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Titre Modèles de calcul pour les réseaux d’objets à capacité restreinte

Résumé Dans cette thèse, nous nous intéressons aux modèles de calcul dans les réseaux
d’objets à capacité restreinte, tels que les réseaux de capteurs sans fil. Nous nous focal-
isons sur les protocoles de population proposés par Angluin et al. Dans ce modèle, les
objets sont représentés par des agents à états finis, passivement mobiles, communiquant
entre paires et formant un réseau asynchrone et anonyme. Nous présentons deux études
comparatives qui nous permettent par la suite de proposer une approche établissant le
lien des protocoles de population avec deux autres modèles : le modèle des tâches avec
les systèmes de réécritures de graphes, et le modèle asynchrone et anonyme d’échange
de messages. Nous passons ensuite au problème d’ordonnancement dans les protocoles
de population. Nous proposons un nouvel ordonnanceur probabiliste, 1−central, basé
sur les rendez-vous randomisés et appelé HS Scheduler. Contrairement aux autres or-
donnanceurs, il est permet à plus d’une paire de communiquer à la fois. Nous prouvons
qu’il est équitable avec probabilité 1. Nous analysons par la suite les temps de stabili-
sation de certains protocoles s’exécutant sous le Random Scheduler ou le HS Scheduler
et sur différentes topologies du graphe d’interaction. Nous prouvons que le HS Scheduler
est équivalent en temps au Random Scheduler quand le graphe d’interaction est complet
mais qu’il permet une stabilisation plus rapide quand le graphe est aléatoire. Par la suite,
nous proposons un autre ordonnanceur qui prend en considération les états des agents et
permet d’introduire la terminaison à certains protocoles : le Prorotol Aware HS Sched-
uler. Nous prouvons qu’il est équitable avec probabilité 1. Nous faisons l’analyse des
temps de stabilisation de certains protocoles s’exécutant sous cet ordonnanceur en con-
sidérant différentes topologies du graphe d’interaction. Finalement, nous implémentons et
simulons sur ViSiDiA l’ensemble des scénarios étudiés et validons nos résultats théoriques.

Mots-clés Objet à capacité restreinte, Protocoles de populations, Modèles de calcul,
Ordonnanceur probabiliste, Rendez-vous randomisés, Équité.

Title Computing Models for Networks of Tiny Objects

Abstract In this work, we consider computing models for networks of tiny objects such
as wireless sensor networks. We focus on the population protocols, a pairwise compu-
tational model introduced by Angluin et al. where the tiny objects are represented by
anonymous, passively mobile, finite state agents forming asynchronous networks. We
establish two comparative studies between the population protocol model (and its exten-
sions) and the two following ones: tasks with graph relabeling systems, and anonymous
asynchronous message passing. These studies aim to establish possible mappings between
the population protocols and these two models. We then focus on the scheduling of the
pairwise interactions in population protocols. We propose the HS Scheduler, a new prob-
abilistic 1−central scheduler based on randomized handshakes. Compared to the existing
schedulers, this scheduler allows to more than one pair of agents to communicate simul-
taneously. We prove that this scheduler is fair with probability 1. We thereafter present
analyses of the complexity of the stabilization time of some protocols running under the
scheduling of the Random Scheduler and the HS Scheduler, and over different topologies
of the interaction graph. We prove that these two schedulers are time equivalent with
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respect to these protocols when the interaction graph is complete, however computations
under the HS Scheduler stabilize faster when the interaction graph is random. We then in-
troduce the Protocol Aware HS Scheduler, a slightly modified version of the HS Scheduler
that takes into account the states of the agents and allows termination in some protocols.
We also prove that this scheduler is fair with probability 1. We present analyses of the
time complexity of some protocols running under the scheduling of the Protocol Aware
HS Scheduler and over different structures of the interaction graph. We implement the
different scenarios in ViSiDiA, and validate through simulations our theoretical results.

Keywords Tiny objects, Population protocols, Computing models, Probabilistic sched-
uler, Randomized handshakes, Fairness.

Laboratoire d’accueil Laboratoire Bordelais de Recherche en Informatique (LaBRI)-
UMR 5800. Domaine universitaire, 351, cours de la Libération, 33405 Talence
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Résumé étendu

Les réseaux d’objets à capacités restreintes, tels que les réseaux de capteurs sans fil,
sont des systèmes distribués asynchrones formés de petites entités (aussi appelés objets,
agents, ou équipement) dont les ressources : énergie, mémoire et puissance de calcul sont
limitées. Ces entités sont capables de communiquer via des liens sans fil. Elles peuvent
aussi être passivement mobiles n’ayant aucun contrôle de leurs mouvements (attachées
à des objets mobiles par exemple). A cause de la contrainte sur l’espace mémoire, ces
entités sont souvent supposées comme étant anonymes. Une fois le réseau est déployé, ces
objets vont devoir communiquer et coopérer pour atteindre un objectif global. Cepen-
dant, comment arriver à faire les calculs nécessaires pour atteindre cet objectif malgré les
ressources limitées du réseau?

Dans le cadre de ce travail, nous nous sommes intéressés aux protocoles de popula-
tions [5, 4]. C’est un modèle de calcul entre paires proposé par Angluin et al. pour de
tels réseaux. Dans ce modèle, les agents formant le réseau sont considérés comme des
automates finis sans identifiants uniques. Ils sont identiquement programmés et forment
ainsi une population de taille finie mais non bornée. Un protocole de population calcule
un prédicat ou une fonction des entrées distribuées que ces agents ont reçu de leur en-
vironnement. Par exemple, un protocole de population s’exécutant dans une population
d’oiseaux pourrait être conçu de telle manière qu’il soit capable de décider si le nombre
d’oiseaux qui sont malades atteint un certain seuil. Les calculs dans ce modèle sont basés
sur des interactions entre paires. Deux agents seront capables de communiquer chaque
fois qu’ils seront à proximité l’un de l’autre et partageront ainsi un lien de communication.
Lors de cette communication, un agent jouera le rôle d’initiateur tandis que le deuxième
jouera celui du receveur. Ces deux agents échangeront leurs états actuels. Par la suite,
chacun mettra à jour son état selon son rôle, son état actuel, l’état reçu, et les règles
de transition du protocole. Toutes les interactions possibles entre paires d’agent sont
représentées par les arêtes dirigées du graphe d’interactions dont les nœuds représentent
les agents de la population.

Les protocoles de population ne s’arrêtent pas mais plutôt se stabilisent. Cette stabil-
isation a lieu lorsque les sorties des agents convergent, après un temps fini de calcul, vers
le résultat correct. Cette stabilisation est une propriété globale du système que les agents
ne détectent souvent pas. En effet, la connaissance d’un agent est limitée à son état local.
Par conséquent, même si le protocole se stabilise, les agents continuent à interagir.

La puissance de calcul du modèle de protocole de populations a été caractérisée comme
étant exactement l’arithmétique de Presburger [6, 10]. La plupart des travaux qui se sont
intéressés à ce modèle ont essayé d’améliorer sa puissance de calcul. Par exemple, Chatzi-
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giannakis et al. ont proposé le modèle des mediated protocoles de population qui permet
d’attribuer des états non seulement aux agents de la population mais aussi aux liens de
communications qui les relient [29]. Un autre exemple d’extension des protocoles de pop-
ulation est le modèle PALOMA qui permet aux agents d’avoir, au lieu d’une mémoire
constante, un espace mémoire plus important [27]. Contrairement à tous ces travaux,
nous nous intéressons à un aspect autre que la puissance de calcul, qui est le modèle
d’interaction dans les protocoles de population.

En effet, une interaction entre paire d’agents consiste en un échange abstrait, simultané
et bidirectionnel des états de cette paire communicantes. Un concept similaire de com-
munication abstraite est utilisé dans le modèle de tâche avec les systèmes de réécritures
de graphes [48, 47]. Dans ce modèle, un système distribué est représenté par un graphe
étiqueté, et un algorithme distribué s’exécutant sur ce système est codé par une séquence
de réétiquetages du graphe correspondant. Ce modèle est un modèle de calculs locaux,
tout comme les protocoles de population. Nous proposons donc d’explorer dans cette
thèse les correspondances qui existent entre ces deux modèles ainsi que la possibilité de
plonger chaque modèle dans l’autre.

Les protocoles de population ont été conçus pour des réseaux tels que les réseaux de
capteurs sans fil, donc adopter l’hypothèse de communication abstraite est une hypothèse
assez forte. Ainsi, décrire cet échange bidirectionnel entre paire à travers un modèle
de communication moins théorique, basé sur un minimum d’hypothèses supplémentaires,
serait assez intéressant. Par conséquent, représenter une population par un système dis-
tribué anonyme et asynchrone basé sur échange de messages avec numérotation de ports
s’avère une bonne alternative. Un protocole de population pourrait ainsi être décrit par
un algorithme distribué basé sur échange de messages et tournant sur ce système.

Dans un autre volet de ce travail, nous nous intéressons à l’ordonnancement des in-
teractions dans les protocoles de population. L’ordonnanceur est l’entité responsable du
choix des paires d’agents communicantes : il choisit des paires d’agents adjacents dans
le graphe d’interaction. Pour garantir une exécution équitable des protocoles, un ordon-
nanceur doit satisfaire une propriété d’équité. Un ordonnanceur conçu pour les protocoles
de population doit être aussi probabiliste pour décrire l’imprédictibilité des interactions
causée par la mobilité et l’asynchronisme des agents. Tous les ordonnanceurs déjà pro-
posés pour les protocoles de population sont des ordonnanceurs centraux (aussi appelés
séquentiels) : à chaque étape de calcul du protocole, l’ordonnanceur n’autorise qu’à une
seule paire d’agents de communiquer. Les populations d’agents sont des systèmes dis-
tribués où il n’y a aucun contrôle centralisé. Ainsi, un ordonnanceur distribué serait plus
adéquat dans ce contexte vu qu’il arrive à capturer l’aspect concurrent des interactions
: il peut permettre à plus d’une paire d’agents de communiquer simultanément. Nous
proposons donc un nouvel ordonnanceur pour les protocoles de population, qui est prob-
abiliste, équitable et distribué.

L’équité des ordonnanceurs ne garantit pas leurs équivalences [25]. Nous proposons
donc d’explorer l’équivalence en temps de l’ordonnanceur que nous proposons avec le
Random Scheduler, lordonnanceur proposé par Angluin et al. [5]. Nous pensons aussi que
permettre à cet ordonnanceur distribué proposé de prendre en compte les états des agents
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Résumé étendu

permettrait d’introduire la notion de terminaison aux protocoles de population. Nous
pensons même que ceci pourrait permettre une stabilisation plus rapide des protocoles :
les agents ayant atteints un certain état ne seront plus sélectionnés par l’ordonnanceur.

Contributions

Nous présentons dans ce qui suit un résumé des principales contributions de ce travail.

1. Plongement du modèle des protocoles de populations dans le modèle de
tâches avec les systèmes de réécritures de graphes et vice versa. Nous
présentons une étude comparative des (mediated) protocoles de populations et les
tâches avec les systèmes de réécritures de graphes. Étant donné que ces deux modèles
utilisent des communications abstraites entre paires, nous étudions les similarités,
ainsi que les différences qui existent entre eux. Basé sur cette étude comparative,
nous proposons une approche qui permet le plongement d’un modèle dans l’autre.
Nous prouvons que le calcul d’un (mediated) protocole de population peut toujours
être exprimé comme la réalisation d’une tâche avec un système de réécriture de
graphe. Par contre, l’autre sens n’est pas toujours vrai. En effet, seule la réalisation
d’une tâche dont les règles de réécritures sont limitées à des règles LC0 sans con-
textes interdits ou priorités et dont les étiquettes sont de taille constante peut être
décrite comme le calcul d’un (mediated) protocole de population.

2. Plongement du modèle des protocoles de population dans le modèle des
algorithmes distribués anonymes et asynchrones basés sur échange de
messages. Nous établissons une étude comparative du modèle des protocoles de
population (et qui est valable pour tout modèle étendant les protocoles de popula-
tion tout en préservant le principe de communication entre paires) avec le modèle
anonyme et asynchrone d’échange de messages. En effet, nous considérons qu’utiliser
un modèle de communication abstraite dans des réseaux d’objets connectés est une
hypothèse assez forte et théorique. Nous proposons ainsi une approche qui permet
de traduire le calcul d’un protocole de population en un algorithme distribué basé
sur échange de messages dans un système asynchrone et anonyme avec numérotation
de ports. La numérotation de ports est la connaissance minimale et nécessaire pour
pouvoir passer du modèle de communication abstraite à un modèle de communica-
tion explicite. L’échange simultané et bidirectionnel entre une paire d’agents dans
un protocole de population est ainsi traduite en deux phases dans l’algorithme dis-
tribué correspondant : une phase de synchronisation, puis une phase d’envoi et de
réception simultanés.

En combinant ces deux approches avec des travaux déjà existants, nous établissons
une passerelle entre ces trois différents modèles qui offre la possibilité de décrire
chaque modèle à travers un autre.

3. L’algorithme du Random Scheduler. Basé sur la contribution précédente,
nous proposons un algorithme distribué et anonyme basé sur échange de messages
qui encode l’ordonnanceur Random Scheduler. Cet algorithme est conçu pour le
cas où le graphe d’interaction est un graphe complet. Cette contribution est une
amélioration d’un résultat que nous avons publié dans [60].
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4. Le Handshake Scheduler. Nous présentons un nouvel ordonnanceur proba-
biliste basé sur les rendez-vous randomisés. Nous l’appelons le Handshake Scheduler
et le notons le HS Scheduler. Contrairement aux ordonnanceurs déjà proposés pour
les protocoles de population, ce dernier n’est pas séquentiel mais plutôt 1−central.
Par conséquent, il peut permettre à plus d’une paire d’agents d’interagir en même
temps tant qu’elles sont disjointes. Inspirés des algorithmes de rendez-vous ran-
domisés qui existent dans la littérature, nous proposons un algorithme pour le HS
Scheduler. Nous faisons l’analyse de cet algorithme. Cette analyse nous sert par la
suite à prouver que le HS Scheduler est un ordonnanceur probabiliste, consistent et
équitable avec probabilité 1. Cette contribuant a fait l’objet d’un papier [61].

5. Equivalence en Temps: le Random Scheduler et le HS Scheduler. Nous
étudions l’équivalence en temps du Random Scheduler et du HS Scheduler, par
rapport aux protocoles suivants : le OU , l’Élection d’un Leader, et le Couplage
Maximal. Nous présentons des analyses théoriques des temps de stabilisation de
ces protocoles en considérant deux scénarios d’ordonnancement. Dans le premier
scénario, c’est le Random Scheduler qui est utilisé. Dans le deuxième, c’est le HS
Scheduler qui est utilisé. Nous considérons aussi deux différents types de graphe
d’interaction : le graphe complet, et le graphe aléatoire. Nous prouvons que le
Randam Scheduler et le HS Scheduler sont équivalents en temps par rapport aux
protocoles étudiés lorsqu’ils sont exécutés sur des graphes d’interaction complets.
Par contre, lorsque le graphe d’interaction est un graphe aléatoire, le HS Scheduler
permet une stabilisation plus rapide de ces protocoles.

6. L’ordonnaceur Protocol Aware HS Scheduler. Nous proposons un nouveau
modèle de calcul appelé protocoles de population avec une certaine détection locale
de la terminaison. Ce modèle est une extension d’une sous classe des protocoles
de population (et des modèles qui les étendent) avec une fonction de détection de
terminaison locale qui permet à un agent de détecter si son état est final. Par la
suite, nous présentons le Protocol Aware HS Scheduler, un nouvel ordonnanceur
distribué et probabiliste qui prend en compte le protocole exécuté. Il s’agit d’une
version ajustée du HS Scheduler de telle manière qu’il permet aux agents dont les
états sont finaux de ne plus participer au calcul du protocole, et ainsi terminer.
Ainsi, ces petites entités pourront éviter de dissiper leurs ressources limitées pour
des interactions inutiles. Nous prouvons que cet ordonnanceur est équitable avec
probabilité 1. Nous présentons aussi des calculs des bornes supérieures des temps de
stabilisation des protocoles suivants : Élection d’un Leader et Couplage Maximal,
s’exécutants sous cet ordonnanceur. Nous prouvons que cet ordannanceur permet
une stabilisation plus rapide de ces protocoles comparé au Random Scheduler et au
HS Scheduler. Une partie de cette contribution est apparue dans [61].

Une partie de ces résultats ont fait l’objet d’un article que nous avons soumis au
journal Mathematical Structures in Computer Science˝, et dont nous attendons
encore la réponse.
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Résumé étendu

Organization du manuscrit

Nous commençons ce travail par un chapitre préliminaire (Chapitre 1) pour introduire
quelques concepts et outils de base reliés aux systèmes et algorithmes distribués, à la
théorie des graphes, à la théorie de la probabilité, et aux mathématiques. Ce chapitre
facilitera ainsi la compréhension de ce qui suivra dans ce travail.

Par la suite, dans le Chapitre 2, nous introduisons le modèle des protocoles de popu-
lation proposé par Angluin et al. Nous présentons une définition formelle de ce modèle
ainsi que les résultats obtenus par Angluin et al. concernant sa puissance de calcul. Nous
donnons ensuite un aperçu des variantes de ce modèle tel que le One Way protocoles de
population qui restreint l’échange bidirectionnel entre les paires d’agents en un échange
unidirectionnel. Nous présentons aussi les modèles qui ont étendu les protocoles de pop-
ulation en attribuant des états aux arêtes, ou en allouant plus de mémoire aux agents, etc.

Le Chapitre 3 est constitué de deux parties. Dans la première, nous présentons le
modèle des tâches avec les systèmes de réécritures de graphes. Ce modèle, tout comme les
protocoles de population, est un modèle de calculs locaux basé sur des communications
abstraites. Nous établissons par la suite une étude comparative qui nous permet de
définir une approche décrivant la possibilité du plongement du modèle des protocoles de
population dans le modèle des tâches avec les systèmes de réécritures de graphes et vice
versa.

Dans la deuxième partie de ce chapitre, nous présentons le modèle anonyme et asyn-
chrone d’échange de messages. Nous détaillons les méthodes de numérotation de ports qui
existent dans la littérature. Par la suite, nous établissons une étude comparative grâce à
laquelle nous proposons une approche permettant d’exprimer un protocole de population
comme étant un algorithme distribué s’exécutant dans un système anonyme et asynchrone
basé sur échange de messages avec numérotation de ports.

Nous concluons ce chapitre en établissant une passerelle entre les trois modèles suiv-
ants : protocoles de population, tâches avec systèmes de réécritures de graphes, et échange
de messages anonyme et asynchrone.

Dans le Chapitre 4, nous nous intéressons à l’ordonnancement des interactions dans
les systèmes distribués, et plus précisément dans les protocoles de population. Nous
présentons un aperçu des ordonnanceurs qui ont déjà été proposés ainsi que les différentes
définitions de la notion d’équité. Nous proposons un algorithme pour l’ordonnanceur
Random Scheduler. Par la suite, nous introduisons le HS Scheduler. Étant donné qu’il
est basé sur les rendez-vous randomisés, nous étudions les algorithmes de rendez-vous
randomisés de la littérature. Inspirés de ces algorithmes, nous présentons un algorithme
qui encode le HS Scheduler dont nous faisons l’analyse pour prouver l’équité de cet or-
donnanceur.

Nous comparons l’ordonnanceur que nous proposons avec le Random Scheduler. Tous
deux sont équitables, cependant sont-ils équivalents en temps? Nous explorons cette
équivalence dans le Chapitre 5 par rapport à trois protocoles différents s’exécutant sous ces
ordonnanceurs en considérant différentes topologies du graphe d’interaction. Les résultats
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établis sont comme décrit dans la contribution 5. Nous clôturons ce chapitre avec un
tableau représentant les résultats de l’analyse du temps de stabilisation de chaque proto-
cole pour chacun des scénarios d’ordonnancement.

Dans le Chapitre 6, nous présentons le modèle des halting protocoles de population
proposé par Michail et al [55]. Nous nous focalisons sur le protocole Élection d’un Leader
avec détecteur d’absence. Nous étudions le temps de sa stabilisation quand son calcul est
effectué sous l’ordonnancement du Random Scheduler, et puis sous l’ordonnancement du
HS Scheduler.

Nous proposons ensuite une extension d’une sous classe des protocoles de population
(et les modèles qui les étendent) avec une détection de la terminaison locale qui permet à
chaque agent de détecter s’il a atteint un état final. Un état final est un état irréversible
qui n’apparâıt pas dans les règles de transition effectives. Nous présentons par la suite
notre contribution 6 relié au Protocol Aware HS Scheduler. Nous clôturons ce chapitre
avec un tableau représentant les résultats obtenus concernant les temps de stabilisation
des protocoles étudiés pour les différents scénarios d’ordonnancement.

Dans le Chapitre 7, nous présentons la plate-forme ViSiDiA implémentée en Java et
conçue pour implémenter, simuler et visualiser des algorithmes distribués. Nous avons
enrichi cette plate-forme en ajoutant un module qui permet la génération automatique
de différents types de graphes. Grâce à ViSiDiA, nous illustrons les différentes approches
de mapping que nous avons établies dans le Chapitre 3. Nous implémentons sous cette
plate-forme tous les ordonnanceurs proposés ainsi que tous les protocoles étudiés. Puis,
nous procédons la simulations de tous les scénarios étudiés. Ceci nous permet de valider
tous les résultats théoriques obtenus tout au long de ce travail.

Finalement, nous clôturons ce travail avec une conclusion et quelques perspectives.
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Introduction

Networks of tiny objects, such as sensor networks, are asynchronous distributed systems
formed by small agents (also called objects, entities or devices) with limited resources,
memory and computational power and that are able to establish wireless communications.
Due to the constrained memory space, agents are usually supposed to be anonymous.
They can also be passively mobile having no control of their movement. Once the network
is deployed, these objects should communicate and cooperate to reach a global goal. Yet,
how to compute in such networks with restricted resources and capacities ?

In this work, we focus on the population protocols, a pairwise computational model
introduced by Angluin et al. and designed for such networks [5, 4]. In this model, the
agents of the network are considered as finite automata with no unique identifiers. They
are identically programmed and form a population of a finite but unbounded size. A
population protocol computes a given function or predicate of the distributed inputs of
the agents, received from their environment. For example, a population protocol running
in a population of birds can decide if a given threshold related to the number of sick birds
is reached. Computations in this model are based on pairwise interactions. Two agents
are able to communicate whenever they come sufficiently close to each other and share
a communication link. A communicating pair of agents consists of an initiator and a
responder which breaks the symmetry. The two agents exchange their respective current
states. Then, each agent updates its state accordingly and with respect to its role and to
the transition rules of the protocol. All possible interactions between pair of agents are
represented by the directed edges of the interaction graph whose vertices are the agents
forming the population.

Population protocols do not halt but only stabilize. Stabilization is reached when the
outputs of the agents converge after some finite time to a correct value. Stabilization is
a global property of the population that agents usually do not detect. In fact, the only
knowledge that an agent may have is a local one consisting of its own state. Consequently,
even when the protocol stabilizes, the pairwise interactions do not stop.

The computational power of the population protocol model was characterized to be
exactly the Presburger arithmetic [6, 10]. Most of the studies that were interested in this
model dealt with the enhancement of its computational power. They proposed to extend
this model either by adding states to the communication links which is the case of the
mediated population protocols [29], or by allowing more memory to the agents such as
the PALOMA model [27], etc, in order to obtain more powerful models. However, in this
work, we focus on another aspect of this model: the interaction model of the population
protocols.

A pairwise interaction in a population protocol is represented as an abstract simultane-
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ous bidirectional exchange between the communicating pair of agents. A similar concept
of abstract pairwise communication is used in the model of tasks with graph relabeling
systems [48, 47]. This model represents a distributed system as a labeled graph, and a
distributed algorithm executed in this system as a sequence of relabellings of the corre-
sponding graph. This model belongs, as the population protocols, to local computations
systems. In this thesis, we propose to investigate the correspondences between these mod-
els and the possibility of establishing a bridge between both of them.

Assuming abstract communication in a computational model designed for networks
such as sensor network is a theoretical hypothesis. Thus, it becomes interesting to describe
the pairwise bidirectional exchange through a less theoretical communication model using
only minimalistic assumptions. Consequently, representing a population as an anonymous
asynchronous system based on message passing and with port numbering is a suitable
choice. A population protocol corresponds consequently to a distributed algorithm based
on message passing running in this system.

We also focus on another aspect of the execution of a population protocol which is the
scheduling. A scheduler is the entity responsible for the choice of the interacting pairs: it
picks pair of agents that are adjacent in the interaction graph. A scheduler should satisfy
the fairness property to guarantee a fair execution of the protocols. A scheduler designed
for population protocols should also be probabilistic to describe the unpredictable interac-
tion pattern in the population caused by the mobility and the asynchrony of the agents.
All the schedulers proposed for the population protocols are probabilistic central (also
called sequential) schedulers: at each computation step of a protocol, they allow to only
one pair of agents to communicate. As populations are distributed systems, where there
is no centralized control, a distributed scheduler is more fitted to capture the concurrent
interactions as it is able to pick more than one interacting pair at each computation step.
We thus propose to introduce a new probabilistic fair scheduler for population protocols
which is distributed.

The fairness of the schedulers does not guarantee their equivalence [25]. Hence, we
propose to investigate how the proposed distributed scheduler affects the stabilization
time of some protocols compared to the Random Scheduler of Angluin et al. [5]. We also
consider that enabling the proposed scheduler to take into account the states of the agents
may allow introducing termination in population protocols. We even think that this may
lead to faster computations of some protocols as agents that reach some specific states
are not picked any more for interactions.

Contributions

The main contributions of this thesis are summarized as follows.

1. Mapping Population Protocols to Tasks with Graph Relabeling System
and Vice versa. We present a comparative study involving the (mediated) pop-
ulation protocols and tasks with graph relabeling systems. As both use abstract
and pairwise communication, we investigate the existing similarities, and also the
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Introduction

existing differences, between these two models. Based on this comparative study,
we propose a mapping approach. We prove that the computation of a (mediated)
population protocols can always be mapped to a realization of a task with a graph
relabeling system. However, the reverse is not true. In fact, only a realization of
a task with a graph relabeling system whose relabeling rules are limited to LC0
computations with no forbidden contexts or priorities and whose labellings are of
constant size can be mapped to a computation of (mediated) population protocols.

2. Mapping Population Protocols to Distributed Algorithms in Anonymous
Asynchronous Systems based on Message Passing. We establish a compar-
ative study of the population protocol model (that holds for any model extend-
ing as long as it preserves the pairwise interaction concept) and the anonymous
asynchronous message passing model. In fact, we consider that using an abstract
communication model for such networks of tiny objects is a theoretical assump-
tion. Accordingly, we propose a mapping approach that describes the computation
of a population protocol as a distributed algorithm based on message passing in
an anonymous asynchronous system with port numbering. Port numbering is the
minimalistic knowledge that we should afford to go from abstract communication to
explicit one. The bidirectional and simultaneous pairwise interaction in the protocol
is described by two phases in the corresponding algorithm: a synchronization phase,
then a simultaneous send and receive phase.

By combining these two mapping approaches with some existing works, we establish
a bridge between these three models that offers the possibility of describing each
model with another.

3. The Random Scheduler Algorithm. Based on the previous contribution, we
propose an anonymous distributed algorithm with message passing that encodes
the Random Scheduler. This algorithm is designed to run in complete interaction
graphs. This contribution is an enhancement of a result that we published in [60].

4. The Handshake Scheduler. We introduce a new probabilistic scheduler based
on randomized handshakes. We call it the Handshake Scheduler and also denote
it the HS Scheduler. Unlike the proposed schedulers for population protocols that
are sequential, this scheduler is 1−central. Consequently, it allows to more than
only one interaction to take place at a computation step as long as the interacting
pairs of agents are disjoint. Inspired from the existing randomized rendezvous al-
gorithms, we propose an algorithm for this HS Scheduler. We present the analysis
of this algorithm based on which we prove that the HS Scheduler is a probabilistic
consistent fair scheduler with probability 1. This contribution appeared in [61].

5. Time Equivalence: The Random Scheduler and the HS Scheduler. We
investigate the time equivalence of the Random Scheduler and the HS Scheduler
with respect to three protocols: the OR population protocol, the Leader Election
and the Maximal Matching. We present theoretical analyses of the stabilization
time of these protocols when assuming two scenarios of scheduling: the first under
the Random Scheduler, and the second under the HS Scheduler. We also consider
different topologies of the interaction graph: either a complete graph, or a ran-
dom graph. We prove that the Random Scheduler and the HS Scheduler are time
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equivalent with respect to these three protocols when running over a complete in-
teraction graph. However, in a random interaction graph, we prove that each of
these protocols stabilizes faster when running under the HS Scheduler.

6. The Protocol Aware HS Scheduler. We propose the model of population pro-
tocols with some local termination detection. This model extends a subclass of the
populations protocols (and of the models extending them) with a local termination
detection function enabling an agent to detect that its state is final. We then pro-
pose a new probabilistic distributed scheduler which is protocol aware: the Protocol
Aware HS Scheduler. This is a slightly modified version of the HS Scheduler that al-
lows agents with final states to stop participating in the protocol’s computation and
terminate. Consequently, the tiny agents avoid consuming their limited resources
in ineffective interactions. We prove that this scheduler is fair with probability 1.
We also present some upper bounds of the stabilization time of the Leader Election
and the Maximal Matching protocols running under this scheduler. We prove that
the computations of these protocols under this scheduler stabilize faster compared
to a scheduling under the Random Scheduler or the HS Scheduler. A part of this
contribution appeared in [61].

Some of these results were submitted to the journal of Mathematical Structures in
Computer Science and are still under review.

Organization of the Document

We start this dissertation by a preliminary section (Chapter 1) presenting some basic tools
and concepts related to: distributed systems and algorithms, graph theory, mathematics
and probability theory, that the reader may need to better understand what will follow
in this work.

Then, in Chapter 2, we introduce the population protocol model as proposed by An-
gluin et al. We give the formal definition of this model and present the result of Angluin et
al. related to its computational power. We then give an overview of the existing variants
of this model , such as the One Way population protocols that restrict the bidirectional
pairwise interactions to unidirectional ones. We also present the models that extend the
population protocols, by assigning states to the edge, or by allowing more memory space
for the agents, etc.

Chapter 3 consists of two parts. In the first part, we present the model of tasks with
graph relabeling systems which, as the population protocols, belongs to local computation
systems and uses abstract communications. We then establish the comparative study and
the mapping approach of population protocols to tasks with graph relabeling systems and
vice versa. It describes the possibility, or not, of representing each of these two models
with one another.

Then, in the second part of this chapter, we present the anonymous asynchronous
message passing model. We describe the existing methods of port numbering in literature.
Then we introduce the comparative study and the mapping approach of a population
protocol to a distributed algorithm running in an anonymous asynchronous system based
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on message passing with port numbering.
We conclude this chapter by establishing a bridge between these three models: popula-

tion protocols, tasks with graph relabeling systems and anonymous asynchronous message
passing.

In Chapter 4, we focus on the scheduling of the interactions in distributed systems,
and more precisely in population protocols. We give an overview of the existing sched-
ulers as well as the fairness conditions presented in this context of population protocols.
We propose an algorithm that encodes the Random Scheduler in a complete graph. We
then introduce the HS Scheduler. As it is based on randomized handshakes, we give
an overview of the existing randomized handshake algorithms. We then propose the HS
Scheduler algorithm that we analyze to prove the fairness of this scheduler.

We compare our proposed scheduler with the Random Scheduler. Both are proto-
col oblivious fair schedulers. However, are they time equivalent? We investigate this
equivalence in Chapter 5 with respect to three different protocols running under these
two schedulers over different interaction graph structures. The established results are
as described in contribution 5. We conclude this chapter with a table representing the
result of the analysis of the stabilization time of each protocol for each scheduling scenario.

In Chapter 6, we present the model of halting population protocols introduced by
Michail et al [55]. We focus on the halting Leader Election protocol with absence detector.
We study its stabilization time when its computation takes place under the Random
Scheduler, and then under the HS Scheduler.

We then propose to extend a subclass of population protocols (and the models ex-
tending it), with a local termination detection that enables each agent to detect if it
reached a final state. A final state is an irreversible state that does not appear in ef-
fective transition rules. We then introduce contribution 6 related to the Protocol Aware
HS Scheduler. We conclude this chapter with a table representing the established results
concerning the stabilization time of the studied protocols in different scheduling scenarios.

We present in Chapter 7 the ViSiDiA platform which is a Java framework designed
to implement, simulate and visualize distributed algorithms. We enhanced this platform
by adding the possibility of automatically generating graphs. Thanks to this platform,
we illustrate the mapping approaches we established in Chapter 3. We implement all the
proposed schedulers and the studied protocols in this platform. We proceed on simulating
all the studied scenarios. This enables us to validate all the theoretical results obtained
during this work through simulations.

Finally, we conclude this dissertation and present some directions for possible future
works.
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1.1. Distributed Systems and Algorithms

This chapter is an introduction to some basic concepts useful for a better understand-
ing of what is going to be introduced later in this document. In fact, our focus will
basically be on population protocols which can be considered as distributed algorithms
that run over distributed systems. We hence give an overview of such distributed systems
and algorithms. As distributed systems are usually represented by graphs, we introduce
some basic concepts of graph theory. We will also proceed all along this work, on an-
alyzing some protocols under different probabilistic scheduling. We do thus need some
mathematical and probability theory tools that we also define in this chapter.

1.1 Distributed Systems and Algorithms

1.1.1 Distributed Systems

According to Leslie Lamport quotes, “a distributed system is one in which the failure of a
computer you did not even know existed can render your own computer unusable”. More
formally, according to Tel in [67], a distributed system can be described as follows:

Definition 1.1. (Distributed System) A distributed system is an interconnected col-
lection of autonomous computers, processes, or processors.

These computers, processes, or processors are also called the nodes of the distributed
system. Tel considers as autonomous nodes those that have their own private control [67].
In other words, each process should have its own local memory, local program, and local
time (no shared global time). To be interconnected, nodes must be able to communicate
and exchange information.

There are three basic communication models for distributed systems: the shared mem-
ory, the message passing and the local computations. Further details concerning these
two latter models will be provided later in this work.

Each process in the distributed system has a set of variables that forms its state,
also called local state. Whatever the chosen communication model is, an action is the
result of an interaction between processes leading to a modification of at least one of their
states and consequently influencing the global state of the system which can be defined
as follows:

Definition 1.2. (Configuration (System’s Global State)) The set of local states of
all the processes of the system forms its global state. A global state of a system is also
called a configuration.

A distributed system can be either synchronous or asynchronous.

Definition 1.3. (Synchronous vs Asynchronous Systems) In the synchronous model,
the processors of the distributed system execute in lockstep: the execution is partitioned
into rounds.

However, in case of asynchronous systems, there in no upper bound of the time sep-
arating two consecutive computation steps of a processor. Processors run with different
speeds.

A distributed system can be anonymous, which is:
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Definition 1.4. (Anonymous Distributed System) An anonymous system is a system
where no unique identities are available to distinguish the different processes.

Anonymity in distributed systems implies symmetry. In fact, processors may play the
same role and become identical: there is no way to distinguish them [44].

1.1.2 Algorithms

Distributed Algorithms

Definition 1.5. (Local Algorithm) A local algorithm of a process is an algorithm that
runs independently of the number of nodes in the network and whose output is a function
of the input of the process as well as the input available within a constant-radius of its
neighborhood [66, 65].

Definition 1.6. (Distributed Algorithm) A distributed algorithm of a collection P =
{p1, . . . , pn} of processes is a collection of local algorithms, one for each process in P [67].

Definition 1.7. (Deterministic vs Non Deterministic Algorithms) An algorithm
is deterministic, if starting from a given input, it always produces the same output.

This is not the case for a non deterministic algorithm which, for a given input, may
have more than one possible output.

Randomized Algorithms

Lynch [49] as well as Fisher and Jiang [35] provided some impossibility results in dis-
tributed computing that can be caused by the determinism of the solutions, the symmetry
of the processes, etc. However, introducing randomization to the solutions and breaking
the symmetry can make these distributed problems solvable [50].

According to Motwani et al [57], a randomized algorithm can be defined as follows:

Definition 1.8. (Randomized Algorithm) A randomized algorithm is an algorithm
that uses random numbers to influence the choices it makes during its computation. Thus,
its behavior varies from one execution to another even with a fixed input.

Tel also defines a randomized algorithm as a probabilistic (randomized) process that
can be modeled by a process that flips a coin at each step it executes [67]. Thus the possi-
ble next steps depend on the state of the process as well as on the outcome of the coin flip.

Definition 1.9. (Randomized Distributed Algorithm) A randomized distributed
algorithm is a collection of probabilistic processes.

Randomized algorithms are non deterministic while non probabilistic algorithms are
usually referred to as deterministic ones. However, using non probabilistic algorithms
does not guarantee a deterministic behavior of a system. We can consider the case of a
distributed non probabilistic algorithm running over an asynchronous system. The order
of the events (as the order of the receipt of messages) can vary from one execution to
another due to the asynchronism of the system. This can lead to an outcome of the
system that differs from one execution to another.
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1.1.3 Complexity

Analyzing an algorithm consists on defining theoretical estimates for the resources needed
by this algorithm to resolve a given computational problem [44]

Definition 1.10. (Time Complexity) The time complexity is the maximal time re-
quired by this algorithm for any execution.

If the algorithm is synchronous, the time complexity is the number of rounds needed
for the execution of this algorithm.

If the algorithm is asynchronous, this complexity corresponds to the maximal number
of unit of times needed in the worst case in a synchronous execution of this algorithm.

Definition 1.11. (Message Complexity) In a system based on message passing, the
message complexity is measured by the total number of messages exchanged during the
execution of an algorithm.

Definition 1.12. (Bit Complexity) The total number of bits in the messages of an
algorithm is counted by the bit complexity.

In the analysis of a randomized algorithm, which is rather established is bounds on
the expected value of a given performance measure [58]. In [57, 42, 43], some techniques
for the design and for the analysis of randomized distributed are presented. One concept
that may be encountered in the context of the analysis of such algorithms is: with high
probability (w.h.p).

Definition 1.13. (With High Probability) An event occurs with high probability if,
for any α ≥ 1, the event occurs with probability at least 1 − cα

nα
, where cα depends only

on α.

Since we can choose α , we can make the probability arbitrarily low, at a cost of time
and/or space.

In the sequel, with high probability will mean with probability (1 − o( 1
n
)), where n

represents the size of the network where the distributed algorithm runs.

1.1.4 Termination and Termination Detection

A distributed algorithm designed to compute a given function can implicitly or explicitly
terminate. With an implicit termination, an algorithm has a finite execution and reaches
a last configuration where each node of the system has the correct output. However, the
nodes do not know that they reached the last states of the execution of this algorithm.
This not the case when the distributed algorithm explicitly terminates. In fact, the nodes
become aware of the termination that can be local or global [40]. Accordingly, a local
detection of a local termination consists on the fact that a node knows that it has locally
terminated. While, a local detection of a global termination allows a node with its local
knowledge to be aware that all the system terminated.

Designing distributed algorithms with termination detection is still one of the basic
issues especially in case of anonymous distributed systems.
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1.2 Graph Theory

A graph is a set V of vertices and a set E of edges (V and E are finite sets unless declared
otherwise) such that all the endpoints of the edges in E are contained in V [63]. This
graph is often denoted G = (V,E), or (VG, EG), or (V (G), E(G)).

The topology of a distributed system is usually represented by a graph [67, 12] where:
the set of vertices represents the set of the processes of the system, and the set of edges
represent the communication links between the processes. We therefore introduce some
notions and terminologies of graph theory that are useful for the study of distributed
systems and algorithms. The definitions are basically taken from [63, 19, 67, 22].

We would mention that in the sequel we can use node as a synonym for a vertex and
which refers to whatever is modeled by a vertex in a graph model.

1.2.1 Undirected Graphs

Definition 1.14. (Undirected Graphs) An undirected graph G consists of a set of
vertices V and a set of edges E such that E is a collection of unordered pairs of nodes
from V . Then, for any u and v from V , (u, v) ∈ E is equivalent to (v, u) ∈ E.

The size of a graph is the cardinality of its set of vertices. In the sequel, it will be
denoted n. And the cardinality of the set of its edges will be denoted m.

Definition 1.15. (Graphs with no self-loops) A loop or a self-loop is an edge whose
both endpoints are the same vertex.

A graph G is with no self-loop if ∀e ∈ E, the extremities of e are two distinct elements
of V .

Definition 1.16. (Simple Graphs) A simple graph is a graph with no self-loops and
where each two vertices are connected by at most one edge.

Definition 1.17. (Subgraph) A subgraph of a graph G = (VG, EG) is a graph H =
(VH , EH) whose vertex set and edge set are subsets of VG and EG, respectively, such that
for each edge e ∈ EH , the endpoints of e (as they occur in G) are in VH .

H is called a spanning subgraph of G if VH = VG.

Definition 1.18. (Adjacency)

• An edge e is adjacent with a vertex v if v is an endpoint of e.

• Vertices u and v are adjacent if there is an edge whose endpoints are u and v.

• Two edges are adjacent if they have a common endpoint.

Definition 1.19. (Neighborhood) A neighbor of a vertex is any vertex to which it is
adjacent. The set of the neighbors of a vertex u, in a graph G, is denoted NG(u).

Definition 1.20. (Degree) The degree of a vertex v, denoted in the sequel d(v), is the
size of the set of neighbors NG(v).
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Definition 1.21. (Path) A path of length k between two vertices v0 and vk is a sequence
P = (v0, . . . , vk) of nodes such that: ∀ i < k, (vi, vi+1) ∈ E. v0 is the begin node in this
path, and vk the end node.

A cycle is a path whose end node is the begin node.

Definition 1.22. (Distance in a graph) ∀u, v ∈ V , the distance between u and v,
denoted dist(u, v), is the length of the shortest path between this two vertices.

Definition 1.23. (Diameter of a graph) The diameter of a graph is the largest distance
between any two vertices in this graph.

Definition 1.24. (Connectivity) An undirected graph G is connected if ∀u, v ∈ V , a
path between u and v exists in G.

