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Résumé en Français - Summary in

French

0.1 Introduction

La fin du XXe siècle a vu la naissance et le perfectionnement des techniques de cryogénie

et de nano-fabrication permettant ainsi l’émergence de la physique mésoscopique. Ce

domaine de la physique qui attire aussi bien des expérimentateurs que des théoriciens,

étudie des systèmes intermédiaires allant de quelques particules à des matériaux faisant

quelques micromètres. En cela, elle permet de faire le lien entre l’échelle microscopique et

l’échelle macroscopique. Les systèmes d’études privilégiés en physique mésoscopique sont

par exemple les conducteurs cohérents. Dans ces conducteurs de taille micrométrique,

on mesure les effets de la cohérence de phase sur le transport du courant électrique, c’est

à dire des interférences d’ondes électroniques.

Le système sur lequel j’ai travaillé durant ma thèse est un gaz bi-dimensionnel d’électrons

dans lequel on peut contrôler la trajectoire des électrons en travaillant sur l’architecture

de l’échantillon. Les très basses températures (quelques dizaines de mK) permettent en

outre d’atteindre des régimes où la longueur de cohérence et le libre parcours moyen des

électrons sont grands devant la taille de l’échantillon, c’est à dire que l’on est dans un

régime où on peut négliger non seulement les chocs inélastiques mais aussi les chocs

élastiques. La phase de l’électron est conservée tout au long de son parcours dans

l’échantillon. On a ainsi un transport d’électrons cohérent et balistique, et on peut

appliquer une description ondulatoire aux électrons. Il est alors possible de réaliser des

expériences analogues à celles d’optique comme l’expérience des fentes d’Young ou des

interféromètres. Grâce à la source d’électron unique réalisée au laboratoire Pierre Aigrain

(LPA) [1], on pousse l’analogie à des expériences d’optiques avec des particules uniques

mais dans la matière condensée.

Cette thèse est dédiée à l’analyse de signaux électriques quantiques. En particulier, j’ai

utilisé l’analogue électronique de l’interféromètre de Hong, Ou et Mandel pour réaliser

1



2 Résumé en Français

des expériences d’interférométrie à deux particules. En entrée de l’interféromètre sont

placées des sources d’électrons uniques qui permettent l’injection contrôlée d’excitation

ne contenant qu’une seule particule. Ces excitations sont guidés par des fils unidimen-

sionnels jusqu’à l’interféromètre qui, en soit, est un contact ponctuel quantique agissant

comme une lame semi-réfléchissante pour les électrons. On mesure en sortie les fluctua-

tions aux basses fréquences du courant. Cela nous permet de mesurer le recouvrement

entre les fonctions d’onde à un électron émises à chaque entrée. Grâce à cette mesure

de recouvrement, j’ai pu caractériser à des échelles de temps sub-nanoseconde, le rôle

des interactions Coulombienne sur la propagation de l’électron unique. J’ai pu mon-

trer que ces interactions étaient la source principale de la décohérence du paquet d’onde

mono-électronique et qu’elles décomposent l’électron sur des modes collectifs. C’est une

manifestation de la fractionalisation de l’électron qui apparaît dans les systèmes uni-

dimensionnel en interactions. Grâce à cet interféromètre, j’ai pu aussi implémenter un

protocole de tomographie qui permet de reconstruire toute l’information à une particule

de n’importe quel signal émis dans le fil.

0.2 L’interféromètre

0.2.1 Réalisation de l’interféromètre

0.2.1.1 Le gaz d’électron bidimensionnel

Le système sur lequel j’ai travaillé est un gaz bidimensionnel d’électrons à l’interface

entre une couche d’Arséniure de Gallium (GaAs) et une couche de AlGaAs dopé au sili-

cium. La différence de gap entre les deux matériaux permet le confinement d’électrons

à l’interface sur une épaisseur de l’ordre de 10 nm. Ce type de gaz 2D a une très

grande mobilité électronique (' 106 cm2.s−1.V−1) car il ne contient quasiment aucune

impureté. L’échantillon sur lequel j’ai travaillé a été fabriqué au laboratoire de pho-

tonique et de nanostructures à Marcoussis par Y. Jin et A. Cavanna. Les densités élec-

troniques mesurées sur ces échantillons sont de l’ordre de 1011 cm−2 et les libres parcours

moyen mesurés de l’ordre de 10− 20 µm ce qui est intéressant si on veut manipuler des

électrons balistiques. On peut augmenter encore le libre parcours moyen en se plaçant

en régime d’effet Hall quantique entier.

L’effet Hall quantique, découvert en 1980 par von Klitzing, se caractérise par une dépen-

dance particulière de la conductance d’un échantillon avec le champ magnétique trans-

verse au gaz 2D : pour des champs suffisamment intenses (supérieurs au Tesla), on observe

que la conductance diminue en passant par des paliers. Les hauteurs de ces paliers sont

des multiples de e2/h où e est la charge de l’électron et h = 2π~ la constante de Planck.
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Figure 1: a) Description semi-classique de l’effet Hall quantique. Au milieu du gaz,
les orbites cyclotrons sont restreintes spatialement et ne participent pas au transport
d’électron. Au contraire, les orbites aux bords “rebondissent” et s’étendent d’un bout
à l’autre du gaz : elles participent donc au transport. b) Spectre en énergie à taux
de remplissage ν = 2 en fonction de la position, xL et xR correspondent aux bords de
l’échantillon. ~ωZ correspond à l’énergie de Zeeman. c) Schéma des canaux de bords à
taux de remplissage ν = 2. Parce que les bords sont suffisamment espacés, l’effet tunnel
d’un bord à l’autre est très peu probable et donc les événements de rétrodiffusion (flèche
bleue) sont très limités.

Chaque électron occupe (à une dégénérescence de spin près) un niveau dit de Landau. Un

niveau de Landau peut contenir un grand nombre d’électron. Le nombre d’électron du

système fixe le niveau de Fermi εF et donc ainsi le nombre de niveau de Landau remplis

ν. Dans le cœur de l’échantillon (ou bulk), les électrons occupent des niveaux de Landau

qui se localisent du fait du désordre et ils ne participent pas à la conduction. En effet,

l’écart entre deux niveaux vaut ~ωc (où ωc est la pulsation cyclotron) ce qui correspond

à une température de ∼ 200K interdisant toute conduction à basse température.

En revanche, du fait du travail de sortie (work function), les électrons ressentent sur les

bords du matériaux un potentiel variable qui les maintient à l’intérieur du gaz 2D. Ce

potentiel courbe les niveaux de Landau qui remontent jusqu’à croiser le niveau de Fermi

(voir figure 1-b). Les électrons localisés sur les bords ont donc un spectre d’excitations

sans gap et participent ainsi à la conduction électronique à basse température. En outre,

le champ magnétique brise la symétrie de renversement en temps ce qui impose une

chiralité au système et les électrons d’un bord ne peuvent donc se propager que dans un

seul sens (voir figure 1-c).

Ce dernier phénomène est particulièrement intéressant puisqu’il bloque la rétrodiffusion
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Figure 2: a. Schéma de la répartition des canaux de bords dans la situation qui
correspond au point rouge sur la figure b qui représente la conductance à travers le
QPC en fonction de la tension VQPC. Pour VQPC = −1.05 V, le canal externe est
transmis avec une probabilité de 50%.

des électrons. À facteur de remplissage entier, la rétrodiffusion ne peut se faire qu’en

passant d’un bord de l’échantillon à l’autre, les 2 bords étant suffisamment espacés la

résistance longitudinale s’annule. Cette absence de rétrodiffusion augmente encore le

libre parcours moyen des électrons (jusqu’à ∼ 100 µm). En outre, de grandes longueurs

de cohérence ont pu être observées dans ces systèmes (∼ 20 µm à 20 mK [2]). On peut

raisonnablement approximer chaque canal de bord par un conducteur unidimensionnel

chiral parfait avec une conductance égale au quantum de conductance : e2/h = 1/RK où

RK ' 25.8kΩ est la résistance de von Klitzing. Ainsi, un gaz 2D à taux de remplissage

ν entier a une impédance de RK/ν.

0.2.1.2 Le contact ponctuel quantique comme lame séparatrice

Avant de pouvoir faire des expériences d’optique, il faut pouvoir réaliser l’analogue de la

lame semi-réfléchissante présente dans de nombreux interféromètres et notamment celui

de Hong, Ou et Mandel.

Pour réaliser une lame semi-réfléchissante, on utilise un contact ponctuel quantique

(QPC). Le QPC est constitué d’électrodes métalliques déposées au dessus du gaz 2D

dont on peut varier le potentiel. En portant ces grilles à un potentiel négatif on peut,

par influence électrostatique, repousser la partie du gaz d’électrons qui se situe autour

des électrodes et ainsi créer une constriction dans le gaz (voir figure 2). En appliquant

un potentiel suffisamment négatif, on réfléchit tous les canaux de conduction et la con-

ductance du QPC est nulle. À partir de là, en ramenant peu à peu le potentiel vers 0

on transmet progressivement les canaux un par un. On peut ainsi choisir combien de

canaux sont transmis au niveau de la constriction et on voit la conductance varier par

plateaux de e2/h. Plus finement, on peut ouvrir partiellement un canal en sélectionnant
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Figure 3: a)-Schéma de la source d’électrons uniques. Une boîte quantique de
niveau discret suffisamment espacés est couplée au gaz 2D par un QPC. b)-Principe
de l’émission d’électrons et de trous uniques. Le premier schéma représente
l’évolution dans le temps du potentiel appliqué à la boîte ; les trois phases correspon-
dantes sont représentées en dessous. 1○ la boîte est à l’équilibre. 2○ un fort potentiel
est appliqué ce qui décale les niveaux vers le haut permettant à un d’entre eux de passer
au dessus du niveau de Fermi ce qui déclenche l’émission d’un électron. 3○ le potentiel
est ramené à sa valeur initiale ce qui ramène un niveau vide sous le niveau de Fermi
et permet l’émission d’un trou dans le gaz 2D. L’extension en énergie des niveaux est
représentée par la zone grise. (Schémas extraits de [3]).

une valeur de potentiel intermédiaire entre canal ouvert et canal fermé (point rouge sur

la figure). On va pouvoir ainsi contrôler la transmission par effet tunnel d’une charge

sur un canal d’un côté de la constriction vers le canal correspondant de l’autre côté de la

constriction. On peut ainsi choisir la tension qui correspond à une transmission T = 1/2

et obtenir l’équivalent d’une lame semi-réfléchissante.

0.2.1.3 Source d’électrons uniques

Je vais présenter dans cette partie la source d’électrons uniques que j’ai utilisée pendant

ma thèse. Elle a été extensivement étudiée par le passé [4–7]; je me concentrerai sur les

points essentiels à la compréhension de l’expérience.

La source est constituée d’une boîte quantique couplée au gaz 2D (voir figure 3). La

boîte a une largeur de l’ordre du µm ce qui crée un fort confinement dans les trois

dimensions et discrétise les niveaux d’énergie. Les niveaux sont régulièrement espacés en



6 Résumé en Français

énergie avec un écart ∆1. On peut contrôler le potentiel dans cette boîte à l’aide d’une

grille (ou top-gate) couplée capacitivement à la boîte. Du fait que l’on applique un fort

champ magnétique à tout l’échantillon, il n’y a pas de dégénérescence de spin et chaque

niveau occupé de la boîte ne contient qu’un seul électron. La boîte est reliée au reste de

l’échantillon à travers un autre QPC. En contrôlant la tension de grille Vg de ce QPC, on

joue sur le couplage par effet tunnel entre la boîte quantique et le reste de l’échantillon.

Lorsque la boîte est complètement fermée et isolée du gaz 2D (Vg très négatif), le con-

finement dans la boîte est important, les niveaux électroniques sont bien définis et peu

étendus en énergie. À l’inverse, lorsque la boîte est complètement ouverte sur le gaz 2D

on peut la décrire comme une simple extension du gaz 2D et les niveaux de la boîte sont

tellement élargis en énergie qu’ils forment un continuum.

Le principe de fonctionnement de la source (résumé sur la figure 3-b) est le suivant.

Partant d’une situation d’équilibre, on applique une marche de potentiel sur la top-gate

de la boîte quantique de façon à promouvoir un niveau occupé au dessus de l’énergie de

Fermi du gaz 2D. Cet électron peut traverser par effet tunnel la barrière de potentiel

électrostatique créée par les électrodes du QPC. La barrière a une transmission D. La

probabilité de rester dans la boîte est exponentiellement décroissante en temps. On

associe à cette décroissance un temps de sortie τe ' h/(D∆)[8]. On applique le potentiel

suffisamment longtemps par rapport au temps de sortie pour faire tendre la probabilité

d’avoir émis un électron vers 1. Ensuite on redescend le potentiel à son niveau initial.

Le niveau électronique qui s’est vidé de son électron passe sous le niveau de Fermi. On

peut alors adopter une description symétrique à l’étape précédente en considérant qu’un

électron à une énergie inférieure au niveau de Fermi est absorbé par la boîte ce qui revient

à émettre dans la mer de Fermi un trou d’énergie opposée (en prenant le niveau de Fermi

comme origine des énergies). On répète ensuite le processus à la fréquence f de l’ordre

du GHz.

0.2.2 L’expérience de Hong, Ou et Mandel avec des particules uniques

Maintenant que toutes les briques élémentaires ont été présentées, je vais introduire ici

le principe de l’interféromètre de Hong, Ou et Mandel (HOM). On peut voir sur la figure

4 une image en fausse couleur prise au microscope électronique de la partie centrale de

l’interféromètre. Cet interféromètre est placé dans un réfrigérateur à dilution He3/He4

qui permet d’atteindre des températures électroniques Tel ≈ 90 mK. Dans les entrées

1 et 2 on injecte deux particules (électron ou trou) identiques et donc indiscernables

(même énergie, même spin i.e. même état quantique). On peut contrôler précisément
1Il s’agit d’un ∆ effectif qui prend en compte les énergies d’addition de charge dues aux interactions

Coulombiennes.
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Figure 4: Schéma de l’interféromètre HOM à taux de remplissage 2. Les lignes
bleues représentent les canux de bords de l’effet Hall. Le canal externe guide les électrons
depuis la source vers le QPC qui est fixé à transmission 0, 5. On mesure le bruit de
courant dans la sortie 3 dans une bande de fréquence proche de 1, 5 MHz. Sur la droite
sont schématisés les deux cas limites : avec interférence à deux particules (τ = 0) et
sans (τ 6= 0).

le décalage τ entre l’émission de la source 1 et la source 2 jusqu’à ±7 ps. Sur la droite

de la figure sont schématisés deux résultats possibles de l’expérience. Quand le retard τ

entre les sources est nul, les deux particules indiscernables arrivent en même temps sur

le QPC et il y a donc un recouvrement parfait des deux fonctions d’onde. Parce que

les électrons sont des fermions, il va y avoir un effet de dégroupement (ou anti-bunching

en anglais) : les électrons ne peuvent pas occuper le même états donc ils vont prendre

chacun une sortie différente (3 ou 4), c’est le principe d’exclusion de Pauli. Ainsi, si on

excite les sources à haute fréquence pour répéter l’expérience un grand nombre de fois

par unité de temps, on observe un train d’électron unique dans chaque bras de sortie.

Dans la sortie 3, il y a toujours une seule particule par (demi-)période, c’est un signal

qui ne fluctue pas (à basse fréquence). Au contraire, quand τ est suffisamment grand

pour que les particules ne “se voient pas” au niveau du QPC, cet effet d’interférence à

deux particules disparaît et chaque particule prend aléatoirement une des deux sorties.

On parle de partitionnement aléatoire. Cette fois on obtient donc un signal fluctuant en

sortie 3 avec aléatoirement aucune, une ou deux particules par demi-période.

Pour observer si il y a des fluctuations à basse fréquence ou non, on mesure le bruit

de courant. En pratique, on mesure la densité spectrale du courant intégrée dans une

bande de 78, 125 kHz centrée à 1, 48 MHz. On peut montrer qu’une partie du bruit du

courant que l’on appellera SHOM est sensible à ces fluctuations. C’est la mesure de cette

quantité qui est au cœur de l’expérience d’interférométrie. Quand τ = 0, si les particules



8 Résumé en Français

sont parfaitement indiscernables, on a SHOM = 0 et au contraire pour |τ | suffisamment

grand SHOM = SHBT1 + SHBT2, la somme des bruits créés indépendamment par chaque

source. SHBTi correspond au bruit de courant créé par la source i lorsque elle seule est

allumée, on peut donc aussi le mesurer facilement, il suffit d’éteindre l’autre source. On

ne présentera pas les valeurs de bruit absolues mais seulement le bruit normalisé :

∆q(τ) =
SHOM

SHBT1 + SHBT2
(0.1)

qui est une quantité qui vaudra 1 lorsqu’il n’y a aucun effet d’interférence et 0 quand

il y a recouvrement parfait entre les deux paquets d’onde. On a vu plus haut que les

paquets d’onde avaient une certaine extension temporel τe donc quand |τ | < τe il y a

un recouvrement partiel entre les paquets d’onde et ∆q peut prendre donc des valeurs

intermédiaires entre 0 et 1. Globalement, en mesurant le bruit normalisé ∆q en fonction

du retard entre les sources τ , on s’attend à un creux vers τ = 0 qui va jusqu’à 0 quand

les particules qui se rencontrent sont parfaitement indiscernables. On appellera ce trou

le trou de Pauli.

Cette expérience permet donc de sonder l’indiscernabilité des particules mais aussi de

mesurer l’extension temporelle de leur paquet d’ondes. Plus généralement, on voit que

c’est un outil puissant pour mesurer le recouvrement entre deux fonctions d’onde. Il

est à noter qu’il faut faire appel à l’indiscernabilité et à la statistique (bosonique ou

fermionique) des particules pour comprendre complètement le résultat, une interprétation

purement corpusculaire ou purement ondulatoire ne suffit pas.

Sur la figure 5, on voit l’évolution de la profondeur du trou de Pauli en fonction de

l’extension temporelle (ou temps de sorti) τe du paquet d’onde. On appelle visibilité γ

cette profondeur. Une visibilité de 1 correspond à une interférence parfaite alors que

pour γ = 0 il n’y a pas d’interférence du tout et les particules se comportent comme des

billes classiques. Ces mesures ont été réalisées à deux taux de remplissage (ν = 2 et 3).

On voit une diminution des effets d’interférence en fonction du temps de sortie, on parle

de décohérence. Plus les paquets d’onde s’étendent temporellement plus ils subissent

cette décohérence de façon importante. De cette dépendance, on peut extraire, par une

modélisation phénoménologique, un temps de cohérence caractéristique τc (98 ps pour

ν = 2 et 59 ps pour ν = 3). Au delà, de ces temps là, le paquet d’onde ne peut pas

maintenir sa cohérence. Les paquets d’onde dépassant cette extension temporelle sont

en quelque sorte découpés en brique de cohérence plus petite mais incohérente entre elles

et c’est pourquoi l’effet d’interférence est dramatiquement réduit.
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Figure 5: Évolution de la visibilité γ en fonction du temps de sortie τe à taux de
remplissage ν = 2 (points bleus) et ν = 3 (carrés rouges). Les lignes correspondent à un
fit qui permet d’extraire les temps de cohérence suivant le modèle γ(τe) = (1+2τe/τc)

−1.
Les carrés noirs et losanges verts correspondent aux prédictions théoriques (explications
dans le texte principal).

0.3 Effet des interactions sur la cohérence d’un électron

dans un fil

On remarque sur la figure 5, qu’en ajoutant un troisième canal co-propageant (en passant

de ν = 2 à ν = 3), le temps de cohérence est encore plus faible. Il semble donc que

c’est l’interaction entre ces canaux qui est à l’origine de cette décohérence. C’est un

phénomène connu qu’on appelle fractionalisation et qui apparaît dans tous les systèmes

électroniques à une dimension dès qu’il y a des interactions (même très faibles). Dans

ces systèmes, ce n’est plus l’électron qui est la bonne particule élémentaire pour décrire

les excitations de basse énergie du système mais plutôt des ondes acoustiques de charge

que l’on appelle ici magnéto-plasmons de bord. Ces excitations sont des modes collectifs

de charge et c’est la décomposition de l’électron sur ces modes collectifs qui va entraîner

sa perte de cohérence. Le phénomène dans le cas particulier à ν = 2 est schématisé sur

la figure 6 pour des interactions Coulombiennes fortes. Dans ce régime, les nouveaux

modes propres du système sont les distributions de charge symétrique (mode de charge)

et anti-symétrique (mode neutre). Par rapport au mode neutre, le mode de charge a une

plus forte répulsion Coulombienne donc une plus haute énergie et donc dans notre cas,
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Charge modeNeutral mode
V- V+
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outer edge
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Figure 6: Schéma de la fractionalisation d’un pulse de courant à ν = 2. La charge
se décompose sur un mode symétrique (de charge) et un anti-symétrique (neutre). Ces
deux modes n’ont pas la même vitesse. Une zone bleue correspond à un excès d’électron
et une zone rouge à un excès de trou. l est la longueur de propagation entre l’injection
et le QPC.

une plus grande vitesse. Cette différence de vitesse va entraîner, après une longueur de

propagation l une séparation en deux du paquet d’onde sur le canal externe et la création

d’une distribution dipolaire sur le canal interne.

Pour quantifier la force de l’interaction, on définit le temps de séparation τs = l
v−
− l

v+
.

On va voir qu’avec l’interféromètre on peut accéder à ce temps τs mais aussi observer

directement la distribution dipolaire créée par la fractionalisation à ν = 2. Pour cela,

on va remonter la valeur de la tension appliquée sur les électrodes qui définissent le

QPC central pour qu’il transmette parfaitement le canal externe mais agisse comme une

lame semi-réfléchissante pour le canal interne. Ainsi on réalise l’expérience HOM avec

le canal interne. C’est ce qui est représenté sur la figure 7. Puisque l’on veut sonder un

phénomène qui implique des échelles de temps courtes, on va utiliser les paquets d’onde

les plus courts possibles c’est à dire que l’on se place à D = 1 pour les deux sources

pour émettre des pulses de charge avec un temps de sortie τe = 17 ps. En orange est

représentée la figure HOM complète pour le partitionnement du canal externe et en noir

les données pour le canal interne. Les lignes pleines sont des simulations faites en utilisant

une approche de type matrice de diffusion de plasmons. En effet, à D = 1 on n’émet pas

réellement un électron unique et il est donc assez simple d’avoir une description de l’état

de sortie en terme de magneto-plasmons de bord directement, ce qui facilite les calculs.

Les deux mesures ont en commun d’avoir un creux central à τ = 0 ce qui montre que les

excitations induites sur le canal interne sont cohérentes elles aussi. Une autre similarité

est l’excès de bruit normalisé au dessus de 1 à τ = ±T/2. Ceci est dû au fait qu’on a des

collisions entre des excitations de charge opposée [9]. En effet, les créneaux qui excitent

les sources sont en opposition de phase. On retrouve des valeurs ∆q > 1 pour le canal
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Figure 7: a. ∆q(τ) à D = 1 pour le canal externe (points orange). b. Idem pour
le partitionnement du canal interne (points noirs). Les lignes correspondent à des
simulations. Les barres verticales rouges correspondent à des retards τ égaux à une
demi-période de l’excitation carrée sur les sources τ = ±T/2. Les cercles c et d font
références aux schémas c et d. c Schématisation des pulses de courant sur le canal
interne quand τ = τs. d Même schématisation mais à τ = T/2− τs.
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Figure 8: Comparaison entre prédictions et mesures à ν = 2. Haut-gauche ∆q(τ)
pour différent temps d’émission τe. La théorie prenant en compte les interactions
Coulombiennes est représentée en ligne pointillée (T = 0 K) et en tirets (T = 0.1
K). Bas-gauche, ∆q(τ) pour des temps de sortie asymétriques. Théorie avec interac-
tions (T = 0.1 K) en tiret et sans interactions en noir flou. Haut-droit Contraste γ en
fonction du temps d’émission τe (en échelle log-linéaire). Les pointillés (T = 0) et tirets
(T = 100 mK) représentent les prédictions théoriques avec interactions. Bas-droit
(a) mesures, τe = 40 ps, avec un bruit sur l’électrode de la source 2 équivalent à 400
mK; (b) mesures, τe = 40 ps sans bruit rajouté; (c) théorie, T = 0.1 K, ωe1 = 0.7
K, ωe2 = 0.3 K, τe = 40 ps; (d) théorie, T = 0.1 K, ωe1 = ωe2 = 0.7 K; (e) modèle
sans interaction, ωe1 = 0.7 K, ωe1 = 0.3 K, τe = 40 ps; (f) modèle sans interactions,
ωe1 = ωe2 = 0.7 K, τe = 40 ps.

interne essentiellement au niveau des zones bleues marquées c. Comme schématisé sur la

figure, c’est parce qu’on a décalé les pulses de τ = ±τs et donc on retrouve partiellement

des collisions avec des distributions de charge opposées. À l’inverse, on retrouve un creux

supplémentaire à τ = ±(T/2− τs). Comme schématisé sur la figure 7-d, c’est parce que

ce décalage permet de retrouver des collisions avec des distributions de même charge. On

ne retrouve pas ces deux dernières caractéristiques (c et d) sur la figure d’interférence

du canal externe. Cette figure révèle bien que les interactions créent une distribution

dipolaire sur le canal interne et permettent en outre de mesurer le paramètre τs ' 70 ps

ce qui est compatible avec une hypothèse d’interaction forte.

Grâce à ce paramètre τs, on peut complètement prédire l’effet des interactions pour

n’importe quel état propageant. C’est ce qu’on pu faire deux équipes théoriques avec
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qui j’ai beaucoup collaboré. Grâce à la mesure de τs, ils peuvent prédire pour n’importe

quel régime d’émission (pas seulement D = 1) la forme de la figure d’interférence HOM,

et ce quelque soit le temps de sortie τe et l’énergie d’injection ωe dans les deux bras. On

peut accéder à ces paramètres indépendamment, donc c’est un modèle sans paramètre

ajustable. Ces prédictions ont pu être testées expérimentalement et les différents résultats

sont présentées sur la figure 8. Les prédictions théoriques du panneau en haut à droite

sont les mêmes que les carrés noirs et verts de la figure 5.

Sur les deux panneaux supérieurs on peut voir que l’accord est satisfaisant à la fois sur

l’évolution de la forme du trou de Pauli (gauche) mais aussi pour toutes les visibilités

qu’on avait mesurées (droite et voir aussi figure 5). Sur le panneau inférieur gauche, on

voit que le modèle peut prédire assez bien ce qui se passe dans le cas d’une interférence

entre des paquets asymétriques (τe1 6= τe2). On peut même voir que le modèle prédit une

relaxation en énergie des particules vers le niveau de Fermi (panneau inférieur droit). La

faible différence entre les points rouges et noirs montre que l’interférence est quasiment

insensible à l’énergie d’injection initiale (ou au fait qu’elle fluctue). C’est confirmé par

le modèle avec interaction. Cela s’explique par le fait que le modèle prédit une forte

relaxation en énergie qui ramène tous les paquets d’ondes proche du niveau de Fermi

quelque soit leur énergie d’injection initiale.

Le bon accord entre nos mesures et les prédictions de nos collaborateurs montre que l’on

a une bonne compréhension du mécanisme de décohérence d’un électron unique. Nous

avons pu tester d’autres potentiels mécanismes de décohérence et montré qu’ils étaient

complètement négligeables, dis autrement, l’interaction Coulombienne entre canaux est

tellement forte qu’elle masque complètement les autres sources de décohérence.

0.4 Tomographie d’électron

Durant la seconde partie de ma thèse, j’ai utilisé l’interféromètre HOM pour implé-

menter un protocole de tomographie afin de reconstituer la fonction d’onde à un corps

de n’importe quel signal électronique se propageant dans les canaux de bords. Ce pro-

tocole a été imaginé et décrit par C. Grenier et al. en terme de mesure de fonction de

Wigner [10].
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0.4.1 Fonction de Wigner

La fonction de Wigner d’un état quelconque ρ est définie comme suit :

W(t, ω) =

∫
dτ
〈

Ψ̂†
(
t− τ

2

)
Ψ̂
(
t+

τ

2

)〉
eiωτ , (0.2)

où Ψ̂(t) est l’opérateur de champ qui annihile un électron à l’instant t et 〈...〉 est la

moyenne quantique calculée sur l’état ρ. W(ω, t) est une fonction du temps et de l’énergie

qui contient toute l’information à un corps sur l’état. C’est donc un bon outil lorsque l’on

travaille avec des particules uniques notamment parce qu’on peut séparer la contribution

de la mer de Fermi de celle de la particule additionnelle :

W(t, ω) =WF (ω) + ∆W(t, ω) (0.3)

mais cela reste vrai quelque soit l’état. En revanche, cette distribution ne dit rien des

corrélations à plusieurs particules qui peuvent exister notamment quand il y a des in-

teractions. Cette fonction permet d’avoir une représentation en énergie et en temps de

l’état quantique et a l’avantage de prendre des valeurs réelles uniquement (dans R). La

fonction de Wigner n’est pas rigoureusement une distribution de probabilité en temps/én-

ergie car elle peut prendre des valeurs non-classiques pour un état fermionique (négative

ou supérieure à 1). L’apparition de ces valeurs est un indicateur que l’état en question

n’a pas d’équivalent classique i.e. c’est un état quantique. De cette fonction, on peut

calculer toute les grandeurs physique à un corps comme le courant I ou la distribution

moyenne en énergie f(ω) sur un intervalle de temps T :

I(t) = −e

∫
dω

2π
∆W(ω, t) (0.4)

f(ω) =
1

T

∫ T

0

dt W(ω, t). (0.5)

Le protocole de tomographie va permettre de reconstruire la fonction de Wigner de

n’importe quel état électronique.

0.4.2 Principe de la tomographie

Comme on l’a vu dans la partie 0.2.2, le bruit de courant que l’on mesure en sortie de

l’interféromètre est relié au recouvrement des fonctions d’onde des deux particules qui

arrivent à chaque entrée. En fait on peut généraliser cette assertion et montrer que le

bruit contient un terme proportionnel au recouvrement entre les fonctions de Wigner (en
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Figure 9: Gauche- Bruit intégré sur la bande de mesure avec une excitation en sinus
à 9 GHz dans les deux entrées en fonction du déphasage entre ces sinus. Un biais DC de
3, 65 µV est appliqué sur l’entrée 2. Cela permet de mesurer à −3, 65 µeV l’harmonique
à 9 GHz de la fonction de Wigner (soit ∆W1,1(−3, 65µeV )) créée par l’excitation sinus
à 9 GHz en entrée 1. Droite- Même chose mais avec d’un côté une excitation à 1, 75
GHz et de l’autre une excitation à 3, 5 GHz et un biais DC à 34 µV. Cela permet de
sonder à −34 µeV la deuxième harmonique (à 3,5 GHz) de la fonction de Wigner (soit
∆W1,2(−34µeV )) créée par une excitation sinus à 1, 75 GHz.

excès) de l’entrée 1 et l’entrée 2:

SHOM − SHBT1 − SHBT2 = −4R(1−R)e2

∫
dω

2π
∆W1(ω, t)∆W2(ω, t)

t
(0.6)

où R est la transmission du QPC central et ...
t
est la moyenne temporelle.

Le principe du protocole est d’utiliser à notre avantage cette mesure in situ de recouvre-

ment de fonction de Wigner : pour mesurer la fonction de Wigner ∆W1 d’un état inconnu

injecté en entrée 1, on va mesurer son recouvrement avec une famille de n fonctions de

Wigner parfaitement connues ∆Wn
2 . La seule hypothèse que l’on va faire sur notre con-

naissance a priori du signal inconnu, c’est qu’il est périodique de période T = 2π/Ω.

Ainsi on peut décomposer la fonction de Wigner en harmoniques de Fourier :

∆W1(ω, t) =
∞∑

n=−∞
∆W1,n(ω) einΩt. (0.7)

Un choix judicieux de famille de fonctions pour ∆Wn
2 est donc la famille des signaux

créés en appliquant, sur un contact Ohmique, une tension sinusoïdale de faible amplitude

et de pulsation nΩ. En effet, on peut montrer ainsi que, pour un n donné, ∆Wn
2 (ω, t)

va permettre de mesurer l’harmonique de Fourier ∆W1,n(ω). Comme pour l’expérience

HOM, on va varier le retard δτ entre les deux signaux sur des petites échelles de temps.

On obtient donc un bruit qui va osciller en fonction de ce retard, à la pulsation nΩ. Deux

exemples d’oscillations de ce bruit en fonction de δτ sont montrés sur la figure 9.



16 Résumé en Français

De ces oscillations, on extrait deux quadratures (ou un module et une phase) qui permet-

tent d’accéder (à une déconvolution près) aux parties réelles et imaginaires de ∆W1,n(ω).

Finalement pour retrouver la dépendance énergétique en ω de ces coefficients de Fourier,

il suffit de changer le niveau de Fermi dans l’entrée 2 avec un biais DC, d’ailleurs pour

sonder n = 0 c’est la seule chose que l’on fait : il n’y a pas d’excitation sinusoïdale.

L’harmonique ∆W1,0 correspond à la distribution moyenne en énergie. Une fois qu’on a

obtenu toutes les harmoniques ∆W1,n(ω), on les recombine selon les formules 0.3 et 0.7

pour reconstruire la fonction de Wigner totale.

0.4.3 Fonctions de Wigner reconstituées

J’ai d’abord testé ce protocole sur des signaux simples à analyser : des excitations créées

par une tension sinusoïdale sur un contact Ohmique (ou de façon équivalente sur la

source à D = 1) pour différentes fréquences. À l’aide de simulations, on peut montrer

que ces fonctions de Wigner sont plus simples et rapides à reconstruire car elles ne se

construisent que sur quelques harmoniques (n ≤ 3). Si on ne connaît rien a priori du

signal, on doit mesurer toutes les harmoniques. Plus on mesure une haute valeur de n

plus on accède à des dynamiques de temps courtes.

Les mesures des 3 premières harmoniques d’une excitation sinusoïdale à 10 MHz et les

deux premières d’une à 9 GHz (ainsi que la distribution moyenne en énergie ∆W1,0(ω))

sont présentées sur la figure 10 et les reconstructions déduites sur la figure 11. Ces deux

fréquences permettent de tester deux régimes : une excitation classique (ou adiabatique,

avec ~Ω < kBTel) et une excitation photo-assistée (~Ω > kbTel). Contre-intuitivement,

c’est le signal non-classique qui a besoin de moins d’harmoniques pour être reconstruit

ou, de façon équivalente, qui a des harmoniques plus faibles pour n > 1.

On peut comparer nos reconstructions aux prédictions théoriques et voir que l’accord est

plutôt bon, surtout proche du niveau de Fermi (ω = 0). Les écarts à plus hautes et plus

basses énergies (typiquement |~ω| > 33 µeV) sont dus, d’une part aux effets de bords

lors de la déconvolution, mais aussi aux non-linéarités de notre QPC qui sont activés

pour des biais de cet ordre de grandeur là. Cela rend l’interprétation des mesures de

bruits en terme de recouvrement de fonction de Wigner moins licite et plus compliquée.

Néanmoins, on peut observer des négativités et des valeurs au dessus de 1 très significa-

tives pour le signal à 9 GHz. Des effets quantiques non-négligeables, tels que l’absorption

de photons à 9 GHz, sont à l’origine de la non-classicitée de cet état et on peut claire-

ment les observer. Au contraire, la fonction de Wigner reconstruite à 10 MHz peut, à

quelques erreurs près, s’interpréter comme une mer de Fermi avec un potentiel chimique
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Figure 10: Gauche- Re(∆Wn(ω)) (après déconvolution) pour n de 0 à 3 pour une
excitation sinusoïdale à 10 MHz d’amplitude 33± 2µV . Droit- Idem pour une excita-
tion à 9 GHz d’amplitude Vexc = 31 ± 1µV . Les lignes correspondent aux prédictions
théoriques. Les lignes horizontales sont des guides pour l’œil qui permettent de com-
parer les niveaux relatifs des harmoniques. Les poids à n = 1 sont comparables mais
on voit qu’il faut en fait plus d’harmoniques pour reconstruire une harmonique basse
fréquence que haute fréquence.

qui varie sinusoïdalement en fonction du temps. C’est donc une excitation complètement

adiabatique et classique.

Avec cet interféromètre, nous pouvons donc quantitativement distinguer une excitation

classique d’une excitation quantique. Durant la fin de ma thèse, j’ai donc commencé

à utiliser ce protocole pour mesurer des états sortant de la source pour D < 1. Les

résultats sont pour l’instant préliminaires et prennent plus de temps car il faut mesurer

plus d’harmoniques et être plus vigilant aux fluctuations de la source lors de la mesure.
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Figure 11: Haut- Fonctions de Wigner reconstruites pour une excitation à 10 MHz
(à gauche) et à 9 GHz (à droite). Milieu Prédictions théoriques correspondantes
Bas- Coupes en énergie des données et des prédictions. Pour 10 MHz, on peut voir
qu’une part de la différence avec le modèle vient du fait qu’il manque des harmoniques
supérieures (n ≥ 4) dans la reconstruction.
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0.5 Perspectives

Il reste à finir les mesures d’états émis pour une source en régime D < 1. Cependant,

on sait que les interactions vont fortement influencer la fonction de Wigner finale. Nous

avons donc aussi réfléchi à des stratégies pour limiter l’effet des interactions. Par exemple,

nous avons cherché, pour l’instant sans succès, à séparer spatialement les canaux externe

et interne pour réduire la force des interactions. Nous avons aussi commencé à réfléchir à

ce que donnerait ce genre d’expérience dans le régime d’effet Hall quantique fractionnaire.





