
HAL Id: tel-01567093
https://theses.hal.science/tel-01567093v1

Submitted on 21 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Infeasible Path Detection : a Formal Model and an
Algorithm
Romain Aïssat

To cite this version:
Romain Aïssat. Infeasible Path Detection : a Formal Model and an Algorithm. Other [cs.OH].
Université Paris Saclay (COmUE), 2017. English. �NNT : 2017SACLS036�. �tel-01567093�

https://theses.hal.science/tel-01567093v1
https://hal.archives-ouvertes.fr

NNT : 2017SACLS036

1

Thèse de doctorat

de l’Université Paris-Saclay

préparée à l’Université Paris-Sud

Ecole doctorale n◦
580

Sciences et Technologies de l’Information et de la Communication

Spécialité de doctorat : Informatique

par

M. Romain Aïssat

Infeasible Paths Detection: a Formal Model and an Algorithm

Thèse présentée et soutenue à Gif-Sur-Yvette, le 30 janvier 2017.

Composition du Jury :

M. Alain Denise Professeur (Président du jury)
Université Paris-Sud

Mme. Sandrine Blazy Professeure (Rapporteur)
Université de Rennes 1

Mme. Lydie du Bousquet Professeure (Rapporteur)
Université Grenoble Alpes

M. François Laroussinie Professeur (Examinateur)
Université Paris Diderot

M. Frédéric Voisin Maître de Conférence (Examinateur)
Université Paris-Sud

M. Burkhart Wolff Professeur (Directeur de thèse)
Université Paris-Sud

Mme. Marie-Claude Gaudel Professeure émérite (Invitée)
Université Paris-Sud

M. Jean-Yves Pierron Ingénieur-chercheur (Invité)
CEA-LIST

Acknowledgments

Conducting the works related here and writing this document was a long
and hard task that would not have been possible with a number of people I
would like to thank.

First, I would like to thank my main adviser, Burkhart Wolff. I was
always impressed by Bu’s ability to think beyond the actual problem we were
tackling and really enjoyed our talks – although I could only understand a
small part of them during the first weeks following my arrival at LRI. I
will always smile when remembering that talk in which we argued for three
whole hours about our “different” concepts of symbolic execution, only to
realize that we in fact agree and, a few minutes later, end that talk laughing.
Bu’s great knowledge and experience were invaluable to me and I am very
grateful for him to have push my investigations in some areas I was not
familiar with or did not consider in the first place. Burkhart played a major
role in the development of my works and helped me build an elegant solution
– which I dare say I am proud of – to a difficult problem. I also had a great
time teaching with Burkhart: he is a passionate teacher, always listening to
his students and willing to help them.

I would also like to thank my co-adviser Marie-Claude Gaudel. Marie-
Claude’s long experience and great knowledge were naturally invaluable to
me, and her rigour and her determination will always make her a model to
me as a scientist. Although I guess we could say we had some hard times
in the beginning, I was very happy and proud to eventually gain Marie-
Claude’s trust, and even more so seeing her so involved in my works. I am
very proud of Marie-Claude’s encouragements and will always be grateful
for her active support in the downs of those more-than-four years at LRI.

Last but not least, I would like to thank Frédéric Voisin, also my co-
adviser. Although I knew Burkhart and Marie-Claude would always help
me if I had a question or a problem, Frédéric has simply always been there
for me, no matter the reason, the day or the hour of the day (and very
frequently of the night). Whatever the problem was – what direction give
to my work, is a particular algorithm correct, what is that bug that is causing
my code to fail, how should I explain this to students, how should I write
this piece of text, how to handle this with the administration, where is my
badge, did I broke something on my bike – I not only knew I could count on

1

him, but also that with his help we would solve it. I often felt guilty for the
amount of work and things to read I gave him, and I will never say enough
how grateful I am. His confidence in my abilities, his strong and constant
support of my own ideas and research directions as well as number of his
human qualities make him the best adviser a Ph.D. student could think of.

It was an honor and a pleasure to work with Burkhart, Marie-Claude
and Frédéric, and I sincerely hope I will have the opportunity to interact
with them again in the rest of my career.

I would then like to thanks the members of the VALS team for welcoming
me in their team and for the warm and friendly atmosphere. My thoughts
first go to Yakoub, Bu’s other student with whom I shared my office during
three years and a half. Besides the office, we also shared our pains, our joys,
our failures and our successes, as well as a number of tastes and passions
for all sorts of things, which naturally led to great fun and talks. Although
they still owe me some cigarettes, I would also like to thank some of the
other Ph.D. students of the team – Hai and Stefania – for the good times
and for their constant support. Special thanks also go to Frédéric Tuong,
Delphine, Thibault, Sylvain, Véronique, Evelyne, Xavier and Guillaume.

I would also like to thank my old colleagues at CEA for their constant
support. I am particularly grateful to Jean-Yves Pierron for trusting me
a few years ago as an internship candidate on a fascinating subject, which
is what I think made it possible for me to start the works related in this
document.

From the University Paris Diderot, my thanks go to Ahmed Bouajjani
and François Laroussinie, who actively supported me on numerous occasions,
before, during, and after those four years spent at LRI. I am also grateful
to Dominique Poulhalon and Juliusz Chroboczek for their help when I had
the opportunity to teach with them.

If my colleagues took an important part in conducting these works, my
relatives are also to be thanked. I would like to thank in no particular order
my dear friends Julien, Bruno and Laura, Alex, Stéphane, Isa, Big Fanny
and Clementine, Small Fanny and André, Benjamin, Alex, Robin and Aude,
Michou, Dermo, Antho, Kitty and co, the Babies, the Aurels’, Laura and
Fab, Lucas and Erika, Ozz and Marion, JB and Victoire, the Clements, Eliel
and Noémie, Gary and Alix, Amandine as well as my cousins Cédric, Löıc,
Julie, Karima, Farez, Sophiane, etc, and my beloved little brother Alexandre.
Their love and friendship always pushed me forward, and I would not have
been able to go this far without their support and their presence in the good
and bad times. Special thanks go to Florent and Chloé, who have a bigger
part in all of this than they might think.

I most certainly did not name every person I would like to thank: many
people helped me in a way or another to conclude these works.

Finally, I would like to thank my parents for all they have done for me
during all these years, for helping me become who I am and for everything

2

that helped me get to this day. I will never have enough words to express
how grateful I am to them, which is a good reason to end this section now.
This work is dedicated to them.

3

4

Contents

1 Introduction 13

1.1 Software Testing . 13

1.1.1 Principles of Testing 13

1.1.2 Selecting Test Cases 14

1.2 Motivations . 18

1.3 Contributions . 20

2 Context: Random Testing and Infeasibility 23

2.1 Random Structural Biased Testing 23

2.1.1 Isotropic Random Walks 23

2.1.2 Uniform Random Walks 25

2.2 Program Paths and Infeasibility 27

2.3 Symbolic Execution and Unbounded Loops 30

3 Introducing Red-Black Graphs and their Transformations 35

3.1 Introduction . 35

3.2 Modeling programs . 36

3.3 Operational Semantics of Programs 39

3.3.1 Configurations . 39

3.3.2 Symbolic Execution Steps 42

3.3.3 Symbolic Execution of Programs 45

3.4 Subsumption . 47

3.4.1 Subsumption . 47

3.4.2 Abstracting Configurations 50

3.5 Red-Black Graphs . 52

3.6 Red-Black Graphs Transformations 57

3.6.1 Extension by Symbolic Execution 57

3.6.2 Extension by Subsumption 58

3.6.3 Extension by Abstraction 59

3.6.4 Extension by Marking 60

3.6.5 Extension by Strengthening 61

3.6.6 The Set of Red-Black Graphs 62

3.7 Building Red-Black Graphs: an Example 62

5

3.8 Summary . 67

4 Formalization 71

4.1 Introduction . 71

4.2 Symbolic Execution . 73

4.2.1 Arithmetic and Boolean Expressions 73

4.2.2 Stores . 76

4.2.3 Configurations, Subsumption and Abstraction 77

4.2.4 Symbolic Execution Steps 79

4.3 Graphs, Labeled Transition Systems, Subsumption Relations 81

4.3.1 Introduction . 81

4.3.2 Rooted Graphs . 82

4.3.3 Labeled Transition Systems 84

4.3.4 Graphs Equipped with Subsumption Relations 85

4.3.5 Extending Graphs and Subsumption Relations 88

4.4 Red-Black Graphs and Their Properties 91

4.4.1 The Type of Red-Black Graphs 91

4.4.2 Well-Formed Red-Black Graphs 92

4.4.3 Relation Between Red Vertices 96

4.4.4 Preservation of Behaviours 98

4.4.5 Preservation of Feasible Paths 102

4.5 Summary . 104

5 Algorithm 107

5.1 Introduction . 107

5.2 Data Structures and Inputs 108

5.2.1 Data Structures . 108

5.2.2 Inputs and Parameters 109

5.3 Building the Red-Black Graph 110

5.3.1 Principles . 110

5.3.2 Symbolic Execution Steps 112

5.3.3 Detecting Subsumptions 113

5.3.4 Refine-and-Restart Mechanism 124

5.3.5 Look-Ahead Mechanism 126

5.3.6 Building The Resulting LTS 128

5.4 The Merging Sort Example 128

5.4.1 The Merging Sort Program 128

5.4.2 Merging Sort without Path Sets Comparisons 131

5.4.3 Merging Sort with Path Sets Comparisons 141

5.5 Summary . 151

6

6 Experiments and Discussions 153

6.1 Experimental Results . 153

6.1.1 Greatest Common Divisor 156

6.1.2 Merging Sort . 158

6.1.3 Substring . 161

6.1.4 Bubble Sort . 164

6.1.5 Bounded Loops . 166

6.1.6 Modulo Example . 169

6.2 Discussions and Possible Improvements 171

6.2.1 Extending Refinements 171

6.2.2 Look-Ahead Mechanism 173

6.2.3 Abstraction methods 174

6.2.4 Subsumptions Between Different Paths 175

6.3 Summary . 177

7 Conclusion 179

A Isabelle/HOL Formalization 189

A.1 Introduction . 189

A.2 Arithmetic Expressions . 190

A.2.1 Variables and their domain 190

A.2.2 Program and symbolic states 191

A.2.3 The aexp type-synonym 191

A.2.4 Variables of an arithmetic expression 192

A.2.5 Fresh variables . 193

A.3 Boolean Expressions . 193

A.3.1 Basic definitions . 193

A.3.2 Properties about the variables of an expression 194

A.4 Stores . 196

A.4.1 Basic definitions . 196

A.4.2 Consistency . 197

A.4.3 Adaptation of an arithmetic expression to a store . . . 198

A.4.4 Adaptation of a boolean expression to a store 201

A.5 Configurations and Subsumption 204

A.5.1 Configurations . 204

A.5.2 Symbolic variables of a configuration. 204

A.5.3 Freshness. 204

A.5.4 Satisfiability . 204

A.5.5 States of a configuration 205

A.5.6 Subsumption . 205

A.5.7 Semantics of a configuration 206

A.5.8 Entailment . 206

A.5.9 Abstractions . 207

A.6 Symbolic Execution . 207

7

A.6.1 Labels . 207
A.6.2 Definitions of SE and SE star 208
A.6.3 Basic properties of SE 209
A.6.4 Monotonicity of SE 213
A.6.5 Basic properties of SE star 214
A.6.6 Monotonicity of SE star 215
A.6.7 Existence of successors 216
A.6.8 Feasibility of a sequence of labels 220
A.6.9 Concrete execution . 222
A.6.10 Weakest Precondition Calculus 224

A.7 Rooted Graphs . 225
A.7.1 Basic definitions and properties 225
A.7.2 Consistent edge sequences, sub-paths and paths 227
A.7.3 Adding edges . 230

A.8 Labeled Transition Systems 230
A.8.1 Basic definitions . 230
A.8.2 Feasible sub-paths and paths 232

A.9 Graphs Equipped with Ssubsumption Relations 233
A.9.1 Basic definitions and properties 233
A.9.2 Well-formed subsumption relation of a graph 234
A.9.3 Consistent edge sequences and sub-paths 236

A.10 Extending Graphs with Edges 244
A.10.1 Definition and basic properties 244
A.10.2 Properties of sub-paths in an extension 245

A.11 Extending Subsomption Relations 247
A.11.1 Definition . 247
A.11.2 Properties of extensions 248
A.11.3 Properties of sub-paths in an extension 249

A.12 Red-Black Graphs . 256
A.12.1 Basic definitions . 256
A.12.2 Extensions of red-black graphs 258
A.12.3 Building red-black graphs using extensions 261
A.12.4 Properties of red-black graphs 262
A.12.5 Relation between red-vertices 270
A.12.6 Properties about marking. 282
A.12.7 Fringe of a red-black graph 287
A.12.8 Red-black sub-paths and paths 294
A.12.9 Preservation of feasible paths 298

A.13 Conclusion . 345

8

Résumé

Le test bôıte blanche basé sur les chemins est largement utilisé pour la
validation de programmes. A partir du graphe de flot de contrôle (CFG)
du programme sous test, les cas de test sont générés en slectionnant des
chemins d’intérêt, puis en essayant de fournir, pour chaque chemin, des
valeurs d’entrées concrètes qui déclencheront l’exécution du programme le
long de ce chemin.

Il existe de nombreuses manières de définir les chemins d’intérêt: les
méthodes de test structurel sélectionnent des chemins remplissant un critère
de couverture concernant les éléments du graphe; dans l’approche aléatoire,
les chemins sont tirés selon une distribution de probabilité sur ces éléments.
Ces méthodes aléatoires ont l’avantage de fournir un moyen d’évaluer la
qualité d’un jeu de test à travers la probabilité minimale de couvrir un
élément du critère.

Fournir des valeurs concrètes d’entrées nécessite de construire le prédicat
de cheminement chaque chemin, i.e. la conjonction des contraintes sur les
entrées devant être vérifiée pour que le système s’exécute le long de ce
chemin. Cette construction se fait par exécution symbolique. Les données
de test sont ensuite déterminées par résolution de contraintes. Si le prédicat
d’un chemin est insatisfiable, le chemin est dit infaisable. Il est très courant
qu’un programme présente de tels chemins et leur nombre surpassent en
général de loin celui des faisables. Les chemins infaisables sélectionnés lors
la première tape ne contribuent pas au jeu de test final, et doivent être
tirés à nouveau. La présence de ces chemins pose un sérieux probléme aux
méthodes structurelles et à toutes les méthodes d’analyse statique, la qualité
des approximations qu’elles fournissent étant réduite par les données cal-
culées le long de chemins infaisables.

De nombreuses méthodes ont été proposes pour résoudre ce problème,
telles que le test concolique ou le test aléatoire basé sur les domaines d’entrée.
Dans cette thèse, nous présentons un algorithme qui construit de meilleures
approximations du comportement d’un programme que son CFG, produisant
un nouveau CFG qui sur-approxime l’ensemble des chemins faisables mais
présentant moins de chemins infaisables. C’est dans ce nouveau graphe que
sont tirés les chemins.

Nous avons modélisé notre approche et prouvé formellement, à l’aide

9

de l’assistant de preuve interactif Isabelle/HOL, les propriétés principales
établissant sa correction.

Notre algorithme se base sur l’exécution symbolique et la résolution de
contraintes, permettant de détecter si certains chemins sont infaisables ou
non. Nos programmes peuvent contenir des boucles, et leurs graphes des cy-
cles. Afin d’éviter de suivre infiniment les chemins cycliques, nous étendons
l’exécution symbolique avec la détection de subsomptions. Une subsomption
peut être vue comme le fait qu’un certain point atteint durant l’analyse est
un cas particulier d’un autre atteint précédemment: il n’est pas nécessaire
d’explorer les successeurs d’un point subsumé, ils sont subsumés par les
successeurs du subsumeur. Notre algorithme a été implémenté par un pro-
totype, dont la conception suit fidèlement la formalisation, offrant un haut
niveau de confiance dans sa correction.

Dans cette thèse, nous présentons les concepts théoriques sur lesquels
notre approche se base, sa formalisation à l’aide d’Isabelle/HOL, les algo-
rithmes implémentés par notre prototype, les diverses expériences menées et
résultats obtenus à l’aide de ce prototype ainsi que les perspectives ouvertes
par ces travaux et les améliorations qu’ils pourraient recevoir.

10

Abstract

White-box, path-based, testing is largely used for the validation of programs.
Given the control-flow graph (CFG) of the program under test, a test suite
is generated by selecting a collection of paths of interest, before providing
for each path some concrete input values that will make the program follow
that path during a run.

For the first step, there are various ways to define paths of interest:
structural testing methods select sets of paths that fulfill coverage criteria
related to elements of the graph; in random-based techniques, paths are
selected according to a given distribution of probability over these elements.
Both approaches can be combined as in structural statistical testing. The
random-based methods above have the advantage of providing a way to
assess the quality of a test set as the minimal probability of covering an
element of a criterion.

The second step requires to compute, for each path, its path predicate,
i.e. the conjunction of the constraints over the input parameters that must
hold for the system to run along that path. This is done using symbolic
execution. Then, constraint-solving is used to compute test data. If there
are no input values such that the path predicate evaluates to true, the path
is infeasible. It is very common for a program to have infeasible paths and
such paths can largely outnumber feasible paths. Infeasible paths selected
during the first step do not contribute to the test suite, and there is no
better choice than to select other paths until getting feasible ones. Handling
infeasible paths is the serious limitation of structural methods since most
of the time is spent selecting useless paths. It is also a major challenge
for many techniques in static analysis of programs, since the quality of the
approximations they provide is lowered by data computed along paths that
do not correspond to actual program runs.

To overcome this problem, different methods have been proposed, like
concolic testing or random testing based on the input domain. In path-
biased random testing, paths are drawn according to a given distribution
and their feasibility is checked in a second step.

In this thesis, we present an algorithm that builds better approximations
of the behavior of a program than its CFG. Our work is based on a pro-
gressive unfolding of the CFG by symbolic execution techniques and the use

11

of constraint solving for detecting infeasible paths. When programs contain
loops, in which cases the unfolding of all paths in its CFG would yield an
infinite symbolic execution tree, we introduce subsumptions to turn back
this potentially infinite tree into a finite graph. A subsumption can be in-
terpreted as the fact that some vertex met during the analysis is a particular
case of another vertex met previously: there is no need to explore the suc-
cessors of the subsumed vertex. An additional mechanism, the abstraction
of configurations, is needed to help establishing subsumptions. The result
is a transformed CFG with a finer over-approximation of the set of feasible
paths, better suited for drawing paths at random.

We introduce the theoretical concepts on which our approach is based,
and describe a specific graph representation and five transformations that
can be combined using heuristics to compute our resulting CFG. We pro-
vide a complete formalization in Isabelle/HOL of this new graph structure
and these transformations; this allows us to establish fully machine-checked
proofs of the correctness of our method: actual program behaviors are pre-
served and no feasible path is lost by our transformations. We then present
the prototype we developed to implement the method: its design closely fol-
lows the formalization, giving a good level of confidence in its correctness.
This prototype implements the five operators from the model and embeds
them within heuristics which can be controlled by a set of user parameters.
Finally, we present the various experiments performed with our prototype
and the associated results.

12

Chapter 1

Introduction

Random structural biased testing is a promising method of validation of
systems. It is based on a graphical representation — namely, the Control
Flow Graph (CFG) — of the program under test and consists in producing
test cases covering paths drawn at random in the CFG, according to a given
distribution. From such a path, one can automatically build a condition,
the path predicate, that represents the constraints that the input values of
the program must satisfy for its execution to follow that path. Test cases
are produced by constraint solving from path predicates, the paths being
drawn uniformly among those of a user-defined maximal length.

As for most methods of structural testing, the main problem with ran-
dom structural biased testing lies in the existence of infeasible paths in the
CFG of a program. Such paths do not correspond to any actual execution of
the program: their presence is due to CFG being compact but approximate
representations of the behaviors of programs. The existence of infeasible
paths has a major negative impact on random structural biased testing
since, even in simple programs, these paths tend to hugely outnumber the
feasible ones. The consequence is immediate: it is usually very hard to draw
feasible paths, and thus generate test cases from the CFG of the program.

In this thesis, we propose a method that, given a CFG and a precondi-
tion of the program under analysis, returns a new CFG that contains less
infeasible paths. This new representation is a more accurate over-approxi-
mation of the set of feasible paths of the original program: it is a larger but
more detailed version of the original graph.

1.1 Software Testing

1.1.1 Principles of Testing

Testing consists in checking that a system behaves accordingly to its in-
tended behavior. Software testing has many interests: detecting faults in
the current code, assessing its quality and the confidence in the fact that

13

it functions correctly. In the “Guide to the Software Engineering Body of
Knowledge” [15], the authors define software testing as:

Software testing consists of the dynamic verification of a pro-
grams behavior on a finite set of test cases, suitably selected
from the usually infinite executions domain, against the expected
behavior.

As said above, software testing is a dynamic process: unlike static anal-
ysis techniques, it requires executing the current version of the system on
a number of valuations of its inputs, the test data, observing the induced
effects and interpreting those in order to decide if the system behaves as
intended or not. The testing process consists of four steps: (i) select a set
of test cases, i.e. a test suite; (ii) execute the system against each test case;
(iii) decide if individual test cases failed or succeed; (iv) assess the quality
of the test suite.

Each of these activities has its own inherent difficulties. Efficiently se-
lecting test cases consists in finding sets of input values of the system that
will allow detecting as many faults as possible. Running test cases might
require to simulate a full test environment as well as the components that
may miss from the system. Deciding the success or failure of a test experi-
ment requires an oracle in order to verify the value returned by the system
in that particular case and to check the state of the system after executing
the program. Designing oracles for simple programs can be trivial, but it
can be even more difficult than designing the system itself for complex pro-
grams, since this requires knowing for each input value the expected result,
or assessing the state of the system from a finite number of external obser-
vations. Finally, being able to assess the quality of a test suite is crucial in
order to decide when to stop testing the system. Each of these activities
has been the subject of many works along the years, and software testing
has always been a very active field of research in the domain of Computer
Sciences.

1.1.2 Selecting Test Cases

In this thesis, our interest is in the selection of test cases: the goal of our
work is to facilitate this part of the testing process in a specific context.
Selecting test cases being a crucial part in the testing process, it has been
studied by a plethora of authors over the years, and a number of different
solutions already exist (see [6]). Our goal in the following is not to survey
exhaustively those solutions, but to introduce a distinction that is made
between test case selection techniques. Those are usually considered to be
of one — or a mix of more — of the four following categories.

14

Selection Based on Input Domains

Test data selection based on input domains consists in choosing sets of values
among the domains of the inputs of the program. Since these domains are
usually very large and might even be infinite, exhaustive enumeration of the
input values is not possible in most cases. The first challenge here is how
to select only a finite number of test data that yield a high fault detection
rate. There are globally two ways to do so: random selection of values and
selection based on partitions of the input domains.

Random selection consists in selecting values of the input of the program
at random according to a given probability distribution over their domains.
Although easy to implement, uniform distribution usually does not lead to
a high fault detection rate. This is due to the fact that, usually, a large
subset of the input domain corresponds to the nominal case of execution of
the program, while a number of faults require very specific combinations of
input values in order to be detected; uniform distribution over large input
domains might only yield a very slight chance to discover them. Another
approach consists in establishing a distribution based on an operational
profile (see [23, 42]): this has the advantage to facilitate detecting the faults
that are the most likely to be exercised during the operation of the system.
However, establishing an operational profile is a complex task. Although
this method increases the level of quality experimented by the majority of
the users of the program, the method does not solve the problem of detecting
rare faults.

The second approach consists in partitioning the input domains in a
finite number of subsets, assuming that every value of one partition has the
same fault detection power: test data must cover at least each partition once.
The goal is to define test data that detect classes of errors, which greatly
reduces the number of test cases that must be produced. Partitioning can
be done according to the type of the inputs — for example, integers could
be decomposed into three classes: negative, positive integers and zero —
or based on other criteria, the specification or the application domain, for
example. Of particular interest are those values at the frontier, or at the
vicinity, of each partition (for instance, considering values 1 or −1 in our
previous example).

Specification-Based Testing

Specification-based testing takes a specification of the program as a basis for
selecting test cases. A specification is a description of the functionality and
constraints of the system. Its purpose is to communicate the requirements
of the system to the developers. It can consist of documents written in a
natural language, a collection of user-scenarios or models, a mathematical
description, a prototype. Since it is not based on the code of the program

15

under test, specification-based testing is usually referred to as black-box
testing.

Selecting test cases as early as possible in the development process, based
on the specification, has a number of advantages. Since it focuses attention
from the earliest stage of development on making the whole system correct,
it facilitates early detection of design flaws. A carefully and early planned
test strategy can also improve the reliability of the system, since this usually
requires more efforts to make it to meet the requirements.

Natural language specifications are not suited to automatic generation
of test cases. Usually, specification-based techniques rely on formal models,
some examples of which are finite-state machines, Petri nets, systems of
labeled transition systems, or specifications written in formal specification
languages like OCL, JML or ACSL. In such cases, the selection of pertinent
test cases can be automated, or at least partially automated.

For a survey of selection-based testing approaches, we refer the interested
reader to [32].

Mutation-Based Testing

Mutation-based testing was originally conceived as a test case selection tech-
nique. However, it revealed particularly efficient in assessing the quality of
test suites.

Mutation based testing, consists in generating a number of mutants, i.e.
programs obtained from the program under test by injecting faults in its
code. Mutants only differ from the original program for one occurrence of
an operator or instruction that has been replaced by another, for example
an occurrence of ≤ is turned into <. The quality of a test suite for the
program is evaluated by counting the number of mutants that are killed
during testing, i.e. those modified versions that are detected by one of the
tests in the test suite as revealing a defect. Additional test cases must be
provided to separate surviving mutants from the original program.

The practical use of mutation-based testing is limited by a number of
problems. First, it usually yields large numbers of mutants, even with simple
programs. This makes mutation testing an expensive method. Another
problem of the approach is that it might yield mutants that, despite being
syntactically different from the original programs, have the same behavior.
Without surprise, such equivalent mutants cannot be killed by any test
case, and it is important to be able to detect such mutants and reduce their
number. Deciding the equivalence of two programs, hence of a mutant and
its source, is an undecidable problem.

Since mutation-based testing can precisely evaluate the quality of test
suites, it is also used to compare testing techniques.

The curious reader might refer to [36] for further details.

16

Structural Testing

Structural testing is based on the code of the program and, as such, is
usually referred to as white-box testing. Usually, those techniques use a
graphical representation of the program under test, the more common being
its control flow graph (CFG). Such graphs are a compact representation
of the code of the program. Their vertices represent either an elementary
block of instructions or the guard of a conditional or loop statement. They
also have two additional vertices that represent their unique entry and exit
points. Their edges describe how the control flows between those different
blocks. Structural testing consists in choosing a number of paths in the
CFG. From such a path, one can compute a condition, the path predicate,
that expresses the conjunction of constraints that program variables must
satisfy for the execution to follow that particular path. If this condition is
satisfiable, the path is said to be feasible and one can deduce a valuation
of the inputs that will trigger the execution along that path, that is, a test
case. If not, the path is said to be infeasible: the program can never follow
that path.

Sets of paths are assessed according to a given coverage criterion: the
collection of paths that will be executed during testing must cover a number
of elements — or combinations of elements — of the CFG. Some of the
basic coverage criteria are: statement coverage, each basic block is covered
by one path at least; branch coverage, each edge must be taken at least once;
decision coverage, each boolean sub-expression takes both truth values; path
coverage, all paths must be selected; but there exists many other derived
ones (MC/DC or data-flow based criteria, for example). This approach can
be applied either with a set of paths that is initially designed to cover the
criterion, or, after running an instrumented version of the code on a given
test suite, to find paths that miss with the current test suite to fulfill the
criterion.

Test suites might be evaluated by computing the coverage rate, i.e. the
ratio of covered elements among the elements in the criterion. Achieving
100% coverage is usually very difficult and too expensive, or even impossible.
For example, the explosion of the number of paths or the presence of loops
might prevent full covering of the path coverage criterion. Paths that are
missing for covering the criterion can also correspond to infeasible paths.
The criterion can be weakened, for instance only paths of a given maximal
length, or that go a given number of times through each loop, are considered,
but even then, full coverage might be too expensive for complex systems.
For those basic criteria, a coverage rate of 80% to 90% is usually considered
good enough.

The interested reader can find more information about structural testing
in [46] and [53].

17

1.2 Motivations

Path coverage is the most demanding criterion, since it considers that each
path might carry a fault, and it is usually impossible to fully satisfy for the
reasons we exposed previously. Thus, it is a natural candidate for random
approaches. The distribution according to which paths are drawn must have
the following properties: each path must have a non-zero probability to be
selected and, pushing the idea further, this probability should be maximized,
i.e. paths should be drawn uniformly. When the number of paths is infinite,
because the program contains some loops, their length must be artificially
bounded. How to choose this maximal length is not an easy task: it depends
on the link between the test objectives and the size or structure of the graph
of the program. The curious reader might refer to [27] for an analysis of the
choice of length in the context of testing. How to establish an uniform
distribution over paths of a maximal given length is recalled in Section 2.1.

Random structural biased testing was originally introduced by Thévenod
et al. in [48] and further developed by Gouraud in [27]. It is a very efficient
way to draw paths and to optimize path coverage: paths of several thousands
of edges can be efficiently drawn in graphs with billions of vertices (see [20]).
This random approach can also be combined with other coverage criteria,
introducing a notion of coverage-guided random exploration, which in turn
leads to a notion of randomized coverage satisfaction, and makes it possible
to evaluate and compare different methods of random exploration according
to a given criterion.

The random structural biased approach is mainly and severely limited
by the existence of infeasible paths and by the fact that, even in simple
programs, those paths tend to largely outnumber the feasible ones. As
an example, we consider the program whose code and CFG are depicted
in Figure 1.1, inspired from an industrial case study reported in [27].

This programs takes as inputs a number n of iterations of its loop to
perform, and a boolean value b that artificially dictates the control flow
during the execution of the loop: since the value of b does not change during
the execution, paths that take both the true and false branches of the inner
conditional block during different iterations of the loop are infeasible. This
very simple program has no other purpose than to illustrate how the ratio of
feasible paths over paths evolves as the length of these paths grows (on this
example, standard optimization techniques from compiler technology would
detect that the conditional can be moved outside of the loop and might emit
a warning so that the developer restructure its program before sending it to
test).

Since we want to select paths from which test cases can be produced, we
are only interested in complete paths, i.e. paths that go from the entry point
to the exit point. We refer to them as paths in the rest of this section. In
the CFG of Figure 1.1b, these paths go through exactly 4k+ 3 edges, where

18

Function foo(int n, bool b)

1 let i = 0;

2 while i < n do
3 if b then
4 skip;

else
5 skip;
6 i← i+ 1;

(a)

i := 0

i< n

Skip

b

Skip

i := i+1

true

true false

false

entry

exit

(b)

Figure 1.1: An example program (a) and its CFG (b).

k is the number of iterations of the loop each path performs. If k is zero,
there exists only one path, which happens to be feasible. If k = 1, there are
two paths and, assuming nothing limits the value of b, both are also feasible.
If k = 2, we now have four paths, but only two of them are feasible, since
the value of b now has been determined during the first iteration of the loop.
There are also only two feasible paths for k = 3, but 8 paths, so 6 of them
must be infeasible, and so on. For any k ≥ 0, there are only 2 feasible paths
but 2k paths. Since we are interested in drawing paths of a given length at
most, the probability of drawing a feasible path for a given k is:

1 + 2
k∑

i=1
i

k∑
i=0

2i
=

1 + k(k + 1)

2k+1 − 1

Even if this example is very simple and used for illustration purposes, it
highlights the central limitation of the overall approach: the ratio of feasible
paths over paths of a CFG with loops usually tend to decrease extremely
fast as their length grows. As a result, it is usually very hard to draw
feasible paths and thus to obtain test cases: for a large enough maximal
length, drawing a feasible path in a CFG is literally looking for a needle in
a haystack, but at random.

The existence of infeasible paths is not only a limitation of random struc-
tural biased testing, but of all techniques based on the CFG of the program,

19

or any other equivalent graphical representation. The other white-box test-
ing techniques are also impacted — although most possibly in a lesser mea-
sure — by infeasible paths, even when considering another criterion than
path coverage: since one cannot derive a test case from an infeasible path
that might have been selected, another path must be chosen. Actually, the
existence of infeasible paths severely impacts software testability [22]. Be-
sides, code can be better optimized if more infeasible paths are detected
during the optimization process. Infeasible path detection could also help
model checking and static analysis techniques and enhance their accuracy
and speed. Worst-case execution time analysis and mutation-based testing
methods are also impacted by infeasible paths.

1.3 Contributions

In this thesis, we propose a method that, given a graphical representation
of a program and a precondition on its inputs, produces a new graph that
contains less infeasible paths. Our ultimate goal is to facilitate drawing
feasible paths during the path selection phase in the context of random
structural biased testing, but our approach could improve the results of other
techniques based on the CFG and impacted by the existence of infeasible
paths.

In full generality, infeasible path detection is an undecidable problem: a
path is feasible if and only if its path predicate is satisfiable, an undecidable
problem when the expressions occurring in the guards of a program are not
restricted to some limited logic. As a result, we do not expect our approach
to produce the graph that represent the exact set of feasible paths of any
CFG, but that over-approximates it better than the CFG. Note that, even
if infeasible path detection was decidable, building such a graph in each case
would not be possible: the sets of feasible paths of some CFG are not regular
languages, and cannot be represented by graphs. Nonetheless, experimental
results reported in this document show that our approach can produce good
over-approximations of these sets and lead to high infeasible path detection
rates.

Our approach is based on symbolic execution of all paths of the input
graph, a well-known analysis technique that consists in executing the pro-
gram with symbolic inputs rather than concrete ones. This allows symbolic
execution to sometimes fork at branching points, unlike concrete execution.
Symbolic execution maintains the predicate of each path it follows. As a
result, it can be used in conjunction with constraint solving to detect the
infeasibility of some of these paths. As said previously, a major problem is
that, in presence of unbounded loops, the constraints gathered along paths
that go through such loops might not be sufficient to decide that the loop
has to be exited at some point, preventing the analysis to terminate. Dur-

20

ing symbolic execution, our algorithm attempts to establish subsumptions
between two occurrences of a same program location. Informally, a sub-
sumption is established when the set of possible states of the program at
a given point of the analysis is detected to be a particular case of the set
of states of the program at another point met previously. The goal of find-
ing such subsumptions is to avoid to follow cyclic paths infinitely when the
program under analysis contains unbounded loops. Since it might not be
possible to ever detect a subsumption, depending on the considered program
and its initial set of states, our algorithm is allowed to force some subsump-
tions by abstracting path predicates during symbolic execution. However,
forcing every possible subsumption through abstraction might only lead to
detect a small number of infeasible paths, or even none. In order to improve
its detection rate, our algorithm is driven by a number of heuristics that
orient him towards the most accurate subsumptions during his search.

A major achievement in this thesis is the statement of a formal theory
in Isabelle/HOL of an abstract version of our algorithm. This formal the-
ory is a non-deterministic model of our algorithm, consisting of five graph
transformations of a so-called red-black graph, where the red part roughly
corresponds to the analyzed symbolic execution tree gained by partial un-
folding of the CFG and the black part is the initial CFG of the program.
Two major theoretic results were established, with fully machine-checked
proofs:

1. correctness: for every path in the new graph, there exists a path with
the same trace in the original one,

2. each transformation preserves the set of feasible paths.

These results apply to an entire family of algorithms that might be set
on top of our current theory and combine our five transformations within
specific heuristics (which node to select, which subsumption to establish,
which abstraction to perform, for example), to provide approximations of
the set feasible paths of a program.

The rest of this document is organized as follows. In Chapter 2, we first
recall two random methods of path selection: the isomorphic and uniform
random walks, the latter allowing to draw paths of a given maximal length
uniformly. We then present various works that were conducted recently in
the areas of infeasible path detection and symbolic execution in presence of
unbounded loops.

In Chapter 3, we introduce most of the notions our approach relies on, i.e.
how we represent programs, our notion of symbolic execution, subsumption,
abstraction and a number of other concepts. A large part of this chapter is
devoted to introduce red-black graphs and their transformations.

The formalization of our approach is described in details in Chapter 4.
We present the structure of this formalization, our design choices for the

21

numerous and various concepts and notions it relies on, and the main lemmas
that were established. The goal of this chapter is to introduce the main
theorems stating the key properties of our approach as well as to give high-
level descriptions of their proofs. A commented version of the full proof
script is given in the appendix.

We present the prototype that implements our approach in full details
in Chapter 5. This implementation is based on the formalization mentioned
above, respecting a clear separation between the kernel transformations and
the heuristics aspects. We also illustrate in this chapter how our algorithm
behaves on a typical example, varying the different heuristics applied to
illustrate how these interact and influence the construction of the result.

In Chapter 6, we first present a number of experiments that were con-
ducted and comment and interpret the results obtained. The goal of this
first part is to assess the infeasible path detection power of our approach on
various examples. At the light of these experimental results, we discuss, in
the second part of this chapter, the limitations of our approach in its current
state as well as a number of possible improvements of our algorithm.

Finally, we conclude this thesis in Chapter 7 by summarizing and evoking
some perspectives.

22

Chapter 2

Context: Random Testing
and Infeasibility

In this chapter, we first recall in Section 2.1 the methods of isotropic and
uniform random walks. Then, we present in Section 2.2 a number of works
that were conducted in the area of infeasible path detection, and insist on
how each of these approaches handles loops — particularly unbounded ones,
since this is the aspect of the problem we are mainly concerned with. In
this thesis, we chose to tackle the problem of infeasible path detection using
a path based constraint propagation approach. Such approaches are based
on some form of symbolic evaluation of the program under analysis. We
conclude this chapter by presenting various works that tackle the problem
of symbolic execution in presence of unbounded loops and from which we
took a certain inspiration.

2.1 Random Structural Biased Testing

The goal of this section is to introduce the notion of uniform random walk
that is used in the context of our work in order to draw paths at random in
graphs. A random walk is a random exploration of a graph: from a given
vertex v, one establishes a distribution of probability over the successors of
v, chooses such a successor v′ to visit according to this probability, and so
on from v′. This requires knowing the exact structure of the explored graph.

Before introducing uniform random walks, we present the most simple of
random walks, namely isotropic random walks, and explain why one should
prefer the former to the latter in order to draw paths at random.

2.1.1 Isotropic Random Walks

Isotropic random walk is a classical and easy to implement method of ran-
dom exploration of graphs. It consists in simply choosing the next vertex to

23

visit uniformly among the successors of the current vertex. In Algorithm 1,
we use succs(G, v) to denote the successors of a vertex v in a graph G.

Algorithm 1: The isotropic random walk algorithm.

input : a graph G, a vertex v0 and a length l
output: a path p

let i = 0;
let v = v0;
let p = Nil;

while i < l ∧ succs(G, v) 6= ∅ do
choose a vertex v′ uniformly among succs(G, v);
append the edge (v, v′) to p;
i←− i + 1;
v ←− v′;

return p;

Since it only requires knowing the successors of the current vertex,
isotropic random walk seems to be the ideal candidate for exploring large
graphs at random. However, the induced distribution over paths is hard to
evaluate and directly depends on the topology of the explored graph. As a
result, isotropic random walks might only be able to detect few faults of the
program. Consider for example the graph of Figure 2.1.

s
0

s
2

s
1

s
3

s
4

s
6

s
5

s
7

s
2n

s
2n+2

s
2n+1

Figure 2.1: A pathological graph for isotropic random walks.

The expected number E(N) of random walks needed to obtain n distinct
paths of length n is:

E(N) =

n∑
i=0

E(Ni) =

n∑
i=0

1

pi
=

n−1∑
i=0

2i = 2n − 1

where E(Ni) (resp. pi) is the expected value (resp. probability) to draw a
new path after i − 1 different isotropic random walks. This shows that an
exponential number of random walks are needed to obtain n distinct paths
of a given length in the graph of Figure 2.1.

This is due to the fact that, at each visited vertex whose index is an
even number (excepted for the rightmost vertex), two successors can be

24

chosen indistinctly: the odd successor, through which only one path goes,
has the same probability to be chosen than the even one, from which an
exponential number of paths start. As a result, an important number of
paths are frequently shadowed by a single path and the distribution over
paths is biased towards those going through odd vertices.

If the numbers of paths of a given length starting at each vertex is known
at the moment it is visited, the distribution over successors can be biased
to give each path the same chance to be drawn.

2.1.2 Uniform Random Walks

We are interested here in drawing uniformly one or several paths of length
at most l in a graph G. We consider that graphs are triplets of the form
(V, r, E), where V is the set of vertices, r ∈ V an initial vertex (i.e. a root),
and E ⊆ V ×V a set of edges. Given a set VI ⊆ V of vertices of interest, our
goal is to draw a number of paths of length at most l going from the root r
to any element of VI , but we will first focus on a simpler problem, namely
drawing uniformly paths of length exactly n. We will see in the following
that, by a slight modification of G, drawing paths of length at most l in G
reduces to drawing paths of length l in the modified version of G.

The process is the same as for isotropic random walks: paths are built
step by step, by visiting vertices and choosing which successor to visit next,
adding the crossed edge to the path being built. The only difference lies in
how successors are chosen: here, successors are chosen in order to give each
path the same chance to be drawn. Let us suppose that vertex v is being
visited, and that there remains a non-null number m of edges to cross from
v in order to obtain a path of length l. The probability of each successor
of v to be chosen as the next vertex to visit should be proportional to the
number of paths that go through this successor. Let us note Pv(m) the
number of paths of length m going from any vertex v. The condition for
having the uniformity over paths is to choose the successor v′ to visit with
probability Pv′(m − 1)/Pv(m). Computing the number Pv(l) for any non
negative value of l can be done using the following recurrence rules:

Pv(0) = 1 if v ∈ VI
= 0 otherwise

Pv(l) =
∑

v′∈succs(G,v)

Pv′(l − 1) for l > 0

As an example, we give in Figure 2.3 the underlying graph of the CFG
of Figure 1.1b and its recurrence rules considering that the only vertex of
interest is the exit point (denoted 8 here). The corresponding Pv(i) for
0 ≤ i ≤ 11 are given in Table 2.1.

The generation of n paths of length l is done in two steps:

25

2

3

1

8

5 6

7

4

(a)

P1(0) =P2(0) = ... = P7(0) = 0

P8(0) = 1

P1(l) =P2(l − 1) (l > 0)

P2(l) =P3(l − 1) (l > 0)

P3(l) =P4(l − 1) + P8(l − 1) (l > 0)

P4(l) =P5(l − 1) + P6(l − 1) (l > 0)

P5(l) =P7(l − 1) (l > 0)

P6(l) =P7(l − 1) (l > 0)

P7(l) =P3(l − 1) (l > 0)

P8(l) = 0 (l > 0)

(b)

Figure 2.3: The underlying graph of the CFG of Figure 1.1b (a) and its
recurrence rules for VI = {8} (b).

1. compute Pv(i), for every vertex v ∈ V and every 0 ≤ i ≤ l,

2. produce n paths of length l following the process described previously.

The first step must be done only once, whatever number of paths is to
be drawn. The memory space requirements is l × |V | integer numbers; the
number of arithmetic operations done during this step is O(l × d × |V |) in
the worst case scenario, where d is the maximal number of out-going edges
among the vertices of G. The generation step is in O(l × d).

To draw n paths of length at most l in G, we draw n paths in the graph
obtained from G by modifying it in the following way. First, we add a vertex
r′, which becomes the new root, to its set of vertices. Then we add an edge
going from r′ to itself, and an edge from r′ to r. Finally, we draw n paths of
length n+1 in this new graph. Each of these paths goes k times through the
loop from r′ to itself, and crosses the edge from r′ to r once. By removing
those k+1 edges from such a path, we obtain a path of length n−k in G. It
is straightforward to verify that any path of length at most l can produced
in this manner, and that the generation is uniform.

For more details about uniform random walks and related issues, we
refer the curious reader to [45].

26

Table 2.1: Counting table for the graph of Figure 2.2a, with l = 11 and
VI = {8}.

l = 0 l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8 l = 9 l = 10 l = 11

v = 1 0 0 0 1 0 0 0 2 0 0 0 4

v = 2 0 0 1 0 0 0 2 0 0 0 4 0

v = 3 0 1 0 0 0 2 0 0 0 4 0 0

v = 4 0 0 0 0 2 0 0 0 4 0 0 0

v = 5 0 0 0 1 0 0 0 2 0 0 0 4

v = 6 0 0 0 1 0 0 0 2 0 0 0 4

v = 7 0 0 1 0 0 0 2 0 0 0 4 0

v = 8 1 0 0 0 0 0 0 0 0 0 0 0

2.2 Program Paths and Infeasibility

We saw previously that the existence of infeasible paths is a serious limi-
tation not only to random structural biased testing, but to most analysis
techniques based on control flow graphs. A number of works were con-
ducted, in different contexts, in order to mitigate the loss of precision or
performances caused by infeasible paths. In this section, we present some of
these recent works, and insist on how they handle (unbounded) loops, since
handling such loops is one the main issue when exploring the space of paths
of a CFG.

A number of solutions to the infeasible path detection problem were
presented in order to limit their negative impact in the data flow analysis
context. Indeed, classical approaches of data flow analysis are said to be
path-insensitive, i.e. they do not proceed path by path and their accuracy
and performances are negatively impacted because they do not distinguish
between feasible and infeasible paths.

Bodik et al. proposed in [13] an approach based on the detection of cor-
related branches. Given a conditional block b, one of its branch is said to
exhibit some correlation if the previous statements or conditional branches
taken along some path leading to b forces the execution to go through this
particular branch. In the presence of such correlation, there might exist
some infeasible paths because, along correlated paths, the truth value of the
condition has already be determined, forcing feasible paths to go through
exactly one branch. In this approach, the correlations are detected by prop-
agating, in a backward manner by some form of reverse symbolic evaluation,
the conditions of some specifically chosen branching points of the CFG. De-
pending on the sequence of statements the condition goes through, one might
decide if its truth value at its original block was known before said block
was reached. The authors do not provide a solution (or even directions) to
the problem of unbounded loops: conditions are propagated at most once to
each node, de facto bounding the number of iterations of any loop by one.

27

Gustafsson et al. proposed another approach in [29], with the intent of
enhancing the precision of data flow analysis, in the context of worst-case
execution time (WCET) analysis. These works are based on abstract execu-
tion, a variant of symbolic execution using abstract domains and operators:
an infeasible path is detected when the set of possible values of at least one
program variable at a given location is empty. The results obtained from
this phase are then translated into flow facts that will help during WCET
analysis. In this work, the authors only consider bounded loops, but do not
provide solutions for the case of unbounded loops.

Another approach consists in enhancing the data flow analysis itself to
make it path-sensitive (the same approach was applied to make abstract
interpretation path-sensitive, see [7] for example). In [24], Fischer et al.
enrich data flow analysis with predicated-lattices. Such lattice partitions the
program state according to a set of predicates and tracks a lattice element
for each partition. This results in predicated join operators that will only
merge paths along which the same predicates hold (unlike classical data
flow analysis that systematically joins paths, causing the loss of precision
mentioned above). Because this analysis extends the classical data flow
analysis technique, it is not impacted by unbounded loops.

The same approach, although realized in a different manner, was pro-
posed by Das et al. in [18]. In this case, the data flow analysis is enriched
with temporal logic properties, encoded as finite state machines, that are
checked during the analysis. Once again, the idea is to prevent merging
paths if the properties are not in the same states at join points. These
works were extended by Dor et al. in [21] in order to enhance the precision
of the approach for programs manipulating pointers and aliases.

As a final example, Ball and Rajamani proposed in [8] a path-sensitive
version of the RHS algorithm (for Reps, Horwitz and Sagiv, see [47]) for
boolean programs that uses Binary Decision Diagrams to identify infeasible
paths.

Various works (including ours) about infeasible path detection use a
path based constraint propagation approach. These approaches apply some
form of symbolic evaluation to paths to determine their infeasibility. These
methods are path-sensitive by nature: they usually have a high infeasible
path detection power but with a heavy overhead. They are usually used in
code optimization or software testing, in which precision is crucial.

Early works in this direction were published in 1994 in [26]. To our
knowledge, this paper is one of the first to combine bounded symbolic exe-
cution of all paths — i.e. symbolic execution of all paths up to certain depth
— with constraint solving in order to detect some infeasible paths. The
main contribution of this paper consists in an independent constraint solver,
KITP, designed specifically to detect the unsatisfiability of path predicates.
Thanks to the recent advances in constraint solving, more recent works in
the infeasible path detection area are less concerned in developing specific

28

constraint solvers, and usually rely on some efficient existing tools (like, for
example, Satisfiability Modulo Theories solvers — or SMT solvers, for short
— such as Alt-Ergo, CVC or Z3).

Despite these recent advances in constraint solving, a number of efforts
were made to alleviate the cost of calls to solvers in path based constraint
propagation approaches. Such noticeable advance is concolic testing [16, 52],
where actual execution of the program under test is coupled with symbolic
execution. It reduces the detection of infeasible paths to those paths that
go one branch further than some feasible one, alleviating the load of the
constraint solver and decreasing significantly the number of paths to be
considered. This approach naturally leads to coverage of all feasible paths of
a given maximal length (or that perform a pre-defined number of iterations
of each loop at most).

In 1996, Altenbernd enhanced symbolic execution with WCET analysis
techniques [5]. In this work, the considered programs can contain loops and
calls to recursive procedures but, since those programs are all obtained from
differential equations, the maximal numbers of iterations of each loop and
recursive calls can all be easily determined in advance.

More recently, Bjørner and Tillman used the path based constraint prop-
agation approach to detect infeasible paths in programs relying on string
libraries [12]. The idea is to apply, given a unique path, an integer abstrac-
tion of the string constraints occurring along that path. This abstraction is
then passed to a SMT solver. If this abstraction is unsatisfiable, the path
is reported as infeasible. Otherwise, the solver produces a model that fixes
lengths of enough strings to reduce the problem to a finite domain; the result-
ing fixed-length string constraints are then solved in a second step. Fixing
the length of strings naturally reduces the problem to artificially bounded
loops only (moreover, the search is also bounded by a maximal number of
calls to the solver).

Another approach of infeasible path detection is based on the syntax of
the program. Most recent and noticeable works in this area were conducted
by Ngo and Tan [43]. In this paper, the authors identified four syntactic
patterns that are searched, during test case selection, among the traces of
selected paths: a path whose trace exhibits an instance of such a pattern is
very likely (but not guaranteed) to be infeasible. The advantage of this ap-
proach comes from the fact that it avoids the expensive symbolic evaluation
and constraint solving steps, since paths are never checked to be infeasible
but rather considered infeasible. This gain in performance comes at the cost
of a loss of precision: such syntactic techniques are prone to reporting some
feasible paths as infeasible.

A recent approach of infeasible path detection, presented in [19], is based
on infeasible path generalization. The underlying idea is that if a sub-path
is known to be infeasible, then all paths that contain this sub-path are also
infeasible. The approach is based on constraint-based explanation [41], a

29

technique developed in Constraint Programming to explain unsatisfiability.
From an infeasible path, the approach builds a (potentially infinite) whole
family of infeasible paths that will not have to be considered in the following
path predicates solving phase.

Finally, we would like to mention early works that were conducted in
order to estimate the number of infeasible paths of a procedure — rather
than precisely identifying those paths — based on certain static code at-
tributes. The most famous work was presented by Malevris et al. in [38].
According to the authors — and rather unsurprisingly — the greater the
number of guards a path goes through, the more likely it is to be infeasible.
As a result, the number of guards involved in a path makes a good metrics
for assessing its feasibility. The advantage of such metrics is that they are
easy to implement and provide a fast way to predict path infeasibility with
a reasonable degree of confidence (see [50]), but they do not help actually
detecting infeasible paths however.

2.3 Symbolic Execution and Unbounded Loops

Symbolic execution of all paths is a well-known analysis technique that con-
sists in executing the program with symbolic inputs rather than concrete
ones. Unlike concrete execution, symbolic execution might fork at branch-
ing points: this is because the symbolic values of program variables at such
point might not be sufficient to decide what is the truth value of the con-
dition guarding that point. During symbolic execution, a condition — the
path predicate — is maintained along each path: it is the conjunction of
the constraints that the inputs of the program must satisfy in order for its
execution to follow that particular path. Constraint solving can be used in
conjunction with symbolic execution to detect infeasible paths. This can
be done in two manners: (i) on the fly, by calling a constraint solver any-
time the current path might become infeasible; (ii) a posteriori, after all
paths have been followed (if symbolic execution ever halts). The former has
the advantage that infeasible paths are discovered as soon as possible, but
usually requires a large number of calls to the solver, while the latter only
needs to call the solver once per path, but only detects infeasible paths a
posteriori. Thanks to the recent advances in constraint solving, combining
symbolic execution to the former is a very precise method for detecting the
infeasibility of a path or a number of paths.

Symbolic execution of all paths is limited by two major problems: the
combinatorial explosion of the number of paths to consider and the presence
of unbounded loops. In the latter case, due to the use of symbolic values,
the constraints gathered along paths that go through such loops might not
be sufficient to decide that the execution should halt at some point: such
a path might be followed infinitely, preventing the analysis to stop. In the

30

recent years, a number of works conducted in the area of software verification
proposed some solutions for these two problems. These approaches have the
same goal — proving that the program is safe w.r.t. to some property — and
globally proceed in the same manner: the property is encoded by an error
statement in the code of the program, and the latter is proven safe if this
statement is never executed in any run of the program, i.e. if all paths leading
to this statement are infeasible. These approaches tackle the two previous
problems by trying to detect subsumptions during the analysis. Roughly
speaking, a subsumption expresses the fact that some point met during the
analysis is a particular case of a point met previously. As a result, it is not
needed to explore the descendants of the subsumed point: they are particular
cases of the descendants of the subsumer. Since subsumptions might not be
found naturally, those methods rely on some form of abstraction in order
to force subsumptions. To preserve the unreachability of error statements,
these abstractions are refined over time, until the program can be proved
safe or unsafe (if the analysis terminates).

Our approach is directly inspired by some of these works, that we report
in this section, but with a major difference. These approaches aim at detect-
ing the unreachability of one (or several) pre-determined program locations
only. Unlike our work, the goal is not to produce an over-approximation of
the set of feasible paths of the program that would be as precise as possible,
but one that is precise enough to prove that the program is safe w.r.t. to the
considered property. In this sense, these approaches can be considered lazy
w.r.t. infeasible path detection. Nonetheless, they constitute a good basis
for our work since their goal is inherently the same than ours: detecting
infeasible paths while over-approximating the set of feasible ones.

We took direct inspiration from Tracer [35] (and, although in a lesser
measure, from the wider class of CEGAR-like systems [11, 17, 28, 33, 39]
based on predicate abstraction). Tracer is a tool that combines symbolic
execution of all paths, detection of subsumptions, abstraction and a coun-
terexample guided refinement mechanism based on interpolation and weak-
est precondition calculus. The algorithm implemented by Tracer can be
considered eager in the sense that it will always try first to produce the
loosest abstraction possible to force subsumption, and lazy in the sense that
it will only refine those abstractions that cause reporting false positives, i.e.
that cause some infeasible path leading to an error statement to be consid-
ered feasible. During refinements, Tracer uses a mix of weakest precondition
calculus and interpolation to produce conditions that capture the reason of
the infeasibility of a given path from a given program location. Such con-
ditions represent a subset of the constraints that all program states must
satisfy at this point. These conditions serve two purposes: preventing too
crude abstractions in the future by forcing loops to be unfolded again, and
allowing to merge different paths during the analysis, thus mitigating the
explosion of paths. The purpose of interpolation here is to remove from

31

these conditions the facts that are irrelevant w.r.t. to the unreachability of
the error statement (typically, constraints that are related to the unreacha-
bility of other statements). This yields conditions that focus on the relevant
facts, which simplify the analysis but also participates in its laziness when
it comes to infeasible path detection. In the following, we refer to such con-
ditions as safeguard conditions, since their goal is to block abstractions that
would prevent detecting the unreachability of some locations.

When studying Tracer in order to adapt it to our purpose, we found
that the presented proof sketches in the accompanying literature revealed
a sensible gap to a formal development. Approaches similar to Tracer and
ours rely on a number of features and heuristics that interact in a very
intricate manner, which makes them perfect candidates for machine aided
formalization and pushed us toward stating the formal theory introduced
in Chapter 4. To our knowledge, such formalization was never done before.

Tracer’s approach is itself directly inspired from the works of McMil-
lan related in [39] and [40]. The major difference between McMillan’s and
Tracer’s approach lies in the way safeguard conditions are computed. In
the former, weakest precondition is never used: safeguard conditions are
computed by interpolation only, from the proofs of the infeasibility of paths
leading to the error statements. Despite a number of minor distinctions
between the two approaches — McMillan refers to the notion of subsump-
tion as coverage, and checks for the infeasibility of paths only when those
reach the end of the program — we do not observe other differences in both
approaches. It is reported in [39] that the approach does not guarantee
termination of the analysis in all cases (which is also the case for Tracer).

The works presented in [40] rely on the same ideas but extends the ap-
proach in order to force convergence of unbounded loops in more cases than
previously, besides adapting it for programs with multiple procedures. The
idea here is to instrument the program with additional variables — one for
each loop — whose values decrease when loops are unfolded and increase
during backtracking. In the first step, the analysis starts with concrete
values for each additional variables, which actually forces each loop to be
unfolded that number of times at most during the analysis. This first step
of the analysis is a form of bounded model-checking, and safeguard condi-
tions produced during this step usually contains facts that depends on the
values of the additional variables. The second step of the analysis consists
in purging the safeguard conditions from the facts relying on the additional
variables, as well as any non-inductive constraints. This yields inductive
formulae that might preserve or not the unreachability of the error nodes.
If this is the case, the program is declared safe. If not, the analysis can be
restarted while increasing the initial values of the additional variables. As for
the works introduced in [39] this approach does not guarantee convergence
in all cases, but leads to it in more cases than previously.

In all these approaches, the process of computing abstractions at the

32

different program locations can be seen as a form of invariant synthesis.
Note however that these invariants are usually weak (they are far from being
the strongest possible invariants; computing such invariants is not the goal
of the approaches presented in this section) in the sense that they express
some properties of the program related to its termination rather than to
its functional aspects. As a result, we did not bring a particular interest to
invariant synthesis — in its widely accepted meaning — in this thesis, but we
do not exclude that injecting such invariants (user-provided or automatically
inferred) in our analysis might improve the infeasible path detection power
of our approach.

33

34

Chapter 3

Introducing Red-Black
Graphs and their
Transformations

3.1 Introduction

In this chapter, we introduce the notations and formalize the various con-
cepts we will rely upon in the rest of this thesis.

We first show in Section 3.2 how we model programs in a standard way,
using Labeled Transition Systems (LTS).

Then, we show in Section 3.3 how we model the execution of programs by
symbolic execution. Symbolic execution is a program analysis technique that
executes programs with symbolic inputs rather than concrete ones. Sym-
bolic execution follows each execution path of the program under analysis:
when a branching point is met, it forks in order to follow both paths, un-
like concrete execution. Along each path, symbolic execution maintains a
condition, called the path predicate, which is updated whenever a non-trivial
instruction is met, to represent the constraints the inputs must satisfy for
the execution to reach a particular program point. We say that symbolic ex-
ecution performs over configurations, which represent sets of program states
at a given program point. We first formalize the concept of configurations
in 3.3.1, show how configurations are built using symbolic execution in 3.3.2
and finally show how symbolic execution performs on programs in 3.3.3.

In Section 3.4, we introduce the notions of subsumption and abstraction
of a configuration. Subsumption is a relation between configurations: in-
formally, we say that a configuration is subsumed by another if the former
is a particular case of the latter. In our algorithm, the main problem is to
detect subsumptions between configurations along paths followed by sym-
bolic execution, to avoid unfolding loops ad infinitum. However, given two

35

configurations, it is usually not the case that one is a particular case of the
other and subsumption cannot occur. In order to increase the likelihood of
subsumption occurring, our algorithm is allowed to abstract configurations
during the analysis. Abstracting a configuration can be seen as enlarging
the set of program states it represents, which is done by forgetting part of
the information the configuration carries. However, this loss of informa-
tion might restrain to detect the infeasibility of some paths in the LTS of
the program under analysis, thus introducing infeasible paths in the new
LTS. To prevent performing too crude abstraction, configurations can be
labeled by conditions acting as safeguards against such abstractions. These
conditions could be provided by the user before the start of the analysis,
or computed during the analysis by some kind of counterexample guided
refinement, learning from faulty abstractions. We formalize subsumption
in 3.4.1. We introduce abstraction and how too crude abstractions can be
prevented in 3.4.2.

Then, we introduce in Section 3.5 the notion of red-black graphs. In
the rest of this thesis, the interest of red-black graphs is twofold. First,
they are a convenient data structure for stating and proving the two key
properties our approach must maintain: all feasible paths of the original
model are preserved, and all paths of the new model must perform the same
computations than their equivalent in the original model. Second, to stay as
close as possible to the formalization, our algorithm maintains a red-black
graph during its execution. This red-black graph is then turned into a LTS
when the analysis is over.

Finally, we introduce in Section 3.6 the various red-black graph trans-
formations our algorithm is allowed to perform.

3.2 Modeling programs

Programs are modeled by Labeled Transition Systems:

Definition 1. A Labeled Transition System (LTS) is a quadruple (L, li,∆, F)
where:

• L is a finite set of program locations,

• li ∈ L is the initial location, i.e. the unique entry point of the program,

• ∆ ⊆ L× Labels × L is a finite set of transitions, where Labels is a set
of labels whose elements represent the basic operations that can occur
in programs,

• F ⊆ L a set of final locations, i.e. exit points.

We note Vars the set of program variables and we represent labels by the

36

following datatype:

label ::= Skip | Assume φ | Assign v e

where φ is a boolean expression over the elements of Vars, v is a program
variable and e an arithmetic expression over the elements of Vars.

We suppose LTS to be equipped with the following applications: src :
∆ → L, tgt : ∆ → L, label : ∆ → Labels and trace : ∆∗ → Labels∗, which
respectively associate their source, target and label to transitions and their
trace to sequences of transitions. Given a location l of an LTS, we note ∆i(l)
and ∆o(l) the sets of in-going and out-going transitions of l, respectively.

Location li has no incoming transition and elements in F have no out-
going transitions. Each location l of L is reachable from li, and there exists
a final location in F reachable from l. The transition relation represents the
operations that are executed when control flows from a program location to

another. We write l
label→ l′ to denote the transition leading from l ∈ L to

l′ ∈ L executing the operation corresponding to label ∈ Labels. Conditional
statements are directly encoded using the underlying graph structure of the
LTS by adding transitions labeled with Assume φ or Assume ¬ φ to the
successors.

Such LTS model programs as if they were the result of a pre-compiler
for a simple imperative programming language where basic operations are
either assignments or Skip. Skip is used for transitions associated with
statements controlling the flow of execution, like break, continue or goto

statements. Conditional statements are either If-Then-Else blocks (the Else-
branch being optional) or While-loops.1 Conditionals are assumed to have
no side-effects. There is no explicit block structure: it is assumed that, after
some preliminary scope analysis and renaming, all variables are defined at
the topmost level. We also suppose that this scope analysis ensures that
variables used without being defined are all inputs of the program (global
variables or formal parameters), not uninitialized local variables. Given two
distinct locations l and l′ of an LTS, we suppose that there can be only one
transition going from l to l′. Finally, we consider only “loop free” LTS in
which no vertex has an edge on itself.

Since CFG have usually a unique exit point, we could have define LTS
with a unique final location f in place of the set F . However, our approach
produces, given an LTS and an initial configuration of the program, a new
LTS in which locations are occurrences of the locations of the input LTS.
Thus, our results might contain several occurrences of the unique original
final location. The previous definition covers both cases of LTS.

The domain of all program variables is noted D. A program state is a
valuation of program variables.

1When the Else-branch is missing, we add to the LTS one transition that is: (i) labeled
by the negated condition for the missing branch; (ii) pointing to the vertex at the end of
the block.

37

Function get lock()

1 let lock = 0;
2 let new = old + 1;

3 while new 6= old do
4 lock ← 1;
5 old ← new ;
6 if * then
7 lock ← 0;
8 new ← new + 1;

9

10 if lock = 0 then
11 error();

(a)

1

lock := 0

new := old+1

4

new ≠old

6

lock := 1

old := new

true

3

79

10

11

new = old

true

lock := 0new := new+1

12

lock = 0
Skip

lock ≠0

Skip

2

5

8

(b)

Figure 3.1: A lock acquisition program (a) and its LTS (b).

Definition 2. A program state σ : Vars → D is a function associating
values to program variables.

In the examples, we use D = N. This could be extended to arrays, records
and other constructions with standard restrictions: the only limitation is
the one given by the constraint solver in use. Restrictions linked to the logic
supported by constraint solvers or theorem-provers are quite classic in this
field of study.

Example 1. The program in Figure 3.1a (borrowed from [31]) implements
a lock acquisition algorithm. The process or thread executing this program
enters the loop (line 3) and first acquires the lock (line 4), but releases it
immediately if the call to an external condition - like a function or system call
- succeeds (line 6). The condition ∗ of the if statement at line 6 abstracts the
call to the external condition. Since nothing is known about this condition,
it can be indistinctly true or false whenever it is called. The program has
been instrumented to prove that, when the execution exits the loop, lock
must be 1. If this is not the case, an error is raised (line 11). In [31],
proving the partial correctness of this code is viewed as proving that any
path leading to line 11 is infeasible.

The LTS of this program is given in Figure 3.1b. For readability reasons,
transitions are labeled with corresponding program statements. Since the
condition * at line 6 can be either true or false anytime it is used and

38

since the result of the call is not stored, both branches of this conditional
statement have been translated into transitions labeled by Assume true.
Moreover, since: (i) our interest is not in verifying programs, but pruning
infeasible paths from their LTS representation, (ii) our input language does
not include an error() statement, the instruction error() at line 11 has
been translated into a Skip label. By building a new LTS, which includes
all feasible paths of the original CFG and performs the same computations,
in which the edge from 10 to 11 is marked as infeasible, our approach is also
able to show that the function will not exit with lock = 0. However, our
objective is to prune infeasible paths in general, not only the ones associated
with program correctness.

3.3 Operational Semantics of Programs

3.3.1 Configurations

Symbolic execution consists in executing programs giving symbolic values
to their inputs rather than concrete ones. Symbolic values are represented
by so called symbolic variables that we model by indexed version of program
variables. The set Vars × N of all symbolic variables is denoted SymVars.

Notation: to ease the reading we note vi the symbolic variable (v, i).

At each step of symbolic execution, one must keep track of two types of
facts:

• the symbolic values associated to program variables,

• the constraints that these symbolic values must satisfy for the execu-
tion to reach the current program point.

We formalize these notions by the concept of configuration.

Definition 3. A configuration is a pair (s, π) where:

• s : Vars → N, called the store, is a function from program variables to
indexes,

• π, called the path predicate, is a formula over symbolic variables.

We use stores to map program variables to symbolic variables. Given a store
s and a program variable v, the symbolic variable mapped to v by s is the
pair

(
v, s(v)

)
.

The path predicate is a conjunction: it records the constraints that the
different symbolic values associated to program variables have to satisfy in
order for an actual execution to reach the corresponding program point.

39

Example 2. Let c1 be the configuration:(
{lock 7→ 0,new 7→ 0, old 7→ 0}, true

)
It maps program lock (resp. new and old) to symbolic variable lock0 (resp.
new0 and old0). Its path predicate is simply true, i.e. nothing is known
about the symbolic values of the three program variables when entering the
corresponding program point.

The configuration:

c3 =
(
{lock 7→ 1,new 7→ 1, old 7→ 0}, lock1 = 0 ∧ new1 = old0 + 1

)
would be computed during symbolic execution of the program given in Fig-
ure 3.1a with initial configuration c1 when reaching the first occurrence of
program location 3, i.e. by symbolic execution of transitions
(1,Assign lock 0, 2) and (2,Assign new old + 1, 3), in this order. It maps
the program variable lock to the symbolic variable lock1, new to new1, etc.
Its path predicate states that the symbolic value of lock must be zero (sup-
pose that the domain is the set of integers) and the symbolic value of new
must equals the symbolic value of old plus one. Nothing is known about the
symbolic value of old0, hence about the value of program variable old .

The set of all configurations is denoted by C. A configuration represents
a set of program states. We define the concepts needed to formalize this
notion of program states represented by a configuration.

Similarly to a program state, a symbolic state is a function from symbolic
variables to values.

Definition 4. A symbolic state σsym : SymVars → D is a function associ-
ating values to symbolic variables.

Given a store s, a program state and a symbolic state are said to be consis-
tent with s if, for each program variable v, they associate the same value to
v and to the symbolic variable it is mapped to by s.

Definition 5. Let s : Vars → N be a store, σ : Vars → D a program state
and σsym : SymVars → D a symbolic state. σ and σsym are consistent with
s, noted cons(σ, σsym , s), if :

∀v ∈ Vars. σ v = σsym
(
v, s(v)

)
40

Given an arithmetic or boolean expression e over program (resp. symbolic)
variables and a program state σ (resp. a symbolic state σsym), we write e(σ)
(resp. e(σsym)) the evaluation of e in σ (resp. σsym).

The set of program states represented by a configuration c, or simply the
set of states of c, is the set of program states σ for which there exists a
symbolic state σsym such that: (i) σ and σsym are consistent with the store
of c; (ii) σsym satisfies the path predicate of c.

Definition 6. Let c = (s, π) be a configuration. The set of states of c,
noted States(c), is the set

{
σ. ∃σsym . cons(σ, σsym , s) ∧ π(σsym)

}
.

A configuration c = (s, π) is satisfiable if there exists a symbolic state that
satisfies its path predicate π. This is equivalent to say that its set of states
is not empty.

Definition 7. A configuration c = (s, π) is satisfiable if there exists a sym-
bolic state σsym such that π(σsym) holds.

Lemma 1. A configuration c is satisfiable if and only if States(c) 6= ∅.

Proof. Suppose that c = (s, π) is satisfiable and let σsym be a symbolic
state that satisfies π. By Definition 5, the program state that associates
σsym

(
v, s(v)

)
to all program variables is consistent with s. Thus, σ is a

state of c, by Definition 6.
Suppose that States(c) is not empty and let σ be a state of c. By

Definition 6 there exists a symbolic state σsym such that σ and σsym are
consistent with s and which satisfies π, thus c is satisfiable.

Example 3. The configuration:

c3 =
(
{lock 7→ 1,new 7→ 1, old 7→ 0}, lock1 = 0 ∧ new1 = old0 + 1

)
given in Example 2 is satisfiable. For example, the symbolic state σsym
which associates 0 to lock1, 1 to new1 and 0 to old0 is a model of its path
predicate. Moreover, its set of states is not empty, as one can build from
σsym a program state σ such that both are consistent with the store of c3.
This σ would associate 0 to lock , 1 to new , etc.

Let c10 be the following configuration:(
{lock 7→ 1,new 7→ 1, old 7→ 0}, lock1 = 0∧ new1 = old0 + 1∧ new1 = old0

)
which would be computed when reaching the first occurrence of location 10
during symbolic execution of the program depicted in Figure 3.1a, i.e. by

41

symbolic execution of transitions (1,Assign lock 0, 2), (2,Assign new old +
1, 3) and (3,Assume new = old , 10), in this order. This configuration is
unsatisfiable, since its path predicate requires new1 to be both equal and
greater than old1. Its set of states is empty, hence subpath 1 · 2 · 3 · 10 is
infeasible.

Finally, we say that a configuration c entails a boolean expression over
program variables if this expression evaluates to true for all states of c.

Definition 8. Let c be a configuration and φ a boolean expression over
program variables. We say that c entails φ if ∀σ ∈ States(c). φ σ.

3.3.2 Symbolic Execution Steps

We represent symbolic execution as a function SE , which takes a configura-
tion and a label as inputs and produces a second configuration.

Definition 9. Symbolic execution is a function SE from C × Labels to C
defined as follows :

SE c l =

c if l = Skip(
s, π ∧ JφKs

)
if l = Assume φ(

s(v := i), π ∧ (v, i) = JeKs
)

if l = Assign v e

where:

• JeKs (resp. JφKs), called the adaptation of e (resp. φ) to the store s,
denotes the expression obtained from e (resp. φ) by substituting ev-
ery occurrence of any program variable v by the symbolic variable(
v, s(v)

)
,

• f(x := y) denotes the function associating y to x and f(z) for all
z 6= x, i.e. s(v := i) is the store obtained from s by associating a new
index i to v. The new index i must be such that the symbolic variable
(v, i) is fresh for c, i.e. it is not yet associated to a program variable
by the store and it does not occur in the path predicate.

Example 4. Symbolic execution of label Assign lock 0 from the initial con-
figuration c1 given in Example 2 gives the configuration c2:

c2 = SE c1 (Assign lock 0)

=
(
{lock 7→ 1,new 7→ 0, old 7→ 0}, lock1 = 0

)
Its store associates the index 1 to program variable lock , and the constraint
lock1 = 0 relating the program variable lock to its symbolic value (which
happens to be concrete) has been added to the path predicate.

42

Symbolic execution of label Assign new old + 1 from c2 yields the configu-
ration c3:

c3 = SE c2 (Assign new old + 1)

=
(
{lock 7→ 1,new 7→ 1, old 7→ 0}, lock1 = 0 ∧ new1 = old0 + 1

)
Its store has been updated for program variable new . The right-hand side
of the new constraint new1 = old0 + 1 has been obtained by substituting
the only occurrence of old in old + 1 by its symbolic counterpart at c2.

Symbolic execution of label Assume new 6= old from c3 gives the configura-
tion:

c4 = SE c3 (Assume new 6= old)

=
(
{lock 7→ 1,new 7→ 1, old 7→ 0},
lock1 = 0 ∧ new1 = old0 + 1 ∧ new1 6= old0

)
Again, the new conjunct in the path predicate has been obtained by sub-
stituting occurrences of program variables in the guard new 6= old by the
symbolic variables given by c3.

In the case where l is an assignment, the way the new index i is chosen
has no real influence on the result of SE as long as (v, i) is fresh for c:
different choices for i yield configurations with identical sets of states. In
practice, we just take the successor of the current index, as shown in the
previous example.

Lemma 2. Let l be a label and c1 and c2 two configurations such that
States(c1) = States(c2), then

States(SE c1 l) = States(SE c2 l)

Proof. The proof is obtained by structural induction on l:

• it trivially follows Definition 9 when l = Skip,

• given a configuration c and a label l = Assume φ, one can show that

States(SE c l) =
{
σ ∈ States(c). φ(σ)

}
(3.1)

Thus

States(SE c1 l) =
{
σ ∈ States(c1). φ(σ)

}
=
{
σ ∈ States(c2). φ(σ)

}
= States(SE c2 l)

43

• similarly, given a configuration c and a label l = Assign v e, one can
show that

States(SE c l) =
{
σ(v := e(σ)) | σ. σ ∈ States(c)

}
(3.2)

Thus

States(SE c1 l) =
{
σ(v := e(σ)) | σ. σ ∈ States(c1)

}
=
{
σ(v := e(σ)) | σ. σ ∈ States(c2)

}
= States(SE c2 l)

Proof for equation (3.1) directly follows Definitions 5, 6 and 9. Proving
equation (3.2) requires a great number of technical details so we skip its proof
here, but it is given (as well as the corresponding lemma) in Appendix A.6.3.

Symbolic execution from an unsatisfiable configuration always yields an
unsatisfiable configuration. This property of SE is in accordance with the
fact that infeasible paths are made of a (potentially empty) feasible prefix
and a (non-empty) infeasible suffix.

We extend SE to lists of labels, which is realized by the following function
SE ∗. Properties of SE also hold for SE ∗.

Definition 10. SE ∗ is a function which takes a configuration and a list of
labels as inputs and returns a configuration, defined as follows

SE ∗ c ls =

{
c if ls is empty

SE ∗
(
SE c (hd l)

)
(tl ls) otherwise

where hd and tl give the head and the tail of a list, respectively.