Definition 1.25. (Matching) Let G = (V,E) be an undirected graph. M is a matching
of G if M = {e ∈ E | ∀e1, e2 ∈ M, if e1 = (u1, v1) and e2 = (u2, v2) then u1 6= u2 , u1 6=
v2 , v1 6= u2 and v1 6= v2}.

In words, a matching M of G is a set of edges from E such that each two edges from
M do not share any vertex.

e1

e6

e3 e4

e
5

e2

Figure 1.1: The set M = {e2, e6} is a matching of this graph.

Definition 1.26. (Maximal Matching) Let G = (V,E) be an undirected graph. Let
M be a matching of G. The matching M is maximal, if by adding any edge to it, it will
not be a matching any more. More formally, M is maximal if, for any matching M ′ of G,
M 6⊂M ′.

The matching represented in Figure 1.1 is maximal.

1.2.2 Directed Graphs

Definition 1.27. (Directed Graph) A directed graph G (or digraph) is defined by a
set V of nodes and a set E (sometimes also denoted A) of arcs, or directed edges, and by
two functions s; t : E → V that specify the source and the target of each arc.

We rewrite some of the definitions presented above adapted to the context of directed
graphs.

Definition 1.28. (Neighborhood) In a digraph G = (V,E), an arc (u, v) from E is
called an outgoing edge of u and an incoming edge of v. u is called an out-neighbor of v
and v is an in-neighbor of u.
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Definition 1.29. (Degree)

• The in-degree of a node v, denoted d−(v), is the number of its incoming edges.

• The out-degree of a node v, denoted d+(v), is the number of its outgoing edges.

• The degree d of a node equals the sum of its in-degree and out-degree.

Definition 1.30. (Connectivity)

• A directed graph G is strongly connected if ∀u, v ∈ V , there is a path between u
and v in G.

• A directed graph is weakly connected if, by replacing all of its directed edges with
undirected edges, we obtain a connected undirected graph.

Definition 1.31. (Symmetric Graphs) A symmetric directed graph (V,A, s, t) is a
digraph endowed with a symmetry, that is, an involution Sym : A→ A such that ∀a ∈ A,
we have: s(a) = t(Sym(a)).

v1 v4

v2 v3

Figure 1.2: A symmetric directed graph

Figure 1.2 represents a symmetric directed graph where: Sym((v1, v2)) = (v4, v1),
Sym((v2, v3)) = (v1, v2), Sym((v3, v4)) = (v2, v3) and Sym((v4, v1)) = (v3, v4).

1.2.3 Graphs Topologies

Definition 1.32. (Tree) A tree is an undirected, connected, acyclic graph.

Definition 1.33. (Spanning Tree) A spanning tree of a graph G is a spanning subgraph
of G, whose structure is a tree.

Definition 1.34. (Star) A graph is a star if it is a rooted tree of a maximum diameter 2.
The root is called the center of the star, and the remaining vertices are called the leaves.

Definition 1.35. (Regular Graph) A graph is regular if all its vertices have the same
degree.

Definition 1.36. (Bounded Degree Graph) A graph G = (V,E) has a degree bounded
by ∆, if ∀v ∈ V , d(v) ≤ ∆.

Definition 1.37. (Complete Graph) A graph is complete if for any pair of its vertices,
there is an edge linking them. A complete graph of n vertices is denoted Kn and it has
n(n−1)

2
edges.
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Definition 1.38. (Random Graph) A random graph is a graph obtained by starting
with a set of n vertices and adding edges between them at random.

Different random graph models produce different probability distributions on graphs.
We focus on a commonly studied one: the Erdős-Rényi Gn,p model.

Definition 1.39. (Gn,p Graph) A Gn,p graph is a random graph of n vertices that
includes each possible edge independently with probability p (and so, the edge is not
included with probability q = 1− p).

1.3 Probability Theory

We recall in this section some concepts related to the probability theory and that are
going to be useful later for algorithms analysis. These definitions are basically taken from
[63] and [57].

1.3.1 Basic Definitions

Definition 1.40. (Experiment) An experiment is any physically or mentally conceivable
undertaking that results in a measurable outcome.

Definition 1.41. (Sample Space) The sample space is the set Ω of all possible outcomes
of an experiment.

Definition 1.42. (Event) An event in the sample space Ω is a subset of Ω.

Let {Ej| j ∈ J} be a family of events, then:

Definition 1.43. (Union of Events) The union
⋃
j∈J
Ej is the set of outcomes belonging

to at least one Ej.

Definition 1.44. (Intersection of Events) The intersection
⋂
j∈J
Ej is the set of all

outcomes belonging to every Ej.

Definition 1.45. (Complement of an Event) The complement E of an event E is the
set of outcomes in the sample space not belonging to E.

Definition 1.46. (Disjoint Events) Any two events E and F are disjoint if E ∩F = ∅.
The events E1, E2, E3, . . . are pairwise disjoint if every pair Ei, Ej of distinct events

are disjoint.

Definition 1.47. (σ−Field) Let Ω be a sample space. A σ−field (or σ−algebra) F of Ω
consists of a collection of subsets of Ω satisfying the following conditions:

1. ∅ ∈ F.

2. If E ∈ F, then E ∈ F.

3. If E1, E2, . . . ∈ F, then E1 ∪ E2,∪ . . . ∈ F.

(Ω,F) is called a measurable space.
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Definition 1.48. (Probability Measure) Given a measurable space (Ω,F), a probabil-
ity measure Pr: F→ [0, 1] is a function that satisfies the following conditions:

1. Pr(Ω) = 1.

2. Pr(
∞⋃
i=1

Ei) =
∞∑
i=1

Pr(Ei), if the events {Ei} are pairwise disjoint.

Definition 1.49. (Probability Space) A probability space (Ω,F,Pr) consists of a mea-
surable space (Ω,F) with a probability measure Pr defined on it.

Proposition 1.1. Let E be an event, then

Pr(E) = 1− Pr(E).

Proposition 1.2. (Principle of inclusion-exclusion: the simple form) For any
events E and F ,

Pr(E ∪ F ) = Pr(E) + Pr(F )− Pr(E ∩ F ).

Proposition 1.3. (Booles inequality) If E1, E2, . . . , En are events, then

Pr

(
n⋃
i=1

Ei

)
≤

n∑
i=1

Pr(Ei).

Proposition 1.4. (Monotonicity) If F ⊆ E, then

Pr(F ) ≤ Pr(E).

1.3.2 Dependence and Independence

Definition 1.50. (Independence) Two events E and F are independent if:

Pr(E ∩ F ) = Pr(E)Pr(F ).

The n events E1, E2, . . . , En are independent if: ∀ k such that 2 ≤ k ≤ n, and for j1,
j2, . . . , jk with 1 ≤ j1 < j2 < . . . < jk ≤ n, we have:

Pr(Ej1 ∩ Ej2 ∩ . . . ∩ Ejk) = Pr(Ej1)Pr(Ej2) . . . Pr(Ejk).

Definition 1.51. (Conditional Probability) Given two events E and F with Pr(F ) >
0, the conditional probability of E given F is defined as,

Pr(E|F ) =
Pr(E ∩ F )

Pr(F )
.

Proposition 1.5. (Law of total probabilities) For any event E and any partition of
Ω into events F1, F2, . . . , Fn,

Pr(E) =
n∑
i=1

Pr(E ∩ Fi) =
n∑
i=1

Pr(E|Fi)Pr(Fi).
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Proposition 1.6. (Chain Rule) For any events E1, E2, . . . , En satisfying:

Pr(
n−1⋂
i=1

Ei) > 0,

we have:

Pr(E1 ∩ E2 ∩ E3 . . . ∩ En) = Pr(E1)Pr(E2|E1)Pr(E3|E2 ∩ E1) . . . Pr(En|
n−1⋂
i=1

Ei).

1.3.3 Random Variables

Definition 1.52. (Random Variable) A random variable X is a real-valued function
on a probability space Ω.

Definition 1.53. (Distribution Function) The distribution function of a random vari-
able X is the function given by

FX(x) = Pr(X ≤ x).

Definition 1.54. (Density Function) The density function of a random variable X is

pX(x) = Pr(X = x).

Definition 1.55. (Expected Value) The expected value (mean) E of a discrete random
variable X is given by E(X) =

∑
x xPr(X = k), where the summation is over the range

of X.

Proposition 1.7. (Linearity of the Expectation) Let X1, X2, . . . , Xn be random
variables, and a1, a2, . . . , an reals. Then,

E(a1X1 + a2X2 + . . .+ anXn) = a1 E(X1) + a2 E(X2) + . . .+ an E(Xn).

Proposition 1.8. (Iterated Expectation) Let X and Y be two random variables, then:

E(X) = E(E(X|Y )).

1.3.4 Probability Distributions

We now introduce some distributions that we are going to use later and describe their
corresponding properties [57].

Bernoulli Distribution

We suppose that we flip a coin for which p is the probability of obtaining heads. Let X
be the random variable whose value is 1 if the result is heads, and 0 otherwise. Then, X
has the Bernoulli distribution with the parameter p.

Definition 1.56. (Bernoulli Distribution) A Bernoulli trial with parameter p, with
0 ≤ p ≤ 1, is a random experiment with exactly two possible outcomes: either success
whose probability is p, or failure whose probability is q = 1− p.
Proposition 1.9. If the random variable X has the Bernoulli distribution with the pa-
rameter p, then

E(X) = p.
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Binomial Distribution

We consider n independently and identically distributed random variables X1, X2, . . . ,
Xn whose common distribution is the Bernoulli distribution with parameter p. Let X =
X1 +X2 + . . .+Xn be the random variable denoting the number of heads in a sequence
of n coin flips. Then, X has a binomial distribution with parameter n and p, abbreviated
B(n, p).

Definition 1.57. (Binomial Distribution) Let X denotes the number of successes of
a Bernoulli trial, with parameter p, repeated n times. The Binomial distribution B(n, p)
corresponds to the distribution of X.

Proposition 1.10. Let k be an an integer with 0 ≤ k ≤ n, then the random variable X
with the binomial distribution B(n, p) has the following density function:

Pr(X = k) =

(
n

k

)
pkqn−k.

Also, the expected value of the number of successes is:

E(X) = np.

Geometric Distribution

We repeat now the experiment of flipping a coin until head appears for the first time. We
assume that each coin toss has the Bernoulli distribution with parameter p. Let X be the
random variable that denotes the total number of coin flips. Then, X has the geometric
distribution with parameter p.

Definition 1.58. (Geometric Distribution) Let consider a Bernoulli trial repeated
until the first success is obtained. Let X denotes thus the number of trials. Then, X has
the geometric distribution.

Proposition 1.11. The probability of having k failures before the first success is

Pr(X = k) = (1− p)kp.

And, the expected value of X is

E(X) =
1

p
.

1.4 Mathematical Tools

We provide in this section some elementary mathematical materials such as the asymptotic
notation, approximations for binomial coefficients,. . . whose definitions are basically from
[57]. These tools are required later especially for the analyses of randomized protocols.
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1.4.1 Notation for Asymptotics

Definition 1.59. For any two functions f and g: R→ R+, we say that:

• f(n) = O(g(n)), and say that f is asymptotically at most g, if there exist positive
numbers c and N such that, ∀n ≥ N, f(n) ≤ c g(n).

• f(n) = Ω(g(n)), and say that f is asymptotically at least g, if there exist positive
numbers c and N such that, ∀n ≥ N , f(n) ≥ c g(n). Thus, f(n) = Ω(g(n)) if
g(n) = O(f(n)).

• f(n) = Θ(g(n)), and say that f is asymptotically the same as g, if f(n) = O(g(n))
and f(n) = Ω(g(n)).

• f(n) = o(g(n)) if limn→∞ f(n)/g(n) = 0. We say that f is asymptotically strictly
smaller than g.

• f(n) ∼ g(n) if limn→∞ f(n)/g(n) = 1.

1.4.2 Combinatorial Inequalities

We start by defining the binomial coefficients as follows:

Definition 1.60. (Binomial Coefficients) Let n ≥ k ≥ 0, then(
n

k

)
=

(
n

n− k

)
=

n!

k!(n− k)!
.

If k > n > 0, then
(
n
k

)
= 0.

The binomial coefficients owe their name to their appearance in the binomial expan-
sion:

(p+ q)n =
n∑
k=0

(
n

k

)
pkqn−k.

We now introduce the following power series expansions.

Proposition 1.12. ∀x,

ex = 1 + x+
x2

2!
+
x3

3!
+ . . .

Proposition 1.13. ∀x,

ln(1 + x) = x− x2

2
+
x3

3
− x4

4
. . .

∀n ∈ N, the nth Harmonic number Hn is defined as follows :

Definition 1.61. (Harmonic Number) ∀n ∈ N, the Harmonic number is:

Hn = 1 +
1

2
+

1

3
+ . . .+ +

1

n
.
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Proposition 1.14. For any n ∈ N, the nth Harmonic number is

Hn = ln(n) + Θ(1).

We also consider the inequality involving the harmonic, geometric and arithmetic
means:

Proposition 1.15. Let n ≥ 1, and let (x1, x2, . . . , xn) positive real numbers. Then we
have:

n
n∑
k=1

1
xk

≤
(

n∏
k=1

xk

) 1
n

≤ 1

n

n∑
k=1

xk .

1.4.3 Markov Chains

We introduce concepts related to the Markov chains, based on studies in [57, 43, 69].

Definition 1.62. (Stochastic Process) A stochastic process is simply a collection of
random variables indexed by time.

Definition 1.63. (Filtration) Let F be a σ−field. A filtration (Fn)n≥0 is an increasing
family of sub-σ−algebras of F such that:

F0 ⊆ F1 ⊆ F2 . . . ⊆ F.

Definition 1.64. (Adapted Process) A process X = (Xn)n≥0 is called adapted to the
filtration (Fn) if, for each n, Xn is Fn-measurable.

Definition 1.65. (Markov Property) Let (Ω,F,Pr) be a probability space with a
filtration (Fs, s ∈ I) for some (totally ordered) index set I, and let (S,S) be a measurable
space. A (S,S)-valued stochastic process X = (Xt, t ∈ I) adapted to the filtration is said
to possess the Markov property if, for each A ∈ S and each s, t ∈ I with s < t

Pr(Xt ∈ A|Fs) = Pr(Xt ∈ A|Xs).

In the case where S is a discrete set with the discrete σ−algebra and I = N, this can
be reformulated as follows:

Pr(Xn = xn|Xn−1 = xn−1, . . . , X0 = x0) = Pr(Xn = xn|Xn−1 = xn−1), ∀n ∈ N.

Definition 1.66. (Discrete-time Markov Chain) A discrete-time Markov chain is a
sequence of random variables X1, X2, X3, ... with the Markov property, that is:

Pr(Xn = xn|Xn−1 = xn−1, . . . , X0 = x0) = Pr(Xn = xn|Xn−1 = xn−1), ∀n ∈ N.

A Markov chain M is thus a discrete-time stochastic process defined over a set of
states S, which is the possible values of Xi with of a matrix P of transition probabilities.
The transition probability matrix P has one row and one column for each state in S. The
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Markov chain is in one state at any time, making state-transitions at discrete time-steps
t = 1, 2, . . ..

The probability that the next reached state is j, knowing that the current one is i, is
Pij in the transition probability matrix. Accordingly, ∀ i, j ∈ S, we have 0 < Pij < 1,
and

∑
j Pij = 1.

Satisfying the Markov property implies the memorylessness of a Markov chain. In
fact, only the current state of a Markov chain, and not how it reached it, influences its
future behavior.

1.4.4 Martingales

We here introduce the martingales, super-martingales and sub-martingales. The following
definitions are basically taken from [69].

Definition 1.67. (Martingale, Super-martingale and Sub-martingale) A process
X is called a martingale (relative to (Fn,Pr)) if:

1. X is adapted.

2. ∀n, E(|Xn|) <∞.

3. E(Xn|Fn−1) = Xn−1, with n ≥ 1.

A super-martingale satisfies the same conditions except the third one, which replaced by
the following:

E(Xn|Fn−1) ≤ Xn−1, with n ≥ 1.

Also, a sub-martingale is defined similarly by maintaining the first and second condi-
tions and replacing the last one by:

E(Xn|Fn−1) ≥ Xn−1, with n ≥ 1.

1.4.5 Chernoff Bound

In the following definition, we present one of the possible forms of the Chernoff Bound
usually useful in establishing upper bounds of randomized algorithms with high probabil-
ity [43].

Definition 1.68. (Chernoff Bound) Let X be the sum of n independent random vari-
ables each of which is 1 with probability p and 0 with probability 1− p. Hence, X has a
binomial distribution B(n, p) and E(X) = np. Then:

∀ 0 < a < np, Pr(|X − E(X)| > a) ≤ 2e−a
2/3np.

1.5 Conclusion

We introduced in this chapter some basic concepts related to: distributed systems and
algorithms, graph theory, mathematical and probability theory. These concepts are going
to be used in the study and the analyses of the population protocols that can be con-
sidered as distributed algorithms running under probabilistic schedulers. This model of
population protocols is going to be introduced in the chapter that follows.

26 Nesrine OULED ABDALLAH



Chapter 2

The Population Protocols

27



2.1. The Population Protocols

We are interested in the population protocol model, a computational one introduced
by Angluin et al. in [5, 4]. This model was designed for networks of tiny artifacts, such as
sensor networks, that are passively mobile finite state machines. With no control of their
movement, and with limited memory resources, these artifacts cooperate by establishing
pairwise interactions to compute some function of their distributed entries.

We present in this chapter the formal definition of this model and the characterization
of its computational power. We then give an overview of its variants: the one way
population protocols that restrict the interactions to one way [9], the network graphs
protocols that are designed to study graph properties of the network formed by these
artifacts [3], and the fast population protocol that assume the existence of an already
elected leader in the population where the protocol runs [7].

We also present models that extend the population protocols. The extension can
consist on assigning states to the communication links which corresponds to the mediated
population protocols [29]. Or, it can consist on attributing more memory space to the
agents as it is the case for the passively mobile machines protocols [27]. The community
protocols also extend the population protocols by attributing a distinguished identity to
each artifact [41].

2.1 The Population Protocols

Angluin et al. introduced the population protocol model in 2004 [5, 4]. It is a pair-
wise computational model designed for anonymous, passively mobile, finite state agents
forming populations of finite but unbounded sizes. A population protocol executed in a
population can compute a function or a predicate of distributed entries gathered from the
environment of this population. Each agent of this population considers its entry as an
input which is then mapped to a state according to an input function. Thereafter, inter-
actions between pairs of agents can take place. Any two interacting agents communicate
to each other their respective states and update them according to a defined transition
function of the protocol. These pairwise interactions never stop, but the result of the
computation of the population protocol can be retrieved from the outputs of the agents
once this protocol stabilizes.

A more formal description of this model as well as a characterization of its computa-
tional are presented in this section.

2.1.1 The Population Protocol Model

Angluin et al. define a population P as a finite set of n agents (with n ≥ 2) that can
establish pairwise communications [5, 4]. Two agents are able to interact if they share a
communication link. An interaction graph G = (A,E), also called communication
graph, is associated to the population P , with E ⊆ A × A the set of directed edges
representing all permissible interactions between pairs of agents. The interaction graph
G can not contain self-loops or multi-edges.

Formally, a population protocol that can run in a population P is described as fol-
lows [5, 4]:
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Definition 2.1. (Population Protocol) A population protocol A consists of a 6−tuple
(X, Y,Q, I, O, δ), where:

• X: a finite input alphabet,

• Y : a finite output alphabet,

• Q: a finite set of states,

• I: X → Q: an input function mapping inputs to states,

• O: Q→ Y : an output function mapping states to outputs,

• δ: Q × Q → Q × Q: a transition function defined on pairs of states as a set of
transition rules. If δ(qu, qv) = (q′u, q

′
v), then: (qu, qv) 7→ (q′u, q

′
v) is called a transition,

and δ1(qu, qv) = q′u, and δ2(qu, qv) = q′v are defined.

The transition function δ is not symmetric. Consequently, δ(qu, qv) is not necessarily
equal to δ(qv, qu). This is due to the fact that, for an interacting ordered pair of agents
(u, v) with states (qu, qv), each agent plays a distinguished role: u is the initiator, while v
is the responder (or also called receiver). This is a fundamental assumption for asym-
metry for the population protocol model. Such possible interaction is represented by the
directed edge (u, v) in the set of edges E of the interaction graph.

Now, let A=(X, Y,Q, I, O, δ) be a population protocol. Let P be a population con-
sisting of the finite set A of agents and whose interaction graph is G = (A,E). Running
the protocol A in the population P can be described as follows according to Angluin et
al. [5, 4]:

Initially, all agents receive their inputs from their environment. In case of sensor
networks, these inputs represent the sensed values of a fixed parameter such as: temper-
ature, humidity, etc. The inputs are described by the alphabet X. This initialization
corresponds to the input assignment x which is a function such that: x : A→ X.

Thereafter, all inputs are mapped to states from Q according to the input function I.
The set of resulting states forms the initial configuration C0 of the population P . As
introduced in [5, 4], a population configuration is a snapshot of the states of the
agents forming the population. A more formal definition can be as follows:

Definition 2.2. (Population Configuration) A configuration of the population P
where the protocol A runs, is a mapping C: A → Q that specifies the corresponding
state of each agent of this population.

Once states are attributed, interactions between pairs of agents can take place. If
two agents are able to interact, they establish a two-way communication. They hence
exchange their respective states and update them according to the transition function δ.
If this update leads to a modification of at least one of the two states, then the population
transitions from the current configuration to a new one.

Definition 2.3. (Transition) Let C and C ′ be population configurations, and let u and
v be distinct agents. We say that C goes to C ′ via an encounter e = (u, v) ∈ E, denoted
C

e→ C ′, if:
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- C ′(u) = δ1(C(u), C(v)),

- C ′(v) = δ2(C(u), C(v)) and,

- C ′(w) = C(w) for all w ∈ Ar {u, v} .

C ′ is the configuration resulting from the interaction between the pair of agents u and
v on the configuration C.

We say that C goes to C ′ in one step, denoted C → C ′, if C
e→ C ′ for some encounter

e ∈ E. C → C ′ is called a transition.

Starting from a configuration C, the configurations that can be reached by the popu-
lation P after some (one or more) transitions are called reachable configurations.

Definition 2.4. (Reachable Configuration) Let C and C ′ be two population config-
urations. We say that C ′ is reachable from C if there is a sequence of configurations
C0, C1, . . . , Ck where C = C0 and Ck = C ′ and ∀i ∈ {0, 1, . . . , k − 1}, Ci → Ci+1. We

denote this by C
∗→ C ′.

Accordingly, a formal definition describing the execution of a population protocol over
a population is as follows [4]:

Definition 2.5. (Execution) An execution is a finite or infinite sequence of population
configurations: C0, C1, . . ., Ci, . . ., such that: ∀i, Ci → Ci+1.

An infinite execution is fair if for every possible transition C → C ′, if C occurs
infinitely often in the execution, then C ′ also occurs infinitely often.

A computation is an infinite fair execution.

We can deduce from the definition of a computation that a population protocol does
not halt and that the pairwise interactions never stop. Nevertheless, a population protocol
can stabilize (converge). Stabilization is reached once the outputs stop changing: this is
called output stabilization.

Definition 2.6. (Output Stabilization) A population protocol A reaches output-
stabilization when its computation leads to a configuration C such that, for any C ′

reachable from C, O(C) = O(C ′) and consequently, ∀u ∈ A, O(C(u)) = O(C ′(u)).

The output assignment of a configuration C is a function yC : A → Y defined
as yC(u) = O(C(u)), ∀u ∈ A. In other words, a population protocol reaches output-
stabilization if, it reaches a configuration C such that: for any configuration C ′ reachable
from C, C and C ′ have the same output assignment. The configuration C is called an
output-stable configuration.

Stabilization is a global property of the population that agents, based on their limited
knowledge (which consists of their own states), can not detect. Hence, they continue
interacting. However, whatever the interactions that take place are, the outputs do not
change.

If the computation of the protocol does not converge, the output of this computation
is said undefined.

There is a particular case of output stabilization, which is state stabilization [54].
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Definition 2.7. (State Stabilization) A population protocol A state-stabilizes, or has
stabilizing states, if any computation of A eventually reaches a configuration C such that:
for every configuration C ′ reachable from C, C ′ = C. The configuration C is a state-stable
configuration.

State stabilization is a stronger requirement compared to output stabilization. Any
protocol that state-stabilizes also output-stabilizes, however the inverse is not always true.
We would also mention that eventually˝means in a finite number of steps˝, that de-
pend on the choice of the encounters during transitions. We will explore this in details in
Chapter 5.

Angluin et al. focused on always-convergent population protocols only. A protocol
A is always-convergent if every computation on every input assignment x converges.

Let X = XA denote the set of all input assignments of the population protocol A.
And, let Y = Y A denote the set of all its output assignments.

Let RA be a relation. ∀x ∈ X , ∀y ∈ Y , RA(x, y) holds iff there is a computation of A
beginning in configuration Cx, where Cx(w) = I(x(w)) for all agent w ∈ A, that stabilizes
to output y. We say that the population protocol A running in the population P stably
computes the input-output relation RA.

Now, if the relation RA is a single-valued relation, and more specifically a predicate,
then a definition of its stable computation can be as follows:

Definition 2.8. (Stably Computable Predicate) Let p : X → {0, 1} be a predicate
over X . p is said to be stably computable by the population protocol model A if for any
input assignment x ∈ X , any computation of A starting from I(x) eventually reaches an
output stable configuration C where, for all agents w, O(C(w)) = p(x).

That is, when a population protocol A stably computes a predicate p, it stabilizes to
an output stable configuration in which all agents agree about a correct answer which is
the output of p(x), consequently 0 or 1.

According to the description of the population protocol model, we can notice that
these protocols have two main characteristics that are:

- Anonymity: The design of a population protocol does not depend on the identities
of the agents. In fact, these agents are supposed to be equipped with a constant
memory space. Consequently, they do not have enough memory space to store
identities: they are hence anonymous.

- Uniformity: The design of a population protocol does not depend on the population
size.

To better illustrate the computation of a population protocol, we consider now as an
example the scenario of the flock of birds. This scenario was introduced by Angluin et al.
in [5].

Example 2.1. The Threshold Protocol. We consider a population of birds where
each one is equipped with a sensor to measure its temperature. A bird is supposed to
have an elevated temperature if this last is higher than a defined constant c. The sensors
are also equipped with wireless media that enable them to form an ad-hoc network. They
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communicate and exchange data to provide the monitor of this flock of birds with some
information about the global state of this flock. Let us consider the following question:
are there at least five birds with elevated temperatures? If yes, an alert of a possible
epidemic should be launched. Thus, let NSB denote the size of the set of sick birds (those
having elevated temperatures). The question can then be reformulated to the following
predicate: NSB ≥ 5.

The authors proposed the population protocol Threshold, that once run in the moni-
tored population, provides the answer to this question. This protocol is described by the
6−tuple (X, Y,Q, I, O, δ) with:

• X = Y = {0, 1},

• Q = {q0, q1, q2, q3, q4, q5},

• I(i) = qi,

• O(qi) =

{
0, if 0 ≤ i ≤ 4

1, otherwise.

• δ(qi, qj) =

{
(qi+j, q0), if 0 ≤ i+ j < 5

(q5, q5), otherwise.

The computation of this protocol begins at a global start signal. Each sensor measures the
temperature of the bird carrying it. The result of this measurement is described with the
input alphabet and should consequently be as follows: 1 if the temperature is elevated,
and 0 otherwise. Each agent (sensor) maps its input according to the input function I
such that: I(1) = q1 and I(0) = q0. Pairwise interaction can then take place. Each two
communicating sensors exchange their states and update them according to δ. If the sum
of both states is less than 5, then the state of the initiator is updated to this sum, while
the state of the responder is reinitialized to q0. Otherwise, they both become with state
q5.

This protocol stabilizes if we wait a sufficient interval after the global signal start.
If there are at least five birds with elevated temperatures, the state q5 will appear and
will be spread among the whole population. Hence, all the agents, being with state q5,
will output 1 which corresponds to a “yes” answer to the asked question (and to “true”
as a value of the threshold predicate). However, if the number of birds with elevated
temperatures is less than 5, the state q5 will never appear and all the agents will output
0 which corresponds to a “no”answer (or “false” as a value of the predicate). The correct
answer can be retrieved from any sensor of the population.

2.1.2 Computational Power

The computational power of the population protocols was characterized in [6, 10] to be
exactly the Presburger Arithmetic. The Presburger arithmetic, also defined as semi-linear
predicates, is the first-order theory of natural numbers with addition and no multiplication
[62]. It is a restriction of Peano’s arithmetic where all the axioms for multiplication are
removed.

According to [4], a Presburger formula can be expressed as a Boolean formula over
predicates that can be described by one of the following three forms:
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1.
∑
ai xi + c1 <

∑
bi xi + c2

2.
∑
ai xi + c1 =

∑
bi xi + c2

3.
∑
ai xi + c1 ≡m

∑
bi xi + c2. The symbol ≡m with m ≥ 2 denotes equivalence

modulo m. ∀x, y integers, x ≡m y holds iff x ≡ y ( mod m), that is: there exist
two integers z and q such as: (z = m× q) and (x+ z = y).

where ai, bi, c1, c2 and m are integer constants and xi are non-negative integers.

2.1.3 Restricted Communication Graph

Angluin et al. initially supposed that population protocols run in populations of agents
that are passively mobile and that, consequently, each pair of agents will eventually meet
and interact. Thus, they assumed that the interaction graphs are complete so that all pairs
interactions are permissible. Hence, the computational power of population protocols was
characterized for those running over complete interaction graphs. Yet, the authors proved
in [4] that, as long as the interaction graph is still connected, restricting the interactions
does not affect the computational power of the population protocols. In fact, any predicate
that is stably computable in a complete interaction graph is also stably computable in
any weakly-connected interaction graph.

2.2 Variants of the Population Protocol Model

In the sequel, we are going to present three variants of the population protocol model
also proposed by Angluin et al. The first restricts the bidirectional communication to
unidirectional ones. The second, is a slightly modification of the original model that
focuses on network graphs properties. The last one supposes the existence of an already
elected leader in the population.

We should mention that for these variants the condition of stable computation does
not require anymore that all agents output 0 or 1. It suffices that the output satisfies
some specified requirement that depends on the protocol and that can be for example:
only one agent outputs 1, while all the rest output 0.

2.2.1 One Way Population Protocols

The population protocol model supposes that the communication between a pair of inter-
acting agents is bidirectional and simultaneous. This model may sometimes be unrealistic
for some networks with radio communications.

Thus, Angluin et al. proposed in [9] the one way population protocols. They are a
modified version of the population protocols where the communications are not bidirec-
tional anymore but only one way. An interaction is hence split into separate send and
receive events, and the transition function is also restricted. In fact, given an interacting
pair, the responder changes its state according to the received state of the initiator. How-
ever the state of the initiator, if it is updated, will not depend on that of its responder as
it does not know it.

There are different versions of the one way population protocols model. An initiator
may be able to detect that it has sent a message and accordingly changes its state. This
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is called the transmission model. However, in the observation model, the sender is not
able to detect this event and then becomes unable to change its state. In this case, the
sender is passively observed by the receiver.

Also, in the one way population protocol model, the delivery can be immediate so
that the send and receive events happen simultaneously, as it can be delayed (or queued)
where the send and receive may imply delayed messages.

An example of a one way population protocol follows.

Example 2.2. The 3−States Approximate Majority Protocol. Suppose that in
a given population P there are two candidates, x and y, for some election. Some agents
of the population may decide to vote for x, others may choose y, while the rest of the
population may be undecided and can choose to vote blank. We should mention that the
number of agents choosing x, and also those choosing y, should be > 0.

To decide what the majority voted for, Angluin et al. proposed the following 3-State
Approximate Majority protocol [8]. It is a one way population protocol consisting of the
6-tuple (XAM , YAM , QAM , IAM , OAM , δAM) where:

• XAM = QAM = {x, y, b} where b denotes the blank vote,

• YAM = {x, y},

• IAM(x) = x, IAM(y) = y, IAM(b) = b,

• OAM(x) = x and OAM(y) = y,

• δAM(x, b) = (x, x), δAM(x, y) = (x, b), δAM(y, b) = (y, y), and δAM(y, x) = (y, b).

The input of each agent in this population corresponds its choice for this vote. The inputs
are themselves the states of the agents as the input function IAM is the identity function.
Then pairwise interactions start. When an initiator is with state x or y, it attempts to
convert any responder that it meets to adopt its state. It can succeed to immediately
convert an undecided responder. However, it can only reduce an opposing responder to
undecided status.

The protocol stabilizes when a consensus on one of the values x and y is reached.
Then, all the agents output x or y. If initially the number of agents with state x exceeded
the number of agents with state y, the consensus will be on x and vice versa.

2.2.2 Network Graphs Protocols

When the finite state agents of a population communicate, they form a network repre-
sented by the interaction graph supposed to be at least weakly connected. Angluin et al.
proposed to study graph properties of these networks. They defined a graph property as
a function p from a graph G to the set {0, 1} where p(G) = 1 if and only if G has the
corresponding property. They then introduced protocols designed to study such graph
properties: the network graphs protocols [3].

A network graph protocol is a population protocol where all the agents start with
the same initial state. A graph property is stably computable if all the agents eventually
converge to the correct output. The authors described some stably computable properties
i.e: whether the communication graph is a directed star, or it contains a directed cycle,
or it has degree bounded by some constant, etc.
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Example 2.3. The In-Degree Protocol. We here present the example of the network
graph protocol that can decide whether a graph G has a vertex of in-degree greater than 1.
This protocol was introduced by Angluin et al. in [3].We call this protocol the In-Degree
protocol and it consists of (X, Y,Q, I, O, δ) where:

• X = {−},

• Y = {0, 1},

• Q = {−, I, R, T},

• ∀x ∈ Q, O(x) = 1 if x = T , and 0 otherwise,

• δ :



(−,−) 7→ (I, R),

(I, R) 7→ (−,−),

(−, R) 7→ (T, T ),

(T, x) 7→ (T, T ), ∀x ∈ Q,
(x, T ) 7→ (T, T ), ∀x ∈ Q.

All the vertices (agents) start with state −. If every vertex in the graph has in-degree
at most 1 then only the first two transitions rules occur. Consequently, the protocol will
stabilize to a configuration where all agents output 0. However, if there is some vertex
with in-degree at least 2, then the state T appears and will be spread. In such case, when
the protocol stabilizes, all the agents output 1.

Angluin et al. also proposed two models that are slight modifications of the net-
work graphs protocols: the network graphs protocols with stabilizing inputs, and the non
deterministic population protocols [3].

Network Graphs Protocols with Stabilizing Inputs

In this variant of network graphs protocols, the inputs of the agents of the population
are not initially fixed. They vary for a while and then finish by stabilizing. The only
modification regarding the original model concerns the transition function that becomes
as follows:

δ : (Q×X)× (Q×X)→ (Q×Q)

Thanks to this variant, the composition of protocols becomes possible. Indeed, let A
and B be two protocols such that: A is a network graph protocol whose outputs are from
a finite alphabet X, and B is a network graph protocol with stabilizing inputs that are
also from X. Then, when composing A with B, the stabilizing outputs of A will be the
stabilizing inputs of B.

Non Deterministic Population Protocols

In non deterministic population protocols, the transition function δ is non deterministic.
It describes more than one possible transition for a given pair of states as it is shown in
the example below.
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Example 2.4. The d−Coloring Protocol. Coloring a graph consists on attributing
colors to its vertices. A graph is d-colorable if each of its nodes can be colored with one
of the d colors such that no two neighbor nodes have the same color.

The following non deterministic protocol stabilizes to a correct d-coloring if the network
graph is d-colorable. Otherwise, if the network graph is not d-colorable, this protocol will
never stabilize and the nodes will never stop changing their colors.

• X = {0},

• Y = Q = {0, 1, ..., d− 1},

• I(x) = x and O(x) = x, ∀x ∈ {0, 1, ..., d− 1},

• δ(i, i) = (j, k) where j and k are randomly chosen from the set {0, 1, ..., d− 1}.

The authors of [3] stated that the nondeterminism of the transition function does not
increase the class of stably computable predicates.

2.2.3 Fast Population Protocols with a Leader

Fast population protocols are population protocols where initially there is a leader sup-
posed to be already elected in the population [7]. To be able to design a fast population
protocol, a leader should first be designated.

We recall that leader election consists on designating a unique process as a leader. It
is a fundamental problem not only in population protocols, but in distributed systems in
general. The population protocol, called Leader Election protocol, that elects only one
leader in a population was introduced by Angluin et al. in [3]. It consists of the following
6−tuple (XLE, YLE, QLE, ILE, OLE, δLE):

• XLE = {L},

• YLE = {L, F},

• QLE = {L, F},

• ILE(x) = x and OLE(x) = x, ∀x ∈ {L, F},

• δLE(L,L) = (L, F ), δLE(L, F ) = (F,L) and δLE(F,L) = (L, F ).

In the classical leader election algorithms in distributed computing, all the processes
of the distributed system initially start with the same state which is “simple candidate”.
Then, they become either “elected (L)” or “failed (F)”. Also, once a node updates its
state to ”elected”, it never changes anymore.

Nevertheless, this population protocol presents a different approach as initially all
agents start by being “leader”. Furthermore, when this protocol stabilizes with only one
“leader” state in the whole population, this state can be a swapping one.

During a pairwise computation, if both agents are with state L, the initiator preserves
its state while the responder becomes F . Otherwise, if one agent is with state L and the
other F , they just interchange their states.
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When the protocol stabilizes, it guarantees that there is only one agent with the state
L. However, this leader state may jump from one agent to another from one computation
step to another.

This population protocol works in any weakly connected interaction graph. Yet, if
we suppose that this last one is complete, we can restrict δLE to only one transition rule
which is δLE(L,L) = (L, F ). We can thus guarantee that the leader state will not be a
moving one.

Now, once a leader is appointed, it can proceed in coordinating the agents of the
population to compute a new protocol. This represents the fundamental assumption of the
fast population protocols. In fact, such coordination may lead to a faster stabilization of
some population protocols: that is less computation steps are needed to reach a protocol’s
stabilization. This was proved by Angluin et al. [7].

2.3 Models Extending the Population Protocols

Once the population protocol model was introduced and its computational power exactly
characterized, some new open questions arised. How some modifications such as: accord-
ing a state to the edge linking the interacting pair, according more memory space to the
agents, or giving identities to the agents of the population, ... may affect the original
model as well as its computational power. We here present some models that extend the
population protocol model and that also provide some answers to these questions.

2.3.1 The Mediated Population Protocols

The mediated population protocols extend the basic population protocols by adding states
to the edges of the interaction graph which is translated into equipping each communica-
tion link with a buffer of constant storage capacity. This model preserves the anonymity
and the uniformity of the original population protocol model.

A more formal and detailed description of the mediated population protocol model
follows [29].

Definition 2.9. (Mediated Population Protocol) A mediated population protocol
consists of (X, Y,Q, S, I, O, δ, ι, ω) where:

• X: a finite input alphabet,

• Y : a finite output alphabet,

• Q: a finite set of agent states,

• S: a finite set of edge states,

• I: X → Q: an agent input function mapping inputs to agents states,

• O: Q→ Y : an agent output function mapping agents states to outputs,

• δ: Q×Q× S → Q×Q× S: a transition function,

• ι: X → S: an edge input function mapping inputs to edge states,
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• ω: S → Y : an edge output function mapping edge states to outputs.

A possible additional component, but which is not mandatory, of a mediated popu-
lation protocol is an output instruction r. This output instruction specifies how the
output of this protocol should be interpreted.

As an example of the mediated population protocols, we present the VarProduct pro-
tocol [29].

Example 2.5. The VarProduct Protocol. Let P be a population whose interaction
graph is complete and where each agent can have as initial input: a, b, or c. Let Ni

denote the size of the set of agents with state i. We consider the following predicate:
Nc = Na × Nb. As already mentioned in a previous section (see Section 2.1.2), the
Presburger arithmetic does not include multiplication. As a consequence, there is no
population protocol that can stably computable this predicate.

Chatzigiannakis et al. introduced then the following VarProduct mediated population
protocol (X, Y,Q, S, I, O, δ, ι, ω) that can stably compute this predicate:

• X = {a, b, c}, Y = {0, 1},

• Q = {a, ā, b, c, c̄},

• S = {0, 1},

• I(x) = x, ∀x ∈ X,

• O(a) = O(b) = O(c̄) = 1 and O(c) = O(ā) = 0,

• ι(x) = 0, ∀x ∈ X,

• ω(x) = x, ∀x ∈ S,

• δ(a, b, 0) = (ā, b, 1), δ(c,ā, 0) = (c̄, a, 0), and δ(ā, c, 0) = (a,c̄, 0).

The output instruction r of this protocol can be: ”If there is at least one agent with
output 0, then reject, else accept.”

As the interaction graph is complete, Na×Nb equals the number of edges leading from
agents in state a to agents in state b. Thanks to edge states, an agent with state a can
remember an agent with state b that it has already met: the edge linking them is marked
with state 1 instead of 0. For each agent b that it has met, an agent with state a, and that
becomes ā, tries to erase an agent with state c. Consequently, if initially Nc > Na ×Nb,
then the protocol stabilizes to a configuration where there is at least one agent with state
c that remains and whose output is 0. Otherwise, if Nc < Na × Nb, then the protocol
stabilizes with at least one agent with state ā in the configuration and whose output is
also 0. Then, Nc = Na ×Nb is true only if there no agent with state c or ā that remains,
so that all agents output 1.

Chatzigiannakis et al. hence proved that the model of mediated population protocols
has a stronger computational power compared to the population protocol model.

The model of mediated population protocols was also extended, like the population
protocols, to study graph properties. In this context, the graph decision mediated popu-
lation protocols (GDMPP) and the mediated graph protocols (MGP) were designed [28].
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2.3.2 The Passively Mobile Machines Protocols

The constant memory of an agent in population protocols is a constraining characteristic
of this model. A new model relaxing this constraint was introduced in [27]: the passively
mobile machines protocols. This model extends the population protocols by allowing the
agents to have greater memory space. An agent is not an automaton anymore, but a
Turing machine.

We provide a formal description of this new model.

