
HAL Id: tel-01566938
https://hal.science/tel-01566938

Submitted on 21 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Novel approaches for the exploitation of high
throughput sequencing data

Antoine Limasset

To cite this version:
Antoine Limasset. Novel approaches for the exploitation of high throughput sequencing data. Bioin-
formatics [q-bio.QM]. Université Rennes 1, 2017. English. �NNT : �. �tel-01566938�

https://hal.science/tel-01566938
https://hal.archives-ouvertes.fr

ANNÉE 2017

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Bretagne Loire

pour le grade de
DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Informatique
Ecole doctorale MATISSE

présentée par

Antoine Limasset
préparée à l’unité de recherche 6074 IRISA

INSTITUT DE RECHERCHE EN INFORMATIQUE ET
SYSTEMES ALEATOIRES

ISTIC

Nouvelles approches
pour l’exploitation
des données de
sequençage haut débit

Thèse soutenue à Rennes
le 12 Juillet 2017
devant le jury composé de :
Hélène TOUZET
Directeur de recherche, CRYSTAL/ rapporteur
Thierry LECROQ
Directeur de recherche, LITIS / rapporteur
Christophe KLOPP
Ingenieur de recherche, BIA / examinateur
Vincent LACROIX
Maitre de conférence, LBBE/ examinateur
Gregory KUCHEROV
Directeur de recherche, LIGM/ examinateur
Rumen ANDONOV
Professeur, IRISA/ examinateur
Dominique LAVENIER
Directeur de recherche, IRISA/directeur de thèse
Pierre PETERLONGO
Chargé de recherche, IRISA/ co-directeur de thèse

Acknowledgments

Administration
Je voudrais tout d’abord remercier l’école doctorale Matisse, l’Université Rennes 1,

IRISA et INRIA ainsi que leur personnels sans qui cette thèse et plus généralement cet
environnement de recherche et d’enseignement scientifique n’existeraient tout simplement
pas. Je remercie doublement les personnels d’administration à qui j’ai eu affaire et à qui
j’ai dû donner du fil à retordre. Une pensée spéciale à Marie Le Roïc qui n’a jamais paru
effrayée par mon organisation plus que doûteuse et à l’administration de l’école doctorale
pour avoir réussi à me faire remplir un dossier correctement pour la première fois en 26
ans.

Recherche Je voudrais bien évidemment remercier tous mes collaborateurs. Merci à
Eric Rivals de m’avoir jeté dans le monde de la bioinformatique et de m’y avoir donné
goût pendant mon stage de L3. Merci à Dominique Lavenier de m’avoir non seulement
conseillé mais guidé vers un stage puis une thèse entre de très bonnes mains. Merci a
Rayan Chikhi et Paul Medvedev de m’avoir lancé dans le petit monde du graphe de De
Bruijn, je me demande souvent quand est-ce que je vais pouvoir en sortir. Je remercie ici,
avec quelques années de retard, Rayan de m’avoir accueilli en ami plus qu’en encadrant, je
garde de très bons souvenirs, peut-être un peu trop français, de ce voyage aux Etats-Unis.
Je voudrais spécialement remercier ces premiers encadrants pour leur bienveillance qui
m’a permis de me conforter dans ma capacité à contribuer à la formidable construction
qu’est la recherche, je ne suis plus tout à fait le même depuis.

Je ne vais pas prendre assez de place pour remercier Pierre Peterlongo pour m’avoir
encadré et suivi pendant plus de trois ans. Je pense avoir été une thésard difficile et
malgré nos disjonctions tu m’as toujours laissé libre dans mon fonctionnement. Je ne
pense pas que j’aurais pu trouver une meilleure personne pour cette aventure. Je trouve
que nous avons formé une belle paire et je suis impressionné par la vitesse à laquelle les
choses avancent.

Merci également à tout le groupe Colib’read, plein de grandes rencontres ont eu lieu
pour moi lors de ces réunions. Si je garde la vision d’un groupe de recherche comme un
groupe d’amis c’est un peu grâce à vous.

Je voulais aussi remercier Romain Feron, je pourrais me targuer sûrement longtemps
que mon premier encadrement se soit si bien passé. J’espère que tu en garderas de bons
souvenirs et que tu continueras dans ta lancée.

1

Petite pensée pour Thomas Rokicki et Dianne Puges qui ont trouvé l’assemblage
génomique suffisamment intéressant pour participer à un petit projet avec moi. Je re-
grette un peu que celui-ci n’ait jamais abouti mais il n’est jamais trop tard.

Merci à Jean-Francois Flot de m’avoir invité à Bruxelles et d’être aussi enthousiaste.
Je nous souhaite beaucoup de succès à l’avenir.

Merci à tous mes co-bureaux de m’avoir supporté, et je souhaite à Marie Chevallier
une bonne et heureuse année. Plus généralement je remercie toute l’équipe GenScale de
m’avoir acueilli et pour cette bonne ambiance au travail qui n’a tout simplement pas de
prix.

These
Je remercie très solennellement Yannick Zakowski Hugo Bazille Camille Marchet et

Pierre Peterlongo d’avoir accompli un travail digne des travaux d’Asterix: corriger ma
prose. Je regrette presque de ne pas avoir compté le nombres de fautes corrigées par vos
soins mais sachez que votre tâche a été colossale. Une pensée pour Pierre qui a dû passer
plusieurs nuits blanches à relire les différentes versions de celle-ci, à se fouler le bras en
rayant des centaines de pages. Un très très grand merci à Camille pour l’organisation
de mon pot de thèse et des festivités, si j’avais moins procrastiné j’aurais pu davantage
mettre la main a la pâte et j’aurais pu mettre Paris en bouteille.

Enseignement
J’ai eu le plus grand des plaisirs lors des missions d’enseignement qui m’ont été ac-

cordées par l’ISTIC. Je ne peux remercier tous mes élèves mais sait-on jamais, merci de
votre interêt (parfois) et de votre sympathie (souvent), vous avez été super. Je voudrais
également profiter de cette occasion pour remercier quelques-un de mes professeurs. Merci
a Mohamed Rebbal de m’avoir fait comprendre l’essence de la résolution de problèmes.
Merci à Nicolas De Granrut et Gérard Debeaumarché pour m’avoir fait confiance et per-
mis d’accéder aux études supérieures auxquelles j’aspirais. Ma vie serait bien différente
sans votre soutien et je travaille à rester digne de celui-ci.

Amis
Ces années à Rennes m’ont vu changer d’une manière saisissante et je vais remercier

ici essentiellement des Rennais qui m’ont entouré lors de mes péripéties dans ce beau
pays, que personne n’en prenne ombrage. Merci à Justine de m’avoir suivi jusque ici et
d’avoir été ma première experience de vie commune. J’espère que tu garderas une place
spéciale à nos élucubrations et diverses aventures farfelues en pays breton, elles ont pour
ma part toute leur place dans la boite des bons souvenirs. Merci a Simon Rokicki et
Bastien Pasdeloup d’avoir les premiers accueilli un Cachannais expatrié et d’avoir fait
de moi un des vôtres. Je remercie tout les membres des Projet C2Silicium et UberML,
pour avoir contribué au lignes les plus hilarantes de mon CV. Encore une fois je ne vais
pas prendre assez de temps pour remercier suffisament la Complexiteam. Merci pour
tout ces super moments, je m’excuse officiellement pour mon Warwick Top et j’accuse le
mauvais matchup. Plus sérieusement quoi que l’on vous dise, sachez-le, dans mon coeur,
nous sommes au moins Diamant. Merci à Joris Lamare d’avoir gardé le contact malgré
la distance et d’être toujours là pour accueillir des voyageurs déglingués et pour nous
proposer les meilleurs plan de la Terre, pas moins. Un des plus grand merci à Gaëtan
Benoit pour avoir été mon plus proche collègue pendant toutes ces années. Pour ne citer
qu’une de nos nombreuses aventures, merci d’avoir porté le projet de court-métrage sur
l’assemblage génomique et sache que, quoi que le président du jury en dise, notre film

2

reste le meilleur. Je vais également remercier les Doudous, pour tout votre soutien, vous
n’avez jamais répondu absents lorsque j’avais besoin d’aide, je serais etonné de vous en
avoir rendu le dixième. Je n’oublie pas un remerciement spécial à Simon pour son aide
et ses discussions précieuses sur la compilation et les serveurs Minecraft. Merci à Olivier
Ruas et Hugo Bazille pour avoir essayé de me maintenir en forme le long de cette thèse.
Merci à Gurvan Cabon d’avoir été le coloc le moins chiant du monde. Dur à classer je vais
remercier également mes amis à quatre pattes. Merci Belial pour avoir écrit plus que moi
sur mon document de thèse (notamment le fameux éedfff).
Merci à Lux d’avoir été la plus gentille des chattes et mon premier animal. Merci à
Jelly d’être un si bon petit tambour. Merci a BBhash de m’avoir laissé des doigts pour
travailler.

Famille Je voudrais remercier mes parents sans qui rien de tout cela n’aurait été
possible. Plus sérieusement, je vous remercie de m’avoir donné les clefs pour en arriver
là. Merci pour tout votre amour et tout votre soutien. Tout ce que vous m’avez apporté
a fait de moi quelqu’un d’entier et pour cela je vous remercie infiniment. Je voudrais
finalement remercier ici Camille Marchet que je considère aujourd’hui comme la meilleure
chose qui me soit arrivé. Si un des remerciements n’est pas assez developpé c’est celui-ci.
Je n’aurais pas été jusqu’ici sans toi, merci pour ces bons moments.

Divers A mon grand regret ceux-ci ne pourront jamais lire ces remerciements. Merci
a Nadine et Griffin, mes deux ordinateurs de travail, pour leur fidélité. Que Nadine me
pardonne mon inattention, j’espère que tu vis heureux avec ton nouveau propriétaire
qui a dû avoir bien du mal à réinstaller MacOS sur un Linux. Merci au Genocluster de
m’avoir supporté tout ce temps, pardonne-moi si je t’en ai parfois trop demandé. Pour
finir sur une note sérieuse je voudrais remercier les projets suivants et leurs collaborateurs
: Libreoffice Linux Scihub Github Travis Gnu.

3

Abstract

Novel approaches for the exploitation of high throughput sequencing data
In this thesis we discuss computational methods to deal with DNA sequences provided by
high throughput sequencers. We will mostly focus on the reconstruction of genomes from
DNA fragments (genome assembly) and closely related problems. These tasks combine
huge amounts of data with combinatorial problems. Various graph structures are used
to handle this problem, presenting trade-off between scalability and assembly quality.

This thesis introduces several contributions in order to cope with these tasks. First,
novel representations of assembly graphs are proposed to allow a better scaling. We also
present novel uses of those graphs apart from assembly and we propose tools to use such
graphs as references when a fully assembled genome is not available. Finally we show how
to use those methods to produce less fragmented assembly while remaining tractable.

3

Nouvelles approches pour l’exploitation des données de séquencage haut débit

Cette thèse a pour sujet les méthodes informatiques traitant les séquences ADN provenant
des séquenceurs haut débit. Nous nous concentrons essentiellement sur la reconstruction
de génomes à partir de fragments ADN (assemblage génomique) et sur des problèmes
connexes. Ces tâches combinent de très grandes quantités de données et des problèmes
combinatoires. Différentes structures de graphe sont utilisées pour répondre à ces prob-
lèmes, présentant des compromis entre passage à l’échelle et qualité d’assemblage.

Ce document introduit plusieurs contributions pour répondre à ces problèmes. De
nouvelles représentations de graphes d’assemblage sont proposées pour autoriser un meilleur
passage à l’échelle. Nous présentons également de nouveaux usages de ces graphes, dif-
férent de l’assemblage, ainsi que des outils pour utiliser ceux-ci comme références dans les
cas où un génome de référence n’est pas disponible. Pour finir nous montrons comment
utiliser ces méthodes pour produire un meilleur assemblage en utilisant des ressources
raisonnables.

4

Contents

Acknowledgments 1

Abstract 3

Table of contents 4

1 Introduction 7
1.1 DNA, genomes and sequencing . 8
1.2 Genome assembly . 11

1.2.1 Greedy . 14
1.2.2 Overlap Layout Consensus . 15
1.2.3 De Bruijn graphs . 20

1.3 Assembly hardness . 31
1.3.1 Repeats . 31
1.3.2 Scaffolding . 33
1.3.3 Multiple genomes . 34

1.4 Outline of the thesis . 36

2 Handling assembly 37
2.1 The assembly burden . 38
2.2 Overlap graph scalability . 41
2.3 The scaling story of the de Bruijn graph representation 43

2.3.1 Generic graphs . 44
2.3.2 Theoretical limits . 45
2.3.3 Kmer Counting . 46
2.3.4 Probabilistic de Bruijn graphs . 46
2.3.5 Navigational data structures . 47
2.3.6 Massively parallel assembly . 48

2.4 Efficient de Bruijn graph representation 49
2.4.1 Compacted de Bruijn graph . 49
2.4.2 De Bruijn graph construction . 49
2.4.3 Unitig enumeration in low memory: BCALM 51
2.4.4 Assembly in low memory using BCALM 54

2.5 Efficient de Bruijn graph construction . 56
2.5.1 BCALM2 algorithm . 56
2.5.2 Implementation details . 57

5

2.5.3 Large genome de Bruijn graphs 59
2.6 Indexing large sets . 62

3 The de Bruijn graph as a reference 81
3.1 Genome representations . 82

3.1.1 Reference sequences . 82
3.1.2 Genome graphs . 84
3.1.3 De Bruijn graphs as references . 85

3.2 Read mapping on the de Bruijn graph 91
3.2.1 An efficient tool for an NP-Complete problem 91
3.2.2 Mapping refinements . 92

3.3 De novo, reference guided, read correction 93
3.3.1 Limits of kmer spectrum . 93
3.3.2 Reads correction by de Bruijn graph mapping 94

4 Improving an assembly paradigm 111
4.1 Assembly challenges . 112

4.1.1 Two assembly paradigms . 112
4.1.2 Why read length matters: polyploid assembly 112
4.1.3 Taking the best of both worlds 113

4.2 Building very high order de Bruijn graph 116
4.2.1 Successive mapping strategy . 116
4.2.2 Beyond read length . 121

4.3 Assembly results . 123
4.3.1 Haploid genome . 123
4.3.2 Diploid genome . 124
4.3.3 Future works . 125

5 Conclusions and perspectives 129
5.1 Conclusion . 130
5.2 Proposed methods . 132
5.3 Future of sequencing . 133

5.3.1 Third generation sequencing . 133
5.3.2 Long range short reads sequencing 133

5.4 Future of this work and perspectives . 134

Bibliography 148
Table of contents

6

Chapter 1

Introduction

"People say they want simple things, but they don’t. Not always."

John D. Cook

7

In this chapter we first introduce the global context of DNA sequencing and
genome assembly. Then we provide a high level description of the main methods
used in this field. Thereafter we describe the limits and challenges faced nowadays in
genome assembly. We finish this chapter by an outline of the thesis.

1.1 DNA, genomes and sequencing

Deoxyribonucleic acid or DNA is a molecule that stores biological information used in the
functioning of all known living organisms. Most DNA molecules consist of two polynu-
cleotides strands coiled around each other to form a double helix, composed of simpler
component called nucleotides (Figure 1.1). Each nucleotide, or base, can be either iden-
tified as adenine (A), cytosine (C), guanine (G) or thymine (T). The bases of the two
separate strands are bound together, according to base pairing rules: A with T and C
with G, to make double-stranded DNA. The sequence of these four bases along the back-
bone encodes biological information. DNA is usually stored directly in the cytoplasm for
prokaryotes, and in the nucleus and different organelles in eukaryotic cells. Depending on
organisms, DNA can be circular or not, and characterize organisms through structures
called chromosomes. The whole information within the DNA molecule of an organism is
called its genome. Conceptually a genome can be represented as a word or a set of words
on the alphabet {A,C,G, T}. Genomes are usually large sequences, a human genome has
more than 3 billions bases arranged into 46 chromosomes. In certain viruses, the genome
can be encoded in a closely related molecule, the RNA, instead of the DNA. Importantly,
there exists a range of redundancy of the genomic information across the living. Some
cells store their genomic information into a single set of unpaired chromosomes (haploidy)
while others (like humans) have two copies of each chromosome (diploidy). Some species
have even more than two copies (polyploidy).

Since DNA discovery in 1953 [1], genome study has shown itself to have huge im-
plications in both academical and industrial fields like agronomy, medicine and ecology.
Indeed the knowledge of the genome sequences gives a tremendous access to living organ-
isms characteristics and properties, and is now commonly at the core of biology studies.
Sequencing is the operation that consists in determining the bases sequence of a DNA
molecule and to encode it on a numerical support for its analysis. Being able to access
and study the Human genome [2] [3] is considered as one of the major milestone in sci-
entific history. But this genomic information is partial and imperfect, as no sequencer
is yet able to directly output a completely sequenced genome. Thus the apparition of
sequencing technologies has created a whole field in computational biology to handle this
incredibly discovery-promising data. Several kind of sequencing technologies exist, but
they share common properties:

• They only produce fragments of our genome ("reads")
• The locations of the fragments are unknown
• The fragments may contain errors

We call those genomic fragments/substrings "reads" to reflect the fact that they were
"read" from the genome. Because of the DNA structure, both strands are present and
sequenced. The strands are bases complemented (A to T and C to G) and read in the

opposite way. A genome containing ACCTGC therefore may present reads as CCTG or
CAGG: CAGG being the reverse-complement of CCTG read from the opposite strand.
Several methods have been proposed to sequence DNA based on a wide range of tech-
nologies that will not be described here. The differences between sequencing technologies
are essentially errors and read length distribution. We can define an error rate of a read
by the ratio of the number of incorrectly sequenced bases by the size of the read.

The sequencing technologies are therefore categorized in three generations according
to these characteristics and order of appearance.

• Sanger sequencing [4] was the first method available. It produce sequences of some
kilo-bases length with a high accuracy (error rate around 1%).

• Next generation sequencing (NGS), often referred to as Illumina/Solexa sequenc-
ing [5], is the most broadly used technology. It produces shorter reads (hundreds of
bases) with high accuracy (< 1%). This technology presents an order of magnitude
higher throughput and cheaper sequencing than the former technology.

• Third generation sequencing (TGS) is the last generation of sequencing technology,
which includes Single Molecule Real Time sequencing [6] and Nanopore sequenc-
ing [7], producing very long sequences, up to hundreds kilo-bases. However, they
exhibit a very high error rate (up to 30%).

In addition to those properties, each method may show different biases due to the protocol
employed. We can mention that in the short reads from NGS, some regions rich in G/C
bases are less covered [8] and read ends present higher error rate [9].

Sanger sequencing is almost no longer used because of its cost and low throughput.
As for the third sequencing generation, the different technologies are extremely recent

Figure 1.1: DNA representation.

9

and are still currently being developed in a fast moving environment. Nowadays, NGS
remains the most popular technique and we will focus on this type of sequencing in this
document. However TGS will eventually become widely used and the present work was
partially designed to open onto the usage of such data.

For all existing technologies, the main challenge comes from the lack of information
about the origin of a read. Each read could come from any strand in any position of any
DNA molecule introduced in the sequencer. This absence of context and the small size
of the sequences obtained, relatively to a genome size, make it difficult to use reads as
such. Ideally, we would need the access to the underlying genomes in their entirety.

Since the beginning of sequencing of DNA molecules, genomes are produced by struc-
turing and ordering reads information. Then these reconstructed genomes can be used
as references. Reference genomes are the best insight we have about the one-dimensional
organization of information in living cells. They give access not only to the gene se-
quences that lead to proteins, but also to flanking sequences that altogether impact the
functioning of living beings [10]. They also reveal the inner organization of the genome
such as genes relative positions or chromosomes structure. Helping understanding the
genomes and organisms evolution, as well as how all the living is ruled by the encoded
information. Besides, reference genomes can be seen as an entry point for biologists to
use other kinds of data. For instance, they may add information about the known genes
positions and functions to annotate the genome [11] [12].

Reference genome reconstruction is therefore crucial in various domains where raw,
out of context reads are unusable. The task of reordering the reads to recompose the
sequenced genome is called genome assembly. Tools designed for this task, called assem-
blers, have to make no a priori hypothesis over the location or the strand of each read
and try to reconstruct the original sequences by ordering the reads relatively. As it will
be detailed further, genome assembly is especially complex as the bases distribution is far
from being uniform. Genomes present specific patterns such as large repeated sequences
(repeats), regions with very specific distributions of nucleotides or extremely repeated
sequences of nucleotides. Such patterns make genomes different from a uniformly dis-
tributed sequence of nucleotides. [13] shows that a human genome is largely constituted
of repeated sequences of significant lengths.

Reference genomes used in this document
In this document we will present various results based on different genomes. For the
sake of consistency, we choose a small number of well known and well studied genomes.
The first one is the genome of the Escherichia coli (E. coli). E. coli is a bacteria with a
genome of 4.6 megabase pairs constituted of one circular chromosome. The second one
is the genome of Caenorhabditis elegans (C. elegans). C. elegans is a nematode and was
the first multicellular organism to have its whole genome sequenced. Its genome counts
6 chromosomes and is 100 megabase pairs long. Pictures of the two organisms are shown
on Figure 1.2. The third genome is the human reference genome. The version used
was GRCh38, accessible at https://www.ncbi.nlm.nih.gov/grc/human. The genome
counts 23 chromosomes and is 3,234 megabase pairs long.

10

Figure 1.2: E. coli bacteria and C. elegans worm from https://upload.wikimedia.org/
wikipedia/commons/3/32/EscherichiaColi_NIAID.jpg and http://www.socmucimm.
org/wp-content/uploads/2014/06/C.-elegans.jpg

.

"DNA, genomes and sequencing" core messages:

• Genomes are large sequences of "ACTG", whose knowledge is essential to bio-
logical studies

• To access this information, we use machines called sequencers
• We are not able to obtain a whole genome directly out of the sequencers but

only "reads" that can be seen as fragments of the genome
• Reads are way smaller than the genome and they contain errors
• The task of recovering the original genome from the "reads" is called genome

assembly

1.2 Genome assembly
Two kinds of genome assembly may be distinguished: reference guided assembly and de
novo assembly. The reference guided assembly consists in the assembly of a genome when
we already have a reference for the species of the individual sequenced. We expect the
new genome to be very close to the reference and we are interested in the differences
between the individuals. This type of assembly is much easier because we only have to
find the differences between the two genome sequences and we can mimic the reference
genome to order the reads. Reference guided assemblers as STAGE [14] and Chip-seq [15]
consist in two main steps:

• Reads Alignment on the reference
• Consensus between mapped sequences

If this way of proceeding makes the assembly step easier and much less costly, it can
seem unsatisfying for two reasons. First because of the biases that the method present.
We make the prior hypothesis that the genome to assemble is very close to the reference.

11

This may mislead the assembly onto something too similar to the reference. Secondly
the method is obviously not self-sufficient since a reference needs a prior reference to be
constructed. We do not have access to many references genome as it can be seen on
Figure 1.3 even if this number should increase dramatically in the next decades. For
these reasons we will focus on de novo (without reference) assembly in this document.

Since we do not know the original position of the reads, we will try to position them
with respect to each others. For this we mainly rely on the notion of "overlaps" between
reads. We say that two sequences A and B overlap if a suffix of A is equal to a prefix of
B. In some cases we might consider that A and B overlap if a suffix of A is similar to a
prefix of B according to some distance. The main intuition being: "If a read A overlaps
a read B then it is likely that A and B are consecutive in the genome" (if the overlap is
large enough to be significant). Following this intuition, assembly consists in searching
for reads that overlap each others. The larger the overlap, the more significant it is, as
overlaps of few bases may be spurious. In Figure 1.4 the first and fifth reads share an
overlap of 2 bases (GC) although the two reads do not come from the same location of
the genome in gray.

Putting aside specific biases, we can depict a sequencing experiment as a uniform
distribution of reads along the genome as a first approximation. Large overlaps then
mean redundancy in the reads, as bases within an overlap will be present in reads sharing
this overlap. In order to obtain large overlaps between sequences, we rely on a high
redundancy in the sequencing dataset. The notion of coverage (or depth) of a genome
by a sequencing is often used to quantify this redundancy. For a genome of 4 millions

Figure 1.3: Number of finished and unfinished genomes in gold database
(https://gold.jgi.doe.gov/statistics). Unfinished (or "draft") genomes may be represented
as a set of widely fragmented sequences.

12

AAAATCGAGCGCGGATCGATTGCATTTAGTCCTACG
1 AAAATCGAGC
2 CGAGCGCGGA
3 GCGGATCGATT
4 CGATTGCATT
5 GCATTTAGTC
6 TAGTCCTACG

Reads: Yellow compactions: Cyan compactions:

GCATTTAGTC AAAATCGAGCGCGGA AAAATCGAGCGCGGATCGATTGCATTTAGTCCTACG
GCGGATCGATT GCGGATCGATTGCATT
TAGTCCTACG GCATTTAGTCCTACG
CGATTGCATT
AAAATCGAGC
CGAGCGCGGA

Figure 1.4: Intuition of how assembly is possible. The first set of sequences on the left
are the reads to be assembled. Overlaps between those reads are computed before we can
compact the reads according to the large overlaps found. Compaction between two reads
AO and OB according to the overlap O is obtained by concatenating AO with the suffix B
excluding O (AAAATCGAGC and CGAGCGCGGA become AAAATCGAGCGCGGA)
. In this toy example, in a first step, we compact the yellow overlaps and obtain longer
sequences. In the second step we compact the cyan overlaps and get the original sequenced
genome. Double strand aspect of the DNA is not considered here.

Genome coverage % Genome not sequenced % Genome sequenced
0.25 78 22
0.5 61 39
0.75 47 53
1 37 63
2 14 86
5 0.6 99.4
10 0.0005 99.995

Table 1.1: Expected missing fraction of the genome according to the sequencing depth.
Source: adapted from http://www.genome.ou.edu/poisson_calc.html.

bases, a sequencing of 4 millions reads of 100 base pairs will present a coverage of 100X
because it contains 100 times more nucleotides than the genome. A high coverage is an
important factor for at least 3 reasons. The higher the coverage:

• The larger the overlaps between reads are (on average)
• The less chance we have to miss regions of the genome because they are not se-

quenced (Table 1.1)
• The easier it is to deal with sequencing errors

With a high degree of redundancy we will be able via statistical methods to detect
stochastic errors and remove them. Some assembly strategies try to correct reads before
assembling them.

13

Genome: AAAATCGAGCGCGGATCGATTT
Reads: AAAATCGA
 CGAGCGCG
 GCGGATCG
 ATCGATTT

AAAATCGA

CGAGCGCG GCGGATCG

ATCGATTT

3

3 4

5

Greedy solution:
AAAATCGATTT
CGAGCGCGGATCG

Overlaps:

Figure 1.5: Example of greedy assembly. The overlaps between the first and last reads
(AAAATCGA and ATCGATTT) is the largest and therefore compacted first in a greedy
manner. This first compaction produces AAAATCGATTT. Then the largest overlap is
between the two other reads (CGAGCGCG and GCGGATCG) that are compacted into
CGAGCGCGGATCG. The assembler produced two misassembled sequences that are not
the shortest common superstring.

We can distinguish three main families of assemblers: "Greedy", "Overlap Layout
Consensus" and "de Bruijn graph " as detailed in the three following sections.

1.2.1 Greedy

This family of assemblers is the conceptually simpler. The idea is to find a shortest
common superstring (SCS) of a set of sequences. Given a set of reads, a SCS is a string
T of minimal size such that every read is a substring of T. Since finding the shortest
common superstrings is an NP-complete problem [16], greedy assemblers, as their name
suggests, apply greedy heuristics. The heuristic performs the compaction of the largest
overlap if a read overlaps with several reads. The algorithm can be outlined by:

• Index reads
• Select two reads with the largest overlap
• Merge the two reads
• Repeat

The result is of course not guaranteed to be optimal as the greedy strategy may induce
assembly errors, especially around repeated sequences (Figure 1.5). Popular Sanger as-
sembler such as TIGR [17] or CAP3 [18] were greedy and broadly used because of their
efficiency. This strategy was also reintroduced later to handle very short reads (around
25 to 50 bases) and implemented in assemblers like Ssake [19] and Vcake [20]. Those
tools produce acceptable results on simple genomes. On more redundant genomes, such
approaches produce too much assembly errors and other techniques are now favored.
We can also criticize the model of the shortest common superstring, as in the presence

14

Figure 1.6: Toy example of the shortest common superstrings of a sequencing dataset.
In this example, the genome contains a repeat in light and dark red. When the shortest
common superstrings are computed we observe that none of the two SCS match with the
genome because they are both shorter. In this example the SCS computation do not lead
to the genome reconstruction.

of repeated sequences, multiple SCS can exist and genome may not be one of the SCS
(Figure 1.6).

1.2.2 Overlap Layout Consensus

The overlap layout consensus paradigm core notion is the overlap graph. This framework
is the most general among the three paradigms as we can argue that all assemblers use
an overlap graph implicitly. The objective is to know how all reads can be positioned
in relation to each others, to represent those connections in a graph and to consider
all overlaps (not only maximal ones) to produce a solution. We know how reads can
be ordered by knowing how they overlap. The overlap graph is a graph where reads are
nodes, connected if they overlap significantly (Figure 1.7). The algorithm can be outlined
by:

• Overlap: calculate pairwise overlaps between reads
• Layout: look for a parsimonious solution (as a generalized Hamiltonian path visiting

each node at least once while minimizing the total string length)
• Consensus: merging reads, using redundancy to correct sequencing errors

The first OLC assembler was Celera [21] and was designed to handle Sanger sequences.
Celera uses a BLAST-like [22] approach to compare each read to the others and to find
significant overlaps. Then it compacts the overlaps presenting no ambiguity (Figure 1.8)
and tries to apply heuristics on the complex cases involving repeats. The final sequences

15

Figure 1.7: Overlap graph toy example where only overlaps of size 3 or more are consid-
ered.

ATCGGCGGACTG CGGACTGCAGACT

TGCAGACTTCGATT

TGCAGACTACTGCC

GATCTGCATCGGC
6 7

8

8

Figure 1.8: Example of non ambiguous compactions in green and unsafe compactions in
red. The green compactions are the only possible choices, thus there is no ambiguity on
which compaction should be performed. But the third read could be compacted with two
other reads, the two compactions are indistinguishable. Choosing one compaction over
the other could lead to assembly error.

16

A

B

Assembly graph:

Minimal superstring solutions:

Genomes:

Figure 1.9: How repeated sequences can result in unsolvable graph. Two genomes A and
B are sequenced, the reads covering their different regions are compacted into a simplified
assembly graph of unambiguous sequences represented by blocks. Two repeats are present
in red an purple. Several remarks can be made. First, the two genome A and B share
the same simplified assembly graph structure despite being different. Secondly, several
minimal solution may exist for a given assembly graph. Thirdly, because of repeats, the
genome B will not be a minimal solution of the given assembly graph.

are produced via a consensus to remove most sequencing errors. For comparison, in the
toy example of Figure 1.5, the OLC approach would achieve to solve the assembly by
considering even non maximal overlaps and to produce the correct path, composed of
strictly less nucleotides than the greedy solution.

The fact is that, with either paradigm, a perfect assembly is in most cases impossible
to obtain. Sometimes the information available is not sufficient to make sound choices.
In those cases the parsimonious strategy of no choosing between two indistinguishable
possibilities is applied (Figure 1.8). This results into fragmented assemblies constituted of
consensus sequences that are supposed to be genome substrings. We call those sequences
"contigs" for contiguous consensus sequence [23]. In the example of the Figure 1.9 an
assembly graph is created from the reads information. The graph can be simplified
by compacting reads that overlap unambiguously into contigs. Assembly can become
complex in multiple ways. First, different assemblies can be proposed from this graph even
considering only minimal solutions. The green and yellow contigs are interchangeable in
the two minimal solutions of Figure 1.9. Secondly, different genomes can share very similar
assembly graphs. In Figure 1.9, both genomes A and B would be represented by the same
simplified assembly graph. Thirdly, sometimes the solution is not a minimal substring:
the genome B is not generated as minimal solution of the assembly graph. The most
parsimonious way is therefore to output the proposed contigs represented by the colored
blocks. To give orders of magnitude of the fragmentation of a genome into contigs we can
look at published assemblies. A E. coli genome has almost a hundred contigs https://
www.ncbi.nlm.nih.gov/assembly/GCF_002099405.1, a C. elegans genome count more
than 5,000 contigs https://www.ncbi.nlm.nih.gov/assembly/GCA_000939815.1/.

But even by applying parsimonious rules, assemblers may make mistakes and pro-
duce assembly errors (misassemblies). Some tools, such as QUAST [24], are designed

17

A B C

A C

Misassembled contig:

Reference genome:

A B

Possible assembly graph:

C
?

Figure 1.10: A classic error of assembly: the relocation. In the example the assembler
produced a contig AC where the genome sequence is ABC. This error may be explained
by different scenario, like a missing edge between A and B or a wrong choice of the
assembler.

to evaluate the quality of an assembly by mapping the contigs on a reference genome
and providing a classification and quantification of the different misassembly types. The
classic misassembly is the relocation, when the assembler merges two sequences that are
not consecutive in the genome into a contig. An example of relocation is shown on Fig-
ure 1.10: the assembler outputs the contig AC where the actual genome sequence is ABC.
If the size of B is below a threshold (1 kilobase by default for QUAST) it is considered
as a minor mistake as the contigs will still be mapped in their entirety on the reference
genome and B will be considered as a deletion error. If B is larger this may be problematic
as it induces a chimeric genome structure.

QUAST detects two other types of error (Figure 1.11).
• The translocation, where two (or more) parts of a contig come from different chro-

mosomes
• The inversion, when a part of the contig is the reverse complement of the actual

genome sequence
Such errors may appear for various reasons and may be due to the data or the assembler
strategy. The connection AB may have been missed, leading the assembler to produce
AC or a heuristic choice may have chosen the path AC over the path AB.

Users want assemblers both to produce long contigs and as few misassemblies as
possible. The overlap graph is able to produce less errors than the greedy approaches by
considering a more global information. But it may lead to very heavy structures with huge
numbers of nodes and edges. In order to cope with this problem, a new improved model,
the String graph [25], has been proposed. The essential conceptual difference between
overlap graphs and string graphs is the transitive reduction of edges. When A overlaps
B and C and B overlaps C, the edge A to C is removed because it can be "deduced" by
transition from A to B and B to C (Figure 1.12). Later, [26] and [27] proposed further
computational improvements to compute and represent a string graph.

18

Figure 1.11: Assembly error types defined by QUAST. From http://quast.bioinf.
spbau.ru/manual.html.

Figure 1.12: Transitive reduction of edges, the main difference between overlap graph
and string graph. In the left part the connection between a and c can be deduced by the
connections ab and bc and is removed in the right part.

19

Figure 1.13: The previous overlap graph (Figure 1.7) toy example made into a string
graph by removing transitively-inferrible edges.

This paradigm was used a lot with long Sanger sequences and for relatively small
genomes. Because of the cost of the pairwise overlaps computation, the OLC is too time
consuming on high number of short reads from NGS. Thus, other solutions had to be
found to be able to deal with the amount of reads to assemble large genomes.

1.2.3 De Bruijn graphs

De Bruijn graph usage The de Bruijn graph is a directed graph representing overlaps
between sequences of symbols, named after Nicolass Govert de Bruijn [28]. Given an
alphabet σ of m symbols, a k dimensional de Bruijn graph has the following properties.

• mk vertices produced by all words of length k from the alphabet σ
• Two vertices A and B are connected by an edge from A to B if and only if the k−1

suffix of A is equal to the k − 1 prefix of B.
This graph has interesting properties and several applications in networking [29], hash-
ing [30] and bioinformatics for genome assembly. Even if the graph used for assembly is
called a de Bruijn graph, it is not exactly a de Bruijn graph as defined above.

The first application of the de Bruijn graph in genome assembly was introduced into
the EULER assembler [31] in order to tackle assembly complexity. The idea was to
consider a partial de Bruijn graph on the alphabet (A,C,T,G) constructed only with the
vertices whose words of length k, called kmers, appeared in the sequencing data. The
intuition of this approach is the following (Figure 1.14):

• A read is represented as a path in the graph
• Reads that overlap with more than k nucleotides will share some kmers
• Extracting paths of such graph will produce assembled reads

20

ATCG TCGA CGAT GATT ATTG TTGG TGGC GGCA GCAT CATT

Reads: Path in the De Bruijn graph:
ATCGATTGG ATCGATTGGCATT
 ATTGGCATT

Figure 1.14: Intuition of how the de Bruijn graph is able to merge overlapping reads. In
this figure, the two read share an overlap of 5 bases. In the de Bruijn graph they share
2 kmer and are part of a path of the graph whose sequence is the concatenation of the
two reads.

AATC
GATT

ATCC
GGAT

AGGA
TCCT

CCTA
TAGG

AATCCTA
TAGGATT

Figure 1.15: Classic representation of canonical kmers and their different kinds of over-
laps. For each kmer, the (lexicographically) smaller kmer between the sequence and its
reverse complement is chosen as representative and is called the canonical kmer. Since a
kmer and its reverse complement are indistinguishable, several types of k-1 overlap have
to be considered in a de Bruijn graph. The first one is the forward forward (FF), that
comes from canonical to canonical. The second one is the forward reverse(FR), from the
canonical to the reverse. The third one is the reverse forward (RF) from the reverse to
the canonical.

Another technical point comes from the fact that the sequencing data is not stranded. As
previously mentioned, since a read can be extracted from a strand or another, a sequence
and its reverse-complement should be considered as the same object. In order to handle
this, the principle of canonical kmer is used. A kmer w is called "canonical" if and
only if it is smaller lexicographically than its reverse complement v. The kmers that are
canonical are just inserted in the graph when the reverse complement of non canonical
kmers are inserted instead of them. This modification leads to a change in the definition
of how two kmers overlap and therefore are connected in the graph. In this graph four
connections are possible (Figure 1.15):

• Suffix → prefix
• Suffix → reverse prefix
• Prefix → suffix
• Prefix → reverse suffix

This is rather a technical problem than an algorithmic one. Practical and theoretical
results show that the difficulty of assembly is not due to this stranding problem [32]. For
the sake of clarity we will ignore this property in most cases.

