Given a subshift X ⊂ AG the
H-projective subdynamics of X is the subshift πH(X) ⊂ AH defined as:

πH(X) = {x ∈ AH | ∃y ∈ X, ∀h ∈ H, xh = yh}

Proposition 1.19. Let G be a recursively presented group and H ≤ G a finitely
generated subgroup of G. If X ⊂ AG is effectively closed, then its H-projective sub-
dynamics πH(X) is effectively closed.

Proof. As H is finitely generated, there exists a finite set S ′ ⊂ H such that 〈S ′〉 =
H. As G is finitely generated by S there exists a function γ : S ′ → S∗ such that
s′ =G γ(s′) (that is, every element of S ′ can be written as a word in S∗). Extend the
function γ to act by concatenation over words in S ′∗.

AsG is recursively presented, by Lemma 1.13 the set of pattern codings CG defining
X can be chosen to be maximal. Let c = (wi, ai)i∈I a pattern coding where wi ∈ S

′∗

and consider γ(c) = (γ(wi), ai)i∈I . Let T be the Turing machine which on input c runs
the algorithm recognizing CG on input γ(c) and accepts if and only if this machine
accepts. Clearly CH = {c | T accepts c} is recursively enumerable. Also, as CG is
a maximal set of pattern codings then c ∈ CH ⇐⇒ [p(γ(c))] ∩ X = ∅. Therefore
πH(X) = XCH .

Proposition 1.19 put together with Corollary 1.18 imply that in recursively pre-
sented groups the projective subdynamics of SFTs and sofic subshifts are always
effectively closed. In the case of Z2 there is a converse to that statement in the
following form:

Theorem 1.20 (Aubrun-Sablik [AS13], Durand-Romashchenko-Shen [DRS10]). For
any effectively closed Z-subshift X there exists a sofic Z2-subshift Y such that πZ(Y) =
X.

The concept of projective subdynamics takes a central role in Chapter 3 where we
prove an extended version of this theorem for finitely generated groups.

23

Chapter 2

Free actions and densities in

subshifts

This chapter presents the results obtained in collaboration with Nathalie Aubrun and
Stéphan Thomassé which can be found in [ABT15]. We consider two general aspects
of realizability which concern subshifts in groups: The first one asks if it is possible
to construct a strongly aperiodic subshift, that is, one such that the shift action is
free. The second aspect is inspired by Sturmian words, by the fact that the factors of
length n carry a density of 1’s which converges to the slope of the irrational rotation
which generates the word [PF02, BR10]. Here, given a finitely generated group and
its word metric given by a set of generators, we ask if it is possible to construct a
subshift X ⊂ {0, 1}G such that for every configuration x ∈ X and every sequence
(gn)n∈N of group elements, the density of 1’s over the balls BS(gn, n) always converges
to a fixed density α ∈ [0, 1]. We call this property uniform density.

The existence of a countable group which does not admit a non-empty strongly
aperiodic subshift over the alphabet {0, 1} was asked in [GU09] and subsequently
answered negatively in [GJS09]. Nevertheless, their proof uses descriptive set the-
ory and is not elementary. In this chapter, the asymmetric version of Lovász local
lemma [AS08] is combined with the compactness of the set of configurations to get
a nice tool to prove non-emptiness of subshifts defined by forbidden patterns. This
technique, inspired in the results of Alon et al [AGHR02], is in some sense the ana-
logue of the probabilistic method in graph theory, and provides very short proofs of
the existence of configurations in subshifts. We use it to prove again in a succinct
way the existence of a strongly aperiodic subshift on any countable group. We also
extend the previous result by showing that in finitely generated groups with decidable
word problem it possible to construct non-empty strongly aperiodic subshifts which
are effectively closed. More specifically we show:

Theorem 2.4 (Aubrun, B, Thomassé). Every countable group G has a non-empty,
strongly aperiodic subshift on the alphabet {0, 1}.

Theorem 2.6 (Aubrun, B, Thomassé). Every finitely generated group with decidable
word problem has a non-empty effectively closed strongly aperiodic subshift.

24

It is noteworthy to remark that up to this date two articles [Ele17, Ber17] have
appeared in arXiv that build up from the techniques that we present in this chapter.
Specifically speaking, Elek [Ele17] gives a measured version of Theorem 2.6 for finitely
generated sofic groups and Bernshteyn [Ber17] uses a measured version of the Lovász
local lemma to show that Theorem 2.6 holds even if we start from an arbitrary shift-
invariant open set.

The second part of this chapter deals with densities in groups. In Z, for any
α ∈ [0, 1] there exists a subshift X over the alphabet {0, 1} such for any connected
support F , any pattern p ∈ LF (X) satisfies that |{f ∈ F | pf = 1}|/|F | takes at
most two values: ⌊α|F |⌋ and ⌈α|F |⌉. This condition is called being balanced . This
property is realized by the subshift generated by the Sturmian sequence coded by
the rotation Rα y R/Z of angle α. In general groups a configuration such that the
amount of 1’s over any finite connected support of size n has at most two values is
not possible as the group’s geometry is too wild. Instead, we propose the uniform
density property of a subshift as a generalization of the aforementioned property of
Sturmian subshifts. In this direction, we are able to prove a more technical result
which implies the existence of non-empty subshifts with uniform density in every
group of subexponential growth. Formally, we show the following result.

Theorem 2.10 (Aubrun, B, Thomassé). Let G be an infinite and finitely generated
amenable group and α ∈ [0, 1]. Then there exists a non-empty subshift Xα ⊂ {0, 1}

G

with limn→∞ dens(1, Fn, x) = α for any x ∈ Xα and any Følner sequence (Fn)n∈N.

That is, by replacing the sequence of intervals of Z for a general Følner sequence
we produce a subshift where the densities of 1’s converge to a fixed value α. We show
that the subshifts given by our construction are weakly aperiodic if α /∈ Q.

2.1 Non-empty strongly aperiodic subshifts

Recall from Definition 1.7 that a subshift X ⊂ AG is called strongly aperiodic if
every configuration x ∈ X is aperiodic. It is well known that every Z-subshift of
finite type contains a periodic configuration [LM95]. However, it was proven by
Berger [Ber66] that there are Z2-SFTs which are strongly aperiodic. This result has
been proven several times with different techniques [Rob71, Kar96, JR15] giving a
variety of ingenious constructions.

Figure 2.1: The set of Robinson tiles up to rotation and reflection.

25

For instance, the construction of Robinson uses an alphabet which can be inter-
preted as the finite set of figures obtained through rotations and reflections of the tiles
shown in Figure 2.1 along with the rules that two tiles can be put next to each other
if and only if they match geometrically. Of course, these tiles can be translated into a
finite alphabet and a finite set of forbidden patterns defining a subshift of finite type.
The structure from the Robinson tiles forces a sequence of arbitrarily big hierarchical
structures called macrotiles to appear in every configuration, one of these is shown
in Figure 2.2. The proof of aperiodicity of this object is based on the fact that any
non-trivial shift will not leave invariant a big enough macrotile.

Figure 2.2: A macrotile appearing in the Robinson tiling.

The problem of characterizing the groups which admit strongly aperiodic SFTs
remains an open problem up to this day. We further study what is known in this
domain in Chapter 3. However, a much simpler question is whether a strongly aperi-
odic effectively closed G-subshift exists, or even if there are any non-empty strongly
aperiodic subshifts at all. The objective of this section is to develop the tools to give a
full answer to the last question and a complete classification in the case of recursively
presented group for the former.

We begin by introducing an important combinatorial tool: the asymmetric version
of the Lovász local lemma. We then extract from this lemma a suitable version that
can be used to prove the existence of configurations in subshifts. Finally, we proceed
to the construction of the strongly aperiodic subshifts in these two cases.

26

2.1.1 Lovász local lemma

Lemma 2.1 (Asymmetric Lovász local lemma). Let A := {A1, A2, . . . , An} be a finite
collection of measurable sets in a probability space (X,µ,B). For A ∈ A , let Γ(A) be
the smallest subset of A such that A is independent of the collection A \({A}∪Γ(A)).
Suppose there exists a function x : A → (0, 1) such that:

∀A ∈ A : µ(A) ≤ x(A)
∏

B∈Γ(A)

(1− x(B))

then the probability of avoiding all events in A is positive. Specifically

µ

(
X \

n⋃

i=1

Ai

)
≥
∏

A∈A

(1− x(A)) > 0.

A proof for Lemma 2.1 can be found in [AS08]. The sets A1, A2, . . . , An can be seen
as bad events that we want to avoid. In the context of the present application where
A is a finite alphabet and G a countable group, we will choose the probability space to
be X = AG with µ any Bernoulli probability measure on AG. Suppose X is a subshift
defined by a set of forbidden patterns F =

⋃
n≥1Fn where Fn ⊂ A

Sn is a finite set
of patterns with support Sn. We will consider the bad events An,g =

⋃
p∈Fn

[p]g ={
x ∈ AG : x|gSn

∈ Fn

}
, that is to say one of the forbidden patterns p ∈ Fn appears

in position g. Subshifts might be defined by an infinite amount of forbidden patterns
while the lemma only holds for a finite collection of bad events. Nevertheless the
compactness of AG allows us to use the lemma anyway, as explained in what follows.

Lemma 2.2 (Aubrun, B, Thomassé). Let G a countable group and X ⊂ AG a
subshift defined by the set of forbidden patterns F =

⋃
n≥1Fn, where Fn ⊂ A

Sn. Let

µ be a Bernoulli probability measure on AG. Suppose that there exists a function
x : N×G→ (0, 1) such that:

∀n ∈ N, g ∈ G, µ(An,g) ≤ x(n, g)
∏

gSn∩hSk 6=∅
(k,h) 6=(n,g)

(1− x(k, h)), (∗)

where An,g =
{
x ∈ AG : x|gSn

∈ Fn

}
. Then the subshift X is non-empty.

Proof. Consider an enumeration {gk}k∈N of G. For every n ∈ N, we apply Lemma 2.1
to construct a configuration xn ∈ A

G that satisfies the following property: for every
forbidden pattern p ∈ Fk such that k ≤ n and every g ∈ {gk}k≤n such that gSk ⊆
{gk}k≤n, we have xn /∈ [p]g – in other terms, the configuration xn avoids all the
forbidden patterns in

⋃
k≤nFk on the finite set {g1, . . . , gn} ⊂ G. Indeed, in order

to show the existence of xn we only need that for every k ≤ n and g ∈ G such that
gSk ⊆ {gk}k≤n,

µ(Ak,g) ≤ x(k, g)
∏

gSk∩hSk′ 6=∅
hSk′⊆{g0,...,gn}
(k′,h) 6=(k,g),k≤n

(1− x(k′, h))

27

which is a relaxation of condition (∗) by the fact that 0 ≤ x(k′, h) ≤ 1. The local
lemma holds since the set {g0, . . . , gn} is finite and we only consider a finite number
of forbidden patterns, consequently we only consider a finite number of bad events
Ak,g.

As G is countable, compactness is also sequential and we can extract from (xn)n∈N
a subsequence (xφ(n))n∈N converging to some x ∈ AG. Then x does not contain any
forbidden pattern p ∈ F . Suppose it were the case, that is to say, there exists some
g ∈ G and p ∈ Fm such that x ∈ [p]g. Since there exists also n, l such that g = gl and
gSm ⊂ {g0, . . . , gn}, by definition of the metric there exists some N ≥ max{m,n, l}
sufficiently big which such that φ(N) appears in the subsequence (φ(n))n∈N. Then
xN contains the forbidden pattern p somewhere in (xN)|{g1,...,gN}. This contradicts
the construction of the sequence (xn)n∈N, thus x ∈ XF .

2.1.2 A non-empty strongly aperiodic subshift over {0, 1} in

any countable group.

Consider a configuration x ∈ {0, 1}G. We say that x has the distinct neighborhood
property – in [GJS09] they call x a 2-coloring – if for every h ∈ G \ {1G} there exists
a finite subset T ⊂ G such that:

∀g ∈ G : σ(gh)−1

(x)|T 6= σg−1

(x)|T .

Proposition 2.3. If a configuration x ∈ {0, 1}G has the distinct neighborhood prop-
erty, then the G-subshift X := Orbσ(x) is strongly aperiodic.

Proof. Let y ∈ X. By definition there exists a sequence (gi)i∈N such that σgi(x)
converges to y in the product topology. Suppose there is h 6= 1G such that σh(y) =
y, then by continuity of the shift action under the product topology we have that
σhgi(x) → σh(y) = y. Since x has the distinct neighborhood property, there exists a
finite subset T of G – associated to h−1 – such that ∀g ∈ G : σhg−1

(x)|T 6= σg−1
(x)|T .

By definition of convergence, there exists n ∈ N such that T ⊂ {g0, g1, . . . , gn} and
m ∈ N satisfying:

σhgm(x)|{g0,g1,...,gn} = y|{g0,g1,...,gn} = σgm(x)|{g0,g1,...,gn}

Therefore σhgm(x)|T = σgm(x)|T , a contradiction.

Theorem 2.4 (Aubrun, B, Thomassé). Every countable group G has a non-empty,
strongly aperiodic subshift on the alphabet {0, 1}.

Proof. The case where G is finite is trivial, as the G-SFT given by

X := {x ∈ {0, 1}G | |x−1(1)| = 1}

is strongly aperiodic. Indeed, let x ∈ X and g ∈ G be the only element such that
xg = 1. Let h ∈ stabσ(x) then σh(x) = x which implies that xh−1g = xg = 1 and thus
h = 1G. For the rest of the proof we suppose that G is countably infinite.

28

Let (si)i∈N be an enumeration of G such that s0 = 1G. Choose (Ti)i∈N a sequence
of finite subsets of G such that for every i ∈ N, Ti ∩ siTi = ∅ and |Ti| = C · i, where
C is a constant to be defined later. These sets always exist as G is infinite.

Consider the uniform Bernoulli probability µ in {0, 1}G and the collection of sets
A := {An,g}n≥1,g∈G given by An,g = {x ∈ {0, 1}G | σg−1

(x)|Tn
= σ(gsn)−1

x|Tn
}. Note

that each set is a union of cylinders and that the existence of a configuration x̃ in
the intersection of the complement of these sets allows us to conclude the theorem by
producing a configuration with the distinct neighborhood property. Our strategy is
to apply Lemma 2.2 to ensure its existence.

As the intersection snTn ∩ Tn is empty we have that µ(An,g) = 2−|Tn| = 2−Cn.
Consider one set An,g. The number of sets Am,g′ for a fixed m ∈ N which are not
independent from An,g is at most 4C2nm – observe that An,g is independent from
Am,g′ if and only if (gTn ∪ gsnTn) does not intersect (g′Tm ∪ g′smTm). We also define

x(An,g) := 2−
Cn
2 . Therefore, in order to conclude we must prove that:

2−Cn ≤ 2−
Cn
2

∞∏

m=1

(1− 2−
Cm
2)4C

2nm.

Using the fact that 1− x ≥ 2−2x if x ≤ 1/2 we obtain the following bound:

2−
Cn
2

∞∏

m=1

(1− 2−
Cm
2)4C

2nm ≥ 2−
Cn
2

∞∏

m=1

2−8C
2nm2−

Cm
2

= 2−
Cn
2 2−8C

2
∑∞

m=1 nm2−
Cm
2

Therefore, it suffices to prove that:

2−
Cn
2 ≤ 2−8C

2
∑∞

m=1 nm2−
Cm
2

⇐⇒ 1 ≥ 16C
∞∑

m=1

m2−
Cm
2

⇐⇒ 1 ≥ 16C
2

C
2

(2
C
2 − 1)2

The previous inequality holds true for C ≥ 17. Therefore choosing C = 17
completes the proof by application of Lemma 2.2.

2.1.3 A graph-oriented construction and some computational

properties

In this subsection we present another construction of a non-empty strongly aperiodic
subshift. This construction is not as general as the previous one, as it only holds for
finitely generated groups, and the size of the alphabet is rather large. Nevertheless,

29

it can be defined by a natural property which allows us to use it in computability
constructions with ease.

Let Γ = (V,E) be a simple graph, consider a finite alphabet A and a coloring
x ∈ AV of the vertices of Γ. We say x contains a vertex-square path if there exists
an odd length path p = v1 . . . v2n such that xvi = xvi+n

for every 1 ≤ i ≤ n. If the
coloring x does not contain any vertex-square path then we say it is a square-free
vertex coloring .

Example 2.1. Consider the cycle on five vertices C5. Any coloring of its vertices with
three colors forces the appearance of a vertex-square path.

Figure 2.3: Two colorings of C5. The left is not square-free and the right one is.

Next we show a proposition which is a slight modification of a proof which can be
found in [AGHR02].

Proposition 2.5. Let G be a group which is generated by the finite set S. Then there
exists a square-free vertex coloring of the undirected right Cayley graph Γ(G,S) with
219|S|2 colors.

Proof. Consider a finite alphabet A and let X = AΓ(G,S) be the set of all vertex col-
orings of the Cayley graph Γ(G,S). We define µ as the uniform Bernoulli probability,
that is, for a ∈ A and g ∈ G then

µ({x ∈ X | xg = a}) =
1

|A|
.

Consider P as the set of all odd length paths in Γ(G,S). For p ∈ P let Ap be
the set of colorings of Γ(G,S) such that p is a square under that coloring and note
that if p is of length 2n− 1 then µ(Ap) = |A|−n if there exists a path of said length.
Consider An = {Ap | p has length 2n − 1} and A = {Ap | p ∈ P} =

⋃
n≥1An. In

order to apply Lemma 2.2, we define x(Ap) := (8|S|2)−n for Ap ∈ An. The lemma
holds if for every A ∈ A then µ(A) ≤ x(A)

∏
B∈Γ(A)(1− x(B)). Replacing both sides

yields the necessary condition:

∀n ≥ 1, |A|−n ≤ (8|S|2)−n
∏

j≥1
(1− (8|S|2)−j)|Γ(Ap)∩Aj |.

|Γ(Ap) ∩ Aj| corresponds to the amount of paths of length 2j − 1 which share a
vertex with p. If p has length 2n − 1 this can be bounded by 4nj(2|S|)2j. Indeed,
there are at most (2|S|)2j paths of length 2j − 1 starting from a vertex v. Each of

30

these paths can intersect a given vertex of p in 2j positions and there are 2n vertices
in p. Hence, we need to show:

∀n ≥ 1, |A|−n ≤ (8|S|2)−n
∏

j≥1
(1− (8|S|2)−j)4nj(2|S|)

2j

.

Using the inequality 1−x ≥ 2−2x if x ≤ 1/2, the requirement to apply the lemma
can be restrained further so that the following is required to conclude:

∀n ≥ 1, |A|−n ≤ (8|S|2)−n
∏

j≥1
2−8nj(8|S|

2)−j(4|S|2)j

= (8|S|2)−n
∏

j≥1
2−8nj2

−j

or equivalently:

|A| ≥ (8|S|2)28
∑

j≥1 j2
−j

≥ 219|S|2.

The latter inequality is satisfied by hypothesis, therefore, there exists a coloring
of the graph such that no path of odd length is a square under that coloring.

Theorem 2.6 (Aubrun, B, Thomassé). Every finitely generated group G has a non-
empty strongly aperiodic subshift X. Furthermore, if G has a decidable word problem,
then X can be chosen to be effectively closed.

Proof. Let S be a set of generators of G and A an alphabet such that |A| ≥ 219|S|2.
Consider the set of forbidden patterns F defined as follows: Take P the set of all
finite paths of odd length of Γ(G,S). For every p ∈ P we define the set of patterns
Πp as those with support p and such that they are vertex-square paths. Let F =⋃

p∈P Πp and let X = XF be the subshift defined by this set of forbidden patterns.
By Proposition 2.5 this subshift is non-empty. Furthermore, if WP(G) is decidable
then pattern codings of vertex-square paths can be recognized with a Turing machine
and consequently X is effectively closed. We claim it is strongly aperiodic.

Let x ∈ X and g ∈ stabσ(x). We are going to show that if g 6= 1G then x contains
a vertex-square path. Consider an expression of g as an element of S∗ such it can
be factorized as g =G uwv with u =G v−1. This can always be done by choosing
u = v = ε and w a product of generators producing g. Amongst all those possible
representations choose one such that |w| is minimal. Clearly |w| = 0 implies that
g = 1G, so we suppose |w| > 0. Let w = w1 . . . wn and consider the odd length walk
π = v0v1 . . . v2n−1 defined by:

vi :=

1G if i = 0

w1 . . . wi if i ∈ {1, . . . , n}

ww1 . . . wi−n if i ∈ {n+ 1, . . . , 2n− 1}

31

We claim that π is a path. Indeed, by definition w can not be reduced and thus
there are no repeated vertices in v0v1 . . . vn nor in vn+1 . . . v2n−1. Therefore if there is
a repeated vertex then it appears once in both parts. Suppose that it happens, thus
we can consider two factorizations w = ab and w = cd such that a =G abc. We obtain
that b = c−1. Obviously |c| = |b|, if not, w can be written as abcc−1 =G ac−1 or
b−1bcd =G b−1d which contradicts the minimality of |w|. Without loss of generality,
we can replace c by the word obtained by reversing the order and inversing the letters
of b. Moreover, |c| > 0 and thus |b| > 0 which means that w is written as follows:

w = a1 . . . akb1 . . . bl = b−1l . . . b−11 d1 . . . dk

Therefore we can factorize b−1l and bl from both sides obtaining a smaller word
w′ in the representation of g. This contradiction show that indeed π is a path. To
conclude, we have that g =G uwu−1 and since g ∈ stabσ(x) which is normal in G, so
does h the group element represented by the word w and therefore h−1 ∈ stabσ(x).
This means that xvj = xhvj = xvj+n

for all j ∈ {0, . . . , n−1}, yielding a square-vertex
path. Therefore |w| = 0 and thus g = uv = 1G.

Remark. In the previous proof we argued that if the word problem of G is decid-
able then the subshift constructed is effectively closed. It is important to notice that
it does not suffice that WP(G) is recursively enumerable. Indeed, a recursively enu-
merable word problem allows the construction of upper approximations to the balls
BS(1G, n) of the Cayley graph but at any given iteration it provides no guarantee of
the convergence. That is, one might detect a square path only to find out later on
that the middle vertex was the same as the starting one in the group. One might
wonder if it is possible to do better and make the previous construction work in re-
cursively presented groups. In what remains of this section it will be shown that it is
not possible.

Theorem 2.6 provides a non-empty strongly aperiodic subshift which is effectively
closed if WP(G) is decidable. Recently Jeandel [Jea15] has shown that for recursively
presented groups, if the group admits a non-empty effectively closed strongly aperi-
odic subshift then its word problem is decidable. Moreover, he has shown that the
same conclusion stands when we allow every configuration to have a finite –instead
of trivial– stabilizer. Our result actually shows the converse, that is, that every re-
cursively presented group with decidable word problem admits a non-empty strongly
aperiodic effectively closed subshift. In the remainder of this section we prove this
equivalence.

Lemma 2.7. Let G be a finitely generated group, S ⊂ G a finite set of generators and
X ⊂ AG a non-empty strongly aperiodic subshift. There exists a function f : N→ N

such that for every x ∈ X, if g ∈ BS(1G, n)\{1G} then x|BS(1G,f(n)) 6= σg(x)|BS(1G,f(n)).

Proof. Suppose f does not exist, thus there exists n ∈ N and a sequence (xj, gj)j∈N ⊂
X × BS(1G, n) \ {1G} such that xj|BS(1G,j) = σgj(xj)|BS(1G,j). As BS(1G, n) is finite
there exists ḡ 6= 1G which appears infinitely often in (gj)j∈N. Consider the subsequence
(xk)k∈N,gk=ḡ and from there extract a converging subsequence (xkα) → x̄ ∈ X. We

32

claim that ḡ ∈ stabσ(x̄). By definition of convergence, for every m ∈ N there exists
Nα ≥ m such that x̄|BS(1G,m+n) = (xNα

)|BS(1G,m+n) and thus

x̄|BS(1G,m) = xNα
|BS(1G,m) = σḡ(xNα

)|BS(1G,m) = σḡ(x̄)|BS(1G,m)

So for every m ∈ N we have x̄|BS(1G,m) = σḡ(x̄)|BS(1G,m) and therefore ∀g ∈ G :
x̄g = x̄ḡ−1g. This is a contradiction as X is strongly aperiodic.

Theorem 2.8 (Aubrun, B, Thomassé). Let G be a recursively presented and finitely
generated group. There exists a non-empty strongly aperiodic effectively closed subshift
X ⊂ AG if and only if WP(G) is decidable.

Proof. Theorem 2.6 yields the desired construction. Conversely, suppose there is a
non-empty effectively closed subshift X which is strongly aperiodic. As G is recur-
sively presented then WP(G) is recursively enumerable and Theorem 1.13 ensures the
existence of a Turing machine T which accepts a maximal set of pattern codings C
such that X = XC.

Let w ∈ S∗. We present an algorithm which accepts if and only if w 6=G 1G.
Consider the ball of size n in the free monoid over the alphabet S∗, that is Λn = {u ∈
S∗ | |u| ≤ n} and consider the set Λn ∪ wΛn. For each one of these sets we construct
the set Cn of all pattern codings c such that for u ∈ Λn then (u, a) ∈ c if and only if
(wu, a) ∈ c. That is, we force the ball of size n around the empty word ǫ and w to be
the same. Consider the algorithm which iteratively runs T on every pattern coding
of C1, C2, . . . Cj up to j steps and then does j ← j+ 1 and which accepts w if and only
if every pattern coding in a particular Ci is accepted by T . If w =G 1G the algorithm
can never accept as it would mean no patterns are constructible around 1G and thus
X = ∅. Conversely, if w 6=G 1G then using the function f given by Lemma 2.7 we
get that for every x ∈ X if w 6=G 1G then x|BS(1G,f(|w|)) 6= σw−1

(x)|BS(1G,f(|w|)) thus
every pattern in Cf(|w|) is either inconsistent or represents a forbidden pattern, and
therefore T must accept every pattern of Cf(|w|).

One may ask if it is possible to construct non-empty strongly aperiodic subshifts
which satisfy stronger constrains, such a being of finite type, sofic or effectively closed.
The previous result shows that our construction is in this sense optimal for recursively
presented groups with undecidable word problem.

Corollary 2.9. Let G is a finitely generated and recursively presented group with
undecidable word problem and X ⊂ AG be a subshift. If X is an SFT, sofic or
effectively closed then X contains a periodic configuration.

In Chapter 3 an extended version of Theorem 2.8 which concerns arbitrary effective
group actions over a Cantor set will be shown.

2.2 Realization of densities

In this section we construct over any infinite and finitely generated group a non-empty
subshift over {0, 1} with the property that the density of 1’s over any Følner sequence

33

converges to a fixed α ∈ [0, 1]. From this result we derive the existence of uniform
density subshifts for infinite groups of subexponential growth for any finite set of
generators. Furthermore, we show that said subshifts are always weakly aperiodic.

Definition 2.1. Let F ⊂ G be a finite subset of a group and x ∈ {0, 1}G be a
configuration. We define the density of 1’s in F and x as:

dens(1, x|F) = dens(1, F, x) =
|{f ∈ F | xf = 1}|

|F |
.

Similarly if p ∈ AF is a pattern, we denote by dens(1, p) the ratio
|{f∈F |pf=1}|

|F | .

Definition 2.2. Let G be a finitely generated group and S a finite set of gener-
ators. We say a G-subshift over {0, 1} has uniform density α ∈ [0, 1] if for ev-
ery configuration x ∈ X and for every sequence (gn)n∈N of elements in G, one has
dens(1, BS(gn, n), x)→ α.

In a way similar to the previous definition, we could say a configuration x ∈ {0, 1}G

has density α ∈ [0, 1] for some sequence of subsets (Tn)n∈N if for each sequence
of elements (gn)n∈N we have that dens(1, gnTn, x) → α. Nevertheless, contrary to
the preceding section, Lovász local lemma cannot directly be applied to prove the
existence of such configurations. If we define the forbidden sets to be An,g = {x ∈
{0, 1}G | |dens(1, gTn, x) − α| > δnα} for some sequence of error terms δn → 0 we
obtain that the measure of this set can be bounded above using the Chernoff bounds
by 2 exp(δ2nα|Tn|/3). For any function which bounds these values by above, after some
elimination of exponents, we obtain that the left hand side of the inequality required
by the local lemma depends on δn while the right hand side is constant. Therefore
we tackle this problem with a different approach.

Nevertheless, if the condition that the group is amenable (see Definition B.21) is
added, not only it is possible to obtain a result like the one defined in the previous
paragraph, moreover, the density over every Følner sequence can be asked to converge
to the same fixed α.

Theorem 2.10 (Aubrun, B, Thomassé). Let G be an infinite and finitely generated
amenable group and α ∈ [0, 1]. Then there exists a non-empty subshift Xα ⊂ {0, 1}

G

with limn→∞ dens(1, Fn, x) = α for any x ∈ Xα and any Følner sequence (Fn)n∈N.

Before showing this theorem, we must introduce Delone sets. This notion will also
be used in the proof of Theorem 4.11 in Chapter 4.

Definition 2.3. Let (X, d) be a metric space and D ⊂ X.

• The packing radius of D is rD = 1
2

inf {d(x, y) | x, y ∈ D, x 6= y}.

• The covering radius of D is given by cD = sup {d(x,D) | x ∈ X}.

A set with non-zero packing radius and finite covering radius is said to be Delone.

34

In words, the packing radius is an upper bound to the size of the balls that can
be put simultaneously in every point in D such that they do not touch each other.
The covering radius is a lower bound to the size of the balls which cover the space
completely if put over the points of D. We say D ⊂ X is s-covering if s ≥ cD and
that D is s-separating if s < 2rD.

Remark. A Delone subset of a non-empty set must be non-empty.

Figure 2.4: In green, an example of 2-covering and 2-separating set in PSL(2,Z) ∼=
Z/2Z ∗ Z/3Z. Green vertices are at distance at least 3 from each other, and every
vertex is at distance at most 2 from a green vertex.

Lemma 2.11. Let (X, d) be a metric space and r ∈ N. There exists a set Dr which
is r-separating and r-covering.

Proof. Suppose we have an r-separating set D which is not r-covering. Then the set
K := {x ∈ X | d(D, x) > r} is not empty and D can be extended by an element of
K. Thus any maximal for inclusion r-separating set is also r-covering.

We only need to show that maximal r-separating sets exist. Let (S,⊂) be the set
of r-separating subsets of X ordered by inclusion. Clearly ∅ ∈ S and given a chain
{Ai}i∈I ⊂ S we have that A =

⋃
i∈I Ai is an upper-bound. Indeed, if x, y ∈ A then

x ∈ Ai and y ∈ Aj for some i, j ∈ I. As {Ai}i∈I is a chain, then either Ai ⊂ Aj or
Aj ⊂ Ai. As any of these two sets is r-separating we get that d(x, y) > r and hence
A ∈ S. By Zorn’s lemma there exists a maximal r-separating set.

No we are ready to begin the proof of Theorem 2.10.

Proof. For supports F,K let Int(F,K) := {g ∈ F |∀k ∈ K, gk ∈ F} be the interior
of F with respect to K and ∂KF := F \ Int(F,K) the boundary of F with respect
to K (for more details, see Definition B.23)

If α ∈ {0, 1} or G is not amenable the result is trivial. Let α ∈ (0, 1), and define
Kn := BS(1G, 5

n) and consider the subshift Xα given by the set of forbidden patterns

35

F such that for p ∈ {0, 1}F (where F ⊂ G, |F | <∞) belongs to F if and only if the
following condition is not satisfied:

2n|∂Kn
F | < |F | =⇒ |dens(1, p)− α| ≤

1

n

In other words, we forbid a pattern p with support F if the ratio
|∂KnF |
|F | is suffi-

ciently small and the density of ones in p is further than 1
n

from α.

Consider a Følner sequence (Fn)n∈N and letm ∈ N and x ∈ Xα. As limn→∞
|∂KmFn|
|Fn| =

0 there exists N ∈ N such that

∀n ≥ N
|∂Km

Fn|

|Fn|
<

1

2m

Therefore, for every n ≥ N we get that |dens(1, x|Fn
) − α| ≤ 1

m
. As m can be

made arbitrarily big we obtain that limn→∞ dens(1, Fn, x) = α.

We only need to show that Xα 6= ∅. Our strategy will be to inductively construct
an infinite covering forest of G, and then put a Sturmian word along an enumeration
of the leaves of each of its trees. The configuration x ∈ {0, 1}G obtained by this
process will belong to Xα. The following objects – that are formally described below
– will be used to formalize this idea: a sequence (An)n∈N ⊂ 2G of subsets of G, a
sequence (pn)n∈N : G → An of functions and a sequence (Γn)n∈N of graphs on vertex
sets (An)n∈N respectively. They are defined by the following recurrences, with base
cases A0 = G, p0 = id and Γ0 = Γ(G,S) where S is a finite set of generators of G:

1. The set An+1 is chosen as a 2-separating and 2-covering subset of An for the
distance induced by Γn. In particular, the sets (An)n∈N are nested.

2. Suppose pn : G → An is already defined, we first define pn+1 on An and then
extend it to G. Consider an element g ∈ An. Since An+1 2-covers An in Γn,
there are only three possible cases.

• g ∈ An+1: in this case we set pn+1(g) = g.

• dΓn
(g, An+1) = 1: there exists a unique h ∈ An+1 that satisfies dΓn

(g, h) =
1 – uniqueness comes from the fact that An+1 is 2-separating – and we set
pn+1(g) = h.

• dΓn
(g, An+1) = 2: we arbitrarily choose one h ∈ An+1 that realizes dΓn

(g, h) =
2 and set pn+1(g) = h.

For g′ ∈ G \ An we finally extend this function by pn+1 := pn+1 ◦ pn.

3. For g ∈ An define the n-cluster of g by Cn(g) := {h ∈ G | pn(h) = g}. The
element g ∈ An is called the center of the cluster Cn(g). The graph Γn+1 has
vertex set An+1, and there is an edge in Γn+1 between two elements g, h ∈ An+1

if and only if there exist g′ ∈ Cn(g) and h′ ∈ Cn(h) that are neighbors in Γ(G,S).

36

The covering forest defined by the sequence (An, pn,Γn)n∈N is (V,E), where the
set of vertices V is the multiset

⊔
n∈NAn, and the edges are given by the parent

functions: (g, h) ∈ E if and only if g ∈ An, h ∈ An+1 and pn(g) = h. In particular
the successive applications of p1, . . . , pn to an element g ∈ G = A0 gives the path
from the leaf labeled by g to its height n parent. The cluster Cn(g) corresponds to
the set of labels of descendants of the node labeled by g that appears at height n in
the covering forest. The cluster Cn+1(g) is obtained as the union of the cluster Cn(g),
all clusters Cn(h) for h ∈ An such that dΓn

(g, h) = 1 and clusters Cn(h′) for h′ ∈ An

such that dΓn
(g, h′) = 2 for which the parent function pn+1(h

′) has been chosen to
be g (see Figure 2.5). Remark that every cluster Cn(g) is connected in Γ as it is the
finite union of adjacent connected sets in Γ.

g

g

g

h

p1(h)

p2 ◦ p1(h)

C1(g) C2(g)
A0

p1

⊆

A1

p2

⊆

A2

...

...

...

Figure 2.5: A covering forest of G. In the left section of the image the edge structure is
emphasized by writing the parent functions explicitly. In the right section we remark
the cluster structure for g ∈ A2.

Note that definition 3 above is equivalent to what follows: for g, h ∈ An+1 then
the edge (g, h) is in E(Γn+1) if and only if there exists a path g1 = g, g2, . . . , gm = h
from g to h in Γ(G,S) such that for every i ∈ {1, . . . ,m} we have pn+1(gi) ∈ {g, h}.

Claim 1. Let g ∈ An, then BS(g, n) ⊂ Cn(g) ⊂ BS(g, 1
2
(5n − 1)).

Proof. We prove the claim by induction. It stands true for n = 0.

• Consider Cn(g). By induction hypothesis, BS(g, n − 1) ⊂ Cn−1(g) ⊂ Cn(g).
Let h ∈ BS(g, n) \ BS(g, n − 1). Either h ∈ Cn−1(g) and we are done, or
h ∈ Cn−1(g′) for some g′ ∈ An−1. Then necessarily dΓn−1(g, g

′) = 1, since
hs ∈ BS(g, n − 1) ⊂ Cn−1(g) for some s ∈ S. Finally as An is a 2-separating
subset of the vertices of Γn−1 we get that Cn−1(g′) ⊂ Cn(g) thus h ∈ Cn(g).
We conclude that BS(g, n) ⊂ Cn(g). Note that the same argument proves that
Cn(g′) · (S) ⊂ Cn+1(g

′) for every n ∈ N and g′ ∈ An+1.

• Suppose inductively that for every g ∈ An−1 the inclusion Cn−1(g) ⊂ BS(g, 1
2
(5n−1−

1)) holds. Fix one g ∈ An and consider an element h in the cluster Cn(g).
We show that dG(h, g) ≤ 1

2
(5n − 1) by constructing a path of length at most

1
2
(5n − 1) from h to g. By definition of the cluster Cn(g), we know that the

37

element h′ ∈ An−1 such that h ∈ Cn−1(h′) satisfies dΓn−1(g, h
′) ≤ 2. In the

sequel we will only consider the case where this distance is exactly 2 as it is the
worst case. Thus we assume that there exists a path h′ → h′′ → g of length 2
between this h′ and g in Γn−1. By definition of the graph Γn−1, this implies the
existence of k′ ∈ Cn−1(h′) and k′′ ∈ Cn−1(h′′) that are neighbors in Γ(G,S) and
ℓ′′ ∈ Cn−1(h′′) and ℓ ∈ Cn−1(g) that are neighbors in Γ(G,S). Putting everything
together, we can build the following path in Γ(G,S) (see Figure 2.6):

h→ · · · → h′ → · · · → k′ → k′′ → · · · → h′′ → · · · → ℓ′′ → ℓ→ · · · → g.

h

h′

Cn−1(h′)

k′ k′′

h′′

Cn−1(h′′)

ℓ′′ ℓ
g

Cn−1(g)

Figure 2.6: A path from an element h of Cn(g) to g which inductively proves the
inclusion Cn(g) ⊂ BS(g, 1

2
(5n − 1)).

