
HAL Id: tel-01564999
https://theses.hal.science/tel-01564999

Submitted on 19 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Methods and tools for challenging experiments on
Grid’5000 : a use case on electromagnetic hybrid

simulation
Cristian Ruiz

To cite this version:
Cristian Ruiz. Methods and tools for challenging experiments on Grid’5000 : a use case on elec-
tromagnetic hybrid simulation. Distributed, Parallel, and Cluster Computing [cs.DC]. Université de
Grenoble, 2014. English. �NNT : 2014GRENM056�. �tel-01564999�

https://theses.hal.science/tel-01564999
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Présentée par

Cristian RUIZ

Thèse dirigée par Olivier Richard
et codirigée par Thierry Monteil

Préparée au sein du LIG, Laboratoire d’Informatique de Grenoble
et de l’École Doctorale Mathématiques, Sciences et Technologies de
l’Information, Informatique

Methods and Tools for Challenging experi-
ments on Grid’5000: a use case on electro-
magnetic hybrid simulation

Thèse soutenue publiquement le 15 décembre 2015,
devant le jury composé de :

M. Emmanuel Jeannot
Directeur de recheche à INRIA, Président

M. Frederic Desprez
Directeur de recherche à INRIA, Rapporteur

Mme. Kate Keahey
Scientist and Senior Fellow à Argonne National laboratory, Rapporteur

M. Yves Denneulin
Professeur à Grenoble INP, Examinateur

M. Olivier Richard
Maitre de conference, LIG, Directeur de thèse

M. Thierry Monteil
Maitre de conference, LAAS-CNRS, Co-Directeur de thèse

Contents

Aknowledgments 11

Abstrat 13

Resume 15

I Introdution 17

1 Introdution 19

1.1 Experimental yle . 20

1.1.1 Design . 21

Challenges . 21

1.1.2 Instantiation . 21

Challenges . 21

1.1.3 Exeution . 22

Challenges . 22

1.1.4 Analysis . 22

Challenges . 22

1.2 Contributions . 22

1.2.1 Survey of experimental management tools 23

1.2.2 Experiment management tool . 23

1.2.3 Experimental software environment . 24

1.3 Thesis organization . 24

2 Overview of experiment management in omputer siene 25

2.1 Introdution . 25

2.2 Context and terminology . 26

2.2.1 De�nitions . 26

2.2.2 Motivations for experimentation tools . 27

Ease of experimenting . 27

Repliability (automation) . 28

Reproduibility . 28

Controlling and exploring the parameter spae 28

Salability . 28

2.2.3 Testbeds . 29

2.3 List of features o�ered by experiment management tools 30

2.3.1 Desription Language . 30

2.3.2 Type of Experiments . 32

2.3.3 Interoperability . 32

2.3.4 Reproduibility . 32

2.3.5 Fault Tolerane . 33

3

CONTENTS CONTENTS

2.3.6 Debugging . 33

2.3.7 Monitoring . 34

2.3.8 Data Management . 34

2.3.9 Arhiteture . 35

2.4 Existing experimentation tools . 35

2.4.1 Naive method . 35

2.4.2 Weevil . 37

2.4.3 Workbenh for Emulab . 37

2.4.4 Plush/Gush . 37

2.4.5 Expo . 38

2.4.6 OMF . 38

2.4.7 NEPI . 38

2.4.8 XPFlow . 38

2.4.9 Exeo . 38

2.5 Disussion . 39

2.6 Tools not overed in the study . 40

2.6.1 Non general-purpose experiment management tools 40

2.6.2 Sienti� work�ow systems . 41

2.6.3 Simulators and abstrat frameworks . 41

2.7 Complementary tools . 41

2.7.1 Software provisioners and appliane builders 42

2.7.2 Tools for apturing experimental ontext 42

2.7.3 Tools for making the analysis reproduible 42

2.7.4 Workload generators . 43

2.7.5 Distributed emulators . 43

2.8 Conlusions . 43

II Expo 45

3 Expo: a tool to manage large sale experiments 47

3.1 Introdution . 47

3.2 Expo . 48

3.2.1 Expo ResoureSet . 49

3.2.2 Expo Tasks . 50

3.2.3 Expo interative onsole . 50

3.2.4 Expo experiment validation . 51

3.2.5 Expo experiment mapping . 51

3.2.6 Expo evolution . 52

3.3 Use ases . 52

3.4 Evaluation of experiment ontrol systems . 54

3.4.1 Gush omparison . 55

3.4.2 XpFlow and Exeo omparison . 55

Desription language . 56

Experiment validation . 56

Experiment hekpoint . 56

3.5 Related works . 58

3.5.1 Deployment of omplex distributed appliations 58

3.5.2 Regression tests for distributed appliations 59

3.6 Conlusions and future works . 59

4

CONTENTS CONTENTS

4 How HPC appliations an take advantage of experiment management tools 61

4.1 Introdution . 61

4.2 Related work . 62

4.2.1 Load balaning of distributed appliations 62

Dynami tehniques . 62

Stati tehniques . 63

4.2.2 Experiment management tools . 63

4.2.3 Transmission-Line Matrix . 63

4.3 Load Balaning approah . 64

4.3.1 Expo alibration module . 65

4.4 Results . 68

4.4.1 Experimental platform . 68

4.4.2 Using di�erent on�gurations . 68

4.4.3 Changing the number of nodes . 69

4.4.4 Large struture . 70

Distributed experiment . 70

Loal experiment . 70

4.5 Conlusions and Future Works . 70

III Kameleon 71

5 Setting up omplex software staks 73

5.1 Introdution . 73

5.1.1 Motivations . 74

5.1.2 Reonstrut-ability . 75

5.1.3 Contributions of this hapter . 75

5.2 Related work . 76

5.3 Software appliane builders omparison . 77

5.3.1 Software Appliane Build Cyle . 77

5.3.2 Criteria for Improving User Produtivity 77

5.3.3 Software Appliane Builders . 79

Doker . 79

Paker . 79

BoxGrinder . 80

Veewee . 80

OZ . 80

Kameleon . 80

5.3.4 Disussion . 80

5.4 Kameleon: the mindful appliane builder . 81

5.4.1 Syntax . 82

5.4.2 Kameleon Contexts . 84

5.4.3 Chekpoint mehanism . 85

5.4.4 Extend mehanism . 85

5.4.5 Persistent ahe mehanism . 86

5.4.6 Comparison with the previous Kameleon version 86

5.5 Use ases . 86

5.5.1 Software Appliane Complexity . 88

5.5.2 Container Isolation . 88

Lightweight. 89

Servie. 89

Kernel modules. 89

Hardware dependent. 89

5.5.3 Results and Disussion . 89

5

CONTENTS CONTENTS

Hardware dependent software appliane evaluation 89

Experiment pakaging example . 91

5.5.4 Future work . 92

5.5.5 Conlusions . 93

6 Reproduible applianes for experimentation 95

6.1 Introdution . 95

6.2 Related works . 96

6.2.1 Tools for apturing the environment of experimentation 96

6.2.2 Methods for setting up the environment of experimentation 96

Manual . 96

Sript Automation . 97

Con�guration management tools . 97

Software applianes . 97

6.3 Reonstrutable software applianes . 97

6.3.1 Requirements for reonstrut-ability . 99

6.3.2 Design . 100

6.4 Experimental results and validation . 102

6.4.1 Kameleon old version . 102

6.4.2 Building old environments . 103

6.5 Disussion . 103

6.6 Conlusions and Future Works . 103

IV Conlusions 105

7 Conlusions 107

7.1 Experiment yle . 108

7.2 Future works . 109

7.2.1 Expo perspetives . 109

7.2.2 Kameleon perspetives . 110

V Appendix 121

A Other experiment desriptions implemented 123

B Experiment management tools omparison 125

6

List of Figures

1.1 Experiment yle with distributed systems . 21

1.2 Experiment yle proposed in this thesis . 22

2.1 Tree of features . 31

2.2 Timeline of publiations dediated to experiment management tools 37

2.3 Whole panorama of tools that help with experimentation 40

3.1 Role of Expo in the experiment yle . 47

3.2 Expo arhiteture . 49

3.3 ResoureSet details . 49

3.4 Expo work�ow mapping . 51

3.5 Gush vs Expo salabiity evaluation . 55

3.6 Salability evaluation for the three experiment management 58

4.1 Load balaning approah . 65

4.2 Expo Modules: the alibration modules is exeuted one 66

4.3 Experiment alibration exeutable work�ow . 67

4.4 Heterogeneity of Grid'5000 . 67

4.5 Results using heterogeneous on�gurations . 69

4.6 Gain obtained with the same simulation parameters hanging the number of nodes. 69

5.1 Role of Kameleon in the experiment yle . 73

5.2 Creation proess of an experimental setup. 74

5.3 Kameleon arhiteture. 81

5.4 An example of a Kameleon reipe written in YAML. 83

5.5 Simpli�ed Kameleon reipe version 1.2.8 . 88

5.6 Example of experiment pakaging with Kameleon. 92

6.1 Kameleon reipe example . 98

6.2 Software appliane reation with Kameleon . 99

6.3 Example of persistent ahe ontents . 101

7

LIST OF FIGURES LIST OF FIGURES

8

List of Tables

2.1 Summary of analyzed experiment management tools 36

2.2 Number of publiations dediated to eah tool . 39

3.1 ResoureSet operations . 50

4.1 Exeution time of tasks . 66

5.1 This table shows how the software appliane build yle is supported by eah tool 78

5.2 Comparison of widely used appliane builders . 79

5.3 Kameleon ommands. 84

5.4 Kameleon onepts, interrelation between ontexts and setions. 85

5.5 Software applianes built with Kameleon . 87

5.6 Building time of some software applianes. The time is presented in seonds. . . . 90

5.7 Containers omparison mahine M1. 91

5.8 Containers omparison mahine M2. 91

5.9 Some persistent ahe arhives . 92

6.1 Persistent ahe approahes . 101

6.2 Software applianes generated . 102

6.3 Software applianes generated . 102

9

LIST OF TABLES LIST OF TABLES

10

Aknowledgments

First and foremost, I would like to express my deepest gratitude to my family. They were always

supporting me, reating the perfet onditions for me to be able to sueed in this endeavor.

Without their support this thesis would have not be possible.

My highest appreiation to Christiane Tron-Siaud who shared my happiness, my sadness and

made the impossible to help me out. I would like to thank Erik Meneses and Carlos Jaime Barrios

for their support and friendship that were important to endure the hard moments and speially

for giving me the idea of pursuing my studies in this �eld.

This thesis would have not been possible without the guidane, availability of my advisor

Olivier Rihard who was always there to disuss and give me valuable feedbak. I really enjoy

working with him and I really appreiated his sense of humor. I would like to thank Thierry

Monteil my other advisor for his invaluable help during this thesis who, in spite of, the distane

was present when I needed him.

I would like to thank Tomasz Buhert, Luas Nussbaum, Mihai Alexandru, Joseph Emeras

who ontributed diretly to this thesis by o-authoring some researh papers. A speial thanks

goes to Salem Harrahe, Mihael Merier, Pierre Neyron and Bruno Bzeznik who ontributed to

this thesis by helping me out with tehnial issues and by reating an exellent atmosphere for

working. I would like also to thank INRIA for funding this thesis.

Finally, nothing would have meaning if I did not have the support of my friends who always

were there to give me a hand.

11

LIST OF TABLES LIST OF TABLES

12

Abstrat

In the �eld of Distributed Systems and High Performane Computing experimental validation is

heavily used against an analyti approah. The latter is not feasible any more due to the omplexity

of those systems in terms of software and hardware. Therefore, researhers have to fae many

hallenges when onduting their experiments, making the proess ostly and time onsuming.

Although world sale platforms exist and virtualization tehnologies enable to multiplex hardware,

experiments are most of the time limited in size given the di�ulty to perform them at large sale.

The level of tehnial skills required for setting up an appropriate experimental environment is

rising with the always inreasing omplexity of software staks and hardware nowadays. This

in turn provokes that researhers in the pressure to publish and present their results use ad

ho methodologies. Hene, experiments are di�ult to trak and preserve, preventing future

reprodution.

A variety of tools have been proposed to address this omplexity at experimenting. They were

motivated by the need to provide and enourage a sounder experimental proess, however, those

tools primary addressed muh simpler senarios suh as single mahine or lient/server. In the

ontext of Distributed Systems and High Performane Computing, the objetive of this thesis is

to make omplex experiments, easier to perform, to ontrol, to repeat and to arhive.

In this thesis we propose two tools for onduting experiments that demand a omplex software

stak and large sale. The �rst tool is alled Expo that enables to e�iently ontrol the dynami

part of an experiment whih means all the experiment work�ow, monitoring of tasks, and olletion

of results. Expo features a desription language that makes the set up of an experiment with

distributed systems less painful. Comparison against other approahes, salability tests and use

ases are shown in this thesis whih demonstrate the advantage of our approah. The seond

tool is alled Kameleon whih addresses the stati part of an experiment, meaning the software

stak and its on�guration. Kameleon is a software appliane builder that enables to desribe

and ontrol all the proess of onstrution of a software stak for experimentation. The main

ontribution of Kameleon is to make easier the setup of omplex software staks and guarantee

its post reonstrution.

13

LIST OF TABLES LIST OF TABLES

14

Résumé

Dans le domaine des systèmes distribués et du alul haute performane, la validation expérimen-

tale est de plus en plus utilisé par rapport aux approhes analytiques. En e�et, elles-i sont de

moins en moins réalisables à ause de la omplexité grandissante de es systèmes à la fois au niveau

logiiel et matériel. Les herheurs doivent don faire fae à de nombreux hallenges lors de la

réalisation de leurs expérienes rendant le proessus oûteux en ressoure et en temps. Bien que de

larges plateformes parallèles et tehnologies de virtualisation existent, les expérimentations sont,

pour la plupart du temps, limitées en taille. La di�ulté de passer une expérimentation à l'éhelle

représente un des grands fateurs limitant. Le niveau tehnique néessaire pour mettre en plae

un environnement expérimentale approprié ne esse d'augmenter pour suivre les évolutions des

outils logiiels et matériels de plus en plus omplexes. Par onséquent, les herheurs sont tentés

d'utiliser des méthodes ad-ho pour présenter des résultats plus rapidement et pouvoir publier.

Il devient alors di�ile d'obtenir des informations sur es expérimentations et enore plus de les

reproduire.

Une palette d'outils ont été proposés pour traiter ette omplexité lors des expérimentations.

Ces outils sont motivés par le besoin de fournir et d'enourager des méthodes expérimentales

plus onstruites. Cependant, es outils se onentrent prinipalement sur des sénarios très sim-

ple n'utilisant par exemple qu'un seul noeud ou lient/serveur. Dans le ontexte des systèmes

distribués et du alul haute performane, l'objetif de ette thèse est de failiter la réation

d'expérienes, de leur ontr�le, répétition et arhivage.

Dans ette thèse nous proposons deux outils pour mener des expérimentations néessitant une

pile logiielle omplexe ainsi qu'un grand nombre de ressoures matérielles. Le premier outil est

Expo. Il permet de ontr�ler e�aement la partie dynamique d'une expérimentation, 'est à dire

l'enhaînement des tests expérimentaux, la surveillane des tahes et la ollete des résultats. Expo

dispose d'un langage de desription qui permet de mettre en plae une expériene dans un ontexte

distribué ave nettement moins de di�ultés. Contrairement aux autres approhes, des tests de

passage à l'éhelle et sénarios d'usage sont présentés a�n de démontrer les avantages de notre

approhe. Le seond outil est appelé Kameleon. Il traite les aspets statiques d'une expériene,

'est à dire la pile logiielle et sa on�guration. Kameleon est un logiiel qui permet de dérire

et ontr�ler toutes les étapes de onstrution d'un environnement logiiel destiné aux expérimen-

tations. La prinipale ontribution de Kamelon est de failiter la onstrution d'environnements

logiiels omplexes ainsi que de garantir de futur reonstrutions.

15

LIST OF TABLES

16

Part I

Introdution

17

Chapter 1

Introdution

Beware of bugs in the above ode; I have only proved it orret, not tried it. � Don

Knuth

If I have seen further it is by standing on the shoulders of giants - Isaa Newton -

Natural sienes have reated instruments

1

and develop methodologies [92℄ for arrying out a

more sound experimental proess that follows the sienti� method and assure that the results an

be validated. Nowadays, omputers are the support for sienti� disoveries in natural sienes

whih spans areas from partile physis to astronomy and osmology. Computers are mostly

used for performing data analysis and arrying out simulations

2

. In view of the inreasing

omplexity of this data-driven proess, omputational sienti� work�ows have been adopted as a

tool for improving and automating the experimentation ativity [90℄. They over di�erent phases

of the siene proess: hypothesis formation, experiment design, exeution, and data analysis.

Reently omputational sienti� work�ows and data provenane tehniques have reeived speial

attention [36℄ due the need for Reproduible researh that make a all for results reproduibility,

sharing and knowledge re-use in the sienti� ommunity. Likewise, researh based mainly on data

analysis and simulation of natural phenomena suh as image proessing, geophysis, bioinformatis,

signal proessing, neurosiene, et have been reating a set of tools [37, 54, 43, 100℄ that help to

ahieve reproduibility of their results.

A tendeny an be observed for improving the experimental methodologies when using omput-

ers at the servie of siene and we should expet the same for pure omputer siene. Distributed

systems in general and High performane omputing in partiular rely heavily on experimentation,

given that it is di�ult to study those systems using an analyti approah [121, 59, 66℄. Unfortu-

nately, there is a lak of methodologies and tools to ondut experiments with distributed systems

as expressed in [70℄, making experimenters use ad ho approahes that are hardly reproduible.

This an be explained by the fat that there exist more hallenges when our objet of study is

the same omputer system and experiment results and researh onlusions are dependent on the

most minimal detail of the software and hardware stak.

In [32℄ the proess of repeating an experiment was arefully studied and among the many

onlusions drawn, the di�ulty of repeating published results was highly relevant. There ould be

many reasons that hamper the Reproduibility/Repetability of experiments presented in a paper.

For example, the buildability of artifats, a reent study [30℄ found that roughly only 25% of

publiations in ACM onferenes and journals an be built. Another reason is the measurement

bias. In [93℄ it was shown that seemingly hanges in the experimental setup suh as Linux

environment size an in�uene the apparent performane of appliations. The low quality of

experiments in Distributed systems and High performane omputing ould be explained by the

onstant and fast evolution of omputer hardware and software.

1

The Large Hadron Collider (LHC), so far the biggest sienti� instrument build by humans.

2

Whih is normally alled in-silio siene

19

CHAPTER 1. INTRODUCTION

Testbeds have been reated to study di�erent kinds of distributed systems by o�ering ontrolled

onditions. Thanks to the evolution of virtualization, resoure sharing has been possible enabling to

build planet sale testbeds [103℄ that expose real network onditions. Di�erent forms of emulation

have made possible to ahieve large sale while o�ering more ontrolled onditions [130℄. Other

testbeds enable the whole software stak to be reon�gured [25℄. In short, the derease in the

prie of o�-the-shelf hardware and the evolution of virtualization and emulation tehnologies have

provoked that testbeds grow in size and possibilities for the user, making them more omplex to

manage and di�ult to take full advantage of them.

The ondution of experiments with distributed systems presents many hallenges. First, the

inreasing number of software layers and their on�guration. Seond, the omplex arhiteture

and hardware options now present. Third, the sale of distributed systems whih ould go from a

simple network of ahing servers to a big omputational luster with thousands of nodes. Those

hallenges make the task of designing, desription, setup, management, results olletion, et, very

omplex. In order to ease the experimentation proesses, make it less expensive and assure the

quality of the experiment (whih omprehends two important properties like Reproduibiliy and

Repeatability), eah testbed have endorsed the development of tools that help the users with

the proess of experimentation. Those tools address the experimentation yle di�erently o�ering

important features suh as failure handling and large deployment [5℄, manage of the whole exper-

imental yle with distributed systems and workload generation [126℄, versioning system to allow

researhers move forward and bakward through their experimentation proess [47℄, abstrations

to manage the inreasing number of nodes [124℄, instrumentation failities for appliations [107℄,

et. Cloud based testbeds have motivated the apparition of generi APIs for sripting experi-

ments [10, 67℄ that enable the use of all kinds of language onstruts, suh as loops, exeption

bloks, et. More reently, a work�ow approah inspired in the domain of business proess man-

agement is envisioned as a new alternative to manage large sale experiments [20℄.

There has been an evolution on the desription language going from in�exible markup lan-

guages like XML to the now widely used sripting languages suh as Ruby

3

and Python

4

. The

salability has been addressed by improving mehanisms to ontrol experiments and federate mul-

tiple testbeds. The right level of abstration is still missing, making desriptions too verbose

or with a high learning urve. Repeatability of experiments (whih has been a driving fore for

those tools) seems far from ahieved. Software staks used for distributed systems have beome

very omplex. They are omposed of di�erent interrelated layers that are in a onstant hange.

Therefore, the setup of an experiment is not guarantee to be repeatable. This thesis proposes two

tools targeted at making easy mainly the setup and exeution of experiments with distributed

systems. Nowadays, the number of testbeds that enable to ontrol the whole software stak has

risen. Either by adopting loud omputing tehnologies [51℄ or provisioning systems on real hard-

ware [25℄. We take advantage of the previous fat and propose an appliane builder to build, trak

and preserve the software stak used in an experiment, avoiding when possible the dependeny on

external soures. For management and automation of the experimental work�ow with distributed

systems, an experiment management tool is proposed that relies on a lightweight arhiteture and

provides to the user a domain spei� language that brings an appropriate level of abstration,

lowering the learning urve, providing oniseness and an e�ient mapping to the platform.

1.1 Experimental yle

In order to better explain the hallenges enountered when onduting experiments with dis-

tributed systems and to make lear the ontributions of this thesis, it is explained �rst the exper-

imental yle that is normally followed.

3

https://www.ruby-lang.org

4

https://www.python.org/

20

https://www.ruby-lang.org
https://www.python.org/

CHAPTER 1. INTRODUCTION

Design Instantiation Execution Analysis

Publication

Description

Figure 1.1: Experiment yle with distributed systems

1.1.1 Design

Here, the experimenter deides how his/her experiment environment is going to be onformed

and what ations need to be exeuted during the experiment. It is deided as well the measures

and how those will be olleted in order to have the appropriate data for answering the question

that has driven the experiment. The following are some questions answered in this phase: What

platform to use? how many nodes? how many di�erent roles and how they will be mapped into

the hosen nodes? what version of software to use? should it be applied some kind of workload?

what measures to do and with whih frequeny? how many times the individual tests have to be

repeated?, et. The output of this proess of deision is the experiment desription.

Challenges

The goal of the desription of the experiment is to have enough details of the experimentation

proess in order to be able to re-reate or at least trae bak the experiment (its provenane).

Therefore, this desription normally details:

� All the di�erent software with their respetive versions.

� The required omputer resoures and their harateristis.

� The di�erent ations that have to be arried out (e.g., exeution of an appliation with

ertain parameters)

� The number of times that is to be repeated.

� The analysis steps that are to be performed.

The hallenges here is to �nd an appropriate way to desribe an experiment that is omprehen-

sible with a low learning urve. We have to remark that when dealing with distributed systems, the

experimental senario is omplex, omprising many variables (i.e., nodes, roles, software, workload,

et).

1.1.2 Instantiation

In this stage all the experiment requirements in software and hardware are mapped into the infras-

truture. First, the mahines that math the experiment requirements are alloated. Then, all the

neessary software is loaded into the hosen mahines (provisioning) and �nally the on�guration

of all the software stak takes plae (ontextualization). Software an be instrumented if needed.

Challenges

The hallenges here is to �nd an e�ient mehanism for resoure disovery, to trak all the infor-

mation related with the software and hardware used (environment apturing) and to assure that

the hardware is orretly on�gured.

21

CHAPTER 1. INTRODUCTION

1.1.3 Exeution

In this phase, all the ations that the experimenter has planned within the experiment are arried

out. The experimenter monitors the state of the experiment in order to detet errors and follow

its progress.

Challenges

When dealing with distributed infrastrutures there is a neessity of saling the experiment and

ontrolling large number of nodes. There should be a good orhestration of the experiment that

enables to perform tasks at a given time, exeute operations e�iently, monitor and ollet results.

This is done most of the time with the goal of reduing osts. Another important hallenge is the

apture of the platform state whih ould have important in�uene on the results of an experiment.

1.1.4 Analysis

It deals with the transformation of the raw data obtained by running the experiments in useful

information and onlusions. This will be inluded in publiations as tables and plots.

Challenges

One of the hallenges is to make the proess of transformation of the raw data expliit in order to

be able to reprodue it without the need of re-exeuting the experiment.

1.2 Contributions

Figure 1.2: Experiment yle proposed in this thesis

This thesis presents two tools aimed at improving the experimentation ativity with distributed

systems. The tools proposed, seek for rendering the proess less ostly, making the experimenter

more e�ient and improving the quality of the experiments with distributed systems. The exper-

imental yle is managed paying speial attention to the provisioning of the experiments. Provi-

sioning is an important part of the proess of experimentation and it onstantly generates issues,

22

CHAPTER 1. INTRODUCTION

making the whole proess error-prone and time onsuming. Experimenters ould lak the appro-

priate omputer engineering skills neessary to deal with the omplexity of the software stak.

For the previous reasons we opted for addressing Provisioning with a di�erent tool. Additionally,

in this thesis we have identi�ed the onept of reonstrut-ability whih we believe is essential

for guaranteeing the revisability, modi�ability and post-reonstrution of software artifats em-

ployed in an experiment. This represents a step further towards experiments reproduibility with

distributed systems.

The ontributions of this thesis are threefold:

� A survey of experimental management tools.

� An experimental management tool for distributed systems that overs the whole experiment

yle (i.e., Design, Instantiation, Exeution and Analysis).

� An appliane builder that deals with omplex software staks required for the experiments

(i.e., Provisioning of experiments).

1.2.1 Survey of experimental management tools

This thesis presents a survey of the existing experimental management tools for distributed sys-

tems. Given the emergene of new tools for managing experiments with distributed systems and

a signi�ant number of publiations dediated to them, we deided to arry out an extensive

literature review whih led us with the following results:

� De�nitions and ommon voabulary.

� List of features that enables to evaluate the urrent experiment management tools proposed

by di�erent testbeds.

� Impat analysis of publiations.

This survey ould be used as a framework for evaluating existing experiment management

tools. It was done in tightly ollaboration with Tomasz Buhert Ph.D student in the AlGorille

team, at LORIA (Nany). This survey produed the following publiation:

� Tomasz Buhert, Cristian Ruiz, Luas Nussbaum, and Olivier Rihard. A survey of general-

purpose experiment management tools for distributed systems. Future Generation Computer

Systems, 45(0):1 � 12, 2015

1.2.2 Experiment management tool

In this thesis presents work on Expo. It is an experiment management engine that automates

the whole experiment yle with distributed systems. It provides a �exible desription language

based on two main abstrations: ResoureSet and Tasks that help the experimenter to manage

large amount of nodes e�iently and speify ompliated work�ows for the exeution part. This

tool has already been proposed and presented in [125, 124℄. During this thesis Expo has been

extended, its arhiteture has su�ered a total redesign, their abstrations have been re�ned and

new funtionalities have been added. Comparisons with existing tools were done and new use

ases were found. The work with Expo has produed the following publiations:

� Cristian Ruiz, Olivier Rihard, Brie Videau, and Iegorov Oleg. Managing Large Sale

Experiments in Distributed Testbeds. In Proeedings of the 11th IASTED International

Conferene, pages 628�636. IASTED, ACTA Press, feb 2013

� Cristian Ruiz, Mihai Alenxandru, Olivier Rihard, Thierry Monteil, and Herve Aubert. Plat-

form alibration for load balaning of large simulations: TLM ase. In CCGrid 2014 � The

14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, Chiago,

Illinois, USA, 2014

23

CHAPTER 1. INTRODUCTION

1.2.3 Experimental software environment

It should be reasonable to expet experimental setup to be reproduible. Spei�ally,

if the infrastruture setup and the software installation and on�guration an be per-

formed in a reproduible manner then sientists are muh more enabled at repliating

or extending the experiment in question [84℄

This thesis presents the work on Kameleon that has mainly two goals: (1) make the setup of

omplex software staks easier for the average user, (2) make software artifats reonstrut-able

whih means they ould be examined, modi�ed and reonstruted at any time (post-experiment).

It addresses a widespread problem in publiations [30℄ and in the daily researh life [57℄ whih

is the buildability of the software environment. The onstant and rapid hange in the di�erent

software omponents used nowadays, make di�ult to trak them and put them together to work.

As a result, few experiment setups an be reused and experimenters spend a lot of time trying to

build their environment for experimentation. Kameleon is an appliane builder already proposed

in [49℄, during this thesis the tool was re-oneptualize and new syntax and funtionalities were

added. All was driven by the requirements for building omplex software staks for Distributed

systems and High Performane omputing researh. A persistent ahe mehanism was proposed

and implemented that enables to preserve the software stak over time (whih means it an be

rebuilt at any time). This work produed the following publiation:

� Cristian Ruiz, Olivier Rihard, and Joseph Emeras. Reproduible software applianes for

experimentation. In Proeedings of the 9th International ICST Conferene on Testbeds and

Researh Infrastrutures for the Development of Networks and Communities (Tridentom),

Guangzhou, China, 2014

� Cristian Ruiz, Salem Harrahe, Mihael Merier, and Olivier Rihard. Reonstrutable soft-

ware applianes with kameleon. SIGOPS Oper. Syst. Rev., 49(1):80�89, January 2015

1.3 Thesis organization

The thesis is divided into three parts:

� Part I : Introdues all the neessary terminology in order to position our ontributions in

the �eld of experimentation with distributed systems. Chapter 2 presents a survey of exper-

imentation tools for distributed systems. It shows all the state of the art related with the

tools oneived for helping users with the proesses of experimentation.

� Part II : Presents Expo an experimentation tool for distributed systems. Chapter 3 shows

the new onepts and design hanges added during this thesis as well as an evaluation against

others experiment management tools. Chapter 4 presents a use ase of Expo that helps to

deploy appliations e�iently by performing a load balaning.

� Part III : Presents Kameleon an appliane builder for omplex software staks. In Chapter 5

the onept of reonstrut-ability is presented along with Kameleon arhiteture, syntax,

onepts and a omparison with the most widely known appliane builders used in loud

omputing. Chapter 6 is dediated to the problemati of preserving a software stak over

time.

24

Chapter 2

Overview of experiment management in

omputer siene

In the �eld of large-sale distributed systems, experimentation is partiularly di�ult. The stud-

ied systems are omplex, often nondeterministi and unreliable, software is plagued with bugs,

whereas the experiment work�ows are unlear and hard to reprodue. These obstales led many

independent researhers to design tools to ontrol their experiments, boost produtivity and im-

prove quality of sienti� results.

Despite muh researh in the domain of distributed systems experiment management, the

urrent fragmentation of e�orts asks for a general analysis. We therefore propose to build a

framework to unover missing funtionality of these tools, enable meaningful omparisons between

them and �nd reommendations for future improvements and researh.

The ontribution in this hapter is twofold. First, we provide an extensive list of features o�ered

by general-purpose experiment management tools dediated to distributed systems researh on real

platforms. We then use it to assess existing solutions and ompare them, outlining possible future

paths for improvements.

Considering the omplexity of experimenting with distributed systems, there exist a plethora

of speialized tools that address spei� parts of the experimentation proess. We onlude our

study of general-purpose experiment management tools with a presentation of the state of the art

of those omplementary tools that are a valuable help for researhers when experimenting with

distributed systems. The ontents of this hapter were published in a paper [21℄ that I o-authored

with Tomasz Buhert Ph.D student in the AlGorille team, at LORIA (Nany).

2.1 Introdution

Distributed systems are among the most omplex objets ever built by humans, as they are

omposed of thousands of systems that ollaborate together. They also have a entral role in

today's soiety, supporting many sienti� advanes (sienti� & high-performane omputing,

simulation, Big Data, et.), and serving as the basis for the infrastruture of popular servies suh

as Google or Faebook. Their role and popularity makes them the target of numerous researh

studies in areas suh as sheduling, ost evaluation, fault tolerane, trust, salability, energy

onsumption, et.

Given the size and omplexity of distributed systems, it is often unfeasible to arry out analyti

studies, and researhers generally use an empirial approah relying on experimentation: despite

being built by humans, distributed systems are studied as if they were natural objets, with

methods similar to those used in biology or physis.

One an distinguish four main methodologies for experimentation on distributed systems [59℄:

� in-situ: a real appliation is tested on a real platform.

25

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

� simulation: a model of an appliation is tested on a model of the platform.

� emulation: a real appliation is tested using a model of the platform.

� benhmarking : a model of an appliation is used to evaluate a real platform.

Eah methodology has its advantages and disadvantages. For example, results obtained during

simulation are (usually) ompletely reproduible. On the other hand, as the platform is a model

of the reality, the results may not apply in a general sense, as the model ould lak some unnotied

but important features. It is important to remark as well that all those methodologies omplement

eah other and hoosing between them depends on the level of realism we want to ahieved

in our experiments. In this hapter we fous on experiments based on in-situ and emulation

methodologies.

Beause of the atual size of the available testbeds and of the omplexity of the di�erent soft-

ware layers, a lot of time is required to set up and perform experiments. Sientists are onfronted

with low-level tasks that they are not familiar with, making the validation of urrent and next

generation of distributed systems a omplex task. In order to lower the burden in setting up an

experiment, di�erent testbeds and experiment management tools have appeared. The last deade

has seen more interest in the latter, mainly in�uened by the needs of partiular testbeds and

other problems found in the proess of experimentation suh as reproduibility, repliability, au-

tomation, ease of exeution, salability, et. Additionally, the existing number of papers oriented

toward suh tools asks for a lassi�ation in order to unover their apabilities and limitations.

Hene, experiment management tools are the main objet of study in this hapter. We propose a

set of features that improve the experimentation proess in various ways at eah step (design, de-

ployment, running the main experiment and related ativities, and data and result management).

This list an be used to arry out a fair omparison of tools used for onduting experiments, as

well as a guideline when hoosing a tool that suits ertain needs.

The rest of hapter is strutured as follows. In Setion 2.2 existing methods and approahes

to experimentation with distributed systems are presented. Then, in Setion 2.3, a set of features

o�ered by existing experimentation tools is onstruted and eah element is arefully and preisely

explained. In Setion 2.4, we present a list of tools helping with researh in distributed systems.

Eah tool is shortly presented and its features explained. Our additional observations and ideas

are presented in Setion 2.5. Finally, in Setion 2.8 we onlude our work and disuss future work.

2.2 Context and terminology

This setion introdues some de�nitions that will be used throughout this hapter, as well as the

ontext where our objet of study plays its role.

2.2.1 De�nitions

For our purposes, an experiment is a set of ations arried out to test (on�rm, falsify) a partiular

hypothesis. There are three elements involved in the proess: a laboratory (the plae where one

experiments), an investigator (the one who experiments) and an apparatus (the objet used to

measure). If an experiment an be run with a di�erent laboratory, investigator and apparatus,

and still produe the same onlusions, one says that it is reproduible. This is in ontrast with

repliability whih requires the same results while keeping these three elements unhanged. The

terms reproduibility and repliability (replayability) produe a lot of onfusion and disrepanies

as they are often used to desribe di�erent ideas and goals. The above de�nitions are ompatible

with the de�nitions given in [44℄, although we do not share suh a negative view about repliability

as the authors. Being a �poor ousin� of reproduibility, repliability is nevertheless essential to

the veri�ation of results and ode reusability as expressed in [37℄.