Definition 2.10. (Passively Mobile Machines Protocol) A passively mobile ma-
chines protocol is a 6-tuple (X,Γ, Q, δ, γ, q0) where:

• X is the finite input alphabet, where B /∈ X (B is the blank symbol),

• Γ is the finite tape alphabet, where B ∈ Γ and X ⊂ Γ,

• Q is the finite set of states,

• δ : Q× Γ4 −→ Q× Γ4 × {L,R}4 × {0, 1} is the internal transition function,

• γ : Q×Q −→ Q×Q is the external transition function, and

• q0 ∈ Q is the initial state.

In the passively mobile machines protocol model, each agent is supposed to be equipped
with:

• A sensor to sense a specified parameter from the environment. The sensed value
will be considered as the input of the agent.

• Four read/write tapes which are: the incoming message tape, the outgoing mes-
sage tape, the working tape, and the output tape. These tapes are assumed to be
unbounded only to the right.

• A control unit where the state of the agent is stored. This unit applies the transition
functions.

• Four heads, one for each tape. A head is able to read from and write to the cells of
the tape. It is also able to remain stationary or to move either to the left or to the
right.

• A binary working flag that can be set to 0 when the agent is ready for interaction
or to 1 when this last is working internally.

All agents start with the state q0, with a working flag set to 1 and with tapes containing
only the blank symbol. Then, they all get their inputs from their environment described
with symbols from the alphabet X. This input symbol will be written in the working
tape of the agent. As the working flag is set to 1, the control unit can apply the internal
transition function. This unit reads its own state as well as the symbols under the heads
of the four tapes. Then, after updating all of them, moves to left/right or keeps stationary
each head of the tapes, and finally sets the working flag to 0 or 1.
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The pairwise interactions in this model depends on the working flag of the agents. In
fact, two agents can interact only if their respective working flags are set to 0. When an
interaction between two agents takes place, the external transition function is applied to
update the states of these interacting pair. The outgoing message of each of these two
agents is copied in the incoming message tape of the other (replacing, thus, the previous
content of this tape). Then, the working flags of this pair of agents are set to 1 as the
internal transition function should be applied.

PALOMA

One particular case of the passively mobile machines protocols is the model of passively
mobile logarithmic machines (PALOMA) [26]. In this model, each agent is equipped
with O(log(n)) memory space, where n is the size of the population. Chatzigiannakis
et al. proved that there is a PALOMA protocol that stably computes the predicate
Nc = Na×Nb. Also, assigning unique identities, from the set {0, 1, . . . , n−1}, to the agents
of the population is also possible with this model. In the corresponding protocol, the
agents start with the identity 0. When an interaction takes place, the initiator compares
its id with the responder id. If they are equal, the initiator increments its id. As the
interaction graph is supposed to be complete in this model, all agents will eventually
meet. And thanks to the fairness of the execution of the protocols, each agents will finally
have a unique id from {0, 1, . . . , n− 1}.

2.3.3 The Community Protocols

In a community, each individual has a distinguished name or identity. This inspired
Guerraoui et al. in their work in [41] where they proposed a new model extending the
population protocols called the model of community protocols. In this model, an agent
can store, in addition to O(1) bits of states, a unique identifier, and O(1) other agents
identifiers. These identifiers are in a read only mode. They are used only for comparison
and thus never modified.

Let U be an infinite ordered set containing all possible identifiers and let ⊥ be the null
identifier. Then, a community protocol can formally be described as follows [41]:

Definition 2.11. (Community Protocol) A community protocol consists of an 8-tuple
(X, Y,B, d, I, O,Q, δ), where:

• X is the finite input alphabet,

• Y is the finite output alphabet,

• B is the finite set of basic states,

• d is a non negative integer representing the number of identifiers that can be recorded
by an agent,

• I : X −→ B is the input function mapping input symbols to basic states,

• O : B −→ Y is the output function mapping the basic states to output symbols,
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• Q = B × (U
⋃
{⊥})d is the set of agent states, and

• δ : Q×Q −→ Q×Q is the transition function.

The initial state of each agent in a population running a community protocol is of
the form (bi, idi,⊥,⊥, . . . ,⊥). bi ∈ B is the initial basic state of this agent and it equals
I(xi) with xi the input of this agent. idi is the unique identifier of this agent. Then, the
remaining components of this state are d− 1 repetitions of the symbol ⊥.

Community protocols preserve the uniformity property as their design do not depend
on the size of the population. However, they are clearly not anonymous.

Guerraoui et al. proved that their model has a stronger computational power than
the population protocols. They also proved that it is robust and can tolerate the presence
of a constant number of agents with Byzantine failures. An agent that has a Byzantine
failure is an agent that can behave arbitrarily. It can pretend being in any state when
interacting with other agents.

2.4 Conclusion

We presented in this chapter the computational model of population protocols. Run in a
population of anonymous agents with finite set of states, a population protocol computes
a predicate of the distributed inputs of these agents, gathered from their environment.
Interactions between pairs of agents allow them to exchange their states and to update
them according to some given rules. The result of the computation can be extracted
from the outputs of the agents of the population when the protocol stabilizes. Population
protocols have two basic properties: uniformity and anonymity. We gave an overview
of the variants of this model, as well as models that enhance it, that all preserve the
uniformity property but not the anonymity. These models also, except the one way
population protocols, are all based on pairwise interactions like the population protocols.

In the next chapter, we are going to compare the population protocol model (and some
of its extensions) with two other models and establish a bridge that allows us to describe
it with each one of them. The first one is a model that also uses abstract communications.
However, the second one is a model with explicit communications.
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3.1. From Population Protocols to Tasks with Graph Relabeling Systems

The population protocols, as they are based on local interactions and computations,
belong to local computation systems. In this chapter, we introduce another model of
local computation systems, and more specifically of local computations in graphs, which
is tasks with graph relabeling systems [48, 47]. Population protocols, as well as tasks
with graph relabeling systems, are models using abstract communications. We present in
this chapter a comparative study between these two models and establish some analogy
between them. This allows us to prove the possibility of mapping the execution of a
(mediated) population protocol to a realization of a task according to a graph relabeling
system. However, we prove that the reverse is possible only under some conditions.

On the other hand, population protocols were designed for networks of tiny objects
such as sensor networks. Hence, we think that supposing abstract communications is
too theoretical for such networks. We thus propose to describe the computation of a
population protocol in a population of anonymous agents, as a distributed algorithm
running in an anonymous asynchronous system based on message passing.

3.1 From Population Protocols to Tasks with Graph

Relabeling Systems

A distributed system is a collection of interacting processes that collaborate to reach a
global result. These interactions can be based on a shared memory model where the
processes perform read/write primitives on shared registers. Another interaction model,
is the message passing model where the processes exchange messages, through the com-
munication links, using send/receive primitives. A third basic interaction model, is the
local computations model on which are based the local computations systems [24].

We will focus, in this section, on this last model, and more specifically on the local
computations in graphs with tasks and graph relabeling systems. This model present, in
fact, some similarities with the (mediated) population protocols that we found interesting
to investigate.

3.1.1 Local Computations Systems

Local computations systems are described as networks of processors that have only access
to local resources. The local resources consist of the state of the process, the states of its
neighbors and those of the links between them. They are the result of the restricted local
interactions of each process with its direct neighbors. In a local computation system, all
processors execute the same program.

Accordingly, the population protocol model, as well as the models extending it, belongs
to this class of systems that have been the object of different studies. Von Neumann
introduced in [68] the cellular automata model where the computations are made by a
collection of synchronously communicating finite automata forming a network, such as
a grid, which is highly symmetric and regular (no mobility). According to the states of
its neighbors, an agent can update its state. A similar model, that does not require the
regular structure of the network, is proposed by Rosenstiehl et al. in [64]. A computation
step also consists on computing the next state of each process according to its current
state and those of its neighbors. Litovsky, Métivier, Sopena and Zielonka [48, 47] proposed
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a model based on graph relabeling (rewriting) systems where a distributed computation
is described as a transformation of the graph representing the distributed system.

We focus on this last model which is a tool for coding distributed algorithms [46] and
proving their correctness [15], used even to recognize some graph properties and families
of graphs [39]. This model presents some correspondences with the population protocols
model that we would later explore.

3.1.2 Local Computations in Graphs with Graph Relabeling
Systems

In the model of Litovsky et al., a network is represented as a finite connected graph with
some level of abstraction of the distributed system model. The processes are represented
by the set of vertices and the direct communication links are represented by the set
of edges. The local state of each process (respectively communication link) is denoted
by a label assigned to the corresponding vertex (respectively edge). These local states
associated to each vertex and edge describe the global state of the network, denoted
labeling of the graph.

Accordingly, a labeled graph can formally be described as follows [46]:

Definition 3.1. (L−labeled graph) A L−labeled graph (or a graph labeled over L) is
a graph where the vertices and the edges have labels from a possible infinite alphabet L.
It is denoted by (G, σ) where G = (V,E) is a graph and σ : V ∪ E → L is the labeling
function. G is called the underlying graph of (G, σ) and σ is a labeling of G.

A state transformation of a network represented by a graph G corresponds to a re-
labeling on this graph: it is any pair of global states ((G, σ), (G, σ′)) of labeled graphs
over the same underlying graph G. A relabeling relation on G is a set of relabellings
on G.

Based on these concepts, Litovsky et al. introduced the graph relabeling systems to
describe local computations in graphs.

Graph Relabeling Systems

Local interactions in a local computation system can be traduced by graph relabeling
rules. A graph relabeling rule illustrates the possible modification of the labels attached
to the vertices and edges of a graph if they satisfy a given description. Formally, it is
defined as follows [46] :

Definition 3.2. (Graph Relabeling Rule) A graph relabeling rule is a triple R =
(GR, σR, σ

′
R) such that (GR, σR) and (GR, σ

′
R) are two labeled graphs. The labeled graph

(GR, σR) is the left-hand side of R and (GR, σ
′
R) is the right-hand side.

An algorithm can be encoded by means of local relabellings. These relabellings are
according to the graph relabeling rules of the graph relabeling system associated to this
algorithm. A graph relabeling system can be formally described as follows [46]:

Definition 3.3. (Graph Relabeling System) A graph relabeling system is a triple
R = (L, I,P) where L is a set of labels, I a subset of L called the set of initial labels
and P a finite set of relabeling rules.

Computing Models for Networks of Tiny Objects 45



3.1. From Population Protocols to Tasks with Graph Relabeling Systems

A computation step, resulting from a local interaction, corresponds to a relabeling
step having the following definition [46]:

Definition 3.4. (Relabeling Step) Let R = (L, I,P) be a graph relabeling system. A
R−relabeling step is a 5−tuple (G, σ,R, ϕ, σ′) such that: R = (GR, σR, σ

′
R) is a relabeling

rule in P , and ϕ is both an occurrence of (GR, σR) in (G, σ) and an occurrence of (GR, σ
′
R)

in (G, σ′).

In other words, a relabeling step consists on applying the relabeling rule R that mod-
ifies the labels of the elements of ϕ(GR, σR) according to σ′R. Consequently, the graph G
has a new labeling σ′, obtained from σ.

A computation (or an execution) corresponds to a relabeling sequence. A computation
stops when no relabeling rule of the graph relabeling system is applicable anymore [46]:

Definition 3.5. (R−irreducible) A labeled graph (G, σ) is R−irreducible if there is no
occurrence of (GR, σR) in (G, σ) for every relabeling rule R in P .

Characteristics of Local Computations with Graph Relabeling Systems

Computations with graph relabeling systems, as they belong to local computations in
graphs, satisfy the following conditions [15]:

1. They do not affect the structure of the underlying graph, but only the labeling of
its vertices and edges.

2. The locality of these interactions implies that each relabeling step can only change
the labellings of a connected subgraph with a fixed size in the underlying graph.

3. The local context of the relabeled graph determines if a relabeling rule is applicable
or not, which means that these computations are locally generated.

Local Interaction Rules and Local Synchronizations

A local interaction in a local computation system may involve a process with only one
of its direct neighbors, or with all its direct neighborhood. Any local computation step
needs a local synchronization between the interacting entities. And as a relabeling rule in
a graph relabeling system stands for a local interaction, a local synchronization is needed
to synchronize the components of the subgraph of the underlying labeled graph where
this relabeling rule will be performed. The model of Litovsky et al. present three types
of local computations (LC) that need three different types of local synchronizations [15]:

• LC0 This local computation is a relabeling step according to a relabeling rule that
involves a node with one of its neighbors and the edge linking them. Consequently,
at least one of the labels of these elements will be modified. This local computation
needs the synchronization of this node with its neighbors.

• LC1 A LC1 computation is a relabeling step that involves a star formed by a center
node and all its direct neighbors. The label of this center node as well as the labels
of the edges of this star can be modified. However, the labels of the leaves of this
star remain unchanged. A LC1 synchronizes a ball of radius 1, that is a center node
and all its neighbors at distance 1.
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s′1s1

v′u′vu

Figure 3.1: LC0 relabeling rule updating the label of the edge (u, v) from s1 to s′1, and
modifying the labels of the vertices respectively from u and v, to u′ and v′.
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Figure 3.2: LC1 relabeling rule updating the label of the center node, labeled u, and all
its incident links labeled s1, s2 and s3, but without altering the labels of the leaves nodes
x, w and v.

• LC2 This local computation needs to synchronize a ball of radius 2: a center node
and all its neighbors at distance at most 2. The application of the relabeling rule
of this local computation can update the state of the center node, the states of its
direct neighbors and also the states of the edges linking the center node to these
neighbors.

s1
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x
s′1
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Figure 3.3: LC2 relabeling rule involving all components of the star whose center node is
labeled u, and modifying all their labels.

Local Control Mechanisms on Graph Relabeling Systems

Local control mechanisms can be introduced to graph relabeling systems in order to
restrict the applicability of the relabeling rules [45]. As a control mechanism, some priority
relation on the set of relabeling rules can be defined in graph relabeling systems with
priorities [20].
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Also, some forbidden contexts can be specified on relabeling rules. A rule with forbid-
den context can not be applicable on some occurrence if and only if this latter is included
on an occurrence of the forbidden context. This is the case of graph relabeling systems
with forbidden contexts [46].

Example 3.1. Distributed Computation of a Spanning Tree with a Graph Re-
labeling System. We consider the example of a graph relabeling system, introduced
in [46], encoding a distributed algorithm that computes a spanning tree on a graph. We de-
note this graph relabeling system byRST = (LST , IST ,PST ) defined by LST = (A,N, 0, 1),
IST = (A,N, 0), and PST = {RST} with R the relabeling rule described in Figure (3.4).

10

AANA
RST :

Figure 3.4: The spanning tree relabeling rule RST

Figure 3.5 illustrates a sample of a relabeling sequence withRST computing a spanning
tree of a graph.
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Figure 3.5: A distributed computation of a spanning tree with RST

Initially, all the nodes are labeled N , except one node which is labeled A, and all the
edges are labeled 0. An elementary computation step consists of an application of the
rule RST . It rewrites a label of a node labeled N , linked to a node labeled A by an edge
labeled 0, to a label A. The label of the involved edge is also modified, it becomes 1.
Parallel computation steps can take place simultaneously as long as the interacting pairs
are disjoint. We can take the example of the 5th relabeling step and the 6th relabeling
step in Figure 3.5 that can be executed concurrently. When the relabeling rule RST is
not applicable anymore, the final result is obtained. It is the spanning tree formed by the
edges labeled 1 and whose root is the initial node labeled A.
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3.1.3 Tasks with Graph Relabeling Systems

A distributed task consists of a specification and a domain [40]. The specification is a
description of what should be computed. It is a graph relabeling relation. The domain
is a family of labeled graphs over which the local computations should lead to a correct
result with respect to the specification.

A formal definition of a task corresponds to what follows [23]:

Definition 3.6. (Task) Let
∑L

G represent the type of L−labellings on a graph G. Let Li
(respectively Lo) be a type for input (respectively output) labels. A task T is a function
that associates to any graph G a relation TG between

∑Li
G and

∑Lo
G . The domain of T is

the set of Li labeled graphs (G, σi) such that ((G, σi), (G, σo))∈ TG for some σo.

Realization of a Task

Given a distributed algorithm, a task can describe the problem this algorithm should
solve. On the other hand, and as we mentioned in a previous section, a graph relabeling
system can encode this distributed algorithm by means of local relabeling. A realization of
a task is the link established between the task and the graph relabeling system associated
to this distributed algorithm.

Let T be a task with labellings types Li and Lo. Let (G, σi) be any labeled graph
in the domain of T , and let R be a graph relabeling system over the labeling type L.
A computation that realizes T on (G, σi) according to R consists on the following three
successive phases:

1. Initialization Every vertex and edge receives its initial state according to the input
σi and to the local initialization function λ : Li → L.

2. Relabellings Relabellings are made according to the relabeling rules of R. They
stop when the labeled graph becomes R−irreducible.

3. Extraction Output states are extracted uniformly over Lo according to the local
extraction function π : L → Lo.

we consider the following example of a realization of a task according to a graph
relabeling system.

Example 3.2. Election in a Tree with Initial Knowledge of the Vertices Degrees.
Let G be any network graph whose structure is a tree and where the processes initially
know their degrees: each vertex of the tree is labeled with its degree. We consider a
realization of a task that aims to elect a single vertex to be the leader in this network
[23]. Therefore, let RET = (LET , IET ,PET ) be a graph relabeling system where:

• LET = {None} ∪ {Some (i)| i ∈ N},

• IET = {Some (i)| i ∈ N},

• PET = {RET}, with RET the relabeling rule illustrated in Figure 3.6.
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NoneSome (i)Some (1)Some (i + 1)
RET :

Figure 3.6: The LC0 rule RET for election in a tree with initial knowledge of vertices
degrees

Let T election be a task, whose realization according to RET over the labeling type LET ,
consists on electing a leader vertex in the graph G. The realization of T election can be
described as follows:

• The labeling types are fixed as follows: the input labeling type is Li = N representing
the possible values of the initial degrees of the vertices, and the output labeling type
is Lo = {B,E}.

• The initialization phase takes place according to the following input function:

λ : Li → LET
i 7→ Some (i)

• The relabellings are made according to the relabeling rule RET .

• The extraction phase depends on the following extraction function π:

π(None) = B and π(Some (0)) = E.

Figure 3.7 represents an example of a realization of this task in a tree whose vertices
are initially labeled with their degrees. Based on these initial labels, and according to the
input function λ, new labels from the labeling type LET are attributed to the vertices.
Then, relabeling steps take place according to the relabeling rule RET . The vertices that
were involved in a relabeling step, as well as the edge linking them, are represented in red
in this figure. The relabellings stop when the relabeling rule is not applicable anymore.
If so, all the vertices are thus labeled None, except one which is labeled Some(0). This
latter becomes labeled E according to the extraction function π: this is the elected vertex.
However, the extraction function π attributes the label B to all the remaining vertices
labeled None. They are consequently considered as defeated.

3.1.4 From a Computation of a Population Protocol to a Real-
ization of a Task

We propose in this section to establish a bridge between the population protocol model
and tasks with graph relabeling systems. In fact, we noticed some similarities between
these two models as they are both local computation models with abstract communication.
They also, both, consider the model of pairwise interactions. We thus want to investigate
these similarities and present a comparison study that may allow us to establish a link
between these two models.

We would mention that the approach presented all along this section applies, not only
for the population protocol model, but also for the models extending it. However, in the
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Figure 3.7: Realization of the task Telection in a tree with initial knowledge of vertices
degrees.

sequel, we will focus only on the cases of the populations protocols and the mediated
population protocols. Compared to the population protocols, the mediated population
protocols assign states, not only to the agents of the population, but also to the commu-
nication links. Therefore, additional details are going to be needed for this model. They
will be denoted afterward between () or [ ].

The Population Protocol Model as Local Computations in Graphs

We aim to prove, in this section, that the computation of a (mediated) population proto-
col can be considered as local computations in graphs. We thus first start by representing
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the interaction graph, over which the protocol runs, as a labeled graph. We then describe
the effective pairwise interactions as local relabellings on this graph. Finally, we ensure
that the execution of this (mediated) population protocol satisfy the properties of local
computations in graphs.

Let A = (X, Y,Q[, S], I, O, δ[, ι, ω]) be a (mediated) population protocol running in a
population P . We recall that a computation of a (mediated) population protocol takes
three basic phases:

1. Initialization The inputs are mapped to states according to the agent input func-
tion I: X → Q (and to the edge input function ι: X → S).

2. Pairwise Interactions Interactions between pairs of agents take place and can
lead to the modification of their states according to the transition function δ: Q×
Q [×S]→ Q×Q [×S].

3. Outputs Extraction The states are mapped to outputs according to the agent
output function O: Q→ Y (and the edge output function ω: S → Y ).

Let G = (V,E) be the communication graph over which A runs. V is the set of
vertices representing the set of agents of the population P . E denotes the set of the edges
representing all the permissible communication links between the pairs of agents from P .
This graph is a representation of the network formed by the agents of the population P
with an abstraction over its characteristics.

We propose to represent this communication graph as a labeled graph. Therefore, we
add labels to its vertices (and respectively to its edges) that describe the states of the
agents (respectively the states of the communication links) of the population P . The
labeling type will depend on the phase of the execution of the protocol A. Also, the
labeling of this graph can be updated after a computation step.

Initially, the labels attributed to the nodes (and to the edges) of the interaction graph
G are the inputs of the agents (and the inputs of the communication links) of P . The
graph G becomes thus X−labeled, and denoted by (G, σX) with σX : V [∪E]→ X.

Then, once the initialization phase has taken place, this labeled graph becomes (G, σQ)
with σQ : V [∪E] → Q[∪S]. Any interaction happening during this second phase, may
only lead to an update of the states of the interacting agents (and the communication link
connecting them). This is traduced by an update of the labels of the corresponding nodes
(and the edge linking them) in the graph. This update will associate to the communication
graph a new labeling function over Q[∪S].

Finally, when the protocol A reaches stabilization and during the outputs extraction
phase, the labeled interaction graph can be considered as an Y−labeled graph (G, σY )
with σY : V [∪E]→ Y .

Let u, v, u′ and v′ be any agent states from Q (and let s and s′ be any edge states).
Any transition rule (u, v [, s]) 7→ (u′, v′ [, s′]) from δ executed over the Q[∪S]−labeled
communication graph can be translated to a relabeling rule Ruv = (Guv, σuv, σ

′
uv) where:

• Guv is a restriction of the Q[∪S]−labeled interaction graph to the interacting pair
of nodes, with respective states u and v, and the edge linking them.
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• σuv, respectively σ′uv, is the restriction of the labeling function σ : V [∪E]→ Q[∪S],
respectively σ′ : V [∪E] → Q[∪S], to the labellings of the nodes that initially were
with states u and v (and the edge linking them).

Figure 3.8 illustrates the relabeling rule Ruv. Note that, while labeling the interaction
graph, the direction of its edges were left untouched to preserve symmetry breaking.
Hence, a transition rule applied for the ordered pair of agents (u, v) can be expressed as
a relabeling rule over the directed edge (u, v) in G.

s

v′u′vu
Ruv :

s′

Figure 3.8: A relabeling rule representing the transition (u, v, s) 7→ (u′, v′, s′)

We define a function φ that associates to each transition rule from the transition
function δ of the protocol A a corresponding relabeling rule.

This function φ is described as follows:

φ : δ → P
((u, v [, s]), (u′, v′ [, s′])) 7→ Ruv = (Guv, σuv, σ

′
uv)

with P a set of relabeling rules.

The (mediated) population protocol model is based on pairwise interactions. There-
fore, any computation step in such protocol involves only the interacting pair of agents
(and the communication link connecting them). Accordingly, any transition rule from δ
can be traduced by a LC0 interaction.

We can notice that, any computation step in the execution of the protocol A has the
following characteristics:

• It does not affect the structure of the communication graph.

• It can only lead to some changes of the states of the interacting pair of agents (and
the communication link between them), and consequently lead to the modification
of the labellings of the pair of vertices representing these two agents (and the edge
linking them) in the underlying labeled interaction graph.

• It is locally generated as only the current states of the interacting pair of agents (and
the communication link connecting them) determine if a transition rule is applicable
or not.

We can hence deduce that the computation of any (mediated) population protocol
respects the three characteristics of local computations in graphs (see Section 3.1.2). And
accordingly, a (mediated) population protocol model can be described as local computa-
tions in graphs.
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Mapping an Execution of a Population Protocol to a Realization of a Task

We now focus on how an execution of a (mediated) population protocol over an interac-
tion graph can correspond to a realization of a task on a labeled graph according to some
graph relabeling system.

We recall that the computation of a (mediated) population protocol consists on three
phases: initialization, pairwise interactions, and outputs extraction. As already men-
tioned, if we describe this computation as local computations in graphs, we can consider
that the pairwise interactions phase is a relabellings phase. These phases present a great
degree of similarity with those needed for a realization of a task, and that are: initial-
ization, relabellings and extraction. In fact, the computation of a (mediated) population
protocol, as well as the realization of a task, needs an initialization phase to map the
inputs to states. Then, a relabeling phase where interactions lead to the application of
some rules. These rules may result in an update of the states and, consequently, in an
update of the labels of the graph over which the computations take place. And, a last
phase, where outputs can be extracted from the states.

Given this analogy, and the approach we presented in the previous section of repre-
senting a (mediated) population protocol as local computations in graphs, we propose to
describe the computation a (mediated) population protocol over an interaction graph as
a realization of a task with a graph relabeling system on this graph.

Accordingly, let A = (X, Y,Q[, S], I, O, δ[, ι, ω]) be a (mediated) population protocol
running in a population P with an interaction graph G = (V,E). Let T be a task with
input labeling type X, and output labeling type Y . Let (G, σX) be a labeled graph, whose
underlying graph G is the interaction graph of A, and whose labeling function is σX :
V [∪E]→ X. The labeled graph (G, σX) is in the domain of T . Finally, letR = (Q,Qi, P )
be a graph relabeling system over the labeling type Q with: Qi = I(X)[∪ ι(X)] ⊂ Q, and
P = φ(δ).

The execution of the protocol A over the interaction graph G of the population P can
be mapped to a realization of the task T , on the labeled graph (G, σX), according to the
relabeling system R. This realization is as follows:

• The initialization phase is done according to the initial input σX and to the local
initialization function λ : X → Q [∪S], with:

∀x ∈ X, λ(x) =

{
I(x), if x is the input of an agent,

ι(x), if x is the input of an edge.

• The relabellings are then made according to the relabeling rules P of R.

• When the protocol stabilizes, the outputs can be extracted over the labeling type
Y according to the local extraction function π : Q [∪S]→ Y , with:

∀q ∈ Q [∪S], π(q) =

{
O(q), if q ∈ Q,
ω(q), otherwise.

Table 3.1 summarizes this approach by attributing to each element of the execution of
a (mediated) population protocol, its correspondence in the realization of the associated
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Table 3.1: Mapping an execution of a (mediated) population protocol to a realization of
a task with a graph relabeling system: Correspondence between the different elements
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Example 3.3. Mapping the Computation of the Threshold Population Protocol
to a Realization of a Task with a Graph Relabeling System. Let P be a
population whose interaction graph is G = (V,E). We suppose that the agents of P are
executing the population protocol Threshold = (X, Y,Q, I, O, δ), that we presented in
the previous chapter (see Section 2.1).

Let TTh be a task with input, and respectively output, labeling type Li and Lo such
that:

• Li = X = {0, 1}.

• Lo = Y = {0, 1}.

We consider the labeling function σX : V → X which is applied to the graph G to
obtain the X-labeled graph (G, σX) in the domain of TTh.

We also consider the graph relabeling system RTh = (Q,Qi, P ) with: Qi = I(X) =
{q0, q1} ⊂ Q, and P = φ(δ) = {R1, R2}. The rules R1 and R2 are illustrated in Figure 3.9,
and represent the only two effective transitions of the protocol Threshold.

q0qi+jqjqi
R1 : , 0 ≤ i+ j < 5

q5q5qjqi
R2 : , i+ j ≥ 5

Figure 3.9: The relabeling rules of the relabeling system RTh

The execution of the population protocol Threshold can be mapped to the realization
of the task TTh over the labeled graph (G, σX) according to the graph relabeling system
RTh, where:

• The initialization is done according to σX and to the local input function λ with
λ = I,

• Relabellings are done according to the relabeling rules R1 and R2 of RTh, and

• The outputs extraction is made according to the local output function π = O.

Now, as an example, we suppose that the population P consists of 8 agents, and that
its interaction graph G = (V,E) is a complete graph. Let the input assignment of this
population be described by the vector (1, 0, 1, 1, 1, 1, 0, 1). We illustrate a computation of
the Threshold protocol in this population, as a realization of the task TTh, in Figure 3.10.

Initially, the interaction graph G is labeled with the input alphabet X, according to
the input assignment of this computation, so it becomes in the domain of the task TTh.
Consequently, each vertex is either labeled 0 or 1. Then, applying the input function λ
associates to each vertex a new label. If the vertex was labeled 0, then the new label
is q0. Otherwise, the new label is q1. The relabellings phase starts then, standing for
the pairwise interactions in the computation of the protocol. The first relabeling step,
illustrated in Figure 3.10, is applied over the directed edge colored red, and whose both
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extremities are labeled q1. The relabeling rule R1 is applied, updating the label of the
source of the directed edge to q2 and the label of its target to q0. Relabeling steps continue,
according to the relabeling rule R1, until the label q5 appears. There, all the relabeling
steps that take place are according to the relabeling rule R2, so all the vertices become
labeled q5. The output extraction can thus be done: all the vertices labels are 1. The
output assignment of the computation of the protocol Threshold can consequently be
deduced from this output extraction. The value of the predicate NSB ≥ 5 is 1 (indeed, we
can notice that in the input assignment, we have 6 agents with inputs 1, that is 6 agents
that are sick).

3.1.5 From a Realization of a Task to a Computation of a Pop-
ulation Protocol

We proved that a mapping of a computation of a (mediated) population protocol to a
realization of a realization of a task with a graph relabeling system is possible. Now, we
are going to investigate whether the reverse is also possible.

Tasks with Graph Relabeling Systems versus Population Protocols: the Key
Differences

The mapping of a computation of a (mediated) population protocol to a realization of
a task, introduced above, is an analogy based on the similarities and correspondences
that exist between these two models. However, this does not exclude the fact that there
are some differences that distinguish one model from the other, and that will particularly
make the mapping of a realization of task with a graph relabeling system to a computation
of a (mediated) population protocol not always possible.

Table 3.2 gives an overview of the basic differences existing between these two models,
and that we are going to detail in the sequel:

Differences
Task’s Realization

with Graph
Relabeling System

(Mediated) Population
Protocol’s Computation

Memory Constraint × X
Symmetry Breaking × X
Star Synchronization X ×

Termination X ×
Termination Detection X ×

Local Control Mechanisms X ×

Table 3.2: A realization of a task with a graph relabeling system versus a computation of
a (mediated) population protocol: Key differences.

• Memory constraint In the population protocol model, and all its extensions, the
memory space accorded to the agents (and also to the edges) is specified varying

Computing Models for Networks of Tiny Objects 57



3.1. From Population Protocols to Tasks with Graph Relabeling Systems

1

0

1

1

1

1

0

1

λ

q1

q0

q1

q1

q1

q1

q0

q1

q2

q0

q1

q1

q1

q0

q0

q1

q2

q0

q1

q1

q1

q0

q0

q1

q2

q0

q1

q2

q1

q0

q0

q0

q0

q3

q0

q0

q2

q0

q0

q0

∗

q5

q5

q5

q5

q5

q5

q5

q5

∗

1

1

1

1

1

1

1

1

π

Figure 3.10: A realization of the task TTh
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from O(1) to an unlimited space. This constraint is one of the basic elements that
may influence the computational powers of these models. However, no constraint is
specified concerning the memory space accorded to the nodes or edges in the case
of tasks with graph relabeling systems, which implies that there is no restriction on
this space.

• Asymmetry A pair of interacting agents, in a (mediated) population protocol,
consists of one agent playing the role of the initiator, and a second one playing
the role of the responder. This distinction breaks the symmetry between these two
anonymous entities. Such asymmetry is not specified when applying a relabeling
rule of a graph relabeling system.

• Restriction of the interacting entities The (mediated) population protocols
are based on pairwise interactions. Therefore, the transition rules of these protocols
are described by the pair of states of the two interacting agents (and the state of
the edge linking them). We established, in the previous section, that these transi-
tion rules can be represented by LC0 relabeling rules in graph relabeling systems.
However, relabeling rules in graph relabeling systems are not restricted to LC0.
They cover more interaction models that allow a node to interact with all its direct
neighborhood. These interactions are described by LC1 or LC2 (see Section 3.1.2)
rules.

• Stabilization versus termination Population protocols do not halt but they
stabilize. Even when stabilization is reached, the agents of the population continue
interacting without changing their outputs (or even their states in case of state
stabilization). We can consider the case of the Threshold population protocol with
X ≥ 5. This protocol stabilizes to a configuration where all the agents are with state
q5. And, no matter the interactions that later take place, these states do not change.
However, agents can not detect that they terminate and continue interacting. This
corresponds to an implicit termination in distributed systems. On the other hand,
a task with graph relabeling system R terminates if R is noetherian: that is there
is no more applicable relabeling rule and the graph becomes R−irreducible. Graph
relabeling system can even be designed to be able to detect this termination with:
local detection of local termination, local detection of global termination, etc.

• Control mechanisms on the interactions Graph relabeling systems offer some
control mechanisms on the interactions by describing relabeling rules with priorities
or with forbidden contexts. The application of a relabeling rule, in a relabeling
system with priorities, depends on some global knowledge about the network. This
knowledge concerns the existence or not, in the labeled graph, of an occurrence of
another relabeling rule that has the priority. Also, the application of a rule with a
forbidden context, requires some awareness about the states of the neighbors of the
nodes involved in this relabeling rule. This is possible thanks to the interactions
such as LC1 and LC2 that allows a node to communicate with all its neighborhood.
Unlike the graph relabeling systems, the (mediated) population protocol model does
not define such control mechanisms in its transition rules. This is due to the fact
that, each entity in this model, only knows its current state and the state of the
agent it communicates with (and the state of the edge linking them). It has no
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idea about the states of the rest of the population, not even those of its closest
neighbors. Consequently, there is no possibility to check if a given priority or a
forbidden context is respected while a pairwise interaction takes place.

Using these control mechanisms is one of the elements that make possible the design
of graph relabeling systems with termination detection. We are going to illustrate
this through the example of a leader election over a complete graph realized with
the two models: a task with a graph relabeling system, and a population protocol.

For this computation with the first model, we start by considering the following
graph relabeling systemREC= (LEC , IEC , PEC) with: LEC = {N,F,E}, IEC = {N}
and PEC = {R1, R2} [14]. The rules of PEC are as illustrated in Figure 3.11.

FNNN
R1 :

EN
R2 :

N

N
,

Figure 3.11: The relabeling rules of the graph relabeling system REC

We consider a task TEC with an input labeling Li = IEC and an output labeling
Lo = {F,E}. Both, the initialization function and the output extraction function
of TEC are the identity function. Let Kn be a Li−labeled complete graph in the
domain of TEC . A realization of TEC over Kn with respect to the graph relabeling
system REC leads to the election of a unique vertex. Thanks to the forbidden
context, the last vertex labeled N knows that it is the only remaining N in the
graph and becomes E. The relabeling phase thus terminates and this elected vertex
E can locally detect the global termination of the computation.

Now, we focus on this computation with the second model. We therefore consider the
Leader Election population protocol presented in the previous chapter (see Section
2.2.3) running over a complete graph. When the protocol stabilizes, the elected
agent is also the only remaining agent with state L. However, as no knowledge
about the direct neighborhood is allowed, this agent is not able to detect that it is
the only remaining L in the population. Consequently, it is enable to locally detect
any termination.

We can thus notice, how the possibility, or not, of using control mechanisms has an
effect on the termination detection.

Mapping a Realization of a Task with a Graph Relabeling System to a Com-
putation of a Population Protocol

In spite of the differences between these two models presented in the previous section, the
mapping approach of a (mediated) population protocol to a task with graph relabeling
system established above, is still valid.
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In fact, any (mediated) population protocol can be translated to a task with a graph
relabeling system with only LC0 relabeling rules and with no priorities or forbidden con-
text. The graph relabeling system will be noetherian only if the population protocol has
a state-stabilization. By preserving the direction of the edges of the interaction graph,
we preserve the order of the pair of interacting nodes at each computation step. Conse-
quently, symmetry breaking is not altered. In fact, in a directed edge of a LC0 relabeling
rule, the source represents the initiator and the target represents the responder.

However, this comparative study implies that the mapping of a realization of a task
with a graph relabeling system to a computation od a (mediated) population protocol
is not always possible. As a matter of fact, a task with a graph relabeling system can
be mapped to a (mediated) population protocol, only if the following conditions are
respected:

1. The graph relabeling rules of the graph relabeling system should be described as
LC0 rules only (no LC1, or LC2, or single node relabeling rules) with no forbidden
contexts or priorities. If the LC0 relabeling rule is described over an undirected
edge, the left hand side endpoint will stand for the initiator, and the other for the
responder.

2. The labellings of the vertices (and those of the edges) described by the input and
output labeling type of the task, and by the set of labels of the graph relabeling
system, should be of constant size.

Accordingly, let T be a task with input, respectively output, labeling types Li and Lo
(including labels of constant size only). Let (G, σLi), with G = (V,E), be a Li−labeled
graph in the domain of T where σLi : V ∪E → Li. LetR = (L, I, P ) be a graph relabeling
system such that: the elements of L are of constant size, and the relabeling rules forming
P are LC0 rules with no forbidden contexts or priorities.

We consider the realization of the task T , on the labeled graph (G, σLi), with respect
to the relabeling system R. This realization can be mapped to a mediated population
protocol if labels are attributed to the edges in the initial labeled graph, or in the relabel-
ing rules. Otherwise, it is mapped to a population protocol. This mapping associates to,
each element of this realization, its correspondence in the execution of a (mediated) pop-
ulation protocol A = (X, Y,Q[, S], I, O, δ[, ι, ω]). These correspondences are as described
in Table 3.1.

Hence, a realization of the task T , on the labeled graph (G, σLi) with respect to R,
can be described by a computation of the protocol A in a population whose interaction
graph is G (the underlying graph of the labeled graph (G, σLi)) and with:

• X = Li, Y = Lo,

• Q = Lv, S = Le, with Lv the labels from L assigned to the vertices in the labeled
graph, Le the labels from L assigned to the edges in the labeled graph and L =
Lv ∪ Le,

• I : Li → Lv, such that: ∀x ∈ Li, I(x) = λ(x),

• ι : Li → Le, such that: ∀x ∈ Li, ι(x) = λ(x),
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• δ = φ−1(P ),

• O : Lv → Lo, such that: ∀ y ∈ Lv, O(y) = π(y), and

• ω : Le → Lo, such that: ∀ y ∈ Le, ω(y) = π(y).

We can consequently conclude that representing a realization of a task with a graph
relabeling system as a computation of a (mediated) population protocol is possible under
some conditions. Whereas, representing the execution of a (mediated) population protocol
as a realization of a task with a graph relabeling system is unconditioned.

3.2 From Population Protocols to Anonymous Asyn-

chronous Message Passing

Angluin et al. [5, 4] do not specify, while describing the pairwise interactions in their model,
how the communicating pairs are synchronized to simultaneously and instantaneously
exchange their respective states, how the states are actually exchanged, etc. Tasks with
graph relabeling systems are like the population protocols in the sense that they also make
abstraction about this aspect of the communication between the processes. However,
works in [14, 15, 51] established a bridge from graph relabeling systems to asynchronous
message passing. They describe each synchronization needed for the application of a
relabeling rule (LC0, LC1 or LC2) as a procedure based on message passing.

We proceed with a similar reasoning. Indeed, as population protocols were designed
for networks such as sensor networks, we suggest to describe them through another model
that is less theoretical and abstracted and that is more ”natural” and suitable for such
networks, with only some minimalistic hypotheses. This model consists on anonymous
asynchronous message passing in networks with port numbering.

3.2.1 The Message Passing Model

A distributed system is formed by a collection of processes and a communication subsys-
tem [67]. In case of message passing model, the communication subsystem consists on
exchanging messages between the processes via the communication links. The processes
use therefore specific primitives: send and receive. The send primitive enables a process
to send a given message to a destination and the receive primitive allows a process to
receive a message from a source. The sources and destinations of the messages can be
named directly using names (or identities) of the processes, this is called direct naming.
They can also be indirectly named using channels and ports numbers. A direct (respec-
tively indirect) naming can be symmetrical where both the sender and receiver specifies
the corresponding process (respectively channel), or asymmetrical where the receiver is
able to receive messages from any process (respectively channel).

There are two types of message passing systems: synchronous and asynchronous [12].
When it is synchronous, the execution is partitioned into rounds. In each round, messages
are sent and received by the corresponding processes and according to the received mes-
sages, each process executes a corresponding computation step. However, if the system is
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asynchronous, then there is no fixed upper bound of the delivery time of messages, and
also of the time separating two consecutive computation steps of a process.

A distributed system based on message passing is usually represented by a simple
connected graph where an undirected edge represents a bidirectional communication link
while a directed edge represents a unidirectional link. Now, if we detail a bidirectional
link existing between any two processes u and v, in case of asynchronous message passing,
then it will be as depicted in the following picture (Figure 3.12):

u v
u v

outbufuv(muv) inbufvu(muv)

inbufuv(mvu) outbufvu(mvu)

send(muv)

transmission

receive(muv)

send(mvu)

transmission

receive(mvu)

Figure 3.12: Zoom on a bidirectional communication link in asynchronous message passing
system

A bidirectional link, between two processes u and v, allows u (respectively v) to send
messages to v (respectively u) and receive messages from it.

When u sends a message muv to the node v, this message is placed in the out-buffer
outbufuv of the process u. The out-buffer outbufuv contains the messages sent by u to
v and that are still not delivered yet. Once, the message delivered to v, it is placed on
the in-buffer inbufvu that contains the messages coming from u and not yet processed
by v. When v receives the message muv, by dequeuing it from inbufvu, it executes the
corresponding computation step. The buffers are supposed to behave as FIFO queues.

In synchronous systems, we will suppose that the buffers are not needed anymore. We
suppose that the transmission is instantaneous and that each sent message is supposed
to be received and processed in the same round.

