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1.1 L’analyse de forme dans le contexte de

l’imagerie médicale

L’interprétation automatique de données d’imagerie est un défi importants des domaines
de l’imagerie médicale et de la vision artificielle. Ces données sont des représentations
de vrais objets en dimension 2 ou 3: ce peut être des images (IRM par exemple), ou des
données géométriques (telles que des courbes ou des surfaces obtenues par segmentation).
Elles encodent des informations complexes, et même si parfois cette information peut être
interprétée visuellement, en général il n’est pas possible pour l’œil humain d’appréhender
ces formes dans leur totalité. Par exemple, étant donnée une IRM cérébrale, les plis les
plus profonds du cortex peuvent être labellisés manuellement, mais identifier les struc-
tures les plus fines est une tâches difficiles. De même, étudier les ressemblances et
différences entre trois ou quatre sujets peut parfois être fait manuellement, mais afin de
comprendre les différences anatomiques au sein de plus grandes populations, des méth-
odes automatiques sont nécessaires. En pratique étudier de telles grandes populations
est nécessaire par exemple pour détecter les caractéristiques anatomiques associées à une
maladie particulière, ou pour regrouper les différences anatomiques parmi une popula-
tion en différentes classes.
Le but de l’analyse de forme est précisément de développer des méthodes permettant
de comprendre de telles données de forme de manière globale et automatique. Une ap-
proche efficace pour analyser automatiquement une forme est de développer des outils
permettant de la comparer automatiquement à une population de formes similaires qui
ont déjà été étudiées. Pour cela, il faut tout d’abord développer des méthodes per-
mettant d’analyser une population de formes et ensuite être capable de comparer des
formes. L’analyse d’une population de formes peut être faite via l’estimation d’une
forme moyenne, appelée le template, qui reflète la structure sous-jacente de la popula-
tion; et simultanément via la comparaison des formes de la population à ce template
afin de comprendre la variabilité au sein de cette population. Ainsi le point clé ici est le
développement de méthodes permettant de comparer des formes.
Une approche introduite par d’Arcy Thompson [T+42], et ayant prouvé son intérêt, est
d’adopter un point de vue géométrique et d’étudier les déformations transformant la
première forme en la seconde. Dans le cas particulier où les formes étudiées sont con-
stituées de landmarks, une idée présentée par F. L. Bookstein dans [Boo97, B+89] est
d’interpoler les déplacements de landmarks entre les deux formes par des splines, perme-
ttant d’obtenir un champ de vecteurs lisse et dense. Cette méthode permit de résoudre
de nombreux problèmes, notamment dans le domaine de l’imagerie médicale. Néanmoins
elle souffre d’une importante limite : il n’y a aucune garantie que le champs de vecteurs
obtenu soit inversible. Ceci est problématique : un intérêt de ce cadre géométrique
est de mettre en correspondance certaines régions des données et donc une déforma-
tion bijective est nécessaire. Dans sa Pattern Theory [GK93, GCK12, Gre96, Gre93],
U. Grenander développa une nouvelle idée pour étudier les formes : il les considère sous
l’action d’un groupe de déformations. Dans [MCAG93], une forme idéale (le template)
est considérée et les auteurs construisent des déformations inversibles qui transforment
cette forme idéale en les formes données. Ainsi une connaissance particulière sur cette
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forme idéale (par exemple une segmentation) peut être automatiquement adaptée aux
nouvelles données. Cependant, en pratique, les déformations qui sont utilisées sont des
approximations linéaires de difféomorphismes (petites déformations), et donc ne perme-
ttent pas de capturer les déformations de grande ampleur entre le template et les formes
données. Dans [CRM96] est présenté un cadre théorique permettant pour la première
fois de construire de manière systématiques des grandes déformations difféomorphiques.
Les déformations sont obtenues par intégration d’une trajectoire de champs de vecteurs.
On considère ainsi les trajectoires ϕ de difféomorphismes commençant à ϕt=0 = Id et
satisfaisant :

ϕ̇t = vt ◦ ϕt.

Dans ce cadre, l’ensemble des difféomorphismes qui est utilisé pour étudier un ensem-
ble de formes n’est pas directement défini: il s’agit de d’abord définir les trajectoires
de champs de vecteurs considérées, et ensuite de construire par intégration l’ensemble
de grandes déformations correspondant. Cette construction a été largement utilisée en
analyse de forme [AG04, JDJG04, KWB08, RFS03, Thi98, Tog98, VPPA09, WBR+07]
car elle permet de construire des grandes déformations en ne spécifiant que les déplace-
ment infinitésimaux. Différents choix de trajectoires de champs de vecteurs permettent
de construire différents modèles de déformation. Dans une première grande classe de
modèles présentée dans les Sections 1.2.1, 1.2.2 et 1.2.3, un espace de champs de vecteurs
est fixé et on considère toutes les trajectoires intégrables de cet espace. Dans ces modèles
il n’y a pas de structure imposée sr les déformations à l’avance :cela permet de construire
des ensembles riches de difféomorphismes et des déformations adaptées pour apparier les
formes, mais cela empêche de les interpréter naturellement. En effet, comme les champs
de vecteurs ne sont pas paramétrés à l’avance avec des variables ayant du sens, ces
modèles ne fournissent pas d’outils pour comprendre les déformations obtenues. Afin de
surmonter ce problème, simultanément, ont été développés des modèles paramétriques,
une présentation en est donnée Sections 1.2.5,1.2.6 and 1.2.7. Dans ces approches, à
chaque instant de la trajectoire, le champs de vecteurs est contraint à être obtenu via la
combinaison d’un petit nombre de générateurs de champs de vecteurs créant des champs
de vecteurs particuliers. En choisissant certains générateurs, on peut construire des tra-
jectoires de difféomorphismes correspondant à un certain point de vue (un a priori) que
l’on veut avoir sur les formes. Cependant, à notre connaissance, aucun de ces cadres ne
permet de construire des générateurs correspondant à un a priori complexe générique.
De plus, aucun d’entre eux ne permet de munir ces champs de vecteurs d’une métrique
dépendant de ces a priori. C’est ce que nous voulons développer : le but est la construc-
tion d’un vocabulaire qui serait utilisé pour décrire les différences entre les formes, et
d’une métrique qui mesurerait ces différences en tenant compte les choix de vocabulaire.
Ce chapitre est organisé comme suit : dans la Section 1.2 nous présentons les différents
modèles de déformation qui ont été développés dans un but similaire au notre, et nous
introduisons les raisons qui nous ont poussées à développer un modèle de déformation
modulaire. Dans la Section 1.3 est présenté un résumé des contributions de cette thèse.
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1.2 Les difféomorphismes en Anatomie Computa-

tionnelle

1.2.1 LDDMM

Les travaux fondateurs de U. Grenander [Gre93] et G.E. Christensen et al. [CRM96]
définissent les notions de template et de grandes déformations difféomorphiques con-
struites comme flot de trajectoires de champs de vecteurs. Dans [DGM98], les auteurs
étudient les conditions théoriques nécessaires pour obtenir l’existence d’une trajectoire
optimal de champs de vecteurs transportant une forme source aussi proche que possible
d’une forme cible. Ils étudient également ce problème d’un point de vue Bayesien. Dans
[Tro95, Tro98], A. Trouvé introduit un nouveau cadre générique afin d’étudier des motifs
au sein d’une population de formes. Dans cet article, des formes particulières (motifs)
sont considérés : ce sont des fonctions mesurables d’une variété Riemannienne compacte
de dimension finie sans bord vers une variété X de dimension finie. Ceci correspond
par exemple au cas de courbes fermées sur R

2. Afin d’étudier ces formes, un espace de
Banach de champs de vecteurs, noté B, est construit. Ensuite est défini le groupe AB

des valeurs finales des flots de trajectoires de champs de vecteurs appartenant à B. Ce
modèle fournit un cadre mathématiques rigoureux afin de construire des grandes défor-
mations difféomorphiques, ainsi qu’une métrique (et donc une distance) sur ce groupe
de difféomorphisme. Afin d’étudier les différences entre deux formes f0 et f1, l’idée
est de rechercher un difféomorphisme dans AB (c’est-à-dire une trajectoire de champs
de vecteurs dans B) aussi proche que possible de l’Identité et transportant f0 aussi
proche que possible de f1. L’existence d’une telle trajectoire optimale est prouvée. De
plus, cette distance permet de mesurer la ressemblance entre deux formes et est utilisée
dans cet article pour associer une forme à une forme-motif. Des équations d’Euler-
Lagrange pour les trajectoires optimales furent étudiées dans [BMTY05], menant à un
cadre connu comme la Large Deformations Diffeomorphic Metric Mapping (LDDMM)
[MYT14, YAM09, You10]. Même si la définition de forme qui est considérée dans ce
cadre est satisfaite par de nombreux exemples, il n’est pas donné de définition générique.

1.2.2 Notion nécessaire: espace de formes

La formalisation de la notion de forme a été considérée de plusieurs manières [BBM14,
Ken84, KBCL09]. Dans cette thèse nous considérerons l’approche développée par S.
Arguillère [Arg14, Arg15a, Arg15b]. Dans [Arg14], un espace de formes O est défini
comme une variété sur laquelle un groupe G de difféomorphismes agit continument (voir
Section 3.2 pour une définition précise). Une forme est alors définie comme un élément
de cet espace. Dans ce cadre, on fixe un Espace de Hilbert à Noyau Reproduisant (ENR,
voir 3.1) de champs de vecteurs V et ensuite on construit le groupe GV des valeurs finales
prises par les flots de trajectoires de champs de vecteurs de V . Ce groupe GV est un
sous-groupe de G, il est muni d’une métrique grâce à V et sera utilisé pour étudier
les formes de O. De même que dans [Tro95], afin d’étudier les différences entre deux
formes f0 et f1, on recherche un difféomorphisme dans GV (c’est-à-dire une trajectoire de
champs de vecteurs de V ) aussi proche que possible de l’Identité et transportant f0 aussi
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proche que possible de f1. Son existence est démontrée et il est montré que la trajectoire
vt de champs de vecteurs correspondante peut être paramétrée par une variable duale
initiale appelée le moment. De plus à chaque instant t, vt est porté par la forme dans
un sens qui sera détaillé Section 3.2. À partir de la métrique sur GV , on peut construire
une métrique sous-Riemannienne sur O et ensuite mesurer les différences entre f0 et f1.
Cette mesure dépend de l’espace V et une question importante est le choix de l’espace
V adapté à un problème particulier. Différents choix d’espaces de formes et d’ENR V
dans la littérature correspondent à ce cadre générique.

1.2.3 Divers espaces de formes et ENR: divers cadres

Dans [Gla05, GVM04] sont détaillés les cas des landmarks, mais également des mesures
et des courants qui permettent de considérer des ensembles de points non labellisés , ainsi
que des courbes et des surfaces non paramétrées. Les auteurs se restreignent au cas des
ENR scalaires Gaussiens, c’est-à-dire où le noyau définissant l’ENR est scalaire Gaussien
et est donc défini par un paramètre scalaire l’échelle, représentant l’échelle caractéristique
des déformations. Comme le choix de l’échelle σ de l’ENR scalaire gaussien peut être
un problème important, plusieurs approches multi-échelles ont été développées. Dans
[RVW+11] le noyau de l’ENR est une somme de noyaux Gaussiens à différentes échelles.
Ceci permet d’obtenir des trajectoires de champs de vecteurs capturant la variabilité
à différentes échelle simultanément et qui semblent plus naturels dans le cas où il y
a des différences à plusieurs échelles caractéristiques entre les données. Dans autre
approche multi-échelle initiée dans [SLNP11], une famille W d’espaces de champs de
vecteurs, et non plus un seul espace, est considérée. Chacun de ces espace est un ENR
à une échelle différente. L’action d’une famille de champs de vecteurs appartenant à
W sur une forme est construite comme la somme des actions de chacun des champs de
vecteurs. Cependant, il est montré dans [BRV12] que cette approche est équivalente
à la précédente [RVW+11], ce problème a été étudié dans [SLNP13]. Dans toutes ces
approches, les formes considérées sont d’ordre zéro dans le sens qu’elles ne portent de
l’information qu’à propos des localisations des points. Il est montré dans [Gla05] que
pour les trajectoires optimales, à chaque instant le champs de vecteur est une somme
de translations localisées par la fonction noyau. Dans [SNDP13], une autre catégorie de
formes est considérée. Dans ce cas elle portent une information d’ordre supérieur: ce sont
des images et on ne considère pas seulement les valeurs de l’image en chaque point mais
aussi les dérivées de l’image en ces points. En conséquence, les trajectoires optimales
de champs de vecteurs sont paramétrés par des moments d’ordres supérieurs et donc
les champs de vecteurs des trajectoires optimales sont exprimées à l’aide des dérivées
du noyau. Ceci permet d’obtenir des déformations locales plus complexes comme des
applications localement affines. Une étude théorique de ce cadre a été menée dans
[Jac13], en particulier sur les réductions dues aux symétries que l’on peut obtenir.

Dans toutes les approches précédemment citées, en choisissant un espace de champs
de vecteurs adaptés on construit des grandes déformations adaptées à un problème parti-
culier. Cependant, le moment (variable duale paramétrant les trajectoires optimales) est
de même dimension que les formes considérées et cette dimension peut être très grande
en pratique. Cette paramétrisation peut donc être redondante. Dans un modèle sparse
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présenté dans [DPC+14], S. Durrleman considère les géodésiques générées par un petit
nombre de landmarks de sorte qu’elles sont paramétrées en petite dimension. Ensuite
on peut étudier comment ces géodésiques appartenant à un espace de petites dimension
peuvent déformer des formes de grandes dimension. Dans ce cadre l’idée est de trouver
la dimension réelle nécessaire des trajectoires qui doivent être considérées pour étudier
la variabilité au sein d’une population. Cependant ces champs de vecteurs sont toujours
des sommes de translations locales (car ce sont des géodésiques pour des landmarks) et
donc l’interprétation des motifs non linéaires est limitée.

1.2.4 Des déformations plus structurées ?

Une limite générale de ces modèles non paramétriques est le fait que la nature des champs
de vecteurs optimaux dépend de la nature des formes et non de la nature des différences
que l’on veut étudier. Il n’est pas possible d’imposer un certain motif de déformation,
correspondant à un savoir préalable. C’est pourtant nécessaire dans certains cas : par
exemple pour des images biologiques, certains motifs de déformation peuvent être totale-
ment non pertinents et il peut être intéressant de construire un modèle de déformation
qui ne les autorise pas mais au contraire en favorise des plus réalistes. C’est une des
raisons pour lesquelles furent développés des approches paramétriques dans lesquelles
les déformations sont structurées a priori. Dans ces modèles les champs de vecteurs
à chaque instant sont contraints à être la somme d’un petit nombre de champs de
vecteurs paramétrés en petite dimension grâce à des variables de contrôle, de sorte que
les motifs de déformation sont contrôlés et peuvent être interprétés à l’aide des valeurs
des contrôles. L’idée est ici de réduire l’ensemble des difféomorphismes considérés afin
d’améliorer leur compréhension et leur adaptation à un problème particulier.

1.2.5 Cadre poly-affine

Dans un cadre poly-affine présenté dans [APA05, ACAP09], le but est de construire
des déformations obtenues par fusion de différentes transformations localement affines.
Si les applications localement affines sont sommées, la déformation résultante est en
général non inversible. C’est pourquoi dans ce cadre les déformations sont obtenues
par intégration de trajectoires de champs de vecteurs. À une déformation affine T est
associée une trajectoire de champs de vecteurs dont le flot vaut T à t = 1. Alors si
on veut fusionner différents déformations affines Ti agissant dans différentes régions Ωi

définies par des fonctions poinds wi, on définit les trajectoires de champs de vecteurs vi

correspondantes et on intègre la trajectoire de champs de vecteurs
∑

i wivi : la fusion des
différentes déformations localement affines se fait au niveau des champs de vitesse. Ce
cadre permet de construire des grandes déformations localement affines de sorte que la
fusion de ces déformations localement affines satisfait de bonnes propriétés. De plus ce
cadre poly-affine est particulèrement adapté à certaines situations, comme par exemple
le recalage de mouvement d’os [SPR12] ou cardiaques [MSBP15, RDSP15]. Cependant,
les poids wi (et donc les régions Ωi d’action de chaque déformation localement affine)
restent fixes pendant l’intégration du flot. Ceci empêche de construire de très grandes
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déformations puisque la partie de la forme supposée être déplacée par une déformation
Ti peut sortir de la région correspondante Ωi.