Chapter 1

Introduction

“[...] nous ne faisons que nous entregloser. Tout fourmille de commentaires ; d’auteurs,

il en est grand cherté. Le principal et plus fameux sçavoir de nos siecles, est-ce pas

sçavoir entendre les sçavans ? Est-ce pas la fin commune et derniere de tous estudes ?

Nos opinions s’entent les unes sur les autres. La premiere sert de tige à la seconde, la

seconde à la tierce. Nous eschellons ainsi de degré en degré. Et advient de là que le plus

haut monté a souvent plus d’honneur que de mérite ; car il n’est monté que d’un grain

sur les espaules du penultime.”

Montaigne Essais partie III, chap. 13 (« De l’expérience »).

“If I have seen further, it is by standing on the shoulders of giants.”

Sir Isaac Newton.

This works settles in the ever evolving and fascinating field of mesoscopic physics. It is

a branch of physics one could vaguely define as the interface between condensed mat-

ter physics and quantum physics. Actually the term is broad enough to cover subjects

that are now quite different, that we could call daughter branches of mesoscopic physics.

For instance, the superconducting qubits community does not address the same prob-

lematics than the topological insulator community. However different they are, these

branches share common methods: they benefited from the important development of

nano-fabrication technology as well as the growth of the cryogenic industry. They also

share the same long term (perhaps naive) goal that from these researches will emerge

ground breaking and practical quantum technologies that will revolutionize computers

and information industry. Recently, this has appeared a bit less like a dream with the

interest showed by many companies or institutions to invest massively on these projects.

21
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For instance, Google bought a D-wave machine, Thales is looking for applications of

topological insulators for new spintronics devices, Microsoft started to develop its own

quantum research lab “Station Q”, IBM launched “IBM Q”, NSA invested in a $79.7

million quantum based cryptography research program titled “Penetrating Hard Tar-

gets” and even a few start-ups were created on those ideas (e.g. Rigetti). Whatever

the consequences of these projects, it cannot hide the fact that mesoscopic physics is

essentially driven by basic research and has been a formidable platform for fundamental

physics, in particular in its ability to create or manipulate new states of matter or exotic

quasi-particle excitations rivaling with particle physics. In this thesis, I have studied the

propagation of a single electron and how its quantum coherence is affected by the quan-

tum circuit in which it propagates. This circuit is created in a bi-dimensional electron

gas. I have also implemented a protocol that aims at fully characterizing such excitations

in quantum circuits.

In this general introduction chapter, I will specify the achievements of mesoscopic physics

on which this very work relies on. I will also place this work in its current scientific

context, presenting other recent works related to this one. Some particularly important

points will be discussed in more detail in the following chapters.

1.1 Bi-dimensional electron gas

The systems I worked with are tiny circuits created at the interface between two semi-

conductors, one of which is made of GaAs, the other of AlGaAs. Because these two

semiconductors do not have the same gap (the energy needed to bring an electron from

the valence band to the conduction band), bands will rearrange so as to create a bi-

dimensional potential trap at the interface (or quantum well). A silicium (Si) doping

layer is added above the interface and the excess electrons they bring will be trapped

in this well (for temperatures lower than 150 K) with an electronic density of the order

of 1011cm−2. Because the interface between the 2 semiconductors is really thin, there

will be quantum confinement i.e. the excitation along the axis perpendicular to the gas

will be quantized by energy gaps, this gap is of the order of ≈ 300 K. This means that

below 150 K we can safely consider the gas of electron has formed and it has no possi-

ble excitation in the perpendicular direction i.e. it is bi-dimensional. A sketch of this

heterostructure is shown on figure 1.1.

This sample can then be designed and shaped both with chemical etching and by de-

positing golden electrode gates on top of the heterostructure. Thanks to these gates we

can change the local density beneath it through a voltage control. Indeed, compared to a

conventional metal, this gas has an electron density much lower (n ≈ 1015cm−2 for a one
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Figure 1.1: Figure adapted from [4] Left. Vertical cut of a GaAs/AlGaAs het-
erostructure. + signs represent Si dopants and horizontal double arrow is a gap. Right.
Corresponding energy diagram. V.B. stands for valence band and C.B. for conduction
band.

atom thick layer of copper) which makes it easier to deplete (even completely) a defined

area by imposing an electrostatic gate voltage. Finally, the gas is electrically connected

to other electrical components (measurement apparatus or generators) through Ohmic

contacts. They are made of an alloy of gold, nickel and germanium that can diffuse from

the top of the structure down to the electron gas.

The design of the two dimensional gas I used for this work will be presented in section 2.2.

Most of the results I will present were obtained on gas with density n = 1.9× 1011cm−2,

however, we also used gas with halved electron density (see end of chapter 4).

1.2 Ballistic transport

Thanks to the development of molecular beam epitaxy technology and its increasing

precision, it is now possible to make a really clean interface with deposition of layers

of atomic precision. This, combined with the fact that Si impurities are way above the

interface, implies that there is a very low impurity density in the proximity of the gas.
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The mobility µ is high enough so that the mean distance between two successive elastic

collisions le is around ≈ 10µm at 4 K; for our samples µ is around 2× 106cm2.V−1.s−1.

This means that we can design circuits of a few µm size that will not have a diffusive

transport but rather a ballistic one.

What is even more interesting is that the number of inelastic and dephasing processes is

also reduced and therefore the wave-like behavior of electrons cannot be neglected over

distances lϕ ' 20µm at 20 mK [2, 11](or a few µm at 1K [12, 13]). We can thus define

a phase to an electronic wave which stays coherent over distance lϕ.

1.3 Quantization of conductance

This phase coherence radically imposes to change how we describe the motion of electrons

in these systems. We can no longer view electrons as colliding hard spheres. Waves

can interfere and we now have to talk about transmission or reflection of modes. This

formalism was first developed by Rolf Landauer in 1957 [14]. One of the main predictions

of this formalism is that each mode has a quantized conductance of e2/h. This was

confirmed by the measurements of van Wees et al. [15] and Wharam et al. [16] who

created the first quantum point contacts. It consists of two golden electrodes deposited

on top of the GaAs heterostructure so as to design a slit (see inset of figure 1.2). This

circuit enables to control how many electronic modes one can transmit through the slit

by changing the voltage applied on the electrodes. On figure 1.2 we show their main

result. On the right panel we see the quantization of conductance as multiple of 2e2/h

(modes are spin degenerate here) as a function of the gate voltage. Each step corresponds

to the additional transmission of one (spin degenerate) electronic mode. In this work,

we also used a quantum point contact and its functioning is detailed in section 2.2.1.
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Figure 1.2: Left. Resistance through the point-contact constriction versus gate volt-
age at 0.6 K. Inset: point-contact layout Right. Point-contact conductance versus gate
voltage obtained from left data without lead resistance. Plateaus at multiple of 2e2/h
are clearly visible. Figures extracted from [15].

1.4 Coherent transport

The development of high mobility electron gases enabled to create circuits smaller than

the coherence length and thus to design electronic interference experiments analogous to

optics. The first experiment of this kind is the double slit Young’s experiment that was

reproduced by Yacoby et al. [17]. On the left panel of figure 1.3, we see a micrograph

of the GaAs/AlGaAs heterostructure they used with the additional top gates to design

the double slit geometry. Current is injected in area C and a voltage measured in E.

An additional top gate in front of one slit enables to change the phase difference (NV

here) between the two paths. On the right panel, we clearly see oscillations in the

voltage measured in E with respect to this phase difference at 2 different magnetic fields.

These oscillations are a clear sign that the current has a wave-like behavior and that

electrons can interfere with themselves. Depending on the phase difference between

paths going through one slit or the other, the probability amplitude for an electron to

go from C to E will either interfere constructively or destructively which will change the

total transmission from C to E. This is essentially a one-particle interference experiment

in the sense that an electron wave function can interfere with itself; as we will see in the

next chapter our works mainly concern two-particle interference.
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Figure 1.3: Left. Top view scanning electron microscope picture of the sample. Light
area correspond to top gates. Right. Voltage measured in E versus phase difference
between the two path at 2 different magnetic fields. Figures extracted from [17].

1.5 Single electron sources

Another major achievement of mesoscopic physics is the realization of single charge and

single electron sources (see [18] for a review) and in particular on demand single electron

sources i.e. sources that can be triggered at will and that deliver only one particle in

a circuit with a defined energy. They are of great interest for several reasons. First,

they enable to get a clearer picture of what happens in a circuit at the microscopic level.

Indeed, single particle representation is often more intuitive. Another interest in the

generation of single electron sources is their potential application for metrology and the

redefinition of the Ampere unit [18]. Finally, combined with coherent transport, they

are essential for the implementation of electron quantum optics experiments and the

implementation of quantum information processing protocols [19–23]. For this work, I

used an AC driven mesoscopic capacitor to emit a single particle [1]. I will describe its

working principle more in details in section 2.2.2.1. Here, I will briefly present other

possible realizations of such single particle sources.

1.5.1 Quantum turnstile and quantum pumps

Both based on the same principle, single charge pumps and turnstile were implemented

at the beginning of the 1990s [24–26] and strongly improved at the end of the 2000s

[27, 28]. The idea is to use electrodes to define a quantum dot well isolated both from

the input reservoir and the rest of the circuit. It can either use 3 electrodes for turnstile

[29] or only two for pumps [30, 31]. Figure 1.4 is extracted from [30] and illustrates the

working principle of these pumps. We see on the left panel that the two electrodes above

the GaAs heterostructure define a small area which will be confined enough to create a

quantum dot. The left gate is driven at radio frequencies (≈ 300 MHz) whereas the right
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Figure 1.4: Left. Scanning electron microscope image of the setup. The lighter
areas correspond to gate electrodes. White scale bar indicates 1 µm. Right. Schematic
diagrams of the potential along the channel during four phases of the pump cycle: (1)
loading, (2) back-tunneling, (3) trapping and (4) ejection. One cycle transports an
electron from the left (source) to the right (drain) lead.

one is kept constant. First, the voltage on the left one is lowered so that one or several

electrons are captured from the left part and put in the small dot. When the left gate

potential starts to rise, there are possible back tunneling events. Because of Coulomb

energy, back tunneling events are a few orders of magnitude larger for all electrons but

the least energetic one. Therefore, there is a probability converging quickly to one that,

going from event 1 to 3, only one electron remains in the dot. Then in 4, the left potential

is raised again so that the energy of the electron reaches a level comparable to that of

the right barrier and then can tunnel in the right part of the circuit. The height of

the right barrier imposes the energy at which the electron is released. With this system

the electron is emitted with good precision at a few hundreds meV above the Fermi

sea. This is high enough to avoid thermally activated states or co-tunneling processes.

Another advantage of these sources, is that they can be driven quickly (GHz range) and

the temporal size of the wave packets can be as low as a few tens of picoseconds [32].

Such quantum pumps were also realized in silicon systems with drive frequencies in the

GHz range with charge quantization accurate to better than 0.92 ppm [33]. Another

remarkable recent realization was done with a single level quantum dot at the interface

between two superconducting leads [34]. Benefiting from the sharp energy filter induced

by superconducting gaps in the lead, they could reach an energy width of around 1 %

the average emission energy (≈ 260µeV). This precision could be enhanced with a lower

rise time for the square voltage sequence used to drive the pump.
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Figure 1.5: Schematic representation of the wave function ψ of a leviton in time
(left) and energy domain (right). (Extracted from [36].)

1.5.2 Leviton excitation

Another approach to realize single electron injection in a circuit is to directly excite the

whole many-body state of the Fermi sea in a very particular way so that the resulting

many-body state is exactly a Fermi sea with a single electron excitation on top of it. To

do so, one has to apply a Lorentzian shape voltage V (t) on the Ohmic contact. This

excitation is called a leviton after Levitov who predicted which shape to apply [35]. More

precisely, to emit only one electron with this pulse, the Lorentzian of width 2W writes:

eV (t) =
h

π

1

1 + (t/W )2
, (1.1)

where −e is the elementary charge of an electron and h the Planck constant. This was

realized (also in GaAs heterostructures) by Dubois et al. [36] where they realized a

periodic train of leviton excitations. They showed with shot noise measurements that

indeed the number of additional electron-hole pairs generated by this drive is very small

compared to a sine drive or a square drive and that the remaining excess particles could

almost all be explained by finite temperature and heating effects. This minimal excitation

property seems to hold also for more complex ground state like the Laughlin fractional

states [37].

For the leviton, W governs both the temporal extent and the (inverse of the) energy

width. As sketched on figure 1.5, the distribution in energy of the wave function goes

like exp (−2Wε/~) (~ = h/2π is the reduced Planck constant). In [36], Dubois et al.

created excitations with width 2W of 30 and 75 ps with a repetition rate respectively of

6 and 4.8 GHz. This implies excitation very close to the Fermi level with characteristic
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Figure 1.6: Figure extracted from [40, 41] a). Scanning electron microscope image of
the device. b) and c). Time evolution of the dot potential for two different amplitudes
of SAW excitation. The time increases going from top to bottom traces. In c) the
amplitude of SAW drive is large enough and deeper moving quantum dots are defined
compared to b). Tunneling back of the electron to the source dot is negligible in c) so
probability to transfer exactly one electron converges to one.

exponential energy scale of respectively ~/2W = 11µeV and 4 µeV, when at 35 mK

kBTel = 3µeV (where kB is the Boltzmann constant).

By construction, this type of excitations have the advantage to behave as a coherent state

i.e. they are not sensitive to decoherence contrary to electrons well defined in energy,

higher above the Fermi level as we will discuss in chapter 4. However, it is a many-body

state i.e. the additional electron cannot really be separated from the rest of the Fermi

sea as if it was an individual quasi-particle.

1.5.3 Electrons surfing on surface acoustic wave

Another way to create and transfer single electrons in GaAs heterostrucutres is to use

surface acoustic waves. Indeed, there is a non negligible piezoelectric effect in GaAs that

enables to change the electric potential through a mechanical stress. Using an electro-

acoustic transducer to create propagating surface acoustic waves (SAW), two groups

managed to create moving arrays of quantum dots. Each of this dot is confined enough

to contain mainly one electron. This SAW propagates from one static quantum dot

filled with one electron toward another static empty dot. Therefore an electron can be

transferred from the former to the latter [38, 39] (see figure 1.6).

Furthermore, since this array of quantum dots affects identically both spin components

of the electron, it is expected to be a good way to implement coherent transfer of electron

spins. Indeed, with this method, Bertrand et al. demonstrated an electron spin transfer

over 4 µm with high fidelity, on a time scale shorter than spin coherence time in GaAs

[40]. They predict that with the current state of technology, they should be able to

coherently transfer electron spins over distances larger than 100µm.
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1.6 Quantum Hall effect

To guide electrons in our circuit, we did not use surface acoustic waves but rather one

dimensional chiral wires defined at the edges of the sample when a sufficiently strong per-

pendicular magnetic field is applied to the bi-dimensional electron gas. This phenomenon

is called the (integer) quantum Hall effect.

The quantum Hall effect was discovered in 1980 by v. Klitzing, Dorda and Pepper [42].

Once again, this discovery would not have been possible without the development of

high mobility electron gases. Indeed, the higher the mobility, the more pronounced is

this effect. Nevertheless, now that this effect is well known it has been possible to identify

it in more “dirty” samples with a mobility of only µ = 10cm2.V−1.s−1 but at 45 T [43].

The integer quantum Hall effect arises when the magnetic field is high enough; the

Hamiltonian of the system can be rewritten as the one of an harmonic oscillator [44].

Electrons in the bulk have a spectrum in energy En = ~ωc(n+ 1/2), with ωc = |eB/m∗|
the cyclotron frequency and m∗ the renormalized effective mass of the electron which,

in GaAs, is 0.067 times the bare electron mass. The quantized levels are called Landau

levels. This effect appears for particular values of the magnetic field such that:

B =
hn

eν
(1.2)

where n is the electron density, h/e is the quantum flux and ν is the filling fraction. In the

case of integer quantum Hall effect, ν is an integer number. It can be interpreted either

as the number of electrons in the sample per quantum flux or the number of filled spin

polarized Landau levels or equivalently the number of conductive edge channels. Indeed

in our case, we will work with magnetic fields high enough so that spin degeneracy is

lifted by Zeeman effect (see sketch b of figure 1.7). Actually, thanks to disorder this effect

appears over a wider range of magnetic field around these defined values. These regimes

are identified by plateaus in the off-diagonal (or Hall) resistance at values matching

RK/ν = h/(e2ν) where RK is the von Klitzing resistance.

On these plateaus, transport only occurs at the edges. Indeed, in the bulk electrons

occupy flat band Landau levels that localize because of disorder and do not contribute

to transport (when kbTel < ~ωc ∼ 7 meV∼ 80 K at B = 4 T, for instance). However,

because of the confining potential near the edge (that prevents electrons from going out

of the sample), Landau levels will bend and cross the Fermi level (see Figure 1.7-b).

Electrons at the edges thus have a gap-less excitation spectrum i.e. they have a metallic

behavior and participate to low temperature electron transport. Besides, the transverse
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Figure 1.7: a) Semi-classical picture of the quantum Hall effect. Cyclotron orbits
are localized in the bulk and do not contribute to transport whereas orbits close to the
interface are reflected and then propagate from one edge to another. They are called
skipping orbits and contribute to transport. b) Energy spectrum at filling factor 2 along
one spatial direction, xL and xR correspond to limits of the sample. ~ωZ corresponds
to Zeeman splitting. Landau levels are bent toward the edges and cross the Fermi
level allowing gap-less excitations. c) Edge channel picture at filling factor 2. Because
of Zeeman splitting, they are spin polarized and because of large spatial separation,
tunneling from one side to the other is extremely unlikely so backscattering (curved
blue arrow) is almost forbidden.

magnetic field breaks time reversal symmetry imposing a chirality. Electrons on one edge

can only propagate in one way (see Figure 1.7-c).

This has the advantage to forbid backscattering events. Indeed, for an electron to be

backscattered, it has to tunnel through the other edge of the sample which is extremely

unlikely for wide enough samples. This absence of backscattering enhances the elastic

mean free path (until ≈ 100µm). Therefore, we can safely approximate each channel by

a one dimensional chiral dissipationless wire with quantized conductance e2/h. Because

they follow the boundaries of the sample and back scattering is topologically suppressed,

they behave as good electron wave guides. Thanks to these waveguides, electronic analogs

of the Mach-Zehnder interferometer [45–49] were implemented in which single particle

interferences are predominant. Therefore, depending on the phase difference between

two electron paths, the current amplitude can be modulated by 100% of its value. As a

comparison, it is much more pronounced than the modulation presented in section 1.4.
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1.7 Analysis of quantum signals

In section 1.5, we have introduced various ways to create single electron sources. Electron

particles are indivisible (at least below 130 GeV [50]) thus signals generated by these

sources are quantum by construction. To analyze such a signal, one can measure the

current it produces but it cannot give information on the total number of particle (an

electron-hole pair does not contribute to current). To do so, one can analyze the signal

in energy and count excess excitations with respect to the Fermi sea, however it will not

give access to the phase relation between these excitations. Moreover, these sources work

at high speed (radio or GHz frequencies) hence the need for fast signal analysis methods

beyond the simple averaging of energy distribution (spectroscopy) or time distribution

(current measurement), that not only enable to measure the high speed dynamics of these

excitations but also to recover the phase terms and statistics, essential to understand the

quantum transport properties of these excitations. Another issue is that, contrary to

photons, there exists for the moment, no single electron detector. Here I introduce some

recent proposals or realizations in this direction and motivate the need for a quantum

tomography protocol.

1.7.1 Average current and energy distribution

To measure the average current created by small electronic excitations, one needs to work

both with high frequencies (radio-frequencies or even GHz), because of the fast dynamics

of electrons, and low noises to be able to detect a small number of particles (typically

at f = 100 MHz, ef = 16 pA). Both time domain or frequency domain approaches

were used. For instance, in reference [1], a fast acquisition card was used to measure

the average current I(t) going out of the mesoscopic capacitor single electron source and

homodyning techniques were used to measure the source first harmonic response to the

drive so as to characterize its variation with the gate parameters or the drive amplitude.

Since then, commercially available oscilloscopes and acquisition cards have been signif-

icantly improved. The available bandwidth is around 80 GHz [51], however measuring

small signals containing only a few electrons still requires a lot of averaging. There has

been an attempt in this direction to design single-shot detection of single flying elec-

trons based on double quantum dot qubit. In reference [52], a few propagating electrons

have been detected but it is predicted that single-shot single particle detection should

be experimentally accessible essentially by improving the sample design and using more

sophisticated qubit operations.
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For periodic sources, or experiments repeated and triggered at high speed, averaging is

not an issue; fast signal sampling can be achieved through fine clock controlled synchro-

nization of the trigger and a tunnel barrier that acts as a time controlled energy filter at

a given point in the circuit. With this technique, Kataoka et al. have been able to simul-

taneously characterize the average time and energy distribution of single electron wave

packets with great precision [31, 32]. Their single electron source is accurate enough so

that they can implement precise, energy resolved, time of flight experiments in quantum

Hall edge channels to deduce the dispersion relation of electrons in these edges [53]. In

some sense the problematic has changed, single electron sources are not the object of

study but the tool to study the circuit in which they propagate (see figure 1.8). In the

very same spirit, in chapter 3 and 4, we are going to rely on the good control of our single

particle sources to study the circuit they are injected into and how Coulomb interactions

affect electron propagation. Such sources are also used to sample voltage drives incom-

ing on the sample (at the bottom of the cryostat). In reference [54], an in-situ voltage

arbitrary waveform analyzer with bandwidth up to possibly 100 GHz was realized.

Energy distributions were measured before that, in a similar way, in the group of F.

Pierre. An energy resolved quantum dot instead of a tunnel barrier was used to measure

the energy distribution of out-of-equilibrium stationary states [55–57].

1.7.2 Noise is the signal

To go further in the characterization of these sources, various theoretical proposals have

been made. For instance, low frequency1 current noise measurements were proven to

reveal true quantized pumping (and not just average). This was verified in surface

acoustic waves electron pumps [58] and gate defined single electron pumps in [59].

Low frequency noise after partitioning through a QPC or a tunnel barrier enables to

count the number of particles and not just charges. Thus it can be used to probe the

emission of additional electron-hole pairs accompanying the emitted single electron that

could not have been detected with current measurement [60]. This enables to check

how clean a single electron source is. It was used to count additional electron-hole pairs

created by drives on Ohmic contacts [36, 61] and by the mesoscopic capacitor [62].

Furthermore, study of high frequency noise enables to determine the degree of imperfec-

tion of single electron sources [63–66]. In references [67, 68], finite frequency current noise

was measured to check that the mesoscopic capacitor indeed emitted a single particle at

each (half-)period of the drive and not just on average and without spurious electron-hole
1Low frequency refers to frequencies smaller than the inverse of the typical escape time of the sources

(. 10 MHz).
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Figure 1.8: (Adapted from [53]) a) Scanning electron microscope image of the sample.
In the dashed blue area is the energy resolved quantum pump that is synchronized with
a time delay td with the square sequence applied on the energy filter (red area). Gate
VG4 enables to change the path length taken by the single electron. b) Response of the
detector versus time delay for the two possible paths. This experiment is reproduced
for different emission energy and with an estimate of the 2 path lengths they manage
to recover c) the velocity of the electron versus its energy i.e. its dispersion relation
(for two different samples A and B).

pairs. Heat current noise measurements were also proposed but not yet realized either to

study quantum fluctuations of the electron wave function [69–71] or correlations between

electron and hole excitations [72].

In fractional quantum Hall system (when ν is no longer an integer) the low frequency

partition noise created by a biased QPC unraveled the fractional charge carried by the

elementary quasi-particle of these strongly correlated phases [73, 74]. Charge e/3 [75, 76],

e/5, e/7 [77] and even e/4 [78] were observed so as multiple of these fractions [77, 79].

Often, depending on energetics and disorder, several excitation mechanisms occur at the

same time with possible grouping of excitations [80, 81] which renders the low frequency

measurement difficult to interpret [82]. To circumvent this issue the idea to measure
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high frequency shot-noise was proposed. The frequency dependence should discriminate

between different excitation mechanisms and bunching of excitations at 2/3, 2/5 [83, 84]

and 5/2 [85, 86].

1.7.3 New theoretical tools

On a more fundamental level, theoretical formalisms have been invented or renewed

to better picture the coherence of electronic excitations and their quantum fluctuations.

Different quasi-probability distributions have been developed such as first [10, 87, 88] and

second order [89] coherence functions (details in section 2.3.1), first order Wigner func-

tion [90] or full counting statistics (FCS) [91–95]. FCS is suitable to study fluctuations

of a quantity integrated over time (e.g. charge which is an integral of current over time).

Because it is integrated, it is not really suited to this work where we study the short

time dynamics of elementary excitations. To study random time processes occurring in

nano-scale circuits, a complementary approach to average current and current fluctua-

tions measurement was developed: waiting time distributions [96–103]. It corresponds to

the statistical distribution of waiting times between successive charge transfers between

two given parts of a conductor. Contrary to FCS, it is not integrated and thus gives

access to short-time dynamics which is crucial in electron quantum optics experiments.

In some sense, this formalism gives a more intuitive reformulation of the information

given by finite frequency noise but is, for the moment, still experimentally challenging to

access. In this work, we are going to use two formalisms more suited to study short-time

dynamics and easier to access experimentally: first order coherence function and Wigner

functions. The first order coherence function is a complex valued function depending on

two variables (either two times t, t′ or two energies ω, ω′). It is related to the single body

density matrix, its diagonal elements (t = t′ or ω = ω′) give access to population terms

i.e. current or energy distribution and the off-diagonal elements give access to interfer-

ence terms enabling for instance to distinguish a statistical mixture from a pure quantum

state. It is essential to measure it because it contains all single particle information on

the state and is thus suitable to describe single particle excitations and single particle

sources. The Wigner function formalism is an equivalent but more convenient theoretical

framework. It also gives all the single particle information necessary to understand single

particle interferences occurring in any coherent circuit however it it has the advantage to

look like a time/energy representation. With it we can clearly distinguish electron like

excitations occurring at ω > 0 from hole like excitations occurring at ω < 0 while at the

same time keeping a time line visualization of these excitations. Details will be given in

section 2.3.2.
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Figure 1.9: Reconstructed experimental (left) Wigner function compared to theoret-
ical expectations at 0 K (right) for a Lorentzian drive at 6 GHz with a full width at
mid-height of 30 ps. For energies lower than 0 (the Fermi level) W = 0 because the
Fermi sea contribution has been removed. Negative values and values above one in the
Wigner function are signs of non-classical states. Extracted from [104].

1.7.4 Tomography

However accurate the aforementioned measurements may be, they can only recover pop-

ulation terms (either in energy or time) and do not give access to off-diagonal coherence

terms of the single particle wave packet. These terms are essential to understand quan-

tum phenomena and interferences in transport experiments. To do so, one needs to

reconstruct the whole wave function of the particle. Of course in quantum mechanics

measurements affect the quantum state and therefore it is not possible to recover a full

wave function in only one measurement. We actually mean that we rely on the stability

and fidelity of single particle sources to be able to create N independent and identical

copies of the same state on which we are going to apply a sequence of different com-

plementary measurements i.e. a tomography protocol, to extract their unique common

wave function. In mesoscopic systems, a tomography protocol to probe orbital entangle-

ment has been proposed [105] but only to probe orbital state populated by stationary

sources. To probe non-stationary states the protocol proposed by Charles Grenier et

al. [10] relying on the Hong Ou Mandel interferometer is more suited. We will present

the interferometer in chapter 2 and the implementation of the tomography in chapter 5.

This protocol has been realized in the group of Christian Glattli [104] for the Leviton
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source. Their main result is presented on figure 1.9. The Wigner function W (a time

energy representation that will be introduced in details in section 2.3.2) of a Leviton at

zero temperature was reconstructed. This realization represents a particular case of the

protocol that will be presented in the last chapter of this thesis. In section 5.3.4 we will

emphasize the important differences and show the broader universality of our protocol.

Beyond Wigner function reconstruction, one could envision to image the full many-

body state. Indeed, the tomography analysis might be applied to probe any arbitrary

electronic system, not only a single particle flying on top of a Fermi sea. In this case,

the excitation is accompanied by several electron-hole pairs which might have a defined

phase relation, or on the contrary be a statistical mixed state. How to probe it? How to

probe electron-hole pairs wave functions? A first attempt in this direction is described

in [106]. They theoretically predicted the many-body state created by sine drives on an

Ohmic contact in a regime close to one charge per period, at zero temperature. In this

regime other spurious excitations were approximated by only one dominant electron-

hole pair and its impact on noise measurement in a Hong Ou Mandel like setup was

computed. Predictions agree well with measurements (at finite temperature). However,

the measurement in itself has no predictive power, it is only a posteriori verification of

the initial assumption. With this in mind, the group of Pascal Degiovanni is currently

developing a signal analysis procedure based also on the Hong Ou Mandel setup to

analyze and reconstruct possibly any arbitrary many-body state with minimal a priori

knowledge of the state. However this approach is also limited by the fact that the Hong

Ou Mandel interferometer only probes single particle coherence overlap. To measure

higher order coherence terms, one has to design new experimental tools. For instance, in

reference [19], is proposed to recover two particle coherence through the measurement of

low-frequency noise at the output of a Franson interferometer. Measuring two-particle

coherence would for instance enable to distinguish between a time-bin entangled pair of

electrons and a statistical mixture of electron pairs [89].

1.8 Outlook and results of this thesis

In section 1.6, I briefly mentioned that the long coherence length available in ballistic

edge channels of the quantum Hall effect enabled the implementation of electronic inter-

ferometer such as Mach-Zehnder. In chapter 2 of this thesis, I will present another kind

of electronic interferometer: the Hong Ou Mandel interferometer. The goal of this thesis

is to use this interferometer to probe electronic coherence and process quantum signals.

Part of this work addresses the issue of interactions in between edge channels with a focus

at filling factor 2 (only two co-propagating edge channels). At the beginning of chapter
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3, I give a more specific review on the state of the art concerning this issue and then show

how I used the Hong Ou Mandel interferometer to probe the effect of inter-edge Coulomb

interactions on charge propagation. I show also that the measurement is precise enough

so as to give information on the shape of the current pulse. This precision enables to

probe the effect of Coulomb interactions not only during propagation in edge channels

but also during the emission process in the source itself. We indeed observed that the

pulse generated by the source cannot be described by a non-interacting theory of the

dot. We successfully compared our measurements with existing interaction models.

In chapter 4, I used again two-particle interferometry and the Hong Ou Mandel setup

to study the effect of inter-channel interactions on the propagation of a single particle. I

measured the decoherence of the Landau quasi-particle for different wave packet sizes and

show that interactions between neighboring channels is indeed the main source for deco-

herence. Comparing our results with theoretical models, we could show the relaxation

and decoherence of a single electron and its decomposition into collective modes.

Finally, in chapter 5, I show the first results of the implementation of a universal tomog-

raphy protocol introduced in section 1.7.4. This protocol aims at reconstructing all the

single particle coherence of any propagating electronic signal. I tested first this protocol

on simple signals created by sine drives. We were able to quantitatively compare and

distinguish an adiabatically driven Fermi sea (i.e. a state described by a time dependent

electronic distribution) and one with photo-assisted quantum effects which can no longer

be described by a mere time dependent electronic distribution. We then started to im-

plement this protocol to reconstruct a more complex signal coming out of the mesoscopic

capacitor.



Chapter 2

The Hong Ou Mandel

interferometer as a quantum signal

processor

“This is how we do..., do, do ..., do, do.”

Katy Perry, “This is how we do”.

In this chapter, I give a comprehensive description of all the essential building blocks

of the Hong Ou Mandel (HOM) interferometer together with important quantities and

formalisms needed to understand and interpret its results. I then show how this interfer-

ometer is a good tool to measure electronic first order coherence and therefore a good tool

to analyse a quantum signal. In the following chapters, I will then present 3 different

uses of this tool relevant to electron quantum optics. This work benefits from previ-

ous ones done in the LPA mesoscopic group. The single electron source was developed

and realized during Julien Gabelli’s and Gwendal Fève’s PhD thesis [4, 5], sources were

characterized extensively during Adrien Mahé’s and François Parmentier’s thesis [6, 7].

Finally the first realization of the Hong Ou Mandel experiment with single electron was

achieved by Erwann Bocquillon and Vincent Freulon [3, 107].

39
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Figure 2.1: Sketch of the experiment. Two indistinguishable single particle wave
packets arrive in each input of a beam splitter. One can either measure the average
coincidence counts between outputs 3 and 4 〈N3N4〉 or the fluctuations of number of
particle in one output 〈δN2

4 〉 = 〈N2
4 〉 − 〈N4〉2. See main text for explanation.

2.1 Principle of the experiment

2.1.1 Description

The experiment was originally done with photons by Chung Ki Hong, Zhe Yu Ou and

Leonard Mandel in 1987 [108]. It is not an amplitude interference setup like Fabry-Pérot,

Michelson or Mach-Zehnder interferometers but relies on intensity interference like the

Hanbury Brown and Twiss interferometer. It consists of a simple 50/50 beam splitter

where the two input states can be time delayed with high precision. The principle is

sketched in figure 2.1. At each realization of the experiment, we are interested in the

exit taken by the two particles. The measurement of interest is therefore either the

average coincidence count in the two outputs 3 and 4: 〈N3N4〉, or the fluctuation of

number of particles in one output 〈δN2
4 〉 = 〈N2

4 〉 − 〈N4〉2. These quantities are averaged

over a high number of iterations of the collision. When the delay τ = 0, and if the wave

packets are indistinguishable, bosons will tend to bunch together in the same output,

reducing thus 〈N3N4〉 (and on the contrary increasing 〈δN2
4 〉). When the delay |τ | is

larger than the temporal width of the wave packet τe, there is no more overlap and

the two particle interference disappears [109]. We recover random partitioning at each

realization of the experiment. On the contrary, indistinguishable fermions will have a

tendency to anti-bunch i.e. to take systematically a different output at τ = 0. This can

be understood as a manifestation of Pauli’s exclusion principle, fermions will not exit in

the same state. Thus, as sketched on figure 2.1 the trends for 〈N3N4〉 and 〈δN2
4 〉 are

opposite to bosons.
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2.1.2 Interest of the experiment

This experiment was originally done with photons but has also been realized with other

particles and quasi-particles like surface plasmons or surface plasmons polaritons [110–

112], Rubidium atoms [113], Helium 4 atoms [114], phonons [115], collective excitations

in atomic clouds [116] with continuous streams of electrons [117] and single electrons

[118] (with the setup I will present). The global interest of this experiment is many-fold.

As the seminal paper of Hong, Ou and Mandel indicates, it was first thought of as a way

to probe, on short time scales, the time interval between two photons and by implication

the photon wave packet length. Indeed, the overlap, and so the interference, occurs, even

partially, for time delay τ smaller than the temporal width of the wave packet τe. Thus,

probing the total shape of the dip gives a quantitative access to τe. However, the interest

can be much more fundamental, indeed this experiment is one of the few that need

a real quantum formalism that reconciles both the wave and particle physics in order

to be understood completely and in particular must integrate the quantum statistics.

The experiment measures the degree of indistinguishability between two particles and

also between independent sources by extension. Finally, and more fundamentally, the

experiment enables to test if a particle is a boson or a fermion. This is useless for already

known elementary particles but is of great interest for quasi-particles that emerge as a

result of correlations or hybridization. For instance it has been possible to prove the

bosonic character of surface plasmon polaritons which are a mix of electrons (fermions)

and photons (bosons) [111]. It would be interesting to transpose this experiment to test

the quantum statistics of anyons or non-Abelian quasi-particles arising at some fraction

of the quantum Hall effect [119] or at the interface of quantum Hall edges and topological

superconductors i.e. Majorana fermions [120].

2.2 Building blocks of the electronic interferometer

Figure 2.2 represents the active part of the sample. It mainly consists in a bi-dimensional

electron gas created at the interface between GaAs and AlGaAs semiconductors. All our

samples were fabricated by Y. Jin and A. Cavanna at LPN in Marcoussis. On figure 2.3

is presented the sample at different scales and how it is integrated in our setup.

2.2.1 Quantum Point Contact

The first important element to reproduce in the interferometer is the central beam split-

ter. To do so we use a quantum point contact (QPC) [15, 16]. It consists in two top
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Figure 2.2: False color SEM picture of the active part of the sample and the electric
setup. In blue is the bi-dimensional electron gas. Ohmic contacts (white saw toothed
square) are actually further away. The central quantum point contact defined by the
two central electrodes defines a beam splitter. Two edge channels are pictured in dark
blue. Each source consists in one top gate (Vexc) and two side gates (Vg). The output
3 is sent to low-frequency cryogenic amplifiers (green part) whereas the output 4 is
connected to a radio-frequency 50 Ω impedance circuitry (red part) with in some cases
a 120-50 Ω impedance matching.
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Figure 2.3: a. SEM picture of the active part of the sample. Yellow parts are gates.
The electron gas is in light gray. b. Optical image of the sample on which we can
see the integrity of the gas that has a butterfly shape. The darker crenelated area are
Ohmic contacts (AuNiGe). c. Optical image of the whole chip. Here is actually a
sample developed at the end of my PhD that is not an electronic HOM interferometer.
d. Optical image of the printed circuit board (PCB) designed by Anne Denis on which
the sampled is glued. e. The PCB is placed at the bottom of a He3/He4 cryostat and
at the center of a 14 T superconducting coil.

gate electrodes (AuCr) deposited above the gas’ central constriction. Applying a neg-

ative voltage on this electrode will deplete the gas beneath it. It is possible to control

the number of transmitted modes through the QPC. Each mode transmits electric cur-

rent with a quantized conductance of e2/h. In the integer quantum Hall regime, each

mode correspond to an edge channel. On the left panel of figure 2.4 this variation of

the conductance is shown with the voltage applied on the gates at different filling factor.