Since they all link an element of a cluster of level n − 1 to the center of this
cluster, the induction hypothesis implies that we can choose the five subpaths
h → · · · → h′, h′ → . . . k′, k′′ → · · · → h′′, h′′ → · · · → ℓ′′ and ℓ → · · · → g
of length at most 1

2
(5n−1 − 1). Thus the total length of the path is at most

5 · 1
2
(5n−1 − 1) + 2 ≤ 1

2
(5n − 1). Therefore Cn(g) ⊂ BS(g, 1

2
(5n − 1)).

Let x ∈ {0, 1}G be a configuration such that for every n ∈ N and g ∈ An

⌊α|Cn(g)|⌋ ≤ |{h ∈ Cn(g) | xh = 1}| ≤ ⌊α|Cn(g)|⌋+ 1. (2.1)

Claim 2. There exists a configuration x that satisfies condition (2.1).

Proof. Consider the covering forest given by some sequence (An, pn,Γn)n∈N as speci-
fied above. For every component C of this forest, take φC a convex enumeration of
its leaves: if g and g′ are two leaves of C with the same parent of height n for some
n ∈ N – i.e. pn(g) = pn(g′) – then the preimage h of every integer between φC(g) and
φC(g′) satisfies that pn(h) = pn(g). Such an enumeration always exists.

Let (wk)k∈N be a Sturmian word of slope α. We can build a configuration x
by putting the Sturmian sequence (wk)k∈N along the convex enumeration chosen for
every component of the forest. Since Sturmian words are balanced, we deduce that
the configuration x satisfies condition (2.1).

38

Claim 3. If a configuration x ∈ {0, 1}G satisfies condition (2.1), then x belongs to
Xα.

Proof. Let x be such a configuration and take some n ∈ N. Let F be a set such
that 2n|∂Kn

F | < |F | – remember that Kn is BS(1G, 5
n) – and consider the pattern

p := x|F . Let V := Int(F,BS(1G,
1
2
(5n − 1))) ∩ An and R = F \

⋃
v∈V Cn(v). As⋃

v∈V Cn(v) ⊂
⋃

v∈V vBS(1G,
1
2
(5n − 1)) ⊂ F we get that:

1

|F |

∑

v∈V
(⌊α|Cn(v)|⌋) ≤ dens(1, p) ≤

1

|F |

∑

v∈V
(⌊α|Cn(v)|⌋+ 1) +

|R|

|F |
.

Before working on those inequalities we remark two facts:

1. R ⊂ ∂Kn
F . Therefore |R||F | <

1
2n

.

2. |V | ≤ |F |
|BS(1G,n)| .

Indeed, let r ∈ Int(F,Kn). That is, for all g ∈ Kn then rg ∈ F . As d(r, pn(r)) ≤
1
2
(5n − 1) then pn(r) ∈ Int(F,BS(1G, 5

n − 1
2
(5n − 1))) ⊂ Int(F,BS(1G,

1
2
(5n − 1)))

therefore pn(r) ∈ V . That means that r /∈ R, therefore R ⊂ F \ Int(F,Kn) = ∂Kn
F .

The second remark is a consequence of Claim 1
From the left side we get:

dens(1, p) ≥
1

|F |

∑

v∈V
(⌊α|Cn(v)|⌋)

≥
α

|F |

∑

v∈V
|Cn(v)| −

|V |

|F |

≥ α
|
⋃

v∈V Cn(v)|

|F |
−

|F |

|F ||BS(1G, n)|

≥ α
|F \R|

|F |
−

1

|BS(1G, n)|

≥ α(1−
1

2n
)−

1

2n

≥ α−
1

n

While from the right side:

dens(1, p) ≤
1

|F |

∑

v∈V
(⌊α|Cn(v)|⌋+ 1) +

|R|

|F |

≤
α

|F |

∑

v∈V
(|Cn(v)|) +

|V |

|F |
+

1

2n

≤ α
|
⋃

v∈V Cn(v)|

|F |
+

|F |

|F ||BS(1G, n)|
+

1

2n

≤ α +
1

n

39

Putting together Claims 2, 1 and 3, we obtain that Xα 6= ∅ which completes the
proof of Theorem 2.10.

Remark. In the case where α is a computable number and G has decidable word
problem the subshift Xα given in the previous proof is effectively closed.

By noting that in the case of a group of subexponential growth, the sequence of
balls always forms a Følner sequence, we obtain the following result.

Corollary 2.12. Let G be a group of subexponential growth, for every set of genera-
tors S and α ∈ [0, 1] there exists a non-empty G-subshift with uniform density.

Definition 2.4. Let G be a group and S a finite set of generators. The rate of
convergence of a subshift X with uniform density α is the function

θX(n) := inf{k ∈ N | sup
g∈G,x∈X

| dens(1, B(g, k), x)− α| ≤
1

n
}.

As the construction given in Theorem 2.10 is explicit, we can give bounds for the
rate of convergence of Xα. Indeed, let γ denote the growth of a group G, that is,
γ(k) = |B(1G, k)| for a fixed set of generators S. Let x ∈ X, g ∈ G and Bk := B(g, k).
By definition of Xα, if 2n|∂B(1G,5n)Bk| < |Bk| then | dens(1, Bk, x) − α| < 1

n
for each

x ∈ X and g ∈ G.
As ∂B(1G,5n)Bk = Bk \Bk−2·5n if k ≥ 2 · 5n, we obtain that:

θXα
(n) = inf{k ≥ 2 · 5n | 2n(γ(k)− γ(k − 2 · 5n)) < γ(k)}.

Therefore a lower bound is always θXα
(n) ≥ 2 · 5n. The upper bound depends

on the growth rate of the group. For instance, if G has polynomial growth then
θXα

(n) = O(n · 5n). Indeed, if γ(k) = kd for some d ≥ 1 we can write:

2n(kd − (k − 2 · 5n)d) < kd ⇐⇒ 1− (1−
2 · 5n

k
)d <

1

2n

⇐⇒ (1−
2 · 5n

k
)d > 1−

1

2n

By Bernoulli’s inequality, (1 − 2·5n
k

)d ≥ 1 − 2d5n

k
. Hence it suffices to choose k >

4nd5n. This shows that θXα
(n) = O(n · 5n). In the case of a group of subexponential

growth, an upper bound can be computed with an analogous reasoning given the
exact rate of growth 2kβ for some β ∈ (0, 1).

As Xα has the uniform density property, it is reasonable to think it might share
other properties with Sturmian sequences. It is a natural question to wonder if it
satisfies a form of aperiodicity. This is indeed the case.

Proposition 2.13. Let α ∈ [0, 1] \Q. Then Xα is weakly aperiodic.

40

Proof. Suppose there exist a configuration x ∈ Xα and an integer n ∈ N such that
|Orbσ(x)| = n. Let D := {gi}1≤i≤n ⊂ G such that each σgi(x) represents a different
element of Orbσ(x), with g1 = 1G. Consider also α′ = dens(1, x|D) ∈ Q and N =
max1≤i≤n d(1G, gi).

Let m ∈ N such that 2
m
< |α − α′| and 5m > N

2
. Recall that Km := BS(1G, 5

m)
and consider a finite subset F ⊂ G such that 2m|∂Km

F | < |F | – by amenability
of G such a subset always exists. As x ∈ Xα we get that |dens(1, x|F) − α| < 1

m
.

Let V = Int(F,BS(1G, N)) ∩ stabσ(x) and R = F \ V D. Note that by definition
of N , V D =

⋃
v∈V vD ⊂ F and that as each v ∈ stabσ(x) then dens(1, x|V D) =

dens(1, x|D) = α′. We obtain:

dens(1, x|D)
|V D|

|F |
≤ dens(1, x|F) ≤ dens(1, x|D)

|V D|

|F |
+
|R|

|F |

Let g ∈ Int(F,Km). Since the configuration x is supposed to have finite orbit
{x, σg2(x), . . . , σgn(x)}, there exists l ∈ {1, . . . , n} such that σg−1

(x) = σgl(x). There-
fore g−1l g−1 ∈ stabσ(x) which is a subgroup, thus ggl ∈ stabσ(x). As d(g, ggl) ≤ N and
ggl ∈ V then we conclude that Int(F,Km) ⊂ V D (because we have chosen g1 = 1G)
and therefore R ⊂ ∂Km

F .
Similarly to the previous proof, we bound each side using this relation, obtaining:

α′
|V D|

|F |
≤ dens(1, x|F) ≤α′

|V D|

|F |
+
|R|

|F |

α′
|F \R|

|F |
≤ dens(1, x|F) ≤ α′ +

|∂Km
F |

|F |

α′(1−
1

2m
) ≤ dens(1, x|F) ≤ α′ +

1

2m

α′ −
1

2m
≤ dens(1, x|F) ≤ α′ +

1

2m

Therefore |dens(1, x|F)− α′| < 1
m

and |dens(1, x|F)− α| < 1
m

which implies that
|α− α′| < 2

m
contradicting the definition of m.

In the case of Z2, the subshift Xα defined in the proof of Theorem 2.10 is not
strongly aperiodic, since it contains the following configurations with non-trivial sta-
bilizer: take a bi-infinite Sturmian word and repeat it vertically so that a configuration
x ∈ {0, 1}Z

2
is defined. Then x ∈ Xα since no forbidden pattern defining Xα appears

in x. Thus Proposition 2.13 is in some sense the best we can do for this particular
construction.

The statement of Theorem 2.10 itself requires amenability for the group G in
order to be meaningful, since we want the density to converge to α for every Følner
sequence. Therefore, it doesn’t say anything about non-amenable groups. For free
groups, we can build configurations (and therefore, subshifts) with uniform density by
constructing a regular covering tree and putting a Sturmian sequence on every level
of this tree. Nevertheless, we still don’t know if this kind of construction is always
possible. To our knowledge the following question remains open:

41

Question. Let G be an infinite group generated by a finite set S and α ∈ [0, 1]. Does
there exist a subshift Yα ⊂ {0, 1}

G with uniform density α ?

42

Chapter 3

A simulation theorem for actions

of finitely generated groups

A famous result of Hochman [Hoc09] states that every Zd action over a Cantor set
which can be defined by Turing machines in a specific way can be realized as a factor
of a subaction of a Zd+2-subshift of finite type. This means that the action can be
somehow “simulated” by a new system which is defined only by a finite number of
constrains.

This chapter is dedicated to present the results of the author in collaboration with
Mathieu Sablik [BS17] which consist of a generalization of Hochman’s theorem in two
simultaneous directions: The group Zd is replaced by an arbitrary finitely generated
group H and we take the subaction from an arbitrary semidirect product Z2 ⋊ H.
As a corollary of that result, we obtain that every group of the form Z2 ⋊H admits
a non-empty strongly aperiodic subshift of finite type whenever the word problem of
H is decidable.

3.1 Introduction: simulation theorems

Consider a mathematical object which admits a definition through an infinite set of
constrains. A natural question to ask is whether the same object can in some sense be
described with a finite amount of information. For instance, the decimal expansion of
an arbitrary real number α is, a priori, defined by the infinite sequence of its values.
However, if α ∈ Q the same object can be described by a pair of integers, if α is
algebraic it admits a description with a polynomial in Q[x] and if α is computable
then it can be described by a Turing machine T .

In loose words, a simulation theorem is a mathematical result which explains how
to embed an object which is defined by infinitely many constrains but described with
a finite amount of information into an object which is of the same type as the previous
one but is defined by finitely many constrains. In this sense, we can say that the first
object is simulated by the second object.

This previous description is, of course, not precise, and a simulation theorem is
better illustrated by example through a well known result proved by Highman in

43

1961.

Theorem 3.1 (Highman [Hig61]). Every recursively presented group H can be em-
bedded as a subgroup of some finitely presented group G.

This kind of results often yield powerful corollaries, the main reason being the
fact that producing examples of objects which have some desired property and are
defined by a finite number of constrains is much harder than finding an object with
the property and an arbitrary number of restrictions. A well-known example is the
result by Novikov and Boone:

Theorem 3.2 (Novikov [Nov55], Boone [Boo58]). There exist finitely presented groups
with undecidable word problem.

Their proofs were constructive and quite intricate. With Highman’s theorem a
proof can be given quite easily. The following proof was taken from [MKS04].

Proof. By Highman’s theorem, it suffices to exhibit a recursively presented group
with undecidable word problem as the finitely presented group it embeds into will
automatically have undecidable word problem. Let K ⊂ N be a recursively enumer-
able but undecidable subset of natural numbers, say for instance, an enumeration of
all Turing machines that halt on empty input and

G = 〈a, b, c, d | b−nabn = c−ndcn, n ∈ K〉.

By definition, G is a recursively presented group and it is possible to show that
b−nabnc−nd−1cn = 1G if and only if n ∈ K. Suppose WP(G) is decidable, then given
n ∈ N one could use the algorithm for WP(G) on the word b−nabnc−nd−1cn to decide
if n ∈ K and thus K would be decidable yielding a contradiction.

In order to study simulation theorems for dynamical systems we need to introduce
two relevant notions: effectively closed dynamical systems and subactions.

Consider the space X to be a Cantor set equipped with the product topology and
a finitely generated group G acting over X. Without loss of generality, we consider
X to be a closed subset of {0, 1}N.

Definition 3.1. Let S be a finite set of generators for G. An effectively closed G-
dynamical system is a dynamical system (X, f) where:

1. X ⊂ {0, 1}N is a closed effective subset: X = {0, 1}N\
⋃

i∈I [wi] where {wi}i∈I ⊂
{0, 1}∗ is a recursively enumerable language. That means that X is the com-
plement of a union of cylinders which can be enumerated by a Turing machine.

2. f is an effectively closed action: there exists a Turing machine which on entry
s ∈ S and w ∈ {0, 1}∗ enumerates a sequence of words (wj)j∈J such that
f−1s ([w]) = {0, 1}N \

⋃
j∈J [wj].

The idea behind the definition is the following: There is a Turing machine T which
given a word g ∈ S∗ representing an element of G and n coordinates of x ∈ X ⊂
{0, 1}N returns an approximation of the preimage of x by fg.

44

Remark. Any G-action over a Cantor set can be seen as a shift space over an infinite
alphabet: Indeed, (X, f) can be seen as Y ⊂ ({0, 1}N)G equipped with the shift action
where y ∈ Y if and only if for every g ∈ G, yg = fg(y1G). In this setting, effectively
closed dynamical systems correspond to effectively closed subshifts in this infinite
alphabet.

Definition 3.2. Let (X, f) be a dynamical system where f : G × X → X is a left
group action. For H ≤ G we define the H-subaction of (X, f) as the system (X, fH)
where fH : H ×X → X is the restriction of f to H.

Remark. In the case of a subshift (X, σ) we should be careful to distinguish subactions
from projective subdynamics, see Definition 1.17. In the case of projective subdy-
namics the shift space X is also reduced and the resulting object is also a subshift. In
the case of subactions, there is no guarantee that (X, σH) is expansive, and therefore
it might not be conjugate to a subshift.

Example 3.1. Let {0, 1}Z
2

be the full Z2-shift and consider its horizontal (Z, 0)-
subaction. If we take the sequence of configurations (xn)n∈N such that (xn)v = 1 ⇐⇒
v = (0, n) we have that:

sup
h∈(Z,0)

d(σh(xn), σh(xm)) = d(xn, xm) = 2−min(n,m).

Therefore there can not be an expansivity constant C > 0 for the subaction.

The study of subactions has been extremely fruitful to obtain properties of Zd

actions, see for instance the study of expansive subdynamics of Zd actions [BL97,
ELMW01]. It is thus appealing to ask the following question: What systems can be
obtained as subactions of a class of dynamical systems?

For the class of Zd-SFTs it is known that the subactions are effectively closed
dynamical systems, but there is still no characterization of the exact class of dynamical
systems that can arise. Nevertheless, there is the following simulation theorem by
Hochman:

Theorem 3.3 (Hochman [Hoc09]). Every effectively closed Zd-dynamical system
(X, f) admits an almost trivial isometric extension (ATIE) which can be realized
as the subaction of a Zd+2-SFT.

An extension (Z, fZ) ։ (X, fX) is an ATIE if we can interpolate a factor

(Z, fZ) ։ (X, fY)× (W, fW) ։ (X, fX)

such that (W, fW) is an isometric action of a totally disconnected space, φ1 : (X, fY)×
(W, fW) ։ (X, fY) is the projection of the first coordinate and φ2 : (Z, fZ) ։

(X, fY)× (W, fW) is almost everywhere 1-1, that is, it satisfies that the set of points
with unique preimage has measure 1 under any invariant Borel probability measure.
The idea behind the notion of ATIE is of an extension which is in a certain sense
“small”. It consists basically on adding a simple system (W, fW) (for example an
odometer) as a product and then considering a measure equivalent action as the

45

extension. Many properties such as the topological entropy (at least for Zd-actions)
are preserved by taking ATIEs [Hoc09].

Hochman’s result has subsequently been improved for the expansive case by Theo-
rem 1.20 showing that every effectively closed subshift can be obtained as the projec-
tive subdynamics of a sofic Z2-subshift. These kind of results yield powerful techniques
to prove properties about the original systems. An example is the characterization
of the set of entropies of Z2-SFTs [HM10] as the set of right recursively enumerable
numbers.

The goal of this chapter is to prove the following extension of Hochman’s theorem:

Theorem 3.7 (B, Sablik). For every effectively closed H-dynamical system (X, f)
there exists a (Z2 ⋊H)-SFT whose H-subaction is an extension of (X, f).

In the case when H is a recursively presented group, it will be shown that Theo-
rem 3.7 can be presented in a purely symbolic dynamics fashion for expansive actions,
namely we show:

Theorem 3.16 (B, Sablik). Let X be an effectively closed H-subshift. Then there
exists a sofic (Z2⋊H)-subshift Y such that its H-projective subdynamics πH(Y) is X.

It is known that every Z-SFT contains a periodic configuration [LM95]. However,
it was shown by Berger [Ber66] that there are Z2-SFTs which are strongly aperiodic,
that is, such that the shift acts freely on the set of configurations. This result has been
proven several times with different techniques [Rob71, Kar96, JR15] giving a variety
of constructions. However, it remains an open question which is the class of groups
which admit strongly aperiodic SFTs. Amongst the class of groups that do admit
strongly aperiodic SFTs are: Zd for d > 1, hyperbolic surface groups [CGS15], Osin
and Ivanov monster groups [Jea15], and the direct product G × Z for a particular
class of groups G which includes Thompson’s T group and PSL(2,Z) [Jea15]. It
is also known that no group with two or more ends can contain strongly aperiodic
SFTs [Coh17] and that recursively presented groups which admit strongly aperiodic
SFTs must have decidable word problem [Jea15].

As an application of Theorem 3.7 we present a new class of groups which admit
strongly aperiodic SFTs, that is:

Theorem 3.17 (B, Sablik). Every semidirect product Z2 ⋊ H where H is finitely
generated and has decidable word problem admits a non-empty strongly aperiodic SFT.

Amongst this new class of groups which admit strongly aperiodic SFTs, we re-
mark the discrete Heisenberg group which admits a presentation H ∼= Z2 ⋊ Z. A
construction by Ugarcovici, Sahin and Schraudner showing that H admits strongly
aperiodic SFTs was already presented in a workshop [Sah14] in 2014. The results that
are presented in this chapter provide a new proof of this result along with a positive
answer to their question asking if similar constructions can be realized in the powers
of the Heisenberg group, the Flip group and the Sol group.

46

3.2 Substitutions and Toeplitz configurations

In this short section two important concepts are introduced: multidimensional substi-
tutions and Toeplitz configurations. These two notions will be important ingredients
for the proof of Theorem 3.7. Also, throughout this chapter the following notation is
used: if x ∈ AG is a configuration such that for all g ∈ F ⊂ G then xg = a ∈ A we
just write x|F ≡ a.

3.2.1 Substitutions

Here we present a very brief overview of multidimensional substitutions where the
essentials needed to understand the proof of Theorem 3.7 are presented. For a broader
view on the topic the reader is referred to [PF02].

Definition 3.3. A substitution is a function s : A → L(AZd

) which takes an element
a of a finite alphabet A and associates it to a pattern s(a).

These objects can be regarded as the discrete counterpart of geometrical substi-
tutions such as the one in Figure 3.1. We will only review the two-dimensional case
d = 2 and all substitutions studied in this chapter will be of the form s : A → AR(n)

where R(n) = {(v1, v2) ∈ Z2 | 0 ≤ vi < n}. That is, s sends each symbol to a square
array of symbols. This simplification is quite useful, as defining the concatenation of
substitutions is extremely simple compared to the general case [JK12].

r r∞

Figure 3.1: A substitution rule r generating a side of Koch’s snowflake [Koc06].

The function s : A → AR(n) can be extended recursively by concatenation to
sm : A → AR(nm) where s0 = id, s1 = s and for m ≥ 2 :

sm(a)v := s(sm−1(a)⌊v/n⌋)v−⌊v/n⌋.

Example 3.2. Consider A = { , }. The substitution s such that:

and

is called the Sierpiński triangle substitution and is extended by concatenation as
shown in Figure 3.2.

Definition 3.4. Let s : A → AR(n) be a substitution. The subshift generated by s is
the set of configurations Xs ⊂ A

Z2
defined by:

Xs := {x ∈ AZ2

| p ⊏ x =⇒ ∃m ∈ N, a ∈ A such that p ⊏ sm(a)}.

47

Figure 3.2: First four iterations of the Sierpiński triangle substitution.

In words, the subshift generated by a substitution is the set of configurations such
that every pattern appearing in them also appears in an iteration of the substitution
rule. In what follows we relate two combinatorial properties of substitutions with the
subshifts they generate.

Definition 3.5. A substitution s : A → AR(n) is said to be primitive if for each
a ∈ A there exists m ∈ N such that for every b ∈ A there exists v ∈ R(nm) such that
sm(a)v = b.

Proposition 3.4. If s is primitive, then Xs is minimal.

Proof. Let x ∈ Xs. By Proposition 1.4 it suffices to show that Orbσ(x) = Xs. Let
y ∈ Xs, we have that y ∈ Orbσ(x) if and only if for every finite support F then
y|F ⊏ x. By definition of Xs it suffices to show that for every k ∈ N and a ∈ A
then sk(a) ⊏ x. Let N := maxb∈Amin{m ∈ N | sm(b) contains every a ∈ A}. As s

is primitive, we have that N < ∞. Then we have that for every k ∈ N and a, b ∈ A
the relation sk(a) ⊏ sk+N(b) holds. By definition of Xs we have that x|R(nk+N+1)

is contained in sM(c) for some c ∈ A. In particular x|R(nk+N+1) must contain some
pattern of the form sk+N(b) and therefore sk(a) ⊏ x.

Definition 3.6. A substitution s : A → AR(n) is said to have unique derivation if
for every z ∈ Xs there exists a unique y ∈ Xs and v ∈ R(n) such that

∀u ∈ Z2, σv(z)u = s(y⌊u/n⌋)u−⌊u/n⌋.

It is simple to show using a compactness argument that every configuration z ∈ Xs

can be subdivided in blocks R(n) –that is the meaning of v ∈ R(n) in the previous
definition– and de-substituted to obtain y ∈ Xs. The condition of unique derivation
implies that the subdivision and de-substitution processes are unique for every con-
figuration. In the proof of Theorem 3.7 a substitution with unique derivation is used
as a tool. Here we show examples of how this property can fail.

Example 3.3. Consider A = { , } and s1 such that:

and .

This primitive substitution generates a subshift Xs1 composed of a single periodic
orbit of size 4. Any configuration in that orbit can be uniquely subdivided into
squares R(2) but has multiple choices for de-substitution.

48

Now consider again A = { , } and s2 such that:

and .

This substitution generates a subshift Xs2 composed of two uniform configurations.
Each configuration has a unique choice for de-substitution but multiple choices for
subdivision into squares R(2).

The importance of the property of unique derivation is that it gives dynamical
information about the subshift generated by a substitution. This is illustrated by a
result by Mozes from 1989.

Theorem 3.5 (Mozes [Moz89]). Let s be a Z2-substitution. Then Xs is a sofic Z2-
subshift. Moreover, if s has unique derivation then Xs admits an almost 1-1 SFT
extension.

This theorem has since been extended to Zd for d ≥ 2 as a special case of geo-
metrical Rd substitutions by Goodman-Strauss [GS98]. The theorem has also been
extended in a different direction by Aubrun and Sablik [SA14] who showed that in the
case of effective S-adic subshifts, that is, subshifts which are produced by an effective
sequence of Zd substitutions, the resulting system is also sofic.

The importance of Theorem 3.5 is that it allows to extract SFT extensions of
systems generated by substitutions without having to define them explicitly. This
will be used as part of Proposition 3.8 in Section 3.3.

3.2.2 Toeplitz configurations

Toeplitz sequences were initially introduced for one-sided dynamical systems by Ja-
cobs and Keane in [JK69]. In their setting they consist of sequences {0, 1}N con-
structed by the following method: Initially begin with a sequence filled with blank
symbols ⊔. Then, replace iteratively the positions of the sequence which are still
marked by ⊔ by a periodic sequence of symbols 0, 1 and ⊔.

Nowadays Toeplitz configurations can be defined on arbitrary groups. We begin
with a structural definition rather than a constructive one. In this setting, Toeplitz
configurations correspond to those where each symbol repeats periodically across the
group in every direction.

Definition 3.7. A configuration x ∈ AG is said to be Toeplitz if for every g ∈ G
there is a finite index subgroup H ≤ G such that x|Hg ≡ xg.

An obvious example of Toeplitz configurations are strongly periodic configurations
such as an uniform configuration consisting of a single symbol. Even if Definition 3.7 is
valid in any group, it is not always of interest, for instance, in an infinite simple group
such as a Tarski Monster [Ol’81] uniform configurations are indeed the only example.
Indeed, if x is Toeplitz, there is H ≤ G such that x|H = x1G and [G : H] < ∞. One
can then extract from H a normal subgroup N E G such that [G : N] < ∞, forcing
by simplicity that H = G.

The interest of these configurations lies in the subshifts they generate.

49

Definition 3.8. A subshift X is Toeplitz if there exists a Toeplitz configuration x
such that X = Orbσ(x).

These objects are interesting for many reasons. A natural class where these objects
are interesting is the one of residually finite groups. In this case the intersection of the
normal subgroups of finite index is trivial, and nested sequences of such groups can
be used to construct interesting examples. For instance, if the group is also amenable,
it can be shown that any real number can be realized as the topological entropy of a
minimal Toeplitz subshift [Kri07b, LP16].

The fact that Toeplitz subshifts are minimal always holds, here we present a brief
proof.

Proposition 3.6. Let x ∈ AG a Toeplitz configuration. Then Orbσ(x) is minimal.

Proof. Let y ∈ Orbσ(x). It suffices to show that x ∈ Orbσ(y). To show that, it
suffices to prove that for every pattern p ⊏ x then p ⊏ y. Indeed, let p = x|F . For
each f ∈ F let Hf ≤ G be the finite index subgroup such that x|Hff ≡ xf . As finite
intersections of groups of finite index are again subgroups of finite index, we have
that Hp :=

⋂
f∈F Hf satisfies [G : Hp] <∞ and ∀h ∈ Hp we have xhf = pf .

Let (gn)n∈N such that σgn(x)→ y. Then for each f ∈ F we have σgn(x)|gnHpf ≡ xf .
As Hp has finite index, the sequence (gnHp)n∈N has finitely many cosets and therefore
a ḡHp appears infinitely often. We conclude that for every f ∈ F then y|ḡHpf ≡ pf .

In particular σḡ−1
(y)|F = p and thus p ⊏ y.

In Section 3.3 an effective dynamical system will be coded into an effectively closed
Toeplitz Zd-subshift.

3.3 The simulation theorem

The purpose of this section is to prove the following result:

Theorem 3.7 (B, Sablik). Let H be finitely generated group and G = Z2 ⋊H. For
every effectively closed H-dynamical system (X, f) there exists a G-SFT whose H-
subaction is an extension of (X, f).

We begin by introducing some useful constructions. The general scheme of the
proof is the following: First, we construct for each non-zero vector v ∈ (Z/3Z)2 a
substitution sv. Each configuration on the subshift generated by sv encodes count-
ably many copies of Z2 as lattices. These lattices are situated in a way such that any
automorphism ϕ ∈ Aut(Z2) acting over the space of configurations by permuting the
coordinates has as an image the subshift generated by sϕ̃(v), where ϕ̃ ∈ Aut((Z/3Z)2)
is the automorphism of (Z/3Z)2 obtained by reducing each entry of the matrix rep-
resentation of ϕ modulo 3. The purpose of the lattices is to encode a finite amount
of information, namely, each lattice will be later on paired to a specific coordinate of
a configuration in {0, 1}N and will transmit this information when moving in G by
elements of H.

50

The second ingredient of this proof is a joint encoding of the elements of X and
the H-dynamical system f in an effective Toeplitz Z-subshift. We do so in a way
that the horizontal and vertical projections of the n-th order lattice of the previous
construction always match with the n-th coordinate of x ∈ X ⊂ {0, 1}N. For tech-
nical reasons of matching all the possible projections, we parametrize these Toeplitz
subshifts with a natural number q ∈ {1, 2}.

Afterwards, we extend the Toeplitz subshift to a Z2-subshift by repeating rows
(or columns). Using a known simulation theorem we obtain that this object is a sofic
Z2-subshift from which we extract an SFT extension. We then proceed to couple
this structure with the substitution subshifts described above in such a way that the
symbols encoded by the Toeplitz layers match with the lattices of the substitution.

Finally, we extend this construction to a G-SFT by adding local rules that ensure
that if the (Z2, 0)-coset of a configuration y in said subshift codes x ∈ X then for any
h ∈ H the (Z2, 0)-coset of σh(y) codes fh(x). This set of rules is described as a finite
amount of forbidden patterns.

Finally, we define the factor code, and show that it satisfies the required properties.

3.3.1 A set of Z2-substitutions which are permuted by actions

of Aut(Z2).

Let p ≥ 3 be an integer. We define a substitution over a two symbol alphabet which
generates a sofic Z2-subshift encoding translations of pm+1Z2 for m ∈ N. In the proof
of the simulation theorem we will only use the case where p = 3, but we prefer to
proceed here with more generality.

To make notations shorter, we write ~0 = (0, 0) ∈ Z2 throughout the whole proof.
Let v ∈ (Z/pZ)2 \{~0} and A = { , }. The Z2-substitution sv : A → AR(p) is defined
by:

(sv())u =

{
if u = v

otherwise.
(sv())u =

{
if u ∈ {~0, v}

otherwise.

As an example, if p = 3 and v = (1, 1) we get the following:

sv() = sv() =

In this example the patterns s3v() and s4v() can be seen in Figure 3.3.
To a substitution sv we associate the subshift Subv := Xsv

defined as the set
of Z2-configurations such that every subpattern appears in some iteration of the
substitution sv.

Subv = {x ∈ { , }Z
2

| ∀P ⊏ x, ∃n ∈ N : P ⊏ snv ()}

Proposition 3.8. The following statements hold:

(1) Subv is a minimal subshift.

51

Figure 3.3: The patterns or order 3 and 4 of sv for v = (1, 1).

(2) sv has unique derivation.

(3) Subv is a Z2-sofic subshift which admits an almost 1-1 SFT extension

(4) The Toeplitz configuration τ ∈ { , }Z
2
defined by:

τu =

{
if ∃n ∈ N, u ∈ pnv + pn+1Z2

otherwise

belongs to Subv. In particular Orb(τ) = Subv is a Toeplitz subshift.

Proof. The substitution sv is primitive and any subshift generated by a primitive
substitution is minimal by Proposition 3.4, therefore (1) holds.

For the unique derivation, let z, y ∈ Subv such that for any u ∈ R(p) zp(x,y)+u =
sv(y(x,y))u. As (sv())v = (sv())v = we infer that ∀w ∈ v + pZ2 then zw = . If
there existed another way to subdivide z there would have to be a disjoint pZ2-lattice
of . As each vector u ∈ (Z/pZ)2 \ {~0, v} satisfies (sv())u = (sv())u = the only
possibility is that ∀w ∈ ~0 + pZ2 then zw = , but as (sv())~0 = this would imply
that y = Z2

which is clearly not an element of Subv. Hence (2) holds.
By Theorem 3.5 Subv is a Z2-sofic subshift. Furthermore, as sv has unique deriva-

tion, the SFT extension can be chosen to be almost 1-1. This settles (3).
To show (4) it suffices to prove that all of the finite windows of the form τ |[0,pn−1]2

appear in some iteration of sv. Indeed, as τ is Toeplitz, every pattern appearing in τ
must also appear in the N2 portion of the plane. The claim follows directly as it can
be verified inductively that τ |[0,pn−1]2 = snv () and snv () ⊏ sn+1

v (). Also, as Subv is

minimal it follows that Orb(τ) = Subv proving (4).

Proposition 3.8 gives an useful way to describe elements from Subv. Namely, for
each z ∈ Subv there is a sequence of Z2 vectors {uk}k∈N such that σuk(τ) → z. Let
Kn ∈ N be such that ∀k ≥ Kn then σuk(τ)|[0,pn−1]2 = z|[0,pn−1]2 and define ūn := uKn

52

mod (pn+1, pn+1). We have that for m ∈ N σuk(τ)|pmv+uk+pm+1Z2 is composed uniquely
of black squares. In the case where m ≤ n and k ≥ Kn we have

pmv + uk + pm+1Z2 = ūn + pmv + pm+1Z2.

Therefore, we can conclude that for every m ≤ n if we define Bm(z) := ūn +
pmv + pm+1Z2 then z|Bm(z) is composed uniquely of black squares. Moreover, each
ūn is unique as any other possibility would shift the position of the pm+1Z2-lattice of
black squares which is already fixed.

Let {ūn}n∈N be the sequence of vectors associated to z ∈ Subv. Then for every m ≤
n we have ūm = ūn mod (pm+1, pm+1). Conversely, for each sequence {ūn}n∈N which
satisfies this restriction we can construct a configuration z̄ ∈ Subv as an accumulation
point of σūn(τ) which therefore has the property that Bn(z̄) = ūn + pnv + pn+1Z2 for
all n ∈ N.

Proposition 3.9. Let ϕ ∈ Aut(Z2) be represented as Aϕ ∈ GL(2,Z) and let Aϕ̃ ∈
M(Z/pZ, 2) be the matrix obtained by reducing the entries of Aϕ modulo p. Aϕ̃ defines
an automorphism ϕ̃ ∈ Aut((Z/pZ)2) by left multiplication. We have that:

ϕ(Bm(z)) = ϕ(ūn) + pmϕ̃(v) + pm+1Z2.

In particular ∀z ∈ Subv then z ◦ ϕ ∈ Subϕ̃(v) and Bm(z ◦ ϕ) = ϕ(Bm(z)).

Proof. Let z ∈ Subv and Bm(z) as defined above, then, given any n ≥ m:

ϕ(Bm(z)) = ϕ(ūn + pmv + pm+1Z2)

= ϕ(ūn) + pmAϕv + pm+1Z2

= ϕ(ūn) + pm(Aϕ̃ + p(
Aϕ − Aϕ̃

p
))v + pm+1Z2

= ϕ(ūn) + pmAϕ̃v + pm+1((
Aϕ − Aϕ̃

p
)v + Z2)

= ϕ(ūn) + pmϕ̃(v) + pm+1Z2

This means that for fixed n ∈ N all lattices of size m ≤ n are sent to lattices
appearing in configurations of Subϕ̃(v). Indeed, as ūm = ūn mod (pm+1, pm+1) we have
ϕ(ūm) = ϕ(ūn) mod (pm+1, pm+1) and therefore the sequence {ϕ(ūn)}n∈N defines
a configuration in Subϕ̃(v). Following a compactness argument one concludes that
z ◦ ϕ ∈ Subϕ̃(v) and Bm(z ◦ ϕ) = ϕ(Bm(z)).

The importance of Proposition 3.9 is that it states that any automorphism of Z2

correctly maps the lattices Bm(z) to those of another substitution. We shall use these
lattices to encode elements of {0, 1}N belonging to our H-dynamical system (X, f).
In order to do this, we need to define a subshift which matches these lattices to actual
values from X and that also codes the action of f .

53

3.3.2 Encoding configurations in Toeplitz sequences.

Consider p ≥ 3, q ∈ {1, . . . , p − 1} and the encoding Ψq : {0, 1}N → {0, 1, $}Z given
by:

Ψq(x)j =

{
xn if j = qpn mod pn+1

$ in the contrary case.

The idea behind this encoding is to match for each m ∈ N the horizontal and
vertical projections of the lattice Bm(z) for some z ∈ Subv to the symbol xm. We need
to do this for every possible choice of q as the projections of the lattices might differ
depending on the substitution. For instance, the horizontal projection associated to
v = (1, 1) is different from the one for v = (2, 2). We begin this section by studying
the structure of the encoding Ψq.

First notice that Ψq(x)|q+pZ ≡ x0 and ∀q′ ∈ {1, . . . p − 1} \ {q} we have that
Ψq(x)q′+pZ ≡ $. Indeed, as q′ + pk 6= 0 mod p thus q′ + pk 6= pi mod pi+1. Also, if
i ≥ 1 and Ψq(x)j = xi then Ψq(x)j+q = x0 as j = pi mod pi+1 =⇒ j = 0 mod p.
This means that every x0 is a special coordinate in a string of p − 1 symbols where
every other symbol is $ and every xi with i ≥ 1 is necessarily followed by such string.
The important property we derive from these computations is that the lattice of x0
can be recognized locally. Indeed, each x0 is preceded by q−1 symbols $ and followed
by p−q−1 symbols $. If p ≥ 3 and q−1 6= p−q−1 this is enough to locally recognize
the position of the lattice in a string of p symbols as x0 is the only lattice satisfying
that property. If q − 1 = p− q − 1 the previous property is now true for any symbol
but the decoding can be done in any string of 2p symbols because if Ψq(x)j = xm for
some m > 0 then Ψq(x)j+p = Ψq(x)j−p = $ and any false positive can be detected in
a finite window.

For x = (xi)i∈N ∈ {0, 1}N let σ(x) ∈ {0, 1}N be defined by σ(x)i = xi+1 (we
shall use the same notation as in the case of the group shift action, though in this
case it’s a one-sided N-action). We define also for k ∈ Z/pZ the transformation
Ωk : {0, 1, $}Z → {0, 1, $}Z by (Ωk(y))j = yjp+k. It is straightforward from the
definition of Ψq that Ω0 transforms the coding of x ∈ {0, 1}N into that of its shifted
version, that is Ω0(Ψq(x)) = Ψq(σ(x)). Also, one can directly check that Ωk = Ω0◦σ

−k

and Ω0 ◦ σ
pℓ = σℓ ◦ Ω0.