Finally, let us introdue a last piee of terminology and de�ne the objet of study in this

hapter. An experimentation tool or an experiment management tool (for researh in distributed

26

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

systems) is a piee of software that helps with the following main steps during the proess of

experimenting:

� design � by ensuring reproduibility or repliability, providing unambiguous desription of

an experiment, and making the experiment more omprehensible,

� deployment � by giving e�ient ways to distribute �les (e.g., sripts, binaries, soure ode,

input data, operating system images, et.), automating the proess of installation and on-

�guration, ensuring that everything needed to run the experiment is where it has to be,

� running the experiment itself � by giving an e�ient way to ontrol and interat with the

nodes, monitoring the infrastruture and the experiment and signaling problems (e.g., failure

of nodes),

� olletion of results � by providing means to get and store results of the experiment.

Furthermore, it addresses experimentation in its full sense and it is normally oneived with

one of the following purposes desribed fully in the next setion:

� ease of experimenting,

� repliability,

� reproduiblity,

� ontrolling and exploring parameter spae.

In this study we narrow the objet of study even more by onsidering only general-purpose

experiment management tools (i.e., tools that an express arbitrary experimental proesses) and

only ones that experiment with real appliations (i.e., in-situ and emulation methodologies). The

former restrition exludes many tools with prede�ned experimental work�ows whereas the latter

exludes, among others, simulators (see Setion2.6).

2.2.2 Motivations for experimentation tools

As desribed before, there exist many tools that strive to ease experimentation with distributed

systems. These tools are the main objet of study in this artile and as suh they are desribed

thoroughly in Setion 2.4. Here, however, we disuss the main driving fores that are behind the

emergene of experimentation tools.

Ease of experimenting

The �rst motivation, and the main one, for reating experimentation tools is helping with the

sienti� proess of experimenting and making the experimenter more produtive. By providing

well designed tools that abstrat and outsoure tedious yet already solved tasks, the development

yle an be shortened, while beoming more rigorous and targeted. Moreover, it may beome

more produtive as the sientist may obtain additional insights and feedbak that would not be

available otherwise. The ease of experimenting an indiretly help to solve the problem of researh

of questionable quality in the following sense. As the sienti� ommunity exerts pressure on

sientists to publish more and more, they are often fored to publish results of dubious quality. If

they an forget about time-onsuming, low-level details of an experiment and fous on the sienti�

question to answer, hopefully they ould spend more time testing and strengthening their results.

27

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

Repliability (automation)

Repliability whih is also known as replayability deals with the at of repeating a given exper-

iment under the very same onditions. In our ontext it means: same software, same external

fators (e.g., workload, faults, et.), same on�guration, et. If done orretly, it will lead to the

same results as obtained before, allowing others to build on previous results and to arry out fair

omparisons. There are several fators that hamper this goal: size of the experiment, hetero-

geneity and faulty behavior of testbeds, omplexity of the software stak, numerous details of the

on�guration, generation of repeatable onditions, et. Among other goals, experimentation tools

try to ontrol the experiment and produe the same results under the same onditions, despite

the aforementioned fators.

Reproduibility

It refers to the proess of independent repliation of a given experiment by another experimenter.

Ahieving reproduibility is muh harder than repliability beause we have to deal with the

measurement bias that an appear even with the slightest hange in the environment. Therefore,

in order to enhane the reproduibility of an experiment, the following features are required:

� automati apture of the ontext (i.e., environment variables, ommand line parameters,

versions of software used, software dependenies, et.) in whih the experiment is exeuted;

� detailed desription of all the steps that led to a partiular result.

The desription of an experiment has to be independent of the infrastruture used. To do so

abstrations for the platform have to be o�ered.

Controlling and exploring the parameter spae

Eah experiment is run under a partiular set of onditions (parameters) that preisely de�ne

its environment. The better these onditions are desribed, the fuller is understanding of the

experiment and obtained results. Moreover, a sientist may want to explore the parameter spae

in an e�ient and adaptive manner instead of doing it exhaustively.

Typial parameters ontained in a parameter spae for a distributed system experiment are:

� number of nodes,

� network topology,

� hardware on�guration (CPU frequeny, network bandwidth, disk, et.),

� workload during the experiment.

One an enlarge the set of parameters tested (e.g., onsidering CPU speed in a CPU-unaware

experiment) as well as vary parameters in their allowed range (e.g., testing a network protool

under di�erent topologies).

Whereas the apability to ontrol the various experimental parameters an be, and quite often

is, provided by an external tool or a testbed (e.g., Emulab), the high-level features helping with a

design of experiments (DoE), as the e�ient parameter spae exploration, belong to experimen-

tation tools.

Salability

Another motivation for an experiment ontrol is salability of experiments, that is, being able to

inrease their size without harming some pratial properties and salability metris. For example,

one an onsider if an experimentation tool is able to ontrol many nodes (say, thousands) with-

out signi�antly inreasing the time to run the experiment, or without hampering the statistial

signi�ane of results.

The most important properties onerning salability are:

28

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

� time � additional time needed to ontrol the experiment (over the time to run it itself),

� resoures � amount of resoures required to ontrol the experiment,

� ost of the experiment � funds required to run the experiment and ontrol it (f. ommerial

loud omputing),

� quality of results � the sienti� auray of the results, their reproduibility in partiular

(ontrary to the above properties, this one is hard to de�ne and measure).

These metris are funtions of experiment parameters (see Setion2.7.5) and implementation

details. Among important fators that limit salability understood as the metris above are:

� number of nodes used in the experiment,

� size of monitoring infrastruture,

� e�ieny of data management.

2.2.3 Testbeds

Testbeds play an important role in the design and validation of distributed systems. They o�er on-

trolled environments that are normally shielded from the randomness of prodution environments.

Here, we present a non-exhaustive list of testbeds that motivated the development of experiment

management tools. There exists a work on de�ning useful features of network testbeds, similar to

the goals of our study [118℄. Unsurprisingly, some features overlap in both analyses.

� Grid'5000 [25℄ is an experimental testbed dediated to the study of large-sale parallel and

distributed systems. It is a highly on�gurable experimental platform with some unique

features. For example, a ustomized operating system (e.g., with a modi�ed kernel) an be

installed and full �root� rights are available. The platform o�ers a REST API to ontrol

reservations, but does not provide dediated tools to ontrol experiments. However, the

nodes an be monitored during the experiment using a simple API.

� Emulab [130℄ is a network testbed that allows one to speify an arbitrary network topology

(thanks to the emulation of the network). This feature ensures a preditable and repeatable

environment for experiments. User has aess to a �root� aount on the nodes, but annot

tweak the internals of the operating system. Emulab omes with a dediated tool to ontrol

experiments (see 2.4.3).

� PlanetLab [103℄ is a globally distributed platform for developing, deploying and aessing

planetary-sale network servies. It onsists of geographially distributed nodes running a

light, virtualized environment. The nodes are onneted over the Internet. PlanetLab o�ers

Plush (see 2.4.4) for the experiment ontrol.

� ORBIT [108, 98℄ is a radio grid testbed for salable and reproduible evaluation of next-

generation wireless network protools. It o�ers a novel approah involving a large grid of

radio nodes whih an be dynamially interonneted into arbitrary topologies with repro-

duible wireless hannel models. A dediated tool to run experiments with ORBIT platform

is OMF (see 2.4.6).

� DAS

1

(Distributed ASCI Superomputer) is a Duth wide-area distributed system designed

by the Advaned Shool for Computing and Imaging (ASCI). Distinguishably, it employs

various HPC aelerators (e.g., GPUs) and novel network interonnet. Its most reent

iteration is DAS-4. DAS does not o�er a dediated tool to ontrol experiments, however it

provides a number of tools to help with deployment, disovering problems and sheduling.

1

http://www.s.vu.nl/das4/

29

http://www.cs.vu.nl/das4/

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

With the emergene of e�ient and heap virtualization, the sientists turn to loud om-

puting infrastrutures as a viable experimentation platform. A popular ommerial servie is

Amazon EC2

2

, but many alternatives and variations exist (e.g., Windows Azure

3

). There are

non-ommerial, open-soure solutions available as well (e.g., OpenStak

4

). Even though the de-

velopment of loud omputing solutions was not inspired by a need of a researh platform, the

salability and elastiity o�ered by those make it an attrative solution for siene. In [84℄ a

framework oriented toward reproduible researh on suh infrastrutures is proposed.

2.3 List of features o�ered by experiment management tools

In this setion, we present properties available in experiment management tools for distributed

systems after doing a literature review using the following soures:

� tools used and published by the most important and large-sale testbeds (see Setion 2.2.3),

� papers referened by these tools and papers that ite them,

� IEEE and ACM digital libraries searh with the following keywords in the abstrat or title:

experiments, experiment, distributed systems, experimentation, reproduible.

We ended up with 8 relevant tools for managing experiments that met our riteria of an

experimentation tool, however we also inlude Naive approah (see Setion 2.4.1) in our analysis.

An extensive analysis of the papers dediated to those tools was performed; subsequently, a set of

properties and features - highlighted by eah of the tools as to be important for the experimentation

proess - was seleted and lassi�ed.

The list onsists of nine groups of properties and features that have an important role in the

experimentation proess. The omplete hierarhy is presented in Figure 2.1.

2.3.1 Desription Language

The design of the experiment is the very �rst step in the experimentation proess. The desription

language helps users with this step, allowing them to desribe how the experiment has to be

performed, as well as their needs for running the experiment. Charateristis that help with

desribing the experiment are presented in the following setions.

Representation (Imperative / Delarative / Work�ow / Sripts) of experiments featured by

a given tool is the approah used to desribe the experiment and relevant details. Possible

representations di�er in their underlying paradigm (e.g., imperative, delarative) and in a

level of abstration that the desription operates on. Some tools use low-level sripts to

build experiments whereas others turn to higher abstrations, some of them graphial (e.g.,

work�ows). The hoie of a ertain representation has impliations on other aspets of the

desription language.

Modularity (Yes / No) is a property of experiment desription language that enables easy

adding, removing, replaing and reusing parts of experiments. An experiment expressed

in a modular way an be logially split into modules with well-de�ned interfaes that an be

worked on independently, possibly by di�erent researhers speializing in a partiular aspet

of the experiment.

Expressiveness (Yes / No) that makes it e�etive in onveying thoughts and ideas, in short and

suint form. Expressiveness provides a more maintainable, learer desription. Various

elements an improve expressiveness: well-hosen abstrations and onstrutions, high-level

struture, among others.

2

http://aws.amazon.om/e2/

3

http://www.windowsazure.om/

4

http://www.openstak.org/

30

http://aws.amazon.com/ec2/
http://www.windowsazure.com/
http://www.openstack.org/

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

Arhiteture

Interfae CLI / GUI / API

E�ient operations Yes / No

Simple installation Yes / No

Low resoure requirements Yes / No

Control struture Centralized / Distributed

Data

Management

Analysis of results Yes / No

File management Yes / No

Provisioning Yes / No

Monitoring

Instrumentation Yes / No

Platform monitoring Yes / No

Experiment monitoring Yes / No

Debugging

Validation Yes / No

Logging Yes / No

Interative exeution Yes / No

Fault

Tolerane

Veri�ation of on�guration Yes / No

Failure handling Yes / No

Chekpointing Yes / No

Reproduibility

Workload generation Yes / No

Fault injetion Yes / No

Provenane traking Yes / No

Interoperability

Software interoperability Yes / No

Resoure disovery Yes / No

Support for testbed servies Yes / No

Testbed independene Yes / No

Type of

Experiments

Intended use Distributed appliations

/ Wireless

/ Servies / Any

Platform type Real / Model

Desription

Language

Low entry barrier Yes / No

Expressiveness Yes / No

Modularity Yes / No

Representation Imperative

/ Delarative

/ Work�ow / Sripts

Figure 2.1: The tree of features. All evaluated properties and features are presented with their respetive

domains of values. The properties are grouped into 9 groups that over di�erent aspets of experiment

management.

31

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

Low entry barrier (Yes / No) is the volume of work needed to swith from naive approah

to the given approah while assuming prior knowledge about the infrastruture and the

experiment itself. In other words, it is the time required to learn how to e�iently design

experiments in the language of the given experimentation tool.

2.3.2 Type of Experiments

This enompasses two important aspets of an experiment: the platform where the experiments

are going to run on and the researh �elds where those experiments are performed.

Platform type (Real / Model) is the range of platforms supported by the experimentation tool.

The platform type an be real (i.e., onsist of physial nodes) or be a model (i.e., built

from simpli�ed omponents that model details of the platform like network topology, links

bandwidth, CPU speed, et.). For example, platforms using advaned virtualization or

emulation tehniques (like Emulab testbed) are onsidered to be modeled. Some testbeds

(e.g., PlanetLab) are onsidered real beause they do not hide the omplexity of the platform,

despite the fat that they use virtualization.

Intended use (Distributed appliations / Wireless / Servies / Any) refers to the researh

ontext the experimentation tool targets. Examples of researh domains that some tools

speialize in inlude: wireless networks, network servies, high performane omputing, peer-

to-peer networks, among many others.

2.3.3 Interoperability

It is important for an experimentation tool to interat with di�erent platforms, as well as to

exploit their full potential. The interation with external software is an indisputable help during

the proess of experimenting.

Testbed independene (Yes / No) of the experimentation tool is its ability to be used with

di�erent platforms. The existing tools are often developed along with a single testbed and

tend to fous on its funtionality and, therefore, annot be easily used somewhere else. Other

tools expliitly target a general use and an be used with a wide range of experimental

infrastrutures.

Support for testbed servies (Yes / No) is a apability of the tool to interfae di�erent ser-

vies provided by the testbed where it is used (e.g., resoure requesting, monitoring, de-

ployment, emulation, virtualization, et.). Suh a support may be vital to perform salable

operations e�iently, exploit advaned features of the platform or to ollet data unavailable

otherwise.

Resoure disovery (Yes / No) is a feature that allows to reserve a set of testbed resoures

meeting de�ned riteria (e.g., nodes with 8 ores interonneted with 1 Gbit network).

Among methods to ahieve this feature are: interoperating with testbed resoure disov-

ery servies or emulation of resoures by the tool.

Software interoperability (Yes / No) is the ability of using various types of external software

in the proess of experimenting. The experimentation tool that interoperates with software

should o�er interfaes or means to aess or integrate monitoring tools, ommands exeuters,

software installers, pakage managers, et.

2.3.4 Reproduibility

This group onerns all methods used to help with reproduibility and repeatability as was de-

sribed in Setion 2.2.2.

32

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

Provenane traking (Yes / No) is de�ned as a way of traing and storing information of how

sienti� results have been obtained. An experimentation tool supports data provenane if

it an desribe the history of a given result for a partiular experiment. An experimentation

tool an provide data provenane through the traking of details at di�erent layers of the

experiment. At a low-level layer, the tool must be able to trak details suh as: ommand-

line parameters, proess arguments, environment variables, version of binaries, libraries and

kernel modules in use, hardware devies used, �lesystem operations exeuted, et. At a high-

level layer, it must trak details suh as: number of nodes used, details of used mahines,

timestamps of operations, state of the platform, et.

Fault injetion (Yes / No) is a feature that enables the experimenter to introdue fators that

an modify and disrupt the funtioning of the systems being studied. These fators inlude:

node failures, link failures, memory orruption, bakground CPU load, et. This feature

allows to run experiments under more realisti and hallenging onditions and test behavior

of the studied system under exeptional situations.

Workload generation (Yes / No) is a range of features that allow to injet a prede�ned work-

load into the experimental environment (e.g., number of requests to a servie). The generated

workload is provided by real traes or by syntheti spei�ation. Similarly to fault injetion,

this feature allows to run experiments in more realisti senarios.

2.3.5 Fault Tolerane

This group of features enompasses all of them that help with ommon problems that an happen

during experiments and may lead to either invalid results (espeially dangerous if gone unnotied)

or to inreased time required to manually ope with them.

Chekpointing (Yes / No) allows to save a state of the experiment and to restore it later as if

nothing happened. It is a feature that an, above all, save the time of the user. There are

at least two meanings of hekpointing in our ontext:

� only some parts of the experiment are saved or ahed,

� the full state of the experiment is saved (inluding the platform).

Of ourse, the seond type of hekpointing is muh more di�ult to provide. Chekpointing

helps with fault tolerane as well, sine a failed experiment run will not neessarily invalidate

the whole experiment.

Failure handling (Yes / No) of the experimentation tool an mitigate runtime problems with

the infrastruture an experiment is running on. This means in partiular that failures are

deteted and appropriate steps are taken - restarting the experiment, for example. Typial

failures are rashing nodes, network problems, et.

Veri�ation of on�guration (Yes / No) onsists in having an automati way to verify the

state of an experimentation platform. Usually suh a step is performed before the main ex-

periment to ensure that properties of the platform agree with a spei�ation. We distinguish

veri�ation of:

� software � ensuring that the software is oherent on all omputing nodes,

� hardware � ensuring that the hardware on�guration is as it is supposed to be.

2.3.6 Debugging

The features grouped in this setion help to �nd problems and their auses during the experimen-

tation proess.

33

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

Interative exeution (Yes / No) refers to an ability to run the experiment �on-the-�y� in-

luding: manually sheduling parts of the experiment, introspeting its state and observing

intermediate results. This feature is inspired by debuggers o�ered by integrated development

environments (IDEs) for programming languages.

Logging (Yes / No) onsists of features that allow bookkeeping of low-level messages emitted

during experiments inluding those that were plaed at arbitrary plaes by the experimenter.

The messages are normally stored sequentially along with their timestamps making the log

is essentially a one-dimensional dataset. The log an be used to debug an experiment and

doument its exeution.

Validation (Yes / No) is a feature that o�ers the user a way to perform a fast (that is, faster

than full exeution of the experiment) and automati way to verify the desription of an

experiment. Depending on the modeling language used and other details, the validation

may be aordingly thorough and omplete. For our purposes, we require that at least some

semanti analysis must be performed, in ontrast to simple syntati analysis.

2.3.7 Monitoring

Monitoring is neessary to understand the behavior of the platform and the experiment itself.

It onsists in gathering data from various soures: the experiment exeution information, the

platform parameters and metris, and other strategi plaes like instrumented software.

Experiment monitoring (Yes / No) onsists in observing the progress of the experiment un-

derstood as set of timing and ausal information between ations in the experiment. The

monitoring inludes keeping trak of urrently running parts of the experiment as well as

their interrelations. Depending on the model used, this feature may take di�erent forms.

Platform monitoring (Yes / No) is the apability of an experimentation tool to know the state

of resoures that omprise the experiment (nodes, network links, et.). Data olleted that

way may be used as a result of the experiment, to detet problems with the exeution or as

a way to get additional insights about the experiment.

Instrumentation (Yes / No) enables the user to take measurements at di�erent moments and

plaes while exeuting the experiment. This inludes instrumentation of software in order to

ollet measures about its behavior (CPU usage, performane, resoure onsumption, et.).

2.3.8 Data Management

The management of data is an important part of the experiment. This setion ontains features

that help with distribution and olletion of data.

Provisioning (Yes / No) is the set of ations to prepare a spei� physial resoure with the

orret software and data, and make it ready for the experimentation. Provisioning involves

tasks suh as: loading of appropiate software (e.g., operating system, middleware, applia-

tions), on�guration of the system and starting neessary servies. It is neessary for any

experimentation tool to provide at least a rudimentary form of this funtionality.

File management (Yes / No) is a feature that abstrats a tedious job of working with �les.

Therefore the user does not have to manage them manually at a low level whih often is

error-prone. This inludes ations like automati olletion of results stored at partiipating

nodes.

Analysis of results (Yes / No) is a servie of an experimentation tool that is used to ollet,

store and visualize experimental results, as well as making dynami deisions based on their

runtime values. The latter ability paves a way into intelligent design of experiments by

exploring only relevant regions of parameter spae and therefore saving resoures like energy

or time.

34

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

2.3.9 Arhiteture

This setion ontains features and properties related to how the tool is designed and what arhite-

ture deisions the authors made. This inludes ways to interat with the tool, as well as tehnial

details suh as software dependenies, methods to ahieve salability and e�ient exeution of

experiments.

Control struture (Centralized / Distributed) refers to the struture of nodes used to ontrol

the experiment. The arhiteture of a tool is entralized if the ontrol of an experiment is

entralized and there exists one node that performs all prinipal work. Otherwise, if there

are multiple nodes involved in the experiment ontrol, then the arhiteture is distributed.

Low resoure requirements (Yes / No) of an experimentation tool refer to its resoure on-

sumption (memory, CPU, network bandwidth, et.) assoiated with the ativity of ontrol-

ling the experiment. As the number of elements the experiment onsists of inreases (e.g.,

nodes), so does the amount of the resoures neessary to ontrol them.

Simple installation (Yes / No) is understood as a low di�ulty of setting up a ompletely

funtional infrastruture that the tool needs in order to be used. This usually implies

software dependenies (interpreters, libraries, speial servies, et.) or a required hardware

infrastruture (number of network interfaes, minimum memory size, number of dediated

nodes to ontrol the experiment, et.)

E�ient operations (Yes / No) is the range of features that provide methods, tools and al-

gorithms to perform large-sale operations with the experimental infrastruture. This in

partiular inludes: e�ient and salable methods for ommand exeution, �le distribu-

tion, monitoring of nodes, gathering of results, among others. Providing e�ient versions of

these ations is notably di�ult as operations involving nodes in a distributed systems are

non-trivially salable as a number of nodes inreases.

Interfae (CLI / GUI / API) onsists of di�erent ways that the user an interat with the

experimentation tool. Most of the tools provide ommand line interfae, whereas some tools

provide graphial interfaes, usually via webpage used to interat with the experiment.

2.4 Existing experimentation tools

The aim of this setion is to present the state of the art of the existing tools for experimentation

with distributed systems. We fous our attention on the tools that ful�ll the riteria for being

onsidered as an experimentation tool (for a list of tools that are not inluded in the analysis, see

Setion 2.6). The evaluation of all tools and the main result of our study is presented in Table 2.1

that shows a omparison of the tools based on the proposed list of features. Figure 2.2 shows a

timeline of publiations about these experiment management tools and the impat of these tools

measured as the number of itations is shown in Table 2.2.

2.4.1 Naive method

Frequently, experiments are done using this method whih inludes manual proedures and use

of hand-written and low-level sripts. Lak of modularity and expressiveness is ommonly seen

beause of the ad ho nature of these sripts, and it is even worse when the experiment involves

many mahines. The experiment is ontrolled at a very low level, inluding some human interven-

tion. Therefore, interation with many types of appliations and platforms is possible at the ost

of time required to do so. Parameters for running the experiment an be forgotten as well as the

reason for whih they were used. This leads to an experiment that is di�ult to understand and

repeat. Sine the experiment is run in partially manual fashion, the user an reat against some

unexpeted behaviors seen during the experiment.

35

C
H
A
P
T
E
R
2
.
O
V
E
R
V
I
E
W

O
F
E
X
P
E
R
I
M
E
N
T
M
A
N
A
G
E
M
E
N
T
I
N
C
O
M
P
U
T
E
R
S
C
I
E
N
C
E

Naive approah Weevil Workbenh Plush/Gush Expo OMF NEPI XPFlow Exeo

Desription

Language

(18/27 ≈ 67%)

Representation Sripts Delarative

12

Imperative

13

Delarative

14

Imperative

15

Imperative

16

Imperative

17

Delarative

18

Imperative

19

Modularity (4/9) No Yes No No No No Yes Yes Yes

Expressiveness (7/9) No Yes Yes Yes No Yes Yes Yes Yes

Low entry barrier (7/9) Yes No Yes Yes

20

Yes Yes Yes No Yes

Type of

Experiments

Platform type Real Real Model Real Real Real Real, Model Real Real

Intended use Any Servies Any Any Any Wireless

21

Any Any Any

Interoperability

(22/36 ≈ 61%)

Testbed independene (8/9) Yes Yes No Yes

22

Yes Yes Yes Yes Yes

Support for testbed servies (7/9) No No Yes Yes Yes Yes Yes Yes Yes

Resoure disovery (5/9) No No Yes

⋆

Yes Yes

⋆

Yes Yes No No

Software interoperability (2/9) No No No Yes No Yes No No No

Reproduibility

(4/27 ≈ 15%)

Provenane traking (1/9) No No Yes No No No No No No

Fault injetion (2/9) No Yes No No No Yes

⋆

No No No

Workload generation (1/9) No Yes No No No No No No No

Fault Tolerane

(12/27 ≈ 44%)

Chekpointing (4/9) No Yes No No No No Yes Yes Yes

Failure handling (6/9) No Yes No Yes No Yes Yes Yes Yes

Veri�ation of on�guration (2/9) No No Yes

⋆

No No Yes No No No

Debugging

(17/27 ≈ 63%)

Interative exeution (7/9) Yes No Yes Yes Yes Yes Yes No Yes

Logging (6/9) No No Yes

⋆

No Yes Yes Yes Yes Yes

Validation (4/9) No Yes Yes No No No Yes Yes No

Monitoring

(10/27 ≈ 37%)

Experiment monitoring (4/9) No No Yes No No Yes Yes Yes No

Platform monitoring (4/9) No No Yes

⋆

Yes No Yes Yes No No

Instrumentation (2/9) No No No Yes No Yes No No No

Data

Management

(13/27 ≈ 48%)

Provisioning (5/9) No Yes Yes

⋆

Yes No Yes Yes No No

File management (5/9) No Yes Yes Yes No Yes No No Yes

Analysis of results (3/9) No No Yes No No Yes No Yes No

Arhiteture

(19/27 ≈ 70%)

Control struture Centralized Centralized Centralized Centralized Centralized Distributed Distributed Centralized Centralized

Low resoure requirements (6/9) Yes Yes No No Yes No Yes Yes Yes

Simple installation (7/9) Yes Yes No Yes Yes No Yes Yes Yes

E�ient operations (6/9) No Yes No Yes Yes Yes No Yes Yes

Interfae CLI CLI GUI, CLI, API CLI, GUI, API CLI CLI, GUI CLI, GUI CLI CLI

1

GNU m4

2

Event-based (Tl & ns)

3

XML

4

Ruby

5

Event-based (Ruby)

6

Modular API based on Python

7

Work�ows (Ruby)

8

Modular API based on Python

9

Using GUI

10

Supports wired resoures as

well

11

PlanetLab oriented

12

GNU m4

13

Event-based (Tl & ns)

14

XML

15

Ruby

16

Event-based (Ruby)

17

Modular API based on Python

18

Work�ows (Ruby)

19

Modular API based on Python

20

Using GUI

21

Supports wired resoures as

well

22

PlanetLab oriented

⋆

Provided by testbed

Table 2.1: Summary of analyzed experiment management tools for distributed systems researh. Eah feature is presented along with a number of tools that

provide it. Similarly, for eah group a perentage of implemented features from this group is shown. Features that are due to the integration with a testbed are

marked with ⋆.

3
6

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Weevil

Workbenh

Plush/Gush

Expo

OMF

NEPI

XPFlow

Exeo

[128℄ [126℄ [127℄

[48℄ [47℄

[7, 6℄ [3℄ [122℄ [8℄ [5℄

[125℄ [124℄ [113℄ [110℄

[46℄ [107, 76, 131℄[75, 77℄ [78℄

[87℄ [105℄ [52℄ [106℄

[19, 18℄ [20℄

[67℄

Figure 2.2: Timeline of publiations dediated to experiment management tools. The publiation that

attrated most of the itations (main publiation) is underlined.

2.4.2 Weevil

It is a tool to evaluate distributed systems under real onditions, providing tehniques to automate

the experimentation ativity. This experimentation ativity is onsidered as the last stage of

development. Experiments are desribed delaratively with a language that is used to instantiate

various models and provides larity and expressiveness. Workload generation is one of its main

features, whih helps with the repliability of results.

2.4.3 Workbenh for Emulab

Workbenh is an integrated experiment management system, whih is motivated by the lak of

replayable researh on the urrent testbed-based experiments. Experiments are desribed using an

extended version of the ns language whih is provided by Emulab. The desription enompasses

stati de�nitions (e.g., network topology, on�guration of devies, operating system and software,

et.) and dynami de�nitions of ativities that are based on program agents, entities that run

programs as part of the experiment. Moreover, ativities an be sheduled or an be triggered by

de�ned events. Workbenh provides a generi and parametri way of instantiating an experiment

using features already provided by Emulab to manage experiments. This allows experimenters to

run di�erent instanes of the same experiment with di�erent parameters. All piees of information

neessary to run the experiment (e.g., software, experiment desription, inputs, outputs, et.) are

bundled together in templates.

Templates are both persistent and versioned, allowing experimenters to move through the

history of the experiment and make omparisons. Therefore, the mentioned features failitate the

replay of experiments, reduing the burden on the user. Data management is provided by the

underlying infrastruture of Emulab, enabling Workbenh to automatially ollet logs that were

generated during the experiment.

2.4.4 Plush/Gush

Plush, and its another inarnation alled Gush, ope with the deployment, maintenane and failure

management of di�erent kinds of appliations or servies running on PlanetLab. The desription of

the appliation or servies to be ontrolled is done using XML. This desription omprehends the

aquisition of resoures, software to be installed on the nodes and the work�ow of the exeution.

It has a lightweight lient-server arhiteture with a few dependenies that an be easily deployed

37

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

on a mix of normal lusters and GENI ontrol frameworks: PlanetLab, ORCA

5

and ProtoGENI

6

.

One of the most important features of Plush is its apaity to manage failures. The server reeives

a onstant stream of information from all the lient mahines involved in the experiment and

performs orretive ations when a failure ours.

2.4.5 Expo

Expo o�ers abstrations for desribing experiments, enabling users to express omplex senarios.

These abstrations an be mapped to the hierarhy of the platform or an interfae underlying

tools, providing e�ient exeution of experiments. Expo brings the following improvements to the

experimentation ativity: it makes the desription of the experiment easier and more readable,

automates the experimentation proess, and manages experiments on a large set of nodes.

2.4.6 OMF

It is a framework used in di�erent wireless testbeds around the world and also in PlanetLab.

Its arhiteture versatility aims at federation of testbeds. It was mainly oneived for testing

network protools and algorithms in wireless infrastrutures. The OMF arhiteture onsist of 3

logial planes: Control, Measurement, and Management. Those planes provide users with tools

to develop, orhestrate, instrument and ollet results as well as tools to interat with the testbed

servies. For desribing the experiment, it uses a omprehensive domain spei� language based

on Ruby to provide experiment-spei� ommands and statements.

2.4.7 NEPI

NEPI is a Python library that enables one to run experiments for testing distributed appliations

on di�erent testbeds (e.g., PlanetLab, OMF wireless testbeds, network simulator, et). It provides

a simple way for managing the whole experiment life yle (i.e., deployment, ontrol and results

olletion). One important feature of NEPI is that it enables to use resoures from di�erent

platforms at the same time in a single experiment. NEPI abstrats appliations and omputational

equipment as resoures that an be onneted, interrogated and onditions an be registered in

order to speify work�ow dependenies between them.

2.4.8 XPFlow

XPFlow is an experimentation tool that employs business work�ows in order to model and run

experiments as ontrol �ows. XPFlow serves as a work�ow engine that uses a domain-spei�

language to build omplex proesses (experiments) from smaller, independent tasks alled ativi-

ties. This representation is laimed to bring useful features of Business Proess Modeling (BPM),

that is: easier understanding of the proess, expressiveness, modularity, built-in monitoring of the

experiment, and reliability.

Both XPFlow and sienti� work�ow systems rely on work�ows. However, sienti� work�ows

are data-oriented and the distributed system underneath (e.g., a omputational grid) is merely a

tool to e�iently proess data, not an objet of a study. Moreover, the formalism of XPFlow is

inspired by work�ow patterns identi�ed in the domain of BPM, whih are used to model ontrol

�ows, as opposed to data �ows (see Setion 2.6.2).

2.4.9 Exeo

Exeo is a generi toolkit for sripting, onduting and ontrolling large-sale experiments in

any omputing platform. Exeo provides di�erent abstrations for managing loal and remote

proesses as well as �les. The engine provides funtionality to trak the experiment exeution and

5

http://groups.geni.net/geni/wiki/ORCABEN

6

http://www.protogeni.net

38

http://groups.geni.net/geni/wiki/ORCABEN
http://www.protogeni.net

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

Tool First publiation Citations

Weevil 2005 69

Workbenh 2006 80

Plush/Gush 2006 177

Expo 2007 16

OMF 2009 152

NEPI 2010 38

XPFlow 2012 3

Exeo 2013 1

Table 2.2: Number of publiations iting papers dediated to eah experimentation tool (as veri�ed on 4

July 2014).

o�ers features suh as parameter sweep over a de�ned set of values. The partial results of the

parameter sweep an be saved to persistent storage, therefore avoiding unneessary reruns in ase

of a failure.

2.5 Disussion

Existing tools for experiment ontrol were analyzed and evaluated using our set of features de�ned

in Setion 2.3 and the �nal results are presented in Table 2.1. For eah position in the table (i.e.,

eah property/tool pair) we sought for an evidene to support possible values of a given property in

a given tool from a perspetive of a prospetive user. To this end, the publiations, doumentation,

tutorials and other on-line resoures related to the given approah were onsulted. If presene of

the property (or lak thereof) ould be learly shown from these observations, the �nal value in

the table re�ets this fat. However, if we ould not �nd any mention of the feature, then the �nal

value laims that the feature does not exist in the tool, as for all pratial purposes the prospetive

user would not be aware of this feature, even if it existed. In ambiguous ases additional omments

were provided. Muh more detailed analysis that led to this onise summary is available on-line

7

.

Using information olleted in the table, one an easily draw few onlusions.

There is no agreement whether a delarative desription is more bene�ial than an imperative

one. Delarative desriptions seem to be assoiated with higher modularity and expressiveness,

but at a prie of a higher entry barrier. Moreover, the tools tend to be independent of a partiular

testbed, but those with tight integration o�er a more omplete set of features or features not

present in other solutions (e.g., Emulab Workbenh).

The majority of addressed features ome from Arhiteture (70%), Desription Language

(67%), Debugging (63%) and Interoperability (61%) groups.

On the other hand, support for Fault Tolerane and Monitoring is quite low (44% and 37%,

respetively), whereas support for Reproduibility is almost nonexistent (only 15%).

The features available in majority of the analyzed tools are: Testbed independene (8/9),
Expressiveness (7/9), Low entry barrier (7/9), Support for testbed servies (7/9), Interative
exeution (7/9), Failure handling (6/9), Logging (6/9), Resoure disovery (5/9), File man-

agement (5/9) and Provisioning (5/9). Moreover, the tools have nearly universally Simple in-

stallation (7/9), Low resoure requirements (6/9) and o�er methods to perform E�ient opera-

tions (6/9).

The two most unimplemented features are Provenane traking (1/9) and Workload genera-

tion (1/9), both ruial for reproduibility of experiments.

7

http://www.loria.fr/~buhert/exp-survey.yaml

39

http://www.loria.fr/~buchert/exp-survey.yaml

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

Additionally, some tools o�er unique features: Software interoperability (Plush and OMF),

Provenane traking (Workbenh), Fault injetion (Weevil and OMF),Workload generation (Wee-

vil), Veri�ation of on�guration (Workbenh and OMF) and Instrumentation (Plush and OMF).

However, it is worth pointing out that features suh as Workload generation are often provided

by standalone tools.

Finally, we did a simple �impat analysis� of desribed tools by summing all unique sienti�

itations to papers about eah tool using Google Sholar (see Table 2.2). Clearly, without adjusting

the sore to the age of eah tool, the most ited tool is Plush. As interesting as these data may

be, we abstain from drawing any more onlusions from them. The summary of this analysis is

available on-line

8

.