We clearly see that at filling factor ν, there are ν resolved steps that correspond to the

successive reflection of the ν modes. Notice how the QPC always seems to fully close

and fully open at roughly the same gate voltages.

To measure the conductance, we inject a small current on the Ohmic contact related

to Vbias (see figure 2.2) and then we measure the backscattered current in output 3 of

the beam splitter. To do so we use a Zurich instrument HFLI lock-in amplifier with

a drive at ≈ 1.4 MHz to go through the resonating tank circuit. The drive voltage is

converted into current in the edges through their conductance I = V νe2/h i.e. for a

voltage V applied on the Ohmic contact, the current in only one edge is V e2/h. Because

the Ohmic contact in output 3 is connected to high impedance amplifier, the current
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Figure 2.4: Left. Conductance of the central QPC versus gate voltage applied
on the electrodes for different filling factor (same cool down). Right. Backscattered
current when the QPC is fully open, versus magnetic field. Plateau of (almost) zero
backscattering correspond to the integer quantum Hall effect and most well defined
fractional quantum Hall states. We can only resolve ν = 2/3 here.

is actually dissipated in the next Ohmic contact (grounded) therefore, in the integer

quantum Hall regime, the voltage Vout read by the amplifiers on the Ohmic contact right

after the QPC is Vout = h
νe2
Iout, where Iout is the backscattered current. This is actually

a simplified model that is not valid when we take into account the impedance of the

resonating tank circuit. We postpone to section 2.4 the discussion on the exact role of

the resonating tank circuit and the low frequency amplifiers.

With this same method, we check what is the filling fraction. On right panel of figure

2.4 is plotted the backscattered current Iout when the QPC is fully open as a function

of the magnetic field. The back-scattering minima correspond to well defined quantum

Hall phases. We only resolve one fractional plateau (2/3). The relative center positions

of each plateaus with respect to each other enable to determine filling fractions. We can

plot filling fractions as a function of 1/B to obtain a linear relation. If the filling fractions

are correct, the slope goes through the origin. Then, we can also check that the number

of steps observed varying VQPC is coherent with our determination.

The result presented on the left panel of figure 2.4 demonstrates that we can control

precisely the transmission of the central QPC (up to the precision of the gate voltage

value). The total conductance of the QPC is:

G =
e2

h

ν∑
α=1

Dα = ν
e2

h

(
1− Vout

Vin

)
(2.1)

where Dα is the transmission probability of mode α, Vout is the voltage measured on

output 3 and Vin the voltage imposed on the ohmic contact connected to Vbias. This

formula is often refered as the Landauer formula [14, 121, 122]. The QPC enables not

only to choose to transmit or not a mode but also to control the exact transmission Dα.
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Indeed, if we set ourselves a little bit below VQPC = −0.6 V we can, for instance, choose

to transmit the outer edge channel with probability D = 0.5. Hence, an electron in the

outer edge channel coming toward the QPC will have a 50/50 probability to be reflected

or transmitted. This is the realization of an electronic beam splitter. We can address

the exact transmission of any channel individually, however we cannot set every edge

channel to half transmission. This is because edges are spatially separated thus when

we address the transmission of one of them, all the inner one will be reflected perfectly

(D = 0) and the outer one transmitted perfectly (D = 1). To conclude this part let

us point out that the exact relation between VQPC and D can vary significantly from a

cool down to another. A positive bias cooling (applying a voltage on QPC during the

cool down) can also shift the closure point toward more positive values of VQPC however

it also changes the overall stability of the electrostatic environment (sometimes better,

sometimes worse). The G(VQPC) relation can also drift a bit at base temperature and

has to be checked from time to time during long run measurements.

2.2.2 Single electron source

2.2.2.1 Working principle

The single electron sources are quantum dots defined by chemical etching of the gas

and partly by electrodes (Vg on figure 2.2). Applying a negative voltage on Vg creates

a confined area that is tunnel coupled with transmission D to the outer edge channel

of the rest of the gas. Hereafter, so as to limit confusion, we are going to call D the

transmission of the QPC associated to the dots (D1 and D2) and R = 1−D the reflexion

probability of the central QPC (T will usually refer to a temperature). This confinement

creates a quantization in energy with level spacing ∆. We apply a magnetic field high

enough to have Zeeman splitting thus there is only one electron for each energy level. The

chemical potential of the dot µdot is controlled capacitively by the top gate with Vexc. This

realizes a mesoscopic quantum capacitor. A simplified version of its functioning principle,

extracted from [3], is shown on figure 2.5. In the single particle injection regime, the top

gate is driven with a square pulse sequence with a peak-to-peak amplitude equal to ∆

(we call this amplitude the injection amplitude) and of mean value equal to the Fermi

level in the outer edge i.e. the average dot chemical potential is equal the one of the

outer edge. This level is governed by the DC part VDC applied on the top gate. In this

regime, during the first half of the square sequence, an electron is emitted at an energy

+∆/2 above the Fermi sea and in the second half, a hole is emitted at an energy −∆/2

below the Fermi sea (see figure 2.5-b). During this cycle, only one level takes part in

the emission. The escape time τe only depends on the transmission of the QPC and is
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Figure 2.5: Left a). Sketch of the source. A quantum dot with a large level spacing
is coupled to the reservoir through a QPC (gate voltage Vg). The potential in the dot is
tuned using the top gate (voltage Vexc) , and the emitted current is collected on contact
(1). Right b). Principle of single charge emission with the mesoscopic capacitor. The
upper graph represents the evolution of the potential of the dot during the emission
cycle. 1○ The dot is at equilibrium, for an initial value of Vexc. 2○ the application of a
large voltage step to the dot top-gate shifts the energy levels upwards with respect to
the Fermi energy, promoting a single occupied level above the Fermi energy. A single
electron is emitted. 3○ the excitation voltage is switched back to its original value: the
emptied level is shifted back below the Fermi energy, and can absorb an electron from
the reservoir. A single hole is emitted.

related to D and ∆ through the Nigg formula [8]:

τe =
h

∆

(
1

D
− 1

2

)
. (2.2)

This time will govern the temporal width of the emitted wave packet. τe is actually the

escape RC time associated to the density of state i.e. the quantum capacitance of the

dot. At D = 1, when the coupling is perfectly capacitive between the top gate and the

outer edge, τe does not converge to zero but to h/2∆ which actually corresponds to half

the transit time of an electron in the dot. In full generality, one has to consider the

effect of Coulomb interaction which manifests in the geometrical capacitance Cg. The
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total charge relaxation time τRC is a combination of τe and τc the RC time associated

with the geometrical capacitance only. However, it has been showed by G. Fève and

F.D. Parmentier [5, 7] that ∆ and Coulomb energy Ec = e2/Cg are of the same order

of magnitude. In this regime, we can approximate the effects of interactions as a simple

renormalization of ∆→ ∆∗ = ∆ + e2/Cg. Hereafter, we will call ∆ the renormalized dot

spacing. The effect of interactions within the dot and the relation between τRC , τe and

τc will be rediscussed in section 3.4.2.2.

2.2.2.2 High frequency current measurement and determination of emission

time

To characterize the sources and find the good parameters Vexc, VDC and Vg to emit a

given train of electrons and holes at energies (resp.) ωe and ωh and escape time τe, we

rely on the measurement of the averaged complex first harmonic of the current IΩ. The

setup is described on (the red part of) figure 2.2. Here Ω corresponds to the pulsation

of the AC drive on the top gate. Its measurement is enough to access those parameters

and is less time consuming than a real time measurement of I(t).

To measure IΩ coming from a source we first need to transmit completely the signal to

the Ohmic contact dedicated to RF measurements. This means closing fully the QPC to

calibrate source 1 and opening completely for source 2. Then the signal is sent through a

120 Ω resistor and a 120− 50 Ω matching impedance strip line (see [6] for details). This

resistor was removed in the middle of my PhD when we changed the whole PCB. This

enabled us to have a better PCB but at the price of a higher impedance mismatch between

the gas and the RF line. This lowered a bit (but not dramatically) the signal-to-noise

ratio on RF measurements. The impedance matching circuit was used for measurements

presented until section 4.3.1 included. Then the signal is amplified a first time with a

cryogenic high frequency amplifier (Miteq AMFK-2F-001-020 ) anchored at 4 K, with

a gain ≈ 33dB and then amplified again at room temperature with a Miteq AMF-3F-

00500400S (≈ 23dB). The whole amplification setup bandwidth is limited by the first

stage (0.1 − 2 GHz) but works well enough until 3GHz. Then the two quadratures are

measured with standard homodyning method. To do so we either implemented our own

set up (bandwidth 0.9 GHz to 3 GHz) or used a monolithic IQ mixer MLIQ0218L (2−18

GHz). The local oscillator (LO) signal is modulated with square drive through a phase

modulator Miteq DM0104LA1 to perform a lock-in measurement (≈ 1 kHz) on the two

quadratures X and Y .

With this procedure we get a complex number X + iY which is related but not quite

exactly the same as IΩ. Indeed, there are a lot of parasitic signals added to the signal of
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interest. We have to take into account the phase rotation induced by propagation and

the unavoidable direct parasitic coupling between input and output RF connectors; we

must also take care of phase drifts between LO and Vexc. A second important point to

notice is that because of the amplifiers and mixers, the signal is successively multiplied,

attenuated and phase shifted in an untraceable way. All this considered, shows us that

we actually measure:

Z = κ(IΩ + Ip) (2.3)

where κ and Ip are of arbitrary modulus and phase (and can fluctuate on long time

scales). This pleads for the use of a calibration to remove Ip. To any measure Z, we

subtract, whenever possible, the same measure Z ′ but with Vg sufficiently negative to be

sure the dot QPC is closed (D = 0) thus Z − Z ′ = κ(IΩ + Ip − (0 + Ip)) = κIΩ.

Then to access the emission time we use the relation [7]:

Ωτe =
Re(IΩ)

Im(IΩ)
, (2.4)

however, κ can have non zero complex phase. So we have to make another calibration

measurement at Vg sufficiently high so as to be sure the dot is fully open (D = 1).

Indeed, in this regime, we know that τe = h/2∆ (see following section to know how to

measure ∆) which enables us to fix the ratio of real and imaginary part measured and

thus the complex phase of κ. More specifically, we rotate the two measured quadratures

of Z −Z ′ until the ratio of real and imaginary part equals Ωh/2∆. This fixes a rotation

in the complex plane that we apply to any measure Z − Z ′.

Let us here be more specific about what we call Vg sufficiently negative or high enough.

On figure 2.6 is presented a color map of IΩ versus Vexc (amplitude of the drive) and Vg1
(voltage on the QPC of source 1). Characteristic white diamond-shaped areas appear

when IΩ = 2ef = eΩ/π. The canonical injection regime correspond to the horizontal

dashed line when eVexc = ∆/2. If we set ourselves to a different drive amplitude, we

observe oscillations in IΩ versus Vg1. This is because the latter not only controls D1 but

also influences the dot DC potential. Not being in a white diamond area correspond to

a situation where energy levels of the dot are not symmetric with respect to the Fermi

level in the edge channel as sketch on the right inset of figure 2.6. Now let us come back

to the two steps calibration to access IΩ. For the first subtraction, we need a point where

we are sure IΩ = 0, this is exactly the left blue area on figure 2.6. More specifically we

do not have to measure the whole 2D plot but simply to measure IΩ versus Vg1 at a finite

Vexc and reach the minimum plateau which corresponds to no current emission. Then we

needed a value of Vg1 high enough to have D = 1. This correspond to perfect capacitive

coupling between dot and edge i.e. there is no quantization in energy. We can observe
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Figure 2.6: First harmonic of current measured on lock-in when source 1 is excited
with a square drive at f = 1.2 GHz versus amplitude of the drive Vg1. Blue region
corresponds to no emission and white region to the emission of a current IΩ = 2ef .
Because, Vg1 acts both on transparency D and on the inner chemical potential µdot we
can see oscillation of this white region. Centers of a white diamond correspond to a
region where the averaged in time DC potential of the dot equal the Fermi level of the
rest of the circuit as sketched on the left inset. Theoretically, in this regime, any drive
amplitude enables the emission of current at 2ef with electrons and holes at opposite
energy ωe = −ωh = eVexc. On the contrary, in between white diamonds the situation
is not favorable for emission and IΩ = 2ef only when eVexc = ∆/2.

this loss of quantization in the dot on the right side of the figure where diamonds are

more and more blurred. Thus to be sure to measure IΩ(D = 1), we set eVexc 6= ∆/2 and

increase Vg1 until the oscillations in IΩ disappears.

2.2.2.3 Calibration of dot spacing ∆

Here I am going to present the calibration used to determine the dot spacing ∆ (or more

precisely the renormalized spacing ∆∗). We first apply a square voltage drive on the

source we want to calibrate with a small amplitude and in a regime where we can see
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name S434 S902
nominal density n 1.9× 1015m−2 1.4× 1015m−2

mobility µ 2.4× 106cm2V−1s−1 1.4× 106cm2V−1s−1

dot spacing ∆ 1.4 K↔ 120µeV 5.6 K↔ 483µeV

Table 2.1: Summary of the characteristics of the two different batch used during this
thesis.

the previously mentioned current oscillations. We then record the evolution of IΩ versus

VDC applied on the top gate; we expect to see a succession of peaks when the potential

of the dot crosses the Fermi level. The conditions mentioned insure that the width of

these peaks will be as thin as possible so as to be mainly governed by thermal blurring.

Indeed, in a good quantization regime and with a small drive amplitude, there are very

few values of inner potential allowing for particle emission. We typically record a few

of these peaks and look at the evolution of their width while we increase the electron

temperature.

Such a calibration is presented on figure 2.7 for a sample of batch S902 (not the same one

as samples which gave main results of this work). We fit each peak with a/cosh2((V −
Vi)/2W ) where Vi is the position of peak i and W the peaks width in Volts (see [7]).

This gives us an evolution of the width of peaks with temperature plotted on the right

part. We fit this evolution with β
√
T 2 + T 2

0 where β−1 is the coupling between top gate

and the energy level. Indeed, the relation is linear at high temperature but saturates

at low temperature both because there is not enough thermalisation of electrons and

because the peak has a finite minimum width imposed by the emission time τe = 20 ps

(deduced afterward from the calibration of ∆). The level spacing is simply the inverse

of these slope multiplied by the spacing between peaks in Volts. Averaging on the three

spacings, we get ∆ = 5.6± 0.2 K which gives an emission time at D = 1 of τe = 4.3 ps

(and data taken at τe = 20 ps correspond to D = 0.35).

This value of ∆ is a bit higher to what was measured during V. Freulon thesis for a sample

from batch S434. He found ∆ ≈ 1.4 K. Most results I will show in this manuscript were

obtained on this S434 sample (C16L25A). Summary of the characteristics of the two

different batch used during this thesis can be found in table 2.1.
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Figure 2.7: Left. IΩ versus VDC1 for different electronic temperatures. Drive fre-
quency: 1.2 GHz, amplitude around eVexc = ∆/8. After estimation of ∆ we can
recover that τe = 20 ps (or equivalently D = 0.35). Following [7], we fit each peak with
a/cosh2((V − Vi)/2W ) where Vi is the position of peak i and W the peaks width in
Volts. Each curve is shifted upward for clarity. Right. Width W extracted from fits
as a function of temperature. We fit this with β

√
T 2 + T 2

0 where β−1 is the coupling
between top gate and the energy level.

2.3 What do we measure?

The last important element to implement the HOM experiment is the equivalent of a

photocounter. In our case, we will not measure the coincidence counts but rather the

fluctuating number of particle in one output 〈δN2
3 〉, more precisely we measure the low

frequency current noise which indeed has units of a fluctuating number of charge per

unit of time (A2.Hz−1 ∼ C2.s−1). In this section, I will also introduce the first order

electronic coherence function [10, 87, 123] and the electronic Wigner function [90] defined

in analogy with Glauber’s theory of optical coherence [124]. These functions enable to

describe efficiently the propagation of wave packets containing one particle. I will also

show how the current noise at the output of the HOM interferometer enables to probe

overlap of coherence functions or Wigner functions.
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2.3.1 Coherence function G(e)

These theoretical tools rely on the formal analogy between the electric field operator

Ê+(x, t) (that annihilates photons at time t and position x), and the electron field

operator Ψ̂(x, t) (that annihilates electron at time t and position x1).

Ψ̂(t) =

∫
dω√
2π

e−iωtĉ(ω), (2.5)

where ĉ is the electron annihilation operator that annihilates an electron at energy ω and

the integral goes over all real ω (in this manuscript, unless specified, integration intervals

are R). We have the anti-commutator
{
ĉ(ω), ĉ†(ω′)

}
= δ(ω−ω′) and

〈
ĉ†(ω)ĉ(ω)

〉
= f(ω).

The coherence function (of degree one) is defined for electrons as:

G(e)(t, t′) =
〈

Ψ̂†
(
t′
)

Ψ̂
(
t
)〉
, (2.6)

and with the Fourier transform convention:

G̃(e)(ω, ω′) =

∫ ∫
dtdt′

2π
G(e)

(
t, t′
)
eiωte−iω

′t′ =
〈
ĉ†
(
ω′
)
ĉ
(
ω
)〉
, (2.7)

where 〈...〉 is the quantum average on the state of interest. Coherence functions are a

good tool to express temporal observable such as average total current:

〈Itotal(t)〉 = −e
〈

Ψ̂†(t)Ψ̂(t)
〉

= −e G(e)(t, t). (2.8)

In the same spirit, density in energy is simply f(ω) = G̃(e)(ω, ω). More generally, diagonal

terms of the coherence function (t = t′ or ω′ = ω) give information on the population of

state and off-diagonal terms give access to coherence terms or phase relations.

This formalism can be simplified for our system owing to the time periodicity of our

drive. Indeed, all the out-of-equilibrium quantities we are going to study (apart from

DC calibration) are created by a time periodic drive with periodicity T = 2π/Ω. When

the quasi-stationary regime is established (after a few µs) all these quantities will also

be periodic in time. The most appropriate formalism in this regime has been developed

by Gaston Floquet in 1883 [125] and can be transposed to our case [126, 127]. It can be

seen as a Bloch decomposition but in time rather than space coordinates. The coherence
1Actually, we will assume ballistic propagation on the edge channel at a finite velocity so we drop

the x−dependence. Everything depends on t− x/v and we set x = 0 and, contrary to [10] for instance,
Ψ̂ is in unit of s−1/2 and not m−1/2.
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function rewrites:

G
(
t, t′
)

=
∑
n

Gn
(
t− t′

)
e−inΩ t+t′

2 =
∑
n

Gn(τ)e−inΩt. (2.9)

Contrary to its photon counterpart, our “vacuum” here is a many-body state: the Fermi

sea |Fµ〉 at equilibrium and chemical potential µ whose coherence function is non-zero.

Because the Fermi sea is a stationary state, its coherence function G(e)
Fµ

only depends on

time difference t− t′. One can then decompose any state as:

G(e)(t, t′) = G(e)
Fµ

(
t− t′

)
+ ∆G(e)

(
t, t′
)
. (2.10)

The current that is really measured in quantum Hall edge channels is always an excess

current 〈I(t)〉 = −e∆G(e)
1 (t, t). In energy domain, we have:

G̃(e)(ω, ω′) =G̃(e)
µ (ω, ω′) + ∆G̃(e)(ω, ω′)

G̃(e)(ω, ω′) =fµ

(
ω + ω′

2

)
δ(ω − ω′) + ∆G̃(e)(ω, ω′)

(2.11)

where fµ(ω) is the Fermi distribution at chemical potential µ. The excess coherence

function of a single electron state with wave function ϕe on top of a Fermi sea

|ϕe〉 =

∫
dω ϕe(ω)ĉ†(ω)|Fµ〉 (2.12)

is easily expressed as (see A.2 or reference [10]):

∆G(e)(t, t′) = ϕe(t)ϕ
∗
e(t
′) (2.13)

∆G̃(e)(ω, ω′) = ϕ̃e(ω)ϕ̃e
∗(ω′). (2.14)

We see here the interest of measuring first order coherence functions: for a single particle

state it contains all the information on the state. The diagonal elements (t = t′ or ω = ω′)

give access to the square modulus of the wave function and thus to population terms,

whereas off-diagonal elements enable to recover the phase of the wave function. More

generally, first order coherence functions contain all single particle physics and even all

the physics of non-interacting many-body systems.

In appendix A are recalled a few properties of coherence functions and how they are

computed with Floquet theory from the parameter of the dot. From there, I show how the

HOM outputs are computed with coherence functions. All current and noise simulations

(without interaction) presented in this work are based on a Matlab code whose main

calculation steps are explained in this appendix. The code was first developed by F.D.
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Parmentier and E. Bocquillon. I used it extensively and brought some corrections. I also

developed all the numerical functions related to coherence functions created by a drive

on an Ohmic contact and Wigner distributions calculation and representation (with and

without Coulomb interactions).

2.3.2 Wigner function

2.3.2.1 Definitions

Coherence functions G(e) are the good functions to use and compute to understand and

describe the behavior of observables in such an interference experiment. However it is

difficult to develop a pictorial and intuitive representation of it. To circumvent this issue

we introduce the Wigner functions.

First introduced in 1932 by Eugene Wigner [128] to give a quantum formulation of the

low temperature statistical mechanics so as to be able to compute thermodynamical

quantities of a quantum system, it is defined for a density matrix ρ:

W (x, p) =
1

h

∫
dy
〈
x+

y

2

∣∣∣ ρ̂ ∣∣∣x− y

2

〉
e
iyp
~ =

1

h

∫
dy ρ̂

(
x+

y

2
, x− y

2

)
e
iyp
~ , (2.15)

so for a pure state ψ:

W (x, p) =
1

h

∫
dy ψ∗

(
x+

y

2

)
ψ
(
x− y

2

)
e
ipy
~ , (2.16)

and can be generalized to n−dimensional phase spaces. Its use has been extended to

signal analysis by Jean Ville [129] so that it is sometimes referred as the Wigner-Ville

distribution. It has proven to be an essential tool for time-frequency representation

[130]. In quantum mechanics it is a good tool to represent quantum states[131]. It is

only one of the possible quasi-probability distributions but compared to other possible

representations (P [132, 133] or Q functions [134, 135] for instance) it has the advantage

to keep the intuitive classical phase space representation and also to highlight clearly

quantum phenomena such as superposition of states. A more practical advantage is that

it only takes real values so it is easier to represent.

Such a Wigner function was first successfully measured by Smithey et al. [136] that

reconstructed the Wigner function of vacuum and squeezed states of the optical field

with homodyning methods. After that, the method has been widely used in quantum

optics to measure various kind of state of light (squeezed state or Fock state) [137–140].

A noticeable milestone was achieved with the measurement of the Wigner function of
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a Schrödinger cat state of microwave light in a superconducting cavity [141]. Then the

progress in the superconducting qubit community enabled to measure more complex state

of light [142–145]. Wigner functions were also measured in other systems like vibrational

state of a molecule [146], motional state of trapped ion [147], atomic wave packets [148],

and more recently on propagating electronic state in a metal [104].

Apart from the last reference, one can notice that they are all Wigner functions of single

mode harmonic oscillators which can mapped to a single particle in a harmonic trap. A

lot of effort was put forward to extend the definition of a Wigner function to other kind of

states, for instance finite dimensional Hilbert space [149] so as to define Wigner functions

of spin ensembles. Another approach that will be of great interest to us, is the definition of

a Wigner function of systems with an arbitrary number of particles, in particular Wigner

function of electronic systems. The Wigner function of an electron in a semiconductor

was used successfully several times [150–153] but more to compute stationary transport

quantities than to study single electron coherence. The latter was done in reference

[90] by Ferraro et al. and motivated by the need for a time/frequency representation of

electronic excitations in quantum conductors with a finite extension both in time and

energy. Indeed, as pointed out in this reference, it contains the same information as

the coherence function but is easier to visualize. The time domain representation of

coherence functions is suitable to analyze time-dependent phenomena or observables but

one has to look at the complex phase of G(t, t′) to infer about the electron or hole nature

of excitations. Conversely, this is really clearly pictured in the frequency representation of

G̃(ω, ω′). Weights in the quadrant (ω, ω′ > 0) correspond to electron excitations whereas

the quadrant (ω, ω′ < 0) corresponds to hole excitations. The two other quadrants

(ω × ω′ < 0) correspond to coherent electron-hole pairs excitations. However, G̃ is

not well suited to describe time dependent phenomena. The Wigner function has the

advantage of the two representations (in addition to all the other previously mentioned).

The electronic2 Wigner functions writes:

W (ω, t) =

∫
dτ G(e)

(
t+

τ

2
, t− τ

2

)
eiωτ (2.17)

where τ = t − t′ and t = (t + t′)/2. Similarly to the coherence function, we can isolate

the mere Fermi sea at chemical potential µ, |Fµ〉 and define the excess Wigner function:

∆W (ω, t) = W (ω, t)−WFµ(ω) (2.18)

WFµ(ω) = fµ(ω). (2.19)

2We could also define a hole Wigner function but we will not use it in this manuscript, so we drop
the (e) notation.
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2.3.2.2 Properties and Floquet decomposition

Another advantage of the Wigner representation is that we can recover probability dis-

tribution thanks to marginal distributions:

∆ρ(ω) =
1

T

∫ T

0

dt ∆W (ω, t) (2.20)

I(t) = −e

∫
dω

2π
∆W (ω, t) (2.21)

where ∆ρ(ω) is the electronic distribution over the time period T which is the period

of the source or the total measurement time. Integrating ∆ρ(ω) over all energies gives

access to the average excess electron number per unit of T . ∆ρ(ω) can also be seen as

an average energy distribution per unit of T . Unless specified, all our signals are time

periodic therefore ∆ρ(ω) is also the total average energy distribution. As a misuse of

language we will sometimes mix electronic distribution and energy distribution.

The main advantage of the Wigner function representation is that it pictures well the

classical-quantum transition. For a classical state, the Wigner function can simply be

interpreted as a time/energy electronic distribution W (ω, t) = f(ω, t) with 0 6 f(ω, t) 6

1. This is the case for stationary distributions or electronic distribution with a chemical

potential varying adiabatically with time. In this regime we can write:

W (ω, t) = f(ω, t) = fµ(t)(ω). (2.22)

In this classical regime, all AC properties can entirely be derived from DC ones. However,

this is no longer the case for non adiabatic driving of the chemical potential or more

generally for non-classical (quantum) states. This regime can easily be identified by the

values taken by the Wigner distribution which can become negative or rise above one.

When W < 0 or W > 1, the function can no longer be interpreted as an electronic

distribution, W (ω, t) 6= f(ω, t): the state has no classical description. This can serve as

a criteria to distinguish a classical state from a quantum one.

One important remark must be made here. There is usually a normalization relation

that fixes to one the integral of the Wigner function over the whole phase space. This

is no longer true here in general. Indeed, we deal with a many-body state and the total

number of particle depends on the excitation. If we remove the Fermi sea and focus on the

excess Wigner function, its integral over energy and over a time period T should give the
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number of net charge present in this time period. It gives zero if we only have electron-

hole pairs and one if we managed to inject a single electron but this number is not fixed a

priori and does not have to be an integer. This is an important difference with the usual

Wigner function of a one mode harmonic oscillator. Indeed, this problem can be mapped

to the one of a single particle trapped in a quadratic potential. For those systems, it

is true to say the Wigner function contains all the physical information on the system.

This is because it is constructed with single particle operators. This is particularly clear

when one looks at the definition 2.17 which uses the first order coherence function. In

electronic conductors, the number of particle is not fixed to one so the Wigner function

does not a priori contain all the information on the system but only the single particle

one. Nonetheless, single particle knowledge is enough to understand and predict the

HOM interferences as we will see in equation 2.39. To fully characterize a many-body

state, one needs to access higher order coherence functions especially when these many-

body correlations are predominant e.g. in the fractional quantum Hall effect. Based on

the definition of an electronic second order coherence function [89] one can define a two-

electron Wigner function [154] that can give for instance information about entanglement

between two particles.

Here again, we can benefit from T−periodicity to decomposeWigner functions on Floquet

coefficients:

∆W (ω, t) =
∑
n∈Z

∆Wn(ω)e−inΩt, (2.23)

it appears that the Wigner Floquet coefficient ∆Wn(ω) are equal to the coherence func-

tion Floquet coefficient defined as the Fourier transform of ∆G(e)(τ)

∆Wn(ω) = ∆G(e)
n (ω). (2.24)

2.3.2.3 Illustrations

On figure 2.8 and 2.9 are plotted examples of Wigner functions with their marginal

distributions. Figure 2.8 represents Wigner functions created by a sine drive applied on

an Ohmic contact or on the top gate of the dot when D = 1 only. Figure 2.8-a is in a

regime where the electronic temperature is higher than the frequency drive (Tel = 100

mK, f = 1.5 GHz → hf/kB = 72 mK) so the Wigner function can be interpreted as

a classical time energy probability distribution. The function can be described as a

Fermi sea with an oscillating chemical potential. Going from figure 2.8-a to 2.8-b the

temperature is decreased to 20 mK but everything else is kept constant. Because hf

becomes higher than kBTel there starts to be photon assisted effects which are quantized

by nature. This non-classicality is manifested in the appearance of negative values of
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Figure 2.8: Wigner function created by a sine drive on an Ohmic contact calculated
with Floquet theory. The bottom marginal distributions correspond to current and the
left one to ρ(ω) the energy probability distributions. The red curve corresponds to the
excess occupation whereas the blue represents the same to which we add Fermi sea.
a) Frequency drive f = 1.5 GHz, Tel = 100 mK, Vexc = 12µeV. b) Frequency drive
f = 1.5 GHz, Tel = 20 mK, Vexc = 12µeV. c) Frequency drive f = 10 GHz, Tel = 0.1
mK, Vexc = 21µeV. d) Frequency drive f = 10 GHz, Tel = 0.1 mK, Vexc = 95µeV.

the Wigner function. However, contrary to its bosonic equivalent the electronic Wigner

function has another non-classicality criteria: it is when the values taken by the Wigner

function are above unity. Indeed such a value cannot be interpreted as a probability for a

fermionic system (whose occupation number are bounded between 0 and 1). This values

above 1 are visible on figure b but the effect is much stronger on figure 2.8-c. When

temperature is negligible (0.1 mK on 2.8-c and d) we clearly see a quantization of the

Wigner function which also appears in ρ(ω) but not in the current which is always a sine

function. The Wigner functions are quantized by steps of size hf/2 whereas the energy

distribution is by steps hf . This really illustrates the fact that the excitation of the Fermi

sea is no longer adiabatic but governed by absorptions and emissions of photons (here

at f = 10 GHz) that can create electron-hole pairs of energy hf , this is a manifestation
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Figure 2.9: Wigner functions calculated with Floquet theory at the exit of the dot.
We zoomed in the the half period on which the electron is emitted and removed the
other half period. The drive frequency is at 0.5 GHz with an amplitude of 86µeV
and a rise time of 30 ps. Dot spacing ∆ is 170µeV. The Wigner functions are plotted
with their marginal distributions (all with same scale for the sake of comparison). The
bottom marginal distributions correspond to current and the left one to ρ(ω) the energy
probability distributions. The red curve corresponds to the excess occupation whereas
the blue represents the same to which we add Fermi sea which goes to 1 for energies
below Fermi level. The electronic temperature is 25 mK. a) D = 1, τe = 12 ps. b)
D = 0.65, τe = 25 ps. c) D = 0.35, τe = 57 ps. d) D = 0.2, τe = 108 ps.

of the famous photon-assisted transport [155–157] which creates a complex many-body

system that is a superposition of electron-hole pairs [106]. For those excitations, non-

classical values are more pronounced. To create electron-hole pairs with higher energies,

one has to rely on multi-photon processes whose probability increase with the number of

photon i.e. with the amplitude of the drive. We can observe this transition between c

and d. In the last figure, we clearly observe more than one step and the Wigner function

extends to higher energies both for electrons (ω > 0) and holes (ω < 0).

On figure 2.9, the Wigner function of the excitation created by the single electron source

for different transparencies D is shown. All the marginal distributions are plotted at

the same scale. For all but d, we observe a strong region of values above one that
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comes from the fact that the wave packet is strongly localized in time on a time scale

τw such that hτ−1
w > kBTel

3. As illustrated on the previous figure 2.8, this regime leads

to non-classical values of the Wigner function. Going from a to d (to lower and lower

transparency D) we start from a wave packet localized in the time domain with a high

peak of current and a broad energy distribution with main weight around the Fermi level

and finish with a wave packet with a long temporal extension whose maximum of current

is lowered but the distribution in energy is much more peaked around ∆/2 = 86 µeV.

For the lower transparency, D = 0.2, at t = 0 the emission is initiated but the energy

not yet resolved as manifested by the broadening of the Wigner function in energy. As

time evolves, the distribution is narrower and narrower and energy of the electron more

resolved. This is a direct manifestation of Heisenberg uncertainty principle.

Let us here stress the important difference between two regimes for the source. When

D = 1, the top gate has perfect capacitive coupling with the outer edge channel and

driving this top gate will directly excite low energy collective modes called edge-magneto

plasmons. By tuning the amplitude of the drive one may reach a regime where these

collective modes appear as one net charge per period but this charge will be accompanied

by several electron-hole pairs. It is a many-body state. On the contrary, when D < 1,

coupling to the edge is no longer purely capacitive and the state at the exit of the

source tends toward a single particle on top of a Fermi sea, with probabilities of having

additional electron-hole pairs going to zero. As we will see in section 4.2, both cases can

always be described as a sum of edge magneto-plasmons.

To compute this Wigner function we assumed that the transparency D was independent

of energy but we could imagine other kind of wave packet emission with different dot to

edge coupling. There is a proposal by Kashcheyevs and Samuelsson [158] to structure

the barrier such that the tunneling transparency depends on energy, enabling creation

of different wave packets. They showed that for a given D(ε), a change from classical to

quantum wave packet emission can be observed by changing the rapidity of the drive. In

our case, this classical-to-quantum crossover can be observed by tuning the transparency

D from 1 to 0. On figure 2.9-a the state already shows negativities and values above one

but we can recover a purely classical state with a longer rise time and still observe (not

shown) a transition with the appearance of values W < 0 and W > 1 while decreasing

D.
3τw is related to the emission time τe but also to the finite rise time of the square sequence.
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2.3.2.4 Computation

In this section, I detail the method used to calculate numerically Wigner functions of

excitation either from an Ohmic contact as on figure 2.8 or from the mesoscopic capacitor

as on figure 2.9. All relevant observables (current, HOM interferences, distribution in

energy) can then be computed from it.

Excitation of an Ohmic contact To compute numerically a Wigner function in

this regime, we use results from reference [159]. An electron traveling in the Ohmic

contact experiences a potential V (t) thus its wave function ϕ(t) acquires an extra term

exp
(
− ie

~
∫ t
−∞ V (τ ′)dτ ′

)
. Thus the coherence function emitted by an Ohmic contact

driven by a voltage V (t) is:

G(e)(t, t′) = exp

(
ie

~

∫ t

t′
V (τ ′)dτ ′

)
G(e)
µ (t′ − t). (2.25)

Thanks to Floquet theory, this can easily be computed through the calculation of the cn
coefficients (see also appendix A) defined as the Fourier coefficient of:

exp

(
−i e

~

∫ T

0
VAC(t′)dt′

)
=

+∞∑
n=−∞

cn exp (−i2πnft) (2.26)

which correspond to the probability amplitude for an electron to absorb (n > 0) or

emit (n < 0) n photons, with T the period of the drive. They enable us to compute

the coherence out of the contact but we can also use them for the computation of the

Wigner function [90]:

W (ω, t) =
∑

(n+,n−)∈Z2

cn+ [VAC]cn− [VAC]∗e2πi(n−−n+)ftfµ [ω − π (n+ + n−) f ] . (2.27)

In the case of a simple sine drive VAC(t) = V0 cos(2πft), it can be computationally a

little bit quicker to directly use the expressions of cn in terms of Bessel functions of the

first kind, cn = Jn

(
eV0
hf

)
so to have:

W (ω, t) =
∑
n∈Z

Jn

(
2eV0
hf cos(Ωt)

)
exp

(
h(ω+nΩ/2)

2πkBTel

)
+ 1

. (2.28)

Excitation out of the mesoscopic capacitor For this kind of injection we have to

rely on the formalism developed in [7] and recalled (up to minor modifications) in A.3
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to compute the Wigner Floquet coefficient ∆Wn(ω) and then sum them up according to

equation 2.23 to recover ∆W (ω, t).

One might realize, that we never calculate “directly” Wigner functions but almost always

go through the step of calculating first order coherence function. Indeed, it is easier to

compute and although the two representations are mathematically equivalent, Wigner

functions will always have the advantage of a better representation of the system and a

more straightforward interpretation.

2.3.3 Application to HOM

In the electronic realization of HOM we use two independent but identical sources labeled

1 and 2. In appendix A.3, we show how to compute the output modes Ψ̂out,1 and Ψ̂out,2

and coherence function out of these sources from Floquet formalism. This model does

not take into account any Coulomb interaction but still provides a solid theoretical

predictions to guide us in our interpretation.

