
HAL Id: tel-01564999
https://theses.hal.science/tel-01564999

Submitted on 19 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Methods and tools for challenging experiments on
Grid’5000 : a use case on electromagnetic hybrid

simulation
Cristian Ruiz

To cite this version:
Cristian Ruiz. Methods and tools for challenging experiments on Grid’5000 : a use case on elec-
tromagnetic hybrid simulation. Distributed, Parallel, and Cluster Computing [cs.DC]. Université de
Grenoble, 2014. English. �NNT : 2014GRENM056�. �tel-01564999�

https://theses.hal.science/tel-01564999
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Présentée par

Cristian RUIZ

Thèse dirigée par Olivier Richard
et codirigée par Thierry Monteil

Préparée au sein du LIG, Laboratoire d’Informatique de Grenoble
et de l’École Doctorale Mathématiques, Sciences et Technologies de
l’Information, Informatique

Methods and Tools for Challenging experi-
ments on Grid’5000: a use case on electro-
magnetic hybrid simulation

Thèse soutenue publiquement le 15 décembre 2015,
devant le jury composé de :

M. Emmanuel Jeannot
Directeur de recheche à INRIA, Président

M. Frederic Desprez
Directeur de recherche à INRIA, Rapporteur

Mme. Kate Keahey
Scientist and Senior Fellow à Argonne National laboratory, Rapporteur

M. Yves Denneulin
Professeur à Grenoble INP, Examinateur

M. Olivier Richard
Maitre de conference, LIG, Directeur de thèse

M. Thierry Monteil
Maitre de conference, LAAS-CNRS, Co-Directeur de thèse

Contents

A
knowledgments 11

Abstra
t 13

Resume 15

I Introdu
tion 17

1 Introdu
tion 19

1.1 Experimental
y
le . 20

1.1.1 Design . 21

Challenges . 21

1.1.2 Instantiation . 21

Challenges . 21

1.1.3 Exe
ution . 22

Challenges . 22

1.1.4 Analysis . 22

Challenges . 22

1.2 Contributions . 22

1.2.1 Survey of experimental management tools 23

1.2.2 Experiment management tool . 23

1.2.3 Experimental software environment . 24

1.3 Thesis organization . 24

2 Overview of experiment management in
omputer s
ien
e 25

2.1 Introdu
tion . 25

2.2 Context and terminology . 26

2.2.1 De�nitions . 26

2.2.2 Motivations for experimentation tools . 27

Ease of experimenting . 27

Repli
ability (automation) . 28

Reprodu
ibility . 28

Controlling and exploring the parameter spa
e 28

S
alability . 28

2.2.3 Testbeds . 29

2.3 List of features o�ered by experiment management tools 30

2.3.1 Des
ription Language . 30

2.3.2 Type of Experiments . 32

2.3.3 Interoperability . 32

2.3.4 Reprodu
ibility . 32

2.3.5 Fault Toleran
e . 33

3

CONTENTS CONTENTS

2.3.6 Debugging . 33

2.3.7 Monitoring . 34

2.3.8 Data Management . 34

2.3.9 Ar
hite
ture . 35

2.4 Existing experimentation tools . 35

2.4.1 Naive method . 35

2.4.2 Weevil . 37

2.4.3 Workben
h for Emulab . 37

2.4.4 Plush/Gush . 37

2.4.5 Expo . 38

2.4.6 OMF . 38

2.4.7 NEPI . 38

2.4.8 XPFlow . 38

2.4.9 Exe
o . 38

2.5 Dis
ussion . 39

2.6 Tools not
overed in the study . 40

2.6.1 Non general-purpose experiment management tools 40

2.6.2 S
ienti�
 work�ow systems . 41

2.6.3 Simulators and abstra
t frameworks . 41

2.7 Complementary tools . 41

2.7.1 Software provisioners and applian
e builders 42

2.7.2 Tools for
apturing experimental
ontext 42

2.7.3 Tools for making the analysis reprodu
ible 42

2.7.4 Workload generators . 43

2.7.5 Distributed emulators . 43

2.8 Con
lusions . 43

II Expo 45

3 Expo: a tool to manage large s
ale experiments 47

3.1 Introdu
tion . 47

3.2 Expo . 48

3.2.1 Expo Resour
eSet . 49

3.2.2 Expo Tasks . 50

3.2.3 Expo intera
tive
onsole . 50

3.2.4 Expo experiment validation . 51

3.2.5 Expo experiment mapping . 51

3.2.6 Expo evolution . 52

3.3 Use
ases . 52

3.4 Evaluation of experiment
ontrol systems . 54

3.4.1 Gush
omparison . 55

3.4.2 XpFlow and Exe
o
omparison . 55

Des
ription language . 56

Experiment validation . 56

Experiment
he
kpoint . 56

3.5 Related works . 58

3.5.1 Deployment of
omplex distributed appli
ations 58

3.5.2 Regression tests for distributed appli
ations 59

3.6 Con
lusions and future works . 59

4

CONTENTS CONTENTS

4 How HPC appli
ations
an take advantage of experiment management tools 61

4.1 Introdu
tion . 61

4.2 Related work . 62

4.2.1 Load balan
ing of distributed appli
ations 62

Dynami
 te
hniques . 62

Stati
 te
hniques . 63

4.2.2 Experiment management tools . 63

4.2.3 Transmission-Line Matrix . 63

4.3 Load Balan
ing approa
h . 64

4.3.1 Expo
alibration module . 65

4.4 Results . 68

4.4.1 Experimental platform . 68

4.4.2 Using di�erent
on�gurations . 68

4.4.3 Changing the number of nodes . 69

4.4.4 Large stru
ture . 70

Distributed experiment . 70

Lo
al experiment . 70

4.5 Con
lusions and Future Works . 70

III Kameleon 71

5 Setting up
omplex software sta
ks 73

5.1 Introdu
tion . 73

5.1.1 Motivations . 74

5.1.2 Re
onstru
t-ability . 75

5.1.3 Contributions of this
hapter . 75

5.2 Related work . 76

5.3 Software applian
e builders
omparison . 77

5.3.1 Software Applian
e Build Cy
le . 77

5.3.2 Criteria for Improving User Produ
tivity 77

5.3.3 Software Applian
e Builders . 79

Do
ker . 79

Pa
ker . 79

BoxGrinder . 80

Veewee . 80

OZ . 80

Kameleon . 80

5.3.4 Dis
ussion . 80

5.4 Kameleon: the mindful applian
e builder . 81

5.4.1 Syntax . 82

5.4.2 Kameleon Contexts . 84

5.4.3 Che
kpoint me
hanism . 85

5.4.4 Extend me
hanism . 85

5.4.5 Persistent
a
he me
hanism . 86

5.4.6 Comparison with the previous Kameleon version 86

5.5 Use
ases . 86

5.5.1 Software Applian
e Complexity . 88

5.5.2 Container Isolation . 88

Lightweight. 89

Servi
e. 89

Kernel modules. 89

Hardware dependent. 89

5.5.3 Results and Dis
ussion . 89

5

CONTENTS CONTENTS

Hardware dependent software applian
e evaluation 89

Experiment pa
kaging example . 91

5.5.4 Future work . 92

5.5.5 Con
lusions . 93

6 Reprodu
ible applian
es for experimentation 95

6.1 Introdu
tion . 95

6.2 Related works . 96

6.2.1 Tools for
apturing the environment of experimentation 96

6.2.2 Methods for setting up the environment of experimentation 96

Manual . 96

S
ript Automation . 97

Con�guration management tools . 97

Software applian
es . 97

6.3 Re
onstru
table software applian
es . 97

6.3.1 Requirements for re
onstru
t-ability . 99

6.3.2 Design . 100

6.4 Experimental results and validation . 102

6.4.1 Kameleon old version . 102

6.4.2 Building old environments . 103

6.5 Dis
ussion . 103

6.6 Con
lusions and Future Works . 103

IV Con
lusions 105

7 Con
lusions 107

7.1 Experiment
y
le . 108

7.2 Future works . 109

7.2.1 Expo perspe
tives . 109

7.2.2 Kameleon perspe
tives . 110

V Appendix 121

A Other experiment des
riptions implemented 123

B Experiment management tools
omparison 125

6

List of Figures

1.1 Experiment
y
le with distributed systems . 21

1.2 Experiment
y
le proposed in this thesis . 22

2.1 Tree of features . 31

2.2 Timeline of publi
ations dedi
ated to experiment management tools 37

2.3 Whole panorama of tools that help with experimentation 40

3.1 Role of Expo in the experiment
y
le . 47

3.2 Expo ar
hite
ture . 49

3.3 Resour
eSet details . 49

3.4 Expo work�ow mapping . 51

3.5 Gush vs Expo s
alabiity evaluation . 55

3.6 S
alability evaluation for the three experiment management 58

4.1 Load balan
ing approa
h . 65

4.2 Expo Modules: the
alibration modules is exe
uted on
e 66

4.3 Experiment
alibration exe
utable work�ow . 67

4.4 Heterogeneity of Grid'5000 . 67

4.5 Results using heterogeneous
on�gurations . 69

4.6 Gain obtained with the same simulation parameters
hanging the number of nodes. 69

5.1 Role of Kameleon in the experiment
y
le . 73

5.2 Creation pro
ess of an experimental setup. 74

5.3 Kameleon ar
hite
ture. 81

5.4 An example of a Kameleon re
ipe written in YAML. 83

5.5 Simpli�ed Kameleon re
ipe version 1.2.8 . 88

5.6 Example of experiment pa
kaging with Kameleon. 92

6.1 Kameleon re
ipe example . 98

6.2 Software applian
e
reation with Kameleon . 99

6.3 Example of persistent
a
he
ontents . 101

7

LIST OF FIGURES LIST OF FIGURES

8

List of Tables

2.1 Summary of analyzed experiment management tools 36

2.2 Number of publi
ations dedi
ated to ea
h tool . 39

3.1 Resour
eSet operations . 50

4.1 Exe
ution time of tasks . 66

5.1 This table shows how the software applian
e build
y
le is supported by ea
h tool 78

5.2 Comparison of widely used applian
e builders . 79

5.3 Kameleon
ommands. 84

5.4 Kameleon
on
epts, interrelation between
ontexts and se
tions. 85

5.5 Software applian
es built with Kameleon . 87

5.6 Building time of some software applian
es. The time is presented in se
onds. . . . 90

5.7 Containers
omparison ma
hine M1. 91

5.8 Containers
omparison ma
hine M2. 91

5.9 Some persistent
a
he ar
hives . 92

6.1 Persistent
a
he approa
hes . 101

6.2 Software applian
es generated . 102

6.3 Software applian
es generated . 102

9

LIST OF TABLES LIST OF TABLES

10

A
knowledgments

First and foremost, I would like to express my deepest gratitude to my family. They were always

supporting me,
reating the perfe
t
onditions for me to be able to su

eed in this endeavor.

Without their support this thesis would have not be possible.

My highest appre
iation to Christiane Tron-Siaud who shared my happiness, my sadness and

made the impossible to help me out. I would like to thank Eri
k Meneses and Carlos Jaime Barrios

for their support and friendship that were important to endure the hard moments and spe
ially

for giving me the idea of pursuing my studies in this �eld.

This thesis would have not been possible without the guidan
e, availability of my advisor

Olivier Ri
hard who was always there to dis
uss and give me valuable feedba
k. I really enjoy

working with him and I really appre
iated his sense of humor. I would like to thank Thierry

Monteil my other advisor for his invaluable help during this thesis who, in spite of, the distan
e

was present when I needed him.

I would like to thank Tomasz Bu
hert, Lu
as Nussbaum, Mihai Alexandru, Joseph Emeras

who
ontributed dire
tly to this thesis by
o-authoring some resear
h papers. A spe
ial thanks

goes to Salem Harra
he, Mi
hael Mer
ier, Pierre Neyron and Bruno Bzeznik who
ontributed to

this thesis by helping me out with te
hni
al issues and by
reating an ex
ellent atmosphere for

working. I would like also to thank INRIA for funding this thesis.

Finally, nothing would have meaning if I did not have the support of my friends who always

were there to give me a hand.

11

LIST OF TABLES LIST OF TABLES

12

Abstra
t

In the �eld of Distributed Systems and High Performan
e Computing experimental validation is

heavily used against an analyti
 approa
h. The latter is not feasible any more due to the
omplexity

of those systems in terms of software and hardware. Therefore, resear
hers have to fa
e many

hallenges when
ondu
ting their experiments, making the pro
ess
ostly and time
onsuming.

Although world s
ale platforms exist and virtualization te
hnologies enable to multiplex hardware,

experiments are most of the time limited in size given the di�
ulty to perform them at large s
ale.

The level of te
hni
al skills required for setting up an appropriate experimental environment is

rising with the always in
reasing
omplexity of software sta
ks and hardware nowadays. This

in turn provokes that resear
hers in the pressure to publish and present their results use ad

ho
 methodologies. Hen
e, experiments are di�
ult to tra
k and preserve, preventing future

reprodu
tion.

A variety of tools have been proposed to address this
omplexity at experimenting. They were

motivated by the need to provide and en
ourage a sounder experimental pro
ess, however, those

tools primary addressed mu
h simpler s
enarios su
h as single ma
hine or
lient/server. In the

ontext of Distributed Systems and High Performan
e Computing, the obje
tive of this thesis is

to make
omplex experiments, easier to perform, to
ontrol, to repeat and to ar
hive.

In this thesis we propose two tools for
ondu
ting experiments that demand a
omplex software

sta
k and large s
ale. The �rst tool is
alled Expo that enables to e�
iently
ontrol the dynami

part of an experiment whi
h means all the experiment work�ow, monitoring of tasks, and
olle
tion

of results. Expo features a des
ription language that makes the set up of an experiment with

distributed systems less painful. Comparison against other approa
hes, s
alability tests and use

ases are shown in this thesis whi
h demonstrate the advantage of our approa
h. The se
ond

tool is
alled Kameleon whi
h addresses the stati
 part of an experiment, meaning the software

sta
k and its
on�guration. Kameleon is a software applian
e builder that enables to des
ribe

and
ontrol all the pro
ess of
onstru
tion of a software sta
k for experimentation. The main

ontribution of Kameleon is to make easier the setup of
omplex software sta
ks and guarantee

its post re
onstru
tion.

13

LIST OF TABLES LIST OF TABLES

14

Résumé

Dans le domaine des systèmes distribués et du
al
ul haute performan
e, la validation expérimen-

tale est de plus en plus utilisé par rapport aux appro
hes analytiques. En e�et,
elles-
i sont de

moins en moins réalisables à
ause de la
omplexité grandissante de
es systèmes à la fois au niveau

logi
iel et matériel. Les
her
heurs doivent don
 faire fa
e à de nombreux
hallenges lors de la

réalisation de leurs expérien
es rendant le pro
essus
oûteux en ressour
e et en temps. Bien que de

larges plateformes parallèles et te
hnologies de virtualisation existent, les expérimentations sont,

pour la plupart du temps, limitées en taille. La di�
ulté de passer une expérimentation à l'é
helle

représente un des grands fa
teurs limitant. Le niveau te
hnique né
essaire pour mettre en pla
e

un environnement expérimentale approprié ne
esse d'augmenter pour suivre les évolutions des

outils logi
iels et matériels de plus en plus
omplexes. Par
onséquent, les
her
heurs sont tentés

d'utiliser des méthodes ad-ho
 pour présenter des résultats plus rapidement et pouvoir publier.

Il devient alors di�
ile d'obtenir des informations sur
es expérimentations et en
ore plus de les

reproduire.

Une palette d'outils ont été proposés pour traiter
ette
omplexité lors des expérimentations.

Ces outils sont motivés par le besoin de fournir et d'en
ourager des méthodes expérimentales

plus
onstruites. Cependant,
es outils se
on
entrent prin
ipalement sur des s
énarios très sim-

ple n'utilisant par exemple qu'un seul noeud ou
lient/serveur. Dans le
ontexte des systèmes

distribués et du
al
ul haute performan
e, l'obje
tif de
ette thèse est de fa
iliter la
réation

d'expérien
es, de leur
ontr�le, répétition et ar
hivage.

Dans
ette thèse nous proposons deux outils pour mener des expérimentations né
essitant une

pile logi
ielle
omplexe ainsi qu'un grand nombre de ressour
es matérielles. Le premier outil est

Expo. Il permet de
ontr�ler e�
a
ement la partie dynamique d'une expérimentation,
'est à dire

l'en
haînement des tests expérimentaux, la surveillan
e des ta
hes et la
olle
te des résultats. Expo

dispose d'un langage de des
ription qui permet de mettre en pla
e une expérien
e dans un
ontexte

distribué ave
 nettement moins de di�
ultés. Contrairement aux autres appro
hes, des tests de

passage à l'é
helle et s
énarios d'usage sont présentés a�n de démontrer les avantages de notre

appro
he. Le se
ond outil est appelé Kameleon. Il traite les aspe
ts statiques d'une expérien
e,

'est à dire la pile logi
ielle et sa
on�guration. Kameleon est un logi
iel qui permet de dé
rire

et
ontr�ler toutes les étapes de
onstru
tion d'un environnement logi
iel destiné aux expérimen-

tations. La prin
ipale
ontribution de Kamelon est de fa
iliter la
onstru
tion d'environnements

logi
iels
omplexes ainsi que de garantir de futur re
onstru
tions.

15

LIST OF TABLES

16

Part I

Introdu
tion

17

Chapter 1

Introdu
tion

Beware of bugs in the above
ode; I have only proved it
orre
t, not tried it. � Don

Knuth

If I have seen further it is by standing on the shoulders of giants - Isaa
 Newton -

Natural s
ien
es have
reated instruments

1

and develop methodologies [92℄ for
arrying out a

more sound experimental pro
ess that follows the s
ienti�
 method and assure that the results
an

be validated. Nowadays,
omputers are the support for s
ienti�
 dis
overies in natural s
ien
es

whi
h spans areas from parti
le physi
s to astronomy and
osmology. Computers are mostly

used for performing data analysis and
arrying out simulations

2

. In view of the in
reasing

omplexity of this data-driven pro
ess,
omputational s
ienti�
 work�ows have been adopted as a

tool for improving and automating the experimentation a
tivity [90℄. They
over di�erent phases

of the s
ien
e pro
ess: hypothesis formation, experiment design, exe
ution, and data analysis.

Re
ently
omputational s
ienti�
 work�ows and data provenan
e te
hniques have re
eived spe
ial

attention [36℄ due the need for Reprodu
ible resear
h that make a
all for results reprodu
ibility,

sharing and knowledge re-use in the s
ienti�

ommunity. Likewise, resear
h based mainly on data

analysis and simulation of natural phenomena su
h as image pro
essing, geophysi
s, bioinformati
s,

signal pro
essing, neuros
ien
e, et
 have been
reating a set of tools [37, 54, 43, 100℄ that help to

a
hieve reprodu
ibility of their results.

A tenden
y
an be observed for improving the experimental methodologies when using
omput-

ers at the servi
e of s
ien
e and we should expe
t the same for pure
omputer s
ien
e. Distributed

systems in general and High performan
e
omputing in parti
ular rely heavily on experimentation,

given that it is di�
ult to study those systems using an analyti
 approa
h [121, 59, 66℄. Unfortu-

nately, there is a la
k of methodologies and tools to
ondu
t experiments with distributed systems

as expressed in [70℄, making experimenters use ad ho
 approa
hes that are hardly reprodu
ible.

This
an be explained by the fa
t that there exist more
hallenges when our obje
t of study is

the same
omputer system and experiment results and resear
h
on
lusions are dependent on the

most minimal detail of the software and hardware sta
k.

In [32℄ the pro
ess of repeating an experiment was
arefully studied and among the many

on
lusions drawn, the di�
ulty of repeating published results was highly relevant. There
ould be

many reasons that hamper the Reprodu
ibility/Repetability of experiments presented in a paper.

For example, the buildability of artifa
ts, a re
ent study [30℄ found that roughly only 25% of

publi
ations in ACM
onferen
es and journals
an be built. Another reason is the measurement

bias. In [93℄ it was shown that seemingly
hanges in the experimental setup su
h as Linux

environment size
an in�uen
e the apparent performan
e of appli
ations. The low quality of

experiments in Distributed systems and High performan
e
omputing
ould be explained by the

onstant and fast evolution of
omputer hardware and software.

1

The Large Hadron Collider (LHC), so far the biggest s
ienti�
 instrument build by humans.

2

Whi
h is normally
alled in-sili
o s
ien
e

19

CHAPTER 1. INTRODUCTION

Testbeds have been
reated to study di�erent kinds of distributed systems by o�ering
ontrolled

onditions. Thanks to the evolution of virtualization, resour
e sharing has been possible enabling to

build planet s
ale testbeds [103℄ that expose real network
onditions. Di�erent forms of emulation

have made possible to a
hieve large s
ale while o�ering more
ontrolled
onditions [130℄. Other

testbeds enable the whole software sta
k to be re
on�gured [25℄. In short, the de
rease in the

pri
e of o�-the-shelf hardware and the evolution of virtualization and emulation te
hnologies have

provoked that testbeds grow in size and possibilities for the user, making them more
omplex to

manage and di�
ult to take full advantage of them.

The
ondu
tion of experiments with distributed systems presents many
hallenges. First, the

in
reasing number of software layers and their
on�guration. Se
ond, the
omplex ar
hite
ture

and hardware options now present. Third, the s
ale of distributed systems whi
h
ould go from a

simple network of
a
hing servers to a big
omputational
luster with thousands of nodes. Those

hallenges make the task of designing, des
ription, setup, management, results
olle
tion, et
, very

omplex. In order to ease the experimentation pro
esses, make it less expensive and assure the

quality of the experiment (whi
h
omprehends two important properties like Reprodu
ibiliy and

Repeatability), ea
h testbed have endorsed the development of tools that help the users with

the pro
ess of experimentation. Those tools address the experimentation
y
le di�erently o�ering

important features su
h as failure handling and large deployment [5℄, manage of the whole exper-

imental
y
le with distributed systems and workload generation [126℄, versioning system to allow

resear
hers move forward and ba
kward through their experimentation pro
ess [47℄, abstra
tions

to manage the in
reasing number of nodes [124℄, instrumentation fa
ilities for appli
ations [107℄,

et
. Cloud based testbeds have motivated the apparition of generi
 APIs for s
ripting experi-

ments [10, 67℄ that enable the use of all kinds of language
onstru
ts, su
h as loops, ex
eption

blo
ks, et
. More re
ently, a work�ow approa
h inspired in the domain of business pro
ess man-

agement is envisioned as a new alternative to manage large s
ale experiments [20℄.

There has been an evolution on the des
ription language going from in�exible markup lan-

guages like XML to the now widely used s
ripting languages su
h as Ruby

3

and Python

4

. The

s
alability has been addressed by improving me
hanisms to
ontrol experiments and federate mul-

tiple testbeds. The right level of abstra
tion is still missing, making des
riptions too verbose

or with a high learning
urve. Repeatability of experiments (whi
h has been a driving for
e for

those tools) seems far from a
hieved. Software sta
ks used for distributed systems have be
ome

very
omplex. They are
omposed of di�erent interrelated layers that are in a
onstant
hange.

Therefore, the setup of an experiment is not guarantee to be repeatable. This thesis proposes two

tools targeted at making easy mainly the setup and exe
ution of experiments with distributed

systems. Nowadays, the number of testbeds that enable to
ontrol the whole software sta
k has

risen. Either by adopting
loud
omputing te
hnologies [51℄ or provisioning systems on real hard-

ware [25℄. We take advantage of the previous fa
t and propose an applian
e builder to build, tra
k

and preserve the software sta
k used in an experiment, avoiding when possible the dependen
y on

external sour
es. For management and automation of the experimental work�ow with distributed

systems, an experiment management tool is proposed that relies on a lightweight ar
hite
ture and

provides to the user a domain spe
i�
 language that brings an appropriate level of abstra
tion,

lowering the learning
urve, providing
on
iseness and an e�
ient mapping to the platform.

1.1 Experimental
y
le

In order to better explain the
hallenges en
ountered when
ondu
ting experiments with dis-

tributed systems and to make
lear the
ontributions of this thesis, it is explained �rst the exper-

imental
y
le that is normally followed.

3

https://www.ruby-lang.org

4

https://www.python.org/

20

https://www.ruby-lang.org
https://www.python.org/

CHAPTER 1. INTRODUCTION

Design Instantiation Execution Analysis

Publication

Description

Figure 1.1: Experiment
y
le with distributed systems

1.1.1 Design

Here, the experimenter de
ides how his/her experiment environment is going to be
onformed

and what a
tions need to be exe
uted during the experiment. It is de
ided as well the measures

and how those will be
olle
ted in order to have the appropriate data for answering the question

that has driven the experiment. The following are some questions answered in this phase: What

platform to use? how many nodes? how many di�erent roles and how they will be mapped into

the
hosen nodes? what version of software to use? should it be applied some kind of workload?

what measures to do and with whi
h frequen
y? how many times the individual tests have to be

repeated?, et
. The output of this pro
ess of de
ision is the experiment des
ription.

Challenges

The goal of the des
ription of the experiment is to have enough details of the experimentation

pro
ess in order to be able to re-
reate or at least tra
e ba
k the experiment (its provenan
e).

Therefore, this des
ription normally details:

� All the di�erent software with their respe
tive versions.

� The required
omputer resour
es and their
hara
teristi
s.

� The di�erent a
tions that have to be
arried out (e.g., exe
ution of an appli
ation with

ertain parameters)

� The number of times that is to be repeated.

� The analysis steps that are to be performed.

The
hallenges here is to �nd an appropriate way to des
ribe an experiment that is
omprehen-

sible with a low learning
urve. We have to remark that when dealing with distributed systems, the

experimental s
enario is
omplex,
omprising many variables (i.e., nodes, roles, software, workload,

et
).

1.1.2 Instantiation

In this stage all the experiment requirements in software and hardware are mapped into the infras-

tru
ture. First, the ma
hines that mat
h the experiment requirements are allo
ated. Then, all the

ne
essary software is loaded into the
hosen ma
hines (provisioning) and �nally the
on�guration

of all the software sta
k takes pla
e (
ontextualization). Software
an be instrumented if needed.

Challenges

The
hallenges here is to �nd an e�
ient me
hanism for resour
e dis
overy, to tra
k all the infor-

mation related with the software and hardware used (environment
apturing) and to assure that

the hardware is
orre
tly
on�gured.

21

CHAPTER 1. INTRODUCTION

1.1.3 Exe
ution

In this phase, all the a
tions that the experimenter has planned within the experiment are
arried

out. The experimenter monitors the state of the experiment in order to dete
t errors and follow

its progress.

Challenges

When dealing with distributed infrastru
tures there is a ne
essity of s
aling the experiment and

ontrolling large number of nodes. There should be a good or
hestration of the experiment that

enables to perform tasks at a given time, exe
ute operations e�
iently, monitor and
olle
t results.

This is done most of the time with the goal of redu
ing
osts. Another important
hallenge is the

apture of the platform state whi
h
ould have important in�uen
e on the results of an experiment.

1.1.4 Analysis

It deals with the transformation of the raw data obtained by running the experiments in useful

information and
on
lusions. This will be in
luded in publi
ations as tables and plots.

Challenges

One of the
hallenges is to make the pro
ess of transformation of the raw data expli
it in order to

be able to reprodu
e it without the need of re-exe
uting the experiment.

1.2 Contributions

Figure 1.2: Experiment
y
le proposed in this thesis

This thesis presents two tools aimed at improving the experimentation a
tivity with distributed

systems. The tools proposed, seek for rendering the pro
ess less
ostly, making the experimenter

more e�
ient and improving the quality of the experiments with distributed systems. The exper-

imental
y
le is managed paying spe
ial attention to the provisioning of the experiments. Provi-

sioning is an important part of the pro
ess of experimentation and it
onstantly generates issues,

22

CHAPTER 1. INTRODUCTION

making the whole pro
ess error-prone and time
onsuming. Experimenters
ould la
k the appro-

priate
omputer engineering skills ne
essary to deal with the
omplexity of the software sta
k.

For the previous reasons we opted for addressing Provisioning with a di�erent tool. Additionally,

in this thesis we have identi�ed the
on
ept of re
onstru
t-ability whi
h we believe is essential

for guaranteeing the revisability, modi�ability and post-re
onstru
tion of software artifa
ts em-

ployed in an experiment. This represents a step further towards experiments reprodu
ibility with

distributed systems.

The
ontributions of this thesis are threefold:

� A survey of experimental management tools.

� An experimental management tool for distributed systems that
overs the whole experiment

y
le (i.e., Design, Instantiation, Exe
ution and Analysis).

� An applian
e builder that deals with
omplex software sta
ks required for the experiments

(i.e., Provisioning of experiments).

1.2.1 Survey of experimental management tools

This thesis presents a survey of the existing experimental management tools for distributed sys-

tems. Given the emergen
e of new tools for managing experiments with distributed systems and

a signi�
ant number of publi
ations dedi
ated to them, we de
ided to
arry out an extensive

literature review whi
h led us with the following results:

� De�nitions and
ommon vo
abulary.

� List of features that enables to evaluate the
urrent experiment management tools proposed

by di�erent testbeds.

� Impa
t analysis of publi
ations.

This survey
ould be used as a framework for evaluating existing experiment management

tools. It was done in tightly
ollaboration with Tomasz Bu
hert Ph.D student in the AlGorille

team, at LORIA (Nan
y). This survey produ
ed the following publi
ation:

� Tomasz Bu
hert, Cristian Ruiz, Lu
as Nussbaum, and Olivier Ri
hard. A survey of general-

purpose experiment management tools for distributed systems. Future Generation Computer

Systems, 45(0):1 � 12, 2015

1.2.2 Experiment management tool

In this thesis presents work on Expo. It is an experiment management engine that automates

the whole experiment
y
le with distributed systems. It provides a �exible des
ription language

based on two main abstra
tions: Resour
eSet and Tasks that help the experimenter to manage

large amount of nodes e�
iently and spe
ify
ompli
ated work�ows for the exe
ution part. This

tool has already been proposed and presented in [125, 124℄. During this thesis Expo has been

extended, its ar
hite
ture has su�ered a total redesign, their abstra
tions have been re�ned and

new fun
tionalities have been added. Comparisons with existing tools were done and new use

ases were found. The work with Expo has produ
ed the following publi
ations:

� Cristian Ruiz, Olivier Ri
hard, Bri
e Videau, and Iegorov Oleg. Managing Large S
ale

Experiments in Distributed Testbeds. In Pro
eedings of the 11th IASTED International

Conferen
e, pages 628�636. IASTED, ACTA Press, feb 2013

� Cristian Ruiz, Mihai Alenxandru, Olivier Ri
hard, Thierry Monteil, and Herve Aubert. Plat-

form
alibration for load balan
ing of large simulations: TLM
ase. In CCGrid 2014 � The

14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, Chi
ago,

Illinois, USA, 2014

23

CHAPTER 1. INTRODUCTION

1.2.3 Experimental software environment

It should be reasonable to expe
t experimental setup to be reprodu
ible. Spe
i�
ally,

if the infrastru
ture setup and the software installation and
on�guration
an be per-

formed in a reprodu
ible manner then s
ientists are mu
h more enabled at repli
ating

or extending the experiment in question [84℄

This thesis presents the work on Kameleon that has mainly two goals: (1) make the setup of

omplex software sta
ks easier for the average user, (2) make software artifa
ts re
onstru
t-able

whi
h means they
ould be examined, modi�ed and re
onstru
ted at any time (post-experiment).

It addresses a widespread problem in publi
ations [30℄ and in the daily resear
h life [57℄ whi
h

is the buildability of the software environment. The
onstant and rapid
hange in the di�erent

software
omponents used nowadays, make di�
ult to tra
k them and put them together to work.

As a result, few experiment setups
an be reused and experimenters spend a lot of time trying to

build their environment for experimentation. Kameleon is an applian
e builder already proposed

in [49℄, during this thesis the tool was re-
on
eptualize and new syntax and fun
tionalities were

added. All was driven by the requirements for building
omplex software sta
ks for Distributed

systems and High Performan
e
omputing resear
h. A persistent
a
he me
hanism was proposed

and implemented that enables to preserve the software sta
k over time (whi
h means it
an be

rebuilt at any time). This work produ
ed the following publi
ation:

� Cristian Ruiz, Olivier Ri
hard, and Joseph Emeras. Reprodu
ible software applian
es for

experimentation. In Pro
eedings of the 9th International ICST Conferen
e on Testbeds and

Resear
h Infrastru
tures for the Development of Networks and Communities (Trident
om),

Guangzhou, China, 2014

� Cristian Ruiz, Salem Harra
he, Mi
hael Mer
ier, and Olivier Ri
hard. Re
onstru
table soft-

ware applian
es with kameleon. SIGOPS Oper. Syst. Rev., 49(1):80�89, January 2015

1.3 Thesis organization

The thesis is divided into three parts:

� Part I : Introdu
es all the ne
essary terminology in order to position our
ontributions in

the �eld of experimentation with distributed systems. Chapter 2 presents a survey of exper-

imentation tools for distributed systems. It shows all the state of the art related with the

tools
on
eived for helping users with the pro
esses of experimentation.

� Part II : Presents Expo an experimentation tool for distributed systems. Chapter 3 shows

the new
on
epts and design
hanges added during this thesis as well as an evaluation against

others experiment management tools. Chapter 4 presents a use
ase of Expo that helps to

deploy appli
ations e�
iently by performing a load balan
ing.

� Part III : Presents Kameleon an applian
e builder for
omplex software sta
ks. In Chapter 5

the
on
ept of re
onstru
t-ability is presented along with Kameleon ar
hite
ture, syntax,

on
epts and a
omparison with the most widely known applian
e builders used in
loud

omputing. Chapter 6 is dedi
ated to the problemati
 of preserving a software sta
k over

time.

24

Chapter 2

Overview of experiment management in

omputer s
ien
e

In the �eld of large-s
ale distributed systems, experimentation is parti
ularly di�
ult. The stud-

ied systems are
omplex, often nondeterministi
 and unreliable, software is plagued with bugs,

whereas the experiment work�ows are un
lear and hard to reprodu
e. These obsta
les led many

independent resear
hers to design tools to
ontrol their experiments, boost produ
tivity and im-

prove quality of s
ienti�
 results.

Despite mu
h resear
h in the domain of distributed systems experiment management, the

urrent fragmentation of e�orts asks for a general analysis. We therefore propose to build a

framework to un
over missing fun
tionality of these tools, enable meaningful
omparisons between

them and �nd re
ommendations for future improvements and resear
h.

The
ontribution in this
hapter is twofold. First, we provide an extensive list of features o�ered

by general-purpose experiment management tools dedi
ated to distributed systems resear
h on real

platforms. We then use it to assess existing solutions and
ompare them, outlining possible future

paths for improvements.

Considering the
omplexity of experimenting with distributed systems, there exist a plethora

of spe
ialized tools that address spe
i�
 parts of the experimentation pro
ess. We
on
lude our

study of general-purpose experiment management tools with a presentation of the state of the art

of those
omplementary tools that are a valuable help for resear
hers when experimenting with

distributed systems. The
ontents of this
hapter were published in a paper [21℄ that I
o-authored

with Tomasz Bu
hert Ph.D student in the AlGorille team, at LORIA (Nan
y).

2.1 Introdu
tion

Distributed systems are among the most
omplex obje
ts ever built by humans, as they are

omposed of thousands of systems that
ollaborate together. They also have a
entral role in

today's so
iety, supporting many s
ienti�
 advan
es (s
ienti�
 & high-performan
e
omputing,

simulation, Big Data, et
.), and serving as the basis for the infrastru
ture of popular servi
es su
h

as Google or Fa
ebook. Their role and popularity makes them the target of numerous resear
h

studies in areas su
h as s
heduling,
ost evaluation, fault toleran
e, trust, s
alability, energy

onsumption, et
.

Given the size and
omplexity of distributed systems, it is often unfeasible to
arry out analyti

studies, and resear
hers generally use an empiri
al approa
h relying on experimentation: despite

being built by humans, distributed systems are studied as if they were natural obje
ts, with

methods similar to those used in biology or physi
s.

One
an distinguish four main methodologies for experimentation on distributed systems [59℄:

� in-situ: a real appli
ation is tested on a real platform.

25

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

� simulation: a model of an appli
ation is tested on a model of the platform.

� emulation: a real appli
ation is tested using a model of the platform.

� ben
hmarking : a model of an appli
ation is used to evaluate a real platform.

Ea
h methodology has its advantages and disadvantages. For example, results obtained during

simulation are (usually)
ompletely reprodu
ible. On the other hand, as the platform is a model

of the reality, the results may not apply in a general sense, as the model
ould la
k some unnoti
ed

but important features. It is important to remark as well that all those methodologies
omplement

ea
h other and
hoosing between them depends on the level of realism we want to a
hieved

in our experiments. In this
hapter we fo
us on experiments based on in-situ and emulation

methodologies.

Be
ause of the a
tual size of the available testbeds and of the
omplexity of the di�erent soft-

ware layers, a lot of time is required to set up and perform experiments. S
ientists are
onfronted

with low-level tasks that they are not familiar with, making the validation of
urrent and next

generation of distributed systems a
omplex task. In order to lower the burden in setting up an

experiment, di�erent testbeds and experiment management tools have appeared. The last de
ade

has seen more interest in the latter, mainly in�uen
ed by the needs of parti
ular testbeds and

other problems found in the pro
ess of experimentation su
h as reprodu
ibility, repli
ability, au-

tomation, ease of exe
ution, s
alability, et
. Additionally, the existing number of papers oriented

toward su
h tools asks for a
lassi�
ation in order to un
over their
apabilities and limitations.

Hen
e, experiment management tools are the main obje
t of study in this
hapter. We propose a

set of features that improve the experimentation pro
ess in various ways at ea
h step (design, de-

ployment, running the main experiment and related a
tivities, and data and result management).

This list
an be used to
arry out a fair
omparison of tools used for
ondu
ting experiments, as

well as a guideline when
hoosing a tool that suits
ertain needs.

The rest of
hapter is stru
tured as follows. In Se
tion 2.2 existing methods and approa
hes

to experimentation with distributed systems are presented. Then, in Se
tion 2.3, a set of features

o�ered by existing experimentation tools is
onstru
ted and ea
h element is
arefully and pre
isely

explained. In Se
tion 2.4, we present a list of tools helping with resear
h in distributed systems.

Ea
h tool is shortly presented and its features explained. Our additional observations and ideas

are presented in Se
tion 2.5. Finally, in Se
tion 2.8 we
on
lude our work and dis
uss future work.

2.2 Context and terminology

This se
tion introdu
es some de�nitions that will be used throughout this
hapter, as well as the

ontext where our obje
t of study plays its role.

2.2.1 De�nitions

For our purposes, an experiment is a set of a
tions
arried out to test (
on�rm, falsify) a parti
ular

hypothesis. There are three elements involved in the pro
ess: a laboratory (the pla
e where one

experiments), an investigator (the one who experiments) and an apparatus (the obje
t used to

measure). If an experiment
an be run with a di�erent laboratory, investigator and apparatus,

and still produ
e the same
on
lusions, one says that it is reprodu
ible. This is in
ontrast with

repli
ability whi
h requires the same results while keeping these three elements un
hanged. The

terms reprodu
ibility and repli
ability (replayability) produ
e a lot of
onfusion and dis
repan
ies

as they are often used to des
ribe di�erent ideas and goals. The above de�nitions are
ompatible

with the de�nitions given in [44℄, although we do not share su
h a negative view about repli
ability

as the authors. Being a �poor
ousin� of reprodu
ibility, repli
ability is nevertheless essential to

the veri�
ation of results and
ode reusability as expressed in [37℄.