A list of labels is said to be feasible from a configuration c if its symbolic
execution from c yields a satisfiable configuration.

Definition 11. A list of labels ls is feasible from a configuration c if SE∗ c ls
is satisfiable.

44

3.3.3 Symbolic Execution of Programs

Symbolic execution of a program is performed over its LTS representation,
given an initial configuration whose store associates 0 to every program
variable. In general, the path predicate of this initial configuration is simply
true, however nothing restrains from starting the analysis with a different
path predicate which would encode a given precondition.

Symbolic execution follows every path of the LTS representation of the
program and maintains a configuration which is updated, using SE as de-
fined in the previous subsection, whenever a transition is taken. When a
branching point is met, symbolic execution forks and continues along both
paths, unlike concrete execution. Whenever the current configuration is
proved unsatisfiable, thanks to a call to a constraint solver, symbolic exe-
cution halts along the current path: there exists no valuation of the input
variables such that the execution reaches the current program point. Since
the current configuration has been proved unsatisfiable, its successors are
also unsatisfiable. The current path is said to be infeasible.

Paths followed during symbolic execution can be represented by a sym-
bolic execution tree. Its nodes and leaves are occurrences of locations of the
original program; they are labeled by the configurations computed at the
corresponding program points. Its branches are labeled by the correspond-
ing labels in the original LTS. In presence of loops, and without a specific
treatment for them, one obtains a potentially infinite symbolic execution
tree. Adding constraint-solving to symbolic execution allows to detect some
infeasible paths, sometimes a fair number of them, while following all feasible
paths. In general, symbolic execution methods result in an over-approxima-
tion of the set of feasible paths.

In software testing, symbolic execution is used to generate test inputs for
each path of the symbolic execution tree that was not detected infeasible.
For example, given an initial configuration whose path predicate is true,
symbolic execution of the simple program in Figure 3.2a yields the symbolic
execution tree depicted in Figure 3.2c. It has four paths: two feasible and
two infeasible, the latter having their last step marked by a ⊥ symbol in
Figure 3.2c. The two feasible paths can be executed by running the program
on the inputs {a = 3, b = 1} and {a = −2, b = 0}. As an example, we give
the configurations computed at the four leaves of this symbolic execution
tree. These four configurations have the same store, since c is assigned twice
on each path: {a 7→ 0, b 7→ 0, c 7→ 2}. Their path predicates are:

• π60 ≡ c1 = a0 ∧ c1 < b0 ∧ c2 = b0 − c1 ∧ c2 < 0,

• π70 ≡ c1 = a0 ∧ c1 < b0 ∧ c2 = b0 − c1 ∧ c2 ≥ 0,

• π61 ≡ c1 = a0 ∧ c1 ≥ b0 ∧ c2 = c1 − b0 ∧ c2 < 0,

• π71 ≡ c1 = a0 ∧ c1 ≥ b0 ∧ c2 = c1 − b0 ∧ c2 ≥ 0

45

Function foo(int a, int b)

1 let c = a;

2 if c < b then
3 c← b− c;

else
4 c← c− b;
5 if c < 0 then
6 c← −c;

(a)

1

c := a

3

c < b

5

c := b−c

2

76

c < 0 c≥0

c :=−c

4

c≥b

c := c−b

(b)

10

c := a

30

c < b

c := b−c

20

60

c≥b

c < 0

70 61

c≥0

71

50 51

c := c−b

c < 0 c≥0

40

┴ ┴

(c)

Figure 3.2: A simple example program (a), its LTS (b) and its symbolic
execution tree (c). Configurations are not shown.

with π60 and π61 being unsatisfiable.

Symbolic execution can also be used for verification purposes [34, 40] For
example, the program in Figure 3.2a computes in c the distance between
its inputs a and b. When it ends, c must be greater or equal to 0. As
shown in Figure 3.2c, paths leading to an occurrence of program location
6 are detected infeasible thus no run of the program can execute the last
assignment.

Besides restrictions due to the use of constraint-solvers or theorem-
provers for checking the satisfiability of path predicates, symbolic execution
is also limited by the unbounded loops in the source code. In their presence,
symbolic execution might unfold indefinitely the same program path, result-
ing in an infinite symbolic execution tree. For example, symbolic execution
of the lock acquisition program in Figure 3.1a from the initial configuration
c1 =

(
{lock 7→ 0,new 7→ 0, old 7→ 0, true}

)
given in Example 2 yields the

infinite symbolic execution tree depicted in Figure 3.3b. The path that does
any number of iterations of the loop but that never goes through transition
(6,Assume true, 9) is feasible and can always be extended by another such
iteration.

A classical way to mitigate this problem is to force symbolic execution
to end by adding some timeout conditions, for example to stop following a
path when it reaches a given maximal length [25] or when all loops have been
iterated at most a given number of times along each path [52]. However,
this solution is obviously not ideal, since in this case the resulting symbolic
execution tree only represents a finite set of prefixes of feasible paths. This
can prevent to discover faults that might be only observable beyond these
time out conditions.

In the next section, we introduce an elaborated solution based on sub-
sumption and abstraction to address this problem. The idea is to force

46

1

lock := 0

new := old+1

4

new ≠old

6

lock := 1

old := new

true

3

79

10

11

new = old

true

lock := 0new := new+1

12

lock = 0
Skip

lock ≠0

Skip

2

5

8

(a)

10

40

60

90

100

30

41

31

110 120

101

70

91

32

42 102

61

92

43

111 121

103 93

34

71

33

20

50

80

51

81

┴

┴

┴

┴

┴

┴

(b)

Figure 3.3: The LTS (a) and the symbolic execution tree (b) of the lock
acquisition program given in Figure 3.1a: the feasible path that never goes
into the inner conditional does not end.

stopping the unfolding of loops by detecting subsumptions between the ver-
tices of the symbolic execution tree, possibly forcing them with abstraction.
This will turn the potentially infinite symbolic execution tree into a complete
finite symbolic execution graph which over-approximates the set of feasible
paths of the original LTS.

3.4 Subsumption

3.4.1 Subsumption

In order to avoid unfolding unbounded loops infinitely, we enrich symbolic
execution with the detection of subsumptions. As said earlier, subsumption
is a relation between configurations: roughly speaking, a configuration c′ is
subsumed by a configuration c if it is a particular case of c. More precisely,

47

c′ is subsumed by c if its set of states is a subset of the set of states of c.

Definition 12. Let c and c′ be two configurations: c′ is subsumed by c,
noted c′ v c, if States(c′) ⊆ States(c).

In practice, we will only be interested in subsumptions taking place be-
tween occurrences of the same program location. Moreover, these program
locations must represent loop headers. When following an execution path,
every time a loop header is reached, the algorithm checks if a subsumption
can apply with one of the previous occurrences of the same loop header.
If the subsumption is established, symbolic execution of the current path
halts: successors of a subsumed program point are subsumed by successors
of the subsumee. If not, symbolic execution continues.

Example 5. The configuration:

c30 =
(
{lock 7→ 1,new 7→ 1, old 7→ 0}, lock1 = 0 ∧ new1 = old0 + 1

)
computed for 30, the first occurrence of program location 3, subsumes the
configuration at point 32 :

c32 =
(
{lock 7→ 3,new 7→ 2, old 7→ 1}, lock1 = 0 ∧ new1 = old0 + 1 ∧
lock2 = 1 ∧ old1 = new1 ∧ lock3 = 0 ∧ new2 = new1 + 1

)
Indeed, both configurations require lock to be 0 and new to be old plus one.

However, it does not subsume the configuration:

c31 =
(
{lock 7→ 2,new 7→ 1, old 7→ 1}, lock1 = 0 ∧ new1 = old0 + 1 ∧
lock2 = 1 ∧ old1 = new1

)
computed for program point 31 since, unlike c30 , c31 requires lock to be 1
and new and old to be equals.

Subsumption between two occurrences of a loop header corresponds to
the inclusion of the set of states of the subsumee into the set of states of
the subsumers, and this inclusion is based on the path predicates of both
configurations. If the path predicate of the possible subsumer includes few
constraints a subsumption can occur without being always meaningful. Such
an example is a program whose first instruction is a loop. In absence of any
user precondition, the path predicate for the first visit of the header of the
loop is true and the corresponding configuration can subsume any further
occurrence of that loop header along a symbolic path2. We need additional

2This situation can also happen as the result of successive abstractions of a configura-
tion, as explained in the next section.

48

heuristics to distinguish useful subsumptions from the set of possible sub-
sumptions.

Symbolic execution is monotonic with respect to the definition of sub-
sumption, a result which extends to SE ∗. As a result, there is no need to
explore the successors of a subsumed point: they are subsumed by the suc-
cessors of the subsumer. This is a crucial point to recall for proving that
our algorithm preserve the set of feasible paths of the original LTS.

Theorem 1. Let c and c′ be two configurations such that c v c′, and l a
label. Then SE c l v SE c′ l.

Proof. The proof is obtained by structural induction on l:

• it trivially follows Definition 9 when l = Skip,

• if l = Assume φ then, by equation (3.1):

States(SE c l) =
{
σ ∈ States(c). φ(σ)

}
⊆
{
σ ∈ States(c′). φ(σ)

}
= States(SE c′ l)

• if l = Assign v e then, by equation (3.2):

States(SE c l) =
{
σ(v := e(σ)) | σ. σ ∈ States(c)

}
⊆
{
σ(v := e(σ)) | σ. σ ∈ States(c′)

}
= States(SE c′ l)

Detecting subsumptions during symbolic execution can turn the poten-
tially infinite symbolic execution tree into a finite symbolic execution graph,
whose back-edges are given by established subsumptions. However, since
subsumption corresponds not to an equality but only to an inclusion of sets
of program states, which entails a inclusion of sets of feasible paths starting
at both configurations involved in a subsumption, adding a subsumption to
the symbolic execution tree often comes at the price of introducing infeasible
paths into it. A challenge is thus to accept only subsumptions that introduce
a reasonable number of infeasible paths. This is addressed in Chapter 5.

49

3.4.2 Abstracting Configurations

In general, when the algorithm attempts at establishing a subsumption, the
current configuration is not a particular case of its ancestor. The configura-
tions at the potential subsumee and subsumer record two snapshots of the
symbolic values of variables. Except for trivial loops, the symbolic values of
some variables have changed between the two configurations and subsump-
tion does not occur. In such a case, the algorithm is allowed to abstract the
configuration at the potential subsumer in order to force the subsumption.

Abstracting a configuration means forgetting part of the information it
carries. The store component of a configuration records the symbolic vari-
ables currently associated to program variables, the path predicate records
constraints on these symbolic variables, expressed as a conjunction of for-
mulae. Abstraction discards some of these formulae and there are various
ways to do so: remove a set of conjuncts, compute a weaker form of the
path predicate that would be implied by the current path predicates of both
configurations (see for instance [30, 40]), or even updating the store. In
Chapter 5, we introduce and use different ways of computing abstractions.
For now, we define abstraction of a configuration in a large sense.

Definition 13. Let c be a configuration. An abstraction of c is a configu-
ration ca such that c v ca.

Performing an abstraction at a loop header can be seen as discovering
a loop invariant for the context at this occurrence of the loop header. This
procedure is a crucial point in our approach (as well as for any abstrac-
tion-based analysis technique) since the ability of detecting infeasible paths
directly depends on its accuracy. Even if the strongest possible invariant
could be guessed by testing all possible subsets of constraints of the path
predicate at the loop header, this is not possible in practice since it is ex-
ponential. In our approach, the idea is that the invariant is a subset of the
constraints in the path predicate at the loop header. Abstraction is triggered
by the attempt to introduce a subsumption and we discard some of these
constraints until the configuration at the loop header becomes a generaliza-
tion of the configuration at the about-to-be-subsumed point. A single node
might subsume any number of nodes, and can be abstracted any number of
times needed. These potential subsumees exist on distinct paths, thus we
discard constraints by testing path by path. This is equivalent to compute
path-based invariants for each path within the loop and then intersect them
at the loop header. We say that a formula φ is a path-based invariant along
a path p if it holds in the states (or the configurations) before and after the
execution of p. This prevents to compute the strongest invariants but, for
performance reasons, we cannot afford an expensive method of abstraction.

Once abstraction has been performed on the subsumer, configurations
located in its sub-tree must be recomputed by propagating the abstracted

50

configurations to their successors, in order to keep the symbolic execution
tree consistent. Abstractions are propagated to successors by symbolic exe-
cution. When an abstraction is propagated to a program point that has been
abstracted itself previously, one must take care to combine both abstractions
at this program point. The way abstractions are combined depends on the
method of abstraction used: methods of combination are described with
methods of abstraction in Chapter 5.

By discarding parts of the path predicate, propagating an abstraction
might turn unsatisfiable configurations back to satisfiable ones, making them
targets for symbolic execution again.

Propagating an abstraction might rule out existing subsumptions involv-
ing successors of the subsumer: when the abstraction is propagated to an
already existing subsumee, one must check that the existing subsumption
still holds since the new abstraction possibly enlarges the set of states of the
subsumed configuration.

Finally, once abstraction has been propagated, the new configuration of
the about-to-be-subsumed node might not be subsumed by the configuration
of the potential subsumer anymore, and subsumption must be checked again.
When such a conflict exists, we discard the current abstraction - the attempt
to subsume fails - and keep the existing subsumptions, if any.

Forcing the first possible subsumption by abstraction is not always of
great profit: each abstraction discards part of the information about the
symbolic values of program variables at the program point it is performed.
Thus, infeasibility of some paths might not be detected anymore, and a
whole new set of infeasible paths might be added to the symbolic execution
graph, in comparison to the set of feasible paths one would obtain with
classical symbolic execution. A crucial point to stop unfolding loops without
introducing too many infeasible paths is the choice of an adequate potential
subsumer — there might exist more than one other occurrence of the loop
header — and an abstraction of the selected subsumer that makes that
subsumption possible without discarding too many constraints of the path
predicate.

Controlling Abstractions To prevent from performing unwanted ab-
stractions, or for recording that some abstraction has been banned, predi-
cates can be attached to configurations for loop headers. They act as safe-
guards against too crude abstractions: only abstract configurations that
imply this additional predicate will be considered. For these abstractions
to exist, such a predicate must hold for the configuration it labels, i.e it
must hold for all program states represented by the configuration. This
predicate could be provided by the user prior to the analysis. It could be
a functional invariant of the considered loop, as is done (for example) with
assert statements in Frama-C [37]. Such predicates are usually obtained by

51

some kind of counterexample guided refinement (see for example [35, 39]). In
Chapter 5, we use a weakest-precondition calculus for that purpose. These
additional predicates are not part of configurations and are not propagated
to successors during symbolic execution.

3.5 Red-Black Graphs

At each step of the analysis, our algorithm maintains an intermediate data-
structure called a red-black graph that we use to represent the over-approx-
imated set of feasible paths computed so far. Informally, a red-black graph
is made of two parts: (i) the black part which is simply the initial LTS,
remaining unchanged during the analysis; (ii) the red part, which can be
seen as a partial unfolding of the black part, decorated with subsumption
links. The idea is that the red part represents the currently known set of
prefixes of feasible paths. These prefixes are suffixed by sub-paths in the
black part, i.e. the unknown part of the set of feasible paths. We call such
paths red-black paths. Vertices of the red part, called red vertices, are in-
dexed versions of locations of the black part: they represent the occurrences
of program locations visited during the analysis.

The use of the black part can be justified as follows. Suppose an algo-
rithm for building symbolic execution graphs that over-approximate the set
of feasible paths of LTS. In order to prove that a SEG produced by this
algorithm contains all the feasible paths of the original LTS, one would have
to assume that this SEG has been completely built, otherwise there is a fair
chance that some feasible path has not been yet followed and thus cannot be
contained in the SEG. Our algorithm, like other approaches in this domain
[31], uses a refine-and-restart mechanism to rule out too crude abstractions.
Such mechanisms can cause algorithms to not terminate: once an abstrac-
tion has been refined, the algorithm restarts at the configuration where the
abstraction occurred, now labeled with a safeguard condition that will pre-
vent this abstraction to occur again, in favor of a more accurate abstraction
at a latter occurrence of the loop header. In some cases, this only postpones
the faulty abstraction that will happen at a later occurrence, triggering an-
other refine-and-restart, and so on. In such cases, we force termination by
bounding the length of the symbolic paths our algorithm can build, but the
SEG is now only a partial unfolding of the original LTS. When this is the
case, we “plug” this partial SEG and the original LTS to obtain a new graph
representation containing all feasible paths of the original LTS. In Chapter 4
we prove that, at any moment during the construction of the red part (the
SEG), the set of red-black paths, i.e. the set of paths starting in the red
part and ending in the black one, contains the set of feasible paths of the
original LTS. To sum up, the interest of red-black graphs is twofold: (i) they
are a suitable mathematical object to state and prove the preservation of

52

feasible paths, as well as other important properties of the approach, since
they always contain the known and unknown parts of the set of feasible
paths and (ii) their red-black paths describe exactly the set of paths of the
LTS obtained after plugging a partial SEG into the original LTS when the
algorithm is forced to terminate.

In this section and the following, we focus describing the kernel opera-
tions performed on red-black graphs, but not on how to combine them to
get an accurate LTS representation of the program under analysis (this is
the topic of Chapter 5). We identify five such operations:

• symbolic execution of a black transition (see 3.6.1),

• adding a subsumption link (see 3.6.2),

• abstracting a configuration (see 3.6.3),

• marking a red vertex as unsatisfiable (see 3.6.4),

• labeling a red vertex with a safeguard condition (see 3.6.5),

and consider all other aspects of our algorithm, typically the choice of the
next transition to execute, how abstractions are computed and propagated,
how unsatisfiability is proven and how safeguard conditions are computed,
to be heuristics and thus parameters of our approach.

We state a clear separation between the kernel transformations and the
heuristics parts that combine them when trying to built an adequate red-
black graph. This separation will ease the formalization presented in Chap-
ter 4. To illustrate what we mean, consider the two following operations
as examples: propagation of an abstraction in a sub-tree or cancellation of
an abstraction that is found to be too crude. Both operations can actually
occur in our prototype, but we do not want to formalize them since they
are not needed to prove the main properties of red-black graphs. Somehow,
the propagation of abstraction in the sub-tree would be unnecessary if the
abstraction had been performed beforehand, when the vertex was still a leaf
in the graph. Cancellation of an abstraction is always followed either by the
use of a more adequate abstraction or by an unfolding at the loop header.
So, we suppose that this operation is performed in the first place. Hence,
the rest of this section must be read as if we were performing a smart re-
construction of the graph that our prototype had built, reconstruction freed
of any unsuccessful attempt by always guessing the right transformation
in the right order. We describe operators as if cancellation or propagation
were never necessary, and add corresponding pre-conditions for the opera-
tors. In the following, we signal the reader when and why such restrictions
are needed. For instance, in the model, abstractions only occur at leaves of
the graph.

The prototype will not have the corresponding preconditions for the
transformations, and the final red-black graph will be the result of a heuris-

53

tic search for the selection of abstractions and subsumptions, with all prop-
agation or backtracking issues for having first try dead ends or a wrong
ordering of transformations.

Ignoring subsumption links, if any, the red part is a sub-tree of the
potentially infinite symbolic execution tree. It is represented as a rooted
directed graph.

Definition 14. A rooted directed graph G is triple (V, r, E) where:

• V is a finite set of vertices,

• r ∈ V is the root,

• E ⊆ V × V is a finite set of edges.

Similarly to LTS, we suppose graphs to be equipped with two applica-
tions: src : E → V and tgt : E → V respectively associating sources and
targets to edges. Given a vertex v of a graph, we note Ei(v) and Eo(v) the
sets of in-going and out-going edges of v, respectively.

When considering subsumption links, the red part can be seen as a finite
symbolic execution graph, whose back edges are given by subsumption links.
Red-black graphs are decorated with much information. First, they are
equipped with a subsumption relation recording subsumption links between
red vertices computed so far. A subsumption relation is a set of pairs of red
vertices: an element (rv , rv ′) of such a relation denotes the fact that rv is
subsumed by rv ′. Moreover, we associate to every red vertex rv :

1. a configuration,

2. a boolean, recording information about unsatisfiability of the current
configuration of rv : it is true if and only if the configuration has been
proved unsatisfiable. In our algorithm, a constraint solver is used for
that purpose. It is assumed to be correct but not complete. Since calls
to the solver are expensive, it is not called upon every red vertex and
its results are stored. If the solver answers with unknown, then the
configuration is considered satisfiable, otherwise, feasible paths might
be ruled out,

3. a formula over program variables: it is the safeguard condition com-
puted so far for rv , for limiting abstractions at this program point.

Definition 15. A red-black graph RB is a 6-uple (B,R, S,C,M,Φ) where:

• B = (L, l0,∆, F) is a LTS called the black part,

• R = (V, r, E) is a rooted directed graph called the red part. Its vertices,
called the red vertices, are indexed versions of elements of L, hence
V ⊆ L× N,

54

• S ⊆ V × V is a subsumption relation. Given a subsumption (rv , rv ′)
in S, we say that rv is the subsumee and rv ′ the subsumer. We note
subsumees(S) the set of subsumees of S and subsumers(S) its set of
subsumers,

• C is a function from red vertices to configurations. Given a red vertex
rv , we call configuration of rv the configuration C(rv),

• M is a function from red vertices to boolean values, called the mark-
ing, recording partial information about unsatisfiability: given a red
vertex rv , M(rv) is true iff the configuration of rv has been proved
unsatisfiable,

• Φ is a function from red vertices to formulae over program variables
recording safeguard conditions used for limiting abstractions.

Initially, the red part contains no edges and a single vertex: its root,
which is the first occurrence of the initial location of the black part. It is
then extended using our five transformation operators.

A red vertex rv such that:

1. it is not proved to be unsatisfiable,

2. it is not subsumed by one of its ancestors,

3. there exists some black transition going out of fst(rv) that has yet no
red counterpart going out of rv , with fst(p) (resp. snd(p)) standing for
the first (resp. second) element of an ordered pair p,

4. it is not an occurrence of a final black location,

is considered to be linked to the black part, i.e. paths of the red part ending
in such rv are implicitly suffixed by sub-paths in the black part. Such
paths are formalized using the notion of red-black paths. The set of such
red vertices constitutes what we call the fringe of their red-black graph.
Defining these two concepts would require a number of definitions that are
not needed here, such as the definitions of sub-paths and paths in graphs
and graphs equipped with a subsumption relation, etc. We prefer to skip all
these definitions here and to defer their presentation to Section 4.3.

Extending red prefixes with black suffixes combined with the fact that
our five transformation operators never rule out feasible paths yields red-
black graphs whose set of red-black paths contains every feasible path of
their black part, at each step of their construction.

Example 6. The red-black graph in Figure 3.4 represent a partial unfolding
of the LTS of the lock acquisition program. The configuration of red vertex
100 has been proved to be unsatisfiable, and 100 has been marked, which is
shown by the⊥ symbol in the figure. As seen in Example 5, the configuration
of 32 is subsumed by the configuration of its ancestor 30 and a subsumption

55

┴

1

4

3

79

10

11

12

2

5

8

6

red part

black part

10

20

30

40

50

60

90

31

70

80

91

32

100

Figure 3.4: A red-black graph representing a partial unfolding of the LTS
of the lock acquisition program.

56

link, depicted by a small-dotted edge, has been added. No transition going
out from program location 3 have been executed from red vertex 31, which is
not marked, not subsumed and not an occurrence of a final location, hence
it is linked to the black part: paths going through 31 end in the black part.
This is shown by the dashed edge. The two other leaves of the red part are
either subsumed (32) or marked (100) thus they are not linked to the black
part. Here, the fringe contains a single vertex, 31, which is the only leaf that
is a neither marked nor subsumed occurrence of a non-final vertex.

3.6 Red-Black Graphs Transformations

3.6.1 Extension by Symbolic Execution

Our first operator takes a red-black graph RB , a red vertex rv of RB and
a transition δ from its black part. If a number of side-conditions are met,
it adds an edge to the red part of RB as a result of symbolic execution of δ
from rv . Otherwise the operator cannot apply. These conditions are:

• rv must be an occurrence of the source of δ. Otherwise, the new red
part would not be an unfolding of the black part, since it would contain
paths that have no counterpart in the black part,

• rv must not be already subsumed. If this is the case, then its successors
are subsumed by the successors of its subsumer: there is no point in
building them,

• δ can be symbolically executed only once from rv , thus, there must
not exists an edge of Eo(rv) whose target is an occurrence of the target
of δ (we suppose LTS to contain at most one transition linking two
distinct locations).

If these conditions are met, the resulting red-black graph - we call it the
extension of RB by symbolic execution of δ from rv or, shorter, an extension
of RB by symbolic execution - is obtained from RB by adding to its red part
an edge linking rv to a new occurrence of the target of δ. The configuration
of this new red vertex (let us call it rv ′) is the result of symbolic execution
of the label of δ from the configuration of rv . Since we do not want to
check satisfiability of configurations after each step, for performance reasons,
our default action of symbolic execution w.r.t. satisfiability is to propagate
current knowledge: symbolic execution propagates the marking of rv to rv ′.
A configuration can be marked as unsatisfiable only by two means: either by
an explicit verdict from a constraint solver, or by symbolic execution from
a known unsatisfiable ancestor, a useless but still correct transformation.
Otherwise, the default information about satisfiability, i.e. the current path
being “possibly feasible”, is propagated to successors. Hence, in all cases, a
safe marking is associated with the new configuration.

57

Definition 16. Let RB =
(
B, (V, r, E), S, C,M,Φ

)
be a red-black graph,

rv ∈ V a red vertex of RB and δ a transition of B such that:

1. fst(rv) = src(δ),

2. rv 6∈ subsumees(S),

3. ∀e ∈ Eo(rv). fst
(
tgt(e)

)
6= tgt(δ).

Moreover, let rv ′ be the next occurrence of tgt(δ) in RB and e the edge
(rv , rv ′). The extension of RB by symbolic execution of δ from rv , noted
ExtSE RB δ rv , is the red-black graph

(
B, (V ′, r, E′), S, C ′,M ′,Φ

)
where:

• V ′ = V ∪ {rv ′},
• E′ = E ∪ {e},
• C ′ = C

(
rv ′ := SE C(rv) label(t)

)
,

• M ′ = M
(
rv ′ := M(rv)

)
.

3.6.2 Extension by Subsumption

Our second operator adds a subsumption link to the subsumption relation.
It takes a red-black graph RB and two distinct elements of its set of red
vertices. We suppose that we want to add the subsumption of rv ′, the
successor, by its ancestor rv . It requires the following conditions to be met:

• rv and rv ′ must be two occurrences of the same program location,
since we are only interested in this kind of subsumption in practice,

• rv , the subsumer, must not be itself subsumed. Since subsuming rv ′

by rv implies that rv ′ is a descendant of rv , this would contradict the
fact that rv , like any subsumed vertex, would not have been expanded.

• rv ′, the subsumee, must not already subsume another vertex. This
would mean that rv ′ already has successors, again a contradiction
with the fact that subsumees are supposed to have no successors. If
needed, the subsumption of rv ′ should have been performed in the first
place, without considering expending its sub-tree. The configuration
that rv ′ is supposed to subsume can be subsumed by rv as well.

• rv ′ must not be already subsumed. Since a subsumed vertex is only
visited once, there is no point in subsuming the same vertex more than
once. If the new subsumption is more accurate than the existing one,
then it must be done in the first place.

• rv ′ must have no out-going edges, since subsumed vertices are not
supposed to have successors.

• rv and rv ′ must not be marked as unsatisfiable. If the configuration at
rv ′ is unsatisfiable, it is indeed trivially subsumed by the configuration

58

of rv as well as by any other configuration. But since rv ′ does not
occur along a feasible path, we are not interested in it anyway. If rv
is marked, then its set of states is empty and so is the set of states for
the configuration at rv ′ and we are back in the previous case,

• finally, for obvious reasons, the configuration of rv ′ must be subsumed
by the configuration of rv .

Definition 17. Let RB =
(
B, (V, r, E), S, C,M,Φ

)
be a red-black graph

and rv ∈ V and rv ′ ∈ V two distinct red vertices of RB such that:

1. fst(rv) = fst(rv ′),

2. rv 6∈ subsumees(S),

3. rv ′ 6∈ subsumers(S),

4. rv ′ 6∈ subsumees(S),

5. Eo(rv ′) = ∅,
6. ¬ M(rv),

7. ¬ M(rv ′),

8. C(rv ′) v C(rv).

The extension of RB by addition of subsumption (rv ′, rv), noted
Extsub RB (rv ′, rv), is the red-black graph

(
B, (V, r, E), S′, C,M,Φ

)
where

S′ = S ∪ {(rv ′, rv)}.

What is provided by the prototype is how we choose the target for the
subsumption when there are more than one occurrence of the same program
location prior in the path, or criteria for discarding a subsumption that might
be established. Once a target for subsumption is selected, if an abstraction is
needed for it the problem of finding which of the possibly many abstractions
to select must also be tackled.

3.6.3 Extension by Abstraction

The third operator replaces the configuration of a red vertex rv by some
abstraction of this configuration. This operator takes a red-black graph,
a red vertex rv and a configuration that must be an abstraction of the
configuration of rv . Additional constraints are as follows:

• rv must be a leaf of the red tree: as written in the introduction of this
section, we do not want to formalize the propagation of an abstraction
in a sub-tree, hence in this model we force abstractions to occur at
leaves only.

59

• rv must not be marked. We are not interested in subsumptions in-
volving an unsatisfiable configuration. The prototype never performs
abstraction at a configuration known to be unsatisfiable: there is no
point in applying an abstraction that could turn such a configuration
back to satisfiable. In the prototype, inverting a true mark for a vertex
can occur only as a side effect of the propagation needed by the intro-
duction of an abstraction at some of its ancestors, during a heuristic
search of a subsumption. The prototype never inverts a true by an
abstraction at the unsatisfiable configuration itself.

• the abstraction must entail the safeguard condition associated to rv ,
if any. If no such condition was yet computed, we consider it to be
true and the operator can apply.

The new red-black graph is obtained by replacing the old configuration
of rv by the abstraction.

Definition 18. Let RB =
(
B, (V, r, E), S, C,M,Φ

)
be a red-black graph,

rv ∈ V a red vertex of RB and ca a configuration such that:

1. Eo(rv) = ∅,
2. C(rv) v ca,

3. ¬ M(rv),

4. ca |= Φ(rv).

where c |= φ denotes the fact that a configuration c entails a formula φ, i.e.
∀σ ∈ States(c). φ(σ).

The extension of RB by abstraction of rv , noted Extabs RB ca rv , is the
red-black graph

(
B, (V, r, E), S, C ′,M,Φ

)
where C ′ = C(rv := ca).

In this chapter, we are not interested in the way abstraction are com-
puted. Of course, when presenting the prototype in Chapter 5, we will
make explicit how abstractions are selected; abstractions are not guessed in
advance but are triggered by the need to establish a subsumption, hence
abstraction will no longer be restricted to leaves of the red part.

3.6.4 Extension by Marking

The fourth operator simply marks a red vertex of a given red-black graph if
its configuration has been proved to be unsatisfiable. We use this operator
to model the fact that: (i) the constraint solver is not called every time a
vertex is added to the red part but by explicit request and (ii) its results
are stored to avoid futur calls.

As for the other transformations, we request rv to be a leaf of the red part
to save the formalization of propagating unsatisfiability notification within

60

a sub-graph. We also impose that rv is not subsumed since we do not want
unsatisfiable subsumed configurations in our result: such a subsumption
should not have ever occurred.

Definition 19. Let RB =
(
B, (V, r, E), S, C,M,Φ

)
be a red-black graph

and rv ∈ V a red vertex of RB such that:

1. its configuration C(rv) has been proved unsatisfiable,

2. Eo(rv) = ∅,
3. ¬ M(rv),

4. rv /∈ subsumees(rv).

The extension of RB by marking rv , noted Extm RB rv , is the red-black
graph

(
B, (V, r, E), S, C,M ′,Φ

)
where M ′ = M(rv := true).

3.6.5 Extension by Strengthening

The last operator labels a red vertex with a safeguard condition. Safeguard
conditions are not propagated to successors, but in the model limiting ab-
stractions that can be applied at a configuration is supposed to precede any
application of the abstraction operator, to avoid having to formalize the
possible cancellation of an abstraction caused by a delayed introduction of
a limiting predicate. Hence, strengthening is restricted to vertices that (i)
can be the target of an abstraction, (ii) are not already abstracted.

Finally, this operator requires that the configuration of the about-to-be-
labeled vertex entails the safeguard condition. If this was not the case, then
it would be impossible to find abstractions of the current configuration that
entail the safeguard condition, since abstraction consists in forgetting part
of the information carried by the configuration.

If these conditions are met, this operator updates the marking of the red
vertex with the given condition.

Definition 20. Let RB =
(
B, (V, r, E), S, C,M,Φ

)
be a red-black graph,

rv ∈ V a red vertex of RB and φ a formula over program variables such
that C(rv) |= φ. The extension of RB by strengthening of rv by φ, noted
Extstr RB φ rv , is the red-black graph

(
B, (V, r, E), S, C,M,Φ′

)
where Φ′ =

Φ(rv := Φ(rv) ∧ φ).

Remark: As for the other transformations, here we do not detail the way
this safeguard condition is computed. In the formalization, we might even
have skipped this operation since we do not explain how abstractions are
computed. There is no point in explaining which abstractions have to be dis-
carded: simply give the correct one. Without that operation, one would have

61

been able to prove the exact same properties we prove in the following chap-
ter. Nonetheless, we make explicit the addition of safeguard conditions to
red-black graphs to keep a closer connection between the formalization and
the prototype in which this operation is performed as part of the “abstract-
refine” paradigm. Safeguard conditions come from proving that some paths
become unduly feasible because of a too loose abstraction.

3.6.6 The Set of Red-Black Graphs

From now on, we will only consider red-black graphs built using the five
previous operators, starting from a red-black graph in an initial state. As
said in Section3.5, a red-black graph is an initial state if its set of red-edges
and its subsumption relation are empty, its only red vertex is its root, which
is (i) the first occurrence of its black root, (ii) is not marked and (iii) whose
safeguard condition is true. We talk about well-formed red-black graphs.

Definition 21. A red-black graph RB = (B,R, S,C,M,Φ), with B =
(L, li,∆, F) and R = (V, r, E) is said to be well-formed, noted wf RB , if
one of the following conditions holds:

1. V = {r} ∧ r = l0i ∧ E = ∅ ∧ S = ∅ ∧M(r) = false ∧ Φ(r) = true

2. ∃RB ′ δ rv . wf RB ′ ∧ RB = ExtSE RB δ rv

3. ∃RB ′ rv ′ rv . wf RB ′ ∧ RB = Extsub RB (rv ′, rv)

4. ∃RB ′ ca rv . wf RB ′ ∧ RB = Extabs RB ′ ca rv

5. ∃RB ′ rv . wf RB ′ ∧ RB = Extm RB rv

6. ∃RB ′ φ rv . wf RB ′ ∧ RB = Extstr RB φ rv

From this definition, one can deduce an induction principle over well-formed
red-black graphs that we use extensively to prove the key properties of our
approach.

3.7 Building Red-Black Graphs: an Example

In this section, we illustrate through an example how the five previous op-
erators can be used to build red-black graphs. Consistently with the rest
of this chapter, we assume the best choice is always made and ignore how
these best choices are guessed.

This example is based on the lock acquisition program seen previously.
In the following figures, square vertices represent red vertices.

Initialization: The analysis starts with the red part containing no edges
and only one vertex: 10, which is its root and the first occurrence of

62

Function get lock()

1 let lock = 0;
2 let new = old + 1;

3 while new 6= old do
4 lock ← 1;
5 old ← new ;
6 if * then
7 lock ← 0;
8 new ← new + 1;

9

10 if lock = 0 then
11 error();

(a)

1

lock := 0

new := old+1

4

new ≠old

6

lock := 1

old := new

true

3

79

10

11

new = old

true

lock := 0new := new+1

12

lock = 0
Skip

lock ≠0

Skip

2

5

8

(b)

Figure 3.5: The lock acquisition program (a) and its LTS (b).

the initial location of the black part. Its configuration is
(
{lock 7→

0,new 7→ 0, old 7→ 0}, true
)
. Since 10 is not marked, not subsumed,

not final and since none of the out-going transitions of black location
0 have been symbolically executed yet, 10 is linked to the black part,
which is depicted by a dashed edge in Figure 3.6. At this point, the
set of red-black paths is simply the set of paths of the black part.

Symbolic execution of assignments: from 10, classical symbolic execu-
tion is performed over the black transitions leading from 1 to 2 and
from 2 to 3. This results in the addition of the red edges from
10 to 20 and from 20 to 30 (see Figure 3.7). The configuration of
20 and 30 are

(
{lock 7→ 1,new 7→ 0, old 7→ 0}, lock1 = 0

)
and(

{lock 7→ 1,new 7→ 1, old 7→ 0}, lock1 = 0 ∧ new1 = old0 + 1
)
,

respectively.

Limiting abstractions with safeguard conditions: suppose symbolic
execution continues from 30 by entering the loop, follows the path
going along the Else-branch of the inner conditional statement and
completes one iteration of the loop when it reaches the next iteration
of program location 3.

The configuration obtained at this point would be
(
{lock 7→ 2,new 7→

1, old 7→ 1}, lock1 = 0 ∧ new1 = old0+1 ∧ lock2 = 1 ∧ old1 = new1

)
63

1

4

3

79

10

11

12

2

5

8

6

10

Figure 3.6: An initial red-black graph for the lock acquisition program. Its
only red vertex is the first occurrence of the initial black location.

and we have seen in Example 5 that this configuration is not subsumed
by the configuration at 30. In order to establish this subsumption, one
would first have to abstract the configuration at 30. This would be
done, for example, by weakening the path predicate at 30 to true, since
both of its constraints prevent the subsumption to occur.

However, this abstraction would make the transition from 3 to 10 fea-
sible from 30. Since lock is 0 at 30, this would make the error location
(line 11) reachable from 30. In our algorithm, such an abstraction
would not be allowed and the safeguard condition new 6= old would
be computed and associated to 30 to prevent the abstraction.

In Chapter 5 we explain how this abstraction would be refused and how
the condition is computed. In this example, since we that best choices
are always guessed, 30 is immediately strengthened with this condi-
tion, which is shown in Figure 3.8 (between square brackets). Future
abstractions of 30, if any, will have to entail this safeguard condition
to be considered. Since extending red-black graphs by strengthening
is redundant with the assumption of best choice, we observe that we
could have skip this step and simply not select this inadequate ab-
straction.

Symbolic execution of guards: assuming the first symbolic path enters
the loop, symbolic execution is performed from 30 over the transition
from 3 to 4. The path predicate at 40 is the conjunct of the path
predicate at 30 with the adaptation of constraint new 6= old to the
store of the configuration of 30, namely new1 6= old0 . Assuming we
follow first the else branch of the inner conditional, symbolic execu-

64

1

4

3

79

10

11

12

2

5

8

6

10

20

30

Figure 3.7: The red-black graph after the symbolic execution of the first two
transitions.

tion is performed until the next occurrence of program location 3 (the
loop header) is reached, hence completing one loop iteration (see Fig-
ure 3.9). The configuration for 31 is

(
{lock 7→ 2,new 7→ 1, old 7→

1}, lock1 = 0 ∧ new1 = old0 + 1 ∧ lock2 = 1 ∧ old1 = new1

)
. As

seen previously, this configuration is not subsumed by the configura-
tion of 30 and the safeguard condition of 30 prevents any attempt of
introducing an abstraction to force subsumption. As a result, symbolic
execution follows and the loop is unfolded.

Marking nodes as unsatisfiable: Symbolic execution is performed from
31 to 41. The path predicate at 41 is unsatisfiable, as it requires new
and old to be both equal and different. We mark node 41 (depicted
by a ⊥ symbol, in Figure 3.10) to represent the fact that it is known
as unsatisfiable. The path leading to 41 being infeasible, we do not
go farther along that path. Symbolic execution resumes at the last
branching point, i.e. 31 and now follows the symbolic path that exits
the loop. Since lock is 1 at 31, the first occurrence of the error location
(11) is detected unsatisfiable and marked and the first occurrence of
the only final location (12) is reached.

Subsumption between loop headers: symbolic execution resumes at 60,
the next pending point. The path going along the Then-branch of the

65

1

4

3

79

10

11

12

2

5

8

6

10

20

30
[new ≠old]

Figure 3.8: The red vertex 30 is strengthened by a safeguard condition that
will prevent unwanted abstractions.

inner conditional statement is followed, and symbolic execution contin-
ues until the third occurrence of the loop header is reached. The con-
figuration of 32 is

(
{lock 7→ 3,new 7→ 2, old 7→ 1}, lock1 = 0 ∧ new1 =

old0 +1 ∧ lock2 = 1 ∧ old1 = new1 ∧ lock3 = 0 ∧ new2 = new1 +1
)

which is subsumed by the configuration at 30 without the need to
abstract the latter. Moreover, the configuration at 32 entails the safe-
guard condition of 30: subsumption (32, 30) is added to the subsump-
tion relation, which is depicted by the dotted edge in Figure 3.11.

End of the analysis: the last pending point is 30 from which the transi-
tion from 3 to 10 is symbolically executed. The configuration at 100 is
unsatisfiable, since its path predicate requires new and old to be both
equal and different and 100 is marked (see Figure 3.12). Since every
leaf of the red part is either subsumed, marked, or an occurrence of the
final location of the black part, the red part is no longer linked to the
black part: the red part is said to be complete. The set of red-black
paths of this final red-black graph is simply the set of paths of the red
part that do not end in marked locations. This set contains exactly
the feasible paths of the original LTS: it is the set of paths that go at
least one time into the loop and always take the Then-branch of the
inner conditional statement, except for their last iteration.

66

1

4

3

79

10

11

12

2

5

8

6

[new ≠old]

10

20

30

40

50

60

90

31

Figure 3.9: The loop has been iterated once along the first path. The
subsumption of 31 by 30 is discarded by the safeguard condition of the
latter.

3.8 Summary

In this chapter, we have introduced our way of modeling programs and their
behaviors using LTS and symbolic execution respectively. We have presented
and formalized the notion of subsumption our algorithm relies on to produce
a finite symbolic execution graph when classical symbolic execution would
yield an infinite symbolic execution tree.

In order to force to establish a subsumption when this would not be
possible otherwise, abstraction can be performed at loop headers. The way
abstraction is performed is a crucial point in our approach, since abstracting
configurations might introduce approximations into the final result. We have
shown how too crude abstractions can be handled by labeling loop headers
met during symbolic execution by safeguard conditions.

These elements are the kernel operations of our algorithm. Moreover,
this algorithm is parameterized by heuristics that are in charge of performing
these operations in a way that maximizes the detection of infeasible paths.

We have formalized the data structure on which our algorithms is based
by introducing the notion of red-black graph. The kernel operations men-
tioned above are modeled as transformation operators over red-black graphs.
We claim that the nature of red-black graphs, which connect the currently
known set of feasible paths (the red part) to the original LTS (the black
part), combined with our five operators results in the construction of red-
black graphs whose set of red-black paths contains all the feasible paths of
the original model, at any step of their construction.

67

1

4

3

79

10

11

12

2

5

8

6

[new ≠old]

┴

┴

10

20

30

40

50

60

90

31

41 100

110 120

Figure 3.10: The final location has been reached and infeasible paths have
been detected through marking.

What we have presented here provides the bases of a generic method
for detecting and pruning infeasible paths that preserves all feasible paths
of the original model. The proof of this claim is the object of the next
chapter. How these operators are combined so as to maximize the detection
of infeasible paths is the object of Chapter 5, where our actual algorithm is
introduced.

68

1

4

3

79

10

11

12

2

5

8

6

[new ≠old]

┴

┴

10

20

30

40

50

60

90

31

41

110

100

120

70

80

91

32

Figure 3.11: The safeguard condition of 30 does not prevent the subsumption
of 32 by 30.

1

4

3

79

10

11

12

2

5

8

6

[new ≠old]

┴

┴

┴

10

20

30

40 101

50

60

90

31

41 100

110 120

70

80

91

32

Figure 3.12: The red part is a complete unfolding of the black part, and is
no longer linked to the latter.

69

70

Chapter 4

Formalization

4.1 Introduction

In this chapter, we present a formalization of our approach. The goal of this
formalization is to prove that our method, besides preserving computations,
produces SEGs that contain all feasible paths of the LTS representation of
the program under analysis. As seen in Chapter 3, the number of details
that must be considered when reasoning precisely about correctness issues
of these types of graph-based algorithms is quite substantial and makes
it a valuable target for machine-checked analysis. Our formalization was
done using the interactive theorem proving environment Isabelle/HOL for
Church’s higher-order logic, a classical logic based on a simply typed λ-
calculus extended by parametric polymorphism.

Proving is generally a complex task, and doing so within interactive
theorem proving environments can be tedious, as it requires to consider a
number of details one would take for granted when proving with pen and
paper. In the following, we describe the main concepts involved in this
formalization, and state the most important theorems needed to establish
the proofs of the key properties of our approach. Although a real effort was
made to keep proofs as short as possible — most of them are only a few
lines long, it is not possible to give all the proof details in this document:
some proofs are a few hundred lines long. In the following, we will give
sketches that try to capture the main points in these proofs. The whole
proof script, registered in the “Archive of Formal Proofs” server [4], is given
in the appendix. This work was presented during the seventh conference on
Interactive Theorem Proving, in August 2016 (see [3]).

Our formalization is made of twelve theories, each of them defined in its
own .thy file, which are organized as depicted in Figure 4.1, an arrow from
theory Tj to Ti denoting the fact that Tj makes use of concepts defined in Ti.
When formalizing our approach, we first made a strict distinction between
the symbolic execution and graph theory related aspects of the problem.

71

Aexp

Bexp

Labels Store

Conf

SymExec

Graph

SubRel

ArcExt SubExt

RB

Lts

Figure 4.1: The hierarchy of theories in our formalization.

First, we model the concepts needed to define our notion of symbolic
execution (SymExec.thy): arithmetic and boolean expressions (Aexp.thy,
Bexp.thy), stores (Store.thy), configurations with abstraction and sub-
sumption (Conf.thy). At this point, one goal is to show that our notion
of symbolic execution is monotonic with respect to subsumption. This is
addressed in Section 4.2.

On the other hand, we model our notions of rooted graphs, consistency
of sequences of edges, sub-paths and paths in Graph.thy. We model LTS
(LTS.thy) by extending rooted graphs with functions that associate labels
(Labels.thy), our representation of program statements, to their edges.
We model subsumption relations between red vertices and add them to our
notion of graph, including subsumption links in alternate definitions of con-
sistency, sub-paths and paths in SubRel.thy. We describe how the set of
paths of a graph equipped with a subsumption relation evolves after adding
a new edge or a new subsumption link in ArcExt.thy and SubExt.thy,
respectively. This is the object of Section 4.3

Finally, we model red-black graphs, the five transformation operators,
the concepts of fringe and red-black paths, and state and prove the key
properties of our approach in RB.thy, to which Section 4.4 is devoted.

72

4.2 Symbolic Execution

In this section, we introduce our modeling of the different notions related to
the symbolic execution aspects of our approach. We start with arithmetic
and boolean expressions. We consider two types of expressions: expressions
over program variables and expressions over symbolic variables. Modeling
expressions in a syntactic manner, a usual way to do so, would make our
formalization dependent on the logic of these expressions. We proceed differ-
ently: expressions are modeled by total functions, that is, by their semantics.
Expressions are evaluated using program states and symbolic states, i.e. to-
tal functions associating values to program variables or symbolic variables,
respectively. Our technique to represent arithmetic and boolean expressions
is widely known under the term “shallow embedding”, a term that goes back
to [14]. This modeling of expressions requires to rethink some well-known
concepts about expressions, for example freshness of a variable w.r.t. an
expression, or substitution. We continue with stores — which simply map
program variables to symbolic variables — and related notions: consistency
of a program state and a symbolic state w.r.t. to a store, adaptation of
expressions to stores (our equivalent for flat substitution). From expres-
sions and stores, we introduce our modeling of configurations — which are
made of a store and a set of boolean expressions over symbolic variables
whose conjunction is the path predicate — and introduce some important
notions: satisfiability and states of a configuration, subsumption, abstrac-
tion. Finally, we introduce our notion of symbolic execution steps and its
main property: its monotonicity with respect to subsumption.

4.2.1 Arithmetic and Boolean Expressions

As in Chapter 3, we keep a distinction between the set of program variables
Vars and the set of symbolic variables SymVars, the latter being defined as
Vars × N. Our formalization is parameterized by two type-variables ′v and
′d representing Vars and D respectively.

Symbolic Variables Symbolic variables are modeled as pairs consisting
of a program variable and an index:

type-synonym ′v symvar = ′v × nat

Program and Symbolic states Program and symbolic states are mod-
eled as total functions from a type-variable ′v to a type-variable ′d, repre-
senting the type of variables and their domain, respectively.

type-synonym (′v , ′d) state = ′v ⇒ ′d

73

Unlike the previous type-synonym, ′v stands here for any kind of variable,
that is program or symbolic variables. This allows to use a single type-
synonym to model both program states and symbolic states.

Arithmetic and Boolean Expressions Usually, arithmetic and boolean
expressions are modeled syntactically. It is very easy doing so, using Is-
abelle/HOL’s datatypes: one would define an Aexp datatype and provide a
constructor for each operator to include in the model. However, this has
two drawbacks. First, this would require long and tedious definitions of
very classical notions like terms, substitutions, valuation of an expression,
etc, and that would not allow us to benefit from the existing logical ma-
chinery of Isabelle/HOL. Second, the theory would hold only for currently
defined operators, requiring new definitions and lemmas each time an oper-
ator needs to be included to the model. To avoid these problems, we chose
to model arithmetic and boolean expressions as total functions from states
to values. In other words, expressions are modeled by their semantics.

type-synonym (′v , ′d) aexp = (′v , ′d) state ⇒ ′d
type-synonym (′v , ′d) bexp = (′v , ′d) state ⇒ bool

Once again, using type-variables, a distinction is made between expressions -
arithmetic or boolean - over program variables and expressions over symbolic
variables. This is not a problem since we never need expressions over both
types of variables.

Variables of an Expression In the rest of the formalization, we often
need to reason about the variables of an expression. If we were to model
expressions as structured terms, as usually done, then it would be quite
straightforward to characterize the set of variables of such expressions: it
would be the set of variables occurring in the expression, i.e a subset of
the leaves of the term representing it. Since we model expressions as total
functions from states to values, it makes no sense to say that a variable
occurs in an expression. We define the set of variables of an expression as
the set of variables that can influence its value 1:

definition vars ::
(′v , ′d) aexp ⇒ ′v set

where
vars e = {v . ∃ σ val . e (σ(v := val)) 6= e σ}

1These two definitions bear the same name, which is not possible in Isabelle/HOL
unless they are given in separate theories. In our case, these two notions are defined
in Aexp.thy and Bexp.thy, respectively, and are referred in the following theories using
qualified names, unless there is no ambiguity.

74

definition vars ::
(′v , ′d) bexp ⇒ ′v set

where
vars e = {v . ∃ σ val . e (σ(v := val)) 6= e σ}

As an example, the arithmetic expression x−y is represented by the function
λ σ. σ x − σ y. Its set of variables is {x, y} if and only if x 6= y, and the
empty set otherwise. Similarly, an expression like λ σ. σ x ∗ 0 is considered
as having no variable, as if a static evaluation of the multiplication had
occurred.

Fresh Variables When reasoning about symbolic execution, one usually
has to consider fresh variables. In our case, in Chapter 3, we used fresh
variables for handling Assign labels using a form of Static Single Assignment.
We start by defining freshness of variables for expressions, and will extend
the concept later to configurations. A variable is said to be fresh for an
expression if it is not a member of the set of variables of this expression.

abbreviation fresh ::
′v ⇒ (′v , ′d) aexp ⇒ bool

where
fresh v e ≡ v /∈ vars e

The definition of freshness for boolean expressions is defined analogously.
Since the notion of freshness does not bring a whole new concept to the for-
malization, we use the Isabelle/HOL abbreviation command instead of the
usual definition to ease the following proofs. In Isabelle/HOL, definitions
are expanded by the simplifier on an explicit demand, while it is automatic
for abbreviations, which makes abbreviations suitable for defining notions
that merely extend existing ones.

Satisfiability Satisfiability of a boolean expression is defined as usual as
the existence of a state that makes it true:

definition sat ::
(′v , ′d) bexp ⇒ bool

where
sat e = (∃ σ. e σ)

Entailment A boolean expression entails another if any state that makes
it true makes the second one also true:

definition entails ::
(′v , ′d) bexp ⇒ (′v , ′d) bexp ⇒ bool (infix |=B 55)

where
ϕ |=B ψ ≡ (∀ σ. ϕ σ −→ ψ σ)

75

This definition is annotated with the syntax annotation “infix |=B 55”:
entails φ ψ and φ |=B ψ now refer to the same expression. The infix keyword
specifies a non-oriented infix operator: expressions of the form a |=B b |=B c
are illegal. The number 55 specifies the precedence of the construct i.e. its
relative syntactic priority among all operators.

4.2.2 Stores

In Chapter 3, we defined configurations as pairs (s, π), with s a store and π
the path predicate. Stores and their properties are given in Store.thy and
configurations in Conf.thy: once again, this distinction is made to benefit
from qualified names.

Stores are modeled as functions from program variables to natural inte-
gers representing the indexes used for modeling symbolic variables.

type-synonym ′v store = ′v ⇒ nat

where ′v represents program variables.

Variables of a Store Given a program variable v and a store s, the
symbolic variable associated to v by s is the pair

(
v, s(v)

)
:

definition symvar ::
′v ⇒ ′v store ⇒ ′v symvar

where
symvar v s ≡ (v ,s v)

The set of symbolic variables given by a store, or simply its set of sym-
bolic variables, is its target set:

definition symvars ::
′v store ⇒ ′v symvar set

where
symvars s = (λ v . symvar v s) ‘ (UNIV :: ′v set)

where f ‘ S stands for the image of the function f over the set S, and
UNIV :: ′v set for the set of all objects of type ′v.

We skip the formal definition of freshness: a symbolic variable is said to
be fresh for a store if it is not a member of its set of symbolic variables.

Consistency Consistency of a program and a symbolic state w.r.t. a store
is defined as in Chapter 3:

definition consistent ::
(′v , ′d) state ⇒ (′v symvar , ′d) state ⇒ ′v store ⇒ bool

where
consistent σ σsym s ≡ (∀ v . σsym (symvar v s) = σ v)

76

Given a program state and a store, one can always build a symbolic state
such that the two are consistent w.r.t. to this store, and reciprocally. This
is expressed by the two following lemmas:

lemma consistent-eq1 :
consistent σ σsym s = (∀ sv ∈ symvars s. σsym sv = σ (fst sv))

lemma consistent-eq2 :
consistent σ σsym store = (σ = (λ v . σsym (symvar v store)))

Adaptation of Expressions to Stores As seen in Definition 9 of Chap-
ter 3, symbolic execution of Assume and Assign labels adds expressions over
symbolic variables to the path predicate of the current configuration. These
expressions are obtained by substituting occurrences of program variables
in the expressions carried by the labels by their symbolic counterparts given
by the store. Since we represent expressions by total functions, these oper-
ations cannot be expressed as substitutions. Given an expression e and a
store s, the expression we want to obtain is the function that operates the
same calculus than e, but over the symbolic versions of the elements of Vars
as given by the store s. We call this operation the adaptation of e to s, and
define it as follows:

definition adapt-aexp ::
(′v , ′d) aexp ⇒ ′v store ⇒ (′v symvar , ′d) aexp

where
adapt-aexp e s = (λ σsym. e (λ v . σsym (symvar v s)))

The following lemma shows that our definition of adaptation matches the
usual substitution:

lemma adapt-aexp-is-subst :
assumes consistent σ σsym s
shows (adapt-aexp e s) σsym = e σ

The definition is analogous for boolean expressions (the operation is called
adapt-bexp) and the same property holds.

4.2.3 Configurations, Subsumption and Abstraction

Configurations are modeled by records whose first component is a store and
second component a set of boolean expressions whose conjunction is the
actual path predicate.

record (′v , ′d) conf =
store :: ′v store
pred :: (′v symvar , ′d) bexp set

77

The fact that the pred component is modeled by a set is inherited from earlier
versions of the formalization. In our first attempts, we modeled the process
of abstracting a configuration by removing one constraint from its path
predicate, which is indeed one way of abstracting configurations in practice.
However, this is not the only method for doing so. For example, one could
give a fresh symbolic counterpart to a given program variable. This has
the effect of disconnecting this program variable from the constraints of the
path predicate it is subject to, without removing these constraints from the
path predicate. Since these constraints might be related to other program
variables, this method of abstraction yields a better infeasible path detection
power on some examples than simply removing constraints.

Since we do not want our formalization to depend on heuristics — and
the way abstractions are performed can be considered as such — we finally
modeled abstraction as introduced in Chapter 3, i.e. as a renaming for sub-
sumption (see the definition abstract at the end of this sub-section). We plan
to model the pred component as a boolean expression in the near future,
but note that this has no incidence on the scope of this work.

Symbolic Variables of a Configuration The set of symbolic variables
of a configuration is the union of the set of symbolic variables of its store
with the set of symbolic variables of its path predicate:

definition symvars ::
(′v , ′d) conf ⇒ ′v symvar set

where
symvars c = Store.symvars (store c) ∪ Bexp.vars (conjunct (pred c))

where conjunct E denotes the expression that evaluates to true given a state
σ iff ∀e ∈ E. e σ, i.e. the conjunction of the elements of E.

As usual, a symbolic variable is fresh w.r.t. a configuration if it is not a
member of its set of symbolic variables. We name fresh-symvar the corre-
sponding function, skipping its formal definition here.

Satisfiability and States of a Configuration A configuration is satis-
fiable if its path predicate is. As in Chapter 3, the states of a configuration
are the program states for which there exists a symbolic state that satisfies
the path predicate and such that the two are consistent with the store:

definition states ::
(′v , ′d) conf ⇒ (′v , ′d) state set

where
states c = {σ. ∃ σsym. consistent σ σsym (store c) ∧ conjunct (pred c) σsym}

Subsumption We now state in Isabelle/HOL the notion of subsumption
from Definition 12:

78

definition subsums ::
(′v , ′d) conf ⇒ (′v , ′d) conf ⇒ bool (infix v 55)

where
c2 v c1 ≡ (states c2 ⊆ states c1)

In an actual implementation, subsumption is checked by assuming the
existence of a program state of the subsumee and showing, using a constraint
solver, that it is also a program state of the subsumer. In order to prove
that this approach is correct, we define the semantics of a configuration as
a boolean expression describing its set of states and show that checking for
subsumption is equivalent to checking entailment between semantics:

definition sem ::
(′v , ′d) conf ⇒ (′v , ′d) bexp

where
sem c = (λ σ. σ ∈ states c)

theorem subsum-eq-sem-entailment :
c2 v c1 ←→ sem c2 |=B sem c1

Abstraction The way configurations are abstracted is a parameter of our
algorithm, since one could imagine different methods for doing so. Instead of
modeling how abstractions are computed, we define a predicate expressing
whether a configuration is an abstraction of another. A configuration is an
abstraction of another if it subsumes it:

definition abstract ::
(′v , ′d) conf ⇒ (′v , ′d) conf ⇒ bool

where
abstract c ca ≡ c v ca

4.2.4 Symbolic Execution Steps

Labels are represented using Isabelle/HOL datatypes:

datatype (′v , ′d) label = Skip | Assume (′v , ′d) bexp | Assign ′v (′v , ′d) aexp

The SE and SE-star predicates We model symbolic execution steps by
an inductive predicate SE that takes two configurations c1 and c2 and a label
l and evaluates to true if and only if c2 is a possible result of the symbolic
execution of l from c1.

inductive SE ::
(′v , ′d) conf ⇒ (′v , ′d) label ⇒ (′v , ′d) conf ⇒ bool

where
SE c Skip c

79

| SE c (Assume e) (| store = store c, pred = pred c ∪ {adapt-bexp e (store c)} |)

| fst sv = v =⇒
fresh-symvar sv c =⇒
SE c (Assign v e)

(| store = (store c)(v := snd sv),
pred = pred c ∪ {(λ σ. σ sv = (adapt-aexp e (store c)) σ)} |)

We say that c2 is a possible result because, in the case of an assignment, we
do not want to specify here how the index of the fresh symbolic variable is
chosen. In Chapter 3, we required the new symbolic variable to be fresh.
If we were to specify how the index is chosen, we would have to prove,
each time we have a proposition of the form SE c1 (Assign v e) c2, that
the way the index of the new variable was chosen actually yields a fresh
symbolic variable for c1. However, SE can take any configuration as c1 and
there is no guarantee that any given symbolic variable is indeed fresh for c1.
Indeed, since expressions are modeled as total functions, the set of variables
of the path predicate of c1 could theoretically be SymVars, or contain, for
a program variable v, all symbolic variables in {(v, n) | n ∈ N}. By not
specifying how the index is chosen but rather requiring the new symbolic
variable to be fresh (see the second line in the Assign case), we will already
know, when needed, that the new variable is fresh, if SE c1 (Assign v e) c2
holds. This kind of reasoning is called rule inversion.

Modeling SE as a predicate rather than a function is also more conve-
nient once having decided to not specify how the index is chosen. If we were
to model SE as a function, and since freshness of the new variable is a nec-
essary condition in the case of an assignment, then this function would have
to be either partial or total with a special value for the case where there
exists no fresh symbolic variable for c1. Writing SE as a function would
require additional hypothesis and work in the forthcoming proofs. Once
again, using a predicate allows for rule inversion which allows to avoid this
problem: if SE c1 (Assign v e) c2 holds, then c2 is the (a possible) result of
SE as defined in Chapter 3.

Rule inversion does not solve all problems related to the existence of
fresh symbolic variables. Farther in this formalization, we will sometimes
have to show that given a configuration c1 and a label l, there actually
exists some configuration c2 such that SE c1 l c2. This clearly holds for
Skip or Assume labels. If l is of the form Assign v e, the existence of c2
depends on the existence of a fresh symbolic counterpart of v for c1. When
reasoning over red-black graphs, we will typically have to prove that an
arbitrary Assign label can be symbolically executed from some red vertex
of a red-black graph. This requires that there exists fresh symbolic versions
of every program variable for the configurations of every red vertex of such
graphs. In a sense, we want to guarantee that we will never run short of
fresh symbolic variables. In Appendix A.12.4 we prove that this property

80

holds for all the red-black graphs we are interested in and whose following
two characteristics:

• their initial configuration has a finite pred component, and each ex-
pression in it has a finite set of variables,

• all labels in the black part carry expressions with finite sets of variables,

provide the necessary assumptions. Symbolic execution of a label from such
a configuration always yields configurations with the same property, which
ensures the existence of fresh symbolic variables throughout the construction
of the red part.

We extend symbolic execution to sequences of labels:

inductive SE-star ::
(′v , ′d) conf ⇒ (′v , ′d) label list ⇒ (′v , ′d) conf ⇒ bool

where
SE-star c [] c
| SE c1 l c2 =⇒ SE-star c2 ls c3 =⇒ SE-star c1 (l # ls) c3

where [] denotes the empty sequence.

Monotonicity of SE and SE-star The most important property of sym-
bolic execution is that it is monotonic w.r.t. subsumption. Again, we only
state the corresponding theorems here, refering to Appendixes A.6.4 and A.6.6
for their respective proofs.

theorem SE-mono-for-sub :
assumes SE c1 l c1

′

assumes SE c2 l c2
′

assumes c2 v c1

shows c2
′ v c1

′

theorem SE-star-mono-for-sub :
assumes SE-star c1 ls c1

′

assumes SE-star c2 ls c2
′

assumes c2 v c1

shows c2
′ v c1

′

4.3 Graphs, Labeled Transition Systems, Subsump-
tion Relations

4.3.1 Introduction

In this section, we introduce our modeling of rooted graphs, LTS and related
notions. It covers five theories in which, to ease modeling red-black graphs
and their transformations, we model graphs and LTS, paths - taking into
account subsumption links or not - and prove a number of facts describing

81

the evolution of the set of paths of a graph after the addition of an edge or
a subsumption link.

We do not use any deep graph-theory in our work. In Chapter 3, we
introduced a number of requirements specifying how an edge or a subsump-
tion link could be added to the red part of a red-black graph. For example,
an edge can only be added if its source is already a vertex of the red part,
but not its target. Thus, lemmas describing the evolution of the paths of
graphs in these cases are very specific to our approach. Moreover, we con-
sider graphs equipped with subsumption relations and paths going through
elements of these relations, which is also specific to our work. For these
reasons, we did not feel the need to reuse existing developments of graph-
theories in Isabelle/HOL (see for example [44] or [51]).

In the following, we consider different types of graphs (red and black)
and several notions of paths (classical paths in a graph, paths going through
subsumption links, feasible paths). In order to avoid duplicating definitions
and lemmas, we want our model of graphs to be generic and extensible: we
use a record parameterized by the type of its vertices, and later extend it
with a labeling function of the edges to model LTS.

To model red-black paths as introduced in Chapter 3, we have to consider
both classical paths (black paths) and paths going through subsumption
links (red paths). Reasoning about classical paths is quite straightforward,
but subsumption links complicate the problem. We found that it was easier
to distinguish between these two notions, rather than to model subsumption
links as a special case of edges.

4.3.2 Rooted Graphs

We model edges by a record that is parameterized with a type variable ′v
representing the type of vertices.

record ′v edge =
src :: ′v
tgt :: ′v

Rooted graphs are modeled by a record containing their roots and their sets
of edges.

record ′v rgraph =
root :: ′v
edges :: ′v edge set

The set of vertices of a rooted graph is not a component in the record
definition; we chose to deduce it from its two components as follows:

82

definition vertices ::
(′v , ′x) rgraph-scheme ⇒ ′v set

where
vertices g = {root g} ∪ src ‘ edges g ∪ tgt ‘ edges g

This is justified by the fact that a record definition in Isabelle/HOL does
not allow restrictions over its components: adding a “set of vertices” field
to the ′v rgraph record without the associated invariant that the source and
target of each edge actually belong to this set of vertices would be of no help.
This could be solved by assuming said invariant each time it is needed, but
we found it simpler to deduce the set of vertices from the set of edges: the
invariant is always implicitly assumed.

Isabelle/HOL provides extensible records, that is, one can define new
record types by extending existing ones. Records defined in this way “in-
herits” the definitions and lemmas existing for the original ones. The def-
inition of vertices is given for (′v,′ x) rgraph scheme, i.e. for any extension
of ′v rgraph, where ′x is a type variable standing for the types of additional
components. Indeed, in the following, we will model LTS by extending the
′v rgraph record with a labeling function for edges.

Consistency, Sub-Paths and Paths Sub-paths of a rooted graph are
consistent sequences of some of its edges. Intuitively, a sequence of edges
is consistent between two vertices if it leads from one to the other without
discontinuity. The two following definitions are inspired from the Graph
Library for Isabelle by Nochinsky [44].

fun ces ::
′v ⇒ ′v edge list ⇒ ′v ⇒ bool

where
ces v1 [] v2 = (v1 = v2)
| ces v1 (e#es) v2 = (src e = v1 ∧ ces (tgt e) es v2)

definition subpath ::
(′v , ′x) rgraph-scheme ⇒ ′v ⇒ ′v edge list ⇒ ′v ⇒ bool

where
subpath g v1 es v2 ≡ ces v1 es v2 ∧ v1 ∈ vertices g ∧ set es ⊆ edges g

Since edges elements exist independently of graphs (one can define edges
without reference to any graph), consistency of a sequence of edges is not
related to a given graph and is only a property of the sequence itself. On
the other hand, the definition of subpath above takes a graph g as first
parameter.

In both definitions, the two vertices v1 and v2 are here for several rea-
sons. In the case of subpath, we will often need, in the following, to consider
the starting and ending vertices of a sub-path: using them as parameters
of the definition avoids us to write operators that return the endpoints of

83

a sequence of edges. Writing such operators would require a special treat-
ment for the empty sequence. With our definitions there is no such problem
since the starting (and thus the ending) vertex of the empty sequence are
parameters of subpath. This is also why they are parameters of ces: not
making them part of the signature of ces, would require to add the con-
straint es = [] → v1 = v2 in the definition of subpath, when our goal is to
have a unified definition. Also, these two additional parameters will prove
particularly handy, in the following, when reasoning about sub-paths going
through subsumption links.

Finally, the definition of subpath does not explicitly require that v2 is a
vertex of g, but implies it:

lemma lst-of-sp-is-vert :
assumes subpath g v1 es v2

shows v2 ∈ vertices g

Paths are sub-paths starting at the root of the given rooted graph.

abbreviation path ::
(′v , ′x) rgraph-scheme ⇒ ′v edge list ⇒ ′v ⇒ bool

where
path g es v ≡ subpath g (root g) es v

4.3.3 Labeled Transition Systems

We model LTS by extending the ′v rgraph record. The new record is param-
eterized by three type variables ′vert, ′var and ′d representing the types of
vertices, program variables and their domain, respectively.

record (′vert , ′var , ′d) lts = ′vert rgraph +
labeling :: ′vert edge ⇒ (′var , ′d) label

Objects of type (′vert ,′ var ,′ d) lts are simply rooted graphs equipped with a
function associating labels to their edges: definitions and lemmas that hold
for rooted graphs also hold for LTS.

Given a sequence of edges and a labeling function, the trace of this
sequence is defined as follows:

abbreviation trace ::
′vert edge list ⇒ (′vert edge ⇒ (′var , ′d) label) ⇒ (′var , ′d) label list

where
trace es L ≡ map L es

We are mainly interested in feasible sub-paths and paths of LTS. Since LTS
are also rooted graphs, we use the definition of subpath for rooted graphs:

84

abbreviation feasible-subpath ::
(′vert , ′var , ′d , ′x) lts-scheme ⇒
(′var , ′d) conf ⇒
′vert ⇒
′vert edge list ⇒
′vert ⇒ bool

where
feasible-subpath lts c v1 es v2 ≡ Graph.subpath lts v1 es v2

∧ feasible c (trace es (labeling lts))

A sequence of edges is feasible from a given configuration if symbolic execu-
tion of its trace yields a satisfiable configuration:

definition feasible ::
(′v , ′d) conf ⇒ (′v , ′d) label list ⇒ bool

where
feasible c ls ≡ (∃ c ′. SE-star c ls c ′ ∧ sat c ′)

This definition is not related to LTS but to sequence of labels. As such,
it is defined in SymExec.thy but was only introduced now since it was not
needed before this point.

Again, feasible paths are defined as feasible sub-paths starting at the
root of the given LTS.

4.3.4 Graphs Equipped with Subsumption Relations

Subsumptions take place between vertices of the red part of a red-black
graph, that is, between occurrences of vertices of its black part.

type-synonym ′v sub-t = ((′v × nat) × (′v × nat))

A subsumption relation is simply a set of subsumptions.

type-synonym ′v sub-rel-t = ′v sub-t set

Consistency, Sub-Paths and Paths We now consider sub-paths and
paths going through subsumption links. This requires to re-define the no-
tions of consistency and sub-path to take subsumption relations into account.
In the following, for the sake of simplicity, we still talk about (sub-)paths of
a rooted graph equipped with a subsumption relation, although we rather
keep the graph and the subsumption relation as separate parameters in the
following definitions.

Here, a sequence of edges is consistent between two vertices if it leads
from one to the other and it is made of a number of consistent (in the sense
of the previous definition) sub-sequences linked together by elements from
the subsumption relation. Hence, this new definition of consistency accepts
sequences that would not be consistent if it was not for subsumption links.

85

fun ces ::
(′v × nat) ⇒ (′v × nat) edge list ⇒ (′v × nat) ⇒ ′v sub-rel-t ⇒ bool

where
ces v1 [] v2 subs = (v1 = v2 ∨ (v1,v2) ∈ subs+)
| ces v1 (e#es) v2 subs = ((v1 = src e ∨ (v1,src e) ∈ subs+) ∧

ces (tgt e) es v2 subs)

In Definition 17 of Chapter 3, we imposed several restrictions on sub-
sumption relations of red-black graphs. For example, they must contain no
chain of subsumptions (this is imposed through the conditions of application
of Extsub). But nothing in our above definitions of sub rel t and ces relates
to this particular constraint. Thus, when considering a consistent sequence
of edges w.r.t. a subsumption relation, one must take into account the pos-
sibility that the “gaps” might be filled by chains of subsumptions and not
only individual subsumption links. Thus, the empty sequence is consistent
between v1 and v2 w.r.t. a subsumption relation S if (v1, v2) is an element
of the transitive closure of S. If the sequence is not empty, its “gaps” can
also be filled with such chains. This extends to its endpoints: subsumption
chains might allow the sequence to start (resp. end) in another vertex than
the source (resp. target) of its first (resp. last) element.

The fact that we are not interested in chains of subsumptions is a re-
quirement that is specific to the current way we build red-black graphs but
is not related to the notion of consistency of sequence of edges w.r.t a sub-
sumption relation. The additional constraint will be added only at the level
of operations on red-black graphs: adding a subsumption must not intro-
duce such chains. We think that modeling and proving is made easier by
trying to be as general as possible when introducing new concepts, and then
introduce specific requirements as late as possible. The idea is that sub-
sequent lemmas are not polluted by unnecessary assumptions: as a result,
their proofs must capture the exact reasons that make these propositions
theorems.

The definition of sub-paths of a graph equipped with a subsumption
relation is almost identical to the previous one.

definition subpath ::
((′v × nat), ′x) rgraph-scheme ⇒
(′v × nat) ⇒
(′v × nat) edge list ⇒
(′v × nat) ⇒
((′v × nat) × (′v × nat)) set ⇒ bool

where
subpath g v1 es v2 subs ≡ sub-rel-of g subs

∧ v1 ∈ Graph.vertices g
∧ ces v1 es v2 subs
∧ set es ⊆ edges g

It takes a fifth parameter: the subsumption relation subs, which is passed

86

to ces. It also put one additional constraint: sub-rel-of g subs, which states
that all vertices involved by the subsumption relation subs are also vertices
of g. We say that subs belongs to g. Without this restriction, that is, if subs
was to involve other vertices than those of g, the definition of subpath would
allow sub-paths to “exit” the graph at some point through subsumption
links.

Using HOL “locales” The predicate sub-rel-of in the previous definition
is defined using Isabelle/HOL’s locales. Locales are Isabelle’s mechanism
to handle parametric theories. The parameters of a locale are given by a
sequence of logical variable declarations together with their type-declaration
(which can be polymorphic and higher-order) and a sequence of assumptions
over these variables. In the body of a locale, definitions and theorems can be
stated and proved depending on these logical variables, which can be seen
as the “formal constants” of the theory parameter, whereas the assumptions
can be seen as “formal theory” of the parameterized theory.

In contrast to type-classes, locales can be parameterized in several poly-
morphic types (not just one), introduce additional syntax for the logical
variables and also produce, when instantiated, a prover configuration of for
the instantiated theorems.

Locales are extendable, that is, one can extend an existing context into
another one by adding variables or premises, for example. We do not go into
the details of locales, the interested reader might refer to the Isabelle/HOL
documentation.2 In the following, we use locales as a convenient way to add
complex assumptions to lemmas and to allow to refer to specific theorems
when proving them.

We first define two very simple locales, rgraph and sub-rel, in which we
only declare a rooted graph g and a subsumption relation subs, respectively.

locale rgraph =
fixes g :: (′v , ′x) rgraph-scheme

locale sub-rel =
fixes subs :: ′v sub-rel-t

Finally, we define sub-rel-of by extending both previous locales.

locale sub-rel-of = rgraph + sub-rel +
assumes related-are-verts : vertices subs ⊆ Graph.vertices g

begin
lemma trancl-sub-rel-of :

sub-rel-of g (subs+)
end

2The Isabelle/HOL documentation can be found at https://isabelle.in.tum.de/.

