N

N

Methods and tools for challenging experiments on
Grid’5000: a use case on electromagnetic hybrid
simulation

Cristian Ruiz

» To cite this version:

Cristian Ruiz. Methods and tools for challenging experiments on Grid’5000: a use case on elec-
tromagnetic hybrid simulation. Distributed, Parallel, and Cluster Computing [cs.DC]. Université de
Grenoble, 2014. English. NNT: 2014GRENMO056 . tel-01564999

HAL Id: tel-01564999
https://theses.hal.science/tel-01564999
Submitted on 19 Jul 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-01564999
https://hal.archives-ouvertes.fr

UNIVERSITE DE GRENOBLE

THESE

Pour obtenir le grade de

DOCTEUR DE LUNIVERSITE DE GRENOBLE

Spécialité : Informatique

Présentée par

Cristian RUIZ

Theése dirigée par Olivier Richard
et codirigée par Thierry Monteil

Préparé’e au sein du LIG, Laboratoire d’Informatique de Grenoble
et de 'Ecole Doctorale Mathématiques, Sciences et Technologies de
'Information, Informatique

Methods and Tools for Challenging experi-

ments on Grid’5000: a use case on electro-
magnetic hybrid simulation

Thése soutenue publiguement le 15 décembre 2015,
devant le jury composé de :

M. Emmanuel Jeannot

Directeur de recheche a INRIA, Président

M. Frederic Desprez

Directeur de recherche a INRIA, Rapporteur

Mme. Kate Keahey

Scientist and Senior Fellow a Argonne National laboratory, Rapporteur
M. Yves Denneulin

Professeur a Grenoble INP, Examinateur

M. Olivier Richard

Maitre de conference, LIG, Directeur de thése

M. Thierry Monteil

Maitre de conference, LAAS-CNRS, Co-Directeur de thése

Contents

11

13

15

CONTENTS CONTENTS
23.6 Debugging. 33
3.7 Monitoring 34
238 DataManagement 34
239 Architecturd 35

[2.4 Existing experimentation t00ldot 35
241 Naivemethod 35
RA2 Woevil . . . o o o 37
[2.43 Workbench for Emulal 37
[2.4.4 Plush/Gush 37
Al Expd. o oo e 38
RAB6 _OME . ..ot 38
RAT NEPT . . o oot 38
RAS XPEIOW . - o o v o e e 38
RA9 Execd . ..o 38

25 DISCUSSIO - . « « o o e e 39

[2.6 _Tools not covered in the studyl 40
[2.6.1 Non general-purpose experiment management toold 40
[2.6.2 Scientific workflow systemd 41
[2.6.3 Simulators and abstract frameworkd 41

2.7 _Complementary toold 41
[2.7.1 Software provisioners and appliance builderd 42
[2.7.2 Tools for capturing experimental contextl 42
[2.7.3 Tools for making the analysis reproducibld 42
2.7.4 Workload generatord 43
.75 Distributed emulatord 43

28 Conclusiond 43

[I__Expd 45

|3_Expo: a tool to manage large scale experiments 47

B Introduction 47

B2 Expd . o o oo 48
.21 Expo ResourceSefl 49
B22 ExpoTaskd oo oo 50
[3.2.3 Expo interactive consold 50
B.2.4 Expo experiment validatiod 51
[B.2.5 _Expo experiment mappingot e 51
[3.2.6 Expo evo tionl . ..o 52

B3 TS CAsed . . - v oot e 52

.4 _Evaluation of experiment control systemd oo a i 54
B.41 Gush comparison i 55
[3.4.2 XpFlow and Ezeco comparison v oo o 55

[Description 1anguagd v v v e 56
[Experiment validatiod 56
[Experiment checkpoinl 56

B Related workd 58
13.5.1 Deployment of complex distributed applicationg 58
[3.5.2 Regression tests for distributed applicationd 59

[3.6 Conclusions and future workd 59

CONTENTS CONTENTS

4

[4.3 T.oad Balancing approach o o oo 64

l4.3.1 Expo calibration moduld 65

:4 4,4 Targe structuld v v v v e e e e e e e e e e e e e e 70

Inmm]mmmmi 70

CONTENTS CONTENTS

89

91

92

93

95

95

96

96

96

96

97

97

97

97

q . L1 99

[6.32 Desion, 100
MW 102

| ol . 102

6.4.2 Building old environmentso e e 103

6.5 DISCUSSION - « « « o v e e e e 103
[6.6 Conclusions and Future Worksd 103
[V__Conclusions 105
[7_Conclusions 107
% 108

17.2 Future workd e e e 109
IZ.2.| Expo perspeg_tjygé 109

[7.2.2 Kameleon perspectived o oo 110
[V__Appendix 121
A ot :] — ol i 123
IB_Experiment management tools comparison 125

List of Figures

’% 5 Gush vs Expo scalabiity evaluationl L. 5%

3.6 Scalability evaluation for the three experiment managementl 58

LIST OF FIGURES LIST OF FIGURES

List of Tables

36

39

50

66

78

79

84

85

87

6__Building time of some software appliance he time is presented in seconds! . .. 90
ontaine omparison machine M1) o 91

8 ontaine omparison machine M2 o 91
9 ome persistent cache archived 92
%gm%d 101
6.2 Software appliances generated 102

LIST OF TABLES LIST OF TABLES

10

Acknowledgments

First and foremost, I would like to express my deepest gratitude to my family. They were always
supporting me, creating the perfect conditions for me to be able to succeed in this endeavor.
Without their support this thesis would have not be possible.

My highest appreciation to Christiane Tron-Siaud who shared my happiness, my sadness and
made the impossible to help me out. I would like to thank Erick Meneses and Carlos Jaime Barrios
for their support and friendship that were important to endure the hard moments and specially
for giving me the idea of pursuing my studies in this field.

This thesis would have not been possible without the guidance, availability of my advisor
Olivier Richard who was always there to discuss and give me valuable feedback. I really enjoy
working with him and I really appreciated his sense of humor. I would like to thank Thierry
Monteil my other advisor for his invaluable help during this thesis who, in spite of, the distance
was present when I needed him.

I would like to thank Tomasz Buchert, Lucas Nussbaum, Mihai Alexandru, Joseph Emeras
who contributed directly to this thesis by co-authoring some research papers. A special thanks
goes to Salem Harrache, Michael Mercier, Pierre Neyron and Bruno Bzeznik who contributed to
this thesis by helping me out with technical issues and by creating an excellent atmosphere for
working. I would like also to thank INRIA for funding this thesis.

Finally, nothing would have meaning if I did not have the support of my friends who always
were there to give me a hand.

11

LIST OF TABLES LIST OF TABLES

12

Abstract

In the field of Distributed Systems and High Performance Computing experimental validation is
heavily used against an analytic approach. The latter is not feasible any more due to the complexity
of those systems in terms of software and hardware. Therefore, researchers have to face many
challenges when conducting their experiments, making the process costly and time consuming.
Although world scale platforms exist and virtualization technologies enable to multiplex hardware,
experiments are most of the time limited in size given the difficulty to perform them at large scale.
The level of technical skills required for setting up an appropriate experimental environment is
rising with the always increasing complexity of software stacks and hardware nowadays. This
in turn provokes that researchers in the pressure to publish and present their results use ad
hoc methodologies. Hence, experiments are difficult to track and preserve, preventing future
reproduction.

A variety of tools have been proposed to address this complexity at experimenting. They were
motivated by the need to provide and encourage a sounder experimental process, however, those
tools primary addressed much simpler scenarios such as single machine or client/server. In the
context, of Distributed Systems and High Performance Computing, the objective of this thesis is
to make complex experiments, easier to perform, to control, to repeat and to archive.

In this thesis we propose two tools for conducting experiments that demand a complex software
stack and large scale. The first tool is called EFzpo that enables to efficiently control the dynamic
part of an experiment which means all the experiment workflow, monitoring of tasks, and collection
of results. Fxpo features a description language that makes the set up of an experiment with
distributed systems less painful. Comparison against other approaches, scalability tests and use
cases are shown in this thesis which demonstrate the advantage of our approach. The second
tool is called Kameleon which addresses the static part of an experiment, meaning the software
stack and its configuration. Kameleon is a software appliance builder that enables to describe
and control all the process of construction of a software stack for experimentation. The main
contribution of Kameleon is to make easier the setup of complex software stacks and guarantee
its post reconstruction.

13

LIST OF TABLES LIST OF TABLES

14

Résumeé

Dans le domaine des systémes distribués et du calcul haute performance, la validation expérimen-
tale est de plus en plus utilisé par rapport aux approches analytiques. En effet, celles-ci sont de
moins en moins réalisables & cause de la complexité grandissante de ces systémes & la fois au niveau
logiciel et matériel. Les chercheurs doivent donc faire face & de nombreux challenges lors de la
réalisation de leurs expériences rendant le processus cotliteux en ressource et en temps. Bien que de
larges plateformes paralléles et technologies de virtualisation existent, les expérimentations sont,
pour la plupart du temps, limitées en taille. La difficulté de passer une expérimentation & ’échelle
représente un des grands facteurs limitant. Le niveau technique nécessaire pour mettre en place
un environnement expérimentale approprié ne cesse d’augmenter pour suivre les évolutions des
outils logiciels et matériels de plus en plus complexes. Par conséquent, les chercheurs sont tentés
d’utiliser des méthodes ad-hoc pour présenter des résultats plus rapidement et pouvoir publier.
Il devient alors difficile d’obtenir des informations sur ces expérimentations et encore plus de les
reproduire.

Une palette d’outils ont été proposés pour traiter cette complexité lors des expérimentations.
Ces outils sont motivés par le besoin de fournir et d’encourager des méthodes expérimentales
plus construites. Cependant, ces outils se concentrent principalement sur des scénarios trés sim-
ple n’utilisant par exemple qu’un seul noeud ou client/serveur. Dans le contexte des systémes
distribués et du calcul haute performance, 'objectif de cette thése est de faciliter la création
d’expériences, de leur controle, répétition et archivage.

Dans cette thése nous proposons deux outils pour mener des expérimentations nécessitant une
pile logicielle complexe ainsi qu’un grand nombre de ressources matérielles. Le premier outil est
Expo. Il permet de controler efficacement la partie dynamique d’une expérimentation, c’est a dire
I’enchainement des tests expérimentaux, la surveillance des taches et la collecte des résultats. Expo
dispose d’un langage de description qui permet de mettre en place une expérience dans un contexte
distribué avec nettement moins de difficultés. Contrairement aux autres approches, des tests de
passage a ’échelle et scénarios d’usage sont présentés afin de démontrer les avantages de notre
approche. Le second outil est appelé Kameleon. Il traite les aspects statiques d’une expérience,
c’est & dire la pile logicielle et sa configuration. Kameleon est un logiciel qui permet de décrire
et controler toutes les étapes de construction d’un environnement logiciel destiné aux expérimen-
tations. La principale contribution de Kamelon est de faciliter la construction d’environnements
logiciels complexes ainsi que de garantir de futur reconstructions.

15

LIST OF TABLES

16

Part |

Introduction

17

Chapter 1

Introduction

Beware of bugs in the above code; I have only proved it correct, not tried it. — Don
Knuth

If I have seen further it is by standing on the shoulders of giants - Isaac Newton -

Natural sciences have created instruments [J and develop methodologies [92] for carrying out a
more sound experimental process that follows the scientific method and assure that the results can
be validated. Nowadays, computers are the support for scientific discoveries in natural sciences
which spans areas from particle physics to astronomy and cosmology. Computers are mostly
used for performing data analysis and carrying out simulations B. In view of the increasing
complexity of this data-driven process, computational scientific workflows have been adopted as a
tool for improving and automating the experimentation activity [90]. They cover different phases
of the science process: hypothesis formation, experiment design, execution, and data analysis.
Recently computational scientific workflows and data provenance techniques have received special
attention [36] due the need for Reproducible research that make a call for results reproducibility,
sharing and knowledge re-use in the scientific community. Likewise, research based mainly on data
analysis and simulation of natural phenomena such as image processing, geophysics, bioinformatics,
signal processing, neuroscience, etc have been creating a set of tools [37, [54, 143, [100] that help to
achieve reproducibility of their results.

A tendency can be observed for improving the experimental methodologies when using comput-
ers at the service of science and we should expect the same for pure computer science. Distributed
systems in general and High performance computing in particular rely heavily on experimentation,
given that it is difficult to study those systems using an analytic approach [121, 159, |66]. Unfortu-
nately, there is a lack of methodologies and tools to conduct experiments with distributed systems
as expressed in [70], making experimenters use ad hoc approaches that are hardly reproducible.
This can be explained by the fact that there exist more challenges when our object of study is
the same computer system and experiment results and research conclusions are dependent on the
most minimal detail of the software and hardware stack.

In [32] the process of repeating an experiment was carefully studied and among the many
conclusions drawn, the difficulty of repeating published results was highly relevant. There could be
many reasons that hamper the Reproducibility/Repetability of experiments presented in a paper.
For example, the buildability of artifacts, a recent study [30] found that roughly only 25% of
publications in ACM conferences and journals can be built. Another reason is the measurement,
bias. In [93] it was shown that seemingly changes in the experimental setup such as Linux
environment size can influence the apparent performance of applications. The low quality of
experiments in Distributed systems and High performance computing could be explained by the
constant and fast evolution of computer hardware and software.

! The Large Hadron Collider (LHC), so far the biggest scientific instrument build by humans.
2Which is normally called in-silico science

19

CHAPTER 1. INTRODUCTION

Testbeds have been created to study different kinds of distributed systems by offering controlled
conditions. Thanks to the evolution of virtualization, resource sharing has been possible enabling to
build planet scale testbeds M] that expose real network conditions. Different forms of emulation
have made possible to achieve large scale while offering more controlled conditions @] Other
testbeds enable the whole software stack to be reconfigured M] In short, the decrease in the
price of off-the-shelf hardware and the evolution of wvirtualization and emulation technologies have
provoked that testbeds grow in size and possibilities for the user, making them more complex to
manage and difficult to take full advantage of them.

The conduction of experiments with distributed systems presents many challenges. First, the
increasing number of software layers and their configuration. Second, the complex architecture
and hardware options now present. Third, the scale of distributed systems which could go from a
simple network of caching servers to a big computational cluster with thousands of nodes. Those
challenges make the task of designing, description, setup, management, results collection, etc, very
complex. In order to ease the experimentation processes, make it less expensive and assure the
quality of the experiment (which comprehends two important properties like Reproducibiliy and
Repeatability), each testbed have endorsed the development of tools that help the users with
the process of experimentation. Those tools address the experimentation cycle differently offering

important features such as failure handling and large deployment |5], manage of the whole exper-
imental cycle with distributed systems and workload generation |, versioning system to allow
researchers move forward and backward through their experimentation process iﬁ],, abstractions

to manage the increasing number of nodes |, instrumentation facilities for applications M],
etc. Cloud based testbeds have motivated the apparition of generic APIs for scripting experi-
ments m, @] that enable the use of all kinds of language constructs, such as loops, exception
blocks, etc. More recently, a workflow approach inspired in the domain of business process man-
agement is envisioned as a new alternative to manage large scale experiments @]

There has been an evolution on the description language going from inflexible markup lan-
guages like XML to the now widely used scripting languages such as Ruby and Python [3. The
scalability has been addressed by improving mechanisms to control experiments and federate mul-
tiple testbeds. The right level of abstraction is still missing, making descriptions too verbose
or with a high learning curve. Repeatability of experiments (which has been a driving force for
those tools) seems far from achieved. Software stacks used for distributed systems have become
very complex. They are composed of different interrelated layers that are in a constant change.
Therefore, the setup of an experiment is not guarantee to be repeatable. This thesis proposes two
tools targeted at making easy mainly the setup and execution of experiments with distributed
systems. Nowadays, the number of testbeds that enable to control the whole software stack has
risen. Either by adopting cloud computing technologies M] or provisioning systems on real hard-
ware M] We take advantage of the previous fact and propose an appliance builder to build, track
and preserve the software stack used in an experiment, avoiding when possible the dependency on
external sources. For management and automation of the experimental workflow with distributed
systems, an experiment management tool is proposed that relies on a lightweight architecture and
provides to the user a domain specific language that brings an appropriate level of abstraction,
lowering the learning curve, providing conciseness and an efficient mapping to the platform.

1.1 Experimental cycle

In order to better explain the challenges encountered when conducting experiments with dis-
tributed systems and to make clear the contributions of this thesis, it is explained first the exper-
imental cycle that is normally followed.

3https://www.ruby-lang.org
“https://www.python.org/

20

https://www.ruby-lang.org
https://www.python.org/

CHAPTER 1. INTRODUCTION

Design Instantiation Execution Analysis Publication

Description

— |

Figure 1.1: Experiment cycle with distributed systems

1.1.1 Design

Here, the experimenter decides how his/her experiment environment is going to be conformed
and what actions need to be executed during the experiment. It is decided as well the measures
and how those will be collected in order to have the appropriate data for answering the question
that has driven the experiment. The following are some questions answered in this phase: What
platform to use? how many nodes? how many different roles and how they will be mapped into
the chosen nodes? what version of software to use? should it be applied some kind of workload?
what measures to do and with which frequency? how many times the individual tests have to be
repeated?, etc. The output of this process of decision is the experiment description.

Challenges

The goal of the description of the experiment is to have enough details of the experimentation
process in order to be able to re-create or at least trace back the experiment (its provenance).
Therefore, this description normally details:

e All the different software with their respective versions.

The required computer resources and their characteristics.

The different actions that have to be carried out (e.g., execution of an application with
certain parameters)

The number of times that is to be repeated.

The analysis steps that are to be performed.

The challenges here is to find an appropriate way to describe an experiment that is comprehen-
sible with a low learning curve. We have to remark that when dealing with distributed systems, the
experimental scenario is complex, comprising many variables (i.e., nodes, roles, software, workload,
etc).

1.1.2 Instantiation

In this stage all the experiment requirements in software and hardware are mapped into the infras-
tructure. First, the machines that match the experiment requirements are allocated. Then, all the
necessary software is loaded into the chosen machines (provisioning) and finally the configuration
of all the software stack takes place (contextualization). Software can be instrumented if needed.

Challenges

The challenges here is to find an efficient mechanism for resource discovery, to track all the infor-
mation related with the software and hardware used (environment capturing) and to assure that
the hardware is correctly configured.

21

CHAPTER 1. INTRODUCTION

1.1.3 Execution

In this phase, all the actions that the experimenter has planned within the experiment are carried
out. The experimenter monitors the state of the experiment in order to detect errors and follow
its progress.

Challenges

When dealing with distributed infrastructures there is a necessity of scaling the experiment and
controlling large number of nodes. There should be a good orchestration of the experiment that
enables to perform tasks at a given time, execute operations efficiently, monitor and collect results.
This is done most of the time with the goal of reducing costs. Another important challenge is the
capture of the platform state which could have important influence on the results of an experiment.

1.1.4 Analysis

It deals with the transformation of the raw data obtained by running the experiments in useful
information and conclusions. This will be included in publications as tables and plots.

Challenges

One of the challenges is to make the process of transformation of the raw data explicit in order to
be able to reproduce it without the need of re-executing the experiment.

1.2 Contributions

Load balancing of an
electromagnetic hybrid
simulation

Use case

Expo: experiment management tool

Design Instantiation Execution Analysis publication
Descri ption + Platform requests

—)@ » [+ Provisioning

+ Contextualization

+ Managing

+ Monitoring

+ Results collection

Kameleon
Software appliance builder

Figure 1.2: Experiment cycle proposed in this thesis

This thesis presents two tools aimed at improving the experimentation activity with distributed
systems. The tools proposed, seek for rendering the process less costly, making the experimenter
more efficient and improving the quality of the experiments with distributed systems. The exper-
imental cycle is managed paying special attention to the provisioning of the experiments. Provi-
sioning is an important part of the process of experimentation and it constantly generates issues,

22

CHAPTER 1. INTRODUCTION

making the whole process error-prone and time consuming. Experimenters could lack the appro-
priate computer engineering skills necessary to deal with the complexity of the software stack.
For the previous reasons we opted for addressing Provisioning with a different tool. Additionally,
in this thesis we have identified the concept of reconstruct-ability which we believe is essential
for guaranteeing the revisability, modifiability and post-reconstruction of software artifacts em-
ployed in an experiment. This represents a step further towards experiments reproducibility with
distributed systems.
The contributions of this thesis are threefold:

e A survey of experimental management tools.

e An experimental management tool for distributed systems that covers the whole experiment
cycle (i.e., Design, Instantiation, Execution and Analysis).

e An appliance builder that deals with complex software stacks required for the experiments
(i-e., Provisioning of experiments).

1.2.1 Survey of experimental management tools

This thesis presents a survey of the existing experimental management tools for distributed sys-
tems. Given the emergence of new tools for managing experiments with distributed systems and
a significant number of publications dedicated to them, we decided to carry out an extensive
literature review which led us with the following results:

e Definitions and common vocabulary.

e List of features that enables to evaluate the current experiment management tools proposed
by different testbeds.

e Impact analysis of publications.

This survey could be used as a framework for evaluating existing experiment management,
tools. It was done in tightly collaboration with Tomasz Buchert Ph.D student in the AlGorille
team, at LORIA (Nancy). This survey produced the following publication:

e Tomasz Buchert, Cristian Ruiz, Lucas Nussbaum, and Olivier Richard. A survey of general-
purpose experiment management tools for distributed systems. Future Generation Computer
Systems, 45(0):1 — 12, 2015

1.2.2 Experiment management tool

In this thesis presents work on Ezpo. It is an experiment management engine that automates
the whole experiment cycle with distributed systems. It provides a flexible description language
based on two main abstractions: ResourceSet and Tasks that help the experimenter to manage
large amount of nodes efficiently and specify complicated workflows for the execution part. This
tool has already been proposed and presented in [125, [124]. During this thesis Ezpo has been
extended, its architecture has suffered a total redesign, their abstractions have been refined and
new functionalities have been added. Comparisons with existing tools were done and new use
cases were found. The work with Ezpo has produced the following publications:

e Cristian Ruiz, Olivier Richard, Brice Videau, and Iegorov Oleg. Managing Large Scale
Experiments in Distributed Testbeds. In Proceedings of the 11th TASTED International
Conference, pages 628—636. IASTED, ACTA Press, feb 2013

e Cristian Ruiz, Mihai Alenxandru, Olivier Richard, Thierry Monteil, and Herve Aubert. Plat-
form calibration for load balancing of large simulations: TLM case. In CCGrid 2014 — The
14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, Chicago,
Tllinois, USA, 2014

23

CHAPTER 1. INTRODUCTION

1.2.3 Experimental software environment

It should be reasonable to expect experimental setup to be reproducible. Specifically,
if the infrastructure setup and the software installation and configuration can be per-
formed in a reproducible manner then scientists are much more enabled at replicating
or extending the experiment in question [84]

This thesis presents the work on Kameleon that has mainly two goals: (1) make the setup of
complex software stacks easier for the average user, (2) make software artifacts reconstruct-able
which means they could be examined, modified and reconstructed at any time (post-experiment).
It addresses a widespread problem in publications [30] and in the daily research life [57] which
is the buildability of the software environment. The constant and rapid change in the different
software components used nowadays, make difficult to track them and put them together to work.
As a result, few experiment setups can be reused and experimenters spend a lot of time trying to
build their environment for experimentation. Kameleon is an appliance builder already proposed
in [49], during this thesis the tool was re-conceptualize and new syntax and functionalities were
added. All was driven by the requirements for building complex software stacks for Distributed
systems and High Performance computing research. A persistent cache mechanism was proposed
and implemented that enables to preserve the software stack over time (which means it can be
rebuilt at any time). This work produced the following publication:

e Cristian Ruiz, Olivier Richard, and Joseph Emeras. Reproducible software appliances for
experimentation. In Proceedings of the 9th International ICST Conference on Testbeds and
Research Infrastructures for the Development of Networks and Communities (Tridentcom),
Guangzhou, China, 2014

e Cristian Ruiz, Salem Harrache, Michael Mercier, and Olivier Richard. Reconstructable soft-
ware appliances with kameleon. SIGOPS Oper. Syst. Rev., 49(1):80-89, January 2015

1.3 Thesis organization
The thesis is divided into three parts:

e Part I: Introduces all the necessary terminology in order to position our contributions in
the field of experimentation with distributed systems. Chapter 2] presents a survey of exper-
imentation tools for distributed systems. It shows all the state of the art related with the
tools conceived for helping users with the processes of experimentation.

e Part II: Presents Expo an experimentation tool for distributed systems. Chapter [B] shows
the new concepts and design changes added during this thesis as well as an evaluation against
others experiment management tools. Chapter [presents a use case of Expo that helps to
deploy applications efficiently by performing a load balancing.

e Part III: Presents Kameleon an appliance builder for complex software stacks. In Chapter [l
the concept of reconstruct-ability is presented along with Kameleon architecture, syntax,
concepts and a comparison with the most widely known appliance builders used in cloud
computing. Chapter [0l is dedicated to the problematic of preserving a software stack over
time.

24

Chapter 2

Overview of experiment management in
computer science

In the field of large-scale distributed systems, experimentation is particularly difficult. The stud-
ied systems are complex, often nondeterministic and unreliable, software is plagued with bugs,
whereas the experiment workflows are unclear and hard to reproduce. These obstacles led many
independent researchers to design tools to control their experiments, boost productivity and im-
prove quality of scientific results.

Despite much research in the domain of distributed systems experiment management, the
current fragmentation of efforts asks for a general analysis. We therefore propose to build a
framework to uncover missing functionality of these tools, enable meaningful comparisons between
them and find recommendations for future improvements and research.

The contribution in this chapter is twofold. First, we provide an extensive list of features offered
by general-purpose experiment management tools dedicated to distributed systems research on real
platforms. We then use it to assess existing solutions and compare them, outlining possible future
paths for improvements.

Considering the complexity of experimenting with distributed systems, there exist a plethora
of specialized tools that address specific parts of the experimentation process. We conclude our
study of general-purpose experiment management tools with a presentation of the state of the art
of those complementary tools that are a valuable help for researchers when experimenting with
distributed systems. The contents of this chapter were published in a paper [21] that I co-authored
with Tomasz Buchert Ph.D student in the AlGorille team, at LORIA (Nancy).

2.1 Introduction

Distributed systems are among the most complex objects ever built by humans, as they are
composed of thousands of systems that collaborate together. They also have a central role in
today’s society, supporting many scientific advances (scientific & high-performance computing,
simulation, Big Data, etc.), and serving as the basis for the infrastructure of popular services such
as Google or Facebook. Their role and popularity makes them the target of numerous research
studies in areas such as scheduling, cost evaluation, fault tolerance, trust, scalability, energy
consumption, etc.

Given the size and complexity of distributed systems, it is often unfeasible to carry out analytic
studies, and researchers generally use an empirical approach relying on experimentation: despite
being built by humans, distributed systems are studied as if they were natural objects, with
methods similar to those used in biology or physics.

One can distinguish four main methodologies for experimentation on distributed systems [59]:

e in-situ: a real application is tested on a real platform.

25

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

e simulation: a model of an application is tested on a model of the platform.
e emulation: a real application is tested using a model of the platform.

e benchmarking: a model of an application is used to evaluate a real platform.

Each methodology has its advantages and disadvantages. For example, results obtained during
simulation are (usually) completely reproducible. On the other hand, as the platform is a model
of the reality, the results may not apply in a general sense, as the model could lack some unnoticed
but important features. It is important to remark as well that all those methodologies complement
each other and choosing between them depends on the level of realism we want to achieved
in our experiments. In this chapter we focus on experiments based on in-situ and emulation
methodologies.

Because of the actual size of the available testbeds and of the complexity of the different soft-
ware layers, a lot of time is required to set up and perform experiments. Scientists are confronted
with low-level tasks that they are not familiar with, making the validation of current and next
generation of distributed systems a complex task. In order to lower the burden in setting up an
experiment, different testbeds and experiment management tools have appeared. The last decade
has seen more interest in the latter, mainly influenced by the needs of particular testbeds and
other problems found in the process of experimentation such as reproducibility, replicability, au-
tomation, ease of execution, scalability, etc. Additionally, the existing number of papers oriented
toward such tools asks for a classification in order to uncover their capabilities and limitations.
Hence, experiment management tools are the main object of study in this chapter. We propose a
set of features that improve the experimentation process in various ways at each step (design, de-
ployment, running the main experiment and related activities, and data and result management).
This list can be used to carry out a fair comparison of tools used for conducting experiments, as
well as a guideline when choosing a tool that suits certain needs.

The rest of chapter is structured as follows. In Section existing methods and approaches
to experimentation with distributed systems are presented. Then, in Section 23] a set of features
offered by existing experimentation tools is constructed and each element is carefully and precisely
explained. In Section 2.4 we present a list of tools helping with research in distributed systems.
Each tool is shortly presented and its features explained. Our additional observations and ideas
are presented in Section Finally, in Section 2.8 we conclude our work and discuss future work.

2.2 Context and terminology

This section introduces some definitions that will be used throughout this chapter, as well as the
context where our object of study plays its role.

2.2.1 Definitions

For our purposes, an experiment is a set of actions carried out to test (confirm, falsify) a particular
hypothesis. There are three elements involved in the process: a laboratory (the place where one
experiments), an investigator (the one who experiments) and an apparatus (the object used to
measure). If an experiment can be run with a different laboratory, investigator and apparatus,
and still produce the same conclusions, one says that it is reproducible. This is in contrast with
replicability which requires the same results while keeping these three elements unchanged. The
terms reproducibility and replicability (replayability) produce a lot of confusion and discrepancies
as they are often used to describe different ideas and goals. The above definitions are compatible
with the definitions given in M], although we do not share such a negative view about replicability
as the authors. Being a “poor cousin” of reproducibility, replicability is nevertheless essential to
the verification of results and code reusability as expressed in M]

Finally, let us introduce a last piece of terminology and define the object of study in this
chapter. An ezperimentation tool or an experiment management tool (for research in distributed

26

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

systems) is a piece of software that helps with the following main steps during the process of
experimenting:

e design — by ensuring reproducibility or replicability, providing unambiguous description of
an experiment, and making the experiment more comprehensible,

e deployment — by giving efficient ways to distribute files (e.g., scripts, binaries, source code,
input data, operating system images, etc.), automating the process of installation and con-
figuration, ensuring that everything needed to run the experiment is where it has to be,

e running the experiment itself — by giving an efficient way to control and interact with the
nodes, monitoring the infrastructure and the experiment and signaling problems (e.g., failure
of nodes),

e collection of results — by providing means to get and store results of the experiment.

Furthermore, it addresses experimentation in its full sense and it is normally conceived with
one of the following purposes described fully in the next section:

e ease of experimenting,
e replicability,
e reproduciblity,

e controlling and exploring parameter space.

In this study we narrow the object of study even more by considering only general-purpose
experiment management tools (i.e., tools that can express arbitrary experimental processes) and
only ones that experiment with real applications (i.e., in-situ and emulation methodologies). The
former restriction excludes many tools with predefined experimental workflows whereas the latter
excludes, among others, simulators (see SectionZ.6]).

2.2.2 Motivations for experimentation tools

As described before, there exist many tools that strive to ease experimentation with distributed
systems. These tools are the main object of study in this article and as such they are described
thoroughly in Section 2.4l Here, however, we discuss the main driving forces that are behind the
emergence of experimentation tools.

Ease of experimenting

The first motivation, and the main one, for creating experimentation tools is helping with the
scientific process of experimenting and making the experimenter more productive. By providing
well designed tools that abstract and outsource tedious yet already solved tasks, the development
cycle can be shortened, while becoming more rigorous and targeted. Moreover, it may become
more productive as the scientist may obtain additional insights and feedback that would not be
available otherwise. The ease of experimenting can indirectly help to solve the problem of research
of questionable quality in the following sense. As the scientific community exerts pressure on
scientists to publish more and more, they are often forced to publish results of dubious quality. If
they can forget about time-consuming, low-level details of an experiment and focus on the scientific
question to answer, hopefully they could spend more time testing and strengthening their results.

27

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

Replicability (automation)

Replicability which is also known as replayability deals with the act of repeating a given exper-
iment under the very same conditions. In our context it means: same software, same external
factors (e.g., workload, faults, etc.), same configuration, etc. If done correctly, it will lead to the
same results as obtained before, allowing others to build on previous results and to carry out fair
comparisons. There are several factors that hamper this goal: size of the experiment, hetero-
geneity and faulty behavior of testbeds, complexity of the software stack, numerous details of the
configuration, generation of repeatable conditions, etc. Among other goals, experimentation tools
try to control the experiment and produce the same results under the same conditions, despite
the aforementioned factors.

Reproducibility

It refers to the process of independent replication of a given experiment by another experimenter.
Achieving reproducibility is much harder than replicability because we have to deal with the
measurement, bias that can appear even with the slightest change in the environment. Therefore,
in order to enhance the reproducibility of an experiment, the following features are required:

e automatic capture of the context (i.e., environment variables, command line parameters,
versions of software used, software dependencies, etc.) in which the experiment is executed;

e detailed description of all the steps that led to a particular result.