21

De Bruijn graph and overlap graph The de Bruijn graph theoretically achieves
the same tasks than the overlap graph, while being conceptually simpler and much more
efficient for the three reasons detailed in the following:

• No alignment
• Abstracted coverage
• No consensus

The Figure 1.14 shows how the de Bruijn graph finds (exact) overlaps of length superior
to k − 1 between two reads. The de Bruijn graph does not explicitly compact reads
together. However, selecting long paths from the de Bruijn graph is very similar to
compacting overlapping reads in the OLC.

The de Bruijn graph became widely used when the shorts reads from NGS appeared,
as it was better suited than the OLC to handle this kind of sequencing data. The OLC
approach did not scale well on the high number of sequences generated by NGS. The
use of the de Bruijn graph is very interesting for short read assembly for its ability to
deal with the high redundancy of such sequencing in a very efficient way. Indeed a kmer
presents dozens of time in the sequencing dataset appears only once in the graph. This
makes the de Bruijn graph structure not very sensible to the high coverage, unlike the
OLC. The de Bruijn graph was first proposed as an alternative structure [31] because it
was less sensible to repeats. Repeats that were problematic in the OLC, creating very
complex and edges heavy zones, are collapsed in the de Bruijn graph.

Redundancy The high redundancy in the sequencing data can also be used to effi-
ciently filter the sequencing errors. The first highly used de Bruijn graph short reads
assembler was Velvet [33]. It introduced core notions of de Bruijn graph assembly, as the
idea of error filtering based on kmer abundances. With a high coverage, we expect a high
abundance for most kmers. A kmer with very low amount of occurrences is therefore
very likely not a genomic kmer (a kmer present in the genome) but rather an erroneous
one (not present in the genome and coming from a sequencing error). By admitting in
the de Bruijn graph only kmers with a coverage above a threshold, we can get rid of
most erroneous kmers almost without losing genomic kmers, but the ones that has an
unexpectedly low abundance. Kmers whose abundance are over the abundance threshold
(or solidity threshold) are called "solid". In Figure 1.16 we can see that sequencing errors
generate a huge number of low abundance kmers.

De Bruijn graph patterns De Bruijn graph assembly basically consists in graph
simplification by applying heuristics on knowns patterns (Figure 1.17). They rely on
path exploration, applying different strategies to handle recurring motifs. After graph
simplification, they output the long simple paths as their contigs (Figure 1.18).

The simplest pattern is the tip (or dead end), a short path in the graph that is not
extensible because its last kmer has no successor. If the tip is short, shorter than the
read length for example, then it is very likely to be due to a sequencing error. But if it is
large it could just be the beginning or an end of a chromosome. A basic assembly step is
to recognize those short tips and remove them from the graph to simplify it and to allow
longer contigs.

Another frequent pattern is the bubble. A bubble arises when several paths start
from a kmer and end in another kmer. A sequencing error can create a bubble if the

22

	0

	100000

	200000

	300000

	400000

	500000

	600000

	700000

	800000

	900000

	1x106

	20 	40 	60 	80 	100 	120 	140

"WithoutErrors"
"Errors"

Figure 1.16: Comparison of kmer spectra with and without sequencing errors. The two
kmer spectra are computed from simulated reads with 1% and 0% errors respectively from
E. coli with a coverage of 100X. We observe two similar curves but the green one presents
a huge quantity of low abundance kmers due to the presence of sequencing errors.

sequencing error is positioned k nucleotides apart from the end and the start of a read.
Another source of bubbles can be heterozygosity. For organisms with (at least) a pair

of homologous chromosomes, heterozygosity defines the scenario of owning two different
versions of a sequence (called alleles) on each chromosome. A well known example is
blood type:, for instance an AB individual is heterozygous. A diploid (polyploid) genome
is a genome containing two (multiple) complete sets of chromosomes. Within a diploid
(polyploid) genome, heterozygosity can happen at various positions. When a diploid
(polyploid) genome is sequenced, two (multiple) close sequences are simultaneously se-
quenced and the original allele of each read is unknown. When the two sequences are
almost identical with some minor differences, this creates bubbles in the de Bruijn graph.

A last important source of bubbles are the quasi-repeats. When two almost identical
sequences appear in the genome, it can create the X pattern specific of the repeats
(Figure 1.19), with bubbles inside the central repeated sequence (Figure 1.20).

Those patterns highly depend on the size of k. The k parameter, called the "order"
of the de Bruijn graph, is a key factor in de Bruijn graph assembly. For a given dataset,
distinct orders can lead to the construction of extremely dissimilar graphs.

Repeats The first point about the size of k is that the smallest k is, the more complex
the graph will become. With a small k, the probability of a kmer (or a k − 1mer) to
be present at multiple positions in the genome is high. If this happens, then the two
occurrences of the repeated kmer are collapsed in the graph and create a "X" structure
(Figure 1.19). When such a motif is encountered, the assembler has no mean a priori
to know how to continue and stop. A k too small may results into a profusion of such
scheme and produce a fragmented assembly. In a similar way, a repeat of size k − 1 can
also create an edge between unrelated kmers called "spurious edge". In other words, the
smaller the k value is, the less significant the connections between kmers are. To see
how the size of k affects the graph complexity, we present in Table 1.2 the number of
repeated kmers in the de Bruijn graph created from reference genomes according to the

23

(A)
Genome:
ATCGATTGGCATG

ATCG TCGA CGAT GATT ATTG TTGG TGGC GGCA GCAT CATG

Reads:
ATCGATAGG
 GATTGGCA
 ATTGGCATG

GATA ATAG TAGG

(B)
Genome:
ATCGATTGGCATG

ATCG TCGA CGAT GATT ATTG TTGG TGGC GGCA GCAT CATG

Reads:
ATCGATTGG
 GATTGGCA
 ATTGCCATG

TTGC TGCC GCCA CCAT

(C)
Genome (two alleles):
ATCGATTGGCATG
ATCGAGTGGCATG

ATCG TCGA

CGAT GATT ATTG TTGG

TGGC GGCA GCAT CATG

CGAG GAGT AGTG GTGG

Figure 1.17: Patterns in a de Bruijn graph with k = 4. The first pattern (A) is a tip
generated by a sequencing error at the end of a read. The second one (B) is a bubble
generated by a sequencing error in the middle of a read. The third one (C) is a bubble
generated by an actual variation in the sequenced genome.

24

Assembly graph:

Contigs:

Figure 1.18: Example of contigs generation. In this toy example, the tip in red is removed,
the bubble is crushed and the green path is chosen over the orange one. But the assembler
is not able to choose between the two gray paths to extend its contig so it stopped. The
two gray paths are output as contigs with the large blue one.

GATG

ATGC

TGCC GCCA CCAT CATA

TGCA

GCAT

CATG

GATGCC ATGCCA TGCCAT GCCATG CCATGC CATGCC ATGCCA TGCCAT GCCATA

k=4

k=6

Figure 1.19: Example of spurious edge and X pattern due to repeats of size k and k − 1.
With k=4 we got a repeat of size 4 that creates the X pattern framed in green. A repeat
of size 3 also create a spurious edge between GCAT and CATA. With k=6 the graph is
linear since no repeat of size 5 exist.

25

1 R 2 RR’3

1 2

3

4...

4

R’

R

Assembly graph:

Genome:

Figure 1.20: Example of quasi-repeats creating a bubble. The two regions R and R’ are
almost identical, but the small difference between the two occurrences create a bubble
inside the X pattern.

Reference genome kmer size Repeated kmer
E. coli 11 976,822
E. coli 15 104,501
E. coli 21 33,745
E. coli 31 30,273
E. coli 61 25,575
E. coli 101 22,345
E. coli 201 17,985
E. coli 301 15,421
C. elegans 15 14,299,107
C. elegans 21 3,290,873
C. elegans 31 2,475,913
C. elegans 61 1,892,518
C. elegans 101 1,524,266
C. elegans 201 1,052,332
C. elegans 301 824,254
Human 15 250,505,977
Human 21 148,690,202
Human 31 122,846,758
Human 61 102,800,268
Human 101 92,294,300
Human 201 85,392,911
Human 301 81,190,289

Table 1.2: Number of kmers that appear multiple times in the reference genome according
to the size of k.

size of k.
We observe that a low k value creates a de Bruijn graph with many repeated kmers

that will create X patterns and therefore a complex graph. This can be explained by

26

Reference genome kmer size Percent unique kmer
E. coli 9 1.1
E. coli 11 33.2
E. coli 15 97.7
E. coli 21 99.3
C. elegans 11 0.6
C. elegans 15 76.4
C. elegans 21 96.4
C. elegans 31 97.4
Human 15 25
Human 21 93.4
Human 31 95.1

Table 1.3: Proportion of kmer that appear a single time in the reference genome according
to the size of k.

the fact that small kmers are expected to appear multiple times even on a random word.
There are 262,144 different 9mers (without accounting for reverse-complements) while
the E. coli genome is a word of almost 5 millions nucleotides. We expect most 9mers
to be present multiple times in the genome. The Table 1.3 confirms this fact. With
k = 11 (4,194,304 11mers) most kmers are still repeated but with k = 15 and higher
(1,073,741,824 15mers), most kmers are unique (present only one time in the genome).
In practice we need to use a k such that 4k is order of magnitude larger than the genome
size in order to get a de Bruijn graph with mostly unique kmers. A higher value reduces
the number of repeated kmer, with a decreasing efficiency because of the existence of
large repeats in genomes. C. elegans reference genome presents almost a million repeats
larger than 300 nucleotides.

Overlap detection The second point about kmer size is that a de Bruijn graph will
only (implicitly) detect overlaps larger than k−1 between reads. A high k value imposes
that reads have to share large overlaps, and a high redundancy may be necessary to do
so. A too large k value will create holes in the de Bruijn graph (Figure 1.21).

Error removal The third point is about sequencing errors. A read of size L has L−k+1
kmers. Thus a high k value means less kmers per reads. For example a read of length 100
has 70 31mers or 40 61mers. With a higher k value, the abundance of all kmers is lower
and it is more difficult to differentiate genomic from erroneous kmers, based on their
abundance. Another problem is that sequencing errors "destroy" kmers (Figure 1.22).
When L ≤ 2 ∗ k − 1 a sequencing error can make erroneous all kmers from a read . The
Table 1.4 shows the effect of the errors and the kmer size on the presence/absence of the
genomic kmers without any kmer filtering. 6,716 missed kmers can seem like a low rate,
around 1/1000 of the genomic kmers. But each of these "holes" fragments the assembly
as seen in Figure 1.21. We observe that reads with a reduced error rate (substitutions)
allows for the usage of a higher kmer size with the same coverage.

Given those effects summarized in Table 1.5, the size of k should be chosen according

27

Figure 1.21: How the use of high values of k and solidity thresholds can fragment the de
Bruijn graph. The red lines represent the paths of the de Bruijn graph according to the
k value and the filter usage. The filter consists in removing the unique kmers. We can
see that using a high k value can fragment the assembly because no large enough overlap
exists. Unique kmers removal can also create holes when removing errorless kmers. Using
a too large k size or a too high solidity threshold creates holes in the de Bruijn graph
and results into a fragmented assembly.

Reads:
Kmers:

Figure 1.22: How sequencing errors can produce many erroneous kmers. Red positions
are sequencing errors and kmer in red are therefore erroneous kmers while green kmers are
genomic. In the left figure, k = 8 thus the read has 15 kmers. Because of the sequencing
error, 6 of them are erroneous. In the left figure, k = 12 thus the read has only 9 kmers.
Because of the sequencing error 8 of them are erroneous. If the sequencing error was one
base to the left, all kmer would have been erroneous.

28

Error rate kmer size Missed kmers
1% 31 3
1% 61 6,716
1% 91 1,374,153
0.1% 31 2
0.1% 61 53
0.1% 91 293,675

Table 1.4: Number of genomic kmers not present in a set of 100 base pairs simulated
reads with a coverage of 30X from E. coli, according to the error rate.

Low k High k
Benefits Detect even small overlap be-

tween reads
kmers are more covered (more
kmer by reads)

Less repeats in the graph
Less spurious edges

Drawbacks More repeats appear in the graph
More spurious edges

Only large overlap are detected
kmers are less covered

Table 1.5: Effect of k parameter on a de Bruijn graph.

mainly to the coverage of the sequencing dataset and to its error rate. Some methods
concentrate on automated selection of this crucial factor, as kmerGenie [34] in order to
produce the best assembly possible given a read set.

Assembly quality Ideally we would want to use the highest possible kmer size in order
to reduce the number of repeated kmers and spurious edges. To do so without having a
graph abounding with holes, multiple solutions exist:

• Get a huge coverage
• Correct sequencing errors
• Use several kmers size

The first solution has no real drawback, but is not satisfying because of the supplementary
expenditure. Even if sequencing costs are lowering, sequencings still represent important
investments. In some cases the bottleneck may be the quantity of DNA material acces-
sible, that would make impossible to get more sequencing.

The second solution, used by many assemblers [33, 35, 36, 37, 38], is to use a prepro-
cessing to correct sequencing errors. Those techniques use the redundancy of the read set
to correct errors based on statistical methods. It presents the interest to use reads with
less errors and therefore containing longer errorless sequences. Read correction step can
be criticized as it may modify correct bases or may correct errors incorrectly.

The third solution, used in state of the art assembly approaches (called multi-k ap-
proaches), is to make use of multiple kmer sizes. The idea of those approaches is to get
the graph connectivity from the low kmer sizes, and the low amount of repeats from the
high kmer sizes. The precise method may vary among tools but it generally follows the

29

Figure 1.23: Solving a repeat consists in the determination of the possible contexts around
the repeat and therefore limits the fragmentation. To solve the presented toy repeat, the
assembler must link the green parts and the orange parts together.

pattern described by IDBA [39] in order to construct the best possible de Bruijn graph:

1. Start with a low k

2. Create a de Bruijn graph from the reads with k

3. Produce contigs using this graph

4. Raise the value of k

5. Create a de Bruijn graph from the reads and the contigs with k

6. Repeat from step 3 until k ≤ kmax

This method allows the use of large k values even if the coverage is not sufficient
everywhere. The assembly step with a low k value detects the possible compactions
between reads that share low overlaps. The large kmer size allows to "solve" some
repeats as presented in Figures 1.23 and 1.19. Those approaches are still not perfect
since complex or poorly covered regions can be absent from the contigs. Another problem
of those techniques is that they may be computationally challenging since they perform
several assembly steps, in a sequential way (time consuming) or simultaneously (memory
consuming).

A plethora of de Bruijn graph based assemblers have been developed, ABYSS [40],
SOAPdenovo [41], IDBA [39], ALLPATHSLG [42], gossamer [43], minia [44], SPADES [36].
Each brings to the table extremely different properties and trade-off between resources
needed, efficiency and assembly quality.

But even the best combinations of those strategies are not able to use the full read
length. Despite being conceptually simpler than OLC, the de Bruijn graph is inferior in
terms of information usage because k ≤ read size. Even if we use a very large k value,
we may encounter repeats with k < repeats size < read size that could be solved by
a string graph but not by the de Bruijn graph. The multi-k de Bruijn graphs tend to

30

come close to the string graph (various overlap sizes detection, usage of a large part of
the reads) but also tend to lose their performances advantages.

"Genome assembly" core messages:

• Assemblers goal is to order the reads and concatenate them into larger sequences
while removing the sequencing errors

• In most cases, the assembler is not able to completely recover the genome and
will output "contigs" that are sequences supposed to be substring of the genome
larger than the reads

• Greedy approaches are efficient but are not suited to large or complex genomes
as they handle repeats very poorly, resulting into erroneous assembly.

• Overlap graph is a framework where the overlaps between the reads are com-
puted and put in a graph where reads are nodes, connected if they overlap.

• The de Bruijn graph is a more restricted framework where the words of length
k from the reads are nodes, connected if they share an overlap of k − 1.

• OLC and de Bruijn graph approaches select paths from their graphs using
heuristics in order to produce contigs based on the graph structure

• The overlap graph approaches relies on heavy data structures while the de Bruijn
graph, conceptually simpler, scales better on large datasets

1.3 Assembly hardness

Assemblers are supposed to produce the largest possible contigs while making as few
assembly errors as possible from the available read information. Here we describe the
challenges that genome assembly may present and the limitations of existing approaches.

1.3.1 Repeats

As we have seen, one of the problems of assembly is the repeated sequences. In fact repeats
may be the fundamental problem in genome assembly. An analysis of the complexity of
the assembly problem according to the type of data available has been made in [45]. The
principal conclusion of the paper is that repeats larger than reads are impossible to solve.
In fact, for most genomes, the perfect assembly is not achievable using only NGS reads.
It may seem odd that such large repeats exist. The fact is that genomes are absolutely
not random sequences. When we compare Table 1.6 with Table 1.2, we see that there is
no large repeated kmers in random sequences whereas E. coli genome has thousands of
repeated 301mers. The conclusion is that NGS reads sequences are not enough to produce
a complete assembly. [46] has shown the effort necessary to finish short reads assembly.
Therefore longer range information is required in order to solve the large repeats and
produce more continuous assembly.

31

Reference genome kmer size Repeated kmer
Random Genome (E. coli) 15 84,148
Random Genome (E. coli) 21 28
Random Genome (E. coli) 31 0
Random Genome (C. elegans) 15 34,050,959
Random Genome (C. elegans) 21 17,953
Random Genome (C. elegans) 31 0

Table 1.6: Number of repeats of size k in a random genome of the same size than E. coli
or C. elegans.

A B

B A AB A

Paired End reads orientation:

Mate Pairs reads orientation:

B

A B

DNA fragments: Sequencing from both ends:

Figure 1.24: Differences between Paired End sequencing and Mate Pairs sequencing. In
Paired End, small DNA fragment are selected and sequenced from both end. For Mate
Pairs, longer fragment are selected, both ends are marked and connected into a circular
sequence. The sequence is then cut and the marked part is sequenced from both and
generates an opposite sequencing orientation.

32

1.3.2 Scaffolding

As denoted before, most assemblers use the reads sequences to produce contigs, that
are a set of fragments of the genome. In order to improve such genome drafts, other
informations and techniques can be used. It is possible via sequencing techniques to
obtain short reads that are associated by pairs coming from related positions of the
genome. There are two main sequencing techniques called "Paired End" and "Mate
Pairs" sequencing (Figure 1.24). In both cases, we get a pair a short reads with the same
characteristics than short reads described previously. The additional information is that
we have an estimation of the distance covered by the read pair, called the fragment size,
since we know that both come from the same DNA fragment. For example, a paired
end sequencing of 2*250 base pairs with an fragment size of 800 will produce pairs of
reads of 250 bases pair reads spaced by 300 nucleotides in the genome (on average). The
paired end sequencing can handle fragment size up to 2,000 bases while mate pair can
produce fragment size from 2 to 20 kilo-bases. Another difference is that in Paired End
sequencing, the first fragment is read forward and the second is reversed while in Mate
Pairs this is the opposite, as shown in Figure 1.24. This can be explained by the difference
between the two protocols. In paired end sequencing, fragments of the desired size are
selected and sequenced from both ends. In mate pairs sequencing long fragments end are
marked, circularized, fragmented, and sequences with marker are sequenced from both
ends.

The standard way to use those linking information is to align paired reads on the
contigs and use the pair of reads that map on different contigs to order and orient them
with respect to each other. This task is frequently called scaffolding, because contigs are
arranged together into "scaffolds", based on estimations of the distance between them
(Figure 1.25). A complete assembly workflow is summarized in Figure 1.26.

[47] formally defined the problem and showed its NP-completeness and therefore its
potential intractability. Most scaffolders try to optimize the number of satisfied links
in order to produce scaffolds. The main problem of scaffolds is that they may contain
"holes". Scaffolds are basically ordered contigs. When the different contigs used are
not overlapping, the scaffolder usually estimates the distance between them and fills
the "holes" with ’N’ characters to inform that the sequences here are unknown. The
scaffolders may be able to order large contigs, but can fail to find the contigs separating
them. This may be the case if those contigs are too small or simply if they were not
output by the contig generation step. Since the scaffold approach is based on mapping
the reads on the contigs, very short contigs (shorter than reads) cannot be considered
this way because of multiple mapping problems (when a read maps on several contigs).

Recent scaffolders like SSPACE [48] try to extend contigs using the pairs information
earlier to connect them in order to reduce the potential gaps in the later phase. Some
standalone tools called gap-giller, as MindTheGap [49], are specifically designed to fill
such holes. Other kinds of information start to be used for scaffolding such as long reads
from third generation sequencing [50] and 3C [51] a sequencing technology liking reads
coming from the same chromosome.

33

Assembly graph:

Potential solutions:

This solution does not respect the distance estimations

Genome and Paired reads:

Figure 1.25: How the paired reads information can be used to solve some complex sce-
nario. Paired reads show that blue and yellow contigs are separated by one contig, as
yellow and red and green and pink. Using this information, we can eliminate solutions
where those distances are not correct. The first solution does not respect any links (Blue
and yellow are too far apart as green and pink and yellow and read are too close) and is
therefore rejected. In this example the solution respecting the link is equal to the genome.

1.3.3 Multiple genomes

The assembly problem is defined as a sequence reconstruction. In many cases we are
interested in assembling multiple genomes at once. We briefly introduced heterozygosity
and highlighted that for many species, as human, two sets of chromosomes, or more, are
sequenced. We will refer to a complete set of chromosomes coming from an individual as
an haplotype. A human has therefore two haplotypes because it owns two versions of each
chromosome (but the sexual ones). Intuitively, we are sequencing two similar genomes at
once. We can define the heterozygosity rate by the ratio of the edit distance between the
two alleles over the size of the region. Regions identical across haplotypes will be called
homozygous while regions with variations will be called heterozygous. Since for many
model species such as the human the heterozygosity rate is very low (around 0.1% for
the human), most assemblers do not try to assemble both sequences and rather ignore
the heterozygosity information. They usually produce a sequence presenting a mix of the
different haplotypes as it is shown in Figure 1.27. In an assembly graph such variants may
appear as bubbles and most assemblers will select a path through the bubble without
trying to conserve haplotype information. Some tools try to assemble separately the
different haplotypes when possible as Platanus [52]. In such cases, all homozygous regions
can be considered as repeats as they appear identically in two different chromosomes. But
other scenarii can force users to assemble multiple genomes at once.

Some species cannot be grown and sequenced in wet labs, therefore their whole en-
vironment (sea water for instance) is picked and sequenced, then we must assemble the

34

4,6 Mb
1 seq
4.6Mb mean length
No error

500 Mb
5 000 000 seq
100b mean length
10^-2 error

4,4 Mb
300 seq
20kb mean length
10^-5 error

SequencingSequencing ‘’Assembly’’

≈1kbp

≈2kbp

Scaffolding

Mate-pairs

Figure 1.26: Summary of assembly steps. The global picture of an assembly of E. coli
from simulated reads with SPAdes. Some refer to assembly for contigs generation and
scaffolding steps while other call the contigs generation step as assembly and separate it
from the scaffolding.

Figure 1.27: Example on how an assembler may crush haplotypes. The assembler detects
two bubbles and crushes them, choosing one path over another. The resulting contigs
may contain sequences from both haplotype mixed.

35

whole data (meta-genomic). Some assemblers are designed to assemble meta-genome as
meta-IDBA [53] or meta-velvet [54]. As their names suggest, they are usually based on
a regular genome assembler adapted to fit to the proposed scenario. In some cases, a
single species is sequenced but with several individuals having different, however closely
related, genomes (pool-seq). Since repeats assess the toughness of assembly, we can sort
scenarii by their apparent hardness:

• Single haploid genomes (some repeats)
• Heterozygous genomes (each homozygous regions is a repeat)
• Pool-seq, multiple related genomes (genome sized repeat)
• Meta-genomic, multiple non-related genomes (genome size repeats, some repeat

shared among species)
It seems obvious that perfect assembly and distinguishing closely related genomes are

currently out of reach. But this gives objectives to be met in the assembly field.

"Assembly challenges" core messages:

• Finished assembly is often impossible because of repeats longer than the reads
• Other kinds of data may be used to order contigs in larger sequences called

"scaffolds"
• Polyploid, meta-genome and pool-seq assembly are even harder than regular

assembly because of systematic repeats

1.4 Outline of the thesis
In this introduction, we highlighted three "challenges" of the assembly process of NGS
data:

• The high amount of resources required
• The fragmentation of produced assembly
• The hardness to assemble complex (large and/or repeat-rich) genomes

To address those issues, we will present new approaches based on the de Bruijn graph.
In the first chapter we present new ways to represent and construct the de Bruijn graph
in order to make it more scalable and more efficient. In the second chapter we introduce
new methods to use the de Bruijn graph as a reference and show the interest of such
structures over a set of fragmented contigs. In the third chapter we propose techniques
to construct high order de Bruijn graphs, allowing the use of the reads information, as
the string graph does, without losing the de Bruijn graph efficiency.

36

Chapter 2

Handling assembly

37

In this chapter we will assess the computational aspect of assembly. We show
why the scalability of methods used for genome assembly can be critical (Section 1).
We provide an overview of the state of the art of efficient methods and structures
to address such problems for both overlap graph (Section 2) and de Bruijn graph
(Section 3) frameworks. Then we present our theoretical and practical contributions.
We show that de Bruijn graph assembly may be done using a Navigational Data
Structure, a novel model that we introduce, which shows lower theoretical memory
bounds. We also propose a new proof of concept assembler that shows practical
resources improvement over state of the art tools (Section 4). Those implementations
are based on the idea to enumerate and index simple paths of the graph. We argue
that such enumeration is a bottleneck in many assembly methods and we provide
resources efficient methods to answer this need (Section 5). To do so, we make use of
minimal perfect hashing functions as very efficient indexes and provide a new method
to compute such functions on very large sets of keys (Section 6).

2.1 The assembly burden
In the last section we described the sequencing data but we gave no clue about the
typical size of a genome. The fact is that this size can vary a lot among living organisms
(Figure 2.2). Though we can indicate some orders of magnitude on genomes size:

• Virus : Thousands base pairs
• Bacteria: Millions base pairs
• Mammals : Billions base pairs
Some species, yet to be sequenced, are expected to present order of magnitude larger

genome (Paris japonica, Polychaos dubium) [55] with presumed hundred of billions base
pairs. The struggle for assembling such genomes may not be seen directly. Since high
coverages are needed for assembly, sequencing datasets represent huge amount of infor-
mation. Most assemblies typically rely on a mean coverage ranging from 30X to 100X
and higher. Consequently, assemblers have to handle millions of reads, even for bacterial
genomes. Larger genomes can count hundreds of millions base pairs for most prokaryotes,
and up to billions for some mammals or plants genomes. Such sets can reach billions of
reads and represent hundreds of gigabytes or even terabytes of data.

Dealing with this tremendous amount of information require either to use huge com-
putational resources or to conceive specific algorithms and data structures designed for re-
source efficiency. As sequencing cost continues to decrease, sequencing very large genomes
becomes affordable, but assembly of such genome is barely possible. If the running time
is an important concern, it is usually not the source of intractability. Most assemblers
rely on very large graph structure and index, that can require terabytes of RAM on large
datasets. Most of the time, such memory requirement is more concerning than running
time, as large scale clusters may not be easily accessible. Besides facing the challenge to
produce correct assemblies, the future assemblers will have to handle larger and larger
datasets, in order to deal with large genomes or meta-genomes while providing a high
throughput to follow the sequencing rate. As sequencing costs are dropping (Figure 2.1),
the computational resources necessary to treat them is becoming the financial bottleneck.

$100

$1k

$10k

$100k

$1M

$10M

$100M

2001 2003 2005 2007 2009 2011 2013 2015 2017

Cost to sequence a human genome (USD)

Figure 2.1: Evolution of the cost of human sequencing. From https://upload.
wikimedia.org/wikipedia/commons/e/e7/Historic_cost_of_sequencing_a_human_
genome.svg.

39

Figure 2.2: Genome size for a variety of selected organisms. From http://book.
bionumbers.org/how-big-are-genomes/ .

40

This fast evolving sequencing environment pushes assembly designers to conceive increas-
ingly efficient dedicated methods and data structures. In this chapter, we will present a
state of the art of such techniques with a focus on the scalability of the de Bruijn graph
assembly.

"The assembly burden" core messages:

• Genomes may count billions of bases
• Sequencing datasets can be composed of billions of reads and represent terabytes

of data
• Genome assembly is a High Performance Computing issue
• Efficient and dedicated structures are needed especially to reduce the memory

usage
• Decreasing sequencing costs raise the need to efficient assembly

2.2 Overlap graph scalability

The problem of assembly scalability appeared with the overlap graphs and large genomes.
Tools such as TIGR [17] or CAP3 [18] can be considered as brute force approaches and
were suitable only for small genomes. When the concern about repeat misassemblies
arose, the overlap graph approaches have become preferred. The core operation of the
overlap graph is to find all overlaps between reads from pairwise alignment. Therefore
standard overlap graph assembly methods have a worst time complexity quadratic with
the number of reads. This fact may be moderated as only significant overlaps are consid-
ered. Heuristics are used in order to quickly find significant alignment. Tools mainly use
BLAST [22], or other aligners following the "seed and extend" paradigm. The principle
of the seed and extend paradigm is to look for words in common between the query and
the reference (called seeds or anchors) and to try to extend the alignment from the shared
words. Unlike Smith-Waterman algorithm [56], such approaches are not guaranteed to
find all optimal alignments. But they are dramatically faster while providing almost iden-
tical results. Using such anchoring heuristics implies that finding the overlaps of a read
is roughly linear in the number of similar reads (according to the method and parameter
used) instead of being linear in the total number of reads.

However, with high coverage, one read presents a high amount of high quality overlaps
(Figure 2.3). This will impact the running time of each query trying to find the overlaps
shared by a read. Such alignment based approaches were quite efficient with Sanger
sequencing, since the number of reads remained relatively low. With a very low error
rate, low coverage is sufficient to complete correct assemblies, around 10X or 20X. Since
the sequences are also longer (around thousands of base pairs), the number of Sanger reads
is lower than the number of NGS reads for a given coverage. In practice the number of
reads, even for large genome assembly, was not above the million. The number of overlaps
needed to be stored in order to work on the graph could still be challenging. Furthermore,
repeated regions resulted in dense zones (called hub) with very high numbers of overlaps.
Celera [21] and Arachne [57] improved the running time by masking repeated regions to

41

Coverage 3X:

Query read:

Overlapping reads:

Coverage 10X:

Query read:

Overlapping
reads:

Figure 2.3: How the coverage affects the number of overlaps in a overlap graph. On this
toy example, with a 3X uniform coverage, a read shares an overlap superior to 4 bases
with 2 other reads in green. With a coverage of 10X each read shares a significant overlap
with 6 other reads. The reads in red are overlapping but not detected because of a small
overlap with the query read.

42

simplify the overlap graph. Later, the string graph [25] was proposed to abstract the
redundancy present in the sequencing data, as does the de Bruijn graph, using transitive
reduction. The assembler BOA [25] was designed to assemble Sanger reads with such
string graphs. However with NGS technologies, deeper sequencing was affordable and
helped to cope with the error rate. This raised up the number of reads by orders of
magnitude, themselves leading to orders of magnitude higher numbers of overlaps to
handle. The overlap graph and string graph need enormous resources to process such
datasets. Thus de Bruijn graphs were preferred to handle this kind of data.

However, because of the fact that the string graph should theoretically lead to better
assembly by using the whole reads instead of kmers, several contributions were proposed
in order to allow the string graph to scale up with the tremendous number of short reads.
The introduction of the very popular FM-index structure [58] in bioinformatics allowed
memory efficient indexing of large DNA sequences. It was first used to index references
and enabled very efficient read mapping (fast and stringent local alignment of short reads
on a reference). Notable examples of such tools based on a FM-index are Bowtie [59]
and BWA [60]. [26] used the same idea to improve the string graph performances.
The rationale is to index the reads with a FM-index and to use the research operation
to detect overlaps between sequences. The memory usage of the assembly of a human
genome has been extrapolated by the author to 700GB, which is not intractable but still
very expensive. The time required for assembly is also tractable, days for 100 mega-bases
genome, but this is yet very slow compared to most de Bruijn graph assemblers. A more
efficient implementation called SGA [27] proposed a distributed FM-index construction.
Using multiple small indexes allows for the construction of a global FM-index using less
than 60 GB of RAM for a human sequencing dataset of more than 1.2 billions reads. The
efficient use of the FM-index allowed the string graph to scale up to large genomes with
moderate memory usage, but the computational resources remained high. The human
genome assembly of SGA used more than 1500 CPU hours over 6 days.

"Overlap graph scalability" core messages:

• Overlap graphs and string graphs usually rely on memory heavy data structure
• Compressed data structures may be used but still lead to very long assembly

processes
• String graphs grow roughly with the size of the dataset when de Bruijn graph

grow with the size of the sequenced genome

2.3 The scaling story of the de Bruijn graph represen-
tation

The main difference between the overlap graph and the de Bruijn graph is the memory
usage. The overlap graph grows linearly with the size of the sequencing data. The de
Bruijn graph memory usage can (with kmer filtering) be linear in the size of the genome,
since we only have roughly GenomeSize different kmers in the genome, estimated through
their abundances. A very low abundance threshold would keep too much kmers and

43

therefore use too much memory. However, even with a very low threshold the number
of non genomic kmers is hardly very high (Table 2.1). Thus the memory usage used by
a de Bruijn graph is rather function of the size of the genome than of the size of the
sequencing dataset.

Largest genomes still lead to graphs with billions of nodes and edges, that are not
easy to represent with a decent amount of memory. In this section we concentrate on the
problem of storing a huge de Bruijn graph in memory. We present here an overview of
the main milestones and a state of the art of the data structures used to represent a de
Bruijn graph. We describe the first representations that were based on classical graph
implementation and exhibit very high memory footprints. Next we introduce the work of
Conway and Bromage that proposed a lower bound on the necessary memory to represent
a de Bruijn graph. Then we see how the use of external memory highly impacted the
memory usage of most assemblers. And finally we present very efficient techniques based
on probabilistic data structures. We also present several works on the scaling of de Bruijn
graph assembly on a massive number of cores.

2.3.1 Generic graphs

The earliest representations of a de Bruijn graph were based on classical and generic
graph representations and were not memory efficient. The first graph representations

Reference genome Abundance Threshold Erroneous kmers Missing kmer
E. coli 1 89,044,977 5
E. coli 2 3,889,707 6
E. coli 3 200,173 11
E. coli 4 15,198 11
E. coli 5 1,913 13
E. coli 6 312 16
E. coli 7 33 20
E. coli 8 0 21
C. elegans 1 1,909,728,320 6
C. elegans 2 89,087,143 7
C. elegans 3 7,294,417 11
C. elegans 4 2,003,946 15
C. elegans 5 1,049,812 21
C. elegans 6 643,918 26
C. elegans 7 425,435 26
C. elegans 8 293,457 75
C. elegans 9 208,539 213
C. elegans 10 150,939 589

Table 2.1: Number of erroneous and missing kmers in a de Bruijn graph after an abun-
dance filtering. On simulated reads with a 100X coverage, 1% error rate and k=51 from
the E. coli. The E. coli genome presents 4,554,207 genomic 51mers. The C. elegans
genome presents 100,286,051 genomic 51mers.

44

were based on hash tables indexing kmers associated with informations allowing graph
traversal, as in EULER [31] or Velvet [33] assemblers. The use of a dynamic hash table
for indexing millions of elements rapidly lead to very high memory usage. Velvet’s paper
reports a memory usage of 2GB for a Streptococcus genome of 2.2 millions bases. The
proposed solution considered for scaling was the use of disk in order to store the graph
structure. However this kind of solutions was never really put in practice since disk
accesses are very slow compared to RAM accesses. Thus such methods would present
orders of magnitude longer running time. Such data structure is adapted to bacterial
genomes assembly but impracticable on larger one.

In order to address this scalability issue, Abyss [40] introduced several solutions. First
the indexing method changed, using an interesting property of the de Bruijn graph: the
numbers of fathers and of sons of a node is bounded by four (the size of the nucleic
alphabet). In Abyss, all kmers are indexed and the value associated is just eight bits
coding the presence or absence of its eight possible neighbors. Secondly, the main cost
of a hash table is usually the pointers used for its internal structure. Instead of this,
they used open addressing hash tables that represent a low overhead of a few bits by
elements. Thirdly they proposed the distribution of the graph on several machines.
The idea of their distributed de Bruijn graph is to use a first hash to decide on which
hashtable/machine the kmer will be inserted. On large genome, memory usage was still
high and some informations had to be transferred via the network between machines. Still,
Abyss was the first assembler scalable enough to assemble a human genome. Today some
assemblers still require Terabyte level of memory to assemble large genomes as ABYSS
that assembled the white spruce using 4.3TB of memory distributed on large memory
servers [61] or DiscovarDenovo that used almost 2 terabytes for a human assembly [62].
The main reason is their too memory expensive indexing methods. In the following we
present several works that assess the problem of designing smaller data structures to
make large genomes assembly more tractable.

2.3.2 Theoretical limits

Conway and Bromage [63] analyzed the theoretical minimal number of bits necessary to
encode a de Bruijn graph. They first noted that only the nodes need to be encoded, since
edges could simply be deduced from the presence of nodes. Thus a de Bruijn graph can
be defined as its set of kmers. Therefore the minimal number of bits needed to encode a
de Bruijn graph of n kmers is

bits = log

(
4k

n

)
That is Ω(n.log(n)) if 4k > n. The paper gives the example of a human genome with
5 billions 25-mer that needs at least 12 GB of memory. A regular bit array that may
contain all possible kmers would be impossible to store for k larger than 20. Such bit
array would be extremely sparse. They therefore propose the use of succinct data struc-
tures to represent such arrays that can be extremely compressed based on Elias-Fano
encoding (Sarray) [64]. They provide an implementation of this technique in a tool called
Gossamer [43]. It achieved a memory usage close to their proposed bound and a proof of
concept assembly of a human genome.