Proposition 3.10. Let x ∈ {0, 1}N and y ∈ Orbσ(Ψq(x)). There exists an unique
k0 ∈ Z/pZ such that:

Ωk0(y) ∈ Orbσ(Ψq(σ(x))).

Proof. The application Ωk is clearly continuous in the product topology as fixing
y in the interval Z ∩ [−lp, lp − 1] for l ≥ 1 necessarily fixes Ωk(y) in the interval
Z ∩ [−l, l − 1].

Let y ∈ Orbσ(Ψq(x)). As Ψq(x)|q+pZ ≡ x0 we can deduce by compactness that
there exists k ∈ Z/pZ such that y|k+pZ ≡ x0. Define k0 := k − q mod p. Then for
each n ∈ Z we have ypn+k0+1, . . . , yk0+p−1 = $q−1x0$p−q−1 as words. This necessarily
implies that any other choice of k0 would make Ωk0(y) be a constant configuration

54

which clearly does not belong to Orbσ(Ψq(σ(x))) therefore making the previous choice
the only possible one. Consider a sequence (σni(Ψq(x)))i∈N → y. Without loss of
generality we can ask that ni ∈ pZ+ k0, if not it suffices to eliminate a finite number
of terms. For any ni of the form pℓ+ k0 we get that

Ωk0(σ
pℓ+k0(Ψq(x))) = Ω0 ◦ σ

−k0 ◦ σk0 ◦ σpℓ(Ψq(x))

= Ω0 ◦ σ
pℓ(Ψq(x))

= σℓ ◦ Ω0(Ψq(x))

= σℓ(Ψq(σ(x))) ∈ Orb(Ψq(σ(x)))

As Ωk is continuous, we obtain that Ωk0(y) ∈ Orbσ(Ψq(σ(x))).

Example 3.4. For p = 3, q = 1 and x = x0x1x2 . . . we obtain that:

Ψq(x)|{0,...,30} = $x0$x1x0$$x0$x2x0$x1x0$$x0$$x0$x1x0$$x0$x3x0$x1

Ω0(Ψq(x))|{0,...,10} = $x1$x2x1$$x1$x3x1 = Ψq(σ(x))|{0,...,10}

Ω2
0(Ψq(x))|{0,...,3} = $x2$x3 = Ψq(σ

2(x))|{0,...,3}

Proposition 3.10 shows explicitly that x ∈ {0, 1}N can be decoded not only from
Ψq(x) but from any element of the closure of the orbit of Ψq(x) under the shift action.

Indeed, given y0 ∈ Orbσ(Ψq(x)) we find the unique value k0 ∈ Z/pZ as above and
deduce that x0 = (y0)k0+q. Next one takes y1 := Ωk0(y

0) and finds a new value k1
as before and so x1 = (y1)k1+q. Iterating this procedure one gets a sequence yi such

that yi := Ωki(y
i−1) ∈ Orbσ(Ψq(σi(x))) and xi = (yi)ki+q.

Proposition 3.11. Let x, x′ ∈ {0, 1}N. Orbσ(Ψq(x)) ∩Orbσ(Ψq(x′)) 6= ∅ if and only
if x = x′.

Proof. Let y ∈ Orbσ(Ψq(x)) ∩ Orbσ(Ψq(x′)). Using Proposition 3.10 we can find an

unique k0 ∈ Z/pZ such that Ωk0(y) ∈ Orbσ(Ψq(σ(x))) and thus x0 = yk0+q. The same

proposition gives k′0 ∈ Z/pZ such that Ωk′0
(y) ∈ Orbσ(Ψq(σ(x′))) and so x′0 = yk′0+q.

Nevertheless in the proof of Proposition 3.10 we see that any other choice of k0 would
give a constant configuration and therefore k0 = k′0. This implies that x0 = x′0 and
Ωk0(y) ∈ Orbσ(Ψq(σ(x))) ∩Orbσ(Ψq(σ(x′))). Iterating this argument we obtain that
for every n ∈ N then xn = x′n holds and thus x = x′. The other direction is trivial as
Ψq(x) ∈ Orbσ(Ψq(σ(x))) 6= ∅.

Before continuing, we study the structure of the subshift Orbσ(Ψq(x)). Every
element here encodes the structure of x by repeating its n-th coordinate in gaps of
size pn+1. Therefore, every non $ element appears periodically with at most one
exception – a position obtained by compactness – which we denote by x∞. This point
may take any value if both 0 and 1 appear infinitely often in x but is restricted if x is
eventually constant. This point has its analogue in the configurations z ∈ Subv. All

55

of the symbols appear in square lattices with the exception of at most one. We call
this degenerated lattice B∞(z) and make the remark that B∞(z) might be empty.

Let (X, f) be an H-dynamical system and p ≥ 3. We use the encoding Ψq defined
above to construct a Z-subshift Top(X, f) which encodes the configurations of X and
the action of f around a unit ball in H. Formally, let S ⊂ H be a finite set such that
1H ∈ S and 〈S〉 = H. We define by Ψ(x) as the configuration in ({0, 1, $}{1,...,p−1}×S)Z

such that (Ψ(x)n)(q,s) = Ψq(fs(x))n.
Top(X, f) ⊂ ({0, 1, $}{1,...,p−1}×S)Z is the Z-subshift given by:

Top(X, f) :=
⋃

x∈X

(
Orbσ (Ψ(x))

)

Elements of Top(X, f) can be thought of as (p− 1)|S|-tuples of configurations in
{0, 1, $}Z where the tuple associated to the pair (q, s) belongs to Orbσ(Ψq(fs(x))).
Here the shift action is taken diagonally, that is, each configuration is shifted simul-
taneously. The idea behind this construction is to let each q-row code an element
x ∈ X and its image fs(x) for each s ∈ S. Given y ∈ Top(X, f) we denote the pro-
jection to the (q, s)-th layer by Layerq,s(y) ∈ {0, 1, $}Z. We need to do this for every
possible q just for technical reasons, as we’ll need to match every possible lattice in
the substitution defined above.

Proposition 3.12. If (X, f) is an effectively closed H-dynamical system then Top(X, f)
is an effectively closed Z-subshift.

Proof. Top(X, f) is clearly shift invariant. To see that it is closed consider a sequence
of configurations {yn}n∈N ⊂ Top(X, f) converging to y. By Proposition 3.11 each
yn belongs to a unique orbit Orbσ (Ψ(xn)) for xn ∈ X as they are pairwise disjoint.
It is also straightforward to see that y ∈ Orbσ (Ψ(x)) for some x ∈ {0, 1}N. It
suffices to show that x ∈ X. As Ωk is continuous we get that Ωk(Layerq,s(yn)) →
Ωk(Layerq,s(y)). Clearly the sequence of k0 given by Proposition 3.10 associated to
yn must stabilize and hence there is N ∈ N such that for every n ≥ N then yn
belongs to an orbit Orbσ (Ψ(xn)) where (xn)0 = x0 = (Layerq,1H (y))k0+q. Iterating
this argument we get that for each m ∈ N there exists Nm such that for every n ≥ Nm

then (xn)i = xi for each i ≤ m. We conclude that xn converges to x. As X is closed
we obtain that y ∈ Top(X, f).

A set of forbidden patterns defining Top(X, f) can be given explicitly. We con-
sider for n ∈ N all words of length pn+1 over the alphabet {$, 0, 1}|S|(p−1) which do
not appear in any configuration of Top(X, f). As this is an increasing sequence of
forbidden patterns it is enough to define Top(X, f).

This set of forbidden words is recursively enumerable. The following algorithm
accepts a set of forbidden patterns defining Top(X, f). Let the input be a word of
length pn for n ∈ N. The structure of Top(X, f) makes it possible to recognize algo-
rithmically all gaps in every layer (formally the algorithm checks that each substring
of p contiguous symbols is a cyclic permutation of a$q−1b$p−q−1 for some a ∈ {0, 1, $}
and b ∈ {0, 1}). Then if this stage is passed, it computes k0 from Proposition 3.10 for
each layer, checks that b is the same symbol throughout the word. Finally it checks

56

that k0 is the same in every layer (thus the layers are aligned). Then it applies Ωk0 to
this string obtaining a word of length pn−1. The algorithm is repeated until reaching
a word of length 0. If at any stage a check fails, the word is accepted as forbidden.

The previous stage recognizes all words that haven’t got the correct structure.
After that stage ends, we can use the same algorithm and the function Ωk to decode
n coordinates x0x1 . . . xn−1 for each pair (q, s) and check for every s that the word
is the same independently of q. If this stage is passed we end up with |S| words
which depend only on s and we denote them by (ws)s∈S. Here we run two recognition
algorithms in parallel. One searches for a cylinder [ws] 6⊂ X and the other searches
if [w1H] 6⊂ f−1s ([ws]). If any of these two searches succeed at a certain step then the
algorithm returns that the pattern is forbidden. These two last algorithms do exist
as (X, f) is an effectively closed H-dynamical system.

The subshift Top(X, f) is the ingredient of the proof which allows us to simulate
points x ∈ X and their images under the generators of H in a sofic Z2-subshift which
contains this information. The next step is to put one of these configurations in each
Z2-coset of Z2 ⋊ϕ H and force by local rules that the shift action by (0, h) yields the
Z2-coset where the point fh(x) is codified. The obvious obstruction to this idea is
the fact that the action under (0, h) in a semidirect product disturbs the adjacency
relations in a coset if the automorphism ϕh is not trivial. The way to go around
this obstruction is to use the lattices given by the layer Subv which are invariant
under automorphisms. We specify how these two elements go together in the next
subsection.

3.3.3 Proof of Theorem 3.7

Denote ϕ : H → Aut(Z2) a group homomorphism such that G = Z2 ⋊ϕ H is given
by:

(n1, h1) · (n2, h2) = (n1 + ϕh1(n2), h1h2)

Let S be a finite set of generators of H where 1H ∈ S , |S| = d and let’s fix
the parameter p = 3 which is used to construct Top(X, f) (which contains thus 2d
layers) and the substitutions Subv for v ∈ (Z/3Z)2 \ {~0}. Consider the following two
Z2-subshifts.

Top(X, f)H ⊆ ({0, 1, $}2d)Z
2

Top(X, f)V ⊆ ({0, 1, $}2d)Z
2

Where x ∈ Top(X, f)H is the subshift whose projection to (Z, 0) belongs to
Top(X, f) and any vertical strip is constant. Analogously x ∈ Top(X, f)V is the
subshift whose projection to (0,Z) belongs to Top(X, f) and any horizontal strip is
constant. Formally: x ∈ Top(X, f)H if ∀i, j ∈ Z then xi,j = xi,j+1 and (x(i,0))i∈Z ∈
Top(X, f). An analogous definition can be given for Top(X, f)V . Proposition 3.12 says
that Top(X, f) is an effective Z-subshift and therefore Top(X, f)H and Top(X, f)V are
sofic Z2-subshifts by the simulation theorem proven in [AS13, DRS10]. Next we are

57

going to put these subshifts together with the substitution layers to create a rich
structure in each Z2-coset.

Consider the product subshift Top(X, f)H × Top(X, f)V ×
⊗

v∈(Z/3Z)2\{~0} Subv.

Given a configuration y in that product we denote by LayerH(y) and LayerV (y)
the projections to the horizontal and vertical layer respectively. If we want to precise
the tuple we will use the notation LayerHq,s(y) and LayerVq,s(y) respectively. Also, for

v ∈ (Z/3Z)2 \ {~0}, we denote by Subv(y) the projection to the corresponding substi-
tutive layer. We define Π(X, f) ⊂ Top(X, f)H × Top(X, f)V ×

⊗
v∈(Z/3Z)2\{~0} Subv as

the set of configurations y which satisfy the following rules:

1. ∀u ∈ Z2 and (a, b) ∈ (Z/3Z)2 \ {~0} the following is satisfied. If a 6= 0 then
(Sub(a,b)(y))u = if and only if (LayerHa,1H (y))u ∈ {0, 1}. Analogously, if b 6= 0

then then (Sub(a,b)(y))u = if and only if (LayerVb,1H (y))u ∈ {0, 1}.

2. If (Sub(1,1)(y))u = then ∀s ∈ S (LayerH1,s(y))u = (LayerV1,s(y))u.

The Z2-subshift Π(X, f) is sofic. Indeed, all the component are sofic subshifts and
the added rules are local (we just forbid symbols in the product alphabet). Recall
that we denote by Bm(z) the m-th lattice of black squares in a configuration z in a
substitutive layer.

Claim 4. Let y ∈ Π(X, f), (a, b) ∈ (Z/3Z)2 \ {~0} and z = Sub(a,b)(y). Suppose that
LayerH(y) is given by x ∈ X. Then:

• If a 6= 0 then ∀m ∈ N, ∀s ∈ S: LayerHa,s(y)|Bm(z) ≡ fs(x)m

• If b 6= 0 then ∀m ∈ N, ∀s ∈ S: LayerVb,s(y)|Bm(z) ≡ fs(x)m

• The configurations in the layers Top(X, f)H and Top(X, f)V are defined by the
same x ∈ X.

Proof. Let a 6= 0. It suffices to show this property for s = 1H as the definition of
Top(X, f) forces the configurations to be aligned. The lattice B0(z) has the form
ū0 + (a, b) + 3Z2, therefore its projection in the horizontal coordinate is of the form
k0 + 3Z. Using the structure of Ψa(x) there are three possibilities for 3-lattices: One
contains uniformly the symbol x0, another contains only the symbol $ and the third
one contains Ψa(σ(x)) by proposition 3.10. The first rule of Π(X, f) rules out the
second and third possibility because there would be $’s matched with . Therefore
LayerHa,1H |B0(z) ≡ x0. Inductively, let Bm(z) = ūm + (a, b)3m + 3m+1Z2 and suppose

∀m′ < m LayerHa,1H |Bm′ (z) ≡ xm′ . Note that for m′ the projection to the horizontal

layer is of the form km′+3m′+1Z. Using iteratively the previous argument and applying
the function Ωkm′ defined in 3.10 we end up with three possibilities for 3m-lattices
(that is, the value of km′), and again the first rule of Π(X, f) rules out two of them,
yielding LayerHa,1H |Bm(z) ≡ xm.

Suppose the configuration in Top(X, f)V is given by x′ ∈ X. For b the proof is
analogous and we get that b 6= 0 implies that ∀m ∈ N, ∀s ∈ S: LayerVb,s|Bm(z) ≡
fs(x

′)m.

58

Now set (a, b) = (1, 1). The second rule of Π(X, f) implies that ∀s ∈ S,m ∈ N

then (LayerH1,s(y))|Bm(z) = (LayerV1,s(y))|Bm(z). Using the previous two properties we
conclude that ∀s ∈ S,m ∈ N we have fs(x)m = fs(x

′)m. Using s = 1H yields x = x′

hence proving the second and third statement.

From Claim 4 we obtain that each configuration y ∈ Π(X, f) contains the infor-
mation of a single x ∈ X. We can thus define properly the decoding function Υ :
Π(X, f)→ X such that Υ(y) = x if and only if ∀m ∈ N: LayerH1,1H (y)|Bm(Sub(1,1)(y)) ≡
xm.

Consider the set of forbidden patterns F defining Π(X, f). Each of these patterns
has a finite support F ⊂ Z2. We extend those patterns to patterns in G = Z2 ⋊ϕ H
by associating d ∈ F → (d, 1H) ∈ G. Therefore every pattern P ∈ F with support
F ⊂ Z2 is embedded into a pattern p̃ with support F × {1H} ⊂ G. We consider

the set F̃ = {p̃ | p ∈ F} and we define Final(X, f) as the subshift over the same

alphabet as Π(X, f) defined by the set of forbidden patterns F̃ ∪G where G is defined
as follows:

For each s ∈ S consider ϕs−1 the automorphism associated to s−1 and (a, b) =
ϕ̃s−1(1, 1). We put in G all the patterns P with support {(~0, 1H), (~0, s−1)} which
satisfy that Sub(a,b)(P(~0,1H)) = but either:

• Sub(1,1)(P(~0,s−1)) 6= or

• Sub(1,1)(P(~0,s−1)) = and

– If a 6= 0 then LayerHa,s(P(~0,1H)) 6= LayerH1,1H (P(~0,s−1)) or

– If b 6= 0 then LayerVb,s(P(~0,1H)) 6= LayerV1,1H (P(~0,s−1)).

In simpler words: we force that every in layer Sub(a,b) of the (Z2, 1H)-coset must
be matched with a in Sub(1,1) in the (Z2, s−1)-coset and that if a 6= 0 then the

symbol in (~0, 1H) in LayerHa,s is the same as the symbol in (~0, s−1) in LayerH1,1H . If

b 6= 0 we impose that the symbol in (~0, 1H) in LayerVb,s is the same as the symbol in

(~0, s−1) in LayerV1,1H .

Before continuing let’s translate F̃ ∪G into properties of Final(X, f). In order to
do that properly, for y ∈ Final(X, f) we denote by π(y) the Z2-configuration such
that ∀u ∈ Z2 π(y)u = y(u,1H).

Claim 5. Final(X, f) satisfies the following properties:

• Final(X, f) is a sofic G-subshift.

• Let y ∈ Final(X, f). Then π(y) ∈ Π(X, f).

• If Υ(π(y)) = x then ∀h ∈ H, Υ(π(σ(~0,h)(y))) = fh(x).

Proof. As Π(X, f) is sofic, it admits an SFT extension φ : Π̂(X, f) ։ Π(X, f).

By embedding as above a finite list of forbidden patterns defining Π̂(X, f) into G

59

we obtain a G-SFT extension of XF̃ . Adding to this list of forbidden patterns the
pullback of the finite list of forbidden patterns G under the local code Φ defining φ
we obtain an SFT extension F̂inal(X, f) of Final(X, f).

The second property comes directly from the definition of Final(X, f) as it con-
tains an embedding of every forbidden pattern defining Π(X, f). Note that it may
happen that y|(Z2,h) seen as a Z2-configuration does not belong to Π(X, f) for some

h ∈ H, but π(σ(~0,h)(y)) always does.
Let’s prove the third property: We claim that it suffices to prove the property

for s ∈ S. Indeed, given h ∈ H, as H = 〈S〉 there exists a minimal length word
representing h. If h = 1H the result is immediate. If not, then h = sh′ for some
h′ ∈ H having a shorter word representation. Suppose this third property holds
for all words of strictly smaller length and define y′ = σ(~0,h′)(y). We have that
Υ(π(y′)) = fh′(x) = x′, so:

Υ(π(σ(~0,h)(y))) = Υ(π(σ(~0,s)(y′))) = fs(x
′) = fs(fh′(x)) = fh(x).

It suffices therefore to prove the property for s ∈ S. Let’s denote y′ = σ(~0,s)(y)
and let Υ(π(y)) = x and Υ(π(y′)) = x′. We want to prove that x′ = fs(x). Let
ϕ̃s−1(1, 1) = (a, b) and suppose that a 6= 0 (if a = 0 then b 6= 0 and the argument is
analogous). Let m ∈ N, using Claim 4 we obtain

LayerH1,1H (y′)|(Bm(Sub(1,1)(y
′)),1H) ≡ x′m

LayerHa,s(y)|(Bm(Sub(a,b)(y)),1H) ≡ fs(x)m.

Using the forbidden patterns G results in

Sub(1,1)(y)|(Bm(Sub(a,b)(y)),s
−1) ≡

LayerH1,1H (y)|(Bm(Sub(a,b)(y)),s
−1) ≡ fs(x)m.

Finally, developing the action on y′ yields

y′|(Bm(Sub(1,1)(y
′)),1H) = σ(~0,s)(y)|(Bm(Sub(1,1)(y

′)),1H)

= y|(~0,s−1)(Bm(Sub(1,1)(y
′)),1H)

= y|(ϕ
s−1 (Bm(Sub(1,1)(y

′))),s−1).

Using Proposition 3.9 we obtain that:

ϕs−1(Bm(Sub(1,1)(y
′))) = Bm(Sub(1,1)(y

′) ◦ ϕs−1) and Sub(1,1)(y
′) ◦ ϕs−1 ∈ Sub(a,b).

As we also have ∀m ∈ N that:

Sub(1,1)(y
′)|(Bm(Sub(1,1)(y

′)),1H) ≡ and Sub(1,1)(y)|(Bm(Sub(a,b)(y)),s
−1) ≡

we conclude that ϕs−1(Bm(Sub(1,1)(y
′)) = Bm(Sub(a,b)(y)). Therefore,

LayerH1,1H (y′)|(Bm(Sub(1,1)(y
′)),1H) = LayerH1,1H (y)|(Bm(Sub(a,b)(y)),s

−1).

Which yields x′m = fs(x)m. As m ∈ N is arbitrary x′ = fs(x).

60

Finally we are ready to finish the proof. Consider again the SFT extension
F̂inal(X, f) of Final(X, f), the factor map φ : F̂inal(X, f) ։ Final(X, f) and

the subaction (F̂inal(X, f), σH).

Proposition 3.13. Υ ◦ π ◦ φ is a factor map from (F̂inal(X, f), σH) to (X, f).

Proof. As φ : F̂inal(X, f) ։ Final(X, f) it suffices to show that Υ ◦ π is a factor
map from (Final(X, f), σH) to (X, f). Let y ∈ Final(X, f). Following Claim 5 we
have π(y) ∈ Π(X, f) and thus Υ(π(y)) ∈ X. Moreover, setting Υ(π(y)) = x yields

∀h ∈ H that Υ(σ(~0,h)(y)) = fh(x). This implies

∀h ∈ H : (Υ ◦ π) ◦ σ(~0,h) = fh ◦ (Υ ◦ π).

Also, both Υ and π are clearly continuous, therefore, it only remains to show that
Υ ◦ π is surjective. Let x ∈ X, we construct a configuration ŷ ∈ Final(X, f) such
that Υ(π(ŷ)) = x.

In order to do this, we begin by constructing a sequence of configurations (yh)h∈H
which belong to Π(X, f). For (a, b) ∈ (Z/3Z)2 \ {~0} let z(a,b) ∈ Sub(a,b) be the
Toeplitz configuration defined in Proposition 3.8 part (4). The configuration z(a,b)
satisfies Bm(z(a,b)) = (a, b)3m + 3m+1Z2 for m ∈ N and B∞(z(a,b)) = ∅. We define
yh ∈ Π(X, f) by specifying the configuration in each layer. For a substitutive layer
we have Sub(a,b)(y

h) = z(a,b) and for the Toeplitz layers we have that ∀u = (u1, u2) ∈
Z2, s ∈ S, a, b ∈ {1, 2} then LayerHa,s(y

h)u = Ψa(fs(fh(x)))u1 and LayerVb,s(y
h)u =

Ψb(fs(fh(x)))u2 . It can easily be verified that for each h ∈ H the configuration
yh ∈ Π(X, f).

Finally, we define ŷ as follows:

ŷ(u,h) = (yh
−1

)ϕ
h−1 (u).

As ϕ1Hu = u then π(ŷ) = y1H and thus Υ(π(ŷ)) = f1H (x) = x. It suffices to
show that ŷ ∈ Final(X, f). This comes down to showing that no patterns in F or
G appear in ŷ. Suppose a pattern P ∈ F appears at position g = (u, h), that is
ŷ ∈ [P]g ⇐⇒ σg−1

(ŷ) ∈ [P]1G . As P has a support contained in (Z2, 1H) then
π(σg−1

(ŷ)) /∈ Π(X, f). Nonetheless:

σg−1

(ŷ)(u′,1H) = ŷ(u,h)(u′,1H)

= ŷ(u+ϕh(u′),h)

= (yh
−1

)u′+ϕ
h−1 (u)

= (σ−ϕh−1 (u)(yh
−1

))u′ .

Therefore π(σg−1
(ŷ)) = σ−ϕh−1u(yh

−1
) ∈ Π(X, f) which is a contradiction. Hence

ŷ does not contain any pattern from F . It remains to show it contains no patterns
in G. Recall that patterns P ∈ G have support {(~0, 1H), (~0, s−1)} for s ∈ S. Let

61

g = (u, h) such that σg−1
(ŷ) ∈ [P]1G . Then σg−1

(ŷ)(~0,1H) = (σ−ϕh−1 (u)(yh
−1

))~0 and

σg−1

(ŷ)(~0,s−1) = ŷ(u,h)(~0,s−1)

= ŷ(u,hs−1)

= (ysh
−1

)ϕ(sh−1)u

= (σ−(ϕ(sh−1)u)(ysh
−1

))~0.

Let m ∈ N and denote (a, b) = ϕ̃s−1(1, 1). By definition Bm(Sub(a,b)(y
h−1

)) =
(a, b)3m + 3m+1Z2 therefore,

Bm(Sub(a,b)(σ
−ϕ

h−1 (u)(yh
−1

))) = (a, b)3m − ϕh−1(u) + 3m+1Z2

In the other hand,

Bm(Sub(1,1)(σ
−ϕ(sh−1)(u)(ysh

−1

))) = (1, 1)3m − ϕ(sh−1)(u) + 3m+1Z2.

So, if Sub(a,b)(σ
g−1

(ŷ))(~0,1H) = then ~0 ∈ (a, b)3m − ϕh−1(u) + 3m+1Z2 for some
m ∈ N. Applying ϕs at both sides we obtain:

ϕs(~0) = ~0 ∈ ϕs(a, b)3
m − ϕ(sh−1)(u) + 3m+1Z2

= ϕ̃s(a, b)3
m − ϕ(sh−1)(u) + 3m+1Z2

= (1, 1)3m − ϕ(sh−1)(u) + 3m+1Z2

= Bm(Sub(1,1)(σ
−ϕ(sh−1)(u)(ysh

−1

))).

Implying that Sub(1,1)(σ
g−1

(ŷ))(~0,s−1) = . Moreover, if either a or b is non-zero
(here we treat only the a 6= 0 case as the b 6= 0 case is analogous), then, using the
previous computation we get:

LayerHa,s(σ
g−1

(ŷ))(~0,1H) = fs(fh−1(x))m

LayerH1,1H (σg−1

(ŷ))(~0,s−1) = fsh−1(x)m.

So no patterns from G appear, yielding ŷ ∈ Final(X, f).

Proposition 3.13 concludes the proof of Theorem 3.7.

3.4 Consequences and remarks

In this last section some consequences of the simulation theorem are studied. The first
one is in the case of expansive actions. Here we show that we can replace the subaction
by the projective subdynamics and obtain the same result. The second consequence
is an application of Theorem 3.7 to produce non-empty strongly aperiodic subshifts
of finite type in a class of groups where this was previously unknown. We also extend

62

a Theorem of Jeandel [Jea15] to the existence of effectively closed strongly aperiodic
dynamical systems in general.

We close this section by remarking that the technique used to prove Theorem 3.7
is valid in an even larger class (namely, simulation in Zd ⋊G) and with a discussion
on the size of the extension. Indeed, in Hochman’s article [Hoc09] the subaction is
shown to be an almost trivial isometric extension. We dedicate the last part of this
section to informally discuss the size of the factor in our construction and how a
similar result could be obtained.

3.4.1 The simulation theorem for expansive effective dynam-

ical systems

We begin by showing the following proposition which extends Proposition 3.14 to
symbolic factors of dynamical systems.

Proposition 3.14. For every finitely generated group, any G-subshift which is the
factor of an effectively closed G-dynamical system is itself effectively closed.

Proof. Let G be generated by the finite symmetric set S ⊂ G, (X, f) an effectively
closed G-dynamical system over a Cantor set, (Y, σ) a G-subshift and φ : (X, f) ։

(Y, σ) a factor.
Recall that X ⊂ {0, 1}N and Y ⊂ AG for some finite A. As both X and Y are

compact, φ is uniformly continuous. Therefore for each a ∈ A then φ−1([a]) = Wa

where Wa is a clopen set depending on a finite number of coordinates. For any pattern
coding c and v ∈ S∗:

φ−1

 ⋂

(w,a)∈c
[a]vw

 =

⋂

(w,a)∈c
φ−1(σvw([a])) =

⋂

(w,a)∈c
fvw(φ−1([a]))

Therefore,

Y ∩
⋂

(w,a)∈c
[a]vw = ∅ =⇒ X ∩

⋂

(w,a)∈c
fvw(Wa) = ∅.

As (X, f) is effectively closed, there is a Turing machine which can approximate
the set

⋂
(w,a)∈c fvw(Wa) as each Wa is just a finite union of a finite intersection of

cylinders and vw ∈ S∗. Also, for each partial approximation we can enumerate the
cylinders which approximate the complement of X to recognize if the intersection is
empty, namely, to check if fvw(Wa) is contained in the complement. Using these tools
we can construct a Turing machine recognizing a maximal set of forbidden pattern
codings defining Y .

Theorem 3.15 (B, Sablik). Let H be a finitely generated group and (X, f) an effec-
tively closed expansive H-dynamical system over a Cantor set. Then there exists a
(Z2⋊H)-sofic subshift Y such that its H-projective subdynamics πH(Y) is conjugated
to (X, f).

63

Proof. Consider first (X, f) an effectively closed expansive H-dynamical system over
a Cantor set. By Theorem 3.7 there exists an (Z2 ⋊ H)-SFT X̂ such that its H-
subaction (X̂, σH) is an extension of (X, f). Denote the factor map by φ : (X̂, σH) ։
(X, f). Let C > 0 be the expansivity constant of (X, f). As X is a Cantor set
one can choose a clopen partition P = {P1, . . . , Pn} such that every Pi ∈ P satisfies
diam(Pi) < C. Given x 6= y ∈ X the expansivity implies the existence of h ∈ H
such that d(fh(x), fh(y)) ≥ C. Therefore the refinement fh(P) ∨ P separates x and
y. This means that P is a generating partition.

LetXi = φ−1(Pi) and the continuous shift-commuting map φ̂ : X̂ → {1, . . . , n}Z
2⋊H

where φ̂(x̂)(u,h) = i ⇐⇒ σ(u,h)(x̂) ∈ Xi. By definition Y := φ̂(X̂) is a sofic (Z2⋊H)-
subshift. We claim its projective subdynamics (πH(Y), σ) are conjugate to (X, f). To

see this define φ̃ : X → {1, . . . , n}H such that φ̃(x)h = i ⇐⇒ x ∈ fh(Pi). Obviously

φ̃ is continuous and as P is generating, we have that φ̃ is injective. It is also clear by
definition that φ̃(X) = πH(Y) and that φ̃ ◦ fh = σh ◦ φ̃. Therefore (X, f) is conjugate
to (πH(Y), σ).

(X̂, σ) (X̂, σH)

(Y, σ) (πH(Y), σ)

(X, f)

H-subaction
φ

φ̂

πH p. subd.
φ̃

Figure 3.4: The diagram for the proof of Theorem 3.15.

Theorem 3.16 (B, Sablik). Let H be a finitely generated and recursively presented
group. For every effectively closed H-subshift Z there exists a sofic (Z2 ⋊H)-subshift
Y such that its H-projective subdynamics πH(Y) is Z.

Proof. Let S ⊂ H is a finite set such that 〈S〉 = H. Consider a recursive bijection
ϕ : N→ S∗ where S∗ is the set of all words on S. As H is recursively presented, then
its word problem WP(H) = {w ∈ S∗ | w = 1H} is recursively enumerable and there is
a Turing machine T which accepts a pair (n, n′) ∈ N2 if and only if ϕ(n) = ϕ(n′) as
elements of H.

For simplicity, we suppose Z ⊂ {0, 1}G. Consider the map ρ : Z → {0, 1}N where
ρ(z)n = zϕ(n) where ϕ(n) ∈ S∗ is identified as an element of H. Consider the set
Ω = ρ(Z) and the H-action f : H ×Ω→ Ω defined as fh(ρ(z)) = ρ(σh(z)). Clearly ρ
is a conjugacy between (Z, σ) and (Ω, f). We claim that (Ω, f) is an effectively closed
H-dynamical system.

Indeed, let w ∈ {0, 1}∗. A Turing machine which accepts w if and only if [w] ∈
{0, 1}N \Ω is given by the following scheme: for each pair (n, n′) in the support of w
run T in parallel. if T accepts for a pair such that wn 6= wn′ then accept w (this means
that w did not codify a configuration in AZ as two words codifying different group
elements have different symbols). Also, in parallel, use the algorithm recognizing a

64

maximal set of forbidden patterns for Z over the pattern coding cw = (ϕ(n), wn)n≤|w|.
This eliminates all w which codify configurations containing forbidden patterns in Z.
For f−1s [w] just note that the application n→ ϕ(s−1ϕ−1(n)) is recursive, thus f−1s [w]
can be calculated.

It suffices to apply Theorem 3.15 to (Ω, f) to obtain a sofic (Z2 ⋊H)-subshift Y
such that (πH(Y), σ) is conjugate to (Z, σ) One can then extend this conjugacy to
act over Y in such a way to obtain a factor Ŷ of Y such that πH(Ŷ) = Z.

In the case of a bigger alphabet A, we can code each a ∈ A as a word in {0, 1}k

and redefine ρ such that for z ∈ Z then ρ(z)n = (zϕ(⌊n/k⌋))n mod k. This construction
also defines a conjugated system (Ω, f) which is effectively closed.

We can describe this symbolic factor map in a simple way. Consider first the case
where the alphabet is {0, 1}. An explicit way to describe it is to force the recursive
bijection ϕ described above to satisfy ϕ(0) to be the empty word coding 1H and notice
that in the sofic subshift Final(Ω, f ′) the symbol z1H is therefore coded in the lattice
containing x0 in each Z2-coset. It suffices to use a big enough factor to recognize the
first lattice in a Toeplitz layer and project to the value x0 everywhere. In the case of
a finite alphabet which is coded as words in {0, 1}k it suffices to recognize the first k
lattices and project the symbol they code.

3.4.2 Existence of strongly aperiodic SFT in a class of groups

obtained by semidirect products

Next we show how these previous theorems can be applied to produce strongly ape-
riodic subshifts of finite type. Recall that a G-subshift (X, σ) is strongly aperiodic if
the shift action is free, that is, for every x ∈ X, σg(x) = x implies that g = 1G.

Theorem 3.17 (B, Sablik). Let H be a finitely generated group and (X, f) a non-
empty effectively closed H-dynamical system which is free. Then G ∼= Z2 ⋊H admits
a non-empty strongly aperiodic SFT.

Proof. We begin by recalling the following general property of factor maps. Suppose
there is a factor φ : (X, f) ։ (Y, f ′), and let x ∈ X such that fg(x) = x. Then
f ′g(φ(x)) = φ(fg(x)) = φ(x) ∈ Y . This means that if f ′ is a free action then f is also
a free action.

By Theorem 3.7 we can construct the (Z2 ⋊ H)-SFT F̂inal(X, f) such that

(F̂inal(X, f), σH) is an extension of (X, f) via the factor φ1 = Υ ◦ π ◦ φ. We also

consider the factor φ2 = Sub(1,1) ◦φ which sends F̂inal(X, f) first to Final(X, f) and
then to its Sub(1,1) layer.

Let y ∈ F̂inal(X, f) and (z, h) ∈ Z2 ⋊ H such that σ(z,h)(y) = y. This implies
that φ2(y) = σ(z,h)(φ2(y)) = σ(z,1H)(σ(0,h)(φ2(y))). As we have seen in the proof of
Theorem 3.7, the action σ(0,h) leaves the lattices (Bm)m∈N of Sub(1,1) invariant in
the (Z2, 1H)-coset. Let M > ||z||2. Then σ(z,0) does not leave invariant the lattice

BM . This implies that z = ~0. Therefore, σ(~0,h)(y) = y. Applying φ1 we obtain that

fh(y) = y, and thus h = 1H . Therefore (z, h) = (~0, 1H) and F̂inal(X, f) is strongly
aperiodic. It is non-empty as X 6= ∅.

65

In the case where H has decidable word problem, the coding of Theorem 3.16 can
be applied to the subshift from Theorem 2.6 to obtain a free non-empty effectively
closed H-dynamical system (Ω, f ′). Applying Theorem 3.17 to H and (Ω, f ′) allows
us to state the following corollary.

Corollary 3.18. Let H be a finitely generated group with decidable word problem,
then Z2 ⋊H admits a non-empty strongly aperiodic SFT.

We remark that this corollary is an alternative proof to a construction done by
Ugarcovici, Sahin and Schraudner [Sah14] showing that the discrete Heisenberg group
H admits non-empty strongly aperiodic SFTs. This falls directly from our theorem as

H ∼= Z2⋊ϕZ for ϕ(1) =

(
1 1
0 1

)
. In their proof they use a similar trick using as a base

the Robinson tiling [Rob71]. They use the lattices of crosses in this object to match
the different (Z2, 0)-cosets correctly to force a trivial action in the Z direction and use
a counter machine to create aperiodicity in the other direction. In our construction
the Robinson tiling got replaced by the substitutive subshifts Sub(a,b) which are able
to match correctly the cosets of any possible automorphism and the counter machine
by the simulation of the free H-dynamical system. Although our construction is more
general, theirs has the advantage that the size of the alphabet is certainly smaller and
easier to compute.

We also bring to attention the fact that that Corollary 3.18 answers some open
questions in their talk. The same property holds for the Flip, Sol groups and the
powers of the Heisenberg group, since they can be represented as Z2⋊ϕ Z for ϕ given

by the matrices

(
0 1
1 0

)
,

(
1 1
1 0

)
and

(
1 n
0 1

)
respectively. The only case in their

list which is not solved is a two-dimensional Baumslag Solitar group which we do not
know how to express as a semidirect product.

Theorem 2.8 says that for recursively presented groups G, the existence of a non-
empty strongly aperiodic effectively closed subshift X ⊂ AG implies that the word
problem of G is decidable. We can extend this to the case of arbitrary dynamical
systems. This gives a deep relation between computability and dynamical properties.

Corollary 3.19. Let H be a recursively presented and finitely generated group. There
exists a free effectively closed H-dynamical system if and only if the word problem of
H is decidable.