1.2.6 Modèle GRID

Une autre approche étudie la fusion de déformations locales à travers la fusion des
champs de vitesses : le modèle GRID [GSS07, Por10, PGV07, PV11, SSDG05]. Ici
les déformations locales ne sont pas contraintes à être localement affines mais peuvent
être plus génériques. Cette approche a pour but de modéliser la croissance par une
série de petites déformations locales. Chacune de ces petites déformations est localisée
autour d’un point appelé graine qui définit une région locale dans laquelle la petite
déformation agit. La déformation globale est obtenue par intégration temporelle discrète
d’une trajectoire de tels champs de vecteurs. À chaque instant une région d’activation
est définie (correspondant à une région d’activation de gène) et une graine de cette région
engendre un champs de vecteurs local. Cette activation de graine, la durée d’activation
et d’autres paramètres sont modélisés à l’aide d’un cadre probabiliste et leurs lois sont
estimées à l’aide d’un maximum de vraisemblance. Ce cadre permet de modéliser des
croissances biologiques et l’approche probabiliste est adaptée à la considération de gène
d’activation de croissance. Cependant il ne permet pas de construire un vocabulaire
de déformations qui serait utilisé pour transformer une forme moyenne en différents
sujets d’une population, alors que c’est un problème important comme précisé dans
[Gre96, GCK12]. De plus les générateurs de déformations (graines) sont définies à chaque
instant et donc ne sont pas transportés par la déformation globale pendant l’intégration
du flot, ce qui peut mener à des faiblesses dans l’interprétation des trajectoires obtenues.

1.2.7 Modèle des Diffeons

Dans [You12] est présentée une approche paramétrique dans laquelle, au contraire, les
générateurs des déformations sont contraints à être transportés par le flot de difféo-
morphismes. Dans ce cadre une variété S de formes est considérée, ainsi qu’un espace
de champs de vecteurs V qui agit infinitésimalement dessus. Cet espace de champs de
vecteurs définit un groupe GV de diffeomorphismes qui peuvent s’écrire comme la valeur
finale prise par un flot d’une trajectiore de V et GV agit sur S. À chaque forme m
de S est associée une famille finie de champs de vecteurs γi(m), appelés diffeons, qui
définit un sous espace Vm de V . Ensuite ne sont considérées que les trajectoires de
champs de vecteurs v : t ∈ [0, 1] 7→ vt ∈ V telles que pour chaque t, vt peut s’écrire
vt =

∑

i αi(t)γi(mt) avec αi(t) ∈ R et mt la valeur transportée de la forme originale
mt=0 par le flot de v. Trouver une trajectoire optimale transportant une forme source
m0 vers une forme cible m1 revient alors à un problème de contrôle optimal dans lequel
le coût associé à chaque champs de vecteur v est |v|2V . Afin que ce coût soit facilement
calculable en pratique, il faut restreindre les champs de vecteurs possibles γi(m) à un
certain ensemble : des translations locales dont les centres et les matrices de covariance
sont des paramètres géométriques dépendant partiellement de la forme m et transportés
par le flot. Les vecteurs de ces translations sont des variables de contrôle dont la trajec-
toire doit être optimisée pour transporter la forme source vers la forme cible. Ce cadre
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définit une méthode pour construire des difféomorphismes sous contraintes dépendant
des formes, permettant de définir une nouvelle métrique sur l’espace de formes. Deux
exemples principaux sont donnés dans cet article. Dans le premier, les formes de S sont
approximées par une discrétisation et cette discrétisation est utilisée pour approximer
les trajectoires optimales de champs de vecteurs du cadre non-paramétrique. Dans le
second exemple, des diffeons appelés "pushers" et "pullers" sont définis. Ils engendrent
des translations locales centrées en des points différents de ceux de la forme et ont donc
tendance à la "pousser" ou la "tirer". Cependant une méthode générique pour construire
des diffeons adaptés à un problème particulier doit encore être définie. Par exemple une
méthode pour fusionner différents types de simples diffeons en un diffeons plus complexe
serait utile. De plus le coût associé à chaque champs de vecteurs est donné par le carré
de sa norme, mesurant la "facilité" avec laquelle ce champs de vecteur est créé dans V et
non la facilité avec laquelle il est créé en tant que combinaison des générateurs γi(m) :
il n’est pas possible ici de définir une métrique plus adaptée un problème donné.

1.2.8 Conclusion

Grâce aux cadres non paramétrés (et non structurés) présentés Sections 1.2.1, 1.2.2 et
1.2.3, en choisissant une représentation appropriée des formes et un espace approprié
de champs de vecteurs, il est possible d’obtenir un modèle de déformation permettant
d’obtenir un bon appariement de formes données. Cependant, comme souligné dans
la Section 1.2.4 ces cadres ne permettent pas d’imposer une structure particulière aux
déformations générées. Ceci peut également mener à manque d’interprétabilité des ré-
sultats. Les cadres paramétriques présentés aux Sections 1.2.5, 1.2.6 et 1.2.7 permettent
de surmonter partiellement ce problème. Dans ces modèles, en choisissant une famille
de générateurs de champs de vecteurs, et en contraignant les champs de vecteurs à être
engendrés par eux, il est possible d’imposer une certaine structure aux déformations.
Cependant aucun de ces cadres ne donne de méthode générique pour définir facilement
des générateurs qui seraient adaptés à l’étude de formes particulières et qui satisferaient
également les propriétés nécessaires théoriquement (pour démontrer l’existence de tra-
jectoires optimales par exemple). Nous avons également vu que définir l’évolution de
ces générateurs pendant l’intégration du flot peut poser problème. Dans les cadres
poly-affine (Section 1.2.5) et GRID (Section 1.2.6) il n’est pas possible de choisir cette
évolution. Dans le dernier cadre des Diffeons (Section 1.2.7) cette évolution est plus
générique puisqu’elle vient d’une action infinitésimale sur un espace de formes et peut
donc être modifiée. Cependant pour des raisons numériques les champs de vecteurs
sont contraints à être des sommes de translations locales et donc ne peuvent pas être
adaptée de manière générique à un problème donné. Une dernière limite importante de
ces cadres est qu’il n’est pas possible de définir un coût associé aux champs de vecteurs
générés qui serait cohérent avec les a priori introduits: ce coût est toujours construit
grâce à la norme du champs de vecteur dans un espace de champs de vecteurs qui est
fixé. Ainsi si deux choix de générateurs permettent de construire le même champs de
vecteurs mais que l’un est plus naturel que l’autre, leurs coûts seront égaux : le coût ne
tient pas compte de la structure imposée au modèle de déformation.
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1.3 Résumé des contributions

L’objet de cette thèse est de définir un nouveau modèle de déformation permettant de
construire des déformations pouvant être localement contraintes à un certain type de dé-
formations et interprétables. Comme expliqué précédemment, il faudrait simultanément
construire des coûts associés à ces déformations qui soit pertinents par rapport aux con-
traintes. De même que dans les modèles précédents (présentés aux Sections 1.2.5, 1.2.6
et 1.2.7), les déformations sont construites comme des flots de trajectoires de champs
de vecteurs et l’incorporation de contraintes dans le modèle de déformation correspond
à fixer une famille V .= (vi)i∈I de générateurs de champs de vecteurs. Une fois que
cette famille est fixée, l’idée est de considérer seulement les champs de vecteurs pou-
vant s’écrire comme combinaison linéaire d’une sous-famille finie de V , c’est-à-dire que
nous imposons à chaque instant qu’il existe (αk)1≤k≤N ∈ R

N de sorte que le champs de
vecteurs puisse s’écrire

∑

k αkvik
. Contrairement au modèle GRID (Section 1.2.6, nous

voulons considérer les trajectoires vt de tels champs de vecteurs telles que les généra-
teurs vik

sont transportés par le flot de v. Ce transport est réalisé grâce à une action
des champs de vecteurs sur les générateurs, qui peut par exemple être l’action nulle
(comme pour le modèle poly-affine) ou correspondre à une action sur une variable de
formes qui paramétreraient les générateurs de manière similaire au modèle des Diffeons.
En conséquence si les générateurs initiaux vik

(t = 0) sont fixés, rechercher la meilleure
trajectoire de champs de vecteurs transportant une forme source f0 aussi proche que pos-
sible d’une forme cible f1 correspond à chercher la trajectoire de variables αk telle que la
trajectoire correspondante de champs de vecteurs transporte f0 aussi proche que possible
de f1. Les variable αk correspondent à des contrôles et ce problème d’appariement est
un problème de contrôle.
Le choix de la famille de générateurs de champs de vecteurs V est un point clé de ce
cadre et l’idée est de définir ces générateurs de façon à ce qu’ils capture la variabilité de
caractéristiques géométriques intéressantes entre les formes. Cette idée est dans l’esprit
de l’approche développée dans [PFY+99, PTC00, YPJM01] où les auteurs définissent
des atomes médiaux appelés M-reps, qui contiennent de une information géométrique
locale et complexe. Différents types de ces atomes médiaux sont définis de sorte qu’ils
peuvent décrire de manière pertinente la géométrie d’une forme donnée : par exemple
l’extrémité d’une forme 2D peut être représentée grâce à un atome corner-end si c’est
un coin, ou un atome rounded si c’est une portion de cercle. Ensuite un réseau de
tels atomes médiaux donennt une représentation structurée et interprétable de la forme.
Construire de tels réseaux et comparer les paramètres d’un atome particulier permet en-
suite d’étudier la variabilité de la caractéristique correspondante indépendamment des
autres types de variabilité. Dans notre approche nous adoptons un point de vue similaire
mais (comme souligné précédemment) au lieu de décrire la géométrie de la forme elle-
même, nous voulons décrire les déformations encodant la variabilité des formes. Ainsi
nous définirons des atomes de déformation qui contiendront une information géométrique
complexe à propos de la déformation qu’ils générèrent. De même que pour les M-reps,
nous voulons construire une paramétrisation pertinente de ces atomes, de sorte que la
représentation des déformations que nous obtenons soit facilement interprétable.

Nous présentons ici les principales notions et les principaux résultats de cette thèse.
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Les démonstrations et des exemples variés seront présentés dans les chapitres 4 et 5.

1.3.1 Modèle de déformation

Nous utilisons ici les notions de flot de difféomorphismes et de forme présentées dans
[Arg14] et rappelées en Section 3.2. Soient d et ℓ des entiers non nuls, Cℓ

0(Rd) est l’espace
des champs de vecteurs de classe Cℓ sur R

d dont les dérivées d’ordre inférieur ou égal
à ℓ tendent vers zero à l’infini. On le munit de la norme |v|ℓ = sup{|∂ℓ1+···+ℓd v(x)

∂x
ℓ1
1 ···xℓd

d

| | x ∈
R

d, (ℓ1, · · · , ℓd) ∈ N
d, ℓ1 + · + ℓd ≤ ℓ} telle sorte que ce soit un espace de Banach. On

définit Diffℓ
0(R

d) l’espace des difféomorphismes Cℓ de R
d qui convergent vers l’identité à

l’infini. C’est un ouvert de l’espace de Banach affine Id+Cℓ
0(Rd) et il est donc muni d’une

structure différentielle naturelle. Nous allons considérer des trajectoires particulières de
Diffℓ

0(R
d) définies comme flot de trajectoires de Cℓ

0(Rd).

Proposition 1. Soit v un élément de L1([0, 1], Cℓ
0(Rd)), c’est-à-dire un champ de

vecteurs dépendant du temps tel que t ∈ [0, 1] 7→ |v(t)|ℓ est intégrable. Alors il existe
une unique solution ϕv absolument continue, appelée le flot de v, au système d’équation
suivant :

{

ϕ̇v(t) = v(t) ◦ ϕv(t)
ϕ(0) = Id

où φv(t) ∈ Diffℓ
0(R

d) pour tout t ∈ [0, 1].

Cette proposition nous permet de considérer des flots de champs de vecteurs dépen-
dant du temps, où le “temps” t fait référence à la variable d’intégration. Comme nous
sommes intéressés par la manière dont ces flots peuvent déformer des formes, nous de-
vons préciser ce qu’est une forme et comment un difféomorphisme de Diffℓ

0(R
d) peut agir

dessus. Nous utilisons la définition suivante, introduite dans [Arg14].

Definition 1. Soit O une variété de Banach de dimension finie. Nous supposons que
le groupe Diffℓ

0(R
d) agit continument sur O selon l’action

Diffℓ
0(R

d) × O → O
(ϕ, o) 7→ ϕ · o (1.1)

On dit que O est un Ck espace de formes d’ordre ℓ sur Rd si les conditions suivantes
sont satisfaites :

1. Pour chaque o ∈ O, φ ∈ Diffℓ
0(R

d) 7→ φ · o est Lipschitzienne par rapport à la
norme | · |ℓ et différentiable à IdRd. Cette différentielle sera notée ξo et appelée
l’action infinitésimale de Cℓ

0(Rd).

2. L’application ξ : (o, v) ∈ O × Cℓ
0(Rd) 7→ ξov est continue et sa restriction à O ×

Cℓ+k
0 (Rd) est de classe Ck.

Un élément o du O est appelée forme, et Rd est l’espace ambiant.
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Field generator

Infinitesimal action

cost

Controls

Geometrical

descriptors

Figure 1.1: Schematic view of a deformation module.

Notre cadre théorique repose sur l’introduction de la notion de module de déforma-
tion. Un module de déformation est une structure capable de générer des champs de
vecteurs d’un type choisi et paramétré en petite dimension.

Definition 2. Soient k, ℓ ∈ N
∗. On dit que M = (O, H, ζ, ξ, c) est un module de

déformation Ck d’order ℓ, de descripteurs géométriques dans O, de controls
dans H, d’action infinitesimale ξ, de générateur de champs ζ et de coût c si

• O est un Ck espace de formes d’ordre ℓ d’action infinitésimale ξ : Cℓ
0(Rd) × O −→

TO,

• H est un espace vectoriel euclidien de dimension finie,

• ζ : (o, h) ∈ O ×H → (o, ζo(h)) ∈ O ×Cℓ
0(Rd) est continue, avec h 7→ ζo(h) linéaire

and o 7→ ζo de classe Ck,

• c : (o, h) ∈ O ×H → co(h) ∈ R
+ est une application continue telle que o 7→ co est

lisse et pour tout o ∈ O, h 7→ co(h) est une forme quadratique définie positive sur
H, définissant donc une métrique sur O ×H.

Une vue schématique d’un module de déformation est présentée Figure 1.1. Les
champs de vecteurs générés par un module de déformation sont ainsi paramétrés par deux
variables: les descripteurs géométriques et les controls. Les descripteurs géométriques
vont paramétrer la géométrie (par exemple la localisation) du champs de vecteurs généré.
Les controls vont eux paramétrer la force avec laquelle le champs de vecteur est utilisé.
Des exemples nombreux et variés seront présentés dans le Chapitre 4, Section 4.2. Les
descripteurs géométriques appartiennent à un espace de formes et seront donc appelés
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formes. Nous utiliserons également ce terme pour désigner les données à étudier puisque
ce seront également des formes au sens de la définition 1. En général ces deux types
d’objets (descripteurs géométriques et données à étudier) ne seront pas égaux. Cepen-
dant, étant donné un espace de formes F de données à étudier, ainsi que son action
infinitésimale ξF , on peut définir un module de déformation appelé module de défor-
mation silencieux induit par F . Ce module de déformation est appelé silencieux car
ils va générer des champs de vecteurs toujours nuls. On le définit par un espace de
descripteurs géométriques égal à F , un espace de controls nul, un générateur de champs
nul, une action infinitésimale égale à ξF et un coût nul. L’intérêt de ce type de module
de déformation silencieux sera rapidement présenté Section 1.3.3.2, et plus longuement
dans le Chapitre 5.

Nous allons nous restreindre aux modules de déformation qui satisfont la proposition
suivante, assurant que leurs coûts sont reliés (mais non nécessairement égaux) à la norme
du champ de vecteurs généré.

Definition 3. Soit M = (O, H, ζ, ξ, c) un module de déformation Ck d’ordre ℓ. On dit
que M satisfait la condition de plongement uniforme (UEC) s’il existe un espace
de Hilbert de champs de vecteurs V continûment inclus dans Cℓ+k

0 (Rd), et une constante
C > 0 tels que pour tout o ∈ O, et pour tout h ∈ H, ζo(h) ∈ V et

|ζo(h)|2V ≤ Cco(h).

La notion de module de déformation permet d’incorporer des contraintes dans le
modèle de déformation. En effet, si on fixe un module de déformation, alors on peut
ne considérer que les champs de vecteurs pouvant être créés à l’aide du générateur de
champs. C’est une première étape dans l’introduction de contraintes. Les contraintes
que l’on voudrait incorporer peuvent correspondre à un une connaissance additionnelle
que l’on aurait sur la population de formes, ou alors à un point de vue particulier selon
lequel on voudrait étudier la population. En pratique ces contraintes peuvent être rela-
tivement complexes et définir le module de déformation correspondant peut être délicat.
Cependant il est relativement facile de définir des modules de déformations correspon-
dant à des contraintes simples. Nous allons alors définir la combinaison de modules
de déformations, permettant de définir des modules de déformations plus complexes.
Une vue schématique d’une combinaison de trois modules de déformations est présentée
Figure 1.2.