In a first non interacting description of our setup, Ψ̂1 and Ψ̂2 will propagate toward the

input of the beam splitter. The effect of the QPC on this modes can be modeled with

the following scattering matrix:(
Ψ̂3

Ψ̂4

)
=

(√
1−R i

√
R

i
√
R

√
1−R

)(
Ψ̂1

Ψ̂2

)
, (2.29)

where R is the reflection of the QPC, and Ψ̂3 and Ψ̂4 are the output modes of the QPC.

From it we can compute the output current operators:

Î3 = e Ψ̂†3Ψ̂3 = (1−R)Î1 + T Î2 + ie
√
R(1−R)(Ψ̂†1Ψ̂2 − Ψ̂†2Ψ̂1) (2.30)

Î4 = e Ψ̂†4Ψ̂4 = (1−R)Î2 +RÎ1 − ie
√
R(1−R)(Ψ̂†1Ψ̂2 − Ψ̂†2Ψ̂1). (2.31)

Ψ̂†1Ψ̂2 − Ψ̂†2Ψ̂1 is the exchange term responsible for 2 particle interference. This two

particle interference term is at the heart of the HOM interference and is important to

explain all our results and the interest of this experiment. However, measuring this

exchange term is not straightforward. Indeed it disappears when we try to measure any

single particle quantity such as energy occupation or the average current which is simply

the sum of transmitted and reflected currents:

〈Î3〉 = (1−R)〈Î1〉+R〈Î2〉. (2.32)
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To access this exchange term, we will actually need to measure fluctuations of this oper-

ators either by measuring current cross correlations between the two outputs S34(t, t′) =

〈(Î3 − 〈Î3〉)(t)(Î4 − 〈Î4〉)(t′)〉 or by measuring autocorrelation of current in one output

S33 = 〈(Î3 − 〈Î3〉)(t)(Î3 − 〈Î3〉)(t′)〉. As we will see, this quantities are of great inter-

est because they give access to off-diagonal elements of coherence functions and thus to

quantum coherence. Applying Wick’s theorem we get after a bit of algebra:

S33(t, t′) =(1−R)2S11(t, t′) +R2S22(t, t′) +R(1−R)Q(t, t′)

S34(t, t′) =R(1−R)
(
S11(t, t′) + S22(t, t′)−Q(t, t′)

) (2.33)

Where we removed S12(t, t′) because the two sources are independent so it is reasonable to

assume no correlation between them. S11 and S22 correspond to output autocorrelations

from both sources before partitioning by the QPC. The last remaining term labeled

Q(t, t′) corresponds to quantum interferences created by the partitioning. It is also

called exchange term as it contains coherence products of both inputs:

Q(t, t′) = e2
[
G(e)

1

(
t, t′
) (
δ
(
t− t′

)
− G(e)

2

∗
(t, t′)

)
+ G(e)

2 (t, t′)
(
δ(t− t′)− G(e)

1

∗
(t, t′)

)]
.

(2.34)

What is really measured is the power spectrum density in output 3 S33(ΩM ), with ΩM

the measurement frequency, but Wiener-Khintchine theorem shows it enables to access:

S33(ΩM ) = 2

∫
dτeiτΩMS33(t, t′)

t
, (2.35)

where τ = t − t′ , Sij(t, t′)
t
is the average on t = (t + t′)/2 and factor 2 comes from an

engineer convention where S33(ΩM ) is defined for positive frequencies only.

Looking back at equation 2.33, we realize the additional noise created by both sources

S11 and S22 can blur the measurement. However, focusing on the low frequency limit

ΩM → 0 of the noise removes these contributions. Indeed, at low frequency, the noise

created by the source is zero [67] and this can be extended to a drive applied on an

Ohmic contact. As long as Ω−1
M is larger than time scales at which random process starts

to manifest for the source, the input noise reduces to thermal noise Sii = 2e2kBTel,i/h.

Therefore, at low frequency, Q can be decomposed as the sum of the 4 following terms:

Qeq = 2e2

∫
dω

2π
(fµ1 (ω) (1− fµ2 (ω)) + 1↔ 2) (2.36)

QHBT,1 = 2e2

∫
dω

2π
∆G(e)

0,1(ω) (1− 2fµ2(ω)) = 2e2

∫
dω

2π
∆W0,1(ω) (1− 2fµ2(ω)) (2.37)

QHBT,2 = 2e2

∫
dω

2π
∆G(e)

0,2(ω) (1− 2fµ1(ω)) = 2e2

∫
dω

2π
∆W0,2(ω) (1− 2fµ1(ω)) (2.38)
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QHOM =− 2e2
∑
n

∫
dω

2π

(
∆G(e)

n,1(ω)∆G(e)∗
n,2 (ω) + ∆G(e)

n,2(ω)∆G(e)∗
n,1 (ω)

)
=− 4e2

∫
dω

2π
∆W1(ω, t)∆W2(ω, t)

t
.

(2.39)

Qeq corresponds, when µ1 = µ2, to the equilibrium noise. It is measured while both

sources are off. In equations 2.37 and 2.38, HBT stands for Hanbury Brown and Twiss.

Indeed, these terms can be obtained by turning on only the corresponding source and

off the other one. Then the setup is the electronic equivalent to the original experiment

developed by Hanbury Brown and Twiss [160] and which is now routinely done to char-

acterize single particle sources. We have expressed QHBT and QHOM both in terms of

an overlap of coherence functions and overlap of (excess) Wigner function. We see that

we can measure QHOM when both sources are on. In appendix A.4.2 we also show that

QHOM can be interpreted as a single particle wave packet overlap for states well defined

above Fermi level. QHOM can be interpreted as a Wigner (or equivalently first order

coherence) overlap and from 2.39 we see that this term contribute to noise with a minus

sign because of fermionic statistics. Therefore any single particle overlap between the

two input states will decrease noise or conversely any decrease of noise (compared to a

reference we will soon define) will be interpreted as an overlap, even partial, between

Wigner functions sent to the QPC.

To remove thermal contribution and Qeq, we simply measure S33(0) when both sources

are off (S(off,off)
33 ) to get the excess low frequency noise:

∆S33 = S
(on,on)
33 − S(off,off)

33 = R(1−R)∆Q (2.40)

where

∆Q = QHBT,1 +QHBT,2 +QHOM. (2.41)

Following the same idea, we can obtain only HBT contributions measuring the excess

noise when only one source is on. For example for HBT of source 1:

S
(on,off)
33 − S(off,off)

33 = R(1−R)QHBT,1, (2.42)

thus we can access independently each HBT noise and subtract them from ∆Q to recover

only QHOM. We can combine the last 3 formula to get:

R(1−R)QHOM = S
(on,on)
33 − S(on,off)

33 − S(off,on)
33 + S

(off,off)
33 . (2.43)

One might question the interest of such a strategy compared to the simple measurement

of S(on,on)
33 while varying the time delay τ between the two sources. Indeed, according to

2.43 this strategy is 4 times longer and the uncertainty is increased by a factor 2 so to get
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to the same precision on a value of QHOM than on a value of S(on,on)
33 it is 16 times longer

! However QHOM is only a small part of S(on,on)
33 in terms of magnitude and we have to

deal with the fact that the other contribution to QHOM are actually not really stable

in time. We have observed on long time scales, random small fluctuations of the base

noise small compared to S(on,on)
33 but large compared to QHOM rendering impossible any

interpretation of the raw S
(on,on)
33 . The subtraction strategy is thus a good one provided

we measure those differences on time scales shorter than typical drifts of the base noise

(≈ 1− 2 minutes) [161]. It of course comes with the need to increase measurement time

to have decent signal-to-noise ratio.

One can show (appendix A.4 or references [9, 109] for more details) that by normalizing

∆Q by the sum of the 2 HBT noises, we construct a quantity ∆q easy to interpret in

terms of single particle wave packet. In a regime where each source emits a well define

wave packet ϕi above the Fermi sea i.e. with an average energy high compare to kBTel,

we have:

∆q(τ) =
∆S33(τ)

∆S33,HBT1 + ∆S33,HBT2
=

∆Q(τ)

∆QHBT1 + ∆QHBT2
= 1− |〈ϕ1(t)|ϕ2(t+ τ)〉|2 .

(2.44)

For perfect overlap (ϕ1 = ϕ2 and τ = 0), we have ∆q = 0. This shows that perfect

interference cancels out perfectly the sum of the independent partition noise QHBT,1 +

QHBT,2. In chapter 3 and 4 most of the results will be presented with ∆q(τ). Note

also that because of the modulus squared in expression 2.44, we really deal here with

an intensity interference and not an amplitude interference. We are not sensitive to

incoherent elastic dephasing that usually limits amplitude interference experiments such

as Michelson or Mach-Zehnder interferometers.

2.4 Low frequency noise measurements

2.4.1 Setup

As sketched on the left panel of figure 2.10 (see also green part of figure 2.2), our low

frequency setup dedicated to QPC characterization, determination of filling factor and

more importantly to noise measurement is constituted first of a LC tank circuit, then

the signal is split in two and amplified with two independent amplifying chain. The

amplification at 1K is done by high electron mobility transistors (HEMT) fabricated by

Yong Jin. This amplifiers have remarkable performances in terms of added noise [162].

There implementation in our setup together with the 4 Coilcraft 33 µH inductances was

done by V. Freulon. An extensive study of HEMTs property can be found in chapter 3 of
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Figure 2.10: Left. Sketch of the equivalent circuit modeling the low frequency noise
measurement setup. i0 represent the backscattered current or noise current in output
3 of the QPC. R0 = h/(νe2) is the impedance of the bi-dimensional electron gas. Then
there is an imperfect coil of total inductance L = 132µH at room temperature and of
internal resistance r ≈ 11 Ω at room temperature. The following capacitance C comes
from linear capacitance of coaxial cables and input impedance of HEMTs. Right.
Equivalent circuit with all source of fluctuating voltage and current. Z is the total
impedance of the RLC circuit of the left panel. i0 the current coming out of output 3 of
the QPC. Vth is the Johnson-Nyquist noise generated by Z. ik and ek are respectively
the current noise and voltage noise added by HEMT amplifier k.

his manuscript [107]. Then, there is a second stage of amplification at room temperature

done with NF SA-220F5 amplifiers after which the two outputs are then connected

to a spectrum analyzer Agilent 89410A which can calculate, almost in real time, cross

correlations between these two signals. We integrate the cross-spectrum on 1601 points in

a 78.125 kHz bandwidth centered on the maximum of the lorentzian function defined by

the LC circuit (1.4 MHz typically). This integrated noise defines a power in band (PIB)

in V2. To be able to access absolute current noise value with this PIB, one has to find

a way to calibrate the total gain of the amplification chain. Because the inductance and

capacitance of the LC components may change with temperature and more importantly,

because HEMTs do not work at room temperature, this calibration has to be done when

the fridge is running and the sample cold. Moreover, there are other sources of noise in

the setup; they all are summarized on right panel of figure 2.10. All this considered, the

signal we want to extract is at best of a few 10−29A2.Hz−1 on top of a ground base noise

around 10−27 − 10−28A2.Hz−1.

2.4.2 Two chains of amplification

Doubling the chain of amplification enables to reduce this base noise. Indeed, the HEMT

amplifiers, although quite efficient, add some noise to the signal. As modeled on figure

2.10, it adds a current noise 〈i2k〉 and a voltage noise 〈e2
k〉 (k = 1, 2). We will show

later how to access these quantities. If we assume they are white Gaussian noise and

that there is no correlation between the two HEMT amplifiers, then we can show that
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measuring cross-correlations between the two path of amplifications enables to remove

the voltage noise of each amplifier (but not the current one). As sketched on figure 2.10,

we separate the thermal noise of the circuit response vth from the partition noise i0. We

have:

〈v1v2〉 =
〈
v2
th

〉
+ |Z|2

(〈
i20
〉

+
〈
i21
〉

+
〈
i22
〉)
, (2.45)

but,

〈v2
1〉 =

〈
v2
th

〉
+
〈
e2

1

〉
+ |Z|2

(〈
i20
〉

+
〈
i21
〉

+
〈
i22
〉)
. (2.46)

In the following sections, we are going to evaluate these noise contributions but already

from these equations we guess that it is a good strategy to lower the base noise that

contributes to S(off,off)
33 . However, this does not solve everything. One can show [107]

that the “noise of the noise” that comes into the evaluation of the signal-to-noise ratio

depends on
〈
e2

1

〉
and

〈
e2

2

〉
so it will always matter to have low noise amplifiers.

As mentioned before, we actually measure an integrated power spectrum density (in [V 2])

in the measured band [fc −∆f/2; fc + ∆f/2]. Replacing 〈v2
th〉 by its Johnson-Nyquist

expression [163, 164], we have:

P = G2

(
4kBT

∫ fc+
∆f
2

fc−∆f
2

df ′Re
(
Z(f ′)

)
+
(〈
i20
〉

+
〈
i21
〉

+
〈
i22
〉) ∫ fc+

∆f
2

fc−∆f
2

df ′
∣∣Z(f ′)

∣∣2) ,
(2.47)

where G is the total voltage gain of the two added amplification stages.

From formula 2.47, we see that we not only need to know about G but also about Re(Z)

and |Z|. We do not want to measure in the kHz range because there is a dominant

1/f noise that induces low frequency random variations of the background noise that

are not negligible and cannot be eliminated by increasing the time average. It is thus

interesting to measure in the MHz range which is still low compared to kBTel but much

less sensitive to this flicker noise. This is why we use a LC circuit resonating around 1.5

MHz. However it makes the variation of Z with f less trivial and we need to study more

in detail what will be the effect on the measured total power in band.
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2.4.3 The RLC circuit

2.4.3.1 Model

From the circuit model on the left panel of figure 2.10 we infer that the impedance Z

seen by the amplifier is:

Z(ω) =
R0 (r + iωL)

r +R0 + iω (L+ CR0r)− ω2R0LC
. (2.48)

In the regime where the inductance is perfect (r = 0) we recover a simple Lorentzian

band pass filter with resonance pulsation ω0 = 1/
√
LC and quality factor Q = R0

√
C/L.

However, as calibrations will reveal later, we are not quite in this regime and to be as

accurate as possible we decided to study Z(ω) in full generality. In general, Z(ω) deviates

from a standard Lorentzian function. The resonance is at:

ω0 =

√
L− Cr2

L2C
(2.49)

at which the total impedance is not R0 but:

Z(ω0) = Z0 =
R0

1 + rR0C
L

. (2.50)

We see that it is not enough to be in the regime r � R0 to neglect the imperfection of

the inductance. Doing so we would overestimate the impedance seen by the amplifier

and thus underestimate the total amplifiers gain G (see formula 2.47). We can roughly

estimate the ratio rR0C
L with room temperature measurement. For R0 = h/(2e2), r ≈

11Ω, L ≈ 120µH and C ≈ 100 pF we have rR0C
L ≈ 0.2.

2.4.3.2 Calibration with current response

To test this hypothesis, we used the lock-in Zurich instrument to sweep in frequency the

excitation sent to the input Ohmic contact. For this calibration, we wire-bonded the

RF line usually connected to dot 2 to the Ohmic contact on the same side of the noise

measurement Ohmic contact. Because we used signal below 10 MHz, we can safely trust

the room temperature calibration of the RF line that gives an attenuation of −60dB and

we should expect a flat behavior in frequency. The signal is then completely reflected by

the closed QPC and all the signal will go through the LC circuit. We swept frequency

between 1 and 2 MHz at different filling factor (6,4,3 and 1) during the same cool down.
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Figure 2.11: Left. Measured |Z(ω)|/R0 at 4 different filling factors between 1 and
2 MHz. Black lines correspond to fits. Right upper. Phase in degree (corrected by a
linear shift so as to be zero at resonance) measured (colored lines) and predicted from
the fit of the modulus (black dashed line). Right lower. Averaged |Z| (black) and
Re(Z) (red) divided by R0 calculated for any filling factor with the rLC fit parameters
obtained at ν = 1 (full line) and when r is set to zero (dashed lines).

More precisely we measure the modulus of the outgoing signal:

|Vout(ω)| = |Z(ω)|
R0

G|Vin(ω)|, (2.51)

whereG is the voltage gain of the two amplifiers and Vin the voltage applied on the Ohmic

contact (amplitude V0,in). We drive the contact with a 1µV amplitude sine voltage. The

frequency response are then fitted with the modulus of equation 2.48 where r, C and

G are left as free parameters (with some constraints to help convergence and L is fixed

to a value that makes the fit compatible with thermal calibration presented in section

2.4.3.3). On the left panel of figure 2.11 is plotted |Vout(ω)|/GV0,in = |Z|/R0. Results of

the fit parameters (when L is fixed by hand) are presented in the following table:
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ν L (µH,fixed) r (Ω) C (pF) G

1 161 30.4± 0.6 72.61± 0.02 2004± 6

1 140 36.2± 0.5 83.52± 0.03 2305± 7

3 139 14.92± 1 84.47± 0.05 2325± 8

4 132 13.2± 1.3 89.17± 0.07 2411± 9

6 125 14.25± 1.75 94.7± 0.1 2543± 10

A value of C around 90 pF is coherent with a coaxial cable (≈ 100 pF.m−1) of length

a bit less than 1 meter between the sample and the amplifier, we also have to take

into account the entrance capacitance of the HEMTs. The variation of r and L with

magnetic field is a bit more surprising since the inductance is not suppose to contain

ferrite. We tried various constraints on the fitting parameters and different approaches

to try to reduce the number of fitting parameters. For instance, in the first two lines

of the table, we did not imposed the same value for L. Imposing L = 140 µH, seems

closer to the other inductance values at other filling factors but it gives a total gain

higher than the one obtained with thermal calibration (see next section). L = 161 µH

is higher but gives a gain closer to the one given by thermal calibration. Other fitting

methods give roughly the same kind of results. However, none of these methods gave a

better agreement with data and tends to overestimate gains (G ' 3000) which are not

compatible with the temperature dependence presented in the next section so we decided

to keep results from the table above. Looking in details at figure 2.11 the fit seems to

slightly overestimate the current modulus above resonating frequency and underestimate

for frequencies below. This may come from the small low pass RC filtering happening

between the room temperature amplifiers and the lock-in which are separated by ' 2 m

of coaxial cables.

On the right lower panel, we show the evolution of the integration of |Z| or Re(Z)

in the integration band [f0 −∆f/2; f0 + ∆f/2] (with ∆f = 78.125 kHz) divided by

R0 = RK/ν (where RK is the Von Klitzing constant). This integral appears in the

expression of noise. As we see, the imperfection of the inductance is critical at low filling

factor where there is more and more dissipation in the resistance of the inductance. If

we had a dissipation-less (superconducting) inductance, this issue would appear at lower

filling factor and we would recover almost all the signal in the amplifiers.

The consistency of this calibration of the setup can be checked with the two calibration

relying on noise measurement. They will be the subject of the two following sections.

The first one is a measurement of the thermal Johnson-Nyquist noise the second relies

on shot noise.
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Figure 2.12: Power in band of the cross-spectrum versus mixing chamber temperature
at filling factor 1,2,3 and 6 (different cool down for ν = 2). From the value of noise at
T = 0 we can extract the current noise of the amplifiers.

2.4.3.3 Calibration with temperature and estimation of noises from the am-

plifiers

This calibration is easier to implement and frequently used to calibrate noise setup

measurement. It relies on thermal noise (or Johnson-Nyquist noise). Indeed, this noise is

flat in frequency until a few GHz at base temperature and only depends on the impedance

of the sample and temperature. On a plateau of the integer quantum Hall effect, this

impedance is well known (RK/ν) and it is easy to change the temperature of the mixing

chamber up to 500 mK without risking to boil all He3. Finally, we do not have to inject

any calibrated signal.

There is no partitioning during this calibration so i0 = 0. On figure 2.12 is presented

such a calibration at filling factor ν = 1, 2, 3 and 6. We focused on high temperatures

to recover a linear dependence as expected. Data stops following the linear regime at

low temperature (typically below 100 mK). This is because of a lack of phonons at these

temperature which makes thermalisation of electrons less efficient. From the slope a is:

a = G24kB

∫ fc+
∆f
2

fc−∆f
2

df ′Re
(
Z(f ′)

)
. (2.52)
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In the previous section, we finely tuned the inductance L so that the computed Re(Z)

and G gives a prediction for the slope within the error bars of what was measured4. Using

the previous results to compute Re(Z) in the previous section we can deduce G from

the slope a and compare it to the gain obtained from the Lorentzian fits. Results are

summarized in the following table. For ν = 2 we used the average r, L and C parameters

from ν = 1 (L = 140µ H) and ν = 3, this enhances the uncertainty.

ν L (µH,fixed) G (with Lorentzian) G (with thermal noise)

1 161 2004± 6 2004± 14

1 140 2305± 7 2149± 15

2 140 not measured 2187± 200

3 139 2325± 8 2318± 10

4 132 2411± 9 not measured

6 125 2543± 10 2546± 22

In principle one could suspect the rLC parameters to change at each cool down and thus

this double calibration should be down at each cool down for each sample. In practice,

for every new sample we only remeasured the noise versus temperature calibration and

observed that for a given filling factor, it did not vary significantly therefore we could

assume the that rLC parameters did not change.

From the offset c, we have:

c =
(〈
i21
〉

+
〈
i22
〉)
G2

∫ fc+
∆f
2

fc−∆f
2

df ′
∣∣Z(f ′)

∣∣2 (2.53)

which gives access to the current noise of both amplifiers. We can linearly fit values of c

versus predicted “LC+gain” response. The slope gives
〈
i21
〉

+
〈
i22
〉

= 1.7× 10−28A2.Hz−1

and the offset gives a spurious amount of parasitic noise 3.5×10−9V2 that does not depend

on the impedance of the tank circuit. This last term is negligible in our measurement.

However, as could already be seen on the offset contribution on figure 2.12 the current

noise of the amplifier is low but comparable to thermal noise below 100 mK and larger

than the typical excess noise we want to measure in the HOM interferometer.

Using the same kind of calibration but with a 50 Ω load instead of our sample we can

significantly reduce both the contribution of amplifier current noise and total thermal

noise of the impedance. Thus we can expect to have a noise dominated by voltage

fluctuations of the amplifier. Of course to measure it we need to measure directly each

amplified outputs and not their cross-correlations as done usually. Results for the two

amplification output are presented on figure 2.13 at 3 different temperatures. Because
4For filling factor 4 we choose an average inductance between the one from 3 and 6.
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the 50 Ω is completely negligible compared to the impedance of the LC circuit
√
L/C, we

can safely assume that the impedance Z(ω) seen by the HEMT amplifiers is really 50 Ω

and that it is flat in the integration band. What is more, we can measure independently

the gain of each room temperature amplifier Grt which is around 400. From the two

slopes a we can then simply calculate the gain of HEMT amplifiers:

a = G2
rtG

2
HEMT4kBR∆f (2.54)

which gives GHEMT1 = 7.2± 0.2 (red curve) and GHEMT2 = 7.4± 0.1. This gives a total

gain GrtGHEMT1 = 2890 and GrtGHEMT2 = 2940. These values are higher than what

the fitting with a Lorentzian gives. Actually, the latter measurement was done at the

beginning of my PhD at least one year before the LC measurements, the HEMTs probably

got deteriorated over this period. With a 50 Ω load, the impedance has been divided by

at least 80 so the current noise from the amplifiers is negligible. Therefore we can assume

that the offset c corresponds to voltage noise of the amplifiers. Dividing by the total

gain and the integration band we recover a noise power spectrum at the input of HEMT

of
〈
e2

1

〉
= 3.63± 0.18× 10−20V2/Hz (or 0.19± 0.04nV/

√
Hz) for channel 1 (red points)

and
〈
e2

2

〉
= 3.65±0.14×10−20V2/Hz (or 0.19±0.04nV/

√
Hz for channel 2 (blue points).

This value is comparable to world record values; however, for a typical impedance around

RK/2 around 10 kΩ, we see that this noise gives a contribution of ≈ 2 × 10−28A2/Hz

i.e. the same order than the current noise and higher than partition noise is thus not

negligible. This justifies a posteriori the doubling of the two amplification chains to

eliminate this contribution.

2.4.3.4 Calibration with shot noise

Another way to calibrate the amplification chain that is less time consuming but a bit

more indirect is to rely on partition noise. Indeed, the partition noise produced at the

level of a QPC by a DC bias has been extensively studied [165–168] and measured [169–

171] and is now well understood. Starting from the expression of the HBT noise (see

equation 2.38) we can show that applying a DC bias V DC
2 on input 2 gives an excess

current noise:

∆S33 =
2e3R(1−R)

h
V DC

2

(
coth

(
eV DC

2

2kBTel

)
− 2kBTel

eV DC
2

)
. (2.55)

When 2kBTel < eV DC
2 we recover the shot noise regime and a noise linear with injected

current e2V DC
2 /h. In the opposite regime, noise is dominated by thermal contributions.

We can independently access R with current measurements. Total power in band is

computed by replacing
〈
i20
〉
with ∆S33 in formula 2.47. Measurements of excess power
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Figure 2.13: Autocorrelation power spectrum for each amplification output versus
electronic temperature measured on a 50 Ω load. From the offset we can deduce the
voltage noise contribution of the HEMT amplifiers.

in band versus V DC
2 at ν = 2 (for a different cool down) are plotted in the insert of

figure 2.14. From the slope of the fit, we measure the factor G2R(1−R)2e3

h

∫
|Z(ω)|2dω.

If we take the values of G and Z(ω) determined by the previous calibrations we find it

is compatible with R = 0.25 which is also the reflection we measure with the current

transmission measurement, we thus have a good agreement between different kind of

calibration. This calibration enables to cross-check that the gain does not change over

long period of time. At ν = 2 we used the value G = 2187± 100 which gives a slope for

the DC shot noise calibration:

a = G2R(1−R)
2e3

h

∫
|Z(ω)|2dω (2.56)

which is equal here to 1.004± 0.028× 10−4V2/V.

Actually, the precise value of G is not critical and only necessary if one wants to de-

termine precisely the effective charge tunneling through the QPC. Indeed, in the HOM

experiment, the quantity of interest is a normalized noise ∆q where the gain do not

appear. Moreover, in chapter 5 we will see that for the tomography protocol, we also

normalize all noise measurements directly by the slope measured in the shot noise DC

partitioning (factor a in the insert of figure 2.14).

On the main part of figure 2.14, is plotted the shot noise versus T = 1−R for 3 different

values of V DC
2 together with a simulation taking into account a 10 mK difference between
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2

applied to Ohmic contact at filling factor ν = 2. We recover a law in R(1 − R). Full
line are theoretical models taking into account a 10 mK temperature difference between
the two arms (see section 5.2.1 for details). This can be explained by a difference in
the way Ohmic contact are thermally anchored on each side. The amplitude of the
parabola enables to deduce a total gain G compatible with the one determined with
thermal noise calibration. Insert. Excess noise versus bias. The full line is a fit
using ax(coth(x/b) − b/x). Parameter b = 2kBTel/e enables to access the electronic
temperature Tel = 94± 1 mK and a depends both on exact reflection coefficient R and
total gain G.

the two arms(see section 5.2.1 for details). We observe that points tend to follow a law

R(1 − R) apart for the low bias one which has more accidents probably because of

disorder.

This procedure also enables us to access the electronic temperature Tel with a ±5 mK

precision. For insert data, the deduced electronic temperature is ≈ 90 mK. At the

beginning of my PhD, the electronic temperature was around 80 mK and deteriorated

toward 100 mK at the end (concerns mostly results presented in the last chapter).

Last but not least, this measurement enables to test quickly if the QPC works properly.

Indeed, formula 2.55 is valid only when R is independent of energy. All the interpretation

of HOM as an overlap of single particle coherence or Wigner overlap falls down if this

hypothesis is not valid. When this is not the case, the noise either deviates strongly from

this formula and can even have non-monotonic behavior with V DC or it can be seen by
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Figure 2.15: Pathological noise versus V DC measurements at filling factor 2 for
sample S902. Left. The black line is a reasonable expectation. For blue curve it
seems that high bias activates fluctuators, strongly enhancing noise. For the red curve,
these fluctuators appear at even lower bias. Right. Four measurement with the same
parameters, the only change between these curves is the averaging time and the way
V DC is swept (increasing fro red and blue and decreasing for green and cyan). Red
and cyan have a time averaging twice longer than blue and green. This shows that the
activation of fluctuators depends on the bias integrated over time but also that for this
working point has strong hysteresis.

the fitting parameters which are out of reasonable boundaries (Tel > 1 K for instance).

When we find such an odd point we can decide either to change the QPC transmission

or move to another magnetic field (but staying on the same Hall plateau) in the hope to

recover a better behavior of R. This calibration was therefore done on a daily basis to

both check if the QPC is working in an energy independent transmission regime and to

monitor the electronic temperature and the gain. Figure 2.15, illustrates what we can

measure when the QPC is not working properly either because of hysteresis (right panel)

or nonlinearities and activation of fluctuators at high bias (left panel).

2.4.3.5 RF amplitude calibration with noise

The same kind of measurement can be done but with an AC signal on the Ohmic contact

instead of a DC one. Comparing this to the previous DC calibration this enables to
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determine the voltage amplitude of the drive applied on the Ohmic contact. This will be

of great interest for the tomography protocol presented in chapter 5. Going from DC to

AC we have to take into account photo assisted effect and excess current partition noise

(with only AC bias) becomes [155, 156, 159, 172]:

∆S33 =S33
1=OFF,2=ON − S33

1=OFF,2=OFF

=
4e2

h
R(1−R)

∞∑
n=−∞

J2
n

(
eV AC

2

~Ω

)
n~Ω coth

[
n~Ω

2kBTel

]
− 8e2

h
R(1−R)kBTel,

(2.57)

where Jn are Bessel functions of the first kind. The slope for the DC shot noise calibration

gave access to the product of gain, integrated response of the LC circuit and Fano factor

R(1−R). It also enables to access electronic temperature. Thus at the same transparency

1 − R, for a given frequency drive, we have all the ingredients to predict the value of

the power in band. We simply need to compute the sum of Bessel functions in the

above equation for any amplitude and adjust V AC
2 so that the result matches with the

measured noise. The numerical sum of Bessel functions is done from n = −3000 to

n = 3000. We checked that this result is not sensitive on this cut off value. A a good

rule of thumb to estimate when to stop the sum is to stop at nmax = eV AC
max
~Ω where V AC

max

is the maximum amplitude we want to study. This has to be done each time the QPC

transmission or the frequency drive are modified. On figure 2.16 is presented such a fit

for 4 drive frequencies: 9, 15, 18 and 20 GHz. For clarity, each data higher than 9 GHz

are shifted of 4× 10−29A2.Hz−1. Knowing the amplitude at the output of the generator

we can deduce the attenuation down to the Ohmic contact up to ±0.5 − 1 dB which

enables to plot the data versus the amplitude drive on the Ohmic contact (and not on

top of the cryostat).

The agreement between data and model is quite good. The red dashed line is calculated

with a very low frequency compared to the electronic temperature so as to model an

adiabatic “classical” drive. With this, we can see the effect of increasing the frequency

drive and the transition from a classical (hf � kBTel) to non-classical drive (hf �
kBTel). Actually, we see very little difference between the classical model and the 9 GHz

one although hf = 37µeV and kBTel = 7.8µeV. We will see in chapter 5 how to really

characterize a non-classical signal and that a 9 GHz drive is indeed non-classical.

2.4.4 Various improvements

Starting my PhD, I benefited from a fully wired and already functioning cryostat. It

is the same cryostat that was used by my predecessors and some components of the
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Figure 2.16: Current partition noise versus drive amplitude for 4 frequencies (9, 15,
18 and 20 GHz) at zero DC bias. For clarity, each data higher than 9 GHz are shifted
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ment with theory is quite good apart from high amplitude points, possibly because of
non-negligible heating effects.

circuitry are common to all these works. However, each one of them had to change a bit

some other part that his successor had left him, so as to improve it or adapt parts to

new sample design.

2.4.4.1 DC lines

Improved thermalisation As far as I am concerned, I first had to improve filtering of

the DC lines in particular to filter spurious high frequency parasitic signals not properly

filtered by discrete low-pass filter elements. To do so I wrapped 7 Manganin (CuMnNi)

wires (≈ 50 cm each) on a copper cylinder anchored at the level of the mixing chamber.

The wrapping was done back and forth along the cylinder with a different chirality each

way so as to compensate possible eddy (Foucault) currents in the wires. They were glued

with a mixture of Stycast and copper nano-particles powder. This part was inserted and
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soldered in between the sample and the previous last stage thermalisation (copper stripes

deposited on Kapton, see [4]). Before this adding, there were two filtering stages of this

kind in the fridge. One of them is anchored at the 1K pot stage and the other at

the mixing chamber one; however the last one had actually too short copper stripes to

thermalise efficiently the DC lines. Indeed, thermalisation length is of the order of ≈ 15

cm at 20 mK and they are only ≈ 2 cm long. Therefore, firmly anchoring the copper

cylinder with the wrapped lines not only enhanced filtering but also thermalisation of

this DC lines. With the same method we also added a voltage divider on the line Vbias
going to Ohmic contact (see [107]). The voltage division introduced is (1.46× 10−4)−1.

More DC lines In the beginning of my PhD, we could only use 4 DC lines (Vg1,

Vg2, VQPC and Vbias). They were connected on the PCB with shouldered miniSMP

connectors. We wanted to be able to test samples with a greater number of top gates

and also have the ability to address independently each arm of the central QPC so as

to be able to find more easily good working points (e.g. avoid non-linearity in energy)

without having to warm up and cool down the gas each time. This is why we needed

to wire more DC lines down to the mixing chamber. Some of them were already there

but broken, or not connected to the existing thermalisation setup. For two of these lines

I thus used the same method presented in the previous paragraph to thermalise close

to the 1K pot. To thermalise and filter close to the mixing chamber, I used a golden

box filled with Ecosorb, anchored at the mixing chamber stage. Current is transmitted

by copper lines embedded in the Ecosorb. This also enabled us to use cryogenic biastee

(Marki BTN0040 ) to have a better lever arm on the DC voltage applied on top gates.

This modifications arrived between chapter 4 and 5. Before that, biastees were at room

temperature and the DC part was attenuated like the AC part, so on a range of ±1 V

we could only observe a few peaks shift whereas now we can even totally deplete the dot

with only a few hundreds of mV.

To bring more DC lines toward the sample, we used a new kind of PCB designed by

Anne Denis with up to twelve possible connections. The only drawbacks of it is that

to connect wires to this lines I had to solder thin Manganin wires on a mm2 scale area.

The soldering was not always perfect, rendering it fragile to mechanical stress. Around

the end of my PhD, we suspected a transmission noise in our shot-noise data. To better

filter the voltage applied on QPC, we soldered an on chip 100 nF CMS capacitor.





Chapter 3

Coulomb interaction in one

dimensional chiral systems

“Jt’ai cassé !”

Brice de Nice.

In this section, I will detail the effect of Coulomb interactions on the propagation of

charge in the quantum Hall edge channels. First, I will present the plasmon scattering

formalism that enables to accurately predict the effect of interactions on the propagation

of charge and will also give here a short review of various experiments that already

demonstrated these effects with other kind of interferometers, but only with stationary

sources. I will then explain how we can characterize these phenomena in an original

fashion with the HOM interferometer and finally present measurements that enables to

picture the fractionalization of a single electron in the time domain.

3.1 Charge fractionalization

3.1.1 What is it ?

Taking interactions into account in a many-body system is known to be a hard problem

in general. This is why the Fermi liquid theory introduced by Lev Landau in 1956 is very

powerful and convenient. Indeed, he stated that whatever the strength of the interaction,

81
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low energy excitations of an ensemble of electrons could be treated equivalently as low

energy excitations of an ensemble of weakly interacting quasi-particle. There is a one

to one adiabatic correspondence between the “bare” electrons and these so-called long

lived Landau quasi-particles. They have the same charge, spin and statistics, their

mass is simply renormalized [173–175]. This line of reasoning enables to describe a

lot of electronic systems and it is so popular that normal metals are actually defined

by their ability to be described by such a phenomenology and a non-Fermi liquid is

often synonymous with exoticism. Unfortunately, this convenient way of thinking totally

breaks down for one dimensional systems, even for the smallest amount of interaction.

Indeed, in a one dimensional interacting system, the Landau quasi-particle is no longer

appropriate to describe low energy elementary excitations. However we can still describe

the system as a ground state with small energy excitations. New elementary quasi-

particles associated to these excitations are non-interacting collective modes (or sound

waves), have a linear dispersion relation at low energy and have a bosonic statistic: these

are called plasmons [176] and correspond to the excitation of many electron-hole pairs.

This model was first introduced by Tomonaga [177] and later developed by Luttinger

and Haldane [178–180]. To describe a single electronic excitation in terms of plasmons

one needs the help of the now famous bosonisation [181, 182]. It is a non-perturbative

theory that is able to make exact predictions for this Tomonaga-Luttinger liquid systems

(TLL) in particular concerning dynamical quantities which is what will be of interest for

transport experiments.

One remarkable prediction for TLL systems, is the separation between charge and spin

degrees of freedom, which leads to a fractionalization of the charge [183–185]. It was

observed first in chemically or gated defined wires in GaAs/AlGaAs hetero-structures

[186, 187] then with contra-propagating edge channels of the integer quantum Hall effect

[188].

Edges of the integer quantum Hall effect are a special kind of Tomonaga-Luttinger liquid

since they are chiral i.e. excitations propagate in only one way, but they still exhibit

collective acoustic modes called edge-magneto plasmons (EMP). They have been studied

both with time resolved measurements [189–194] and in the frequency domain [195–199]

where it was shown that EMP could be excited with voltage drives in the GHz range.