Proof. If the word problem of H is decidable, we can use the effectively closed subshift
constructed in Theorem 2.6 as an example. Conversely, Jeandel’s result implies that
if a recursively presented group admits a non-empty effectively closed and strongly
aperiodic subshift then it’s word problem is decidable. Using Theorem 3.17 we can
construct a strongly aperiodic subshift from any free effectively closed H-dynamical
system. Therefore the word problem of H is decidable.

66

3.4.3 A generalization and comments on the size of the ex-

tension

In this last portion we want to make explicit that the technique used in the proof of
Theorem 3.7 can be easily be generalized to the following context

Theorem 3.20 (B, Sablik). Let H be finitely generated group, d ≥ 2 and G = Zd⋊H.
For every H-effectively closed dynamical system (X, f) there exists a G-SFT whose
H-subaction is an extension of (X, f).

Indeed, instead of considering vectors in (Z/3Z)2\{~0} we use v ∈ (Z/3Z)d\{~0} and
d-dimensional substitutions sv defined analogously. The subshifts generated by these
substitutions carry Zd-lattices and the configurations z ∈ Subv can be described in the
same way as before by lattices Bm(z). The Toeplitz construction Top(X, f) remains
the same but instead of just constructing Top(X, f)H and Top(X, f)V we construct
Top(X, f)ei for every canonical vector {ei}i≤d where the 〈ei〉-projective subdynamics
yields Top(X, f) and the configurations are extended periodically everywhere else.
The rest of the construction translates directly to this setting.

We also want to remark the following: Hochman’s theorem (Theorem 3.3) gives
further information about the extension in dynamical terms. It is an almost trivial
isometric extension (ATIE). In our construction the only obstruction towards obtain-
ing an ATIE is the use of the simulation theorem of effectively closed Z-subshifts
as projective subactions of sofic Z2-subshifts. This theorem in its current state does
not yield an almost everywhere 1-1 extension. The rest of the proof can be adapted
to obtain an ATIE, for instance, the substitutive layers can be coupled in a single
substitution to avoid the degree of freedom when either a or b are zero. Furthermore,
the substitutive layers and the Toeplitz structure can be factorized in the isometric
action as they are invariant under the H-subaction. Therefore, the maps Υ ◦ π do
not pose obstructions to obtaining an ATIE. All that remains to study is the fac-
tor φ : F̂inal(X, f) ։ Final(X, f). Here the substitutive layers do not present a
problem as they come from a primitive substitution with unique derivation and thus
Mozes’s theorem [Moz89] gives the almost 1-1 SFT extension. The only thing that
might pose difficulties is the aforementioned almost 1-1 SFT extension for Top(X, f)H

and Top(X, f)V that could be obtained by refining that simulation theorem.

67

Chapter 4

A new notion of effectiveness for

subshifts in groups

The objective of this chapter is to study a suitable way of extending the notion of
effectively closed subshift to the context of finitely generated groups in such a way
that the word problem of the group stops being a hindrance. The results which are
exhibited in this chapter correspond to those published in [ABS17] and were obtained
in collaboration with Nathalie Aubrun and Mathieu Sablik.

We begin by introducing the One-or-less-subshift X≤1 which consists in all con-
figurations containing at most one appearance of a non-zero symbol, and use it to
exemplify the problems that might arise in effectively closed subshifts. This subshift
has the property of being effectively closed in recursively presented groups if and only
if the word problem is decidable. This example, besides illustrating the limitations of
the notion of effectively closed subshifts, answers an open question posed by Dahmani
and Yaman concerning the work [DY08].

In order to escape the limitations of effectively closed subshifts, we introduce G-
effectively closed subshifts as objects which are defined by a Turing machine with
access to an oracle of the word problem of the group. Although we show that these
objects are a good theoretical frame in many aspects, they do not behave well with
respect to projective subdynamics. In order to justify the usage of the oracle we
introduce an abstract model of Turing machine which instead of a bi-infinite tape
uses a group. These objects are quite similar to Turing machines except that they
move using a finite set of generators of G and work over patterns instead of words.
This object allows us to define G-recursively enumerable and G-decidable sets of
patterns and gives a way to explicitly construct Turing machines with oracles. In
Theorems 4.7 and 4.8 we make this relationship explicit with the aim of concluding
in Corollary 4.9 that these G-machines give an alternative definition of G-effectively
closed subshifts.

Following the previous construction we give an application of G-machines. In
Theorem 4.11 we show that for every infinite and finitely generated group G there
exists a universal G×Z-effective subshift U such that the product of U with a G×Z-
full shift can be restricted by a finite amount of forbidden patterns and a factor code
to obtain any G-effectively closed subshift which satisfies a technical property as a

68

projective subdynamics.
We end this chapter by studying the following question: Is there a group G where

the class of effectively closed subshifts coincides with the class of sofic subshifts? This
question is motivated by the novel work in [AS16] where they show that this property
holds for structures resembling subshifts defined in shears of the Baumslag-Solitar
group BS(1, 2) under the assumption of a technical property. While their result is
certainly quite specific, it raises the previous question in a natural way. A negative
answer is given to that question for three classes of groups, namely:

• recursively presented groups with undecidable word problem – Theorem 4.12,

• infinite amenable groups – Theorem 4.14,

• groups which have two or more ends – Theorem 4.15.

4.1 The One-or-less subshift

In Subsection 1.2.3 several results about effectively closed subshifts have been shown
to depend on the group G being recursively presented. Here we argue that even in
that case the class is not large enough to contain an extremely simple subshift.

Definition 4.1. the subshift X≤1 ⊂ {0, 1}G whose configurations contain at most
one appearance of the letter 1 is called the One-or-less subshift .

X≤1 = {x ∈ {0, 1}G | 1 ∈ {xg, xh} =⇒ g = h}

As we shall see later, this subshift is related to the word problem of a group.
In the literature, it is sometimes called the “sunny side up” subshift. We begin by
showing some properties of X≤1.

Proposition 4.1. If G is infinite, then X≤1 is not an SFT.

Proof. Suppose X≤1 = XF for a finite F and let F =
⋃

p∈F supp(p), U =
⋃

h∈F−1 hF
and note that |U | < ∞. As G is infinite, there exists g ∈ G \ U . Consider the
configuration x ∈ {0, 1}G which takes the value 1 in {1G, g} and 0 elsewhere. Clearly
x /∈ [p]h for every h ∈ G and p ∈ F otherwise {1G, g} ⊂ hF implying that hF ⊂ U
and thus g ∈ U . Therefore x ∈ XF but x /∈ X≤1.

This subshift has already been studied in [DY08]. We refer to their article for the
following statement. There, the authors showed that some properties of the action of
a relatively hyperbolic group on its boundary are related to X≤1 being sofic. They
said a group G has the special symbol property if X≤1 ⊂ {0, 1}G is a sofic subshift.
They furthermore proved some stability properties for that property among which
are:

1. if G has the special symbol property then G is finitely generated.

69

2. If G splits in a short exact sequence 1 → N → G → H → 1 and both N and
H satisfy the special symbol property, then G also does.

3. If [G : H] <∞ then G has the special symbol property if and only if H does.

4. The special symbol property is true for:

• Finitely generated free groups.

• Finitely generated abelian groups.

• Hyperbolic groups.

• Poly-hyperbolic groups.

Besides the restriction ofG being finitely generated the authors did not present any
example of a group without the special symbol property. In this section we introduce
a computability obstruction for this property which at the same time shows one of
the limitations of the classical approach to effectiveness.

Proposition 4.2. Let G be a recursively presented group. Then X≤1 is effectively
closed if and only if WP(G) is decidable.

Proof. If WP(G) is decidable then X≤1 is effectively closed. Indeed, an algorithm
recognizing a maximal set of pattern codings C such that X≤1 = XC is the following:
On input c it considers every pair (w1, 1), (w2, 1) in c and accepts if and only if
w1w

−1
2 6=G 1G for a pair. Conversely, as G is recursively presented, the word problem

is already recursively enumerable. It suffices to show it is co-recursively enumerable.
By Lemma 1.13 there exists a maximal set of forbidden pattern codings C with

X≤1 = XC. Given w ∈ S∗, consider the pattern coding cw = {(ǫ, 1), (w, 1)}. Note that
w 6=G 1G ⇐⇒ cw ∈ C. The algorithm which on input w ∈ S∗ runs the algorithm
recognizing C on input cw and accepts if and only if this one accepts recognizes
S∗ \ WP(G). Hence WP(G) is co-recursively enumerable.

Using Proposition 1.17 we obtain the following corollary which gives explicit ex-
amples of groups without the special symbol property.

Corollary 4.3. If G is recursively presented and WP(G) is undecidable, then X≤1 is
not sofic.

4.2 G-effectiveness and G-machines

In order to escape the limitations of Lemma 1.13 and Proposition 1.17 and include
subshifts such as X≤1, we introduce the class of G-effectively closed subshifts. We
begin by giving a formal definition through oracle Turing machines and then we
proceed to show that they correspond to the subshifts defined by a more concrete
version of Turing machine.

An oracle Turing machine is a Turing machine with an additional element, called
the oracle, that can be queried in a single step of computation. The oracle is an

70

arbitrary language and the query consists on asking if a word belongs to that language.
A rigorous definition of oracle Turing machines is given in [AB09, Sip06].

LetO be a language. A set of pattern codings C is said to be recursively enumerable
with oracle O if there exists a Turing machine with oracle O which accepts input c if
and only if c ∈ C.

Definition 4.2. A subshift X ⊂ AG is G-effectively closed if there is a set of pattern
codings C such that X = XC, and C is recursively enumerable with oracle WP(G).

The following properties either fall directly from the definition or are obtained
from adding the word problem WP(G) as oracle to the results from Subsection 1.2.3.
Let G be a finitely generated group, then:

1. If X a G-effectively closed subshift then a maximal set of pattern codings C
such that X = XC is recursively enumerable with oracle WP(G).

2. The class of G-effectively closed subshifts is closed under finite intersections and
unions.

3. The class of G-effectively closed subshifts is closed under factors.

4. Being G-effectively closed is a conjugacy invariant.

5. The class of G-effectively closed subshifts contains all sofic subshifts.

6. The class ofG-effectively closed subshifts contains all effectively closed subshifts.

7. If WP(G) is decidable, then every G-effectively closed subshift is effectively
closed.

8. X≤1 is a G-effectively closed subshift.

The only property which does not hold is the stability under taking projective
subdynamics. Clearly if X ⊂ AG is G-effectively closed then for any finitely gener-
ated H ≤ G we would have that the H-projective subdynamics πH(X) can be defined
by a set of pattern codings which is recursively enumerable with oracle WP(G). Nev-
ertheless, it may not be possible to recognize such set with Turing machines using
oracle WP(H).

Proposition 4.4. Let G be a group which is not recursively presented. There exists
a (G×Z)-effectively closed subshift X ⊂ AG×Z such that its Z-projective subdynamics
is not Z-effectively closed.

Proof. Let A = S ∪ {⋆}. For w ∈ S∗, let pw defined over the support {1G} ×
{0, . . . |w| + 1} such that (pw)(1G,0) = (pw)(1G,|w|+1) = ⋆ and for j ∈ {1, . . . , |w|} then
(pw)(1G,j) = wj. Let X := XF ⊂ AG×Z be defined by the set of forbidden patterns
F = {pw | w ∈ WP(G)}. Clearly X is (G × Z)-effectively closed. Every Z-coset
of a configuration x ∈ X contains a bi-infinite sequence y ∈ AZ such that either y

71

contains at most one symbol ⋆ or every word appearing between two appearances of
⋆ represents 1G in G.

We claim that πZ(X) is not effectively closed. If it were, there would exist a
maximal set of forbidden pattern codings which is recursively enumerable and defines
πZ(X). Therefore given w ∈ S∗ a machine could run the algorithm for the word
⋆w⋆ and it would be accepted if and only if w =G 1G. This would imply that G is
recursively presented.

Classical Turing machines keep their information in a bi-infinite tape, and are
only able to work on inputs which are codified in the form of words. While in Z this
is a natural model to study subshifts, it becomes cumbersome in general groups as we
are forced to introduce pattern codings. Moreover, as we saw in Section 1.2.3, there
is a number of constraints to what can be done with Turing machines when WP(G) is
undecidable, and a general setting forces the use of oracles.

In this section we introduce an alternative model of computation which we call
a G-machine. In this model, the tape is replaced by a finitely generated group G.
These machines receive patterns p ∈ L(AG) as input instead of words and move by
using the set S of generators. Similar machines using Cayley graphs as a tape have
already been mentioned in [GM07] and studied in more detail in [dC11], but these
machines take their input as a word in an auxiliary tape and only use the graph as
a working tape. Another work considering subshifts defined by one or more Turing
machine heads walking on the group has also been done in [ST15].

We begin by defining G-machines and the classes of languages they define. Then
we present some robustness results similar to the ones satisfied by classical Turing
machines. As the main result of this section, we characterize the class of G-effectively
closed subshifts as those whose set of forbidden patterns is G-recursively enumerable,
hence giving a characterization of this class without the use of oracles.

Definition 4.3. A G-machine is a 6-tuple (Q,Σ,⊔, q0, QF , δ) where Q is a finite set
of states, Σ is a finite alphabet, ⊔ ∈ Σ is the blank symbol, q0 ∈ Q is the initial state,
QF ⊂ Q is the set of accepting states and δ : Σ × Q → Σ × Q × S is the transition
function.

As in the case of Turing machines, we can define the action of a Turing machine
in two different ways. We call these the fixed head and moving head models.

In the fixed head model, a G-machine T acts on the set ΣG × Q as follows: let
(x, q) ∈ ΣG×Q and δ(x1G , q) = (a, q′, s). Then T (x, q) = (σs−1

(x̃), q′) where x̃|1G = a
and x̃|G\{1G} = x|G\{1G}. Figure 4.1 illustrates this action when G is a free group.
Here the head of the Turing machine is assumed to stay at a fixed position and the
tape moves instead.

In the moving tape model, a G-machine T acts on the set ΣG×G×Q as follows:
let (x, g, q) ∈ ΣG×G×Q and δ(x1G , q) = (a, q′, s). Then T (x, g, q) = (x̃, gs, q′) where
x̃|1G = a and x̃|G\{1G} = x|G\{1G}. Figure 4.2 illustrates this action when G is Z2.
Here the tape remains fixed and the second coordinate keeps track of the position of
the head.

72

a

b

⊔

⊔

⊔

⊔

⊔

⊔

⊔

⊔ ⊔

⊔

⊔⊔

q1

a

b

⊔

⊔

⊔

⊔

⊔

⊔

⊔

⊔ ⊔

⊔

⊔⊔

q2

δ(q1,) = (q2, , a)

Figure 4.1: A fixed head transition of an F2-machine.

⊔

⊔

⊔

⊔

⊔

⊔

⊔

⊔

⊔

⊔

⊔

⊔

⊔

⊔

⊔

⊔

q1

⊔

⊔

⊔

⊔

⊔

⊔

⊔

⊔

⊔

⊔

⊔

⊔

⊔

⊔

⊔

⊔

q2

δ(q1,) = (q2, , (1, 0))

Figure 4.2: A moving head transition of a Z2-machine.

Let F ⊂ G be a finite set and p ∈ ΣF . Let xp ∈ ΣG be the configuration such
that (xp)|F = p and (xp)|G\F ≡ ⊔. We say that T accepts p if there is n ∈ N such
that T n(xp, q0) ∈ ΣG × QF in the fixed head model or equivalently T n(xp, 1G, q0) ∈
ΣG × G × QF in the moving head model. L ⊂ L(ΣG) is G-recursively enumerable if
there exists a G-machine T which accepts p ∈ L(ΣG) if and only if p ∈ L. If both L
and L(ΣG) \ L are G-recursively enumerable we say L is G-decidable.

So far we have defined these machines using a fixed set of generators S. In the
next proposition we show that the languages defined by such machines do not depend
of this arbitrary choice.

Proposition 4.5. Let S, S ′ be finite subsets of G such that 〈S〉 = 〈S ′〉 = G. Let
L ⊂ L(AG) be recursively enumerable using S ′ as the movement set. Then L is
recursively enumerable using S.

Proof. Let TS′ be a G-machine using S ′ as the movement set recognizing L. As
〈S〉 = G each s′ ∈ S ′ can be written as s′ = s1 . . . sn(s′) where every si ∈ S. Consider
TS a copy of TS′ where for each state q ∈ Q we add a copy qs′,si for s′ ∈ S and
i ∈ {1, . . . , n(s′)}, and every instruction δ(a, q) = (b, r, s′) in TS′ is replaced with the
instructions:

• δ(a, q) = (b, rs′,s1 , s1)

73

• ∀a ∈ Σ and 1 ≤ i < n(s), δ(a, rs′,si) = (a, rs′,si+1
, si+1)

• ∀a ∈ Σ, δ(a, rs′,sn(s′)) = (a, r, 1G).

The modified machine TS moves with the set of generators S and accepts the same
patterns as TS′ .

The class ofG-machines shares also the robustness of Turing machines with respect
to slight changes in its definition. For example, we can allow multiple tapes with
multiple independent writing heads. We shall briefly and informally define this model
as it will be used as a tool in a proof later on.

A multiple head G-machine is the same as a G-machine, except that the machine
uses Gn as a tape and the transition function is δ : Σn × Q → Σn × Q × Sn, where
n is the number of heads of the machine. The action of this machines is defined
analogously as before in either the moving head or moving tape model. It accepts a
pattern p ∈ L(AG) if starting from the initial configuration ((xp,⊔G, . . . ,⊔G), q0) the
machine reaches in a finite number of steps an accepting state in QF .

In these machines each head works on its own tape, but can “read” the content
of other tapes. By codifying independent movements of a tape accordingly, it is able
to read not only what each head is looking at a certain step but what is written in
an arbitrary finite portion of the other tapes.

Proposition 4.6. Let L ⊂ L(ΣG). There exists a multiple head G-machine which
accepts exactly patterns p ∈ L if and only if L is G-recursively enumerable.

This extended model is useful to prove the second of the following two results which
links oracle machines to G-machines. The first result is relatively straightforward, as
G-machines can be simulated by a machine with oracle WP(G) by creating arbitrarily
big balls of the Cayley graph. The second result is more interesting as it says that
oracle machines can be simulated by G-machines.

Theorem 4.7 (Aubrun, B, Sablik). Let L ⊂ L(ΣG) be G-recursively enumerable.
Then there exists a recursively enumerable with oracle WP(G) set of pattern codings C
such that L = p(C).

Proof. Suppose TG is the G-machine recognizing L. With an oracle of WP(G), a
machine can construct balls Bn of Γ(G,S) for arbitrary n. A codification of Bn

allows a classical Turing machine to simulate at least n applications of TG in the
moving head model as the head starts in the origin and moves at most one generator
per iteration. Let T be the Turing machine with oracle WP(G) which does the following
on input c.

• Let N = 2 max(w,a)∈c |w|. Solve the word problem for all w ∈ S∗ of length at
most N . If c is inconsistent accept.

• Let k = N and iterate the following procedure: Solve the word problem for
w ∈ S∗ of length at most k and simulate TG over p(c) for k steps. If this
procedure accepts then accept, otherwise increase k by 1.

74

Clearly, T accepts c if and only if either c is inconsistent or p(c) ∈ L.

Definition 4.4. A language L ⊂ L(ΣG) is said to be closed by extensions if for each
p1 ∈ ΣF1 , p2 ∈ ΣF2 such that F1 ⊂ F2 and p2|F1 = p1 then p1 ∈ L =⇒ p2 ∈ L.

Theorem 4.8 (Aubrun, B, Sablik). Let G be an infinite group and C a recursively
enumerable with oracle WP(G) set of pattern codings. If p(C) is closed by extensions,
then p(C) is G-recursively enumerable.

Proof. Without loss of generality we can suppose C is a maximal set of pattern codings
which gives p(C). Moreover we can also assume that T is a one-sided Turing machine
with a reading tape and a working tape.

The construction is a multiple head G-machineM which consists of the following
six layers (see Figure 4.3):

1. A storage layer MSTORE where the input p ∈ L(ΣG) is stored.

2. A machineMPATH which constructs an arbitrarily long one-sided non-intersecting
path starting from 1G.

3. A machine MVISIT which is able to visit iteratively all the elements of Bn for
n ∈ N starting with n initially assigned to 1.

4. A Machine MORACLE which solves WP(G).

5. An auxiliary layer MAUX which serves as a nexus between the first layer and
the sixth.

6. A simulation layer MSIM which simulates T in the one-sided path created by
MPATH.

We will first describe MPATH and MVISIT which are the most complicated com-
ponents. Then we will describe the general workings of the machine.

We begin by describing MPATH in detail. Let the set of generators be S =
{g1, . . . , gk} and consider the G-machine MPATH := (Q,Σ,⊔, q0, QF , δ) where Q :=
{I, B} ∪ (S × {←,→}), Σ = ({⊔,⊲} ∪ S)× {⊔,⊗}× ({⊔} ∪ S), q0 = I, QF = ∅ (we
force the machine to loop), and δ is given by the following rules where ∗i stands for
an arbitrary fixed symbol.

δ((⊔,⊔,⊔), I) = ((⊲,⊗, g1), g
←
1 , g1).

δ((⊔,⊔,⊔), g←i) = ((gi,⊗,⊔), g→1 , 1G).

δ((∗1,⊗, ∗2), g
→
i) = ((∗1,⊗, gi), g

←
i , gi).

δ((∗1,⊗, ∗2), g
←
i) = ((∗1,⊗, ∗2), B, g

−1
i).

δ((gj,⊗, gi), B) =

{
((gj,⊗, gi), g

→
i+1, 1G), if i < k

((⊔,⊔,⊔), B, g−1j), if i = k.

75

⊲

Layer 6 MSIM

{ ⊲ (ǫ ,) (a ,) · · ·
Input tape of T .

⊲ · · ·
Working tape of T .

Layer 5 MAUX

Layer 4 MORACLE

⊲

⊗
Bn

Layer 3 MV ISIT

⊲ ⊗⊗⊗
⊗⊗

Layer 2 MPATH

p

Layer 1 MSTORE

Layer 3.1 MPATH

⊲ ⊗⊗⊗
⊗⊗

Layer 3.2 Counter

⊲
n = 1

{ ⊲

⊗

Bn

Layer 3.3 M′
PATH

Figure 4.3: Construction of the machine M as a multiple head G-machine.

δ((⊲,⊗, gi), B) = ((⊲,⊗, gi), g
→
i+1, 1G), if i < k

The rules from δ codify a backtracking inG which marks a one-sided non-intersecting
infinite path in G. The states I and B stand for initialization and backtracking re-
spectively. The elements from Σ are triples (a1, a2, a3) which indicate the following
information: my left and right neighbors are a1 and a3 respectively and I belong to
the path if a2 = ⊗. The first rule initializes the infinite path by using the symbol ⊲
to indicate that there is no element to the left, marks the identity of the group as
part of the path by using ⊗ and sets the next element in the direction g1. The second
and third rules mark the left and right neighbors respectively and move to the next
position. Rule 4 deals with the case of reaching a position already marked and going
back. Rule 5 and 6 search the next available direction which potentially admits an
infinite path and backtrack if every position has already been searched. Rule 6 lacks
a case where i = 2k on purpose because such a state is never reached as the group is
infinite.

Next we describeMVISIT that visits all elements of every ball Bn in G iteratively.
It suffices to construct it as a multiple head G-machine with three layers as follows.
The first layer runs a copy ofMPATH. The second layer makes use of the path defined
by MPATH to simulate a counter which has value n ∈ N – any one-sided Turing
machine can be simulated in the path by identifying the instructions L,R with the
first and third coordinates of Σ. The third layer runs another copy ofMPATH, which
is allowed only to run over words of length n. This is achieved by using the counter in
second layer to measure the length of the path visited by the third layer and restrict
it to be less than n. Each time the whole ball Bn is visited (that is, ((⊲,⊗, gk), B)

76

is reached in the third layer) then the counter in the second layer increments n by 1
and the third layer starts anew.

If at a given time the first layer, which constructs the one-sided path, backtracks
until reaching a cell used by the counter in the second layer, then the second and
third layers are erased and restart. As the group is infinite, then by choosing an
adequate number of computation steps, the path generated by MPATH in the first
layer is arbitrarily long. Thus the head of the third tape is able to visit every element
of Bn for arbitrarily big n.

Finally, we describe the overall functioning of M:

• The input p ∈ L(ΣG) is stored in MSTORE whose head mimics that of MVISIT

without changing anything.

• The machines MPATH and MVISIT run independently.

• MSIM uses the path given byMPATH to simulate two one-sided Turing machine
tapes: an input tape where input will be stored, and a working tape which
simulates T over that input.

• If at any moment the working tape of MSIM makes a call to the oracle WP(G),
then MORACLE is made to mark the origin, follow the path w ∈ S∗ and accept
the call if the last symbol is marked. Then it erases everything and goes back
to the origin.

• Whenever MVISIT arrives at a position where the first layer is not marked by
⊔, the head at MAUX follows the path w marked from 1G by the first layer
of MVISIT and writes (w, a) in the input tape of MSIM. Then MAUX marks
position w as already visited and returns to 1G.

• If at a given timeMAUX extends the pattern coding written in the reading tape
of the fifth layer, then the working tape of MSIM erases everything and begins
anew.

• If at any moment the end of the simulated path created by MPATH backtracks
into a cell used by the written portion of MSIM, then the content of all tapes
except MPATH and MSTORE is erased and they start anew.

• M accepts if and only if the working tape of MSIM does.

As MPATH is able to construct arbitrarily long one-sided and non-intersecting
paths, there is a finite number of computation steps such that MVISIT will visit all
of the support of p. Thus the fourth layer will write a consistent pattern coding
c such that p = p(c) which is accepted by the working tape of MSIM if and only if
p ∈ p(C) (as C is maximal). By considering a path which has length at least two times
the running time of all the other algorithms, this eventually happens. Conversely, if
p /∈ p(C), as p(C) is closed by extensions, the acceptance of any partial coding c′

would mean that p ∈ p(C), therefore, the machine never accepts.

77

Corollary 4.9. A subshift X ⊂ AG is G-effectively closed if and only if there exists
a G-recursively enumerable set F ⊂ L(AG) such that X = XF .

Proof. As X is G-effectively closed, the set of forbidden pattern codings C can be
chosen to be maximal. This in turn gives a maximal set of forbidden patterns p(C)
which is closed by extensions. Theorems 4.7 and 4.8 imply the result.

For a language L ⊂ A∗ we define the Turing jump L′ as the halting problem for
Turing machines with oracle L.

Let HALTG = {〈T 〉 | T is a G-machine which accepts the empty input}.

Corollary 4.10. Let G be an infinite group. HALTG is WP(G)′-hard, that is, it is at
least as hard as the halting problem for Turing machines with oracle WP(G)

Proof. Let T be a Turing machine with oracle WP(G). Consider the construction from
Theorem 4.8 without the Visit and Auxiliary tapes. Thus, there is only the tape
which searches the infinite path, the oracle layer, and the layer which simulates T
(now only on empty input). It is clear that this machine accepts the empty input
(and all inputs) if and only if T accepts the empty input.

Corollary 4.9 implies that G-effectively closed subshifts can be defined either by
oracle machines or by G-machines. This nice characterization allows us to simulate
Turing machines in groups which may not even have torsion-free elements. In what
remains of this section we present an application of these machines to construct a
simulation theorem.

4.2.1 Application: a simulation theorem with oracles

Here we explore an analogue of Theorem 3.7 for G-effectively closed subshifts. As
Propositions 1.19 and 4.4 show, an analogue can not hold for arbitrary G-effectively
closed subshifts when G is recursively presented as the projective subdynamics of a
sofic subshift would necessarily be effectively closed. Nevertheless, using G-machines,
we can obtain a similar result if we allow the addition of a particular subshift as an
universal oracle to our construction. Formally we show:

Theorem 4.11 (Aubrun, B, Sablik). For every finitely generated group G, there

exists a G × Z-effectively closed subshift U ⊂ B̃G×Z such that for every G-effectively
closed subshift X ⊂ AG which contains a uniform configuration (∃ā ∈ A such that
āG ∈ X), there exists an alphabet B, a finite set of forbidden patterns F on alphabet

B̃ × B and a 1-block code φ such that:

πG

(
φ

(
(
U × BG×Z) \

⋃

p∈F ,h∈G×Z
[p]h

))
= X.

In order to define U we need to use the notion of Delone set which was introduced
in Definition 2.3. We first define Yn ⊂ {0, 1, 2}

G as the subshift defined by the
following set of forbidden patterns Fn:

78

• All p ∈ {0, 2}BS(1G,4n).

• p ∈ {0, 1, 2}BS(1G,n) such that p1G = 1 and there exists g ∈ BS(1G, n) \ {1G}
with pg 6= 2.

• p ∈ {1, 2}F where F is a connected component of Γ(G,S) and there exist
g1, g2 ∈ F, g1 6= g2 such that pg1 = pg2 = 1.

That is, Yn is the set of configurations y where, if we denote by Dy the set of
positions marked in y by a 1 , then Dy forms a Delone set with rDy

≥ n and cDy
≤ 4n.

Also, each 1 is surrounded by a ball of size at least n marked by 2’s and there is no
path of 2’s connecting two adjacent 1s. See Figure 4.4 for an example in Z2.

Figure 4.4: Example of a configuration of Y2 for the group Z2 with the canonical
generators. The symbols 0, 1 and 2 are represented by the colors , and respec-
tively.

Claim. ∀n ≥ 1, Yn is a non-empty, G-effectively closed subshift.

Proof. The set Fn can easily be recognized by a Turing machine with oracle WP(G), so
Yn is G-effectively closed. For the non-empty part, Lemma 2.11 implies that a Delone
set D satisfying rD ≥ 2n and cD ≤ 4n always exists. Now, define y ∈ {0, 1, 2}G as:

yg =

1 if g ∈ D

2 if 0 < d(g,D) ≤ n

0 else

As cD ≥ 2n and n ≥ 1 it follows that there is no path consisting of 2’s between a pair
of 1’s. It follows that y ∈ Yn.

Consider a G-machine T with alphabet Σ and set of states Q whose head never
leaves a bounded support F . Using a pigeonhole argument, it can be shown that if it
accepts, it must do so before |Q|·|F |·|Σ||F | steps. Consider the function time : N→ N

given by time(n) = nnn+n+1. It is clearly a computable function which satisfies the
following property: for any G-machine T , there exists N ∈ N such that for every
n ≥ N , if T accepts a pattern p without leaving the support BS(1G, n) then it does
so before time(n) steps. Indeed, we can always bound BS(1G, n) ≤ |S|n and thus an

79

upper bound for the maximum number of steps without leaving the support BS(1G, n)
is given by |Q| · |S|n · |Σ||S|

n

. Choosing N ≥ max{|Q|, |S|, |Σ|} we get that ∀n ≥ N
the number of steps is bounded by nnn+n+1.

We are going to construct a Z-subshift Xtime which encodes the function time

and instructions for a Turing machine in a convenient way. Consider the alphabet
AX = {•, ⋆,⊕,⊲} ∪ S. Let x̃ ∈ AN

X be the infinite concatenation of {wn}n∈N, where
w0 = ⋆ and for n ≥ 1 the word wn is defined as follows. Let u1, . . . , uk(n) be the
lexicographic enumeration of all words in S∗ of length at most 4n. Then,

vj,n = uj ⊲ •
time(n)u−1j , and wn = ⊕v0,nv1,n, . . . , vk(n),n

Example 4.1. Let S = {a, a−1} and suppose just for this example that the words are
enumerated up to length n instead of 4n, and that time(1) = 2 and time(2) = 3.
Then the first symbols of x̃ would be:

x̃ = ⋆⊕ ⊲ • • a ⊲ • • a−1a−1 ⊲ • • a⊕ ⊲ • • •a ⊲ • • •a−1a−1 ⊲ • • •a

aa ⊲ • • •a−1a−1aa−1 ⊲ • • •aa−1a−1a ⊲ • • •a−1aa−1a−1 ⊲ • • •aa · · ·

With the infinite word x̃ in hand, we define Xtime ⊂ A
Z
X as the subshift such that

if x ∈ X and xn = ⋆, then for all m ≥ 0 we have xn+m = x̃m. Clearly the forbidden
patterns of Xtime can be recognized by a Turing machine.

Let X̃time ⊂ A
G×Z
X be the periodic extension of Xtime. That is, for all t̃ ∈ X̃time

and g ∈ G we have t̃(g,k) = t̃(1G,k) and the configuration x ∈ AZ
X defined by xk = t̃(1G,k)

belongs to Xtime.
Finally, we define U ⊂ X̃time×{0, 1, 2}

G×Z by a set of forbidden patterns. In order
to describe this set, we denote by π1 and π2 the projections to the first and second
coordinate respectively.

• Let (kn)n≥1 be the sequence of positions in x̃ such that x̃kn = ⊕. Recall that Fn

denotes the set of forbidden patterns defining Yn. We forbid all patterns p with
support F ∋ (1G, 0) such that π1(p)(1G,0) = ⋆ and for which there is n ∈ N such
that the restriction of π2(p) to Fn = {(g, kn) | (g, kn) ∈ F} contains a pattern
in Fn.

• We forbid all patterns p with support F = {(1G, 0), (1G, 1)} such that π1(p)(1G,1) ∈
{⊲, •} and π2(p)(1G,1) 6= π2(p)(1G,0).

• For s ∈ S, we forbid all patterns with support Fs = {(1G, 0), (s, 1)} such that
π1(p)(s,1) = s and π2(p)(s,1) 6= π2(p)(1G,0).

In other words, these patterns use the information on the first coordinate to force
a structure on the second one as follows: The n-th coordinate marked with ⊕ after a
⋆ must carry a configuration y ∈ Yn in the second coordinate. The symbols ⊲ and •
in the layer (G,m) just copy the configuration in the layer (G,m− 1). The symbols
from S shift the whole configuration by s ∈ S. See Figure 4.5.

Claim. U is a non-empty, G× Z-effectively closed subshift.

80

⊕ yn ∈ Yn

⊲ yn

s σs(yn)

• σs(yn)

s1 yn

⊕ yn+1 ∈ Yn+1

...

⋆

Figure 4.5: A typical configuration in U ⊆ ({•, ⋆,⊕,⊲} ∪ S)×{0, 1, 2}G×Z. Symbols
on the left side of the picture correspond to the first coordinate of the configuration,
and the part in {0, 1, 2}G×Z is on the right. On the example, the bottom ⊕ is the
n-th appearence after ⋆.

Proof. The first set of forbidden patterns is recursively enumerable with oracle WP(G)
as (kn) is computable and Yn is G-effectively closed (the Turing machine accepting
patterns of Yn can be constructed universally for all (Yn)n∈N such that it receives
n ∈ N, p ∈ {0, 1, 2}G as an input and accepts if [p] ∩ Yn = ∅). The rest of the
forbidden patterns is a finite set, therefore U is a G×Z-effectively closed subshift. It
is non-empty as each Yn is non-empty.

Now that the description of U is done, we are ready to show Theorem 4.11.

Proof. LetA be the alphabet of X and T be the G-machine which on input p ∈ L(AG)
accepts if and only if [p] ∩X = ∅. Using Mvisit from Theorem 4.8 we can construct

from T a machine T̃ working on an infinite configuration whose description is as
follows.

The machine T̃ contains two tapes: a reading tape which is never modified and
initially filled with symbols from A, and a working tape. The machine T̃ iterates
infinitely for n = 1, 2, . . . as follows: for n ∈ N, the machine iterates in order k =
1, 2, . . . , n the following procedure:

• Copy the pattern appearing in the reading tape in the support BS(1G, k) around
the head to the working tape.

81

• Run T over this pattern n steps. If T accepts at some point, then T̃ accepts.

• Erase everything in the working tape and go back to the starting position.

Let Σ ∋ ⊔ be the alphabet of the working tape of T̃ and let its set of states be
Q = {1, . . . , k}, where 1 is the initial state and k the only accepting state. We model
this machine as a subshift on G×Z. We define the alphabet B = A×Σ×{0, . . . , k}.
Here A is the alphabet of X, Σ is the alphabet of the working tape and {0, . . . , k}
codes the state of the head of a G-machine, 0 coding the absence of a head. In order to
describe the finite set of forbidden patterns we introduce some notation. Recall that
U is defined over the alphabet {•, ⋆,⊕,⊲} × {0, 1, 2}. Therefore the set of forbidden
patterns F is defined over the alphabet AFinal where:

AFinal = {•, ⋆,⊕,⊲} × {0, 1, 2} × A× Σ× {0, . . . , k}.

We denote the projection to each of these five coordinates by π1, . . . , π5 respec-
tively. The forbidden patterns in F belong to four categories: configuration patterns,
starting patterns, ending patterns and transitions patterns.

The configuration patterns force that every Z-coset sees the same symbol in the
third coordinate. Said otherwise, the third coordinate is invariant under the action of
Z. To obtain this we forbid all p with support {(1G, 0), (1G, 1)} such that π3(p(1G,0)) 6=
π3(p(1G,1)).

The starting patterns are defined by forbidding symbols in AFinal in a way such
that every time the symbol ⊲ appears in a G-coset, then the working tape symbols
are empty (that is, marked by ⊔) and all positions marked by 1 carry a head with
the initial state. Formally, we force that all a ∈ AFinal such that π1(a) = ⊲ must also
satisfy π4(a) = ⊔. Furthermore, if π2(a) = 1 then π5(a) = 1 and if π2(a) ∈ {0, 2}
then π5(a) = 0.

The ending patterns are described by forbidding the appearance of any symbol
containing the accepting state k. Formally, every symbol a ∈ AFinal such that π5(a) =
k is forbidden.

The transition patterns describe the evolution of T̃ after a symbol ⊲. Each time
the symbol • appears it marks that the G-machines must execute one step with
respect to the previous G-coset. Basically, if the head is inside a zone given by a 1
or a 2 these patterns execute a step of T̃ . If the head reaches the border then it does
nothing. The formal description is given by the forbidden patterns in A1∪A2∪A3∪A4

defined as follows:

• Consider the support F = {(1G, 0), (1G, 1)}. We define A1 as the set of p ∈
AF such that π1(p(1G,1)) = •, π2(p(1G,1)) 6= 0, π4 × π5(p(1G,0)) = (a, 0) and
π4 × π5(p(1G,1)) = (b, ·) with b 6= a.

• Consider the set of all transitions δ(a, q) = (b, r, s) of the G-machine T̃ .