87

https://isabelle.in.tum.de/

As an example, a theorem in this context is that all vertices in the transitive
closure of subs belongs to g. This is stated (and proved) in the body of the
locale.

We use this locale to prove a number of facts about (sub-)paths of a
graph equipped with a subsumption relation. For instance, if a sequence
of edges is consistent between two vertices w.r.t. a subsumption relation
belonging to a graph, then this sequence ends in a vertex of this graph.

lemma (in sub-rel-of) ces-imp-end-vertex :
assumes ces v1 es v2 subs
assumes set es ⊆ edges g
assumes v1 ∈ Graph.vertices g
shows v2 ∈ Graph.vertices g

The additional “(in sub-rel-of)“ clause states that we assume to be in the
context defined by the sub-rel-of locale. The third assumption is necessary
to handle the case of the empty sequence. The proof is obtained by induction
on es.

From this, it follows that the last definition of subpath also entails that
v2 is a vertex of g:

lemma lst-of-sp-is-vert :
assumes subpath g v1 es v2 subs
shows v2 ∈ Graph.vertices g

4.3.5 Extending Graphs and Subsumption Relations

Since we are interested in proving that the set of red-black paths of a well-
formed red-black graph contains the feasible paths of its black part, we need
a number of facts describing how the set of red-black paths evolve when
one of our five operators is applied. We choose to first describe how the
set of paths of the red part evolves. Only two of the five operators actually
modify the set of red paths: adding a red edge and adding a subsumption.
For these two operators to apply, a number of requirements must be met.
For example, the new edge must have its source in the old red part but not its
target, or new subsumption links must not introduce chains of subsumption
in the subsumption relation. To ease writing and reading the rest of the
formalization, we introduce two operators modeling the addition of an edge
to a rooted graph and the addition of a subsumption link to the subsumption
relation equipping a rooted graph. The requirements of these operators
are exactly those of ExtSE and Extsub , from Chapter 3, that are related
to the addition of a new edge or a subsumption link, without considering
the symbolic execution related aspects of the problem. We model these
operators using predicates instead of functions: as already discussed, this is
a convenient way to handle the cases where the requirements are not met.

88

These two extensions are defined in their own theory file (ArcExt.thy
and SubExt.thy).

abbreviation extends ::
(′v , ′x) rgraph-scheme ⇒ ′v edge ⇒ (′v , ′x) rgraph-scheme ⇒ bool

where
extends g e g ′ ≡ src e ∈ Graph.vertices g

∧ tgt e /∈ Graph.vertices g
∧ g ′ = (add-edge g e)

abbreviation extends ::
((′v × nat), ′x) rgraph-scheme ⇒ ′v sub-rel-t ⇒ ′v sub-t ⇒ ′v sub-rel-t ⇒ bool

where
extends g subs sub subs ′ ≡ subsumee sub 6= subsumer sub

∧ fst (subsumee sub) = fst(subsumer sub)
∧ subsumee sub ∈ Graph.vertices g
∧ subsumee sub /∈ subsumers subs
∧ subsumee sub /∈ subsumees subs
∧ subsumer sub ∈ Graph.vertices g
∧ subsumer sub /∈ subsumees subs
∧ out-edges g (subsumee sub) = {}
∧ subs ′ = subs ∪ {sub}

In the first abbreviation, add-edge g e stands for the graph obtained from g
by adding e to its edges. In the second one, subsumee sub and subsumer sub
are abbreviations for fst sub and snd sub. For a subsumption relation subs,
subsumees subs and subsumers subs represent the sets of subsumees and
subsumers of subs, respectively.

Sub-Paths of an Extension We now establish a number of facts describ-
ing how the set of sub-paths of a rooted graph equipped with a subsumption
relation evolves after adding a new edge or a new subsumption link. In or-
der to prove the main properties of red-black graphs, it is not necessary to
express the set of paths (or sub-paths) after an extension as a function of
the set of paths prior to this extension. We found that it is easier to reason
with individual sub-paths.

In the case of an edge, these facts are quite intuitive and easy to prove, so
we do not provide details. For example, given g and g′ such that extends g e g′

holds, a sub-path of g′ that does not have e in its edges is also a sub-path
of g. On the other hand, if e is an edge of this sub-path, then it must be its
final edge since the target of e has no outgoing edge. For the same reason,
a sub-path of g′ starting at the target of e must be empty.

Describing what is happening when adding a subsumption link is a bit
more complicated. We proceed in two steps. First, we describe sub-paths
starting at the subsumee of the new subsumption:

89

lemma sp-in-extends-imp1 :
assumes extends g subs (v1,v2) subs ′

assumes subpath g v1 es v ′ subs ′

shows es = [] ∨ subpath g v2 es v ′ subs ′

Such paths are either empty or actually start at the subsumer of the new
subsumption. The proof relies on the fact that v1, as the source of a sub-
sumption, has no out-going edge. Thus, if es is not empty, the source of
its first edge must be a subsumer of v1, hence v2 since the constraints for
adding the pair (v1, v2) to the subsumption relation imposes that v1 had no
subsumer and v2 is not subsumed.

Let us now consider a sub-path starting at any vertex v other than the
new subsumee and ending in a vertex v′. This sub-path does not go through
the new subsumption link if it was already a sub-path before adding the new
subsumption. If it goes through the new subsumption link, then it can be
decomposed into a non-empty prefix going from v to the new subsumee that
does not go through the new subsumption, and a (potentially empty) suffix
going from the new subsumee to v′ and that might go any number of times
through the new subsumption (the symbol @ represents the concatenation
operator:

lemma sp-in-extends-imp2 :
assumes extends g subs (v1,v2) subs ′

assumes subpath g v es v ′ subs ′

assumes v 6= v1

shows subpath g v es v ′ subs ∨ (∃ es1 es2. es = es1 @ es2
∧ es1 6= []
∧ subpath g v es1 v1 subs
∧ subpath g v1 es2 v ′ subs ′)

The proof is obtained by case distinction: we first assume that the sub-path
does not go through the subsumption link, then assume that it does. The
first case is proved by induction on es and is fairly easy so we do not give the
details. Proving the second one relies on a number of intermediate lemmas
that are not detailed here (see Appendix A.11.3). The main point in proving
that there exists a non-empty prefix from v to v1 is v being different from
v1 to which no subsumption links lead: at least one edge is needed to reach
v1 from v.

We model the fact that a sequence of edges goes through a given sub-
sumption with the following boolean function:

fun uses-sub ::
(′v × nat) ⇒
(′v × nat) edge list ⇒
(′v × nat) ⇒
((′v × nat) × (′v × nat)) ⇒ bool

where
uses-sub v1 [] v2 sub = (v1 6= v2 ∧ sub = (v1,v2))

90

| uses-sub v1 (e#es) v2 sub =
(v1 6= src e ∧ sub = (v1,src e) ∨ uses-sub (tgt e) es v2 sub)

4.4 Red-Black Graphs and Their Properties

In this section, we first introduce our modeling of red-black graphs and their
five transformation operators, giving rise to the set of well-formed red-black
graphs. Then, we state the three key properties of our algorithm and, for
each of them, give a high-level description of the formal proof presented in
the appendix.

The first one describes how red vertices of a well-formed red-black graph
occurring at the end of one of its red sub-paths are related. Unsurprisingly,
since we consider sub-paths going through subsumption links and since ab-
stractions are allowed, the link between such vertices is weaker than in a
classical symbolic execution tree: the descendant is usually an abstraction
of the descendant one would obtain in a classical symbolic execution of all
paths. This property is a crucial point for proving that feasible paths are
preserved: informally, this is in essence why graphs produced by our ap-
proach are over-approximations of classical SETs.

The second key property states the correctness of our approach. Our
approach can be considered correct if it does not introduce in the resulting
LTS paths that do not exist in the input LTS. In a sense, we prove that our
approach cannot produce results that are less accurate than its inputs.

Last but not least, we state and prove that our approach preserve feasible
paths of its input LTS.

4.4.1 The Type of Red-Black Graphs

Red-black graphs are modeled using a record that is parameterized by the
type variables ′vert , ′vars and ′d representing respectively the type of vertices
of the black part, the type of program variables and their domain.

The black part is modeled by a (′vert , ′var , ′d) lts, the red one by a rooted
graph whose vertices are indexed instances of ′vert. The function associating
configurations to red vertices is modeled by confs, the subsumption relation
by subs, the markings by marked and the function labeling red vertices with
safeguard conditions by strengthenings.

We add another component to this record: init-conf that stores the
configuration that is initially associated to the root of the red part. The
configuration of the red root might be abstracted during the analysis: the
sole purpose of this component is to keep track of the initial configuration
to allow, in the following, to state and prove that the set of feasible paths
starting at the root in this initial configuration is a subset of the red-black
paths of the given red-black graph.

91

record (′vert , ′var , ′d) pre-RedBlack =
red :: (′vert × nat) rgraph
black :: (′vert , ′var , ′d) lts
subs :: ′vert sub-rel-t
init-conf :: (′var , ′d) conf
confs :: (′vert × nat) ⇒ (′var , ′d) conf
marked :: (′vert × nat) ⇒ bool
strengthenings :: (′vert × nat) ⇒ (′var , ′d) bexp

Since the components of instances of this record can take any value, these
instances represent a much larger set than the set of red-black graphs that
are built using only our five operators. We talk about pre-red-black graphs.

4.4.2 Well-Formed Red-Black Graphs

As said in Chapter 3, we are only interested in red-black graphs obtained
using our five transformation operators from a red-black graph whose red
part is initially empty. In this section, we describe our modeling of the five
operators over red-black graphs introduced in Section 3.6.

Extension by Symbolic Execution

We model ExtSE (as well as the other operators) by a predicate that takes
as inputs a red-black graph rb, a red edge re, a configuration c and a second
red-black graph rb′ and evaluates to true if the following conditions are met:

• re is a “red version” of a black transition of rb. We note ui-edge re
the black edge (fst(src re), fst(tgt re)),

• the red part of rb′ has been obtained by an extension (by addition of
an edge) of the red part of rb,

• the source of the new red edge is not already subsumed in rb,

• the configuration c is indeed a possible result of the symbolic execution
of the label of the black version of re (as given by the labeling function
of the black part) from the configuration associated to the source of
the new red edge,

• the target of re is “correctly” marked in rb′.

abbreviation se-extends ::
(′vert , ′var , ′d) pre-RedBlack ⇒
(′vert × nat) edge ⇒
(′var , ′d) conf ⇒
(′vert , ′var , ′d) pre-RedBlack ⇒ bool

where
se-extends rb re c rb ′ ≡

ui-edge re ∈ edges (black rb)
∧ ArcExt .extends (red rb) re (red rb ′)

92

∧ src re /∈ subsumees (subs rb)
∧ SE (confs rb (src re)) (labeling (black rb) (ui-edge re)) c
∧ rb ′ = (| red = red rb ′,

black = black rb,
subs = subs rb,
init-conf = init-conf rb,
confs = (confs rb) (tgt re := c),
marked = (marked rb)(tgt re := marked rb (src re)),
strengthenings = strengthenings rb |)

Once again, the fact that we use a predicate instead of a function to model
this operator is a convenient way to handle the cases where the requirements
are not met. Moreover, its inputs differ from those of the operator ExtSE
introduced in Chapter 3: this slight modification is done in order to facilitate
proofs.

Extension by Subsumption

Operator Extsub is modeled by the predicate subsum-extends that takes as
inputs a subsumption and two red-black graphs and evaluates to true if the
second has been obtained by extending the first one by addition of the given
subsumption. Its requirements are exactly the same as those of Extsub .

abbreviation subsum-extends ::
(′vert , ′var , ′d) pre-RedBlack ⇒
′vert sub-t ⇒
(′vert , ′var , ′d) pre-RedBlack ⇒ bool

where
subsum-extends rb sub rb ′ ≡

SubExt .extends (red rb) (subs rb) sub (subs rb ′)
∧ ¬ marked rb (subsumer sub)
∧ ¬ marked rb (subsumee sub)
∧ confs rb (subsumee sub) v confs rb (subsumer sub)
∧ rb ′ = (| red = red rb,

black = black rb,
subs = insert sub (subs rb),
init-conf = init-conf rb,
confs = confs rb,
marked = marked rb,
strengthenings = strengthenings rb |)

Extension by Abstraction

Operator Extabs is modeled by abstract-extends that takes as inputs a red
vertex rv , a configuration ca and two red-black graphs and evaluates to true
if the second has been obtained by updating the confs component of the first
one at the leaf rv with ca, which must subsume the previous configuration
at rv and entail its current safeguard condition.

93

abbreviation abstract-extends ::
(′vert , ′var , ′d) pre-RedBlack ⇒
(′vert × nat) ⇒
(′var , ′d) conf ⇒
(′vert , ′var , ′d) pre-RedBlack ⇒ bool

where
abstract-extends rb rv ca rb ′ ≡

rv ∈ red-vertices rb
∧ ¬ marked rb rv
∧ out-edges (red rb) rv = {}
∧ rv /∈ subsumees (subs rb)
∧ abstract (confs rb rv) ca

∧ ca |=c (strengthenings rb rv)
∧ finite (pred ca)
∧ (∀ e ∈ pred ca. finite (vars e))
∧ rb ′ = (| red = red rb,

black = black rb,
subs = subs rb,
init-conf = init-conf rb,
confs = (confs rb)(rv := ca),
marked = marked rb,
strengthenings = strengthenings rb |)

This abbreviation includes two particular requirements: finite (pred ca)
and (∀ e ∈ pred ca. finite (vars e). The first one states that the path
predicate of the new configuration ca contains only a finite number of ex-
pressions; the second that each of these expressions must have a finite set
of variables. Recall that, at some point in this formalization, we will have
to prove that we are always be able to find fresh symbolic variables for
configurations that are built during the analysis. The two operators over
red-graphs that directly modify configurations are adding a red edge and
abstracting a configuration: those two operators must be applied in a way
that guarantees the existence of fresh symbolic variables in the rest of the
analysis. To handle the case of symbolic execution, we will assume, when
needed (see Section 4.4.3 for example), that our analysis starts with an LTS
whose labels only carry expressions with finite set of program variables and
from an initial configuration whose path predicate contains a finite num-
ber of expressions each of which contains only finite number of symbolic
variables. A part of our formalization that is not detailed in this chapter
(see Appendix A.6.7) is devoted to prove that, in these conditions, our no-
tion of symbolic execution yields configurations with finite path predicates
and whose expressions contain a finite number of variables, that is, for which
there exists fresh symbolic variables. Since we do not specify how abstrac-
tions are computed, we have no choice than to require abstractions to meet
these two requirements.

94

Extension by Marking

Operator Extm is modeled by the following predicate that takes as inputs a
red vertex rv and two red-black graphs and evaluates to true if the second
has been obtained by marking the leaf rv in the first one.

abbreviation mark-extends ::
(′vert , ′var , ′d) pre-RedBlack ⇒
(′vert × nat) ⇒
(′vert , ′var , ′d) pre-RedBlack ⇒ bool

where
mark-extends rb rv rb ′ ≡

rv ∈ red-vertices rb
∧ out-edges (red rb) rv = {}
∧ rv /∈ subsumees (subs rb)
∧ rv /∈ subsumers (subs rb)
∧ ¬ sat (confs rb rv)
∧ rb ′ = (| red = red rb,

black = black rb,
subs = subs rb,
init-conf = init-conf rb,
confs = confs rb,
marked = (λ rv ′. if rv ′ = rv then True else marked rb rv ′),
strengthenings = strengthenings rb |)

Extension by Strengthening

Operator Extstr is modeled by a predicate that takes a red vertex rv and a
(safeguard) condition e and two red-black graphs and evaluates to true if the
second has been obtained by adding the new condition to the strengthenings
component of the first with e at leaf rv .

abbreviation strengthen-extends ::
(′vert , ′var , ′d) pre-RedBlack ⇒
(′vert × nat) ⇒
(′var , ′d) bexp ⇒
(′vert , ′var , ′d) pre-RedBlack ⇒ bool

where
strengthen-extends rb rv e rb ′ ≡

rv ∈ red-vertices rb
∧ rv /∈ subsumees (subs rb)
∧ confs rb rv |=c e
∧ rb ′ =

(| red = red rb,
black = black rb,
subs = subs rb,
init-conf = init-conf rb,
confs = confs rb,
marked = marked rb,

95

strengthenings =
(strengthenings rb)(rv := (λ σ. (strengthenings rb rv) σ ∧ e σ))|)

The Set of Well-Formed Red-Black Graphs

The set of well-formed red-black graphs is exactly the set of red-black graphs
built using our five operators, starting from a red-black graph whose red
part is empty. We do not directly model this set, but rather define an
inductive predicate that precisely describes it: well-formed red-black graphs
are exactly those that satisfy the following predicate.

inductive RedBlack ::
(′vert , ′var , ′d) pre-RedBlack ⇒ bool

where
base :

fst (root (red rb)) = init (black rb) =⇒
edges (red rb) = {} =⇒
subs rb = {} =⇒
(confs rb) (root (red rb)) = init-conf rb =⇒
marked rb = (λ rv . False) =⇒
strengthenings rb = (λ rv . (λ σ. True)) =⇒ RedBlack rb

| se-step :
RedBlack rb =⇒ se-extends rb re p ′ rb ′ =⇒ RedBlack rb ′

| mark-step :
RedBlack rb =⇒ mark-extends rb rv rb ′ =⇒ RedBlack rb ′

| subsum-step :
RedBlack rb =⇒ subsum-extends rb sub rb ′ =⇒ RedBlack rb ′

| abstract-step :
RedBlack rb =⇒ abstract-extends rb rv ca rb ′ =⇒ RedBlack rb ′

| strengthen-step :
RedBlack rb =⇒ strengthen-extends rb rv e rb ′ =⇒ RedBlack rb ′

When given such a predicate, Isabelle/HOL automatically states and prove
a number of lemmas that can then be reused when proving facts involving
red-black graphs. The induction principle over well-formed red-black graphs
mentioned in Section 3.6.6 is one of these: it will be particularly helpful for
proving facts that are presented in the following.

4.4.3 Relation Between Red Vertices

The main key properties of well-formed red-black graphs state how vertices
at the end of a red sub-path are related. In a classical symbolic execution

96

tree, the configuration at the end of a sub-path would be the result of sym-
bolic execution of the trace of this sub-path from the configuration at its
beginning. This property is too strong for the red part of a red-black graph
since we also consider sub-paths that go through subsumption links, and
since configurations along those might have been abstracted.

In red-black graphs, the configuration at the end of a sub-path usually
only subsumes the configuration one would obtain by symbolic execution,
which is expressed by the following theorem.

theorem (in finite-RedBlack) SE-rel :
assumes RedBlack rb
assumes subpath (red rb) rv1 res rv2 (subs rb)
assumes SE-star (confs rb rv1) (trace (ui-es res) (labeling (black rb))) c
shows c v (confs rb rv2)

This proposition holds only in the context of the finite-RedBlack locale:

locale finite-RedBlack = pre-RedBlack +
assumes fn-init-pred : finite (pred (init-conf prb))
assumes fn-init-pred-symvars : ∀ e ∈ pred (init-conf prb). finite (Bexp.vars e)
assumes fn-lts : finite-lts (black prb)

In this locale, we introduce the assumption mentioned in Section 4.2.4 that
allow to prove that we never run short of fresh symbolic variables when
building the red part of rb.

In the previous theorem, the term (ui-es res) represents the sequence of black
edges obtained from the red edge sequence res by discarding the indexes in
the sources and targets of its elements.

The proof of this theorem is obtained by induction over well-formed red-
black graphs. The initial case is trivial. The only possible red sub-path
is the empty one, going from and to the red root: the proof is immediate
thanks to subsumption being reflexive.

In the case of an extension by symbolic execution, one observes that rv1

and rv2 can either be “old” red vertices or the target of the new edge. If
they are both old vertices, then res does not go through the new edge: it is
a sub-path in the old red part and the induction hypothesis applies. If rv1 is
the target of the new edge, then res is empty and rv2 = rv1 since the latter
has no out-going edges: the property is trivially true since subsumption is
reflexive. In the last case, the new edge occurs exactly once in res, at its
end. The proof is obtained by applying the induction hypothesis on the
part of res that precedes its last step, and then showing that the property
propagates to the target of the new edge thanks to the monotonicity of SE.

The difficulty comes with the extension by subsumption. First, we sup-
pose that rv1 is the new subsumee. Thus, by theorem sp-in-extends-imp1

97

introduced in Section 4.3.5, res is either empty, or a sub-path in the exten-
sion that starts at the subsumer. In the first case, either rv2 = rv1, and
we conclude by reflexivity of subsumption, or rv2 is the new subsumer: we
conclude by transitivity of subsumption. If res is not empty, then we reason
by backward induction on res. The initial case states that res is empty:
we proceed as previously. The inductive case states that res is of the form
res ′ ·re. The (internal) induction hypothesis applies on res ′ and we conclude
using transitivity of subsumption.

When rv1 is not the new subsumee then, thanks to theorem
sp-in-extends-imp2, we have that res can be decomposed into a prefix that
is a sub-path in the old red graph and a suffix that is a sub-path in the
new red part. The induction hypothesis applies on the prefix, but we have
to perform another backward induction on the suffix. As in the previous
backward induction, we conclude thanks to SE-star being transitive.

The proofs for the tree other operators are easy, since these operators do
not modify configurations of the red part (except for the abstraction, but
then transitivity of subsumption immediately proves the property).

4.4.4 Preservation of Behaviours

Our goal being to build better over-approximations of the set of feasible
paths of the program under analysis than its CFG, our approach can be
considered correct if its results do not contain paths that do not exist in
the original graph. The fact that our approach is indeed correct is fairly
intuitive: red-edges are simply indexed versions of the black ones and are
added to the red part in a consistent manner w.r.t. the black part, as well
as subsumption links. Stating and proving this correctness property first
requires to define the set of red-black paths, which in turn is based on the
notion of “fringe”.

Given a red-black graph, the fringe is the set of its red vertices from
which the set of feasible paths of the black part could be further refined.
Vertices of the fringe are those that are neither subsumed nor marked and
from which there exists a black transition that has no red counterpart yet.

definition fringe ::
(′vert , ′var , ′d) pre-RedBlack ⇒ (′vert × nat) set

where
fringe rb ≡ {rv ∈ red-vertices rb. rv /∈ subsumees (subs rb) ∧

¬ marked rb rv ∧
ui-edge ‘ out-edges (red rb) rv ⊂ out-edges (black rb) (fst rv)}

The fringe of a red-black graph in an initial state consists only of its red
root. Adding an edge to the red part might enlarge or reduce the fringe,
depending on the fact that there still exist or not transitions to be executed
from the source and the target of the new edge. Adding a subsumption link
or marking a red vertex always reduce the fringe, since it does not introduce

98

1

4

3

79

10

11

12

2

5

8

6

[new ≠old]

┴

┴

10

20

30

40

50

60

90

31

41 100

110 120

Figure 4.2: Red-black graph of the lock acquisition program with a partial
red part.

successors. Seven lemmas, that are not detailed here (see Appendix A.12.7),
are needed to fully describe how the fringe evolves in each case.

Example 7. The red part of the red-black graph in Figure 4.2 depicts a
partial unfolding of the lock acquisition program introduced in Chapter 3.
The fringe of this red-black graph is made of vertices 30 and 60, which is
depicted by the dashed edges linking them to the black part.

After having stated the effect on the fringe of each operator, we can now
define the sets of red-black sub-paths and paths. Given a red-black graph
rb and one of its red vertices rv , the set of red-black sub-paths of rb starting
at rv is defined as the union of the two following sets3:

• the set of sequences of black edges obtained by unindexing the sources
and targets of the elements of red sub-paths of rb starting in rv and
ending in a non-marked red vertex,

• the set of sequences of black edges that have a (potentially empty)
prefix that is represented in the red part by a red sub-path starting in
rv and ending in a vertex of the fringe. Also, we require (and motivate
why below) this prefix to be as long as possible.

3The terms “red-black sub-paths” and “red-black paths” are a bit inaccurate since
these sets are expressed only in terms of black sub-paths and paths. Defining them as sets
of black paths makes it easier to express and prove the theorems to come.

99

definition RedBlack-subpaths ::
(′vert , ′var , ′d) pre-RedBlack ⇒ (′vert × nat) ⇒ ′vert edge list set

where
RedBlack-subpaths-from rb rv ≡

ui-es ‘ {res. ∃ rv ′. subpath (red rb) rv res rv ′ (subs rb) ∧ ¬ marked rb rv ′}
∪ {ui-es res1 @ bes2
| res1 bes2. ∃ rv1. rv1 ∈ fringe rb

∧ subpath (red rb) rv res1 rv1 (subs rb)
∧ ¬ (∃ res21 bes22. bes2 = ui-es res21 @ bes22

∧ res21 6= []
∧ subpath-from (red rb) rv1 res21 (subs rb))

∧ Graph.subpath-from (black rb) (fst rv1) bes2}

Once again, red-black paths are defined as red-black sub-paths starting at
the red root of the given red-black graph.

In this definition, subpath-from g v es subs and Graph.subpath-from g v
es stand for ∃ v ′. subpath g v es v ′ subs and ∃ v ′. Graph.subpath g v es v ′,
respectively.

This complex definition ensures that what we call the set of red-black
paths is not trivially the set of paths of the black part, which would defeat
the point of this formalization. The fact that we exclude sub-paths that
end in marked vertices is quite natural since we want the set of red-black
paths to be as close as possible to the set of feasible paths, and we know
that sub-paths ending in marked vertices are infeasible. If we were not to
require the red prefix to be as long as possible (which is expressed in the
previous definition by the third conjunct in the second set, which states that
the black suffix must have no non-empty red prefix) then the set of red-black
sub-paths would contain black paths that are in fact known to be infeasible,
since vertices of the fringe are not necessarily leaves of the red part and
might have marked descendants.

For example, without this additional requirement, paths of the black part
depicted in Figure 4.2 going through the following sequences of vertices:

• 1 · 2 · 3 · 4 · 5 · 6 · 9 · 3 · 4, and

• 1 · 2 · 3 · 4 · 5 · 6 · 9 · 3 · 10 · 11,

would be red-black paths, since their common prefix is represented by a
red sub-path that ends in 60 which is in the fringe. However, these two
sequences are known to be infeasible, since they have red equivalents that
end in marked vertices (41 and 110). By asking the black suffixes to have no
red prefix — and thus the red prefixes to be as long as possible — the two
previous paths are ruled out from the set of red-black paths, since 6 · 9 · 3
and 6 · 9 · 3 · 10 are also represented in the red part of Figure 4.2. This does
not rule out black paths ending in 90, 31, 100 and 120: they are represented
by red-paths ending in non-marked red vertices (i.e. they are elements of
the first set of the definition of red-black paths).

100

The first set in RedBlack-subpaths contains sub-paths of the red part
starting in rv that were not detected infeasible yet (that is, that do not go
through marked vertices). The second set contains those red sub-paths that
start in rv and that are allowed to continue in the black part, if the red one
has not been completely built yet. The red prefix might be empty, since rv
might be itself in the fringe, and the red-black path might go “directly” into
the black part.

In order to prove that our approach is correct, we first show that red
sub-paths starting in a given red vertex of a well-formed red-black graph
are also black sub-paths starting at the corresponding black vertex, modulo
unindexing the sources and targets of their elements.

theorem red-sp-imp-black-sp :
assumes RedBlack rb
assumes subpath (red rb) rv1 res rv2 (subs rb)
shows Graph.subpath (black rb) (fst rv1) (ui-es res) (fst rv2)

In this theorem, ui-es res stands for map ui-edge es. This intermediary theo-
rem is a direct consequence of the definitions of se-extends and subsum-extends
and is proved from the observation that for a well-formed red-black graph
rb:

• if a sequence of red edges res is consistent w.r.t. the subsumption re-
lation of rb, then the sequence of black edges obtained by unindexing
the sources and targets of the elements of res is also consistent without
considering the subsumption relation of rb (i.e. in the sense of the first
definition of consistency). This is due to the fact that the subsump-
tions in rb only involve occurrences of the same black vertices,

• fst(rv1) is a black vertex of rb and that unindexing the sources and
targets of the elements of res yields a sequence of black edges of rb.

The fact that our approach is correct is expressed by the following theorem:

lemma RedBlack-paths-are-black-paths :
assumes RedBlack rb
shows RedBlack-paths rb ⊆ Graph.paths (black rb)

where Graph.paths g is defined by comprehension from the definition of
Graph.path. Its relies on the fact that the red root of a well-formed red-black
graph is an indexed version of its black root and that, thanks to theorem
red-sp-imp-black-sp:

• a red-black path obtained from a red path is a path in the black part,

• a red-black path made of a red prefix and a black suffix is also a
path in the black part, since its red prefix can be turned into a black
path leading to the same black vertex the black suffix starts at: their
concatenation is a path in the black part.

101

4.4.5 Preservation of Feasible Paths

We are now ready to prove that our approach preserves feasible paths of the
original LTS. We first show that, given a red vertex of a well-formed red-
black graph rb, the feasible sub-paths starting at the corresponding black
vertex from the configuration at rv are contained in the set of red-black
sub-paths starting at rv .

theorem (in finite-RedBlack) feasible-subpaths-preserved :
assumes RedBlack rb
assumes rv ∈ red-vertices rb
shows feasible-subpaths-from (black rb) (confs rb rv) (fst rv)

⊆ RedBlack-subpaths-from rb rv

This is the most important theorem in our formalization. Its proof is fairly
difficult, and represents almost a third of the whole formalization. We pro-
ceed by induction over well-formed red-black graphs.

When rb is an initial state, its set of red-black paths is simply the set of
black paths, since its red part is empty.

Suppose that rb′ is a possible extension of rb, and bes a black feasible
sub-path of rb′ starting at the black vertex fst(rv) of rb′ (thus it is also a
black feasible sub-path of rb), where rv is a red vertex of rb′. The idea
is to show that bes is a red-black sub-path of rb′. Once again, the two
difficult cases are those of the addition of a red edge and the addition of a
subsumption link.

In the case of the addition of a red edge re at the red vertex rv , one has
to handle a number of sub-cases. First, the black feasible sub-path might
start at the target of the new edge. If there exist no black edges going out
of fst

(
tgt(re)

)
, then bes must be empty. Thus, it is represented in the red

part of rb′ by the empty red sequence from tgt(re), which cannot be marked
since it just has been added to the red part. If there exist such black edges,
then tgt(re) is in the fringe of rb′, and the empty red sequence is a suitable
prefix for making bes a red-black subpath. If rv is an old red vertex, then
once again one must deal with a number of sub-cases. The black feasible
sub-path might not go through the new edge. Then depending, if it ends
or not at the source of re, one must show that either it is also a red-black
sub-path of rb′, either that it can be extended by the new edge re to form
red-black sub-path of rb′. If it goes through the new edge, then once again
we must show that the previous red suffix can be extended by the new edge
to form a red-black sub-path in rb′.

The case of the addition of a subsumption is the most complicated one.
First, by induction hypothesis, we have that bes is a red-black sub-path
of rb. If bes is entirely represented in the red part of rb, then it is also
represented in the red part of rb′ and is thus a red-black sub-path of the
latter. If bes is made of a red prefix and a black suffix, we must consider if

102

this red prefix ends or not in the new subsumee. If this is the case then, since
the subsumee is not in the new fringe anymore, we must find a suitable red
prefix and suitable black suffix for bes to show that it is indeed a red-black
sub-path of rb′. This is done by backward induction on the black suffix of
bes and, again, gives rise to a number of sub-cases that we do not detail here
but the idea is to show that, no matter how many times the new red prefix
must go through the new subsumption link, it is always possible to reach
the fringe of rb′ from the new subsumer and to find a suitable red prefix and
a suitable black suffix. If the red prefix ends in any other vertex than the
new subsumee, then the proof is quite straightforward: this last red vertex
is still in the fringe and not marked, and the known red prefix and black
suffix are still suitable.

The three other cases are also quite straightforward. In the case of an
extension by marking, we proceed by showing that the black feasible sub-
path could not go through the newly marked vertex, otherwise it would not
have been feasible in the first place. Thus it is still either entirely represented
by a red sub-path ending in a non-marked vertex, or its red prefix and its
black suffix are still suitable for making it a red-black sub-path of rb′.

The case of the abstraction is proved by observing that it can only enlarge
the set of red-black sub-paths, thus feasible sub-paths can not be ruled out.

Strengthening a red vertex with a safeguard condition does not modify
the fringe directly, nor the set of red sub-paths: it only restricts future uses
of abstraction. Thus, this extension does not modify the set of red-black
sub-paths by itself, and the property is trivially true, using the induction
hypothesis.

From the previous theorem, we obtain that feasible black paths starting
from the configuration at the red root are contained in the set of red-black
paths of rb.

theorem (in finite-RedBlack)
assumes RedBlack rb
shows feasible-paths (black rb) (confs rb (root (red rb)))

⊆ RedBlack-paths rb

A last point is to handle: the configuration at the root of the red part might
not be the initial configuration in which the analysis started anymore, since
this initial configuration might have been abstracted several times. In a
well-formed red-black graph, the initial configuration is subsumed by the
configuration of the red root.

lemma init-subsumed :
assumes RedBlack rb
shows init-conf rb v confs rb (root (red rb))

103

This is not a problem, since subsumption entails the inclusion of sets of
feasible paths (modulo a number of requirements about the finiteness of
sets of symbolic variables, which are met in the case of well-formed red-
black graphs using the finite-RedBlack locale):

lemma subsums-imp-feasible :
assumes finite-labels ls
assumes finite (pred c1)
assumes finite (pred c2)
assumes ∀ e ∈ pred c1. finite (Bexp.vars e)
assumes ∀ e ∈ pred c2. finite (Bexp.vars e)
assumes c2 v c1

assumes feasible c2 ls
shows feasible c1 ls

Since feasible paths considering the initial configuration are also feasible
from the actual configuration at the red root, they are also contained in the
set of red-black paths:

lemma (in finite-RedBlack)
assumes RedBlack rb
shows feasible-paths (black rb) (init-conf rb) ⊆ RedBlack-paths rb

4.5 Summary

In this chapter, we introduced the main concepts and theorems established
in our formalization to prove the key properties of our approach, namely that
it is correct and that feasible paths of the original LTS are preserved. After
introducing the symbolic execution related aspects of the problem: modeling
arithmetic and boolean expressions, stores, configurations and subsumption,
we formally described the symbolic execution steps themselves. The most
important property of symbolic execution is its monotonicity w.r.t. sub-
sumption. We then introduced our modeling of graphs, LTS, subsumption
relation and a number of notions and theorems to describe the evolution of
the set of paths of a graph equipped with a subsumption relation after an
edge or a subsumption link has been added. Finally, we presented our mod-
eling of red-black graphs and their five transformation operators, defined
the notion of fringe and red-black paths and proved the key properties of
our approach.

In this formalization, we abstracted a number of features of our algo-
rithm: we do not consider the traversal strategy of the original LTS, how
abstractions and safeguard conditions are computed, how candidates for
subsumption are chosen, for example. This has the advantage that this for-
malization does not only hold for the algorithm we propose, but for a whole
family of algorithms based on symbolic execution, detection of subsump-
tions and abstraction. Moreover, instead of reasoning on a rather complex

104

algorithm, involving heuristics, backtracking, refine-and-restart and propa-
gation mechanisms, we consider the various kernel operations only, which
makes proving properties of our approach far easier. Last but not least, the
concept of red-black graphs proved to be particularly suitable to reason over
the set of feasible paths, a rather elusive notion. In particular, the set of
red-black paths describe exactly the set of paths of the results provided by
our algorithm.

This formalization constitutes a solid mathematical foundation for the
algorithm we propose and describe in the next chapter. Since the heuristics
parts of our approach have not been modeled in this work, it is not possible to
extract from this formalization, in its current state, an implementation of our
approach using the code generators provided by Isabelle/HOL. Extending
the formalization in this sense is definitely a heavy task and would require
a substantial amount of additional work.

Proving these key properties gives a qualitative rather than quantitative
feedback: our approach produces a LTS that cannot be less accurate than
its input and that contains all its feasible paths. However, its infeasible
path detection power obviously depends on the heuristics used to traverse
the original LTS, to choose candidates for subsumption, to compute (or
limit!) abstractions, etc. In the two following chapters, we fully detail these
heuristics and our algorithm, and present and interpret results obtained
with our prototype, whose implementation closely follows the formalization
introduced in this chapter.

105

106

Chapter 5

Algorithm

5.1 Introduction

In Chapters 3 and 4, we have presented the different operations that the
algorithm can perform on red-black graphs, without describing the heuristics
aspects of our approach and how these operations are combined in order to
detect as many infeasible paths as possible. This is the object of the present
chapter where we give the full details of our algorithm.

We first recall in Section 5.2 some definitions that were introduced
in Chapter 3 and that will serve us again in this presentation. We also
introduce here the parameters of our approach that are dedicated to drive
the various heuristics our algorithm relies on.

Our algorithm is fully described in Section 5.3. This algorithm maintains
an intermediate red-black graph during all the analysis and corresponds to
a DFS traversal of the black part (the input LTS) with the intent to build
its red part, as described in the previous chapter. During the analysis, one
of the three following actions can be performed at the current red vertex:
(i) trigger a counterexample guided refinement phase to rule out a too crude
abstraction performed previously; (ii) establish a subsumption of this red
vertex by another and (iii) build the successors of this red vertex using
symbolic execution. These three actions correspond to combinations of the
five basic operators over red-black graphs that were introduced in the two
previous chapters. Once the analysis is over, the algorithm returns a LTS
whose set of paths is exactly the set of red-black paths of the intermediate
red-black graph.

Section 5.3 is organized as follows. We first describe in 5.3.1 the main
procedure that is responsible for traversing the input LTS and to choose
which of the three actions to apply at each visited red vertex. Each action
is detailed in its own sub-section. Then, we introduce in 5.3.5 a look-ahead
mechanism that greatly improves the infeasible path detection power of our
approach. We conclude the description of the algorithm in 5.3.6, by describ-

107

ing how the resulting LTS is built from the intermediate red-black graph.

Then, in Section 5.4 we illustrate how our algorithm behaves on the ex-
ample of a merging sort program. This program is mainly made of three
unbounded loops that iterates over one or both of its input arrays. Its LTS
contains a great majority of infeasible paths, whose infeasibility is usually
due to complex dependencies between iterations of the three loops. The
goal of this section is to illustrate how the main features of the algorithm
are combined and interact: we describe the different LTS computed for this
merging sort example with various combinations of values for the input pa-
rameters that guide the heuristics during the analysis. In Chapter 6 we will
report on these experiences, giving actual numbers for the ratio of infeasible
paths removed and the size of resulting LTS, and we will present and discuss
more experiments on different kinds of examples. Our algorithm and these
experiments were presented in an internal report [1], and during the second
international conference on Software Quality, Reliability and Security, in
August 2016 (see [2]).

5.2 Data Structures and Inputs

5.2.1 Data Structures

Labeled Transition Systems In Chapter 3, we have defined LTS as
quadruples of the form (L, li,∆, F) with:

• L a set of program locations,

• li ∈ L the initial location,

• ∆ ⊆ L × Labels × L the transition relation, Labels being the set of
labels,

• F ⊆ L the set of final locations.

We now add to LTS a fifth attribute LH ⊆ L, the set of loop headers. LTS
are also equipped with the following applications:

• src : ∆ → L, label : ∆ → Labels and tgt : ∆ → L which, given a
transition, returns its source, its label and its target, respectively,

• ∆i and ∆o which, given a location of L, returns its set of in-going and
out-going transitions, respectively.

Red-Black Graphs During the analysis, the algorithm maintains an in-
termediate red-black graph RB , which is turned into the resulting LTS
at the end of the analysis. Red-black graphs were defined as sextuples
(B,R, S,C,M,Φ) where:

• B = (L, li,∆, F) is a LTS,

108

• R = (V, r, E) is a rooted graph, with V ⊆ B×N, r ∈ V and E ⊆ V ×V ;
it is equipped with the applications src, tgt , Ei and Eo which have the
same purposes than their LTS-equivalents,

• S ⊆ V × V is a subsumption relation,

• C is a function associating configurations to elements of V , i.e. red
vertices; configurations are defined as pairs (s, π) where the store s is a
function from program variables to indexes and π a boolean expression
over symbolic variables,

• M is the marking function, associating boolean values to red vertices,

• Φ is the function associating safeguard conditions to vertices of R.

This definition must now be slightly extended to accommodate the heuristic
aspects of our system. We no longer suppose, as in Chapter 4, that our final
LTS is produced by knowing in advance the right sequence of operations
to apply, but via some heuristic search for subsumptions and abstractions,
controlled by a counterexample guided refinement mechanism. The imple-
mentation of the latter, described in the following pages, requires that we
keep track of: (i) the initial configuration of the analysis, needed for the
refine and restart mechanism; (ii) configurations that are associated to ver-
tices of the red part R during the analysis. In this chapter, we consider that
red-black graphs are of the form (ci, B,R, S,C,M,Φ), where ci is the initial
configuration and C is a function that associates stacks of configurations,
rather than a single configuration, to vertices of R. Given a red vertex rv ,
we call configuration of rv the element on top of the stack C rv . Also, we
now consider that B is equipped with the fifth attribute LH .

In our implementation, S, C, M and Φ are implemented by compact
tables to reduce the complexity of basic access and modification operations
on such objects. In this presentation, we consider S to be a set and C, M
and Φ to be total functions, for the sake of simplicity.

5.2.2 Inputs and Parameters

Our algorithm takes as inputs a LTS S and a user-provided formula pre over
the program variables of S, i.e. a precondition of the program under test.
In the following, we suppose we have access to some constraint solver that
is supposed to be correct, although not complete. The precondition, as well
as expressions occurring in the labels of S, are supposed to belong to the
logic supported by this solver.

Our algorithm relies on a number of heuristics that are driven by addi-
tional parameters:

• a boolean flag, restart , indicates if the counterexample guided refine-
ment mechanism mentioned earlier is enabled or not,

109

• a boolean flag, dp, indicates, when trying to subsume a vertex rv ,
which potential subsumers are considered: if dp is set to false, we
only consider subsumers that occur along the path that leads to rv ;
if set to true, we also consider subsumers that occur on different sym-
bolic paths. As we will see in the following chapter, allowing or not
subsumption links between different symbolic paths can have a major
impact on the accuracy of the resulting LTS,

• a non-negative integer mrl gives the maximal length of red paths the
algorithm is allowed to follow; when set to 0, the length of red paths
is unbounded,

• a non-negative integer la, the look-ahead depth, whose purpose will be
described later.

A last parameter indicates how abstractions are performed and combined
during their propagation. We do not name this last parameter: we simply
suppose in the following that the corresponding functions are called.

We consider these parameters to be global variables to avoid passing
them as additional parameters throughout all functions calls in our pseu-
docode.

Finally, a global data structure, rvs, of red vertices to visit is maintained
during the analysis. We consider rvs to be a stack built according to a DFS
traversal of the input LTS.

In the following we introduce our algorithm and detail its main features.
We describe how symbolic execution steps are performed and how subsump-
tions are detected. This requires introducing abstraction calculus and prop-
agation. Then, we introduce the counterexample guided refinement, and
finally we show how to improve the infeasible path detection power of the
algorithm by restricting potential subsumers during subsumption search.

5.3 Building the Red-Black Graph

5.3.1 Principles

The main procedure, build, depicted in Algorithm 2, is a loop that iterates
until there is no more red vertices to visit in rvs, in which case the analysis
is complete and the resulting LTS is built and returned. It takes the LTS S
and the precondition pre as inputs.

In the pseudocode of build (and in the other functions below), the
/* CS */ marks explicitly denote where we rely on a constraint solver, be
it for checking that a configuration is satisfiable, subsumed by another, or
entails a given safeguard condition.

110

Algorithm 2: build

input : a LTS S, a condition over program variables pre
output: a LTS

1 let RB = init RB(S, pre);
2 push(r, rvs);

3 while ¬ empty(rvs) do

4 let rv = pop(rvs);

5 if ¬ M rv then
6 let p = path to(rv, R);
7 if fst(rv) ∈ F then
8 if restart then
9 if infeasible(p, ci, B) then /* CS */

10 let rv ′ = faulty abs(p, B, C); /* CS */

11 Φ← Φ(rv ′ := Φ rv ′ ∧ safeguard cond(p, rv ′, B));
12 restore conf(rv ′, C);
13 destroy sub graph(rv ′, R, S, C, M , Φ);
14 push(rv ′, rvs);

15 else if ¬ detect sub(rv, RB) ∧
(
mrl = 0 ∨ length(p) < mrl

)
then

16 build se succs(rv, B, R, C, M); /* CS */

17 return build LTS(RB);

First, the red-black graph RB to be built is initialized as follows by the
call to init RB (line 1):

• ci is the initial configuration: its store is defined over the set of program
variables occurring in S and associates 0 to each of these variables; its
path predicate is the adaptation of pre to this store,

• B is S, the input LTS,

• R has no edges and a unique vertex: its root (li, 0), the first occurrence
of the initial location of B,

• S is empty,

• C associates the one-element stack containing ci to the red root (li, 0)

• M associates false to (li, 0) and Φ associates true to (li, 0),1

and the red root (li, 0) is pushed on top of the stack of vertices to visit rvs
(line 2).

The analysis starts at line 3 by processing the elements of rvs until it is
empty. For each non-marked red vertex rv (see line 5) processed during the
DFS traversal of the black part (i.e. the input LTS), three distinct actions
can take place: (i) if rv is an occurrence of a final location of the black part
(line 7) and if the counterexample guided refinement is enabled through the
boolean flag restart (line 8), we check if satisfiability of the configuration of

1All red vertices will have these default values for M and Φ at their creation.

111

rv is only due to some previous abstraction performed along the shortest
path leading to rv (this path is built at line 6) and in that case we trigger
a refine-and-restart phase (line 8 to 14); (ii) if rv is not an occurrence of
a final location, we try to establish a subsumption link for rv in the call to
detect sub at line 15 (this can only succeed at occurrences of loop headers,
see the pseudocode of detect sub in Algorithm 3). If the subsumption is
established, nothing remains to be done for rv ; (iii) if none of the previous
cases apply, we build the successors of rv using symbolic execution, provided
that the length limit mrl has not been reached along the current path.

We detail below the three possible actions in the following order. First
we describe how successors of a red vertex are built by symbolic execution.
Then, we show how subsumptions are detected, how abstractions are com-
puted, propagated and combined during their propagation. We continue
with the counterexample guided refinement mechanism mentioned earlier,
and then show how the infeasible path detection power of the overall ap-
proach can simply be improved. Finally, we show how the final LTS is
computed from the red-black graph RB once the analysis is over.

5.3.2 Symbolic Execution Steps

This is the nominal (and simplest) action when the two special cases (final
location reached and subsumption established) do not apply and the bound
mrl has not been reached yet. Procedure build se succs (line 16) is de-
voted to this task. It extends the partial unfolding R of B by adding one red
edge for each transition in ∆o

(
fst(rv)

)
. We only need to detail here how R,

C, and M are modified at this step. For every transition δ ∈ ∆o

(
fst(rv)

)
:

• the red vertex
(
tgt(δ), i

)
is added to V , where i is a fresh index for

location l with respect to its previous occurrences in V ; we use a global
set that associates the lastly used index for any given red vertex for
that purpose,

• the edge
(
rv , (tgt(δ), i)

)
is added to E,

• the configuration SE top(C rv) label(δ) is pushed on the stack
C
(
tgt(δ), i

)
. If label(δ) is of the form Assign v e, the index of the new

symbolic variable is simply the successor of the last index in use for v.
If label(δ) is of the form Assume φ, with φ being false2, then

(
tgt(δ), i

)
is marked in M . If φ is neither false nor true, then a constraint solver
is called to check the satisfiability of the new configuration:

(
tgt(δ), i

)
is marked in M only if the solver proves it to be unsatisfiable. In the
case of an unknown answer from the solver, the target is not marked
and we consider the corresponding path to be feasible.

2This would occur only in case of a loop or conditional with a true condition in the
original CFG.

112

• Φ is extended to
(
tgt(δ), i

)
: if the latter has been marked, its safeguard

condition is false, and true otherwise.

Newly built red vertices are pushed onto rvs for them to be processed in the
next iterations of the loop.

5.3.3 Detecting Subsumptions

Let rv be a non-marked occurrence of a loop-header of B. Before building its
successors, the algorithm attempts to establish a subsumption link between
rv and a previously met occurrence of fst(rv) that is neither marked nor
subsumed. This is done by the call to procedure detect sub, whose pseudo
code is given in Algorithm 3. For the sake of simplicity, we consider for
the moment that the execution of statements at lines 20, 21 and 22 is not
conditioned by the check at line 19: we will come back to it and explain its
purpose later.

Algorithm 3: detect sub

input : a red vertex rv , a red-black graph RB
output: a boolean value

17 if fst(rv) ∈ LH then

18 foreach rv ′ ∈ sub candidates(rv, R) do
19 if compare fp sets(rv, rv ′, B, C, la) then /* CS */

20 if top(C rv) v top(C rv ′) then /* CS */

21 S ← S ∪ {(rv , rv ′)};
22 return true;

23 if abstract(rv ′, rv, Φ rv ′) = Some(a) then /* CS */

24 if propagable(a, rv ′, (rv , rv ′), RB) then
25 propagate(a, rv ′, R, S, C, M);
26 S ← S ∪ {(rv , rv ′)};
27 return true;

28 return false;

Natural subsumption The first check (line 17) verifies that rv is indeed
an occurrence of a loop header. If this is the case then, for each previous
occurrence rv ′ of fst(rv) that is (i) not marked; (ii) not already subsumed
and (iii) that is not in the stack of vertices to visit anymore (we call such red
vertices candidates, see line 18), the algorithm checks that the configuration
of rv can be directly subsumed by the configuration of rv ′ (line 20). If the
check succeeds, the new subsumption link (rv , rv ′) is added to S (line 21)
and detect sub returns true, which prevents building the successors of rv
in build. In the case of the unknown answer from the solver, the current

113

subsumption is refused: accepting it might cause some feasible paths not to
be included in the result.

When searching for potential subsumers, the procedure only considers
those occurrences of fst(rv) that are not in the stack of vertices to visit
because those are more likely to be already labeled by a safeguard condition
other than true, as seen in Section 3.4.2, avoiding to consider uninteresting
abstractions. On the opposite, occurrences of fst(rv) that are in the stack
rvs are still labeled by the default true safeguard condition: since they are
in the stack, their descendants have not been built yet.

We do not give the pseudocode of the procedure sub candidates called
at line 18: it simply searches among red vertices of RB those previously met
occurrences of fst(rv) that are neither marked nor subsumed. We will dis-
cuss in the following sections how the scope of candidates can be restricted
in order to improve the infeasible path detection power of the approach. For
example, we will see that considering subsumption links that only involve
two red vertices occurring on the same path consistently yields more accu-
rate LTS, although larger. In some cases however, relaxing this constraint
allows additional sharing in the resulting LTS without loss of accuracy w.r.t.
infeasible paths.

Forced subsumption If the subsumption check fails, the algorithm first
attempts to build a suitable abstraction of the configuration of rv ′ (line 23),
i.e. a configuration that subsumes the configuration of rv and that entails
Φ rv ′, the safeguard condition of rv ′. If such an abstraction cannot be
found, another previous occurrence of fst(rv) is checked until all candidates
have been tried. We also do not give pseudocode for the procedure abstract
called at line 23, but we will discuss in detail how abstractions are computed
below (see page 116).

Need for propagation If a suitable abstraction a has been found, it must
be added on top of the stack C rv ′, becoming the actual configuration of
rv ′. According to the definition of abstraction, the set of program states
represented by the new configuration of rv ′ is larger than the one of its
previous configuration. Hence, replacing the configuration of rv ′ by a is
not enough to guarantee that all feasible paths of S are preserved: there
might exist black sub-paths that are feasible from rv but infeasible from
rv ′. After the abstraction, we want our analysis to consider those sub-paths
as feasible from rv ′ since rv is now subsumed by rv ′. Some part of the sub-
tree rooted by rv ′ was computed before the abstraction, and configurations
in that sub-tree have been obtained from the former configuration of rv ′:
they might represent smaller sets of program states than expected and must
be recomputed.

This can be done by applying symbolic execution again from the new

114

configuration of rv ′, adding the derived abstracted configurations on top
of the stacks of configurations of descendants of rv ′ — we say that a is
propagated from rv ′. This can have two effects. First, the configuration
propagated to a descendant might become satisfiable, while its previous
configuration was not: such red vertices should be unmarked and pushed
back on the stack rvs to be visited later (if they are not already in it).
Second, red vertices to which abstractions are propagated might already
be subsumed themselves. Propagating an abstraction to such a red vertex
enlarges the set of program states represented by its configuration, which
might cause the existing subsumption not to hold anymore, subsumption
being defined as inclusion of sets of program states. This is also true for
the subsumption that is currently attempted: the abstraction propagated
to rv might not be subsumed by the abstraction computed at rv ′. In such
cases, there are two possibilities: deleting the previous subsumptions links
to accept the new one (if the new configuration of rv allows it), or refusing
the new subsumption link and stick with the existing ones. We have chosen
the second way: the first one would require restarting the analysis from all
discarded subsumees, while the second “only” requires to unfold the loop
again from rv , searching for later subsumptions.

Note that abstracting the configuration of rv ′ only has an influence over
the latter and its descendants, but has no effect on the feasibility of paths
that do not go through rv ′. Thus, there is no need to propagate a backwards,
in a bottom-up manner.

Checking that the abstraction a can be safely propagated from rv ′ is
done by the call to procedure propagable (line 24). If the check succeeds,
a is actually propagated: this is done by the call to propagate (line 25),
which is also responsible for actually pushing a on top of C rv ′. Finally,
the new subsumption link (rv , rv ′) is added to S (line 26) and subsumed
returns true. How abstractions are performed, checked to be propagable
and propagated is detailed below (see page 119).

Checking subsumption by constraint solving Checking subsumption
of a configuration c by another c′ is performed by a call to the constraint
solver. This is done as introduced in Chapter 4: we check if the semantics
of configuration c′ is a logical consequence of the semantics of c. Given a
configuration c = (s, π) and a program state σ, the semantics of c, denoted
semc, is the boolean expression that evaluates to true if and only if σ is a
state of c, i.e.

∃σsym . cons(σ, σsym , s) ∧ π(σsym)

where cons(σ, σsym , s) denotes the fact that σ and σsym are consistent with
the store s, i.e. they associate the same values to program variables and their
symbolic counterparts given by s. Subsumption of c by c′ is established if
the solver is able to prove that ∀σ. semc(σ) −→ semc′(σ), i.e. it must

115

be proved that semc′ is valid assuming semc holds. Since SMT-solvers
usually find satisfying assignments — or report that there are none — we
actually ask the solver to prove that ¬ semc′ is satisfiable: the subsumption
is established only if the solver succeeds at proving the latter is false. The
request passed to the solver is written in the SMT-LIB [9] format. It makes
it possible to consider different solvers in an interchangeable manner in the
implementation of our algorithm.

Abstracting Configurations

Abstracting a configuration consists in enlarging the set of program states it
represents, i.e. in transforming it in another configuration that subsumes it.
We recall the definition of the states of a configuration given in Chapter 3,
subsumption being defined as the inclusion of such sets:

Definition 6. Let c = (s, π) be a configuration. The set of states of c,
noted States(c), is the set

{
σ. ∃σsym . cons(σ, σsym , s) ∧ π(σsym)

}
.

As shown by this definition as well as the definition of cons, the path pred-
icate of a configuration shapes its set of states, the store merely being a
link between program and symbolic variables. Abstracting a configuration
is done by weakening its path predicate or, more precisely, by weakening its
influence on the program variables. Below, we describe two ways for doing
so. The choice of the method is controlled by a parameter and a unique
method is used throughout an analysis.

The first is the most straightforward: simply weaken the path predicate
itself. This is a plain loss of information and there are multiple ways to do
so. In our case, we simply remove some constraints from the path predicate.
Consider for example the configuration

c =
(
{x 7→ 0, b 7→ 0}, x0 = 0 ∧ x0 ≤ b0

)
It represents the set of program states that associates x0 to x, i.e. 0, and
any positive value b0 to b. Abstracting it by removing the first conjunct of
its path predicate yields the configuration

c′ =
(
{x 7→ 0, b 7→ 0}, x0 ≤ b0

)
which represents the set of states that associate any value x0 to x, as long
as this value is lesser or equal to b0, the value associated to b.

The second consists in updating the index given by the store to some pro-
gram variables. This has the effect of disconnecting such program variables
from the constraints that weight over their previous symbolic counterpart,

116

but without actually removing these constraints from the path predicate.
For example, abstracting x in c yields

c′′ =
(
{x 7→ 1, b 7→ 0}, x0 = 0 ∧ x0 ≤ b0

)
which represents the set of program states that associate any value x1 to
x and any positive value b0 to b. Compared to the previous method of
abstraction, we keep the fact that b must be positive, but loose that x must
be less or equal than b. The fact that x was equal to 0 is forgotten in both
cases.

Both methods have their pros and cons: the method that performs best
depends on the program under analysis, as revealed by our experimental
results. For example, the second method only disconnects some program
variables from the constraints of the path predicate that weight over their
symbolic counterpart and since these constraints might concern other pro-
gram variables, the fact that they are not removed might lead to a bet-
ter infeasible path elimination power than simply removing them. On the
other hand, it can disconnect a program variable from too many constraints,
forgetting some crucial information in the process, when simply removing
constraints might have yield more accurate abstractions.

The crucial point is the choice of the constraints to remove or the pro-
gram variables to update. Ideally, the combination of constraints to remove
(resp. variables to update) that yields the most accurate abstraction w.r.t.
infeasible paths elimination could be found, if it exists, by trying all pos-
sible combinations. Without surprise, this is impossible in practice, since
the number of such combinations is exponential in the maximum number of
elements to combine.

In this thesis we propose a simple algorithm for each method. It takes
as inputs two configurations c and c′ and a boolean expression φ, the safe-
guard condition of the red vertex of configuration c′. The goal is to find an
abstraction a of c′ that subsumes c and entails φ. Checking that φ is en-
tailed by a is done in the same way as for subsumption. We will see in 5.3.4
that safeguard conditions are computed in a way that ensures that they are
entailed by the configurations they label. This property must be preserved
when abstracting a configuration. If a is rejected because it does not entail
φ, we can also discard any abstraction of a, since this would enlarge its set
of states even more and prevent entailment. On the opposite, if a vertex
still has its default safeguard condition true, it is always possible to find
a suitable abstraction of its configuration. The risk is to obtain a trivial
abstraction in which all information carried by the path predicate has been
forgotten.

Abstraction by constraint removal Removing constraints starts by
deleting from the path predicate all occurrences of its first conjunct (path

117

predicates are implemented by lists of constraints), until a suitable abstrac-
tion of c′ is obtained or until the current abstraction does not entail φ
anymore.

Abstraction by store update Store update is performed analogously,
i.e. by abstracting program variables one after the other until subsumption
is established or entailment is lost. The collection of program variables of
interest for the store update can be restricted as follows, depending on the
fact that there are only subsumptions involving red vertices that occur along
the same symbolic paths or not.

• In the case where subsumptions involve only configurations on the
same symbolic path, let rv and rv ′ be the two red vertices associated
with configurations c and c′ respectively: rv is thus a descendant of rv ′.
Let p the path leading to rv . This path is of the form pr · su, where pr
is its prefix leading to rv ′ and su its suffix starting from the latter. All
program variables that have neither been defined (i.e. the target of an
assignment) nor abstracted along su correspond to the same symbolic
expressions in rv and rv ′, since all potential modifications of these
variables have been made along pr . Those program variables might be
subject to more constraints at rv than at rv ′, since constraints might
have been added during symbolic execution along su. This is not a
problem: the path predicate at rv entails the path predicate of rv ′,
since in abstraction by store update, constraints are never removed
from path predicates. The only program variables that are worth
abstracting are those that were defined or abstracted along su. Those
variables are exactly those whose indexes as given by the stores of
configurations of rv ′ and rv differ.

• In the case where rv and rv ′ occur along different symbolic paths, let
p and p′ be the paths leading to rv and rv ′, respectively. Since R is
a tree, p and p′ have a longest common prefix that we call pr : p and
p′ are of the form pr · su and pr · su ′, respectively. It is not needed
to abstract those variables that were neither defined nor abstracted
along su or su ′ (they correspond to the same symbolic expressions
at both rv and rv ′), but variables that were defined or abstracted
along at least one of each suffix might be worth abstracting. This
is not sufficient however to guarantee that there is an abstraction of
top(C rv ′) that subsumes top(C rv). Consider the following case,
where su and su ′ are each made of a single transition, both labeled by
a guard, for example Assume x < y and Assume ¬(x < y), respectively.
No program variables are defined or abstracted along su or su ′, thus
all program variables correspond to the same symbolic expression at
rv and rv ′. However, the configuration of rv entails x < y while the

118

configuration of rv ′ entails ¬(x < y), preventing any subsumption of
rv by rv ′ if x or y (or both) are not abstracted. To sum up, in the case
of subsumptions across different symbolic paths, the variables worth
abstracting are those: (i) that are defined or abstracted or (ii) that
are used in guards along the suffixes leading to rv and rv ′. Variables
that are defined or abstracted along su (resp. su ′) are exactly those
whose indexes as given by the store of the configuration of rv (resp.
rv ′) and by the configuration of the vertex at the end of pr differ.

We call abstractable variables the variables worth abstracting. Some
of them can be discarded as interesting targets for store update: variables
that are already abstracted at the potential subsumer rv ′, and those that
are not used or assigned along the path leading to rv ′. In both cases their
symbolic counterparts do not occur in the path predicate of the latter and
can take any value. They do not influence the set of program states of the
configuration of rv ′ and can be considered abstracted at this point.

These two methods for abstracting configurations are simple and greedy,
but they have the advantage of only requiring a number of calls to the solver
that is linear in the number of constraints in the path predicate (or program
variables for store updates).

Propagating Abstractions

We now describe how abstractions are propagated, and how we check in the
first place if they can actually be safely propagated. We start by describing
the latter, which we believe will help understand the former.

Checking propagability Deciding if the abstraction can be propagated
consists in propagating it a first time while checking that it does not cancel
any existing subsumption link and, if the two candidates for subsumption
lie on the same path, that the new subsumption still holds after the prop-
agation. The procedure propagable responsible for doing so is described
in Algorithm 4. It takes as inputs the red vertex rv whose configuration has
been abstracted, the abstraction a that is to be propagated, the subsump-
tion link sub that we currently try to establish and the red-black graph RB .
The idea is to check if the actual configuration of rv can safely be replaced
by a. This depends, for an arbitrary rv — typically the argument of one of
the recursive calls to propagable (see line 40), on the fact that rv is marked,
subsumed, or neither.

If rv is marked (line 29), its configuration can always be replaced since rv
cannot be the source of a subsumption. If its new configuration a becomes
satisfiable, due to the abstraction, rv must be unmarked and pushed back
on the stack of vertices to visit rvs. In practice this is handled as part of the

119

Algorithm 4: propagable

inputs : a configuration a, a red vertex rv , a subsumption sub, a red-black
graph RB

output: a boolean value

29 if M rv then
30 return true;

31 if subsumer(rv) = Some(rv ′) then
32 return a v top(C rv ′); /* CS */

33 if rv = fst(sub) then
34 return a v top(C snd(sub)); /* CS */

35 if rv ∈ LH then
36 a← combine abs(top(C rv), a);

37 push(a, C rv);

38 foreach δ ∈ ∆o(rv) do
39 let a′ = SE top(C rv) label(e);
40 if ¬ propagable(a′, tgt(e), sub, RB) then
41 pop(C rv);
42 return false;

43 pop(C rv);
44 return true;

actual propagation of a, once all recursive calls to propagable succeed and
guarantee that the abstraction is propagable everywhere in the sub-tree.

If rv is already subsumed (line 31), the algorithm checks if a is subsumed
or not by the configuration of the subsumer of rv (line 32): if this is the
case, the actual configuration can be replaced by a without invalidating
the subsumption link starting at rv . Otherwise the abstraction is deemed
incompatible with the subsumption.

If rv is neither subsumed nor marked, the algorithm checks that it is the
red vertex that it actually attempted to subsume (line 33). If this is the
case, the attempted subsumption must hold despite the loss of information
due to the propagation of the abstraction (line 34).

If rv is not the vertex of the attempted subsumption, the algorithm
checks that it is an occurrence of a loop header in the input LTS (line 35).
If this is the case, then its configuration might have been abstracted previ-
ously: the new abstraction should reflect the loss of information performed
earlier and the one induced by the propagated abstraction a. At line 36
a new version of a is computed that combines both abstractions. We de-
scribe later how this combination is realized — it depends on which of the
two methods of abstraction is used, but in both cases it results in a con-
figuration that subsumes both the previous configuration of rv and a. If
the previous configuration has not been abstracted previously, combine abs

120

simply returns a.
We could have chosen to build the combination of a and top(C rv) only

if top(C rv) 6v a, i.e. if an abstraction looser than a has been previously
performed at rv . We rather chose to systematically combine configurations
at occurrences of loop headers: this is not a problem since combine abs

simply returns a if no abstraction was performed at rv . This also saves
some calls to the solver since combine abs proceeds without calling it.

The abstraction a (or the result of its combination with previous ab-
stractions) is then pushed on top of C rv (line 37), before being propagated
by symbolic execution to each successor of rv through the recursive calls
to propagable (line 40) and the global result sent to the caller. Before
returning, a is always popped from C rv (lines 41 and 43): at this point,
we only want to know if a can be propagated in this sub-tree. The actual
propagation is done in a second pass, once the abstraction has been checked
to be globally propagable.

Propagating abstractions If the call to propagable globally succeeds,
the (original) abstraction a is actually propagated from rv . This is done
by the call (line 25 in Algorithm 3) to procedure propagate whose code is
given in Algorithm 5, which is very similar to propagable and proceeds as
follows.

Algorithm 5: propagate

inputs : a configuration a, a red vertex rv , a red-black graph RB
output: none

45 if M rv then
46 push(a, C rv);

47 if sat(top(C rv)) then /* CS */

48 M →M(rv := false);
49 Φ→ Φ(rv := true);
50 if rv /∈ rvs then
51 push(rv, rvs);

52 else if subsumer(rv) = Some(rv ′) then
53 push(a, C rv);

54 else
55 if rv ∈ LH then
56 a← combine abs(top(C rv), a);

57 push(a, C rv);

58 foreach e ∈ ∆o(rv) do
59 let a′ = SE top(C rv) label(e);
60 propagate(a′, tgt(e), RB);

121

If (an arbitrary red vertex argument) rv is marked, the propagated ab-
straction a is pushed on top of the current configuration stack, the algorithm
checks for its satisfiability and, on a positive answer, rv is unmarked in M
and pushed back on rvs (if not already occurring in it) while its safeguard
condition is restored to true (line 45 to 51). If rv is subsumed, a is simply
pushed on top of C rv (lines 55 and 51). If rv is neither marked nor sub-
sumed, we proceed as for propagable: we push a (or the combination of a
and top(C rv) if rv is a loop header) on top of C rv and propagate it by
symbolic execution to successors of rv , which are then processed through
recursive calls (line 55 to 60). When said calls end, a is not popped from
C rv , unlike in propagable.

Combining Abstractions

The way abstractions are combined depends on the method used to abstract
configurations. We recall that methods of abstraction are not mixed during
an analysis. With both methods the idea is the same: given a red vertex to
which an abstraction is propagated, we want to build a configuration that
reflects the losses of information induced by the propagated abstraction and
previous abstractions that might already exist at this vertex.

Let us call rv ′ the red vertex from which an abstraction a′ is propagated,
and rv a descendant of rv ′ that is an occurrence of some loop header (not
necessarily the same loop header as the one represented by rv ′) to which
a′ has to be propagated. By iterating propagation of abstraction between
successive loop headers along the path, we can assume without loss of gen-
erality that there is no other occurrence of a loop header between rv ′ and
rv : a′ and rv ′ might not be the initial abstraction and root at the start of
a propagation, but some intermediate step of a larger propagation.

Let sp be the red sub-path leading from rv ′ to rv and a the abstraction
obtained from a′ that is supposed to become the new configuration for rv :
we have a = SE ∗ trace(sp) a′.

Let us consider first the case where no abstraction took place along the
path leading from rv ′ to rv . Then, there must exists a configuration c′ in
the stack of configurations of rv ′ such that top(C rv) = SE ∗ trace(sp) c′.
By definition of a′, we have that top(C rv ′) v a′ and thus top(C rv) v a
since SE ∗ is monotonic for subsumption. Thus, a can simply be pushed on
top of C rv .

Let consider now the case where some abstraction was performed along
the path leading from rv ′ (excluded) to rv . It is now most certainly not the
case that top(C rv) = SE ∗ trace(sp) c′ since abstractions have been either
performed at or propagated to rv . As a result, it is usually not the case that
the current configuration of rv is subsumed by the propagated abstraction a.
The algorithm must compute an abstraction of a that subsumes the current
configuration of rv .

122

Combining abstractions obtained by constraint removal We first
consider abstractions that are performed by removing constraints from path
predicates. Since stores are not modified in this case, those of top(C rv)
and a must be identical, however their path predicates contain only (most
probably different) subsets of the conjuncts of the path predicate of c. The
combination of the current configuration of rv and a is the configuration
whose store is identical to those of top(C rv) and a and whose path predicate
contains exactly the constraints that occur in the path predicates of both
top(C rv) and a.

Combining abstractions obtained by store update Let us consider
now abstractions that are performed by updating stores. Stores of top(C rv)
and a might now be different, and conjuncts of the path predicate of a might
not be a subset of those of c anymore, since a has been obtained by SE ∗ from
a′, whose store is an updated version of the store of c′. This is not a problem:
the important fact is that a number of program variables were abstracted
at rv and those abstractions must be reflected in its new configuration. The
configuration that is pushed on top of C rv is obtained from a by abstracting
those program variables that were abstracted in top(C rv), i.e. the variables
whose symbolic counterparts, as given by the store of top(C rv), do not
occur in the path predicate of the latter.

For example, let a =
(
{x 7→ 2, y 7→ 1}, x2 ≥ 0 ∧ y1 = y0 + 1

)
and

top(C rv) =
(
{x 7→ 1, y 7→ 2}, x1 ≥ 0∧ y1 = y0+1

)
. Program variable y can

be considered abstracted in the latter, since its symbolic counterpart does
not occur in the path predicate of the configuration of rv . The combination
of these two configurations should reflect the loss of information performed
at rv by updating y and is obtained by simply abstracting the latter in a:
the configuration pushed on top of C rv is

(
{x 7→ 2, y 7→ 2}, x2 ≥ 0 ∧ y1 =

y0 + 1
)
.

In Chapter 4 we did not provide a proof that our methods of combination
actually yield configurations that subsumes both of their entries: transfor-
mations were supposed to be applied in the right order and there was no
need there to consider propagation, and thus combination issues. The for-
malization introduced in Chapter 4 could be extended to prove that the
combination of two configurations c and c′ is a configuration that subsumes
both c and c′. The proof is trivial for the case of constraints removal: it is a
direct consequence of definitions of subsumptions, set of program states, etc.
The case of store updates is a bit less trivial: proving it within Isabelle/HOL
would be tedious because of the handling of the indexes of symbolic vari-
ables.

123

5.3.4 Refine-and-Restart Mechanism

We now describe the implementation of the counterexample guided refine-
ment mechanism mentioned previously. As said in Section 5.3.2, lines 9
to 14 of the main procedure build are responsible for this part of the anal-
ysis, granted that this mechanism was enabled through the global boolean
flag restart . Here, we consider the case where rv is a non-marked occur-
rence of a final location of S: the algorithm checks whether the path of R
(unique, without traversing subsumption links) leading to rv is genuinely
feasible from the initial configuration ci, or if its infeasibility has not been
detected because of some abstraction that occurred along that path. If the
latter is true, a safeguard condition φ is computed that captures the reasons
of the infeasibility of that given path, and the red vertex where the faulty
abstraction occurred is labeled with φ, blocking this abstraction. The anal-
ysis is restarted from there by unfolding the loop: subsumptions will have
to happen at some descendants, if ever. We detail the whole process below.

Detecting faulty abstractions First, the path p leading to rv (line 6
in Algorithm 2) is retrieved following the transitions in the tree. If p is
infeasible from the initial configuration ci (line 7), then its infeasibility is not
due to an abstraction introduced along p. Otherwise, procedure faulty -

abs called at line 8 is devoted to find the first red vertex along p where was
performed an abstraction that causes the infeasibility of p to be unnoticed,
i.e. the first red vertex along p where an infeasible suffix of p was turned into
a feasible one. The process is simple: it is a search for the first occurrence
rv ′ of a loop header traversed by p whose stack of configurations contains
two successive configurations cm and cn (cn being on top) such that the
suffix of p starting at rv ′ is infeasible from cm but feasible from cn: cn is the
faulty abstraction.

Computing safeguard conditions Once such rv ′ has been found, a safe-
guard condition is computed by a weakest precondition calculus along the
infeasible suffix of p, and rv ′ is labeled with it (line 9). Our notion of weakest
precondition calculus is given in the following definition.

Definition 22. Given a label l ∈ Labels and a boolean expression over
program variables φ, the weakest precondition of φ w.r.t. l is given by the
function WP :

WP l φ =

φ if l = Skip

¬φ′ ∨ φ if l = Assume φ′

φ{v 7→ e} if l = Assign v e

where φ{v 7→ e} denotes the substitution of occurrences of v by e in φ.

124

We extend WP to sequences of labels as follows:

Definition 23. Given a sequence of labels ls and a boolean expression over
program variables φ, the weakest precondition of φ along ls is given by the
function WP∗:

WP∗ ls φ =

{
φ if ls is empty

WP∗ ls ′
(
WP l φ

)
if ls is of the form ls ′ · [l]

The exact safeguard condition used to label rv ′ is the conjunction of its
previous safeguard condition with the weakest precondition of false along
the shortest infeasible suffix of p starting at rv ′. Indeed, the purpose of a
safeguard condition is to remember some crucial information regarding the
infeasibility of a given (set of) sub-path(s) starting at red vertex rv ′: it must
partially describe the set of program states of the current configuration of
rv ′, i.e. it must be entailed by this configuration.

The goal is to prune as many infeasible paths as possible: this condition
must to be as strong as possible to better over-approximate the set of feasible
sub-paths starting at rv ′. Since the configuration of the red vertex in which
p ends is unsatisfiable, its set of states is empty. The strongest condition
that is entailed by this configuration is thus false.

Weakest precondition calculus has the following property: given a con-
figuration c, a label l and a condition φ over program variables such that
SE c l |=c φ, we have that c |=c WP l φ. This extends to WP∗ and sequences
of labels. This property and the fact that we only consider abstractions
that preserve entailment guarantee that red vertices are always labeled with
safeguard conditions that are entailed by their current configurations. This
property and its equivalent for WP∗ have been proved in our formalization
(see A.6.10).

Restarting the analysis Once rv ′ has been labeled with its safeguard
condition, its configuration prior to the faulty abstraction is restored, i.e.
the elements from its stack of configurations are removed until cm, the last
known configuration from which the infeasibility of p can be detected, is on
top. Then, the sub-graph starting at rv ′ is destroyed. The intermediate
red-black graph RB is updated in the following way:

• configuration stacks of descendants of rv ′ are removed from C,

• subsumption links involving rv ′ or one of its descendants are removed
from S; subsumees of descendants of rv ′ that are not descendant of
rv ′ themselves must be pushed back onto rvs (so that they can be
subsumed once again or their descendants be built),

• descendants of rv ′ are unmarked in M ,

125

• edges of R going from or to descendants of rv ′ are removed from E,

• descendants of rv ′ are removed from V and from the stack of vertices
to visit rvs.

Finally, rv ′ is pushed back on rvs so that the analysis restarts from there.

