
HAL Id: tel-01565857
https://theses.hal.science/tel-01565857

Submitted on 20 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transfert de connaissance pour la compréhension des
images

Praveen Kulkarni

To cite this version:
Praveen Kulkarni. Transfert de connaissance pour la compréhension des images. Traitement des
images [eess.IV]. Normandie Université, 2017. Français. �NNT : 2017NORMC207�. �tel-01565857�

https://theses.hal.science/tel-01565857
https://hal.archives-ouvertes.fr

THÈSE

THESE
Pour obtenir le diplôme de doctorat

Spécialité INFORMATIQUE

Préparée au sein de l’Université de Caen Normandie

 Knowledge Transfer for Image Understanding

Présentée et soutenue par

Praveen Kulkarni

Thèse soutenue publiquement le 23/01/2017
devant le jury composé de

M. STEPHANE CANU Professeur des Universités, INST NAT SC
APPLIQ ROUEN

Examinateur

M. MATTHIEU CORD Professeur des Universités, UNIVERSITÉ
PARIS 6 PIERRE ET MARIE CURIE

Rapporteur

M. PATRICK PÉ R É Z Directeur de Recherche INRIA, HDR,
UNIVERSITÉ RENNES 1

Directeur de thèse

M. FRÉ D É RIC JURIE Professeur des Universités, UNIVERSITÉ
CAEN NORMANDIE

Directeur de thèse

M. JAKOB VERBEEK Chargé de Recherche, INRIA GRENOBLE Rapporteur

M. JOAQUIN ZEPEDA Ingénieur de Recherche, RF
TECHNICOLOR CESSON-SEVIGNE

Examinateur

Thèse dirigée par M. FRÉD ÉRIC JURIE, GREYC-UMR6072 et M. PATRICK PÉR ÉZ, INRIA

 Logo Ecole Doctorale Logo laboratoire

Contents

0.1 Acknowledgement . 2
0.2 Résumé . 3
0.3 Summary in English . 3

1 General Introduction 4
1.1 Context . 5
1.2 Objectives of this thesis . 9
1.3 Contributions . 10
1.4 Flow of thesis . 11

2 Review of the related work 12
2.1 Basic setup of supervised image classification 13
2.2 Traditional image representation . 14
2.3 Convolutional Neural Networks (CNNs) 16
2.4 Discovering discriminative regions . 17
2.5 Linear classifiers . 19
2.6 Dataset used in this thesis . 20

3 Transfer Learning via Attributes 25
3.1 Introduction . 26
3.2 Related Works . 28
3.3 Approach . 29
3.4 Experimental results . 30
3.5 Discussion and conclusion . 35

4 Hybrid multi-layer CNN/Aggregator feature 36
4.1 Introduction . 37
4.2 Background . 38
4.3 A hybrid CNN/Aggregator feature . 40
4.4 Results . 41
4.5 Conclusion . 44

5 Max-Margin, Single-Layer Adaptation 45
5.1 Introduction . 46
5.2 Proposed approach . 46
5.3 Results . 47

6 Learning the Structure of Deep Architectures 50
6.1 Introduction . 51
6.2 Background . 51
6.3 Learning the structure of deep architectures 52

i

CONTENTS

6.4 Results . 56
6.5 Conclusion . 59

7 SPLeaP: Soft Pooling of Learned Parts 60
7.1 Introduction . 61
7.2 Related works . 62
7.3 Proposed Approach . 64
7.4 Optimization specific details . 65
7.5 Results . 66
7.6 Qualitative Analysis . 71
7.7 Conclusions . 72

8 SPLeaP with Per-Part Latent Scale Selection 73
8.1 Introduction . 74
8.2 Related Work . 75
8.3 Proposed Approach . 76
8.4 Optimization specific details . 77
8.5 Results . 78

9 Summary and Conclusion 82
9.1 Summary . 83
9.2 Conclusion . 85

A Annexes II
A.1 Appendix for Chapter 8 . II
A.2 Publications and Patents . III

ii

List of figures

1.1 Images containing cat class with diverse set of variations. 7
1.2 Intra-class appearance difference between two images belonging to same

car class (left) and person class (right). 7
1.3 Two examples to illustrate the inter-class similarity between images con-

taining tiger and cat class. 7

2.1 Block diagram to illustrate the pipeline followed during the training
(top) and testing phase (bottom) of a supervised binary image classifi-
cation task. 14

2.2 On the right is SIFT by [75]. SIFT is computed either at a specific point
(left top) or at dense locations (left bottom). 15

2.3 Block diagram of the classic image encoder using BoW (top). Images
are divided into a multi-scale rectangular grid of size 1x1, 3x1, and 2x2
(bottom left). Histograms computed per spatial cell are stacked to get
the final image representation (bottom right). 16

2.4 Discriminative regions relevant to different classes. The manually cropped
regions from an entire image are used to illustrate the discriminative re-
gions. 18

2.5 Hyperplane separating the two classes with maximum margin. 20
2.6 Example images in Pascal-VOC-2007 test dataset: each row from top to

bottom belongs to classes: bus, cow, sofa, potted plant, car. Note that
images are stretched for convenience to display. 21

2.7 Example images in MIT-Indoor-67 test dataset: each row from top
to bottom belongs to classes: airport inside, restaurant, hospital room,
grocery store, inside bus, corridor. 22

2.8 Example images in Willow test dataset: each row from top to bottom be-
longs to classes: Interacting with computer, Riding Horse, Riding Bike,
Playing Instrument, Photographing, Running, Walking. 24

3.1 Some top ranked images retrieved by Google image search for query
‘dog’. 27

3.2 Top retrievals for some of the non-pertinent images returned by Google
image search: for each row, the images from Google (on the left) were
used to train exemplar SVMs [76] which were in turn used to retrieve
images from the Pascal VOC 2007 dataset with some top false positives
shown on right. Note how rare appearances, abstract/artistic repre-
sentations and misleading background leads to poor retrieval wrt the
queries. 27

3.3 Block diagram of the proposed system. Our contributions are high-
lighted (see Sec. 7.3). 27

iii

LIST OF FIGURES

3.4 The performances (precision at 10 and 50 and average precision) for
all the animal classes, along with mean performances, for the proposed
method vs. the baseline of on-the-fly classification [11]. See Sec. 3.4.3
for discussion. 31

3.5 Top false positive for ‘dog’ class. We see that the results obtained are
dominated by animals with closely related attributes like ‘furry’, ’long
legs’. See Sec. 3.4.3 for more discussion. 31

3.6 Example of images from Google image search which are (left three) re-
tained by our system as pertinent to the query (animals i.e. cow, horse,
cat, dog, sheep, from top to bottom) and (right three) discarded by
our system as being uninformative. We see that the images which are
more natural and pertinent for the class queries and retained while those
which have objects on rare or unnatural poses, or objects on uninfor-
mative/misleading background or artistic or abstract rendering of the
objects are discarded by the system. 34

4.1 Architecture of the CNN pipeline of [59] trained on ImageNet 2012 and
used in this chapter. Each layer, represented by a box, is labeled with
the size Rl × Cl × Kl of its output in (4.3). The Kl kernels at layer l
have dimension nl × nl × Kl−1. The layer index l (respectively, kernel
spatial dimension nl) is indicated below (above) the box for each layer.
The input image is assumed normalized to size 224 × 224 × 3, and 4×
downsampling is applied during the first layer. Dark-lined boxes: convo-
lutional layers; dash-lined boxes: normalization layers; light-lined boxes:
max-pooling layers; grayed-in boxes: fully-connected layers. 39

4.2 The mAP is plotted for hybrid features built using a single layer, the last
L layers and the first L layers (excluding fully connected layers 11-13),
for codebook size 500. Baseline results for BoW and FV are displayed
using ◦ and × markers. 42

4.3 The mAP vs the codebook size in log scale when using last L=5 layers. 42

4.4 Using last L layers from Fig. 4.1. Here we include the fully connected
layers 11-13. 43

5.1 Effect of varying the number of rows r in M on performance. Here we
also compare the results of Joint Optim vs Classifs. 48

5.2 Illustration of cross-validation strategy: the optimal parameters are cho-
sen based on the best performance on the validation set, which occurs
at approximately 20 epochs. 48

5.3 Performance as a function of batch size for 20 epochs of training. . . . 49

6.1 Proposed deep processing pipeline. Given an image representation,
e.g., the output of the convolutional part of a pre-trained state-of-art
CNN, J fully connected layers, each involving a diagonal matrix that
controls its effective dimensions, are jointly learned with final linear SVM
classifiers. Here, [z]+ = [max(0, zi)]i is the commonly used Rectified
Linear Unit (ReLU) non-linearity. 53

6.2 Effect of the penalty weights δ and µ for a single-layer architecture, using
validation cost as a stopping criterion. 57

iv

LIST OF FIGURES

6.3 Effect of the penalty weight δ on (left) the number of zero diagonal
entries of Dj, j = 1, . . . , 4, and (right) on the classification performance
as measured by mAP. The zero diagonal entries are presented as stacked
plots so that the vertical displacement of any shaded regions corresponds
to the number of zero diagonal entries of Dj for the corresponding layer. 57

6.4 Number of zero entries in diagonal of Dj versus iteration number (ex-
pressed as number of epochs) for an architecture of J = 2 layers. 58

7.1 Plot of test mAP versus number of training epochs. 69
7.2 Plot of test mAP versus the number of parts P 69
7.3 Heatmaps for images Pascal-VOC-2007 of classes (clockwise from top-

left) “potted plant”, “bird”, “bottle” and “TV monitor”. 72
7.4 Discriminative parts for the four Pascal-VOC-2007 classes (clockwise

from top-left) “horse”, “motorbike”, “dining table”, and “potted plant”. 72

8.1 Block diagram of image classification system. 78
8.2 Plot of test mAP versus number of rescaled samples per image S. We

evaluate the effect of the spatial pooling coefficients β′ (left) and β′′

(right) against standard max pooling. 80

v

List of Tables

3.1 The attributes used for the five animal queries. 32

4.1 Table illustrating training time for 500 codebook size and when using
the last 5 layers. Training times are for the unsupervised learning part
with and without supervised learning of linear SVM classifiers for all
Pascal VOC 2007 classes. This is compared to the training time taken
by the method [79]. 43

4.2 Comparison of our results (using last 5 layers) with the state-of-the-art
(N represents the codebook size in BoW). 44

5.1 Comparison of our proposed method with two existing CNN adaptation
schemes. 48

5.2 Test set mAP when using fixed learning rate and adaptive learning rate. 48

6.1 Using validation cost to choose the number of training epochs T , and
validation mAP to choose the best δ first, and then the best µ. 57

6.2 Comparison of our proposed method with various existing CNN meth-
ods. The training time indicated includes only the training time related
to Pascal VOC, and not training time incurred when learning on Ima-
geNet. The top four methods rely on some form of data augmentation
and have training sets that effectively many times bigger than the Pas-
calVOC training set. The bottom five methods (including ours) only use
the training images specified in PascalVOC. 59

7.1 Comparison against unsupervised aggregation baselines 68
7.2 Importance of per-part softness coefficients 68
7.3 Comparison of results on Pascal-VOC-2007 dataset (P = 40 parts per

class, K = 1) using CNN features extracted from (left) Krizhevsky-like
[59] and (right) very deep architectures [106] 69

7.4 Comparison of results on the Willow dataset (P = 7 parts per-class,
K = 1) (left) and the MIT-Indoor-67 dataset (P = 500 parts, common
to all classes, K = 2) (right) . 71

8.1 Comparison of our approach with two different models. 80
8.2 Comparison of results on Pascal-VOC-2007 dataset (P = 500 part clas-

sifiers, K = 1) using CNN features extracted from (left) Krizhevsky-like
[59] and (right) very deep architectures [106] 81

8.3 Comparison of results on the Willow dataset (P = 50 parts, K = 1)
(left) and the MIT-Indoor-67 dataset (P = 500 parts, common to all
classes, K = 1) (right) . 81

1

LIST OF TABLES

0.1 Acknowledgement

Firstly, I express my sincere gratitude to the team for their motivation, guidance and
the immense knowledge imparted during these three years. It is shared between the
Université de Caen Basse-Normandie (UNICAEN) and Technicolor Rennes. A big
thank you to Prof. Frédéric Jurie, my thesis director, who has been always there
to support and guide during the course of three years. I would like to Thank Prof.
Frédéric Jurie for his precious timely advice for moving the research in the direction of
Convolutional Neural Network. I strongly want to thank Dr. Joaquin Zepeda because
of him I climbed this uphill task of PhD effortlessly. I really thank again Dr. Joaquin
Zepeda for all his effort to improve my writing skills. I would like to thank Dr. Patrick
Pérez and Louis Chevallier for their timely feedback and suggestions at various points
of time. I was at ease to schedule a meeting with Prof. Frédéric Jurie, Dr. Joaquin
Zepeda, Dr. Patrick Pérez and Louis Chevallier to get a thoughtful inputs/ideas to
propel the PhD work in the right direction. Great thanks to Louis Chevallier who
proposed the thesis problem which eventually led to my recruitment in Technicolor
and allowed me to be part of this wonderful team of reserchers. I would like to thank
Technicolor management and ANRT (Association Nationale Recherche Technologie) for
giving me this environment which every researcher dreams of, and extending financial
support to conduct this thesis, attend conferences, training, tutorials and summer
school. I want to thank my Rapporteurs Prof. Matthieu Cord, Prof. Jakob Verbeek
and member of the jury Stéphane Canu who were willing to turn their attention to
my works. A big thanks to Prof. Gaurav Sharma, currently an Asst. Prof. in IIT
Kanpur, for his valuable suggestion and motivation during the period of internship at
Technicolor.

I mainly like to thank my colleague and my friend Saurabh Puri for his valuable
suggestions on improving my writing skills, for being tennis mate and for all our
technical/non-technical discussions. I extend my big thanks to my friends Saurabh
Puri, Combodge Bist, Himalaya Jain and Mohini Ahuja for all those treats, parties,
functions and making this place an homely experience. I would like to also thank all
my friends and colleagues in Technicolor. I am finally ending with a big thank you to
my parents, my brother, my wife (Prachi Kulkarni) and our newborn little daughter
(Pranika Kulkarni). You all have always supported me and it’s thanks to you that I
arrived so far.

2

LIST OF TABLES

0.2 Résumé

Le Transfert de Connaissance (Knowledge Transfer or Transfer Learning) est une solu-
tion prometteuse au difficile problème de l’apprentissage des réseaux profonds au moyen
de bases d’apprentissage de petite taille, en présence d’une grande variabilité visuelle
intra-classe. Dans ce travail, nous reprenons ce paradigme, dans le but d’étendre les
capacités des CNN les plus récents au problème de la classification.

Dans un premier temps, nous proposons plusieurs techniques permettant, lors de
l’apprentissage et de la prédiction, une réduction des ressources nécessaires - une limi-
tation connue des CNN.

(i) En utilisant une méthode hybride combinant des techniques classiques comme
des Bag-Of-Words (BoW) avec des CNN.

(ii) En introduisant une nouvelle méthode d’agrégation intégrée à une structure de
type CNN ainsi qu’un modèle non-linéaire s’appuyant sur des parties de l’image. La
contribution clé est, finalement, une technique capable d’isoler les régions des images
utiles pour une représentation locale.

De plus, nous proposons une méthode nouvelle pour apprendre une représentation
structurée des coefficients des réseaux de neurones.

Nous présentons des résultats sur des jeux de données difficiles, ainsi que des com-
paraisons avec des méthodes concurrentes récentes. Nous prouvons que les méthodes
proposées s’étendent à d’autres tâches de reconnaissance visuelles comme la classifica-
tion d’objets, de scènes ou d’actions.

Mot-clés: Vision par Ordinateur, Apprentissage Machine, Classification d’Images,
Transfer de Connaissances, Modèles à Parties.

Discipline: Informatique et applications.
Laboratoire: GREYC CNRS UMR 6072, Sciences 3, Campus 2, Bd Marechal

Juin, UniversitÂt’e de Caen, 14032 Caen.

0.3 Summary in English

Knowledge transfer is a promising solution for the difficult problem of training deep
convolutional neural nets (CNNs) using only small size training datasets with a high
intra-class visual variability. In this thesis work, we explore this paradigm to extend
the ability of state-of-the-art CNNs for image classification.

First, we propose several effective techniques to reduce the training and test-time
computational burden associated to CNNs:

(i) Using a hybrid method to combine conventional, unsupervised aggregators such
as Bag-of-Words (BoW) with CNNs;

(ii) Introducing a novel pooling methods within a CNN framework along with non-
linear part-based models. The key contribution lies in a technique able to discover
useful regions per image involved in the pooling of local representations;

In addition, we also propose a novel method to learn the structure of weights in
deep neural networks. Experiments are run on challenging datasets with comparisons
against state-of-the-art methods. The methods proposed are shown to generalize to
different visual recognition tasks, such as object, scene or action classification.

Keywords: Computer Vision, Machine Learning, Image Classification, Transfer
Learning, Part-Based Models.

3

Chapter 1

General Introduction

“ I am writing first chapter and
reminding myself that I’m shoveling
sand into box so that later I can
build castles. ”

Shannon Hale

Contents
1.1 Context . 5

1.1.1 Image classification and applications 5

1.1.2 Challenges . 6

1.1.3 Engineered image representation 6

1.1.4 Classifiers . 9

1.1.5 End to End learning - CNN 9

1.1.6 Knowledge Transfer (KT) . 9

1.2 Objectives of this thesis . 9

1.3 Contributions . 10

1.4 Flow of thesis . 11

4

CHAPTER 1. GENERAL INTRODUCTION

1.1 Context

Automatic image classification is a most researched topic in computer vision. Start-
ing from the year 2012 Convolutional Neural Networks (CNNs) emerged as the most
successful technique for this task, as well as a number of other computer vision tasks.
However to train millions of parameters in CNN one requires a huge amount of anno-
tated data. This requirement poses a significant challenge if the available training data
is limited for a target task at hand. To address this challenge, in the recent literature,
researchers proposed various ways to apply a technique called Knowledge Transfer (also
known as Transfer Learning) to transfer the knowledge gained by training CNNs pa-
rameters on some large annotated dataset to the target task with limited availability of
training data. Most of our work in this thesis was dedicated to propose novel methods
to classify images in benchmark target datasets using pre-trained CNN and Knowledge
Transfer technique.

We start by giving few important applications of image classification systems. Next,
we discuss challenges posed by classification tasks. In Section 1.1.3 to Section 1.1.5 we
present historical developments starting from traditional techniques till CNN era that
were used to address classification challenges. Then, in Section 1.1.6 we discuss how in
recent literatures, one utilizes Knowledge Transfer to enhance the ability of pre-trained
CNN on target tasks. Finally, we present the objectives of this work and briefly list
the contributions made in this thesis.

1.1.1 Image classification and applications

Image classification aims to detect whether or not a specific visual concept is present
in an image. For example, it detects whether the image contains a car, bus, person,
bottle or motorbike. Note here that classification is different from detection task. In
detection task, one roughly locates the object of interest in an image with a bounding
box, in contrast to image-level labeling in classification.

Image classification systems have application in many real world scenarios. The
popularity of social media or photo sharing websites such as Instagram, Google Plus,
Ipernity and Flickr have led to millions of images being uploaded by users on a daily
basis. Consider an application of image classification systems [8, 21, 112, 97, 71] im-
plemented in Google Plus where one can search through a large pool of private photos
stored in their personal computer using Google Search. When a user enables the op-
tion of synchronizing Google Plus with private albums in his personal computer, the
user can retrieve the relevant photos automatically based on his query in text format
launched from Google Search. For example, assume the user is interested in viewing the
images containing ‘beachside’ scenery from his private collections. Image classification
can be used to perform such task by just taking the user query in text form ‘beachside’
and retrieving the relevant images from his private collections.

Consider an application of image classification in landscape assessment or planning
[68]. For landscape assessment one needs to classify landscape images into classes such
as forest, water or agriculture. Since the number of landscape images in a database
might be very large, it becomes difficult for a user to mine the required relevant images
manually from a database for assessment. In such cases, we need an automated image
classification system which can perform the task of retrieving the relevant images, based
on the user query.

One more application is in the supermarket and grocery store [36], where the su-

5

CHAPTER 1. GENERAL INTRODUCTION

permarket assistant is serving the customers for pricing the items list. Here the image
classification system can be used to identify the items automatically, based on the
visual content in an image and then prize them accordingly.

One more application is in the context of color grading in movie post production
[130] where user is interested in scene/category specific color grading of video clips.
Color grading is a process of enhancing the cinematic look to various video clips from
entire movie. For example, consider a use case of landscape (e.g., mountain, water
bodies, vegetation, etc.) specific color grading. Here user can use image classification
techniques [48] to pre-process the entire movie and automatically retrieve the video
clips belonging to ‘vegetation’ category, and then he can apply color grading that is
suited for the ‘vegetation’ category.

One more use case is in automatically selecting the appropriate movies for chil-
dren based on their violent contents. De Souza et al. [17] proposed to employ image
classification techniques to analyze the key frames from entire movie and subsequently
classify it into ‘violent’ or ‘non-violent’ category. However, note that this can generalize
to audience specific recommendation of movies.

Calibrating the camera parameters (e.g., focus distance, shutter speed, etc.) based
on class of current scenic view that one is capturing can be posed as image classification
task [3]. Camera can analyze automatically the current scene that one is capturing and
classify it into categories such as indoor scene, outdoor scene, mountains, etc. Once
class of given scene that is being captured is known, camera can calibrate itself based
on the associated pre-defined calibration parameters defined per class.

1.1.2 Challenges

To devise computer algorithms to classify images in visual world like we do is a chal-
lenging task. Instances of same class categories have a diverse set of appearances due to
variations in object scale, occlusion, deformations, illumination conditions, viewpoint,
articulated pose and background clutter. Fig. 1.1 depicts different instances of same
class cat in various images. One more important challenge to address is intra-class
appearance variability. For e.g., two distinct cars or two distinct persons simply have
different appearance (see Fig. 1.2). Conversely, there is inter-class confusion in multi-
class context. For e.g., images containing cat and tiger might be difficult to distinguish
(see Fig. 1.3).

Besides addressing above challenges, algorithms have to be efficient in speed and
scalable to large datasets. Consider a practical application of these algorithms in social
media website, wherein nearly billions of photos and videos are uploaded by users on
a daily basis. Highly efficient algorithms are necessary to organize, retrieve, infer and
generalize to growing sets of images with time.

1.1.3 Engineered image representation

A image classification system consists of two main components - Image representation
and Classifier. In the first component, one must design ‘representation per image’ in
such a way that images belonging to same class must be similar, even under large intra-
class variations and dissimilar to images from different classes. The second component
i.e. classifier defines decision boundary in the space where images are represented.
There has been significant work to design complex high dimensional image representa-
tions so as to yield good recognition performance even with simple linear classifiers.

6

CHAPTER 1. GENERAL INTRODUCTION

Figure 1.1 – Images containing cat class with diverse set of variations.

Figure 1.2 – Intra-class appearance difference between two images belonging to same car class
(left) and person class (right).

Figure 1.3 – Two examples to illustrate the inter-class similarity between images containing
tiger and cat class.

Image can be represented either by global or local features. Global features represent
whole image into compact vector which mainly captures shape (e.g., Zhang et al.[135]),
color (e.g., Swain et al.[114]) or texture (e.g., Ro et al.[92]). Global features are fast
but they do not cope well with occlusion, strong viewpoint variations or deformable
objects.

There has been tremendous progress in designing invariant local descriptors with
little increase in computational complexity compared to global features. The local

7

CHAPTER 1. GENERAL INTRODUCTION

descriptors extracted per image at multiple scales and locations tend to be robust to
variations in scale and rotation. Some of state-of-the art descriptors are Scale Invariant
Feature Transform (SIFT) [75], Speeded-up Robust Features (SURF) [2] and Histogram
of Oriented Gradients (HOG) [16]. In an image these descriptors are either extracted
at key points (at corners or blobs) or at regularly spaced cells. Last decade saw an
emergence of feature encoding strategies which makes it possible to aggregate these
local descriptors into a single vectorial representation. Subsequently, this representation
can be used to train classifier, e.g. Support Vector Machine (SVM) [14].

Feature encoding method BoW (Bag-of-Words) proposed by Sivic et al.[108] is
inspired by text retrieval system. In this method a set of visual codewords is constructed
and saved in a database by vector quantizing a pool of local descriptors extracted from
images in training data. BoW then maps local descriptors extracted per image into
a single vector in 2 steps (1) encoding - hard assignment of each local descriptor to
the closest visual codeword, thus turning it into a visual code. (2) pooling - visual
codes are then aggregated (sum-pooling) into a single vector (image representation).
Significant amount of work has been conducted in the literature so far to improve both
encoding step of a feature encoding method. For example, Van et al.[122] proposed, at
encoding step to reduce quantization loss because of hard quantization in BoW by soft
quantizing across codewords.

Further improvement in recognition accuracy is obtained by aggregation methods
such as Fisher Vector (FV) [88], Super Vector (SV) [138] and VLAD [50]. These meth-
ods attempt to reduce the information loss caused by soft/hard quantization. This
is done by pooling the weighted difference between local descriptors and each visual
codeword. For example, [88] proposed to build visual codewords by employing gener-
ative model i.e, fitting (using Expectation maximization) a Gaussian Mixture Model
(GMM) to the pool of local descriptors. FV then maps local descriptors extracted per
image into a single vector in 2 steps (1) encoding - Fisher score [49] per local descriptor
is computed by obtaining the gradient of the log-likelihood with respect to parameters
in the GMM (2) pooling step wherein Fisher scores are aggregated into final image
representation.

Till now we have described representation scheme using SIFT/HOG as local de-
scriptors. These descriptors typically capture patterns such as edges, corners and
color contrast in an image. The introduction of Part-Based Models (PBMs) by
[107, 63, 22, 53, 31] showed how the notion of “part” can be inculcated into image
classification framework. These methods model visual concepts present in an image
using their constituent parts instead of edge/corner like features. PBMs has following
3 appealing characteristics:

1. Some “Parts” are distinctive for a class. For example, an image patch containing
“head of horse” is distinctive of “horse” class compared to any other class.

2. Presence of at-least one visible discriminative part can classify image efficiently.
Thus PBMs provides invariance to strong occlusion.