– Let F = {(1G, 0), (1G, 1)}, we define A2 as the set of p ∈ AF such that
π1(p(1G,1)) = •, π2(p(1G,1)) 6= 0, π4×π5(p(1G,0)) = (a, q) and π4×π5(p(1G,1)) =
(c, ·) with c 6= b.

82

– Let Fs = {(1G, 0), (s, 1)}, we define A3 as the set of p ∈ AFs such that
π1(p(1G,s)) = •, π2(p(1G,s)) 6= 0, π4×π5(p(1G,0)) = (a, q) and π4×π5(p(s,1)) =
(·, t) with t 6= r.

• Consider the support F = {(1G, 0), (1G, 1)}. We define A4 as the set of p ∈ AF

such that π1 × π2(p(1G,1)) = (•, 0) and π4 × π5(p(1G,0)) 6= π4 × π5(p(1G,1)).

Finally, we describe the 1-block code φ. Let ā ∈ A be a symbol such that āG ∈ X.
We define a local function Φ : AFinal → A by:

Φ(a) =

{
π3(a) if π1(a) = ⋆

ā otherwise

and we set φ(x)(g,k) = Φ(x(g,k)).
Let x ∈ AG be the G-projective subdynamics of φ(z), where z ∈ U × BG×Z and

avoids all forbidden patterns in F . By definition of U , as X̃time is a periodic extension,
each G-coset of z is either completely marked by ⋆ or does not contain a ⋆ at all.
If this last case happens, then x = āG ∈ X. Otherwise π1(z)(g,0) = ⋆ and thus by
definition of U we have π1(z)(g,k) = x̃k. Suppose x /∈ X, then there exists a ball Bn

and p ∈ ABn such that [p] ∩ X = ∅. This implies that T accepts the input p in a

finite number of steps nT . By definition, T̃ also accepts all configurations in [p] in a

number of steps bounded by a function of nT . Let Bm be a ball such that T̃ never
leaves Bm when working on [p] (one could take for instance m as the bound on the

number of steps). Let N ≥ max{|Q|, |S|, |Σ|,m}. Then we know that T̃ starting on
position 1G would accept an input in [p] in less than time(N) steps. Consider kN
the position of the N -th appearance of ⊗ in x̃. By definition we know that in the
G-coset in kN , the second coordinate contains a configuration y ∈ {0, 1, 2}G such that
y ∈ YN . Therefore, there exists g ∈ BS(1G, 4N) such that yg = 1. As each word of
length smaller or equal to 4N appears, then a codification of g−1 eventually does.
Using the rules of U , this means that after this word the next coset is marked by
⊲, and the configuration in the second coordinate is y′ = σg−1(y) thus y′1G = 1. By

definition of x̃, the next time(N) cosets are marked by • thus simulating T̃ for that
number of steps as long as the head does not see a 0 in the second coordinate. As
there is a ball of size at least N around the identity marked by a symbol 2, then T̃ is
run for time(N) steps, thus reaching the accepting state k which is forbidden. This
contradicts that x /∈ X.

Conversely, each x ∈ X can be obtained by constructing a configuration z such
that π3(z)(g,k) = xg and π1(z)(g,0) = ⋆. By definition of T̃ and similar arguments as
above, this configuration can be completed for all g ∈ G and k ≥ 0 without producing
forbidden patterns. For k ≤ 0 we can just fill the coordinate (g, k) with the symbol
(•, 0, xg,⊔, 0) without creating forbidden patterns.

We remark that the condition that X must contain a uniform configuration can
easily be replaced by weaker statements. For example, it suffices to contain a periodic
configuration or more generally, a G-SFT Y such that Y ⊂ X. In the proof above it

83

would suffice to add a Z-periodic extension of Y as an extra coordinate and change
the definition of the 1-block code φ such that it projects to this coordinate instead of
ā.

Another interesting aspect of this construction is that even if the subshift U is
G× Z-effectively closed in general, it can sometimes be forced to be a sofic subshift.
For example, if G = Zd then Xtime is an effectively closed Z-subshift and thus its
periodic extension is a sofic Zd+1-subshift by [AS13, DRS10]. Also, we remark that
in the second coordinate of U , it suffices to contain a non-empty subsystem of Yn in
each G-coset. For Zd it is not hard to produce sofic subshifts with those properties.
For example, the subshift shown in Figure 4.6 in which each horizontal strip contains
a periodic configuration which doubles its period when advancing vertically can be
easily shown to be sofic and adapted by adding extra symbols to produce a suitable
subsystem of the second layer of U .

Figure 4.6: A sofic subshift which doubles its period.

4.3 Separating sofic and effective subshifts

In the work of Aubrun and Sablik [AS16], it is shown that for subshifts in the hyper-
bolic plane that satisfy a technical condition, the property of being sofic is equal to
the property of being effectively closed. By hyperbolic plane it is meant the monoid
M = 〈a, a−1, b | ab = ba2, aa−1 = 1M〉 which looks like a shear of the Baumslag-Solitar
group BS(1, 2) (here all the definitions given above for groups naturally extend to
monoids). The reason behind this fact is that the doubling structure of this monoid
allows to transmit the information on a row bn〈a〉 to all rows bm〈a〉 where m ≥ n,
and thus a Turing machine calculation can be implemented as an extra SFT exten-
sion. This shows that any subshift defined by a recursively enumerated set of pattern
codings is in fact a sofic subshift in that context.

This result raises the following questions:

• If we consider the group BS(1, 2), is it true that every effectively closed subshift
is sofic?

• Is there any group G such that every G-effectively closed subshift is sofic?

• Is there any group such that the class of effectively closed subshifts and sofic
subshifts coincide?

84

In this section we give a negative answer to the first question, and give partial
negative answers to the second and third questions. More precisely, we show that the
equality between the class of G-effectively closed subshifts and sofic subshifts cannot
happen in three cases: recursively presented groups with undecidable word problem,
amenable groups and groups with two or more ends.

Theorem 4.12 (Aubrun, B, Sablik). For every recursively presented group G with
undecidable word problem there exists a G-effectively closed subshift which is not sofic

Proof. The subshift X≤1 is G-effectively closed but not sofic for recursively presented
G as stated in Corollary 4.3.

Clearly, this does not say anything about the existence of effectively closed sub-
shifts which are not sofic when the word problem is undecidable. In fact, it is not
even known whether X≤1 is sofic for all groups with decidable word problem.

For the case of amenable groups, we take inspiration in the mirror shift from
Example 1.13. This subshift is effectively closed but not sofic. In what follows we
generalize the technique which is used to proof its non-soficity to amenable groups.

For a finitely generated group we say a sequence of elements (gn)n∈N is recursive
if there is a Turing machine which on input n produces a word w ∈ S∗ such that
w =G gn. If the Turing machine uses oracle O then the sequence is said to be
recursive with oracle O.

Lemma 4.13. Let Bn := BS(1G, n). For every infinite group G there exists a pair of
recursive sequences (gn)n∈N, (hn)n∈N with oracle WP(G) such that the family of sets

S = {{1G}} ∪ {gnBn}n∈N ∪ {hnBn}n∈N

is pairwise disjoint.

Proof. Fix a total order on S and extend it to a lexicographic order in S∗. Let Tg, Th
be the Turing machines with oracle WP(G) that do the following on input n ∈ N.

• Let N = 1 + 2
∑n

k=1(2k+ 1) = 1 + 2n(n+ 2). Solve the word problem for every
w ∈ S∗ such that |w| ≤ 2N . This allows to construct BN of the Cayley graph
Γ(G,S).

• Assign the value 0 to every g ∈ BN \{1G}, and 1 to 1G. Assign initially the value
g0, . . . , gn, h0, . . . , hn to ǫ. And initiate a variable k with its value set initially
to 0.

• While k ≤ n do the following: Iterate over all w ∈ S∗ lexicographically. If for
w all of the values of wBk have the value 0 then:

– Turn all of the values in wBk to 1.

– if gk = ǫ set gk = w.

– otherwise, set hk = w and assign k ← k + 1.

85

• For the machine Tg return gn, for Th return hn.

As G is infinite and finitely generated there exist elements of arbitrary length.
Therefore the bound N suffices to construct all these disjoint balls: Indeed, it is the
sum of the diameters of the considered sets. Moreover, as the lexicographic order
is fixed beforehand this algorithm will always produce the same values, therefore it
gives a recursive enumeration of the desired sets.

Theorem 4.14 (Aubrun, B, Sablik). Let G be an infinite amenable group. Then
there exists a G-effectively closed subshift which is not sofic.

Proof. Let (gn)n∈N, (hn)n∈N be recursive sequences with oracle WP(G) as in Lemma 4.13,
and consider the subshift Y ⊂ {0, 1, 2}G defined as Y = Y1 ∩ Y2 where:

Y1 = {y ∈ {0, 1, 2}G | 2 ∈ {yg, yh} =⇒ g = h}

Y2 = {y ∈ {0, 1, 2}G | yg = 2 =⇒ ∀n ∈ N, σg−1
n g−1

(y)|Bn
= σh−1

n g−1

(y)|Bn
}

It is clear these two sets are closed and shift-invariant, thus Y is a subshift.
Moreover, they are both G-effectively closed subshifts: Y1 is defined by all pattern
codings which contain a pair (w1, 2), (w2, 2) such that w1 6=G w2 and Y2 by all pattern
codings which contain a triple (w1, 2), (w2, a), (w3, b) with a 6= b for which there exists
n ∈ N and h ∈ Bn such that w2 =G w1gnh and w3 =G w1hnh. As the sequences are
recursive with WP(G) as oracle this is an effectively enumerable set with oracle WP(G).
As the class of G-effectively closed subshifts is closed under intersections we obtain
that Y is G-effectively closed.

We are going to show that Y is not sofic. As G is amenable (see [CSC09]), for
each ε > 0 and finite K ⊂ G there exists a non-empty finite set F ⊂ G such that:

∀k ∈ K,
|F \ Fk|

|F |
< ε

Suppose Y is sofic, then there exists an SFT X ⊂ BG and a factor code φ : X ։ Y .
Without loss of generality one can suppose that φ is a 1-block code, that is, it is defined
by a local rule Φ : B → A. Indeed, if this was not the case, and Φ : BF → A for
F 6= {1G} we can find a conjugated version of X over the alphabet B̃ := BF which is

given by the conjugacy φ̃ : X → X̃ such that φ̃(x)g = σg−1
(x)|F . As being SFT is a

conjugacy invariant we can choose without loss of generality X̃ as the extension.
Let K be the union of the supports of p ∈ F where X = XF and |F| < ∞,

ε = log(2)
|K|log(|B|) and for simplicity denote ∂KF = F \

⋂
k∈K Fk. We obtain that there is

F such that:

|∂KF |

|F |
≤
∑

k∈K

|F \ Fk|

|F |
< |K|

log(2)

|K|log(|B|)
=

log(2)

log(|B|)

Note that the previous property is invariant by translation, that is, if F satisfies
this property, then gF also does for each g ∈ G. By choosing a large enough n ∈ N

such that F ⊂ Bn, then gnF ⊂ gnBn.

86

Putting everything together, we can find a set F such that |B||∂F | < 2|F | and there
exists n ∈ N such that 1G /∈ gnF , gnF ⊂ gnBn and gnF ∩ hnBn = ∅.

Consider the set of patterns:

P = {p : {1G} ∪ gnF → {0, 1, 2} | p1G = 2, ∀h ∈ gnF : ph ∈ {0, 1}}

Clearly |P| = 2|F |. As gnF ⊂ gnBn then for each p ∈ P , [p]1G ∩ Y 6= ∅. Let
yp ∈ [p]1G ∩ Y and xp ∈ X such that φ(xp) = yp. As |B||∂F | < 2|F | by pigeonhole
principle there are xp1 6= xp2 such that xp1 |gn∂F = xp2 |gn∂F .

By definition of K we obtain that x̃ ∈ X where x̃ is the configuration defined as
x̃|F = xp1 |F and x̃|G\F = xp2 |G\F . As φ is a 1-block code we get that φ(x̃)|F = yp1 |F
and φ(x̃)|G\F = yp2 |G\F . Consider ḡ ∈ Bn such that (yp1)gnḡ 6= (yp2)gnḡ. Then:

φ(x̃)hnḡ = (yp2)hnḡ = (yp2)gnḡ

φ(x̃)gnḡ = (yp1)gnḡ

Therefore φ(x̃)hnḡ 6= φ(x̃)gnḡ but φ(x̃)1G = 2 which means that φ(x̃) /∈ Y .

In particular, this theorem gives a negative answer in the case of BS(1, 2) which
is solvable and thus amenable.

Definition 4.5. The number of ends e(G) of the group G is the limit as n tends to
infinity of the number of infinite connected components of Γ(G,S) \Bn.

The number of ends is a quasi-isomorphism invariant and thus it does not depend
on the choice of S. It is also known that for a finitely generated group G then e(G) ∈
{0, 1, 2,∞}. Stallings theorem about ends of groups [Sta68] gives a constructive
characterization of the groups satisfying e(G) ≥ 2. In particular we have e(G) = 2 if
and only if G is infinite and virtually cyclic.

Theorem 4.15 (Aubrun, B, Sablik). Let G be a finitely generated group where e(G) ≥
2. Then there are G-effectively closed subshifts which are not sofic.

Proof. Let N ∈ N such that Γ(G,S) \ BN contains at least two different infinite
connected components C1 and C2.

Let (gi)i∈N ⊂ C1 and (hi)i∈N ⊂ C2 be sequences with no repeated elements. Let
Y ⊂ {0, 1, 2}G defined as Y = Y1 ∩ Y2 where:

Y1 = {y ∈ {0, 1, 2}G | 2 ∈ {yg, yh} =⇒ g = h}

Y2 = {y ∈ {0, 1, 2}G | yg = 2 =⇒ ∀n ∈ N, yggn = yghn
}

Analogously to the proof of Theorem 4.14, if the sequences are recursive with
oracle WP(G) then Y is effectively closed. We claim such sequences exist.

Fix a total order on S and extend it to a lexicographic order in S∗. Let N as
above and let w0 ∈ S

∗ such that w0 =G g0 ∈ C1. Consider the Turing machines Tg
with oracle WP(G) that on input n ∈ N:

• If n = 0 returns w0.

87

• Let M = N + n + |w0|. Solve the word problem for every w ∈ S∗ such that
|w| ≤ 2M . This allows to construct BM of Γ(G,S).

• Let Hg0 be the connected component of BM \BN which contains g0.

• Assign the value 0 to every element of Hg0 \{w0}. and 1 to w0. Assign g1, . . . , gn
to ǫ. And initiate a variable k with its value set initially to 1.

• While k ≤ n do the following: Iterate over all w ∈ S∗ lexicographically. If w0w
has the value 0 and belongs to Hg0 then:

– Turn the value w0w to 1.

– Assign gk = w0w and increase k by 1.

• Return gn.

As the component C1 is infinite, the value of M suffices to find n different elements.
It is clear this machine yields a sequence of distinct elements in component C1. The
machine Th for the sequence in the component C2 is analogous.

Suppose Y is sofic. As in Theorem 4.14 we can consider an SFT extension X ⊂ BG

given by a 1-block code φ : X ։ Y . Let also M ∈ N be a bound such that the union
of all the supports of one finite set of forbidden patterns defining X is contained in
BM . Let L = N +M .

As G is finitely generated |BL| <∞. Consider thus the finite set P = {p ∈ BBL |
φ([p]1G) ∩ [2]1G 6= ∅}. Clearly |P| ≤ |B||BL| < ∞. Consider w ∈ {0, 1}N and fix
yw ∈

⋂
n∈N[wn]gn ∩ [2]1G . Clearly yw ∈ Y . As there is an infinite number of such yw

there exist w1 6= w2 and xw1 , xw2 ∈ X such that φ(xw1) = yw1 and φ(xw2) = yw2 and
xw1 |BL

= xw2 |BL
.

By definition of L we have that x̃ ∈ X where:

x̃g =

{
(xw1)g, if g ∈ C1

(xw2)g, if g ∈ G \ C1

Thus ỹ = φ(x̃) satisfies that ỹ1g = 2, ỹ|C1 = (yw1)|C1 and ỹ|C2 = (yw2)|C2 . Let
n ∈ N such that (w1)n 6= (w2)n Then: ỹgn = (yw1)gn and ỹhn

= (yw2)hn
= (yw2)gn .

Therefore ỹ /∈ Y2 which implies that ỹ /∈ Y .

88

Chapter 5

Computability in group invariants

of shift spaces

Given two dynamical systems, a natural question is whether they are conjugate or not.
In particular, if the systems can somehow be coded with a finite amount of information
the question can be asked from a computability point of view. For instance, one could
ask if there is an algorithm that receives as input two lists of forbidden words and
decides if the two Z-subshifts of finite type defined by those lists are conjugate. To
date this question still remains an open problem [Boy08]. In the case of Zd-subshifts
of finite type the same problem is known to be undecidable. This follows from the
fact that it is undecidable whether a finite set of forbidden patterns defined an empty
subshift [Ber66]. Moreover, recent studies have given even more precise bounds on
the hardness of conjugacy [JV15].

A simpler task is to find tools to determine whether two systems are not conju-
gate; conjugacy invariants are quite practical in this respect, namely, if a particular
invariant is not the same in both systems then that invariant certifies the fact that
they cannot be conjugate. For example, the golden mean shift from Example 1.5
cannot be conjugate to a full Z-shift because their entropies are different.

The objective of this chapter is to study from a computability perspective two
groups which up to isomorphism are invariants of dynamical systems: the automor-
phism group and the topological full group. These objects have been extensively
studied in the literature in the case of Z-actions. Just to give a few examples, for the
automorphism group see [Hed69, BLR88, KR90, Hoc10, Sal15, DDMP16, CFKP16]
and for the topological full group [GPS99, GM14, EM13, Mat15, JM12].

The automorphism group Aut(X, T) of a dynamical system (X, T) is the set of all
the homeomorphisms from the space X to itself which commute with the group action
T . In the case of the shift space (AG, σ), its automorphism group Aut(AG) consists
of all reversible cellular automata, that is to say, all those which admit a cellular
automaton inverse. Apart from the theoretical interest in understanding the structure
of these groups, they have also been proposed for practical applications. For instance,
Kari [Kar90] proposed to use automata in Aut(AZ2

) in public key cryptography.
The full group [T] of a dynamical system (X, T) where T : Gy X, was originally

defined by Dye [Dye59, Dye63] as an invariant of orbit equivalence for measurable

89

dynamical systems, More recently, it has also been shown to be a complete invariant
of orbit equivalence in the topological setting [Med11]. The full group consists of all
homeomorphisms φ of the space such that for each x ∈ X then φ(x) = T g(x) for some
g ∈ G. In the case where the space X is a Cantor set, a more interesting (and smaller)
object is a subgroup of [T] denoted by [[T]] and called the topological full group. Here,
not only φ(x) = T g(x) but φ(x) = T s(x)(x) for a continuous function s : X → G.
In the case of a full shift this object can also be interpreted as a group of abstract
Turing machines which are globally reversible and do not change the tape [BKS16].

The problematics tackled in this chapter concern the computational properties of
these group invariants, for instance: is it possible to give algorithmic descriptions of
these groups? If so, does a Turing machine which decides if a sequence of descriptions
of elements in the groups represents the identity exists? Can it be decided if a given
description represents a torsion element?

The results presented in this chapter all come from joint work with Jarkko Kari
and Ville Salo. In [BKS16] we study an abstract group of reversible Turing machines
which contains in a rather natural way the topological full group and has a close
relationship with the automorphism group of a full shift. All of the computability
results presented here come from the study of this group. Here I show these results
without explicitly introducing the group of Turing machines, focusing instead on the
computability aspects in detail.

We can summarize the main results presented in this chapter in Table 5.1. Here
WP, TP and FP stand for the word problem, torsion problem and finiteness problem
which will be introduced further on and D,U stand respectively for decidable and
undecidable. The rows marked by “Group” must be read as follows: in the case of
decidability, that there is a recursive presentation of the group where the respective
problem is decidable; in the case of undecidability, that for every recursive presenta-
tion of the group the problem is undecidable. On the other hand, the rows marked
as “F.g subgroups H” must be read as either: every finitely generated subgroup H
has decidable problem or there exists a finitely generated subgroup with undecidable
problem. We bring to the attention of the reader the fact that while these problems
are not dimension sensitive for the automorphism group, they are fundamentally dif-
ferent in the case of the topological full group.

X = AZ X = AZd

, d > 1
Problem \ Group [[σ]]X Aut(X) [[σ]]X Aut(X)

Group
WP(G) D D D D
TP(G) D U U U
FP(G) D U U U

F.g
subgroups

H

WP(H) D D D D
TP(H) D U U U
FP(H) D U U U

Table 5.1: D stands for decidable, U for undecidable.

90

5.1 Two group invariants of shift spaces

In this section two known invariants of shift spaces are presented: the automorphism
group and the topological full group. Although we give a general definition of these
objects for dynamical systems, our focus will be on the symbolic case and on G = Zd.
We begin by defining these objects, showing a few simple properties and giving a
little bit of history of what is known about them.

Definition 5.1. Let (X, T) be a dynamical system where T : Gy X. The automor-
phism group of (X, T) is defined as

Aut(X, T) = {φ ∈ Homeo(X) | ∀g ∈ G, [T g, φ] = id}

with composition as the group operation. In the case of a subshift (X, σ) we relax the
notation and just write Aut(X) to denote the set of shift-commuting homeomorphisms
of X.

This group has been extensively studied in the case of a full Z-shift and more
generally, in the case of a mixing Z-SFT where it happens that these groups are known
to be very large. To be precise, Kim and Roush [KR90] showed the automorphism
group of any full Z-shift Aut(AZ) embeds into the automorphism group of any non-
trivial mixing Z-SFT. Furthermore, Boyle, Lind and Rudolph [BLR88] showed that
for any mixing Z-SFT its automorphism group contains an isomorphic copy of: the
direct sum of every countable collection of finite groups, any free group on a countable
number of generators and the countable direct sum of Z. In particular, the result of
Kim and Roush implies that Aut({0, 1}Z) →֒ Aut(AZ) and Aut(AZ) →֒ Aut({0, 1}Z)
for any alphabet A with at least two symbols, nevertheless it is still unknown whether
Aut({0, 1}Z) ∼= Aut({0, 1, 2}Z) [BLR88].

Definition 5.2. Let (X, T) be a dynamical system where T : Gy X and denote by
C(X,G) the set of continuous functions from X to G where G is equipped with the
discrete topology. The topological full group of (X, T) is defined as

[[T]] = {φ ∈ Homeo(X) | ∃s ∈ C(X,G), φ(x) = T s(x)(x)}

with composition as the group operation. The continuous function s : X → G is
called the cocycle. In the case of a subshift the full group is denoted by [[σ]].

Remark. This object is usually studied in the literature in the case of minimal actions
over the Cantor set, which justifies the notation [[T]] without reference to the space.
In order to avoid confusion, when more than one subshift is involved or the context
is not clear enough, we denote the topological full group of (X, σ) by [[σ]]X .

This notion is studied as a natural subgroup of a less restrictive notion called the
full group introduced by Dye [Dye59] where the continuity assumption on the cocycle
s is dropped. It was originally meant as an algebraic invariant of orbit equivalence
for dynamical systems. In the literature, the topological full group is often studied
in the case of a minimal action over a Cantor set. Just to name a few remarkable

91

results in this context: A Theorem by Giordano, Putnam and Skau [GPS99] shows
that two topological full groups of minimal actions T, S are isomorphic if and only if
the actions are flip conjugated, that is, there is α ∈ Homeo(X) such that T = αSα−1

or T = αS−1α−1. Matui [Mat06] showed that the commutator subgroup of [[T]] is
simple and finitely generated and Juschenko and Monod [JM12] showed that [[T]] is
amenable, thus giving natural examples of infinite, finitely generated, amenable and
simple groups

In our case, we focus on the topological full groups of non-minimal systems, specif-
ically, we will be mostly speaking about [[σ]] for a full Zd-shift (AZd

, σ). We begin by
showing a few properties of these groups.

Proposition 5.1. Let (X, T) and (Y, S) be conjugate G-dynamical systems. Then
Aut(X, T) ∼= Aut(Y, S) and [[T]] ∼= [[S]].

Proof. Let φ : X → Y be a conjugacy. Define η : Homeo(X) → Homeo(Y) by
η(ϕ) = φ ◦ ϕ ◦ φ−1. Clearly η is a homomorphism as:

η(ϕ1 ◦ ϕ2) = φ ◦ (ϕ1 ◦ ϕ2) ◦ φ
−1 = (φ ◦ ϕ1 ◦ φ

−1) ◦ (φ ◦ ϕ2 ◦ φ
−1) = η(ϕ1) ◦ η(ϕ2).

Moreover, it is an isomorphism. Let ϕ1, ϕ2 such that η(ϕ1) = η(ϕ2). Then ∀x ∈ X
we have:

ϕ1(x) = φ−1(η(ϕ1)(φ(x))) = φ−1(η(ϕ2)(φ(x))) = ϕ2(x).

Thus ϕ1 = ϕ2 and η is injective. To show its onto it suffices to take ϕ̃ ∈ Homeo(Y)
and note that ϕ := φ−1 ◦ ϕ̃ ◦ φ ∈ Homeo(X) and η(ϕ) = ϕ̃.

Let ϕ ∈ Aut(X, T) and let g ∈ G. We have:

Sg ◦ φ ◦ ϕ ◦ φ−1 = φ ◦ T g ◦ ϕ ◦ φ−1 = φ ◦ ϕ ◦ T g ◦ φ−1 = φ ◦ ϕ ◦ φ−1 ◦ Sg

and therefore for each g ∈ G, [Sg, η(ϕ)] = id and thus η(ϕ) ∈ Aut(Y, S). This shows
that Aut(X, T) ∼= Aut(Y, S).

If ϕ ∈ [[T]], by definition we have that there is a cocycle s ∈ C(X,G) such that
ϕ(x) = T s(x)(x). Note that s′ := s ◦ φ−1 ∈ C(Y,G) and let y = φ(x). Then:

η(ϕ)(y) = φ ◦ ϕ ◦ φ−1(y) = φ(T s(x)(x)) = Ss◦φ−1(y)(φ(x)) = Ss′(y)(y).

Therefore η(ϕ) ∈ [[S]] and has cocycle s′. This shows that [[T]] ∼= [[S]].

The topological full group admits an explicit characterization in the case where
the space X is a Cantor set. It boils down to the fact that the cocycle has a bounded
image and only depends on a finite clopen partition. In the case of a shift space it
can be written as follows:

Proposition 5.2. Let X ⊂ AG a subshift and φ ∈ Homeo(X). Then φ ∈ [[σ]] if
and only if ∃p1, . . . , pn ∈ L(X) and g1, . . . , gn ∈ G such that X =

⋃n
i=1 [pi], ∀i 6=

j, [pi] ∩ [pj] = ∅ and φ(x) = σgi(x) ⇐⇒ x ∈ [pi].

92

Proof. The “if” direction is straightforward as s : X → G defined by s(x) = gi ⇐⇒
x ∈ [pi] is continuous and φ(x) = σs(x)(x). Conversely, if φ ∈ [[σ]] then there
exists a cocycle s : X → G. Write X =

⋃
g∈G s

−1(g). The sets s−1(g) are pairwise

disjoint and as {g} is open in the discrete topology of G, then s−1(g) is open in the
product topology of AG ∩X. This means that {s−1(g) | g ∈ G} is an open partition
of X. Furthermore, write each s−1(g) as a union of cylinders defined by patterns:
s−1(g) =

⋃
i∈Ig [pi,g].

As X is compact there is a finite subcover X = [pi1,g1] ∪ [pi2,g2] · · · ∪ [pim,gm]. By
definition if gj 6= gk then [pij ,gj] ∩ [pik,gk] = ∅. We can refine this partition to obtain
p1, . . . pn which form a disjoint partition of X and by definition s is constant on each
[pi]. Setting gi as the value of s over [pi] we obtain the result.

Proposition 5.3. Let G be a countable group and X ⊂ AG a subshift. Then the
cardinality of both Aut(X) and [[σ]] is at most countably infinite.

Proof. By Theorem 1.2 every shift commuting homeomorphism is a sliding-block
code. It suffices to show that there are at most countably many. Indeed, As G is
countable the set of supports F ⊂ G is countable and every sliding block code is
defined by a support F and a function from AF → A. As the countable union of
finite sets is countable, we get that Aut(X) is at most countable.

In the case of the topological full group, Proposition 5.2 implies that every element
is defined by a finite set of patterns and group elements. This is once again at most
countable if G is countable.

Homeomorphisms in the topological full group do not necessarily commute with
the action, therefore they may not belong to the automorphism group. In fact, the
topological full group could be larger than the automorphism group.

Example 5.1. Let (XLed, σ) be the Ledrappier subshift from Example 1.7. It can be
shown that the only automorphisms over XLed are the shifts: Aut(XLed) ∼= Z2 (see
for instance [Sch95] or [BRY16]). It is also easy to show that the projective (Z, 0)-
subdynamics of XLed is π(Z,0)(XLed) = {0, 1}Z. As elements of the topological full
group need not be shift-commuting, the topological full group [[X]]AZ of a full Z-shift
over {0, 1} embeds into [[σ]]XLed

. In particular, as every countable free group embeds
into the topological full group of a full Z-shift [BKS16] we get that for (XLed, σ) then
F2 →֒ [[σ]]XLed

6 →֒ Aut(XLed) ∼= Z2.

Although the previous example shows that the topological full group of a shift
space might be larger than its automorphism group, there is a canonical embedding
from the topological full group into the automorphism group of the shift space times
a full G-shift over a two symbol alphabet.

Proposition 5.4. Let X ⊂ AG be a subshift and [[σ]] its topological full group. Then,

[[σ]] →֒ Aut(X × {0, 1}G).

Proof. We claim that any pair (φ, x) ∈ [[σ]]×X induces a permutation πφ,x ∈ Sym(G).
Namely, let s : X → G be the cocycle of φ, then:

πφ,x(g) := s(σg(x))g.

93

Let’s first show that πφ,x is injective. If πφ,x(g) = πφ,x(h) then φ(σg(x)) =

σs(σg(x))g(x) = σs(σh(x))h(x) = φ(σh(x)). As φ is a homeomorphism, we obtain that
σg(x) = σh(x), implying that s(σg(x)) = s(σh(x)) and therefore g = h. Hence πφ,x is
injective.

If s1, s2 are the cocycles of φ1 and φ2 respectively then the cocycle of φ1 ◦ φ2 is
s3(x) := s2(σ

s1(x)(x))s1(x). A simple calculation yields:

πφ1,x ◦ πφ2,x(g) = πφ1,x(s1(σ
g(x))g) = s2(σ

s1(σg(x))g(x))s1(σ
g(x))g = s3(σ

g(x))g

Therefore πφ1◦φ2,x = πφ1,x ◦ πφ2,x and thus πφ,x ◦ πφ−1,x = πid,x = id. This means that
every h ∈ G it suffices to take g := πφ−1,x(h) and we have πφ,x(g) = h showing that
πφ,x is surjective.

Let ϕ : [[σ]]→ Aut(X × {0, 1}G) defined by ϕ(φ)(x, y) = (x, ỹ) where:

ỹg = 1 ⇐⇒ g = πφ,x(h) and yh = 1.

That is, ϕ(φ) does not modify x but permutes the positions marked by 1 in the
second coordinate by πφ,x. By Proposition 5.2 the cocycle s only depends on a finite
support (the union of the support of all the pi) and thus ϕ(φ) is continuous. It is
also straightforward to check that ϕ(φ) commutes with σg for every g ∈ G. Therefore
ϕ(φ) ∈ Aut(X × {0, 1}G).

We claim ϕ is a monomorphism. It is clearly a morphism as the permutation
induced by φ1 ◦ φ2 is just πφ1,x ◦ πφ2,x. Now, if φ1 6= φ2 there is x ∈ X where they
act differently. If we consider the configuration (x, y) where y1G = 1 and 0 elsewhere,
then φ(x, y) 6= φ(x, y). Therefore ϕ is injective.

In particular, as every full Z-shift with at least two symbols embeds into each
mixing Z-SFT [KR90], we obtain the following Corollary.

Corollary 5.5. Let [[σ]] be the topological full group of the full Z-shift on two symbols.
Then [[σ]] embeds into any mixing Z-SFT.

5.2 Computability properties

We focus our study on three formal languages that can be defined on groups: the
word problem, the torsion problem and the finiteness problem. The first consists of
the set of words written on a set of generators which represent the identity of the
group. The second language consists of all words for which a power of the element
they represent is equal to the identity. The last one consists of all finite sequences of
words such that the elements they represent generate a finite group.

Definition 5.3. Let G be a finitely generated group and S ⊂ G a finite generating
set. We define:

• The word problem of G as the language

WP(G) := {w ∈ S∗ | w =G 1G}.

94

• The torsion problem of G as the language

TP(G) := {w ∈ S∗ | ∃n ∈ N, wn =G 1G}.

• The finiteness problem of G as the language

FP(G) := {w1, . . . , wk ∈ S
∗ | |〈w1, . . . , wk〉G| <∞}.

Remark. The notations WP(G), TP(G) and FP(G) do not make reference to a set of
generators. The reason behind this is that we are only interested in their computabil-
ity properties. Formally speaking, given the languages WP(G,S1) and WP(G,S2) of
the word problem of G with respect to fixed set of generators S1 and S2, there exits
a computable reduction ϕ : WP(G,S1) → WP(G,S2) which is given by replacing each
appearance of s ∈ S1 by a fixed word in S∗2 representing s. For more details, see
Proposition B.5. The same holds for TP(G) and FP(G).

If WP(G) is recursively enumerable, then the same holds for TP(G) and FP(G).
However, neither WP(G) or TP(G) can be Turing-reduced to the other. In Theorem 5.11
we show an example of a finitely generated group with decidable word problem but
undecidable torsion problem. The converse can also happen as shown in the following
example.

Example 5.2. Let p be a prime number. An infinite group G is called a p-Tarski
monster if every non-trivial subgroup has order p. Ol’shanskii [Ol’81] showed that for
each prime p ≥ 1075 there are uncountably many non-isomorphic p-Tarski monsters
and that they are finitely generated. By definition, each element of a Tarski monster
satisfies gp = 1G. In consequence the torsion problem of all of these groups is decid-
able. On the other hand, as the set of Turing machines is countable, there must exist
a Tarski monster with undecidable word problem.

However, in the case of the torsion and finiteness problem the situation is better.
Here we have that TP(G) can be Turing-reduced to FP(G). Indeed, given w ∈ S∗ one
can run the algorithm deciding FP(G) over the list consisting solely on the word w
and accept if and only if it does. By definition this algorithm accepts only in the case
where |〈w〉G| <∞ and thus where there is a power of w which is the identity.

In order to study these languages in automorphism groups and topological full
groups, we need to extend their definition to countable groups which are not finitely
generated. This is no longer independent of the presentation.

Definition 5.4. The word problem of a recursive group presentation 〈S | R〉 is defined
as the language

WP(S | R) = {w ∈ S∗ | w =〈S|R〉 1〈S|R〉}

The torsion and finiteness problem are defined analogously.

In contrast to the case of finitely generated groups, there can be two recursive
presentations of the same group with word problems which are not Turing equivalent.

95

Example 5.3. Let K ⊂ N be a recursively enumerable but undecidable subset of
natural numbers and

G ∼= 〈{an}n∈N | {[an, am]}n,m∈N ∪ {(ak)2}k∈K〉
∼= 〈{bn}n∈N | {[bn, bm]}n,m∈N ∪ {(bℓ)

2}ℓ is even 〉.

Both presentations give the same group G. Indeed, given two bijections ϕ0 : N→
K and ϕ1 : N → N \K we can define the isomorphism such that ϕ(b2i) = aϕ0(i) and
ϕ(b2i+1) = aϕ1(i).

The first presentation has undecidable word and torsion problem: otherwise one
could decide whether k ∈ K by using the algorithm solving the word or torsion
problem over a2k. However, the second presentation has decidable word and torsion
problem.

Definition 5.5. We say a countable group G has decidable word problem (respec-
tively torsion problem and finiteness problem) if there exists a recursive presentation
of G with decidable word problem (respectively torsion problem and finiteness prob-
lem).

It is straightforward to see that if G has decidable word problem, then each finitely
generated subgroup of G also does. The following example shows that the converse
does not hold: a recursively presented group with undecidable word problem can be
such that every finitely generated subgroup of it has decidable word problem. This
justifies the need for Definition 5.5.

Example 5.4. Let K ⊂ N be a recursively enumerable but undecidable subset of
natural numbers, {pk}k∈N, {qk}k∈N two disjoint recursive enumerations of prime num-
bers (for instance, the primes which are respectively 1 and 3 mod 4) and a group G
defined by the following recursive presentation:

G = 〈{an}n∈N | {[an, am], (an)pnqn}n,m∈N ∪ {(ak)pk}k∈K〉.

G is abelian as the relations {[an, am]}n,m∈N hold. As a consequence, every finitely gen-
erated subgroup of G is equal up to isomorphism to one of the form Zd×

∏
i≤ℓ Z/p

ki
i Z

(in fact, in this case d = 0) and has therefore decidable word, torsion and finiteness
problem. On the other hand, suppose G admits a recursive presentation 〈S | R〉 with
decidable word problem an let k ∈ N. It is not hard to see that there exists a group
element g ∈ G\{1G} such that gqk = 1G if and only if k /∈ K. Therefore, an algorithm
accepting if and only if k /∈ K is given by the one which enumerates all words in S∗,
runs WP(G) over w and wqk and accepts if and only if the algorithm for WP(G) rejects
w and accepts wqk for some w ∈ S∗. This shows that K is co-recursively enumerable,
thus contradicting the fact that K is undecidable.

Remark. An arbitrary countable group requires a uniform Turing machine to decide
its word problem. In the previous example, we see that even though such a machine
might not exist, it might be the case that every finitely generated group admits such
a machine. This is one of the main motivations for Theorem 5.11 and Theorem 5.19.

96

In what follows we study these three problems in the case where the group is
either the topological full group or the automorphism group of a subshift. Even
though many of the results presented here are in the case of arbitrary subshifts in
groups, the main focus is on the case of a full Zd-shift.

5.2.1 Computability in the topological full group

We begin by showing that the word problem of the topological full group is decidable
as long as the language of the shift space is decidable and the group has decidable
word problem.