2.6 Tools not overed in the study

Design

Reproducible AnalsisCapturing experimental

context

Experimenting tools

ulators

large scale experimentation

Software provisioners and

appliance builders
Workload generators

Figure 2.3: Whole panorama of tools that help with experimentation. Complementary tools are shown

and their plae in the experimental yle. Those tools over: distributed emulators, software provisioners,

appliane builders, workload generators, tools for performing reproduible analysis and tools for apturing

the experimental ontext.

In the following setion, we disuss other tools that ould be mistaken as an experiment manage-

ment tool aording to our de�nition. Those tools ontradit our the de�nition (f. Setion 2.6.1)

even though they support most of the experimental yle with distributed systems.

2.6.1 Non general-purpose experiment management tools

Tools like ZENTURIO [104℄ and Nimrod [1℄ helps experimenters to manage the exeution of

parametri studies on luster and Grid infrastrutures. Both tools over ativities like the set up

of the infrastruture to use, olletion and analysis of results. ZENTURIO o�ers a more generi

parametrization, making it suitable for studying parallel appliations under di�erent senarios

where di�erent parameters an be hanged (e.g., appliation input, number of nodes, type of

network interonnetion, et.). Even though Nimrod parametrization is restrited to appliation

input �les, a relevant feature is the automation of the design of frational fatorial experiments.

NXE [56℄ sripts the exeution of several steps of the experimental work�ow from the reservation

of resoures in a spei� platform to the analysis of olleted logs. The whole experiment senario

is desribed using XML whih is omposed of three parts: topology, on�guration and senario.

All the interation with resoures and appliations is wrapped using bash sripts. NXE is mainly

dediated to the evaluation of network protools.

8

http://www.loria.fr/~buhert/exp-impat.yaml

40

http://www.loria.fr/~buchert/exp-impact.yaml

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

The aforementioned tools were not inluded in our analysis, beause they are not general-

purpose experiment management tools. They address only very spei� senarios of experimenta-

tion with a distributed system like parametri studies and network protools evaluation.

2.6.2 Sienti� work�ow systems

The aim of sienti� work�ow systems is automation of the sienti� proess that a sientist may

go through to get from raw data to publishable results. The main objetive is to ommuniate

analytial proedures repeatedly with minimal e�ort, enabling the ollaboration on onduting

large, data-proessing, sienti� experiments. Sienti� work�ows are designed spei�ally to

ompose and exeute a series of omputational or data manipulation steps. Normally, those

systems are provided with GUIs that enable non-expert users to easily onstrut their appliations

as a visual graph. Goals suh as data provenane and experiment repeatability are both shared

by sienti� work�ows and experimentation tools. Some examples of sienti� work�ows are:

Kepler [91℄, Taverna [65℄ and Vistrails [22℄. An interesting analysis of these systems, and a

motivation for this work, is presented in [132℄.

There are two main reasons why sienti� work�ows are not overed in our study. First,

sienti� work�ows are data �ows in nature � they are used to run omplex omputations on data,

while the omputational platform is abstrated and user has no diret ontrol over it (e.g., the

nodes used during omputation). Hene the platform is not the objet of study, but merely a

tool to arry out omputation. Seond, the delarative representation of sienti� work�ows as

ayli graphs is generally limited in its expressiveness, therefore they do not meet the riteria

of general-purpose experimentation tools aording to our de�nition (see [39, 35℄ for analyses of

sienti� work�ows expressiveness).

2.6.3 Simulators and abstrat frameworks

An approah widely used for evaluating and experimenting with distributed systems is simulation.

In [95℄ the most used simulators for overlay networks and peer-to-peer appliations are presented.

Another framework alled SimGrid [27℄ is used for the evaluation of algorithms, heuristis and

even real MPI appliations in distributed systems suh as Grid, Cloud or P2P systems.

Even though simulators provide many features required by the de�nition of the experimentation

tool, they are not inluded in our study. First, they do not help with experiments on real platforms

as they provide an abstrat and modeled platform instead. Seond, the goals of simulators are

often very spei� to a partiular researh subdomain and hene are not general-purpose tools [27℄.

Other tools suh as Splay [89℄ and ProtoPeer [53℄ go one step further by making easy the transi-

tion between simulation and real deployment. Both tools provide a framework to write distributed

appliations based on a model of the target platform. They are equipped with measurement in-

frastrutures and event injetion for reproduing the dynamis of a live system.

The tools providing abstrat framework to write appliations under experimentation are not

onsidered in our study, beause real appliations annot be evaluated with them. Although real

mahines may be used to run experiments (as it is the ase with Splay), the appliations must be

ported to APIs provided by these tools.

2.7 Complementary tools

In this setion omplementary tools are shown. Those tools address spei� parts of the proess of

experimentation with distributed systems as an be seen in Figure 2.3. Experiment management

tools an take advantage of these tools to implement features presented in Setion 2.3.

41

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

2.7.1 Software provisioners and appliane builders

Puppet

9

and Chef

10

are ommonly used in automating administrative tasks suh as software

provision and on�guration of operating systems. They simplify omplex deployments by providing

unambiguous, delarative desription of a desired system state and then arrying out neessary

steps to reah it. Operating at even higher level are orhestration management tools, like Juju

11

,

whih are designed to oordinate omplex systems in �exible and reative ways, usually in the

loud omputing ontext.

Researhers start now to take advantage of loud omputing for experimentation. Tools suh

as Doker

12

, Vagrant

13

and paker

14

have gained aeptane for reating reproduible environ-

ments for development that an be easily deployed in a variety of loud omputing providers and

virtualization tehnologies. Kameleon [112, 49℄ is an appliane builder that strives to o�er a repro-

duible environment for experimentation that an be regenerated and hanged any time. It does

so by taking advantage of a persistent ahe mehanism that guarantees that the same software

versions are used all the time, avoiding inompatibility issues. This tool onstitutes one of the

ontributions of this thesis and as suh will be desribed thoroughly in Part III.

2.7.2 Tools for apturing experimental ontext

As mentioned in Setion 2.2.2 one important feature required given the omplexity of software

nowadays, is the apture of the experimental ontext, undoubtedly useful to the reprodution of an

experiment. There are di�erent levels for apturing the ontext whih depends mostly on the kind

of experiment one wants to run. Experimenters an take advantage of version ontrol systems (e.g.,

Git, Subversion) or more sophistiated frameworks like Sumatra [37℄ whih aims at reording and

traking the sienti� ontext (i.e., hanges in ode or parameters and the motivations for those

hanges) in whih a given experiment was performed. This enables researhers to have provenane

in their experiments. Sumatra ontext apturing is limited to the middleware used. At the moment

in only works with appliations written in Python. To enable a omplex re-exeutability of a given

experiment, all the software dependenies have to be traked and paked. This is the approah

followed by CDE [57℄ whih makes possible to move the experimental environment into di�erent

Linux distributions and versions. Reprozip [29℄ is a more sophistiated tool that follows the same

priniple and adds provenane information that is aptured in a Vistrails work�ow.

2.7.3 Tools for making the analysis reproduible

The generation of the valuable raw data from an experiment is a very ostly proess. Therefore,

it should be expeted that anyone would have aess to the datasets and the analysis proedure

arried out for generating ertain �gure or table and in turn a given onlusion. This ould be

done with the goal of verifying that a proper statistial study was performed or simply and most

importantly enabling the ondution of alternated analysis that ould lead to new onlusions.

With the aforementioned goal in mind, a R pakage shown in [100℄ is able to ahe intermediate

results that are stored in a database, enabling researhers to re-exeute parts of the analysis. A

more advane approah [54℄ introdues the disipline of Veri�able Computational Researh. Its

implementation reates identi�ers that are assoiated to a given result in a data analysis proess.

This assoiation uniquely links results of a omputation with its ontext (e.g., software pakage

dependenies, sreen messages ehoed, platform name and version, et). The reated identi�ers

an be embedded into douments for publiation. Literate programming enourages the mix of

setions of omputer ode and natural language with the objetive of providing two types of view:

douments intended for human onsumption and pure soure ode for examination and exeution.

9

https://puppetlabs.om/

10

http://www.opsode.om/hef/

11

https://juju.ubuntu.om/

12

https://www.doker.io/

13

http://www.vagrantup.om/

14

http://www.paker.io/

42

https://puppetlabs.com/
http://www.opscode.com/chef/
https://juju.ubuntu.com/
https://www.docker.io/
http://www.vagrantup.com/
http://www.packer.io/

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

This approah is followed by knitr

15

whih is able to generate dynami douments by embedding

R ode into L

A

T

E

X. Org-mode is an emas extension for pratiing Literate programming providing

to the user the possibility of embedding a variety of omputer programming languages that an

be mixed and di�erent types of output are possible (e.g., HTML, L

A

T

E

X, DoBook, et).

2.7.4 Workload generators

It over all the tools and data that enable to evaluate distributed systems under semi-realisti,

ontrolled and reproduible onditions. Benhmarks suh as NAS

16

, Linpak

17

have been used

over years for evaluating performane of parallel systems. In the �eld of sheduling of parallel

systems there has been an important work by Dror Feitelson whih gather together in the Parallel

Workloads Arhive site

18

a onsiderable number of logs of large sale parallel systems in produ-

tion. The failure trae arhive (FTA)

19

is a publi repository of availability traes of parallel and

distributed systems. Those traes an be the input of workload models or tools that enable to

replay them in real systems [82, 128℄. Xerxes [82℄ is a distributed load generation framework for

loud omputing that enables large sale experimentation. It is able to generate load patterns at

both individual node level, and olletively aross a large number of mahines.

2.7.5 Distributed emulators

Emulation along with simulation is one of the tehniques highly used in experimentation with dis-

tributed systems whih enable to augment and ontrol the parameter spae. It is mainly targeted

at enable reproduible experiments at large sale. Di�erent strategies have appeared for emulating

large and high performane mahines. In [68℄ is desribed an approah for taking advantage of

the heterogeneous arhitetures omposed of CPU and GPUs widely ommon nowadays for emu-

lating di�erent kinds of parallel mahines

20

using OpenCL. A parallel version of the well known

emulator Qemu is proposed in [41℄ for emulating e�iently multiore mahines. For emulating the

heterogeneous nature of omputational grids EHGRID [34℄ was proposed that provides mehanism

for degrading the performane of omputer proessors turning an homogeneous arhiteture into

an heterogeneous one. Additionally, it takes into aount network e�ets for inter-luster om-

muniation. Distem [115℄ follows the same philosophy of EHGRID but it is targeted to a wider

ommunity, inluding loud, P2P, High Performane Computing and Grid systems. It relies on

LXC (Linux Containers) whih makes it e�ient and salable, enabling the building of 15000-nodes

virtual topology in no time.

2.8 Conlusions

In this hapter, we presented an extensive list of properties expeted from general-purpose exper-

iment management tools for distributed systems on real platforms. The diversity of the researh

domain of distributed systems motivated development of di�erent tehniques and tools to ontrol

experiments, and explains the multitude of approahes to manage experiments. With the on-

strution of the feature list, we tried to establish a ommon voabulary in order to understand

and ompare the existing experiment management tools.

The size and omplexity of distributed systems nowadays has unovered new onerns and

needs in the experimentation proess. We need to ontrol an always inreasing number of vari-

ables to assure two important harateristis of an experiment, its reproduibility and repliability.

15

http://yihui.name/knitr/

16

http://www.nas.nasa.gov/publiations/npb.html

17

http://www.netlib.org/linpak/

18

http://www.s.huji.a.il/labs/parallel/workload/

19

http://fta.sem.uws.edu.au/

20

aording to the Flynn's taxonomy: Single Instrution, Single Data stream (SISD); Single Instrution, Multiple

Data stream (SIMD); Multiple Instrution, Single Data stream (MISD); Multiple Instrution, Multiple Data stream

(MIMD).

43

http://yihui.name/knitr/
http://www.nas.nasa.gov/publications/npb.html
http://www.netlib.org/linpack/
http://www.cs.huji.ac.il/labs/parallel/workload/
http://fta.scem.uws.edu.au/

CHAPTER 2. OVERVIEW OF EXPERIMENT MANAGEMENT IN COMPUTER SCIENCE

With the motivation of providing a ontrolled environment to exeute experiments in the domain

of distributed systems, several testbeds were reated whih stimulated the development of di�erent

experiment management tools. Among the bene�ts of experiment management tools are: enour-

aging researhers to experiment more and improve their results, eduational value of being able to

play with known algorithms and protools under real settings, redution of the time required to

perform an evaluation and publish results, apaity to experiment with many nodes and omplex

senarios, di�erent software layers, topologies, workloads, et.

Despite the emergene of experiment management tools, some of them are in an immature

state of development whih prevents them from fully exploiting the apaity of ertain testbeds.

There is indeed, a lot of hallenges in the domain of experimentation and the need of further

development of those tools is apparent. To ahieve this, tehnologies developed with di�erent

purposes ould arguably be used in the experimentation proess. For instane, we mentioned that

work�ow systems and on�guration management tools share some onerns and goals with the

problem of experimenting with distributed systems.

Finally, a deeper understanding of the experimentation proess with distributed systems is

needed to identify novel ways to perfet the quality of experiments and give researhers the pos-

sibility to build on eah others' results.

44

Part II

Expo

45

Chapter 3

Expo: a tool to manage large sale

experiments

Figure 3.1: Role of Expo in the experiment yle

Performing experiments that involve a large amount of resoures or a omplex on�guration,

proves to be a hard task. In this hapter we present Expo, whih is a tool for onduting experi-

ments on distributed platforms. Expo is the result of an e�ort to bring the sripting of experiments

to the next level. It enourages the sripting of experiments by o�ering a set of abstrations to deal

with big and omplex omputational infrastrutures. Additionally, it provides mehanisms that

make experimenters more produtive when setting up their experiments. Its goal is to improve

the state of the art of experimentation by enouraging their omplete automation. First, the ar-

hiteture of the tool is desribed along with its abstrations for resoures and tasks that redues

the omplexity in the experiment ondution. Next, the tool is ompared with other similar solu-

tions based on some qualitative riteria, salability and expressiveness tests. The hapter �nishes

with the evaluation of Expo salability and some use ases on Grid'5000 and PlanetLab testbeds.

Our experiene showed that Expo is a promising tool to help users with two primary onerns:

(1) performing a large sale experiment e�iently and easily, (2) desribing an experiment with

enough detail that enables posterior reprodution. The ontent of this hapter was published in a

paper presented at PDCN2013 [113℄.

3.1 Introdution

Although the software to perform simulations has improved in reent years, there is still the need

to test and evaluate the software in real distributed infrastrutures. Moreover, the option of ex-

perimental evaluation of an algorithm has been enouraged as an approah omplementary to

the theoretial evaluation [73℄. In order to address limitations suh as, software reon�guration,

lak of ontrol and monitoring systems, testbeds were reated [88℄. A testbed is a platform for

experimentation with large distributed appliations. It is sometimes shielded from the instabili-

ties of prodution environments and allows users to test partiular modules of their appliations

47

CHAPTER 3. EXPO: A TOOL TO MANAGE LARGE SCALE EXPERIMENTS

in an isolated fashion. Some examples of testbeds are: PlanetLab [103℄, Emulab [130℄, GENI

1

,

Grid5000 [25℄ and ORBIT [108, 98℄ (see Setion 2.2.3). Although these platforms o�er more sta-

bility and ontrol over resoures, it is still a hard task to ontrol, deploy and run appliations on

them. In more detail a number of tasks must be ompleted before an experiment an be atually

started. These tasks inlude resoure disovery and aquisition as well as deployment of the nees-

sary software. One the appliation is launhed, its exeution must be ontrolled, and as soon as

it �nishes all the output must be olleted. Most of the experiments performed on the testbeds are

run in an ad-ho, appliation-spei� manner. This method may math the urrent requirements

of experiments, but fails with the sale, heterogeneity, and dynamism of distributed systems. That

is the reason why we have seen the apparition of experiment management tools that strive to ope

with the problems enountered when researhers try to perform experiments involving a large

amount of resoures or a omplex on�guration. The reader is referred to Setion 2.2.2 for a full

list of motivations behind those tools. The main aspets those tools help the user with, are: (1)

desription of the experiment, (2) ontrol and aess to the resoures, (3) task orhestration, (4)

software deployment, (5) monitoring and olletion of results. The main advantage of those tools

is the possibility of embedding all the important details - that took part on the proess of experi-

mentation - using the same language. This will hopefully make easier the reprodution of a given

experiment. The objetive of this hapter is to present our experiment management tool alled

Expo that has already been introdued shortly in the previous hapter and qualitatively ompared

against existing works. Expo is the result of an e�ort to bring the sripting of experiments to the

next level. It enourages the sripting of experiments by o�ering a set of abstrations to deal with

big and omplex omputational infrastrutures. Additionally, it provides mehanisms that make

experimenters more produtive when setting up their experiments. Our objetive is to improve

the state of the art of experimentation by enouraging their omplete automation. In Chapter 1,

it was shown the experiment yle normally followed in researh. Expo overs the desription,

instantiation, exeution and analysis of an experiment as shown in Figure 3.1. In this hapter,

Expo arhiteture, features, abstrations and syntax and their advantages will be exposed. Expo

will be ompared with the most used and atively developed experiment management tools. One

of the main ontribution of Expo is that it enabled the rapid prototyping of experiments and this

will be demonstrated on Chapter 4.

The struture of this hapter is as follows: In the next setion Expo is presented in depth with

its features and advantages, some use ases are shown in Setion 3.3 in two di�erent testbeds.

Results and omparisons with other experiment tools are presented in Setion 6.5. Related works

in software engineering are presented in Setion 3.5 and �nally Setion 6.6 presents the onlusions

and future works.

3.2 Expo

Expo is an experiment management tool designed to simplify and automate the ondution of

experiments in distributed platforms. All the experimental plan is aptured (i.e., aess to the

platform, experiment setup, experiment exeution, results analysis, et.) in a work�ow where

sequenes of ommands are grouped together in tasks and dependenies. This failitates the

rereation of the experiment setup and in turn, it will make easier the replay of experiments.

Replayability of a omputational experiment is the �rst step towards experiment reproduibility.

The work�ow tells how all the di�erent tasks have to be alled in order to get the results of the

experiment. It omprehends tasks that an be exeuted sequentially, in parallel, asynhronously,

et. Expo strives to simplify the desription of an experiment by providing a onise and read-

able way to desribe it, speially when dealing with a big amount of nodes. It relies on parallel

ommand exeutors suh as TakTuk [33℄ whih makes it sale with a big amount of nodes. Tak-

Tuk uses an adaptive and reative work-stealing algorithm that mixes loal parallelization and

work distribution. A topology of deployment an be spei�ed and this is exploited by the Expo

ResoureSet abstration presented in subsetion 3.2.1.

1

http://www.geni.net

48

http://www.geni.net

CHAPTER 3. EXPO: A TOOL TO MANAGE LARGE SCALE EXPERIMENTS

Figure 3.2: Expo arhiteture

Figure 3.3: Example of resoureSet

Expo arhiteture is desribed in Figure 3.2, whih mainly onsists in six omponents: an in-

ternal Domain-Spei� Language (DSL)

2

module features a �exible desription language built on

top of Ruby

3

. It enables to exploit all its rihness in available libraries and mainly its desrip-

tiveness. The DSL �exibility and salability relies on two abstrations: ResoureSet and Tasks.

Those abstrations are mapped into omponents that interat together in order to provide the

neessary information to the Command Control and help it in translating the experimental plan

into ommands. The platform dependent module enables the interation with di�erent platforms

suh as: Grid'5000, PlanetLab, loud omputing infrastrutures, omputing lusters, et. This

module works as an interfae for the DSL module, making an experiment desription independent

from the platform. Expo makes few assumptions about the resoures to manage, relying on om-

mon system utilities suhs as: sp, ssh, unix ommands, TakTuk whih an deploy itself. It only

requires to run a Ruby interpreter and few ruby libraries as desribed in its website

4

. Thus, Expo

arhiteture is very simple and ligthweight. The shedule of the experimental work�ow is done by

the Task manager whih is in harge of the results olletion and experiment monitoring. Two ex-

eution modes are possible: interative and standalone whih exeute the experiment desription

�le without any user intervention.

3.2.1 Expo ResoureSet

A ResoureSet is an abstrat view of the resoures and their organization in distributed omputa-

tional infrastrutures suh as Grids. It adds resoures into a logial unit and assoiates properties

to them. For instane, we an gather together the nodes from the same luster assoiating to

them the same frontend, as well as the same physial properties if the luster is homogeneous.

This abstration was oneived in order to provide to the user a onise way to express ations

that have to be arried out for a set of resoures. Resoures an be any omputing unit: ores,

2

an internal DSL means that is hosted in another language and an take advantage of its onstruts.

3

https://www.ruby-lang.org

4

http://expo.gforge.inria.fr/

49

https://www.ruby-lang.org
http://expo.gforge.inria.fr/

CHAPTER 3. EXPO: A TOOL TO MANAGE LARGE SCALE EXPERIMENTS

runs the ommand in parallel

for all the nodes of the lus-

ter 1

run("make lu NPROCS=8 CLASS=A MPIF77=tau_f90.sh",:target => resoures[:luster_1℄)

runs the ommand hostname

for eah node sequentially

resoures.eah{ |node| run("hostname",:target => node) }

runs the ommand for dif-

ferent set of resoures, the

length of the sets generated

are powers of two.

resoures.eah_slie_power2 do |nodes|

run("mpirun -np 2 --mahinefile #{nodes.nodefile} ./app",:target => nodes.first)

end

selets the resoures of a

spei� luster, it keeps the

topology of the ResoureSet

in order to generate the right

parallel ommand.

fast_luster = resoures.selet(:luster){ |luster|

luster.properties["lok_speed"℄>1700000000

}

run("~/benhmarks/NPB3.2-OMP/bin/BT.A_out.4",:target => fast_luster)

Table 3.1: ResoureSet operations

proessors, nodes, lusters, sites, et. Table 3.1 shows some operators whih gives to Expo a high

�exibility against another approahes in the desription language as will be shown in Setion 3.4.

An example is shown in Figure 3.3 where a Grid omputing like hierarhy is represented, this

abstrat view enables the generation of e�ient parallel topology aware ommands. We an di-

vide the resoures belonging to the same site as well as separate them per luster. This an also

be applied for the PlanetLab testbed, the ResoureSet an have information about the loation

of the resoures for the same ountry or site. In other ases, it an be used to de�ne omplex

on�gurations as in the ase we would need to deploy an infrastruture where di�erent nodes have

di�erent roles.

3.2.2 Expo Tasks

Expo adopts the notion of task, already exploited in work�owmanagement tools as [120℄ and Rake

5

as well as web appliation deployment frameworks suh as Capistrano

6

. A Task desribes what

to do and the ResoureSet tells the experiment management where to exeute the task. Tasks

an be triggered by events (e.g, availability of jobs in the infrastruture, errors, et.). Therefore,

a omplete unattended experiment ampaign an be arried out. In Listing 1, an example of

a de�nition of a task is shown. The ompilation of a soure ode instrumentation pakage is

performed. This task is exeuted on a ResoureSet whih is represented by the variable resoures.

For this ase a parallel ommand will be generated that will arry out the task for every mahine

represented in the ResoureSet. This task ould be useful when ompiling a program for di�erent

arhitetures.

1 task :ompile, :target => resoures do

2 run("d ~/Test_profiling/; tar -xf pdt.tgz")

3 run("d ~/Test_profiling/pdtoolkit-3.17/; ./onfigure")

4 run("d ~/Test_profiling/pdtoolkit-3.17/; make install")

5 end

Listing 1: Task abstration

3.2.3 Expo interative onsole

An interative mode is proposed driven by the following reasons: (1) an important amount of

the experiments are interative

7

(2) the writing of an experiment desription �le is a trial-and-

error proess whih involves using di�erent parameters, on�gurations and �ows of ontrol, (3) An

5

http://rake.rubyforge.org/

6

https://github.om/apistrano/apistrano/wiki

7

53% of the experiments are interative, against 47% that are run in Bath mode. Results obtained onsulting

the Grid5000 API

50

http://rake.rubyforge.org/
https://github.com/capistrano/capistrano/wiki

CHAPTER 3. EXPO: A TOOL TO MANAGE LARGE SCALE EXPERIMENTS

Figure 3.4: Expo work�ow mapping. Tasks are split aording to the granularity of exeution, generating

sub-tasks for the exeutable work�ow. In the Figure, tasks are generated for 3 di�erent lusters and 2

sites. The Task manager uses the information provided by the ResoureSet to generate the topology aware

ommands

interative environment lets sientists look at data, test new ideas, ombine algorithmi approahes,

and evaluate their outome diretly [102℄. This approah is already used by di�erent sienti�

environments based on Python suh as: IPython and Sipy [74℄. This interative mode an also

be triggered by an error during a standalone exeution, providing either a shell onsole or a Ruby

onsole where the user an modify and verify the exeution of the Expo DSL.

3.2.4 Expo experiment validation

Given that the whole work�ow of an experiment ould take hours to exeute, it is important to

avoid errors like the utilization of undelared variables. One important feature that Expo o�er is

the validation of the experiment desription. It does so through the use of two mehanisms, it �rst

perform a stati analysis of the experiment desription and then it runs the logi of the experiment

without exeuting any real ation. This is equivalent to the mode dry run o�ered by on�guration

management tools. This helps the experimenter to verify that the experiment work�ow will be

exeuted in the desired manner.

3.2.5 Expo experiment mapping

Work�ow engines map sienti� work�ows to distributed platforms in an automati form. Their

mapping deisions are driven by minimizing the time to run the work�ow. Given that the objetive

of a work�ow is to perform a big omputation, it is more �exible when mapping the work�ow into

the omputing platform. In ontrast, an experimenting work�ow aims at performing tests. Some

tests are targeted to a ertain mahine arhiteture and it is important to take this into aount

when performing the mapping of the work�ow. Consequently, a way to ontrol the underlying

infrastruture has to be provided. There is a trade-o� between desriptiveness and salability

(e�ient mapping). Figure 3.4 explains the proedure to map an experiment desription into a

distributed platform, in this partiular ase a Grid omputing infrastruture. There are some tasks

that should happened at the site level like the transfer of large �les that an be shared between

all the mahines of the luster using a network �le system. Compilation tasks must be exeuted

at luster level beause sites ould be omposed of several lusters with di�erent arhitetures.

As already said, an experiment is desribed as a work�ow omposed of tasks and dependenies

between them. This initial work�ow is known as abstrat work�ow and has as a goal to apture

51

CHAPTER 3. EXPO: A TOOL TO MANAGE LARGE SCALE EXPERIMENTS

the experiment ativity. Two important information are: the body of the task whih is simply

all the sequene of ommands to exeute and the granularity of exeution. For the example

shown, this granularity an be: all resoures, site, luster, node, et. The task manager will

be in harge of taking this abstrat work�ow and map it into the infrastruture. It uses the

information provided by the granularity of exeution in order to generate the exeutable work�ow.

This is an expanded version of the abstrat work�ow, where tasks have been split aording to the

granularity of exeution. This enables to hoose the best type of exeution (parallel, asynhronous,

parallel-asynhronous, et.) and the less expensive in terms of number of onnetions with the

remote mahines and threads reated to ontrol the experiment. The tasks reated at this level

guarantee the generation of topology aware ommands with TakTuk for an e�ient deployment

and exeution. The salability of ommands exeution will be shown in the following setions.

3.2.6 Expo evolution

During this thesis we have extended and improved in several ways the already existing imple-

mentation of Expo [125, 124℄. We have added the task abstration whih helps to struture the

experiment desription and form a work�ow. This makes the experiment desription more read-

able and the detetion of bugs easier. This task abstration an interat with the ResoureSet

for ontrolling the mapping of tasks into di�erent levels of the de�ned infrastruture hierarhy.

The new opportunities brought by this mapping will be shown in the Chapter 4. One important

improvement is the support of experiment validation by default. This was one of the drawbaks

of previous versions of Expo whih made the setup of experiments ostly and error-prone. Addi-

tionally, an interative mode was implemented to boost experimenter's produtivity by allowing

her/him to debug the whole experiment desription.

3.3 Use ases

1 require 'expo_planetlab'

2

3 set :resoures, "MyExperiment.resoures"

4 get_resoures

5

6 task :monitoring, :target => resoures do

7

8 File.open("Planetlab_avail.txt",'w+'){|f|

9 res=nil

10 f.puts "Date Time Num_Res"

11 240.times{

12 date_measure=Time::now.to_i

13 res = run("hostname")

14 time=res[:run_time℄

15 f.puts "#{data_mesure} #{time} #{res.length}"

16 f.flush

17 sleep(60)

18 }

19 }

20 end

Listing 2: Monitoring nodes availability in Planetlab using Expo

The aim of this setion is to show the syntax for writing an experiment using Expo. Listing 2

shows a simple experiment for monitoring the nodes availability on Planetlab. This is done by

exeuting the linux ommand hostname on all the nodes of the slie and ounting how many of

them reply. This information is written into a �le that an be used to plot the availability of the

nodes over time in the slie.

52

CHAPTER 3. EXPO: A TOOL TO MANAGE LARGE SCALE EXPERIMENTS

1 require 'g5k_api'

2

3 set :user, "root"

4 set :gw_user, "ruizsanabria" ## replae with your user

5 set :resoures, "MyExperiment.resoures"

6

7 reserv = onnetion(:type => "Grid5000")

8 reserv.resoures = {:nany => ["nodes=1"℄, :rennes => ["nodes=1"℄, :lille => ["nodes=1"℄, :grenole=> ["nodes=1"℄}

9

10 reserv.environment = "http://publi.nany.grid5000.fr/~ruizsanabria/tlm_simulation.env"

11 reserv.name = "TLM multisite"

12 reserv.walltime = 2000

13

14 ##### Tasks Definition #####################################

15 task :run_reservation do

16 reserv.run!

17 end

18

19 task :onfig_ssh do

20 msg("Generating SSH onfig")

21 File.open("#{expo_wd}/onfig",'w+') do |f|

22 f.puts "Host *

23 StritHostKeyCheking no

24 UserKnownHostsFile=/dev/null "

25 end

26 end

27

28 task :generating_ssh_keys do

29 run("mkdir -p #{expo_wd}/temp_keys/")

30 run("ssh-keygen -P '' -f #{expo_wd}/temp_keys/key") unless hek("ls #{expo_wd}/temp_keys/key")

31 end

32

33 task :trans_keys, :target => resoures do

34 put("#{expo_wd}/onfig","/root/.ssh/")

35 put("#{expo_wd}/temp_keys/key","/root/.ssh/id_rsa")

36 put("#{expo_wd}/temp_keys/key.pub","/root/.ssh/id_rsa.pub")

37 end

38

39 task :opy_identity do

40 resoures.eah{ |node|

41 run("ssh-opy-id -i #{expo_wd}/temp_keys/key.pub root�#{node.name}")

42 }

43 end

44

45 task :deativation_ib do

46 resoures.eah{ |node|

47 run("/sbin/ifonfig ib0 down")

48 }

49 end

50

51 task :run_simulation, :target => resoures.first do

52 put(resoures.nodefile,"/root/TLMME_multimode/nodes.deployed")

53 run("/root/TLMME_multimode/exe_tlm 1 369 192 510 250 1 s")

54 get("/root/TLMME_multimode/profile.*","~/profiles")

55 end

56

57 task :free_reservation, :target => resoures do

58 free_resoures(reserv)

59 end

Listing 3: Pro�ling of a parallel appliation running on multiple sites in Grid'5000 using Expo

Listing 17 shows the automation of the exeution of a parallel appliation using several sites

in Grid'5000. The objetive of the experiment is to perform a pro�ling of the parallel exeution

of an eletromagneti simulation using TAU

8

. We deployed an operating system image with

all the software already installed using Grid'5000 API that interats with Kadeploy [71℄. This

image was generated using Kameleon that will be presented in Chapter 5. The spei�ation of

the orresponding image to deploy is indiated as a parameter in the funtion that request the

resoures, whih is shown in the �rst lines of the �le. Moreover, in the �le we an see some Expo

operators to ease the proedure of exeution of ommands on several nodes through the use of

iterators. This makes easier the desription of tasks suh as deativating in�niband interfaes

8

http://www.s.uoregon.edu/researh/tau/home.php

53

http://www.cs.uoregon.edu/research/tau/home.php

CHAPTER 3. EXPO: A TOOL TO MANAGE LARGE SCALE EXPERIMENTS

on all reserved nodes. Another operator is shown for generating the orret host�le neessary for

running a MPI appliation. Finally, we exeute the appliation and we get the pro�le generated by

TAU during the exeution. All the results are sent to the experimenter's mahine. The modularity

of the tool enables users to run their experiment in another testbed by just loading the appropriate

module. Other use ases will be shown throughout all this thesis and mainly in the next hapter

where Expo was used for performing a ustom alibration of Grid'5000 lusters that enabled the

e�ient deployment of multisite parallel appliations. Expo use ases inlude:

� Evaluation of proesses plaing in the deployment of a parallel appliation.

� Calibration of Grid'5000 proessors for an eletromagneti appliation.

� Comparison of the two tehniques of deployment: naive and hardware aware.

� Generation and olletion of traes of NAS

9

benhmarks using TAU.

These examples are inluded in the Appendix A of this thesis.

3.4 Evaluation of experiment ontrol systems

<?xml version="1.0" enoding="utf-8"?>

<gush>

<projet name="Testing overhead">

<omponent name="Cluster1">

<rspe>

<num_hosts>20</num_hosts>

</rspe>

<resoures>

<resoure type="ssh" group="loal"/>

</resoures>

</omponent>

<experiment name="simple">

<exeution>

<omponent_blok name="b1">

<omponent name="Cluster1"/>

<proess_blok name="p2">

<proess name="test">

<path>hostname</path>

<mdline>

<arg></arg>

</mdline>

</proess>

</proess_blok>

</omponent_blok>

</exeution>

</experiment>

</projet>

</gush>

Listing 4: Gush desription

require 'g5k_api'

set :user = "ruizsanabria"

set :resoures = "MyExperiment.resoures"

reserv= onnetion(:type => "Grid5000")

reserv.resoures = { :nany => ["nodes=200"℄

:sophia => ["nodes100"℄}

reserv.name = "Expo Salability"

reserv.walltime=2000

task_definition_start

task :run_reservation do

reserv.run!

end

task :salability do

sizes=[10,50,100,200,300℄

resoures.eah_slie_array(sizes) do | nodes|

run("hostname", :target => nodes)

have to put tags here

}

end

Listing 5: Expo Experiment desription

Listing 6: Comparison between experiment desription �les: These �les were used in the evaluation of the

salability of the two tools. It should be notied here that the experiment desription for Gush has to be

hanged every time we need to hange the number of nodes to try with. Also Gush needs a �le for the

resoure desription that is not shown.

The aim of this setion is to position Expo in the panorama of experiment management tools.

In this thesis, we have already performed a qualitative omparison of the experiment management

tools in Chapter 2. In this setion the goal is to arry out a deeper omparison of similar approahes

for onduting experiments on distributed infrastrutures. We have hosen: Gush, Exeo and

9

http://www.nas.nasa.gov/publiations/npb.html

54

http://www.nas.nasa.gov/publications/npb.html

CHAPTER 3. EXPO: A TOOL TO MANAGE LARGE SCALE EXPERIMENTS

Figure 3.5: Evaluation of the salability of Gush and Expo when exeuting a ommand in a large set of

resoures. The upper and lower "hinges" orrespond to the �rst and third quartiles. Points that are out

of this range, represented outliers. Eah test was repeated 10 times.

XpFlow. These three tools share many features with Expo suh as the ease of installation, the

apaity to adapt to di�erent testbeds and they are targeted at performing general experiments

in distributed infrastrutures involving a big amount of nodes. First, we evaluate Expo against

Gush given that they used very di�erent approahes to desribe the experiment as well as di�erent

philosophies. Then, we evaluate Expo against Exeo and XpFlow whih have been developed with

the purpose of managing large sale experiments.