Finally, let us introdu
e a last pie
e of terminology and de�ne the obje
t of study in this

hapter. An experimentation tool or an experiment management tool (for resear
h in distributed

26

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

systems) is a pie
e of software that helps with the following main steps during the pro
ess of

experimenting:

� design � by ensuring reprodu
ibility or repli
ability, providing unambiguous des
ription of

an experiment, and making the experiment more
omprehensible,

� deployment � by giving e�
ient ways to distribute �les (e.g., s
ripts, binaries, sour
e
ode,

input data, operating system images, et
.), automating the pro
ess of installation and
on-

�guration, ensuring that everything needed to run the experiment is where it has to be,

� running the experiment itself � by giving an e�
ient way to
ontrol and intera
t with the

nodes, monitoring the infrastru
ture and the experiment and signaling problems (e.g., failure

of nodes),

�
olle
tion of results � by providing means to get and store results of the experiment.

Furthermore, it addresses experimentation in its full sense and it is normally
on
eived with

one of the following purposes des
ribed fully in the next se
tion:

� ease of experimenting,

� repli
ability,

� reprodu
iblity,

�
ontrolling and exploring parameter spa
e.

In this study we narrow the obje
t of study even more by
onsidering only general-purpose

experiment management tools (i.e., tools that
an express arbitrary experimental pro
esses) and

only ones that experiment with real appli
ations (i.e., in-situ and emulation methodologies). The

former restri
tion ex
ludes many tools with prede�ned experimental work�ows whereas the latter

ex
ludes, among others, simulators (see Se
tion2.6).

2.2.2 Motivations for experimentation tools

As des
ribed before, there exist many tools that strive to ease experimentation with distributed

systems. These tools are the main obje
t of study in this arti
le and as su
h they are des
ribed

thoroughly in Se
tion 2.4. Here, however, we dis
uss the main driving for
es that are behind the

emergen
e of experimentation tools.

Ease of experimenting

The �rst motivation, and the main one, for
reating experimentation tools is helping with the

s
ienti�
 pro
ess of experimenting and making the experimenter more produ
tive. By providing

well designed tools that abstra
t and outsour
e tedious yet already solved tasks, the development

y
le
an be shortened, while be
oming more rigorous and targeted. Moreover, it may be
ome

more produ
tive as the s
ientist may obtain additional insights and feedba
k that would not be

available otherwise. The ease of experimenting
an indire
tly help to solve the problem of resear
h

of questionable quality in the following sense. As the s
ienti�

ommunity exerts pressure on

s
ientists to publish more and more, they are often for
ed to publish results of dubious quality. If

they
an forget about time-
onsuming, low-level details of an experiment and fo
us on the s
ienti�

question to answer, hopefully they
ould spend more time testing and strengthening their results.

27

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

Repli
ability (automation)

Repli
ability whi
h is also known as replayability deals with the a
t of repeating a given exper-

iment under the very same
onditions. In our
ontext it means: same software, same external

fa
tors (e.g., workload, faults, et
.), same
on�guration, et
. If done
orre
tly, it will lead to the

same results as obtained before, allowing others to build on previous results and to
arry out fair

omparisons. There are several fa
tors that hamper this goal: size of the experiment, hetero-

geneity and faulty behavior of testbeds,
omplexity of the software sta
k, numerous details of the

on�guration, generation of repeatable
onditions, et
. Among other goals, experimentation tools

try to
ontrol the experiment and produ
e the same results under the same
onditions, despite

the aforementioned fa
tors.

Reprodu
ibility

It refers to the pro
ess of independent repli
ation of a given experiment by another experimenter.

A
hieving reprodu
ibility is mu
h harder than repli
ability be
ause we have to deal with the

measurement bias that
an appear even with the slightest
hange in the environment. Therefore,

in order to enhan
e the reprodu
ibility of an experiment, the following features are required:

� automati

apture of the
ontext (i.e., environment variables,
ommand line parameters,

versions of software used, software dependen
ies, et
.) in whi
h the experiment is exe
uted;

� detailed des
ription of all the steps that led to a parti
ular result.

The des
ription of an experiment has to be independent of the infrastru
ture used. To do so

abstra
tions for the platform have to be o�ered.

Controlling and exploring the parameter spa
e

Ea
h experiment is run under a parti
ular set of
onditions (parameters) that pre
isely de�ne

its environment. The better these
onditions are des
ribed, the fuller is understanding of the

experiment and obtained results. Moreover, a s
ientist may want to explore the parameter spa
e

in an e�
ient and adaptive manner instead of doing it exhaustively.

Typi
al parameters
ontained in a parameter spa
e for a distributed system experiment are:

� number of nodes,

� network topology,

� hardware
on�guration (CPU frequen
y, network bandwidth, disk, et
.),

� workload during the experiment.

One
an enlarge the set of parameters tested (e.g.,
onsidering CPU speed in a CPU-unaware

experiment) as well as vary parameters in their allowed range (e.g., testing a network proto
ol

under di�erent topologies).

Whereas the
apability to
ontrol the various experimental parameters
an be, and quite often

is, provided by an external tool or a testbed (e.g., Emulab), the high-level features helping with a

design of experiments (DoE), as the e�
ient parameter spa
e exploration, belong to experimen-

tation tools.

S
alability

Another motivation for an experiment
ontrol is s
alability of experiments, that is, being able to

in
rease their size without harming some pra
ti
al properties and s
alability metri
s. For example,

one
an
onsider if an experimentation tool is able to
ontrol many nodes (say, thousands) with-

out signi�
antly in
reasing the time to run the experiment, or without hampering the statisti
al

signi�
an
e of results.

The most important properties
on
erning s
alability are:

28

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

� time � additional time needed to
ontrol the experiment (over the time to run it itself),

� resour
es � amount of resour
es required to
ontrol the experiment,

�
ost of the experiment � funds required to run the experiment and
ontrol it (
f.
ommer
ial

loud
omputing),

� quality of results � the s
ienti�
 a

ura
y of the results, their reprodu
ibility in parti
ular

(
ontrary to the above properties, this one is hard to de�ne and measure).

These metri
s are fun
tions of experiment parameters (see Se
tion2.7.5) and implementation

details. Among important fa
tors that limit s
alability understood as the metri
s above are:

� number of nodes used in the experiment,

� size of monitoring infrastru
ture,

� e�
ien
y of data management.

2.2.3 Testbeds

Testbeds play an important role in the design and validation of distributed systems. They o�er
on-

trolled environments that are normally shielded from the randomness of produ
tion environments.

Here, we present a non-exhaustive list of testbeds that motivated the development of experiment

management tools. There exists a work on de�ning useful features of network testbeds, similar to

the goals of our study [118℄. Unsurprisingly, some features overlap in both analyses.

� Grid'5000 [25℄ is an experimental testbed dedi
ated to the study of large-s
ale parallel and

distributed systems. It is a highly
on�gurable experimental platform with some unique

features. For example, a
ustomized operating system (e.g., with a modi�ed kernel)
an be

installed and full �root� rights are available. The platform o�ers a REST API to
ontrol

reservations, but does not provide dedi
ated tools to
ontrol experiments. However, the

nodes
an be monitored during the experiment using a simple API.

� Emulab [130℄ is a network testbed that allows one to spe
ify an arbitrary network topology

(thanks to the emulation of the network). This feature ensures a predi
table and repeatable

environment for experiments. User has a

ess to a �root� a

ount on the nodes, but
annot

tweak the internals of the operating system. Emulab
omes with a dedi
ated tool to
ontrol

experiments (see 2.4.3).

� PlanetLab [103℄ is a globally distributed platform for developing, deploying and a

essing

planetary-s
ale network servi
es. It
onsists of geographi
ally distributed nodes running a

light, virtualized environment. The nodes are
onne
ted over the Internet. PlanetLab o�ers

Plush (see 2.4.4) for the experiment
ontrol.

� ORBIT [108, 98℄ is a radio grid testbed for s
alable and reprodu
ible evaluation of next-

generation wireless network proto
ols. It o�ers a novel approa
h involving a large grid of

radio nodes whi
h
an be dynami
ally inter
onne
ted into arbitrary topologies with repro-

du
ible wireless
hannel models. A dedi
ated tool to run experiments with ORBIT platform

is OMF (see 2.4.6).

� DAS

1

(Distributed ASCI Super
omputer) is a Dut
h wide-area distributed system designed

by the Advan
ed S
hool for Computing and Imaging (ASCI). Distinguishably, it employs

various HPC a

elerators (e.g., GPUs) and novel network inter
onne
t. Its most re
ent

iteration is DAS-4. DAS does not o�er a dedi
ated tool to
ontrol experiments, however it

provides a number of tools to help with deployment, dis
overing problems and s
heduling.

1

http://www.
s.vu.nl/das4/

29

http://www.cs.vu.nl/das4/

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

With the emergen
e of e�
ient and
heap virtualization, the s
ientists turn to
loud
om-

puting infrastru
tures as a viable experimentation platform. A popular
ommer
ial servi
e is

Amazon EC2

2

, but many alternatives and variations exist (e.g., Windows Azure

3

). There are

non-
ommer
ial, open-sour
e solutions available as well (e.g., OpenSta
k

4

). Even though the de-

velopment of
loud
omputing solutions was not inspired by a need of a resear
h platform, the

s
alability and elasti
ity o�ered by those make it an attra
tive solution for s
ien
e. In [84℄ a

framework oriented toward reprodu
ible resear
h on su
h infrastru
tures is proposed.

2.3 List of features o�ered by experiment management tools

In this se
tion, we present properties available in experiment management tools for distributed

systems after doing a literature review using the following sour
es:

� tools used and published by the most important and large-s
ale testbeds (see Se
tion 2.2.3),

� papers referen
ed by these tools and papers that
ite them,

� IEEE and ACM digital libraries sear
h with the following keywords in the abstra
t or title:

experiments, experiment, distributed systems, experimentation, reprodu
ible.

We ended up with 8 relevant tools for managing experiments that met our
riteria of an

experimentation tool, however we also in
lude Naive approa
h (see Se
tion 2.4.1) in our analysis.

An extensive analysis of the papers dedi
ated to those tools was performed; subsequently, a set of

properties and features - highlighted by ea
h of the tools as to be important for the experimentation

pro
ess - was sele
ted and
lassi�ed.

The list
onsists of nine groups of properties and features that have an important role in the

experimentation pro
ess. The
omplete hierar
hy is presented in Figure 2.1.

2.3.1 Des
ription Language

The design of the experiment is the very �rst step in the experimentation pro
ess. The des
ription

language helps users with this step, allowing them to des
ribe how the experiment has to be

performed, as well as their needs for running the experiment. Chara
teristi
s that help with

des
ribing the experiment are presented in the following se
tions.

Representation (Imperative / De
larative / Work�ow / S
ripts) of experiments featured by

a given tool is the approa
h used to des
ribe the experiment and relevant details. Possible

representations di�er in their underlying paradigm (e.g., imperative, de
larative) and in a

level of abstra
tion that the des
ription operates on. Some tools use low-level s
ripts to

build experiments whereas others turn to higher abstra
tions, some of them graphi
al (e.g.,

work�ows). The
hoi
e of a
ertain representation has impli
ations on other aspe
ts of the

des
ription language.

Modularity (Yes / No) is a property of experiment des
ription language that enables easy

adding, removing, repla
ing and reusing parts of experiments. An experiment expressed

in a modular way
an be logi
ally split into modules with well-de�ned interfa
es that
an be

worked on independently, possibly by di�erent resear
hers spe
ializing in a parti
ular aspe
t

of the experiment.

Expressiveness (Yes / No) that makes it e�e
tive in
onveying thoughts and ideas, in short and

su

in
t form. Expressiveness provides a more maintainable,
learer des
ription. Various

elements
an improve expressiveness: well-
hosen abstra
tions and
onstru
tions, high-level

stru
ture, among others.

2

http://aws.amazon.
om/e
2/

3

http://www.windowsazure.
om/

4

http://www.opensta
k.org/

30

http://aws.amazon.com/ec2/
http://www.windowsazure.com/
http://www.openstack.org/

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

Ar
hite
ture

Interfa
e CLI / GUI / API

E�
ient operations Yes / No

Simple installation Yes / No

Low resour
e requirements Yes / No

Control stru
ture Centralized / Distributed

Data

Management

Analysis of results Yes / No

File management Yes / No

Provisioning Yes / No

Monitoring

Instrumentation Yes / No

Platform monitoring Yes / No

Experiment monitoring Yes / No

Debugging

Validation Yes / No

Logging Yes / No

Intera
tive exe
ution Yes / No

Fault

Toleran
e

Veri�
ation of
on�guration Yes / No

Failure handling Yes / No

Che
kpointing Yes / No

Reprodu
ibility

Workload generation Yes / No

Fault inje
tion Yes / No

Provenan
e tra
king Yes / No

Interoperability

Software interoperability Yes / No

Resour
e dis
overy Yes / No

Support for testbed servi
es Yes / No

Testbed independen
e Yes / No

Type of

Experiments

Intended use Distributed appli
ations

/ Wireless

/ Servi
es / Any

Platform type Real / Model

Des
ription

Language

Low entry barrier Yes / No

Expressiveness Yes / No

Modularity Yes / No

Representation Imperative

/ De
larative

/ Work�ow / S
ripts

Figure 2.1: The tree of features. All evaluated properties and features are presented with their respe
tive

domains of values. The properties are grouped into 9 groups that
over di�erent aspe
ts of experiment

management.

31

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

Low entry barrier (Yes / No) is the volume of work needed to swit
h from naive approa
h

to the given approa
h while assuming prior knowledge about the infrastru
ture and the

experiment itself. In other words, it is the time required to learn how to e�
iently design

experiments in the language of the given experimentation tool.

2.3.2 Type of Experiments

This en
ompasses two important aspe
ts of an experiment: the platform where the experiments

are going to run on and the resear
h �elds where those experiments are performed.

Platform type (Real / Model) is the range of platforms supported by the experimentation tool.

The platform type
an be real (i.e.,
onsist of physi
al nodes) or be a model (i.e., built

from simpli�ed
omponents that model details of the platform like network topology, links

bandwidth, CPU speed, et
.). For example, platforms using advan
ed virtualization or

emulation te
hniques (like Emulab testbed) are
onsidered to be modeled. Some testbeds

(e.g., PlanetLab) are
onsidered real be
ause they do not hide the
omplexity of the platform,

despite the fa
t that they use virtualization.

Intended use (Distributed appli
ations / Wireless / Servi
es / Any) refers to the resear
h

ontext the experimentation tool targets. Examples of resear
h domains that some tools

spe
ialize in in
lude: wireless networks, network servi
es, high performan
e
omputing, peer-

to-peer networks, among many others.

2.3.3 Interoperability

It is important for an experimentation tool to intera
t with di�erent platforms, as well as to

exploit their full potential. The intera
tion with external software is an indisputable help during

the pro
ess of experimenting.

Testbed independen
e (Yes / No) of the experimentation tool is its ability to be used with

di�erent platforms. The existing tools are often developed along with a single testbed and

tend to fo
us on its fun
tionality and, therefore,
annot be easily used somewhere else. Other

tools expli
itly target a general use and
an be used with a wide range of experimental

infrastru
tures.

Support for testbed servi
es (Yes / No) is a
apability of the tool to interfa
e di�erent ser-

vi
es provided by the testbed where it is used (e.g., resour
e requesting, monitoring, de-

ployment, emulation, virtualization, et
.). Su
h a support may be vital to perform s
alable

operations e�
iently, exploit advan
ed features of the platform or to
olle
t data unavailable

otherwise.

Resour
e dis
overy (Yes / No) is a feature that allows to reserve a set of testbed resour
es

meeting de�ned
riteria (e.g., nodes with 8
ores inter
onne
ted with 1 Gbit network).

Among methods to a
hieve this feature are: interoperating with testbed resour
e dis
ov-

ery servi
es or emulation of resour
es by the tool.

Software interoperability (Yes / No) is the ability of using various types of external software

in the pro
ess of experimenting. The experimentation tool that interoperates with software

should o�er interfa
es or means to a

ess or integrate monitoring tools,
ommands exe
uters,

software installers, pa
kage managers, et
.

2.3.4 Reprodu
ibility

This group
on
erns all methods used to help with reprodu
ibility and repeatability as was de-

s
ribed in Se
tion 2.2.2.

32

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

Provenan
e tra
king (Yes / No) is de�ned as a way of tra
ing and storing information of how

s
ienti�
 results have been obtained. An experimentation tool supports data provenan
e if

it
an des
ribe the history of a given result for a parti
ular experiment. An experimentation

tool
an provide data provenan
e through the tra
king of details at di�erent layers of the

experiment. At a low-level layer, the tool must be able to tra
k details su
h as:
ommand-

line parameters, pro
ess arguments, environment variables, version of binaries, libraries and

kernel modules in use, hardware devi
es used, �lesystem operations exe
uted, et
. At a high-

level layer, it must tra
k details su
h as: number of nodes used, details of used ma
hines,

timestamps of operations, state of the platform, et
.

Fault inje
tion (Yes / No) is a feature that enables the experimenter to introdu
e fa
tors that

an modify and disrupt the fun
tioning of the systems being studied. These fa
tors in
lude:

node failures, link failures, memory
orruption, ba
kground CPU load, et
. This feature

allows to run experiments under more realisti
 and
hallenging
onditions and test behavior

of the studied system under ex
eptional situations.

Workload generation (Yes / No) is a range of features that allow to inje
t a prede�ned work-

load into the experimental environment (e.g., number of requests to a servi
e). The generated

workload is provided by real tra
es or by syntheti
 spe
i�
ation. Similarly to fault inje
tion,

this feature allows to run experiments in more realisti
 s
enarios.

2.3.5 Fault Toleran
e

This group of features en
ompasses all of them that help with
ommon problems that
an happen

during experiments and may lead to either invalid results (espe
ially dangerous if gone unnoti
ed)

or to in
reased time required to manually
ope with them.

Che
kpointing (Yes / No) allows to save a state of the experiment and to restore it later as if

nothing happened. It is a feature that
an, above all, save the time of the user. There are

at least two meanings of
he
kpointing in our
ontext:

� only some parts of the experiment are saved or
a
hed,

� the full state of the experiment is saved (in
luding the platform).

Of
ourse, the se
ond type of
he
kpointing is mu
h more di�
ult to provide. Che
kpointing

helps with fault toleran
e as well, sin
e a failed experiment run will not ne
essarily invalidate

the whole experiment.

Failure handling (Yes / No) of the experimentation tool
an mitigate runtime problems with

the infrastru
ture an experiment is running on. This means in parti
ular that failures are

dete
ted and appropriate steps are taken - restarting the experiment, for example. Typi
al

failures are
rashing nodes, network problems, et
.

Veri�
ation of
on�guration (Yes / No)
onsists in having an automati
 way to verify the

state of an experimentation platform. Usually su
h a step is performed before the main ex-

periment to ensure that properties of the platform agree with a spe
i�
ation. We distinguish

veri�
ation of:

� software � ensuring that the software is
oherent on all
omputing nodes,

� hardware � ensuring that the hardware
on�guration is as it is supposed to be.

2.3.6 Debugging

The features grouped in this se
tion help to �nd problems and their
auses during the experimen-

tation pro
ess.

33

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

Intera
tive exe
ution (Yes / No) refers to an ability to run the experiment �on-the-�y� in-

luding: manually s
heduling parts of the experiment, introspe
ting its state and observing

intermediate results. This feature is inspired by debuggers o�ered by integrated development

environments (IDEs) for programming languages.

Logging (Yes / No)
onsists of features that allow bookkeeping of low-level messages emitted

during experiments in
luding those that were pla
ed at arbitrary pla
es by the experimenter.

The messages are normally stored sequentially along with their timestamps making the log

is essentially a one-dimensional dataset. The log
an be used to debug an experiment and

do
ument its exe
ution.

Validation (Yes / No) is a feature that o�ers the user a way to perform a fast (that is, faster

than full exe
ution of the experiment) and automati
 way to verify the des
ription of an

experiment. Depending on the modeling language used and other details, the validation

may be a

ordingly thorough and
omplete. For our purposes, we require that at least some

semanti
 analysis must be performed, in
ontrast to simple synta
ti
 analysis.

2.3.7 Monitoring

Monitoring is ne
essary to understand the behavior of the platform and the experiment itself.

It
onsists in gathering data from various sour
es: the experiment exe
ution information, the

platform parameters and metri
s, and other strategi
 pla
es like instrumented software.

Experiment monitoring (Yes / No)
onsists in observing the progress of the experiment un-

derstood as set of timing and
ausal information between a
tions in the experiment. The

monitoring in
ludes keeping tra
k of
urrently running parts of the experiment as well as

their interrelations. Depending on the model used, this feature may take di�erent forms.

Platform monitoring (Yes / No) is the
apability of an experimentation tool to know the state

of resour
es that
omprise the experiment (nodes, network links, et
.). Data
olle
ted that

way may be used as a result of the experiment, to dete
t problems with the exe
ution or as

a way to get additional insights about the experiment.

Instrumentation (Yes / No) enables the user to take measurements at di�erent moments and

pla
es while exe
uting the experiment. This in
ludes instrumentation of software in order to

olle
t measures about its behavior (CPU usage, performan
e, resour
e
onsumption, et
.).

2.3.8 Data Management

The management of data is an important part of the experiment. This se
tion
ontains features

that help with distribution and
olle
tion of data.

Provisioning (Yes / No) is the set of a
tions to prepare a spe
i�
 physi
al resour
e with the

orre
t software and data, and make it ready for the experimentation. Provisioning involves

tasks su
h as: loading of appropiate software (e.g., operating system, middleware, appli
a-

tions),
on�guration of the system and starting ne
essary servi
es. It is ne
essary for any

experimentation tool to provide at least a rudimentary form of this fun
tionality.

File management (Yes / No) is a feature that abstra
ts a tedious job of working with �les.

Therefore the user does not have to manage them manually at a low level whi
h often is

error-prone. This in
ludes a
tions like automati

olle
tion of results stored at parti
ipating

nodes.

Analysis of results (Yes / No) is a servi
e of an experimentation tool that is used to
olle
t,

store and visualize experimental results, as well as making dynami
 de
isions based on their

runtime values. The latter ability paves a way into intelligent design of experiments by

exploring only relevant regions of parameter spa
e and therefore saving resour
es like energy

or time.

34

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

2.3.9 Ar
hite
ture

This se
tion
ontains features and properties related to how the tool is designed and what ar
hite
-

ture de
isions the authors made. This in
ludes ways to intera
t with the tool, as well as te
hni
al

details su
h as software dependen
ies, methods to a
hieve s
alability and e�
ient exe
ution of

experiments.

Control stru
ture (Centralized / Distributed) refers to the stru
ture of nodes used to
ontrol

the experiment. The ar
hite
ture of a tool is
entralized if the
ontrol of an experiment is

entralized and there exists one node that performs all prin
ipal work. Otherwise, if there

are multiple nodes involved in the experiment
ontrol, then the ar
hite
ture is distributed.

Low resour
e requirements (Yes / No) of an experimentation tool refer to its resour
e
on-

sumption (memory, CPU, network bandwidth, et
.) asso
iated with the a
tivity of
ontrol-

ling the experiment. As the number of elements the experiment
onsists of in
reases (e.g.,

nodes), so does the amount of the resour
es ne
essary to
ontrol them.

Simple installation (Yes / No) is understood as a low di�
ulty of setting up a
ompletely

fun
tional infrastru
ture that the tool needs in order to be used. This usually implies

software dependen
ies (interpreters, libraries, spe
ial servi
es, et
.) or a required hardware

infrastru
ture (number of network interfa
es, minimum memory size, number of dedi
ated

nodes to
ontrol the experiment, et
.)

E�
ient operations (Yes / No) is the range of features that provide methods, tools and al-

gorithms to perform large-s
ale operations with the experimental infrastru
ture. This in

parti
ular in
ludes: e�
ient and s
alable methods for
ommand exe
ution, �le distribu-

tion, monitoring of nodes, gathering of results, among others. Providing e�
ient versions of

these a
tions is notably di�
ult as operations involving nodes in a distributed systems are

non-trivially s
alable as a number of nodes in
reases.

Interfa
e (CLI / GUI / API)
onsists of di�erent ways that the user
an intera
t with the

experimentation tool. Most of the tools provide
ommand line interfa
e, whereas some tools

provide graphi
al interfa
es, usually via webpage used to intera
t with the experiment.

2.4 Existing experimentation tools

The aim of this se
tion is to present the state of the art of the existing tools for experimentation

with distributed systems. We fo
us our attention on the tools that ful�ll the
riteria for being

onsidered as an experimentation tool (for a list of tools that are not in
luded in the analysis, see

Se
tion 2.6). The evaluation of all tools and the main result of our study is presented in Table 2.1

that shows a
omparison of the tools based on the proposed list of features. Figure 2.2 shows a

timeline of publi
ations about these experiment management tools and the impa
t of these tools

measured as the number of
itations is shown in Table 2.2.

2.4.1 Naive method

Frequently, experiments are done using this method whi
h in
ludes manual pro
edures and use

of hand-written and low-level s
ripts. La
k of modularity and expressiveness is
ommonly seen

be
ause of the ad ho
 nature of these s
ripts, and it is even worse when the experiment involves

many ma
hines. The experiment is
ontrolled at a very low level, in
luding some human interven-

tion. Therefore, intera
tion with many types of appli
ations and platforms is possible at the
ost

of time required to do so. Parameters for running the experiment
an be forgotten as well as the

reason for whi
h they were used. This leads to an experiment that is di�
ult to understand and

repeat. Sin
e the experiment is run in partially manual fashion, the user
an rea
t against some

unexpe
ted behaviors seen during the experiment.

35

C
H
A
P
T
E
R
2
.
O
V
E
R
V
I
E
W

O
F
E
X
P
E
R
I
M
E
N
T
M
A
N
A
G
E
M
E
N
T
I
N
C
O
M
P
U
T
E
R
S
C
I
E
N
C
E

Naive approa
h Weevil Workben
h Plush/Gush Expo OMF NEPI XPFlow Exe
o

Des
ription

Language

(18/27 ≈ 67%)

Representation S
ripts De
larative

12

Imperative

13

De
larative

14

Imperative

15

Imperative

16

Imperative

17

De
larative

18

Imperative

19

Modularity (4/9) No Yes No No No No Yes Yes Yes

Expressiveness (7/9) No Yes Yes Yes No Yes Yes Yes Yes

Low entry barrier (7/9) Yes No Yes Yes

20

Yes Yes Yes No Yes

Type of

Experiments

Platform type Real Real Model Real Real Real Real, Model Real Real

Intended use Any Servi
es Any Any Any Wireless

21

Any Any Any

Interoperability

(22/36 ≈ 61%)

Testbed independen
e (8/9) Yes Yes No Yes

22

Yes Yes Yes Yes Yes

Support for testbed servi
es (7/9) No No Yes Yes Yes Yes Yes Yes Yes

Resour
e dis
overy (5/9) No No Yes

⋆

Yes Yes

⋆

Yes Yes No No

Software interoperability (2/9) No No No Yes No Yes No No No

Reprodu
ibility

(4/27 ≈ 15%)

Provenan
e tra
king (1/9) No No Yes No No No No No No

Fault inje
tion (2/9) No Yes No No No Yes

⋆

No No No

Workload generation (1/9) No Yes No No No No No No No

Fault Toleran
e

(12/27 ≈ 44%)

Che
kpointing (4/9) No Yes No No No No Yes Yes Yes

Failure handling (6/9) No Yes No Yes No Yes Yes Yes Yes

Veri�
ation of
on�guration (2/9) No No Yes

⋆

No No Yes No No No

Debugging

(17/27 ≈ 63%)

Intera
tive exe
ution (7/9) Yes No Yes Yes Yes Yes Yes No Yes

Logging (6/9) No No Yes

⋆

No Yes Yes Yes Yes Yes

Validation (4/9) No Yes Yes No No No Yes Yes No

Monitoring

(10/27 ≈ 37%)

Experiment monitoring (4/9) No No Yes No No Yes Yes Yes No

Platform monitoring (4/9) No No Yes

⋆

Yes No Yes Yes No No

Instrumentation (2/9) No No No Yes No Yes No No No

Data

Management

(13/27 ≈ 48%)

Provisioning (5/9) No Yes Yes

⋆

Yes No Yes Yes No No

File management (5/9) No Yes Yes Yes No Yes No No Yes

Analysis of results (3/9) No No Yes No No Yes No Yes No

Ar
hite
ture

(19/27 ≈ 70%)

Control stru
ture Centralized Centralized Centralized Centralized Centralized Distributed Distributed Centralized Centralized

Low resour
e requirements (6/9) Yes Yes No No Yes No Yes Yes Yes

Simple installation (7/9) Yes Yes No Yes Yes No Yes Yes Yes

E�
ient operations (6/9) No Yes No Yes Yes Yes No Yes Yes

Interfa
e CLI CLI GUI, CLI, API CLI, GUI, API CLI CLI, GUI CLI, GUI CLI CLI

1

GNU m4

2

Event-based (T
l & ns)

3

XML

4

Ruby

5

Event-based (Ruby)

6

Modular API based on Python

7

Work�ows (Ruby)

8

Modular API based on Python

9

Using GUI

10

Supports wired resour
es as

well

11

PlanetLab oriented

12

GNU m4

13

Event-based (T
l & ns)

14

XML

15

Ruby

16

Event-based (Ruby)

17

Modular API based on Python

18

Work�ows (Ruby)

19

Modular API based on Python

20

Using GUI

21

Supports wired resour
es as

well

22

PlanetLab oriented

⋆

Provided by testbed

Table 2.1: Summary of analyzed experiment management tools for distributed systems resear
h. Ea
h feature is presented along with a number of tools that

provide it. Similarly, for ea
h group a per
entage of implemented features from this group is shown. Features that are due to the integration with a testbed are

marked with ⋆.

3
6

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Weevil

Workben
h

Plush/Gush

Expo

OMF

NEPI

XPFlow

Exe
o

[128℄ [126℄ [127℄

[48℄ [47℄

[7, 6℄ [3℄ [122℄ [8℄ [5℄

[125℄ [124℄ [113℄ [110℄

[46℄ [107, 76, 131℄[75, 77℄ [78℄

[87℄ [105℄ [52℄ [106℄

[19, 18℄ [20℄

[67℄

Figure 2.2: Timeline of publi
ations dedi
ated to experiment management tools. The publi
ation that

attra
ted most of the
itations (main publi
ation) is underlined.

2.4.2 Weevil

It is a tool to evaluate distributed systems under real
onditions, providing te
hniques to automate

the experimentation a
tivity. This experimentation a
tivity is
onsidered as the last stage of

development. Experiments are des
ribed de
laratively with a language that is used to instantiate

various models and provides
larity and expressiveness. Workload generation is one of its main

features, whi
h helps with the repli
ability of results.

2.4.3 Workben
h for Emulab

Workben
h is an integrated experiment management system, whi
h is motivated by the la
k of

replayable resear
h on the
urrent testbed-based experiments. Experiments are des
ribed using an

extended version of the ns language whi
h is provided by Emulab. The des
ription en
ompasses

stati
 de�nitions (e.g., network topology,
on�guration of devi
es, operating system and software,

et
.) and dynami
 de�nitions of a
tivities that are based on program agents, entities that run

programs as part of the experiment. Moreover, a
tivities
an be s
heduled or
an be triggered by

de�ned events. Workben
h provides a generi
 and parametri
 way of instantiating an experiment

using features already provided by Emulab to manage experiments. This allows experimenters to

run di�erent instan
es of the same experiment with di�erent parameters. All pie
es of information

ne
essary to run the experiment (e.g., software, experiment des
ription, inputs, outputs, et
.) are

bundled together in templates.

Templates are both persistent and versioned, allowing experimenters to move through the

history of the experiment and make
omparisons. Therefore, the mentioned features fa
ilitate the

replay of experiments, redu
ing the burden on the user. Data management is provided by the

underlying infrastru
ture of Emulab, enabling Workben
h to automati
ally
olle
t logs that were

generated during the experiment.

2.4.4 Plush/Gush

Plush, and its another in
arnation
alled Gush,
ope with the deployment, maintenan
e and failure

management of di�erent kinds of appli
ations or servi
es running on PlanetLab. The des
ription of

the appli
ation or servi
es to be
ontrolled is done using XML. This des
ription
omprehends the

a
quisition of resour
es, software to be installed on the nodes and the work�ow of the exe
ution.

It has a lightweight
lient-server ar
hite
ture with a few dependen
ies that
an be easily deployed

37

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

on a mix of normal
lusters and GENI
ontrol frameworks: PlanetLab, ORCA

5

and ProtoGENI

6

.

One of the most important features of Plush is its
apa
ity to manage failures. The server re
eives

a
onstant stream of information from all the
lient ma
hines involved in the experiment and

performs
orre
tive a
tions when a failure o

urs.

2.4.5 Expo

Expo o�ers abstra
tions for des
ribing experiments, enabling users to express
omplex s
enarios.

These abstra
tions
an be mapped to the hierar
hy of the platform or
an interfa
e underlying

tools, providing e�
ient exe
ution of experiments. Expo brings the following improvements to the

experimentation a
tivity: it makes the des
ription of the experiment easier and more readable,

automates the experimentation pro
ess, and manages experiments on a large set of nodes.

2.4.6 OMF

It is a framework used in di�erent wireless testbeds around the world and also in PlanetLab.

Its ar
hite
ture versatility aims at federation of testbeds. It was mainly
on
eived for testing

network proto
ols and algorithms in wireless infrastru
tures. The OMF ar
hite
ture
onsist of 3

logi
al planes: Control, Measurement, and Management. Those planes provide users with tools

to develop, or
hestrate, instrument and
olle
t results as well as tools to intera
t with the testbed

servi
es. For des
ribing the experiment, it uses a
omprehensive domain spe
i�
 language based

on Ruby to provide experiment-spe
i�

ommands and statements.

2.4.7 NEPI

NEPI is a Python library that enables one to run experiments for testing distributed appli
ations

on di�erent testbeds (e.g., PlanetLab, OMF wireless testbeds, network simulator, et
). It provides

a simple way for managing the whole experiment life
y
le (i.e., deployment,
ontrol and results

olle
tion). One important feature of NEPI is that it enables to use resour
es from di�erent

platforms at the same time in a single experiment. NEPI abstra
ts appli
ations and
omputational

equipment as resour
es that
an be
onne
ted, interrogated and
onditions
an be registered in

order to spe
ify work�ow dependen
ies between them.

2.4.8 XPFlow

XPFlow is an experimentation tool that employs business work�ows in order to model and run

experiments as
ontrol �ows. XPFlow serves as a work�ow engine that uses a domain-spe
i�

language to build
omplex pro
esses (experiments) from smaller, independent tasks
alled a
tivi-

ties. This representation is
laimed to bring useful features of Business Pro
ess Modeling (BPM),

that is: easier understanding of the pro
ess, expressiveness, modularity, built-in monitoring of the

experiment, and reliability.

Both XPFlow and s
ienti�
 work�ow systems rely on work�ows. However, s
ienti�
 work�ows

are data-oriented and the distributed system underneath (e.g., a
omputational grid) is merely a

tool to e�
iently pro
ess data, not an obje
t of a study. Moreover, the formalism of XPFlow is

inspired by work�ow patterns identi�ed in the domain of BPM, whi
h are used to model
ontrol

�ows, as opposed to data �ows (see Se
tion 2.6.2).

2.4.9 Exe
o

Exe
o is a generi
 toolkit for s
ripting,
ondu
ting and
ontrolling large-s
ale experiments in

any
omputing platform. Exe
o provides di�erent abstra
tions for managing lo
al and remote

pro
esses as well as �les. The engine provides fun
tionality to tra
k the experiment exe
ution and

5

http://groups.geni.net/geni/wiki/ORCABEN

6

http://www.protogeni.net

38

http://groups.geni.net/geni/wiki/ORCABEN
http://www.protogeni.net

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

Tool First publi
ation Citations

Weevil 2005 69

Workben
h 2006 80

Plush/Gush 2006 177

Expo 2007 16

OMF 2009 152

NEPI 2010 38

XPFlow 2012 3

Exe
o 2013 1

Table 2.2: Number of publi
ations
iting papers dedi
ated to ea
h experimentation tool (as veri�ed on 4

July 2014).

o�ers features su
h as parameter sweep over a de�ned set of values. The partial results of the

parameter sweep
an be saved to persistent storage, therefore avoiding unne
essary reruns in
ase

of a failure.

2.5 Dis
ussion

Existing tools for experiment
ontrol were analyzed and evaluated using our set of features de�ned

in Se
tion 2.3 and the �nal results are presented in Table 2.1. For ea
h position in the table (i.e.,

ea
h property/tool pair) we sought for an eviden
e to support possible values of a given property in

a given tool from a perspe
tive of a prospe
tive user. To this end, the publi
ations, do
umentation,

tutorials and other on-line resour
es related to the given approa
h were
onsulted. If presen
e of

the property (or la
k thereof)
ould be
learly shown from these observations, the �nal value in

the table re�e
ts this fa
t. However, if we
ould not �nd any mention of the feature, then the �nal

value
laims that the feature does not exist in the tool, as for all pra
ti
al purposes the prospe
tive

user would not be aware of this feature, even if it existed. In ambiguous
ases additional
omments

were provided. Mu
h more detailed analysis that led to this
on
ise summary is available on-line

7

.

Using information
olle
ted in the table, one
an easily draw few
on
lusions.

There is no agreement whether a de
larative des
ription is more bene�
ial than an imperative

one. De
larative des
riptions seem to be asso
iated with higher modularity and expressiveness,

but at a pri
e of a higher entry barrier. Moreover, the tools tend to be independent of a parti
ular

testbed, but those with tight integration o�er a more
omplete set of features or features not

present in other solutions (e.g., Emulab Workben
h).

The majority of addressed features
ome from Ar
hite
ture (70%), Des
ription Language

(67%), Debugging (63%) and Interoperability (61%) groups.

On the other hand, support for Fault Toleran
e and Monitoring is quite low (44% and 37%,

respe
tively), whereas support for Reprodu
ibility is almost nonexistent (only 15%).

The features available in majority of the analyzed tools are: Testbed independen
e (8/9),
Expressiveness (7/9), Low entry barrier (7/9), Support for testbed servi
es (7/9), Intera
tive
exe
ution (7/9), Failure handling (6/9), Logging (6/9), Resour
e dis
overy (5/9), File man-

agement (5/9) and Provisioning (5/9). Moreover, the tools have nearly universally Simple in-

stallation (7/9), Low resour
e requirements (6/9) and o�er methods to perform E�
ient opera-

tions (6/9).

The two most unimplemented features are Provenan
e tra
king (1/9) and Workload genera-

tion (1/9), both
ru
ial for reprodu
ibility of experiments.

7

http://www.loria.fr/~bu
hert/exp-survey.yaml

39

http://www.loria.fr/~buchert/exp-survey.yaml

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

Additionally, some tools o�er unique features: Software interoperability (Plush and OMF),

Provenan
e tra
king (Workben
h), Fault inje
tion (Weevil and OMF),Workload generation (Wee-

vil), Veri�
ation of
on�guration (Workben
h and OMF) and Instrumentation (Plush and OMF).

However, it is worth pointing out that features su
h as Workload generation are often provided

by standalone tools.

Finally, we did a simple �impa
t analysis� of des
ribed tools by summing all unique s
ienti�

itations to papers about ea
h tool using Google S
holar (see Table 2.2). Clearly, without adjusting

the s
ore to the age of ea
h tool, the most
ited tool is Plush. As interesting as these data may

be, we abstain from drawing any more
on
lusions from them. The summary of this analysis is

available on-line

8

.