Proposition 5.6. Let G be a finitely generated group with decidable word problem
and X ⊂ AG a subshift. If X is effectively closed then [[σ]]X is recursively presented.
Furthermore, if the set of pattern codings:

{c pattern coding | [c] ∩X = ∅}

is decidable, then [[σ]]X has decidable word problem.

Proof. By Proposition 5.2 we know that every element of [[σ]]AG –more precisely
its cocycle– can be represented by a finite list of patterns and group elements. Let
φ1, φ2 be elements of a topological full group where the cocycle of φ1 is determined
by a partition {[p1], . . . , [pn]} of X and group elements g1, . . . , gn and that of φ2

by {[q1], . . . , [qm]} and h1, . . . , hm respectively. Then the cocycle of φ1 ◦ φ2 is given
by the refinement {[q1], . . . [qm]} ∨ {σg1([p1]), . . . σ

gn([pn])} where the new partition
[qi] ∩ σ

gj([pj]) is now associated to higj.
The previous computation shows the following: if in the description of a cocycle

we replace patterns and group elements by pattern codings and words over a finite
set of generators respectively, the composition of cocycles can be computed.

Let S be a finite generating set of G and C the set of all pattern codings. Each
finite subset of F ⊂ C × S∗ represents a cocycle sF . Let A be the set of finite subsets
F of C × S∗ such that:

• All pattern codings appearing in F are consistent;

• The set of pattern codings appearing in F forms a partition of AG;

• φ defined by φ(x) = σsF (x)(x) is a homeomorphism.

We claim that A is a decidable set. Indeed, given an input F the first and second
conditions can be easily checked due to WP(G) being decidable. For the third one,
let F = {(c1, w1), . . . , (cn, wn)} and suppose that it has already been checked that
{[c1], . . . , [cn]} is a partition of AG. It suffices to check if {[w1 · c1], . . . , [wn · cn]} is
a partition where given c = (ui, ai)i∈I the pattern coding w · c is defined by w · c =
(wui, ai)i∈I . This can also be checked using the algorithm to decide WP(G). Now, if
{[w1 · c1], . . . , [wn · cn]} is a partition, it suffices to define F ′ = {(w1 · c1, w

−1
1), . . . , (wn ·

97

cn, w
−1
n)} which gives a cocycle for an inverse; if it is not a partition, then the function

defined by the cocycle sF is not surjective and thus not a homeomorphism.
We are going to build a recursive group presentation for [[σ]]X using A as the set

of generators. By definition, A is a recursive set and every element in it is in [[σ]]AG .
Let R = R1 ∪R2 ⊂ A∗ be the set of relations defined as:

R1 = {F ∈ A | ∃(c, w) ∈ F such that [c] ∩X = ∅ and w 6=G 1G}

R2 = {F1F2F
−1
3 ∈ A3 | sF1 ◦ sF2 = sF3}

As X is effectively closed, by Lemma 1.13 we obtain that the set R1 is recursively
enumerable. Also, by the arguments explained above, R2 is decidable and thus 〈A | R〉
is a recursive presentation. We claim that [[σ]]X ∼= 〈A | R〉. Indeed, the set R1

identifies with the identity all homeomorphisms which have non-trivial movement
outside of X, therefore leaving only elements of [[σ]]X in A. The second rule correctly
simulates the composition. This shows that [[σ]]X is recursively presented.

Finally, suppose that the set of pattern codings c such that [c]∩X = ∅ is decidable.
We show that 〈A | R〉 has decidable word problem: Let w = F1F2 . . . Fn ∈ A

∗. Com-
posing the rules as explained above, we obtain Fw ∈ A such that F1F2 . . . Fn =〈A|R〉
Fw. It suffices to run the following procedure on Fw: if there exists a pair (c, w) ∈ Fw

with w 6= 1G and [c] ∩ X 6= ∅, return w 6=〈A|R〉 id. Otherwise return w =〈A|R〉 id.
This can be implemented by putting together the algorithm to decide WP(G) and that
which decides if [c] ∩X = ∅.

Corollary 5.7. Let G be a finitely generated group with decidable word problem. Then
the topological full group [[σ]] of the full G-shift is a recursively presented group with
decidable word problem.

The previous result is not surprising as elements of the topological full group are
defined by local information. One way of visualizing them is to put a Turing machine
head in the identity of the group, look at the configuration around a finite radius,
and decide the movement of the head according to the pattern which is seen.

In what follows we focus on the torsion problem of the topological full group.
In this case the problem happens to be dimension sensitive. We show that for sofic
Z-subshifts both the finiteness and torsion problems are decidable, while the full Z2-
shift over a two symbol alphabet already contains a finitely generated subgroup with
undecidable torsion problem.

Theorem 5.8 (B, Kari, Salo). Let (X, σ) be a sofic Z-subshift. The finiteness problem
of [[σ]]X is decidable.

Proof. By Proposition 5.6 we have that WP([[σ]]X) is decidable. As a consequence,
FP([[σ]]X) is recursively enumerable. Hence, it suffices to show that it is co-recursively
enumerable.

Let φ1, . . . , φn ∈ [[σ]]X and T = {φ1, . . . , φn} ∪ {φ
−1
1 , . . . , φ−1n }. From the descrip-

tion of each of these elements of T , one can easily extract N ∈ N such that both
the support of the patterns p1, . . . , pn defining it and the image of its cocycle are
contained in {−N, · · · , N}.

98

To any sofic Z-subshift one can associate an object called the syntactic monoid,
for a formal definition see [LM95]. It consist of a finite monoidM with an absorbing
element 0 and a computable function m : A∗ → M such that for every u, v ∈ A∗

then m(u)m(v) = m(uv) and m(w) = 0 if and only if w /∈ L(X). This object gives an
abstract representation of the set of right extensions of a word u ∈ A∗, that is, the
set of x+ ∈ AN such that each subword of ux+ is in L(X).

Also, define d : A∗ → D where D is the set of functions from {−N, . . . , N} to
2{−N,...,N} where d(u) is defined as follows: m ∈ (d(u))(n) if and only if for every left
and right extension x−, x+ such that x−.ux+ ∈ X there exist t1, . . . tk ∈ T such that
(tk ◦ · · · ◦ t1) ◦ σ

n(x−.ux+) = σm(x−u.x+). In simpler words, if one starts at position
n with respect to the start of u, there is a sequence of elements of T which end up at
position m with respect to the end of u.

We can define a product ∗ in D as follows, let f1, f2 be two functions in that space
and define m ∈ (f2 ∗f1)(n) if and only if there exists k ∈ {−N, . . . , N} such that m ∈
f2(k) and k ∈ f1(n). It follows directly from the definition that d(u) ∗ d(v) = d(uv).
Moreover, using a labeled graph representation of X and the fact that the movement
of each t ∈ T is bounded by N we obtain that d is computable.

Consider ϕ(u) : A∗ →M×D defined by ϕ(u) := (m(u), d(u)). By definition, ϕ is a
semigroup morphism. We claim there exists M > 0 such that for each word w ∈ L(X)
of length at least M , then there exists a subword uv ⊏ w where both u, v are non-
empty and ϕ(u) = ϕ(v) = ϕ(uv). To prove this claim, let w be a word of length ℓ, and
consider the set A = {(i, j) | 0 ≤ i < j ≤ ℓ} and the coloring c(i, j) = ϕ(w|{i,...,j−1}).
By Ramsey’s theorem, there exists a large enough M (depending only on |M × D|)
such that there is a monochromatic triple (i, j), (j, k), (i, k). Defining u = w|{i,...,j−1}
and v = w|{j,...,k−1} yields the result.

Finally, given such a pair u, v, it follows that for k ≥ 1

ϕ(u) = ϕ(uv) = ϕ(u)ϕ(v) = ϕ(u)ϕ(u) = · · · = ϕ(uk).

Now, consider again 〈T 〉. If this group is infinite, then there exists arbitrarily big
words w ∈ L(X) and n such that d(w)(n) 6= ∅. By the previous argument, if w is
long enough, then there is u ⊏ w such that ϕ(u) = ϕ(uk) for all k ∈ N. d(u)(n) 6= ∅,
otherwise it would “block” w and force d(w)(n) = ∅. Also m(u) 6= 0 as u ∈ L(X).
Therefore there are arbitrarily big words uk ∈ L(X) such that d(uk)(n) 6= ∅, meaning
that there is a sequence of ti ∈ T which shifts to the right on uk. As the cocycle of
each homeomorphism is bounded by N , there are arbitrarily long words in 〈T 〉 which
act differently to any smaller length word. Hence 〈T 〉 is infinite. As d is computable,
this ends the proof.

Corollary 5.9. Let (X, σ) be a sofic Z-subshift. The torsion problem of [[σ]]X is
decidable.

Before tackling the problem in the multidimensional case, we recall the snake tiling
problem introduced in [Kar03]. It is the computational problem which has as input a
set of Wang tiles (see Example 1.9) with a direction arrow drawn on them and asks
whether there is a partial tiling of the plane x : Z2 → τ ∪{ǫ} – that is, some positions

99

can be left without tiles (they are assigned ǫ) – such that if among two adjacent tiles
the arrow of one points to the other then they share the same color on the adjacent
edge. Furthermore we ask that at least one bi-infinite path appears while following
the arrows drawn on the tiles.

For the next proof we are going to use a slightly modified version of the snake
tiling problem.

Definition 5.6. Let D = {(1, 0), (−1, 0), (0, 1), (0,−1)}, τ be a set of Wang tiles and
left : τ → D, right : τ → D functions. We define the snake tiling problem as the
set STP = {τ, left, right | there is a snake} where the property “there is a snake”
is defined as: there exists a partial tiling x : Z2 → τ ∪ {ǫ} and a function p : Z→ Z2

such that x(p(n)) ∈ τ , p(n + 1) − p(n) = right(x(p(n))) and p(n) − p(n + 1) =
left(x(p(n + 1))) for all n ∈ Z. Furthermore, all the Wang tiles τ appearing on x
must match their non-ǫ neighbors along the arrows.

Theorem 5.10 (Kari [Kar03]). STP is undecidable.

We are ready to prove the main result of this section.

Theorem 5.11 (B, Kari, Salo). Let (AZd

, σ) where |A| ≥ 2. There is a finitely
generated subgroup of [[σ]] whose torsion problem in undecidable if and only if d ≥ 2.

Proof. If d = 1, Theorem 5.8 implies the decidability of the torsion problem. If d ≥ 2,
then [[σ]]AZ2 →֒ [[σ]]AZd . Therefore it suffices to work on d = 2.

Consider an instance (τ, left, right) of STP, fix an alphabet Σ such that |Σ| > |τ |
and associate the first |τ | symbols in Σ to the tiles in τ and the rest to the empty
tile. We construct a homeomorphism T of ΣZ2

× {L,R} which gives a non-torsion
element if and only if (τ, left, right) admits a snake. Afterwards we will show that
the behavior of this object can be simulated by elements of the topological full group.

We will call L andR direction bits standing for right and left. The homeomorphism
T acts as follows:

• Let t be the tile at (0, 0). If t = ǫ, do nothing.

• Otherwise:

– If the direction bit is L: check the tile in the direction left(t). If it matches
correctly with t, shift to that position, otherwise switch the state to R.

– If the direction bit is R: check the tile in the direction right(t). If it
matches correctly with t, shift to that position, otherwise switch the state
to L.

Clearly T is a homeomorphism and its inverse is given by the one which does the
same but switches the roles of R and L. If (τ, left, right) admits a snake, it suffices
to consider the configuration in ΣZ2

that contains an infinite snake passing through
the origin. Clearly T shifts the configuration to infinity in that configuration without
repeating positions or changing the state, thus showing that T is a non-torsion element

100

(if the configuration containing the snake is periodic, it suffices to modify it outside
a big enough ball to get that arbitrary big powers of T do not leave the modified
configuration invariant). Conversely, if (T, left, right) does not admit a snake, then
there is a uniform bound on how far T can shift from its starting position before
encountering an error or entering a cycle and henceforth T has finite order. Indeed,
if such a bound did not exist, one could extract an infinite snake by compactness.

We construct a finite set of elements of [[σ]] which simulates an instance of STP
and the behavior of T . For this we are going to use a specific 7 × 7 square coding
which is shown on Figure 5.1. This coding is composed of three zones. The outer
zone consists of a ring of 1s of side length 7 which serves to code unambiguously the
boundary of the structure. The four bottom left 1s of this zone are used to code
the states. The middle zone consists of a ring of 0s of side length 5 which serves to
separate the three zones so no ambiguity is possible. Finally there is the inner zone
consisting of a 3 × 3 square containing a configuration in {0, 1}9. Four of these bits
l1, l2, r1, r2 serve to code two directions in D = {(1, 0), (−1, 0), (0, 1), (0,−1)}. The
purpose of the rest of the bits are going to be specified later on.

1
1

1

1

1
1

1

1

1
1

1

1

1
1

1

1

1
1

1

1
1

1

1

1

0
0

0

0

0
0

0

0

0
0

0

0
0

0

0

0

l1 l2

r1 r2
b1 b2 b3

b4
b5

Figure 5.1: Basic coding of the construction. The outer ring of 1s (blue) codes the
boundary of the cell and the state. The middle ring of 0s separates the zones. The
inner ring (green) codes the information.

For this construction we are going to use a two bit string s ∈ {0, 1}2 as the set
of states (which is to be coded by the position amongst the four fixed places in the
outer ring of 1s). The first bit is the direction bit, that is, it takes the role of L and R
for the first construction. The second bit is the auxiliary bit, whose role will become
clear later on.

Let C be the set of all patterns of shape as in Figure 5.1 centered in one of
four fixed positions in the ring of 1s, that is, such that the support is of the form
([−i, 7− i]× [0, 7]) ∩ Z2 for some i ∈ {0, 1, 2, 3}. We consider the following finite set
of elements of [[σ]] as our generating set S.

1. {T~v}v∈D that shifts in the direction ~v ∈ D independently of the configuration.

2. Twalk that shifts along the direction codified by l1, l2 or r1, r2 depending on the
direction bit.

3. {gc}c∈C that flips the direction bit if the current pattern is c ∈ C,

4. {hc}c∈C that flips the auxiliary bit if the current pattern is c ∈ C,

101

5. {g+,c}c∈C that adds the auxiliary bit to the direction bit if the current pattern
is c ∈ C, and

6. {h+,c}c∈C that adds the direction bit to the auxiliary bit if the current pattern
is c ∈ C,

Twalk is the only element which needs to be carefully defined. It acts similarly to
T defined in the beginning. Formally it does the following:

• If the pattern around the identity does not correspond to a c ∈ C, do nothing.

• Otherwise:

– If the direction bit is 0 check the pattern centered in 7left(t) from the
actual position. If it is a valid c′ ∈ C in the same state and its two right
bits code −left(t) then shift by 7left(t). Otherwise flip the direction bit
to 1.

– If the direction bit is 1. Check the pattern centered in 7right(t) from the
actual position. If it is a valid c′ ∈ C in the same state and its two left
bits code −right(t) then shift by 7right(t). Otherwise flip the direction
bit to 0.

T~v is just the shift by ~v ∈ D and thus belongs in [[σ]]. Twalk is also a homeomor-
phism in [[σ]] as an inverse can be obtained by switching the role of the direction
bits. The rest of the homeomorphisms are clearly involutions in [[σ]]. As 〈D〉 = Z2

we have that for every vector ~u ∈ Z2 then T~u ∈ 〈S〉.
Let p∗ be a pattern consisting of the concatenation of patterns from c which are

well aligned along the columns and lines of 1s. More formally, for a finite F ⊂ Z2, p∗

is a pattern with support 7F + (([−i, 7− i]× [0, 7])∩Z2) for some i ∈ {0, 1, 2, 3} and
such that for every ~v ∈ F then σ−7~v(p∗)|([−i,7−i]×[0,7])∩Z2 ∈ C. We define gp∗ and hp∗ as
the elements of the topological full group which flip the direction bit and the auxiliary
bit respectively if they read p∗. We claim gp∗ , hp∗ ∈ 〈S〉. If p∗ is defined by some
singleton F = {~v} it suffices to note that gp∗ = T−7~v ◦gc ◦T7~v and hp∗ = T−7~v ◦hc ◦T7~v
for the appropriate c ∈ C. Inductively, we can choose ~v ∈ F and separate p∗ as the
disjoint union of the pattern p∗F\{~v} defined by F \ {~v}, and the pattern p∗~v defined by
~v and thus write:

gp∗ = (T−7~v ◦ g+,c ◦ T7~v ◦ hp∗
F\{~v}

)2, and hp∗ = (T−7~v ◦ h+,c ◦ T7~v ◦ gp∗
F\{~v}

)2.

Consider an instance (τ, left, right) of the snake tiling problem. The information
associated to each tile t ∈ τ consists of a 4-tuple of colors (c1, c2, c3, c4) and the
directions left(t) and right(t). Suppose the tiles of τ are defined using N colors.
Let M ∈ N such that M2 > log2(N). We define for each t ∈ τ a macrotile M(t)
as a fixed square array of patterns of shape as in Figure 5.1 of side length M (see
Figure 5.2). We fix an enumeration of these patterns from the bottom left to the
upper right as {cj}1≤j≤M2 and denote the bit bi of cj as bi,j. We demand M(t) to
satisfy the following properties:

102

• For i ∈ {1, 2, 3, 4} the sequence of bits {bi,j}1≤j≤M2 codifies the color ci.

• b5,1 = 1 and for all j > 1 the bit b5,j = 0.

• The bits l1, l2 and r1, r2 of c1 code left(t) and right(t) respectively.

• If left(t) = (1, 0) then for all 2 ≤ j ≤ M we have that l1, l2 and r1, r2 of cj
code (1, 0) and (−1, 0) respectively.

• If right(t) = (1, 0) then for all 2 ≤ j ≤ M we have that l1, l2 and r1, r2 of cj
code (−1, 0) and (1, 0) respectively.

• If left(t) = (0, 1) then for all 1 ≤ j ≤ M − 1 we have that l1, l2 and r1, r2 of
c1+jM code (0, 1) and (0,−1) respectively.

• If right(t) = (0, 1) then for all 1 ≤ j ≤ M − 1 we have that l1, l2 and r1, r2 of
c1+jM code (0,−1) and (0, 1) respectively.

As M2 > log2(N) it is possible to satisfy the first requirement. The rest are pos-
sible to satisfy as left(t) 6= right(t) . An example of such a macrotile is represented
in Figure 5.2.

M(t) =

Figure 5.2: An example of macrotile M(t) of side M = 6. The red arrows represent
the function left(t) = (1, 0) while the blue arrows represent right(t) = (0, 1). The
bottom left black square represents b5,1 = 1.

Associate all arrays of M ×M codings which do not represent some t ∈ T to the ǫ
tile. Also, letM be the set of all patterns given as an array of 3× 3 macrotiles which
represent a valid local pattern of the snake problem and such that the middle tile is
not an ǫ tile and are centered in the bottom left position of the middle macrotile.

Consider the element T ∗ ∈ 〈S〉 given by:

T ∗ = (Twalk)
M ◦

∏

p∗∈M
gp∗ ◦

∏

c∈C
gc

103

We claim that T ∗ is a torsion element if and only if (τ, left, right) does not
admit a snake.

If (τ, left, right) admits a snake, it suffices to take a configuration with a snake,
replace each tile and ǫ in it by a corresponding macrotile and apply T ∗ in the con-
figuration where the origin is at the lower left corner of a macrotile belonging to the
snake. The homeomorphism T ∗ will first detect some pattern c ∈ C, so exactly one
gc will flip the direction bit once. Then it will detect a valid pattern p∗ of the snake
problem and thus gp∗ will flip again the direction bit amounting to no action at all.
Finally, (Twalk)

M will just walk towards the lower left corner of the next macrotile.
As the initial configuration coded a snake, repeating this procedure will make T ∗ act
as T and shift to infinity, therefore T ∗ is not a torsion element.

For the converse, we need to analyze with more care the behavior of T ∗. First
of all, if in the initial configuration the initial position is not over a pattern c ∈ C,
then T ∗ by definition acts trivially. Otherwise, suppose it belongs to

⋃
c∈C [c]. The

application of
∏

p∗∈M gp∗ ◦
∏

c∈C gc can only change the state, and thus it stays there.
Also, by definition of Twalk, the origin will always see an element of C after applying
(Twalk)

M . This means that after applying T ∗ the configuration always remains in⋃
c∈C [c].

There are two possible behaviors of T ∗ starting from a pattern in C. If the
configuration is not in

⋃
p∗∈M[p∗] then the direction bit is flipped by gc, the second

part does nothing, and Twalk is applied M times. Otherwise the direction bit is flipped
two times, amounting to no flip at all and Twalk is applied M times.

These two behaviors translate into the following: If the configuration is in
⋃

p∗∈M[p∗]
then T ∗ can either move into another valid array (and correctly simulate the working
of T defined at first in the proof), or it can fall outside a valid array of macrotiles. It it
does this, then another application of T ∗ undoes the last M steps of Twalk and changes
the direction bit. Therefore the configuration continues to live inside a valid array of
M and simulate T . In this case we can use the uniform bound on the length of the
snake to find a bound N such that (T ∗)N acts trivially over all these configurations.
The only case remaining is when initially the configuration is not in

⋃
p∗∈M[p∗] and

after one application of T ∗ it stays that way. In this case, we just have that (T ∗)2

acts trivially over these configurations. Thus showing that (T ∗)2N = id and hence T ∗

is a torsion element of 〈S〉.
Therefore, if the torsion problem of this subgroup is decidable, given an instance

of STP one could construct a homeomorphism T ∗ associated to the instance and use
the algorithm to decide if there is a snake. This contradicts the undecidability of
STP.

Using Proposition 5.4 we obtain the following.

Corollary 5.12. Let A be an alphabet with at least 4 symbols and d ≥ 2. Then
Aut(AZd

) contains a finitely generated group with undecidable torsion problem.

Remark. The finitely generated group from Theorem 5.11 gives a nice example of a
group with decidable word problem but undecidable torsion problem.

104

5.2.2 Computability in the automorphism group

As in the case of the topological full group, we begin with the study of the word
problem. By Theorem 1.2 each endomorphism of a shift space can be represented
through a sliding block code. This implies that the basic operations between automata
can be computed.

Proposition 5.13. Let G be a finitely generated group with decidable word problem,
S a finite set of generators and φ1, φ2 ∈ End(AG). Suppose φ1 and φ2 are consistently
represented as sliding-block codes through a function from a finite set of pattern codings
(written using S) to A. The following properties hold:

• There is an algorithm which computes a sliding-block code representation for
φ2 ◦ φ1.

• if φ1 ∈ Aut(AG), there is an algorithm which computes a sliding-block code
representation for φ−11 .

Proof. Let N1 and N2 be respectively the maximum length of a word appearing in
a pattern coding of φ1 and φ2 respectively. Use the algorithm of WP(G) to solve the
word problem for every word w ∈ S∗ such that |w| ≤ 2(N1 + N2). This gives a
representation of the ball B := BS(G,N1 + N2) of the Cayley graph Γ(G,S). Using
this representation an algorithm can compute every pattern p ∈ AB, apply φ1 and
obtain completely the restriction of its image in BS(G,N2). Now apply φ2 to get
the image at 1G, φ2 ◦ φ1(p) ∈ A. For each pattern p ∈ AB find a pattern coding
representing it and assign it to φ2 ◦ φ1(p). This gives a representation for φ2 ◦ φ1.

For the second property, iteratively use WP(G) to compute BS(G,N) for each
N ∈ N, enumerate all of the endomorphisms defined by sliding-block codes over
this support and compute the composition. If one of these compositions is equal to
the projection to the identity, return the representation of the endomorphism. As
φ1 ∈ Aut(AG) the procedure must eventually stop.

An article by Boyle, Lind and Rudolph [BLR88] shows that Aut(AZ) contains
no finitely generated subgroup with undecidable word problem. They attribute this
result to Kitchens. The fact that the same result holds true for any finitely generated
group with decidable word problem follows directly from Proposition 5.13.

Proposition 5.14. Let G be a finitely generated group with decidable word problem
and H be a finitely generated subgroup of Aut(AG). Then the word problem of H is
decidable.

Proof. Let S = φ1, . . . , φn be a set of generators ofH. A sliding-block code description
of the φi is a finite amount of information and can be hard coded in an algorithm.
Given a word in S∗, Proposition 5.13 implies that a rule for the automorphism given
by that word can be computed, and thus the equality to the identity map can be
tested.

105

The previous result extends to a subshiftX whenever its language its decidable in a
similar fashion as the topological full group: that is, if the set of pattern codings c such
that [c]∩X = ∅ is decidable, then the same result holds. However, this is not the case
if that set is only recursively enumerable: There exist Z2-SFTs whose automorphism
group contains a finitely generated group with undecidable word problem. This is
a yet unpublished result which has been communicated to the author by Guillon,
Jeandel and Vanier and also by Kari.

As shown in Example 5.4 it might happen that every finitely generated subgroup
has decidable word problem but the whole group admits no recursive presentation
with decidable word problem. In the case where G = Z it was first shown by Amoroso
and Patt [AP72] that the computability problem of testing whether a cellular automa-
ton given by its sliding block code representation is reversible is decidable. Therefore a
recursive presentation for Aut(AZ) with decidable word problem can be constructed
using the set of reversible sliding block codes. On the other hand, Kari [Kar90]
showed that the same problem in G = Z2 becomes undecidable. However, this does
not mean that the word problem is undecidable. In fact, WP(AG) is still decidable
as long as G has decidable word problem. The following construction is based on an
idea communicated by Kari and Salo.

Proposition 5.15. For any finitely generated group G with decidable word problem
WP(Aut(AG)) is decidable.

Proof. By Proposition 5.13 the set B of sliding-block code representations which
are automorphisms is recursively enumerable, therefore there exists a computable
enumeration f : N → B. Consider the representation 〈S | R〉 where S = N and
w ∈ R if and only if the following algorithm accepts: for each wi appearing in w
compute f(wi), then compute a representation b = f(w1)f(w2) . . . f(w|w|) and accept
if and only if b = id. It is clear that Aut(AG) = 〈S | R〉 and R = WP(Aut(AG)).
Moreover, an algorithm for determining whether w /∈ R can be done by doing the
same and checking whether b 6= id. This shows that WP(〈S | R〉) is decidable.

Recall that a Turing machine acts on the set ΣZ × Q × Z as explained in Ap-
pendix A. For the rest of this chapter, we refer to those Turing machines as “classical”
in order to distinguish them from the objects treated in [BKS16]. We say a classical
Turing machine T is reversible if there exists another classical Turing machine T ′

such that T ◦ T ′ acts trivially on ΣZ × Q × Z. We end this section by presenting
(most of) the proof that there exists a finitely generated subgroup of Aut({0, 1}Z)
with undecidable torsion problem. The proof of this result depends on the following
four steps:

• The computability problem of whether a classical reversible Turing machine is
a torsion element or not (ie: T n = id for some n ∈ N) is undecidable. This is a
result due to Kari and Ollinger [KO08].

• The behavior of reversible classical Turing machines can be represented into a
group EL.

106

• EL is finitely generated and has undecidable torsion problem.

• There is a function which “transfers” the torsion problem of EL into that of
Aut({0, 1}Z).

The first step is already done in [KO08]. Here we will explain informally how to do
the second and third step without giving all the details, and give the full development
of the fourth step. We begin by defining EL.

Definition 5.7. EL is the subgroup of homeomorphisms of {0, 1}Z generated by the
following set:

• The shifts (σn)n∈Z.

• Local permutations Tπ where π ∈ Sym({0, 1}F) for some finite F ⊂ Z and given
x ∈ {0, 1}Z the action of Tπ is defined as:

Tπ(x)n :=

{
xn if n /∈ F

π(x|F)n if n ∈ F.

• Controlled position swaps Tu,v,w for words u, v, w ∈ {0, 1}∗ which act as involu-
tions by switching

Tu,v,w(x−u.vwx+) = (x−uv.wx+)

Tu,v,w(x−uv.wx+) = (x−u.vwx+)

for each x−, x+ and act as the identity elsewhere.

Remark. In [BKS16], EL is defined as the group of elementary Turing machines, it
consists of all reversible Turing machines which can be constructed by composing
machines which do not move the head, and machines which do not change the tape.
In here we reduce EL to a simpler object which is sufficient to prove Theorem 5.19.

Remark. Note that not each choice of u, v, w will give a homeomorphism, in particular
u = v = w do not. We only take the position swaps which are homeomorphisms. In
fact, they are elements of [[σ]].

Firstly, in [BKS16] it is shown that each reversible classical Turing machine T
acting on ΣZ×Q×Z can be written as T = T1 ◦T0 where T0 ∈ Sym(Σ×Q) performs
a state-symbol permutation around the origin and and T1 shifts the head by a vector
in {−1, 0, 1} only depending on the current state. The first step of the proof is to show
that these machines can be encoded as elements of EL. Let T be a classical reversible
Turing machine acting over ΣZ × Q × Z. The proof of this fact is done by choosing
m such that 2m > |Σ|(|Q ∪ {⊔}|) and encoding each pair (a, q) ∈ Σ× (Q ∪ {⊔}) as a
different word [a, q] ∈ {0, 1}m. It can be shown that each reversible classical Turing
machine can be coded effectively into EL and that the coded elements of EL mimic the
behavior of T . Therefore, if the torsion problem of EL were decidable, it could be used
to decide the torsion problem of a reversible classical Turing machine, contradicting
the result of [KO08]. This shows that the torsion problem of EL is undecidable.

107

The next step is showing that EL is finitely generated. The full proof of this fact
is technical and spans several pages, here we only give the main ideas.

The shifts are already generated by σ1 and σ−1. Next, if we add the local permu-
tations which swap the symbols at F = {0, 1} we can compose them with the shifts to
get all permutations which swap two arbitrary positions. Next we add Sym({0, 1}R)
for a fixed set R of size 4. We can show that every element of Sym({0, 1}F) for
arbitrary F can be decomposed in swaps and elements of Sym({0, 1}R) (details can
be found in the arXiv version of [BKS16]). This shows that the group generated by
the local permutations and the shifts is finitely generated. Finally, in order to add all
position swaps, we reduce through conjugacy by elements of the previous group any
controlled position swap to Tǫ,1,0m for some m ∈ N. Through further decomposition,
these Tǫ,1,0m can be built from basic blocks Tǫ,1,0k where k ≤ 2. These arguments yield
the following result:

Theorem 5.16 (B, Kari, Salo). EL is finitely generated and TP(EL) is undecidable.

In the following, the free monoid generated by the elements of a group G is written
G∗. We can interpret words of G∗ as elements of G in the obvious way.

Definition 5.8. Let G and H be groups and P be a group property. We say a
function φ : G → H is P-preserving if the following holds: For every finite set
F ⊂ G∗ the group 〈w | w ∈ F 〉 ≤ G has property P if and only if the group
〈φ(w1)φ(w2) · · ·φ(w|w|) | w ∈ F 〉 has property P

We remark that P-preserving functions φ need not be morphisms as we do not
ask that φ(w1w2) = φ(w1)φ(w2). We only demand that property P is preserved when
applying φ to the symbols appearing in the words in F .

In what follows we are going to use the property P of being finite. We use
this property to extend a computability invariant such as the torsion problem of a
group onto another group even if no embedding from the first group to the second
exists. This kind of extension obviously demands that the function φ is in some way
computable. We will say a function φ : G→ H is computable if both G and H have
decidable word problem for some fixed presentation and there is a Turing machine
which turns a presentation of g ∈ G into a presentation of φ(g) ∈ H.

Lemma 5.17. Let G be a finitely generated group with undecidable torsion problem
and generating set S. Suppose there exists a computable finiteness-preserving function
φ : G→ H, then the subgroup H ′ = 〈{φ(s)}s∈S〉 ≤ H has undecidable torsion problem.

Proof. Suppose the group H ′ generated by the φ(s) has decidable torsion problem
and let w ∈ S∗. As φ is finiteness-preserving we have that 〈w〉 is finite if and
only if 〈φ(w1)φ(w2) · · ·φ(w|w|)〉 is finite. This means w has finite order in G if and
only if φ(w1)φ(w2) · · ·φ(w|w|) has finite order in H ′. As φ is computable the word
φ(w1)φ(w2) · · ·φ(w|w|) can be computed from w and the algorithm to decide the tor-
sion problem in H ′ could be thus used to decide the torsion problem in G.

The previous lemma indicates that in order to prove the theorem, we now simply
need to provide a finiteness-preserving map from EL into Aut({0, 1}Z). For this, first

108

note that any T ∈ EL can also be interpreted as a homeomorphism of {0, 1} × Z.
Indeed, interpret the second coordinate as a head indicating a new origin. Then the
shifts can act by shifting the head by the inverse, and both the local permutations
and the controlled position swaps can act around the head.

The following construction uses the previous interpretation and is based on a
conveyor belt construction where the action of T ∈ EL is delocalized by making
multiple heads appear in a configuration and applying the action of T independently
around each head. In order to do this without creating conflicts, the tape is separated
into zones which contain at most one head and the action of T is applied by running
over the zone cyclically, as in a conveyor belt. We specify this in the Lemma 5.18.

Lemma 5.18. Let A = {0, 1}2 × {←,→, ↑, ↓}. There is a computable finiteness-
preserving map φ : EL→ Aut(AZ).

Proof. The alphabet A consists of triples and thus AZ can be thought of as consisting
of three tapes. Each of the first two tapes carries a configuration in {0, 1}Z while the
third tape has symbols in {←,→↑, ↓}. A head is represented by a symbol in {↑, ↓}.
If this value is ↑, the head is on the first (‘topmost’) tape and if it is ↓, on the second
(‘bottom’) tape. ← means the head is to the left of the current cell on the current
zone (if the current zone contains a head), while → means the head is to the right.

A configuration in AZ is split into zones by the contents of the third tape. Namely,
every finite portion of the third tape can be split uniquely into pieces of the forms
→∗ a←∗ and →∗←∗ where a ∈ {↑, ↓}. We call these pieces zones, see Figure 5.3. To
define the finiteness-preserving map φ : EL→ AZ it is enough to do so in every piece
of this form.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

→→←→↑←←↓ ↓←←←→→→→→↑←←←←←→←→↑←←←

Figure 5.3: A finite word in A∗ is divided into zones by the third tape. The dashed
lines separate each zone and the colours indicate which tape is being pointed at by
the arrow next to the state.

Let T ∈ EL interpreted as an action over {0, 1}Z×Z and note T (x, 0) = (T1(x), T2(x)).
To each T one can associate a radius r defined as maxx∈{0,1}Z d(T (x, 0)) where

d(T (x, 0)) = max{min
M∈N
{x|Z\{−M,...,M} = T1(x)|Z\{−M,...,M}}, |T2(x)|}.

In words, it is the maximum taken over all configurations of the movement of the
head and the distance of a local permutation from the origin. As the action of each
element of EL only depends on finitely many coordinates, the radius can be computed.

Let T ∈ EL have radius r. We define φ(T) ∈ Aut(AZ) by its action over each zone
as follows: If the zone has no head or the zone is of size less than 2r+ 1, do nothing.

109

Otherwise let u0, . . . , um−1 and v0, . . . , vm−1 be the words in the first and second tape
respectively, a ∈ {↑, ↓} be the head and ℓ ∈ {0, . . . ,m−1} the position of the head in
the third tape. Using this information we can construct the configuration z ∈ {0, 1}Z

given by:

zi =

{
uj if j = (i mod 2m) ∈ {0, . . . ,m− 1}

v2m−j−1 if j = (i mod 2m) ∈ {m, . . . , 2m− 1}

u0u1u2u3u4u5u6

v0 v1 v2 v3 v4 v5 v6

→→→→ ↑ ←←

u6

u5

u4
u3u2u1

u0
v0
v1
v2 v3 v4

v5

v6

• w4

w3

w2
w1w0u1

u0
v0
v1
v2 v3 v4

w6

w5

•

u0u1w0w1w2w3w4

v0 v1 v2 v3 v4w6w5

→→→→ ↓→ ←

T

u2u3.u4u5u6v6v5 → w0w1w2w3w4w5.w6

Figure 5.4: Every zone is wrapped around as a conveyor belt, where φ(T) acts as if
it were T seeing a periodic word.

Apply T to z, where the position of the head is on ℓ if a =↑ and on 2m − ℓ − 1
otherwise. Recode the result again updating the left and right arrows so that the
zone does not change its shape as shown in Figure 5.4.

Clearly φ(T) ∈ Aut(AZ). In fact, for each bounded zone, φ(T) induces a permu-
tation of all possible heads and tape contents while on unbounded zones it acts as T
on an infinite configuration. Also, φ is clearly a computable map. It suffices to show
that φ preserves the property of being finite.

Consider F ⊂ EL∗, and H = 〈φ(w1)φ(w2) · · ·φ(w|w|) | w ∈ F 〉 generated in
Aut(AZ). If 〈F 〉 is infinite, just note that the action of φ(T) over any configu-
ration such that the third tape is a single unbounded zone with a head, (that is
· · · ←←←↑→→→ . . .) replicates exactly the behavior of T on the first tape. There-
fore each element of 〈F 〉 will act differently over at least one configuration of this
form, implying that H is infinite. Conversely, if 〈F 〉 is finite then every word in F ∗

represents a torsion element. The action over any tape which is unbounded or larger
than the maximum movement from the origin attained by an element of 〈F 〉 obvi-
ously acts as the original machine. Therefore the only possible problem could arise
in zones whose length is bounded by a fixed length h. But the number of different
changes on these zones is bounded as each action is a permutation over a finite set.
Therefore H is finite and a rough bound is |H| ≤ |〈F 〉| · (

∏
m≤h(m22m+1)!)

From Lemma 5.17 and Lemma 5.18 we obtain that for some alphabet A with 16
symbols there is a finitely generated subgroup G ≤ Aut(AZ) such that the torsion
problem of G is undecidable. As Aut(AZ) embeds into Aut({0, 1}Z) we get:

Theorem 5.19 (B, Kari, Salo). There is a finitely generated subgroup G ≤ Aut({0, 1}Z)
with undecidable torsion problem.

110

Combined with the results of Salo [Sal15], we obtain the following corollary.

Corollary 5.20. Let X be a sofic Z-subshift with positive entropy. Then there is a
finitely generated subgroup of Aut(X) with undecidable torsion problem.