3. Compact and expressive final image representation since“parts”are shared across
class categories. For example, wheels occur in car, aeroplane, bus and bicycles.

PBMs attempts to train part classifiers by discovering, in training data, a set of
discriminative regions analogous to visual codewords discussed previously. Next, these
trained part classifiers are used in combination with BoW or FV aggregators to map a
set of region proposals per image into final part-based image representation.

8

CHAPTER 1. GENERAL INTRODUCTION

1.1.4 Classifiers

After successful representation of images in training data using any of above described
methods, one can train classifiers such as linear SVM on top of those hand-crafted rep-
resentations. In this thesis we resort to multi-class classification problems by training
one-vs-rest binary classifiers.

1.1.5 End to End learning - CNN

Recently, big gains in classification results have been attributed to state-of-the-art
Convolutional Neural Networks (CNNs) Krizhevsky et al.[59]. CNN can be described as
an end-to-end learning scheme wherein stacked layers (in network) extract the complex
patterns in an image in a hierarchical fashion and learns the parameters in these layers
jointly with final classifiers. Thus, non-linear feature extraction techniques from an
image are directly optimized for a classification task as opposed to traditional methods
wherein image representation and classifiers are designed independently. CNNs are
usually trained in a supervised manner. CNNs contain huge number of parameters
which require a huge amount of training data, time and hardware resources. Training
these CNNs has been possible due to the arrival of new large datasets such as ImageNet
[20] and Places [137].

1.1.6 Knowledge Transfer (KT)

KT is a broad technique which has shown tremendous progress in classification, regres-
sion and clustering problems [84]. We are interested in particular type of KT called
as inductive transfer learning [84]. It is applicable to supervised learning problem
wherein lot of training data is available in source dataset whereas target dataset is
very small. One example of KT is Orabona et al.[81] wherein they adapt pre-trained
classifiers trained on source dataset to target dataset. Other methods [58, 29], attempt
to capture differences in statistical distribution between source and target datasets.

The CNN model easily overfits to training data in target task due to limited anno-
tated samples. Hence, to train CNN weights on ImageNet source dataset (usually the
objective is a classification task) and use KT technique to adapt to target task at hand.
Note that target task might contain statistically different images (e.g., Pascal-VOC-
2007 [27], MIT-Indoor-67 [89] and Willow [18] datasets) compared to source dataset
or objective of task might be completely different (e.g., segmentation, detection, style
transfer). Methods [35, 44, 10, 101], are some early attempts wherein subset of pre-
trained network layers are fine-tuned to new datasets. Alternatively, the method in
[79], showed how one can append few additional adaptation layers to existing structure
of network and train only them on new datasets.

1.2 Objectives of this thesis

This thesis aims to improve image classification systems. This subject has been in the
focus of attention for many researchers in the computer vision community and is visible
from prior works (CNN, BoW, FV and PBMs) cited in previous section. The common
objective of the algorithms proposed in this thesis is to employ Knowledge Transfer
(KT) to improve recognition accuracy on target dataset while being computationally
efficient. In our work we have attempted to address several important questions in

9

CHAPTER 1. GENERAL INTRODUCTION

order to improve recognition accuracy on target datasets: How to aggregate the inter-
mediate descriptors resulting from multiple layers in pre-trained CNNs? What is the
best deep architecture for current datasets? What is the best fine tuning/adaptation
strategy of pre-trained CNNs? What is the best aggregation/pooling strategy in deep
architectures? We validate and compare our proposed methods to other state-of-art
prior works using publicly available challenging datasets.

1.3 Contributions

The concrete list of thesis contributions are summarized here. We briefly describe here
the problems addressed in chapters 3 to 8.

Chapter 3 Zero-shot learning of the visual classifiers has gained momentum in the
cases where the number of scene/object categories to distinguish is huge. This is
because of unavailability/difficulty in collecting annotated training data for all classes.
The On-the-fly Classification system (OTF) by Chatfield et al.[8] attempts to address
this problem by launching text queries on an image search engine, e.g. Google Image,
and using retrieved images as training data. In chapter 2 we try to improve the OTF by
leveraging attribute classifiers trained for generic attributes such as long legs, hooves,
paws, claws in the case of animal categories, and propose a novel method to combine
these generic attribute classifiers with final visual classifiers to improve classification
performance.

Chapter 4 We attempt to combine state-of-the-art CNN method with traditional
encoding techniques such as BoW and FV. CNNs are resource hungry in terms of
computation and size of training data. Owing to a small dataset in the target task, we
show how one can improve classification accuracy by combining cheap (less resource
hungry) BoW and FV aggregators with powerful pre-trained CNNs.

Chapter 5 We use a pre-trained CNN to represent images in training data. We
design a model which can adapt these extracted features to the new target dataset
jointly with visual classifiers governed by a max-margin loss function. In this chapter,
we obtain good results even with size of image representation as small as 20.

Chapter 6 We propose a novel method to learn the structure of layers in deep
networks during the optimization process. Structure in this context means the size
of the weight matrix inside each fully-connected layer comprising deep architecture.
We learn the structure by inserting diagonally constrained matrices between the fully
connected layers and regularizing the elements in them by L1 norm. The L1 based
regularization establish a trade off between classification loss and network size.

Chapter 7 We propose a new pooling strategy to aggregate the local features ex-
tracted per image - the so-called pooling step in image classification. We construct the
PBMs wherein part classifiers are jointly trained with final visual classifiers. Further,
these PBMs operate on local regions described by powerful state-of-the-art CNN. We
showed in this work how PBMs can be seen as an effective knowledge transfer tech-
nique. We showed that our method gives state-of-the-art results on standard publicly
available challenging datasets.

10

CHAPTER 1. GENERAL INTRODUCTION

Chapter 8 We propose an extension to our work in chapter 7. The method described
in chapter 7 is computationally extensive since one has to compute CNN activations
multiple times to describe a huge number of local regions per image (generated by
chosen object proposal scheme). In this chapter, unlike in chapter 7, we exploits the
benefits of dense proposal scheme [37] to propose local regions per image. In addition,
our method operates on multiple scales per input image and we introduced the idea of
per-part latent scale selection.

1.4 Flow of thesis

In this section we give the outline of the thesis. Note that all the terminologies,
especially, acronyms and notations used in the rest of thesis are explained at the place
of their usage.

In Chapter 2, we discuss some of the concepts which are pertinent for image clas-
sification methods and discuss their relative advantages. We discuss in detail concepts
such as supervised image classification, image representation using: SIFT and CNN.
We also discuss coding and pooling concepts that are employed in recent literature.
Note that these are also concepts which we have used in our thesis work.

In chapters 3 to 8 we discuss in detail our contributions. Each chapter starts
by introducing the context followed by related prior works. Then, we describe the
underlining approach. We finally conclude by accessing the proposed approach against
publicly available challenging datasets.

In chapter 9 we first summarize all the proposed methods and possible future works.
We then draw conclusions about this thesis work.

11

Chapter 2

Review of the related work

Contents
2.1 Basic setup of supervised image classification 13

2.2 Traditional image representation 14

2.2.1 Low-level descriptors (SIFT) 14

2.2.2 Aggregators . 14

2.3 Convolutional Neural Networks (CNNs) 16

2.4 Discovering discriminative regions 17

2.5 Linear classifiers . 19

2.6 Dataset used in this thesis 20

12

CHAPTER 2. REVIEW OF THE RELATED WORK

In this chapter, we present a review of literature work in image classification. We
focus on important concepts and corresponding prior art relevant to this thesis work.
We start by presenting the basic setup for supervised image classification. Next, in
Section 2.2, we delve into an important component i.e. image representation.

The problem of image representation has been the important topic of research for
several years and it is also the core topic of our thesis. We start by discussing traditional
image representation using low-level descriptors (SIFT) in Section 2.2.1. We then
discuss various aggregation mechanisms used in order to map the local descriptors into
a fixed size image representation. Then we discuss state-of-the-art feature extractor:
Convolutional Neural Network (CNN) in Section 2.3. In Section 2.4 we discuss methods
proposed to mine discriminative regions per image. Then, in Section 2.5 we discuss
some details on classifiers such as linear Support Vector Machines (SVM). Finally, in
Section 2.6 we present the datasets used in this thesis work.

2.1 Basic setup of supervised image classification

The supervised classification is based on the idea that one is provided with annotated
training data. Classification task uses this annotated data to learn a model and em-
power it to classify unseen/unannotated images in a test data. We present here a
specific case of classification task i.e. a binary classification problem. In the binary
case, the task is to classify an unseen image sample into two groups (positive or nega-
tive) on the basis of a decision rule.

The training phase in the classification task is achieved by following three simple
steps, as illustrated in Fig. 2.1 (top). The first step in the process is to split the images
in training data into positive and negative samples based on ground truth annotations.
The second step is extracting a fixed-dimensional representation per image. The third
step is learning a classifier by minimizing the classification error. Note here that training
data can contain images belonging each to only one class (For instance, a given image
can contain either dog or sofa class) or to more than one class simultaneously. For
instance, a given image can contain both dog and sofa classes. During the testing
phase (see Fig. 2.1 (bottom)), the learned classifiers are then used to classify unseen
test images. Note that the learned classifiers are applied on the fixed-dimensional
representation extracted from the test image. The performance of the whole system is
judged based on its ability to correctly classify the images in test data.

13

CHAPTER 2. REVIEW OF THE RELATED WORK

Figure 2.1 – Block diagram to illustrate the pipeline followed during the training (top) and
testing phase (bottom) of a supervised binary image classification task.

2.2 Traditional image representation

The aim of the representation step is to encode the content of an image as a fixed-
dimensional real-valued vector. This is often approached by first, extracting local
descriptors at multiple locations in an image and second, aggregating the local de-
scriptors into the fixed-dimensional representation. We discuss here a well known local
descriptor: Scale Invariant Feature Transform (SIFT) and their aggregation technique.

2.2.1 Low-level descriptors (SIFT)

SIFT (Scale Invariant Feature Transform) descriptor is an ubiquitous tool in computer
vision literature. It attempts to capture discriminative low-level features in an image
like straight edges, sharp corners, curved edges and color etc.For example, straight
edges and sharp corners like patterns are discriminative features for images containing
man-made objects such as car, bus and building. On another hand, curved patterns
are discriminative features for natural images (e.g., beaches, mountains, trees, etc.) or
images containing animals (e.g., dog, cat, etc.).

SIFT is applied to an image patch, usually provided by interest point detector
operating at wide range of scales. For each interest point location detected at position
(x, y), a rectangular block of size 16 × 16 is considered with its center at (x, y). The
block is then partitioned into 4×4 cells. Orientation histogram is computed per cell by
quantizing the gradient directions into 8 orientation bins. The resulting descriptor has
16 ·8 = 128 entries and is invariant to scale, rotation, viewpoint and contrast (achieved
by appropriate normalization).

Fig. 2.2 illustrates two ways to select local regions within an image for SIFT
computation. One can compute SIFT at key-point locations or in a dense manner. In
this thesis, we have used dense-SIFT [72]. Some extension to SIFT is PCA-SIFT [55]
which uses PCA (Principal Component Analysis) for dimensionality reduction.

2.2.2 Aggregators

The above-described method can be used to extract a variable number of local descrip-
tors per image. Next, we must devise an aggregation method which can combine these
local descriptors into a global image representation. The classifier is then trained on

14

CHAPTER 2. REVIEW OF THE RELATED WORK

Figure 2.2 – On the right is SIFT by [75]. SIFT is computed either at a specific point (left
top) or at dense locations (left bottom).

top of these representations. Most popularly used aggregators along with the SIFT lo-
cal descriptors are Bag-of-Words (BoW) [108] and Fisher Vector (FV) [88]. Generally,
these methods employ three steps:

Construct visual codewords: Visual codewords are summarized representation of
space spanned by the local descriptors obtained from training data. In practice, the
visual codewords are constructed off-line and saved in a database. For example, in
BoW method, visual codewords are obtained by vector-quantizing SIFT descriptors
extracted from all/subset of the images in training data. Quantization is done by using
the k-means algorithm. Alternatively, one can use approximate nearest neighbor [78]
to speed up the process of quantization.

Many works has been proposed to replace unsupervised k-means clustering algo-
rithm used in BoW. Yang et al. [132] proposed to use sparse coding algorithm to obtain
visual codewords. One step further [54] learned the codewords in a discriminative man-
ner. FV [88] on other hand rely on generative method, achieved by representing visual
codewords by means of a Gaussian Mixture Model (GMM). The GMM is better be-
cause it models the clustering of local descriptors using an advanced statistics such as
mean and covariance compared to simple count statistics used in BoW. Note here that
the GMM is learned using maximum likelihood estimation.

Coding: The local descriptors per image are embedded onto visual code words to
obtain visual codes. Each visual code per local descriptor is a vector containing either
binary (in the case of BoW [108]) or a real-valued vector (in the case of FV also known
as Fisher score Jaakkola et al.[49]). These visual codes have appealing properties such
as compactness or sparseness.

Pooling: The visual codes associated with local descriptors are aggregated using
different pooling mechanisms. Some of the standard pooling mechanisms are sum and
max pooling. Boureau et al.[7] have done a theoretical analysis of different pooling
mechanisms. One important conclusion from their work is that max pooling yields
better recognition accuracy. Boureau et al.[7] also showed how the pooling step induces
desirable properties such as translational invariance into a final representation. But, one
can argue that pooling tends to ignore spatial relationships among the local descriptors.

15

CHAPTER 2. REVIEW OF THE RELATED WORK

Figure 2.3 – Block diagram of the classic image encoder using BoW (top). Images are di-
vided into a multi-scale rectangular grid of size 1x1, 3x1, and 2x2 (bottom left). Histograms
computed per spatial cell are stacked to get the final image representation (bottom right).

As an extension to the pooling mechanism, Lazebnik et al.[64] proposed Spatial
Pyramid Pooling (SPM), to enhance recognition accuracy by taking into account geo-
metric relationships among the local descriptors. The SPM embeds weak geometrical
constraints into the image representation by dividing the image into a multi-scale rect-
angular grid (see Fig. 2.3 for the graphical illustration of SPM employed in BoW). In
Fig. 2.3, the BoW histograms are computed per spatial cell and subsequently stacked
to get a global image representation (see Fig. 2.3).

The description of images by BoW and subsequently training non-linear classifiers
have shown significant improvement in the classification performance [119, 136]. The
size of image representations are usually very high dimensional, thus approaches [119,
136] does not scale well with increasing training data. For the visual codebook size K,
the image representation size in case of BoW is K and the dimension of FV is (2D+1)K,
where D is the size of each local descriptor (e.g., D = 128 for SIFT descriptor). The
value of K is usually in the order of thousands and scales rapidly with the size of
training data. Hence, due to huge size of image representation, particularly in case of
FV, linear classifiers are preferred option as opposed to the non-linear classifiers. The
linear classifiers scales linearly with the number of training examples and are also easy
to learn using popular Stochastic Gradient Descent (SGD) [94] technique.

2.3 Convolutional Neural Networks (CNNs)

CNNs have steadily replaced traditional hand-crafted representations, beating them by
a large margin in recognition accuracy. CNN extracts feature in a hierarchical fashion.
Zeiler et al.[134] have shown that CNNs in their initial layers contain Gabor-like filters
which capture edges or corners whereas their intermediate layers capture high-level
features and their final layers tend to capture even more complex structures. This
hierarchical/deep aspect of the CNN enhances its ability to represent any complex
pattern in an input signal.

16

CHAPTER 2. REVIEW OF THE RELATED WORK

In the case of CNN [59] one can view the intermediate convolutional filters as equiv-
alent to visual codewords. In CNN, codewords (also known as kernels) are learned
on-the-fly i.e. during the training process. CNN enjoys an inherent advantage over
FV and BoW because of the codewords, in CNN, are directly optimized by minimizing
classification loss. Each kernel operates on the previous layer’s output, to obtain a
feature map (analogous to visual code). The resulting visual codes are then pooled to
obtain a global image representation. In the context of CNN, max-pooling is the pre-
ferred option over average pooling and it drastically reduces the number of parameters
in the optimization process.

In practice, CNNs are pre-trained using the huge ImageNet dataset (source dataset).
Razavian et al. [101] showed that a global descriptor extracted per image from the in-
termediate layers in the pre-trained CNN generalizes even to other datasets on which
it is not trained. However, methods [40, 13] observed that by extracting CNN acti-
vations from multiple regions per image, then discovering discriminative regions, and
aggregating them further improves the recognition accuracy on target dataset. This is
because pre-trained CNNs fail to select discriminative regions within its intermediate
layers when applied globally on images in the target dataset.

2.4 Discovering discriminative regions

The pursuit for discriminative regions has been the topic of interest in many recent
works [22, 95, 69, 32, 26, 107, 30, 6]. These works referred discriminative regions
by many names such as mid-level features, discriminative or distinctive visual ele-
ments/parts/regions. These are richer features compared to low-level descriptors. They
tend to capture human understandable high-level concepts. For example wheel, door,
windows, head, leg, head, etc. are some of the discriminative regions present in an
image. Fig. 2.4 displays some of the mid-level concepts belonging to different classes.

One can model each class by a set of discriminative and representative regions.
They are discriminative because they are found in images belonging to a particular
class. The representativeness comes from the fact that they frequently occur in many
images belonging to the class of interest. This kind of property is not well established
in the traditional techniques that use low-level SIFT descriptors. Thus the mid-level
features captures appearance distribution much better than the low-level descriptors.

One can see that discovering discriminative regions requires extensive human an-
notations for informative regions per image in a training data. Thus it is desir-
able to discover discriminative regions using only image-level annotations. Methods
[22, 95, 69, 32, 26, 107, 30, 6] have proposed various solutions to discover discrimi-
native regions using limited supervision i.e. using only image-level annotations. Yet,
selection of the good candidate regions is far from being solved. This is because one
cannot learn the appearance models before knowing discriminative regions and vice
versa. Thus making problem highly non-convex and initialization critical.

17

CHAPTER 2. REVIEW OF THE RELATED WORK

Figure 2.4 – Discriminative regions relevant to different classes. The manually cropped regions
from an entire image are used to illustrate the discriminative regions.

18

CHAPTER 2. REVIEW OF THE RELATED WORK

2.5 Linear classifiers

We have already discussed the advantage of linear classifiers over non-linear classifiers
in Section 2.2.2. The linear classifiers are scalable to large quantities of training data.
The goal of the classification task in linear case is to find a hyperplane in order to
separate samples belonging to different classes. The Support Vector Machine (SVM)
[14] is the most popular supervised machine learning algorithm which constructs the
hyperplane in a high-dimensional space, where input training samples lie.

The generalization ability is an indicator of merit of any classification algorithm,
i.e. how well it classifies images in unannotated datasets. The generalization capability
of SVMs stems from the principle of maximum margin. To achieve this, a linear SVM
computes the separating hyperplane that is farthest from closest training samples be-
longing to either class (see visualization in Fig. 2.5, illustrated for the two-dimensional
case).

SVM classifiers operate on an image I represented by f(I) using anyone of the
above mentioned (previous section) representation techniques and predicts the class
by 〈f(I), w〉 (dot product). The parameter w is learned by minimizing an objective
function governed by two terms: 1) Loss term (For example hinge loss) and 2) Reg-
ularization term (L1 or L2 regularization). The SVM maintains a trade off between
loss and regularization term by setting a penalty weight on regularization term. In
practice, the penalty weight is set using proper cross-validation strategy (i.e. using
held out training samples). In addition, [88] have shown that it is beneficial to L2
normalize the global image representation f(I) before learning SVM.

19

CHAPTER 2. REVIEW OF THE RELATED WORK

Figure 2.5 – Hyperplane separating the two classes with maximum margin.

2.6 Dataset used in this thesis

We are using popular publicly available datasets to conduct and validate our proposed
methods. Each dataset is split into training, validation and test sets. Ground truth
data is available for the complete test dataset.

Pascal-VOC-2007. The Pascal-VOC-2007 dataset [27] is an image classification dataset
consisting of 9963 images of 20 different visual object classes divided into 5011 training
images (of which 2510 are validation images) and 4952 testing images. The images con-
tain natural scenes and the visual object classes span a wide range, including animals
(e.g., dog, cat), vehicles (e.g., aeroplane, car) and other manufactured objects (e.g., tv
monitor, chair). We can observe from Fig. 2.6 that visual concepts are embedded in
complex scenes with various conditions: scale, lighting, occlusion and pose.

MIT-Indoor-67. As opposed to objects, scenes are non-localized visual concepts and
might even be characterized by the presence or absence of several objects. The MIT-

Indoor-67 [89] dataset is a scene recognition dataset consisting of 67 indoor scenes
(e.g., nursery, movie theater, casino or meeting room) each represented by 80 training
images and 20 test images. We use 20 randomly chosen training images from each class
as a validation set. Fig. 2.7 illustrates some example images spanning six categories.

Willow. Recognizing human action in photos is a challenging task due the absence
of temporal information. Dedicated to this task, the Willow dataset [18] consists of
7 action categories such as “play instrument”, “walk” or “ride horse” spread across 490

20

CHAPTER 2. REVIEW OF THE RELATED WORK

Figure 2.6 – Example images in Pascal-VOC-2007 test dataset: each row from top to bottom
belongs to classes: bus, cow, sofa, potted plant, car. Note that images are stretched for
convenience to display.

21

CHAPTER 2. REVIEW OF THE RELATED WORK

Figure 2.7 – Example images in MIT-Indoor-67 test dataset: each row from top to bot-
tom belongs to classes: airport inside, restaurant, hospital room, grocery store, inside bus,
corridor.

22

CHAPTER 2. REVIEW OF THE RELATED WORK

training images (of which 210 are validation images) and 421 test images. Fig. 2.8
illustrates some example images spanning seven categories.

23

CHAPTER 2. REVIEW OF THE RELATED WORK

Figure 2.8 – Example images in Willow test dataset: each row from top to bottom belongs
to classes: Interacting with computer, Riding Horse, Riding Bike, Playing Instrument, Pho-
tographing, Running, Walking.

24

Chapter 3

Transfer Learning via Attributes for
Improved On-the-fly Classification

Contents
3.1 Introduction . 26

3.2 Related Works . 28

3.3 Approach . 29

3.3.1 On-the-fly classification . 29

3.3.2 Attribute-based pruning . 29

3.3.3 Hybrid ranking with attributes and on-the-fly classifier 30

3.4 Experimental results . 30

3.4.1 Datasets used . 30

3.4.2 Implementation details . 31

3.4.3 Quantitative results . 32

3.4.4 Qualitative results . 33

3.5 Discussion and conclusion 35

25

CHAPTER 3. TRANSFER LEARNING VIA ATTRIBUTES

3.1 Introduction

Many works e.g. [64, 27] have been proposed to address the problem of classification of
scenes and objects. The problem has been traditionally addressed in a supervised learn-
ing scenario where the task is to learn an image classifier when some positive examples
i.e. images containing the scene or object of interest are given. However, systems de-
veloped with such assumptions suffer from obvious limitations: (i) the number of scene
or object categories is very large and (ii) annotating, let alone conceiving all textual
queries that users might be interested in, is impractical. To address these limitations
Chatfield and Zisserman [11] proposed to learn visual classifiers for the user provided
textual queries, on-the-fly. In their proposed method, they first used the user query to
search for images on the internet using an image search engine. Then they used the
top images returned by the search as the visual examples of the query and trained the
corresponding visual classifier against a fixed set of generic negative images. They then
finally used this classifier to obtain a ranking of the images in the database.

However, relying solely on internet image search for on-the-fly classification leads to
the following problem in practice. As shown in Fig. 3.1, quite a few of the top ranked
images returned for even simple queries contain (i) objects with artifacts, or (ii) objects
in rare and/or unusual poses/appearances/viewpoints or (iii) artistic/‘professional’ im-
ages with misleading (e.g. white) background context. These images degrade the per-
formance of the on-the-fly classifier. For example, Fig. 3.2 shows the retrieval results
for three different animal queries, with the classifier trained with one such image as
the only positive example ([76]). We can see that clearly such images are not suitable
for the task. Thus one of the basic task addressed by the present work is automatic
filtering of such images towards the goal of improving on-the-fly classification.

We propose to do such filtering by performing transfer learning. We use the domain
of attributes e.g. ‘furry’, ‘has four legs’, ‘spotted’ etc. and transfer knowledge from here
to the domain of on-the-fly query based classification. Like many previous works [28,
63, 113] we argue that attributes are useful for visually characterizing a class. A large
set of classes can be potentially covered by combining smaller number of attributes.
Hence, if we have annotations for a relatively small set of attributes we can transfer
this knowledge to the much larger set of all queries resulting from the combination of
these attributes. We note here that although a large number of works using attributes
have been reported in the recent past, such use of attributes in the context of on-the-fly
classification has never been explored before.

The two main contributions of this work are for improving on-the-fly classification
with the help of attributes. First, we use the attributes to do a zero-shot classification
on the set of images returned by the internet image search. We discard the images
which score low with such attribute based classifier as they are likely to be visually
less informative, if not completely wrong or misleading. Second, we use this zero-shot
classifier to also score the database images. We combine this score with that obtained
by the on-the-fly classifier to obtain a hybrid ranking of the images. We describe our
two contributions in more detail in Sec. 7.3. We show qualitative and quantitative
experimental results (Sec. 3.4) to demonstrate that the proposed approaches improve
the baseline on-the-fly system. We now discuss some closely related works in the
following section.

26

CHAPTER 3. TRANSFER LEARNING VIA ATTRIBUTES

Figure 3.1 – Some top ranked images retrieved by Google image search for query ‘dog’.

Figure 3.2 – Top retrievals for some of the non-pertinent images returned by Google image
search: for each row, the images from Google (on the left) were used to train exemplar
SVMs [76] which were in turn used to retrieve images from the Pascal VOC 2007 dataset
with some top false positives shown on right. Note how rare appearances, abstract/artistic
representations and misleading background leads to poor retrieval wrt the queries.

Figure 3.3 – Block diagram of the proposed system. Our contributions are highlighted (see
Sec. 7.3).

27

CHAPTER 3. TRANSFER LEARNING VIA ATTRIBUTES

3.2 Related Works

Our work is primarily related to image classification, on-the-fly classification, attributes
and transfer learning. We have already discussed briefly the transfer learning approach
in context to CNN in Chapter 1 under section Section 1.1.6. In this chapter, we describe
the transfer learning and its related work in context to attributes. We also discuss some
of the closely related works under this section.