Definition 4. Soient M l = (Ol, H l, ζ l, ξl, cl), l = 1 · · ·L, des modules de déformation
Ck d’ordre ℓ. On définit le module combiné des modules M l par C(M l, l = 1 · · ·L) =
(O, H, ζ, ξ, c) où O .=

∏

l Ol, H
.=
∏

l H
l and for o = (ol)l ∈ O, ζo : h = (hl) ∈ H 7→

∑

l ζ
l
ol(hl), ξo : v ∈ Cℓ

0(Rd) 7→ (ξl
ol(v))l ∈ ToO et co : h = (hl) ∈ H 7→ ∑

l c
l
ol(hl).

Une propriété clé de notre cadre est la stabilité par combinaison suivante:

Proposition 2. Si M l = (Ol, H l, ζ l, ξl, cl), l = 1 · · ·L, sont des modules de déformation
Ck d’ordre ℓ, alors C(M l, l = 1 · · ·L) l’est également. De plus si chaque module de dé-
formation M l satisfait UEC, alors C(M l, l = 1 · · ·L) satisfait également cette condition.
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Figure 1.2: Schematic view of a combination of three deformation modules.

Ainsi afin de définir un module de déformation adapté à une contrainte complexe, il
suffit de la voir comme la combinaison de contraintes plus simples et de combiner les mod-
ules de déformations correspondant à ces contraintes simples. Nous allons maintenant
expliquer comment construire des grandes déformations à l’aide de ce cadre modulaire.
Fixons un module de déformation M = (O, H, ζ, ξ, c) satisfaisant UEC. Nous allons con-
sidérer les trajectoires de champs de vecteurs v : t ∈ [0, 1] 7→ vt ∈ V qui sont modulaires,
c’est-à-dire qui peuvent s’écrire à chaque instant vt = ζot

(ht) avec (ot, ht) ∈ O × H.
Durant l’intégration de la trajectoire nous voulons que le descripteur géométrique soit
transporté par le flot et donc, en notant ϕv le flot de v, nous allons imposer qu’à chaque
instant vt appartienne à ζot

(H) avec ot = ϕv
t (ot=0).

Definition 5. Soient a, b ∈ O. On note Ωa,b l’ensemble des courbes mesurables t 7→
(ot, ht) ∈ O × H avec ot absolument continue (a.c.), commençant en a, finissant en b,
telles que pour presque tout t ∈ [0, 1], ȯt = ξot

(vt), où vt
.= ζot

(ht), et

E(o, h) .=
∫ 1

0
cot

(ht)dt < ∞.

La quantité E(o, h) est appelée l’énergie de (o, h) et Ωa,b est l’ensemble des chemins
contrôlés d’énergie finie débutant en a et finissant en b.

Si la condition UEC est satisfaire, il est possible de construire des grandes déforma-
tions à partir des trajectoires de Ωa,b :

Proposition 3. Soit M = (O, H, ζ, ξ, c) un module de déformation satisfaisant UEC
et soient a, b ∈ O. Soit (o, h) ∈ Ωa,b, pour tout t on définit vt

.= ζot
(ht).Alors v ∈

L2([0, 1], V ) ⊂ L1, son flot ϕv existe, h ∈ L2([0, 1], H) et pour tout t ∈ [0, 1], ot = φv
t · o0.

Le difféomorphime final ϕv
t=1 est une une grande déformation modulaire générée

par a.
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L’énergie associée à une trajectoire (o, h) Ωa,b est E(o, h) =
∫

co(h). Il est important
de noter que cette énergie ne dépend pas directement de la norme du champs de vecteurs
ζo(h) généré à chaque instant. Il dépend en fait de la manière dont il peut être généré par
le descripteur géométrique. Cette énergie correspond donc à une information modulaire.

1.3.2 Formalisme sous-Riemannien

Fixons M = (O, H, ζ, ξ, c) un module de déformation Ck d’ordre ℓ satisfaisant
UEC. Nous allons présenter comment les grandes déformations modulaires constru-
ites précédemment permettent de munir l’espace des descripteurs géométriques O d’une
norme adaptée. Nous définissons le morphisme de fibrés vectoriels suivant:

ρ : (o, h) ∈ O ×H 7→ (o, ξo ◦ ζo(h)) ∈ TO

On note pour (o, h) ∈ O × H, ρ(o, h) = (o, ρo(h)). Ce fibré ρ associe à chaque
descripteur géométrique o ∈ O le sous-espace ρo(H) ⊂ ToO de toutes les vitesses de o qui
peuvent être générées par lui même. De plus le coût c induit une métrique Riemannienne
lisse g sur le fibré O × H. Alors (O × H, g, ρ) définit une structure sous-riemannienne
sur O. Cette structure permet de munir O d’une distance sous-Riemannienne D qui est
liée au coût c par la proposition suivante :

Proposition 4. Soient a, b ∈ O tels que D(a, b) est finie. Alors

Dist(a, b)2 = inf{
∫ 1

0
co(h) | h ∈ L2([0, 1], H), ȯ = ρo(h), ot=0 = a, ot=1 = b}

De plus, sous de faibles conditions, comme M satisfaite UEC, on peut montrer le
résultat suivant :

Theorem 1. Si Ωa,b est non vide, l’énergie E atteint son minimum sur Ωa,b.

1.3.3 Comparaison modulaire de formes

Nous utilisons cette distance sous-Riemannienne pour mesurer les différences entre deux
formes.

1.3.3.1 Appariement de formes

Soit M = (O, H, ζ, ξ, c) un module de déformation Ck d’ordre ℓ satisfaisant UEC. Nous
supposons tout d’abord que nous voulons comparer deux formes de O. En pratique ce
n’est pas vrai, ce cas général sera présenté dans la section suivante. Si la distance D(a, b)
est finie, on peut étudier les différences entre ces deux formes en cherchant la meilleure
grande déformation modulaire transformation a en b. Pour ceci on minimiserait

∫ 1
0 co(h)

pour (o, h) ∈ Ωa,b. Cependant en pratique les formes que l’on considère sont bruitées et
donc on ne s’intéresse pas à ce cas d’appariement exacte mais au cas de l’appariement
inexacte. Celui-ci revient à minimiser

Ja,b(h) =
1
σ2
µ(ot=1, b) +

∫

cot
(ht)dt
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où σ ∈ R
∗
+, ot=0 = a et ȯ = ξo ◦ ζo(h). Le premier terme de cette somme est appelée le

terme d’attache aux données et le second terme de régularité. Le résultat suivant
permet de charactériser les trajectoires optimales de controls :

Theorem 2. Nous rappelons que M = (O, H, ζ, ξ, c) est un module de déformation
Ck d’ordre ℓ satisfaisant UEC, avec k, l ≥ 2. Nous supposons que µ est C1. Si h ∈
L2([0, 1], H) minimise Ja,b, alors il existe une trajectoire η : t ∈ [0, 1] −→ ηt ∈ T ∗

ot
O telle

que, avec

H : (o, η, h) ∈ T ∗O ×H 7→
(

η|ξo(ζo(h))
)

− 1
2
co(h)

le Hamiltonien du système, ηt=1 = −∂1µ(ot=1, b) et (dans un système local de coor-
données)











do
dt

= ξo ◦ ζo(h)
dη
dt

= −∂H
∂o

∂H
∂h

= 0
(1.2)

Remark 1. Comme co est définie positive, il existe un opérateur symétrique inversible
C : o ∈ O 7→ Co ∈ L(H,H∗) tel que pour tout (o, h) ∈ O × H, co(h) = (Coh|h). Alors
la troisième égalité de (1.2) permet d’obtenir h: h = C−1

o ρ∗
oη avec ρo = ξo ◦ ζo et ρ∗

o telle
que (η|ρo(h))T ∗

o O = (ρ∗
oη|h)H .

À chaque moment initial ηt=0 ∈ T ∗
a O peut être associée une trajectoire de controls

en intégrant le système d’équations (1.2) ηt=0 ∈ T ∗
a O. Une telle trajectoire est appelée

géodésique, ou optimale. Alors, afin d’obtenir le minimum de Ja,b nous utilisons le
principe du shooting géodésique: nous estimons grâce à une descente de gradient un
moment initial ηt=0 ∈ T ∗

a O tel que la trajectoire de controls correspondante minimise
Ja,b.

1.3.3.2 L’appariement de formes en pratique

Contrairement à ce que nous venons de présenter, en général on veut apparier deux
formes f0 et f1, appartenant à un même espace de formes F , à l’aide d’un module de
déformation M1 = (O1, H1, ζ1, ξ1, c1). Même si à première vue ce problème est différent
du précédent, nous allons montrer qu’il s’y ramène facilement. En effet, construisons
M2 = (O2, H2, ζ2, ξ2, c2) le module de déformation silencieux induit par F défini Section
1.3.1. Ce module de déformation ne génère ainsi que des champs de vecteurs nuls, mais
ressent l’action de champs de vecteurs extérieurs. Nous pouvons alors considérer sa
combinaison M .= C(M1,M2) .= (O, Hζ, ξ, c) avec M1. Les champs de vecteurs générés
par ce nouveau module de déformation, et leurs coûts associés, sont les mêmes que ceux
générés par M1 puisque par définition, pour o = (o1, f) ∈ O = O1 × F et h = (h1, 0) ∈
H = H1 × {0}, le champs de vecteur généré est ζo(h) = ζ1

o1(h1) + ζ2
f (0) = ζ1

o1(h1) et
le coût est co(h) = c1

o1(h1) + c2
f (0) = c1

o1(h1). Cependant les trajectoires optimales de
controls ne seront pas le même pour M que celles pour M1 car dans le cas du module
de déformation M nous tenons compte de l’action des champs de vecteurs générés à la
fois sur la composante dans O1 et celle dans F grâce à l’action infinitésimale combinée
ξ : (o, v) ∈ O × Cℓ

0(Rd) 7→ (ξ1
o1(v), ξF

f (v)) avec o = (o1, f). Un exemple simple où
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les trajectoires optimales générées par M1 et M2 sont différentes est présentée Section
5.4.1.2.
Grâce à cette combinaison, apparier f0 et f1 à l’aide du module de déformation M1

revient à résoudre le problème d’appariement présenté dans la section précédente pour
le nouveau module de déformation M , avec un terme d’attache aux données µ(ot=1, b)
ne dépendant que de la composante dans F . Si l’on fixe la valeur initiale o1

0 ∈ O1,
les trajectoires optimales de controls sont alors paramétrées par une valeur initiale de
moment η ∈ T ∗

(o1,f0)O. Il faut alors optimiser à la fois la composante de O1 du descripteur
géométrique initial, et également le moment initial η ∈ T ∗

(o1,f0)O de telle sorte que la
trajectoire de controls correspondante minimise

J(h) =
∫ 1

0
co(h) + µ(f(t = 1), f1)

où o = (o1, f) débute à (o1
0, f0) et vérifie ȯ = ξo ◦ ζo(h) = (ξ1

o1 ◦ ζ1
o1(h1), ξF

f ◦ ζ1
o1(h1)) avec

h = (h1, 0) ∈ H = H1 × {0}.
Il est important de noter ici que le moment initial a deux composantes : une dans

T ∗
o1O1 et une dans T ∗

f0
F . Ainsi les trajectoires de controls optimales sont paramétrées

en dimension plus grande que la dimension des formes fi. Dans la Section 5.4 nous
présenterons un cadre dans lequel on considère un sous-espace de trajectoires optimales
paramétrées en plus petite dimension.

1.3.4 Analyse modulaire de la variabilité d’une population de
formes

Ici nous expliquons comment ce modèle modulaire permet d’étudier la variabilité au sein
d’une population de formes. Soient f 1

target, · · · , fP
targets des formes d’un espace de formes

commun F . Étudions cette population de formes à l’aide d’un module de déforma-
tion M̃ = (Õ, H̃, ζ̃, ξ̃, c̃). Comme précédemment, nous construisons le module silencieux
induit par F , et nous le combinons avec M̃ . Nous obtenons alors un module de défor-
mation M = (O, H, ζ, ξ, c) générant les mêmes champs de vecteurs que M̃ , mais qui
permet de tenir compte de leur action sur les formes de F . Dans ce cadre estimer un
atlas des formes fk

target à l’aide de M̃ revient à minimiser

J : (otemp, h
1, · · · , hP ) ∈ O × (L2([0, 1], H))P 7→ 1

σ2

∑

k

µ(fk
t=1, f

k
target) +

∫ 1

0
cok(hk)

avec pour chaque k, ok
t=0 = otemp et ȯk = ξok ◦ ζok(hk). On estime ici une valeur initiale

de descripteur géométrique commune à tous les sujets, mais les trajectoires ok sont
spécifiques à chaque sujet puisqu’elles dépendent des trajectoires de controls hk. De
même que dans le cas de l’appariement, les trajectoires optimales de controls peuvent
être paramétrées par des moments initiaux attachés à otemp. Estimer un atlas revient
alors à estimer un template otemp ∈ O et P moments initiaux ηk

0 ∈ T ∗
otemp

O de sorte
que les trajectoires de controls correspondantes minimisent J . Nous insistons sur le fait
que le template otemp appartient à O = O1 × F . Sa composante dans F correspond
intuitivement à l’idée de forme moyenne, alors que sa composante dans O1 correspond
à une caractérisation géométrique de la variabilité au sein de la population de formes.
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1.3.5 Un algorithm “plug-and-play”

L’algorithme permettant d’implémenter l’appariement de formes et l’estimation d’atlas
de formes sera présenté dans le Chapitre 6. Nous utilisons une implémentation orientée
objet car notre cadre y est très adaptée. Une classe abstraite appelée ABSTRACT-
MODULE définie la notion de module de déformation, et tous les types de modules
de déformations héritent de cette classe. Les méthodes de cette classe implémentent
les fonction ζ, ξ et c définissant le module de déformation. Ensuite, une méta-classe
MODULARDIFFEO a pour attribut une liste d’ABSTRACTMODULE. Ses méthodes
implémentent les règles simples de combinaisons présentées dans la Section 1.3.1. Grâce
à cette classe, on peut obtenir les trajectoires optimales de controls. L’idée importante
est que cette classe n’utilise que les méthodes abstraites de la classe abstraite ABSTRAC-
MODULE et n’est à implémenter qu’une fois. Ensuite, si l’on veut utiliser un nouveau
type de module de déformation, il suffit de définir ses fonctions ζ, ξ et c, et il est di-
rectement incorporé au modèle de déformation global. En pratique une grande quantité
de modules de déformations de base a été implémentée, et il suffit seulement de choisir
ceux que nous voulons utiliser pour étudier un problème particulier. Si on a un savoir
a priori sur la population de formes que l’on veut étudier, on peut utiliser une com-
binaison des modules de déformations de base correspondant. Si, au contraire, on n’a
pas de telle connaissance a priori, il est possible d’utiliser par exemple une combinai-
son de modules de déformation générant des translations, rotations et scalings locaux
à différentes échelles (un exemple sera présenté à la Section 7.4. Nous avons intégré
cet algorithm dans le logiciel Deformetrica [DPC+14], de sorte que le terme d’attache
aux données µ(fk(t = 1), f target

k ), et ses dérivées sont automatiquement implémentés
pour une large collection de formes : nuages de points, courbes, maillages de surfaces en
2D et 3D. Nous présentons dans le Chapitre 7 plusieurs problèmes d’appariement et de
constructions d’atlas que nous avons étudiés à l’aide de notre algorithme modulaire.
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2.1 Shape analysis context in medical imaging

In both medical imaging and computer vision, a major challenge is the automatic inter-
pretation of imaging data. These data are representations of real 2D or 3D objects: they
can be either images (MRI for instance) or geometrical data (such as curves or surfaces
obtained through a segmentation process). They encode complex information, and even
though sometimes part of this information can be visually interpreted, in general it is
not possible for a human eye to comprehend these shapes in their totality. For instance,
given a brain MRI, deepest folds in the cerebral cortex can be manually labelled; but
identifying thinner structures remains a hard task. Similarly, studying resemblances and
dissimilarities between three or four subjects can sometimes be done manually but in
order to understand anatomical differences within larger populations, automatic meth-
ods are needed. In practice studying such large populations is necessary for instance
in order to detect anatomical characteristics associated to a particular disease, or to
assemble anatomical differences amongst a population into key classes.
Shape analysis precisely aims at developing methods allowing an automatic and global
understanding of such shape data. An efficient approach to analyse automatically a
shape is the development of tools allowing to automatically compare it to a population
of similar data which have already been studied. To do this, one needs to develop before-
hand methods to analyse a population of shapes and then to be able to compare shapes.
The analysis of a population of shapes can be performed via first the computation of a
mean shape, called template, which reflects the underlying structure of the population;
and second the comparison of shapes of the population to this template, in order to
understand its variability. Thus, the key point here is the development of methods to
compare shapes.
A successful approach, pioneered by D’Arcy Thompson [T+42], is to adopt a geometrical
point of view and to study deformations that transform the first shape into the second
one. In the restricted case where shapes are landmarks, an idea presented by F. L.
Bookstein in [Boo97, B+89] is to interpolate the landmark displacements between two
given shapes by splines, leading to a dense and smooth vector field. Even though this
approach enabled to solve many problems, in particular in medical imaging, it suffers
from an important limitation: there is no guarantee that the resulting vector field is
invertible. This is a problem: an interest of this geometrical framework is to match
corresponding regions of the data and then a one-to-one deformation is required. In
its Pattern Theory [GK93, GCK12, Gre96, Gre93], U. Grenander developed a new idea
to study shapes: they are considered under the action of a group of deformations. In
[MCAG93], an ideal shape, namely a template, is considered and invertible deforma-
tions matching this ideal shape to data shapes are built. Then a knowledge on the
ideal template, such as segmentations, can be automatically adapted to the new data.
However, in practice, deformations that are used are linear approximations of diffeo-
morphism, namely small deformations, and then do not allow large differences between
the template and data. In [CRM96] a first framework to build systematic diffeomorphic
large deformations is presented: deformations are obtained through the integration of a
trajectory of vector fields. One considers a trajectory ϕ of diffeomorphisms starting at
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ϕt=0 = Id and satisfying:
ϕ̇t = vt ◦ ϕt.