2.6 Tools not
overed in the study

Design

Reproducible AnalsisCapturing experimental

context

Experimenting tools

ulators

large scale experimentation

Software provisioners and

appliance builders
Workload generators

Figure 2.3: Whole panorama of tools that help with experimentation. Complementary tools are shown

and their pla
e in the experimental
y
le. Those tools
over: distributed emulators, software provisioners,

applian
e builders, workload generators, tools for performing reprodu
ible analysis and tools for
apturing

the experimental
ontext.

In the following se
tion, we dis
uss other tools that
ould be mistaken as an experiment manage-

ment tool a

ording to our de�nition. Those tools
ontradi
t our the de�nition (
f. Se
tion 2.6.1)

even though they support most of the experimental
y
le with distributed systems.

2.6.1 Non general-purpose experiment management tools

Tools like ZENTURIO [104℄ and Nimrod [1℄ helps experimenters to manage the exe
ution of

parametri
 studies on
luster and Grid infrastru
tures. Both tools
over a
tivities like the set up

of the infrastru
ture to use,
olle
tion and analysis of results. ZENTURIO o�ers a more generi

parametrization, making it suitable for studying parallel appli
ations under di�erent s
enarios

where di�erent parameters
an be
hanged (e.g., appli
ation input, number of nodes, type of

network inter
onne
tion, et
.). Even though Nimrod parametrization is restri
ted to appli
ation

input �les, a relevant feature is the automation of the design of fra
tional fa
torial experiments.

NXE [56℄ s
ripts the exe
ution of several steps of the experimental work�ow from the reservation

of resour
es in a spe
i�
 platform to the analysis of
olle
ted logs. The whole experiment s
enario

is des
ribed using XML whi
h is
omposed of three parts: topology,
on�guration and s
enario.

All the intera
tion with resour
es and appli
ations is wrapped using bash s
ripts. NXE is mainly

dedi
ated to the evaluation of network proto
ols.

8

http://www.loria.fr/~bu
hert/exp-impa
t.yaml

40

http://www.loria.fr/~buchert/exp-impact.yaml

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

The aforementioned tools were not in
luded in our analysis, be
ause they are not general-

purpose experiment management tools. They address only very spe
i�
 s
enarios of experimenta-

tion with a distributed system like parametri
 studies and network proto
ols evaluation.

2.6.2 S
ienti�
 work�ow systems

The aim of s
ienti�
 work�ow systems is automation of the s
ienti�
 pro
ess that a s
ientist may

go through to get from raw data to publishable results. The main obje
tive is to
ommuni
ate

analyti
al pro
edures repeatedly with minimal e�ort, enabling the
ollaboration on
ondu
ting

large, data-pro
essing, s
ienti�
 experiments. S
ienti�
 work�ows are designed spe
i�
ally to

ompose and exe
ute a series of
omputational or data manipulation steps. Normally, those

systems are provided with GUIs that enable non-expert users to easily
onstru
t their appli
ations

as a visual graph. Goals su
h as data provenan
e and experiment repeatability are both shared

by s
ienti�
 work�ows and experimentation tools. Some examples of s
ienti�
 work�ows are:

Kepler [91℄, Taverna [65℄ and Vistrails [22℄. An interesting analysis of these systems, and a

motivation for this work, is presented in [132℄.

There are two main reasons why s
ienti�
 work�ows are not
overed in our study. First,

s
ienti�
 work�ows are data �ows in nature � they are used to run
omplex
omputations on data,

while the
omputational platform is abstra
ted and user has no dire
t
ontrol over it (e.g., the

nodes used during
omputation). Hen
e the platform is not the obje
t of study, but merely a

tool to
arry out
omputation. Se
ond, the de
larative representation of s
ienti�
 work�ows as

a
y
li
 graphs is generally limited in its expressiveness, therefore they do not meet the
riteria

of general-purpose experimentation tools a

ording to our de�nition (see [39, 35℄ for analyses of

s
ienti�
 work�ows expressiveness).

2.6.3 Simulators and abstra
t frameworks

An approa
h widely used for evaluating and experimenting with distributed systems is simulation.

In [95℄ the most used simulators for overlay networks and peer-to-peer appli
ations are presented.

Another framework
alled SimGrid [27℄ is used for the evaluation of algorithms, heuristi
s and

even real MPI appli
ations in distributed systems su
h as Grid, Cloud or P2P systems.

Even though simulators provide many features required by the de�nition of the experimentation

tool, they are not in
luded in our study. First, they do not help with experiments on real platforms

as they provide an abstra
t and modeled platform instead. Se
ond, the goals of simulators are

often very spe
i�
 to a parti
ular resear
h subdomain and hen
e are not general-purpose tools [27℄.

Other tools su
h as Splay [89℄ and ProtoPeer [53℄ go one step further by making easy the transi-

tion between simulation and real deployment. Both tools provide a framework to write distributed

appli
ations based on a model of the target platform. They are equipped with measurement in-

frastru
tures and event inje
tion for reprodu
ing the dynami
s of a live system.

The tools providing abstra
t framework to write appli
ations under experimentation are not

onsidered in our study, be
ause real appli
ations
annot be evaluated with them. Although real

ma
hines may be used to run experiments (as it is the
ase with Splay), the appli
ations must be

ported to APIs provided by these tools.

2.7 Complementary tools

In this se
tion
omplementary tools are shown. Those tools address spe
i�
 parts of the pro
ess of

experimentation with distributed systems as
an be seen in Figure 2.3. Experiment management

tools
an take advantage of these tools to implement features presented in Se
tion 2.3.

41

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

2.7.1 Software provisioners and applian
e builders

Puppet

9

and Chef

10

are
ommonly used in automating administrative tasks su
h as software

provision and
on�guration of operating systems. They simplify
omplex deployments by providing

unambiguous, de
larative des
ription of a desired system state and then
arrying out ne
essary

steps to rea
h it. Operating at even higher level are or
hestration management tools, like Juju

11

,

whi
h are designed to
oordinate
omplex systems in �exible and rea
tive ways, usually in the

loud
omputing
ontext.

Resear
hers start now to take advantage of
loud
omputing for experimentation. Tools su
h

as Do
ker

12

, Vagrant

13

and pa
ker

14

have gained a

eptan
e for
reating reprodu
ible environ-

ments for development that
an be easily deployed in a variety of
loud
omputing providers and

virtualization te
hnologies. Kameleon [112, 49℄ is an applian
e builder that strives to o�er a repro-

du
ible environment for experimentation that
an be regenerated and
hanged any time. It does

so by taking advantage of a persistent
a
he me
hanism that guarantees that the same software

versions are used all the time, avoiding in
ompatibility issues. This tool
onstitutes one of the

ontributions of this thesis and as su
h will be des
ribed thoroughly in Part III.

2.7.2 Tools for
apturing experimental
ontext

As mentioned in Se
tion 2.2.2 one important feature required given the
omplexity of software

nowadays, is the
apture of the experimental
ontext, undoubtedly useful to the reprodu
tion of an

experiment. There are di�erent levels for
apturing the
ontext whi
h depends mostly on the kind

of experiment one wants to run. Experimenters
an take advantage of version
ontrol systems (e.g.,

Git, Subversion) or more sophisti
ated frameworks like Sumatra [37℄ whi
h aims at re
ording and

tra
king the s
ienti�

ontext (i.e.,
hanges in
ode or parameters and the motivations for those

hanges) in whi
h a given experiment was performed. This enables resear
hers to have provenan
e

in their experiments. Sumatra
ontext
apturing is limited to the middleware used. At the moment

in only works with appli
ations written in Python. To enable a
omplex re-exe
utability of a given

experiment, all the software dependen
ies have to be tra
ked and pa
ked. This is the approa
h

followed by CDE [57℄ whi
h makes possible to move the experimental environment into di�erent

Linux distributions and versions. Reprozip [29℄ is a more sophisti
ated tool that follows the same

prin
iple and adds provenan
e information that is
aptured in a Vistrails work�ow.

2.7.3 Tools for making the analysis reprodu
ible

The generation of the valuable raw data from an experiment is a very
ostly pro
ess. Therefore,

it should be expe
ted that anyone would have a

ess to the datasets and the analysis pro
edure

arried out for generating
ertain �gure or table and in turn a given
on
lusion. This
ould be

done with the goal of verifying that a proper statisti
al study was performed or simply and most

importantly enabling the
ondu
tion of alternated analysis that
ould lead to new
on
lusions.

With the aforementioned goal in mind, a R pa
kage shown in [100℄ is able to
a
he intermediate

results that are stored in a database, enabling resear
hers to re-exe
ute parts of the analysis. A

more advan
e approa
h [54℄ introdu
es the dis
ipline of Veri�able Computational Resear
h. Its

implementation
reates identi�ers that are asso
iated to a given result in a data analysis pro
ess.

This asso
iation uniquely links results of a
omputation with its
ontext (e.g., software pa
kage

dependen
ies, s
reen messages e
hoed, platform name and version, et
). The
reated identi�ers

an be embedded into do
uments for publi
ation. Literate programming en
ourages the mix of

se
tions of
omputer
ode and natural language with the obje
tive of providing two types of view:

do
uments intended for human
onsumption and pure sour
e
ode for examination and exe
ution.

9

https://puppetlabs.
om/

10

http://www.ops
ode.
om/
hef/

11

https://juju.ubuntu.
om/

12

https://www.do
ker.io/

13

http://www.vagrantup.
om/

14

http://www.pa
ker.io/

42

https://puppetlabs.com/
http://www.opscode.com/chef/
https://juju.ubuntu.com/
https://www.docker.io/
http://www.vagrantup.com/
http://www.packer.io/

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

This approa
h is followed by knitr

15

whi
h is able to generate dynami
 do
uments by embedding

R
ode into L

A

T

E

X. Org-mode is an ema
s extension for pra
ti
ing Literate programming providing

to the user the possibility of embedding a variety of
omputer programming languages that
an

be mixed and di�erent types of output are possible (e.g., HTML, L

A

T

E

X, Do
Book, et
).

2.7.4 Workload generators

It
over all the tools and data that enable to evaluate distributed systems under semi-realisti
,

ontrolled and reprodu
ible
onditions. Ben
hmarks su
h as NAS

16

, Linpa
k

17

have been used

over years for evaluating performan
e of parallel systems. In the �eld of s
heduling of parallel

systems there has been an important work by Dror Feitelson whi
h gather together in the Parallel

Workloads Ar
hive site

18

a
onsiderable number of logs of large s
ale parallel systems in produ
-

tion. The failure tra
e ar
hive (FTA)

19

is a publi
 repository of availability tra
es of parallel and

distributed systems. Those tra
es
an be the input of workload models or tools that enable to

replay them in real systems [82, 128℄. Xerxes [82℄ is a distributed load generation framework for

loud
omputing that enables large s
ale experimentation. It is able to generate load patterns at

both individual node level, and
olle
tively a
ross a large number of ma
hines.

2.7.5 Distributed emulators

Emulation along with simulation is one of the te
hniques highly used in experimentation with dis-

tributed systems whi
h enable to augment and
ontrol the parameter spa
e. It is mainly targeted

at enable reprodu
ible experiments at large s
ale. Di�erent strategies have appeared for emulating

large and high performan
e ma
hines. In [68℄ is des
ribed an approa
h for taking advantage of

the heterogeneous ar
hite
tures
omposed of CPU and GPUs widely
ommon nowadays for emu-

lating di�erent kinds of parallel ma
hines

20

using OpenCL. A parallel version of the well known

emulator Qemu is proposed in [41℄ for emulating e�
iently multi
ore ma
hines. For emulating the

heterogeneous nature of
omputational grids EHGRID [34℄ was proposed that provides me
hanism

for degrading the performan
e of
omputer pro
essors turning an homogeneous ar
hite
ture into

an heterogeneous one. Additionally, it takes into a

ount network e�e
ts for inter-
luster
om-

muni
ation. Distem [115℄ follows the same philosophy of EHGRID but it is targeted to a wider

ommunity, in
luding
loud, P2P, High Performan
e Computing and Grid systems. It relies on

LXC (Linux Containers) whi
h makes it e�
ient and s
alable, enabling the building of 15000-nodes

virtual topology in no time.

2.8 Con
lusions

In this
hapter, we presented an extensive list of properties expe
ted from general-purpose exper-

iment management tools for distributed systems on real platforms. The diversity of the resear
h

domain of distributed systems motivated development of di�erent te
hniques and tools to
ontrol

experiments, and explains the multitude of approa
hes to manage experiments. With the
on-

stru
tion of the feature list, we tried to establish a
ommon vo
abulary in order to understand

and
ompare the existing experiment management tools.

The size and
omplexity of distributed systems nowadays has un
overed new
on
erns and

needs in the experimentation pro
ess. We need to
ontrol an always in
reasing number of vari-

ables to assure two important
hara
teristi
s of an experiment, its reprodu
ibility and repli
ability.

15

http://yihui.name/knitr/

16

http://www.nas.nasa.gov/publi
ations/npb.html

17

http://www.netlib.org/linpa
k/

18

http://www.
s.huji.a
.il/labs/parallel/workload/

19

http://fta.s
em.uws.edu.au/

20

a

ording to the Flynn's taxonomy: Single Instru
tion, Single Data stream (SISD); Single Instru
tion, Multiple

Data stream (SIMD); Multiple Instru
tion, Single Data stream (MISD); Multiple Instru
tion, Multiple Data stream

(MIMD).

43

http://yihui.name/knitr/
http://www.nas.nasa.gov/publications/npb.html
http://www.netlib.org/linpack/
http://www.cs.huji.ac.il/labs/parallel/workload/
http://fta.scem.uws.edu.au/

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

With the motivation of providing a
ontrolled environment to exe
ute experiments in the domain

of distributed systems, several testbeds were
reated whi
h stimulated the development of di�erent

experiment management tools. Among the bene�ts of experiment management tools are: en
our-

aging resear
hers to experiment more and improve their results, edu
ational value of being able to

play with known algorithms and proto
ols under real settings, redu
tion of the time required to

perform an evaluation and publish results,
apa
ity to experiment with many nodes and
omplex

s
enarios, di�erent software layers, topologies, workloads, et
.

Despite the emergen
e of experiment management tools, some of them are in an immature

state of development whi
h prevents them from fully exploiting the
apa
ity of
ertain testbeds.

There is indeed, a lot of
hallenges in the domain of experimentation and the need of further

development of those tools is apparent. To a
hieve this, te
hnologies developed with di�erent

purposes
ould arguably be used in the experimentation pro
ess. For instan
e, we mentioned that

work�ow systems and
on�guration management tools share some
on
erns and goals with the

problem of experimenting with distributed systems.

Finally, a deeper understanding of the experimentation pro
ess with distributed systems is

needed to identify novel ways to perfe
t the quality of experiments and give resear
hers the pos-

sibility to build on ea
h others' results.

44

Part II

Expo

45

Chapter 3

Expo: a tool to manage large s
ale

experiments

Figure 3.1: Role of Expo in the experiment
y
le

Performing experiments that involve a large amount of resour
es or a
omplex
on�guration,

proves to be a hard task. In this
hapter we present Expo, whi
h is a tool for
ondu
ting experi-

ments on distributed platforms. Expo is the result of an e�ort to bring the s
ripting of experiments

to the next level. It en
ourages the s
ripting of experiments by o�ering a set of abstra
tions to deal

with big and
omplex
omputational infrastru
tures. Additionally, it provides me
hanisms that

make experimenters more produ
tive when setting up their experiments. Its goal is to improve

the state of the art of experimentation by en
ouraging their
omplete automation. First, the ar-

hite
ture of the tool is des
ribed along with its abstra
tions for resour
es and tasks that redu
es

the
omplexity in the experiment
ondu
tion. Next, the tool is
ompared with other similar solu-

tions based on some qualitative
riteria, s
alability and expressiveness tests. The
hapter �nishes

with the evaluation of Expo s
alability and some use
ases on Grid'5000 and PlanetLab testbeds.

Our experien
e showed that Expo is a promising tool to help users with two primary
on
erns:

(1) performing a large s
ale experiment e�
iently and easily, (2) des
ribing an experiment with

enough detail that enables posterior reprodu
tion. The
ontent of this
hapter was published in a

paper presented at PDCN2013 [113℄.

3.1 Introdu
tion

Although the software to perform simulations has improved in re
ent years, there is still the need

to test and evaluate the software in real distributed infrastru
tures. Moreover, the option of ex-

perimental evaluation of an algorithm has been en
ouraged as an approa
h
omplementary to

the theoreti
al evaluation [73℄. In order to address limitations su
h as, software re
on�guration,

la
k of
ontrol and monitoring systems, testbeds were
reated [88℄. A testbed is a platform for

experimentation with large distributed appli
ations. It is sometimes shielded from the instabili-

ties of produ
tion environments and allows users to test parti
ular modules of their appli
ations

47

CHAPTER 3. EXPO: A TOOL TO MANAGE LARGE SCALE EXPERIMENTS

in an isolated fashion. Some examples of testbeds are: PlanetLab [103℄, Emulab [130℄, GENI

1

,

Grid5000 [25℄ and ORBIT [108, 98℄ (see Se
tion 2.2.3). Although these platforms o�er more sta-

bility and
ontrol over resour
es, it is still a hard task to
ontrol, deploy and run appli
ations on

them. In more detail a number of tasks must be
ompleted before an experiment
an be a
tually

started. These tasks in
lude resour
e dis
overy and a
quisition as well as deployment of the ne
es-

sary software. On
e the appli
ation is laun
hed, its exe
ution must be
ontrolled, and as soon as

it �nishes all the output must be
olle
ted. Most of the experiments performed on the testbeds are

run in an ad-ho
, appli
ation-spe
i�
 manner. This method may mat
h the
urrent requirements

of experiments, but fails with the s
ale, heterogeneity, and dynamism of distributed systems. That

is the reason why we have seen the apparition of experiment management tools that strive to
ope

with the problems en
ountered when resear
hers try to perform experiments involving a large

amount of resour
es or a
omplex
on�guration. The reader is referred to Se
tion 2.2.2 for a full

list of motivations behind those tools. The main aspe
ts those tools help the user with, are: (1)

des
ription of the experiment, (2)
ontrol and a

ess to the resour
es, (3) task or
hestration, (4)

software deployment, (5) monitoring and
olle
tion of results. The main advantage of those tools

is the possibility of embedding all the important details - that took part on the pro
ess of experi-

mentation - using the same language. This will hopefully make easier the reprodu
tion of a given

experiment. The obje
tive of this
hapter is to present our experiment management tool
alled

Expo that has already been introdu
ed shortly in the previous
hapter and qualitatively
ompared

against existing works. Expo is the result of an e�ort to bring the s
ripting of experiments to the

next level. It en
ourages the s
ripting of experiments by o�ering a set of abstra
tions to deal with

big and
omplex
omputational infrastru
tures. Additionally, it provides me
hanisms that make

experimenters more produ
tive when setting up their experiments. Our obje
tive is to improve

the state of the art of experimentation by en
ouraging their
omplete automation. In Chapter 1,

it was shown the experiment
y
le normally followed in resear
h. Expo
overs the des
ription,

instantiation, exe
ution and analysis of an experiment as shown in Figure 3.1. In this
hapter,

Expo ar
hite
ture, features, abstra
tions and syntax and their advantages will be exposed. Expo

will be
ompared with the most used and a
tively developed experiment management tools. One

of the main
ontribution of Expo is that it enabled the rapid prototyping of experiments and this

will be demonstrated on Chapter 4.

The stru
ture of this
hapter is as follows: In the next se
tion Expo is presented in depth with

its features and advantages, some use
ases are shown in Se
tion 3.3 in two di�erent testbeds.

Results and
omparisons with other experiment tools are presented in Se
tion 6.5. Related works

in software engineering are presented in Se
tion 3.5 and �nally Se
tion 6.6 presents the
on
lusions

and future works.

3.2 Expo

Expo is an experiment management tool designed to simplify and automate the
ondu
tion of

experiments in distributed platforms. All the experimental plan is
aptured (i.e., a

ess to the

platform, experiment setup, experiment exe
ution, results analysis, et
.) in a work�ow where

sequen
es of
ommands are grouped together in tasks and dependen
ies. This fa
ilitates the

re
reation of the experiment setup and in turn, it will make easier the replay of experiments.

Replayability of a
omputational experiment is the �rst step towards experiment reprodu
ibility.

The work�ow tells how all the di�erent tasks have to be
alled in order to get the results of the

experiment. It
omprehends tasks that
an be exe
uted sequentially, in parallel, asyn
hronously,

et
. Expo strives to simplify the des
ription of an experiment by providing a
on
ise and read-

able way to des
ribe it, spe
ially when dealing with a big amount of nodes. It relies on parallel

ommand exe
utors su
h as TakTuk [33℄ whi
h makes it s
ale with a big amount of nodes. Tak-

Tuk uses an adaptive and rea
tive work-stealing algorithm that mixes lo
al parallelization and

work distribution. A topology of deployment
an be spe
i�ed and this is exploited by the Expo

Resour
eSet abstra
tion presented in subse
tion 3.2.1.

1

http://www.geni.net

48

http://www.geni.net

CHAPTER 3. EXPO: A TOOL TO MANAGE LARGE SCALE EXPERIMENTS

Figure 3.2: Expo ar
hite
ture

Figure 3.3: Example of resour
eSet

Expo ar
hite
ture is des
ribed in Figure 3.2, whi
h mainly
onsists in six
omponents: an in-

ternal Domain-Spe
i�
 Language (DSL)

2

module features a �exible des
ription language built on

top of Ruby

3

. It enables to exploit all its ri
hness in available libraries and mainly its des
rip-

tiveness. The DSL �exibility and s
alability relies on two abstra
tions: Resour
eSet and Tasks.

Those abstra
tions are mapped into
omponents that intera
t together in order to provide the

ne
essary information to the Command Control and help it in translating the experimental plan

into
ommands. The platform dependent module enables the intera
tion with di�erent platforms

su
h as: Grid'5000, PlanetLab,
loud
omputing infrastru
tures,
omputing
lusters, et
. This

module works as an interfa
e for the DSL module, making an experiment des
ription independent

from the platform. Expo makes few assumptions about the resour
es to manage, relying on
om-

mon system utilities su
hs as: s
p, ssh, unix
ommands, TakTuk whi
h
an deploy itself. It only

requires to run a Ruby interpreter and few ruby libraries as des
ribed in its website

4

. Thus, Expo

ar
hite
ture is very simple and ligthweight. The s
hedule of the experimental work�ow is done by

the Task manager whi
h is in
harge of the results
olle
tion and experiment monitoring. Two ex-

e
ution modes are possible: intera
tive and standalone whi
h exe
ute the experiment des
ription

�le without any user intervention.

3.2.1 Expo Resour
eSet

A Resour
eSet is an abstra
t view of the resour
es and their organization in distributed
omputa-

tional infrastru
tures su
h as Grids. It adds resour
es into a logi
al unit and asso
iates properties

to them. For instan
e, we
an gather together the nodes from the same
luster asso
iating to

them the same frontend, as well as the same physi
al properties if the
luster is homogeneous.

This abstra
tion was
on
eived in order to provide to the user a
on
ise way to express a
tions

that have to be
arried out for a set of resour
es. Resour
es
an be any
omputing unit:
ores,

2

an internal DSL means that is hosted in another language and
an take advantage of its
onstru
ts.

3

https://www.ruby-lang.org

4

http://expo.gforge.inria.fr/

49

https://www.ruby-lang.org
http://expo.gforge.inria.fr/

CHAPTER 3. EXPO: A TOOL TO MANAGE LARGE SCALE EXPERIMENTS

runs the
ommand in parallel

for all the nodes of the
lus-

ter 1

run("make lu NPROCS=8 CLASS=A MPIF77=tau_f90.sh",:target => resour
es[:
luster_1℄)

runs the
ommand hostname

for ea
h node sequentially

resour
es.ea
h{ |node| run("hostname",:target => node) }

runs the
ommand for dif-

ferent set of resour
es, the

length of the sets generated

are powers of two.

resour
es.ea
h_sli
e_power2 do |nodes|

run("mpirun -np 2 --ma
hinefile #{nodes.nodefile} ./app",:target => nodes.first)

end

sele
ts the resour
es of a

spe
i�

luster, it keeps the

topology of the Resour
eSet

in order to generate the right

parallel
ommand.

fast_
luster = resour
es.sele
t(:
luster){ |
luster|

luster.properties["
lo
k_speed"℄>1700000000

}

run("~/ben
hmarks/NPB3.2-OMP/bin/BT.A_out.4",:target => fast_
luster)

Table 3.1: Resour
eSet operations

pro
essors, nodes,
lusters, sites, et
. Table 3.1 shows some operators whi
h gives to Expo a high

�exibility against another approa
hes in the des
ription language as will be shown in Se
tion 3.4.

An example is shown in Figure 3.3 where a Grid
omputing like hierar
hy is represented, this

abstra
t view enables the generation of e�
ient parallel topology aware
ommands. We
an di-

vide the resour
es belonging to the same site as well as separate them per
luster. This
an also

be applied for the PlanetLab testbed, the Resour
eSet
an have information about the lo
ation

of the resour
es for the same
ountry or site. In other
ases, it
an be used to de�ne
omplex

on�gurations as in the
ase we would need to deploy an infrastru
ture where di�erent nodes have

di�erent roles.

3.2.2 Expo Tasks

Expo adopts the notion of task, already exploited in work�owmanagement tools as [120℄ and Rake

5

as well as web appli
ation deployment frameworks su
h as Capistrano

6

. A Task des
ribes what

to do and the Resour
eSet tells the experiment management where to exe
ute the task. Tasks

an be triggered by events (e.g, availability of jobs in the infrastru
ture, errors, et
.). Therefore,

a
omplete unattended experiment
ampaign
an be
arried out. In Listing 1, an example of

a de�nition of a task is shown. The
ompilation of a sour
e
ode instrumentation pa
kage is

performed. This task is exe
uted on a Resour
eSet whi
h is represented by the variable resour
es.

For this
ase a parallel
ommand will be generated that will
arry out the task for every ma
hine

represented in the Resour
eSet. This task
ould be useful when
ompiling a program for di�erent

ar
hite
tures.

1 task :
ompile, :target => resour
es do

2 run("
d ~/Test_profiling/; tar -xf pdt.tgz")

3 run("
d ~/Test_profiling/pdtoolkit-3.17/; ./
onfigure")

4 run("
d ~/Test_profiling/pdtoolkit-3.17/; make install")

5 end

Listing 1: Task abstra
tion

3.2.3 Expo intera
tive
onsole

An intera
tive mode is proposed driven by the following reasons: (1) an important amount of

the experiments are intera
tive

7

(2) the writing of an experiment des
ription �le is a trial-and-

error pro
ess whi
h involves using di�erent parameters,
on�gurations and �ows of
ontrol, (3) An

5

http://rake.rubyforge.org/

6

https://github.
om/
apistrano/
apistrano/wiki

7

53% of the experiments are intera
tive, against 47% that are run in Bat
h mode. Results obtained
onsulting

the Grid5000 API

50

http://rake.rubyforge.org/
https://github.com/capistrano/capistrano/wiki

CHAPTER 3. EXPO: A TOOL TO MANAGE LARGE SCALE EXPERIMENTS

Figure 3.4: Expo work�ow mapping. Tasks are split a

ording to the granularity of exe
ution, generating

sub-tasks for the exe
utable work�ow. In the Figure, tasks are generated for 3 di�erent
lusters and 2

sites. The Task manager uses the information provided by the Resour
eSet to generate the topology aware

ommands

intera
tive environment lets s
ientists look at data, test new ideas,
ombine algorithmi
 approa
hes,

and evaluate their out
ome dire
tly [102℄. This approa
h is already used by di�erent s
ienti�

environments based on Python su
h as: IPython and S
ipy [74℄. This intera
tive mode
an also

be triggered by an error during a standalone exe
ution, providing either a shell
onsole or a Ruby

onsole where the user
an modify and verify the exe
ution of the Expo DSL.

3.2.4 Expo experiment validation

Given that the whole work�ow of an experiment
ould take hours to exe
ute, it is important to

avoid errors like the utilization of unde
lared variables. One important feature that Expo o�er is

the validation of the experiment des
ription. It does so through the use of two me
hanisms, it �rst

perform a stati
 analysis of the experiment des
ription and then it runs the logi
 of the experiment

without exe
uting any real a
tion. This is equivalent to the mode dry run o�ered by
on�guration

management tools. This helps the experimenter to verify that the experiment work�ow will be

exe
uted in the desired manner.

3.2.5 Expo experiment mapping

Work�ow engines map s
ienti�
 work�ows to distributed platforms in an automati
 form. Their

mapping de
isions are driven by minimizing the time to run the work�ow. Given that the obje
tive

of a work�ow is to perform a big
omputation, it is more �exible when mapping the work�ow into

the
omputing platform. In
ontrast, an experimenting work�ow aims at performing tests. Some

tests are targeted to a
ertain ma
hine ar
hite
ture and it is important to take this into a

ount

when performing the mapping of the work�ow. Consequently, a way to
ontrol the underlying

infrastru
ture has to be provided. There is a trade-o� between des
riptiveness and s
alability

(e�
ient mapping). Figure 3.4 explains the pro
edure to map an experiment des
ription into a

distributed platform, in this parti
ular
ase a Grid
omputing infrastru
ture. There are some tasks

that should happened at the site level like the transfer of large �les that
an be shared between

all the ma
hines of the
luster using a network �le system. Compilation tasks must be exe
uted

at
luster level be
ause sites
ould be
omposed of several
lusters with di�erent ar
hite
tures.

As already said, an experiment is des
ribed as a work�ow
omposed of tasks and dependen
ies

between them. This initial work�ow is known as abstra
t work�ow and has as a goal to
apture

51

CHAPTER 3. EXPO: A TOOL TO MANAGE LARGE SCALE EXPERIMENTS

the experiment a
tivity. Two important information are: the body of the task whi
h is simply

all the sequen
e of
ommands to exe
ute and the granularity of exe
ution. For the example

shown, this granularity
an be: all resour
es, site,
luster, node, et
. The task manager will

be in
harge of taking this abstra
t work�ow and map it into the infrastru
ture. It uses the

information provided by the granularity of exe
ution in order to generate the exe
utable work�ow.

This is an expanded version of the abstra
t work�ow, where tasks have been split a

ording to the

granularity of exe
ution. This enables to
hoose the best type of exe
ution (parallel, asyn
hronous,

parallel-asyn
hronous, et
.) and the less expensive in terms of number of
onne
tions with the

remote ma
hines and threads
reated to
ontrol the experiment. The tasks
reated at this level

guarantee the generation of topology aware
ommands with TakTuk for an e�
ient deployment

and exe
ution. The s
alability of
ommands exe
ution will be shown in the following se
tions.

3.2.6 Expo evolution

During this thesis we have extended and improved in several ways the already existing imple-

mentation of Expo [125, 124℄. We have added the task abstra
tion whi
h helps to stru
ture the

experiment des
ription and form a work�ow. This makes the experiment des
ription more read-

able and the dete
tion of bugs easier. This task abstra
tion
an intera
t with the Resour
eSet

for
ontrolling the mapping of tasks into di�erent levels of the de�ned infrastru
ture hierar
hy.

The new opportunities brought by this mapping will be shown in the Chapter 4. One important

improvement is the support of experiment validation by default. This was one of the drawba
ks

of previous versions of Expo whi
h made the setup of experiments
ostly and error-prone. Addi-

tionally, an intera
tive mode was implemented to boost experimenter's produ
tivity by allowing

her/him to debug the whole experiment des
ription.

3.3 Use
ases

1 require 'expo_planetlab'

2

3 set :resour
es, "MyExperiment.resour
es"

4 get_resour
es

5

6 task :monitoring, :target => resour
es do

7

8 File.open("Planetlab_avail.txt",'w+'){|f|

9 res=nil

10 f.puts "Date Time Num_Res"

11 240.times{

12 date_measure=Time::now.to_i

13 res = run("hostname")

14 time=res[:run_time℄

15 f.puts "#{data_mesure} #{time} #{res.length}"

16 f.flush

17 sleep(60)

18 }

19 }

20 end

Listing 2: Monitoring nodes availability in Planetlab using Expo

The aim of this se
tion is to show the syntax for writing an experiment using Expo. Listing 2

shows a simple experiment for monitoring the nodes availability on Planetlab. This is done by

exe
uting the linux
ommand hostname on all the nodes of the sli
e and
ounting how many of

them reply. This information is written into a �le that
an be used to plot the availability of the

nodes over time in the sli
e.

52

CHAPTER 3. EXPO: A TOOL TO MANAGE LARGE SCALE EXPERIMENTS

1 require 'g5k_api'

2

3 set :user, "root"

4 set :gw_user, "
ruizsanabria" ## repla
e with your user

5 set :resour
es, "MyExperiment.resour
es"

6

7 reserv =
onne
tion(:type => "Grid5000")

8 reserv.resour
es = {:nan
y => ["nodes=1"℄, :rennes => ["nodes=1"℄, :lille => ["nodes=1"℄, :grenole=> ["nodes=1"℄}

9

10 reserv.environment = "http://publi
.nan
y.grid5000.fr/~
ruizsanabria/tlm_simulation.env"

11 reserv.name = "TLM multisite"

12 reserv.walltime = 2000

13

14 ##### Tasks Definition #####################################

15 task :run_reservation do

16 reserv.run!

17 end

18

19 task :
onfig_ssh do

20 msg("Generating SSH
onfig")

21 File.open("#{expo_
wd}/
onfig",'w+') do |f|

22 f.puts "Host *

23 Stri
tHostKeyChe
king no

24 UserKnownHostsFile=/dev/null "

25 end

26 end

27

28 task :generating_ssh_keys do

29 run("mkdir -p #{expo_
wd}/temp_keys/")

30 run("ssh-keygen -P '' -f #{expo_
wd}/temp_keys/key") unless
he
k("ls #{expo_
wd}/temp_keys/key")

31 end

32

33 task :trans_keys, :target => resour
es do

34 put("#{expo_
wd}/
onfig","/root/.ssh/")

35 put("#{expo_
wd}/temp_keys/key","/root/.ssh/id_rsa")

36 put("#{expo_
wd}/temp_keys/key.pub","/root/.ssh/id_rsa.pub")

37 end

38

39 task :
opy_identity do

40 resour
es.ea
h{ |node|

41 run("ssh-
opy-id -i #{expo_
wd}/temp_keys/key.pub root�#{node.name}")

42 }

43 end

44

45 task :dea
tivation_ib do

46 resour
es.ea
h{ |node|

47 run("/sbin/if
onfig ib0 down")

48 }

49 end

50

51 task :run_simulation, :target => resour
es.first do

52 put(resour
es.nodefile,"/root/TLMME_multimode/nodes.deployed")

53 run("/root/TLMME_multimode/exe
_tlm 1 369 192 510 250 1 s
")

54 get("/root/TLMME_multimode/profile.*","~/profiles")

55 end

56

57 task :free_reservation, :target => resour
es do

58 free_resour
es(reserv)

59 end

Listing 3: Pro�ling of a parallel appli
ation running on multiple sites in Grid'5000 using Expo

Listing 17 shows the automation of the exe
ution of a parallel appli
ation using several sites

in Grid'5000. The obje
tive of the experiment is to perform a pro�ling of the parallel exe
ution

of an ele
tromagneti
 simulation using TAU

8

. We deployed an operating system image with

all the software already installed using Grid'5000 API that intera
ts with Kadeploy [71℄. This

image was generated using Kameleon that will be presented in Chapter 5. The spe
i�
ation of

the
orresponding image to deploy is indi
ated as a parameter in the fun
tion that request the

resour
es, whi
h is shown in the �rst lines of the �le. Moreover, in the �le we
an see some Expo

operators to ease the pro
edure of exe
ution of
ommands on several nodes through the use of

iterators. This makes easier the des
ription of tasks su
h as dea
tivating in�niband interfa
es

8

http://www.
s.uoregon.edu/resear
h/tau/home.php

53

http://www.cs.uoregon.edu/research/tau/home.php

CHAPTER 3. EXPO: A TOOL TO MANAGE LARGE SCALE EXPERIMENTS

on all reserved nodes. Another operator is shown for generating the
orre
t host�le ne
essary for

running a MPI appli
ation. Finally, we exe
ute the appli
ation and we get the pro�le generated by

TAU during the exe
ution. All the results are sent to the experimenter's ma
hine. The modularity

of the tool enables users to run their experiment in another testbed by just loading the appropriate

module. Other use
ases will be shown throughout all this thesis and mainly in the next
hapter

where Expo was used for performing a
ustom
alibration of Grid'5000
lusters that enabled the

e�
ient deployment of multisite parallel appli
ations. Expo use
ases in
lude:

� Evaluation of pro
esses pla
ing in the deployment of a parallel appli
ation.

� Calibration of Grid'5000 pro
essors for an ele
tromagneti
 appli
ation.

� Comparison of the two te
hniques of deployment: naive and hardware aware.

� Generation and
olle
tion of tra
es of NAS

9

ben
hmarks using TAU.

These examples are in
luded in the Appendix A of this thesis.

3.4 Evaluation of experiment
ontrol systems

<?xml version="1.0" en
oding="utf-8"?>

<gush>

<proje
t name="Testing overhead">

<
omponent name="Cluster1">

<rspe
>

<num_hosts>20</num_hosts>

</rspe
>

<resour
es>

<resour
e type="ssh" group="lo
al"/>

</resour
es>

</
omponent>

<experiment name="simple">

<exe
ution>

<
omponent_blo
k name="
b1">

<
omponent name="Cluster1"/>

<pro
ess_blo
k name="p2">

<pro
ess name="test">

<path>hostname</path>

<
mdline>

<arg></arg>

</
mdline>

</pro
ess>

</pro
ess_blo
k>

</
omponent_blo
k>

</exe
ution>

</experiment>

</proje
t>

</gush>

Listing 4: Gush des
ription

require 'g5k_api'

set :user = "
ruizsanabria"

set :resour
es = "MyExperiment.resour
es"

reserv=
onne
tion(:type => "Grid5000")

reserv.resour
es = { :nan
y => ["nodes=200"℄

:sophia => ["nodes100"℄}

reserv.name = "Expo S
alability"

reserv.walltime=2000

task_definition_start

task :run_reservation do

reserv.run!

end

task :s
alability do

sizes=[10,50,100,200,300℄

resour
es.ea
h_sli
e_array(sizes) do | nodes|

run("hostname", :target => nodes)

have to put tags here

}

end

Listing 5: Expo Experiment des
ription

Listing 6: Comparison between experiment des
ription �les: These �les were used in the evaluation of the

s
alability of the two tools. It should be noti
ed here that the experiment des
ription for Gush has to be

hanged every time we need to
hange the number of nodes to try with. Also Gush needs a �le for the

resour
e des
ription that is not shown.

The aim of this se
tion is to position Expo in the panorama of experiment management tools.

In this thesis, we have already performed a qualitative
omparison of the experiment management

tools in Chapter 2. In this se
tion the goal is to
arry out a deeper
omparison of similar approa
hes

for
ondu
ting experiments on distributed infrastru
tures. We have
hosen: Gush, Exe
o and

9

http://www.nas.nasa.gov/publi
ations/npb.html

54

http://www.nas.nasa.gov/publications/npb.html

CHAPTER 3. EXPO: A TOOL TO MANAGE LARGE SCALE EXPERIMENTS

Figure 3.5: Evaluation of the s
alability of Gush and Expo when exe
uting a
ommand in a large set of

resour
es. The upper and lower "hinges"
orrespond to the �rst and third quartiles. Points that are out

of this range, represented outliers. Ea
h test was repeated 10 times.