Image classification Many of the current classification systems e.g. [11, 27, 64, 102]
are based on the Bag-of-Words representation [15, 108] where local appearance features
(e.g. SIFT [74]) are extracted for patches on a dense grid over the image and then vector
quantized w.r.t.a visual codewords. The visual codewords itself is learned offline by
performing standard clustering algorithm e.g. k-means on randomly samples features
from the training images. To encode some spatial information [64] proposed to pool
over spatial cells i.e. make a spatial pyramid gaining substantial performance. We
follow these works here and use this image representation.

On-the-fly classification is an extension of supervised image classification to the
case of arbitrary user-specified queries [11]. It addresses the limitation of standard
classification, i.e. necessity of annotated positive images pertinent to the query, by
constructing a positive set of images on-the-fly by querying image search engines on
the internet. After such positive images are obtained standard classification algorithms
are applied.

Attributes have become quite popular in computer vision. They have been used to
describe objects [28], and improve image classification performance [113]. An interest-
ing use of attributes was shown in zero-shot learning [63, 133] where classifiers were
learnt without any images for the class via attributes e.g. Yu and Aloimonos [133]
learned the generative attribute models which were used as priors. These attribute
priors were shown to improve image classification performance in zero-shot and/or
one-shot learning framework.

A lot of work has also been done to represent the images in low dimensional attribute
space [67] with the coefficients of the feature vector as the scores of the attribute
classifiers. [126] proposed to learn image similarity from Flickr image groups. Vogel
and Schiele [124] represented images by concatenating the local semantic descriptions
into one large global descriptor and then used them for retrieval of natural scenes. [117]
used large number of weakly trained attribute classifier outputs to represent an image
and used it for classification. [62] used attribute classifiers (e.g. gender, race, hair color)
for the task of face verification i.e. to tell if two given faces are of the same person or
not.

In addition to image representation using attributes, a lot of work in cognitive
science [45, 82, 83, 109] has focused on understanding how humans perceive the relations
between attributes and objects.

Transfer learning is defined as using the knowledge learned in one task to new task
which share some statistical relationship. [24] learned a target classifiers using a set
of independent auxiliary classifiers learnt in some other domain. [131] proposed to
address two problems in classifier adaptation. First, adapting the multiple classifiers
learnt in auxiliary domain to do classification in target domain and second, learning

28

CHAPTER 3. TRANSFER LEARNING VIA ATTRIBUTES

the selection criteria for best classifier in auxiliary domain. [25] proposed to learn both
cross domain kernel function and also robust SVM classifier in video concept detection.
Wu and Dietterich [129] worked in SVM framework and used the kernel derived from
auxiliary domains, containing large amount of training data, in the target domain
containing very less training data.

Transfer learning has also been applied to attribute based image classification. Rus-
sakovsky and Fei-Fei [93] proposed to obtain the visual connection between object cate-
gories based on transfer learning. They started with learning 20 visual attributes from
ImageNet data and used these attributes to find the connection between the object
categories.

3.3 Approach

In the following, first we set the background context by describing the on-the-fly clas-
sification [11] method briefly. We then describe our proposed attribute-based positive
image set pruning via zero-shot. Finally, we describe our proposed hybrid ranking sys-
tem obtained by combining the on-the-fly classifier and an attribute-based zero-shot
classifier. Fig. 3.3 gives the overall block diagram of the proposed system with blocks
corresponding to our novel contributions highlighted.

3.3.1 On-the-fly classification

On-the-fly classification is a method of image retrieval based on arbitrary user queries.
It uses standard binary supervised classification setup with the positive images obtained
from internet image search while keeping the negative images fixed (a set of generic
negative images). As the user provides a query, the system makes the same query to
an image search engine on the internet. Then the system downloads the top images
returned for the query as the positive examples of the query. These are used to learn
a SVM classifier which is in turn used to score the database images. The number
of positive images obtained is small and the features for the negative set is already
cached, hence the overall features are obtained in reasonable time. A linear SVM
classifier is usually learned using stochastic gradient descent which is also fast. Finally,
the pertinence score, for the database images, is just a dot product between the learnt
classifier and the previously computed and cached features of the database images.

3.3.2 Attribute-based pruning

However, as discussed in the introduction (Sec. 3.1) the problem with using internet
based image search is the risk of obtaining uninformative and/or rare and misleading
images as positive examples (Fig. 3.1). To prune out such images we propose to use
transfer learning based on an auxiliary domain of attributes. We propose to do this
by constructing a zero-shot classifier, inspired by the work of Lampert et al. [63], by
mapping the query to a subset of attributes in the attribute dataset. Such mapping
could be obtained by a textual analysis system. Using the attributes we learn a zero-
shot classifier as follows. We learn a set of attribute classifiers {ai|i ∈ A}, where A

is the set of attributes, offline. Given a test query q, we obtain a set of attributes
Aq corresponding to the query. We then calculate the score matrix for the attribute
classifier for all the images X+ downloaded from the internet:

A = (aT
i xj)ij∀i ∈ Aq, xj ∈ X+.

29

CHAPTER 3. TRANSFER LEARNING VIA ATTRIBUTES

In order to bring the scores of the different attribute classifiers into the same scale, we
then normalize the attribute score matrix along its rows. Letting µi and σi denote,
respectively, the mean and variance of the entries in the i-th row of A, the normalized
score matrix A′ is given by

A′ = (
Aij − µi

σi

)ij (3.1)

Finally the attribute based score is given by the sum over all the attributes for positive
images. This is our zero-shot attribute based classifier score as it was derived by
transferring knowledge from the auxiliary attribute domain, and without the need for
training images for the query. The resulting scores are indicative of the presence of
the attributes related to the query in the corresponding downloaded images. We hence
discard the lowest scoring k images, as they are likely uninformative. Using these
pruned images as positive examples, we learn a linear SVM classifier w. We then
compute the pertinence of the images in the database XR, w.r.t.on-the-fly classifier, as

so = wTXR. (3.2)

3.3.3 Hybrid ranking with attributes and on-the-fly classifier

The attribute based zero-shot query classifier can also be used to test the pertinence
of the images in the retrieval database XR. To this end, we build a score matrix
B = (aT

i xj)ij∀i ∈ Aq, xj ∈ XR using the same attributes Aq used for the positive
set pruning process. The score matrix B is also centered and normalized row-wise as
in (3.1) to produce B′. The summation over the columns of B′ (i.e.scores from only
relevant attributes Aq) given by

sa = 1TB′ (3.3)

is score of the database images w.r.t.the query, based on zero-shot attribute classifier.
We propose a hybrid ranking score that combines the two pertinence scores so and

sa. To do so, we need to bring the two scores into the same scale. Letting (µ1, σ1) and
(µ2, σ2) denote, respectively, the mean and variance of so and sa, we define the hybrid
score for image k as

α
so

k − µ1

σ1

+ (1− α)
sa

k − µ2

σ2

(3.4)

The weight α controls the relative importance of the attribute-based score so and the
score sa of on-the-fly classifier with pruned images.

3.4 Experimental results

We validate our method on publicly available Pascal-VOC-2007 [27] dataset. We re-
strict our domain of interest to the animal classes. For the auxiliary domain of at-
tributes for transferring knowledge we use the Animals with Attributes [63] dataset.
We use the original on-the-fly system [11] as the baseline method and show by experi-
ments how our methods improves the baseline. We first give details of the datasets and
the implementation and then proceed to show our quantitative and qualitative results.

3.4.1 Datasets used

Pascal-VOC-2007 We use all the test images but restricting the performance evalua-
tion to the domain of animals, we report results using five animal classes as queries i.e.

30

CHAPTER 3. TRANSFER LEARNING VIA ATTRIBUTES

Figure 3.4 – The performances (precision at 10 and 50 and average precision) for all the
animal classes, along with mean performances, for the proposed method vs. the baseline of
on-the-fly classification [11]. See Sec. 3.4.3 for discussion.

Figure 3.5 – Top false
positive for ‘dog’ class.
We see that the re-
sults obtained are dom-
inated by animals with
closely related attributes
like ‘furry’, ’long legs’.
See Sec. 3.4.3 for more
discussion.

horse, cat, dog, cow and sheep. Note that the other classes are present as distractors
in the test set. Performance is evaluated by computing the precision at 10 images, that
at 50 images and the average precision for each class, as well as the mean of the three
metrics for all the five classes.

Animals with Attributes dataset [63] consists of 30475 images. There are in total
50 animal classes with at least 95 images of each class. Annotations are also provided
for 85 attributes related to the animals. We use this database as the source of auxiliary
knowledge to be transferred to the query classification domain. [56] computed a matrix
with values specifying the relative strength of association of attributes with object
categories. This matrix was built based on feedback by human subjects on association
strength between 50 animal classes with 85 attribute categories. We use this matrix
in our case to train our attribute classifiers and for the attributes to be used for each
animal query, Tab. 3.1 gives the list of attributes used for each of the five animal
queries.

3.4.2 Implementation details

Internet image search. We use Google Image search via the publicly available API
to obtain image results obtained for a given textual query. Once the results are obtained

31

CHAPTER 3. TRANSFER LEARNING VIA ATTRIBUTES

Table 3.1 – The attributes used for the five animal queries.

Query Attributes

horse furry, big, toughskin, hooves,
longleg, longneck, fast, strong,
agility, quadrapedal, vegetation,
grazer, plains, fields

dog spots, furry, paws, claws,
lean, longleg, fast, strong,
quadrapedal, active, inactive,
plains, fields, ground, fierce,
solitary, newworld

sheep furry, bulbous, hooves, moun-
tains, ground, timid

cat furry, small, quadrapedal, weak,
active, inactive, agility, hunter,
newworld

cow patches, spots, toughskin, hooves,
horns, big, quadrapedal, veg-
etation, grazer, plains, fields,
ground, group

we download the images in the search results with a timeout threshold. On an average
we download about 85 images per query due the limitation imposed by the API and
the timeout threshold.

Bag-of-Words (BoWs). We represent images similar to [11] with BoWs histograms.
We use densely sampled gray scale SIFT features extracted at 4 scales with step size
of 3 pixels. We use VLfeat library [123] for extracting SIFT features. We learn a
visual codebook of size 4,000 using randomly sampled SIFT features from the Pascal
VOC 2007 train + val dataset. We use nearest neighbor based hard assignment of
SIFT features to codebook vectors. Finally, we use three level spatial pyramid [64] by
dividing the image into 1x1, 3x1 and 2x2 spatial grid.

Attribute based transfer. For the zero-shot classifier based pruning we discard the
bottom k = 8 images and for the hybrid scoring, the weight parameter is set to α = 0.3,
both parameters were set based on validation experiments.

3.4.3 Quantitative results

Fig. 3.4 shows the results of the proposed methods vs. the baseline of on-the-fly classifi-
cation scheme of Chatfield and Zisserman [11]. We can make the following observations.
First, the attribute based pruning of test images improves the performance over the
baseline by a modest amount specially at the higher end of recall (precision at 50
and mAP). This is consistent for all the classes. Second, doing hybrid attribute and
on-the-fly classification based ranking gives large performance improvements again at
the higher end of recall. Third, doing both pruning and then hybrid ranking improves
performance at lower end of the recall.

32

CHAPTER 3. TRANSFER LEARNING VIA ATTRIBUTES

The proposed method improves the baseline in all cases except the ‘dog’ query,
where the number of true positives among the top 10 retrieved images decreases from
4 to 2. We analyzed the results in this case and found that the top retrieved images for
this case were those of animals with very closely related attributes e.g. ‘furry’ and ‘has
four legs’. Fig. 3.5 shows some of the top false positives. However, we note that the
performance recovers at higher recall e.g. the precision at 50 and the average precisions
improve for dog class as well.

Processing times. The time (on a single core) taken by different steps are as follows.
Downloading 85 images (for a query) takes 4s using the Google Search API. Feature
extraction takes ∼ 3s per image, (ii) SVM learning takes ∼ 6s and scoring the database
images (which is matrix dot product and sum) is negligible. When multiple cores are
used the system is reasonably responsive.

3.4.4 Qualitative results

Fig. 3.6 shows some qualitative results for our system. Each row corresponds to an
animal query, on the left the images retained, for training the on-the-fly system, and
on the left the discarded images are shown. We can see that the images which are more
natural and are pertinent to the queries are retained by the proposed method. While
the image which have either rare object appearance/pose or uninformative/misleading
background or are abstract/artistic rendering of the animals have been discarded.

33

CHAPTER 3. TRANSFER LEARNING VIA ATTRIBUTES

Figure 3.6 – Example of images from Google image search which are (left three) retained
by our system as pertinent to the query (animals i.e. cow, horse, cat, dog, sheep, from top
to bottom) and (right three) discarded by our system as being uninformative. We see that
the images which are more natural and pertinent for the class queries and retained while
those which have objects on rare or unnatural poses, or objects on uninformative/misleading
background or artistic or abstract rendering of the objects are discarded by the system.

34

CHAPTER 3. TRANSFER LEARNING VIA ATTRIBUTES

3.5 Discussion and conclusion

In the present chapter we presented a method to use attributes to improve the clas-
sification performance of on-the-fly [11] classification for retrieval. We showed that
transferring knowledge from the attribute domain to the query domain is effective in
pruning out images containing (i) objects in rare or unnatural poses, (ii) objects on
uninformative/misleading background and/or (iii) artistic or abstract rendering of the
objects. We also proposed a hybrid ranking system which, along with the on-the-fly
classification, takes the attribute classifiers into account. We showed by experiments
on standard publicly available datasets that our methods improves upon the baseline.

The attribute engine, which maps the query to a set of relevant attributes, was
assumed to be given in the present work. The design of an automatic attribute engine
is a challenging future work that we would like to pursue. Also, the attribute dataset
was assumed to be given, fixed and annotated. It would also be interesting to explore
creation or extension of such attribute datasets on-the-fly as well.

35

Chapter 4

Hybrid multi-layer
CNN/Aggregator feature for image
classification

Contents
4.1 Introduction . 37

4.2 Background . 38

4.2.1 Image Classification using Local Descriptor Aggregators . . . 38

4.2.2 Convolutional Neural Networks (CNNs) 39

4.2.3 Transfer learning using CNNs 40

4.3 A hybrid CNN/Aggregator feature 40

4.3.1 Per-layer aggregation of CNN local descriptors 40

4.3.2 Training per-layer aggregators 41

4.3.3 Extensions based on classic approaches 41

4.4 Results . 41

4.4.1 Impact of layer subset L . 41

4.4.2 Impact of codebook size . 42

4.4.3 Comparison to other approaches 42

4.5 Conclusion . 44

36

CHAPTER 4. HYBRID MULTI-LAYER CNN/AGGREGATOR FEATURE

4.1 Introduction

In this chapter we propose a new hybrid image feature for image classification obtained
from a mix of the classical image feature extraction pipeline and the more recent and
very successful Convolutional Neural Network (CNN) pipeline.

As already described in Chapter 2, the classical image feature extraction pipeline
consist of three major steps: 1) Extracting local descriptors such as SIFT [75] from the
image; 2) mapping these descriptors to a higher dimensional space; 3) and sum or max-
pooling the resulting vectors to form a fixed-dimensional image feature representation.
Examples of methods corresponding to this classical approach include Bag-of-Words
(BoW) [15], Fisher Vector (FV) [87], Locality-constrained Linear Encoding [127], Ker-
nel codebooks [121], super-vector encoding [138] and VLAD [19]. We refer to these
type of image feature extraction schemes as aggregators given that they aggregate lo-
cal descriptors into a fixed dimensional representation. Generally these approaches
require computationally inexpensive unsupervised models of the local descriptor dis-
tribution, and the resulting image features can be used to learn likewise inexpensive
linear classifiers using SVMs.

CNNs consist of multiple interconnected layers including spatial convolution layers,
half-wave rectification layers, spatial pooling layers, normalization layers, and fully
connected layers. While this method attains outstanding classification performance, it
also suffers from large testing complexity, particularly due to the first fully connected
layer, as well as large training complexity, since all the coefficients in the pipeline are
learned in a supervised manner and require lots of training images. To address this
latter issue, [79] proposed to use CNN models pre-trained on the Imagenet dataset
(consisting of many million images) and then transfer all but the last layer of this pre-
trained CNN to a new target dataset, where two new adaptation layers are learned.
This reduces training time and the amount of required training data, but the training
data needs to be annotated with bounding box information. The fact that the method
works on a per-patch basis further increases the testing complexity relative to standard
CNNs.

Several approaches exist that, like ours, attempt to bridge the classical approach
and the CNN approach using hybrid mixes. Inspired by the popularity of CNNs,
Simonyan [105] proposed to incorporate the deep aspect of CNNs into traditional
SIFT/FV schemes by stacking multiple layers of FV aggregators, with each layer oper-
ating on successively coarser overlapping spatial cells. Sydorov [115] instead proposed
viewing the standard FV aggregator as a deep architecture, substituting the unsuper-
vised GMM parameters of the FV aggregator by supervised versions.

While these methods adopted only the deep aspect of CNNs, our goal is to combine
the advantages of both approaches (CNNs and classical aggregators) using hybrid mixes
of both pipelines. We do this by treating the output of the pre-trained intermediate
layers of the CNN architecture as local image descriptors, which we aggregate using
standard aggregators such as BoW or FV. There is no need to carry out costly tuning
of the CNN adaptation layers [79] to the target dataset, as both BoW and FV rely on
unsupervised learning. The closest related method in the literature is that of Gong et
al. [40], who propose using the output of the previous-to-last fully connected layer as a
local descriptor, computing this descriptor on multi-scale dense patches subsequently
aggregated using VLAD on a per-scale basis. This approach is very complex because,
contrary to our approach, one needs to compute the full CNN pipeline not only on the
original image but also on a large number of multi-scale patches and further apply two

37

CHAPTER 4. HYBRID MULTI-LAYER CNN/AGGREGATOR FEATURE

levels of PCA dimensionality reduction.

The remainder of this chapter is organized as follows: In Section 4.2, we describe
the two classical aggregators (BoW and FV) that we use in our experiments, as well as
the CNN architecture. In Section 4.3, we describe our hybrid image feature extraction
pipeline. We evaluate our proposed method in Section 4.4 and provide concluding
remarks in Section 4.5.

4.2 Background

In this section we present an overview of two classical local descriptor aggregation
methods: the BoW aggregator [108, 64, 4] and the FV aggregator [88]. Up until
recently, such aggregation schemes together with SVM classifiers were the reference in
image classification [9]. We then present an overview of the new state-of-the art CNN
image classification pipeline [59].

4.2.1 Image Classification using Local Descriptor Aggregators

The classical image classification procedure consists of first mapping images to a fixed-
dimensional image feature space where linear classifiers are computed using SVMs.
The image feature construction process operates by aggregating the local descriptors
extracted from the image in question, f : {xk ∈ R

d}k 7→ R
D, where the xk are the local

descriptors of the image.

The Bag-of-Words (BoW) aggregator offers one such way to map local descriptors
to image features. A training set of local descriptors T from a representative set of
images is first used to build a codebook C = [cj]j using K-means. Letting Cj denote
the Voronoi cell for codeword cj, the BoW aggregated image feature is the relative
frequency of occurrence of local descriptors in the Voronoi cells:

f = [# ({xk, xk ∈ Cj}k)/# ({xk}k)]
j
, (4.1)

where we let # denote set cardinality. The BoW encoder offers an intuitive image
feature and enjoys a low computational cost that can be important in user-in-the-loop
applications such as [86].

A more recent image feature, the Fisher vector, offers an important gain in image
classification performance [9]. The Fisher encoder requires that a training set of local
descriptors T be used to learn a GMM model G = {βk,Σk, ck}k with k-th mixture
component having prior weight βk, covariance matrix (assumed diagonal) Σk and mean
vector ck. The first order Fisher vector for a given image can then be computed as
follows:

f =

1

M

M
∑

k=1

p(j|xk)
√

βj

Σ
−1
j (xk − cj)

j

. (4.2)

Both the BoW and Fisher aggregators are built from unsupervised models for the
distribution of local descriptors, with supervision coming into play only at the classifier
learning stage. CNNs instead construct a fully supervised image-to-classification score
pipeline.

38

CHAPTER 4. HYBRID MULTI-LAYER CNN/AGGREGATOR FEATURE

l

n
l

1

11

2 3 4

5

5 6 7

3

8

3

9

3

10 11 12 13

1
 x

 1
 x

 1
0
0
0

O
u
tp
u
t d

im
e
n
si
o
n

1
3

 x
 1
3

 x
 3
8
4

1
3

 x
 1
3

 x
 3
8
4

1
3

 x
 1
3

 x
 2
5
6

6
 x

 6
 x

 2
5
6

1
 x

 1
 x

 4
0
9
6

1
 x

 1
 x

 4
0
9
6

5
5

 x
 5
5

 x
 9
6

2
7

 x
 2
7

 x
 9
6

2
7

 x
 2
7

 x
 9
6

2
7

 x
 2
7

 x
 2
5
6

1
3

 x
 1
3

 x
 2
5
6

1
3

 x
 1
3

 x
 2
5
6

Figure 4.1 – Architecture of the CNN pipeline of [59] trained on ImageNet 2012 and used in
this chapter. Each layer, represented by a box, is labeled with the size Rl × Cl × Kl of its
output in (4.3). The Kl kernels at layer l have dimension nl × nl ×Kl−1. The layer index l

(respectively, kernel spatial dimension nl) is indicated below (above) the box for each layer.
The input image is assumed normalized to size 224×224×3, and 4× downsampling is applied
during the first layer. Dark-lined boxes: convolutional layers; dash-lined boxes: normalization
layers; light-lined boxes: max-pooling layers; grayed-in boxes: fully-connected layers.

4.2.2 Convolutional Neural Networks (CNNs)

In this section we describe the architecture of Convolutional Neural Networks (CNNs)
in more detail. It is well known that CNNs have established an overwhelming presence
in image classification starting with the 2012 ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) [59]. The performance gap of CNNs relative to the second entry
in that year’s competition (and relative to SIFT-based Fisher aggregation schemes [96])
is in excess of 10 percentage points in absolute improvement of top-5 error rate.

In Fig. 4.1 we illustrate the deep CNN processing pipeline of [59]. It consists
of convolutional layers, max-pooling layers, normalization layers and fully connected
layers. At any given layer l, the layer’s output data is an Rl × Cl ×Kl array

[xl
ij ∈ R

Kl]i=1,...,Rl; j=1,...,Cl
, (4.3)

that is the input to the next layer, with the input to layer l = 1 being an RGB image
of size R0 × C0 and K0 = 3 color channels.

The convolutional layers (l = 1, 4, 7 − 9) first compute the spatial convolution of
the input with Kl kernels of size nl × nl × Kl−1 and then apply entry-wise Rectified
Linear Units (ReLUs) max(0, z). The normalization layers (l = 2, 5) normalize each
x ∈ {xl−1

ij }ij at the input using what can be seen as a generalization of the l2 norm
consisting of dividing each entry xm of x by (2 + 10−4∑

n∈Im
x2

n)0.75. The summation
indices Im are taken to be the m-th sliding window over the indices of all entries. The
max-pooling layers (l = 3, 6, 10) carry out per-kernel spatial max-pooling by taking the
maximum value from each spatial bin of size 3× 3 spaced every 2 pixels.

The fully connected layers (l = 11 − 13) can be seen as convolutional layers with
kernels having the same size as the layer’s input data. The last layer (l = 13) uses a
softmax non-linearity instead of the ReLU non-linearity used in other layers and acts
as a multi-class classifier, having as many outputs as there are classes targeted by the
system.

39

CHAPTER 4. HYBRID MULTI-LAYER CNN/AGGREGATOR FEATURE

4.2.3 Transfer learning using CNNs

The architecture in Fig. 4.1 contains more than 60 million parameters and training
it can be a daunting task requiring expensive hardware, large annotated training sets
(ImageNet 2012 contains 15 million images and 22,000 classes) and training strategies
including memory management schemes, data augmentation and specialized regular-
ization methods. Moreover, extending the architecture to new classes would potentially
require re-training the entire structure, as the full architecture is learned for a specific
set of target classes.

To address this last difficulty, Oquab et al.[79] use transfer learning to apply the
architecture in Fig. 4.1 to new classes while incurring reduced training overhead. Their
approach consists of substituting only the last fully-connected classification layer by
two learned adaptation layers, a fully-connected ReLU layer with 4096 neurons followed
by a fully-connected softmax classification layer with as many neurons as target classes.
The first 12 layers are transferred from the net in Fig. 4.1 (learned from ImageNet 2012
data), and only the new adaptation layers are learned using training data for the new
set of target classes (e.g. those of the Pascal VOC 2007 test bench).

While their approach reduces the training overhead and required training set size,
training the adaptation layers still requires non trivial complexity as these contain a
large number of parameters (more than 16 million). To obtain an adequately large
training set from Pascal VOC 2007 data, they derive a patch-based training set, labeling
every patch according to its intersection with the provided object bounding boxes.
Their approach thus operates on a per-patch classification basis, and the overall class
score is obtained by summing this per-patch scores over the entire image for each
class. This brings the important benefit of also providing the object localization, but
it requires laborious bounding-box annotations on the training set and costly training
of millions of parameters.

4.3 A hybrid CNN/Aggregator feature

Inspired by the transfer learning approach of [79], in this section we propose a new
hybrid feature that combines parts of the CNN architecture in Fig. 4.1 trained on Ima-
geNet 2012 with the unsupervised BoW or Fisher local descriptor aggregation schemes
in (4.1) and (4.2). The resulting feature is used with one-vs-all linear SVM classifiers
and hence new classes can be added with little training overhead and without the need
for costly object bounding box annotations.

4.3.1 Per-layer aggregation of CNN local descriptors

Our hybrid scheme is based on the observation that the vectors xl
ij in (4.3) comprising

the output of layers l = 1, . . . , 10 in Fig. 4.1 (i.e.all layers except fully-connected
layers) can be treated as densely extracted local descriptors. We will hence build one
aggregated feature fl for each layer l (or a subset of layers l ∈ L) and concatenate all
the resulting aggregated layer features to form a single image feature

f = [fT
l]Tl∈L. (4.4)

Using only a subset of layers L ⊆ {1, . . . , 10} allows us to control training, testing and
storage complexity and further serves as a means of regularization.