45

2.3.3 Kmer Counting

One may be surprised by the apparent contradiction between the assertion that a de
Bruijn graph assembler use memory according to the number of genomic kmer and the
fact that previously presented tools showed so high memory usage. The problem is that
such tools have to deal with all kmers from the reads, not just the genomic ones. Because
of sequencing errors, the number of different kmers before filtering is huge. For example
a simulated 100X coverage dataset of E. coli with 1% error rate contains 79,917,279
erroneous kmers for only 4,554,207 genomic ones. In order to avoid the indexing of a
huge amount of erroneous kmer, a new category of tools called kmer counters has been
proposed. The goal of a kmer counter is to associate to each kmer of a dataset its
abundance, in order to keep only the solid ones for the assembly, using the lowest amount
of resources. Jellyfish [65] proposed the use of an open addressing hash table [66]. The
use of this pointer-less table allows the counting operation to use order of magnitude less
memory.

DSK [67] proposed a disk based algorithm with an extremely low memory footprint
and achieved to count the kmers of a human genome using only 4 GB of memory where
JellyFish used 70GB. Although the use of disk operations slowed the process, using 18
hours instead of 3.5 for Jellyfish. However the use of Solid State Drive (SSD) allows DSK
to be as fast as jellyfish. KMC2 [68] improved the DSK paradigm by compacting some
kmers together reducing the disk footprint. This approach enables a great speedup and
is even faster than JellyFish.

These algorithms allowed the filtering of a huge part of the erroneous kmers with a
low memory usage. Following assemblers could rely on such techniques in order to work
on a set of mostly genomic kmers and therefore present order of magnitude lower memory
usage.

2.3.4 Probabilistic de Bruijn graphs

Several approaches proposed the use of probabilistic structures in order to leverage the
memory footprint. SparseAssembler [69] or LightAssembler [70] propose a sub-sampling
of kmers based on the fact that most genomic kmers will appear a high number of times.
They index only a subsample, storing 1 out of g read kmers. It ensues that most ge-
nomic kmer are still contained in the sub-sample, while the number of erroneous kmer
is roughly divided by g. A more aggressive sub-sampling can be done on high coverage.
LightAssembler proposes by default g = 3 with 25X and a sub-sampling up to g = 25
for 280X. Even if those parameters are conservative, such techniques are still more likely
to lose kmers than exact approaches because they highly rely on uniform coverage and
error distribution. Such techniques may be criticized for not using the whole information
present in their data and possibly missing genomic kmers.

Another proposition was to index the kmers thanks to a Bloom filter [71]. The Bloom
filter is a probabilistic set presenting false positives but no false negatives, and having
the property of using very low memory. A query to a Bloom filter is of the type "Is this
kmer in the set ?". If the answer is "no", then we are sure that the kmer is not in the set,
meaning there is no false negative. If the answer is "yes", then the queried kmer is likely
to be in the set. A query on a kmer not inserted in the set may return "yes". Such errors

46

Figure 2.4: How Minia represent an exact de Bruijn graph storing a set of critical false
positive. Source http://minia.genouest.org/. The Bloom filter creates false positives
in black and red. False positives not connected to the graph do not matter since they will
not be queried. Only false positives that are connected to the graph are indexed. This
way an assembly on the real kmer can be performed.

are false positives. The probability of such an error to appear can be controlled by using
more memory, a dozen of bits per kmer can lead to a false positive rate around 1%. In the
context of assembly, kmers are usually inserted into the Bloom filter during an indexing
phase and the filter is queried during the assembly step. Most of the false positives are
harmless to the assembly process, most of them are kmers disconnected from the graph
and will never be visited or queried. But in some rare cases, some false positive kmers
can be connected to the graph and induce errors or fragmentations.

An improvement was proposed in Minia [72], that stores those "critical false positives"
in order to obtain a lossless de Bruijn graph representation(Figure 2.4). This structure
was itself improved using several Bloom filters in order to store the critical false posi-
tives [73]. Minia successfully assembled a human genome with less than 6 GB and less
than one day with one processor. On the same dataset, Gossamer used more than 30 GB
and 50 hours and AByss more than 300 GB and 15 hours.

2.3.5 Navigational data structures

One may be surprised to see that Minia achieved the assembly of a human genome with
only 6 GB (less than 16 bits per kmer) where the theoretical limit was supposed to be the
double. The Conway and Bromage theoretical limit was the number of bits necessary to
index a set of kmer. The lower memory usage of Minia is due to the fact that it relies on a
data structure specific to assembly. Minia structure may answer wrongly to membership
query, because the storing of the critical false positives are only designed to block the
assembler to "exit" from the de Bruijn graph. The Minia structure is therefore not an
exact representation of the set of kmers which explains why it is able to use less memory

47

than the theoretical limit. Minia takes advantage of the fact that during the assembly
step, kmer membership queries are not random as we are interested in the existence of
a neighbor in order to go through the paths of the graph. The membership operation
itself is thus not primordial. Minia is able to answer correctly to neighbor-ship queries
(membership of neighbors of a node), used for assembly, with a lower memory usage
than needed to index exactly all kmers. We call such representation a "navigational data
structure" as introduced by [74] as opposed to a "membership data structure". This
paper introduces the notion of Navigational Data Structure (NDS) and shows that it can
be used to perform de Bruijn graph assembly. The interest of such structures is the lower
bound on their sizes, a NDS needs at least 3.24 bits per kmer to represent a de Bruijn
graph. Future assemblers could rely on implementation of such data structure to provide
highly reduced memory usage.

2.3.6 Massively parallel assembly

In previous sections we talked mostly about the memory bottleneck of assembly. But the
time required to perform the assembly step can also be a limitation in many analyses,
especially for large genomes or large collections of genomes.

Several contributions were proposed in order to offer fast genome assembly thought the
use of massive multi-core servers. Since most assembly algorithms consist mainly in graph
traversal operations, it is difficult to really increase the throughput by optimizing these
operations since they essentially rely on memory accesses. The main way to improve the
wall clock time is to perform the graph traversal operations in parallel. Some assemblers
are able to use multiple threads to accelerate their processing but the gain is usually
limited. In its benchmark, HipMer [75] performed a human assembly in less than one
hour on a thousand cores server while other parallel assemblers like Abyss were not able
to make an efficient use of such architectures and were more than ten time slower. The
challenge in order to enable massive parallelization is to limit the threads communications.
The question of memory access is also critical, when the massive parallelization requires
the use of multiple machines communicating via very slow network accesses. Massively
parallel assemblers rely on efficient graph partitioning strategies following the divide and
conquer paradigm in order to improve data locality and to limit synchronization messages
between threads dealing with a local task. If tools like HipMer or SWAP [76, 77] are able
to use thousands of cores, those optimizations lead to a very high memory usage and
more generally very high resource consumption.

"The scaling story of the de Bruijn graph representation" core mes-
sages:

• Regular data structures like hash table do not scale on large genome
• Efficient use of external memory to filter erroneous kmer help assemblers to

index mostly genomic kmer
• Memory efficient and specific data structures can lead to moderate memory

usage to assemble large genomes

48

Reference genome # Unitig N50 # kmer
E. coli 1,520 67,344 4,567,544
C. elegans 127,106 13,605 96,501,920
Human 2,755,964 4,967 2,768,098,045

Table 2.2: Statistics on unitigs created from references genomes with k=63. The N50
value is a metric to evaluate an assembly. Given a set of sequences of varying lengths,
the N50 length is defined as the length N for which 50% of all bases in the sequences
are in a sequence of length L < N . Intuitively, we can cover 50% of the assembly with
sequences larger than the N50 value.

2.4 Efficient de Bruijn graph representation

In this section we describe our contribution in the paper "On the representation
of de Bruijn graphs" [74]

2.4.1 Compacted de Bruijn graph

In practice, an assembly de Bruijn graph can often be decomposed into a set of long
simple paths. A simple path is a path whose nodes exhibit in and out degrees of one,
except the first and last nodes. A maximal simple path is a simple path that is not
included in a larger simple path. A nodes-disjoint set of such maximal simple paths that
cover the de Bruijn graph can represent its set of kmers (Figure 2.5). We call the simple
paths from such a set "unitigs". But each unitig composed of p kmers can be represented
as a string of length p+ k − 1. We can therefore represent a de Bruijn graph of n kmers
with less than

2(n+ (k − 1)#unitigs) bits

2n bits for the genome sequences and an overhead of 2(k − 1) bits for each unitig.
This graph of unitigs is called the compacted de Bruijn graph. Unitigs construction is
often the first step of the assembly process. The unitig set can be considered as a safe
assembly, since graph modification heuristics are applied on the unitigs in order to get
longer contigs sequences. Two points can be observed in Table 2.2:

• A genome presents orders of magnitude less unitigs than kmers
• Unitigs can represent quite large sequences

Those points show the interest to consider unitigs instead of kmers as nodes of the graph.

2.4.2 De Bruijn graph construction

The question asked here is "Can we take advantage of the unitig representation in order to
propose a data structure that achieves a memory consumption close to 2 bits per kmers?"
The paper [74] propose a data structure called "DBGFM" to represent a De Bruin graph
in low memory. The idea is to index the de Bruijn graph unitigs in a FM-index [58]. The

49

Figure 2.5: Toy example of a de Bruijn graph (left) and the corresponding compacted de
Bruijn graph (right). The nodes of the compacted de Bruijn graph are no longer kmers
but sequences of length ≥ k and called unitigs.

50

FM-index is a lightweight full-text index based on the Burrows-Wheeler transform [78].
Such a structure can answer membership and neighborhood queries. It allows to count
the number of occurrences of a pattern q in O(|q|). We can therefore perform membership
queries of a kmer in O(|k|). But the main interest is that we can access the in-neighbors
of a node in constant time by querying the symbols preceding a kmer. Hence, DBGFM
is a membership data structure that also provides fast in-neighbors query.

The DBGFM structure was integrated into the ABySS assembler as a proof of concept
of low memory assembly. But straightforward compacted de Bruijn graph construction
requires to store the de Bruijn graph itself in memory. This de Bruijn graph compaction
step would therefore become the bottleneck of the assembly workflow. To fulfill this need,
we proposed a new external memory based algorithm in order to compute the compacted
de Bruijn graph with low memory called BCALM.

BCALM algorithm is based on the idea of minimizer [79]. The l minimizer of a string u
is the smallest lmer that is a substring of u according to a total ordering of the strings e.g.
lexicographical. We define the left minimizer Lmin(u) and the right minimizer Rmin(u)
as the minimizer of the k − 1 prefix of u and the minimizer of the k − 1 suffix of u
respectively. We use the binary relation u→ v between two strings that denotes an exact
suffix-prefix overlap of length k− 1 between u and v. The use of minimizers is motivated
by the following property: For two strings u and v, if u→ v then Rmin(u)=Lmin(v)

For describing the BCALM algorithm we will rely on the notions of compatibility
introduced in the next paragraph.

Given a set of strings S, we say that (u, v) ∈ S2 are compactable in a set V ⊆ S if
u → v and, ∀w ∈ V , if w → v then w = u and if u → w then w = v. The compaction
operation is defined on a pair of compactable strings u, v in S. It replaces u and v by
a single string w = u · v[k + 1 . . . |v|] where ’·’ is the string concatenation operator. We
say that two strings (u, v) are m-compactable in V if they are compactable in V and if
m = Rmin(u) = Lmin(v). The m-compaction of a set V is obtained by applying the
compaction operation as much as possible in any order to all pairs of strings that are
m-compactable in V . It is easy to show that the order in which strings are compacted
does not lead to different m-compactions. Compaction is a useful notion because a simple
way to obtain the unitigs is to greedily perform compaction as long as possible.

2.4.3 Unitig enumeration in low memory: BCALM

The BCALM algorithm is described in Figure 2.6, and a step by step execution is pre-
sented in Figure 2.7. The first step consists into placing the input kmers into different
files Fm according to their minimizers. Then, each file is processed starting from the file
with the smaller minimizer in increasing order. Each file Fm is loaded in memory and
all possible m-compaction among the sequences of the file are applied. The idea is that
each file will be small enough to be compacted efficiently using low amounts of memory.
Each sequence of the file are thereafter placed in the output file or in another file to be
eventually further compacted. The rules of choosing which file to write a sequence is
based on its minimizers. If both the left and right minimizers are below m, the sequence
is output as a unitig in the output file. Otherwise we write the sequence in the file Fm′

where m′ is the smallest minimizer bigger than m of the sequence. Finally the file Fm is
discarded and the next file is processed.

51

1: Input: Set of kmers S, minimizer size ` < k
2: Output: Sequences of all simple paths in the de Bruijn graph of S
3: Perform a linear scan of S to get the frequency of all l-mers (in memory)
4: Define the ordering of the minimizers, given by their frequency in S
5: Partition S into files Fm based on the minimizer m of each k-mer
6: for each file Fm in increasing order of m do
7: Cm ← m-compaction of Fm (performed in memory)
8: for each string u of Cm do
9: Bmin ← min(Lmin (u),Rmin (u))

10: Bmax ← max(Lmin (u),Rmin (u))
11: if Bmin ≤ m and Bmax ≤ m then
12: Output u
13: else if Bmin ≤ m and Bmax > m then
14: Write u to FBmax

15: else if Bmin > m and Bmax > m then
16: Write u to FBmin

17: end if
18: end for
19: Delete Fm

20: end for

Figure 2.6: BCALM: Enumeration of all maximal simple paths in the De Bruijn graph

The idea of the algorithm is to perform the m-compactions for each m in order to
perform all compactions. The intuition of the rule to place sequences in the correct file is
that, if the suffix (or the prefix) has a overlap with a minimizer n superior to m, then it
will eventually be compacted in the file Fn. If both minimizers are below m, no further
compactions can be made on the sequence and it is therefore an unitig. If both minimizers
are above m then the smallest is chosen, as the algorithm treats minimizers in increasing
order.

Several implementation details allow this algorithm to be practical. Reverse comple-
ments are handled as presented before by identifying each kmer with its reverse com-
plement and letting the minimizer be the smallest lmer in both of them. To avoid the
creation of too many files, we encode several virtual files in one physical one, this allowed
to use l = 10 in our experiments. We also avoid to load in memory the whole sequences of
a file as only the k− 1 prefix and suffix are used by the compaction detection algorithm.
For a fixed input S, the number of strings in a file Fm depends on the minimizer length
l and the ordering of minimizers. When l increases, the number of k − 1mers in S that
share a given minimizer decreases. Thus, increasing l yields less strings per file, which
decreases the memory usage. We realized that, when highly-repeated lmers are less likely
to be chosen as minimizers, the sequences are more evenly distributed among files. We
therefore perform in-memory lmer counting (line 3) to obtain a sorted frequency table
of all lmers. Each lmer is then mapped to its rank in the frequency array, to create a
total ordering of minimizers (line 4). Our experiments showed a drastic improvement
over lexicographic ordering (Table 2.3).

A proof of correctness of this algorithm is showed in [74].

52

CAG

ACA

CAA

AAC

A l-mer frequency

AG
AA
AC
CA

1
2
2
3

B

C
1 2 3

AA ACAG CA

4

CAACACAG CAAC CAACA
CAG

Output

Step

m

Cm

ACA
CAAC

AAC
CAA

Fm CAG
CAG

CAACA

CAG
CAA

AAC

CAAC

CAG

CAACA
G(Fm)

ACA

Figure 2.7: An execution of th BCALM algorithm on a toy example. (Panel A) The
set S = ACA, AAC, CAA, CAG of k-mers is represented as a de Bruijn graph (k =
3). (Panel B) The frequencies of each l-mer present in the kmers is given in increasing
order (l = 2). (Panel C) Steps of the algorithm; initially, each set F m contains all
kmers having minimizer m. For each minimizer m (in order of frequency), perform the
m-compaction of Fm and store the result in Cm ; the grey arrows indicate where each
element of Cm is written to, either the file of a higher minimizer or the output. The row
G(Fm) shows a graph where solid arrows indicate m-compactable pairs of strings in Fm.
The dash-dot arrow in Step 3 indicates that the two strings are compactable in Fm but
not m-compactable; in fact, they are not compactable in S.

53

Ordering used Lexicographical Uniformly random lmer frequency
Memory usage 840 MB 222 MB 19 MB

Table 2.3: Memory usage of BCALM with three different minimizer orderings: lexico-
graphical, uniformly random, and according to lmer frequencies. The dataset used is the
human chromosome 14 with k = 55 and l = 8

2.4.4 Assembly in low memory using BCALM

We tested the efficiency of our algorithm in two datasets. The first dataset is 36 million
155bp Illumina human chromosome 14 reads (2.9 GB compressed fastq) from the GAGE
benchmark [80]. The second dataset is 1.4 billion Illumina 100bp reads (54 GB com-
pressed) from the NA18507 human genome (SRX016231). We first processed the reads
with kmer counting software. We used DSK for this operation for its low memory usage.
We set k to 55 and applied a solidity theshold of 5 for chr14 and 3 for the whole genome.

First we evaluate (Table 2.3) the memory usage of BCALM on the chr14 dataset,
according to the minimizer ordering used. We observe that the lexicographical order
do not perform well. The lexicographical smallest lmer is Al, which is abundant in the
human chromosomes, resulting in a large Fm0 and a high memory usage. A second
attempt has been made with a uniformly random ordering. If it performs better than
the lexicographical one, it is still sensible to repeated lmer in the first files resulting in
high memory usage. Finally, we ordered the lmers according to their frequency in the
dataset. This resulted in a memory usage of 19 MB, a 40-fold improvement over the initial
lexicographical ordering. The running times of all three orderings were comparable.

We also evaluated the effect of the size of the minimizer on the BCALM performances
in Table 2.4. Large l generally lead to small memory usage, however we did not see much
improvement past l = 8 on this dataset.

Using BCALM, we evaluated the performances of the low memory assembly workflow
with DSK, BCALM and DBGFM in Table 2.5. For the whole genome dataset, BCALM
used only 43 MB of memory to compact a set of 2.5 ∗ 109 55mers and output 40 million
sequences of total length 4.6 billions base pairs. DBGFM represented these paths in
an index of size 1.5 GB. The overall construction time, including DSK, was roughly 24
hours. In comparison, a subset of this dataset was used to construct the data structure
of Salikhov et al [73] in 30.7 hours.

We also compared the memory usage of the proposed workflow with the other state of
the art approaches in Table 2.6, showing the interest the proposed low memory assembly
workflow.

Those results show that indexing unitigs instead of kmers can lead to a memory
efficient assembly steps. The BCALM algorithm, allows an memory efficient construction
of the unitig set by relying on external memory.

54

Minimizer size l 2 4 6 8 10
Memory usage 9,879 MB 3,413 MB 248 MB 19 MB 19 MB
Running time 27m19s 22m2s 20m5s 18m39s 21m4s

Table 2.4: Memory usage and wall clock time of BCALM with increasing values of mini-
mizer sizes l on the chr14 data. With the system of virtual files, these values of l require
respectively 4,16,64,256 and 1024 physical files. The used ordering is the one based on
lmer counts.

Dataset DSK bcalm dbgfm

Chromosome 14 43 MB 19 MB 38 MB
25 mins 15 mins 7 mins

Whole human genome 1.1 GB 43 MB 1.5 GB
5 h 12 h 7 h

Table 2.5: Running times (wall-clock) and memory usage of DSK, bcalm and dbgfm
construction on the human chromosome 14 and whole human genome datasets (k = 55
and ` = 10 for both).

DBGFM Salikhov et al. Conway & Bromage

chr14 38.0 MB 94.9 MB > 875 MB
Full human dataset 1,462 MB 2,702 MB > 22, 951 MB

Table 2.6: Memory usage of de Bruijn graph data structures, on the human chromosome
14 and whole human genome datasets (k = 55 for both). We did not run the algorithm
of Conway and Bromage because our machine does not have sufficient memory for the
whole genome. Instead, we report the theoretical size of their data structure, assuming
that it would be constructed from the output of DSK. As described in [81], this gives a
lower bound on how well their implementation could perform.

55

"Efficient de Bruijn graph representations" core messages:

• Unitigs (maximal simple paths) are great abstractions to represent the de Bruijn
graph

• Unitigs can be constructed with a low memory usage
• Indexing unitigs with a compressed index achieves very low memory assembly

(less than 1.5GB for a human assembly)

2.5 Efficient de Bruijn graph construction

In this section we describe our contribution in the paper "Compacting de Bruijn
graphs from sequencing data quickly and in low memory " [82]

We introduced an algorithm to construct the de Bruijn graph with very low memory
usage relying on external memory. But the approach does not exhibit straightforward
parallel patterns to exploit and is quite slow. In the proof of concept human assembly,
BCALM took 12 hours to complete for a total running time of 24 hours for the whole
workflow. As we said before, the kmer counting step tool reached a very high throughput
and an extremely reduced memory footprint. The graph compaction step has therefore
become the bottleneck for assembly. We showed before that unitigs could be used as
atoms for assembly instead of kmers and it appears that most assemblers rely on them
or even, in some cases, explicitly compute such sets of sequences [83, 40]. Some papers
proposed solutions for fast graph compaction but are mostly based on parallel graph
traversal and no memory efficient method have been proposed. This is why we propose
a fast and parallel algorithm for graph compaction presenting a low memory footprint
called BCALM2.

2.5.1 BCALM2 algorithm

We give here a high level overview of the BCALM2 algorithm (Figure 2.8). As in BCALM
the first step of the algorithm is to distribute the input set of kmer into files. In BCALM2 a
kmer can be inserted in two different files, if it has different left and right minimizers. The
second step will consist into performing compactions on all the files in parallel according
to the compaction procedure described in Figure 2.9. The last stage will need to glue
back together the kmers that were duplicated in two files. The Figure 2.12 shows an
execution of BCALM2 on a toy example.

Since the size of the files are small, the compactions can be made with a in-memory
algorithm in a parallel way. The resulting sequences are written on disk and are processed
in the third stage when all compactions are finished. At the end of the compaction step,
we notice that some kmers exist in two copies in the sequences produced. Such kmers are
always the prefix or the suffix of the compacted sequences. We record the sequences ends
that have a doubled kmers has "lonely" as they should be reunited in the third stage.
The other sequences are output as unitigs.

56

In the last stage, we process the sequences that need to be reunited with the Reunite
procedure (Figure 2.10). The goal of Reunite is to associate the sequences sharing a suffix
or prefix kmer and to glue them together (Figure 2.11) by reuniting the two occurrences
of a doubled kmer. The lonely mark are transfered to the produced sequences and this
process is repeated until a sequence has a lonely end. After the reunite operation, there
is no duplicated kmer left and the output correspond to the unitig set. In order to be
efficient, the reunite operation partitions the sequences in order to process the partitions
in a parallel and memory efficient way.

A proof of correctness of this algorithm is available in [82]

2.5.2 Implementation details

In this section we describe optimizations and important implementation details. As in
BCALM, we do not use the lexical ordering for minimizers but the frequency based min-
imizer order described previously. Files used in the algorithm are virtual files organized
into groups, in order to introduce natural checkpoints in BCALM 2 in between parallel
sections. BCALM2 iterates sequentially through the groups, but parallelizes the process-
ing within a group. The For loop at line 1 of Figure 2.8 is executed in parallel within a

Input: the set of k-mers K.
1: for all parallel x ∈ K do
2: Write x to F (Lmin(x)).
3: if Lmin(x) 6= Rmin(x) then
4: Write x to F (Rmin(x)).
5: end if
6: end for
7: for all parallel i ∈ {1, . . . , 4`} do
8: Run CompactBucket(i)
9: end for

10: Reunite()

Figure 2.8: BCALM2(K)

1: Load F (i) into memory.
2: U ← i-compaction of F (i).
3: for all strings u ∈ U do
4: Mark u’s prefix as “lonely” if i 6= Lmin(u).
5: Mark u’s suffix as “lonely” if i 6= Rmin(u).
6: if u’s prefix and suffix are not lonely then
7: Output u.
8: else
9: Place u in the Reunite file

10: end if
11: end for

Figure 2.9: CompactBucket(i)

57

Input: the set of strings R from the Reunite
file.
1: UF ← Union find data structure whose elements are the distinct k-mer extremities

in R.
2: for all parallel u ∈ R do
3: if both ends of u are lonely then
4: UF.union(sufk(u), prek(u))
5: end if
6: end for
7: for all parallel classes C of UF do
8: P ← all u ∈ R that have a lonely extremity in C
9: while ∃u ∈ P that does not have a lonely prefix do

10: Remove u from P
11: Let s = u
12: while ∃ v ∈ P such that sufk(s) = prek(v) do
13: s← Glue(s, v)
14: Remove v from P
15: end while
16: Output s
17: end while
18: end for

Figure 2.10: Reunite()

Input: strings u and v, such that suffixk(u) = prefixk(v).
1: Let w = u�k v.
2: Set lonely prefix bit of w to be the lonely prefix bit of u.
3: Set lonely suffix bit of w to be the lonely suffix bit of v.
4: return w

Figure 2.11: Glue(u, v)

58

F(CC)
CCCC
CCCT
CCTC
CCCA

F(CT)
CCTC
CTCT
TCTA
CTAA
CTAC

F(AA)
CTAA

F(AC)
CTAC

F(CA)
CCCA

Compac)ons
CCCC
CCCTC●
CCCA●

●CCTCTA
CTAA●
CTAC●

●CTAA ●CTAC ●CCCA

Distribu)on
of	k-mers

Reunifica)on

CCCC
CCCT
CCTC
CTCT
TCTA CTAA

CCCA

Output	non-lonely	nodes:	CCCC

K-mer extremities in UF classes {CCTC} {CCCA} {CTAC} {CTAA}
Strings in each partition {CCCTC●,●CCTCTA}						{CCCA●,●CCCA	}								{CTAC●,●CTAC}						{CTAA●,	●CTAA}
Glued and output CCCTCTA CCCA CTAC CTAA

CTAC

Figure 2.12: Execution of BCALM2 on a small example, with k = 4 and l = 2. On
the top left, we show the input de Bruijn graph. The maximal unitig corresponds to
the path from CCCT to TCTA (spelling CCCTCTA), and to the kmers CCCC, CCCA,
CTAC, CTAA. In this example, minimizers are defined using a lexicographic ordering of
lmers. In the top right, we show the contents of the files. Only five of the files are non-
empty, corresponding to the minimizers CC, CT, AA,AC and CA. The doubled kmers
are italicized. Below that, we show the set of strings that each i-compaction generates.
For example in the file CC, the kmers CCCT and CCTC are compacted into CCCTC,
however CCCC and CCCT are not compactable because CCCA is another out-neighbor
of CCCC. The lonely ends are denoted by •. In the bottom half we show the execution
steps of the Reunite algorithm. Nodes in bold are output

group, with each thread given a subset of K. Kmers are distributed only to those files
that are in the group, with other buckets being ignored. After the kmers are distributed,
files from a group are compacted in parallel. The CompactBucket routines are indepen-
dent of each other, and hence we run CompactBucket(i) in parallel using all available
processors. After BCALM2 finishes processing a group, it moves on to the next group.
For the Reunite operation, we used a minimal perfect hash function of all distinct kmer
extremities in order to perform the necessary operations. The possibly high amount of key
to index lead us to the conception of a new method to construct such functions that will
be described in the next section. The presented algorithm takes as input a set of kmers,
but in our implementation, BCALM2 is based on the GATB [84] library and make use
of its kmer counting operation to handle directly read files. In this kmer counter, kmers
are divided into partitions according to their minimizer, then each partition is counted
independently. We modified the GATB kmer counting algorithm so that partition files
correspond exactly to file groups.

2.5.3 Large genome de Bruijn graphs

We evaluated BCALM2 performances and its comparison with other tool for compacting
a De Bruijn graph. We used two human datasets from GAGE [80] and two larger datasets
from the spruce and pine sequencing projects [61, 85].

In Figure 2.13 we show how BCALM2 is affected by the changes in the parameters
k and l. It shows that BCALM2 has almost identical running times for l from 6 to 10.

59

1 2 4 8 16 32
0

4

8

12

16
Compactions
Reunificactions

Number of cores

W
al

l-
cl

oc
k

tim
e

(m
in

)

l=4 l=6 l=8 l=10
200

400

600

k=21
k=41
k=61

Minimizer size

W
al

l-
cl

oc
k

tim
e

(s
)

Figure 2.13: BCALM2 wall-clock running times with respect to parameters ` (left) and
k (using 4 cores) and number of cores (using k = 55 and ` = 8), on the chromosome 14
dataset (right).

Short minimizer sizes create fewer files and therefore limit parallel operations. We also
show how BCALM2 scales with multiples cores. We observe that the compactions scale in
a nearly linear manner with the number of thread used. There remains overhead related
to disk operations.

We also compared the BCALM2 performances with BCALM, ABYSS and Merac-
ulous2 graph compaction steps in Table 2.7. We observe that BCALM2 is the fastest
available tool while using order of magnitude less memory but compared to BCALM.
We further evaluated BCALM 2 on two very large sequencing datasets: Illumina reads
from the 20 Gbp Picea glauca genome (8.5 billion reads, 152–300 bp each, 1.1 TB com-
pressed FASTQ, SRA056234), and Illumina paired-end reads from the 22 Gbp Pinus taeda
genome (9.4 billion reads, 128–154 bp each, 1.2 TB compressed FASTQ, SRX016231).
The k-mer counting step took around a day and less than 40 GB of memory for each
dataset.

Table 2.8 shows the performance of BCALM 2 on these two datasets, as well as
unitigs statistics. Graph construction of the spruce dataset previously required 4.3 TB
of memory and 2 days on a 1380-core cluster [61], while the assembly of the pine dataset
previously required 800 GB of memory and 3 months on a single machine [85]. Although
we used the same sequencing datasets, several parameters differ between these previous
reports and our results (e.g. k value, abundance cutoff, and whether reads were error-
corrected). Hence, run time, memory usage, and unitigs statistics cannot be directly
compared. However, it seems reasonable to infer that BCALM 2 would remains 1–2
orders of magnitude more efficient in time and memory.

60

Dataset BCALM2 BCALM ABySS-P Meraculous 2

Chr 14 5 mins 15 mins 11 mins 62 mins
400 MB 19 MB 11 GB 2.35 GB

Whole
human

1.2 h 12 h 6.5 h 16 h ∗

2.8 GB 43 MB 89 GB unreported ∗

Table 2.7: Running times (wall-clock) and memory usage of compaction algorithms for
the human datasets. For BCALM2 and BCALM we used k = 55, and ` = 8 and ` = 10,
respectively; abundance cutoffs were set to 5 for Chr 14 and 3 for whole human. We used
16 cores for the parallel algorithms ABySS, Meraculous 2, and BCALM2. Meraculous
2 aborted with a validation failure due to insufficient peak k-mer depth when we ran it
with abundance cutoffs of 5. We were able to execute it on chromosome 14 with a cutoff
of 8, but not for the whole genome. The exact memory usage was unreported there but
is less than < 1 TB. Meraculous 2 was executed with 32 prefix blocks.

Dataset Loblolly
pine

White
spruce

Distinct k-mers
(×109)

10.7 13.0

Num threads 8 16
CompactBucket()
time

4 h 40 m 3 h 47 m

CompactBucket()
mem

6.5 GB 6 GB

Reunite file size 85 GB 140 GB
Reunite() time 4 h 32 m 3 h 08 m
Reunite() memory 31 GB 39 GB

Total time 9 h 12 m 6 h 55 m
Total max memory 31 GB 39 GB

Unitigs (×106) 721 1200
Total length 32.3 Gbp 49.0 Gbp
Longest unitig 11.2 Kbp 9.0 Kbp

Table 2.8: Performance of BCALM2 on the loblolly pine and white spruce datasets. The
kmer size was 31 and the abundance cutoff for kmer counting was 7.

61

"Efficient de Bruijn graph construction" core messages:

• Graph construction is the bottleneck of most assemblers
• Unitigs can be constructed in parallel and in low memory
• Very large genomes can be addressed without huge need of RAM

2.6 Indexing large sets

We presented the interest of working on unitigs for assembly and how to efficiently com-
pute them. We proposed DBGFM, a data structure able to index the set of unitigs using
less memory than previously best known data structures and fast enough to allow efficient
assembly. Since DBGFM is more powerful than a NDS because it is a membership data
structure, can we propose a better structure that is just a NDS?

We are interested in a structure using less memory and providing faster access to
neighbors. We remark that the unitig sequence representation is close to the 2 bits per
kmer limit. Each unitig represents an overhead of 2 ∗ (k − 1) nucleotides to add to the 2
bits per kmer. Raw unitig sequences is not an interesting structure in practice because a
query would be linear. Indexing the last and first k−1mers of each unitig and associating
to each k − 1mer the unitigs that start and end with it could lead to an NDS. The cost
of such a structure would be at least 8 ∗ log(#unitigs) bits per unitigs, as a k − 1mer
can be associated to up to 8 unitigs (log(#unitigs) bits are needed to encode the indice
of an unitig), plus the indexing cost.

A better scheme would be to index the first and last kmer of each unitig and to
associate to each indexed kmer its unique unitig. Indeed a kmer appears in at most one
unitig due to the definition of the compacted de Bruijn graph. This way, an unitig can
know its sons by querying the index with the four possible kmers. In order to avoid
performing useless queries, we can add 8 bits to each unitig to precise which neighbors
exist. This leads to a structure of at least 2 ∗ log(#unitigs) per unitig (to encode the
the unitig indice twice) bits plus 8 bits from the proposed optimization plus the cost of
indexing. This kind of structure would allow constant and fast queries, with a very low
memory overhead. A regular hashing would be costly in memory and in query time. The
best solution to keep a low memory usage would be an open addressing hash table that
would offer a 2 ∗ log(#unitigs) ∗ (1/loadFactor) bits. In practice the load factor is set
below 0.8. Practically we can consider that the unitig identifier would be represented by
a 32 bits integer, thus the open addressing would cost roughly one byte by unitig and
would produce long queries when collisions occur. Can we do better ?

One may argue that we do not use the fact that our set of keys is static and that
we could use a Minimal Perfect Hash Function (MPHF). Such structures use very few
memory (as low as 3 bits per key) and guarantee constant query time and in practice
very fast access (hundred of nanoseconds). Beside, many applications in bioinformatics
could benefit from an efficient and lightweight structure to associate information to large
sets of keys as kmers or unitigs: coverage, origin of the sequence or any properties. But
MPHF are costly to construct for very large sets of keys, both in running time and in
memory usage. We therefore present a technique able to efficiently construct efficient

62

MPHF from huge sets of keys with low memory and time.

This method is presented in the paper "Fast and scalable minimal perfect hashing
construction for massive key sets" [86] included at the end of the chapter.

This paper observes that most methods to construct MPHF are designed to provide
the smallest structures. However, most methods use way more memory during construc-
tion than the size of the MPHF itself. Generally, available implementations showed very
high running time and memory requirement on large sets of keys, making them imprac-
ticable to index billions of objects. The paper therefore proposes a new implementation
of a simple algorithm providing efficient MPHF that scales on very large sets.

The algorithm used is pretty straightforward. First keys are hashed into a bit array.
Second the positions in the bit array that received an unique key are marked with a one
and the corresponding keys are removed from the key set. The remaining keys are hashed
in a second bit array and the process is repeated until there is not key left. At the end
of the algorithm each key is associated to a unique position in one of the bit array. To
find this position the key is hashed to the different bit array until a one is found.

The main interests of the method are the amount of memory needed for construction
that is similar to the size of the MPHF and the parallel construction allowing a very short
running time. BBHASH constructed a MPHF from a billion key dataset in a minute with
2GB of RAM were the best know MPHF library constructs it in more than 20 minutes
using more than 18GB. BBHASH also achieved to construct a trillion key MPHF on a
750GB machine. This experiment is, to our knowledge, the largest MPHF constructed.

Applications BBhash MPHF has been used in several bioinformatics tools and was
integrated in the GATB [84] library. It is used to associate information to kmers such as
coverage or origin. The unification operation of BCALM2 also relies on BBhash MPHF
structure. Another tool, called SRC [87, 88], integrated the BBhash MPHF in order
to propose an efficient data structure to index reads for read set comparisons and read
coverage estimation.

"Indexing large sets" core messages:

• We can build MPHF from huge sets of keys with low resources
• Such MPHF are used for assembly and also for various applications in bioinfor-

matics

63

Fast and scalable minimal perfect hashing for
massive key sets
Antoine Limasset1, Guillaume Rizk1, Rayan Chikhi2, and Pierre
Peterlongo1

1 IRISA Inria Rennes Bretagne Atlantique, GenScale team, Campus de
Beaulieu 35042 Rennes, France

2 CNRS, CRIStAL, Université de Lille, Inria Lille - Nord Europe, France

Abstract
Minimal perfect hash functions provide space-efficient and collision-free hashing on static sets.
Existing algorithms and implementations that build such functions have practical limitations on
the number of input elements they can process, due to high construction time, RAM or external
memory usage. We revisit a simple algorithm and show that it is highly competitive with the
state of the art, especially in terms of construction time and memory usage. We provide a
parallel C++ implementation called BBhash. It is capable of creating a minimal perfect hash
function of 1010 elements in less than 7 minutes using 8 threads and 5 GB of memory, and the
resulting function uses 3.7 bits/element. To the best of our knowledge, this is also the first
implementation that has been successfully tested on an input of cardinality 1012. Source code:
https://github.com/rizkg/BBHash

1998 ACM Subject Classification H.3.1 E.2

Keywords and phrases Minimal Perfect Hash Functions, Algorithms, Data Structures, Big Data

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

Given a set S of N elements (keys), a minimal perfect hash function (MPHF) is an injective
function that maps each key of S to an integer in the interval [1, N]. In other words, an
MPHF labels each key of S with integers in a collision-free manner, using the smallest possible
integer range. A remarkable property is the small space in which these functions can be
stored: only a couple of bits per key, independently of the size of the keys. Furthermore,
an MPHF query is done in constant time. While an MPHF could be easily obtained using a
key-value store (e.g. a hash table), such a representation would occupy an unreasonable
amount of space, with both the keys and the integer labels stored explicitly.

The theoretical minimum amount of space needed to represent an MPHF is known to
be log2(e)N ≈ 1.44N bits [10, 14]. In practice, for large key sets (billions of keys), many
implementations achieve less than 3N bits per key, regardless of the number of keys [2, 9].
However no implementation comes asymptotically close to the lower bound for large key sets.
Given that MPHFs are typically used to index huge sets of strings, e.g. in bioinformatics [6, 7, 8],
in network applications [12], or in databases [5], lowering the representation space is of interest.
We observe that in many of these applications, MPHFs are actually used to construct static
dictionaries, i.e. key-value stores where the set of keys is fixed and never updated [6, 8].
Assuming that the user only queries the MPHF to get values corresponding to keys that are
guaranteed to be in the static set, the keys themselves do not necessarily need to be stored in
memory. However the associated values in the dictionary typically do need to be stored, and

© Antoine Limasset, Guillaume Rizk, Rayan Chikhi and Pierre Peterlongo;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

XX:2 Fast and scalable minimal perfect hashing for massive key sets

they often dwarf the size of the MPHF. The representation of such dictionaries then consists of
two components: a space-efficient MPHF, and a relatively more space-expensive set of values.
In such applications, whether the MPHF occupies 1.44 bits or 3 bits per key is thus arguably
not a critical aspect.