Non-termination issue The two methods of abstraction introduced ear-
lier do not learn from safeguard conditions, i.e. when the configuration of a
red vertex is to be abstracted, it does not matter if this vertex is labeled with
a safeguard condition or not: the same sequence of abstractions is computed,
regardless of the presence of the condition. Labeling a red vertex with a safe-
guard condition simply prevents to establish the subsumption that yielded
the faulty abstraction of rv ′ and forces the descendants of rv to be built.
In the best cases, this will lead to discovering more accurate subsumption
links starting from these descendants. In the worst cases, this might only
postpone the faulty abstraction, which will occur again, but between differ-
ent occurrences of the loop header represented by rv and rv ′. This will in
turn introduce the same infeasible paths once again and the abstraction will
be refined again later, and so on. This might yield to an infinite chain of
refine-and-restart phases, preventing the algorithm to terminate.

This problem can be mitigated by bounding the length of red paths
through the global parameter mrl , or by simply disabling the counterex-
ample mechanism through the boolean flag restart . In the first case, the
final LTS will be obtained by plugging the partial red part of RB to its
black part. The accuracy of the result w.r.t. to feasible paths increases with
mrl : the set of feasible paths of length mrl or lesser might be fairly well
approximated, but the accuracy of the result dramatically decreases when
considering longer paths that end in the black part.

For the moment, safeguard conditions computed when refine-and-restart
phases occur are our only way to prevent some abstractions. Disabling the
counterexample guided refinement mechanism yields LTS that are complete
unfoldings of the input ones but since in this case abstractions are never
restricted through safeguard conditions, the resulting LTS might contain a
lot or all the infeasible paths of the original LST. We introduce and describe
below a mechanism based on some form of “look-ahead” for preventing too
crude abstractions.

5.3.5 Look-Ahead Mechanism

The counterexample guided refinement introduced above has two drawbacks
which we already mentioned. First, it can cause the algorithm to not ter-
minate if a chain of refine-and-restart occurs. In such cases, we only have
the choice between: (i) either force the algorithm to halt which requires
plugging the partial red part into the black one or (ii) disable the coun-

126

terexample guided refinement. Second, its infeasible path elimination power
is limited by the fact that we only search for faulty abstractions along the
shortest paths leading to final occurrences.

We now introduce a different mechanism for enhancing the infeasible
paths elimination power of our algorithm. Unlike the refine-and-restart
mechanism, we prevent some abstractions before they are performed. This
is done, given a red vertex rv to subsume, by restricting the set of potential
subsumers among the previous occurrences of fst(rv) based on similarities
between sets of feasible paths starting at both occurrences. We call look-
ahead this mechanism, since it basically consists in catching a glimpse of
the near futures of the potential subsumees and subsumers.

Subsumption was defined in Chapter 3 as an inclusion of sets of program
states, which entails an inclusion of sets of feasible paths between the sub-
sumee and the subsumer. In the context of infeasible path pruning, an ideal
theoretical definition for subsumption would require the sets of feasible paths
starting at both candidates to be equal. This requirement is far too strong
in practice: it is usually impossible to build such sets, and this is actually
the problem we are trying to tackle in the first place by over-approximating
the set of feasible paths of the input LTS.

Simply checking for subsumption as presented earlier might be too liberal
and building full sets of feasible paths starting at the subsumee and at the
subsumer is usually impossible. However, we can reasonably check that these
sets are equal only up to a certain depth. The underlying idea is that the
more similar the sets of feasible paths starting at the potential subsumee and
subsumer, the less it will be needed to abstract the current configuration of
the latter. When trying to subsume a red vertex rv , we check subsumption
and search an abstraction, for each potential subsumer rv ′, only if the sets
of feasible paths of length lesser or equal to la (which stands for look-ahead,
our final global input parameter) starting at rv and rv ′ are equal. This is
done by the call to compare fp sets at line 19 in procedure detect sub

(see Algorithm 3). If feasible paths sets are found to differ, candidate rv ′ is
immediately discarded. The expected effect is that the algorithm is driven
to only consider the potentially more accurate subsumptions.

This mechanism only gives hints. First, there is no guarantee that re-
stricting candidate subsumers will actually lead to more subtle abstractions:
since abstraction methods remove constraints or update stores in a given
order, it is possible that some crucial information w.r.t infeasible path de-
tection is still lost during abstraction. Second, we compare sets of feasible
paths starting from both red vertices before actually performing the ab-
straction: sets of feasible paths might be equal up to a certain depth at
that moment but a later step of abstraction at the subsumer might enlarge
its set of states, thereby breaking the previous equality of sets of feasible
descendants. Even if the equality between sets of paths starting at the sub-
sumer and subsumee still holds, those sets might simply have changed after

127

performing and propagating abstractions, since this can caused vertices to
be unmarked. Nonetheless, experimental results presented in 6.1 show that
the number of infeasible paths pruned from input LTS greatly increases in
most cases with appropriate values of la.

5.3.6 Building The Resulting LTS

Once the analysis is over, RB is turned back into a new LTS S ′ by removing
from the red part R the edges leading to marked red vertices, replacing the
targets of edges leading to subsumed red vertices by their subsumers, then
renaming vertices and label edges between red vertices with the label of the
edge between their black counterparts. For red vertices where the analysis
halted because of the mrl limit, if any, the edges whose target is not final are
connected to the corresponding vertex in the black part, i.e. to the original
CFG. This trick and the fact that transformations on the red part never rule
out (prefixes of) feasible paths ensures that S ′ preserves the feasible paths
of S. The set of paths of the resulting LTS is exactly the set of red-black
paths of the intermediate red-black graph.

5.4 The Merging Sort Example

5.4.1 The Merging Sort Program

In this section, we illustrate how our algorithm behaves on the merging sort
program, whose pseudocode and LTS are shown in Figure 5.1 and Figure 5.2,
respectively.

The merge function takes as inputs two sorted arrays of integers a and
b, their respective lengths la and lb and a third array T in which elements
of a and b will be stored in the ascending order. It is basically made of three
loops. The first loop — the main one — iterates over elements of a and b
and stores them in T depending on their values. When both a and b are
initially empty, the main loop is not entered, and neither are the last two
loops. Otherwise, when the execution exits this first loop, it is always the
case that exactly one array, a or b, has been completely visited: the two
secondary loops are there to store in T the elements of the array that has
not been entirely processed through iterations of the first loop.

Although this program is simple, its LTS presents a great number of
infeasible paths. Their infeasibility is due to the dependencies between it-
erations in the first loop and the traversals of the two remaining loops: the
transition used to exit the first loop controls which of the two remaining
loops is traversed, and all this depends on which index was incremented last
in the first loop. This is also the reason for the second and third loop to be
exclusive. We identify seven “groups” of infeasible paths:

128

Function merge(int[] a, int[] b, int la, int lb, int[] T)

1 let ia = 0;
2 let ib = 0;

3 while ia < la do
4 if ib < lb then
5 if a[ia] < b[ib] then
6 T [ia + ib]← a[ia];
7 ia ← ia + 1;

else
8 T [ia + ib]← b[ib];
9 ib ← ib + 1;

else
10 break;

11 while ia < la do
12 T [ia + ib]← a[ia];
13 ia ← ia + 1;

14 while ib < lb do
15 T [ia + ib]← b[ib];
16 ib ← ib + 1;

Figure 5.1: The merging sort program.

2

3

1

4

11 12 13

14 15 16

17

6 8

7 9

5

10

Skip

T [ia+ib] :=a [ia]

ia := 0

ib := 0

ia≥ la

ib≥ lb

ia < la

ib< lb

a [ia] < b [ib] a [ia] ≥ b [ib]

T [ia+ib] :=b [ib]

ia := ia+1

ib := ib+1

ia < la

ia := ia+1

T [ia+ib] :=a [ia]

ia≥ la

ib< lb

ib := ib+1

T [ia+ib] :=b [ib]

ib≥ lb

Figure 5.2: The merging sort LTS.

129

1. paths that exit the first loop by the transition going from 3 to 11 and
enter the second loop,

2. paths that exit the first loop by the transition going from 4 to 10 and
enter the third loop,

3. paths that enter the first loop, then exit it by the transition going from
3 to 11 and that do not enter the third loop,

4. paths that exit the first loop by the transition going from 4 to 10 and
that do not enter the second loop,

5. paths that exit the first loop by the transition going from 4 to 10
immediately after going through transition from 7 to 3,

6. paths that exit the first loop by the transition going from 3 to 11
immediately after going through transition from 9 to 3,

7. paths that go through both the second and the third loops.

These groups are not disjoint: paths might be infeasible for several reasons.
For example, paths that exit the first loop through the transition going from
3 to 11 and enter both the second and third loops are elements of groups 1
and 7 at least.

One can note that, in this particular example, the infeasibility of paths
is never directly related to the values of the elements of input arrays a
and b, but only to the fact that paths go through inconsistent sequences of
assignments/guards regarding indexes ia and ib. This can be interpreted
as the fact that, for every feasible path in the merging sort LTS, one can
always find a valuation of the elements of a and b that is consistent with this
particular path. For this reason, we illustrate how our algorithm behaves
on a slightly simplified version of the LTS depicted in Figure 5.2 in which
we remove transitions that use the values of the elements of a and b. This
simplified LTS is shown in Figure 5.3. Removing these transitions from the
LTS of Figure 5.2 does not impact the accuracy of the results produced by
our algorithm. Discovering such abstraction of the program would rely on
applying techniques from data flow analysis, on the expressions that guard
loops and conditionals.

In Figure 5.3, since 5 is a branching vertex, its two outgoing edges should
have been labeled by a condition: the latter would have been true on both
edges because of the abstraction of the original comparison between arrays
elements and the incrementation of the corresponding index would label
the next edge (the vertices for the assignment to T being removed). To
alleviate the description of the example, we rather put the incrementations
on the edges leaving location 5. In Chapter 3, we worked with LTS where
it exists only one transition linking two distinct locations, and this is also
a requirement in our current implementation. Thus, we add two transitions
labeled by Skip going respectively from 6 and 7 to 3 in order to avoid having

130

2

3

1

4

8 9

10 11

12

6 7

5

ia := 0

ib := 0

ia≥ la

ib≥ lb

ia < la

ib< lb

ia := ia+1 ib := ib+1

ia < la

ia := ia+1

ia≥ la

ib< lb

ib := ib+1

ib≥ lb
Skip

Skip

Figure 5.3: Simplified version of the merging sort LTS.

two transitions linking 5 to 3. Finally, the unnecessary Skip edge from 10
to 11 in the input LTS has also been removed.

In the following, we use this simplified example to show how our algo-
rithm behaves with different values of its control parameters. In each of
the following cases, we do not consider any user-given precondition: the ini-
tial configuration is always c0 =

(
{ia 7→ 0, ib 7→ 0, la 7→ 0, lb 7→ 0}, true

)
.

Moreover the global parameter dp is set to false and we only consider sub-
sumption links that involve red vertices that occur along the same symbolic
paths, i.e. the potential subsumees are always descendants of their poten-
tial subsumers. We will discuss the case of subsumptions between different
symbolic paths in the following chapter.

5.4.2 Merging Sort without Path Sets Comparisons

Abstraction by Constraint Removal

In this section, we consider that abstractions are performed by removing
constraints from path predicates and that the counterexample guided re-
finement mechanism is enabled. Our goal here is to illustrate how the basic
features of our algorithm interact and, for the sake of simplicity, we suppose
that sets of feasible paths starting at the potential subsumees and subsumers
are not compared when trying to establish subsumptions (i.e. the global pa-
rameter la is set to 0). As a result, the infeasible path detection power of
the algorithm in this particular case is somewhat limited, and we will see
that the resulting LTS retains most of the infeasible paths of the input one.

131

10

20

30

40

50

31

81

60 70

80

ia1= 0

Figure 5.4: Building the first path in the body of the main loop.

Note however that this is only for illustrative purposes and we will see in
the following that the infeasible path detection power is greatly improved
with a suitable value for la.

The analysis starts at the first occurrence 10 (see Figure 5.4) of the initial
location of the LTS of Figure 5.3. The superscripts at program location
reflect the order of visit.

Handling the first assignments (Fig. 5.4) The algorithm starts by
applying two steps of symbolic evaluation: 20, the successor of 10, is built
since 10 is not marked, not an occurrence of a final black vertex and cannot
be subsumed since it is the only of occurrence of black vertex 1. The same
case applies for adding the edge between 20 and its only successor 30.

Execution of the body of the first loop (Fig. 5.4) The two successors
of 30, 40 and 80, are built. Let us say that the latter is pushed first on the
stack of vertices to visit: the next vertex to visit is thus 40. The constraint
solver is called to check the satisfiability of configurations of both 40 and
80: none of them is marked, since their configurations can be proved to be
satisfiable. Successors 50 and 81 of 40 are built and the solver is called to
check satisfiability of their configurations: none of them is marked. Then let
us say that 81 is pushed first on the stack of vertices to visit: the next vertex
to be processed is 50. Once again, its successors are built: we consider that
70 is pushed first and that the analysis goes on at 60, whose unique successor
31 is built and processed.

132

Subsumption of 31 by 30 (Fig. 5.4) Since an occurrence of a loop header
has been reached, the algorithm attempts to establish the subsumption of
31 with the only existing occurrence of 3, namely 30. The configuration of
31, denoted c31 is

c31 =
(
{ia 7→ 2, ib 7→ 1, la 7→ 0, lb 7→ 0},
ia1 = 0 ∧ ib1 = 0 ∧ ia1 < la0 ∧ ib1 < lb0 ∧ ia2 = ia1 + 1

)
which is not subsumed by the current configuration of 30

c30 =
(
{ia 7→ 1, ib 7→ 1, la 7→ 0, lb 7→ 0}, ia1 = 0 ∧ ib1 = 0

)
since the latter requires ia to be 0 while the former requires it to be 1. The
algorithm starts searching for an abstraction of c30 that both subsumes c31
and entails the current safeguard condition of 30, which is simply true since
no refine-and-restart phase has been triggered for now. By removing from
the path predicate of c30 the unique occurrence of its first conjunct ia1 = 0,
one obtains the following abstraction a of c30 :

a =
(
{ia 7→ 1, ib 7→ 1, la 7→ 0, lb 7→ 0}, ib1 = 0

)
which happens to subsume c31 (and entail true). Before pushing a on top of
the stack of configurations of 30 one first has to check that it can safely be
propagated. Since no subsumption links start from the current descendants
of 30, this comes down to check that the abstraction propagated by symbolic
evaluation up to 31 is actually subsumed by a. The configuration that is
propagated to 31 is

a′ =
(
{ia 7→ 2, ib 7→ 1, la 7→ 0, lb 7→ 0},
ib1 = 0 ∧ ia1 < la0 ∧ ib1 < lb0 ∧ ia2 = ia1 + 1

)
which happens to be subsumed by a: the latter is pushed on top of the stack
of configurations of 30 and is propagated from there. Finally, subsumption
(31, 30) is added to the subsumption relation (see 5.5).

Subsumption of 32 by 30 (Fig. 5.5) The analysis resumes at the vertex
on top of the stack of vertices to visit: 70, whose only successor, 32 is
built. Once again, an occurrence of a loop header has been reached, and
the algorithm attempts to establish the subsumption of 32 by a previous
occurrence of black vertex 3. Since 31 is already subsumed and lies on
a different path than 32, the only potential subsumer is 30 again. The
configuration at 32 is

c32 =
(
{ia 7→ 1, ib 7→ 2, la 7→ 0, lb 7→ 0},
ib1 = 0 ∧ ia1 < la0 ∧ ib1 < lb0 ∧ ib2 = ib1 + 1

)
133

10

20

30

40

50

31

81

90

82
60 70

36

80

┴

100

ia1= 0

ib1= 0

Figure 5.5: Both paths in the main loop have been subsumed. The algorithm
attempts at subsuming 82.

which is not subsumed by the current configuration of 30, since both require
ib to have different values (0 at 30, 1 at 32). The algorithm proceeds as
previously: it removes from the path predicate of c30 its first conjunct,
which is now ib1 = 0. Thus one obtains the following abstraction a of c30 :

a =
(
{ia 7→ 1, ib 7→ 1, la 7→ 0, lb 7→ 0}, true

)
which subsumes c32 and can be safely propagated from 30: the abstraction
propagated to 31 is actually subsumed by a, as well as the one propagated
to 32. Configuration a is pushed on top of the stack of configurations of 30

and propagated from there. The path predicate of the configuration of 30,
and its two previous configurations are stored in its stack.

Subsumption of 82 by 81 (Fig. 5.5 and 5.6) The next red vertex
to visit is 81. Since there exist no other occurrences of black vertex 8, its
successors 90 and 100 are built and pushed on the stack of vertices to visit.
The configuration at 100 requires ia to be both lesser and greater or equal
to la, which is impossible: we suppose that the solver in use detects the
infeasibility of the configuration of 100 and that the latter is marked (with
a ⊥ mark in the figures). Let us say that 100 is pushed first and that the
analysis resumes at 90. The only successor of the latter, 82, is built, pushed
on top of the stack of vertices to visit and then processed. The algorithm
attempts to subsume 82 with a prior occurrence of 8 along the current path,

134

10

20

30

40

50

31

81

90

82
60 70

36

80

┴

100 120

110
ia1< la0

ia1= 0

ib1= 0

Figure 5.6: The first final red vertex has been reached: the algorithm
searches for a too crude abstraction.

i.e. 82. The configuration of 82 is

c82 =
(
{ia 7→ 2, ib 7→ 1, la 7→ 0, lb 7→ 0},
ia1 < la0 ∧ ib1 ≥ lb0 ∧ ia2 = ia1 + 1

)
which is subsumed by the following abstraction of c81 :

a =
(
{ia 7→ 1, ib 7→ 1, la 7→ 0, lb 7→ 0}, ib1 ≥ lb0

)
which is in turn safely propagable from 81. This abstraction is pushed on
top of the stack of configurations of 81 and propagated from there. During
the propagation of a from 81, the current configuration of 100 becomes(

{ia 7→ 1, ib 7→ 1, la 7→ 0, lb 7→ 0}, ib1 ≥ lb0 ∧ ia1 ≥ la0

)
which is no longer unsatisfiable: 100 is unmarked (but not pushed on the
stack of vertices to visit: it is already in it).

Towards the first final red vertex (Fig. 5.6) The analysis resumes at
100. Since 100 is unmarked and is the first occurrence of black vertex 10, its
successors 110 and 120 are built and pushed on top of the stack of vertices
to visit. When it is built, 110 is marked, since its configuration requires
ia to be both greater or equal and lesser than la. Since, it is marked, no
particular treatment is applied to 110 and the analysis resumes at 120. Note
the arrow going out of 120: it indicates that the latter is an occurrence of a
final black vertex, although we do not consider graphs to have final vertices.

135

10

20

30

40

50

31

81

91

83
60 70

36

80

101

┴

92

84

102

[ia < la]ia1= 0

ib1= 0

Figure 5.7: Refining the faulty abstraction at 81 and restarting the analysis
causes the second loop to be unfolded twice.

Refine the faulty abstraction (Fig. 5.6 and 5.7) The latter is a non-
marked occurrence of a final black vertex: the algorithm now searches for
an abstraction along the shortest path from 10 to 120 that potentially made
that path feasible when it was infeasible in the first place. Indeed, the
abstraction performed at 81 made the path feasible by unmarking 100: a
refine-and-restart phase is triggered. Red vertex 81 is labeled with the weak-
est precondition of false along 81 · 100, the shortest infeasible prefix of the
sub-path starting at 81, i.e. ia < la. Its configuration prior to the faulty
abstraction is restored, its sub-graph destroyed, and 81 is pushed back on
the stack of vertices to visit, and selected during the next iteration of build.

Restart the analysis (5.7) The analysis restarts at 81, building 91, 101

and 83 (and 101 is marked). When 83 is reached, the safeguard condition at
81 prevents the abstraction that was refined earlier, since it is not possible to
find an abstraction of c81 that both subsumes c83 and entails ia < la. This
forces the algorithm to build the descendants 92, 102 and 84 of 83. From 83,
the transition from 8 to 10 is feasible and 102 is not marked.

Subsumption of 84 by 83 (5.7 & 5.8) Once 84 is reached, the algorithm
attempts to subsume the latter by a previous occurrence of 8. Once again,

136

10

20

30

40

50

31

81

91

83
60 70

36

80

101

┴

92

84

102 121

111

[ia < la]

┴

ia1= 0

ib1= 0

Figure 5.8: A final red vertex is reached without triggering any refinement.

the subsumption by 81 fails because of the safeguard condition of the latter.
However, the configuration of 84 is “naturally” subsumed by c83 , since both
do not require ia to be lesser than la anymore: the subsumption succeeds
without requiring to abstract c83 .

Subsumption of 103 by 104 (5.8 & 5.9) The analysis resumes at 102

whose successors are built: 111 is marked but not 121. When the latter is
reached, the algorithm starts searching for a too crude abstraction along the
shortest path leading to 121 but finds none. The vertex on top of rvs, 80, is
processed. Since there are no other occurrences of 8 along the path leading
to 80, no subsumption can be established and successors of 80 are built: 93

is marked and we suppose the analysis goes at 103. Its descendants are built
until 104 is processed: the latter is subsumed by 103 without requiring any
abstraction since no constraint weight over rv at both red vertices.

End of the analysis (5.9) At this point, the only element in rvs is 122:
the path leading to 122 has not been made feasible by abstraction, and the
counterexample guided refinement mechanism does not trigger. The analysis
halts, since rvs is empty. Since every leaf of the red part is either marked,
subsumed or an occurrence of a final location, the resulting LTS, depicted
in Figure 5.10, is obtained by removing edges to marked vertices, turning

137

10

20

30

40

50

31

81

91

83
60 70

36

80

101

┴

92

84

102 121

111

[ia < la]ia1= 0

ib1= 0

93

103

112

104

122

┴

┴

Figure 5.9: The final unfolding: the red part has been completely built.

subsumption links into back edges, renaming vertices of R and labeling its
edges according to the transition relation of the black part of RB .

Vertices 14, 8 and 12 are branching nodes, but one of their branches has
been removed as infeasible. In the resulting LTS we keep the same sequence
of traces as the input LTS, hence the repeated occurrence of ia ≥ la on
edges 3− 14 and 14− 15 and the unnecessary tests at 8 and 12.

Discussion As one can see in Figure 5.9 or 5.10, a number of infeasible
paths of the input LTS shown in Figure 5.3 have been pruned:

• paths that leave the first loop because ia has reached la but enter the
second loop,

• paths that leave the first loop because ib has reached lb but enter the
third loop

• paths that leave the first loop because ib has reached lb but that do
not enter the second loop,

• paths that enter both the second and third loop,

that is, groups of infeasible paths 1, 2, 4 and 7 identified in Section 5.4.1
were detected and pruned. Informally, detecting the infeasibility of paths of
groups 5 and 6 would require to remember, when symbolic execution exits

138

1

2

3

4

5

8 9 10

6 7

11

12 13

ia := 0

ib := 0

ia < la

ib< lb

ia := ia+1

ia < la ia := ia+1 ia≥ la ib≥ lb

ia < la
ia := ia+1

ib := ib+1 Skip

Skip

ib≥ lb

14 15

16

17
ia≥ laia≥ la ib≥ lb

ib< lb

ib := ib+1

Figure 5.10: The resulting LTS.

the first loop, which index has been incremented last on the current path.
This is precisely the information that needs to be abstracted in order to
force the subsumptions of 31 and 32 by 30. Since, in the previous example,
shortest paths to occurrences of the final location are not elements of groups
5 and 6, the counterexample guided refinement mechanism is unable to reveal
the infeasibility of those paths. We will see in 5.4.3 how the look-ahead
mechanism allows detecting them.

Abstraction by Store Update

Running our algorithm on the merging sort example with the same param-
eters than previously except for the abstraction method also yields the LTS
shown in Figure 5.10. The analysis follows the exact same steps than in the
previous case. This is due to the fact that, in this particular example, al-
though the two abstraction methods actually yield different configurations,
those configurations happen to represent the exact same sets of program
states in both cases.3 In this section, we simply illustrate how abstractions
are computed and propagated but do not give as many details as previously.

3This is generally not the case though, see for instance the short example given at
page 116.

139

Subsumption of 31 by 30 (Fig. 5.4) When 31 is reached, its configura-
tion is

c31 =
(
{ia 7→ 2, ib 7→ 1, la 7→ 0, lb 7→ 0},
ia1 = 0 ∧ ib1 = 0 ∧ ia1 < la0 ∧ ib1 < lb0 ∧ ia2 = ia1 + 1

)
and the configuration of 30 is

c30 =
(
{ia 7→ 1, ib 7→ 1, la 7→ 0, lb 7→ 0}, ia1 = 0 ∧ ib1 = 0

)
which does not subsume c31 .

First, the set of program variables that potentially need to be abstracted
at 30 in order to force the subsumption of 31 is computed. These variables are
those that are defined or abstracted along the (shortest) sub-path sp leading
from 30 to 31 and that are not already abstracted at 30. The only variable
defined along sp is ia, whose symbolic counterpart ia1 at 30 occurs in the
path predicate of the latter. Abstracting ia at c30 yields the abstraction

a =
(
{ia 7→ 2, ib 7→ 1, la 7→ 0, lb 7→ 0}, ia1 = 0 ∧ ib1 = 0

)
which subsumes both c31 and the abstraction

a′ =
(
{ia 7→ 3, ib 7→ 1, la 7→ 0, lb 7→ 0},
ia1 = 0 ∧ ib1 = 0 ∧ ia2 < la0 ∧ ib1 < lb0 ∧ ia3 = ia2 + 1

)
propagated to 31.

Subsumption of 32 by 30 (5.5) When 32 is reached, its configuration is

c32 =
(
{ia 7→ 2, ib 7→ 2, la 7→ 0, lb 7→ 0},
ia1 = 0 ∧ ib1 = 0 ∧ ia2 < la0 ∧ ib1 < lb0 ∧ ib2 = ib1 + 1

)
Once again, the value of ib prevents a natural subsumption of 32 by 31. This
case being symmetric to the previous one, it is enough to abstract ib at 30

to force the subsumption with 32.

End of the analysis The next steps of the analysis are similar to those
of the previous example. The subsumption of 82 by 81 requires abstracting
ia at the latter which causes 100 to be unmarked and triggers a refine-and-
restart phase when 120 is reached. The faulty abstraction is refined and
the analysis restarts at 81 now labeled with the safeguard condition ia < la,
which causes the second loop to be unrolled two times instead of one, leading
to the subsumption of 84 by 83. Finally, 80 is processed and the analysis
ends after detecting the subsumption of 103 by 104. Once again, the two
last subsumptions do not require any abstraction.

140

5.4.3 Merging Sort with Path Sets Comparisons

Abstraction by Constraint Removal

We still consider that abstractions are performed by removing constraint
from path predicates, but we now suppose that the look-ahead mechanism
is enabled, and that la (the global parameter) is set to 2. The idea here is to
force the algorithm to discover the infeasibility of paths of groups 5 and 6, i.e.
those paths that exit the first loop in an inconsistent manner, by comparing
feasible path sets starting at each potential subsumee and subsumer up to a
depth of 2. Given a red vertex rv to subsume and a potential subsumer rv ′,
the algorithm only checks for subsumption and searches for an abstraction
of rv ′ if the sets of (black) feasible sub-paths of length 2 starting at rv and
rv ′ are equal. In this example, a look-ahead of 2 is enough to discover that,
if ia (resp. ib) has been incremented during the last iteration of the first
loop, then the execution can only leave the latter through the transition
(3,Assume ia ≥ la, 8) (resp. (4,Assume ib ≥ lb, 8)).

10

20

30

40

50

31

81

60 70

80

Figure 5.11: Since ib must be lesser than lb at 30, the look-ahead mechanism
prevents the abstraction at 30 needed for a subsumption at 31.

First iteration of the first loop: first path (5.11) The analysis starts
at the red root 10 and follows the first path of the main loop, as in the
previous examples, until the second occurrence 31 of 3 is reached. The only
possible subsumer being 30, sets of feasible paths of length 2 starting at 30

and 31 are built and compared. At 30, nothing is known about the value
of ia and ib compared to those of la and lb, and the execution can exit the
first loop by transitions (3,Assume ia ≥ la, 8) and (4,Assume ib ≥ lb, 8).
This is not the case at 31, which requires ib to be strictly lesser than lb,
making the sub-path 3 · 4 · 8 infeasible from 31 while feasible from 30. As

141

10

20

30

40

50

31

60

41

51

32

61 71

83

┴

82

81

80

ia1= 0

70

Figure 5.12: The subsumption of 32 by 31 succeeds.

a result, 30 is immediately discarded as a potential subsumer for 31, which
causes successors of the latter to be built.

Subsumption of 32 by 31 (Fig. 5.12) We suppose that symbolic exe-
cution follows from 31 the same path that led from 30 to 31, until the third
occurrence of vertex 3 is reached. The algorithm attempts to subsume 32

by one of its ancestor. Let us say that 30 is considered first. Since the
configuration of 32 still requires ib to be lesser than lb, which is not the case
at 30, the sets of feasible paths starting at 30 and 32 differ, 3 · 4 · 8 being
feasible from the former but infeasible from the latter. Once again, 30 is
discarded, and 31 is considered. Both configurations of 31 and 32 requires
ib to be lesser than lb, while nothing is known about ia compared to la:
sets of feasible sub-paths of length 2 starting at 31 and 32 are equal. The
algorithm now checks for subsumption between their configurations, which
fails, since the configuration of 31 requires ia to be 1 while the configuration
of 32 requires it to be 2. This is not a problem: removing ia1 = 0 from the
path predicate of c31 yields an abstraction of the latter that both subsumes
c32 and the abstraction that is propagated to 32.

Second iteration of the first loop: second path (Fig. 5.13) The
analysis resumes at 71, whose only successor 33 is built. The algorithm
attempts to subsume the latter by a previous occurrence of 3 but fails.
At this point, the potential subsumers for 33 are 30 and 31 (32 cannot be

142

10

20

30

40

50

31

60 70

ib1= 0

41

51

32

61 71

33

42

52

34

62 72

85

84

┴

83

┴

82

81

80

ia1= 0

Figure 5.13: No subsumption exists for 33 since it is the only occurrence of
3 from which 3 · 8 is infeasible. The subsumption of 34 by 31 succeeds.

considered: it is already subsumed and lies on a different path). Indeed, the
configuration at 33 now requires ia to be lesser than la, which makes the
sub-path 3 · 8 infeasible from there, while it is feasible from both 30 and 31.
Since no subsumer has been found for 33, its successors are built, causing
the loop to be unfolded a third time.

Subsumption of 34 by 31 (Fig. 5.13) We suppose again that symbolic
execution follows from 33 the path along which ia is incremented, until the
fifth occurrence of 3 is reached. Potential subsumers for 34 are 30, 31 and 33.
The first candidate, 30 is discarded since it is ia that has been incremented
last along the current, causing the configuration of the latter to require that
ib be lesser than lb, making 3 · 4 · 8 infeasible from 34. However, feasible
paths of length 2 starting at 34 are exactly those starting at 31: the algorithm
checks that c34 is subsumed by c31 , but fails. Indeed, the configuration at 31

requires that ib is 0 while c34 requires it to be 1, since ib has been abstracted
between 30 and 33. Removing ib1 = 0 from the path predicate of 30 once
again rules the problem, since it yields an abstraction that subsumes c34 and

143

the abstraction propagated to 34 and that can safely be propagated to 32.

10

20

30

40

50

31

60 70

ib1= 0

41

51

32

61 71

33

42

52

34

62 72

35

85

84

┴

83

┴

82

81

80

ia1= 0

Figure 5.14: Sets of feasible sub-paths starting at 33 and 35 are equal: the
subsumption of the second by the first succeeds.

Subsumption of 35 by 33 (Fig. 5.14) The next red vertices on the stack,
72, is processed and the analysis reaches its only successor 35. Potential
subsumers for 35 are 30, 31 and 33, the two other occurrences of 3 lying on
different symbolic paths. Since ib has been incremented last on the path
leading to 35, the set of feasible paths of length 2 starting at the latter
differ from those of 30 and 31, but is equal to the one starting at 33. Since
both abstractions performed at 31 have been propagated to 33, the first
check for subsumption between c35 and c33 succeeds and the subsumption
is established without requiring any abstraction of the latter.

Subsumption of 87 by 86 (Fig. 5.15) The execution resumes at 85, the
only occurrence of 8 along the current symbolic path. Its successors 90 and
100 are built, the latter being marked since its configuration requires ia to
be both lesser and greater or equal to la. Descendants of 85 are built until 86

is reached, the algorithm trying to subsume the former by the latter. Here,

144

10

20

30

40

50

31

60 70

ib1= 0

41

51

32

61 71

33

42

52

34

62 72

35

85 100

90

86

91

87

101 120

110

┴

┴

84

┴

83

┴

82

81

80

ia1= 0

Figure 5.15: The look-ahead mechanism prevents the abstraction of 85. The
subsumption between 87 and 86 avoids triggering a refinement step.

the look-ahead mechanism detects that the execution can safely exit the
second loop at 86 while this is impossible at 85, causing the subsumption
attempt to fail. Descendants of 86 are built, until 86 is reached. Once
again, the attempt to subsume the latter by 85 fails for the same reasons,
but succeeds at with 86, since c86 and c87 do not impose ia < la anymore.
Once subsumption has been established, the first final occurrence of a final
location is reached. Since the feasibility of the path leading to 120 is not
due to some previous abstraction, the counterexample guided refinement
mechanism does not trigger.

End of the analysis (Fig. 5.16) We do not detail the rest of the analysis
as much: this would be unnecessary long and all special cases that occur
are symmetric to those presented earlier. For example, when the analysis
resumes at 82, the algorithm would try to subsume its descendant 103 by
102, but the look-ahead mechanism acts as for 86 and 85 and prevents the

145

10

20

30

40

50

31

60

70

ib1= 0

41

51

32

61 71

33

42

52

34

62 72

35

85 100

90

86

91

87

101 120

110

┴

┴

84

┴

83

┴

82

92

┴
36

43

53

7363

31037

44

54

38

64 74

39

811

┴

88

┴

810

93

┴

89 108

94

812

95

813

109 125

115

┴

┴

81 1010

96

814

97

815

1011 126

116

┴

┴

80

98

1012 127

117

1013
┴

ia1= 0

ia1= 0

ia1= 0

ib1= 0

ia1= 0

ib1= 0

103 122

112

104

102

111

121

┴

106124

114

107

105

113

123

┴

Figure 5.16: The complete red part at the end of the analysis. No infeasible
paths remain.

first subsumption possible, which causes the third loop to be unfolded a
second time. This also happens at each first unmarked occurrence of 8 (in
this case, the second loop is unfolded twice) or 10 along the other symbolic
paths, 80 excepted, since the execution can enter the third loop or not from
there. The more interesting case comes from the execution of the second
path at the first iteration of the main loop: the latter is unfolded at least
two more times from 36 in order to remember, at each occurrence of loop
headers, which index was incremented last, similarly to what happened at
31, the situation being symmetric at those two red vertices.

Discussion We do not show the LTS obtained from the complete red part
shown in Figure 5.16. It is made of 61 vertices, 72 transitions, and does
not contain infeasible paths anymore. Unsurprisingly, infeasible paths that
were eliminated in the previous section, when the look-ahead mechanism
was disabled, were also detected here with the global parameter la set to 2.
Most importantly, this mechanism allowed to detect and prune paths whose
infeasibility is caused by complex dependencies between iterations of one or
several loops of the program, as illustrated by this example, and that can-
not be detected by our counterexample guided refinement mechanism in its

146

current form. Also, we insist on the fact that no particular precondition was
used: we did not bound the length of the input arrays, the length of paths
or the level of loop unfoldings. The set of paths of the LTS in Figure 5.16
is exactly the set of feasible paths of the input LTS.

Finally, we observe that several regions of the red part shown in Fig-
ure 5.16 are strictly identical, up to a renaming of red vertices. This is
due to the facts that (i) we chose, at the beginning of this section, to only
consider subsumption links involving red vertices that occur along the same
symbolic paths and (ii) that some patterns of execution of the bodies of
the different loops are repeated along the different symbolic paths exhibited
in the red part. In other words, although the red part of Figure 5.16 only
contain feasible paths, its set of paths is not minimal w.r.t. the set of feasible
paths of the input LTS. In Chapter 6, we discuss a number of experiments
that we have done in order to over-approximate the sets of feasible paths
more closely, by trying to merge those similar regions.

Abstraction by Store Update

We now describe how the algorithm behaves when abstractions are per-
formed by updating stores, with the look-ahead mechanism enabled and the
global parameter la set to 2. In this case, an infinite chain of refine-and-
restart phases occurs, preventing the analysis to halt unless a length limit
for symbolic paths has been set through the global parameter mrl .

At first, the analysis goes on as in the previous case (see Figure 5.17):
the subsumption of 31 by 30 is refused, but 32 then gets subsumed by 31 by
abstracting ia, and, when 33 is reached at the end of the second path in the
first iteration of the main loop, the latter is unfolded once again, yielding
the subsumption of 34 by 31, which requires to abstract ib at 31. After this
subsumption has been established, the configuration at 31 is

c31 =
(
{ia 7→ 3, ib 7→ 2, la 7→ 0, lb 7→ 0},
ia1 = 0 ∧ ib1 = 0 ∧ ia1 < la0 ∧ ib1 < lb0 ∧ ia2 = ia1 + 1

)
which does not require ia or ib to be lesser than la and lb, respectively.
When this abstraction is propagated from 31, the fact that the constraint
ib < lb was forgotten causes the red vertex 83 to be unmarked: from there,
the second occurrence 121 of the final black vertex 12 is reached, which
triggers refine-and-restart mechanism for the first time.

The subsumption of 34 by 31 is refined, and the analysis restarts from the
latter (see Figure 5.18). The subsumption of 36 (which previously was 32) by
31 is established: the refine-and-restart step was not due to the abstraction
of ia and the required abstraction is not prevented. However, when the
analysis reaches 37 (which previously was 33), the situation at the latter
is identical, although symmetrical, to the situation at 31 before the faulty

147

10

20

30

40

50

31

60 70

ib

41

51

32

61 71

33

42

52

34

62 72

35

85 100

90

86

91

87

101 120

110

┴

┴

84

┴

83

82

81

80

ia

92

102

111

103

121

┴

Figure 5.17: First partial red part: the subsumption of 34 by 31 causes 83

to be unmarked, triggering a refine-and-restart step at 121.

148

10

20

30

40

50

31

60 70

43

53

36

63 73

37

44

54

38

64 74

811

810

┴

89

88

81

80

┴

45

55

39

65 75

310

89

88

┴

ia

ia

ia , ib

Figure 5.18: Second partial red part. The situation is similar and symmet-
rical: the subsumption of 310 by 37 causes 810 to be unmarked, which also
triggers refine-and-restart phase.

149

abstraction. A few steps later, the algorithm establish the subsumption of
310 by 37, which requires abstracting both ia and ib. This in turn will cause
the red vertex 811 to be unmarked (although, this time it will be reached
from an occurrence of 3, since the situation is symmetric) which will cause
a refine-and-restart phase to trigger. This process goes on infinitely.

In such cases, there are two options for forcing the algorithm to halt.
The first consists in bounding the maximal limit of symbolic paths through
mrl . This usually yields an incomplete red part decorated with subsumption
links that might over-approximate the set of feasible paths of length lesser
or equal to mrl very closely. In the case of merging sort, all infeasible paths
of length lesser or equal to mrl are detected and pruned. However, since
the red part is incomplete, the resulting LTS will need to be completed
with transitions coming from the input LTS: the accuracy of the result
significantly drops when considering paths whose length is greater than mrl .
Since our ultimate goal is drawing, at random, paths of a given maximal
length in LTS, and since such LTS are usually very accurate for paths of
length lesser or equal to mrl , bounding the length of symbolic paths while
keeping the counterexample guided mechanism enabled might yield the more
accurate results if we know in advance we are not in interested in drawing
paths longer than mrl . For the merging sort example, with mrl set to 30,
we obtain a LTS with 142 vertices and 183 transitions, 14 of them coming
from the black part.

The second option simply consists in disabling the counterexample guided
refinement mechanism through the boolean flag restart .4 Naturally, this
causes some infeasible paths not to be detected, as illustrated by the previ-
ous example, but this also allows to build a complete red part. Informally,
this yields LTS that might be less accurate than those obtained by simply
bounding the height of the red part when considering paths of length lesser
or equal mrl , but are then a lot more precise on the long run, when the
length of paths exceeds mrl . Thus, we might prefer not to bound the length
of symbolic paths but disable the counterexample guided mechanism if we
do not know in advance the maximal length of paths we are going to draw
in the resulting LTS. In the case merging sort, disabling the counterexample
guided refinement mechanism, but keeping the same parameters than before
yields a LTS with 91 vertices and 108 transitions, but that still contain some
infeasible paths.

The next chapter includes all numbers related to this example, for various
combinations of values for the parameters, and reports on other experiments.

4Disabling the the counterexample guided refinement mechanism does not make the
length limit mrl useless: non-termination might come from the look-ahead mechanism
preventing subsumptions; although not in the case of merging sort.

150

5.5 Summary

In this chapter, we have described our algorithm in detail. Its principle is,
given an initial configuration and an input LTS that will serve as the black
part of an intermediate red-black graph, to build the red part of the latter
according to a DFS traversal of its black part. It then returns a LTS whose
set of paths is exactly the set of red-black paths of the intermediate red-black
graph. We described each of the three actions that can be performed at each
red vertex, i.e. refine a previous abstraction and restart the analysis from
there, subsume it by a previous occurrence of the black vertex it represents if
the latter is a loop header, or build its successors using symbolic execution.

We also described the various heuristic aspects our algorithm relies on
in order to combine and perform those three actions, for example: how
candidates for subsumption can be chosen, how abstractions can be com-
puted, combined and propagated, how faulty abstractions are refined and
how safeguard conditions are computed.

Finally, we described in details how our algorithm behaves on the exam-
ple of merging sort. As revealed by this example, the results greatly vary
when the algorithm is seeded with different values of its parameters.

The goal of this last section — and of this chapter more generally — was
more to illustrate how the different features of our algorithm interact than to
present quantitative results. This is the object of the next chapter. As shown
during this chapter, the three possible actions interact in a rather complex
and intricate manner. This is why we felt a machine-aided formalization was
needed to prove the key properties of this approach and why we chose to
model it as a set of five basic operators, assuming all possible choices were
done in advance, rather than try to model the whole algorithm itself. This is
also what motivates introducing red-black graphs and related notions as well
as our formalization before the algorithm itself. Although the algorithm was
not proven itself, it was designed to be as close as possible to the model we
used in our formalization, which gives strong confidence in its correctness.

In this chapter, we have mainly proposed simple solutions to the heuristic
aspects of the problem: these are the heuristics we actually use in our imple-
mentation of this approach and with which we obtained the results that are
presented in the next chapter. Nonetheless, those simple heuristics provide
yet fairly good results on most examples, as we will see in the next chapter.
Although we are conscious that the effectiveness of the overall approach
might be improved with more elaborated heuristics — and we mentioned
some perspective for the counterexample guided refinement mechanism in
that purpose, the goal of this chapter was more to present the details of our
approach rather than to discuss its possible improvements. This will also be
done in the second part of the next chapter, after experimental results have
been presented.

151

152

Chapter 6

Experiments and Discussions

In this chapter, we first present experimental results obtained with our im-
plementation of the algorithm described in the previous chapter. The goal
of the experiments reported in this chapter is to assess the infeasible path
detection power of our approach on various programs and to compare our
different heuristics for handling subsumptions and abstractions.

The second section of this chapter is dedicated to discussing the limita-
tions of our approach in its current state and some possible improvements,
at the light of the experimental results.

6.1 Experimental Results

For each of the programs that follow, we first give its pseudocode and LTS,
briefly describe its global behavior and detail its set of infeasible paths.
Then, we build various new LTS using different values of the parameters of
our tool: the way abstractions are computed, allowing refinements or not,
and the depth of the look-ahead. Finally, for each LTS obtained, we compare
the number of complete paths, i.e. paths from the initial location to any
final location, of a given maximal length l with the corresponding number
of complete feasible paths, and interpret the results. In the following, we are
only interested in complete paths, and will refer to them simply as paths.
Since our approach yields classical symbolic execution trees in absence of
loops, we do not give results for such cases: all the following examples
contain at least one loop.

We insist on the fact that our purpose in this chapter is not to generate
actual test cases nor to draw paths at random, but to compare the respec-
tive numbers of paths and feasible paths in the input LTS and in the LTS
produced by our approach. In a complete testing environment, as described
in [20], test data would be generated by symbolic execution and constraint
solving methods along paths drawn from the LTS produced with our pro-
totype, the drawing being performed according to some coverage criterion

153

using the RUKIA library [45].

In the experiments reported here, paths were counted using the Rukia
library. Rukia implements a number of algorithms that allow to draw paths
at random in huge graphs. It takes as inputs a graph g (written in .dot

format), a set of vertices of interest V (in our case the final vertices of the
input graph), a number of paths n to draw and a length l, and returns (i)
the number P=l of paths of length l going from the initial vertex of g to any
element of V and (ii) n paths of length l, drawn uniformly among those P=l

possible paths. Here we use Rukia as an efficient counting device as well
as for its capability to uniformly draw long paths in large graphs. Since we
are interested in paths of length at most l and since Rukia only produces
paths of length exactly l, whenever we send a graph g to Rukia, we add an
edge going from its root to itself: the number P=l of paths of length l in this
extended graph is exactly the number P≤l of paths of length at most l in g.1

The experiments reported in this section were performed using the fol-
lowing protocol, given an input LTS S:

1. we count the number of paths (feasible or not) of length at most l in
S using Rukia, for l = 30, 50 and 100,

2. we count the number of feasible paths of length at most l in S, for
l = 30 and 50. To do so, we first build the classical symbolic execution
tree (SET) of height 50 obtained from S using our implementation —
we simply disable subsumption checks and set mrl to 50. Then, we
count the number of paths of length at most 30 and 50 in this SET:
unless the solver is unable to prove the infeasibility of some of these
paths (and this never happened in these experiments), they correspond
to the feasible paths of length at most 30 and 50 of S. It is not needed
to build the SET of height 30 of S, since it is a sub-tree of the SET of
height 50: we count paths of length at most 30 in the latter.

For paths of length at most 100, we have proceeded differently: due to
their size, it was not possible to build the SET of height 100 of those
example programs and to count this way the number of feasible paths
of length at most 100 in their LTS. When this number is included in
our report, it was “deduced” by checking by manual inspection that on
this particular example our resulting LTS contains no infeasible path:
the number is simply the total number of paths, as reported by Rukia.
Such numbers have a trailing * mark in the tables. When the method
does not apply because some infeasible paths remain in our LTS, we
do not include the number in the report.

1This slight modification of the graph sent to Rukia is equivalent to the modification
introduced in Chapter 2, since we consider LTS whose transitions never lead to their initial
locations.

154

3. we produce a LTS S ′ using our implementation, and count its number
of paths of length at most 30, 50 and 100, and compare them to the
numbers of paths and feasible paths obtained for the input LTS S at
steps 1 and 2,

4. finally we count the number of feasible paths of S ′ in order to check
that no feasible paths were lost during the analysis. To do so, we
proceed differently than at step 2. For l = 30 and 50, we use Rukia not
only for counting P≤l, the number of paths of length at most l in S ′, but
also for enumerating all these paths, before counting the feasible ones
among those using our implementation. Since our approach preserves
feasible paths, those numbers must be the same as those obtained at
step 2. To enumerate all paths in S ′ we repeatedly ask Rukia to draw
P≤l paths, adding them (without duplicates) in a global collection.
Note that, when asked to draw n paths, Rukia usually does not draw
n distinct paths, hence we have to repeat the drawing until all the P≤l
distinct paths have been collected. Surprisingly — or not, considering
(i) the combinatorial explosion of the number paths when building
symbolic execution trees of large heights and (ii) the efficiency of Rukia
and its uniform drawing capability, in all our examples counting in this
way the number of feasible paths of length at most l in S ′ was effective
and usually done a lot faster — when P≤l is not too large — than by
building the classical SET, then counting its paths.

All results below were checked in this way. As expected, no loss of
feasible paths was ever revealed with the current version of our imple-
mentation.

Since our goal is to count paths and feasible paths in the input and
resulting LTS, the choice of 30, 50 and 100 for l may seem arbitrary, excepted
for the facts that (i) we think that they describe fairly well the evolution of
the ratios of feasible paths over paths of a given maximal length in the LTS
produced by our approach and (ii) tracking the number of paths of lengths
greater than 100 would not be useful in our case, since we are not able to
build SET and count the feasible paths for such values of l: we would not be
able to check that we did not loose some feasible paths. We choose to stick
to those values through each example to give a better idea of the evolution
of sets of paths and feasible paths according to l. We recall that l is not (a
bound on) the length of paths that would be drawn for test case generation;
such a bound should be chosen by testers depending on the structure of the
LTS of the program under analysis.

Tables giving the experimental results are organized as follows:

• the first column indicates which LTS, S or S ′, is considered,

• the second column, noted a, shows which method of abstraction was

155

used: with a = 1 abstractions were performed by removing constraints,
and by updating stores with a = 2,

• a mark in the third column, noted r, indicates that refinements were
allowed,

• the fourth column, noted |L|, gives the number of vertices of the con-
sidered LTS,

• the fifth column, noted |∆|, gives its number of transitions,

• the sixth column, noted t, gives the time, in seconds, needed to build
the corresponding LTS. All experiments were performed on a Linux
machine equipped with an Intel Core i5-3320M processor at 2.6 GHz
and 8 GB RAM. In our current implementation, we only used one
constraint-solver: the Z3 theorem prover (version 4.01),

• finally, the remaining columns give the number of paths (P) and fea-
sible paths FP for each value of l.

We recall that, although it is not our goal in this chapter, the LTS
we build using our approach will ultimately be used to draw paths in a
white-box testing context, i.e. test data will be produced from paths drawn
in our resulting LTS, using constraint solving techniques. Therefore, we
do not allow here, unlike in the previous chapter, to modify the structure
of the underlying graph of our input LTS as we did for the merging sort
example in 5.4. However, we still consider that it is possible to abstract
the labels of some transitions when those labels have no influence on the
feasibility of paths or are not supported by our input language. When such
an abstraction is performed, one has to recall that paths drawn in resulting
LTS might not have the same trace than their equivalent in the original
input LTS, and that labels that were abstracted must be restored before
test data generation, either in the resulting LTS or, on the fly, along the
paths that will be drawn.

6.1.1 Greatest Common Divisor

We first consider a program implementing Euclid’s algorithm for computing
the greatest common divisor of two integers a and b. The pseudocode of
this program is given in Figure 6.1, its LTS is depicted in Figure 6.2.
The LTS of Figure 6.2 contains three groups of infeasible paths:

• paths that enter the external loop, but that do not enter any of the
internal ones,

• paths that traverse the first internal loop, do not enter the second one
and finally enter the external loop again,

• paths that exit the external loop, then enter it again and do not enter
the first internal loop.

156

Function gcd(int x, int y)

1 let a = x;
2 let b = y;

3 while a 6= b do
4 while a > b do
5 a← a− b;
6 while b > a do
7 b← b− a;
8 return a;

Figure 6.1: The greatest common divisor program.

1

a := x

2

3

b := y

8

45

67

9

a ≠ b
a > b

b > a

a := a−b

b := b−a

a ≤b b≤a

a = b Skip

Figure 6.2: The LTS of the greatest common divisor program.

These dependencies between the three loops of the program are simple:
the set of feasible paths of gcd is a regular language. The number of paths
and feasible paths for gcd are given in Table 6.1. Note that this program
is supposed to be called with positive values for its arguments x and y,
otherwise it would not terminate. Experiments described below were done
without considering the precondition x ≥ 0 ∧ y ≥ 0, but we remark that
results shown in Table 6.1 would be exactly the same if we were to do so, since
this precondition has nothing to do with the infeasibility of paths (guards
of gcd only compare the value of a to b), but only with the termination of
the gcd program.

Both methods of abstraction yield the same results on this example. If
la is set to 0 or 1, the algorithm does not detect infeasible paths: in both
cases it yields the input LTS. If la is set to 2 all infeasible paths are detected,
with both abstraction methods. The rightmost column of Table 6.1 gives
the number of feasible paths of length at most 100 in S and in each S ′: as
said previously, we did not compute this number by building the SET of

157

Table 6.1: Paths and feasible paths in gcd.

a r la |L| |∆| t
l = 30 l = 50 l = 100

P FP P FP P FP

S 9 11 15 478

792

4.5× 107

143 179

2× 1016

5.9× 1010 *
S ′ 1 X

2 37 42
8.8

792 143 179 5.9× 1010
2 X 11.3

height 100 of gcd, but deduced it from the S ′ described at line 2 and 3.

Although the gcd program is fairly small and the reason of infeasibil-
ity of its paths are simple, the gcd program illustrates pretty well the need
for infeasible path detection techniques in the context of white-box testing:
drawing a path uniformly in the input LTS, the probability of it being fea-
sible would only approximately be 0.05, 0.003 and 0.000003, for l = 30, 50
and 100, respectively.

6.1.2 Merging Sort

Table 6.2 shows the results for the merging sort example. As explained in the
introduction, our values of l are arbitrary and used only to provide measures
for infeasible path elimination. To give an idea, for this example, of the kind
of test cases that would be considered when also fixing at l the length of a
path corresponding to an actual test case, complete paths of length up to 30,
50 and 100 respectively represent executions of merging sort with a bound
of 7, 14, and 31 on the size of the resulting array T (implicitly limiting the
sizes of the two input arrays that produce it). The numbers of paths and the
ratio of feasible paths among them are already impressive and such bounds
on the sizes of the input arrays allow to generate test data corresponding to
very different cases.

The first line gives the numbers of paths and feasible paths, for each
value of l, for the simplified LTS S shown in Figure 6.4. For merging sort,
the respective ratios of feasible paths on paths in the input LTS for l = 30,
50 and 100 are approximately 0.138, 0.115 and 0.112.

The remaining lines give those numbers for the resulting LTS S ′ obtained
with our algorithm, for different values of its control parameters.

The second and third lines show the results for the LTS S ′ obtained while
enabling counterexample guided refinements, but disabling the look-ahead
mechanism. This corresponds to the examples described in 5.4.2. In both
cases, the two methods of abstraction yield the same LTS, which is depicted
in Figure 5.10.

The fourth line shows the number of paths for the LTS obtained by
abstracting configurations by constraint removal, allowing refinements and
setting the look-ahead depth to 2, which yields the LTS shown in Figure 5.16.
As seen in 5.4.3, no infeasible paths remain, which allows to deduce the

158

Function merge(int[] a, int[] b, int la, int lb, int[] T)

1 let ia = 0;
2 let ib = 0;

3 while ia < la do
4 if ib < lb then
5 if a[ia] < b[ib] then
6 T [ia + ib]← a[ia];
7 ia ← ia + 1;

else
8 T [ia + ib]← b[ib];
9 ib ← ib + 1;

else
10 break;

11 while ia < la do
12 T [ia + ib]← a[ia];
13 ia ← ia + 1;

14 while ib < lb do
15 T [ia + ib]← b[ib];
16 ib ← ib + 1;

Figure 6.3: The merging sort program.

2

3

1

4

11 12 13

14 15 16

17

6 8

7 9

5

10

Skip

Skip

ia := 0

ib := 0

ia≥ la

ib≥ lb

ia < la

ib < lb

true true

Skip

ia := ia+ 1

ib := ib+ 1

ia < la

ia := ia+ 1

Skip

ia≥ la

ib < lb

ib := ib+ 1

Skip

ib≥ lb

Figure 6.4: The merging sort simplified LTS.

159

Table 6.2: Paths (P) and feasible paths (FP) in merging sort.

a r la |L| |∆| t
l = 30 l = 50 l = 100

P FP P FP P FP

S 17 21 593

82

11 728

1 351

12 389 030

1 385 616 *
S ′

1 X
0 23 26

3
210 3 694 3 819 743

2 X 2.9

1 X

2

85 96 15.7 82 1 351 1 385 616

2 X 170 178/19 117.7 82 2 728 11 593 094

2 127 144 9.3 131 2 031 1 980 403

number of feasible paths for l = 100.

The fifth line gives the results obtained with the second method of ab-
straction, allowing refinements and setting mrl to 30 to allow termination.
In this setting, a chain of refinements occurs, as described in 5.4.3. The red
part is no longer complete (the slash-separated numbers in column ∆ are the
numbers of transitions coming from the red and black parts, respectively)
and S ′ is obtained by connecting the red vertices that were not expanded to
the black part. A path of length at most 30 is entirely in the red part, but
paths of length more than 30 can end in the black part rather than in the
red one. As a result, the accuracy of S ′ w.r.t. the set of feasible paths of S
decreases dramatically as l grows: the respective ratios of feasible paths on
paths are 1, 0.495 and 0.119 for l = 30, 50 and 100. We observe however that
the red part is not totally devoid of subsumption links, and that paths of
length more than 30 might also end in the red part, although this is less and
less probable as their length grows. The fact that S ′ contains significantly
more vertices and transitions than in the other cases is due to the fact that
there is a majority of paths of length 30 in the red part.

The sixth line shows the results for the LTS obtained with the second
method of abstraction, with refinements disabled and la set to 2. Since
refinements have been disabled, the algorithm is able to produce a complete
red part, but this comes at the cost of allowing subsumptions that are known
to introduce infeasible paths in the resulting LTS. However, we remark that,
although the resulting LTS is less accurate than in the previous case for paths
of length at most 30, the ratio of feasible paths on paths being 0.626, it is a
lot more accurate than in the previous case as l grows, the ratios for l = 50
and l = 100 being 0.665 and 0.699, respectively.

The resulting LTS corresponding to the last line is less precise than the
one computed for the fourth line, but also contains more vertices and edges
than the latter, which might come as a surprise. This is due to the fact
that, in the case of merging sort, the second method of abstraction, unlike
the first, sometimes forgets the fact that ia < la at some occurrences of
location 3. Suppose now that, from such an occurrence, the execution does

160

another iteration of the main loop and increases ib along that path. When
the next occurrence of 3 is reached, we have that ia < la and the look-ahead
prevents the subsumption since sets of feasible paths differ from those two
occurrences. This causes the main loop to be unfolded again, which was not
necessary when removing constraints, and leads to a larger S ′.

Results obtained with the merging sort example are promising since all
infeasible paths were detected in the best case (fourth line of Table 6.2) and
that the set of feasible paths of S is fairly closely over-approximated in the
second best case (last line of Table 6.2). Moreover, we did not use any kind of
precondition to handle merging sort, be it a bound on the length of symbolic
paths (excepted for the experiment described at the fifth line of Table 6.2)
or on the length of the input or output arrays. To our knowledge, merging
sort is systematically handled with such bounds in related works.

6.1.3 Substring

We consider the substring program, which takes two arrays of characters s1
and s2 and their respective lengths l1 and l2, and returns 1 (i.e. true) if and
only if the string s2 occurs in s1. Its pseudocode and its simplified LTS are
given in Figures 6.5 and 6.6, respectively.

In the latter, the two return statements have been turned into Skip la-
bels. Also, since we do not support array expressions at the moment, the
conditions of the guards of transitions going from location 5 have been re-
placed by true. This does not impact results provided by our algorithm:
those guards have no influence on the feasibility of paths of the LTS of sub-
string : truth values of the expression s2[j] = s1[i+ j] at a given iteration of
the external loop have no impact on the truth values of this same expression
in the following iterations of the external loop.

Function susbtring(char[] s1, int l1, char[] s2, int l2)

1 let i = 0;

2 while i ≤ l1 − l2 do
3 let j = 0;
4 while j 6= l2 do
5 if s2[j] = s1[i+ j] then
6 j ← j + 1;

else
7 break;

8 if j = l2 then
9 return 1;

10 i← i+ 1;

11 return 0;

Figure 6.5: The substring program.

161

2

1

i := 1

3 11

4

5

8

6

7 9 12

10

i≤ l1−l 2

j := 0

j ≠ l 2

true

true

j := j+1

j= l 2

Skip

j ≠ l 2

j= l 2

Skip

i := i+1

i> l 1−l 2

Skip

Figure 6.6: The substring LTS.

The LTS depicted in Figure 6.6 contains three groups of infeasible paths.
Paths that exit the internal loop with j equals to l2 and exit the external loop
through the transition leading from 8 to 10 are infeasible. Symmetrically,
paths that exit the internal loop with j different than l2 but exit the external
loop through the transition leading from 8 to 9 are also infeasible. The
infeasibility of paths of the third group is caused by strong dependencies
between the external and the internal loop. For example, let s be a strict
prefix of s2 of length ls found to be a substring of s1. Then the length of
s2 is greater than ls and no later iteration of the outer loop can return 1
without doing at least ls + 1 comparisons. As a result, the set of feasible
paths of substring is not a regular language and, as such, we do not expect
to represent it by a graph.

Table 6.3: Paths and feasible paths in substring.

a r la |L| |∆| t
l = 30 l = 50 l = 100

P FP P FP P

S 12 15 789

57

85 598

854

1× 1010

S ′

1 X
0 14 15

1.1
88 1 660 2 612 181

2 X 1.1

1 X
11

42 46 16.5 80 1 520 2 398 239

2 X 92 102 63.3 61 1 125 1 765 110

1 X
14

118 130 153.7 71 1 342 2 123 382

2 X 234 262 317.4 57 949 1 468 171

Number of paths and feasible paths in the results obtained for substring

162

are shown in Table 6.3. The respective ratios of feasible paths over paths
in the input LTS for l = 30 and 50 are approximately 0.072 and 0.01. We
could not track the number of feasible paths for l = 100.

With la set to zero, both methods of abstraction produce the same LTS:
the infeasibility of paths of the first and second group is discovered.

Both methods yield new LTS when la is set to 11 or above. This prevents
a subsumption between the first two occurrences of 4, 40 and 41, that are
separated by one iteration of the internal loop. Indeed, consider the sub-
path sp = 4 · 5 · 7 · 8 · 10 · 2 · 3 · 4 · 5 · 6 · 4 · 8 of length 11: it does one
unsuccessful comparison in the internal loop before exiting it, then exits the
external loop, enters it again and performs one successful comparison in the
internal loop then exits it because j = 1 = l2.

This sub-path is feasible from 40, since at this point, nothing is known
about l2: executing sp from 40 imposes l2 to be 1, which is consistent with
the end of sp (i.e. leaving the internal loop because j = 1 = l2). However, if
executed from 41, it imposes l2 to be 2 because one iteration of the internal
loop was needed to reach 41, which is in contradiction with the end of sp.
This is the shortest sub-path that is feasible from 40 but infeasible from 41,
which explains why the algorithm only produces new LTS when la reaches
11.

Since subsumption of 41 by 40 is prevented, the internal loop is unfolded
again from there, which, combined with the fact that the same phenomenon
occurs at other occurrences of 4, forces the algorithm to find different sub-
sumptions than previously, yielding different and more accurate results.

Both abstraction methods rule out paths of the first and second groups.
When removing constraints from path predicates, infeasibility of paths of
the third group is discovered for ls = 0. Updating stores performs best here:
the property is discovered for ls = 0, ls = 1 and ls = 2. In the latter case,
the ratios of feasible paths over paths are 0.934 and 0.759 for l = 30 and
l = 50.

Setting la to 14 allows to better over-approximate the set of feasible
paths of substring : the first method of abstraction allows to detect paths of
the third group for ls = 0 and ls = 1. The second method performs best:
infeasibility of paths of the third group is discovered for ls = 0, 1 and 2.
Infeasibility of paths of the third group for ls = 3 is almost discovered: the
algorithm detects that at least three successful comparisons are necessary for
ls = 3, but fails to discover that a fourth successful comparison is needed.
When removing constraints, the infeasibility of paths of the third group
is discovered for ls = 0 and 1. Paths of the first and second group are
systematically detected infeasible.

The value of la might seem rather high compared to the value of l when
the latter is set to 30 (la approaching the half of l). We recall that, unlike la,
l is not a parameter of our approach but only the (maximal) length of paths
we want to count to compare the LTS produced by our approach. Each S ′

163

described in the different tables of this chapter is built only once: one can
then count or draw paths in each S ′ as many times as needed, for values of
l as large as one wants.

The substring example shows that our approach can be used to over-
approximate sets of feasible paths even in cases where those sets are not
regular languages: in the best case, described by the last line of Table 6.3,
every infeasible path of length at most 30 has been eliminated, and the ratio
of feasible paths over paths for l = 50 is now approximately 0.9 (but we
were not able to track it for l = 100).

6.1.4 Bubble Sort

We now present some results obtained for the bubble sort program. Its
pseudocode and LTS are given in Figure 6.7 and 6.8, respectively. Similarly
to the example of merging sort, instructions that use or set the values of the
input array a have no influence on the feasibility of paths: we use a slightly
simplified version of the LTS for our analysis.

Function bubble(int[] a, int i, int l)

1 let swap = 1;

2 while swap 6= 0 do
3 swap ← 0;
4 let i = 1;
5 while i < l do
6 if a[i− 1] > a[i] then
7 let tmp = a[i− 1];
8 a[i− 1]← a[i];
9 a[i]← tmp;

10 swap ← 1;

11 i← i+ 1;

Figure 6.7: The bubble sort program.

The LTS of Figure 6.8 presents three groups of infeasible paths:

• paths that reach the end of the program while swap equals 1,

• paths that enter the external loop while swap equals 0,

• paths that do not go through the same number of iterations of the
internal loop at each iteration of the external one.

Because of paths of the third group, the set of feasible paths of the bubble
sort LTS is not a regular language. Number of paths and feasible paths for
bubble sort are given in Table 6.4.

When la is set to zero, both methods of abstraction return the same
LTS: only the path that never enter the outer loop is detected infeasible.
Both methods produce new LTS when la is set to 2. Once again, updating

164

2

1

swap := 1

123

4

5

6

7 11

swap ≠0

swap := 0

i := 1

i < l

true

swap := 1

i := i+ 1

i≥l

swap = 0

true

8

9 10

Skip

Skip

Skip

Figure 6.8: The bubble sort LTS.

stores yield the best results here: paths of the first and second groups are
eliminated, while only those of the first group are detected with constraints
removal. This is due to the fact that, at some point during the analysis,
an abstraction of the configuration of an occurrence of vertex 2 requires to
remove a constraint relating swap to its value 0.

Results obtained by removing constraints can be improved by setting la
to 8: paths of the first group are still removed, but this time the algorithm
also rules out some paths of the second group as well as those of the third
group that perform exactly one iteration of the internal loop.

Updating stores yield the same results for la = 3, but a chain of refine-
ments occurs when la is set to 4, which prevents to build a complete red
part. This is due to some abstractions that are performed at occurrences
of vertex 4 that require to forget the concrete value of i at those point,
which causes paths that do not perform the same number of iterations of
the internal loop at each passage through the external one to be consid-
ered feasible. This phenomenon is repeated infinitely, which forces to either
bound the length of paths or to disable refinements. The sixth line of Ta-
ble 6.4 describes the result obtained with refinements allowed and mrl set to
30: the red part is not complete and, once again, the accuracy of S ′ greatly

165

Table 6.4: Paths (P) and feasible paths (FP) in bubble sort.

a r la |L| |∆| t
l = 30 l = 50 l = 100

P FP P FP P

S 12 14 494

13

76 625

82

2.4× 1010

S ′

1 X
0 16 18

2.7
493 76 624 2.4× 1010

2 X 3.7

1 X
2

40 48 7.2 337 52 171 1.7× 1010

2 X 22 25 6.7 60 3 530 1× 108

1 X 8 73 84 48 121 9 569 6× 108

2

X
4

180 193/13 116.6 26 3 316 9.2× 108

35 39 7 60 3 530 1× 108

8 76 85 23.9 60 3 408 8.8× 107

decreases with l.

The fifth line shows the LTS obtained with the previous parameters but
with refinements disabled: once again, this comes at the price of introducing
looser abstractions, which yield a LTS that is less precise than in the previous
case for l = 30, but a lot more as l grows.

The last line describes the LTS obtained with the same parameters than
at the fifth line, but with la set to 8: although refinements are disabled, this
is the most precise result with a complete red part that we obtain for bubble
sort.

As said previously, the set of feasible paths of bubble sort is not a regular
language, as is the case with substring. However, the algorithm performs
best on the latter than on the former. We believe this is due to the fact that
the two loops of substring are governed by two distinct indexes, while those
of bubble are only governed by i, which induces a chain of refinements when
la is set to 4 or above. We think that this chain of refinements could be
avoided by using more accurate abstraction methods, that would learn from
safeguard conditions, for example. Nonetheless, bubble sort clearly reveals
some limitations of our approach in its current state.

6.1.5 Bounded Loops

Our approach was designed specifically to handle unbounded loops, but it
is legitimate to wonder how it behaves in presence of bounded loops. In this
section, we consider three variations of a simple homemade example, bloop,
whose pseudocode and LTS are given in Figures 6.9 and 6.10. This program
takes four integers, start , n, x and y, as inputs and performs n iterations
of its loop, during which two actions can be done depending on the fact
that x equals y or not. Although the loop of this program in itself is not
bounded, we analyze it with three different preconditions for the value of n
that simulate a bound: n ≤ 2, n = 2 and n ≥ 2. Instead of using a constant

166

for the initial value of the loop index, we use a parameter start .

Function bloop(int start, int n, int x, int y)

1 let i = start ;

2 while i < start + n do
3 if x = y then
4 skip;

else
5 skip;
6 i← i+ 1;

Figure 6.9: The bloop program.

1

i := start

2 7
i≥ start+n

3

4 5

6

i< start+n

x = y x ≠ y

Skip Skip

i := i+1

Figure 6.10: The bloop LTS.

The conditional block at line 3 was added to introduce a number of
infeasible paths in bloop and see how the algorithm reacts: the truth value
of x = y does not change during the execution of bloop, and the algorithm
should detect that, after the first iteration of the loop, only one path can
be taken in each subsequent iteration 2. Let k be a number of iteration of
the loop of bloop: complete paths of bloop are all of length 4k + 2. The
LTS of Figure 6.10 contains exactly 2k paths of length 4k + 2, but only 2
of them are feasible. The following results show that our algorithm both
detect subsumptions that are consistent with the three preconditions and is
able to rule out infeasible paths due to the internal condition.

If pre, the precondition parameter of our algorithm, is set to n ≤ 2, then
bloop can only terminate before entering its loop, or after doing no more
than one or two iterations. In this case, if refinements are allowed but the
look-ahead depth set to 0, both methods of abstractions yield the red part
depicted in Figure 6.11.

2This example is inspired from an industrial case study reported in [27]

167

10

20 70

30

40 50

6160

21 22

Figure 6.11: A complete red part of the bloop example with n ≤ 2 for la = 0.

Indeed, the shortest sub-path sp starting at the first occurrence of 2 and
leading to an occurrence of 7 is already feasible if n ≤ 2: the two abstrac-
tions that are performed from this point do not trigger the counterexample
guided refinement mechanism and are never refined. This also causes the
infeasibility of paths due to the truth value of x = y to be undetected. Since
refinements cannot help, the only choice is to set la to a non-zero value.
Both sub-paths in the body of the loop being made of four transitions, a
look-ahead depth of 5 (4 for the loop body, plus 1 to discover the infeasible
guard) would allow to discover that doing a third iteration of the loop is not
possible here, and would prevent the two subsumptions. However, setting la
to 2 is enough: this allows to detect that, after the first iteration, only one
sub-path of the loop body is still feasible, i.e. that the truth value of x = y
has been set once and for all. This also prevents the two subsumptions:
both abstraction methods yield the red part of Figure 6.12, with la set to 2
and refinements disabled.

If we consider the precondition n = 2, then bloop must terminate after
exactly two iterations of its loop. When la is set to 0, the analysis starts as
in the previous case: the first two possible subsumptions of Figure 6.11 are
established, but then are both refined, since this time they actually turned
sp into a feasible path. This causes the loop to be unfolded once more along
the two paths. The same phenomenon occurs along both: the algorithm
subsumes the third occurrence of 2 by the second, which triggers a refine-
and-restart phase, causing the loop to be unfolded a third time along each
path. From there, the algorithm discovers that the loop cannot be entered
again and that bloop must terminate. Again, both methods of abstraction
yield the same result. Disabling refinements and setting la to 2 yields the
same result but it is obtained much faster: it takes 4.5 seconds to build the
red part depicted in Figure 6.13 with refinements enabled and la set to 0,
but only 1.1 seconds without refinements but la set to 2. This is due to the
fact that refinements require rebuilding large parts of the red part.

168

10

20 70

30

40 50

6260

21 71

31

41 51

61

21 72

32

┴

┴

23 70

33

42 52

63
┴

24 74

34

┴

Figure 6.12: A complete red part of the bloop example with n ≤ 2 for la = 2.

Finally, if pre is n ≥ 2, bloop can only terminate after doing at least 2
iterations of its loop. With both methods of abstraction, and with refine-
ments allowed or la set to 2, the algorithm yields the red part of Figure 6.14
(modulo a renaming of vertices). The analysis goes on exactly as in the
previous case, the only difference being that, along each path, the loop can
be entered more than twice. This causes the algorithm to detect the two
subsumptions between the fourth and third occurrences of 2 along each path
and end the analysis. Once again, the analysis is much faster when refine-
ments are disabled than enabled (2.1 seconds vs. 6).

As illustrated by this example, our algorithm is also efficient in pres-
ence of bounded loops: in each previous case, our approach detected the
infeasibility of paths related to the bound of the loop as well as to the truth
value of the condition of the internal block. This example also illustrates the
facts that the look-ahead mechanism usually yield results faster and might
compensate for the absence of refinements, or even perform better on some
examples.

6.1.6 Modulo Example

We still consider the loop program, but now analyze it with the precondition
that start = 0 and n is even, denoted n = 0[2]. As a result, feasible paths

169

10

20 70

30

40 50

6260

21 71

31

41 51

61

21 72

32

┴

┴

23 70

33

42 52

63
┴

24 74

34

┴

┴ ┴

┴

Figure 6.13: A complete red part of the bloop example with n = 2.

of the LTS of Figure 6.10 can only exit the loop after having performed an
even number of iterations of the loop. Both methods of abstractions yield
the same results in all cases described below.

Once again, allowing refinements but setting the look-ahead depth to
0 does not allow to detect any infeasible paths and yields the LTS of Fig-
ure 6.10.

Contrary to the other preconditions of bloop, allowing refinements and
setting la to 2 causes an infinite chain of refinements. The reason for this
behaviour can be easily understood when considering the red part depicted
in Figure 6.14 obtained when refinements are not allowed.

As can be seen, the look-ahead mechanism drives the algorithm to only
establish subsumption links whose ends are separated by two iterations of
the loop; along each path, the subsumption between the first and third oc-
currences of 2 are prevented because the truth value of x = y is still unknown
during the first iteration of the loop. However, none of the occurrences of
the final location 7 are marked: the abstractions performed at 21 and 24

both require to forget the value of i and the fact that it is odd, i.e. that
exactly one iteration of the loop was performed to reach those two vertices.
As a result, the algorithm is not able to detect that the execution cannot
leave the loop from there. Allowing refinements in this case would simply
postpone those abstractions along each path, which would then be refined

170

10

20 70

30

40 50

6360

21 71

31

41 51

61

22 72

32

┴

24 73

33

43 53

64
┴

25 74

34

┴ ┴

┴

42 52

62

23

┴

44 54

65
┴

26

Figure 6.14: A complete red part of the bloop example with n ≥ 2.

and so on, causing the infinite chain mentioned earlier.

The only possible way to discover the infeasibility of paths leaving the
loop after an odd number of iterations of the loop would be to somehow infer
the fact that i is odd at 21 and 24. Since our methods of abstraction only
remove constraints or disconnect program variables from path predicates,
this kind of guessing is out of the reach of our approach in its current state.
Here, our algorithm only discovers that the result of x = y remains constant
and only discards infeasible paths related to this condition.