What is more, using the basic fact that Aut(AZ) →֒ Aut(AZd

) for every d ≥ 1, we
obtain a stronger version of Corollary 5.12

Corollary 5.21. For any alphabet A with at least two symbols, Aut(AZd

) contains a
finitely generated subgroup with undecidable torsion problem.

111

Conclusions et perspectives

L’objectif principal de cette thèse est la recherche de liens entre les propriétés
dynamiques et celles de calcul des sous-décalages sur des groupes. Nous présentons de
nombreux résultats originaux qui éclairent cette problématique sous un jour nouveau.
Dans ce qui suit, nous présentons les principales contributions obtenues dans chaque
chapitre. Nous discutons ensuite de généralisations possibles à un contexte plus large,
et de leur applicabilité à d’autres problèmes.

Dans le Chapitre 2 on montre le Lemme 2.2 qui donne une condition suffisante
pour qu’un jeu de motifs interdits F = {p1, p2, . . . } définisse un sous-décalage non
vide. Ce résultat est utilisé pour donner une preuve rapide du Théorème 2.4 ainsi
que du Théorème 2.6. On pourrait naturellement utiliser ce lemme pour s’intéresser à
d’autres propriétés des sous-décalages. En particulier, Ronnie Pavlov a suggéré qu’il
pourrait être une bonne idée d’utiliser le Lemme 2.2 pour étudier les ensembles de
motifs inévitables. Avec cette technique, on obtient une borne inférieure sur la taille
minimale d’un tel jeu. Une autre application souhaitable serait d’utiliser le lemme
pour obtenir des sous-décalages vérifiant des conditions de mélange. En particulier,
l’existence de Z2-sous-décalages corner-gluing fortement apériodiques est un problème
ouvert. Cette technique donnerait une preuve non constructive du résultat.

Dans la deuxième partie du Chapitre 2 on construit dans le Théorème 2.10 un
sous-décalage qui contient une densité uniforme pour un α ∈ [0, 1] fixé pour chaque
groupe de croissance sous-exponentielle. On se demande si cette propriété peut être
étendue à des groupes arbitraires avec croissance exponentielle. En particulier, il
est possible de donner une construction explicite pour les groupes libres, mais le cas
général reste inconnu.

Le Chapitre 3 est consacré à un Théorème de simulation (Théorème 3.7). Il
constitue une extension du Théorème d’Hochman 3.3 au cas des groupes de type fini.
La question qui reste non résolue est de savoir si le Théorème 1.20 qui simule un sous-
décalage effectivement fermé dans un Z2 sous-décalage sofique peut être généralisé
de la même manière. Cela semble peu évident pour deux raisons : d’abord, les
constructions par Aubrun et Sablik et celle de Durand, Romaschenko et Shen sont
basées sur une structure substitutive. Cette approche semble difficile à implémenter en
général dans un groupe finement présenté. Cependant il semble possible de résoudre
cela grâce à un théorème de Seward [Sew14] qui implique que chaque groupe infini
admet un jeu de générateurs pour lequel le graphe de Cayley peut être disjoint par
des chemins bi-infinis. Jeandel a suggéré que ce résultat pourrait donner une manière
d’étendre le Théorème 3.7 pour produire (H1 × H2) ⋊ G pour des groupes infinis
arbitraires H1 and H2.

Dans le Chapitre 4 nous avons proposé une nouvelle notion d’effectivité qui se
caractérise à l’aide d’oracles. Bien que cette notion présente de nombreux avantages,

notamment celui d’être caractérisé par des G-machines, elle échoue en revanche à
satisfaire la propriété de stabilité par sous-dynamique projective. Cette situation ne
se produit que dans un cas clairement identifié : si le sous-groupe sur lequel on projette
a un problème du mot plus faible que le groupe original. En effet, dans ce cas la G-
classe peut être utilisée par une machine de Turing pour effectuer un calcul et ainsi
avoir accès au problème du mot de G comme oracle. Il n’est donc pas déraisonnable
d’espérer un théorème de simulation pour les sous-décalages G-effectivement fermés,
avec des hypothèses plus faibles que celles du Théorème 4.11. A ce jour nous ignorons
encore si un tel résultat existe, mais comme expliqué précédemment il semble tout à
fait plausible.

L’objectif du Chapitre 5 était d’analyser les problèmes du mot, de torsion et de
finitude pour deux groupes invariants de systèmes dynamiques. Les résultats obtenus
y sont présentés comme des résultats sur ces deux groupes, groupe d’automorphismes
et groupe plein topologique. Il est important de noter que ces deux groupes provien-
nent de l’étude du groupe abstrait des machines de Turing, qui contient de manière
assez naturelle le groupe plein topologique et est très étroitement lié au groupe
d’automorphismes du décalage plein. Dans ce modèle plus général, de nombreuses
questions restent ouvertes. Par exemple, on sait que Aut({0, 1}Z) se plonge dans
Aut({0, 1, 2}Z), mais on ignore si le modèle équivalent des machines de Turing réversibles
sur un alphabet à deux symboles se plonge dans celui sur un alphabet à trois symboles,
ou encore l’inverse. Il n’existe pas non plus de bonne caractérisation du sous-groupes
des commutateurs de ces objets. Toutes ces questions sont prometteuses, au sens où
elles permettent de construire des exemples de groupes avec des propriétés spécifiques
comme dans [JM12].

Nous montrons dans les Théorèmes 5.8 et Théorèmes 5.11 que le problème de
torsion du groupe plein topologique d’un Zd-décalage plein dépend de la dimension.
Une généralisation directe de la preuve de ces résultats d’indécidabilité aux groupes
quelconques reposerait sur deux choses : d’abord que le snake tiling problem pour
ces groupes soit aussi indécidable, et ensuite que le groupe possède des sous-groupes
d’indice fini suffisament grands pour permettre d’y coder des tuiles. La deuxième
condition pourrait raisonnablement être affaiblie de sorte qu’on ait seulement besoin
d’un ensemble couvrant et non d’un sous-groupe. Nous n’avons cependant pas de
preuve de ce résultat dans un cadre général.

Le Théorème 5.19 montre l’existence d’un groupe de type fini avec problème de
torsion décidable dans Aut({0, 1}Z). Ce résultat peut s’étendre au cas de groupes
contenant un élément sans torsion, en y plongeant Aut({0, 1}Z). Mais on ne peut pas
le généraliser directement aux groupes périodiques. Il semble cependant raisonnable
de montrer que ce résultat reste vrai pour les groupes qui ne sont pas localement finis,
en utilisant à la fois des géodésiques et des marqueurs [BLR88].

D’une autre point de vue, il semble intéressant d’étudier comment se comporte
le problème de torsion de groupes d’automorphismes lorsque l’on se limite au cas de
sous-décalages plus simples. Par exemple, les travaux de Cyr, Kra [KC16] et Donoso,
Durand, Maass et Petite [DDMP16] donnent des exemples de sous-décalages de faible
complexité pour lesquels on sait caractériser le groupe d’automorphismes et montrer
qu’il a problème de torsion décidable. Ceci motive l’auteur à s’intéresser au cas de

113

sous-décalages algébriques d’entropie nulle, car ceux-ci ont à la fois faible complexité
et peuvent avoir des groupes d’automorphismes très différents. Par exemple, le sous-
décalage de Ledrappier (XLed, σ) de l’Exemple 1.7 vérifie que Aut(XLed) ∼= Z2, alors
que le groupe d’automorphismes du sous-décalage X ⊂ (Z/2Z)Z

2
formé des configu-

rations x qui vérifient que pour tout (i, j) ∈ Z2 x(i,j) +x(i+1,j) +x(i,j+1) +x(i+1,j+1) = 0
mod 2 contient une large classe d’homéomorphismes, les automates cellulaires color-
blind [ST13].

114

Conclusions and perspectives

The main goal of this thesis was the search for links between dynamical and
computational properties of shift spaces in groups. We have presented numerous new
results which shed new light on this problematic. In what follows we recall the main
contributions obtained in each chapter. We then discuss whether these results can be
generalized to a broader context and if they can be applied to other problems.

In Chapter 2 we showed Lemma 2.2 which gives a sufficient condition for a set of
forbidden patterns F = {p1, p2, . . . } to define a non-empty subshift. This result was
used to give short proofs of Theorem 2.4 and Theorem 2.6. It would only seem natural
to use our technical Lemma to investigate other properties of subshifts. In particular,
Ronnie Pavlov suggested the author that it would be a good idea to use Lemma 2.2
to study sets of unavoidable patterns, that is, sets of patterns defined over a fixed
support whose removal forces a subshift to be empty. With this technique in hand,
it is possible to give lower bounds on the minimum size of such set. Another highly
desirable application is to use the lemma to obtain subshifts with mixing conditions.
In particular, it is open whether a corner-gluing strongly aperiodic Z2-subshift exists.
It might be possible to use this technique to give a non-constructive proof.

In the second part of Chapter 2 we constructed in Theorem 2.10 a subshift con-
taining uniform density for a fixed α ∈ [0, 1] for each group of sub-exponential growth.
We ask ourselves whether this property can be extended to arbitrary groups with ex-
ponential growth. In particular, it is possible to give an explicit construction for free
groups, but the general case remains unknown to us.

Chapter 3 was dedicated to our simulation theorem which was presented in The-
orem 3.7. This constitutes an extension of Hochman’s Theorem 3.3 to the case of
finitely generated groups. The obvious question which remains unanswered is whether
Theorem 1.20 which simulates an effectively closed subshift inside a sofic Z2-subshift
can be generalized analogously. This seems complicated for two reasons: first, both
the construction by Aubrun and Sablik and that of Durand, Romashchenko and Shen
are based on a substitutive structure. In the first case this is explicitly a subshift gen-
erated by a Z2-substitution while in the second a self-similar tiling of the plane. This
approach seems hard to implement in general finitely generated groups, for instance,
in co-Hopfian groups where no subgroup is isomorphic to the whole group. However,
it might be possible to work this out thanks to a Theorem by Seward [Sew14] which
implies that every infinite group admits a set of generators for which the Cayley graph
can be covered by disjoint bi-infinite paths. It was suggested by Jeandel that this
result also might give a way of extending Theorem 3.7 to products (H1×H2)⋊G for
arbitrary infinite groups H1 and H2.

In Chapter 4 we proposed a new notion of effectiveness which can be characterized
by oracles. Although this notion has many advantages such as the characterization

by G-machines, it fails to be stable under projective subdynamics. Nevertheless this
only happens if the subgroup taken under the projective subdynamics has a weaker
word problem than the original one. In this case, the G-coset can be used by a Turing
machine performing computation to gain access to an oracle to the word problem of
G. It is therefore not unreasonable to expect some sort of simulation theorem for
G-effectively closed subshifts with less conditions than Theorem 4.11. We still do not
know if such a result is possible, but it certainly seems plausible.

The focus of Chapter 5 was to analyze the word, torsion and finiteness problems
for two group invariants of dynamical systems. Although we presented the results in
a stand-alone manner, they come from the study of an abstract group of reversible
Turing machines which contains in a rather natural way the topological full group
and has a tight relationship with the automorphism group of a full shift. In this
generalized model there are still several questions which remain open. For instance,
it is known that Aut({0, 1}Z) embeds into Aut({0, 1, 2}Z). However, we do not know
if the equivalent model of reversible Turing machines for two symbol alphabets em-
beds into the three symbol alphabet one or vice-versa. We also do not have a nice
characterization of the commutator subgroups of those objects. All of these questions
show promise in the sense that they allow the construction of examples of groups with
peculiar properties as in [JM12].

We showed in Theorem 5.8 and Theorem 5.11 that the torsion problem of the
topological full group of a full Zd-shift is dependent on the dimension. A direct
generalization of the proof of the undecidability result to arbitrary groups would
depend upon two facts: (1) that the snake tiling problem for said groups is undecidable
and (2), that the group admits finite index subgroups large enough to allow the coding
of tiles. It seems reasonable that the second condition can be weakened in such a way
that a only a covering set is needed instead of a subgroup. However, we have yet no
proof in this general setting.

Theorem 5.19 shows the existence of a finitely generated group with undecidable
torsion problem in Aut({0, 1}Z). This can be extended to other groups containing
a torsion-free element by embedding Aut({0, 1}Z). However, the same does not di-
rectly hold for periodic groups. It seems however quite reasonable to extend this
to groups which are not locally finite through the combined use of geodesics and
markers [BLR88].

From another point of view, it seems interesting to study what happens with
the torsion problem of automorphism groups as soon as we restrict the subshift to
be simpler. For instance, studies by Cyr, Kra [KC16] and Donoso, Durand, Maass
and Petite [DDMP16] show examples of subshifts of low complexity for which the
automorphism groups can be characterized and have decidable torsion problem. It
seems quite appealing to the author to study the case of algebraic subshifts of zero-
entropy, as they have low complexity while at the same time great variations in
their automorphism groups: For instance, the Ledrappier subshift (XLed, σ) from Ex-
ample 1.7 satisfies Aut(XLed) ∼= Z2 while the automorphism group of the subshift
X ⊂ (Z/2Z)Z

2
consisting on the configurations x which satisfy for each (i, j) ∈ Z2

x(i,j) + x(i+1,j) + x(i,j+1) + x(i+1,j+1) = 0 mod 2 contains a large class of homeomor-
phisms, namely, all color-blind cellular automata [ST13].

116

Appendix A

Computability

Turing machines are mathematical objects introduced by Alan Turing [Tur36] that
model the idea of computation. That is, these machines model what can be done
by following a finite set of rules, having neither time nor memory limitations. It is
generally accepted that Turing machines capture this notion correctly. One strong
argument towards this is the Church-Turing thesis, where three competing notions
for computability were shown to be equivalent: Turing machines, λ-calculus and the
theory of recursive functions.

This appendix deals with computability notions with the aim to define the con-
cepts used in the main manuscript. The reader might note that some definitions
are simpler from the ones used in a textbook introduction to computability. For
instance, the Turing machines defined here are using only one alphabet instead of
different working and input alphabets and they contain no rejecting state. Although
the objects are certainly different, the classes of languages defined by them are the
same. The references for this appendix are [Sip06, AB09, RJ87].

A.1 Languages and Turing machines

Definition A.1. Let Σ be a set.

• A word is an element w ∈ Σn for some n ∈ N. We denote the empty word by ǫ.

• The set of all words is denoted by Σ∗ :=
⋃

n∈N Σn.

• A language is a subset L ⊂ Σ∗.

Remark. Note that the previous definition does not ask for Σ to be finite. In what
follows, we will consider mostly finite sets, in this case we call Σ an alphabet .

Definition A.2. A Turing machine is a 6-tuple (Q,Σ,⊔, q0, QF , δ) where Q is a finite
set of states, Σ is an alphabet, ⊔ ∈ Σ is the blank symbol, q0 ∈ Q is the initial state,
QF ⊂ Q is the set of accepting states and δ : Σ × Q → Σ × Q × {−1, 0,+1} is the
transition function.

117

We want to think of Z as a bi-infinite tape filled with symbols from Σ, accompanied
by a head which carries a state and points to a position of Z. This whole idea can
be represented by an element of ΣZ ×Q× Z. In this sense, a Turing machine T acts
on ΣZ × Q × Z as follows: let (x, q, n) ∈ ΣZ × Q × Z and δ(xn, q) = (a, r, d). Then
T (x, q, n) = (x̃, r, n+ d) where x̃n = a and x̃|Z\{n} = x|Z\{0}. See Figure A.1.

q

T

r

Figure A.1: A Turing machine transition where δ(�, q) = (�, r,+1).

A word w ∈ (Σ \ {⊔})∗ is called in this context an input . We say T halts on
input w if there exists n ∈ N such that T n(xw, q0, 0) ∈ ΣZ ×QF × Z where xw is the
configuration such that:

(xw)m =

{
wm if m ∈ {0, . . . , |w| − 1}

⊔ otherwise.

Said in simpler words, T halts on w if it reaches a state in QF in a finite number
of steps starting from the configuration that has w at the origin and blank symbols
everywhere else.

Remark. It is possible to partition QF into accepting states QA and rejecting states
QR. In this case we say T accepts w if it halts on input w on a state in QA and that
T rejects w if it halts on input w on a state in QR.

Definition A.3. A Language L ⊂ (Σ \ {⊔})∗ is,

• recursively enumerable if there exists a Turing machine T which halts on w if
and only if w ∈ L.

• co-recursively enumerable if (Σ \ {⊔})∗ \ L is recursively enumerable.

• decidable if L is both recursively enumerable and co-recursively enumerable.

• undecidable if L is not decidable.

In the case of a decidable language, there are two Turing machines T1 and T2
which if run on parallel halt in every possible input. It is often better to think about
this as a single Turing machine T which halts in every input, with the halting states
QF partitioned into accepting and rejecting states and such that w ∈ L if and only if
T accepts L. These two notions are equivalent.

118

These classes of languages are often called differently depending on the context.
Decidable languages are also called effective or recursive. Recursively enumerable
languages are also called effectively enumerable, recognizable, or semi-decidable.

Remark. The reason behind the name recursively enumerable is that if there is a
machine which halts on input w if and only if w ∈ L, then there is another machine
which writes on the tape in some order all of the words in L. In order to do this, a
machine can store a counter coding a number n ∈ N and iteratively write all words
of length smaller than n and run T for n steps. At each time that T halts on a word,
it writes it in the right part of the tape if it has not already been written.

Example A.1. The language L = {anbn | n ∈ N} is decidable. A Turing machine
which accepts it is shown in Figure A.2. Here the states are represented as nodes,
and an arrow u→ v, d from q to r means that δ(u, q) = (v, r, d). The accepting state
is qa and any transition not shown in the picture means that the machine goes to qr
and rejects.

q0

q1 q2

q3

q4q5

qa qr

b→ b, 1

⊔ → ⊔,−1

b→ ⊔,−1

a→ a,−1

⊔ → ⊔, 1

⊔ → ⊔, 0
⊔ → ⊔, 0

a→ ⊔, 1

a→ a, 1 b→ b, 1

b→ b,−1a→ a,−1

Figure A.2: A representation of the transition function of a machine deciding L.

Each Turing machine is defined by a finite amount of information. One can
therefore encode the description of a Turing machine as a word in a suitable language.
Without further details, lets denote by 〈·〉 a fixed coding. In what follows 〈T,w〉 is a
coding of a pair T,w where T is a Turing machine and w ∈ Σ∗.

Example A.2 (For a proof see [Sip06]). The language

HALT := {〈T,w〉 | T halts on input w}

is recursively enumerable.

This means that there exists a Turing machine TU which given a coding of another
machine 〈T 〉 and a word w halts if and only if T halts on w. This means that TU is

119

able to simulate the behavior of T on input w. Such a machine can be constructed
explicitly, and is called a universal Turing machine

Theorem A.1 (Turing [Tur36]). HALT is undecidable.

Proof. Suppose HALT was decidable, then there exists a Turing machine H which
halts on every input 〈T,w〉 and accepts if and only if T accepts w. One can therefore
construct a machine N which on entry 〈T 〉 accepts if H rejects 〈T, 〈T 〉〉 and rejects
if H accepts 〈T, 〈T 〉〉.

Consider N on input 〈N〉. If N accepts, then by definition H rejects 〈N, 〈N〉〉
which means that N rejects the input 〈N〉. On the other hand, if N rejects 〈N〉 then
by definition H accepts 〈N, 〈N〉〉 which then implies that N accepts 〈N〉. This yields
a contradiction.

A.2 Computable functions, sets and numbers

Definition A.4. A function f : Σ∗ → Σ∗ is called total computable if there exists a
Turing machine which on input w ∈ Σ∗ halts containing f(w) in the tape.

Remark. In the literature this concept can also be found under the name total recur-
sive function.

The notion of computable function is also used to refer to partial functions, that
is, functions which are only defined in a subset of Σ∗. In this case the machine only
halts in that specific subset. The prefix “total” is added in order to differentiate these
two concepts.

We also want to have computable functions between objects which are not lan-
guages. In this case, as with Turing machines, we need to codify these objects as
words in order to work with them. This codification is done independently for each
object.

Example A.3. We can code n ∈ N in binary as a string 〈n〉2 ∈ {0, 1}
∗. We say a

function f : N → N is total computable, if f ′ : {0, 1}∗ → {0, 1}∗ is total computable
where f ′(〈n〉2) := 〈f(n)〉2.

Proposition A.2. A language L is decidable, if and only if there exists a total com-
putable function f : Σ∗ → {0, 1} such that f(w) = 1 ⇐⇒ w ∈ L.

The following proposition justifies the usage of the name “enumerable” for recur-
sively enumerable languages.

Proposition A.3. A language L is recursively enumerable, if and only if there exists
a total computable onto function f : N→ L.

Definition A.5. Consider again the a coding of N as binary strings. A set S ⊂ N is
called recursively enumerable if there exists a total computable function f : N → S.
Furthermore, it is called recursive if there exists a total recursive function f : N →
{0, 1} such that S = f−1(1).

120

Example A.4. Suppose we want to code objects which are of the form (wi, ai)i≤n
where wi ∈ Σ∗ and a ∈ Σ′. That is, finite sets of tuples containing a word wi ∈ Σ∗

and an symbol a from another alphabet Σ′. One way to code (wi, ai)i≤n is to use a
word u ∈ (Σ ∪ Σ′ ∪ {(,),#, |})∗ such that:

(wi, ai)i≤n is coded as (w1|a1)#(w2|a2)# . . .#(wn|an).

We say that a set C of these objects is recursively enumerable, if there exists
a total computable function f : N → (Σ ∪ Σ′ ∪ {(,),#, |})∗ such that the set of
codings of C is the image of f . We say that C is computable, if and only if there
exists a total computable function g : (Σ ∪ Σ′ ∪ {(,),#, |})∗ → {0, 1} such that
g(〈c〉) = 1 ⇐⇒ c ∈ C.

In the context where Σ is a finite set of generators of a group and Σ′ a finite
alphabet, these objects are called pattern codings .

Remark. Note that in this last example the set of words in (Σ∪Σ′∪{(,),#, |})∗ which
are not valid codings is non-empty. As long as the language of all non-valid codings
is decidable, it does not pose a problem.

We finish this section by defining computable numbers. These objects appear
naturally in dynamical systems, for instance in the classification of the entropies of
Z2-SFTs [HM10].

Definition A.6. Let α ∈ R be a real number. We say that

• α is upper semicomputable or right recursively enumerable if there exists a com-
putable function f : N→ Q such that α = infn∈N f(n);

• α is lower semicomputable or left recursively enumerable if there exists a com-
putable function f : N→ Q such that α = supn∈N f(n);

• α is computable if there exists a computable function f : N → Q such that
|f(n)− α| < 1

n
.

A.2.1 Oracles and reductions

A reduction between two languages is a way to compare them in terms of their
complexity. Here we present two notions of reductions: Turing reduction and many-
one reduction. In order to introduce the first notion we need to speak about oracle
machines. The following definition is not completely formal, for a complete definition
see [AB09].

Definition A.7. Let O be a language. A Turing machine with oracle O is a Turing
machine with a special state qoracle ∈ Q and an extra tape. The computation of this
machine is as usual except that when it enters the state qoracle having on the second
tape a word w, the transition function depends on whether w ∈ O.

In other words, a Turing machine with oracle O, is aTuring machine which has
complete knowledge of a language O and can use it as a black box in its routine.

121

Definition A.8. Let L,L′ be languages. We say L is Turing reducible to L′ and
write L ≤T L′ if there exists a Turing machine with oracle L′ which decides L. If
both L ≤T L

′ and L′ ≤T L we write L ≡T L
′ and say they are Turing equivalent.

Example A.5. Let L be a recursively enumerable language, then L ≤T HALT. Indeed,
let T be the Turing machine which halts if and only if w ∈ L. A Turing machine
with oracle HALT deciding L is given by a machine which on input w constructs a
coding 〈T 〉 and writes 〈T,w〉 in the second tape and then goes to the state qoracle.
The machine halts if and only if the oracle says that 〈T,w〉 ∈ HALT.

Turing reduction is not able to distinguish between a language and its complement
due to the fact that it is only defined by decidability. Its use is to give a formal way
of expressing the phrase: “if X is decidable then Y is decidable”. In particular, for
every language L ≡T Σ∗ \ L. A finer notion of reduction is the following:

Definition A.9. Let L,L′ be languages. We say L is many-one reducible to L′ and
write L ≤m L′ if and only if there exists a total computable function f such that

w ∈ A ⇐⇒ f(w) ∈ B.

Furthermore, if L ≤m L′ and L′ ≤m L we write L ≡m L′ and say they are many-one
equivalent.

For all of the purposes of this manuscript, we can think of many-one equivalent
languages as computably equivalent languages. In particular, all of the properties
such as being decidable, recursively enumerable and co-recursively enumerable are
preserved by many-one equivalence.

122

Appendix B

Group Theory

In this appendix we review some basics of group theory. The objective is to define
and precise the notation of the concepts that appear in the manuscript. In particular,
we take special care of concepts which are not easily found in the literature, as group
presentations and their computability properties. It is important to declare that this
chapter is by no means intended as a proper introduction to the subject and many
proofs are omitted. For a better introduction of the fundamentals of group theory we
refer the reader to [Hun80, Lan02]. For more on classes of groups to [CSC09].

B.1 Basic definitions

Definition B.1. A group is a pair (G, ∗) where G is a set and ∗ : G×G→ G is an
operation which verifies:

1. ∀x, y, z ∈ G, (x ∗ y) ∗ z = x ∗ (y ∗ z).

2. ∃1G ∈ G such that ∀x ∈ G, 1G ∗ x = x ∗ 1G = x.

3. ∀x ∈ G, ∃x−1 ∈ G such that x ∗ x−1 = x−1 ∗ x = 1G.

Remark. In order to simplify the notation, the operation symbol is often omitted:
instead of writing x ∗ y we just write xy. Also, when the group operation is clear, we
refer to the group (G, ∗) just by the set G. For instance, we refer to Z as the group
of integers while formally we mean (Z,+).

Definition B.2. Let H ⊂ G. We say H is a subgroup if the following conditions
hold:

1. ∀h1, h2 ∈ H, h1h2 ∈ H.

2. 1G ∈ H.

3. ∀h ∈ H, h−1 ∈ H.

We denote H is a subgroup of G by H ≤ G. Furthermore if for each g ∈ G and
h ∈ H we have ghg−1 ∈ H, we say that H is a normal subgroup and write H ⊳G.

123

Definition B.3. A subgroup H ≤ G induces an equivalence relation ∼H defined by
g1 ∼H g2 if and only if there exists h ∈ H such that g1h = g2. We denote the set of
left cosets by G/H := G/∼H and define the index of H as [G : H] := |G/H|.

Remark. Let H ⊳ G and gH ∈ G/H. As ghg−1 ∈ H for each g ∈ H, we have that
gH = Hg. We can endowG/H with the operation defined by (g1H)(g2H) := (g1g2)H.
This operation is well defined because:

(g1H)(g2H) = g1(Hg2)H = g1(g2H)H = g1g2HH = g1g2H.

Definition B.4. If H is a normal subgroup of G, then the group G/H endowed with
the operation defined by (g1H)(g2H) := (g1g2)H is called a quotient group.

Definition B.5. Let F ⊂ G we denote by 〈F 〉 the smallest subgroup of G which
contains F .

Recall that given a set S, a word is an element w ∈ S∗ =
⋃

n∈N S
n. For words

u, v ∈ G∗ we write u =G v if after applying the group operation on each pair of
contiguous symbols the same element of G is obtained. The following proposition can
easily be verified:

Proposition B.1. 〈F 〉 = {g ∈ G | ∃u ∈ (F ∪ F−1)∗ such that u =G g}.

Definition B.6. We say a group G is finitely generated if there exists a finite subset
S ⊂ G such that G = 〈S〉. Such a set S is called a set of generators for G. The rank
of G is defined as the smallest cardinality of a set of generators for G.

B.1.1 Group homomorphisms

Definition B.7. Let G,H be groups. A function ϕ : G→ H is an homomorphism if

∀x, y ∈ G,ϕ(xy) = ϕ(x)ϕ(y).

Definition B.8. Let G,H be groups and ϕ : G→ H a homomorphism.

• If ϕ is injective it is a monomorphism.

• If ϕ is surjective it is an epimorphism.

• If ϕ is bijective it is an isomorphism.

• If H = G then ϕ is called an endomorphism.

• If ϕ is an isomorphism and an endomorphism it is an automorphism.

Remark. We say that G and H are isomorphic if there is an isomorphism from G to
H. It means that they are the same group up to notation. We denote that G and H
are isomorphic by G ∼= H.

124

Remark. Note that whenever S is a set of generators for G, in order to define a
morphism from G it suffices to define it for S.

Example B.1. Let (Z,+) be the group of integers with addition and for α ∈ R consider
(Cα, ·) the multiplicative group of complex numbers which can be written as eniπα for
some n ∈ Z. Then (Z,+) ∼= (Cα, ·) if and only if α /∈ Q.

Theorem B.2 (First isomorphism theorem). Let G,H be groups and ϕ : G → H a
homomorphism.

1. Ker(ϕ) := {g ∈ G | ϕ(g) = 1H} is a normal subgroup of G.

2. ϕ(G) is a subgroup of H.

3. ϕ(G) ∼= G/Ker(ϕ).

B.1.2 Free groups and presentations

Definition B.9. Let S be a set and consider a copy S−1 = {s−1 | s ∈ S}. We
say a word in (S ∪ S−1)∗ is reduced if it does not contain ss−1 or s−1s as subwords.
Every word in (S ∪ S−1)∗ can be reduced to an unique minimal word by successively
eliminating every apparition of ss−1 or s−1s.

Definition B.10. The free group over S is defined as the set FS of all reduced words
in (S∪S−1)∗ endowed with word concatenation followed by reduction as the operation.

Example B.2. Let S, S ′ be sets of the same cardinality. Then FS
∼= FS′ . This means

that for each cardinality there is only one free group up to isomorphism. For an integer
n ≥ 1 we denote by Fn the free group of rank n defined by the set S = {1, . . . , n}.

A combinatorial way to look at groups is using presentations. These are canonical
descriptions of groups given by a set and a language.

Definition B.11. A group presentation is a pair (S,R) where S is a set and R ⊂
(S ∪ S−1)∗ is a set of words.

Definition B.12. Let (S,R) be a presentation, the group defined by (S,R) is

〈S | R〉 := FS/NR.

Here FS is the free group over S and NR is the conjugate closure of R, that is,
NR = 〈{grg−1 | g ∈ FS and r ∈ R}〉.

In other words, 〈S|R〉 is the largest quotient of the free group over S such that
every word in R is identified to the empty word. Elements of S are called generators
and words of R are called relators .

Definition B.13. We say (S,R) is a presentation for G if

G ∼= 〈S | R〉.

125

Example B.3.
FS
∼= 〈S | ∅〉.

Z2 ∼= 〈a, b | aba−1b−1〉.

Z/nZ ∼= 〈a | an〉.

Remark. Each element of a finitely generated group can be seen as a word in (S∪S−1)∗.
From now on, we will convene that a set of generators contains its inverses to avoid
writing S ∪S−1. This convention does not hold when speaking about the rank of the
group.

B.1.3 Cayley graph and generator metrics

Definition B.14. Given S ⊂ G the right Cayley graph of G with respect to S is
the directed graph Γ(G,S) whose vertex set is G and its set of arcs is given by
E = {(g, gs) | g ∈ G, s ∈ S}.

For g ∈ G we denote by |g|S the length of the shortest path from 1G to g in
Γ(G,S). This induces a distance dS(g, h) := |g−1h|S which makes (G, dS) a metric
space. We denote the closed ball centered in g ∈ G of radius r by BS(g, r) = {h ∈
G | dS(g, h) ≤ r}.

Example B.4. Consider the group (Z2,+) and let S = {(0, 1), (1, 0), (0,−1), (−1, 0)}
be the canonical set of generators. Then Γ(Z2, S) is the bi-infinite grid and dS(v1, v2) =
|v1 − v2|ℓ1 is the taxicab norm.

Proposition B.3. Let S1, S2 be two finite sets of generators for a finitely generated
group G. Then the metrics dS1 and dS2 are equivalent. In particular, the topology
defined by dS1 and dS2 is the same.

In particular, if for a group G and two set of generators S1, S2 we define γSi
: N→

N by γSi
(n) = |BS(1G, n)|, we have that they are the same up to a constant. Let [γSi

]
be the equivalence class of Si if we quotient all functions f : N → N by equivalence
up to a constant. Clearly [γS1] = [γS2].

Definition B.15. Let G be a finitely generated group. We define its growth as [γS]
for some finite set of generators S of G.

Example B.5. If G = Zd then its growth is [nd + 1] and thus polynomial, if G = Fd

the free group on d elements, then its growth is [(2d− 1)n] and hence exponential. It
is a non-trivial fact that there exist groups whose growth is sub-exponential but not
polynomial, an example is the Grigorchuk group [Gri85].

B.1.4 Recursive presentations and the word problem

Definition B.16. We say a group G is recursively presented if there exists a presen-
tation (S,R) such that G ∼= 〈S|R〉, S is a recursive set and R ⊂ S∗ is a recursively
enumerable language. If there exists a presentation for G for which both S and R are
finite we say G is finitely presented .

126

Example B.6. The additive group of rational numbers is a recursively presented group.

(Q,+) ∼= 〈{an}n∈N | (an)na−1n−1〉

Indeed, note that ϕ(an) := 1
n!

defines an isomorphism.

Remark. As the previous example shows, a recursively presented group is not neces-
sarily finitely generated.

Proposition B.4. Let G be a group. The following are equivalent:

(i) G is recursively presented.

(ii) G admits a presentation 〈S,R〉 with S recursive and R decidable.

(iii) G admits a presentation 〈S,R〉 with both S and R recursively enumerable.

(iv) G admits a presentation 〈S,R〉 where S is co-recursively enumerable and R is
recursively enumerable.

Proof. Clearly we have (i) =⇒ (iii), (i) =⇒ (iv) and (ii) =⇒ (i).
(i) =⇒ (ii) Let 〈S|R〉 ∼= G with S recursive and R recursively enumerable and

let # /∈ S. By definition, there exists a Turing machine T which accepts on input w
if and only if w ∈ R. For w ∈ R we can define nw as the number of steps that T
takes to accept it. Consider:

S ′ := S ∪ {#}

R′ := {#} ∪ {w#nw | w ∈ R}

Clearly G ∼= 〈S ′ | R′〉 as # ∈ R′. S ′ is still recursive, and now R′ becomes decidable:
In order to decide if u ∈ R′ it suffices to check if u = # (accept in that case), check
if it is of the form w#k (reject otherwise) and simulate T on input w for k steps and
accept if and only if T halts and accepts exactly on t steps.

(iii) =⇒ (i) Let 〈S|R〉 ∼= G with S and R recursively enumerable. Identify S as
a subset of N. As S is recursively enumerable, there exists a computable enumeration
f : N→ S. Let D := {(n,m) ∈ N× N | f(n) = m} and define:

S ′ = N× N

R′ = {(n,m) /∈ D} ∪ {u = u1, . . . , un ∈ D
∗ | ui = (ni,mi),m1,m2, . . . ,mn ∈ R}

The set D is decidable: it suffices on entry (n,m) to run the enumeration algorithm
for S until it outputs n values and check whether f(n) = m. As all pairs (n,m) /∈ D
are associated to the identity, the only remaining ones are (n,m) for f(n) = m which
can be identified to S. The second part of R′ is also recursively enumerable: given
u ∈ S ′∗ it suffices to run the algorithm for D over every symbol of u, and if it
accepts on every entry, run the algorithm for R on the word formed by projecting
u to the second coordinate. From these arguments it is straightforward to conclude
that G ∼= 〈S ′ | R′〉.

127

(iv) =⇒ (i) Let 〈S|R〉 ∼= G with S co-recursively enumerable and R recursively
enumerable. Identify S as a subset of N and define:

S ′ = N

R′ = {N \ S} ∪R

The presentation 〈S ′ | R′〉 is now recursive. Furthermore, as every s /∈ S got identified
to the identity, it defined a group isomorphic to G.

A recursive presentation gives a way to store the structure of a group using a
finite amount of information, namely, the Turing machines which code S and R.
Nevertheless, this does not always allows us to understand the local structure of the
group. An useful concept in that respect is the word problem.

Definition B.17. The word problem of a group G with respect to a finite set S is
the language WP(G,S) = {w ∈ S∗ | w =G 1G}.

From an informal point of view, a finitely generated group has decidable word
problem if and only if for a finite set of generators S there is an algorithm that given
n ∈ N can construct a representation of BS(1G, n) in Γ(G,S). If the word problem is
only recursively enumerable, then there exists an algorithm that given n,m ∈ N can
construct upwards approximations Bm of BS(1G, n) such that Bm ց BS(1G, n) when
m→∞, but gives no computable bound on the m for which the sequence stabilizes.

Proposition B.5. Let S1, S2 be two finite sets of generators for G. Then WP(G,S1)
is many-one equivalent to WP(G,S2).

Proof. As 〈S2〉 = G we have that each s ∈ S1 can be written as u(s) ∈ S∗2 such
that s =G u(s). As S1 is finite, the function which sends a word s0 · · · sk ∈ S∗1 to
u(s0) · · · u(sk) ∈ S∗2 is total computable and s0 · · · sk = 1G ⇐⇒ u(s0) · · · u(sk) =
1G.

In view of Proposition B.5 we can in terms of computability unambiguously speak
about the word problem of a finitely generated group G and denote it as WP(G).

Proposition B.6. A finitely generated group G is recursively presented if and only
if WP(G) is recursively enumerable.

Proof. If WP(G,S) is recursively enumerable one can choose (S, WP(G,S)) as a pre-
sentation for G. Conversely, as G is recursively presented then G ∼= FS/NR for some
recursively enumerable R ⊂ S∗. Given u ∈ FS we have u =G 1G if and only if u ∈ NR,
therefore it suffices to be able to recognize this set. An algorithm which does this is
the following: Iteratively for each n ∈ N run for n steps the algorithm recognizing R
on all words on S∗ of length at most n. Let An be the list of accepted words so far.
Build Bn = {wℓw−1 | |w| < n, ℓ ∈ Bn} and Cn = {u ∈ B∗n | |u| ≤ n}. The set Cn

approximates the conjugate closure of R. It is easy to see that every possible word
in NR appears in Cn for large enough n.

128

In the case where the group G is not finitely generated we need to be more specific
about what do we mean by its word problem.