3.4.1 Gush omparison

The evaluation onsisted in the expressiveness of the language, as well as the performane and

salability of the ommand exeution. The omparison between both tools was done by arrying

out an experiment, whih involved a large amount of nodes. We de�ned an experiment that

onsisted in exeuting a ommand in a set of resoures and measuring the time elapsed, while

varying the number of nodes. Therefore, we ompare the time to exeute the ommands and the

�exibility in the desription of the experiment. Listing 6 shows the desriptions of the experiment

used forGush and Expo. We an note, looking at the experiment desription, that forGush we have

either to hange the �le for eah experiment so as to try di�erent number of resoures, or we an

reate a long desription �le with all the possibilities we want to try. This is not the ase for Expo,

whih uses Ruby and provides a programmatial approah for desribing the experiment, making

it �exible enough to adapt to the normal ativities or hanges when we perform an experiment.

Figure 3.5 shows the salability of the mehanism for the exeution of ommands. In this

�gure we an see that Expo outperforms Gush due to the use of TakTuk parallel exeuter, also

that Expo presents less variability in the time to exeute the experiment, whih is important to

the reproduibility. It was notied as well that when we tried to exeute an experiment with more

than 400 nodes, problems arise trying to perform it with Gush.

3.4.2 XpFlow and Exeo omparison

There has been a reent interest for developing experiment management tools targeted at omplex

experiments with distributed systems. From the tools that have been studied in Chapter 2 two

tools deserve speial attention XpFlow and Exeo given that they are atively developed and used

55

CHAPTER 3. EXPO: A TOOL TO MANAGE LARGE SCALE EXPERIMENTS

by the Grid'5000 ommunity. Additionally, they have been used in reent publiations [67, 20℄.

At the moment of writing the versions of XpFlow and Exeo used were respetively 0.1 and 2.3

10

. This evaluation goes a step further ompared to the previous evaluations. We implemented

�rst a salability experiment using Taktuk, the three tools support it for running experiments at

large sale. The three di�erent experiment desriptions are shown in Figure 10. Resoures were

reserved on 9 di�erent sites (nany, sophia, toulouse, lille, lyon, luxembourg, nantes, grenoble and

rennes) in Grid'5000. Therefore all three tools reeived as a parameter the same set of resoures.

The experiment onsist simply in exeuting the ommand hostname over a set of resoures and

measuring the time it took to arry out this task. Di�erent sizes of nodes were tested as an be

observed on the experiment desription �les. The results of the test are shown in Figure 3.6, we

an observe that Expo sales better with an inreasing number of nodes. This is due to the fat

that it takes into aount the topology of the infrastruture whih is aptured in the ResoureSet

abstration and helps to generate the right parameters for TakTuk. With the implementation of

these experiments and the ones shown in the Appendix A, we gained some insights and disuss

some features provided by those tools.

Desription language

From the desription point of view when evaluating these tools we had an interesting ase study

beause eah tool o�ers a di�erent degree of abstration. Going from the simple plain sript

provided by Exeo to the most sophistiated work�ow representation o�ered by XpFlow. Expo

sits on the middle providing the Task abstration to struture the experiment desription. Exeo

provides an API for ontrolling remote proesses, ontrary to Expo and XpFlow that provide an

internal

26

DSL oriented to the domain of experimentation. Eah representation has its advantages

and disadvantages, having a low level API as the one provided by Exeo enables a �ne grain

ontrol of running appliations. They an be started, monitored and stopped and the work�ow

of the experiment an be easily modi�ed using all the syntax and language onstruts provided

by Python. In the other hand, Expo and XpFlow impose their proper onstruts to speify

the experiment work�ow. This brings modularization and makes experiment desription more

omprehensible. As a onlusion, we believe that the good level of abstration will depend on the

type of experiment and its omplexity.

Experiment validation

One important fat that haraterizes the evaluated tools is that they used interpreted languages as

a means for desribing the experiments. This brings high �exibility for interating with omputing

systems as is demonstrated by the fat that more than 50%

11

of on�guration management tools

are implemented using this kind of programming languages. However, the naive use of these

programming languages an have a big ost for the ondution of experiments, as simple errors

like the use of undelared variables, unde�ned methods, invalid arguments, et., ould break

the experiment work�ow and lose its progress. This is a drawbak of Exeo that by default

do not integrate any validation mehanism for ahing the aforementioned errors before running

the experiment. XpFlow detets undelared variables and unde�ned methods before running the

experiment, stopping its exeution and presenting an error to the user. Unfortunately this only

happens at the level of the proess abstration, ativities that are used as building blok and wrap

low level tasks, do not ount with this type of validation. Expo as already presented, provides two

mehanisms: stati ode analysis and dry run.

Experiment hekpoint

Exeo provides hekpointing support for parametri studies. It provides a lass to perform param-

eter sweeps whih uses a loal diretory in disk for saving the progress of the parameter ombination

10

Those versions were aessed on 24/09/2014.

11

Cheking language used by the most popular projets: Ansible, Bfg2, dist, Chef, CFEngine, juju, Puppet,

Salt, Rexds

56

CHAPTER 3. EXPO: A TOOL TO MANAGE LARGE SCALE EXPERIMENTS

require 'g5k_api'

set :resoures, "MyExperiment.resoures"

set :user, "ruizsanabria"

reserv = onnetion(:type => "Grid5000")

reserv.reate_resoure_set_file("nodes_expe")

RUNS = 5

task :salability do

sizes = [2,4,8,16,32,64,128,256℄

resoures.eah_slie_array(sizes) do |nodes|

msg("Testing with #{nodes.length}")

RUNS.times{

run("hostname", :target => nodes)

}

end

end

Listing 7: Expo experiment desription

proess :main do

log "Starting Experiment"

RUNS = 5

ip_adresses = YAML::load(File.read("nodes_expe"))

nodes = [℄

ip_adresses.eah{ |ip|

nodes.push(simple_node("ruizsanabria�#{ip}"))

}

[2,4,8,16,32,64,128,256℄.eah do |size|

test_nodes = nodes[1..size℄

log("Testing with #{size} nodes")

RUNS.times{

r = exeute_many(test_nodes, "hostname")

log(r)

}

end

end

Listing 8: XpFlow experiment desription

from exeo import *

from exeo_engine import *

import yaml

lass taktuk_salability(Engine):

def run(self):

RUNS = 5

with open('nodes_expe', 'r') as f:

ip_address = yaml.load(f)

hosts = [℄

for address in ip_address:

hosts.append(Host(address, user = 'ruizsanabria'))

time = Timer()

logger.info("Starting Experiment")

for i in [2,4,8,16,32,64,128,256℄:

test_hosts = hosts[0:i℄

for i in range(RUNS):

servers =TaktukRemote("hostname",test_hosts)

servers.start()

servers.wait()

print Report([servers℄).to_string()

logger.info("Total exeution time = %f" % time.elapsed())

if __name__ == "__main__":

engine = taktuk_salability()

engine.start()

Listing 9: Exeo experiment desription

Listing 10: Comparison between experiment desription �les: These �les were used in the evaluation of

the salability using taktuk. We an observe the di�erent abstration used by the tools and their syntax

sugar.

that have already been tested. However, it does not support the hekpoint of any experimental

work�ow. XpFlow is able to save the progress of any experimental work�ow by saving the state of

all variables used in the experiment desription. Thus, if the exeution faes any eventual error,

users an reat, �x the error and ontinue to exeute the experiment from the point it stopped.

Expo does not support experiment hekpointing, instead it provides an interative mode that is

triggered when an error ours. In this way it serves the same funtion of XpFlow hekpointing

mehanism. As a onsequene, the hekpoint mehanisms provided are either spei� for a kind

of experiment or does not take into aount the state of the platform. We have to remark here

57

CHAPTER 3. EXPO: A TOOL TO MANAGE LARGE SCALE EXPERIMENTS

Figure 3.6: Evaluation of the salability of Expo, Exeo and XpFlow when exeuting a ommand in a

large set of resoures. Eah test was exeuted ten times.

that the real sense of a hekpoint mehanism (to save the progress of an experiment) is di�ult

to implement. There are some di�ulties suh as the need of large amount of storage apaity

and the apturing of the network state, those problems are addressed by works in the hekpoint

of parallel appliations and the snapshotting of whole virtual infrastrutures [80℄.

3.5 Related works

Chapter 2 presented a omplete state of the art in experiment management tools. Here we present

two �elds of onstant researh in software engineering that shares similar onerns with Expo:

� Deployment of omplex distributed appliations

� Regression tests for distributed appliations

Those �elds of researh have produed a plethora of tools that seeks to remove the error-prone

nature of human intervention by enouraging automation. They aim at reduing the burden of

on�guring and testing distributed appliations.

3.5.1 Deployment of omplex distributed appliations

Due to the limited salability and error-prone nature of manual approahes several tools have been

developed to make easier the deployment of appliations and their pre-requisites in distributed

infrastrutures. ADEM [62℄ is an automation tool for the deployment and management of grid

appliation software. It manage e�iently the deployment and building of appliations (ompiling

and installation of dependenies) over di�erent grid sites. It takes into aount platform het-

erogeneity through the use of signatures. Tune [17℄ is a tool to manage software in distributed

infrastrutures. The goal is to make easier the administration and deployment of multi-tiered

appliations

12

. It is based on the onept of autonomous omputing for making the administra-

tion of an infrastruture as a omponent arhiteture. The main idea is to automatially reate a

representation based on fratal omponents of the real system, with two main parts: appliation

12

appliations that depend on di�erent servies (e.g., databases, web servers, load balaners, et).

58

CHAPTER 3. EXPO: A TOOL TO MANAGE LARGE SCALE EXPERIMENTS

omponents and platform omponents. All expressed with a subset of UML diagrams. It has

already been used in the installation of a luster software and the deployment of an eletromag-

neti simulation ode in a grid infrastruture [83℄. Another work [50℄ address the deployment of

appliations in IaaS louds. It proposes a deentralized protool to automatially deploy applia-

tions onsisting of interonneted software elements hosted on several VMs. It uses an XML-based

formalism to desribe the loud appliations to be deployed. Expo di�ers from the aforementioned

tools in that it o�ers a more �exible, programmati approah for the desription of the experiment

and it is designed to interat with a large number of nodes.

3.5.2 Regression tests for distributed appliations

Regression tests enompass di�erent priniples aiming at the rapid test and deploy of hanges in

software. Those kind of tests when applied to distributed systems are hard, beause appliations

should start e�iently and in a orret order. Additionally, they have to meet omplex dependen-

ies as the ones required by multi-tiered appliations (e.g., database URL, load balaners, et.).

DART [31℄ was developed to failitate the writing of distributed tests for large-sale network appli-

ations. It provides a language based on XML to speify high level details of test exeution. Eah

test enompasses: setting up the required infrastruture, distributing ode and data to all nodes,

exeuting and ontrolling the distributed tests and �nally olleting the results of the test from all

the nodes and evaluate them. It integrates e�ient tools for the exeution of appliations and the

transfer of �les. NMI [99℄ is a framework to build and test software in a heterogeneous, multi-user,

distributed omputing environment. The prinipal aim is to o�er to the user the ontinual testing

of software hanges. The user desribe the proess of building and testing along with its external

software dependenies by using a lightweight delarative syntax. It works along with a versioning

system to log the results and hanges and perform the traking of all inputs, whih ensure repeat-

able and reproduible tests. Another framework oriented to IaaS Clouds is Expertus [69℄ whih

through ode generation tehniques, automates performane testing of distributed appliations. It

handles automatially omplex on�guration dependenies of software appliations and it strives

to remove human error by fully automating the testing proess (i.e., deployment, on�guration,

exeution and data olletion). The automation is based on sript generation from templates that

are spei�ed using XML.

Nixos [123℄ aims at making distributed appliation testing as easy to write as unit tests. It

provides a spei�ation for automatially instantiate virtual mahines for providing the neessary

artifats for tests, namely root privileges, system servies, multiple mahines, spei� network

topologies, et. The system is built on top of Nix [42℄ the funtional linux distribution whih

enables to provide a onise way to speify VM on�gurations and an e�ient way to build

them. The main di�erene between the tools mentioned in this subsetion and Expo is the target

ommunity. The target ommunity of those tools is most of the time software developers or

system administrators whih ount with high tehnial skills and this fat is re�eted in the type

of languages o�ered to desribe the environment of tests. Researhers do not always possess

the required expertise to deal with distributed systems omplexity and that is why high level

abstrations for performing experiments were a design requirement for Expo.

3.6 Conlusions and future works

Experimentation in omputer siene and speially in distributed infrastrutures has seen the

emergene of di�erent experiment ontrol systems. From this fat we an draw a onlusion that

most of the tools distinguish almost the same phases in the experimenting proess. There are

three main parts of the experiment proess that a tool must ontrol and help the user with: (i) the

ontrol, (ii) the supervision and (iii) the management of the experiment. The �rst part omprises

the desription of the experiment, the apture of data, the de�nition of the soure of data, and how

to get it after the experiment has �nished, as well as the �ow of ontrol of the experiment. This is

an important step for the reproduibility of the experiment. Seond, the experiment supervision,

59

CHAPTER 3. EXPO: A TOOL TO MANAGE LARGE SCALE EXPERIMENTS

whih means the monitoring of the experiment. The last phase is the experiment management,

whih is the interation with the platform, and mainly onsist in taking advantage of the servies

provided by the infrastruture in order to arry out the experiment.

Expo o�ers a way to desribe the experiment by using a programming language providing a

lot of �exibility and, more importantly, the abstrations that allow the user to express omplex

on�gurations. We put speial attention at automating the typial tasks done when an experiment

is performed. Beause we think that automating the experimentation proess is the way to go,

being one of steps that will lead to the experiment reproduibility. Furthermore it is important to

enourage the ulture of experiment reproduibility, whih is aknowledged to be a shortoming

in omputer experimentation.

The use of experiment tools will save user time, whih an be spent in improving the software

itself, it will save osts and allow others to reprodue the results more easily. It is important to

integrate some features to Expo for the sake of reproduibility, we need to improve the part of

the system that logs the experiment exeution with the aim of having detailed and easy to treat

information. This would enable a possible replay of the experiment. Additionally, it is important

to inorporate mehanisms to monitor and to generate a workload, and more importantly, to deal

with fails.

60

Chapter 4

How HPC appliations an take

advantage of experiment management

tools

The heterogeneous nature of distributed platforms suh as omputational Grids is one of the main

barriers to e�etively deploy tightly-oupled appliations. For those appliations, one ommon

problem that appears due to the hardware heterogeneity is the load imbalane whih slows down

the appliation to the pae of the slower proessor. One solution is to distribute the load adequately

taking into aount hardware apaities. To do so, an estimation of the hardware apaities for

running the appliation has to be obtained. In this hapter, we present a stati load balaning

for iterative tightly-oupled appliations based on a pro�le predition model. This tehnique is

presented as a suessful example of the interation between experiment management tools and

parallel appliations. The experiment management tool Expo is used that enabled to: (1) provide

a general, lightweight and desriptive way to apture the tuning and deployment of a parallel

appliation in a omputing infrastruture, (2) perform the tuning of the appliation e�iently

in terms of human e�ort and resoures needed. This hapter reports the osts for arrying out

the tuning of a large eletromagneti simulation based on TLM for the platform Grid'5000 and

the improvements obtained on the total exeution time of the appliation. The ontents of this

hapter were published in a paper [110℄ presented at CCGrid2014.

4.1 Introdution

High Performane Computing (HPC) strives to ahieve the maximum performane of a given

mahine. The inreasing omplexity of omputing hardware arhitetures nowadays, makes rise

the number of variables to take into aount to ahieve this maximum performane and it is

even worse when onsidering heterogeneous infrastrutures as omputational Grids. A ommon

problem is the omputation imbalane present in tightly-oupled appliations that run in Grid

infrastrutures whih is due to the unawareness of the underlying infrastruture harateristis.

One of the best options to get the maximum performane is to tune the appliation ode for a

given arhiteture. This approah is used by ATLAS [129℄ whih gets its speed by speializing

itself for a given platform. Arhiteture aware tools suh as hwlo [16℄ are now available in high

performane runtime environments of parallel appliations. Therefore, a deep knowledge of the

underlying infrastruture by the appliation is the evident trend to ahieve the best performane.

For some regular sienti� odes, it is possible to derive a performane model and the tuning of

the appliation an be guided based on this performane model [61℄. This performane model an

be onstruted either from a detailed understanding of the appliation exeution or by analyzing

multiple runs. A multiple-runs approah is simpler beause it takes into aount the omplex

interation between the appliation and for instane the memory hierarhy. To do so, several tools

61

CHAPTER 4. HOW HPC APPLICATIONS CAN TAKE ADVANTAGE OF EXPERIMENT

MANAGEMENT TOOLS

suh as pro�lers, traers, statistial engines, runtime environments have to be linked together in

order to arry out the task of automating the generation, olletion and treatment of performane

information and provide the appropriate data to reate the model.

In this hapter, it is shown how parallel appliations an take advantage from experiment

management tools. A tehnique of load balaning for large simulations odes based on a predition

model is analyzed. This tehnique relies on the interation between experimental management

tools and parallel appliations. The tehnique is applied to a large eletromagneti simulation ode

based on Transmission-Line Matrix (TLM) numerial method [60℄, deployed in a heterogeneous

Grid infrastruture. This tehnique is lassi�ed as a Stati load balaning whih is well adapted to

highly regular appliations. It requires few hanges to the appliation ode ompared to adopting

a new programming model and given the high memory requirements of the appliation, a dynami

approah would generate a onsiderable overhead. The used of our experiment management tool

Expo presented in Chapter 3 is shown. This enabled us to manage the modeling work�ow where

the exeution of big ampaigns of appliation runs are needed and the orhestration of di�erent

tools that ould partiipate in the proess of reation of the performane model. Doing this task

e�iently is important in order to not delay the exeution of the real appliation, redue the

perturbation of the results and provide in a short period of time valuable information to the

appliation.

The ontribution of this hapter is twofold:

� Show the importane of experiment management tools in helping users to manage the om-

plexity of distributed infrastrutures, to automate several tasks and to make e�ient use of

omputational resoures.

� A load balaning tehnique for regular sienti� odes based on the alibration of the platform

and a predition model. The approah is not expensive in terms of ode soure modi�ation,

user intervention and presents almost no overhead. An average improvement of 36% in the

exeution time is ahieved.

4.2 Related work

The related work is organized into two parts: the load balaning tehniques in parallel appliations

and the di�erent tehniques to arry out suh a task. The seond part presents the state of the

art of experiment management tools and works related to the benhmarking of Grid platforms.

4.2.1 Load balaning of distributed appliations

An important phase of the exeution of parallel odes is the assignment of work to ompute

units. The problem of load balaning then is de�ned as the assignment of work to the ompute

units aording to its performane or load. This assignment of work an our at the startup of

the appliation (stati partitioning) or it an happen several times during the exeution of the

appliation (dynami partitioning). Both of them will be desribed in the following subsetions.

Dynami tehniques

Dynami tehniques are very popular now given the apparition of infrastrutures suh as loud

omputing. It is the ase of Charm++ runtime system [58℄ whih through ontinuous estimation of

proessor load, it adapts to the imbalane reated by known �utuations in shared infrastrutures.

Another approah based on Charm++ [85℄ takes into aount the lateny existing in ross-site

ommuniations for Grid infrastrutures. As it an be very umbersome to onvert appliations to

newer paradigms suh as Charm++, AMPI was proposed in [13℄ whih enables a bigger number of

appliation bene�ts from the framework features as load balaning. These dynami tehniques were

mainly reated due to the large presene of high irregular load in parallel omputational siene

and engineering. Our approah applies to highly regular odes exeuted on Grid infrastrutures

62

CHAPTER 4. HOW HPC APPLICATIONS CAN TAKE ADVANTAGE OF EXPERIMENT

MANAGEMENT TOOLS

where the CPU is not shared between users. Therefore, the gain obtained with a dynami approah

would be negligible and there exist a potential overhead of ontext swithing and migration.

Stati tehniques

In [109℄, a stati load balaning tehnique for mapping iterative algorithms onto heterogeneous

lusters is presented fousing on the omplexity of appliation partitioning and the e�ient heuris-

tis for the distribution shemes. Load balaning for Grid appliations is proposed as well by

PaGrid[64℄ whih proposes a partitioner to balane mesh based appliations. A graph is generated

for the platform where proessors are weighed aording to its relative performane at exeuting

standard benhmarks. This graph is mathed with the graph generated for the appliation. In

[40℄ is desribed a resoure-aware partitioning where information about a omputing environment

is ombined with traditional partitioning algorithms. The approah ollets information about the

omputing environment and proesses it for partitioning use.

4.2.2 Experiment management tools

GrapBenh [94℄ provides a framework to arry out a semi-automati benhmarking proess for

studying appliation behavior in grid infrastrutures. The framework ontrols the number of

benhmarking measurements required by a given appliation whih are managed then by its ex-

periment engine. The work outlined here di�ers from this in that it provides a more general

experiment engine oneived to arry out any kind of study for an appliation in distributed plat-

forms. Plush [4℄ is a widely used tool in PlanetLab, for deploying and monitoring appliation

exeution in distributed platforms. It provides abstrations to speify the steps to deploy an

appliation, however, a real experiment entity is not taken into aount. The in�exibility of its

desription language makes it di�ult to write parametri studies. ZENTURIO [104℄ enables the

management of parametri studies for an appliation in a framework for experimenting, but their

high number of modules makes it di�ult to port it to di�erent platforms.

Work�ows engines are well known for their apaity for arrying out parametri studies. Vis-

trails [23℄ provides parameter exploration and omparison of di�erent results. It improves the

experimentation ativity providing data provenane traking mehanisms. One limitation of Vis-

trails is its inability to adapt to distributed environments. Pegasus[38℄ o�ers a mapping between

tasks in a work�ow and distributed infrastrutures (loud, grid, lusters). Despite the apaity

of some work�ow engines to use distributed infrastrutures, it is di�ult to use them when on-

sidering the setup of an appliation. This setup ould inur several omplex steps that need a

onstant supervision. For more information about the aforementioned tools the reader is referred

to Chapter 2. The approah proposed in this hapter addresses those issues and it is based on

the experiment management tool presented in Chapter 3. In that hapter it was shown that Expo

is based on two abstrations resoures and tasks whih an be ombined to represent a work�ow.

The work�ow spei�ation desribes all the experiment ativity: platform aess, appliation de-

ployment and setup, appliation exeution, analysis and generation of results.

4.2.3 Transmission-Line Matrix

The main idea of this appliation is to simulate the propagation of an eletromagneti �eld in-

side large strutures suh as tunnels and airplane abins. TLM numerial method models the

eletromagneti �eld propagation by �lling the spae with a network of transmission-lines fed by

eletrial signals whose voltage and urrent orrespond to the eletri and magneti �elds. The

intersetion of these lines, that have the free-spae impedane, is modeled with the Symmetrial

Condensed Node (SCN) [72℄ sheme, whose sattering matrix is derived diretly from the behavior

of the �elds. The TLM method requires signi�ant omputing resoures, but its algorithm has

the advantage of being parallelizable, whih makes it possible to simulate oversized strutures on

multiple omputing mahines. Using a parallel approah, large eletromagneti strutures an be

63

CHAPTER 4. HOW HPC APPLICATIONS CAN TAKE ADVANTAGE OF EXPERIMENT

MANAGEMENT TOOLS

modeled by means of large sale omputing systems suh as Grid or superomputers in a HPC

senario.

In order to avoid a heavy TLM alulation, the disretized domain is slied into several sub-

domains that are assigned to the proessors where will be omputed in parallel. The CPUs

ommuniate between them to ahieve the job. The parallel approah, based on Message-Passing

Interfae (MPI), is designed for Single Program Multiple Data (SPMD) programming model as it

is presented in [9℄. In the proposed parallel TLM appliation, a one-dimension Cartesian topology

is implemented for the partitioning proess.

4.3 Load Balaning approah

Here, the tehnique of load balaning applied to the TLM appliation is desribed. Considering a

fully heterogeneous infrastruture, suh as Grid'5000, a Grid omputing with many lusters geo-

graphially distributed omposed of di�erent hardware on�gurations. The appliation needs to

assign an adequate workload for eah node in order to fully exploit the infrastruture apaities.

Given that the appliation is highly regular as shown in [9℄, a stati load balaning tehnique is

hosen, where all the work is divided and distributed at the beginning. The amount of work as-

signed to eah proessor depends on the relative performane of the appliation on suh proessor.

As this relative performane an be di�ult to get from proessor harateristis, a predition

model is used in order to have a more aurate indiator. It was already shown that the expeted

runtime of the omputation part of the appliation sales linearly with the number of TLM ells

Nx, Ny, Nz on the three Cartesian diretions, y being the partitioning diretion. Thus, a simple

linear funtion given in [9℄ is used to model the performane:

Tcalc = c1 + c2NxNyNzt, (4.1)

where c1,2 are the time oe�ients orresponding to di�erent bloks of the TLM appliation

and t represents the number of omputing iterations. The predition model, given in (4.3), takes

into onsideration the algorithm to be exeuted and the proessor arhiteture performing the

omputation. They represent the proessor arhiteture information inside the predition model.

This model takes into aount the e�ets of ahe misses, aording to the problem size. The �rst

term may be negleted as it is very small ompared to the seond one. Lets onsider that the

partitioning proedure gives the length of the omputing sub-domain assigned to the proess i, as:

li = αiNy, (4.2)

with

p∑

i=1

αi = 1

for all p proesses the struture is omputed by. Consequently, the amount of work is dis-

tributed aording to the fat that the omputation time has to be the same for eah proess

i :

Tcalci = ciNxliNzt, ∀i ∈ [1, p] (4.3)

where ci is the seond oe�ient from (4.3) orresponding to the proess i. This leads to

desribe (4.2) by:

lj =
Ny

cj
∑p

i=1
1

ci

, (4.4)

where lj is the work assigned to the proess j. Therefore, a onstrution of a predition model

of the appliation for eah di�erent omputing hardware available on the Grid infrastruture has

to be performed. In order to have a good predition model, a given set of hosen simulations have

to be run and analyzed for eah di�erent mahine. This proess is depited in Figure 4.1. Expo

64

CHAPTER 4. HOW HPC APPLICATIONS CAN TAKE ADVANTAGE OF EXPERIMENT

MANAGEMENT TOOLS

is used to automate the task of onduting this big number of exeutions. This proess will be

alled alibration. The module used to this end is desribed in Setion 4.3.1. The load-balaning

approah implemented in this work onsiders the ommuniation between di�erent lusters being

homogeneous. The ommuniation apabilities of the omputing environment are not taken into

aount. Not all resoures have to be involved espeially when the struture to be omputed is

not so large, beause the ommuniations due to an exess of proessors may slow down the entire

simulation, despite the inreased aumulated speed.

The exeution of the appliation will be wrapped in two Expo modules, whih will automate

all the proess in the platform hosen for testing (Grid'5000).

� Calibration of the platform. This module runs one, it an ontat the platform in order to

know if there has been a hange in the hardware on�guration and deploys the neessary

alibration.

� Deployment of the appliation. Generation of a �le that ontains platform �tness information

for the appliation and arry out the load balaning at appliation level.

Figure 4.1: Load balaning approah

4.3.1 Expo alibration module

All the proedure of platform alibration was aptured using Expo tasks abstrations. The follow-

ing tasks were de�ned:

65

CHAPTER 4. HOW HPC APPLICATIONS CAN TAKE ADVANTAGE OF EXPERIMENT

MANAGEMENT TOOLS

Figure 4.2: Expo Modules: the alibration modules is exeuted one

Task name

Exeution time [se℄ per luster

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Transfert site 15.09 13.31 16.32 14.06 26.76 42.55 10.26 10.46 11.92 35.03

Compiling ode 21.84 24.35 30.14 22.38 23.49 27.10 20.56 21.36 29.94 20.28

Calibration 1770.14 4860.31 3630.55 1770.47 4660.67 7590.81 1640.23 1600.83 3430.70 1620.87

Free resoures 1.76 1.62 2.20 1.25 1.33 1.54 1.42 1.77 1.06 1.55

Table 4.1: Exeution time of the di�erent tasks that ompose the alibration module.

� Run reservation: make a request to the omputing platform in order to reserve the re-

soures needed.

� Transferring ode to eah site on the grid: The ode is sent from one hosen site to

every site in Grid'5000.

� Extrating and ompiling the ode: The ode is extrated and ompiled with the right

on�guration.

� Calibration: It omprehends the exeution of several simulations with di�erent parameters.

Two types of alibration are performed in order to take into aount the ahe e�ets.

� Compute oe�ients: The statistial engine R

1

is used in order to proess the �les gener-

ated by the alibration and perform a linear regression in order to alulate the oe�ients

of the model.

� Free resoures: It makes a request to the platform in order to free the resoures used by

the alibration.

These tasks were desribed using Expo DSL using 180 lines. An extrat of the desription is

shown in Listing 11 and the di�erent exeution times of eah task for di�erent lusters are shown

in Table 4.1. It is important to note that the time to exeute the whole module for a partiular

luster mainly depends on the exeution time of the simulations. There is an almost negligible

overhead in the exeution time with Expo, whih was already shown in Chapter 3.

In Figure 4.3 is shown the exeutable work�ow generated from the abstrat alibration ex-

periment de�nition. Here, the level of exeution is the job. The system submits a job into the

infrastruture for every di�erent (di�erent arhiteture) luster in Grid'5000. Thereby, every task

de�ned in the abstrat representation is mapped into a luster and managed asynhronously. Sev-

eral mahines were used per luster in order to lower the time to get the results. The simulation

were deployed in parallel for this ase using TakTuk whih enable us to maintain a low number

of ssh onnetions to ontrol the experiment. In Figure 4.4, it is shown the heterogeneity of

Grid'5000 in terms of oe�ients of the predition model. This �gure was generated using the

results obtained by the alibration module.

Advantages of using Expo:

� It helps to deploy e�iently the simulations used for the alibration part, making independent

from the platform. More than 1359 simulations were neessary to get data for the predition

model.

1

http://www.r-projet.org/

66

CHAPTER 4. HOW HPC APPLICATIONS CAN TAKE ADVANTAGE OF EXPERIMENT

MANAGEMENT TOOLS

Figure 4.3: Experiment alibration exeutable work�ow

4.6
68e

−08

4.7
41e

−08

9.4
10e

−08

9.6
72e

−08

1.5
02e

−07

2.5
43e

−07

3.8
27e

−084.6
18e

−08

4.5
10e

−08

4.8
94e

−08

8.8
10e

−08 1.0
40e

−07

1.0
82e

−07

1.1
00e

−07

4.7
34e

−08

1.1
78e

−07

0e+00

1e−07

2e−07

Cluster

Pr
ed

ict
io

n
m

od
el

 c
oe

ffi
cie

nt cluster
adonis
chinqchint
chirloute
edel
genepi
granduc
graphene
griffon
hercule
orion
paradent
parapide
parapluie
pastel
reims
sagittaire

Figure 4.4: Heterogeneity of Grid'5000

� Makes all the proedure more reproduible and repeatable.

� Frees the appliation from implementing this funtionality. Relying on more �exible lan-

guages for this task.

67

CHAPTER 4. HOW HPC APPLICATIONS CAN TAKE ADVANTAGE OF EXPERIMENT

MANAGEMENT TOOLS

1 task :transfering_tlm, :target => resoures.gw do

2 put("~/TLM/tlm_v1.tar","/tmp/tlm_test.tar",:method => "sp")

3 end

4

5 task :run_reservation, :depends => [:transfering_tlm℄ do

6 reserv.run!

7 end

8

9 task :transfert_site, :target => resoures, :depends => [:run_reservation℄ do

10 options_put = {:method => "sp", :nfs => :site}

11 run("mkdir -p ~/Exp_tlm")

12 put("/tmp/tlm_test.tar","~/Exp_tlm/tlm_test.tar",options_put)

13 end

14

15 task :ompiling, :target => resoures, :depends => [:transfert_site℄ do

16

17 hek("ls ~/Exp_tlm/TLMME/") then

18 run("d ~/Exp_tlm/; tar -xf tlm_test.tar")

19 run("make -C ~/Exp_tlm/TLMME/tlm/")

20 end

21

22 end

23

24 task :alibration_2, :target => resoures, :depends => [:ompiling℄ do

25

26 params_2.eah_with_index{ |par,index|

27 number_sim = 2

28 RUNS.times do

29 tag = {:parameters => par,:size => size_2[index℄ }

30 ommands =["d ~/Exp_tlm/TLMME/tlm/;./run 1 #{par} mathed"℄

31 run(ommands, :ins_per_mahine => number_sim,:log => tag)

32 end

33 puts "Finishing parameter #{par}"

34 }

35 end

Listing 11: Extrat of the alibration module

4.4 Results

4.4.1 Experimental platform

The simulations were performed on Grid'5000 platform [55℄. For performane reasons, only two

proesses are exeuted on grid nodes, eah one on a di�erent proessor. The arhitetures of the

omputing nodes from Grid'5000 are di�erent from luster to luster. The same lusters where

used in order to keep the homogeneity between the experiment results onerning the simulation

time. These lusters are geographially distributed in two sites. These sites are onneted by

RENATER, the Frenh network for researh and teahing. All Expo desription �les used two run

the experiments are available in

2

.

4.4.2 Using di�erent on�gurations

Here, it was evaluated the performane gain obtained using load balane under di�erent hardware

on�gurations. In order to show the improvement in performane for large simulations, we opted

for using di�erent simulation sizes proportional to the number of nodes. This enabled to maintain

a favorable rate between omputation and ommuniation. The results are shown in the Figure.

4.5. A maximum gain of 42.84% was obtained using lusters loated in the same site. The

gain obtained using several geographially distributed sites varies a great deal, we observed here

performane gains ranging from 3.25% to 19.92%.

68

CHAPTER 4. HOW HPC APPLICATIONS CAN TAKE ADVANTAGE OF EXPERIMENT

MANAGEMENT TOOLS

edel−genepi luxembourg−nancy−reims nancy−luxembourg

0

10

20

30

40

Pe
rfo

rm
an

ce
 G

ai
n

[%]

Number of nodes 4 6 20 60

Figure 4.5: Using di�erent heterogeneous on�gurations. First tests used luster loated in the same site

(edel-genepi). The other two series of test used di�erent geographially distributed sites (luxembourg,

nany, reims).

0

5

10

15

20

25

30

35

40

4 8 16 32 64 128

Ga
in

 [%
]

No of processes

Figure 4.6: Gain obtained with the same simulation parameters hanging the number of nodes.

4.4.3 Changing the number of nodes

The experiment simulates the eletromagneti �eld propagation, using the TLM method, for 10000

time steps inside a waveguide struture, having the dimensions: 172 mm width, 86 mm height,

2432 mm length, a mesh step of 1 mm. In this experiment the omputing nodes belong to Gri�on,

Chinqhint and Chirloute lusters. The simulation time values are presented in Figure. 4.6. The

maximum gain obtained when using load-balaning approah is about 36%. The values of the

simulation time when the load is balaned aording to the alibration model given by Expo are

smaller than the time values when the struture is divided identially on all MPI proesses. The

gain obtained by load balane approah dereases while the number of proesses inreases, beause

the omputation time dereases aording to ommuniation time.

2

http://expo.gforge.inria.fr/

69

CHAPTER 4. HOW HPC APPLICATIONS CAN TAKE ADVANTAGE OF EXPERIMENT

MANAGEMENT TOOLS

4.4.4 Large struture

In order to prove the real bene�ts of the grid environment for TLM large simulations, a supersized

retangular mathed waveguide, disretized upon 95 million TLM ells is simulated. Its dimensions

are: 345 mm width, 173 mm height, 1600 mm length and a mesh step of 1 mm.