40

CHAPTER 4. HYBRID MULTI-LAYER CNN/AGGREGATOR FEATURE

4.3.2 Training per-layer aggregators

In order to train the per-layer aggregators adapted to the CNN layers, we take each
image from a representative set of training images and extract from it all vectors xl

ij

for l = 1, . . . , 10. We then group all the resulting local descriptors xl
ij for each layer l to

form a training set Tl for the l-th layer. Each training set Tl of local descriptors is then
used to train a codebook Cl for layer l using K-means when using BoW aggregators.
Likewise, a GMM model Gl is learned for the l-th layer when using Fisher aggregators.

4.3.3 Extensions based on classic approaches

Our proposed approach shares similarities with several existing approaches and we now
discuss these and related extensions.

One first observation is that the spatial support (relative to the original image)
used to compute the xl

ij is of size 11 (in each spatial dimension) for the first layer
and grows by 4 × 2 · (na − 1) for each convolutional layer 1 < a ≤ l, yielding possible
supports of size 11, 43, 59 and 75. Dense approaches likewise compute local descriptors
from supports of varying size (16, 24, 32, 40) by means of multi-resolution spatial grids
[9], but all descriptors for all supports are pooled together (for the benefit of scale
invariance) and used to form a single aggregated image feature. A similar pooling
approach could be used for CNN local descriptors xl

ij ∈ R
Kl by first mapping all layers

to a common dimensionality via, e.g. PCA or discriminative dimensionality reduction.
The layer feature concatenation scheme (4.4) that we use instead is reminiscent of

spatial pyramid matching [64, 4], where one feature gc is computed for each spatial
cell c = 1, . . . , 8 and these are subsequently concatenated. Our concatenated image
features fl are instead computed from high-dimensional filtered versions of the image,
and indeed this approach can be combined with SPM to produce per-spatial-cell layer
features flc.

Other standard successful approaches can also be combined with our proposed hy-
brid CNN/aggregator features, including power normalization of the xl

ij [1], application
of an explicit Hellinger kernel-map to our hybrid feature [9] and late fusion with other
feature channels. Alternate aggregation schemes such as VLAD or triangulation em-
bedding [19, 51] can also be used, but we chose BoW for its low computational cost
and Fisher given that is the best performing aggregator in classification.

4.4 Results

In this section we validate our proposed hybrid CNN/aggregator feature using the
publicly available Pascal-VOC-2007 dataset [27]. We use the standard mean Average
Precision (mAP) measure computed over the test set as a performance metric.

4.4.1 Impact of layer subset L

In Fig. 4.2 we evaluate the impact on performance of the layer subset L in (4.4)
used to build hybrid features. We consider three strategies for selecting L: using a
single layer, L = {L}, using the first L layers, L = {1, . . . , L}, and using the last L
layers, L = {10, 9, . . . , 10− L + 1}. As seen in Fig. 4.2, the results for the single-layer
strategy indicate that layers further down the pipeline are more informative (although
the curve is not monotonic). Indeed the best strategy overall consists of using the last 5

41

CHAPTER 4. HYBRID MULTI-LAYER CNN/AGGREGATOR FEATURE

layers (and using only 3 layers results in marginal performance decrease). The resulting
hybrid feature performs substantially better than BoW+SPM with 4, 000 codewords
and performs similar to FV+SPM with 256 mixture components [88], despite being
150 times smaller.

2 4 6 8 10

30

40

50

60

L

m
A
P

Single layer L

Last L layers
First L layers

Figure 4.2 – The mAP is plotted for hybrid features built using a single layer, the last L
layers and the first L layers (excluding fully connected layers 11-13), for codebook size 500.
Baseline results for BoW and FV are displayed using ◦ and × markers.

4.4.2 Impact of codebook size

In Fig. 4.3 we evaluate the impact on performance of varying the codebook size when
using hybrid CNN/BoW features built from the last 5 layers. A codebook of size 500
yields the best performance. And even with a codebook size of 30, which amounts to
a feature vector size of 150, our method outperforms BoW + SPM.

102 103

50

55

60

codebook size

m
A
P

Figure 4.3 – The mAP vs the codebook size in log scale when using last L=5 layers.

4.4.3 Comparison to other approaches

In Table 4.2 we compare our results with some of the best results reported in the
literature. We include results for hybrid features built using FV aggregators with
64 mixture components. Despite the established superiority of FV aggregation over
BoW aggregation, the FV-based hybrid features perform poorly relative to BoW-based

42

CHAPTER 4. HYBRID MULTI-LAYER CNN/AGGREGATOR FEATURE

0 5 10

71

72

73

74

L
m
A
P

Figure 4.4 – Using last L layers from Fig. 4.1. Here we include the fully connected layers
11-13.

method Training time+resource
PRE1000C [79] ≈ 1 day (GeForce GTX Titan GPU)

Hybrid CNN/BoW, N=500 ≈ 1hr + 5min (8 core CPU)

Table 4.1 – Table illustrating training time for 500 codebook size and when using the last 5
layers. Training times are for the unsupervised learning part with and without supervised
learning of linear SVM classifiers for all Pascal VOC 2007 classes. This is compared to the
training time taken by the method [79].

hybrid features. We believe that this is due to the small number of local descriptors in
CNN layers, as this makes the vector-averaging process in (4.2) statistically noisy.

The best performing system in Table 4.2 is PRE1000C [79]. Their approach consists
of substituting layer 13 in Fig. 4.1 by two adaptation layers trained on Pascal VOC. As
is the case for CNN pipelines, this training procedure is time consuming and requires
expensive GPU cards, as illustrated in Table 5.1. Furthermore, at testing time, their
approach requires applying the full 13-layer CNN pipeline to each of 500 patches from
an image, increasing testing complexity considerably. Our approach requires a single
CNN pipeline pass over the non fully-connected layers, resulting in dramatically lower
testing time, as the CNN complexity is largely concentrated in the first fully-connected
layer.

The same complexity problem is incurred by the feature construction scheme of
[40], where the authors propose using the output of CNN layer 13 as a local descriptor
computed on multi-scale dense image patches. Inspired by this approach, we further
consider stacking the output of the fully connected layers (11, 12, and 13) to our hybrid
CNN/aggregator feature. We illustrate the results of this approach in Fig. 4.4, where
the non-fully connected layers are processed according to (4.4), and the fully-connected
layers are concatenated without any processing. Note that using the 3 fully connected
layers and the last non-fully connected layer results in performance close to 74 mAP
points. This compares very well to the performance of 77.73 of PRE1000C in Table
4.2, particularly considering the drastic difference in training time and testing time.

43

CHAPTER 4. HYBRID MULTI-LAYER CNN/AGGREGATOR FEATURE

method feature dimension mAP
BoW + SPM, N=4000 [9] 32000 45.39

FV (SIFT) [88] 262144 58.3
FV (SIFT + color) [88] 262144 60.3

PRE1000C [79] 77.73
Hybrid CNN/FV, m=64 81920 54.56
Hybrid CNN/BoW, N=30 150 50.53
Hybrid CNN/BoW, N=500 2500 60.32

Table 4.2 – Comparison of our results (using last 5 layers) with the state-of-the-art (N rep-
resents the codebook size in BoW).

4.5 Conclusion

In this work, we proposed a hybrid Convolutional Neural Network (CNN) / Bag-of-
Words (BoW) image feature extraction approach. Treating the output of intermediate
layers of a pre-trained CNN as local descriptors allowed us to use an unsupervised Bag-
of-Words aggregator to obtain an image feature that outperforms standard aggregators
based on local descriptors substantially on the Pascal VOC 2007 benchmark. Append-
ing the output of the fully-connected layers to our hybrid feature further improves the
performance of our approach, making it competive with CNNs variants adapted to
Pascal VOC 2007, and at a fraction of the training and testing cost.

44

Chapter 5

Max-Margin, Single-Layer
Adaptation of Transferred Image
Features

Contents
5.1 Introduction . 46

5.2 Proposed approach . 46

5.3 Results . 47

45

CHAPTER 5. MAX-MARGIN, SINGLE-LAYER ADAPTATION

In the previous chapter we have presented a novel method which combines the
Convolutional Neural Networks (CNNs) with traditional aggregators to reduce the
computational complexity of the overall classification system. We have shown that
the proposed method was competitive against Oquab et al. [79] and Chatfield et al.
[10] in terms of computational resources (i.e. training and test time). However, in
terms of classification accuracy, we did not perform very well. Therefore, the work
in this chapter is focused on improving the classification accuracy while keeping the
computational complexity similar to the previously proposed method of Chapter 4.

5.1 Introduction

CNNs learned on the ImageNet dataset have been shown to be excellent feature ex-
tractors that, combined with linear SVM classifiers, yield outstanding results when
transferred to target datasets (e.g., Pascal VOC, MIT Indoor 67 and Caltech) not used
during the CNN learning process [101]. Given the large number of free parameters in
CNN models (tens of millions), learning CNNs directly on these smaller target datasets
is a difficult task. Yet recent work [79, 10] has established that it is possible to adapt the
transferred CNN parameters to the smaller target dataset to further improve results.

The approach we present herein addresses this scenario by learning a single adapta-
tion layer jointly with linear classifiers under a max-margin objective. Unlike existing
adaptation schemes, our learning process is very fast, taking in the order of a few
minutes when running on a single core CPU, and does not rely on expensive dataset
augmentation methods. We further show that it is possible to obtain very good results
with features as little as size 20.

Oquab et al. [79] have proposed a related CNN adaptation method that consists
of re-learning, on the Pascal VOC dataset, the last two layers of the transferred archi-
tecture. The learned adaptation layers operate on patches from the original images,
with the patch overlap with the object bounding box determining each patch’s label at
training time. The approach is hence limited by the availability of expensive bounding
box annotations, and in this work we show that comparable results can be obtained
without relying on bounding box annotations.

Chatfield et al. [10] consider an objective based on a hinge-loss that is similar to
the max-margin objective we propose herein. Their adaptation approach consists of
continuing the learning process began on ImageNet on the new target dataset, but with
a slower learning rate. The transition layer between the last convolutional and first
fully connected layer, in particular, is updated in the process, a costly procedure (in
terms of learning time and required hardware) given the large size of this layer (tens
of millions of coefficients).

5.2 Proposed approach

Our approach consists of jointly optimizing the linear classifiers w1 . . . wK of the K
target classes, along with the model parameters M ∈ R

r×D, b ∈ R
D using

argmin
M,b;

w1,...,wK

K
∑

k=1

|wk|
2 +

C1

N

N
∑

i=1

ℓ

(

yi,k h (Mxi + b)⊤
wk

)

(5.1)

where h and ℓ represents the Rectified Linear Unit (ReLU) and hinge loss operator, re-
spectively, xi ∈ R

D are the CNN feature representations of the image and yi,k ∈ {−1, 1}

46

CHAPTER 5. MAX-MARGIN, SINGLE-LAYER ADAPTATION

are labels indicating the absence/membership of image i in class k. For notational sim-
plicity, we disregard the classifiers’ bias terms.

Block-coordinate SGD. We use block-coordinate Stochastic Gradient Descent (SGD),
sequentially updating w1, . . . , wK , M and b on the same batch of b images, correspond-
ingly using b SGD steps per block of coordinates before randomly drawing a new batch
(without repetition in each epoch). We initialized M using r randomly selected training
features. Bias term b and w1, . . . , wK are initialized to zero.

Early stopping. To avoid over-fitting of the model to the training data, we use an
early stopping criterion guided by the performance over the validation set.

Adaptive learning rate. We use an adaptive learning rate for M that starts at 1
and decays by half to an empirical minimum of 10−2. This rate is updated every 200
images using cross-validation by running SGD on 50 training images chosen from the
next batch. At the end of the process, the final learning rate is used to do a single
training run over the validation images.

5.3 Results

We evaluate our method using Pascal-VOC-2007 as a target dataset, using the stan-
dard mean Average Precision (mAP) performance measure. This dataset consists of
4192 test and 5011 training images. We hold out 811 training images, choosing them
uniformly over all classes, and use them as a validation set. Each image is represented
using the VGG-128 (128-dimensional) CNN model [10].

In Fig. 5.1 we evaluate the impact on test set mAP of varying the numer of rows r
of M. We consider two cases: joint optimization of M and the classifiers, as per (6.4),
and optimization of only the classifiers, keeping M fixed to its initialization value.
We can observe that our performance is constant for all output feature sizes r. The
adaptation layer provides a large advantage for all r values of as much as 17 points in
mAP for r = 20, and 1.2 points for r = 128.

In Table 5.1 we compare our method with two state-of-the-art CNN adaptation
methods [79, 10]. Our result of 77.58 is comparable to the 77.73 mAP of [79], yet
our model has 4e3× less free parameters and takes only a few minutes to learn on a
single core CPU ([79] takes close to one day on a GPU). The results of [10] are better
than ours, but their CNN model is even larger than [79], with a comparable increase
in learning time and required processing power.

In Table 5.2 we show the advantage of using an adaptive learning rate versus a fixed
learning rate by displaying the test set mAP after a fixed number of iterations. In Fig.
5.2, we illustrate our early stopping approach by plotting the test set, training set and
validation set mAP for a sample run.

In Fig. 5.3 we evaluate the effect of batch size in our block-coordinate SGD opti-
mization process, noting that, for a fixed number of epochs, larger batch sizes (up to
the training set size) result in better performance.

47

CHAPTER 5. MAX-MARGIN, SINGLE-LAYER ADAPTATION

Method Train time Dim # params. mAP
PRE1000C [79] ≈ 1 day - ∼8.5M 77.73

CNN S TUNE-RNK[10] - 4K ∼100M 82.42
Ours 120s 20 2759 76.24
Ours 190s 70 9550 77.58

Table 5.1 – Comparison of our proposed method with two existing CNN adaptation schemes.

20 40 60 80 100 120

60

65

70

75

Num. rows r in M

m
A
P

Classifs. only

Joint optim.

Figure 5.1 – Effect of varying the number of rows r in M on performance. Here we also
compare the results of Joint Optim vs Classifs.

0 20 40 60 80 100

1

1,1

1,2

SGD iterations, in num. of epochs

N
or
m
al
iz
ed

m
A
P

Train data

Val. data

Test data

Figure 5.2 – Illustration of cross-validation strategy: the optimal parameters are chosen based
on the best performance on the validation set, which occurs at approximately 20 epochs.

Fixed Adaptive
Learn rate 10−5 10−2 0.09 0.5 1.0 -

mAP 74.66 75.60 76.81 74.96 73.43 77.25

Table 5.2 – Test set mAP when using fixed learning rate and adaptive learning rate.

48

CHAPTER 5. MAX-MARGIN, SINGLE-LAYER ADAPTATION

101 102 103

75

75.5

76

76.5

77

Batch size b

T
es
t
m
A
P

Figure 5.3 – Performance as a function of batch size for 20 epochs of training.

49

Chapter 6

Learning the Structure of Deep
Architectures Using ℓ1

Regularization

“ Sometimes A Scream Is Better
Than A Thesis.”

Ralph Waldo Emerson

Contents
6.1 Introduction . 51

6.2 Background . 51

6.3 Learning the structure of deep architectures 52

6.3.1 Constraining layer complexity 53

6.3.2 Problem formulation . 54

6.3.3 Learning approach . 55

6.4 Results . 56

6.5 Conclusion . 59

50

CHAPTER 6. LEARNING THE STRUCTURE OF DEEP ARCHITECTURES

6.1 Introduction

The first several layers in Convolutional Neural Network (CNN) are usually convolu-
tional layers consisting each of nj (with j the layer index) spatially-convolutional ker-
nels that operate on the nj−1 dimensional spatial signals output by the previous layer.
Interspersed between these layers are normalization layers and spatial max-pooling lay-
ers that can be seen as non-linear convolutional operators. The normalization layers
process a single spatial position and effectively balance kernel output energy across
space. The max-pooling layers reduce the spatial support of the signal by max-pooling
signals in small spatial neighborhoods. Given the convolutional nature of all these
operators, they can process input images of arbitrary dimensions.

The latter layers of CNN architectures are instead fully connected layers that require
inputs of fixed size. This constraint on input size propagates down the convolutional
layers, effectively fixing the CNN architecture’s expected input image size (sizes around
225 × 225 are common [59, 52]). In this respect, the convolutional layers of CNN
architectures can be seen as very large fully connected layers that have been constrained
to have a weights matrix that is structured and highly sparse, effectively regularizing
the architecture.

One important consideration when designing CNN architectures is the choice of
weights matrix size across the various Fully Connected Layers (FCLs). Besides being
another important means of regularization, the size of the FCL weight matrices has a
strong impact on system complexity. The first fully connected layer, in particular, can
account for 90% of the number of coefficients in the CNN [59]. When using pre-learned
CNNs as generic image feature extractors [101, 40, 10], rectangular weights matrices
further have the potential advantage of producing reduced-size feature vectors [10, 61].
But, up to now, the approach used to select the dimensions of the rectangular matrices
across the various layers has been empirical, and researchers have mostly focused on
using constant sizes across all fully connected layers.

The main contribution of the present work is hence to show that the sizes of the FCL
weight matrices can be selected as a part of the supervised CNN learning procedure.
We do this by inserting a diagonal matrix Dj between layers (j, j + 1), accordingly pe-
nalizing the CNN learning objective with the sparsity inducing ℓ1 norm on the diagonal
coefficients of each Dj. Our method can be seen as formalizing the tradeoff between
the generalization power of the model and its storage/computation requirements, as
represented by the FCL weight matrix sizes. We then show experimentally that it is
indeed possible to choose optimal FCL weight matrix sizes and that these vary with
the layer index. Our experiments further show that the approach results not only in
smaller feature vectors, but also in higher image classification performance.

The remainder of this chapter is organized as follows: in the next section, we present
a review of CNN methods that are related to our work. In Section 6.3, we present our
proposed method, subsequently evaluating it experimentally in Section 6.4. We then
provide some concluding remarks in Section 6.5.

6.2 Background

Given the large number of free parameters in CNN architectures, regularization is
an important consideration when learning deep architectures, and various works have
explicitly addressed it. One very successful approach currently deployed in publicly
available CNN learning algorithms [52] is dropout [111]. Dropout aims to prevent

51

CHAPTER 6. LEARNING THE STRUCTURE OF DEEP ARCHITECTURES

neighboring units from memorizing training samples. This is accomplished by ran-
domly zeroing a subset of the activation values at the output of each fully connected
layer, choosing a different random subset for each training example. The end result
is that a different effective training set is used for neighboring weights. A related
approach, DropConnect, zeros the FCL weights instead of the activation coefficients
[125]. Other regularization approaches instead consist of using unsupervised learning
either as an initializing stage before a second, strongly supervised stage, or in a mixed
supervised/unsupervised approach [39].

A related line of work consists of pre-learning an entire architecture on a large,
generic image dataset and then adapting the resulting architecture to a new target
dataset. The approach of [10], for example, adapts the entire architecture by continuing
the learning process at a reduced learning rate using the samples from the new target
dataset. In [79], the adaptation is instead carried out by entirely re-learning the last
two layers on the new target dataset. A similar idea consists of using the activations of
the penultimate layer of a pre-learned architecture as an image feature. When used for
image classification, SVM classifiers are then learned on top of these features [101], and
the collection of such linear classifiers can be seen as a single fully connected adaptation
layer. Linear classifiers have also been used in place of the soft-max classifier when
learning either the entire architecture [10], or along with one other fully-connected
adaptation layer [61].

Various authors have also considered CNN variants of classical approaches including
the ubiquitous spatial pyramid [64], the Fisher Vector (FV) [88] and Bag-of-Words
(BoWs) [108]. The approach of [60], for example, consists of treating the nj-dimensional
spatial signals at the output of the j-th layer as a densely extracted local descriptor,
and then building an aggregated representation such as a bag-of-words or a Fisher
vector on top of these local descriptors.

The work of [46] uses a Spatial Pyramid Pooling (SPP) layer between the last
convolutional layer and the first fully-connected layer. This should make it possible to
use input images of arbitrary size, as the SPP layer maps the arbitrarily-sized output
from the last convolutional layer to a vector of constant size compatible with the
subsequent fully connected layer. In practice, however, the approach is implemented
using a max-pooling layer with large stride.

The approach presented in [40] consists of using a CNN as a local feature extractor
by treating each patch from a dense sampling of image patches as an image. The
activation features resulting from each patch are then treated as local descriptors to
build an aggregated, global feature vector. A similar approach is presented in [38]:
given a large number of region proposals derived from the input image, the method
extracts CNN activation features for each region and classifies them into given set of
classes using linear classifiers. Approaches such as that of [41, 38] that use CNNs as
local feature extractors suffer from a very large computational complexity, and could
hence benefit from complexity constrained CNNs such as the ones presented herein.

6.3 Learning the structure of deep architectures

In this section we present our proposed approach, illustrated in Fig. 6.1. The architec-
ture we consider consists of a sequence of fully-connected layers, with a diagonal matrix
between them. We will constrain the diagonal matrix to have a sparse diagonal, and
this will implicitly define the size of the weights matrices of each layer. Rather than
using the standard soft-max classification layer as the last layer, we will use a bank of

52

CHAPTER 6. LEARNING THE STRUCTURE OF DEEP ARCHITECTURES

Figure 6.1 – Proposed deep processing pipeline. Given an image representation, e.g., the
output of the convolutional part of a pre-trained state-of-art CNN, J fully connected layers,
each involving a diagonal matrix that controls its effective dimensions, are jointly learned
with final linear SVM classifiers. Here, [z]+ = [max(0, zi)]i is the commonly used Rectified
Linear Unit (ReLU) non-linearity.

linear SVM classifiers similarly to the approaches in [10, 61].

6.3.1 Constraining layer complexity

Formally, we can express the architecture in Fig. 6.1 as a concatenation of units of the
following form:

f j(x) = Dj
[

Mjx + bj
]

+
, (6.1)

where [z]+ = [max(0, zi)]i is the commonly used Rectified Linear Unit (ReLU) non-
linearity, here applied to a vector z = [zi]i. Input vector is nj−1-dimensional and output
is nj-dimensional. This layer is defined by nj-dim vector bj, nj-dim diagonal matrix
Dj and matrix Mj of size nj × nj−1. A deep architecture can be derived from (6.1)
using the standard stacking approach. Letting ◦ denote the composition operator such
that f ◦ g(x) = f(g(x)), this can be denoted as

fJ ◦ . . . ◦ f 1(x), (6.2)

where, in this case, the vector x denotes the representation of the image at the input
of the architecture. The image representation can consist of a direct re-ordering of the
RGB values in the image [59, 10], or it can be a feature derived from the image [79, 61],
which is the approach we follow in the present work.

We are interested in the case when the diagonal entries of Dj are sparse. When
this is the case, the corresponding rows of Mj and bj can be removed, as well as the
corresponding columns of Mj+1. To see this, let I denote the support (indices of non-
zero positions) of the diagonal entries of Dj. Let AI,., A.,I and AI,I denote, respectively,
the sub-matrices derived from matrix A by retaining respectively the rows, the columns
and both at positions indexed by I. After being processed by the weights matrix Mj+1

of the next layer, the expression in (6.1) becomes

f j+1(x) =
[

M
j+1
.,I D

j
I,I

[

M
j
I,.x + b

j
I

]

+
+ b

j+1
I

]

+
. (6.3)

In this sense, the sparsity of the diagonal of Dj encodes the computational complexity
of the system, as it selects the effective dimensions of the Mj matrices and the bj

vectors.

53

CHAPTER 6. LEARNING THE STRUCTURE OF DEEP ARCHITECTURES

6.3.2 Problem formulation

The architecture in Fig. 6.1 consists of a large number of parameters. Besides the
variables Mj, Dj, bj associates to each layer j = 1, . . . , J in (6.1), one needs to learn
the vectors w1, . . . , wK that define the SVM classifiers for the K classes. We will
learn these variables from an annotated training set comprised of N training images
xi, i = 1, . . . , N , each with K labels yk

i ∈ {−1, 1}, k = 1, . . . , K indicating whether
image i belongs to class k or not. Given such a training set, our approach consists of
minimizing the following objective over all the variables {(Mj, bj, Dj)}J

j=1 and all the
classifiers {wk}K

k=1:

1

K

K
∑

k=1

(

‖wk‖2
2 +

C

N

N
∑

i=1

l
(

yk
i (fJ ◦ . . . ◦ f1(xi))

⊤
wk
)

)

+ δ
J
∑

j=1

‖Dj‖1 + µ
J
∑

j=1

‖Mj‖2
F .

(6.4)
In the above expression, we have used (i) l(x) to denote the hinge loss, given by
max(0, 1 − x); (ii) ‖D‖1 to denote the trace norm, given by

∑

i |Dii| for the case of
diagonal D; and (iii) ‖M‖2

F to denote the squared Frobenius norm
∑

ij M2
ij.

To illustrate the motivation behind this learning objective, we note first that the
terms inside the summation over k in (6.4) are recognizable as an SVM objective
for class k, where the scalar C is the SVM regularization parameter. The feature
vectors used within this SVM objective are given by fJ ◦ . . . ◦ f1(xi), which depends
on {(Mj, bj, Dj)}J

j=1. Hence we are learning the classifiers jointly with the feature
extractor used to represent the input images. A similar approach has been used in
[115] in the context of Fisher vector encoders to learn the encoder’s GMM parameters
under a discriminative objective.

The two regularization terms comprised of summations over j in (6.4) serve multiple
purposes. One first purpose is to keep the SVM terms from decreasing indefinitely.
Recall that the aim of an SVM objective is to maximize the margin between positive
and negative examples. If it were not because of the penalty terms ‖wk‖2

2, it would be
possible to minimize this indefinitely by multiplying the linear classifiers by a very large
scalar. The penalty terms on the Dj and Mj serve a similar purpose when learning
the features jointly with classifiers.