The description of an experiment has to be independent of the infrastructure used. To do so
abstractions for the platform have to be offered.

Controlling and exploring the parameter space

Each experiment is run under a particular set of conditions (parameters) that precisely define
its environment. The better these conditions are described, the fuller is understanding of the
experiment and obtained results. Moreover, a scientist may want to explore the parameter space
in an efficient and adaptive manner instead of doing it exhaustively.

Typical parameters contained in a parameter space for a distributed system experiment are:

e number of nodes,

e network topology,

e hardware configuration (CPU frequency, network bandwidth, disk, etc.),
e workload during the experiment.

One can enlarge the set of parameters tested (e.g., considering CPU speed in a CPU-unaware
experiment) as well as vary parameters in their allowed range (e.g., testing a network protocol
under different topologies).

Whereas the capability to control the various experimental parameters can be, and quite often
is, provided by an external tool or a testbed (e.g., Emulab), the high-level features helping with a
design of experiments (DoE), as the efficient parameter space exploration, belong to experimen-
tation tools.

Scalability

Another motivation for an experiment control is scalability of experiments, that is, being able to
increase their size without harming some practical properties and scalability metrics. For example,
one can consider if an experimentation tool is able to control many nodes (say, thousands) with-
out significantly increasing the time to run the experiment, or without hampering the statistical
significance of results.

The most important properties concerning scalability are:

28

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

time — additional time needed to control the experiment (over the time to run it itself),
resources — amount of resources required to control the experiment,

cost of the experiment — funds required to run the experiment and control it (cf. commercial
cloud computing),

quality of results — the scientific accuracy of the results, their reproducibility in particular
(contrary to the above properties, this one is hard to define and measure).

These metrics are functions of experiment parameters (see Section2.7.8) and implementation
details. Among important factors that limit scalability understood as the metrics above are:

number of nodes used in the experiment,
size of monitoring infrastructure,

efficiency of data management.

2.2.3 Testbeds

Testbeds play an important role in the design and validation of distributed systems. They offer con-
trolled environments that are normally shielded from the randomness of production environments.
Here, we present a non-exhaustive list of testbeds that motivated the development of experiment
management tools. There exists a work on defining useful features of network testbeds, similar to
the goals of our study m Unsurprisingly, some features overlap in both analyses.

Grid’5000 M] is an experimental testbed dedicated to the study of large-scale parallel and
distributed systems. It is a highly configurable experimental platform with some unique
features. For example, a customized operating system (e.g., with a modified kernel) can be
installed and full “root” rights are available. The platform offers a REST API to control
reservations, but does not provide dedicated tools to control experiments. However, the
nodes can be monitored during the experiment using a simple API.

Emulab @] is a network testbed that allows one to specify an arbitrary network topology
(thanks to the emulation of the network). This feature ensures a predictable and repeatable
environment for experiments. User has access to a “root” account on the nodes, but cannot
tweak the internals of the operating system. Emulab comes with a dedicated tool to control

experiments (see [2Z.4.3)).

PlanetLab M] is a globally distributed platform for developing, deploying and accessing
planetary-scale network services. It consists of geographically distributed nodes running a
light, virtualized environment. The nodes are connected over the Internet. PlanetLab offers
Plush (see[2.4.4) for the experiment control.

ORBIT m, @] is a radio grid testbed for scalable and reproducible evaluation of next-
generation wireless network protocols. It offers a novel approach involving a large grid of
radio nodes which can be dynamically interconnected into arbitrary topologies with repro-
ducible wireless channel models. A dedicated tool to run experiments with ORBIT platform

is OMF (see 2.4.6]).

DAYl (Distributed ASCI Supercomputer) is a Dutch wide-area distributed system designed
by the Advanced School for Computing and Imaging (ASCI). Distinguishably, it employs
various HPC accelerators (e.g., GPUs) and novel network interconnect. Its most recent
iteration is DAS-4. DAS does not offer a dedicated tool to control experiments, however it
provides a number of tools to help with deployment, discovering problems and scheduling,.

Uhttp://wuw.cs.vu.nl/das4/

29

http://www.cs.vu.nl/das4/

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

With the emergence of efficient and cheap virtualization, the scientists turn to cloud com-
puting infrastructures as a viable experimentation platform. A popular commercial service is
Amazon EC2, but many alternatives and variations exist (e.g., Windows Azurdd). There are
non-commercial, open-source solutions available as well (e.g., OpenStaclﬂ). Even though the de-
velopment of cloud computing solutions was not inspired by a need of a research platform, the
scalability and elasticity offered by those make it an attractive solution for science. In [84] a
framework oriented toward reproducible research on such infrastructures is proposed.

2.3 List of features offered by experiment management tools

In this section, we present properties available in experiment management tools for distributed
systems after doing a literature review using the following sources:

e tools used and published by the most important and large-scale testbeds (see Section 2:2.3)),
e papers referenced by these tools and papers that cite them,

e IEEE and ACM digital libraries search with the following keywords in the abstract or title:
experiments, experiment, distributed systems, experimentation, reproducible.

We ended up with 8 relevant tools for managing experiments that met our criteria of an
experimentation tool, however we also include Naive approach (see Section 2-4.T]) in our analysis.
An extensive analysis of the papers dedicated to those tools was performed; subsequently, a set of
properties and features - highlighted by each of the tools as to be important for the experimentation
process - was selected and classified.

The list consists of nine groups of properties and features that have an important role in the
experimentation process. The complete hierarchy is presented in Figure 211

2.3.1 Description Language

The design of the experiment is the very first step in the experimentation process. The description
language helps users with this step, allowing them to describe how the experiment has to be
performed, as well as their needs for running the experiment. Characteristics that help with
describing the experiment are presented in the following sections.

Representation (Imperative / Declarative / Workflow / Scripts) of experiments featured by
a given tool is the approach used to describe the experiment and relevant details. Possible
representations differ in their underlying paradigm (e.g., imperative, declarative) and in a
level of abstraction that the description operates on. Some tools use low-level scripts to
build experiments whereas others turn to higher abstractions, some of them graphical (e.g.,
workflows). The choice of a certain representation has implications on other aspects of the
description language.

Modularity (Yes / No) is a property of experiment description language that enables easy
adding, removing, replacing and reusing parts of experiments. An experiment expressed
in a modular way can be logically split into modules with well-defined interfaces that can be
worked on independently, possibly by different researchers specializing in a particular aspect
of the experiment.

Expressiveness (Yes / No) that makes it effective in conveying thoughts and ideas, in short and
succinct form. Expressiveness provides a more maintainable, clearer description. Various
elements can improve expressiveness: well-chosen abstractions and constructions, high-level
structure, among others.

*http://aws.amazon.com/ec2/
3http://www.windowsazure.com/
4http://wuw.openstack.org/

30

http://aws.amazon.com/ec2/
http://www.windowsazure.com/
http://www.openstack.org/

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

—— Representation ﬁ
Description
Language Modularity
Expressiveness
Low entry barrier
Type of Platform type
Experiments
L——— Intended use ﬁ
—— Testbed independence
. — Support for testbed services
—— Interoperability —
—— Resource discovery
L— Software interoperability
—— Provenance tracking
—— Reproducibility —— Fault injection
—— Workload generation
Fault Checkpointing
Tolerance Failure handling
—— Verification of configuration
Interactive execution
E— Debugglng Logging
Validation
—— Experiment monitoring
——— Monitoring Platform monitoring
Instrumentation
Provisioning
Data
Management File management
Analysis of results
—— Low resource requirements
L Architecture Simple installation

Efficient operations

Interface

Imperative
/ Declarative
/ Workflow / Scripts

Yes / No
Yes / No

Yes / No

Real / Model

Distributed applications
/ Wireless
/ Services / Any

Yes / No
Yes / No
Yes / No
Yes / No
Yes / No
Yes / No
Yes / No
Yes / No
Yes / No
Yes / No
Yes / No
Yes / No
Yes / No
Yes / No
Yes / No
Yes / No
Yes / No
Yes / No

Yes / No

Control structure ——Centralized / Distributed

Yes / No
Yes / No
Yes / No

CLI / GUI / API

Figure 2.1: The tree of features. All evaluated properties and features are presented with their respective
domains of values. The properties are grouped into 9 groups that cover different aspects of experiment

management.

31

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

Low entry barrier (Yes / No) is the volume of work needed to switch from naive approach
to the given approach while assuming prior knowledge about the infrastructure and the
experiment itself. In other words, it is the time required to learn how to efficiently design
experiments in the language of the given experimentation tool.

2.3.2 Type of Experiments

This encompasses two important aspects of an experiment: the platform where the experiments
are going to run on and the research fields where those experiments are performed.

Platform type (Real / Model) is the range of platforms supported by the experimentation tool.
The platform type can be real (i.e., consist of physical nodes) or be a model (i.e., built
from simplified components that model details of the platform like network topology, links
bandwidth, CPU speed, etc.). For example, platforms using advanced virtualization or
emulation techniques (like Emulab testbed) are considered to be modeled. Some testbeds
(e.g., PlanetLab) are considered real because they do not hide the complexity of the platform,
despite the fact that they use virtualization.

Intended use (Distributed applications / Wireless / Services / Any) refers to the research
context the experimentation tool targets. Examples of research domains that some tools
specialize in include: wireless networks, network services, high performance computing, peer-
to-peer networks, among many others.

2.3.3 Interoperability

It is important for an experimentation tool to interact with different platforms, as well as to
exploit their full potential. The interaction with external software is an indisputable help during
the process of experimenting.

Testbed independence (Yes / No) of the experimentation tool is its ability to be used with
different platforms. The existing tools are often developed along with a single testbed and
tend to focus on its functionality and, therefore, cannot be easily used somewhere else. Other
tools explicitly target a general use and can be used with a wide range of experimental
infrastructures.

Support for testbed services (Yes / No) is a capability of the tool to interface different ser-
vices provided by the testbed where it is used (e.g., resource requesting, monitoring, de-
ployment, emulation, virtualization, etc.). Such a support may be vital to perform scalable
operations efficiently, exploit advanced features of the platform or to collect data unavailable
otherwise.

Resource discovery (Yes / No) is a feature that allows to reserve a set of testbed resources
meeting defined criteria (e.g., nodes with 8 cores interconnected with 1 Gbit network).
Among methods to achieve this feature are: interoperating with testbed resource discov-
ery services or emulation of resources by the tool.

Software interoperability (Yes / No) is the ability of using various types of external software
in the process of experimenting. The experimentation tool that interoperates with software
should offer interfaces or means to access or integrate monitoring tools, commands executers,
software installers, package managers, etc.

2.3.4 Reproducibility

This group concerns all methods used to help with reproducibility and repeatability as was de-
scribed in Section 2.2.2]

32

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

Provenance tracking (Yes / No) is defined as a way of tracing and storing information of how
scientific results have been obtained. An experimentation tool supports data provenance if
it can describe the history of a given result for a particular experiment. An experimentation
tool can provide data provenance through the tracking of details at different layers of the
experiment. At a low-level layer, the tool must be able to track details such as: command-
line parameters, process arguments, environment variables, version of binaries, libraries and
kernel modules in use, hardware devices used, filesystem operations executed, etc. At a high-
level layer, it must track details such as: number of nodes used, details of used machines,
timestamps of operations, state of the platform, etc.

Fault injection (Yes / No) is a feature that enables the experimenter to introduce factors that
can modify and disrupt the functioning of the systems being studied. These factors include:
node failures, link failures, memory corruption, background CPU load, etc. This feature
allows to run experiments under more realistic and challenging conditions and test behavior
of the studied system under exceptional situations.

Workload generation (Yes / No) is a range of features that allow to inject a predefined work-
load into the experimental environment (e.g., number of requests to a service). The generated
workload is provided by real traces or by synthetic specification. Similarly to fault injection,
this feature allows to run experiments in more realistic scenarios.

2.3.5 Fault Tolerance

This group of features encompasses all of them that help with common problems that can happen
during experiments and may lead to either invalid results (especially dangerous if gone unnoticed)
or to increased time required to manually cope with them.

Checkpointing (Yes / No) allows to save a state of the experiment and to restore it later as if
nothing happened. It is a feature that can, above all, save the time of the user. There are
at least two meanings of checkpointing in our context:

e only some parts of the experiment are saved or cached,
e the full state of the experiment is saved (including the platform).
Of course, the second type of checkpointing is much more difficult to provide. Checkpointing

helps with fault tolerance as well, since a failed experiment run will not necessarily invalidate
the whole experiment.

Failure handling (Yes / No) of the experimentation tool can mitigate runtime problems with
the infrastructure an experiment is running on. This means in particular that failures are
detected and appropriate steps are taken - restarting the experiment, for example. Typical
failures are crashing nodes, network problems, etc.

Verification of configuration (Yes / No) consists in having an automatic way to verify the
state of an experimentation platform. Usually such a step is performed before the main ex-
periment to ensure that properties of the platform agree with a specification. We distinguish
verification of:

e software — ensuring that the software is coherent on all computing nodes,

e hardware — ensuring that the hardware configuration is as it is supposed to be.

2.3.6 Debugging

The features grouped in this section help to find problems and their causes during the experimen-
tation process.

33

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

Interactive execution (Yes / No) refers to an ability to run the experiment “on-the-fly” in-
cluding: manually scheduling parts of the experiment, introspecting its state and observing
intermediate results. This feature is inspired by debuggers offered by integrated development
environments (IDEs) for programming languages.

Logging (Yes / No) consists of features that allow bookkeeping of low-level messages emitted
during experiments including those that were placed at arbitrary places by the experimenter.
The messages are normally stored sequentially along with their timestamps making the log
is essentially a one-dimensional dataset. The log can be used to debug an experiment and
document its execution.

Validation (Yes / No) is a feature that offers the user a way to perform a fast (that is, faster
than full execution of the experiment) and automatic way to verify the description of an
experiment. Depending on the modeling language used and other details, the validation
may be accordingly thorough and complete. For our purposes, we require that at least some
semantic analysis must be performed, in contrast to simple syntactic analysis.

2.3.7 Monitoring

Monitoring is necessary to understand the behavior of the platform and the experiment itself.
It consists in gathering data from various sources: the experiment execution information, the
platform parameters and metrics, and other strategic places like instrumented software.

Experiment monitoring (Yes / No) consists in observing the progress of the experiment un-
derstood as set of timing and causal information between actions in the experiment. The
monitoring includes keeping track of currently running parts of the experiment as well as
their interrelations. Depending on the model used, this feature may take different forms.

Platform monitoring (Yes / No) is the capability of an experimentation tool to know the state
of resources that comprise the experiment (nodes, network links, etc.). Data collected that
way may be used as a result of the experiment, to detect problems with the execution or as
a way to get additional insights about the experiment.

Instrumentation (Yes / No) enables the user to take measurements at different moments and
places while executing the experiment. This includes instrumentation of software in order to
collect measures about its behavior (CPU usage, performance, resource consumption, etc.).

2.3.8 Data Management

The management of data is an important part of the experiment. This section contains features
that help with distribution and collection of data.

Provisioning (Yes / No) is the set of actions to prepare a specific physical resource with the
correct software and data, and make it ready for the experimentation. Provisioning involves
tasks such as: loading of appropiate software (e.g., operating system, middleware, applica-
tions), configuration of the system and starting necessary services. It is necessary for any
experimentation tool to provide at least a rudimentary form of this functionality.

File management (Yes / No) is a feature that abstracts a tedious job of working with files.
Therefore the user does not have to manage them manually at a low level which often is
error-prone. This includes actions like automatic collection of results stored at participating
nodes.

Analysis of results (Yes / No) is a service of an experimentation tool that is used to collect,
store and visualize experimental results, as well as making dynamic decisions based on their
runtime values. The latter ability paves a way into intelligent design of experiments by
exploring only relevant regions of parameter space and therefore saving resources like energy
or time.

34

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

2.3.9 Architecture

This section contains features and properties related to how the tool is designed and what architec-
ture decisions the authors made. This includes ways to interact with the tool, as well as technical
details such as software dependencies, methods to achieve scalability and efficient execution of
experiments.

Control structure (Centralized / Distributed) refers to the structure of nodes used to control
the experiment. The architecture of a tool is centralized if the control of an experiment is
centralized and there exists one node that performs all principal work. Otherwise, if there
are multiple nodes involved in the experiment control, then the architecture is distributed.

Low resource requirements (Yes / No) of an experimentation tool refer to its resource con-
sumption (memory, CPU, network bandwidth, etc.) associated with the activity of control-
ling the experiment. As the number of elements the experiment consists of increases (e.g.,
nodes), so does the amount of the resources necessary to control them.

Simple installation (Yes / No) is understood as a low difficulty of setting up a completely
functional infrastructure that the tool needs in order to be used. This usually implies
software dependencies (interpreters, libraries, special services, etc.) or a required hardware
infrastructure (number of network interfaces, minimum memory size, number of dedicated
nodes to control the experiment, etc.)

Efficient operations (Yes / No) is the range of features that provide methods, tools and al-
gorithms to perform large-scale operations with the experimental infrastructure. This in
particular includes: efficient and scalable methods for command execution, file distribu-
tion, monitoring of nodes, gathering of results, among others. Providing efficient versions of
these actions is notably difficult as operations involving nodes in a distributed systems are
non-trivially scalable as a number of nodes increases.

Interface (CLI / GUI / API) consists of different ways that the user can interact with the
experimentation tool. Most of the tools provide command line interface, whereas some tools
provide graphical interfaces, usually via webpage used to interact with the experiment.

2.4 Existing experimentation tools

The aim of this section is to present the state of the art of the existing tools for experimentation
with distributed systems. We focus our attention on the tools that fulfill the criteria for being
considered as an experimentation tool (for a list of tools that are not included in the analysis, see
Section [2.6)). The evaluation of all tools and the main result of our study is presented in Table 1]
that shows a comparison of the tools based on the proposed list of features. Figure shows a
timeline of publications about these experiment management tools and the impact of these tools
measured as the number of citations is shown in Table

2.4.1 Naive method

Frequently, experiments are done using this method which includes manual procedures and use
of hand-written and low-level scripts. Lack of modularity and expressiveness is commonly seen
because of the ad hoc nature of these scripts, and it is even worse when the experiment involves
many machines. The experiment is controlled at a very low level, including some human interven-
tion. Therefore, interaction with many types of applications and platforms is possible at the cost
of time required to do so. Parameters for running the experiment can be forgotten as well as the
reason for which they were used. This leads to an experiment that is difficult to understand and
repeat. Since the experiment is run in partially manual fashion, the user can react against some
unexpected behaviors seen during the experiment.

35

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

Naive approach ‘Weevil ‘Workbench Plush/Gush Expo OMF NEPI XPFlow Execo
o Representation Scripts Declarativel!2 Imperativel3 Declarativel4 Imperative!® Imperativel® Imperativel” Declarativel® Imperativel?
D;:;’gf:goen Modularity (4/9) No Yes No No No No Yes Yes Yes
(18/27 ~ 67%) Expressiveness (7/9) No Yes Yes Yes No Yes Yes Yes Yes
Low entry barrier (7/9) Yes No Yes Yes20 Yes Yes Yes No Yes
Type of Platform type Real Real Model Real Real Real Real, Model Real Real
Experiments Intended use Any Services Any Any Any Wireless2! Any Any Any
Testbed independence (8/9) Yes Yes No Yes22 Yes Yes Yes Yes Yes
Interoperability ~ Support for testbed services (7/9) No No Yes Yes Yes Yes Yes Yes Yes
(22/36 ~ 61%) Resource discovery (5/9) No No Yes* Yes Yes* Yes Yes No No
Software interoperability (2/9) No No No Yes No Yes No No No
o Provenance tracking (1/9) No No Yes No No No No No No
Reproducibility L
(4/27 ~ 15%) Fault injection (2/9) No Yes No No No Yes* No No No
Workload generation (1/9) No Yes No No No No No No No
Checkpointing (4/9) No Yes No No No No Yes Yes Yes
Fault Tolerance . .
(12/27 ~ 44%) Failure handling (6/9) No Yes No Yes No Yes Yes Yes Yes
Verification of configuration (2/9) No No Yes* No No Yes No No No
. Interactive execution (7/9) Yes No Yes Yes Yes Yes Yes No Yes
(17D/92b7uig16r13g‘;%) Logging (6/9) No No Yes* No Yes Yes Yes Yes Yes
Validation (4/9) No Yes Yes No No No Yes Yes No
L. Experiment monitoring (4/9) No No Yes No No Yes Yes Yes No
(llg/l/gléltsr;r;%) Platform monitoring (4/9) No No Yes* Yes No Yes Yes No No
Instrumentation (2/9) No No No Yes No Yes No No No
Data Provisioning (5/9) No Yes Yes* Yes No Yes Yes No No
Management File management (5/9) No Yes Yes Yes No Yes No No Yes
(13/27 ~ 48%) Analysis of results (3/9) No No Yes No No Yes No Yes No
Control structure Centralized Centralized Centralized Centralized Centralized Distributed Distributed Centralized Centralized
X Low resource requirements (6/9) Yes Yes No No Yes No Yes Yes Yes
(ﬁ)r/c;;t;c?é{z) Simple installation (7/9) Yes Yes No Yes Yes No Yes Yes Yes
Efficient operations (6/9) No Yes No Yes Yes Yes No Yes Yes
Interface CLI CLI GUI, CLI, API CLI, GUI, API CLI CLI, GUI CLI, GUI CLI CLI

10Supports wired resources as

8Modular API based on Python

1GNU m4 "Workflows (Ruby)
2Event-based (Tcl & ns)

3XML 9Using GUI
4Ruby

5Event-based (Ruby) well

SModular API based on Python

12GNU m4

1PlanetLab oriented

!3Event-based (Tcl & ns)
XML
5 Ruby
16

Event-based (Ruby)
1"Modular API based on Python
BWorkflows (Ruby)

9Modular API based on Python *Provided by testbed

20Using GUI

21Supports wired resources as

well

22PlanetLab oriented

Table 2.1: Summary of analyzed experiment management tools for distributed systems research. Each feature is presented along with a number of tools that
provide it. Similarly, for each group a percentage of implemented features from this group is shown. Features that are due to the integration with a testbed are

marked with *.

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

Weevil L [z
Workbench ___E
Plush/Gush RO R - B N - &)
Expo o mE L _____ mE
OMF Eg) 107, 70, (T3II75 73] (78]
NEPI CU R I
XPFlow o
Execo lbgﬂ]

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Figure 2.2: Timeline of publications dedicated to experiment management tools. The publication that
attracted most of the citations (main publication) is underlined.

2.4.2 \Weeuvil

It is a tool to evaluate distributed systems under real conditions, providing techniques to automate
the experimentation activity. This experimentation activity is considered as the last stage of
development. Experiments are described declaratively with a language that is used to instantiate
various models and provides clarity and expressiveness. Workload generation is one of its main
features, which helps with the replicability of results.

2.4.3 Workbench for Emulab

Workbench is an integrated experiment management system, which is motivated by the lack of
replayable research on the current testbed-based experiments. Experiments are described using an
extended version of the ns language which is provided by Emulab. The description encompasses
static definitions (e.g., network topology, configuration of devices, operating system and software,
etc.) and dynamic definitions of activities that are based on program agents, entities that run
programs as part of the experiment. Moreover, activities can be scheduled or can be triggered by
defined events. Workbench provides a generic and parametric way of instantiating an experiment
using features already provided by Emulab to manage experiments. This allows experimenters to
run different instances of the same experiment with different parameters. All pieces of information
necessary to run the experiment (e.g., software, experiment description, inputs, outputs, etc.) are
bundled together in templates.

Templates are both persistent and versioned, allowing experimenters to move through the
history of the experiment and make comparisons. Therefore, the mentioned features facilitate the
replay of experiments, reducing the burden on the user. Data management is provided by the
underlying infrastructure of Emulab, enabling Workbench to automatically collect logs that were
generated during the experiment.

2.4.4 Plush/Gush

Plush, and its another incarnation called Gush, cope with the deployment, maintenance and failure
management of different kinds of applications or services running on PlanetLab. The description of
the application or services to be controlled is done using XML. This description comprehends the
acquisition of resources, software to be installed on the nodes and the workflow of the execution.
It has a lightweight client-server architecture with a few dependencies that can be easily deployed

37

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

on a mix of normal clusters and GENI control frameworks: PlanetLab, ORCAM and ProtoGENT.
One of the most important features of Plush is its capacity to manage failures. The server receives
a constant stream of information from all the client machines involved in the experiment and
performs corrective actions when a failure occurs.

2.4.5 Expo

Expo offers abstractions for describing experiments, enabling users to express complex scenarios.
These abstractions can be mapped to the hierarchy of the platform or can interface underlying
tools, providing efficient execution of experiments. Expo brings the following improvements to the
experimentation activity: it makes the description of the experiment easier and more readable,
automates the experimentation process, and manages experiments on a large set of nodes.

246 OMF

It is a framework used in different wireless testbeds around the world and also in PlanetLab.
Its architecture versatility aims at federation of testbeds. It was mainly conceived for testing
network protocols and algorithms in wireless infrastructures. The OMF architecture consist of 3
logical planes: Control, Measurement, and Management. Those planes provide users with tools
to develop, orchestrate, instrument and collect results as well as tools to interact with the testbed
services. For describing the experiment, it uses a comprehensive domain specific language based
on Ruby to provide experiment-specific commands and statements.

2.4.7 NEPI

NEPI is a Python library that enables one to run experiments for testing distributed applications
on different testbeds (e.g., PlanetLab, OMF wireless testbeds, network simulator, etc). It provides
a simple way for managing the whole experiment life cycle (i.e., deployment, control and results
collection). One important feature of NEPI is that it enables to use resources from different
platforms at the same time in a single experiment. NEPT abstracts applications and computational
equipment as resources that can be connected, interrogated and conditions can be registered in
order to specify workflow dependencies between them.

2.4.8 XPFlow

XPFlow is an experimentation tool that employs business workflows in order to model and run
experiments as control flows. XPFlow serves as a workflow engine that uses a domain-specific
language to build complex processes (experiments) from smaller, independent tasks called activi-
ties. This representation is claimed to bring useful features of Business Process Modeling (BPM),
that is: easier understanding of the process, expressiveness, modularity, built-in monitoring of the
experiment, and reliability.

Both XPFlow and scientific workflow systems rely on workflows. However, scientific workflows
are data-oriented and the distributed system underneath (e.g., a computational grid) is merely a
tool to efficiently process data, not an object of a study. Moreover, the formalism of XPFlow is
inspired by workflow patterns identified in the domain of BPM, which are used to model control
flows, as opposed to data flows (see Section [2.6.2)).

2.49 Execo

Execo is a generic toolkit for scripting, conducting and controlling large-scale experiments in
any computing platform. Execo provides different abstractions for managing local and remote
processes as well as files. The engine provides functionality to track the experiment execution and

Shttp://groups.geni.net/geni/wiki/ORCABEN
Shttp://wuw.protogeni.net

38

http://groups.geni.net/geni/wiki/ORCABEN
http://www.protogeni.net

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

Tool First publication Citations
Weevil 2005 69
Workbench 2006 80
Plush/Gush 2006 177
Expo 2007 16
OMF 2009 152
NEPI 2010 38
XPFlow 2012 3
Execo 2013 1

Table 2.2: Number of publications citing papers dedicated to each experimentation tool (as verified on 4
July 2014).

offers features such as parameter sweep over a defined set of values. The partial results of the
parameter sweep can be saved to persistent storage, therefore avoiding unnecessary reruns in case
of a failure.

2.5 Discussion

Existing tools for experiment control were analyzed and evaluated using our set of features defined
in Section 23] and the final results are presented in Table[21l For each position in the table (i.e.,
each property /tool pair) we sought for an evidence to support possible values of a given property in
a given tool from a perspective of a prospective user. To this end, the publications, documentation,
tutorials and other on-line resources related to the given approach were consulted. If presence of
the property (or lack thereof) could be clearly shown from these observations, the final value in
the table reflects this fact. However, if we could not find any mention of the feature, then the final
value claims that the feature does not exist in the tool, as for all practical purposes the prospective
user would not be aware of this feature, even if it existed. In ambiguous cases additional comments
were provided. Much more detailed analysis that led to this concise summary is available on-lind1.
Using information collected in the table, one can easily draw few conclusions.

There is no agreement whether a declarative description is more beneficial than an imperative
one. Declarative descriptions seem to be associated with higher modularity and expressiveness,
but at a price of a higher entry barrier. Moreover, the tools tend to be independent of a particular
testbed, but those with tight integration offer a more complete set of features or features not
present in other solutions (e.g., Emulab Workbench).

The majority of addressed features come from Architecture (70%), Description Language
(67%), Debugging (63%) and Interoperability (61%) groups.

On the other hand, support for Fault Tolerance and Monitoring is quite low (44% and 37%,
respectively), whereas support for Reproducibility is almost nonexistent (only 15%).

The features available in majority of the analyzed tools are: Testbed independence (8/9),
Expressiveness (7/9), Low entry barrier (7/9), Support for testbed services (7/9), Interactive
execution (7/9), Failure handling (6/9), Logging (6/9), Resource discovery (5/9), File man-
agement (5/9) and Provisioning (5/9). Moreover, the tools have nearly universally Simple in-
stallation (7/9), Low resource requirements (6/9) and offer methods to perform Efficient opera-
tions (6/9).

The two most unimplemented features are Provenance tracking (1/9) and Workload genera-
tion (1/9), both crucial for reproducibility of experiments.

“http://www.loria.fr/ buchert/exp-survey.yaml

39

http://www.loria.fr/~buchert/exp-survey.yaml

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

Additionally, some tools offer unique features: Software interoperability (Plush and OMF),
Provenance tracking (Workbench), Fault injection (Weevil and OMF), Workload generation (Wee-
vil), Verification of configuration (Workbench and OMF) and Instrumentation (Plush and OMF).
However, it is worth pointing out that features such as Workload generation are often provided
by standalone tools.

Finally, we did a simple “impact analysis” of described tools by summing all unique scientific
citations to papers about each tool using Google Scholar (see Table2.2)). Clearly, without adjusting
the score to the age of each tool, the most cited tool is Plush. As interesting as these data may
be, we abstain from drawing any more conclusions from them. The summary of this analysis is
available on-lind3.

2.6 Tools not covered in the study

v

[\
Design Instantiation Execution ET data Analysis Publication

- qﬁgﬁup :

/ | \

Experimen,ting tools

Capturing experimental Reproducible Analsis

context

Software provisioners and Workload generators
appliance builders

Figure 2.3: Whole panorama of tools that help with experimentation. Complementary tools are shown
and their place in the experimental cycle. Those tools cover: distributed emulators, software provisioners,
appliance builders, workload generators, tools for performing reproducible analysis and tools for capturing
the experimental context.

In the following section, we discuss other tools that could be mistaken as an experiment manage-
ment tool according to our definition. Those tools contradict our the definition (cf. Section [Z.6.1))
even though they support most of the experimental cycle with distributed systems.

2.6.1 Non general-purpose experiment management tools

Tools like ZENTURIO [104] and Nimrod [1] helps experimenters to manage the execution of
parametric studies on cluster and Grid infrastructures. Both tools cover activities like the set up
of the infrastructure to use, collection and analysis of results. ZENTURIO offers a more generic
parametrization, making it suitable for studying parallel applications under different scenarios
where different parameters can be changed (e.g., application input, number of nodes, type of
network interconnection, etc.). Even though Nimrod parametrization is restricted to application
input files, a relevant feature is the automation of the design of fractional factorial experiments.
NXE [56] scripts the execution of several steps of the experimental workflow from the reservation
of resources in a specific platform to the analysis of collected logs. The whole experiment scenario
is described using XML which is composed of three parts: topology, configuration and scenario.
All the interaction with resources and applications is wrapped using bash scripts. NXE is mainly
dedicated to the evaluation of network protocols.

Shttp://www.loria.fr/ buchert/exp-impact.yaml

40

http://www.loria.fr/~buchert/exp-impact.yaml

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

The aforementioned tools were not included in our analysis, because they are not general-
purpose experiment management tools. They address only very specific scenarios of experimenta-
tion with a distributed system like parametric studies and network protocols evaluation.

2.6.2 Scientific workflow systems

The aim of scientific workflow systems is automation of the scientific process that a scientist may
go through to get from raw data to publishable results. The main objective is to communicate
analytical procedures repeatedly with minimal effort, enabling the collaboration on conducting
large, data-processing, scientific experiments. Scientific workflows are designed specifically to
compose and execute a series of computational or data manipulation steps. Normally, those
systems are provided with GUIs that enable non-expert users to easily construct their applications
as a visual graph. Goals such as data provenance and experiment repeatability are both shared
by scientific workflows and experimentation tools. Some examples of scientific workflows are:
Kepler [91], Taverna [65] and Vistrails [22]. An interesting analysis of these systems, and a
motivation for this work, is presented in [132].

There are two main reasons why scientific workflows are not covered in our study. First,
scientific workflows are data flows in nature — they are used to run complex computations on data,
while the computational platform is abstracted and user has no direct control over it (e.g., the
nodes used during computation). Hence the platform is not the object of study, but merely a
tool to carry out computation. Second, the declarative representation of scientific workflows as
acyclic graphs is generally limited in its expressiveness, therefore they do not meet the criteria
of general-purpose experimentation tools according to our definition (see [39, [35] for analyses of
scientific workflows expressiveness).