In practice, a significant bottleneck for large-scale applications is the construction step of
MPHFs, both in terms of memory usage and computation time. Constructing MPHFs efficiently
is an active area of research. Many recent MPHF construction algorithms are based on efficient
peeling of hypergraphs [1, 3, 4, 11]. However, they require an order of magnitude more
space during construction than for the resulting data structure. For billions of keys, while
the MPHF itself can easily fit in main memory of a commodity computer, its construction
algorithm requires large-memory servers. To address this, Botelho and colleagues [4] propose
to divide the problem by building many smaller MPHFs, while Belazzougui et al. [1] propose
an external-memory algorithm for hypergraph peeling. Very recently, Genuzio et al. [11]
demonstrated practical improvements to the Gaussian elimination technique, that make
it competitive with [1] in terms of construction time, lookup time and space of the final
structure. These techniques are, to the best of our knowledge, the most scalable solutions
available. However, when evaluating existing implementations, the construction of MPHFs for
sets that significantly exceed a billion keys remains prohibitive in terms of time and space
usage.

A simple idea has been explored by previous works [6, 12, 16] for constructing PHFs
(Perfect Hash Functions, non minimal) or MPHFs using arrays of bits, or fingerprints. However,
it has received relatively less attention compared to other hypergraph-based methods, and
no implementation is publicly available in a stand-alone MPHF library. In this article we
revisit this idea, and introduce novel contributions: a careful analysis of space usage during
construction, and an efficient, parallel implementation along with an extensive evaluation
with respect to the state of the art. We show that it is possible to construct an MPHF using
almost as little memory as the space required by the final structure, without partitioning the
input. We propose a novel implementation called BBhash (“Basic Binary representAtion of
Successive Hashing”) with the following features:

construction space overhead is small compared to the space occupied by the MPHF,
multi-threaded,
scales up to to very large key sets (tested with up to 1 trillion keys).
To the best of our knowledge, there does not exist another usable implementation that

satisfies any two of the features above. Furthermore, the algorithm enables a time/memory
trade-off: faster construction and faster query times can be obtained at the expense of a
few more bits per element in the final structure and during construction. We created an
MPHF for ten billion keys in 6 minutes 47 seconds and less than 5 GB of working memory,
and an MPHF for a trillion keys in less than 36 hours and 637 GB memory. Overall, with
respect to other available MPHF construction approaches, our implementation is at least two
orders of magnitudes more space-efficient when considering internal and external memory
usage during construction, and at least one order of magnitude faster. The resulting MPHF
has slightly higher space usage and faster or comparable query times than other methods.

2 Efficient construction of minimal perfect hash function

2.1 Method overview
Our MPHF construction procedure revisits previously published techniques [6, 12]. Given a set
F0 of keys, a classical hash function h0 maps keys to an integer in [1, |F0|]. A bit array A0 of

A. Limasset, G. Rizk, R. Chikhi, P. Peterlongo XX:3

1

0

0

0

1

0

k6

k4,k2

k3

k1,k5

1

0

1

0

k5

k4,k2

k1

1

1 k4

k2
k1 k2 k3
k4 k5 k6

h0

A0 A1 A2

h1 h2

1 (1) 0 0 0 1 (2) 0 1 (3) 0 1 (4) 0 1 (5) 1 (6)

A0 A1 A2

A (rank	
 of	
 ’1’s	
 are	
 indicated	
 in	
 parenthesis)	

h0(k2) h1(k2) h2(k2)

F0

k1 k2
k4 k5

F1

k2
k4

F2

Figure 1 MPHF construction and query example. The input is a set F0 composed of N = 6 keys
(k1 to k6). All keys are hashed using a hash function h0 and are attempted to be placed in an array
A0 at positions given by the hash function. The keys k3 and k6 do not have collisions in the array,
thus the corresponding bits in A0 are set to ’1’. The other keys from F0 that are involved in collisions
are placed in a new set F1. In the second level, keys from F1 are hashed using a hash function h1.
Keys k1 and k5 are uniquely placed while k2 and k4 collide, thus they are then stored in the set
F2. With the hash function h2, the keys from F2 have no collision, and the process finishes. The
MPHF query operation is very similar to the construction algorithm. Let A be the the concatenation
of A0, A1, A2 (see bottom part of the figure). To query k2, the key is first hashed with h0. The
associated value in A0 is ’0’, so k2 is then hashed with h1. The value associated in A1 is again ’0’.
When finally hashed with h2, the value associated in A2 is ’1’ and thus the query stops here. The
index returned by the MPHF is the rank of this ’1’ (here, 5) in A. In this example, the MPHF values
returned when querying k1, k2, k3, k4, k5 and k6 are respectively 4,5,2,6,3, and 1.

size |F0| is created such that there is a 1 at position i if and only if exactly one element of
F0 has a hash value of i. We say that there is a collision whenever two keys in F0 have the
same hash value. Keys from F0 that were involved in a collision are inserted into a new set
F1. The process repeats with F1 and a new hash function h1. A new bit array A1 of size
|F1| is created using the same procedure as for A0 (except that F1 is used instead of F0, and
h1 instead of h0). The process is repeated with F2, F3, . . . until one of these sets, Flast+1, is
empty.

We obtain an MPHF by concatenating the bit arrays A0, A1, . . . , Alast into an array A.
To perform a query, a key is hashed successively with hash functions h0, h1, . . . as long as
the value in Ai (i ≥ 0) at the position given by the hash function hi is 0. Eventually, by
construction, we reach a 1 at some position of A for some i = d. We say that the level of the
key is d. The index returned by the MPHF is the rank of this one in A. See Figure 1 for an
example.

2.2 Algorithm details
2.2.1 Collision detection
During construction at each level d, collisions are detected using a temporary bit array Cd of
size |Ad|. Initially all Cd bits are set to ’0’. A bit of Cd[i] is set to ’1’ if two or more keys from

XX:4 Fast and scalable minimal perfect hashing for massive key sets

Fd have the same value i given by hash function hd. Finally, if Cd[i] = 1, then Ad[i] = 0.
Formally:

Cd[i] = 1⇒ Ad[i] = 0;
(hd[x] = i and Ad[i] = 0 and Cd[i] = 0)⇒ Ad[i] = 1 (and Cd[i] = 0) ;
(hd[x] = i and Ad[i] = 1 and Cd[i] = 0)⇒ Ad[i] = 0 and Cd[i] = 1.

2.2.2 Queries
A query of a key x is performed by finding the smallest d such that Ad[hd(x)] = 1. The (non
minimal) hash value of x is then (

∑
i<d |Fi|) + hd(x).

2.2.3 Minimality
To ensure that the image range of the function is [1, |F0|], we compute the cumulative rank
of each ’1’ in the bit arrays Ai. Suppose, that d is the smallest value such that Ad[hd(x)] = 1.
The minimal perfect hash value is given by

∑
i<d(weight(Ai) + rank(Ad[hd(x)]), where

weight(Ai) is the number of bits set to ’1’ in the Ai array, and rank(Ad[y]) is the number of
bits set to 1 in Ad within the interval [0, y], thus rank(Ad[y]) =

∑
j<y Ad[j]. This is a classic

method also used in other MPHFs [3].

2.2.4 Faster query and construction times (parameter γ)
The running time of the construction depends on the number of collisions on the Ad arrays,
at each level d. One way to reduce the number of collisions, hence to place more keys at each
level, is to use bit arrays (Ad and Cd) larger than |Fd|. We introduce a parameter γ ∈ R,
γ ≥ 1, such that |Cd| = |Ad| = γ|Fd|. With γ = 1, the size of A is minimal. With γ ≥ 2,
the number of collisions is significantly decreased and thus construction and query times are
reduced, at the cost of a larger MPHF structure size. The influence of γ is discussed in more
detail in the following analyses and results.

2.3 Analysis
Proofs of the following observations and lemma are given in the Appendix.

2.3.1 Size of the MPHF
The expected size of the structure can be determined using a simple argument, previously
made in [6]. When γ = 1, the expected number of keys which do not collide at level d is
|Ad|e−1, thus |Ad| = |Ad−1|(1 − e−1) = |A0|(1 − e−1)d. In total, the expected number of
bits required by the hashing scheme is

∑
d≥0 |Ad| = N

∑
d≥0(1− e−1)d = eN , with N being

the total number of input keys (N = |F0|). Note that consequently the image of the hash
function is also in [1, eN], before minimization using the rank technique. When γ ≥ 1, the
expected proportion of keys without collisions at each level d is |Ad|e−

1
γ . Since each Ad no

longer uses one bit per key but γ bits per key, the expected total number of bits required by
the MPHF is γe

1
γ N .

2.3.2 Space usage during construction
We analyze the disk space used during construction. Recall that during construction of level
d, a bit array Cd of size |Ad| is used to record collisions. Note that the Cd array is only

A. Limasset, G. Rizk, R. Chikhi, P. Peterlongo XX:5

needed during the d-th level. It is deleted before level d + 1. The total memory required
during level d is

∑
i≤d(|Ai|) + |Cd| =

∑
i<d(|Ai|) + 2|Ad|.

I Lemma 1. For γ > 0, the space of our MPHF is S = γe
1
γ N bits. The maximal space during

construction is S when γ ≤ log(2)−1, and 2S bits otherwise.
A full proof of the Lemma is provided in the Appendix.

3 Implementation

We present BBhash, a C++ implementation available at http://github.com/rizkg/BBHash.
We describe in this section some design key choices and optimizations.

3.1 Rank structure
We use a classical technique to implement the rank operation: the ranks of a fraction of the
’1’s present in A are recorded, and the ranks in-between are computed dynamically using the
recorded ranks as checkpoints.

In practice 64 bit integers are used for counters, which is enough for realistic use of an
MPHF, and placed every 512 positions by default. These values were chosen as they offer
a good speed/memory trade-off, increasing the size of the MPHF by a factor 1.125 while
achieving good query performance. The total size of the MPHF is thus (1 + 64

512)γe
1
γ N .

3.2 Parallelization
Parallelization is achieved by partitioning keys over several threads. The algorithm presented
in Section 2 is executed on multiple threads concurrently, over the same memory space.
Built-in compiler functions (e.g. sync_fetch_and_or) are used for concurrent access in the
Ai arrays. The efficiency of this parallelization scheme is shown in the Results section, but
note that it is fundamentally limited by random memory accesses to the Ai arrays which
incur cache misses.

3.3 Hash functions
The MPHF construction requires classical hash functions. Other authors have observed that
common hash functions behave practically as well as fully random hash functions [2]. We
therefore choose to use xor-shift based hash functions [13] for their efficiency both in terms
of computation speed and distribution uniformity [15].

3.4 Disk usage
In the applications we consider, key sets are typically too big to fit in RAM. Thus we propose
to read them on the fly from disk. There are mainly two distinct strategies regarding the
disk usage during construction: 1/ during each level d, keys that are to be inserted in the set
Fd+1 are written directly to disk. The set Fd+1 is then read during level d+ 1 and erased
before level d+ 2; or 2/ at each level all keys from the original input key file are read and
queried in order to determine which keys were already assigned to a level i < d, and which
would belong to Fd. When the key set becomes small enough (below user-defined threshold)
it is loaded in ram to avoid costly re-computation from scratch at each level.

The first strategy obviously provides faster construction at the cost of temporary disk usage.
At each level d > 0, two temporary key files are stored on disk: Fd and Fd+1. The highest disk

XX:6 Fast and scalable minimal perfect hashing for massive key sets

usage is thus achieved during level 1, i.e. by storing |F1|+|F2| = |F0|((1−e−1/γ)+(1−e−1/γ)2)
elements. With γ = 1, this represents ≈ 1.03N elements, thus the construction overhead on
disk is approximately the size of the input key file. Note that with γ = 2 (resp. γ = 5), this
overhead diminishes and becomes a ratio of ≈ 0.55 (resp. ≈ 0.21) the size of the input key
file.

The first strategy is the default strategy proposed in our implementation. The second
one has also been implemented and can be optionally switched on.

3.5 Termination
The expected number of unplaced keys decreases exponentially with the number of levels
but is not theoretically guaranteed to reach zero in a finite number of steps. To ensure
termination of the construction algorithm, in our implementation a maximal number D of
levels is fixed. Then, the remaining keys are inserted into a regular hash table. Value D is a
parameter, its default value is D = 25 for which the expected number of keys stored in this
hash table is ≈ 10−5N for γ = 1 and becomes in practice negligible for γ ≥ 2, allowing the
size overhead of the final hash table to be negligible regarding the final MPHF size.

4 Results

We evaluated the performance BBhash for the construction of large MPHFs. We generated
files containing various numbers of keys (from 1 million to 1 trillion keys). In our tests, a
key is a binary representation of a pseudo-random positive integer in [0; 264]. Within each
file, each key is unique. We also performed a test where input keys are strings (n-grams) to
ensure that using integers as keys does not bias results. Tests were performed on a cluster
node with a Intel© Xeon© CPU E5-2660 v3 2.60GH 20-core CPU, 256 GB of memory, and
a mechanical hard drive. Except for the experiment with 1012 keys, running times include
the time needed to read input keys from disk. Note that files containing key sets may be
cached in memory by the operating system, and all evaluated methods benefit from this
effect during MPHF construction. We refer to the Appendix for the specific commands and
parameters used in these experiments.

We first analyzed the influence of the γ value (the main parameter of BBhash), then
the effect of using multiple threads depending on the parallelization strategy. Second, we
compared BBhash with other state-of-the-art methods. Finally, we performed an MPHF
construction on 1012 elements.

4.1 Influence of the γ parameter
We report in Figure 2 (left) the construction times and the mean query times, as well as
the size of the produced MPHF, with respect to several γ values. The main observation is
that γ ≥ 2 drastically accelerates construction and query times. This is expected since large
γ values allow more elements to be placed in the first levels of the MPHF; thus limiting the
number of times each key is hashed to compute its level. In particular, for keys placed
in the very first level, the query time is limited to a single hashing and a memory access.
The average level of all keys is e(1/γ), we therefore expect construction and query times
to decrease when γ increases. However, larger γ values also incur larger MPHF sizes. One
observes that γ > 5 values seem to bring very little advantage at the price of higher space
requirements. A related work used γ = 1 in order to minimize the MPHF size [6]. Here, we

A. Limasset, G. Rizk, R. Chikhi, P. Peterlongo XX:7

2 4 6 8 10

18
0

20
0

22
0

24
0

26
0

28
0

Gamma value

Q
ue

ry
 ti

m
e

(n
s)

●

●

●

●

●

●

●

●

●

●

M
P

H
F

 s
iz

e
(b

its
/k

ey
)

4

6

8

10

12
●

Average query time (ns)
MPHF size

2 4 6 8 10

15
0

25
0

35
0 Construction

time (s)

5 10 15 20

0
5

10
15

20

Number of cores

S
ee

du
p

Practical speedup
Best theoretical speedup

Figure 2 Left: Effects of the gamma parameter on the performance of BBhash when run on a set
composed of one billion keys, when executed on a single CPU thread. Times and MPHF size behave
accordingly to the theoretical analysis, respectively O(e(1/γ)), and O(γe(1/γ)). Right: Performance
of the BBhash construction time according to the number of cores, using γ = 2.

argue that using γ values larger than 1 has significant practical merits. In our tests, we often
used γ = 2 as it yields an attractive time/space trade-off during construction and queries.

4.2 Parallelization performance
We evaluated the capability of our implementation to make use of multiple CPU cores. In
Figure 2 (right), we report the construction times with respect to the number of threads.
We observe a near-ideal speed-up with respect to the number of threads with diminishing
returns when using more than 10 threads, which is likely due to cache misses that induce a
memory access bottleneck.

In addition to these results, we applied BBhash on a key set of 10 billion keys and on
a key set of 100 billion keys, again using default parameters and 8 threads. The memory
usage was respectively 4.96GB and 49.49GB, and the construction time was respectively 462
seconds and 8913 seconds, showing the scalability of BBhash.

4.3 Comparisons with state of the art methods
We compared BBhash with state-of-the-art MPHF methods. CHD (http://cmph.sourceforge.
net/) is an implementations of the compressed hash-and-displace algorithm [2]. EMPHF [1]
is based on random hypergraph peeling, and the HEM [4] implementation in EMPHF is
based on partitioning the input data. Sux4J is a Java implementation of [11]. We did not
include other methods cited earlier because they do not provide an implementation [12, 16]
or the software integrates a non-minimal perfect hash function that is not stand-alone [6].
However single-threaded results presented in [16] show that construction times and MPHF
sizes are comparable to ours, query times are significantly longer, and no indication is
provided about the memory usage during construction. Our benchmark code is available at
https://github.com/rchikhi/benchmphf.

Figure 3 shows that all evaluated methods are able to construct MPHFs that contain a
billion elements, but only BBhash scales up to datasets that contain 1011 elements and more.
Overall, BBhash shows consistently better time and memory usage during construction.

We additionally compared the resulting MPHF size, i.e. the space of the data structure

XX:8 Fast and scalable minimal perfect hashing for massive key sets

0
20

40
60

80

Number of keys

M
em

or
y

fo
ot

pr
in

t (
G

B
)

● ●
●

●

1e+06 1e+07 1e+08 1e+09 1e+10 1e+11

●

BBhash
CHD
EMPHF
EMPHF−HEM
Sux4J

0.
1

10
.0

10
00

.0

Number of keys

C
on

st
ru

ct
io

n
tim

e
(s

)

●

●

●

●

1e+06 1e+07 1e+08 1e+09 1e+10 1e+11

Figure 3 Memory footprint and construction time with respect to the number of keys. All
libraries were run using default parameters, including γ = 2 for BBhash. For a fair comparison,
BBhash was executed on a single CPU thread. Except for Sux4J, missing data points correspond to
runs that exceeded the amount of available RAM. Sux4J limit comes from the disk usage, estimated
at approximately 4TB for 1011 keys.

returned by the construction algorithm, and the mean query time across all libraries on a
dataset consisting of a billion keys (Table 1). MPHFs produced by BBhash range from 2.89
bits/key (when γ = 1 and ranks are sampled every 1024 positions) to 6.9 bits/key (when γ = 5
and a rank sampling of 512). The 0-0.8 bits/key size difference between our implementation
and the theoretical space usage of the BBhash structure size is due to additional space
used by the rank structure. We believe that a reasonable compromise in terms of query
time and structure size is 3.7 bits/key with γ = 2 and a rank sampling of 512, which is
marginally larger than the MPHF sizes of other libraries (ranging from 2.6 to 3.5 bits/key). As
we argued in the Introduction, using one more bit per key seems to be a reasonable trade-off
for performance.

Construction times vary by one or two orders of magnitude across methods, BBhash
being the fastest. With default parameters (γ = 2, rank sampling of 512), BBhash has a
construction memory footprint 40× to 60× smaller than other libraries except for Sux4j, for
which BBhash remains 4× smaller. Query times are roughly within an order of magnitude
(179 − 1037 ns) of each other across methods, with a slight advantage for BBhash when
γ ≥ 2. Sux4j achieves an attractive balance with low construction memory and query times,
but high disk usage. In our tests, the high disk usage of Sux4j was a limiting factor for the
construction of very large MPHFs.

A. Limasset, G. Rizk, R. Chikhi, P. Peterlongo XX:9

Method Query
time (ns)

MPHF size
(bits/key)

Const.
time∗

(s)

Const.
memory∗∗

Disk.
usage
(GB)

BBhash γ = 1 271 3.1 60 (393) 3.2 (376) 8.23
BBhash γ = 1 minirank 279 2.9 61(401) 3.2 (376) 8.23
BBhash γ = 2 216 3.7 35 (229) 4.3 (516) 4.45
BBhash γ = 2 nodisk 216 3.7 80 (549) 6.2 (743) 0
BBhash γ = 5 179 6.9 25 (162) 10.7 (1,276) 1.52
EMPHF 246 2.9 2,642 247.1 (29,461)† 20.8
EMPHF HEM 581 3.5 489 258.4 (30,798)† 22.5
CHD 1037 2.6 1,146 176.0 (20,982) 0
Sux4J 252 3.3 1,418 18.10 (2,158) 40.1
Table 1 Performance of different MPHF algorithms applied on a key set composed of 109 64-bits

random integers, of size 8GB. Each time result is the average value over three tests. The ’nodisk’ row
implements the second strategy described in Section 3.4, and the ’minirank’ row samples ranks every
1024 positions instead of 512 by default. ∗The column “Const. time” indicates the construction
time in seconds. In the case of BBhash, the first value is the construction time using eight CPU
threads and the second value in parenthesis is the one using one CPU thread. ∗∗The column “Const.
memory” indicates the RAM used during the MPHF construction, in bits/key and the total in MB in
parenthesis. † The memory usages of EMPHF and EMPHF HEM reflect the use of memory-mapped
files (mmap scheme).

Note that EMPHF, EMPHF HEM and Sux4j implement a disk partitioning strategy, that
could in principle also be applied to others methods, including ours. Instead of creating a
single large MPHF, they partition the set of input keys on disk and construct many small MPHFs
independently. In theory this technique allows to engineer the MPHF construction algorithm to
use parallelism and lower memory, at the expense of higher disk usage. In practice we observe
that the existing implementations that use this technique are not parallelized. While EMPHF
and EMPHF HEM used relatively high memory in our tests (around 30 GB for 1 billion
elements) due to memory-mapped files, they also completed the construction successfully on
another machine that had 16 GB of available memory. However, we observed what appears to
be limitations in the scalability of the scheme: we were unable to run EMPHF and EMPHF
HEM on an input of 10 billion elements using 256 GB of memory. Regardless, we view this
partitioning technique as promising but orthogonal to the design of efficient "monolithic"
MPHFs constructions such as BBhash.

4.4 Performance on an actual dataset

In order to ensure that using pseudo-random integers as keys does not bias results, we ran
BBhash using strings as keys. We used n-grams extracted from the Google Books Ngram
dataset1, version 20120701. On average the n-gram size is 18. We also generated random
words of size 18. As reported in Table 2, we obtained highly similar results to those obtained
with random integer keys.

1 http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

XX:10 Fast and scalable minimal perfect hashing for massive key sets

Dataset Query time (ns) MPHF size
(bits/key)

Const. time
(s)

108 Random strings 325 3.7 35
108 Ngrams 296 3.7 37

Table 2 Performance of BBhash (γ = 2, 8 threads) when using ASCII strings as keys.

4.5 Indexing a trillion keys
We performed a very large-scale test by creating an MPHF for 1012 keys. For this experiment,
we used a machine with 750 GB of RAM. Since storing that many keys would require 8 TB
of disk space, we instead used a procedure that deterministically generates a stream of 1012

pseudo-random integers in [0, 264 − 1]. We considered the streamed values as input keys
without writing them to disk. In addition, key sets of cardinality below 20 billion (2% of the
input) were stored in memory to avoid re-computation from scratch at each subsequent level.
Thus, the reported computation time should not be compared to previously presented results
as this experiment has no disk accesses. The test was performed using γ = 2, 24 threads.

Creating the MPHF took 35.4 hours and required 637 GB RAM. This memory footprint is
roughly separated between the bit arrays (≈ 459 GB) and the memory required for loading
20 billion keys in memory (≈ 178 GB). The final MPHF occupied 3.71 bits per key.

5 Conclusion

We have proposed a resource-efficient and highly scalable algorithm for constructing and
querying MPHFs. Our algorithmic choices were motivated by simplicity: the method only
relies on bit arrays and classical hash functions. While the idea of recording collisions in bit
arrays to create MPHFs is not novel [6, 12], to the best of our knowledge BBhash is the first
implementation that is competitive with the state of the art. The construction is particularly
time-efficient as it is parallelized and mainly consists in hashing keys and performing memory
accesses. Moreover, the additional data structures used during construction are provably
small enough to ensure a low memory overhead during construction. In other words, creating
the MPHF does not require much more space than the resulting MPHF itself. This aspect is
important when constructing MPHFs on large key sets in practice.

Experimental results show that BBhash generates MPHFs that are slightly larger to those
produced by other methods. However BBhash is by far the most efficient in terms of construc-
tion time, query time, memory and disk footprint for indexing large key sets (of cardinality
above 109 keys). The scalability of our approach was confirmed by constructing MPHFs for
sets as large as 1012 keys. To the best of our knowledge, no other MPHF implementation has
been tested on that many keys.

A time/space trade-off is achieved through the γ parameter. The value γ = 1 yields MPHFs
that occupy roughly 3N bits of space and have little memory overhead during construction.
Higher γ values use more space for the construction and the final structure size, but they
achieve faster construction and query times. Our results suggest that γ = 2 is a good
time-versus-space compromise, using 3.7 bits per key. With respect to hypergraph-based
methods [1, 3, 4, 11], BBhash offers significantly better construction performance, but the
resulting MPHF size is up to 1 bit/key larger. We however argue that the MPHF size, as long
as it is limited to a few bits per key, is generally not a bottleneck as many applications use
MPHFs to associate much larger values to keys. Thus, we believe that this work will unlock
many high performance computing applications where the possibility to index billions keys

A. Limasset, G. Rizk, R. Chikhi, P. Peterlongo XX:11

and more is a huge step forward.
An interesting direction for future work is to obtain more space-efficient MPHFs using

our method. We believe that a way to achieve this goal is to slightly change the hashing
scheme. We would like to explore an idea inspired by the CHD algorithm for testing several
hash functions at each level and selecting (then storing) one that minimizes the number of
collisions. At the price of longer construction times, we anticipate that this approach could
significantly decrease the final structure size.

Acknowledgments

This work was funded by French ANR-12-BS02-0008 Colib’read project. We thank the
GenOuest BioInformatics Platform that provided the computing resources necessary for
benchmarking. We thank Djamal Belazzougui for helpful discussions and pointers.

References
1 Djamal Belazzougui, Paolo Boldi, Giuseppe Ottaviano, Rossano Venturini, and Sebastiano

Vigna. Cache-oblivious peeling of random hypergraphs. In Data Compression Conference
(DCC), 2014, pages 352–361. IEEE, 2014.

2 Djamal Belazzougui, Fabiano C Botelho, and Martin Dietzfelbinger. Hash, displace, and
compress. In European Symposium on Algorithms, pages 682–693. Springer, 2009.

3 Fabiano C Botelho, Rasmus Pagh, and Nivio Ziviani. Simple and space-efficient minimal
perfect hash functions. In Algorithms and Data Structures, pages 139–150. Springer, 2007.

4 Fabiano C Botelho, Rasmus Pagh, and Nivio Ziviani. Practical perfect hashing in nearly
optimal space. Information Systems, 38(1):108–131, 2013.

5 Chin-Chen Chang and Chih-Yang Lin. Perfect hashing schemes for mining association rules.
48(2):168–179, 2005. doi:10.1093/comjnl/bxh074.

6 Jarrod A Chapman, Isaac Ho, Sirisha Sunkara, Shujun Luo, Gary P Schroth, and Daniel S
Rokhsar. Meraculous: de novo genome assembly with short paired-end reads. PloS one,
6(8):e23501, 2011.

7 Yupeng Chen, Bertil Schmidt, and Douglas L Maskell. A hybrid short read mapping
accelerator. BMC Bioinformatics, (1):67. doi:10.1186/1471-2105-14-67.

8 Rayan Chikhi, Antoine Limasset, and Paul Medvedev. Compacting de bruijn graphs from
sequencing data quickly and in low memory. Bioinformatics, 32(12):i201–i208, 2016.

9 Zbigniew J Czech, George Havas, and Bohdan S Majewski. Perfect hashing. Theoretical
Computer Science, 182(1):1–143, 1997.

10 Michael L Fredman and János Komlós. On the size of separating systems and families of
perfect hash functions. SIAM Journal on Algebraic Discrete Methods, 5(1):61–68, 1984.

11 Marco Genuzio, Giuseppe Ottaviano, and Sebastiano Vigna. Fast scalable construction of
(minimal perfect hash) functions. In V. Andrew Goldberg and S. Alexander Kulikov, editors,
Experimental Algorithms: 15th International Symposium, SEA 2016, St. Petersburg, Rus-
sia, June 5-8, 2016, Proceedings, pages 339–352. Springer International Publishing, Cham,
2016. doi:10.1007/978-3-319-38851-9_23.

12 Yi Lu, Balaji Prabhakar, and Flavio Bonomi. Perfect hashing for network applications.
In 2006 IEEE International Symposium on Information Theory, pages 2774–2778. IEEE,
2006.

13 George Marsaglia et al. Xorshift rngs. Journal of Statistical Software, 8(14):1–6, 2003.
14 Kurt Mehlhorn. On the program size of perfect and universal hash functions. In Foundations

of Computer Science, 1982. SFCS’08. 23rd Annual Symposium on, pages 170–175. IEEE,
1982.

XX:12 Fast and scalable minimal perfect hashing for massive key sets

15 Michael Mitzenmacher and Salil Vadhan. Why simple hash functions work: exploiting the
entropy in a data stream. In Proceedings of the nineteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 746–755. Society for Industrial and Applied Mathematics,
2008.

16 Ingo Müller, Peter Sanders, Robert Schulze, and Wei Zhou. Retrieval and Perfect Hashing
Using Fingerprinting, pages 138–149. Springer International Publishing, Cham, 2014. doi:
10.1007/978-3-319-07959-2_12.

A. Limasset, G. Rizk, R. Chikhi, P. Peterlongo XX:13

Appendix

Proofs of MPHF size and memory required for construction
MPHF size with γ = 1.
∑

d≥0
|Ad| = N

∑

d≥0
(1− e−1)d

= N
1

1− (1− e−1) as lim
d→+∞

(1− e−1)d = 0

= eN

J

MPHF size using any γ ≥ 1. With γ ≥ 1 : |Ad| = γ|Ad−1|(1 − e
−1
γ) = γ|A0|(1 − e

−1
γ)d =

γN(1− e−1
γ)d

Thus,
∑

d≥0
|Ad| = γN

∑

d≥0
(1− e−1

γ)d

Moreover, as limd→+∞(1− e−1
γ)d = 0 since for γ > 0, 0 < 1− e−1

γ < 1, on has:
∑

d≥0
|Ad| = γN

1
1− (1− e−1

γ)
= γe

1
γ N

J

Note that this proof stands for any γ value > 0, but that with γ < 1 the theoretical and
practical MPHF sizes increase exponentially as γ get close to zero.

Lemma 1. Let m(d) be memory required during level d and let R be the ratio between the
maximal memory needed during the MPHF construction and the MPHF total size denoted by S.
Formally,

R = maxd≥0(m(d))
S

= maxd≥0(m(d))
γe

1
γ N

First we prove that limd→∞
m(d)
S = 1.

m(d) =
∑

i<d

|Ai|+ 2|Ad| = γN

(
1− (1− e−1

γ)d

e
−1
γ

+ 2(1− e−1
γ)d

)

Since for γ > 0, 0 < 1− e−1
γ < 1, then limd→∞m(d) = γe

1
γ N . Thus limd→∞

m(d)
S = 1.

Before going further, we need to compute m(d+ 1)−m(d):

m(d+ 1)−m(d) =
∑

i<d+1
|Ai|+ 2|Ad+1| −

∑

i<d

|Ai|+ 2|Ad|

= |Ad|+ 2|Ad+1| − 2|Ad| = 2|Ad+1| − |Ad|
= 2γN(1− e−1

γ)d+1 − γN(1− e−1
γ)d

= γN(1− e−1
γ)d(2(1− e−1

γ)− 1)

= γN(1− e−1
γ)d(1− 2e

−1
γ)

We now prove R ≤ 1 when γ ≤ 1
log(2) and also, R < 2 when γ > 1

log(2) .

XX:14 Fast and scalable minimal perfect hashing for massive key sets

Case 1: γ ≤ 1
log(2)

We have m(0)
S = 2e−

1
γ ≤ 2e− log(2) = 1.

Moreover, as m(d + 1) − m(d) = γN(1 − e
−1
γ)d(1 − 2e

−1
γ) and as, with γ ≤ 1

log(2) :
1 − e−1

γ ≥ 0.5, and 1 − 2e
−1
γ ≥ 0 then m(d + 1) −m(d) ≥ 0, thus, m is an increasing

function.
To sum up, with γ ≤ 1

log(2) , we have 1/ that m(0)
S ≤ 1, 2/ that limd→∞

m(d)
S = 1, and 3/

that m is increasing, then R ≤ 1.
Case 2: γ > 1

log(2) We have m(0)
S = 2e−

1
γ . With γ > 1

log(2) , 1 < m(0)
S < 2. Moreover,

m(d+ 1)−m(d) = γN(1− e−1
γ)d(1− 2e

−1
γ) is negative as: 1− e−1

γ > 0 and 1− 2e
−1
γ < 0

for γ > 1
log(2) . Thus m is a decreasing function with d.

With γ > 1
log(2) , we have 1/ that m(0)

S < 2, /2 that limd→∞
m(d)
S = 1 and /3 that m is

decreasing. Thus R < 2.
J

A. Limasset, G. Rizk, R. Chikhi, P. Peterlongo XX:15

Algorithms pseudo-codes

Algorithm 1: MPHF construction.
Data: F0 a set of N keys, integers γ and last
Result: array of bit arrays {A0, A1, . . . , Alast}, hash table H
i=0;
while Fi not empty and i ≤ last do

Ai = ArrayF ill(Fi, γ);
foreach key x of Fi do

h = hash(x) mod (γ ∗N);
if Ai[h] == 0 then

Fi+1.add(x)
i=i+1;

Construct H using remaining elements from Flast+1;
Return {A0, A1, . . . , Alast, H}

In practice Fi with i > 1 are stored on disk (see Section 3.4). The hash table H ensures that elements in
Flast+1 are mapped without collisions to integers in [|F0| − |Flast+1|+ 1, |F0|]

Algorithm 2: ArrayF ill
Data: F array of N keys, integer γ
Result: bit array A
Zero-initialize A and C two bit arrays with γ ∗N elements;
foreach key x of F do

h = hash(x) mod (γ ∗N);
if A[h] == 0 and C[h] == 0 then

A[h] = 1;
if A[h] == 1 and C[h] == 0 then

A[h] = 0;
C[h] = 1;

if A[h] == 0 and C[h] == 1 then
Skip;

Delete C;
Return A;

Note that the case A[h] == 1 and C[h] == 1 never happens.

Algorithm 3: MPHF query
Data: bit arrays {A0, A1, . . . , Alast}, hash table H, key x
Result: integer index of x
i=0;
while i ≤ last do

h = hashi(x) mod Ai.size();
if Ai[h] == 1 then

return
∑
j<i |Aj |+ rank(Ai[h]) ;

i = i+ 1;
return H[x] ;

Note, when x is not an element from the key set of the MPHF, the algorithm may return a wrong integer
index.

XX:16 Fast and scalable minimal perfect hashing for massive key sets

Commands

In this section we describe used commands for each presented result. Time and memory
usages where computed using “/usr/bin/time –verbatim” unix command. The disk usage
was computed thanks to a home made script measuring each 1/10 second the size of the
directory using the “du -sk” unix command, and recording the highest value. The BBhash
library and its Bootest tool are available from https://github.com/rizkg/BBHash.

Commands used for Section 4.1:

for ((gamma=1;gamma<11;gamma++)); do
./Bootest 1000000000 1 ${gamma} -bench
done

Note that 1000000000 is the number of keys tested and 1 is the number of used cores.
Additional tests, with larger key set and 8 threads:

for ((gamma=1;gamma<11;gamma++)); do
./Bootest 1000000000 1 ${gamma} -bench
done

Commands used for Section 4.2:

for keys in 10000000000 100000000000; do
./Bootest ${keys} 8 2 -bench
done

Commands used for Section 4.3:

We remind that our benchmark code, testing EMPHF, EMPHF MEM, CHD, and Sux4J is
available at https://github.com/rchikhi/benchmphf.

BBhash commands:
for keys in 1000000 10000000 100000000 10000000000\
10000000000 100000000000; do

./Bootest ${keys} 1 2 -bench
done
BBhash command with nodisk (Table 1) was
./Bootest 1000000000 1 2 -bench -nodisk
and
./Bootest 1000000000 8 2 -bench -nodisk
respectively for one and height threads. Other commands from Table 1 were deduced
from previously presented BBhash computations.
Commands EMPHF & EMPHF HEM:
for keys in 1000000 10000000 100000000 10000000000\
10000000000 100000000000; do

./benchmphf ${keys} -emphf
done
EMPHF (resp. EMPHF HEM) is tested by using the #define EMPHF_SCAN macro
(resp. #define EMPHF_HEM). In order to assess the disk size footprint, the line
“unlink(tmpl);” from file “emphf/mmap_memory_model.hpp” was commented.
Commands CHD:

A. Limasset, G. Rizk, R. Chikhi, P. Peterlongo XX:17

for keys in 1000000 10000000 100000000 10000000000\
10000000000 100000000000; do

./benchmphf ${keys} -chd
done
Commands Sux4J:
for each size, the “Sux4J/slow/it/unimi/dsi/sux4j/mph/LargeLongCollection.java” was
modified indicating the used size.
./run-sux4j-mphf.sh

Commands used for Section 4.4:

As explained Section 4.4, the keyString.txt file is composed of n-grams extracted from
the Google Books Ngram dataset2, version 20120701.
./BootestFile keyStrings.txt 10 2

Commands used for Section 4.5:

BBhash command for indexing a trillion keys, with keys generated on the fly.
./Bootest 1000000000000 24 2 -onthefly

2 http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Chapter 3

The de Bruijn graph as a reference

81

In this chapter we are interested in considering the de Bruijn graph as a reference.
We first describe the different structures used to represent a genome and argue why a
de Bruijn graph could be an interesting object to do so (Section 1). Then we present
our theoretical and practical contribution about mapping reads on a de Bruijn graph
(Section 2). In a last part, we show a direct application of such a method for read
correction (Section 3).