Chirality simplifies the system in the case of integer filling fraction especially at filling

factor 2 which has been the most studied both theoretically and experimentally. The

essential features of such systems are preserved: spin-charge separation is still predicted

[200–204], although the spin mode is trivial here because the channels are spin polarized,

we thus simply talk about neutral modes. At ν = 2, for strong interaction, there is

one symmetric charge mode and one antisymmetric neutral mode. A sketch is presented

on figure 3.1 to illustrate this electron fractionalization. Because of repulsive interedge
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Charge modeNeutral mode
V- V+

l

s

outer edge

inner edge

Figure 3.1: Sketch of electron fractionalization. Due to inter-channel interaction on
propagation length l, an electronic wave packet emitted on the outer edge channel splits
in a charge mode (dashed blue oval) propagating at velocity v− and a neutral mode
(red oval) with velocity v+ separated by time τs. The interaction region is represented
by a capacitive coupling between the edges in the dashed black box. Negative (positive)
charge pulses are represented in blue (red). At the output of the interaction region, the
electron on the outer channel has fractionalized in two pulses carrying charge e/2. A
dipolar current trace has been generated in the inner channel.

Coulomb interaction, the charge mode has a higher energy and thus propagates with

velocity v+ higher than the antisymmetric neutral mode (or dipolar charge distribution)

propagating with velocity v−. Because of this difference in velocities, a single-electron

wave packet generated on the outer edge channel propagating on length l splits in two

charge pulses carrying charge e/2 separated by time:

τs =
l

v−
− l

v+
. (3.1)

This process is accompanied by the generation of collective excitations in the inner chan-

nel with a dipolar current trace: an electron-like pulse followed by a hole-like one sep-

arated by τs. This fractionalization of an electron into collective modes has of course

dramatic consequences for electronic coherence [201, 202, 205–208] and leads to relaxation

in energy [209–212]. Previous experimental studies mainly focused on the Mach-Zehnder

interferometer [2, 213–216], or spectroscopy of out-of-equilibrium stationary distribution

[55–57, 217].
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Figure 3.2: (Figure extracted from [194])(a) Log-scale plot of the velocity of EMPs
in the ungated (solid symbols) and gated (open symbols) regions as a function of ν.
Inset shows the linear-scale plot of the velocity in the ungated region. The line is the
result of the fitting. (b) Illustration of the density profile n(x) in the edge state and
the transverse extent of EMPs in the ungated and gated regions represented by arrows
for the bulk filling factors ν = 2.5 and 2.

3.1.2 Edge-magneto plasmons: state of the art

The velocity of the charge mode v+ could be measured by precise time of flight ex-

periments in reference [194] and was shown to depend strongly on the electromagnetic

environment and on magnetic field. Results extracted from the reference are shown in

figure 3.2. For chemically etched, ungated electron gases, v+ goes from ' 5× 107m.s−1

at high filling factor and decreases to ' 6 × 105m.s−1 at filling factor 1. It is around

' 1− 2× 106m.s−1 around filling factor 2. For an electron gas with a large top gate on

top of it, screening is increased, so the velocity is reduced by more than one order of mag-

nitude (see color point on figure 3.2). Measured velocities are at minimum 2× 104m.s−1

at filling factor one and do not go above 5× 105m.s−1 at high filling factor.

From this, we infer that the exact nature of the modes depends on the detail of the

electromagnetic environment. In particular, the outer edge channel being closer to the

side gates of the sources (in our configuration), it may have a “bare” velocity lower than
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the inner one. Here, by “bare”, we mean the Fermi velocity renormalized only by the

capacitive coupling to the ground v = vF + e2/(hCg) (see appendix B.1 for details).

The difference between mode velocities could be determined indirectly by analysis of shot-

noise induced in the inner edge channel by a independently biased outer edge channel

[218–220]. Fano factors compatible with a difference v+ − v− ' 5.6 − 6.2 × 104m.s−1

were measured.

One experiment was able to successfully excite independently one edge and thus directly

visualized the two eigenmodes [221]. This experiment, developed in our group with

the same kind of samples, relied on high frequency admittance measurements and was

realized during the PhD of E. Bocquillon and V. Freulon. I will not describe this exper-

iment here, the detailed description of it and their results can be found in their thesis

manuscript [3, 107]. In section 3.4, I will use the main theoretical tool developed in their

work and apply it to the analysis of the HOM patterns. One of their main result that will

interest us is the measurement of the neutral mode velocity v− = 4.6× 104m.s−1 at low

frequency (and a smaller one v− = 2.3×104m.s−1 after 6 GHz) which gives a τs ' 70−80

ps for a similar propagation length around 3 µm. A finite range interaction model was

developed and enabled to describe successfully these two regimes. It is demonstrated that

at low frequencies, the interaction can be safely approximated by a zero range strong

interaction model [221]. Strong interactions mean that the asymmetries between the two

bare velocities are negligible compared to the change of velocities imposed by the inter-

channel interactions, therefore the eigenmodes are indeed the symmetric charge mode

and antisymmetric neutral mode. The smaller velocity appearing at higher frequency

could be explained by finite range interaction. Indeed at those frequencies, the EMP’s

wavelength becomes comparable with the propagation length which affects the electronic

density itself affecting charge screening and thus the neutral mode velocity. However this

does not impact the strong interaction assumption: charge is still fully transported by

the charge mode.

In the group of F. Pierre, thanks to quantum dot energy filtering, they managed to

measure the energy distribution of out-of-equilibrium stationary distributions [55–57,

217] and showed that interchannel Coulomb interaction is also responsible for energy

relaxation in the outer edge. However, energy is only exchanged between edge channels

and does not leak through the rest of the sample. Fujisawa et al. managed to bring

close together two pairs of counter-propagating edge channels (at ν = 2) and observe

long-lived binary spectrum surviving after 5−10µm of propagation, indicating negligible

energy leakage outside from the edges on those scales [222]. Finally, in a very recently

published work Fujisawa et al. managed to measure directly in the time domain the

fractionalization of charge pulses over large distances (260µm) with time-resolved current
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Figure 3.3: (Figure extracted from [221]) Real and imaginary parts of the wave
vector kn(ω) = ω/vn(ω). Re(kn) exhibits two non-dispersive regimes: at low frequency
(f < 6 GHz) vn(0) = 4.6× 104m.s−1 whereas at high frequency (f > 7 GHz) vn(∞) =
2.3× 104m.s−1. Im(kn) 6= 0 indicates damping.

measurements [223]. They managed to inject short current pulses at will, on any channel

and could thus probe both the charge and the neutral modes. Because they have a really

long propagation length, they could also observe the relaxation of the neutral mode

due to spin-flip mediated tunneling events. Based on an estimate of their propagation

length, they could determine both the charge mode velocity (v+ ' 4.8× 105 m.s−1) and

the neutral mode velocity (v− ' 6.5×104 m.s−1) and their variations with magnetic field

or side gate voltage. The results are very similar to ours. Instead of using time-resolved

current measurements at 100 ps scale, we will use low frequency noise measurements

and because we have shorter propagation length the separation will be less pronounced.

However the results are not contradictory.

What happens exactly because of this different velocity mode for a single electron at filling

factor ν = 2 was predicted by Degiovannni et al. [224] and Wahl et al. [225]. In the last

reference it was proposed to probe electronic coherence with the HOM interferometer

not only the outer channel but also the inner one. This enables to reveal the collective

excitations generated in the interaction process. Combined with information of the outer

channel, we can directly picture the fractionalization in time domain and establish its

relevance for the decoherence and destruction of the quasiparticle, which degrades into

the collective modes.

3.2 Experimental measurements

In the following section, I will first present results of the HOM interferometry for outer

and inner channels in two different kinds of emission regime for the sources. Data will
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be compared with the plasmon scattering formalism that enables to predict exactly the

D = 1 case, however I will present the formalism later, in section 3.4.

3.2.1 Set up and choice of excitation

The experimental configuration is the same as the one presented in chapter 2. The

magnetic field was set at 3.92 T so as to reach a filling factor ν = 2 in the bulk. The

emitters are synchronously driven by a periodic square excitation applied on the dot top

gates at frequency Ω/2π = 0.9 GHz, with a 30 ps rise time. Changing the voltage VQPC,

the QPC can be set to partition either the outer or the inner edge channel. The dots

are only coupled to the outer edge channel such that the current pulse is generated on

the outer channel only. The dot to edge transmission D is used to tune the dot emission

time and the dot charge quantization.

Two configurations are studied: at D = 1 the dot is perfectly coupled, charge quantiza-

tion is lost and a classical current pulse (carrying a charge close to e) is generated in the

outer channel. By construction, the emission time is as short as possible in this config-

uration. It provides the minimum temporal extension for the signal and thus the best

time resolution. This resolution is limited both by the square pulse rise time (30−40 ps)

and by the minimum charge relaxation time (τRC = 17 ps). Another advantage for this

configuration is that we directly excite a coherent state which makes calculation with

a plasmons scattering theory possible (see 3.4). In the second configuration, D = 0.3,

charge is quantized and single quasiparticles are emitted in the outer channel. In this

regime, the state is a coherent superposition of coherent states and not a simple sum.

As we use a periodic square excitation, the electron emission is followed by hole emission

corresponding to the dot reloading, with a repetition time T = 1.10 ns. It is actually in

this configuration that the fate of the Landau quasiparticle is probed. Wigner function

in the outer channel associated to these two signals are calculated before propagation

and showed on figure 3.4. We have added rebound on the square drive to model im-

perfections of the RF lines; this issue is discussed in detail in section 3.4.2. This figure

illustrates well the complementarity of these two signal: the first one is fully classical (no

non classical value in the Wigner function) but has a short temporal extend and is thus

suitable to probe fast dynamical events, on the other hand the second state has a wide

temporal extend but is much closer to the single quasiparticle on top of a Fermi sea with

a well defined energy (~ω ≈ 30µeV).
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Figure 3.4: Wigner functions before propagation created on the outer edge channel
in the two different configurations of interest. Left. A square drive with a rise time of
40 ps is applied on the top gate at 900 MHz when D = 1 with an amplitude of ' 30µV.
Right. The same square pulse is applied but here D = 0.3. The electronic temperature
is 90 mK.

3.2.2 Probing temporal width of the dip around δτ = 0

Figure 3.5 shows the normalized HOM noise ∆q(τ) for D = 1 (Fig.3.5.a) and D ' 0.3

(Fig. 3.5.b), both when the outer (orange points) or the inner (black points) channels

are partitioned. From the outer channel partitioning, we probe the evolution of the

generated electron pulse during propagation, inner channel partitioning results from the

collective excitations generated by the interaction process. First we restrict ourselves

to short delay τ . All the traces show a noise reduction (dip), which is reminiscent of

two-particle interference. However significant differences are observed in the width of the

HOM dips, labeled τw, which we estimate using an exponential fit. For D = 1, the outer

channel dip is roughly twice larger than the inner one: τw = 80 ps (outer) versus τw = 40

ps (inner). The increased width of the outer channel dip reflects the fractionalization of

the current pulse that splits into two pulses of the same sign (see Fig. 3.5c). The smaller

width on the inner channel reflects the dipolar current trace (see Fig. 3.5c) and equals

the temporal extension of the current pulse of a given sign (electron like or hole like),

limited by the excitation pulse rise time.

For larger time delays (|τ | ' 100 ps), the inner channel normalized HOM signal shows

an overshoot above unity. As predicted in references [9, 225], ∆q(τ) > 1 occurs at

finite temperature when an electron-like pulse collides with a hole-like one. At finite

temperature, a hole wave function close to (but below) the Fermi level can have a non-

zero overlap with electronic wave functions above the Fermi energy. This is possible



Experimental measurements 89

Figure 3.5: (a) ∆q(τ) at D = 1 for outer (orange points) and inner (black points)
channel partitioning. Error bars on a and b equal the s.e. of the mean reflecting the
statistical dispersion of points. (b) ∆q(τ) at D = 0.3 for outer (orange points) and
inner (black points) channel partitioning. Encircled c and d refer to the sketches on c
and d. The black and orange dashed lines on both the panels represent the fits of the
dips using the following exponential dependence: ∆q(τ) = 1−γe−|τ |/τw . The extracted
values at D = 1 are γ = 0.73 (both for outer and inner channels) and τw = 40 ps
(inner channel) and τw = 80ps (outer channel). At D = 0.3, we have γ = 0.41 and
τw = 120 ps for the outer channel and γ = 0.31 and τw = 83 ps for the inner one.
(c) Sketch of current pulses synchronization at τ = 0 for the outer and inner channel
partitioning. The outer channels are represented as orange lines, the inner as black
lines. Negative (positive) charge pulses are represented by blue (red) colors. Pulses
colliding synchronously are emphasized by green circles. (d) Sketch of inner and outer
channel current pulses when the time delay between the sources is τ = τs . The inner
channels (black lines) are partitioned while the outer ones (orange dashed lines) are
not.
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because the equilibrium Fermi distribution thermally populates states above the Fermi

level which can then be depleted by a hole excitation. Thus an interference between an

electron-like in input 1 and a Fermi sea combined with a hole-like excitation in input 2

can be thought of as the interference between an electron-like excitation in input 1 and

a Fermi sea in input 2 with less occupied state above the Fermi level i.e. with a lower

temperature for instance. “Lower” refers here to a comparison with the equilibrium

Fermi sea distribution in input 2 when source 2 is turned off. Remember now that

overlapping electrons give rise to noise reduction, therefore less overlap is synonymous

with an increase of noise. Because the hole excitation contributes in reducing the overlap

between the electron in input 1 and the Fermi sea in input 2 it diminishes the HOM effect

i.e. it increases the noise. This can be related to the fact that the HBT noise is actually

enhanced while lowering the electronic temperature, because there is less overlap between

the electronic excitation in input 1 and the thermal excitations in input 2. This effect

was also measured in [62].

This is why we can interpret the overshoot above 1 in the inner channel for |τ | ' τs ≈ 70

ps, as the electron part of the inner channel current pulse in input 1 colliding with the

hole part of the current pulse in input 2 (see sketch on Fig. 3.5d). This contrasts with the

monotonic increase of ∆q(τ) towards 1 for the outer channel and is a manifestation of the

dipole nature of the excitation propagating in the inner edge. When the dot transmission

is decreased to D = 0.3±0.05 (D = 0.4±0.05 for inner channel partitioning), we observe

the expected increase of the HOM dip width compared withD = 1, reflecting the increase

in the dot emission time: τw = 120 ps (respectively τw = 80 ps) for the outer (respectively

inner) channel. As predicted in [225], the overshoot above unity disappears.

The dot to edge transmission are slightly different for outer (D = 0.3) and inner (D = 0.4)

channel partitioning. Due to gate coupling, it is hard to tune the dot transmissions to

the exact same values when the QPC voltage VQPC is set to partition the outer or the

inner channel. In the section 3.3, I detail this experimental difficulty and how I handled

it.

3.2.3 Coherent effects at higher time delay τ

Further evidence of fractionalization can be observed on longer time delay |τ | ≈ T/2

when electron emission for source 1 is synchronized with hole emission for source 2 (or

vice-versa). In this regime, ∆q(τ) for D = 1, is plotted on figure 3.6 and exhibits again

contrasted behaviors for the outer and inner channels. While it monotonically increases

above 1 for the outer channel (see fig. 3.6a), as expected for electron/hole collisions, the

inner channel shows an additional dip for |τ | ≈ T/2 − τs (see fig. 3.6b). This reveals
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again the dipolar nature of the inner current: as the dipoles have opposite signs for

electron and hole emission sequences, the electron parts of each dipole are synchronized

for |τ | = T/2− τs (see sketch on Fig. 3.6d).

A quantitative description of the HOM traces can be obtained (black and orange lines)

by simulating (see section 3.4) the propagation of the current pulse in the interaction

region. The obtained current traces at the output of the interaction region (black and

red dashed lines on fig. 3.13) reproduce the sketch depicted on figure 3.1. The good

agreement obtained for the HOM trace supports the above qualitative descriptions of

the dips observed at τs and T/2− τs related to charge fractionalization. The additional

spurious dip at |τ | ≈ 350 ps on the outer channel and |τ | ≈ 225 ps on the inner one

comes from imperfections of the signal or interaction effects in the dot that we can take

into account in our model (see section 3.4.2).

This only showed the charge fractionalization for edge-magneto plasmons. Figure 3.7

presents ∆q(τ) at D ≈ 0.3 in the single electron injection regime, for the full range

of time shifts −T/2 ≤ τ ≤ T/2. The qualitative behavior is similar to that of figure

3.6. In particular, the additional dip for |τ | ≈ T/2 − τs is only observed on the inner

channel, which is a hallmark of single electron fractionalization. Compared with D = 1,

its position is slightly shifted to lower values of |τ | (|τ | ≈ 430 ps), we attribute this

difference to the larger width of the emitted current pulse related to the larger emission

time.
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Figure 3.6: a. ∆q(τ) at perfect dot to edge coupling D = 1 for outer channel
partitioning (orange points). Error bars on both the panels equal the standard error
of the mean reflecting the statistical dispersion of points. b. ∆q(τ) at D = 1 for
the inner channel partitioning (black points). The orange and black lines on both the
panels are simulations for ∆q(τ). The vertical red lines correspond to a time delay
matching the half-period of the excitation drive: τ = ±T/2. Encircled c and d refer
to the sketches on c and d. c Sketch of current pulses synchronization at τ = τs for
inner channel partitioning. The outer channels are represented as orange lines, the
inner as black lines. Negative (positive) charge pulses are represented by blue (red)
colours. Pulses colliding synchronously are emphasized by red circles (electron/hole
collision in this case). d Sketch of current pulses synchronization at τ = T/2 − τs for
inner channel partitioning. Pulses colliding synchronously are emphasized by red circles
(electron/electron and hole/hole collisions in this case).
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Figure 3.7: Full HOM interferometry at low transmission. Inner (black points) and
outer (orange points) channels normalized HOM noise for the full range of time delays
−T/2 ≤ τ ≤ T/2. Error bars equal the standard error of the mean reflecting the statis-
tical dispersion of points. The orange and black dashed line represent an interpolation
of the data points. The arrows represent the position (averaged on the positive and
negative values of τ) of the inner channel HOM dip for τ ≈ T/2− τs.

3.3 Managing electrostatic coupling between the gates

This part is rather technical and might interest starting PhD students who want to learn

about subtleties of the simultaneous control of the single electron sources and central

QPC. It requires a good comprehension of their functioning which is explained in section

2.2.2.1.

3.3.1 Parasitic coupling between gates

When we measure the first harmonic of the current IΩ to calibrate the sources, the QPC

is fully closed for source 1 but fully open (or at least transmitting the outer edge) for

source 2. Between these two situations, VQPC can change by 700 mV. From the situation

where we partitioned the inner channel to the one where we partitioned the outer one

it can change by 500 mV. This change will affect the electrostatic environment on the

source and thus change their effective transmission D. For example, one working point

Vg2 that we might have chosen because it gave the desired D for source 2, with the QPC
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Figure 3.8: Upper. Transmission of the central QPC as a function of VQPC. The red
dot corresponds to the situation where all edge channels are reflected and thus enables
to calibrate properly source 1 whereas the green dot corresponds to the situation where
we calibrate source 2. The blue dot corresponds to the situation where we partition the
outer edge. The color code is the same for the two lower panels. Middle. Modulus
of the first harmonic of the current coming out of source 1 as a function of Vg1. Apart
from a homothetic shift in amplitude coherent with a QPC transmission changing from
0 to ' 0.5, there is no visible change along the x-axis. This is because the induced
change on source 1 by a 19.5 mV shift on VQPC is very small.Lower. Same thing for
source 2 but with different values for VQPC. Here, the change in voltage is larger, so
the shift is more visible. We can measure the 1.5 mV shift of the peak for instance. We
deduce a coupling of 6.8× 10−3Vg2.V

−1
QPC.

fully open to send all current to the RF detector, will give a different transmission and

escape time when we will change VQPC to partition the outer edge channel. Therefore

we need to monitor the transmission of the dot during the HOM experiment. This is not

really a problem for D = 1 because when dots are open there is a wide range of Vg that

do not affect D anymore and a small electrostatic influence from VQPC will not change

D.
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On figure 3.8, we show a measurement that illustrates the coupling between each source

and the central QPC. The larger the difference in values of VQPC between a calibration

configuration and a partitioning configuration, the more this coupling is to be compen-

sated carefully. On this figure, we can observe and measure this coupling which manifests

as a shift of the x-axis. This shift is too small to be measured for source 1 (middle panel)

because the change in VQPC is not so large whereas we can clearly see it for the sec-

ond source (lower panel). From 3.8, we deduce a coupling between Vg2 and VQPC of

6.8 × 10−3Vg2.V
−1
QPC. If we assume this coupling to be of the same order of magnitude

for Vg1 it would have given a shift of 0.13 mV. We could then assume that the amplitude

of this shift is proportional to VQPC and simply deduce how much we must shift Vg1 or

Vg2 to get back to any desired value of D.

However, this last hypothesis is actually not valid. This was verified by measuring the

shift in transmission of the central QPC for various Vg (see figure 3.9). Equal shift of

Vg2 does not give an equal shift of the transmission on the VQPC axis. Therefore, for

both sources, we have to measure the relation IΩ versus Vg at each partitioning point we

used (VQPC ' −0.1 V for inner partitioning and VQPC ' −0.6 V for outer). This is not

precise because at half QPC transmission (for any channel), changing Vg will also affect

VQPC in return and thus the total transmitted current through the QPC. This is why

we cannot directly compare the complex value IΩ between two working points VQPC.

This explains why on the two lower panels of figure 3.8 the plateaus are not well defined

for the two blue curves. Indeed, on these plateau regions (Vg1 ∈ [−0.32V,−0.25V ] and

Vg2 ∈ [−0.108V,−0.06V ]), the current directly coming out of the dot is constant as we

vary Vg but because the latter influences back the electrostatic potential on the QPC, it

changes R and thus the amount of this current sent to the detector.

3.3.2 The benefit of disorder

If we cannot rely on absolute values of |IΩ|, it is however possible to use remarkable

features of these curves as points of reference. Indeed, the exact shape of IΩ(Vg) contains

fluctuations coming from electrostatic disorder surrounding the dots. We can observe

that some of these features remain from one working point to another, although at a

different place on the figure. If the signal is not too low1, it is possible to find manually

where this reference point moved and thus deduce a shift. One might be tempted for

instance to use the small Coulomb peaks that easily appear when the amplitude drive is

lower or higher than half of the dot level spacing. It is easy to spot them and to measure

their shift along the Vg axis in different partitioning situations. This is not what we
1The worst situation is when we want to measure IΩ1(Vg1) for the inner channel partitioning.
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Figure 3.9: Zoom of the conductance of the central QPC as a function of VQPC around
transmission 0.5. We see that successive decreases of Vg2 by 500 mV does not shift the
curve by the same amount. The last shift of 400 mV (going from Vg2 = 500 mV to
Vg2 = 900 mV) gives an even larger shift of curve. Thus the coupling between these
two gates is not linear.

chose to do because the position of this peak actually has a non trivial dependence on

Vg.

Indeed, the local electrostatic potential shift on the source does not only change the

transmission D but also the internal chemical potential of the dot µdot. As we have seen

in section 2.2.2.1, µdot will affect the position of the peak independently of D. Our choice

was then to identify the closing of the dot: D → 0. This point is independent of µdot but

can be hard to detect if the signal-to-noise ratio is to small. However, we can partially

circumvent this by increasing the excitation amplitude which will not affect the position

of the closing. One last drawback of this method is that this feature can be less sharp

than a Coulomb peak which makes the measurement less accurate, especially when we

measure the closing of source 1 in the inner channel partitioning situation (see figure

3.10). This gives the first correction to apply on Vg to get back to the expected value

of D. However this correction will affect in return the relation between the central QPC

reflection R and VQPC so we have to measure R back again with the 2 newly corrected

values for Vg1 and Vg2. This will give a new working value for VQPC which will shift again
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Figure 3.10: Illustration of the iterative method first measurements to find a working
triplet point VQPC, Vg1, Vg2. Left. Main quadrature of I1Ω as a function of Vg1 when the
QPC is fully closed (red) and when inner channel is partitioned (blue line is multiplied
by 5). The signal is small because almost no current, apart from parasitic coupling, is
injected from the dot to the inner edge. Part of this current also comes from capacitive
coupling between edges. Right. Here the current is large enough so we can plot the
modulus of I2Ω as a function of Vg2. Arrows represent Vg values we chose as the closing
of the dots. From both figures, we deduce we have to apply a shift of 14 mV for source
1 and 4.5 mV for source 2 to the initial values of Vg corresponding to D ≈ 0.4.

(but less) Vg1 and Vg2 that we will have to measure and compensate. This operation is

iterated until convergence. Usually, only a couple of times is enough.

All of these efforts can occasionally be destroyed by global drifts of charge impurities

which locally change the electrostatic potential and thus the relations D(Vg) or R(VQPC).

Luckily, this drifts are not too frequent on the time scale of an HOM acquisition but force

us to regularly check working points of the sources and central QPC and, if need be, go

all over this fine tuning process.

This part explained why it was difficult to be precise in the control of D for the inner par-

titioning situation but not why we could not manage to have the same dot transmission

for inner and outer partitioning. This has a more trivial explanation. To insure an in-

jection of holes and electrons symmetric in energy (ωe = −ωh) we lowered the excitation

amplitude during the calibration procedure so as to locate Coulomb peaks that appear

precisely when the injection is symmetric. As we have seen above, the inner chemical

potential is partly independent of the dot transmission. At that time of the experiment

we had little control on the dc part of the top gate voltage because we had not set the

cryogenic bias-tee yet. Therefore, we had little direct control on µdot which was then

mainly controlled by Vg which also changes D. It appeared that in between the two par-

titioning situations the electrostatic disorder around the dots changed slightly, thus we
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had to choose other peaks of interest. The closest similar transmissions D associated to

a peak were not exactly the same from inner (D ≈ 0.4) to outer partitioning (D ≈ 0.3).

3.4 Analysis with plasmon scattering formalism

3.4.1 Modeling interactions

In this section we will explain the formalism that helped us to calculate and predict the

shape of the current and the HOM figures after a propagation length l, in the case where

we directly excite EMPs i.e. when the dot is fully open (D = 1). This formalism was first

introduced in references [202, 210] and fully detailed in the chiral case of filling factor

ν = 2 by Ch. Grenier [226], E. Bocquillon [3] and V. Freulon (in french) [107] in their

respective thesis manuscript. I will use the main results that concern my measurements.

In this model, there are two incoming currents (one for the outer and one for the inner

channel) entering an interacting region (see figure 3.11) and two outgoing currents also

corresponding to the outer and inner channels. The outer outgoing channel can be

expressed as a linear combination of the two input currents, the same goes for the inner

channel. Thus we can describe the interaction region as a scattering matrix. All the

details of the interaction model are encoded in this matrix. The first most natural

assumption one can make is that the plasmons interact elastically thus the matrix SEMP

will not mix frequencies. We can thus focus our reasoning at finite frequency ω without

any loss of generality. The relation between outgoing currents after a propagation length

l and the incoming ones at position 0 writes:[
I1(ω, x = l)

I2(ω, x = l)

]
= SEMP (ω)

[
I1(ω, x = 0)

I2(ω, x = 0)

]
=

[
S11 S12

S21 S22

][
I1(ω, x = 0)

I2(ω, x = 0)

]
(3.2)

Figure 3.11: Scheme of the model. The region where pulses are created is separated
from the region in which they interact, itself also separated from the interferometer
where the signals are analyzed.



Analysis with plasmon scattering formalism 99

where we labeled 1 the outer edge and 2 the inner one. The fractionalization process can

be understood as SEMP having non-zero off-diagonal elements which will mix the currents

from both edges. When there is no interaction, a charge injected on the outer edge stays

unchanged on it and travels the region with velocity v1. At x = l, all the current injected

in the outer edge at x = 0 is recovered, therefore S11 = 1 and S12 = 0. We can apply the

same reasoning for the inner channel and conclude that in the non-interacting case SEMP

is the identity (multiplied by ei
ωl
v , where v is the bare velocity). On the contrary, in the

strong interaction case, the two channels are highly coupled therefore we can guess that

the off-diagonal elements will be non negligible. The interaction is also strong enough

to blur any asymmetry coming from microscopic disorder so we can safely conclude that

in the strong interaction regime S21 = S12. To find out the correct eigenmodes and

eigenvelocities, one has to diagonalize the symmetric matrix SEMP .

To be more quantitative and calculate S21, one has to use bosonisation to express the

problem in terms of scattering of bosonic fields φ which represents collective modes. The

bosonic field φ can be expressed as a function of the fermionic one Ψ [227]:

Ψ†(x, t) =
U †√
2πa

ei
√

4πφ(x,t), (3.3)

where U † is an operator which lowers the number of electrons by one to ensure fermionic

anitcommutation relations and a is a short distance cutoff. Interactions are easier to

treat using φ than Ψ. We can decompose the bosonic field as:

φ(x, t) =
−i√
4π

∫ ∞

0

dω√
ω
b̂(ω)eiω(x/vF−t) − b̂†(ω)e−iω(x/vF−t) (3.4)

where b̂(ω) is the annihilation boson field operator at frequency ω and vF the Fermi

velocity. Actually the bosonic modes are easily described by the charge density and the

current:

ρ(x, t) =
−e√
π
∂xφ(x, t) (3.5)

i(x, t) =
e√
π
∂tφ(x, t). (3.6)

The Hamiltonian on one edge α between position x = 0 and x = l, writes in the bosonic

representation [181, 228]:

Hα = ~vF
∫ l

0
dx (∂xφα(x, t))2 +

e2

2π

∫ l

0
dx∂xφα(x, t)uα(x, t) (3.7)

The first term of the equation correspond to free propagation of the bosonic field and the

second term to interactions with uα(x, t), the electric potential in channel α at position

x and time t. From this we can deduce the equation of motion (in time or frequency
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domain):

(∂t + vF∂x)φα(x, t) =
e
√
π

h
uα(x, t) (3.8)

(iω + vF∂x)φα(x, ω) =
e
√
π

h
uα(x, ω), (3.9)

where one can recognize on the left-hand side a right moving chiral wave equation at

velocity vF and a source term in the right-hand part. Interactions will be conveyed

by this term. Indeed, uα(x, t) will depend on the electromagnetic environment and in

particular on the surrounding distribution of charge ρ. The exact dependence will dictate

the physical model for interaction. To implement this model, we state that there is no

tunneling from one edge to another, which is valid because the two co-propagating edges

have opposite spin polarization and during the 3µm propagation spin flip events are

negligible2. It can be verified by measuring that there is no noise on a plateau (the outer

channel is transmitted perfectly and the inner one reflected). Indeed, if there is tunneling

from one edge to another, it induces partitioning and thus shot noise even when channels

are perfectly reflected or transmitted. This is not what we observed.

From here, to solve completely the equation of motion, one needs to express uα in terms

of φα. This is where different kind of microscopic models can be imagined. A few of them

have been developed and the corresponding equation of motion derived in [3, 107, 226]

and also in appendix B. After some more or less simple algebra, one gets a relation

between φα(l, ω), φβ(l, ω) and φα(0, ω), φβ(0, ω) i.e. SEMP which, because of relation

3.6, is the same for current Iα and φα. Based on reference [221] we are going to make

the following assumptions to build our scattering matrix:

• The strong interaction regime is achieved.

• The square signal that we use has a fundamental frequency at 0.9 GHz so the

dominant harmonics are below 6 GHz, therefore we can restrict ourselves to a

short range interaction model because the propagation length from the source to

the QPC is smaller than the typical plasmon wavelength.

• There is little dissipation.

Thus we can use the results derived in B.2 to which we add a small dissipation term:

S11(ω) =
1 + eiωτs−γ(ω)

2
(3.10)

S21(ω) =
1− eiωτs−γ(ω)

2
, (3.11)

2This might be questioned for longer l or if one wants to study this phenomena at ν = 3.
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where τs = l/v− and γ(ω) = ω2τsτr is a phenomenological term introduced to model

dissipation of EMP. The term eiωτs = eiωl/v− shows that the charge injected on the outer

channel will, after a fixed propagation length l, oscillate with ω between the two channels.

For ω = πv−/l, the charge is completely transferred to the inner channel. According to

our HOM experiment (and [221]) we can set τs = 70 ps and τr = 4 ps. Actually, here

we do not use really high frequencies and are thus less sensitive to dissipation. As we

will see later, the change induced in the predicted HOM shape, taking dissipation into

account or not, is very small and below our resolution (see for instance lower panel of

figure 3.13) but we preferred to take it into account in our simulations.

We now have a quantitative way to predict what comes out in the two channels after

the interaction region for any input mode φ1(ω) on the outer channel. We must here

stress out the fact that it is possible to easily predict the out-coming modes and thus the

interference patterns only if we are able to describe our incoming state as a Fourier sum

of bosonic modes φ(ω). This is the case for D = 1 where the top gate is capacitively

coupled to the outer edge (φ(ω) ∝ V (ω) [226]) and emits a coherent state for plasmons.

It is no longer true when we start to pinch the gates Vg. Indeed, as we will see in chapter

4, for D < 1 the state at x = 0 is a coherent superposition of plasmons and it is less

straightforward to describe the state after propagation at x = l in terms of bosonic

modes.

Thanks to equation 3.6, we can recover this mode if we know the current intensity at x =

0. Because the equation of motion are linear in ω we can predict the outgoing currents

for any linear combination of I1(ω) coming out of the source. More precisely, we calculate

the two output currents after interaction. They are then treated independently as being

injected in a non-interacting wire by an Ohmic contact driven with V (t) = I(t)RK . The

voltage being known, it is straightforward to compute the coherence functions and the

Floquet coefficients cn (see appendix A.3) coming in both inputs of the beam splitter

and thus the full HOM figures and the Wigner functions.

3.4.2 Modeling the exact pulse shape at the sources

3.4.2.1 Ad Hoc imperfect square pulse

On the bottom part of figure 3.12, the expected HOM figure for a perfect square voltage

applied on the dot at D = 1 for both partitioning situations is represented. It does

not really look like our results, in particular we observe additional oscillations compared

to this prediction. These oscillations can be explained by the imperfect square voltage

sequence as the one plotted on the insert of the upper part of the same figure. To drive
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Figure 3.12: Comparison of the theoretical HOM figures after interaction for a perfect
square (bottom) and the one that fitted best our data (upper). Black lines correspond
to inner edge partitioning and orange lines to outer edge partitioning. In the inserts
are represented the shape of the square pulses. Both drive sequences are at 0.9 GHz,
with an amplitude of 60µV. The electronic temperature is 90 mK.

the dots we used an Anritsu MT1810A which has a rise time of 30 ps that is not negligible

compared to a half period of 555 ps. The resulting square sequence is not perfect and

will influence the current pulse injected in the outer edge channel at x = 0. Because at

D = 1, the top gate is capacitively coupled to the outer edge we can compute this pulse

with a simple RC filter:

I(ω) = V (ω)
iω e

2

∆

1− iω h
2∆

, (3.12)

where the RC time (neglecting interactions in the dot) is h
2∆ and e2

∆ the capacitance

between the top gate and the outer edge. Then we can use formula 3.10 to calculate the

resulting currents on both edges at x = l. We can observe on figure 3.13 that the resulting

currents on each channel after interaction have themselves rebounds which explains the

ones observed on the HOM figure.

On figure 3.14 the signal coming out of the generator with the same frequency and

amplitude used for the HOM experiment is shown. It is compared to the same physical

signal after 3 meters of SMA RF cables and to the simulated signal that best fitted our

HOM data. The shape of the physical signal does not look at all like a Fourier sum
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Figure 3.13: Upper. Voltage drive and total current at the exit of the source that
best fitted our data. Lower. Resulting current pulses on the outer (red) and inner
(blue) channel after interaction with (plain line) or without dissipation (dashed line).
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Figure 3.14: Measured square sequence at 0.9 GHz coming out of the Anritsu MT
1810A in black line. The red line represents the same signal measured after 3 meters
of SMA RF cables at room temperature. The blue line corresponds to the imperfect
square sequence that gave, after interaction, the best agreement with HOM data on the
inner edge channel.
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approximation of a square:

V (t) =

N∑
n=0

4

π(2n+ 1)
sin ((2n+ 1)Ωt) (3.13)

with N a finite integer (typically 3), but rather like a succession of second order responses

to a step function with damping, that can thus be modelled (for each half-period) by:

V (t) = 2Vexc

[(
1− e−tzωN√

1− z2
cos

(
t
√
ω2
N (1− z2) + arcsin(−z)

))
θ(t)− 0.5

]
. (3.14)

Here, θ(t) is the Heaviside function, z controls the damping i.e. the amplitude of the

extra oscillations and ωN controls the number of oscillations which is related to the pulse

rise time. The parameters that best fitted our HOM data after interactions are z = 0.35

and ωN = 5Ω = 2π × 4.5 GHz.

Although the agreement with HOM is quite good, the drive sequence does not really

match what we observe on top of our cryostat. The black and red lines of figure 3.14 which

are closer to a square sequence, cannot account for the observed additional rebounds on

the inner edge even when we add numerical filtering to model the loss along the RF

cables. We tried also to add random resonances in the model for the RF line but it

only caused too much distorted signals with too high and too many rebounds. This ad

hoc imperfect signal explains well our HOM data but it is hard to justify where those

imperfections come from. In the next part we explore a model that can potentially

explain these rebounds.