A second important purpose is to automatically select the shapes of the weights
matrices Mj and bj. When applied to diagonal matrices such as Dj, the trace norm is
equivalent to an ℓ1 norm computed from the diagonal vector of Dj, and ℓ1 norms are
known to be well-behaved (i.e.convex and differentiable almost everywhere) sparsity
inducing norms. They are hence excellent surrogates for the ℓ0 pseudo-norm that
counts the number of non-zero entries of a vector. Since the matrices Dj multiply
corresponding Mj and Mj+1 matrices, low-valued coefficients of Dj can be compensated
with increased norm of rows in Mj and columns in Mj+1. The penalty terms on the
norm of the Mj’s hence address this ambiguity.

Approaches other than the one presented in (6.4) and Fig. 6.1 are indeed possible.
For example, it would be possible to dispense altogether of the matrices Dj by using
an alternative, structure inducing penalization on the matrices Mj. The ℓ1,2 matrix
norm is an appealing alternative. Letting m′

i denote the transposed i-th row of M, it
is given by

‖M‖1,2 =
∑

i

‖m′

i‖2, (6.5)

and this is in turn an ℓ1 penalization of the vector [‖m′
i‖2]i of ℓ2 norms of the rows

of M. As such, it forces entire rows of M to be zero. Yet in the context of learning

54

CHAPTER 6. LEARNING THE STRUCTURE OF DEEP ARCHITECTURES

problems such as ours, Stochastic Gradient Descent (SGD) optimization methods that
process a single example at a time are a must. An adaption of SGD is thus required
that processes one example at a time while retaining nonetheless the sparse structure.
As we will see next, our approach (6.4) using diagonal matrices can accomplish this
with a simple adaptation of SGD-based solvers for ℓ1 penalized SVM problems [5].

6.3.3 Learning approach

In order to derive an algorithm to minimize (6.4), we will first re-write it in a more
convenient form using the following definitions:

rk,i = ‖wk‖2
2 + Cl

(

yk
i (fJ ◦ . . . ◦ f1(x))⊤

wk
)

, (6.6)

Ri =
1

K

K
∑

k=1

rk,i + δ
J
∑

j=1

‖Dj‖1 + µ
J
∑

j=1

‖Mj‖2
F , (6.7)

the resulting form of (6.4) is

1

N

N
∑

i=1

Ri. (6.8)

In order to minimize (6.8), we will employ a block-coordinate SGD approach wherein,
for each sample i, we process each block of coordinates M1, D1, b1, . . . , MJ , DJ , bJ ,
w1, . . . , wK successively. Letting θ denote a generic block of coordinates, the update
step for that block at time instance t is as follows, where it is a sample index drawn ran-
domly at time t, and the coefficient γt is the learning rate chosen using cross-validation:

θt+1 = θt − γt

∂Rit

∂θ

∣

∣

∣

∣

∣

θt

. (6.9)

The required sub-gradient ∂Ri

∂θ
is given by

∂Ri

∂θ
=

1

K

K
∑

k=1

∂rk,i

∂θ
+ δ

J
∑

j=1

∂‖Dj‖1

∂θ
+ µ

J
∑

j=1

∂‖Mj‖2
F

∂θ
(6.10)

Expressions for ∂rk,i

∂θ
when θ represents a classifier wk are readily available from

the literature on SGD-based SVM solvers [99, 5], and expressions for the case when θ
represents a weights matrix Mj or offset vector bj are available from the literature on
deep learning [65]. The gradient of the squared Frobenius norm is just a rasterization
of 2Mj (whenever θ represents the corresponding block of coordinates Mj).

Concerning the gradient with respect to the matrices Dj, it is possible to apply the
update rule specified in (6.10) directly, but this will produce matrices Dj with diagonals
that are only approximately sparse. Instead, we will use a procedure adapted from ℓ1

penalized SVM solvers [5]. To this end, we represent each Dj in terms of two non-
negative vectors vj and uj:

Dj = diag(vj)− diag(uj), where vj, uj ≥ 0. (6.11)

In order to enforce the non-negativeness of the vj and uj, whenever we are optimizing
over one of these blocks, we will follow the SGD update step in (6.9) by a projection
into the set of non-negative vectors. The modified update step is given by

θt+1 =

[

θt − γt

∂Rit

∂θ

∣

∣

∣

∣

∣

θt

]

+

. (6.12)

55

CHAPTER 6. LEARNING THE STRUCTURE OF DEEP ARCHITECTURES

Choice of learning rate. In order to make our algorithm converge at a fast rate, we
will use an adaptive learning rate that gets updated and kept fixed for each batch of B
samples. The learning rate is updated at the beginning of the batch using γt = γt−1·2

−n,
where successive values of n = 0, 1, 2, . . . are tested until further increasing n no longer
reduces the cost computed over a subset of the B samples from the batch. This
approach has the advantage that the subset used to choose n is small, and hence
adaptation is fast.

Early-stopping and choice of regularization parameters. We used two dif-
ferent early-stopping strategies that allowed us to select the number of iterations T
(expressed as number of epochs) to use, both based on cross-validation. In one case we
used the iteration that produced the highest mean Average Precision (mAP) over the
validation set, while in the second case we chose the iteration giving the lowest cost,
again computed over the validation set. We likewise use the validation set to choose
the regularization parameters.

6.4 Results

In this section we evaluate our proposed learning algorithm and compare it against
various state-of-the-art algorithms. To this end, we use the Pascal-VOC-2007 dataset,
which consists of 4192 test images and 5011 training images. We hold out 811 training
images, choosing them uniformly over all classes, and use them as a validation set.
As an image representation, we will use the VGG-128 model of [10] which produces
128-dimensional features, accordingly using weights matrices of size 128× 128.

Choice of regularization values Our learning algorithm is governed by three dif-
ferent regularization methods: the penalty weights µ and δ, and the number of training
epochs T . The number of training epochs is determined using the validation set by
computing either the (i) the validation mAP or (ii) the validation cost and choosing
the number of training epochs that gives the best value. We found that using the
validation mAP to determine T resulted in higher test mAP, but diagonal matrices
Dj that are not necessarily sparse. Using the validation cost to determine T , on the
other hand, resulted in slightly lower mAP values but in much higher sparsities for the
matrices Dj.

In Fig. 6.2 we illustrate the cross-validation method we use to choose the penalty
weights µ and δ. The approach consists of keeping one penalty weight fixed while
varying the second one, and then choosing the penalty weight that results in the highest
validation mAP (this corresponded roughly to the value producing the highest test
mAP).

Varying the number of layers J In Table 6.1, we evaluate the performance of
our method as a function of the number of layers J in the architecture. We choose
the regularization values following the procedure outlined above, using the validation
cost to select the stopping point T . Note that our method succeeds in choosing sparse
matrices Dj while retaining a high test mAP. For J > 2, only the first layer results
in a matrix Dj with sparse diagonal. The reason for this is that the cross-validation
procedure used to select δ in (6.7) only takes the mAP into account.

56

CHAPTER 6. LEARNING THE STRUCTURE OF DEEP ARCHITECTURES

1 2 3 4

·10−3

70

72

74

76

δ

m
A
P

Test mAP

Valid. mAP

1 1,2 1,4 1,6 1,8 2

·10−5

73

74

75

76

77

µ

m
A
P

Test mAP

Valid. mAP

Figure 6.2 – Effect of the penalty weights δ and µ for a single-layer architecture, using
validation cost as a stopping criterion.

J Test mAP Number of zeros in diagonal of Dj δ µ T

j = 1 2 3 4 5 6

1 76.38 93 - - - - - 8.0e-4 1.5e-5 120
2 76.20 105 105 - - - - 1.4e-3 3.5e-5 180
3 76.58 92 0 0 - - - 8.0e-4 1.0e-5 240
5 76.55 91 0 0 0 0 - 8.0e-4 2.5e-5 360
6 76.19 88 0 0 0 0 0 7.0e-4 1.4e-5 420

Table 6.1 – Using validation cost to choose the number of training epochs T , and validation
mAP to choose the best δ first, and then the best µ.

0,5 1 1,5 2 2,5

·10−3

100

200

300

400

Penalty weight on D

S
p
ar
si
ty

j=1

j=2

j=3

j=4

0,5 1 1,5 2

·10−3

70

72

74

76

Penalty weight on D

m
A
P

Valid. mAP

Test mAP

Figure 6.3 – Effect of the penalty weight δ on (left) the number of zero diagonal entries of
D

j , j = 1, . . . , 4, and (right) on the classification performance as measured by mAP. The zero
diagonal entries are presented as stacked plots so that the vertical displacement of any shaded
regions corresponds to the number of zero diagonal entries of D

j for the corresponding layer.

In Fig. 6.3, we hence plot both the sparsity for all layers and the corresponding
test and validation mAPs when varying the penalty weight δ. Note that increasing δ
drastically increases the number of zero diagonal entries in the architecture while only
slightly affecting the classification performance. For example, for δ = 2.5e−3, close to
82% of the diagonal entries in all Dj are zero, while the test mAP has only dropped

57

CHAPTER 6. LEARNING THE STRUCTURE OF DEEP ARCHITECTURES

0 20 40 60

0

100

200

Num. of training epochs

S
p
ar
si
ty

Layer 1

Layer 2

Figure 6.4 – Number of zero entries in diagonal of D
j versus iteration number (expressed as

number of epochs) for an architecture of J = 2 layers.

by 4.5%. For δ = 8e−4, close to 40% of the diagonal entries are zero, while the system
mAP is nearly unaffected.

For completeness, in Fig. 6.4 we present a plot of layer sparsity as a function of the
training epoch. Note that D1 becomes sparse initially, and this reduces the intrinsic
dimensionality of the signals at the input of the second layer, hence enabling D2 to
become sparse.

Comparison against state-of-the-art In Table 7.5.4 we compare our proposed
method against various state-of-the-art algorithms derived from CNN methods. We
include four reference methods that rely on data augmentation (the first four), and
two reference methods that do not (the next two). The last three lines in the table
correspond to three variants of our architecture. The first two have depth J = 1, 3 and
are learnt with sparsity in mind by using a stopping criterion T selected using validation
cost. The last one is learned using validation mAP to select the stopping criterion T .
Note that, for J = 1, 3, our method produces very small features of size 35 and 36,
respectively, while at the same time outperforming all the reference methods not-relying
on augmentation, even when these use features many times larger. Our architecture
with J = 6 results in a mAP value that outperforms not only the non-augmented
references approaches, but also two of the four approaches relying on augmentation.

58

CHAPTER 6. LEARNING THE STRUCTURE OF DEEP ARCHITECTURES

Method Train time Dim # params. mAP

CNN S TUNE-RNK aug[10] - 4K ∼100M 82.42
VGG-128 aug [10] ∼ 10s 128 2560 78.90

off-the-shelf aug[100] - 4K 81K 77.2
PRE1000C [79] ∼ 1 day - ∼8.5M 77.73

VGG-128 [10] ∼ 10s 128 2560 76.34
off-the-shelf[101] - 4K 81K 73.9

Ours(J = 1) 210s 35 7040 76.38
Ours(J = 3) 630s 36 9760 76.58
Ours(J = 6) 1260s 128 100K 77.63

Table 6.2 – Comparison of our proposed method with various existing CNN methods. The
training time indicated includes only the training time related to Pascal VOC, and not training
time incurred when learning on ImageNet. The top four methods rely on some form of data
augmentation and have training sets that effectively many times bigger than the PascalVOC
training set. The bottom five methods (including ours) only use the training images specified
in PascalVOC.

6.5 Conclusion

We present a method that automatically selects the size of the weight matrices inside
fully-connected layers comprising a deep architecture. Our approach relies on a reg-
ularization penalty term consisting of the ℓ1 norm of the diagonal entries of diagonal
matrices inserted between the fully-connected layers. Using such a penalty term forces
the diagonal matrices to be sparse, accordingly selecting the effective number of rows
and columns in the weights matrices of adjacent layers. We present a simple algorithm
to solve the proposed formulation and demonstrate it experimentally on a standard
image classification benchmark.

59

Chapter 7

SPLeaP: Soft Pooling of Learned
Parts
for Image Classification

Contents
7.1 Introduction . 61

7.2 Related works . 62

7.3 Proposed Approach . 64

7.4 Optimization specific details 65

7.5 Results . 66

7.5.1 Experimental settings . 66

7.5.2 Experimental validation of the contributions 67

7.5.3 Parameters/Design related choices 69

7.5.4 Comparisons with state-of-the-art 69

7.6 Qualitative Analysis . 71

7.7 Conclusions . 72

60

CHAPTER 7. SPLEAP: SOFT POOLING OF LEARNED PARTS

7.1 Introduction

This chapter addresses the problem of image classification with Part-Based Models
(PBMs). Decomposing images into salient parts and aggregating them to form dis-
criminative representations is a central topic in the computer vision literature. It is
raising several important questions such as: How to find discriminative features? How
to detect them? How to organize them into a coherent model? How to model the vari-
ation in the appearance and spatial organization? Even if works such as the pictorial
structure [33], the constellation model [128], object fragments [118], the Deformable
Part Model [31] or the Discriminative Modes Seeking approach of [22] brought interest-
ing contributions, as well as those in [107, 53, 23], the automatic discovery and usage
of discriminative parts for image classification remains a difficult and open question.

Recent PBMs for image classification e.g, [22, 107, 53, 22, 85] rely on five key
components: (i) The generation of a large pool of candidate regions per image from
(annotated) training data; (ii) The mining of the most discriminative and represen-
tative regions from the pool of candidate parts; (iii) The learning of part classifiers
using the mined parts; (iv) The definition of a part-based image model aggregating
(independently) the learnt parts across a pool of candidate parts per image; (v) The
learning of final image classifiers over part-based representations of training images.

One key challenge in the 2nd and 3rd components of PBMs lies in the selection
of discriminative regions and the learning of interdependent part classifiers. For in-
stance, one cannot learn the part classifiers before knowing discriminative regions and
vice-versa. Extensive work has been done to alleviate the problem of identifying dis-
criminative regions in a huge pool of candidate regions, e.g, [53, 23, 22].

Once the discriminative regions are discovered and subsequently part classifiers are
trained, the 4th component in a PBM – i.e., the construction of the image model based
on the per image part presence – is basically obtained by average or sum pooling of
part classifier responses across the pool of candidate regions in the image. The final
classifiers are then learnt on top of this part-based image representation. Although
the aforementioned methods address one of the key components of PBMs, i.e., mining
discriminative regions by using some heuristics to improve final classification, they fail
to leverage the advantage of jointly learning all the components together.

The joint learning approach of all components of PBMs is indeed particularly ap-
pealing since the discriminative regions are explicitly optimized for the targeted task.
But intertwining all components makes the problem highly non-convex and initializa-
tion critical. The recent works of Lobel et al.[73] and Parizi et al.[85] showed that
the joint learning of a PBM is possible. However, these approaches suffer from several
limitations. First, their intermediate part classifiers are simple linear classifiers and the
expression power of these part classifiers is limited in capturing complex patterns in
regions. Furthermore, they pool the part classifier responses over candidate regions per
image using max pooling which is suboptimal [47]. Finally, as the objective function is
non-convex they rely on a strong initialization of the parts.

In the present work, we propose a novel framework, coined“Soft Pooling of Learned
Parts” (SPLeaP), to jointly optimize all the five components of the proposed PBM. A
first contribution is that we describe each part classifier as a linear combination of weak
non-linear classifiers, learned greedily and resulting in a strong classifier which is non-
linear. This greedy approach is inspired by [77, 34] wherein they use gradient descent
for choosing linear combinations of weak classifiers. The complexity of the part detector
is increased along with the construction of the image model. This classifier is eventually

61

CHAPTER 7. SPLEAP: SOFT POOLING OF LEARNED PARTS

able to better capture the complex patterns in regions. A second contribution is that
we softly aggregate the computed part classifier responses over all the candidate regions
per image. We introduce a parameter, referred as the “pooling parameter”, for each
part classifier independently inside the optimization process. The value of this pooling
parameter determines the softness level of the aggregation done over all candidate
regions, with higher softness levels approaching sum pooling and lower softness levels
resembling max pooling. This permits to leverage different pooling regimes for different
part classifiers. It also offers an interesting way to relax the assignment between regions
and parts and lessens the need for strong initialization of the parts. The outputs of all
part classifiers are fed to the final classifiers driven by the classifier loss objective.

The proposed PBM can be applied to various visual recognition problems, such as
the classification of objects, scenes or actions in still images. In addition, our approach
is agnostic to the low-level description of image regions and can easily benefit from the
powerful features delivered by modern Convolutional Neural Nets (CNNs). By relying
on such representations, and outperforming [79, 10], the proposed approach can also be
seen as a low-cost adaptation mechanism: pre-trained CNNs features are fed to a mid-
to-high level model that is trained for a new target task. To validate this adaptation
scheme we use the pre-trained CNNs of [10]. Note that this network is not fine-tuned
on target datasets.

We validated our method on three challenging datasets: Pascal-VOC-2007 (object),
MIT-Indoor-67 (scenes) and Willow (actions). We improve over state-of-the-art PBMs
on the three of them.

The rest of the chapter is organized as follows. The next section presents a review
of the related works, followed by the presentation of the method in Section 7.3. Section
7.4 describes the algorithm proposed to jointly optimize the parameters, while Section
7.5 contains the experimental validation of our work.

7.2 Related works

Most of the recent advances on image classification are concentrated on the devel-
opment of novel Convolutional Neural Networks (CNNs), motivated by the excellent
performance obtained by Krizhevsky et al.[59]. As CNNs require huge amount of train-
ing data (e.g, ImageNet) and are expensive to train, some authors such as Razavian et
al.[90] showed that the descriptors produced by CNNs pre-trained on a large dataset
are generic enough to outperform many classification tasks on diverse small datasets,
with reduced training cost. Oquaba et al.[79] and Chatfield et al.[10] were the first
to leverage the benefit of fine-tuning the pre-trained CNNs to new datasets such as
Pascal-VOC-2007 [27]. Oquab et al.[79] reused the weights of initial layers of CNN
pre-trained on ImageNet and added two new adaptation layers. They trained these
two new layers using multi-scale overlapping regions from Pascal-VOC-2007 training
images, using the provided bounding box annotations. Chatfield et al.[10], on the other
hand, fine-tuned the whole network to new datasets, which involved intensive compu-
tations due to the large number of network parameters to be estimated. They reported
state-of-art performance on Pascal-VOC-2007 till date by fine-tuning pre-trained CNN
architecture.

In line with many other authors, [101, 10] utilized the penultimate layer of CNNs
to obtain global descriptors of images. However, it has been observed that computing
and aggregating local descriptors on multiple regions described by pre-trained CNNs
provides an even better image representation and improves classification performance.

62

CHAPTER 7. SPLEAP: SOFT POOLING OF LEARNED PARTS

Methods such as Gong et al.[40], Kulkarni et al.[60] and Cimpoi et al.[13] relied on such
aggregation using standard pooling techniques, e.g, VLAD, Bag-of-Words and Fisher
vectors respectively.

On the other hand, Part-Based Models (PBMs) proposed in the recent literature,
e.g, [107, 22, 53, 23], can be seen as more powerful aggregators compared to [40, 50, 60].
PBMs attempt to select few relevant patterns or discriminative regions and focus on
them in the aggregation, making the image representation more robust to occlusions
or to frequent non-discriminative background regions.

PBMs differ in the way they discover discriminative parts and combine them into
a unique description of the image. The Deformable Part Model proposed by Felzen-
szwalb et al.[31] solves the aforementioned problems by selecting discriminative regions
that have significant overlap with the bounding box location. The association between
regions and part is done through the estimation of latent variables, i.e., the positions
of the regions w.r.t. the position of the root part of the model. Differently, Singh et
al.[107] aimed at discovering a set of relevant patches by considering the representative
and frequent enough patches which are, in addition, discriminative w.r.t. the rest of the
visual world. The problem is formulated as an unsupervised discriminative clustering
problem on a huge dataset of image patches, optimized by an iterative procedure alter-
nating between clustering and training discriminative classifiers. More recently, Juneja
et al.[53] also aimed at discovering distinctive parts for an object or scene class by first
identifying the likely discriminative regions by low-level segmentation cues, and then,
in a second time, learning part classifiers on top of these regions. The two steps are
alternated iteratively until a convergence criterion based on Entropy-Rank is satisfied.
Doersch et al.[22] used density based mean-shift algorithms to discover discriminative
regions. Starting from a weakly-labeled image collection, coherent patch clusters that
are maximally discriminative with respect to the labels are produced, requiring a single
pass through the data.

Contrasting with previous approaches, Li et al.[70] were among the first to rely
on CNN activations as region descriptors. Their approach discovers the discrimina-
tive regions using association rule mining techniques, well-known in the data mining
community. Sicre et al.[104] also build on CNN-encoded regions, introducing an algo-
rithm that models image categories as collections of automatically discovered distinctive
parts. Parts are matched across images while learning their visual model and are finally
pooled to provide images signatures.

One common characteristic of the aforementioned approaches is that they discover
the discriminative parts first and then combine them into a model of the classes to
recognize. There is therefore no guaranty that the so-learned parts are optimal for the
classification task. Lobel et al.[73] showed that the joint learning of part and category
models was possible. More recently, Parizi et al.[85] build on the same idea, using max
pooling and l1/l2 regularization.

Variour authors have likewise studied learned soft-pooling mechanisms. Gulcehre et
al.[43] investigate the effect of using generalized soft pooling as a non-linear activation
unit, bearing some similarity with the maxout non-linear unit of [42]. In contrast,
our method uses a generalized soft pooling strategy as a down sampling layer. Our
method is close to that of Lee et al.[66], who use linear interpolation of max and average
pooling. Our approach, on the other hand, uses a non-linear interpolation of these two
extrema.

63

CHAPTER 7. SPLEAP: SOFT POOLING OF LEARNED PARTS

7.3 Proposed Approach

Our goal is to represent each category involved in the visual recognition problem of
interest as a collection of discriminative regions. These regions are automatically iden-
tified using learned part classifiers, that will operate on a pool of proposed fragments.
A “part” classifier is meant to capture specific visual patterns. As such it does not
necessarily capture a strong, human understandable semantic: it might respond highly
on more than one region of the given image or, conversely, embrace at once several
identifiable parts of the object. On images from “horse” class for instance, one part
classifier might focus on the head of the animal when another one turns out to capture
a large portion of the horse body.

Formally, we consider an image as a bag of R regions, each one equipped with a
descriptor xr ∈ R

D. The image is thus represented at first by the descriptor collection
X = {xr}

R
r=1. The number of regions will be image-dependent in general even if we

assume it is not for notational convenience.
Based on training images spanning C images categories, P “part” classifiers will be

learned, each as a weighted sum of K base classifiers applied to a region’s descriptor (K
chosen by cross-validation). The score of the p-th part classifier for a given descriptor
x is defined as:

Hp(x; θp) =
K
∑

k=1

ap
kσ(x⊤u

p
k + bp

k), (7.1)

where σ is the sigmoid function, ap
k is the weight of the k-th base classifier, u

p
k ∈ R

D

and bp
k ∈ R are its parameters and θp = vec(ap

1:K , u
p
1:K , bp

1:K) ∈ R
K(D+2) is the vector

of all the parameters that define the part classifier. This score is aggregated over the
pool of R regions a follows:

fp(X) =
R
∑

r=1

πp
rHp(xr; θp), (7.2)

where normalized weights are defined as

πp
r ∝ exp

(

βpHp(xr; θp)
)

,
R
∑

r=1

πp
r = 1, (7.3)

with βp a part-dependent “pooling” parameter. For large values of this parameter the
scores are max-pooled, while they are averaged for very small values.

Given a set of part classifiers with parameter Θ = [θ1| · · · |θP] and associated
pooling parameters β = [βp]Pp=1, the bag of R region descriptors X = {xr}r attached
to an input image is turned into a part-based description:

f(X;Θ, β) = [fp(X)]Pp=1. (7.4)

The multiclass classification problem at hand is cast on this representation. Resorting
to logistic regression, we aim at learning P -dimensional vectors, wc = [wc

1 · · ·w
c
P]⊤ ∈

R
P , one per class, so that the class label y ∈ {1 · · ·C} of an input image X is predicted

according to distribution

Pr(y = c|X;Θ, β, W) =
exp

(

w⊤
c f(X;Θ, β)

)

∑C
d=1 exp

(

w⊤
d f(X;Θ, β)

) , (7.5)

64

CHAPTER 7. SPLEAP: SOFT POOLING OF LEARNED PARTS

where W = [w1| · · · |wC]. For simplicity in notation, we have omitted the bias term
associated with each class. In practice, we append each of them to the corresponding
vectors wcs and entry one is appended to descriptor f(X;Θ, β).

Discriminative learning is conducted on annotated training dataset T = {(Xn, yn)}N
n=1,

with Xn = {xn
r }

R
r=1 and yn ∈ {1, . . . , C}. Part-level and category-level classifiers are

jointly learned by minimizing a regularized multiclass cross entropy loss:

min
Θ,β,W

−
N
∑

n=1

C
∑

c=1

[yn = c] ln Pr(c|Xn;Θ, β, W) + µ‖Θ‖2
F + δ‖W‖2

F , (7.6)

where [.] is Iverson bracket. The two regularization weights µ and δ, the number P
of part classifiers and the number K of base learners in each part are set by cross-
validation. Learning is done by block-wise stochastic gradient descent, as explained
next into more details.

The multi-class loss in (7.6) being based on softmax (7.5), it requires that each
image in the training set is assigned to a single class. If this is not the case, one can
use instead a one-vs-all binary classification approach, which can be easily combined
as well with the proposed PBM.

7.4 Optimization specific details

In this section we provide details on how the joint optimization problem (7.6) is ad-
dressed. It aims at learning the final category-level classifiers (defined by W), the part
classifiers (defined by Θ) and the part-dependent pooling coefficients in β. By con-
ducting jointly these learnings, part classifiers are optimized for the target recognition
task. Additionally, learning part-specific parameter βp enables to accommodate better
the specifics of each part by adapting the softness of its region pooling.

Algorithm 1 summarizes the different steps of the optimization. In Alg. 1, we
denote θ(k) the vector of parameters associated to k-th base classifiers in matrix Θ,
that is θ(k) = vec(a1:P

k , u1:P
k , b1:P

k) and Ln = log Pr(yn|Xn;Θ, β, W) the log-likelihood
of n-th training pair (Xn, yn).