Distributed experiment

In the �rst experiment, the simulations are performed using four nodes from Gri�on and Chirloute

lusters. The gain obtained by load balaning approah is about 25.5%.

Loal experiment

A seond experiment was arried out using nodes from lusters Paradent and Parapide whih are

loalized on the same site. The gain obtained by load balaning approah is about 48.5%, muh

better than the distributed experiment beause the ommuniation time is muh smaller between

nodes on the same site.

4.5 Conlusions and Future Works

This work showed the interation between appliations and experiment management tools, whih

is not limited to reproduibility purposes and replayability of experiments. This alibration is an

example of how experiment management tools an free appliations of doing ertain tasks and

how an they help them to perform a tuning for a given platform. The use of tools as Expo

serves the following purposes: it makes easy the aess to omplex platforms, helping non-expert

users to make an e�ient use of the resoures. It helps to ombine tools in order to apture the

experimenting proess.

It is di�ult to perform an e�ient deployment of the appliation using just information

provided by the hardware. Performane models based on runs provide a more aurate information

for using the platform resoures more e�iently. At the same time, a load balaning based on a

performane model gives to the appliation high �exibility for estimating the best work plaing

for a ertain size given the hardware on�guration.

In perspetive, smarter reservation mehanisms taking into aount the alibration and the

availability of the platform, the di�erent number of possible on�gurations for deploying and

their ost represent a viable solution toward fast and automati multidisiplinary appliation

simulations.

70

Part III

Kameleon

71

Chapter 5

Setting up omplex software staks

Figure 5.1: Role of Kameleon in the experiment yle

A software appliane builder bundles together an appliation with its needed middleware and

an operating system to allow easy deployment on Infrastruture as a Servie (IaaS) providers.

These builders have the potential to address a key need in our ommunity: the ability to repro-

due an experiment. This hapter reports the experienes on developing a software appliane

builder alled Kameleon that leverages popular and well tested tools. Kameleon simpli�es the

reation of omplex software applianes that are targeted at researh on operating systems, HPC

and distributed omputing. It does so by proposing a highly modular desription format that en-

ourages ollaboration and reuse of proedures. Moreover, it provides debugging mehanisms for

improving experimenter's produtivity. To justify that our appliane builder stands above others,

we ompare it with the most known tools used by developers and researhers to automate the

onstrution of software environments for virtual mahines and IaaS infrastrutures. The results

shown in this hapter were published in [111℄.

5.1 Introdution

Thanks to the advanes in virtualization, the lowering of the ost of omputing hardware and the

inreasing popularity of loud omputing. Now software infrastrutures an be deployed easily and

appliations an be bundled together with their middleware requirements and operating system in

what is alled a software appliane. Two use ases for software applianes in industry and researh

are:

� Industry : the pervasiveness of loud omputing makes feasible the replaement of a whole

software stak from srath instead of trying to �x it. This has led to a new model of

provision software based on software applianes [28℄, whih is also known as Immutable

servers. This brings several advantages to IT administration as: faster deployment time,

all the dependenies are already satis�ed, it is easy to have a prodution like environment

73

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

on the development mahines, et. Hene, approahes like: vagrant

1

, veewee

2

, paker

3

,

doker

4

have gained wide aeptane in industry. Those approahes strive for having a

ommon reproduible and disposable software environment that an be rebuilt from srath

or from a base image using a de�nition �le that an be versioned.

� Researh: Large testbed infrastrutures for experimentation in networks and large sale sys-

tems suh as Grid'5000 [25℄, FutureGrid [51℄, et. are available, whih enable the deployment

of omplex software staks either on bare metal or using an IaaS provider. These infras-

trutures' high degree of software stak ustomizability appeal to researhers who want to

test their ideas in real settings. However, the management of these software staks is not

always trivial, their setup is a tedious and time onsuming task that should be automated

whenever possible. The lak of automation an be attributed to the low expertise, lak of

the proper tools and the long learning path for researhers. The lak of automation leads

to the inability to reprodue an experiment, sine it is not even possible to build or set the

experimental setup under the exat same onditions where an experiment took plae. A

reent study [30℄, where the buildability of artifats was evaluated, found that only 24% of

publiations in ACM onferenes and journals an be built. To preserve the experimental

setup some works are relying on software applianes tehnology.

Therefore, it is evident the importane and bene�ts of software applianes for both industry

and researh. This hapter fous more on the latter use of software applianes that deals with the

problemati of experimentation under real settings in omputer siene.

5.1.1 Motivations

Base software layer

(O.S. + middleware)

- User machine

- Other machine
 Virtual machine

 Cloud computing

 Real machine

 Experimental

setup

- Installation of packages

- Source code compilation

- Application configuration

- etc.

...

Figure 5.2: Creation proess of an experimental setup.

Figure 5.2 illustrates the proess to derive an experimental setup. Experimenters start from

a base setup whih inludes an operating system plus a middleware. This base setup ould be

loated in the same mahine of the experimenter, in a virtual mahine, in an IaaS provider as

Amazon EC2

5

, OpenStak

6

, et; or in a real mahine that belongs to a omputing luster. The

experimenter will apply a sequene of ations 〈Ai〉 whih onsists in, for instane: installation

of software pakages, soure ode ompilation, software on�guration, et. Applying these a-

tions 〈Ai〉 produe an experimental setup E′
, whih is then used for the evaluation of a given

implementation, algorithm, et. Due to spae limitations in researh papers the omposition of

E′
is not properly desribed, nor are the sequene of ations 〈Ai〉 that were taken to derive E′

.

In domains suh as High Performane Computing, Distributed Systems and Operating Systems

1

http://www.vagrantup.om/

2

https://github.om/jedi4ever/veewee

3

http://www.paker.io/

4

https://www.doker.io/

5

http://aws.amazon.om/e2/

6

http://www.openstak.org/

74

http://www.vagrantup.com/
https://github.com/jedi4ever/veewee
http://www.packer.io/
https://www.docker.io/
http://aws.amazon.com/ec2/
http://www.openstack.org/

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

researh, experimental setup on�guration, whih inludes the operating system, version of li-

braries and ompilers, ompilation �ags, et, are ruial requirements to be able to repeat an

experiment [26℄.

5.1.2 Reonstrut-ability

To improve experimentation, we laim that an experimenter needs to know the exat proess that

led to the reation of a partiular experimental setup, E′
, as well as to be able to replay and modify

this proess to arrive at the same and alternative experimental setups. We introdue the onept

of reonstrutability of an experimental setup to formally apture this proess. An experimental

setup E′
is reonstrutable if the following three fats hold:

� Experimenters have aess to the original base experimental setup E.

� Experimenters know exatly the sequene of ations

〈A1, A2, A3, ..., An〉 that produed E′
.

� Experimenters are able to hange some ation Ai and suessfully re-onstrut an experi-

mental setup E′′
.

Reonstrutability an be expressed funtionally as E′ = f(E, 〈Ai〉), where f applies 〈Ai〉 to
E to derive the experimental setup E′

. Thus, if reonstrutability holds, we are guaranteed to be

able to derive E′
no matter when 〈Ai〉 is applied to E. Reonstrutability does not hold when:

� An ation Ai is omposed of sub-tasks that are exeuted onurrently making the proess

not deterministi. For example: ompilation of software using Makefiles with the option

-j that runs parallel ompilation proess. This provokes ompilation rules to run in any

order if they are not onneted by dependenies.

� Pakages with the latest release of Debian (Debian 8) have a time of expiration. Therefore,

old pakages an not be installed.

Reonstrutability also does not hold when either the base setup, E, or the spei� software

used in an ation, Ai, is no longer available. The availability of software beomes an issue when

reonstrutability depends on pakage managers and on�guration management tools [42℄. For

example, there is no guarantee that a git repository whih is used by an ation will be available

at a later point in time.

5.1.3 Contributions of this hapter

This hapter identi�es the neessary ingredients for a software appliane builder to be a viable

solution for the preservation and pakaging of experimental setups. The ontributions of this

hapter are:

1. In Setion 5.1.2, we introdued the onept of reonstrutability, whih identi�es the proess

to build an experimental setup so that the setup an be rebuilt and an be built with

variations.

2. In Setion 5.3, we evaluate existing software appliane builders against the riteria needed

to improve user produtivity.

3. In Setion 5.4, we re�ne the Kameleon syntax and onepts, and we extend the persistent

ahe mehanism so that it supports new onepts.

4. In Setion 5.5, we demonstrate that Kameleon is modular, enables the reuse of ode, and

builds on proven tehnology.

5. Setion 5.5.2, we identify the ontainer requirements for di�erent types of software appli-

anes.

75

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

The rest of this hapter is strutured as follows: Setion 6.2 presents related work. Setion 5.3

presents a qualitative omparison of the most widely used software appliane builders. Setion 5.4

presents a omplete desription of Kameleon arhiteture, onepts and features. Setion 5.5

presents use ases that validate our approah. Setion 5.5.4 presents future work. Setion 5.5.5

onludes.

5.2 Related work

We use the term software appliane, whih is de�ned as a pre-built software that is ombined

with just enough operating system (jeOS) and an run on bare metal (real hardware) or inside a

hypervisor. A virtual appliane is a type of software appliane, whih is paked in a format that

targets a spei� platform (normally virtualization platform). A software appliane enompasses

three layers:

� Operating System: In the broadest sense inludes the most popular operating systems

(e.g GNU/Linux, Windows, FreeBSD). This element of the appliane an also ontain mod-

i�ations and speial on�gurations, for instane a modi�ed kernel.

� Platform Software: This enompasses ompiled languages suh as C, C++ and interpreted

languages suh as Python and Ruby. Additionally, appliations or middle-ware (e.g., MPI,

MySQL, Hadoop, Apahe, et.). All Those software omponents are already on�gured.

� Appliation Software: New software or modi�ations to be tested and studied.

Virtual applianes bring up numerous bene�ts to administration of big infrastrutures [114℄

and eduation on operating systems [86℄. A system for deploying lightweight virtual applianes

was proposed in [28℄ whih is based on COW-based virtual blok disks for splitting a virtual disk

image into smaller disk images for rapid deployment of requested servies. A similar system was

proposed in [117℄ based on virtual mahine snapshots with the goal of improving response time of

loud omputing infrastrutures. The feasibility, of using virtual applianes for servie deployment,

was shown in [119℄. The approah resulted easy and simple ompared to traditional deployment

mehanisms. A system alled Strata proposed in [96℄ enables more e�ient reation, provisioning

and management of virtual applianes. Another system alled Typial Virtual Applianes is pro-

posed in [133℄ whih brings more �exibility to servie deployment, onsuming a few storage and

bandwidth.

Re-running an experiment with the original software artifats ould be ahieved by using

virtual applianes and virtual mahine snapshots [63, 45℄. Brammer et. al [14℄ present a system

to reate exeutable papers, whih relies on the use of virtual mahines and aims at improving

the interations between authors, reviewers and readers with reproduilibity purposes. Kameleon

di�ers in that it allows the re-exeution of an experiment with the original software artifats and

the ability to modify the experimental setup leanly and easily.

Widely used tools suh as Vagrant, provide reproduible environments for development. Va-

grant uses pre-built images whih hinders understanding of the operating system layer and makes

modi�ations to this layer di�ult. Kameleon di�ers in that the onstrution of the operating

system layer is part of the software appliane generation. This fat makes its reipes less omplex

than the reipes used by popular on�guration management tools suh as Puppet

7

and Chef

8

.

From the traeability point of view, Kameleon an be ompared to interative notebooks suh

as IPython

9

where the goal is to trak every step that leads to a given result. Kameleon keeps a

trae of all the steps that led to the reation of a given software stak, it does so by providing a

strutured, modular and understandable language. Kameleon makes reonstrutability of software

applianes possible, experimenters are able to explore all the ations, modify and repeat the

environment generation.

7

http://puppetlabs.om/

8

https://www.gethef.om/hef/

9

http://ipython.org/notebook.html

76

http://puppetlabs.com/
https://www.getchef.com/chef/
http://ipython.org/notebook.html

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

In Setion 5.3.3, we disuss software appliane builders.

5.3 Software appliane builders omparison

We desribe and evaluate the most widely used software appliane builders in loud infrastrutures

and development environments. The evaluation uses as riteria: 1) how well they support the

software appliane build yle and 2) whether they meet the riteria for improving experimenters'

produtivity to build an experimental setup.

5.3.1 Software Appliane Build Cyle

All the analyzed tools follow the same pattern in the proess of building a software appliane. The

tool takes as input a Desription File that details all the requirements that the software appliane

should meet. Then, it initializes a Container. A ontainer is the environment that it is used for

building the software appliane. This term ontainer enompasses: system level virtualization

tehniques (e.g., hroot, openVZ, Linux Containers), full virtualization tehnologies (e.g., Virtual-

Box, KVM, Xen, VMware) and real physial mahines. One the ontainer is initialized, the tool

parses the desription and starts to arry out the bootstrap, setup and export proedures. The

output of this proess is a software appliane formatted for the infrastruture that will �nally host

it. Table 5.1 shows how this build yle is supported by eah tool. The main steps in the software

appliane build yle are explained below:

� Bootstrap: This refers to the proess of getting a bootable operating system. This bootable

image an be either built from srath or it an be retrieved from some external soure. The

normal proedure is to get an ISO image from the target operating system and follow the

installation proedure. Another option is to download and load a software appliane already

reated.

� Setup: In this step, users apply several proedures to ustomize the base system and make

it meet their needs. These proedures inlude mainly the installation and on�guration of

software. There are many possible ways to ustomize, by using shell sripts or on�guration

management tools suh as Salt, Chef, Puppet, Ansible, et.

� Export: This step reates the �nal format for the software appliane. The �nal format

ranges form the available virtual disk formats (e.g., VDI

10

, VMDK

11

,QCOW2

12

) to more

simple formats based on tarballs

13

.

5.3.2 Criteria for Improving User Produtivity

The evaluation is driven by the question: What makes an experimenter more produtive when

building a omplex software appliane? The following riteria will be used for the evaluation:

� Easiness: The tool has a low learning urve. Speially, a low learning urve is supported

by providing a simple language to desribe the appliane aross the di�erent levels of the

software appliane's software stak (e.g., O.S. level, middleware or appliation).

� Support during the build proess: Long ompilation times are ommonplae when

building these kinds of software staks, for instane the ompilation of operating system

kernels, modules, sienti� libraries. Beause this proess is frequently error prone, a meh-

anism for debugging or hekpointing the proess makes the experimenter more produtive.

Validation of the orret funtioning of the software appliane is required as well.

10

https://www.virtualbox.org/manual/h05.html

11

http://www.vmware.om/app/vmdk/?sr=vmdk

12

http://www.linux-kvm.org/page/Qow2

13

It refers to a omputer �le format that an ombine multiple �les into a single �le.

77

https://www.virtualbox.org/manual/ch05.html
http://www.vmware.com/app/vmdk/?src=vmdk
http://www.linux-kvm.org/page/Qcow2

C
H
A
P
T
E
R
5
.
S
E
T
T
I
N
G

U
P
C
O
M
P
L
E
X

S
O
F
T
W
A
R
E
S
T
A
C
K
S

❳
❳
❳
❳
❳
❳
❳
❳
❳

Feature

Tool

Doker Paker OZ Veewee Kameleon BoxGrinder

Building

Bootstrap Read only tarballs

that an be ob-

taind form Doker

Hub

Installation ISO,

existing software

appliane

Installation ISO Installation ISO Any bootstrap op-

tion

Installation ISO

Setup DokerFile instru-

tions

Shell sripts, File

upload, Ansible,

Chef, Puppet, Salt

Shell sripts Shell sripts Shell sripts with

Kameleon syntax

Shell sripts

Export Linux Containers Amazon EC2, Dig-

italOCean, Doker,

Google Compute

Engine, Open-

Stak, Parallels,

QEMU, Virtual-

Box, VMware

QEMU VirtualBox,

QEMU, VMware

VirtualBox,

QEMU, VMware,

Doker, Grid'5000

Amazon EC2,

QEMU, Virtual-

box, VMware

Desription Language Plain text doker

language

JSON XML Ruby YAML YAML

Exeution

Container

support

Linux ontainers Same as Export QEMU Same as Export Same as Export guestfs

User fail-

ities

Able to ommit

hanges in the File

system layer

Validation of de-

sription, ISO

ahing

ISO ahing , gen-

eration of meta-

data manifest

Image on�gura-

tion validation

Persistent ahe

mehanism, hek-

points, interative

shell

None

Table 5.1: This table shows how the software appliane build yle is supported by eah tool

7
8

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

Table 5.2: Comparison of widely used appliane builders based on riteria that would make an experimenter

more produtive.

Tool Kameleon Doker Paker BoxGrinder Veewee Oz

Easiness Yes Yes No Yes No No

Support in the building pro-

ess

Yes Yes Yes No No No

Container diversity Yes No Yes No Yes No

Shareability Yes Yes No Yes No No

Reonstrutability Yes Yes No No No Yes

� Containers diversity: The tool should support a variety of ontainer types. This en-

ables hassle-free transportation of an experimental setup from one infrastruture to another,

beause experimenters are more omfortable with working in spei� environments. Addi-

tionally, it should be easy to integrate new types of ontainers that meet the requirements of

the experimenter. For example, libraries suh as ATLAS

14

whih gets its speed by speializ-

ing itself for the underlying arhiteture, needs to be ompiled on the target mahine where

it will �nally run. Certain Linux modules need diret aess to real hardware. Therefore,

they ould not run on virtualize systems. That is the ase for Dune [12℄ and CControl [101℄.

� Shareability: Instrutions for building a software appliane must be organized and stored

in a modular way to enable the reuse of proedures and ollaborate within a ommunity.

� Reonstrutability: One important shortoming is the reproduiblity of experiments in

omputer siene. It has been demonstrated that one of the auses is the impossibility to

build the same software artifats

15

used in a publiation [30℄. Thus a requirement is to be

able to reonstrut a software appliane from its de�nitions, whih will at the same time

enable later ustomization as de�ned in Setion 5.1.2.

5.3.3 Software Appliane Builders

In this setion, we desribe and evaluate the most widely used software appliane builders aording

to our riteria for improving user produtivity. Table 5.2 shows the evaluation.

Doker

Doker

16

o�ers a powerful and lightweight way to build software applianes that are paked in

Linux Containers (LXC). Doker manages and traks hanges and dependenies, making it easier

for users to understand how the �nal appliane was built. It relies on repositories for enabling users

to share their artifats with other ollaborators. The most appealing feature of Doker is that it

makes appliations portable aross many infrastrutures. As a downside, however, appliations are

run inside Linux Containers whih ould be not suitable for ertain uses (e.g., run an appliation

that uses groups

17

). The desription of the building proess is done using a simple syntax based

on few onstruts that help ustomize the ontainers.

Paker

Paker

18

helps users to reate idential software applianes targeted at multiple platforms. The

proess is omposed of: builders, responsible for reating mahines and generating images from

them for various platforms; provisioners, used to install and on�gure software (many options are

14

http://math-atlas.soureforge.net/

15

It refers to soure ode ompiled for testing.

16

https://www.doker.io/

17

https://www.kernel.org/do/Doumentation/groups/groups.txt

18

http://www.paker.io/

79

http://math-atlas.sourceforge.net/
https://www.docker.io/
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://www.packer.io/

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

available from simple shell sripts to high-end on�guration management tools) and postproessors,

that help manage the �nal produed image. Paker supports a variety of ontainer types and it

strives to make desriptions portable aross di�erent ontainers. Thus the burden of hanging

from one development environment to another is redued. However, a di�erent language is used

to desribe the operating system layer, whih makes di�ult to add modi�ations to this layer.

Additionally, the tool do not provide any mehanism for organizing the instrutions whih hampers

shareability.

BoxGrinder

BoxGrinder

19

reates applianes from simple plain text desriptions for various platforms. It

utilizes the host system to perform the image reation using the guestfs

20

library whih results

in a faster proess. Then, the newly reated software appliane an be exported loally to be

used for a virtualization tehnology or it an be moved outside to be used in IaaS providers.

Software appliane desriptions are simple and easy to understand and an be omposed for reuse.

BoxGrinder does not o�er any mehanism for supporting the build proess and it is tied to build

the software appliane using the host system whih ould be problemati when some isolation is

needed.

Veewee

Veewee

21

is a tool for automating the reation of ustom virtual mahine images. It is able to

interat with several virtual mahine hypervisors. It o�ers to the user the possibility of validating

the generated software appliane through the exeution of behavioral tests. The apaities of the

tool for ustomizing a software appliane are very limited. Desription �les are written in Ruby

restriting the interation with shell sripts.

OZ

Oz

22

was reated to ease the automati installation of operating systems. It uses QEMU as a

ontainer and uses the native operating system tools to install software. The yle of building

a software appliane inludes the generation of metadata about the pakages installed. Software

applianes are reated using an XML-based language. Even though the language allows almost

any operation of ustomization, the desriptions rapidly beome omplex and di�ult to maintain.

Kameleon

Kameleon ahieves easiness by proposing a strutured language based on few onstruts and whih

relies on shell ommands. The hierarhial struture of reipes and the extend mehanism allow

shareability. Kameleon supports the build proess by providing debugging mehanisms suh as

interative shell sessions, break-points and hekpointing. Containers diversity is ahieved by

allowing the easy integration of new ontainers using the same language for the reipes. Further-

more, persistent ahe makes possible reonstrutability. In Setion 5.4, we present Kameleon in

detailed.

5.3.4 Disussion

We found that many software appliane builders rely on arhive �les (e.g. ISO images) to boot-

strap a software appliane. However, if the arhive �les is no longer available in a repository,

then reonstrutability is impossible. We found that 30% of Veewee de�nition �les

23

point to

19

http://boxgrinder.org/

20

http://libguestfs.org/

21

https://github.om/jedi4ever/veewee

22

http://www.aeolusprojet.org/oz.html

23

This was tested with the version of veewee 0.3.7 by trying to build all templates during the period of 02/12/2013

and 20/12/2013.

80

http://boxgrinder.org/
http://libguestfs.org/
https://github.com/jedi4ever/veewee
http://www.aeolusproject.org/oz.html

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

repositories that either no longer exist or have some pakages missing. Furthermore, management

of ontainers is implemented either in the ore of the tool or as plugins. This makes integration of

new ontainers for non-advaned users di�ult. Most of the tools support a wide variety of on-

tainers, however, beause they are tied to virtualization, real hardware is not taken into aount.

Shareability whih implies modularity and ollaboration is not available. Doker is the only tool,

at the moment, whih implements a ollaborative model for building software applianes. These

tools do not support debugging or hek pointing in the build proess.

Finally, the way tools support the build yle has an important impat on the reontrutability

given that some ations would be out of the user's ontrol. When the language used in the tool's

Desription �le is based on less human-readable languages, suh as XML, or on omplex reipes,

suh as the ones used by Chef and Puppet, that tool ranks lower in the easiness riteria.

5.4 Kameleon: the mindful appliane builder

Containers

Figure 5.3: Kameleon arhiteture.

Kameleon is a small and �exible software appliane builder, whih eases the onstrution

and reonstrution of ustom software staks for researh in HPC, Grid or Cloud omputing and

Distributed Systems. Kameleon version 2.2.4 is written in 2278 lines of Ruby

24

and has few

dependenies. Kameleon ahieves ease of use by struturing the spei�ation (reipes) for the

onstrution of software applianes into a hierarhy. The hierarhy's struture is omposed of

setions that allow a separation of ustomization and low level tasks. This struture separates out

the ustomization tasks that an be easily performed by non-expert users from the low level tasks,

suh as setting up a omplete operating system or exporting the whole �le system, whih are more

di�ult. These setions are divided into steps that represent ations 〈Ai〉 suh as: installation

and on�guration of a ertain sienti� library, kernel pathing, on�guration of a base system.

Steps are omposed of mirosteps that enable the ustomization and re-utilization of the same step

24

Measured with SLOCCount http://www.dwheeler.om/sloount/

81

http://www.dwheeler.com/sloccount/

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

in di�erent reipes. Finally, the last level of the hierarhy wraps shell ommands and Kameleon

de�ned ommands. All the aforementioned hierarhy is written using YAML, whih enourages

more human readable shell sripts

25

.

An advantage of Kameleon, and what distinguished it from the existing appliane builders, is

that it serves simply as a reipe parser and orhestrator of shell ommands, whih means that all

the logi for the reation of a software appliane resides entirely in the reipes. Kameleon reipes

enable four advantages for experimenters: 1) it helps to understand how the software appliane

was reated (all the details are embedded in the same language); 2) it gives a total ontrol over the

whole proess, whih redues the burden of integrating new ontainers, new operating systems, or

new export formats; 3) it enables the easy ustomization of software applianes at any level (e.g.

O.S., middleware, appliations, et.); 4) it enourages a ollaboration model where researhers an

reuse ode and given that all details are in the hierarhy of reipes and steps (text �les) they an

be easily versioned.

Figure 5.3 shows the arhiteture of the system and the interation between the di�erent

modules. First, the parser, with the help of the abstrat hierarhy, parses the reipe and reates

as output the internal data strutures that are input to the engine module. The engine orhestrates

the work�ow of exeution. The work�ow is exeuted sequentially. The ontext module helps to

abstrat the aess to a given ontainer. All the low level operations (e.g., exeution of shell

ommands, I/O and �le management) are performed by the shell module. The engine integrates

three important mehanism for debugging: hekpoints, breakpoints and interative shell sessions.

The persistent ahe aptures all the data used during the proess of building a software appliane,

whih is arhived to allow the software appliane to be reonstruted at a later time. Finally, the

CLI module implements the user interfae.

5.4.1 Syntax

Figure 5.4 shows an example of a Kameleon reipe. We an highlight three di�erent elements:

setions, steps and variables. Four setions are proposed by Kameleon but more an be reated.

One setion, alled global, is dediated to the delaration of global variables that an be used

through out the reipe. The other setions orrespond to the main steps in the software appliane

build yle (bootstrap, setup and export). Di�erent setions in a Kameleon reipe allow a high

degree of ustomizability, reuse of ode, and total ontrol of software appliane reation proess by

the experimenter. In Figure 5.4, the based system is built from srath using the pakage manager

of the Debian distribution as spei�ed in the bootstrap setion.

Alternatively, it is possible to use existing images (e.g., Grid'5000 base environments, loud im-

ages for di�erent Linux distributions, or software applianes market plaes

26

). The setup setion

installs pakages, on�gures the O.S., et. Within a setion, users an exeute shell ommands,

read and write �les, or perform other ommands that are neessary to arry out the desired us-

tomization. The options in the export setion depend on the disk formats that the ontainer

supports. At the moment we have implemented reipes for exporting to the most popular virtual

disk formats, tarballs and spei� Grid'5000 format.

Listing 12 shows the de�nition of a step �le. Eah step �le is loaded automatially by Kameleon

after parsing the reipe. A step is divided into mirosteps (e.g., reate_group) whih are in turn

divided into ommands. The goal of dividing steps into mirosteps is the possibility of ativating

ertain ations within a step. For example, from Listing 12 we have the possibility of exeuting only

the mirostep reate_group without exeuting the rest of the mirosteps. There are two types

of variables: user de�ned variables that are provided in the reipe suh as: Linux distribution

(distrib), arhiteture (kernel_arh), et., and Kameleon variables suh as $$kameleon_wd

(Kameleon work diretory) that interat with the engine. Contexts are mapped to speial variables

(out_ontext and in_ontext) in the global setion. They indiate the neessary ations to set

a shell in the respetive ontext (the onept of ontext is explained in the next setion). In the

25

http://yaml.org/spe/1.2/spe.pdf

26

http://www.turnkeylinux.org

82

http://yaml.org/spec/1.2/spec.pdf
http://www.turnkeylinux.org

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

global:

 ## User varibales : used by the recipe

 user_name: kameleon

 user_password: $$user_name

 # Distribution

 distrib: debian

 release: wheezy

 kernel_arch: $$arch

 hostname: kameleon-$$distrib

 ## Disk options

 nbd_device: /dev/nbd1

 image_disk: $$kameleon_cwd/base_$$kameleon_recipe_name.qcow2

 image_size: 10G

 lesystem_type: ext4

 # rootfs options

 rootfs: $$kameleon_cwd/rootfs

 out_context:

 cmd: bash

 workdir: $$kameleon_cwd

 proxy_cache: 127.0.0.1

 in_context:

 cmd: USER=root chroot $$kameleon_cwd/rootfs bash

 workdir: /root/kameleon_workdir

 proxy_cache: 127.0.0.1

bootstrap:

 - initialize_disk_chroot

 - debootstrap:

 - repository: http://ftp.debian.org/debian/

 - start_chroot

setup:

 - install_software:

 - packages: >

 debian-keyring sudo less vim acpid linux-image-$$kernel_arch

 - con gure_kernel

 - install_bootloader

 - con gure_network

 - create_group:

 - name: admin

 - create_user:

 - name: $$user_name

 - groups: sudo admin

 - password: $$user_password

export:

 - qemu_save_appliance:

 - input: $$image_disk

 - output: $$kameleon_cwd/$$kameleon_recipe_name

 - save_as_qcow2

- save_as_vdi

In context definition

Out context definition

Step

Figure 5.4: In the example, the setion headers illustrate ontexts (out_ontext and in_ontext), de-

larations (global) and setions (bootstrap, setup and export). This example uses a hroot jail as a

ontainer for building a software appliane based on Debian Wheezy.

example, the reipe reates a Debian Wheezy appliane with some base on�guration, whih is

spei�ed as the distrib and release variables in the global setion, and exports the appliane

in QCOW2 format, whih is spei�ed in the export setion as the step "- save_as-qow2". The

Kameleon reipe illustrates that setions are omposed of steps that an be ustomized using

variables. Table 5.3 illustrates exe_* ommands, whih are the minimal building bloks of

mirosteps. An exe_* ommand wraps a shell ommand to add error handling and interativeness

in ase of a problem.

83

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

Create User

- reate_group:

- exe_in: groupadd $$group

- add_user:

- exe_in: useradd --reate-home -s /bin/bash $$name

- exe_in: adduser $$name $$group

- exe_in: eho -n '$$name:$$password' | hpasswd

- on_export_init:

- exe_in: hown '$$user_name:' -R /home/$$user_name

- add_group_to_sudoers:

- append_in:

- /et/sudoers

- |

%admin ALL=(ALL:ALL) ALL

Listing 12: Example of a step �le. The pre�x `$$` is used for variables.

Exe: exeutes a ommand in a

given ontext

- exe_in: eho "Hello!" > hello.txt

- exe_in: apt-get -y update

Pipe: it works as Unix pipelines

but between ontexts

- pipe:

- exe_out: at tlm_ode.tar

- exe_in: at > ./tlm_ode.tar

Write: allows to write a �le in a

ontext

- write_in:

- /root/.ssh/onfig

- |

Host *

StritHostKeyCheking no

UserKnownHostsFile=/dev/null

Hooks: defers some initializa-

tion or lean ations.

- on_setup_lean:

- exe_in: rm -rf /tmp/mytemp

Table 5.3: Kameleon ommands.

5.4.2 Kameleon Contexts

By dividing the building proess into independent parts, ontexts provide a way for a user to

struture the software appliane reation proess so that it is independent from the �nal target

platform. When an appliane is built withKameleon it is neessary to deal with 3 di�erent ontexts

(more an be de�ned if required). The objetive of all these ontexts is to have a ontextualized

shell session. Contexts are as follows:

� Loal ontext : It refers to the loation where Kameleon is exeuted. Normally, it is the user's

mahine.

� OUT ontext : It is where the proess of bootstraping will take plae. Some proedures

have to be arried out in order to reate the plae where the software appliane is built (IN

ontext). This ould be: the same user's mahine using hroot. Thus, this ontext is where

the setup of the hroot takes plae. Other examples of OUT ontext are: setting up a virtual

mahine, aess to an infrastruture in order to get an instane and be able to deploy, setting

84

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

Setion Context used Desription

Bootstrap Loal ontext and

OUT ontext

Two possibilities: (1) build a �le system layout form

srath. (2) start form an already reated software

appliane.

Setup Mostly IN ontext The ommands run on the hosen ontainer: hroot,

Doker, Linux ontainer, virtual mahine and real

mahine

Export Loal ontext and

OUT ontext

Use of the ontainer supported tools for reating the

�nal format for the software appliane.

Table 5.4: Kameleon onepts, interrelation between ontexts and setions.

up a Doker ontainer. This ontext also allows the appliane's base �le system layout to

be setup.

� IN ontext : It makes referene to inside the ontainer reated by the OUT ontext. This

ontext an be mapped to a hroot, virtual mahine, physial mahine, Linux ontainer, et.

This ontext is frequently used for ustomizing the software appliane.

The relation between the possible ontexts used and the setion exeution is shown in Table 5.4.

5.4.3 Chekpoint mehanism

The onstrution of a software appliane is a trial and error proess. Kameleon provides a modular

hekpoint mehanism that saves time when debugging the software appliane onstrution pro-

ess. Time onsuming tasks suh as the installation of an operating system from srath are not

repeated during the debugging proess. Thus, a hekpoint mehanism enourages the automa-

tion of software appliane building as it makes the onstrution of software applianes less time

onsuming. We have integrated di�erent hekpointing mehanisms for eah ontainer supported

by Kameleon. They are based on snapshots of virtual mahines (QEMU, VirtualBox) and based

on snapshots of QCOW2 disk images for the hroot ontainer. Another hekpoint mehanism use

Doker ommits to preserve the state of a Doker image. The abstration provided by the engine

makes it very �exible, users an think of any way of saving the state of the �le system layout and

map it to Kameleon.

5.4.4 Extend mehanism

Listing 13 shows a Kameleon reipe that builds a software appliane for the hpl benhmark.

This reipe adds steps to the setup setion and reuse steps from the reipe shown in Figure 5.4.

This is done by using the extend: and "�base" keywords. Reipes are provided as templates,

whih enable a user to write a new reipe based on another existing reipe by overwriting ertain

setions and variables. The main purpose of this mehanism is to redue the entry barrier for non-

expert users by enouraging the reuse of reipes. This allows Kameleon's users to take advantage

from the reipes already developed by the ommunity.

85

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

extend: qemu/debian7.yaml

global:

bootstrap:

- "�base"

setup:

- "�base"

- install_software:

- pakages: g++ make openssh openmpi build-essential fort77

- install_atlas:

- repository: http://soureforge.net/math-atlas/Stable/

- version: "3.10.1"

- install_hpl:

- repository: "http://www.netlib.org/benhmark/hpl/"

- version: "2.1"

- hpl_makefile: "$$kameleon_reipe_dir/data/Make.Linux"

export:

- "�base"

Listing 13: Extend mehanism.

5.4.5 Persistent ahe mehanism

This mehanism as already mentioned onstitutes one of the entral ontributions of Kameleon

that enables the preservation of environments for experimentation. Thus, software applianes built

are reonstrut-able any time. Chapter 6 will be dediated enterly to this mehanism.

5.4.6 Comparison with the previous Kameleon version

During this thesis two versions ofKameleon were used. Kameleon was already presented in [49℄ and

it has evolved form a single �le sript (900 lines of ode) to a more modular improved version. Many

isolation problems were solved given that the previous version was mainly based on hroot. The

proess of software appliane reation was strutured with a new hierarhy based on setions, steps,

mirosteps and ommands as already shown throughout this hapter. Additionally, the onept

of ontext was added whih enables to integrate more ontainers in a leaner way, resolving many

isolation problems. This results in a more stable tool, able to take advantage of reent tehnologies.

The entry barrier for non-experts users was redued as well, thanks to the new strutured reipes

and debugging mehanisms. Figure 5.5 shows the syntax of the old Kameleon. We an observe

that all the proess of reation is mixed in one sequene of steps, there is not distintion between

bootstrap, setup and export.