In this framework, the set of diffeomorphisms that will be used to study shapes is not
directly defined: one first specifies trajectories of vector fields and then builds corre-
sponding large deformations by integrating them. This construction of diffeomorphisms
has been widely used in shape analysis [AG04, JDJG04, KWB08, RFS03, Thi98, Tog98,
VPPA09, WBR+07] as it enables to build large deformations by specifying only in-
finitesimal displacements. Various choices of trajectories of vector fields lead to various
deformation models. In a first large class of models, presented in Sections 2.2.1, 2.2.2
and 2.2.3, a space of vector fields is chosen and one considers integrable trajectories
of this space. In these frameworks there is no structure imposed on deformations in
advanced: this allows to build rich sets of diffeomorphisms and adapted matching de-
formations between shapes, but prevents from natural interpretation of them. Indeed,
as vector fields are not parametrized beforehand with meaningful variables, these frame-
works do not provide tools to understand resulting deformations. In order to overcome
this issue, simultaneously, were developed several parametric frameworks, an overview
will be presented in Sections 2.2.5,2.2.6 and 2.2.7. In these approaches at each time of
the trajectory the vector field is constrained to be a combination of a few generators
that create particular vector fields. By choosing particular generators, one can build
trajectories of diffeomorphisms corresponding to a certain point of view–a prior–one
wants to have on shapes. However, to our knowledge non of these frameworks allow to
build generators corresponding to a generic, complex, prior. Besides, non of them allow
to equip these vector fields with a metric depending on these prior. This is what we
intend to do: the goal is the construction of a vocabulary that would be used to describe
differences between shapes, and a metric that would measure these differences taking
into account the choice of vocabulary.
This Chapter is organized as follow: in Section 2.2 we present an overview of the dif-
ferent deformation models that have been developed and we introduce the reasons that
led us into building a modular deformation model. In Section 2.3 we will present the
first two approaches that we have developed before defining the notion of deformation
modules. In Section 2.4 can be found a summary of the contributions of this thesis.

2.2 Diffeomorphisms in Computational Anatomy

2.2.1 LDDMM Framework

The seminal works of U. Grenander [Gre93] and G.E. Christensen and al. [CRM96] define
notions of template and diffeomorphic large deformations defined as flow of trajectories
of vector fields. In [DGM98] authors study the required theoretical conditions under
which the existence of an optimal trajectory of vector fields transporting a source shape
as close as possible to a target shape can be proved. They also study this problem
from a Bayesian point of view. In [Tro95, Tro98], A. Trouvé introduced an original
generic framework to study patterns in a population of shapes. In this article, particular
shapes (patterns) are considered: they are measurable functions from a finite dimensional
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Riemannian compact manifold M without boundary to a finite dimensional manifold
X. This includes for instance the case of closed curves in R

2. In order to study these
shapes, a Banach space of vector fields B is fixed. Then the group AB of final values
of flows of trajectories of vector fields lying in B is built. This framework gives a
rigorous mathematical framework to build diffeomorphic large deformations as well as
a metric (and then a distance) on this group of diffeomorphisms. In order to study the
differences between two shapes f0 and f1, the idea is to search a diffeomorphism in AB

(ie a trajectory of vector fields in B) which is as close as possible to the Identity and
which transports f0 as close as possible to f1. The existence of such optimal trajectories
of vector fields is proved. Besides, this distance allows to measure the resemblance
between two shapes and is used in this article to associate an observed shape with
a pattern-shape chosen among predefined pattern-shapes. Euler-Lagrange equations
of optimal trajectories were studied in [BMTY05], leading to a framework known as
the Large Deformations Diffeomorphic Metric Mapping (LDDMM) [MYT14, YAM09,
You10]. Even though the definition of shapes that is considered in this framework
matches many examples, no formalised definition is given.

2.2.2 Required notion: shape spaces

The formalisation of the notion of shape has been considered from many points of view
[BBM14, Ken84, KBCL09]. In this thesis we will consider the one developed by S.
Arguillère [Arg14, Arg15a, Arg15b]. In [Arg15a], a shape space O is defined as an open
set of a Banach space on which the group G of diffeomorphisms acts continuously (see
Section 3.2 for a more precise definition). A shape is then defined as an element of this
space. In this framework one sets a space of vector fields V of Rd (d = 2 or 3) which is
supposed to be a Reproducing Kernel Hilbert Space (RKHS): it is a Hilbert space such
that for all x in R

d, v ∈ V 7→ v(x) ∈ R
d is a continuous function (see Section 3.1 for a

more precise definition). Once this space V is setted, the group GV made of final values
of flows of trajectories of vector fields lying in V is built. This group GV is a subset of
G, it is equipped with a metric thanks to V and will be used to study shapes of O. As in
[Tro95], in order to study the differences between two shapes f0 and f1, one searches a
diffeomorphism in GV (ie a trajectory of vector fields in V ) which is as close as possible
to the Identity and which transports f0 as close as possible to f1. Its existence is proved
and it is shown that the corresponding trajectory of vector fields vt can be parametrized
by an initial dual variable named momentum. Besides at each time t, vt is carried by the
shape in a sense that will be detailed in 3.2, see Proposition 17. From the metric on GV

can be built a sub-Riemannian metric on O and then one can measure the differences
between f0 and f1. This measurement depends on the space V and one challenge in this
framework is to choose a space V which is adapted to a given problem. Several choices
of shape spaces and RKHS V of the literature correspond to this generic framework.

2.2.3 Various shape spaces and RKHS: various frameworks

In [Gla05, GVM04] is detailed the cases of landmarks but also measures and currents
which allow to consider unlabelled sets of points, and unparametrized curves and sur-



CHAPTER 2. INTRODUCTION 31

faces. Authors restricted to the case of scalar gaussian RKHS, i.e. when the kernel
defining the RKHS is a scalar Gaussian one and is then defined by a scalar parameter
called scale, representing the characteristic scale of deformations. As the choice of the
scale σ of the RKHS became a important issue, several multi-scale frameworks have
been developed. In [RVW+11] the kernel of the RKHS is a sum of Gaussian kernels of
different scales. This leads to optimal trajectories of vector fields capturing variability
at different scales simultaneously and which look more natural in cases of differences at
several characteristic scales between data. Another multi-scale approach was initiated in
[SLNP11] where instead of one space of vector fields, a family W of such spaces (each one
being a RKHS at a particular scale) is considered. The action of a family of vector fields
belonging to W on a shape is built as the sum of the actions of all vector fields. However
it is shown in [BRV12] that this approach is equivalent to the previous one [RVW+11],
this issue was studied in [SLNP13]. In all these frameworks, shapes that are considered
are of zeroth-order in the sense that they carry information about points’ location. It
can be shown [Gla05] that for optimal trajectories, at each time the vector field is a
sum of translations localised by the kernel function. In [SNDP13], another category of
shapes are considered. Here they carry higher-order information: they are images and
not only values of the image at each point are considered, but also its derivatives at
these points. As a consequence, optimal trajectories of vector fields are parametrized
by higher-order momenta and then vector fields of optimal trajectories are expressed
thanks to derivatives of the kernel, allowing locally more complex deformations as, for
instance, locally affine ones. A theoretical study of this framework is given in [Jac13],
in particular reductions due to symmetries are provided.
In all these frameworks, by choosing an appropriate space of vector fields, one can build
large deformations adapted to a particular problem. However, momenta parametrizing
optimal trajectories are of same dimension as the shapes that are considered, which can
be very high in practice. This parametrization of optimal trajectories can therefore be
redundant. In a sparse model presented in [DPC+14], S. Durrleman considers geodesics
generated by a small number of landmarks so that they are parametrized in low di-
mension. Then one can study how these geodesics lying in a low-dimensional space can
deform shapes of high dimension. In this framework the idea is to find the real necessary
dimension of trajectories that needs to be considered in order to study the variability of
a given population. However, these vector fields are always sums of local translations
(as they are geodesics for landmarks), therefore limiting the interpretations of non linear
patterns.

2.2.4 More structured deformations ?

A general limitation in these non-parametric settings is that the nature of optimal vector
fields depends on the nature of shapes and not on the nature of the differences that
one wants to study. It is not possible to impose a certain pattern of deformation,
corresponding to a prior knowledge. Yet this is necessary in some cases: for instance
with biological images, some deformation patterns can be totally irrelevant and it might
be interesting to build a deformation model which does not allow them but favour more
realistic ones. This is one reason why were developed parametric approaches in which
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deformations are structured beforehand. In these frameworks vector fields at each time
are constrained to be a sum of a few interpretable vector fields, parametrized in small
dimension thanks to control variables, so that the deformation pattern is controlled and
can be interpreted from controls’ values. The idea is here to reduce the set of considered
diffeomorphisms in order to improve their comprehension and their specificity to a given
problem.

2.2.5 Poly-affine framework

In a poly-affine framework presented in [APA05, ACAP09], the goal is to build de-
formations that are the fusion of different local affine deformations. If locally affine
deformations are added, the resulting deformation is in general non invertible. This is
why in this framework deformations are generated by integrating trajectories of vector
fields. To an affine deformation T is associated a trajectory of vector field whose flow
is equal to T at time t = 1. Then if one wants to fuse different local affine deforma-
tions Ti acting in areas Ωi defined by weighting functions wi, one defines the associated
trajectories of vector fields vi and then integrates the trajectory of vector fields

∑

i wivi:
the fusion of different local affine deformations is made at the velocity field level. This
framework enables to build large deformations that are locally affine, so that the fu-
sion of these local affine deformation satisfies good properties. Besides, this poly-affine
framework is particularly adapted to certain situations, for instance in the registration of
bones motion [SPR12] or for cardiac motions [MSBP15, RDSP15]. However, weights wi

(and then areas Ωi of action for each local affine transformation) remain fixed during the
integration of the flow. This prevents very large deformations as the part of the shape
that is supposed to be displaced by the deformation Ti can leave from the corresponding
area Ωi.

2.2.6 GRID model

Another approach studies the fusion of local deformations through the fusion of velocity
fields: the GRID model [GSS07, Por10, PGV07, PV11, SSDG05]. Here local deforma-
tions are not constrained to be affine but can be more generic. This approach aims at
modelling growth by a sequence of local, small deformations. Each of this small defor-
mations is located around a point called a seed which defines a local area in which the
small deformation occurs. The global deformation is a discrete temporal integration of a
trajectory of such vector fields. At each time an area of activation is defined (correspond-
ing to an area of gene activation) and a seed in this area generates a local vector field.
The activation of seeds, the duration of activation and other parameters are modelled
through a probabilistic framework and parameters of their laws are estimated through
a maximum-likelihood process. This framework enables to model biological growth and
the probabilistic approach is adapted to the consideration of gene activation of growth
process [Por08]. However it does not allow to build a vocabulary of deformations that
would be used to transform a template shape into different subjects of a population
while this is an important issue as stressed in [Gre96, GCK12]. Besides generators of
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deformations (seeds) are defined at each time and then are not transported by the global
deformation during the integration of the flow, which can lead to lack in interpretation.

2.2.7 Diffeons framework

In [You12] is presented a parametric approach where, on the contrary, generators of
deformations are forced to be transported by the flow of diffeomorphisms. In this frame-
work a manifold S of shapes is considered, as well as a space of vector fields V that can
act infinitesimally on it. From one can define the group GV of diffeomorphisms that can
be written as the final value of a flow of a trajectory of V , and show that GV acts on S.
To each shape m of S is associated a finite family of vector fields γi(m), called diffeons,
which defines a subspace Vm of V . Then one only considers trajectories of vector fields
v : t ∈ [0, 1] 7→ vt ∈ V such that for each t, vt can be written vt =

∑

i αi(t)γi(mt) with
αi(t) ∈ R and mt the transported value of the original shape mt=0 by the flow of v. The
problem of finding an optimal trajectory of vector fields transporting a source shape
m0 to a target shape m1 then amounts to an optimal control problem where the cost
associated to each vector field v is |v|2V . In order for this cost to be easily computable
in practice, one needs to restrict possible vector fields γi(m) to a certain set: local
translations whose center and covariance matrix are geometrical parameters depending
partially on the shape m and transported by the flow. Vectors of these translations are
control variables whose trajectory is to be optimized to transport the source shape onto
the target shape. This framework defines a method to build diffeomorphisms through
constraints depending on shapes, leading to a new metric on the shape space. Two main
examples are given in this article. In the first one, shapes of S are approximated by
a discretization and this discretization is used to approximate optimal trajectories of
vector fields obtained in the non-parametric framework. In the second example diffeons
called "pushers" and "pullers" are defined. They generate local translations centered
away from the shapes and then tend to "push" or "pull" it. However a generic method to
build diffeons adapted to a particular problem still needs to be specified. For instance
a method to merge different type of simple diffeons into a more complex one would be
useful. Besides the cost associated to each vector field is given by the squared norm,
measuring how "easy" this vector field is to build in V but not how easy it is to built as
combination of generators γi(m): it is not possible here to define a metric more adapted
to a given problem.

2.2.8 Conclusion

Thanks to the non-parametrized (and non structured) frameworks presented in Sec-
tions 2.2.1, 2.2.2 and 2.2.3, by choosing an appropriate representation of shapes and an
appropriate space of vector fields, it is possible to obtain a deformation model allow-
ing good registration of given shapes. However, as emphasized in Section 2.2.4, these
frameworks do not allow to impose a particular structure on the generated deformations.
This can also lead to a lack of interpretability for these deformations. The parametrized
frameworks introduced in Sections 2.2.5, 2.2.6 and 2.2.7 allow partially to overcome this
issue. In these models, by choosing a family of generators of vector fields, and constrain-
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ing vector fields to be generated by them, one can impose a certain structure on the
generated deformations. However none of these frameworks go with a generic methods
to define easily generators which would be adapted to the study of particular shapes
and simultaneously satisfy properties that are theoretically required (to prove existence
of optimal trajectories for instance). We also saw that the question of the evolution of
these generators during the integration of the flow is an issue. In frameworks poly-affine
(Section 2.2.5) and GRID (Section 2.2.6) it is not possible to choose this evolution. In
the last framework of Diffeons (Section 2.2.7), this evolution is more generic as it comes
from the infinitesimal action of a shape space and could therefore be modified. However
for numerical issue vector fields are constrained to be sums of local translations and then
cannot be generically adapted to a given problem. A last important limitations in these
frameworks is that there is no possibility to define a cost associated to the generated
vector fields which would be coherent with the priors that are introduced: this cost is
always given by the norm of the vector field in a fixed space of vector fields. Then if
two choices of generators allow to build the same vector fields, while one choice is more
natural than the other, their costs will be equal: this cost does not take into account
the structure which is imposed to the deformation model.