XpFlow. These three tools share many features with Expo su
h as the ease of installation, the

apa
ity to adapt to di�erent testbeds and they are targeted at performing general experiments

in distributed infrastru
tures involving a big amount of nodes. First, we evaluate Expo against

Gush given that they used very di�erent approa
hes to des
ribe the experiment as well as di�erent

philosophies. Then, we evaluate Expo against Exe
o and XpFlow whi
h have been developed with

the purpose of managing large s
ale experiments.

3.4.1 Gush
omparison

The evaluation
onsisted in the expressiveness of the language, as well as the performan
e and

s
alability of the
ommand exe
ution. The
omparison between both tools was done by
arrying

out an experiment, whi
h involved a large amount of nodes. We de�ned an experiment that

onsisted in exe
uting a
ommand in a set of resour
es and measuring the time elapsed, while

varying the number of nodes. Therefore, we
ompare the time to exe
ute the
ommands and the

�exibility in the des
ription of the experiment. Listing 6 shows the des
riptions of the experiment

used forGush and Expo. We
an note, looking at the experiment des
ription, that forGush we have

either to
hange the �le for ea
h experiment so as to try di�erent number of resour
es, or we
an

reate a long des
ription �le with all the possibilities we want to try. This is not the
ase for Expo,

whi
h uses Ruby and provides a programmati
al approa
h for des
ribing the experiment, making

it �exible enough to adapt to the normal a
tivities or
hanges when we perform an experiment.

Figure 3.5 shows the s
alability of the me
hanism for the exe
ution of
ommands. In this

�gure we
an see that Expo outperforms Gush due to the use of TakTuk parallel exe
uter, also

that Expo presents less variability in the time to exe
ute the experiment, whi
h is important to

the reprodu
ibility. It was noti
ed as well that when we tried to exe
ute an experiment with more

than 400 nodes, problems arise trying to perform it with Gush.

3.4.2 XpFlow and Exe
o
omparison

There has been a re
ent interest for developing experiment management tools targeted at
omplex

experiments with distributed systems. From the tools that have been studied in Chapter 2 two

tools deserve spe
ial attention XpFlow and Exe
o given that they are a
tively developed and used

55

CHAPTER 3. EXPO: A TOOL TO MANAGE LARGE SCALE EXPERIMENTS

by the Grid'5000
ommunity. Additionally, they have been used in re
ent publi
ations [67, 20℄.

At the moment of writing the versions of XpFlow and Exe
o used were respe
tively 0.1
 and 2.3

10

. This evaluation goes a step further
ompared to the previous evaluations. We implemented

�rst a s
alability experiment using Taktuk, the three tools support it for running experiments at

large s
ale. The three di�erent experiment des
riptions are shown in Figure 10. Resour
es were

reserved on 9 di�erent sites (nan
y, sophia, toulouse, lille, lyon, luxembourg, nantes, grenoble and

rennes) in Grid'5000. Therefore all three tools re
eived as a parameter the same set of resour
es.

The experiment
onsist simply in exe
uting the
ommand hostname over a set of resour
es and

measuring the time it took to
arry out this task. Di�erent sizes of nodes were tested as
an be

observed on the experiment des
ription �les. The results of the test are shown in Figure 3.6, we

an observe that Expo s
ales better with an in
reasing number of nodes. This is due to the fa
t

that it takes into a

ount the topology of the infrastru
ture whi
h is
aptured in the Resour
eSet

abstra
tion and helps to generate the right parameters for TakTuk. With the implementation of

these experiments and the ones shown in the Appendix A, we gained some insights and dis
uss

some features provided by those tools.

Des
ription language

From the des
ription point of view when evaluating these tools we had an interesting
ase study

be
ause ea
h tool o�ers a di�erent degree of abstra
tion. Going from the simple plain s
ript

provided by Exe
o to the most sophisti
ated work�ow representation o�ered by XpFlow. Expo

sits on the middle providing the Task abstra
tion to stru
ture the experiment des
ription. Exe
o

provides an API for
ontrolling remote pro
esses,
ontrary to Expo and XpFlow that provide an

internal

26

DSL oriented to the domain of experimentation. Ea
h representation has its advantages

and disadvantages, having a low level API as the one provided by Exe
o enables a �ne grain

ontrol of running appli
ations. They
an be started, monitored and stopped and the work�ow

of the experiment
an be easily modi�ed using all the syntax and language
onstru
ts provided

by Python. In the other hand, Expo and XpFlow impose their proper
onstru
ts to spe
ify

the experiment work�ow. This brings modularization and makes experiment des
ription more

omprehensible. As a
on
lusion, we believe that the good level of abstra
tion will depend on the

type of experiment and its
omplexity.

Experiment validation

One important fa
t that
hara
terizes the evaluated tools is that they used interpreted languages as

a means for des
ribing the experiments. This brings high �exibility for intera
ting with
omputing

systems as is demonstrated by the fa
t that more than 50%

11

of
on�guration management tools

are implemented using this kind of programming languages. However, the naive use of these

programming languages
an have a big
ost for the
ondu
tion of experiments, as simple errors

like the use of unde
lared variables, unde�ned methods, invalid arguments, et
.,
ould break

the experiment work�ow and lose its progress. This is a drawba
k of Exe
o that by default

do not integrate any validation me
hanism for
a
hing the aforementioned errors before running

the experiment. XpFlow dete
ts unde
lared variables and unde�ned methods before running the

experiment, stopping its exe
ution and presenting an error to the user. Unfortunately this only

happens at the level of the pro
ess abstra
tion, a
tivities that are used as building blo
k and wrap

low level tasks, do not
ount with this type of validation. Expo as already presented, provides two

me
hanisms: stati

ode analysis and dry run.

Experiment
he
kpoint

Exe
o provides
he
kpointing support for parametri
 studies. It provides a
lass to perform param-

eter sweeps whi
h uses a lo
al dire
tory in disk for saving the progress of the parameter
ombination

10

Those versions were a

essed on 24/09/2014.

11

Che
king language used by the most popular proje
ts: Ansible, B
fg2,
dist, Chef, CFEngine, juju, Puppet,

Salt, Rexds

56

CHAPTER 3. EXPO: A TOOL TO MANAGE LARGE SCALE EXPERIMENTS

require 'g5k_api'

set :resour
es, "MyExperiment.resour
es"

set :user, "
ruizsanabria"

reserv =
onne
tion(:type => "Grid5000")

reserv.
reate_resour
e_set_file("nodes_expe")

RUNS = 5

task :s
alability do

sizes = [2,4,8,16,32,64,128,256℄

resour
es.ea
h_sli
e_array(sizes) do |nodes|

msg("Testing with #{nodes.length}")

RUNS.times{

run("hostname", :target => nodes)

}

end

end

Listing 7: Expo experiment des
ription

pro
ess :main do

log "Starting Experiment"

RUNS = 5

ip_adresses = YAML::load(File.read("nodes_expe"))

nodes = [℄

ip_adresses.ea
h{ |ip|

nodes.push(simple_node("
ruizsanabria�#{ip}"))

}

[2,4,8,16,32,64,128,256℄.ea
h do |size|

test_nodes = nodes[1..size℄

log("Testing with #{size} nodes")

RUNS.times{

r = exe
ute_many(test_nodes, "hostname")

log(r)

}

end

end

Listing 8: XpFlow experiment des
ription

from exe
o import *

from exe
o_engine import *

import yaml

lass taktuk_s
alability(Engine):

def run(self):

RUNS = 5

with open('nodes_expe', 'r') as f:

ip_address = yaml.load(f)

hosts = [℄

for address in ip_address:

hosts.append(Host(address, user = '
ruizsanabria'))

time = Timer()

logger.info("Starting Experiment")

for i in [2,4,8,16,32,64,128,256℄:

test_hosts = hosts[0:i℄

for i in range(RUNS):

servers =TaktukRemote("hostname",test_hosts)

servers.start()

servers.wait()

print Report([servers℄).to_string()

logger.info("Total exe
ution time = %f" % time.elapsed())

if __name__ == "__main__":

engine = taktuk_s
alability()

engine.start()

Listing 9: Exe
o experiment des
ription

Listing 10: Comparison between experiment des
ription �les: These �les were used in the evaluation of

the s
alability using taktuk. We
an observe the di�erent abstra
tion used by the tools and their syntax

sugar.

that have already been tested. However, it does not support the
he
kpoint of any experimental

work�ow. XpFlow is able to save the progress of any experimental work�ow by saving the state of

all variables used in the experiment des
ription. Thus, if the exe
ution fa
es any eventual error,

users
an rea
t, �x the error and
ontinue to exe
ute the experiment from the point it stopped.

Expo does not support experiment
he
kpointing, instead it provides an intera
tive mode that is

triggered when an error o

urs. In this way it serves the same fun
tion of XpFlow
he
kpointing

me
hanism. As a
onsequen
e, the
he
kpoint me
hanisms provided are either spe
i�
 for a kind

of experiment or does not take into a

ount the state of the platform. We have to remark here

57

CHAPTER 3. EXPO: A TOOL TO MANAGE LARGE SCALE EXPERIMENTS

Figure 3.6: Evaluation of the s
alability of Expo, Exe
o and XpFlow when exe
uting a
ommand in a

large set of resour
es. Ea
h test was exe
uted ten times.

that the real sense of a
he
kpoint me
hanism (to save the progress of an experiment) is di�
ult

to implement. There are some di�
ulties su
h as the need of large amount of storage
apa
ity

and the
apturing of the network state, those problems are addressed by works in the
he
kpoint

of parallel appli
ations and the snapshotting of whole virtual infrastru
tures [80℄.

3.5 Related works

Chapter 2 presented a
omplete state of the art in experiment management tools. Here we present

two �elds of
onstant resear
h in software engineering that shares similar
on
erns with Expo:

� Deployment of
omplex distributed appli
ations

� Regression tests for distributed appli
ations

Those �elds of resear
h have produ
ed a plethora of tools that seeks to remove the error-prone

nature of human intervention by en
ouraging automation. They aim at redu
ing the burden of

on�guring and testing distributed appli
ations.

3.5.1 Deployment of
omplex distributed appli
ations

Due to the limited s
alability and error-prone nature of manual approa
hes several tools have been

developed to make easier the deployment of appli
ations and their pre-requisites in distributed

infrastru
tures. ADEM [62℄ is an automation tool for the deployment and management of grid

appli
ation software. It manage e�
iently the deployment and building of appli
ations (
ompiling

and installation of dependen
ies) over di�erent grid sites. It takes into a

ount platform het-

erogeneity through the use of signatures. Tune [17℄ is a tool to manage software in distributed

infrastru
tures. The goal is to make easier the administration and deployment of multi-tiered

appli
ations

12

. It is based on the
on
ept of autonomous
omputing for making the administra-

tion of an infrastru
ture as a
omponent ar
hite
ture. The main idea is to automati
ally
reate a

representation based on fra
tal
omponents of the real system, with two main parts: appli
ation

12

appli
ations that depend on di�erent servi
es (e.g., databases, web servers, load balan
ers, et
).

58

CHAPTER 3. EXPO: A TOOL TO MANAGE LARGE SCALE EXPERIMENTS

omponents and platform
omponents. All expressed with a subset of UML diagrams. It has

already been used in the installation of a
luster software and the deployment of an ele
tromag-

neti
 simulation
ode in a grid infrastru
ture [83℄. Another work [50℄ address the deployment of

appli
ations in IaaS
louds. It proposes a de
entralized proto
ol to automati
ally deploy appli
a-

tions
onsisting of inter
onne
ted software elements hosted on several VMs. It uses an XML-based

formalism to des
ribe the
loud appli
ations to be deployed. Expo di�ers from the aforementioned

tools in that it o�ers a more �exible, programmati
 approa
h for the des
ription of the experiment

and it is designed to intera
t with a large number of nodes.

3.5.2 Regression tests for distributed appli
ations

Regression tests en
ompass di�erent prin
iples aiming at the rapid test and deploy of
hanges in

software. Those kind of tests when applied to distributed systems are hard, be
ause appli
ations

should start e�
iently and in a
orre
t order. Additionally, they have to meet
omplex dependen-

ies as the ones required by multi-tiered appli
ations (e.g., database URL, load balan
ers, et
.).

DART [31℄ was developed to fa
ilitate the writing of distributed tests for large-s
ale network appli-

ations. It provides a language based on XML to spe
ify high level details of test exe
ution. Ea
h

test en
ompasses: setting up the required infrastru
ture, distributing
ode and data to all nodes,

exe
uting and
ontrolling the distributed tests and �nally
olle
ting the results of the test from all

the nodes and evaluate them. It integrates e�
ient tools for the exe
ution of appli
ations and the

transfer of �les. NMI [99℄ is a framework to build and test software in a heterogeneous, multi-user,

distributed
omputing environment. The prin
ipal aim is to o�er to the user the
ontinual testing

of software
hanges. The user des
ribe the pro
ess of building and testing along with its external

software dependen
ies by using a lightweight de
larative syntax. It works along with a versioning

system to log the results and
hanges and perform the tra
king of all inputs, whi
h ensure repeat-

able and reprodu
ible tests. Another framework oriented to IaaS Clouds is Expertus [69℄ whi
h

through
ode generation te
hniques, automates performan
e testing of distributed appli
ations. It

handles automati
ally
omplex
on�guration dependen
ies of software appli
ations and it strives

to remove human error by fully automating the testing pro
ess (i.e., deployment,
on�guration,

exe
ution and data
olle
tion). The automation is based on s
ript generation from templates that

are spe
i�ed using XML.

Nixos [123℄ aims at making distributed appli
ation testing as easy to write as unit tests. It

provides a spe
i�
ation for automati
ally instantiate virtual ma
hines for providing the ne
essary

artifa
ts for tests, namely root privileges, system servi
es, multiple ma
hines, spe
i�
 network

topologies, et
. The system is built on top of Nix [42℄ the fun
tional linux distribution whi
h

enables to provide a
on
ise way to spe
ify VM
on�gurations and an e�
ient way to build

them. The main di�eren
e between the tools mentioned in this subse
tion and Expo is the target

ommunity. The target
ommunity of those tools is most of the time software developers or

system administrators whi
h
ount with high te
hni
al skills and this fa
t is re�e
ted in the type

of languages o�ered to des
ribe the environment of tests. Resear
hers do not always possess

the required expertise to deal with distributed systems
omplexity and that is why high level

abstra
tions for performing experiments were a design requirement for Expo.

3.6 Con
lusions and future works

Experimentation in
omputer s
ien
e and spe
ially in distributed infrastru
tures has seen the

emergen
e of di�erent experiment
ontrol systems. From this fa
t we
an draw a
on
lusion that

most of the tools distinguish almost the same phases in the experimenting pro
ess. There are

three main parts of the experiment pro
ess that a tool must
ontrol and help the user with: (i) the

ontrol, (ii) the supervision and (iii) the management of the experiment. The �rst part
omprises

the des
ription of the experiment, the
apture of data, the de�nition of the sour
e of data, and how

to get it after the experiment has �nished, as well as the �ow of
ontrol of the experiment. This is

an important step for the reprodu
ibility of the experiment. Se
ond, the experiment supervision,

59

CHAPTER 3. EXPO: A TOOL TO MANAGE LARGE SCALE EXPERIMENTS

whi
h means the monitoring of the experiment. The last phase is the experiment management,

whi
h is the intera
tion with the platform, and mainly
onsist in taking advantage of the servi
es

provided by the infrastru
ture in order to
arry out the experiment.

Expo o�ers a way to des
ribe the experiment by using a programming language providing a

lot of �exibility and, more importantly, the abstra
tions that allow the user to express
omplex

on�gurations. We put spe
ial attention at automating the typi
al tasks done when an experiment

is performed. Be
ause we think that automating the experimentation pro
ess is the way to go,

being one of steps that will lead to the experiment reprodu
ibility. Furthermore it is important to

en
ourage the
ulture of experiment reprodu
ibility, whi
h is a
knowledged to be a short
oming

in
omputer experimentation.

The use of experiment tools will save user time, whi
h
an be spent in improving the software

itself, it will save
osts and allow others to reprodu
e the results more easily. It is important to

integrate some features to Expo for the sake of reprodu
ibility, we need to improve the part of

the system that logs the experiment exe
ution with the aim of having detailed and easy to treat

information. This would enable a possible replay of the experiment. Additionally, it is important

to in
orporate me
hanisms to monitor and to generate a workload, and more importantly, to deal

with fails.

60

Chapter 4

How HPC appli
ations
an take

advantage of experiment management

tools

The heterogeneous nature of distributed platforms su
h as
omputational Grids is one of the main

barriers to e�e
tively deploy tightly-
oupled appli
ations. For those appli
ations, one
ommon

problem that appears due to the hardware heterogeneity is the load imbalan
e whi
h slows down

the appli
ation to the pa
e of the slower pro
essor. One solution is to distribute the load adequately

taking into a

ount hardware
apa
ities. To do so, an estimation of the hardware
apa
ities for

running the appli
ation has to be obtained. In this
hapter, we present a stati
 load balan
ing

for iterative tightly-
oupled appli
ations based on a pro�le predi
tion model. This te
hnique is

presented as a su

essful example of the intera
tion between experiment management tools and

parallel appli
ations. The experiment management tool Expo is used that enabled to: (1) provide

a general, lightweight and des
riptive way to
apture the tuning and deployment of a parallel

appli
ation in a
omputing infrastru
ture, (2) perform the tuning of the appli
ation e�
iently

in terms of human e�ort and resour
es needed. This
hapter reports the
osts for
arrying out

the tuning of a large ele
tromagneti
 simulation based on TLM for the platform Grid'5000 and

the improvements obtained on the total exe
ution time of the appli
ation. The
ontents of this

hapter were published in a paper [110℄ presented at CCGrid2014.

4.1 Introdu
tion

High Performan
e Computing (HPC) strives to a
hieve the maximum performan
e of a given

ma
hine. The in
reasing
omplexity of
omputing hardware ar
hite
tures nowadays, makes rise

the number of variables to take into a

ount to a
hieve this maximum performan
e and it is

even worse when
onsidering heterogeneous infrastru
tures as
omputational Grids. A
ommon

problem is the
omputation imbalan
e present in tightly-
oupled appli
ations that run in Grid

infrastru
tures whi
h is due to the unawareness of the underlying infrastru
ture
hara
teristi
s.

One of the best options to get the maximum performan
e is to tune the appli
ation
ode for a

given ar
hite
ture. This approa
h is used by ATLAS [129℄ whi
h gets its speed by spe
ializing

itself for a given platform. Ar
hite
ture aware tools su
h as hwlo
 [16℄ are now available in high

performan
e runtime environments of parallel appli
ations. Therefore, a deep knowledge of the

underlying infrastru
ture by the appli
ation is the evident trend to a
hieve the best performan
e.

For some regular s
ienti�

odes, it is possible to derive a performan
e model and the tuning of

the appli
ation
an be guided based on this performan
e model [61℄. This performan
e model
an

be
onstru
ted either from a detailed understanding of the appli
ation exe
ution or by analyzing

multiple runs. A multiple-runs approa
h is simpler be
ause it takes into a

ount the
omplex

intera
tion between the appli
ation and for instan
e the memory hierar
hy. To do so, several tools

61

CHAPTER 4. HOW HPC APPLICATIONS CAN TAKE ADVANTAGE OF EXPERIMENT

MANAGEMENT TOOLS

su
h as pro�lers, tra
ers, statisti
al engines, runtime environments have to be linked together in

order to
arry out the task of automating the generation,
olle
tion and treatment of performan
e

information and provide the appropriate data to
reate the model.

In this
hapter, it is shown how parallel appli
ations
an take advantage from experiment

management tools. A te
hnique of load balan
ing for large simulations
odes based on a predi
tion

model is analyzed. This te
hnique relies on the intera
tion between experimental management

tools and parallel appli
ations. The te
hnique is applied to a large ele
tromagneti
 simulation
ode

based on Transmission-Line Matrix (TLM) numeri
al method [60℄, deployed in a heterogeneous

Grid infrastru
ture. This te
hnique is
lassi�ed as a Stati
 load balan
ing whi
h is well adapted to

highly regular appli
ations. It requires few
hanges to the appli
ation
ode
ompared to adopting

a new programming model and given the high memory requirements of the appli
ation, a dynami

approa
h would generate a
onsiderable overhead. The used of our experiment management tool

Expo presented in Chapter 3 is shown. This enabled us to manage the modeling work�ow where

the exe
ution of big
ampaigns of appli
ation runs are needed and the or
hestration of di�erent

tools that
ould parti
ipate in the pro
ess of
reation of the performan
e model. Doing this task

e�
iently is important in order to not delay the exe
ution of the real appli
ation, redu
e the

perturbation of the results and provide in a short period of time valuable information to the

appli
ation.

The
ontribution of this
hapter is twofold:

� Show the importan
e of experiment management tools in helping users to manage the
om-

plexity of distributed infrastru
tures, to automate several tasks and to make e�
ient use of

omputational resour
es.

� A load balan
ing te
hnique for regular s
ienti�

odes based on the
alibration of the platform

and a predi
tion model. The approa
h is not expensive in terms of
ode sour
e modi�
ation,

user intervention and presents almost no overhead. An average improvement of 36% in the

exe
ution time is a
hieved.

4.2 Related work

The related work is organized into two parts: the load balan
ing te
hniques in parallel appli
ations

and the di�erent te
hniques to
arry out su
h a task. The se
ond part presents the state of the

art of experiment management tools and works related to the ben
hmarking of Grid platforms.

4.2.1 Load balan
ing of distributed appli
ations

An important phase of the exe
ution of parallel
odes is the assignment of work to
ompute

units. The problem of load balan
ing then is de�ned as the assignment of work to the
ompute

units a

ording to its performan
e or load. This assignment of work
an o

ur at the startup of

the appli
ation (stati
 partitioning) or it
an happen several times during the exe
ution of the

appli
ation (dynami
 partitioning). Both of them will be des
ribed in the following subse
tions.

Dynami
 te
hniques

Dynami
 te
hniques are very popular now given the apparition of infrastru
tures su
h as
loud

omputing. It is the
ase of Charm++ runtime system [58℄ whi
h through
ontinuous estimation of

pro
essor load, it adapts to the imbalan
e
reated by known �u
tuations in shared infrastru
tures.

Another approa
h based on Charm++ [85℄ takes into a

ount the laten
y existing in
ross-site

ommuni
ations for Grid infrastru
tures. As it
an be very
umbersome to
onvert appli
ations to

newer paradigms su
h as Charm++, AMPI was proposed in [13℄ whi
h enables a bigger number of

appli
ation bene�ts from the framework features as load balan
ing. These dynami
 te
hniques were

mainly
reated due to the large presen
e of high irregular load in parallel
omputational s
ien
e

and engineering. Our approa
h applies to highly regular
odes exe
uted on Grid infrastru
tures

62

CHAPTER 4. HOW HPC APPLICATIONS CAN TAKE ADVANTAGE OF EXPERIMENT

MANAGEMENT TOOLS

where the CPU is not shared between users. Therefore, the gain obtained with a dynami
 approa
h

would be negligible and there exist a potential overhead of
ontext swit
hing and migration.

Stati
 te
hniques

In [109℄, a stati
 load balan
ing te
hnique for mapping iterative algorithms onto heterogeneous

lusters is presented fo
using on the
omplexity of appli
ation partitioning and the e�
ient heuris-

ti
s for the distribution s
hemes. Load balan
ing for Grid appli
ations is proposed as well by

PaGrid[64℄ whi
h proposes a partitioner to balan
e mesh based appli
ations. A graph is generated

for the platform where pro
essors are weighed a

ording to its relative performan
e at exe
uting

standard ben
hmarks. This graph is mat
hed with the graph generated for the appli
ation. In

[40℄ is des
ribed a resour
e-aware partitioning where information about a
omputing environment

is
ombined with traditional partitioning algorithms. The approa
h
olle
ts information about the

omputing environment and pro
esses it for partitioning use.

4.2.2 Experiment management tools

GrapBen
h [94℄ provides a framework to
arry out a semi-automati
 ben
hmarking pro
ess for

studying appli
ation behavior in grid infrastru
tures. The framework
ontrols the number of

ben
hmarking measurements required by a given appli
ation whi
h are managed then by its ex-

periment engine. The work outlined here di�ers from this in that it provides a more general

experiment engine
on
eived to
arry out any kind of study for an appli
ation in distributed plat-

forms. Plush [4℄ is a widely used tool in PlanetLab, for deploying and monitoring appli
ation

exe
ution in distributed platforms. It provides abstra
tions to spe
ify the steps to deploy an

appli
ation, however, a real experiment entity is not taken into a

ount. The in�exibility of its

des
ription language makes it di�
ult to write parametri
 studies. ZENTURIO [104℄ enables the

management of parametri
 studies for an appli
ation in a framework for experimenting, but their

high number of modules makes it di�
ult to port it to di�erent platforms.

Work�ows engines are well known for their
apa
ity for
arrying out parametri
 studies. Vis-

trails [23℄ provides parameter exploration and
omparison of di�erent results. It improves the

experimentation a
tivity providing data provenan
e tra
king me
hanisms. One limitation of Vis-

trails is its inability to adapt to distributed environments. Pegasus[38℄ o�ers a mapping between

tasks in a work�ow and distributed infrastru
tures (
loud, grid,
lusters). Despite the
apa
ity

of some work�ow engines to use distributed infrastru
tures, it is di�
ult to use them when
on-

sidering the setup of an appli
ation. This setup
ould in
ur several
omplex steps that need a

onstant supervision. For more information about the aforementioned tools the reader is referred

to Chapter 2. The approa
h proposed in this
hapter addresses those issues and it is based on

the experiment management tool presented in Chapter 3. In that
hapter it was shown that Expo

is based on two abstra
tions resour
es and tasks whi
h
an be
ombined to represent a work�ow.

The work�ow spe
i�
ation des
ribes all the experiment a
tivity: platform a

ess, appli
ation de-

ployment and setup, appli
ation exe
ution, analysis and generation of results.

4.2.3 Transmission-Line Matrix

The main idea of this appli
ation is to simulate the propagation of an ele
tromagneti
 �eld in-

side large stru
tures su
h as tunnels and airplane
abins. TLM numeri
al method models the

ele
tromagneti
 �eld propagation by �lling the spa
e with a network of transmission-lines fed by

ele
tri
al signals whose voltage and
urrent
orrespond to the ele
tri
 and magneti
 �elds. The

interse
tion of these lines, that have the free-spa
e impedan
e, is modeled with the Symmetri
al

Condensed Node (SCN) [72℄ s
heme, whose s
attering matrix is derived dire
tly from the behavior

of the �elds. The TLM method requires signi�
ant
omputing resour
es, but its algorithm has

the advantage of being parallelizable, whi
h makes it possible to simulate oversized stru
tures on

multiple
omputing ma
hines. Using a parallel approa
h, large ele
tromagneti
 stru
tures
an be

63

CHAPTER 4. HOW HPC APPLICATIONS CAN TAKE ADVANTAGE OF EXPERIMENT

MANAGEMENT TOOLS

modeled by means of large s
ale
omputing systems su
h as Grid or super
omputers in a HPC

s
enario.

In order to avoid a heavy TLM
al
ulation, the dis
retized domain is sli
ed into several sub-

domains that are assigned to the pro
essors where will be
omputed in parallel. The CPUs

ommuni
ate between them to a
hieve the job. The parallel approa
h, based on Message-Passing

Interfa
e (MPI), is designed for Single Program Multiple Data (SPMD) programming model as it

is presented in [9℄. In the proposed parallel TLM appli
ation, a one-dimension Cartesian topology

is implemented for the partitioning pro
ess.

4.3 Load Balan
ing approa
h

Here, the te
hnique of load balan
ing applied to the TLM appli
ation is des
ribed. Considering a

fully heterogeneous infrastru
ture, su
h as Grid'5000, a Grid
omputing with many
lusters geo-

graphi
ally distributed
omposed of di�erent hardware
on�gurations. The appli
ation needs to

assign an adequate workload for ea
h node in order to fully exploit the infrastru
ture
apa
ities.

Given that the appli
ation is highly regular as shown in [9℄, a stati
 load balan
ing te
hnique is

hosen, where all the work is divided and distributed at the beginning. The amount of work as-

signed to ea
h pro
essor depends on the relative performan
e of the appli
ation on su
h pro
essor.

As this relative performan
e
an be di�
ult to get from pro
essor
hara
teristi
s, a predi
tion

model is used in order to have a more a

urate indi
ator. It was already shown that the expe
ted

runtime of the
omputation part of the appli
ation s
ales linearly with the number of TLM
ells

Nx, Ny, Nz on the three Cartesian dire
tions, y being the partitioning dire
tion. Thus, a simple

linear fun
tion given in [9℄ is used to model the performan
e:

Tcalc = c1 + c2NxNyNzt, (4.1)

where c1,2 are the time
oe�
ients
orresponding to di�erent blo
ks of the TLM appli
ation

and t represents the number of
omputing iterations. The predi
tion model, given in (4.3), takes

into
onsideration the algorithm to be exe
uted and the pro
essor ar
hite
ture performing the

omputation. They represent the pro
essor ar
hite
ture information inside the predi
tion model.

This model takes into a

ount the e�e
ts of
a
he misses, a

ording to the problem size. The �rst

term may be negle
ted as it is very small
ompared to the se
ond one. Lets
onsider that the

partitioning pro
edure gives the length of the
omputing sub-domain assigned to the pro
ess i, as:

li = αiNy, (4.2)

with

p∑

i=1

αi = 1

for all p pro
esses the stru
ture is
omputed by. Consequently, the amount of work is dis-

tributed a

ording to the fa
t that the
omputation time has to be the same for ea
h pro
ess

i :

Tcalci = ciNxliNzt, ∀i ∈ [1, p] (4.3)

where ci is the se
ond
oe�
ient from (4.3)
orresponding to the pro
ess i. This leads to

des
ribe (4.2) by:

lj =
Ny

cj
∑p

i=1
1

ci

, (4.4)

where lj is the work assigned to the pro
ess j. Therefore, a
onstru
tion of a predi
tion model

of the appli
ation for ea
h di�erent
omputing hardware available on the Grid infrastru
ture has

to be performed. In order to have a good predi
tion model, a given set of
hosen simulations have

to be run and analyzed for ea
h di�erent ma
hine. This pro
ess is depi
ted in Figure 4.1. Expo

64

CHAPTER 4. HOW HPC APPLICATIONS CAN TAKE ADVANTAGE OF EXPERIMENT

MANAGEMENT TOOLS

is used to automate the task of
ondu
ting this big number of exe
utions. This pro
ess will be

alled
alibration. The module used to this end is des
ribed in Se
tion 4.3.1. The load-balan
ing

approa
h implemented in this work
onsiders the
ommuni
ation between di�erent
lusters being

homogeneous. The
ommuni
ation
apabilities of the
omputing environment are not taken into

a

ount. Not all resour
es have to be involved espe
ially when the stru
ture to be
omputed is

not so large, be
ause the
ommuni
ations due to an ex
ess of pro
essors may slow down the entire

simulation, despite the in
reased a

umulated speed.

The exe
ution of the appli
ation will be wrapped in two Expo modules, whi
h will automate

all the pro
ess in the platform
hosen for testing (Grid'5000).

� Calibration of the platform. This module runs on
e, it
an
onta
t the platform in order to

know if there has been a
hange in the hardware
on�guration and deploys the ne
essary

alibration.

� Deployment of the appli
ation. Generation of a �le that
ontains platform �tness information

for the appli
ation and
arry out the load balan
ing at appli
ation level.

Figure 4.1: Load balan
ing approa
h

4.3.1 Expo
alibration module

All the pro
edure of platform
alibration was
aptured using Expo tasks abstra
tions. The follow-

ing tasks were de�ned:

65

CHAPTER 4. HOW HPC APPLICATIONS CAN TAKE ADVANTAGE OF EXPERIMENT

MANAGEMENT TOOLS

Figure 4.2: Expo Modules: the
alibration modules is exe
uted on
e

Task name

Exe
ution time [se
℄ per
luster

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Transfert site 15.09 13.31 16.32 14.06 26.76 42.55 10.26 10.46 11.92 35.03

Compiling
ode 21.84 24.35 30.14 22.38 23.49 27.10 20.56 21.36 29.94 20.28

Calibration 1770.14 4860.31 3630.55 1770.47 4660.67 7590.81 1640.23 1600.83 3430.70 1620.87

Free resour
es 1.76 1.62 2.20 1.25 1.33 1.54 1.42 1.77 1.06 1.55

Table 4.1: Exe
ution time of the di�erent tasks that
ompose the
alibration module.

� Run reservation: make a request to the
omputing platform in order to reserve the re-

sour
es needed.

� Transferring
ode to ea
h site on the grid: The
ode is sent from one
hosen site to

every site in Grid'5000.

� Extra
ting and
ompiling the
ode: The
ode is extra
ted and
ompiled with the right

on�guration.

� Calibration: It
omprehends the exe
ution of several simulations with di�erent parameters.

Two types of
alibration are performed in order to take into a

ount the
a
he e�e
ts.

� Compute
oe�
ients: The statisti
al engine R

1

is used in order to pro
ess the �les gener-

ated by the
alibration and perform a linear regression in order to
al
ulate the
oe�
ients

of the model.

� Free resour
es: It makes a request to the platform in order to free the resour
es used by

the
alibration.

These tasks were des
ribed using Expo DSL using 180 lines. An extra
t of the des
ription is

shown in Listing 11 and the di�erent exe
ution times of ea
h task for di�erent
lusters are shown

in Table 4.1. It is important to note that the time to exe
ute the whole module for a parti
ular

luster mainly depends on the exe
ution time of the simulations. There is an almost negligible

overhead in the exe
ution time with Expo, whi
h was already shown in Chapter 3.

In Figure 4.3 is shown the exe
utable work�ow generated from the abstra
t
alibration ex-

periment de�nition. Here, the level of exe
ution is the job. The system submits a job into the

infrastru
ture for every di�erent (di�erent ar
hite
ture)
luster in Grid'5000. Thereby, every task

de�ned in the abstra
t representation is mapped into a
luster and managed asyn
hronously. Sev-

eral ma
hines were used per
luster in order to lower the time to get the results. The simulation

were deployed in parallel for this
ase using TakTuk whi
h enable us to maintain a low number

of ssh
onne
tions to
ontrol the experiment. In Figure 4.4, it is shown the heterogeneity of

Grid'5000 in terms of
oe�
ients of the predi
tion model. This �gure was generated using the

results obtained by the
alibration module.

Advantages of using Expo:

� It helps to deploy e�
iently the simulations used for the
alibration part, making independent

from the platform. More than 1359 simulations were ne
essary to get data for the predi
tion

model.

1

http://www.r-proje
t.org/

66

CHAPTER 4. HOW HPC APPLICATIONS CAN TAKE ADVANTAGE OF EXPERIMENT

MANAGEMENT TOOLS

Figure 4.3: Experiment
alibration exe
utable work�ow

4.6
68e

−08

4.7
41e

−08

9.4
10e

−08

9.6
72e

−08

1.5
02e

−07

2.5
43e

−07

3.8
27e

−084.6
18e

−08

4.5
10e

−08

4.8
94e

−08

8.8
10e

−08 1.0
40e

−07

1.0
82e

−07

1.1
00e

−07

4.7
34e

−08

1.1
78e

−07

0e+00

1e−07

2e−07

Cluster

Pr
ed

ict
io

n
m

od
el

 c
oe

ffi
cie

nt cluster
adonis
chinqchint
chirloute
edel
genepi
granduc
graphene
griffon
hercule
orion
paradent
parapide
parapluie
pastel
reims
sagittaire

Figure 4.4: Heterogeneity of Grid'5000

� Makes all the pro
edure more reprodu
ible and repeatable.

� Frees the appli
ation from implementing this fun
tionality. Relying on more �exible lan-

guages for this task.

67

CHAPTER 4. HOW HPC APPLICATIONS CAN TAKE ADVANTAGE OF EXPERIMENT

MANAGEMENT TOOLS

1 task :transfering_tlm, :target => resour
es.gw do

2 put("~/TLM/tlm_v1.tar","/tmp/tlm_test.tar",:method => "s
p")

3 end

4

5 task :run_reservation, :depends => [:transfering_tlm℄ do

6 reserv.run!

7 end

8

9 task :transfert_site, :target => resour
es, :depends => [:run_reservation℄ do

10 options_put = {:method => "s
p", :nfs => :site}

11 run("mkdir -p ~/Exp_tlm")

12 put("/tmp/tlm_test.tar","~/Exp_tlm/tlm_test.tar",options_put)

13 end

14

15 task :
ompiling, :target => resour
es, :depends => [:transfert_site℄ do

16

17
he
k("ls ~/Exp_tlm/TLMME/") then

18 run("
d ~/Exp_tlm/; tar -xf tlm_test.tar")

19 run("make -C ~/Exp_tlm/TLMME/tlm/")

20 end

21

22 end

23

24 task :
alibration_
2, :target => resour
es, :depends => [:
ompiling℄ do

25

26 params_
2.ea
h_with_index{ |par,index|

27 number_sim = 2

28 RUNS.times do

29 tag = {:parameters => par,:size => size_
2[index℄ }

30
ommands =["
d ~/Exp_tlm/TLMME/tlm/;./run 1 #{par} mat
hed"℄

31 run(
ommands, :ins_per_ma
hine => number_sim,:log => tag)

32 end

33 puts "Finishing parameter #{par}"

34 }

35 end

Listing 11: Extra
t of the
alibration module

4.4 Results

4.4.1 Experimental platform

The simulations were performed on Grid'5000 platform [55℄. For performan
e reasons, only two

pro
esses are exe
uted on grid nodes, ea
h one on a di�erent pro
essor. The ar
hite
tures of the

omputing nodes from Grid'5000 are di�erent from
luster to
luster. The same
lusters where

used in order to keep the homogeneity between the experiment results
on
erning the simulation

time. These
lusters are geographi
ally distributed in two sites. These sites are
onne
ted by

RENATER, the Fren
h network for resear
h and tea
hing. All Expo des
ription �les used two run

the experiments are available in

2

.

4.4.2 Using di�erent
on�gurations

Here, it was evaluated the performan
e gain obtained using load balan
e under di�erent hardware

on�gurations. In order to show the improvement in performan
e for large simulations, we opted

for using di�erent simulation sizes proportional to the number of nodes. This enabled to maintain

a favorable rate between
omputation and
ommuni
ation. The results are shown in the Figure.

4.5. A maximum gain of 42.84% was obtained using
lusters lo
ated in the same site. The

gain obtained using several geographi
ally distributed sites varies a great deal, we observed here

performan
e gains ranging from 3.25% to 19.92%.

68

CHAPTER 4. HOW HPC APPLICATIONS CAN TAKE ADVANTAGE OF EXPERIMENT

MANAGEMENT TOOLS

edel−genepi luxembourg−nancy−reims nancy−luxembourg

0

10

20

30

40

Pe
rfo

rm
an

ce
 G

ai
n

[%]

Number of nodes 4 6 20 60

Figure 4.5: Using di�erent heterogeneous
on�gurations. First tests used
luster lo
ated in the same site

(edel-genepi). The other two series of test used di�erent geographi
ally distributed sites (luxembourg,

nan
y, reims).

0

5

10

15

20

25

30

35

40

4 8 16 32 64 128

Ga
in

 [%
]

No of processes

Figure 4.6: Gain obtained with the same simulation parameters
hanging the number of nodes.