5.5 Use ases

In this setion, we demonstrate how Kameleon was used to build di�erent software applianes.

These software applianes illustrate a variety of software staks (Table 5.5) with di�erent require-

ments. Speially, they are taken from di�erent domains (high performane omputing, operating

system and distributed system); they use di�erent ontainer tehnologies (hroot, Doker, Virtual-

Box, QEMU and real mahine in Grid'5000); and they use di�erent ontainer isolation (lightweight,

servie, kernel module, and hardware dependent).

86

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

Table 5.5: Software applianes built with Kameleon

Name Desription Software stak Containers

used

Container

isolation

Domain

Debian

basi

Debian onsole mode Debian Wheezy hroot,

Doker,

VirtualBox,

QEMU,

Grid'5000

Lightweight Operating

systems.

Debian

Desktop

Debian GNOME Desktop

environment

Debian Wheezy,

GNOME

QEMU,

VirtualBox

Servie Operating

systems.

ArhLinux Arhlinux based system ArhLinux last release VirtualBox,

QEMU

Lightweight Operating

systems.

CentOS CentOS onsole mode CentOS 6.5 VirtualBox,

QEMU

Lightweight Operating

systems.

Dune Dune library whih provides

safe and e�ient aess to

privileged CPU features

Ubuntu Preise, Linux

headers, Git, make,

GCC

Grid'5000 kernel

module

Operating

systems

Formal

java

A JavaSript module sys-

tem

Debian Wheezy,

Haskell, JavaSript

modules

Chroot,

Doker

Lightweight Operating

systems

CControl Kernel Module to ontrol

the amount of ahe avail-

able to an appliation

Debian wheezy, make,

Git, build tools, CCon-

trol libraries, PAPI

QEMU,

VirtualBox

kernel

module

High

performane

omputing.

hpl

benh-

mark

LinPACK benhmark Debian Wheezy, Open-

MPI, OpenSSH, C++,

make, Fortran, ATLAS

library, hpl benhmark

hroot,

Doker,

VirtualBox,

Grid'5000

Hardware

dependent

High

performane

omputing.

Hadoop Framework for storage and

large-sale proessing

Ubuntu Luid, Python,

OpenSSH, Java 6,

Hadoop.

hroot Lightweight Distributed

omputing.

TLM

stak

Large sale eletromagneti

simulations

Debian Wheezy, Open-

MPI, OpenSSH, TLM

appliation.

hroot Lightweight High

performane

omputing.

OAR Resoure and task manager

for HPC lusters and other

omputing infrastrutures.

Debian wheezy, Git,

Perl, Postgresql, OAR

server pakages

QEMU,

VirtualBox

Servie High

performane

omputing.

87

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

Basic Debian Kameleon recipe

global:

 workdir_base: /tmp/kameleon

 workdir: /tmp/kameleon

 distrib: ubuntu

 debian_version_name: lucid

 distrib_repository: http://archive.ubuntu.com/ubuntu/

 output_environment_�le_system_type: ext4

 include_dir: scripts

 arch: amd64

 kernel_arch: "amd64"

 network_hostname: "hadoop"

 extra_packages: "openssh-server wget"

 checkpoint_�le: "/tmp/ubuntu_lucid_hadoop.tgz"

 user_name: "root"

 key_dir: "/home/cristian/.ssh/"

steps:

 - bootstrap

 - system_con�g

 - mount_proc

 - kernel_install

 - software_install:

 - extra_packages

 - java_6/java_6_install

 - autologin

 - hadoop/con�g

 - hadoop/install

 - tuning/root_ssh_localkey

 - tuning/�x_locales

 - strip

 - umount_proc

#Building the appliance

 - build_appliance_kpartx:

 - clean_udev

 - create_raw_image

 - attach_kpartx_device

 - mkfs

 - mount_image

 - copy_system_tree

 - get_kernel_initrd

 - install_extlinux

 - umount_image

 - save_as_raw

 - save_as_vdi

 - clean

java_6_install:

 - adding_java_repository:

 - exec_chroot: apt-get -f install -y --force-yes python-software-properties

 - exec_chroot: add-apt-repository ppa:ferramroberto/java

 - exec_chroot: apt-get update

 - installing_java:

 - exec_chroot: bash -c "echo \"sun-java6-jdk shared/accepted-sun-dlj-v1-1 boolean true\" | debconf-set-selections"

 - exec_chroot: bash -c "DEBIAN_FRONTEND=noninteractive apt-get -f install -y --force-yes sun-java6-jdk"

Figure 5.5: Example of the old Kameleon reipe. This orresponds to the version 1.2.8 presented in [49℄

5.5.1 Software Appliane Complexity

We start by desribing di�erent basi software applianes that an be used as a base experimental

environment. Then we desribe more omplex software applianes used in researh papers.

� Basi software applianes: These software applianes inlude several Linux �avors, for

example: Fedora, CentOS, Debian, Arhlinux. Di�erent on�gurations were built from the

very basi onsole mode to the omplete desktop on�guration. This shows that omplete

omputer environments for researhers an be built.

� Complex software applianes: These software applianes were used in di�erent researh

papers: an appliation for ontrolling ahe utilization [101℄, a safe user-level aess to priv-

ileged CPU features [12℄, a formal spei�ation of a JavaSript module system [79℄. Other

applianes provide widely used omputing frameworks suh as MapRedue

27

, benkmarks

suh as hpl

28

and bath shedulers suh as OAR

29

5.5.2 Container Isolation

Beause software applianes require di�erent levels of isolation at build time, a software appliane

builder needs to provide isolation mehanisms. Kameleon provides isolation with its notion of

ontext. Below are examples of the isolation requirements by di�erent types of software applianes.

27

https://hadoop.apahe.org/dos/r1.2.1/mapred_tutorial.html

28

http://www.netlib.org/benhmark/hpl/

29

http://oar.imag.fr

88

https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
http://www.netlib.org/benchmark/hpl/
http://oar.imag.fr

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

Lightweight.

Lightweight software applianes do not need any kind of isolation, thus they an run inside a hroot.

This kind of software applianes an be exported to any format and run in any infrastruture.

Examples of lightweight software applianes inlude: MPI + TLM

30

(eletromagneti simulation

ode), Map Redue framework. Formal Java [79℄, hpl benhmark, Debian Wheezy basi system.

Servie.

Servie software applianes run a servie (e.g. databases). Sine the appliane's servie may

on�it with servies running on the build mahine, Kameleon allows the experimenter to use

ontainer isolation to isolate appliane servies from build mahine servies.

Kernel modules.

When the installation of a kernel module is part of the software appliane reation, isolation at the

level of operating system alls is needed, beause the target kernel has to be running. Therefore,

the IN ontext has to take plae inside either a virtual or real mahine. Sometimes a real mahine

is required, for example: 1) installation of CControl library for ahe oloring

31

, 2) installation

of Dune

32

, a kernel module that provides ordinary user programs with safe and e�ient aess to

privileged CPU features, whih are normally hidden when using a virtual mahine.

Hardware dependent.

In ontrast to the previous types of software applianes, whih an be built and deployed on

di�erent mahines, a hardware dependent software appliane must be built and deployed on the

same mahine. An example of hardware dependent software appliane is the hpl benhmark. This

benhmark is based on the linear algebra library ATLAS, whih must be optimized at built time

for the deployment mahine.

5.5.3 Results and Disussion

Table 5.6 shows the building time of some of the software applianes desribed above. The purpose

of this data is to show the di�erent steps that ompose the build proess and the time using various

ontainer tehnologies. For experimenters the proess of generating an experimental environment

ould be pereived as a time onsuming proess. However, we observe that the built time of eah

of the software applianes is less than 30 minutes, whih ould enourage users to generate their

ustom experimental setups.

Hardware dependent software appliane evaluation

In this setion, we use the hpl benhmark to evaluate hardware dependene ontainer isolation.

hpl benhmark requires the installation of multiple software pakages whose parameters need to

be on�gured, for performane, to the hardware that the appliane is running on. The parame-

ter on�guration requires signi�ant ompilation time. The evaluation was performed using two

di�erent mahines.

� M1: Mahine available in Grid'5000 in the luster genepi. Intel Xeon E5420 QC CPU 2.5

Ghz with 8GB of RAM and HDD SATA disk.

� M2: Loal mahine. Intel Core i7-2760QM CPU 2.4 GHz with 8GB of RAM and SSD disk.

30

http://www.petr-lorenz.om/emgine/

31

https://github.om/perarnau/ontrol

32

http://dune.ss.stanford.edu/

89

http://www.petr-lorenz.com/emgine/
https://github.com/perarnau/ccontrol
http://dune.scs.stanford.edu/

C
H
A
P
T
E
R
5
.
S
E
T
T
I
N
G

U
P
C
O
M
P
L
E
X

S
O
F
T
W
A
R
E
S
T
A
C
K
S

Table 5.6: Building time of some software applianes. The time is presented in seonds.

Steps AP1

1

AP2

2

AP3

3

AP4

4

AP5

5

AP6

6

AP7

7

AP8

8

AP9

9

AP10

10

AP11

11

AP12

12

AP13

13

AP14

14

AP15

15

start-virtualbox 21 12 15 20 21 20 20 19 20

g5k-reserv 177

start-doker 12

start-qemu 10

install-requirements 11 11 11 12 37 41 13 12 13 36

debootstrap 131 70 170 77 73 76 73 187 188 188

yum-bootstrap 154 279 141

arh-bootstrap 150

swith-ontext-virtualbox 10 10 162 105 93 26 35 32

swith-ontext-qemu 7

-init-setup 5

Boostrap 131 70 182 77 177 101 187 109 110 373 446 313 246 255 229

install-software 119 25 20 81 339 18 15 209 22 242 61 38 36 46 264

on�gure-system 7 6 6 6 6 17 6 6 11 8 11 11 10 10

on�gure-apt 13 13 7 9 37 9 9 9 12 15 13

on�gure-kernel 5 5 5

on�gure-keyboard 16 10 14 16 13 10 9 10 18 19 19

install-atlas 497

install-hpl 12

install-ontrol 18

init-pxeboot 7 13

update-system 14 27 24

minimal-install 121 89

install-gnome 821

oar-prereq-install 89 188

oar-devel-prereq-install 20 50

install-lambdajs 78

upgrade-system 212

install-kameleon 76

oar-git-install 53

oar-on�g-frontend 5

tlm-installation 16

-lean-setup 5 5 5 9 12 10 9 5 12 23 11 14

Setup 291 150 229 272 863 323 219 866 189 773 554 1236 338 581 643

qemu-save-appliane 63 83 88

virtualbox-save-appliane 47 75 34 86 71 150 34 89

save-doker-appliane 5 6

save-appliane-from-g5k 157

Total 354 233 234 278 1020 411 266 941 223 859 625 1386 372 581 732

1

hroot-debian

2

hroot-tlm-mpi-debian

3

doker-debian

4

doker-formal-java-debian

5

grid5000-kameleon-ubuntu

6

qemu-oar-debian

7

vbox-arh

8

vbox-ATLAS-deb

9

vbox-ontrol-deb

10

vbox-entos7

11

vbox-entos

12

vbox-debian-desktop

13

vbox-debian

14

vbox-debian-oar

15

vbox-fedora

9
0

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

Table 5.7: Containers omparison mahine M1.

Container Build Time[Ses℄ Image Size

[Mbytes℄

hpl result

[MFLOPS℄

VirtualBox 2722 1100 3.3

QEMU 1826 1200 109.1

Doker 2293 1600 110.1

Grid'5000 1782 638 113.3

Table 5.8: Containers omparison mahine M2.

Container Build Time[Ses℄ Image Size

[Mbytes℄

hpl result

[MFLOPS℄

VirtualBox 1004 1100 8.1

QEMU 971 1200 189.7

Doker 1066 1600 222.3

The mahine desriptions indiate that the mahines di�er only in their disk tehnology. Ta-

ble 5.7 shows the results for mahine M1. Table 5.8 shows the results for mahine M2. The tables

illustrate the time to build the software appliane (Build Time[Ses℄), the software appliane size

(Image Size[MBytes℄) and the time to exeute the benhmark hpl (hpl result[MFLOPS℄). In the

worst ase senario, the build time never exeeds one hour (or 3,600 seonds). All the elements

neessary for reproduing these results are available in our repository

33

.

Additionally, both tables show the millions of �oating-point operations per seond (MFLOPS)

obtained by deploying the generated appliane and exeuting the benhmark. This is illustrative

for a hypothetial experiment whih goal would be to evaluate for example, the performane of

virtual mahine monitors. From this simple experiment, we an see that the virtualization provide

by VirtualBox signi�antly impats hpl benhmark performane: a fator of 34 times for M1 (from

113 M�ops to 3.3) and a fator of 27 times for M2 (222.3 to 8.1). In addition, the di�erene in

performane is minimal for the other ontainers on a partiular mahine. Finally, aross mahines,

the di�erene in disk tehnology make a signi�ant di�erene in both build and exeute time.

Table 5.9 illustrates the orrelation between the image size of a software appliane and the

ahe size needed to store the data used to build the appliane. We are using the image size

from Table 5.8: building hpl benhmark on mahine M1. Finally, the total arhive spae to build

all three applianes is illustrated on the last row. We an observe that storage requirements is

redued in a fator of 5.

Experiment pakaging example

This setion demonstrates how Kameleon and its persistent ahe allow an experimenter to evalu-

ate the performane of a high performane appliation using di�erent virtualization tehniques on

di�erent mahines. This setion's demonstration approximates the proess used in the evaluation

of Setion 5.5.3. This setion demonstrates the advantage of using Kameleon and its persistent

ahe system through an example. Let us suppose an experimenter wants to measure the perfor-

mane of di�erent tehniques of virtualization and implementations of them for the exeution of

high performane appliations. Assume that we have run an experiment that measures exeution

time for two virtualization tehniques: system level virtualization (Doker) and full virtualization

(VirtualBox and QEMU-KVM) on a mahine M1. Now, suppose a di�erent experimenter wants

to run the same experiment in another mahine M2.

Here are the issues they would fae:

33

This hapter was written using Org mode whih enables to embed all the analysis presented.

This is available along with persistent ahe arhives, Kameleon reipes and some additional sripts at

http://exptools.gforge.inria.fr/kameleon/

91

http://exptools.gforge.inria.fr/kameleon/

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

Docker Virtualbox Qemu-kvm
Docker Virtualbox Qemu-kvm

Transfer

Kameleon

Recipes Cache archive

Kameleon

Cache archive

SA1

SA1

SA1

SA1

SA2

SA2

SA2

SA2

SA3

SA3

SA3

SA3

Cache archive

SA: Software Appliance

M1

M1

M2

M2

Figure 5.6: Example of experiment pakaging with Kameleon.

Table 5.9: Some persistent ahe arhives

Software

appliane

Container Image Size

[Mbytes℄

Cahe

Size[MBytes℄

hpl benhmark VirtualBox 1100 581

hpl benhmark QEMU 1200 582

hpl benhmark Doker 1600 520

Arhive for all applianes 3900 703

� The software applianes are rarely well desribed and the information of how they are on-

�gured is missing.

� Three di�erent images have to be available whih will onsume spae to store them and time

to transfer.

� The images are stati and introduing hanges into them is not always easy and lean.

� Depending on the type of appliations or benhmarks run in the experiment, reompilation

ould be needed in order to re-run the experiment in the same exat onditions. Therefore

the images are not diretly exeutable on M2.

The proess using Kameleon is depited in Figure 5.6. Kameleon brings the following advan-

tages:

� All the details of omposition and on�guration resides on the reipes as shown in Setion 5.4.

� In the proess of generating the di�erent software applianes, a persistent ahe arhive will

be generated that ontains all the data used during the generation of the respetive software

applianes. This is the only �le that has to be stored and, in terms of size it is most of the

time smaller than the images generated as shown in Table 5.9.

� The persistent ahe arhive ontains all the original data used for generating the images.

This means that the software appliane an be adapted to new ontexts.

5.5.4 Future work

In future work, we plan to generalize the persistent ahe to provide a repository of persistent ahe

�les, and make this repository available to the ommunity. Our vision of this ommunity inludes

92

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

researhers and software developers: anyone who needs to build a partiular software stak. This

repository will inlude the instrutions (reipes and steps �les) and its assoiated data. Therefore,

multiple software applianes an be stored, reduing signi�antly the storage requirements (as

demonstrated in the last row of Table 5.9). Using this repository and Kameleon eliminates the

need to store large binary �les. Kameleon an impat the manage of IT infrastrutures as it an

be used to manage the deployment and ustomization of software applianes. Furthermore, we

are interested in exploring Kameleon as a platform for ontinuous integration. We believe that

Kameleon's automation of software appliane building is well suited for ontinuous integration.

Finally, beause the whole environment setup is known, we believe that Kameleon an make bug

traking easier.

5.5.5 Conlusions

We introdued the onept of reonstrutability whih establishes the requirements that a soft-

ware experimental setup has to meet for improving the reproduibility of experiments in omputer

siene. We proposed Kameleon a software appliane builder that supports reonstrutability.

Kameleon provides a modular way to desribe the onstrution of software applianes, whih

enourages ollaboration and reuse of work. Support of reuse lowers the entry barrier for exper-

imenters with low sysadmin skills. Kameleon persistent ahe makes experimental setups reon-

strutable at any time.

93

CHAPTER 5. SETTING UP COMPLEX SOFTWARE STACKS

94

Chapter 6

Reproduible applianes for

experimentation

Experiment reproduibility is a milestone of the sienti� method. Reproduibility of experiments

in omputer siene would bring several advantages suh as ode re-usability and tehnology

transfer. The reproduibility problem in omputer siene has been solved partially, addressing

partiular lass of appliations or single mahine setups. In this hapter we present the design of a

persistent ahe mehanism that has been integrated to our software appliane builder Kameleon.

The main goal of our approah is to enable the exat and independent reonstrution of a given

software environment and the reuse of ode. Additionally, we share our experiene in �nding a

way to preserve over time; the software stak used for experimentation in omputer siene. A

generalization of the persistent ahe is proposed that would enable researhers to lower storage

requirements for their applianes. The results shown in this hapter were published in a paper [112℄

presented at TRIDENTCOM 2014.

6.1 Introdution

In order to strengthen the results of a researh it is important to arry out the experimental part

under real environments. In some ases, these real environments onsist in a omplex software

stak that normally omprises a on�gured operating system, kernel modules, run-time libraries,

databases, speial �le systems, et. The proess of building those environments has two shortom-

ings: (a) It is a very time onsuming task for the experimenter that depends on his/her expertise.

(b) It is widely aknowledged that most of the time, it is hardly reproduible. A good pratie

at experimenting is to assure the reproduibility. For omputational experiments this is a goal

di�ult to ahieve and even a mere repliation of the experiment is a hallenge [37℄. This is due to

the numerous details that have to be taken into aount. The proess of repeating an experiment

was arefully studied in [32℄ and among the many onlusions drawn, the di�ulty of repeating

published results was highly relevant.

With the advent of testbeds suh as Grid'5000 [25℄ and FutureGrid [51℄, loud-based testbeds

like BonFIRE

1

, the ubiquity of loud omputing infrastrutures and the virtualization tehnol-

ogy that is aessible to almost anyone that has a omputer with modest requirements. Now it

is possible to deploy virtual mahines or operating system images, whih makes interesting the

approah of software applianes for experimentation. In [63℄ the author gives 13 ways that repli-

ability is enhaned by using virtual applianes and virtual mahine snapshots. Another lose

approah is shown in [45℄ where snapshots of omputer systems are stored and shared in the

loud making omputational analysis more reproduible. A system to reate exeutable papers is

shown in [14℄, whih relies on the use of virtual mahines and aims at improving the interations

between authors, reviewers and readers with reproduilibity purposes.

1

http://www.bonfire-projet.eu

95

http://www.bonfire-project.eu

CHAPTER 6. REPRODUCIBLE APPLIANCES FOR EXPERIMENTATION

Those approahes o�er several advantages suh as simpliity, portability, isolation and more

importantly an exat repliation of the environment but they inurred in high overheads in build-

ing, storing and transferring the �nal �les obtained. Additionally, it is not lear the omposition

of the software stak and how it was on�gured. We lose the steps that let to their reation.

In the previous hapter we established that two requirements for reonstrut-ability are: to

know exatly the sequene of ations that produed a determined environment for experimentation

and to be able to hange any ation and regenerate another environment. It was already shown

that our tool Kameleon strives to provide the former through a modular system of reipes where

all ations to generate a software appliane are desribed. In this hapter, we present our approah

to ahieve the latter. The approah is based on a persistent ahe mehanism that stores every

piee of data (e.g., software pakages, on�guration �les, sripts, et.) used to onstrut the

software appliane. Kameleon persistent ahe mehanism presents three main advantages: (1) it

an be used as a format to distribute and store individual and related software applianes (virtual

luster) inurring in less storage requirements; (2) provenane of data, anyone an look at the steps

that led to the reation of a given experimental environment; (3) it helps to overome widespread

problems oasioned by small hanges in binary versions, unavailability of software pakages,

hanges in web addresses, et. Experimental results and validation of this ahe mehanism are

shown in this hapter.

This hapter is strutured as follows: In Setion 6.2, some approahes to reprodue a given

environment for experimentation are disussed. Then, the implementation of the persistent ahe

mehanism is shown in Setion 6.3 whih enables preservation of software staks used in exper-

imentation. In Setion 6.4, we show some experimental results and validation of our approah.

Finally the onlusions are presented in Setion 6.6.

6.2 Related works

Experimenters have di�erent options to make the environment for experimentation more repro-

duible. They an apture the environment where the experiment was run or they an use a more

reproduible approah to set up the experiment from the beginning.

6.2.1 Tools for apturing the environment of experimentation

CDE [57℄ and ReproZip [29℄ are based on the apture of what it is neessary to run the experiment.

They apture automatially software dependenies through the intereption of Linux system alls.

A pakage is reated with all these dependenies enabling it to be run on di�erent Linux distri-

butions and versions. ReproZip unlike CDE allows the user to have more ontrol over the �nal

pakage reated. Both tools provide the apaity of repeating a given experiment. However, they

are aimed at single mahine setups, they do not onsider distributed environments and di�erent

environments that ould interat between them.

6.2.2 Methods for setting up the environment of experimentation

Here, we desribe the di�erent methods that experimenters use for setting up and preserving their

environments for experimentation. These methods apply to infrastrutures where a whole software

stak an be deployed (e.g., Grid'5000, FutureGrid, BonFIRE, any IaaS loud, et.). This is how

the proess shown in Setion 5.1.1 is mapped to real use ases.

Manual

The experimenter deploys a golden image

2

that will be provisioned manually. The image modi-

�ations have to be saved some way (e.g snapshots) and several versions of the environment an

be reated for testing purposes. Possibly, the experimenter has to deal with the ontextualization

2

This term refers to the base operating system images available in an infrastruture.

96

CHAPTER 6. REPRODUCIBLE APPLIANCES FOR EXPERIMENTATION

of the images or it ould be done using the underlying testbed infrastruture. In terms of repro-

duibility, the experimenter end up with a set of pre-on�gured software applianes that an be

deployed later on the platform by him/her or another experimenter. This approah is relevant

due to its simpliity and has been used and mentioned in [45℄ and [14℄. Despite its simpliity,

the storing of software applianes or snapshots inurs in high storage osts.

Sript Automation

It is as well based on the deployment of golden images, however, the provisioning part is automated

using sripts. The experimenter possibly has no need to save the image, beause it an be reon-

struted from the golden image at eah deployment. Many experimenters opt for this approah

beause it gives a ertain degree of reproduiblity and automation and it is simple ompared to

using on�guration management tools. This was used in [11℄ for deploying and sheduling thou-

sands of virtual mahines on Grid'5000 testbed. Sript automation inurs in less overhead when

the environment has to be transmitted, for post exeution. Nevertheless, it is still dependent on

the images provided by the underlying platform.

Con�guration management tools

Unlike the previous approahes, the golden images are provisioned this time with the help of

on�guration management tools (e.g., Chef

14

or Puppet

13

) whih gives to the experimenter a

high degree of automation and reproduibility. However, the proess of porting the non-existing

software towards those tools is omplex and some administration expertise is needed. In [84℄

it is shown the viability of reproduible eSiene on the loud through the use of on�guration

management tools. A similar approah is shown in [15℄.

Software applianes

Experimenters an opt for software applianes that have to be ontextualized at deployment time.

In [81℄ the viability of this approah was shown. Those images an be either built or downloaded

from existing testbed infrastrutures (e.g Grid'5000, FutureGrid) or sites as TURNKEY

3

or loud

market

4

oriented to Amazon EC2 images. Those images are independent from the ones provided

by the platform and experimenters have aess to more operating system �avors. Di�erent software

staks are available that are already on�gured, but we dont know anything about how they were

built. We have already shown in Chapter 5 an extensive literature about the tools that enable the

reation of software applianes.

6.3 Reonstrutable software applianes

From the methods mentioned in the previous setion, we believe that the use of software applianes

gives the highest degree of �exibility and reproduibility as it provides a way for preserving the

whole software stak. Our proposal is to make those software staks easy to setup and reonstrut-

able by taking advantage of the best of the aforementioned methods. As shown in Chapter 5, we

propose to build software applianes with Kameleon whih o�ers some standard methods for

setting up software, similar to Con�guration management tools but without its omplexity. In

order to assure the reonstrut-ability of the software appliane, we implemented a persistent

ahe module that generates an arhive and enables the distribution of software applianes that

an be reonstruted from srath. It is targeted to make easier the reonstrution of ustom

software staks in HPC, Grid, or Cloud-like environments.

97

CHAPTER 6. REPRODUCIBLE APPLIANCES FOR EXPERIMENTATION

global:

 user_name: kameleon

 user_password: $$user_name

 # Distribution

 distrib: debian

 release: wheezy

 kernel_arch: $$arch

 hostname: kameleon-$$distrib

 ## Disk options

 nbd_device: /dev/nbd1

 image_disk: $$kameleon_cwd/base_$$kameleon_recipe_name.qcow2

 image_size: 10G

 filesystem_type: ext4

 rootfs: $$kameleon_cwd/rootfs

 out_context:

 cmd: bash

 workdir: $$kameleon_cwd

 proxy_cache: 127.0.0.1

 in_context:

 cmd: USER=root HOME=/root LC_ALL=POSIX chroot $$kameleon_cwd/rootfs bash

 workdir: /root/kameleon_workdir

 proxy_cache: 127.0.0.1

bootstrap:

 - initialize_disk_chroot

 - debootstrap:

 - repository: http://ftp.debian.org/debian/

 - start_chroot

setup:

 - install_software:

 - packages: >

 debian-keyring sudo less vim curl less acpid linux-image-$$kernel_arch

 - configure_kernel

 - install_bootloader

 - configure_network

 - create_group:

 - name: admin

 - create_user:

 - name: $$user_name

 - groups: sudo admin

 - password: $$user_password

export:

 - qemu_save_appliance:

 - input: $$image_disk

 - output: $$kameleon_cwd/$$kameleon_recipe_name

 - save_as_qcow2

Figure 6.1: Kameleon reipe example

98

CHAPTER 6. REPRODUCIBLE APPLIANCES FOR EXPERIMENTATION

Kameleon

Engine

Recipe
Steps

DATA oftware pack

software version r ce

Figure 6.2: Software appliane reation with Kameleon

6.3.1 Requirements for reonstrut-ability

The approah for software appliane reonstrut-ability is based on four requirements:

1. A reipe (Figure 6.1) that desribes how the software appliane is going to be built. This

reipe is a higher level desription easy to understand and ontains some neessary meta-data

in form of global variables and steps.

2. TheDATAwhih is used as input of all the proedures desribed in the reipe. It enompasses

software pakages, tarballs, on�guration �les, ontrol version repositores, sripts and every

input data that make up a software appliane. Whenever used the term DATA in this

hapter, it will refer to this.

3. Kameleon appliane builder whih parses the reipe and arry out the building. This part

inludes as well the persistent ahe mehanism that will be desribed later on.

4. Metadata that desribes the ontext where the software appliane was built the �rst time.

For instane: date of build, version of the external tools used during the build, et.

5. A omputer apable of exeuting Kameleon.

Therefore, the problem of guaranteeing the exat reonstrution of software applianes is re-

dued to keeping the three following parts unhanged: (1) the reipe, (2) DATA (3) Kameleon

appliane builder. Two di�erent experimenters having those three exat elements and ful�lling

the requirements given by the Metadata (4) and omputer hardware (5) will generate the same

software appliane (under the hypothesis desribed in Setion 5.1.2). Kameleon an generate in

an automati and transparent way a persistent ahe arhive that will ontain the exat DATA

used during the proess of onstrution along with the reipe, steps and metadata, all bundled

together enabling the easy distribution. The whole proess is depited in Figure 6.2.

Our approah to ahieve reonstrut-ability is to use a persistent ahe to apture all the DATA

used during the onstrution. As we annot guarantee that a partiular download link will exist

forever [116℄ or always point to the same software with the same version.

A persistent ahe mehanism brings the two followings advantages: (a) Data an always be

retrieved and (b) The software versions will be exatly the same.

3

http://www.turnkeylinux.org

4

http://www.theloudmarket.om

99

http://www.turnkeylinux.org
http://www.thecloudmarket.com

CHAPTER 6. REPRODUCIBLE APPLIANCES FOR EXPERIMENTATION

6.3.2 Design

The persistent ahe mehanism has to be transparent and lightweight for the user in the two

following phases: the onstrution of the software appliane, and its respetive ulterior reon-

strution. As most of DATA omes from the network (e.g., operating system, software pakages),

the obvious approah was to integrate a ahing proxy for web. Suh a ahing proxy will apture

transparently every piee of data downloaded using the network. However, there are still some

missing parts of the DATA, beause some �les - that make the software appliane unique - are

provided by the user from its loal mahine or even worse some pakages annot be ahed. That

is the reason why we opted for an approah onsisting in two parts:

� A ahing web proxy, that ahes pakages oming from the network. This relies on Polipo

5

whih is a very small, portable and lightweight ahing web proxy. We hose Polipo beause

it an run with almost zero on�guration. Polipo an be on�gured with di�erent poliies

for validating the ahe generated. Therefore, it an be fored to not request the server for

up-to-date pakages assuring that software pakages will be always taken from the persistent

ahe. This is a desired behavior in order to avoid inompatibility due to hanges in pakages

versions.

� Ad ho proedures that ahe what ould not be ahed using the ahing web proxy. This

represents data that ome from ontrol version repositories suh as Git, svn, merurial, et

or using https. These Ad ho proedures are based on simple ations depending on the

data to ahe, for instane: ontrol version repositories have speial mehanisms to trak

the version used that are integrated into the Kameleon persistent ahe module, user's �les

are ahed by interepting kameleon pipes, whih are the only way to transfers �les between

ontexts.

In order to make more lear the omposition and limitations of the persistent ahe, we de�ne

four properties of DATA:

� Loation: it an be either Internal (I) or External (E).

� Caheability: whether it is possible to ahe it (C) or not (

	

C).

� Method of ahing: it an be Proxy (P) or Ad ho (A).

� Sope: two possible values Private or Publi.

The sope makes neessary the reation of two types of ahe Private and Publi for distribution

purposes. Combining the properties Loation, Caheability and Method of ahing we an identify

�ve types of data:

� E,C,P: data whih omes from an external loation (e.g., loal network, internet) and an

be ahed with the proxy (e.g., Software pakages, tarballs, input data).

� E,C,A: same external loation, however, it annot be ahed with the proxy (e.g., version

ontrol repositories, https tra�).

� E,

	

C: this data omes from an external loation but an not be ahed due to some restritions

(e.g., proprietary lienses) or due to its size it an not be stored (e.g., big databases).

� I,C,A: data that omes from the loal mahine and it is ahed by some ad ho proedures.

� I,

	

C: it omes form loal mahine but an not be ahed.

Figure 6.3 shows the omposition of a generated persistent ahe �le. A hash is assoiated to

both a step �le and its generated persistent ahe diretory. This enables Kameleon to assure the

5

http://www.pps.univ-paris-diderot.fr/~jh/software/polipo/

100

http://www.pps.univ-paris-diderot.fr/~jch/software/polipo/

CHAPTER 6. REPRODUCIBLE APPLIANCES FOR EXPERIMENTATION

��� DATA

 ��� con�gure_apt

 � ��� ftp.debian.org

 � ��� �D��	
o��������W�	r���
 � ���
��9���9���
	Y��ruzu�A==

 ��� con�gure_keyboard

 � ��� ftp.debian.org

 � ��� ���!"���9hhP��#$�
�%"&��
 � ��� u1�DohZ#'�h9Y1�����()&��
 ��� debootstrap

 � ��� ftp.debian.org

 � ��� *�+�r��h,%W-�.J/	�Z-g==

 � ��� ��0�7W&uZ�q23�+7)��#Z&��
 � ��� �4���/# �-P&�X/�"4W�+A==

 ��� install_atlas

 � ��� data

 � � ��� pipe-cat_tX�m5r65)	810.1.t0*Y�*902-927-11suz72

 � ��� downloads.sourceforge.net

 � � ��� �!����"��qP3-���oY�7P$��
 � ��� netcologne.dl.sourceforge.net

 � � ��� ��D/���-��"�.�01Z�*	o$��
 � ��� sourceforge.net

 � ��� W1�,�WW�3:,1'�,h-$�))$��
 ��� install_hpl

 � ��� data

 � � ��� pipe-cat_home_crist5�m/��0*Y�*902-927-1xy9m9l

 � � ��� pipe-cat_tmp_hpl_2.1.tar8&0*Y�*902-927-1phtjqg

 � ��� www.netlib.org

 � ��� : *ZXHX.���!!�;�r�/&9g==

 ��� install_requirements

 � ��� ftp.debian.org

 � ��� �X���,�0
�(&$�(���%1#��
 � ��� 4X�;:r!� .5r'"&	#��r.A==

 � ��� 5��(:��Z�9�
DWZ�u��
mA==

 � ��� D�Y3�4�/#�5<%�,#4�2-w==

 � ���
�/*'�u��6��.��*:r&W'$��
 � ���
Z�1;�!-��";�:�W4��0&��
 � ��� "'���3��%r!	�1��0�+YYg==

 ��� install_software

 � ��� ftp.debian.org

 � ��� 02M��4:/XW/��'�hr.-��$��
 � ��� -0bk6'Z107J��2kmkh;rPw==

 � ��� .*�
/�X�. �*�',%o�J/'#��
 � ��� *X!P4XW*!��%��1r$��)2���
 � ��� �+//#) &Y %��)DDW�������
 � ��� "hJ�54,P	J5+W,:�/ ;7xg==

 � ��� zsj-u�-hSdc�!;+9'(u7eA==

 � ��� "W-����q0�X/����:0�yLg==

 � ��� �"�:% Dh)/P:.&Z��0���&��
 ��� prepare_qemu

 ��� kameleon.imag.fr

 ��� ��uo	:-!�)$/��J�*Y���$��

 �� Ckf.q0Z�3q�houD�PJ�!���

|== recipe

 >== AT?AS-debian-qemu.yaml

 >== qemu

 @ A== BCEFGHIKGLBMN.yaml

 A== steps

 >== aliases

 @ A== defaults.yaml

 >== bootstrap

 @ >== debian

 @ @ A== debootstrap.yaml

 @ >== initialize_disk.yaml

 @ >== install_requirements.yaml

 @ >== prepare_qemu.yaml

 @ >== start_qemu.yaml

 @ A== switch_context_qemu.yaml

 >== checkpoints

 @ A== qemu.yaml

 >== disable_checkpoint.yaml

 >== enable_checkpoint.yaml

 >== export

 @ A== qemu_save_appliance.yaml

 A== setup

 >== create_group.yaml

 >== create_user.yaml

 >== debian

 @ >== conOgure_apt.yaml

 @ >== conOgure_keyboard.yaml

 @ >== conOgure_network.yaml

 @ >== conOgure_system.yaml

 @ >== install_bootloader.yaml

 @ >== install_software.yaml

 @ A== upgrade_system.yaml

 >== install_atlas.yaml

 A== install_hpl.yaml

>== metadata

 >== cache_cmd_index

 A== header

Figure 6.3: Here is depited an example of the ontents of a persistent ahe arhive. The requirements

for reonstrutabiliy are shown. The DATA is strutured by step (Kameleon hierarhy) and it ontains

�les, ontrol version repositories and mainly ahe �les generated by Polipo. Only the steps that generate

data are taken into aount. The whole reipe is inluded with its respetive step �les and metadata.

ohereny between instrutions and data used to build a determined software appliane. This way

of assoiating step �les with persistent ahe diretories brings an adequate granularity (given

that they represent an installation of one kind of software) for sharing briks of software. A

generalization of a ahe ould be implemented in whih it would work as a entral repository

where users will share steps with their respetive persistent ahe �les, lowering substantially the

storage requirement needed for the software applianes.