3.2.2 Anonymous Message Passing with Port Numbering

In anonymous networks, processes do not have unique identifiers and thus become in-
distinguishable. Consequently, in an anonymous network based on message passing, a
process can not address a message to a specific neighbor based on its id. There are some
studies that proposed an approach to break this symmetry by according names to the
ports of each process. Accordingly, a process can address a message to a given neigh-
bor by specifying, not its corresponding id, but the port’s name associated to the link
connecting them.

Port Numbering of Graphs

We here consider two existing works from literature. Each depends on the graph that
models the network.
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Port Numbering of Undirected Graphs In [70], Yamashita et al. consider anony-
mous networks represented by undirected, simple, connected graphs. They propose to
attribute names to the ports of these networks according to a local edge labeling de-
scribed as follows:

Definition 3.7. (Local Edge Labeling) Let G = (V,E) be a simple, connected, undi-
rected graph. Let v be any vertex in V and let fv be a bijection from the set of edges,
incident to v, to the set of positive integers {1, 2, . . . , d(v)}. Accordingly, fu(u, v) = x
implies that x is the name of the port of u that corresponds to the link (u, v). A local
edge labeling, or port numbering, of G is the set of functions f = {fv | v ∈ V }. This
labeling may assign two different numbers to the two endpoints of a given link (u, v) ∈ E,
which corresponds to fu(u, v) 6= fv(u, v).

Figure 3.13 is an example of port numbering of an undirected graph.

1

2

2

1

1 3

2 1

Figure 3.13: Local port numbering of an undirected graph

Port Numbering of Directed Graphs In [21], Boldi et al. consider the case of
anonymous networks that are represented by directed graphs. They introduce different
models of port numbering to allow each process to distinguish which port is associated to
a given link.

In fact, the processors can have output port awareness traduced by a local output
labeling of their output arcs according to the following definition.

Definition 3.8. (Output Port Awareness) Let G = (V,A) be a simple, connected
directed graph. For each vertex v ∈ V with output degree d+(v), a local output la-
beling denoted fout(v) assigns to each outgoing arc of v a distinct number from the set
{1, 2, . . . , d+(v)}.

Similarly, processors can also have input port awareness, which is a local input
labeling fin(v) assigning to each input arc of any vertex v from G with input degree d−(v),
a distinct number from the set {1, 2, . . . , d−(v)}. An example is illustrated in Figure 3.14.

Boldi et al. also introduced the model of complete port awareness. This model
corresponds to the case where:

• the graph representing the network is symmetric,

• the processors have both input, and output, port awareness, and
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1

1

2

1

Figure 3.14: Attributing input port awareness to a directed graph

• each process assigns the same labeling to each pair of symmetric input/output arcs,
that is: for any two neighbors nodes u and v, fout(u)(u, v) = fin(u)(v, u).

Figure 3.15 shows an example of attributing complete port awareness to the processes
of a network.
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Figure 3.15: Attributing complete port awareness

We can notice that the model of Yamashita et al. [70], of local port numbering, corre-
sponds to the complete port awareness model.

In fact, as depicted in Figure 3.16, any undirected graph G = (V,E) corresponds to
the symmetric digraph Dir(G) = (V (Dir(G)), A(Dir(G))) where: V (Dir(G)) = V , and
∀v ∈ V (Dir(G)), d−(v) = d+(v), and for each edge (u, v) from G two arcs (u, v) and (v, u)
in A(Dir(G)) are associated such that: s(u, v) = u and t(u, v) = v, and s(v, u) = v and
t(v, u) = u. For any two neighbors u and v from V , fu(u, v) = x, with x ∈ {1, 2, . . . , d(u)},
implies that fout(u)(u, v) = fin(u)(v, u) = x.

3.2.3 The Population Protocol Model versus the Anonymous
Asynchronous Message Passing Model

We should mention that, in the sequel and in the context of population protocols, a
sender can stand for the initiator of an interaction, as well as for the responder. The
same holds for a receiver. Indeed, the initiator and the responder, both, play these two
roles at the same time as, when exchanging their states, each sends its state and receives
the state of the other agent. In this same context, messages stand for the exchanged states.
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Figure 3.16: From an undirected to a directed graph

In the population protocol model, as well as in the anonymous asynchronous message
passing model, the agents and the processes do not have unique identifiers. However, in
the anonymous asynchronous message passing model, in spite of the anonymity of the
processes, a node can distinguish its neighbors thanks to port numbering. Consequently,
a node can address a message to a specific neighbor. This is not the case of the population
protocol model. In fact, with respect to this aspect of interaction, the population protocol
model is weaker compared to the anonymous asynchronous message passing model. It
supposes that a sender is not able to direct a message to a specific receiver, and the
receiver also has no idea about the source (the sender) of the message it receives.

On the other hand, regarding another aspect of the communication, the population
protocol model is stronger as it supposes that the interaction between the communicating
pair of agents is instantaneous and bidirectional, in a population that communicates
asynchronously.

When Angluin et al. [9] introduced the one way population protocols model (see Sec-
tion 2.2.1), they presented it as being the compromise between these two models. The
one way population protocol model is a restriction of the pairwise interactions of the pop-
ulation protocols to one way communication. As a result, an initiator becomes unable to
update its state according to the state of its responder. This model is also an adaptation
of the anonymous asynchronous message passing model where processes have no control
to choose the destination of their sent messages. Angluin et al. also supposed that, in
this model, the initiator corresponds to the sender of a message and the responder stands
for the receiver.

3.2.4 From a Computation of a Population Protocol to an Anony-
mous Asynchronous Distributed Algorithm based on Mes-
sage Passing

In this section, we propose another solution which is also a compromise between the
population protocol model and the anonymous asynchronous message passing. However,
unlike the one way population protocols, it preserves the concept of bidirectional and
simultaneous pairwise exchange of the population protocol. We mentioned above that
Angluin et al. suppose that neither the initiator, nor the responder, has a control to
direct its state to a specific neighbor. This reflects which is described in [9], and implicitly
adopted in the structure of the population protocols: the strongly anonymous message
passing. Though, these two interacting agents are supposed to mutually exchange their
corresponding states. However, this is still a too theoretical assumption. Such mutual
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bidirectional exchange requires a minimum knowledge, that allows a pair of agents to
distinguish each other, during their interaction, and to direct their respective states to
each other. We thus think about port awareness as being this required knowledge.

In the sequel, we propose to simulate the population protocols over an anonymous
asynchronous system based on message passing with port awareness. First, we start
by associating to any interaction graph of a population that runs a population protocol
the corresponding communication graph that describes the information (messages) flow.
Then, we describe the computation of a population protocol as an execution of an anony-
mous asynchronous distributed algorithm based on message passing over this obtained
graph.

It is important to mention that the approach we present in this section holds, not only
for the population protocol model, but also for all its extensions that preserve the pairwise
interactions. We just need, in this case, to add some additional details that depend on
the model.

The Network Communication Graph Associated to the Interaction Graph

Let P be a population that executes a population protocol A over a communication graph
G = (V,E). A possible interaction, between an initiator agent u and a responder agent
v, is represented by the directed edge (u, v) in G. Yet, an interaction between this pair
of agents implies that they both exchange their respective states. This supposes that
information flows in both directions. Hence, the direction attributed to the edge (u, v)
does not imply that the link is unidirectional, but is only required to break the symmetry
between the interacting agents.

We propose now to represent the interaction graph as a graph that describes the
messages flow in the network formed by the population. This graph will respect the con-
vention introduced in Section 3.2.1 of the representation of networks based on message
massing where: a directed edge represents a unidirectional communication link, while an
undirected edge represents a bidirectional one. We call this graph: the network commu-
nication graph.

Consequently, we associate to any interaction graph G = (V,E) the corresponding
network communication graph G′ = (V ′, E ′). G′ is a simple undirected graph where:
V ′ = V , and for each arc (u, v) ∈ E, we associate the undirected edge (u, v) in E ′.

As a result, any directed edge, linking an initiator to a responder in the graph G, is
represented by an undirected edge in G′ as depicted in Figure 3.17.

initiator responder initiator responder

Figure 3.17: The representation of a directed edge from the interaction graph G in its
associated network communication graph G′

Port Labeling with Roles of the Network Communication Graph While con-
structing the graph G′ based on G, we should keep track of the initial directions of the
edges of G that are essential in breaking the symmetry of each interacting pair of nodes.
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For this purpose, we propose to assign labels to the ports of G′. We thus define, SB (SB
standing for symmetry breaking) which is a local edge labeling of G′ such that: for any
vertex v from V ′, for any link incident to v, SBv indicates the role associated to v if an
interaction takes places over this link.

The existence of an arc (u, v) in E implies that, if u interacts with v then, u will play
the role of the initiator and v the responder. Accordingly, ∀u, v ∈ V ′, the labellings SBu

and SBv of the incident edges of u and v in the graph G′ are as follows:

• If (u, v) ∈ E and (v, u) /∈ E then: SBu(u, v) = i, and SBv(u, v) = r. In Figure 3.18,
we consider an arc (u, v) from G fulfilling this previous condition, and we illustrate
its corresponding representation in the network communication graph G′ with SBu

and SBv labellings.

u v u

SBu(u, v)

v

SBv(u, v)

u

i

v

r

Figure 3.18: Representation of (u, v) from G in G′ with SBu and SBv labellings

• Otherwise, if (u, v) ∈ E and (v, u) ∈ E then: SBu(u, v) = SBv(u, v) = ∗. The
labeling ∗ implies that the vertex u, when interacting with v, can play either the
role of the initiator or the responder. The same holds for v.

We show, in Figure 3.19, an example of an interaction graph G and its corresponding
network communication graph G′ with SB labellings of its ports.
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Figure 3.19: From the interaction graph G to its associated network communication graph
G′ labeled with SB

Port Numbering of the Network Communication Graph As we mentioned above,
a less abstracted and more realistic execution of population protocols requires a minimum
knowledge that enables an agent to distinguish the neighbor it will interact with. Hence,
in addition to the SB labellings, we propose to assign numbers to the ports of the graph
G′ with a local edge labeling as described by Yamashita et al in [70].

Accordingly, ∀ v ∈ V ′, we define a local input labeling fv that assigns, to each incident
link of v, a distinct number from the set {1, 2, . . . , d(v)}.
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As a final result, the ports in G′ are going to have both SB labellings and port num-
bering. Therefore, ∀u ∈ V ′, ∀v ∈ NG′(u), we associate to each port of u the following
labeling (fu(u, v), SBu(u, v)).

We continue now with the example presented in Figure 3.19, and assign, in addition
to the roles labellings of the ports, port numbering. The obtained result is depicted in
Figure 3.20.
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Figure 3.20: Assigning port numbers to the network communication graph G′ labeled
with SB

Remark 3.1. We would mention that the graph G′ can also be represented as a symmetric
digraph where: V ′ = V , and for each arc (u, v) ∈ E, we associate two arcs (u, v) and (v, u)
in E ′, such that s(u, v) = u and t(u, v) = v, and s(v, u) = v and t(v, u) = u. Assigning
numbers to its ports will be according to the to complete port awareness model of Boldi
et al. [21].

Simulating the Pairwise Interactions

We now propose to map the computation of a population protocol to the execution of a
distributed algorithm in an anonymous asynchronous system based on message passing.

Let A = (X, Y,Q, I, O, δ) be any population protocol, and let P be any population
executing A over an interaction graph G = (V,E). If we proceed as described in the
previous section, we can obtain the network communication graph G′ = (V ′, E ′), associ-
ated to the interaction graph G, and labeled with SB and port numbers. The graph G′

is, in fact, the representation of the anonymous asynchronous system over which the dis-
tributed algorithm simulating A is going to run. This distributed algorithm is a collection
of identical local algorithms that we denote by Algo.

The agents running the protocol A are the processes forming G′ and executing the
Algo algorithms. And, the messages that are going to be transmitted over G′ are the
states exchanged in A. A local algorithm Algo should preserve the bidirectional and
simultaneous exchange of these states in spite of the asynchrony of the network.

To be able to communicate simultaneously, the pair of interacting agents should be
synchronized. In literature, there are procedures designed to synchronize processes in
anonymous asynchronous systems based on message passing with port awareness. Fur-
ther details about such procedures are going to be provided in the next chapter. But
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meanwhile, we make an abstraction about the implementation details of these procedures.
We just suppose that an algorithm Algo, run by an agent u, requires a synchronization
procedure that we denote TrySynchronization(u).

This function returns for each agent u two parameters. These parameters are different
from 0, only if the agent u succeeds in having a synchronization with one of its neigh-
bors. Let c(u) denote the neighbor with which u is synchronized. The first output of
TrySynchronization(u) corresponds to fu(u, c(u)), which is the port number associated
to the edge linking this agent u with its neighbor c(u). The second parameter corresponds
to SBu(u, c(u)), which is the role associated to the agent u during this interaction.

Now, once the pair of interacting agents is synchronized, roles are attributed according
to the labeling SB. Both agents will play the role of a sender and of a receiver at the same
time. The initiator and the responder will send their respective states to each other at
the same time, and each of them will consequently receive the state of the other. Each of
these processes will update its state according to the transition function and with respect
to its role. Once the update is done, the current synchronization is ended and a trial for
a new one is initiated.

Accordingly, the computation of a protocol A = (X, Y,Q, I, O, δ) in a population P
whose interaction graph is G, corresponds to the execution of the following local algorithm
Algo (Algorithm 1) by each process u in the network communication graph G′ associated
to G. ∀u ∈ V ′, stateu denotes the state of the process u, standing for agent u, in this
algorithm. The value of this state is initialized according to the input of the agent u in
the population P , and to the input function I of the protocol A.

We can notice that, once the initialization is done, the remaining code in Algorithm 1
belongs to an infinite loop. In fact, an agent executing a population protocol does not
halt, so the process representing it will infinitely execute this code.

Algorithm 1 The Algorithm Algo

Require: TrySynchronization(u)
1: stateu ← I(inputu);
2: loop
3: port← 0;
4: role← 0;
5: (port, role)← TrySynchronization(u);
6: if (port 6= 0) then
7: Send(stateu, port);
8: Receive(statec(u), port);
9: Apply a transition rule (if applicable) of the transition function of A with respect

to the attributed role role.
10: end if
11: end loop

Example 3.4. Mapping the Computation of the Population Protocol Threshold
to the Execution of a Distributed Algorithm in an Asynchronous Anonymous
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System based on Message Passing. We propose to map the computation of the
population protocol Threshold (see Section 2.1) to the execution of a distributed algo-
rithm in an asynchronous anonymous system based on message passing with complete
port awareness. This distributed algorithm, corresponding to this protocol, consists on a
set of local algorithm Algo, described by Algorithm 2, and that are run by each process u
in this system. A process u, as we mentioned above, stands for agent u in the population.

Algorithm 2 Algorithm Simulating the Threshold Population Protocol

Require: TrySynchronization(u)
1: stateu ← I(inputu);
2: loop
3: port← 0;
4: role← 0;
5: (port, role)← TrySynchronization(u);
6: if (port 6= 0) then
7: Send(stateu, port);
8: Receive(statec(u), port);
9: if (role = i) then

10: if (stateu + statec(u) < 5) then
11: stateu ← stateu + statec(u)

12: else
13: stateu ← 5
14: end if
15: else
16: if (stateu + statec(u) < 5) then
17: stateu ← 0
18: else
19: stateu ← 5
20: end if
21: end if
22: end if
23: end loop

We would just mention that, for a sake of clarity and for a simpler representation, we
replaced the set of states Q of the Threshold population protocol, by Q = {0, 1, 2, 3, 4, 5}
where: the state 0 stands for the state q0, 1 for q1, etc.

Initially, a process u receives its state according to the input of agent u and to the input
function I. This state can be either 0 or 1. Then, once the loop is initiated, the attributes
port and role of the process u are initialized to 0. The function TrySynchronisation(u) is
executed. If the value of the parameter port returned by this function is different from 0,
then role will also be different from 0. This implies that u is synchronized with a neighbor
c(v) with which is can interact via the link whose number is port and according to role.
The process u sends its state stateu via the link labeled port, and receives the state of its
neighbor statec(v) via the same link. The process u, according to its role, checks if there
is a transition rule, according to the transition function δ of the Threshold protocol, that
should be applied. If the process u is the initiator in this interaction, and if the sum of
the states is less than 5, its state receives the sum of these states, else its state becomes
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5. However, if the process u is the responder in this interaction, and if the sum is less
than 5, its state is reinitialized to 0, else it is updated to 5. This loop will be repeated
infinitely. When the computation stabilizes, if there is at least 5 processes that started
with state 1 (that is there at least 5 sick agents initially), the state 5 will be spread in the
whole network. Otherwise, the state that represent the sum of the “ill” processes (which
is for sure less than 5 in this case) will be a swapping state over the network.

3.3 Conclusion: Bridges between Models

Thanks to the comparative studies and mapping approaches presented in this chapter, we
established some links between three different models that are: the (mediated) population
protocols, tasks with graph relabeling systems and the anonymous asynchronous message
passing. We summarize the result in Figure 3.21.
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Figure 3.21: Possible Mappings

The bridge between the last two models, represented by the two black arcs in Fig-
ure 3.21, already exists in literature.

Indeed, in one hand, Bauderon et al. [14] have defined the link between the second and
the third one by expressing distributed algorithms defined by graph relabeling systems
with those based on anonymous asynchronous message passing.

On the other hand, Chalopin et al. [24] worked on expressing distributed anonymous
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asynchronous algorithm based on message passing model as graph relabeling systems.

For our part, we first designed a mapping approach between the first and the second
model. These two models, both, use abstract communication models. The red arc, linking
the first model to the second one, traduces the possibility of mapping the computation of
a (mediated) population protocol to a realization of a task with a graph relabeling system.
Whereas, the reverse is not always possible, and we represent it in the figure by a dashed
red arc. In fact, we proved that mapping a realization of a task to the computation of a
(mediated) population protocol is only possible under some conditions.

Then, we established a bridge (represented by a red arrow) between the first and the
third model that uses explicit communications. This allows us to represent the compu-
tation of a (mediated) population protocol as a distributed algorithm, based on message
passing, and running in an anonymous asynchronous system. Hence, the possibility of a
more realistic execution of such protocols can be illustrated. Concerning the mapping of
a distributed asynchronous anonymous algorithm, based on message passing, to a com-
putation of a (mediated) population protocol, we think it is possible under some specific
conditions. However, we do not explore them in this work.

In the following chapter, we are going to take advantage from these established links
between models, and more specifically, from the bridge between the (mediated) popula-
tion protocols and the anonymous asynchronous message passing. In fact, we are going
to propose some scheduling procedure designed for populations protocols and described
through anonymous asynchronous distributed algorithms based on message passing.
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4.1. Schedulers in Distributed Systems

A scheduler in a distributed system is a theoretical entity that simulates the environ-
ment and orchestrates the actions of the processes in the system. Likely, a scheduler in
the context of population protocols decides which pair of agents is going to communicate
at each step of the computation of the protocol.

Based on the mapping approach that we established in the previous chapter, we pro-
pose an implementation based on message passing of the Random Scheduler, a scheduler
proposed by Angluin et al. for the population protocol model.

We also introduce, in this chapter, a new fair probabilistic scheduler designed for the
population protocol model, and also for any other model extending it, as long as it pre-
serves the pairwise interactions concept. We call this scheduler the Handshake Scheduler,
and denote it by the HS Scheduler. It is based on randomized handshakes. Thus, unlike
the already proposed schedulers, the HS Scheduler can allow, at each step of the com-
putation, to more than only one pair of agents to communicate. In fact, it synchronizes
pairs of agents forming matchings over the interaction graph of the population.

We start thus by giving an overview of the existing schedulers and fairness conditions
in distributed systems, and especially in the context of population protocols. We focus
on the Random Scheduler for which we propose an implementation based on message
passing. We then give a definition of the model of the new scheduler, that we introduce,
as well as its implementation. This implementation is based on a randomized handshake
algorithm. We finally prove, through an analysis study, that this scheduler is fair with
probability 1. These results appeared in [60] and in [61].

4.1 Schedulers in Distributed Systems

The execution of a distributed computing system may be influenced by many facts: the
asynchrony of the processes, their mobilities, their energies, ... in short the environment
as a whole. In fact, the environment has an impact on the selection of the processes that
can be activated, on the order of their activation and also on the interactions that can take
place between these different processes. In literature, these facts, as well as their caused
nondeterminism, are captured by an abstraction which is the scheduler. The scheduler
can also be called the demon, or the adversary, when it refers to a hostile environment.

A possible definition of a scheduler can be the following:

Definition 4.1. (Scheduler) Given a protocol that runs over a distributed system, a
scheduler can be considered as a function that assigns to this protocol a subset of all its
possible executions.

The scheduler orchestrates tasks and actions in a distributed system by determining,
at each step of the computation, which enabled processes are going to be executed. A
process is considered as enabled if, given its state, and sometimes the states of its neigh-
bors, it is able to make a computation step (an action): it is ready to be activated.

Basically, there are two main types of schedulers for distributed systems [38]:

• Central (or Sequential) Schedulers A central scheduler allows to only one en-
abled process to perform a computation step and wait until it finishes before pro-
ceeding in choosing and activating another enabled process [30].

A central scheduler serializes a distributed computation.
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• Distributed Schedulers A distributed scheduler can pick any subset of the enabled
processes to be privileged to make a computation step concurrently.

While presenting a taxonomy of the existing types of schedulers in [31], the authors
introduced the following concept of k-centrality, that allows a more specified classification:

Definition 4.2. (k-centrality) A scheduler is k-central if it allows only the processes
separated by at least k hops to be simultaneously scheduled.

Consequently, with respect to this definition, a 0-central scheduler corresponds to the
distributed scheduler as, whenever is the distance separating the enabled processes, they
can be allowed to be executed simultaneously. Whereas, the diam(G)-central, where
diam(G) denotes the diameter of the graph G representing the distributed system, is the
central (or the sequential) scheduler.

In addition to this classification, schedulers can also be characterized differently.
The distributed scheduler that picks all the enabled processes at each step is called

the synchronous scheduler [59].
When the scheduler assigns, to each enabled process, a probability p to be chosen, it

is called a probabilistic scheduler [17].

4.2 Fairness

The correctness of a distributed algorithm, running over a distributed system, usually de-
pends on the presumed scheduler. To guarantee the success of the task of the distributed
system, the scheduler should be computation-friendly: it should not avoid any possible
step forever. Therefore, the scheduler should satisfy a fairness property [38].

The population protocols are distributed algorithms running over distributed systems
(the populations). Hence, their executions should also satisfy some fairness condition.
In this context, Angluin et al. [4], Fisher et al. [36], and Chatzigiannakis et al.[25] gave
formal definitions of the different possible fairness conditions.

4.2.1 Fairness Condition According to Angluin et al.

When they introduced the population protocol model, Angluin et al. assumed a fairness
condition that guarantees that any possible execution may occur. Consequently, any
live-lock that can be caused by looped executions is avoided.

More formally, this fairness is characterized by the following condition [4]:

Definition 4.3. (Fairness) Let EX = C0, C1, . . . , Ci, . . . be an infinite execution such
that for each i, Ci→Ci+1 . EX is fair if for every possible transition C→C ′, if C occurs
infinitely often in this execution, then C ′ occurs infinitely often.

4.2.2 Fairness Condition According to Fisher and Jiang

Fisher and Jiang presented in [36] more detailed definitions of the different possible fairness
conditions for scheduling in population protocols. They based their approach on extended
definitions of some basic elements in a population protocol.
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First, the transition function is supposed to be as the one defined for population
protocols with stabilizing inputs (see Section 2.2.2), and which is :

δ : (Q,X)× (Q,X)→ (Q,Q).

An input assignment is defined as being the mapping from V to X. An action is a
pair (r, e) where: r is a transition from the transition function δ, and e is an edge from
the interaction graph over which the protocol runs.

Now, let C and C ′ be two configurations. Let α be an input assignment, and let
e = (u, v) be an edge from the interaction graph. Let σ = (r, e) be an action with
r = ((p, x), (q, y))→ (p′, q′) and e = (u, v).

We can say that σ is enabled in (C, α) if: C(u) = p, α(u) = x, C(v) = q, and
α(v) = y. (C, α) goes to C ′ via σ, denoted (C, α)

σ→ C ′, if: σ is enabled in (C, α),
C ′(u) = p′, C ′(v) = q′ and C ′(w) = w, ∀w ∈ V − {u, v}.

If for some action σ, we have (C, α)
σ→ C ′, then we can say that: (C, α) goes to C ′ in

one step, and that σ is a taken action.

According to these definitions, the authors presented, formally, the following fair-
ness conditions of different strengths, with respect to an execution EX = (C0, α0),
(C1, α1), . . . , (Ci, αi), . . .:

Definition 4.4. (Strong Global Fairness) Let C and C ′ be two configurations, and let
α be an input assignment such that (C, α) → C ′. If (C, α) = (Ci, αi) for infinitely many
i, then (Ci, αi) = (C, α) and Ci+1 = C ′ for infinitely many i.

In other words, this means that the step (C, α) → C ′ is taken infinitely many times
in EX.

Definition 4.5. (Strong Local Fairness) For every action σ, if σ is enabled in (Ci, αi)
for infinitely many i, then (Ci, αi)

σ→ Ci+1 for infinitely many i. This means that σ is
taken infinitely many times in EX.

The fairness condition can be local or global. The fairness condition is local if, it
asserts that each action that can be taken infinitely often is actually taken infinitely
often. However, it is global if it asserts that each step that transitions the system from
a configuration C to another configuration C ′, and that can be taken infinitely often, will
actually be taken infinitely often.

The authors stated that global fairness implies local fairness [36].

In addition to strong fairness, there are also weak forms of fairness:

Definition 4.6. (Weak Global Fairness) For every C, α and C ′ such that (C, α)→ C ′,
if (C, α) occurs infinitely often in EX, then C ′ occurs infinitely often in EX.

Definition 4.7. (Weak Local Fairness) For every action σ, if σ is enabled infinitely
often in EX, then there exist C, α, C ′ such that (C, α)

σ→ C ′, (C, α) occurs infinitely
often in EX, and C ′ infinitely often in EX.
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We can notice that, unlike the strong fairness that requires that particular steps
should occur infinitely often in the execution, the weak fairness only insists that the
resulting configurations from these steps occur infinitely often.

According to these definitions, the fairness condition introduced by Angluin et al. can
be classified as being a weak global fairness. Indeed, Angluin et al. assume that local
fair scheduling rarely exists in real distributed systems, and that global fairness traduces
better realistic scheduling for such systems [11].

4.2.3 Fairness Condition According to Chatzigiannakis et al.

Unlike the two previous works, Chatzigiannakis et al. focused, not on the fairness of an
execution of a population protocol, but on the properties that a probabilistic scheduler
for population protocols should satisfy to be fair with probability 1 [25].

Therefore, they started by introducing a formal definition of a probabilistic scheduler
with respect to (w.r.t) a transition graph. We should mention that a transition graph can
be described as follows:

Definition 4.8. (Transition Graph) The transition graph G(A,P) of a protocol A
running in a population P is the directed graph whose nodes are all possible population
configurations and whose edges are all possible transitions between these configurations.

A transition graph will be denoted, in what follows, by T (A, G) = (V (T ), E(T )) where
G is the communication graph over which the protocol A runs.

Hence, the formal definition of a probabilistic scheduler with respect to a transition
graph is:

Definition 4.9. (Probabilistic Scheduler) A probabilistic scheduler, w.r.t a transition
graph T (A, G), defines for each configuration C ∈ V (T ) an infinite sequence of probability
distributions of the form (dC1 , d

C
2 , . . .), over the set Γ+(C) = {C ′ | C → C ′}, where dCt :

Γ+(C)→ [0, 1] and such that ΣC′∈Γ+(C) d
C′
t = 1 holds for all t and C ′.

In other words, for each configuration C from the transition graph, for any t ≥ 1, if
C is encountered for the tth time, then there is a probability distribution dCt over Γ+(C)
that specifies with which probability C will go to any configuration C ′ such that C ′ is
reachable from C in one step.

Then, Chatzigiannakis et al. [25] introduced the consistency property of a probabilistic
scheduler w.r.t. a transition graph and that can be defined this way:

Definition 4.10. (Consistent Scheduler) A probabilistic scheduler is consistent, w.r.t.
a transition T (A, G), if for all configurations C ∈ V (T ), it holds that dC = dC1 = dC2 = . . ..
This means that any time the configuration C is encountered, the scheduler chooses the
next configuration with the same probability distribution dC over Γ+. This holds for all
C, each with its own distribution.

Given this definition, we can consider that a consistent probabilistic scheduler w.r.t
T (A, G) assigns a label to each directed edge of T . Each edge label is the probability to go

Computing Models for Networks of Tiny Objects 79



4.3. Existing Schedulers for Population Protocols

from the configuration representing the source of this directed edge to the configuration
corresponding to the target of this edge.

More formally, this labeling can be a mapping P from E(T ) to [0, 1], such that for any
configuration Ci ∈ V (T ),

∑
Cj∈Γ+(Ci)

P(Ci,Cj) = 1, where P(Ci,Cj) is the probability to go
from the configuration Ci to Cj. These probabilities do not depend neither on time nor
on the number of times a configuration is encountered.

Introducing these definitions allowed the authors to present the following theorem.
This theorem states the conditions that should be satisfied by a probabilistic consistent
scheduler to be fair with probability 1 [25].

Theorem 4.1. (Fair Scheduler with Probability 1) Any consistent scheduler, for
which it holds that P(Ci,Cj) > 0, for any protocol A, any communication graph G, and all
configurations Ci, Cj ∈ V (T (A, G)) where Ci → Cj and Ci 6= Cj, is fair with probability
1.

In this work, we will rather focus on this last definition of fairness that concerns
probabilistic schedulers.

4.3 Existing Schedulers for Population Protocols

The population protocol model is based on pairwise interactions. Scheduling will therefore
consist on deciding which pairs of agents will communicate, and in what order. In this
context, the enabled processes are not any more single processes, as it is usually presumed
on distributed systems, but ordered pairs of processes able to communicate. Choosing
an ordered pair of agents from a population, corresponds to choosing an ordered pair
of neighbor nodes from the interaction graph (or in other words enabled edges from the
interaction graph). Thus, an enabled process that could be picked by the scheduler in
population protocols can also be described as being a directed edge from the interaction
graph.

Different schedulers were proposed for population protocols (and that are also valid
for any variant or extension of this model as long as it preserves the pairwise interactions
concept). There are schedulers that act without having any knowledge of the protocol.
Whereas, there are those that do know the protocol and take this knowledge into account.

Definition 4.11. (Protocol Oblivious vs Protocol Aware Scheduler) A scheduler
is called protocol oblivious (or agnostic) if it constructs the interaction pattern without
any knowledge on the executed protocol, and protocol-aware if it takes into account the
information concerning the underlying protocol.

According to this classification, we list below the existing schedulers designed for
population protocols.

4.3.1 Protocol Oblivious Schedulers

In [4], Angluin et al. presented the probabilistic population protocol model. This model
corresponds to the population protocol model where interactions are scheduled by a prob-
abilistic scheduler called the Random Scheduler.
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The Random Scheduler

The Random Scheduler is protocol oblivious. Whatever the protocol run by the population
is, this scheduler always acts similarly. All the pairs of agents have the same probability
to interact.

At each step, the scheduler chooses independently, randomly and uniformly only one
edge from the interaction graph, which is one ordered pair of agents. Once two agents
are picked by the scheduler, they are allowed to interact. They communicate their corre-
sponding states to each other, and then update them according to the transition function
of the protocol.

Given this random, uniform and independent choice, Angluin et al. stated that the
Random Scheduler is fair with probability 1 [4]. Also, Spirakis et al. proved that this
scheduler is fair with probability 1 with respect to their fairness condition [25].

4.3.2 Protocol Aware Schedulers

Chatzigiannakis et al. proposed, in [25], three probabilistic schedulers that are, unlike the
Random Scheduler, protocol aware. Yet, each has its own way of taking into account the
population protocol that will be run over the population.

We suppose, in what follows, that G = (V,E) represents the interaction graph over
which the population protocol runs.

The State Scheduler

The State Scheduler proceeds as follows at each step of the computation of the protocol.
It first chooses independently and uniformly at random an ordered pair of states (q1, q2)
from all the interaction candidates of the current configuration. An ordered pair of states
(q1, q2) is an interaction candidate under a configuration C if: ∃ (u, v) ∈ E such that
C(u) = q1 and C(v) = q2. Then, the scheduler chooses, independently and uniformly at
random, only one ordered pair of nodes related by an edge in E, and whose states are
(q1, q2). These chosen nodes can thus communicate and update their states according to
the transition function.

Chatzigiannakis et al. proved that this scheduler is fair with probability 1 [25].

Now, let consider the execution of the population protocol 3-States Approximate Ma-
jority (see Section 2.2) under the scheduling of the State Scheduler. We recall that the
set of states of this protocol is QAM = {x, y, b}. Then, for any configuration C, the set of
states that can be interaction candidates under C should be a subset of the following set
{(x, x), (x, y), (x, b), (y, y), (y, x), (y, b), (b, b), (b, x), (b, y)}. The State Scheduler chooses
independently and uniformly at random an ordered pair which is an interaction candi-
date under the current configuration. Let suppose that the chosen one is the pair (x, y).
Now, from all the edges in the interaction graph whose extremities are nodes representing
agents with states (x, y), the scheduler should pick uniformly at random only one of them.
Then, the pairwise interaction can take place, and the states can be updated.

According to [25], the processing of this scheduler permits, more often, the choice of
meaningful transitions that lead to the protocol’s progress.
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The Transition Function Scheduler

The protocol awareness of this scheduler is shown through the choices it makes concerning
the communicating pairs. These choices are based on the transition function rules of the
protocol. The scheduler chooses pairs that, when they communicate, will lead to the
protocol progress: that is at least the state one of the initiator or the responder will
modify its state, and it ignores all the transitions where no state changes.

To reach a configuration C ′ from a configuration C, the scheduler proceeds as follows.
First, it picks independently and uniformly at random a pair ((q1, q2), (q′1, q

′
2)) where

(q1, q2) is an interaction candidate under C and δ(q1, q2) = (q′1, q
′
2). Then, it chooses

independently and uniformly at random an ordered pair of nodes (u, v) ∈ E, whose states
correspond to (q1, q2) under C. Then, to obtain C ′, the transition function is applied to
(q1, q2) to update their states.

In case the Transition Function Scheduler can not find any pair able to lead to the
protocol progress, it works like the Random Scheduler.

Let us take the example of the One Way Epidemic population protocol consisting of:

• XOW = YOW = {1, 0} with 1: the input (respectively output) of an infected agent
and 0: the input (respectively output) of a non infected agent,

• QOW = {q0, q1},

• IOW : 0→ q0, 1→ q1,

• OOW : q0 → 0, q1 → 1, and

• δOW (q1, q0) = (q1, q1).

Usually non described transitions in a population protocol are those that are non
effective (also called identity transitions ). They are those that leave both the state of
the initiator and that of the responder unchanged. For this protocol, they consist on:

δOW (q0; q0) = (q0; q0), δOW (q0; q1) = (q0; q1) and δOW (q1; q1) = (q1; q1).

We consider now the execution of this protocol under the Transition Function Sched-
uler. The only effective transition rule in this protocol concerns the pair of states (q1, q0).
Thus, at each step of the computation, the Transition Function Scheduler checks if, among
the pairs of states that are interaction candidates under the current configuration, there
exist pairs (q1, q0). If it is the case, the scheduler picks independently and uniformly at
random an ordered pair of nodes from all the pairs (u, v) ∈ E such that, the state of
u is q1 and the state of v is q0. Hence, the effective transition rule can be applied, and
consequently the protocol progresses. Otherwise, the Transition Function Scheduler acts
as the Random Scheduler by choosing independently and uniformly at random a pair of
ordered neighbor nodes from G.

Chatzigiannakis et al. proved in [25] that this scheduler is fair with probability 1.
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The Modified Scheduler

The Modified Scheduler is a slightly modified version of the State Scheduler. It distin-
guishes two classes of transition rules: a class of non effective transition rules and a class
composed of the remaining rules. It selects, with a probability 1−ε, rules from the class of
identity rules and with probability 0 ≤ ε ≤ 1 rules from the other class. The probability
of each class is evenly divided between its members.

The knowledge that both the State Scheduler and the Transition Function Scheduler
have concerning the transition function of the protocol is used so that the protocol pro-
gresses easier and faster. The strategy is to try to avoid spending steps in non effective
transitions. However, in the case of the Modified scheduler, the strategy can be totally
the opposite. In fact, this scheduler can lead the protocol to its worst case scenario by
choosing a very small ε, and consequently by choosing with a high probability the identity
transition rules.

In spite of this possible behavior, Chatzigiannakis et al. [25] proved that the Modified
scheduler is fair with probability 1.

4.4 Equivalence between Schedulers

As shown in the previous section, there are different fair probabilistic schedulers that are
designed for population protocols. The authors of [25] proposed to introduce two metrics
to compare these fair schedulers with each other. These two metrics are: time equivalence
and computational equivalence. They allow to check if two schedulers affect similarly the
performance, and respectively the correctness, of a protocol.

4.4.1 Time Equivalence

Two probabilistic schedulers are time equivalent if they satisfy the following characteri-
zation [25]:

Definition 4.12. (Time Equivalence) Two fair probabilistic schedulers S1 and S2 are
called time equivalent with respect to a protocol A iff all computations of A under S1 and
under S2, beginning from the same initial configuration, take asymptotically the same
expected time (number of steps) to converge.

Chatzigiannakis et al. proved, in [25], that the State Scheduler and the Transition
Function Scheduler are time equivalent with respect to the One way Epidemic protocol
(see Section 4.3.2). In fact, the computation of this protocol under the scheduling of
the State Scheduler or the Transition Function Scheduler requires in both cases O(n)
interactions to reach the protocol’s stabilization. However, with respect to the same
protocol, the Random Scheduler is not time equivalent to them, as any computation
under its scheduling requires Θ(n log n) interactions [7].

4.4.2 Computational Equivalence

The second metric proposed by Chatzigiannakis et al. to establish a comparison between
probabilistic schedulers is the computational equivalence described as follows [25]:
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Definition 4.13. (Computational Equivalence) Two fair probabilistic schedulers S1

and S2 are called computationally equivalent with respect to a protocol A iff for all
computations of A under S1 and under S2, beginning from the same initial configuration,
A stabilizes to the same output assignment with high probability.

Lemma 1, from [25], states that the 3-States Approximate Majority (see Section 2.2)
errs under the Transition Function Scheduler with a constant probability, when the initial
number of agents with state x, Nx, is a Θ(Ny) (with Ny the initial number of agents
with state y). This implies that a computation of this protocol under the Transition
Function Scheduler, starting with a majority of x and with Nx is Θ(Ny), can stabilize
to a configuration where the minority y wins. However, this can never happen if this
protocol runs under the scheduling of the Random Scheduler. We can therefore establish
that the Transition Function Scheduler is not computationally equivalent to the Random
Scheduler w.r.t the 3-States Approximate Majority protocol.

We can consequently conclude that probabilistic schedulers, even if they satisfy the
same fairness condition, are not necessarily equivalent.

4.5 The Random Scheduler Procedures

When authors introduced schedulers for the population protocol model, they just de-
scribed how these schedulers proceed to choose an ordered pair of agents to interact.

In this section, we consider the possible implementations of such theoretical entities,
and more specifically the implementation of the Random Scheduler. We present a pro-
cedure proposed by Becchetti et al. [18]. Then, we propose our solution that, unlike the
previous one, preserves the anonymity of the agents [60]. It is also designed according to
the mapping model between population protocols and anonymous asynchronous message
passing (see Section 3.2.4), and stands for the procedure TrySynchronization() in this
context.

4.5.1 Random Scheduler Procedure: Becchetti et al.

Experiments of population protocols in a sensor network are presented in [18]. Becchetti
et al. considered a population of agents, each equipped with a sensor. These sensors
are able to communicate via a wireless media. The agents are placed in the same room,
therefore the interaction graph is supposed to be complete. Also, each agent u has a
unique identifier Idu.

Becchetti et al. supposed that the population protocols running in this population
are scheduled by the Random Scheduler. They therefore proposed an algorithm that
simulates the processing of this scheduler, described by Algorithm 3.

This algorithm consists on two phases: a setup phase, and a neighborhood discovery
and leader election phase. The basic idea is to elect a leader in this population, that is
going to play the role of the initiator. Then, this leader chooses one of its neighbors to
be a responder.

First, each agent u generates a random number Rdu which is a combination of its
identifier and its local time.
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Algorithm 3 The Random Scheduler Procedure of Becchetti et al.

1: loop
2: InitiatorF lag ← true
3: NeighborsList← ∅
4: Randomly generate Rd;
5: Broadcast m(Id,Rd);
6: while ((ReceivedMessage 6= ∅) and (InitiatorF lag = true)) do
7: m(Idv, Rdv)← the message received from a neighbor v;
8: if (Idv /∈ NeighborsList) then
9: Add Idv to NeighborsList;

10: end if
11: if (Rdv > Rd) or ((Rdv = Rd) and (Idv > Id)) then
12: InitiatorF lag ← false;
13: end if
14: end while
15: if (InitiatorF lag = true) then
16: Randomly select a responder v from NeighborsList;
17: end if
18: end loop

Then, it starts discovering its neighborhood. Concurrently, a leader election process is
initiated to nominate the initiator of the interaction in the network. Each agent initially
has an initiator flag set to true and an empty list of neighbors. It starts by periodically
broadcasting a message containing (Idu, RDu). Respectively, it receives messages from
its neighborhood.

When an agent i receives a message from its neighbor j, the agent i checks its neighbors
list. If Idj does not appear there, i adds it. Then, i compares its Rdi to Rdj. If Rdi > Rdj,
agent i maintains its initiator flag to true and considers that it still has the chance to be
chosen as initiator. If Rdi < Rdj, i sets its initiator flag to false. Otherwise, if Rdi = Rdj,
then the identifiers are compared, and if i has the highest Id it maintains its initiator flag
to true.

As the interaction graph is complete, each agent is going to discover all the other
agents of the population as neighbors, and eventually only one agent will maintain an
initiator flag set to true. This initiator chooses randomly one neighbor (that will be the
responder) to interact with.

When the initiator and the responder are both designated, the communication can
take place. Once the interaction ends, the agents restarts all the procedure so that a new
pair will be chosen to communicate.