2.6.3 Simulators and abstract frameworks

An approach widely used for evaluating and experimenting with distributed systems is simulation.
In [95] the most used simulators for overlay networks and peer-to-peer applications are presented.
Another framework called SimGrid [27] is used for the evaluation of algorithms, heuristics and
even real MPI applications in distributed systems such as Grid, Cloud or P2P systems.

Even though simulators provide many features required by the definition of the experimentation
tool, they are not included in our study. First, they do not help with experiments on real platforms
as they provide an abstract and modeled platform instead. Second, the goals of simulators are
often very specific to a particular research subdomain and hence are not general-purpose tools [27].

Other tools such as Splay [89] and ProtoPeer [53] go one step further by making easy the transi-
tion between simulation and real deployment. Both tools provide a framework to write distributed
applications based on a model of the target platform. They are equipped with measurement in-
frastructures and event injection for reproducing the dynamics of a live system.

The tools providing abstract framework to write applications under experimentation are not
considered in our study, because real applications cannot be evaluated with them. Although real
machines may be used to run experiments (as it is the case with Splay), the applications must be
ported to APIs provided by these tools.

2.7 Complementary tools

In this section complementary tools are shown. Those tools address specific parts of the process of
experimentation with distributed systems as can be seen in Figure 233 Experiment management
tools can take advantage of these tools to implement features presented in Section 2.3

41

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

2.7.1 Software provisioners and appliance builders

PuppetEl and Chefld are commonly used in automating administrative tasks such as software
provision and configuration of operating systems. They simplify complex deployments by providing
unambiguous, declarative description of a desired system state and then carrying out necessar
steps to reach it. Operating at even higher level are orchestration management tools, like Juj
which are designed to coordinate complex systems in flexible and reactive ways, usually in the
cloud computing context.

Researchers start now to take advantage of cloud computing for experimentation. Tools such
as Docke, Vagran and packe have gained acceptance for creating reproducible environ-
ments for development that can be easily deployed in a variety of cloud computing providers and
virtualization technologies. Kameleon [112,49] is an appliance builder that strives to offer a repro-
ducible environment for experimentation that can be regenerated and changed any time. It does
so by taking advantage of a persistent cache mechanism that guarantees that the same software
versions are used all the time, avoiding incompatibility issues. This tool constitutes one of the
contributions of this thesis and as such will be described thoroughly in Part [[IIl

2.7.2 Tools for capturing experimental context

As mentioned in Section one important feature required given the complexity of software
nowadays, is the capture of the experimental context, undoubtedly useful to the reproduction of an
experiment. There are different levels for capturing the context which depends mostly on the kind
of experiment one wants to run. Experimenters can take advantage of version control systems (e.g.,
Git, Subversion) or more sophisticated frameworks like Sumatra [37] which aims at recording and
tracking the scientific context (i.e., changes in code or parameters and the motivations for those
changes) in which a given experiment was performed. This enables researchers to have provenance
in their experiments. Sumatra context capturing is limited to the middleware used. At the moment
in only works with applications written in Python. To enable a complex re-executability of a given
experiment, all the software dependencies have to be tracked and packed. This is the approach
followed by CDE [57] which makes possible to move the experimental environment into different
Linux distributions and versions. Reprozip [29] is a more sophisticated tool that follows the same
principle and adds provenance information that is captured in a Vistrails workflow.

2.7.3 Tools for making the analysis reproducible

The generation of the valuable raw data from an experiment is a very costly process. Therefore,
it should be expected that anyone would have access to the datasets and the analysis procedure
carried out for generating certain figure or table and in turn a given conclusion. This could be
done with the goal of verifying that a proper statistical study was performed or simply and most
importantly enabling the conduction of alternated analysis that could lead to new conclusions.
With the aforementioned goal in mind, a R package shown in [100] is able to cache intermediate
results that are stored in a database, enabling researchers to re-execute parts of the analysis. A
more advance approach [54] introduces the discipline of Verifiable Computational Research. Its
implementation creates identifiers that are associated to a given result in a data analysis process.
This association uniquely links results of a computation with its context (e.g., software package
dependencies, screen messages echoed, platform name and version, etc). The created identifiers
can be embedded into documents for publication. Literate programming encourages the mix of
sections of computer code and natural language with the objective of providing two types of view:
documents intended for human consumption and pure source code for examination and execution.

Ihttps://puppetlabs.com/
Ohttp://wuw.opscode.com/chef/
https://juju.ubuntu.com/
2https://www.docker.io/
3http://www.vagrantup.com/
Mhttp://www.packer.io/

42

https://puppetlabs.com/
http://www.opscode.com/chef/
https://juju.ubuntu.com/
https://www.docker.io/
http://www.vagrantup.com/
http://www.packer.io/

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

This approach is followed by knitr |22 which is able to generate dynamic documents by embedding
R code into INTEX. Org-mode is an emacs extension for practicing Literate programming providing
to the user the possibility of embedding a variety of computer programming languages that can
be mixed and different types of output are possible (e.g., HTML, IWTEX, DocBook, etc).

2.7.4 Workload generators

It cover all the tools and data that enable to evaluate distributed systems under semi-realistic,
controlled and reproducible conditions. Benchmarks such as NAS , Linpack [[] have been used
over years for evaluating performance of parallel systems. In the field of scheduling of parallel
systems there has been an important work by Dror Feitelson which gather together in the Parallel
Workloads Archive site 29 a considerable number of logs of large scale parallel systems in produc-
tion. The failure trace archive (FTA) ¥l is a public repository of availability traces of parallel and
distributed systems. Those traces can be the input of workload models or tools that enable to
replay them in real systems [82, [128]. Xerxes [82] is a distributed load generation framework for
cloud computing that enables large scale experimentation. It is able to generate load patterns at
both individual node level, and collectively across a large number of machines.

2.7.5 Distributed emulators

Emulation along with simulation is one of the techniques highly used in experimentation with dis-
tributed systems which enable to augment and control the parameter space. It is mainly targeted
at enable reproducible experiments at large scale. Different strategies have appeared for emulating
large and high performance machines. In [68] is described an approach for taking advantage of
the heterogeneous architectures composed of CPU and GPUs widely common nowadays for emu-
lating different kinds of parallel machines ¥ using OpenCL. A parallel version of the well known
emulator Qemu is proposed in [41] for emulating efficiently multicore machines. For emulating the
heterogeneous nature of computational grids EHGRID [34] was proposed that provides mechanism
for degrading the performance of computer processors turning an homogeneous architecture into
an heterogeneous one. Additionally, it takes into account network effects for inter-cluster com-
munication. Distem [115] follows the same philosophy of EHGRID but it is targeted to a wider
community, including cloud, P2P, High Performance Computing and Grid systems. It relies on
LXC (Linux Containers) which makes it efficient and scalable, enabling the building of 15000-nodes
virtual topology in no time.

2.8 Conclusions

In this chapter, we presented an extensive list of properties expected from general-purpose exper-
iment management tools for distributed systems on real platforms. The diversity of the research
domain of distributed systems motivated development of different techniques and tools to control
experiments, and explains the multitude of approaches to manage experiments. With the con-
struction of the feature list, we tried to establish a common vocabulary in order to understand
and compare the existing experiment management tools.

The size and complexity of distributed systems nowadays has uncovered new concerns and
needs in the experimentation process. We need to control an always increasing number of vari-
ables to assure two important characteristics of an experiment, its reproducibility and replicability.

http://yihui.name/knitr/

16http://www.nas.nasa.gov/publications/npb.html

Thttp://www.netlib.org/linpack/

8http://www.cs.huji.ac.il/labs/parallel/workload/

Yhttp://fta.scem.uvs.edu.au/

20according to the Flynn’s taxonomy: Single Instruction, Single Data stream (SISD); Single Instruction, Multiple
Data stream (SIMD); Multiple Instruction, Single Data stream (MISD); Multiple Instruction, Multiple Data stream
(MIMD).

43

http://yihui.name/knitr/
http://www.nas.nasa.gov/publications/npb.html
http://www.netlib.org/linpack/
http://www.cs.huji.ac.il/labs/parallel/workload/
http://fta.scem.uws.edu.au/

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

With the motivation of providing a controlled environment to execute experiments in the domain
of distributed systems, several testbeds were created which stimulated the development of different
experiment management tools. Among the benefits of experiment management tools are: encour-
aging researchers to experiment more and improve their results, educational value of being able to
play with known algorithms and protocols under real settings, reduction of the time required to
perform an evaluation and publish results, capacity to experiment with many nodes and complex
scenarios, different software layers, topologies, workloads, etc.

Despite the emergence of experiment management tools, some of them are in an immature
state of development which prevents them from fully exploiting the capacity of certain testbeds.
There is indeed, a lot of challenges in the domain of experimentation and the need of further
development of those tools is apparent. To achieve this, technologies developed with different
purposes could arguably be used in the experimentation process. For instance, we mentioned that
workflow systems and configuration management tools share some concerns and goals with the
problem of experimenting with distributed systems.

Finally, a deeper understanding of the experimentation process with distributed systems is
needed to identify novel ways to perfect the quality of experiments and give researchers the pos-
sibility to build on each others’ results.

44

Part |l

Expo

45

Chapter 3

Expo: a tool to manage large scale
experiments

Expo

Design Instantiation Execution Analysis Publication
Description + Platform requests

P
> [* Provisioning

+ Contextualization

+ Managing

+ Monitoring

-

+ Results collection

Figure 3.1: Role of Ezpo in the experiment cycle

Performing experiments that involve a large amount of resources or a complex configuration,
proves to be a hard task. In this chapter we present Fzpo, which is a tool for conducting experi-
ments on distributed platforms. Ezpo is the result of an effort to bring the scripting of experiments
to the next level. It encourages the scripting of experiments by offering a set of abstractions to deal
with big and complex computational infrastructures. Additionally, it provides mechanisms that
make experimenters more productive when setting up their experiments. Its goal is to improve
the state of the art of experimentation by encouraging their complete automation. First, the ar-
chitecture of the tool is described along with its abstractions for resources and tasks that reduces
the complexity in the experiment conduction. Next, the tool is compared with other similar solu-
tions based on some qualitative criteria, scalability and expressiveness tests. The chapter finishes
with the evaluation of Ezpo scalability and some use cases on Grid’5000 and PlanetLab testbeds.
Our experience showed that Ezpo is a promising tool to help users with two primary concerns:
(1) performing a large scale experiment efficiently and easily, (2) describing an experiment with
enough detail that enables posterior reproduction. The content of this chapter was published in a
paper presented at PDCN2013 [113].

3.1 Introduction

Although the software to perform simulations has improved in recent years, there is still the need
to test and evaluate the software in real distributed infrastructures. Moreover, the option of ex-
perimental evaluation of an algorithm has been encouraged as an approach complementary to
the theoretical evaluation |73]. In order to address limitations such as, software reconfiguration,
lack of control and monitoring systems, testbeds were created [88]. A testbed is a platform for
experimentation with large distributed applications. It is sometimes shielded from the instabili-
ties of production environments and allows users to test particular modules of their applications

47

CHAPTER 3. EXPO: A TOOL TO MANAGE LARGE SCALE EXPERIMENTS

in an isolated fashion. Some examples of testbeds are: PlanetLab m, Emulab @], GENI[1,
Grid5000 [25] and ORBIT [108, 98] (see Section EZZ3). Although these platforms offer more sta-
bility and control over resources, it is still a hard task to control, deploy and run applications on
them. In more detail a number of tasks must be completed before an experiment can be actually
started. These tasks include resource discovery and acquisition as well as deployment of the neces-
sary software. Once the application is launched, its execution must be controlled, and as soon as
it finishes all the output must be collected. Most of the experiments performed on the testbeds are
run in an ad-hoc, application-specific manner. This method may match the current requirements
of experiments, but fails with the scale, heterogeneity, and dynamism of distributed systems. That
is the reason why we have seen the apparition of experiment management tools that strive to cope
with the problems encountered when researchers try to perform experiments involving a large
amount of resources or a complex configuration. The reader is referred to Section for a full
list of motivations behind those tools. The main aspects those tools help the user with, are: (1)
description of the experiment, (2) control and access to the resources, (3) task orchestration, (4)
software deployment, (5) monitoring and collection of results. The main advantage of those tools
is the possibility of embedding all the important details - that took part on the process of experi-
mentation - using the same language. This will hopefully make easier the reproduction of a given
experiment. The objective of this chapter is to present our experiment management tool called
Ezpo that has already been introduced shortly in the previous chapter and qualitatively compared
against existing works. Fzpo is the result of an effort to bring the scripting of experiments to the
next level. It encourages the scripting of experiments by offering a set of abstractions to deal with
big and complex computational infrastructures. Additionally, it provides mechanisms that make
experimenters more productive when setting up their experiments. Our objective is to improve
the state of the art of experimentation by encouraging their complete automation. In Chapter [1}
it was shown the experiment cycle normally followed in research. FEzpo covers the description,
instantiation, execution and analysis of an experiment as shown in Figure Bl In this chapter,
Expo architecture, features, abstractions and syntax and their advantages will be exposed. Ezpo
will be compared with the most used and actively developed experiment management tools. One
of the main contribution of Ezpo is that it enabled the rapid prototyping of experiments and this
will be demonstrated on Chapter @4

The structure of this chapter is as follows: In the next section Ezpo is presented in depth with
its features and advantages, some use cases are shown in Section B3 in two different testbeds.
Results and comparisons with other experiment tools are presented in Section Related works
in software engineering are presented in Section [3.5and finally Section [6.6] presents the conclusions
and future works.

3.2 Expo

Expo is an experiment management tool designed to simplify and automate the conduction of
experiments in distributed platforms. All the experimental plan is captured (i.e., access to the
platform, experiment setup, experiment execution, results analysis, etc.) in a workflow where
sequences of commands are grouped together in tasks and dependencies. This facilitates the
recreation of the experiment setup and in turn, it will make easier the replay of experiments.
Replayability of a computational experiment is the first step towards experiment reproducibility.
The workflow tells how all the different tasks have to be called in order to get the results of the
experiment. It comprehends tasks that can be executed sequentially, in parallel, asynchronously,
etc. Ezpo strives to simplify the description of an experiment by providing a concise and read-
able way to describe it, specially when dealing with a big amount of nodes. It relies on parallel
command executors such as TakTuk @] which makes it scale with a big amount of nodes. Tak-
Tuk uses an adaptive and reactive work-stealing algorithm that mixes local parallelization and
work distribution. A topology of deployment can be specified and this is exploited by the Ezxpo
ResourceSet abstraction presented in subsection [3.2.11

Thttp://wuw.geni.net

48

http://www.geni.net

CHAPTER 3. EXPO: A TOOL TO MANAGE LARGE SCALE EXPERIMENTS

I\
Experiment Et
description : - Mo:i‘::.:i’:ge rilsnd
i — :

results

x o
| cu |~ bsL _, T
i o

‘ Tasks ‘ | ResourceSet* J

Control
Figure 3.2: Expo architecture

All

Site 2 Site 3

cluster 1
cluster 2

cluster 1 ...=

Figure 3.3: Example of resourceSet

Expo architecture is described in Figure B.2] which mainly consists in six components: an in-
ternal Domain-Specific Language (DSL) |4 module features a flexible description language built on
top of Ruby B. It enables to exploit all its richness in available libraries and mainly its descrip-
tiveness. The DSL flexibility and scalability relies on two abstractions: ResourceSet and Tasks.
Those abstractions are mapped into components that interact together in order to provide the
necessary information to the Command Control and help it in translating the experimental plan
into commands. The platform dependent module enables the interaction with different platforms
such as: Grid’5000, PlanetLab, cloud computing infrastructures, computing clusters, etc. This
module works as an interface for the DSL module, making an experiment description independent
from the platform. Ezpo makes few assumptions about the resources to manage, relying on com-
mon system utilities suchs as: scp, ssh, unix commands, TakTuk which can deploy itself. It only
requires to run a Ruby interpreter and few ruby libraries as described in its website A Thus, Ezpo
architecture is very simple and ligthweight. The schedule of the experimental workflow is done by
the Task manager which is in charge of the results collection and experiment monitoring. Two ex-
ecution modes are possible: interactive and standalone which execute the experiment description
file without any user intervention.

3.2.1 Expo ResourceSet

A ResourceSet is an abstract view of the resources and their organization in distributed computa-
tional infrastructures such as Grids. It adds resources into a logical unit and associates properties
to them. For instance, we can gather together the nodes from the same cluster associating to
them the same frontend, as well as the same physical properties if the cluster is homogeneous.
This abstraction was conceived in order to provide to the user a concise way to express actions
that have to be carried out for a set of resources. Resources can be any computing unit: cores,

2an internal DSL means that is hosted in another language and can take advantage of its constructs.

3https://www.ruby-lang.org
4http://expo.gforge.inria.fr/

49

https://www.ruby-lang.org
http://expo.gforge.inria.fr/

SN VR

CHAPTER 3. EXPO: A TOOL TO MANAGE LARGE SCALE EXPERIMENTS

runs the command in parallel
for all the nodes of the clus- run("make lu NPROCS=8 CLASS=A MPIF77=tau_f90.sh",:target => resources[:cluster_1])
ter 1

runs the command hostname

" "o, =
for each node sequentially resources.each{ |node| run("hostname",:target => node) }

runs the command for dif-
ferent set of resources, the
length of the sets generated
are powers of two.

resources.each_slice_power2 do |nodes|
run("mpirun -np 2 --machinefile #{nodes.nodefile} ./app",:target => nodes.first)
end

selects the resources of a
specific cluster, it keeps the
topology of the ResourceSet
in order to generate the right
parallel command.

fast_cluster = resources.select(:cluster){ |cluster|
cluster.properties['"clock_speed"]1>1700000000
}
run("”/benchmarks/NPB3.2-0MP/bin/BT.A_out.4",:target => fast_cluster)

Table 3.1: ResourceSet operations

processors, nodes, clusters, sites, etc. Table B.I]shows some operators which gives to Ezpo a high
flexibility against another approaches in the description language as will be shown in Section 3.4
An example is shown in Figure B3] where a Grid computing like hierarchy is represented, this
abstract view enables the generation of efficient parallel topology aware commands. We can di-
vide the resources belonging to the same site as well as separate them per cluster. This can also
be applied for the PlanetLab testbed, the ResourceSet can have information about the location
of the resources for the same country or site. In other cases, it can be used to define complex
configurations as in the case we would need to deploy an infrastructure where different nodes have
different roles.

3.2.2 Expo Tasks
Expo adopts the notion of task, already exploited in workflow management tools as M] and Rake

as well as web application deployment frameworks such as Capistrano B. A Task describes what

to do and the ResourceSet tells the experiment management where to execute the task. Tasks
can be triggered by events (e.g, availability of jobs in the infrastructure, errors, etc.). Therefore,
a complete unattended experiment campaign can be carried out. In Listing [[I an example of
a definition of a task is shown. The compilation of a source code instrumentation package is
performed. This task is executed on a ResourceSet which is represented by the variable resources.
For this case a parallel command will be generated that will carry out the task for every machine
represented in the ResourceSet. This task could be useful when compiling a program for different
architectures.

task :compile, :target => resources do
run("cd ~/Test_profiling/; tar -xf pdt.tgz")
run("cd ~/Test_profiling/pdtoolkit-3.17/; ./configure")
run("cd ~/Test_profiling/pdtoolkit-3.17/; make install")
end

Listing 1: Task abstraction

3.2.3 Expo interactive console

An interactive mode is proposed driven by the following reasons: (1) an important amount of
the experiments are interactive [1 (2) the writing of an experiment description file is a trial-and-
error process which involves using different parameters, configurations and flows of control, (3) An

Shttp://rake.rubyforge.org/

6https://github.com/capistrano/capistrano/wiki

753% of the experiments are interactive, against 47% that are run in Batch mode. Results obtained consulting
the Grid5000 APT

50

http://rake.rubyforge.org/
https://github.com/capistrano/capistrano/wiki

CHAPTER 3. EXPO: A TOOL TO MANAGE LARGE SCALE EXPERIMENTS

" Topology aware commands .
Task (for efficient deployment and execution)
< >

definition Granularity B

SRS @/ /
Cluster = C \
Site = S

/ \

ymapping 6} B2 BE €1 €52

Task
manager |~ > x &
dct

Experiment description \\\
(Abstract workflow)

Executable workflow

Figure 3.4: Expo workflow mapping. Tasks are split according to the granularity of execution, generating
sub-tasks for the executable workflow. In the Figure, tasks are generated for 3 different clusters and 2
sites. The Task manager uses the information provided by the ResourceSet to generate the topology aware
commands

interactive environment lets scientists look at data, test new ideas, combine algorithmic approaches,
and evaluate their outcome directly m This approach is already used by different scientific
environments based on Python such as: IPython and Scipy M] This interactive mode can also
be triggered by an error during a standalone execution, providing either a shell console or a Ruby
console where the user can modify and verify the execution of the Expo DSL.

3.2.4 Expo experiment validation

Given that the whole workflow of an experiment could take hours to execute, it is important to
avoid errors like the utilization of undeclared variables. One important feature that Ezpo offer is
the validation of the experiment description. It does so through the use of two mechanisms, it first
perform a static analysis of the experiment description and then it runs the logic of the experiment
without executing any real action. This is equivalent to the mode dry run offered by configuration
management tools. This helps the experimenter to verify that the experiment workflow will be
executed in the desired manner.

3.2.5 Expo experiment mapping

Workflow engines map scientific workflows to distributed platforms in an automatic form. Their
mapping decisions are driven by minimizing the time to run the workflow. Given that the objective
of a workflow is to perform a big computation, it is more flexible when mapping the workflow into
the computing platform. In contrast, an experimenting workflow aims at performing tests. Some
tests are targeted to a certain machine architecture and it is important to take this into account
when performing the mapping of the workflow. Consequently, a way to control the underlying
infrastructure has to be provided. There is a trade-off between descriptiveness and scalability
(efficient mapping). Figure B.4] explains the procedure to map an experiment description into a
distributed platform, in this particular case a Grid computing infrastructure. There are some tasks
that should happened at the site level like the transfer of large files that can be shared between
all the machines of the cluster using a network file system. Compilation tasks must be executed
at cluster level because sites could be composed of several clusters with different architectures.
As already said, an experiment is described as a workflow composed of tasks and dependencies
between them. This initial workflow is known as abstract workflow and has as a goal to capture

51

0 N DU AW N

e e e e
O ©® W N WA WNR O O©

CHAPTER 3. EXPO: A TOOL TO MANAGE LARGE SCALE EXPERIMENTS

the experiment activity. Two important information are: the body of the task which is simply
all the sequence of commands to execute and the granularity of execution. For the example
shown, this granularity can be: all resources, site, cluster, node, etc. The task manager will
be in charge of taking this abstract workflow and map it into the infrastructure. It uses the
information provided by the granularity of execution in order to generate the executable workflow.
This is an expanded version of the abstract workflow, where tasks have been split according to the
granularity of execution. This enables to choose the best type of execution (parallel, asynchronous,
parallel-asynchronous, etc.) and the less expensive in terms of number of connections with the
remote machines and threads created to control the experiment. The tasks created at this level
guarantee the generation of topology aware commands with TakTuk for an efficient deployment
and execution. The scalability of commands execution will be shown in the following sections.

3.2.6 Expo evolution

During this thesis we have extended and improved in several ways the already existing imple-
mentation of Fzpo ,] We have added the task abstraction which helps to structure the
experiment description and form a workflow. This makes the experiment description more read-
able and the detection of bugs easier. This task abstraction can interact with the ResourceSet
for controlling the mapping of tasks into different levels of the defined infrastructure hierarchy.
The new opportunities brought by this mapping will be shown in the Chapter [d One important
improvement is the support of experiment validation by default. This was one of the drawbacks
of previous versions of Expo which made the setup of experiments costly and error-prone. Addi-
tionally, an interactive mode was implemented to boost experimenter’s productivity by allowing
her/him to debug the whole experiment description.

3.3 Use cases

require ’expo_planetlab’

set :resources, "MyExperiment.resources"
get_resources

task :monitoring, :target => resources do

File.open("Planetlab_avail.txt",’w+’){[f]

res=nil

f.puts "Date Time Num_Res"

240.times{
date_measure=Time: :now.to_1i
res = run("hostname')
time=res[:run_time]
f.puts "#{data_mesure} #{time} #{res.length}"
f.flush
sleep (60)

end

Listing 2: Monitoring nodes availability in Planetlab using Expo

The aim of this section is to show the syntax for writing an experiment using Ezpo. Listing
shows a simple experiment for monitoring the nodes availability on Planetlab. This is done by
executing the linux command hostname on all the nodes of the slice and counting how many of
them reply. This information is written into a file that can be used to plot the availability of the
nodes over time in the slice.

52

=
B O © WU AW N R

CHAPTER 3. EXPO: A TOOL TO MANAGE LARGE SCALE EXPERIMENTS

require ’gbk_api’
set :user, '"root"
set :gw_user, '"cruizsanabria" ## replace with your user

set :resources, "MyExperiment.resources"

reserv = connection(:type => "Grid5000")

reserv.resources = {:nancy => ["nodes=1"], :remnnes => ["nodes=1"], :1ille => ["nodes=1"], :grenole=> ["nodes=1"]}
reserv.environment = "http://public.nancy.grid5000.fr/"cruizsanabria/tlm_simulation.env"
reserv.name = "TLM multisite"

reserv.walltime = 2000

Tasks Definition FEHEHEHEHERERERRERERERERERERERERERERE
task :run_reservation do

reserv.run!
end

task :config_ssh do
msg("Generating SSH config")
File.open("#{expo_cwd}/config",’w+’) do [f]|
f.puts "Host *
StrictHostKeyChecking no
UserKnownHostsFile=/dev/null "
end
end

task :generating_ssh_keys do

run("mkdir -p #{expo_cwd}/temp_keys/")

run("ssh-keygen -P ’’ -f #{expo_cwd}/temp_keys/key") unless check("ls #{expo_cwd}/temp_keys/key")
end

task :trans_keys, :target => resources do

put ("#{expo_cwd}/config","/root/.ssh/")

put ("#{expo_cwd}/temp_keys/key","/root/.ssh/id_rsa")

put ("#{expo_cwd}/temp_keys/key.pub","/root/.ssh/id_rsa.pub")
end

task :copy_identity do
resources.each{ |nodel
run("ssh-copy-id -i #{expo_cwd}/temp_keys/key.pub root@#{node.name}")
}

end

task :deactivation_ib do
resources.each{ |node]|
run("/sbin/ifconfig ib0 down")
}

end

task :run_simulation, :target => resources.first do
put (resources.nodefile,"/root/TLMME_multimode/nodes.deployed")
run("/root/TLMME_multimode/exec_tlm 1 369 192 510 250 1 sc'")
get ("/root/TLMME_multimode/profile.*","~/profiles")

end

task :free_reservation, :target => resources do
free_resources(reserv)
end

Listing 3: Profiling of a parallel application running on multiple sites in Grid’5000 using Expo

Listing [[7 shows the automation of the execution of a parallel application using several sites
in Grid’5000. The objective of the experiment is to perform a profiling of the parallel execution
of an electromagnetic simulation using TAU B. we deployed an operating system image with
all the software already installed using Grid’5000 API that interacts with Kadeploy [71]. This
image was generated using Kameleon that will be presented in Chapter The specification of
the corresponding image to deploy is indicated as a parameter in the function that request the
resources, which is shown in the first lines of the file. Moreover, in the file we can see some Ezpo
operators to ease the procedure of execution of commands on several nodes through the use of
iterators. This makes easier the description of tasks such as deactivating infiniband interfaces

8http://www.cs.uoregon.edu/research/tau/home.php

53

http://www.cs.uoregon.edu/research/tau/home.php

CHAPTER 3. EXPO: A TOOL TO MANAGE LARGE SCALE EXPERIMENTS

on all reserved nodes. Another operator is shown for generating the correct hostfile necessary for
running a MPT application. Finally, we execute the application and we get the profile generated by
TAU during the execution. All the results are sent to the experimenter’s machine. The modularity
of the tool enables users to run their experiment in another testbed by just loading the appropriate
module. Other use cases will be shown throughout all this thesis and mainly in the next chapter
where Ezpo was used for performing a custom calibration of Grid’5000 clusters that enabled the
efficient deployment of multisite parallel applications. Fzpo use cases include:

e Evaluation of processes placing in the deployment of a parallel application.
e Calibration of Grid’5000 processors for an electromagnetic application.
e Comparison of the two techniques of deployment: naive and hardware aware.

Generation and collection of traces of NAS [benchmarks using TAU.

These examples are included in the Appendix [A] of this thesis.

3.4 Evaluation of experiment control systems

i b T
<?zml version="1.0" encoding="utf-8"?> require ’gbk_api
<gush>

<project name="Testing overhead">

<component name="Clusterl">

set :user = "cruizsanabria"
set :resources = "MyExperiment.resources"

<rspec> . . .
<num_hosts>20</num_hosts> reserv= connection(:type => "Grid5000")
</rspec; N reserv.resources = { :nancy => ["nodes=200"]
<resources> :sophia => ["nodes100"]}
<resource type="ssh" group="local"/> N .
</resources> reserv.name = "Expo Scalability
</component> reserv.walltime=2000

<experiment name="simple">
<execution>
<component_block name="cbl">
<component name="Cluster1"/>
<process_block name="p2">
<process name="test">
<path>hostname</path>
<cmdline>
<arg></arg>
</cmdline>
</process>
</process_block>
</component_block>

task_definition_start

task :run_reservation do
reserv.run!

end

task :scalability do

sizes=[10,50,100,200,300]

resources.each_slice_array(sizes) do | nodes|

</execution> run("hostname", :target => nodes)
</experiment> ' # have to put tags here
</project>
</gush>
& end

Listing 4: Gush description Listing 5: Expo Experiment description
Listing 6: Comparison between experiment description files: These files were used in the evaluation of the
scalability of the two tools. It should be noticed here that the experiment description for Gush has to be
changed every time we need to change the number of nodes to try with. Also Gush needs a file for the
resource description that is not shown.

The aim of this section is to position Ezpo in the panorama of experiment management tools.
In this thesis, we have already performed a qualitative comparison of the experiment management,
tools in Chapter2l In this section the goal is to carry out a deeper comparison of similar approaches
for conducting experiments on distributed infrastructures. We have chosen: Gush, Ezeco and

9http://www.nas.nasa.gov/publications/npb.html

o4

http://www.nas.nasa.gov/publications/npb.html

CHAPTER 3. EXPO: A TOOL TO MANAGE LARGE SCALE EXPERIMENTS

E3 Expo
B3 Gush

Time [sec]
=

10 50 100 200 300
Number of Nodes

Figure 3.5: Evaluation of the scalability of Gush and Expo when executing a command in a large set of
resources. The upper and lower "hinges" correspond to the first and third quartiles. Points that are out
of this range, represented outliers. Each test was repeated 10 times.

XpFlow. These three tools share many features with Fzpo such as the ease of installation, the
capacity to adapt to different testbeds and they are targeted at performing general experiments
in distributed infrastructures involving a big amount of nodes. First, we evaluate Ezpo against
Gush given that they used very different approaches to describe the experiment as well as different
philosophies. Then, we evaluate Expo against Fzeco and XpFlow which have been developed with
the purpose of managing large scale experiments.

3.4.1 Gush comparison

The evaluation consisted in the expressiveness of the language, as well as the performance and
scalability of the command execution. The comparison between both tools was done by carrying
out an experiment, which involved a large amount of nodes. We defined an experiment that
consisted in executing a command in a set of resources and measuring the time elapsed, while
varying the number of nodes. Therefore, we compare the time to execute the commands and the
flexibility in the description of the experiment. Listing[6l shows the descriptions of the experiment
used for Gush and Ezpo. We can note, looking at the experiment description, that for Gush we have
either to change the file for each experiment so as to try different number of resources, or we can
create a long description file with all the possibilities we want to try. This is not the case for Expo,
which uses Ruby and provides a programmatical approach for describing the experiment, making
it flexible enough to adapt to the normal activities or changes when we perform an experiment.

Figure shows the scalability of the mechanism for the execution of commands. In this
figure we can see that Ezpo outperforms Gush due to the use of TakTuk parallel executer, also
that Ezpo presents less variability in the time to execute the experiment, which is important to
the reproducibility. It was noticed as well that when we tried to execute an experiment with more
than 400 nodes, problems arise trying to perform it with Gush.