We perform E epochs of block-coordinate stochastic gradient descent. If part-
related parameters Θ and β were known and fixed, the optimization of image classifiers
W alone in the proposed algorithm would amount to the classic learning of logistic
regressors on image descriptors f(X) defined in (A.5). The interleaved learning of the
P part-classifiers defined by Θ is more involved. It relies on a stage-wise strategy
whereby base classifiers are progressively incorporated. More precisely, we start with
a single weak classifier per part, randomly initialized and optimized over the first S
epochs. Past this first stage with training a single weak classifier, each part-classifier is
then allowed an additional weak classifier per epoch. With initialization to zero of the
parameters of this new learner, non-zero gradients for these parameters is produced by
training samples that were previously misclassified. Note that at each epoch, only the
last weak classifier is updated for each part while previous ones are kept fixed.

We set all algorithm’s parameters (number P of parts, number K of weak classifiers
per part, number S of epochs with part classifiers based only on a single weak learner,
learning rates γW , γθ and γβ) through careful cross-validation.

65

CHAPTER 7. SPLEAP: SOFT POOLING OF LEARNED PARTS

Algorithm 1 SPLeaP Training: joint part-category classifier learning

1: procedure Learn(T)
2: parameters: P, K, µ, δ, S, γW , γθ, γβ

3: W ← 0
4: θ(1) ← rand()

5: θ(2:K) ← 0
6: β ← rand()

7: k ← 1
8: for e = 1 to E = K + S − 1 do
9: T ← RandomShuffle(T)
10: for n = 1 to N do
11: W← (1− γW)W + γW

∑

(Xn,yn)∈T∇WLn

12: θ(k) ← (1− γθ)θ(k) + γθ

∑

(Xn,yn)∈T∇θ(k)
Ln

13: β ← β + γβ

∑

(Xn,yn)∈T∇βLn

14: end for
15: if e > S then
16: k ← k + 1
17: end if
18: end for
19: Return W,Θ, β′, β′′

20: end procedure

7.5 Results

7.5.1 Experimental settings

We evaluate our proposed method using three well-known datasets: Pascal-VOC-

2007,MIT-Indoor-67 and Willow.

Region proposal schemes.

We explored three different strategies to extract the pool of region proposals from each
image:

Selective Search (SS). We use the selective search region proposal scheme of [120]
to extract between 100 and 5000 region proposals per image, with an average of 800,
using Matlab code provided by [12].

Augmentation (aug). Following the data augmentation technique of [10], we derive
ten images from each input image by taking one center crop and four corner crops from
the original image and further mirroring each crop vertically. The ten resulting modified
image crops are used as region proposals.

Selective search + augmentation (SS + aug). We also explore merging the
outputs of the two previous strategies into a single pool of region proposals.

66

CHAPTER 7. SPLEAP: SOFT POOLING OF LEARNED PARTS

Region feature extraction.

From each of the candidate regions obtained using one of the above described region
proposal methods, we extract one feature vector consisting of the activation coefficients
of the previous-to-last layer of several state-of-the-art CNN architectures. The CNN
architectures we consider, available in CAFFE [52], are (i) the 128-dimensional feature
extracted from the 13-layer architecture of [10] (VGG-128), (ii) the 16-layer architecture
of [106] producing 4096 dimensional features (VD-16) and (iii) the architecture of
[137] corresponding to Krizhevsky’s architecture [59] pre-trained using ImageNet (978
categories) and the Places database (HybridCNN).

Cross-validation of hyper-parameters.

We use Stochastic Gradient Descent (SGD) to train our model. The performance of
the model depends on the value of the various hyper-parameters: the number of parts
P and of weak learners in each part classifier K, the regularization weights µ and δ in
(7.6), the number of epochs E and the various learning rates (see Algorithm 1). For
the Pascal-VOC-2007 and Willow datasets, we use piecewise-constant learning rates
decreased every ten epochs empirically, similarly to the appraoch of [10]. For the MIT-
Indoor-67 dataset, we use learning rates of the form γ(i) = γ0

1.0+λi
, where γ0 and λ are

hyper parameters that are cross-validated.
We select the values of these hyper-parameters using cross-validation. After the

cross-validation phase, the hyper-parameters are set accordingly and the training and
validation data are merged to re-train our model.

7.5.2 Experimental validation of the contributions

We now establish experimentally the benefits of our main contributions: weakly su-
pervised parts learning, soft-max pooling with learned, per-part softness coefficients,
and part detectors based on weak learners. To this end, we use the Pascal-VOC-2007
dataset along with the mean Average Precision (mAP) performance measure specified
by the dataset’s authors, using VGG-128 features to represent all region proposals.

Comparison with unsupervised aggregation.

In Table 7.1, we first verify that the improvements of our method are not due to
simply the region proposal strategies we employ. We hence compare our supervised
SPLeaP method to three analogous baseline features not employing supervised learning.
The first baseline, denoted VGG-128-G, uses the global feature vector extracted from
the whole image. The second baseline, denoted VGG-128-sum, aggregates VGG-128
features extracted from each candidate region using average pooling, similarly to an
approach used in [61]. Both of these baselines result in 128-dimensional feature vectors.
In a third baseline, denoted VGG-128-K-means, we perform K-means on all candidate
regions from all images in the database to obtain P = 40 centroids. Computing an
image feature then consists of selecting the image’s P ≪ R candidate region whose
features are closest to the P centroids and concatenating them into a single vector of
size 128P .

For each of the aforementioned feature construction methods, the resulting image
feature vectors are ℓ2-normalized and then used to learn linear SVMs using a one-vs-rest
strategy.

67

CHAPTER 7. SPLEAP: SOFT POOLING OF LEARNED PARTS

Table 7.1 – Comparison against unsupervised aggregation baselines

VGG-128-G
VGG-128-sum VGG-128-K-means SPLeaP

SS aug SS+aug SS SS+aug SS SS+aug

75.32 77.31 78.21 77.36 76.28 76.8 84.21 84.68

Table 7.2 – Importance of per-part softness coefficients

Average pooling Max pooling Cross-valid. βp = β Learned βp

80.77 83.23 84.31 84.68

The results in Table 7.1 establish that large performance gains (more than 8 mAP
points) are obtained by proposed SPLeaP method relative to the different baseline
aggregation strategies, and hence the gain does not follow simply from using our re-
gion proposal strategies. Interestingly, contrary to the baseline strategies, our method
succeeds in exploiting the merged SS+aug region proposal strategy (0.47 mAP im-
provement relative to SS).

Importance of per-part softness coefficient.

In Table 8.1, we evaluate our proposed soft-max pooling strategy in (7.3) that employs
a learned, per-part softness coefficient βp. We compare per-part softness coefficients
to three alternatives: (i) average pooling, wherein ∀p, βp = 0; (ii) max pooling, which
is equivalent to ∀p, βp → ∞; and (iii) a cross-validated softness coefficient that is
constant for all parts, ∀p, βp = β. In all three of these alternatives, we run the complete
SPLeaP optimization process discussed in Section 7.4. As illustrated in the table,
using our proposed learned, per-part softness coefficient yields the best performance,
with an improvement of close to 4 mAP points over average pooling, 1.5 mAP points
over max pooling, and 0.4 mAP points over a cross-validated but constant softness
coefficient. Note that allowing the algorithm to choose βp during the optimization
process eliminates the need for a costly cross validation of the βp.

Effect of number of weak learners K.

In Fig. 7.1 we evaluate the effect of the number K of weak learners per part by plotting
mAP as a function of the number of training epochs. Note that, for a fixed number of
learning iterations, adding more weak learners results in higher performance. We have
tried the effect of other design choices such as averaging K weak learners in contrast to
greedily adding the weak learners. We obtain slight improvement i.e.we obtain 84.78
mAP for K = 3. We also compared adding weak learners to dropout, which is known
to behave as averaging multiple thinned networks, and obtained a reduction in mAP
of 0.5% (83.98 mAP with 50 % dropout).

68

CHAPTER 7. SPLEAP: SOFT POOLING OF LEARNED PARTS

1 2 3 4 5 6

60

70

80

Num. of Epochs

m
A
P

K = 1

K = 4

K = 6

Figure 7.1 – Plot of test mAP versus number
of training epochs.

0 10 20 30 40

70

80

90

P

m
A
P

VGG-128 VOC 2007

VD-16 VOC 2007

VD-16 Willow

Figure 7.2 – Plot of test mAP versus the
number of parts P .

Table 7.3 – Comparison of results on Pascal-VOC-2007 dataset (P = 40 parts per class,
K = 1) using CNN features extracted from (left) Krizhevsky-like [59] and (right) very deep
architectures [106]

Methods mAP

VGG-G 75.35
Oquab et al. [79] 77.31
Li et al. [70] 77.90

Cimpoi et al. [13] 79.50
CNN-S fine tuned [10] 82.42

SPP [46] 82.44

SPLeaP-VGG-128 (SS+ext. aug) 84.68

Methods mAP

VD-16-G [106] 81.73
VD-16 (dense evaluation) 84.67
VD-16-sum (SS+ext. aug) 82.58

Cimpoi et al. [13] 85.10

SPLeaP-VD-16 (SS+ext. aug) 88.01

7.5.3 Parameters/Design related choices

Per-category parts and number P of parts.

When learning SPLeaP for the MIT-Indoor-67 dataset, we learn P part classifiers that
are common to all 67 categories using the multi-class objective described in Section
7.3. For Willow and Pascal-VOC-2007, on the other hand, we learn P different part
classifiers for each category, using a one-vs-rest strategy to learn each SPLeaP model
independently for each class.

In Fig. 7.2 we evaluate mAP on Pascal-VOC-2007 as a function of the number of
parts P . We show that even with a small number of parts P = 6 per class, we obtain
a very good mAP of 83.94.

7.5.4 Comparisons with state-of-the-art

Pascal-VOC-2007.

In Table 7.3 we compare SPLeaP to various existing state-of-the-art methods on the
Pascal-VOC-2007 dataset.

69

CHAPTER 7. SPLEAP: SOFT POOLING OF LEARNED PARTS

Methods employing Krizhevsky-type architectures. On the left side of Table
7.3, we compare against Krizhevsky’s original 13-layer architecture [59] and variants
thereof such as VGG-128 [10]. In particular, the architectures of [10, 79] were first
learned on ImageNet and subsequently fine-tuned specifically for Pascal-VOC-2007.

Note that, when using architectures derived from [59], including architectures fine-
tuned specifically for Pascal-VOC-2007, our method outperforms all of these baselines
by at least 3 absolute mAP points, despite using the 128-dimensional VGG-128 feature
that is not fine-tuned for Pascal-VOC-2007. In particular, our method outperforms the
recent, part-based representation of [70], which is a state-of-the-art part-based method
employing association rule mining to discover discriminative patterns/regions. In Table
7.3 we present their results based on features from [59].

Methods employing very deep architectures. On the right side of Table 7.3, we
compare against the deep pipelines of Simonyan et al.[106], using the pre-computed
models provided by the authors in [52] to reproduce the baselines. We use the state-of-
the-art VD-16 feature to reproduce three different baselines using our own implemen-
tations.

The first one (VD-16-G) uses a global VD-16 feature by feeding the entire image to
the CNN architecture.

The second one, VD-16 dense evaluation, follows [106] in employing their CNN
architecture as a fully convolutional architecture by treating the weights of the last
two fully connected layers as 7× 7 and 1× 1 convolutional kernels, respectively. This
enables them to process images of arbitrary size. The approach further employs scaling,
cropping and flipping to effectively produce a pool of close to 500 region proposals that
are subsequently average-pooled. The resulting descriptor is ℓ2 normalized and used to
compute linear SVMs, and achieves state-of-the-art results on Pascal-VOC-2007.1

For completeness, we further explore a third baseline that employs the extended
augmentation (ext. aug.) strategy employed by [116], which effectively produces 144
crops per image, as opposed to the 10 crops of the aug strategy discussed above. We
further extend this region proposals by the selective search region proposals and employ
sum pooling.

The results, summarized in Table 7.3, show that proposed SPLeaP system outper-
forms all three baselines, and further outperforms a very recent baseline [13] relying on
a hybrid bag-of-words / CNN scheme.

Willow action dataset.

Our best results on Willow (Table 7.4 left) likewise outperforms VD-16-G by 3.35 mAP
points and VD-16 dense evaluation (Table 7.4 left) by 2.8 mAP points. For complete-
ness, we have included several, previously-published results. To our knowledge, our
approach outperforms the highest published results on this dataset.

MIT-Indoor-67.

In Table 7.4, we present results on the MIT-Indoor-67 dataset. For this dataset, we
represent candidate regions using the Hybrid CNN model of [137], which is learned on
a training set obtained by merging ImageNet and the Places database [137] and is
better suited for scene recognition. Given the large size (4096) of these features, we

1Our own implementation of this method achieves results below those reported in [106].

70

CHAPTER 7. SPLEAP: SOFT POOLING OF LEARNED PARTS

Table 7.4 – Comparison of results on the Willow dataset (P = 7 parts per-class, K = 1) (left)
and the MIT-Indoor-67 dataset (P = 500 parts, common to all classes, K = 2) (right)

Methods mAP

Khan et. al [57] 70.10
Sharma et. al [102] 65.90
Sharma et. al [103] 67.60
Sicre et. al [104] 81.90

VD-16-G 85.12
VD-16 (dense evaluation) 85.67

SPLeaP (SS+aug) 88.47

Methods mAP

Orderless[40] 68.80
MLPM[70] 69.69

HybridCNN-G[137] 72.54
HybridCNN-sum[137] 70.36

Parizi et. al [85] 73.30

SPLeaP-PCA160 (SS) 73.45

reduce them to size 160 using PCA, similarly to the approach of [85]. Note that our
method outperforms all other methods in Table 7.4. Unlike our reported results, those
of [85] use a spatial pyramid with two scales and five cells (1 × 1, 2 × 2), as well as a
different number of parts and PCA-reduction factor, resulting in features that are 3.73
times bigger than ours.

7.6 Qualitative Analysis

We now present qualitative results to illustrate the response of our learned part classi-
fiers on Pascal-VOC-2007 test examples.

In Fig. 7.3 we demonstrate the selectivity of our part detectors by presenting
image triplets consisting, in order, of (i) the image with candidate region bounding
boxes superposed, (ii) the original image, and (iii) heatmaps for the part responses of
each candidate region. Note in particular the selectivity of our part detectors: in all
examples, the actual object occupies but a small fraction of the image area.

In Fig. 7.4, we illustrate the highest ranking candidate regions from all images for
the part classifiers associated to the largest entries in the corresponding weight vector
wc, with each row of each group of images corresponding to a different part classifier.
Note that the part classifiers all become specialized to different object parts or poses.

71

CHAPTER 7. SPLEAP: SOFT POOLING OF LEARNED PARTS

Figure 7.3 – Heatmaps for images Pascal-VOC-2007 of classes (clockwise from top-left) “pot-
ted plant”, “bird”, “bottle” and “TV monitor”.

Figure 7.4 – Discriminative parts for the four Pascal-VOC-2007 classes (clockwise from top-
left) “horse”, “motorbike”, “dining table”, and “potted plant”.

7.7 Conclusions

We introduce SPLeaP, a novel part-based model for image classification. Based on non-
linear part classifiers combined with part-dependent soft pooling – both being trained
jointly with the image classifier – this new image model consistently surpasses standard
pooling approaches and part-based models on several challenging classification tasks.
In addition, we have experimentally observed that the proposed method does not need
any particular initialization of the parts, contrarily to most of the recent part-based
models which require a first step for selecting a few regions candidates from the training
images before they actually start learning the parts.

72

Chapter 8

Soft Pooling of Learned Parts with
Per-Part Latent Scale Selection

Contents
8.1 Introduction . 74

8.2 Related Work . 75

8.3 Proposed Approach . 76

8.4 Optimization specific details 77

8.5 Results . 78

73

CHAPTER 8. SPLEAP WITH PER-PART LATENT SCALE SELECTION

8.1 Introduction

This chapter is an extension of the work presented in the previous chapter. The SPleaP
algorithm (presented in the previous chapter) depends on a region proposal obtained
with the Selective Search (SS) [120] algorithm to obtain an initial set of regions. We
know from the last chapter that the algorithm requires computation of CNN descriptors
for each region which makes this algorithm costly considering that there is a huge
number of regions to operate on. In this chapter, we would like to address this issue of
slowness by employing a dense multi-scale sampling to derive region proposals unlike
SS.

It is important to note that the slowness in SS is due to the repetitive network
computation needed for each region proposal. Therefore, the extraction of descriptors
from each of these regions creates a bottle-neck for the overall architecture. It should be
noted that the slowness is not due to the region proposal method (SS) itself. In a dense
sampling method unlike SS, the description computation is shared across proposals
within CNN framework. This is because the dense region proposal scheme can be
easily realized using primitive operation such as convolution. This operation can be
accelerated by many order using specifically designed GPU based libraries. Therefore,
one can easily integrate the dense sampling into our proposed CNN framework which
includes PBMs (Part-Based Models). Sermanet et al. [98] were the first to propose
the usage of multi-scale dense sampling scheme embedded in a CNN feature extraction
method for the localization task. Their idea was to apply CNN in a sliding window
fashion at both multiple locations per image and multiple scales. In practice, Sermanet
et al. [98] treat the last fully connected layers as a fully convolutional layers. This allows
the whole network to operate on an image of arbitrary size in a sliding window fashion.

As a first contribution, we propose to combine the method proposed by Sermanet
with our state-of-the-art method described in the previous chapter to achieve computa-
tion acceleration. The part classifiers of our model operates on these densely sampled
regions and their responses are then soft pooled to obtain a representation which we
refer to as ”part-based representation” in the rest of the chapter.

In our second contribution, we propose to use a per-part latent-scale selection
method to further introduce scale invariance with respect to the absolute scale of re-
gions in an input image. We apply the method described in the previous paragraph in
parallel on multiple scales of input image to obtain a part-based representation for each
scale. The resulting scale-dependent part-based representations are then soft-pooled
across scales to obtain the final representation. This final representation is then fed
to a linear classifier. During the learning process, both the linear classifiers and the
part classifiers are jointly optimized in order to minimize the final classification loss.
Due to the soft-pooling of part-based representations over multiple scales, the final
part-classifiers after optimization become scale invariant in terms of absolute scale of
regions in an original image.

The remaining part of this chapter is organized as follows: In Section 8.2 we discuss
the related works which used various region proposals schemes. In Section 8.3 we discuss
our proposed approach. In Section 8.4 we describe the algorithm used to optimize the
parameters in our model. Then, in Section 8.5 we first present the experimental setup
for evaluating our proposed approach and subsequently study the effect of different
design choices and compare our approach against state-of-the-art methods. Note that
we assess our method and design choices against Pascal-VOC-2007, MIT-Indoor-67
and Willow datasets.

74

CHAPTER 8. SPLEAP WITH PER-PART LATENT SCALE SELECTION

8.2 Related Work

Recent advances in computer vision tasks such as object detection and classification are
obtained by applying CNN on multiple regions per image. The RCNN [38] obtained a
best detection performance by applying the CNN on multiple regions (nearly 2000 pro-
posals per image) proposed by SS. This SS-based region proposal is popular because
it relies on computationally inexpensive low-level descriptors. Yet RCNN requires huge
training time and space because it repeatedly applies expensive CNN feature extraction
pipeline on thousands of region proposals, and the resulting region descriptors have to
be saved on disk.

SPPnet [46] proposed to address the above difficulty of RCNN [38] by applying
the convolutional layers of the network on an entire image only once to obtain feature
maps. Then they use a Spatial Pyramid Pooling (SPP) (popularly employed in Bag-of-
Words) over these feature maps resulting in a fixed sized representation irrespective of
the input image size/scale. Then each fixed size representation can be fed to a sequence
of fully connected layers. The authors showed a comparable performance and at the
same time increasing the speed by a large margin w.r.t. RCNN method.

Another method which attempts to address the difficulty posed by RCNN is the
Fast-RCNN [37]. Similar to SPPnet, authors of Fast-RCNN method, first apply con-
volutional layers on an entire image to obtain feature maps. Next, for each object
proposal proposed by SS, they select the corresponding region in the feature map re-
ferred by Region of Interest (RoI) in Fast-RCNN [37]. Note that during training time,
they select 25 % of the RoIs that overlap with a ground truth bounding box by 50
percent. Finally, they apply a pooling layer per RoI to obtain a fixed length feature
vector. Next, each feature vector is fed to the subsequent fully connected layers.

One step further, Faster-RCNN [91] proposed to eliminate the usage of SS by
employing Region Pooling Networks (RPN). Here the authors fine tune the RPN to
propose the set of object proposals. Next, they use these object proposals instead of
SS for training Fast-RCNN. It is important to note here that the costly ground truth
bounding box annotations are used to train the RPN.

In our method we use the region proposal scheme similar to Sermanet et al. [98]
because their approach does not require costly bounding box annotations for generating
object proposals. The PBMs automatically select a subset of the proposed candidate
regions, and this region selection is driven by the classification loss which in turn
requires only image-level annotations. In addition, all the above described methods
attempt to show some degree of scale invariance by letting the learning (for e.g., RPNs)
to deal with it, instead of addressing it directly. We propose a novel method to achieve
scale invariance by using per-part latent scale selection.

A closely related approach by Oquab et al. [80], which is based on a sliding window
like region proposals, focuses on a localization task. Similar to us they treat the last
two dense layers in a CNN as convolutional layers. They then apply a CNN on the
images at multiple scales to obtain C feature maps where C indicates the number of
classes. They do an explicit search for the object’s location within the feature map
via max pooling. Our method on the contrary does explicit search for discriminative
regions via soft-pooling over intermediate part classifiers’ responses. In addition, we
also do per-part latent scale selection. In this work we build the architecture similar
to [80] and compare it with ours.

75

CHAPTER 8. SPLEAP WITH PER-PART LATENT SCALE SELECTION

8.3 Proposed Approach

In the previous chapter we have seen that multiple regions are extracted per image
using SS. Then, we run CNN on each region to obtain a region descriptor. Then,
PBMs operate on these region descriptors to automatically identify discriminative re-
gions. Unlike previous chapter, in this chapter we rely on a dense sliding window based
region proposal. However, by employing dense proposals per image one does not know
beforehand if the given region (i.e. constituent fragment of object of interest) occu-
pies the size of the receptive field of the CNN (i.e. 224 × 224). To address this issue
we rescale the input image into multiple scales. Then, we run the CNN densely for
different scales in parallel to obtain the region descriptors.

An input image is rescaled into the S different scales. We then extract from each
rescaled image a bag of regions labeler r = [1, . . . , R], each one equipped with a de-
scriptor xs

r ∈ R
D, where s = [1, . . . , S] indicates the scale from which the regions are

sampled. The number of regions R per rescaled version is scale-dependent in general
even if we assume it is not for notational convenience.

Images in training data span C categories. P “part” classifiers will be learned, each
as a weighted sum of K base classifiers applied to a region’s descriptor (K chosen by
cross-validation). These part classifiers are applied to each region descriptor collected
from each scale s. The score of the p-th part classifier for a given descriptor x is defined
as:

Hp(x; θp) =
K
∑

k=1

ap
kσ(x⊤u

p
k + bp

k), (8.1)

where σ is the sigmoid function, ap
k is the weight of the k-th base classifier, u

p
k ∈ R

D

and bp
k ∈ R are its parameters and θp = vec(ap

1:K , u
p
1:K , bp

1:K) ∈ R
K(D+2) is the vector of

all the parameters that define the part classifier.
Let us assume that the collection of R descriptors extracted from the R regions of

an image at scale s is Xs = {xs
r}

R
r=1. The score is aggregated over the pool of R regions:

gs
p(Xs) =

R
∑

r=1

ηp
rHp(xr,s; θp), (8.2)

where part-dependent normalized weight is defined as

ηp
r ∝ exp

(

β′

pHp(xr,s; θp)
)

,
R
∑

r=1

ηp
r = 1, (8.3)

We then aggregate over scales for the p-th part as follows

fp(X) =
S
∑

s=1

αs
pgs

p(Xs), (8.4)

where scale-dependent normalized weight is defined as

αs
p ∝ exp

(

β′′

s gs
p(Xs)

)

,
S
∑

s=1

αs
p = 1, (8.5)

with β′
p and β′′

s are part and scale dependent “pooling” parameters respectively. For
large values of this parameter the scores are max-pooled, while they are averaged for
very small values.

76

CHAPTER 8. SPLEAP WITH PER-PART LATENT SCALE SELECTION

Given a set of part classifiers with parameter Θ = [θ1| · · · |θP] with associated
β′ = [β′

p]Pp=1 and β′′ = [β′′
s]Ss=1 pooling parameters, the bag of region descriptors X =

{xs
r}

R,S
r,s=1 per input image is turned into a final representation:

f(X;Θ, β′, β′′) = [fp(X)]P
p=1 . (8.6)

On this representation we treat the classification problem at hand by learning inde-
pendently a binary classifier per class using on-vs-all strategy. By using Support Vector
Machines (SVM), we aim at learning P -dimensional vectors, wc = [wc

1 · · ·w
c
P]⊤ ∈ R

P ,
one per class c. We learn the parameters in our model from annotated training set com-
prised of N images Xn, n = 1, . . . , N , each with class label yc

n ∈ {−1, 1}, c = 1, . . . , C
indicating whether image n belongs to class c or not. Given such training data, our
approach is to minimize following objective function with respect to the parameters:

min
Θ,β′,β′′,W

−
N
∑

n=1

C
∑

c=1

ℓ(yk
nw⊤

c f(X;Θ, β′, β′′)) + µ‖Θ‖2
F + δ‖W‖2

F , (8.7)

where W = [w1| · · · |wC].
The two regularization weights µ and δ, the number P of part classifiers and the

number K of base learners in each part are set by cross-validation. Learning is done
by block-wise stochastic gradient descent, as explained next into more details.

Latent-scale selection In this work we introduce soft-pooling in two subsequent
steps. The first pooling using (8.3) forces the p-th part classifier to select the highest
scoring discriminative region at relative scale s. The second pooling step using (8.3)
enables the p-part classifier to select the best relative scale. By employing this approach,
learnt part classifiers are invariant to absolute scale of an object in an image.

8.4 Optimization specific details

In the current contribution, we learn another parameter called scale-specific pooling pa-
rameter β′′ in addition to the parameters such as final category-level classifiers (defined
by W), the part classifiers (defined by Θ) and the part-dependent pooling coefficients
in β′ which are learned using the method described in previous chapter Section 7.4.
The method used to learn parameter β′′ is similar to β′.