2.3 Toward a generic modular framework

The object of this thesis is to define a new deformation model allowing to build deforma-
tions that can be locally constrained to a certain type of deformations and interpretable.
As explained previously, this should come with costs associated to these deformations
relevant with respect to these constraints. Similarly to previous frameworks (presented
in Sections 2.2.5, 2.2.6 and 2.2.7), deformations are built as final values of a flows of tra-
jectories of vector fields and the incorporation of constraints in the deformation model
corresponds to the setting of a family V .= (vi)i∈I of generators of vector fields. Once this
family is setted, the idea is to consider only vector fields that are a linear combination of
a finite sub-family of V , ie we impose that at each time there exists (αk)1≤k≤N ∈ R

N so
that the vector field can be written

∑

k αkvik
. Unlike in the GRID model (Section 2.2.6),

we want to consider trajectories vt of such vector fields such that generators vik
are trans-

ported by the flow of v. This transport is realised thanks to an action of vector fields on
generators, which can for example be the null action (similarly to the poly-affine frame-
work, see Section 2.2.5) or correspond to an action on shapes that would parametrize
generators vik

similarly to the Diffeons model, see Section 2.2.7. Then if initial gen-
erators vik

(t = 0) are setted, searching the best trajectory of vector fields so that its
flow transports an initial shape f0 as close a possible to a target shape f1 corresponds
to searching the best trajectory of variables αk so that the corresponding trajectory of
vector fields transports f0 as close as possible to f1. Variables αk correspond to controls
and this matching problem is a control problem.

The choice of the family of generators of vector fields V is a key point of the framework
and the idea is to define these generators such that they can capture the variability of
interesting geometrical features between shapes. This idea is in the spirit of the approach
developed in [PFY+99, PTC00, YPJM01] where authors define medial atoms, named
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M-reps, which contain complex local geometrical information. Several types of these
medial atoms are defined so that they can describe in a relevant manner the geometry
of a given shape: for instance the extremity of a 2D shape can be represented thanks to
a corner-end atom if is a corner, or a rounded atom if it is a portion of a circle. Then a
net of such medial atoms give a structured and easily interpretable representation of the
shape. Building similar nets of two shapes and comparing parameters of a particular
atom allows afterwards to study the variability of corresponding features, separately from
other variability. In our approach we adopt a similar point of view but (as emphasized
previously) instead of describing the geometry of a shape in its own, we intend to describe
deformations encoding shape variability. Then we will define deformation atoms which
will contain complex local geometrical information about the deformation they generate.
In the same way as for M-reps, we want to build a relevant parametrisation of these
atoms, so that the representation of deformations we obtain thanks to them can be
easily interpreted.

In a first framework which is presented in Section 2.3.1, we constrained vector fields
to be sums of local scaling and rotations. We developed a naive and intuitive approach,
we made some choices of modelling that seemed intuitively satisfying but led to several
limitations. Then we decided to develop a new framework where choices of modelling
would be more natural from a theoretical point of view so that it would be more satisfy-
ing. In this model vector fields are sums of local translations of different characteristic
scales. It is presented in Section 2.3.2 and contains important ideas that will be used
in the deformation module framework which introduced in Section 2.3.3 and will be
presented in Chapter 4.

2.3.1 Local scalings and rotations: a naive approach

In this section we restrict ourselves to the two-dimension case so we set d = 2, but this
framework is generalisable to a any dimension d. As explained previously, the strategy
is to impose, at each time, the vector field to be a finite sum of generators belonging
to a fixed family of vector fields. A first idea is for these generators to be infinitesimal
local scalings and local rotations. Let Ψ : R+ 7→ [0, 1] be a smooth local function: we
suppose that Ψ(0) = 1 and Ψ(x) decreases to 0 when x increases to infinity. We define
the local scaling of scale σ ∈ R

+ and centred at c by

S(σ, c, ·) : x ∈ R
d 7→ Ψ

( |x− c|
σ

)

(x− c)

and the local rotation of scale σ ∈ R
+, centred at c by

R(σ, c, ·) : x ∈ R
d 7→ Ψ

( |x− c|
σ

)

β ∧ (x− c)

where β is orthogonal to the 2D plane. For all c and σ, S(c, σ, ·) and R(c, σ, ·) belong to
the Banach set C2

0(R2) of vector fields of class C2 that tend to 0 at infinity. We consider
vector fields w that are a linear combination of such generators, ie that can be written

v =
ns
∑

i=1

αiS(σi, ci, ·) +
nr+ns
∑

i=ns+1

αiR(σi, ci, ·)
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with ns, nr ∈ N
∗, αi ∈ R , σi ∈ R

+ and ci ∈ R
d. We set V this space of vector fields.

We now set numbers of local scalings ns, and of local rotations nr, and we will study
large deformations that can be built thanks to ns scalings and nr rotations. For any
trajectory of controls αi, centers ci and scale σi so that the trajectory of vector fields

v : t ∈ [0, 1] 7→ vt =
ns
∑

i=1

αi(t)S(σi(t), ci(t), ·) +
nr+ns
∑

i=ns+1

αi(t)R(σi(t), ci(t), ·)

belongs to L1([0, 1], C1
0(R2)), the solution of

{

φt=0 = Id

φ̇t = vt ◦ φt

exists and is uniquely defined. This defines the process of generation of large defor-
mations from trajectories (regular enough) of variables (αi, ci, σi). For θ .= (ci, σi) and
controls αi we set

vθ,α
.=

ns
∑

i=1

αiS(σi, ci, ·) +
nr+ns
∑

i=ns+1

αiR(σi, ci, ·) (2.1)

The second step of the construction of the deformation model is the choice of trajectories
of geometrical variables θ = (ci, σi) that we will allow. Indeed, they need to evolve in
a coherent way with respect to the integrated diffeomorphism. In order to obtain such
coherent trajectories, the idea is to set the action w · θ of vector fields w ∈ C2

0(R2) on
these variables θ and then to consider trajectories of variables such that θ̇ = vθ,α · θ
for a given trajectory of controls α. The action of vector fields w on centers c is given
naturally given by the application of the transformation: v · c .= v(c). For scales σ
attached to the point c, we will use the action v · σ = σ

2
div(v)(c) which derives from

the action of diffeomorphisms φ · σ = det(dφc)
1
2σ (corresponding to the local change of

volume induced by φ in c). From an initial set of variables θ0 = (c0
i , σ

0
i ) and trajectories

of controls (regular enough) α : [0, 1] 7→ R
ns+nr , one can build a trajectory of vector

fields t 7→ vθt,αt
with θt=0 = θ0 and θ̇t = vθt,αt

· θ =
(

vθt,αt
· ci(t), vθt,αt

· σi(t)
)

. We

will now consider such trajectories since their local generators evolve with the flow as
required. The last step in the definition of the framework is the association of a cost
to each trajectory defined by an initial θ0 and a trajectory of controls α. This cost
will be defined as the integration of a cost C(θ, α) associated to value of the variable θ
and the control α. We want this cost to measure the difference between a vector field
vθ and the null one, taking account of the imposed form the vector field. There is no
natural choice here and we make the choice of a cost depending only on the controls:
C(θ, α) = 1

2
|α|2 = 1

2

∑ns+nr
i=1 α2

i . If t 7→ (θt, αt) is such that
∫ 1

0 C(θ, α) is finite, θ is
absolute continuous and satisfies θ̇ = vθ,α · θ then the flow of vθ,α exists. Reciprocally, if
α is such that

∫ 1
0

1
2
|α|2 is finite, then for all θt=0, the differential equation θ̇ = vθ,α · θ has

an absolute continuous solution θ.
In order to define completely the deformation model, we need to specify the local function
Ψ. It needs to satisfying several requirements: it needs to be maximal and equal to 1 at
0. Besides, if we consider only one scaling S(σ, c, ·), it seems natural that the evolution
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of its scale σ under its own action is similar to the evolution of the distance between
the centre c and a point initially at distance σ from c. In other word, if x is such that
|x − c| = σ, then we want that d|x−c|2

dt
= d(σ2)

dt
which leads to |x − c|2Ψ( |x−c|

σ
) = σ2 and

then Ψ( |x−c|
σ

) = 1. This demands then that Ψ is constant equal to 1 on [0, 1] and then
decreases to 0. A satisfying function Ψ is then given by:

Ψ : u ∈ R
+ 7→

{

1 if u ≤ 1
1 − exp( −1

u2−1
) if u > 1

We see that even though this function satisfies all requirements, it seems unnecessary
complicated: the action on scales leads to unnatural requirements. Besides this action is
not really satisfying when several scalings and rotations are considered. For instance if
we consider one scaling of small scale and one rotation of large scale such that the center
of the scaling is close to the center of the rotation and needs to generate a shrinking, then
the (large) scale of the rotation will decrease while it may not be relevant: the evolution
of the scale of a scaling or a rotation depends on the vector fields at its centre while it
should take into account the vector field in an area whose size depends on the scale. A
last drawback of this framework is that in practice combinations of local scalings and
rotations would not be sufficient to study differences between two shapes. Then one
should enrich this framework with other generators of vector fields. However, the cost C
is not linked to the norm of the generated vector field and then ensuring the existence
of geodesics, or even of the flow, might not be possible.

2.3.2 Multi-scale sum of local translations

In order to deal with notions of action and cost that could be more naturally defined
we restricted ourselves to points for geometrical parameter, therefore setting as a prior
scales of local deformations. We developed a new deformation model as an intermediate
model that would enable to prevent theoretical and numerical issues presented in the
previous one, before defining a more satisfying model.

We concentrate here on local deformations defined thanks to local translations at
fixed scales. In order to ensure theoretical coherence, we consider costs inspired from
(but not equal to) the norm of the generated vector in a Hilbert space. However we
keep the notion of local deformations acting in areas fixed by a geometrical parameter
(the center of the local translation) and we express the cost as a function of geometrical
parameters and control variables. Let us define this deformation model more in detail.
Let σ1, · · · , σN ∈ R

∗
+ be N characteristic scales for the local deformations that we will

build. We set for each i, Vi the scalar-gaussian RKHS defined by its kernel Ki : (x, y) ∈
(Rd)2 7→ exp( |x−y|2

σ2
i

). We then define W =
∏

i Vi and the mapping

π :

{

W 7→ V
v = (v1, ..., vN) 7→ ∑

i vi

where V .= π(W ). We equip V with the following norm: for v ∈ V ,

|v|2V = inf{
∑

i

|vi|2Vi
| ∀i, vi ∈ Vi and π((vi)i) = v}.
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Proposition 5. V is a Hilbert space continuously injected in Cℓ
0(Rd) for all ℓ ≥ 1.

Proof. This directly results from the fact that spaces Vi are Hilbert spaces continuously
injected in Cℓ

0(Rd) (see [Gla05]).

As we explained previously, we want to study local deformations generated by sums
of local translations acting in areas defined by centres of local translations. Then for each
i let us define a number of translations Di and, for a family of points ei = (zi

j)1≤j≤Di
, a

sub-space of vector fields

Vei
= {v ∈ Vi | ∃αi

1, ..., α
i
N ∈ R

d : v =
∑

j

Ki(zi
j, ·)αi

j}.

For e = (ei)1≤i≤N = (zi
j)1≤i≤N,1≤j≤Di

, we can now define the set of vector fields carried
by e: Ve

.= π(We) with We =
∏

i Vei
. We suppose that for each i, j, j′, zi

j 6= zi
j′ , one can

check that π|We
is injective. Then space Ve can be equipped with the following inner

product: let v, v′ ∈ Ve and let w = (wi)1≤i≤N , w′ = (w′
i)1≤i≤N ∈ We the unique elements

of We such that π(w) = v, π(w′) = v′, we define 〈v, v′〉Ve
=
∑

i〈wi, w
′
i〉Vi

.

Remark 2. The expression of the norm of Ve is natural: if v =
∑

i,j Ki(zi
j, ·)αi

j ∈ Ve,

‖v‖2
Ve

= 〈v, v〉Ve
=

∑

i〈
∑

j Ki(zi
j, ·)αi

j,
∑

j Ki(zi
j, ·)αi

j〉Vi

=
∑

i

∑

j,j′ αiT
j Ki(zi

j, z
i
j′)αi

j

Note that in this expression there is no interaction terms between components belonging
to different Vei

: in general ‖ · ‖2
Ve

6= ‖ · ‖2
V .

In the following we will use these notations, for e = (ei)1≤i≤N = (zi
j)1≤i≤N,1≤j≤Di

:

• Ki(ei, ei) stands for the matrices whose component (j, k) is Ki(zi
j, z

i
k),

• Ki(ei, x) stands for the column vector whose jth-component is Ki(zi
j, x),

• Ki(x, ei) stands for the row vector whose jth-component is Ki(x, zi
j).

Proposition 6. Let e = (ei)1≤i≤N = (zi
j)1≤i≤N,1≤j≤Di

absolute continuous such that for
each i, j, j′, zi

j 6= zi
j′, then Ve equipped with 〈·, ·〉Ve

is a RKHS and its kernel is

Ke : (x, y) ∈ (Rd)2 7→
∑

i

Ki(x, ei)Ki(ei, ei)−1K(ei, y) ∈ R

Proof. Let x ∈ R
d, α ∈ R

d, v ∈ Ve,

Ke(x, ·)α =
∑

i

∑

j

(Ki(x, ei)Ki(ei, ei)−1)jK(zi
j, ·)α

then Ke(x, ·)α belongs to Ve. Besides as v belongs to Ve, there exists (βi
k)k so that

v =
∑

i

∑

k

Ki(zi
k, ·)βi

k.
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We set for each i, Kei
: (w, y) ∈ (Rd)2 7→ Ki(w, ei)Ki(ei, ei)−1K(ei, y) ∈ R, then

〈v,Ke(x, ·)α〉Ve
=

∑

i〈
∑

k Ki(zi
k, ·)βi

k, Kei
(x, ·)α〉Vi

=
∑

i〈
∑

k Ki(zi
k, ·)βi

k, Ki(x, ei)Ki(ei, ei)−1K(ei, ·)α〉Vi

=
∑

i

∑

j

∑

k〈Ki(zi
k, ·)βi

k, (Ki(x, ei)Ki(ei, ei)−1)jKi(zi
j, ·)α〉Vi

=
∑

i

∑

j,k(Ki(x, ei)Ki(ei, ei)−1)jKi(zi
j, z

i
k)〈βi

k, α〉Rd

Besides for i, k fixed,
∑

j(Ki(x, ei)Ki(ei, ei)−1)jKi(zi
j, z

i
k) =

Ki(x, ei)Ki(ei, ei)−1Ki(ei, z
i
k) and as Ki(ei, z

i
k) is the k-th column of Ki(ei, ei),

the column vector Ki(ei, ei)−1Ki(ei, z
i
k) is the k-th column of the identity matrix and

then
∑

j(Ki(x, ei)Ki(ei, ei)−1)jKi(zi
j, z

i
k) = Ki(x, zi

j). We then deduce that

〈v,Ke(x, ·)α〉Ve
=
∑

i

∑

k

Ki(zi
j, x)〈βi

k, α〉Rd = 〈v(x), α〉Rd

which concludes the proof.

The norm that we have just setted on Ve enables to associate a cost c(e, α) to
each value of geometrical parameter e = (zi

j)i,j and controls α = (αi
j)i,j: c(e, α) =

|∑i,j Ki(zi
j, ·)αi

j|2Ve
. We emphasize here that this cost is not equal to the norm of the

generated vector field in the constant space V = π(W ) but in the space Ve that depends
on the geometrical variable e.

We can now study large deformations that can be generated by vector fields belonging
to spaces Ve. For a purpose of interpretation, we require that the family of points e is
transported by the flow. Then we consider trajectories of families of points e = (zi

j)i,j

and controls α = (αi
j)i,j such that the trajectory of vector field ve,α

.=
∑

i,j Ki(zi
j, ·)αi

j

can be integrated and for each time t, ė = vet,αt
· e = (vet,αt

(zi
j(t)))i,j.

Proposition 7. Let e and α such that, for each t, ė = vet,αt
· e = (vet,αt

(zi
j(t)))i,j and

∑

i,j

∫ 1
0 |αi

j(t)|2dt < ∞ (i.e. α ∈ L2([0, 1],Rd
∑

i
Di), then

∫ 1
0 c(et, αt)dt < ∞, t 7→ vet,αt

belongs to L2([0, 1], V ) and its flow exists.

Proof. Let e and α such trajectories,
∫ 1

0 c(et, αt)dt =
∫ 1

0

∑

i |∑j,j′ Ki(zi
j, z

i
j′)αiT

j α
i
j′|dt ≤ ∫ 1

0

∑

i,j,j′ |αiT
j α

i
j′|dt

≤ ∫ 1
0

∑

i,j,j′

1
2
(|αiT

j |2 + |αi
j′|2)dt ≤ ∫ 1

0

∑

i,j
1
2

× 2Di|αi
j|2dt

≤ (maxDi)
∫ 1

0

∑

i,j |αi
j|2dt ≤ (maxDi)

∫ 1
0 |α|2dt

< ∞

Besides, for each t, as vet,αt
=
∑

i

∑

j Ki(zi
j(t), ·)αi

j(t), by definition

|vet,αt
|2V ≤ |

∑

i

∑

j

Ki(zi
j(t), ·)αi

j(t)|2Vi
= c(et, αt).