4.4.3 Changing the number of nodes

The experiment simulates the ele
tromagneti
 �eld propagation, using the TLM method, for 10000

time steps inside a waveguide stru
ture, having the dimensions: 172 mm width, 86 mm height,

2432 mm length, a mesh step of 1 mm. In this experiment the
omputing nodes belong to Gri�on,

Chinq
hint and Chirloute
lusters. The simulation time values are presented in Figure. 4.6. The

maximum gain obtained when using load-balan
ing approa
h is about 36%. The values of the

simulation time when the load is balan
ed a

ording to the
alibration model given by Expo are

smaller than the time values when the stru
ture is divided identi
ally on all MPI pro
esses. The

gain obtained by load balan
e approa
h de
reases while the number of pro
esses in
reases, be
ause

the
omputation time de
reases a

ording to
ommuni
ation time.

2

http://expo.gforge.inria.fr/

69

CHAPTER 4. HOW HPC APPLICATIONS CAN TAKE ADVANTAGE OF EXPERIMENT

MANAGEMENT TOOLS

4.4.4 Large stru
ture

In order to prove the real bene�ts of the grid environment for TLM large simulations, a supersized

re
tangular mat
hed waveguide, dis
retized upon 95 million TLM
ells is simulated. Its dimensions

are: 345 mm width, 173 mm height, 1600 mm length and a mesh step of 1 mm.

Distributed experiment

In the �rst experiment, the simulations are performed using four nodes from Gri�on and Chirloute

lusters. The gain obtained by load balan
ing approa
h is about 25.5%.

Lo
al experiment

A se
ond experiment was
arried out using nodes from
lusters Paradent and Parapide whi
h are

lo
alized on the same site. The gain obtained by load balan
ing approa
h is about 48.5%, mu
h

better than the distributed experiment be
ause the
ommuni
ation time is mu
h smaller between

nodes on the same site.

4.5 Con
lusions and Future Works

This work showed the intera
tion between appli
ations and experiment management tools, whi
h

is not limited to reprodu
ibility purposes and replayability of experiments. This
alibration is an

example of how experiment management tools
an free appli
ations of doing
ertain tasks and

how
an they help them to perform a tuning for a given platform. The use of tools as Expo

serves the following purposes: it makes easy the a

ess to
omplex platforms, helping non-expert

users to make an e�
ient use of the resour
es. It helps to
ombine tools in order to
apture the

experimenting pro
ess.

It is di�
ult to perform an e�
ient deployment of the appli
ation using just information

provided by the hardware. Performan
e models based on runs provide a more a

urate information

for using the platform resour
es more e�
iently. At the same time, a load balan
ing based on a

performan
e model gives to the appli
ation high �exibility for estimating the best work pla
ing

for a
ertain size given the hardware
on�guration.

In perspe
tive, smarter reservation me
hanisms taking into a

ount the
alibration and the

availability of the platform, the di�erent number of possible
on�gurations for deploying and

their
ost represent a viable solution toward fast and automati
 multidis
iplinary appli
ation

simulations.

70

Part III

Kameleon

71

Chapter 5

Setting up
omplex software sta
ks

Figure 5.1: Role of Kameleon in the experiment
y
le

A software applian
e builder bundles together an appli
ation with its needed middleware and

an operating system to allow easy deployment on Infrastru
ture as a Servi
e (IaaS) providers.

These builders have the potential to address a key need in our
ommunity: the ability to repro-

du
e an experiment. This
hapter reports the experien
es on developing a software applian
e

builder
alled Kameleon that leverages popular and well tested tools. Kameleon simpli�es the

reation of
omplex software applian
es that are targeted at resear
h on operating systems, HPC

and distributed
omputing. It does so by proposing a highly modular des
ription format that en-

ourages
ollaboration and reuse of pro
edures. Moreover, it provides debugging me
hanisms for

improving experimenter's produ
tivity. To justify that our applian
e builder stands above others,

we
ompare it with the most known tools used by developers and resear
hers to automate the

onstru
tion of software environments for virtual ma
hines and IaaS infrastru
tures. The results

shown in this
hapter were published in [111℄.

5.1 Introdu
tion

Thanks to the advan
es in virtualization, the lowering of the
ost of
omputing hardware and the

in
reasing popularity of
loud
omputing. Now software infrastru
tures
an be deployed easily and

appli
ations
an be bundled together with their middleware requirements and operating system in

what is
alled a software applian
e. Two use
ases for software applian
es in industry and resear
h

are:

� Industry : the pervasiveness of
loud
omputing makes feasible the repla
ement of a whole

software sta
k from s
rat
h instead of trying to �x it. This has led to a new model of

provision software based on software applian
es [28℄, whi
h is also known as Immutable

servers. This brings several advantages to IT administration as: faster deployment time,

all the dependen
ies are already satis�ed, it is easy to have a produ
tion like environment

73

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

on the development ma
hines, et
. Hen
e, approa
hes like: vagrant

1

, veewee

2

, pa
ker

3

,

do
ker

4

have gained wide a

eptan
e in industry. Those approa
hes strive for having a

ommon reprodu
ible and disposable software environment that
an be rebuilt from s
rat
h

or from a base image using a de�nition �le that
an be versioned.

� Resear
h: Large testbed infrastru
tures for experimentation in networks and large s
ale sys-

tems su
h as Grid'5000 [25℄, FutureGrid [51℄, et
. are available, whi
h enable the deployment

of
omplex software sta
ks either on bare metal or using an IaaS provider. These infras-

tru
tures' high degree of software sta
k
ustomizability appeal to resear
hers who want to

test their ideas in real settings. However, the management of these software sta
ks is not

always trivial, their setup is a tedious and time
onsuming task that should be automated

whenever possible. The la
k of automation
an be attributed to the low expertise, la
k of

the proper tools and the long learning path for resear
hers. The la
k of automation leads

to the inability to reprodu
e an experiment, sin
e it is not even possible to build or set the

experimental setup under the exa
t same
onditions where an experiment took pla
e. A

re
ent study [30℄, where the buildability of artifa
ts was evaluated, found that only 24% of

publi
ations in ACM
onferen
es and journals
an be built. To preserve the experimental

setup some works are relying on software applian
es te
hnology.

Therefore, it is evident the importan
e and bene�ts of software applian
es for both industry

and resear
h. This
hapter fo
us more on the latter use of software applian
es that deals with the

problemati
 of experimentation under real settings in
omputer s
ien
e.

5.1.1 Motivations

Base software layer

(O.S. + middleware)

- User machine

- Other machine
 Virtual machine

 Cloud computing

 Real machine

 Experimental

setup

- Installation of packages

- Source code compilation

- Application configuration

- etc.

...

Figure 5.2: Creation pro
ess of an experimental setup.

Figure 5.2 illustrates the pro
ess to derive an experimental setup. Experimenters start from

a base setup whi
h in
ludes an operating system plus a middleware. This base setup
ould be

lo
ated in the same ma
hine of the experimenter, in a virtual ma
hine, in an IaaS provider as

Amazon EC2

5

, OpenSta
k

6

, et
; or in a real ma
hine that belongs to a
omputing
luster. The

experimenter will apply a sequen
e of a
tions 〈Ai〉 whi
h
onsists in, for instan
e: installation

of software pa
kages, sour
e
ode
ompilation, software
on�guration, et
. Applying these a
-

tions 〈Ai〉 produ
e an experimental setup E′
, whi
h is then used for the evaluation of a given

implementation, algorithm, et
. Due to spa
e limitations in resear
h papers the
omposition of

E′
is not properly des
ribed, nor are the sequen
e of a
tions 〈Ai〉 that were taken to derive E′

.

In domains su
h as High Performan
e Computing, Distributed Systems and Operating Systems

1

http://www.vagrantup.
om/

2

https://github.
om/jedi4ever/veewee

3

http://www.pa
ker.io/

4

https://www.do
ker.io/

5

http://aws.amazon.
om/e
2/

6

http://www.opensta
k.org/

74

http://www.vagrantup.com/
https://github.com/jedi4ever/veewee
http://www.packer.io/
https://www.docker.io/
http://aws.amazon.com/ec2/
http://www.openstack.org/

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

resear
h, experimental setup
on�guration, whi
h in
ludes the operating system, version of li-

braries and
ompilers,
ompilation �ags, et
, are
ru
ial requirements to be able to repeat an

experiment [26℄.

5.1.2 Re
onstru
t-ability

To improve experimentation, we
laim that an experimenter needs to know the exa
t pro
ess that

led to the
reation of a parti
ular experimental setup, E′
, as well as to be able to replay and modify

this pro
ess to arrive at the same and alternative experimental setups. We introdu
e the
on
ept

of re
onstru
tability of an experimental setup to formally
apture this pro
ess. An experimental

setup E′
is re
onstru
table if the following three fa
ts hold:

� Experimenters have a

ess to the original base experimental setup E.

� Experimenters know exa
tly the sequen
e of a
tions

〈A1, A2, A3, ..., An〉 that produ
ed E′
.

� Experimenters are able to
hange some a
tion Ai and su

essfully re-
onstru
t an experi-

mental setup E′′
.

Re
onstru
tability
an be expressed fun
tionally as E′ = f(E, 〈Ai〉), where f applies 〈Ai〉 to
E to derive the experimental setup E′

. Thus, if re
onstru
tability holds, we are guaranteed to be

able to derive E′
no matter when 〈Ai〉 is applied to E. Re
onstru
tability does not hold when:

� An a
tion Ai is
omposed of sub-tasks that are exe
uted
on
urrently making the pro
ess

not deterministi
. For example:
ompilation of software using Makefiles with the option

-j that runs parallel
ompilation pro
ess. This provokes
ompilation rules to run in any

order if they are not
onne
ted by dependen
ies.

� Pa
kages with the latest release of Debian (Debian 8) have a time of expiration. Therefore,

old pa
kages
an not be installed.

Re
onstru
tability also does not hold when either the base setup, E, or the spe
i�
 software

used in an a
tion, Ai, is no longer available. The availability of software be
omes an issue when

re
onstru
tability depends on pa
kage managers and
on�guration management tools [42℄. For

example, there is no guarantee that a git repository whi
h is used by an a
tion will be available

at a later point in time.

5.1.3 Contributions of this
hapter

This
hapter identi�es the ne
essary ingredients for a software applian
e builder to be a viable

solution for the preservation and pa
kaging of experimental setups. The
ontributions of this

hapter are:

1. In Se
tion 5.1.2, we introdu
ed the
on
ept of re
onstru
tability, whi
h identi�es the pro
ess

to build an experimental setup so that the setup
an be rebuilt and
an be built with

variations.

2. In Se
tion 5.3, we evaluate existing software applian
e builders against the
riteria needed

to improve user produ
tivity.

3. In Se
tion 5.4, we re�ne the Kameleon syntax and
on
epts, and we extend the persistent

a
he me
hanism so that it supports new
on
epts.

4. In Se
tion 5.5, we demonstrate that Kameleon is modular, enables the reuse of
ode, and

builds on proven te
hnology.

5. Se
tion 5.5.2, we identify the
ontainer requirements for di�erent types of software appli-

an
es.

75

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

The rest of this
hapter is stru
tured as follows: Se
tion 6.2 presents related work. Se
tion 5.3

presents a qualitative
omparison of the most widely used software applian
e builders. Se
tion 5.4

presents a
omplete des
ription of Kameleon ar
hite
ture,
on
epts and features. Se
tion 5.5

presents use
ases that validate our approa
h. Se
tion 5.5.4 presents future work. Se
tion 5.5.5

on
ludes.

5.2 Related work

We use the term software applian
e, whi
h is de�ned as a pre-built software that is
ombined

with just enough operating system (jeOS) and
an run on bare metal (real hardware) or inside a

hypervisor. A virtual applian
e is a type of software applian
e, whi
h is pa
ked in a format that

targets a spe
i�
 platform (normally virtualization platform). A software applian
e en
ompasses

three layers:

� Operating System: In the broadest sense in
ludes the most popular operating systems

(e.g GNU/Linux, Windows, FreeBSD). This element of the applian
e
an also
ontain mod-

i�
ations and spe
ial
on�gurations, for instan
e a modi�ed kernel.

� Platform Software: This en
ompasses
ompiled languages su
h as C, C++ and interpreted

languages su
h as Python and Ruby. Additionally, appli
ations or middle-ware (e.g., MPI,

MySQL, Hadoop, Apa
he, et
.). All Those software
omponents are already
on�gured.

� Appli
ation Software: New software or modi�
ations to be tested and studied.

Virtual applian
es bring up numerous bene�ts to administration of big infrastru
tures [114℄

and edu
ation on operating systems [86℄. A system for deploying lightweight virtual applian
es

was proposed in [28℄ whi
h is based on COW-based virtual blo
k disks for splitting a virtual disk

image into smaller disk images for rapid deployment of requested servi
es. A similar system was

proposed in [117℄ based on virtual ma
hine snapshots with the goal of improving response time of

loud
omputing infrastru
tures. The feasibility, of using virtual applian
es for servi
e deployment,

was shown in [119℄. The approa
h resulted easy and simple
ompared to traditional deployment

me
hanisms. A system
alled Strata proposed in [96℄ enables more e�
ient
reation, provisioning

and management of virtual applian
es. Another system
alled Typi
al Virtual Applian
es is pro-

posed in [133℄ whi
h brings more �exibility to servi
e deployment,
onsuming a few storage and

bandwidth.

Re-running an experiment with the original software artifa
ts
ould be a
hieved by using

virtual applian
es and virtual ma
hine snapshots [63, 45℄. Brammer et. al [14℄ present a system

to
reate exe
utable papers, whi
h relies on the use of virtual ma
hines and aims at improving

the intera
tions between authors, reviewers and readers with reprodu
ilibity purposes. Kameleon

di�ers in that it allows the re-exe
ution of an experiment with the original software artifa
ts and

the ability to modify the experimental setup
leanly and easily.

Widely used tools su
h as Vagrant, provide reprodu
ible environments for development. Va-

grant uses pre-built images whi
h hinders understanding of the operating system layer and makes

modi�
ations to this layer di�
ult. Kameleon di�ers in that the
onstru
tion of the operating

system layer is part of the software applian
e generation. This fa
t makes its re
ipes less
omplex

than the re
ipes used by popular
on�guration management tools su
h as Puppet

7

and Chef

8

.

From the tra
eability point of view, Kameleon
an be
ompared to intera
tive notebooks su
h

as IPython

9

where the goal is to tra
k every step that leads to a given result. Kameleon keeps a

tra
e of all the steps that led to the
reation of a given software sta
k, it does so by providing a

stru
tured, modular and understandable language. Kameleon makes re
onstru
tability of software

applian
es possible, experimenters are able to explore all the a
tions, modify and repeat the

environment generation.

7

http://puppetlabs.
om/

8

https://www.get
hef.
om/
hef/

9

http://ipython.org/notebook.html

76

http://puppetlabs.com/
https://www.getchef.com/chef/
http://ipython.org/notebook.html

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

In Se
tion 5.3.3, we dis
uss software applian
e builders.

5.3 Software applian
e builders
omparison

We des
ribe and evaluate the most widely used software applian
e builders in
loud infrastru
tures

and development environments. The evaluation uses as
riteria: 1) how well they support the

software applian
e build
y
le and 2) whether they meet the
riteria for improving experimenters'

produ
tivity to build an experimental setup.

5.3.1 Software Applian
e Build Cy
le

All the analyzed tools follow the same pattern in the pro
ess of building a software applian
e. The

tool takes as input a Des
ription File that details all the requirements that the software applian
e

should meet. Then, it initializes a Container. A
ontainer is the environment that it is used for

building the software applian
e. This term
ontainer en
ompasses: system level virtualization

te
hniques (e.g.,
hroot, openVZ, Linux Containers), full virtualization te
hnologies (e.g., Virtual-

Box, KVM, Xen, VMware) and real physi
al ma
hines. On
e the
ontainer is initialized, the tool

parses the des
ription and starts to
arry out the bootstrap, setup and export pro
edures. The

output of this pro
ess is a software applian
e formatted for the infrastru
ture that will �nally host

it. Table 5.1 shows how this build
y
le is supported by ea
h tool. The main steps in the software

applian
e build
y
le are explained below:

� Bootstrap: This refers to the pro
ess of getting a bootable operating system. This bootable

image
an be either built from s
rat
h or it
an be retrieved from some external sour
e. The

normal pro
edure is to get an ISO image from the target operating system and follow the

installation pro
edure. Another option is to download and load a software applian
e already

reated.

� Setup: In this step, users apply several pro
edures to
ustomize the base system and make

it meet their needs. These pro
edures in
lude mainly the installation and
on�guration of

software. There are many possible ways to
ustomize, by using shell s
ripts or
on�guration

management tools su
h as Salt, Chef, Puppet, Ansible, et
.

� Export: This step
reates the �nal format for the software applian
e. The �nal format

ranges form the available virtual disk formats (e.g., VDI

10

, VMDK

11

,QCOW2

12

) to more

simple formats based on tarballs

13

.

5.3.2 Criteria for Improving User Produ
tivity

The evaluation is driven by the question: What makes an experimenter more produ
tive when

building a
omplex software applian
e? The following
riteria will be used for the evaluation:

� Easiness: The tool has a low learning
urve. Spe
ially, a low learning
urve is supported

by providing a simple language to des
ribe the applian
e a
ross the di�erent levels of the

software applian
e's software sta
k (e.g., O.S. level, middleware or appli
ation).

� Support during the build pro
ess: Long
ompilation times are
ommonpla
e when

building these kinds of software sta
ks, for instan
e the
ompilation of operating system

kernels, modules, s
ienti�
 libraries. Be
ause this pro
ess is frequently error prone, a me
h-

anism for debugging or
he
kpointing the pro
ess makes the experimenter more produ
tive.

Validation of the
orre
t fun
tioning of the software applian
e is required as well.

10

https://www.virtualbox.org/manual/
h05.html

11

http://www.vmware.
om/app/vmdk/?sr
=vmdk

12

http://www.linux-kvm.org/page/Q
ow2

13

It refers to a
omputer �le format that
an
ombine multiple �les into a single �le.

77

https://www.virtualbox.org/manual/ch05.html
http://www.vmware.com/app/vmdk/?src=vmdk
http://www.linux-kvm.org/page/Qcow2

C
H
A
P
T
E
R
5
.
S
E
T
T
I
N
G

U
P
C
O
M
P
L
E
X

S
O
F
T
W
A
R
E
S
T
A
C
K
S

❳
❳
❳
❳
❳
❳
❳
❳
❳

Feature

Tool

Do
ker Pa
ker OZ Veewee Kameleon BoxGrinder

Building

Bootstrap Read only tarballs

that
an be ob-

taind form Do
ker

Hub

Installation ISO,

existing software

applian
e

Installation ISO Installation ISO Any bootstrap op-

tion

Installation ISO

Setup Do
kerFile instru
-

tions

Shell s
ripts, File

upload, Ansible,

Chef, Puppet, Salt

Shell s
ripts Shell s
ripts Shell s
ripts with

Kameleon syntax

Shell s
ripts

Export Linux Containers Amazon EC2, Dig-

italOCean, Do
ker,

Google Compute

Engine, Open-

Sta
k, Parallels,

QEMU, Virtual-

Box, VMware

QEMU VirtualBox,

QEMU, VMware

VirtualBox,

QEMU, VMware,

Do
ker, Grid'5000

Amazon EC2,

QEMU, Virtual-

box, VMware

Des
ription Language Plain text do
ker

language

JSON XML Ruby YAML YAML

Exe
ution

Container

support

Linux
ontainers Same as Export QEMU Same as Export Same as Export guestfs

User fa
il-

ities

Able to
ommit

hanges in the File

system layer

Validation of de-

s
ription, ISO

a
hing

ISO
a
hing , gen-

eration of meta-

data manifest

Image
on�gura-

tion validation

Persistent
a
he

me
hanism,
he
k-

points, intera
tive

shell

None

Table 5.1: This table shows how the software applian
e build
y
le is supported by ea
h tool

7
8

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

Table 5.2: Comparison of widely used applian
e builders based on
riteria that would make an experimenter

more produ
tive.

Tool Kameleon Do
ker Pa
ker BoxGrinder Veewee Oz

Easiness Yes Yes No Yes No No

Support in the building pro-

ess

Yes Yes Yes No No No

Container diversity Yes No Yes No Yes No

Shareability Yes Yes No Yes No No

Re
onstru
tability Yes Yes No No No Yes

� Containers diversity: The tool should support a variety of
ontainer types. This en-

ables hassle-free transportation of an experimental setup from one infrastru
ture to another,

be
ause experimenters are more
omfortable with working in spe
i�
 environments. Addi-

tionally, it should be easy to integrate new types of
ontainers that meet the requirements of

the experimenter. For example, libraries su
h as ATLAS

14

whi
h gets its speed by spe
ializ-

ing itself for the underlying ar
hite
ture, needs to be
ompiled on the target ma
hine where

it will �nally run. Certain Linux modules need dire
t a

ess to real hardware. Therefore,

they
ould not run on virtualize systems. That is the
ase for Dune [12℄ and CControl [101℄.

� Shareability: Instru
tions for building a software applian
e must be organized and stored

in a modular way to enable the reuse of pro
edures and
ollaborate within a
ommunity.

� Re
onstru
tability: One important short
oming is the reprodu
iblity of experiments in

omputer s
ien
e. It has been demonstrated that one of the
auses is the impossibility to

build the same software artifa
ts

15

used in a publi
ation [30℄. Thus a requirement is to be

able to re
onstru
t a software applian
e from its de�nitions, whi
h will at the same time

enable later
ustomization as de�ned in Se
tion 5.1.2.

5.3.3 Software Applian
e Builders

In this se
tion, we des
ribe and evaluate the most widely used software applian
e builders a

ording

to our
riteria for improving user produ
tivity. Table 5.2 shows the evaluation.

Do
ker

Do
ker

16

o�ers a powerful and lightweight way to build software applian
es that are pa
ked in

Linux Containers (LXC). Do
ker manages and tra
ks
hanges and dependen
ies, making it easier

for users to understand how the �nal applian
e was built. It relies on repositories for enabling users

to share their artifa
ts with other
ollaborators. The most appealing feature of Do
ker is that it

makes appli
ations portable a
ross many infrastru
tures. As a downside, however, appli
ations are

run inside Linux Containers whi
h
ould be not suitable for
ertain uses (e.g., run an appli
ation

that uses
groups

17

). The des
ription of the building pro
ess is done using a simple syntax based

on few
onstru
ts that help
ustomize the
ontainers.

Pa
ker

Pa
ker

18

helps users to
reate identi
al software applian
es targeted at multiple platforms. The

pro
ess is
omposed of: builders, responsible for
reating ma
hines and generating images from

them for various platforms; provisioners, used to install and
on�gure software (many options are

14

http://math-atlas.sour
eforge.net/

15

It refers to sour
e
ode
ompiled for testing.

16

https://www.do
ker.io/

17

https://www.kernel.org/do
/Do
umentation/
groups/
groups.txt

18

http://www.pa
ker.io/

79

http://math-atlas.sourceforge.net/
https://www.docker.io/
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://www.packer.io/

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

available from simple shell s
ripts to high-end
on�guration management tools) and postpro
essors,

that help manage the �nal produ
ed image. Pa
ker supports a variety of
ontainer types and it

strives to make des
riptions portable a
ross di�erent
ontainers. Thus the burden of
hanging

from one development environment to another is redu
ed. However, a di�erent language is used

to des
ribe the operating system layer, whi
h makes di�
ult to add modi�
ations to this layer.

Additionally, the tool do not provide any me
hanism for organizing the instru
tions whi
h hampers

shareability.

BoxGrinder

BoxGrinder

19

reates applian
es from simple plain text des
riptions for various platforms. It

utilizes the host system to perform the image
reation using the guestfs

20

library whi
h results

in a faster pro
ess. Then, the newly
reated software applian
e
an be exported lo
ally to be

used for a virtualization te
hnology or it
an be moved outside to be used in IaaS providers.

Software applian
e des
riptions are simple and easy to understand and
an be
omposed for reuse.

BoxGrinder does not o�er any me
hanism for supporting the build pro
ess and it is tied to build

the software applian
e using the host system whi
h
ould be problemati
 when some isolation is

needed.

Veewee

Veewee

21

is a tool for automating the
reation of
ustom virtual ma
hine images. It is able to

intera
t with several virtual ma
hine hypervisors. It o�ers to the user the possibility of validating

the generated software applian
e through the exe
ution of behavioral tests. The
apa
ities of the

tool for
ustomizing a software applian
e are very limited. Des
ription �les are written in Ruby

restri
ting the intera
tion with shell s
ripts.

OZ

Oz

22

was
reated to ease the automati
 installation of operating systems. It uses QEMU as a

ontainer and uses the native operating system tools to install software. The
y
le of building

a software applian
e in
ludes the generation of metadata about the pa
kages installed. Software

applian
es are
reated using an XML-based language. Even though the language allows almost

any operation of
ustomization, the des
riptions rapidly be
ome
omplex and di�
ult to maintain.

Kameleon

Kameleon a
hieves easiness by proposing a stru
tured language based on few
onstru
ts and whi
h

relies on shell
ommands. The hierar
hi
al stru
ture of re
ipes and the extend me
hanism allow

shareability. Kameleon supports the build pro
ess by providing debugging me
hanisms su
h as

intera
tive shell sessions, break-points and
he
kpointing. Containers diversity is a
hieved by

allowing the easy integration of new
ontainers using the same language for the re
ipes. Further-

more, persistent
a
he makes possible re
onstru
tability. In Se
tion 5.4, we present Kameleon in

detailed.

5.3.4 Dis
ussion

We found that many software applian
e builders rely on ar
hive �les (e.g. ISO images) to boot-

strap a software applian
e. However, if the ar
hive �les is no longer available in a repository,

then re
onstru
tability is impossible. We found that 30% of Veewee de�nition �les

23

point to

19

http://boxgrinder.org/

20

http://libguestfs.org/

21

https://github.
om/jedi4ever/veewee

22

http://www.aeolusproje
t.org/oz.html

23

This was tested with the version of veewee 0.3.7 by trying to build all templates during the period of 02/12/2013

and 20/12/2013.

80

http://boxgrinder.org/
http://libguestfs.org/
https://github.com/jedi4ever/veewee
http://www.aeolusproject.org/oz.html

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

repositories that either no longer exist or have some pa
kages missing. Furthermore, management

of
ontainers is implemented either in the
ore of the tool or as plugins. This makes integration of

new
ontainers for non-advan
ed users di�
ult. Most of the tools support a wide variety of
on-

tainers, however, be
ause they are tied to virtualization, real hardware is not taken into a

ount.

Shareability whi
h implies modularity and
ollaboration is not available. Do
ker is the only tool,

at the moment, whi
h implements a
ollaborative model for building software applian
es. These

tools do not support debugging or
he
k pointing in the build pro
ess.

Finally, the way tools support the build
y
le has an important impa
t on the re
ontru
tability

given that some a
tions would be out of the user's
ontrol. When the language used in the tool's

Des
ription �le is based on less human-readable languages, su
h as XML, or on
omplex re
ipes,

su
h as the ones used by Chef and Puppet, that tool ranks lower in the easiness
riteria.

5.4 Kameleon: the mindful applian
e builder

Containers

Figure 5.3: Kameleon ar
hite
ture.

Kameleon is a small and �exible software applian
e builder, whi
h eases the
onstru
tion

and re
onstru
tion of
ustom software sta
ks for resear
h in HPC, Grid or Cloud
omputing and

Distributed Systems. Kameleon version 2.2.4 is written in 2278 lines of Ruby

24

and has few

dependen
ies. Kameleon a
hieves ease of use by stru
turing the spe
i�
ation (re
ipes) for the

onstru
tion of software applian
es into a hierar
hy. The hierar
hy's stru
ture is
omposed of

se
tions that allow a separation of
ustomization and low level tasks. This stru
ture separates out

the
ustomization tasks that
an be easily performed by non-expert users from the low level tasks,

su
h as setting up a
omplete operating system or exporting the whole �le system, whi
h are more

di�
ult. These se
tions are divided into steps that represent a
tions 〈Ai〉 su
h as: installation

and
on�guration of a
ertain s
ienti�
 library, kernel pat
hing,
on�guration of a base system.

Steps are
omposed of mi
rosteps that enable the
ustomization and re-utilization of the same step

24

Measured with SLOCCount http://www.dwheeler.
om/slo

ount/

81

http://www.dwheeler.com/sloccount/

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

in di�erent re
ipes. Finally, the last level of the hierar
hy wraps shell
ommands and Kameleon

de�ned
ommands. All the aforementioned hierar
hy is written using YAML, whi
h en
ourages

more human readable shell s
ripts

25

.

An advantage of Kameleon, and what distinguished it from the existing applian
e builders, is

that it serves simply as a re
ipe parser and or
hestrator of shell
ommands, whi
h means that all

the logi
 for the
reation of a software applian
e resides entirely in the re
ipes. Kameleon re
ipes

enable four advantages for experimenters: 1) it helps to understand how the software applian
e

was
reated (all the details are embedded in the same language); 2) it gives a total
ontrol over the

whole pro
ess, whi
h redu
es the burden of integrating new
ontainers, new operating systems, or

new export formats; 3) it enables the easy
ustomization of software applian
es at any level (e.g.

O.S., middleware, appli
ations, et
.); 4) it en
ourages a
ollaboration model where resear
hers
an

reuse
ode and given that all details are in the hierar
hy of re
ipes and steps (text �les) they
an

be easily versioned.

Figure 5.3 shows the ar
hite
ture of the system and the intera
tion between the di�erent

modules. First, the parser, with the help of the abstra
t hierar
hy, parses the re
ipe and
reates

as output the internal data stru
tures that are input to the engine module. The engine or
hestrates

the work�ow of exe
ution. The work�ow is exe
uted sequentially. The
ontext module helps to

abstra
t the a

ess to a given
ontainer. All the low level operations (e.g., exe
ution of shell

ommands, I/O and �le management) are performed by the shell module. The engine integrates

three important me
hanism for debugging:
he
kpoints, breakpoints and intera
tive shell sessions.

The persistent
a
he
aptures all the data used during the pro
ess of building a software applian
e,

whi
h is ar
hived to allow the software applian
e to be re
onstru
ted at a later time. Finally, the

CLI module implements the user interfa
e.

5.4.1 Syntax

Figure 5.4 shows an example of a Kameleon re
ipe. We
an highlight three di�erent elements:

se
tions, steps and variables. Four se
tions are proposed by Kameleon but more
an be
reated.

One se
tion,
alled global, is dedi
ated to the de
laration of global variables that
an be used

through out the re
ipe. The other se
tions
orrespond to the main steps in the software applian
e

build
y
le (bootstrap, setup and export). Di�erent se
tions in a Kameleon re
ipe allow a high

degree of
ustomizability, reuse of
ode, and total
ontrol of software applian
e
reation pro
ess by

the experimenter. In Figure 5.4, the based system is built from s
rat
h using the pa
kage manager

of the Debian distribution as spe
i�ed in the bootstrap se
tion.

Alternatively, it is possible to use existing images (e.g., Grid'5000 base environments,
loud im-

ages for di�erent Linux distributions, or software applian
es market pla
es

26

). The setup se
tion

installs pa
kages,
on�gures the O.S., et
. Within a se
tion, users
an exe
ute shell
ommands,

read and write �les, or perform other
ommands that are ne
essary to
arry out the desired
us-

tomization. The options in the export se
tion depend on the disk formats that the
ontainer

supports. At the moment we have implemented re
ipes for exporting to the most popular virtual

disk formats, tarballs and spe
i�
 Grid'5000 format.

Listing 12 shows the de�nition of a step �le. Ea
h step �le is loaded automati
ally by Kameleon

after parsing the re
ipe. A step is divided into mi
rosteps (e.g.,
reate_group) whi
h are in turn

divided into
ommands. The goal of dividing steps into mi
rosteps is the possibility of a
tivating

ertain a
tions within a step. For example, from Listing 12 we have the possibility of exe
uting only

the mi
rostep
reate_group without exe
uting the rest of the mi
rosteps. There are two types

of variables: user de�ned variables that are provided in the re
ipe su
h as: Linux distribution

(distrib), ar
hite
ture (kernel_ar
h), et
., and Kameleon variables su
h as $$kameleon_
wd

(Kameleon work dire
tory) that intera
t with the engine. Contexts are mapped to spe
ial variables

(out_
ontext and in_
ontext) in the global se
tion. They indi
ate the ne
essary a
tions to set

a shell in the respe
tive
ontext (the
on
ept of
ontext is explained in the next se
tion). In the

25

http://yaml.org/spe
/1.2/spe
.pdf

26

http://www.turnkeylinux.org

82

http://yaml.org/spec/1.2/spec.pdf
http://www.turnkeylinux.org

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

global:

 ## User varibales : used by the recipe

 user_name: kameleon

 user_password: $$user_name

 # Distribution

 distrib: debian

 release: wheezy

 kernel_arch: $$arch

 hostname: kameleon-$$distrib

 ## Disk options

 nbd_device: /dev/nbd1

 image_disk: $$kameleon_cwd/base_$$kameleon_recipe_name.qcow2

 image_size: 10G

 lesystem_type: ext4

 # rootfs options

 rootfs: $$kameleon_cwd/rootfs

 out_context:

 cmd: bash

 workdir: $$kameleon_cwd

 proxy_cache: 127.0.0.1

 in_context:

 cmd: USER=root chroot $$kameleon_cwd/rootfs bash

 workdir: /root/kameleon_workdir

 proxy_cache: 127.0.0.1

bootstrap:

 - initialize_disk_chroot

 - debootstrap:

 - repository: http://ftp.debian.org/debian/

 - start_chroot

setup:

 - install_software:

 - packages: >

 debian-keyring sudo less vim acpid linux-image-$$kernel_arch

 - con gure_kernel

 - install_bootloader

 - con gure_network

 - create_group:

 - name: admin

 - create_user:

 - name: $$user_name

 - groups: sudo admin

 - password: $$user_password

export:

 - qemu_save_appliance:

 - input: $$image_disk

 - output: $$kameleon_cwd/$$kameleon_recipe_name

 - save_as_qcow2

- save_as_vdi

In context definition

Out context definition

Step

Figure 5.4: In the example, the se
tion headers illustrate
ontexts (out_
ontext and in_
ontext), de
-

larations (global) and se
tions (bootstrap, setup and export). This example uses a
hroot jail as a

ontainer for building a software applian
e based on Debian Wheezy.

example, the re
ipe
reates a Debian Wheezy applian
e with some base
on�guration, whi
h is

spe
i�ed as the distrib and release variables in the global se
tion, and exports the applian
e

in QCOW2 format, whi
h is spe
i�ed in the export se
tion as the step "- save_as-q
ow2". The

Kameleon re
ipe illustrates that se
tions are
omposed of steps that
an be
ustomized using

variables. Table 5.3 illustrates exe
_*
ommands, whi
h are the minimal building blo
ks of

mi
rosteps. An exe
_*
ommand wraps a shell
ommand to add error handling and intera
tiveness

in
ase of a problem.

83

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

Create User

-
reate_group:

- exe
_in: groupadd $$group

- add_user:

- exe
_in: useradd --
reate-home -s /bin/bash $$name

- exe
_in: adduser $$name $$group

- exe
_in: e
ho -n '$$name:$$password' |
hpasswd

- on_export_init:

- exe
_in:
hown '$$user_name:' -R /home/$$user_name

- add_group_to_sudoers:

- append_in:

- /et
/sudoers

- |

%admin ALL=(ALL:ALL) ALL

Listing 12: Example of a step �le. The pre�x `$$` is used for variables.

Exe
: exe
utes a
ommand in a

given
ontext

- exe
_in: e
ho "Hello!" > hello.txt

- exe
_in: apt-get -y update

Pipe: it works as Unix pipelines

but between
ontexts

- pipe:

- exe
_out:
at tlm_
ode.tar

- exe
_in:
at > ./tlm_
ode.tar

Write: allows to write a �le in a

ontext

- write_in:

- /root/.ssh/
onfig

- |

Host *

Stri
tHostKeyChe
king no

UserKnownHostsFile=/dev/null

Hooks: defers some initializa-

tion or
lean a
tions.

- on_setup_
lean:

- exe
_in: rm -rf /tmp/mytemp

Table 5.3: Kameleon
ommands.

5.4.2 Kameleon Contexts

By dividing the building pro
ess into independent parts,
ontexts provide a way for a user to

stru
ture the software applian
e
reation pro
ess so that it is independent from the �nal target

platform. When an applian
e is built withKameleon it is ne
essary to deal with 3 di�erent
ontexts

(more
an be de�ned if required). The obje
tive of all these
ontexts is to have a
ontextualized

shell session. Contexts are as follows:

� Lo
al
ontext : It refers to the lo
ation where Kameleon is exe
uted. Normally, it is the user's

ma
hine.

� OUT
ontext : It is where the pro
ess of bootstraping will take pla
e. Some pro
edures

have to be
arried out in order to
reate the pla
e where the software applian
e is built (IN

ontext). This
ould be: the same user's ma
hine using
hroot. Thus, this
ontext is where

the setup of the
hroot takes pla
e. Other examples of OUT
ontext are: setting up a virtual

ma
hine, a

ess to an infrastru
ture in order to get an instan
e and be able to deploy, setting

84

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

Se
tion Context used Des
ription

Bootstrap Lo
al
ontext and

OUT
ontext

Two possibilities: (1) build a �le system layout form

s
rat
h. (2) start form an already
reated software

applian
e.

Setup Mostly IN
ontext The
ommands run on the
hosen
ontainer:
hroot,

Do
ker, Linux
ontainer, virtual ma
hine and real

ma
hine

Export Lo
al
ontext and

OUT
ontext

Use of the
ontainer supported tools for
reating the

�nal format for the software applian
e.

Table 5.4: Kameleon
on
epts, interrelation between
ontexts and se
tions.

up a Do
ker
ontainer. This
ontext also allows the applian
e's base �le system layout to

be setup.

� IN
ontext : It makes referen
e to inside the
ontainer
reated by the OUT
ontext. This

ontext
an be mapped to a
hroot, virtual ma
hine, physi
al ma
hine, Linux
ontainer, et
.

This
ontext is frequently used for
ustomizing the software applian
e.

The relation between the possible
ontexts used and the se
tion exe
ution is shown in Table 5.4.

5.4.3 Che
kpoint me
hanism

The
onstru
tion of a software applian
e is a trial and error pro
ess. Kameleon provides a modular

he
kpoint me
hanism that saves time when debugging the software applian
e
onstru
tion pro-

ess. Time
onsuming tasks su
h as the installation of an operating system from s
rat
h are not

repeated during the debugging pro
ess. Thus, a
he
kpoint me
hanism en
ourages the automa-

tion of software applian
e building as it makes the
onstru
tion of software applian
es less time

onsuming. We have integrated di�erent
he
kpointing me
hanisms for ea
h
ontainer supported

by Kameleon. They are based on snapshots of virtual ma
hines (QEMU, VirtualBox) and based

on snapshots of QCOW2 disk images for the
hroot
ontainer. Another
he
kpoint me
hanism use

Do
ker
ommits to preserve the state of a Do
ker image. The abstra
tion provided by the engine

makes it very �exible, users
an think of any way of saving the state of the �le system layout and

map it to Kameleon.

5.4.4 Extend me
hanism

Listing 13 shows a Kameleon re
ipe that builds a software applian
e for the hpl ben
hmark.

This re
ipe adds steps to the setup se
tion and reuse steps from the re
ipe shown in Figure 5.4.