6.2 Discussions and Possible Improvements

6.2.1 Extending Refinements

A first possible way we see to augment the infeasible path detection power of
our approach could come from observing the interaction between the prop-
agation of abstractions and the counterexample guided refinement mech-
anisms. The latter is an a posteriori method for controlling abstractions

171

10

20 70

30

40 50

6360

21 71

31

41 51

61

22 72

32

┴

24 73

33

43 53

64
┴

25 74

34

42 52

62

23

┴

44 54

65
┴

26

Figure 6.15: A complete red part of the bloop example with start = 0 and
n = 0[2].

that consists in refuting them if they introduce some infeasible paths in the
red-black graph being built. These checks are based on individual paths,
since we do not consider subsumption links when searching for faulty ab-
stractions. As an effect, the infeasible path elimination power of this control
mechanism is somewhat limited: abstractions that only introduce infeasible
paths going through subsumption links cannot currently be detected by this
approach. The scope of this mechanism could be extended by not only con-
sidering red paths that do not go through subsumption links, but also those
going exactly once through such links. It would not be necessary to consider
more passages through subsumption links: the goal is to find a configuration
that turned an infeasible path into a feasible one, but the same stacks of
configurations would be checked multiple times along cycles. However, we
believe that this might:

• at best have a major (negative) impact on performances since the
number of paths to consider might be much larger, and since each

172

abstraction that is refined causes the analysis to restart. Moreover,
since faulty abstractions might be detected long after having been
introduced, refine-and-restart phases usually requires re-building large
parts of the red-black graph,

• at worst considerably increase the chances of infinite chains of refine-
and-restart occurring if we do not have at the same time a way to
compute more precise abstractions by learning from safeguard condi-
tions.

As we mentioned earlier, being able to compute accurate abstractions
considering safeguard conditions is a major improvement that might allow
to avoid some chains of refinements, which is, in our opinion, the main
limitation of our approach at the moment.

Note that refinements are always triggered after the propagation of some
abstraction caused a red vertex to be unmarked or not to be marked when
it should have been: one might think that a possible solution would be to
simply not allow propagating such abstractions (i.e. procedure propagable

would return false when reaching a marked vertex). Since no refinements
would ever be needed, this would actually make the counterexample guided
refinement mechanism pointless. But this is forgetting that this mechanism
also yields safeguard conditions from which one could take advantage.

Since we did not implement at the moment any solution to compute
abstractions by learning from such conditions and for the reasons exposed
above, we also did not implement this possible extension of the counterex-
ample guided refinement mechanism.

6.2.2 Look-Ahead Mechanism

Interpretation of the Look-Ahead Depth

A simple improvement one might add to the look-ahead mechanism lies in
the interpretation of the la global parameter. At the moment, we interpret
it as the length of feasible sub-paths starting at potential subsumees and
subsumers, but this is an arbitrary decision and one might interpret it dif-
ferently. For example, la might be interpreted as the k factor of the so-called
k-path coverage criterion used in white-box path-based testing (see [52] for
example). In this case, we would compare sets of feasible sub-paths that
basically go at most la times through each reachable loop of the program,
rather than sets of feasible sub-paths of length at most la.

Note that this would not change drastically the behavior of the overall
approach, but only potentially drive the algorithm towards different sub-
sumptions than in its actual version. This feature was implemented in pre-
liminary versions of our implementation, but those versions were not based
on the formalization presented in Chapter 4. Although we did not experi-
ment this approach with our current implementation and plan to do so in

173

the near future, we believe that doing so would not yield very different re-
sults than those presented in this chapter since this would only push our
current approach a little further but still relying on the same basis.

Look-Ahead and Abstraction

As said in 5.3.5, the look-ahead mechanism only provides hints about po-
tentially more accurate subsumptions to the algorithm, but is not involved
in computing abstractions. Since both current abstraction methods proceed
in a given order without taking advantage of safeguard conditions, the look-
ahead mechanism, if enabled, does not guarantee that the resulting LTS will
be more accurate, but only drives the search for subsumptions in potentially
more rewarding regions of the set of paths of the input LTS.

Since look-ahead checks are done before performing abstraction and since
the look-ahead mechanism does not help computing better abstractions, it
might not prevent introducing some infeasible paths in the red part once a
subsumption has been established, if some abstraction was required. Once
again, this is a direct consequence of the propagation of abstractions caus-
ing red vertices to be unmarked. One might think that a possible naive
and expensive solution would be to check, after an abstraction has been
propagated, that sets of feasible sub-paths starting at both ends of the new
subsumption link have not been modified, but this would simply be equiva-
lent to not allow propagate to unmark red vertices and we saw earlier that
this might totally prevent the algorithm to establish any subsumption and
build complete red parts in most cases.

One possible way of taking advantage of the information gathered while
doing look-ahead checks might be to compute safeguard conditions from
the infeasible sub-paths that might be met during the check, but this ob-
viously assumes methods of abstraction that would provide more accurate
results considering such conditions. This would not make the counterex-
ample guided refinement useless since the value of la might not allow to
detect that an abstraction turned an infeasible path into a feasible one: this
might only happen after la steps, and some faulty abstractions might still
be refined a posteriori.

6.2.3 Abstraction methods

We said in Chapter 3 that the way abstractions are performed is a crucial
point in our approach. We also mentioned several times that a possible
way to improve the infeasible path detection power of our approach might
consist in using abstraction methods that yield more and more accurate
abstractions as red vertices are labeled with safeguard conditions. Besides
directly leading to better over-approximations of sets of program states at
red vertices and thus feasible paths, this might also indirectly improve the

174

results of our approach by preventing some infinite chains of refinements
and help produce complete red parts in some cases. We do not propose any
solution for this at the moment. A simple approach might be to add some
backtracking in our abstraction methods. For example, as soon as entailment
is lost because a constraint c is removed from the path predicate p of the
configuration to abstract, the abstraction procedure might go one step back
and restore c, before considering other elements of p as targets for removal.
The same idea can be applied to program variables when updating stores,
but this might be less efficient than in the previous case, since abstracting a
program variable usually disconnects it from more than one constraint of p.

Although adapting our two current methods of abstraction to learning
from safeguard conditions is definitely worth investigating, we remark that
those two methods also have inherent limitations, as illustrated by our last
example presented in 6.1.6. In that case, the fact that the crucial information
regarding the feasibility of paths that exit the loop or not could not be
retrieved by our current methods is not related to them not taking advantage
of safeguard conditions, but to their very nature.

6.2.4 Subsumptions Between Different Paths

In previous examples, we only considered subsumption links whose ends oc-
cur along the same symbolic paths, but our algorithm was designed to handle
both subsumptions between red vertices that occur along a same or different
symbolic paths. Indeed, our definition of subsumption and our methods for
computing and propagating abstractions applies in both cases. However, we
observe that simply applying our algorithm as introduced in Chapter 5 when
considering subsumptions between different paths usually yields significantly
less accurate LTS than those obtained when considering only subsumption
along the same symbolic paths. Since our goal is to detect as many infea-
sible paths as possible, we chose to first introduce results obtained in the
most favorable cases — i.e. considering subsumption along unique paths —
then discuss what happens when considering subsumptions between differ-
ent paths, and how to handle those subsumptions in order to maximize the
infeasible path detection power of our approach. We see three possible ways
to handle these subsumptions.

• The first one is simply to apply our algorithm as described in Chap-
ter 5, i.e. given a red vertex rv to subsume and rv ′ a potential subsumer
for rv , the algorithm will first compare sets of feasible sub-paths start-
ing at rv and rv ′ (if la is not zero), check for a natural subsumption
between the two, and finally search for a suitable abstraction of rv ′,
and so on. The accuracy of resulting LTS usually drops in most cases
compared to LTS obtained when only considering subsumption along
the unique symbolic paths, since more candidates are considered and

175

since each of them might be abstracted to force a subsumption.

• The second possibility consists in not allowing potential subsumers
occurring on a different path than the potential subsumees to be ab-
stracted. The process of detecting a subsumption would be exactly
the same than previously, except for the fact that, if the potential
subsumee and subsumer lie on different symbolic paths, then the algo-
rithm only checks for natural subsumption and never tries to force the
subsumption through abstraction. Without surprise, LTS obtained in
this manner are usually more accurate than in the previous case, since
a number of abstractions will be immediately discarded. However, we
notice than those LTS are still less accurate than those obtained when
only considering subsumption along unique symbolic paths. This is
naturally due to subsumption being defined as an inclusion and not
an equality: as said previously in this document, each subsumption
possibly lessens the accuracy of the resulting LTS.

• The third way to handle subsumptions between different paths we
see consists in only searching for subsumption along unique symbolic
paths, as we did in the previous examples, and search for subsumption
links between different paths only after the red part has been built.
In this case, a subsumption link would be established between two
different occurrences rv and rv ′ of a given black vertex if and only if
the red sub-graphs rooted at rv and rv ′ are isomorphic. Since this
part of the analysis would only take place after the actual detection of
infeasible paths, the LTS obtained in this case would be as precise as
those presented in the previous section but more compact.

As said previously, both first and second methods for handling subsump-
tions between different paths have the inconvenient that they yield less ac-
curate LTS than those obtained when only considering subsumptions along
unique paths. They however share one advantage over the third: they yield
results faster than in the case of subsumptions along unique paths. This
is due to the fact that paths might be merged, mitigating the explosion
of the number of paths that usually occurs during symbolic execution and
also because computing graphs isomorphisms is naturally a costly operation
(although in our case, not all possible pairs of vertices would have to be
considered, but only those corresponding to the same black vertices). In
terms of infeasible path detection power, the third approach is obviously
the better, however, since the Rukia Library can efficiently draw paths in
graphs with billions of vertices, one could argue that searching for isomor-
phic sub-graphs in red parts once they have been built might not be of great
interest in most cases. As a result, we do not give a definitive answer as
how to handle this particular type of subsumptions: we think that, as with

176

the other heuristics that were presented earlier in this document, the best
choice might simply depend on the program under analysis.

6.3 Summary

In this chapter, we have described a number of experiments and their re-
sults in order to assess the infeasible path detection power of our approach.
Although the heuristics we currently use to guide our algorithm are still
simple, those experiments have, most of the time, led to promising results.
In a number of cases, our algorithm was able to detect all infeasible paths
contained in the input LTS. Even in the least favorable cases, i.e. examples
whose sets of feasible paths are not regular languages, our approach yields
LTS that present far better ratios of feasible paths over paths, despite the
fact that the set of feasible paths can only be over-approximated in such
cases.

These experiments highlight some limitations of our approach in its cur-
rent state and, consequently, give some indications of the possible ways this
approach might be improved. As mentioned several times in this document
and as illustrated by the previous examples, the way abstractions are per-
formed seems to be the crucial point to investigate in order to improve the
infeasible path detection capability of the overall approach. We imagine
two orthogonal ways to improve the accuracy of the abstraction process: (i)
use abstraction methods that will take advantage of safeguard conditions
to produce finer results and (ii) using abstraction methods that not only
remove information from path predicates but also infer new facts. As said
previously, we do not yet propose solutions for these two problems, but we
plan to investigate in these directions.

177

178

Chapter 7

Conclusion

In this thesis, we address the problem of graph transformations that discard
infeasible paths, but still preserve the behavior of the program. Our motiva-
tion comes from random structural biased testing. Our approach produces
good over-approximations of the set of feasible paths of the program under
analysis: this results in new graphical representations of programs that are
more detailed than the original control flow graphs. Our objective is to fa-
cilitate drawing feasible paths and thus to produce test cases in the context
of random structural biased testing. In Chapter 2, we introduced the notion
of random walks, which allows to explore graphs of programs and to draw
some of their paths, and illustrated why and how testing approaches relying
on such random methods were limited by the existence of infeasible paths.
We also presented a number of recent works addressing the problems of in-
feasible path detection and symbolic execution in presence of unbounded
loops.

In Chapter 3, we presented the theoretical notions our approach relies
on, and introduce the concept of red-black graph — the data structure that
is at the center of our approach — as well as their transformations that
express the basic operations performed by our algorithm.

Our algorithm is based on classical symbolic execution, detection of sub-
sumption, abstraction, counterexample guided refinements, and is driven
by a number of heuristics in order to improve its infeasible path detection
power. These features interact in a rather intricate manner, which makes
our approach a natural candidate for machine aided verification. We pre-
sented in Chapter 4 the formal description of the graph transformations,
built using the Isabelle/HOL interactive theorem prover, in order to prove
the key properties of our approach, namely that it is correct and that it
preserves the set of feasible paths of the original control flow graph.

We described our algorithm in full details in Chapter 5, and illustrated,
step by step, how it behaves and how its main features and heuristics interact
on a typical example.

179

Finally, in order to assess the infeasible path detection power of ap-
proach, we reported in Chapter 6 various experiments, and commented and
interpreted the results obtained. These results are promising: in the most
favorable cases, our algorithm allowed to discover all the infeasible paths of
examples with multiple loops, and to greatly improve the ratios of feasible
paths over paths even in the least favorable ones. These experiments also
revealed some limitations of the approach in its current state, but this also
points us to some indications on how our algorithm could be improved.

The works reported in this thesis could not only help in the context of
random structural biased testing, but could also help to improve the accu-
racy of any other white-box testing approach or software analysis technique
based on control flow graphs or equivalent representations of programs, such
as static analysis or worst-case execution time analysis, for example.

We now evoke various perspectives for our works.

Learning from Safeguard Conditions

Throughout this document, we mentioned several times that a crucial point
in our approach lies in the way abstractions are performed. Obviously, more
accurate abstractions will lead to a better infeasible path detection power
and investigating in this direction is definitely worth it.

Our approach is currently limited by the fact that our methods of ab-
straction do not learn from safeguard conditions: such conditions allow to
prevent too crude abstractions, but does not actively participate in find-
ing more accurate abstractions. As illustrated by the examples given in
this thesis, our counterexample guided refinement mechanism can help de-
tect more infeasible paths while yielding complete red parts, but it can also
cause some infinite chains of refinements to occur, preventing to build com-
plete red parts. We conjecture that methods of abstraction that would take
advantage of safeguard conditions in order to provide more accurate ab-
stractions might prevent some of these infinite chains, as well as increase
the overall infeasible path detection power of our approach.

We also observe that, if we were to use such abstraction methods, then
we might possibly take advantage of some user-given or automatically in-
ferred invariants that we would inject as safeguard conditions in our analysis.
Nothing prevents us from doing so at the moment, but we would be in the
same situation than previously: our abstraction methods are not able to
take advantage from such invariants.

We definitely plan to investigate in this direction in the future.

Extending the Input Language

One of the limitations of our approach in its current state is that its scope
is limited to programs containing simple statements. For example, we do

180

not support arrays nor pointer expressions. Obviously, extending the in-
put language of our approach to such constructs would allow us to assess
the infeasible path detection power of our approach on more practical and
concrete examples.

This would require using a far more advanced type of memory model —
such as those presented in [10] or [49] — than we currently do: at the mo-
ment, our memory model is a configuration, i.e. a couple made of a mapping
from program to symbolic variables and a conjunction of constraints over
those. Tr̀ık and Strejcek presented in [49] a segment-offset-plane memory
model that allows to handle allocation, read, write, deallocation and test
for memory initialization in the context of symbolic execution. The authors
also provide some directions for handling manipulation of composed objects
or unions.

We think that, although not an easy task, our approach could be adapted
to such a memory model without changing the basic ideas it relies on. Han-
dling these new language constructs will require new forms of labels. We
conjecture that the part of our approach that will need the most re-thinking
is the way abstraction are performed.

As another example, our approach is only intraprocedural at the mo-
ment. We think that it could be extended to the interprocedural case by
computing procedure summaries, as is done in [40] using lazy annotation.
We recall that our approach is very close by nature to the one presented in
that paper and to lazy annotation, and that extending our approach to the
interprocedural case might be done relatively easily.

Integration to Static Analysis Tools

One of our objectives for the future is to integrate our approach to an ex-
isting static analysis tool. The interest might be twofold: first, the results
provided by our approach could improve the performance or accuracy of the
techniques already implemented in the tool, but, on the other hand, this
might be an opportunity for us to imagine new heuristics for our approach
that take advantage of said existing techniques. Our approach was imple-
mented in a prototype, coded in Ocaml, that we plan to integrate to the
Frama-C platform in the near future.1

1The documentation and a number of publications about the Frama-C platform can
be found at https://frama-c.com/.

181

https://frama-c.com/

182

Bibliography

[1] Romain Aı̈ssat, Marie-Claude Gaudel, Frédéric Voisin, and Burkhart Wolff.
Pruning infeasible paths via graph transformations and symbolic execution: a
method and a tool. Technical Report 1588, L.R.I., Univ. Paris-Sud, 2016.

[2] Romain Aı̈ssat, Marie-Claude Gaudel, Frédéric Voisin, and Burkhart Wolff.
Pruning infeasible paths via graph transformations and symbolic execution: a
method and a tool. In Software Quality, Reliability and Security - 2nd Interna-
tional Conference, QRS 2016, Vienna, Austria, August 1-3, 2016, Proceedings,
2016.

[3] Romain Aı̈ssat, Frédéric Voisin, and Burkhart Wolff. Infeasible paths elimina-
tion by symbolic execution techniques - proof of correctness and preservation of
paths. In Jasmin Christian Blanchette and Stephan Merz, editors, Interactive
Theorem Proving - 7th International Conference, ITP 2016, Nancy, France,
August 22-25, 2016, Proceedings, volume 9807 of Lecture Notes in Computer
Science, pages 36–51. Springer, 2016.

[4] Romain Aı̈ssat, Frédéric Voisin, and Burkhart Wolff. Infeasible paths elimina-
tion by symbolic execution techniques: Proof of correctness and preservation
of paths. Archive of Formal Proofs, August 2016. http://isa-afp.org/

entries/InfPathElimination.shtml, Formal proof development.

[5] Peter Altenbernd. On the false path problem in hard real-time programs. In
Proceedings of the Eighth Euromicro Workshop on Real-Time Systems, 1996,
pages 102–107, Jun 1996.

[6] Saswat Anand, Edmund K. Burke, Tsong Yueh Chen, John Clark, Myra B.
Cohen, Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold, and Phil
Mcminn. An orchestrated survey of methodologies for automated software
test case generation. J. Syst. Softw., 86(8):1978–2001, August 2013.

[7] Gogul Balakrishnan, Sriram Sankaranarayanan, Franjo Ivani, Ou Wei, and
Aarti Gupta. Slr: Path-sensitive analysis through infeasible-path detection
and syntactic language refinement. In In SAS, volume 5079 of LNCS, pages
238–254, 2008.

[8] Thomas Ball and Sriram K. Rajamani. Bebop: A path-sensitive interproce-
dural dataflow engine. In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering, PASTE
’01, pages 97–103, New York, NY, USA, 2001. ACM.

183

http://isa-afp.org/entries/InfPathElimination.shtml
http://isa-afp.org/entries/InfPathElimination.shtml

[9] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard:
Version 2.5. Technical report, Department of Computer Science, The Univer-
sity of Iowa, 2015. Available at www.SMT-LIB.org.

[10] Frédéric Besson, Sandrine Blazy, and Pierre Wilke. A precise and abstract
memory model for C using symbolic values. In Jacques Garrigue, editor,
Programming Languages and Systems: 12th Asian Symposium, APLAS 2014,
Singapore, November 17-19, 2014, Proceedings, pages 449–468. Springer Inter-
national Publishing, 2014.

[11] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. The
software model checker blast. STTT, 9(5-6):505–525, 2007.

[12] Nikolaj Bjørner, Nikolai Tillmann, and Andrei Voronkov. Path feasibility
analysis for string-manipulating programs. In Stefan Kowalewski and Anna
Philippou, editors, Tools and Algorithms for the Construction and Analysis
of Systems: 15th International Conference, TACAS 2009, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2009,
York, UK, March 22-29, 2009. Proceedings, pages 307–321, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg.

[13] Rastislav Bod́ık, Rajiv Gupta, and Mary Lou Soffa. Refining data flow infor-
mation using infeasible paths. SIGSOFT Softw. Eng. Notes, 22(6):361–377,
November 1997.

[14] Richard J. Boulton, Andrew Gordon, Michael J. C. Gordon, John Harrison,
John Herbert, and John Van Tassel. Experience with embedding hardware
description languages in hol. In Proceedings of the IFIP TC10/WG 10.2 Inter-
national Conference on Theorem Provers in Circuit Design: Theory, Practice
and Experience, pages 129–156, Amsterdam, The Netherlands, The Nether-
lands, 1992. North-Holland Publishing Co.

[15] P. Bourque and eds. R.E. Fairley. Guide to the Software Engineering Body of
Knowledge, Version 3.0. IEEE Computer Society, 2014.

[16] Jacob Burnim and Koushik Sen. Heuristics for scalable dynamic test genera-
tion. In ASE’2008, pages 443–446. IEEE, 2008.

[17] Edmund M. Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav.
SATABS: sat-based predicate abstraction for ANSI-C. In Nicolas Halbwachs
and Lenore D. Zuck, editors, Tools and Algorithms for the Construction and
Analysis of Systems, 11th International Conference, TACAS 2005, Held as
Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings, volume 3440 of
Lecture Notes in Computer Science, pages 570–574. Springer, 2005.

[18] Manuvir Das, Sorin Lerner, and Mark Seigle. Esp: Path-sensitive program
verification in polynomial time. In Proceedings of the ACM SIGPLAN 2002
Conference on Programming Language Design and Implementation, PLDI ’02,
pages 57–68, New York, NY, USA, 2002. ACM.

[19] Mickaël Delahaye, Bernard Botella, and Arnaud Gotlieb. Explanation-based
generalization of infeasible path. In 2010 Third International Conference on
Software Testing, Verification and Validation, pages 215–224. IEEE, 2010.

184

[20] Alain Denise, Marie-Claude Gaudel, Sandrine-Dominique Gouraud, Richard
Lassaigne, Johan Oudinet, and Sylvain Peyronnet. Coverage-biased random
exploration of large models and application to testing. Int. Journal on Software
Tools for Technology Transfer, 14(1):73–93, 2011.

[21] Nurit Dor, Stephen Adams, Manuvir Das, and Zhe Yang. Software validation
via scalable path-sensitive value flow analysis. In Proceedings of the 2004 ACM
SIGSOFT International Symposium on Software Testing and Analysis, ISSTA
’04, pages 12–22, New York, NY, USA, 2004. ACM.

[22] Lydie du Bousquet. A new approach for software testability. In Leonardo
Bottaci and Gordon Fraser, editors, Testing - Practice and Research Tech-
niques, 5th International Academic and Industrial Conference, TAIC PART
2010, Windsor, UK, September 3-5, 2010. Proceedings, volume 6303 of Lecture
Notes in Computer Science, pages 207–210. Springer, 2010.

[23] Lydie du Bousquet, Farid Ouabdesselam, and Jean-Luc Richier. Expressing
and implementing operational profiles for reactive software validation. In Ninth
International Symposium on Software Reliability Engineering, ISSRE 1998,
Paderborn, Germany, November 4-7, 1998, pages 222–230. IEEE Computer
Society, 1998.

[24] Jeffrey Fischer, Ranjit Jhala, and Rupak Majumdar. Joining dataflow with
predicates. In Proceedings of the 10th European Software Engineering Con-
ference Held Jointly with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ESEC/FSE-13, pages 227–236, New
York, NY, USA, 2005. ACM.

[25] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: Directed automated
random testing. SIGPLAN Not., 40(6):213–223, June 2005.

[26] Allen Goldberg, T. C. Wang, and David Zimmerman. Applications of feasible
path analysis to program testing. In Proceedings of the 1994 ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA ’94, pages
80–94, New York, NY, USA, 1994. ACM.

[27] Sandrine-Dominique Gouraud. Utilisation des Structures Combinatoires pour
le Test Statistique. (Using Combinatorial Structures for Statistical Testing).
PhD thesis, University of Paris-Sud, Orsay, France, 2004.

[28] Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea, and Andrey Ry-
balchenko. Synthesizing software verifiers from proof rules. In Jan Vitek,
Haibo Lin, and Frank Tip, editors, ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’12, Beijing, China - June
11 - 16, 2012, pages 405–416. ACM, 2012.

[29] Jan Gustafsson, Andreas Ermedahl, and Björn Lisper. Algorithms for infeasi-
ble path calculation. In Frank Mueller, editor, 6th Intl. Workshop on Worst-
Case Execution Time (WCET) Analysis, July 4, 2006, Dresden, Germany,
volume 4 of OASICS. Internationales Begegnungs- und Forschungszentrum
fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2006.

[30] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L.
McMillan. Abstractions from proofs. In Proc. of the 31st ACM Symp. on
Principles of Programming Languages, POPL ’04, pages 232–244. ACM, 2004.

185

[31] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre.
Lazy abstraction. In Proc. 29th ACM Symp. on Principles of Programming
Languages, pages 58–70. ACM, 2002.

[32] Robert M. Hierons, Kirill Bogdanov, Jonathan P. Bowen, Rance Cleave-
land, John Derrick, Jeremy Dick, Marian Gheorghe, Mark Harman, Kalpesh
Kapoor, Paul Krause, Gerald Lüttgen, Anthony J. H. Simons, Sergiy Vilkomir,
Martin R. Woodward, and Hussein Zedan. Using formal specifications to sup-
port testing. ACM Comput. Surv., 41(2):9:1–9:76, February 2009.

[33] Franjo Ivancic, Zijiang Yang, Malay K. Ganai, Aarti Gupta, Ilya Shlyakhter,
and Pranav Ashar. F-soft: Software verification platform. In Kousha Etessami
and Sriram K. Rajamani, editors, Computer Aided Verification, 17th Interna-
tional Conference, CAV 2005, Edinburgh, Scotland, UK, July 6-10, 2005, Pro-
ceedings, volume 3576 of Lecture Notes in Computer Science, pages 301–306.
Springer, 2005.

[34] Joxan Jaffar, Vijayaraghavan Murali, Jorge A. Navas, and Andrew E. Santosa.
TRACER: A symbolic execution tool for verification. In P. Madhusudan and
Sanjit A. Seshia, editors, Computer Aided Verification - 24th International
Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings, vol-
ume 7358 of Lecture Notes in Computer Science, pages 758–766. Springer,
2012.

[35] Joxan Jaffar, Jorge A. Navas, and Andrew E. Santosa. Unbounded symbolic
execution for program verification. In Proceedings of the Second International
Conference on Runtime Verification, RV’11, pages 396–411, Berlin, Heidelberg,
2012. Springer-Verlag.

[36] Y. Jia and M. Harman. An analysis and survey of the development of muta-
tion testing. IEEE Transactions on Software Engineering, 37(5):649–678, Sept
2011.

[37] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and
Boris Yakobowski. Frama-c: A software analysis perspective. Formal Aspects
of Computing, 27(3):573–609, 2015.

[38] N. Malevris, D. F. Yates, and A. Veevers. Predictive metric for likely feasibility
of program paths. J. Electron. Mater., 19(6):115–118, June 1990.

[39] Kenneth L. McMillan. Lazy abstraction with interpolants. In Proceedings of
the 18th International Conference on Computer Aided Verification, CAV’06,
pages 123–136, Berlin, Heidelberg, 2006. Springer-Verlag.

[40] Kenneth L. McMillan. Lazy annotation for program testing and verification.
In Int. Conf. on Computer Aided Verification, CAV, volume 6174 of LNCS,
pages 104–118. Springer, 2010.

[41] Tom M. Mitchell, Richard M. Keller, and Smadar T. Kedar-Cabelli.
Explanation-based generalization: A unifying view. Machine Learning,
1(1):47–80, 1986.

[42] John Musa, Gene Fuoco, Nancy Irving, Diane Kropfl, and Bruce Juhlin. Hand-
book of software reliability engineering. chapter The Operational Profile, pages
167–216. McGraw-Hill, Inc., Hightstown, NJ, USA, 1996.

186

[43] Minh Ngoc Ngo and Hee Beng Kuan Tan. Detecting large number of infeasible
paths through recognizing their patterns. In Proceedings of the the 6th Joint
Meeting of the European Software Engineering Conference and the ACM SIG-
SOFT Symposium on The Foundations of Software Engineering, ESEC-FSE
’07, pages 215–224, New York, NY, USA, 2007. ACM.

[44] Lars Noschinski. A Graph Library for Isabelle. Mathematics in Computer
Science, 9(1):23–39, 2015.

[45] Johan Oudinet. Approches combinatoires pour le test statistique à grande
échelle. PhD thesis, Université Paris-Sud XI, Ph. D. thesis, 2010.

[46] Mauro Pezzè and Michal Young. Software testing and analysis - process, prin-
ciples and techniques. Wiley, 2007.

[47] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural
dataflow analysis via graph reachability. In Proceedings of the 22Nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’95, pages 49–61, New York, NY, USA, 1995. ACM.

[48] Pascale Thévenod-Fosse and Hélène Waeselynck. An investigation of statistical
software testing. Softw. Test., Verif. Reliab., 1(2):5–25, 1991.

[49] Marek Trt́ık and Jan Strejcek. Symbolic memory with pointers. In Franck
Cassez and Jean-François Raskin, editors, Automated Technology for Verifi-
cation and Analysis - 12th International Symposium, ATVA 2014, Sydney,
NSW, Australia, November 3-7, 2014, Proceedings, volume 8837 of Lecture
Notes in Computer Science, pages 380–395. Springer, 2014.

[50] Silvia Regina Vergilio, José Carlos Maldonado, and Mario Jino. Infeasible
paths in the context of data flow based testing criteria: Identification, classifi-
cation and prediction. Journal of the Brazilian Computer Society, 12(1):73–88,
2006.

[51] Daniel Wasserrab. Information flow noninterference via slicing. Archive of
Formal Proofs, March 2010. Formal proof development.

[52] Nicky Williams, Bruno Marre, Patricia Mouy, and Muriel Roger. Dependable
computing - edcc 5: 5th european dependable computing conference, budapest,
hungary, april 20-22, 2005. proceedings. pages 281–292, Berlin, Heidelberg,
2005. Springer Berlin Heidelberg.

[53] Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software unit test coverage
and adequacy. ACM Comput. Surv., 29(4):366–427, December 1997.

187

188

Appendix A

Isabelle/HOL Formalization

A.1 Introduction

This appendix is excerpted from [4], the proof script registered in the “Archive
of Formal Proofs” server.

We proceed as follows (see Figure A.1 for the detailed hierarchy). First,
we formalize all the aspects related to symbolic execution, subsumption
and abstraction (Aexp.thy, Bexp.thy, Store.thy, Conf.thy, Labels.thy,
SymExec.thy). Then, we formalize graphs and their paths (Graph.thy). Us-
ing extensible records allows us to model Labeled Transition Systems from
graphs (Lts.thy). Since we are interested in paths going through subsump-
tion links, we also define these notions for graphs equipped with subsump-
tion relations (SubRel.thy) and prove a number of theorems describing how
the set of paths of such graphs evolve when an arc (ArcExt.thy) or a sub-
sumption link (SubExt.thy) is added. Finally, we formalize the notion of
red-black graphs and prove the two properties we are mainly interested in
(RB.thy).

189

Aexp

Bexp

Labels Store

Conf

SymExec

Graph

SubRel

ArcExt SubExt

RB

Lts

Figure A.1: The hierarchy of theories.

theory Aexp
imports Main
begin

A.2 Arithmetic Expressions

In this section, we model arithmetic expressions as total functions from
valuations of program variables to values. This modeling does not take
into consideration the syntactic aspects of arithmetic expressions. Thus,
our modeling holds for any operator. However, some classical notions, like
the set of variables occurring in a given expression for example, must be
rethought and defined accordingly.

A.2.1 Variables and their domain

Note: in the following theories, we distinguish the set of program variables
and the set of symbolic variables. A number of types we define are parame-
terized by a type of variables. For example, we make a distinction between
expressions (arithmetic or boolean) over program variables and expressions
over symbolic variables. This distinction eases some parts of the following
formalization.

190

Symbolic variables. A symbolic variable is an indexed version of a pro-
gram variable. In the following type-synonym, we consider that the abstract
type ′v represent the set of program variables. The set of program variables
can be interpreted as the set of variables of a given program, excluding all
variables of other programs, or as the set of all variables of any program.
Within Isabelle/HOL, nothing is known about this set. It might be infinite
or not: it is never needed to assume the former or the latter. On the other
hand, the set of symbolic variables is infinite, independently of the fact that
the set of program variables is finite or not.

type-synonym ′v symvar = ′v × nat

lemma
¬ finite (UNIV :: ′v symvar set)

by (simp add : finite-prod)

The previous lemma has no name and thus cannot be referenced in the
following. Indeed, it is of no use for proving the properties we are interested
in. In the following, we will give other unnamed lemmas when we think they
might help the reader to understand the ideas behind our modeling choices.

Domain of variables. We call D the domain of program and symbolic
variables. In the following, we suppose that D is the set of integers.

A.2.2 Program and symbolic states

A state is a total function giving values in D to variables. The latter are
represented by elements of type ′v. Unlike in the ′v symvar type-synonym,
the type ′v stands here for program variables as well as symbolic variables.
States over program variables are called program states, and states over
symbolic variables are called symbolic states.

type-synonym (′v , ′d) state = ′v ⇒ ′d

A.2.3 The aexp type-synonym

Arithmetic (and boolean, see Bexp.thy) expressions are represented by their
semantics, i.e. total functions giving values in D to states. This way of
representing expressions has the benefit that it is not necessary to define
the syntax of terms (and formulae) appearing in program statements and
path predicates.

type-synonym (′v , ′d) aexp = (′v , ′d) state ⇒ ′d

In order to represent expressions over program variables as well as sym-
bolic variables, the type synonym aexp is parameterized by the type of vari-
ables. Arithmetic and boolean expressions over symbolic variables are used

191

to represent the constraints occurring in path predicates during symbolic
execution.

A.2.4 Variables of an arithmetic expression

Expressions being represented by total functions, it makes no sense to say
that a given variable is occurring in a given expression. We define the set of
variables of an expression as the set of variables that can actually have an
influence on the value associated by an expression to a state. For example,
the set of variables of the expression λσ. σ x − σ y is {x , y}, provided
that x and y are distinct variables, and the empty set otherwise. In the
second case, this expression would evaluate to 0 for any state σ. Similarly,
an expression like λσ. σ x ∗ 0 is considered as having no variable as if a
static evaluation of the multiplication had occurred.

definition vars ::
(′v , ′d) aexp ⇒ ′v set

where
vars e = {v . ∃ σ val . e (σ(v := val)) 6= e σ}

lemma vars-example-1 :
fixes e::(′v ,integer) aexp
assumes e = (λ σ. σ x − σ y)
assumes x 6= y
shows vars e = {x ,y}

unfolding set-eq-iff
proof (intro allI iffI)

fix v assume v ∈ vars e

then obtain σ val where e (σ(v := val)) 6= e σ unfolding vars-def by blast

thus v ∈ {x , y} using assms by (case-tac v = x , simp, (case-tac v = y , simp+))
next

fix v assume v ∈ {x ,y}

thus v ∈ vars e using assms
by (auto simp add : vars-def)

(rule-tac ?x=λ v . 0 in exI , rule-tac ?x=1 in exI , simp)+
qed

lemma vars-example-2 :
fixes e::(′v ,integer) aexp
assumes e = (λ σ. σ x − σ y)
assumes x = y
shows vars e = {}

using assms by (auto simp add : vars-def)

192

lemma vars-example-3 :
fixes e::(′v ,integer) aexp
assumes e = (λ σ. 0 ∗ σ x)
shows vars e = {}

using assms by (simp add : vars-def)

A.2.5 Fresh variables

Our notion of symbolic execution suppose static single assignment form. In
order to symbolically execute an assignment, we require the existence of a
fresh symbolic variable for the configuration from which symbolic execution
is performed. We define here the notion of freshness of a variable for an
arithmetic expression.

A variable is fresh for an expression if does not belong to its set of
variables.

abbreviation fresh ::
′v ⇒ (′v , ′d) aexp ⇒ bool

where
fresh v e ≡ v /∈ vars e

end
theory Bexp
imports Aexp
begin

A.3 Boolean Expressions

We proceed as in Aexp.thy.

A.3.1 Basic definitions

The bexp type-synonym

We represent boolean expressions, their set of variables and the notion of
freshness of a variable in the same way than for arithmetic expressions.

type-synonym (′v , ′d) bexp = (′v , ′d) state ⇒ bool

definition vars ::
(′v , ′d) bexp ⇒ ′v set

where
vars e = {v . ∃ σ val . e (σ(v := val)) 6= e σ}

193

abbreviation fresh ::
′v ⇒ (′v , ′d) bexp ⇒ bool

where
fresh v e ≡ v /∈ vars e

Satisfiability of an expression

A boolean expression e is satisfiable if there exists a state σ such that e σ
is true.

definition sat ::
(′v , ′d) bexp ⇒ bool

where
sat e = (∃ σ. e σ)

Entailment

A boolean expression ϕ entails another boolean expression ψ if all states
making ϕ true also make ψ true.

definition entails ::
(′v , ′d) bexp ⇒ (′v , ′d) bexp ⇒ bool (infix |=B 55)

where
ϕ |=B ψ ≡ (∀ σ. ϕ σ −→ ψ σ)

Conjunction

In the following, path predicates are represented by sets of boolean expres-
sions. We define the conjunction of a set of boolean expressions E as the
expression that associates true to a state σ if, for all elements e of E, e
associates true to σ.

definition conjunct ::
(′v , ′d) bexp set ⇒ (′v , ′d) bexp

where
conjunct E ≡ (λ σ. ∀ e ∈ E . e σ)

A.3.2 Properties about the variables of an expression

As said earlier, our definition of symbolic execution requires the existence
of a fresh symbolic variable in the case of an assignment. In the follow-
ing, a number of proof relies on this fact. We will show the existence of
such variables assuming the set of symbolic variables already in use is finite
and show that symbolic execution preserves the finiteness of this set, under
certain conditions. This in turn requires a number of lemmas about the
finiteness of boolean expressions. More precisely, when symbolic execution
goes through a guard or an assignment, it conjuncts a new expression to
the path predicate. In the case of an assignment, this new expression is an
equality linking the new symbolic variable associated to the defined program
variable to its symbolic value. In the following, we prove that:

194

1. the conjunction of a finite set of expressions whose sets of variables
are finite has a finite set of variables,

2. the equality of two arithmetic expressions whose sets of variables are
finite has a finite set of variables.

Variables of a conjunction

The set of variables of the conjunction of two expressions is a subset of the
union of the sets of variables of the two sub-expressions. As a consequence,
the set of variables of the conjunction of a finite set of expressions whose
sets of variables are finite is also finite.

lemma vars-of-conj :
vars (λ σ. e1 σ ∧ e2 σ) ⊆ vars e1 ∪ vars e2 (is vars ?e ⊆ vars e1 ∪ vars e2)

unfolding subset-iff
proof (intro allI impI)

fix v assume v ∈ vars ?e

then obtain σ val
where ?e (σ (v := val)) 6= ?e σ
unfolding vars-def by blast

hence e1 (σ (v := val)) 6= e1 σ ∨ e2 (σ (v := val)) 6= e2 σ by auto

thus v ∈ vars e1 ∪ vars e2 unfolding vars-def by blast
qed

lemma finite-conj :
assumes finite E
assumes ∀ e ∈ E . finite (vars e)
shows finite (vars (conjunct E))

using assms
proof (induct rule : finite-induct , goal-cases)

case 1 thus ?case by (simp add : vars-def conjunct-def)
next

case (2 e E)

thus ?case
using vars-of-conj [of e conjunct E]
by (rule-tac rev-finite-subset , auto simp add : conjunct-def)

qed

Variables of an equality

We proceed analogously for the equality of two arithmetic expressions.

lemma vars-of-eq-a :

195

shows vars (λ σ. e1 σ = e2 σ) ⊆ Aexp.vars e1 ∪ Aexp.vars e2

(is vars ?e ⊆ Aexp.vars e1 ∪ Aexp.vars e2)
unfolding subset-iff
proof (intro allI impI)

fix v assume v ∈ vars ?e

then obtain σ val where ?e (σ (v := val)) 6= ?e σ unfolding vars-def by blast

hence e1 (σ (v := val)) 6= e1 σ ∨ e2 (σ (v := val)) 6= e2 σ by auto

thus v ∈ Aexp.vars e1 ∪ Aexp.vars e2 unfolding Aexp.vars-def by blast
qed

lemma finite-vars-of-a-eq :
assumes finite (Aexp.vars e1)
assumes finite (Aexp.vars e2)
shows finite (vars (λ σ. e1 σ = e2 σ))

using assms vars-of-eq-a[of e1 e2] by (rule-tac rev-finite-subset , auto)

end
theory Store
imports Aexp Bexp
begin

A.4 Stores

In this section, we introduce the type of stores, which we use to link program
variables with their symbolic counterpart during symbolic execution. We
define the notion of consistency of a pair of program and symbolic states
w.r.t. a store. This notion will prove helpful when defining various con-
cepts and proving facts related to subsumption (see Conf.thy). Finally, we
model substitutions that will be performed during symbolic execution (see
SymExec.thy) by two operations: adapt-aexp and adapt-bexp.

A.4.1 Basic definitions

The store type-synonym

Symbolic execution performs over configurations (see Conf.thy), which are
pairs made of:

• a store mapping program variables to symbolic variables,

• a set of boolean expressions which records constraints over symbolic
variables and whose conjunction is the actual path predicate of the
configuration.

196

We define stores as total functions from program variables to indexes.

type-synonym ′v store = ′v ⇒ nat

Symbolic variables of a store

The symbolic variable associated to a program variable v by a store s is the
couple (v , s v).

definition symvar ::
′v ⇒ ′v store ⇒ ′v symvar

where
symvar v s ≡ (v ,s v)

The function associating symbolic variables to program variables ob-
tained from s is injective.

lemma
inj (λ v . symvar v s)

by (auto simp add : inj-on-def symvar-def)

The sets of symbolic variables of a store is the image set of the function
symvar.

definition symvars ::
′v store ⇒ ′v symvar set

where
symvars s = (λ v . symvar v s) ‘ (UNIV :: ′v set)

Fresh symbolic variables

A symbolic variable is said to be fresh for a store if it is not a member of its
set of symbolic variables.

definition fresh-symvar ::
′v symvar ⇒ ′v store ⇒ bool

where
fresh-symvar sv s = (sv /∈ symvars s)

A.4.2 Consistency

We say that a program state σ and a symbolic state σsym are consistent with
respect to a store s if, for each variable v, the value associated by σ to v is
equal to the value associated by σsym to the symbolic variable associated to
v by s.

definition consistent ::
(′v , ′d) state ⇒ (′v symvar , ′d) state ⇒ ′v store ⇒ bool

where
consistent σ σsym s ≡ (∀ v . σsym (symvar v s) = σ v)

There always exists a couple of consistent states for a given store.

lemma

197

∃ σ σsym. consistent σ σsym s
by (auto simp add : consistent-def)

Moreover, given a store and a program (resp. symbolic) state, one can
always build a symbolic (resp. program) state such that the two states are
coherent w.r.t. the store. The four following lemmas show how to build the
second state given the first one.

lemma consistent-eq1 :
consistent σ σsym s = (∀ sv ∈ symvars s. σsym sv = σ (fst sv))

by (auto simp add : consistent-def symvars-def symvar-def)

lemma consistent-eq2 :
consistent σ σsym store = (σ = (λ v . σsym (symvar v store)))

by (auto simp add : consistent-def)

lemma consistentI1 :
consistent σ (λ sv . σ (fst sv)) store

using consistent-eq1 by fast

lemma consistentI2 :
consistent (λ v . σsym (symvar v store)) σsym store

using consistent-eq2 by fast

A.4.3 Adaptation of an arithmetic expression to a store

If we were to represent expressions syntactically, as is often the case, then
we would need to perform, during symbolic execution of an assignment of
an expression e to a variable v, a flat substitution of the program variables
occurring in e by their symbolic counterparts given by the current store.
Since we model expressions by total functions, we cannot talk about (flat)
substitution: we define an equivalent operation that we call the adaptation
of the (arithmetic expression) e to a store s.

definition adapt-aexp ::
(′v , ′d) aexp ⇒ ′v store ⇒ (′v symvar , ′d) aexp

where
adapt-aexp e s = (λ σsym. e (λ v . σsym (symvar v s)))

Given an arithmetic expression e, a program state σ and a symbolic state
σsym coherent with a store s, the value associated to σsym by the adaptation
of e to s is the same than the value associated by e to σ. This confirms the
fact that adapt-aexp models the act of substituting occurrences of program
variables by their symbolic counterparts in a term over program variables.

lemma adapt-aexp-is-subst :
assumes consistent σ σsym s

198

shows (adapt-aexp e s) σsym = e σ
using assms by (simp add : consistent-eq2 adapt-aexp-def)

As said earlier, we will later need to prove that symbolic execution pre-
serves finiteness of the set of symbolic variables in use, which requires that
the adaptation of an arithmetic expression to a store preserves finiteness of
the set of variables of expressions. We proceed as follows.

First, we show that if v is a variable of an expression e, then the symbolic
variable associated to v by a store is a variable of the adaptation of e to this
store.

lemma var-imp-symvar-var :
assumes v ∈ Aexp.vars e
shows symvar v s ∈ Aexp.vars (adapt-aexp e s) (is ?sv ∈ Aexp.vars ?e ′)

proof −
obtain σ val where e (σ (v := val)) 6= e σ
using assms unfolding Aexp.vars-def by blast

moreover
have (λva. ((λsv . σ (fst sv))(?sv := val)) (symvar va s)) = (σ(v := val))
by (auto simp add : symvar-def)

ultimately
show ?thesis
unfolding Aexp.vars-def mem-Collect-eq
using consistentI1 [of σ s]

consistentI2 [of (λsv . σ (fst sv))(?sv := val) s]
by (rule-tac ?x=λsv . σ (fst sv) in exI , rule-tac ?x=val in exI)

(simp add : adapt-aexp-is-subst)
qed

On the other hand, if sv is a symbolic variable in the adaptation of an
expression to a store, then the program variable it represents is a variable
of this expression. This requires to prove that the set of variables of the
adaptation of an expression to a store is a subset of the symbolic variables
of this store.

lemma symvars-of-adapt-aexp :
Aexp.vars (adapt-aexp e s) ⊆ symvars s (is Aexp.vars ?e ′ ⊆ symvars s)

unfolding subset-iff
proof (intro allI impI)

fix sv

assume sv ∈ Aexp.vars ?e ′

then obtain σsym val
where ?e ′ (σsym (sv := val)) 6= ?e ′ σsym

by (simp add : Aexp.vars-def , blast)

hence (λ x . (σsym (sv := val)) (symvar x s)) 6= (λ x . σsym (symvar x s))

199

proof (intro notI)
assume (λx . (σsym(sv := val)) (symvar x s)) = (λx . σsym (symvar x s))

hence ?e ′ (σsym (sv := val)) = ?e ′ σsym

by (simp add : adapt-aexp-def)

thus False
using 〈?e ′ (σsym (sv := val)) 6= ?e ′ σsym〉

by (elim notE)
qed

then obtain v
where (σsym (sv := val)) (symvar v s) 6= σsym (symvar v s)
by blast

hence sv = symvar v s by (case-tac sv = symvar v s, simp-all)

thus sv ∈ symvars s by (simp add : symvars-def)
qed

lemma symvar-var-imp-var :
assumes sv ∈ Aexp.vars (adapt-aexp e s) (is sv ∈ Aexp.vars ?e ′)
shows fst sv ∈ Aexp.vars e

proof −
obtain v where sv = (v , s v)
using assms(1) symvars-of-adapt-aexp
unfolding symvars-def symvar-def
by blast

obtain σsym val where ?e ′ (σsym (sv := val)) 6= ?e ′ σsym

using assms unfolding Aexp.vars-def by blast

moreover
have (λv . (σsym (sv := val))(symvar v s)) = (λv . σsym (symvar v s))(v := val)
using 〈sv = (v , s v)〉 by (auto simp add : symvar-def)

ultimately
show ?thesis
using 〈sv = (v , s v)〉

consistentI2 [of σsym s]
consistentI2 [of σsym (sv := val) s]

unfolding Aexp.vars-def
by (simp add : adapt-aexp-is-subst) blast

qed

Thus, we have that the set of variables of the adaptation of an expression
to a store is the set of symbolic variables associated by this store to the
variables of this expression.

200

lemma adapt-aexp-vars :
Aexp.vars (adapt-aexp e s) = (λ v . symvar v s) ‘ Aexp.vars e

unfolding set-eq-iff image-def mem-Collect-eq Bex-def
proof (intro allI iffI , goal-cases)

case (1 sv)

moreover
have sv = symvar (fst sv) s
using 1 symvars-of-adapt-aexp
by (force simp add : symvar-def symvars-def)

ultimately
show ?case using symvar-var-imp-var by blast

next
case (2 sv) thus ?case using var-imp-symvar-var by fast

qed

The fact that the adaptation of an arithmetic expression to a store pre-
serves finiteness of the set of variables trivially follows the previous lemma.

lemma finite-vars-imp-finite-adapt-a :
assumes finite (Aexp.vars e)
shows finite (Aexp.vars (adapt-aexp e s))

unfolding adapt-aexp-vars using assms by auto

A.4.4 Adaptation of a boolean expression to a store

We proceed analogously for the adaptation of boolean expressions to a store.

definition adapt-bexp ::
(′v , ′d) bexp ⇒ ′v store ⇒ (′v symvar , ′d) bexp

where
adapt-bexp e s = (λ σ. e (λ x . σ (symvar x s)))

lemma adapt-bexp-is-subst :
assumes consistent σ σsym s
shows (adapt-bexp e s) σsym = e σ

using assms by (simp add : consistent-eq2 adapt-bexp-def)

lemma var-imp-symvar-var2 :
assumes v ∈ Bexp.vars e
shows symvar v s ∈ Bexp.vars (adapt-bexp e s) (is ?sv ∈ Bexp.vars ?e ′)

proof −
obtain σ val where A : e (σ (v := val)) 6= e σ
using assms unfolding Bexp.vars-def by blast

moreover
have (λva. ((λsv . σ (fst sv))(?sv := val)) (symvar va s)) = (σ(v := val))
by (auto simp add : symvar-def)

201

ultimately
show ?thesis
unfolding Bexp.vars-def mem-Collect-eq
using consistentI1 [of σ s]

consistentI2 [of (λsv . σ (fst sv))(?sv := val) s]
by (rule-tac ?x=λsv . σ (fst sv) in exI , rule-tac ?x=val in exI)

(simp add : adapt-bexp-is-subst)
qed

lemma symvars-of-adapt-bexp :
Bexp.vars (adapt-bexp e s) ⊆ symvars s (is Bexp.vars ?e ′ ⊆ ?SV)

proof
fix sv
assume sv ∈ Bexp.vars ?e ′

then obtain σsym val
where ?e ′ (σsym (sv := val)) 6= ?e ′ σsym

by (simp add : Bexp.vars-def , blast)

hence (λ x . (σsym (sv := val)) (symvar x s)) 6= (λ x . σsym (symvar x s))
by (auto simp add : adapt-bexp-def)

hence ∃ v . (σsym (sv := val)) (symvar v s) 6= σsym (symvar v s) by force

then obtain v
where (σsym (sv := val)) (symvar v s) 6= σsym (symvar v s)
by blast

hence sv = symvar v s by (case-tac sv = symvar v s, simp-all)

thus sv ∈ symvars s by (simp add : symvars-def)
qed

lemma symvar-var-imp-var2 :
assumes sv ∈ Bexp.vars (adapt-bexp e s) (is sv ∈ Bexp.vars ?e ′)
shows fst sv ∈ Bexp.vars e

proof −
obtain v where sv = (v , s v)
using assms symvars-of-adapt-bexp
unfolding symvars-def symvar-def
by blast

obtain σsym val where ?e ′ (σsym (sv := val)) 6= ?e ′ σsym

using assms unfolding vars-def by blast

moreover

202

have (λv . (σsym (sv := val))(symvar v s)) = (λv . σsym (symvar v s))(v := val)
using 〈sv = (v , s v)〉 by (auto simp add : symvar-def)

ultimately
show ?thesis
using 〈sv = (v , s v)〉

consistentI2 [of σsym s]
consistentI2 [of σsym (sv := val) s]

unfolding vars-def by (simp add : adapt-bexp-is-subst) blast
qed

lemma adapt-bexp-vars :
Bexp.vars (adapt-bexp e s) = (λ v . symvar v s) ‘ Bexp.vars e
(is Bexp.vars ?e ′ = ?R)

unfolding set-eq-iff image-def mem-Collect-eq Bex-def
proof (intro allI iffI , goal-cases)

case (1 sv)

hence fst sv ∈ vars e by (rule symvar-var-imp-var2)

moreover
have sv = symvar (fst sv) s
using 1 symvars-of-adapt-bexp
by (force simp add : symvar-def symvars-def)

ultimately
show ?case by blast

next
case (2 sv)

then obtain v where v ∈ vars e sv = symvar v s by blast

thus ?case using var-imp-symvar-var2 by simp
qed

lemma finite-vars-imp-finite-adapt-b :
assumes finite (Bexp.vars e)
shows finite (Bexp.vars (adapt-bexp e s))

unfolding adapt-bexp-vars using assms by auto

end
theory Conf
imports Store Finite-Set
begin

203

A.5 Configurations and Subsumption

In this section, we first introduce most elements related to our modeling
of program behaviors. We first define the type of configurations, on which
symbolic execution performs, and define the various concepts we will rely
upon in the following and state and prove properties about them.

A.5.1 Configurations

Configurations are pairs (store, pred) where:

• store is a store mapping program variable to symbolic variables,

• pred is a set of boolean expressions over program variables whose con-
junction is the actual path predicate.

record (′v , ′d) conf =
store :: ′v store
pred :: (′v symvar , ′d) bexp set

A.5.2 Symbolic variables of a configuration.

The set of symbolic variables of a configuration is the union of the set of
symbolic variables of its store component with the set of variables of its path
predicate.

definition symvars ::
(′v , ′d) conf ⇒ ′v symvar set

where
symvars c = Store.symvars (store c) ∪ Bexp.vars (conjunct (pred c))

A.5.3 Freshness.

A symbolic variable is said to be fresh for a configuration if it is not an
element of its set of symbolic variables.

definition fresh-symvar ::
′v symvar ⇒ (′v , ′d) conf ⇒ bool

where
fresh-symvar sv c = (sv /∈ symvars c)

A.5.4 Satisfiability

A configuration is said to be satisfiable if its path predicate is satisfiable.

abbreviation sat ::
(′v , ′d) conf ⇒ bool

where
sat c ≡ Bexp.sat (conjunct (pred c))

204

A.5.5 States of a configuration

Configurations represent sets of program states. The set of program states
represented by a configuration, or simply its set of program states, is defined
as the set of program states such that consistent symbolic states w.r.t. the
store component of the configuration satisfies its path predicate.

definition states ::
(′v , ′d) conf ⇒ (′v , ′d) state set

where
states c = {σ. ∃ σsym. consistent σ σsym (store c) ∧ conjunct (pred c) σsym}

A configuration is satisfiable if and only if its set of states is not empty.

lemma sat-eq :
sat c = (states c 6= {})

using consistentI2 by (simp add : sat-def states-def) fast

A.5.6 Subsumption

A configuration c2 is subsumed by a configuration c1 if the set of states of
c2 is a subset of the set of states of c1.

definition subsums ::
(′v , ′d) conf ⇒ (′v , ′d) conf ⇒ bool (infixl v 55)

where
c2 v c1 ≡ (states c2 ⊆ states c1)

The subsumption relation is reflexive and transitive.

lemma subsums-refl :
c v c

by (simp only : subsums-def)

lemma subsums-trans :
c1 v c2 =⇒ c2 v c3 =⇒ c1 v c3

unfolding subsums-def by simp

However, it is not anti-symmetric. This is due to the fact that differ-
ent configurations can have the same sets of program states. However, the
following lemma trivially follows the definition of subsumption.

lemma
assumes c1 v c2

assumes c2 v c1

shows states c1 = states c2

using assms by (simp add : subsums-def)

A satisfiable configuration can only be subsumed by satisfiable configu-
rations.

lemma sat-sub-by-sat :
assumes sat c2

205

and c2 v c1

shows sat c1

using assms sat-eq [of c1] sat-eq [of c2]
by (simp add : subsums-def) fast

On the other hand, an unsatisfiable configuration can only subsume un-
satisfiable configurations.

lemma unsat-subs-unsat :
assumes ¬ sat c1

assumes c2 v c1

shows ¬ sat c2

using assms sat-eq [of c1] sat-eq [of c2]
by (simp add : subsums-def)

A.5.7 Semantics of a configuration

The semantics of a configuration c is a boolean expression e over program
states associating true to a program state if it is a state of c. In practice,
given two configurations c1 and c2, it is not possible to enumerate their sets
of states to establish the inclusion in order to detect a subsumption. We
detect the subsumption of the former by the latter by asking a constraint
solver if sem c1 entails sem c2. The following theorem shows that the way
we detect subsumption in practice is correct.

definition sem ::
(′v , ′d) conf ⇒ (′v , ′d) bexp

where
sem c = (λ σ. σ ∈ states c)

theorem subsum-eq-sem-entailment :
c2 v c1 ←→ sem c2 |=B sem c1

unfolding subsums-def sem-def subset-iff entails-def by (rule refl)

A.5.8 Entailment

A configuration entails a boolean expression if its semantics entails this
expression. This is equivalent to say that this expression holds for any state
of this configuration.

abbreviation entails ::
(′v , ′d) conf ⇒ (′v , ′d) bexp ⇒ bool (infixl |=c 55)

where
c |=c ϕ ≡ sem c |=B ϕ

lemma
sem c |=B e ←→ (∀ σ ∈ states c. e σ)

by (auto simp add : states-def sem-def entails-def)

206

A.5.9 Abstractions

Abstracting a configuration consists in removing a given expression from
its pred component, i.e. weakening its path predicate. This definition of
abstraction motivates the fact that the pred component of configurations has
been defined as a set of boolean expressions instead of a boolean expression.

definition abstract ::
(′v , ′d) conf ⇒ (′v , ′d) conf ⇒ bool

where
abstract c ca ≡ c v ca

end
theory Label
imports Aexp Bexp
begin

A.6 Symbolic Execution

In this section, we introduce our notion of symbolic execution. After intro-
ducing labels and defining symbolic execution, we give a number of basic
properties about the latter. One of our main objective here is to prove that
symbolic execution is monotonic with respect to the subsumption relation,
which is a crucial point in order to prove the main theorems of RB.thy.
Moreover, Isabelle/HOL requires the actual formalization of a number of
facts one would not worry when implementing or writing a pen-and-paper
proof. Here, we will need to prove that there exist successors of the con-
figurations on which symbolic execution is performed. Although this seems
quite obvious in practice, proofs of such facts will be needed a number of
times in the following theories. Finally, we define the feasibility of a sequence
of labels.

A.6.1 Labels

In the following, we model programs by control flow graphs where edges
(rather than vertices) are labeled with either assignments or with the con-
dition associated with a branch of a conditional statement. We put a label
on every edge : statements that do not modify the program state (like jump,
break, etc) are labeled by a Skip.

datatype (′v , ′d) label = Skip | Assume (′v , ′d) bexp | Assign ′v (′v , ′d) aexp

We say that a label is finite if the set of variables of its sub-expression
is finite (Skip labels are thus considered finite).

definition finite-label ::
(′v , ′d) label ⇒ bool

where

207

finite-label l ≡ case l of
Assume e ⇒ finite (Bexp.vars e)
| Assign - e ⇒ finite (Aexp.vars e)
| - ⇒ True

abbreviation finite-labels ::
(′v , ′d) label list ⇒ bool

where
finite-labels ls ≡ (∀ l ∈ set ls. finite-label l)

end
theory SymExec
imports Finite-Set Label Conf
begin

A.6.2 Definitions of SE and SE star

We model symbolic execution by an inductive predicate SE that takes two
configurations c1 and c2 and a label l and evaluates to true if and only if c2
is a possible result of the symbolic execution of l from c1. We say that c2
is a possible result because, when l is of the form Assign v e, we associate
a fresh symbolic variable to the program variable v, but we do no specify
how this fresh variable is chosen (see the two assumptions in the third case).
We could have model SE (and SE-star) by a function producing the new
configuration, instead of using inductive predicates. However this would
require to provide the two said assumptions in each lemma involving SE,
which is not necessary using a predicate. Modeling symbolic execution in
this way has the advantage that it simplifies the following proofs while not
requiring additional lemmas.

Symbolic execution of Skip does not change the configuration from which
it is performed.

When the label is of the form Assume e, the adaptation of e to the store
is added to the pred component.

In the case of an assignment, the store component is updated such that
it now maps a fresh symbolic variable to the assigned program variable.
A constraint relating this program variable with its new symbolic value is
added to the pred component.

The second assumption in the third case requires that there exists at least
one fresh symbolic variable for c. In the following, a number of theorems
are needed to show that such variables exist for the configurations on which
symbolic execution is performed.

inductive SE ::
(′v , ′d) conf ⇒ (′v , ′d) label ⇒ (′v , ′d) conf ⇒ bool

208

where
SE c Skip c

| SE c (Assume e) (| store = store c, pred = pred c ∪ {adapt-bexp e (store c)} |)

| fst sv = v =⇒
fresh-symvar sv c =⇒
SE c (Assign v e) (| store = (store c)(v := snd sv),

pred = pred c ∪ {(λ σ. σ sv = (adapt-aexp e (store c)) σ)} |)

lemma
assumes SE c1 (Assign v e) c2

shows ∃ sv . fst sv = v ∧ fresh-symvar sv c1

using assms by (simp add : SE .simps) blast

In the same spirit, we extend symbolic execution to sequence of labels.

inductive SE-star ::
(′v , ′d) conf ⇒ (′v , ′d) label list ⇒ (′v , ′d) conf ⇒ bool

where
SE-star c [] c
| SE c1 l c2 =⇒ SE-star c2 ls c3 =⇒ SE-star c1 (l # ls) c3

A.6.3 Basic properties of SE

If symbolic execution yields a satisfiable configuration, then it has been
performed from a satisfiable configuration.

lemma SE-sat-imp-sat :
assumes SE c l c ′

assumes sat c ′

shows sat c
using assms by cases (auto simp add : sat-def conjunct-def)

If symbolic execution is performed from an unsatisfiable configuration,
then it will yield an unsatisfiable configuration.

lemma unsat-imp-SE-unsat :
assumes SE c l c ′

assumes ¬ sat c
shows ¬ sat c ′

using assms by cases (simp add : sat-def conjunct-def)+

Given two configurations c and c ′ and a label l such that SE c l c ′, the
three following lemmas express c ′ as a function of c.

lemma [simp] :
SE c Skip c ′ = (c ′ = c)

by (simp add : SE .simps)

209

lemma SE-Assume-eq :
SE c (Assume e) c ′ =
(c ′ = (| store = store c, pred = pred c ∪ {adapt-bexp e (store c)} |))

by (simp add : SE .simps)

lemma SE-Assign-eq :
SE c (Assign v e) c ′ =
(∃ sv . fresh-symvar sv c
∧ fst sv = v
∧ c ′ = (| store = (store c)(v := snd sv),

pred = insert (λσ. σ sv = adapt-aexp e (store c) σ) (pred c)|))
by (simp only : SE .simps, blast)

Given two configurations c and c ′ and a label l such that SE c l c ′, the
two following lemmas express the path predicate of c ′ as a function of the
path predicate of c when l models a guard or an assignment.

lemma path-pred-of-SE-Assume :
assumes SE c (Assume e) c ′

shows conjunct (pred c ′) =
(λ σ. conjunct (pred c) σ ∧ adapt-bexp e (store c) σ)

using assms SE-Assume-eq [of c e c ′]
by (auto simp add : conjunct-def)

lemma path-pred-of-SE-Assign :
assumes SE c (Assign v e) c ′

shows ∃ sv . conjunct (pred c ′) =
(λ σ. conjunct (pred c) σ ∧ σ sv = adapt-aexp e (store c) σ)

using assms SE-Assign-eq [of c v e c ′]
by (fastforce simp add : conjunct-def)

Let c and c ′ be two configurations such that c ′ is obtained from c by
symbolic execution of a label of the form Assume e. The states of c ′ are
the states of c that satisfy e. This theorem will help prove that symbolic
execution is monotonic w.r.t. subsumption.

theorem states-of-SE-assume :
assumes SE c (Assume e) c ′

shows states c ′ = {σ ∈ states c. e σ}
using assms SE-Assume-eq [of c e c ′]
by (auto simp add : adapt-bexp-is-subst states-def conjunct-def)

Let c and c ′ be two configurations such that c ′ is obtained from c by
symbolic execution of a label of the form Assign v e. We want to express
the set of states of c ′ as a function of the set of states of c. Since the proof
requires a number of details, we split it into two sub lemmas.

First, we show that if σ ′ is a state of c ′, then it has been obtain from an
adequate update of a state σ of c.

210

lemma states-of-SE-assign1 :
assumes SE c (Assign v e) c ′

assumes σ ′ ∈ states c ′

shows ∃ σ ∈ states c. σ ′ = (σ (v := e σ))
proof −

obtain σsym

where 1 : consistent σ ′ σsym (store c ′)
and 2 : conjunct (pred c ′) σsym

using assms(2) unfolding states-def by blast

then obtain σ
where 3 : consistent σ σsym (store c)
using consistentI2 by blast

moreover
have conjunct (pred c) σsym

using assms(1) 2 by (auto simp add : SE-Assign-eq conjunct-def)

ultimately
have σ ∈ states c by (simp add : states-def) blast

moreover
have σ ′ = σ (v := e σ)
proof −

have σ ′ v = e σ
proof −

have σ ′ v = σsym (symvar v (store c ′))
using 1 by (simp add : consistent-def)

moreover
have σsym (symvar v (store c ′)) = (adapt-aexp e (store c)) σsym

using assms(1) 2 SE-Assign-eq [of c v e c ′]
by (force simp add : symvar-def conjunct-def)

moreover
have (adapt-aexp e (store c)) σsym = e σ
using 3 by (rule adapt-aexp-is-subst)

ultimately
show ?thesis by simp

qed

moreover
have ∀ x . x 6= v −→ σ ′ x = σ x
proof (intro allI impI)

fix x

assume x 6= v

211

moreover
hence σ ′ x = σsym (symvar x (store c))
using assms(1) 1 unfolding consistent-def symvar-def
by (drule-tac ?x=x in spec) (auto simp add : SE-Assign-eq)

moreover
have σsym (symvar x (store c)) = σ x
using 3 by (auto simp add : consistent-def)

ultimately
show σ ′ x = σ x by simp

qed

ultimately
show ?thesis by auto

qed

ultimately
show ?thesis by (simp add : states-def) blast

qed

Then, we show that if there exists a state σ of c from which σ ′ is obtained
by an adequate update, then σ ′ is a state of c ′.

lemma states-of-SE-assign2 :
assumes SE c (Assign v e) c ′

assumes ∃ σ ∈ states c. σ ′ = σ (v := e σ)
shows σ ′ ∈ states c ′

proof −
obtain σ
where σ ∈ states c
and σ ′ = σ (v := e σ)
using assms(2) by blast

then obtain σsym

where 1 : consistent σ σsym (store c)
and 2 : conjunct (pred c) σsym

unfolding states-def by blast

obtain sv
where 3 : fresh-symvar sv c
and 4 : fst sv = v
and 5 : c ′ = (| store = (store c)(v := snd sv),

pred = insert (λσ. σ sv = adapt-aexp e (store c) σ) (pred c) |)
using assms(1) SE-Assign-eq [of c v e c ′] by blast

def σsym
′ ≡ σsym (sv := e σ)

have consistent σ ′ σsym
′ (store c ′)

using 〈σ ′ = σ (v := e σ)〉 1 4 5

212

by (auto simp add : symvar-def consistent-def σsym
′-def)

moreover
have conjunct (pred c ′) σsym

′

proof −
have conjunct (pred c) σsym

′

using 2 3 by (simp add : fresh-symvar-def symvars-def Bexp.vars-def σsym
′-def)

moreover
have σsym

′ sv = (adapt-aexp e (store c)) σsym
′

proof −
have Aexp.fresh sv (adapt-aexp e (store c))
using 3 symvars-of-adapt-aexp[of e store c]
by (auto simp add : fresh-symvar-def symvars-def)

thus ?thesis
using adapt-aexp-is-subst [OF 1 , of e]
by (simp add : Aexp.vars-def σsym

′-def)
qed

ultimately
show ?thesis using 5 by (simp add : conjunct-def)

qed

ultimately
show ?thesis unfolding states-def by blast

qed

The following theorem expressing the set of states of c ′ as a function of
the set of states of c trivially follows the two preceding lemmas.

theorem states-of-SE-assign :
assumes SE c (Assign v e) c ′

shows states c ′ = {σ (v := e σ) | σ. σ ∈ states c}
using assms states-of-SE-assign1 states-of-SE-assign2 by fast

A.6.4 Monotonicity of SE

We are now ready to prove that symbolic execution is monotonic with respect
to subsumption.

theorem SE-mono-for-sub :
assumes SE c1 l c1

′

assumes SE c2 l c2
′

assumes c2 v c1

shows c2
′ v c1

′

using assms
by (cases l ,

(simp,
(simp add : states-of-SE-assume subsums-def , blast),
(simp add : states-of-SE-assign subsums-def , blast)))

213

A stronger version of the previous theorem: symbolic execution is mono-
tonic with respect to states equality.

theorem SE-mono-for-states-eq :
assumes states c1 = states c2

assumes SE c1 l c1
′

assumes SE c2 l c2
′

shows states c2
′ = states c1

′

using assms(1)
SE-mono-for-sub[OF assms(2 ,3)]
SE-mono-for-sub[OF assms(3 ,2)]

by (simp add : subsums-def)

The previous theorem confirms the fact that the way the fresh symbolic
variable is chosen in the case of symbolic execution of an assignment does
not matter as long as the new symbolic variable is indeed fresh, which is
more precisely expressed by the following lemma.

lemma
assumes SE c l c1

assumes SE c l c2

shows states c1 = states c2

using assms SE-mono-for-states-eq by fast

A.6.5 Basic properties of SE star

Some simplification lemmas for SE-star.

lemma [simp] :
SE-star c [] c ′ = (c ′ = c)

by (subst SE-star .simps) auto

lemma SE-star-Cons :
SE-star c1 (l # ls) c2 = (∃ c. SE c1 l c ∧ SE-star c ls c2)

by (subst (1) SE-star .simps) blast

lemma SE-star-one :
SE-star c1 [l] c2 = SE c1 l c2

using SE-star-Cons by force

lemma SE-star-append :
SE-star c1 (ls1 @ ls2) c2 = (∃ c. SE-star c1 ls1 c ∧ SE-star c ls2 c2)

using assms by (induct ls1 arbitrary : c1, simp-all add : SE-star-Cons) blast

lemma SE-star-append-one :
SE-star c1 (ls @ [l]) c2 = (∃ c. SE-star c1 ls c ∧ SE c l c2)

unfolding SE-star-append SE-star-one by (rule refl)

214

Symbolic execution of a sequence of labels from an unsatisfiable config-
uration yields an unsatisfiable configuration.

lemma unsat-imp-SE-star-unsat :
assumes SE-star c ls c ′

assumes ¬ sat c
shows ¬ sat c ′

using assms
by (induct ls arbitrary : c)

(simp, force simp add : SE-star-Cons unsat-imp-SE-unsat)

If symbolic execution yields a satisfiable configuration, then it has been
performed from a satisfiable configuration.

lemma SE-star-sat-imp-sat :
assumes SE-star c ls c ′

assumes sat c ′

shows sat c
using assms
by (induct ls arbitrary : c)

(simp, force simp add : SE-star-Cons SE-sat-imp-sat)

A.6.6 Monotonicity of SE star

Monotonicity of SE extends to SE-star.

theorem SE-star-mono-for-sub :
assumes SE-star c1 ls c1

′

assumes SE-star c2 ls c2
′

assumes c2 v c1

shows c2
′ v c1

′

using assms
by (induct ls arbitrary : c1 c2)

(auto simp add : SE-star-Cons SE-mono-for-sub)

lemma SE-star-mono-for-states-eq :
assumes states c1 = states c2

assumes SE-star c1 ls c1
′

assumes SE-star c2 ls c2
′

shows states c2
′ = states c1

′

using assms(1)
SE-star-mono-for-sub[OF assms(2 ,3)]
SE-star-mono-for-sub[OF assms(3 ,2)]

by (simp add : subsums-def)

lemma SE-star-succs-states :
assumes SE-star c ls c1

assumes SE-star c ls c2

shows states c1 = states c2

using assms SE-star-mono-for-states-eq by fast

215

A.6.7 Existence of successors

Here, we are interested in proving that, under certain assumptions, there will
always exist fresh symbolic variables for configurations on which symbolic
execution is performed. Thus symbolic execution cannot “block” when an
assignment is met. For symbolic execution not to block in this case, the
configuration from which it is performed must be such that there exist fresh
symbolic variables for each program variable. Such configurations are said
to be updatable.

definition updatable ::
(′v , ′d) conf ⇒ bool

where
updatable c ≡ ∀ v . ∃ sv . fst sv = v ∧ fresh-symvar sv c

The following lemma shows that being updatable is a sufficient condition
for a configuration in order for SE not to block.

lemma updatable-imp-ex-SE-succ :
assumes updatable c
shows ∃ c ′. SE c l c ′

using assms
by (cases l , simp-all add : SE-Assume-eq SE-Assign-eq updatable-def)

A sufficient condition for a configuration to be updatable is that its path
predicate has a finite number of variables. The store component has no
influence here, since its set of symbolic variables is always a strict subset of
the set of symbolic variables (i.e. there always exist fresh symbolic variables
for a store). To establish this proof, we need the following intermediate
lemma.

We want to prove that if the set of symbolic variables of the path pred-
icate of a configuration is finite, then we can find a fresh symbolic variable
for it. However, we express this with a more general lemma. We show that
given a finite set of symbolic variables SV and a program variable v such
that there exist symbolic variables in SV that are indexed versions of v,
then there exists a symbolic variable for v whose index is greater or equal
than the index of any other symbolic variable for v in SV.

lemma finite-symvars-imp-ex-greatest-symvar :
fixes SV :: ′a symvar set
assumes finite SV
assumes ∃ sv ∈ SV . fst sv = v
shows ∃ sv ∈ {sv ∈ SV . fst sv = v}.