3.4.2.2 Interactions induced current oscillations

It is not really satisfying to account for the observed additional rebounds with unreason-

able imperfections of the sources or the RF injection lines. Close to the end of my PhD

we became aware of a new study by Litinski et al. [229] which solves the non-equilibrium

response of an abrupt change of gate voltage on the dot close to D = 1 taking electron-

electron interactions into account. In particular they show that for strong interactions,

the abrupt change in voltage does not emit a single exponential current pulse but rather

a series of successive pulses with decaying amplitudes. Indeed, because of interactions

in the dot, the admittance of the source, relating the charge dynamics to the applied

voltage, is not the one of a simple RC circuit. The effect of interactions on the charge

dynamics has also been studied in the opposite regime D � 1 in references [230, 231].

Büttiker et al. also showed that, whatever the transmission of the resistive mode D, the

admittance of the capacitor has a universal resistive part of h/2e2 [232]. This universal
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quantization is the AC equivalent of the quantization of DC conductance by steps of e2/h

and has been measured in references [1, 233]. However, this theoretical proof was done

in the non-interacting case; it was later extended to the interacting case [234? –236].

For instance C. Mora and K. Le Hur showed in a non-perturbative approach that this

universal value is still valid but only when the AC excitation is lower than ∆ [235] which

is true in our case. From it they also rewrote the admittance in the case D = 1:

A(ω) = Cg

(
1− iωτc

1− eiωτf

)−1

(3.15)

where Cg is the geometric capacitance of the dot and we defined the two time scales of

the problem τF and τc = hCg/e
2. τF corresponds to the time of flight spent in the dot.

It is related to the electronic density of states. The lower it is, the higher the density

is. On the contrary, τc quantifies the Coulomb interaction in the dot. For high ratio

of τF /τc, the Coulomb energy to add an electron is larger than the spacing in energy

imposed by confinement.

In all the experiments and calibration presented so far we can only access the total RC

time:

τRC =
1/2

1/τc + 1/τF
. (3.16)

Thanks to the calibration presented in section 2.2.2.3 we can estimate τRC = 17 ps. To

estimate the relative weights of each contribution, or equivalently the ratio τF /τc one

can look at the fine dependence of the escape time with Vexc in the non-linear regime.

During their respective PhD work, Gwendal Fève and François Parmentier [5, 7] showed

that, for similar samples to ours, the charging energy was smaller or equal to the spacing

imposed by confinement ∆, conversely it means τF /τc / 1. In our case, the level spacing

is a bit lower (1.4 K instead of 4 K) but the electronic density of the gas is the same

(1.9 × 1011cm−2 for both case) therefore we might expect an increased value for τF /τc
and therefore deviation from the simple RC model.

We applied a fitting procedure on τF (τc is fixed by equation 3.16 for a fixed value of

τRC = 17 ps). The voltage applied on the dot is chosen with a finite rise time of 30 ps

and no rebound (z = 0.9, ωN = 11 × Ω). The electronic temperature is 90 mK. With

the calculated charge time dependence we can calculate the total current out of the dot

and then the two output currents at the level of the QPC (with interaction parameters

τs = 70 ps and τr = 4 ps). Results are presented on figure 3.15. We computed the

difference between data and model varying τF . This difference has 3 possibly equivalent

(but well pronounced) minima at τF =136, 201 and 351 ps. However, the latter seems

reasonably too high and was not kept. Results are plotted on figure 3.16. Although

there is no rebound on the square voltage sequence, these results seems to reproduce



106 Chapter 3: Coulomb interaction in one dimensional chiral systems

time [ns]
0 0.2 0.4 0.6 0.8 1 1.2

[C
]

#10 -19

-2

0

2
CV(t)
Q(t), 136ps
Q(t), 201 ps

0 0.2 0.4 0.6 0.8 1 1.2

I [
nA

]

-1

0

1 136ps
201ps

time [ns]
0 0.2 0.4 0.6 0.8 1 1.2

I [
nA

]

-1

0

1
136ps
 201ps

Figure 3.15: Upper Square pulse applied to the dot (blue) with a rise time of 30
ps (z = 0.9, ωN = 11 × Ω) and charge in the dot deduced with the model from [229]
with parameters τRC = 17 ps and τF = 136 ps (red) and 201 ps (green). Middle
Outer currents, after 3 µm interaction length, deduced from the charge evolution in the
dot. Bottom Inner currents, after 3 µm interaction length, deduced from the charge
evolution in the dot.

the additional rebound observed around |τ | ≈ 250 ps on the inner channel partitioning

situation. For τF = 136 ps, the additional rebound appears a bit too early; however

the depth of the additional dips at |τ | ≈ 450 ps matches better than the other two

values of τF . For any figure, all electron-hole interference overshoots are always slightly

over-estimated. Prediction with τF = 201 ps seems to reproduce the slight decrease of

noise observed on the outer edge going from |τ | ≈ 150 ps to |τ | ≈ 400 ps. Overall the

agreement is quite good and points out the fact that the ratio τF /τc is larger than one.

Indeed, with this model we could not observe any additional rebound around |τ | ≈ 200

ps for τF < 100 ps i.e. for a purely non-interacting dot. The two values of τF (136 and
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Figure 3.16: Upper Comparison of HOM figures at 90 mK for outer channel with
parameters τRC = 17 ps, τF = 136 ps (τF /τc = 3) and 201 ps (τF /τc = 4.9). Bottom
Idem for inner channel partitioning.

201 ps) respectively give a ratio τF /τc of 3 and 4.9.

This results show that Coulomb interactions in the dot cannot be neglected if one at-

tempts to account for the fine structure of the HOM figure. With this model we have

been able to accurately describe the whole interference pattern. The remaining little dis-

crepancies can be explained by slight asymmetries between the two sources which breaks

the symmetry of the pattern τ → −τ .

3.4.3 Comments on the depth of the dips

Until now I have intendedly been elusive on commenting the depth of the observed dips.

If the overlap between the incoming states is perfect we should obtain ∆q(τ = 0) = 0
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which is not what we observed! For instance, on figure 3.5 we observe a dip going to

0.27; we defined a parameter γ to fit with the exponential (∆q(τ) = 1 − γe−τ/τe); γ is

actually the visibility of the interference. When no dip is visible, there is no two-particle

interference and γ = 0. When, γ < 1 there must be decoherence mechanisms at stake

to kill the interference pattern. The next chapter is devoted to the exploration of such

possible mechanisms; the expert reader may have already guessed that fractionalization

is one them. However, we will see that this mechanism cannot account for the loss of

visibility at D = 1 (others can). In this chapter, to adjust the plotted data with the

plasmon scattering theory we had to do the transformation:

∆q → 1 + γ (∆q − 1) , (3.17)

where γ is measured with the depth of the dip (γ = 1−∆q(τ = 0)). This transformation

has been applied to all the theoretical results presented in this chapter with γ = 0.65 for

both edge partitioning situations.

Conclusion to this chapter

In this chapter we have introduced charge fractionalization which is an effect that appears

in all one dimensional systems with interactions. With the HOM interferometer we have

addressed this effect in the time domain for two regimes of emission: collision of edge-

magneto plasmons (D = 1) and collision of single electrons and holes (D ≈ 0.3) [237].

We extracted from it an interaction strength parameter (τs = 70 ps) compatible with

previous measurements [221] and revealed the dipolar nature of the excitations created

in the inner edge channel. In the D = 1 case and with the help of a plasmon scattering

theory, we have been able to study the fine details of the interference pattern; in particular

we confronted our data with a model taking interactions in the dot into account. The

comparison is quite satisfactory, although two values of the ratio of Coulomb energy over

confining spacing energy could explain our data. This ratio can be 3 or 4.9.
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Single electron decoherence

“Mais le contexte est plus fort que le concept.”

MC Solaar, “La Belle et le Bad Boy”.

We finished the previous chapter commenting on the fact that the Pauli dip did not go to

0 at τ = 0. This is a sign that the interference is not perfect and some coherence is lost

in the process. In this chapter we are going to study all possible sources for decoherence

and determine their relative weights. We will show that Coulomb interactions with the

neighboring co-propagating edge channel is the strongest among all. We are going to

see the effect of this decoherence mechanism on single electron states. The plasmon

scattering model we have developed in the previous chapter (see section 3.4) will enable

us to describe the loss of visibility in the HOM interference. In contrast to the discussion

in the previous chapter, we will here deal with single electron emission and not edge-

magneto plasmons. We will first clarify the distinction between the two. This will help

us to understand what are the coherent states for plasmons i.e. the states not subject

to decoherence.

4.1 Quantifying decoherence and its origins

4.1.1 Visibility of the interference

At the end of the previous chapter we introduced the visibility γ = 1 − ∆q(0). This

quantity quantifies the visibility of the interference pattern but also the single particle

109
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coherence. Contrary to the case D = 1 when the dot is fully open and charge density

waves are emitted, in the case D < 1 a coherent superposition of those waves are emitted

to create a single electron. γ quantifies how much of this coherence is preserved after

propagation. In the case of single particle collision, we have shown in section 2.44 that

the normalized noise can be written as the overlap of incoming coherence terms:

∆q(τ) = 1−
x

ϕ1

(
t
)
ϕ∗1
(
t′
)
ϕ2

(
t
)
ϕ∗2
(
t′
)
dtdt′, (4.1)

where ϕi is the wave function of the particle on top of the Fermi sea coming into input

i of the QPC. This wave function can be efficiently modeled in the time domain by a

truncated exponential function:

ϕ(t) =
θ(t)
√
τe
eiωete−

t
2τe , (4.2)

where θ(t) is the Heaviside function, ~ωe the average energy of the particle imposed by

the dot level during emission and τe is the escape time or time width of the wave packet.

With this functions we can compute ∆q:

∆q(τ) = 1− 1
(τe,1+τe,2)2

4τe,1τe,2
+ τe,1τe,2 (ωe,1 − ωe,2)2 /~2

e
−|τ |

(
θ(τ)
τe,2

+
θ(−τ)
τe,1

)
. (4.3)

This formula enables us to quantify how the dip changes if the two incident particles

are not exactly identical. Two parameters characterize such wave packets and thus

indistinguishability can be lost in two different ways which are detailed in the next

section. Looking at the different parts τ < 0 and τ > 0 we are thus able to access

emission times of the two wave packets. Note that in the case of identical wave packets,

we recover γ = 1 and ∆q(τ) = 1− e−|τ |/τe .

4.1.2 Asymmetries between wave packets

4.1.2.1 Asymmetry in time width

If the emission time is not strictly equal for each source but the energy identical, we

have, for τ > 0:

∆q(τ) = 1− 4τe,1τe,2

(τe,1 + τe,2)2 e
−τ/τe,2 , (4.4)

and for τ < 0:

∆q(τ) = 1− 4τe,1τe,2

(τe,1 + τe,2)2 e
τ/τe,1 . (4.5)
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Figure 4.1: HOM interference patterns for three different kind of collisions. The
black points correspond to wave packet tuned to have the same escape time (τe = 30
ps). The blue and red points correspond to asymmetric wave packet interferences (see
legend). The escape times given for the data correspond to measurements obtained from
the phase delay of the RF current. The dips are fitted with formula 4.3 to which we
applied a scaling factor on the visibility factor γ (numbers also in legend) to match the
depth. The position in time is slightly shifted to the left for more and more asymmetric
situations. For short emission times, the fit gives a much larger time width. This can
be explained by fractionalization which splits the wave packet in two.

This can happen because of electrostatic drifts or because the coupling between the gates

was not properly compensated (see section 3.3) however it is easier to compensate when

we only deal with outer channel partitioning (and not inner). Our typical relative error

on the calibration to determine the escape time τe is at worst around 50% 1. One can

thus calculate that it decreases at most the value of visibility to γ ' 0.9 which does

not match the larger visibility loss observed. Indeed, we directly measure the effect of a

mismatch in emission time. On figure 4.1, HOM interference patterns for three different

kinds of collisions are plotted to check the effect of asymmetric pulses. The first thing to

notice is that for short emission times, there is a significant difference between the width

extracted from the fit and the escape time determined from the phase delay of the RF

current. The broadening of the wave packet can be explained by fractionalization which

does not completely split the wave packet in two but simply broadens it because the
1This is only for long τe; for shorter time it is more around 25%.
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Figure 4.2: HOM interference patterns for three different kinds of collisions. For
each realization, the two incoming wave packets have different energies. Exponential
fits give an emission time around 150 ps (or a bit more for the green one which is
slightly asymmetric).

propagation length is too short. For asymmetric situations, apart from an unexplained

slight time shift of the x-axis, the agreement between fits and escape time is quite good

and the asymmetry of the pattern is visible close to the dip. Another important feature is

that the three dips are significantly shallower that one would expect by applying formula

4.3. Indeed, (from more to less symmetric) we measure γ = 0.65, 0.34 and 0.225 whereas

the equation gives respectively 1, 0.81 and 0.76. This suggests that asymmetry on the

emission times or even fluctuations of this emission time from one collision to another

cannot quantitatively explain the observed loss of visibility.

4.1.2.2 Asymmetry in energy

The same reasons that create asymmetries in emission times can also create asymmetries

in the energies at which the particles are emitted. Because of this change in energy the

overlap between incoming states will not be perfect and γ 6= 1. Like in the previous

section, we can probe this effect directly. In the case of identical emission time τe but
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different energy emission, equation 4.3 gives:

∆q(τ) = 1− e−|τ |/τe

1 + τ2
e (ωe,1 − ωe,2)2/~2

. (4.6)

For instance for τe1 = τe2 = τe = 150 ps we should get a visibility going from 1 to

around 0.02 when the energy difference is tuned from 0 to half the dot spacing ∆/2 '
60µeV, which is the maximum energy difference we can induce in our setup given the

∆−periodicity in the dot energy. To do so we change the DC bias on the top gates

so as to change the inner chemical potential of the dot. In figure 4.2, we tested this

prediction and observed that surprisingly, there is no change of visibility. The emission

time extracted from fits gives a value around τe = 150 ps for the three curves and the

visibility seems to be stable around 0.3. It is surprising that this visibility is so low

even when the energy is the same but also that it does not vary as we tune the energy

mismatch.

The fact that visibility does not vary with energy mismatch may suggest that we do

not have a full control on the energy of incident electrons and holes. However this does

not seem to affect too dramatically the interference. Of course the visibility is not as

“good” as expected but equation 4.3 predicts tinier visibility than what we measure even

at maximal energy mismatch.

4.1.3 Electrostatic noise on top gates

Our apparent lack of control on the electron average energy might be attributed to

electrostatic fluctuations of the top-gate voltage. To account for this and predict its

effect on the visibility a model was developed by Iyoda et al. in reference [238]. In this

model, the dot is not only coupled to the outer edge channel but also to a generic bosonic

bath that models the electrostatic environment. The coupling between the bath and the

dot is labeled γp and the one between dot and outer edge is labeled Γ = 1/τe. Starting

from a dot filled with one electron at some finite level above the Fermi sea, they use an

input-ouput formalism to deduce the evolution in time of the mean occupation number

in the dot. Without noise (γp = 0), the dot has a density of states corresponding to a

Lorentzian with width Γ. The effect of γp is to enlarge this width much like an increase

of temperature would do. This parameter γp can actually be thought of as an effective

electronic temperature in the dot. They then compute the density matrix of the edge

channel state; the latter enabling to finally calculate the shape of the HOM dip. Then

they predict that the density of states in the dot is a Lorentzian of width Γ + 2γp and
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Figure 4.3: Left. Effect of the artificial noise on one of the quadrature of the RF
current. The red curve is the one measured with artificial noise. The amplitude of
the drive is 2/3 of ∆/2 so as to be able to observe Coulomb peaks. Right. HOM
interference with and without artificial on source 2. The emission time are tuned to
τe1 = τe2 = 40 ps but the exponential fit gives γ = 0.56, τe1 = 120 ps and τe2 = 80ps.
There is no significant difference between the two curves.

the visibility of the interference is:

γ =
Γ

Γ + 2γp
. (4.7)

We tested this hypothesis by adding an artificial noise on the top gate voltage over source

2 and measured how it influenced the visibility of the interference. To do so we used the

white noise function of a Agilent 33250A generator. The noise amplitude was calibrated

measuring its effect on the width of the Lorentzian current peaks while varying its top

gate DC voltage. The results are presented on the left panel of figure 4.3. We compared

the data with a Floquet simulation with τe2 = 40ps. We could model the widening of

the peaks by an increase of the effective electronic temperature from 100 mK to ∼ 400

mK. Only one quadrature of the RF current is presented here but the same broadening

is observed on both. The effect on the interference pattern (see right panel of the same

figure) is not visible or at least below our accuracy level.

If the observed visibility loss without artificial noise (γ = 0.6 at τe = 40 ps) was due to

a noisy environment, formula 4.7 would have given γp = γ−1−1
2τe

= 2π × (1.3± 0.4) GHz.

If we choose to rely on exponential fits of the data rather than on the calibration of the

source with the measurement of the phase of the RF current the result is a bit different.

Indeed, as mentioned in the legend of figure 4.3, exponential fits give 2 different emission

times for the sources: τe1 = 120 ps and τe2 = 80ps. Iyoda et al. predict that for wave
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packets asymetric in time the visibility becomes:

γ =
2τ−1
e1 τ

−1
e2

1
2

(
τ−1
e1 + τ−1

e2

)2
+ 2γp

(
τ−1
e1 + τ−1

e2

) . (4.8)

This results in γp = 2π × (0.50± 0.15) GHz. Then, adding artificial noise equivalent to

an increase of electronic temperature in the dot from 100 mK to 400 mK adds another

contribution to γp. The new dephasing rate on source 2 is γ′p = γp + kBTel/~ = 2π× 7.6

GHz (or 2π × 6.8 GHz with fits). Because this noise is added on one source only, the

new visibility becomes:

γ′ =
Γ

Γ + γp + γ′p
= 0.31, (4.9)

and we measure γ = 0.56±0.04 which would represent a discrepancy of at least 6σ. This

discrepancy is even higher with the method using the exponential fits.

We can also analyze the same set of data through Floquet theory and reach to the same

conclusion. The blue line on the left panel of figure 4.3 is compatible with the current

coming out of one source calculated with Floquet theory with parameters τe = 40 ps and

a thermal broadening of at most 100 mK. We can then apply a Gaussian averaging of

amplitude σ = kBTel = 100 mK on the energy of each impinging particle. Convolving

formula 4.6 with such a Gaussian distribution, we find γ = 0.8. Then we increase the

amplitude of these fluctuations for one source only toward σ = kBTel = 400 mK to find

γ = 0.5. Contrary to Iyoda’s model, using Floquet theory and then adding thermal

broadening of the emission actually takes into account the ∆−periodicity in energy of

the dot which is not the case in their model. We do not obtain the same absolute value

than the previous model but we still predict a measurable change of visibility between

both situations that is not visible in our data. All this considered, we can rule out the

environmental noise dephasing hypothesis as the main reason for decoherence.

4.1.4 Energy dependence of the beam splitter

We usually model the quantum point contact as an energy independent barrier but this

is an ideal case which is not always perfectly realized. We try as much as possible to

be in this situation but small imperfections can remain. In reference [239], a model is

developed to explain the contrast reduction with an energy dependence of the beam-

splitter reflection R(ω). According to this model, the contrast should increase with

increasing wave packet length (or with τe). However, as we see on figure 4.4 (which

will be commented further in details in the next section) we observe clearly the opposite

trend. Visibility decreases with the length of wave packets.
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4.1.5 Interaction with neighboring channels

One simple (but lengthy) way to test the effect of neighboring channels on decoherence

is to add more of them and observe the effect on γ. This is what is plotted on figure 4.4

where data in blue correspond to the evolution of visibility with emission time τe = τe1 =

τe2 (and equal energy) at filling factor 2 and the red squares are measured at filling factor

3. We observe a quick decrease of γ for both situations although it is more pronounced

at ν = 3. To understand the evolution the relation γ(τe), we introduce a coherence time

τc as a phenomenological time scale for decoherence. The excess coherence term becomes

ϕ(t′)ϕ∗(t) → ϕ(t′)ϕ∗(t)e−|t−t
′|/τc . Now, only time components (t, t′) with |t − t′| ≤ τc

will interfere whereas longer time component of the coherence will actually be subject

to random partitioning. Then we can compute the new visibility starting again from

equation 4.1; we get for equal emission times and energies:

γ =
1

1 + 2τe/τc
. (4.10)

From figure 4.4 we can thus extract two different coherence times: τc = 60 ps at ν = 3

and τc = 98 ps at ν = 2. On this figure we can observe the decay of coherence terms

on a time scale τc. Wavepackets larger than this time scale will decompose into several

incoherent blocks that will not interfere with each other, leading to a dramatic loss of

visibility. The fact that τc depends largely on the number of neighboring edge channel

is a clear indication that interaction between them is a major ingredient to explain the

observed decoherence and thus that it happens during propagation.
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Figure 4.4: Evolution of visibility γ as a function of emission time τe for ν = 2
(blue dots) and ν = 3 (red squares). The plain lines correspond to the fits by the
phenomenological model γ(τe) = (1 + 2τe/τc)

−1.

4.2 Fractionalization of single electrons

Before using our plasmon scattering approach to quantitatively describe the loss of visi-

bility we will establish the difference between edge-magneto plasmons and single particle

emission. We will see that the former are actually coherent states.

4.2.1 Injection of plasmons

As we mentioned in the introduction of chapter 3, dealing with interactions in one di-

mension can be very complicated in the fermionic representation. Bosonisation renders

it easier. Emission and propagation are then described in terms of creation and propaga-

tion of EMPs which are collective charge excitations of bosonic nature. The situation is

even simpler when the dot is perfectly coupled to the outer edge (at D = 1). As we have

seen already, at D = 1, there is a linear relation between the voltage applied on the top

gate and the excess charge in the dot area so also between Iω and Vω. This relation can
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be for instance Iω = iCωVω in the case of a simple capacitive coupling at low frequency,

or the one expressed in equation 3.15. This linearity is always valid at D = 1. Solving

the equation of motion 3.9 for the plasmon modes we find that it creates a coherent state

or, more precisely and because we can excite several frequencies, a product of coherent

states [226]. The initial state at x = 0 can be written:

|Ψin〉 =
⊗
ω>0

[|αω〉1 ⊗ |0ω〉2] , (4.11)

where the first term of the tensor product correspond to the state in the outer channel

and
⊗
ω>0
|0ω〉 = |F 〉 is the vacuum state for plasmons in the inner edge i.e. the Fermi sea

(thermal fluctuations are discarded). The tensor product runs over all frequencies that

are excited by the drive of the top gate (only one if we use a sine drive at D = 1). Here

|αω〉 = −Iω/(e
√
ω) is a coherent state [227], this can be seen by analogy with quantum

optics where an oscillating field is also described by a coherent state; here the charge

density oscillates.

As a result from interactions, these EMPs are partially transferred to the inner channel

at the output of the interaction region (see section 3.4):

|Ψout〉 =
⊗
ω>0

[|S11(ω)αω〉1 ⊗ |S21(ω)αω〉2] . (4.12)

As seen from the output state, which is still separable, the outer channel does not get

entangled with the inner one, this is because we had a coherent input state. A perfect

dip γ = 1 should be observed both for the outer and inner channels as long as the

injected currents and interaction parameters are equal in both input of the QPC. This

can be understood from gauge transformation arguments. Indeed for classical voltage

drives V1(t) and V2(t), all the applied voltages can be brought to one input only (for

example, 2) by the overall shift −V1(t). Noise is then obviously suppressed (γ = 1) for

V1(t) = V2(t) because there is no potential difference between the two inputs of the QPC

for any time t. This is not exactly what we observed in chapter 3 where even at D = 1

we observed spurious loss of visibility.

This decoherence at D = 1 can be partially explained by the aforementioned mechanism

(asymetries, noise, energy dependence of the QPC), to which we can also add a small

interaction parameter difference along the two incoming paths toward the QPC (S21 not

equal for each inputs). It is possible that the remaining sources of decoherence at D = 1

are shared between all the above mentioned mechanisms. Indeed, we tried to minimize

the dip at D = 1 with square pulses by fine tuning the amplitudes and time delays and

we could not go below ∆q(0) = 0.11 which suggests some decoherence intrinsic to the
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sample (e.g. when interactions are not the same in the two input arms of the beam

splitter).

To be a bit more precise and so as to be able to compare with the single electron case,

we can actually calculate the expected visibility from |Ψout〉. Indeed, the density matrix

reads:

ρ̂out = |Ψout〉〈Ψout| =
⊗
ω>0

|S11(ω)αω〉〈S11(ω)αω|1
⊗
ω>0

|S21(ω)αω〉〈S21(ω)αω|2. (4.13)

To measure the outer partition noise we trace out all the other degrees of freedom i.e.

we take the partial trace on the inner edge part of the density matrix ρ̂1
out = Tr2(ρ̂out),

we thus recover a pure coherent state (simply multiplied by a complex scalar number

S11(ω)) i.e. by definition a state not subject to decoherence, thus giving γ = 1.

4.2.2 Injection of single electron

Here the situation is different because the relation between current and gate voltage is

no longer linear thus we do not emit coherent states. The most intuitive representation

becomes the electronic one where we can describe the electron with a wave function

ϕ(t) like in equation 4.2. However we still need the bosonic representation to treat

interactions. Following equation 2.12 and using equations 3.3 and 3.4 to express Ψ̂†(x, t)

as a displacement operator for plasmons, we can write the injection of a single electron

state ϕa in the outer edge in terms of plasmons as [226]:

|Ψin〉 = |ϕa, F 〉 =

[∫
dx ϕa(x)Ψ†(x)|F 〉1

]
|F 〉2 (4.14)

=

[∫
dx ϕa(x)

⊗
ω>0

|αω(x)〉1

]⊗
ω>0

|0ω〉2 (4.15)

where the coherent states are αω(x) = e−iωx/vF /
√
ω [227]. The electron can be described

as a coherent superposition of coherent state αω(x) but is still separable between the two

edges. However, after propagation length l, the incoming state on the beam splitter

writes:

|Ψout〉 =

∫
dxϕa(x)

⊗
ω>0

[|S11(ω)αω(x)〉1 ⊗ |S21(ω)αω(x)〉2] . (4.16)

We see that because interactions mix the two edges, the superposition is now on both

edges and thus they are entangled (because of the integral sum before the tensor product).

After tracing out the environment (inner channel) degrees of freedom, the outer channel

coherence is suppressed, corresponding to a strong reduction of visibility. This time the
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density matrix in one input after propagation writes:

ρ̂out =
x

dxdx′ϕa(x)ϕ∗a(x
′)

⊗
ω>0
|S11(ω)αω(x)〉〈S11(ω)αω(x′)|1 (4.17)⊗

ω>0
|S21(ω)αω(x)〉〈S21(ω)αω(x′)|2

and taking the reduced one for the outer channel we have:

ρ̂1
out =

x
dxdx′ϕa(x)ϕ∗a(x

′)D(x, x′)
⊗
ω>0

|S11(ω)αω(x)〉〈S11(ω)αω(x′)|1 (4.18)

where D(x, x′) is a decoherence function that we can compute. In the continuum limit

for ω [227]:

D(x, x′) = exp

 ∞∫
0

dω

ω
|S21(ω)|2

(
e−iω(x−x′)/vF − 1

) . (4.19)

This quantity represents a weight different from unity for coherence terms in equation

4.17 which will finally reduce the total overlap of the two impinging density matrices.

Although we have been able to exhibit a relation between interaction parameters and the

partial density matrix on the outer channel, it actually reveals harder to compute γ in

a fully general case2. This is where our collaboration with the team of P. Degiovanni on

one side and T. Martin on the other proved to be very fruitful. They managed indeed to

compute analytically the coherence at the exit of the interaction region [225, 240]. To do

so they used the bosonisation technique and numerical evaluation of the resulting non-

perturbative expressions. Degiovanni et al. numerically computed the excess electronic

coherence function at T = 0 K in the Wigner representation [240] and Martin et al.

managed to compute the coherence at T = 0.1 K using quasi-Monte Carlo algorithm

with importance sampling [225, 241].

On figure 4.5, the excess Wigner function they computed is plotted for increasing values

of the propagation length or equivalently, of τs. Here ∆W (t, ω) provides a direct visual-

ization of the evolution of the single-electron wave packet under the influence of Coulomb

interaction, leading to the destruction of the single electron. For τs = 0, ∆W (t, ω) cor-

responds to the Wigner representation of the pure single-electron state (see also figure

2.9). After a short propagation length, τs = 28 ps, before the fractionalization in two

pulses has occurred, energy relaxes and the spectral weight at ωe is transferred close to

the Fermi energy. The non-classical ripples are also almost completely washed out. On

longer propagation length τs = 70 ps, the fractionalization in two distinct pulses occurs

and can be seen along the temporal axis. As two pulses of charge e/2 cannot correspond

to a single quasiparticle excitation of the Fermi sea, collective neutral excitations are
2The relation γ = 1−Tr[ρ̂1] is valid only for single particle wave packets well defined above the Fermi

sea.
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Figure 4.5: Wigner representations ∆W (t, ω) at T = 0K for different propagation
lengths τs = 0, 28 and 70 ps. The time axis are shifted by time τ = l/vρ to account for
the propagation time on length l. For τs = 0 ps ∆W (t, ω) represents the state emitted
in the outer edge channel (blue line) with ωe = 0.7 K and τe = 60 ps. For τs = 28 and
70 ps, short range Coulomb interactions between the outer and inner (green line) edge
channels are taken into account.

created. This can be seen on ∆W (t, ω) by its negative values below the Fermi energy

(corresponding to the creation of holes) compensated by an increase of ∆W (t, ω) above

the Fermi energy (corresponding to the creation of the same number of electrons). The

electron is then “destroyed”.

4.2.3 Predictions for the HOM patterns

The Hong Ou Mandel noise directly probes the overlap between incoming first order

coherence function (or equivalently between Wigner functions), thus with their calcu-

lations it was then straightforward to compute the full shape of the dip for any time

delay between the sources. The upper-left panel of figure 4.6 presents the data of the

HOM traces ∆q(τ) for various emission times τe together with theoretical predictions at

T = 0 and T = 100 mK, providing an evaluation of the effect of finite temperature on

single-electron decoherence. The interaction parameter is set to τs = 70 ps. The red,

blue, and black curves represent these theoretical predictions taking τe = 34, 91, and 147

ps. These values agree within experimental resolution with the values of τe extracted

from the measurements of the average current. In particular, for the short time τe = 34

ps, theoretical predictions capture the broadening of the electronic wave packet by the

fractionalization process, which leads to an overestimate by a factor 2 of the emission

time extracted from the exponential fit of the dip. However, the resolution is not good

enough to observe the predicted side peaks for τe = 34 ps at T = 0.1 K. The agreement

between the data and the predictions is good: once the width of the dip has been chosen

to match the data, the values of the contrast also agree. Note that we are able here to

fit the full HOM trace using only experimentally measured parameters (emission time
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Figure 4.6: Data/model comparison. Upper-left ∆q(τ) for various emission times.
Theory accounting for Coulomb interaction is represented by the dotted line (T = 0
K) and dashed line (T = 0.1 K). Lower-left, ∆q(τ) for asymmetric emission times.
Theory predictions accounting for Coulomb interaction (T = 0.1 K) are represented by
dashed lines. Predictions of the non-interacting model in blurred black. Upper-right
contrast γ versus emission time τe (in log-linear scale). The dotted (T = 0) and dashed
(T = 100 mK) lines represent theory predictions accounting for Coulomb interaction.
Lower-right (a) data, τe = 40 ps, 400 mK gate noise on dot 2; (b) data, τe = 40
ps without gate noise; (c) theory, T = 0.1 K, ωe1 = 0.7 K, ωe2 = 0.3 K, τe = 40 ps;
(d) theory, T = 0.1 K, ωe1 = ωe2 = 0.7 K; (e) non-interacting model, ωe1 = 0.7 K,
ωe1 = 0.3 K, τe = 40 ps; (f) non-interacting model, ωe1 = ωe2 = 0.7 K, τe = 40 ps.

τe and interaction strength τs). The differences between the calculated HOM curves at

different temperatures are small, showing a small influence of temperature on single-

electron decoherence. This is explained by the electron emission energy ωe > kBTel.

Not only is the model able to capture the shape of the HOM dip but it also predicts the

full dependence of visibility versus emission time. The comparison with data is shown

on the upper-right panel of figure 4.6, theory predicts τc = 86 ps at Tel = 100 mK and

τc = 104 ps at Tel = 0 K close to the data. The agreement is quite satisfactory, however

for long escape times, data tends to accumulate above the theoretical predictions, in a

way similar to what was observed in reference [217]. In our case we might suppose that

this in an effect of the time periodicity that becomes comparable with the escape time,
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saturating the maximal time length of the wave packet coherence and diverging from a

model where single electrons do not overlap from one period to another.

4.2.4 Energy relaxation

To conclude, the theoretical computation also enables us to explain the data shown

in section 4.1.2 and 4.1.3. The lower-left panel of figure 4.6 presents the data-model

comparison when the emission times of the two sources are detuned. The agreement is

also very good, providing the right value for the contrast of two-particle interferences,

contrary to the non-interacting predictions (gray line, obtained with equation 4.3).

Remember also that in section 4.1.3 we pointed out the fact that we seemed to have

no control on the emission energy or that at least it did not affect the interferences.

The lower-right panel of figure 4.6 exhibits the most striking distinctive prediction of

the interaction model: the contrast and shape of the HOM trace is almost unchanged

when the emission energy of one of the two sources is varied (from 0.7 K to 0.3 K). This

behavior is completely different from the non-interacting model predictions (gray and

light red lines), for which the contrast varies strongly from 1 to 0.25 when the energies are

detuned by 400 mK at τe = 40 ps. Surprisingly, in the detuned case, interactions lead to

enhancement of the contrast compared to the non-interacting prediction. This restoration

of indistinguishability by decoherence is a consequence of the electronic relaxation. We

could already see this on the Wigner representation on figure 4.5. At a quantitative

level, it can be shown that at long times, the resulting single-electron coherence depends

only on the shape of the initial current pulse (here encoded in the duration τe) and of

the propagation distance, but no longer on the value of its initial injection energy. This

erasure effect is a consequence of the entanglement of the electronic degrees of freedom

of the outer edge channel with the inner one [240, 242]. Quantitatively confirming this

effect is a strong signature of the single-electron decoherence scenario described within

the bosonization framework [241].

4.3 Saving single electron

Now that we have confirmed the major role played by Coulomb interactions in the

propagation of single electrons in quantum Hall edge channels and quantified how it

led both to strong decoherence and relaxation of single particle wave packets, we can use

this information to try to improve the setup to maintain some coherence on propagation.

Here I am going to expose a few ideas explored during my PhD to try to improve

electronic coherence impinging on the beam splitter.
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4.3.1 With only one edge channel

The first natural idea one can have is to remove this interacting environment by simply

doubling the magnetic field so as to reach filling fraction ν = 1. With only one edge

channel, there is no other conductor to lose coherence into and we should be less sensitive

to interaction induced decoherence.

We were able to measure dips at ν = 1 (B ≈ 8T) with the same sample presented in

this chapter and the former one. We could measure dips for a square shape drive volt-

age at different values of transmission D. We did not get a dip going to zero as can

be seen on the left panel of figure 4.7. The emission time chosen with the independent

current measurement are τe = 17 (black points), 50 (red) and 80 ps (blue). The fit

with exponentials however gives respectively around 100 ps for the black and red points

and around 200 ps for the blue points. This result combined with the observed loss of

visibility of the same order than ν = 2 suggests that another decoherence mechanism is

also at stage in the ν = 1 system and comes up with a broadening of the wave packet.

We can put forward hypothetical explanations for this. First, going to ν = 1 we removed

the copropagating edge channel next to the conductor. In the Landauer-Büttiker picture

of edge channels, the insulating bulk actually contains closed loop unidimensional con-

ductors that wrap around defect points. They can be though of as isolated neighboring

conductors with gapped excitations (defined by their total length) and not connected to

a reservoir. Although isolated, this closed loop states contain charges that can interact

through Coulomb interactions. This interactions may also destroy the single particle

coherence. Another possible explanation could be the coupling with internal acoustic

degrees of freedom coming from the finite width of the edge [243] that causes dissipation

and thus decoherence. Finally, we cannot expect absolutely no interactions effect as it

was shown in reference [221] that interactions are actually long range so we might expect

interactions with other kind of nearby conductors.

Although it seems to be a simpler system, other difficulties appear at this filling fraction.

First of all, the dots appeared to be more sensitive to electrostatic fluctuations. Indeed,

we measured for instance that at a given Vg for one source, the noise created after

partition (HBT noise) was not stable enough in time. We suspected that this is due to

a lower electronic density in the dot, lowering the quantum capacitance which in turn

lowers the charge screening.

Last but not least, we measured, as in reference [244], that a local fractional quantum

Hall state forms around the QPC. This was checked in two different ways. On the lower

panel of figure 4.7 is plotted the zero bias conductance versus VQPC. Two plateaus at

e2/3h and e2/2h appear clearly. A third fainter one is also visible at 0.6× e2/h. These
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structures are reminiscent of fractional quantum Hall edges. In the middle panel, we

show the partition noise close to R = 0.5. The slope (determined precisely with the

calibration detailed in section 2.4.3.2) is not coherent with the tunneling of electrons

but rather quasi-particles of effective charge close to e∗ = e/3 (possibly e/4). This is

interpreted by the creation of a local fractional quantum Hall droplet at the level of

the QPC. Indeed, the voltage applied on the gates locally deplete the electron gas (the

density n decreases) so that for the same magnetic field the ratio ν = nh/(eB) is lowered

and can possibly reach a fractional value. This makes the interpretation of the Hong

Ou Mandel experiment much more complicated since we deal with a highly correlated

many body states whose first order coherence function are not trivial. Lacking both good

control on the dot parameters and theoretical predictions to guide us, we decided not to

carry on extensively in this direction.