Kameleon persistent ahe mehanism enables the rebuilding of any software appliane from its

respetive persistent ahe �le. The only requirement is that the software appliane has to be built

suessfully a least one. The low size of Kameleon and Polipo (less than 1MB) makes feasible

the distribution of the exat version used to reate the environment, avoiding the inompatibility

between versions.

Data type Persistent

ahe

Referened ahe

O.S pakages Web proxy Debian snapshot

Repositories Hard opy of the

repository

Chekout referene

User's �les Intereption and

storage of a hard

opy

No option

Table 6.1: Persistent ahe approahes

The persistent ahe mehanism ould use another alternative approah alled Referene ahe.

It relies for the moment on systems like Debian snapshot

6

in order to aess a ertain dates and

6

http://snapshot.debian.org/

101

http://snapshot.debian.org/

CHAPTER 6. REPRODUCIBLE APPLIANCES FOR EXPERIMENTATION

General Applianes

Name Main software stak Size [MB℄

Hadoop

Java 1.6

Hadoop 1.03 229

Ubuntu 10.04 LTS

HPC Pro�ling

PAPI 5.1.0

TAU 2.22

OpenMPI 1.6.4 226

Debian Wheezy

Table 6.2: Software applianes generated

version of the pakages. This is only use for the O.S layer and all the software that is available

through the pakage manager. For revision ontrol repositories, the referened ahe will keep the

URL of the repository and the revision number. The two approahes are summirize in Table 6.1:

The approah using referenes is an option to lower the storage requirements but it will depend

on an external servie to be available. It is still under development and at the moment of writing

the persistent ahe approah is more reliable.

6.4 Experimental results and validation

This setion will start with results of the persistent ahe generated with Kameleon version 1.28

whih were the subjet of the paper [112℄. The rest will be dediated to persistent ahe generated

with the new version that was desribed in Chapter 5 and developed during the last part of this

thesis. It will be shown in this setion that Kameleon syntax an evolve without a�eting the

reonstrut-ability. All the persistent ahe arhives are available on Kameleon web site l

7

.

6.4.1 Kameleon old version

As desribed in Setion 6.3.1 we required a version of Kameleon whih ould be obtained by using

the ontrol version repository. The ode is under a ontrol revision system, the old engine an be

retrieved from its git repository by doing:

1 $ git hekout remotes/origin/old/old-engine

Kameleon is a single sript that an be exeuted in the following way:

1 sudo ./kameleon tests/debian_eth_oar2.2.17_i386.yaml --from_ahe ahe-debian_eth_oar2.2.17-2013-05-26.tar

Table 6.3: Software applianes generated

OAR Version date of release GNU/Linux version Size [MB℄

2.2.17 27 Nov 2009 Debian eth 112

2.3.5 30 Nov 2009 Debian eth 113

2.4.7 11 Jan 2011 Debian Lenny 137

2.5.2 23 May 2012 Debian Squeeze 140

2.5.0 5 De 2011 Debian Squeeze 140

In order to show that our approah is very portable between versions of Linux distributions,

we arried out suessfully onstrution and reonstrution of di�erent applianes as shown in

Table 6.2 that onsist in di�erent �avors of GNU/Linux (Debian, Ubuntu) and di�erent middle-

ware: Hadoop

8

and TAU

32

. A design goal was to ahieve a self ontained ahe. Hene, we

7

http://kameleon.imag.fr/arhive/

8

http://hadoop.apahe.org/

102

http://kameleon.imag.fr/archive/
http://hadoop.apache.org/

CHAPTER 6. REPRODUCIBLE APPLIANCES FOR EXPERIMENTATION

tested the portability of the persistent ahe mehanism. The aforementioned software applianes

where reonstruted using their respetive persistent ahe �les, the Kameleon engine and the

Polipo binary whih made only 984 K Bytes. This was tested in the following Linux distributions:

Fedora 15, OpenSUSE 11.04, Ubuntu 10.4 and CentOS 6.0. Other tests onsisted in reproduing

old environments of test bak to 2009 based on OAR [24℄ a very lightweight bath sheduler. The

desription is presented in Table 6.3.

6.4.2 Building old environments

The persistent ahe mehanism enable the building of environments generated at any point of

time. It does so by using the same versions that are ompatible with the sripts used at the

moment of the �rst generation of the software appliane. Not using the same exat versions an

sometimes generate unexpeted errors that are time onsuming and researhers do not want to

deal with. This ould be one of the auses of the famous sentene "It worked yesterday". Problems

with library versions dependeny an appear as well, what it is known as Dependeny hell [57℄.

We faed those problems when building software applianes based on Arhlinux distribution

and on the OAR bath sheduler. Their urrent versions posed several inompatibility problems

with the sripts used for generating the software applianes a year ago. The persistent ahe

mehanism enabled the reonstrution of these software applianes.

6.5 Disussion

With the aim of apturing an experimental environment with reproduibility purposes, it is obvious

that wrapping all the environment into a virtual mahine is the simplest approah, whih brings

isolation and portability. Nevertheless, we exposed the following advantages of Kameleon over

virtual mahines as a means to ahieve reproduibility.

� It is not possible to run everything on a virtual mahine. It is most of the time possible to

onvert the virtual mahine disk into a raw disk and deploy it into bare-metal. However,

that implies additional steps for the user, it is not automati.

� Spae overhead, virtual mahines are saved in large binary �les.

� If the virtual mahine needs to be modi�ed, for instane, by installing a new version of

a given software. It is neessary to uninstall the present version and install the required

version, whih is not always lean in most of the operating systems using either the pakage

manager or tarballs.

� With Kameleon is a must to generate metadata. It is neessary to speify all the software

versions to install, spei� distribution pakages to install, et. It tells exatly what was done

in order to reate a given environment. This goes further than just the at of repeating. It

enables the reuse of ode, experimenters will understand the steps followed in order to get

a ertain omplex stak of software. Thus, they will be able to adapt suh staks to their

needs and get more insights.

� Rigid virtual mahines are not a good option when dynamially deploy the virtual appliane

under di�erent environments what it is alled as Appliane ontextualization. The whole

environment used to exeute the experiment should be able to be reon�gured [97℄.

6.6 Conlusions and Future Works

Experiment reproduiblity is a big hallenge nowadays in omputer siene, a lot of tools have been

proposed to address this problem, however there are still some environments and experiments that

are di�ult to takle. Commonly, experimenters lak of expertise to setup omplex environments

103

CHAPTER 6. REPRODUCIBLE APPLIANCES FOR EXPERIMENTATION

neessary to reprodue a given experiment or to reuse the results obtained by someone else. We

presented in this hapter, a very lightweight approah that leverage existing software and allows

an experimenter to reonstrut independently the same software environment used by another

experimenter. Its design o�ers a low storage requirement and a total ontrol on the environment

reation whih in turn allows the experimenter to understand the software environment and in-

trodue modi�ations into the proess. Furthermore, several methods to arry out the setup of

the environment for experimentation were desribed and we showed the advantages of our ap-

proah Kameleon. As a future work we plan to arry out more omplex experiments with our

approah and measure the gains in terms of reproduilibity and omplexity as well as to study the

ontextualization of environments (e.g., post installation proess) in di�erent platforms.

104

Part IV

Conlusions

105

Chapter 7

Conlusions

During this thesis we have studied the ondution of experiments in omputer siene in general

and mainly fous on our domains of researh whih are Distributed Systems and High Performane

Computing. The di�ulty involved in onduting an experiment and its later reprodution is due

to the hard task of detailing all the fators that determined the state of the experimental ontext.

The goal of experiments in our domain most of the times is to measure that our implementation

is faster, it sales better, it uses less storage spae, et. As a onsequene, the measures taken

are highly dependent on the most minimal detail of the experimental ontext. There are many

variables to take into aount and many ways in whih a determined experiment an be performed.

Thus missing information about the proedure followed prevents the veri�ation and reprodution

of a given researh work.

Due to the omplexity of systems nowadays and the fast hange of software and hardware, it

is not surprising the di�ulty in the simple fat of repeating an experiment. One �rst attempt

to repeat suessfully an experiment is to have aess to the same software and hardware used,

however, there are some unavoidable fats that ould prevent short and long term reprodution

of an experiment: some infrastrutures are restrited to be used by few researhers, the aess to

the same hardware is ostly, the lifespan of software and omputer hardware is too short, software

lienses and proprietary software, et.

Through our studies we have found a plethora of tools that strives for onduting a more

sound experimental proess. Those tools seek to o�er means for desribing the ontext in whih

an experiment took plae. To do so, they used di�erent languages and abstrations for desribing

omplex experimental work�ows and embed as many details as possible. It is lear that no tool

will over all experimenter's neessities and that is why we put a lot of e�ort in omparing tools

and providing their purpose. This was summarized in Chapter 2 and it is expeted to be used as

guide for researhers that want to improve the quality of their experiments. One onlusion of this

study is that even though the urrent state of experimentation is not enouraging, this panorama

will hange given the number of tools available nowadays.

It seems obvious that due to this omplexity users have to be assisted when onduting their

experiments, manual ontrolled experiment is not viable anymore. The main idea is to provide

a way to reate, pakage, transfer and preserve their experiments. We found that experiment

management tools have to serve three purposes:

� Make the at of experimenting less umbersome. Redue the omplexity of managing large

infrastrutures and di�erent software layers. The entry barrier of suh tools ould be redued

by enouraging ollaboration where the reuse of ode is made easy.

� Provide a way to pakage an experiment and make it easily portable aross di�erent software

and hardware infrastrutures. This pakage should generate enough metadata that rend the

omprehension of the experiment straightforward. Regarding transmission, the goal to be

ahieved by an experiment tool is the possibility of being easily embedded in a publiation

or referened. This has brought the onept of exeutable paper. We need to hange the way

107

CHAPTER 7. CONCLUSIONS

we ommuniate siene and be in favor of using dynami douments, online resoures and

invest e�ort in providing the maximum level of details about our experiment to the researh

ommunity.

� Provide means to a least enable the short term preservation of the experimental environment.

In this thesis we addressed experimentation by performing a separation of onerns. We divided

an experiment into two parts stati and dynami.

� Stati: It refers to the part that do not hange so often. The software stak and its on�g-

uration. Contrary to hardware, software is the heapest requirement that we an preserved

and should be aessible anytime. In this thesis we proposed an appliane builder alled

Kameleon that redues the entry barrier for non-experts and help researhers to automate

their experiments. We found with Kameleon a way to pakage software artifats used for

experimentation. More importantly, it has enabled to make software staks reonstrut-able.

� Dynami: It refers to the experiment exeution, the de�nition of all the ations that have

to be arried out during the experiment. This was addressed in this thesis by improving

the experiment management tool alled Expo. It was shown its �exibility and e�ieny by

implementing omplex experiments that demanded a big amount of resoures and omplex

work�ows.

With this separation we believe that experimenter produtivity is improved. When performing

large sale experiments this separation is neessary for software installation proedures, otherwise

the following issues ould appear: a bottlenek when aessing the server for downloading pakages,

ompilation proess over several mahines a part from being time onsuming, it ould be error-

prone.

Another important ontribution of this thesis is the use of experiment management tools for

assisting users in the deployment and exeution of their parallel appliations. We showed the

gains of performane by hoosing better deployment shemes that have into aount hardware

apabilities. This was easily implemented using our experiment management tool and it opens the

door to appliation optimization that are possible without knowing the internals of the appliation.

For illustrating the proposed experiment yle and how the two tools interat together, a use

ase is presented in the next setion.

7.1 Experiment yle

The experimenter start by setting up all the software required for his/her environment of experi-

mentation. For this the experimenter will useKameleon to install (independent of the experimental

work�ow) all the software required using the best suited tehnology for him/her (Linux ontainer,

virtual mahine, real mahine, et.). The setup of a software stak is an error-prone proess where

Kameleon features like hekpointing and interative exeution would ome in handy. Several

di�erent software staks an be reated and exported to the most onvenient format depending on

the target infrastruture where the experiment will �nally run. When the experimenter reahes a

stable version of her/his environment, she/he will generate a persistent ahe �le whih will freeze

the software versions of the experimental environment and avoid any future inompatibility issue

that ould generate a onsiderable lost of time. One the software stak to be used is set, all the

work�ow of the experimentation is done with Expo, this work�ow an be tried loally in a virtual

infrastruture by hoosing the right infrastruture module. Many errors an be aught given that

the infrastruture is running loally. Complex work�ows of experimentation with many nodes

an be easily expressed with Expo. The software applianes an be updated with more software

if neessary in order to keep all the installation proedures in one plae and then manage the

deployment of software applianes whih will make the experiment sale better. Finally, when all

the experiments are �nished suessfully and the experimenters obtained the desired results, all

108

CHAPTER 7. CONCLUSIONS

Expo sripts an be stored along with the persistent ahe �les generated by Kameleon. This will

guarantee that the experimental work�ow, experimental environment desription and the exat

software used in the experiment will be available for later reprodution.

7.2 Future works

One important step before further development of the tools presented during this thesis is to

ross the adoption barrier. It is di�ult to enourage researhers to automate their work�ow for

experimentation whih is highly dependent on their tehnial skills. Unfortunately, no new tool

ome at no ost, resulting in the di�ulty to onvine researhers to hange their experimental

work�ows. We believe that the level of adoption will inrease with the level of maturity of the

tools giving that early bugs, few doumentation an disourage new users and make them return

bak to their previous work�ow.

7.2.1 Expo perspetives

Currently, Expo enables the e�ient exeution of the experiment, it makes easier the managing

of large amount of resoures and provides an automati olletion of results. Although it is easier

to ondut experiments than it was before, we still fae some di�ulties: failures are pervasive,

experiments are not optimized, users do not have any help to run their appliation e�iently. The

experiment tool should take deisions on behalf of the user, beause, important events may our

when experimenting, for example:

� Some nodes failed when my experiment was deployed, I have to detet quikly and repair

them (possibly by rebooting the mahine).

� My appliation is getting a really bad performane, probably it is running with the wrong

parameters. I have to stop it and not let it run for another 72 hours.

� The variane of my runs is low enough, it does not make any sense to do more runs.

� I need for my experiment a minimum of performane in the interonnetion fabri, otherwise

I ould biased my results.

� My level of CPU performane is still good, I an deploy more virtual mahines to simulate

more lients.

Hene, an autonomi behavior is envisioned for dealing with this di�ulties. Autonomi om-

puting aims at developing self manage and self repair distributed systems for reduing deployment

and administration osts. Experiments involving large amount of resoures are ostly, if we in-

orporate an intelligent behavior we ould know for example: whih tests an run in parallel, the

number of runs needed to reah a ertain on�dene value, et. We have already envisioned the

evaluation and possible integration of the framework Frameself [2℄.

One of the biggest di�ulties we had during the development of Expo was to hoose the

building bloks for the desription language. We provided very high-level building bloks that an

be ustomized for di�erent purposes and some other operators that make easy the desription of

experiments with many nodes. In order to re�ne this operators and abstrations, a study about

how researhers perform their experiments in our domain has to be onduted. The impliations

of suh study on the improvement of the desription language are threefold: the unovering of

hidden patterns, the redution of the entry barrier for non-expert users and the enhanement

on the readability. We an learn from studies about programming languages readability and

its impliation on software development whih will provide a better riteria to perform a more

omplete evaluation of the urrent experiment management tools.

Another path for further researh is the development of interfaes to inrease the degree of

interoperability of the tool and make it interat with workload generators and emulators systems

109

CHAPTER 7. CONCLUSIONS

suh as [115℄. This will make possible a model of hybrid simulation as the one shown in [105℄

for large sale systems, where experimenters an take advantage of simulation, emulation and real

exeution tehniques in order to enrih their environments of experimentation.

7.2.2 Kameleon perspetives

During the last part of this thesis Kameleon ahieved a good stability and started to be used by a

small ommunity of loal users. Apart from researhers, it has been used by engineers for building

speialized software staks for ARM arhitetures.

There is one path - among the many possible - for improving Kameleon that we would like to

follow. The generalization of the persistent ahe, where a repository of persistent ahe �les is

available for the ommunity. This ommunity will not only inlude researhers, but also software

developers and anyone who needs the reation of partiular software staks. This will redue sig-

ni�antly the storage requirements for software applianes and it will make feasible that anyone

with su�iently data transmission and omputing apaity an reonstrut his/her environment

at will, without storing large amounts of data and without worrying about software inompatibil-

ities. This an impat the manage of IT infrastrutures as Kameleon an be used to manage the

deployment and ustomization of software applianes. Impat on software development is foreseen

as well, ontinuous integration an be easily automated and ontrolled and bugs reporting would

be simpli�ed as the whole environment on�guration is known.

110

Bibliography

[1℄ D. Abramson, B. Bethwaite, C. Entiott, S. Gari, and T. Peahey. Parameter Exploration

in Siene and Engineering Using Many-Task Computing. IEEE Transations on Parallel

and Distributed Systems, 22(6):960�973, June 2011.

[2℄ Mahdi Ben Alaya and Thierry Monteil. Frameself: an ontology-based framework for the

self-management of mahine-to-mahine systems. Conurreny and Computation: Pratie

and Experiene, pages n/a�n/a, 2013.

[3℄ Jeannie Albreht, Ryan Braud, Darren Dao, Nikolay Topilski, Christopher Tuttle, Alex C.

Snoeren, and Amin Vahdat. Remote ontrol: distributed appliation on�guration, man-

agement, and visualization with Plush. In Proeedings of the 21st onferene on Large

Installation System Administration Conferene, LISA'07, pages 15:1�15:19, Berkeley, CA,

USA, 2007. USENIX Assoiation.

[4℄ Jeannie Albreht, Ryan Braud, Darren Dao, Nikolay Topilski, Christopher Tuttle, Alex C.

Snoeren, and Amin Vahdat. Remote ontrol: distributed appliation on�guration, manage-

ment, and visualization with plush. In Proeedings of the 21st onferene on Large Instal-

lation System Administration Conferene, LISA'07, pages 15:1�15:19, Berkeley, CA, USA,

2007. USENIX Assoiation.

[5℄ Jeannie Albreht, Christopher Tuttle, Ryan Braud, Darren Dao, Nikolay Topilski, Alex C.

Snoeren, and Amin Vahdat. Distributed Appliation Con�guration, Management, and Vi-

sualization with Plush. ACM Transations on Internet Tehnology, 11:6:1�6:41, Deember

2011.

[6℄ Jeannie Albreht, Christopher Tuttle, Alex C. Snoeren, and Amin Vahdat. Loose syn-

hronization for large-sale networked systems. In Proeedings of the annual onferene on

USENIX '06 Annual Tehnial Conferene, ATEC '06, pages 28�28, Berkeley, CA, USA,

2006. USENIX Assoiation.

[7℄ Jeannie Albreht, Christopher Tuttle, Alex C. Snoeren, and Amin Vahdat. PlanetLab Ap-

pliation Management Using PluSH. ACM SIGOPS Operating Systems Review, 40:33�40,

January 2006.

[8℄ Jeannie R. Albreht. Bringing big systems to small shools: distributed systems for un-

dergraduates. In Proeedings of the 40th ACM tehnial symposium on Computer siene

eduation, SIGCSE '09, pages 101�105, New York, NY, USA, 2009. ACM.

[9℄ M. Alexandru, T. Monteil, P. Lorenz, F. Coetti, and H. Aubert. Large eletromagneti

problem on large sale parallel omputing systems. In International Conferene on High

Performane Computing and Simulation, 2012.

[10℄ S. Azarnoosh, M. Rynge, G. Juve, E. Deelman, M. Nie, M. Malawski, and R.F. da Silva.

Introduing preip: An api for managing repeatable experiments in the loud. In Cloud

Computing Tehnology and Siene (CloudCom), 2013 IEEE 5th International Conferene

on, volume 2, pages 19�26, De 2013.

111

BIBLIOGRAPHY

[11℄ Daniel Balouek, Adrien Lèbre, and Flavien Quesnel. Flaunher and DVMS � Deploying

and Sheduling Thousands of Virtual Mahines on Hundreds of Nodes Distributed Geo-

graphially. In IEEE International Salable Computing Challenge (SCALE 2013), held in

onjuntion with CCGrid'2013, Delft, Pays-Bas, 2013.

[12℄ Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Mazières, and Christos

Kozyrakis. Dune: Safe user-level aess to privileged pu features. In Proeedings of the 10th

USENIX Conferene on Operating Systems Design and Implementation, OSDI'12, pages

335�348, Berkeley, CA, USA, 2012. USENIX Assoiation.

[13℄ Milind Bhandarkar, L. V. Kale, Eri de Sturler, and Jay Hoe�inger. Objet-Based Adap-

tive Load Balaning for MPI Programs. In Proeedings of the International Conferene on

Computational Siene, San Franiso, CA, LNCS 2074, pages 108�117, May 2001.

[14℄ Grant R. Brammer, Ralph W. Crosby, Suzanne Matthews, and Ti�ani L. Williams. Paper

mâhé: Creating dynami reproduible siene. Proedia CS, 4:658�667, 2011.

[15℄ John Bresnahan, Tim Freeman, David LaBissoniere, and Kate Keahey. Managing appliane

launhes in infrastruture louds. In Proeedings of the 2011 TeraGrid Conferene: Extreme

Digital Disovery, TG '11, pages 12:1�12:7, New York, NY, USA, 2011. ACM.

[16℄ F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin, G. Merier, S. Thibault,

and R. Namyst. hwlo: A generi framework for managing hardware a�nities in hp appli-

ations. In Parallel, Distributed and Network-Based Proessing (PDP), 2010 18th Euromiro

International Conferene on, pages 180�186, 2010.

[17℄ L. Broto, D. Hagimont, P. Stolf, N. De Palma, and S. Temate. Autonomi Management Pol-

iy Spei�ation in Tune. In Proeedings of the 2008 ACM symposium on Applied omputing,

pages 1658�1663, New York, NY, USA, 2008.

[18℄ Tomasz Buhert. Orhestration d'expérienes à l'aide de proessus métier. In ComPAS

: Conférene d'informatique en Parallélisme, Arhiteture et Système., Grenoble, Frane,

Otober 2012.

[19℄ Tomasz Buhert and Luas Nussbaum. Leveraging business work�ows in distributed systems

researh for the orhestration of reproduible and salable experiments. In 9ème édition de la

onférene Manifestation des Jeunes Cherheurs en Sienes et Tehnologies de l'Information

et de la Communiation (2012), Lille, Frane, August 2012.

[20℄ Tomasz Buhert, Luas Nussbaum, and Jens Gustedt. A work�ow-inspired, modular and

robust approah to experiments in distributed systems. In CCGrid 2014 � The 14th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, Chiago,

Illinois, USA, May 2014.

[21℄ Tomasz Buhert, Cristian Ruiz, Luas Nussbaum, and Olivier Rihard. A survey of general-

purpose experiment management tools for distributed systems. Future Generation Computer

Systems, 45(0):1 � 12, 2015.

[22℄ Steven P. Callahan, Juliana Freire, Emanuele Santos, Carlos E. Sheidegger, Cláudio T.

Silva, and Huy T. Vo. VisTrails: visualization meets data management. In Proeedings of

the 2006 ACM SIGMOD international onferene on Management of data, SIGMOD '06,

pages 745�747, New York, NY, USA, 2006. ACM.

[23℄ Steven P. Callahan, Juliana Freire, Emanuele Santos, Carlos E. Sheidegger, Cláudio T.

Silva, and Huy T. Vo. Vistrails: visualization meets data management. In Proeedings of

the 2006 ACM SIGMOD international onferene on Management of data, SIGMOD '06,

pages 745�747, New York, NY, USA, 2006. ACM.

112

BIBLIOGRAPHY

[24℄ N. Capit, G. Da Costa, Y. Georgiou, G. Huard, C. Martin, G. Mounie, P. Neyron, and

O. Rihard. A bath sheduler with high level omponents. In Proeedings of the Fifth

IEEE International Symposium on Cluster Computing and the Grid (CCGrid'05) - Volume

2 - Volume 02, CCGRID '05, pages 776�783, Washington, DC, USA, 2005. IEEE Computer

Soiety.

[25℄ Frank Cappello, Frédéri Desprez, Mihel Dayde, Emmanuel Jeannot, Yvon Jégou,

Stephane Lanteri, Nouredine Melab, Raymond Namyst, Pasale Primet, Olivier Rihard,

Eddy Caron, Julien Ledu, and Guillaume Mornet. Grid'5000: a large sale, reon�gurable,

ontrolable and monitorable Grid platform. In 6th IEEE/ACM International Workshop on

Grid Computing (Grid), pages 99�106, November 2005.

[26℄ Alexandra Carpen-Amarie, Antoine Rougier, and FelixD. Lübbe. Stepping stones to repro-

duible researh: A study of urrent praties in parallel omputing. In Euro-Par 2014:

Parallel Proessing Workshops, volume 8805 of Leture Notes in Computer Siene, pages

499�510. Springer International Publishing, 2014.

[27℄ Henri Casanova, Arnaud Legrand, and Martin Quinson. SimGrid: a Generi Framework for

Large-Sale Distributed Experiments. In Proeedings of the Tenth International Conferene

on Computer Modeling and Simulation, UKSIM '08, pages 126�131, Washington, DC, USA,

2008. IEEE Computer Soiety.

[28℄ Bin Chen, Nong Xiao, Zhiping Cai, Zhiying Wang, and Ji Wang. Fast, on-demand software

deployment with lightweight, independent virtual disk images. In Grid and Cooperative

Computing, 2009. GCC '09. Eighth International Conferene on, pages 16�23, Aug 2009.

[29℄ Fernando Chirigati, Dennis Shasha, and Juliana Freire. Reprozip: using provenane to

support omputational reproduibility. In Proeedings of the 5th USENIX onferene on

Theory and Pratie of Provenane, TaPP'13, pages 1�1, Berkeley, CA, USA, 2013. USENIX

Assoiation.

[30℄ Gina Moraila Akash Shankaran Zuoming Shi Alex M Warren Christian Collberg,

Todd Proebsting. Measuring reproduibility in omputer systems researh. Tehnial report,

Arizona Univeristy, Tehnial Report, 2013.

[31℄ BrentN. Chun. Dart: Distributed automated regression testing for large-sale network ap-

pliations. In Teruo Higashino, editor, Priniples of Distributed Systems, volume 3544 of

Leture Notes in Computer Siene, pages 20�36. Springer Berlin Heidelberg, 2005.

[32℄ Bryan Clark, Todd Deshane, Eli Dow, Stephen Evanhik, Matthew Finlayson, Jason Herne,

and Jeanna Neefe Matthews. Xen and the art of repeated researh. In Proeedings of

the annual onferene on USENIX Annual Tehnial Conferene, ATEC '04, pages 47�47,

Berkeley, CA, USA, 2004. USENIX Assoiation.

[33℄ Benoit Claudel, Guillaume Huard, and Olivier Rihard. Taktuk, adaptive deployment of

remote exeutions. In Proeedings of the 18th ACM international symposium on High per-

formane distributed omputing, HPDC '09, pages 91�100, New York, NY, USA, 2009. ACM.

[34℄ B. Clout and E. Aubanel. Ehgrid: An emulator of heterogeneous omputational grids.

In Parallel Distributed Proessing, 2009. IPDPS 2009. IEEE International Symposium on,

pages 1�8, May 2009.

[35℄ V. Curin and M. Ghanem. Sienti� work�ow systems - an one size �t all? In Biomedial

Engineering Conferene, 2008. CIBEC 2008. Cairo International, pages 1�9, De 2008.

[36℄ Susan B. Davidson and Juliana Freire. Provenane and sienti� work�ows: Challenges

and opportunities. In Proeedings of the 2008 ACM SIGMOD International Conferene on

Management of Data, SIGMOD '08, pages 1345�1350, New York, NY, USA, 2008. ACM.

113

BIBLIOGRAPHY

[37℄ Andrew Davison. Automated Capture of Experiment Context for Easier Reproduibility in

Computational Researh. Computing in Siene and Engg., 14(4):48�56, July 2012.

[38℄ Ewa Deelman, James Blythe, Yolanda Gil, Carl Kesselman, Gaurang Mehta, Sonal Patil,

Mei-Hui Su, Karan Vahi, and Miron Livny. Pegasus: Mapping sienti� work�ows onto

the grid. In MariosD. Dikaiakos, editor, Grid Computing, volume 3165 of Leture Notes in

Computer Siene, pages 11�20. Springer Berlin Heidelberg, 2004.

[39℄ Ewa Deelman, Dennis Gannon, Matthew Shields, and Ian Taylor. Work�ows and e-Siene:

An overview of work�ow system features and apabilities. Future Generation Computer

Systems, 25(5):528�540, 2009.

[40℄ Karen D. Devine, Erik G. Boman, and George Karypis. Partitioning and load balaning for

emerging parallel appliations and arhitetures. In M. Heroux, A. Raghavan, and H. Simon,

editors, Frontiers of Sienti� Computing. SIAM, Philadelphia, 2006.

[41℄ Jiun-Hung Ding, Po-Chun Chang, Wei-Chung Hsu, and Yeh-Ching Chung. Pqemu: A

parallel system emulator based on qemu. In Parallel and Distributed Systems (ICPADS),

2011 IEEE 17th International Conferene on, pages 276�283, De 2011.

[42℄ Eelo Dolstra and Andres Löh. Nixos: A purely funtional linux distribution. In Proeedings

of the 13th ACM SIGPLAN International Conferene on Funtional Programming, ICFP

'08, pages 367�378, New York, NY, USA, 2008. ACM.

[43℄ D.L. Donoho, A Maleki, IU. Rahman, M. Shahram, and V. Stodden. Reproduible researh

in omputational harmoni analysis. Computing in Siene Engineering, 11(1):8�18, Jan

2009.

[44℄ C. Drummond. Repliability is not reproduibility: Nor is it good siene. In Proeedings of

the Evaluation Methods for Mahine Learning Workshop at the 26th ICML, page 4972�4975,

2009.

[45℄ Joel T. Dudley and Atul J. Butte. In silio researh in the era of loud omputing. Nature

Biotehnology, 28(11):1181�1185, November 2010.

[46℄ Christoph Dwertmann, Ergin Mesut, Guillaume Jourjon, Max Ott, Thierry Rakotoarivelo,

and Ivan Seskar. Mobile Experiments Made Easy with OMF/Orbit. In Konstantina Pa-

pagiannaki, Luigi Rizzo, Nik Feamster, and Renata Teixeira, editors, SIGCOMM 2009,

Conferene on Appliations, Tehnologies, Arhitetures, and Protools for Computer Com-

muniations, New York, NY, USA, August 2009. ACM.

[47℄ Eri Eide, Leigh Stoller, and Jay Lepreau. An Experimentation Workbenh for Replayable

Networking Researh. In Proeedings of the 4th Symposium on Networked System Design

and Implementation (NSDI), pages 215�228, 2007.

[48℄ Eri Eide, Leigh Stoller, Tim Stak, Juliana Freire, and Jay Lepreau. Integrated sienti�

work�ow management for the Emulab network testbed. In Proeedings of the annual onfer-

ene on USENIX '06 Annual Tehnial Conferene, ATEC '06, pages 33�33, Berkeley, CA,

USA, 2006. USENIX Assoiation.

[49℄ Joseph Emeras, Bruno Bzeznik, Olivier Rihard, Yiannis Georgiou, and Cristian Ruiz. Re-

onstruting the software environment of an experiment with kameleon. In Proeedings of the

5th ACM COMPUTE Conferene: Intelligent and salable system tehnologies, COMPUTE

'12, pages 16:1�16:8, New York, NY, USA, 2012. ACM.

[50℄ Xavier Ethevers, Gwen Salaün, Fabienne Boyer, Thierry Coupaye, and Noël De Palma.

Reliable self-deployment of loud appliations. In Proeedings of the 29th Annual ACM

Symposium on Applied Computing, SAC '14, pages 1331�1338, New York, NY, USA, 2014.

ACM.

114

BIBLIOGRAPHY

[51℄ Geo�rey Fox, Gregor von Laszewski, Javier Diaz, Kate Keahey, Jose Fortes, Renato

Figueiredo, Shava Smallen, Warren Smith, and Andrew Grimshaw. FutureGrid - a re-

on�gurable testbed for Cloud, HPC, and Grid Computing. CRC Computational Siene.

Chapman & Hall, 04/2013 2013.

[52℄ ClaudioDaniel Freire, Alina Quereilha, Thierry Turletti, and Walid Dabbous. Automated

Deployment and Customization of Routing Overlays on Planetlab. In Thanasis Korakis,

Mihael Zink, and Maximilian Ott, editors, Testbeds and Researh Infrastruture. Devel-

opment of Networks and Communities, volume 44 of Leture Notes of the Institute for

Computer Sienes, Soial Informatis and Teleommuniations Engineering, pages 240�

255. Springer Berlin Heidelberg, 2012.

[53℄ Wojieh Galuba, Karl Aberer, Zoran Despotovi, and Wolfgang Kellerer. ProtoPeer: A

P2P Toolkit Bridging the Gap Between Simulation and Live Deployement. In Proeedings of

the 2Nd International Conferene on Simulation Tools and Tehniques, Simutools '09, pages

60:1�60:9, ICST, Brussels, Belgium, Belgium, 2009. ICST (Institute for Computer Sienes,

Soial-Informatis and Teleommuniations Engineering).

[54℄ Matan Gavish and David Donoho. A universal identi�er for omputational results. Proedia

Computer Siene, 4(0):637 � 647, 2011. Proeedings of the International Conferene on

Computational Siene, {ICCS} 2011.

[55℄ Grid5000. Grid5000:hardware, 2013.

[56℄ Romari Guillier and Pasale Viat-Blan Primet. A User-oriented Test Suite for Transport

Protools Comparison in Datagrid Context. In Proeedings of the 23rd International Con-

ferene on Information Networking, ICOIN'09, pages 265�269, Pisataway, NJ, USA, 2009.

IEEE Press.

[57℄ Philip J. Guo. Cde: run any linux appliation on-demand without installation. In Proeedings

of the 25th international onferene on Large Installation System Administration, LISA'11,

pages 2�2, Berkeley, CA, USA, 2011. USENIX Assoiation.

[58℄ A. Gupta, O. Sarood, L.V. Kale, and D. Milojii. Improving hp appliation performane

in loud through dynami load balaning. In Cluster, Cloud and Grid Computing (CCGrid),

2013 13th IEEE/ACM International Symposium on, pages 402�409, 2013.

[59℄ Jens Gustedt, Emmanuel Jeannot, and Martin Quinson. Experimental Methodologies for

Large-Sale Systems: a Survey. Parallel Proessing Letters, 19(3):399�418, 2009.

[60℄ W.J.R. Hoe�er. The transmission-line matrix method�theory and appliations. Mirowave

Theory and Tehniques, IEEE Transations on, 33(10):882�893, ot 1985.