This procedure permits in fact a central scheduling where only one ordered pair of
agents is chosen and enabled to communicate at each step of the computation. Using the
message passing as a communication model for such networks is a suitable choice. Yet,
in this scheduling procedure, the agents are not anonymous, which does not respect the
anonymity hypothesis of the population protocols.
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4.5.2 Random Scheduler Procedure: Our Proposition

We propose an algorithm describing the Random Scheduler running in complete interac-
tion graphs, and which is an enhancement of a result that we presented in [60].

We consider the mapping of populations protocols to distributed algorithms running
over anonymous asynchronous systems based on message passing (see Section 3.2.4). Ac-
cordingly, the procedure we propose, described by Algorithm 4, is based on message
passing. It preserves the anonymity of the agents as no identities are assigned to the
agents, but we suppose that each agent is able to differentiate its different ports thanks
to port numbering.

This procedure is executed by each agent in the population. Initially, each agent u
starts by initiating its attribute GlobalMin to true. Then, it generates, for each of its
incident links, a random number nbre. The minimum number that was generated is
attributed to LocalMin, and the edge label of the link over which this minimum was
generated is associated to LocalMinPort.

Then, agent u broadcasts its LocalMin, and receives those of its neighbors. If the
agent u concludes that it has generated the minimum number in the whole population,
it becomes the initiator of the interaction that is going to take place. Consequently, it
informs its neighbor, which is linked to it via MinPort, that it has to be the responder.
Otherwise, if the agent is aware that it has not generated the minimum number, it checks
if it is requested to be a responder. If it is not the case, it becomes aware that it does not
belong to the chosen pair in this computation step.

This implementation guarantees that, at each step of the computation of the protocol,
there is only one ordered pair of agents that are chosen to communicate. Hence, it satisfies
the description of the Random Scheduler.

The procedure described by Algorithm 4 can also stand for the TrySynchronization(u)
procedure, with u the process representing the agent u in the population. It picks, at each
computation step, only one ordered pair of agents to communicate. For each agent of this
chosen pair, this procedure assigns non zero values to the parameters role and port. For
the remaining agents, these parameters maintain their initial values, that equal 0. Hence,
by introducing this procedure to the local algorithm Algo (see Algorithm 1), we obtain
a description of the pairwise interaction process in a population protocol: the scheduler
synchronizing a pair of agents, then the bidirectional and simultaneous communication.
This latter was not explored in [18].

Remark 4.1. We would mention that the implementation described by Algorithm 4, as
well as the one described by Algorithm 3, totally corresponds to the processing of the
Random Scheduler. They are both randomized procedures whose results are the random
choice of only one ordered pair of agents to communicate. Each ordered pair is chosen
with the same probability, which is 1

n(n−1)
. Therefore, we do not have to investigate their

fairness as the Random Scheduler was already proved to be a probabilistic fair scheduler
with probability 1.
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Algorithm 4 The Random Scheduler Procedure

1: loop
2: GlobalMin← true
3: for i from 1 to d(u) do
4: Generate a random number nbre;
5: if (i = 1) then
6: LocalMin← nbre;
7: LocalMinPort← i;
8: else
9: if (nbre < LocalMin) then

10: LocalMin← nbre;
11: LocalMinPort← i;
12: end if
13: end if
14: end for
15: for i from 1 to d(u) do
16: Send(LocalMin, i);
17: end for
18: for i from 1 to d(u) do
19: Receive(NeighborLocalMin, i);
20: if (LocalMin ≤ NeighborLocalMin) then
21: GlobalMin← false;
22: break;
23: end if
24: end for
25: if (GlobalMin = true) then
26: role← i;
27: port← LocalMinPort;
28: Send(BeResponder, port);
29: else
30: for i from 1 to d(u) do
31: Receive(m, i);
32: if (m = BeResponder) then
33: role← r;
34: port← i;
35: break;
36: end if
37: end for
38: end if
39: end loop
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4.6 The Handshake Scheduler

According to the definition of the k−centrality (Definition 4.2), all the schedulers pre-
sented above are diam(G)−central, also called sequential schedulers, where diam(G) is
the diameter of the interaction graph G over which a protocol runs. They allow only one
enabled pair of agents to communicate at each step of the computation of a protocol.

In this section, we introduce the Handshake Scheduler (also denoted the HS Scheduler)
which is a new probabilistic fair scheduler based on randomized handshakes. Unlike the
existing schedulers, the Handshake Scheduler is 1−central. It allows more than only one
interaction to take place concurrently, as long as the picked pairs of nodes are disjoint.
This scheduler can also be described as a distributed algorithm based on message passing
that can be used in simulations and experiences of population protocols in real-world
networks of sensors (or any tiny objects) without any need of identifiers. Compared
to the implementations presented in the previous section of the Random Scheduler, the
implementation of our proposed scheduler needs only one phase and does not require the
completeness of the interaction graph.

4.6.1 Description of the Handshake Scheduler

Angluin et al. designed the population protocols as a computational model for networks
of tiny artifacts where interactions take place between pairs of agents. By assuming that
these protocols run under the Random Scheduler, they supposed that, at each step of a
protocol’s computation, only one ordered pair of agents is allowed to communicate. The
same assumption was considered for the schedulers proposed by Chatzigiannakis et al.

Yet, these networks represent distributed systems where there is no centralized coordi-
nation. Consequently, more than one pairwise interaction can take place simultaneously.
A distributed scheduler can capture these concurrent interactions as it is able to select,
at each step of the computation, a set of enabled pairs of processes. However, to be quite
suitable for the context of population protocols, this distributed scheduler has to satisfy
the two following properties:

• 1-central scheduler The scheduler should take into account that an agent in a
population protocol can not participate in two communications at the same time.
And, once it is involved in an interaction, it should finish communicating and up-
dating its state according to the ongoing interaction before starting a new one.
Otherwise, this can lead to erroneous states.

To illustrate this, we take the example of the following scenario. Let a1, a2 and
a3 be three agents with respective states: q1, q2 and q3. These agents belong to a
given population P . Let A be any population protocol running over the population
P . We suppose that among the transition rules of the transition function δ of the
protocol A, there are these two following rules:

δ (q1, q2) = (q′1, q
′
2) and δ (q3, q1) = (q′3, q

′′
1) .

Suppose that a1 initiates an interaction with a2. They both exchange their corre-
sponding states. Based on the state q1 of the initiator, the receiver a2 changes its
state to q′2. Likewise, a1 has to change its state to q′1. However, suppose that in
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meanwhile, a1 is involved as a receiver in an interaction with a3 that should normally
update its state to q′′1. Now, which of the two states q′1 and q′′1 , the agent a1 will
adopt? Whatever a1’s chosen state is, one of the agents a2 or a3 would have changed
its state based on an invalid state of a1. Thus, concurrent interactions between joint
pairs of agents cause inconsistent configurations of the whole network.

Therefore, if a distributed scheduler is designed for population protocols, it should
choose, at each step of the computation, a set of disjoint ordered pairs of enabled
agents to ensure that each agent is involved in only one interaction. According
to the definition of the k-centrality, this scheduler has to be 1-central: among the
enabled pairs of agents, those chosen by the scheduler should be separated by at
least one edge.

• Probabilistic scheduler To better reflect the randomness (non determinism) of
the order in which the agents interact during a protocol’s computation, caused by the
asynchrony of the population and the passive mobility of the agents, the distributed
scheduler should be probabilistic. It attributes to each enabled pair a probability
to be picked. If this scheduler is protocol oblivious, the probability distribution as
well as the choice of the communicating edges, will not be based on any knowledge
of the protocol run by the population. Otherwise, these probabilities will depend
on the protocol.

Given these constraints, we propose a scheduler based on the randomized handshake
model, also called the randomized rendezvous model. A handshake is an agreement
between two nodes to communicate together in an exclusive mode [71]. Hence, the pairs
of agents that will be chosen by the scheduler at each step will be those that are going to
succeed on reaching an agreement about a handshake. Simultaneous random choices of
different communicating pairs from the interaction graph are possible and the handshake
guarantees that these pairs are disjoint. The probability for each pair of agents (or an
edge) to be chosen by the scheduler is the probability that these two agents agree about
a handshake.

We call this scheduler the Handshake Scheduler and denote it the HS Scheduler. We
can represent this scheduler as a labeling HS over the edges of the interaction graph. A
more formal definition can be as follows:

Definition 4.14. (The Handshake Scheduler) For any population P with an interac-
tion graph G = (V,E), for any population protocol A running in P , a scheduling of the
protocol A under the Handshake Scheduler corresponds to the following mapping:

HS : E → [0, 1]
e 7→ Pr (HS(e))

with Pr (HS(e)) the probability that a handshake takes place over the edge e.

Now, if we consider the computation of a population protocol under the HS Scheduler,
the main basic concepts that were already presented in Chapter 2, remain the same
excepting the definition of a transition.

In fact, this definition should now take into account the possible choice of, not only
one, but multiple edges to go from one configuration to another. With respect to this
description, we give the new definition of a transition.
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Definition 4.15. (Transition) Let C and C ′ be two population configurations. Let
Enc = {e1, e2, . . . , ek} be a set of disjoint encounters from E such that:

- ∀ i ∈ {1, 2, . . . , k}, ei ∈ E,

- ∀ l, l′ ∈ {1, 2, . . . , k}, such that l 6= l′, if el = (u, v) and el′ = (u′, v′) then: u 6= u′,
u 6= v′, v 6= u′ and v 6= v′.

We say that C goes to C ′ via the set of encounters Enc, denoted C
Enc−−→ C ′, if:

- ∀ ei = (ui, vi) ∈ Enc, C ′(ui) = δ1(C(ui), C(vi)) and C ′(vi) = δ2 (C(ui), C(vi)),

- C ′(w) = C(w) for any node w which is not an extremity of an edge from Enc.

We say that C can go in one step to C ′, denoted C → C ′, if C
Enc−−→ C ′ for some set

of encounters Enc ⊂ E (Enc should fulfill the conditions we specified above, that is it
should be a set of disjoint edges from E). C → C ′ is called a transition.

A configuration can also be reachable from another one with more than one compu-
tation step, and thus via a sequence of configurations.

Definition 4.16. (Reachable Configuration) Let C and C ′ be two population config-

urations. C
∗→ C ′ denotes that C ′ is reachable from C via a sequence of configurations

C0, C1, . . . , Ck where C = C0, Ck = C ′ and ∀ i ∈ {0, 1, ..., k− 1}, Ci → Ci+1 (with respect
to Definition 4.15).

As we already mentioned above, the proposed scheduler is based on the handshake
model. In what follows, we give more details about this model.

4.6.2 The Handshake Model

In some communication models, both the sender and the receiver need to be ready to
exchange information. They need to have an agreement to communicate: it is called
the handshake model. This model is useful in radio networks, where if a node is called
simultaneously by more than one neighbor, the received messages can be in collision. The
rendezvous model is also useful in case a physical meeting is needed between the entities
to communicate such as in robots networks. Moreover, in anonymous asynchronous net-
works, based on point-to-point communication via synchronous message passing, such an
agreement is needed so that the sender and the receiver can exchange messages [32].

Randomized Handshake Algorithms

Different works proposed handshakes algorithms that depend on the assumptions made
on the system. We focus on the case of anonymous asynchronous networks that are based
on point-to-point communication via synchronous message passing.

Angluin stated in [2] that there is no deterministic algorithm to implement synchronous
message passing in an anonymous network that passes messages asynchronously. There-
fore, if such algorithm exists, it should be a randomized algorithm.
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A Synchronous Randomized Handshake Algorithm Métivier et al. proposed a
randomized distributed handshake algorithm that uses a simple bit to encode messages [52,
53]. In this algorithm, each node v in the network runs Algorithm 5. We would mention
that we present this algorithm as it was introduced by the authors. Consequently we
should outline that choosing a neighbor by a process v, in this context of anonymous
processes, corresponds more precisely to choosing a port, and the neighbor c(v) is the
neighbor with which v can communicate via the chosen port.

Algorithm 5 The Randomized Handshake Algorithm

1: loop
2: Choose independently and uniformly at random a neighbor c(v);
3: Send 1 to c(v);
4: Send 0 to each neighbor u 6= c(v);
5: Receive messages from all the neighbors;
6: rc(v) ← the number received from c(v);
7: if (rc(v) = 0) then
8: There is no rendezvous;
9: else

10: There is a rendezvous with c(v);
11: end if
12: end loop

Each node v chooses independently and uniformly at random a node c(v) (or more
exactly a port number) from its neighborhood. The node v sends 1 to c(v), and 0 to the
rest of its neighbors. This implies that v would like to synchronize with node c(v). There
is a rendezvous between v and c(v) if they mutually choose each other by sending 1 to
each other. Hence, a computation step related to the asynchronous algorithm that uses
this rendezvous algorithm for synchronization can take place.

Locally, when a node v has more than one neighbor, Algorithm 5 defines how v chooses
only one of them to synchronize with. This guarantees that each node in the network will
be able to participate to at most one rendezvous at a given time.

This handshake algorithm is hence a local mechanism that automatically and ran-
domly performs a temporary and exclusive synchronization between two neighbors in an
asynchronous environment and whose global result of is a set of disjoint pairs of synchro-
nized nodes (matchings).

We mentioned in Chapter 3 (see Section 3.1) that, in graph relabeling systems, different
relabeling rules can be applied simultaneously as long as the set of interacting nodes
are disjoint. Accordingly, to encode the synchronization needed for LC0 interactions in
asynchronous message passing systems, Bauderon et al. [14] opted for this handshake
algorithm.

An Asynchronous Randomized Handshake Algorithm The randomized rendezvous
algorithm proposed by Métivier et al. is a synchronous algorithm that uses an important
number of messages. Indeed, each process sends a message via each of its ports.
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Fontaine et al. proposed, in [37], an asynchronous version of this algorithm that also
reduces the number of messages sent over the network. In this algorithm, each process in
the network proceeds as described in Algorithm 6.

Algorithm 6 The Asynchronous Randomized Handshake Algorithm

1: loop
2: Choose independently and uniformly at random a neighbor c(v);
3: Send 1 to c(v);
4: Receive a message m from a neighbor w;
5: if ((w = c(v)) and (m = 1)) then
6: There is a rendezvous between v and c(v);
7: Return to step 2;
8: else
9: if ((w = c(v)) and (m = 0)) then

10: Return to step 2; // There is no rendezvous with c(v)
11: else
12: Send 0 to w;
13: Return to step 4;
14: end if
15: end if
16: end loop

Each process v chooses uniformly at random a neighbor c(v), and sends it 1. Then,
it remains henceforth waiting for a message from this neighbor. Consequently, there are
three possible scenarios:

1. If the process v receives a message 1 from its chosen neighbor c(v), then there is a
rendezvous. The processes v and c(v) are hence synchronized and a computation
step (related to the asynchronous algorithm using the rendezvous algorithm for
pairwise synchronization) can take place. Then, process v executes once again the
algorithm.

2. If v receives a message from c(v), but whose value is 0, it concludes that c(v)
has chosen another neighbor to synchronize with. There is hence no rendezvous.
Consequently, process v moves to step 2 to try a new synchronization.

3. If process v still did not received a message from c(v), and in meanwhile, it receives
a message 1 from a neighbor different from c(v), it sends 0 to it. The process v
returns afterwards to step 4 to continue waiting for a response from c(v).

Fontaine et al. stated that this randomized asynchronous handshake algorithm is also
fault tolerant, that is even if there are some faulty nodes, the algorithm is able to continue
running correctly [37].

4.6.3 The Randomized Algorithm of the Handshake Scheduler

We provided in a previous section a description of the Handshake Scheduler we introduced,
that shows its specificities compared to the already existing schedulers. We aim now to
propose a suitable algorithm to describe the processing of this scheduler.
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This Handshake Scheduler is based on randomized handshakes. Thus, we think that
its corresponding algorithm can be inspired from the randomized rendezvous algorithms
we presented above. As the synchronous handshake algorithm (Algorithm 5) was used for
synchronization in LC0 computations, and as we already established some correspondence
between the pairwise interactions in populations protocols and LC0 interactions, we opt
for adopting this algorithm as a Handshake Scheduler algorithm. This proposition is
applied in the context of a scheduling of the OR population protocol whose transition
function is symmetric.

We then deduce that, both the synchronous and asynchronous versions of the hand-
shake algorithm can be used to describe the Handshake Scheduler provided that symmetry
breaking is added to them.

The Randomized Handshake Algorithm as a Scheduler for Population Proto-
cols

We studied, in [60], the broadcast in anonymous asynchronous mobile wireless sensor
networks. Starting from only one informed node, the information should reach every
node in the network at the end. This broadcasting process can be simulated by the OR
predicate which corresponds to a logical OR over the inputs of the sensors. This predicate
is stably computable by the population protocols, and more specifically by the following
one that we call the OR protocol.

The OR protocol can be described by the 6-tuple (XOR, YOR, QOR, IOR, OOR, δOR)
with:

• XOR = YOR = {1, 0} with 1: the input (respectively output) of an informed agent
and 0: the input (respectively output) of a non informed agent,

• QOR = {q0, q1},

• IOR(0) = q0, IOR(1) = q1,

• OOR(q0) = 0, OOR(q1) = 1, and

• δOR:
δOR(∗, q1) = δOR(q1, ∗) = (q1, q1), ∀ ∗ ∈ QOR.

Thus, we proposed a randomized distributed algorithm based on the OR population
protocol to avoid collision and information duplication problems. We represented the sen-
sor network as an anonymous asynchronous system based on message passing, and with
port numbering. Consequently, we needed to proceed according to the mapping of the
computation of a population protocol to a distributed anonymous asynchronous algorithm
with message passing, that we defined in Chapter 3 (see Section 3.2.4).

We proposed to use Algorithm 5 to stand for the TrySynchronization procedure and
to obtain pairwise synchronizations. The synchronized pairs of agents are those that
succeeded in obtaining a rendezvous.

Once two agents are synchronized, they communicate their respective states to each
other. This bidirectional communication is as described in the Algo algorithm (Algo-
rithm 1): each agent v of the synchronized pair sends its state via the port c(v), and
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receives the state of the synchronized neighbor also via this port. If one of them is in-
formed, and thus in state q1, and the second is not, the informed node forwards the
information to the non informed one. The non informed node then becomes informed and
updates its state from q0 to q1. Otherwise, the information is not sent.

Using the randomized rendezvous algorithm ensures that, once a node is involved in a
communication, it will communicate in an exclusive mode. Thus, if it receives the infor-
mation, it will be from only one neighbor at a given time, which avoids collision problems.
Also, communicating the respective states between two synchronized nodes, before the
informed node sends the information, avoids the nodes receiving more than one copy of
the information. Furthermore, as the OR predicate is stably computable by population
protocols, it guarantees that the broadcast algorithm eventually stabilizes to a configura-
tion where all the nodes receive the information.

Although the randomized rendezvous provides only the port number via which an
agent v is synchronized, and not the role of v, it can stand for the TrySynchronization
procedure needed by the Algo algorithm describing the OR protocol. In fact, the transi-
tion function of this protocol is symmetric. It consists of only one effective transition rule
which is symmetric:

δ(q1, q0) = δ(q0, q1) = (q1, q1) .

Hence, the application of a transition rule in not conditioned by the role of the agent in
this case as the transition function affects similarly the initiator and a responder in an
interaction.

Accordingly, the randomized rendezvous can be considered, in this case, as an imple-
mentation of a distributed scheduler based on handshakes.

The Handshake Scheduler Algorithm: an Enhancement of the Randomized
Handshake Algorithm

The synchronous randomized handshake algorithm, as it was used in the previous section,
allows the synchronization of multiple disjoint pairs of agents in some iterations of the
broadcast algorithm. This randomized handshake algorithm decides which pairs of agents
will interact and in what order. However, these synchronized pairs are not ordered, which
means that the initiator and the responder are not distinguished. By analogy, we can also
say that using the asynchronous version of this algorithm will lead to the same result.

Not breaking the symmetry between the two synchronized agents has no consequence
in the context of the protocol OR protocol or any population protocol whose transition
function is symmetric. However, not all the population protocols have symmetric transi-
tion rules. Also, breaking the symmetry is a fundamental assumption in the population
protocol model. Therefore, to be a suitable distributed scheduler for population proto-
cols, each of these two randomized rendezvous should be adjusted to consider symmetry
breaking.

In order to fit this requirement, we propose that instead of sending 1 when inviting
the chosen neighbor c(v), each agent v generates independently and uniformly at random
a value rv ∈ {1, 2, . . . , N} where N is a constant such that N ≥ 2, and sends it to c(v). A
handshake takes place, if two nodes mutually choose each other and generate two different
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non zero values. The role of the initiator is be attributed to the node that generated the
higher value.

We also recall that population protocols were designed for asynchronous networks of
agents that have constraints on memory, computational power and energy. Thus, we opt
for an adjustment of the asynchronous randomized handshake algorithm (Algorithm 6)
to describe the distributed handshake scheduler. In fact, on the one hand, this version of
the handshake algorithm takes into account the asynchrony of the communications in the
population. And, on the other hand, as it uses less messages (the 0 messages) compared
to the synchronous version, it respects the constraint related to the energy of the agents.

The result of these modifications is the randomized algorithm described in Algorithm 7.

Algorithm 7 The Randomized Handshake Scheduler Algorithm

1: loop
2: Choose independently and uniformly at random a port portc(v);
3: Choose independently and uniformly at random a number rv ∈ {1, 2, . . . , N};
4: Send (rv, portc(v));
5: Receive (rw, portw);
6: if

(
(portw = portc(v)) and (rv 6= rw)

)
then

7: if (rv > rw) then
8: role← i;
9: else

10: role← r;
11: end if
12: Return to step 2;
13: else
14: if

(
(portw = portc(v)) and ((rw = 0) or (rv = rw)))

)
then

15: Return to step 2; // There is no rendezvous with c(v)
16: else
17: Send (0, portw);
18: Return to step 5;
19: end if
20: end if
21: end loop

The randomized distributed algorithm, consisting of a collection of Algorithm 7 run by
the agents of the population, plays the role of the Handshake Scheduler for a population
protocol. Also, Algorithm 7 stands for the Trysynchronization procedure in the Algo
algorithm according to the mapping of a population protocol to a distributed algorithm
based on message passing in an anonymous asynchronous system.

Once a synchronization (or a handshake) is established between two nodes, they ex-
change their states. If there is a transition rule involving these states, they will apply it
with respect to their roles.
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4.6.4 Analysis of the Randomized Handshake Scheduler Algo-
rithm

For the analysis of the distributed algorithm corresponding to the Handshake Scheduler,
we consider a synchronous execution of Algorithm 7 (see [44]).

Probability of at least a Handshake

LetA be a population protocol running over an interaction graph G = (V,E). We suppose
that the pairwise interactions are handled by the Handshake Scheduler. We thus recall
that, at each computation, this scheduler picks for interaction the ordered pairs of agents
that succeeded in a handshake.

For any pair e = (u, v), such that the edge e exists in the interaction graph G, there
is a handshake between agents u and v, denoted HS(e) if, and only if, c(u) = v, c(v) = u
and ru 6= rv.

Lemma 4.2. Let A be a population protocol running under the HS Scheduler in a popu-
lation whose interaction graph is G = (V,E), then:

∀e = (u, v) ∈ E, Pr (HS(e)) =
β

d(u)d(v)
, with β = 1− 1

N
.

Proof. We first note that the probability that c(u) = v is:

Pr(c(u) = v) =
1

d(u)
,where d(u) is the degree of the node u. (4.1)

We also note that the probability that u and v generate two different non zero values
is:

Pr(ru 6= rv) =
N∑
i=1

1

N

N − 1

N
= 1− 1

N
= β . (4.2)

Then, we obtain:

Pr (HS(e)) = Pr(c(u) = v)× Pr(c(v) = u)× Pr(ru 6= rv)

=
β

d(u)d(v)
. (4.3)

In the sequel, we denote {e1, . . . , em} the set of edges in the interaction graph. We also
denote by HSG the event: There is at least a handshake in the graph G. The HSG and
HS(e) are respectively the complement events of HSG and HS(e). Then, as described in
[53], we have:

Pr
(
HSG

)
= Pr

(
∧mi=1HS(ei)

)
Applying Proposition 1.6 gives:

Pr
(
HSG

)
=

m∏
i=1

Pr
(
HS(ei) | ∧i−1

j=1HS(ej)
)

=
m∏
i=1

(
1− Pr

(
HS(ei) | ∧i−1

j=1HS(ej)
))

. (4.4)
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Let g be any subset of E. Let ξg (respectively ξg) denote the event of obtaining a
handshake for at least one edge (respectively no edge) in g. Then, according to a Lemma
from [32] (we will give more details about this Lemma in the following chapter), we can
state that:

∀ e ∈ E, Pr
(
HS(e)|ξg

)
≥ Pr(HS(e)).

This yields:

∀ 1 ≤ i ≤ m, Pr
(
HS(ei) | ∧i−1

j=1HS(ej)
)
≥ Pr (HS(ei)) .

Consequently, (4.4) becomes:

Pr
(
HSG

)
≤

m∏
i=1

(1− Pr (HS(ei))) . (4.5)

Based on Proposition 1.15, we can write:

∀ (xi)1≤i≤m such that: ∀ i, 0 ≤ xi ≤ 1, we have
m∏
i=1

(1− xi) ≤
(

1−
∑m

i=1 xi
m

)m
.

Then, the inequality (4.5) becomes:

Pr
(
HSG

)
≤

(
1−

∑m
i=1 Pr (HS(ei))

m

)m
. (4.6)

On the other hand, we have:

m∑
i=1

Pr (HS(ei)) =
∑
{u,v}∈E

β

d(u)d(v)

≥ m

 ∏
{u,v}∈E

β

d(u)d(v)

 1
m

≥ m

(
β

1
m

∑
{u,v}∈E d(u)d(v)

)

≥ m

(
β

1
m

∑
{u,v}∈E(n− 1)2

)

≥ β n (n− 1)

2(n− 1)2

≥ β

2
. (4.7)

Thus, (4.6) becomes:

Pr
(
HSG

)
≤

(
1− β

2m

)m
∼ e−

β
2 . (4.8)

This yields:

Pr (HSG) ≥ 1− e
−β
2 . (4.9)

Consequently, given the inequality 4.9, we can state the following Lemma:
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Lemma 4.3. Let A be a population protocol running on the communication graph G =
(V,E) under the HS Scheduler. Then, the probability that the HS Scheduler picks at least

one ordered pair of nodes at the end of Algorithm 7 is lower bounded by 1− e−β2 .

The Number of Simultaneous Handshakes

Let G = (V,E) be the communication graph of a population protocol A. Let X be
the random variable (r.v) which counts the number of simultaneous handshakes that can
take place at the same step, and that corresponds to the number of concurrent pairwise
interactions that can take place. Using the linearity of the expectation, we can obtain the
expected number of X:

E (X) =
∑

(u,v)∈E

(
β

d(u)d(v)

)
. (4.10)

Analysis of the Handshake Scheduler Algorithm in particular cases of graph
structures

We consider the following particular cases of graph structures that can represent the inter-
action graph of a population and compute the corresponding probabilities of a handshake
over an edge as well as the number of possible simultaneous handshakes.

Case of a Complete Graph Let the interaction graph G = (V,E) be a complete
graph of size n ≥ 2. Then, for any e = (u, v) ∈ E, the probability of a handshake over
this edge is

Pr (HS(e)) =
β

(n− 1)2
. (4.11)

Accordingly, the expected number of simultaneous handshakes becomes:

E (X) =
∑

(u,v)∈E

β

(n− 1)2

=
n(n− 1)

2

β

(n− 1)2

=
β n

2 (n− 1)
. (4.12)

Case of a Random Graph Gn,p In this section, we consider that the communication
graph G = (V,E) is a random graph Gn,p with p > 0. It is straightforward that we have
some edges.

The probability of a handshake over an edge e = (u, v), with e ∈ E is as described by
the following Lemma.

Lemma 4.4. Let Gn,p = (V,E) be a random graph, and let e = (u, v) ∈ E. Then,

Pr (HS(e)|e ∈ E) = β
(1− qn−1)

2

(n− 1)2 p2
. (4.13)
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Proof. We assume that Gn,p = (V,E) is a random graph and e = (u, v) ∈ E. We study
the probability of having a handshake on e conditioned on the event e ∈ E.

Pr(HS(e)| e ∈ E) =
n−1∑
k1=1

n−1∑
k2=1

Pr(HS(e)| e ∈ E ∧ d(u) = k1 ∧ d(v) = k2)

× Pr(d(u) = k1 ∧ d(v) = k2| e ∈ E).

We already have,

Pr(HS(e)| e ∈ E ∧ d(u) = k1 ∧ d(v) = k2) =
β

k1 k2

.

Also,

Pr(d(u) = k1 ∧ d(v) = k2| e ∈ E) = Pr(d(u) = k1| e ∈ E)× Pr(d(v) = k2| e ∈ E) (4.14)

On the other hand, the degree distribution of any vertex x in a random graph Gn,p is
binomial such as:

Pr(d(x) = w) =

(
n− 1

w

)
pw (1− p)n−1−w .

Thus,

Pr(d(u) = k| e ∈ E) =

(
n− 2

k − 1

)
pk−1 (1− p)n−1−k .

Then, from 4.14, we obtain:

Pr(d(u) = k1 ∧ d(v) = k2| e ∈ E) =

(
n− 2

k1 − 1

) (
n− 2

k2 − 1

)
pk1+k2−2 (1− p)2n−2−k1−k2 .

This yields

Pr(HS(e)| e ∈ E) = β

(
n−1∑
k=1

1

k

(
n− 2

k − 1

)
pk−1 (1− p)n−1−k

)2

. (4.15)

Now, we focus on:

n−1∑
k=1

1

k

(
n− 2

k − 1

)
pk−1 (1− p)n−1−k =

n−1∑
k=1

1

k

(n− 2)!

(k − 1)!(n− 1− k)!
pk−1 (1− p)n−1−k

=
1

n− 1

n−1∑
k=1

(n− 2)!

k!(n− 1− k)!
pk−1 (1− p)n−1−k

=
1

p (n− 1)

(
n−1∑
k=0

(
n− 1

k

)
pk (1− p)n−1−k − qn−1

)

=
(1− qn−1)

p (n− 1)
. (4.16)

Consequently, integrating (4.16) in (4.15) gives:

Pr(HS(e)| e ∈ E) = β
(1− qn−1)2

p2 (n− 1)2
.
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Note that this proof is an adaptation of the analysis already presented in [71] to our
handshake procedure, however we gave here further details of the computation.

Corollary 4.5. Let Gn,p = (V,E) be a random graph, and let u and v be two vertices
from V . Then,

Pr(HS(e)) = β
(1− qn−1)

2

(n− 1)2 p
. (4.17)

Proof. Let Gn,p = (V,E) be a random graph. Let u and v be two vertices from V such
that u 6= v. The probability of a handshake between u and v can be expressed this way:

Pr(HS(e)) = Pr(HS(e)|e ∈ E) × Pr(e ∈ E)

+ Pr(HS(e)|e /∈ E) × Pr(e /∈ E). (4.18)

There is no handshake between u and v if they are not linked by an edge from E. This
yields:

Pr(HS(e)|e /∈ E) = 0 .

Then, (4.18) becomes:

Pr(HS(e)) = Pr(HS(e)|e ∈ E) × Pr(e ∈ E)

= β
(1− qn−1)2

p2 (n− 1)2
× p

= β
(1− qn−1)2

p (n− 1)2
. (4.19)

As a consequence of Corollary (4.5), if Xn,p is the number of simultaneous handshakes
in a Gn,p graph and E (Xn,p) is its expected value, then:

E (Xn,p) =
β n

2 (n− 1) p

(
1− qn−1

)2
. (4.20)

We note that the expression (4.20) can be simplified for some particular values of p:

• If p is a constant, then (1− qn−1)
2 → 1 as n→∞. Hence,

E (Xn,p) ∼
β

2p
as n→∞.

• If p = α logn
n

, with α > 1 then:

E(Xn,p) ∼ β
n

2α log n
, as n→∞. (4.21)

The most interesting case is the last one where p = α logn
n

for α > 1. Indeed, this value
is the connectivity threshold for a Gn,p [33, 34, 13].
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4.6.5 The Fairness of the Handshake Scheduler

We introduced the HS Scheduler and proposed a randomized procedure to implement it.
Now, we aim to prove that this scheduler satisfy a basic property which is fairness.

Based on the analysis results presented in the previous section, we first prove that
the HS Scheduler is a probabilistic consistent scheduler. Then, we conclude that it is fair
with probability 1.

The Handshake Scheduler: a Probabilistic Consistent Scheduler

We recall that a transition graph T = (V (T ), E(T )) of a protocol A running on G, also
denoted T (A, G), is the directed graph whose nodes are all possible population configu-
rations and edges are all possible one-step transitions, and that may contain self-loops.

Theorem 4.6. The HS Scheduler is a probabilistic consistent scheduler.

Proof. Let A be any population protocol running over an interaction graph G = (V,E)
under the HS Scheduler. Let T (A, G) = (V (T ), E(T )) be its transition graph, and Ci be
any configuration in V (T ). Let Cj be any configuration in V (T ) reachable in one step
from Ci.

We define EncCiCj = {Enc | Enc ⊂ E(G) and Ci
Enc−−→ Cj}. Then, for each element

Enc from EncCiCj , we define the set E of the edges of the interaction graph G, as the
union of three disjoint subsets: Enc, F1 and F2. F1 represents the set of edges that are
joint to Enc. F2 represents the set of edges that are disjoint to Enc.

More formally, ∀Enc ⊂ EncCiCj , we rewrite the set E as following:

E = Enc ] F1 ] F2 .

with:

• F1 = {f ∈ E | if f = (u, v) then ∃ e ∈ Enc such that e = (u, v′) or e = (u′, v)},

• F2 = {f ∈ E | if f = (u, v) then ∀ e ∈ Enc, if e = (u′, v′) then u 6= u′, u 6= v′, v 6= u′

and v 6= v′}.
Any time Ci is encountered, Cj is selected with the following probability

PrCiCj =
∑

Enc⊂EncCiCj

Pr (HS(Enc))Pr
(
HS(F2)

)
.

Consequently, with respect to the transition graph T and according to Definition 4.9,
we can state that the HS Scheduler is probabilistic.

The probability of handshakes on any set of edges depends on the probability of a
handshake on each of its edges. We already proved in the previous section (see Lemma 4.2)
that for any edge e = (u, v) ∈ E, we have:

Pr (HS(e)) =
β

d(u)d(v)
.

This probability does not depend on time. Therefore, the value of the probability
PrCiCj will be independent of the number of times Ci has been encountered. This leads
us to conclude that the HS Scheduler is also consistent.
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The Handshake Scheduler: a Fair Scheduler with Probability 1

Theorem 4.7. The HS Scheduler is fair with probability 1.

Proof. Let A be any population protocol whose interaction graph is G = (V,E) and that
runs under the scheduling of the HS Scheduler. Let T (A, G) be its transition graph and
Ci, Cj be any configurations in V (T ) such that Ci → Cj and Ci 6= Cj.

In Theorem 4.6, we already proved that the HS Scheduler is a probabilistic consistent
scheduler. Now, to prove that this scheduler is fair with probability 1, according to
Theorem 4.1, we still have to prove that PrCiCj > 0.

Based on Definition 4.15 of a transition in a computation of a protocol under the HS

Scheduler, we have Ci → Cj implies that: ∃ Enc ⊂ E such that Ci
Enc−−→ Cj. This means

that PrCiCj > 0.
Hence, by applying Theorem 4.1, we conclude that the HS Scheduler is fair with

probability 1.

4.7 Conclusion

We were interested, in this chapter, in scheduling in population protocols. We gave an
overview of the existing schedulers in literature, and that are all central. We focused on
the Random scheduler and proposed its implementation as a distributed algorithm based
on message passing. We then introduced the HS Scheduler, a new probabilistic scheduler
for population protocols which is, unlike the existing ones, distributed. We also proposed
an algorithm describing this scheduler and which based on the randomized handshake al-
gorithms this scheduler. We presented an analysis of this Handshake Scheduler algorithm
that enabled us to prove that this scheduler is a probabilistic consistent fair scheduler
with probability 1.

The Random scheduler and the HS Scheduler are both protocol oblivious schedulers
that are fair with probability 1. We would investigate now if they are also time equivalent
with respect to some protocols.
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Chapter 5

Time Complexity Analyses of some
Protocols under the Random
Scheduler and the HS Scheduler
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5.1. Basic Notations and Statements

We introduced in the previous chapter the HS Scheduler as a new probabilistic sched-
uler for populations protocols. This scheduler is protocol oblivious and fair with proba-
bility 1 like the Random Scheduler introduced by Angluin et al. However, satisfying the
fairness property does not imply the equivalence of the schedulers [25].

We propose to investigate, in this chapter, the time equivalence of these two sched-
ulers with respect to three protocols: the OR population protocol (see Section 4.6.3),
the Leader Election population protocol (see Section 2.2.3) and the Maximal Matching
mediated population protocol. We therefore study the complexity of the stabilization
time of these protocols by considering two scheduling scenario: either under the Random
Scheduler or under the HS Scheduler. We also consider different structures of interaction
graphs.

We prove that the two schedulers are time equivalent with respect to these three proto-
cols when running in complete interaction graphs. Yet, the HS Scheduler performs better
in case of random interaction graphs.

It is important to note that the stabilization time corresponds to the number of steps
or rounds needed for the protocol to stabilize. In the case of protocols running under the
Random Scheduler, the time complexity can also be considered as being the number of
interactions needed until the protocol stabilizes as there is only one interaction at each
step of the computation. However, it is not the case when the assumed scheduler is the
HS Scheduler as more than one interaction can take place in a round.

5.1 Basic Notations and Statements

We introduce in this section some basic notations and statements that are useful for the
study we are going to establish in this chapter.

Let P be any population of n agents with n ≥ 2 running a (mediated) population
protocol. Let G = (V,E) be the interaction graph of this population, and let e = (u, v)
be any edge from E.

We recall that HS(e) denotes the event of having a handshake over the edge e at a
given round, and Pr(HS(e)) is the probability of this event.

For any set of edges g ⊂ E, we define: ξg (respectively ξg) the event of obtaining a
handshake for at least one edge (respectively no edge) in g, Pr(ξg) the probability of this
event, and π(g) =

∑
e∈g Pr(HS(e)) (note that π(g) is not a necessarily a probability since

it may be > 1).

We also recall the following lemmas and corollary stated in [32]:

Lemma 5.1. Let g be any subset of E. For any e ∈ E, we have:

Pr
(
HS(e)|ξg

)
≥ Pr(HS(e)).

Lemma 5.2. For any g ⊂ E, we have:

Pr(ξg) ≥ λ min(1, π(g)), with λ = 1− e−1 where e = exp(1).
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Corollary 5.3. For any g ⊂ E, we have:

1

Pr(ξg)
≤ e

e− 1
max(1,

1

π(ξg)
) ≤ e

e− 1
(1 +

1

π(ξg)
).

In [32], the supposed handshake model is the one introduced in [53] where the prob-
ability of a handshake is different from our model. However, in the respective proofs of
these lemmas and corollary, the value of this probability was not involved. Consequently,
they remain valid and suitable for our case too.

5.2 The OR Population Protocol

In this section, we study the time equivalence of the Random Scheduler and the HS
Scheduler with respect to the OR population protocol (see Section 4.6.3). This protocol
computes a logical OR over the inputs of the agents in a population. Initially, there is
only one agent in state q1 and the rest of the population is in state q0. Stabilization
happens when all the agents become with state q1.

As presented in the previous chapter, this protocol can describe an information broad-
cast that starts from one agent to reach all the members of the population. It can also
describe the propagation of an epidemic in a population: starting from only one infected
node, the protocol stabilizes when the whole population becomes infected.

5.2.1 The OR Population Protocol over a Complete Graph

We now study the complexity of the stabilization time of the OR population protocol
running in a population whose interaction graph is complete. The first scenario supposes
that the computation of this protocol is under the Random Scheduler. The second one
supposes that this computation is under the HS Scheduler.

The OR Population Protocol over a Complete Graph with the Random Sched-
uler

Let P be a population with a complete interaction graph Kn = (V,E). We suppose
that an epidemic protocol, represented by the OR population protocol, is running in this
population under the Random Scheduler. Let TKn be the expected number of interactions
before this epidemic protocol, starting from one infected agent, infects all the other ones.
We established, in [60], a characterization of the time TKn described by the following
theorem.

Theorem 5.4. Let TKn be the time needed by the OR population protocol, running in
a complete interaction graph and scheduled by the Random Scheduler, to stabilize. Let
E(TKn) be the expected value of TKn. Then:

E(TKn) ∼ O(n log(n)), as n→∞ .

Proof. The computation process of the OR protocol, where the interactions are scheduled
by the probabilistic Random Scheduler, can be modeled by a Markov chain.
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For any t ≥ 0, we denote by Xt the set of agents that are infected. We also define the
random variable (r.v for short) xt as the size of the set Xt, for any t ≥ 0. The behavior
of this r.v. can be modeled by an homogeneous increasing Markov chain whose set of
vertices is {1, 2, · · · , n} and whose transitions are as depicted in Figure 5.1.

1

1− 2
n

2

1− 4(n−2)
n(n−1)

2
n

i

1− 2i(n−i)
n(n−1)

i + 1
2i(n−i)
n(n−1)

n

1

Figure 5.1: The Markov chain corresponding to the computation process of the population
protocol OR under the Random Scheduler in a complete interaction graph.

The Random Scheduler is sequential, it chooses only one ordered pair of agents to
interact at each step. Thus, the number of infected agents can increase by at most 1 at
each computation step. In fact, the size of the set Xt increases only when the Random
scheduler picks from the interaction graph an edge that has one endpoint with state q1,
and thus is in Xt, and the other endpoint with state q0, and consequently belongs to
V \Xt.

Indeed, as the interaction graph is complete and consequently |E| = n(n−1)
2

, for any
t ≥ 0, the transition probabilities are given by:

Pr (xt+1 = i | xt = j) =


2(i−1)(n−i+1)

n(n−1) , if j = i− 1 ≥ 1

1− 2(i−1)(n−i+1)
n(n−1) , if j = i ≥ 1

0 otherwise.