It might be possible to go back to a study of HOM interferences at ν = 1 with lower

mobility samples. Indeed, the appearance of fractional quantum Hall phases requires

higher mobility than the integer case.

4.3.2 By separating inner and outer edge

4.3.2.1 With top gates

Following the idea developed in reference [57] samples were made with an additional

top gate to separate inner and outer edges. The idea being that the strength of the

interedge coupling is related to their spatial separation. On the left panel of figure 4.8

is represented a false color SEM picture of this samples. By putting a small negative

value on these two arms, it is possible to have a larger spatial separation between the

two channels. On the right panel we see it was possible to prevent the inner edge to cross

the central QPC even when it is fully open.

Unfortunately, we could not successfully realize an HOM interferometry experiment at

D < 1 and observe a regain of visibility. This is for several reasons. Adding more gates

also means dealing with more parasitic coupling between all these gates. This would not

be an unsolvable issue if the sample was stable on time scales longer than the experiment,

which was not always the case. We also had some strong hysteresis that did not permit

us to use the methods developed in section 3.3.

As can be seen from values of VQPC needed to open the QPC (figure 4.8, right panel), it

is naturally closed at 0 V. It seems that compared to previous samples, the added gates

lowered the density at the level of the QPC and also possibly the electron mobility thus
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For Va1 = −40 mV, the inner edge channel cannot pass through the central QPC.

altering the quality of the quantum Hall plateaus. For some samples of the same batch

it was impossible to fully open the QPC even with voltage on all gates up to +1V .

4.3.2.2 Changing magnetic field at same filling fraction

On a lesser extent we also explored the effect of a change of magnetic field on visibility.

In [245] it was shown that even at a fixed filling fraction, the visibility of Mach-Zehnder

interferences can be changed with the magnetic field. Furthermore, in reference [246] it

was pointed out that it is the filling fraction rather than the magnetic field that really

influences the visibility. A complete explanation for this is still lacking and would require

to take into account disorder, edge steepness and screening from other compressible

areas. However, these experiments point out the role of the magnetic field on the exact

shape of the interferometer. One may suspect that changing the magnetic field or filling

fraction can alter the separation between inner and outer edge channels thus changing

the interchannel interaction strength. We could not find easily, enough magnetic field

values that allowed a proper use of the dots (stability, absence of charge impurities,

energy independent QPC ...) so we did not carry on in this direction extensively.
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Conclusion to this chapter

To conclude, we have analyzed the coherence of single-electron states propagating along

a 1D edge channel using HOM interferometry. We observe a strong reduction of the

HOM contrast when the width of the emitted single-electron wave packets is increased

from which a coherence time τc = 98 ps (at ν = 2) can be extracted. Our results

are in quantitative agreement with the Coulomb interaction–induced decoherence along

propagation, providing direct evidence of the destruction scenario of a single quasiparticle

in a 1D conductor. We have explored in detail other possible decoherence mechanisms

and (so far) unsuccessful methods to reduce the loss of the single particle coherence.
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Tomography

“Well, I have this weird thing in my head. . . Like, I get this weird feeling that I’m sweating,

but on the inside of my face. And then I get this weird thing where my eyes are all weird,

and I can see electricity. Like, I can see green lines going from, like, a light bulb, to

all around. And then, I can see that everything is just electrons, colliding, and floating,

and playing. And then, I feel like if I just take one deep breath, and then just wish hard

enough, I could just vanish, into nothing, like I was before I was born.”

Jane, Louie, Season 5 Episode 5 Untitled

In this chapter we are going to see how the HOM interferometer can be efficiently used to

implement a protocol aiming at reconstructing any kind of single particle state or all the

single particle information on any many-body state propagating in the quantum Hall edge

channels. We are going to use again the Wigner function approach; this protocol enables

to directly reconstruct the Wigner function of arbitrary states. We will demonstrate the

full generality of this method and what its limits are.

5.1 Protocol

5.1.1 Principle

As we have seen in the previous chapters, our favorite interferometer encodes the overlap

between two incoming Wigner functions into out-coming charge fluctuations. If one

is able to measure any given overlap between single particle coherence functions, it is

therefore very natural to see how to reconstruct any kind of single particle state coming

129
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Figure 5.1: Scheme of the tomography protocol. An unknown Wigner function is
probed by measuring its overlap with Wigner functions sent in the other arm. On the
left column are represented the excess Wigner function ∆Wn(ω, t) whereas the Fermi
sea is added on the right one. Here only the first 4 members of the family (n from 0
to 3) are plotted at 100 mK. For each value of n the overlap is explored in the whole
(φ, VDC) phase space.

in input 1 |ϕ〉. If all vectors |φn〉 coming in input 2 define a basis for your Hilbert space,

|ϕ〉 writes:
|ϕ〉 =

∑
n

〈φn|ϕ〉|φn〉. (5.1)

From this expression it is very clear that measuring all overlaps 〈φn|ϕ〉 gives you all the

information on |ϕ〉. Actually, as we have mentioned before, Wigner functions contain all

single particle information and only this. It does not give any kind of information on

many-body correlations. Thus this procedure will not measure the full many-body wave

function but only its single particle representation; which is enough for non-interacting

many particle systems but not in general.

The idea proposed by Grenier et al. [10] is to use a family of small amplitude sine drive

excitation oscillating at period multiple of Ω. They are represented on the scheme of

figure 5.1 either with (right column) or without (left column) the Fermi sea. At first

order they write:

Wn(ω,t)=f(ω−ωDC)+
eV AC

2

n~Ω
cos(nΩt+φ)

[
f(ω−ωDC−nΩ/2)−f(ω−ωDC+nΩ/2)

]
(5.2)

where ωDC = −eV DC/~ = µ/~ and φ is the tunable phase difference between signals in

both inputs. Basically, time domain information is recovered varying φ whereas V DC is

changed to capture energy domain information. For n = 0, we actually just put a DC

bias at the input 2. Contrary to the previous chapters, here the second RF line is not

connected to the dot 2 but on the Ohmic contact from which we used to inject only DC
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bias; we used a cryogenic bias-tee (Marki BTN0040 ) to be able to inject both AC and

DC components on the Ohmic contact.

The choice of Ω has not been commented yet. Here relies the only a priori assumption

needed to make on the signal to reconstruct: it is T − periodic in time (T = 2π/Ω).

This assumption is not very strong, it implies that we are able to prepare the state

with high fidelity at a fixed rate which is anyway the case for almost any other type of

mesoscopic measurement1. Thus Ω is the rate at which you prepare your unknown state

or equivalently it is the signal main Fourier component. In the tomography protocol,

increasing n gives information on faster time components.

This choice of probe functions dictates what is the most convenient basis to use for the

rest of the discussion. Indeed, if one writes the excess Wigner function:

∆W1(ω, t) = ∆W1,0(ω) +
∑
n′∈Z∗

∆W1,n′(ω)ein
′Ωt, (5.3)

it is then clear that the time averaged overlap between input 1 state ∆W1 and a probe

function Wn
2 sent in input 2 will only keep n′ = ±n terms. Thus, Wn

2 enables to recon-

struct the nth harmonic of ∆W1 i.e. ∆W1,n. Indeed:

QHOM (φ, ωDC) = − 2e2

∫
dω

2π
∆W1(ω, t)∆Wn

2 (ω, t) (5.4)

= − 4e3V AC
2

~

∫
dω

2π
|∆Wn,1(ω)| cos(φn(ω) − φ)gn(ω − ωDC). (5.5)

Where we defined φn(ω) as:

Re (∆W1,n(ω)) = |∆W1,n(ω)| cos (φn(ω)) (5.6)

Im (∆W1,n(ω)) = |∆W1,n(ω)| sin (φn(ω)) (5.7)

and

gn(ω − ωDC) =
f(ω − ωDC − nΩ/2) − f(ω − ωDC + nΩ/2)

nΩ
(5.8)

is a kernel function of width n~Ω and centered on ωDC. We thus get a noise depending

on ωDC and that oscillates with φ. To change ωDC, we simply change VDC applied on the

Ohmic contact which will shift vertically the Wigner functions in input 2. To explore

the overlap in the time domain we shift the time delay between the two input ∆τ like in

a typical HOM experiment. This will shift the Wigner functions in input 2 horizontally.

Varying φ, we should expect an oscillating signal at frequency 2πnΩ. To study this
1Apart from single shot read-out measurement.
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oscillating signal we chose to define the two following quadratures:

Xn(ωDC) =
QHOM(π, ωDC) − QHOM(0, ωDC)

2V AC
2

(5.9)

Yn(ωDC) =
QHOM(3π

2 , ωDC) − QHOM(π2 , ωDC)

2V AC
2

. (5.10)

and we define A2
n = X2

n + Y 2
n .

For the peculiar case of n = 0, we simply apply a dc bias in input 2. Therefore ∆W
(0)
2 = 0

and we focus on the excess HBT noise which writes:

∆QHBT = e2

∫
dω

2π
∆W1(ω, t)(1 − 2fµ2(ω))

t
. (5.11)

There is actually a link between this quantity and the averaged energy density. Indeed,

because only ∆W1 depends on time, taking the derivative of the previous term with

respect to V DC
2 , one gets:

∂∆QHBT

∂V DC
2

=
2e3

h

∫
dω ∆W1,0(ω)

−∂f
∂ω

(ω − ωDC) (5.12)

which is exactly a convolution of the average energy distribution ∆f(ω) = ∆W1,0(ω) 2

and a kernel −∂f/∂ω that tends to a Dirac distribution when Tel tends to 0. Therefore

this part of the protocol is actually just a spectroscopy of the input state 1 much like in

references [36, 61].

In both cases (n = 0 or n 6= 0), we actually only get a convolution of the quantity of

interest ∆W1,n(ω) with either gn(ω) or −∂f/∂ω. This kernel are plotted on figure 5.2.

We postpone to section 5.3 the discussion on how we exactly deconvolved these quantities

and why it is not straightforward when noise is added on the signal after the QPC.

2Indeed ∆W1,0(ω) encodes the stationary part of ∆W1 i.e. the energy distribution.
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5.2 Results for simple sine drives

5.2.1 Spectroscopy: the n=0 case

Before applying this protocol on the single electron source, we wanted to test it on

simpler signals: the dot is set at full transmission D = 1 and we only apply a sine drive

rather than a square one. Sine drive are ideal candidates for that; indeed, they are

simple to create and to characterize independently and theoretical predictions are easy

to compute. Moreover, as illustrated on figure 5.3, these signal do not require a lot of

steps to be recovered. Indeed, measuring Wn with n only going from 0 to 3 is enough to

have a good fidelity for these signals. Another advantage is that Coulomb interactions

will not change the signal up to a global complex scalar factor |S11(ω)|. As we have seen
in chapter 3, it will just change the global phase of the Wigner function which can be

absorbed in the definition of the phase probe. The modulus of this factor can be seen as

a renormalization of the excitation drive to a lower value.
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Figure 5.3: Up. Full Wigner functions at 10 MHz (33µV) and 9 GHz (31µV)
at Tel = 90 mK. Middle. Corresponding reconstructed Wigner functions with only 3
harmonics for 10 MHz and 2 harmonics for 9 GHz. Bottom. Modulus of corresponding
harmonics of Wigner function versus ω. Imaginary part does not exceed 2 × 10−3 so
we can fix φn = 0 and independent of energy for these drives.

In this section, we will focus first on the part n = 0 of the protocol i.e. the part that

probes the average energy distribution. The procedure is quite standard: for a given V DC
2

we measure the noise while the sine drive is on and then again but with the source off (see

equation 2.42). We measure S(on,off)
33 − S(off,off)

33 for various V DC
2 . This work sets in the

general framework of photo-assisted shot-noise which was predicted first by Lesovik et al.

[155] and then measured in numerous systems such as metallic diffusive wires [156, 247],

quantum point contact in GaAs heterostructures [36, 104, 157, 248, 249], tunnel junctions

[61, 250–252] and recently in graphene [253]. We applied this procedure for various source

drive with different frequencies. For the sake of comparison, we tuned the amplitude of

the source drive so as to reach the same value of excess noise ∆S(V DC
2 = 0). This means

that although they do not have the same frequency, each of these drives creates the same

average number of electron-hole pairs per unit of time.

On figure 5.4, the noise created by each excitation versus the DC bias applied at the

other input of the beam splitter is represented. The electronic temperature extracted
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from the mere DC shot noise (black curve) is (Tel = 90 mK). Compared to references

[250, 252], we do not see clear change of slope (upper panel), this is mainly because

they used a multi-mode, low impedance tunnel junction which enables to maximize the

current going through the partitioner and thus shot-noise. This enhances the signal-to-

noise ratio. Another advantage of low impedance tunnel junction is that they generate

a lower thermal equilibrium noise and produce less Joule heating which enables to use

higher RF power and DC bias without heating electrons to much. Despite all, in our

case, theory can fully account for this smearing of kinks due to temperature and we

see that full lines are in agreement with our experimental results. On the lower panel of

figure 5.4, the excess noise is plotted i.e. we subtracted the DC contribution to shot-noise

(black curve in upper panel) to the other upper panel curves. We see that at V DC
2 = 0,

the three curves give the same excess noise which means each of the drive creates the

same number of particles (electrons and holes) per unit of time. This excess noise then

decreases smoothly as we increase |V DC
2 |. However, the higher the frequency, the weaker

the decrease is. Another way to say this is that the higher the frequency drive, the

higher, we need a DC bias to cancel the excess noise. This can be interpreted as due

to photo-assisted transport. We also measured the same signal but with excitation at

12 GHz and 15 GHz (not represented for the sake of clarity) which fall as expected in

between 9 and 20 GHz.

There are several things to check to be sure what we measure is really a photo-assisted

effect. First of all, one could suspect that bringing high power, high frequency signal

on a high impedance sample would dissipate heat; not necessary on the Ohmic contact

otherwise we would also have this effect with DC biasing but on the surrounding con-

ductors and materials (e.g. substrate, bonding pads ...) which in turn would heat the

electron gas. Could this heating effect raise the electronic temperature high enough to be

responsible for the observed increase of noise at zero bias (between 7 and 10 × 10−10V2)

? The measured excess noise can be converted into an increase of temperature with the

calibration presented in section 2.4.3.3; we obtain ∆Tel ' 4 mK and we did not see such

an increase of the mixing chamber temperature. However this may not rule out heating

effects completely. Indeed, below 100 mK electrons do not thermalize well with phonons

therefore such a small increase of temperature in the electronic temperature might not

be easily detectable by the mixing chamber RuO thermometer. Nevertheless, it should

give a really different shape to the excess noise versus V DC
2 as we see on figure 5.6.

To model heating effects on noise, we suppose that the power is delivered on one contact

only and therefore we have two Fermi distributions f1 and f2 with different temperatures

T1 > T2 coming on the central QPC which creates some partition noise [10]:

SON,part = R2S11 + (1 − R)2S22 + R(1 − R)Q, (5.13)
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Figure 5.5: Scheme of the model to take heating on one side into account. (Insert)
When the source is off there is only equilibrium noise and all channels are “cold”.

with S11 = 2e2

h kBT1 and S22 = 2e2

h kBT2
3. We have to add the thermal fluctuations of

the fully reflected inner edge and fluctuations of the channels leaving the contact mea-

surement which are also heated (see scheme on figure 5.5).

SON = (3 + R2)S11 + (1 − R)2S22 + R(1 − R)Q (5.14)

SON =
2e2

h

(
(3 +R2)kBT1 + (1−R)2kBT2 +R(1−R)

∫
dω [f1 + f2 − 2f1f2]

)
.

(5.15)

When T1 = T2 we recover SON = 4kBT1
2
RK

for any R as expected. On figure 5.6 we see

that the excess noise produced only by such a heating effect has no to little decrease with

respect to V DC
2 . The exact temperature increase in one input was left as an adjustable

parameter to match the corresponding excess noise. We do not see why heating would be

less effective while increasing the DC bias, therefore we can rule out this effect to explain

the observed excess noise. We also checked directly that the RF signal did not add non-

partition noise simply closing fully the QPC to connect with perfect reflection R = 1 the

RF input with the Ohmic contact on which the electronic temperature is measured. We

did not see an increase larger than 2 × 10−11V2 i.e. 0.08 mK.
3The factor 2 comes from the engineer convention that counts positive and negative frequencies.
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In a second time, we also have to check that it is not a simple averaging of the DC shot

noise curve. Indeed, if there are no photon absorptions, the chemical potential varies

adiabatically with a sine shape i.e. we can write the Wigner function as W (ω, t) =

fµ(t)(ω) and not as a sum of Bessel functions like in equation 2.28. One could suspect

that what we observe is simply an averaging effect:

∆S(V DC
2 ) =

1

T

T∫
0

dt
[
SOFF

(
V DC

2 + V AC
2 cos (Ωt)

)
− SOFF

(
V DC

2

)]
, (5.16)

where T = 2π/Ω is the period of the drive. This is what we will call classical (or adi-

abatic) averaging. This expression should stand only when we do not expect photon

absorption event i.e. when ~Ω < kBTel. On the other hand, if photon assisted effect

occurs, one should get also 5.15 replacing f1 by W1(ω, t)
t
. Therefore using equation 2.28

we recover the analog of Lesovik formula for a 4 terminal geometry [155]:

SON(V DC
2 , V AC

2 ) =
2e2

h

(
(3 +R2)4kBT1 + (1−R)24kBT0

+R(1−R)

∫
dω

f0 + (1− 2f0)

∞∑
n=−∞

Jn

(
2eV AC

2 cos(Ωt)

~Ω

)t
1

e
eVDC

2 +~(ω+nΩ/2)

kBT + 1

 )

=
2e2

h

(
(3 +R2)4kBT1 + (1−R)24kBT0

+R(1−R)
∞∑

n=−∞
J2
n

(
eV AC

2

~Ω

) (
eV DC

2 + n~Ω
) (

coth

[
eV DC

2 + n~Ω

2kBTel

]) )
(5.17)

where Jn are the Bessel functions of the first kind. The two models (quantum and

adiabatic) are also compared on figure 5.6. For models without heating effects, the

amplitude of the drive is adjusted to match the excess noise around V DC
2 = 0 V. For

models taking heating into account, we choose the increase of electronic temperature

so as to match the excess noise on the tails of the curve (at 9 GHz only), where pure

PASN should give no excess noise and adjust the amplitude of the drive to match with

the data around V DC
2 = 0. Because of possible heating effects, it is not clear if we really

measure photo-assisted effect at 9 GHz. The effect is however definitely present at 20

GHz (see figure 5.7) where it is clear that neither classical averaging nor heating effects

nor a combination of both can quantitatively account for the variation of excess noise

with bias. Both at 9 and 20 GHz, the disagreement with the dashed blue line enables

us to rule out pure heating effects as an explanation for excess noise. Moreover, the

adjusted amplitudes are always close to ≈ 30µV which is in agreement with our estimate

of the expected drive amplitudes.
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Figure 5.6: Comparison of different models with data at 9 GHz. The theoretical result
at 100 mK for photo-assisted shot noise is in dashed red line and can be compared to
the effect of classical averaging (black dashed line). The amplitude of the drive is let
as an adjustable parameter for both. The dashed blue line represents what is expected
if all the observed noise was due to heating effect. From its shape we can clearly rule
out this effect. A slight increase of temperature is taken into account for the full red
and black line.

Photo-assisted effects being hard to observe at 9 GHz although ~Ω ' 4kBT reveals the

importance of probing time dependent information. Indeed, as we will see in the following

section, combined with data at n 6= 0 i.e. coherence terms, the Wigner function clearly

exhibits non-classical values which are sign for photon absorption events.

Now that we can trust our data, we can derivate ∆Q with respect to V DC
2 and then

deconvolve by ∂f
∂ω with a Wiener filter (see section 5.3) to obtain the energy distribution.

The results are presented on figure 5.8. It corresponds to the excess energy distribution:

positive values at positive energies correspond to the creation of electrons whereas nega-

tive values at negative energies correspond to the creation of holes in the Fermi sea. What

can be clearly seen is the difference in energy width of the distribution. The distribution

width created by the excitation at 1.75 GHz is mainly governed by eVexc whereas the one

at 20 GHz is mainly governed by ~Ω. This is a manifestation of photo-assisted effects:

20 GHz photons can create electron-hole pairs with energy up to eV = hf = 83µeV. We

recover the stair case like structure smeared by temperature.
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Figure 5.7: Comparison of different models with data at 20 GHz. The theoretical
result at 100 mK for photo-assisted shot noise is in dashed green line and can be
compared to the effect of classical averaging (black dashed line). The amplitude of the
drive is let as an adjustable parameter for both. The dashed blue line represents what
is expected if all the observed noise was due to heating effect. From its shape we can
clearly rule out this effect together with classical averaging effects.

Now we know how to recover energy distribution for any kind of signal but what is more

challenging for non-stationary signals is to recover also time domain distribution, this is

what we will see in the following section.

5.2.2 Recovering time domain information: n 6= 0

Energy distribution is not sufficient to reconstruct completely the electronic wave func-

tion of the signal. For non-stationary signal it is crucial to recover off-diagonal coherence

terms. As mentioned previously, we add on the probe an excitation drive at pulsation

nΩ with a small amplitude eV AC
2 < ~nΩ. The two signals are synchronized and can be

delayed with ±7 ps accuracy thanks to a double output arbitrary waveform generator.

We also tested it with a variable mechanical dephaser with a precision ±2ps but that did

not allow variation of δτ larger than 680 ps. We measured the noise varying φ = nδτΩ

over one period or more. An example of such measurement is presented in figure 5.9 for

Ω/2π = 9 GHz at zero bias for n = 1 and V DC
2 = 35.6µV for n = 2. We get an oscillating
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Figure 5.8: Results of derivation together with theory. Frequency effect can be clearly
seen on the energy width of the distribution. Whereas the width of the low frequency
drive is governed by its amplitude (28µV), the one for the 20 GHz drive is governed by
~Ω/e = 83µV. Error bars are standard error to the mean.

signal at pulsation nΩ. These results tell us that the signal under study has non-zero off-

diagonal terms. To reconstruct ∆Wn(ω) we use the two quadratures Xn and Yn defined

in equations 5.9 and 5.10. They are equal, up to a amplification factor to:

Xn(ωDC) =
−4e3

h

∫
dωRe(∆Wn,1(ω))gn(ω − ωDC) (5.18)

Yn(ωDC) =
−4e3

h

∫
dωIm(∆Wn,1(ω))gn(ω − ωDC). (5.19)

This expressions are only valid if equation 5.2 is valid i.e. if we can stop the development

of Wn
2 at first order in eV AC

2
n~Ω . We check in section 5.2.3 that we are indeed in a regime

where Xn is linear in V AC
2 . Conversely, we can also define the polar quantity:

An(ω)eiφn(ω) = Xn(ω) + iYn(ω). (5.20)

As previously done for the spectroscopy procedure, we now measure Xn(ω) and Yn(ω) as

a function of ωDC . This will give respectively Re(∆Wn(ω)) and Im(∆Wn(ω)). For each

frequency and each n, we checked that the phase φn did not vary with V DC
2 (i.e. with

ω). Values of the probe amplitude are summarized on table below. In some cases, we
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averaged the results of several tomography steps taken with different probe amplitudes.

Once normalized by V AC
2 , data gave the same results.

Parameter 10 MHz 9 GHz

V1 (Source) 33.0 ± 2.2µV 30.9 ± 1.0µV

V n=1
2 3.0µV and 5.2µV 5.9 ± 0.7µV

V n=2
2 5.2µV , 9.0µV and 11.9µV 31.7 ± 1.8µV

V n=3
2 19.3 ± 1.6µV not measured

Actually we cannot really access φn but only its difference with respect to the phase

coming on the probe contact. Increasing n for frequencies in the megahertz range may

not change significantly this absolute phase because the signal wavelength is much longer

than the propagation length in the cryostat. Indeed, we checked that the relative phase

between source and probe did not change while varying n when the source is driven at

10 MHz. However, it is not the case when we apply signals in the gigahertz range. From

one n to another the absolute phase on the probe contact changes, shifting the real zero

for φn. Therefore, it makes no sense to combine all |∆Wn|eiφn . To reconstruct the 9

GHz sine drive Wigner function, we suppose that φn(ω) = 0 for any n and any ω for

a sine drive on an Ohmic contact or applied to the top gate in an open dot situation

(D = 1). This hypothesis is confirmed by Floquet theory and, as mentioned above, we

checked it for 10 MHz. At 9 GHz we can only check that φn does not depend on ω. We

will see in section 5.4 how to use the phase measurements at D = 1 as phase references

to reconstruct more complex phase dependences in particular when D 6= 1.

To deconvolve properly ∆Wn from A(ω)eiφn(ω), (or Xn and Yn) we used a Wiener filter

(details for this procedure will be explained in part 5.3). Although it cannot remove

all the noise added after the convolution it gives the estimate of ∆Wn(ω) with the

least error for any ω (not only multiple of n~Ω). Results for sine drives at 10 MHz

(Vexc = 33 ± 2µV ) and 9 GHz (Vexc = 31 ± 1µV ) are presented on figure 5.10. Notice

that off-diagonal coherence is observed both for the quantum and “classical” signal: even

for a mere Fermi sea with an adiabatically oscillating chemical potential there exists

off-diagonal coherence in time domain.

It can become quite tedious to apply this procedure for a large number n. We checked

with simulations that for these test signals, going up to n = 3 is sufficient to reconstruct

almost completely the signal (see figure 5.3 for comparison), higher ∆Wn having less

weight. For 9 GHz it was difficult to inject enough power at 27 GHz on the probe
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Figure 5.11: Reconstructed Wigner functions (up) and their standard error to the
mean (low) for signal at 10 MHz (left) and 9 GHz (right).

contact and the expected signal was below our detection limit. Results agree well with

theoretical model where we calculated numerically overlap between Wigner functions

obtained using Floquet scattering formalism.

We can now add all this contributions to reconstruct the full Wigner functions again

assuming that for this simple sine drives φn = 0 for any n. We actually plot:

W1(ω, t) =fµ=0 + ∆W1(ω, t) (5.21)

=fµ=0 + ∆W1,0(ω) + 2

2,3∑
n=1

Re (∆W1,n(ω)) cos(nΩt). (5.22)

The results are presented on figure 5.11 for 10 MHz and 9 GHz. Error bars are absolute

standard error to the mean. They are computed taking the deconvolution process into

account. We randomly duplicate each data point 1000 times according to a Gaussian

law centered on the value of the data point with a standard deviation corresponding

to error bars. Each of these 1000 sets of random An and ∆W1,0 is passed through the

deconvolution process. We then obtain a statistical ensemble of Wigner functions from

which we can extract a mean value and a standard deviation which is our final error bar.
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We notice a quantitative difference between the two reconstructed functions, above error

bars. Theoretical expectations are represented on figure 5.3 with or without taking into

account the finite number of measured harmonics. Globally there are more deviations

from theory at energy far away from the Fermi level. This has two main explanations.

First, the QPC is not perfectly energy independent especially at high bias where we

suppose we might activate non-linearities. This deviation could already be seen on the

spectroscopy. Second, the deconvolution process has some edge effects (which could

already be seen on figure 5.10) inducing numerical errors on the estimation of W close

to our uppermost and lowest energy values. Finally, another reason for systematic error

is the noise added on the signal (actually the noise of the noise) after the beam splitter.

The Wiener filter can remove partly its effect but not completely. It insures that the

error between our estimate and the real value of ∆Wn is minimal but it cannot be zero.

Despite all these errors we manage to quantitatively discriminate between a classical and

a quantum signal. On figure 5.12 we plotted cuts at fixed energy (−11 and 11µeV) of the

two functions. The “quantum” signal has significant negative and above one values, which

is a mark of non-classical states. We can also clearly see the “classical” signal reaching a

plateau at one or zero. These plateaus help to understand why we actually needed more

harmonics ofW to reconstruct the classical signal. Indeed, a square shape function has a

higher harmonic content than an almost sine one. Another way to discuss this difference

is in term of number of RF photons. Indeed, for the 10 MHz signal we have eVexc > ~Ω

which implies a non negligible fraction of many photon processes, contrary to the 9 GHz

case where eVexc
~Ω = 0.83 which implies almost only one photon processes. These multi-

photon processes are encoded in ∆Wn6=1 and it explains why they have higher weights

for this particular amplitude Vexc at 10 MHz. Going to eVexc < ~Ω for this frequency

would have required too low excitation amplitude (eVexc < kBT ) to be detected with our

set up.

5.2.3 Probe characterization

As mentioned at the beginning, this protocol only works if we know perfectly well the

probe signal to deconvolve the noise from it. In particular, we have to check that the

first order expression of Wn
2 (see equation 5.2) is indeed valid. This implies to check

that we are in the linear regime where we can assume eV AC
2 � ~Ω and thus are able to

normalize Xn and Yn by V AC
2 . First we need to know the real amplitude of the drive

applied on the Ohmic contact. This is done with the calibration procedure presented in

section 2.4.3.5. On figure 5.13 are presented calibrations of the amplitude with noise for

9 and 18 GHz drive.
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temperature, only the attenuation is left as a fitting parameter. From this we deduce
the drive amplitude applied on the Ohmic contact.
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Figure 5.14: Left. Amplitude of oscillations with δτ at n = 2 (i.e. A2) versus V AC
2

at fixed V DC
2 = 29.2µV. (Source at f = 9 GHz and amplitude ' 25µV). Theory for A2

is in full red line. A is extracted with a fit where the period is imposed. Actually
we noticed another oscillation superimposing with twice the frequency so we fitted the
noise oscillation with the sum of two sine (one at 18 GHz the other at 36 GHz) and
plotted here the deduced two amplitudes. Ã4 is this second amplitude. Note that it
is not exactly the same as A4 which would have required to impose only 36 GHz and
to be able to calibrate the amplitude of the drive. The appearance of such doubling of
oscillation might be due to some nonlinear effects in the mechanical dephaser generating
a second harmonic on the probe. This non-linearity is negligible in the regime of the
tomography where we imposed V AC

2 = 32µV on the probe. We still recover a linear
behavior for A2 at low V AC

2 . Right. Amplitude of oscillations with δτ at n = 1 (A1)
versus V AC

2 at fixed V DC
2 = 0µV. Source at 10 MHz with ' 31µV amplitude. A is

extracted with a fit where the period is imposed. Theory is in plain red line. The linear
regime is nicely resolved and fits to theory to a large extend.

The linear regime can be checked experimentally simply measuring at a fixed V DC
2 , os-

cillations An versus V AC
2 . This is what is plotted on figure 5.14 for data at 9 GHz for

n = 2. We clearly see a linear regime at low V AC
2 ; we put ourselves to the higher end

of this regime (V AC
2 ' 30µV) so as to maximize the signal-to-noise ratio. On this last

figure we see the appearance of a nonlinear phenomena leading to second harmonic gen-

eration and therefore to the appearance of another oscillation with twice the frequency.

The amplitude of this other oscillation has been labeled Ã4 and plotted in black. This

oscillation is only parasitic and it is hard to get any relevant information out of it since

we hardly know the amplitude of this second harmonic. The only thing that seems

clear is that the generation of this second harmonic is not linear in the amplitude V AC
2 ,

probably quadratic and due to the mechanical dephaser. Because we used a relatively

small amplitude for V AC
2 at n = 2 for 9 GHz, it is reasonable, as we have done since the

beginning, to neglect this effect at small V AC
2 . For comparison, a similar set of data is

represented on figure 5.14 for n = 1 at 10 MHz.

We have seen here the basic principle and typical results of this protocol however we will



148 Chapter 5: Tomography

see in the following part that going from −∂∆QHOM
∂VDC

to ∆W1,0 or from An to ∆W1,n is

actually not that straightforward; especially when noise is added by the measurement

apparatus from the QPC up to the spectrum analyzer.

5.3 How to properly deconvolve a noisy signal: the Wiener

filter

5.3.1 The problem

We are in the case where the quantity we observe ∆̃Wn(ω) can be modeled as a convolu-

tion of the signal we want: ∆Wn(ω), with an apparatus function gn(ω) which is known

a priori. This apparatus function adds an independent stationary noise b(ω) of power

spectrum density Γb(ω̃):

∆̃Wn(ωDC) =

∫ +∞

−∞
∆Wn(ω)gn(ωDC − ω)dω + b(ωDC), (5.23)

where ω̃ is the conjugate variable of ω with respect to the Fourier transformation TF .

We are looking for a complex filter function H(ω̃) such that:

∆Wn(ω) = TF−1
[
H∗ (ω̃) TF

[
∆W̃n(ω̃)

]]
. (5.24)

Without any noise, the solution is obvious: H = G(ω̃) = TF (gn(ω)) is the complex

transfer function corresponding to the filter gn(ω). In our case we know analytically gn
so it is easy to compute:

∆Wn(ω) = TF−1

[
TF [∆W̃n](ω̃)

G(ω̃)

]
. (5.25)

However, because Γb(ω̃) 6= 0, the numerator of this expression will converge to finite

value at high ω̃ whereas the denominator will converge exponentially to zero, therefore

the whole expression will diverge at high ω̃. Thus, if one is not cautious, the deconvolved

signal will have giant unphysical rapid oscillations. On one hand, one needs to set a

cut-off on H at high ω̃ to prevent this; on the other hand if this cut-off is too low, the

resulting deconvolution might miss physical features varying rapidly with ω i.e. there

will be too much averaging. How to find the optimal cut-off?
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5.3.2 The solution

The answer to this question was found by Norbert Wiener in the 40’s [254] and writes:

H(ω̃) =
G∗(ω̃)

|G(ω̃)|2(ω̃) + Γb(ω̃)
ΓW (ω̃)

=
1

G(ω̃)

1

1 + ρ−1(ω̃)
, (5.26)

where ΓW is the power density spectrum of ∆W and we have introduced the signal-to-

noise ratio:

ρ(ω̃) =
|G(ω̃)|2ΓW (ω̃)

Γb(ω̃)
. (5.27)

If the signal-to-noise ratio tends toward infinity, one does not need any cut-off. Because

noise is non zero, it is impossible to perfectly recover ∆Wn but this solution insures that

the error between the estimate ∆̂Wn and the real function ∆Wn will be minimal. It

is a filter commonly used to remove noise prior to signal detection in audio recordings,

sismographs, images or even to help gravitational wave detection. This filter is easy to

compute when you can measure independently Γb and ΓW but it is not our situation.

Indeed, apart from its T − periodicity we assume nothing on W . Thus, I had to imple-

ment a method to circumvent this problem. This is what is presented in the rest of this

section.

First we construct the Wiener filter:

Ha(ω̃) =
G∗(ω̃)

|G(ω̃)|2 + a/
∣∣∣∆W̃(ω̃)

∣∣∣2 (5.28)

where ∆W̃(ω̃) is the Fourier transform of ∆W̃ (ω). The deconvolved signal i.e. the

estimator of the quantity of interest (not strictly equal to ∆Wn):

∆̂Wn(ω, a) = TF−1
[
Ha × ∆W̃(ω̃)

]
. (5.29)

The error on the estimated value e(ω) = ∆Wn(ω) − ∆̂Wn(ω), will vary with the param-

eter a, which plays the same role as ρ−1(ω) the inverse of a signal-to-noise ratio. In

the situation a = 0, the filter is merely the inverse of the apparatus function and only

gives a proper reconstruction when the noise is absent, otherwise it adds huge unphysical

oscillations. Conversely, the situation a� 1 (low signal-to-noise ratio) corresponds to

an over-filtering which tends to smooth and damp too much the resulting signal. To the

limit a→ +∞, the result is a flat constant.
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To optimize the value of a, one needs to find the appropriate balance between those two

regimes. To do so, we constructed two quantities that have opposite trends with a:

N1(a) =

√√√√√√√√√√
∫ ∣∣∣∣∣∂∆̂Wn

∂ω
(ω, a)

∣∣∣∣∣
2

dω

∫ ∣∣∣∣∣∂∆̂Wn

∂ω
(ω, 0)

∣∣∣∣∣
2

dω

(5.30)

N2(a) =

√√√√√√√
∫ (

∆W̃n − ∆̂Wn ⊗ gn
)2

dω∫
∆W̃n

2
. (5.31)

The first quantity is decreasing from 1 to 0 with increasing a; it quantifies if there are too

many unphysical oscillations added by the filter. The second one goes from 0 to 1 with

increasing a and quantifies if the filter is over-smoothing data or not. The higher N1 is,

the higher unphysical oscillations are added by the deconvolution. The higher N2, the

smoother the deconvolution gets. A balance is to be found between this two regimes i.e.

we need to find a value of a that minimizes both N1 and N2. On the left panel of figure

5.15 is represented on a log-log scale N1 versus N2 for one set of data (10 MHz, n = 1)

but the trend is the same for all n. On this plot, we clearly identify the over-smoothed

regime and the regime where there is not enough filtering (too many oscillations). The

optimal value a is to be found in the circled area, however there are actually several

inflexion points in this area which renders the minimization criteria non-trivial and more

difficult to find. We implemented a procedure so as to determine systematically for each

data set the most appropriate value of a.