3.4.2 XpFlow and Execo comparison

There has been a recent interest for developing experiment management tools targeted at complex
experiments with distributed systems. From the tools that have been studied in Chapter 2] two
tools deserve special attention XpFlow and Ezeco given that they are actively developed and used

35

CHAPTER 3. EXPO: A TOOL TO MANAGE LARGE SCALE EXPERIMENTS

by the Grid’5000 community. Additionally, they have been used in recent publications @, @]
At the moment of writing the versions of XpFlow and Ezeco used were respectively 0.1c and 2.3
[M9. This evaluation goes a step further compared to the previous evaluations. We implemented
first a scalability experiment using Taktuk, the three tools support it for running experiments at
large scale. The three different experiment descriptions are shown in Figure Resources were
reserved on 9 different sites (nancy, sophia, toulouse, lille, lyon, luzembourg, nantes, grenoble and
rennes) in Grid’5000. Therefore all three tools received as a parameter the same set of resources.
The experiment consist simply in executing the command hostname over a set of resources and
measuring the time it took to carry out this task. Different sizes of nodes were tested as can be
observed on the experiment description files. The results of the test are shown in Figure 3.6, we
can observe that Ezpo scales better with an increasing number of nodes. This is due to the fact
that it takes into account the topology of the infrastructure which is captured in the ResourceSet
abstraction and helps to generate the right parameters for TakTuk. With the implementation of
these experiments and the ones shown in the Appendix [A] we gained some insights and discuss
some features provided by those tools.

Description language

From the description point of view when evaluating these tools we had an interesting case study
because each tool offers a different degree of abstraction. Going from the simple plain script
provided by Ezeco to the most sophisticated workflow representation offered by XpFlow. Ezpo
sits on the middle providing the Task abstraction to structure the experiment description. Ezeco
provides an API for controlling remote processes, contrary to Fxzpo and XpFlow that provide an
internal®® DSL oriented to the domain of experimentation. Each representation has its advantages
and disadvantages, having a low level API as the one provided by Ezeco enables a fine grain
control of running applications. They can be started, monitored and stopped and the workflow
of the experiment can be easily modified using all the syntax and language constructs provided
by Python. In the other hand, Ezxpo and XpFlow impose their proper constructs to specify
the experiment workflow. This brings modularization and makes experiment description more
comprehensible. As a conclusion, we believe that the good level of abstraction will depend on the
type of experiment and its complexity.

Experiment validation

One important fact that characterizes the evaluated tools is that they used interpreted languages as
a means for describing the experiments. This brings high flexibility for interacting with computing
systems as is demonstrated by the fact that more than 50% '] of configuration management tools
are implemented using this kind of programming languages. However, the naive use of these
programming languages can have a big cost for the conduction of experiments, as simple errors
like the use of undeclared variables, undefined methods, invalid arguments, etc., could break
the experiment workflow and lose its progress. This is a drawback of Ezeco that by default
do not integrate any validation mechanism for caching the aforementioned errors before running
the experiment. XpFlow detects undeclared variables and undefined methods before running the
experiment, stopping its execution and presenting an error to the user. Unfortunately this only
happens at the level of the process abstraction, activities that are used as building block and wrap
low level tasks, do not count with this type of validation. Ezpo as already presented, provides two
mechanisms: static code analysis and dry run.

Experiment checkpoint

Ezeco provides checkpointing support for parametric studies. It provides a class to perform param-
eter sweeps which uses a local directory in disk for saving the progress of the parameter combination

10Those versions were accessed on 24/09/2014.
1 Checking language used by the most popular projects: Ansible, Befg2, cdist, Chef, CFEngine, juju, Puppet,
Salt, Rexds

56

CHAPTER 3. EXPO: A TOOL TO MANAGE LARGE SCALE EXPERIMENTS

require ’gbk_api’

set :resources, "MyExperiment.resources"
set :user, 'cruizsanabria"

reserv = connection(:type => "Grid5000")
reserv.create_resource_set_file(”nodes_expe”)

RUNS = 5

task :scalability do
sizes = [2,4,8,16,32,64,128,256]

resources.each_slice_array(sizes) do |nodes|
msg("Testing with #{nodes.lengthl}")

process :main do
log "Starting Experiment"
RUNS = 5
ip_adresses = YAML::load(File.read('nodes_expe"))
nodes = []
ip_adresses.each{ |ipl
nodes.push(simple_node("cruizsanabria@#{ip}"))

}

[2,4,8,16,32,64,128,256] .each do |sizel
test_nodes = nodes[1..size]
log("Testing with #{size} nodes")
RUNS.times{
r = execute_many(test_nodes, "hostname")

RUNS. times{ log(r)
run("hostname", :target => nodes) }
} end
end end

end

Listing 8: XpFlow experiment description
Listing 7: Expo experiment description

from execo import *
from execo_engine import *
import yaml

class taktuk_scalability(Engine):

def run(self):
RUNS = 5
with open(’nodes_expe’, ’r’) as f:
ip_address = yaml.load(f)

hosts = []
for address in ip_address:
hosts.append(Host (address, user = ’cruizsanabria’))

time = Timer()
logger.info("Starting Experiment")

for i in [2,4,8,16,32,64,128,256]:
test_hosts = hosts[0:i]
for i in range(RUNS):
servers =TaktukRemote("hostname",test_hosts)
servers.start()
servers.wait ()
print Report([serversl]).to_string()

logger.info("Total execution time = %f" 7 time.elapsed())
if __name__ == "__main__":
engine = taktuk_scalability()
engine.start ()

Listing 9: Execo experiment description

Listing 10: Comparison between experiment description files: These files were used in the evaluation of
the scalability using taktuk. We can observe the different abstraction used by the tools and their syntax
sugar.

that have already been tested. However, it does not support the checkpoint of any experimental
workflow. XpFlow is able to save the progress of any experimental workflow by saving the state of
all variables used in the experiment description. Thus, if the execution faces any eventual error,
users can react, fix the error and continue to execute the experiment from the point it stopped.
Ezpo does not support experiment checkpointing, instead it provides an interactive mode that is
triggered when an error occurs. In this way it serves the same function of XpFlow checkpointing
mechanism. As a consequence, the checkpoint mechanisms provided are either specific for a kind
of experiment or does not take into account the state of the platform. We have to remark here

o7

CHAPTER 3. EXPO: A TOOL TO MANAGE LARGE SCALE EXPERIMENTS

Execo
3- A Expo
XpFlow
[0} 1}
€2+
=
A
A 1‘k u:t
14 f [
[=)
Ha
0 50 100

Number of nodes

Figure 3.6: Evaluation of the scalability of Expo, Execo and XpFlow when executing a command in a
large set of resources. Each test was executed ten times.

that the real sense of a checkpoint mechanism (to save the progress of an experiment) is difficult
to implement. There are some difficulties such as the need of large amount of storage capacity
and the capturing of the network state, those problems are addressed by works in the checkpoint
of parallel applications and the snapshotting of whole virtual infrastructures @]

3.5 Related works

Chapter Rlpresented a complete state of the art in experiment management tools. Here we present
two fields of constant research in software engineering that shares similar concerns with Ezpo:

e Deployment of complex distributed applications

e Regression tests for distributed applications

Those fields of research have produced a plethora of tools that seeks to remove the error-prone
nature of human intervention by encouraging automation. They aim at reducing the burden of
configuring and testing distributed applications.

3.56.1 Deployment of complex distributed applications

Due to the limited scalability and error-prone nature of manual approaches several tools have been
developed to make easier the deployment of applications and their pre-requisites in distributed
infrastructures. ADEM @] is an automation tool for the deployment and management of grid
application software. It manage efficiently the deployment and building of applications (compiling
and installation of dependencies) over different grid sites. It takes into account platform het-
erogeneity through the use of signatures. Tune [17] is a tool to manage software in distributed
infrastructures. The goal is to make easier the administration and deployment of multi-tiered
applications 2. 1t is based on the concept of autonomous computing for making the administra-
tion of an infrastructure as a component architecture. The main idea is to automatically create a
representation based on fractal components of the real system, with two main parts: application

125pplications that depend on different services (e.g., databases, web servers, load balancers, etc).

58

CHAPTER 3. EXPO: A TOOL TO MANAGE LARGE SCALE EXPERIMENTS

components and platform components. All expressed with a subset of UML diagrams. It has
already been used in the installation of a cluster software and the deployment of an electromag-
netic simulation code in a grid infrastructure [83]. Another work [50] address the deployment of
applications in IaaS clouds. It proposes a decentralized protocol to automatically deploy applica-
tions consisting of interconnected software elements hosted on several VMs. It uses an XML-based
formalism to describe the cloud applications to be deployed. Ezpo differs from the aforementioned
tools in that it offers a more flexible, programmatic approach for the description of the experiment
and it is designed to interact with a large number of nodes.

3.56.2 Regression tests for distributed applications

Regression tests encompass different principles aiming at the rapid test and deploy of changes in
software. Those kind of tests when applied to distributed systems are hard, because applications
should start efficiently and in a correct order. Additionally, they have to meet complex dependen-
cies as the ones required by multi-tiered applications (e.g., database URL, load balancers, etc.).
DART [31] was developed to facilitate the writing of distributed tests for large-scale network appli-
cations. It provides a language based on XML to specify high level details of test execution. Each
test encompasses: setting up the required infrastructure, distributing code and data to all nodes,
executing and controlling the distributed tests and finally collecting the results of the test from all
the nodes and evaluate them. It integrates efficient tools for the execution of applications and the
transfer of files. NMI [99] is a framework to build and test software in a heterogeneous, multi-user,
distributed computing environment. The principal aim is to offer to the user the continual testing
of software changes. The user describe the process of building and testing along with its external
software dependencies by using a lightweight declarative syntax. It works along with a versioning
system to log the results and changes and perform the tracking of all inputs, which ensure repeat-
able and reproducible tests. Another framework oriented to IaaS Clouds is Expertus [69] which
through code generation techniques, automates performance testing of distributed applications. It
handles automatically complex configuration dependencies of software applications and it strives
to remove human error by fully automating the testing process (i.e., deployment, configuration,
execution and data collection). The automation is based on script generation from templates that
are specified using XML.

Nixos [123] aims at making distributed application testing as easy to write as unit tests. It
provides a specification for automatically instantiate virtual machines for providing the necessary
artifacts for tests, namely root privileges, system services, multiple machines, specific network
topologies, etc. The system is built on top of Nix [42] the functional linux distribution which
enables to provide a concise way to specify VM configurations and an efficient way to build
them. The main difference between the tools mentioned in this subsection and FEzpo is the target
community. The target community of those tools is most of the time software developers or
system administrators which count with high technical skills and this fact is reflected in the type
of languages offered to describe the environment of tests. Researchers do not always possess
the required expertise to deal with distributed systems complexity and that is why high level
abstractions for performing experiments were a design requirement for Fzpo.

3.6 Conclusions and future works

Experimentation in computer science and specially in distributed infrastructures has seen the
emergence of different experiment control systems. From this fact we can draw a conclusion that
most of the tools distinguish almost the same phases in the experimenting process. There are
three main parts of the experiment process that a tool must control and help the user with: (i) the
control, (ii) the supervision and (iii) the management of the experiment. The first part comprises
the description of the experiment, the capture of data, the definition of the source of data, and how
to get it after the experiment has finished, as well as the flow of control of the experiment. This is
an important step for the reproducibility of the experiment. Second, the experiment supervision,

59

CHAPTER 3. EXPO: A TOOL TO MANAGE LARGE SCALE EXPERIMENTS

which means the monitoring of the experiment. The last phase is the experiment management,
which is the interaction with the platform, and mainly consist in taking advantage of the services
provided by the infrastructure in order to carry out the experiment.

Expo offers a way to describe the experiment by using a programming language providing a
lot of flexibility and, more importantly, the abstractions that allow the user to express complex
configurations. We put special attention at automating the typical tasks done when an experiment
is performed. Because we think that automating the experimentation process is the way to go,
being one of steps that will lead to the experiment reproducibility. Furthermore it is important to
encourage the culture of experiment reproducibility, which is acknowledged to be a shortcoming
in computer experimentation.

The use of experiment tools will save user time, which can be spent in improving the software
itself, it will save costs and allow others to reproduce the results more easily. It is important to
integrate some features to Ezpo for the sake of reproducibility, we need to improve the part of
the system that logs the experiment execution with the aim of having detailed and easy to treat
information. This would enable a possible replay of the experiment. Additionally, it is important
to incorporate mechanisms to monitor and to generate a workload, and more importantly, to deal
with fails.

60

Chapter 4

How HPC applications can take
advantage of experiment management
tools

The heterogeneous nature of distributed platforms such as computational Grids is one of the main
barriers to effectively deploy tightly-coupled applications. For those applications, one common
problem that appears due to the hardware heterogeneity is the load imbalance which slows down
the application to the pace of the slower processor. One solution is to distribute the load adequately
taking into account hardware capacities. To do so, an estimation of the hardware capacities for
running the application has to be obtained. In this chapter, we present a static load balancing
for iterative tightly-coupled applications based on a profile prediction model. This technique is
presented as a successful example of the interaction between experiment management tools and
parallel applications. The experiment management tool Ezpo is used that enabled to: (1) provide
a general, lightweight and descriptive way to capture the tuning and deployment of a parallel
application in a computing infrastructure, (2) perform the tuning of the application efficiently
in terms of human effort and resources needed. This chapter reports the costs for carrying out
the tuning of a large electromagnetic simulation based on TLM for the platform Grid’5000 and
the improvements obtained on the total execution time of the application. The contents of this
chapter were published in a paper [110] presented at CCGrid2014.

4.1 Introduction

High Performance Computing (HPC) strives to achieve the maximum performance of a given
machine. The increasing complexity of computing hardware architectures nowadays, makes rise
the number of variables to take into account to achieve this maximum performance and it is
even worse when considering heterogeneous infrastructures as computational Grids. A common
problem is the computation imbalance present in tightly-coupled applications that run in Grid
infrastructures which is due to the unawareness of the underlying infrastructure characteristics.
One of the best options to get the maximum performance is to tune the application code for a
given architecture. This approach is used by ATLAS [129] which gets its speed by specializing
itself for a given platform. Architecture aware tools such as hwloc [16] are now available in high
performance runtime environments of parallel applications. Therefore, a deep knowledge of the
underlying infrastructure by the application is the evident trend to achieve the best performance.
For some regular scientific codes, it is possible to derive a performance model and the tuning of
the application can be guided based on this performance model [61]. This performance model can
be constructed either from a detailed understanding of the application execution or by analyzing
multiple runs. A multiple-runs approach is simpler because it takes into account the complex
interaction between the application and for instance the memory hierarchy. To do so, several tools

61

CHAPTER 4. HOW HPC APPLICATIONS CAN TAKE ADVANTAGE OF EXPERIMENT
MANAGEMENT TOOLS

such as profilers, tracers, statistical engines, runtime environments have to be linked together in
order to carry out the task of automating the generation, collection and treatment of performance
information and provide the appropriate data to create the model.

In this chapter, it is shown how parallel applications can take advantage from experiment
management tools. A technique of load balancing for large simulations codes based on a prediction
model is analyzed. This technique relies on the interaction between experimental management
tools and parallel applications. The technique is applied to a large electromagnetic simulation code
based on Transmission-Line Matrix (TLM) numerical method [60], deployed in a heterogeneous
Grid infrastructure. This technique is classified as a Static load balancing which is well adapted to
highly regular applications. It requires few changes to the application code compared to adopting
a new programming model and given the high memory requirements of the application, a dynamic
approach would generate a considerable overhead. The used of our experiment management tool
Expo presented in Chapter [B]is shown. This enabled us to manage the modeling workflow where
the execution of big campaigns of application runs are needed and the orchestration of different
tools that could participate in the process of creation of the performance model. Doing this task
efficiently is important in order to not delay the execution of the real application, reduce the
perturbation of the results and provide in a short period of time valuable information to the
application.

The contribution of this chapter is twofold:

e Show the importance of experiment management tools in helping users to manage the com-
plexity of distributed infrastructures, to automate several tasks and to make efficient use of
computational resources.

¢ A load balancing technique for regular scientific codes based on the calibration of the platform
and a prediction model. The approach is not expensive in terms of code source modification,
user intervention and presents almost no overhead. An average improvement of 36% in the
execution time is achieved.

4.2 Related work

The related work is organized into two parts: the load balancing techniques in parallel applications
and the different techniques to carry out such a task. The second part presents the state of the
art of experiment management tools and works related to the benchmarking of Grid platforms.

4.2.1 Load balancing of distributed applications

An important phase of the execution of parallel codes is the assignment of work to compute
units. The problem of load balancing then is defined as the assignment of work to the compute
units according to its performance or load. This assignment of work can occur at the startup of
the application (static partitioning) or it can happen several times during the execution of the
application (dynamic partitioning). Both of them will be described in the following subsections.

Dynamic techniques

Dynamic techniques are very popular now given the apparition of infrastructures such as cloud
computing. It is the case of Charm++ runtime system [58] which through continuous estimation of
processor load, it adapts to the imbalance created by known fluctuations in shared infrastructures.
Another approach based on Charm++ [853] takes into account the latency existing in cross-site
communications for Grid infrastructures. As it can be very cumbersome to convert applications to
newer paradigms such as Charm++, AMPI was proposed in [13] which enables a bigger number of
application benefits from the framework features as load balancing. These dynamic techniques were
mainly created due to the large presence of high irregular load in parallel computational science
and engineering. Our approach applies to highly regular codes executed on Grid infrastructures

62

CHAPTER 4. HOW HPC APPLICATIONS CAN TAKE ADVANTAGE OF EXPERIMENT
MANAGEMENT TOOLS

where the CPU is not shared between users. Therefore, the gain obtained with a dynamic approach
would be negligible and there exist a potential overhead of context switching and migration.

Static techniques

In [109], a static load balancing technique for mapping iterative algorithms onto heterogeneous
clusters is presented focusing on the complexity of application partitioning and the efficient heuris-
tics for the distribution schemes. Load balancing for Grid applications is proposed as well by
PaGrid[64] which proposes a partitioner to balance mesh based applications. A graph is generated
for the platform where processors are weighed according to its relative performance at executing
standard benchmarks. This graph is matched with the graph generated for the application. In
[40] is described a resource-aware partitioning where information about a computing environment
is combined with traditional partitioning algorithms. The approach collects information about the
computing environment, and processes it for partitioning use.

4.2.2 Experiment management tools

GrapBench [94] provides a framework to carry out a semi-automatic benchmarking process for
studying application behavior in grid infrastructures. The framework controls the number of
benchmarking measurements required by a given application which are managed then by its ex-
periment engine. The work outlined here differs from this in that it provides a more general
experiment engine conceived to carry out any kind of study for an application in distributed plat-
forms. Plush [4] is a widely used tool in PlanetLab, for deploying and monitoring application
execution in distributed platforms. It provides abstractions to specify the steps to deploy an
application, however, a real experiment entity is not taken into account. The inflexibility of its
description language makes it difficult to write parametric studies. ZENTURIO [104] enables the
management of parametric studies for an application in a framework for experimenting, but their
high number of modules makes it difficult to port it to different platforms.

Workflows engines are well known for their capacity for carrying out parametric studies. Vis-
trails [23] provides parameter exploration and comparison of different results. It improves the
experimentation activity providing data provenance tracking mechanisms. One limitation of Vis-
trails is its inability to adapt to distributed environments. Pegasus|38] offers a mapping between
tasks in a workflow and distributed infrastructures (cloud, grid, clusters). Despite the capacity
of some workflow engines to use distributed infrastructures, it is difficult to use them when con-
sidering the setup of an application. This setup could incur several complex steps that need a
constant supervision. For more information about the aforementioned tools the reader is referred
to Chapter 2l The approach proposed in this chapter addresses those issues and it is based on
the experiment management tool presented in Chapter Bl In that chapter it was shown that Expo
is based on two abstractions resources and tasks which can be combined to represent a workflow.
The workflow specification describes all the experiment activity: platform access, application de-
ployment and setup, application execution, analysis and generation of results.

4.2.3 Transmission-Line Matrix

The main idea of this application is to simulate the propagation of an electromagnetic field in-
side large structures such as tunnels and airplane cabins. TLM numerical method models the
electromagnetic field propagation by filling the space with a network of transmission-lines fed by
electrical signals whose voltage and current correspond to the electric and magnetic fields. The
intersection of these lines, that have the free-space impedance, is modeled with the Symmetrical
Condensed Node (SCN) [72] scheme, whose scattering matrix is derived directly from the behavior
of the fields. The TLM method requires significant computing resources, but its algorithm has
the advantage of being parallelizable, which makes it possible to simulate oversized structures on
multiple computing machines. Using a parallel approach, large electromagnetic structures can be

63

CHAPTER 4. HOW HPC APPLICATIONS CAN TAKE ADVANTAGE OF EXPERIMENT
MANAGEMENT TOOLS

modeled by means of large scale computing systems such as Grid or supercomputers in a HPC
scenario.

In order to avoid a heavy TLM calculation, the discretized domain is sliced into several sub-
domains that are assigned to the processors where will be computed in parallel. The CPUs
communicate between them to achieve the job. The parallel approach, based on Message-Passing
Interface (MPI), is designed for Single Program Multiple Data (SPMD) programming model as it
is presented in [9]. In the proposed parallel TLM application, a one-dimension Cartesian topology
is implemented for the partitioning process.

4.3 Load Balancing approach

Here, the technique of load balancing applied to the TLM application is described. Considering a
fully heterogeneous infrastructure, such as Grid’5000, a Grid computing with many clusters geo-
graphically distributed composed of different hardware configurations. The application needs to
assign an adequate workload for each node in order to fully exploit the infrastructure capacities.
Given that the application is highly regular as shown in [9], a static load balancing technique is
chosen, where all the work is divided and distributed at the beginning. The amount of work as-
signed to each processor depends on the relative performance of the application on such processor.
As this relative performance can be difficult to get from processor characteristics, a prediction
model is used in order to have a more accurate indicator. It was already shown that the expected
runtime of the computation part of the application scales linearly with the number of TLM cells
Nz, Ny, N, on the three Cartesian directions, y being the partitioning direction. Thus, a simple
linear function given in [9] is used to model the performance:

Teqice = c1 + CQNzNyNzt; (41)

where ¢ 2 are the time coefficients corresponding to different blocks of the TLM application
and ¢ represents the number of computing iterations. The prediction model, given in (3], takes
into consideration the algorithm to be executed and the processor architecture performing the
computation. They represent the processor architecture information inside the prediction model.
This model takes into account the effects of cache misses, according to the problem size. The first
term may be neglected as it is very small compared to the second one. Lets consider that the
partitioning procedure gives the length of the computing sub-domain assigned to the process i, as:

li = OéiNy, (42)
with

for all p processes the structure is computed by. Consequently, the amount of work is dis-
tributed according to the fact that the computation time has to be the same for each process
i:

Tcalci = CiNzliNztaVi S [Lp] (43)

where ¢; is the second coefficient from (£3) corresponding to the process i. This leads to
describe ([£.2) by:

N,
= (4.4)
i <
where [; is the work assigned to the process j. Therefore, a construction of a prediction model
of the application for each different computing hardware available on the Grid infrastructure has
to be performed. In order to have a good prediction model, a given set of chosen simulations have
to be run and analyzed for each different machine. This process is depicted in Figure 1l Expo

64

CHAPTER 4. HOW HPC APPLICATIONS CAN TAKE ADVANTAGE OF EXPERIMENT
MANAGEMENT TOOLS

is used to automate the task of conducting this big number of executions. This process will be
called calibration. The module used to this end is described in Section 31l The load-balancing
approach implemented in this work considers the communication between different clusters being
homogeneous. The communication capabilities of the computing environment are not taken into
account. Not all resources have to be involved especially when the structure to be computed is
not so large, because the communications due to an excess of processors may slow down the entire
simulation, despite the increased accumulated speed.

The execution of the application will be wrapped in two Ezpo modules, which will automate
all the process in the platform chosen for testing (Grid’5000).

e Calibration of the platform. This module runs once, it can contact the platform in order to
know if there has been a change in the hardware configuration and deploys the necessary
calibration.

e Deployment of the application. Generation of a file that contains platform fitness information
for the application and carry out the load balancing at application level.

Optimal partitioning

—>-Application can to be tunned

Tunning can be guided by a performance

model
Regular
T

application Tcalc — Cl _|_ CQVt
oo

Partitioning

Need for several

l Ny runs in order to
A — —> get accurate
J C p 1 .
j E 1 T coefficients
1=1 ¢y G C

Coefficients have to be computed for each diffent
hardware configuration

Figure 4.1: Load balancing approach

4.3.1 Expo calibration module

All the procedure of platform calibration was captured using Fzpo tasks abstractions. The follow-
ing tasks were defined:

65

CHAPTER 4. HOW HPC APPLICATIONS CAN TAKE ADVANTAGE OF EXPERIMENT
MANAGEMENT TOOLS

Platform
Calibration

(Information about the computing

Generation of estimates
¢ environment)

Application
Deployment

Figure 4.2: Expo Modules: the calibration modules is executed once

Task name Execution time [sec] per cluster

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
Transfert site 15.09 13.31 16.32 14.06 26.76 42.55 10.26 10.46 11.92 35.03
Compiling code 21.84 24.35 30.14 22.38 23.49 27.10 20.56 21.36 29.94 20.28
Calibration 1770.14 4860.31 3630.55 1770.47 4660.67 7590.81 1640.23 1600.83 3430.70 1620.87
Free resources 1.76 1.62 2.20 1.25 1.33 1.54 1.42 1.77 1.06 1.55

Table 4.1: Execution time of the different tasks that compose the calibration module.

e Run reservation: make a request to the computing platform in order to reserve the re-
sources needed.

e Transferring code to each site on the grid: The code is sent from one chosen site to
every site in Grid’5000.

¢ Extracting and compiling the code: The code is extracted and compiled with the right
configuration.

e Calibration: It comprehends the execution of several simulations with different parameters.
Two types of calibration are performed in order to take into account the cache effects.

e Compute coefficients: The statistical engine RH is used in order to process the files gener-
ated by the calibration and perform a linear regression in order to calculate the coefficients
of the model.

e Free resources: It makes a request to the platform in order to free the resources used by
the calibration.

These tasks were described using Fzpo DSL using 180 lines. An extract of the description is
shown in Listing [[1] and the different execution times of each task for different clusters are shown
in Table @1l It is important to note that the time to execute the whole module for a particular
cluster mainly depends on the execution time of the simulations. There is an almost negligible
overhead in the execution time with Ezpo, which was already shown in Chapter Bl

In Figure 4.3 is shown the executable workflow generated from the abstract calibration ex-
periment definition. Here, the level of execution is the job. The system submits a job into the
infrastructure for every different (different architecture) cluster in Grid’5000. Thereby, every task
defined in the abstract representation is mapped into a cluster and managed asynchronously. Sev-
eral machines were used per cluster in order to lower the time to get the results. The simulation
were deployed in parallel for this case using TakTuk which enable us to maintain a low number
of ssh connections to control the experiment. In Figure 4.4] it is shown the heterogeneity of
Grid’5000 in terms of coefficients of the prediction model. This figure was generated using the
results obtained by the calibration module.

Advantages of using Ezpo:

o It helps to deploy efficiently the simulations used for the calibration part, making independent
from the platform. More than 1359 simulations were necessary to get data for the prediction
model.

Thttp:/ /www.r-project.org/

66

CHAPTER 4. HOW HPC APPLICATIONS CAN TAKE ADVANTAGE OF EXPERIMENT
MANAGEMENT TOOLS

Transfering necessary
software to the
infrustructure gateway|

Runing reservation

A
Run calibration C1
parametric stud} 3,
EA -
T HIRD O Q—L
3

file €1 Iz

Run calibration €2
I
3

(parametric study) _
b Iz

Write results to a
file c2

Figure 4.3: Experiment calibration executable workflow

cluster
B adonis

chingchint
chirloute
edel
genepi

granduc
graphene
B griffon
hercule
orion
paradent
parapide

parapluie

pastel

eims
@ M sagittaire

'Cluster’

o
1

Prediction model coefficient

e A

Figure 4.4: Heterogeneity of Grid’5000

e Makes all the procedure more reproducible and repeatable.

e Frees the application from implementing this functionality. Relying on more flexible lan-
guages for this task.

67

Lo B N N

WOW W W W WD N NN NN NN R R e R e s e
OUR W~ O ©00 N3O R WN RO DWW A®N= OO

CHAPTER 4. HOW HPC APPLICATIONS CAN TAKE ADVANTAGE OF EXPERIMENT
MANAGEMENT TOOLS

task :transfering_tlm, :target => resources.gw do
put ("~/TLM/tIm_vl.tar","/tmp/tlm_test.tar", :method => "scp")
end

task :run_reservation, :depends => [:transfering_tlm] do
reserv.run!
end

task :transfert_site, :target => resources, :depends => [:run_reservation] do
options_put = {:method => "scp", :nfs => :site}
run("mkdir -p ~/Exp_tlm")
put ("/tmp/tIlm_test.tar","”/Exp_tlm/tlm_test.tar",options_put)

end

task :compiling, :target => resources, :depends => [:transfert_site] do

check("1ls ~/Exp_tlm/TLMME/") then
run("cd ~/Exp_tlm/; tar -xf tlm_test.tar")
run("make -C ~/Exp_tlm/TLMME/t1lm/")

end

end
task :calibration_c2, :target => resources, :depends => [:compiling] do

params_c2.each_with_index{ |par,index|

number_sim = 2

RUNS.times do
tag = {:parameters => par,:size => size_c2[index] }
commands =["cd ~/Exp_tlm/TLMME/t1lm/;./run 1 #{par} matched"]
run (commands, :ins_per_machine => number_sim,:log => tag)

end

puts "Finishing parameter #{par}"

end

Listing 11: Extract of the calibration module

4.4 Results

4.4.1 Experimental platform

The simulations were performed on Grid’5000 platform @] For performance reasons, only two
processes are executed on grid nodes, each one on a different processor. The architectures of the
computing nodes from Grid’5000 are different from cluster to cluster. The same clusters where
used in order to keep the homogeneity between the experiment results concerning the simulation
time. These clusters are geographically distributed in two sites. These sites are connected by
RENATER, the French network for research and teaching. All Expo description files used two run
the experiments are available in2.

4.4.2 Using different configurations

Here, it was evaluated the performance gain obtained using load balance under different hardware
configurations. In order to show the improvement in performance for large simulations, we opted
for using different simulation sizes proportional to the number of nodes. This enabled to maintain
a favorable rate between computation and communication. The results are shown in the Figure.
A maximum gain of 42.84% was obtained using clusters located in the same site. The
gain obtained using several geographically distributed sites varies a great deal, we observed here
performance gains ranging from 3.25% to 19.92%.

68

CHAPTER 4. HOW HPC APPLICATIONS CAN TAKE ADVANTAGE OF EXPERIMENT
MANAGEMENT TOOLS

edel genepi] [quembcxurg nancy reims nancy luxembourg

Performance Gain

Number of nodes - -

Figure 4.5: Using different heterogeneous configurations. First tests used cluster located in the same site
(edel-genepi). The other two series of test used different geographically distributed sites (luzemboury,
nancy, reims).

4 8 16 32 64 128
No of processes

Figure 4.6: Gain obtained with the same simulation parameters changing the number of nodes.

4.4.3 Changing the number of nodes

The experiment simulates the electromagnetic field propagation, using the TLM method, for 10000
time steps inside a waveguide structure, having the dimensions: 172 mm width, 86 mm height,
2432 mm length, a mesh step of 1 mm. In this experiment the computing nodes belong to Griffon,
Chingchint and Chirloute clusters. The simulation time values are presented in Figure. The
maximum gain obtained when using load-balancing approach is about 36%. The values of the
simulation time when the load is balanced according to the calibration model given by Ezpo are
smaller than the time values when the structure is divided identically on all MPI processes. The
gain obtained by load balance approach decreases while the number of processes increases, because
the computation time decreases according to communication time.

2 http://expo.gforge.inria.fr/

69

CHAPTER 4. HOW HPC APPLICATIONS CAN TAKE ADVANTAGE OF EXPERIMENT
MANAGEMENT TOOLS

4.4.4 Large structure

In order to prove the real benefits of the grid environment for TLM large simulations, a supersized
rectangular matched waveguide, discretized upon 95 million TLM cells is simulated. Its dimensions
are: 345 mm width, 173 mm height, 1600 mm length and a mesh step of 1 mm.

Distributed experiment

In the first experiment, the simulations are performed using four nodes from Griffon and Chirloute
clusters. The gain obtained by load balancing approach is about 25.5%.

Local experiment

A second experiment was carried out using nodes from clusters Paradent and Parapide which are
localized on the same site. The gain obtained by load balancing approach is about 48.5%, much
better than the distributed experiment because the communication time is much smaller between
nodes on the same site.

4.5 Conclusions and Future Works

This work showed the interaction between applications and experiment management tools, which
is not limited to reproducibility purposes and replayability of experiments. This calibration is an
example of how experiment management tools can free applications of doing certain tasks and
how can they help them to perform a tuning for a given platform. The use of tools as Ezxpo
serves the following purposes: it makes easy the access to complex platforms, helping non-expert
users to make an efficient use of the resources. It helps to combine tools in order to capture the
experimenting process.

It is difficult to perform an efficient deployment of the application using just information
provided by the hardware. Performance models based on runs provide a more accurate information
for using the platform resources more efficiently. At the same time, a load balancing based on a
performance model gives to the application high flexibility for estimating the best work placing
for a certain size given the hardware configuration.