For any i ≥ 1, let Ti denote the time complexity of the Markov process starting at
state xt = i to reach the absorbing state xt′ = n, and let Ei = E(Ti) denote its expected
value. Then, the time complexity of the epidemic process starting from only one infected
agent corresponds to T1, and to compute its expected value E1, we can solve the following
system:

E1 = 1 +

(
1− 2

n

)
E1 +

2

n
E2. (5.1)

∀ 1 ≤ k ≤ n− 1, we have:

Ek = 1 +

(
1− 2k(n− k)

n(n− 1)

)
Ek +

2k(n− k)

n(n− 1)
Ek+1. (5.2)

From (5.2), we obtain:

2k(n− k)

n(n− 1)
Ek = 1 +

2k(n− k)

n(n− 1)
Ek+1.

Yielding:

Ek =
n(n− 1)

2k(n− k)
+ Ek+1.
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Hence:

E1 =
n−2∑
i=1

n(n− 1)

2i(n− i)
+ En−1.

We already have:

En−1 =
1

Pr(xt+1 = n|xt = n− 1)
=
n

2
.

Thus:

E1 =
n−2∑
i=1

n(n− 1)

2i(n− i)
+
n

2

=
n(n− 1)

2

n−2∑
i=1

1

i(n− i)
+
n

2
. (5.3)

On the other hand, we have:

1

i(n− i)
=

1
n

i
+

1
n

n− i
. (5.4)

We finally obtain:

E1 =
n(n− 1)

2

[
1

n

n−2∑
i=1

1

i
+

1

n

n−2∑
i=1

1

n− i

]
+
n

2

=
n(n− 1)

2

[
1

n
Hn−2 +

1

n

2∑
i=n−1

1

i

]
+
n

2
. (5.5)

Thus, with i′ = n− i, we get:

E1 =
(n− 1)

2
[Hn−2 +Hn−1 − 1] +

n

2

=
(n− 1)

2

[
2Hn−1 −

1

n− 1
− 1

]
+
n

2

=

[
(n− 1)Hn−1 −

1

2

]
− n− 1

2
+
n

2

= (n− 1)Hn−1. (5.6)

Knowing that Hn =
∑n

i=1
1
i
∼ log(n), and as TKn corresponds to T1, we obtain:

E(TKn) ∼ n log(n), as n→∞ . (5.7)

The OR Population Protocol over a Complete Graph with the HS Scheduler

We investigate the time needed for an epidemic protocol to stabilize if it runs in a popula-
tion whose interaction graph is the complete graph Kn = (V,E), and under the distributed
HS Scheduler. The result is represented by the theorem that follows.
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Theorem 5.5. Let TKn be the time needed by the OR protocol to stabilize when running
in a complete interaction graph Kn under the HS Scheduler. Let E(TKn) be the expected
value of TKn. Then:

E(TKn) ∼ O(n log(n)), as n→∞ .

Proof. This proof is based on the computation of the upper bound of the stabilization
time TKn . We consider a pessimistic epidemic process where at most one new agent is
infected at each computation step. The stabilization time of the epidemic protocol will
be bounded by the sum of the expected time to increase the number of infected agents
by one:

E(TKn) ≤
n−1∑
k=1

1

Pr(ξGk)
,

with Gk the set of edges linking the set of k agents with state q1 to the (n − k) agents
with state q0.

We have:
π(Gk) =

∑
a=(u,v)∈Gk

Pr(HS(a)).

As the interaction graph is a complete graph, and according to (4.11), we can write:

π(Gk) =
∑

a=(u,v)∈Gk

β

(n− 1)2

=
β

(n− 1)2
k (n− k)

≤ 1. (5.8)

Given (5.8) and Lemma 5.2, we get:

E(TKn) ≤
n−1∑
k=1

1

λπ(Gk)

≤
n−1∑
k=1

(n− 1)2

λβ k (n− k)

≤ (n− 1)2

λβ

n−1∑
k=1

1

k (n− k)
.

Applying (5.4) gives:

E(TKn) ≤ (n− 1)2

λβ

2

n
Hn−1. (5.9)

This yields:

E(TKn) ∼ O(n log n), as n→∞ . (5.10)
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Comparison

Thanks to the analyses we presented in the two previous sections, we can state the fol-
lowing result:

Corollary 5.6. The Random Scheduler and the HS Scheduler are time equivalent with
respect to the OR population protocol running in a population P whose interaction graph
is complete.

Proof. According to Theorem 5.4 and Theorem 5.5, the OR population protocol needs
O(n log(n)) computation steps when it is run over a complete graph under the Random
Scheduler, and likewise under the Handshake Scheduler. Consequently, according to Def-
inition 4.12, these two schedulers are time equivalent with respect to this population
protocol running in a complete interaction graph.

5.2.2 The OR Population Protocol over a Random Graph

Let P be a population whose interaction graph G = (V,E) is a random graph Gn,p. To
guarantee that this graph is connected with high probability, we suppose that p = α logn

n

with α > 1 [13]. We study then the stabilization time of the OR population protocol
running in the population P , first when being scheduled by the Random Scheduler, and
then when scheduled by the HS Scheduler.

The OR Population Protocol over a Random Graph with the Random Sched-
uler

The stabilization time of the OR population protocol running in a Gn,p graph, when the
interactions are scheduled by the Random scheduler, is characterized as follows [60]:

Theorem 5.7. Let TGn,p denote the time needed by the OR protocol to stabilize when
running over the random graph Gn,p under the Random Scheduler and let E(TGn,p) denote
its expected value. Then:

E(TGn,p) ∼ O(n2), as n→∞ .

Proof. Let Gn,p = (V,E) be a random graph. Using the same notation as for the case
G = Kn, we can see that the size of the set Xt will increase if, and only if, the peer of
vertices which is chosen to communicate has one end-point in Xt and the other one in
V \Xt. We also need to ensure that this peer exists.

Thus, ∀ 1 ≤ k ≤ n− 1, we have:

Pr (xt+1 = k + 1 | xt = k) =
2k(n− k)

n(n− 1)
× p. (5.11)

Hence, as for the complete graph, if we denote by Tk the time complexity of the Markov
process starting at xt = k to reach the absorbing state xt′ = n, and with Ek = E (Tk)
then:

∀1 ≤ k ≤ n− 1, Ek = 1 +

(
1− 2k(n− k)

n(n− 1)
p

)
Ek +

2k(n− k)

n(n− 1)
pEk+1 (5.12)
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A straightforward computation yields:

E1 =
n−1∑
k=1

n(n− 1)

2k(n− k)p

=
n(n− 1)

2p

n−1∑
k=1

1

k(n− k)

=
n(n− 1)

2p

2

n
Hn−1

=
n− 1

p
Hn−1. (5.13)

As p = α logn
n

, we get:

E(TGn,p) =
n(n− 1)

α log n
Hn−1

∼ n(n− 1)

α
(5.14)

Hence,

E(TGn,p) ∼ O(n2), as n→∞ . (5.15)

The OR Population Protocol over a Random Graph with the Handshake
Scheduler

We consider now the computation of the OR population protocol by a population whose
interaction graph is a Gn,p = (V,E), and where interactions are orchestrated by the HS
Scheduler. The expected value of the time needed for this computation to stabilize is
provided by the following theorem.

Theorem 5.8. Let TGn,p denote the time needed by the OR protocol to stabilize when
running over the random graph Gn,p under the HS Scheduler and let E(TGn,p) denote its
expected value. Then:

E(TGn,p) ∼ O(n log2(n)), as n→∞ .

Proof. This proof consists on characterizing the upper bound of TGn,p . Thus, we consider
the same pessimistic epidemic process as in the proof of Theorem 5.5, where at most one
new agent is infected. The stabilization time of the epidemic protocol will be bounded by
the sum of the expected time to increase the number of infected agents by one:

E(TGn,p) ≤
n−1∑
k=1

1

Pr(ξGk)
,

where Gk denotes the set of edges existing between the k agents with state q1 and the
(n− k) agents with state q0 (Gk ⊂ E).
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We define:

π(Gk) =
∑
a∈Gk

Pr(HS(a))

We are assuming that a ∈ Gk. As Gk ⊂ E, we guarantee that: a ∈ E. Thus, applying
Lemma 4.4 gives:

Pr(HS(a)) = β
(1− qn−1)2

(n− 1)2 p2
.

This yields

π(Gk) =
∑

(u,v)∈Gk

β
(1− qn−1)2

(n− 1)2 p2

= β
(1− qn−1)2

(n− 1)2 p2
|Gk|,

with |Gk| denoting the size of the set of edges Gk.

According to Corollary 5.3, we have:

1

Pr(ξGk)
≤ e

e− 1

(
1 +

1

π(Gk)

)
.

This yields,

E(TGn,p) ≤
n−1∑
k=1

e

e− 1

(
1 +

1

π(Gk)

)

≤ e

e− 1

(
n−1∑
k=1

1 +
n−1∑
k=1

1

π(Gk)

)

≤ e

e− 1

(
(n− 1) +

n−1∑
k=1

p2 (n− 1)2

β (1− qn−1)2 |Gk|

)

≤ e

e− 1

(
(n− 1) +

p2 (n− 1)2

β (1− qn−1)2

n−1∑
k=1

1

|Gk|

)

Given that, ∀ 1 ≤ k ≤ n− 1, we have:

1 ≤ |Gk| ≤ k(n− k)

We can write:

E(TGn,p) ≤
e

e− 1

(
(n− 1) +

p2 (n− 1)3

β (1− qn−1)2

)
.

Knowing that: ∀m ≥ 0, ∀ 0 ≤ x ≤ 1, we have:

1−mx ≤ (1− x)m ≤ e−mx. (5.16)

Computing Models for Networks of Tiny Objects 111



5.2. The OR Population Protocol

We get:

1− 2qn−1 ≤ (1− qn−1)2 ≤ e−2qn−1

(5.17)

Which gives:

1

(1− qn−1)2
≤ 1

1− 2qn−1
≤ 1

1− 2(1− p)n−1
(5.18)

Using (5.16) again, we obtain:

1− (n− 1)p ≤ (1− p)n−1 ≤ e−(n−1)p

This yields:

1

1− 2(1− p)n−1
≤ 1

1− 2 e−(n−1)p
(5.19)

Inequalities (5.18) and (5.19) give:

1

(1− qn−1)2
≤ 1

1− 2 e−(n−1)p
. (5.20)

Given that p = α logn
n

with α > 1, (5.20) becomes:

1

(1− qn−1)2
≤ 1

1− 2 e−(n−1)α logn
n

' 1

1− 2 e−α logn

≤ 1

1− 2n−α

p2

(1− qn−1)2
≤ α2 log2 n

n2(1− 2n−α)

≤ α2 nα log2 n

n2(nα − 2)
' α2 log2 n

n2
.

This gives:

E(TGn,p) ≤
e

e− 1

(
(n− 1) +

α2 log2 n

β n2
(n− 1)3

)
Accordingly, we have:

E(TGn,p) ∼ O(n log2 n), as n→∞ . (5.21)
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Comparison

We presented above results concerning the stabilization time of the OR population proto-
col running in a population whose interaction graph is the random graph Gn,p. The first
result concerned a scheduling under the Random Scheduler. The second one concerned a
scheduling under the HS Scheduler.

We deduced from these results the following corollary:

Corollary 5.9. The Random Scheduler and the Handshake Scheduler are not time equiv-
alent with respect to the OR population protocol running over the random communication
graph Gn,p.

Proof. According to Theorem 5.7 and Theorem 5.8, the population protocol Leader Elec-
tion that runs over the random communication graph Gn,p stabilizes faster when it is
under the Handshake scheduler, compared to the case where it is under the Random
Scheduler.

5.3 The Leader Election Population Protocol

We study, in this section, the stabilization time of the population protocol Leader Election
that we already introduced in a previous chapter (see Section 2.2.3). Initially, all the
agents start with the state L. Hence, what is the time needed by the protocol to reach a
configuration where only one L remains?

5.3.1 The Leader Election over a Complete Graph

Let P be a population with a complete interaction graph Kn = (V,E) and whose agents
are executing the Leader Election protocol. Let TKn be the stabilization time to get a
single leader in the population P and let E(TKn) denote the expected value of TKn .

The Leader Election over a Complete Graph under the Random Scheduler

We have from [4] the following characterization of the stabilization time of the Leader
Election protocol running in a complete graph under the Random Scheduler.

Theorem 5.10. Let TKn be the time needed by the Leader Election protocol to stabilize
when running over a complete interaction graph Kn under the Random Scheduler. Let
E(TKn) be the expected value of TKn. Then:

E(TKn) ∼ O(n2), as n→∞ .

Proof. In [4], the authors considered the time TKn as being equal to the sum of all the
times until two leaders among the n meet, then two leaders among the (n−1) agents with
state L meet ,... until finally the two last leaders L meet. We here give further details for
this proof.

Let Xt denote the set of agents in state L at time t, for any t ≥ 0, and xt be the
random variable that denotes the size of Xt. Initially x0 = n, then it decreases until
reaching, at some t, the absorbing state xt = 1.
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The size of the set Xt decreases by at most 1 at each computation step. This happens
only if the Random Scheduler picks, for the interaction, an ordered pair of agents that
are both with state L. The probability of this event corresponds to:

∀ 2 ≤ k ≤ n, Pr(xt+1 = k − 1|xt = k) =

(
k
2

)(
n
2

)
=

k(k − 1)

n(n− 1)
.

Then, E(TKn) can be described as:

E(TKn) =
n∑
k=2

1

P (xt+1 = k − 1|xt = k)

=
n∑
k=2

n(n− 1)

k(k − 1)

= n(n− 1)
n∑
k=2

1

k(k − 1)
. (5.22)

On the other hand, we can write:

n∑
k=2

1

k(k − 1)
=

n∑
k=2

(
1

k − 1
− 1

k
)

=
n−1∑
k′=1

1

k′
−

n∑
k=2

1

k

= 1− 1

n
. (5.23)

Hence, given (5.23), (5.22) becomes:

E(TKn) = n(n− 1)(1− 1

n
)

= (n− 1)2. (5.24)

Thus:

E(TKn) ∼ O(n2), as n→∞ . (5.25)

The Leader Election over a Complete Graph under the Handshake Scheduler

By analyzing the stabilizing time of the Leader Election protocol running in the population
P that has a complete interaction graph, and where interactions are orchestrated by the
HS Scheduler, we obtained the following theorem.

Theorem 5.11. Let TKn be the stabilization time of the Leader Election that runs over
a complete interaction graph Kn under the HS Scheduler and let E(TKn) be its expected
value. Then:

E(TKn) ∼ O(n2), as n→∞ .
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Proof. We bound the expected time to have only one leader in the whole population,
by allowing at most one new defeated agent per computation step. In this pessimistic
process, we sum up the expected time to decrease the number of leaders agents by one.
We consequently obtain:

E(TKn) ≤
n∑
k=2

1

Pr(ξGk)

where Gk denotes the graph formed by the k agents with state L (it is a complete graph),
and ξGk is the event of obtaining at least one handshake in a round for at least one edge
in Gk.

On one hand, according to Lemma 5.2, we have:

Pr(ξGk) ≥ λ min(1, π(Gk)). (5.26)

On the other hand, we have:

π(Gk) =
∑
a∈Gk

Pr(HS(a))

=
∑

(u,v)∈Gk

β

d(u)d(v)

=
β

(n− 1)2

k(k − 1)

2

≤ 1. (5.27)

Inequalities (5.26) and (5.27) yield:

E(TKn) ≤
n∑
k=2

1

λ π(Gk)

≤
n∑
k=2

2(n− 1)2

λ β k(k − 1)

≤ 2(n− 1)2

λ β

n∑
k=2

1

k(k − 1)

≤ 2(n− 1)2

λ β
(1− 1

n
). (5.28)

From the expression (5.28), we conclude that:

E(TKn) ∼ O(n2), as n→∞ . (5.29)

Comparison

According to Theorem 5.10, the expected value of the time that the Leader Election
protocol needs to stabilize when running in the population P under the Random Scheduler
is O(n2). This is the same expected value of the time that this protocol needs when
running in the population P under the HS Scheduler, according to Theorem 5.11. We
consequently obtain the following corollary:
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Corollary 5.12. The Random Scheduler and the HS Scheduler are time equivalent with
respect the Leader Election population protocol running over a complete interaction graph.

5.3.2 The Leader Election over a Random Graph

In this section, we suppose that the interaction graph of the population P where the
Leader Election protocol runs, is the random graph Gn,p. To guarantee that this random
graph is connected with high probability, we suppose that p = α logn

n
with α > 1. We

study then the complexity of the stabilization time of the Leader Election protocol in this
case.

The Leader Election over a Random Graph Scheduled by the Random Sched-
uler

We focus, in this section, on the scenario where the interactions in the population P are
handled by the Random Scheduler. The expected value of the stabilization time of the
Leader Election protocol in this case is defined by the following theorem.

Theorem 5.13. Let TGn,p denote the time needed by the Leader Election population pro-
tocol to stabilize when executed over the random graph Gn,p under the Random Scheduler.
Let E(TGn,p) denote the expected value of TGn,p. Then:

E(TGn,p) ∼ O(
n3

log n
), as n→∞ .

Proof. Let Xt denote the set of agents in state L at time t for any t ≥ 0, and xt be the
random variable that denotes the size of Xt. Initially x0 = n, then it can decrease until
reaching, at some t, the absorbing state xt = 1.

The size of the set Xt decreases if the interaction happens between a pair of agents
that are both in state L and that are necessarily linked by an edge from the interaction
graph. The probability of such event corresponds to:

Pr(xt+1 = k − 1|xt = k) =

(
k
2

)(
n
2

) × p
=

k(k − 1)

n(n− 1)
× p.

E(TGn,p) =
k=n∑
k=2

1

Pr(xt+1 = k − 1|xt = k)

=
k=n∑
k=2

n(n− 1)

p k(k − 1)

=
n(n− 1)

p

k=n∑
k=2

1

k(k − 1)

=
n(n− 1)

p
(1− 1

n
)

=
(n− 1)2

p
(5.30)
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As p = α logn
n

, (5.30) becomes:

E(TGn,p) =
n(n− 1)2

α log n
∼ O(

n3

log n
), as n→∞ . (5.31)

The Leader Election over a Random Graph Scheduled by the Handshake
Scheduler

We focus on the computation of the Leader Election protocol, under the HS Scheduler,
by the population P whose interaction graph is a Gn,p.

We consider a pessimistic scenario where at each computation step there is at most
one defeated leader. If we define Xt the set of agents in state L at time t, for any t ≥ 0,
and xt the random variable that denotes the size of Xt. Then, we have initially x0 = n.
The size of the set Xt decreases until reaching, at some t, the absorbing state xt = 1.

At a computation step, the size of Xt can decrease by at most 1. This happens when
there is a rendezvous over an edge of the random interaction graph whose both endpoints
are with state L. We define the probability of this event as:

Pr(xt+1 = k − 1|xt = k) = β
(1− qn−1)2

p2 (n− 1)2
.

We can consequently write:

E(TGn,p) ≤
k=n∑
k=2

1

Pr(xt+1 = k − 1|xt = k)

≤
k=n∑
k=2

p2 (n− 1)2

β (1− qn−1)2

≤ p2 (n− 1)3

β (1− qn−1)2
. (5.32)

As p = α logn
n

, (5.32) becomes:

E(TGn,p) ≤
(n− 1)α2 log2(n)

β (1− qn−1)2
∼ O(n log2(n)), as n→∞ . (5.33)

Given (5.33), we can state the following theorem:

Theorem 5.14. Let TGn,p denote the time needed by the Leader Election population proto-
col to stabilize when executed over the random graph Gn,p under the Handshake Scheduler.
Let E(TGn,p) denote the expected value of TGn,p. Then:

E(TGn,p) ∼ O(n log2(n)), as n→∞ .
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Comparison

Given Theorem 5.13 and Theorem 5.14, we can conclude that the computation of the
Leader Election protocol by the agents of the population P stabilizes faster when it is
scheduled by the HS Scheduler, compared to a scheduling under the Random Scheduler.
We consequently obtain this corollary:

Corollary 5.15. The Random Scheduler and the HS Scheduler are not time equivalent
with respect to the Leader Election protocol running in a population whose interaction
graph is a random graph Gn,p.

5.4 The Maximal Matching Mediated Population Pro-

tocol

We recall that, according to Definition 1.25, a matching M of a graph G = (V,E) is a
set of edges from E such that each two edges from M do not share any vertex. This
matching is maximal if by adding any edge to it, it will not be a matching any more (see
Definition 1.26).

The mediated population protocol that computes a Maximal Matching in a graph G
was introduced in [29] and can be described by (XM , YM , QM , SM , IM , OM , δM , ιM , ωM , rM)
with:

• XM = {0}, YM = {0, 1},

• QM = {q0, q1}, SM = {0, 1},

• IM(0) = q0, OM(q0) = 0 and OM(q1) = 1,

• ιM(0) = 0, ωM(0) = 0 and ωM(1) = 1,

• δM(q0, q0, 0) = (q1, q1, 1).

• rM : Get each edge e ∈ E such that ωM(se) = 1 where se is the state of the edge
e.˝

Initially, all the agents start with state q0 and all the edges with state 0. If an interaction
happens between two agents q0 linked by an edge with state 0, both agents update their
states to q1 and the edge linking them becomes with state 1. The protocol stabilizes when
the matching formed by the edges with state 1 is maximal, that is there no more pairs of
nodes with state q0 linked by an edge with state 0.

5.4.1 The Maximal Matching over a Complete Graph

Let P be a population whose interaction graph G = (V,E) is thereafter supposed to be
the complete graph of n nodes Kn. A computation of the time needed for the Maximal
Matching to stabilize, when running in this population, is established through the follow-
ing analyses for two scenarios: the scheduler is a Random Scheduler, or the scheduler is
the HS Scheduler.
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The Maximal Matching over a Complete Graph with the Random Scheduler

By analyzing the computation process of the Maximal Matching protocol in the population
P where the interactions are under the control of the sequential Random Scheduler, we
obtained the following theorem:

Theorem 5.16. Let TKn be the stabilization time of the Maximal Matching mediated
population protocol that runs over a complete interaction graph Kn under the Random
Scheduler. Let E(TKn) be its expected value. Then:

E(TKn) ∼ O(n2), as n→∞ .

Proof. The process of selecting the edges of the Maximal Matching can be modeled by a
Markov chain. For any t ≥ 0, we denote by Xt, the set of nodes with state q0. We also
define the random variable xt as the size of the set Xt, for any t ≥ 0. Initially, we have
x0 = n. Then, the size of the set Xt decreases by 2 only if the picked edge by the Random
Scheduler has both extremities with state q0, that is both extremities belong to Xt. We
would mention that, ∀t ≥ 0, the graph formed by the set of nodes of Xt and the edges
existing between them, is a complete graph.

Accordingly, the behavior of the random variable xt can be modeled by an homo-
geneous Markov chain whose set of vertices is {n, n − 2, n − 4, ..., n − 2bn

2
c} and whose

transitions are given by:

Pr(xt+1 = j|xt = i) =


i(i−1)
n(n−1)

if j = i− 2

1− i(i−1)
n(n−1)

if j = i ≥ 0

0 otherwise.

For any i ≥ 0, let Ti denote the time complexity of the Markov process xt≥0 starting at
state xt = i to reach the absorbing state xt′ ≤ 1, and let Ei = E(Ti) denote its expected
value. Thus, the time complexity of the computation of the mediated population protocol
Maximal Matching is Tn, and En its expected value.

For any 0 ≤ i ≤ bn
2
c − 1, we have:

En−2i = 1 + (1− (n− 2i)(n− 2i− 1)

n(n− 1)
)En−2i +

(n− 2i)(n− 2i− 1)

n(n− 1)
En−2(i+1).

This gives,

En−2i =
n(n− 1)

(n− 2i)(n− 2i− 1)
+ En−2(i+1).
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This yields,

En =

bn
2
c−1∑
i=0

n(n− 1)

(n− 2i)(n− 2i− 1)

= n(n− 1)

bn
2
c−1∑
i=0

1

(n− 2i)(n− 2i− 1)

= n(n− 1)(

bn
2
c−1∑
i=0

1

n− 2i− 1
−
bn

2
c−1∑
i=0

1

n− 2i
)

= n(n− 1)

2bn
2
c−1∑

i=0

(−1)i+1

n− i
≤ n(n− 1) ln 2. (5.34)

Given (5.34), we can deduce that:

E(TKn) ∼ O(n2), as n→∞ . (5.35)

The Maximal Matching over a Complete Graph with the HS Scheduler

We suppose now that the interactions in the population P are handled by the distributed
HS Scheduler. We investigate the time needed for the mediated protocol Maximal Match-
ing to stabilize when running in P . The result is described by the following theorem:

Theorem 5.17. Let TKn be the stabilization time of the Maximal Matching mediated pop-
ulation protocol that runs over a complete interaction graph Kn under the HS Scheduler.
Let E(TKn) be the expected value of TKn. Then:

E(TKn) ∼ O(n2), as n→∞ .

Proof. We suppose that the computation of the Maximal Matching protocol under the
HS Scheduler proceeds as follows. At each computation step, the HS Scheduler picks at
most one ordered pair of agents that are both with state q0. Supposing that there is at
most one handshake in a round happening between two agents in state q0, then at each
round, the number of agents with state q0 decreases by 2.

E(TKn) ≤
bn

2
c∑

k=0

1

Pr(ξCn−2k
)
. (5.36)

where Cn−2k the set of edges existing between the remaining (n − 2k) agents with state
q0 (it is a complete graph of (n− 2k) nodes).

π(Cn−2k) =
∑

a∈Cn−2k

Pr(HS(a))

=
β

(n− 1)2

(n− 2k)(n− 2k − 1)

2

≤ 1. (5.37)
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Given (5.37) and (5.36), and based on Lemma 5.2, we obtain:

E(TKn) ≤
bn

2
c−1∑

k=0

1

λπ(Cn−2k)

≤ 2(n− 1)2

λβ

bn
2
c−1∑

k=0

1

(n− 2k)(n− 2k − 1)

≤ 2(n− 1)2

λβ
(

bn
2
c−1∑

k=0

1

n− 2k − 1
−
bn

2
c−1∑

k=0

1

n− 2k
)

≤ 2(n− 1)2

λβ

2bn
2
c−1∑

k=0

(−1)k+1

n− k

≤ 2(n− 1)2

λβ
ln 2. (5.38)

According to (5.38),

E(TKn) ∼ O(n2), as n→∞ . (5.39)

Comparison

According to Theorem 5.16 and to Theorem 5.17, the Maximal Matching protocol needs
a stabilization time which is a O(n2) when running in the population P , either under the
Random Scheduler, or under the HS Scheduler. We consequently get:

Corollary 5.18. The HS Scheduler is time equivalent to the Random Scheduler with
respect to the Maximal Matching mediated population protocol running over a complete
interaction graph.

5.4.2 The Maximal Matching over a Random Graph

We suppose now that P is a population that has a random interaction graph, which is
Gn,p = (V,E) with p = α logn

n
and α ≥ 1. We investigate on the time needed by the

Maximal Matching protocol running in this population to stabilize. As in the previous
sections, we consider two scheduling scenarios: under the Random Scheduler, and under
the HS Scheduler.

The Maximal Matching over a Random Graph under the Random Scheduler

We describe the expected value of the stabilization time of the Maximal Matching protocol
running in the population P under the Random Scheduler through the following theorem:

Theorem 5.19. Let TGn,p denote the time needed by the Maximal Matching mediated pop-
ulation protocol to stabilize while running over the random graph Gn,p under the Random
Scheduler. Let E(TGn,p) denote the expected value of TGn,p. Then:

E(TGn,p) ∼ O(
n3

log n
), as n→∞ .
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Proof. Using the same notation as for the case G = Kn, we have initially the set X0

consists of all the agents of the population as they all start with state q0. Then, ∀t ≥ 0,
the size of the set Xt decreases by 2 if, and only if, the two communicating nodes are
picked from Xt and obviously an edge from E is linking them. The probability of this
event can be described by:

Pr (xt+1 = i− 2 | xt = i) =
i(i− 1)

n(n− 1)
× p. (5.40)

Hence, as for the complete graph, we denote by Ti the time complexity of the Markov
process starting at xt = i to reach the absorbing state xt′ ≤ 1 (we are aware that in case of
random graph, the absorbing state could be greater than 1, but we consider the minimum
value that the set of agents with state q0 can reach). We also define Ei = E (Ti).

Then, for any 0 ≤ i ≤ bn
2
c, we have:

En−2i = 1 + (1− (n− 2i)(n− 2i− 1)

n(n− 1)
p)En−2i +

(n− 2i)(n− 2i− 1)

n(n− 1)
pEn−2(i+1).

This gives:

En−2i =
n(n− 1)

(n− 2i)(n− 2i− 1) p
+ En−2(i+1).

A same reasoning as for the previous case yields:

En =
n(n− 1)

p

2bn
2
c+1∑

i=0

(−1)i+1

n− i

≤ n(n− 1)

p
ln 2

≤ n2(n− 1)

α log n
ln 2. (5.41)

Given (5.41), we can state that:

E(TGn,p) ∼ O(
n3

log n
), as n→∞ . (5.42)

The Maximal Matching over a Random Graph under the HS Scheduler

We suppose now that the pairwise interactions in the population P are under the control
of the HS Scheduler. Then, a characterization of the expected value of the time needed by
the Maximal Matching, running in the population P , to stabilize is given by the theorem
that follows.

Theorem 5.20. Let TGn,p denote the time needed by the Maximal Matching protocol to
stabilize when executed over the random graph Gn,p under the HS Scheduler. Let E(TGn,p)
denote the expected value of TGn,p. Then:

E(TGn,p) ∼ O(n log2(n)), as n→∞ .
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Proof. Let Xt be the set of agents with state q0 and xt the size of this set, ∀t ≥ 0. Initially,
as all the agents of the population P start with state q0, we have x0 = n. Then, at each
computation step, we consider the pessimistic scenario where the size of the set Xt can
either decrease by 2 or still unaltered. xt decreases by 2, only if a handshake happens
between two agents with state q0 and that are necessarily linked by an edge from the
random interaction graph. The probability of this event is as follows:

∀ 0 ≤ i ≤ bn
2
c − 1, Pr (xt+1 = n− 2(i+ 1)|xt = n− 2i) = β

(1− qn−1)2

p2 (n− 1)2
.

Hence, if we bound the expected time to obtain a Maximal Matching of the interaction
graph, by allowing at most one new edge in the matching per computation step, we can
sum up the expected time to decrease the number nodes with state q0 by 2.

E(TGn,p) ≤
bn

2
c−1∑
i=0

1

Pr(xt+1 = n− 2(i+ 1)|xt = n− 2i)

≤
bn

2
c−1∑
i=0

p2 (n− 1)2

β (1− qn−1)2

≤ p2 (n− 1)2

β (1− qn−1)2 (bn
2
c − 1). (5.43)

Given the fact we supposed p = α log(n)
n

, we obtain from inequality (5.43):

E(TGn,p) ∼ O(n log2(n)), as n→∞. (5.44)

Comparison

Based on the analyses we established in the two previous section, we can state the following
corollary:

Corollary 5.21. The Random Scheduler and the HS Scheduler are not time equivalent
with respect to the Maximal Matching protocol running in a population whose interaction
graph is a random graph Gn,p.

Proof. According to Theorem 5.19, the Maximal Matching protocol running in the pop-
ulation P under the Random Scheduler has a stabilization time whose expected value is

O
(

n3

log(n)

)
. However, when the computation in P is under the HS Scheduler, the expected

value of the stabilization time of this protocol is O(n log2(n)). We can thus deduce that
the computation of the Maximal Matching in a random interaction graph stabilizes faster
when it is under the scheduling of the HS Scheduler. Consequently, these two schedulers
are not time equivalent with respect to the Maximal Matching protocol running in the
population P (whose interaction graph is Gn,p).
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5.5 Time Complexity with High Probability

In this section, we continue the study of the three protocols we studied above: the OR
population protocol, the Leader Election and the Maximal Matching. However, we will
focus now on a characterization with high probability of the stabilization time of these
protocols when running under the HS Scheduler. We recall that with high probability
means with probability (1− o( 1

n
)).

5.5.1 The Leader Election Population Protocol

We consider a population P whose interaction graph is complete and where interactions
are scheduled by the HS Scheduler. Supposing that the Leader Election protocol is running
in P , a description of its stabilization time, with high probability, is given by this theorem:

Theorem 5.22. The time needed for the Leader Election population protocol to stabilize
when it runs in a complete interaction graph and under the HS Scheduler is, with high
probability, O(n).

Proof. Let VL (respectively VF ) denote the set of agents with state L (respectively F )
and |VL| (respectively |VF |) the size of this set. Initially, |VL| = n as all the agents start
with state L. When the Leader Election population protocol stabilizes, only one leader
remains in the whole population which leads to: |VL| = 1 and |VF | = n− 1.

Let GL = (VL, EL) be the graph where the set of vertices consists of the set VL, and
the set of edges EL is the set of links existing between the agents with state L. For the
following analysis, the graph GL should satisfy the following property: ”At each step of
the protocol’s computation, GL is a connected subgraph of the communication graph G”.
The hypothesis that the interaction graph G = Kn guarantees the satisfaction of this
condition.

Let Pr (HSGL) be the probability of having at least one handshake over GL. According
to Lemma 4.3 stated in the previous chapter, we have the following result:

Pr (HSGL) ≥ 1− e
−β
2 .

Let f be any round (phase) of the protocol’s computation. f is called a good (suc-
cessful) round if there have been at least one handshake between two agents with state L
that took place during f . Otherwise, f is called a bad (unsuccessful) round.
∀ t > 0, let ft denote the tth round and let X(t) denote the size of the set of successful

rounds among the t rounds: f1, f2, ..., ft. Then, we have:

E(X(t)) ≥ (1− e(−β
2

))t.

According to the Chernoff bound (see Definition 1.68), we have:

∀a > 0, Pr (X(t) ≤ E(X(t))− a) ≤ 2 e(− a2

3E(X(t))
).

This yields,

Pr
(
X(t) ≤ (1− e(−β

2
))t− a

)
≤ 2 e

(
− a2

3(1−e(−
β
2 )

)t

)
≤ 2 e

(
−a

2

3t

)
.
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For t = 2(n−1)

1−e(−
β
2 )

and a = n, we get:

Pr(X(t) ≤ n− 2) ≤ 2 e(−n
6

) = o(
1

n
).

Hence, we can state that with high probability, at time t = 2(n−1)

1−e(−
β
2 )

, we have (n − 1)

successful rounds that already took place.
On the other hand, to reach |VL| = 1, at most (n−1) good rounds are needed, because

at each good round there is at least one leader from VL that is defeated.
Thus, the time needed for the Leader Election protocol to stabilize when G = Kn and

the imposed scheduler is the HS Scheduler is, with high probability, O(n).

5.5.2 The OR Population Protocol

Let P be a population whose interaction graph is complete and where pairwise interactions
take place according to the HS Scheduler. We suppose that the OR population protocol
is running in P . A description of its stabilization time, with high probability, is presented
in the following theorem:

Theorem 5.23. The time needed for the OR population protocol to stabilize when the
interaction graph G = Kn and under the HS Scheduler is, with high probability, O(n).

Proof. Let G = (V,E) be the communication graph with V = V1 ∪ V0. V1 (respectively
V0) denotes the set of agents with state q1 (respectively q0) and |V1| (respectively |V0|)
the size of this set. Initially, only one agent is supposed to be aware of the information,
then |V1| = 1 and |V0| = n− 1. The protocol stabilizes when |V1| = n and |V0| = 0.

Let G′ = (V,E ′) be the graph formed by the set of initial vertices V , and the set of
edges E ′ ⊂ E, a restriction of E that contains only the edges existing between agents
with different states. More specifically, any edge from E ′ should have one extremity from
V0 and the second from V1.

For the following analysis, the graph G′ should satisfy the following property: At
each step of the protocol’s computation, G′ is a connected subgraph of the communication
graph G˝. If we initially suppose that G is a complete graph, we can guarantee that, at
each step of the computation of the protocol, G′ is a connected subgraph of G.

For any round f of the protocol’s computation, f is called a good round if there have
been at least one handshake over G′. Otherwise, f is called a bad (unsuccessful) round.

Let Pr (HSG′) be the probability of having at least one handshake over G′, which
corresponds to the probability of a good round. According to Lemma 4.3, we have:

Pr (HSG′) ≥ 1− e
−β
2 .

∀ t > 0, let ft denote the tth round and let X(t) denote the size of the set of successful
rounds among the t rounds: f1, f2, ..., ft. Thus, we can have:

E(X(t)) ≥ (1− e(−β
2

))t.

The same reasoning as the previous section, using the Chernoff bound, yields:

∀a > 0, Pr
(
X(t) ≤ (1− e(−β

2
))t− a

)
≤ 2 e(−a

2

3t
).
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Now, by assuming that t = 2(n−1)

1−e(−
β
2 )

and a = n, we obtain:

Pr (X(t) ≤ n− 2) ≤ 2 e(−n
6

) = o(
1

n
). (5.45)

If we consider the pessimistic process, where at each successful round, only one agent
goes from state q0 to state q1, we can notice that (n− 1) successful rounds are needed to
reach a whole population with q1. Consequently, the OR protocol needs at most (n− 1)
successful rounds to stabilize.

According to (5.45), at t = 2(n−1)

1−e(−
β
2 )

and with high probability, wa have (n−1) successful

rounds that already took place over the communication graph.
This implies that the stabilization time of the OR protocol running over a complete

graph, and scheduled by the HS Scheduler is, with high probability, O(n).

5.5.3 The Maximal Matching Mediated Population Protocol

Theorem 5.24. The Maximal Matching mediated population protocol running under the
HS Scheduler and over a complete interaction graph needs, with high probability, O(n)
computation steps to stabilize.

Proof. Let V1 (respectively V0) denote the set of agents with state q1 (respectively q0)
and |V1| (respectively |V0|) the size of this set. Initially, all the agents start with state q0,
hence: |V1| = 0 and |V0| = n.

As the interaction graph is supposed to be complete, the protocol stabilizes when:

• |V1| = n and |V0| = 0, if n is even,

• |V1| = n− 1 and |V0| = 1, if n is odd.

Let GV0 = (V0, E0) be the graph formed by the set of vertices V0, and the set of edges
E0 which is the set of links existing between the agents of V0. For the following analysis,
the graph GV0 should satisfy the following property: ”At each step of the protocol’s
computation, GV0 is a connected subgraph of the communication graph G”. This property
is satisfied in this case, as the communication graph is supposed to be complete.

Let Pr (HSV0) be the probability of having at least one handshake over GV0 . A rea-
soning similar to those already presented above gives:

Pr (HSV0) ≥ 1− e
−β
2 .

Let f be any round (phase) of the protocol’s computation. f is called a good (success-
ful) round if there have been at least one handshake between two agents from V0 during
f . Otherwise, f is called a bad (unsuccessful) round.

As in the previous proofs, ∀ t > 0, ft denotes the tth round and X(t) denotes the size
of the set of successful rounds among the t rounds: f1, f2, ..., ft. Then, we have:

E(X(t)) ≥ (1− e(−β
2

))t.

Using the same Chernoff bound as above, we get:

∀a > 0, Pr
(
X(t) ≤ (1− e(−β

2
))t− a

)
≤ 2 e(−a

2

3t
).
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For t = n−1

1−e(−
β
2 )

and a = n
2
, we get:

Pr
(
X(t) ≤ n

2
− 1
)
≤ 2 e(− n

12
) = o(

1

n
) . (5.46)

Now, if we consider the pessimistic process where, at each successful round, only one
new edge is added to the maximal matching of the communication graph. In this process,
n
2

good rounds are needed to reach stabilization. This implies that the maximal matching
mediated population protocol needs at most n

2
successful rounds to stabilize.

Yet, according to (5.46), we have: with high probability, at time t = n−1

1−e(−
β
2 )

, (n
2
− 1)

successful rounds have already took place.
Consequently, we conclude that, the Maximal Matching protocol needs, with high

probability, O(n) time to stabilize.

5.6 Conclusion

We summarize in Table 5.1 the results we obtained in this chapter. In fact, we consid-
ered three protocols: the OR protocol, the Leader Election protocol and the Maximal
Matching protocol. We analyzed the complexity of the time each needed to stabilize for
two scheduling scenarios: running under the Random Scheduler, or running under the HS
Scheduler.

We found that the Random scheduler and the HS Scheduler are time equivalent with
respect to these three protocols in case the interaction graph is complete. However, they
are not when the interaction graph is a random graph. Indeed, in this case of interaction
graph, the protocols stabilize faster when they are under the scheduling of the HS Sched-
uler.

Graph’s Structure Scheduler
Time Complexity

Kn Gn,p Random HS

OR

× × O(n log(n))
× × O(n log(n))

× × O(n2)
× × O(n log2(n))

Leader Election

× × O(n2)
× × O(n2)

× × O( n3

logn
)

× × O(n log2(n))

Maximal Matching

× × O(n2)
× × O(n2)

× × O( n3

logn
)

× × O(n log2(n)

Table 5.1: Summary of time analyses of some protocols under the Random Scheduler and
the HS Scheduler

Computing Models for Networks of Tiny Objects 127



5.6. Conclusion

We also proved in this chapter, that with high probability, these three protocols need
O(n) computation step to stabilize when running in a complete interaction graph under
the HS Scheduler.
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The Fair Protocol Aware HS
Scheduler
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6.1. Population Protocols with Absence Detector

Population protocols are defined as being protocols that do not halt, but only stabilize
[4]. However, introducing termination to this model would be interesting. The termination
property is basic for distributed systems. Also, given the constraining characteristics of
the systems for which the population protocols are designed, this property could help the
agents preserve their energies. In [55, 56], the authors suppose that the agents can have
access to some global knowledge via an oracle called an Absence Detector. Thanks to
this knowledge, they design halting protocols where all the agents eventually reach some
special states from which they stop participating in effective interactions.

In this chapter, we focus on the Leader Election protocol with absence detector. We
study its stabilization time when its computation takes place under the Random Sched-
uler, and then under the HS Scheduler.

We then focus on the question: could an agent halt while having only a local knowledge
based on its current state? For this purpose, we extend a subclass of population protocols
(and the models extending it), with a local detection termination that enables each agent
to detect if it reached a final state. A final state is an irreversible state that does not
appear in effective transition rules. We also introduce, the Protocol Aware HS Scheduler.
This is slight modified version of the HS Scheduler that allows agents with final states
to stop participating in the protocol’s computation and terminate. We prove that this
scheduler is fair with probability 1. We then present some time complexity analyses of
the Leader Election and the Maximal Matching protocols under this scheduler.