3.1 Genome representations

3.1.1 Reference sequences

The current main representation of a genome is a set of sequences. Fasta files (Figure 3.1)
seemed at first adapted to represent a genome. Due to the hardness of producing a
genome of reasonable quality via the sequencing data, the loss of allelic information was
considered secondary and non-impacting Slightly chimeric sequences were seen as a small
cost to pay to access the global structure of the genome. The hardness of the haplotype
separation, still present today, tends to show that it was a reasonable choice to postpone
such a challenge. But there are several reasons why the set of sequences representation
is not ideal and we detail them in the following paragraphs.

Heterozygosity Actual reference sequences are generated by assemblers that ignore
the heterozygosity information. Sequences produced from several haplotypes contain
nucleotides from different alleles (Figure 3.2). When the dissimilarity between alleles is
high, or when they present structural variants [89] (such as a large insertion), the output
assembly may present chimeric sequences.

We could argue that we could still use different sequences to represent the alleles. The
challenge is to be able to link the differences together in order to produce the different
allele sequences. This process is called phasing (Figure 3.2). For low heterozygosity
rate (of the order of one per thousand for a human), variation may be quite distant. In
order to phase the successive variants it would require information with very long range

>seq1
CATGCATCGATGCCATCGATCGATCTAGCTGACTGATCCATGCCTGACCGATCGTAGCTAGCTA
CTACTGTACGTGACTGCTAGTCATCGATCGCATGACTG
>seq2
CATGACCATCGTAGCTAGCGACGTAGCTACTGATCTAGCTGATCGTACGTAGCTGATCTAGCTG
ACTGCT
...

Figure 3.1: Example of fasta file. The first line in a FASTA file starts either with a ">"
symbol. Following the initial line (used for a unique description of the sequence) is the
actual sequence itself in standard one-letter code

Figure 3.2: Polyploid assembly opposed to haploid assembly. Most assembler practice
"haploid" assembly (top) and crush bubbles and output contigs that may contain se-
quences from different haplotypes. A polyploid assembly would consist to produce hap-
lotypes consistent contigs (bottom).

Figure 3.3: Diploid assembly can result in a suit of bubbles. In this example a diploid
genome is assembled, homozygous regions in gray are shared by the two haplotypes. Each
difference between them create a bubble in the graph.

83

(Figure 3.3). This fact explains why it appears almost impossible to phase genomes with
reads of hundreds of bases.

Nevertheless we are able to study variants even if we are not able to reconstruct the
haplotypes. Some variants can be detected from the assembly graph [90] and reported by
the assembler. The question may be "how to represent the variant information across the
genome?". To place each variant at a position on a reference may be extremely useful.
However it presents a concerning allele bias [91] [92]. If some small differences may not be
a problem and can be easily be positioned on the reference, larger structural variations are
not straightforward to encode and may be completely absent in the reference [93]. Those
points show that the linear representation is not a good support for the heterozygosity
information yet.

Fragmented genomes Nowadays, most genomes are unfinished and are left at the
state of contigs or scaffolds. While this is sufficient for some applications like reads
mapping, one can argue that the linear representation loses some information in the case of
unfinished assembly. During the assembly process, contigs and scaffolds are extended until
an ambiguity on the way to extend is encountered. Even if there are several possibilities
that justify the contigs not to be extended, reads mapping could exploit the fact that we
know possible extensions for its alignment. Such information could lead to a more efficient
mapping, especially around repeats usually responsible for broken contigs . Another
problem is that usually, small contigs are not output by assemblers and neither used for
scaffolds creation or as references to map on. Again, there are also very good reasons to do
so, such as contigs shorter than reads occasioning multiple mapping problems. However,
assembly may present "holes" when a complex and hard to assemble region appears. Such
a potential source of bias tends to show that a set of sequences representing scaffolds or
contigs is not satisfying.

Redundancy Even if we were able to perfectly assemble genomes, we would be inter-
ested for many biological applications to store several genomes of different individuals.
Very wide projects such as the 1000 genomes [94] plan the sequencing of massive amounts
of individuals to study genomic variations among them. The raw storing of the individ-
ual sequences is highly inefficient in both terms of storage and searching because of the
high redundancy due to the similarity among individuals from a same species. Since
the differences between individuals may be very low and the amount of data very large,
highly efficient structures may be used in order to index or store the amount of data in
an entropic efficient way [95, 96].

3.1.2 Genome graphs

Graph structure is a natural candidate to represent genome for several reasons. Several
current representations of a genome as a graph vastly depend on the planned use, as no
data structure prevails for common use yet [97] [98]. To index multiple genomes, first
representation used annotations to locate variations with respect to a reference [99]. This
approach presents several flaws as scalability issues, reference bias and impossibility to
represent large structural variations. For pan-genomes [100] propose an ordering of the
set of linear sequences, providing an efficient way to create pan-genome references for

84

reads mapping. In order to represent the variations among haplotypes, the variation
graph has been introduced, where haplotypes are encoded as a set of walks through a
sequence graph. In order to perform queries on such heavy data structures, the Posi-
tional BWT (PBWT) have been proposed [101] and improved in gPBWT [102] to better
represent the haplotypes added in the graph. Those structures are very similar to linear
sequences since they are supposed to represent finished genomes. Even if these sequences
represent a real "map" of a genome with a coordinate system, this is still a hard task
to obtain such sequences. Several uses can benefit from a non fully positioned reference:
quantification [103] [104], assembly, scaffolding and indexation of repeated sequences or
fragmented references [105]. Assembly graphs are natural candidates for this task as they
are literally conceived to represent fragmented data. In the following, we present methods
and applications relying on assembly graphs as references. Even if such approaches could
be based on any assembly graph, the following will focus on the use of a de Bruijn graph.

3.1.3 De Bruijn graphs as references

This part concentrates on the interest of the de Bruijn graph to represent genomes. We
will present the following arguments:

• Easiness to construct from sequencing data
• Efficient representation of repeated data
• Represents variants and complex regions

Construct a reference de Bruijn graph To use a de Bruijn graph as a reference, it
has to contain the whole genomic information with almost no sequencing error. Building
a de Bruijn graph from a reference genome is easy but has a limited interest since the
transformation in a de Bruijn graph is lossy as sequences respective positions may be
lost. To represent fragmented references such as contigs, we can argue that a graph may
contain more information than the contigs set itself. The real challenge is to produce a
good reference from raw sequencing data. We present here different strategies to produce
a good reference de Bruijn graph and evaluate them. In order to do this, we simulated
reads from a known reference and compare the set of kmers from the reference and from
the constructed graph. Two kinds of errors may appear:

• Some kmers are in the graph but not in the reference. They are erroneous kmers,
also called "false positives"

• Some kmers are in the reference but not in the graph. They are missed kmers also
called "false negatives"

As described in the introduction, the main technique to get rid of erroneous kmers is to
remove low abundance ones. Three zones can be observed in a kmer spectrum:

• A very high peak of low abundance kmers
• A flat zone
• A bell containing high abundance kmers
The essential idea is that genomic kmers will mostly be present in the third zone while

most erroneous kmer will be present in the first zone. By applying a coverage cutoff we
only keep the right part of the spectrum curves. The question is how to decide the cutoff
parameter. Techniques exist to find the end of the first peak by trying to fit models
on the kmer spectrum curve such as kmerGenie [34]. A deeper sequencing makes easier

85

	0

	100000

	200000

	300000

	400000

	500000

	600000

	700000

	800000

	900000

	1x106

	10 	20 	30 	40 	50 	60 	70 	80

"reads10010031"
"reads1005031"
"reads1003031"

	0

	20000

	40000

	60000

	80000

	100000

	120000

	140000

	20 	40 	60 	80 	100 	120

"realSequencing"

Figure 3.4: Spectrum of 31mer from simulated reads from de Bruijn graph reference
(Left). Reads were of length 100 and with coverages of 30 (blue), 50 (green) and 100
(purple) respectively. We observe that higher coverage results in a larger bell zone more
distant from the error peak. It is thus easier to separate the erroneous kmers from others
with a high coverage. On the right a kmer spectrum of a real sequencing with k = 31 and
a coverage around 100X from E. coli. We can see that unlike spectrum from simulated
dataset, the "hole" between the peak and the bell do not reach a value of zero since
simulated dataset may not represent all aspect of NGS sequences distribution.

the determination of such a cutoff, as can be seen in Figure 3.4 at left. We note that
on simulated datasets, the determination of the cutoff can seem easy because the flat
zone has no element. In practice on real dataset (in Figure 3.4 at right), the situation
is not this simple since a notable number of element are present with the unexpected
medium abundances. The value of k also has a high influence on the kmer spectrum. In
Figure 3.5 we observe that the larger the k, the lesser the genomic kmers are covered and
the closer to zone 1 and 3. If k is too high compared to the read length it may be difficult
to separate the genomic and erroneous kmers since some genomic kmers will be present
with a very low abundance. This is mainly due to the fact that when k comes close to
the read length, very few kmers are produced by each read. To reduce this problem with
large kmers, a step of read correction highly reduces the amount of errors present in the
reads and allow genomic kmers to be more covered and therefore to "move" the curve to
the right as shown in Figure 3.5.

Another way to remove sequencing errors it to remove "tips" or "short dead ends"
from the graph. If k ≥ ReadSize/2, an isolated sequencing error will not form a bubble
but a tip in the graph. As we may be afraid of losing genomic kmers with the solidity
cutoff, we advocate the use of low thresholds and therefore apply a tip removal step on
the graph. We now evaluate in Tables 3.1 and 3.2 the number of false positives and false
negatives in the produced graph based on different strategies using the following methods:

• Kmer filtering with a given threshold
• Using raw reads or reads corrected with the Bloocoo corrector [106]
• Tipping of the graph, removing tips shorter than the read length
We can see that the combination of kmer filtering, read correction and tipping can

result in almost perfect reference graphs. Such tasks are the basic steps of assembly. Most

86

	0

	100000

	200000

	300000

	400000

	500000

	600000

	700000

	800000

	900000

	1x106

	10 	20 	30 	40 	50 	60 	70 	80 	90 	100

"reads10010021"
"reads10010041"
"reads10010061"
"reads10010081"

	0

	100000

	200000

	300000

	400000

	500000

	600000

	700000

	800000

	900000

	1x106

	20 	40 	60 	80 	100 	120

"reads10010021cor"
"reads10010041cor"
"reads10010061cor"
"reads10010081cor"

Figure 3.5: Raw reads versus corrected reads. Spectrum with various k from 21 to 81.
Reads are simulated from E. coli reference. Reads were of length 100 and with a coverage
of 100. The k values are 81 (yellow), 61 (blue), 41 (green), 21 (purple). The left plot is
the kmer spectrum of reads without correction and the right plot is the kmer spectrum of
the reads after correction with Bloocoo. We can see that kmer spectrum from corrected
reads are more distant from the error peaks. Reads correction allows an easier erroneous
kmers filtering. We also observe that higher kmer size may be difficult to filter as less
coverage discrepancy is present to separate erroneous and genomic kmers.

Strategy # Unitig FP FN
Filtering 2 434,510 3,876,482 8
Filtering 2 + tiping 2,474 29,515 8
Filtering 3 28,310 198,088 11
Filtering 3 + tiping 978 582 11
Filtering 5 1273 1716 19
Filtering 5 + tiping 944 17 19
Correction + filtering 2 6,860 16,202 2
Correction + filtering 2 + tiping 1,034 591 2
Correction + filtering 3 1,061 713 7
Correction + filtering 3 + tiping 956 73 7
Correction + filtering 5 952 59 9
Correction + filtering 5 + tiping 944 17 9
Reference 941 0 0

Table 3.1: Evaluation of the de Bruijn graph created from simulated sequencing from
E. coli, 100x coverage of 100 base pairs reads. We constructed a de Bruijn graph with
k = 51 and evaluated the number of erroneous kmers (FP) and missing kmers (FN). The
abundance threshold (filtering) applied is indicated in the strategy description.

87

Strategy # Unitigs FP FN
Filtering 2 10,167,089 89,087,143 6
Filtering 2 + tiping 3,580,486 2,696,841 55
Filtering 3 1,103,166 7,294,417 7
Filtering 3 + tiping 432,648 813,483 30
Filtering 5 303,908 1,049,812 15
Filtering 5 + tiping 204,481 231,083 33
Reference 64,044 0 0

Table 3.2: Evaluation of the de Bruijn graph created from simulated sequencing from C.
elegans, 100x coverage of 100 base pairs reads. We constructed a de Bruijn graph with
k = 51 and evaluated the number of erroneous kmers (FP) and missing kmers (FN). The
abundance threshold (filtering) applied is indicated in the strategy description.

tools add other simplifications and heuristics to produce larger contigs. While there is
a plethora of assemblers, we would find relevant to propose tools in order to create a
clean and safe graph. This kind of unitigs generator, "unitigers", could be used as a front
end by assemblers that could apply their different post-treatments according to their
specificity directly on the cleaned graph. In the following, we will rely on such steps to
get reference de Bruijn graphs with almost no sequencing error and no missed kmer.

Efficient representation of redundancy We have previously seen that tools exist to
construct the de Bruijn graph in an efficient way. The graph constructions of table 3.1
on E. coli took less than 10 minutes with BCALM2. The usage of a (non compacted) de
Bruijn graph does not seem interesting since a genome will require ≈ genomeSize kmer
to be stored. On the other hand, the compacted de Bruijn graph can efficiently represent
a genome since each nucleotide will require 2 bits plus the global overhead of the unitigs
number.

As shown in the table 3.3 that compacted de Bruijn graph is a space efficient genome
representation. Based on such observations, some tools were developed in order to ef-
ficiently construct the de Bruijn graph as the representation of a genome or multiple
genomes [107] [108] [109]. We already presented the efficiency of BCALM2 in order to
construct a compacted de Bruijn graph but it was designed to handle very large reads sets
and is not necessarily efficient for de Bruijn graph construction from reference genomes.
Twopaco [109] proposed an efficient approach to build such graphs from many reference
genomes and was able to construct the de Bruijn graph of one hundred human genomes
in less than a day. This method to construct a de Bruijn graph from a reference genome
without splitting the reference into its set of kmers is way more efficient than BCALM2.

To access the efficiency of the de Bruijn graph to represent multiple genome, we
downloaded 100 E. coli completed genome from NCBI and created the de Bruijn graph
of those merged reference genomes (Table 3.4). We can see that the de Bruijn graph is a
compact data structure to store a large number of genomes even if a larger k present a less
interesting compression ratio. For comparison the reference file zipped represented 153
mega bytes. Indeed the de Bruijn graph representation is lossy and can not be compared
to the lossless zip compression but [110] argue that this efficient redundancy factoring

88

Genome Structure Number of nucleotides used for representation
E. coli Reference sequence 4,639,675
E. coli de Bruijn graph k=51 232,770,375
E. coli de Bruijn graph k=101 462,106,108
E. coli Compacted de Bruijn graph k=51 4,611,175
E. coli Compacted de Bruijn graph k=101 4,619,908
C. elegans Reference sequence 100,286,401
C. elegans de Bruijn graph k=51 4,889,975,931
C. elegans de Bruijn graph k=101 9,864,383,665
C. elegans Compacted de Bruijn graph k=51 104,537,731
C. elegans Compacted de Bruijn graph k=101 103,927,665
Human de Bruijn graph k=51 138,318,741,180
Human de Bruijn graph k=101 286,185,334,362
Human Compacted de Bruijn graph k=51 2,809,115,473
Human Compacted de Bruijn graph k=101 3,083,875,662

Table 3.3: Nucleotides number in de Bruijn graph representations of a genome.

Dataset # Nucleotides
Reference file 485,354,804
k=25 55,864,796
k=51 89,669,228
k=101 137,742,996
k=201 188,631,137
k=301 215,417,352

Table 3.4: Size of the de Bruijn graph of 100 E. coli genomes according to k value used
for its construction.

89

1 2

3 4

R1 R4Assembly graph:

Genome: 1 2RR1 R2R3 R R4 3 4RR1 R2R3 R R4

R

R3 R2

...

Figure 3.6: Example of nested repeats. In this example, a large repeat in blue contains a
small repeat in red. This scenario creates complex cases where the repeats patterns can
be nested in one another’s.

1Assembly graph:Genome: 1 2 RR R R R 2

Figure 3.7: Example of tandem repeats. In this example, multiple occurrences of a repeat
are consecutive in the genome. This scenario creates cases where it is hard to estimate
the number of times the repeat sequence should be present in the assembly.

propriety could be useful for pan-genome analysis.

Complete reads information Assembly, based on the de Bruijn graph or not, may
be difficult, especially around repeats or more complex patterns as quasi-repeats (Fig-
ure 1.20), nested (Figure 3.6) or tandem repeats (Figure 3.7). Even read mapping is hard
around such complex repeats and some regions can show mappability problem [111], since
reads can have several possible mappings. The de Bruijn graph representation allow a
reduced issue as the repeats of the genome are collapsed. In the cases of an unfinished
genome represented by a set of contigs, the problem is different. Contigs are produced
from reads, using various heuristics to select path from an assembly graph. This selection
may induce biases according to the heuristics used, especially around complex patterns.
For example a read not mapped on the contigs set may be due to missing sequences in the
contigs outputed. The assemblers biases could be problematic and we argue that mapping
directly on a de Bruijn graph can provide a less biased and more complete reference.

In those very complex zones, most assemblers are incapable to output large contigs.
Most of the time those regions are absent from the contig set, because they are not
outputted by the assembler. Indeed assembler that output all contigs produce small
contigs in such cases. One conclusion is that scaffolding may be impracticable on such
situations because it rely on read mapping on large contigs. The situation of those
region can not be improved by usual scaffolding methods, and are lost in most assembly
processes. In such regions, the graph is complex and branching but the genomic sequences
are still paths of the graph. The information carried by the graph is then superior to the

90

one brought by contigs, as the graph contains information either on branching regions or
on how the contigs could be ordered.

A second point is that the graph can carry the haplotypes information. In presence
of multiple closely related genomes or haplotypes, minor variations will be represented
in bubbles in the graph in an efficient way. De Bruijn graph is an efficient structure
to capture variant information and several methods use the de Bruijn graph to discover
polymorphisms among several individuals [90] [112] [99] [113]. This property has already
been used to index several genomes in order to avoid multiple alignment in whole genomes
comparisons [114] [107] and metagenomic quantification [103].

"Genome representations" core messages:

• Linear sequences may not be the ideal representation of a genome
• Several graphs based structures have been proposed to fit various applications

to represent finished or almost finished genomes
• The de Bruijn graph may be an efficient structure for applications where a

reference genome is not available

3.2 Read mapping on the de Bruijn graph

3.2.1 An efficient tool for an NP-Complete problem

As we have seen, the de Bruijn graph can be efficiently used as a reference. Read mapping
is a core operation we want to perform on a reference and most tools are designed to work
on a reference genome represented by flat sequences, fragmented or not [115] [60] [59].
Those tools are able to index and to map reads on a set of sequences. The problematic
of read mapping is to know if a read can be aligned on the reference, where and with
an indication on the alignment quality. As we mentioned before, some complex repeated
regions sometimes occur in genomes, and suffer from low mappability [111]. Reads from
repeated region may have multiple matching sites and then be hard to be mapped with
high confidence. When a genome is represented as a de Bruijn graph, repeated regions
are merged in the graph. This factorization reduces the problem of multiple mapping.
This de Bruijn graph property explains its usage in genomic or meta-genomic, even on
finished reference genomes [105]. We argue that being able to map reads directly on such
structures would be less biased and more complete than mapping on contigs.

Another interest of mapping reads on a de Bruijn graph is to improve the de Bruijn
graph itself to produce a better assembly. This read information added in the graph can
be used to avoid false connections between nodes or to solve some repeats. Surprisingly,
despise the interest in such techniques, no practical solution has been designed for this
task. Assemblers using this kind of information do not present generic procedure or rely
on alignment on flat sequences. All those different usages motivates the need of such
tools.

This paper proposes a formal definition of the problem of mapping reads on a de Bruijn
graph and proves its NP-completeness. We also provides a practical solution based on
several heuristics, called BGREAT.

91

Technical results are described in the paper "Read mapping on de Bruijn
graphs" [116] included at the end of the chapter.

BGREAT is based on simple heuristics in order to be fast and scalable. It follows
the seed and extend paradigm by indexing the k − 1 suffix and prefix of the unitigs as
anchors. Once an anchor is found on a read, the rest of the read sequence is mapped to
the graph unitigs. By indexing the prefix and suffix and associating them the indices of
the unitigs sharing them, BGREAT is able to navigate through the graph unitigs as it
was presented in the last chapter. Some unitigs may not contain any anchor, for example
if they map entirely on large unitigs. But in such cases those reads can be mapped with
a regular mapping tool. Another essential heuristic of BGREAT is the greediness of its
mapping process. When several paths can be used, the path with the minimal number
of mismatches is picked. The use of those greedy heuristics allows very fast mapping of
reads even on a large de Bruijn graph. BGREAT is able to map a human dataset of 3
billion reads on a de Bruijn graph created from it, in less than 5 hours using 20 cores and
10GB. Another interesting conclusion is that we are able to map more reads on the de
Bruijn graph than on a set of contigs. An experiment on a human dataset showed that
only 63% of the reads were mapped on the contig set where 85% were mapped on the de
Bruijn graph using the graph alignment method.

3.2.2 Mapping refinements

The amount of potential applications of read alignment on de Bruijn graph leads us to
the conception of several improvements of the BGREAT tool. We propose an advanced
version called BGREAT2 (unpublished) with following improvements that we will detail:

• Improved anchor system
• Indexing based on a MPHF
• Optimal mapping and multi-mapping management

In order to improve the performance of our anchoring scheme, we no longer use the
k−1mer at the extremities of the unitigs. We index kmers from the unitigs and associate
to each kmer its position in the unitigs. This modification allows two significant changes.

First, the size of the anchor can be chosen. Therefore a smaller k than the one selected
to construct the graph can be used. The order of the de Bruijn graph may be quite large,
thus a k − 1mer would be a bad anchor in terms of sensibility. This way, a high order
graph can be used without presenting a change in the anchoring scheme. Indexing all
kmers of the graph can be costly, for a human graph indexing all kmers can use up to 200
GB. A parameter can be defined in order to reduce the memory usage of BGREAT2 that
regulates which fraction of the kmers are indexed. We can show that even by indexing
only a fraction of the kmers (one out of 10 by default), the mapping performances of
BGREAT2 are not highly impacted. Indexing 1 out of 10 anchors in each unitig, with
at least one anchor indexed by unitigs allowed BGREAT2 to reduce its memory usage
from 6,898 MB to 928 MB to index a C. elegans reference graph. The indexing time
also dropped from 61 to 10 seconds while the ratio of mapped reads went from 99.6% to
99.3%. The mapping time was also impacted, but in a less impressive way and improved
from 11k to 15k reads by second on a single thread.

92

The second interest of the new indexing scheme is that BGREAT2 is self contained
and do not need a mapping tool like Bowtie. Since kmers are indexed along the whole
length of the unitigs, reads mapping inside a unitig can be anchored and mapped. In
order to index kmers and the de Bruijn graph overlaps, BGREAT2 no longer uses a
dynamic hash table but the BBhash MPHF. This choice allows a highly reduced memory
usage and a faster access to the unitigs compared to previously used dynamic hashing.

We also improved the mapping rules. The algorithm tries to find a perfect mapping
(without error), then a mapping with one error and so on until the maximal error number
allowed. This way, the obtained mapping is guaranteed to contain a minimal number of
mismatch. Several multiple mapping strategies are also proposed: output all equivalent
mapping, output one mapping, or none. Albeit some optimizations and features have still
to be added, those improvements allow BGREAT2 to be more than a proof of concept.
We will present in the following sections several uses of this tool.

"Read mapping on the de Bruijn graph" core messages:

• Mapping reads on a de Bruijn graph is a hard problem
• With appropriate heuristics we can propose a satisfying and efficient mapping
• Mapping on the de Bruijn graph may allow more mapping hits than mapping

on contigs

3.3 De novo, reference guided, read correction

We have shown previously that an almost errorless de Bruijn graph could be constructed.
We therefore propose a new method of correction for short reads by aligning them on
a reference represented by a de Bruijn graph constructed from the reads themselves.
Correction methods based on alignment on a reference genome would have the two same
essential drawbacks than reference guided assembly:

• Need for a reference
• Correction may be biased by the reference used

Here we propose to construct the reference directly from the reads to be corrected in
order to avoid biases. We argue that we do not need to produce a good assembly in order
to obtain a reference good enough to correct the reads. The idea of such a technique can
be summarized in the following steps:

• Graph construction
• Graph cleaning
• Read mapping on the graph

3.3.1 Limits of kmer spectrum

Most state of the art correctors are based on kmer spectrum techniques. Other techniques
based on suffix array or on multiple alignment, are presented in [117]. Those techniques
are less used because they rely on memory expensive data structures and do not scale
well on large genomes and datasets. Kmer spectrum correction was proposed when NGS

93

Figure 3.8: Example of read correction by mapping it on a de Bruijn graph. The query
read is mapped onto the graph and the bases of the graph are trusted over the read ones.
The read is thus corrected according to the reference graph. An alternative mapping
for the reads would be ATTCACCCGG but this path includes two mismatches and is
therefore not optimal. This example also shows a problem of kmer spectrum technique.
In the read to correct, the sequencing error (the red T) is validated by the genomic kmers
TTCT, TCTC and CTCC (framed in red). According to heuristics employed by those
tools, this base is unlikely to be a sequencing error and will not be corrected.

reads appeared and were assembled with de Bruijn graph [46]. As in de Bruijn graph
assembly, a set of "solid" kmers are computed. Those highly abundant kmers are very
likely to be errorless and are indexed. When a "non solid" kmer is found in a read,
the tool tries to convert it into a solid kmer in the most parsimonious way. Since such
correctors only index trusted kmers against low abundance ones, bases of a read covered
by trusted kmers will be considered as correct. In the example of Figure 3.8, all bases
of the read will be considered correct because they are covered by several solid kmers.
When an erroneous base is found, the algorithms try to replace the erroneous kmers by
solid kmers. A hard part for those kind of algorithms is when close errors are found. If
multiple errors appear on a single kmer, not all the possible alternative kmers can be
tested and no real satisfying solution has been found for such cases.

3.3.2 Reads correction by de Bruijn graph mapping

Here we present BCOOL, a still unpublished proof of concept short reads corrector based
on read mapping on a de Bruijn graph. The idea is to create an almost errorless de
Bruijn graph from the reads to be corrected and use it as a reference to correct the reads
mapped on it. After the graph cleaning step, we map each read on the graph and when
a mismatch is detected, the nucleotide of the graph is trusted over the nucleotide of the
read, and the read is modified to match with the de Bruijn graph sequence.

What are the differences between the kmer spectrum correction technique and this
proposition? Both kmer spectrum and our approach use a set of trusted kmers as reference
to correct the reads. The difference is that we use the structure of the de Bruijn graph, i.e.
how the kmers are connected. There are several advantages to use this information. Tip
removal can typically remove sequencing errors above the solidity threshold. It allows our
set of solid kmers to contain less erroneous kmers. We also have a better comprehension
of complex cases. In Figure 3.8 a kmer spectrum method would not correct anything since
the sequencing error is covered by multiple solid kmers and would consider it safe. Our

94

Kmer size used FP FN TP Correction ratio % Erroneous read
BCOOL k=21 2,731 11,235 4,627,370 332 0.16
BCOOL k=31 1,092 2,427 4,636,805 1,318 0.04
BCOOL k=41 915 1,593 4,637,775 1,850 0.03
BCOOL k=51 1,150 2,183 4,637,245 1,392 0.03
BCOOL k=61 2,146 2,590 4,636,858 980 0.04
BCOOL k=71 2,452 43,202 4,596,267 102 0.58
BFC 2,105 78,679 4,559,123 57 0.67
Bloocoo 4,147 209,071 4,430,443 22 3.49
Lighter 624 6,538 4,633,059 648 0.09
Musket 1,031 6,456 4,632,901 620 0.13

Table 3.5: Correction benchmark on simulated 100bp reads (100X coverage 1% error
rate) from E. coli by varying the k parameter. Solidity threshold to construct the de
Bruijn graph was fixed to 5 and tipping length to 100.

method maps the whole read, making use of the sequences next to the error to correct
it. Close errors can be problematic for other correctors, when multiple errors occur on
a kmer the number of kmers able to replace it is exponential. It would be difficult to
check the solidity of all possible kmers to replace the erroneous one. Our alignment
method is not impacted by such cases since we do not correct kmers but entire reads.
In order to assess the potential of such a technique we tested it against state of the art
read correctors. In our benchmarks we will compare those four correctors Musket [118],
BFC [119], Lighter [120] and Bloocoo [106] for their performances in our tests and in
several published benchmarks.

We generated simulated reads with known errors, corrected them and evaluated the
correction results. We use several metrics to evaluate the correction quality. The false
positives are correct bases that have been modified or incorrect bases that have been
wrongly modified. It can be seen as errors introduced by the correction. The false
negative are sequencing errors that were not modified. It can be seen as not corrected
errors. The true positives are sequencing errors correctly corrected. To provide a global
measure of the correction, we evaluate the number of errors before and after the correction,
counting FP and FN. A ratio of 10 mean that the amount of error was divided by ten by
the correction. We also present the read percentage that contain at least an error.

The first results on the E. coli bacteria are reported in Table 3.5. We can observe that
most tools propose a very good correction. All tools achieve to divide the error rate by
more than 10, showing that they take care of most sequencing errors. Results also show
that almost all reads are errorless after the correction. We see that BCOOL is able to
provide excellent correction with adapted parameters. Globally, we argue that correctors
provide very good corrections on small genomes.

The results on the larger genome of C. elegans are presented in Tables 3.6 and 3.7
on reads of length 100 and 250 respectively. Here we see that correctors still provide
good correction by dividing the global error rate and proposing a vast majority of perfect
reads but in a less impressive way than on E. coli. Here again BCOOL provides very
interesting results on both read length of 100 and 250.

The results on the human genome are presented in Table 3.8. We see that BCOOL is

95

Kmer size used FP FN TP Ratio error rate % erroneous read
BCOOL k=21 1,455,866 6,185,857 93,792,770 13 4.05
BCOOL k=31 1,420,047 1,529,334 98,558,023 34 1.57
BCOOL k=41 883,155 753,403 99,419,269 61 0.87
BCOOL k=51 651,040 498,536 99,716,829 87 0.59
BCOOL k=61 625,830 447,835 99,795,401 93 0.49
BCOOL k=71 803,946 1,214,915 99,042,681 50 0.97
BFC 289,081 4,020,868 96,187,218 23 2.23
Bloocoo 800,396 6,471,767 93,805,016 14 5.23
Lighter 613,314 2,789,652 97,490,978 29 2.16
Musket 1,120,401 4,932,597 95,250,573 17 4.47

Table 3.6: Correction benchmark on simulated 100bp reads (100X coverage 1% error
rate) from C. elegans by varying the k parameter. Solidity was fixed to 5 and tipping
length to 100.

Kmer size used FP FN TP Ratio error rate % erroneous read
BCOOL k=21 1,048,454 7,723,461 92,278,080 11 7.72
BCOOL k=31 1,039,760 3,501,749 96,582,586 22 4.20
BCOOL k=41 787,674 2,099,774 98,052,234 35 2.67
BCOOL k=51 608,383 1,424,096 98,771,993 49 1.87
BCOOL k=61 500,090 1,132,677 99,092,022 61 1.49
BCOOL k=71 411,359 996,580 99,247,373 71 1.28
BCOOL k=81 343,784 950,693 99,304,838 77 1.27
BCOOL k=91 301,430 944,491 99,318,476 80 1.12
BCOOL k=101 271,094 978,287 99,291,125 80 1.12
Musket 812,832 3,691,147 96,498,970 22 7.22
Lighter 520,365 3,022,271 97,254,509 28 4.76
Bloocoo 873,717 5,746,372 94,519,928 15 10.38
BFC 176,279 6,289,736 93,933,429 16 5.26

Table 3.7: Correction benchmark on simulated 250bp reads (100X coverage 1% error
rate) from C. elegans by varying the k parameter. Solidity was fixed to 5 and tipping
length to 100.

Kmer size used FP FN TP Ratio error rate % erroneous read
BCOOL k=41 186,222,378 165,218,857 2,346,232,116 7 5.16
BCOOL k=51 137,556,747 115,336,678 2,400,321,919 10 3.52
BCOOL k=61 99,095,091 88,713,912 2,429,964,113 13 2.47
BCOOL k=71 85,492,564 79,637,965 2,440,258,246 15 2.10
Lighter 55,280,808 883,251,227 1,632,909,855 3 27.83
Bloocoo 80,025,724 374,402,778 2,148,076,789 6 11.16
BFC 88,500,362 962,587,329 1,497,440,057 2 27.59

Table 3.8: Correction benchmark on simulated 100bp reads (100X coverage 1% error
rate) from Human by varying the k parameter. Solidity was fixed to 5 and tipping length
to 100.

96

able to scale up to large genome and dataset as the human one. Musket needs more than
250 GB and was not able to correct this dataset on our testing server. Once again we
see that correctors provide less impressive results on larger genomes. Those results show
that BCOOL provides good read correction even compared to state of the art correctors.

Our proposed workflow can be summarized into:
• Best kmer size and abundance threshold selection (Not done yet)
• Graph construction
• Graph cleaning
• Reads mapping on the graph

We see that BCOOL can lead to significant improvements to reads correction and can
scale up to very large genomes. But the approach is still parameter dependent. A high k
value allows the construction of a high quality graph but can create holes. Furthermore
we only evaluated BCOOL on very high coverage dataset and the solidity threshold is
also an impactful parameter that can be non trivial to set for users not aware of de Bruijn
graph properties. An automated evaluation of the kmer spectrum could infer the good
values to set, in order to get rid of most sequencing error without losing genomic kmers.
In order to infer those parameters we could, as in Kmergenie, use a fast kmer spectrum
estimator such as ntCard [121]. Many improvements and tuning have yet to be performed
to propose an efficient and robust corrector but preliminary results are encouraging.

"De novo, reference guided, read correction" core messages:

• Mapping reads on a reference de Bruijn graph enables to correct them
• All operations of such a method are scalable

97

Limasset et al. BMC Bioinformatics (2016) 17:237
DOI 10.1186/s12859-016-1103-9

RESEARCH ARTICLE Open Access

Read mapping on de Bruijn graphs
Antoine Limasset1*, Bastien Cazaux2,3, Eric Rivals2,3 and Pierre Peterlongo1

Abstract

Background: Next Generation Sequencing (NGS) has dramatically enhanced our ability to sequence genomes, but
not to assemble them. In practice, many published genome sequences remain in the state of a large set of contigs.
Each contig describes the sequence found along some path of the assembly graph, however, the set of contigs does
not record all the sequence information contained in that graph. Although many subsequent analyses can be
performed with the set of contigs, one may ask whether mapping reads on the contigs is as informative as mapping
them on the paths of the assembly graph. Currently, one lacks practical tools to perform mapping on such graphs.

Results: Here, we propose a formal definition of mapping on a de Bruijn graph, analyse the problem complexity
which turns out to be NP-complete, and provide a practical solution. We propose a pipeline called GGMAP (Greedy
Graph MAPping). Its novelty is a procedure to map reads on branching paths of the graph, for which we designed a
heuristic algorithm called BGREAT (de Bruijn Graph REAd mapping Tool). For the sake of efficiency, BGREAT rewrites a
read sequence as a succession of unitigs sequences. GGMAP can map millions of reads per CPU hour on a de Bruijn
graph built from a large set of human genomic reads. Surprisingly, results show that up to 22% more reads can be
mapped on the graph but not on the contig set.

Conclusions: Although mapping reads on a de Bruijn graph is complex task, our proposal offers a practical solution
combining efficiency with an improved mapping capacity compared to assembly-based mapping even for complex
eukaryotic data.