∀ sv ′ ∈ {sv ∈ SV . fst sv = v}. snd sv ′ ≤ snd sv
proof −

have finite (snd ‘ {sv ∈ SV . fst sv = v})
and snd ‘ {sv ∈ SV . fst sv = v} 6= {}
using assms by auto

216

moreover
have ∀ (E ::nat set). finite E ∧ E 6= {} −→ (∃ n ∈ E . ∀ m ∈ E . m ≤ n)
by (intro allI impI , induct-tac rule : finite-ne-induct)

(simp+, force)

ultimately
obtain n
where n ∈ snd ‘ {sv ∈ SV . fst sv = v}
and ∀ m ∈ snd ‘ {sv ∈ SV . fst sv = v}. m ≤ n
by blast

moreover
then obtain sv
where sv ∈ {sv ∈ SV . fst sv = v} and snd sv = n
by blast

ultimately
show ?thesis by blast

qed

Thus, a configuration whose path predicate has a finite set of variables is
updatable. For example, for any program variable v, the symbolic variable
(v ,i+1) is fresh for this configuration, where i is the greater index associated
to v among the symbolic variables of this configuration. In practice, this is
how we choose the fresh symbolic variable.

lemma finite-pred-imp-SE-updatable :
assumes finite (Bexp.vars (conjunct (pred c))) (is finite ?V)
shows updatable c

unfolding updatable-def
proof (intro allI)

fix v

show ∃ sv . fst sv = v ∧ fresh-symvar sv c
proof (case-tac ∃ sv ∈ ?V . fst sv = v , goal-cases)

case 1

then obtain max-sv
where max-sv ∈ ?V
and fst max-sv = v
and max : ∀ sv ′∈{sv ∈ ?V . fst sv = v}. snd sv ′ ≤ snd max-sv
using assms finite-symvars-imp-ex-greatest-symvar [of ?V v]
by blast

show ?thesis
using max
unfolding fresh-symvar-def symvars-def Store.symvars-def symvar-def
proof (case-tac snd max-sv ≤ store c v , goal-cases)

case 1 thus ?case by (rule-tac ?x=(v ,Suc (store c v)) in exI) auto
next

217

case 2 thus ?case by (rule-tac ?x=(v ,Suc (snd max-sv)) in exI) auto
qed

next
case 2 thus ?thesis
by (rule-tac ?x=(v , Suc (store c v)) in exI)

(auto simp add : fresh-symvar-def symvars-def Store.symvars-def symvar-def)
qed

qed

The path predicate of a configuration whose pred component is finite and
whose elements all have finite sets of variables has a finite set of variables.
Thus, this configuration is updatable, and it has a successor by symbolic
execution of any label. The following lemma starts from these two assump-
tions and use the previous ones in order to directly get to the conclusion
(this will ease some of the following proofs).

lemma finite-imp-ex-SE-succ :
assumes finite (pred c)
assumes ∀ e ∈ pred c. finite (Bexp.vars e)
shows ∃ c ′. SE c l c ′

using finite-pred-imp-SE-updatable[OF finite-conj [OF assms(1 ,2)]]
by (rule updatable-imp-ex-SE-succ)

For symbolic execution not to block along a sequence of labels, it is not
sufficient for the first configuration to be updatable. It must also be such
that (all) its successors are updatable. A sufficient condition for this is
that the set of variables of its path predicate is finite and that the sub-
expression of the label that is executed also has a finite set of variables.
Under these assumptions, symbolic execution preserves finiteness of the pred
component and of the sets of variables of its elements. Thus, successors SE
are also updatable because they also have a path predicate with a finite
set of variables. In the following, to prove this we need two intermediate
lemmas:

• one stating that symbolic execution perserves the finiteness of the set
of variables of the elements of the pred component, provided that the
sub expression of the label that is executed has a finite set of variables,

• one stating that symbolic execution preserves the finiteness of the pred
component.

lemma SE-preserves-finiteness1 :
assumes finite-label l
assumes SE c l c ′

assumes ∀ e ∈ pred c. finite (Bexp.vars e)
shows ∀ e ∈ pred c ′. finite (Bexp.vars e)

proof (cases l)
case Skip thus ?thesis using assms by simp

next

218

case (Assume e) thus ?thesis
using assms finite-vars-imp-finite-adapt-b
by (auto simp add : SE-Assume-eq finite-label-def)

next
case (Assign v e)

then obtain sv
where fresh-symvar sv c
and fst sv = v
and c ′ = (| store = (store c)(v := snd sv),

pred = insert (λσ. σ sv = adapt-aexp e (store c) σ) (pred c)|)
using assms(2) SE-Assign-eq [of c v e c ′] by blast

moreover
have finite (Bexp.vars (λσ. σ sv = adapt-aexp e (store c) σ))
proof −

have finite (Aexp.vars (λσ. σ sv))
by (auto simp add : Aexp.vars-def)

moreover
have finite (Aexp.vars (adapt-aexp e (store c)))
using assms(1) Assign finite-vars-imp-finite-adapt-a
by (auto simp add : finite-label-def)

ultimately
show ?thesis using finite-vars-of-a-eq by auto

qed

ultimately
show ?thesis using assms by auto

qed

lemma SE-preserves-finiteness2 :
assumes SE c l c ′

assumes finite (pred c)
shows finite (pred c ′)

using assms
by (cases l)

(auto simp add : SE-Assume-eq SE-Assign-eq)

We are now ready to prove that a sufficient condition for symbolic exe-
cution not to block along a sequence of labels is that the pred component
of the “initial configuration” is finite, as well as the set of variables of its
elements, and that the sub-expression of the label that is executed also has
a finite set of variables.

lemma finite-imp-ex-SE-star-succ :
assumes finite (pred c)
assumes ∀ e ∈ pred c. finite (Bexp.vars e)

219

assumes finite-labels ls
shows ∃ c ′. SE-star c ls c ′

using assms
proof (induct ls arbitrary : c, goal-cases)

case 1 show ?case using SE-star .simps by blast
next

case (2 l ls c)

then obtain c1 where SE c l c1 using finite-imp-ex-SE-succ by blast

hence finite (pred c1)
and ∀ e ∈ pred c1. finite (Bexp.vars e)
using 2 SE-preserves-finiteness1 SE-preserves-finiteness2 by fastforce+

moreover
have finite-labels ls using 2 by simp

ultimately
obtain c2 where SE-star c1 ls c2 using 2 by blast

thus ?case using 〈SE c l c1〉 using SE-star-Cons by blast
qed

A.6.8 Feasibility of a sequence of labels

A sequence of labels ls is said to be feasible from a configuration c if there
exists a satisfiable configuration c ′ obtained by symbolic execution of ls from
c.

definition feasible ::
(′v , ′d) conf ⇒ (′v , ′d) label list ⇒ bool

where
feasible c ls ≡ (∃ c ′. SE-star c ls c ′ ∧ sat c ′)

A simplification lemma for the case where ls is not empty.

lemma feasible-Cons :
feasible c (l#ls) = (∃ c ′. SE c l c ′ ∧ sat c ′ ∧ feasible c ′ ls)

proof (intro iffI , goal-cases)
case 1 thus ?case
using SE-star-sat-imp-sat by (simp add : feasible-def SE-star-Cons) blast

next
case 2 thus ?case
using assms unfolding feasible-def SE-star-Cons by blast

qed

The following theorem is very important for the rest of this formalization.
It states that, given two configurations c1 and c2 such that c1 subsumes c2,
then any feasible sequence of labels from c2 is also feasible from c1. This is a
crucial point in order to prove that our approach preserves the set of feasible
paths of the original LTS. This proof requires a number of assumptions

220

about the finiteness of the sequence of labels, of the path predicates of the
two configurations and of their states of variables. Those assumptions are
needed in order to show that there exist successors of both configurations
by symbolic execution of the sequence of labels.

lemma subsums-imp-feasible :
assumes finite-labels ls
assumes finite (pred c1)
assumes finite (pred c2)
assumes ∀ e ∈ pred c1. finite (Bexp.vars e)
assumes ∀ e ∈ pred c2. finite (Bexp.vars e)
assumes c2 v c1

assumes feasible c2 ls
shows feasible c1 ls

using assms
proof (induct ls arbitrary : c1 c2)

case Nil thus ?case by (simp add : feasible-def sat-sub-by-sat)
next

case (Cons l ls c1 c2)

then obtain c2
′ where SE c2 l c2

′

and sat c2
′

and feasible c2
′ ls

using feasible-Cons by blast

obtain c1
′ where SE c1 l c1

′

using finite-conj [OF Cons(3 ,5)]
finite-pred-imp-SE-updatable
updatable-imp-ex-SE-succ

by blast

moreover
hence sat c1

′

using SE-mono-for-sub[OF - 〈SE c2 l c2
′〉 Cons(7)]

sat-sub-by-sat [OF 〈sat c2
′〉]

by fast

moreover
have feasible c1

′ ls
proof −

have finite-label l
and finite-labels ls using Cons(2) by simp-all

have finite (pred c1
′)

by (rule SE-preserves-finiteness2 [OF 〈SE c1 l c1
′〉 Cons(3)])

moreover
have finite (pred c2

′)
by (rule SE-preserves-finiteness2 [OF 〈SE c2 l c2

′〉 Cons(4)])

221

moreover
have ∀ e∈pred c1

′. finite (Bexp.vars e)
by (rule SE-preserves-finiteness1 [OF 〈finite-label l 〉 〈SE c1 l c1

′〉 Cons(5)])

moreover
have ∀ e∈pred c2

′. finite (Bexp.vars e)
by (rule SE-preserves-finiteness1 [OF 〈finite-label l 〉 〈SE c2 l c2

′〉 Cons(6)])

moreover
have c2

′ v c1
′

by (rule SE-mono-for-sub[OF 〈SE c1 l c1
′〉 〈SE c2 l c2

′〉 Cons(7)])

ultimately
show ?thesis using Cons(1) 〈feasible c2

′ ls〉 〈finite-labels ls〉 by fast
qed

ultimately
show ?case by (auto simp add : feasible-Cons)

qed

A.6.9 Concrete execution

We illustrate our notion of symbolic execution by relating it with CE, an
inductive predicate describing concrete execution. Unlike symbolic execu-
tion, concrete execution describes program behavior given program states,
i.e. concrete valuations for program variables. The goal of this section is
to show that our notion of symbolic execution is correct, that is: given two
configurations such that one results from the symbolic execution of a se-
quence of labels from the other, then the resulting configuration represents
the set of states that are reachable by concrete execution from the states of
the original configuration.

inductive CE ::
(′v , ′d) state ⇒ (′v , ′d) label ⇒ (′v , ′d) state ⇒ bool

where
CE σ Skip σ
| e σ =⇒ CE σ (Assume e) σ
| CE σ (Assign v e) (σ(v := e σ))

inductive CE-star :: (′v , ′d) state ⇒ (′v , ′d) label list ⇒ (′v , ′d) state ⇒ bool where
CE-star c [] c
| CE c1 l c2 =⇒ CE-star c2 ls c3 =⇒ CE-star c1 (l # ls) c3

lemma [simp] :
CE σ Skip σ ′ = (σ ′ = σ)

by (auto simp add : CE .simps)

222

lemma [simp] :
CE σ (Assume e) σ ′ = (σ ′ = σ ∧ e σ)

by (auto simp add : CE .simps)

lemma [simp] :
CE σ (Assign v e) σ ′ = (σ ′ = σ(v := e σ))

by (auto simp add : CE .simps)

lemma SE-as-CE :
assumes SE c l c ′

shows states c ′ = {σ ′. ∃ σ ∈ states c. CE σ l σ ′}
using assms
by (cases l)

(auto simp add : states-of-SE-assume states-of-SE-assign)

lemma [simp] :
CE-star σ [] σ ′ = (σ ′ = σ)

by (subst CE-star .simps) simp

lemma CE-star-Cons :
CE-star σ1 (l # ls) σ2 = (∃ σ. CE σ1 l σ ∧ CE-star σ ls σ2)

by (subst (1) CE-star .simps) blast

lemma SE-star-as-CE-star :
assumes SE-star c ls c ′

shows states c ′ = {σ ′. ∃ σ ∈ states c. CE-star σ ls σ ′}
using assms
proof (induct ls arbitrary : c)

case Nil thus ?case by simp
next

case (Cons l ls c)

then obtain c ′′ where SE c l c ′′

and SE-star c ′′ ls c ′

using SE-star-Cons by blast

show ?case
unfolding set-eq-iff Bex-def mem-Collect-eq
proof (intro allI iffI , goal-cases)

case (1 σ ′)

then obtain σ ′′ where σ ′′ ∈ states c ′′

223

and CE-star σ ′′ ls σ ′

using Cons(1) 〈SE-star c ′′ ls c ′〉 by blast

moreover
then obtain σ where σ ∈ states c

and CE σ l σ ′′

using 〈SE c l c ′′〉 SE-as-CE by blast

ultimately
show ?case by (simp add : CE-star-Cons) blast

next
case (2 σ ′)

then obtain σ where σ ∈ states c
and CE-star σ (l#ls) σ ′

by blast

moreover
then obtain σ ′′ where CE σ l σ ′′

and CE-star σ ′′ ls σ ′

using CE-star-Cons by blast

ultimately
show ?case
using Cons(1) 〈SE-star c ′′ ls c ′〉 〈SE c l c ′′〉 by (auto simp add : SE-as-CE)

qed
qed

A.6.10 Weakest Precondition Calculus

We model weakest precondition calculus by the following inductive predi-
cate. In practice, we use WP to compute safeguard conditions.

fun WP ::
(′v , ′d) label ⇒ (′v , ′d) bexp ⇒ (′v , ′d) bexp

where
WP Skip e = e

| WP (Assume e ′) e = (λ σ. ¬ e ′ σ ∨ e σ)

| WP (Assign v e ′) e = (λ σ. e (σ(v := e ′ σ)))

lemma
shows WP (Assign x (λ σ::(′v ⇒ nat). σ x + 1))

(λ σ. σ x ≥ 0)
= (λ σ. σ x + 1 ≥ 0)

by auto

The following property of WP ensures that we label red vertices (see

224

RB.thy) with safeguard conditions that are entailed by their configuration.

lemma
assumes SE c l c ′

assumes c ′ |=c ϕ
shows c |=c WP l ϕ

using assms
by (cases l) (auto simp add : sem-def entails-def states-of-SE-assume states-of-SE-assign)

end
theory Graph
imports Main
begin

A.7 Rooted Graphs

In this section, we model rooted graphs and their sub-paths and paths. We
give a number of lemmas that will help proofs in the following theories, but
that are very specific to our approach.

First, we will need the following simple lemma, which is not graph re-
lated, but that will prove useful when we will want to exhibit the last element
of a non-empty sequence.

lemma neq-Nil-conv2 :
xs 6= [] = (∃ x xs ′. xs = xs ′ @ [x])

by (induct xs rule : rev-induct , auto)

A.7.1 Basic definitions and properties

Edges

We model edges by a record ′v edge which is parameterized by the type ′v of
vertices. This allows us to represent the red part of red-black graphs as well
as the black part (i.e. LTS) using extensible records (more on this later).
Edges have two components, src and tgt, which respectively give their source
and target.

record ′v edge =
src :: ′v
tgt :: ′v

Rooted graphs

We model rooted graphs by the record ′v rgraph. It consists of two compo-
nents: its root and its set of edges.

record ′v rgraph =
root :: ′v
edges :: ′v edge set

225

Vertices

The set of vertices of a rooted graph is made of its root and the endpoints
of its edges. Adding a vertex set component to the ′v rgraph record would
require to assume, in the following, that the ends of edges of a rooted graph
are elements of this set. Instead, we choose to deduce the set of vertices
of a graph from its two components. The previous property is implicitly
assumed.

Isabelle/HOL provides extensible records, i.e. it is possible to define
records using existing ones by adding components. The following defini-
tion suppose that g is of type (′v , ′x) rgraph-scheme, i.e. an object that has
at least all the components of a ′v rgraph. The second type parameter ′x
stands for the hypothetical type parameters that such an object could have
in addition of the type of vertices ′v. Using (′v , ′x) rgraph-scheme instead
of ′v rgraph allows to reuse the following definition(s) for all type of objects
that have at least the components of a rooted graph. For example, we will
reuse the following definition to characterize the set of locations of a LTS
(see LTS.thy).

definition vertices ::
(′v , ′x) rgraph-scheme ⇒ ′v set

where
vertices g = {root g} ∪ src ‘edges g ∪ tgt ‘ edges g

Basic properties of rooted graphs

In the following, we will be only interested in loop free rooted graphs and
in what we call well formed rooted graphs. A well formed rooted graph is
rooted graph that either has an empty set of edges or has at least one edge
whose source is its root.

abbreviation wf-rgraph ::
(′v , ′x) rgraph-scheme ⇒ bool

where
wf-rgraph g ≡ root g ∈ src ‘ edges g = (edges g 6= {})

Although we are only interested in this kind of rooted graphs, we will
only assume a graph is well formed when needed.

Out-going edges

This abbreviation will prove handy in the following.

abbreviation out-edges ::
(′v , ′x) rgraph-scheme ⇒ ′v ⇒ ′v edge set

where
out-edges g v ≡ {e ∈ edges g . src e = v}

226

A.7.2 Consistent edge sequences, sub-paths and paths

Consistency of a sequence of edges

A sequence of edges es is consistent from vertex v1 to another vertex v2 if
v1 = v2 if it either is empty or if:

• v1 is the source of its first element, and

• v2 is the target of its last element, and

• the target of each of its elements is the source of the following one.

fun ces ::
′v ⇒ ′v edge list ⇒ ′v ⇒ bool

where
ces v1 [] v2 = (v1 = v2)
| ces v1 (e#es) v2 = (src e = v1 ∧ ces (tgt e) es v2)

Sub-paths and paths

Let g be a rooted graph, es a sequence of edges and v1 and v2 two vertices.
es is a sub-path in g from v1 to v2 if:

• it is consistent from v1 to v2,

• v1 is a vertex of g,

• all of its elements are edges of g.

The second constraint is needed in the case of the empty sequence: without
it, the empty sequence would be a sub-path of g even when v1 is not one
of its vertices. We do not require v2 to be a vertex of g : this is a direct
consequence of the definition.

definition subpath ::
(′v , ′x) rgraph-scheme ⇒ ′v ⇒ ′v edge list ⇒ ′v ⇒ bool

where
subpath g v1 es v2 ≡ ces v1 es v2 ∧ v1 ∈ vertices g ∧ set es ⊆ edges g

Although trivial, this lemma will help the simplifier in some future cases.

lemma fst-of-sp-is-vert :
assumes subpath g v1 es v2

shows v1 ∈ vertices g
using assms by (simp add : subpath-def)

As mentioned, the fact that the last vertex of a sub-path is a vertex of
the considered graph is a direct consequence of the definition of subpath.

lemma lst-of-sp-is-vert :
assumes subpath g v1 es v2

shows v2 ∈ vertices g

227

using assms by (induction es arbitrary : v1, auto simp add : subpath-def vertices-def)

In the following, we will not always be interested in the final vertex of
a sub-path. We will use the abbreviation subpath-from whenever this final
vertex has no importance, and subpath otherwise. We will also sometimes be
interested in the set subpaths-from of sub-paths starting at a given vertex,
which is defined by comprehension from subpath-from.

abbreviation subpath-from ::
(′v , ′x) rgraph-scheme ⇒ ′v ⇒ ′v edge list ⇒ bool

where
subpath-from g v es ≡ ∃ v ′. subpath g v es v ′

abbreviation subpaths-from ::
(′v , ′x) rgraph-scheme ⇒ ′v ⇒ ′v edge list set

where
subpaths-from g v ≡ {es. subpath-from g v es}

A path is a sub-path starting at the root of the graph.

abbreviation path ::
(′v , ′x) rgraph-scheme ⇒ ′v edge list ⇒ ′v ⇒ bool

where
path g es v ≡ subpath g (root g) es v

abbreviation paths ::
(′a, ′b) rgraph-scheme ⇒ ′a edge list set

where
paths g ≡ {es. ∃ v . path g es v}

Some useful simplification lemmas for subpath.

lemma sp-one :
subpath g v1 [e] v2 = (src e = v1 ∧ e ∈ edges g ∧ tgt e = v2)

by (auto simp add : subpath-def vertices-def)

lemma sp-Cons :
subpath g v1 (e#es) v2 = (src e = v1 ∧ e ∈ edges g ∧ subpath g (tgt e) es v2)

by (auto simp add : subpath-def vertices-def)

lemma sp-append-one :
subpath g v1 (es@[e]) v2 = (subpath g v1 es (src e) ∧ e ∈ edges g ∧ tgt e = v2)

by (induct es arbitrary : v1, auto simp add : subpath-def vertices-def)

lemma sp-append :
subpath g v1 (es1 @es2) v2 = (∃ v . subpath g v1 es1 v ∧ subpath g v es2 v2)

by (induct es1 arbitrary : v1)

228

((simp add : subpath-def , fast),
(auto simp add : fst-of-sp-is-vert sp-Cons))

A sub-path leads to a unique vertex.

lemma sp-same-src-imp-same-tgt :
assumes subpath g v es v1

assumes subpath g v es v2

shows v1 = v2

using assms
by (induct es arbitrary : v)

(auto simp add : sp-Cons subpath-def vertices-def)

In the following, we are interested in the evolution of the set of sub-paths
of our symbolic execution graph after symbolic execution of a transition from
the LTS representation of the program under analysis. Symbolic execution
of a transition results in adding to the graph a new edge whose source is
already a vertex of this graph, but not its target. The following lemma
describes sub-paths ending in the target of such an edge.

Let e be an edge whose target has not out-going edges. A sub-path es
containing e ends by e and this occurrence of e is unique along es.

lemma sp-through-de-decomp :
assumes out-edges g (tgt e) = {}
assumes subpath g v1 es v2

assumes e ∈ set es
shows ∃ es ′. es = es ′ @ [e] ∧ e /∈ set es ′

using assms(2 ,3)
proof (induction es arbitrary : v1)

case Nil thus ?case by simp
next

case (Cons e ′ es)

hence e = e ′ ∨ (e 6= e ′ ∧ e ∈ set es) by auto

thus ?case
proof (elim disjE , goal-cases)

case 1

moreover
hence es = [] using assms(1) Cons by (cases es, auto simp add : sp-Cons)

ultimately
show ?case by auto

next
case 2 thus ?case
using assms(1) Cons(1)[of tgt e ′] Cons(2)
by (auto simp add : sp-Cons)

qed
qed

229

A.7.3 Adding edges

This definition and the following lemma are here mainly to ease the defini-
tions and proofs in the next theories.

abbreviation add-edge ::
(′v , ′x) rgraph-scheme ⇒ ′v edge ⇒ (′v , ′x) rgraph-scheme

where
add-edge g e ≡ rgraph.edges-update (λ edges. edges ∪ {e}) g

Let es be a sub-path from a vertex other than the target of e in the
graph obtained from g by the addition of edge e. Moreover, assume that
the target of e is not a vertex of g. Then e is an element of es.

lemma sp-ends-in-tgt-imp-mem :
assumes tgt e /∈ vertices g
assumes v 6= tgt e
assumes subpath (add-edge g e) v es (tgt e)
shows e ∈ set es

proof −
have es 6= [] using assms(2 ,3) by (auto simp add : subpath-def)

then obtain e ′ es ′ where es = es ′ @ [e ′] using neq-Nil-conv2 [of es] by blast

thus ?thesis using assms(1 ,3) by (auto simp add : sp-append-one vertices-def
image-def)
qed

end
theory LTS
imports Graph SymExec
begin

A.8 Labeled Transition Systems

This theory is motivated by the need of an abstract representation of con-
trol-flow graphs (CFG). It is a refinement of the prior theory of (unlabeled)
graphs and proceeds by decorating their edges with labels expressing as-
sumptions and effects (assignments) on an underlying state. In this theory,
we define LTSs and introduce a number of abbreviations that will ease stat-
ing and proving lemmas in the following theories.

A.8.1 Basic definitions

The labeled transition systems (LTS) we are heading for are constructed
by extending rgraph’s by a labeling function of the edges, using Isabelle

230

extensible records.

record (′vert , ′var , ′d) lts = ′vert rgraph +
labeling :: ′vert edge ⇒ (′var , ′d) label

We call initial location the root of the underlying graph.

abbreviation init ::
(′vert , ′var , ′d , ′x) lts-scheme ⇒ ′vert
where

init lts ≡ root lts

The set of labels of a LTS is the image set of its labeling function over
its set of edges.

abbreviation labels ::
(′vert , ′var , ′d , ′x) lts-scheme ⇒ (′var , ′d) label set

where
labels lts ≡ labeling lts ‘ edges lts

In the following, we will sometimes need to use the notion of trace of a
given sequence of edges with respect to the transition relation of an LTS.

abbreviation trace ::
′vert edge list ⇒ (′vert edge ⇒ (′var , ′d) label) ⇒ (′var , ′d) label list

where
trace es L ≡ map L es

We are interested in a special form of Labeled Transition Systems; the
prior record definition is too liberal. We will constrain it to well-formed
labeled transition systems.

We first define an application that, given an LTS, returns its underlying
graph.

abbreviation graph ::
(′vert , ′var , ′d , ′x) lts-scheme ⇒ ′vert rgraph

where
graph lts ≡ rgraph.truncate lts

An LTS is well-formed if its underlying rgraph is well-formed.

abbreviation wf-lts ::
(′vert , ′var , ′d , ′x) lts-scheme ⇒ bool

where
wf-lts lts ≡ (wf-rgraph lts)

In the following theories, we will sometimes need to account for the fact
that we consider LTSs with a finite number of edges.

abbreviation finite-lts ::
(′vert , ′var , ′d , ′x) lts-scheme ⇒ bool

where
finite-lts lts ≡ ∀ l ∈ range (labeling lts). finite-label l

231

A.8.2 Feasible sub-paths and paths

A sequence of edges is a feasible sub-path of an LTS lts from a configuration
c if it is a sub-path of the underlying graph of lts and if it is feasible from
the configuration c.

abbreviation feasible-subpath ::
(′vert , ′var , ′d , ′x) lts-scheme ⇒
(′var , ′d) conf ⇒
′vert ⇒
′vert edge list ⇒
′vert ⇒ bool

where
feasible-subpath lts c v1 es v2 ≡ Graph.subpath lts v1 es v2

∧ feasible c (trace es (labeling lts))

Similarly to sub-paths in rooted raphs, we will not be always interested
in the final vertex of a feasible sub-path. We use the following notion when
we are not interested in this vertex.

abbreviation feasible-subpath-from ::
(′vert , ′var , ′d , ′x) lts-scheme ⇒ (′var , ′d) conf ⇒ ′vert ⇒ ′vert edge list ⇒ bool

where
feasible-subpath-from lts c v es ≡ ∃ v ′. feasible-subpath lts c v es v ′

abbreviation feasible-subpaths-from ::
(′vert , ′var , ′d , ′x) lts-scheme ⇒ (′var , ′d) conf ⇒ ′vert ⇒ ′vert edge list set

where
feasible-subpaths-from lts c v ≡ {es. feasible-subpath-from lts c v es}

As earlier, feasible paths are defined as feasible sub-paths starting at the
initial location of the LTS.

abbreviation feasible-path ::
(′vert , ′var , ′d , ′x) lts-scheme ⇒ (′var , ′d) conf ⇒ ′vert edge list ⇒ ′vert ⇒ bool

where
feasible-path lts c es v ≡ feasible-subpath lts c (init lts) es v

abbreviation feasible-paths ::
(′vert , ′var , ′d , ′x) lts-scheme ⇒ (′var , ′d) conf ⇒ ′vert edge list set

where
feasible-paths lts c ≡ {es. ∃ v . feasible-path lts c es v}

end
theory SubRel
imports Graph
begin

232

A.9 Graphs Equipped with Ssubsumption Rela-
tions

In this section, we define subsumption relations and the notion of sub-paths
in rooted graphs equipped with such relations. We proceed in the same
manner than in Graph.thy: first we define the consistency of a sequence
of edges in presence of a subsumption relation, then sub-paths. We are
interested in subsumptions taking places between red vertices of red-black
graphs (see RB.thy), i.e. occurrences of locations of LTS. Here subsumptions
are defined as pairs of indexed vertices of a LTS, and subsumption relations
as sets of subsumptions. The type of vertices of such LTS is represented by
the abstract type ′v in the following.

A.9.1 Basic definitions and properties

Subsumptions and subsumption relations

Subsumptions take place between occurrences of the vertices of a graph. We
represent such occurrences by indexed versions of vertices. A subsumption
is defined as pair of indexed vertices.

type-synonym ′v sub-t = ((′v × nat) × (′v × nat))

A subsumption relation is a set of subsumptions.

type-synonym ′v sub-rel-t = ′v sub-t set

We consider the left member to be subsumed by the right one. The
left member of a subsumption is called its subsumee, the right member its
subsumer.

abbreviation subsumee ::
′v sub-t ⇒ (′v × nat)

where
subsumee sub ≡ fst sub

abbreviation subsumer ::
′v sub-t ⇒ (′v × nat)

where
subsumer sub ≡ snd sub

We will need to talk about the sets of subsumees and subsumers of a
subsumption relation.

abbreviation subsumees ::
′v sub-rel-t ⇒ (′v × nat) set

where
subsumees subs ≡ subsumee ‘ subs

233

abbreviation subsumers ::
′v sub-rel-t ⇒ (′v × nat) set

where
subsumers subs ≡ subsumer ‘ subs

The two following lemmas will prove useful in the following.

lemma subsumees-conv :
subsumees subs = {v . ∃ v ′. (v ,v ′) ∈ subs}

by force

lemma subsumers-conv :
subsumers subs = {v ′. ∃ v . (v ,v ′) ∈ subs}

by force

We call set of vertices of the relation the union of its sets of subsumees
and subsumers.

abbreviation vertices ::
′v sub-rel-t ⇒ (′v × nat) set

where
vertices subs ≡ subsumers subs ∪ subsumees subs

A.9.2 Well-formed subsumption relation of a graph

Well-formed subsumption relations

In the following, we make an intensive use of locales. We use them as a
convenient way to add assumptions to the following lemmas, in order to ease
their reading. Locales can be built from locales, allowing some modularity in
the formalization. The following locale simply states that we suppose there
exists a subsumption relation called subs. It will then be used to constrain
subsumption relations.

locale sub-rel =
fixes subs :: ′v sub-rel-t

We are only interested in subsumptions involving two different occur-
rences of the same LTS location. Moreover, once a vertex has been sub-
sumed, there is no point in trying to subsume it again by another subsumer:
subsumees must have a unique subsumer. Finally, we do not allow chains of
subsumptions, thus the intersection of the sets of subsumers and subsumees
must be empty. Such subsumption relations are said to be well-formed.

locale wf-sub-rel = sub-rel +
assumes sub-imp-same-verts :

sub ∈ subs =⇒ fst (subsumee sub) = fst (subsumer sub)

assumes subsumed-by-one :
∀ v ∈ subsumees subs. ∃ ! v ′. (v ,v ′) ∈ subs

234

assumes inter-empty :
subsumers subs ∩ subsumees subs = {}

begin
lemmas wf-sub-rel = sub-imp-same-verts subsumed-by-one inter-empty

A rephrasing of the assumption subsumed-by-one.

lemma (in wf-sub-rel) subsumed-by-two-imp :
assumes (v ,v1) ∈ subs
assumes (v ,v2) ∈ subs
shows v1 = v2

using assms wf-sub-rel unfolding subsumees-conv by blast

A well-formed subsumption is its own transitive closure.

lemma in-trancl-imp :
assumes (v ,v ′) ∈ subs+

shows (v ,v ′) ∈ subs
using tranclD [OF assms] tranclD [of - v ′ subs]

rtranclD [of - v ′ subs]
inter-empty

by force

lemma trancl-eq :
subs+ = subs

using in-trancl-imp r-into-trancl by fast
end

Subsumption relation of a graph

We consider subsumption relations to equip rooted graphs. However, noth-
ing in the previous definitions relates these relations to graphs: subsumptions
relations involve objects that are of the type of indexed vertices, but that
might to not be vertices of an actual graph. We equip graphs with subsump-
tion relations using the notion of sub-relation of a graph. Such a relation
must only involves vertices of the graph it equips.

locale rgraph =
fixes g :: (′v , ′x) rgraph-scheme

locale sub-rel-of = rgraph + sub-rel +
assumes related-are-verts : vertices subs ⊆ Graph.vertices g

begin
lemmas sub-rel-of = related-are-verts

The transitive closure of a sub-relation of a graph g is also a sub-relation
of g.

lemma trancl-sub-rel-of :

235

sub-rel-of g (subs+)
using tranclD [of - - subs] tranclD2 [of - - subs] sub-rel-of
unfolding sub-rel-of-def subsumers-conv subsumees-conv by blast

end

Well-formed sub-relations

We pack both previous locales into a third one. We talk about well-formed
sub-relations.

locale wf-sub-rel-of = rgraph + sub-rel +
assumes sub-rel-of : sub-rel-of g subs
assumes wf-sub-rel : wf-sub-rel subs

begin
lemmas wf-sub-rel-of = sub-rel-of wf-sub-rel

end

As previously, even if we are only interested by well-formed sub-relations,
we assume the relation is such only when needed.

A.9.3 Consistent edge sequences and sub-paths

Consistency in presence of a subsumption relation

We model sub-paths in the same spirit than in Graph.thy, by starting with
defining the consistency of a sequence of edges w.r.t. a subsumption relation.
The idea is that subsumption links can “fill the gaps” between subsequent
edges that would have made the sequence inconsistent otherwise. For now,
we define consistency of a sequence w.r.t. any subsumption relation. Thus,
we cannot account yet for the fact that we only consider relations without
chains of subsumptions. The empty sequence is consistent w.r.t. to a sub-
sumption relation from v1 to v2 if these two vertices are equal or if they
belong to the transitive closure of the relation. A non-empty sequence is
consistent if it is made of consistent sequences whose extremities are linked
in the transitive closure of the subsumption relation.

fun ces ::
(′v × nat) ⇒ (′v × nat) edge list ⇒ (′v × nat) ⇒ ′v sub-rel-t ⇒ bool

where
ces v1 [] v2 subs = (v1 = v2 ∨ (v1,v2) ∈ subs+)
| ces v1 (e#es) v2 subs = ((v1 = src e ∨ (v1,src e) ∈ subs+) ∧ ces (tgt e) es v2

subs)

A consistent sequence from v1 to v2 without a subsumption relation is
consistent between these two vertices in presence of any relation.

lemma
assumes Graph.ces v1 es v2

shows ces v1 es v2 subs
using assms by (induct es arbitrary : v1, auto)

236

Consistency in presence of the empty subsumption relation reduces to
consistency as defined in Graph.thy.

lemma
assumes ces v1 es v2 {}
shows Graph.ces v1 es v2

using assms by (induct es arbitrary : v1, auto)

Let (v1, v2) be an element of a subsumption relation, and es a sequence of
edges consistent w.r.t. this relation from vertex v2. Then es is also consistent
from v1. Even if this lemma will not be used in the following, this is the
base fact for saying that paths feasible from a subsumee are also feasible
from its subsumer.

lemma
assumes (v1,v2) ∈ subs
assumes ces v2 es v subs
shows ces v1 es v subs

using assms by (cases es, simp-all) (intro disjI2 , force)+

Let es be a sequence of edges consistent w.r.t. a subsumption relation.
Extending this relation preserves the consistency of es.

lemma ces-Un :
assumes ces v1 es v2 subs1
shows ces v1 es v2 (subs1 ∪ subs2)

using assms by (induct es arbitrary : v1, auto simp add : trancl-mono)

Simplification lemmas for SubRel .ces.

lemma ces-append-one :
ces v1 (es @ [e]) v2 subs = (ces v1 es (src e) subs ∧ ces (src e) [e] v2 subs)

by (induct es arbitrary : v1, auto)

lemma ces-append :
ces v1 (es1 @ es2) v2 subs = (∃ v . ces v1 es1 v subs ∧ ces v es2 v2 subs)

proof (intro iffI , goal-cases)
case 1 thus ?case
by (induct es1 arbitrary : v1)

(simp-all del : split-paired-Ex , blast)
next

case 2 thus ?case
proof (induct es1 arbitrary : v1)

case (Nil v1)

then obtain v where ces v1 [] v subs
and ces v es2 v2 subs

by blast

thus ?case
unfolding ces.simps

237

proof (elim disjE , goal-cases)
case 1 thus ?case by simp

next
case 2 thus ?case by (cases es2) (simp, intro disjI2 , fastforce)+

qed
next

case Cons thus ?case by auto
qed

qed

Let es be a sequence of edges consistent from v1 to v2 w.r.t. a sub-
relation subs of a graph g. Suppose elements of this sequence are edges of
g. If v1 is a vertex of g then v2 is also a vertex of g.

lemma (in sub-rel-of) ces-imp-end-vertex :
assumes ces v1 es v2 subs
assumes set es ⊆ edges g
assumes v1 ∈ Graph.vertices g
shows v2 ∈ Graph.vertices g

using assms trancl-sub-rel-of
unfolding sub-rel-of-def subsumers-conv vertices-def
by (induct es arbitrary : v1) (force, (simp del : split-paired-Ex , fast))

Sub-paths

A sub-path leading from v1 to v2, two vertices of a graph g equipped with a
subsumption relation subs, is a sequence of edges consistent w.r.t. subs from
v1 to v2 whose elements are edges of g. Moreover, we must assume that
subs is a sub-relation of g, otherwise es could “exit” g through subsumption
links.

Once again, the fact that v2 is a vertex of g is implied by the following
definition.

definition subpath ::
((′v × nat), ′x) rgraph-scheme ⇒
(′v × nat) ⇒
(′v × nat) edge list ⇒
(′v × nat) ⇒
((′v × nat) × (′v × nat)) set ⇒ bool

where
subpath g v1 es v2 subs ≡ sub-rel-of g subs

∧ v1 ∈ Graph.vertices g
∧ ces v1 es v2 subs
∧ set es ⊆ edges g

abbreviation path ::
((′v × nat), ′x) rgraph-scheme ⇒
(′v × nat) edge list ⇒
(′v × nat) ⇒

238

((′v × nat) × (′v × nat)) set ⇒ bool
where

path g es v subs ≡ subpath g (root g) es v subs

This lemma will ease the proofs of some goals in the following.

lemma fst-of-sp-is-vert :
assumes subpath g v1 es v2 subs
shows v1 ∈ Graph.vertices g

using assms by (simp add : subpath-def)

lemma lst-of-sp-is-vert :
assumes subpath g v1 es v2 subs
shows v2 ∈ Graph.vertices g

using assms sub-rel-of .ces-imp-end-vertex unfolding subpath-def by fast

Once again, in some cases, we will not be interested in the ending vertex
of a sub-path.

abbreviation subpath-from ::
((′v × nat), ′x) rgraph-scheme ⇒ (′v × nat) ⇒ (′v × nat) edge list ⇒ ′v sub-rel-t
⇒ bool
where

subpath-from g v es subs ≡ ∃ v ′. subpath g v es v ′ subs

Simplification lemmas for SubRel .subpath.

lemma Nil-sp :
subpath g v1 [] v2 subs ←→ sub-rel-of g subs

∧ v1 ∈ Graph.vertices g
∧ (v1 = v2 ∨ (v1,v2) ∈ subs+)

by (auto simp add : subpath-def)

When the subsumption relation is well-formed (denoted by (in wf-sub-rel)),
there is no need to account for the transitive closure of the relation. We will
need both versions in the following.

lemma (in wf-sub-rel) Nil-sp :
subpath g v1 [] v2 subs ←→ sub-rel-of g subs

∧ v1 ∈ Graph.vertices g
∧ (v1 = v2 ∨ (v1,v2) ∈ subs)

using trancl-eq by (simp add : Nil-sp)

Simplification lemma for the one-element sequence.

lemma sp-one :
shows subpath g v1 [e] v2 subs ←→ sub-rel-of g subs

∧ (v1 = src e ∨ (v1,src e) ∈ subs+)
∧ e ∈ edges g
∧ (tgt e = v2 ∨ (tgt e,v2) ∈ subs+)

using sub-rel-of .trancl-sub-rel-of [of g subs]
by (intro iffI , auto simp add : vertices-def sub-rel-of-def subpath-def)

239

Once again, when the subsumption relation is well-formed, the previous
lemma can be simplified since, in this case, the transitive closure of the
relation is the relation itself.

lemma (in wf-sub-rel) sp-one :
shows subpath g v1 [e] v2 subs ←→ sub-rel-of g subs

∧ (v1 = src e ∨ (v1,src e) ∈ subs)
∧ e ∈ edges g
∧ (tgt e = v2 ∨ (tgt e,v2) ∈ subs)

using sp-one trancl-eq by fast

Simplification lemma for the non-empty sequence (which might contain
more than one element).

lemma sp-Cons :
shows subpath g v1 (e # es) v2 subs ←→ sub-rel-of g subs

∧ (v1 = src e ∨ (v1,src e) ∈ subs+)
∧ e ∈ edges g
∧ subpath g (tgt e) es v2 subs

using sub-rel-of .trancl-sub-rel-of [of g subs]
by (intro iffI , auto simp add : subpath-def vertices-def sub-rel-of-def)

The same lemma when the subsumption relation is well-formed.

lemma (in wf-sub-rel) sp-Cons :
subpath g v1 (e # es) v2 subs ←→ sub-rel-of g subs

∧ (v1 = src e ∨ (v1,src e) ∈ subs)
∧ e ∈ edges g
∧ subpath g (tgt e) es v2 subs

using sp-Cons trancl-eq by fast

Simplification lemma for SubRel .subpath when the sequence is known to
end by a given edge.

lemma sp-append-one :
subpath g v1 (es @ [e]) v2 subs ←→ subpath g v1 es (src e) subs

∧ e ∈ edges g
∧ (tgt e = v2 ∨ (tgt e, v2) ∈ subs+)

unfolding subpath-def by (auto simp add : ces-append-one)

Simpler version in the case of a well-formed subsumption relation.

lemma (in wf-sub-rel) sp-append-one :
subpath g v1 (es @ [e]) v2 subs ←→ subpath g v1 es (src e) subs

∧ e ∈ edges g
∧ (tgt e = v2 ∨ (tgt e, v2) ∈ subs)

using sp-append-one trancl-eq by fast

Simplification lemma when the sequence is known to be the concatena-
tion of two sub-sequences.

lemma sp-append :
subpath g v1 (es1 @ es2) v2 subs ←→
(∃ v . subpath g v1 es1 v subs ∧ subpath g v es2 v2 subs)

240

proof (intro iffI , goal-cases)
case 1 thus ?case
using sub-rel-of .ces-imp-end-vertex
by (simp add : subpath-def ces-append) blast

next
case 2 thus ?case
unfolding subpath-def
by (simp only : ces-append) fastforce

qed

A sub-path ending in a subsumed vertex can be extended to the subsumer
of this vertex.

lemma sp-append-sub :
assumes subpath g v1 es v2 subs
assumes (v2,v3) ∈ subs
shows subpath g v1 es v3 subs

proof (cases es)
case Nil

moreover
hence v1 ∈ Graph.vertices g
and v1 = v2 ∨ (v1,v2) ∈ subs+

using assms(1) by (simp-all add : Nil-sp)

ultimately
show ?thesis
using assms(1 ,2)

Nil-sp[of g v1 v2 subs]
trancl-into-trancl [of v1 v2 subs v3]

by (auto simp add : subpath-def)
next

case Cons

then obtain es ′ e where es = es ′ @ [e] using neq-Nil-conv2 [of es] by blast

thus ?thesis using assms trancl-into-trancl by (simp add : sp-append-one) fast
qed

We consider a graph equipped with a subsumption relation containing
an element (v1, v2) where v1 has not out-going edges and v2 as unique
subsumer, the latter not being subsumed itself. A sub-path starting in v1

is either empty or can be considered to start in v2.

lemma sp-from-subsumee :
assumes (v1,v2) ∈ subs
assumes subpath g v1 es v subs
assumes out-edges g v1 = {}
assumes ∃ ! v . (v1,v) ∈ subs
assumes v2 /∈ subsumees subs
shows es = [] ∨ subpath g v2 es v subs

241

proof (cases es)
case Nil thus ?thesis by simp

next
case (Cons e es ′)

show ?thesis
unfolding Cons sp-Cons
proof (rule disjI2 , intro conjI , goal-cases)

case 1 show ?case using assms(2) by (simp add : subpath-def)
next

case 2

have (v2, src e) ∈ subs∗ using assms(1−4) tranclD unfolding Cons sp-Cons
by fast

thus ?case using assms(3) rtranclD [of v2 src e subs] by fast
next

case 3 show ?case using assms(2) unfolding Cons sp-Cons by simp
next

case 4 show ?case using assms(2) unfolding Cons sp-Cons by simp
qed

qed

Note that we could have used two lemmas instead of one, in order to
split the two conclusions: the right disjunct might not be true if v = v1.

We extend the previous lemma to well-formed subsumption relations.
We will need both versions in the following.

lemma (in wf-sub-rel) sp-from-subsumee :
assumes (v1,v2) ∈ subs
assumes subpath g v1 es v subs
assumes out-edges g v1 = {}
shows es = [] ∨ subpath g v2 es v subs

using assms
proof −

have ∃ ! v . (v1,v) ∈ subs
and v2 /∈ subsumees subs
using wf-sub-rel assms(1) unfolding subsumees-conv subsumers-conv by fast+

thus ?thesis by (rule sp-from-subsumee[OF assms])
qed

A sub-path starting at a non-subsumed vertex whose set of out-edges is
empty is also empty.

lemma sp-from-de-empty :
assumes v1 /∈ subsumees subs
assumes out-edges g v1 = {}
assumes subpath g v1 es v2 subs
shows es = []

242

using assms tranclD by (cases es) (auto simp add : sp-Cons, force)

Let e be an edge whose target is not subsumed and has no out-going
edges. A sub-path es containing e ends by e and this occurrence of e is
unique along es.

lemma sp-through-de-decomp :
assumes tgt e /∈ subsumees subs
assumes out-edges g (tgt e) = {}
assumes subpath g v1 es v2 subs
assumes e ∈ set es
shows ∃ es ′. es = es ′ @ [e] ∧ e /∈ set es ′

using assms(3 ,4)
proof (induction es arbitrary : v1)

case (Nil v1) thus ?case by simp
next

case (Cons e ′ es v1)

hence subpath g (tgt e ′) es v2 subs
and e = e ′ ∨ (e 6= e ′ ∧ e ∈ set es) by (auto simp add : sp-Cons)

thus ?case
proof (elim disjE , goal-cases)

case 1 thus ?case
using sp-from-de-empty [OF assms(1 ,2)] by fastforce

next
case 2 thus ?case using Cons(1)[of tgt e ′] by force

qed
qed

Consider a sub-path ending at the target of a recently added edge e,
whose target did not belong to the graph prior to its addition. If es starts
in another vertex than the target of e, then it contains e.

lemma (in sub-rel-of) sp-ends-in-tgt-imp-mem :
assumes tgt e /∈ Graph.vertices g
assumes v 6= tgt e
assumes subpath (add-edge g e) v es (tgt e) subs
shows e ∈ set es

proof −
have tgt e /∈ subsumers subs using assms(1) sub-rel-of by auto

hence (v ,tgt e) /∈ subs+ using tranclD2 by force

hence es 6= [] using assms(2 ,3) by (auto simp add : Nil-sp)

then obtain es ′ e ′ where es = es ′ @ [e ′] using neq-Nil-conv2 [of es] by blast

moreover
hence e ′ ∈ edges (add-edge g e) using assms(3) by (auto simp add : subpath-def)

243

moreover
have tgt e ′ = tgt e
using tranclD2 assms(3) 〈tgt e /∈ subsumers subs〉 〈es = es ′ @ [e ′]〉

by (force simp add : sp-append-one)

ultimately
show ?thesis using assms(1) unfolding vertices-def image-def by force

qed

end
theory ArcExt
imports SubRel
begin

A.10 Extending Graphs with Edges

In this section, we formalize the operation of adding to a rooted graph
an edge whose source is already a vertex of the given graph but not its
target. We call this operation an extension of the given graph by adding
an edge. This corresponds to an abstraction of the act of adding an edge
to the red part of a red-black graph as a result of symbolic execution of the
corresponding transition in the LTS under analysis, where all details about
symbolic execution would have been abstracted. We then state and prove
a number of facts describing the evolution of the set of paths of the given
graph, first without considering subsumption links then in the case of rooted
graph equipped with a subsumption relation.

A.10.1 Definition and basic properties

Extending a rooted graph with an edge consists in adding to its set of edges
an edge whose source is a vertex of this graph but whose target is not.

abbreviation extends ::
(′v , ′x) rgraph-scheme ⇒ ′v edge ⇒ (′v , ′x) rgraph-scheme ⇒ bool

where
extends g e g ′ ≡ src e ∈ Graph.vertices g

∧ tgt e /∈ Graph.vertices g
∧ g ′ = (add-edge g e)

After such an extension, the set of out-edges of the target of the new
edge is empty.

lemma extends-tgt-out-edges :
assumes extends g e g ′

shows out-edges g ′ (tgt e) = {}
using assms unfolding vertices-def image-def by force

Consider a graph equipped with a sub-relation. This relation is also a
sub-relation of any extension of this graph.

244

lemma (in sub-rel-of)
assumes extends g e g ′

shows sub-rel-of g ′ subs
using assms sub-rel-of by (auto simp add : sub-rel-of-def vertices-def)

Extending a graph with an edge preserves the existing sub-paths.

lemma sp-in-extends :
assumes extends g e g ′

assumes Graph.subpath g v1 es v2

shows Graph.subpath g ′ v1 es v2

using assms by (auto simp add : Graph.subpath-def vertices-def)

A.10.2 Properties of sub-paths in an extension

Extending a graph by an edge preserves the existing sub-paths.

lemma sp-in-extends-w-subs :
assumes extends g a g ′

assumes subpath g v1 es v2 subs
shows subpath g ′ v1 es v2 subs

using assms by (auto simp add : subpath-def sub-rel-of-def vertices-def)

In an extension, the target of the new edge has no out-edges. Thus sub-
paths of the extension starting and ending in old vertices are sub-paths of
the graph prior to its extension.

lemma (in sub-rel-of) sp-from-old-verts-imp-sp-in-old :
assumes extends g e g ′

assumes v1 ∈ Graph.vertices g
assumes v2 ∈ Graph.vertices g
assumes subpath g ′ v1 es v2 subs
shows subpath g v1 es v2 subs

proof −
have e /∈ set es
proof (intro notI)

assume e ∈ set es

have v2 = tgt e
proof −

have tgt e /∈ subsumees subs using sub-rel-of assms(1) by fast

moreover
have out-edges g ′ (tgt e) = {} using assms(1) by (rule extends-tgt-out-edges)

ultimately
have ∃ es ′. es = es ′ @ [e] ∧ e /∈ set es ′

using assms(4) 〈e ∈ set es〉 by (intro sp-through-de-decomp)

then obtain es ′ where es = es ′ @ [e] e /∈ set es ′ by blast

hence tgt e = v2 ∨ (tgt e,v2) ∈ subs+

245

using assms(4) by (simp add : sp-append-one)

thus ?thesis using 〈tgt e /∈ subsumees subs〉 tranclD [of tgt e v2 subs] by force
qed

thus False using assms(1 ,3) by simp
qed

thus ?thesis
using sub-rel-of assms
unfolding subpath-def sub-rel-of-def by auto

qed

For the same reason, sub-paths starting at the target of the new edge
are empty.

lemma (in sub-rel-of) sp-from-tgt-in-extends-is-Nil :
assumes extends g e g ′

assumes subpath g ′ (tgt e) es v subs
shows es = []

using sub-rel-of assms
extends-tgt-out-edges
sp-from-de-empty [of tgt e subs g ′ es v]

by fast

Moreover, a sub-path es starting in another vertex than the target of the
new edge e but ending in this target has e as last element. This occurrence
of e is unique among es. The prefix of es preceding e is a sub-path leading
at the source of e in the original graph.

lemma (in sub-rel-of) sp-to-new-edge-tgt-imp :
assumes extends g e g ′

assumes subpath g ′ v es (tgt e) subs
assumes v 6= tgt e
shows ∃ es ′. es = es ′ @ [e] ∧ e /∈ set es ′ ∧ subpath g v es ′ (src e) subs

proof −
obtain es ′ where es = es ′ @ [e] and e /∈ set es ′

using sub-rel-of assms(1 ,2 ,3)
extends-tgt-out-edges[OF assms(1)]
sp-through-de-decomp[of e subs g ′ v es tgt e]
sp-ends-in-tgt-imp-mem[of e v es]

by blast

moreover
have subpath g v es ′ (src e) subs
proof −

have v ∈ Graph.vertices g
using assms(1 ,3) fst-of-sp-is-vert [OF assms(2)]
by (auto simp add : vertices-def)

moreover

246

have SubRel .subpath g ′ v es ′ (src e) subs
using assms(2) 〈es = es ′ @ [e]〉 by (simp add : sp-append-one)

ultimately
show ?thesis
using assms(1) sub-rel-of 〈e /∈ set es ′〉

unfolding subpath-def by (auto simp add : sub-rel-of-def)
qed

ultimately
show ?thesis by blast

qed

end
theory SubExt
imports SubRel
begin

A.11 Extending Subsomption Relations

In this section, we are interested in the evolution of the set of sub-paths
of a rooted graph equipped with a subsumption relation after adding a
subsumption to this relation. We are only interested in adding subsumptions
such that the resulting relation is a well-formed sub-relation of the graph
(provided the original relation was such). As for the extension by edges,
a number of side conditions must be met for the new subsumption to be
added.

A.11.1 Definition

Extending a subsumption relation subs consists in adding a subsumption
sub such that:

• the two vertices involved are distinct,

• they are occurrences of the same vertex,

• they are both vertices of the graph,

• the subsumee must not already be a subsumer or a subsumee,

• the subsumer must not be a subsumee (but it can already be a sub-
sumer),

• the subsumee must have no out-edges.

Once again, in order to ease proofs, we use a predicate stating when a
subsumpion relation is the extension of another instead of using a function
that would produce the extension.

247

abbreviation extends ::
((′v × nat), ′x) rgraph-scheme ⇒ ′v sub-rel-t ⇒ ′v sub-t ⇒ ′v sub-rel-t ⇒ bool

where
extends g subs sub subs ′ ≡ (

subsumee sub 6= subsumer sub
∧ fst (subsumee sub) = fst (subsumer sub)
∧ subsumee sub ∈ Graph.vertices g
∧ subsumee sub /∈ subsumers subs
∧ subsumee sub /∈ subsumees subs
∧ subsumer sub ∈ Graph.vertices g
∧ subsumer sub /∈ subsumees subs
∧ out-edges g (subsumee sub) = {}
∧ subs ′ = subs ∪ {sub})

A.11.2 Properties of extensions

First, we show that such extensions yield sub-relations (resp. well-formed
relations), provided the original relation is a sub-relation (resp. well-formed
relation).

Extending the sub-relation of a graph yields a new sub-relation for this
graph.

lemma (in sub-rel-of)
assumes extends g subs sub subs ′

shows sub-rel-of g subs ′

using assms sub-rel-of unfolding sub-rel-of-def by force

Extending a well-formed relation yields a well-formed relation.

lemma (in wf-sub-rel) extends-imp-wf-sub-rel :
assumes extends g subs sub subs ′

shows wf-sub-rel subs ′

unfolding wf-sub-rel-def
proof (intro conjI , goal-cases)

case 1 show ?case using wf-sub-rel assms by auto
next

case 2 show ?case
unfolding Ball-def
proof (intro allI impI)

fix v

assume v ∈ subsumees subs ′

hence v = subsumee sub ∨ v ∈ subsumees subs using assms by auto

thus ∃ ! v ′. (v ,v ′) ∈ subs ′

proof (elim disjE , goal-cases)
case 1 show ?thesis
unfolding Ex1-def
proof (rule-tac ?x=subsumer sub in exI , intro conjI)

248

show (v , subsumer sub) ∈ subs ′ using 1 assms by simp
next

have v /∈ subsumees subs using assms 1 by auto

thus ∀ v ′. (v , v ′) ∈ subs ′ −→ v ′ = subsumer sub
using assms by auto force

qed
next

case 2

then obtain v ′ where (v ,v ′) ∈ subs by auto

hence v 6= subsumee sub
using assms unfolding subsumees-conv
by (force simp del : split-paired-All split-paired-Ex)

show ?thesis
using assms

〈v 6= subsumee sub〉

〈(v ,v ′) ∈ subs〉 subsumed-by-one
unfolding subsumees-conv Ex1-def
by (rule-tac ?x=v ′ in exI)

(auto simp del : split-paired-All split-paired-Ex)
qed

qed
next

case 3 show ?case using wf-sub-rel assms by auto
qed

Thus, extending a well-formed sub-relation yields a well-formed sub-
relation.

lemma (in wf-sub-rel-of) extends-imp-wf-sub-rel-of :
assumes extends g subs sub subs ′

shows wf-sub-rel-of g subs ′

using sub-rel-of assms
wf-sub-rel .extends-imp-wf-sub-rel [OF wf-sub-rel assms]

by (simp add : wf-sub-rel-of-def sub-rel-of-def)

A.11.3 Properties of sub-paths in an extension

Extending a sub-relation of a graph preserves the existing sub-paths.

lemma sp-in-extends :
assumes extends g subs sub subs ′

assumes subpath g v1 es v2 subs
shows subpath g v1 es v2 subs ′

using assms ces-Un[of v1 es v2 subs {sub}]
by (simp add : subpath-def sub-rel-of-def)

We want to describe how the addition of a subsumption modifies the

249

set of sub-paths in the graph. As in the previous theories, we will focus
on a small number of theorems expressing sub-paths in extensions as func-
tions of sub-paths in the graphs before extending them (their subsumption
relations). We first express sub-paths starting at the subsumee of the new
subsumption, then the sub-paths starting at any other vertex.

First, we are interested in sub-paths starting at the subsumee of the new
subsumption. Since such vertices have no out-edges, these sub-paths must be
either empty or must be sub-paths from the subsumer of this subsumption.

lemma sp-in-extends-imp1 :
assumes extends g subs (v1,v2) subs ′

assumes subpath g v1 es v subs ′

shows es = [] ∨ subpath g v2 es v subs ′

proof −
have (v1,v2) ∈ subs ′ using assms(1) by fast

moreover
hence ∃ ! v . (v1,v) ∈ subs ′

using assms(1) unfolding Ex1-def subsumees-conv by (rule-tac ?x=v2 in exI)
auto

ultimately
show ?thesis
using assms sp-from-subsumee[of v1 v2 subs ′ g es v]
by auto

qed

After an extension, sub-paths starting at any other vertex than the new
subsumee are either:

• sub-paths of the graph before the extension if they do not “use” the
new subsumption,

• made of a finite number of sub-paths of the graph before the extension
if they use the new subsumption.

In order to state the lemmas expressing these facts, we first need to introduce
the concept of usage of a subsumption by a sub-path.

The idea is that, if a sequence of edges that uses a subsumption sub is
consistent w.r.t. a subsumption relation subs, then sub must occur in the
transitive closure of subs i.e. the consistency of the sequence directly (and
partially) depends on sub. In the case of well-formed subsumption relations,
whose transitive closures equal the relations themselves, the dependency of
the consistency reduces to the fact that sub is a member of subs.

fun uses-sub ::
(′v × nat) ⇒ (′v × nat) edge list ⇒ (′v × nat) ⇒ ((′v × nat) × (′v × nat)) ⇒

bool

250

where
uses-sub v1 [] v2 sub = (v1 6= v2 ∧ sub = (v1,v2))
| uses-sub v1 (e#es) v2 sub = (v1 6= src e ∧ sub = (v1,src e) ∨ uses-sub (tgt e)
es v2 sub)

In order for a sequence es using the subsumption sub to be consistent
w.r.t. to a subsumption relation subs, the subsumption sub must occur in
the transitive closure of subs.

lemma
assumes uses-sub v1 es v2 sub
assumes ces v1 es v2 subs
shows sub ∈ subs+

using assms by (induction es arbitrary : v1) fastforce+

This reduces to the membership of sub to subs when the latter is well-
formed.

lemma (in wf-sub-rel)
assumes uses-sub v1 es v2 sub
assumes ces v1 es v2 subs
shows sub ∈ subs

using assms trancl-eq by (induction es arbitrary : v1) fastforce+

Sub-paths prior to the extension do not use the new subsumption.

lemma extends-and-sp-imp-not-using-sub :
assumes extends g subs (v ,v ′) subs ′

assumes subpath g v1 es v2 subs
shows ¬ uses-sub v1 es v2 (v ,v ′)

proof (intro notI)
assume uses-sub v1 es v2 (v ,v ′)

moreover
have ces v1 es v2 subs using assms(2) by (simp add : subpath-def)

ultimately
have (v ,v ′) ∈ subs+ by (induction es arbitrary : v1) fastforce+

thus False
using assms(1) unfolding subsumees-conv
by (elim conjE) (frule tranclD , force)

qed

An intermediate lemma that we will sometimes need to simplify the
transitive closure of the extended relation.

lemma extends-trancl :
assumes extends g subs sub subs ′

shows subs ′+ = subs+ ∪ {sub}
proof −

obtain v1 v2 where A: sub = (v1,v2)

251

using surjective-pairing by blast

moreover
hence subs ′+ = subs+ ∪ {(v ,v ′). (v ,v1) ∈ subs∗ ∧ (v2,v

′) ∈ subs∗}
using assms by (auto simp add : trancl-insert)

moreover
have {(v ,v ′). (v ,v1) ∈ subs∗ ∧ (v2,v

′) ∈ subs∗} = {(v1,v2)}
unfolding set-eq-iff mem-Collect-eq
apply (subst (1) split-paired-All)
unfolding prod .case insert-iff empty-iff prod .inject
unfolding simp-thms(31)
apply (intro allI iffI conjI)
proof (elim conjE , goal-cases)

case (1 a b) thus ?case
using assms A rtranclD [of a v1 subs] tranclD2 [of a v1 subs]
unfolding subsumers-conv by auto

next
case (2 a b) thus ?case
using assms A rtranclD [of v2 b subs] tranclD [of v2 b subs]
unfolding subsumees-conv by auto

next
case 3 thus ?case by simp

next
case 4 thus ?case by simp

qed

ultimately
show ?thesis by auto

qed

Suppose that the empty sequence is a sub-path leading from v1 to v2

after the extension. Then, it is also a sub-path leading from v1 to v2 in the
graph before the extension if and only if (v1, v2) is not the new subsumption.

lemma sp-Nil-in-extends-imp :
assumes extends g subs (v ,v ′) subs ′

assumes subpath g v1 [] v2 subs ′

shows subpath g v1 [] v2 subs ←→ (v1 6= v ∨ v2 6= v ′)
proof (intro iffI , goal-cases)

case 1 thus ?case
using assms(1)

extends-and-sp-imp-not-using-sub[OF assms(1), of v1 [] v2]
by auto

next
case 2

have v1 = v2 ∨ (v1,v2) ∈ subs ′+

and v1 ∈ Graph.vertices g
using assms(2)

252

by (simp-all add : Nil-sp)

hence v1 = v2 ∨ (v1,v2) ∈ subs+

using 2 extends-trancl [OF assms(1)] by auto

moreover
have v2 ∈ Graph.vertices g
using assms(2) by (intro lst-of-sp-is-vert)

ultimately
show subpath g v1 [] v2 subs
using assms by (auto simp add : subpath-def sub-rel-of-def)

qed

Thus, sub-paths after the extension that do not use the new subsumption
are also sub-paths before the extension.

lemma sp-in-extends-not-using-sub :
assumes extends g subs (v ,v ′) subs ′

assumes subpath g v1 es v2 subs ′

assumes ¬ uses-sub v1 es v2 (v ,v ′)
shows subpath g v1 es v2 subs

using assms(2 ,3)
proof (induction es arbitrary : v1)
case Nil thus ?case using assms(1) by (auto simp add : sp-Nil-in-extends-imp)

next
case (Cons e es ′)

hence SubRel .subpath g (tgt e) es ′ v2 subs ′

by (simp add : sp-Cons)

moreover
have ¬ uses-sub (tgt e) es ′ v2 (v , v ′) using Cons by auto

ultimately
have subpath g (tgt e) es ′ v2 subs using Cons(1) by fast

moreover
have subpath g v1 [e] (tgt e) subs
proof −

have subpath g v1 [e] (tgt e) subs ′

using Cons(2) by (auto simp add : sp-Cons Nil-sp fst-of-sp-is-vert)

moreover
have ¬ uses-sub v1 [e] (tgt e) (v , v ′)
using Cons(3) by auto

ultimately
show ?thesis using assms(1) extends-trancl [OF assms(1)]
by (auto simp add : sp-one sub-rel-of-def)

253

qed

ultimately
show ?case by (simp add : sp-Cons)

qed

We are finally able to describe sub-paths starting at any other vertex
than the new subsumee after the extension. Such sub-paths are made of
a finite number of sub-paths before the extension: the usage of the new
subsumption between such (sub-)sub-paths makes them sub-paths after the
extension. We express this idea as follows. Sub-paths starting at any other
vertex than the new subsumee are either:

• sub-paths of the graph before the extension,

• made of a non-empty prefix that is a sub-path leading to the new
subsumee in the original graph and a (potentially empty) suffix that
is a sub-path starting at the new subsumer after the extension.

For the second case, the lemma sp in extends imp1 as well as the following
lemma could be applied to the suffix in order to decompose it into sub-paths
of the graph before extension (combined with the fact that we only consider
finite sub-paths, we indirectly obtain that sub-paths after the extension are
made of a finite number of sub-paths before the extension, that are made
consistent with the new relation by using the new subsumption).

lemma sp-in-extends-imp2 :
assumes extends g subs (v ,v ′) subs ′

assumes subpath g v1 es v2 subs ′

assumes v1 6= v

shows subpath g v1 es v2 subs ∨ (∃ es1 es2. es = es1 @ es2
∧ es1 6= []
∧ subpath g v1 es1 v subs
∧ subpath g v es2 v2 subs ′)

(is ?P es v1)
proof (case-tac uses-sub v1 es v2 (v ,v ′), goal-cases)

case 1

thus ?thesis
using assms(2 ,3)
proof (induction es arbitrary : v1)

case (Nil v1) thus ?case by auto
next

case (Cons edge es v1)

hence v1 = src edge ∨ (v1, src edge) ∈ subs ′+

and edge ∈ edges g
and subpath g (tgt edge) es v2 subs ′

254

using assms(1)
by (simp-all add : sp-Cons)

hence subpath g v1 [edge] (tgt edge) subs ′

using sp-one by (simp add : subpath-def) fast

have subpath g v1 [edge] (tgt edge) subs
proof −

have ¬ uses-sub v1 [edge] (tgt edge) (v ,v ′)
using assms(1) Cons(2 ,4) by auto

thus ?thesis
using assms(1) 〈subpath g v1 [edge] (tgt edge) subs ′〉

by (elim sp-in-extends-not-using-sub)
qed

thus ?case
proof (case-tac tgt edge = v , goal-cases)

case 1 thus ?thesis
using 〈subpath g v1 [edge] (tgt edge) subs〉

〈subpath g (tgt edge) es v2 subs ′〉

by (intro disjI2 , rule-tac ?x=[edge] in exI) auto
next

case 2

moreover
have uses-sub (tgt edge) es v2 (v ,v ′) using Cons(2 ,4) by simp

ultimately
have ?P es (tgt edge)
using 〈subpath g (tgt edge) es v2 subs ′〉

by (intro Cons.IH)

thus ?thesis
proof (elim disjE exE conjE , goal-cases)

case 1 thus ?thesis
using 〈subpath g (tgt edge) es v2 subs ′〉

〈uses-sub (tgt edge) es v2 (v ,v ′)〉

extends-and-sp-imp-not-using-sub[OF assms(1)]
by fast

next
case (2 es1 es2) thus ?thesis
using 〈es = es1 @ es2〉

〈subpath g v1 [edge] (tgt edge) subs〉

〈subpath g v es2 v2 subs ′〉

by (intro disjI2 , rule-tac ?x=edge # es1 in exI) (auto simp add : sp-Cons)
qed

qed
qed

255

next
case 2 thus ?thesis
using assms(1 ,2) by (simp add : sp-in-extends-not-using-sub)

qed

end
theory RB
imports LTS ArcExt SubExt
begin

A.12 Red-Black Graphs

In this section we define red-black graphs and the five operators that perform
over them. Then, we state and prove a number of intermediate lemmas
about red-black graphs built using only these five operators, in other words:
invariants about our method of transformation of red-black graphs.

Then, we define the notion of red-black paths and state and prove the
main properties of our method, namely its correctness and the fact that it
preserves the set of feasible paths of the program under analysis.

A.12.1 Basic definitions

The type of red-black graphs

We represent red-black graph with the following record. We detail its fields:

• red is the red graph, called red part, which represents the unfolding of
the black part. Its vertices are indexed black vertices,

• black is the original LTS, the black part,

• subs is the subsumption relation over the vertices of red,

• init-conf is the initial configuration,

• confs is a function associating configurations to the vertices of red,

• marked is a function associating truth values to the vertices of red. We
use it to represent the fact that a particular configuration (associated
to a red location) is known to be unsatisfiable,

• strengthenings is a function associating boolean expressions over pro-
gram variables to vertices of the red graph. Those boolean expres-
sions can be seen as invariants that the configuration associated to the
“strengthened” red vertex has to model.

We are only interested by red-black graphs obtained by the inductive re-
lation RedBlack. From now on, we call “red-black graphs” the pre-RedBlack ’s
obtained by RedBlack and “pre-red-black graphs” all other ones.

256

record (′vert , ′var , ′d) pre-RedBlack =
red :: (′vert × nat) rgraph
black :: (′vert , ′var , ′d) lts
subs :: ′vert sub-rel-t
init-conf :: (′var , ′d) conf
confs :: (′vert × nat) ⇒ (′var , ′d) conf
marked :: (′vert × nat) ⇒ bool
strengthenings :: (′vert × nat) ⇒ (′var , ′d) bexp

We call red vertices the set of vertices of the red graph.

abbreviation red-vertices ::
(′vert , ′var , ′d , ′x) pre-RedBlack-scheme ⇒ (′vert × nat) set

where
red-vertices lts ≡ Graph.vertices (red lts)

ui-edge is the operation of “unindexing” the ends of a red edge, thus
giving the corresponding black edge.

abbreviation ui-edge ::
(′vert × nat) edge ⇒ ′vert edge

where
ui-edge e ≡ (| src = fst (src e), tgt = fst (tgt e) |)

We extend this idea to sequences of edges.

abbreviation ui-es ::
(′vert × nat) edge list ⇒ ′vert edge list

where
ui-es es ≡ map ui-edge es

Finite red-black graphs

locale pre-RedBlack =
fixes prb :: (′vert , ′var , ′d) pre-RedBlack

We say that a pre-red-black graph is finite if :

• the path predicate of its initial configuration contains a finite number
of constraints,

• each of these constraints contains a finite number of variables,

• its black part is finite (cf. definition of finite-lts.).

locale finite-RedBlack = pre-RedBlack +
assumes finite-init-pred : finite (pred (init-conf prb))
assumes finite-init-pred-symvars : ∀ e ∈ pred (init-conf prb). finite (Bexp.vars

e)
assumes finite-lts : finite-lts (black prb)

begin
lemmas finite-RedBlack = finite-init-pred finite-init-pred-symvars finite-lts

end

257

A.12.2 Extensions of red-black graphs

We now define the five basic operations that can be performed over red-black
graphs. Since we do not want to model the heuristics part of our prototype, a
number of conditions must be met for each operator to apply. For example,
in our prototype abstractions are performed at nodes that actually have
successors, and these abstractions must be propagated to these successors
in order to keep the symbolic execution graph consistent. Propagation is a
complex task, and it is hard to model in Isabelle/HOL. This is partially due
to the fact that we model the red part as a graph, in which propagation might
not terminate. Instead, we suppose that abstraction must be performed only
at leaves of the red part. This is equivalent to implicitly assume the existence
of an oracle that would tell that we will need to abstract some red vertex
and how to abstract it, as soon as this red vertex is added to the red part.

As in the previous theories, we use predicates instead of functions to
model these transformations to ease writing and reading definitions, proofs,
etc.

Extension by symbolic execution

The core abstract operation of symbolic execution: take a black edge and
turn it red, by symbolic execution of its label. In the following abbreviation,
re is the red edge obtained from the (hypothetical) black edge e that we
want to symbolically execute and c the configuration obtained by symbolic
execution of the label of e. Note that this extension could have been defined
as a predicate that takes only two pre-RedBlacks and evaluates to true if
and only if the second has been obtained by adding a red edge as a result
of symbolic execution. However, making the red edge and the configuration
explicit allows for lighter definitions, lemmas and proofs in the following.

abbreviation se-extends ::
(′vert , ′var , ′d) pre-RedBlack ⇒
(′vert × nat) edge ⇒
(′var , ′d) conf ⇒
(′vert , ′var , ′d) pre-RedBlack ⇒ bool

where
se-extends prb re c prb ′ ≡

ui-edge re ∈ edges (black prb)
∧ ArcExt .extends (red prb) re (red prb ′)
∧ src re /∈ subsumees (subs prb)
∧ SE (confs prb (src re)) (labeling (black prb) (ui-edge re)) c
∧ prb ′ = (| red = red prb ′,

black = black prb,
subs = subs prb,
init-conf = init-conf prb,
confs = (confs prb) (tgt re := c),
marked = (marked prb)(tgt re := marked prb (src re)),

258

strengthenings = strengthenings prb |)

Hiding the new red edge (using an existential quantifier) and the new
configuration makes the following abbreviation more intuitive. However,
this would require using obtain or let ... = ... in ... constructs in
the following lemmas and proofs, making them harder to read and write.

abbreviation se-extends2 ::
(′vert , ′var , ′d) pre-RedBlack ⇒ (′vert , ′var , ′d) pre-RedBlack ⇒ bool

where
se-extends2 prb prb ′ ≡
∃ re ∈ edges (red prb ′).

ui-edge re ∈ edges (black prb)
∧ ArcExt .extends (red prb) re (red prb ′)
∧ src re /∈ subsumees (subs prb)
∧ SE (confs prb (src re)) (labeling (black prb) (ui-edge re)) (confs prb ′ (tgt re))
∧ black prb ′ = black prb
∧ subs prb ′ = subs prb
∧ init-conf prb ′ = init-conf prb
∧ confs prb ′ = (confs prb) (tgt re := confs prb ′ (tgt re))
∧ marked prb ′ = (marked prb)(tgt re := marked prb (src re))
∧ strengthenings prb ′ = strengthenings prb

Extension by marking

The abstract operation of mark-as-unsat. It manages the information - pro-
vided, for example, by an external automated prover, that the configuration
of the red vertex rv has been proved unsatisfiable.

abbreviation mark-extends ::
(′vert , ′var , ′d) pre-RedBlack ⇒ (′vert × nat) ⇒ (′vert , ′var , ′d) pre-RedBlack ⇒

bool
where

mark-extends prb rv prb ′ ≡
rv ∈ red-vertices prb
∧ out-edges (red prb) rv = {}
∧ rv /∈ subsumees (subs prb)
∧ rv /∈ subsumers (subs prb)
∧ ¬ sat (confs prb rv)
∧ prb ′ = (| red = red prb,

black = black prb,
subs = subs prb,
init-conf = init-conf prb,
confs = confs prb,
marked = (λ rv ′. if rv ′ = rv then True else marked prb rv ′),
strengthenings = strengthenings prb |)

Extension by subsumption

The abstract operation of introducing a subsumption link.