Algorithm 2 summarizes the different steps of the optimization. In Alg. 2, we denote
θ(k) the vector of parameters associated to k-th base classifiers in matrix Θ, that is
θ(k) = vec(a1:P

k , u1:P
k , b1:P

k) and Ln =
∑C

c=1 ℓ(y
k
nw⊤

c f(Xn;Θ, β′, β′′)) + µ‖Θ‖2
F + δ‖W‖2

F

is the loss function associated with n-th training pair (Xn, yn). In the loss function Ln,
we have used ℓ(x) to denote the hinge loss, given by max (0, 1− x).

77

CHAPTER 8. SPLEAP WITH PER-PART LATENT SCALE SELECTION

Algorithm 2 Training: joint part-category classifier learning

1: procedure Learn(T)
2: parameters: P, K, µ, δ, S, γW , γθ, γβ′ , γβ′′

3: W ← 0
4: θ(1) ← rand()

5: θ(2:K) ← 0
6: β′ ← rand()

7: β′′ ← rand()

8: k ← 1
9: for e = 1 to E = K + S − 1 do
10: T ← RandomShuffle(T)
11: for n = 1 to N do
12: W← (1− γW)W + γW

∑

(Xn,yn)∈T∇WLn

13: θ(k) ← (1− γθ)θ(k) + γθ

∑

(Xn,yn)∈T∇θ(k)
Ln

14: β′ ← β′ − γ′
β

∑

(Xn,yn)∈T∇β′Ln

15: β′′ ← β′′ − γ′′
β

∑

(Xn,yn)∈T∇β′′Ln

16: end for
17: if e > S then
18: k ← k + 1
19: end if
20: end for
21: Return W,Θ, β′, β′′

22: end procedure

8.5 Results

In this section, we validate our main contributions presented in this chapter: 1) PBMs
operating on a sliding window based region proposals yield good classification perfor-
mance at reduced computational complexity; 2) Per-part latent-scale selection improves
the classification performance. Here, we first introduce the sliding window based region
proposals. Then we describe how we use VGG-128/VD16 to represent each region pro-
posal. Next, we discuss the effect of per-part latent scale selection. Then, we discuss the
effect of soft pooling coefficients β′ and β′′. Finally, we compare our method against the
state-of-the art results. We use Pascal-VOC-2007 dataset and mean Average Precision
(mAP) performance measure to validate our proposed approach.

Figure 8.1 – Block diagram of image classification system.

78

CHAPTER 8. SPLEAP WITH PER-PART LATENT SCALE SELECTION

A. Sliding window based region proposals (dense). At both test and training
time, we utilize a sliding window procedure to extract regions from the input image
and from scaled and mirrored versions of the input image. We follow the procedure
described in [80]: each input image is first resized to 500×500 by scaling the longest side
of an image to 500 and extending the shortest side to 500 by padding it with zeros. Next
the resized image is rescaled by a factor of 6 different scales {0.5, 0.7, 1, 1.4, 2.0, 2.8}.
Note that we repeat the above process with the mirrored version of the input images,
thus leading to a total of 12 samples per image. These samples are then fed to a pre-
trained CNN in parallel as illustrated in Fig. 8.1. The pre-trained CNN architecture
is modified such that it accepts arbitrary sized input image and extracts regions from
these samples in a sliding window manner.

B. Feature Extraction. The size of the input image that can be fed into VGG-
128/VD-16 is dependent on a receptive field of fully connected layers. We convert the
VD-16/VGG-128 into a fully convolutional architecture by treating the weights of the
last two layers as 7×7 and 1×1 convolutional kernels, respectively. This enables these
CNN architectures to densely extract regions, with a size of each region 256× 256 and
with a stride of 32 pixels. For example in Fig. 8.1, VGG-128 operating on a resized
image (500× 500) scaled by the factor of s = 2.8 results into 128 feature maps of size
36× 36. For arbirary scale s, the size of feature map can be calculated as:

size of feature map =
500× s− 256

32
+ 1 (8.8)

C. Cross-validation of hyperparameters. We use the Stochastic Gradient De-
scent (SGD) method to train the parameters in our model. We use the method de-
scribed in Section 7.5.1 of previous chapter to cross validate hyper parameters such as
the learning rates (γW, γθ, γβ′ and γβ′′), the number of part-classifiers P , the number
of weak learners K, the number of epochs E and the penalty terms (µ and δ).

D. Effect of latent-scale selection. In this paragraph, we evaluate our proposed
approach discussed in Section 8.3 that employs latent-scale selection against two dif-
ferent models which do not leverage the benefit of scale selection: 1) In a first model
classifs, we replace the per-part pooling over scales in Fig. 8.1 with the SVM classifiers
which directly operate on aggregated part scores per scale. Next, both at test and
train time, we average the prediction scores across samples (refer to Appendix A.1 for
more details). 2) In a second model weaksup, we adapt the methodology described in
[80] in our setup, wherein we remove both per-part and per-scale pooling layers and
replace it with C filters (C equal to the number of class categories) with kernel size
1 × 1. These C filters operate on the previous layer’s output (i.e. the part classifiers’
response maps) to output C feature maps, each one corresponding to the specific class.
We then introduce global soft-pooling operation on C feature maps to obtain a single
image-level score per class.

In Table 8.1 we compare the three methods described above. For simplicity, we
denote the method in this chapter by SPLeaPS. We use VGG-128 to extract the features
for each region. We keep the parameters such as the number of part classifiers P = 500
and the number of weak learners K = 1 fixed in all the three cases. However we
cross-validate the µ, learning rates and the δ separately in each case.

79

CHAPTER 8. SPLEAP WITH PER-PART LATENT SCALE SELECTION

Table 8.1 – Comparison of our approach with two different models.

weaksup classifs SPLeaPS

81.57 82.73 83.9

2 4 6

70

75

80

S

m
A
P

max pooling

soft pooling β′

2 4 6

70

75

80

S

m
A
P

max pooling

soft pooling β′′

Figure 8.2 – Plot of test mAP versus number of rescaled samples per image S. We evaluate
the effect of the spatial pooling coefficients β′ (left) and β′′ (right) against standard max
pooling.

E. Effect of soft-pooling coefficients. We evaluate the effect of soft-pooling co-
efficients β′ and β′′ versus the standard max-pooling approach. Note that we fix the
β′′ to some large value and do not learn it in an optimization process while we evaluate
the effect of β′. We fix β′ to a large value while evaluating the effect of β′′. In Fig.
8.2, y-axis represents mAP over test data that is plotted against the various subsets
of S = 6 scales {0.5, 0.7, 1, 1.4, 2.0, 2.8}. That is we vary the number of scales S along
x-axis from S = 1 (leftmost) to S = 6 (rightmost).

In Fig. 8.2 (left), we see that per-part soft pooling consistently outperforms the
standard max-pooling. One can observe that for higher values of S the difference is
significant. This is because when the number of regions per image increases, per-part
soft-pooling leverages the benefits of different aggregation schemes (because each part
classifier is equipped with varying β′

p values) at work. We can observe from Fig. 8.2
(right) that optimal mAP is obtained for large values of β′′

p, thus performing similar to
max-pooling over scales. Note that experiments in Fig. 8.2 are conducted by setting
P = 130, E = 3 and K = 1.

F. Comparison with state-of-the-art methods. The simulation environment is
similar to Section 7.5.4 in terms of datasets (Pascal-VOC-2007, MIT-Indoor-67 and
Willow) and CNN architectures (VD-16 and VGG-128). In Table 8.2 and Table 8.3, we
compare the method proposed in this chapter (SPLeaPS) with the method described
in previous chapter (SPLeaP). It is important to note that we have cross-validated
the parameters such as P , K, E and learning rates to optimize the performance of
SPLeaPS algorithm.

We establish from Table 8.2 and Table 8.3 that SPLeaPS consistently outperforms

80

CHAPTER 8. SPLEAP WITH PER-PART LATENT SCALE SELECTION

Table 8.2 – Comparison of results on Pascal-VOC-2007 dataset (P = 500 part classifiers,
K = 1) using CNN features extracted from (left) Krizhevsky-like [59] and (right) very deep
architectures [106]

Methods mAP

VGG-G 75.35
SPLeaP-VGG-128 (SS+ext. aug) 84.68

SPLeaPS-VGG-128 (dense) 83.9

Methods mAP

VD-16-G [106] 81.73
SPLeaP-VD-16 (SS+ext. aug) 88.01

SPLeaPS-VD-16 (dense) 88.68

Table 8.3 – Comparison of results on the Willow dataset (P = 50 parts, K = 1) (left) and
the MIT-Indoor-67 dataset (P = 500 parts, common to all classes, K = 1) (right)

Methods mAP

VD-16-G 85.12
SPLeaP-VD-16 (SS+aug) 88.47

SPLeaPS-VD-16 (dense) 90.23

Methods mAP

HybridCNN-G[137] 72.54
SPLeaP-PCA160 (SS) 73.45

SPLeaPS-PCA160 (dense) 74.88

SPLeaP in terms of accuracy in most of the cases. It also processes images, both at
training and test time, 300 and 150 times faster than SPLeaP respectively. This is
because dense region proposals that is employed in SPLeaPS completely eliminates
multiple runs through CNN for describing each region proposed by SS. In contrast,
the computations in the dense are being shared across region proposals.

81

Chapter 9

Summary and Conclusion

Contents
9.1 Summary . 83

9.1.1 Transfer Learning via Attributes 83

9.1.2 Hybrid multi-layer CNN/Aggregator 83

9.1.3 Max-Margin, Single-Layer Adaptation 84

9.1.4 Learning the Structure of Deep Architecture 84

9.1.5 Soft Pooling of Learned Parts (SPLeaP) 85

9.1.6 SPLeaP with per-part latent scale selection 85

9.2 Conclusion . 85

82

CHAPTER 9. SUMMARY AND CONCLUSION

9.1 Summary

In this section we present the chapter wise summary wherein we highlight important
contributions made in each chapter and we also present possible future directions. We
then present global concluding remarks for the thesis.

9.1.1 Transfer Learning via Attributes

Retrieving images from an unannotated image collection given an arbitrary user query,
provided in textual form, is a challenging problem. A recently proposed on-the-fly
classification method addresses this by constructing a visual classifier with images re-
turned by an internet image search engine, based on the user query, as positive images
while using a fixed pool of negative images. In practice, not all of the images obtained
from the internet image search are always pertinent to the query; some might contain
abstract or artistic representation of the content and some might have artifacts. Such
images degrade the performance of on-the-fly constructed classifier.

In Chapter 3, we proposed a method for improving the performance of on-the-fly
classifiers by using transfer learning via attributes. We first mapped the textual query
to a set of known attributes and then used those attributes to prune the set of images
downloaded from the internet. This pruning step can be seen as zero-shot learning
of the visual classifier for the textual user query, which transfers knowledge from the
attribute domain to the query domain. We also used the attributes along with the
on-the-fly classifier to score the database images and obtain a hybrid ranking. We
showed interesting qualitative results and demonstrated by experiments with standard
datasets that the proposed method improves upon the baseline on-the-fly classification
system.

Future Work We have used a limited set of attributes to demonstrate the above
method. The attribute database can be automatically extended using the two steps
below:

1. A user query is fed to a textual search engine to extract attributes that are
relevant to a given user query.

2. The system can then launch an image search on the internet for both the queried
visual concept and the related attributes. Thus, given the relevant images for each
attribute from the internet one can build the corresponding attribute classifier
and extend the attribute database.

9.1.2 Hybrid multi-layer CNN/Aggregator

Convolutional Neural Networks (CNNs) have established a remarkable performance
benchmark in the field of image classification, replacing classical approaches based on
hand-tailored aggregations of local descriptors. Yet CNNs impose high computational
burdens both at training and at testing time, and training them requires collecting and
annotating large amounts of training data. Supervised adaptation methods have been
proposed in the literature that partially re-learn a transferred CNN structure from a
new target dataset. Yet these require expensive bounding-box annotations and are still
computationally expensive to learn. In Chapter 4, we addressed these shortcomings

83

CHAPTER 9. SUMMARY AND CONCLUSION

of CNN adaptation schemes by proposing a hybrid approach that combines conven-
tional, unsupervised aggregators such as Bag-of-Words (BoW) with the CNN pipeline
by treating the output of intermediate layers as densely extracted local descriptors.

We tested a variant of our approach that uses only intermediate CNN layers on
the standard PASCAL VOC 2007 dataset and showed that performance is significantly
higher than the standard BoW model and comparable to Fisher vector aggregation but
with a feature that is 150 times smaller. A second variant of our approach that includes
the fully connected CNN layers significantly outperformed Fisher vector schemes and
performed comparably to CNN approaches adapted to Pascal VOC 2007, yet at only
a small fraction of the training and testing cost.

Future Work In Chapter 4, we have aggregated intermediate CNN descriptors by
applying a CNN on the entire image. One extension might be to apply a CNN at
multiple locations per input image and also at multiple scales to obtain a higher number
of CNN descriptors per image. Then, subsequently BoW might be used to aggregate
these descriptors.

9.1.3 Max-Margin, Single-Layer Adaptation

In Chapter 5, we proposed to learn a single adaptation layer on top of a pre-trained
CNN network jointly with linear classifiers under a max-margin framework. We showed
that our learning process takes only a few minutes when compared to other state-of-the
art adaptation schemes. In addition, we obtained very good results even with image
representation sizes as small as 20.

9.1.4 Learning the Structure of Deep Architecture

In Chapter 6, we presented a method that formulates the selection of the structure of
a deep architecture as a penalized, discriminative learning problem. Prior to our work,
the structure of deep architectures has been fixed by hand, and only the weights are
learned using discriminative learning. Our work was a first attempt towards a more
formal method of deep structure selection. We considered architectures consisting only
of fully-connected layers, and our approach relies on diagonal matrices inserted between
subsequent layers. By including an ℓ1 norm of the diagonal entries of said matrices as
a regularization penalty, we forced the diagonals to be sparse, accordingly selecting
the effective number of rows (respectively, columns) of the corresponding layer’s (resp.
next layer’s) weights matrix. We carried out experiments on a standard dataset and
showed that our method succeeds in selecting the structure of deep architectures of
multiple layers. One variant of our architecture resulted in a feature vector of size as
little as 36 that resulted, nonetheless, in competitive image classification performance.

Future Work In the above method we have used an ℓ1 based regularizer on diagonal
matrices to encourage sparsity. We have applied it to a small scale problem such
as a network consisting only of fully-connected layers. It would be worth to explore
the benefits by applying the same method on an entire CNN, i.e. even between the
convolutional layers of a CNN.

One interesting extension to our work was proposed by Srinivas et al. [110], where
they proposed to impose binary constraint on the elements in diagonal matrices. This
will make these induced matrices behave as actual selectors of number of rows in

84

CHAPTER 9. SUMMARY AND CONCLUSION

weights matrix (of previous layer’s) when compared to real valued non-zero elements
that happen when using ℓ1 regularized diagonal matrices.

9.1.5 Soft Pooling of Learned Parts (SPLeaP)

The aggregation of image statistics – the so-called pooling step of image classification
algorithms – as well as the construction of Part-Based Models (PBMs), are two distinct
and well-studied topics in the literature. The former aims at leveraging a whole set of
local descriptors that an image can contain (through spatial pyramids or Fisher vectors
for instance) while the latter argues that only a few of the regions an image contains
are actually useful for its classification. Chapter 7 bridges the two worlds by proposing
a new pooling framework based on the discovery of useful parts involved in the pooling
of local representations. The key contribution lies in a model integrating a boosted
non-linear part classifier as well as a parametric soft-max pooling component, both
trained jointly with the image classifier. The experimental validation showed that the
proposed model not only consistently surpasses standard pooling approaches but also
improves over state-of-the-art part-based models, on several different and challenging
classification tasks.

9.1.6 SPLeaP with per-part latent scale selection

In Chapter 7, PBMs operate on an initial set of region proposals obtained with Selective
Search (SS) algorithm. This makes the SPLeaP algorithm very slow because one has
to repeatedly run an entire CNN network for all region proposals. In Chapter 8, we
used an alternative dense region proposal method which speeds up computations of
an entire SPLeaP algorithm both at train and test-time by a factor of 300x and 150x
respectively. Further, in this Chapter, we proposed to operate part-classifiers in PBMs
in parallel on multiple scales of input image. The resulting scale-dependent aggregated
part classifiers’ responses are then soft-pooled across scales. Thus, we introduced per-
part latent scale selection in the proposed architecture. We outperformed the results
obtained in the previous chapter in most of the cases by a slight margin.

Future Work The part-based models that we employed in Chapters 7 and 8 pool the
local regions represented using only the activation coefficients of the penultimate layer
of a CNN. One possible future direction is to design a strategy to pool representations
from multiple layers of the CNN. We have observed from our work in Chapter 4 that
features extracted from multiple layers of a CNN are complimentary. So one can benefit
by employing part-based models to find optimal representations across the layers of a
CNN.

9.2 Conclusion

Since [59] demonstrated the outstanding results that can be obtained in image clas-
sification by using Convolutional Neural Networks (CNNs), the popularity of CNNs
has exploded. CNN methods have indeed resulted in very large increases in perfor-
mance on a wide range of image classification datasets, including large scale datasets
such as ImageNet [59], and, by means of knowledge transfer, smaller datasets such as
Pascal-VOC-2007/2012 [79], SUN397 [40] and MIT-Indoor-67 datasets [40, 13]. The

85

CHAPTER 9. SUMMARY AND CONCLUSION

emergence of the knowledge transfer technique has shown how one can stretch the
limits of classification accuracy on smaller datasets.

We have observed that in day-to-day life we encounter lot of emerging and small
size datasets for which it is extremely difficult to train the massive CNN networks
containing millions of parameters. In the future, one of the critical things to have is
knowledge transfer techniques which will address the issue of training CNNs. In this
thesis work we have mainly address the problem of image classification particularly in
smaller and challenging datasets via the knowledge transfer technique.

To achieve these goals, we have proposed methods which extend the ability of
state-of-the-art CNNs by leveraging knowledge transfer technique. We have proposed
several effective techniques to reduce the training and test-time computational burden
associated to CNNs by exploiting either a hybrid method to combine conventional low
cost BoWs with CNNs, or novel pooling methods within a CNN framework along with
non-linear part-based models. In addition, we also proposed a novel method to learn
the structure of weights in deep neural networks. We have established our proposed
approach by conducting experiments on challenging datasets. We have also compared
our method against state-of-the art methods to this date. We also showed how our
methods generalize to different tasks in image classification such as object, scene and
action classification in still images.

We hope our contribution has advanced the ability of the image classification task
in computer vision and has opened new doors for further exploration.

86

CHAPTER 9. SUMMARY AND CONCLUSION

Annexes

I

Appendix A

Annexes

A.1 Appendix for Chapter 8

In this section we provide details about one of the models that we use to compare
against the latent scale selection in Chapter 8. We derive our expressions starting from
(8.2) in Section 8.3.

The aggregated score over the pool of R descriptors per image at scale s is given
by below expression from Section 8.3:

gs
p(Xs) =

R
∑

r=1

ηp
rHp(xr,s; θp), (A.1)

where normalized weights are defined as

ηp
r ∝ exp

(

β′

pHp(xr,s; θp)
)

,
R
∑

r=1

ηp
r = 1, (A.2)

with β′
p are part-dependent “pooling” parameters respectively.

Given a set of part classifiers with parameter Θ = [θ1| · · · |θP] with associated
β′ = [β′

p]Pp=1 pooling parameters, the bag of region descriptors X = {xs
r}

R,S
r,s=1 per input

image is turned into a part-based description:

f s(X;Θ, β′) = [gs
p(Xs)]

P
p=1. (A.3)

On this representation we treat the classification problem at hand by learning in-
dependently binary classifier per class, per-scale using one-vs-all strategy. By using
Support Vector Machines (SVM), we aim at learning P -dimensional vectors, wc,s =
[wc,s

1 · · ·w
c,s
P]⊤ ∈ R

P , one per class and per scale. We will learn these variables from
an annotated training set comprised of N images Xn, n = 1, . . . , N , each with class
label yc

n ∈ {−1, 1}, c = 1, . . . , C indicating whether image n belongs to class c or not.
Given such training data, our approach is to minimize following objective function with
respect to above variables:

min
Θ,β′,β′′,Ws

−
N
∑

n=1

C
∑

c=1

ℓ(yk
nw⊤

s,cf
s(X;Θ, β′)) + µ‖Θ‖2

F + δ‖Ws‖2
F ∀s ∈ 1, . . . , S, (A.4)

where Ws = [ws,1| · · · |ws,C].
Finally, predictions at test time are obtained by averaging the dot of product of

image representation with weight vectors over S scales:

1

S

S
∑

s=1

Wsf s(X;Θ, β′). (A.5)

II

APPENDIX A. ANNEXES

A.2 Publications and Patents

The set of publications, workshop and patents accepted in major Computer Vision
conferences are:

Publications

1. Kulkarni, P., Jurie, F., Zepeda, J., Perez, P., and Chevallier, L. “SPLeaP: Soft
Pooling of Learned Parts for Image Classification”. In 2016 IEEE 4th European
Conference on Computer Vision (ECCV).

2. Kulkarni, P., Zepeda, J., Jurie, F., Perez, P., and Chevallier, L. “Learning the
structure of deep architectures using l1 regularization”. In 2015 IEEE British
Machine Vision Conference (BMVC).

3. Kulkarni, P., Zepeda, J., Jurie, F., Perez, P., and Chevallier, L. “Hybrid multi-
layer deep CNN/aggregator feature for image classification”. In 2015 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP).

4. Kulkarni, P., Sharma, G., Zepeda, J., and Chevallier, L. “Transfer learning via
attributes for improved on-the-fly classification”. In 2014 IEEE Winter Confer-
ence on Applications of Computer Vision (WACV).

Workshop

1. Kulkarni, P., Zepeda J., Jurie F., Perez P., Chevallier L. “Max-Margin, Single-
Layer Adaptation of Transferred Image Features”, In 2015 IEEE CVPR Big Vi-
sion Workshop.

Patents filed

1. Zepeda, J., Kulkarni, P., “Method and apparatus for encoding image fea-
tures using a differentiable bag-of-words encoder.”, in US, Patent application
no. 14/920,367.

2. Kulkarni, P., Zepeda, J., Jurie, F. “Method and apparatus for image classifica-
tion with joint feature adaptation and classifier learning.”, in US, Patent appli-
cation no. 14/942302.

3. Kulkarni, P., Sharma, G., Zepeda, J., and Chevallier, L. “Transfer Learning via
Attributes for Improved On-the-fly Classification.”, in Technicolor (2014).

4. Claire-Helene, D., Kulkarni, P., Sharma, G., Zepeda, J., and Chevallier, L.
“User tracking for intelligent capture.”, in Technicolor (2015).

III

APPENDIX A. ANNEXES

5. Kulkarni, P., Claire-Helene, D., Sharma, G., Zepeda, J., and Chevallier, L.
“Real time camera calibration from artistic images to enhance captured scene.”,
in Technicolor (2015).