In perspective, smarter reservation mechanisms taking into account the calibration and the
availability of the platform, the different number of possible configurations for deploying and
their cost represent a viable solution toward fast and automatic multidisciplinary application
simulations.

70

Part IlI

Kameleon

71

Chapter 5

Setting up complex software stacks

Expo

+ Platform requests
— » [+ Provisioning

+ Contextualization

Kameleon

Figure 5.1: Role of Kameleon in the experiment cycle

A software appliance builder bundles together an application with its needed middleware and
an operating system to allow easy deployment on Infrastructure as a Service (IaaS) providers.
These builders have the potential to address a key need in our community: the ability to repro-
duce an experiment. This chapter reports the experiences on developing a software appliance
builder called Kameleon that leverages popular and well tested tools. Kameleon simplifies the
creation of complex software appliances that are targeted at research on operating systems, HPC
and distributed computing. It does so by proposing a highly modular description format that en-
courages collaboration and reuse of procedures. Moreover, it provides debugging mechanisms for
improving experimenter’s productivity. To justify that our appliance builder stands above others,
we compare it with the most known tools used by developers and researchers to automate the
construction of software environments for virtual machines and IaaS infrastructures. The results
shown in this chapter were published in [111].

5.1 Introduction

Thanks to the advances in virtualization, the lowering of the cost of computing hardware and the
increasing popularity of cloud computing. Now software infrastructures can be deployed easily and
applications can be bundled together with their middleware requirements and operating system in
what is called a software appliance. Two use cases for software appliances in industry and research
are:

e Industry: the pervasiveness of cloud computing makes feasible the replacement of a whole
software stack from scratch instead of trying to fix it. This has led to a new model of
provision software based on software appliances [28], which is also known as I'mmutable
servers. This brings several advantages to IT administration as: faster deployment time,
all the dependencies are already satisfied, it is easy to have a production like environment

73

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

on the development machines, etc. Hence, approaches like: wvagrant , veewee , packer E,
docker [have gained wide acceptance in industry. Those approaches strive for having a
common reproducible and disposable software environment that can be rebuilt from scratch
or from a base image using a definition file that can be versioned.

e Research: Large testbed infrastructures for experimentation in networks and large scale sys-
tems such as Grid’5000 [25], FutureGrid [51], etc. are available, which enable the deployment
of complex software stacks either on bare metal or using an TaaS provider. These infras-
tructures’ high degree of software stack customizability appeal to researchers who want to
test their ideas in real settings. However, the management of these software stacks is not
always trivial, their setup is a tedious and time consuming task that should be automated
whenever possible. The lack of automation can be attributed to the low expertise, lack of
the proper tools and the long learning path for researchers. The lack of automation leads
to the inability to reproduce an experiment, since it is not even possible to build or set the
experimental setup under the exact same conditions where an experiment took place. A
recent study [30], where the buildability of artifacts was evaluated, found that only 24% of
publications in ACM conferences and journals can be built. To preserve the experimental
setup some works are relying on software appliances technology.

Therefore, it is evident the importance and benefits of software appliances for both industry

and research. This chapter focus more on the latter use of software appliances that deals with the
problematic of experimentation under real settings in computer science.

5.1.1 Motivations

E I
Base software layer Experimental
(0.S. + middleware) | —> Al —>A2 A3 An 3 setup

\

- User machine - Installation of packages

[AVirtual machine
Cloud computing
Real machine

- Other machine A - Source code compilation
1

- Application configuration

- etc.

Figure 5.2: Creation process of an experimental setup.

Figure illustrates the process to derive an experimental setup. Experimenters start from
a base setup which includes an operating system plus a middleware. This base setup could be
located in the same machine of the experimenter, in a virtual machine, in an TaaS provider as
Amazon EC, OpenStackﬁ, etc; or in a real machine that belongs to a computing cluster. The
experimenter will apply a sequence of actions (A;) which consists in, for instance: installation
of software packages, source code compilation, software configuration, etc. Applying these ac-
tions (A;) produce an experimental setup E’, which is then used for the evaluation of a given
implementation, algorithm, etc. Due to space limitations in research papers the composition of
E’ is not properly described, nor are the sequence of actions (4;) that were taken to derive E’.
In domains such as High Performance Computing, Distributed Systems and Operating Systems

'http://www.vagrantup.com/
2https://github.com/jedidever/veewee
3http://wuw.packer.io/
4https://www.docker.io/
Shttp://aws.amazon.com/ec2/
6http://wuw.openstack.org/

74

http://www.vagrantup.com/
https://github.com/jedi4ever/veewee
http://www.packer.io/
https://www.docker.io/
http://aws.amazon.com/ec2/
http://www.openstack.org/

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

research, experimental setup configuration, which includes the operating system, version of li-
braries and compilers, compilation flags, etc, are crucial requirements to be able to repeat an
experiment @]

5.1.2 Reconstruct-ability

To improve experimentation, we claim that an experimenter needs to know the exact process that
led to the creation of a particular experimental setup, E’, as well as to be able to replay and modify
this process to arrive at the same and alternative experimental setups. We introduce the concept
of reconstructability of an experimental setup to formally capture this process. An experimental
setup E’ is reconstructable if the following three facts hold:

e Experimenters have access to the original base experimental setup FE.

e Experimenters know exactly the sequence of actions
(A1, Ag, As, ..., A,) that produced E'.

e Experimenters are able to change some action A; and successfully re-construct an experi-
mental setup E”.

Reconstructability can be expressed functionally as E' = f(F, (A;)), where f applies (A4;) to
E to derive the experimental setup E’. Thus, if reconstructability holds, we are guaranteed to be
able to derive E' no matter when (A;) is applied to E. Reconstructability does not hold when:

e An action A; is composed of sub-tasks that are executed concurrently making the process
not deterministic. For example: compilation of software using Makefiles with the option
-j that runs parallel compilation process. This provokes compilation rules to run in any
order if they are not connected by dependencies.

e Packages with the latest release of Debian (Debian 8) have a time of expiration. Therefore,
old packages can not be installed.

Reconstructability also does not hold when either the base setup, F, or the specific software
used in an action, A;, is no longer available. The availability of software becomes an issue when
reconstructability depends on package managers and configuration management tools @] For
example, there is no guarantee that a git repository which is used by an action will be available
at a later point in time.

5.1.3 Contributions of this chapter

This chapter identifies the necessary ingredients for a software appliance builder to be a viable
solution for the preservation and packaging of experimental setups. The contributions of this
chapter are:

1. In Section 512 we introduced the concept of reconstructability, which identifies the process
to build an experimental setup so that the setup can be rebuilt and can be built with
variations.

2. In Section 53] we evaluate existing software appliance builders against the criteria needed
to improve user productivity.

3. In Section [5.4] we refine the Kameleon syntax and concepts, and we extend the persistent
cache mechanism so that it supports new concepts.

4. In Section (.5l we demonstrate that Kameleon is modular, enables the reuse of code, and
builds on proven technology.

5. Section B.5.2] we identify the container requirements for different types of software appli-
ances.

75

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

The rest of this chapter is structured as follows: Section presents related work. Section 53]
presents a qualitative comparison of the most widely used software appliance builders. Section [5.4]
presents a complete description of Kameleon architecture, concepts and features. Section
presents use cases that validate our approach. Section [(.5.4] presents future work. Section
concludes.

5.2 Related work

We use the term software appliance, which is defined as a pre-built software that is combined
with just enough operating system (5¢0S) and can run on bare metal (real hardware) or inside a
hypervisor. A virtual appliance is a type of software appliance, which is packed in a format that
targets a specific platform (normally virtualization platform). A software appliance encompasses
three layers:

e Operating System: In the broadest sense includes the most popular operating systems
(e.g GNU/Linux, Windows, FreeBSD). This element of the appliance can also contain mod-
ifications and special configurations, for instance a modified kernel.

e Platform Software: This encompasses compiled languages such as C, C+-+ and interpreted
languages such as Python and Ruby. Additionally, applications or middle-ware (e.g., MPI,
MySQL, Hadoop, Apache, etc.). All Those software components are already configured.

e Application Software: New software or modifications to be tested and studied.

Virtual appliances bring up numerous benefits to administration of big infrastructures]
and education on operating systems @] A system for deploying lightweight virtual appliances
was proposed in M] which is based on COW-based virtual block disks for splitting a virtual disk
image into smaller disk images for rapid deployment of requested services. A similar system was
proposed in M] based on virtual machine snapshots with the goal of improving response time of
cloud computing infrastructures. The feasibility, of using virtual appliances for service deployment,
was shown in |. The approach resulted easy and simple compared to traditional deployment
mechanisms. A system called Strata proposed in @] enables more efficient creation, provisioning
and management of virtual appliances. Another system called Typical Virtual Appliances is pro-
posed in | which brings more flexibility to service deployment, consuming a few storage and
bandwidth.

Re-running an experiment with the original software artifacts could be achieved by using
virtual appliances and virtual machine snapshots @,] Brammer et. al M] present a system
to create executable papers, which relies on the use of virtual machines and aims at improving
the interactions between authors, reviewers and readers with reproducilibity purposes. Kameleon
differs in that it allows the re-execution of an experiment with the original software artifacts and
the ability to modify the experimental setup cleanly and easily.

Widely used tools such as Vagrant, provide reproducible environments for development. Va-
grant uses pre-built images which hinders understanding of the operating system layer and makes
modifications to this layer difficult. Kameleon differs in that the construction of the operating
system layer is part of the software appliance generation. This fact makes its recipes less complex
than the recipes used by popular configuration management tools such as Puppetﬁl and Chef®.

From the traceability point of view, Kameleon can be compared to interactive notebooks such
as IPythorE where the goal is to track every step that leads to a given result. Kameleon keeps a
trace of all the steps that led to the creation of a given software stack, it does so by providing a
structured, modular and understandable language. Kameleon makes reconstructability of software
appliances possible, experimenters are able to explore all the actions, modify and repeat the
environment generation.

“http://puppetlabs.com/
8https://www.getchef.com/chef/
9http://ipython.org/notebook.html

76

http://puppetlabs.com/
https://www.getchef.com/chef/
http://ipython.org/notebook.html

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

In Section (.33 we discuss software appliance builders.

5.3 Software appliance builders comparison

We describe and evaluate the most widely used software appliance builders in cloud infrastructures
and development environments. The evaluation uses as criteria: 1) how well they support the
software appliance build cycle and 2) whether they meet the criteria for improving experimenters’
productivity to build an experimental setup.

5.3.1 Software Appliance Build Cycle

All the analyzed tools follow the same pattern in the process of building a software appliance. The
tool takes as input a Description File that details all the requirements that the software appliance
should meet. Then, it initializes a Container. A container is the environment that it is used for
building the software appliance. This term container encompasses: system level virtualization
techniques (e.g., chroot, openVZ, Linux Containers), full virtualization technologies (e.g., Virtual-
Box, KVM, Xen, VMware) and real physical machines. Once the container is initialized, the tool
parses the description and starts to carry out the bootstrap, setup and export procedures. The
output of this process is a software appliance formatted for the infrastructure that will finally host
it. Table [5.1]shows how this build cycle is supported by each tool. The main steps in the software
appliance build cycle are explained below:

e Bootstrap: This refers to the process of getting a bootable operating system. This bootable
image can be either built from scratch or it can be retrieved from some external source. The
normal procedure is to get an ISO image from the target operating system and follow the
installation procedure. Another option is to download and load a software appliance already
created.

e Setup: In this step, users apply several procedures to customize the base system and make
it meet their needs. These procedures include mainly the installation and configuration of
software. There are many possible ways to customize, by using shell scripts or configuration
management tools such as Salt, Chef, Puppet, Ansible, etc.

e Export: This step creates the final format for the software appliance. The final format
ranges form the available virtual disk formats (e.g., VD, VMDK] ,QCOW) to more
simple formats based on tarballd™.

5.3.2 Criteria for Improving User Productivity

The evaluation is driven by the question: What makes an experimenter more productive when
building a complex software appliance? The following criteria will be used for the evaluation:

e Easiness: The tool has a low learning curve. Specially, a low learning curve is supported
by providing a simple language to describe the appliance across the different levels of the
software appliance’s software stack (e.g., O.S. level, middleware or application).

e Support during the build process: Long compilation times are commonplace when
building these kinds of software stacks, for instance the compilation of operating system
kernels, modules, scientific libraries. Because this process is frequently error prone, a mech-
anism for debugging or checkpointing the process makes the experimenter more productive.
Validation of the correct functioning of the software appliance is required as well.

Ohttps://www.virtualbox.org/manual/ch05.html

Uhttp://www.vmware . com/app/vmdk/?src=vmdk
2http://www.linux-kvm.org/page/Qcou?

137t refers to a computer file format that can combine multiple files into a single file.

7

https://www.virtualbox.org/manual/ch05.html
http://www.vmware.com/app/vmdk/?src=vmdk
http://www.linux-kvm.org/page/Qcow2

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

Tool

Feature Docker Packer OZ Veewee Kameleon BoxGrinder
Bootstrap | Read only tarballs | Installation ISO, | Installation ISO Installation ISO Any bootstrap op- | Installation ISO
Building that can be ob- | existing software tion
taind form Docker | appliance
Hub
Setup DockerFile instruc- | Shell scripts, File | Shell scripts Shell scripts Shell scripts with | Shell scripts
tions upload, Ansible, Kameleon syntax
Chef, Puppet, Salt
Export Linux Containers Amazon EC2, Dig- | QEMU VirtualBox, VirtualBox, Amazon EC2,
italOCean, Docker, QEMU, VMware QEMU, VMware, | QEMU, Virtual-
Google Compute Docker, Grid’5000 box, VMware
Engine, Open-
Stack, Parallels,
QEMU, Virtual-
Box, VMware
Description | Language Plain text docker | JSON XML Ruby YAML YAML
language
. Container | Linux containers Same as Export QEMU Same as Export Same as Export guestfs
Execution
support
User facil- | Able to commit | Validation of de- | ISO caching , gen- | Image configura- | Persistent cache | None
ities changes in the File | scription, ISO | eration of meta- | tion validation mechanism, check-
system layer caching data manifest points, interactive
shell

Table 5.1: This table shows how the software appliance build cycle is supported by each tool

78

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

Table 5.2: Comparison of widely used appliance builders based on criteria that would make an experimenter
more productive.

Tool Kameleon | Docker | Packer BoxGrinder | Veewee | Oz
Easiness Yes Yes No Yes No No
Support in the building pro- | Yes Yes Yes No No No
cess

Container diversity Yes No Yes No Yes No
Shareability Yes Yes No Yes No No
Reconstructability Yes Yes No No No Yes

e Containers diversity: The tool should support a variety of container types. This en-
ables hassle-free transportation of an experimental setup from one infrastructure to another,
because experimenters are more comfortable with working in specific environments. Addi-
tionally, it should be easy to integrate new types of containers that meet the requirements of
the experimenter. For example, libraries such as ATLAY which gets its speed by specializ-
ing itself for the underlying architecture, needs to be compiled on the target machine where
it will finally run. Certain Linux modules need direct access to real hardware. Therefore,
they could not run on virtualize systems. That is the case for Dune [12] and CControl [101].

e Shareability: Instructions for building a software appliance must be organized and stored
in a modular way to enable the reuse of procedures and collaborate within a community.

¢ Reconstructability: One important shortcoming is the reproduciblity of experiments in
computer science. It has been demonstrated that one of the causes is the impossibility to
build the same software artifactd™ used in a publication [|30]. Thus a requirement is to be
able to reconstruct a software appliance from its definitions, which will at the same time
enable later customization as defined in Section

5.3.3 Software Appliance Builders

In this section, we describe and evaluate the most widely used software appliance builders according
to our criteria for improving user productivity. Table shows the evaluation.

Docker

Docker'd offers a powerful and lightweight way to build software appliances that are packed in
Linux Containers (LXC). Docker manages and tracks changes and dependencies, making it easier
for users to understand how the final appliance was built. It relies on repositories for enabling users
to share their artifacts with other collaborators. The most appealing feature of Docker is that it
makes applications portable across many infrastructures. As a downside, however, applications are
run inside Linux Containers which could be not suitable for certain uses (e.g., run an application
that uses cgroup). The description of the building process is done using a simple syntax based
on few constructs that help customize the containers.

Packer

Packer'§ helps users to create identical software appliances targeted at multiple platforms. The
process is composed of: builders, responsible for creating machines and generating images from
them for various platforms; provisioners, used to install and configure software (many options are

http://math-atlas.sourceforge.net/

157t refers to source code compiled for testing.
16https://www.docker.io/
Thttps://www.kernel.org/doc/Documentation/cgroups/cgroups . txt
8http://www.packer.io/

79

http://math-atlas.sourceforge.net/
https://www.docker.io/
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://www.packer.io/

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

available from simple shell scripts to high-end configuration management tools) and postprocessors,
that help manage the final produced image. Packer supports a variety of container types and it
strives to make descriptions portable across different containers. Thus the burden of changing
from one development environment to another is reduced. However, a different language is used
to describe the operating system layer, which makes difficult to add modifications to this layer.
Additionally, the tool do not provide any mechanism for organizing the instructions which hampers
shareability.

BoxGrinder

BoxGrinde' creates appliances from simple plain text descriptions for various platforms. It
utilizes the host system to perform the image creation using the guestf@ library which results
in a faster process. Then, the newly created software appliance can be exported locally to be
used for a virtualization technology or it can be moved outside to be used in IaaS providers.
Software appliance descriptions are simple and easy to understand and can be composed for reuse.
BoxGrinder does not offer any mechanism for supporting the build process and it is tied to build
the software appliance using the host system which could be problematic when some isolation is
needed.

Veewee

Veewed?] is a tool for automating the creation of custom virtual machine images. It is able to
interact with several virtual machine hypervisors. It offers to the user the possibility of validating
the generated software appliance through the execution of behavioral tests. The capacities of the
tool for customizing a software appliance are very limited. Description files are written in Ruby
restricting the interaction with shell scripts.

0oz

O] was created to ease the automatic installation of operating systems. It uses QEMU as a
container and uses the native operating system tools to install software. The cycle of building
a software appliance includes the generation of metadata about the packages installed. Software
appliances are created using an XML-based language. Even though the language allows almost
any operation of customization, the descriptions rapidly become complex and difficult to maintain.

Kameleon

Kameleon achieves easiness by proposing a structured language based on few constructs and which
relies on shell commands. The hierarchical structure of recipes and the extend mechanism allow
shareability. Kameleon supports the build process by providing debugging mechanisms such as
interactive shell sessions, break-points and checkpointing. Containers diversity is achieved by
allowing the easy integration of new containers using the same language for the recipes. Further-
more, persistent cache makes possible reconstructability. In Section [5.4] we present Kameleon in
detailed.

5.3.4 Discussion

We found that many software appliance builders rely on archive files (e.g. ISO images) to boot-
strap a software appliance. However, if the archive files is no longer available in a repository,
then reconstructability is impossible. We found that 30% of Veewee definition filesPd point to

Yhttp://boxgrinder.org/

2Ohttp://libguestfs.org/

2Ihttps://github.com/jedidever/veewee

22http://wuw.aeolusproject.org/oz.html

23This was tested with the version of veewee 0.3.7 by trying to build all templates during the period of 02/12/2013
and 20/12/2013.

80

http://boxgrinder.org/
http://libguestfs.org/
https://github.com/jedi4ever/veewee
http://www.aeolusproject.org/oz.html

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

repositories that either no longer exist or have some packages missing. Furthermore, management
of containers is implemented either in the core of the tool or as plugins. This makes integration of
new containers for non-advanced users difficult. Most of the tools support a wide variety of con-
tainers, however, because they are tied to virtualization, real hardware is not taken into account.
Shareability which implies modularity and collaboration is not available. Docker is the only tool,
at the moment, which implements a collaborative model for building software appliances. These
tools do not support debugging or check pointing in the build process.

Finally, the way tools support the build cycle has an important impact on the recontructability
given that some actions would be out of the user’s control. When the language used in the tool’s
Description file is based on less human-readable languages, such as XML, or on complex recipes,
such as the ones used by Chef and Puppet, that tool ranks lower in the easiness criteria.

5.4 Kameleon: the mindful appliance builder

CL

f Abstract hierarchy

Engine

\Dersistent cacheg

Parser

Recipe [—>

Context

VAN

VM| |docker| |chroot | |Grid'5000

Containers

Figure 5.3: Kameleon architecture.

Kameleon is a small and flexible software appliance builder, which eases the construction
and reconstruction of custom software stacks for research in HPC, Grid or Cloud computing and
Distributed Systems. Kameleon version 2.2.4 is written in 2278 lines of Rub and has few
dependencies. Kameleon achieves ease of use by structuring the specification (recipes) for the
construction of software appliances into a hierarchy. The hierarchy’s structure is composed of
sections that allow a separation of customization and low level tasks. This structure separates out
the customization tasks that can be easily performed by non-expert users from the low level tasks,
such as setting up a complete operating system or exporting the whole file system, which are more
difficult. These sections are divided into steps that represent actions (A;) such as: installation
and configuration of a certain scientific library, kernel patching, configuration of a base system.
Steps are composed of microsteps that enable the customization and re-utilization of the same step

24Measured with SLOCCount http://www.dwheeler.com/sloccount/

81

http://www.dwheeler.com/sloccount/

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

in different recipes. Finally, the last level of the hierarchy wraps shell commands and Kameleon
defined commands. All the aforementioned hierarchy is written using YAML, which encourages
more human readable shell script.

An advantage of Kameleon, and what distinguished it from the existing appliance builders, is
that it serves simply as a recipe parser and orchestrator of shell commands, which means that all
the logic for the creation of a software appliance resides entirely in the recipes. Kameleon recipes
enable four advantages for experimenters: 1) it helps to understand how the software appliance
was created (all the details are embedded in the same language); 2) it gives a total control over the
whole process, which reduces the burden of integrating new containers, new operating systems, or
new export formats; 3) it enables the easy customization of software appliances at any level (e.g.
0.S., middleware, applications, etc.); 4) it encourages a collaboration model where researchers can
reuse code and given that all details are in the hierarchy of recipes and steps (text files) they can
be easily versioned.

Figure (.3 shows the architecture of the system and the interaction between the different
modules. First, the parser, with the help of the abstract hierarchy, parses the recipe and creates
as output the internal data structures that are input to the engine module. The engine orchestrates
the workflow of execution. The workflow is executed sequentially. The context module helps to
abstract the access to a given container. All the low level operations (e.g., execution of shell
commands, I/O and file management) are performed by the shell module. The engine integrates
three important mechanism for debugging: checkpoints, breakpoints and interactive shell sessions.
The persistent cache captures all the data used during the process of building a software appliance,
which is archived to allow the software appliance to be reconstructed at a later time. Finally, the
CLI module implements the user interface.

5.4.1 Syntax

Figure [5.4] shows an example of a Kameleon recipe. We can highlight three different elements:
sections, steps and variables. Four sections are proposed by Kameleon but more can be created.
One section, called global, is dedicated to the declaration of global variables that can be used
through out the recipe. The other sections correspond to the main steps in the software appliance
build cycle (bootstrap, setup and export). Different sections in a Kameleon recipe allow a high
degree of customizability, reuse of code, and total control of software appliance creation process by
the experimenter. In Figure[5.4] the based system is built from scratch using the package manager
of the Debian distribution as specified in the bootstrap section.

Alternatively, it is possible to use existing images (e.g., Grid’5000 base environments, cloud im-
ages for different Linux distributions, or software appliances market place@). The setup section
installs packages, configures the O.S., etc. Within a section, users can execute shell commands,
read and write files, or perform other commands that are necessary to carry out the desired cus-
tomization. The options in the export section depend on the disk formats that the container
supports. At the moment we have implemented recipes for exporting to the most popular virtual
disk formats, tarballs and specific Grid’5000 format.

Listing[[2 shows the definition of a step file. Each step file is loaded automatically by Kameleon
after parsing the recipe. A step is divided into microsteps (e.g., create_group) which are in turn
divided into commands. The goal of dividing steps into microsteps is the possibility of activating
certain actions within a step. For example, from Listing 21 we have the possibility of executing only
the microstep create_group without executing the rest of the microsteps. There are two types
of variables: user defined variables that are provided in the recipe such as: Linux distribution
(distrib), architecture (kernel_arch), etc., and Kameleon variables such as $$kameleon_cwd
(Kameleon work directory) that interact with the engine. Contexts are mapped to special variables
(out_context and in_context) in the global section. They indicate the necessary actions to set
a shell in the respective context (the concept of context is explained in the next section). In the

25http://yaml.org/spec/1.2/spec.pdf
26http://www.turnkeylinux.org

82

http://yaml.org/spec/1.2/spec.pdf
http://www.turnkeylinux.org

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

global:
#4# User varibales : used by the recipe
user_name: kameleon
user_password: $$user_name
Distribution
distrib: debian
release: wheezy
kernel_arch: $$arch
hostname: kameleon-$$distrib
#4# Disk options
nbd_device: /dev/nbdl
image_disk: $$kameleon_cwd/base_$$kameleon_recipe_name.qcow?2
image_size: 10G
filesystem_type: ext4
rootfs options
rootfs: $$kameleon_cwd/rootfs

out_context: Out context definition
cmd: bash C s
workdir: $$kameleon_cwd In context definition
proxy_cache: 127.0.0.1

n_context:

cmd: USER=root chroot $$kameleon_cwd/rootfs bash
workdir: /root/kameleon_workdir

proxy_cache: 127.0.0.1

bootstrap:
- initialize_disk_chroot
- debootstrap:
- repository: http://ftp.debian.org/debian/
- start_chroot

setup:
- install_software:
- packages: >
debian-keyring sudo less vim acpid linux-image-$$kernel_arch
- configure_kernel
- install_bootloader
- configure_network
- create_group: Step
- name: admin /
create_user:
- name: $$user_name
- groups: sudo admin
- password: $$user_password
export:
- gemu_save_appliance:
- input: $$image_disk
- output: $$kameleon_cwd/$$kameleon_recipe_name
- save_as_qcow?2
- save_as_vdi

Figure 5.4: In the example, the section headers illustrate contexts (out_context and in_context), dec-
larations (global) and sections (bootstrap, setup and export). This example uses a chroot jail as a
container for building a software appliance based on Debian Wheezy.

example, the recipe creates a Debian Wheezy appliance with some base configuration, which is
specified as the distrib and release variables in the global section, and exports the appliance
in QCOW?2 format, which is specified in the export section as the step "- save_as-qcow2". The
Kameleon recipe illustrates that sections are composed of steps that can be customized using
variables. Table (.3 illustrates exec_* commands, which are the minimal building blocks of
microsteps. An exec_* command wraps a shell command to add error handling and interactiveness
in case of a problem.

83

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

Create User
- create_group:
- exec_in: groupadd $$group

- add_user:

- exec_in: useradd --create-home -s /bin/bash $$name

- exec_in: adduser $$name $$group

- exec_in: echo -n ’$$name:Ppassword’ | chpasswd

- on_export_init:

- exec_in: chown ’$$user_name:’ -R /home/$$user_name

- add_group_to_sudoers:
- append_in:
- /etc/sudoers
-
hadmin ALL=(ALL:ALL) ALL

Listing 12: Example of a step file. The prefix ‘$$* is used for variables.

Exec: executes a command in a
given context

- exec_in: echo "Hello!" > hello.txt
- exec_in: apt-get -y update

Pipe: it works as Unix pipelines
but between contexts

- pipe:
- exec_out: cat tlm_code.tar
- exec_in: cat > ./tlm_code.tar

Write: allows to write a file in a
context

- write_in:
- /root/.ssh/config
-
Host =*
StrictHostKeyChecking no
UserKnownHostsFile=/dev/null

Hooks: defers some initializa-
tion or clean actions.

- on_setup_clean:
- exec_in: rm -rf /tmp/mytemp

Table 5.3: Kameleon commands.

5.4.2 Kameleon Contexts

By dividing the building process into independent parts, contexts provide a way for a user to
structure the software appliance creation process so that it is independent from the final target
platform. When an appliance is built with Kameleon it is necessary to deal with 3 different contexts
(more can be defined if required). The objective of all these contexts is to have a contextualized
shell session. Contexts are as follows:

e Local context: It refers to the location where Kameleon is executed. Normally, it is the user’s

machine.

e OUT context: It is where the process of bootstraping will take place.

Some procedures

have to be carried out in order to create the place where the software appliance is built (IN
context). This could be: the same user’s machine using chroot. Thus, this context is where
the setup of the chroot takes place. Other examples of QUT context are: setting up a virtual
machine, access to an infrastructure in order to get an instance and be able to deploy, setting

84

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

Section Context used Description
Bootstrap | Local context and | Two possibilities: (1) build a file system layout form
OUT context scratch. (2) start form an already created software
appliance.

Setup Mostly IN context The commands run on the chosen container: chroot,
Docker, Linux container, virtual machine and real
machine

Export Local context and | Use of the container supported tools for creating the

OUT context final format for the software appliance.

Table 5.4: Kameleon concepts, interrelation between contexts and sections.

up a Docker container. This context also allows the appliance’s base file system layout to
be setup.

e IN context: It makes reference to inside the container created by the OUT context. This
context can be mapped to a chroot, virtual machine, physical machine, Linux container, etc.
This context is frequently used for customizing the software appliance.

The relation between the possible contexts used and the section execution is shown in Table[5.4]

5.4.3 Checkpoint mechanism

The construction of a software appliance is a trial and error process. Kameleon provides a modular
checkpoint mechanism that saves time when debugging the software appliance construction pro-
cess. Time consuming tasks such as the installation of an operating system from scratch are not
repeated during the debugging process. Thus, a checkpoint mechanism encourages the automa-
tion of software appliance building as it makes the construction of software appliances less time
consuming. We have integrated different checkpointing mechanisms for each container supported
by Kameleon. They are based on snapshots of virtual machines (QEMU, VirtualBox) and based
on snapshots of QCOW?2 disk images for the chroot container. Another checkpoint mechanism use
Docker commits to preserve the state of a Docker image. The abstraction provided by the engine
makes it very flexible, users can think of any way of saving the state of the file system layout and
map it to Kameleon.

5.4.4 Extend mechanism

Listing [[3] shows a Kameleon recipe that builds a software appliance for the hpl benchmark.
This recipe adds steps to the setup section and reuse steps from the recipe shown in Figure (5.4
This is done by using the extend: and "@base" keywords. Recipes are provided as templates,
which enable a user to write a new recipe based on another existing recipe by overwriting certain
sections and variables. The main purpose of this mechanism is to reduce the entry barrier for non-
expert users by encouraging the reuse of recipes. This allows Kameleon’s users to take advantage
from the recipes already developed by the community.

85

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

extend: gemu/debian7.yaml
global:

bootstrap:
- "@base"
setup:
- "@base"
- install_software:
- packages: g++ make openssh openmpi build-essential fort77
- install_atlas:
- repository: http://sourceforge.net/math-atlas/Stable/
- version: "3.10.1"
- install_hpl:
- repository: "http://www.netlib.org/benchmark/hpl/"
- version: "2.1"
- hpl_makefile: "$$kameleon_recipe_dir/data/Make.Linux"

export:
- "@base"

Listing 13: Extend mechanism.

5.4.5 Persistent cache mechanism

This mechanism as already mentioned constitutes one of the central contributions of Kameleon
that enables the preservation of environments for experimentation. Thus, software appliances built
are reconstruct-able any time. Chapter [l will be dedicated enterly to this mechanism.

5.4.6 Comparison with the previous Kameleon version

During this thesis two versions of Kameleon were used. Kameleon was already presented in [49] and
it has evolved form a single file script (900 lines of code) to a more modular improved version. Many
isolation problems were solved given that the previous version was mainly based on chroot. The
process of software appliance creation was structured with a new hierarchy based on sections, steps,
microsteps and commands as already shown throughout this chapter. Additionally, the concept
of context was added which enables to integrate more containers in a cleaner way, resolving many
isolation problems. This results in a more stable tool, able to take advantage of recent technologies.
The entry barrier for non-experts users was reduced as well, thanks to the new structured recipes
and debugging mechanisms. Figure shows the syntax of the old Kameleon. We can observe
that all the process of creation is mixed in one sequence of steps, there is not distinction between
bootstrap, setup and export.

5.5 Use cases

In this section, we demonstrate how Kameleon was used to build different software appliances.
These software appliances illustrate a variety of software stacks (Table 5.5]) with different require-
ments. Specially, they are taken from different domains (high performance computing, operating
system and distributed system); they use different container technologies (chroot, Docker, Virtual-
Box, QEMU and real machine in Grid’5000); and they use different container isolation (lightweight,
service, kernel module, and hardware dependent).