This is done by using the extend: and "�base" keywords. Re
ipes are provided as templates,

whi
h enable a user to write a new re
ipe based on another existing re
ipe by overwriting
ertain

se
tions and variables. The main purpose of this me
hanism is to redu
e the entry barrier for non-

expert users by en
ouraging the reuse of re
ipes. This allows Kameleon's users to take advantage

from the re
ipes already developed by the
ommunity.

85

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

extend: qemu/debian7.yaml

global:

bootstrap:

- "�base"

setup:

- "�base"

- install_software:

- pa
kages: g++ make openssh openmpi build-essential fort77

- install_atlas:

- repository: http://sour
eforge.net/math-atlas/Stable/

- version: "3.10.1"

- install_hpl:

- repository: "http://www.netlib.org/ben
hmark/hpl/"

- version: "2.1"

- hpl_makefile: "$$kameleon_re
ipe_dir/data/Make.Linux"

export:

- "�base"

Listing 13: Extend me
hanism.

5.4.5 Persistent
a
he me
hanism

This me
hanism as already mentioned
onstitutes one of the
entral
ontributions of Kameleon

that enables the preservation of environments for experimentation. Thus, software applian
es built

are re
onstru
t-able any time. Chapter 6 will be dedi
ated enterly to this me
hanism.

5.4.6 Comparison with the previous Kameleon version

During this thesis two versions ofKameleon were used. Kameleon was already presented in [49℄ and

it has evolved form a single �le s
ript (900 lines of
ode) to a more modular improved version. Many

isolation problems were solved given that the previous version was mainly based on
hroot. The

pro
ess of software applian
e
reation was stru
tured with a new hierar
hy based on se
tions, steps,

mi
rosteps and
ommands as already shown throughout this
hapter. Additionally, the
on
ept

of
ontext was added whi
h enables to integrate more
ontainers in a
leaner way, resolving many

isolation problems. This results in a more stable tool, able to take advantage of re
ent te
hnologies.

The entry barrier for non-experts users was redu
ed as well, thanks to the new stru
tured re
ipes

and debugging me
hanisms. Figure 5.5 shows the syntax of the old Kameleon. We
an observe

that all the pro
ess of
reation is mixed in one sequen
e of steps, there is not distin
tion between

bootstrap, setup and export.

5.5 Use
ases

In this se
tion, we demonstrate how Kameleon was used to build di�erent software applian
es.

These software applian
es illustrate a variety of software sta
ks (Table 5.5) with di�erent require-

ments. Spe
ially, they are taken from di�erent domains (high performan
e
omputing, operating

system and distributed system); they use di�erent
ontainer te
hnologies (
hroot, Do
ker, Virtual-

Box, QEMU and real ma
hine in Grid'5000); and they use di�erent
ontainer isolation (lightweight,

servi
e, kernel module, and hardware dependent).

86

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

Table 5.5: Software applian
es built with Kameleon

Name Des
ription Software sta
k Containers

used

Container

isolation

Domain

Debian

basi

Debian
onsole mode Debian Wheezy
hroot,

Do
ker,

VirtualBox,

QEMU,

Grid'5000

Lightweight Operating

systems.

Debian

Desktop

Debian GNOME Desktop

environment

Debian Wheezy,

GNOME

QEMU,

VirtualBox

Servi
e Operating

systems.

Ar
hLinux Ar
hlinux based system Ar
hLinux last release VirtualBox,

QEMU

Lightweight Operating

systems.

CentOS CentOS
onsole mode CentOS 6.5 VirtualBox,

QEMU

Lightweight Operating

systems.

Dune Dune library whi
h provides

safe and e�
ient a

ess to

privileged CPU features

Ubuntu Pre
ise, Linux

headers, Git, make,

GCC

Grid'5000 kernel

module

Operating

systems

Formal

java

A JavaS
ript module sys-

tem

Debian Wheezy,

Haskell, JavaS
ript

modules

Chroot,

Do
ker

Lightweight Operating

systems

CControl Kernel Module to
ontrol

the amount of
a
he avail-

able to an appli
ation

Debian wheezy, make,

Git, build tools, CCon-

trol libraries, PAPI

QEMU,

VirtualBox

kernel

module

High

performan
e

omputing.

hpl

ben
h-

mark

LinPACK ben
hmark Debian Wheezy, Open-

MPI, OpenSSH, C++,

make, Fortran, ATLAS

library, hpl ben
hmark

hroot,

Do
ker,

VirtualBox,

Grid'5000

Hardware

dependent

High

performan
e

omputing.

Hadoop Framework for storage and

large-s
ale pro
essing

Ubuntu Lu
id, Python,

OpenSSH, Java 6,

Hadoop.

hroot Lightweight Distributed

omputing.

TLM

sta
k

Large s
ale ele
tromagneti

simulations

Debian Wheezy, Open-

MPI, OpenSSH, TLM

appli
ation.

hroot Lightweight High

performan
e

omputing.

OAR Resour
e and task manager

for HPC
lusters and other

omputing infrastru
tures.

Debian wheezy, Git,

Perl, Postgresql, OAR

server pa
kages

QEMU,

VirtualBox

Servi
e High

performan
e

omputing.

87

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

Basic Debian Kameleon recipe

global:

 workdir_base: /tmp/kameleon

 workdir: /tmp/kameleon

 distrib: ubuntu

 debian_version_name: lucid

 distrib_repository: http://archive.ubuntu.com/ubuntu/

 output_environment_�le_system_type: ext4

 include_dir: scripts

 arch: amd64

 kernel_arch: "amd64"

 network_hostname: "hadoop"

 extra_packages: "openssh-server wget"

 checkpoint_�le: "/tmp/ubuntu_lucid_hadoop.tgz"

 user_name: "root"

 key_dir: "/home/cristian/.ssh/"

steps:

 - bootstrap

 - system_con�g

 - mount_proc

 - kernel_install

 - software_install:

 - extra_packages

 - java_6/java_6_install

 - autologin

 - hadoop/con�g

 - hadoop/install

 - tuning/root_ssh_localkey

 - tuning/�x_locales

 - strip

 - umount_proc

#Building the appliance

 - build_appliance_kpartx:

 - clean_udev

 - create_raw_image

 - attach_kpartx_device

 - mkfs

 - mount_image

 - copy_system_tree

 - get_kernel_initrd

 - install_extlinux

 - umount_image

 - save_as_raw

 - save_as_vdi

 - clean

java_6_install:

 - adding_java_repository:

 - exec_chroot: apt-get -f install -y --force-yes python-software-properties

 - exec_chroot: add-apt-repository ppa:ferramroberto/java

 - exec_chroot: apt-get update

 - installing_java:

 - exec_chroot: bash -c "echo \"sun-java6-jdk shared/accepted-sun-dlj-v1-1 boolean true\" | debconf-set-selections"

 - exec_chroot: bash -c "DEBIAN_FRONTEND=noninteractive apt-get -f install -y --force-yes sun-java6-jdk"

Figure 5.5: Example of the old Kameleon re
ipe. This
orresponds to the version 1.2.8 presented in [49℄

5.5.1 Software Applian
e Complexity

We start by des
ribing di�erent basi
 software applian
es that
an be used as a base experimental

environment. Then we des
ribe more
omplex software applian
es used in resear
h papers.

� Basi
 software applian
es: These software applian
es in
lude several Linux �avors, for

example: Fedora, CentOS, Debian, Ar
hlinux. Di�erent
on�gurations were built from the

very basi

onsole mode to the
omplete desktop
on�guration. This shows that
omplete

omputer environments for resear
hers
an be built.

� Complex software applian
es: These software applian
es were used in di�erent resear
h

papers: an appli
ation for
ontrolling
a
he utilization [101℄, a safe user-level a

ess to priv-

ileged CPU features [12℄, a formal spe
i�
ation of a JavaS
ript module system [79℄. Other

applian
es provide widely used
omputing frameworks su
h as MapRedu
e

27

, ben
kmarks

su
h as hpl

28

and bat
h s
hedulers su
h as OAR

29

5.5.2 Container Isolation

Be
ause software applian
es require di�erent levels of isolation at build time, a software applian
e

builder needs to provide isolation me
hanisms. Kameleon provides isolation with its notion of

ontext. Below are examples of the isolation requirements by di�erent types of software applian
es.

27

https://hadoop.apa
he.org/do
s/r1.2.1/mapred_tutorial.html

28

http://www.netlib.org/ben
hmark/hpl/

29

http://oar.imag.fr

88

https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
http://www.netlib.org/benchmark/hpl/
http://oar.imag.fr

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

Lightweight.

Lightweight software applian
es do not need any kind of isolation, thus they
an run inside a
hroot.

This kind of software applian
es
an be exported to any format and run in any infrastru
ture.

Examples of lightweight software applian
es in
lude: MPI + TLM

30

(ele
tromagneti
 simulation

ode), Map Redu
e framework. Formal Java [79℄, hpl ben
hmark, Debian Wheezy basi
 system.

Servi
e.

Servi
e software applian
es run a servi
e (e.g. databases). Sin
e the applian
e's servi
e may

on�i
t with servi
es running on the build ma
hine, Kameleon allows the experimenter to use

ontainer isolation to isolate applian
e servi
es from build ma
hine servi
es.

Kernel modules.

When the installation of a kernel module is part of the software applian
e
reation, isolation at the

level of operating system
alls is needed, be
ause the target kernel has to be running. Therefore,

the IN
ontext has to take pla
e inside either a virtual or real ma
hine. Sometimes a real ma
hine

is required, for example: 1) installation of CControl library for
a
he
oloring

31

, 2) installation

of Dune

32

, a kernel module that provides ordinary user programs with safe and e�
ient a

ess to

privileged CPU features, whi
h are normally hidden when using a virtual ma
hine.

Hardware dependent.

In
ontrast to the previous types of software applian
es, whi
h
an be built and deployed on

di�erent ma
hines, a hardware dependent software applian
e must be built and deployed on the

same ma
hine. An example of hardware dependent software applian
e is the hpl ben
hmark. This

ben
hmark is based on the linear algebra library ATLAS, whi
h must be optimized at built time

for the deployment ma
hine.

5.5.3 Results and Dis
ussion

Table 5.6 shows the building time of some of the software applian
es des
ribed above. The purpose

of this data is to show the di�erent steps that
ompose the build pro
ess and the time using various

ontainer te
hnologies. For experimenters the pro
ess of generating an experimental environment

ould be per
eived as a time
onsuming pro
ess. However, we observe that the built time of ea
h

of the software applian
es is less than 30 minutes, whi
h
ould en
ourage users to generate their

ustom experimental setups.

Hardware dependent software applian
e evaluation

In this se
tion, we use the hpl ben
hmark to evaluate hardware dependen
e
ontainer isolation.

hpl ben
hmark requires the installation of multiple software pa
kages whose parameters need to

be
on�gured, for performan
e, to the hardware that the applian
e is running on. The parame-

ter
on�guration requires signi�
ant
ompilation time. The evaluation was performed using two

di�erent ma
hines.

� M1: Ma
hine available in Grid'5000 in the
luster genepi. Intel Xeon E5420 QC CPU 2.5

Ghz with 8GB of RAM and HDD SATA disk.

� M2: Lo
al ma
hine. Intel Core i7-2760QM CPU 2.4 GHz with 8GB of RAM and SSD disk.

30

http://www.petr-lorenz.
om/emgine/

31

https://github.
om/perarnau/

ontrol

32

http://dune.s
s.stanford.edu/

89

http://www.petr-lorenz.com/emgine/
https://github.com/perarnau/ccontrol
http://dune.scs.stanford.edu/

C
H
A
P
T
E
R
5
.
S
E
T
T
I
N
G

U
P
C
O
M
P
L
E
X

S
O
F
T
W
A
R
E
S
T
A
C
K
S

Table 5.6: Building time of some software applian
es. The time is presented in se
onds.

Steps AP1

1

AP2

2

AP3

3

AP4

4

AP5

5

AP6

6

AP7

7

AP8

8

AP9

9

AP10

10

AP11

11

AP12

12

AP13

13

AP14

14

AP15

15

start-virtualbox 21 12 15 20 21 20 20 19 20

g5k-reserv 177

start-do
ker 12

start-qemu 10

install-requirements 11 11 11 12 37 41 13 12 13 36

debootstrap 131 70 170 77 73 76 73 187 188 188

yum-bootstrap 154 279 141

ar
h-bootstrap 150

swit
h-
ontext-virtualbox 10 10 162 105 93 26 35 32

swit
h-
ontext-qemu 7

-init-setup 5

Boostrap 131 70 182 77 177 101 187 109 110 373 446 313 246 255 229

install-software 119 25 20 81 339 18 15 209 22 242 61 38 36 46 264

on�gure-system 7 6 6 6 6 17 6 6 11 8 11 11 10 10

on�gure-apt 13 13 7 9 37 9 9 9 12 15 13

on�gure-kernel 5 5 5

on�gure-keyboard 16 10 14 16 13 10 9 10 18 19 19

install-atlas 497

install-hpl 12

install-

ontrol 18

init-pxeboot 7 13

update-system 14 27 24

minimal-install 121 89

install-gnome 821

oar-prereq-install 89 188

oar-devel-prereq-install 20 50

install-lambdajs 78

upgrade-system 212

install-kameleon 76

oar-git-install 53

oar-
on�g-frontend 5

tlm-installation 16

-
lean-setup 5 5 5 9 12 10 9 5 12 23 11 14

Setup 291 150 229 272 863 323 219 866 189 773 554 1236 338 581 643

qemu-save-applian
e 63 83 88

virtualbox-save-applian
e 47 75 34 86 71 150 34 89

save-do
ker-applian
e 5 6

save-applian
e-from-g5k 157

Total 354 233 234 278 1020 411 266 941 223 859 625 1386 372 581 732

1

hroot-debian

2

hroot-tlm-mpi-debian

3

do
ker-debian

4

do
ker-formal-java-debian

5

grid5000-kameleon-ubuntu

6

qemu-oar-debian

7

vbox-ar
h

8

vbox-ATLAS-deb

9

vbox-

ontrol-deb

10

vbox-
entos7

11

vbox-
entos

12

vbox-debian-desktop

13

vbox-debian

14

vbox-debian-oar

15

vbox-fedora

9
0

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

Table 5.7: Containers
omparison ma
hine M1.

Container Build Time[Se
s℄ Image Size

[Mbytes℄

hpl result

[MFLOPS℄

VirtualBox 2722 1100 3.3

QEMU 1826 1200 109.1

Do
ker 2293 1600 110.1

Grid'5000 1782 638 113.3

Table 5.8: Containers
omparison ma
hine M2.

Container Build Time[Se
s℄ Image Size

[Mbytes℄

hpl result

[MFLOPS℄

VirtualBox 1004 1100 8.1

QEMU 971 1200 189.7

Do
ker 1066 1600 222.3

The ma
hine des
riptions indi
ate that the ma
hines di�er only in their disk te
hnology. Ta-

ble 5.7 shows the results for ma
hine M1. Table 5.8 shows the results for ma
hine M2. The tables

illustrate the time to build the software applian
e (Build Time[Se
s℄), the software applian
e size

(Image Size[MBytes℄) and the time to exe
ute the ben
hmark hpl (hpl result[MFLOPS℄). In the

worst
ase s
enario, the build time never ex
eeds one hour (or 3,600 se
onds). All the elements

ne
essary for reprodu
ing these results are available in our repository

33

.

Additionally, both tables show the millions of �oating-point operations per se
ond (MFLOPS)

obtained by deploying the generated applian
e and exe
uting the ben
hmark. This is illustrative

for a hypotheti
al experiment whi
h goal would be to evaluate for example, the performan
e of

virtual ma
hine monitors. From this simple experiment, we
an see that the virtualization provide

by VirtualBox signi�
antly impa
ts hpl ben
hmark performan
e: a fa
tor of 34 times for M1 (from

113 M�ops to 3.3) and a fa
tor of 27 times for M2 (222.3 to 8.1). In addition, the di�eren
e in

performan
e is minimal for the other
ontainers on a parti
ular ma
hine. Finally, a
ross ma
hines,

the di�eren
e in disk te
hnology make a signi�
ant di�eren
e in both build and exe
ute time.

Table 5.9 illustrates the
orrelation between the image size of a software applian
e and the

a
he size needed to store the data used to build the applian
e. We are using the image size

from Table 5.8: building hpl ben
hmark on ma
hine M1. Finally, the total ar
hive spa
e to build

all three applian
es is illustrated on the last row. We
an observe that storage requirements is

redu
ed in a fa
tor of 5.

Experiment pa
kaging example

This se
tion demonstrates how Kameleon and its persistent
a
he allow an experimenter to evalu-

ate the performan
e of a high performan
e appli
ation using di�erent virtualization te
hniques on

di�erent ma
hines. This se
tion's demonstration approximates the pro
ess used in the evaluation

of Se
tion 5.5.3. This se
tion demonstrates the advantage of using Kameleon and its persistent

a
he system through an example. Let us suppose an experimenter wants to measure the perfor-

man
e of di�erent te
hniques of virtualization and implementations of them for the exe
ution of

high performan
e appli
ations. Assume that we have run an experiment that measures exe
ution

time for two virtualization te
hniques: system level virtualization (Do
ker) and full virtualization

(VirtualBox and QEMU-KVM) on a ma
hine M1. Now, suppose a di�erent experimenter wants

to run the same experiment in another ma
hine M2.

Here are the issues they would fa
e:

33

This
hapter was written using Org mode whi
h enables to embed all the analysis presented.

This is available along with persistent
a
he ar
hives, Kameleon re
ipes and some additional s
ripts at

http://exptools.gforge.inria.fr/kameleon/

91

http://exptools.gforge.inria.fr/kameleon/

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

Docker Virtualbox Qemu-kvm
Docker Virtualbox Qemu-kvm

Transfer

Kameleon

Recipes Cache archive

Kameleon

Cache archive

SA1

SA1

SA1

SA1

SA2

SA2

SA2

SA2

SA3

SA3

SA3

SA3

Cache archive

SA: Software Appliance

M1

M1

M2

M2

Figure 5.6: Example of experiment pa
kaging with Kameleon.

Table 5.9: Some persistent
a
he ar
hives

Software

applian
e

Container Image Size

[Mbytes℄

Ca
he

Size[MBytes℄

hpl ben
hmark VirtualBox 1100 581

hpl ben
hmark QEMU 1200 582

hpl ben
hmark Do
ker 1600 520

Ar
hive for all applian
es 3900 703

� The software applian
es are rarely well des
ribed and the information of how they are
on-

�gured is missing.

� Three di�erent images have to be available whi
h will
onsume spa
e to store them and time

to transfer.

� The images are stati
 and introdu
ing
hanges into them is not always easy and
lean.

� Depending on the type of appli
ations or ben
hmarks run in the experiment, re
ompilation

ould be needed in order to re-run the experiment in the same exa
t
onditions. Therefore

the images are not dire
tly exe
utable on M2.

The pro
ess using Kameleon is depi
ted in Figure 5.6. Kameleon brings the following advan-

tages:

� All the details of
omposition and
on�guration resides on the re
ipes as shown in Se
tion 5.4.

� In the pro
ess of generating the di�erent software applian
es, a persistent
a
he ar
hive will

be generated that
ontains all the data used during the generation of the respe
tive software

applian
es. This is the only �le that has to be stored and, in terms of size it is most of the

time smaller than the images generated as shown in Table 5.9.

� The persistent
a
he ar
hive
ontains all the original data used for generating the images.

This means that the software applian
e
an be adapted to new
ontexts.

5.5.4 Future work

In future work, we plan to generalize the persistent
a
he to provide a repository of persistent
a
he

�les, and make this repository available to the
ommunity. Our vision of this
ommunity in
ludes

92

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

resear
hers and software developers: anyone who needs to build a parti
ular software sta
k. This

repository will in
lude the instru
tions (re
ipes and steps �les) and its asso
iated data. Therefore,

multiple software applian
es
an be stored, redu
ing signi�
antly the storage requirements (as

demonstrated in the last row of Table 5.9). Using this repository and Kameleon eliminates the

need to store large binary �les. Kameleon
an impa
t the manage of IT infrastru
tures as it
an

be used to manage the deployment and
ustomization of software applian
es. Furthermore, we

are interested in exploring Kameleon as a platform for
ontinuous integration. We believe that

Kameleon's automation of software applian
e building is well suited for
ontinuous integration.

Finally, be
ause the whole environment setup is known, we believe that Kameleon
an make bug

tra
king easier.

5.5.5 Con
lusions

We introdu
ed the
on
ept of re
onstru
tability whi
h establishes the requirements that a soft-

ware experimental setup has to meet for improving the reprodu
ibility of experiments in
omputer

s
ien
e. We proposed Kameleon a software applian
e builder that supports re
onstru
tability.

Kameleon provides a modular way to des
ribe the
onstru
tion of software applian
es, whi
h

en
ourages
ollaboration and reuse of work. Support of reuse lowers the entry barrier for exper-

imenters with low sysadmin skills. Kameleon persistent
a
he makes experimental setups re
on-

stru
table at any time.

93

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

94

Chapter 6

Reprodu
ible applian
es for

experimentation

Experiment reprodu
ibility is a milestone of the s
ienti�
 method. Reprodu
ibility of experiments

in
omputer s
ien
e would bring several advantages su
h as
ode re-usability and te
hnology

transfer. The reprodu
ibility problem in
omputer s
ien
e has been solved partially, addressing

parti
ular
lass of appli
ations or single ma
hine setups. In this
hapter we present the design of a

persistent
a
he me
hanism that has been integrated to our software applian
e builder Kameleon.

The main goal of our approa
h is to enable the exa
t and independent re
onstru
tion of a given

software environment and the reuse of
ode. Additionally, we share our experien
e in �nding a

way to preserve over time; the software sta
k used for experimentation in
omputer s
ien
e. A

generalization of the persistent
a
he is proposed that would enable resear
hers to lower storage

requirements for their applian
es. The results shown in this
hapter were published in a paper [112℄

presented at TRIDENTCOM 2014.

6.1 Introdu
tion

In order to strengthen the results of a resear
h it is important to
arry out the experimental part

under real environments. In some
ases, these real environments
onsist in a
omplex software

sta
k that normally
omprises a
on�gured operating system, kernel modules, run-time libraries,

databases, spe
ial �le systems, et
. The pro
ess of building those environments has two short
om-

ings: (a) It is a very time
onsuming task for the experimenter that depends on his/her expertise.

(b) It is widely a
knowledged that most of the time, it is hardly reprodu
ible. A good pra
ti
e

at experimenting is to assure the reprodu
ibility. For
omputational experiments this is a goal

di�
ult to a
hieve and even a mere repli
ation of the experiment is a
hallenge [37℄. This is due to

the numerous details that have to be taken into a

ount. The pro
ess of repeating an experiment

was
arefully studied in [32℄ and among the many
on
lusions drawn, the di�
ulty of repeating

published results was highly relevant.

With the advent of testbeds su
h as Grid'5000 [25℄ and FutureGrid [51℄,
loud-based testbeds

like BonFIRE

1

, the ubiquity of
loud
omputing infrastru
tures and the virtualization te
hnol-

ogy that is a

essible to almost anyone that has a
omputer with modest requirements. Now it

is possible to deploy virtual ma
hines or operating system images, whi
h makes interesting the

approa
h of software applian
es for experimentation. In [63℄ the author gives 13 ways that repli-

ability is enhan
ed by using virtual applian
es and virtual ma
hine snapshots. Another
lose

approa
h is shown in [45℄ where snapshots of
omputer systems are stored and shared in the

loud making
omputational analysis more reprodu
ible. A system to
reate exe
utable papers is

shown in [14℄, whi
h relies on the use of virtual ma
hines and aims at improving the intera
tions

between authors, reviewers and readers with reprodu
ilibity purposes.

1

http://www.bonfire-proje
t.eu

95

http://www.bonfire-project.eu

CHAPTER 6. REPRODUCIBLE APPLIANCES FOR EXPERIMENTATION

Those approa
hes o�er several advantages su
h as simpli
ity, portability, isolation and more

importantly an exa
t repli
ation of the environment but they in
urred in high overheads in build-

ing, storing and transferring the �nal �les obtained. Additionally, it is not
lear the
omposition

of the software sta
k and how it was
on�gured. We lose the steps that let to their
reation.

In the previous
hapter we established that two requirements for re
onstru
t-ability are: to

know exa
tly the sequen
e of a
tions that produ
ed a determined environment for experimentation

and to be able to
hange any a
tion and regenerate another environment. It was already shown

that our tool Kameleon strives to provide the former through a modular system of re
ipes where

all a
tions to generate a software applian
e are des
ribed. In this
hapter, we present our approa
h

to a
hieve the latter. The approa
h is based on a persistent
a
he me
hanism that stores every

pie
e of data (e.g., software pa
kages,
on�guration �les, s
ripts, et
.) used to
onstru
t the

software applian
e. Kameleon persistent
a
he me
hanism presents three main advantages: (1) it

an be used as a format to distribute and store individual and related software applian
es (virtual

luster) in
urring in less storage requirements; (2) provenan
e of data, anyone
an look at the steps

that led to the
reation of a given experimental environment; (3) it helps to over
ome widespread

problems o

asioned by small
hanges in binary versions, unavailability of software pa
kages,

hanges in web addresses, et
. Experimental results and validation of this
a
he me
hanism are

shown in this
hapter.

This
hapter is stru
tured as follows: In Se
tion 6.2, some approa
hes to reprodu
e a given

environment for experimentation are dis
ussed. Then, the implementation of the persistent
a
he

me
hanism is shown in Se
tion 6.3 whi
h enables preservation of software sta
ks used in exper-

imentation. In Se
tion 6.4, we show some experimental results and validation of our approa
h.

Finally the
on
lusions are presented in Se
tion 6.6.

6.2 Related works

Experimenters have di�erent options to make the environment for experimentation more repro-

du
ible. They
an
apture the environment where the experiment was run or they
an use a more

reprodu
ible approa
h to set up the experiment from the beginning.

6.2.1 Tools for
apturing the environment of experimentation

CDE [57℄ and ReproZip [29℄ are based on the
apture of what it is ne
essary to run the experiment.

They
apture automati
ally software dependen
ies through the inter
eption of Linux system
alls.

A pa
kage is
reated with all these dependen
ies enabling it to be run on di�erent Linux distri-

butions and versions. ReproZip unlike CDE allows the user to have more
ontrol over the �nal

pa
kage
reated. Both tools provide the
apa
ity of repeating a given experiment. However, they

are aimed at single ma
hine setups, they do not
onsider distributed environments and di�erent

environments that
ould intera
t between them.

6.2.2 Methods for setting up the environment of experimentation

Here, we des
ribe the di�erent methods that experimenters use for setting up and preserving their

environments for experimentation. These methods apply to infrastru
tures where a whole software

sta
k
an be deployed (e.g., Grid'5000, FutureGrid, BonFIRE, any IaaS
loud, et
.). This is how

the pro
ess shown in Se
tion 5.1.1 is mapped to real use
ases.

Manual

The experimenter deploys a golden image

2

that will be provisioned manually. The image modi-

�
ations have to be saved some way (e.g snapshots) and several versions of the environment
an

be
reated for testing purposes. Possibly, the experimenter has to deal with the
ontextualization

2

This term refers to the base operating system images available in an infrastru
ture.

96

CHAPTER 6. REPRODUCIBLE APPLIANCES FOR EXPERIMENTATION

of the images or it
ould be done using the underlying testbed infrastru
ture. In terms of repro-

du
ibility, the experimenter end up with a set of pre-
on�gured software applian
es that
an be

deployed later on the platform by him/her or another experimenter. This approa
h is relevant

due to its simpli
ity and has been used and mentioned in [45℄ and [14℄. Despite its simpli
ity,

the storing of software applian
es or snapshots in
urs in high storage
osts.

S
ript Automation

It is as well based on the deployment of golden images, however, the provisioning part is automated

using s
ripts. The experimenter possibly has no need to save the image, be
ause it
an be re
on-

stru
ted from the golden image at ea
h deployment. Many experimenters opt for this approa
h

be
ause it gives a
ertain degree of reprodu
iblity and automation and it is simple
ompared to

using
on�guration management tools. This was used in [11℄ for deploying and s
heduling thou-

sands of virtual ma
hines on Grid'5000 testbed. S
ript automation in
urs in less overhead when

the environment has to be transmitted, for post exe
ution. Nevertheless, it is still dependent on

the images provided by the underlying platform.

Con�guration management tools

Unlike the previous approa
hes, the golden images are provisioned this time with the help of

on�guration management tools (e.g., Chef

14

or Puppet

13

) whi
h gives to the experimenter a

high degree of automation and reprodu
ibility. However, the pro
ess of porting the non-existing

software towards those tools is
omplex and some administration expertise is needed. In [84℄

it is shown the viability of reprodu
ible eS
ien
e on the
loud through the use of
on�guration

management tools. A similar approa
h is shown in [15℄.

Software applian
es

Experimenters
an opt for software applian
es that have to be
ontextualized at deployment time.

In [81℄ the viability of this approa
h was shown. Those images
an be either built or downloaded

from existing testbed infrastru
tures (e.g Grid'5000, FutureGrid) or sites as TURNKEY

3

or
loud

market

4

oriented to Amazon EC2 images. Those images are independent from the ones provided

by the platform and experimenters have a

ess to more operating system �avors. Di�erent software

sta
ks are available that are already
on�gured, but we dont know anything about how they were

built. We have already shown in Chapter 5 an extensive literature about the tools that enable the

reation of software applian
es.

6.3 Re
onstru
table software applian
es

From the methods mentioned in the previous se
tion, we believe that the use of software applian
es

gives the highest degree of �exibility and reprodu
ibility as it provides a way for preserving the

whole software sta
k. Our proposal is to make those software sta
ks easy to setup and re
onstru
t-

able by taking advantage of the best of the aforementioned methods. As shown in Chapter 5, we

propose to build software applian
es with Kameleon whi
h o�ers some standard methods for

setting up software, similar to Con�guration management tools but without its
omplexity. In

order to assure the re
onstru
t-ability of the software applian
e, we implemented a persistent

a
he module that generates an ar
hive and enables the distribution of software applian
es that

an be re
onstru
ted from s
rat
h. It is targeted to make easier the re
onstru
tion of
ustom

software sta
ks in HPC, Grid, or Cloud-like environments.

97

CHAPTER 6. REPRODUCIBLE APPLIANCES FOR EXPERIMENTATION

global:

 user_name: kameleon

 user_password: $$user_name

 # Distribution

 distrib: debian

 release: wheezy

 kernel_arch: $$arch

 hostname: kameleon-$$distrib

 ## Disk options

 nbd_device: /dev/nbd1

 image_disk: $$kameleon_cwd/base_$$kameleon_recipe_name.qcow2

 image_size: 10G

 filesystem_type: ext4

 rootfs: $$kameleon_cwd/rootfs

 out_context:

 cmd: bash

 workdir: $$kameleon_cwd

 proxy_cache: 127.0.0.1

 in_context:

 cmd: USER=root HOME=/root LC_ALL=POSIX chroot $$kameleon_cwd/rootfs bash

 workdir: /root/kameleon_workdir

 proxy_cache: 127.0.0.1

bootstrap:

 - initialize_disk_chroot

 - debootstrap:

 - repository: http://ftp.debian.org/debian/

 - start_chroot

setup:

 - install_software:

 - packages: >

 debian-keyring sudo less vim curl less acpid linux-image-$$kernel_arch

 - configure_kernel

 - install_bootloader

 - configure_network

 - create_group:

 - name: admin

 - create_user:

 - name: $$user_name

 - groups: sudo admin

 - password: $$user_password

export:

 - qemu_save_appliance:

 - input: $$image_disk

 - output: $$kameleon_cwd/$$kameleon_recipe_name

 - save_as_qcow2

Figure 6.1: Kameleon re
ipe example

98

CHAPTER 6. REPRODUCIBLE APPLIANCES FOR EXPERIMENTATION

Kameleon

Engine

Recipe
Steps

DATA oftware pack

software version r ce

Figure 6.2: Software applian
e
reation with Kameleon

6.3.1 Requirements for re
onstru
t-ability

The approa
h for software applian
e re
onstru
t-ability is based on four requirements:

1. A re
ipe (Figure 6.1) that des
ribes how the software applian
e is going to be built. This

re
ipe is a higher level des
ription easy to understand and
ontains some ne
essary meta-data

in form of global variables and steps.

2. TheDATAwhi
h is used as input of all the pro
edures des
ribed in the re
ipe. It en
ompasses

software pa
kages, tarballs,
on�guration �les,
ontrol version repositores, s
ripts and every

input data that make up a software applian
e. Whenever used the term DATA in this

hapter, it will refer to this.

3. Kameleon applian
e builder whi
h parses the re
ipe and
arry out the building. This part

in
ludes as well the persistent
a
he me
hanism that will be des
ribed later on.

4. Metadata that des
ribes the
ontext where the software applian
e was built the �rst time.

For instan
e: date of build, version of the external tools used during the build, et
.

5. A
omputer
apable of exe
uting Kameleon.

Therefore, the problem of guaranteeing the exa
t re
onstru
tion of software applian
es is re-

du
ed to keeping the three following parts un
hanged: (1) the re
ipe, (2) DATA (3) Kameleon

applian
e builder. Two di�erent experimenters having those three exa
t elements and ful�lling

the requirements given by the Metadata (4) and
omputer hardware (5) will generate the same

software applian
e (under the hypothesis des
ribed in Se
tion 5.1.2). Kameleon
an generate in

an automati
 and transparent way a persistent
a
he ar
hive that will
ontain the exa
t DATA

used during the pro
ess of
onstru
tion along with the re
ipe, steps and metadata, all bundled

together enabling the easy distribution. The whole pro
ess is depi
ted in Figure 6.2.

Our approa
h to a
hieve re
onstru
t-ability is to use a persistent
a
he to
apture all the DATA

used during the
onstru
tion. As we
annot guarantee that a parti
ular download link will exist

forever [116℄ or always point to the same software with the same version.

A persistent
a
he me
hanism brings the two followings advantages: (a) Data
an always be

retrieved and (b) The software versions will be exa
tly the same.

3

http://www.turnkeylinux.org

4

http://www.the
loudmarket.
om

99

http://www.turnkeylinux.org
http://www.thecloudmarket.com

CHAPTER 6. REPRODUCIBLE APPLIANCES FOR EXPERIMENTATION

6.3.2 Design

The persistent
a
he me
hanism has to be transparent and lightweight for the user in the two

following phases: the
onstru
tion of the software applian
e, and its respe
tive ulterior re
on-

stru
tion. As most of DATA
omes from the network (e.g., operating system, software pa
kages),

the obvious approa
h was to integrate a
a
hing proxy for web. Su
h a
a
hing proxy will
apture

transparently every pie
e of data downloaded using the network. However, there are still some

missing parts of the DATA, be
ause some �les - that make the software applian
e unique - are

provided by the user from its lo
al ma
hine or even worse some pa
kages
annot be
a
hed. That

is the reason why we opted for an approa
h
onsisting in two parts:

� A
a
hing web proxy, that
a
hes pa
kages
oming from the network. This relies on Polipo

5

whi
h is a very small, portable and lightweight
a
hing web proxy. We
hose Polipo be
ause

it
an run with almost zero
on�guration. Polipo
an be
on�gured with di�erent poli
ies

for validating the
a
he generated. Therefore, it
an be for
ed to not request the server for

up-to-date pa
kages assuring that software pa
kages will be always taken from the persistent

a
he. This is a desired behavior in order to avoid in
ompatibility due to
hanges in pa
kages

versions.

� Ad ho
 pro
edures that
a
he what
ould not be
a
hed using the
a
hing web proxy. This

represents data that
ome from
ontrol version repositories su
h as Git, svn, mer
urial, et

or using https. These Ad ho
 pro
edures are based on simple a
tions depending on the

data to
a
he, for instan
e:
ontrol version repositories have spe
ial me
hanisms to tra
k

the version used that are integrated into the Kameleon persistent
a
he module, user's �les

are
a
hed by inter
epting kameleon pipes, whi
h are the only way to transfers �les between

ontexts.

In order to make more
lear the
omposition and limitations of the persistent
a
he, we de�ne

four properties of DATA:

� Lo
ation: it
an be either Internal (I) or External (E).

� Ca
heability: whether it is possible to
a
he it (C) or not (

	

C).

� Method of
a
hing: it
an be Proxy (P) or Ad ho
 (A).

� S
ope: two possible values Private or Publi
.

The s
ope makes ne
essary the
reation of two types of
a
he Private and Publi
 for distribution

purposes. Combining the properties Lo
ation, Ca
heability and Method of
a
hing we
an identify

�ve types of data:

� E,C,P: data whi
h
omes from an external lo
ation (e.g., lo
al network, internet) and
an

be
a
hed with the proxy (e.g., Software pa
kages, tarballs, input data).

� E,C,A: same external lo
ation, however, it
annot be
a
hed with the proxy (e.g., version

ontrol repositories, https tra�
).

� E,

	

C: this data
omes from an external lo
ation but
an not be
a
hed due to some restri
tions

(e.g., proprietary li
enses) or due to its size it
an not be stored (e.g., big databases).

� I,C,A: data that
omes from the lo
al ma
hine and it is
a
hed by some ad ho
 pro
edures.

� I,

	

C: it
omes form lo
al ma
hine but
an not be
a
hed.