IV

APPENDIX A. ANNEXES

V

Bibliography

[1] Arandjelovic, R., and Zisserman, A. Three things everyone should know
to improve object retrieval. CVPR (2012). 41

[2] Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L. Speeded-up robust
features (surf). Computer vision and image understanding 110, 3 (2008), 346–
359. 8

[3] Bolle, R. M., Connell, J. H., Hampapur, A., and Senior, A. W. System
and method for automatically setting image acquisition controls, Oct. 9 2001. US
Patent 6,301,440. 6

[4] Bosch, A., Zisserman, A., and Munoz, X. Representing shape with a
spatial pyramid kernel. In Proceedings of the 6th ACM international conference
on Image and video retrieval (2007), ACM, pp. 401–408. 38, 41

[5] Bottou, L. Stochastic gradient descent tricks. In Neural Networks: Tricks of
the Trade, G. Montavon, G. Orr, and K.-R. Müller, Eds., 2 ed., vol. 1. Springer,
2012. 55

[6] Boureau, Y.-L., Bach, F., LeCun, Y., and Ponce, J. Learning mid-level
features for recognition. In Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on (2010), IEEE, pp. 2559–2566. 17

[7] Boureau, Y.-L., Ponce, J., and LeCun, Y. A theoretical analysis of feature
pooling in visual recognition. In Proceedings of the 27th international conference
on machine learning (ICML-10) (2010), pp. 111–118. 15

[8] Chatfield, K., Arandjelović, R., Parkhi, O., and Zisserman, A. On-
the-fly learning for visual search of large-scale image and video datasets. In-
ternational journal of multimedia information retrieval 4, 2 (2015), 75–93. 5,
10

[9] Chatfield, K., Lempitsky, V., Vedaldi, A., and Zisserman, A. The
devil is in the details: an evaluation of recent feature encoding methods. In
BMVC (2011), no. 1, pp. 76.1–76.12. 38, 41, 44

[10] Chatfield, K., Simonyan, K., Vedaldi, A., and Zisserman, A. Return
of the Devil in the Details: Delving Deep into Convolutional Nets. In British
Machine Vision Conference (2014). 9, 46, 47, 48, 51, 52, 53, 56, 59, 62, 66, 67,
69, 70

[11] Chatfield, K., and Zisserman, A. Visor: Towards on-the-fly large-scale
object category retrieval. In Asian Conference on Computer Vision (2012),
Springer, pp. 432–446. iv, 26, 28, 29, 30, 31, 32, 35

VI

BIBLIOGRAPHY

[12] Chavali, N., Agrawal, H., Mahendru, A., and Batra, D. Object-
proposal evaluation protocol is ’gameable’. In arXiv:1505.05836 (2015). 66

[13] Cimpoi, M., Maji, S., and Vedaldi, A. Deep filter banks for texture recog-
nition and segmentation. In IEEE International Conference on Computer Vision
and Pattern Recognition (2015). 17, 63, 69, 70, 85

[14] Cortes, C., and Vapnik, V. Support-vector networks. Machine learning 20,
3 (1995), 273–297. 8, 19

[15] Csurka, G., Dance, C., Fan, L., Willamowski, J., and Bray, C. Visual
categorization with bags of keypoints. In Workshop on statistical learning in
computer vision, ECCV (2004), vol. 1, Prague, pp. 1–2. 28, 37

[16] Dalal, N., and Triggs, B. Histograms of oriented gradients for human de-
tection. In 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05) (2005), vol. 1, IEEE, pp. 886–893. 8

[17] De Souza, F. D., Chavez, G. C., do Valle Jr, E. A., and Araújo,

A. d. A. Violence detection in video using spatio-temporal features. In 2010
23rd SIBGRAPI Conference on Graphics, Patterns and Images (2010), IEEE,
pp. 224–230. 6

[18] Delaitre, V., Laptev, I., and Sivic, J. Recognizing human actions in still
images: a study of bag-of-features and part-based representations. In British
Machine Vision Conference (2010). 9, 20

[19] Delhumeau, J., Gosselin, P.-H., Jégou, H., and Pérez, P. Revisiting the
VLAD image representation. In Proceedings of ACM International Conference on
Multimedia (New York, New York, USA, 2013), vol. 21, ACM Press, pp. 653–656.
37, 41

[20] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. Im-
agenet: A large-scale hierarchical image database. In Computer Vision and Pat-
tern Recognition, 2009. CVPR 2009. IEEE Conference on (2009), IEEE, pp. 248–
255. 9

[21] Denoyer, L., and Gallinari, P. A ranking based model for automatic image
annotation in a social network. In ICWSM (2010). 5

[22] Doersch, C., Gupta, A., and Efros, A. A. Mid-level visual element discov-
ery as discriminative mode seeking. In Advances in neural information processing
systems (2013), pp. 494–502. 8, 17, 61, 63

[23] Doersch, C., Singh, S., Gupta, A., Sivic, J., and Efros, A. What makes
paris look like paris? ACM Transactions on Graphics 31, 4 (2012). 61, 63

[24] Duan, L., Tsang, I. W., Xu, D., and Chua, T.-S. Domain adaptation
from multiple sources via auxiliary classifiers. In Proceedings of the 26th Annual
International Conference on Machine Learning (2009), ACM, pp. 289–296. 28

[25] Duan, L., Tsang, I. W., Xu, D., and Maybank, S. J. Domain transfer
svm for video concept detection. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on (2009), IEEE, pp. 1375–1381. 29

VII

BIBLIOGRAPHY

[26] Duan, L.-Y., Xu, M., Chua, T.-S., Tian, Q., and Xu, C.-S. A mid-level
representation framework for semantic sports video analysis. In Proceedings of the
eleventh ACM international conference on Multimedia (2003), ACM, pp. 33–44.
17

[27] Everingham, M., Van Gool, L., Williams, C. K. I.,

Winn, J., and Zisserman, A. The PASCAL Visual Object
Classes Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html. 9, 20, 26, 28,
30, 41, 62

[28] Farhadi, A., Endres, I., Hoiem, D., and Forsyth, D. Describing objects
by their attributes. In Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on (2009), IEEE, pp. 1778–1785. 26, 28

[29] Farhadi, A., Tabrizi, M. K., Endres, I., and Forsyth, D. A latent
model of discriminative aspect. In 2009 IEEE 12th International Conference on
Computer Vision (2009), IEEE, pp. 948–955. 9

[30] Fathi, A., and Mori, G. Action recognition by learning mid-level motion
features. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE
Conference on (2008), IEEE, pp. 1–8. 17

[31] Felzenszwalb, P. F., Girshick, R. B., McAllester, D., and Ramanan,

D. Object detection with discriminatively trained part-based models. IEEE
transactions on pattern analysis and machine intelligence 32, 9 (2010), 1627–
1645. 8, 61, 63

[32] Fernando, B., Fromont, E., and Tuytelaars, T. Mining mid-level fea-
tures for image classification. International Journal of Computer Vision 108, 3
(2014), 186–203. 17

[33] Fischler, M. A., and Elschlager, R. A. The Representation and Matching
of Pictorial Structures. IEEE Trans. Computers 22, 1 (1973), 67–92. 61

[34] Friedman, J., Hastie, T., Tibshirani, R., et al. Additive logistic re-
gression: a statistical view of boosting (with discussion and a rejoinder by the
authors). The annals of statistics 28, 2 (2000), 337–407. 61

[35] Gatys, L. A., Ecker, A. S., and Bethge, M. Image style transfer us-
ing convolutional neural networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (2016), pp. 2414–2423. 9

[36] George, M., and Floerkemeier, C. Recognizing products: A per-exemplar
multi-label image classification approach. In European Conference on Computer
Vision (2014), Springer, pp. 440–455. 5

[37] Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference
on Computer Vision (2015), pp. 1440–1448. 11, 75

[38] Girshick, R., Donahue, J., Darrell, T., and Malik, J. Rich feature
hierarchies for accurate object detection and semantic segmentation. In Com-
puter Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on (2014),
IEEE, pp. 580–587. 52, 75

VIII

BIBLIOGRAPHY

[39] Goh, H., Thome, N., and Cord, M. Top-Down Regularization of Deep Belief
Networks. 1–9. 52

[40] Gong, Y., Wang, L., Guo, R., and Lazebnik, S. Multi-scale orderless
pooling of deep convolutional activation features. In ECCV 2014. Springer, 2014,
pp. 392–407. 17, 37, 43, 51, 52, 63, 71, 85

[41] Gong, Y., Wang, L., Guo, R., and Lazebnik, S. Multi-scale Orderless
Pooling of Deep Convolutional Activation Features. In European Conference on
Computer Vision (Mar. 2014). 52

[42] Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A. C.,

and Bengio, Y. Maxout networks. ICML (3) 28 (2013), 1319–1327. 63

[43] Gulcehre, C., Cho, K., Pascanu, R., and Bengio, Y. Learned-norm
pooling for deep feedforward and recurrent neural networks. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases (2014),
Springer, pp. 530–546. 63

[44] Hafemann, L. G., Oliveira, L. S., Cavalin, P. R., and Sabourin, R.

Transfer learning between texture classification tasks using convolutional neural
networks. In 2015 International Joint Conference on Neural Networks (IJCNN)
(2015), IEEE, pp. 1–7. 9

[45] Hansen, T., Olkkonen, M., Walter, S., and Gegenfurtner, K. R.

Memory modulates color appearance. Nature neuroscience 9, 11 (2006), 1367–
1368. 28

[46] He, K., Zhang, X., Ren, S., and Sun, J. Spatial pyramid pooling in deep
convolutional networks for visual recognition. Pattern Analysis and Machine
Intelligence, IEEE Transactions on 37, 9 (2015), 1904–1916. 52, 69, 75

[47] Hoai, M., and Zisserman, A. Improving human action recognition using
score distribution and ranking. In Asian Conference on Computer Vision. 2014.
61

[48] Idris, F., and Panchanathan, S. Review of image and video indexing tech-
niques. Journal of visual communication and image representation 8, 2 (1997),
146–166. 6

[49] Jaakkola, T. S., Haussler, D., et al. Exploiting generative models in dis-
criminative classifiers. Advances in neural information processing systems (1999),
487–493. 8, 15

[50] Jégou, H., Douze, M., Schmid, C., and Pérez, P. Aggregating local
descriptors into a compact image representation. In Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on (2010), IEEE, pp. 3304–3311.
8, 63

[51] Jégou, H., and Zisserman, A. Triangulation embedding and democratic
aggregation for image search. In CVPR (2014). 41

IX

BIBLIOGRAPHY

[52] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick,

R., Guadarrama, S., and Darrell, T. Caffe: Convolutional architecture
for fast feature embedding. In Proceedings of the 22Nd ACM International Con-
ference on Multimedia (2014). 51, 67, 70

[53] Juneja, M., Vedaldi, A., Jawahar, C., and Zisserman, A. Blocks that
shout: Distinctive parts for scene classification. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (2013), pp. 923–930.
8, 61, 63

[54] Jurie, F., and Triggs, B. Creating efficient codebooks for visual recognition.
In Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume
1 (2005), vol. 1, IEEE, pp. 604–610. 15

[55] Ke, Y., and Sukthankar, R. Pca-sift: A more distinctive representation
for local image descriptors. In Computer Vision and Pattern Recognition, 2004.
CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on
(2004), vol. 2, IEEE, pp. II–506. 14

[56] Kemp, C., Tenenbaum, J. B., Griffiths, T. L., Yamada, T., and Ueda,

N. Learning systems of concepts with an infinite relational model. In AAAI
(2006), vol. 3, p. 5. 31

[57] Khan, F. S., Anwer, R. M., van de Weijer, J., Bagdanov, A. D.,

Lopez, A. M., and Felsberg, M. Coloring action recognition in still images.
International journal of computer vision 105, 3 (2013), 205–221. 71

[58] Khosla, A., Zhou, T., Malisiewicz, T., Efros, A. A., and Torralba,

A. Undoing the damage of dataset bias. In European Conference on Computer
Vision (2012), Springer, pp. 158–171. 9

[59] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems (2012), pp. 1097–1105. iv, 1, 9, 17, 38, 39, 51, 53, 62, 67, 69,
70, 81, 85

[60] Kulkarni, P., Zepeda, J., Jurie, F., Perez, P., and Chevallier, L.

Hybrid multi-layer deep cnn/aggregator feature for image classification. In IEEE
International Conference on Acoustics, Speech, and Signal Processing (2015). 52,
63

[61] Kulkarni, P., Zepeda, J., Jurie, F., Perez, P., and Chevallier, L.

Max-Margin, Single-Layer Adaptation of Transferred Image Features. In BigVi-
sion Workshop, Computer Vision and Pattern Recognition (2015). 51, 52, 53,
67

[62] Kumar, N., Berg, A. C., Belhumeur, P. N., and Nayar, S. K. Attribute
and simile classifiers for face verification. In 2009 IEEE 12th International Con-
ference on Computer Vision (2009), IEEE, pp. 365–372. 28

[63] Lampert, C. H., Nickisch, H., and Harmeling, S. Learning to detect
unseen object classes by between-class attribute transfer. In Computer Vision
and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on (2009), IEEE,
pp. 951–958. 8, 26, 28, 29, 30, 31

X

BIBLIOGRAPHY

[64] Lazebnik, S., Schmid, C., and Ponce, J. Beyond bags of features: Spa-
tial pyramid matching for recognizing natural scene categories. In 2006 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’06) (2006), vol. 2, IEEE, pp. 2169–2178. 16, 26, 28, 32, 38, 41, 52

[65] LeCun, Y., Bottou, L., Orr, G., and Muller, K.-R. Efficient BackProp.
In Neural Networks: Tricks of the Trade. 2002, pp. 9–50. 55

[66] Lee, C.-Y., Gallagher, P. W., and Tu, Z. Generalizing pooling func-
tions in convolutional neural networks: Mixed, gated, and tree. In International
Conference on Artificial Intelligence and Statistics (2016). 63

[67] Li, L.-J., Su, H., Fei-Fei, L., and Xing, E. P. Object bank: A high-level
image representation for scene classification & semantic feature sparsification. In
Advances in neural information processing systems (2010), pp. 1378–1386. 28

[68] Li, M., Zang, S., Zhang, B., Li, S., Wu, C., et al. A review of remote
sensing image classification techniques: The role of spatio-contextual information.
European Journal of Remote Sensing 47 (2014), 389–411. 5

[69] Li, Q., Wu, J., and Tu, Z. Harvesting mid-level visual concepts from large-
scale internet images. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (2013), pp. 851–858. 17

[70] Li, Y., Liu, L., Shen, C., and van den Hengel, A. Mid-level deep pattern
mining. In IEEE International Conference on Computer Vision and Pattern
Recognition (2015). 63, 69, 70, 71

[71] Lindstaedt, S., Pammer, V., Mörzinger, R., Kern, R., Mülner, H.,

and Wagner, C. Recommending tags for pictures based on text, visual content
and user context. In Internet and Web Applications and Services, 2008. ICIW’08.
Third International Conference on (2008), IEEE, pp. 506–511. 5

[72] Liu, C., Yuen, J., Torralba, A., Sivic, J., and Freeman, W. T. Sift
flow: Dense correspondence across different scenes. In European conference on
computer vision (2008), Springer, pp. 28–42. 14

[73] Lobel, H., Vidal, R., and Soto, A. Hierarchical joint Max-Margin learning
of mid and top level representations for visual recognition. In IEEE International
Conference on Computer Vision (2013). 61, 63

[74] Lowe, D. G. Object recognition from local scale-invariant features. In Computer
vision, 1999. The proceedings of the seventh IEEE international conference on
(1999), vol. 2, Ieee, pp. 1150–1157. 28

[75] Lowe, D. G. Distinctive image features from scale-invariant keypoints. Inter-
national journal of computer vision 60, 2 (2004), 91–110. iii, 8, 15, 37

[76] Malisiewicz, T., Gupta, A., and Efros, A. A. Ensemble of exemplar-svms
for object detection and beyond. In 2011 International Conference on Computer
Vision (2011), IEEE, pp. 89–96. iii, 26, 27

[77] Mason, L., Baxter, J., Bartlett, P., and Frean, M. Boosting algo-
rithms as gradient descent in function space. NIPS. 61

XI

BIBLIOGRAPHY

[78] Muja, M., and Lowe, D. G. Fast approximate nearest neighbors with auto-
matic algorithm configuration. VISAPP (1) 2, 331-340 (2009), 2. 15

[79] Oquab, M., Bottou, L., Laptev, I., and Sivic, J. Learning and trans-
ferring mid-level image representations using convolutional neural networks. In
Proceedings of the IEEE conference on computer vision and pattern recognition
(2014), pp. 1717–1724. 1, 9, 37, 40, 43, 44, 46, 47, 48, 52, 53, 59, 62, 69, 70, 85

[80] Oquab, M., Bottou, L., Laptev, I., and Sivic, J. Is object localization
for free?-weakly-supervised learning with convolutional neural networks. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(2015), pp. 685–694. 75, 79

[81] Orabona, F., Castellini, C., Caputo, B., Fiorilla, A. E., and San-

dini, G. Model adaptation with least-squares svm for adaptive hand prosthetics.
In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on
(2009), IEEE, pp. 2897–2903. 9

[82] Osherson, D., Smith, E. E., Myers, T. S., Shafir, E., and Stob, M.

Extrapolating human probability judgment. Theory and Decision 36, 2 (1994),
103–129. 28

[83] Osherson, D. N., Stern, J., Wilkie, O., Stob, M., and Smith, E. E.

Default probability. Cognitive Science 15, 2 (1991), 251–269. 28

[84] Pan, S. J., and Yang, Q. A survey on transfer learning. IEEE Transactions
on knowledge and data engineering 22, 10 (2010), 1345–1359. 9

[85] Parizi, S. N., Vedaldi, A., Zisserman, A., and Felzenszwalb, P. Au-
tomatic Discovery and Optimization of Parts for Image Classification. In Inter-
national Conference on Learning Representations (2015). 61, 63, 71

[86] Parkhi, O. M., Vedaldi, A., and Zisserman, A. On-the-fly specific person
retrieval. In Image Analysis for Multimedia Interactive Services (WIAMIS), 2012
13th International Workshop on (2012), IEEE, pp. 1–4. 38

[87] Perronnin, F., and Dance, C. Fisher kernels on visual vocabularies for image
categorization. In CVPR (2007), pp. 1–8. 37

[88] Perronnin, F., Sánchez, J., and Mensink, T. Improving the fisher kernel
for large-scale image classification. In European conference on computer vision
(2010), Springer, pp. 143–156. 8, 15, 19, 38, 42, 44, 52

[89] Quattoni, A., and Torralba, A. Recognizing indoor scenes. In IEEE
International Conference on Computer Vision and Pattern Recognition (2009).
9, 20

[90] Razavian, A. S., Azizpour, H., Sullivan, J., and Carlsson, S. Cnn
features off-the-shelf: an astounding baseline for recognition. In Computer Vision
and Pattern Recognition Workshops (2014). 62

[91] Ren, S., He, K., Girshick, R., and Sun, J. Faster r-cnn: Towards real-
time object detection with region proposal networks. In Advances in neural
information processing systems (2015), pp. 91–99. 75

XII

BIBLIOGRAPHY

[92] Ro, Y. M., Kim, M., Kang, H. K., Manjunath, B., and Kim, J. Mpeg-7
homogeneous texture descriptor. ETRI journal 23, 2 (2001), 41–51. 7

[93] Russakovsky, O., and Fei-Fei, L. Attribute learning in large-scale datasets.
In Trends and Topics in Computer Vision. Springer, 2012, pp. 1–14. 29

[94] Saad, D. Online algorithms and stochastic approximations. Online Learning .
16

[95] Sabzmeydani, P., and Mori, G. Detecting pedestrians by learning shapelet
features. In 2007 IEEE Conference on Computer Vision and Pattern Recognition
(2007), IEEE, pp. 1–8. 17

[96] Sanchez, J., and Perronnin, F. High-dimensional signature compression for
large-scale image classification. CVPR (June 2011), 1665–1672. 39

[97] Sawant, N., Datta, R., Li, J., and Wang, J. Z. Quest for relevant tags
using local interaction networks and visual content. In Proceedings of the interna-
tional conference on Multimedia information retrieval (2010), ACM, pp. 231–240.
5

[98] Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., and

LeCun, Y. Overfeat: Integrated recognition, localization and detection using
convolutional networks. arXiv preprint arXiv:1312.6229 (2013). 74, 75

[99] Shalev-shwartz, S., and Srebro, N. Pegasos : Primal Estimated sub-
GrAdient SOlver for SVM. 55

[100] Sharif, A., Hossein, R., Josephine, A., Stefan, S., and Royal, K.

T. H. CNN Features off-the-shelf : an Astounding Baseline for Recognition. 59

[101] Sharif Razavian, A., Azizpour, H., Sullivan, J., and Carlsson, S.

Cnn features off-the-shelf: an astounding baseline for recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition Workshops
(2014), pp. 806–813. 9, 17, 46, 51, 52, 59, 62

[102] Sharma, G., Jurie, F., and Schmid, C. Discriminative spatial saliency for
image classification. In IEEE International Conference on Computer Vision and
Pattern Recognition (2012). 28, 71

[103] Sharma, G., Jurie, F., and Schmid, C. Expanded parts model for human
attribute and action recognition in still images. In IEEE International Conference
on Computer Vision and Pattern Recognition (2013). 71

[104] Sicre, R., and Jurie, F. Discovering and aligning discriminative mid-level fea-
tures for image classification. In International Conference on Pattern Recognition
(2014). 63, 71

[105] Simonyan, K., Vedaldi, A., and Zisserman, A. Deep fisher networks for
large-scale image classification. In NIPS (2013), pp. 163–171. 37

[106] Simonyan, K., and Zisserman, A. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014). 1, 67, 69,
70, 81

XIII

BIBLIOGRAPHY

[107] Singh, S., Gupta, A., and Efros, A. A. Unsupervised discovery of mid-
level discriminative patches. In Computer Vision–ECCV 2012. Springer, 2012,
pp. 73–86. 8, 17, 61, 63

[108] Sivic, J., and Zisserman, A. Video google: A text retrieval approach to
object matching in videos. In Computer Vision, 2003. Proceedings. Ninth IEEE
International Conference on (2003), IEEE, pp. 1470–1477. 8, 15, 28, 38, 52

[109] Sloman, S. A. Feature-based induction. Cognitive psychology 25, 2 (1993),
231–280. 28

[110] Srinivas, S., and Babu, R. V. Learning the architecture of deep neural
networks. CoRR abs/1511.05497 (2015). 84

[111] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and

Salakhutdinov, R. Dropout : A Simple Way to Prevent Neural Networks
from Overfitting. Journal of Machine Learning Research 15 (2014), 1929–1958.
51

[112] Stone, Z., Zickler, T., and Darrell, T. Autotagging facebook: Social
network context improves photo annotation. In Computer Vision and Pattern
Recognition Workshops, 2008. CVPRW’08. IEEE Computer Society Conference
on (2008), IEEE, pp. 1–8. 5

[113] Su, Y., and Jurie, F. Improving image classification using semantic attributes.
International journal of computer vision 100, 1 (2012), 59–77. 26, 28

[114] Swain, M. J., and Ballard, D. H. Color indexing. International journal of
computer vision 7, 1 (1991), 11–32. 7

[115] Sydorov, V., Sakurada, M., and Lampert, C. H. Deep fisher kernels–end
to end learning of the fisher kernel gmm parameters. In CVPR (2014), pp. 1402–
1409. 37, 54

[116] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov,

D., Erhan, D., Vanhoucke, V., and Rabinovich, A. Going deeper with
convolutions. In IEEE International Conference on Computer Vision and Pattern
Recognition (2015). 70

[117] Torresani, L., Szummer, M., and Fitzgibbon, A. Efficient object category
recognition using classemes. In European conference on computer vision (2010),
Springer, pp. 776–789. 28

[118] Ullman, S., Sali, E., and Vidal-Naquet, M. A Fragment-Based Approach
to Object Representation and Classification. In Visual Form 2001. 2001. 61

[119] Van De Sande, K., Gevers, T., and Snoek, C. Evaluating color descriptors
for object and scene recognition. IEEE transactions on pattern analysis and
machine intelligence 32, 9 (2010), 1582–1596. 16

[120] van de Sande, K. E. A., Uijlings, J. R. R., Gevers, T., and Smeulders,

A. W. M. Segmentation as selective search for object recognition. In IEEE
International Conference on Computer Vision (2011). 66, 74

XIV

BIBLIOGRAPHY

[121] van Gemert, J. C., Geusebroek, J.-M., Veenman, C. J., and Smeul-

ders, A. W. Kernel codebooks for scene categorization. In ECCV. Springer,
2008, pp. 696–709. 37

[122] Van Gemert, J. C., Veenman, C. J., Smeulders, A. W., and Geuse-

broek, J.-M. Visual word ambiguity. IEEE transactions on pattern analysis
and machine intelligence 32, 7 (2010), 1271–1283. 8

[123] Vedaldi, A., and Fulkerson, B. Vlfeat: An open and portable library
of computer vision algorithms. In Proceedings of the 18th ACM international
conference on Multimedia (2010), ACM, pp. 1469–1472. 32

[124] Vogel, J., and Schiele, B. Semantic modeling of natural scenes for content-
based image retrieval. International Journal of Computer Vision 72, 2 (2007),
133–157. 28

[125] Wan, L., Zeiler, M., Zhang, S., LeCun, Y., and Fergus, R. Regular-
ization of Neural Networks using DropConnect. In International Conference of
Machine Learning (2013). 52

[126] Wang, G., Hoiem, D., and Forsyth, D. Learning image similarity from
flickr groups using stochastic intersection kernel machines. In 2009 IEEE 12th
International Conference on Computer Vision (2009), IEEE, pp. 428–435. 28

[127] Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., and Gong, Y. Locality-
constrained linear coding for image classification. In CVPR (2010), pp. 3360–
3367. 37

[128] Weber, M., Welling, M., and Perona, P. Towards automatic discovery
of object categories. 61

[129] Wu, P., and Dietterich, T. G. Improving svm accuracy by training on
auxiliary data sources. In Proceedings of the twenty-first international conference
on Machine learning (2004), ACM, p. 110. 29

[130] Xue, S., Agarwala, A., Dorsey, J., and Rushmeier, H. Learning and
applying color styles from feature films. In Computer Graphics Forum (2013),
vol. 32, Wiley Online Library, pp. 255–264. 6

[131] Yang, J., Yan, R., and Hauptmann, A. G. Cross-domain video concept
detection using adaptive svms. In Proceedings of the 15th ACM international
conference on Multimedia (2007), ACM, pp. 188–197. 28

[132] Yang, J., Yu, K., Gong, Y., and Huang, T. Linear spatial pyramid match-
ing using sparse coding for image classification. In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on (2009), IEEE, pp. 1794–
1801. 15

[133] Yu, X., and Aloimonos, Y. Attribute-based transfer learning for object cate-
gorization with zero/one training example. In European conference on computer
vision (2010), Springer, pp. 127–140. 28

XV

BIBLIOGRAPHY

[134] Zeiler, M. D., and Fergus, R. Visualizing and understanding convolu-
tional networks. In European Conference on Computer Vision (2014), Springer,
pp. 818–833. 16

[135] Zhang, D., and Lu, G. Generic fourier descriptor for shape-based image
retrieval. In Multimedia and Expo, 2002. ICME’02. Proceedings. 2002 IEEE
International Conference on (2002), vol. 1, IEEE, pp. 425–428. 7

[136] Zhang, J., Marsza lek, M., Lazebnik, S., and Schmid, C. Local features
and kernels for classification of texture and object categories: A comprehensive
study. International journal of computer vision 73, 2 (2007), 213–238. 16

[137] Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., and Oliva, A. Learn-
ing deep features for scene recognition using places database. In Advances in
neural information processing systems (2014), pp. 487–495. 9, 67, 70, 71, 81

[138] Zhou, X., Yu, K., Zhang, T., and Huang, T. S. Image classification
using super-vector coding of local image descriptors. In European conference on
computer vision (2010), Springer, pp. 141–154. 8, 37

XVI

	Acknowledgement
	Résumé
	Summary in English
	General Introduction
	Context
	Objectives of this thesis
	Contributions
	Flow of thesis

	Review of the related work
	Basic setup of supervised image classification
	Traditional image representation
	Convolutional Neural Networks (CNNs)
	Discovering discriminative regions
	Linear classifiers
	Dataset used in this thesis

	Transfer Learning via Attributes
	Introduction
	Related Works
	Approach
	Experimental results
	Discussion and conclusion

	Hybrid multi-layer CNN/Aggregator feature
	Introduction
	Background
	A hybrid CNN/Aggregator feature
	Results
	Conclusion

	Max-Margin, Single-Layer Adaptation
	Introduction
	Proposed approach
	Results

	Learning the Structure of Deep Architectures
	Introduction
	Background
	Learning the structure of deep architectures
	Results
	Conclusion

	SPLeaP: Soft Pooling of Learned Parts
	Introduction
	Related works
	Proposed Approach
	Optimization specific details
	Results
	Qualitative Analysis
	Conclusions

	SPLeaP with Per-Part Latent Scale Selection
	Introduction
	Related Work
	Proposed Approach
	Optimization specific details
	Results

	Summary and Conclusion
	Summary
	Conclusion

	Annexes
	Appendix for Chapter 8
	Publications and Patents