86

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

Table 5.5: Software appliances built with Kameleon

Name Description Software stack Containers Container Domain
used isolation
Debian Debian console mode Debian Wheezy chroot, Lightweight | Operating
basic Docker, systems.
VirtualBox,
QEMU,
Grid’5000
Debian Debian GNOME Desktop | Debian Wheezy, QEMU, Service Operating
Desktop environment GNOME VirtualBox systems.
ArchLinuag Archlinux based system ArchLinux last release VirtualBox, Lightweight | Operating
QEMU systems.
CentOS CentOS console mode CentOS 6.5 VirtualBox, Lightweight | Operating
QEMU systems.
Dune Dune library which provides Ubuntu Precise, Linux Grid’5000 kernel Operating
safe and efficient access to headers, Git, make, module systems
privileged CPU features GCC
Formal A JavaScript module sys- Debian Wheezy, Chroot, Lightweight | Operating
java tem Haskell, JavaScript Docker systems
modules
CControl | Kernel Module to control [Debian wheezy, make, QEMU, kernel High
the amount of cache avail- Git, build tools, CCon- VirtualBox module performance
able to an application trol libraries, PAPI computing.
hpl LinPACK benchmark Debian Wheezy, Open- | chroot, Hardware High
bench- MPI, OpenSSH, C++, Docker, dependent performance
mark make, Fortran, ATLAS VirtualBox, computing.
library, hpl benchmark Grid’5000
Hadoop Framework for storage and Ubuntu Lucid, Python, chroot Lightweight | Distributed
large-scale processing OpenSSH, Java 6, computing.
Hadoop.
TLM Large scale electromagnetic | Debian Wheezy, Open- | chroot Lightweight | High
stack simulations MPI, OpenSSH, TLM performance
application. computing.
OAR Resource and task manager | Debian wheezy, Git, QEMU, Service High
for HPC clusters and other Perl, Postgresql, OAR VirtualBox performance
computing infrastructures. server packages computing.

87

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

Basic Debian Kameleon recipe
global:
/tmp/kameleon

workdir: /tmp/kameleon

distrib: ubuntu

debian_version_name: lucid

distrib_repository: http://archive.ubuntu.com/ubuntu/

output_environment_file_system_type: ext4

include_dir: scripts

arch: amd64

kernel_arch: "amd64"

network_hostname: "hadoop"

extra_packages: "openssh-server wget"

checkpoint_file: "/tmp/ubuntu_lucid_hadoop.tgz"

user_name: "root"

key_dir: "/home/cristian/.ssh/"
steps:

- bootstrap

- system_config

- mount_proc

- kernel_install

- software_install

- extra_packages

- java_6/java_6_install java_6_install
- autologin - adding_java_repositon
- hadoop/config - exec_chroot: apt-get {f install -y --force-yes python-software-properties
_ : - exec_chroot: add-aptirepository ppa:ferramroberto/java

hadoop/install hroot: apt-get Lodate

N - exec_chnhroot: -

- tuning/root_ssh_localkey - installing_java pr-get P
- tumng/ﬁx_locales - exec_chroot: bash -c fecho \"sun-java6-jdk shared/accepted-sun-dlj-v1-1 boolean true\" | debconf-set-selections'
- strip - exec_chroot: bash -c | DEBIAN_FRONTEND=noninteractive apt-get -f install -y --force-yes sun-java6-jdk"

- umount_proc
#Building the appliance
- build_appliance_kpartx:
- clean_udev
- create_raw_image
- attach_kpartx_device
- mkfs
- mount_image
- copy_system_tree
- get_kernel_initrd
- install_extlinux
- umount_image
- save_as_raw
- save_as_vdi
- clean

Figure 5.5: Example of the old Kameleon recipe. This corresponds to the version 1.2.8 presented in IE]

5.5.1 Software Appliance Complexity

We start by describing different basic software appliances that can be used as a base experimental
environment. Then we describe more complex software appliances used in research papers.

¢ Basic software appliances: These software appliances include several Linux flavors, for
example: Fedora, CentOS, Debian, Archlinux. Different configurations were built from the
very basic console mode to the complete desktop configuration. This shows that complete
computer environments for researchers can be built.

e Complex software appliances: These software appliances were used in different research
papers: an application for controlling cache utilization M], a safe user-level access to priv-
ileged CPU features M], a formal specification of a JavaScript module system @] Other
appliances provide widely used computing frameworks such as MapReduc, benckmarks
such as hp and batch schedulers such as OA R4

5.5.2 Container Isolation

Because software appliances require different levels of isolation at build time, a software appliance
builder needs to provide isolation mechanisms. Kameleon provides isolation with its notion of
context. Below are examples of the isolation requirements by different types of software appliances.

2"https://hadoop.apache.org/docs/rl.2.1/mapred_tutorial.html
28http://www.netlib.org/benchmark/hpl/
29http://oar.imag.fr

88

https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
http://www.netlib.org/benchmark/hpl/
http://oar.imag.fr

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

Lightweight.

Lightweight software appliances do not need any kind of isolation, thus they can run inside a chroot.
This kind of software appliances can be exported to any format and run in any infrastructure.
Examples of lightweight software appliances include: MPT + TLMEY (electromagnetic simulation
code), Map Reduce framework. Formal Java [79], hpl benchmark, Debian Wheezy basic system.

Service.

Service software appliances run a service (e.g. databases). Since the appliance’s service may
conflict with services running on the build machine, Kameleon allows the experimenter to use
container isolation to isolate appliance services from build machine services.

Kernel modules.

When the installation of a kernel module is part of the software appliance creation, isolation at the
level of operating system calls is needed, because the target kernel has to be running. Therefore,
the IN context has to take place inside either a virtual or real machine. Sometimes a real machine
is required, for example: 1) installation of CControl library for cache colorin, 2) installation
of Dun, a kernel module that provides ordinary user programs with safe and efficient access to
privileged CPU features, which are normally hidden when using a virtual machine.

Hardware dependent.

In contrast to the previous types of software appliances, which can be built and deployed on
different machines, a hardware dependent software appliance must be built and deployed on the
same machine. An example of hardware dependent software appliance is the hpl benchmark. This
benchmark is based on the linear algebra library ATLAS, which must be optimized at built time
for the deployment machine.

5.5.3 Results and Discussion

Table 5.6l shows the building time of some of the software appliances described above. The purpose
of this data is to show the different steps that compose the build process and the time using various
container technologies. For experimenters the process of generating an experimental environment
could be perceived as a time consuming process. However, we observe that the built time of each
of the software appliances is less than 30 minutes, which could encourage users to generate their
custom experimental setups.

Hardware dependent software appliance evaluation

In this section, we use the hpl benchmark to evaluate hardware dependence container isolation.
hpl benchmark requires the installation of multiple software packages whose parameters need to
be configured, for performance, to the hardware that the appliance is running on. The parame-
ter configuration requires significant compilation time. The evaluation was performed using two
different machines.

e M1: Machine available in Grid’5000 in the cluster genepi. Intel Xeon E5420 QC CPU 2.5
Ghz with 8GB of RAM and HDD SATA disk.

e M2: Local machine. Intel Core i7-2760QM CPU 2.4 GHz with 8GB of RAM and SSD disk.

3Ohttp://wuw.petr-lorenz.com/emgine/
3Ihttps://github.com/perarnau/ccontrol
32http://dune.scs.stanford.edu/

89

http://www.petr-lorenz.com/emgine/
https://github.com/perarnau/ccontrol
http://dune.scs.stanford.edu/

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

Table 5.6: Building time of some software appliances. The time is presented in seconds.

Steps AP11 AP22 AP33 AP4% AP55 AP6° APT7 APSS AP99 AP10T0 AP111Y AP12T] AP13T AP14T9 AP15T9
start-virtualbox 21 12 15 20 21 20 20 19 20
gbk-reserv 177

start-docker 12

start-qemu 10

install-requirements 11 11 11 12 37 41 13 12 13 36
debootstrap 131 70 170 id 73 76 73 187 188 188
yum-bootstrap 154 279 141
arch-bootstrap 150

switch-context-virtualbox 10 10 162 105 93 26 35 32
switch-context-gemu 7

-init-setup 5

Boostrap 131 70 182 kécd 177 101 187 109 110 373 446 313 246 255 229
install-software 119 25 20 81 339 18 15 209 22 242 61 38 36 46 264
configure-system 7 6 6 6 6 17 6 6 11 8 11 11 10 10
configure-apt 13 13 7 9 37 9 9 9 12 15 13
configure-kernel 5 5 5

configure-keyboard 16 10 14 16 13 10 9 10 18 19 19
install-atlas 497

install-hpl 12

install-ccontrol 18

init-pxeboot 7 13
update-system 14 27 24
minimal-install 121 89
install-gnome 821

oar-prereq-install 89 188
oar-devel-prereqg-install 20 50
install-lambdajs 78

upgrade-system 212

install-kameleon 76

oar-git-install 53

oar-config-frontend 5

tlm-installation 16

-clean-setup 5 5 5 9 12 10 9 5 12 23 11 14
Setup 291 150 229 272 863 323 219 866 189 773 554 1236 338 581 643
qemu-save-appliance 63 83 88

virtualbox-save-appliance 47 75 34 86 71 150 34 89
save-docker-appliance 5 6

save-appliance-from-g5k 157

Total 354 233 234 278 1020 411 266 941 223 859 625 1386 372 581 732

(SR U

chroot-debian
chroot-tlm-mpi-debian
docker-debian
docker-formal-java-debian
grid5000-kameleon-ubuntu

= © W o

qemu-oar-debian

vbox-arch

vbox-ATLAS-deb
vbox-ccontrol-deb
9 vbox-centos7

11
1
1
1
1

vbox-centos
vbox-debian-desktop
vbox-debian
vbox-debian-oar
vbox-fedora

oW

90

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

Table 5.7: Containers comparison machine M1.

Container Build Time[Secs] Image Size hpl result
[Mbytes] [MFLOPS]

VirtualBox 2722 1100 3.3

QEMU 1826 1200 109.1

Docker 2293 1600 110.1

Grid’5000 1782 638 113.3

Table 5.8: Containers comparison machine M2.

Container Build Time[Secs] Image Size hpl result
[Mbytes] [MFLOPS]

VirtualBox 1004 1100 8.1

QEMU 971 1200 189.7

Docker 1066 1600 222.3

The machine descriptions indicate that the machines differ only in their disk technology. Ta-
ble 5.7 shows the results for machine M1. Table 5.8 shows the results for machine M2. The tables
illustrate the time to build the software appliance (Build Time[Secs]), the software appliance size
(Image Size[MBytes]) and the time to execute the benchmark hpl (hpl result{MFLOPS]). In the
worst case scenario, the build time never exceeds one hour (or 3,600 seconds). All the elements
necessary for reproducing these results are available in our repositoryt3.

Additionally, both tables show the millions of floating-point operations per second (MFLOPS)
obtained by deploying the generated appliance and executing the benchmark. This is illustrative
for a hypothetical experiment which goal would be to evaluate for example, the performance of
virtual machine monitors. From this simple experiment, we can see that the virtualization provide
by VirtualBox significantly impacts hpl benchmark performance: a factor of 34 times for M1 (from
113 Mflops to 3.3) and a factor of 27 times for M2 (222.3 to 8.1). In addition, the difference in
performance is minimal for the other containers on a particular machine. Finally, across machines,
the difference in disk technology make a significant difference in both build and execute time.

Table illustrates the correlation between the image size of a software appliance and the
cache size needed to store the data used to build the appliance. We are using the image size
from Table 5.8 building hApl benchmark on machine M1. Finally, the total archive space to build
all three appliances is illustrated on the last row. We can observe that storage requirements is
reduced in a factor of 5.

Experiment packaging example

This section demonstrates how Kameleon and its persistent cache allow an experimenter to evalu-
ate the performance of a high performance application using different virtualization techniques on
different machines. This section’s demonstration approximates the process used in the evaluation
of Section (5.3l This section demonstrates the advantage of using Kameleon and its persistent
cache system through an example. Let us suppose an experimenter wants to measure the perfor-
mance of different techniques of virtualization and implementations of them for the execution of
high performance applications. Assume that we have run an experiment that measures execution
time for two virtualization techniques: system level virtualization (Docker) and full virtualization
(VirtualBox and QEMU-KVM) on a machine M1. Now, suppose a different experimenter wants
to run the same experiment in another machine M2.
Here are the issues they would face:

33This chapter was written using Org mode which enables to embed all the analysis presented.
This is available along with persistent cache archives, Kameleon recipes and some additional scripts at
http://exptools.gforge.inria.fr/kameleon/

91

http://exptools.gforge.inria.fr/kameleon/

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

Cache archive

Recipes Cachearchive Iransfer

—_—>
Y
Kameleon
Kameleon %I - — SAl
Cache archive
M 2 SA2
SA2

SA3

SA3

Docker Virtual k
i ua box Qemu vm Docker V|rtualbox Qemu kvm

\ SA: Software Appliance \

Figure 5.6: Example of experiment packaging with Kameleon.

Table 5.9: Some persistent cache archives

Software Container Image Size Cache
appliance [Mbytes] Size[MBytes]
hpl benchmark VirtualBox 1100 581
hpl benchmark QEMU 1200 582
hpl benchmark Docker 1600 520

Archive for all appliances 3900 703

e The software appliances are rarely well described and the information of how they are con-
figured is missing.

e Three different images have to be available which will consume space to store them and time
to transfer.

e The images are static and introducing changes into them is not always easy and clean.

e Depending on the type of applications or benchmarks run in the experiment, recompilation
could be needed in order to re-run the experiment in the same exact conditions. Therefore
the images are not directly executable on M2.

The process using Kameleon is depicted in Figure Kameleon brings the following advan-
tages:

e All the details of composition and configuration resides on the recipes as shown in Section 5.4l

e In the process of generating the different software appliances, a persistent cache archive will
be generated that contains all the data used during the generation of the respective software
appliances. This is the only file that has to be stored and, in terms of size it is most of the
time smaller than the images generated as shown in Table 5.9

e The persistent cache archive contains all the original data used for generating the images.
This means that the software appliance can be adapted to new contexts.

5.5.4 Future work

In future work, we plan to generalize the persistent cache to provide a repository of persistent cache
files, and make this repository available to the community. Our vision of this community includes

92

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

researchers and software developers: anyone who needs to build a particular software stack. This
repository will include the instructions (recipes and steps files) and its associated data. Therefore,
multiple software appliances can be stored, reducing significantly the storage requirements (as
demonstrated in the last row of Table (.9)). Using this repository and Kameleon eliminates the
need to store large binary files. Kameleon can impact the manage of IT infrastructures as it can
be used to manage the deployment and customization of software appliances. Furthermore, we
are interested in exploring Kameleon as a platform for continuous integration. We believe that
Kameleon’s automation of software appliance building is well suited for continuous integration.
Finally, because the whole environment setup is known, we believe that Kameleon can make bug
tracking easier.

5.56.5 Conclusions

We introduced the concept of reconstructability which establishes the requirements that a soft-
ware experimental setup has to meet for improving the reproducibility of experiments in computer
science. We proposed Kameleon a software appliance builder that supports reconstructability.
Kameleon provides a modular way to describe the construction of software appliances, which
encourages collaboration and reuse of work. Support of reuse lowers the entry barrier for exper-
imenters with low sysadmin skills. Kameleon persistent cache makes experimental setups recon-
structable at any time.

93

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

94

Chapter 6

Reproducible appliances for
experimentation

Experiment reproducibility is a milestone of the scientific method. Reproducibility of experiments
in computer science would bring several advantages such as code re-usability and technology
transfer. The reproducibility problem in computer science has been solved partially, addressing
particular class of applications or single machine setups. In this chapter we present the design of a
persistent, cache mechanism that has been integrated to our software appliance builder Kameleon.
The main goal of our approach is to enable the exact and independent reconstruction of a given
software environment and the reuse of code. Additionally, we share our experience in finding a
way to preserve over time; the software stack used for experimentation in computer science. A
generalization of the persistent cache is proposed that would enable researchers to lower storage
requirements for their appliances. The results shown in this chapter were published in a paper [112]
presented at TRIDENTCOM 2014.

6.1 Introduction

In order to strengthen the results of a research it is important to carry out the experimental part
under real environments. In some cases, these real environments consist in a complex software
stack that normally comprises a configured operating system, kernel modules, run-time libraries,
databases, special file systems, etc. The process of building those environments has two shortcom-
ings: (a) It is a very time consuming task for the experimenter that depends on his/her expertise.
(b) It is widely acknowledged that most of the time, it is hardly reproducible. A good practice
at experimenting is to assure the reproducibility. For computational experiments this is a goal
difficult to achieve and even a mere replication of the experiment is a challenge [37]. This is due to
the numerous details that have to be taken into account. The process of repeating an experiment
was carefully studied in [32] and among the many conclusions drawn, the difficulty of repeating
published results was highly relevant.

With the advent of testbeds such as Grid’5000 [25] and FutureGrid [51)], cloud-based testbeds
like BonFIRE , the ubiquity of cloud computing infrastructures and the virtualization technol-
ogy that is accessible to almost anyone that has a computer with modest requirements. Now it
is possible to deploy virtual machines or operating system images, which makes interesting the
approach of software appliances for experimentation. In [63] the author gives 13 ways that repli-
cability is enhanced by using virtual appliances and virtual machine snapshots. Another close
approach is shown in [45] where snapshots of computer systems are stored and shared in the
cloud making computational analysis more reproducible. A system to create executable papers is
shown in [14], which relies on the use of virtual machines and aims at improving the interactions
between authors, reviewers and readers with reproducilibity purposes.

lhttp://www.bonfire-project.eu

95

http://www.bonfire-project.eu

CHAPTER 6. REPRODUCIBLE APPLIANCES FOR EXPERIMENTATION

Those approaches offer several advantages such as simplicity, portability, isolation and more
importantly an exact replication of the environment but they incurred in high overheads in build-
ing, storing and transferring the final files obtained. Additionally, it is not clear the composition
of the software stack and how it was configured. We lose the steps that let to their creation.

In the previous chapter we established that two requirements for reconstruct-ability are: to
know exactly the sequence of actions that produced a determined environment for experimentation
and to be able to change any action and regenerate another environment. It was already shown
that our tool Kameleon strives to provide the former through a modular system of recipes where
all actions to generate a software appliance are described. In this chapter, we present our approach
to achieve the latter. The approach is based on a persistent cache mechanism that stores every
piece of data (e.g., software packages, configuration files, scripts, etc.) used to construct the
software appliance. Kameleon persistent cache mechanism presents three main advantages: (1) it
can be used as a format to distribute and store individual and related software appliances (virtual
cluster) incurring in less storage requirements; (2) provenance of data, anyone can look at the steps
that led to the creation of a given experimental environment; (3) it helps to overcome widespread
problems occasioned by small changes in binary versions, unavailability of software packages,
changes in web addresses, etc. Experimental results and validation of this cache mechanism are
shown in this chapter.

This chapter is structured as follows: In Section [6.2] some approaches to reproduce a given
environment for experimentation are discussed. Then, the implementation of the persistent cache
mechanism is shown in Section which enables preservation of software stacks used in exper-
imentation. In Section [6.4] we show some experimental results and validation of our approach.
Finally the conclusions are presented in Section

6.2 Related works

Experimenters have different options to make the environment for experimentation more repro-
ducible. They can capture the environment where the experiment was run or they can use a more
reproducible approach to set up the experiment from the beginning.

6.2.1 Tools for capturing the environment of experimentation

CDE [57] and ReproZip [29] are based on the capture of what it is necessary to run the experiment.
They capture automatically software dependencies through the interception of Linux system calls.
A package is created with all these dependencies enabling it to be run on different Linux distri-
butions and versions. ReproZip unlike CDE allows the user to have more control over the final
package created. Both tools provide the capacity of repeating a given experiment. However, they
are aimed at single machine setups, they do not consider distributed environments and different
environments that could interact between them.

6.2.2 Methods for setting up the environment of experimentation

Here, we describe the different methods that experimenters use for setting up and preserving their
environments for experimentation. These methods apply to infrastructures where a whole software
stack can be deployed (e.g., Grid’5000, FutureGrid, BonFIRE, any TaaS cloud, etc.). This is how
the process shown in Section B.1.1]is mapped to real use cases.

Manual

The experimenter deploys a golden image |1 that will be provisioned manually. The image modi-
fications have to be saved some way (e.g snapshots) and several versions of the environment can
be created for testing purposes. Possibly, the experimenter has to deal with the contextualization

2This term refers to the base operating system images available in an infrastructure.

96

CHAPTER 6. REPRODUCIBLE APPLIANCES FOR EXPERIMENTATION

of the images or it could be done using the underlying testbed infrastructure. In terms of repro-
ducibility, the experimenter end up with a set of pre-configured software appliances that can be
deployed later on the platform by him/her or another experimenter. This approach is relevant
due to its simplicity and has been used and mentioned in [45] and [14]. Despite its simplicity,
the storing of software appliances or snapshots incurs in high storage costs.

Script Automation

It is as well based on the deployment of golden images, however, the provisioning part is automated
using scripts. The experimenter possibly has no need to save the image, because it can be recon-
structed from the golden image at each deployment. Many experimenters opt for this approach
because it gives a certain degree of reproduciblity and automation and it is simple compared to
using configuration management tools. This was used in [11] for deploying and scheduling thou-
sands of virtual machines on Grid’5000 testbed. Script automation incurs in less overhead when
the environment has to be transmitted, for post execution. Nevertheless, it is still dependent on
the images provided by the underlying platform.

Configuration management tools

Unlike the previous approaches, the golden images are provisioned this time with the help of
configuration management tools (e.g., Chef ' or Puppet '3) which gives to the experimenter a
high degree of automation and reproducibility. However, the process of porting the non-existing
software towards those tools is complex and some administration expertise is needed. In [84]
it is shown the viability of reproducible eScience on the cloud through the use of configuration
management tools. A similar approach is shown in [15].

Software appliances

Experimenters can opt for software appliances that have to be contextualized at deployment time.
In [81] the viability of this approach was shown. Those images can be either built or downloaded
from existing testbed infrastructures (e.g Grid’5000, FutureGrid) or sites as TURNKEY [or cloud
market [oriented to Amazon EC2 images. Those images are independent from the ones provided
by the platform and experimenters have access to more operating system flavors. Different software
stacks are available that are already configured, but we dont know anything about how they were
built. We have already shown in Chapter [l an extensive literature about the tools that enable the
creation of software appliances.

6.3 Reconstructable software appliances

From the methods mentioned in the previous section, we believe that the use of software appliances
gives the highest degree of flexibility and reproducibility as it provides a way for preserving the
whole software stack. Our proposal is to make those software stacks easy to setup and reconstruct-
able by taking advantage of the best of the aforementioned methods. As shown in Chapter [, we
propose to build software appliances with Kameleon which offers some standard methods for
setting up software, similar to Configuration management tools but without its complexity. In
order to assure the reconstruct-ability of the software appliance, we implemented a persistent
cache module that generates an archive and enables the distribution of software appliances that
can be reconstructed from scratch. It is targeted to make easier the reconstruction of custom
software stacks in HPC, Grid, or Cloud-like environments.

97

CHAPTER 6. REPRODUCIBLE APPLIANCES FOR EXPERIMENTATION

global:
user_name: kameleon
user_password: $$user_name
Distribution
distrib: debian
release: wheezy
kernel_arch: $$arch
hostname: kameleon-$$distrib
#4# Disk options
nbd_device: /dev/nbdl
image_disk: $$kameleon_cwd/base_$$kameleon_recipe_name.qcow?2
image_size: 10G
filesystem_type: ext4
rootfs: $$kameleon_cwd/rootfs

out_context:
cmd: bash
workdir: $$kameleon_cwd
proxy_cache: 127.0.0.1

in_context:
cmd: USER=root HOME=/root LC_ALL=POSIX chroot $$kameleon_cwd/rootfs bash
workdir: /root/kameleon_workdir
proxy_cache: 127.0.0.1

bootstrap:
- initialize_disk_chroot
- debootstrap:
- repository: http://ftp.debian.org/debian/
- start_chroot

setup:
- install_software:
- packages: >
debian-keyring sudo less vim curl less acpid linux-image-$$kernel_arch
- configure_kernel
- install_bootloader
- configure_network
- create_group:
- name: admin
- Create_user:
- name: $$user_name
- groups: sudo admin
- password: $$user_password
export:
- gemu_save_appliance:
- input: $$image_disk
- output: $$kameleon_cwd/$$kameleon_recipe_name
- save_as_qcow?2

Figure 6.1: Kameleon recipe example

98

CHAPTER 6. REPRODUCIBLE APPLIANCES FOR EXPERIMENTATION

Variables

Recipe - Install Software B
Steps ——> Actions | - Alter Configurations) 2222 Commands
+ - More
Kameleon i
Engine <—2DATA (e.g.,scripts,software packages,
software version repositories, source

tarballs, etc.)

Software Appliance
+
Persitent cache

Figure 6.2: Software appliance creation with Kameleon

6.3.1 Requirements for reconstruct-ability

The approach for software appliance reconstruct-ability is based on four requirements:

1. A recipe (Figure [61) that describes how the software appliance is going to be built. This
recipe is a higher level description easy to understand and contains some necessary meta-data
in form of global variables and steps.

2. The DATA which is used as input of all the procedures described in the recipe. It encompasses
software packages, tarballs, configuration files, control version repositores, scripts and every
input data that make up a software appliance. Whenever used the term DATA in this
chapter, it will refer to this.

3. Kameleon appliance builder which parses the recipe and carry out the building. This part
includes as well the persistent cache mechanism that will be described later on.

4. Metadata that describes the context where the software appliance was built the first time.
For instance: date of build, version of the external tools used during the build, etc.

5. A computer capable of executing Kameleon.

Therefore, the problem of guaranteeing the exact reconstruction of software appliances is re-
duced to keeping the three following parts unchanged: (1) the recipe, (2) DATA (3) Kameleon
appliance builder. Two different experimenters having those three exact elements and fulfilling
the requirements given by the Metadata (4) and computer hardware (5) will generate the same
software appliance (under the hypothesis described in Section B.I.2). Kameleon can generate in
an automatic and transparent way a persistent cache archive that will contain the exact DATA
used during the process of construction along with the recipe, steps and metadata, all bundled
together enabling the easy distribution. The whole process is depicted in Figure [6.2

Our approach to achieve reconstruct-ability is to use a persistent cache to capture all the DATA
used during the construction. As we cannot guarantee that a particular download link will exist
forever | or always point to the same software with the same version.

A persistent cache mechanism brings the two followings advantages: (a) Data can always be
retrieved and (b) The software versions will be exactly the same.

3http://www.turnkeylinux.org
4http://www.thecloudmarket.com

99

http://www.turnkeylinux.org
http://www.thecloudmarket.com

CHAPTER 6. REPRODUCIBLE APPLIANCES FOR EXPERIMENTATION

6.3.2 Design

The persistent cache mechanism has to be transparent and lightweight for the user in the two
following phases: the construction of the software appliance, and its respective ulterior recon-
struction. As most of DATA comes from the network (e.g., operating system, software packages),
the obvious approach was to integrate a caching proxy for web. Such a caching proxy will capture
transparently every piece of data downloaded using the network. However, there are still some
missing parts of the DATA, because some files - that make the software appliance unique - are
provided by the user from its local machine or even worse some packages cannot be cached. That
is the reason why we opted for an approach consisting in two parts:

A caching web proxy, that caches packages coming from the network. This relies on Polipo
which is a very small, portable and lightweight caching web proxy. We chose Polipo because
it can run with almost zero configuration. Polipo can be configured with different policies
for validating the cache generated. Therefore, it can be forced to not request the server for
up-to-date packages assuring that software packages will be always taken from the persistent
cache. This is a desired behavior in order to avoid incompatibility due to changes in packages
versions.

Ad hoc procedures that cache what could not be cached using the caching web proxy. This
represents data that come from control version repositories such as Git, svn, mercurial, etc
or using https. These Ad hoc procedures are based on simple actions depending on the
data to cache, for instance: control version repositories have special mechanisms to track
the version used that are integrated into the Kameleon persistent cache module, user’s files
are cached by intercepting kameleon pipes, which are the only way to transfers files between
contexts.

In order to make more clear the composition and limitations of the persistent cache, we define
four properties of DATA:

Location: it can be either Internal (I) or External (E).
Cacheability: whether it is possible to cache it (C) or not (C).
Method of caching: it can be Proxy (P) or Ad hoc (A).

Scope: two possible values Private or Public.

The scope makes necessary the creation of two types of cache Private and Public for distribution
purposes. Combining the properties Location, Cacheability and Method of caching we can identify
five types of data:

E,C,P: data which comes from an external location (e.g., local network, internet) and can
be cached with the proxy (e.g., Software packages, tarballs, input data).

E,C,A: same external location, however, it cannot be cached with the proxy (e.g., version
control repositories, https traffic).

E,C: this data comes from an external location but can not be cached due to some restrictions
(e.g., proprietary licenses) or due to its size it can not be stored (e.g., big databases).

I,C,A: data that comes from the local machine and it is cached by some ad hoc procedures.

I,C: it comes form local machine but can not be cached.

Figure shows the composition of a generated persistent cache file. A hash is associated to
both a step file and its generated persistent cache directory. This enables Kameleon to assure the

Shttp://www.pps.univ-paris-diderot.fr/~jch/software/polipo/

100

http://www.pps.univ-paris-diderot.fr/~jch/software/polipo/

CHAPTER 6. REPRODUCIBLE APPLIANCES FOR EXPERIMENTATION

|— pATA
|— configure_apt
ftp.debian.org
5rDN43Y0AhiH7KIBKWr3tA==
Y6E9pey9INCAY31rTruzuFA==
{— configure_keyboard
L ftp.debian.org
bbZjzrh69PPIONWQNYrSzg==
u1ZDoPGWMTP91V6bA4Hdsg==
{— debootstrap
L ftp.debian.org
040nrrAPLSWXil-JR3hGXg==
Z427cWguGrq+xHOCsBIWGg==
Z8pE4RWSFXfgnmRez8WkOA==
{— install_atlas
data
L pipe-cat_tmp_atlas3.10.1.t20140902-927-11suz72
downloads.sourceforge.net
L Cj6BybzEEQfxXFZko1ZcfQ==
netcologne.dl.sourceforge.net
L nCDRHCTXFrzF-A2VG7030Q==
sourceforge.net
L— WVpLFWWZxvLVMKLPXQEssQ==
t— install_hpl
data
': pipe-cat_home_cristian_Rep20140902-927-1xy9mol
pipe-cat_tmp_hpl_2.1.tar.g20140902-927-1phtjqg
www.netlib.org
L v50GXHX-N4BjjhU4tIRg9g==
{— install_requirements
L ftp.debian.org
}— 6mrbFLN2Y4dgiQrd4KkSVw==
(— BmBUVtiHS5-atMzg3wlyt-A==
{— a7TdvIBGnIrYDWGCUKb
{— DK1xh8HRwraffShLwgh2-
{— YEROMCuyHITH-e60vtgWM:
[— YGrVUrXTZizU7vKW8K42g=
L ZMITbxIEStj3yVKp2HO11g==
{— install_software
L ftp.debian.org
}— 02MrEBVRMWR4yMHPt--y4Q==

{— -0bkIMGV2c| 6k2kmkPUtfw==
|— -0IYRkmZ-SHOCMLSoK|RMw
[— OmjfBmW0jZeSeAVtQrKs+A:
|— ZORRWs5g155hbsDDWHAKI
|— zPJ6a8Lf3]aOWLV4R5Ucxg=
t— 2zsj-uZ-hSdc7jU09MduceA=
[— zWXkCCNG2ZmRb7Cpv2FyLg==
L ZzTvS5DPsRfv-gG4e2NyTg==
L prepare_gemu
L— kameleon.imag.fr
}— 41uo3vXjlsQRK4Jh014FkQ==
— Ckf-q2GZxqpPouiD6f|KjA==

|— recipe
ATLAS-debian-gemu.yaml
gemu
L debian7-amd64.yaml
steps
r— aliases
L— defaults.yam!
t— bootstrap
debian
L debootstrap.yaml
initialize_disk.yaml
install_requirements.yaml|
prepare_gemu.yaml
start_gemu.yaml
switch_context_gemu.yaml
F— checkpoints
L— gemu.yaml
t— disable_checkpoint.yaml
t— enable_checkpoint.yaml|
— export
L— gemu_save_appliance.yaml
L— setup
create_group.yaml
create_user.yaml
debian
configure_apt.yaml
configure_keyboard.yaml
configure_network.yaml
configure_system.yaml
install_bootloader.yaml
install_software.yaml
upgrade_system.yaml
install_atlas.yaml
install_hpl.yaml

}— metadata
t cache_cmd_index
header

Figure 6.3: Here is depicted an example of the contents of a persistent cache archive. The requirements
for reconstructabiliy are shown. The DATA is structured by step (Kameleon hierarchy) and it contains
files, control version repositories and mainly cache files generated by Polipo. Only the steps that generate
data are taken into account. The whole recipe is included with its respective step files and metadata.

coherency between instructions and data used to build a determined software appliance. This way
of associating step files with persistent cache directories brings an adequate granularity (given
that they represent an installation of one kind of software) for sharing bricks of software. A
generalization of a cache could be implemented in which it would work as a central repository
where users will share steps with their respective persistent cache files, lowering substantially the
storage requirement needed for the software appliances.

Kameleon persistent cache mechanism enables the rebuilding of any software appliance from its
respective persistent cache file. The only requirement is that the software appliance has to be built
successfully a least once. The low size of Kameleon and Polipo (less than 1MB) makes feasible
the distribution of the exact version used to create the environment, avoiding the incompatibility

between versions.