Then t 7→ vet,αt
belongs to L2([0, 1], V ) and from the continuous injection of V to C1

0(Rd)
one obtains the existence of its flow.
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We have setted the deformation model, and we can now study the inexact matching
problem. In a first simple case, let us suppose that we want to match an initial set of
points e0 to another one e1. It corresponds to minimizing the following functional with
respect to the trajectory α ∈ L2([0, 1],Rd

∑

i
Di):

E(α, e0, e1) =
∫ 1

0
c(et, αt) +

1
λ
D(et=1, e

1)

where λ ∈ R
∗
+ is a fixed parameter, D is the Euclidean distance, et=0 = e0 and for each

t ėt = vet,αt
· et. We can show that minimizing trajectories of α ∈ L2([0, 1],Rd

∑

i
Di)

exist, we do not present the proof here as it is in fact a particular case of the general
framework which will be presented in Chapters 4 and 5. We can also show the following
proposition (similarly this is a particular case of the proof which will be presented in
Chapters 4 and 5):

Proposition 8. Let α be such a minimizing trajectory, and let e be the absolute contin-
uous trajectory defined by et=0 = e0 and for each t, ėt = vet,αt

· et. Then there exists a

trajectory η : t ∈ [0, 1] 7→ R
d
∑

i
Di such that with

H : (η, e, α) ∈ R
d
∑

i
Di × R

d
∑

i
Di × R

d
∑

i
Di 7→ 〈η, ve,α.e〉 − 1

2
‖ve,α‖2

Ve











ė = ve,α · e
η̇ = −∂H

∂e
(η, e, α)

∂H
∂α

= 0

From the last equality one can compute optimal α from a value of points e and dual
variable (called momentum) η: ∀i,

αi =
∑

l

ηlKi(el, ei)Ki(ei, ei)−1

with αi the matrix whose j-th column is αi
j and ηl the matrix whose k-th column is

ηl
k.

Remark 3. It can be easily shown that if, for each i, αi =
∑

l η
lKi(el, ei)Ki(ei, ei)−1

then ve,α =
∑

l,k KWe
(zl

k, ·)ηl
k.

In practice one does dot want to match points e that generate the deformations, but
other shapes f 1, f 2. We will restrict ourselves to the case of landmarks: f 0 = (f 0

k )1≤k≤P ,
f 1 = (f 1

k )1≤k≤P . Then one wants to minimize the following functional with respect to
e0 and α :

E(α, e0, f0, f1) =
∫ 1

0
c(et, αt) +

1
λ
D(ft=1, f

1)

where λ ∈ R
∗
+ is a fixed parameter, D is the Euclidean distance, et=0 = e0, ft=0 = f 0

and for each t, ėt = vet,αt
· et, ḟt = vet,αt

· ft =
(

vet,αt
(fk(t))

)

k
with f = (fk)1≤k≤P . Once

again, we can express optimal trajectories in function of a dual variable of the total
geometrical variable m .= (e, f):
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Proposition 9. Let α be such a minimizing trajectory, and let m = (e, f) be the absolute
continuous trajectory defined by mt=0 = (e0, f0) and for each t, ṁt = (vet,αt

·et, vet,αt
·ft).

Then there exists a trajectory η : t ∈ [0, 1] 7→ R
d
∑

i
Di × R

dP such that with

H : (η,m, α) ∈
(

R
d
∑

i
Di ×R

dP
)

×
(

R
d
∑

i
Di ×R

dP
)

×R
d
∑

i
Di 7→ 〈η, ve,α.m〉− 1

2
‖ve,α‖2

Ve











ṁ = ve,α ·m
η̇ = −∂H

∂m
(η,m, α)

∂H
∂α

= 0
(2.2)

Remark 4. Note that in this more general case, the dimension of the control α and the
momentum η are no longer equal.

From the last equality one can compute optimal α from a value of points m = (e, f)
and dual variable η = (ηe, ηf ) : for each i,

αi =
∑

l

ηlKi(el, ei)Ki(ei, ei)−1 + ηfKi(f, ei)Ki(ei, ei)−1

with ηl the matrix with dual variables of el and ηf the matrix with the dual variable
of the landmarks f . Then from initial values of e0 and η = (ηe, ηf ), one can integrate
Equation (2.2) and obtain a trajectory of controls α and a trajectory of vector fields ve,α.

Remark 5. In the expression of these new trajectories, one can see that even though
they do not generate any vector field, points of the shape f have an active momentum
which influences the optimal control in the same way as other momenta. This suggests
that points of the shape could be considered as silent points (i.e. generating a null vector
field) and then incorporated in the deformation model. This is the strategy that will be
developed in the generic model that will be presented in Section 5.2.2.

In this framework, the inexact matching problem amounts to estimating initial values
of points e0 and momentum η = (ηe, ηf ) such that the corresponding trajectories of
controls α and points (e, f) minimizes

∫ 1
0 c(et, αt)+ 1

λ
D(ft=1, f

1). In order to enforce local
deformations to be more complex than translations, we can force points ei corresponding
to a common scale to be pooled together by groups of d + 1 points (where d is the
dimension of the ambient space) so that locally around such a group of points, the
dimension of vector fields that can be generated is d(d + 1) which is the dimension
of the space of affine deformations in dimension d. This way we can interpret locally
the generated vector field thanks to the values of the corresponding controls. However,
during the integration of the flow, each point is transported separately and then points
do not stay pooled together in case of very large deformations. Here we can see that it
would be more relevant to consider one point that would be transported by the flow, and
would generate a vector field thanks to d + 1 points that would depend on this central
point. This is the strategy developed in Section 4.2.5. Besides in this framework there
is no possibility to force the vector field to be of a particular type (for example local
scaling) in a certain area.
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2.3.3 Intuition of deformation modules

In order to deal with the limitations of the previous model, the idea is to generalize
the construction of spaces Ve. We define a process to generate vector fields thanks to a
function ζ which takes in input a geometrical variable (which were previously points zi

j),
a control variable (which were previously controls αi

j) and returns a vector field. This
function enables to equip the space of geometrical variable with a fiber bundle structure
where the fiber attached to a particular geometrical variable is the space of all vector
fields that can be generated by it thanks to ζ. Trajectories that will be considered are
horizontal trajectories of this vector bundle, ie trajectories of geometrical variables and
vector fields (e, v) such that ė = v · e since for interpretation purpose one wants the
geometrical variables to evolve with the trajectory of vector fields. The action of vector
fields on these variables needs to be specified. We associate a norm to each of the fibers
so that it enables to equip this fiber bundle with a sub-Riemannian structure. This
norm can be defined as a cost depending on the geometrical variable and the control.
We see now that five elements need to be specified in order for the deformation model to
be complete: a space of geometrical variables, a space of controls, a function generating
vector fields, an action of vector fields on geometrical variables, and a cost. All these
elements will be gathered in a structure that we name deformation module. It will be
detailed in Chapter 4. One can see that by choosing a particular function ζ to generate
vector fields, one force them to be of a certain type and then incorporate prior in the
deformation model. In our framework we design a hierarchical approach so that complex
priors can be easily merged into a deformation module thanks to a combination process.

2.4 Summary of contributions

In this section will be presented main notions and results of this thesis. Demonstrations
and various examples will not be presented in this section, they will be detailed in
Chapters 4 and 5.

2.4.1 Deformation model

Our framework relies on the new notion of deformation module. A deformation module
is a structure which is capable of generating vector fields of a particular chosen type and
which are parametrized in small dimension. We use here the notion of shape space (of
finite dimension) as defined in [Arg14] which will be presented in Section 3.2.

Definition 6. Let k, ℓ ∈ N
∗. We define M = (O, H, ζ, ξ, c) as a Ck-deformation

module of order ℓ with geometrical descriptors in O, controls in H, infinites-
imal action ξ, field generator ζ and cost c, if

• O is a Ck-shape space of Rd of order ℓ with infinitesimal action ξ : Cℓ
0(Rd)×O −→

TO,

• H is a finite dimensional Euclidean space,
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Field generator

Infinitesimal action

cost

Controls

Geometrical

descriptors

Figure 2.1: Schematic view of a deformation module.

• ζ : (o, h) ∈ O ×H → (o, ζo(h)) ∈ O ×Cℓ
0(Rd) is continuous, with h 7→ ζo(h) linear

and o 7→ ζo of class Ck,

• c : (o, h) ∈ O × H → co(h) ∈ R
+ is a continuous mapping such that o 7→ co

is smooth and for all o ∈ O, h 7→ co(h) is a positive quadratic form on H, thus
defining smooth metric on O ×H.

Various examples of deformation modules will be presented in Section 4.2. A
schematic view of a deformation module is presented in Figure 2.1. Vector fields gener-
ated by a deformation module are parametrized by two variables: geometrical descriptors
and controls. Geometrical descriptors code for the geometry (for instance the location)
of the generated vector field. Controls code for the manner (for instance the strength)
with which the generated vector field is used.

Note that geometrical descriptors belong to a shape space and then will be called
shapes. We will also use the name shape to refer to data that we want to study. Even
though data and geometrical descriptors satisfy the notion of shapes, in general they are
not the same object. However, given a data shape space F and its infinitesimal action
ξF , we can define a deformation module called Silent deformation module induced by
F . This deformation module is called silent because the vector fields which it generates
are always null. However its geometrical descriptor can feel vector fields thanks to the
infinitesimal action ξF . This deformation module is defined by a space of geometrical
descriptor equal to F , a null space of control, a null field generator, an infinitesimal
action equal to ξF and a null cost. The interest of introducing this deformation module
will be briefly presented in Section 2.4.3.2 and in detail in Section 5.

We will consider deformation modules which satisfy the following condition, ensuring
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Figure 2.2: Schematic view of a combination of three deformation modules.

that their costs are related (but not necessary equal) to the norm of the generated vector
field.

Definition 7. Let M = (O, H, ζ, ξ, c) be a Ck-deformation module of order ℓ. We say
that M satisfies the Uniform Embedding Condition (UEC) if there exists a Hilbert
space of vector fields V continuously embedded in Cℓ+k

0 (Rd) and a constant C > 0 such
that for all o ∈ O and for all h ∈ H, ζo(h) ∈ V and

|ζo(h)|2V ≤ Cco(h).

Deformation modules enable to incorporate constraints in the deformation model.
Indeed if one fixes a deformation module, then one can consider only vector fields that can
be generated by the field generator of this deformation module. This is a first step in the
introduction of constraints. Constraints that one wants to incorporate can correspond
to an additional knowledge that one would have, or to a particular point of view from
which one would want to study a population of shapes. However in practice these
constraints are complex ones, and then defining the appropriate deformation module is
not straightforward. In practice it is easy to define deformation modules corresponding
to simple constraints. Then we define the combination of deformation modules in order
to build deformation modules adapted to complex constraints.

Definition 8. Let M l = (Ol, H l, ζ l, ξl, cl), l = 1 · · ·L, be L Ck-deformation modules
of order ℓ. We define the compound module of modules M l by C(M l, l = 1 · · ·L) =
(O, H, ζ, ξ, c) where O .=

∏

l Ol, H
.=
∏

l H
l and for o = (ol)l ∈ O, ζo : h = (hl) ∈ H 7→

∑

l ζ
l
ol(hl), ξo : v ∈ Cℓ

0(Rd) 7→ (ξl
ol(v))l ∈ ToO and co : h = (hl) ∈ H 7→ ∑

l c
l
ol(hl).

See Figure 2.2 for a schematic view of the combination of three deformation modules.
A key point of our framework is the following stability result under combination:
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Proposition 10. If M l = (Ol, H l, ζ l, ξl, cl), l = 1 · · ·L, are Ck-deformation modules of
order ℓ, then C(M l, l = 1 · · ·L) is a Ck-deformation module of order ℓ. Furthermore, if
each M l satisfies UEC, then C(M l, l = 1 · · ·L) also satisfies UEC.

Then in order to define a deformation module adapted to a complex constraints, one
only has to define this complex constraints as the combination of different simpler ones
and to combine the corresponding deformation modules. We will now present how we
can build large deformations thanks to this modular framework. Let us set a deforma-
tion module M = (O, H, ζ, ξ, c) satisfying UEC. We will consider trajectories of vector
fields v : t ∈ [0, 1] 7→ vt ∈ V that are modular, meaning that at each time t one can write
vt = ζot

(ht) with (ot, ht) ∈ O ×H. During the integration of the trajectory we want the
geometrical descriptor of the module to be transported by the flow and therefore, de-
noting ϕv the flow of v (see Proposition 15), that vt belongs to ζot

(H), with ot = ϕv
t (ot=0).

Definition 9. Let a, b ∈ O. We denote Ωa,b the set of mesurable curves t 7→ (ot, ht) ∈
O × H where ot is absolutely continuous (a.c.), starting from a and ending at b, such
that, for almost every t ∈ [0, 1], ȯt = ξot

(vt), where vt
.= ζot

(ht), and

E(o, h) .=
∫ 1

0
cot

(ht)dt < ∞.

The quantity E(o, h) is called the energy of (o, h) and Ωa,b is the set of controlled
paths of finite energy starting at a and ending at b.

If UEC is satisfied, we can build large deformations from these trajectories :

Proposition 11. Let us suppose that M satisfies UEC. Let (o, h) ∈ Ωa,b and for each
t, vt = ζot

(ht). Then v ∈ L2([0, 1], V ) ⊂ L1, the flow ϕv exists, h ∈ L2([0, 1], H) and for
each t ∈ [0, 1], ot = φv

t .o0. The final diffeomorphism ϕv
t=1 is called a modular large

deformation generated by a.

The energy associated to a trajectory (o, h) ∈ Ωa,b is E(o, h) =
∫ 1

0 co(h). Note that
this energy does not directly depend on the norm of the generated vector field ζo(h) at
each time. It depends on the geometrical descriptor o and on the way the vector field
can be generated by it. Then this energy really corresponds to a modular information.

2.4.2 Sub-Riemannian setting

Let us set M = (O, H, ζ, ξ, c) a Ck-deformation module of order ℓ satisfying UEC. We
will now present how the modular large deformations built previously can enable to
equip the shape space of geometrical descriptors O with an adapted distance. We define
the following morphism of bundles:

ρ : (o, h) ∈ O ×H 7→ (o, ξo ◦ ζo(h)) ∈ TO

This bundle defines at each geometrical descriptor o ∈ O, the subspace ρo(H) ⊂ ToO of
all speeds of o that can be generated by the action of o on itself. Moreover, the cost c
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induces a smooth Riemannian metric g on the vector bundle O ×H. Then (O ×H, g, ρ)
defines a sub-Riemannian structure on O. This structure comes with a sub-Riemannian
distance D on O which is linked to the cost thanks to the following Proposition.

Proposition 12. Let a, b ∈ O such that D(a, b) is finite. Then

D(a, b)2 = inf{
∫ 1

0
co(h) | h ∈ L2([0, 1], H), ȯ = ρo(h), ot=0 = a, ot=1 = b}

Besides, under some mild assumptions, as M satisfies the UEC we obtain the follow-
ing result:

Theorem 3. If Ωa,b is non-empty, the energy E reaches its minimum on Ωa,b.

2.4.3 Modular comparison of shapes

We use this sub-Riemannian distance to measure differences between two shapes.

2.4.3.1 Matching problem

Let us set M = (O, H, ζ, ξ, c) a Ck-deformation module of order ℓ satisfying UEC. We
first suppose that we want to compare two shapes a and b belonging to O. If the distance
D(a, b) is finite, we can study differences between them by searching the best modular
large deformation transforming a into b. Then we would want to minimize

∫ 1
0 co(h)

amongst trajectories (o, h) of Ωa,b. However in practice shapes are noisy and then we
perform inexact matching. It corresponds to minimizing

Ja,b(h) =
1
λ2
µ(ot=1, b) +

∫ 1

0
cot

(ht)dt (2.3)

where λ ∈ R
∗
+, ot=0 = a and ȯ = ξo ◦ ζo(h). The first term of this sum is called the Data

term while the second one is the Regularity term. The following result enables to
characterize optimal control trajectories:

Theorem 4. We recall that M = (O, H, ζ, ξ, c) is a Ck-deformation module of order Cℓ

satisfying UEC with k, l ≥ 2. We suppose that µ is C1. If h ∈ L2([0, 1], H) minimizes
functional Ja,b then, with o : [0, 1] 7→ O starting at a and satisfying ȯ = ξo ◦ ζo(h), there
exists a path η : t ∈ [0, 1] −→ ηt ∈ T ∗

ot
O such that with

H : (o, η, h) ∈ T ∗O ×H 7→
(

η|ξo(ζo(h))
)

− 1
2
co(h)

the Hamiltonian of the system, ηt=1 = − 1
λ2∂1µ(ot=1, b) and (in a local chart)











do
dt

= ξo ◦ ζo(h)
dη
dt

= −∂H
∂o

∂H
∂h

= 0
(2.4)
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Remark 6. As co is positive definite, there exists an invertible symmetric operator
C : o ∈ O 7→ Co ∈ L(H,H∗) such that for all (o, h) ∈ O × H, co(h) = (Coh|h). Then
the third equality in (2.4) allows to compute h: h = C−1

o ρ∗
oη with ρo = ξo ◦ ζo and

ρ∗
o : T ∗

o O 7→ H∗ such that (η|ρo(h))T ∗

o O = (ρ∗
oη|h)H∗.