Figure 6.3 shows the
omposition of a generated persistent
a
he �le. A hash is asso
iated to

both a step �le and its generated persistent
a
he dire
tory. This enables Kameleon to assure the

5

http://www.pps.univ-paris-diderot.fr/~j
h/software/polipo/

100

http://www.pps.univ-paris-diderot.fr/~jch/software/polipo/

CHAPTER 6. REPRODUCIBLE APPLIANCES FOR EXPERIMENTATION

��� DATA

 ��� con�gure_apt

 � ��� ftp.debian.org

 � ��� �D��	
o��
������W�	r���
 � ���
��9���9���
	Y��ruzu�A==

 ��� con�gure_keyboard

 � ��� ftp.debian.org

 � ��� ���!"���9hhP��#$�
�%"&��
 � ��� u1�DohZ#'�h9Y1�����()&��
 ��� debootstrap

 � ��� ftp.debian.org

 � ��� *�+�r��h,%W-
�.J/	�Z-g==

 � ��� ��0�7W&uZ�q23�+7)��#Z&��
 � ��� �4���/# �-P&�X/�"4W�+A==

 ��� install_atlas

 � ��� data

 � � ��� pipe-cat_tX�m5r65)	810.1.t0*Y�*902-927-11suz72

 � ��� downloads.sourceforge.net

 � � ��� �!����"��qP3-���oY�7P$��
 � ��� netcologne.dl.sourceforge.net

 � � ��� ��D/���-��"�.�01Z�*	o$��
 � ��� sourceforge.net

 � ��� W1�,�WW�3:,1'�,h-$�))$��
 ��� install_hpl

 � ��� data

 � � ��� pipe-cat_home_crist
5�m/��0*Y�*902-927-1xy9m9l

 � � ��� pipe-cat_tmp_hpl_2.1.tar8&0*Y�*902-927-1phtjqg

 � ��� www.netlib.org

 � ��� : *ZXHX.���!!�;�r�/&9g==

 ��� install_requirements

 � ��� ftp.debian.org

 � ��� �X���,�0
�(&
$�(���%1#��
 � ��� 4X�;:r!� .5r'"&	#��r.A==

 � ��� 5��(:��Z�9�
DWZ�u��
mA==

 � ��� D�Y3�4�/#�5<%�,#4�2-w==

 � ���
�/*'�u��6��.��*:r&W'$��
 � ���
Z�1;�!-��
";�:�W4��0&��
 � ��� "'���3��%r!	�1��0�+YYg==

 ��� install_software

 � ��� ftp.debian.org

 � ��� 02M��4:/XW/��'�hr.-��$��
 � ��� -0bk6'Z107J��2kmkh;rPw==

 � ��� .*�
/�X�. �*�',%o�J/'#��
 � ��� *X!P4XW*!��%��1r$��)2���
 � ��� �+//#) &Y %��)DDW�������
 � ��� "hJ�54,P	J5+W,:�/ ;7xg==

 � ��� zsj-u�-hSdc�!;+9'(u7eA==

 � ��� "W-����q0�X/����:0�yLg==

 � ��� �"�:% Dh)/P:.&Z��0���&��
 ��� prepare_qemu

 ��� kameleon.imag.fr

 ��� ��uo	:-!�)$/��J�*Y���$��

 �� Ckf.q0Z�3q�hou
D�PJ�!���

|== recipe

 >== AT?AS-debian-qemu.yaml

 >== qemu

 @ A== BCEFGHIKGLBMN.yaml

 A== steps

 >== aliases

 @ A== defaults.yaml

 >== bootstrap

 @ >== debian

 @ @ A== debootstrap.yaml

 @ >== initialize_disk.yaml

 @ >== install_requirements.yaml

 @ >== prepare_qemu.yaml

 @ >== start_qemu.yaml

 @ A== switch_context_qemu.yaml

 >== checkpoints

 @ A== qemu.yaml

 >== disable_checkpoint.yaml

 >== enable_checkpoint.yaml

 >== export

 @ A== qemu_save_appliance.yaml

 A== setup

 >== create_group.yaml

 >== create_user.yaml

 >== debian

 @ >== conOgure_apt.yaml

 @ >== conOgure_keyboard.yaml

 @ >== conOgure_network.yaml

 @ >== conOgure_system.yaml

 @ >== install_bootloader.yaml

 @ >== install_software.yaml

 @ A== upgrade_system.yaml

 >== install_atlas.yaml

 A== install_hpl.yaml

>== metadata

 >== cache_cmd_index

 A== header

Figure 6.3: Here is depi
ted an example of the
ontents of a persistent
a
he ar
hive. The requirements

for re
onstru
tabiliy are shown. The DATA is stru
tured by step (Kameleon hierar
hy) and it
ontains

�les,
ontrol version repositories and mainly
a
he �les generated by Polipo. Only the steps that generate

data are taken into a

ount. The whole re
ipe is in
luded with its respe
tive step �les and metadata.

oheren
y between instru
tions and data used to build a determined software applian
e. This way

of asso
iating step �les with persistent
a
he dire
tories brings an adequate granularity (given

that they represent an installation of one kind of software) for sharing bri
ks of software. A

generalization of a
a
he
ould be implemented in whi
h it would work as a
entral repository

where users will share steps with their respe
tive persistent
a
he �les, lowering substantially the

storage requirement needed for the software applian
es.

Kameleon persistent
a
he me
hanism enables the rebuilding of any software applian
e from its

respe
tive persistent
a
he �le. The only requirement is that the software applian
e has to be built

su

essfully a least on
e. The low size of Kameleon and Polipo (less than 1MB) makes feasible

the distribution of the exa
t version used to
reate the environment, avoiding the in
ompatibility

between versions.

Data type Persistent

a
he

Referen
ed
a
he

O.S pa
kages Web proxy Debian snapshot

Repositories Hard
opy of the

repository

Che
kout referen
e

User's �les Inter
eption and

storage of a hard

opy

No option

Table 6.1: Persistent
a
he approa
hes

The persistent
a
he me
hanism
ould use another alternative approa
h
alled Referen
e
a
he.

It relies for the moment on systems like Debian snapshot

6

in order to a

ess a
ertain dates and

6

http://snapshot.debian.org/

101

http://snapshot.debian.org/

CHAPTER 6. REPRODUCIBLE APPLIANCES FOR EXPERIMENTATION

General Applian
es

Name Main software sta
k Size [MB℄

Hadoop

Java 1.6

Hadoop 1.03 229

Ubuntu 10.04 LTS

HPC Pro�ling

PAPI 5.1.0

TAU 2.22

OpenMPI 1.6.4 226

Debian Wheezy

Table 6.2: Software applian
es generated

version of the pa
kages. This is only use for the O.S layer and all the software that is available

through the pa
kage manager. For revision
ontrol repositories, the referen
ed
a
he will keep the

URL of the repository and the revision number. The two approa
hes are summirize in Table 6.1:

The approa
h using referen
es is an option to lower the storage requirements but it will depend

on an external servi
e to be available. It is still under development and at the moment of writing

the persistent
a
he approa
h is more reliable.

6.4 Experimental results and validation

This se
tion will start with results of the persistent
a
he generated with Kameleon version 1.28

whi
h were the subje
t of the paper [112℄. The rest will be dedi
ated to persistent
a
he generated

with the new version that was des
ribed in Chapter 5 and developed during the last part of this

thesis. It will be shown in this se
tion that Kameleon syntax
an evolve without a�e
ting the

re
onstru
t-ability. All the persistent
a
he ar
hives are available on Kameleon web site l

7

.

6.4.1 Kameleon old version

As des
ribed in Se
tion 6.3.1 we required a version of Kameleon whi
h
ould be obtained by using

the
ontrol version repository. The
ode is under a
ontrol revision system, the old engine
an be

retrieved from its git repository by doing:

1 $ git
he
kout remotes/origin/old/old-engine

Kameleon is a single s
ript that
an be exe
uted in the following way:

1 sudo ./kameleon tests/debian_et
h_oar2.2.17_i386.yaml --from_
a
he
a
he-debian_et
h_oar2.2.17-2013-05-26.tar

Table 6.3: Software applian
es generated

OAR Version date of release GNU/Linux version Size [MB℄

2.2.17 27 Nov 2009 Debian et
h 112

2.3.5 30 Nov 2009 Debian et
h 113

2.4.7 11 Jan 2011 Debian Lenny 137

2.5.2 23 May 2012 Debian Squeeze 140

2.5.0 5 De
 2011 Debian Squeeze 140

In order to show that our approa
h is very portable between versions of Linux distributions,

we
arried out su

essfully
onstru
tion and re
onstru
tion of di�erent applian
es as shown in

Table 6.2 that
onsist in di�erent �avors of GNU/Linux (Debian, Ubuntu) and di�erent middle-

ware: Hadoop

8

and TAU

32

. A design goal was to a
hieve a self
ontained
a
he. Hen
e, we

7

http://kameleon.imag.fr/ar
hive/

8

http://hadoop.apa
he.org/

102

http://kameleon.imag.fr/archive/
http://hadoop.apache.org/

CHAPTER 6. REPRODUCIBLE APPLIANCES FOR EXPERIMENTATION

tested the portability of the persistent
a
he me
hanism. The aforementioned software applian
es

where re
onstru
ted using their respe
tive persistent
a
he �les, the Kameleon engine and the

Polipo binary whi
h made only 984 K Bytes. This was tested in the following Linux distributions:

Fedora 15, OpenSUSE 11.04, Ubuntu 10.4 and CentOS 6.0. Other tests
onsisted in reprodu
ing

old environments of test ba
k to 2009 based on OAR [24℄ a very lightweight bat
h s
heduler. The

des
ription is presented in Table 6.3.

6.4.2 Building old environments

The persistent
a
he me
hanism enable the building of environments generated at any point of

time. It does so by using the same versions that are
ompatible with the s
ripts used at the

moment of the �rst generation of the software applian
e. Not using the same exa
t versions
an

sometimes generate unexpe
ted errors that are time
onsuming and resear
hers do not want to

deal with. This
ould be one of the
auses of the famous senten
e "It worked yesterday". Problems

with library versions dependen
y
an appear as well, what it is known as Dependen
y hell [57℄.

We fa
ed those problems when building software applian
es based on Ar
hlinux distribution

and on the OAR bat
h s
heduler. Their
urrent versions posed several in
ompatibility problems

with the s
ripts used for generating the software applian
es a year ago. The persistent
a
he

me
hanism enabled the re
onstru
tion of these software applian
es.

6.5 Dis
ussion

With the aim of
apturing an experimental environment with reprodu
ibility purposes, it is obvious

that wrapping all the environment into a virtual ma
hine is the simplest approa
h, whi
h brings

isolation and portability. Nevertheless, we exposed the following advantages of Kameleon over

virtual ma
hines as a means to a
hieve reprodu
ibility.

� It is not possible to run everything on a virtual ma
hine. It is most of the time possible to

onvert the virtual ma
hine disk into a raw disk and deploy it into bare-metal. However,

that implies additional steps for the user, it is not automati
.

� Spa
e overhead, virtual ma
hines are saved in large binary �les.

� If the virtual ma
hine needs to be modi�ed, for instan
e, by installing a new version of

a given software. It is ne
essary to uninstall the present version and install the required

version, whi
h is not always
lean in most of the operating systems using either the pa
kage

manager or tarballs.

� With Kameleon is a must to generate metadata. It is ne
essary to spe
ify all the software

versions to install, spe
i�
 distribution pa
kages to install, et
. It tells exa
tly what was done

in order to
reate a given environment. This goes further than just the a
t of repeating. It

enables the reuse of
ode, experimenters will understand the steps followed in order to get

a
ertain
omplex sta
k of software. Thus, they will be able to adapt su
h sta
ks to their

needs and get more insights.

� Rigid virtual ma
hines are not a good option when dynami
ally deploy the virtual applian
e

under di�erent environments what it is
alled as Applian
e
ontextualization. The whole

environment used to exe
ute the experiment should be able to be re
on�gured [97℄.

6.6 Con
lusions and Future Works

Experiment reprodu
iblity is a big
hallenge nowadays in
omputer s
ien
e, a lot of tools have been

proposed to address this problem, however there are still some environments and experiments that

are di�
ult to ta
kle. Commonly, experimenters la
k of expertise to setup
omplex environments

103

CHAPTER 6. REPRODUCIBLE APPLIANCES FOR EXPERIMENTATION

ne
essary to reprodu
e a given experiment or to reuse the results obtained by someone else. We

presented in this
hapter, a very lightweight approa
h that leverage existing software and allows

an experimenter to re
onstru
t independently the same software environment used by another

experimenter. Its design o�ers a low storage requirement and a total
ontrol on the environment

reation whi
h in turn allows the experimenter to understand the software environment and in-

trodu
e modi�
ations into the pro
ess. Furthermore, several methods to
arry out the setup of

the environment for experimentation were des
ribed and we showed the advantages of our ap-

proa
h Kameleon. As a future work we plan to
arry out more
omplex experiments with our

approa
h and measure the gains in terms of reprodu
ilibity and
omplexity as well as to study the

ontextualization of environments (e.g., post installation pro
ess) in di�erent platforms.

104

Part IV

Con
lusions

105

Chapter 7

Con
lusions

During this thesis we have studied the
ondu
tion of experiments in
omputer s
ien
e in general

and mainly fo
us on our domains of resear
h whi
h are Distributed Systems and High Performan
e

Computing. The di�
ulty involved in
ondu
ting an experiment and its later reprodu
tion is due

to the hard task of detailing all the fa
tors that determined the state of the experimental
ontext.

The goal of experiments in our domain most of the times is to measure that our implementation

is faster, it s
ales better, it uses less storage spa
e, et
. As a
onsequen
e, the measures taken

are highly dependent on the most minimal detail of the experimental
ontext. There are many

variables to take into a

ount and many ways in whi
h a determined experiment
an be performed.

Thus missing information about the pro
edure followed prevents the veri�
ation and reprodu
tion

of a given resear
h work.

Due to the
omplexity of systems nowadays and the fast
hange of software and hardware, it

is not surprising the di�
ulty in the simple fa
t of repeating an experiment. One �rst attempt

to repeat su

essfully an experiment is to have a

ess to the same software and hardware used,

however, there are some unavoidable fa
ts that
ould prevent short and long term reprodu
tion

of an experiment: some infrastru
tures are restri
ted to be used by few resear
hers, the a

ess to

the same hardware is
ostly, the lifespan of software and
omputer hardware is too short, software

li
enses and proprietary software, et
.

Through our studies we have found a plethora of tools that strives for
ondu
ting a more

sound experimental pro
ess. Those tools seek to o�er means for des
ribing the
ontext in whi
h

an experiment took pla
e. To do so, they used di�erent languages and abstra
tions for des
ribing

omplex experimental work�ows and embed as many details as possible. It is
lear that no tool

will
over all experimenter's ne
essities and that is why we put a lot of e�ort in
omparing tools

and providing their purpose. This was summarized in Chapter 2 and it is expe
ted to be used as

guide for resear
hers that want to improve the quality of their experiments. One
on
lusion of this

study is that even though the
urrent state of experimentation is not en
ouraging, this panorama

will
hange given the number of tools available nowadays.

It seems obvious that due to this
omplexity users have to be assisted when
ondu
ting their

experiments, manual
ontrolled experiment is not viable anymore. The main idea is to provide

a way to
reate, pa
kage, transfer and preserve their experiments. We found that experiment

management tools have to serve three purposes:

� Make the a
t of experimenting less
umbersome. Redu
e the
omplexity of managing large

infrastru
tures and di�erent software layers. The entry barrier of su
h tools
ould be redu
ed

by en
ouraging
ollaboration where the reuse of
ode is made easy.

� Provide a way to pa
kage an experiment and make it easily portable a
ross di�erent software

and hardware infrastru
tures. This pa
kage should generate enough metadata that rend the

omprehension of the experiment straightforward. Regarding transmission, the goal to be

a
hieved by an experiment tool is the possibility of being easily embedded in a publi
ation

or referen
ed. This has brought the
on
ept of exe
utable paper. We need to
hange the way

107

CHAPTER 7. CONCLUSIONS

we
ommuni
ate s
ien
e and be in favor of using dynami
 do
uments, online resour
es and

invest e�ort in providing the maximum level of details about our experiment to the resear
h

ommunity.

� Provide means to a least enable the short term preservation of the experimental environment.

In this thesis we addressed experimentation by performing a separation of
on
erns. We divided

an experiment into two parts stati
 and dynami
.

� Stati
: It refers to the part that do not
hange so often. The software sta
k and its
on�g-

uration. Contrary to hardware, software is the
heapest requirement that we
an preserved

and should be a

essible anytime. In this thesis we proposed an applian
e builder
alled

Kameleon that redu
es the entry barrier for non-experts and help resear
hers to automate

their experiments. We found with Kameleon a way to pa
kage software artifa
ts used for

experimentation. More importantly, it has enabled to make software sta
ks re
onstru
t-able.

� Dynami
: It refers to the experiment exe
ution, the de�nition of all the a
tions that have

to be
arried out during the experiment. This was addressed in this thesis by improving

the experiment management tool
alled Expo. It was shown its �exibility and e�
ien
y by

implementing
omplex experiments that demanded a big amount of resour
es and
omplex

work�ows.

With this separation we believe that experimenter produ
tivity is improved. When performing

large s
ale experiments this separation is ne
essary for software installation pro
edures, otherwise

the following issues
ould appear: a bottlene
k when a

essing the server for downloading pa
kages,

ompilation pro
ess over several ma
hines a part from being time
onsuming, it
ould be error-

prone.

Another important
ontribution of this thesis is the use of experiment management tools for

assisting users in the deployment and exe
ution of their parallel appli
ations. We showed the

gains of performan
e by
hoosing better deployment s
hemes that have into a

ount hardware

apabilities. This was easily implemented using our experiment management tool and it opens the

door to appli
ation optimization that are possible without knowing the internals of the appli
ation.

For illustrating the proposed experiment
y
le and how the two tools intera
t together, a use

ase is presented in the next se
tion.

7.1 Experiment
y
le

The experimenter start by setting up all the software required for his/her environment of experi-

mentation. For this the experimenter will useKameleon to install (independent of the experimental

work�ow) all the software required using the best suited te
hnology for him/her (Linux
ontainer,

virtual ma
hine, real ma
hine, et
.). The setup of a software sta
k is an error-prone pro
ess where

Kameleon features like
he
kpointing and intera
tive exe
ution would
ome in handy. Several

di�erent software sta
ks
an be
reated and exported to the most
onvenient format depending on

the target infrastru
ture where the experiment will �nally run. When the experimenter rea
hes a

stable version of her/his environment, she/he will generate a persistent
a
he �le whi
h will freeze

the software versions of the experimental environment and avoid any future in
ompatibility issue

that
ould generate a
onsiderable lost of time. On
e the software sta
k to be used is set, all the

work�ow of the experimentation is done with Expo, this work�ow
an be tried lo
ally in a virtual

infrastru
ture by
hoosing the right infrastru
ture module. Many errors
an be
aught given that

the infrastru
ture is running lo
ally. Complex work�ows of experimentation with many nodes

an be easily expressed with Expo. The software applian
es
an be updated with more software

if ne
essary in order to keep all the installation pro
edures in one pla
e and then manage the

deployment of software applian
es whi
h will make the experiment s
ale better. Finally, when all

the experiments are �nished su

essfully and the experimenters obtained the desired results, all

108

CHAPTER 7. CONCLUSIONS

Expo s
ripts
an be stored along with the persistent
a
he �les generated by Kameleon. This will

guarantee that the experimental work�ow, experimental environment des
ription and the exa
t

software used in the experiment will be available for later reprodu
tion.

7.2 Future works

One important step before further development of the tools presented during this thesis is to

ross the adoption barrier. It is di�
ult to en
ourage resear
hers to automate their work�ow for

experimentation whi
h is highly dependent on their te
hni
al skills. Unfortunately, no new tool

ome at no
ost, resulting in the di�
ulty to
onvin
e resear
hers to
hange their experimental

work�ows. We believe that the level of adoption will in
rease with the level of maturity of the

tools giving that early bugs, few do
umentation
an dis
ourage new users and make them return

ba
k to their previous work�ow.

7.2.1 Expo perspe
tives

Currently, Expo enables the e�
ient exe
ution of the experiment, it makes easier the managing

of large amount of resour
es and provides an automati

olle
tion of results. Although it is easier

to
ondu
t experiments than it was before, we still fa
e some di�
ulties: failures are pervasive,

experiments are not optimized, users do not have any help to run their appli
ation e�
iently. The

experiment tool should take de
isions on behalf of the user, be
ause, important events may o

ur

when experimenting, for example:

� Some nodes failed when my experiment was deployed, I have to dete
t qui
kly and repair

them (possibly by rebooting the ma
hine).

� My appli
ation is getting a really bad performan
e, probably it is running with the wrong

parameters. I have to stop it and not let it run for another 72 hours.

� The varian
e of my runs is low enough, it does not make any sense to do more runs.

� I need for my experiment a minimum of performan
e in the inter
onne
tion fabri
, otherwise

I
ould biased my results.

� My level of CPU performan
e is still good, I
an deploy more virtual ma
hines to simulate

more
lients.

Hen
e, an autonomi
 behavior is envisioned for dealing with this di�
ulties. Autonomi

om-

puting aims at developing self manage and self repair distributed systems for redu
ing deployment

and administration
osts. Experiments involving large amount of resour
es are
ostly, if we in-

orporate an intelligent behavior we
ould know for example: whi
h tests
an run in parallel, the

number of runs needed to rea
h a
ertain
on�den
e value, et
. We have already envisioned the

evaluation and possible integration of the framework Frameself [2℄.

One of the biggest di�
ulties we had during the development of Expo was to
hoose the

building blo
ks for the des
ription language. We provided very high-level building blo
ks that
an

be
ustomized for di�erent purposes and some other operators that make easy the des
ription of

experiments with many nodes. In order to re�ne this operators and abstra
tions, a study about

how resear
hers perform their experiments in our domain has to be
ondu
ted. The impli
ations

of su
h study on the improvement of the des
ription language are threefold: the un
overing of

hidden patterns, the redu
tion of the entry barrier for non-expert users and the enhan
ement

on the readability. We
an learn from studies about programming languages readability and

its impli
ation on software development whi
h will provide a better
riteria to perform a more

omplete evaluation of the
urrent experiment management tools.

Another path for further resear
h is the development of interfa
es to in
rease the degree of

interoperability of the tool and make it intera
t with workload generators and emulators systems

109

CHAPTER 7. CONCLUSIONS

su
h as [115℄. This will make possible a model of hybrid simulation as the one shown in [105℄

for large s
ale systems, where experimenters
an take advantage of simulation, emulation and real

exe
ution te
hniques in order to enri
h their environments of experimentation.

7.2.2 Kameleon perspe
tives

During the last part of this thesis Kameleon a
hieved a good stability and started to be used by a

small
ommunity of lo
al users. Apart from resear
hers, it has been used by engineers for building

spe
ialized software sta
ks for ARM ar
hite
tures.

There is one path - among the many possible - for improving Kameleon that we would like to

follow. The generalization of the persistent
a
he, where a repository of persistent
a
he �les is

available for the
ommunity. This
ommunity will not only in
lude resear
hers, but also software

developers and anyone who needs the
reation of parti
ular software sta
ks. This will redu
e sig-

ni�
antly the storage requirements for software applian
es and it will make feasible that anyone

with su�
iently data transmission and
omputing
apa
ity
an re
onstru
t his/her environment

at will, without storing large amounts of data and without worrying about software in
ompatibil-

ities. This
an impa
t the manage of IT infrastru
tures as Kameleon
an be used to manage the

deployment and
ustomization of software applian
es. Impa
t on software development is foreseen

as well,
ontinuous integration
an be easily automated and
ontrolled and bugs reporting would

be simpli�ed as the whole environment
on�guration is known.

110

Bibliography

[1℄ D. Abramson, B. Bethwaite, C. Enti
ott, S. Gari
, and T. Pea
hey. Parameter Exploration

in S
ien
e and Engineering Using Many-Task Computing. IEEE Transa
tions on Parallel

and Distributed Systems, 22(6):960�973, June 2011.

[2℄ Mahdi Ben Alaya and Thierry Monteil. Frameself: an ontology-based framework for the

self-management of ma
hine-to-ma
hine systems. Con
urren
y and Computation: Pra
ti
e

and Experien
e, pages n/a�n/a, 2013.

[3℄ Jeannie Albre
ht, Ryan Braud, Darren Dao, Nikolay Topilski, Christopher Tuttle, Alex C.

Snoeren, and Amin Vahdat. Remote
ontrol: distributed appli
ation
on�guration, man-

agement, and visualization with Plush. In Pro
eedings of the 21st
onferen
e on Large

Installation System Administration Conferen
e, LISA'07, pages 15:1�15:19, Berkeley, CA,

USA, 2007. USENIX Asso
iation.

[4℄ Jeannie Albre
ht, Ryan Braud, Darren Dao, Nikolay Topilski, Christopher Tuttle, Alex C.

Snoeren, and Amin Vahdat. Remote
ontrol: distributed appli
ation
on�guration, manage-

ment, and visualization with plush. In Pro
eedings of the 21st
onferen
e on Large Instal-

lation System Administration Conferen
e, LISA'07, pages 15:1�15:19, Berkeley, CA, USA,

2007. USENIX Asso
iation.

[5℄ Jeannie Albre
ht, Christopher Tuttle, Ryan Braud, Darren Dao, Nikolay Topilski, Alex C.

Snoeren, and Amin Vahdat. Distributed Appli
ation Con�guration, Management, and Vi-

sualization with Plush. ACM Transa
tions on Internet Te
hnology, 11:6:1�6:41, De
ember

2011.

[6℄ Jeannie Albre
ht, Christopher Tuttle, Alex C. Snoeren, and Amin Vahdat. Loose syn-

hronization for large-s
ale networked systems. In Pro
eedings of the annual
onferen
e on

USENIX '06 Annual Te
hni
al Conferen
e, ATEC '06, pages 28�28, Berkeley, CA, USA,

2006. USENIX Asso
iation.

[7℄ Jeannie Albre
ht, Christopher Tuttle, Alex C. Snoeren, and Amin Vahdat. PlanetLab Ap-

pli
ation Management Using PluSH. ACM SIGOPS Operating Systems Review, 40:33�40,

January 2006.

[8℄ Jeannie R. Albre
ht. Bringing big systems to small s
hools: distributed systems for un-

dergraduates. In Pro
eedings of the 40th ACM te
hni
al symposium on Computer s
ien
e

edu
ation, SIGCSE '09, pages 101�105, New York, NY, USA, 2009. ACM.

[9℄ M. Alexandru, T. Monteil, P. Lorenz, F. Co

etti, and H. Aubert. Large ele
tromagneti

problem on large s
ale parallel
omputing systems. In International Conferen
e on High

Performan
e Computing and Simulation, 2012.

[10℄ S. Azarnoosh, M. Rynge, G. Juve, E. Deelman, M. Nie
, M. Malawski, and R.F. da Silva.

Introdu
ing pre
ip: An api for managing repeatable experiments in the
loud. In Cloud

Computing Te
hnology and S
ien
e (CloudCom), 2013 IEEE 5th International Conferen
e

on, volume 2, pages 19�26, De
 2013.

111

BIBLIOGRAPHY

[11℄ Daniel Balouek, Adrien Lèbre, and Flavien Quesnel. Flaun
her and DVMS � Deploying

and S
heduling Thousands of Virtual Ma
hines on Hundreds of Nodes Distributed Geo-

graphi
ally. In IEEE International S
alable Computing Challenge (SCALE 2013), held in

onjun
tion with CCGrid'2013, Delft, Pays-Bas, 2013.

[12℄ Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Mazières, and Christos

Kozyrakis. Dune: Safe user-level a

ess to privileged
pu features. In Pro
eedings of the 10th

USENIX Conferen
e on Operating Systems Design and Implementation, OSDI'12, pages

335�348, Berkeley, CA, USA, 2012. USENIX Asso
iation.

[13℄ Milind Bhandarkar, L. V. Kale, Eri
 de Sturler, and Jay Hoe�inger. Obje
t-Based Adap-

tive Load Balan
ing for MPI Programs. In Pro
eedings of the International Conferen
e on

Computational S
ien
e, San Fran
is
o, CA, LNCS 2074, pages 108�117, May 2001.

[14℄ Grant R. Brammer, Ralph W. Crosby, Suzanne Matthews, and Ti�ani L. Williams. Paper

mâ
hé: Creating dynami
 reprodu
ible s
ien
e. Pro
edia CS, 4:658�667, 2011.

[15℄ John Bresnahan, Tim Freeman, David LaBissoniere, and Kate Keahey. Managing applian
e

laun
hes in infrastru
ture
louds. In Pro
eedings of the 2011 TeraGrid Conferen
e: Extreme

Digital Dis
overy, TG '11, pages 12:1�12:7, New York, NY, USA, 2011. ACM.

[16℄ F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin, G. Mer
ier, S. Thibault,

and R. Namyst. hwlo
: A generi
 framework for managing hardware a�nities in hp
 appli-

ations. In Parallel, Distributed and Network-Based Pro
essing (PDP), 2010 18th Euromi
ro

International Conferen
e on, pages 180�186, 2010.

[17℄ L. Broto, D. Hagimont, P. Stolf, N. De Palma, and S. Temate. Autonomi
 Management Pol-

i
y Spe
i�
ation in Tune. In Pro
eedings of the 2008 ACM symposium on Applied
omputing,

pages 1658�1663, New York, NY, USA, 2008.

[18℄ Tomasz Bu
hert. Or
hestration d'expérien
es à l'aide de pro
essus métier. In ComPAS

: Conféren
e d'informatique en Parallélisme, Ar
hite
ture et Système., Grenoble, Fran
e,

O
tober 2012.

[19℄ Tomasz Bu
hert and Lu
as Nussbaum. Leveraging business work�ows in distributed systems

resear
h for the or
hestration of reprodu
ible and s
alable experiments. In 9ème édition de la

onféren
e Manifestation des Jeunes Cher
heurs en S
ien
es et Te
hnologies de l'Information

et de la Communi
ation (2012), Lille, Fran
e, August 2012.

[20℄ Tomasz Bu
hert, Lu
as Nussbaum, and Jens Gustedt. A work�ow-inspired, modular and

robust approa
h to experiments in distributed systems. In CCGrid 2014 � The 14th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, Chi
ago,

Illinois, USA, May 2014.

[21℄ Tomasz Bu
hert, Cristian Ruiz, Lu
as Nussbaum, and Olivier Ri
hard. A survey of general-

purpose experiment management tools for distributed systems. Future Generation Computer

Systems, 45(0):1 � 12, 2015.

[22℄ Steven P. Callahan, Juliana Freire, Emanuele Santos, Carlos E. S
heidegger, Cláudio T.

Silva, and Huy T. Vo. VisTrails: visualization meets data management. In Pro
eedings of

the 2006 ACM SIGMOD international
onferen
e on Management of data, SIGMOD '06,

pages 745�747, New York, NY, USA, 2006. ACM.

[23℄ Steven P. Callahan, Juliana Freire, Emanuele Santos, Carlos E. S
heidegger, Cláudio T.

Silva, and Huy T. Vo. Vistrails: visualization meets data management. In Pro
eedings of

the 2006 ACM SIGMOD international
onferen
e on Management of data, SIGMOD '06,

pages 745�747, New York, NY, USA, 2006. ACM.

112

BIBLIOGRAPHY

[24℄ N. Capit, G. Da Costa, Y. Georgiou, G. Huard, C. Martin, G. Mounie, P. Neyron, and

O. Ri
hard. A bat
h s
heduler with high level
omponents. In Pro
eedings of the Fifth

IEEE International Symposium on Cluster Computing and the Grid (CCGrid'05) - Volume

2 - Volume 02, CCGRID '05, pages 776�783, Washington, DC, USA, 2005. IEEE Computer

So
iety.

[25℄ Fran
k Cappello, Frédéri
 Desprez, Mi
hel Dayde, Emmanuel Jeannot, Yvon Jégou,

Stephane Lanteri, Nouredine Melab, Raymond Namyst, Pas
ale Primet, Olivier Ri
hard,

Eddy Caron, Julien Ledu
, and Guillaume Mornet. Grid'5000: a large s
ale, re
on�gurable,

ontrolable and monitorable Grid platform. In 6th IEEE/ACM International Workshop on

Grid Computing (Grid), pages 99�106, November 2005.

[26℄ Alexandra Carpen-Amarie, Antoine Rougier, and FelixD. Lübbe. Stepping stones to repro-

du
ible resear
h: A study of
urrent pra
ti
es in parallel
omputing. In Euro-Par 2014:

Parallel Pro
essing Workshops, volume 8805 of Le
ture Notes in Computer S
ien
e, pages

499�510. Springer International Publishing, 2014.

[27℄ Henri Casanova, Arnaud Legrand, and Martin Quinson. SimGrid: a Generi
 Framework for

Large-S
ale Distributed Experiments. In Pro
eedings of the Tenth International Conferen
e

on Computer Modeling and Simulation, UKSIM '08, pages 126�131, Washington, DC, USA,

2008. IEEE Computer So
iety.

[28℄ Bin Chen, Nong Xiao, Zhiping Cai, Zhiying Wang, and Ji Wang. Fast, on-demand software

deployment with lightweight, independent virtual disk images. In Grid and Cooperative

Computing, 2009. GCC '09. Eighth International Conferen
e on, pages 16�23, Aug 2009.

[29℄ Fernando Chirigati, Dennis Shasha, and Juliana Freire. Reprozip: using provenan
e to

support
omputational reprodu
ibility. In Pro
eedings of the 5th USENIX
onferen
e on

Theory and Pra
ti
e of Provenan
e, TaPP'13, pages 1�1, Berkeley, CA, USA, 2013. USENIX

Asso
iation.

[30℄ Gina Moraila Akash Shankaran Zuoming Shi Alex M Warren Christian Collberg,

Todd Proebsting. Measuring reprodu
ibility in
omputer systems resear
h. Te
hni
al report,

Arizona Univeristy, Te
hni
al Report, 2013.

[31℄ BrentN. Chun. Dart: Distributed automated regression testing for large-s
ale network ap-

pli
ations. In Teruo Higashino, editor, Prin
iples of Distributed Systems, volume 3544 of

Le
ture Notes in Computer S
ien
e, pages 20�36. Springer Berlin Heidelberg, 2005.

[32℄ Bryan Clark, Todd Deshane, Eli Dow, Stephen Evan
hik, Matthew Finlayson, Jason Herne,

and Jeanna Neefe Matthews. Xen and the art of repeated resear
h. In Pro
eedings of

the annual
onferen
e on USENIX Annual Te
hni
al Conferen
e, ATEC '04, pages 47�47,

Berkeley, CA, USA, 2004. USENIX Asso
iation.

[33℄ Benoit Claudel, Guillaume Huard, and Olivier Ri
hard. Taktuk, adaptive deployment of

remote exe
utions. In Pro
eedings of the 18th ACM international symposium on High per-

forman
e distributed
omputing, HPDC '09, pages 91�100, New York, NY, USA, 2009. ACM.

[34℄ B. Clout and E. Aubanel. Ehgrid: An emulator of heterogeneous
omputational grids.

In Parallel Distributed Pro
essing, 2009. IPDPS 2009. IEEE International Symposium on,

pages 1�8, May 2009.

[35℄ V. Cur
in and M. Ghanem. S
ienti�
 work�ow systems -
an one size �t all? In Biomedi
al

Engineering Conferen
e, 2008. CIBEC 2008. Cairo International, pages 1�9, De
 2008.

[36℄ Susan B. Davidson and Juliana Freire. Provenan
e and s
ienti�
 work�ows: Challenges

and opportunities. In Pro
eedings of the 2008 ACM SIGMOD International Conferen
e on

Management of Data, SIGMOD '08, pages 1345�1350, New York, NY, USA, 2008. ACM.

113

BIBLIOGRAPHY

[37℄ Andrew Davison. Automated Capture of Experiment Context for Easier Reprodu
ibility in

Computational Resear
h. Computing in S
ien
e and Engg., 14(4):48�56, July 2012.

[38℄ Ewa Deelman, James Blythe, Yolanda Gil, Carl Kesselman, Gaurang Mehta, Sonal Patil,

Mei-Hui Su, Karan Vahi, and Miron Livny. Pegasus: Mapping s
ienti�
 work�ows onto

the grid. In MariosD. Dikaiakos, editor, Grid Computing, volume 3165 of Le
ture Notes in

Computer S
ien
e, pages 11�20. Springer Berlin Heidelberg, 2004.

[39℄ Ewa Deelman, Dennis Gannon, Matthew Shields, and Ian Taylor. Work�ows and e-S
ien
e:

An overview of work�ow system features and
apabilities. Future Generation Computer

Systems, 25(5):528�540, 2009.

[40℄ Karen D. Devine, Erik G. Boman, and George Karypis. Partitioning and load balan
ing for

emerging parallel appli
ations and ar
hite
tures. In M. Heroux, A. Raghavan, and H. Simon,

editors, Frontiers of S
ienti�
 Computing. SIAM, Philadelphia, 2006.

[41℄ Jiun-Hung Ding, Po-Chun Chang, Wei-Chung Hsu, and Yeh-Ching Chung. Pqemu: A

parallel system emulator based on qemu. In Parallel and Distributed Systems (ICPADS),

2011 IEEE 17th International Conferen
e on, pages 276�283, De
 2011.

[42℄ Eel
o Dolstra and Andres Löh. Nixos: A purely fun
tional linux distribution. In Pro
eedings

of the 13th ACM SIGPLAN International Conferen
e on Fun
tional Programming, ICFP

'08, pages 367�378, New York, NY, USA, 2008. ACM.

[43℄ D.L. Donoho, A Maleki, IU. Rahman, M. Shahram, and V. Stodden. Reprodu
ible resear
h

in
omputational harmoni
 analysis. Computing in S
ien
e Engineering, 11(1):8�18, Jan

2009.

[44℄ C. Drummond. Repli
ability is not reprodu
ibility: Nor is it good s
ien
e. In Pro
eedings of

the Evaluation Methods for Ma
hine Learning Workshop at the 26th ICML, page 4972�4975,

2009.

[45℄ Joel T. Dudley and Atul J. Butte. In sili
o resear
h in the era of
loud
omputing. Nature

Biote
hnology, 28(11):1181�1185, November 2010.

[46℄ Christoph Dwertmann, Ergin Mesut, Guillaume Jourjon, Max Ott, Thierry Rakotoarivelo,

and Ivan Seskar. Mobile Experiments Made Easy with OMF/Orbit. In Konstantina Pa-

pagiannaki, Luigi Rizzo, Ni
k Feamster, and Renata Teixeira, editors, SIGCOMM 2009,

Conferen
e on Appli
ations, Te
hnologies, Ar
hite
tures, and Proto
ols for Computer Com-

muni
ations, New York, NY, USA, August 2009. ACM.

[47℄ Eri
 Eide, Leigh Stoller, and Jay Lepreau. An Experimentation Workben
h for Replayable

Networking Resear
h. In Pro
eedings of the 4th Symposium on Networked System Design

and Implementation (NSDI), pages 215�228, 2007.

[48℄ Eri
 Eide, Leigh Stoller, Tim Sta
k, Juliana Freire, and Jay Lepreau. Integrated s
ienti�

work�ow management for the Emulab network testbed. In Pro
eedings of the annual
onfer-

en
e on USENIX '06 Annual Te
hni
al Conferen
e, ATEC '06, pages 33�33, Berkeley, CA,

USA, 2006. USENIX Asso
iation.

[49℄ Joseph Emeras, Bruno Bzeznik, Olivier Ri
hard, Yiannis Georgiou, and Cristian Ruiz. Re-

onstru
ting the software environment of an experiment with kameleon. In Pro
eedings of the

5th ACM COMPUTE Conferen
e: Intelligent and s
alable system te
hnologies, COMPUTE

'12, pages 16:1�16:8, New York, NY, USA, 2012. ACM.

[50℄ Xavier Et
hevers, Gwen Salaün, Fabienne Boyer, Thierry Coupaye, and Noël De Palma.

Reliable self-deployment of
loud appli
ations. In Pro
eedings of the 29th Annual ACM

Symposium on Applied Computing, SAC '14, pages 1331�1338, New York, NY, USA, 2014.

ACM.

114

BIBLIOGRAPHY

[51℄ Geo�rey Fox, Gregor von Laszewski, Javier Diaz, Kate Keahey, Jose Fortes, Renato

Figueiredo, Shava Smallen, Warren Smith, and Andrew Grimshaw. FutureGrid - a re-

on�gurable testbed for Cloud, HPC, and Grid Computing. CRC Computational S
ien
e.

Chapman & Hall, 04/2013 2013.

[52℄ ClaudioDaniel Freire, Alina Quereilha
, Thierry Turletti, and Walid Dabbous. Automated

Deployment and Customization of Routing Overlays on Planetlab. In Thanasis Korakis,

Mi
hael Zink, and Maximilian Ott, editors, Testbeds and Resear
h Infrastru
ture. Devel-

opment of Networks and Communities, volume 44 of Le
ture Notes of the Institute for

Computer S
ien
es, So
ial Informati
s and Tele
ommuni
ations Engineering, pages 240�

255. Springer Berlin Heidelberg, 2012.

[53℄ Woj
ie
h Galuba, Karl Aberer, Zoran Despotovi
, and Wolfgang Kellerer. ProtoPeer: A

P2P Toolkit Bridging the Gap Between Simulation and Live Deployement. In Pro
eedings of

the 2Nd International Conferen
e on Simulation Tools and Te
hniques, Simutools '09, pages

60:1�60:9, ICST, Brussels, Belgium, Belgium, 2009. ICST (Institute for Computer S
ien
es,

So
ial-Informati
s and Tele
ommuni
ations Engineering).