Data type Persistent
cache

Referenced cache

0O.S packages | Web proxy

Debian snapshot

Repositories | Hard copy of the
repository

Checkout reference

User’s files Interception and
storage of a hard
copy

No option

Table 6.1: Persistent cache approaches

The persistent cache mechanism could use another alternative approach called Reference cache.
It relies for the moment on systems like Debian snapshot [in order to access a certain dates and

Shttp://snapshot.debian.org/

101

http://snapshot.debian.org/

CHAPTER 6. REPRODUCIBLE APPLIANCES FOR EXPERIMENTATION

General Appliances
Name Main software stack | Size [MB|
Java 1.6
Hadoop Hadoop 1.03 229
Ubuntu 10.04 LTS
PAPI 5.1.0
TAU 2.22
OpenMPI 1.6.4 226
Debian Wheezy

HPC Profiling

Table 6.2: Software appliances generated

version of the packages. This is only use for the O.S layer and all the software that is available
through the package manager. For revision control repositories, the referenced cache will keep the
URL of the repository and the revision number. The two approaches are summirize in Table

The approach using references is an option to lower the storage requirements but it will depend
on an external service to be available. It is still under development and at the moment of writing
the persistent cache approach is more reliable.

6.4 Experimental results and validation

This section will start with results of the persistent cache generated with Kameleon version 1.28
which were the subject of the paper [112]. The rest will be dedicated to persistent cache generated
with the new version that was described in Chapter [and developed during the last part of this
thesis. It will be shown in this section that Kameleon syntax can evolve without affecting the
reconstruct-ability. All the persistent cache archives are available on Kameleon web site 1.

6.4.1 Kameleon old version

As described in Section [6.3.1] we required a version of Kameleon which could be obtained by using
the control version repository. The code is under a control revision system, the old engine can be
retrieved from its git repository by doing:

$ git checkout remotes/origin/old/old-engine

Kameleon is a single script that can be executed in the following way:

sudo ./kameleon tests/debian_etch_oar2.2.17_i386.yam1 --from_cache cache-debian_etch_oar2.2.17-2013-05-26.tar

Table 6.3: Software appliances generated

OAR Version date of release GNU/Linux version Size [MB]

2.2.17 27 Nov 2009 Debian etch 112
2.3.5 30 Nov 2009 Debian etch 113
2.4.7 11 Jan 2011 Debian Lenny 137
2.5.2 23 May 2012 Debian Squeeze 140
2.5.0 5 Dec 2011 Debian Squeeze 140

In order to show that our approach is very portable between versions of Linux distributions,
we carried out successfully construction and reconstruction of different appliances as shown in
Table that consist in different flavors of GNU/Linux (Debian, Ubuntu) and different middle-
ware: Hadoopﬁ and TAU 32. A design goal was to achieve a self contained cache. Hence, we

"http://kameleon.imag.fr/archive/
8http://hadoop.apache.org/

102

http://kameleon.imag.fr/archive/
http://hadoop.apache.org/

CHAPTER 6. REPRODUCIBLE APPLIANCES FOR EXPERIMENTATION

tested the portability of the persistent cache mechanism. The aforementioned software appliances
where reconstructed using their respective persistent cache files, the Kameleon engine and the
Polipo binary which made only 984 K Bytes. This was tested in the following Linux distributions:
Fedora 15, OpenSUSE 11.04, Ubuntu 10.4 and CentOS 6.0. Other tests consisted in reproducing
old environments of test back to 2009 based on OAR [24] a very lightweight batch scheduler. The
description is presented in Table

6.4.2 Building old environments

The persistent cache mechanism enable the building of environments generated at any point of
time. It does so by using the same versions that are compatible with the scripts used at the
moment of the first generation of the software appliance. Not using the same exact versions can
sometimes generate unexpected errors that are time consuming and researchers do not want to
deal with. This could be one of the causes of the famous sentence "It worked yesterday". Problems
with library versions dependency can appear as well, what it is known as Dependency hell [57].

We faced those problems when building software appliances based on Archlinuz distribution
and on the OAR batch scheduler. Their current versions posed several incompatibility problems
with the scripts used for generating the software appliances a year ago. The persistent cache
mechanism enabled the reconstruction of these software appliances.

6.5 Discussion

With the aim of capturing an experimental environment with reproducibility purposes, it is obvious
that wrapping all the environment into a virtual machine is the simplest approach, which brings
isolation and portability. Nevertheless, we exposed the following advantages of Kameleon over
virtual machines as a means to achieve reproducibility.

e It is not possible to run everything on a virtual machine. It is most of the time possible to
convert the virtual machine disk into a raw disk and deploy it into bare-metal. However,
that implies additional steps for the user, it is not automatic.

e Space overhead, virtual machines are saved in large binary files.

e If the virtual machine needs to be modified, for instance, by installing a new version of
a given software. It is necessary to uninstall the present version and install the required
version, which is not always clean in most of the operating systems using either the package
manager or tarballs.

e With Kameleon is a must to generate metadata. It is necessary to specify all the software
versions to install, specific distribution packages to install, etc. It tells exactly what was done
in order to create a given environment. This goes further than just the act of repeating. It
enables the reuse of code, experimenters will understand the steps followed in order to get
a certain complex stack of software. Thus, they will be able to adapt such stacks to their
needs and get more insights.

e Rigid virtual machines are not a good option when dynamically deploy the virtual appliance
under different environments what it is called as Appliance contextualization. The whole
environment used to execute the experiment should be able to be reconfigured [97].

6.6 Conclusions and Future Works
Experiment reproduciblity is a big challenge nowadays in computer science, a lot of tools have been

proposed to address this problem, however there are still some environments and experiments that
are difficult to tackle. Commonly, experimenters lack of expertise to setup complex environments

103

CHAPTER 6. REPRODUCIBLE APPLIANCES FOR EXPERIMENTATION

necessary to reproduce a given experiment or to reuse the results obtained by someone else. We
presented in this chapter, a very lightweight approach that leverage existing software and allows
an experimenter to reconstruct independently the same software environment used by another
experimenter. Its design offers a low storage requirement and a total control on the environment
creation which in turn allows the experimenter to understand the software environment and in-
troduce modifications into the process. Furthermore, several methods to carry out the setup of
the environment for experimentation were described and we showed the advantages of our ap-
proach Kameleon. As a future work we plan to carry out more complex experiments with our
approach and measure the gains in terms of reproducilibity and complexity as well as to study the
contextualization of environments (e.g., post installation process) in different platforms.

104

Part IV

Conclusions

105

Chapter 7

Conclusions

During this thesis we have studied the conduction of experiments in computer science in general
and mainly focus on our domains of research which are Distributed Systems and High Performance
Computing. The difficulty involved in conducting an experiment and its later reproduction is due
to the hard task of detailing all the factors that determined the state of the experimental context.
The goal of experiments in our domain most of the times is to measure that our implementation
is faster, it scales better, it uses less storage space, etc. As a consequence, the measures taken
are highly dependent on the most minimal detail of the experimental context. There are many
variables to take into account and many ways in which a determined experiment can be performed.
Thus missing information about the procedure followed prevents the verification and reproduction
of a given research work.

Due to the complexity of systems nowadays and the fast change of software and hardware, it
is not surprising the difficulty in the simple fact of repeating an experiment. One first attempt
to repeat successfully an experiment is to have access to the same software and hardware used,
however, there are some unavoidable facts that could prevent short and long term reproduction
of an experiment: some infrastructures are restricted to be used by few researchers, the access to
the same hardware is costly, the lifespan of software and computer hardware is too short, software
licenses and proprietary software, etc.

Through our studies we have found a plethora of tools that strives for conducting a more
sound experimental process. Those tools seek to offer means for describing the context in which
an experiment took place. To do so, they used different languages and abstractions for describing
complex experimental workflows and embed as many details as possible. It is clear that no tool
will cover all experimenter’s necessities and that is why we put a lot of effort in comparing tools
and providing their purpose. This was summarized in Chapter 2] and it is expected to be used as
guide for researchers that want to improve the quality of their experiments. One conclusion of this
study is that even though the current state of experimentation is not encouraging, this panorama
will change given the number of tools available nowadays.

It seems obvious that due to this complexity users have to be assisted when conducting their
experiments, manual controlled experiment is not viable anymore. The main idea is to provide
a way to create, package, transfer and preserve their experiments. We found that experiment
management tools have to serve three purposes:

e Make the act of experimenting less cumbersome. Reduce the complexity of managing large
infrastructures and different software layers. The entry barrier of such tools could be reduced
by encouraging collaboration where the reuse of code is made easy.

e Provide a way to package an experiment and make it easily portable across different software
and hardware infrastructures. This package should generate enough metadata that rend the
comprehension of the experiment straightforward. Regarding transmission, the goal to be
achieved by an experiment tool is the possibility of being easily embedded in a publication
or referenced. This has brought the concept of executable paper. We need to change the way

107

CHAPTER 7. CONCLUSIONS

we communicate science and be in favor of using dynamic documents, online resources and
invest effort in providing the maximum level of details about our experiment to the research
community.

e Provide means to a least enable the short term preservation of the experimental environment.

In this thesis we addressed experimentation by performing a separation of concerns. We divided
an experiment into two parts static and dynamic.

e Static: It refers to the part that do not change so often. The software stack and its config-
uration. Contrary to hardware, software is the cheapest requirement that we can preserved
and should be accessible anytime. In this thesis we proposed an appliance builder called
Kameleon that reduces the entry barrier for non-experts and help researchers to automate
their experiments. We found with Kameleon a way to package software artifacts used for
experimentation. More importantly, it has enabled to make software stacks reconstruct-able.

e Dynamic: It refers to the experiment execution, the definition of all the actions that have
to be carried out during the experiment. This was addressed in this thesis by improving
the experiment management tool called Fzpo. It was shown its flexibility and efficiency by
implementing complex experiments that demanded a big amount of resources and complex
workflows.

With this separation we believe that experimenter productivity is improved. When performing
large scale experiments this separation is necessary for software installation procedures, otherwise
the following issues could appear: a bottleneck when accessing the server for downloading packages,
compilation process over several machines a part from being time consuming, it could be error-
prone.

Another important contribution of this thesis is the use of experiment management tools for
assisting users in the deployment and execution of their parallel applications. We showed the
gains of performance by choosing better deployment schemes that have into account hardware
capabilities. This was easily implemented using our experiment management tool and it opens the
door to application optimization that are possible without knowing the internals of the application.

For illustrating the proposed experiment cycle and how the two tools interact together, a use
case is presented in the next section.

7.1 Experiment cycle

The experimenter start by setting up all the software required for his/her environment of experi-
mentation. For this the experimenter will use Kameleon to install (independent of the experimental
workflow) all the software required using the best suited technology for him /her (Linux container,
virtual machine, real machine, etc.). The setup of a software stack is an error-prone process where
Kameleon features like checkpointing and interactive execution would come in handy. Several
different software stacks can be created and exported to the most convenient format depending on
the target infrastructure where the experiment will finally run. When the experimenter reaches a
stable version of her/his environment, she/he will generate a persistent cache file which will freeze
the software versions of the experimental environment and avoid any future incompatibility issue
that could generate a considerable lost of time. Once the software stack to be used is set, all the
workflow of the experimentation is done with Ezpo, this workflow can be tried locally in a virtual
infrastructure by choosing the right infrastructure module. Many errors can be caught given that
the infrastructure is running locally. Complex workflows of experimentation with many nodes
can be easily expressed with Ezpo. The software appliances can be updated with more software
if necessary in order to keep all the installation procedures in one place and then manage the
deployment of software appliances which will make the experiment scale better. Finally, when all
the experiments are finished successfully and the experimenters obtained the desired results, all

108

CHAPTER 7. CONCLUSIONS

Expo scripts can be stored along with the persistent cache files generated by Kameleon. This will
guarantee that the experimental workflow, experimental environment description and the exact
software used in the experiment will be available for later reproduction.

7.2 Future works

One important step before further development of the tools presented during this thesis is to
cross the adoption barrier. It is difficult to encourage researchers to automate their workflow for
experimentation which is highly dependent on their technical skills. Unfortunately, no new tool
come at no cost, resulting in the difficulty to convince researchers to change their experimental
workflows. We believe that the level of adoption will increase with the level of maturity of the
tools giving that early bugs, few documentation can discourage new users and make them return
back to their previous workflow.

7.2.1 Expo perspectives

Currently, Expo enables the efficient execution of the experiment, it makes easier the managing
of large amount of resources and provides an automatic collection of results. Although it is easier
to conduct experiments than it was before, we still face some difficulties: failures are pervasive,
experiments are not optimized, users do not have any help to run their application efficiently. The
experiment tool should take decisions on behalf of the user, because, important events may occur
when experimenting, for example:

e Some nodes failed when my experiment was deployed, I have to detect quickly and repair
them (possibly by rebooting the machine).

e My application is getting a really bad performance, probably it is running with the wrong
parameters. I have to stop it and not let it run for another 72 hours.

e The variance of my runs is low enough, it does not make any sense to do more runs.

e I need for my experiment a minimum of performance in the interconnection fabric, otherwise
I could biased my results.

e My level of CPU performance is still good, I can deploy more virtual machines to simulate
more clients.

Hence, an autonomic behavior is envisioned for dealing with this difficulties. Autonomic com-
puting aims at developing self manage and self repair distributed systems for reducing deployment
and administration costs. Experiments involving large amount of resources are costly, if we in-
corporate an intelligent behavior we could know for example: which tests can run in parallel, the
number of runs needed to reach a certain confidence value, etc. We have already envisioned the
evaluation and possible integration of the framework Frameself [2].

One of the biggest difficulties we had during the development of Expo was to choose the
building blocks for the description language. We provided very high-level building blocks that can
be customized for different purposes and some other operators that make easy the description of
experiments with many nodes. In order to refine this operators and abstractions, a study about
how researchers perform their experiments in our domain has to be conducted. The implications
of such study on the improvement of the description language are threefold: the uncovering of
hidden patterns, the reduction of the entry barrier for non-expert users and the enhancement
on the readability. We can learn from studies about programming languages readability and
its implication on software development which will provide a better criteria to perform a more
complete evaluation of the current experiment management tools.

Another path for further research is the development of interfaces to increase the degree of
interoperability of the tool and make it interact with workload generators and emulators systems

109

CHAPTER 7. CONCLUSIONS

such as M] This will make possible a model of hybrid simulation as the one shown in M]
for large scale systems, where experimenters can take advantage of simulation, emulation and real
execution techniques in order to enrich their environments of experimentation.

7.2.2 Kameleon perspectives

During the last part of this thesis Kameleon achieved a good stability and started to be used by a
small community of local users. Apart from researchers, it has been used by engineers for building
specialized software stacks for ARM architectures.

There is one path - among the many possible - for improving Kameleon that we would like to
follow. The generalization of the persistent cache, where a repository of persistent cache files is
available for the community. This community will not only include researchers, but also software
developers and anyone who needs the creation of particular software stacks. This will reduce sig-
nificantly the storage requirements for software appliances and it will make feasible that anyone
with sufficiently data transmission and computing capacity can reconstruct his/her environment
at will, without storing large amounts of data and without worrying about software incompatibil-
ities. This can impact the manage of IT infrastructures as Kameleon can be used to manage the
deployment and customization of software appliances. Impact on software development is foreseen
as well, continuous integration can be easily automated and controlled and bugs reporting would
be simplified as the whole environment configuration is known.

110

Bibliography

[1]

2]

3

—_—

[4]

[5]

[6]

[7]

18]

[9]

[10]

D. Abramson, B. Bethwaite, C. Enticott, S. Garic, and T. Peachey. Parameter Exploration
in Science and Engineering Using Many-Task Computing. IEEE Transactions on Parallel
and Distributed Systems, 22(6):960-973, June 2011.

Mahdi Ben Alaya and Thierry Monteil. Frameself: an ontology-based framework for the
self-management of machine-to-machine systems. Concurrency and Computation: Practice
and Ezxperience, pages n/a—n/a, 2013.

Jeannie Albrecht, Ryan Braud, Darren Dao, Nikolay Topilski, Christopher Tuttle, Alex C.
Snoeren, and Amin Vahdat. Remote control: distributed application configuration, man-
agement, and visualization with Plush. In Proceedings of the 21st conference on Large
Installation System Administration Conference, LISA’07, pages 15:1-15:19, Berkeley, CA,
USA, 2007. USENIX Association.

Jeannie Albrecht, Ryan Braud, Darren Dao, Nikolay Topilski, Christopher Tuttle, Alex C.
Snoeren, and Amin Vahdat. Remote control: distributed application configuration, manage-
ment, and visualization with plush. In Proceedings of the 21st conference on Large Instal-
lation System Administration Conference, LISA’07, pages 15:1-15:19, Berkeley, CA, USA,
2007. USENIX Association.

Jeannie Albrecht, Christopher Tuttle, Ryan Braud, Darren Dao, Nikolay Topilski, Alex C.
Snoeren, and Amin Vahdat. Distributed Application Configuration, Management, and Vi-
sualization with Plush. ACM Transactions on Internet Technology, 11:6:1-6:41, December
2011.

Jeannie Albrecht, Christopher Tuttle, Alex C. Snoeren, and Amin Vahdat. Loose syn-
chronization for large-scale networked systems. In Proceedings of the annual conference on
USENIX 06 Annual Technical Conference, ATEC ’06, pages 28-28, Berkeley, CA, USA,
2006. USENIX Association.

Jeannie Albrecht, Christopher Tuttle, Alex C. Snoeren, and Amin Vahdat. PlanetLab Ap-
plication Management Using PluSH. ACM SIGOPS Operating Systems Review, 40:33—40,
January 2006.

Jeannie R. Albrecht. Bringing big systems to small schools: distributed systems for un-
dergraduates. In Proceedings of the J0th ACM technical symposium on Computer science
education, SIGCSE ’09, pages 101-105, New York, NY, USA, 2009. ACM.

M. Alexandru, T. Monteil, P. Lorenz, F. Coccetti, and H. Aubert. Large electromagnetic
problem on large scale parallel computing systems. In International Conference on High
Performance Computing and Simulation, 2012.

S. Azarnoosh, M. Rynge, G. Juve, E. Deelman, M. Niec, M. Malawski, and R.F. da Silva.
Introducing precip: An api for managing repeatable experiments in the cloud. In Cloud
Computing Technology and Science (CloudCom), 2018 IEEE 5th International Conference
on, volume 2, pages 19-26, Dec 2013.

111

BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Daniel Balouek, Adrien Lébre, and Flavien Quesnel. Flauncher and DVMS — Deploying
and Scheduling Thousands of Virtual Machines on Hundreds of Nodes Distributed Geo-
graphically. In IEEE International Scalable Computing Challenge (SCALE 2013), held in
conjunction with CCGrid’2013, Delft, Pays-Bas, 2013.

Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Maziéres, and Christos
Kozyrakis. Dune: Safe user-level access to privileged cpu features. In Proceedings of the 10th
USENIX Conference on Operating Systems Design and Implementation, OSDI’12, pages
335-348, Berkeley, CA, USA, 2012. USENIX Association.

Milind Bhandarkar, L. V. Kale, Eric de Sturler, and Jay Hoeflinger. Object-Based Adap-
tive Load Balancing for MPI Programs. In Proceedings of the International Conference on
Computational Science, San Francisco, CA, LNCS 207/, pages 108-117, May 2001.

Grant R. Brammer, Ralph W. Crosby, Suzanne Matthews, and Tiffani L. Williams. Paper
méché: Creating dynamic reproducible science. Procedia CS, 4:658—667, 2011.

John Bresnahan, Tim Freeman, David LaBissoniere, and Kate Keahey. Managing appliance
launches in infrastructure clouds. In Proceedings of the 2011 TeraGrid Conference: Extreme
Digital Discovery, TG 11, pages 12:1-12:7, New York, NY, USA, 2011. ACM.

F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin, G. Mercier, S. Thibault,
and R. Namyst. hwloc: A generic framework for managing hardware affinities in hpc appli-
cations. In Parallel, Distributed and Network-Based Processing (PDP), 2010 18th Euromicro
International Conference on, pages 180-186, 2010.

L. Broto, D. Hagimont, P. Stolf, N. De Palma, and S. Temate. Autonomic Management Pol-
icy Specification in Tune. In Proceedings of the 2008 ACM symposium on Applied computing,
pages 1658-1663, New York, NY, USA, 2008.

Tomasz Buchert. Orchestration d’expériences & ’aide de processus métier. In ComPAS
: Conférence d’informatique en Parallélisme, Architecture et Systéme., Grenoble, France,
October 2012.

Tomasz Buchert and Lucas Nussbaum. Leveraging business workflows in distributed systems
research for the orchestration of reproducible and scalable experiments. In 9éme édition de la
conférence Manifestation des Jeunes Chercheurs en Sciences et Technologies de I’ Information
et de la Communication (2012), Lille, France, August 2012.

Tomasz Buchert, Lucas Nussbaum, and Jens Gustedt. A workflow-inspired, modular and
robust approach to experiments in distributed systems. In CCGrid 2014 — The 14th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, Chicago,
Tllinois, USA, May 2014.

Tomasz Buchert, Cristian Ruiz, Lucas Nussbaum, and Olivier Richard. A survey of general-
purpose experiment management, tools for distributed systems. Future Generation Computer
Systems, 45(0):1 — 12, 2015.

Steven P. Callahan, Juliana Freire, Emanuele Santos, Carlos E. Scheidegger, Claudio T.
Silva, and Huy T. Vo. VisTrails: visualization meets data management. In Proceedings of
the 2006 ACM SIGMOD international conference on Management of data, SIGMOD ’06,
pages 745-747, New York, NY, USA, 2006. ACM.

Steven P. Callahan, Juliana Freire, Emanuele Santos, Carlos E. Scheidegger, Claudio T.
Silva, and Huy T. Vo. Vistrails: visualization meets data management. In Proceedings of
the 2006 ACM SIGMOD international conference on Management of data, SIGMOD ’06,
pages 745-747, New York, NY, USA, 2006. ACM.

112

BIBLIOGRAPHY

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

N. Capit, G. Da Costa, Y. Georgiou, G. Huard, C. Martin, G. Mounie, P. Neyron, and
O. Richard. A batch scheduler with high level components. In Proceedings of the Fifth
IEEF International Symposium on Cluster Computing and the Grid (CCGrid’05) - Volume
2 - Volume 02, CCGRID ’05, pages 776-783, Washington, DC, USA, 2005. IEEE Computer
Society.

Franck Cappello, Frédéric Desprez, Michel Dayde, Emmanuel Jeannot, Yvon Jégou,
Stephane Lanteri, Nouredine Melab, Raymond Namyst, Pascale Primet, Olivier Richard,
Eddy Caron, Julien Leduc, and Guillaume Mornet. Grid’5000: a large scale, reconfigurable,
controlable and monitorable Grid platform. In 6th IEEE/ACM International Workshop on
Grid Computing (Grid), pages 99-106, November 2005.

Alexandra Carpen-Amarie, Antoine Rougier, and FelixD. Liibbe. Stepping stones to repro-
ducible research: A study of current practices in parallel computing. In FEuro-Par 201/:
Parallel Processing Workshops, volume 8805 of Lecture Notes in Computer Science, pages
499-510. Springer International Publishing, 2014.

Henri Casanova, Arnaud Legrand, and Martin Quinson. SimGrid: a Generic Framework for
Large-Scale Distributed Experiments. In Proceedings of the Tenth International Conference
on Computer Modeling and Simulation, UKSIM 08, pages 126-131, Washington, DC, USA,
2008. IEEE Computer Society.

Bin Chen, Nong Xiao, Zhiping Cai, Zhiying Wang, and Ji Wang. Fast, on-demand software
deployment, with lightweight, independent virtual disk images. In Grid and Cooperative
Computing, 2009. GCC ’09. FEighth International Conference on, pages 16-23, Aug 2009.

Fernando Chirigati, Dennis Shasha, and Juliana Freire. Reprozip: using provenance to
support computational reproducibility. In Proceedings of the 5th USENIX conference on
Theory and Practice of Provenance, TaPP’13, pages 1-1, Berkeley, CA, USA, 2013. USENIX
Association.

Gina Moraila Akash Shankaran Zuoming Shi Alex M Warren Christian Collberg,
Todd Proebsting. Measuring reproducibility in computer systems research. Technical report,
Arizona Univeristy, Technical Report, 2013.

BrentN. Chun. Dart: Distributed automated regression testing for large-scale network ap-
plications. In Teruo Higashino, editor, Principles of Distributed Systems, volume 3544 of
Lecture Notes in Computer Science, pages 20—-36. Springer Berlin Heidelberg, 2005.

Bryan Clark, Todd Deshane, Eli Dow, Stephen Evanchik, Matthew Finlayson, Jason Herne,
and Jeanna Neefe Matthews. Xen and the art of repeated research. In Proceedings of
the annual conference on USENIX Annual Technical Conference, ATEC 04, pages 47-47,
Berkeley, CA, USA, 2004. USENIX Association.

Benoit Claudel, Guillaume Huard, and Olivier Richard. Taktuk, adaptive deployment of
remote executions. In Proceedings of the 18th ACM international symposium on High per-
formance distributed computing, HPDC 09, pages 91-100, New York, NY, USA, 2009. ACM.

B. Clout and E. Aubanel. Ehgrid: An emulator of heterogeneous computational grids.
In Parallel Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium on,
pages 1-8, May 2009.

V. Curcin and M. Ghanem. Scientific workflow systems - can one size fit all? In Biomedical
Engineering Conference, 2008. CIBEC 2008. Cairo International, pages 1-9, Dec 2008.

Susan B. Davidson and Juliana Freire. Provenance and scientific workflows: Challenges
and opportunities. In Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’08, pages 1345-1350, New York, NY, USA, 2008. ACM.

113

BIBLIOGRAPHY

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Andrew Davison. Automated Capture of Experiment Context for Easier Reproducibility in
Computational Research. Computing in Science and Engg., 14(4):48-56, July 2012.

Ewa Deelman, James Blythe, Yolanda Gil, Carl Kesselman, Gaurang Mehta, Sonal Patil,
Mei-Hui Su, Karan Vahi, and Miron Livny. Pegasus: Mapping scientific workflows onto
the grid. In MariosD. Dikaiakos, editor, Grid Computing, volume 3165 of Lecture Notes in
Computer Science, pages 11-20. Springer Berlin Heidelberg, 2004.

Ewa Deelman, Dennis Gannon, Matthew Shields, and Tan Taylor. Workflows and e-Science:
An overview of workflow system features and capabilities. Future Generation Computer
Systems, 25(5):528-540, 2009.

Karen D. Devine, Erik G. Boman, and George Karypis. Partitioning and load balancing for
emerging parallel applications and architectures. In M. Heroux, A. Raghavan, and H. Simon,
editors, Frontiers of Scientific Computing. STAM, Philadelphia, 2006.

Jiun-Hung Ding, Po-Chun Chang, Wei-Chung Hsu, and Yeh-Ching Chung. Pgemu: A
parallel system emulator based on qemu. In Parallel and Distributed Systems (ICPADS),
2011 IEEFE 17th International Conference on, pages 276—-283, Dec 2011.

Eelco Dolstra and Andres Loh. Nixos: A purely functional linux distribution. In Proceedings
of the 13th ACM SIGPLAN International Conference on Functional Programming, ICFP
'08, pages 367-378, New York, NY, USA, 2008. ACM.

D.L. Donoho, A Maleki, TU. Rahman, M. Shahram, and V. Stodden. Reproducible research
in computational harmonic analysis. Computing in Science Engineering, 11(1):8-18, Jan
2009.

C. Drummond. Replicability is not reproducibility: Nor is it good science. In Proceedings of
the Evaluation Methods for Machine Learning Workshop at the 26th ICML, page 4972-4975,
2009.

Joel T. Dudley and Atul J. Butte. In silico research in the era of cloud computing. Nature
Biotechnology, 28(11):1181-1185, November 2010.

Christoph Dwertmann, Ergin Mesut, Guillaume Jourjon, Max Ott, Thierry Rakotoarivelo,
and Ivan Seskar. Mobile Experiments Made Easy with OMF/Orbit. In Konstantina Pa-
pagiannaki, Luigi Rizzo, Nick Feamster, and Renata Teixeira, editors, SIGCOMM 2009,
Conference on Applications, Technologies, Architectures, and Protocols for Computer Com-
munications, New York, NY, USA, August 2009. ACM.

Eric Eide, Leigh Stoller, and Jay Lepreau. An Experimentation Workbench for Replayable
Networking Research. In Proceedings of the 4th Symposium on Networked System Design
and Implementation (NSDI), pages 215-228, 2007.

Eric Eide, Leigh Stoller, Tim Stack, Juliana Freire, and Jay Lepreau. Integrated scientific
workflow management for the Emulab network testbed. In Proceedings of the annual confer-
ence on USENIX ’06 Annual Technical Conference, ATEC 06, pages 33-33, Berkeley, CA,
USA, 2006. USENIX Association.

Joseph Emeras, Bruno Bzeznik, Olivier Richard, Yiannis Georgiou, and Cristian Ruiz. Re-
constructing the software environment of an experiment with kameleon. In Proceedings of the
5th ACM COMPUTE Conference: Intelligent and scalable system technologies, COMPUTE
12, pages 16:1-16:8, New York, NY, USA, 2012. ACM.

Xavier Etchevers, Gwen Salaiin, Fabienne Boyer, Thierry Coupaye, and Noél De Palma.
Reliable self-deployment of cloud applications. In Proceedings of the 29th Annual ACM
Symposium on Applied Computing, SAC ’14, pages 1331-1338, New York, NY, USA, 2014.
ACM.

114

BIBLIOGRAPHY

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Geoffrey Fox, Gregor von Laszewski, Javier Diaz, Kate Keahey, Jose Fortes, Renato
Figueiredo, Shava Smallen, Warren Smith, and Andrew Grimshaw. FutureGrid - a re-
configurable testbed for Cloud, HPC, and Grid Computing. CRC Computational Science.
Chapman & Hall, 04/2013 2013.

ClaudioDaniel Freire, Alina Quereilhac, Thierry Turletti, and Walid Dabbous. Automated
Deployment and Customization of Routing Overlays on Planetlab. In Thanasis Korakis,
Michael Zink, and Maximilian Ott, editors, Testbeds and Research Infrastructure. Devel-
opment of Networks and Communities, volume 44 of Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications Engineering, pages 240—
255. Springer Berlin Heidelberg, 2012.

Wojciech Galuba, Karl Aberer, Zoran Despotovic, and Wolfgang Kellerer. ProtoPeer: A
P2P Toolkit Bridging the Gap Between Simulation and Live Deployement. In Proceedings of
the 2Nd International Conference on Simulation Tools and Techniques, Simutools '09, pages
60:1-60:9, ICST, Brussels, Belgium, Belgium, 2009. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering).

Matan Gavish and David Donoho. A universal identifier for computational results. Procedia
Computer Science, 4(0):637 — 647, 2011. Proceedings of the International Conference on
Computational Science, {ICCS} 2011.

Grid5000. Grid5000:hardware, 2013.

Romaric Guillier and Pascale Vicat-Blanc Primet. A User-oriented Test Suite for Transport
Protocols Comparison in Datagrid Context. In Proceedings of the 238rd International Con-
ference on Information Networking, ICOIN’09, pages 265-269, Piscataway, NJ, USA, 2009.
IEEE Press.

Philip J. Guo. Cde: run any linux application on-demand without installation. In Proceedings
of the 25th international conference on Large Installation System Administration, LISA’11,
pages 2—-2, Berkeley, CA, USA, 2011. USENIX Association.

A. Gupta, O. Sarood, L.V. Kale, and D. Milojicic. Improving hpc application performance
in cloud through dynamic load balancing. In Cluster, Cloud and Grid Computing (CCGrid),
2013 13th IEEE/ACM International Symposium on, pages 402-409, 2013.

Jens Gustedt, Emmanuel Jeannot, and Martin Quinson. Experimental Methodologies for
Large-Scale Systems: a Survey. Parallel Processing Letters, 19(3):399-418, 20009.

W.J.R. Hoeffer. The transmission-line matrix method—theory and applications. Microwave
Theory and Techniques, IEEE Transactions on, 33(10):882-893, oct 1985.

Torsten Hoefler. Bridging performance analysis tools and analytic performance modeling
for hpc. In Proceedings of the 2010 conference on Parallel processing, Euro-Par 2010, pages
483-491, Berlin, Heidelberg, 2011. Springer-Verlag.

Zhengxiong Hou, Jing Tie, Xingshe Zhou, I. Foster, and M. Wilde. Adem: Automating
deployment and management of application software on the open science grid. In Grid
Computing, 2009 10th IEEE/ACM International Conference on, pages 130-137, Oct 2009.

Bill Howe. Virtual appliances, cloud computing, and reproducible research. Computing in
Science and Engg., 14(4):36-41, July 2012.

Sili Huang, Eric Aubanel, and VirendrakumarC. Bhavsar. Pagrid: A mesh partitioner for
computational grids. Journal of Grid Computing, 4(1):71-88, 2006.