[61℄ Torsten Hoe�er. Bridging performane analysis tools and analyti performane modeling

for hp. In Proeedings of the 2010 onferene on Parallel proessing, Euro-Par 2010, pages

483�491, Berlin, Heidelberg, 2011. Springer-Verlag.

[62℄ Zhengxiong Hou, Jing Tie, Xingshe Zhou, I. Foster, and M. Wilde. Adem: Automating

deployment and management of appliation software on the open siene grid. In Grid

Computing, 2009 10th IEEE/ACM International Conferene on, pages 130�137, Ot 2009.

[63℄ Bill Howe. Virtual applianes, loud omputing, and reproduible researh. Computing in

Siene and Engg., 14(4):36�41, July 2012.

[64℄ Sili Huang, Eri Aubanel, and VirendrakumarC. Bhavsar. Pagrid: A mesh partitioner for

omputational grids. Journal of Grid Computing, 4(1):71�88, 2006.

115

BIBLIOGRAPHY

[65℄ Dunan Hull, KatherineWolstenroft, Robert Stevens, Carole Goble, Matthew Pook, Peter

Li, and Thomas Oinn. Taverna: a tool for building and running work�ows of servies. Nulei

Aids Researh, 34(Web Server issue):729�732, July 2006.

[66℄ Sasha Hunold and Jesper Larsson Trä�. On the state and importane of reproduible

experimental researh in parallel omputing. CoRR, abs/1308.3648, 2013.

[67℄ Matthieu Imbert, Laurent Pouilloux, Jonathan Rouzaud-Cornabas, Adrien Lèbre, and

Takahiro Hirofuhi. Using the EXECO toolbox to perform automati and reproduible

loud experiments. In 1st International Workshop on UsiNg and building ClOud Testbeds

(UNICO, olloated with IEEE CloudCom 2013, Bristol, Royaume-Uni, September 2013.

[68℄ P. Jakubo, N. Adam, and E. Dankoval. Distributed omputer emulation: Using openl

framework. In Applied Mahine Intelligene and Informatis (SAMI), 2011 IEEE 9th Inter-

national Symposium on, pages 333�338, Jan 2011.

[69℄ D. Jayasinghe, G. Swint, S. Malkowski, J. Li, Qingyang Wang, Junhee Park, and C. Pu.

Expertus: A generator approah to automate performane testing in iaas louds. In Cloud

Computing (CLOUD), 2012 IEEE 5th International Conferene on, pages 115�122, June

2012.

[70℄ E. Jeannot. Experimental validation of grid algorithms: A omparison of methodologies. In

Parallel and Distributed Proessing, 2008. IPDPS 2008. IEEE International Symposium on,

pages 1�8, April 2008.

[71℄ Emmanuel Jeanvoine, Lu Sarzynie, and Luas Nussbaum. Kadeploy3: E�ient and Sal-

able Operating System Provisioning. USENIX ;login:, 38(1):38�44, February 2013.

[72℄ P.B. Johns. A symmetrial ondensed node for the tlm method. IEEE Trans. on Mirowave

Theory and Teh., 35(4):370�377, apr 1987.

[73℄ David Johnson. A theoretiian's guide to the experimental analysis of algorithms, 1996.

[74℄ Eri Jones, Travis Oliphant, Pearu Peterson, et al. SiPy: Open soure sienti� tools for

Python, 2001�.

[75℄ Guillaume Jourjon, Salil Kanhere, and Jun Yao. Impat of IREEL on CSE Letures. In

the 16th Annual Conferene on Innovation and Tehnology in Computer Siene Eduation

(ACM ITiCSE 2011), pages 1�6, Germany, June 2011.

[76℄ Guillaume Jourjon, Thierry Rakotoarivelo, and Max Ott. From Learning to Researhing

- Ease the shift through testbeds. In Internatinonal ICST Conferene on Testbeds and

Researh Infrastrutures for the Development of Networks and Communities (TridentCom),

pages 496�505, Berlin, May 2010. Springer-Verlag.

[77℄ Guillaume Jourjon, Thierry Rakotoarivelo, and Max Ott. Why simulate when you an

experiene? In ACM Speial Interest Group on Data Communiations (ACM SIGCOMM)

Eduation Workshop, page N/A, Toronto, August 2011.

[78℄ Guillaume Jourjon, Thierry Rakotoarivelo, and Max Ott. A Portal to Support Rigorous Ex-

perimental Methodology in Networking Researh. In Thanasis Korakis, Hongbin Li, Phuo

Tran-Gia, and Hong-Shik Park, editors, Testbeds and Researh Infrastruture. Development

of Networks and Communities, volume 90 of Leture Notes of the Institute for Computer

Sienes, Soial Informatis and Teleommuniations Engineering, pages 223�238. Springer

Berlin Heidelberg, 2012.

[79℄ Seonghoon Kang and Sukyoung Ryu. Formal spei�ation of a javasript module system. In

Proeedings of the ACM International Conferene on Objet Oriented Programming Systems

Languages and Appliations, OOPSLA '12, pages 621�638, New York, NY, USA, 2012. ACM.

116

BIBLIOGRAPHY

[80℄ A. Kangarlou, Dongyan Xu, U.C. Kozat, P. Padala, B. Lantz, and K. Igarashi. In-network

live snapshot servie for reovering virtual infrastrutures. Network, IEEE, 25(4):12�19, July

2011.

[81℄ Katarzyna Keahey and Tim Freeman. Contextualization: Providing one-lik virtual

lusters. In Proeedings of the 2008 Fourth IEEE International Conferene on eSiene,

ESCIENCE '08, pages 301�308, Washington, DC, USA, 2008. IEEE Computer Soiety.

[82℄ M. Kesavan, A Gavrilovska, and K. Shwan. Xerxes: Distributed load generator for loud-

sale experimentation. In Open Cirrus Summit (OCS), 2012 Seventh, pages 20�24, June

2012.

[83℄ Fadi KHALIL. Multi-sale modeling: from eletromagnetism to grid, 2009.

[84℄ Jonathan Klinginsmith, Malika Mahoui, and Yuqing Melanie Wu. Towards Reproduible

eSiene in the Cloud. In 3rd IEEE International Conferene on Cloud Computing Tehnol-

ogy and Siene (CLOUDCOM), pages 582�586, 2011.

[85℄ G.A. Koenig and L.V. Kale. Optimizing distributed appliation performane using dynami

grid topology-aware load balaning. In Parallel and Distributed Proessing Symposium, 2007.

IPDPS 2007. IEEE International, pages 1�10, 2007.

[86℄ Oren Laadan, Jason Nieh, and Niolas Viennot. Teahing operating systems using virtual

applianes and distributed version ontrol. In Proeedings of the 41st ACM tehnial sym-

posium on Computer siene eduation, SIGCSE '10, pages 480�484, New York, NY, USA,

2010. ACM.

[87℄ Mathieu Laage, Martin Ferrari, Mads Hansen, Thierry Turletti, and Walid Dabbous. NEPI:

Using Independent Simulators, Emulators, and Testbeds for Easy Experimentation. SIGOPS

Oper. Syst. Rev., 43(4):60�65, January 2010.

[88℄ Stephane Lanteri, Julien Ledu, Nouredine Melab, Guillaume Mornet, Raymond Namyst,

Benjamin Quetier, and Olivier Rihard. Grid'5000: a large sale and highly reon�gurable

grid experimental testbed.

[89℄ Lorenzo Leonini, Étienne Rivière, and Pasal Felber. SPLAY: distributed systems evaluation

made simple (or how to turn ideas into live systems in a breeze). In Proeedings of the 6th

USENIX symposium on Networked systems design and implementation, NSDI'09, pages 185�

198, Berkeley, CA, USA, 2009. USENIX Assoiation.

[90℄ Bertram Ludäsher, Ilkay Altintas, Shawn Bowers, Julian Cummings, Terene Crithlow,

Ewa Deelman, David D Roure, Juliana Freire, Carole Goble, Matthew Jones, et al. Sienti�

proess automation and work�ow management. 2009.

[91℄ Bertram Ludäsher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger, Matthew

Jones, Edward A. Lee, Jing Tao, and Yang Zhao. Sienti� work�ow management and the

Kepler system. Conurreny and Computation: Pratie and Experiene, 18(10):1039�1065,

2006.

[92℄ Douglas C. Montgomery. Design and Analysis of Experiments. John Wiley & Sons, 2006.

[93℄ Todd Mytkowiz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney. Produing

wrong data without doing anything obviously wrong! In Proeedings of the 14th interna-

tional onferene on Arhitetural support for programming languages and operating systems,

ASPLOS XIV, pages 265�276, New York, NY, USA, 2009. ACM.

[94℄ Farrukh Nadeem, Radu Prodan, Thomas Fahringer, and Alexandru Iosup. Benhmarking

grid appliations. In Grid Middleware and Servies, pages 19�37. Springer US, 2008.

117

BIBLIOGRAPHY

[95℄ S. Naiken, B. Livingston, A. Basu, S. Rodhetbhai, I. Wakeman, and D. Chalmers. The

State of Peer-to-peer Simulators and Simulations. SIGCOMM Comput. Commun. Rev.,

37(2):95�98, Marh 2007.

[96℄ Shaya Potter Jason Nieh. Improving virtual appliane management through virtual layered

�le systems. Tehnial report, Columbia Univeristy, Tehnial Report CUCS-008-09, 2009.

[97℄ Daniel Oliveira, FernandaAraujo Baião, and Marta Mattoso. Towards a taxonomy for loud

omputing from an e-siene perspetive. In Nik Antonopoulos and Lee Gillam, editors,

Cloud Computing, Computer Communiations and Networks, pages 47�62. Springer London,

2010.

[98℄ M. Ott, I. Seskar, R. Sirausa, and M. Singh. ORBIT testbed software arhiteture: sup-

porting experiments as a servie. In Testbeds and Researh Infrastrutures for the Develop-

ment of Networks and Communities, 2005. Tridentom 2005. First International Conferene

on, pages 136�145, 2005.

[99℄ Andrew Pavlo, Peter Couvares, Rebekah Gietzel, Anatoly Karp, Ian D. Alderman, Miron

Livny, and Charles Baon. The nmi build & test laboratory: ontinuous integration frame-

work for distributed omputing software. In Proeedings of the 20th onferene on Large In-

stallation System Administration, LISA '06, pages 21�21, Berkeley, CA, USA, 2006. USENIX

Assoiation.

[100℄ Roger D. Peng and Sandrah P. Ekel. Distributed reproduible researh using ahed om-

putations. Computing in Siene and Engg., 11(1):28�34, January 2009.

[101℄ Swann Perarnau, Mar Thiboukdjian, and Guillaume Huard. Controlling ahe utilization

of hp appliations. In International Conferene on Superomputing (ICS), 2011.

[102℄ Fernando Pérez and Brian E. Granger. IPython: a System for Interative Sienti� Com-

puting. Comput. Si. Eng., 9(3):21�29, May 2007.

[103℄ Larry Peterson, Tom Anderson, David Culler, and Timothy Rosoe. A blueprint for in-

troduing disruptive tehnology into the Internet. SIGCOMM Comput. Commun. Rev.,

33(1):59�64, January 2003.

[104℄ R. Prodan, T. Fahringer, and F. Franz. On using ZENTURIO for performane and parameter

studies on luster and Grid arhitetures. In Proeedings of Eleventh Euromiro Conferene

on Parallel, Distributed and Network-Based Proessing, pages 185�192, Feb 2003.

[105℄ A. Quereilha, M. Laage, C. Freire, T. Turletti, and W. Dabbous. NEPI: An integration

framework for Network Experimentation. In 19th International Conferene on Software,

Teleommuniations and Computer Networks (SoftCOM), pages 1�5, Sept 2011.

[106℄ Alina Quereilha, Daniel Camara, Thierry Turletti, and Walid Dabbous. Experimentation

with large sale ICN multimedia servies on the Internet made easy. IEEE COMSOC MMTC

E-Letter, 8(4):10�12, July 2013.

[107℄ Thierry Rakotoarivelo, Maximilian Ott, Guillaume Jourjon, and Ivan Seskar. OMF: a ontrol

and management framework for networking testbeds. ACM SIGOPS Operating Systems

Review, 43(4):54�59, Jan 2010.

[108℄ D. Rayhaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramahandran, H. Kremo, R. Sirausa,

H. Liu, and M. Singh. Overview of the ORBIT radio grid testbed for evaluation of next-

generation wireless network protools. In Wireless Communiations and Networking Con-

ferene, 2005 IEEE, volume 3, pages 1664�1669 Vol. 3, 2005.

118

BIBLIOGRAPHY

[109℄ Hélène Renard, Yves Robert, and Frédéri Vivien. Stati load-balaning tehniques for

iterative omputations on heterogeneous lusters. In Harald Kosh, László Böszörményi, and

Hermann Hellwagner, editors, Euro-Par 2003 Parallel Proessing, volume 2790 of Leture

Notes in Computer Siene, pages 148�159. Springer Berlin Heidelberg, 2003.

[110℄ Cristian Ruiz, Mihai Alenxandru, Olivier Rihard, Thierry Monteil, and Herve Aubert.

Platform alibration for load balaning of large simulations: TLM ase. In CCGrid 2014

� The 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,

Chiago, Illinois, USA, 2014.

[111℄ Cristian Ruiz, Salem Harrahe, Mihael Merier, and Olivier Rihard. Reonstrutable

software applianes with kameleon. SIGOPS Oper. Syst. Rev., 49(1):80�89, January 2015.

[112℄ Cristian Ruiz, Olivier Rihard, and Joseph Emeras. Reproduible software applianes for

experimentation. In Proeedings of the 9th International ICST Conferene on Testbeds and

Researh Infrastrutures for the Development of Networks and Communities (Tridentom),

Guangzhou, China, 2014.

[113℄ Cristian Ruiz, Olivier Rihard, Brie Videau, and Iegorov Oleg. Managing Large Sale

Experiments in Distributed Testbeds. In Proeedings of the 11th IASTED International

Conferene, pages 628�636. IASTED, ACTA Press, feb 2013.

[114℄ Constantine Sapuntzakis, David Brumley, Ramesh Chandra, Nikolai Zeldovih, Jim Chow,

Monia S. Lam, and Mendel Rosenblum. Virtual applianes for deploying and maintaining

software. In Proeedings of the 17th USENIX onferene on System administration, LISA

'03, pages 181�194, Berkeley, CA, USA, 2003. USENIX Assoiation.

[115℄ Lu Sarzynie, Tomasz Buhert, Emmanuel Jeanvoine, and Luas Nussbaum. Design and

evaluation of a virtual experimental environment for distributed systems. In PDP, pages

172�179, 2013.

[116℄ Carmine Sellitto. The impat of impermanent web-loated itations: A study of 123 shol-

arly onferene publiations. Journal of the Amerian Soiety for Information Siene and

Tehnology, 56(7):695�703, 2005.

[117℄ Xuanhua Shi, Chao Liu, Song Wu, Hai Jin, Xiaoxin Wu, and Li Deng. A loud servie ahe

system based on memory template of virtual mahine. In Chinagrid Conferene (ChinaGrid),

2011 Sixth Annual, pages 168�173, Aug 2011.

[118℄ Christos Siaterlis and Marelo Masera. A survey of software tools for the reation of net-

worked testbeds. International Journal On Advanes in Seurity, 3(1 and 2):1�12, 2010.

[119℄ C. Sun, Le He, Qingbo Wang, and R. Willenborg. Simplifying servie deployment with

virtual applianes. In Servies Computing, 2008. SCC '08. IEEE International Conferene

on, volume 2, pages 265�272, July 2008.

[120℄ Masahiro Tanaka and Osamu Tatebe. Pwrake: a parallel and distributed �exible work�ow

management tool for wide-area data intensive omputing. In Proeedings of the 19th ACM

International Symposium on High Performane Distributed Computing, HPDC '10, pages

356�359, New York, NY, USA, 2010. ACM.

[121℄ Walter F. Tihy. Should omputer sientists experiment more? Computer, 31(5):32�40, May

1998.

[122℄ Nikolay Topilski, Jeannie Albreht, and Amin Vahdat. Improving salability and fault tol-

erane in an appliation management infrastruture. In First USENIX Workshop on Large-

Sale Computing, LASCO'08, pages 2:1�2:12, Berkeley, CA, USA, 2008. USENIX Assoia-

tion.

119

BIBLIOGRAPHY

[123℄ Sander Van Der Burg and Eelo Dolstra. Disnix: A toolset for distributed deployment. Si.

Comput. Program., 79:52�69, January 2014.

[124℄ B. Videau and O. Rihard. Expo : un moteur de onduite d'experienes pour plates-forme

dedies. In Conferene Fransaise en Systemes d'Exploitation (CFSE), 2008.

[125℄ Brie Videau, Corinne Touati, and Olivier Rihard. Toward an experiment engine for

lightweight grids. In MetroGrid workshop : Metrology for Grid Networks. ACM publish-

ing, Otober 2007.

[126℄ Yanyan Wang. Automating experimentation with distributed systems using generative

tehniques. PhD thesis, University of Colorado at Boulder, Boulder, CO, USA, 2006.

AAI3219040.

[127℄ YanyanWang, Antonio Carzaniga, and Alexander L. Wolf. Four enhanements to automated

distributed system experimentation methods. In Proeedings of the 30th international on-

ferene on Software engineering, ICSE '08, pages 491�500, New York, NY, USA, 2008. ACM.

[128℄ Yanyan Wang, Matthew J. Rutherford, Antonio Carzaniga, and Alexander L. Wolf. Au-

tomating Experimentation on Distributed Testbeds. In Proeedings of the 20th IEEE/ACM

International Conferene On Automated Software Engineering (ASE), ASE '05, pages 164�

173, New York, NY, USA, 2005. ACM.

[129℄ R. Clint Whaley and Antoine Petitet. Minimizing development and maintenane osts in

supporting persistently optimized BLAS. Software: Pratie and Experiene, 35(2):101�121,

February 2005. http://www.s.utsa.edu/~whaley/papers/sperw04.ps.

[130℄ Brian White, Jay Lepreau, Leigh Stoller, Robert Rii, Shashi Guruprasad, Ma Newbold,

Mike Hibler, Chad Barb, and Abhijeet Joglekar. An Integrated Experimental Environment

for Distributed Systems and Networks. In Proeedings of the 5th Symposium on Operating

Systems Design and Implementation (OSDI), pages 255�270, Boston, MA, Deember 2002.

USENIX Assoiation.

[131℄ JolyonWhite, Guillaume Jourjon, Thierry Rakotoarivelo, and Max Ott. Measurement Arhi-

tetures for Network Experiments with Disonneted Mobile Nodes. In Anastasius Gavras,

Nguyen Huu Thanh, and Je� Chase, editors, TridentCom 2010, 6th International ICST

Conferene on Testbeds and Researh Infrastrutures for the Development of Networks &

Communities, Leture Notes of the Institute for Computer Sienes, Soial-Informatis and

Teleommuniations Engineering, pages 315�330, Heidelberg, Germany, May 2010. ICST,

Springer-Verlag Berlin.

[132℄ Jia Yu and Rajkumar Buyya. A Taxonomy of Sienti� Work�ow Systems for Grid Com-

puting. SIGMOD Reord, 34:44�49, September 2005.

[133℄ Tianle Zhang, Zhihui Du, Yinong Chen, Xiang Ji, and Xiaoying Wang. Typial virtual

applianes: An optimized mehanism for virtual applianes provisioning and management.

Journal of Systems and Software, 84(3):377 � 387, 2011.

120

Part V

Appendix

121

Appendix A

Other experiment desriptions

implemented

1 require 'g5k_api'

2

3 set :user, "ruizsanabria"

4 set :gateway, "grenoble.g5k"

5 set :resoures, "MyExperiment.resoures"

6

7 reserv = onnetion(:type => "Grid5000")

8

9 reserv.resoures = {:nany =>["{luster='griffon'}/nodes=10"℄,

10 :luxembourg => ["{luster='grandu'}/nodes=10"℄,

11 :reims =>["nodes=10"℄}

12

13 reserv.name ="Tlm Load Balaning"

14

15 WORK_DIRECTORY="~/Exp_tlm_load_balaning"

16 TLM_TARBALL = "tlm_load_balaning.tar"

17 RUNS = 5

18 SIMULATION_PARAMETERS = "1 10000 152 172 86 mathed"

19 RESULTS_FILE = "tlm_vs_tlmlb"

20 ############# Experiment workflow ##

21 task :run_reservation do

22 reserv.run!

23 end

24

25 task :extrating_and_ompiling, :target => resoures, :one => true, :eah => :site do

26 msg("Compiling in site ")

27 unless hek("ls #{WORK_DIRECTORY}/TLMME_lb")

28 run("mkdir -p #{WORK_DIRECTORY}")

29 put("/tmp/#{TLM_TARBALL}","#{WORK_DIRECTORY}/#{TLM_TARBALL}")

30 run("d #{WORK_DIRECTORY}; tar -xf #{TLM_TARBALL}")

31 run("d #{WORK_DIRECTORY}/TLMME_lb/tlm/; make ITERATIONS=200")

32 run("d #{WORK_DIRECTORY}/TLMME_lb/tlm/; make ITERATIONS=200 MAIN=main_lb_test EXESUFFIX=load_test")

33 end

34 put("/tmp/nodes.deployed","#{WORK_DIRECTORY}/TLMME_lb/tlm/")

35 end

36

37 task :tlm_lb, :target => resoures.first, :syn => true do

38 RUNS.times do

39 run("d #{WORK_DIRECTORY}/TLMME_lb/tlm/; ./grid_run_lb #{SIMULATION_PARAMETERS}")

40 end

41 end

42

43 task :tlm, :target => resoures.first, :syn => true do

44 RUNS.times do

45 run("d #{WORK_DIRECTORY}/TLMME_lb/tlm/; ./grid_run #{SIMULATION_PARAMETERS}")

46 end

47 end

Listing 14: Desription �le of an experiment that ompares the gains obtained when applying load balaing

to a large simulation based on TLM. Some tasks were omitted due to spae onstraints.

123

APPENDIX A. OTHER EXPERIMENT DESCRIPTIONS IMPLEMENTED

1 require 'g5k_api'

2 set :user, "root"

3 set :gw_user, "ruizsanabria" ## replae with your user

4 set :resoures, "MyExperiment.resoures"

5 reserv = onnetion(:type => "Grid5000")

6 reserv.resoures = { :lyon => ["nodes=2"℄ }

7 reserv.environment = "http://publi.nany.grid5000.fr/~dlehozky/newimage.ds"

8 reserv.name = "mpi trae olletion"

9

10 ##### Tasks Definition #####################################

11 task :run_reservation do

12 reserv.run!

13 end

14

15 ### Generating password less ommuniation

16 task :onfig_ssh do

17 msg("Generating SSH onfig")

18 File.open("/tmp/onfig",'w+') do |f|

19 f.puts "Host *

20 StritHostKeyCheking no

21 UserKnownHostsFile=/dev/null "

22 end

23 end

24

25 task :generating_ssh_keys do

26 run("mkdir -p /tmp/temp_keys/")

27 run("ssh-keygen -P '' -f /tmp/temp_keys/key") unless hek("ls /tmp/temp_keys/key")

28 end

29

30 task :trans_keys, :target => resoures do

31 put("/tmp/onfig","/root/.ssh/")

32 put("/tmp/temp_keys/key","/root/.ssh/id_rsa")

33 put("/tmp/temp_keys/key.pub","/root/.ssh/id_rsa.pub")

34 end

35

36 task :opy_identity do

37 resoures.eah{ |node|

38 run("ssh-opy-id -i /tmp/temp_keys/key.pub root�#{node.name}") #,:target => gateway)

39 }

40 end

41

42 ### Getting the benhmark

43 task :get_benhmark, :target => resoures do

44 unless hek("ls /tmp/NPB3.3.tar") then

45 msg("Getting NAS benhmark")

46 run("d /tmp/; wget -q http://publi.grenoble.grid5000.fr/~ruizsanabria/NPB3.3.tar")

47 run("d /tmp/; tar -xvf NPB3.3.tar")

48 end

49 end

50

51 task :ompile_benhmark_lu, :target => resoures do

52 ompile = "export PATH=/usr/loal/tau-install/x86_64/bin/:$PATH;"

53 ompile += "export TAU_MAKEFILE=/usr/loal/tau-install/x86_64/lib/Makefile.tau-papi-mpi-pdt;"

54 ompile += "make lu NPROCS=8 CLASS=A MPIF77=tau_f90.sh -C /tmp/NPB3.3/NPB3.3-MPI/"

55 run(ompile)

56 end

57

58 ## Generating mahinefile

59 task :transfering_mahinefile, :target => resoures.first do

60 put(resoures.nodefile,"/tmp/mahinefile")

61 end

62

63 task :run_mpi, :target => resoures.first do

64 mpi_params = "-x TAU_TRACE=1 -x TRACEDIR=/tmp/mpi_traes -np 8 -mahinefile /tmp/mahinefile"

65 run("/usr/loal/openmpi-1.6.4-install/bin/mpirun #{mpi_params} /tmp/NPB3.3/NPB3.3-MPI/bin/lu.A.8")

66 end

67

68 ## Gathering traes and merging

69 task :gathering_traes, :target => resoures.first do

70 resoures.eah{ |node|

71 msg("Merging results of node #{node.name}")

72 run("sp -r #{node.name}:/tmp/mpi_traes/* /tmp/mpi_traes")

73 }

74 md_merge = "export PATH=/usr/loal/tau-install/x86_64/bin/:$PATH;"

75 md_merge += "d /tmp/mpi_traes/; tau_treemerge.pl"

76 run(md_merge)

77 run("d /tmp/mpi_traes/; /usr/loal/akypuera-install/bin/tau2paje tau.tr tau.edf 1>lu.A.8.paje 2>tau2paje.error")

78 end

Listing 15: Desription �le of an experiment that traes a NAS benhmark with TAU.

124

Appendix B

Experiment management tools

omparison

The following desriptions were used for omparing Expo against XpFlow and Exeo. The onlu-

sions of this omparison were shown in Chapter 3.

1 require 'plain_api'

2

3 set :resoures, "MyExperiment.resoures"

4 set :user, "root"

5

6 reserv = onnetion(:type => "Plain",

7 :nodes_file => "vboxnodes")

8

9 PIPE_LENGTH = 800

10 RUNS = 5

11

12 task :install_pakages, :target => resoures do

13 pakages = "make g++ openssh-server openmpi-bin openmpi-ommon openmpi-dev"

14 run(" apt-get -y --fore-yes install #{pakages} 2>&1")

15 run("ifonfig eth1 down")

16 end

17

18 task :ompiling_tlm, :target => resoures do

19 put("/home/ristian/Dev/C++/TLM_2013/tlm_lean_version.tar","/root/")

20 run("d /root/ && tar -xf tlm_lean_version.tar")

21 run("d /root/TLMME/tlm/ && make")

22 end

23

24 task :onf_mpi, :target => resoures.first do

25 put(resoures.nodefile, "/root/TLMME/tlm/bin/")

26 put("run_luster", "/root/TLMME/tlm/")

27 run("d /root/TLMME/tlm/ && hmod +x run_luster")

28 end

29

30 task :run_tlm, :target => resoures.first do

31

32 [2,4,6℄.eah do |num_pros|

33 RUNS.times{

34 run("d /root/TLMME/tlm/;./run_luster #{num_pr3os} 100 #{PIPE_LENGTH/num_pros} 86 43 mathed")

35 }

36 end

37 end

Listing 16: Experiment that measures the best performane of TLM ode using Expo

125

APPENDIX B. EXPERIMENT MANAGEMENT TOOLS COMPARISON

1 from exeo import *

2 from exeo_engine import *

3

4 lass tlm_performane(Engine):

5

6 def run(self):

7 hosts= [Host('192.168.56.101', user = 'root'),Host('192.168.56.102', user = 'root')℄

8 logger.info("Starting Experiment")

9 logger.info("Installing pakages")

10 Remote(" apt-get -y --fore-yes install \

11 make g++ openssh-server openmpi-bin openmpi-ommon openmpi-dev 2>&1",

12 hosts).run()

13 logger.info("transfering ode")

14 Put(hosts,

15 ["/home/ristian/Dev/C++/TLM_2013/tlm_lean_version.tar"℄,

16 "/root/").run()

17 logger.info("Compiling")

18 Remote("tar -xf tlm_lean_version.tar",hosts).run()

19 Remote("d /root/TLMME/tlm/ && make ",hosts).run()

20

21 logger.info("MPI onfiguration")

22 f = open("mahines", "w")

23 for node in hosts:

24 f.write("%s \n" % node.address)

25 f.lose()

26

27 Put(hosts[0℄,["mahines"℄,"/root/TLMME/tlm/bin/").run()

28 Put(hosts[0℄, ["run_luster"℄, "/root/TLMME/tlm/").run()

29 SshProess("d /root/TLMME/tlm/ ; hmod +x run_luster",hosts[0℄).run()

30

31 logger.info("starting tlm exeution")

32 PIPE_LENGTH = 800

33 RUNS = 5

34 result_file = "exeution_time_tlm.txt"

35 f = open(result_file, "w")

36 for num_pros in [2,4,6℄:

37 for run in range(RUNS):

38 tlm_parallel = SshProess(

39 "d /root/TLMME/tlm/;./run_luster"

40 " %d 100 %d 86 43 mathed" %(num_pros,PIPE_LENGTH/num_pros),

41 hosts[0℄)

42

43 tlm_parallel.run()

44 tlm_parallel.wait()

45 exeution_time = tlm_parallel.end_date - tlm_parallel.start_date

46 logger.info("Exeution time is : %d" % exeution_time)

47 #f.write("\n")

48

49 if __name__ == "__main__":

50 engine = tlm_performane()

51 engine.start()

Listing 17: Experiment that measures the best performane of TLM ode using Exeo

126

APPENDIX B. EXPERIMENT MANAGEMENT TOOLS COMPARISON

1 ativity :install_pakage do |nodes, pakages|

2 log("Installing pakages")

3 r = exeute_many(nodes, "apt-get -y --fore-yes install #{pakages} 2>&1")

4 r = exeute_many(nodes,"ifonfig eth1 down")

5 end

6

7 ativity :ompile_tlm do |nodes|

8 r = exeute_many(nodes, "d /root/ && tar -xf tlm_lean_version.tar")

9 r = exeute_many(nodes, "d /root/TLMME/tlm/ && make")

10 end

11

12 ativity :tlm_exeution do |nodes,runs,pipe_length|

13 [2,4,6℄.eah do |num_pros|

14 runs.times{

15 r = exeute_one(nodes.first, "d /root/TLMME/tlm/;./run_luster #{num_pros} 100 #{pipe_length/num_pros} 86 43 mathed")

16 log(r)

17 }

18 end

19 end

20

21 ativity :onf_mpi do |nodes|

22

23 log("MPI onfiguration")

24 File.open("mahines", 'w') do |f|

25 nodes.eah{ |node|

26 f.puts(node.host)

27 }

28 end

29

30 end

31

32 proess :main do

33 log "Installing pakages"

34 PIPE_LENGTH = 800

35 RUNS = 5

36

37 log "loading nodes"

38 ip_adresses = YAML::load(File.read("vboxnodes"))

39 hosts = [℄

40 ip_adresses.eah{ |ip|

41 hosts.push(simple_node("root�#{ip}"))

42 }

43

44 run(:install_pakage,hosts,"make g++ openssh-server openmpi-bin openmpi-ommon openmpi-dev")

45 f = file(loalhost, "/home/ristian/Dev/C++/TLM_2013/tlm_lean_version.tar")

46 distribute f, hosts, "/root/tlm_lean_version.tar"

47

48 ompile_tlm(hosts)

49 log "Finished of setting up TLM"

50 onf_mpi(hosts)

51 opy "mahines", hosts.first, "/root/TLMME/tlm/bin/mahines"

52 opy "run_luster", hosts.first, "/root/TLMME/tlm/run_luster"

53 r = exeute_one(hosts.first, "d /root/TLMME/tlm/; hmod +x run_luster")

54 tlm_exeution(hosts, RUNS, PIPE_LENGTH)

55

56 end

Listing 18: Experiment that measures the best performane of TLM ode using XPFlow

127

	Acknowledgments
	Abstract
	Resume
	I Introduction
	Introduction
	Experimental cycle
	Design
	Challenges

	Instantiation
	Challenges

	Execution
	Challenges

	Analysis
	Challenges

	Contributions
	Survey of experimental management tools
	Experiment management tool
	Experimental software environment

	Thesis organization

	Overview of experiment management in computer science
	Introduction
	Context and terminology
	Definitions
	Motivations for experimentation tools
	Ease of experimenting
	Replicability (automation)
	Reproducibility
	Controlling and exploring the parameter space
	Scalability

	Testbeds

	List of features offered by experiment management tools
	Description Language
	Type of Experiments
	Interoperability
	Reproducibility
	Fault Tolerance
	Debugging
	Monitoring
	Data Management
	Architecture

	Existing experimentation tools
	Naive method
	Weevil
	Workbench for Emulab
	Plush/Gush
	Expo
	OMF
	NEPI
	XPFlow
	Execo

	Discussion
	Tools not covered in the study
	Non general-purpose experiment management tools
	Scientific workflow systems
	Simulators and abstract frameworks

	Complementary tools
	Software provisioners and appliance builders
	Tools for capturing experimental context
	Tools for making the analysis reproducible
	Workload generators
	Distributed emulators

	Conclusions

	II Expo
	Expo: a tool to manage large scale experiments
	Introduction
	Expo
	Expo ResourceSet
	Expo Tasks
	Expo interactive console
	Expo experiment validation
	Expo experiment mapping
	Expo evolution

	Use cases
	Evaluation of experiment control systems
	Gush comparison
	XpFlow and Execo comparison
	Description language
	Experiment validation
	Experiment checkpoint

	Related works
	Deployment of complex distributed applications
	Regression tests for distributed applications

	Conclusions and future works

	How HPC applications can take advantage of experiment management tools
	Introduction
	Related work
	Load balancing of distributed applications
	Dynamic techniques
	Static techniques

	Experiment management tools
	Transmission-Line Matrix

	Load Balancing approach
	Expo calibration module

	Results
	Experimental platform
	Using different configurations
	Changing the number of nodes
	Large structure
	Distributed experiment
	Local experiment

	Conclusions and Future Works

	III Kameleon
	Setting up complex software stacks
	Introduction
	Motivations
	Reconstruct-ability
	Contributions of this chapter

	Related work
	Software appliance builders comparison
	Software Appliance Build Cycle
	Criteria for Improving User Productivity
	Software Appliance Builders
	Docker
	Packer
	BoxGrinder
	Veewee
	OZ
	Kameleon

	Discussion

	Kameleon: the mindful appliance builder
	Syntax
	Kameleon Contexts
	Checkpoint mechanism
	Extend mechanism
	Persistent cache mechanism
	Comparison with the previous Kameleon version

	Use cases
	Software Appliance Complexity
	Container Isolation
	Lightweight.
	Service.
	Kernel modules.
	Hardware dependent.

	Results and Discussion
	Hardware dependent software appliance evaluation
	Experiment packaging example

	Future work
	Conclusions

	Reproducible appliances for experimentation
	Introduction
	Related works
	Tools for capturing the environment of experimentation
	Methods for setting up the environment of experimentation
	Manual
	Script Automation
	Configuration management tools
	Software appliances

	Reconstructable software appliances
	Requirements for reconstruct-ability
	Design

	Experimental results and validation
	Kameleon old version
	Building old environments

	Discussion
	Conclusions and Future Works

	IV Conclusions
	Conclusions
	Experiment cycle
	Future works
	Expo perspectives
	Kameleon perspectives

	V Appendix
	Other experiment descriptions implemented
	Experiment management tools comparison