First we tried to approach this value evaluating the deconvolution results by eye. As

sketch on figure 5.16, the good point is roughly located on the last plateau of N1 and

before the plateau reaching N2 = 1. We thus established the following procedure : we

start to decrease a from a high value (such that N2(a) = 1) and after leaving the plateau

of N2, we searched numerically for the first inflexion point in log(N1) i.e. we evaluated

the first cancellation of ∂2ln(N1)/∂a2 while decreasing a. This gives the red diamond

point on figure 5.15.

This procedure is ad hoc and even seems a bit arbitrary but there are several ways to

check the rationality of it. For instance on the lower panel of figure 5.16, we can check

that applying a second time the convolution gn to the estimator ∆̂Wn we get back to

the raw data. It is not the case for a too high value of a (black and green curves). In

other words, for a too high, data are too much deteriorated. We can quantify this by

imposing an ad hoc limit N2 . 0.1 which is actually reasonable because it corresponds to
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Figure 5.15: Left. Example of N2 versus N1 varying a for data n = 1 at 10 MHz.
The appropriate filtering corresponds to a point in the circled area. Right. N1 and
N2 versus a for same data. The appropriate filtering corresponds to the red diamond
point (a = 1.18 × 10−2). The green diamond corresponds to an under-filtered choice
(a = 10−3) and blue diamond to an over-smoothed choice (a = 1.35 × 10−1).

the typical order of the relative error on raw data. Indeed, we consider the deterioration

is not significant if reconvolved data ∆̂Wn ⊗ gn are still within the error bars. For some

reason, it appeared that for every set of data on which we applied this procedure, finding

the first cancellation point of ∂2ln(N1)/∂a2 while decreasing a is enough because it

always corresponds to a value of a for which N2 . 0.1.

Conversely, we need a criteria to exclude under-smoothed choice. On the upper panel

of figure 5.16 blue and cyan curves clearly show unphysical oscillations and correspond

indeed to a too small value of a.

Actually, to control that the relative uncertainty on a does not influence much the final

result we constructed a Monte-Carlo exploration of each data set. That is to say that

we constructed multiple set of Wigner functions out of data and parameter a that could

vary according to a Gaussian law. For the raw noise data, center of the Gaussian density

function is determined by the average value of the noise and the standard deviation by

standard error to the mean. For a: the density of ln(a) is chosen as a Gaussian function;

center is determined by: ∂2ln(N1)/∂a2 = 0 and standard deviation by σln(a) = 1.22. This

concentrates most of the value of a on the plateau between the blue and green diamonds

on figure 5.15. We thus have a reproducible and traceable method to deconvolve the

signal. This method generates a set of (typically 1000) Wigner functions (or only partial
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Figure 5.16: Upper. Results of different inverse filtered data (10 MHz, n = 1) for 5
different values of a. aopt corresponds to the first cancellation of ∂2ln(N1)/∂a2 while
decreasing a (see main text). Lower. Results of different inverse filtered data to which
we reapplied the kernel gn. Not recovering raw data (green and black lines) is a sign
for over-smoothing.

harmonics ∆Wn) of which we take the average and calculate the standard deviation for

error bars. Any error bars on deconvolved data or Wigner functions presented in this

chapter are determined through this method. We see that the method works relatively

well and does not add too much errors to the signal.

Stating that we do not know anything on ∆W is actually exaggerated. Indeed, for

simple test signals like what will be presented in the following part, we do not expect

any surprises and we can compute all ∆Wn. Theoretically we can thus calculate ΓW ,

measure Γb and deduce ρ. In the next section, we compare deconvolution using two

Wiener filters constructed differently and show that they give relatively the same result.



How to properly deconvolve a noisy signal: the Wiener filter 153

5.3.3 Wiener deconvolution with guess on the signal-to-noise ratio

With Floquet theory, it is possible to compute the expected harmonics ∆Wn(ω). As

mentioned previously, for a sine drive at D = 1, interactions will only have the effect of

renormalizing the drive amplitude. Because we used shot noise to calibrate the amplitude

of the source and shot noise depends on what comes at the level of the QPC after

interactions, the method presented in section 2.4.3.5 actually gives us access to this

renormalized amplitude. With drive frequency and electronic temperature, we know all

the parameters to compute exactly the Wigner function incoming at the level of the

QPC. Therefore we are also able to compute ΓW (ω̃). To compute ρ in equation 5.26 we

also need Γb. We assume white Gaussian noise with standard deviation corresponding to

error bars (before deconvolution). All error bars on the raw data are not strictly identical

but of the same order of magnitude so we take their average to define Γb.

This procedure is actually a bit odd: we use our perfect knowledge of the incoming state

to improve a filtering method that is used to infer information on the incoming state. If

we already know everything on the incoming state, why would we need a tomography

protocol with a Wiener filter? Actually we did this to test the method presented in the

previous section. If the two methods give similar results, this means that they both use

roughly the same signal-to-noise ratio as a cut-off in the Wiener filter and confirms the

interest of the method presented previously.

To go further in this verification, we also calculated ρ with approximations of the exact

theoretical ∆Wn. To do so we fit the raw data at n > 0 with a Gaussian function

multiplied by a polynomial expression of order n − 1 and because we obtain an analytical

formula we can simply deconvolve it with the inverse of a Fourier transform (see equation

5.24). The resulting function is used to compute an approximation of ΓW (ω̃) and thus an

approximation of ρ. For n = 0, we fit the data with a Gaussian function, then derivate it

and then deconvolve it. Figure 5.17 shows the results of the deconvolution (for n = 3 of

10 MHz) for all these methods and compares it to the method with no guess (blue line)

presented in the previous section. The comparison was done for all n and all frequencies,

we checked that each time the three methods give roughly the same result which confirms

the relevance of the “no guess” method (method 1 on the figure).

5.3.4 Relevance of the Wiener filter and comparison with the Leviton
tomography

The Wiener deconvolution procedure is of fundamental importance for the protocol to

be fully general. Indeed, contrary to the Leviton tomography [104] it enables us to
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Figure 5.17: Deconvolution results for n = 3 of the 10 MHz drive. Method 1 corre-
sponds to the method without any guess (see previous section). Method 2 uses Floquet
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28×10−6 )2) with x = ~ω/e. As we see,

all three methods give relatively the same result.

free ourselves from the projection of our noise results onto the cn (or pn) coefficients

(probability to absorb or emit n photons). This projection has of course the advantage

to reduce the uncertainty on the reconstructed signal. However, like a filter, it cannot

capture all possible electronic signals. Indeed, it only enables to reconstruct signals that

are created by the excitation of an Ohmic contact with a voltage drive. More precisely,

it makes sense to use this formalism only when the first order coherence function writes:

G(e)(t, t′) = exp

(
ie

~

∫ t

t′
V (τ ′)dτ ′

)
GFµ(t − t′) (5.32)

or equivalently when the Wigner function writes:

W (ω, t) =
∑

(n+,n−)∈Z2

cn+ [VAC]cn− [VAC]∗e2πi(n−−n+)ftfµ (ω − (n+ + n−)Ω/2) . (5.33)

This is only a peculiar class of signal. For the mesoscopic capacitor in the single particle

injection regime or GHz single electron pumps, the Wigner function cannot be described

that way. What is more, we see that for the analysis to be feasible, we have to restrict
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ourselves to a few photon processes, so that only a few n are retained. In reference [104]

they fitted 3 curves, each with a four parameters model. These parameters are linear

combinations of the cn. In principle one should take into account all n but in the low

amplitude regime they could restrain to a few of them, keeping only the first cn with n in

the range [0, 3]. For high amplitude VAC & hf/e this is not valid anymore. In particular,

this makes it impossible to measure adiabatic signals (eVAC � kBT � hf).

To conclude this comparison, our system is a 4 terminal geometry with a real space

propagation between the source and the interferometer contrary to the Leviton which is

created and measured at the exact same place. This makes our system more sensitive

to interactions and lowers the signal-to-noise ratio but enables us to address interesting

electron-electron interaction problems in the framework of electron quantum optics.

5.4 Wigner function coming out of the single electron source:

a first attempt

5.4.1 Choice of parameters

This protocol is particularly relevant when applied to reconstruct non-stationary signals

created with a time dependent scatterer. At D ' 0.2 − 0.3, corresponding to a well

defined single electron wave packet above the Fermi sea, the current was too low to

create enough measurable partition noise. We had to find a compromise between having

a well defined single electron state and enough current. Working at 3.5 GHz, we chose a

value of D ' 0.7 which corresponds for this frequency to the beginning of the decrease

of current on a plot 〈I〉 versus Vg (see section 2.2.2.1). We actually set the magnetic

field at a lower value to reach only ν = 3, this is because we had trouble to find a stable

working point for the source at ν = 2 (drifts in electrostatic environment). This stability

was recovered going to ν = 3 but it comes with a lower signal-to-noise ratio. Indeed, the

impedance of the gas is lower and thus the current-to-voltage conversion (SV V =
R2
K
ν2 SII)

less efficient.

For this cool down, even at ν = 3, we observed long time drifts of the dot parameters.

Since measurements could last several days, we had to implement an automatic feedback

loop to be sure we stayed as fixed as possible around the same value of D. To do so

it was easier to lower the excitation amplitude so as to see the appearance of peaks

in the current versus gate voltage. We chose a value of Vexc ' 52µV corresponding to

half dot spacing and applied a sine drive (easier to calibrate in amplitude) at 3.5 GHz.

The theoretical Wigner function for this set of parameters is presented on figure 5.18

for Tel = 100 mK. We clearly see the effect of the time dependent scatterer that adds
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Figure 5.18: Theoretical Wigner function before interactions (Ω/2π = 3.5 GHz). Pa-
rameters of injection were determined with RF current measurements and the amplitude
of the drive with noise measurements.

stronger negativities and values above one to the signal compared to the situation D = 1.

However, we are not in a regime of single particle injection.

The protocol for this back-action loop is the following. We applied a small amplitude

modulation on the dot potential at 1.033 kHz and measured the derivative of its response

(first harmonic) with a Lock-in (Zurich instrument HFLI ). Thus a current peak is ob-

served as a cancellation point. This makes it easy to implement a proximity criteria for

the feedback loop to compensate drifts of the dot potential.

5.4.2 Phases calibration

As mentioned previously, we might expect the phase of ∆W1,n to vary with n and with

energy ω. For each n, we will use the phase φn determined in the same set of parameters

but at D = 1 as the origin of phases. To do so, for each n, we set ourselves at an energy

that maximizes the noise oscillations with δτ and fit them to determine amplitude and

phase. As mentioned in the previous section, we checked that φn does not vary with

energy at D = 1. Results are summarized in the following table:
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n φn (D = 1)

1 π/2 ± π/50

2 2π/5 ± π/25

3 2.06 ± 0.36 rad

This origin of phase now being properly calibrated, we can measure all harmonics of W1

when the source is pinched at D = 0.7 and driven at 3.5 GHz. We did not have time

to go beyond n = 3 although it is clear that for this kind of signal it is not enough to

reconstruct the full Wigner function. We checked with Floquet scattering theory that,

for this amplitude of drive, harmonics 3, 4 and 5 at D = 0.7 are of the same order

of magnitude than n = 3 for D = 1 (but n = 4 and 5 are negligible at D = 1). The

amplitude and phase of each ∆Wn is represented on figure 5.19. Up to some differences,

results are relatively close to what is measured at D = 1. The first difference concerns

∆W0,1 = ∆f which has slightly higher weight at higher energies compared toD = 1. This

is in agreement with the effect of a reduced transmission D. Indeed in the limit of small

transmissions, the injected electron has a well defined energy and ∆f has a really peaked

shape around the average energy (see figure 2.9 for instance). Thus in an intermediate

regime we expect to reduce weights at energies below the dot energy level. We also

observe a global phase shift of ≈ π/4 for n = 2. Floquet theory without interactions

indeed predicts a non-zero phase but also a non-monotonic phase relation with ω (that

we cannot observe). The fact that ∆W3 is really small is also quite surprising. We are

currently working with the theory group of Pascal Degiovanni to try to predict the effect

of interactions on the Wigner harmonics ∆Wn and compare it to these results. The fact

that we are not in a single electron injection regime renders calculation more complicated

because of many-body effects. Finally, we cannot really combine all these harmonics to

reconstruct a full Wigner that makes sense. We need to measure more harmonics to

recover a meaningful function: these are only preliminary results.
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Conclusion to this chapter

In this chapter, I have presented a universal tomography protocol aiming at reconstruct-

ing the Wigner functions of any arbitrary propagating electronic state i.e. any arbitrary

electronic signal. For this protocol to be general, I had to design a Wiener filter and a

method to estimate the tuning parameter of this filter. We successfully applied this proto-

col to reconstruct the Wigner functions of two simple states and from it, we quantitatively

established the difference between the two. We were able to observe strong negativities

and values above one in the Wigner function of the non-classical photo-assisted signal

but also the classicality of the adiabatic drive. Using this protocol, we then presented

promising preliminary results on the reconstruction of the Wigner function of a more

exotic state when the transparency of the dot is not one.
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Conclusion

6.1 Summary

In this manuscript, I presented two experiments relying on two-particle interferences. The

first one enabled to observe the fractionalization of a single electron into two collective

modes. We observed the decoherence and relaxation induced by this phenomenon. In

a second part, I showed we could use the interferometer to realize tomography of single

electron states.

In the first part of this work, we used the electronic analog of the Hong Ou Mandel inter-

ferometer to study a complex many-body problem which is the role of interactions on a

single particle in a one dimensional system. Because of interactions and low dimension-

ality, a single electron injected in a quantum Hall edge channel decomposes on collective

bosonic modes. This splitting happens on short time scales but the HOM interferometer

enables a great precision in the time domain. We could measure the shape in the time do-

main of short current pulses containing one or few electrons and observe their separation

in two after propagation over 3 µm in the outer edge channel at filling factor two. On the

inner edge we could observe the dipole structure created by this interaction mechanism

and measure a time scale τs defining an interaction strength parameter coherent with

previous frequency admittance measurements done on this sample [221]. This confirmed

the hypothesis of strong and short range Coulomb interactions (for frequencies below 6

GHz). From the detailed analysis of the pulse shape we could also probe the influence

of Coulomb interactions in the dot used to inject single electron excitations (not only in

between propagation channels).

Focusing then in the regime where we injected exactly particles one by one. We ex-

plored the evolution of the single electron coherence with respect to the temporal width

159
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of the emitted wavepacket and could extract from it a characteristic coherence time. We

measured this coherence time at filling factor two and three. Together with other cross

check experiments we could show that Coulomb interaction in between edge channels

is the main responsible for single electron decoherence. Comparing quantitatively our

results with a bosonisation model we established the relevance of this effect and could

provide a fully predictive picture of the decoherence mechanism without any adjustable

parameters. We described this life and death scenario in terms of electronic Wigner func-

tions. From this we showed that during propagation, single electron states decompose

on the two edges which then get entangled. We also showed that this decoherence is

accompanied by strong relaxation in energy in the outer edge.

From the observation that this interferometer can work as an accurate signal analyzer we

decided to extend its use. Following ideas developed by Grenier et al. [10] we started to

implement a tomography protocol aiming at reconstructing the full Wigner function of

any arbitrary propagating state. This protocol has many analogies with what has been

done for the leviton source [104] but is more general in the sense that it can be used to

process any signals and not just signals created by a drive on an Ohmic contact. We first

tested this protocol on simple sine drives at different frequencies applied on an open dot

so as to establish the difference between classical and “quantum” drives. In this regime,

the sources only emitted coherent collective states also called edge-magneto plasmons

which are different from single electron states. Doing so we measured photon-assisted

shot noise of sine drives up to 20 GHz while varying the DC bias. This enabled us to

recover the energy distribution of the analyzed signal i.e. population terms, but the

protocol aims further.

With it we could indeed recover coherence terms of a classical signal at 10 MHz and

of a non-adiabatic drive at 9 GHz. With a Wiener filter we reconstructed the best

estimate of the total Wigner function. We could quantitatively establish a difference

between the two signals and strong non-classicalities were visible for the 9 GHz signal.

We then applied this protocol to reconstruct the excitation coming out of a pinched dot

which starts to have quantization effects. The measurements in this regime of injection

are longer because we need a higher number of harmonics to recompose the Wigner

function. For the moment, we only have partial results and could not reconstruct such a

Wigner function. We are also currently working with our collaborators in the group of

Pascal Degiovanni to decompose the signal measured in the close dot situation as a sum

of single electron-hole pair excitation and to characterize their correlations and overlap

between successive periods T .
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6.2 Outlook

The natural following of this work will be to pursue the tomography of single electronic

states with more resolution. Because of inter-channel interactions it is not obvious to

detect something significantly different from a Fermi sea excited with a sine drive. This is

why we designed new samples with 2 pairs of single electron sources placed symmetrically

from each side of the QPC. One of this pair has a shorter propagation length toward

the QPC and the other a longer one. This would enable a direct comparison during the

same cool down of two different propagation lengths.

Rather than isolating the inner channel from the outer one we could, like in reference

[214], gap the excitations of the inner one by closing it on himself. If the loop is small

enough, the induced gap is higher than the energy of injected electron and relaxation is

forbidden because no electron-hole pairs with energy lower than this gap can be excited

in the inner edge. Our collaborators in Lyon are currently working on a quantitative

description of this system in terms of Wigner functions.

Doing this experiments, it was often tempting to go to fractional filling factors. With

our samples we could easily reach ν = 2/3 and there have been theoretical predictions on

what one could expect in terms of photon assisted shot noise [37, 255–259] in particular at

ν = 2/3 [84] where noise measurements versus temperature could enable to discriminate

between still debated different quasi-particle models [260]. We have made a few attempts

in this direction but faced experimental difficulties. In particular, injecting RF signal

through Ohmic contact led to significant heat dissipation probably because of a higher

impedance mismatch.

We have introduced the Hong Ou Mandel interferometer explaining how bosons and

fermions manifested a different behavior in this experiment. One then might be tempt to

probe directly the quantum statistic of anyons which has never been done unambiguously.

There have been predictions for collisions of out-of-equilibrium distributions of anyons

[119] but actually it seems that to probe quantum statistics directly, 2 partitioners, rather

than one, are needed [261].





Appendix A

Computation of coherence function

within Floquet formalism

A.1 Definition and properties

Time domain

{ψ̂(t′), ψ̂†(t)} = δ(t − t′) (A.1)

G(e)(t, t′) =
〈
ψ̂†(t′)ψ̂(t)

〉
(A.2)

where 〈...〉 is the average on the quantum state and G(h) is the hole coherence function.

The Floquet decomposition gives:

G(t, t′) =
∑
n

Gn(t − t′)e−inΩ t+t′
2 =

∑
n

Gn(τ)e−inΩt. (A.3)

Energy domain

G̃(e)(ω, ω′) =
〈
ĉ†(ω′)ĉ(ω)

〉
. (A.4)

We define the Fourier transform:

G(e)
n (τ) =

∫
dωe−iωτ/~G̃(e)

n (ω). (A.5)

Properties

G̃(e)(ω, ω′) =
∑
n

G̃(e)
n

(ω + ω′

2

)
δ(ω′ − ω + n~Ω). (A.6)

G(e)(t, t′) = G(e)∗(t′, t) (A.7)
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Setting ∆G(e) = G(e) − G(e)
F as the excess coherence fucntion with respect to the Fermi

sea coherence G(e)
F , we get:

G(e)
n (τ) = G(e)

−n
∗
(−τ) (A.8)

G̃(e)
n (ω) = G̃(e)∗

−n (ω) (A.9)

A.2 Coherence of a single electron on top of a Fermi sea

We consider a single electron wave packet |ϕe〉 well defined above the Fermi sea at Tel = 0

K i.e. there is no overlap with |Fµ〉. |ϕe〉 is defined the following way:

|ϕe〉 =

∫
dω ϕe(ω)ĉ†(ω)|Fµ〉. (A.10)

We want to calculate:

G̃(e)(ω, ω′) =
〈
ϕe

∣∣∣ĉ†(ω′)ĉ(ω)
∣∣∣ ϕe〉 (A.11)

=
x

dω1dω2ϕ
∗
e(ω1)ϕe(ω2)

〈
Fµ

∣∣∣ĉ(ω1)ĉ†(ω′)ĉ(ω)ĉ†(ω2)
∣∣∣ Fµ〉 ,

applying Wick’s theorem (at T = 0 K):

G̃(e)(ω, ω′) =
x

dω1dω2ϕ
∗
e(ω1)ϕe(ω2)

〈
Fµ

∣∣∣ĉ(ω1)ĉ†(ω′)
∣∣∣ Fµ〉 〈Fµ ∣∣∣ĉ(ω)ĉ†(ω2)

∣∣∣ Fµ〉
+

x
dω1dω2ϕ

∗
e(ω1)ϕe(ω2)

〈
Fµ

∣∣∣ĉ(ω1)ĉ†(ω2)
∣∣∣ Fµ〉 〈Fµ ∣∣∣ĉ†(ω′)ĉ(ω)

∣∣∣ Fµ〉
=

x
dω1dω2ϕ

∗
e(ω1)ϕe(ω2)(1 − fµ(ω′))δ(ω1 − ω′)(1 − fµ(ω))δ(ω2 − ω)

+ 〈ϕe|ϕe〉
〈
Fµ

∣∣∣ĉ†(ω′)ĉ(ω)
∣∣∣ Fµ〉

= ϕ∗e(ω
′)ϕe(ω) + G̃(e)

F (ω, ω′), (A.12)

so ∆G̃(e)(ω, ω′) = ϕ∗e(ω
′)ϕe(ω) contains all the information on the added single particle

wave packet.

A.3 Coherence out of the mesoscopic capacitor

In this section, we will use the scattering matrix formalism developed in [7] to show the

main formula used in the matlab code to compute the coherence out of the dot. The

source is considered as a time dependent scatterer that converts the input mode Ψ̂in(t)
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into ouput mode Ψ̂out(t):

Ψ̂out(t) =

∫
dt′U(t, t′)Ψ̂in(t′), (A.13)

where U(t, t′) is the Floquet scattering matrix. One can show that for a dot transparency

D = d2, transit time τf = h
∆ and with an applied drive voltage Vdc + Vexc(t), this matrix

writes:

U(t, t′) = rδ(t − t′) −
∞∑
q=1

d2rq−1e
− ie~

(
VdcqτF+

t∫
t′
dt1Vexc(t1)

)
δ(t − t′ − qτF )

= rδ(τ) −
∞∑
q=1

d2rq−1e−
ie
~ VdcqτF δ(τ − qτF )e

− ie~
∫ t+τ/2
t−τ/2 dt1Vexc(t1) (A.14)

where q represents the “number of turn” made by the electron before tunneling out of

the dot. To compute more easily this matrix we write it in Floquet formalism:

U(t, t′) =
∑
m

Um(τ)e−imΩt. (A.15)

To do this decomposition we need to Fourier transform the exponential term in A.14:

cn =
1

T

T∫
0

dteinΩte−
ie
~
∫ t
0 dt1Vexc(t1) (A.16)

e−
ie
~
∫ t
0 dt1Vexc(t1) =

∑
n

cne
−inΩt. (A.17)

Knowing : ∑
n

cnc
∗
n−m = δm,0, (A.18)

we have :

e
− ie~

∫ t+τ/2
t−τ/2 dt1Vexc(t1)

=
∑
n,m

cnc
∗
n−me

−imΩte−i(n+m
2

)ΩqτF . (A.19)

According to A.15, we have:

Um(τ) =
∑
n

cnc
∗
n−m

rδ(τ) − d2
∞∑
q=1

rq−1e−i(
e
~Vdc+(n+m

2
)Ω)qτF δ(τ − qτF )

 (A.20)

Coefficients cn are equal to pn coefficients in reference [36]. They are easy to compute

numerically when one knows Vexc(t). They correspond to the probability for the electronic

state to absorb (n > 0) or emit (n < 0) n photons at frequency Ω/2π. Finally to get a



166 Chapter A: Computation of coherence function within Floquet formalism

coherence function in energy domain we simply apply:

Um(ω) =

∫
dτeiτωUm(τ) (A.21)

=
∑
n

cnc
∗
n−m

r − d2
∞∑
q=1

rq−1e−
iqτF

~ (eVdc−ω+(n+m
2

)~Ω)

 (A.22)

=
∑
n

cnc
∗
n−m

[
r − e−

iτF
~ (eVdc−ω+(n+m

2
)~Ω)

1 − re−
iτF
~ (eVdc−ω+(n+m

2
)~Ω)

]
. (A.23)

This is how we compute Um(ω) from parameters D, Vdc, Vexc(t), Ω, Tel and ∆. Instead

of converting back to U(t, t′), we prefer to calculate directly the output mode in energy.

On one hand:

G̃(e)(ω, ω′) = f(ω)δ(ω − ω′), (A.24)

and on the other :

ĉout(ω) =

∫
dteiωtΨ̂out(t)

=

∫
dτ
∑
m

Um(τ)ĉin(ω − m~Ω)ei(ω−
m
2
~Ω)τ/~.

(A.25)

Finally :

ĉout(ω) =
∑
m

Um(ω − m

2
~Ω)ĉin(ω − m~Ω). (A.26)

from it we can directly compute the coherence function:

G̃(e)
out(ω, ω

′) =
〈
ĉout(ω

′)ĉout(ω)
〉

=
∑
m,m′

U∗m′(ω
′ − m′

2
~Ω)Um(ω − m

2
~Ω)f(ω − m~Ω)δ(ω − ω′ − (m − m′)~Ω).

(A.27)

It is interesting to express directly the Floquet coefficient G̃(e)
n (ω), indeed, they are also

equal to Floquet coefficients of the Wigner function Wn(ω); according to A.6:

G̃(e)
n (ω) =

∑
p

U∗p

(
ω − p + n

2
~Ω

)
Up+n

(
ω − p

2
~Ω
)
f
(
ω −

(
p +

n

2

)
~Ω
)
, (A.28)

or equivalently:

G̃(e)
n (ω) =

∑
m

U∗m−n

(
ω − m

2
~Ω
)
Um

(
ω − m − n

2
~Ω

)
f
(
ω −

(
m − n

2

)
~Ω
)
,

(A.29)
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The first step of the Matlab code is to compute Un(ω) as a matrix. One dimension of

the matrix correspond to n index and the other is a discretization of the energy axis ω

from −3∆ to 3∆. This cut-off in energy set some constrains on the set of parameter we

can use (frequency, dot spacing, drive amplitude and temperature) but it is not a real

issue when we use realistic typical values for our experiment. The same is done for f .

We benefit from the fact that Matlab is efficient in calculating matrix product. Thus

we obtain the coherence functions as matrices. One advantage of Floquet decomposition

is that we actually manipulate G̃(e)
n (ω) instead of G̃(e)(ω, ω′) and thus we only have to

discretize (and thus lose precision) on one energy axis, the other being already quantized

by Floquet theory (but without loss of precision).

A.4 Noise computation

The interference term in the noise reads:

Q(t, t′) = e2
(
G(e)

1

(
t, t′
) (

δ
(
t − t′

)
− G(e)

2

∗
(t, t′)

)
+ G(e)

2 (t, t′)
(
δ(t − t′) − G(e)

1

∗
(t, t′)

))
.

(A.30)

However we only access the low frequency noise which is (factor 2 comes from an “engi-

neer” convention):

Q(ΩM ) =2

∫
dτ Q(t, t′)

t
eiΩM τ (A.31)

with the measurement frequency ΩM → 0. One can show that:

∫
dτ G(e)

1 (t, t′)
(
δ(t − t′) − G(e)

2 (t′, t)
)t
eiΩM τ →

∑
n

∫
dω G̃(e)

n,1(ω)
(
δn,0 − G̃(e)∗

n,2 (ω)
)
.

(A.32)

which gives:

Q(0) = 2e2
∑
n

∫
dωG̃(e)

n,1 (ω)
(
δn,0 − G̃(e)∗

n,2 (ω)
)

+ G̃(e)
n,2 (ω)

(
δn,0 − G̃(e)∗

n,1 (ω)
)
. (A.33)

This correspond to the total low frequency interference term to which we need to remove

the Fermi sea contribution:

QFµ(0) = 2e2

∫
dω (fµ1 (ω) (1 − fµ2 (ω)) + 1↔ 2) . (A.34)

We thus have all the ingredients to compute excess noise at any temperature for any

excitation.
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A.4.1 Hanbury Brown & Twiss case

Here we suppose that source 2 is off so we have:

G̃(e)
n,2(ω) = δn,0fµ2(ω). (A.35)

So we are left with

∆QHBT1 =2e2
∑
n

∫
dω
(

∆G̃(e)
n1 (ω)δn,0(1 − fµ2(ω)) + δn,0fµ2(ω)(−∆G̃(e)∗

n1 (ω))
)

=2e2

∫
dω
(

∆G̃(e)
0,1(ω)(1 − 2fµ2(ω))

)
.

(A.36)

Here, the code simply sums up on the energy direction the ∆G̃(e)(ω) matrix column

corresponding to n = 0.

∆G(e)
n=0 counts occupation in energy. Indeed, terms with n = 0 correspond to stationary

terms over one period i.e. stationary terms on any time scale. Another way to express

this is to express the occupation in energy ρ(ω) with A.6:

ρ(ω) =
〈
ĉ†(ω)ĉ(ω)

〉
= G(e)

n=0(ω). (A.37)

Therefore, ∆QHBT1 enables to count out of equilibrium excitations. When temperature

is low enough compare to energy of excitations we can consider (1 − 2fµ) as a simple

weight −1 for ω < 0 and 1 for ω > 0. In the canonical injection regime, we emit one

hole well defined below µ2 and one electron above it, that counts as 2. The process is

repeated at frequency f so HBT noise will count an average of 2f particles per unit of

time. Therefore:

∆QHBT1 = 4e2f (A.38)

A.4.2 Hong, Ou & Mandel case

Here both sources are on, we can decompose ∆Q as:

∆Q = ∆QHBT1 + ∆QHBT2 + ∆QHOM , (A.39)

so that:

∆QHOM = −2e2
∑
n

∫
dω
(

∆G(e)
n1 (ω)∆G(e)∗

n2 (ω) + ∆G(e)
n2 (ω)∆G(e)∗

n1 (ω)
)

(A.40)
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Here in the Matlab code, we first use the dot product to compute the matrices cor-

responding to the two terms in between brackets above. Then, we calculate the sum

on both matrix’s dimensions which correspond to the sum over n and the integral over

energy.

We can interpret ∆QHOM as an overlap of single particle wave packet. Using A.12, we

can write for a temperature low enough compared to energy of excitations:

∆QHOM = −2e2

∫
dτ ∆G(e)

1 (t, t′)∆G(e)
2 (t′, t) + ∆G(e)

1 (t′, t)∆G(e)
2 (t, t′)

t

(A.41)

= −4e2f

∫
dτ ϕ∗e,1(t′)ϕe,1(t)ϕ∗e,2(t)ϕe,2(t′)

t
+ c.c. (A.42)

= −8e2f |〈ϕe,1|ϕe,2〉|2 , (A.43)

Combining A.38 and A.43 we get in the low temperature limit:

∆q =
∆Q

∆QHBT1 + ∆QHBT2

= 1 − |〈ϕe,1|ϕe,2〉|2 . (A.44)





Appendix B

Different models for plasmon

scattering theory

B.1 Intra-channel interaction only

Here, we disregard any interaction between the two channels. In channel alpha, the po-

tential is defined with respect to the ground reference. We can model this by a distributed

capacitive coupling to the ground Cg. Then we simply have:

uα(x, ω) =
ρ(x, ω)

Cg
=
−e

Cg
√
π
∂xφα(x, ω), (B.1)

then the equation of motion on channel α becomes:

(iω + vF∂x) φα(x, ω) =
−e2

hCg
∂xφα(x, ω), (B.2)

which simply solves in:

φα(l, ω) = φα(0, ω)e
i ωl

vF+ e2
hCg . (B.3)

We see here that screening renormalizes the velocity. We recover qualitatively the dif-

ference of velocities for charge mode between gated and ungated samples of reference

[194]. Indeed, bringing a metallic gate close to the edges can be seen as a increasing

the capacitance toward the ground which then lower velocities. On the other hand, in

the ungated gas, the potential in the edges is poorly screened (Cg → 0) which increases

renormalized velocities. Note that the Fermi velocity is the minimal velocity one can

obtain (and not the maximum).
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B.2 Short-range interaction

This is the most discussed model in the literature. The potentials uα are calculated with

the inverse of the distributed capacitance matrix C which relates uα(x) and ρα(x) at

same position x only: it means that the interaction has a zero length range.[
ρ1(ω, x)

ρ2(ω, x)

]
=

[
Cg1 + C −C
−C Cg2 + C

] [
u1(ω, x)

u2(ω, x)

]
, (B.4)

where C is the capacitance per unit length between the two channels and Cgi the ca-

pacitance per unit length between ground and channel i. One then has to diagonalize

V = vF Id + e2

h C
−1 to find the new eigenmodes φ± for the bosonic field and the new

eigenvelocities v±: [
φ+

φ−

]
=

[
cos(θ/2) sin(θ/2)

sin(θ/2) − cos(θ/2)

] [
φ1

φ2

]
(B.5)

v± = vF +
e2

h

Cg1 + Cg2 + 2C ∓
√

4C2 + (Cg1 − Cg2)2

2 (Cg1Cg2 + C (Cg1 + Cg2))
, (B.6)

with

sin(θ/2) =
2C√

2
[
(Cg1 − Cg2)2 + 4C2

]
+ 2(Cg1 − Cg2)

√
(Cg1 − Cg2)2 + 4C2

. (B.7)

The equation of motion simply solves in φ±(l, ω) = eiωl/v±φ±(0, ω). One has to do the

inverse basis transformation to recover the scattering matrix elements:

S11(ω) = eiωl/v++eiωl/v−
2 + cos θ

eiωl/v+ − eiωl/v−
2

(B.8)

S21(ω) = sin θ
eiωl/v+ − eiωl/v−

2
(B.9)

with:

cos θ =
Cg1 − Cg2√

4C2 + (Cg1 − Cg2)2
. (B.10)

In the strong interaction limit, the ratio Cg1
C and Cg2

C tends to zero or equivalently θ → π/2

so these expressions simplifies and we recover the two so called charge and neutral mode,

φρ and φn respectively. The charge mode is the symmetric charge distribution and the

neutral one the anti-symmetric one, as given by the expression:

φ+ → φρ(ω) = 1√
2

(φ1(ω) + φ2(ω)) (B.11)

φ− → φn(ω) = 1√
2

(φ1(ω) − φ2(ω)) . (B.12)
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In this configuration the velocities become:

v+ → vρ = vF +
e2

h

2

Cg1 + Cg2
(B.13)

v− → vn = vF +
e2

h

1

2C
(B.14)

Here capacitance are divided by a unit length so the previous expression is homogeneous.

Finally one gets the scattering matrix elements:

S11(ω) = 1+eiωl/v−
2 (B.15)

S21(ω) = 1−eiωl/v−
2 . (B.16)
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Résumé : Cette thèse est dédiée à l’analyse de signaux électriques quantiques dans

les canaux de bords de l’effet Hall quantique. En particulier, j’ai utilisé l’analogue

électronique de l’interféromètre de Hong, Ou et Mandel pour réaliser des expériences

d’interférométrie à deux particules. En entrée de l’interféromètre sont placées des sources

d’électrons uniques qui permettent l’injection contrôlée d’excitation ne contenant qu’une

seule particule. Les canaux de bords guident ces excitations jusqu’à l’interféromètre. Il

s’agit d’un contact ponctuel quantique qui agit comme une lame semi-réfléchissante pour

les électrons. On mesure en sortie les fluctuations basse fréquence du courant. Cela nous

permet de mesurer le recouvrement entre les fonctions d’onde à un électron émises à

chaque entrée. Grâce à cette mesure de recouvrement, j’ai pu caractériser à des échelles

de temps sub-nanoseconde, le rôle des interactions Coulombienne sur la propagation de

l’électron unique. J’ai pu montrer que ces interactions étaient la source principale de

la décohérence du paquet d’onde mono-électronique et qu’elles décomposent l’électron

sur des modes collectifs. C’est une manifestation de la fractionalisation de l’électron qui

apparaît dans les systèmes uni-dimensionnel en interactions. Grâce à cet interféromètre,

j’ai pu aussi implémenter un protocole de tomographie qui permet de reconstruire toute

les informations à une particule de n’importe quel signal émis dans le canal de bord. Ce

travail permet d’étudier finement des courants non-classiques.

Mots clefs : Physique mésoscopique, optique quantique électronique, effet Hall quan-

tique, source d’électrons uniques, bruits de courant, fractionalisation, imagerie de fonc-

tions de Wigner.

Abstract : This thesis is dedicated to processing of quantum electronic signals in the

edge channels of the integer quantum Hall effect. In particular, I used the electronic

analogue of the Hong, Ou and Mandel interferometer to realize two particle interference

measurements. The interferometer consists of a quantum point contact (QPC) that acts

as an electronic beam-splitter. The inputs are fed by single electron sources whose single

particle excitations are guided toward the QPC by quantum Hall edge channels. We

measure low frequency current noise in one of the output to measure overlaps of first

order coherence functions. With this interferometer I could characterize on short time

scales the role of Coulomb interactions on single electron propagation. I could show that

interactions are the main source of decoherence of the single particle wave packet and that

the electron decomposes into collective modes. This is due to fractionalisation which is

a hallmark of interacting unidimensional systems. Thanks to this interferometer I could

also implement a universal tomography protocol to dissect all single particle information

of any arbitrary current. This enables the study of non-classical propagating state.

Keywords: Mesoscopic physics, electron quantum optics, quantum Hall effect, single

electron source, current fluctuations, fractionalisation, Wigner function tomography