Keywords: Read mapping, De Bruijn graph, NGS, Sequence graph, path, Hamiltonian path, Genomics, Assembly,
NP-complete

Background
Next Generation Sequencing technologies (NGS) have
drastically accelerated the generation of sequenced
genomes. However, these technologies remain unable to
provide a single sequence per chromosome. Instead, they
produce a large and redundant set of reads, with each
read being a piece of the whole genome. Because of this
redundancy, it is possible to detect overlaps between reads
and to assemble them together in order to reconstruct the
target genome sequence.
Even today, assembling reads remains a complex task for

which no single piece of software performs consistently
well [1]. The assembly problem itself has been shown
to be computationally difficult, more precisely NP-hard
[2]. Practical limitations arise both from the structure of

*Correspondence: antoine.limasset@irisa.fr
1IRISA Inria Rennes Bretagne Atlantique, GenScale team, Campus de Beaulieu,
35042 Rennes, France
Full list of author information is available at the end of the article

genomes (repeats longer than reads cannot be correctly
resolved) and from the sequencing biases (non-uniform
coverage and sequencing errors). Applied solutions repre-
sent the sequence of the reads in an assembly graph: the
labels along a path of the graph encode a sequence. Cur-
rently, most assemblers rely on two types of graphs: either
the de Bruijn graph (DBG) for the short reads produced
by the second generation of sequencing technologies [3],
or for long reads the overlap graph (which was intro-
duced in the Celera Assembler [4]) and variants thereof,
like the string graph [5]. Then, the assembly algorithm
explores the graph using heuristics, selects some paths
and outputs their sequences. Due to these heuristics, the
set of sequences obtained, called contigs, is biased and
fragmented because of complex patterns in the graph that
are generated by sequencing errors, and genomic variants
and repeats. The set of contigs is rarely satisfactory and is

© 2016 Limasset et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Limasset et al. BMC Bioinformatics (2016) 17:237 Page 2 of 12

usually post-processed, for instance, by discarding short
contigs.
The most frequent computational task for analyzing a

set of reads is mapping them on a reference genome.
Numerous tools are available to map reads when the ref-
erence genome has the form of a set of sequences (e.g.
BWA [6] and Bowtie [7]). The goal of mapping on a fin-
ished genome sequence is to say whether a sequence can
be aligned to this genome, and in this case, at which loca-
tion(s). This is mostly done with a heuristic (semi-global)
alignment procedure that authorizes a small edit or Ham-
ming distance between the read and genome sequences.
Read mapping process suffers from regions of lowmappa-
bility [8]. Repeated genomic regions may not be mapped
precisely since the reads mapping on these regions have
multiple matches. When a genome is represented as a
graph, the mappability issue is reduced, as occurrences of
each repeated region are factorized, limiting the problem
of multiple matches of reads.
When the reference is not a finished genome sequence,

but a redundant set of contigs, the situation differs. The
mapping may correctly determine whether the read is
found in the genome, but multiple locations may for
instance not be sufficient to conclude whether several
true locations exist. Conversely, an unfruitful mapping
of a read may be due to an incomplete assembly or to
the removal of some contigs during post-processing. In
such cases, we argue it may be interesting to consider the
assembly graph as a (less biased and/or more complete)
reference instead of the set of contigs. Then mapping on
the paths of this graph is needed to complement map-
ping on set of contigs. This motivates the design and
implementation of BGREAT.
In this context, we explore the problem of mapping

reads on a graph. Aligning or mapping sequences on
sequence graphs (a generic term meaning a graph rep-
resenting sequences along its paths) has already been
explored in the literature in different application contexts:
assembly, read correction, or metagenomics.
In the context of assembly, once a DBG has been built,

mapping the reads back to the graph can help in elimi-
nating unsupported paths or in computing the coverage
of edges. To our knowledge, no practical solution has
been designed for this task. Cerulean assembler [9] men-
tions this possibility, but only uses regular alignment on
assembled sequences. Allpaths-LG [10] also performs a
similar task to resolve repeats using long noisy reads from
third generation sequencing techniques. Its procedure is
not generic enough to suit the mapping of any read set
on a DBG. From the theoretical view point, the ques-
tion is related to the NP-hard read-threading problem
(also termed Eulerian superpath problem [2, 11]), which
consists in finding a read coherent path in the DBG (a
path that can be represented as a sequence of reads as

defined in [5]). The assembler called SPADES [12] threads
the reads against the DBG by keeping track of the paths
used during construction, which requires a substantial
amount of memory. Here, we propose a more general
problem, termedDe Bruijn Graph ReadMapping Problem
(DBGRMP), as we aim atmapping to a graph any source of
NGS reads, either those reads used for building the graph
or other reads.
Recently, the hybrid error correction of long reads using

short reads has become a critical step to leverage the third
generation of sequencing technologies. The error correc-
tor LoRDEC [13] builds the DBG of the short reads, and
then aligns each long read against the paths of the DBG
by computing their edit distance using a dynamic pro-
gramming algorithm (which is slow for our purposes). For
shorts reads correction, several tools that evaluate the k-
mer spectrum of reads to correct the sequencing errors
use a probabilistic or an exact representation of a DBG as
a reference [14, 15].
In the context of metagenomics, Wang et al. [16] have

estimated the taxonomic composition of a metagenomics
sample by mapping reads on a DBG representing sev-
eral genomes of closely-related bacterial species. In fact,
the graph collapses similar regions of these genomes and
avoids redundantmapping. Their toolmaps the read using
BWA on the sequence resulting from the random con-
catenation of unitigs of the DBG. Hence, a read cannot
align over several successive nodes of the graph (ER: il
y a un pb ce n’est pas vrai). Similarly, several authors
have proposed to store related genomes into a single, less
repetitive, DBG [17–19]. However, most of these tools
are efficient only when applied to very closely related
sequences that result in flat graphs. The BlastGraph tool
[19], is specifically dedicated to the mapping of reads on
graphs, but is unusable on real world graphs (see Results
section).
Here, we formalize the mapping of reads on a De Bruijn

graph and show that it is NP-complete. Then we present
the pipeline GGMAP and dwell on BGREAT, a new tool
which enables to map reads on branching paths of the
DBG (Section GGMAP: a method to map reads on de
Bruijn Graph). For the sake of efficiency, BGREAT adopts
a heuristic algorithm that scales up to huge sequencing
data sets. In Section Results, we evaluate GGMAP in
terms of mapping capacity and of efficiency, and compare
it to mapping on assembled contigs. Finally, we discuss the
limitations and advantages the of GGMAP and give some
directions of future work (Section Discussion).

Methods
We formally define the problem of mapping reads on a
DBG and investigate its complexity (Section Complex-
ity of mapping reads on the paths of a DBG). Besides,
we propose a pipeline called GGMAP to map short

Limasset et al. BMC Bioinformatics (2016) 17:237 Page 3 of 12

reads on a representation of a DBG (Section GGMAP: a
method to map reads on de Bruijn Graph). This pipeline
includes BGREAT, a new algorithm mapping sequences
on branching paths of the graph (Section BGREAT : map-
ping reads on branching paths of the CDBG).

Complexity of mapping reads on the paths of a DBG
In this section, we present the formal problem we aim
to solve and prove its intractability. First, we introduce
preliminary definitions, then formalize the problem of
mapping reads on paths of a DBG, called the De Bruijn
Graph Read Mapping Problem (DBGRMP), and finally
prove it is NP-complete. Our starting point is the well-
knownHamiltonian Path Problem (HPP); we apply several
reductions to prove the hardness of DBGRMP.

Definition 1 (de Bruijn graph). Given a set of strings S =
{r1, r2, . . . , rn} on an alphabet � and an integer k ≥ 2, the
de Bruijn graph of order k of S (dBGk(S)) is a directed graph
(V ,A) where:

V = {d ∈ �k|∃i ∈ {1, . . . , n} such that d is a substring
of ri ∈ S}, and

A = {(d, d′) | if the suffix of length k − 1 of d is a prefix
of d′}.

Definition 2 (Walk and Path of a directed graph). Let G
be a directed graph.

• A walk of G is an alternating sequence of nodes and
connecting edges of G.

• A path of G is a walk of G without repeated node.
• A Hamiltonian path is a path that that visits each

node of G exactly once.

Definition 3 (Sequence generated by a walk in a dBGk).
Let G be a de Bruijn graph of order k. A walk of G composed
of l nodes (v1, . . . , vl) generates a sequence of length k+l−1
obtained by the concatenation of v1 with the last character
of v2, of v3 ,. . . , of vl.

We define the de Bruijn Graph Read Mapping Problem
(DBGRMP) as follows:

Definition 4 (De Bruijn Graph Read Mapping Prob-
lem). Given

• S, a set of strings over �,
• k, an integer such that k ≥ 2,
• q := q1 . . . q|q| a word of �∗ such that |q| ≥ k,
• a cost function F : � × � → N, and
• a threshold t ∈ N,

decide whether there exists a path of the dBGk(S) com-
posed of |q| − k + 1 nodes (generating a word m :=

m1 . . .m|q| ∈ �|q|) such that the cost C(m, q) :=∑|q|
i=1 F(mi, qi) ≤ t.

We recall the definition of the Hamiltonian Path Prob-
lem (HPP), which is NP-complete [20].

Definition 5 (Hamiltonian Path Problem (HPP)). Given
a directed graph G, the HPP consists in deciding whether
there exists a Hamiltonian path of G.

To prove the NP-completeness of DBGRMP we intro-
duce two intermediate problems. The first problem is a
variant of the Asymmetrical Travelling Salesman Problem.

Definition 6 (Fixed Length Asymmetric Travelling
Salesman Problem (FLATSP)). Let

• l be an integer,
• G := (V ,A, c) be a directed graph whose edges are

labeled with a non-negative integer cost (given by the
function c : A → N),

• t ∈ N be a threshold.

FLATSP consists in deciding whether there exists a path
p := (v1, . . . , vl) of G composed of l nodes whose cost
c(p) := ∑l−1

j=1 c((vj, vj+1)) satisfies c(p) ≤ t.

We consider the restriction of FLATSP to instances hav-
ing a unit cost function (i.e., where c(a) = 1 for any a ∈ A)
and where l equals both the threshold and the number of
nodes in V. This restriction makes FLATSP very similar to
HPP, and the hardness result quite natural.

Proposition 1. FLATSP is NP-complete even when
restricted to instances with a unit cost function and satis-
fying l = |V | = t.

Proof. We reduce HPP to an instance of FLATSP where
the cost function c simply counts the edges in the path,
and where the path length l equals the threshold t and the
number of nodes in V.
LetG = (V ,A) be a directed graph, which is an instance

of HPP. Let H = (V ,A, c : A → {1}), and l := |V | and
t := l. Thus (H , l, t) is an instance of FLATSP.
Let us now show that there is an equivalence between

the existence of a Hamiltonian path inG and the existence
of a path p = (v1, . . . , vl) of H such that c(p) ≤ t. Assume
that G has a Hamiltonian path p. In this case, p is also a
path in H of length |V |, and then the cost of p equals its
length, i.e. c(p) = ∑|V |

i=1 1 = |V |. Hence, there exists a
path p of H such that c(p) ≤ t = |V |.
Assume that there exists a path p = (v1, . . . , v|V |) of

H such that c(p) ≤ t. As p is a path it has no repeated

Limasset et al. BMC Bioinformatics (2016) 17:237 Page 4 of 12

nodes, and as by assumption l = |V |, one gets that p
is a Hamiltonian path of H, and thus also a Hamiltonian
path of G, since G and H share the same set of nodes and
edges.

The second intermediate problem is called the Read
Graph Mapping Problem (GRMP) and is defined below.
It formalizes the mapping on a general sequence graph.
Hence, DBGRMP is a specialization of GRMP, since it
considers the case of the de Bruijn graph.

Definition 7 (Graph Read Mapping Problem). Given

• a directed graph G = (V ,A, x), whose edges are
labeled by symbols of the alphabet (x : A → �),

• q := q1 . . . q|q| a word of �∗,
• a cost function F : � × � → N,
• a threshold t ∈ N,

GRMP consists in deciding whether there exists a path
p := (v1, . . . , v|q|+1) of G composed of |q| + 1 nodes, which
generates a word m := m1 . . .m|q| ∈ �|q| such that mi :=
x((vi, vi+1)), and which satisfies

∑|q|
i=1 F(mi, qi) ≤ t. Here,

m is called the word generated by p.

Proposition 2. GRMP is NP-complete.

Proof. We reduce FLATSP to GRMP.
Let (G = (V ,A, c : A → N), l ∈ N, t ∈ N) be an instance

of FLATSP. Let � = {y1, . . . , y|�|} an alphabet larger than
the largest value of c(A), and let s be the application such
that s : {0, . . . , |�|} → � and such that for each i in
{0, . . . , |�|}, s(i) = yi. Let H = (V ,A, x := s ◦ c) and let α

be a letter that does not belong to �, let q = αl−1 and F
such that for each i in {0, . . . , |�|}, F(α, yi) = i. Thus, we
obtain |q| = l − 1.
Now, let us show that there is an equivalence between

the existence of a path p = (v1, . . . , vl) of G such that
c(p) ≤ t and the existence of a path p′ = (

u1, . . . ,u|q|+1
)

of H composed of |q| + 1 nodes, which generates a word
m = m1 . . .m|q| of �|q|, where each mj = x((uj,uj+1)),
and such that

∑|q|
j=1 F

(
mj, qj

) ≤ t. Assume that there
exists a path p = (v1, . . . , vl) of G such that c(p) ≤ t. By
definition, p is a path in H. Let m be the word generated
by p. Thus we have

∑|q|
j=1 F

(
mj, qj

) = ∑l−1
j=1 F(mj,α) =∑l−1

j=1 c((vj, vj+1)) ≤ t.
Now, suppose that there exists a path

p′ = (
u1, . . . ,u|q|+1

)
of H composed of |q| + 1 nodes,

which generates a word m = m1 . . .m|q| of �|q|, where
eachmj = x((uj,uj+1)), and such that

∑|q|
j=1 F

(
mj, qj

) ≤ t.
By the construction of H, p′ is a path in G of length
|q| + 1 = l. Hence, we obtain

∑l−1
j=1 c((uj,uj+1)) =∑|q|

j=1 F(mj,α) = ∑l−1
j=1 F

(
mj, qj

) ≤ t.

Theorem 1. DBGRMP is NP-complete.

Figure 1 illustrates the gadget used in the proof of
Theorem 1. Basically, the gadget creates a DBG node
(a word) formed by concatening the labels of the two
preceding edges in the original graph.

Proof. Let us now reduce GRMP to DBGRMP.
Let (G := (V ,A, x : A → �), q ∈ �∗, F : � × � →

N, t ∈ N) be an instance of GRMP. Let $ and � be two
distinct letters that do not belong to �, and let �′ := � ∪
{$,�}. Let V ′ be a set of words of length 2 defined by

V ′ := {
αiβj | x(i, j)

= α and ∃ l ∈ V such that x(j, l) = β
}

set 1⋃ {
�i$i | ∃ j ∈ V , such that x(i, j)

= α and � l ∈ V such that (l, i) ∈ A} set 2⋃ {
$iαi | ∃ j ∈ V , such that x(i, j)

= α and � l ∈ V such that (l, i) ∈ A} . set 3
(1)

Any letter of a word in V ′ is a symbol of �′ numbered
by a node of V. Moreover, if that symbol is taken from V
then it labels an edge of A that goes out a node, say i, of V,
and the number associated to that symbol is i. In fact, V ′
is the union of three sets (see Eq. 1):
set 1 considers the cases of an edge ofA labeled α followed
by an edge labeled β , sets 2 and 3 contain the cases of an
edge of A labeled α that is not preceded by another edge
of A; for each such edge one creates two words: �i$i in set
2 and $iαi in set 3.
LetH be the 2-dBG of V ′; note that �′ is the alphabet of

the words of V ′. Now let z be the application from V ′ to �

that for any αi of V ′ satisfies z(αi) = α. (Note that in this
equation, the right term is a shortcut meaning the symbol
of αi without its numbering i; this shortcut is used only
for the sake of legibility, but can be properly written with a
heavier notation). Let F ′ : �′ × � → N be the application
such that ∀(αi,β) ∈ �′ × �, F ′(αi,β) = F(z(αi),β) =
F(α,β).
Let us show that this reduction is a bijection that

transforms a positive instance of GRMP into a posi-
tive instance of DBGRMP. Assume there exists a path
p := (v1, . . . , v|q|+1) of G which generates a word m =
m1 . . .m|q| ∈ �|q| satisfying mi = x((vi, vi+1)) and such
that

∑|q|
i=1 F(mi, qi) ≤ t. We show that there exists a path

p′ of G′ which generates a word m′ = m′
1 . . .m′|q| ∈ �′|q|

such that
∑|q|

i=1 F ′(m′
i, qi) ≤ t.

We build the path p′ as the “concatenation” of two paths,
denoted p′

start and p′
end, that we define below. Let γj :=

x((vj, vj+1))vj = (mj)vj for all j between 1 and |q|. One has
that γj ∈ �′. Now, let

Limasset et al. BMC Bioinformatics (2016) 17:237 Page 5 of 12

Fig. 1 Illustration of the gadget used in the proof of Theorem 1. Encoding a directed graph into a DBG of order 2. The directed graph G (top) admits
the same words than the 2-DBG G′ (bottom), if we ignore the numbers

p′
start :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
x((vl′ , vl))vl′ x((vl , v1))vl , x((vl , v1))vl x((v1, v2))v1

)

if ∃ l, l′ ∈ V such that (l, 1) ∈ A and (l′, l) ∈ A(
$vl x((vl , v1))vl , x((vl , v1))vl x((v1, v2))v1

)

if ∃ l∈V such that (l, 1)∈ A and� l′ ∈V such that (l′, l) ∈ A(
�v1 $v1 , $v1x((v1, v2))v1

)

otherwise.

and let

p′
end := (

γ1γ2, . . . , γ|q|−1γ|q|
)
.

Let m′ denote the word generated by p′. Clearly, one
sees that m′ = (m1)v1 . . . (m|q|)v|q| , and since mi =
z((m′

i)vi), one gets that z(m′) = m and
∑|q|

i=1 F ′ (m′
i, qi

) =∑|q|
i=1 F (mi, qi) ≤ t.
In the other direction, the proof is similar since our

construction is a bijection.

GGMAP: a method to map reads on de Bruijn Graph
We propose a practical solution for solving DBGRMP. We
consider the case of short (hundred of base pairs) reads
with a low error rate (1% of substitution), which is a good
approximation of widely used NGS reads. Since errors
are mostly substitutions, mapping is computed using the
Hamming distance.
Our solution is designed formapping on a compacted de

Bruijn graph (CDBG) any set of short reads, either those
used to build the graph or reads from another individual
or species. We recall that a CDBG is representation of a
DBG in which each non branching path is merged into a
single node. The sequence of each node is called a unitig.
Figure 2 shows a DBG and the associated CDBG.
In a CDBG, the nodes are not necessarily k-mers, words

of length k, but unitigs, with some unitigs being longer
than reads. Thus, while mapping on a CDBG, one dis-
tinguishes between two mapping situations: i/ the reads
mapping completely on a unitig of the graph, and ii/ the
reads whose mapping spans two or more unitigs. For the
latter, we say that the readmaps on a branching path of the
graph.

Taking advantage of the extensive research carried out
for mapping reads on flat strings, GGMAP uses Bowtie2
[7] to map the reads on the unitigs. In addition, GGMAP
integrates our proposed new tool, called BGREAT, for
mapping reads on branching paths of the CDBG. Figure 3
provides an overview of the pipeline.
GGMAP takes as inputs a query set of reads and a

reference DBG. To avoid including sequencing errors in
the DBG, we construct the reference DBG after filtering
out all k-mers whose coverage lies below a user-defined
threshold c. This error removal step is a classical prepro-
cessing step that is performed in k-mer based assemblers.
The unitigs of the CDBG are computed using BCALM2
(the parallel version of BCALM [21]), using the k-mers
having a coverage ≥ c. GGMAP uses such a set of unitigs
as DBG.
We now propose a detailed description of BGREAT.

BGREAT : mapping reads on branching paths of the CDBG
As previously mentioned, BGREAT is designed for map-
ping reads on branching paths of a CDBG, using reason-
able resources both in terms of time and memory. Our
approach follows the usual “seed and extend” paradigm.
More generally, the proposed implementation applies
heuristic schemes, both regarding the indexing and the
alignment phases.

Indexing heuristic
We remind that our algorithm maps reads that span at
least two distinct unitigs. Such mapped reads inevitably
traverse one or more DBG edge(s). In a CDBG, edges
are represented by the prefix and suffix of size k − 1
of each unitig. We call such sequences the overlaps. In
order to limit the index size and the computation time,
our algorithm indexes only overlaps that are later used as
seeds. Those overlaps are good anchors for several rea-
sons: they are long enough (k − 1) to be selective, they
cannot be shared by more than eight unitigs (four starting
and four ending with the overlap), and a CDBGusually has
a reasonable number of unitigs and then of overlaps. For

Limasset et al. BMC Bioinformatics (2016) 17:237 Page 6 of 12

Fig. 2 A toy example of a DBG of order k with k = 4 (top) and its compacted version (bottom)

instance, the CDBG in our experiment with human data
has 70 million unitigs and 87 million overlaps for 3 billion
k-mers). In our implementation, the index is a minimal
perfect hash table indicating for each overlap the unitig(s)
starting or ending with this (k − 1)-mer. Using a minimal
perfect hash function limits the memory footprint, while
keeping efficient query times (see Table 3).

Read alignment
Given a read, each of its k − 1-mers is used to query
the index. The index detects which k − 1-mers represent
an overlap of the CDBG. An example of a read together
with the matched unitigs are displayed on Fig. 4. Once
the overlaps and their corresponding unitigs have been
computed, the alignment of the read is performed from
left to right as presented in Algorithm 1. Given an overlap
position i on the read, the unitigs starting with this overlap
are aligned to the sequence of the read starting from
position i. The best alignment is recorded. In addition, to
improve speed, if one of the at most four unitigs ending
with the same overlap is the next overlap detected on the

read, then this unitig is tested first, and if the alignment
contains less mismatch than the user defined threshold,
the other unitigs are not considered. Note that this opti-
mization does not apply for the first and last overlaps of a
read.

Algorithm 1: Greedy algorithm for mapping a read on
multiple unitigs once the potential overlaps present in
the read have been detected.
Data: Read r, Integer n
for the n first overlaps of r do

Find a path begin that map the begin of r
if begin found then

for the n last overlaps of r do
Find a path end that maps the end of r
if end found then

Find (in a greedy way) a path cover that
map the read from begin to end
if cover found then

write path;
return

Fig. 3 Unitig construction, as used in the proposed experiments (upper part of the figure) and GGMAP pipeline. Reads to be mapped can be distinct
from reads used for building the graph. Long unitigs are unitigs longer than the reads. We remind that tools BCALM and BOWTIE2 are respectively
published in [7, 21]

Limasset et al. BMC Bioinformatics (2016) 17:237 Page 7 of 12

Fig. 4 Representation of the mapping of a read (top sequence) on a CDBG, whose nodes are represented on lines 2, 3, and 4. (step 1) the overlaps of
the graph that are also present in the read are found (here TACAC, GCTGC, and AGCTA, represented on line 1). (step 2) unitigs that map the
beginning and the end of the read are found (those represented on line 2). (step 3) cover the rest of the read, guided by the overlaps (here with
unitigs represented on lines 3 and 4)

This mapping procedure is performed only if the two
extremities of the read are mapped by two unitigs. The
extreme overlaps of the read enables BGREAT to quickly
filter out unmappable reads. For doing this, the first (resp.
last) overlap of the read is used to align the read to the
first (resp. last) unitig. Note that, as polymorphism exists
between the read and the graph, some of the overlaps
present on the read may be spurious. In this case the
alignment fails, and the algorithm continues with the next
(resp. previous) overlap. At most n alignment failures are
authorized in each direction. If a read cannot be anchored
neither on the left, nor on the right, it is considered as not
aligned to the graph.
Note that the whole approach is greedy: given two or

more possible choices, the best one is chosen and back-
tracking is excluded. This results in a linear time mapping
process, since each position in the read can lead to a max-
imum of four comparisons, and the algorithm continues
as long as the cumulated number of mismatches remains
below the user defined threshold. Because of heuristics, a
read may be unmapped or wrongly mapped for any of the
following reasons.

• All overlaps on which the read should map contain
errors, in this case the read is not anchored or only
badly anchored and thus not mapped.

• The n first or n last overlaps of the read are spurious,
in this case the begin or end is not found and the
read is not mapped. By default and in all experiments
n = 2.

• The greedy choices made during the path selection
are wrong.

We implemented BGREAT as a dependence-free tool in
C++ available at github.com/Malfoy/BGREAT.

Results
Beforehand we give details about the data sets (Subsec-
tion Data sets and CDBG construction), then we perform
several evaluations of GGMAP and of BGREAT. First,
we compare graph mapping to mapping on the contigs
resulting from an assembly (Subsection Graph mapping
vs assembly mapping). Second, we assess how many reads
are mapped on branching paths vs on unitigs (Subsec-
tion Mapping on branching paths usefulness). Third, we

evaluate the efficiency of BGREAT in both terms of
throughput and scalability (Subsection GGMAP perfor
mances), then assess the quality of the mapping itself
(Subsection GGMAP accuracy). All BGREAT alignments
were performed authorizing up to two mismatches.
There are very few published tools to compare GGMAP

with. Indeed, we found only one published tool, called
BlastGraph [19], which was designed for mapping reads
on a DBG. However, on our simplest data set coming
from the E.coli genome (see Table 1), BlastGraph crashed
after ≈ 124 h of computation. Thus, BlastGraph was not
further investigated here.

Data sets and CDBG construction
For our experiments we used publicly available Illumina
read data sets from species of increasing complexity:
from the bacterium E.coli, the worm C.elegans, and from
Human. Detailed information about the data sets are given
in Additional file 1: Table S1 (identifiers, read length, read
numbers, and coverages – from 70x to 112x–).
For each of these three data sets, we generated a CDBG

using BCALM. From the C.elegans read set, we addition-
ally generated an artificially complex graph, by using small
k and c values (respectively 21 and 2). This particular
graph, called C.elegans_cpx, contains lot of small unitigs.
We used it to assess situations of highly complex and/or
low quality sequencing data. The characteristics of the
CDBG obtained on each of these data sets are given in
Table 1.

Graphmapping vs assembly mapping
We compared GGMAP to the popular approach consist-
ing in mapping the reads to the reference contigs com-
puted by an assembler. For testing this approach, for each
of the three sets used, we first assembled them and then
we mapped back the reads on the obtained set of contigs.
We used two different assemblers, the widely used Velvet
[22], and Minia [23], a memory efficient assembler based
on Bloom filters. Finally, we used Bowtie2 for mapping the
reads on the obtained contigs.
The results reported in Table 2 show that the num-

ber of reads mapped on assembled contigs is smaller
than the one obtained with GGMAP. We obtained sim-
ilar results in terms of number of reads mapped on the

Limasset et al. BMC Bioinformatics (2016) 17:237 Page 8 of 12

Table 1 CDBG used in this study

CDBG Id Reads Id k c Number of unitigs Mean length of unitigs

E.coli SRR959239 31 3 42,843 134

C.elegans_norm SRR065390 31 3 1,627,335 93

C.elegans_cpx SRR065390 21 2 8,273,338 34

Human
SRR345593

31 10 69,932,343 70
SRR345594

C.elegans_cpx and C.elegans_norm are two distinct graphs, constructed using the same read set from C.elegans genome. The suffixes norm and cpx respectively stand for
“normal” (using c = 3 and k = 31) and for “complex” (using a low threshold c = 2 and small value k = 21)

assemblies yielded by Velvet and Minia (see Additional
file 1: Table S2). Let us emphasize that on the Human
dataset, GGMAP maps 22 additional percents of reads on
the graph than Bowtie2 does on the assembly.
We notice that the more complex the graph, the higher

the advantage of mapping on the CDBG. This is due to
the inherent difficulty of assembling with huge and highly
branching graphs. This is particularly prominent in the
results obtained on the artificially complex C.elegans_cpx
CDBG.
We also highlight that our approach is resource efficient

compared to most assembly processes. For instance, Vel-
vet used more than 80 gigabytes of memory to compute
the contigs for the C. elegans data set with k = 31. On this
data set, our workflow used at most 4 GBmemory (during
k-mer counting). In terms of throughput, using BGREAT
and then Bowtie2 on long unitigs is comparable to using
Bowtie2 on contigs alone. See Section GGMAP perfor
mances for more details about GGMAP performances.

Mapping on branching paths usefulness
Mapping the reads on branching paths of the graph is
not equivalent to simply mapping the reads on unitigs.
Indeed, at least 13% of reads (mapping reads SRR959239
on the E.coli DBG) and up to 66% of reads (mapping
reads SRR065390 on C.elegans_cpx DBG) map on the
branching paths of the graph (see Fig. 5). These reads
cannot be mapped when using only the set of unitigs as
a reference. As expected, the more complex the graph,
the larger the benefit of BGREAT ’s approach. On the
complex C.elegans_cpx graph, only 23% of reads can be

Table 2 Percentage of mapped reads, either mapping on contigs
(here obtained thank to the Minia assembler) or mapping on
CDBG with GGMAP

Set % mapped on contigs % mapped on CDBG

E.coli 95.57 97.16

C.elegans_norm 80,60 93,24

C.elegans_cpx 56,33 89,15

Human 63,16 85,70

fully mapped on unitigs, while 89% of them are mapped
by additionally using BGREAT. On a simpler graph as
C.elegans_norm the gap is smaller, but remains signifi-
cant (72 vs 93%). Complete mapping results are shown in
Additional file 1: Table S3.

Non reflexivemapping on a CDBG
The GGMAP approach is also suitable for mapping a
distinct read set from the one used for constructing
the DBG. We mapped another read set from C.elegans
(SRR1522085) on the C.elegans_norm CDBG. Results in
this situation are similar to those observed when perform-
ing reflexive mapping (i.e., when mapping the reads used
to construct this graph): among 89% of mapped reads,
15% were mapped on branching paths of the graph (See
Fig. 5).

GGMAP performances
Table 3 presents GGMAP time and memory footprints. It
shows that BGREAT is very efficient in terms of through-
put while using moderate resources. Presented heuristics
and implementation details allow BGREAT to scale up to
real-world instances of the problem, being able to map
millions of reads per CPU hour on a Human CDBG with
a lowmemory footprint. BGREAT mapping is parallelized
and can efficiently use dozens of cores.

GGMAP accuracy
To measure the impact of the read alignment heuristics,
we forced the tool to explore exhaustively all poten-
tial alignment paths once a read is anchored on the
graph. Results on the E.coli dataset show that the greedy
approach is much faster than the exhaustive one (38×
faster), while the mapping capacity is little impacted: the
overall number of mapped reads increases by only 0.03%
with the exhaustive approach. We thus claim that the
choice of the greedy strategy is a satisfying trade-off.
To further evaluate the GGMAP accuracy, we assess the

recall and mapping quality in the following experiment.
We created a CDBG from Human chromosome 1 (hg19
version). Thus, each k-mer of the chromosome appears
in the graph. Furthermore, from the same sequence, we

Limasset et al. BMC Bioinformatics (2016) 17:237 Page 9 of 12

Fig. 5 GGMAPmapping results for the different read sets. In the “C.Elegans_norm (SRR1522085)” case, reads from SRR1522085 are mapped on the
CDBG obtained using reads from read set SRR065390. For all other results, the same read set was used both for constructing the CDBG and during
the mapping

simulated reads with distinct error rates (0, 0.1, 0.2, 0.5,
1 and 2%). For each error rate value, we generated one
million reads. We evaluated the GGMAP results by map-
ping the simulated reads on the graph. As the graph is
error free, except in some rare cases due to repetitions,
the differences between a correctly mapped read and the
path it maps to in the graph occur at erroneous positions
of the read. If this is not the case, we say that the read is
not mapped at its optimal position. Among the error free
positions of a simulated read, the number of mismatches
observed between this read and the mapped path is called
the “distance to optimal”. Results are reported in Table 4
together with the obtained recall (number of mapped
reads over the number of simulated reads). Those results

show the limits of BGREAT while mapping reads from
divergent individuals. With 2% of substitutions in reads,
only 90.85% of the reads are perfectly mapped. Neverthe-
less, with this divergence rate, 97.28% of reads aremapped
at distance at most one from optimum. With over 99% of
perfectly mapped reads, these results show that with the
current sequencing characteristics, i.e. a 0.1% error rate,
the mapping accuracy of BGREAT is suitable for most
applications.

Discussion
We proposed a formal definition of the de Bruijn graph
Read Mapping Problem (DBGRMP) and proved its NP-
completeness. We proposed a heuristic algorithm offering

Table 3 Time and memory footprints of BGREAT and BOWTIE2

BGREAT BOWTIE2

CDBG Id Mapped set Wall clock time CPU time Memory Wall clock time CPU time Memory
(nb reads)

E.coli SRR959239 28 s 1m40 19 MB 1m17 3m53 29 MB
(5,128,790)

C.elegans_cpx SRR065390 19m21 72m31 975 MB 8m12 33m 1.66 GB
(67,155,743)

C.elegans_norm ′′ 13m03 51m28 336 MB 17m49 72m31 493 MB

C.elegans_norm SRR1522085 1m54 7m13 336 MB 3m29 14m12 493 MB
(22,509,110)

Human SRR345593 4h30 87 h 9.7 GB 4h38 90h15 21 GB
SRR345594
(2,967,536,821)

Indicated wall clock times use four cores, except for the human samples for which 20 cores were used

Limasset et al. BMC Bioinformatics (2016) 17:237 Page 10 of 12

Table 4 GGMAPmapping results on simulated reads from the
reference of the human chromosome 1 with default parameters

% Errors in Distance to optimum of BGREAT
simulated reads mapped reads (percentage)

0 1 2 3 ≥ 4

0 100 0 0 0 0

0.1 99.31 0.52 0.09 0.04 0.04

0.2 98.79 0.91 0.21 0.07 0.02

0.5 97.2 2.17 0.41 0.17 0.05

1 94.88 3.72 0.92 0.41 0.07

2 90.85 6.43 1.79 0.83 0.1

Results show the recall of GGMAP and the quality of BGREAT mapping, as
represented by the “distance to optimum” value. For instance 94.88% of the reads
were mapped without error, 3.72% were mapped with a distance to the optimum
of one etc. Due to approximate repeats in human chromosome 1, the reported
distance to optimum is an upper bound

a practical solution. We developed a tool called BGREAT
implementing this algorithm using a compacted de Bruijn
graph (CDBG) as a reference.
From the theoretical viewpoint, the problem DBGRMP

considers paths rather than walks in the graph. The cur-
rent proof of its hardness does not seem to be adaptable to
the cases of walks. A perspective is to extend the hardness
result to that more general case.
We emphasize that our proposal does not enable

genome annotation. It has been designed for applications
aiming at a precise quantification of sequenced data, or a
set of potential variations between the reads and the ref-
erence genome. In this context, it is essential to map as
much reads as possible. Experiments show that a signifi-
cant proportion of the reads (between ≈ 13and ≈ 66%
depending on the experiment) can be only mapped on
branching paths of the graph. Hence, mapping only on
the nodes of the graph or on assembled contigs is thus
insufficient. This statement holds true when mapping the
reads used for building the graph, but also with reads from
a different experiment. Moreover, our results show that
a potentially large number of reads (up to ≈ 32%) that
are mapped on a CDBG cannot be mapped on a classical
assembly.
With GGMAP, the mapping quality is very high: using

Human chromosome 1 as a reference and reads with a
realistic error rate (similar to that of Illumina technol-
ogy), over 99% of the reads are correctly mapped. The
same experiment also pointed out the limits of mapping
reads on a divergent graph reference (≥ 2% substitu-
tions): approximately 10% of the reads are mapped at a
suboptimal position.
A weak point of BGREAT lies in its anchoring tech-

nique. Reads mapped with BGREAT must contain at least
one exact k − 1-mer that is an arc of the CDBG, i.e., an
overlap between two connected nodes. This may be a seri-
ous limitation when the original read set diverges greatly

from the reads to be mapped. Improving the mapping
technique may be done by using not only unitig overlaps
as anchors at the cost of higher computational resources.
Another solution may consist in using a smarter anchor-
ing approach, like spaced seeds, which can accommodate
errors in the anchor [24].
A natural extension consists in adapting BGREAT for

mapping, on the CDBG obtained from short reads, the
long (a few kilobases in average) and noisy reads pro-
duced by the third generation of sequencers, whose error
rate reaches up to 15% (with mostly insertion and dele-
tion errors for e.g. Pacific Biosciences technology). Such
adaptation is not straightforward because of our seeding
strategy, which requires long exact matches. The anchor-
ing process must be very sensitive and very specific, while
the mapping itself must implement a Blast-like heuris-
tic or an alignment-free method. However, mapping such
long reads on a DBG could be of interest for correcting
these reads as in [13], or for solving repeats, if long reads
are mapped on the walks (which main include cycles)
of the DBG. Our NP-completeness proof only considers
mapping on (acyclic) paths. Proving the hardness of the
problem of mapping reads on walks of a DBG remains
open.
Incidentally, using the same read set for constructing

the CDBG and for mapping opens the way to major appli-
cations. Indeed, the graph and the exact location of each
read on it may be used for i/ read correction as in [15],
by detecting differences between reads and the mapped
area of the graph in which low support k-mers likely due
to sequencing errors are absent, or for ii/ read compres-
sion by recording additionally the mapping errors, or for
iii/ both correction and compression by conserving only
for each read its mapping location on the graph.
Having for each read (used for constructing the graph

or not) its location on the CDBG also provides the oppor-
tunity to design algorithms for enriching the graph, for
instance enabling a quantification that is sensitive to local
variations. This would be valuable for applications such
as variant calling, analysis of RNA-seq variants [25], or of
metagenomic reads [26].
Additionally, BGREAT results provide pieces of

information for distant k-mers in the CDBG, about
their co-occurrences in the mapped read data sets. This
offers a way for the resolution, in the de Bruijn graph,
of repeats larger than k. It could also allow to phase the
polymorphisms and to reconstruct haplotypes.

Conclusion
A take home message is that read mapping can be sig-
nificantly improved by mapping on the structure of an
assembly graph rather than on a set of assembled con-
tigs (respectively ≈22% and ≈ 32% of additional reads
mapped for the Human and a complex C.elegans data

Limasset et al. BMC Bioinformatics (2016) 17:237 Page 11 of 12

sets). This is mainly due to the fact that assembly graphs
retains more genomic information than assembled con-
tigs, which also suffer from errors induced by the com-
plexity of assembly. Moreover, mapping on a compacted
De Bruijn Graph can be fast. The availability of BGREAT
opens the door to its application to fundamental tasks
such as read error correction, read compression, variant
quantification, or haplotype reconstruction.

Additional file

Additional file 1: Read mapping on De Bruijn graphs additional file. Three
complementary tables are presented. Main characteristics of data sets used
in this study. Assembly and mapping approach comparison. Results of
BGREAT on real read sets. (PDF 40 kb)

Abbreviations
CDBG, Compacted De Bruijn graph; DBG, De Bruijn graph; DBGRMP, De Bruijn
graph read mapping problem; FLATSP, fixed length assymetric travelling
salesman problem; GRMP, graph read mapping problem; HPP, Hamiltonian
path problem

Acknowledgements
We would like to thank Yannick Zakowski, Claire Lemaitre and Camille Marchet
for proofreading the manuscript and discussions.

Funding
This work was funded by French ANR-12-BS02-0008 Colib’read project, by
ANR-11-BINF-0002, and by a MASTODONS project.

Availability of data andmaterials
Our implementations are available at github.com/Malfoy/BGREAT. In addition
to the following pieces of information, Additional file 1: Table S1 presents the
main characteristics of these datasets.
SRR959239 http://www.ncbi.nlm.nih.gov/sra/?term=SRR959239
SRR065390 http://www.ncbi.nlm.nih.gov/sra/?term=SRR065390
SRR1522085 http://www.ncbi.nlm.nih.gov/sra/?term=SRR1522085
SRR345593 and SRR345594 http://www.ncbi.nlm.nih.gov/sra/?term=
SRR345593.

Authors’ contributions
PP initiated the work and designed the study. AL, BC and ER designed the
formalism and the proofs of NP-hardness. AL designed the algorithmic
framework, implemented the BGREAT and performed the tests. All authors
wrote and accepted the final version of the manuscript.

Competing interests
The authors declare that they have no competing interests.

Ethics approval and consent to participate
Not applicable.