Definition B.18. The word problem of a recursive group presentation 〈S | R〉 is
defined as the language

WP(S | R) = {w ∈ S∗ | w =〈S|R〉 1〈S|R〉}

Contrary to the case of presentations where S is finite, here it might happen that
two recursive presentations are not many one equivalent. See Example 5.3. We say
G has decidable word problem if and only if there exists a recursive presentation
G ∼= 〈S | R〉 such that WP(S | R) is decidable.

B.2 Classes of groups

B.2.1 Abelian groups

Definition B.19. Let g, h be elements of a group. The commutator of g and h is
defined as

[g, h] := ghg−1h−1.

Definition B.20. A group G is called abelian if for every g, h we have [g, h] = 1G.

Remark. Given the fact that gh = hg for every pair of elements, we drop the multi-
plicative notation for an additive one and write g + h instead of gh.

The following theorem classifies completely all finitely generated abelian groups.
See [Hun80] for a proof.

Theorem B.7 (Fundamental theorem of finitely generated abelian groups). Let G
be a finitely generated abelian group, then there exists d,m ≥ 0 and prime powers
q1, . . . , qm such that

G ∼= Zd ⊕ Z/q1Z⊕ . . .Z/qtZ

B.2.2 Amenable groups

Let G be a group. A measure µ : 2G → [0,∞) is called left-invariant if ∀A ⊂ G,
µ(A) = µ(gA) for each g ∈ G.

Definition B.21. A group G is called amenable if there exists a left-invariant finitely
additive probability measure µ : 2G → [0, 1].

Example B.7. Any finite group G is amenable. A measure given is by

µ(A) =
|A ∩G|

|G|
.

129

Example B.8. Let Z be the group of integers and define νn as the measure given by
νn(A) = |A∩{−n,...,n}|

2n+1
. Each νn is a probability measure, thus the sequence (νn)n∈N can

be seen as a sequence of operators of norm 1 in (ℓ∞(G))∗. By the Banach-Alaoglu
theorem, the unit ball of (ℓ∞(G))∗ is sequentially compact in the weak-∗ topology and
thus one can extract a converging subsequence νni

→∗ µ. Clearly µ is a probability
measure. Furthermore, given m ∈ Z we have |νn(m + A) − νn(A)| ≤ m

2n+1
which

converges to 0 as n goes to infinity. Hence µ(m + A) = µ(A). This shows that Z is
amenable.

Example B.9. The free group F2 of rank 2 is not amenable. Let F2 be presented by
〈a, b | ∅〉 and suppose a left-invariant probability measure µ : 2F2 → [0, 1] exists. Let
A ⊂ F2 be the set of elements beginning with ak for k 6= 0 in reduced form. Clearly
F2 = A ∪ aA, therefore 1 = µ(F2) = µ(A ∪ aA) ≤ µ(A) + µ(aA) = 2µ(A) and thus
µ(A) ≥ 1/2.

On the other hand, A, bA and b2A are pairwise disjoint, therefore 3µ(A) ≤ µ(A)+
µ(bA) + µ(b2A) ≤ 1. Therefore µ(A) ≤ 1/3, yielding a contradiction.

The class of amenable groups contains all finite, abelian, nilpotent and solvable
groups. It also satisfies several stability properties.

Proposition B.8 (See [CSC09]). The class of amenable satisfies the following sta-
bility properties:

• If G is amenable and H ≤ G, then H is amenable.

• If G is amenable and H ⊳G, then G/H is amenable.

• If H ⊳G and both H and G/H are amenable then G is amenable.

• If H,G are amenable, then G×H is amenable.

• A direct limit of amenable groups is amenable.

The amenability of a group has many equivalent definitions – many of which can
be found in Chapter 4 of [CSC09]. From a combinatorial point of view the most
interesting one is the Følner condition.

Definition B.22. Let G be a group and (A,≤) a directed set. A net (Fα)α∈A is
called a Følner net , if each Fα is a non-empty finite subset of G such that ∀g ∈ G:

lim
α

|gFα△Fα|

|Fα|
= 0.

Theorem B.9 (Følner condition. For a proof see [CSC09]). A group is amenable if
and only if it admits a Følner net.

Remark. In the case of a countable group, the net can be replaced by a sequence.

130

Example B.10. Let G = Zd and let Fn := {0 . . . , n− 1}d. For every vector v ∈ Zd we
have |(v + Fn)△Fn| = O(nd−1) while |Fn| = nd, therefore:

lim
n→∞

|(v + Fn)△Fn|

|Fn|
= 0

This shows that Zd is amenable, note that the method is much simpler than that
of Example B.9. In fact, the technique used in that first example is the core of the
proof that the Følner condition implies amenability.

Definition B.23. Let F,K be finite subsets of a group G.

• Int(F,K) := {g ∈ F | ∀k ∈ K, gk ∈ F} is the interior of F with respect to K

• ∂KF := F \ Int(F,K) is the boundary of F with respect to K

Theorem B.10 (See [CSC09]). A countable group G is amenable if and only if there
exists a sequence of non-empty subsets (Fn)n∈N of G such that for every finite subset
K ⊂ G :

lim
n→∞

|∂KFn|

|Fn|
= 0.

That is to say, for any finite set K the boundaries of the sets Fn with respect to
K grow slower than themselves.

B.2.3 Residually finite groups

Definition B.24. A group G is called residually finite if for each g ∈ G \ {1G} there
exists a finite group F and a morphism ϕ : G→ F such that ϕ(g) 6= 1F .

Proposition B.11. A group G is residually finite if and only if the intersection of
all normal subgroups of G of finite index is trivial.

Proof. Let G be residually finite and take g ∈ G \ {1G}. By definition there exists a
finite group F and a morphism ϕ such that g /∈ Ker(ϕ). Ker(ϕ) is always a normal
subgroup, and as F is finite we have that [G : Ker(ϕ)] < ∞. Therefore g does not
belong to the intersection of all normal subgroups of finite index. Conversely, let
g ∈ G \ {1G} and consider N ⊳G such that g /∈ N . It suffices to define ϕ : G→ G/N
by ϕ(h) = hN . As N is a normal subgroup of finite index, G/N if a finite group and
ϕ(g) = gN 6= 1G/N .

Examples of residually finite groups include: free groups, finite groups, finitely
generated nilpotent groups and finitely generated linear groups.

131

Appendix C

Dynamical Systems

From a classical perspective, dynamical systems are objects consisting of a pair (X, T)
where X is a set and T : X → X is a function which describes the evolution of
elements of X. In the context of this appendix, we place ourselves in the case where
T is a group action Gy X by homeomorphisms. We will review some basic concepts
from topological dynamical systems. As with the other appendixes, it is just meant
as a place to consult definitions and does not intend to be a proper introduction to
the subject. For that we recommend the following references [PY98, Kit98, Pet83].

C.1 Dynamical systems and topological morphisms

Definition C.1. We say (X, T) is a G-dynamical system if X is a topological space
and T : G×X → X is a group action by homeomorphisms.

Example C.1. Consider the Arnold’s cat transformation T : R2/Z2 → R2/Z2 given
by T (x, y) = (2x+ y, x+ y) mod 1.

T

Figure C.1: The application of Arnold’s cat transformation on “The Hermitage Court
Outrunner Cat” by Eldar Zakirov

This gives an example of a Z-action by homeomorphisms over the space X =
R2/Z2.

132

Example C.2. The odometer is the Z-dynamical system where X = {0, 1}N and T (x)
is defined as follows: if x = 1111 . . . then T (x) = 0000 Otherwise let k(x) be the
index of the first 0 in x. Then:

T (x)n =

1 if n = k(x)

0 if n < k(x)

xn if n > k(x)

It is called an odometer because the action is addition in base 2.

Another example of dynamical system are subshifts. The objects which are the
object of study of this manuscript.

Definition C.2. (X, σ) is a G-subshift if there exists a finite set A such that X is a
closed subset of AG and σ : G×X → X is defined by

σg(x)h = xg−1h.

Definition C.3. Let (X, T) and (Y, S) be dynamical systems. A continuous map
φ : X → Y which commutes with the group actions, that is

∀g ∈ G, φ ◦ T g = Sg ◦ φ

is called a topological morphism.

A surjective topological morphism φ : X ։ Y is a topological factor and we say
that (Y, S) is a topological factor of (X, T) and that (X, T) is an topological extension
of (Y, S). When φ is a bijection and its inverse is continuous we say it is a topological
conjugacy and that (X, T) is topologically conjugated to (Y, S).

Definition C.4. A G-dynamical system (X, T) is called:

• Irreducible, if for every pair of open sets U, V there exists g ∈ G and such that
U ∩ T g(V) 6= ∅.

• Topologically mixing , if there exists a finite F ⊂ G such that for every pair of
open sets U, V and ever g ∈ G \ F we have U ∩ T g(V) 6= ∅.

• Minimal , if for every non-empty Y ⊂ X such that for every g ∈ G, T g(Y) ⊂ Y ,
then Y = X.

C.2 Expansive, equicontinuous and distal systems

For the remainder of this section, (X, d) is a compact metric space.

Definition C.5. A G-dynamical system (X, T) is expansive if there exists a constant
C > 0 such that for every x, y ∈ X such that x 6= y, then

∃g ∈ G, d(T g(x), T g(y)) > C

C is called the expansivity constant of the system (X, T).

133

Example C.3. If G is countable, any subshift is expansive. Indeed, the space AG is
metrizable with d̃(x, y) = 2− inf{n∈N | xgn 6=ygn} where (gn)n∈N is an enumeration of G.
An expansivity constant in this case is just C = 1

2
.

In other words, an expansive system is one which separates points. No matter
how close they are, there exists an instant g ∈ G where they will be at distance at
least C. The opposite notion is that of an equicontinuous system, where points which
are close remain so along their orbits.

Definition C.6. A G-dynamical system (X, T) is called equicontinuous if the family
{T g}g∈G is equicontinuous. That is,

∀ǫ > 0, ∃δ > 0, ∀x, y ∈ X, d(x, y) < δ =⇒ ∀g ∈ G, d(T g(x), T g(y)) < ǫ.

Example C.4. The odometer with the metric d(x, y) = inf{n ∈ N | xn 6= yn} is
equicontinuous. Indeed, if two configuration coincide in the first n symbols, they will
continue to do so along their orbits.

The last notion we introduce here is that of a distal system. These are the systems
where points cannot get arbitrarily close to each other.

Definition C.7. A G-dynamical system (X, T) is distal if for every x, y ∈ X such
that x 6= y, then

inf
g∈G

d(T g(x), T g(y)) > 0

A pair (x, y) satisfying that property is called a distal pair .

Example C.5. Consider the Z-subshift consisting of two points: x = . . . 0101.0101 . . .
and y = . . . 1010.1010 Clearly d(σn(x), σn(y)) = d(x, y) > 0. Therefore it is a
distal system.

Definition C.8. Let X be a topological space and U = {Ui}i∈I ,V = {Vj}j∈J two
open covers of X. We denote by U ∨ V the refinement of U and V defined by:

U ∨ V := {Ui ∩ Vj}(i,j)∈I×J

Definition C.9. Let X be a topological space, G a group, P = {Pi}i∈I a partition
by open sets of X and for g ∈ G define T g(P) := {T g(Pi)}i∈I . We say that P is a
generating partition if for each x, y ∈ X there exists g ∈ G such that x and y belong
to different sets of T g(P).

The following result was originally shown by Hedlund for the case of Z-actions.

Theorem C.1 (Hedlund [Hed69]). A G-dynamical system is topologically conjugate
to a subshift if and only if it is zero-dimensional and expansive.

Proof. Any subshift (and thus any system topologically conjugate to it) is zero-
dimensional and expansive. Conversely, let C > 0 be the expansivity constant
of (X, T) and consider a finite open partition P = {P1, . . . , Pn} such that every

134

Pi ∈ P satisfies diam(Pi) < C. This partition always exists due to X being zero-
dimensional. Given x 6= y ∈ X, the expansivity implies the existence of h ∈ H such
that d(T h(x), T h(y)) ≥ C. Therefore the refinement P ∨ T h(P) separates x and y.
This means that P is a generating partition.

Let φ : (X, T) → ({1, . . . , n}G, σ) be such that φ(x)g = i ⇐⇒ x ∈ T g(Pi). φ is
clearly continuous and as P is a generating, we have that φ is injective. Furthermore,
φ intertwines the actions:

φ(T h(x))g = i ⇐⇒ T h(x) ∈ T g(Pi)

⇐⇒ x ∈ T h−1g(Pi)

⇐⇒ φ(x)h−1g = i

⇐⇒ σh(φ(x))g = i.

Therefore φ is an injective topological morphism. This implies that (X, T) is topo-
logically conjugate to (φ(X), σ).

C.3 Entropy

For a proof of the following result, see [Kri07a].

Lemma C.2 (Ornstein-Weiss lemma [OW87]). Let G be a countable amenable group,
Fin(G) the set of finite subsets of G and f : Fin(G) → R a function satisfying the
following conditions:

1. ∀A,B ∈ Fin(G), f(A ∪ B) ≤ f(A) + f(B).

2. ∀A ∈ Fin(G), ∀g ∈ G, f(gA) = f(A).

Then there exists α ∈ R such that for any Følner sequence (Fn)n∈N

lim
n→∞

h(Fn)

|Fn|
= α.

Let (X, T) be a dynamical system where X is compact and T is an action of a
countable amenable group. Given an open cover U := {Ui}i∈I of X, we denote by
N(U) the smallest size of an open subcover of U . As X is compact this is well defined.
Also denote by T g(U) := {T g(Ui)}i∈I . Given a finite subset F ⊂ G we define:

UF :=
∨

g∈F
T g(U).

By Lemma C.2, if (Fn)n∈N is a Følner sequence, then the limit

h(U , X,G) := lim
n→∞

log(N(UFn
))

|Fn|

is well defined and does not depend on (Fn)n∈N. With the definition of h(U , X,G) in
hand we can define the topological entropy.

135

Definition C.10. Let (X, T) be a dynamical system where X is compact and T is
an action of an amenable group. The topological entropy of (X, T) is

htop(X, T) := sup
U open cover of X

h(U , X,G)

It can be shown that the sup is attained by any generating partition. In particular,
as the partition at the identity is a generating partition for a subshift, it gives a basis
for Definition 1.10.

136

Index

G-machine, 72
accepts, 73
fixed head model, 72
moving head model, 72
multiple head, 74
multiple head accepts, 74

s-covering, 35
s-separating, 35

almost trivial isometric extension, 45
alphabet, 2, 117
automorphism group, 91

balanced sequence, 25

Cayley graph, 126
cellular automaton, 6

reversible, 6
cluster, 36

center, 36
cocycle, 91
computable function, 120
configuration, 2

aperiodic, 6
periodic, 6
strongly periodic, 6
Toeplitz, 49
uniform, 6

conjugacy, 4
covering forest, 37
covering radius, 34
cylinder, 2

Delone set, 34
distal pair, 134
dynamical system

distal, 134
equicontinuous, 134
expansive, 133

factor, 133
irreducible, 133
minimal, 133
topological extension, 133
topologically conjugated, 133
topologically mixing, 133

effectively closed
G-dynamical system, 44

even shift, 14
expansivity constant, 133

Følner net, 130
factor map, 4
finiteness problem, 95

countable group, 96
full group, 91

generating partition, 134
group, 123

abelian, 129
amenable, 129
automorphism, 124
boundary of a set, 131
commutator, 129
endomorphism, 124
epimorphism, 124
finitely generated, 124
finitely presented, 126
free, 125
generators, 124
homomorphism, 124
index of a subgroup, 124
interior with respect to a set, 131
isomorphic, 124
isomorphism, 124
left cosets, 124
monomorphism, 124

137

normal subgroup, 123
quotient, 124
recursively presented, 126
residually finite, 131
subgroup, 123

group presentation, 125
generators, 125
relators, 125

group shift, 9

Hom-shift, 9

input, 118

language, 117
G-decidable, 73
G-recursively enumerable, 73
closed by extensions, 75
co-recursively enumerable, 118
decidable, 118
recursively enumerable, 118
recursively enumerable with oracle O,

71
undecidable, 118

measure
left-invariant, 129

Mirror shift, 18

number
computable, 121
left recursively enumerable, 121
lower semicomputable, 121
right recursively enumerable, 121
upper semicomputable, 121

odometer, 133
One-or-less subshift, 69

packing radius, 34
pattern, 2

appears in a configuration, 3
set of nearest neighbor, 11
subpattern, 3
support, 2

pattern coding, 17, 121
consistent, 17

decidable, 18
recursively enumerable, 18

projective subdynamics, 23

recursive set, 120
recursively enumerable set, 120
Robinson tiling

macrotile, 26
tiles, 26

shift action, 2
shift commuting, 4
sliding-block code, 4

1-block code, 5
snake tiling problem, 100
special symbol property, 69
square-free vertex coloring, 30
Sturmian subshift, 7

slope, 7
subaction, 45
subshift, 3

G-effectively closed, 71
generated by a substitution, 47
effectively closed, 16, 18
extension, 4
factor, 4
irreducible, 7
language of a subshift, 3
minimal, 7
morphism, 4
nearest neighbor, 11
of finite type, 10
sofic, 14
strongly aperiodic, 7, 25
Toeplitz, 50
weakly aperiodic, 7

substitution, 47
primitive, 48
unique derivation, 48

symbol, 2

the distinct neighborhood property, 28
tileset, 11
topological conjugacy, 133
topological entropy, 136
topological factor, 133

138

topological full group, 91
topological morphism, 133
torsion problem, 95

countable group, 96
Turing machine, 117

accepts, 118
halts, 118
oracle, 121
rejects, 118
reversible, 106
universal, 120

vertex-square path, 30

Wang tile, 11
word, 117

reduced, 125
word problem, 94, 128

countable group, 96
recursive presentation, 95, 129

139

Personal bibliography

[ABS17] Nathalie Aubrun, Sebastián Barbieri, and Mathieu Sablik. A notion of ef-
fectiveness for subshifts on finitely generated groups. Theoretical Computer
Science, 661:35 – 55, 2017.

[ABT15] Nathalie Aubrun, Sebastián Barbieri, and Stéphan Thomassé. Realization
of aperiodic subshifts and uniform densities in groups. arXiv:1507.03369,
2015.

[BKS16] Sebastián Barbieri, Jarkko Kari, and Ville Salo. The group of reversible
turing machines. In Cellular Automata and Discrete Complex Systems,
Proceedings, pages 49–62, 2016.

[BS17] Sebastián Barbieri and Mathieu Sablik. A generalization of the simulation
theorem for semidirect products. to appear in Ergodic Theory and Dynam-
ical Systems, 2017.

140

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern
Approach. Cambridge University Press, 2009.

[AGHR02] Noga Alon, Jaroslaw Grytczuk, Mariusz Haluszczak, and Oliver Rior-
dan. Nonrepetitive colorings of graphs. Random Structures & Algorithms,
21(3-4):336–346, 2002.

[AP72] Serafino Amoroso and Yale N. Patt. Decision procedures for surjectivity
and injectivity of parallel maps for tessellation structures. Journal of
Computer and System Sciences, 6(5):448–464, 1972.

[AS08] Noga Alon and Joel H. Spencer. The probabilistic method. Wiley, 2008.

[AS13] Nathalie Aubrun and Mathieu Sablik. Simulation of effective subshifts by
two-dimensional subshifts of finite type. Acta Applicandae Mathematicae,
126:35–63, 2013.

[AS16] Nathalie Aubrun and Mathieu Sablik. Row-constrained effective sets
of colourings in the 2-fold horocyclic tessellations of H2 are sofic.
arXiv:1602.04061, 2016.

[Ber66] Robert Berger. The Undecidability of the Domino Problem. American
Mathematical Society, 1966.

[Ber17] Anton Bernshteyn. Free subshifts with invariant measures from the lovász
local lemma. arXiv:1702.02792, 2017.

[BKS16] Sebastián Barbieri, Jarkko Kari, and Ville Salo. The group of reversible
turing machines. In Cellular Automata and Discrete Complex Systems,
Proceedings, pages 49–62, 2016.

[BL97] Mike Boyle and Douglas A. Lind. Expansive subdynamics. Transactions
of the American Mathematical Society, 349(1):55–102, 1997.

[BLR88] Mike Boyle, Douglas A. Lind, and Daniel Rudolph. The automorphism
group of a shift of finite type. Transactions of the American Mathematical
Society, 306(1):71–114, 1988.

141

[Boo58] William W. Boone. The word problem. Proceedings of the National
Academy of Science USA, 44:1061–1065, 1958.

[Bow10] Lewis Bowen. Measure conjugacy invariants for actions of countable sofic
groups. Journal of the American Mathematical Society, 23(1):217–245,
2010.

[Boy08] Mike Boyle. Open problems in symbolic dynamics. Contemporary math-
ematics, 469:69–118, 2008.

[BPS10] Mike Boyle, Ronnie Pavlov, and Michael Schraudner. Multidimensional
sofic shifts without separation and their factors. Transactions of the
American Mathematical Society, 362(9):4617–4653, 2010.

[BR10] Valérie Berthé and Michel Rigo. Combinatorics, Automata and Number
Theory. Encyclopedia of Mathematics and its Applications. Cambridge
University Press, 2010.

[BRY16] Michael Baake, John Roberts, and Reem Yassawi. Reversing and ex-
tended symmetries of shift spaces. arXiv:1611.05756, 2016.

[BS08] Mike Boyle and Michael Schraudner. Zd group shifts and bernoulli fac-
tors. Ergodic Theory and Dynamical Systems, 28(02):367–387, 2008.

[BS09] Mike Boyle and Michael Schraudner. Shifts of finite type without equal
entropy full shift factors. Journal of Difference Equations and Applica-
tions, 15(1):47–52, 2009.

[BS13] Alexis Ballier and Maya Stein. The domino problem on groups of poly-
nomial growth. arXiv:1311.4222, 2013.

[CFKP16] Van Cyr, John Franks, Bryna Kra, and Samuel Petite. Distortion and
the automorphism group of a shift. arXiv:1611.05913, 2016.

[CGS15] David B. Cohen and Chaim Goodman-Strauss. Strongly aperiodic sub-
shifts on surface groups. arXiv:1510.06439, 2015.

[CM16] Nishant Chandgotia and Brian Marcus. Mixing properties for hom-shifts
and the distance between walks on associated graphs. arXiv:1607.08357,
2016.

[Coh17] David B. Cohen. The large scale geometry of strongly aperiodic subshifts
of finite type. Advances in Mathematics, 308:599–626, 2017.

[CP15] David Carroll and Andrew Penland. Periodic points on shifts of finite
type and commensurability invariants of groups. New York Journal of
Mathematics, 21:811–822, 2015.

[CSC09] Tullio Ceccherini-Silberstein and Michel Coornaert. Cellular Automata
and Groups. Springer, 2009.

142

[dC11] Aubrey da Cunha. Turing machines on cayley graphs. In LevD. Bek-
lemishev and Ruy de Queiroz, editors, Logic, Language, Information and
Computation, volume 6642 of Lecture Notes in Computer Science, pages
84–94. Springer Berlin Heidelberg, 2011.

[DDMP16] Sebastián Donoso, Fabien Durand, Alejandro Maass, and Samuel Petite.
On automorphism groups of low complexity subshifts. Ergodic Theory
and Dynamical Systems, 36(1):64–95, 002 2016.

[Des06] Angela Desai. Subsystem entropy for Zd sofic shifts. Indagationes Math-
ematicae, 17(3):353–359, 2006.

[DFR15] Tomasz Downarowicz, Bartosz Frej, and Pierre-Paul Romagnoli.
Shearer’s inequality and infimum rule for shannon entropy and topo-
logical entropy. arXiv:1502.07459, 2015.

[DRS10] Bruno Durand, Andrei Romashchenko, and Alexander Shen. Effective
closed subshifts in 1d can be implemented in 2d. In Fields of Logic and
Computation, pages 208–226. Springer Nature, 2010.

[DY08] François Dahmani and Asli Yaman. Symbolic dynamics and relatively hy-
perbolic groups. Groups, Geometry, and Dynamics, 2(2):165–184, 2008.

[Dye59] H. A. Dye. On groups of measure preserving transformations. i. American
Journal of Mathematics, 81(1):119–159, 1959.

[Dye63] H. A. Dye. On groups of measure preserving transformations. ii. Ameri-
can Journal of Mathematics, 85(4):551–576, 1963.

[Ele17] Gábor Elek. On uniformly recurrent subgroups of finitely generated
groups. arXiv:1702.01631, 2017.

[ELMW01] Manfred Einsiedler, Douglas A. Lind, Richard Miles, and Thomas Ward.
Expansive subdynamics for algebraic Zd-actions. Ergodic theory and dy-
namical systems, 21(06):1695–1729, 2001.

[EM13] Gábor Elek and Nicolas Monod. On the topological full group of a mini-
mal cantor Z2-system. Proceedings of the American Mathematical Society,
141(10):3549–3552, 2013.

[FT15] Joshua Frisch and Omer Tamuz. Symbolic dynamics on amenable groups:
the entropy of generic shifts. arXiv:1503.06251, 2015.

[GJS09] Su Gao, Steve Jackson, and Brandon Seward. A coloring property for
countable groups. Mathematical Proceedings of the Cambridge Philosoph-
ical Society, 147:579–592, 11 2009.

[GM07] Anah́ı Gajardo and Jacques Mazoyer. One head machines from a symbolic
approach. Theoretical Computer Science, 370(1-3):34–47, 2007.

143

[GM14] Rostislav Grigorchuk and Konstantin Medynets. On algebraic properties
of topological full groups. Sbornik: Mathematics, 205(6):843, 2014.

[GPS99] Thierry Giordano, Ian F. Putnam, and Christian F. Skau. Full groups of
cantor minimal systems. Israel Journal of Mathematics, 111(1):285–320,
1999.

[Gri85] Rostislav Grigorchuk. Degrees of growth of finitely generated groups,
and the theory of invariant means. Mathematics of the USSR-Izvestiya,
25(2):259–300, 1985.

[GS98] Chaim Goodman-Strauss. Matching rules and substitution tilings. Annals
of Mathematics, 147(1):181–223, 1998.

[GU09] Eli Glasner and Vladimir V. Uspenskij. Effective minimal subflows
of bernoulli flows. Proceedings of the American Mathematical Society,
137(9):3147–3154, 2009.

[Had98] Jacques Hadamard. Les surfaces à courbures opposées et leurs lignes
géodésiques. Journal de Mathématiques Pures et Appliquées, 4:27–74,
1898.

[Han74] William Hanf. Nonrecursive tilings of the plane. i. The Journal of Sym-
bolic Logic, 39(2):283–285, 1974.

[Hed69] Gustav A. Hedlund. Endomorphisms and automorphisms of the shift
dynamical system. Mathematical systems theory, 3(4):320–375, 1969.

[Hig61] Graham Higman. Subgroups of finitely presented groups. Proceedings
of the Royal Society of London. Series A, Mathematical and Physical
Sciences, 262(1311):455–475, 1961.

[HM38] Gustav A. Hedlund and Marston Morse. Symbolic dynamics. American
Journal of Mathematics, 60(4):815–866, 1938.

[HM10] Mike Hochman and Tom Meyerovitch. A characterization of the en-
tropies of multidimensional shifts of finite type. Annals of Mathematics,
171(3):2011–2038, 2010.

[Hoc09] Mike Hochman. On the dynamics and recursive properties of multidi-
mensional symbolic systems. Inventiones Mathematicae, 176(1):131–167,
2009.

[Hoc10] Mike Hochman. On the automorphism groups of multidimensional shifts
of finite type. Ergodic Theory and Dynamical Systems, 30(03):809–840,
2010.

[Hun80] Thomas W. Hungerford. Algebra. Springer New York, 1980.

144

[Jea15] Emmanuel Jeandel. Aperiodic subshifts of finite type on groups.
arXiv:1501.06831, 2015.

[JK69] Konrad Jacobs and Michael Keane. 0-1-sequences of toeplitz
type. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete,
13(2):123–131, 1969.

[JK12] Timo Jolivet and Jarkko Kari. Consistency of multidimensional combi-
natorial substitutions. Theoretical Computer Science, 454:178–188, 2012.

[JM12] Kate Juschenko and Nicolas Monod. Cantor systems, piecewise transla-
tions and simple amenable groups. arXiv:1204.2132, 2012.

[JR15] Emmanuel Jeandel and Michael Rao. An aperiodic set of 11 wang tiles.
arXiv:1506.06492, 2015.

[JV15] Emmanuel Jeandel and Pascal Vanier. Hardness of conjugacy, embedding
and factorization of multidimensional subshifts. Journal of Computer and
System Sciences, 81(8):1648–1664, 2015.

[Kar90] Jarkko Kari. Reversibility of 2d cellular automata is undecidable. Physica
D: Nonlinear Phenomena, 45(1):379–385, 1990.

[Kar96] Jarkko Kari. A small aperiodic set of wang tiles. Discrete Mathematics,
160:259–264, 1996.

[Kar03] Jarkko Kari. Infinite snake tiling problems. In Developments in Language
Theory, pages 67–77. Springer Nature, 2003.

[KC16] Bryna Kra and Van Cyr. The automorphism group of a minimal shift of
stretched exponential growth. Journal of Modern Dynamics, 10(02):483–
495, 2016.

[Kit98] Bruce Kitchens. Symbolic Dynamics. Spinger New York, 1998.

[KL11] David Kerr and Hanfeng Li. Entropy and the variational principle for
actions of sofic groups. Inventiones mathematicae, 186(3):501–558, 2011.

[KM13] Steve Kass and Kathleen Madden. A sufficient condition for non-soficness
of higher-dimensional subshifts. Proc. Amer. Math. Soc., 141:3803–3816,
2013.

[KO08] Jarkko Kari and Nicolas Ollinger. Periodicity and Immortality in Re-
versible Computing, pages 419–430. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008.

[Koc06] Helge von Koch. Une méthode géométrique élémentaire pour l’étude de
certaines questions de la théorie des courbes plane. Acta Math, 30:145–
174, 1906.

145

[KR90] Ki Hang Kim and Fred W. Roush. On the automorphism groups of
subshifts. Pure Mathematics and Applications, 1(4):203–230, 1990.

[Kri07a] Fabrice Krieger. Le lemme d’Ornstein-Weiss d’après Gromov, pages 99–
112. Mathematical Sciences Research Institute Publications. Cambridge
University Press, 2007.

[Kri07b] Fabrice Krieger. Sous-décalages de toeplitz sur les groupes moyennables
résiduellement finis. Journal of the London Mathematical Society,
75(2):447, 2007.

[KS88] Bruce Kitchens and Klaus Schmidt. Periodic points, decidability and
Markov subgroups, pages 440–454. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1988.

[Lan02] Serge Lang. Algebra. Graduate Texts in Mathematics. Springer New
York, 2002.

[Led87] François Ledrappier. Un champ markovien peut être d’entropie nulle et
mélangeant. Acad. Sci. Paris, 287:561–562, 1987.

[Lin84] Douglas A. Lind. The entropies of topological markov shifts and a re-
lated class of algebraic integers. Ergodic Theory and Dynamical Systems,
4(2):283–300, 1984.

[LM95] Douglas A. Lind and Brian Marcus. An Introduction to Symbolic Dy-
namics and Coding. Cambridge University Press, 1995.

[LP16] Martha Lacka and Marta Pietrzyk. Quasi-uniform convergence in dynam-
ical systems generated by an amenable group action. arXiv:1610.09675,
2016.

[Mat06] Hiroki Matui. Some remarks on topological full groups of Cantor minimal
systems. International Journal of Mathematics, 17(02):231–251, 2006.

[Mat15] Hiroki Matui. Topological full groups of one-sided shifts of finite type.
Journal für die reine und angewandte Mathematik, 2015(705):35–84,
2015.

[Med11] Konstantin Medynets. Reconstruction of orbits of cantor systems from
full groups. Bulletin of the London Mathematical Society, 43(6):1104–
1110, 2011.

[Mil12] Joseph S. Miller. Two notes on subshifts. Proceedings of the American
Mathematical Society, 140(5):1617–1622, 2012.

[MKS04] Wilhelm Magnus, Abraham Karrass, and Donald Solitar. Combinato-
rial Group Theory: Presentations of Groups in Terms of Generators and
Relations. Dover Books on Mathematics Series. Dover Publications, 2004.

146

[Moz89] Shahar Mozes. Tilings, substitution systems and dynamical systems gen-
erated by them. Journal d’Analyse Mathématique, 53(1):139–186, 1989.

[Mye74] Dale Myers. Nonrecursive tilings of the plane. ii. The Journal of Symbolic
Logic, 39(2):286–294, 1974.

[Nov55] Pyotr Novikov. On the algorithmic unsolvability of the word problem in
group theory. Proceedings of the Steklov Institute of Mathematics, 44:143
pp. (Russian), 1955.

[Ol’81] Alexander Yu Ol’shanskii. An infinite group with subgroups of prime
orders. Mathematics of the USSR-Izvestiya, 16(2):279, 1981.

[OW87] Donald S. Ornstein and Benjamin Weiss. Entropy and isomorphism the-
orems for actions of amenable groups. Journal d’Analyse Mathématique,
48(1):1–141, 1987.

[Pav12] Ronnie Pavlov. A class of nonsofic multidimensional shift spaces. Pro-
ceedings of the American Mathematical Society, 141(3):987–996, 2012.

[Pet83] Karl E. Petersen. Ergodic theory. Cambridge University Press, 1983.

[PF02] N. Pytheas Fogg. Substitutions in Dynamics, Arithmetics and Combina-
torics, volume 1794 of Lecture Notes in Mathematics. Springer, 2002.

[Pia06] Steven T. Piantadosi. Symbolic dynamics on free groups. Master’s thesis,
University of North Carolina, Chapel Hill, 2006.

[Pia08] Steven T. Piantadosi. Symbolic dynamics on free groups. Discrete and
Continuous Dynamical Systems, 20(3):725–738, 2008.

[PS14] Ronnie Pavlov and Michael Schraudner. Classification of sofic projective
subdynamics of multidimensional shifts of finite type. Transactions of
the American Mathematical Society, 367(5):3371–3421, 2014.

[PY98] Mark Pollicott and Michiko Yuri. Dynamical Systems and Ergodic The-
ory. London Mathematical Society Student Texts. Cambridge University
Press, 1998.

[RJ87] Hartley Rogers Jr. Theory of Recursive Functions and Effective Com-
putability. MIT Press, Cambridge, MA, USA, 1987.

[Rob71] Raphael M. Robinson. Undecidability and nonperiodicity for tilings of
the plane. Inventiones Mathematicae, 12:177–209, 1971.

[SA14] Mathieu Sablik and Nathalie Aubrun. Multidimensional effective S-adic
subshift are sofic. Uniform Distribution Theory, 9(2):7–29, 2014.

[Sah14] Ayse Sahin. A strongly aperiodic heisenberg shift of finite type. Talk in
Workshop on Symbolic Dynamics on finitely presented Groups, 2014.

147

[Sal15] Ville Salo. A note on subgroups of automorphism groups of full shifts.
arXiv:1507.00820, 2015.

[Sch95] Klaus Schmidt. Dynamical Systems of Algebraic Origin. Springer Nature,
1995.

[Sew14] Brandon Seward. Burnside’s problem, spanning trees and tilings. Geom-
etry & Topology, 18(1):179–210, 2014.

[Sip06] Michael Sipser. Introduction to the Theory of Computation. Thomson
Course Technology, 2006.

[ST13] Ville Salo and Ilkka Törmä. Color blind cellular automata. In Cellu-
lar Automata and Discrete Complex Systems, pages 139–154. Springer
Nature, 2013.

[ST15] Ville Salo and Ilkka Törmä. Group-walking automata. Cellular Automata
and Discrete Complex Systems: 21st IFIP WG 1.5 International Work-
shop, AUTOMATA 2015, Turku, Finland, June 8-10, 2015. Proceedings,
pages 224–237, 2015.

[Sta68] John R. Stallings. On torsion-free groups with infinitely many ends.
Annals of Mathematics, 88(2):312–334, 1968.

[Tur36] Alan M. Turing. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society.
Second Series, 42:230–265, 1936.

[Wei73] Benjamin Weiss. Subshifts of finite type and sofic systems. Monatshefte
für Mathematik, 77:462–474, 1973.

[Wei00] Benjamin Weiss. Sofic groups and dynamical systems. Sankhyā, Ser. A,
62(3):350–359, 2000.

148

	Résumé
	Abstract
	Introduction en français
	Introduction in english
	Shift spaces
	Subshifts in groups
	Symbolic morphisms
	Dynamical properties

	Classes of subshifts
	Subshifts of finite type
	Sofic subshifts
	Effectively closed subshifts

	Free actions and densities in subshifts
	Non-empty strongly aperiodic subshifts
	Lovász local lemma
	A non-empty strongly aperiodic subshift over {0,1} in any countable group.
	A graph-oriented construction and some computational properties

	Realization of densities

	A simulation theorem for actions of finitely generated groups
	Introduction: simulation theorems
	Substitutions and Toeplitz configurations
	Substitutions
	Toeplitz configurations

	The simulation theorem
	A set of Z2-substitutions which are permuted by actions of Aut(Z2).
	Encoding configurations in Toeplitz sequences.
	Proof of Theorem 3.7

	Consequences and remarks
	The simulation theorem for expansive effective dynamical systems
	Existence of strongly aperiodic SFT in a class of groups obtained by semidirect products
	A generalization and comments on the size of the extension

	A new notion of effectiveness for subshifts in groups
	The One-or-less subshift
	G-effectiveness and G-machines
	Application: a simulation theorem with oracles

	Separating sofic and effective subshifts

	Computability in group invariants of shift spaces
	Two group invariants of shift spaces
	Computability properties
	Computability in the topological full group
	Computability in the automorphism group

	Conclusions et perspectives en français
	Conclusions and perspectives
	Computability
	Languages and Turing machines
	Computable functions, sets and numbers
	Oracles and reductions

	Group Theory
	Basic definitions
	Group homomorphisms
	Free groups and presentations
	Cayley graph and generator metrics
	Recursive presentations and the word problem

	Classes of groups
	Abelian groups
	Amenable groups
	Residually finite groups

	Dynamical Systems
	Dynamical systems and topological morphisms
	Expansive, equicontinuous and distal systems
	Entropy

	Bibliography