6.1 Population Protocols with Absence Detector

Michail et al. extend the basic population protocols with a cover-time service which is
capable of detecting if a walking state has covered the whole network (in term of states and
not agents). Thanks to this service, introducing termination to the population protocols
becomes possible. The authors then reduce this service to an oracle model: all the agents
of the population will be connected to a powerful oracle-node able to detect if any state is
present or not in the population. This special oracle-node is called absence detector and
this new extension of the population protocols is called population protocols with absence
detector.

6.1.1 The Model of Population Protocols with Absence Detec-
tor

The model of population protocols with absence detector is described as a basic population
protocol for which we add a detection transition function representing the interaction rules
of the agents with the absence detector. Formally, it can be specified as follows:

Definition 6.1. (Population Protocol with Absence Detector) A population pro-
tocol with absence detector is a 7−tuple (X, Y , Q, I, ω, δ, γ) where X, Y and Q are
finite sets and:

• X and Y are respectively the input and output alphabets,

• Q is the set of states,

• I: X → Q is the input function,
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• δ: Q×Q→ Q×Q is the transition function,

• γ: Q× {0, 1}|Q| → Q is the detection transition function.

This model supposes a complete interaction graph. Let G = (V,E) denote the in-
teraction graph over which a protocol with absence detector runs. V is the set of nodes
representing the n agents of the population in addition to the absence detector. The size
of the set V is: |V | = n + 1. And E is the set of edges representing all the permissible
communication links that are in this case linking each node from the set V to all the other
nodes of this set.

The absence detector has a special state which is the absence vector that indicates
the presence or not of each state from the population in the current configuration. The
absence vector consists of a vector a ∈ {0, 1}|Q| such as, ∀q ∈ Q, a[q] = 1 iff q is absent in
the current configuration of the population.

Based on the absence detector, Michail et al. introduce some termination to these
protocols. A population protocol with absence detector is halting if, Q includes two
special subsets Qh accept and Qh reject such that: every agent eventually reaches some state
q ∈ Qh accept (respectively q ∈ Qh reject). Once this happens, the agent halts, that is: it
stops participating in effective interactions. If q ∈ Qh accept (respectively q ∈ Qh reject),
then its output is 1 (respectively 0). Note that, halting in this context does not mean
that the agent stops interacting with the others, but only that these interactions will not
lead to any states update.

6.1.2 The Halting Leader Election Population Protocol with
Absence Detector

In [55, 56], the authors present a halting population protocol that elects a leader in a
population. We denote this protocol LEAD = (X, Y , Q, I, ω, δ, γ) with:

• X = {1},

• Q = {L, F, Lhalt, Fhalt},

• I(1) = F ,

• δ defining only one effective transition rule which is: δ(L, F ) = (L, Fhalt), and

• γ :

{
(F, a) 7→ L, if a[L] = 1,

(L, a) 7→ Lhalt, if a[F ] = 1.

The authors do not specify the output alphabet and the output function as they con-
sider them meaningless for this setting.

All the agents of the population have as initial input 1, which is mapped to the fol-
lower state F . The leader state L is assigned to the first agent that interacts with the
absence detector according to the application of the detection transition function rule
γ(F, a) = L as a[L] = 1 (no leader state already exists in the population). Henceforth, no
more state L appears anymore as a[L] = 0, and consequently γ(F, a) = L is not applicable
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anymore. This unique agent with leader state will reduce every agent with state F , it
interacts with, to an agent with state Fhalt until a[F ] becomes 1. Thus, the only effective
remaining interaction is γ(L, a) = Lhalt that changes the state of the agent with state L
to Lhalt. As a result, the agent with state Lhalt is the unique leader of the population and
all the remaining agents (except the absence detector) are followers.

According to this description, the agent that reaches the state Lhalt can detect the
global termination of this protocol which corresponds to the fact that all the agents have
halted and a unique leader is designated. This was not possible with the basic Leader
Election population protocol, but to achieve this the global knowledge was needed.

The Halting Leader Election Population Protocol with Absence Detector LEAD

under the Random Scheduler

We investigate now if including this absence detector in the population has any impact
on the stabilization (or halting in this case) time of this protocol while running under the
Random Scheduler. We have as a result the following theorem.

Theorem 6.1. Let TLE AD be the time needed by the LEAD, that runs over a complete
graph under the Random Scheduler, to stabilize. Let E(TLE AD) be its expected value.
Then, we have:

E(TLE AD) ∼ O(n2 log(n)), as n→∞.

Proof. Initially, the population if formed by (n + 1) agents: n agents with state F , and
the absence detector.

Let Xt denote the set of agents with state L at time t, for any t ≥ 0. Let xt be the
random variable that represents the size of Xt. Initially, x0 = 0 and the absorbing state
is x′t = 1, as according to the transition function δ of this LEAD protocol, only one agent
from the initial agents with state F , is allowed to become L.

Then, the first interaction that takes place between an agent with state F and the
absence detector happens according to the following probability:

Pr(xt+1 = 1|xt = 0) =

(
n
1

)(n(n+1)
2
1

)
=

2

n+ 1
. (6.1)

Let TAF denote the time needed for the first meeting between an agent F and the absence
detector to happen. Let E(TAF ) be its expected value. Then, with respect to (6.1), we
get:

E(TAF ) =
1

Pr(x1 = 1|x0 = 0)

=
n+ 1

2
. (6.2)

From the moment when an agent with state L appears, it starts reducing every agent
from the remaining (n− 1) agents with state F to Fhalt.
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Thus, let Yt designate the set of agents with state Fhalt at time t, for any t ≥ 0 and
yt be the random variable denoting its size. At t = 0, y0 = 0. Then, yt is incremented
each time the agent with state L interacts with an agent with state F until reaching the
absorbing state (n− 1).

Consequently, ∀i, such that 0 ≤ i ≤ n− 2, we have:

Pr(yt+1 = i+ 1|yt = i) =

(
n−i−1

1

)(n(n+1)
2
1

)
=

2(n− i− 1)

n(n+ 1)
. (6.3)

If TLF is the time needed to reduce the (n− 1) agents with state F to state Fhalt, and
E(TLF ) its expected value, then according to (6.3) we get:

E(TLF ) =
n−2∑
i=0

1

Pr(yt+1 = i+ 1|yt = i)

=
n−2∑
i=0

n(n+ 1)

2(n− i− 1)

=
n(n+ 1)

2

n−2∑
i=0

1

n− i− 1

=
n(n+ 1)

2

n−2∑
i=0

1

n− i− 1

=
n(n+ 1)

2

n−1∑
i′=1

1

i′

' n(n+ 1)

2
log(n− 1), as n→∞. (6.4)

Finally, the leader needs to interact again with the absence detector to update its state
from L to Lhalt. Let lt be the r.v denoting the size of the set of vertices with agent L at
time t. In this case, l0 = 1 and its absorbing state is 0. Let TLA be the time needed for
this event to take place, and let E(TLA) be its expected value. Then,

E(TLA) =
1

Pr(lt+1 = 0|lt = 1)

=
n(n+ 1)

2
. (6.5)

Now, let TLE AD be the time needed for the protocol LEAD to stabilize. Then, its
expected value E(TLE AD) is such that:

E(TLE AD) = E(TAF ) + E(TLF ) + E(TLA)

= O(n2 log(n)), as n→∞. (6.6)

The LEAD protocol, running under the Random Scheduler over the complete graph,
needs O(n2 log(n)) computation steps to stabilize, while the basic Leader Election popu-
lation protocol needs O(n2).
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The Halting Leader Election Population Protocol with Absence Detector LEAD

under the HS Scheduler

We suppose now that the protocol LEAD is running under the HS Scheduler in a pop-
ulation whose interaction graph is complete. A description of the expected value of its
stabilization time is given in the following theorem:

Theorem 6.2. Let TLE AD be the time needed by the LEAD, that runs over a complete
graph under the HS Scheduler, to stabilize. Let E(TLE AD) be its expected value. Then:

E(TLE AD) ∼ O(n2 log(n)), as n→∞.

Proof. As already specified above, we suppose that the protocol LEAD runs over a pop-
ulation formed by (n + 1) elements: n agents that are initially with state F , and the
absence detector.

We start by focusing on the first effective step of this protocol which consists on the
first meeting of an agent with state F with the absence detector and that will update the
state of this agent to L. Let TAF denote the time needed for this first meeting to happen
and let E(TAF ) be its expected value.

Let GAF be the set of edges linking each agent of the population to the absence
detector. GAF forms a star where the center is the absence detector and we have:

π(GAF ) =
∑

a=(u,v)∈GAF

Pr(HS(a)).

As the interaction graph is the complete graph Kn+1, and according to (4.11), we can
write:

π(GAF ) =
∑

a=(u,v)∈GAF

β

n2

=
β

n2
× n

=
β

n
≤ 1 . (6.7)

Let ξGAF be the event of obtaining at least (and also at most in this case as we can
not have more than one handshake over a star) one handshake in GAF . According to
Lemma 5.2, we can write: Pr(ξGAF ) ≥ λ min(1, π(GAF )) that, given (6.7), becomes:

Pr(ξGAF ) ≥ λ π(GAF ) . (6.8)

On the other hand we have,

E(TAF ) =
1

Pr(ξGAF )
. (6.9)

This yields:

E(TAF ) ≤ 1

λ π(GAF )

≤ n

λ β
. (6.10)
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Now, once the state L appeared in the population, the agent having this state will try
to change each agent with state F to Fhalt. Let GLF be the set of edges linking the agent
L to each of the k remaining agents with state F . Initially k = n− 1 and should finally
reach 0. GLF forms the star of size k + 1 where the center is the agent with state L.

π(GLF ) =
∑

a=(u,v)∈GLF

Pr(HS(a))

=
∑

a=(u,v)∈GLF

β

n2

=
β

n2
× |GLF |

=
β k

n2
≤ 1, ∀ 0 ≤ k ≤ n− 1 . (6.11)

Let ξGLF be the event of obtaining at least one handshake in GLF . According to
Lemma 5.2, and given (6.11), we have:

Pr(ξGLF ) ≥ λ π(GLF ) . (6.12)

Let TLF be the time needed to reach a configuration where k = 0, and thus all the
agents that were F have become Fhalt. Let E(TLF ) be the expected value of TLF . Then,
we have:

E(TLF ) =
n−1∑
k=1

1

Pr(ξGLF )
.

Given (6.12), this becomes:

E(TLF ) ≤
n−1∑
k=1

1

λ π(GLF )

≤
n−1∑
k=1

n2

λ β k

≤ n2

λ β

n−1∑
k=1

1

k

≤ n2

λ β
Hn−1 . (6.13)

Now, let TLA be the time needed for the leader L to interact with the absence detector.
Let E(TLA) be the expected value of TLA. Let a be the edge linking the leader with the
absence detector, then:

E(TLA) =
1

Pr(HS(a))

=
n2

β
. (6.14)

The expected value of the time needed for the LEAD to halt is the sum of the three
expected values that we just estimated. We can thus conclude that: the expected value
of the stabilization time of this protocol is O(n2 log(n)).
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According to Theorem 6.1 and Theorem 6.2, the protocol LEAD has the same time
complexity when running over a complete graph under the Random Scheduler or under
the HS Scheduler. Consequently, we can deduce the following corollary:

Corollary 6.3. The Random Scheduler and the Handshake Scheduler are time equivalent
with respect to the LEAD protocol running over a population P with a complete interaction
graph.

6.2 Population Protocols with Some Local Termina-

tion Detection

According to Michail et al., introducing termination to population protocols has needed
an oracle-node that has a global knowledge about the states of the agents forming the
population, and which is connected to each of them. However, population protocols are
distributed protocols designed to run over distributed systems and supposing that the
agents have access to some global knowledge is a bit too strong as hypothesis. Thus, a
question arises of whether it is possible to introduce termination to population protocols
without any need to a global knowledge.

In the sequel, we propose the population protocols model with some local termination
detection that extends a specific subclass of protocols from the original model to allow
the detection of the local termination of some agents according to their states.

We would mention that attributing some local termination detection is applicable for
any model extending the population protocols.

6.2.1 The Model of Population Protocols with Some Local Ter-
mination Detection

When reviewing the already proposed population protocols in literature (and also those
extending them), we can notice that there is a family of protocols that have some states
which once reached by an agent are never left. Furthermore, these states never appear as
a member of an effective interaction. In other words, an agent that reaches such a state
stops contributing to the protocol’s progress. We denote these states final states, which
correspond to halting states in the context of population protocols with absence detector.

Definition 6.2. (Final State) A final state is a state that never appears in the left hand
side of an effective transition rule of a population protocol. It is also an irreversible state:
once it is reached by an agent, this latter will never be updated to a new one.

A final state can be described more formally as follows:

Definition 6.3. (Final States of a Protocol) Let A=(X, Y, Q, I, O, δ) be a population
protocol. Qfinal is the finite set of final states of the protocol A such that:

- Qfinal ⊂ Q, and

- ∀ q ∈ Q, ∀ qfinal ∈ Qfinal, δ(qfinal, q) = (qfinal, q) and δ(q, qfinal) = (q, qfinal).
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Hence, regardless of the state of the agent with which an agent with a final state may
interact, this interaction can not lead to any progress in the computation of the protocol.
We therefore propose to introduce local termination of such agents. When an agent
reaches a final state, it implies that it has locally terminated and halts without stopping
interacting with the rest of the population.

From Population Protocols to Population Protocols with some Local Termi-
nation Detection

We are going to focus now on the family of protocols where Qfinal 6= ∅ and rethink them
in such a way that they can deal with the local termination of agents with final states.
We thus extend this family of basic population protocols with a local termination de-
tection function that enables an agent to check if its state is final.

We call this new extension of this subclass of population protocols the population
protocols with some local termination detection. We should mention that all the
concepts and definitions that are going to be presented hold for the population protocols
model as well as any model extending it (among those that we presented in Chapter 2).

Let then A = (X, Y, Q, I, O, δ) be a population protocol with Q including a non
empty set of final states Qfinal. Then, expressing A as a population protocol with some
local termination detection gives A′=(X, Y, Qfinal, Q, I, O, δ, ζ) where X, Y, Qfinal, Q
are finite sets and:

• X, Y , Q, I, O, and δ are the same elements than those designed for A,

• Qfinal is a subset of the set of states Q that consists of the set of the final states of
the protocol A, and

• ζ : Q→ {0, 1} is a local termination detection function described as follows:

– ζ(q) = 1, if q ∈ Qfinal, and

– ζ(q) = 0 otherwise.

Thanks to this function, an agent can detect that it has locally terminated.

Accordingly, unlike the population protocols with absence detector, an agent in a
population executing a population protocol with some local termination detection can
halt based, not on some global knowledge, but only on its local state. However, even if
an agent detects that it has locally terminated, it continues interacting with the rest of
the population.

6.2.2 Examples of Population Protocols with Some Local Ter-
mination Detection

In this section, we propose three examples of protocols that we converted to (mediated)
population protocols with some local termination detection: the Leader Election pop-
ulation protocol (see Section 2.2.3), the VarProduct mediated population protocol (see
Section 2.5) and the Maximal Matching mediated population protocol (see Section 5.4).
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The Leader Election Population Protocol with Some Local Termination De-
tection

Let LE denote the basic Leader Election population protocol designed to run over com-
plete graphs and already introduced in Chapter 2. It is a restriction of the protocol
proposed by Angluin et al. [3] to only one effective transition rule which is:

(L,L)→ (L, F ).

We can notice that, in this protocol, once an agent reaches the state F , it stops
contributing in effective transitions and can not also update its state to a new one anymore.
Consequently, F is a final state according to Definition 6.2 and Definition 6.3. Now,
introducing local termination and the detection of this termination to this population
protocol gives rise to a leader election population protocol with some local termination
detection that we denote LET . This protocol consists of the following 8−tuple (X, Y,
Qfinal, Q, I, O, δ, ζ) with:

• X = {L}, Y = {L, F},

• Qfinal = {F}, Q = {L, F},

• ∀ x ∈ X, I(x) = x,

• ∀ y ∈ Y , O(y) = y,

• δ : (L,L)→ (L, F ), and

• ∀q ∈ Q, ζ(q) = 1 if q = F , and ζ(q) = 0 otherwise.

The VarProduct Mediated Population Protocol with Some Local Termination
Detection

According to the description of the VarProduct mediated population protocol presented
in Section 2.5, and to our definitions of finite states, we can conclude that the state c̄ is
a final state. Thus, converting VarProduct to a mediated population protocol with some
local termination detection gives V arProductT = (X, Y, Qfinal, Q, S, I, O, ι, ω, δ, ζ)
with:

• X, Y , Q, S, I, O, ι, ω, and δ are the same elements as those described for the
VarProduct protocol,

• Qfinal = {c̄}, and

• ∀q ∈ Q, ζ(q) = 1 if q =c̄, and ζ(q) = 0 otherwise.

The Maximal Matching Mediated Population Protocol with Some Local Ter-
mination Detection

The Maximal Matching, as it is described in Section 5.4, consists of only one effective
transition rule which is:

(q0, q0, 0)→ (q1, q1, 1).
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Thus, an agent reaching q1 stops participating in effective interactions. Consequently,
q1 is a final state. Hence, a Maximal Matching mediated population protocol for which we
introduce some local termination detection can be described by the protocolMaxMatchT =
(X, Y, Qfinal, Q, S, I, O, ι, ω, δ, ζ) with:

• X, Y , Q, S, I, O, ι, ω, and δ are the same elements as those described for the
Maximal Matching protocol,

• Qfinal = {q1}, and

• ∀q ∈ Q, we have: ζ(q) = 1 if q = q1, and ζ(q) = 0 if q = q0.

Unlike the previous protocols, the MaxMatchT protocol (also the Maximal Matching
protocol) can reach a configuration where all the agents are with the final state q1. We
say that this protocol is a locally terminating protocol.

Definition 6.4. (Locally Terminating Population Protocol) A locally terminating
population protocol is a population protocol with some local detection of termination
where all the agents eventually reach a final state.

Remark 6.1. Introducing local termination detection to any population protocol has no
effect on the computation process of this latter (there are no added or omitted computation
steps). Thus, the time needed for the protocol with some local termination detection to
stabilize is the same as the one needed for the original protocol.

6.3 The Protocol Aware HS Scheduler

In both models, the population protocols with absence detector and the population pro-
tocols with some local detection of termination, a node halts when reaching a state from
which is does not contribute to any effective interaction anymore, but continue interacting
with the rest of the population. Any interaction that will involve the halting agent can
not lead to any states update. Thus, if an agent with a final state stops interacting with
the others, this has no consequence on the computation of the protocol. Therefore, we
think about introducing effective termination of agents with final states. Stopping the
interactions that involve agents with final states could be interesting as this could help
an agent save its limited resources, and also may even lead to a faster stabilization of the
protocol as non effective interactions will be avoided.

6.3.1 The Description of the Protocol Aware HS Scheduler

We propose to introduce this effective termination of the agents with final states via a
protocol aware scheduler able to take into account the states of the agents. This protocol
aware scheduler should consider that an agent with a final state is not an enabled agent
anymore, which implies that this agent will never be picked among an ordered pair of
agents chosen to communicate by this scheduler.

Therefore, we design a slightly modified version of the HS Scheduler that we call Pro-
tocol Aware HS Scheduler. This scheduler is also based on randomized handshakes
while taking into account the states of the agents. Hence, no handshake will be possible
over an edge where one extremity is an agent in a final state.
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The Protocol Aware HS Scheduler can also be considered as a labeling of the edges of
the interaction graph over which the protocol runs. The label of each edge is the probabil-
ity that a handshake happens over it. However, unlike the case of the HS Scheduler, this
labeling depends on the current states of the nodes, and thus on the current configuration
of the population.

Accordingly, a formal definition that describes a scheduling of a population protocol
with some local termination detection under the Protocol Aware HS Scheduler corresponds
to:

Definition 6.5. (Protocol Aware HS Scheduler) Let P be a population with an
interaction graph G = (V,E). Let A be a population protocol with some local termination
detection running over P . A scheduling of A with the Protocol Aware HS Scheduler
corresponds to the following mapping:

HS Aware : (V (T ), E) → [0, 1]
(C, e) 7→ Pr (HSC(e))

with V (T ) is the set of vertices of T (A, G) which is the transition graph of the protocol
A over the graph G, and Pr (HSC(e)) is the probability that, given the configuration C
of the population P , a handshake takes place over the edge e.

Compared to the protocol aware schedulers that are already proposed in the context
of population protocols, this scheduler can simulate the Modified Scheduler (see Sec-
tion 4.3.2) where ε = 1 but without being diam(G)−central. In fact, as it is based on
handshakes, the Protocol Aware HS Scheduler is 1−central.

The Protocol Aware HS Scheduler is suitable not only for the population protocols
with some local termination detection but also for all the models extending them as long
as they preserve the pairwise interactions.

6.3.2 The Protocol Aware HS Scheduler Procedure

As mentioned above, the Protocol Aware HS Scheduler is based on the randomized hand-
shake model that should take into account the states of the agents. Some slight modifica-
tions are brought to the local randomized handshake procedure described in Algorithm 7
so that its global result can suit the description of the Protocol Aware HS Scheduler and
simulate its functioning. The result is called the Protocol Aware HS Scheduler procedure
defined by Algorithm 8.

The Protocol Aware HS Scheduler procedure is the Algorithm 7 where we insert, once
the loop is initiated, a test step. If the agent’s state is a final state, and consequently ζ
returns 1, then the agent halts. Otherwise, it executes the computation steps from 2 to
18 of the Algorithm 7 that remain unchanged.

Traduced in the context of message passing communication model in wireless sensor
networks, this gives: the agent that halts stop sending any ”hello” messages so that its
neighbors can not detect its presence anymore. And from its neighbors side, and as the
agents are anonymous, no activity will be detected over the port via which the halting
agent was supposed to send messages. Consequently, the neighbors of the halting node
will not detect its presence but without realizing that this specific agent has halted or does
not belong to their neighborhood anymore. Consequently, once a node halts, it simply
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stops being able to initiate any handshake (or any interaction). Likewise, its neighbors
can not detect it anymore as a neighbor being able to interact with, and thus do not
initiate any handshake with it.

Therefore, the global result of the Protocol Aware HS Scheduler procedure guarantees
that no handshake is possible over an edge where one extremity is a node with a final
state.

Algorithm 8 The Protocol Aware HS Scheduler Procedure

1: loop
2: if (ζ(current statev) = 1) then
3: Halt;
4: break;
5: else
6: Execute Algorithm 7 from 2 to 18;
7: end if
8: end loop

6.3.3 Analysis of the Protocol Aware HS Scheduler Procedure

In this section, we aim to analyze the Protocol Aware HS Scheduler procedure that we
proposed to better describe the processing of Protocol Aware HS Scheduler. Therefore,
we start by defining, for each agent belonging to a population that runs a population
protocol, and for each possible configuration C of the population, an attribute dC(v).

Definition 6.6. (Node’s Degree in a Configuration) Let P be a population with
an interaction graph G = (V,E). Let A be a population protocol running over P . Let
T = (V (T ), E(T )) be the transition graph of the protocol A over the graph G. For
any v ∈ V , any C ∈ V (T ), dC(v) denotes the degree of the node v according to the
configuration C.

This attribute is initialized as follows:

Definition 6.7. (Initialization of Node’s Degree) Let P be a population with an
interaction graph G = (V,E). Let A be a population protocol running in P . Let T =
(V (T ), E(T )) be the transition graph of the protocol A over the graph G. Let C0 ∈ V (T )
denote the initial configuration. For any v ∈ V , dC0(v) = d(v) where d(v) is the degree of
the node v in G.

Then, this attribute can vary as described in the following definition:

Definition 6.8. (Node’s Degree Variation) Let P be a population with an interaction
graph G = (V,E). Let A be a population protocol running over P . Let T = (V (T ), E(T ))
be the transition graph of the protocol A over the graph G. Let Ci−1 and Ci be any two
configurations from V (T ) such that Ci−1 → Ci. Then, for any v ∈ V ,

dCi(v) =


0, if Ci(v) ∈ Qfinal (v reaches a final state in Ci)

dCi−1
(v)− x, if x neighbors of v reach final states in Ci

dCi−1
(v), otherwise.
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In words, dC(v) denotes the number of the enabled neighbors of the node v: those
that are not with final states in C and with which v can potentially interact. dC(v) = 0
implies that: either no neighbor of v is enabled during the configuration C, or the state
of v in C is final. This corresponds to the fact that v stops communicating with any of
its neighbors.

For any configuration C, any node v from the population, the attribute dC(v) satisfies
the following lemma:

Lemma 6.4. Let P be a population with an interaction graph G = (V,E). Let A be a
population protocol running over P. Let T = (V (T ), E(T )) be the transition graph of the
protocol A over the graph G. For any t ≥ 1, for any C ∈ V (T ), let Ct denote the tth time
that the configuration C is encountered. Then, for any v ∈ V ,

dCt(v) = dCt−1(v) = ... = dC1(v).

Proof. Recall that a configuration C is a snapshot of all the nodes states in the population.
By definition, for any t ≥ 1, and for any v ∈ V :

Ct(v) = Ct−1(v) = ... = C1(v)

Also, for any two configurations C and C ′ from V (T ) such that C 6= C ′, there exists at
least one node u ∈ V for which C(u) 6= C ′(u).

Let v be any node from the set V . Then, according to the Definition 6.8, dC(v) is
determined by the state of the node v and also the states of its neighborhood. Suppose
that, for t ≥ 1, there exists t′ > t, such that, dCt(v) 6= dCt′ (v). This implies that v or one
of its neighbors reached a final state. Even if this final state was not reached in the tth time
where C is encountered but in another configuration from which C is reachable, and given
that a final state is irreversible, this final state will still appear in Ct′ . That is: there exists
at least one node u from V such that Ct(u) 6= Ct′(u), which contradicts the definition.
Thus, the condition that: ∀ t ≥ 1, ∀ v ∈ V , Ct(v) = Ct−1(v) = ... = C1(v), guarantees
that each agent has the same state each time the configuration C is encountered. This
implies that: dCt(v) = dCt−1(v) = ... = dC1(v).

The Probability of a Handshake over an Edge with the Protocol Aware HS
Scheduler

Let A denote a population protocol that runs over a population P with a communication
graph G = (V,E), and let T = (V (T ), E(T )) be its transition graph over G. Each agent
of P executes Algorithm 8. As we already mentioned: ∀ e = (u, v) ∈ E, ∀C ∈ V (T ),
Pr (HSC(e)) denotes the probability that, given the configuration C, a handshake happens
over the edge e. Pr (HSC(e)) corresponds to the probability that the Protocol Aware
HS Scheduler picks the edge e and consequently allows the pair of agents forming e to
communicate. This probability is described by the following lemma:

Lemma 6.5. Let A be a population protocol running over an interaction graph G =
(V,E). Let T = (V (T ), E(T )) be the transition graph of the protocol A over the graph G.
Then, ∀ e = (u, v) ∈ E, ∀C ∈ V (T ), we have:

Pr (HSC(e)) =
β

dC(u) dC(v)
.
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Proof. The proof is based on a same reasoning than the one of the proof of Lemma 4.2.
We recall that a handshake between two agents means that they have mutually chosen
each others to communicate, and they generated two different random values.

A node u can choose a node v iff u detects v as one of its neighbors (that is: v is still an
enabled neighbor of u). Accordingly, given a configuration C from V (T ), the probability
that u chooses v is:

Pr(c(u) = v) =
1

dC(u)
. (6.15)

Let Pr(ru 6= rv) denote the probability that u and v generate two different random
numbers. According to (4.2), we have: Pr(ru 6= rv) = 1− 1

N
= β .

According to these two probabilities, if e = (u, v), we obtain:

Pr (HSC(e)) =
β

dC(u) dC(v)
.

As a consequence of this Lemma, we have: a scheduling of a population protocol (or
any of its extensions) that has an empty set of final states, with the Protocol Aware HS
Scheduler, corresponds simply to a scheduling with the HS Scheduler. In fact, for any
possible configuration C of the population, as there are no final states, nothing will cause
the modification of the attribute dC of each agent of the population. Thus, for any agent
u, dC(u) will be equal to d(u). Hence, for any possible configuration C of the population
and ∀e = (u, v) ∈ E, we have: Pr (HSC(e)) = Pr (HS(e)).

Remark 6.2. We recall that in the proofs of Lemma 5.1, Lemma 5.2 and Corollary 5.3,
proposed in [32], the value of the probability of a handshake was not involved. Thus,
in spite of the difference between the handshake model used there (in [32]) and the one
we just proposed, these two lemmas and this corollary remain valid for our model of
handshake too.

The Probability of a Least one Handshake over a Graph with the Protocol
Aware HS Scheduler

Now, we focus on the probability that the Protocol Aware HS Scheduler picks at least one
pair of agents to communicate, which corresponds to the probability of having at least
one handshake over the interaction graph. This probability is as specified in the following
lemma:

Lemma 6.6. Let A be a population protocol with some local termination detection running
on a communication graph G = (V,E) under the Protocol Aware HS Scheduler. Then,
the probability that this Scheduler picks at least one ordered pair of nodes at the end of

Algorithm 8 is lower bounded by 1− e−β2 .

Proof. In the sequel, we denote {e1, . . . , em} the set of edges in the interaction graph over
which the protocol A runs. Let C be any possible configuration of the population where
A is executed. We also denote by HSC(G) the event: Given the configuration C, there
is at least a handshake in the graph G. The HSC(G) and HSC(e) are respectively the
complement events of HSC(G) and HSC(e).
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We have:

Pr
(
HSC(G)

)
= Pr

(
∧mi=1HSC(ei)

)
.

A similar computation to the one established in the proof of Lemma 4.3 gives:

Pr
(
HSC(G)

)
≤

(
1−

∑m
i=1 Pr (HSC(ei))

m

)m
. (6.16)

On the other hand, we have:

m∑
i=1

Pr (HSC(ei)) =
∑
{u,v}∈E

β

dC(u)dC(v)
.

Now, with respect to Definition 6.7 and Definition 6.8, for any possible configuration
C, we have:

∀u ∈ V, dC(u) ≤ d(u) .

This yields:

m∑
i=1

Pr (HSC(ei)) ≥
∑
{u,v}∈E

β

d(u)d(v)
.

Yet, given (4.7) established in the proof of Lemma 4.3, we can write:

m∑
i=1

Pr (HSC(ei)) ≥
β

2
.

Thus, (6.16) becomes:

Pr
(
HSC(G)

)
≤

(
1− β

2m

)m
∼ e−

β
2 . (6.17)

Consequently, we obtain:

Pr (HSC(G)) ≥ 1− e
−β
2 . (6.18)

The Number of Simultaneous Handshakes with the Protocol Aware HS Sched-
uler

Let G = (V,E) be the interaction graph of a protocol A running under the Protocol
Aware HS Scheduler. Let T (A, G) = (V (T ), E(T )) be the transition graph of A over
G and C represent any configuration from V (T ). Given C, we denote X the random
variable (r.v) which counts the number of simultaneous handshakes that can take place
at the same step. A similar computation to the one performed in 4.10, using the linearity
of the expectation, we can obtain the expected number of X:

E (X) =
∑

(u,v)∈E

(
β

dC(u)dC(v)

)
. (6.19)
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6.3.4 The Fairness of the Protocol Aware HS Scheduler

The Protocol Aware HS Scheduler, as it was introduced above, should satisfy the fairness
condition proposed by Chatzigiannakis et al. in [25].

Theorem 6.7. The Protocol Aware HS Scheduler is a probabilistic consistent fair sched-
uler with probability 1.

Proof. First, we start by proving that the Protocol Aware HS Scheduler is probabilistic.
Let A be any population protocol with an interaction graph G = (V,E). Let T (A, G) =
(V (T ), E(T )) be any transition graph and Ci be any configuration in V (T ). Let Cj be
any configuration in V (T ) reachable in one step from Ci. We define EncCiCj = {enc |
enc ⊂ E(G) and Ci

enc→ Cj}.
Now, for each element enc from EncCiCj , we rewrite the set E of the edges of the

communication graph G as the union of three disjoint subsets:

E = enc ] F1 ] F2 ,

with:

• F1 = {f ∈ E | if f = (u, v) then ∃e ∈ enc such that e = (u, v′) or e = (u′, v)}, and

• F2 = {f ∈ E | if f = (u, v) then ∀e ∈ enc, if e = (u′, v′) then u 6= u′, u 6= v′, v 6= u′

and v 6= v′} .

Any time Ci is encountered, Cj is selected with the following probability:

PrCiCj =
∑

enc⊂EncCiCj

Pr (HSCi(enc))Pr
(
HSCi(F2)

)
.

Hence, the scheduler can define a probability distribution to every configuration C ∈
V (T ). It is then a probabilistic scheduler.

The probability PrCiCj depends on the probabilities of the handshakes, given Ci, over
enc and F2, which in turn depend on the probability Pr (HSCi(e)) where e ∈ (enc ∪ F2).

According to Lemma 6.4 and Lemma 6.5, this probability does not depend on the
number of times the configuration Ci is encountered. As a consequence, PrCiCj also does
not depend on the number of times the configuration Ci is encountered. Therefore, we
can state that the Protocol Aware HS Scheduler is consistent.

Also, according to Definition 4.15 of a one step computation, Ci → Cj implies that

there exists enc ⊂ E such that Ci
enc−−→ Cj which means that PrCiCj > 0.

Thus, with respect to Theorem 4.1, the Protocol Aware HS Scheduler is a probabilistic
consistent fair scheduler with a probability 1.
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6.4 The Time Complexity of Leader Election Proto-

cols under the Protocol Aware HS Scheduler

6.4.1 The Time Complexity of the Halting Leader Election un-
der the Protocol Aware HS Scheduler

Theorem 6.8. The expected value of the stabilization time of the protocol LEAD running
over a complete graph under the Protocol Aware HS Scheduler is O(n2), as n→∞.
Proof. Let P be a population of n agents and an absence detector. Let C0 denote the
initial configuration of P executing the LEAD protocol over a complete interaction graph
G = (V,E), under the Protocol Aware HS Scheduler. Let TAF denote the time needed
for the first agent with state L to appear (which is the time needed for the first meeting
between an agent with state F and the absence detector to take place). And, let E(TAF )
be its expected value.

Let GAF be the set of edges linking each agents of the population to the absence
detector.

π(GAF ) =
∑

a=(u,v)∈GAF

Pr(HSC0(a))

=
∑

a=(u,v)∈GAF

β

dC0(u) dC0(v)
.

With respect to Definition 6.7, we have: ∀u ∈ V , dC0(u) is initialized with the degree
of u in G. Thus, we can rewrite (6.20) such as:

π(GAF ) =
∑

a=(u,v)∈GAF

β

d(u) d(v)

=
∑

a=(u,v)∈GAF

β

n2

=
β

n2
× n

=
β

n
≤ 1 . (6.20)

This takes us back to the same case already studied in the proof of Theorem 6.2. Thus,
we can conclude that:

E(TAF ) ≤ n

λ β
. (6.21)

As an agent with state L appeared in the population, this latter will reduce every
agent with state F it meets, to Fhalt. Let GLF be the set of edges linking the agent L to
each of the k remaining agents with state F . Initially k = n− 1 and should finally reach
0. Now, ∀ 0 ≤ k ≤ n− 1, we denote C ′k any configuration where there are k agents with
state F .

π(GLF ) =
∑

a=(u,v)∈GLF

Pr(HSC′k(a))

=
∑

a=(u,v)∈GLF

β

dC′k(u) dC′k(v)
. (6.22)
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In a configuration C ′k, there are k agents with state F , one agent with state L, the
rest of the population, except the absence detector, are with the final state Fhalt. Thus,
in this configuration, and as the interaction graph is complete, the attribute dC′k of each
vertex from those forming the edges of GLF is equal to k + 1. This yields:

π(GLF ) =
β

(k + 1)2
× |GLF |

=
β k

(k + 1)2
≤ 1, ∀ 0 ≤ k ≤ n− 1 . (6.23)

Let ξGLF be the event of obtaining at least one handshake in GLF . According to
Lemma 5.2, and given (6.23), we have:

Pr(ξGLF ) ≥ λ π(GLF ) . (6.24)

TLF denotes the time needed for reducing all the agent with state F to Fhalt by the
agent L, and E(TLF ) denotes its expected value. We have:

E(TLF ) =
n−1∑
k=1

1

Pr(ξGLF )
.

Given 6.12, this becomes:

E(TLF ) ≤
n−1∑
k=1

1

λ π(GLF )

≤
n−1∑
k=1

(k + 1)2

λ β k

≤ 1

λ β

n−1∑
k=1

(k + 2 +
1

k
)

≤ 1

λ β

(
n(n− 1)

2
+ 2(n− 1) +Hn−1

)
.

The configuration C ′0, as described above, denotes the one where there are (n − 1)
agents with state Fhalt and one agent L (C ′0 is not the initial configuration C0). Now,
given this configuration, the last step needed for this protocol to stabilize (or halt) is an
interaction between the agent with state L and the absence detector. Let TLA the time
needed for this step to take place and let E(TLA) be its expected value. Let a be the edge
linking the leader with the absence detector.

E(TLA) =
1

Pr(HSC′0(a))

(6.25)

As the agent with state L and the absence detector are the only remaining agents with
non final states, they both have attributes dC′0 equal to 1. Consequently, (6.25) becomes:

E(TLA) =
1

β
. (6.26)
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Accordingly, the complexity of the stabilization time of the protocol LEAD is, as
n→∞, O(n2).

According to this theorem, and to Theorem 6.8 and Corollary 6.3, we can conclude
that the protocol LEAD, running over a complete graph, stabilizes faster when it is under
the Protocol Aware HS Scheduler, compared to the Random Scheduler and HS Scheduler.

6.4.2 The Time Complexity of the Leader Election with Some
Local Termination Detection under the Protocol Aware
HS Scheduler

Theorem 6.9. The complexity of the stabilization time of the Leader Election protocol
with some local termination detection, running over a complete graph, under the Protocol
Aware HS Scheduler is: O(n), as n→∞.

Proof. Let P be the population of n agents that executes the Leader Election with some
local termination detection as described in Section 6.2.2 over a complete graph. We de-
note Ck any configuration of P where there are k agents with state L, with 1 ≤ k ≤ n.
The initial configuration will be Cn as initially, all the agents start with state L. Given
Ck, let Gk denotes the set of edges existing between the k agents with state L. Gk is
a complete graph of k nodes. ξGk is the event of obtaining at least one handshake in a
round for at least one edge in Gk.

Let TLE be the time needed for this protocol to stabilize and let E(TLE) be its expected
value. Then, if we suppose that, at each round, at most one L goes to the final state F ,
then we obtain:

E(TKn) ≤
n∑
k=2

1

P (ξCk)

On the one hand and according to Lemma 5.2, we have:

Pr(ξGk) ≥ λ min(1, π(Gk)) . (6.27)

On the other hand, π(Gk) is such that:

π(Gk) =
∑

a=(u,v)∈Gk

Pr(HSCk(a))

=
∑

a=(u,v)∈Gk

β

dCk(u) dCk(v)

=
β

(k − 1)2
|Gk|

=
β k

2(k − 1)
≤ 1 . (6.28)
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Then, (6.27) and (6.28) imply:

E(TKn) ≤
n∑
k=2

1

λ π(Ck)

≤ 2

λ β

n∑
k=2

(1− 1

k
)

≤ 2

λ β
((n− 2)− (Hn − 1))

≤ 2

λ β
(n−Hn − 1)

Accordingly, the complexity of the stabilization time of this Leader Election with some
local termination detection running over a complete graph under the Protocol Aware HS
Scheduler is O(n), as n→∞.

Accordingly, we can notice that introducing some local termination detection to the
Leader Election protocol and its scheduling with the Protocol Aware HS Scheduler in a
complete graph allows us to have an expected value of the stabilization time which is
O(n) compared to O(n2) in case of the Random Scheduler and HS Scheduler.

6.5 The Time Complexity of a Particular Case: the

Iterated Population Protocols

In this section, we focus on a particular case of the protocols with some local termination
detection running under the Protocol Aware HS Scheduler. We call these protocols: the
iterated protocols. In an iterated protocol, once a node participates in a computation,
it directly goes to a final state and halts. As an example, we can consider the medi-
ated population protocol Maximal Matching with some local termination detection (see
Section 6.2.2) as an iterated mediated population protocol since once a pair of agents
is picked by the scheduler, both agents go to the final state q1. A study of the time
complexity of these iterated protocols is presented while considering different interaction
graph structures.

6.5.1 A General Upper Bound

As a general upper bound for the time complexity of an iterated protocol, we have the
following lemma:

Lemma 6.10. Let A be an iterated protocol. Then, the expected time to compute A is
upper bounded by O(n).

Proof. Let T be the r.v. that counts the number of rounds before the agents of the
population computing the iterated protocol A halt. For any t ≥ 1, let Xt denote the
number of simultaneous computations in the graph G at round t, and let Yt be the r.v.
such that: Yt = n− 2Xt. It is clear that, for any t ≥ 1, T ≤ t if, and only if, Yt ≤ 1.
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We define the following (pessimistic) process (Y ′t )t≥0:

Y ′t =


n if t = 0
Y ′t−1 − 2 if Xt ≥ 1
Y ′t−1 if Xt = 0.

(6.29)

The process (Y ′t )t≥0 is an irreversible ergodic Markov chain whose states are in the
set {n, n− 2, · · · , n− 2bn

2
c} and by Lemma 4.3, the transition probabilities are given by:

Pr
(
Y ′t = n− 2bn

2
c | Y ′t−1 = n− 2bn

2
c
)

= 1 and for any i > 0, and any j ∈ {n, · · · , 0},

Pr
(
Y ′t = i | Y ′t−1 = j

)
=


e
−β
2 if i = j

1− e−β2 if i = j − 2
0 otherwise .

(6.30)

Let T ′ denote the time for the process (Y ′t )t≥0, starting at Y ′0 = n to reach the absorbing
state Y ′t ≤ 1. Then, the expected value of T is such that :

E (T ′) =

bn
2
c−1∑
i=0

1

Pr
(
Y ′t = n− 2(i+ 1) | Y ′t−1 = n− 2i

)
=

bn
2
c−1∑
i=0

1

1− e−β2

=
bn

2
c

1− e−β2
.