259

abbreviation subsum-extends ::
(′vert , ′var , ′d) pre-RedBlack ⇒ ′vert sub-t ⇒ (′vert , ′var , ′d) pre-RedBlack ⇒ bool

where
subsum-extends prb sub prb ′ ≡

SubExt .extends (red prb) (subs prb) sub (subs prb ′)
∧ ¬ marked prb (subsumer sub)
∧ ¬ marked prb (subsumee sub)
∧ confs prb (subsumee sub) v confs prb (subsumer sub)
∧ prb ′ = (| red = red prb,

black = black prb,
subs = insert sub (subs prb),
init-conf = init-conf prb,
confs = confs prb,
marked = marked prb,
strengthenings = strengthenings prb,
. . . = more prb |)

Extension by abstraction

This operation replaces the configuration of a red vertex rv by an abstraction
of this configuration. The way the abstraction is computed is not specified.
However, besides a number of side conditions, it must subsume the former
configuration of rv and must entail its safeguard condition, if any.

abbreviation abstract-extends ::
(′vert , ′var , ′d) pre-RedBlack ⇒
(′vert × nat) ⇒
(′var , ′d) conf ⇒
(′vert , ′var , ′d) pre-RedBlack ⇒ bool

where
abstract-extends prb rv ca prb ′ ≡

rv ∈ red-vertices prb
∧ ¬ marked prb rv
∧ out-edges (red prb) rv = {}
∧ rv /∈ subsumees (subs prb)
∧ abstract (confs prb rv) ca

∧ ca |=c (strengthenings prb rv)
∧ finite (pred ca)
∧ (∀ e ∈ pred ca. finite (vars e))
∧ prb ′ = (| red = red prb,

black = black prb,
subs = subs prb,
init-conf = init-conf prb,
confs = (confs prb)(rv := ca),
marked = marked prb,
strengthenings = strengthenings prb,
. . . = more prb |)

260

Extension by strengthening

This operation consists in labeling a red vertex with a safeguard condition.
It does not actually change the red part, but model the mechanism of pre-
venting too crude abstractions.

abbreviation strengthen-extends ::
(′vert , ′var , ′d) pre-RedBlack ⇒
(′vert × nat) ⇒
(′var , ′d) bexp ⇒
(′vert , ′var , ′d) pre-RedBlack ⇒ bool

where
strengthen-extends prb rv e prb ′ ≡

rv ∈ red-vertices prb
∧ rv /∈ subsumees (subs prb)
∧ confs prb rv |=c e
∧ prb ′ = (| red = red prb,

black = black prb,
subs = subs prb,
init-conf = init-conf prb,
confs = confs prb,
marked = marked prb,
strengthenings = (strengthenings prb)(rv := (λ σ. (strengthenings prb

rv) σ ∧ e σ)),
. . . = more prb |)

A.12.3 Building red-black graphs using extensions

Red-black graphs are pre-red-black graphs built with the following inductive
relation, i.e. using only the five previous pre-red-black graphs transformation
operators, starting from an empty red part.

inductive RedBlack ::
(′vert , ′var , ′d) pre-RedBlack ⇒ bool

where
base :

fst (root (red prb)) = init (black prb) =⇒
edges (red prb) = {} =⇒
subs prb = {} =⇒
(confs prb) (root (red prb)) = init-conf prb =⇒
marked prb = (λ rv . False) =⇒
strengthenings prb = (λ rv . (λ σ. True)) =⇒ RedBlack prb

| se-step :
RedBlack prb =⇒
se-extends prb re c prb ′ =⇒ RedBlack prb ′

| mark-step :
RedBlack prb =⇒
mark-extends prb rv prb ′ =⇒ RedBlack prb ′

261

| subsum-step :
RedBlack prb =⇒
subsum-extends prb sub prb ′ =⇒ RedBlack prb ′

| abstract-step :
RedBlack prb =⇒
abstract-extends prb rv ca prb ′ =⇒ RedBlack prb ′

| strengthen-step :
RedBlack prb =⇒
strengthen-extends prb rv e prb ′ =⇒ RedBlack prb ′

A.12.4 Properties of red-black graphs

Invariants of red-black graphs

Red edges are specific versions of black edges.

lemma ui-re-is-be :
assumes RedBlack prb
assumes re ∈ edges (red prb)
shows ui-edge re ∈ edges (black prb)

using assms by (induct rule : RedBlack .induct) auto

The set of out-going edges from a red vertex is a subset of the set of
out-going edges from the black location it represents.

lemma red-OA-subset-black-OA :
assumes RedBlack prb
shows ui-edge ‘ out-edges (red prb) rv ⊆ out-edges (black prb) (fst rv)

using assms by (induct prb) (fastforce simp add : vertices-def)+

The red root is an indexed version of the black initial location.

lemma consistent-roots :
assumes RedBlack prb
shows fst (root (red prb)) = init (black prb)

using assms by (induct prb) auto

Red locations of a red-black graph are indexed versions of its black lo-
cations.

lemma ui-rv-is-bv :
assumes RedBlack prb
assumes rv ∈ red-vertices prb
shows fst rv ∈ Graph.vertices (black prb)

using assms consistent-roots ui-re-is-be
by (auto simp add : vertices-def image-def Bex-def) fastforce+

The subsumption relation of a red-black graph is a sub-relation of its red
part.

lemma subs-sub-rel-of :

262

assumes RedBlack prb
shows sub-rel-of (red prb) (subs prb)

using assms unfolding sub-rel-of-def
proof (induct prb)

case base thus ?case by simp
next

case se-step thus ?case
by (elim conjE) (auto simp add : vertices-def)

next
case mark-step thus ?case by auto

next
case subsum-step thus ?case by auto

next
case abstract-step thus ?case by simp

next
case strengthen-step thus ?case by simp

qed

The subsumption relation of red-black graph is well-formed.

lemma subs-wf-sub-rel :
assumes RedBlack prb
shows wf-sub-rel (subs prb)

using assms
proof (induct prb)

case base thus ?case by (simp add : wf-sub-rel-def)
next

case se-step thus ?case by force
next

case mark-step thus ?case by (auto simp add : wf-sub-rel-def)
next

case subsum-step thus ?case
by (auto simp add : wf-sub-rel .extends-imp-wf-sub-rel)

next
case abstract-step thus ?case by simp

next
case strengthen-step thus ?case by simp

qed

Using the two previous lemmas, we have that the subsumption relation
of a red-black graph is a well-formed sub-relation of its red-part.

lemma subs-wf-sub-rel-of :
assumes RedBlack prb
shows wf-sub-rel-of (red prb) (subs prb)

using assms subs-sub-rel-of subs-wf-sub-rel by (simp add : wf-sub-rel-of-def) fast

Subsumptions only involve red locations representing the same black
location.

lemma subs-to-same-BL :
assumes RedBlack prb

263

assumes sub ∈ subs prb
shows fst (subsumee sub) = fst (subsumer sub)

using assms subs-wf-sub-rel unfolding wf-sub-rel-def by fast

If a red edge sequence res is consistent between red locations rv1 and
rv2 with respect to the subsumption relation of a red-black graph, then its
unindexed version is consistent between the black locations represented by
rv1 and rv2.

lemma rces-imp-bces :
assumes RedBlack prb
assumes SubRel .ces rv1 res rv2 (subs prb)
shows Graph.ces (fst rv1) (ui-es res) (fst rv2)

using assms
proof (induct res arbitrary : rv1)

case (Nil rv1) thus ?case
using wf-sub-rel .trancl-eq [OF subs-wf-sub-rel] subs-to-same-BL
by fastforce

next
case (Cons re res rv1)

hence 1 : rv1 = src re ∨ (rv1, src re) ∈ (subs prb)+

and 2 : ces (tgt re) res rv2 (subs prb) by simp-all

have src (ui-edge re) = fst rv1

using 1
wf-sub-rel .trancl-eq [OF subs-wf-sub-rel [OF assms(1)]]
subs-to-same-BL[OF assms(1), of (rv1,src re)]

by auto

moreover
have Graph.ces (tgt (ui-edge re)) (ui-es res) (fst rv2)
using assms(1) Cons(1) 2 by simp

ultimately
show ?case by simp

qed

The unindexed version of a sub-path in the red part of a red-black graph
is a sub-path in its black part. This is an important fact: in the end, it helps
proving that set of paths we consider in red-black graphs are paths of the
original LTS. Thus, the same states are computed along these paths.

theorem red-sp-imp-black-sp :
assumes RedBlack prb
assumes subpath (red prb) rv1 res rv2 (subs prb)
shows Graph.subpath (black prb) (fst rv1) (ui-es res) (fst rv2)

using assms rces-imp-bces ui-rv-is-bv ui-re-is-be
unfolding subpath-def Graph.subpath-def by (intro conjI) (fast , fast , fastforce)

Any constraint in the path predicate of a configuration associated to a

264

red location of a red-black graph contains a finite number of variables.

lemma finite-pred-constr-symvars :
assumes RedBlack prb
assumes finite-RedBlack prb
assumes rv ∈ red-vertices prb
shows ∀ e ∈ pred (confs prb rv). finite (Bexp.vars e)

using assms
proof (induct prb arbitrary : rv)

case base thus ?case by (simp add : vertices-def finite-RedBlack-def)
next

case (se-step prb re c ′ prb ′)

hence rv ∈ red-vertices prb ∨ rv = tgt re by (auto simp add : vertices-def)

thus ?case
proof (elim disjE)

assume rv ∈ red-vertices prb

moreover
have finite-RedBlack prb
using se-step(3 ,4) by (auto simp add : finite-RedBlack-def)

ultimately
show ?thesis
using se-step(2 ,3) by (elim conjE) (auto simp add : vertices-def)

next
assume rv = tgt re

moreover
have finite-label (labeling (black prb) (ui-edge re))
using se-step by (auto simp add : finite-RedBlack-def)

moreover
have ∀ e ∈ pred (confs prb (src re)). finite (Bexp.vars e)
using se-step se-step(2)[of src re] unfolding finite-RedBlack-def
by (elim conjE) auto

moreover
have SE (confs prb (src re)) (labeling (black prb) (ui-edge re)) c ′

using se-step by auto

ultimately
show ?thesis using se-step SE-preserves-finiteness1 by fastforce

qed
next

case mark-step thus ?case by (simp add : finite-RedBlack-def)
next

case subsum-step thus ?case by (simp add : finite-RedBlack-def)
next

265

case abstract-step thus ?case by (auto simp add : finite-RedBlack-def)
next

case strengthen-step thus ?case by (simp add : finite-RedBlack-def)
qed

The path predicate of a configuration associated to a red location of a
red-black graph contains a finite number of constraints.

lemma finite-pred :
assumes RedBlack prb
assumes finite-RedBlack prb
assumes rv ∈ red-vertices prb
shows finite (pred (confs prb rv))

using assms
proof (induct prb arbitrary : rv)

case base thus ?case by (simp add : vertices-def finite-RedBlack-def)
next

case (se-step prb re c ′ prb ′)

hence rv ∈ red-vertices prb ∨ rv = tgt re
by (auto simp add : vertices-def)

thus ?case
proof (elim disjE , goal-cases)

case 1 thus ?thesis
using se-step(2)[of rv] se-step(3 ,4)
by (auto simp add : finite-RedBlack-def)

next
case 2

moreover
hence src re ∈ red-vertices prb
and finite (pred (confs prb (src re)))
using se-step(2)[of src re] se-step(3 ,4)
by (auto simp add : finite-RedBlack-def)

ultimately
show ?thesis
using se-step(3) SE-preserves-finiteness2
by auto

qed
next

case mark-step thus ?case by (simp add : finite-RedBlack-def)
next

case subsum-step thus ?case by (simp add : finite-RedBlack-def)
next

case abstract-step thus ?case by (simp add : finite-RedBlack-def)
next

case strengthen-step thus ?case by (simp add : finite-RedBlack-def)
qed

266

Hence, for a red location rv of a red-black graph and any label l, there
exists a configuration that can be obtained by symbolic execution of l from
the configuration associated to rv.

lemma (in finite-RedBlack) ex-se-succ :
assumes RedBlack prb
assumes rv ∈ red-vertices prb
shows ∃ c ′. SE (confs prb rv) l c ′

using finite-RedBlack assms
finite-imp-ex-SE-succ[of confs prb rv]
finite-pred [of prb rv]
finite-pred-constr-symvars[of prb rv]

unfolding finite-RedBlack-def by fast

Generalization of the previous lemma to a list of labels.

lemma (in finite-RedBlack) ex-SE-star-succ :
assumes RedBlack prb
assumes rv ∈ red-vertices prb
assumes finite-labels ls
shows ∃ c ′. SE-star (confs prb rv) ls c ′

using finite-RedBlack assms
finite-imp-ex-SE-star-succ[of confs prb rv ls]
finite-pred [OF assms(1), of rv]
finite-pred-constr-symvars[OF assms(1), of rv]

unfolding finite-RedBlack-def by simp

Hence, for any red sub-path, there exists a configuration that can be
obtained by symbolic execution of its trace from the configuration associated
to its source.

lemma (in finite-RedBlack) sp-imp-ex-SE-star-succ :
assumes RedBlack prb
assumes subpath (red prb) rv1 res rv2 (subs prb)
shows ∃ c. SE-star

(confs prb rv1)
(trace (ui-es res) (labeling (black prb)))
c

using finite-RedBlack assms ex-SE-star-succ
by (simp add : subpath-def finite-RedBlack-def)

The configuration associated to a red location rl is updatable.

lemma (in finite-RedBlack)
assumes RedBlack prb
assumes rv ∈ red-vertices prb
shows updatable (confs prb rv)

using finite-RedBlack assms
finite-conj [OF

finite-pred [OF assms(1)]
finite-pred-constr-symvars[OF assms(1)]]

finite-pred-imp-SE-updatable

267

unfolding finite-RedBlack-def by fast

The configuration associated to the first member of a subsumption is
subsumed by the configuration at its second member.

lemma sub-subsumed :
assumes RedBlack prb
assumes sub ∈ subs prb
shows confs prb (subsumee sub) v confs prb (subsumer sub)

using assms
proof (induct prb)

case base thus ?case by simp
next

case (se-step prb re c ′ prb ′)

moreover
hence sub ∈ subs prb by auto

hence subsumee sub ∈ red-vertices prb
and subsumer sub ∈ red-vertices prb
using se-step(1) subs-sub-rel-of
unfolding sub-rel-of-def by fast+

moreover
have tgt re /∈ red-vertices prb using se-step by auto

ultimately
show ?case by auto

next
case mark-step thus ?case by simp

next
case (subsum-step prb sub prb ′) thus ?case by auto

next
case (abstract-step prb rv ca prb ′)

hence rv 6= subsumee sub by auto

show ?case
proof (case-tac rv = subsumer sub)

assume rv = subsumer sub

moreover
hence confs prb (subsumer sub) v confs prb ′ (subsumer sub)
using abstract-step by (auto simp add : abstract-def)

ultimately
show ?thesis
using abstract-step

subsums-trans[of confs prb (subsumee sub)
confs prb (subsumer sub)

268

confs prb ′ (subsumer sub)]
by (simp add : subsums-refl)

next
assume rv 6= subsumer sub thus ?thesis using abstract-step 〈rv 6= subsumee

sub〉 by simp
qed

next
case strengthen-step thus ?case by simp

qed

Simplification lemmas for sub-paths of the red part.

lemma rb-Nil-sp :
assumes RedBlack prb
shows subpath (red prb) rv1 [] rv2 (subs prb) =

(rv1 ∈ red-vertices prb ∧ (rv1 = rv2 ∨ (rv1,rv2) ∈ (subs prb)))
using assms subs-wf-sub-rel subs-sub-rel-of wf-sub-rel .Nil-sp by fast

lemma rb-sp-one :
assumes RedBlack prb
shows subpath (red prb) rv1 [re] rv2 (subs prb) =

(sub-rel-of (red prb) (subs prb)
∧ (rv1 = src re ∨ (rv1, src re) ∈ (subs prb))
∧ re ∈ edges (red prb) ∧ (tgt re = rv2 ∨ (tgt re, rv2) ∈ (subs prb)))

using assms subs-wf-sub-rel wf-sub-rel .sp-one by fast

lemma rb-sp-Cons :
assumes RedBlack prb
shows subpath (red prb) rv1 (re # res) rv2 (subs prb) =

(sub-rel-of (red prb) (subs prb)
∧ (rv1 = src re ∨ (rv1, src re) ∈ subs prb)
∧ re ∈ edges (red prb)
∧ subpath (red prb) (tgt re) res rv2 (subs prb))

using assms subs-wf-sub-rel wf-sub-rel .sp-Cons by fast

lemma rb-sp-append-one :
assumes RedBlack prb
shows subpath (red prb) rv1 (res @ [re]) rv2 (subs prb) =

(subpath (red prb) rv1 res (src re) (subs prb)
∧ re ∈ edges (red prb)
∧ (tgt re = rv2 ∨ (tgt re, rv2) ∈ subs prb))

using assms subs-wf-sub-rel wf-sub-rel .sp-append-one sp-append-one by fast

269

A.12.5 Relation between red-vertices

The following key-theorem describes the relation between two red locations
that are linked by a red sub-path. In a classical symbolic execution tree,
the configuration at the end should be the result of symbolic execution of
the trace of the sub-path from the configuration at its source. Here, due
to the facts that abstractions might have occurred and that we consider
sub-paths going through subsumption links, the configuration at the end
subsumes the configuration one would obtain by symbolic execution of the
trace. Note however that this is only true for configurations computed dur-
ing the analysis: concrete execution of the sub-paths would yield the same
program states than their counterparts in the original LTS.

theorem (in finite-RedBlack) SE-rel :
assumes RedBlack prb
assumes subpath (red prb) rv1 res rv2 (subs prb)
assumes SE-star (confs prb rv1) (trace (ui-es res) (labeling (black prb))) c
shows c v (confs prb rv2)

using assms finite-RedBlack
find-theorems name:RedBlack . name:induct
proof (induct arbitrary : rv1 res rv2 c rule : RedBlack .induct)

— If the red part is empty, then rv1 = rv2 and confs prb rv1 = confs prb rv2

which prooves the goal, subsumption being reflexive.

case (base prb rv1 res rv2 c) thus ?case
by (force simp add : subpath-def Nil-sp subsums-refl)

next
— We split the goal into four cases:

• rv1 and rv2 are vertices of the old red part,

• rv1 is a vertex in the old red part, rv2 is the target of the new edge re,

• rv1 is the target of re, rv2 is a vertex of the old red part,

• rv1 are rv2 both equal to the target of re.

case (se-step prb re c ′ prb ′ rv1 res rv2 c)

have rv1 ∈ red-vertices prb ′

and rv2 ∈ red-vertices prb ′

using fst-of-sp-is-vert [OF se-step(4)]
lst-of-sp-is-vert [OF se-step(4)]

by simp-all

hence rv1 ∈ red-vertices prb ∧ rv1 6= tgt re ∨ rv1 = tgt re
and rv2 ∈ red-vertices prb ∧ rv2 6= tgt re ∨ rv2 = tgt re
using se-step by (auto simp add : vertices-def)

270

thus ?case
proof (elim disjE conjE , goal-cases)

— Both rv1 and rv2 are vertices of the old red part.
case 1

— Hence res is also a subpath from rv1 to rv2 in the old red part.
moreover
hence subpath (red prb) rv1 res rv2 (subs prb)
using se-step(1 ,3 ,4)

sub-rel-of .sp-from-old-verts-imp-sp-in-old
[OF subs-sub-rel-of , of prb re red prb ′ rv1 rv2 res]

by auto

— Thus, we use the induction hypothesis (IH) to conclude.
ultimately
show ?thesis using se-step
by (fastforce simp add : finite-RedBlack-def)

next
— rv1 is a vertex of the old red part, rv2 is the target of re.
case 2

— Hence res is empty or re occurs only one time in res : at its end.
hence ∃ res ′. res = res ′ @ [re]

∧ re /∈ set res ′

∧ subpath (red prb) rv1 res ′ (src re) (subs prb)
using se-step

sub-rel-of .sp-to-new-edge-tgt-imp
[OF subs-sub-rel-of , of prb re red prb ′ rv1 res]

by auto

thus ?thesis
proof (elim exE conjE)

— If res = res ′ @ [re], then there exists a configuration c ′ such that :

• c ′ is obtained from confs prb rv1 by symbolic execution of (the trace of) res,

• c ′ is subsumed by confs prb (src re) (by IH),

• c is obtained from c ′ by symbolic execution of re.

Moreover, we have that confs prb rv2 is obtained from confs prb (src re) by symbolic
execution of re.
Ultimately, we proof the goal by monotonicity of symbolic execution wrt subsump-
tion.

fix res ′

assume res = res ′ @ [re]
and re /∈ set res ′

and subpath (red prb) rv1 res ′ (src re) (subs prb)

moreover

271

then obtain c ′

where SE-star (confs prb rv1) (trace (ui-es res ′) (labeling (black prb))) c ′

and SE c ′ (labeling (black prb) (ui-edge re)) c
using se-step 2 SE-star-append-one by auto blast

ultimately
have c ′ v (confs prb (src re)) using se-step by fastforce

thus ?thesis
using se-step 〈rv1 6= tgt re〉 2

〈SE c ′ (labeling (black prb) (ui-edge re)) c〉

by (auto simp add : SE-mono-for-sub)
qed

next
— rv1 is the target of re. Hence res is empty and rv2 also equals tgt re, which

contradicts our hypothesis.
case 3

moreover
have rv1 = rv2

proof −
have (rv1,rv2) ∈ (subs prb ′)
using se-step 3

sub-rel-of .sp-from-tgt-in-extends-is-Nil
[OF subs-sub-rel-of [OF se-step(1)], of re red prb ′ res rv2]
rb-Nil-sp[OF RedBlack .se-step[OF se-step(1 ,3)], of rv1 rv2]

by auto

hence rv1 ∈ subsumees (subs prb) using se-step(3) by force

thus ?thesis
using se-step 〈rv1 = tgt re〉 subs-sub-rel-of [OF se-step(1)]
by (auto simp add : sub-rel-of-def)

qed

ultimately
show ?thesis by simp

next
— Finally, if rv1 and rv2 both equal tgt re, then we conclude using the fact that

the subsumption is reflexive.
case 4

moreover
hence res = []
using se-step

sub-rel-of .sp-from-tgt-in-extends-is-Nil
[OF subs-sub-rel-of [OF se-step(1)], of re red prb ′ res rv2]

by auto

272

ultimately
show ?thesis using se-step by (simp add : subsums-refl)

qed

next
— Marking a red vertex does not affect the configurations associated to red

vertices, hence this case is trivial when observing that a subpath after marking is
a subpath before marking (which allows to apply the IH).

case (mark-step prb rv prb ′) thus ?case by simp

next
case (subsum-step prb sub prb ′ rv1 res rv2 c)

— The fact that prb ′ is also red-black will be needed several times in the following.

have RB ′ : RedBlack prb ′ by (rule RedBlack .subsum-step[OF subsum-step(1 ,3)])

— First, we suppose that res starts at the newly subsumed red vertex.
show ?case
proof (case-tac rv1 = subsumee sub)

— In this case, res is either empty, or a subpath starting at the subsumer of the
new subsumption.

assume rv1 = subsumee sub

hence res = [] ∨ subpath (red prb ′) (subsumer sub) res rv2 (subs prb ′)
using subsum-step(3 ,4)

sp-in-extends-imp1 [of subsumee sub subsumer sub red prb subs prb]
by simp

thus ?thesis
proof (elim disjE)

— If res is empty, then rv1 equals rv2 or (rv1, rv2) is in the new subsumption
relation.

assume res = []

hence rv1 = rv2 ∨ (rv1,rv2) ∈ (subs prb ′)
using subsum-step rb-Nil-sp[OF RB ′] by fast

thus ?thesis
proof (elim disjE)

— If rv1 = rv2, their configurations are also equal. Moreover, res being
empty, c is the configuration at rv1. We conclude using reflexivity of subsumption.

assume rv1 = rv2 thus ?thesis
using subsum-step(5) 〈res = []〉

by (simp add : subsums-refl)

273

next
— If (rv1, rv2) is in the new subsumption relation, then the configuration

at rv1 is subsumed by the configuration at rv2. We conclude using the fact c is the
configuration at rv1.

assume (rv1, rv2) ∈ (subs prb ′)
thus ?thesis
using subsum-step(5) 〈res = []〉

sub-subsumed [OF RB ′, of (rv1,rv2)]
by simp

qed

next
— If res is also a subpath from the subsumer of the new subsumption, we

show the goal by (backward) induction on res.
assume subpath (red prb ′) (subsumer sub) res rv2 (subs prb ′)

thus ?thesis
using subsum-step(5)
proof (induct res arbitrary : rv2 c rule : rev-induct , goal-cases)

— If the red subpath is empty, then (rv1, rv2) is the new subsumption,
which gives the goal by definition of λprb sub prb ′. (subsumee sub 6= subsumer
sub ∧ fst (subsumee sub) = fst (subsumer sub) ∧ subsumee sub ∈ red-vertices
prb ∧ subsumee sub /∈ subsumers (subs prb) ∧ subsumee sub /∈ subsumees (subs
prb) ∧ subsumer sub ∈ red-vertices prb ∧ subsumer sub /∈ subsumees (subs prb)
∧ out-edges (red prb) (subsumee sub) = {} ∧ subs prb ′ = subs prb ∪ {sub}) ∧ ¬
marked prb (subsumer sub) ∧ ¬ marked prb (subsumee sub) ∧ confs prb (subsumee
sub) v confs prb (subsumer sub) ∧ prb ′ = (|red = red prb, black = black prb, subs
= insert sub (subs prb), init-conf = init-conf prb, confs = confs prb, marked =
marked prb, strengthenings = strengthenings prb, . . . = pre-RedBlack .more prb|).

case (1 rv2 c)

have rv2 = subsumer sub
proof −

have (subsumer sub,rv2) /∈ subs prb ′

proof (intro notI)
assume (subsumer sub,rv2) ∈ subs prb ′

hence subsumer sub ∈ subsumees (subs prb ′) by force

moreover
have subsumer sub ∈ subsumers (subs prb ′)
using subsum-step(3) by force

ultimately
show False
using subs-wf-sub-rel [OF RB ′]
unfolding wf-sub-rel-def
by auto

qed

274

thus ?thesis using 1 (1) rb-Nil-sp[OF RB ′] by auto
qed

thus ?case
using subsum-step(3) 1 (2) 〈rv1 = subsumee sub〉 by simp

next
— Inductive case : the red subpath has the form res @ [re].
case (2 re res rv2 c)

— We call :

• c ′ the configuration obtained by symbolic execution of res from the configu-
ration at rv1,

• c ′′ the configuration obtained by symbolic execution of re from the configu-
ration at the source of re.

We show that c ′ is subsumed by the configuration at the source of re (using ”in-
ternal” IH), hence c is subsumed by c ′′, by monotonicity of symbolic execution for
subsumption.
Moreover, we show that c ′′ is subsumed by the configuration at the target of re,
using the fact that [re] is a subpath from the source of re to its target in the old
red part with the ”external” IH.
Finally, we show that the configuration at the target of re is subsumed by the
configuration at rv2 by observing that the target of re is either rv2, either subsumed
by rv2.
We conclude using transitivity of subsumption.

hence A : subpath (red prb ′) (subsumer sub) res (src re) (subs prb ′)
and B : subpath (red prb ′) (src re) [re] (tgt re) (subs prb ′)
using subs-sub-rel-of [OF RB ′] by (auto simp add : sp-append-one sp-one)

obtain c ′

where C : SE-star (confs prb ′ rv1) (trace (ui-es res) (labeling (black prb ′)))
c ′

and D : SE c ′ (labeling (black prb ′) (ui-edge re)) c
using 2 by (simp add : SE-star-append-one) blast

obtain c ′′

where E : SE (confs prb ′ (src re)) (labeling (black prb ′) (ui-edge re)) c ′′

using subsum-step(6−8)
〈subpath (red prb ′) (src re) [re] (tgt re) (subs prb ′)〉

RB ′ finite-RedBlack .ex-se-succ[of prb ′ src re]
unfolding finite-RedBlack-def
by (simp add : SE-star-one fst-of-sp-is-vert) blast

have c v c ′′

proof −
have c ′ v confs prb ′ (src re) using 2 (1) A B C D by fast

275

thus ?thesis using D E SE-mono-for-sub by fast
qed

moreover
have c ′′ v confs prb ′ (tgt re)
proof −

have subpath (red prb) (src re) [re] (tgt re) (subs prb)
proof −

have src re ∈ red-vertices prb ′

and tgt re ∈ red-vertices prb ′

and re ∈ edges (red prb ′)
using B by (auto simp add : vertices-def sp-one)

hence src re ∈ red-vertices prb
and tgt re ∈ red-vertices prb
and re ∈ edges (red prb)
using subsum-step(3) by auto

thus ?thesis
using subs-sub-rel-of [OF subsum-step(1)]
by (simp add : sp-one)

qed

thus ?thesis
using subsum-step(2 ,3 ,6−8) E
by (simp add : SE-star-one)

qed

moreover
have confs prb ′ (tgt re) v confs prb ′ rv2

proof −
have tgt re = rv2 ∨ (tgt re,rv2) ∈ subs prb ′

using 2 (2) rb-sp-append-one[OF RB ′] by auto

thus ?thesis
proof (elim disjE)

assume tgt re = rv2

thus ?thesis
by (simp add : subsums-refl)

next
assume (tgt re, rv2) ∈ (subs prb ′)
thus ?thesis
using sub-subsumed RB ′ by fastforce

qed
qed

ultimately
show ?case using subsums-trans subsums-trans by fast

qed

276

qed

next

— If res does not start at the newly subsumed red vertex, then either res is a
subpath in the old red part, either it can be split into two parts res1 and res2 such
that :

• res1 is a subpath in the old red part from rv1 to the newly subsumed vertex,

• res2 is a subpath in the new red part from the newly subsumed vertex to
rv2.

assume rv1 6= subsumee sub

hence subpath (red prb) rv1 res rv2 (subs prb) ∨
(∃ res1 res2. res = res1 @ res2

∧ res1 6= []
∧ subpath (red prb) rv1 res1 (subsumee sub) (subs prb)
∧ subpath (red prb ′) (subsumee sub) res2 rv2 (subs prb ′))

using subsum-step(1 ,3 ,4)
sp-in-extends-imp2
[of subsumee sub subsumer sub red prb subs prb]

by auto

thus ?thesis
proof (elim disjE exE conjE)

— In the first case, we conclude using external IH.
assume subpath (red prb) rv1 res rv2 (subs prb)
thus ?thesis using subsum-step by simp

next
— We call :

• c1 the configuration obtained from the configuration at rv1 by symbolic ex-
ecution of res1 and such that c is obtained from c1 by symbolic execution of
res2,

• c2 the configuration obtained from the configuration at the newly subsumed
red vertex by symbolic execution of res2.

We show that c is subsumed by c2 and that c2 is subsumed by the configuration
at rv2. We conclude by transitivity of subsumption.

fix res1 res2

def t-res1 ≡ trace (ui-es res1) (labeling (black prb ′))
def t-res2 ≡ trace (ui-es res2) (labeling (black prb ′))

assume res = res1 @ res2
and res1 6= []

277

and subpath (red prb) rv1 res1 (subsumee sub) (subs prb)
and subpath (red prb ′) (subsumee sub) res2 rv2 (subs prb ′)

moreover
then obtain c1 c2

where SE-star (confs prb ′ rv1) t-res1 c1

and SE-star c1 t-res2 c
and SE-star (confs prb ′ (subsumee sub)) t-res2 c2

using subsum-step(1 ,3 ,5 ,6−8) RB ′

finite-RedBlack .ex-SE-star-succ[of prb rv1 t-res1]
finite-RedBlack .ex-SE-star-succ[of prb ′ subsumee sub t-res2]

unfolding finite-RedBlack-def t-res1-def t-res2-def
by (simp add : fst-of-sp-is-vert SE-star-append) blast

ultimately
have c v c2

proof −
have c1 v confs prb ′ (subsumee sub)
using subsum-step(2 ,3 ,6−8)

〈subpath (red prb) rv1 res1 (subsumee sub) (subs prb)〉

〈SE-star (confs prb ′ rv1) t-res1 c1〉

by (auto simp add : t-res1-def t-res2-def)

thus ?thesis
using 〈SE-star c1 t-res2 c〉

〈SE-star (confs prb ′ (subsumee sub)) t-res2 c2〉

SE-star-mono-for-sub
by fast

qed

moreover
— Here we have to proceed by backward induction on res2.
have c2 v confs prb ′ rv2

using 〈subpath (red prb ′) (subsumee sub) res2 rv2 (subs prb ′)〉

〈SE-star (confs prb ′ (subsumee sub)) t-res2 c2〉

unfolding t-res2-def
proof (induct res2 arbitrary : rv2 c2 rule : rev-induct , goal-cases)

— If the suffix is empty, then either subsumee sub = rv2, or (subsumee sub,
rv2) is in the new subsumption relation.

case (1 rv2 c2)

hence subsumee sub = rv2 ∨ (subsumee sub, rv2)∈subs prb ′

using rb-Nil-sp[OF RB ′] by simp

thus ?case
proof (elim disjE)

— In the first case, we have: c = confs prb ′ (subsumee sub) and c = confs
prb ′ rv2. We conclude by reflexivity of the subsumption.

assume subsumee sub = rv2

278

thus ?thesis using 1 (2) by (simp add : subsums-refl)
next

— In the second case, we have that c = confs prb ′ (subsumee sub) and
confs prb ′ (subsumee sub) v confs prb ′ rv2, qed.

assume (subsumee sub, rv2) ∈ subs prb ′

thus ?thesis using 1 (2) sub-subsumed [OF RB ′, of (subsumee sub, rv2)]
by simp

qed

next
— Inductive case : the suffix has the form res2 @ [re].
case (2 re res2 rv2 c2)

— We call :

• c3 the configuration obtained from the configuration at the newly subsumed
red vertex. c2 is obtained from c3 by symbolic execution of re,

• c4 the configuration obtained from the configuration at the source of re by
symbolic execution of re.

By internal IH, we first show that c3 is subsumed by the configuration at the
source of re. Thus c2 is subsumed by c4, by monotonicity of symbolic execution
w.r.t. subsumption.
Then, we show that c4 is subsumed by the configuration at the target of re, using
the external IH.
Finally, we show that the configuration at the target of re is subsumed by the
configuration at rv2, by observing that either tgt re = rv2, or that (tgt re, rv2) is
in the new subsumption relation.
We conclude by transitivity of the subsumption relation.

have A : subpath (red prb ′) (subsumee sub) res2 (src re) (subs prb ′)
and B : subpath (red prb ′) (src re) [re] rv2 (subs prb ′)
using 2 (2) subs-wf-sub-rel [OF RB ′] subs-wf-sub-rel-of [OF RB ′]
by (simp-all only : wf-sub-rel .sp-append-one)

(simp add : wf-sub-rel .sp-one wf-sub-rel-of-def)

obtain c3

where C : SE-star (confs prb ′ (subsumee sub)) (trace (ui-es res2) (labeling
(black prb ′))) c3

and D : SE c3 (labeling (black prb ′) (ui-edge re)) c2

using 2 (3) subsum-step(6−8) RB ′

finite-RedBlack .ex-se-succ[of prb ′ src re]
by (simp add : SE-star-append-one) blast

obtain c4

where E : SE (confs prb ′ (src re)) (labeling (black prb ′) (ui-edge re)) c4

using subsum-step(6−8) RB ′ B
finite-RedBlack .ex-se-succ[of prb ′ src re]

unfolding finite-RedBlack-def
by (simp add : fst-of-sp-is-vert SE-star-append) blast

279

have c2 v c4

proof −
have c3 v confs prb ′ (src re) using 2 (1) A C by fast

thus ?thesis using D E SE-mono-for-sub by fast
qed

moreover
have c4 v confs prb ′ (tgt re)
proof −

have subpath (red prb) (src re) [re] (tgt re) (subs prb)
proof −

have src re ∈ red-vertices prb ′

and tgt re ∈ red-vertices prb ′

and re ∈ edges (red prb ′)
using B by (auto simp add : vertices-def sp-one)

hence src re ∈ red-vertices prb
and tgt re ∈ red-vertices prb
and re ∈ edges (red prb)
using subsum-step(3) by auto

thus ?thesis
using subs-sub-rel-of [OF subsum-step(1)]
by (simp add : sp-one)

qed

thus ?thesis
using subsum-step(2 ,3 ,6−8) E
by (simp add : SE-star-one)

qed

moreover
have confs prb ′ (tgt re) v confs prb ′ rv2

proof −
have tgt re = rv2 ∨ (tgt re, rv2) ∈ (subs prb ′)
using subsum-step 2 rb-sp-append-one[OF RB ′, of subsumee sub res2 re]
by (auto simp add : vertices-def subpath-def)

thus ?thesis
proof (elim disjE)

assume tgt re = rv2

thus ?thesis by (simp add : subsums-refl)
next

assume (tgt re, rv2) ∈ (subs prb ′)
thus ?thesis
using sub-subsumed RB ′

by fastforce

280

qed
qed

ultimately
show ?case using subsums-trans subsums-trans by fast

qed

ultimately
show ?thesis by (rule subsums-trans)

qed
qed

next
case (abstract-step prb rv ca prb ′ rv1 res rv2 c)

show ?case
proof (case-tac rv1 = rv , goal-cases)

— We first suppose that rv1 is the red vertex where the abstraction took place.
In this case, we have that res is empty and rv2 = rv1. Hence c is the configuration
at rv2 (after abstraction). We conclude using reflexivity of subsumption.

case 1

moreover
hence res = []
using abstract-step

sp-from-de-empty [of rv1 subs prb red prb res rv2]
by simp

moreover
have rv2 = rv
proof −

have rv1 = rv2 ∨ (rv1, rv2) ∈ (subs prb)
using abstract-step 〈res = []〉

rb-Nil-sp[OF RedBlack .abstract-step[OF abstract-step(1 ,3)]]
by simp

moreover
have (rv1, rv2) /∈ (subs prb)
using abstract-step 1
unfolding Ball-def subsumees-conv
by (intro notI) blast

ultimately
show ?thesis using 1 by simp

qed

ultimately
show ?thesis using abstract-step(5) by (simp add : subsums-refl)

next

281

— Suppose that rv1 is not the red vertex where the subsumption took place.
case 2

show ?thesis
proof (case-tac rv2 = rv)
— We first suppose that rv2 is the newly abstracted red vertex. Then we have

that the new configuration at rv2 subsums the old configuration at this red vertex.
We conclude by use of IH and transitivity of subsumption.

assume rv2 = rv

hence confs prb rv2 v confs prb ′ rv2

using abstract-step by (simp add : abstract-def)

moreover
have c v confs prb rv2 using abstract-step 2 by auto

ultimately
show ?thesis using subsums-trans by fast

next
assume rv2 6= rv thus ?thesis using abstract-step 2 by simp

qed
qed

next
— Strengthening a red vertex does not affect the red part, thus this case is trivial.

case strengthen-step thus ?case by simp
qed

A.12.6 Properties about marking.

A configuration which is indeed satisfiable can not be marked.

lemma sat-not-marked :
assumes RedBlack prb
assumes rv ∈ red-vertices prb
assumes sat (confs prb rv)
shows ¬ marked prb rv

using assms
proof (induct prb arbitrary : rv)

case base thus ?case by simp
next

case (se-step prb re c prb ′)

hence rv ∈ red-vertices prb ∨ rv = tgt re by (auto simp add : vertices-def)

thus ?case
proof (elim disjE , goal-cases)

case 1
moreover

282

hence rv 6= tgt re using se-step(3) by (auto simp add : vertices-def)
ultimately
show ?thesis using se-step by (elim conjE) auto

next
case 2

moreover
hence sat (confs prb (src re)) using se-step(3 ,5) SE-sat-imp-sat by auto

ultimately
show ?thesis using se-step(2 ,3) by (elim conjE) auto

qed
next

case (mark-step prb rv ′ prb ′)

moreover
hence rv 6= rv ′ and (rv ,rv ′) /∈ subs prb
using sub-subsumed [OF mark-step(1), of (rv ,rv ′)] unsat-subs-unsat by auto

ultimately
show ?case by auto

next
case subsum-step thus ?case by auto

next
case (abstract-step prb rv ′ ca prb ′) thus ?case by (case-tac rv ′ = rv) simp+

next
case strengthen-step thus ?case by simp

qed

On the other hand, a red-location which is marked unsat is indeed logi-
cally unsatisfiable.

lemma
assumes RedBlack prb
assumes rv ∈ red-vertices prb
assumes marked prb rv
shows ¬ sat (confs prb rv)

using assms
proof (induct prb arbitrary : rv)

case base thus ?case by simp
next

case (se-step prb re c prb ′)

hence rv ∈ red-vertices prb ∨ rv = tgt re by (auto simp add : vertices-def)

thus ?case
proof (elim disjE , goal-cases)

case 1

283

moreover
hence rv 6= tgt re using se-step(3) by auto
hence marked prb rv using se-step by auto

ultimately
have ¬ sat (confs prb rv) by (rule se-step(2))

thus ?thesis using se-step(3) 〈rv 6= tgt re〉 by auto
next

case 2

moreover
hence marked prb (src re) using se-step(3 ,5) by auto

ultimately
have ¬ sat (confs prb (src re)) using se-step(2 ,3) by auto

thus ?thesis using se-step(3) 〈rv = tgt re〉 unsat-imp-SE-unsat by (elim conjE)
auto

qed
next

case (mark-step prb rv ′ prb ′) thus ?case by (case-tac rv ′ = rv) auto
next

case subsum-step thus ?case by simp

next
case (abstract-step - rv ′ -) thus ?case by (case-tac rv ′ = rv) simp+

next
case strengthen-step thus ?case by simp

qed

Red vertices involved in subsumptions are not marked.

lemma subsumee-not-marked :
assumes RedBlack prb
assumes sub ∈ subs prb
shows ¬ marked prb (subsumee sub)

using assms
proof (induct prb)

case base thus ?case by simp
next

case (se-step prb re c prb ′)

moreover
hence subsumee sub 6= tgt re
using subs-wf-sub-rel-of [OF se-step(1)]
by (elim conjE , auto simp add : wf-sub-rel-of-def sub-rel-of-def)

284

ultimately
show ?case by auto

next
case mark-step thus ?case by auto

next
case subsum-step thus ?case by auto

next
case abstract-step thus ?case by auto

next
case strengthen-step thus ?case by simp

qed

lemma subsumer-not-marked :
assumes RedBlack prb
assumes sub ∈ subs prb
shows ¬ marked prb (subsumer sub)

using assms
proof (induct prb)

case base thus ?case by simp
next

case (se-step prb re c prb ′)

moreover
hence subsumer sub 6= tgt re
using subs-wf-sub-rel-of [OF se-step(1)]
by (elim conjE , auto simp add : wf-sub-rel-of-def sub-rel-of-def)

ultimately
show ?case by auto

next
case (mark-step prb rv prb ′) thus ?case by auto

next
case (subsum-step prb sub ′ prb ′) thus ?case by auto

next
case abstract-step thus ?case by simp

next
case strengthen-step thus ?case by simp

qed

If the target of a red edge is not marked, then its source is also not
marked.

lemma tgt-not-marked-imp :
assumes RedBlack prb
assumes re ∈ edges (red prb)

285

assumes ¬ marked prb (tgt re)
shows ¬ marked prb (src re)

using assms
proof (induct prb arbitrary : re)

case base thus ?case by simp
next

case se-step thus ?case by (force simp add : vertices-def image-def)
next

case (mark-step prb rv prb ′ re) thus ?case by (case-tac tgt re = rv) auto
next

case subsum-step thus ?case by simp

next
case abstract-step thus ?case by simp

next
case strengthen-step thus ?case by simp

qed

Given a red sub-path leading from red location rv1 to red location rv2,
if rv2 is not marked, then rv1 is also not marked (this lemma is not used).

lemma
assumes RedBlack prb
assumes subpath (red prb) rv1 res rv2 (subs prb)
assumes ¬ marked prb rv2

shows ¬ marked prb rv1

using assms
proof (induct res arbitrary : rv1)

case Nil

hence rv1 = rv2 ∨ (rv1,rv2) ∈ subs prb by (simp add : rb-Nil-sp)

thus ?case
proof (elim disjE , goal-cases)

case 1 thus ?case using Nil by simp
next

case 2 show ?case using Nil subsumee-not-marked [OF Nil(1) 2] by simp
qed

next
case (Cons re res)

thus ?case
unfolding rb-sp-Cons[OF Cons(2), of rv1 re res rv2]
proof (elim conjE disjE , goal-cases)

case 1

moreover
hence ¬ marked prb (tgt re) by simp

286

moreover
have re ∈ edges (red prb) using Cons(3) rb-sp-Cons[OF Cons(2), of rv1 re

res rv2] by fast

ultimately
show ?thesis using tgt-not-marked-imp[OF Cons(2)] by fast

next
case 2 thus ?thesis using subsumee-not-marked [OF Cons(2)] by fastforce

qed
qed

A.12.7 Fringe of a red-black graph

We have stated and proved a number of properties of red-black graphs. In
the end, we are mainly interested in proving that the set of paths of such
red-black graphs are subsets of the set of feasible paths of their black part.
Before defining the set of paths of red-black graphs, we first introduce the
intermediate concept of fringe of the red part. Intuitively, the fringe is the
set of red vertices from which we can approximate more precisely the set
of feasible paths of the black part. This includes red vertices that have not
been subsumed yet, that are not marked and from which some black edges
have not been yet symbolically executed (i.e. that have no red counterpart
from these red vertices).

Definition

The fringe is the set of red locations from which there exist black edges that
have not been followed yet.

definition fringe ::
(′vert , ′var , ′d , ′x) pre-RedBlack-scheme ⇒ (′vert × nat) set

where
fringe prb ≡ {rv ∈ red-vertices prb.

rv /∈ subsumees (subs prb) ∧
¬ marked prb rv ∧
ui-edge ‘ out-edges (red prb) rv ⊂ out-edges (black prb) (fst rv)}

Fringe of an empty red-part

At the beginning of the analysis, i.e. when the red part is empty, the fringe
consists of the red root.

lemma fringe-of-empty-red :
assumes edges (red prb) = {}
assumes subs prb = {}
assumes marked prb = (λ rv . False)
assumes out-edges (black prb) (fst (root (red prb))) 6= {}
shows fringe prb = {root (red prb)}

using assms by (auto simp add : fringe-def vertices-def)

287

Evolution of the fringe after extension

Simplification lemmas for the fringe of the new red-black graph after adding
an edge by symbolic execution. If the configuration from which symbolic
execution is performed is not marked yet, and if there exists black edges
going out of the target of the executed edge, the target of the new red edge
enters the fringe. Moreover, if there still exist black edges that have no red
counterpart yet at the source of the new edge, then its source was and stays
in the fringe.

lemma seE-fringe1 :
assumes sub-rel-of (red prb) (subs prb)
assumes se-extends prb re c ′ prb ′

assumes ¬ marked prb (src re)
assumes ui-edge ‘ (out-edges (red prb ′) (src re)) ⊂ out-edges (black prb) (fst (src

re))
assumes out-edges (black prb) (fst (tgt re)) 6= {}
shows fringe prb ′ = fringe prb ∪ {tgt re}

unfolding set-eq-iff Un-iff singleton-iff
proof (intro allI iffI , goal-cases)

case (1 rv)

moreover
hence rv ∈ red-vertices prb ∨ rv = tgt re
using assms(2) by (auto simp add : fringe-def vertices-def)

ultimately
show ?case using assms(2) by (auto simp add : fringe-def)

next
case (2 rv)

hence rv ∈ red-vertices prb ′ using assms(2) by (auto simp add : fringe-def
vertices-def)

moreover
have rv /∈ subsumees (subs prb ′)
using 2
proof (elim disjE)

assume rv ∈ fringe prb thus ?thesis using assms(2) by (auto simp add :
fringe-def)

next
assume rv = tgt re thus ?thesis
using assms(1 ,2) unfolding sub-rel-of-def by force

qed

moreover
have ui-edge ‘ (out-edges (red prb ′) rv) ⊂ out-edges (black prb ′) (fst rv)
using 2
proof (elim disjE)

288

assume rv ∈ fringe prb

thus ?thesis
proof (case-tac rv = src re)

assume rv = src re thus ?thesis using assms(2 ,4) by auto
next

assume rv 6= src re thus ?thesis
using assms(2) 〈rv ∈ fringe prb〉

by (auto simp add : fringe-def)
qed

next
assume rv = tgt re thus ?thesis
using assms(2 ,5) extends-tgt-out-edges[of re red prb red prb ′] by (elim conjE)

auto
qed

moreover
have ¬ marked prb ′ rv
using 2
proof (elim disjE , goal-cases)

case 1

moreover
hence rv 6= tgt re using assms(2) by (auto simp add : fringe-def)

ultimately
show ?thesis using assms(2) by (auto simp add : fringe-def)

next
case 2 thus ?thesis using assms(2 ,3) by auto

qed

ultimately
show ?case by (simp add : fringe-def)

qed

If the source of the new edge is marked, then its target does not enter
the fringe (and the source was not part of it in the first place).

lemma seE-fringe2 :
assumes se-extends prb re c prb ′

assumes marked prb (src re)
shows fringe prb ′ = fringe prb

unfolding set-eq-iff Un-iff singleton-iff
proof (intro allI iffI , goal-cases)

case (1 rv)

thus ?case
unfolding fringe-def mem-Collect-eq
using assms
proof (intro conjI , goal-cases)

289

case 1 thus ?case by (auto simp add : fringe-def vertices-def)
next

case 2 thus ?case by auto
next

case 3

moreover
hence rv 6= tgt re by auto

ultimately
show ?case by auto

next
case 4 thus ?case by auto

qed
next

case (2 rv)

thus ?case unfolding fringe-def mem-Collect-eq
using assms
proof (intro conjI , goal-cases)

case 1 thus ?case by (auto simp add : vertices-def)
next

case 2 thus ?case by auto
next

case 3
moreover
hence rv 6= tgt re by auto
ultimately
show ?case by auto

next
case 4 thus ?case by auto

qed
qed

If there exists no black edges going out of the target of the new edge,
then this target does not enter the fringe.

lemma seE-fringe3 :
assumes se-extends prb re c ′ prb ′

assumes ui-edge ‘ (out-edges (red prb ′) (src re)) ⊂ out-edges (black prb) (fst (src
re))

assumes out-edges (black prb) (fst (tgt re)) = {}
shows fringe prb ′ = fringe prb

unfolding set-eq-iff Un-iff singleton-iff
proof (intro allI iffI , goal-cases)

case (1 rv)

thus ?case using assms(1 ,3)
unfolding fringe-def mem-Collect-eq
proof (intro conjI , goal-cases)

290

case 1 thus ?case by (auto simp add : fringe-def vertices-def)
next

case 2 thus ?case by (auto simp add : fringe-def)
next

case 3 thus ?case by (case-tac rv = tgt re) (auto simp add : fringe-def)
next

case 4 thus ?case by (auto simp add : fringe-def)
qed

next
case (2 rv)

moreover
hence rv ∈ red-vertices prb ′

and rv 6= tgt re
using assms(1) by (auto simp add : fringe-def vertices-def)

moreover
have ui-edge ‘ (out-edges (red prb ′) rv) ⊂ out-edges (black prb) (fst rv)
proof (case-tac rv = src re)

assume rv = src re thus ?thesis using assms(2) by simp
next

assume rv 6= src re
thus ?thesis using assms(1) 2
by (auto simp add : fringe-def)

qed

ultimately
show ?case using assms(1) by (auto simp add : fringe-def)

qed

If all possible black edges have been executed from the source of the new
edge after the extension, then the source is removed from the fringe.

lemma seE-fringe4 :
assumes sub-rel-of (red prb) (subs prb)
assumes se-extends prb re c ′ prb ′

assumes ¬ marked prb (src re)
assumes ¬ (ui-edge ‘ (out-edges (red prb ′) (src re)) ⊂ out-edges (black prb) (fst

(src re)))
assumes out-edges (black prb) (fst (tgt re)) 6= {}
shows fringe prb ′ = fringe prb − {src re} ∪ {tgt re}

unfolding set-eq-iff Un-iff singleton-iff Diff-iff
proof (intro allI iffI , goal-cases)

case (1 rv)

moreover
hence rv ∈ red-vertices prb ∨ rv = tgt re
and rv 6= src re
using assms(2 ,3 ,4 ,5) by (auto simp add : fringe-def vertices-def)

291

ultimately
show ?case using assms(2) by (auto simp add : fringe-def)

next
case (2 rv)

hence rv ∈ red-vertices prb ′ using assms(2) by (auto simp add : fringe-def
vertices-def)

moreover
have rv /∈ subsumees (subs prb ′)
using 2
proof (elim disjE)

assume rv ∈ fringe prb ∧ rv 6= src re
thus ?thesis using assms(2) by (auto simp add : fringe-def)

next
assume rv = tgt re thus ?thesis
using assms(1 ,2) unfolding sub-rel-of-def by fastforce

qed

moreover
have ui-edge ‘ (out-edges (red prb ′) rv) ⊂ out-edges (black prb ′) (fst rv)
using 2
proof (elim disjE)

assume rv ∈ fringe prb ∧ rv 6= src re thus ?thesis
using assms(2) by (auto simp add : fringe-def)

next
assume rv = tgt re thus ?thesis
using assms(2 ,5) extends-tgt-out-edges[of re red prb red prb ′] by (elim conjE)

auto
qed

moreover
have ¬ marked prb ′ rv
using 2
proof (elim disjE , goal-cases)

case 1

moreover
hence rv 6= tgt re using assms by (auto simp add : fringe-def)

ultimately
show ?thesis
using assms 1 by (auto simp add : fringe-def)

next
case 2 thus ?thesis using assms by auto

qed

292

ultimately
show ?case by (simp add : fringe-def)

qed

If all possible black edges have been executed from the source of the new
edge after the extension, then this source is removed from the fringe.

lemma seE-fringe5 :
assumes se-extends prb re c ′ prb ′

assumes ¬ (ui-edge ‘ (out-edges (red prb ′) (src re)) ⊂ out-edges (black prb) (fst
(src re)))

assumes out-edges (black prb) (fst (tgt re)) = {}
shows fringe prb ′ = fringe prb − {src re}

unfolding set-eq-iff Un-iff singleton-iff Diff-iff
proof (intro allI iffI , goal-cases)

case (1 rv)

moreover
hence rv ∈ red-vertices prb and rv 6= src re
using assms by (auto simp add : fringe-def vertices-def)

moreover
hence ¬ marked prb rv
proof (intro notI)

assume marked prb rv

have marked prb ′ rv
proof −

have rv 6= tgt re using assms(1) 〈rv ∈ red-vertices prb〉 by auto

thus ?thesis using assms(1) 〈marked prb rv 〉 by auto
qed

thus False using 1 by (auto simp add : fringe-def)
qed

ultimately
show ?case using assms(1) by (auto simp add : fringe-def)

next
case (2 rv)

hence rv ∈ red-vertices prb ′ using assms(1) by (auto simp add : fringe-def
vertices-def)

moreover
have rv /∈ subsumees (subs prb ′) using 2 assms(1) by (auto simp add : fringe-def)

moreover
have ui-edge ‘ (out-edges (red prb ′) rv) ⊂ out-edges (black prb ′) (fst rv)

293

using 2 assms(1) by (auto simp add : fringe-def)

moreover
have ¬ marked prb ′ rv
proof −

have rv 6= tgt re using assms(1) 2 by (auto simp add : fringe-def)

thus ?thesis using assms(1) 2 by (auto simp add : fringe-def)
qed

ultimately
show ?case by (simp add : fringe-def)

qed

Adding a subsumption to the subsumption relation removes the first
member of the subsumption from the fringe.

lemma subsumE-fringe :
assumes subsum-extends prb sub prb ′

shows fringe prb ′ = fringe prb − {subsumee sub}
using assms by (auto simp add : fringe-def)

A.12.8 Red-black sub-paths and paths

The set of red-black sub-paths starting in red location rv is the union of :

• the set of black sub-paths that have a red counterpart starting at rv
and leading to a non-marked red location,

• the set of black sub-paths that have a prefix represented in the red
part starting at rv and leading to an element of the fringe. Moreover,
the remainings of these black sub-paths must have no non-empty coun-
terpart in the red part. Otherwise, the set of red-black paths would
simply be the set of paths of the black part.

definition RedBlack-subpaths-from ::
(′vert , ′var , ′d , ′x) pre-RedBlack-scheme ⇒ (′vert × nat) ⇒ ′vert edge list set

where
RedBlack-subpaths-from prb rv ≡

ui-es ‘ {res. ∃ rv ′. subpath (red prb) rv res rv ′ (subs prb) ∧ ¬ marked prb rv ′}
∪ {ui-es res1 @ bes2
| res1 bes2. ∃ rv1. rv1 ∈ fringe prb

∧ subpath (red prb) rv res1 rv1 (subs prb)
∧ ¬ (∃ res21 bes22. bes2 = ui-es res21 @ bes22

∧ res21 6= []
∧ subpath-from (red prb) rv1 res21 (subs prb))

∧ Graph.subpath-from (black prb) (fst rv1) bes2}

Red-black paths are red-black sub-paths starting at the root of the red
part.

294

abbreviation RedBlack-paths ::
(′vert , ′var , ′d , ′x) pre-RedBlack-scheme ⇒ ′vert edge list set

where
RedBlack-paths prb ≡ RedBlack-subpaths-from prb (root (red prb))

When the red part is empty, the set of red-black sub-paths starting at
the red root is the set of black paths.

lemma (in finite-RedBlack) base-RedBlack-paths :
assumes fst (root (red prb)) = init (black prb)
assumes edges (red prb) = {}
assumes subs prb = {}
assumes confs prb (root (red prb)) = init-conf prb
assumes marked prb = (λ rv . False)
assumes strengthenings prb = (λ rv . (λ σ. True))

shows RedBlack-paths prb = Graph.paths (black prb)

proof −

show ?thesis
unfolding set-eq-iff
proof (intro allI iffI)

fix bes

assume bes ∈ RedBlack-subpaths-from prb (root (red prb))

thus bes ∈ Graph.paths (black prb)
unfolding RedBlack-subpaths-from-def Un-iff
proof (elim disjE exE conjE , goal-cases)

case 1

hence bes = [] using assms by (auto simp add : subpath-def)

thus ?thesis
by (auto simp add : Graph.subpath-def vertices-def)

next
case 2

then obtain res1 bes2 rv where bes = ui-es res1 @ bes2
and rv ∈ fringe prb

and subpath (red prb) (root (red prb)) res1 rv (subs prb)
and Graph.subpath-from (black prb) (fst rv) bes2

by blast

moreover
hence res1 = [] using assms by (simp add : subpath-def)

ultimately

295

show ?thesis using assms 〈rv ∈ fringe prb〉 by (simp add : fringe-def
vertices-def)

qed
next

fix bes

assume bes ∈ Graph.paths (black prb)

show bes ∈ RedBlack-subpaths-from prb (root (red prb))
proof (case-tac out-edges (black prb) (init (black prb)) = {})

assume out-edges (black prb) (init (black prb)) = {}

show ?thesis
unfolding RedBlack-subpaths-from-def Un-iff image-def Bex-def mem-Collect-eq
apply (intro disjI1)
apply (rule-tac ?x=[] in exI)
apply (intro conjI)
apply (rule-tac ?x=root (red prb) in exI)
proof (intro conjI)

show subpath (red prb) (root (red prb)) [] (root (red prb)) (subs prb)
using assms(3) by (simp add : sub-rel-of-def subpath-def vertices-def)

next
show ¬ marked prb (root (red prb)) using assms(5) by simp

next
show bes = ui-es []
using 〈bes ∈ Graph.paths (black prb)〉

〈out-edges (black prb) (init (black prb)) = {}〉
by (cases bes) (auto simp add : Graph.sp-Cons)

qed

next
assume out-edges (black prb) (init (black prb)) 6= {}

show ?thesis
unfolding RedBlack-subpaths-from-def Un-iff mem-Collect-eq
proof (intro disjI2 , rule-tac ?x=[] in exI , rule-tac ?x=bes in exI , intro conjI ,

goal-cases)
case 1 show ?case by simp

next
case 2

show ?case
unfolding Bex-def
proof (rule-tac ?x=root (red prb) in exI , intro conjI , goal-cases)

show root (red prb) ∈ fringe prb
using assms(1−3 ,5) 〈out-edges (black prb) (init (black prb)) 6= {}〉

fringe-of-empty-red
by fastforce

next

296

show subpath (red prb) (root (red prb)) [] (root (red prb)) (subs prb)
using subs-sub-rel-of [OF RedBlack .base[OF assms(1−6)]]
by (simp add : subpath-def vertices-def sub-rel-of-def)

next
case 3
show ?case
proof (intro notI , elim exE conjE)

fix res21 bes22 rv

assume bes = ui-es res21 @ bes22
and res21 6= []
and subpath (red prb) (root (red prb)) res21 rv (subs prb)

moreover
hence res21 = [] using assms by (simp add : subpath-def)

ultimately
show False by (elim notE)

qed
next
case 4 show ?case using assms 〈bes ∈ Graph.paths (black prb)〉 by simp

qed
qed

qed
qed

qed

Red-black sub-paths and paths are sub-paths and paths of the black
part.

lemma RedBlack-subpaths-are-black-subpaths :
assumes RedBlack prb
shows RedBlack-subpaths-from prb rv ⊆ Graph.subpaths-from (black prb) (fst

rv)
unfolding subset-iff mem-Collect-eq RedBlack-subpaths-from-def Un-iff image-def
Bex-def
proof (intro allI impI , elim disjE exE conjE , goal-cases)

case (1 bes res rv ′) thus ?case using assms red-sp-imp-black-sp by blast
next

case (2 bes res1 bes2 rv1 bv2) thus ?case
using red-sp-imp-black-sp[OF assms, of rv res1 rv1]
by (rule-tac ?x=bv2 in exI) (auto simp add : Graph.sp-append)

qed

lemma RedBlack-paths-are-black-paths :
assumes RedBlack prb
shows RedBlack-paths prb ⊆ Graph.paths (black prb)

using assms
RedBlack-subpaths-are-black-subpaths[of prb root (red prb)]
consistent-roots[of prb]

297

by simp

A.12.9 Preservation of feasible paths

The following theorem states that we do not loose feasible paths using our
five operators, and moreover, configurations c at the end of feasible red paths
in some graph prb will have corresponding feasible red paths in successors
that lead to configurations that subsume c. As a corollary, our calculus is
correct w.r.t. to execution.

theorem (in finite-RedBlack) feasible-subpaths-preserved :
assumes RedBlack prb
assumes rv ∈ red-vertices prb
shows feasible-subpaths-from (black prb) (confs prb rv) (fst rv)

⊆ RedBlack-subpaths-from prb rv
using assms finite-RedBlack
proof (induct prb arbitrary : rv)

— Base case : the red part is empty. In this case, rv is the root of the red part.
Hence, the set of feasible subpaths starting at fst rv is the set of feasible paths of
the black part. We conclude using the fact that when the red part is empty, the set
of red-black subpaths is the set of paths of the black part, which includes feasible
paths.

case (base prb rv)

moreover
hence rv = root (red prb) by (simp add : vertices-def)

moreover
hence feasible-subpaths-from (black prb) (confs prb rv) (fst rv)

= feasible-paths (black prb) (confs prb (root (red prb)))
using base by simp

moreover
have out-edges (black prb) (fst (root (red prb))) = {} ∨

ui-edge ‘ out-edges (red prb) (root (red prb)) ⊂ out-edges (black prb) (fst
(root (red prb)))

using base by auto

ultimately
show ?case
using finite-RedBlack .base-RedBlack-paths[of prb]
by (auto simp only : finite-RedBlack-def)

next

— Adding an edge by symbolic execution.

298

case (se-step prb re c prb ′ rv)

have RB ′ : RedBlack prb ′ by (rule RedBlack .se-step[OF se-step(1 ,3)])

show ?case
unfolding subset-iff
proof (intro allI impI)

fix bes

assume bes ∈ feasible-subpaths-from (black prb ′) (confs prb ′ rv) (fst rv)

have rv ∈ red-vertices prb ∨ rv = tgt re
using se-step(3 ,4) by (auto simp add : vertices-def)

thus bes ∈ RedBlack-subpaths-from prb ′ rv
proof (elim disjE)

— We first suppose that bes does not start at the target of the new edge.
In this case, we can use the IH to show that bes is a red-black subpath in the old
red-black graph. We then proceed by case distinction.

assume rv ∈ red-vertices prb

moreover
hence rv 6= tgt re using se-step by auto

ultimately
have bes ∈ RedBlack-subpaths-from prb rv
using se-step 〈bes ∈ feasible-subpaths-from (black prb ′) (confs prb ′ rv) (fst

rv)〉

by fastforce

thus ?thesis
apply (subst (asm) RedBlack-subpaths-from-def)
unfolding Un-iff image-def Bex-def mem-Collect-eq
proof (elim disjE exE conjE)

— Suppose that bes is entirely represented in the old red part. Then it is
also entirely represented in the new red part, qed.

fix res rv ′

assume bes = ui-es res
and subpath (red prb) rv res rv ′ (subs prb)
and ¬ marked prb rv ′

moreover

299

hence ¬ marked prb ′ rv ′

using se-step(3) lst-of-sp-is-vert [of red prb rv res rv ′ subs prb]
by (elim conjE) auto

ultimately
show ?thesis
using se-step(3) sp-in-extends-w-subs[of re red prb red prb ′ rv res rv ′ subs

prb]
unfolding RedBlack-subpaths-from-def Un-iff image-def Bex-def mem-Collect-eq

by (intro disjI1 , rule-tac ?x=res in exI , intro conjI)
(rule-tac ?x=rv ′ in exI , auto)

next

— Suppose that bes is not entirely represented in the old red part, i.e. bes
is of the form ui-es res1 @ bes2 where res1 is a (maximal) red subpath (leading to
a non-marked element rv1 of the old fringe) and bes2 is black subpath (starting at
the black vertex represented by rv1. We then proceed by distinguishing the cases
where the rv1 is the source of the new edge or is an ”old” red vertex.

fix res1 bes2 rv1 bl

assume A : bes = ui-es res1 @ bes2
and B : rv1 ∈ fringe prb
and C : subpath (red prb) rv res1 rv1 (subs prb)

and E : ¬ (∃ res21 bes22. bes2 = ui-es res21 @ bes22
∧ res21 6= []
∧ subpath-from (red prb) rv1 res21 (subs prb))

and F : Graph.subpath (black prb) (fst rv1) bes2 bl

hence rv1 6= tgt re using se-step by (auto simp add : fringe-def)

show ?thesis
proof (case-tac rv1 = src re)

— If rv1 is the source of the new edge, we proceed by cases on the black
suffix.

assume rv1 = src re

show ?thesis
proof (case-tac bes2 = [])

— If the black suffix is empty, then bes is in fact entirely represented in
the old red part and also in the new red part, qed.

assume bes2 = []

show ?thesis
unfolding RedBlack-subpaths-from-def Un-iff image-def Bex-def mem-Collect-eq

300

apply (intro disjI1)
apply (rule-tac ?x=res1 in exI)
apply (intro conjI)
apply (rule-tac ?x=rv1 in exI)
apply (intro conjI)
proof −

show subpath (red prb ′) rv res1 rv1 (subs prb ′)
using se-step(3) C by (auto simp add : sp-in-extends-w-subs)

next
have rv1 6= tgt re using se-step(3) 〈rv1 = src re〉 by auto

thus ¬ marked prb ′ rv1 using se-step(3) B by (auto simp add :
fringe-def)

next
show bes = ui-es res1 using A 〈bes2 = []〉 by simp

qed

next
— If the black suffix is not empty, we first suppose that its first edge is

the new edge.
assume bes2 6= []

then obtain be bes2
′ where bes2 = be # bes2

′ unfolding neq-Nil-conv
by blast

show ?thesis
proof (case-tac be = ui-edge re)

— If the first edge of the black suffix is represented by the new edge,
then res1 @ [re] is a red subpath leading to the target of the new edge, which is the
fringe and not marked. Moreover, it is maximal, as there are no out-going edges
from the target of the new edge in the new red part yet. Moreover, the tail of the
black suffix is a suitable ”new” black suffix, qed.

assume be = ui-edge re

show ?thesis
proof (case-tac out-edges (black prb) (fst (tgt re)) = {})

assume out-edges (black prb) (fst (tgt re)) = {}

show ?thesis
unfolding RedBlack-subpaths-from-def Un-iff image-def Bex-def

mem-Collect-eq
apply (intro disjI1)
apply (rule-tac ?x=res1@[re] in exI)
apply (intro conjI)
apply (rule-tac ?x=tgt re in exI)
proof (intro conjI)

show subpath (red prb ′) rv (res1 @ [re]) (tgt re) (subs prb ′)
using se-step(3) 〈rv1 = src re〉 C

sp-in-extends-w-subs[of re red prb red prb ′ rv res1 rv1 subs prb]

301

rb-sp-append-one[OF RB ′, of rv res1 re tgt re]
by auto

next
show ¬ marked prb ′ (tgt re)
using se-step(3) 〈rv1 = src re〉 B
by (auto simp add : fringe-def)

next
have bes2

′ = []
using F 〈bes2 = be # bes2

′〉

〈be = ui-edge re〉 〈out-edges (black prb) (fst (tgt re)) = {}〉
by (cases bes2

′) (auto simp add : Graph.sp-Cons)

thus bes = ui-es (res1 @ [re])
using 〈bes = ui-es res1 @ bes2〉 〈bes2 = be # bes2

′〉 〈be = ui-edge
re〉 by simp

qed

next

assume out-edges (black prb) (fst (tgt re)) 6= {}

show ?thesis
unfolding RedBlack-subpaths-from-def Un-iff mem-Collect-eq
apply (intro disjI2)
apply (rule-tac ?x=res1@[re] in exI)
apply (rule-tac ?x=bes2

′ in exI)
proof (intro conjI , goal-cases)

show bes = ui-es (res1 @ [re]) @ bes2
′

using 〈bes = ui-es res1 @ bes2〉 〈bes2 = be # bes2
′〉 〈be = ui-edge

re〉

by simp
next

case 2 show ?case
proof (rule-tac ?x=tgt re in exI , intro conjI)

have ¬ marked prb (src re)
using B 〈rv1 = src re〉 by (simp add : fringe-def)

thus tgt re ∈ fringe prb ′

using se-step(3) 〈out-edges (black prb) (fst (tgt re)) 6= {}〉
seE-fringe1 [OF subs-sub-rel-of [OF se-step(1)] se-step(3)]
seE-fringe4 [OF subs-sub-rel-of [OF se-step(1)] se-step(3)]

by auto
next

show subpath (red prb ′) rv (res1 @ [re]) (tgt re) (subs prb ′)
using se-step(3) 〈rv1 = src re〉 C

sp-in-extends-w-subs[of re red prb red prb ′ rv res1 rv1 subs prb]
rb-sp-append-one[OF RB ′, of rv res1 re tgt re]

by auto
next

302

show ¬ (∃ res21 bes22. bes2
′ = ui-es res21 @ bes22

∧ res21 6= []
∧ subpath-from (red prb ′) (tgt re) res21 (subs prb ′))

proof (intro notI , elim exE conjE)
fix res21 bes22 rv2

assume bes2
′ = ui-es res21 @ bes22

and res21 6= []
and subpath (red prb ′) (tgt re) res21 rv2 (subs prb ′)

thus False
using se-step(3)

sub-rel-of .sp-from-tgt-in-extends-is-Nil
[OF subs-sub-rel-of [OF se-step(1)], of re red prb ′ res21 rv2]

by auto
qed

next
show Graph.subpath-from (black prb ′) (fst (tgt re)) bes2

′

using se-step(3) F 〈bes2 = be # bes2
′〉 〈be = ui-edge re〉

by (auto simp add : Graph.sp-Cons)
qed

qed
qed

next
— If the first edge of the black suffix is not represented by the new edge,

then this first edge is still not represented in the new red part. Hence, the source
of the new edge is in the fringe of the new red part (and not marked). We conclude
by showing that res1 is a suitable red prefix, and bes2 a suitable black suffix.

assume be 6= ui-edge re

show ?thesis
unfolding RedBlack-subpaths-from-def Un-iff mem-Collect-eq
unfolding RedBlack-subpaths-from-def Un-iff mem-Collect-eq
apply (intro disjI2)
apply (rule-tac ?x=res1 in exI)
apply (rule-tac ?x=bes2 in exI)
apply (intro conjI)
apply (rule 〈bes = ui-es res1 @ bes2〉)
apply (rule-tac ?x=rv1 in exI)
proof (intro conjI)

show rv1 ∈ fringe prb ′

unfolding fringe-def mem-Collect-eq
proof (intro conjI)

show rv1 ∈ red-vertices prb ′

using se-step(3) B by (auto simp add : fringe-def vertices-def)
next

show rv1 /∈ subsumees (subs prb ′)

303

using se-step(3) B by (auto simp add : fringe-def)
next

show ¬ marked prb ′ rv1

using B se-step(3) 〈rv1 6= tgt re〉 〈rv1 = src re〉

by (auto simp add : fringe-def)
next

have be /∈ ui-edge ‘ out-edges (red prb ′) rv1

proof (intro notI)
assume be ∈ ui-edge ‘ out-edges (red prb ′) rv1

then obtain re ′ where be = ui-edge re ′

and re ′ ∈ out-edges (red prb ′) rv1

by blast

show False
using E
apply (elim notE)
apply (rule-tac ?x=[re ′] in exI)
apply (rule-tac ?x=bes2

′ in exI)
proof (intro conjI)

show bes2 = ui-es [re ′] @ bes2
′

using 〈bes2 = be # bes2
′〉 〈be = ui-edge re ′〉 by simp

next
show [re ′] 6= [] by simp

next
have re ′ ∈ edges (red prb)
using se-step(3) 〈rv1 = src re〉 〈re ′ ∈ out-edges (red prb ′) rv1〉

〈be 6= ui-edge re〉 〈be = ui-edge re ′〉

by (auto simp add : vertices-def)

thus subpath-from (red prb) rv1 [re ′] (subs prb)
using 〈re ′ ∈ out-edges (red prb ′) rv1〉

subs-sub-rel-of [OF se-step(1)]
by (rule-tac ?x=tgt re ′ in exI)

(simp add : rb-sp-one[OF se-step(1)])
qed

qed

moreover
have be ∈ out-edges (black prb) (fst rv1)
using F 〈bes2 = be # bes2

′〉 by (simp add : Graph.sp-Cons)

ultimately
show ui-edge ‘ out-edges (red prb ′) rv1 ⊂ out-edges (black prb ′) (fst

rv1)
using se-step(3) red-OA-subset-black-OA[OF RB ′, of rv1]
by auto

qed
next

304

show subpath (red prb ′) rv res1 rv1 (subs prb ′)
using se-step(3) C by (auto simp add : sp-in-extends-w-subs)

next
show ¬ (∃ res21 bes22. bes2 = ui-es res21 @ bes22

∧ res21 6= []
∧ subpath-from (red prb ′) rv1 res21 (subs prb ′))

apply (intro notI)
apply (elim exE conjE)
proof −

fix res21 bes22 rv3

assume bes2 = ui-es res21 @ bes22
and res21 6= []
and subpath (red prb ′) rv1 res21 rv3 (subs prb ′)

moreover
then obtain re ′ res21

′ where res21 = re ′ # res21
′

and be = ui-edge re ′

using 〈bes2 = be # bes2
′〉 unfolding neq-Nil-conv

by (elim exE) simp

ultimately
have re ′ ∈ edges (red prb ′) by (simp add : sp-Cons)

moreover
have re ′ /∈ edges (red prb)
using E
apply (intro notI)
apply (elim notE)
apply (rule-tac ?x=[re ′] in exI)
apply (rule-tac ?x=bes2

′ in exI)
proof (intro conjI)

show bes2 = ui-es [re ′] @ bes2
′

using 〈bes2 = be # bes2
′〉 〈be = ui-edge re ′〉 by simp

next
show [re ′] 6= [] by simp

next
assume re ′ ∈ edges (red prb)

thus subpath-from (red prb) rv1 [re ′] (subs prb)
using subs-sub-rel-of [OF se-step(1)]

〈subpath (red prb ′) rv1 res21 rv3 (subs prb ′)〉 〈res21 = re ′ #
res21

′〉

apply (rule-tac ?x=tgt re ′ in exI)
apply (simp add : rb-sp-Cons[OF RB ′])
apply (simp add : rb-sp-one[OF se-step(1)])
using se-step(3) by auto

qed

305

ultimately
show False
using se-step(3) 〈be 6= ui-edge re〉 〈be = ui-edge re ′〉

by auto
qed

next
show Graph.subpath-from (black prb ′) (fst rv1) bes2
using se-step(3) F by auto

qed
qed

qed
next

— If rv1 is not the source of the new edge, then the out-going red edges of
rv1 in the new red part are the same as in the old red part. Thus res1 is a suitable
red prefix, and bes2 a suitable black suffix.

assume rv1 6= src re

show ?thesis
unfolding RedBlack-subpaths-from-def Un-iff mem-Collect-eq
apply (intro disjI2)
apply (rule-tac ?x=res1 in exI)
apply (rule-tac ?x=bes2 in exI)
apply (intro conjI , goal-cases)
proof −

show bes = ui-es res1 @ bes2 by (rule 〈bes = ui-es res1 @ bes2〉)
next

case 2 show ?case
apply (rule-tac ?x=rv1 in exI)
apply (intro conjI , goal-cases)
proof −

show rv1 ∈ fringe prb ′

using se-step(3) B 〈rv1 6= src re〉 〈rv1 6= tgt re〉

seE-fringe1 [OF subs-sub-rel-of [OF se-step(1)] se-step(3)]
seE-fringe2 [OF se-step(3)]
seE-fringe3 [OF se-step(3)]
seE-fringe4 [OF subs-sub-rel-of [OF se-step(1)] se-step(3)]
seE-fringe5 [OF se-step(3)]

apply (case-tac marked prb (src re))

apply simp
apply (case-tac ui-edge ‘ out-edges (red prb ′) (src re) ⊂

out-edges (black prb) (fst (src re)))

apply (case-tac out-edges (black prb) (fst (tgt re)) = {})
apply simp
apply simp

apply (case-tac out-edges (black prb) (fst (tgt re)) = {})