To each initial value of initial momentum ηt=0 ∈ T ∗
a O can be associated a trajectory

of control by integrating Equations (2.4). Then in order to compute the minimum of
Ja,b we use the geodesic shooting approach: we estimate (thanks to a gradient descent)
an initial momentum ηt=0 ∈ T ∗

a O such that the corresponding trajectory of controls
minimizes Ja,b.

2.4.3.2 The matching problem in practice

Unlike what we just presented, in general one wants to match two shapes f0 and f1

belonging to a common shape space F thanks to a user-defined deformation module
M1 = (O1, H1, ζ1, ξ1, c1). However this new problem amounts to the previous one. In-
deed let us build M2 = (O2, H2, ζ2, ξ2, c2) the silent deformation module induced by
shape space F . We recall that it is defined as follow: its space of geometrical descrip-
tor is O2 .= F , its space of control is H2 .= {0} (null vector space), its field generator
is ζ2 : (o, h) ∈ O2 × H2 7→ 0, its infinitesimal action is ξ2 .= ξF the infinitesimal
action given by F and the cost is c2 : (o, h) ∈ O2 × H2 7→ 0. Then we can con-
sider M .= C(M1,M2) .= (O, Hζ, ξ, c) the combination of M1 and M2. Vector fields
that can be generated by this new deformation module, and their associated costs, are
the same as those generated by M1 since by definition for o = (o1, f) ∈ O = O1 × F ,
h = (h1, 0) ∈ H = H1×H2, the generated vector field is ζo(h) = ζ1

o1(h1)+ζF
f (0) = ζ1

o1(h1)
and the cost is co(h) = c1

o1(h1) + c2
f (0) = c1

o1(h1). However optimal control trajectories
will not be the same as those generated by deformation module M1 as here we keep
track of their action on both the O1-component and the F -component thanks to the
compound infinitesimal action ξ : (o, v) ∈ O ×Cℓ

0(Rd) 7→ (ξ1
o1(v), ξF

f (v)) with o = (o1, f).
An example of the difference between these optimal trajectories is studied in Section
5.4.1.2.
Thanks to this combination, matching f0 onto f1 thanks to deformation module M1

amounts to solve the matching problem presented previously for M with a data attach-
ment term µ(ot=1, b) only depending on the F -component (as we do not know the target
value for the O1-component). For a fixed initial value of o1

0 ∈ O1, optimal trajectories of
controls (i.e. minimizing Equation 2.3) are then parametrized by an initial momentum
η ∈ T ∗

(o1,f0)O. Here one needs to optimize both the initial value o1
0 ∈ O1 and the initial

momentum η ∈ T ∗
(o1,f0)O so that the corresponding trajectory of controls minimizes

J(h) =
∫ 1

0
co(h) + µ(f(t = 1), f1)

where o = (o1, f) starts at (o1
0, f0) and satisfies ȯ = ξo ◦ζo(h) = (ξ1

o1 ◦ζ1
o1(h1), ξF

f ◦ζ1
o1(h1))

with h = (h1, 0) ∈ H = H1 × {0}.
Note that here the initial momentum parametrizing optimal trajectories has two

component: one in T ∗
o1O1 and one in Tf0F . Then optimal trajectories (for fixed value of
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initial geometrical descriptor) are parametrized in dimension superior than the dimension
of shapes fi. In Section 5.4 is presented a framework in which we consider a subspace
of optimal trajectories, parametrized in small dimension.

2.4.4 Modular analysis of shape variability

Here we explain how this modular framework allows to study the variability amongst
a population of shapes. Let f 1

target, · · · , fP
targets be P shapes of a common shape space

F , and let us study this population of shapes thanks to a user-defined deformation
module M̃ = (Õ, H̃, ζ̃, ξ̃, c̃). As previously we first build the silent deformation module
induced by F and then combine it with M̃ . We obtain a compound deformation module
M = (O, H, ζ, ξ, c) whose generated vector fields are the same as these of M̃ but that
enables to keep track of the way shapes of F are transported by such vector fields. In
this framework the computation of an atlas of targets fk

target thanks to M̃ amounts to
minimizing

J : (otemp, h
1, · · · , hP ) ∈ O × (L2([0, 1], H))P 7→ 1

σ2

∑

k

µ(fk
t=1, f

k
target) +

∫ 1

0
cok(hk)

with for each k, ok
t=0 = otemp and ȯk = ξok ◦ ζok(hk). Note that the initial value of

geometrical descriptor otemp is common to all subjects but that the trajectory ok is
specific to each subject as it is transported thanks to the trajectory of control hk. As
in the matching case, optimal trajectories of controls can be parametrized by initial
momenta attached to otemp. Then computing an atlas corresponds to estimate one
template otemp ∈ O and P initial momenta ηk

0 ∈ T ∗
otemp

O so that the corresponding
trajectories of controls minimize J . We emphasize here that the template otemp belongs
to O = Õ × F . Its F -component intuitively corresponds to the idea of mean shape
while the Õ-component corresponds to a geometrical characterization of the variability
amongst this population of shapes.

2.4.5 A “plug-and-play” algorithm

The algorithm enabling to compute matching and atlases of shapes will be presented
in Chapter 6. We use an object-oriented implementation as our framework is very well
adapted to it. An abstract class called ABSTRACTMODULE defines deformation mod-
ules and all kinds of base-module inherit from this class. Methods of this class implement
functions ζ, ξ and c defining the deformation module. Then a meta class called MODU-
LARDIFFEO has as attribute a list of ABSTRACTMODULE. Its methods implement
the simple combination rules presented in Section 2.4.1. Thanks to this class one can
compute geodesic trajectories. The important idea is that this class uses only abstract
methods of class ABSTRACTMODULE and is implemented only once. Then if one
wants to use a new type of deformation module, one only has to define its functions ζ, ξ
and c and then it is directly incorporated in the global deformation model. In practice
a large class of base-modules are implemented and we only need to choose which ones
we want to use to study a particular problem. If we have a particular prior knowledge
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on the population of shapes that we want to study, we can use a combination of the
corresponding base-deformation modules. On the opposite, if we do not have such a
prior knowledge, it is possible to use for example a combination of deformation mod-
ules generating local translations, scalings and rotations at different scales (an example
will be given in Section 7.4). We integrated this algorithm in the software Deformet-
rica [DPC+14], so that the data attachment term µ(fk(t = 1), f target

k ), and its derivatives,
can be automatically computed for a large collection of shapes: point clouds, curve and
surface meshes in 2D and 3D. In Chapter 7 we present different problems of matching
and atlas computations that we have studied thanks to this modular algorithm.
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2.5 Notation

Throughout this thesis we will use the following notations:

• Cℓ
0(Rd): space of vector fields of class Cℓ on R

d whose derivatives of order less than
or equal to ℓ converge to zero at infinity (see 3.2).

• Diffℓ
0(R

d): space of Cℓ−diffeomorphisms of Rd that converge to identity at infinity
(see 3.2).

• A−T : transpose of the inverse of matrix A.

• KH : Reproducing kernel of a RKHS H (see 3.1).

• Kσ: scalar kernel of the scalar Gaussian RKHS of scale σ > 0 (see 3.1).

• X∗: dual of a vector space X.

• (δ|x)X∗ : application of δ ∈ X∗ to x ∈ X (for X a vector space).

• 〈·, ·〉X : inner product of vector space X.

• ϕv: flow of v (see 3.2).

• X: implementation in the algorithm of the mathematical notion X (Chapter 6).
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3.1 Reproducing Kernel Hilbert Space

We present here the notion of Reproducing Kernel Hilbert Space [Aro50] that we will
use in this thesis. We set an integer d > 0.

3.1.1 Definition

Definition 10. Let (H, 〈·, ·〉H) be a Hilbert space of functions R
d −→ R

d. We say that
H is a Reproducing Kernel Hilbert Space (RKHS) if for each x ∈ R

d, δx : f ∈ H 7→
f(x) ∈ R

d is a continuous function.

Let us set a RKHS (H, 〈·, ·〉H). For x ∈ R
d and α ∈ R

d we denote the function
δα

x : f ∈ H 7→ 〈f(x), α〉Rd . Functions δα
x are continuous linear forms and then belong to

H∗. Then, using Riesz representation theorem we can define the reproducing kernel
of H:

Definition 11. The reproducing kernel KH of a RKHS H is the unique function
KH : H∗ −→ H such that for all h ∈ H∗, ∀f ∈ H,

(h|f)H∗ = 〈KHh, f〉H .

For x, α ∈ R
d, one gets KHδ

α
x ∈ H so that for all f in H, 〈KHδ

α
x , f〉H = 〈f(x), α〉Rd .

Then for x and y in R
d, one can define the matrix K(x, y) of Rd×d so that for all α and

β in R
d,

αTK(x, y)β = 〈KHδ
α
x , KHδ

β
y 〉H .

Remark 7. With a slight abuse of notation, we will identify the operator KH and the
function K : (x, y) ∈ R

d × R
d 7→ K(x, y) ∈ R

d×d.

Proposition 13. For all x, y in R
d, K(x, y)T = K(y, x) and for all finite families

(xi)1≤i≤n, (αi)1≤i≤n of Rd,
∑

1≤i,j≤n α
T
i K(xi, xj)αj ≥ 0.

3.1.2 Building a RKHS

In the previous section we saw that from a RKHS H, could be built a unique kernel K
satisfying Proposition 13. The reverse is also true:

Proposition 14. Let K : R
d × R

d 7→ R
d×d such that for all x, y in R

d, K(x, y)T =
K(y, x) and for all finite families (xi)1≤i≤n, (αi)1≤i≤n of Rd,

∑

1≤i,j≤n α
T
i K(xi, xj)αj ≥ 0.

We say that K is a positive kernel. Then there exists a unique RKHS H such that K
is its kernel. Besides {v =

∑N
i=1 K(x, ·)αi|N > 0, xi ∈ R

d, αi ∈ R
d} is a dense subspace

of H.

Then in order to build a RKHS, one only needs to define a positive kernel. In the
case where for all values of x and y in R

d K(x, y) = k(x, y)Id with k(x, y) ∈ R and Id

the Identity matrix, we say that the kernel is scalar and we identify the kernel with k.
In this thesis we will consider Gaussian scalar kernels:
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Definition 12. We say that H is the scalar Gaussian RKHS of scale σ ∈ R
∗
+ if it

is built thanks to the scalar positive kernel (x, y) ∈ R
d × R

d 7→ exp − |x−y|2
σ2 with | · | the

Euclidean norm in R
d.

Remark 8. In the case of a scalar Gaussian RKHS, vector fields K(x, ·)α (with x and
α in R

d) are local translations and then thanks to Proposition 13 we see that the RKHS
is generated thanks to sums of local translations.

3.2 Shape spaces

We present here definitions and propositions related to the notion of shape spaces, they
are all proved in [Arg14].

3.2.1 Trajectory of diffeomorphisms

Let d and ℓ be non-zero integers, we define Cℓ
0(Rd) the space of vector fields of class Cℓ

on R
d whose derivatives of order less than or equal to ℓ converge to zero at infinity and

we equip it with norm |v|ℓ = sup{|∂ℓ1+···+ℓd v(x)

∂x
ℓ1
1 ···xℓd

d

| | x ∈ R
d, (ℓ1, · · · , ℓd) ∈ N

d, ℓ1 + ·+ℓd ≤ ℓ}
such that it is a Banach space. We define Diffℓ

0(R
d) the space of Cℓ−diffeomorphisms

of Rd that converge to identity at infinity. It is an open set of the affine Banach space
Id+Cℓ

0(Rd) and as such equipped with a natural smooth differential structure. We will
consider particular trajectories of Diffℓ

0(R
d) defined as flow of particular trajectories of

Cℓ
0(Rd).

Proposition 15. Let v be an element of L1([0, 1], Cℓ
0(Rd)), ie a time-dependent vector

field such that t ∈ [0, 1] 7→ |v(t)|ℓ is integrable. Then there exists a unique absolutely
continuous solution ϕv, called the flow of v, to the system

{

ϕ̇v(t) = v(t) ◦ ϕv(t)
ϕ(0) = Id

where ϕv(t) ∈ Diffℓ
0(R

d) for any t ∈ [0, 1].

This proposition allows us to consider flows of time-dependent vector fields, where
“time” t refers here to a variable of integration. As we are interested in how these flows
can deform a certain shape, we need to precise what is a shape, and how a diffeomorphism
of Diffℓ

0(R
d) can act on it.

3.2.2 Shape spaces

Definition 13. Let O be an open space of a Banach space and let k ∈ N
∗. Assume that

the group Diffℓ
0(R

d) continuously acts on O, according to an action

Diffℓ
0(R

d) × O → O
(ϕ, o) 7→ ϕ · o (3.1)
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We say that O is a Ck-shape space of order ℓ on R
d if the following conditions are

satisfied:

1. for each o ∈ O, φ ∈ Diffℓ
0(R

d) 7→ φ · o is Lipschitz with respect to the norm
| · |ℓ and is differentiable at IdRd. This differential is denoted ξo and is called the
infinitesimal action of Cℓ

0(Rd).

2. The mapping ξ : (o, v) ∈ O × Cℓ
0(Rd) 7→ ξov is continuous and its restriction to

O × Cℓ+k
0 (Rd) is of class Ck.

An element o of O is called a shape, and R
d will be referred to as the ambient space.

The simplest example of shape space is the one of landmarks where shapes are given
as a collection of a fixed number of points: O = {o = (x1, · · · , xn) ∈ (Rd)n | xi 6=
xj if i 6= j}. The action of φ ∈ Diffℓ

0(R
d) on o = (x1, · · · , xn) ∈ O is given by

φ · o =
(

φ(x1), · · · , φ(xn)
)

(application to each point), and then the infinitesimal action

of v ∈ Cℓ
0(Rd) on o = (x1, · · · , xn) ∈ O is ξo(v) =

(

v(x1), · · · , v(xn)
)

, namely the

velocity of the trajectories of shape points. These actions make O a shape space of
order ℓ for any ℓ ≥ 1.

Remark 9. If O1 and O2 are two shape spaces of order ℓ on R
d, then O = O1 × O2 is

also a shape space of order ℓ on R
d.

The following proposition shows that a shape transported by a flow of diffeomor-
phisms (see Proposition 15) satisfies a differential equation.

Proposition 16. For every o ∈ O, the mapping φ 7→ φ · o is of class C1. Moreover, if
v ∈ L1([0, 1], Cℓ

0(Rd)), for a ∈ O, the curve o : t ∈ [0, 1] 7→ o(t) = ϕv(t) · a is absolutely
continuous and satisfies for almost every t ∈ [0, 1], ȯ = ξo(v).

3.2.3 Geodesics on a shape space

Let us set O a Ck-shape space of order ℓ on R
d, ξ its infinitesimal action, V a RKHS

(see Section 3.1) of vector fields at least Cℓ+1
0 and K its kernel.

Proposition 17. [ATTY15] Let a ∈ O, let g : O −→ R a C1 function. For v ∈
L2([0, 1], V ) we define

J(v) =
∫ 1

0
|v(t)|2V dt+ g(o(1))

where o is the unique absolutely continuous trajectory of O such that o(t = 0) = a and
for almost every t ∈ [0, 1], ȯ(t) = ξo(v(t)). If v ∈ L2([0, 1], V ) minimizes J then there
exists a measurable function η : [0, 1] 7→ T ∗

o(t)O such that v = Kξ∗
o(η).

This proposition shows that the nature of optimal vector fields is determined by the
nature of the shape.
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3.3 Currents and varifolds

We will present in this section particular shape spaces. Until we considered only geo-
metrical shapes that were landmarks, therefore with correspondence of points. However
in general we do not know corresponding points between shapes that we consider: they
are curves or surfaces (without a canonical parametrization).

Let us set an integer d of N
∗ (in general d equals 2 or 3). In this thesis we will

only consider curves when the ambient space is of dimension 2, and surfaces when the
ambient space is of dimension 3 so we will present here only these particular cases. The
shape space that we consider is then the shape space of sub-manifolds of dimension
d − 1 and the action of diffeomorphisms is given by the application of them to each
point of the sub-manifold. We need a distance which enables to quantify how close
are two sub-manifolds in order to measure how well a given diffeomorphism transports
one shape close to an other. In order to do so the idea is to embed this shape space
in a normed vector space as the dual of a norm space. We briefly present here two
possible frameworks: currents where sub-manifolds are supposed to be oriented, and
varifolds where they are not. These two frameworks are used in numerical experiments
of Chapter 7.