Author details
1IRISA Inria Rennes Bretagne Atlantique, GenScale team, Campus de Beaulieu,
35042 Rennes, France. 2L.I.R.M.M., UMR 5506, Université deMontpellier et CNRS,
860 rue de St Priest, F-34392 Montpellier Cedex 5, France. 3Institut Biologie
Computationnelle, Université de Montpellier, F-34392 Montpellier, France.

Received: 9 December 2015 Accepted: 26 May 2016

References
1. Bradnam KR, Fass JN, et al. Assemblathon 2: evaluating de novo methods

of genome assembly in three vertebrate species. GigaScience. 2013;2:10.
doi:10.1186/2047-217X-2-10.

2. Nagarajan N, Pop M. Parametric complexity of sequence assembly:
theory and applications to next generation sequencing. J Comput Biol.
2009;16(7):897–908. doi:10.1089/cmb.2009.0005.

3. Chaisson MJ, Pevzner PA. Short read fragment assembly of bacterial
genomes. Genome Res. 2008;18(2):324–30. doi:10.1101/gr.7088808.

4. Myers EW, Sutton GG, et al. A whole-genome assembly of Drosophila.
Science (New York, N.Y.) 2000;287(5461):2196–204.
doi:10.1126/science.287.5461.2196.

5. Myers EW. The fragment assembly string graph. Bioinformatics.
2005;21(Suppl 2):79–85. doi:10.1093/bioinformatics/bti1114.

6. Li H, Durbin R. Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60.
doi:10.1093/bioinformatics/btp324.

7. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2.
Nat Methods. 2012;9(4):357–9. doi:10.1038/nmeth.1923.

8. Lee H, Schatz MC. Genomic dark matter: the reliability of short read
mapping illustrated by the genome mappability score. Bioinformatics.
2012;28(16):2097–105. doi:10.1093/bioinformatics/bts330.

9. Deshpande V, Fung EDK, Pham S, Bafna V. Cerulean: A Hybrid Assembly
Using High Throughput Short and Long Reads. In: Lecture Notes in
Computer Science vol. 8126 LNBI. Springer; 2013. p. 349–63.
doi:10.1007/978-3-642-40453-5_27.

10. Ribeiro FJ, Przybylski D, Yin S, Sharpe T, Gnerre S, Abouelleil A, Berlin
AM, Montmayeur A, Shea TP, Walker BJ, Young SK, Russ C, Nusbaum C,
MacCallum I, Jaffe DB. Finished bacterial genomes from shotgun
sequence data. Genome Res. 2012;22(11):2270–7.
doi:10.1101/gr.141515.112.

11. Pevzner PA, Tang H, Waterman MS. An Eulerian path approach to DNA
fragment assembly. Proc Natl Acad Sci. 2001;98(17):9748–53.
doi:10.1073/pnas.171285098.

12. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS,
Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV,
Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. SPAdes: a new genome
assembly algorithm and its applications to single-cell sequencing. J
Comput Biol. 2012;19(5):455–77. doi:10.1089/cmb.2012.0021.

13. Salmela L, Rivals E. LoRDEC: accurate and efficient long read error
correction. Bioinformatics. 2014;30(24):3506–14.
doi:10.1093/bioinformatics/btu538.

14. Yang X, Chockalingam SP, Aluru S. A survey of error-correction methods
for next-generation sequencing. Brief Bioinform. 2013;14(1):56–66.
doi:10.1093/bib/bbs015.

15. Benoit G, Lavenier D, Lemaitre C, Rizk G. Bloocoo, a memory efficient
read corrector. In: European Conference on Computational Biology
(ECCB); 2014. https://gatb.inria.fr/software/bloocoo/.

16. Wang M, Ye Y, Tang H. A de Bruijn graph approach to the quantification
of closely-related genomes in a microbial community. J Comput Biol.
2012;19(6):814–25. doi:10.1089/cmb.2012.0058.

17. Huang L, Popic V, Batzoglou S. Short read alignment with populations of
genomes. Bioinformatics. 2013;29(13):361–70.
doi:10.1093/bioinformatics/btt215.

18. Dilthey A, Cox C, Iqbal Z, Nelson MR, McVean G. Improved genome
inference in the MHC using a population reference graph. Nat Genet.
2015;47(6):682–8. doi:10.1038/ng.3257.

19. Holley G, Peterlongo P. Blastgraph: Intensive approximate pattern
matching in sequence graphs and de-bruijn graphs. In: Stringology; 2012.
p. 53–63. http://alcovna.genouest.org/blastree/.

20. Karp RM. Reducibility Among Combinatorial Problems. In: 50 Years of
Integer Programming 1958-2008. Berlin, Heidelberg: Springer; 2010. p.
219–41. doi:10.1007/978-3-540-68279-0_8. http://link.springer.com/10.
1007/978-3-540-68279-0_8.

21. Chikhi R, Limasset A, Jackman S, Simpson JT, Medvedev P. On the
representationof debruijn graphs. In: Research in Computational Molecular
Biology. Springer; 2014. p. 35–55. doi:10.1007/978-3-319-05269-4-4.

22. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome Res. 2008;18(5):821–9.
doi:10.1101/gr.074492.107.

23. Chikhi R, Rizk G. Space-efficient and exact de Bruijn graph representation
based on a Bloom filter. Algorithm Mol Biol. 2013;8(1):22.
doi:10.1186/1748-7188-8-22.

24. Vroland C, Salson M, Touzet H. Lossless seeds for searching short patterns
withhigherror rates. In: Combinatorial Algorithms. Springer; 2014. p. 364–75.

Limasset et al. BMC Bioinformatics (2016) 17:237 Page 12 of 12

25. Sacomoto GA, Kielbassa J, Chikhi R, Uricaru R, Antoniou P, Sagot MF,
Peterlongo P, Lacroix V. Kissplice: de-novo calling alternative splicing
events from rna-seq data. BMC Bioinformatics. 2012;13(Suppl 6):5.

26. Ye Y, Tang H. Utilizing de Bruijn graph of metagenome assembly for
metatranscriptome analysis. Bioinformatics. 2015btv510. Oxford Univ
Press. arXiv preprint arXiv:1504.01304.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

110

Chapter 4

Improving an assembly paradigm

111

In this chapter we are interested in improving the de Bruijn graph assembly. We
first describe the limitations of actual assembly methods and propose a high order de
Bruijn graph as a scalable and efficient solution. Then we propose a proof of concept
method to construct such graph based on successive mapping. In the last part, we
present different results of our proof of concept assembler and show its potential to
tackle several existing limitations.

4.1 Assembly challenges

4.1.1 Two assembly paradigms

As we previously saw, OLC and string graph approaches are able to use the full read
information. They allow better repeats handling than the de Bruijn graph and produce
more contiguous assemblies. From a qualitative point of view, the best assemblers should
be those based on string graphs, as assessed by the Assemblathon assembly competition
[122] [123]. However, in the introduction, we presented those approaches as intractable
because of the need to index the very large reads sets and to compute pairwise alignments.
Large genomes are costly to assemble, and alternative approaches have been preferred
for scalability reasons. Contrary to string graphs, despite being tractable, the de Bruijn
graph do not use full read information and produce fragmented assembly. Moreover, high
order de Bruijn graphs are hard to obtain because they require a high sequencing depth.

4.1.2 Why read length matters: polyploid assembly

The major practical difference between the de Bruijn graph and the string graph is thus
the sequence length information they use. Having full length helps solve repeats, but
since read lengths are bounded and particularly short for NGS, the theoretical edge of
the string graph over the de Bruijn graph is not major. De Bruijn graph assemblers are
not really behind string graph in practice, they can use an order above 60 from a high
coverage, when the reads length goes up to a few hundred. Then, the advantages of
the string graphs will come in the range of repeats between k and the read length. We
mentioned in the introduction that C. elegans genome presents 1,892,518 repeated 61-
mers and 824,254 repeated 301-mers. Even a string graph using 300 bp reads could not
solve those repeats. But in some cases the number of short repeats can become extremely
high, for instance in diploid genomes. As mentioned before, the variations between two
alleles create bubble patterns in assembly graphs. Yet, according to the heterozygosity
rate of a given genome, the three following situations may be distinguished.

• Low heterozygosity rate (< 0.1%): most variant are isolated from the others and
each appears as a bubble in the graph (Figure 3.3). Most nodes of the graph
represent homozygous regions of the underlying genome.

• High heterozygosity rate(> 5%): the divergence between the sequences is so high
that the two alleles are mostly separated in the assembly graph (for example with a
high k as seen in the Figure 4.1). Nodes of the graph mostly represent heterozygous

regions, they yield large bubbles that relatively well represent and differentiate the
diverging alleles.

• Medium heterozygosity rate (≈ 1%): present a mix of heterozygous and homozy-
gous regions that may be difficult to distinguish. It results into complex graphs,
hard to produce long contigs in practice.

The heterozygosity rates given are rather orders of magnitude than accurate values (Fig-
ures 4.5 and 4.6). Furthermore, these rates are based on the use of hundred of bases
NGS reads. If we were able to produce longer reads, we could use a higher k and a
heterozygosity rate of 1% would be easier to manage.

Heterozygosity rates vary a lot across species as seen in Figure 4.2 from [124]. From
our current knowledge, one of the lowest rates is present in Lynx individuals that have
a rate of the order of 0.01%, where the heterozygous events are likely to be far apart.
On the opposite, in species like C. remanei, with a rate of 5%, the variations should be
quite close to each other on average and therefore a large order de Bruijn graph would be
able to differentiate two alleles in the heterozygous regions. Most de Bruijn graph assem-
blers present a "comfort zone" below the rate of 0.5%, where they are able to produce
large contigs by crushing bubbles. Medium rates (around 1%) result in extremely poor
assemblies. As mentioned, very high rates (> 5%) genomes are manageable, although we
currently count few of them among known assembled species.

4.1.3 Taking the best of both worlds

In any case, haploid or polyploid, the faculty to solve repeats is the key to more contiguous
assemblies. Even if this problem is dramatically more frequent in polyploid assembly,
enhancing this capacity would positively impact any assembly problem. We explained
that each presented graph structure shows advantages as well as drawbacks. The question
we should ask is "What kind of graph structure would we ideally want ?"

Figure 4.1: Example of phased and non-phased variants depending on k. With k = 4 the
graph presents two bubbles, and the assembler has no mean to output phased contigs.
With k = 6 the variants are phased and the graph is reduced into a single heterozygous
region of two contigs.

113

Figure 4.2: Heterozygosity rates across species [124].

114

Repetition > k

Read mapped on orange unitigs

Read mapped on green unitigs

Figure 4.3: The general idea to improve the de Bruijn graph using read length. The
reads information is used here in order to "solve" the gray repeat, ie to determine the
possible contexts of this repeats into contigs. Here two contexts exist according to reads,
the orange-gray-orange contig an the green-gray-green.

Preferably we look for a graph:
• Using the whole read information, in order to get events phased in the reads also

phased in the graph (not a de Bruijn graph)
• Easy to compute (not a string graph)
While several contributions improved the string graphs scalability, the de Bruijn graph

assemblers main drawbacks was also subject to improvements. The fact that most people
used de Bruijn graph assemblers led to new methods to improve the repeat resolution of
such graphs, in order to produce less fragmented assemblies [39, 125]. The global idea is
represented in the Figure 4.3. We have a graph made of trusted sequences, built from
reads kmers. We are interested in adding back the read information in order to simplify
some situations. The questions about how to make the best use of such information (how
to produce longer contigs according the read information) and how to obtain it (how to
map reads on the graph) has not reached a consensus yet.

A simple solution would be to construct a very high order de Bruijn graph with a k
value near the size of the reads. But such a graph would require a tremendous coverage
as shown in Table 4.1.

This raises the question: "How to construct a high order de Bruijn graph without
a massive coverage ?" Several assemblers have tried to improve their repeat resolution
power by constructing a high order De Bruin graph. Tools like IDBA [39] or SPAdes [36]
tackle this question by using multiple kmer sizes approaches. The idea is to use several
de Bruijn graph with different orders, to be able to detect all overlaps with the low k
values, and solve some repeats with a high k value. Each of those techniques have shown
how to improve assemblies in a consistent way, even if they present drawbacks that may
be addressed. In the following we propose a new way to use the multiple kmer idea to

115

Coverage k=240 k=230 k=220
100X 67 44 27
100X filter 94 81 63
200X 45 18 6
200X filter 81 50 24
500X 14 1 0
500X filter 42 8 1
1000X 2 0 0
1000X filter 9 0 0

Table 4.1: Percentage of missing kmers in a graph created with 250bp reads simulated
from a small virus genome of 48,502 base pairs called Lambda phage with 1% error rate.
The filtering consisted in removing kmers with an abundance of one. Even a tremendous
coverage does not allow to construct directly a high order de Bruijn graph.

build a very high order de Bruijn graph based on the techniques previously proposed in
this document.

"Assembly challenges" core messages:

• Using the whole length of the reads can reduce assembly fragmentation
• This is especially important in polyploid assembly
• A high order de Bruijn graph would be a scalable structure very similar to the

string graph

4.2 Building very high order de Bruijn graph

In this section we propose a new method using the previously described tools able to
construct very high order de Bruijn graphs without the need of a costly coverage.

4.2.1 Successive mapping strategy

We have shown previously that the mapping of the reads on the de Bruijn graph produced
very accurate corrected reads. Such reads with their lower error rates could be used in
order to build a higher order de Bruijn graph. However we can see unitigs as trusted
genome sequences that we want to order. Our hypothesis is that a read mapping on
a path of unitigs validates their ordering. It means that a mapped read validates the
whole path and not only the nucleotides where the read actually maps. As the Masurca
assembler [126], we call super-read (SR) the paths of unitigs that correspond to a read
mapping. An interesting property of a SR is that its length is superior (or equal) to
its associated read because it may be extended by the first and last unitig sequences
(Figure 4.4). Unlike unitigs, that can be smaller than reads in complex regions, the SR
are guaranteed to be at least the size of the reads, and most of the time larger.

116

ACATGCATGCTAGCACT

CACTCATGCATGCGG

GCGGTATATATATATATG

GCGGGAGCAGCAGCATCATGCACTGACTTCACT

1

2

3

4

5

Shows the path 1,3,4: ACATGCATGCTAGCACTCATGCATGCGGTATATATATATATG
Both show the path 2,3: CATGCACTGACTTCACTCATGCATGCGG
Shows the path 2,3,5: CATGCACTGACTTCACTCATGCATGCGGGAGCAGCAGCAT

Are Maximal Super Reads (MSR)

Super Reads (SR) produced by the mapped reads:

Figure 4.4: Super-reads generated by mapping the reads on the de Bruijn graph. For
example the orange read maps on the unitigs 1, 3 and 4, its associated super-read is
therefore the concatenation of those unitigs. We can see that super-reads may be longer
than their associated reads, for example the orange read "AGCACTCATGCATGCG-
GTAT" is associated to the super-read "ACATGCATGCTAGCACTCATGCATGCG-
GTATATATATATATG". Several reads mapping on the same path generate the same
super-read as the two pink reads, and some super-reads may be included in another
super-reads. Super-reads that are not included in any other super-read are called maxi-
mal super-reads.

117

...

...
Reads:
Unitigs:

Super Reads:

Figure 4.5: How the de Bruijn graph unitigs can enlarge the overlaps. In this example
the two reads in blue share a small overlap. They are mapped on the de Bruijn graph
and they both map on the gray unitig. Their SR in purple, enlarged with the unitig
sequence, share a larger overlap than their associated reads.

To assess the quality of the SR obtained by mapping on a clean de Bruijn graph we
conducted the following experiment.

• Simulation of 100X reads from a reference genome
• Read correction with Bloocoo
• de Bruijn graph construction with k=51
• Tip removal
• Read mapping on the graph to generate SR
• Duplicates removal from SR
• SR mapping on the reference genome

On the E. coli genome 1,642 different SR were obtained, all mapped on the reference
genome with a similarity of 99%. All SR but 5 mapped with a similarity of 100% on the
reference. On the C. elegans genome 357,183 different SR were obtained. All SR but 38
were mapped on the reference with a similarity of 95%. With a higher similarity of 99%,
the number of unmapped SR was only of 260 and all SR but 502 mapped perfectly. Those
experiments show that SR are very accurate sequence that can be almost considered as
genome sequences.

Our idea is to use the sequences from such SR in order to produce higher order
de Bruijn graph (Figure 4.9). By constructing a de Bruijn graph from the SR with
a augmented k, we obtain a simpler de Bruijn graph than the first one constructed,
with longer unitigs, less repeats and less spurious edges. As in the classical multiple k
approaches like IDBA, the interest of starting with a low k is to be able to detect small
overlaps between reads. Small overlaps are detected with the first value of k and kept
in the latter graph with higher k because the overlaps between the SR are larger than
the overlaps between reads. (Figure 4.5). However, if most of the time the overlaps
are enlarged by the unitigs graph, it is possible that the augmented overlap is not large
enough to be kept in the later steps.

We can raise k more gradually in order for the unitigs of the overlaps to be larger,
along with the simplification of the graph, to avoid loosing overlaps. Furthermore some

118

 TIP

Graph cleaning

Reads mapped on the graph unitigs:

Super reads with large overlaps

Figure 4.6: How the graph cleaning at each step helps the mapping of reads. In this
example, two reads in blue are mapped on the de Bruijn graph unitigs. They share
a small overlap that can not be augmented because the graph is branching due to a
sequencing error. The tip removal allow to get a large unitig and two SR in purple that
share a large overlap. If a too high value of k was used directly to build the de Bruijn
graph, the overlaps between the two reads would have been lost.

119

Using a low k:

Using a high k

Using a low k then a high k

Original situation:
Reads A,B,C,Y,Z and the overlaps they share including a repeat in maroon

AA

AB

B

C

Z

Y

C

Z

Y

A

BC

YZ

ABC

YZ

Figure 4.7: This example shows the interest of using several value of k. In this situation,
the reads A and B share a small green overlap and the reads B and C share a large one
with the reads Y and Z (in green and orange respectively). However, these overlaps share
a medium repeat in brown. The low k assembly is fragmented because of the repeat
but is able to detect the small overlap. The high k graph is able to avoid the repeat
fragmentation but misses the small overlap. The successive construction allows to take
advantages of both k values.

errors would become tips since the higher the k, the more sequencing errors become tips,
so the graph can be cleaned in a better way at each step. Then the removal of such errors
would also allow the generation of more contiguous unitigs, and would help in mapping
reads with a higher k as it is shown in Figure 4.6. The Figure 4.7 shows the interest
of such an iterative approach. We propose a workflow based on the presented ideas as
a proof of concept assembler called BWISE. We give a high level view of the BWISE
workflow and a more detailed version is presented in Figure 4.8.

• Read correction
• de Bruijn graph construction
• Graph tipping
• Read mapping on the de Bruijn graph
• Super-Reads selection
• Higher de Bruijn graph construction

120

Reads Reads correction Reads corrected Graph compaction De Bruijn graph 1

Read mapping Super reads Graph compaction De Bruijn graph 2

Read mapping Super reads Graph compaction De Bruijn graph 3

...

Figure 4.8: Bwise workflow. Data are represented in blue and software in green. The
initial reads are corrected and a first de Bruijn graph is constructed. Then the corrected
reads are mapped on the first de Bruijn graph to generate SR that are used to construct
a second de Bruijn graph. The corrected reads are once again mapped on the second de
Bruijn graph to produce new SR and so on.

First, the reads are corrected to contain as low sequencing error as possible to enable
fast mapping of the reads on the graph. Secondly, the unitigs are computed and a tip
removal step is performed to further clean the graph. Thirdly, reads are mapped on the
de Bruijn graph, generating SR. In a fourth step, the redundant SR are removed from
the SR set. Two phenomenons are responsible for redundancy. First, a very high number
of reads may map on large unitigs. Many super-reads will therefore just consist in one
large unitig. Secondly, some super-reads may be included in other super-reads and are
therefore not informative. Such super-reads are discarded and only Maximal Super Reads
(SR that are not included in any other) are conserved. Then MSR sequences are used to
build a higher order de Bruijn graph.

We show the interest of our iterative approach in order to construct a very high k de
Bruijn graph. Let us fix the goal of constructing a high order de Bruijn graph from 250
base pairs reads. We start by building a de Bruijn graph with k = 51 from corrected
reads, then we use the MSR to obtain kmers of superior order. We create the successive
graphs by adding 50 to the order at each step, results about unitig numbers, false positives
and false negatives are presented in Table 4.2. We can see that we are able to construct
a very high order de Bruijn graph with very few holes and errors, showing the interest of
this approach.

4.2.2 Beyond read length

In order to further improve our assembler, we integrated the use of paired end reads. PE
reads come from very close regions of the genome. Classical PE libraries have a fragment
size between 300 and 800bp. In some cases the paired reads can even overlap if the size
of the two reads is larger than the fragment size (for example pair of 250 bp reads with
an fragment size of 450). The idea to use this longer distance information is to map a
pair of reads separately on the graph and to create a single SR if the two SR generated
by the read pair overlap. The toy example in Figure 4.9 shows that we can create a long

121

Order Unitig number FP FN
k=51 949 408 32
k=101 447 72 32
k=151 329 25 32
k=201 270 54 32
k=251 222 198 92

Table 4.2: High order de Bruijn graph construction for 100X of 250 bp reads with 1%
error rate from E.coli containing more than 4.6 million 251-mer.

CGAGATAT
ATATA

GCTCATAT

TATAATCCC

TATACTCCC

GAGATATAATC

GCTCATATACA

CGAGATATAATCCC

GCTCATATACTCCC

TCCCACTGCATGCA
TGCAATC

TGCACAG

TATAATCCCACTGCATGCA

k=5

k=7

Super Reads

TATACTCCCACTGCATGCA

TCCCACTGCATGCAATC

TCCCACTGCATGCACAG

CGAGATATAATCCCAC
TCCCACTGCATGCA

GCTCATATACTCCCAC

CATGCAATC

CATGCACAG

CGAGATAT
ATATA

GCTCATAT

TATAATCCC

TATACTCCC

GAGATATAATC

GCTCATATACA

CGAGATATAATCCC

GCTCATATACTCCC

TCCCACTGCATGCA
TGCAATC

TGCACAG

TATAATCCCACTGCATGCAATC

k=5

k=7

Super Reads

Paired end readsPaired end reads

TATAATCCCACTGCATGCACAG

CGAGATATAATCCCACTGCATGCAATC

GCTCATATAATCCCACTGCATGCACAG

Figure 4.9: How to construct a high order de Bruijn graph with read mapping. A first de
Bruijn graph is constructed with k = 5. Reads are mapped on it, producing super-reads.
A new de Bruijn graph is constructed from the super-reads with a higher order, here
k = 7. With paired reads we are able to phase more distant events or to solve larger
repeats. In this example the purple reads in the right figure are paired. They produce
longer SR than the unpaired reads from the left figure and are able to phase the three
variants.

SR from a pair of non overlapping reads. The simpler the graph is , the longer the unitigs
are and the more we will be able to connect distant paired reads. A SR generated from
a pair of reads can be larger than the fragment size of the pair. Using this fact, we can
generate SR longer than the reads and construct a de Bruijn graph with an order above
the read length.

We already shown in the previous table a de Bruijn graph with k = 251 constructed
from reads of length 250. However paired end reads allow both an easier process and the
use of orders that can be superior to the size of the reads (Table 4.3). Following this
principle, there is actually no upper bound on the distance we may authorize between
reads as soon as we have unitigs large enough to connect them. Further work will consist in
including longer range information as mate pair reads that present a way larger fragment
size. We can also consider adding different types of data such as long reads but such data
would require specific steps in the workflow. The use of long range information should
solve large repeats and phase distant variants, providing a more continuous assembly,
haploid or polyploid.

122

Order Unitig number FP FN
k=51 949 408 32
k=101 576 1,208 32
k=151 356 341 32
k=201 276 125 32
k=251 224 210 108
k=301 122 67 5,992

Table 4.3: High order de Bruijn graph construction for 100X of 250 bp reads from E.Coli
containing more than 4.6 million 301-mer.

"Building very high order de Bruijn graph" core messages:

• Super Reads created from read mapping can be seen as trusted sequences
• Iterative mapping allows the construction of high order de Bruijn graph
• Paired end reads allow the construction of a de Bruijn graph with k above the

reads length

4.3 Assembly results

4.3.1 Haploid genome

In Table 4.4 we present some assembly results on various haploid genomes to assess the
efficiency of our proposed solution against other assemblers.

We observe that BWISE is able to produce contigs as long as state of the art as-
semblers. We also note the scalability of BWISE that successfully performed a human
genome assembly with less than 60 GB of RAM in two days. SPAdes and Platanus were

Assembly #contigs N50 N80
E. coli BWISE 56 210,994 126,805
E. coliSPAdes 71 178,400 83,005
E. coli Platanus 272 133,252 28,361
E. coli Minia 309 107,878 40,937
C. elegans BWISE 2,527 122,287 56,547
C. elegansSPAdes 6,550 103,128 43,904
C. elegans Platanus 21,413 52,661 18,330
C. elegans Minia 35,317 23,641 6,906
Human BWISE 132,272 74,148 29,705
Human Minia 884,788 20,202 7,381

Table 4.4: Simulated of 100x datasets on various genomes. Simulated reads are paired
with 250 base pairs and a fragment size of 800.

123

Assembly #contigs N50 N80
E. coli 1% BWISE 307 64,217 29,717
E. coli 1% SPAdes 5,027 1,827 728
E. coli 1% Platanus 2,887 6,526 1,999
E. coli 2% BWISE 60 325,047 181,988
E. coli 2% SPAdes 2,411 12,632 3,450
E. coli 2% Platanus 2,488 6,896 2,028
E. coli 3% BWISE 8 2,610,736 605,526
E. coli 3% SPAdes 121 246,674 116,251
E. coli 3% Platanus 1,614 10,019 3,157
E. coli 4% BWISE 5 3,424,913 2,655,158
E. coli 4% SPAdes 4 3,424,851 3,424,851
E. coli 4% Platanus 1,071 13,346 5,279
E. coli 5% BWISE 2 4,639,590 4,639,574
E. coli 5% SPAdes 3 4,639,654 4,639,654
E. coli 5% Platanus 711 22,275 9,117

Table 4.5: Assembly comparison of simulated 100x datasets on E. coli genome with
simulated heterozygosity. Simulated reads are paired with 250 base pairs and a fragment
size of 800.

not able to perform the human assembly on the used machine with 250 GB of RAM.

4.3.2 Diploid genome

As seen before, assembly of highly heterozygous genomes is a case where the number of
small repeats can be tremendous and where the use of the whole read length can lead
to very significant improvements. In Table 4.5 we present assembly results of several
tools, including BWISE, when used on regions with a known uniform heterozygosity. We
first simulated uniform heterozygosity on haploid genomes and thereafter simulated reads
from the artificial diploid references. We may argue that this does not represent a realistic
scenario as the simulated heterozygosity "destroys" the repeats along the genomes. If a
large repeat appear in the genome, we may add different variations on the different
occurrences of the repeats. Thus, each occurrence of the repeat may be different from
the other in the artificial diploid references. Therefore, presented results should only be
seen as comparative evaluation. We can make several observations from these results.
First we see that high heterozygosity is easy to solve and that tools achieve to produce
long phased contigs since most variants were close to each other. Still, it is interesting to
see that BWISE performs better than SPAdes on all rates. Especially on medium rates
where SPAdes is not able to produce long contigs, results show that BWISE is able to do
so.

On wider genomes, Table 4.6 shows that BWISE present similar performances and is
still able to produce large contigs. On such dataset SPAdes and Platanus were not able
to complete on the used server (2 days of timeout and 250 GB of RAM).

124

Assembly #contigs N50 N80
C. elegans 1% BWISE 9,505 50,870 22,850
C. elegans 2% BWISE 1,674 310,249 136,205
C. elegans 3% BWISE 429 1,089,405 488,453
C. elegans 4% BWISE 196 2,626,274 1,074,422

Table 4.6: Assembly comparison of simulated 100x datasets on C. elegans genome with
simulated heterozygosity. Simulated reads are paired with 250 base pairs and a fragment
size of 800. SPAdes exceeded the timeout.

Assembly #contigs N50 N80
E. coli 0.5% BWISE 1,370 10,390 5,633
E. coli 0.5% SPAdes 973 17,487 6,778
E. coli 0.5% Platanus 2,224 11,128 3,671
E. coli 0.1% BWISE 3,835 4,520 3,233
E. coli 0.1% SPAdes 55 210,905 88,598
E. coli 0.1% Platanus 926 40,837 14,688

Table 4.7: Assembly comparison of simulated 100x datasets on E. coli genome with low
simulated heterozygosity. Simulated reads are paired with 250 base pairs and a fragment
size of 800.

4.3.3 Future works

The essential limitation of BWISE workflow is noticeable when the heterozygosity rate
is low (Table 4.7). Each time variants are pairwise too far away from each other, the
assembly is broken since the contigs cannot be extended in a sure way. The results
show that with 0.5% heterozygosity, neither BWISE or SPAdes are able to produce long
contigs. On 0.1% SPAdes is able to produce long contigs where BWISE produces very
short ones. This can be explained as SPAdes crushes bubbles and therefore produces a
haploid assembly of 4.6 mega-bases while BWISE tries to produce a diploid assembly of
9.2 mega-bases.

The fact that we are not able to phase all heterozygous regions raise the question of
the assembly representation. As it can be seen on Figure 4.10, the first and last variants
were not phased by the reads, and BWISE produces the four contigs of solution 1. While
being correct, this format may not be optimal for each usage. In some cases, we may be
interested to get longer sequences by crushing bubbles. Another way to solve this problem
would be to add longer range information in order to phase more distant variants. With
more distant linked reads (as mate pair reads) phasing more distant variant should be
possible and therefore produce more contiguous assembly.

The proposed solution based on successive mapping provides very interesting result
and scale up to large genome. However several aspects have to be studied as the assembly
quality, the behavior of BWISE with different coverage and the integration of longer
range information. Several operations of the proposed workflow are quite redundant, as
the repeated mapping of the whole read set. Thus, optimization of the workflow could

125

Solution 1: output all contigs

Solution 2: Crush small bubbles

Solution 3: Crush small bubbles and extend contigs

Figure 4.10: Potential representations of non phases contigs. The first solution proposed
is a bit redundant. To limit the redundancy we can crush the remaining small bubbles as
showed in solution 2. To further improve contigs length we could also extend the contigs
with the merged bubbles sequences, as it is done in solution 3.

126

lead to sensible performances improvement. This method is not completely explored
and in depth investigations are required to provide a robust and usable assembler for
haploid and diploid genomes and eventually more complex assembly cases as pool-seq or
meta-genomes.

"Assembly results" core messages:

• Iterative mapping leads to state of the art haploid assembly
• Iterative mapping outperforms state of the art tools in highly heterozygous

zones
• Low heterozygosity polyploid assembly is difficult with short reads alone

127

128

Chapter 5

Conclusions and perspectives

129

5.1 Conclusion

Two main directions were explored during this thesis. The first aim was to propose
new structures to handle the scaling of de Bruijn graph usages. The second aim was to
propose new methods and techniques to no longer consider the de Bruijn graph only as
an assembler internal representation but as a proper reference structure that can be used
for various applications. This part reminds and summarizes our contributions and main
results toward those objectives.

Several reasons justify the need for the development of efficient data structures in
genome assembly. The assembly of human sized genomes still presents important scala-
bility issues, with the need of very important resources. Very large genomes are common
across the living organisms, especially plant genomes, and efficient assembly methods
for such genomes are necessary to remove the present locks. The second interest of effi-
cients techniques, for any genome, is to democratize the treatments of such datasets and
make their analysis less costly and more accessible. In order to address the large genome
assembly scalability using de Bruijn graphs, we proposed several practical and theoret-
ical results. We described a new category of data structure called Navigational Data
Structure that enable de Bruijn graph assembly with lower space requirements than the
previously known bounds. Implementations of such structures could lead to extremely
memory efficient assemblers. We proposed a proof of concept low memory usage assem-
bler called DBGFM. The core idea of this method is to index the simple paths (unitigs)
of the de Bruijn graph instead of its kmers into a memory efficient data structure, here a
FM-index. DBGFM present of very low memory usage and is able to assemble a human
genome with 1.5 GB of RAM. A take-home message is that considering a de Bruijn graph
as a set of unitigs is an efficient practical choice. However the construction of such sets
in low memory is not trivial. We therefore proposed a new method based on external
memory to construct this set called BCALM. This method was slow and sequential, and
the construction of the compacted de Bruijn graph was the bottleneck of DBGFM as in
many assemblers. We therefore conceived a efficient and parallel method called BCALM2
to compute de Bruijn graph unitigs. BCALM2, relying on external memory present order
of magnitude less memory that known implementation and was also significantly faster.
Such a method can lead to a low memory assembly even for genome larger than the
human one. In BCALM2, and in several other applications, we encountered the chal-
lenge of indexing extremely large numbers of object. The need for memory efficient and
fast structure lead us to use minimal perfect hash functions (MPHF). Existing MPHF
library presented very high memory usage and running time during construction. Thus
we proposed a new scalable MPHF library, designed to construct MPHF from very large
key set with moderate resources called BBHASH. The main property of BBHASH is the
ability to construct a MPHF without memory overhead, and the construction is also
parallel and faster than other available implementations. This implementation could be
used virtually in any HPC field. We believe that such an efficient data structure could
especially benefit in numerous applications in bioinformatics, where the need to index
large number of objects is fundamental.

The de Bruijn graph is mainly seen as an assembly graph, a simple temporary struc-
ture used to generate contigs. If the de Bruijn graph is mainly used for assembly, many
properties of this structure have been used outside of its first domain of application. For

numerous reasons, the classical representation of a genome into linear sequences is not fit-
ted for all application. To cope with these problems, several new genome representations
based on graph are proposed. If the de Bruijn graph is not an efficient representation for
finished genomes, its properties can be used in advantageous ways in several applications.
With efficient techniques to construct a (compacted) de Bruijn graph, we argued that it
could be a good reference to represent one or multiple genomes. We presented different
examples of the interest of such a representation. The unfinished genomes, where the de
Bruijn graph may contain more information than the contigs sequences. Heterozygous
genomes, as a de Bruijn graph contain and can represent efficiently the different varia-
tions that may be present in such genomes. Very redundant dataset that can be factored
by the efficient representation of the repeated sequences in a de Bruijn graph.

Multiple applications could use such a reference graph directly, as read set comparison
in meta-genomics or mapping read on the de Bruijn graph sequences. Thus, we argued
that we need a read mapping method working directly on the de Bruijn graph structure
to permit its versatile use as a reference. In order to enable the use of such representation,
we provided a tool able to map reads efficiently on a de Bruijn graph called BGREAT.
Despite the fact that we proved that mapping reads on a de Bruijn graph is a NP-
Complete problem, the use of efficient heuristics allows BGREAT to be very efficient
on current datasets. We presented several direct advantages of such a method. Results
confirm that mapping reads directly on the de Bruijn graph instead of mapping on contigs
allows a higher ratio of read mapped, showing the interest of mapping on the de Bruijn
graph over mapping on its sequences. We also proved that the de Bruijn graph is a
very accurate reference with very few sequencing errors and keeping the heterozygosity
information. This facts show the de Bruijn graph as a very sound and easy to construct
structure. Using this property, we presented an out of the box usage with the read
corrector BCOOL. Results of the proof of concept read correction by mapping them on
the de Bruijn graph are very interesting. BCOOL corrected several time more errors than
state of the art correctors on high coverage simulated data. Outside of read correction, we
believe that such a method could be used in very diverse usage of NGS data as assembly,
scaffolding, read compression or variant calling.

Applied to genome assembly, the de Bruijn graph is essentially used for its scalability,
but the splitting of the reads into kmers fragments the assembly. One of the motiva-
tion behind the conception of a tool like BGREAT was to improve the de Bruijn graph
assembly continuity. The idea was to map reads on a de Bruijn graph in order to add
back the reads information into de Bruijn graph assembly. To use this information, we
proposed a new method to build a high order de Bruijn graph using the read length at a
reasonable cost. The idea is to map reads on the de Bruijn graph and to use the mapped
path sequences to build a de Bruijn graph with a higher order. We implemented this
idea into a proof of concept assembler called BWISE. Similarly to the string graphs, the
produced high order de Bruijn graph are able to use almost the whole length of the reads
in order to solve repeats and produce more contiguous assembly than regular de Bruijn
graph. We also showed that such an approach could benefit of paired end reads in order
to produce de Bruijn graph with kmer size above the read length. Using those paired
reads information improve the assembly continuity and the size of the contigs without
a scaffolding step as we work directly on the de Bruijn graph. Preliminary results on
simulated data on haploid genomes exhibit assemblies equivalent to state of the art as-

131

semblers. However, the most interesting results of this approach was a good assembly
continuity in heterozygous regions were state of the art assemblers produce assembly of
very poor quality. On our simulated data, BWISE is able to produce phased contigs and
to assemble separately the different allele where other de Bruijn graph assembler are not
able to make the distinction. We believe that the next assemblers will have to propose
such heterozygosity awareness and that BWISE is a promising approach to do so.

Those results convey the idea that the de Bruijn graph as a data structure has not
been used yet to the maximum of its potential.

5.2 Proposed methods

This thesis resulted in the following open-source softwares:

BCALM Proof of concept of de Bruijn graph compaction in low memory. BCALM was
used in the DBGFM assembler to compute the unitigs to index and is described in [74].
Available https://github.com/Malfoy/BCALM

BCALM2 Efficient and parallel de Bruijn graph compaction in low memory. BCALM2
was used for the de Bruijn graph results presented in this document. It is used for the
de Bruijn graph compaction before the use of BGREAT2 in BCOOL and BWISE. It is
described in [82]. Available https://github.com/GATB/bcalm

BBHASH Scalable minimal perfect hash function construction. BBHASH MPHF is
used in BCALM2, GATB and SRC softwares. It is described in [86]. Available https:
//github.com/rizkg/BBHash

BGREAT Proof of concept of read mapping on de Bruijn graph. It is described in [116].
Available https://github.com/Malfoy/BGREAT

BGREAT2 Read mapping on de Bruijn graph. An improved and self contained version
of BGREAT. As said before it is used with BCALM2 in BCOOL and BWISE workflows.
The improvements applied are described in chapter 3. Available https://github.com/
Malfoy/BGREAT2

BCOOL de Bruijn graph based read correction. This read corrector and its preliminary
results are presented in chapter 3. Available https://github.com/Malfoy/BCOOL

BWISE High order de Bruijn graph Assembly. This assembler and its preliminary
results on haploid and diploid genomes are presented in chapter 4. Available https:
//github.com/Malfoy/BWISE

132

5.3 Future of sequencing

In 2008, the next generation sequencing revolutionized the genomic field. While it is
hard to forecast the future of such fast evolving and diverse technologies, we can observe
emerging usages of new kinds of data and imagine the potential benefits and challenges
they may bring.