306

apply simp
apply simp

done
next

show subpath (red prb ′) rv res1 rv1 (subs prb ′)
using se-step(3) C by (auto simp add :sp-in-extends-w-subs)

next
show ¬ (∃ res21 bes22. bes2 = ui-es res21 @ bes22

∧ res21 6= []
∧ subpath-from (red prb ′) rv1 res21 (subs prb ′))

proof (intro notI , elim exE conjE)
fix res21 bes22 rv2

assume bes2 = ui-es res21 @ bes22
and res21 6= []
and subpath (red prb ′) rv1 res21 rv2 (subs prb ′)

then obtain re ′ res21
′ where res21 = re ′ # res21

′

using 〈res21 6= []〉 unfolding neq-Nil-conv by blast

have rv1 = src re ′ ∨ (rv1,src re ′) ∈ subs prb
and re ′ ∈ edges (red prb ′)
using se-step(3) rb-sp-Cons[OF RB ′]

〈subpath (red prb ′) rv1 res21 rv2 (subs prb ′)〉 〈res21 = re ′ # res21
′〉

by auto

moreover
have re ′ ∈ edges (red prb)
proof −

have re ′ 6= re
using 〈rv1 = src re ′ ∨ (rv1,src re ′) ∈ subs prb〉

proof (elim disjE , goal-cases)
case 1 thus ?thesis using 〈rv1 6= src re〉 by auto

next
case 2 thus ?case using B unfolding fringe-def subsumees-conv

by fast
qed

thus ?thesis using se-step(3) 〈re ′ ∈ edges (red prb ′)〉 by simp
qed

show False
using E
apply (elim notE)
apply (rule-tac ?x=[re ′] in exI)
apply (rule-tac ?x=ui-es res21

′ @ bes22 in exI)
proof (intro conjI)

show bes2 = ui-es [re ′] @ ui-es res21
′ @ bes22

using 〈bes2 = ui-es res21 @ bes22〉 〈res21 = re ′ # res21
′〉 by simp

307

next
show [re ′] 6= [] by simp

next
show subpath-from (red prb) rv1 [re ′] (subs prb)
using se-step(1)

〈rv1 = src re ′ ∨ (rv1,src re ′) ∈ subs prb〉 〈re ′ ∈ edges (red prb)〉

rb-sp-one subs-sub-rel-of
by fast

qed
qed

next
case 4 show ?case using se-step(3) F by auto

qed
qed

qed

qed

next
— If rv is the target of the new red edge, then we show that the empty (red)

subpath is suitable prefix and bes a suitable suffix, using the fact that the target of
the new edge is in the new fringe and can not be marked.

assume rv = tgt re

show ?thesis
proof (case-tac out-edges (black prb) (fst (tgt re)) = {})

assume out-edges (black prb) (fst (tgt re)) = {}

show ?thesis
unfolding RedBlack-subpaths-from-def Un-iff image-def Bex-def mem-Collect-eq

apply (intro disjI1)
apply (rule-tac ?x=[] in exI)
apply (intro conjI)
apply (rule-tac ?x=tgt re in exI)
proof (intro conjI)

show subpath (red prb ′) rv [] (tgt re) (subs prb ′)
using se-step(3) 〈rv = tgt re〉 rb-Nil-sp[OF RB ′] by (auto simp add :

vertices-def)
next

have sat (confs prb ′ (tgt re))
using 〈bes ∈ feasible-subpaths-from (black prb ′) (confs prb ′ rv) (fst rv)〉

〈rv = tgt re〉 SE-star-sat-imp-sat
by (auto simp add : feasible-def)

thus ¬ marked prb ′ (tgt re)
using se-step(3) sat-not-marked [OF RB ′, of tgt re]
by (auto simp add : vertices-def)

next

308

show bes = ui-es []
using se-step(3) 〈rv = tgt re〉 〈out-edges (black prb) (fst (tgt re)) = {}〉

〈bes ∈ feasible-subpaths-from (black prb ′) (confs prb ′ rv) (fst rv)〉

by (cases bes) (auto simp add : Graph.sp-Cons)
qed

next
assume out-edges (black prb) (fst (tgt re)) 6= {}

show ?thesis
unfolding RedBlack-subpaths-from-def Un-iff mem-Collect-eq
apply (intro disjI2)
apply (rule-tac ?x=[] in exI)
apply (rule-tac ?x=bes in exI)
proof (intro conjI , goal-cases)

show bes = ui-es [] @ bes by simp
next

case 2

show ?case
apply (rule-tac ?x=rv in exI)
proof (intro conjI)

have ¬ marked prb (src re)
proof −

have sat (confs prb ′ (tgt re))
using 〈bes ∈ feasible-subpaths-from (black prb ′) (confs prb ′ rv) (fst rv)〉

〈rv = tgt re〉 SE-star-sat-imp-sat
by (auto simp add : feasible-def)

hence sat (confs prb ′ (src re))
using se-step SE-sat-imp-sat by auto

moreover
have src re 6= tgt re using se-step by auto

ultimately
have sat (confs prb (src re))
using se-step(3) by (auto simp add : vertices-def)

thus ?thesis
using se-step sat-not-marked [OF se-step(1), of src re]
by fast

qed

thus rv ∈ fringe prb ′

using se-step(3) 〈rv = tgt re〉 〈out-edges (black prb) (fst (tgt re)) 6= {}〉
seE-fringe1 [OF subs-sub-rel-of [OF se-step(1)] se-step(3)]
seE-fringe4 [OF subs-sub-rel-of [OF se-step(1)] se-step(3)]

309

by auto

next

show subpath (red prb ′) rv [] rv (subs prb ′)
using se-step(3) 〈rv = tgt re〉 subs-sub-rel-of [OF RB ′]
by (auto simp add : subpath-def vertices-def)

next

show ¬ (∃ res21 bes22. bes = ui-es res21 @ bes22
∧ res21 6= []
∧ subpath-from (red prb ′) rv res21 (subs prb ′))

proof (intro notI , elim exE conjE)
fix res1 bes22 rv ′

assume bes = ui-es res1 @ bes22
and res1 6= []
and subpath (red prb ′) rv res1 rv ′ (subs prb ′)

have out-edges (red prb ′) (tgt re) 6= {} ∨ tgt re ∈ subsumees (subs prb ′)
proof −

obtain re ′ res2 where res1 = re ′#res2
using 〈res1 6= []〉 unfolding neq-Nil-conv by blast

hence rv = src re ′ ∨ (rv ,src re ′) ∈ subs prb
using se-step(3) 〈subpath (red prb ′) rv res1 rv ′ (subs prb ′)〉

rb-sp-Cons[OF RB ′, of rv re ′ res2 rv ′]
by auto

thus ?thesis
proof (elim disjE)

assume rv = src re ′

moreover
hence re ′ ∈ out-edges (red prb ′) (tgt re)
using 〈subpath (red prb ′) rv res1 rv ′ (subs prb ′)〉

〈res1 = re ′#res2〉 〈rv = tgt re〉

by (auto simp add : sp-Cons)

ultimately
show ?thesis using se-step(3) by auto

next
assume (rv ,src re ′) ∈ subs prb

hence tgt re ∈ red-vertices prb
using se-step(3) 〈rv = tgt re〉 subs-sub-rel-of [OF se-step(1)]
unfolding sub-rel-of-def by force

310

thus ?thesis using se-step(3) by auto
qed

qed

thus False
proof (elim disjE)

assume out-edges (red prb ′) (tgt re) 6= {}
thus ?thesis using se-step(3)
by (auto simp add : vertices-def image-def)

next
assume tgt re ∈ subsumees (subs prb ′)

hence tgt re ∈ red-vertices prb
using se-step(3) subs-sub-rel-of [OF se-step(1)]
unfolding subsumees-conv sub-rel-of-def by fastforce

thus ?thesis using se-step(3) by (auto simp add : vertices-def)
qed

qed
next

show Graph.subpath-from (black prb ′) (fst rv) bes
using se-step(3)

〈bes ∈ feasible-subpaths-from (black prb ′) (confs prb ′ rv) (fst rv)〉

by simp
qed

qed
qed

qed
qed

next

case (mark-step prb rv2 prb ′ rv1)

have finite-RedBlack prb using mark-step by (auto simp add : finite-RedBlack-def)

show ?case
unfolding subset-iff
proof (intro allI impI)

— Suppose that bes is a (black) feasible sub-path starting at the black vertex
represented by red vertex rv1. Hence, by IH, bes is a red-black sub-path starting
at rv1 in the old red-black graph. We proceed by case distinction.

fix bes

assume bes ∈ feasible-subpaths-from (black prb ′) (confs prb ′ rv1) (fst rv1)

then obtain c where SE-star (confs prb rv1) (trace bes (labeling (black prb)))
c

311

and sat c
using mark-step(3) 〈bes ∈ feasible-subpaths-from (black prb ′) (confs prb ′ rv1)

(fst rv1)〉

by (simp add : feasible-def) blast

have bes ∈ RedBlack-subpaths-from prb rv1

using mark-step(2)[of rv1] mark-step(3−7)
〈bes ∈ feasible-subpaths-from (black prb ′) (confs prb ′ rv1) (fst rv1)〉

by auto

thus bes ∈ RedBlack-subpaths-from prb ′ rv1

apply (subst (asm) RedBlack-subpaths-from-def)
unfolding Un-iff image-def Bex-def mem-Collect-eq
proof (elim disjE exE conjE)

— Suppose that bes is entirely represented in the old red part and let us call
rv3 the red vertex where it ends. We show that it is still fully represented in the
new red-part and that rv3 is still not marked in the new red-black graph. We call
res the red sub-path representing bes in the old red part.

fix res rv3

assume bes = ui-es res
and subpath (red prb) rv1 res rv3 (subs prb)
and ¬ marked prb rv3

show ?thesis
unfolding RedBlack-subpaths-from-def Un-iff image-def Bex-def mem-Collect-eq
apply (intro disjI1)
apply (rule-tac ?x=res in exI)
proof (intro conjI)

show ∃ rv ′. subpath (red prb ′) rv1 res rv ′ (subs prb ′) ∧ ¬ marked prb ′ rv ′

apply (rule-tac ?x=rv3 in exI)
proof (intro conjI)

show subpath (red prb ′) rv1 res rv3 (subs prb ′)
using mark-step(3) 〈subpath (red prb) rv1 res rv3 (subs prb)〉

by auto

next
— We then show that rv3 is not marked.
show ¬ marked prb ′ rv3

proof −
— res being a red sub-path from rv1 to rv3, and c being the configuration

obtained from the configuration at rv1 by symbolic execution of the trace of bes
(and hence res), we have that c is subsumed by configuration at rv3. Hence, this
configuration is satisfiable, c being satisfiable. Thus, rv3 can not be marked.

have sat (confs prb rv3)
proof −

have c v confs prb rv3

312

using mark-step(1)
〈subpath (red prb) rv1 res rv3 (subs prb)〉

〈bes = ui-es res〉

〈SE-star (confs prb rv1) (trace bes (labeling (black prb))) c〉

〈finite-RedBlack prb〉

finite-RedBlack .SE-rel
by simp

thus ?thesis
using 〈SE-star (confs prb rv1) (trace bes (labeling (black prb))) c〉

〈sat c〉

sat-sub-by-sat
by fast

qed

thus ?thesis
using mark-step(3) 〈subpath (red prb) rv1 res rv3 (subs prb)〉

lst-of-sp-is-vert [of red prb rv1 res rv3 subs prb]
sat-not-marked [OF RedBlack .mark-step[OF mark-step(1 ,3)]]

by auto
qed

qed

next
— By construction, res represents bes.
show bes = ui-es res by (rule 〈bes = ui-es res〉)

qed

next
— Suppose that bes has a maximal red prefix res1 leading to non-marked

element rv3 of the old fringe, and a black suffix bes2. We show that res1 and bes2
are still suitable red prefix and black prefix, respectively, in the new red part.

fix res1 bes2 rv3 bl

assume A : bes = ui-es res1 @ bes2
and B : rv3 ∈ fringe prb
and C : subpath (red prb) rv1 res1 rv3 (subs prb)
and D : ¬ (∃ res21 bes22. bes2 = ui-es res21 @ bes22

∧ res21 6= []
∧ subpath-from (red prb) rv3 res21 (subs prb))

and E : Graph.subpath (black prb) (fst rv3) bes2 bl

show ?thesis
unfolding RedBlack-subpaths-from-def Un-iff mem-Collect-eq
apply (intro disjI2)
apply (rule-tac ?x=res1 in exI)
apply (rule-tac ?x=bes2 in exI)
proof (intro conjI , goal-cases)

show bes = ui-es res1 @ bes2 by (rule 〈bes = ui-es res1 @ bes2〉)

313

next
case 2 show ?case
apply (rule-tac ?x=rv3 in exI)
proof (intro conjI)

— Marking a red vertex does not change the fringe, so rv3 is in the new
fringe.

have sat (confs prb rv3)
proof −

obtain c ′

where SE-star (confs prb rv1) (trace (ui-es res1) (labeling (black prb)))
c ′

and SE-star c ′ (trace bes2 (labeling (black prb))) c
and sat c ′

using A 〈SE-star (confs prb rv1) (trace bes (labeling (black prb))) c〉 〈sat
c〉

by (simp add : SE-star-append SE-star-sat-imp-sat) blast

moreover
hence c ′ v confs prb rv3

using 〈finite-RedBlack prb〉 mark-step(1) C finite-RedBlack .SE-rel by
fast

ultimately
show ?thesis by (simp add : sat-sub-by-sat)

qed

thus rv3 ∈ fringe prb ′ using mark-step(3) B by (auto simp add :
fringe-def)

next
show subpath (red prb ′) rv1 res1 rv3 (subs prb ′)
using mark-step(3) 〈subpath (red prb) rv1 res1 rv3 (subs prb)〉

by auto
next

— We show that res1 is a maximal prefix, which is trivial since the new
red part contains less sub-paths than the old, and res1 was already maximal.

show ¬ (∃ res21 bes22. bes2 = ui-es res21 @ bes22
∧ res21 6= []
∧ subpath-from (red prb ′) rv3 res21 (subs prb ′))

proof (intro notI , elim exE conjE)

fix res21 bes22 rv4

assume bes2 = ui-es res21 @ bes22
and res21 6= []
and subpath (red prb ′) rv3 res21 rv4 (subs prb ′)

show False
using D
apply (elim notE)

314

apply (rule-tac ?x=res21 in exI)
apply (rule-tac ?x=bes22 in exI)
proof (intro conjI)
show bes2 = ui-es res21 @ bes22 by (rule 〈bes2 = ui-es res21 @ bes22〉)

next
show res21 6= [] by (rule 〈res21 6= []〉)

next
show subpath-from (red prb) rv3 res21 (subs prb)
using mark-step(3)

〈subpath (red prb ′) rv3 res21 rv4 (subs prb ′)〉

by (simp del : split-paired-Ex) blast
qed

qed

next
show Graph.subpath-from (black prb ′) (fst rv3) bes2 using mark-step(3)

E by simp blast
qed

qed
qed

qed

next

case (subsum-step prb sub prb ′ rv)

hence finite-RedBlack prb by (auto simp add : finite-RedBlack-def)

have RB ′ : RedBlack prb ′ by (rule RedBlack .subsum-step[OF subsum-step(1 ,3)])

show ?case
unfolding subset-iff
proof (intro allI impI)

— Let bes be a feasible sub-path starting at a black vertex represented by rv.
By IH, bes is a red-black sub-path in the old red-black graph. We proceed by case
distinction.

fix bes

assume bes ∈ feasible-subpaths-from (black prb ′) (confs prb ′ rv) (fst rv)

hence bes ∈ RedBlack-subpaths-from prb rv
using subsum-step(2)[of rv] subsum-step(3−7) by auto

thus bes ∈ RedBlack-subpaths-from prb ′ rv
apply (subst (asm) RedBlack-subpaths-from-def)
unfolding Un-iff image-def Bex-def mem-Collect-eq
proof (elim disjE exE conjE)

— Suppose that bes is entirely represented in the old red part, then it is also
entirely represented in the new red part, qed.

315

fix res rv ′

assume bes = ui-es res
and subpath (red prb) rv res rv ′ (subs prb)
and ¬ marked prb rv ′

thus bes ∈ RedBlack-subpaths-from prb ′ rv
using subsum-step(3) sp-in-extends[of sub red prb]

by (simp (no-asm) only : RedBlack-subpaths-from-def Un-iff image-def Bex-def
mem-Collect-eq ,

intro disjI1 , rule-tac ?x=res in exI , intro conjI)
(rule-tac ?x=rv ′ in exI , auto)

next
— Suppose that bes was of the form ui-es res1 @ bes2, with res1 ending in a

red vertex that we call rv ′.
fix res1 bes2 rv ′ bl

assume A : bes = ui-es res1 @ bes2
and B : rv ′ ∈ fringe prb
and C : subpath (red prb) rv res1 rv ′ (subs prb)
and D : ¬ (∃ res21 bes22. bes2 = ui-es res21 @ bes22

∧ res21 6= []
∧ subpath-from (red prb) rv ′ res21 (subs prb))

and E : Graph.subpath (black prb) (fst rv ′) bes2 bl

show bes ∈ RedBlack-subpaths-from prb ′ rv
proof (case-tac rv ′ = subsumee sub)

— Suppose that rv ′ is the newly subsumed red vertex. The idea here is to
show that either bes2 is a suitable black suffix from the new subsumer, or it is of
the form ui-es res21 @ bes22 such that res21 is maximal and ends in a non-marked
element of the (new) fringe, making res1 @ res21 a suitable red prefix and bes22 a
suitable black suffix for bes to be a red-black sub-path of the new red-black graph
(note that bes2 and bes22 might be empty).
However, assumptions from subsum-step and facts 1 to 6 are not sufficient to con-
clude. We proceed by backward induction on bes2.

assume rv ′ = subsumee sub

show ?thesis
using 〈bes ∈ feasible-subpaths-from (black prb ′) (confs prb ′ rv) (fst rv)〉 A

C E
proof (induct bes2 arbitrary : bes bl rule : rev-induct , goal-cases)

— Suppose that the black suffix is empty, then bes is entirely represented
by res1 in the new red part and ends in rv ′ which is not marked, qed.

case (1 bes bl) thus ?case

316

using subsum-step(3) B sp-in-extends[of sub red prb]
by (simp (no-asm) only :

RedBlack-subpaths-from-def Un-iff image-def Bex-def mem-Collect-eq ,
intro disjI1 , rule-tac ?x=res1 in exI , intro conjI)

(rule-tac ?x=rv ′ in exI , auto simp add : fringe-def)

next
— Suppose that the black sub-path is not empty. We call bes2 the prefix

obtained from this sub-path by removing its last edge, which we call be. We first
show that ui-es res1 @ bes2 is a red-black sub-path in the old new-black graph
using the ”internal” induction hypothesis. We then proceed by case distinction.

case (2 be bes2 bes bl)

then obtain c1 c2 c3

where SE-star (confs prb ′ rv) (trace (ui-es res1) (labeling (black prb))) c1

and SE-star c1 (trace bes2 (labeling (black prb))) c2

and SE c2 (labeling (black prb) be) c3

and sat c3

using subsum-step(3)
by (simp add : feasible-def SE-star-append SE-star-append-one SE-star-one)

blast

have ui-es res1 @ bes2 ∈ RedBlack-subpaths-from prb ′ rv
proof −

have ui-es res1 @ bes2 ∈ feasible-subpaths-from (black prb ′) (confs prb ′

rv) (fst rv)
proof −

have Graph.subpath-from (black prb ′) (fst rv) (ui-es res1 @ bes2)
using subsum-step 2 (5) red-sp-imp-black-sp[OF subsum-step(1) C]
by (simp add : Graph.sp-append) blast

moreover
have feasible (confs prb ′ rv) (trace (ui-es res1 @ bes2) (labeling (black

prb ′)))
proof −

have SE-star (confs prb ′ rv)
(trace (ui-es res1@bes2) (labeling (black prb ′)))
c2

using subsum-step
〈SE-star (confs prb ′ rv) (trace (ui-es res1) (labeling (black prb)))

c1〉

〈SE-star c1 (trace bes2 (labeling (black prb))) c2〉

by (simp add : SE-star-append) blast

moreover
have sat c2

using 〈SE c2 (labeling (black prb) be) c3〉 〈sat c3〉

by (simp add : SE-sat-imp-sat)

317

ultimately
show ?thesis by (simp add : feasible-def) blast

qed

ultimately
show ?thesis by simp

qed

moreover
have Graph.subpath-from (black prb) (fst rv ′) bes2
using 2 (5) by (auto simp add : Graph.sp-append-one)

ultimately
show ?thesis using 2 (1 ,4) by (auto simp add : Graph.sp-append-one)

qed

thus ?case
apply (subst (asm) RedBlack-subpaths-from-def)
unfolding Un-iff image-def Bex-def mem-Collect-eq
proof (elim disjE exE conjE , goal-cases)

— Suppose that ui-es res1 @ bes2 is entirely represented in the new
red part by a red sub-path that we call res, and ends in a red vertex that we call
rv ′′. We conclude depending on the fact that be is represented by an out-going
(red edge) from rv ′′ or not.

case (1 res rv ′′)

show ?thesis
proof (case-tac be ∈ ui-edge ‘ out-edges (red prb ′) rv ′′)

— If this is the case, then bes = ui-es res1 @ bes2 @ [be] is entirely
represented in the new red part. We call re the red edge representing be from rv ′′.
Moreover, we showed earlier that the configuration c3 that is obtained from the
configuration at rv by symbolic execution of (the trace of) bes = ui-es res1 @ bes2
@ [be] is satisfiable. As c3 is subsumed by the configuration at the target of re, this
last configuration is also satisfiable, and thus not marked, qed.

assume be ∈ ui-edge ‘ out-edges (red prb ′) rv ′′

then obtain re where be = ui-edge re
and re ∈ out-edges (red prb ′) rv ′′

by blast

show ?thesis
unfolding RedBlack-subpaths-from-def Un-iff image-def Bex-def

mem-Collect-eq
apply (intro disjI1)
apply (rule-tac ?x=res@[re] in exI)
apply (intro conjI)

318

apply (rule-tac ?x=tgt re in exI)
proof (intro conjI)

show subpath (red prb ′) rv (res@[re]) (tgt re) (subs prb ′)
using 1 (2) 〈re ∈ out-edges (red prb ′) rv ′′〉 by (simp add : sp-append-one)

next
show ¬ marked prb ′ (tgt re)
proof −

have sat (confs prb ′ (tgt re))
proof −

have subpath (red prb ′) rv (res@[re]) (tgt re) (subs prb ′)
using 1 (2) 〈re ∈ out-edges (red prb ′) rv ′′〉 by (simp add :

sp-append-one)

then obtain c
where SE-star (confs prb ′ rv)

(trace (ui-es (res@[re])) (labeling (black prb)))
c

using subsum-step(3 ,5 ,6 ,7) RB ′

finite-RedBlack .sp-imp-ex-SE-star-succ[of prb ′ rv res@[re] tgt
re]

unfolding finite-RedBlack-def
by simp blast

hence sat c
using 1 (1)

〈SE-star (confs prb ′ rv) (trace (ui-es res1) (labeling (black prb)))
c1〉

〈SE-star c1 (trace bes2 (labeling (black prb))) c2〉

〈SE c2 (labeling (black prb) be) c3〉 〈sat c3〉 〈be = ui-edge re〉

SE-star-succs-states
[of confs prb ′ rv trace (ui-es (res@[re])) (labeling (black prb)) c3]

apply (subst (asm) eq-commute)
by (auto simp add : SE-star-append-one SE-star-append SE-star-one

sat-eq)

moreover
have c v confs prb ′ (tgt re)
using subsum-step(3 ,5 ,6 ,7) 〈subpath (red prb ′) rv (res@[re]) (tgt

re) (subs prb ′)〉

〈SE-star (confs prb ′ rv) (trace (ui-es (res@[re])) (labeling (black
prb))) c〉

finite-RedBlack .SE-rel [of prb ′] RB ′

by (simp add : finite-RedBlack-def)

ultimately
show ?thesis by (simp add : sat-sub-by-sat)

qed

thus ?thesis

319

using 〈re ∈ out-edges (red prb ′) rv ′′〉 sat-not-marked [OF RB ′, of tgt
re]

by (auto simp add : vertices-def)
qed

next
show bes = ui-es (res@[re]) using 1 (1) 2 (3) 〈be = ui-edge re〉 by

simp
qed

next
— Suppose that be is not represented from rv ′′. We cannot conclude

that [be] is a suitable suffix starting from rv ′′ for proving the goal, because rv ′′

might have been subsumed earlier. If this is the case, we have to show that [be] is
a suitable suffix from the red vertex that subsumes rv ′′.

assume be /∈ ui-edge ‘ out-edges (red prb ′) rv ′′

show ?thesis
proof (case-tac rv ′′ ∈ subsumees (subs prb ′))
— We suppose that rv ′′ is subsumed by a red vertex arv ′′. We conclude

depending on the fact that be is represented in the out-going edges of arv ′′ or not.

assume rv ′′ ∈ subsumees (subs prb ′)

then obtain arv ′′ where (rv ′′,arv ′′) ∈ (subs prb ′) by auto

hence subpath (red prb ′) rv res arv ′′ (subs prb ′)
using 〈subpath (red prb ′) rv res rv ′′ (subs prb ′)〉

by (simp add : sp-append-sub)

show ?thesis
proof (case-tac be ∈ ui-edge ‘ out-edges (red prb ′) arv ′′)

— If be is represented in the out-going edges of arv ′′, then bes is entirely
represented in the new red part, from rv to tgt re. Moreover, the configuration at
the target of re subsumes c, which is satisfiable, thus tgt re can not be marked, qed.

assume be ∈ ui-edge ‘ out-edges (red prb ′) arv ′′

then obtain re where re ∈ out-edges (red prb ′) arv ′′

and be = ui-edge re
by blast

show ?thesis
unfolding RedBlack-subpaths-from-def Un-iff image-def Bex-def

mem-Collect-eq
apply (intro disjI1)
apply (rule-tac ?x=res@[re] in exI)
apply (intro conjI)
apply (rule-tac ?x=tgt re in exI)
proof (intro conjI)

320

show subpath (red prb ′) rv (res @ [re]) (tgt re) (subs prb ′)
using 〈subpath (red prb ′) rv res arv ′′ (subs prb ′)〉

〈re ∈ out-edges (red prb ′) arv ′′〉

by (simp add : sp-append-one)

next

have sat (confs prb ′ (tgt re))
proof −

have subpath (red prb ′) rv (res@[re]) (tgt re) (subs prb ′)
using 〈subpath (red prb ′) rv res arv ′′ (subs prb ′)〉

〈re ∈ out-edges (red prb ′) arv ′′〉

by (simp add : sp-append-one)

then obtain c
where se : SE-star (confs prb ′ rv)

(trace (ui-es (res@[re])) (labeling (black prb)))
c

using subsum-step(3 ,5 ,6 ,7) RB ′

finite-RedBlack .sp-imp-ex-SE-star-succ[of prb ′ rv res@[re]
tgt re]

unfolding finite-RedBlack-def
by simp blast

hence sat c
using 1 (1)

〈SE-star (confs prb ′ rv) (trace (ui-es res1) (labeling (black
prb))) c1〉

〈SE-star c1 (trace bes2 (labeling (black prb))) c2〉

〈SE c2 (labeling (black prb) be) c3〉 〈sat c3〉 〈be = ui-edge re〉

SE-star-succs-states
[of confs prb ′ rv trace (ui-es (res@[re])) (labeling (black prb))

c3]
apply (subst (asm) eq-commute)

by (auto simp add : SE-star-append-one SE-star-append SE-star-one
sat-eq)

moreover
have c v confs prb ′ (tgt re)

using subsum-step(3 ,5 ,6 ,7) se RB ′ finite-RedBlack .SE-rel [of
prb ′]

〈subpath (red prb ′) rv (res@[re]) (tgt re) (subs prb ′)〉

by (simp add : finite-RedBlack-def)

ultimately
show ?thesis by (simp add : sat-sub-by-sat)

qed

321

thus ¬ marked prb ′ (tgt re)
using 〈re ∈ out-edges (red prb ′) arv ′′〉

sat-not-marked [OF RB ′, of tgt re]
by (auto simp add : vertices-def)

next

show bes = ui-es (res @ [re])
using 〈bes = ui-es res1 @ bes2 @ [be]〉

〈ui-es res1 @ bes2 = ui-es res〉

〈be = ui-edge re〉

by simp

qed

next
— Suppose that be is not represented in the out-going edges of arv ′′.

We show that res is a suitable red prefix and [be] a suitable black prefix.
assume A : be /∈ ui-edge ‘ out-edges (red prb ′) arv ′′

have src be = fst arv ′′

proof −
have Graph.subpath (black prb ′) (fst rv) (ui-es res1 @ bes2) (fst

arv ′′)
using 〈ui-es res1 @ bes2 = ui-es res〉

〈subpath (red prb ′) rv res arv ′′ (subs prb ′)〉

red-sp-imp-black-sp[OF RB ′]
by auto

moreover
have Graph.subpath (black prb ′) (fst rv) (ui-es res1 @ bes2) (src

be)
using 〈bes ∈ feasible-subpaths-from (black prb ′) (confs prb ′ rv) (fst

rv)〉

〈bes = ui-es res1 @ bes2 @ [be]〉

by (auto simp add : Graph.sp-append Graph.sp-append-one
Graph.sp-one)

ultimately
show ?thesis
using sp-same-src-imp-same-tgt by fast

qed

show ?thesis
unfolding RedBlack-subpaths-from-def Un-iff mem-Collect-eq
apply (intro disjI2)
apply (rule-tac ?x=res in exI)
apply (rule-tac ?x=[be] in exI)

322

proof (intro conjI , goal-cases)

show bes = ui-es res @ [be]
using 〈bes = ui-es res1 @ bes2 @ [be]〉

〈ui-es res1 @ bes2 = ui-es res〉

by simp

next

case 2 show ?case
apply (rule-tac ?x=arv ′′ in exI)
proof (intro conjI)

show arv ′′ ∈ fringe prb ′

unfolding fringe-def mem-Collect-eq
proof (intro conjI)

show arv ′′ ∈ red-vertices prb ′

using 〈subpath (red prb ′) rv res arv ′′ (subs prb ′)〉

by (simp add : lst-of-sp-is-vert)
next

show arv ′′ /∈ subsumees (subs prb ′)
using 〈(rv ′′,arv ′′) ∈ subs prb ′〉 subs-wf-sub-rel [OF RB ′]
unfolding wf-sub-rel-def Ball-def
by (force simp del : split-paired-All)

next
show ¬ marked prb ′ arv ′′

using 〈(rv ′′,arv ′′) ∈ (subs prb ′)〉 subsumer-not-marked [OF RB ′]
by fastforce

next
have be ∈ edges (black prb ′)
using subsum-step(3)

〈Graph.subpath (black prb) (fst rv ′) (bes2 @ [be]) bl 〉

by (simp add : Graph.sp-append-one)

thus ui-edge ‘ out-edges (red prb ′) arv ′′ ⊂ out-edges (black
prb ′) (fst arv ′′)

using 〈src be = fst arv ′′〉 A red-OA-subset-black-OA[OF RB ′,
of arv ′′]

by auto
qed

next

show subpath (red prb ′) rv res arv ′′ (subs prb ′)
by (rule 〈subpath (red prb ′) rv res arv ′′ (subs prb ′)〉)

next

show ¬ (∃ res21 bes22. [be] = ui-es res21 @ bes22

323

∧ res21 6= []
∧ subpath-from (red prb ′) arv ′′ res21 (subs prb ′))

proof (intro notI , elim exE conjE , goal-cases)
case (1 res21 bes22 rv ′′′)

have be ∈ ui-edge ‘ out-edges (red prb ′) arv ′′

proof −
obtain re res21

′ where res21 = re # res21
′

using 1 (2) unfolding neq-Nil-conv by blast

have be = ui-edge re
and re ∈ out-edges (red prb ′) arv ′′

proof −
show be = ui-edge re using 1 (1) 〈res21 = re # res21

′〉 by
simp

next
have re ∈ edges (red prb ′)
using 1 (3) 〈res21 = re # res21

′〉 by (simp add : sp-Cons)

moreover
have src re = arv ′′

proof −
have (arv ′′,src re) /∈ subs prb ′

using 〈(rv ′′,arv ′′) ∈ subs prb ′〉 subs-wf-sub-rel [OF RB ′]
unfolding wf-sub-rel-def Ball-def
by (force simp del : split-paired-All)

thus ?thesis
using 1 (3) 〈res21 = re # res21

′〉

by (simp add : rb-sp-Cons[OF RB ′])
qed

ultimately
show re ∈ out-edges (red prb ′) arv ′′ by simp

qed

thus ?thesis by auto
qed

thus False using A by (elim notE)
qed

next

show Graph.subpath-from (black prb ′) (fst arv ′′) [be]
using subsum-step(3)

〈Graph.subpath (black prb) (fst rv ′) (bes2 @ [be]) bl 〉
〈(rv ′′,arv ′′) ∈ subs prb ′〉
〈subpath (red prb ′) rv res arv ′′ (subs prb ′)〉

324

〈src be = fst arv ′′〉

RB ′ red-sp-imp-black-sp subs-to-same-BL
by (simp add : Graph.sp-append-one Graph.sp-one)

qed
qed

qed

next
— Now suppose that rv ′′ is not subsumed in the new red-black graph.

If be is represented in the out-going edges of rv ′′, then ui-es res1 @ bes2 @ [be] is
entirely represented in the new red part. Otherwise, res is a suitable red prefix and
[be] a suitable black prefix.

assume rv ′′ /∈ subsumees (subs prb ′)

show ?thesis
proof (case-tac be ∈ ui-edge ‘ out-edges (red prb ′) rv ′′)

assume be ∈ ui-edge ‘ out-edges (red prb ′) rv ′′

then obtain re where be = ui-edge re
and re ∈ out-edges (red prb ′) rv ′′

by blast

show ?thesis
unfolding RedBlack-subpaths-from-def Un-iff image-def Bex-def

mem-Collect-eq
apply (intro disjI1)
apply (rule-tac ?x=res @ [re] in exI)
apply (intro conjI)
apply (rule-tac ?x=tgt re in exI)
proof (intro conjI)

show subpath (red prb ′) rv (res @ [re]) (tgt re) (subs prb ′)
using 〈subpath (red prb ′) rv res rv ′′ (subs prb ′)〉

〈re ∈ out-edges (red prb ′) rv ′′〉

by (simp add : sp-append-one)
next

show ¬ marked prb ′ (tgt re)
proof −

have sat (confs prb ′ (tgt re))
proof −

have subpath (red prb ′) rv (res@[re]) (tgt re) (subs prb ′)
using 〈subpath (red prb ′) rv res rv ′′ (subs prb ′)〉

〈re ∈ out-edges (red prb ′) rv ′′〉

by (simp add : sp-append-one)

then obtain c
where se : SE-star (confs prb ′ rv)

(trace (ui-es (res@[re])) (labeling (black prb)))
c

325

using subsum-step(3 ,5 ,6 ,7) RB ′

finite-RedBlack .sp-imp-ex-SE-star-succ[of prb ′ rv res@[re]
tgt re]

unfolding finite-RedBlack-def
by simp blast

hence sat c
using 1 (1)

〈SE-star (confs prb ′ rv) (trace (ui-es res1) (labeling (black prb)))
c1〉

〈SE-star c1 (trace bes2 (labeling (black prb))) c2〉

〈SE c2 (labeling (black prb) be) c3〉 〈sat c3〉 〈be = ui-edge re〉

SE-star-succs-states
[of confs prb ′ rv trace (ui-es (res@[re])) (labeling (black prb)) c3]

apply (subst (asm) eq-commute)
by (auto simp add : SE-star-append-one SE-star-append

SE-star-one sat-eq)

moreover
have c v confs prb ′ (tgt re)
using subsum-step(3 ,5 ,6 ,7) se RB ′ finite-RedBlack .SE-rel [of

prb ′]
〈subpath (red prb ′) rv (res@[re]) (tgt re) (subs prb ′)〉

by (simp add : finite-RedBlack-def)

ultimately
show ?thesis by (simp add : sat-sub-by-sat)

qed

thus ?thesis
using 〈re ∈ out-edges (red prb ′) rv ′′〉 sat-not-marked [OF RB ′, of

tgt re]
by (auto simp add : vertices-def)

qed
next

show bes = ui-es (res @ [re])
using 〈bes = ui-es res1 @ bes2 @ [be]〉

〈ui-es res1 @ bes2 = ui-es res〉

〈be = ui-edge re〉

by simp
qed

next
assume A : be /∈ ui-edge ‘ out-edges (red prb ′) rv ′′

show ?thesis
unfolding RedBlack-subpaths-from-def Un-iff Bex-def mem-Collect-eq

apply (intro disjI2)
apply (rule-tac ?x=res in exI)

326

apply (rule-tac ?x=[be] in exI)
proof (intro conjI , goal-cases)

show bes = ui-es res @ [be]
using 〈ui-es res1 @ bes2 = ui-es res〉

〈bes = ui-es res1 @ bes2 @ [be]〉

by simp
next

case 2

have src be = fst rv ′′

proof −
have Graph.subpath (black prb ′) (fst rv) (ui-es res) (src be)
using 〈bes ∈ feasible-subpaths-from (black prb ′) (confs prb ′ rv)

(fst rv)〉

〈bes = ui-es res1 @ bes2 @ [be]〉 〈ui-es res1 @ bes2 = ui-es res〉

red-sp-imp-black-sp[OF RB ′ 〈subpath (red prb ′) rv res rv ′′

(subs prb ′)〉]
by (subst (asm)(2) eq-commute) (auto simp add : Graph.sp-append

Graph.sp-one)

thus ?thesis
using red-sp-imp-black-sp[OF RB ′ 〈subpath (red prb ′) rv res rv ′′

(subs prb ′)〉]
by (rule sp-same-src-imp-same-tgt)

qed

show ?case
apply (rule-tac ?x=rv ′′ in exI)
proof (intro conjI)

show rv ′′ ∈ fringe prb ′

unfolding fringe-def mem-Collect-eq
proof (intro conjI)

show rv ′′ ∈ red-vertices prb ′

using 〈subpath (red prb ′) rv res rv ′′ (subs prb ′)〉

by (simp add : lst-of-sp-is-vert)
next

show rv ′′ /∈ subsumees (subs prb ′)
by (rule 〈rv ′′ /∈ subsumees (subs prb ′)〉)

next
show ¬ marked prb ′ rv ′′ by (rule 〈¬ marked prb ′ rv ′′〉)

next
have be ∈ edges (black prb ′)
using subsum-step(3)

〈Graph.subpath (black prb) (fst rv ′) (bes2 @ [be]) bl 〉

by (simp add : Graph.sp-append-one)

thus ui-edge ‘ out-edges (red prb ′) rv ′′ ⊂ out-edges (black prb ′)

327

(fst rv ′′)
using 〈src be = fst rv ′′〉 A red-OA-subset-black-OA[OF RB ′, of

rv ′′]
by auto

qed

next

show subpath (red prb ′) rv res rv ′′ (subs prb ′)
by (rule 〈subpath (red prb ′) rv res rv ′′ (subs prb ′)〉)

next

show ¬ (∃ res21 bes22. [be] = ui-es res21 @ bes22
∧ res21 6= []
∧ SubRel .subpath-from (red prb ′) rv ′′ res21 (subs

prb ′))
proof (intro notI , elim exE conjE , goal-cases)

case (1 res21 bes22 rv ′′′)

have be ∈ ui-edge ‘ out-edges (red prb ′) rv ′′

proof −
obtain re res21

′ where res21 = re # res21
′

using 1 (2) unfolding neq-Nil-conv by blast

have be = ui-edge re
and re ∈ out-edges (red prb ′) rv ′′

proof −
show be = ui-edge re using 1 (1) 〈res21 = re # res21

′〉 by
simp

next
have re ∈ edges (red prb ′)
using 1 (3) 〈res21 = re # res21

′〉 by (simp add : sp-Cons)

moreover
have src re = rv ′′

proof −
have (rv ′′,src re) /∈ subs prb ′

using 〈rv ′′ /∈ subsumees (subs prb ′)〉

by force

thus ?thesis
using 1 (3) 〈res21 = re # res21

′〉

by (simp add : rb-sp-Cons[OF RB ′])
qed

ultimately
show re ∈ out-edges (red prb ′) rv ′′ by simp

qed

328

thus ?thesis by auto
qed

thus False using A by (elim notE)
qed

next

show Graph.subpath-from (black prb ′) (fst rv ′′) [be]
using subsum-step(3) 〈Graph.subpath (black prb) (fst rv ′) (bes2

@ [be]) bl 〉
〈src be = fst rv ′′〉

by (rule-tac ?x=tgt be in exI) (simp add : Graph.sp-append-one
Graph.sp-one)

qed
qed

qed
qed

qed

next
— Now suppose that ui-es res1 @ bes2 is of the form ui-es res1

′ @ bes2
′.

Then there exists a red vertex rv ′′ such that:

• res1
′ is a maximal red prefix ending in rv ′′, which is not marked and in the

new fringe,

• bes2
′ starts at the black vertex represented by rv ′′.

Note that bes2
′ can be empty. If this is the case, then we conclude depending on

the fact that be is represented or not in the out-going edges of rv ′′.
If this is not the case, we show that bes2

′ @ [be] is also a suitable black suffix.
case (2 res1

′ bes2
′ rv ′′ bl ′)

show ?thesis
proof (case-tac bes2

′ = [])
— Suppose that bes2

′ is empty. Then either be is represented in the
out-going edges of rv ′′, either it is not.

assume bes2
′ = []

have Graph.subpath (black prb ′) (fst rv) (ui-es res1
′ @ [be]) bl

proof −
have Graph.subpath (black prb ′) (fst rv) (ui-es res1

′) (src be)
proof −

have Graph.subpath (black prb ′) (fst rv ′) bes2 (src be)
using subsum-step(3) 〈Graph.subpath (black prb) (fst rv ′) (bes2@[be])

bl 〉

by (simp add : Graph.sp-append-one)

329

moreover
have subpath (red prb ′) rv res1 rv ′ (subs prb ′)
using subsum-step(3) 〈subpath (red prb) rv res1 rv ′ (subs prb)〉

by (auto simp add : sp-in-extends)

hence Graph.subpath (black prb ′) (fst rv) (ui-es res1) (fst rv ′)
using RB ′ by (simp add : red-sp-imp-black-sp)

ultimately
show ?thesis
using 〈ui-es res1 @ bes2 = ui-es res1

′ @ bes2
′〉 〈bes2

′ = []〉

by (subst (asm) eq-commute) (auto simp add : Graph.sp-append)
qed

moreover
have Graph.subpath (black prb ′) (src be) [be] bl

using subsum-step(3) 〈Graph.subpath (black prb) (fst rv ′) (bes2@[be])
bl 〉

by (simp add : Graph.sp-append-one Graph.sp-one)

ultimately
show ?thesis by (auto simp add : Graph.sp-append)

qed

hence Graph.subpath (black prb ′) (fst rv) (ui-es res1
′) (src be)

and be ∈ edges (black prb ′)
and tgt be = bl
by (simp-all add : Graph.sp-append-one)

have fst rv ′′ = src be
proof −

have Graph.subpath (black prb ′) (fst rv) (ui-es res1
′) (fst rv ′′)

using 〈subpath (red prb ′) rv res1
′ rv ′′ (subs prb ′)〉 red-sp-imp-black-sp[OF

RB ′]
by fast

thus ?thesis
using 〈Graph.subpath (black prb ′) (fst rv) (ui-es res1

′) (src be)〉

by (simp add : sp-same-src-imp-same-tgt)
qed

show ?thesis
proof (case-tac be ∈ ui-edge ‘ out-edges (red prb ′) rv ′′)

— If be is represented in the out-going edges of rv ′′ by a red edge
that we call re. Then ui-es res1

′ @ [be] is entirely represented in the new red part.
Moreover, the configuration at the target of re subsumes c which is satisfiable, and
is in turn also satisfiable and thus not marked, qed.

assume be ∈ ui-edge ‘ out-edges (red prb ′) rv ′′

330

then obtain re where be = ui-edge re
and re ∈ out-edges (red prb ′) rv ′′

by blast

show ?thesis
unfolding RedBlack-subpaths-from-def Un-iff image-def Bex-def

mem-Collect-eq
apply (intro disjI1)
apply (rule-tac ?x=res1

′@[re] in exI)
apply (intro conjI)
apply (rule-tac ?x=tgt re in exI)
proof (intro conjI)

show subpath (red prb ′) rv (res1
′ @ [re]) (tgt re) (subs prb ′)

using 〈subpath (red prb ′) rv res1
′ rv ′′ (subs prb ′)〉

〈re ∈ out-edges (red prb ′) rv ′′〉

by (simp add : sp-append-one)
next

show ¬ marked prb ′ (tgt re)
proof −

have sat (confs prb ′ (tgt re))
proof −

have subpath (red prb ′) rv (res1
′@[re]) (tgt re) (subs prb ′)

using 〈subpath (red prb ′) rv res1
′ rv ′′ (subs prb ′)〉

〈re ∈ out-edges (red prb ′) rv ′′〉

by (simp add : sp-append-one)

then obtain c
where se : SE-star (confs prb ′ rv)

(trace (ui-es (res1
′@[re])) (labeling (black prb)))

c
using subsum-step(3 ,5 ,6 ,7) RB ′

finite-RedBlack .sp-imp-ex-SE-star-succ[of prb ′ rv res1
′@[re]

tgt re]
unfolding finite-RedBlack-def
by simp blast

hence sat c
proof −

have bes = ui-es (res1
′@[re])

using 〈bes = ui-es res1 @ bes2 @ [be]〉 〈be = ui-edge re〉

〈ui-es res1 @ bes2 = ui-es res1
′ @ bes2

′〉 〈bes2
′ = []〉

by simp

thus ?thesis
using subsum-step(3) SE-star-succs-states[OF se]

〈bes ∈ feasible-subpaths-from (black prb ′) (confs prb ′ rv)
(fst rv)〉

by (auto simp add : feasible-def sat-eq)
qed

331

moreover
have c v confs prb ′ (tgt re)

using subsum-step(3 ,5 ,6 ,7) se finite-RedBlack .SE-rel [of prb ′]
RB ′

〈subpath (red prb ′) rv (res1
′@[re]) (tgt re) (subs prb ′)〉

by (simp add : finite-RedBlack-def)

ultimately
show ?thesis by (simp add : sat-sub-by-sat)

qed

thus ?thesis
using 〈re ∈ out-edges (red prb ′) rv ′′〉 sat-not-marked [OF RB ′, of

tgt re]
by (auto simp add : vertices-def)

qed
next

show bes = ui-es (res1
′ @ [re])

using 〈bes = ui-es res1 @ bes2 @ [be]〉 〈ui-es res1 @ bes2 = ui-es
res1

′ @ bes2
′〉

〈bes2
′ = []〉 〈be = ui-edge re〉

by simp
qed

next

— If be is not represented in the out-going edges of rv ′′, then we show
that [be] is a suitable black suffix, res1

′ being known to be a suitable red prefix.

assume A : be /∈ ui-edge ‘ out-edges (red prb ′) rv ′′

show ?thesis
unfolding RedBlack-subpaths-from-def Un-iff mem-Collect-eq
apply (intro disjI2)
apply (rule-tac ?x=res1

′ in exI)
apply (rule-tac ?x=[be] in exI)
proof (intro conjI , goal-cases)

show bes = ui-es res1
′ @ [be]

using 〈bes = ui-es res1 @ bes2 @ [be]〉 〈ui-es res1 @ bes2 = ui-es
res1

′ @ bes2
′〉

〈bes2
′ = []〉

by simp
next

case 2 show ?case
apply (rule-tac ?x=rv ′′ in exI)
proof (intro conjI)

show rv ′′ ∈ fringe prb ′ by (rule 〈rv ′′ ∈ fringe prb ′〉)
next

332

show subpath (red prb ′) rv res1
′ rv ′′ (subs prb ′)

by (rule 〈subpath (red prb ′) rv res1
′ rv ′′ (subs prb ′)〉)

next
show ¬ (∃ res21 bes22. [be] = ui-es res21 @ bes22

∧ res21 6= []
∧ subpath-from (red prb ′) rv ′′ res21 (subs prb ′))

proof (intro notI , elim exE conjE , goal-cases)
case (1 res21 bes22 rv ′′′)

then obtain re res21
′ where be = ui-edge re

and res21 = re # res21
′

unfolding neq-Nil-conv by auto

moreover
hence re ∈ out-edges (red prb ′) rv ′′

using 1 (3) 〈rv ′′ ∈ fringe prb ′〉 RB ′

unfolding subsumees-conv by (force simp add : fringe-def
rb-sp-Cons)

ultimately
show False using A by auto

qed
next

show Graph.subpath-from (black prb ′) (fst rv ′′) [be]
using 〈Graph.subpath (black prb ′) (fst rv) (ui-es res1

′ @ [be]) bl 〉
〈fst rv ′′ = src be〉

by (auto simp add : Graph.sp-append-one Graph.sp-one)
qed

qed
qed

next

— Suppose that bes2
′ is not empty. Then appending be at the end of

bes2
′ gives a suitable black suffix, qed.

assume bes2
′ 6= []

then obtain be ′ bes2
′′ where bes2

′ = be ′ # bes2
′′

unfolding neq-Nil-conv by blast

show ?thesis
unfolding RedBlack-subpaths-from-def Un-iff mem-Collect-eq
apply (intro disjI2)
apply (rule-tac ?x=res1

′ in exI)
apply (rule-tac ?x=bes2

′@[be] in exI)
proof (intro conjI , goal-cases)

show bes = ui-es res1
′ @ bes2

′ @ [be]
using 〈bes = ui-es res1 @ bes2 @ [be]〉 〈ui-es res1 @ bes2 = ui-es res1

′

333

@ bes2
′〉

by simp
next

case 2 show ?case
apply (rule-tac ?x=rv ′′ in exI)
proof (intro conjI)

show rv ′′ ∈ fringe prb ′ by (rule 〈 rv ′′ ∈ fringe prb ′〉)
next

show subpath (red prb ′) rv res1
′ rv ′′ (subs prb ′)

by (rule 〈subpath (red prb ′) rv res1
′ rv ′′ (subs prb ′)〉)

next
show ¬ (∃ res21 bes22. bes2

′ @ [be] = ui-es res21 @ bes22
∧ res21 6= []
∧ subpath-from (red prb ′) rv ′′ res21 (subs prb ′))

proof (intro notI , elim exE conjE , goal-cases)
case (1 res21 bes22 rv ′′′)

then obtain re res21
′ where res21 = re # res21

′

and be ′ = ui-edge re
using 〈bes2

′ = be ′ # bes2
′′〉 unfolding neq-Nil-conv by auto

show False
using 〈¬ (∃ res21 bes22. bes2

′ = ui-es res21 @ bes22
∧ res21 6= []
∧ subpath-from (red prb ′) rv ′′ res21 (subs prb ′))〉

apply (elim notE)
apply (rule-tac ?x=[re] in exI)
apply (rule-tac ?x=bes2

′′ in exI)
proof (intro conjI)

show bes2
′ = ui-es [re] @ bes2

′′

using 〈bes2
′ @ [be] = ui-es res21 @ bes22〉 〈bes2

′ = be ′ # bes2
′′〉

〈be ′ = ui-edge re〉

by simp
next

show [re] 6= [] by simp
next

show subpath-from (red prb ′) rv ′′ [re] (subs prb ′)
using 〈subpath (red prb ′) rv ′′ res21 rv ′′′ (subs prb ′)〉 〈res21 = re

res21
′〉

by (fastforce simp add : sp-Cons Nil-sp vertices-def)
qed

qed

next

show Graph.subpath-from (black prb ′) (fst rv ′′) (bes2
′ @ [be])

proof −
have Graph.subpath (black prb ′) (fst rv) (ui-es res1

′ @ bes2
′) (src

be)

334

proof −
have Graph.subpath (black prb ′) (fst rv) (ui-es res1 @ bes2) (src

be)
using 〈bes ∈ feasible-subpaths-from (black prb ′) (confs prb ′ rv)

(fst rv)〉

〈bes = ui-es res1 @ bes2 @ [be]〉

by (auto simp add : Graph.sp-append Graph.sp-one)

thus ?thesis using 〈ui-es res1 @ bes2 = ui-es res1
′@bes2

′〉 by
simp

qed

moreover
have Graph.subpath (black prb ′) (fst rv) (ui-es res1

′ @ bes2
′) bl ′

using 〈Graph.subpath (black prb ′) (fst rv ′′) bes2
′ bl ′〉

red-sp-imp-black-sp[OF RB ′ 〈subpath (red prb ′) rv res1
′ rv ′′

(subs prb ′)〉]
by (auto simp add : Graph.sp-append)

ultimately
have src be = bl ′ by (rule sp-same-src-imp-same-tgt)

moreover
have Graph.subpath (black prb ′) (src be) [be] (tgt be)

using subsum-step(3) 〈Graph.subpath (black prb) (fst rv ′) (bes2@[be])
bl 〉

by (auto simp add : Graph.sp-append-one Graph.sp-one)

ultimately
show ?thesis
using 〈Graph.subpath (black prb ′) (fst rv ′′) bes2

′ bl ′〉

by (simp add : Graph.sp-append-one Graph.sp-one)
qed

qed
qed

qed
qed

qed

next

— Suppose that rv ′ is not the newly subsumed red vertex. Hence, rv ′ is still
not marked and in the fringe and res1 is still maximal, which makes res1 and bes2
suitable red prefix and black suffix in the new red part.

assume rv ′ 6= subsumee sub

show ?thesis
unfolding RedBlack-subpaths-from-def Un-iff mem-Collect-eq

335

apply (intro disjI2)
apply (rule-tac ?x=res1 in exI)
apply (rule-tac ?x=bes2 in exI)
proof (intro conjI , goal-cases)

show bes = ui-es res1 @ bes2 by (rule 〈bes = ui-es res1 @ bes2〉)
next

case 2 show ?case
apply (rule-tac ?x=rv ′ in exI)
proof (intro conjI)

show rv ′∈ fringe prb ′

using subsum-step(3) subsumE-fringe[OF subsum-step(3)] B 〈rv ′ 6=
subsumee sub〉

by simp
next

show subpath (red prb ′) rv res1 rv ′ (subs prb ′)
using subsum-step(3) C by (auto simp add : sp-in-extends)

next
show ¬ (∃ res21 bes22. bes2 = ui-es res21 @ bes22

∧ res21 6= []
∧ subpath-from (red prb ′) rv ′ res21 (subs prb ′))

proof (intro notI , elim exE conjE)
fix res21 bes22 rv ′′

assume bes2 = ui-es res21 @ bes22
and res21 6= []
and subpath (red prb ′) rv ′ res21 rv ′′ (subs prb ′)

then obtain re res21
′ where res21 = re # res21

′

unfolding neq-Nil-conv by blast

have subpath (red prb) rv ′ [re] (tgt re) (subs prb)
proof −

have ¬ uses-sub rv ′ [re] (tgt re) sub using 〈rv ′ 6= subsumee sub〉 by
auto

thus ?thesis
using subsum-step(3)

〈subpath (red prb ′) rv ′ res21 rv ′′ (subs prb ′)〉 〈res21 = re # res21
′〉

sp-in-extends-not-using-sub
rb-sp-Cons[OF RB ′, of rv ′ re res21

′ rv ′′]
rb-sp-one[OF subsum-step(1), of rv ′ re tgt re]
subs-sub-rel-of [OF subsum-step(1)]

by auto
qed

show False
using D
apply (elim notE)

336

apply (rule-tac ?x=[re] in exI)
apply (rule-tac ?x=ui-es res21

′@bes22 in exI)
proof (intro conjI)

show bes2 = ui-es [re] @ ui-es res21
′ @ bes22

using 〈bes2 = ui-es res21 @ bes22〉 〈res21 = re # res21
′〉 by simp

next
show [re] 6= [] by simp

next
show subpath-from (red prb) rv ′ [re] (subs prb)
apply (rule-tac ?x=tgt re in exI)
using subsum-step(3)

〈rv ′ 6= subsumee sub〉 〈subpath (red prb ′) rv ′ res21 rv ′′ (subs prb ′)〉

〈res21 = re # res21
′〉

rb-sp-Cons[OF RB ′, of rv ′ re res21
′ rv ′′]

rb-sp-one[OF subsum-step(1), of rv ′ re tgt re]
subs-sub-rel-of [OF subsum-step(1)] subs-sub-rel-of [OF RB ′]

by fastforce
qed

qed
next

show Graph.subpath-from (black prb ′) (fst rv ′) bes2
using subsum-step(3) E by simp blast

qed
qed

qed
qed

qed

next

case (abstract-step prb rv2 ca prb ′ rv1)

have RB ′ : RedBlack prb ′ by (rule RedBlack .abstract-step[OF abstract-step(1 ,3)])
have finite-RedBlack prb using abstract-step by (auto simp add : finite-RedBlack-def)

show ?case
unfolding subset-iff
proof (intro allI impI)
— Suppose that bes is a feasible sub-path starting at the black vertex represented

by the red vertex rv1. We proceed depending on the fact that rv1 is the red vertex
where the abstraction took place or not. We have to make this distinction to be
able to use our IH, in the case where @rv1 6= rv2.

fix bes

assume bes ∈ feasible-subpaths-from (black prb ′) (confs prb ′ rv1) (fst rv1)

show bes ∈ RedBlack-subpaths-from prb ′ rv1

proof (case-tac rv2 = rv1)
— If this is the case, then the only possible red prefix is the empty edge sequence.

337

By definition of the abstraction operator, we have that the empty sequence is indeed
a suitable red prefix and that bes is suitable black prefix.

assume rv2 = rv1

show ?thesis
proof (case-tac out-edges (black prb ′) (fst rv1) = {})

assume out-edges (black prb ′) (fst rv1) = {}

show ?thesis
unfolding RedBlack-subpaths-from-def Un-iff image-def Bex-def mem-Collect-eq

apply (intro disjI1)
apply (rule-tac ?x=[] in exI)
apply (intro conjI)
apply (rule-tac ?x=rv1 in exI)
proof (intro conjI)

show subpath (red prb ′) rv1 [] rv1 (subs prb ′)
using abstract-step(4) rb-Nil-sp[OF RB ′] by fast

next
show ¬ marked prb ′ rv1 using abstract-step(3) 〈rv2 = rv1〉 by simp

next
show bes = ui-es []
using 〈bes ∈ feasible-subpaths-from (black prb ′) (confs prb ′ rv1) (fst rv1)〉

〈out-edges (black prb ′) (fst rv1) = {}〉
by (cases bes) (auto simp add : Graph.sp-Cons)

qed

next
assume out-edges (black prb ′) (fst rv1) 6= {}

show ?thesis
unfolding RedBlack-subpaths-from-def Un-iff mem-Collect-eq
apply (intro disjI2)
apply (rule-tac ?x=[] in exI)
apply (rule-tac ?x=bes in exI)
proof (intro conjI , goal-cases)

show bes = ui-es [] @ bes by simp

next

case 2 show ?case
apply (rule-tac ?x=rv1 in exI)
proof (intro conjI)

show rv1 ∈ fringe prb ′

using abstract-step(1 ,3) 〈rv2 = rv1〉 〈out-edges (black prb ′) (fst rv1) 6=
{}〉

by (auto simp add : fringe-def)

338

next

show subpath (red prb ′) rv1 [] rv1 (subs prb ′)
using abstract-step(3) 〈rv2 = rv1〉

rb-Nil-sp[OF RedBlack .abstract-step[OF abstract-step(1 ,3)]]
by auto

next

show ¬ (∃ res21 bes22. bes = ui-es res21 @ bes22
∧ res21 6= []
∧ subpath-from (red prb ′) rv1 res21 (subs prb ′))

proof (intro notI , elim exE conjE)
fix res21 rv3

assume res21 6= []
and subpath (red prb ′) rv1 res21 rv3 (subs prb ′)

moreover
then obtain re res21

′where res21 = re # res21
′ unfolding neq-Nil-conv

by blast

ultimately
have re ∈ out-edges (red prb ′) rv1

using abstract-step(3) 〈rv2 = rv1〉

rb-sp-Cons[OF RedBlack .abstract-step[OF abstract-step(1 ,3)], of
rv1 re res21

′ rv3]
unfolding subsumees-conv by fastforce

thus False using abstract-step(3) 〈rv2 = rv1〉 by auto
qed

next

show Graph.subpath-from (black prb ′) (fst rv1) bes
using 〈bes ∈ feasible-subpaths-from (black prb ′) (confs prb ′ rv1) (fst rv1)〉

by simp

qed
qed

qed

next
— Suppose that rv1 is not the red vertex where the abstraction took place.

Then, as abstracting a configuration has no effect on the rest of the red tree, we can
show by IH that bes is red-black sub-path of the old red-black graph. We conclude
by case distinction.

assume rv2 6= rv1

339

moreover
hence feasible (confs prb rv1) (trace bes (labeling (black prb)))
using abstract-step(3)

〈bes ∈ feasible-subpaths-from (black prb ′) (confs prb ′ rv1) (fst rv1)〉

by simp

ultimately
have bes ∈ RedBlack-subpaths-from prb rv1

using abstract-step(2)[of rv1] abstract-step(3−7)
〈bes ∈ feasible-subpaths-from (black prb ′) (confs prb ′ rv1) (fst rv1)〉

by auto

thus ?thesis
apply (subst (asm) RedBlack-subpaths-from-def)
unfolding Un-iff image-def Bex-def mem-Collect-eq
proof (elim disjE exE conjE)

fix res rv3

assume bes = ui-es res
and subpath (red prb) rv1 res rv3 (subs prb)
and ¬ marked prb rv3

thus ?thesis
using abstract-step(3)

unfolding RedBlack-subpaths-from-def Un-iff image-def Bex-def mem-Collect-eq
by (intro disjI1 , rule-tac ?x=res in exI , intro conjI)

(rule-tac ?x=rv3 in exI , simp-all)
next

fix res1 bes2 rv3 bl

assume A : bes = ui-es res1 @ bes2
and B : rv3 ∈ fringe prb
and C : subpath (red prb) rv1 res1 rv3 (subs prb)

and E : ¬ (∃ res21 bes22. bes2 = ui-es res21 @ bes22
∧ res21 6= []
∧ subpath-from (red prb) rv3 res21 (subs prb))

and F : Graph.subpath (black prb) (fst rv3) bes2 bl

show ?thesis
unfolding RedBlack-subpaths-from-def Un-iff mem-Collect-eq
apply (intro disjI2)
apply (rule-tac ?x=res1 in exI)
apply (rule-tac ?x=bes2 in exI)
proof (intro conjI , goal-cases)

show bes = ui-es res1 @ bes2 by (rule 〈bes = ui-es res1 @ bes2〉)
next

340

case 2 show ?case
using abstract-step(3) B C E F unfolding fringe-def
by (rule-tac ?x=rv3 in exI) auto

qed
qed

qed
qed

next
— Strengthening a configuration with an invariant will help refuse “brutal” ab-

stractions. As all abstractions preserves the set of feasible paths, we conclude.

case (strengthen-step prb rv2 e prb ′ rv1)

show?case
unfolding subset-iff
proof (intro allI impI)

fix bes

assume bes ∈ feasible-subpaths-from (black prb ′) (confs prb ′ rv1) (fst rv1)

hence bes ∈ RedBlack-subpaths-from prb rv1

using strengthen-step(2)[of rv1] strengthen-step(3−7) by auto

thus bes ∈ RedBlack-subpaths-from prb ′ rv1

apply (subst (asm) RedBlack-subpaths-from-def)
unfolding Un-iff image-def Bex-def mem-Collect-eq
proof (elim disjE exE conjE)

fix res rv2

assume bes = ui-es res
and subpath (red prb) rv1 res rv2 (subs prb)
and ¬ marked prb rv2

thus ?thesis
using strengthen-step(3)

unfolding RedBlack-subpaths-from-def Un-iff image-def Bex-def mem-Collect-eq
by (intro disjI1) fastforce

next

fix res1 bes2 rv3 bl

assume A : bes = ui-es res1 @ bes2
and B : rv3 ∈ fringe prb
and C : subpath (red prb) rv1 res1 rv3 (subs prb)

341

and E : ¬ (∃ res21 bes22. bes2 = ui-es res21 @ bes22
∧ res21 6= []
∧ subpath-from (red prb) rv3 res21 (subs prb))

and F : Graph.subpath (black prb) (fst rv3) bes2 bl

show ?thesis
unfolding RedBlack-subpaths-from-def Un-iff mem-Collect-eq
apply (intro disjI2)
apply (rule-tac ?x=res1 in exI)
apply (rule-tac ?x=bes2 in exI)
proof (intro conjI , goal-cases)

show bes = ui-es res1 @ bes2 by (rule 〈bes = ui-es res1 @ bes2〉)
next

case 2 show ?case
using strengthen-step(3) B C E F unfolding fringe-def by (rule-tac ?x=rv3

in exI) auto
qed

qed
qed

qed

Red-black paths being red-black sub-path starting from the red root, and
feasible paths being feasible sub-paths starting at the black initial location,
it follows from the previous theorem that the set of feasible paths when
considering the configuration of the root is a subset of the set of red-black
paths.

theorem (in finite-RedBlack)
assumes RedBlack prb
shows feasible-paths (black prb) (confs prb (root (red prb))) ⊆ RedBlack-paths

prb
using feasible-subpaths-preserved [OF assms, of root (red prb)] consistent-roots[OF
assms]
by (simp add : vertices-def)

The configuration at the red root might have been abstracted. In this
case, the initial configuration is subsumed by the current configuration at the
root. Thus the set of feasible paths when considering the initial configuration
is also a subset of the set of red-black paths.

lemma init-subsumed :
assumes RedBlack prb
shows init-conf prb v confs prb (root (red prb))

using assms
proof (induct prb)

case base thus ?case by (simp add : subsums-refl)
next

case se-step thus ?case by (force simp add : vertices-def)
next

case mark-step thus ?case by simp

342

next
case subsum-step thus ?case by simp

next
case (abstract-step prb rv ca prb ′)
thus ?case by (auto simp add : subsums-trans abstract-def)

next
case strengthen-step thus ?case by simp

qed

lemma (in finite-RedBlack)
assumes RedBlack prb
shows feasible-paths (black prb) (init-conf prb) ⊆ RedBlack-paths prb

unfolding subset-iff mem-Collect-eq
proof (intro allI impI , elim exE conjE , goal-cases)

case (1 es bl)

hence es ∈ feasible-subpaths-from (black prb) (init-conf prb) (fst (root (red prb)))
using consistent-roots[OF assms] by simp blast

hence es ∈ feasible-subpaths-from (black prb) (confs prb (root (red prb))) (fst
(root (red prb)))

unfolding mem-Collect-eq
proof (elim exE conjE , goal-cases)

case (1 bl ′)

show ?case
proof (rule-tac ?x=bl ′ in exI , intro conjI)

show Graph.subpath (black prb) (fst (root (red prb))) es bl ′ by (rule 1 (1))
next

have finite-labels (trace es (labeling (black prb)))
using finite-RedBlack by auto

moreover
have finite (pred (confs prb (root (red prb))))
using finite-RedBlack finite-pred [OF assms]
by (auto simp add : vertices-def finite-RedBlack-def)

moreover
have finite (pred (init-conf prb))
using assms by (intro finite-init-pred)

moreover
have ∀ e∈pred (confs prb (root (red prb))). finite (Bexp.vars e)
using finite-RedBlack finite-pred-constr-symvars[OF assms]
by (fastforce simp add : finite-RedBlack-def vertices-def)

moreover
have ∀ e∈pred (init-conf prb). finite (Bexp.vars e)

343

using assms by (intro finite-init-pred-symvars)

moreover
have init-conf prb v confs prb (root (red prb))
using assms by (rule init-subsumed)

ultimately
show feasible (confs prb (root (red prb))) (trace es (labeling (black prb)))
using 1 (2) by (rule subsums-imp-feasible)

qed
qed

thus ?case
using feasible-subpaths-preserved [OF assms, of root (red prb)]
by (auto simp add : vertices-def)

qed

end

344

A.13 Conclusion

We have formally proved the correctness of a set of graph transformations
used by systems that compute approximations of sets of (feasible) paths by
building symbolic evaluation graphs with unbounded loops. Formalizing all
the details needed for a machine-checked proof was a substantial piece of
work. To our knowledge, such formalization was not done before.

The ATRACER model separates the fundamental aspects and the heuris- FiXme Note: ATRACER
not definedtic parts of the algorithm. Additional graph transformations for restricting

abstractions or for computing interpolants or invariants can be added to
the current framework, reusing the existing machinery for graphs, paths,
configurations, etc.

345

Titre : Détection de Chemins Infaisables : un Modèle Formel et un Algorithme

Mots clefs : Test de logiciels, génération aléatoire, exécution symbolique, chemins infaisables, méthodes
formelles

Résumé : De nombreuses techniques d’analyse de
programmes se basent sur une représentation du
code sous forme de graphe, appelée Graphe de Flot
de Contrôle (CFG). Un CFG est une représenta-
tion compacte du comportement d’un programme
: chaque comportement est représenté par exac-
tement un chemin dans le CFG. La propriété in-
verse n’est pas vraie : chaque chemin du CFG ne
représente pas nécessairement un comportement
du programme. Les CFG sont des sur-approxi-
mations imprécises des ensembles d’exécutions des
programmes. Les chemins ne représentant pas une
possible exécution du programme sont dits infai-
sables, puisque le programme ne peut jamais s’exé-
cuter le long d’un tel chemin. En général, le nombre
de chemins infaisables surpasse largement celui des

faisables, même pour des programmes simples. Par
conséquent, les techniques basées sur les CFG –
test boîte blanche, model checking, analyse sta-
tique, par exemple – sont négativement impactées
par l’existence des chemins infaisables.
Les travaux présentés dans ce document concernent
l’élimination de chemins infaisables dans des CFG.
Pour ce faire, nous proposons un algorithme basé
sur l’exécution symbolique et la détection de sub-
somptions et dirigé par diverses heuristiques. Cet
algorithme peut être vu comme un dépliage po-
tentiellement partiel du CFG de départ durant le-
quel des chemins infaisables sont éliminés. Cet al-
gorithme est basé sur un modèle formel montrant
la correction de l’approche et le fait que les chemins
faisables du graphe de départ soient conservés.

Title : Infeasible Paths Detection: a Formal Model and an Algorithm

Keywords : Software testing, random generation, symbolic execution, infeasible paths, formal methods

Abstract : A number of program analysis tech-
niques are based on a graphical representation of
the program called the Control Flow Graph (CFG).
A CFG is a compact representation of a program’s
behavior: each possible execution of the program
is represented by exactly one path in the CFG.
The inverse property is not true: not every path
of the CFG represents an actual execution of the
program. As a result, CFG are inaccurate over-
approximations of the sets of executions of pro-
grams. Paths that do not represent actual execu-
tions are said to be infeasible since the program
can never run along one of them. In general, the in-
feasible paths largely outnumber the feasible ones,

even for simple programs. As a result, techniques
based on CFG – white-box testing, model checking,
static analysis, for example – are negatively impac-
ted by the existence of infeasible paths.
The works presented in this document focus on pru-
ning infeasible paths from CFG. To do so, we pro-
pose an algorithm based on symbolic execution and
detection of subsumptions and driven by various
heuristics. It can be seen as a potentially partial
unfolding of the original CFG during which infea-
sible paths are pruned. This algorithm is based on
a formal model that shows the correction of the
approach and the fact that it preserves the feasible
paths of the input graph.

Université Paris-Saclay

Espace Technologique / Immeuble Discovery

Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

2

	Introduction
	Software Testing
	Principles of Testing
	Selecting Test Cases

	Motivations
	Contributions

	Context: Random Testing and Infeasibility
	Random Structural Biased Testing
	Isotropic Random Walks
	Uniform Random Walks

	Program Paths and Infeasibility
	Symbolic Execution and Unbounded Loops

	Introducing Red-Black Graphs and their Transformations
	Introduction
	Modeling programs
	Operational Semantics of Programs
	Configurations
	Symbolic Execution Steps
	Symbolic Execution of Programs

	Subsumption
	Subsumption
	Abstracting Configurations

	Red-Black Graphs
	Red-Black Graphs Transformations
	Extension by Symbolic Execution
	Extension by Subsumption
	Extension by Abstraction
	Extension by Marking
	Extension by Strengthening
	The Set of Red-Black Graphs

	Building Red-Black Graphs: an Example
	Summary

	Formalization
	Introduction
	Symbolic Execution
	Arithmetic and Boolean Expressions
	Stores
	Configurations, Subsumption and Abstraction
	Symbolic Execution Steps

	Graphs, Labeled Transition Systems, Subsumption Relations
	Introduction
	Rooted Graphs
	Labeled Transition Systems
	Graphs Equipped with Subsumption Relations
	Extending Graphs and Subsumption Relations

	Red-Black Graphs and Their Properties
	The Type of Red-Black Graphs
	Well-Formed Red-Black Graphs
	Relation Between Red Vertices
	Preservation of Behaviours
	Preservation of Feasible Paths

	Summary

	Algorithm
	Introduction
	Data Structures and Inputs
	Data Structures
	Inputs and Parameters

	Building the Red-Black Graph
	Principles
	Symbolic Execution Steps
	Detecting Subsumptions
	Refine-and-Restart Mechanism
	Look-Ahead Mechanism
	Building The Resulting LTS

	The Merging Sort Example
	The Merging Sort Program
	Merging Sort without Path Sets Comparisons
	Merging Sort with Path Sets Comparisons

	Summary

	Experiments and Discussions
	Experimental Results
	Greatest Common Divisor
	Merging Sort
	Substring
	Bubble Sort
	Bounded Loops
	Modulo Example

	Discussions and Possible Improvements
	Extending Refinements
	Look-Ahead Mechanism
	Abstraction methods
	Subsumptions Between Different Paths

	Summary

	Conclusion
	Isabelle/HOL Formalization
	Introduction
	Arithmetic Expressions
	Variables and their domain
	Program and symbolic states
	The aexp type-synonym
	Variables of an arithmetic expression
	Fresh variables

	Boolean Expressions
	Basic definitions
	Properties about the variables of an expression

	Stores
	Basic definitions
	Consistency
	Adaptation of an arithmetic expression to a store
	Adaptation of a boolean expression to a store

	Configurations and Subsumption
	Configurations
	Symbolic variables of a configuration.
	Freshness.
	Satisfiability
	States of a configuration
	Subsumption
	Semantics of a configuration
	Entailment
	Abstractions

	Symbolic Execution
	Labels
	Definitions of SE and SE_star
	Basic properties of SE
	Monotonicity of SE
	Basic properties of SE_star
	Monotonicity of SE_star
	Existence of successors
	Feasibility of a sequence of labels
	Concrete execution
	Weakest Precondition Calculus

	Rooted Graphs
	Basic definitions and properties
	Consistent edge sequences, sub-paths and paths
	Adding edges

	Labeled Transition Systems
	Basic definitions
	Feasible sub-paths and paths

	Graphs Equipped with Ssubsumption Relations
	Basic definitions and properties
	Well-formed subsumption relation of a graph
	Consistent edge sequences and sub-paths

	Extending Graphs with Edges
	Definition and basic properties
	Properties of sub-paths in an extension

	Extending Subsomption Relations
	Definition
	Properties of extensions
	Properties of sub-paths in an extension

	Red-Black Graphs
	Basic definitions
	Extensions of red-black graphs
	Building red-black graphs using extensions
	Properties of red-black graphs
	Relation between red-vertices
	Properties about marking.
	Fringe of a red-black graph
	Red-black sub-paths and paths
	Preservation of feasible paths

	Conclusion