[54℄ Matan Gavish and David Donoho. A universal identi�er for
omputational results. Pro
edia

Computer S
ien
e, 4(0):637 � 647, 2011. Pro
eedings of the International Conferen
e on

Computational S
ien
e, {ICCS} 2011.

[55℄ Grid5000. Grid5000:hardware, 2013.

[56℄ Romari
 Guillier and Pas
ale Vi
at-Blan
 Primet. A User-oriented Test Suite for Transport

Proto
ols Comparison in Datagrid Context. In Pro
eedings of the 23rd International Con-

feren
e on Information Networking, ICOIN'09, pages 265�269, Pis
ataway, NJ, USA, 2009.

IEEE Press.

[57℄ Philip J. Guo. Cde: run any linux appli
ation on-demand without installation. In Pro
eedings

of the 25th international
onferen
e on Large Installation System Administration, LISA'11,

pages 2�2, Berkeley, CA, USA, 2011. USENIX Asso
iation.

[58℄ A. Gupta, O. Sarood, L.V. Kale, and D. Miloji
i
. Improving hp
 appli
ation performan
e

in
loud through dynami
 load balan
ing. In Cluster, Cloud and Grid Computing (CCGrid),

2013 13th IEEE/ACM International Symposium on, pages 402�409, 2013.

[59℄ Jens Gustedt, Emmanuel Jeannot, and Martin Quinson. Experimental Methodologies for

Large-S
ale Systems: a Survey. Parallel Pro
essing Letters, 19(3):399�418, 2009.

[60℄ W.J.R. Hoe�er. The transmission-line matrix method�theory and appli
ations. Mi
rowave

Theory and Te
hniques, IEEE Transa
tions on, 33(10):882�893, o
t 1985.

[61℄ Torsten Hoe�er. Bridging performan
e analysis tools and analyti
 performan
e modeling

for hp
. In Pro
eedings of the 2010
onferen
e on Parallel pro
essing, Euro-Par 2010, pages

483�491, Berlin, Heidelberg, 2011. Springer-Verlag.

[62℄ Zhengxiong Hou, Jing Tie, Xingshe Zhou, I. Foster, and M. Wilde. Adem: Automating

deployment and management of appli
ation software on the open s
ien
e grid. In Grid

Computing, 2009 10th IEEE/ACM International Conferen
e on, pages 130�137, O
t 2009.

[63℄ Bill Howe. Virtual applian
es,
loud
omputing, and reprodu
ible resear
h. Computing in

S
ien
e and Engg., 14(4):36�41, July 2012.

[64℄ Sili Huang, Eri
 Aubanel, and VirendrakumarC. Bhavsar. Pagrid: A mesh partitioner for

omputational grids. Journal of Grid Computing, 4(1):71�88, 2006.

115

BIBLIOGRAPHY

[65℄ Dun
an Hull, KatherineWolsten
roft, Robert Stevens, Carole Goble, Matthew Po
o
k, Peter

Li, and Thomas Oinn. Taverna: a tool for building and running work�ows of servi
es. Nu
lei

A
ids Resear
h, 34(Web Server issue):729�732, July 2006.

[66℄ Sas
ha Hunold and Jesper Larsson Trä�. On the state and importan
e of reprodu
ible

experimental resear
h in parallel
omputing. CoRR, abs/1308.3648, 2013.

[67℄ Matthieu Imbert, Laurent Pouilloux, Jonathan Rouzaud-Cornabas, Adrien Lèbre, and

Takahiro Hirofu
hi. Using the EXECO toolbox to perform automati
 and reprodu
ible

loud experiments. In 1st International Workshop on UsiNg and building ClOud Testbeds

(UNICO,
ollo
ated with IEEE CloudCom 2013, Bristol, Royaume-Uni, September 2013.

[68℄ P. Jakub
o, N. Adam, and E. Dankoval. Distributed
omputer emulation: Using open
l

framework. In Applied Ma
hine Intelligen
e and Informati
s (SAMI), 2011 IEEE 9th Inter-

national Symposium on, pages 333�338, Jan 2011.

[69℄ D. Jayasinghe, G. Swint, S. Malkowski, J. Li, Qingyang Wang, Junhee Park, and C. Pu.

Expertus: A generator approa
h to automate performan
e testing in iaas
louds. In Cloud

Computing (CLOUD), 2012 IEEE 5th International Conferen
e on, pages 115�122, June

2012.

[70℄ E. Jeannot. Experimental validation of grid algorithms: A
omparison of methodologies. In

Parallel and Distributed Pro
essing, 2008. IPDPS 2008. IEEE International Symposium on,

pages 1�8, April 2008.

[71℄ Emmanuel Jeanvoine, Lu
 Sarzynie
, and Lu
as Nussbaum. Kadeploy3: E�
ient and S
al-

able Operating System Provisioning. USENIX ;login:, 38(1):38�44, February 2013.

[72℄ P.B. Johns. A symmetri
al
ondensed node for the tlm method. IEEE Trans. on Mi
rowave

Theory and Te
h., 35(4):370�377, apr 1987.

[73℄ David Johnson. A theoreti
ian's guide to the experimental analysis of algorithms, 1996.

[74℄ Eri
 Jones, Travis Oliphant, Pearu Peterson, et al. S
iPy: Open sour
e s
ienti�
 tools for

Python, 2001�.

[75℄ Guillaume Jourjon, Salil Kanhere, and Jun Yao. Impa
t of IREEL on CSE Le
tures. In

the 16th Annual Conferen
e on Innovation and Te
hnology in Computer S
ien
e Edu
ation

(ACM ITiCSE 2011), pages 1�6, Germany, June 2011.

[76℄ Guillaume Jourjon, Thierry Rakotoarivelo, and Max Ott. From Learning to Resear
hing

- Ease the shift through testbeds. In Internatinonal ICST Conferen
e on Testbeds and

Resear
h Infrastru
tures for the Development of Networks and Communities (TridentCom),

pages 496�505, Berlin, May 2010. Springer-Verlag.

[77℄ Guillaume Jourjon, Thierry Rakotoarivelo, and Max Ott. Why simulate when you
an

experien
e? In ACM Spe
ial Interest Group on Data Communi
ations (ACM SIGCOMM)

Edu
ation Workshop, page N/A, Toronto, August 2011.

[78℄ Guillaume Jourjon, Thierry Rakotoarivelo, and Max Ott. A Portal to Support Rigorous Ex-

perimental Methodology in Networking Resear
h. In Thanasis Korakis, Hongbin Li, Phuo

Tran-Gia, and Hong-Shik Park, editors, Testbeds and Resear
h Infrastru
ture. Development

of Networks and Communities, volume 90 of Le
ture Notes of the Institute for Computer

S
ien
es, So
ial Informati
s and Tele
ommuni
ations Engineering, pages 223�238. Springer

Berlin Heidelberg, 2012.

[79℄ Seonghoon Kang and Sukyoung Ryu. Formal spe
i�
ation of a javas
ript module system. In

Pro
eedings of the ACM International Conferen
e on Obje
t Oriented Programming Systems

Languages and Appli
ations, OOPSLA '12, pages 621�638, New York, NY, USA, 2012. ACM.

116

BIBLIOGRAPHY

[80℄ A. Kangarlou, Dongyan Xu, U.C. Kozat, P. Padala, B. Lantz, and K. Igarashi. In-network

live snapshot servi
e for re
overing virtual infrastru
tures. Network, IEEE, 25(4):12�19, July

2011.

[81℄ Katarzyna Keahey and Tim Freeman. Contextualization: Providing one-
li
k virtual

lusters. In Pro
eedings of the 2008 Fourth IEEE International Conferen
e on eS
ien
e,

ESCIENCE '08, pages 301�308, Washington, DC, USA, 2008. IEEE Computer So
iety.

[82℄ M. Kesavan, A Gavrilovska, and K. S
hwan. Xerxes: Distributed load generator for
loud-

s
ale experimentation. In Open Cirrus Summit (OCS), 2012 Seventh, pages 20�24, June

2012.

[83℄ Fadi KHALIL. Multi-s
ale modeling: from ele
tromagnetism to grid, 2009.

[84℄ Jonathan Klinginsmith, Malika Mahoui, and Yuqing Melanie Wu. Towards Reprodu
ible

eS
ien
e in the Cloud. In 3rd IEEE International Conferen
e on Cloud Computing Te
hnol-

ogy and S
ien
e (CLOUDCOM), pages 582�586, 2011.

[85℄ G.A. Koenig and L.V. Kale. Optimizing distributed appli
ation performan
e using dynami

grid topology-aware load balan
ing. In Parallel and Distributed Pro
essing Symposium, 2007.

IPDPS 2007. IEEE International, pages 1�10, 2007.

[86℄ Oren Laadan, Jason Nieh, and Ni
olas Viennot. Tea
hing operating systems using virtual

applian
es and distributed version
ontrol. In Pro
eedings of the 41st ACM te
hni
al sym-

posium on Computer s
ien
e edu
ation, SIGCSE '10, pages 480�484, New York, NY, USA,

2010. ACM.

[87℄ Mathieu La
age, Martin Ferrari, Mads Hansen, Thierry Turletti, and Walid Dabbous. NEPI:

Using Independent Simulators, Emulators, and Testbeds for Easy Experimentation. SIGOPS

Oper. Syst. Rev., 43(4):60�65, January 2010.

[88℄ Stephane Lanteri, Julien Ledu
, Nouredine Melab, Guillaume Mornet, Raymond Namyst,

Benjamin Quetier, and Olivier Ri
hard. Grid'5000: a large s
ale and highly re
on�gurable

grid experimental testbed.

[89℄ Lorenzo Leonini, Étienne Rivière, and Pas
al Felber. SPLAY: distributed systems evaluation

made simple (or how to turn ideas into live systems in a breeze). In Pro
eedings of the 6th

USENIX symposium on Networked systems design and implementation, NSDI'09, pages 185�

198, Berkeley, CA, USA, 2009. USENIX Asso
iation.

[90℄ Bertram Ludäs
her, Ilkay Altintas, Shawn Bowers, Julian Cummings, Teren
e Crit
hlow,

Ewa Deelman, David D Roure, Juliana Freire, Carole Goble, Matthew Jones, et al. S
ienti�

pro
ess automation and work�ow management. 2009.

[91℄ Bertram Ludäs
her, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger, Matthew

Jones, Edward A. Lee, Jing Tao, and Yang Zhao. S
ienti�
 work�ow management and the

Kepler system. Con
urren
y and Computation: Pra
ti
e and Experien
e, 18(10):1039�1065,

2006.

[92℄ Douglas C. Montgomery. Design and Analysis of Experiments. John Wiley & Sons, 2006.

[93℄ Todd Mytkowi
z, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney. Produ
ing

wrong data without doing anything obviously wrong! In Pro
eedings of the 14th interna-

tional
onferen
e on Ar
hite
tural support for programming languages and operating systems,

ASPLOS XIV, pages 265�276, New York, NY, USA, 2009. ACM.

[94℄ Farrukh Nadeem, Radu Prodan, Thomas Fahringer, and Alexandru Iosup. Ben
hmarking

grid appli
ations. In Grid Middleware and Servi
es, pages 19�37. Springer US, 2008.

117

BIBLIOGRAPHY

[95℄ S. Nai
ken, B. Livingston, A. Basu, S. Rodhetbhai, I. Wakeman, and D. Chalmers. The

State of Peer-to-peer Simulators and Simulations. SIGCOMM Comput. Commun. Rev.,

37(2):95�98, Mar
h 2007.

[96℄ Shaya Potter Jason Nieh. Improving virtual applian
e management through virtual layered

�le systems. Te
hni
al report, Columbia Univeristy, Te
hni
al Report CUCS-008-09, 2009.

[97℄ Daniel Oliveira, FernandaAraujo Baião, and Marta Mattoso. Towards a taxonomy for
loud

omputing from an e-s
ien
e perspe
tive. In Ni
k Antonopoulos and Lee Gillam, editors,

Cloud Computing, Computer Communi
ations and Networks, pages 47�62. Springer London,

2010.

[98℄ M. Ott, I. Seskar, R. Sira

usa, and M. Singh. ORBIT testbed software ar
hite
ture: sup-

porting experiments as a servi
e. In Testbeds and Resear
h Infrastru
tures for the Develop-

ment of Networks and Communities, 2005. Trident
om 2005. First International Conferen
e

on, pages 136�145, 2005.

[99℄ Andrew Pavlo, Peter Couvares, Rebekah Gietzel, Anatoly Karp, Ian D. Alderman, Miron

Livny, and Charles Ba
on. The nmi build & test laboratory:
ontinuous integration frame-

work for distributed
omputing software. In Pro
eedings of the 20th
onferen
e on Large In-

stallation System Administration, LISA '06, pages 21�21, Berkeley, CA, USA, 2006. USENIX

Asso
iation.

[100℄ Roger D. Peng and Sandrah P. E
kel. Distributed reprodu
ible resear
h using
a
hed
om-

putations. Computing in S
ien
e and Engg., 11(1):28�34, January 2009.

[101℄ Swann Perarnau, Mar
 T
hiboukdjian, and Guillaume Huard. Controlling
a
he utilization

of hp
 appli
ations. In International Conferen
e on Super
omputing (ICS), 2011.

[102℄ Fernando Pérez and Brian E. Granger. IPython: a System for Intera
tive S
ienti�
 Com-

puting. Comput. S
i. Eng., 9(3):21�29, May 2007.

[103℄ Larry Peterson, Tom Anderson, David Culler, and Timothy Ros
oe. A blueprint for in-

trodu
ing disruptive te
hnology into the Internet. SIGCOMM Comput. Commun. Rev.,

33(1):59�64, January 2003.

[104℄ R. Prodan, T. Fahringer, and F. Franz. On using ZENTURIO for performan
e and parameter

studies on
luster and Grid ar
hite
tures. In Pro
eedings of Eleventh Euromi
ro Conferen
e

on Parallel, Distributed and Network-Based Pro
essing, pages 185�192, Feb 2003.

[105℄ A. Quereilha
, M. La
age, C. Freire, T. Turletti, and W. Dabbous. NEPI: An integration

framework for Network Experimentation. In 19th International Conferen
e on Software,

Tele
ommuni
ations and Computer Networks (SoftCOM), pages 1�5, Sept 2011.

[106℄ Alina Quereilha
, Daniel Camara, Thierry Turletti, and Walid Dabbous. Experimentation

with large s
ale ICN multimedia servi
es on the Internet made easy. IEEE COMSOC MMTC

E-Letter, 8(4):10�12, July 2013.

[107℄ Thierry Rakotoarivelo, Maximilian Ott, Guillaume Jourjon, and Ivan Seskar. OMF: a
ontrol

and management framework for networking testbeds. ACM SIGOPS Operating Systems

Review, 43(4):54�59, Jan 2010.

[108℄ D. Ray
haudhuri, I. Seskar, M. Ott, S. Ganu, K. Rama
handran, H. Kremo, R. Sira
usa,

H. Liu, and M. Singh. Overview of the ORBIT radio grid testbed for evaluation of next-

generation wireless network proto
ols. In Wireless Communi
ations and Networking Con-

feren
e, 2005 IEEE, volume 3, pages 1664�1669 Vol. 3, 2005.

118

BIBLIOGRAPHY

[109℄ Hélène Renard, Yves Robert, and Frédéri
 Vivien. Stati
 load-balan
ing te
hniques for

iterative
omputations on heterogeneous
lusters. In Harald Kos
h, László Böszörményi, and

Hermann Hellwagner, editors, Euro-Par 2003 Parallel Pro
essing, volume 2790 of Le
ture

Notes in Computer S
ien
e, pages 148�159. Springer Berlin Heidelberg, 2003.

[110℄ Cristian Ruiz, Mihai Alenxandru, Olivier Ri
hard, Thierry Monteil, and Herve Aubert.

Platform
alibration for load balan
ing of large simulations: TLM
ase. In CCGrid 2014

� The 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,

Chi
ago, Illinois, USA, 2014.

[111℄ Cristian Ruiz, Salem Harra
he, Mi
hael Mer
ier, and Olivier Ri
hard. Re
onstru
table

software applian
es with kameleon. SIGOPS Oper. Syst. Rev., 49(1):80�89, January 2015.

[112℄ Cristian Ruiz, Olivier Ri
hard, and Joseph Emeras. Reprodu
ible software applian
es for

experimentation. In Pro
eedings of the 9th International ICST Conferen
e on Testbeds and

Resear
h Infrastru
tures for the Development of Networks and Communities (Trident
om),

Guangzhou, China, 2014.

[113℄ Cristian Ruiz, Olivier Ri
hard, Bri
e Videau, and Iegorov Oleg. Managing Large S
ale

Experiments in Distributed Testbeds. In Pro
eedings of the 11th IASTED International

Conferen
e, pages 628�636. IASTED, ACTA Press, feb 2013.

[114℄ Constantine Sapuntzakis, David Brumley, Ramesh Chandra, Ni
kolai Zeldovi
h, Jim Chow,

Moni
a S. Lam, and Mendel Rosenblum. Virtual applian
es for deploying and maintaining

software. In Pro
eedings of the 17th USENIX
onferen
e on System administration, LISA

'03, pages 181�194, Berkeley, CA, USA, 2003. USENIX Asso
iation.

[115℄ Lu
 Sarzynie
, Tomasz Bu
hert, Emmanuel Jeanvoine, and Lu
as Nussbaum. Design and

evaluation of a virtual experimental environment for distributed systems. In PDP, pages

172�179, 2013.

[116℄ Carmine Sellitto. The impa
t of impermanent web-lo
ated
itations: A study of 123 s
hol-

arly
onferen
e publi
ations. Journal of the Ameri
an So
iety for Information S
ien
e and

Te
hnology, 56(7):695�703, 2005.

[117℄ Xuanhua Shi, Chao Liu, Song Wu, Hai Jin, Xiaoxin Wu, and Li Deng. A
loud servi
e
a
he

system based on memory template of virtual ma
hine. In Chinagrid Conferen
e (ChinaGrid),

2011 Sixth Annual, pages 168�173, Aug 2011.

[118℄ Christos Siaterlis and Mar
elo Masera. A survey of software tools for the
reation of net-

worked testbeds. International Journal On Advan
es in Se
urity, 3(1 and 2):1�12, 2010.

[119℄ C. Sun, Le He, Qingbo Wang, and R. Willenborg. Simplifying servi
e deployment with

virtual applian
es. In Servi
es Computing, 2008. SCC '08. IEEE International Conferen
e

on, volume 2, pages 265�272, July 2008.

[120℄ Masahiro Tanaka and Osamu Tatebe. Pwrake: a parallel and distributed �exible work�ow

management tool for wide-area data intensive
omputing. In Pro
eedings of the 19th ACM

International Symposium on High Performan
e Distributed Computing, HPDC '10, pages

356�359, New York, NY, USA, 2010. ACM.

[121℄ Walter F. Ti
hy. Should
omputer s
ientists experiment more? Computer, 31(5):32�40, May

1998.

[122℄ Nikolay Topilski, Jeannie Albre
ht, and Amin Vahdat. Improving s
alability and fault tol-

eran
e in an appli
ation management infrastru
ture. In First USENIX Workshop on Large-

S
ale Computing, LASCO'08, pages 2:1�2:12, Berkeley, CA, USA, 2008. USENIX Asso
ia-

tion.

119

BIBLIOGRAPHY

[123℄ Sander Van Der Burg and Eel
o Dolstra. Disnix: A toolset for distributed deployment. S
i.

Comput. Program., 79:52�69, January 2014.

[124℄ B. Videau and O. Ri
hard. Expo : un moteur de
onduite d'experien
es pour plates-forme

dedies. In Conferen
e Fransaise en Systemes d'Exploitation (CFSE), 2008.

[125℄ Bri
e Videau, Corinne Touati, and Olivier Ri
hard. Toward an experiment engine for

lightweight grids. In MetroGrid workshop : Metrology for Grid Networks. ACM publish-

ing, O
tober 2007.

[126℄ Yanyan Wang. Automating experimentation with distributed systems using generative

te
hniques. PhD thesis, University of Colorado at Boulder, Boulder, CO, USA, 2006.

AAI3219040.

[127℄ YanyanWang, Antonio Carzaniga, and Alexander L. Wolf. Four enhan
ements to automated

distributed system experimentation methods. In Pro
eedings of the 30th international
on-

feren
e on Software engineering, ICSE '08, pages 491�500, New York, NY, USA, 2008. ACM.

[128℄ Yanyan Wang, Matthew J. Rutherford, Antonio Carzaniga, and Alexander L. Wolf. Au-

tomating Experimentation on Distributed Testbeds. In Pro
eedings of the 20th IEEE/ACM

International Conferen
e On Automated Software Engineering (ASE), ASE '05, pages 164�

173, New York, NY, USA, 2005. ACM.

[129℄ R. Clint Whaley and Antoine Petitet. Minimizing development and maintenan
e
osts in

supporting persistently optimized BLAS. Software: Pra
ti
e and Experien
e, 35(2):101�121,

February 2005. http://www.
s.utsa.edu/~whaley/papers/sper
w04.ps.

[130℄ Brian White, Jay Lepreau, Leigh Stoller, Robert Ri

i, Shashi Guruprasad, Ma
 Newbold,

Mike Hibler, Chad Barb, and Abhijeet Joglekar. An Integrated Experimental Environment

for Distributed Systems and Networks. In Pro
eedings of the 5th Symposium on Operating

Systems Design and Implementation (OSDI), pages 255�270, Boston, MA, De
ember 2002.

USENIX Asso
iation.

[131℄ JolyonWhite, Guillaume Jourjon, Thierry Rakotoarivelo, and Max Ott. Measurement Ar
hi-

te
tures for Network Experiments with Dis
onne
ted Mobile Nodes. In Anastasius Gavras,

Nguyen Huu Thanh, and Je� Chase, editors, TridentCom 2010, 6th International ICST

Conferen
e on Testbeds and Resear
h Infrastru
tures for the Development of Networks &

Communities, Le
ture Notes of the Institute for Computer S
ien
es, So
ial-Informati
s and

Tele
ommuni
ations Engineering, pages 315�330, Heidelberg, Germany, May 2010. ICST,

Springer-Verlag Berlin.

[132℄ Jia Yu and Rajkumar Buyya. A Taxonomy of S
ienti�
 Work�ow Systems for Grid Com-

puting. SIGMOD Re
ord, 34:44�49, September 2005.

[133℄ Tianle Zhang, Zhihui Du, Yinong Chen, Xiang Ji, and Xiaoying Wang. Typi
al virtual

applian
es: An optimized me
hanism for virtual applian
es provisioning and management.

Journal of Systems and Software, 84(3):377 � 387, 2011.

120

Part V

Appendix

121

Appendix A

Other experiment des
riptions

implemented

1 require 'g5k_api'

2

3 set :user, "
ruizsanabria"

4 set :gateway, "grenoble.g5k"

5 set :resour
es, "MyExperiment.resour
es"

6

7 reserv =
onne
tion(:type => "Grid5000")

8

9 reserv.resour
es = {:nan
y =>["{
luster='griffon'}/nodes=10"℄,

10 :luxembourg => ["{
luster='grandu
'}/nodes=10"℄,

11 :reims =>["nodes=10"℄}

12

13 reserv.name ="Tlm Load Balan
ing"

14

15 WORK_DIRECTORY="~/Exp_tlm_load_balan
ing"

16 TLM_TARBALL = "tlm_load_balan
ing.tar"

17 RUNS = 5

18 SIMULATION_PARAMETERS = "1 10000 152 172 86 mat
hed"

19 RESULTS_FILE = "tlm_vs_tlmlb"

20 ############# Experiment workflow ##

21 task :run_reservation do

22 reserv.run!

23 end

24

25 task :extra
ting_and_
ompiling, :target => resour
es, :on
e => true, :ea
h => :site do

26 msg("Compiling in site ")

27 unless
he
k("ls #{WORK_DIRECTORY}/TLMME_lb")

28 run("mkdir -p #{WORK_DIRECTORY}")

29 put("/tmp/#{TLM_TARBALL}","#{WORK_DIRECTORY}/#{TLM_TARBALL}")

30 run("
d #{WORK_DIRECTORY}; tar -xf #{TLM_TARBALL}")

31 run("
d #{WORK_DIRECTORY}/TLMME_lb/tlm/; make ITERATIONS=200")

32 run("
d #{WORK_DIRECTORY}/TLMME_lb/tlm/; make ITERATIONS=200 MAIN=main_lb_test EXESUFFIX=load_test")

33 end

34 put("/tmp/nodes.deployed","#{WORK_DIRECTORY}/TLMME_lb/tlm/")

35 end

36

37 task :tlm_lb, :target => resour
es.first, :syn
 => true do

38 RUNS.times do

39 run("
d #{WORK_DIRECTORY}/TLMME_lb/tlm/; ./grid_run_lb #{SIMULATION_PARAMETERS}")

40 end

41 end

42

43 task :tlm, :target => resour
es.first, :syn
 => true do

44 RUNS.times do

45 run("
d #{WORK_DIRECTORY}/TLMME_lb/tlm/; ./grid_run #{SIMULATION_PARAMETERS}")

46 end

47 end

Listing 14: Des
ription �le of an experiment that
ompares the gains obtained when applying load bala
ing

to a large simulation based on TLM. Some tasks were omitted due to spa
e
onstraints.

123

APPENDIX A. OTHER EXPERIMENT DESCRIPTIONS IMPLEMENTED

1 require 'g5k_api'

2 set :user, "root"

3 set :gw_user, "
ruizsanabria" ## repla
e with your user

4 set :resour
es, "MyExperiment.resour
es"

5 reserv =
onne
tion(:type => "Grid5000")

6 reserv.resour
es = { :lyon => ["nodes=2"℄ }

7 reserv.environment = "http://publi
.nan
y.grid5000.fr/~dleho
zky/newimage.ds
"

8 reserv.name = "mpi tra
e
olle
tion"

9

10 ##### Tasks Definition #####################################

11 task :run_reservation do

12 reserv.run!

13 end

14

15 ### Generating password less
ommuni
ation

16 task :
onfig_ssh do

17 msg("Generating SSH
onfig")

18 File.open("/tmp/
onfig",'w+') do |f|

19 f.puts "Host *

20 Stri
tHostKeyChe
king no

21 UserKnownHostsFile=/dev/null "

22 end

23 end

24

25 task :generating_ssh_keys do

26 run("mkdir -p /tmp/temp_keys/")

27 run("ssh-keygen -P '' -f /tmp/temp_keys/key") unless
he
k("ls /tmp/temp_keys/key")

28 end

29

30 task :trans_keys, :target => resour
es do

31 put("/tmp/
onfig","/root/.ssh/")

32 put("/tmp/temp_keys/key","/root/.ssh/id_rsa")

33 put("/tmp/temp_keys/key.pub","/root/.ssh/id_rsa.pub")

34 end

35

36 task :
opy_identity do

37 resour
es.ea
h{ |node|

38 run("ssh-
opy-id -i /tmp/temp_keys/key.pub root�#{node.name}") #,:target => gateway)

39 }

40 end

41

42 ### Getting the ben
hmark

43 task :get_ben
hmark, :target => resour
es do

44 unless
he
k("ls /tmp/NPB3.3.tar") then

45 msg("Getting NAS ben
hmark")

46 run("
d /tmp/; wget -q http://publi
.grenoble.grid5000.fr/~
ruizsanabria/NPB3.3.tar")

47 run("
d /tmp/; tar -xvf NPB3.3.tar")

48 end

49 end

50

51 task :
ompile_ben
hmark_lu, :target => resour
es do

52
ompile = "export PATH=/usr/lo
al/tau-install/x86_64/bin/:$PATH;"

53
ompile += "export TAU_MAKEFILE=/usr/lo
al/tau-install/x86_64/lib/Makefile.tau-papi-mpi-pdt;"

54
ompile += "make lu NPROCS=8 CLASS=A MPIF77=tau_f90.sh -C /tmp/NPB3.3/NPB3.3-MPI/"

55 run(
ompile)

56 end

57

58 ## Generating ma
hinefile

59 task :transfering_ma
hinefile, :target => resour
es.first do

60 put(resour
es.nodefile,"/tmp/ma
hinefile")

61 end

62

63 task :run_mpi, :target => resour
es.first do

64 mpi_params = "-x TAU_TRACE=1 -x TRACEDIR=/tmp/mpi_tra
es -np 8 -ma
hinefile /tmp/ma
hinefile"

65 run("/usr/lo
al/openmpi-1.6.4-install/bin/mpirun #{mpi_params} /tmp/NPB3.3/NPB3.3-MPI/bin/lu.A.8")

66 end

67

68 ## Gathering tra
es and merging

69 task :gathering_tra
es, :target => resour
es.first do

70 resour
es.ea
h{ |node|

71 msg("Merging results of node #{node.name}")

72 run("s
p -r #{node.name}:/tmp/mpi_tra
es/* /tmp/mpi_tra
es")

73 }

74
md_merge = "export PATH=/usr/lo
al/tau-install/x86_64/bin/:$PATH;"

75
md_merge += "
d /tmp/mpi_tra
es/; tau_treemerge.pl"

76 run(
md_merge)

77 run("
d /tmp/mpi_tra
es/; /usr/lo
al/akypuera-install/bin/tau2paje tau.tr
 tau.edf 1>lu.A.8.paje 2>tau2paje.error")

78 end

Listing 15: Des
ription �le of an experiment that tra
es a NAS ben
hmark with TAU.

124

Appendix B

Experiment management tools

omparison

The following des
riptions were used for
omparing Expo against XpFlow and Exe
o. The
on
lu-

sions of this
omparison were shown in Chapter 3.

1 require 'plain_api'

2

3 set :resour
es, "MyExperiment.resour
es"

4 set :user, "root"

5

6 reserv =
onne
tion(:type => "Plain",

7 :nodes_file => "vboxnodes")

8

9 PIPE_LENGTH = 800

10 RUNS = 5

11

12 task :install_pa
kages, :target => resour
es do

13 pa
kages = "make g++ openssh-server openmpi-bin openmpi-
ommon openmpi-dev"

14 run(" apt-get -y --for
e-yes install #{pa
kages} 2>&1")

15 run("if
onfig eth1 down")

16 end

17

18 task :
ompiling_tlm, :target => resour
es do

19 put("/home/
ristian/Dev/C++/TLM_2013/tlm_
lean_version.tar","/root/")

20 run("
d /root/ && tar -xf tlm_
lean_version.tar")

21 run("
d /root/TLMME/tlm/ && make")

22 end

23

24 task :
onf_mpi, :target => resour
es.first do

25 put(resour
es.nodefile, "/root/TLMME/tlm/bin/")

26 put("run_
luster", "/root/TLMME/tlm/")

27 run("
d /root/TLMME/tlm/ &&
hmod +x run_
luster")

28 end

29

30 task :run_tlm, :target => resour
es.first do

31

32 [2,4,6℄.ea
h do |num_pro
s|

33 RUNS.times{

34 run("
d /root/TLMME/tlm/;./run_
luster #{num_pr3o
s} 100 #{PIPE_LENGTH/num_pro
s} 86 43 mat
hed")

35 }

36 end

37 end

Listing 16: Experiment that measures the best performan
e of TLM
ode using Expo

125

APPENDIX B. EXPERIMENT MANAGEMENT TOOLS COMPARISON

1 from exe
o import *

2 from exe
o_engine import *

3

4
lass tlm_performan
e(Engine):

5

6 def run(self):

7 hosts= [Host('192.168.56.101', user = 'root'),Host('192.168.56.102', user = 'root')℄

8 logger.info("Starting Experiment")

9 logger.info("Installing pa
kages")

10 Remote(" apt-get -y --for
e-yes install \

11 make g++ openssh-server openmpi-bin openmpi-
ommon openmpi-dev 2>&1",

12 hosts).run()

13 logger.info("transfering
ode")

14 Put(hosts,

15 ["/home/
ristian/Dev/C++/TLM_2013/tlm_
lean_version.tar"℄,

16 "/root/").run()

17 logger.info("Compiling")

18 Remote("tar -xf tlm_
lean_version.tar",hosts).run()

19 Remote("
d /root/TLMME/tlm/ && make ",hosts).run()

20

21 logger.info("MPI
onfiguration")

22 f = open("ma
hines", "w")

23 for node in hosts:

24 f.write("%s \n" % node.address)

25 f.
lose()

26

27 Put(hosts[0℄,["ma
hines"℄,"/root/TLMME/tlm/bin/").run()

28 Put(hosts[0℄, ["run_
luster"℄, "/root/TLMME/tlm/").run()

29 SshPro
ess("
d /root/TLMME/tlm/ ;
hmod +x run_
luster",hosts[0℄).run()

30

31 logger.info("starting tlm exe
ution")

32 PIPE_LENGTH = 800

33 RUNS = 5

34 result_file = "exe
ution_time_tlm.txt"

35 f = open(result_file, "w")

36 for num_pro
s in [2,4,6℄:

37 for run in range(RUNS):

38 tlm_parallel = SshPro
ess(

39 "
d /root/TLMME/tlm/;./run_
luster"

40 " %d 100 %d 86 43 mat
hed" %(num_pro
s,PIPE_LENGTH/num_pro
s),

41 hosts[0℄)

42

43 tlm_parallel.run()

44 tlm_parallel.wait()

45 exe
ution_time = tlm_parallel.end_date - tlm_parallel.start_date

46 logger.info("Exe
ution time is : %d" % exe
ution_time)

47 #f.write("\n")

48

49 if __name__ == "__main__":

50 engine = tlm_performan
e()

51 engine.start()

Listing 17: Experiment that measures the best performan
e of TLM
ode using Exe
o

126

APPENDIX B. EXPERIMENT MANAGEMENT TOOLS COMPARISON

1 a
tivity :install_pa
kage do |nodes, pa
kages|

2 log("Installing pa
kages")

3 r = exe
ute_many(nodes, "apt-get -y --for
e-yes install #{pa
kages} 2>&1")

4 r = exe
ute_many(nodes,"if
onfig eth1 down")

5 end

6

7 a
tivity :
ompile_tlm do |nodes|

8 r = exe
ute_many(nodes, "
d /root/ && tar -xf tlm_
lean_version.tar")

9 r = exe
ute_many(nodes, "
d /root/TLMME/tlm/ && make")

10 end

11

12 a
tivity :tlm_exe
ution do |nodes,runs,pipe_length|

13 [2,4,6℄.ea
h do |num_pro
s|

14 runs.times{

15 r = exe
ute_one(nodes.first, "
d /root/TLMME/tlm/;./run_
luster #{num_pro
s} 100 #{pipe_length/num_pro
s} 86 43 mat
hed")

16 log(r)

17 }

18 end

19 end

20

21 a
tivity :
onf_mpi do |nodes|

22

23 log("MPI
onfiguration")

24 File.open("ma
hines", 'w') do |f|

25 nodes.ea
h{ |node|

26 f.puts(node.host)

27 }

28 end

29

30 end

31

32 pro
ess :main do

33 log "Installing pa
kages"

34 PIPE_LENGTH = 800

35 RUNS = 5

36

37 log "loading nodes"

38 ip_adresses = YAML::load(File.read("vboxnodes"))

39 hosts = [℄

40 ip_adresses.ea
h{ |ip|

41 hosts.push(simple_node("root�#{ip}"))

42 }

43

44 run(:install_pa
kage,hosts,"make g++ openssh-server openmpi-bin openmpi-
ommon openmpi-dev")

45 f = file(lo
alhost, "/home/
ristian/Dev/C++/TLM_2013/tlm_
lean_version.tar")

46 distribute f, hosts, "/root/tlm_
lean_version.tar"

47

48
ompile_tlm(hosts)

49 log "Finished of setting up TLM"

50
onf_mpi(hosts)

51
opy "ma
hines", hosts.first, "/root/TLMME/tlm/bin/ma
hines"

52
opy "run_
luster", hosts.first, "/root/TLMME/tlm/run_
luster"

53 r = exe
ute_one(hosts.first, "
d /root/TLMME/tlm/;
hmod +x run_
luster")

54 tlm_exe
ution(hosts, RUNS, PIPE_LENGTH)

55

56 end

Listing 18: Experiment that measures the best performan
e of TLM
ode using XPFlow

127

	Acknowledgments
	Abstract
	Resume
	I Introduction
	Introduction
	Experimental cycle
	Design
	Challenges

	Instantiation
	Challenges

	Execution
	Challenges

	Analysis
	Challenges

	Contributions
	Survey of experimental management tools
	Experiment management tool
	Experimental software environment

	Thesis organization

	Overview of experiment management in computer science
	Introduction
	Context and terminology
	Definitions
	Motivations for experimentation tools
	Ease of experimenting
	Replicability (automation)
	Reproducibility
	Controlling and exploring the parameter space
	Scalability

	Testbeds

	List of features offered by experiment management tools
	Description Language
	Type of Experiments
	Interoperability
	Reproducibility
	Fault Tolerance
	Debugging
	Monitoring
	Data Management
	Architecture

	Existing experimentation tools
	Naive method
	Weevil
	Workbench for Emulab
	Plush/Gush
	Expo
	OMF
	NEPI
	XPFlow
	Execo

	Discussion
	Tools not covered in the study
	Non general-purpose experiment management tools
	Scientific workflow systems
	Simulators and abstract frameworks

	Complementary tools
	Software provisioners and appliance builders
	Tools for capturing experimental context
	Tools for making the analysis reproducible
	Workload generators
	Distributed emulators

	Conclusions

	II Expo
	Expo: a tool to manage large scale experiments
	Introduction
	Expo
	Expo ResourceSet
	Expo Tasks
	Expo interactive console
	Expo experiment validation
	Expo experiment mapping
	Expo evolution

	Use cases
	Evaluation of experiment control systems
	Gush comparison
	XpFlow and Execo comparison
	Description language
	Experiment validation
	Experiment checkpoint

	Related works
	Deployment of complex distributed applications
	Regression tests for distributed applications

	Conclusions and future works

	How HPC applications can take advantage of experiment management tools
	Introduction
	Related work
	Load balancing of distributed applications
	Dynamic techniques
	Static techniques

	Experiment management tools
	Transmission-Line Matrix

	Load Balancing approach
	Expo calibration module

	Results
	Experimental platform
	Using different configurations
	Changing the number of nodes
	Large structure
	Distributed experiment
	Local experiment

	Conclusions and Future Works

	III Kameleon
	Setting up complex software stacks
	Introduction
	Motivations
	Reconstruct-ability
	Contributions of this chapter

	Related work
	Software appliance builders comparison
	Software Appliance Build Cycle
	Criteria for Improving User Productivity
	Software Appliance Builders
	Docker
	Packer
	BoxGrinder
	Veewee
	OZ
	Kameleon

	Discussion

	Kameleon: the mindful appliance builder
	Syntax
	Kameleon Contexts
	Checkpoint mechanism
	Extend mechanism
	Persistent cache mechanism
	Comparison with the previous Kameleon version

	Use cases
	Software Appliance Complexity
	Container Isolation
	Lightweight.
	Service.
	Kernel modules.
	Hardware dependent.

	Results and Discussion
	Hardware dependent software appliance evaluation
	Experiment packaging example

	Future work
	Conclusions

	Reproducible appliances for experimentation
	Introduction
	Related works
	Tools for capturing the environment of experimentation
	Methods for setting up the environment of experimentation
	Manual
	Script Automation
	Configuration management tools
	Software appliances

	Reconstructable software appliances
	Requirements for reconstruct-ability
	Design

	Experimental results and validation
	Kameleon old version
	Building old environments

	Discussion
	Conclusions and Future Works

	IV Conclusions
	Conclusions
	Experiment cycle
	Future works
	Expo perspectives
	Kameleon perspectives

	V Appendix
	Other experiment descriptions implemented
	Experiment management tools comparison