115

BIBLIOGRAPHY

[65] Duncan Hull, Katherine Wolstencroft, Robert Stevens, Carole Goble, Matthew Pocock, Peter
Li, and Thomas Oinn. Taverna: a tool for building and running workflows of services. Nucleic
Acids Research, 34(Web Server issue):729-732, July 2006.

[66] Sascha Hunold and Jesper Larsson Traff. On the state and importance of reproducible
experimental research in parallel computing. CoRR, abs/1308.3648, 2013.

[67] Matthieu Imbert, Laurent Pouilloux, Jonathan Rouzaud-Cornabas, Adrien Lébre, and
Takahiro Hirofuchi. Using the EXECO toolbox to perform automatic and reproducible
cloud experiments. In Ist International Workshop on UsiNg and building ClOud Testbeds
(UNICO, collocated with IEEE CloudCom 2013, Bristol, Royaume-Uni, September 2013.

[68] P. Jakubco, N. Adam, and E. Dankoval. Distributed computer emulation: Using opencl
framework. In Applied Machine Intelligence and Informatics (SAMI), 2011 IEEE 9th Inter-
national Symposium on, pages 333-338, Jan 2011.

[69] D. Jayasinghe, G. Swint, S. Malkowski, J. Li, Qingyang Wang, Junhee Park, and C. Pu.
Expertus: A generator approach to automate performance testing in iaas clouds. In Cloud
Computing (CLOUD), 2012 IEEE 5th International Conference on, pages 115-122, June
2012.

[70] E. Jeannot. Experimental validation of grid algorithms: A comparison of methodologies. In
Parallel and Distributed Processing, 2008. IPDPS 2008. IEEFE International Symposium on,
pages 1-8, April 2008.

[71] Emmanuel Jeanvoine, Luc Sarzyniec, and Lucas Nussbaum. Kadeploy3: Efficient and Scal-
able Operating System Provisioning. USENIX ;login:, 38(1):38-44, February 2013.

[72] P.B. Johns. A symmetrical condensed node for the tlm method. IEEE Trans. on Microwave
Theory and Tech., 35(4):370-377, apr 1987.

[73] David Johnson. A theoretician’s guide to the experimental analysis of algorithms, 1996.

[74] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for
Python, 2001-.

[75] Guillaume Jourjon, Salil Kanhere, and Jun Yao. Impact of IREEL on CSE Lectures. In
the 16th Annual Conference on Innovation and Technology in Computer Science Education
(ACM ITiCSE 2011), pages 1-6, Germany, June 2011.

[76] Guillaume Jourjon, Thierry Rakotoarivelo, and Max Ott. From Learning to Researching
- Ease the shift through testbeds. In Internatinonal ICST Conference on Testbeds and
Research Infrastructures for the Development of Networks and Communities (TridentCom,),
pages 496-505, Berlin, May 2010. Springer-Verlag.

[77] Guillaume Jourjon, Thierry Rakotoarivelo, and Max Ott. Why simulate when you can
experience? In ACM Special Interest Group on Data Communications (ACM SIGCOMM)
Education Workshop, page N/A, Toronto, August 2011.

[78] Guillaume Jourjon, Thierry Rakotoarivelo, and Max Ott. A Portal to Support Rigorous Ex-
perimental Methodology in Networking Research. In Thanasis Korakis, Hongbin Li, Phuoc
Tran-Gia, and Hong-Shik Park, editors, Testbeds and Research Infrastructure. Development
of Networks and Communities, volume 90 of Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering, pages 223—238. Springer
Berlin Heidelberg, 2012.

[79] Seonghoon Kang and Sukyoung Ryu. Formal specification of a javascript module system. In
Proceedings of the ACM International Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA ’12, pages 621-638, New York, NY, USA, 2012. ACM.

116

BIBLIOGRAPHY

[80] A. Kangarlou, Dongyan Xu, U.C. Kozat, P. Padala, B. Lantz, and K. Igarashi. In-network
live snapshot service for recovering virtual infrastructures. Network, IEEFE, 25(4):12-19, July
2011.

[81] Katarzyna Keahey and Tim Freeman. Contextualization: Providing one-click virtual
clusters. In Proceedings of the 2008 Fourth IEEE International Conference on eScience,
ESCIENCE ’08, pages 301-308, Washington, DC, USA, 2008. IEEE Computer Society.

[82] M. Kesavan, A Gavrilovska, and K. Schwan. Xerxes: Distributed load generator for cloud-
scale experimentation. In Open Cirrus Summit (OCS), 2012 Seventh, pages 2024, June
2012.

[83] Fadi KHALIL. Multi-scale modeling: from electromagnetism to grid, 2009.

[84] Jonathan Klinginsmith, Malika Mahoui, and Yuqing Melanie Wu. Towards Reproducible
eScience in the Cloud. In 8rd IEEE International Conference on Cloud Computing Technol-
ogy and Science (CLOUDCOM), pages 582-586, 2011.

[85] G.A. Koenig and L.V. Kale. Optimizing distributed application performance using dynamic
grid topology-aware load balancing. In Parallel and Distributed Processing Symposium, 2007.
IPDPS 2007. IEEE International, pages 1-10, 2007.

[86] Oren Laadan, Jason Nieh, and Nicolas Viennot. Teaching operating systems using virtual
appliances and distributed version control. In Proceedings of the 41st ACM technical sym-
posium on Computer science education, SIGCSE ’10, pages 480484, New York, NY, USA,
2010. ACM.

[87] Mathieu Lacage, Martin Ferrari, Mads Hansen, Thierry Turletti, and Walid Dabbous. NEPI:
Using Independent Simulators, Emulators, and Testbeds for Easy Experimentation. SIGOPS
Oper. Syst. Rev., 43(4):60-65, January 2010.

[88] Stephane Lanteri, Julien Leduc, Nouredine Melab, Guillaume Mornet, Raymond Namyst,
Benjamin Quetier, and Olivier Richard. Grid’5000: a large scale and highly reconfigurable
grid experimental testbed.

[89] Lorenzo Leonini, Etienne Riviére, and Pascal Felber. SPLAY: distributed systems evaluation
made simple (or how to turn ideas into live systems in a breeze). In Proceedings of the 6th
USENIX symposium on Networked systems design and implementation, NSDI’09, pages 185—
198, Berkeley, CA, USA, 2009. USENIX Association.

[90] Bertram Ludé&scher, Ilkay Altintas, Shawn Bowers, Julian Cummings, Terence Critchlow,
Ewa Deelman, David D Roure, Juliana Freire, Carole Goble, Matthew Jones, et al. Scientific
process automation and workflow management. 2009.

[91] Bertram Ludéischer, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger, Matthew
Jones, Edward A. Lee, Jing Tao, and Yang Zhao. Scientific workflow management and the
Kepler system. Concurrency and Computation: Practice and Ezperience, 18(10):1039-1065,
2006.

[92] Douglas C. Montgomery. Design and Analysis of Experiments. John Wiley & Sons, 2006.

[93] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney. Producing
wrong data without doing anything obviously wrong! In Proceedings of the 1/th interna-

tional conference on Architectural support for programming languages and operating systems,
ASPLOS XIV, pages 265-276, New York, NY, USA, 2009. ACM.

[94] Farrukh Nadeem, Radu Prodan, Thomas Fahringer, and Alexandru Iosup. Benchmarking
grid applications. In Grid Middleware and Services, pages 19-37. Springer US, 2008.

117

BIBLIOGRAPHY

[95] S. Naicken, B. Livingston, A. Basu, S. Rodhetbhai, I. Wakeman, and D. Chalmers. The
State of Peer-to-peer Simulators and Simulations. SIGCOMM Comput. Commun. Reuv.,
37(2):95-98, March 2007.

[96] Shaya Potter Jason Nieh. Improving virtual appliance management through virtual layered
file systems. Technical report, Columbia Univeristy, Technical Report CUCS-008-09, 2009.

[97] Daniel Oliveira, FernandaAraujo Baido, and Marta Mattoso. Towards a taxonomy for cloud
computing from an e-science perspective. In Nick Antonopoulos and Lee Gillam, editors,
Cloud Computing, Computer Communications and Networks, pages 47-62. Springer London,
2010.

[98] M. Ott, I. Seskar, R. Siraccusa, and M. Singh. ORBIT testbed software architecture: sup-
porting experiments as a service. In Testbeds and Research Infrastructures for the Develop-
ment of Networks and Communities, 2005. Tridentcom 2005. First International Conference
on, pages 136-145, 2005.

[99] Andrew Pavlo, Peter Couvares, Rebekah Gietzel, Anatoly Karp, Ian D. Alderman, Miron
Livny, and Charles Bacon. The nmi build & test laboratory: continuous integration frame-
work for distributed computing software. In Proceedings of the 20th conference on Large In-
stallation System Administration, LISA 06, pages 21-21, Berkeley, CA, USA, 2006. USENIX
Association.

[100] Roger D. Peng and Sandrah P. Eckel. Distributed reproducible research using cached com-
putations. Computing in Science and Engg., 11(1):28-34, January 2009.

[101] Swann Perarnau, Marc Tchiboukdjian, and Guillaume Huard. Controlling cache utilization
of hpc applications. In International Conference on Supercomputing (ICS), 2011.

[102] Fernando Pérez and Brian E. Granger. IPython: a System for Interactive Scientific Com-
puting. Comput. Sci. Eng., 9(3):21-29, May 2007.

[103] Larry Peterson, Tom Anderson, David Culler, and Timothy Roscoe. A blueprint for in-
troducing disruptive technology into the Internet. SIGCOMM Comput. Commun. Rev.,
33(1):59-64, January 2003.

[104] R.Prodan, T. Fahringer, and F. Franz. On using ZENTURIO for performance and parameter
studies on cluster and Grid architectures. In Proceedings of Eleventh Euromicro Conference
on Parallel, Distributed and Network-Based Processing, pages 185-192, Feb 2003.

[105] A. Quereilhac, M. Lacage, C. Freire, T. Turletti, and W. Dabbous. NEPI: An integration
framework for Network Experimentation. In 19th International Conference on Software,
Telecommunications and Computer Networks (SoftCOM), pages 1-5, Sept 2011.

[106] Alina Quereilhac, Daniel Camara, Thierry Turletti, and Walid Dabbous. Experimentation
with large scale ICN multimedia services on the Internet made easy. IEEE COMSOC MMTC
E-Letter, 8(4):10-12, July 2013.

[107] Thierry Rakotoarivelo, Maximilian Ott, Guillaume Jourjon, and Ivan Seskar. OMF: a control
and management framework for networking testbeds. ACM SIGOPS Operating Systems
Review, 43(4):54-59, Jan 2010.

[108] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H. Kremo, R. Siracusa,
H. Liu, and M. Singh. Overview of the ORBIT radio grid testbed for evaluation of next-
generation wireless network protocols. In Wireless Communications and Networking Con-
ference, 2005 IEEE, volume 3, pages 1664—-1669 Vol. 3, 2005.

118

BIBLIOGRAPHY

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

Héléne Renard, Yves Robert, and Frédéric Vivien. Static load-balancing techniques for
iterative computations on heterogeneous clusters. In Harald Kosch, Laszlé Boszérményi, and
Hermann Hellwagner, editors, Euro-Par 2003 Parallel Processing, volume 2790 of Lecture
Notes in Computer Science, pages 148-159. Springer Berlin Heidelberg, 2003.

Cristian Ruiz, Mihai Alenxandru, Olivier Richard, Thierry Monteil, and Herve Aubert.
Platform calibration for load balancing of large simulations: TLM case. In CCGrid 201
— The 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
Chicago, Illinois, USA, 2014.

Cristian Ruiz, Salem Harrache, Michael Mercier, and Olivier Richard. Reconstructable
software appliances with kameleon. SIGOPS Oper. Syst. Rev., 49(1):80-89, January 2015.

Cristian Ruiz, Olivier Richard, and Joseph Emeras. Reproducible software appliances for
experimentation. In Proceedings of the 9th International ICST Conference on Testbeds and
Research Infrastructures for the Development of Networks and Communities (Tridentcom),
Guangzhou, China, 2014.

Cristian Ruiz, Olivier Richard, Brice Videau, and Iegorov Oleg. Managing Large Scale
Experiments in Distributed Testbeds. In Proceedings of the 11th IASTED International
Conference, pages 628—636. IASTED, ACTA Press, feb 2013.

Constantine Sapuntzakis, David Brumley, Ramesh Chandra, Nickolai Zeldovich, Jim Chow,
Monica S. Lam, and Mendel Rosenblum. Virtual appliances for deploying and maintaining
software. In Proceedings of the 17th USENIX conference on System administration, LISA
'03, pages 181-194, Berkeley, CA, USA, 2003. USENIX Association.

Luc Sarzyniec, Tomasz Buchert, Emmanuel Jeanvoine, and Lucas Nussbaum. Design and
evaluation of a virtual experimental environment for distributed systems. In PDP, pages
172-179, 2013.

Carmine Sellitto. The impact of impermanent web-located citations: A study of 123 schol-
arly conference publications. Journal of the American Society for Information Science and
Technology, 56(7):695-703, 2005.

Xuanhua Shi, Chao Liu, Song Wu, Hai Jin, Xiaoxin Wu, and Li Deng. A cloud service cache
system based on memory template of virtual machine. In Chinagrid Conference (ChinaGrid),
2011 Sizth Annual, pages 168-173, Aug 2011.

Christos Siaterlis and Marcelo Masera. A survey of software tools for the creation of net-
worked testbeds. International Journal On Advances in Security, 3(1 and 2):1-12, 2010.

C. Sun, Le He, Qingbo Wang, and R. Willenborg. Simplifying service deployment with
virtual appliances. In Services Computing, 2008. SCC ’08. IEEE International Conference
on, volume 2, pages 265-272, July 2008.

Masahiro Tanaka and Osamu Tatebe. Pwrake: a parallel and distributed flexible workflow
management tool for wide-area data intensive computing. In Proceedings of the 19th ACM
International Symposium on High Performance Distributed Computing, HPDC ’10, pages
356-359, New York, NY, USA, 2010. ACM.

Walter F. Tichy. Should computer scientists experiment more? Computer, 31(5):32-40, May
1998.

Nikolay Topilski, Jeannie Albrecht, and Amin Vahdat. Improving scalability and fault tol-
erance in an application management infrastructure. In First USENIX Workshop on Large-
Scale Computing, LASCO’08, pages 2:1-2:12, Berkeley, CA, USA, 2008. USENIX Associa-
tion.

119

BIBLIOGRAPHY

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

Sander Van Der Burg and Eelco Dolstra. Disnix: A toolset for distributed deployment. Sci.
Comput. Program., 79:52—-69, January 2014.

B. Videau and O. Richard. Expo : un moteur de conduite d’experiences pour plates-forme
dedies. In Conference Fransaise en Systemes d’Exploitation (CFSE), 2008.

Brice Videau, Corinne Touati, and Olivier Richard. Toward an experiment engine for
lightweight grids. In MetroGrid workshop : Metrology for Grid Networks. ACM publish-
ing, October 2007.

Yanyan Wang. Automating experimentation with distributed systems using generative
techniques. PhD thesis, University of Colorado at Boulder, Boulder, CO, USA, 2006.
A AT3219040.

Yanyan Wang, Antonio Carzaniga, and Alexander L. Wolf. Four enhancements to automated
distributed system experimentation methods. In Proceedings of the 30th international con-
ference on Software engineering, ICSE 08, pages 491-500, New York, NY, USA, 2008. ACM.

Yanyan Wang, Matthew J. Rutherford, Antonio Carzaniga, and Alexander L. Wolf. Au-
tomating Experimentation on Distributed Testbeds. In Proceedings of the 20th IEEE/ACM
International Conference On Automated Software Engineering (ASE), ASE ’05, pages 164—
173, New York, NY, USA, 2005. ACM.

R. Clint Whaley and Antoine Petitet. Minimizing development and maintenance costs in
supporting persistently optimized BLAS. Software: Practice and Ezperience, 35(2):101-121,
February 2005. http://www.cs.utsa.edu/ "whaley/papers/spercw04.ps.

Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac Newbold,
Mike Hibler, Chad Barb, and Abhijeet Joglekar. An Integrated Experimental Environment
for Distributed Systems and Networks. In Proceedings of the 5th Symposium on Operating
Systems Design and Implementation (OSDI), pages 255-270, Boston, MA, December 2002.
USENIX Association.

Jolyon White, Guillaume Jourjon, Thierry Rakotoarivelo, and Max Ott. Measurement Archi-
tectures for Network Experiments with Disconnected Mobile Nodes. In Anastasius Gavras,
Nguyen Huu Thanh, and Jeff Chase, editors, TridentCom 2010, 6th International ICST
Conference on Testbeds and Research Infrastructures for the Development of Networks €9
Communities, Lecture Notes of the Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering, pages 315-330, Heidelberg, Germany, May 2010. ICST,
Springer-Verlag Berlin.

Jia Yu and Rajkumar Buyya. A Taxonomy of Scientific Workflow Systems for Grid Com-
puting. SIGMOD Record, 34:44-49, September 2005.

Tianle Zhang, Zhihui Du, Yinong Chen, Xiang Ji, and Xiaoying Wang. Typical virtual
appliances: An optimized mechanism for virtual appliances provisioning and management.
Journal of Systems and Software, 84(3):377 — 387, 2011.

120

Part V

Appendix

121

0 N o U AW N =

Appendix A

Other experiment descriptions

implemented

require ’gbk_api’

set :user, "cruizsanabria"
set :gateway, 'grenoble.gbk"
set :resources, "MyExperiment.resources"

reserv = connection(:type => "Grid5000")

reserv.resources = {:nancy =>["{cluster=’griffon’}/node
:luxembourg => ["{cluster=’granduc’}/nodes=10"],
:reims =>["nodes=10"1}

reserv.name ="Tlm Load Balancing"

WORK_DIRECTORY=""/Exp_t1lm_load_balancing"
TLM_TARBALL = "tlm_load_balancing.tar"
RUNS = 5
SIMULATION_PARAMETERS = "1 10000 152 172 86 matched"
RESULTS_FILE = "tlm_vs_tlmlb"
rEEEERERERERE Experiment workflow FEREREREREZHEHERELELE
task :run_reservation do
reserv.run!
end

task :extracting_and_compiling, :target => resources, :once => true,

msg("Compiling in site ")

unless check("ls #{WORK_DIRECTORY}/TLMME_1b")
run("mkdir -p #{WORK_DIRECTORY}")
put ("/tmp/#{TLM_TARBALL}","#{WORK_DIRECTORY}/#{TLM_
run("cd #{WORK_DIRECTORY}; tar -xf #{TLM_TARBALL}")

run("cd #{WORK_DIRECTORY}/TLMME_1b/t1lm/; make ITERATIONS=200")
run("cd #{WORK_DIRECTORY}/TLMME_lb/tlm/; make ITERATIONS=200 MAIN=main_lb_test EXESUFFIX=load_test")

end

put ("/tmp/nodes.deployed","#{WORK_DIRECTORY}/TLMME_1b/t1lm/")

end

task :tlm_lb, :target => resources.first, :sync => true
RUNS.times do
run("cd #{WORK_DIRECTORY}/TLMME_1b/tlm/; ./grid_run
end
end

task :tlm, :target => resources.first, :sync => true do
RUNS.times do
run("cd #{WORK_DIRECTORY}/TLMME_1lb/tlm/; ./grid_run
end
end

s=10"1,

HRERERRRHRERERRRERERERHRERER R H

TARBALL}")

do

_1b #{SIMULATION_PARAMETERS}")

#{SIMULATION_PARAMETERS}")

Listing 14: Description file of an experiment that compares the gains obtained when applying load balacing
to a large simulation based on TLM. Some tasks were omitted due to space constraints.

123

0N U W e

NN NN NN 000000 00O 0o oot Ot Ol OO ot Ot R A AR R A AR DWW W W W W WWWWNNNNNDNNNNNE SRR s e e e e
0N OOt A WN RO DOm0 R RN~ OO0 ®ma®0A RO~ O 00D U R WM~ O 0NN 0A WD~ O ©O00N00RWNRO 00N UA®N~ OO

APPENDIX A. OTHER EXPERIMENT DESCRIPTIONS IMPLEMENTED

require ’g
set :ruser,
set :gw_us

5k_api’
"root"
er, "cruizsanabria" ## replace with your user

set :resources, "MyExperiment.resources"

reserv = C
reserv.res
reserv.env

onnection(:type => "Grid5000")
ources = { :lyon => ["nodes=2"] }
ironment = "http://public.nancy.grid5000.fr/~dlehoczky/newimage.dsc"

reserv.name = '"mpi trace collection"

tt#t# Tasks Definition Hi####ttdtEdtdttdntttthtststttdtdtess
task :run_reservation do

reserv.
end

run!

Generating password less communication

task :conf

ig_ssh do

msg("Generating SSH config")

File.op

en("/tmp/config",’w+’) do |f]

f.puts "Host *

Stri

ctHostKeyChecking no

UserKnownHostsFile=/dev/null "

end
end

task :generating_ssh_keys do

run ("mk

dir -p /tmp/temp_keys/")

run("ssh-keygen -P ’’ -f /tmp/temp_keys/key") unless check("ls /tmp/temp_keys/key")

end

task :tran

s_keys, :target => resources do

put("/tmp/config","/root/.ssh/")
put ("/tmp/temp_keys/key","/root/.ssh/id_rsa")
put ("/tmp/temp_keys/key.pub","/root/.ssh/id_rsa.pub")

end
task :copy
resourc
run(

}

end

_identity do
es.each{ |node]|
"ssh-copy-id -i /tmp/temp_keys/key.pub root@#{node.name}") #,:target => gateway)

Getting the benchmark
task :get_benchmark, :target => resources do

unless
msg (
run (
run (
end
end

task :comp
compile
compile
compile

check("ls /tmp/NPB3.3.tar") then

"Getting NAS benchmark")

"cd /tmp/; wget -q http://public.grenoble.grid5000.fr/~cruizsanabria/NPB3.3.tar")
"cd /tmp/; tar -xvf NPB3.3.tar")

ile_benchmark_lu, :target => resources do

= "export PATH=/usr/local/tau-install/x86_64/bin/:$PATH;"

+= "export TAU_MAKEFILE=/usr/local/tau-install/x86_64/1ib/Makefile.tau-papi-mpi-pdt;"
+= "make lu NPROCS=8 CLASS=A MPIF77=tau_f90.sh -C /tmp/NPB3.3/NPB3.3-MPI/"

run(compile)

end

Generat
task :tran

ing machinefile
sfering_machinefile, :target => resources.first do

put (resources.nodefile,"/tmp/machinefile")

end

task :run_mpi, :target => resources.first do

mpi_par

ams = "-x TAU_TRACE=1 -x TRACEDIR=/tmp/mpi_traces -np 8 -machinefile /tmp/machinefile"

run("/usr/local/openmpi-1.6.4-install/bin/mpirun #{mpi_params} /tmp/NPB3.3/NPB3.3-MPI/bin/lu.A.8")

end

Gather:
task :gath
resourc
msg (
run(

}
cmd_mer
cmd_mer

ng traces and merging

ering_traces, :target => resources.first do

es.each{ |node]|

"Merging results of node #{node.name}")

"scp -r #{node.name}:/tmp/mpi_traces/* /tmp/mpi_traces")

ge = "export PATH=/usr/local/tau-install/x86_64/bin/:$PATH;"
ge += "cd /tmp/mpi_traces/; tau_treemerge.pl"

run(cmd_merge)

run("cd /tmp/mpi_traces/; /usr/local/akypuera-install/bin/tau2paje tau.trc tau.edf 1>lu.A.8.paje 2>tau2paje.error")

end

Listing 15: Description file of an experiment that traces a NAS benchmark with TAU.
124

_ e
= 0 ©® WO R W R

Appendix B

Experiment management tools
comparison

The following descriptions were used for comparing Ezpo against XpFlow and Execo. The conclu-

sions of this comparison were shown in Chapter [31

require ’plain_api’

set :resources, "MyExperiment.resources"
set :user, "root"

reserv = connection(:type => "Plain",
:nodes_file => "vboxnodes")

PIPE_LENGTH = 800
RUNS = 5

task :install_packages, :target => resources do
packages = "make g++ openssh-server openmpi-bin openmpi-common openmpi-dev"
run(" apt-get -y --force-yes install #{packages} 2>&1")
run("ifconfig ethl down")

end

task :compiling_tlm, :target => resources do
put ("/home/cristian/Dev/C++/TLM_2013/t1lm_clean_version.tar","/root/")
run("cd /root/ && tar -xf tlm_clean_version.tar")
run("cd /root/TLMME/tlm/ && make'")

end

task :conf_mpi, :target => resources.first do
put (resources.nodefile, "/root/TLMME/tIm/bin/")
put ("run_cluster", "/root/TLMME/t1lm/")
run("cd /root/TLMME/tlm/ && chmod +x run_cluster")
end

task :run_tlm, :target => resources.first do

[2,4,6].each do |num_procs|
RUNS. times{
run("cd /root/TLMME/tlm/;./run_cluster #{num_pr3ocs} 100 #{PIPE_LENGTH/num_procs} 86 43 matched")
}
end
end

Listing 16: Experiment that measures the best performance of TLM code using Ezpo

125

APPENDIX B. EXPERIMENT MANAGEMENT TOOLS COMPARISON

from execo import *
from execo_engine import *

class tlm_performance(Engine):

def run(self):
hosts= [Host(’192.168.56.101?, user = ’root’),Host(’192.168.56.102?, user = ’root?)]

Lo B R N N

Ut B R R A A R R A A R DWW W W W WWWWNNNNNNDINDNNNE SRR e s e e e
=~ O ©®®N®0hWNRE,O D00 U R WL~ O©®®NO0A WD RO ®00N®0 AWM~ O O

logger.info("Starting Experiment")

logger.info("Installing packages")

Remote (" apt-get -y --force-yes install \
make g++ openssh-server openmpi-bin openmpi-common openmpi-dev 2>&1",
hosts) .run()

logger.info("transfering code")

Put (hosts,

["/home/cristian/Dev/C++/TLM_2013/t1lm_clean_version.tar"],

"/root/") .run()

logger.info("Compiling")

Remote ("tar -xf tlm_clean_version.tar',hosts).run()

Remote("cd /root/TLMME/t1lm/ && make '",hosts).run()

logger.info ("MPI configuration")
f = open("machines", "w")
for node in hosts:
f.write("%s \n" 7% node.address)
f.close()

Put (hosts[0], ["machines"],"/root/TLMME/t1m/bin/") .run()
Put (hosts[0], ["run_cluster"], "/root/TLMME/tlm/").run()
SshProcess("cd /root/TLMME/tlm/ ; chmod +x run_cluster",hosts[0]).run()

logger.info("starting tlm execution")

PIPE_LENGTH = 800

RUNS = 5

result_file = "execution_time_tlm.txt"

f = open(result_file, "w")

for num_procs in [2,4,6]:

for run in range (RUNS):
tlm_parallel = SshProcess(

"cd /root/TLMME/tlm/;./run_cluster"
" %d 100 %d 86 43 matched" % (num_procs,PIPE_LENGTH/num_procs),
hosts[0])

tlm_parallel.run()

tlm_parallel.wait()

execution_time = tlm_parallel.end_date - tlm_parallel.start_date
logger.info("Execution time is : %d" 7 execution_time)
#f.write("|n")

__name__ == "__main__":
engine = tlm_performance ()
engine.start ()

Listing 17: Experiment that measures the best performance of TLM code using Ezeco

126

Lo B R R N

[I i e
B O ©® WU A WNR OO

22

APPENDIX B. EXPERIMENT MANAGEMENT TOOLS COMPARISON

activity :install_package do |nodes, packages|
log("Installing packages")
r = execute_many(nodes, "apt-get -y --force-yes install #{packages} 2>&1")
r = execute_many(nodes,"ifconfig ethl down")

end

activity :compile_tlm do |nodes]|
r = execute_many(nodes, "cd /root/ &% tar -xf tlm_clean_version.tar")
r = execute_many(nodes, "cd /root/TLMME/tlm/ && make')

end

activity :tlm_execution do Inodes,runs,pipe_lengthl
[2,4,6].each do |num_procs|
runs.times{

r = execute_one(nodes.first, "cd /root/TLMME/tlm/;./run_cluster #{num_procs} 100 #{pipe_length/num_procs} 86 43 matched")

log(r)
}
end
end

activity :conf_mpi do |nodes]|

log("MPI configuration")
File.open("machines", ’w’) do [f|
nodes.each{ |nodel
f.puts(node.host)
}

end
end

process :main do
log "Installing packages"
PIPE_LENGTH = 800
RUNS = 5

log "loading nodes"
ip_adresses = YAML::load(File.read("vboxnodes"))
hosts = []
ip_adresses.each{ |ip|
hosts.push(simple_node ("root@#{ip}"))
}

run(:install_package,hosts, "make g++ openssh-server openmpi-bin openmpi-common openmpi-dev'")
f = file(localhost, "/home/cristian/Dev/C++/TLM_2013/tlm_clean_version.tar")
distribute f, hosts, "/root/tlm_clean_version.tar"

compile_t1lm(hosts)

log "Finished of setting up TLM"

conf_mpi (hosts)

copy "machines", hosts.first, "/root/TLMME/tlm/bin/machines"

copy "run_cluster", hosts.first, "/root/TLMME/tlm/run_cluster"

r = execute_one(hosts.first, "cd /root/TLMME/tlm/; chmod +x run_cluster")
tlm_execution(hosts, RUNS, PIPE_LENGTH)

end

Listing 18: Experiment that measures the best performance of TLM code using XPFlow

127

	Acknowledgments
	Abstract
	Resume
	I Introduction
	Introduction
	Experimental cycle
	Design
	Challenges

	Instantiation
	Challenges

	Execution
	Challenges

	Analysis
	Challenges

	Contributions
	Survey of experimental management tools
	Experiment management tool
	Experimental software environment

	Thesis organization

	Overview of experiment management in computer science
	Introduction
	Context and terminology
	Definitions
	Motivations for experimentation tools
	Ease of experimenting
	Replicability (automation)
	Reproducibility
	Controlling and exploring the parameter space
	Scalability

	Testbeds

	List of features offered by experiment management tools
	Description Language
	Type of Experiments
	Interoperability
	Reproducibility
	Fault Tolerance
	Debugging
	Monitoring
	Data Management
	Architecture

	Existing experimentation tools
	Naive method
	Weevil
	Workbench for Emulab
	Plush/Gush
	Expo
	OMF
	NEPI
	XPFlow
	Execo

	Discussion
	Tools not covered in the study
	Non general-purpose experiment management tools
	Scientific workflow systems
	Simulators and abstract frameworks

	Complementary tools
	Software provisioners and appliance builders
	Tools for capturing experimental context
	Tools for making the analysis reproducible
	Workload generators
	Distributed emulators

	Conclusions

	II Expo
	Expo: a tool to manage large scale experiments
	Introduction
	Expo
	Expo ResourceSet
	Expo Tasks
	Expo interactive console
	Expo experiment validation
	Expo experiment mapping
	Expo evolution

	Use cases
	Evaluation of experiment control systems
	Gush comparison
	XpFlow and Execo comparison
	Description language
	Experiment validation
	Experiment checkpoint

	Related works
	Deployment of complex distributed applications
	Regression tests for distributed applications

	Conclusions and future works

	How HPC applications can take advantage of experiment management tools
	Introduction
	Related work
	Load balancing of distributed applications
	Dynamic techniques
	Static techniques

	Experiment management tools
	Transmission-Line Matrix

	Load Balancing approach
	Expo calibration module

	Results
	Experimental platform
	Using different configurations
	Changing the number of nodes
	Large structure
	Distributed experiment
	Local experiment

	Conclusions and Future Works

	III Kameleon
	Setting up complex software stacks
	Introduction
	Motivations
	Reconstruct-ability
	Contributions of this chapter

	Related work
	Software appliance builders comparison
	Software Appliance Build Cycle
	Criteria for Improving User Productivity
	Software Appliance Builders
	Docker
	Packer
	BoxGrinder
	Veewee
	OZ
	Kameleon

	Discussion

	Kameleon: the mindful appliance builder
	Syntax
	Kameleon Contexts
	Checkpoint mechanism
	Extend mechanism
	Persistent cache mechanism
	Comparison with the previous Kameleon version

	Use cases
	Software Appliance Complexity
	Container Isolation
	Lightweight.
	Service.
	Kernel modules.
	Hardware dependent.

	Results and Discussion
	Hardware dependent software appliance evaluation
	Experiment packaging example

	Future work
	Conclusions

	Reproducible appliances for experimentation
	Introduction
	Related works
	Tools for capturing the environment of experimentation
	Methods for setting up the environment of experimentation
	Manual
	Script Automation
	Configuration management tools
	Software appliances

	Reconstructable software appliances
	Requirements for reconstruct-ability
	Design

	Experimental results and validation
	Kameleon old version
	Building old environments

	Discussion
	Conclusions and Future Works

	IV Conclusions
	Conclusions
	Experiment cycle
	Future works
	Expo perspectives
	Kameleon perspectives

	V Appendix
	Other experiment descriptions implemented
	Experiment management tools comparison