5.3.1 Third generation sequencing

New sequencing technologies are arising. Called third generation sequencing, those tech-
nologies propose order of magnitude longer sequences, but currently with a very high error
rate (up to 15% [127]). Both Pacific Bioscience [6] and Oxford Nanopore [7] technologies
are improving and may provide even longer reads with a low error rate in the near future.
Those technologies have the potential to be a major shift in genome assembly. With
such long sequences, most repeats could be solved and the "one contig one chromosome"
dream could be achieved. But those sequences still present huge challenges. Tools have
to deal with the important error rate. To make it worse, the type of error is mainly in-
sertions and deletions errors which are harder to deal with than the substitutions usually
encountered in NGS reads. The costs of such sequencing are currently high compared to
NGS, while a high coverage is necessary in order to cope with the error rate. To assemble
such sequences, the de Bruijn graph is not usable in a straightforward way. The string
graph is therefore recovering its central place in assembly. But the computational cost
of such an assembly is going through the roof and many tools have been proposed to
make the overlap detection phase extremely efficient. Two approaches are advocated.
The hybrid assembly approaches are based on the assumption that long reads could be
used coupled with short reads to produce a high quality assembly in a cost efficient way.
Either by correcting long reads with short reads [128] [129], or to scaffold short reads
contigs with long reads [130] or assemble long and short reads together directly [131]).
The pure assembly approaches [132] argues that long reads alone have the potential to
produce the best assemblies because of their less biased sequencing protocols and that
we should work on the computational cost of the assemblers.

5.3.2 Long range short reads sequencing

New short reads based technologies are also making an entrance into bioinformatics. The
3C protocol [133] could provide read pairs from the same chromosome with no upper
bound on the insert size and therefore help phasing and solving repeats with no upper
bound of size [51]. The 10X [134] technology provides short reads localized on short
genome region of size around 10,000 bases. This kind of sequencing has shown great
potential for phasing since reads from a pack come from the same allele [135] while it
seems a priori harder to do so with long reads given their error rates. But for haploid
assembly those technologies also great potential for solving repeats while being accurate
sequences. The long reads present the advantages of representing a continuous sequences
while 10X, like paired reads give sequences separated by holes.

133

5.4 Future of this work and perspectives

The different methods proposed in this documents could be continued in many ways,
with refinements, new applications or integrations of other kinds of information. Some
perspective considered are presented here.

While assembly of shorts reads is often considered as a well know subject, large
genomes still require tremendous resources. But even for smaller genomes, faster struc-
tures and assembly methods will be required for the throughput of assemblers to follow
the sequencer one. An efficient assembler, implementing a NDS based on unitigs indexed
on a MPHF, could provide a extremely efficient method to work on very large genomes
without current scalability problems or provide assembly with a very high throughput.

We showed that, beyond assembly, the de Bruijn graph is an extremely efficient data
structure to represent a genome, or a set of genomes, with interesting properties that
could be used in other fields than assembly. A scalable read corrector providing a very
high ratio of perfect read would be a very useful tool for applications as assembly or
variant calling. Our proposed corrector BCOOL could be tuned to adapt to real data
and to different coverage in order to provide almost perfect short reads.

Several other applications of mapping read on a de Bruijn graph can be found as
quantification, variant calling or read compression could be proposed in the near future.
As the read correction, reads could be mapped on the graph and we could encode their
path in the de Bruijn graph instead of their sequences in order to compress them. More
direct usages would be quantification in genomic, meta-genomic or RNA-seq by mapping
the read on a de Bruijn graph and extracting information from the amount of reads
mapped on given components of the de Bruijn graph. Simple variant calling have been
shown to be done directly from a de Bruijn graph structure, an interesting perspective
would be to use the reads mapping on this graph and use this information to capture
more complex cases.

Polyploid assembly is also a widely encountered problem while representing a very
small part of the literature. We pointed those problems and presented new solutions
and perspectives to address those challenges. BWISE polyploid assembly methods have
still to be tuned to fit to the challenges of the real data but the door to the assembly of
polyploid genomes is open. The use of paired reads directly on a de Bruijn graph could
also inspire new scaffolding techniques that are mainly based on read mapping on contigs.
The use of other kind of information in order to produce larger contigs is also a natural
prolongation of this work. 10X reads seems a really promising technique to improve the
polyploid assembly of BWISE, as the mapping method does not need important changes.
The length of 10X DNA fragments could lead to extremely large and phased contigs.

We essentially talked about polyploid assembly but techniques used by BWISE could
also be relevant for meta-genomic assembly. The read mapping could help distinguish the
different individuals present in a de Bruijn graph as it is used now to separate the different
alleles. To do so we have to address the challenges of heterogeneous coverages that can
exist in meta-genomic. Almost the same argumentation could be used for transcriptome
assembly of RNA sequences, an efficient assembler able to use Paired End data could
tackle the combinatorial aspect of RNA assembly.

As BGREAT is able to align short reads on a de Bruijn graph, we are naturally
interested to adapt our methods to be able to align long reads on a De Bruijn graph.

134

This kind of tool could have, as BGREAT, several applications. The alignment of the
long reads on the de Bruijn graph could be used to correct their errors, or the alignment
information could be used to order contigs or unitigs of the de Bruijn graph. Such a
method could also be used in the context of pure long reads assembly as a efficient mean
to detect overlap between them. The computational cost of long reads assembly has also
to be addressed and efficient data structures will be required as well in order to efficiently
assemble the future deluge of such datasets. We believe that with decreasing error rate
the de Bruijn graph could be useful even for pure long reads assembly [136] as the de
Bruijn graph paths represent easy to compute efficient consensus sequences.

135

136

Bibliography

[1] James D Watson and Francis HC Crick. A structure for deoxyribose nucleic acid.
Nature, 171, 2004.

[2] Eric S Lander, Lauren M Linton, Bruce Birren, Chad Nusbaum, Michael C Zody,
Jennifer Baldwin, Keri Devon, Ken Dewar, Michael Doyle, William FitzHugh, et al.
Initial sequencing and analysis of the human genome. Nature, 409(6822):860–921,
2001.

[3] J Craig Venter, Mark D Adams, Eugene W Myers, Peter W Li, Richard J Mural,
Granger G Sutton, Hamilton O Smith, Mark Yandell, Cheryl A Evans, Robert A
Holt, et al. The sequence of the human genome. science, 291(5507):1304–1351,
2001.

[4] Frederick Sanger, Steven Nicklen, and Alan R Coulson. Dna sequencing with
chain-terminating inhibitors. Proceedings of the National Academy of Sciences,
74(12):5463–5467, 1977.

[5] David R Bentley, Shankar Balasubramanian, Harold P Swerdlow, Geoffrey P Smith,
John Milton, Clive G Brown, Kevin P Hall, Dirk J Evers, Colin L Barnes, Helen R
Bignell, et al. Accurate whole human genome sequencing using reversible terminator
chemistry. nature, 456(7218):53–59, 2008.

[6] John Eid, Adrian Fehr, Jeremy Gray, Khai Luong, John Lyle, Geoff Otto, Paul
Peluso, David Rank, Primo Baybayan, Brad Bettman, et al. Real-time dna se-
quencing from single polymerase molecules. Science, 323(5910):133–138, 2009.

[7] Andrew H Laszlo, Ian M Derrington, Brian C Ross, Henry Brinkerhoff, Andrew
Adey, Ian C Nova, Jonathan M Craig, Kyle W Langford, Jenny Mae Samson, Riza
Daza, et al. Decoding long nanopore sequencing reads of natural dna. Nature
biotechnology, 32(8):829–833, 2014.

[8] Daniel Aird, Michael G Ross, Wei-Sheng Chen, Maxwell Danielsson, Timothy Fen-
nell, Carsten Russ, David B Jaffe, Chad Nusbaum, and Andreas Gnirke. Analyzing
and minimizing pcr amplification bias in illumina sequencing libraries. Genome
biology, 12(2):R18, 2011.

[9] Juliane C Dohm, Claudio Lottaz, Tatiana Borodina, and Heinz Himmelbauer. Sub-
stantial biases in ultra-short read data sets from high-throughput dna sequencing.
Nucleic acids research, 36(16):e105–e105, 2008.

137

[10] Project Encode. The encode (encyclopedia of dna elements) project. Science,
306(5696):636–640, 2004.

[11] Sushmita Roy, Jason Ernst, Peter V Kharchenko, Pouya Kheradpour, Nicolas
Negre, Matthew L Eaton, Jane M Landolin, Christopher A Bristow, Lijia Ma,
Michael F Lin, et al. Identification of functional elements and regulatory circuits
by drosophila modencode. Science, 330(6012):1787–1797, 2010.

[12] Jennifer Harrow, Adam Frankish, Jose M Gonzalez, Electra Tapanari, Mark
Diekhans, Felix Kokocinski, Bronwen L Aken, Daniel Barrell, Amonida Zadissa,
Stephen Searle, et al. Gencode: the reference human genome annotation for the
encode project. Genome research, 22(9):1760–1774, 2012.

[13] Todd J Treangen and Steven L Salzberg. Repetitive dna and next-generation
sequencing: computational challenges and solutions. Nature Reviews Genetics,
13(1):36–46, 2012.

[14] Jonghwan Kim, Akshay A Bhinge, Xochitl C Morgan, and Vishwanath R Iyer.
Mapping dna-protein interactions in large genomes by sequence tag analysis of
genomic enrichment. Nature Methods, 2(1):47–53, 2005.

[15] David S Johnson, Ali Mortazavi, Richard M Myers, and Barbara Wold. Genome-
wide mapping of in vivo protein-dna interactions. Science, 316(5830):1497–1502,
2007.

[16] Kari-Jouko Räihä and Esko Ukkonen. The shortest common supersequence problem
over binary alphabet is np-complete. Theoretical Computer Science, 16(2):187–198,
1981.

[17] Granger G Sutton, Owen White, Mark D Adams, and Anthony R Kerlavage. Tigr
assembler: A new tool for assembling large shotgun sequencing projects. Genome
Science and Technology, 1(1):9–19, 1995.

[18] Xiaoqiu Huang and Anup Madan. Cap3: A dna sequence assembly program.
Genome research, 9(9):868–877, 1999.

[19] René L Warren, Granger G Sutton, Steven JM Jones, and Robert A Holt. Assem-
bling millions of short dna sequences using ssake. Bioinformatics, 23(4):500–501,
2007.

[20] William R Jeck, Josephine A Reinhardt, David A Baltrus, Matthew T Hick-
enbotham, Vincent Magrini, Elaine R Mardis, Jeffery L Dangl, and Corbin D
Jones. Extending assembly of short dna sequences to handle error. Bioinformatics,
23(21):2942–2944, 2007.

[21] Eugene W Myers, Granger G Sutton, Art L Delcher, Ian M Dew, Dan P Fasulo,
Michael J Flanigan, Saul A Kravitz, Clark M Mobarry, Knut HJ Reinert, Karin A
Remington, et al. A whole-genome assembly of drosophila. Science, 287(5461):2196–
2204, 2000.

138

[22] Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J
Lipman. Basic local alignment search tool. Journal of molecular biology, 215(3):403–
410, 1990.

[23] R Staden. A mew computer method for the storage and manipulation of dna gel
reading data. Nucleic Acids Research, 8(16):3673–3694, 1980.

[24] Alexey Gurevich, Vladislav Saveliev, Nikolay Vyahhi, and Glenn Tesler. Quast:
quality assessment tool for genome assemblies. Bioinformatics, 29(8):1072–1075,
2013.

[25] Eugene W Myers. The fragment assembly string graph. Bioinformatics, 21(suppl
2):ii79–ii85, 2005.

[26] Jared T Simpson and Richard Durbin. Efficient construction of an assembly string
graph using the fm-index. Bioinformatics, 26(12):i367–i373, 2010.

[27] Jared T Simpson and Richard Durbin. Efficient de novo assembly of large genomes
using compressed data structures. Genome research, 22(3):549–556, 2012.

[28] Nicolaas Govert De Bruijn. A combinatorial problem. 1946.

[29] Dmitri Loguinov, Anuj Kumar, Vivek Rai, and Sai Ganesh. Graph-theoretic anal-
ysis of structured peer-to-peer systems: routing distances and fault resilience. In
Proceedings of the 2003 conference on Applications, technologies, architectures, and
protocols for computer communications, pages 395–406. ACM, 2003.

[30] M Frans Kaashoek and David R Karger. Koorde: A simple degree-optimal dis-
tributed hash table. In International Workshop on Peer-to-Peer Systems, pages
98–107. Springer, 2003.

[31] Pavel A Pevzner, Haixu Tang, and Michael S Waterman. An eulerian path ap-
proach to dna fragment assembly. Proceedings of the National Academy of Sciences,
98(17):9748–9753, 2001.

[32] Paul Medvedev, Konstantinos Georgiou, Gene Myers, and Michael Brudno. Com-
putability of models for sequence assembly. In International Workshop on Algo-
rithms in Bioinformatics, pages 289–301. Springer Berlin Heidelberg, 2007.

[33] Daniel R Zerbino and Ewan Birney. Velvet: algorithms for de novo short read
assembly using de bruijn graphs. Genome research, 18(5):821–829, 2008.

[34] Rayan Chikhi and Paul Medvedev. Informed and automated k-mer size selection
for genome assembly. Bioinformatics, page btt310, 2013.

[35] Ruibang Luo, Binghang Liu, Yinlong Xie, Zhenyu Li, Weihua Huang, Jianying
Yuan, Guangzhu He, Yanxiang Chen, Qi Pan, Yunjie Liu, et al. Soapdenovo2: an
empirically improved memory-efficient short-read de novo assembler. Gigascience,
1(1):18, 2012.

139

[36] Anton Bankevich, Sergey Nurk, Dmitry Antipov, Alexey A Gurevich, Mikhail
Dvorkin, Alexander S Kulikov, Valery M Lesin, Sergey I Nikolenko, Son Pham,
Andrey D Prjibelski, et al. Spades: a new genome assembly algorithm and its appli-
cations to single-cell sequencing. Journal of Computational Biology, 19(5):455–477,
2012.

[37] Mark J Chaisson and Pavel A Pevzner. Short read fragment assembly of bacterial
genomes. Genome research, 18(2):324–330, 2008.

[38] Jonathan Butler, Iain MacCallum, Michael Kleber, Ilya A Shlyakhter, Matthew K
Belmonte, Eric S Lander, Chad Nusbaum, and David B Jaffe. Allpaths: de novo
assembly of whole-genome shotgun microreads. Genome research, 18(5):810–820,
2008.

[39] Yu Peng, Henry CM Leung, Siu-Ming Yiu, and Francis YL Chin. Idba–a practical
iterative de bruijn graph de novo assembler. In Annual International Conference
on Research in Computational Molecular Biology, pages 426–440. Springer Berlin
Heidelberg, 2010.

[40] Jared T Simpson, Kim Wong, Shaun D Jackman, Jacqueline E Schein, Steven JM
Jones, and Inanç Birol. Abyss: a parallel assembler for short read sequence data.
Genome research, 19(6):1117–1123, 2009.

[41] Ruiqiang Li, Hongmei Zhu, Jue Ruan, Wubin Qian, Xiaodong Fang, Zhongbin Shi,
Yingrui Li, Shengting Li, Gao Shan, Karsten Kristiansen, et al. De novo assembly
of human genomes with massively parallel short read sequencing. Genome research,
20(2):265–272, 2010.

[42] Sante Gnerre, Iain MacCallum, Dariusz Przybylski, Filipe J Ribeiro, Joshua N
Burton, Bruce J Walker, Ted Sharpe, Giles Hall, Terrance P Shea, Sean Sykes,
et al. High-quality draft assemblies of mammalian genomes from massively parallel
sequence data. Proceedings of the National Academy of Sciences, 108(4):1513–1518,
2011.

[43] Thomas Conway, Jeremy Wazny, Andrew Bromage, Justin Zobel, and Bryan
Beresford-Smith. Gossamer—a resource-efficient de novo assembler. Bioinformat-
ics, 28(14):1937–1938, 2012.

[44] Rayan Chikhi and Guillaume Rizk. Space-efficient and exact de bruijn graph rep-
resentation based on a bloom filter. In International Workshop on Algorithms in
Bioinformatics, pages 236–248. Springer, 2012.

[45] Niranjan Nagarajan and Mihai Pop. Parametric complexity of sequence assembly:
theory and applications to next generation sequencing. Journal of computational
biology, 16(7):897–908, 2009.

[46] Mark Chaisson, Pavel Pevzner, and Haixu Tang. Fragment assembly with short
reads. Bioinformatics, 20(13):2067–2074, 2004.

140

[47] Daniel H Huson, Knut Reinert, and Eugene W Myers. The greedy path-merging
algorithm for contig scaffolding. Journal of the ACM (JACM), 49(5):603–615, 2002.

[48] Marten Boetzer, Christiaan V Henkel, Hans J Jansen, Derek Butler, and Wal-
ter Pirovano. Scaffolding pre-assembled contigs using sspace. Bioinformatics,
27(4):578–579, 2011.

[49] Marten Boetzer and Walter Pirovano. Toward almost closed genomes with gapfiller.
Genome biology, 13(6):1, 2012.

[50] Song Gao, Denis Bertrand, Burton KH Chia, and Niranjan Nagarajan. Opera-
lg: Efficient and exact scaffolding of large, repeat-rich eukaryotic genomes with
performance guarantees. Genome biology, 17(1):1, 2016.

[51] Jean-François Flot, Hervé Marie-Nelly, and Romain Koszul. Contact genomics:
scaffolding and phasing (meta) genomes using chromosome 3d physical signatures.
FEBS letters, 589(20PartA):2966–2974, 2015.

[52] Rei Kajitani, Kouta Toshimoto, Hideki Noguchi, Atsushi Toyoda, Yoshitoshi
Ogura, Miki Okuno, Mitsuru Yabana, Masayuki Harada, Eiji Nagayasu, Haruhiko
Maruyama, et al. Efficient de novo assembly of highly heterozygous genomes from
whole-genome shotgun short reads. Genome research, 24(8):1384–1395, 2014.

[53] Yu Peng, Henry CM Leung, Siu-Ming Yiu, and Francis YL Chin. Meta-idba: a de
novo assembler for metagenomic data. Bioinformatics, 27(13):i94–i101, 2011.

[54] Toshiaki Namiki, Tsuyoshi Hachiya, Hideaki Tanaka, and Yasubumi Sakakibara.
Metavelvet: an extension of velvet assembler to de novo metagenome assembly
from short sequence reads. Nucleic acids research, 40(20):e155–e155, 2012.

[55] Jaume Pellicer, Michael F Fay, and Ilia J Leitch. The largest eukaryotic genome of
them all? Botanical Journal of the Linnean Society, 164(1):10–15, 2010.

[56] Temple F Smith and Michael S Waterman. Identification of common molecular
subsequences. Journal of molecular biology, 147(1):195–197, 1981.

[57] Serafim Batzoglou, David B Jaffe, Ken Stanley, Jonathan Butler, Sante Gnerre,
Evan Mauceli, Bonnie Berger, Jill P Mesirov, and Eric S Lander. Arachne: a
whole-genome shotgun assembler. Genome research, 12(1):177–189, 2002.

[58] Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with ap-
plications. In Foundations of Computer Science, 2000. Proceedings. 41st Annual
Symposium on, pages 390–398. IEEE, 2000.

[59] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L Salzberg. Ultrafast and
memory-efficient alignment of short dna sequences to the human genome. Genome
biology, 10(3):1, 2009.

[60] Heng Li and Richard Durbin. Fast and accurate short read alignment with burrows–
wheeler transform. Bioinformatics, 25(14):1754–1760, 2009.

141

[61] Inanc Birol, Anthony Raymond, Shaun D Jackman, Stephen Pleasance, Robin
Coope, Greg A Taylor, Macaire Man Saint Yuen, Christopher I Keeling, Dana
Brand, Benjamin P Vandervalk, et al. Assembling the 20 gb white spruce (picea
glauca) genome from whole-genome shotgun sequencing data. Bioinformatics, page
btt178, 2013.

[62] Shaun D Jackman, Benjamin P Vandervalk, Hamid Mohamadi, Justin Chu, Sarah
Yeo, S Austin Hammond, Golnaz Jahesh, Hamza Khan, Lauren Coombe, Rene L
Warren, et al. Abyss 2.0: Resource-efficient assembly of large genomes using a
bloom filter. Genome Research, pages gr–214346, 2017.

[63] Thomas C Conway and Andrew J Bromage. Succinct data structures for assembling
large genomes. Bioinformatics, 27(4):479–486, 2011.

[64] Daisuke Okanohara and Kunihiko Sadakane. Practical entropy-compressed
rank/select dictionary. In Proceedings of the Meeting on Algorithm Engineering
& Expermiments, pages 60–70. Society for Industrial and Applied Mathematics,
2007.

[65] Guillaume Marçais and Carl Kingsford. A fast, lock-free approach for efficient
parallel counting of occurrences of k-mers. Bioinformatics, 27(6):764–770, 2011.

[66] Chris Purcell and Tim Harris. Non-blocking hashtables with open addressing. In
International Symposium on Distributed Computing, pages 108–121. Springer, 2005.

[67] Guillaume Rizk, Dominique Lavenier, and Rayan Chikhi. Dsk: k-mer counting
with very low memory usage. Bioinformatics, page btt020, 2013.

[68] Sebastian Deorowicz, Marek Kokot, Szymon Grabowski, and Agnieszka Debudaj-
Grabysz. Kmc 2: Fast and resource-frugal k-mer counting. Bioinformatics,
31(10):1569–1576, 2015.

[69] Chengxi Ye, Zhanshan Sam Ma, Charles H Cannon, Mihai Pop, and W Yu Douglas.
Exploiting sparseness in de novo genome assembly. BMC bioinformatics, 13(6):1,
2012.

[70] Sara El-Metwally, Magdi Zakaria, and Taher Hamza. Lightassembler: fast and
memory-efficient assembly algorithm for high-throughput sequencing reads. Bioin-
formatics, page btw470, 2016.

[71] Jason Pell, Arend Hintze, Rosangela Canino-Koning, Adina Howe, James M Tiedje,
and C Titus Brown. Scaling metagenome sequence assembly with probabilistic de
bruijn graphs. Proceedings of the National Academy of Sciences, 109(33):13272–
13277, 2012.

[72] Rayan Chikhi and Guillaume Rizk. Space-efficient and exact de bruijn graph rep-
resentation based on a bloom filter. Algorithms for Molecular Biology, 8(1):1, 2013.

[73] Kamil Salikhov, Gustavo Sacomoto, and Gregory Kucherov. Using cascading bloom
filters to improve the memory usage for de brujin graphs. Algorithms for Molecular
Biology, 9(1):1, 2014.

142

[74] Rayan Chikhi, Antoine Limasset, Shaun Jackman, Jared T Simpson, and Paul
Medvedev. On the representation of de bruijn graphs. In International Conference
on Research in Computational Molecular Biology, pages 35–55. Springer Interna-
tional Publishing, 2014.

[75] Evangelos Georganas, Aydın Buluç, Jarrod Chapman, Steven Hofmeyr, Chaitanya
Aluru, Rob Egan, Leonid Oliker, Daniel Rokhsar, and Katherine Yelick. Hipmer:
an extreme-scale de novo genome assembler. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
page 14. ACM, 2015.

[76] Jintao Meng, Bingqiang Wang, Yanjie Wei, Shengzhong Feng, and Pavan Balaji.
Swap-assembler: scalable and efficient genome assembly towards thousands of cores.
BMC bioinformatics, 15(Suppl 9):S2, 2014.

[77] Jintao Meng, Sangmin Seo, Pavan Balaji, Yanjie Wei, Bingqiang Wang, and Shen-
zhong Feng. Swap-assembler 2: Optimization of de novo genome assembler at
extreme scale. In Parallel Processing (ICPP), 2016 45th International Conference
on, pages 195–204. IEEE, 2016.

[78] Michael Burrows and David J Wheeler. A block-sorting lossless data compression
algorithm. 1994.

[79] Michael Roberts, Wayne Hayes, Brian R Hunt, Stephen M Mount, and James A
Yorke. Reducing storage requirements for biological sequence comparison. Bioin-
formatics, 20(18):3363–3369, 2004.

[80] Steven L Salzberg, Adam M Phillippy, Aleksey Zimin, Daniela Puiu, Tanja Magoc,
Sergey Koren, Todd J Treangen, Michael C Schatz, Arthur L Delcher, Michael
Roberts, et al. Gage: A critical evaluation of genome assemblies and assembly
algorithms. Genome research, 22(3):557–567, 2012.

[81] T. C Conway and A. J Bromage. Succinct data structures for assembling large
genomes. Bioinformatics, 27(4):479, 2011.

[82] Rayan Chikhi, Antoine Limasset, and Paul Medvedev. Compacting de bruijn graphs
from sequencing data quickly and in low memory. Bioinformatics, 32(12):i201–i208,
2016.

[83] Jarrod A Chapman, Isaac Ho, Sirisha Sunkara, Shujun Luo, Gary P Schroth, and
Daniel S Rokhsar. Meraculous: de novo genome assembly with short paired-end
reads. PloS one, 6(8):e23501, 2011.

[84] Erwan Drezen, Guillaume Rizk, Rayan Chikhi, Charles Deltel, Claire Lemaitre,
Pierre Peterlongo, and Dominique Lavenier. Gatb: Genome assembly & analysis
tool box. Bioinformatics, 30(20):2959–2961, 2014.

[85] Aleksey Zimin, Kristian A Stevens, Marc W Crepeau, Ann Holtz-Morris, Maxim
Koriabine, Guillaume Marçais, Daniela Puiu, Michael Roberts, Jill L Wegrzyn,

143

Pieter J de Jong, et al. Sequencing and assembly of the 22-gb loblolly pine genome.
Genetics, 196(3):875–890, 2014.

[86] Antoine Limasset, Guillaume Rizk, Rayan Chikhi, and Pierre Peterlongo. Fast
and scalable minimal perfect hashing for massive key sets. arXiv preprint
arXiv:1702.03154, 2017.

[87] Camille Marchet, Antoine Limasset, Lucie Bittner, and Pierre Peterlongo. A
resource-frugal probabilistic dictionary and applications in (meta) genomics. arXiv
preprint arXiv:1605.08319, 2016.

[88] Camille Marchet, Lolita Lecompte, Antoine Limasset, Lucie Bittner, and Pierre
Peterlongo. A resource-frugal probabilistic dictionary and applications in bioinfor-
matics. arXiv preprint arXiv:1703.00667, 2017.

[89] Lars Feuk, Andrew R Carson, and Stephen W Scherer. Structural variation in the
human genome. Nature Reviews Genetics, 7(2):85–97, 2006.

[90] Pierre Peterlongo, Nicolas Schnel, Nadia Pisanti, Marie-France Sagot, and Vincent
Lacroix. Identifying snps without a reference genome by comparing raw reads. In
International Symposium on String Processing and Information Retrieval, pages
147–158. Springer Berlin Heidelberg, 2010.

[91] Jacob F Degner, John C Marioni, Athma A Pai, Joseph K Pickrell, Everlyne
Nkadori, Yoav Gilad, and Jonathan K Pritchard. Effect of read-mapping biases
on detecting allele-specific expression from rna-sequencing data. Bioinformatics,
25(24):3207–3212, 2009.

[92] Débora YC Brandt, Vitor RC Aguiar, Bárbara D Bitarello, Kelly Nunes, Jérôme
Goudet, and Diogo Meyer. Mapping bias overestimates reference allele frequencies
at the hla genes in the 1000 genomes project phase i data. G3: Genes| Genomes|
Genetics, 5(5):931–941, 2015.

[93] Peter H Sudmant, Tobias Rausch, Eugene J Gardner, Robert E Handsaker, Alexej
Abyzov, John Huddleston, Yan Zhang, Kai Ye, Goo Jun, Markus Hsi-Yang Fritz,
et al. An integrated map of structural variation in 2,504 human genomes. Nature,
526(7571):75–81, 2015.

[94] 1000 Genomes Project Consortium et al. A global reference for human genetic
variation. Nature, 526(7571):68–74, 2015.

[95] Agnieszka Danek, Sebastian Deorowicz, and Szymon Grabowski. Indexes of large
genome collections on a pc. PloS one, 9(10):e109384, 2014.

[96] Guillaume Holley, Roland Wittler, and Jens Stoye. Bloom filter trie–a data struc-
ture for pan-genome storage. In International Workshop on Algorithms in Bioin-
formatics, pages 217–230. Springer, 2015.

[97] Benedict Paten, Adam M Novak, Jordan M Eizenga, and Erik Garrison. Genome
graphs and the evolution of genome inference. bioRxiv, page 101816, 2017.

144

[98] AdamMNovak, Glenn Hickey, Erik Garrison, Sean Blum, Abram Connelly, Alexan-
der Dilthey, Jordan Eizenga, MA Saleh Elmohamed, Sally Guthrie, André Kahles,
et al. Genome graphs. bioRxiv, page 101378, 2017.

[99] Alexander Dilthey, Charles Cox, Zamin Iqbal, Matthew R Nelson, and Gil McVean.
Improved genome inference in the mhc using a population reference graph. Nature
genetics, 47(6):682–688, 2015.

[100] Ngan Nguyen, Glenn Hickey, Daniel R Zerbino, Brian Raney, Dent Earl, Joel Arm-
strong, W James Kent, David Haussler, and Benedict Paten. Building a pan-genome
reference for a population. Journal of Computational Biology, 22(5):387–401, 2015.

[101] Richard Durbin. Efficient haplotype matching and storage using the positional
burrows–wheeler transform (pbwt). Bioinformatics, 30(9):1266–1272, 2014.

[102] Adam M Novak, Erik Garrison, and Benedict Paten. A graph extension of the po-
sitional burrows-wheeler transform and its applications. In International Workshop
on Algorithms in Bioinformatics, pages 246–256. Springer, 2016.

[103] Mingjie Wang, Yuzhen Ye, and Haixu Tang. A de bruijn graph approach to the
quantification of closely-related genomes in a microbial community. Journal of
Computational Biology, 19(6):814–825, 2012.

[104] Manuel Garber, Manfred G Grabherr, Mitchell Guttman, and Cole Trapnell. Com-
putational methods for transcriptome annotation and quantification using rna-seq.
Nature methods, 8(6):469–477, 2011.

[105] Bo Liu, Hongzhe Guo, Michael Brudno, and Yadong Wang. debga: read alignment
with de bruijn graph-based seed and extension. Bioinformatics, page btw371, 2016.

[106] Gaëtan Benoit, Dominique Lavenier, Claire Lemaitre, and Guillaume Rizk.
Bloocoo, a memory efficient read corrector. In European Conference on Computa-
tional Biology (ECCB), 2014.

[107] Ilya Minkin, Anand Patel, Mikhail Kolmogorov, Nikolay Vyahhi, and Son Pham.
Sibelia: a scalable and comprehensive synteny block generation tool for closely
related microbial genomes. In International Workshop on Algorithms in Bioinfor-
matics, pages 215–229. Springer, 2013.

[108] Shoshana Marcus, Hayan Lee, and Michael C Schatz. Splitmem: a graphical algo-
rithm for pan-genome analysis with suffix skips. Bioinformatics, 30(24):3476–3483,
2014.

[109] Ilia Minkin, Son Pham, and Paul Medvedev. Twopaco: An efficient algorithm to
build the compacted de bruijn graph from many complete genomes. Bioinformatics,
page btw609, 2016.

[110] Timo Beller and Enno Ohlebusch. Efficient construction of a compressed de bruijn
graph for pan-genome analysis. In Annual Symposium on Combinatorial Pattern
Matching, pages 40–51. Springer, 2015.

145

[111] Hayan Lee and Michael C Schatz. Genomic dark matter: the reliability of short read
mapping illustrated by the genome mappability score. Bioinformatics, 28(16):2097–
2105, 2012.

[112] Zamin Iqbal, Mario Caccamo, Isaac Turner, Paul Flicek, and Gil McVean. De
novo assembly and genotyping of variants using colored de bruijn graphs. Nature
genetics, 44(2):226–232, 2012.

[113] Gustavo AT Sacomoto, Janice Kielbassa, Rayan Chikhi, Raluca Uricaru, Pavlos
Antoniou, Marie-France Sagot, Pierre Peterlongo, and Vincent Lacroix. K is s plice:
de-novo calling alternative splicing events from rna-seq data. BMC bioinformatics,
13(6):S5, 2012.

[114] Son K Pham and Pavel A Pevzner. Drimm-synteny: decomposing genomes into
evolutionary conserved segments. Bioinformatics, 26(20):2509–2516, 2010.

[115] Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with bowtie 2.
Nature methods, 9(4):357–359, 2012.

[116] Antoine Limasset, Bastien Cazaux, Eric Rivals, and Pierre Peterlongo. Read map-
ping on de bruijn graphs. BMC bioinformatics, 17(1):237, 2016.

[117] Xiao Yang, Sriram P Chockalingam, and Srinivas Aluru. A survey of error-
correction methods for next-generation sequencing. Briefings in bioinformatics,
14(1):56–66, 2013.

[118] Yongchao Liu, Jan Schröder, and Bertil Schmidt. Musket: a multistage k-
mer spectrum-based error corrector for illumina sequence data. Bioinformatics,
29(3):308–315, 2013.

[119] Heng Li. Bfc: correcting illumina sequencing errors. Bioinformatics, page btv290,
2015.

[120] Li Song, Liliana Florea, and Ben Langmead. Lighter: fast and memory-efficient
sequencing error correction without counting. Genome biology, 15(11):509, 2014.

[121] Hamid Mohamadi, Hamza Khan, and Inanc Birol. ntcard: A streaming algorithm
for cardinality estimation in genomics data. Bioinformatics, page btw832, 2017.

[122] Dent Earl, Keith Bradnam, John St John, Aaron Darling, Dawei Lin, Joseph Fass,
Hung On Ken Yu, Vince Buffalo, Daniel R Zerbino, Mark Diekhans, et al. As-
semblathon 1: a competitive assessment of de novo short read assembly methods.
Genome research, 21(12):2224–2241, 2011.

[123] Keith R Bradnam, Joseph N Fass, Anton Alexandrov, Paul Baranay, Michael
Bechner, Inanç Birol, Sébastien Boisvert, Jarrod A Chapman, Guillaume Cha-
puis, Rayan Chikhi, et al. Assemblathon 2: evaluating de novo methods of genome
assembly in three vertebrate species. GigaScience, 2(1):10, 2013.

146

[124] Ellen M Leffler, Kevin Bullaughey, Daniel R Matute, Wynn KMeyer, Laure Segurel,
Aarti Venkat, Peter Andolfatto, and Molly Przeworski. Revisiting an old riddle:
what determines genetic diversity levels within species? PLoS Biol, 10(9):e1001388,
2012.

[125] Anton Bankevich, Sergey Nurk, Dmitry Antipov, Alexey A. Gurevich, Mikhail
Dvorkin, Alexander S. Kulikov, Valery M. Lesin, Sergey I. Nikolenko, Son K. Pham,
Andrey D. Prjibelski, Alex Pyshkin, Alexander Sirotkin, Nikolay Vyahhi, Glenn
Tesler, Max A. Alekseyev, and Pavel A. Pevzner. SPAdes: A new genome assembly
algorithm and its applications to single-cell sequencing. Journal of Computational
Biology, 19(5):455–477, 2012.

[126] Aleksey V Zimin, Guillaume Marçais, Daniela Puiu, Michael Roberts, Steven L
Salzberg, and James A Yorke. The masurca genome assembler. Bioinformatics,
29(21):2669–2677, 2013.

[127] Mark J Chaisson and Glenn Tesler. Mapping single molecule sequencing reads using
basic local alignment with successive refinement (blasr): application and theory.
BMC bioinformatics, 13(1):238, 2012.

[128] Kin Fai Au, Jason G Underwood, Lawrence Lee, and Wing Hung Wong. Improving
pacbio long read accuracy by short read alignment. PloS one, 7(10):e46679, 2012.

[129] Mohammed-Amin Madoui, Stefan Engelen, Corinne Cruaud, Caroline Belser, Lau-
rie Bertrand, Adriana Alberti, Arnaud Lemainque, Patrick Wincker, and Jean-Marc
Aury. Genome assembly using nanopore-guided long and error-free dna reads. BMC
genomics, 16(1):327, 2015.

[130] Marten Boetzer and Walter Pirovano. Sspace-longread: scaffolding bacterial draft
genomes using long read sequence information. BMC bioinformatics, 15(1):211,
2014.

[131] Viraj Deshpande, Eric DK Fung, Son Pham, and Vineet Bafna. Cerulean: A hybrid
assembly using high throughput short and long reads. In International Workshop
on Algorithms in Bioinformatics, pages 349–363. Springer Berlin Heidelberg, 2013.

[132] Chen-Shan Chin, David H Alexander, Patrick Marks, Aaron A Klammer, James
Drake, Cheryl Heiner, Alicia Clum, Alex Copeland, John Huddleston, Evan E
Eichler, et al. Nonhybrid, finished microbial genome assemblies from long-read
smrt sequencing data. Nature methods, 10(6):563–569, 2013.

[133] Job Dekker, Karsten Rippe, Martijn Dekker, and Nancy Kleckner. Capturing chro-
mosome conformation. science, 295(5558):1306–1311, 2002.

[134] Jacob O Kitzman. Haplotypes drop by drop. Nature biotechnology, 34(3):296–298,
2016.

[135] Neil I Weisenfeld, Vijay Kumar, Preyas Shah, Deanna Church, and David B Jaffe.
Direct determination of diploid genome sequences. bioRxiv, page 070425, 2016.

147

[136] Leena Salmela, Riku Walve, Eric Rivals, and Esko Ukkonen. Accurate self-
correction of errors in long reads using de bruijn graphs. Bioinformatics, page
btw321, 2016.

148