On the other hand, it is clear that T < T ′ and hence E (T ) ≤ E (T ′), which ends the
proof.

6.5.2 Upper Bound when the Interaction Graph is Complete

A represents any iterated protocol running over a population P of n agents with a complete
interaction graph G = (V,E) = Kn. In this case, we can state the following lemma:

Lemma 6.11. Let TKn denote the time complexity of an iterated protocol A running over
an interaction graph a complete communication graph G. Then, the expected value of TKn
satisfies:

E (TKn) ≤
n− log(n

2
)

λ β
, as n→∞.

Proof. Let Gk denote the graph formed by the k agents that are still with non final
states in the population. Initially, k = n, then k decreases until reaching n − 2bn

2
c.

∀n − 2bn
2
c ≤ k ≤ n, Gk is a complete graph. ξCk is the event of obtaining at least one

handshake in a round for at least one edge in Gk. Ck represents any possible configuration
of the population P where there are k remaining agents with non final states.

Now, if we consider the pessimistic process, where at each round, there is at most one
pair of agents that go to final states, then:

E(TKn) ≤
bn

2
c∑

k=0

1

Pr(ξGn−2k
)

(6.31)
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Now, to evaluate Pr(ξGn−2k
), we focus on:

π(Gn−2k) =
∑

a∈Gn−2k

Pr(HS(a))

=
∑

(u,v)∈Gn−2k

β

dCn−2k
(u)dCn−2k

(v)

=
∑

(u,v)∈Gn−2k

β

(n− 2k − 1)2

=
β

(n− 2k − 1)2

(n− 2k)(n− 2k − 1)

2

=
β(n− 2k)

2(n− 2k − 1)
≤ 1 .

Now, by Lemma 5.2, we obtain:

E(TKn) ≤
bn

2
c∑

k=0

1

λ π(Gn−2k)

≤
bn

2
c∑

k=0

2(n− 2k − 1)

λ β (n− 2k)

≤ 2

λ β

(bn
2
c+ 1

)
−

n
2∑

k′=n mod 2

1

2k′


≤ 2

λ β

(
bn

2
c+ 1− 1

2
Hn

2

)
.

We recall that the expected value of the stabilization time of the Maximal Matching
protocol running in a complete graph is O(n2), either being scheduled by the Random
Scheduler or the HS Scheduler. Now, according to this lemma, we can conclude that
introducing some local termination to this protocol, and its computation under the Pro-
tocol Aware HS Scheduler allows us to have a lower upper bound of the stabilization time,
which is O(n).

6.5.3 Upper Bound when the Interaction Graph is with Bounded
Degree

Let A be any iterated protocol running over a population P of n agents with G = (V,E)
its interaction graph. In this section, we consider interaction graphs with degrees bounded
by ∆. Then, we have the following lemma:

Lemma 6.12. Let T be the time complexity of an iterated protocol A running over an
interaction graph G that has a degree bounded by ∆. The expected value of T satisfies:

E (T ) ≤ −
log(n∆

2
)

log
(
1−

(
β

∆2

)) .
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Proof. Let t represent an iteration of the algorithm and we define the sequence of graphs
(Gt)(t≥0) as follows: G0 = G and for all t ≥ 1, Gt+1 is the graph obtained by removing,
from Gt, the pairs that execute a computation step and their incident edges. In other
words, Gt is the graph formed by the agents of the population that are not with final
states at iteration t.

We define the following random variables: for any t ≥ 0, Xt denotes the number of
edges of the graph Gt and Yt denotes the number of edges removed from the graph Gt at
the end of iteration t. Then, we have Xt+1 = Xt − Yt and thus:

E (Xt+1 | Gt) = E (Xt | Gt)− E (Yt | Gt)

= Xt − E (Yt | Gt) . (6.32)

On the other hand, for any pair e = (u, v), if a computation is done by the pair (u, v) at
iteration t, then the edge e is removed from the graph Gt. Hence, by (6.19),

E (Yt | Gt) ≥
∑

(u,v)∈E(Gt)

β

dCt(u)dCt(v)
, (6.33)

where Ct stays for the configuration of the population at iteration t. Then:

E (Xt+1 | Gt) ≤ Xt −
∑

(u,v)∈E(Gt)

β

dCt(u)dCt(v)
. (6.34)

Since, for any Ct, for any u, dCt(u) ≤ d(u) ≤ ∆, this becomes:

E (Xt+1 | Gt) ≤ Xt

(
1− β

∆2

)
. (6.35)

For t ≥ 0, we define the r.v. Zt = Xt

(1− β

∆2 )
t . Then, E (Zt+1 | Gt) ≤ Zt. Thus, the r.v. Zt is

a super-martingale, and then:

E (Zt+1) = E (E (Zt+1 | Gt)) ≤ E (Zt) . (6.36)

A direct application of a theorem from [69] yields to E (Zt) ≤ Z0 = m. Thus:

E (Xt) =

(
1− β

∆2

)t
E (Zt) ≤ m

(
1− β

∆2

)t
. (6.37)

We have m ≤ n∆
2

and the algorithm halts when Xt < 1. This implies that t is upper

bounded by − log(n∆
2

)

log(1− β

∆2 )
which ends the proof.

Corollary 6.13. If ∆ is a constant, then the expected time to compute the iterated protocol
is O (log n).

6.5.4 Upper Bound when the Interaction Graph is a Random
Graph

In this section, we analyze the complexity of an iterated protocol in random graphs. We
focus our study on the case where G = Gn,p with p = α logn

n
(with α > 1), that is on the

random graphs which are connected with high probability. We have the following result:
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Lemma 6.14. Let Gn,p = (V,E) be a random graph with p = α logn
n

(for α > 1). Let T
the time complexity of an iterated protocol A running over this Gn,p. The expected value
of T satisfies:

E (T ) ≤ − log n

log
(

1− β
α logn

) .
Proof. The proof uses the same arguments as for the proof of Lemma 6.12. We define the
sequence of graphs (Gt)(t≥0), and the two r.v. Xt as the size of Gt and Yt as the number
of edges removed at the end of the computation step t. Then we have Xt+1 = Xt − 2Yt,
and:

E (Xt+1 | Gt) = Xt − 2E (Yt | Gt) .

Given (6.33), and as we have: for any Ct, for any u, dCt(u) ≤ d(u), we get:

E (Yt | Gt) ≥
∑

(u,v)∈E(Gt)

β

d(u)d(v)
. (6.38)

Then, using (4.21), this becomes:

E (Yt | Gt) ≥ β
Xt

2α logXt

. (6.39)

Consequently, we obtain:

E (Xt+1 | Gt) ≤ Xt −
β

α logXt

Xt .

Now, as Xt ≤ n, ∀t ≥ 0, we have:

E (Xt+1 | Gt) ≤
(

1− β

α log n

)
Xt .

Then, the theorem holds by the same reasoning as for the proof of (6.36) and (6.37).

We recall that the expected value of the stabilization time of the Maximal Match-
ing protocol running in a Gn,p graph is: O( n3

logn
) under the Random Scheduler, and

O(n log2(n)) under the HS Scheduler. Consequently, given Lemma 6.14, we can con-
clude that introducing some local termination to this protocol and using the Protocol
Aware HS Scheduler, allows a faster stabilization of this protocol.

6.6 Conclusion

We presented in this chapter, the model of population protocol with absence detector
proposed by Michail et al. that introduces the concept of termination in population pro-
tocol. We focused on the Leader Election protocol with absence detector. We studied the
expected value of its stabilization time first when running under the Random Scheduler,
then when running under the HS Scheduler. We concluded thanks to this study, that
the Random Scheduler and the HS Scheduler are time equivalent with respect to this
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protocol running in a complete interaction graph. They both have an expected value of
the stabilization time which is O(n2 log(n)).

We then introduced the model of population protocol with some local termination
detection. We designed for these protocols a protocol aware distributed scheduler: the
Protocol Aware HS Scheduler. This scheduler is also based on randomized handshakes.
It allows agents that reach a specific state, called final state, to stop participating in the
pairwise interactions. We proved that this scheduler is fair with probability 1.

We took up the example of the Leader Election protocol with absence detector. This
protocol running in a complete graph under the Protocol Aware HS Scheduler needs O(n2)
computation steps to stabilize. It thus stabilizes faster compared to its computation under
the Random Scheduler and the HS Scheduler.

We also studied the stabilization time of the Leader Election with some local termi-
nation detection and the iterated protocols that we proposed, when running under the
Protocol Aware HS Scheduler.

We proved that introducing some local termination detection to the Leader Election
protocol, and to the Maximal Matching protocol, and their computation under the Pro-
tocol Aware HS Scheduler gave lower upper bounds compared to their executions under
the Random Scheduler and the HS Scheduler.

Table 6.1 summarizes the established results related to the stabilization time upper
bounds.

Graph Structure Scheduler
Time Complexity

Kn Gn,p Random HS P A HS

Leader Election
with

absence detector

× × O(n2 log(n))
× × O(n2 log(n))
× × O(n2)

Leader Election
with some LTD

× × O(n)

MaxMatch
with some LTD

× × O(n)

× × O(− logn

log(1− β
α logn)

)

Table 6.1: Time complexity of protocols with Absence Detector and with some local
termination detection
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7.1. ViSiDiA

In this chapter, we introduce ViSiDiA: the Java framework designed for the visualiza-
tion and simulation of distributed algorithms. Thanks to this framework, we are going
to illustrate the possibility of the mappings that we presented in Chapter 3, between the
population protocols and tasks with graph relabeling systems on the one hand, and be-
tween the population protocols and the anonymous asynchronous message passing model
on the other hand. We thus represent the possibility of describing a (mediated) popula-
tion protocol with each of these two models through the examples of the three protocols
already studied in the previous chapters. Then, once the different studied schedulers (the
Random Scheduler, the HS Scheduler and the Protocol Aware HS Scheduler) are imple-
mented on ViSiDiA, we propose to validate the theoretical analyses established in the
previous chapters with experiments under this platform.

Our publication in [1] can be a tool for the reader to get familiar with ViSiDiA plat-
form.

7.1 ViSiDiA

ViSiDiA (Visualization and Simulation of Distributed Algorithms) is a Java framework
that allows to implement, simulate and visualize distributed algorithms [1, 16]. It is based
on the modeling of a network as a graph wherein each node represents a processor and the
edges represent communication channels. ViSiDiA has a dual purpose: educational and
research. Regarding the educational goals, ViSiDiA aims to facilitate the understanding
of distributed algorithms. From the research point of view, the goal is to make easier the
design, evaluation and analyses of new distributed algorithms.

7.1.1 Main Functionalities

The main functionalities of ViSiDiA, from a user’s perspective, are depicted in Figure 7.1.
In fact, a user can run an experiment, implement a new algorithm, or replay a simulation.

To run an experiment, the user should first define a network topology. He can either
create it in ViSiDiA, or import it as a GML (Graph Modeling Language) file. Creating
a network topology in ViSiDiA can be done manually, or automatically thanks to a new
module that we added to this platform. This module offers the possibility of automatically
generating three different types of graphs: Random Graphs (the Gn,p model), Random
Geometric Graphs (Unit Disk Graph model) and Small World Graphs. This makes the
task of the user much easier especially when he has to generate graphs with huge sizes.
No matter how the graph is generated, the status of the processes and edges are encoded
by labels.

Thereafter, the user can select an algorithm among those provided in ViSiDiA’s
database which may be enhanced by user’s defined algorithms. Once an algorithm is
selected, the simulation can be carried out. The user can visualize the progress of the
simulation through animations, but this is not mandatory.

Also, instead of running a new experiment, a user can replay a previously recorded
simulation.
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ViSiDiA user

Create a distributed 
algorithm

Create a network 
topology (graph)

Import a graph 
(a GML file)

Select a distributed algorithm

Load a recorded 
simulation

Simulate a distributed system

Visualize the 
animation

Algorithms
Simulations

If needed

Figure 7.1: ViSiDiA’s functionalities from users perspective

7.1.2 Architecture

ViSiDiA is implemented in Java and has been designed using a multi-layer architecture.
This design choice allows to easily extend the functionalities of each layer independently
of the other layers. For instance, this architecture facilitates the implementation of new
algorithms. The flowchart of this multi-layer architecture is illustrated by Figure 7.2
(where plain arrows represent direct association, while the dashed arrow is an indirect
association). This architecture relies on a Model-View-Controller (MVC) pattern where:
the model is the graph representing a distributed system, the view is the Graphical User
Interface (GUI), and the controller is the simulator module.

The GUI is the first layer. It enables to build the graph that represents the network
topology, to visualize the progress of the simulation and to potentially influence this
progress (speed up, slow down or pause the simulation).

Figure 7.2: ViSiDiA’s architecture

The second layer includes the graph description tool and the distributed algorithms
simulator. The latter is the main module of ViSiDiA. It is worth noting that this module is
independent from the GUI. Indeed, a simulation can run without any GUI. ViSiDiA uses
an event-driven simulator. Any action leads to the generation of an event. These events
are interpreted by the simulator which (eventually) modifies the graph. For example, the
communication process by message passing can lead to several events:

- event 1: the source node issues a message.
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- event 2: the GUI (if any) displays the message going from the source node to the
destination(s).

- event 3: once the message reaches the destination, it is put in the receiver’s queue.

- event 4: the receiver performs some actions according to the content of the message.

These events are transparently managed by the simulation module and algorithm
developers do not have to deal with them.

The last layer contains an Application Programming Interface (API) that allows users
to program their own distributed algorithms and run them on ViSiDiA.

Regarding this architectural pattern, we can draw several conclusions:

- the simulation console is independent from the GUI,

- the graph is only modified by GUI (through user interaction) and simulation console,

- the algorithms must refer to the simulation console to operate on the graph.

7.1.3 Distributed Communication Models

ViSiDiA implements various distributed communication models that are: message pass-
ing, mobile agents, and local computations with graph relabeling rules, using both syn-
chronous and asynchronous systems. By asynchronous system, we mean there is no global
clock shared by all nodes and messages can arrive at arbitrary times.

The algorithms database of ViSiDiA contains some well-known distributed algorithms
such as: leader election, spanning tree computation, ring coloring, graph enumeration, etc,
implemented with these different models of communication. Also, as already mentioned
above, the API allows ViSiDiA users to implement their own algorithms. According to
the distributed communication model on which the algorithm will be based, they can
simply invoke the corresponding already defined functions.

Developing New Algorithms with Message Passing

We present the example of the implementation of a broadcast algorithm based on message
passing. This algorithm is as follows: we suppose that a given node (say v), labeled “A”
has an information to broadcast. v sends the message to all its neighbors. Upon receiving
the message, each node changes its own label to “A” then forward this message to its
respective neighbors (except the one which previously sent this message). We propose the
asynchronous version of this broadcast algorithm (see Listing 7.1).

The getDescription() method is not mandatory. It is used to add a description of
the algorithm that will be displayed in the GUI when the user will browse the list of the
algorithm in order to select one of them (using a Java JFileChooser).

The getMessageTypeList() is used by ViSiDiA to get the list of messages that will
be displayed on the GUI (the user can choose to display them or not). In this example,
there is only one message type, called wave.
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Listing 7.1: Asynchronous broadcast algorithm
1 import java . u t i l . C o l l e c t i o n ;
2 import java . u t i l . L inkedLis t ;
3
4 import v i s i d i a . s imu la t i on . p roce s s . a lgor i thm . Algorithm ;
5 import v i s i d i a . s imu la t i on . p roce s s . edge s ta t e . MarkedState ;
6 import v i s i d i a . s imu la t i on . p roce s s . messages . Door ;
7 import v i s i d i a . s imu la t i on . p roce s s . messages . Message ;
8 import v i s i d i a . s imu la t i on . p roce s s . messages . MessageType ;
9 import v i s i d i a . s imu la t i on . p roce s s . messages . Str ingMessage ;

10
11 public class Broadcast extends Algorithm {
12
13 @Override
14 public St r ing ge tDe s c r i p t i on ( ){
15 return "This algorithm implements a broadcasting " +
16 "process initiated by a vertex labelled A." ;
17 }
18
19 static MessageType wave = new MessageType ( "Wave" , true ) ;
20
21 @Override
22 public Co l l e c t i on<MessageType> getMessageTypeList ( ) {
23 Co l l e c t i on<MessageType> t y p e s L i s t ;
24 t y p e s L i s t = new LinkedList<MessageType>() ;
25 t y p e s L i s t . add ( Broadcast . wave ) ;
26 return t y p e s L i s t ;
27 }
28
29 @Override
30 public void i n i t ( ) {
31 . . .
32 }
33
34 @Override
35 public Object c l one ( ) {
36 return new Broadcast ( ) ;
37 }
38 }

Listing 7.2: Asynchronous broadcast algorithm: the ”init” method
1 public void i n i t ( ) {
2
3 St r ing label = getProperty ( "label" ) . t oS t r i ng ( ) ;
4
5 if ( label . equa l s ( "A" ) ) {
6 sendAl l ( new Str ingMessage ( "Wave" , wave ) ) ;
7 } else {
8 Door door = new Door ( ) ;
9 Message msg = r e c e i v e ( door ) ;

10 se tLoca lProper ty ( "label" , new St r ing ( "A" ) ) ;
11
12 for ( int i = 0 ; i < getAr i ty ( ) ; i++) {
13 if ( i != door . getNum ( ) )
14 sendTo ( i , msg ) ;
15 }
16 }
17 }

The core of the broadcast algorithm is described in the init method (Listing 7.2).
The user does not have to handle the send and receive processes. He has only to invoke the
corresponding function already defined in ViSiDiA, and that correspond in this example
to: sendTo(), sendAll(), receive().

The instruction in line 3 allows to get the label of the node. On line 5, if the node’s
label equals to “A”, this means the node is the initiator of the broadcast (decision taken

Computing Models for Networks of Tiny Objects 159



7.2. Population Protocols in ViSiDiA

by the user). Therefore it sends to all its neighbors a message that contains the text “
Wave” (line 6). If the label of the node is not “A”, then the node waits for the first
message coming on one of its doors (lines 8-9). Then the node changes its label (line 10)
before forwarding the message it received (lines 12-15).

Developing New Algorithms with Graph Relabeling Systems

Now, if the user chooses to describe its distributed algorithm in ViSiDiA using the abstract
model of graph relabeling systems, then ViSiDiA offers him an easier method to implement
it without writing any code. In fact, he has just to draw the sequence of the corresponding
relabeling rules that encode its algorithm. These relabeling rules can be described as LC0,
LC1 or LC2 rules.

We consider the graph relabeling system RST , described in Section 3.1, that encodes
a distributed algorithm computing a spanning tree of any graph. RST consists of only
one relabeling rule: RST . Thus, implementing the distributed algorithm encoded by RST
in ViSiDiA consists on drawing RST as it is shown in Figure 7.3.

Figure 7.3: The spanning tree relabeling rule RST in ViSiDiA

Accordingly, in the left part of Figure 7.3, the relabeling rule that allows to relabel
the graph is described. And, in the right part, some forbidden contexts can be added.

7.2 Population Protocols in ViSiDiA

Through Chapter 5 and Chapter 6, we established some theoretical results concerning the
time complexity of some protocols running under different schedulers. We aim to validate
these results through some experiments and simulations. We propose to use ViSiDiA as a
simulation tool. We can notice that, according to the description that we provided in the
previous section, ViSiDiA was not specially designed to handle the population protocol
model and its extensions. However, we already established in Chapter 3 an approach that
allows to describe the computation of a (mediated) population protocol as a realization
of a task with graph relabeling system, or as a distributed algorithm in an anonymous
asynchronous system based on message passing. We describe in this section how such
mappings are possible with ViSiDiA.
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7.2.1 From Population Protocols to Tasks with Graph Relabel-
ing Systems in ViSiDiA

In this section, we illustrate the possibility of describing the computation a (mediated)
population protocol as a realization of a task with a graph relabeling system in ViSiDiA.
We show this through the following three examples: the OR population protocol, the
Leader Election population protocol and the Maximal Matching mediated population
protocol.

The OR Protocol

We recall the population protocol OR described in Section 4.6.3. We just update QOR

such that QOR = {A,N} with A standing for the state q1 and N for the state q0 (it is
more adapted with the existing labels in ViSiDiA). Let TOR be a task whose input and
output labeling types are respectively: LORi and LORo . Let (G, σi) be a labeled graph in
the domain of TOR. And let ROR = {LOR, IOR,POR} be a graph relabeling system.

Now, with respect to the mapping approach that we established in Chapter 3, we have
to define the parameters of TOR and ROR such that the realization of TOR on (G, σi)
according to ROR corresponds to the computation of the OR protocol.

Consequently, these parameters should be as follows:

• LORi = LORo = XOR = {0, 1},

• LOR = QOR = {A,N},

• IOR = LOR,

• POR = φ(δOR) = {ROR1 , ROR2},

• the initialization function of this realization λOR = IOR, and

• the output extraction function of this realization πOR = OOR.

AANA
ROR1 :

AAAN
ROR2 :

Figure 7.4: The relabeling rules of ROR

Figure 7.4 describes the relabeling rules ROR1 and ROR2 that should be drawn in
ViSiDiA.

The Leader Election Protocol

We consider now the population protocol Leader Election (see Section 2.2.3) where we
just modify the notation of the states forming the set QLE such that QLE = {N,A}. The
state N stands for the state L and A for F .
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To map the computation of this protocol to a realization of task with a graph relabeling
system, we define a task TLE with an input labeling type LLEi = XLE and an output
labeling type LLEo = YLE.

We also consider a graph relabeling systemRLE = {LLE , ILE ,PLE} with: LLE = QLE,
ILE = {N}, and PLE = φ(δLE) = {RLE}. The relabeling rule RLE is depicted in
Figure 7.5.

ANNN
RLE1 :

NAAN
RLE2 :

Figure 7.5: The relabeling rules of RLE

For any labeled graph in the domain of TLE, realizing this task according to RLE over
this graph will have an initialization phase λLE = ILE, and an output extraction function
πLE = OLE.

We recall that in case of complete interaction graphs, the transition function of this
protocol can restricted to only one transition rule which is δLE(N,N) = (N,A). Then
PLE can also be restricted to the relabeling rule RLE1 in this case.

The Maximal Matching Protocol

We consider the Maximal Matching mediated population protocol, introduced in Sec-
tion 5.4 with a slight modification of the states denotation (to better suit the existing
labels in ViSiDiA). Accordingly, a state A replaces the state q1 and a state N replaces the
state q0. We focus now on describing the computation of this protocol as a realization of
a task.

Let TMaxMatch be a task with an input labeling type LMi
= XM = {0}, and an output

labeling type LMo = YM = {0, 1}. LetRM = {LM, IM,PM} be a graph relabeling system
with: LM = QM ∪ SM = {A,N, 0, 1}, IM = {N, 0} and PM = φ(δM) = {RM}. The
relabeling rule RM is as shown in Figure 7.6.

10

AANN
RM :

Figure 7.6: The relabeling rule RM

Accordingly, the computation of the Maximal Matching protocol can be mapped to
the realization of TMaxMatch according to RM over any labeled graph in the domain of this
task and where the initialization function and the output extraction function are defined
with respect to the specifications in Table 3.1.
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Implementation and Simulation in ViSiDiA

The implementation of any of these protocols described above consists on generating a
labeled graph in the domain of the corresponding task and drawing the relabeling rules
of the corresponding graph relabeling system. We should mention that in ViSiDiA, when
drawing the relabeling rules, we do not need to specify the direction of the edges to break
the symmetry. In fact, if we focus on Figure 7.3, we can notice that a LC0 rule is described
over an edge where one of its extremities is the center of the ball of radius 1. The center
will thus be considered as being the initiator while the other node is the responder.

Before launching the simulation, the user should choose the scheduling scenario. This
is possible through the specification of the corresponding synchronization when drawing
the relabeling rules. Then, simulation with ViSiDiA can take place and consequently the
number of rounds needed for this computation to stabilize can be obtained.

7.2.2 From Population Protocols to Anonymous Asynchronous
Message Passing in ViSiDiA

We consider in this section the possibility of simulating a (mediated) population protocol
in ViSiDiA by mapping it to an asynchronous algorithm running over an anonymous
system based on message passing. This algorithm is a distributed one consisting of a
collection of local algorithms that are a detailed implementation of the Algo algorithm
(see Algorithm 1) where:

• The procedure TrySynchronization() is replaced by the synchronization part of
the algorithm related to the corresponding scheduler: either the Random Scheduler
(Algorithm 4), theHS Scheduler (Algorithm 7) or the Protocol Aware HS Scheduler
(Algorithm 8).

• Line 7 is replaced by an implementation of the application of any possible transition
rule of the transition function of the corresponding protocol.

We continue with the same examples of the previous section by detailing, for each
protocol, the part of the algorithm describing its transition function. We just give their
descriptions as pseudo codes that are later implemented in Java under ViSiDiA. We should
mention that we continue using, for each of these protocols, the same notation of the states
already used in the previous section.

The OR Protocol

Describing the transition function δOR in the context of an algorithm based on message
passing corresponds to Algorithm 9.

Algorithm 9 The Transition Function δOR

if ((stateu = N) and (statec(u) = A)) then
stateu ← A

end if
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The Leader Election Protocol

We consider the following two cases:

• The Leader Election Protocol in Complete Graphs The transition function
of this protocol is described in Algorithm 10.

Algorithm 10 The Transition Function δLE (Complete Graph)

if (role = r) then
if ((stateu = N) and (statec(u) = N)) then
stateu ← A

end if
end if

• The Leader Election Protocol in Random Graphs Algorithm 11 corresponds
to the transition function of this protocol designed for random interaction graphs.

Algorithm 11 The Transition Function δLE (Random Graph)

if (role = i) then
if ((stateu = N) and (statec(u) = A)) then
stateu ← A

end if
else

if ((stateu = N) and (statec(u) = N)) then
stateu ← A

else
if ((stateu = A) and (statec(u) = N)) then
stateu ← N

end if
end if

end if

The Maximal Matching Protocol

The transition function δM of the Maximal Matching protocol described in an algorithm
based on message passing can be represented by Algorithm 12.

Note that stateEdge(u,c(u)) denotes the state of the edge linking a node u to c(v).

Algorithm 12 The Transition Function δM

if ((stateu = N) and (statec(u) = N)) then
stateu ← A
stateEdge(u,c(u)) ← 1

end if
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7. Experimentation under ViSiDiA Platform

7.3 Simulation Results

Now to validate our theoretical results concerning the time complexity of some (medi-
ated) population protocols under different scheduling scenarios and over different graph
structures, we have the possibility of implementing them in ViSiDiA using one of the two
models as described in the previous section.

In what follows, we present the results of the simulations of these different scenarios
in ViSiDiA. For each scenario, the experiments were repeated 20 times.

In the sequel, we are going to use the following abbreviations:

- n: denoting the size of the interaction graph (the size of the population) where the
protocol runs.

- Exp. Av.: denoting the experimental average of the stabilization time obtained with
simulations. We recall that time is estimated in number of rounds of the protocol.

- Exp. U. B.: denoting the experimental upper bound, which is the highest value of
the stabilization time of a given scenario reached in the simulations.

- Theo. U. B.: denoting the theoretical upper bound we established through the
theoretical analyses of the stabilization time of the protocol.

7.3.1 The OR Protocol

The OR Protocol over Complete Graphs

We consider the population protocol OR running in a population whose interaction graph
is the complete graph Kn. We present in Table 7.1 the results of the simulations of this
protocol under the Random Scheduler, and under the HS Scheduler.

n
Random Scheduler HS Scheduler Theo. U. B.

O(n ln(n))Exp. Av. Exp. U. B. Exp. Av. Exp. U. B.

10 25 45 42 79 23
20 70 96 123 175 60
30 126 173 250 324 102
40 159 202 317 426 148
50 238 374 391 547 196
60 262 325 584 698 246
80 352 431 751 931 351
100 455 542 973 1078 461

Table 7.1: Simulations of the OR protocol over Kn

According to Corollary 5.6, the two schedulers are time equivalent with respect to
this protocol. In fact, the expected value of the stabilization time of the OR protocol
either running under the Random Scheduler, or under the HS Scheduler, is in this case
O(n ln(n)). This is confirmed by the results presented in Table 7.1.
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However, we can notice that a computation under the HS Scheduler needs more com-
putations steps (or more time) to stabilize. Indeed, we can conclude from Table 7.1 that
the experimental average of this protocol running under the HS Scheduler is twice the
experimental average under the Random Scheduler. This is related to the probability of
an edge from the interaction graph Kn to be picked by each of these two schedulers.

In fact, we recall that this probability corresponds to 2
n(n−1)

in the case of the Random

Scheduler. However, it corresponds to β
(n−1)2 , with 0 < β < 1, in the case of the HS

Scheduler. We can conclude that, this probability is higher when the scheduler is the
Random one. This can explain the differences between the obtained values of the two
scheduling scenarios.

The OR Protocol over Random Graphs

We summarize in Table 7.2 the results of the simulations of the OR protocol running in
a population whose interaction graph is Gn,p, with p = α logn

n
(α > 1). We considered a

scheduling of the pairwise interactions with the Random Scheduler on the one hand, and
under the HS Scheduler on the other hand.

We can notice that, in both scenarios, the theoretical upper bounds of the stabilization
time are respected. Also, according to these experimental results, the two schedulers are
not time equivalent which validate the result of Corollary 5.9. In fact, the computation of
the OR protocol in a graph Gn,p stabilizes faster when running under the HS Scheduler.

n α
Random Scheduler HS Scheduler

Exp. Av. Exp. U. B.
Theo. U. B.

O(n2)
Exp. Av. Exp. U. B.

Theo. U. B.
O(n log2 n)

40 2 297 567 1600 57 72 103
50 2.25 412 638 2500 60 69 144
60 2.69 392 555 3600 64 78 190
80 2.7 797 1035 6400 73 89 290
100 2.5 1204 1718 10000 82 108 400

Table 7.2: Simulations of the OR protocol over Gn,p

7.3.2 The Leader Election Protocol

The Leader Election Protocol over Complete Graphs

Let P be a population with a complete interaction graph Kn. We propose to simulate the
Leader Election protocol running in this population by considering a scheduling under
the Random Scheduler, or under the HS Scheduler. Table 7.3 shows the results of these
simulations.

According to Theorem 5.10, the expected value of the stabilization time of the Leader
Election is O(n2) when running in Kn under the Random Scheduler. Also, according to
Theorem 5.11, the same upper bound holds for the computation of this protocol under
the HS Scheduler. Results in Table 7.3 validate this upper bound.

As for the computation of the OR protocol, we can notice that the computation of
the Leader Election in the complete graph under the HS Scheduler needs some additional
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n
Random Scheduler HS Scheduler Theoretical U. B.

O(n2)Exp. Av. Exp. U. B. Exp. Av. Exp. U. B.

10 81 135 164 303 100
20 338 718 543 1027 400
30 918 2086 1361 2452 900
40 1406 3169 2977 6068 1600
50 2700 5769 4573 9786 2500
60 3284 5546 4169 7256 3600

Table 7.3: Simulations of the Leader Election protocol over Kn

computation steps compared to its computation under the Random Scheduler. The prob-
ability of an edge to be picked by the HS Scheduler has the minimum value when the
graph is complete.

The Leader Election over Random Graphs

Now, we suppose that the population, over which the Leader Election protocol is running,
has a connected random interaction graphGn,p. We proceed on simulations of this protocol
under this population by assuming that the pairwise interactions are handled by the
Random Scheduler. Then, a second set of simulations is performed by assuming that the
pairwise interactions are handled by the HS Scheduler. The results of these simulations
are represented in Table 7.4.

n α
Random Scheduler HS Scheduler

Exp. Av. Exp. U. B.
Theo. U. B.

O( n3

logn
)

Exp. Av. Exp. U. B.
Theo. U. B.
O(n log2 n)

40 2 1615 3208 39949 364 747 103
50 2.25 2754 5287 73573 616 1482 144
60 2.69 3199 6164 121474 551 1208 190
80 2.7 6374 16134 269036 1118 1839 290
100 2.5 11475 18185 500000 1693 3414 400

Table 7.4: Simulations of the Leader Election protocol over Gn,p

Given Table 7.4, we can notice that both theoretical bounds related to the two consid-
ered scenarios are respected. Also, Corollary 5.15 is validated as the two schedulers are not
time equivalent with respect to the Leader Election protocol. Indeed, the computations
under the HS Scheduler stabilize faster.

Also, according to these experimental results, we think that a tighter theoretical bound
related to the expected stabilization time of this protocol can be found.
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7.3.3 The Maximal Matching Protocol

The Maximal Matching Protocol over Complete Graphs

We consider a population P whose interaction graph is the complete graph Kn. We
suppose that the agents of this population are running the Maximal Matching medi-
ated population protocol. Simulations of this computation are performed by assuming a
scheduling under the Random Scheduler on the one hand, and under the HS Scheduler
on the other hand. The obtained results are summarized in Table 7.5.

n
Random Scheduler HS Scheduler Theoretical U. Bound

O(n2)Exp. Av. Exp. U. B. Exp. Av. Exp. U. B.

10 95 230 89 214 100
20 405 857 459 1447 400
30 829 2371 983 2000 900
40 1345 3084 1959 5192 1600
50 2542 4528 2740 5576 2500
60 2676 5467 2914 5328 3600

Table 7.5: Simulations of the Maximal Matching protocol over Kn

Thanks to these simulation results, Corollary 5.18 is confirmed: the two schedulers
are time equivalent. Both scenarios respect the theoretical upper bound O(n2).

7.3.4 The Leader Election with some Local Termination Detec-
tion

We consider the Leader Election population protocol with some local termination detec-
tion introduced in Section 6.2.2 running in a complete interaction graph Kn. We proceed
on simulating the computation of this protocol under the Protocol Aware HS Scheduler.
The results of these simulations are shown in Table 7.6.

We can notice that the theoretical upper bound O(n) is respected.

We recall that introducing some local termination detection does not affect the stabi-
lization time of a population protocol. Hence, the results related to the Leader Election
population protocol that we presented in the previous sections hold also for the Leader
Election population protocol with some local termination detection. Accordingly, com-
paring the results of Table 7.6 to those of Table 7.3, we can confirm that the computation
of the Leader Election population protocol with some local termination detection sta-
bilizes faster when running under the Protocol Aware HS Scheduler, compared to its
computation under the Random Scheduler or the HS Scheduler.

7.3.5 The Iterated Protocols

We consider in this section the iterated protocols defined in the previous chapter. As an
example of these protocols, we consider the Maximal Matching with some local termina-
tion detection (see Section 6.2.2).
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n
Protocol Aware HS Scheduler

Exp. Av. Exp. U. B.
Theo. U. B.

O(n)

100 192 224 100
150 255 319 150
200 392 433 200
250 490 536 250
300 584 610 300

Table 7.6: Simulations of the Leader Election with some local termination detection
protocol in Kn

The Iterated Maximal Matching in Complete Graphs

We focus on the computation of the Maximal Matching with some local termination
detection in a complete graph under the scheduling of the Protocol Aware HS Scheduler.
We proceeded on simulating this protocol, and the results are given in Table 7.7.

n
Protocol Aware HS Scheduler

Exp. Av. Exp. U. B.
Theo. U. B.

O(n)

100 98 105 100
150 140 152 150
200 188 204 200
250 245 255 250
300 296 306 300

Table 7.7: Simulations of the iterated Maximal Matching protocol under Protocol Aware
HS Scheduler in Kn

Through the results of this table, we experimentally validate Lemma 6.11 related to
the upper bound of this protocol running under the Protocol Aware HS Scheduler and
which is O(n).

Also, by referring to the experimental results presented in Table 7.5, we can conclude
that an iterated Maximal Matching stabilizes faster when running under the Protocol
Aware HS Scheduler compared to its computation either under the Random Scheduler or
the HS Scheduler.

The Iterated Maximal Matching in Random Graphs

Let P be a population whose interaction graph is the connected random graph Gn,p. We
simulate the computation of the iterated Maximal Matching in this population where the
pairwise interactions are handled by the Protocol Aware HS Scheduler. We present the
results of these experiments in Table 7.8.

The upper bound of this scenario, established in Lemma 6.14, is validated through
these experimental results. Thanks to the Protocol Aware HS Scheduler, we have com-
putations of the Maximal Matching protocol that quickly stabilize.
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n α
Protocol Aware HS Scheduler

Exp. Av. Exp. U. B.
Theo. U. B.

O(− logn

log(1− β
α logn)

)

100 2 7 8 16
1000 2 10 11 38
2000 2 11 13 46
4000 2 14 15 55
6000 2 16 18 61
8000 2 19 21 65
10000 2 22 25 69

Table 7.8: Simulations of the iterated Maximal Matching protocol under Protocol Aware
HS Scheduler in Gn,p

7.4 Conclusion

We presented in this chapter the ViSiDiA platform, the Java framework designed for im-
plementing and simulating distributed algorithm. We realized through this platform the
possible mappings of the population protocol model to tasks with graph relabeling sys-
tems, and to anonymous asynchronous distributed algorithms based on message passing.
We illustrated these mapping through some examples of protocols, so that the user of
ViSiDiA can reproduce this for any protocol.

We implemented the different schedulers introduced in this work in this platform. We
then simulated each of the studied protocols by considering different scenarios. Thanks
to the experimental results of these simulations, we validated the theoretical results we
obtained for the stabilization times of these protocols.
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The pairwise computational model of population protocols was designed for anonymous
asynchronous networks of tiny objects that can be passively mobile. A pairwise interaction
in fact synchronizes two agents that exchange their states and update them accordingly.
However, Angluin et al. do not specify how this synchronization and this simultaneous
bidirectional exchange take place.

We noticed that the population protocols present some similarities with a local com-
putational model in graphs, which is tasks with graph relabeling systems. This latter
also uses an abstract communication model. Also, among its possible interaction models,
there are pairwise interactions. We established a comparative study to explore the exist-
ing correspondences and the key differences between the (mediated) population protocols
and tasks with graph relabeling system. As a result, we proposed a mapping approach.
We proved that the mapping of the execution of a (mediated) population protocol to a
realization of a task according to a graph relabeling system is always possible. However,
the reverse mapping is possible only under some conditions.

Then, we proposed to describe the computation of a (mediated) population protocol,
and more particularly, the simultaneous bidirectional pairwise interaction, through a less
theoretical model. We considered the model of anonymous asynchronous message passing
with port numbering. Hence, a population protocol is described as a distributed algorithm
based on message passing and running in an anonymous asynchronous system. The pair-
wise interaction is thus split into two phases: a synchronization phase and a simultaneous
send and receive phase.

Based on these two comparative studies, we established a bridge between the: popu-
lation protocol model and tasks with graph relabeling systems model that are based on
abstract communications and anonymous asynchronous message passing model that uses
explicit communications.

The pairwise interactions in population protocols are under the control of a scheduler.
In the context we presented above, the role of the scheduler includes the synchronization
of the communicating pair of agents. We proposed an implementation of the Random
Scheduler, introduced by Angluin et al., based on message passing according to the map-
ping we defined. Also, as all the existing schedulers in population protocols are sequential,
we proposed a 1−central scheduler called the HS Scheduler. This scheduler is able to cap-
ture concurrent interactions. It is based on randomized handshakes. We also proposed a
suitable algorithm describing this scheduler and based on message passing. Through the
analysis of this algorithm, we proved that this scheduler is fair with probability 1.

We then established a comparative study to investigate the time equivalence of the
Random Scheduler and this HS Scheduler. This was presented through the analyses of
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the stabilization time of three protocols: the OR protocol, the Leader Election and the
Maximal Matching. We proved that the two schedulers are time equivalent with respect
to these protocols when the computations are over complete interaction graphs. However,
in random interaction graph, the HS Scheduler allows faster stabilization.

We then introduced population protocols with some detection of local termination.
We proposed a slightly modified version of the HS Scheduler, called the Protocol Aware
HS Scheduler, to introduce termination to this model of population protocols. We also
proved that this version of the protocol is fair with probability 1. We concluded that,
with respect to the Leader Election protocol and to the Maximal Matching protocol, the
Protocol Aware HS Scheduler is not time equivalent to the Random Scheduler and HS
Scheduler. In fact, computations that take place under its scheduling stabilize faster.

Finally, we illustrated through the ViSiDiA platform the mapping approach of a (me-
diated) population protocol to a task with graph relabeling system, or to a distributed
anonymous asynchronous algorithm based on message passing. We also implemented in
this platform the protocols we studied, as well as the schedulers procedures we proposed.
The experimental results we obtained through simulations allowed us to validate our the-
oretical results about the stabilization times of these protocols under different scheduling
scenarios.

Future Directions

As a future direction of this thesis, we can consider the analysis of the Handshake Sched-
uler Algorithm under other interaction graphs representing the network of tiny wireless
objects.

An interesting graph structure for such networks is a random geometric graph. A
random geometric graph Gn,r is an undirected graph with n nodes placed randomly in a
given area. Two nodes share a communication link if and only if the distance separating
them is smaller than r. Indeed, it is a realistic representation of the structure of the
network where the objects communicate via a wireless media. The distance r can represent
the communication range of this wireless media.

Another interesting graph structure is a small world graph. A small world graph is
a random graph with short average path length and high clustering. In fact, there are
recently many works proposing to represent networks of tiny objects, such as wireless
sensor networks, as small world networks.

Then, the stabilization times of the studied protocols running in these graphs under
the HS Scheduler can be analyzed. The obtained theoretical results can be validated
through simulations in ViSiDiA.

Another future direction is to extend the pairwise interaction model of population
protocols. In fact, wireless networks allow, in addition to point to point communications,
one to many communications. That is, an agent in a wireless network can communicate
with all its direct neighborhood. Therefore, extending the population protocols to handle
such interactions is interesting. We can consider them as star communications where the
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center node and all its neighborhood exchange their respective states. This can correspond
to LC1 or LC2 interactions in local computations in graphs.

A probabilistic scheduler can also be designed for these interactions. It can be inspired
from the randomized algorithms implementing the synchronizations of these interactions
(either LC1 or LC2). We can work on proving the fairness of this scheduler.

We can then analyze the stabilization times of the studied protocols extended to com-
municate in stars and running under this scheduler. A possible direction is to investigate
the time equivalence of the different proposed schedulers with respect to some protocols.
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