3.3.1 Currents

We present here the notion of currents based on the work of [Gla05].

3.3.1.1 Shape space of currents

We will denote Λd−1
R

d the space of d − 1-forms on R
d, i.e. the space of multi-linear

and alternating maps (Rd)d−1 −→ R. This space is equipped with the following eu-
clidean norm: for ν ∈ Λd−1

R
d, we set |ν| = sup{|ν(α1, · · · , αd−1)| for |αi| ≤ 1}. We

also define C0(Rd,Λd−1
R

d) the set of continuous d − 1-differential forms (i.e. appli-
cations R

d 7→ Λd−1
R

d) which tends to zero at infinity. We equip it with the norm
| · | : w ∈ C0(Rd,Λd−1

R
d) 7→ supx∈Rd |w(x)| so that is a complete space. We now define

its dual Ms(Rd,Λd−1
R

d), it is a normed space. Elements of Ms(Rd,Λd−1
R

d) will be called
currents. The action of diffeomorphisms on currents is given thanks to the pull back
of differential forms:

Definition 14. [Gla05] Let φ ∈ Diffℓ
0(R

d), and let w ∈ C0(Rd,Λd−1
R

d), the pull back
of w by φ is φ#w ∈ C0(Rd,Λd−1

R
d) defined by

φ#w : (x, α1, · · · , αd−1) ∈ (Rd)d 7→ wφ(x))(dφxα1, · · · , dφxαd−1).

Definition 15. [Gla05] Let S ∈ Ms(Rd,Λd−1
R

d) be a current, and let φ ∈ Diffℓ
0(R

d),
the group action of φ on S is defined by

φ · S .= φ#S : w ∈ C0(Rd,Λd−1
R

d) 7→ S(φ#w).

Thanks to the following proposition it can be shown that Ms(Rd,Λd−1
R

d) is a shape
space:
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Proposition 18. [Gla05] Let S ∈ Ms(Rd,Λd−1
R

d), φ ∈ Diffℓ
0(R

d) then φ#S ∈
Ms(Rd,Λd−1

R
d) and |φ#S| ≤ |S||dφ|d−1

∞ .

3.3.1.2 Oriented sub manifolds seen as currents

Let S be an oriented C1 sub-manifold of dimension d−1 in R
d and let dµ be its canonical

volume form. The shape S can be canonically associated with the following current

S : w ∈ C0(Rd,Λd−1
R

d) 7→ S(w) .=
∫

S
w(x)(u1

x, · · · , ud−1
x )dµ

where for each x ∈ S, (u1
x, · · · , ud−1

x ) is an orthonormal basis of the tangent space TxS.
In the following we identify sub-manifolds S and their currents and we will refer to them
as shapes. Besides we have the following consistency of transport by diffeomorphisms:

Lemma 1. [Gla05] Let S be an oriented sub-manifold and let φ ∈ Diffℓ
0(R

d),

φ(S) = φ#S

where φ(S) is the transport of S by φ by applying φ to points of S and φ#S is the
transport of S as a current.

The dual norm on Ms(Rd,Λd−1
R

d) allows then to measure the difference between a
transported shape and an other shape. In practice one sets a RKHS W continuously
embedded in C0(Rd,Λd−1

R
d) and shapes are considered as elements of the dual of W .

In our examples we use a RKHS defined thanks to scalar Gaussian kernels. The only
parameter that needs to be specified is then its scale, it will corresponds to the scale at
which we want to study differences between shapes. Besides, in the practical computa-
tion we consider shapes which are discretized sub-manifolds. One can show that these
finite-dimensional shapes can still be considered as currents of W ∗ and that there exists
an explicit expression of the distance between two such shapes in W ∗ (see [Gla05]).

3.3.2 Varifolds

We present here the notion of varifolds based on the work of [Cha13]. Varifolds will be
also be defined as a dual of a space of functions, but a different one than for currents so
that we no longer need to suppose that shapes are oriented sub manifolds.

3.3.2.1 Shape space of varifolds

Definition 16. [Cha13] The Grassmann manifold of dimension m in R
d, denoted

Gm(Rd), is the set of all m−dimensional subspaces of R
d. It can be identified to the

quotient space of all families of d independent vectors of Rd by the equivalence relation
obtained by identifying families that generate the same subspace.

In this thesis we consider only the case where m = d− 1 and in fact Gd−1 is the real
projective space of Rd.
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Definition 17. [Cha13] A varifold is an element of C0(Rd ×Gd−1(Rd))′ (i.e. a Borel
finite measure on R

d × Gd−1(Rd)). For µ ∈ C0(Rd × Gd−1(Rd))′ and φ ∈ Diffℓ
0(R

d), we
define the action of φ on µ by

φ · µ .= φ∗(µ) : w ∈ C0(Rd ×Gd−1(Rd)) 7→ µ(φ∗w)

where for w ∈ C0(Rd × Gd−1(Rd)), x ∈ R
d, V ∈ Gd−1(Rd) and (u1, · · · , ud−1) an or-

thonormal basis of V ,

µ(φ∗w)(x, V ) .= |dxφ(u1) ∧ · · · ∧ dxφ(ud−1)|w(φ(x), dφxV ).

3.3.2.2 Sub manifolds seen as varifolds

Let S be a non oriented C1 sub manifold. We can associate S with the following varifold

µS : w ∈ C0(Rd ×Gd−1(Rd)) 7→
∫

S
w(x, V )dHd−1(x, TxS)

where Hd−1 is the d − 1-dimensional Hausdorff measure on R
d. We have the following

consistency of transport by diffeomorphisms:

Lemma 2. [Cha13] Let S be a sub manifold, let φ ∈ Diffℓ
0(R

d),

φ∗µS = µφ(S).

Similarly to currents, in practice the varifold norm is computed through the introduc-
tion of a scalar Gaussian RKHS, and the choice of its scale is an important parameter.
Once it is setted, when shapes are discretized sub manifolds, it is possible to obtain an
explicit expression of the distance between to of them.
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4.1 Deformation model

As explained in Section 2.3, the object of this thesis is the development of a generic
framework to build modular deformations. These deformations would be modular in
the sense that they are defined thanks to a few generators of deformations, each one
generating a particular type of local and interpretable transformation. One goal is to be
able to easily incorporate constraints on the deformation model. This constraints could
correspond to an additional knowledge one would have on the shapes under study, or to
a point of view thanks to which one would want to study these shapes. A second goal
is then to use this modular framework to understand the variability between different
shapes.

4.1.1 Deformation modules

4.1.1.1 Definition

The framework we propose relies on the new notion of deformation module.
Intuitively, a deformation module is a structure that embeds a vector field generation
mechanism. This mechanism depends on some geometrical descriptors, which specify
the local structure of the induced vector fields (think about the positioning of some
actuators), and a finite numbers of control parameters commanding the actuators.
For a given positioning, a cost is specified for any possible values of the control
parameters, so that optimal policies can be defined. For each resulting vector fields,
a feedback mechanism is defined to update the positioning of the geometrical descrip-
tors. Desirable consistency properties lead to consider the geometrical descriptors as
defining a shape on which one has a diffeomorphic action. Hence following [You12], the
positioning of the geometrical descriptors will be represented as a shape in a shape space.

In the following we set d ∈ N
∗ the dimension of the ambient space.

Definition 18. Let k, ℓ ∈ N
∗. We define M = (O, H, ζ, ξ, c) as a Ck-deformation

module of order ℓ with geometrical descriptors in O, controls in H, infinites-
imal action ξ, field generator ζ and cost c, if

• O is a Ck-shape space of Rd of order ℓ of finite dimension with infinitesimal action
ξ : Cℓ

0(Rd) × O −→ TO,

• H is a finite dimensional Euclidean space,

• ζ : (o, h) ∈ O ×H → (o, ζo(h)) ∈ O ×Cℓ
0(Rd) is continuous, with h 7→ ζo(h) linear

and o 7→ ζo of class Ck,

• c : (o, h) ∈ O × H → co(h) ∈ R
+ is a continuous mapping such that o 7→ co is

smooth and for all o ∈ O, h 7→ co(h) is a positive definite quadratic form on H,
thus defining smooth metric on O ×H.
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Field generator

Infinitesimal action

cost

Controls

Geometrical

descriptors

Figure 4.1: Schematic view of a deformation module.

A deformation module is then defined by the way it can generate a vector field, which
is given by the field generator ζ, and by the feedback action on vector fields, which is
given by the infinitesimal action ξ. A schematic view of the construction of a module
can be seen in figure 4.1.

Remark 10. By definition, the geometrical descriptors of a deformation module are
considered as a “shape” in the shape space O. In the following examples, these “shapes”
are the centers of the scaling, of the rotation or the base points of translation vectors.
The fact that they are “shapes” in the sense of Definition 13 allows us to use the global
deformation under construction to transport them via the infinitesimal action ξ. These
“shapes” may or may not coincide with points from the input shape data set. For ex-
ample, it is sensible not to locate the center of a scaling on the boundaries of an object.
We will see in the following that the input shape data may be considered as geometrical
descriptors of a particular module, called a silent module (see Section 4.2.8), which is
deformed thanks to its infinitesimal action, but which does not contribute to the global
velocity field.

4.1.1.2 First examples

We will now present two examples of simple deformation modules, a richer presentation
of different deformation modules will be done in Section 4.2

4.1.1.2.1 First example: sum of local translations This first example explains
how the construction of [DPGJ11] can be seen as a Ck-deformation module of order ℓ
for any k, ℓ ∈ N

∗. We want to build a deformation module M that generates vector
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fields that are a sum of D local translations acting at scale σ in the ambient space R
d

(d ∈ N
∗). We set Vσ the scalar Gaussian RKHS of scale σ (see Section 3.1, its kernel

will be denoted Kσ), O .= (Rd)D the shape space of D landmarks with infinitesimal
action ξo : v ∈ Cℓ

0(Rd) 7→ (v(zi))i, where o = (zi) ∈ O (application of the vector field
at each point), and H

.= (Rd)D (families of D vectors). For o = (zi) ∈ O, we define
ζo : h = (αi) ∈ H 7→ ∑D

i=1 Kσ(zi, ·)αi and co : h = (αi) ∈ H 7→ |∑i Kσ(zi, ·)αi|2Vσ
. It is

easy to show that M = (O, H, ζ, ξ, c) defines a deformation module of order ℓ.

4.1.1.2.2 Second example: local scaling or rotations Let ℓ, k ∈ N
∗. The second

example is a Ck-deformation module of order ℓ which generates vector fields that are local
scalings of fixed scale σ ∈ R

+ in the ambient space R
2. A local scaling is parametrized

by its center o ∈ R
2 and its scaling factor h ∈ R. The point o plays the role of the

geometrical descriptor, and the factor h the control parameter. From o, we build 3
points zj(o) and 3 unit vectors dj as described in Figure 4.2 (they also depend on the
fixed parameter σ). The idea is to build the vector field generated by the geometrical
descriptor o and the control h as an interpolation of the values at these points zj(o)
thanks to vectors dj: ζo(h) .= h

∑3
j=1 Kσ(zj(o), ·)dj, where Kσ is the kernel of the scalar

gaussian RKHS of scale σ. We emphasize here that points zj(o) and vectors dj are
intermediate tools used to build the vector field but that the latter is only parametrized
by o and h. We then define the deformation module M by the following spaces : O .= R

2,
H = R and the following mappings : for o ∈ O, ζo : h ∈ H 7→ ζo(h) as given above, ξo :
v ∈ Cℓ

0(R2) 7→ v(o), the velocity field at the scaling center, and co : h ∈ H 7→ |ζo(h)|2Vσ
=

h2∑

j,j′ Kσ(zj, zj′)dT
j dj′ , the squared norm of the generated velocity field in the RKHS

Vσ. Then M = (O, H, ζ, ξ, c) defines a Ck-deformation module of order ℓ. Indeed space
O is a Ck-shape space (of one landmark) of order ℓ and ζ : o ∈ O 7→ ζo ∈ L(H,Cℓ

0(R2))
is locally Lipschitz because distances between zi(o) and zi(o′) (1 ≤ i ≤ 3) are the same
as the distance between o and o′. For the same reason ζ is globally continuous. Other
properties can be easily verified. This construction can be generalised to any other affine
deformation by changing the rule to build vectors dj, as for example in Figure 4.3 where
the generated vector field is a local rotation.

4.1.1.3 Uniform Embedding Condition

A key point in the design of a consistent approach for deformation modules is the
possibility to deduce existence of optimal deformations between shapes as solutions of the
optimal control problem associated with the choice of a cost for the control parameters.
This requirement imposes constraints on the choice of costs. For instance, it seems
important for the cost to be related with some metric of the induced vector field. This
is the spirit of the following embedding condition:

Definition 19. Let M = (O, H, ζ, ξ, c) be a Ck-deformation module of order ℓ. We say
that M satisfies the Uniform Embedding Condition (UEC) if there exists a Hilbert
space of vector fields V continuously embedded in Cℓ+k

0 (Rd) and a constant C > 0 such
that for all o ∈ O and for all h ∈ H, ζo(h) ∈ V and

|ζo(h)|2V ≤ Cco(h).
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Figure 4.2: Local scaling. Geometrical de-
scriptor o (in blue) and intermediate tools
(in black). Plot of the resulting vector field
in green.

Figure 4.3: Local rotation. Geometrical de-
scriptor o (in blue) and intermediate tools
(in black). Plot of the resulting vector field
in green.

Remark 11. Examples of deformation modules presented previously satisfy this UEC.
Indeed in these two examples the infinitesimal action ξ takes values in the Hilbert space
Vσ which is continuously embedded in Cℓ+k

0 (Rd) (see [Gla05]), and the cost is defined by
the squared-norm of the generated vector field in Vσ.

4.1.1.4 Combination

We have presented in the previous section examples of simple, base deformation modules
generating simple vectors fields. However if one wants to build more complex vector
fields, building the corresponding deformation module might not be straightforward. In
order to build such complex deformation module, we will define them as the combination
of simpler ones.

Definition 20. Let M l = (Ol, H l, ζ l, ξl, cl), l = 1 · · ·L, be L Ck-deformation modules
of order ℓ. We define the compound module of modules M l by C(M l, l = 1 · · ·L) =
(O, H, ζ, ξ, c) where O .=

∏

l Ol, H
.=
∏

l H
l and for o = (ol)l ∈ O, ζo : h = (hl) ∈ H 7→

∑

l ζ
l
ol(hl), ξo : v ∈ Cℓ

0(Rd) 7→ (ξl
ol(v))l ∈ ToO and co : h = (hl) ∈ H 7→ ∑

l c
l
ol(hl).

A schematic view of this combination can be seen in Figure 4.4. A key point of our
framework is the following stability result under combination:

Proposition 19. If M l = (Ol, H l, ζ l, ξl, cl), l = 1 · · ·L, are Ck-deformation modules of
order ℓ, then C(M l, l = 1 · · ·L) is a Ck-deformation module of order ℓ. Furthermore, if
each M l satisfies UEC, then C(M l, l = 1 · · ·L) also satisfies UEC.
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Figure 4.4: Schematic view of a combination of three deformation modules.

Proof. It is clear that C(M l, l = 1 · · ·L) is a Ck-deformation module of order ℓ. Let
suppose that each M l satisfies UEC. We define

π : w = (w1, ..., wL) ∈ W
.=
∏

l

V l 7→
∑

i

wi ∈ Cℓ
0(Rd).

Then space V .= π(W ) can be equipped with the following norm: for v ∈ V , |v|2V =
inf{∑l |vl|2V l | π((vl)l) = v}, such that it is a Hilbert space continuously embedded in
Cℓ

0(Rd). For any o = (ol) ∈ O and h = (hl) ∈ H we have

|ζo(h)|2V ≤
L
∑

l=1

|ζ l
ol(hl)|2Vl

≤
L
∑

l=1

Clc
l
ol(hl) ≤ ( max

1≤l≤L
Cl)co(h)

and then C(M l, l = 1 · · ·L) satisfies UEC.

Remark 12. Note that even if costs of elementary modules M l are given by cl
ol(hl) =

|ζ l
ol(hl)|2V l as in our previous examples, in general (when π is not one to one) the cost

of the compound module is not the squared norm of the compound velocity field ζo(h) =
∑

l ζ
l
ol in the global embedding RKHS V , i.e. co(h) =

∑

l |ζ l
ol(hl)|2V l 6= |ζo(h)|2V . Then in

general C > 1 and c is not the pullback metric on O×H of the metric on O×V . The cost
co(h) does not directly depend on the norm of the generated vector field ζo(h) but on its
specific decomposition as a sum of elementary vector fields ζ l

ol(H l). As we will consider
configurations (o, h) that minimize the cost co(h) (for a given action ξo(ζo(h)) on the
geometrical descriptor), different choices of cost cl can favour different decompositions
for the same resulting vector field. Moreover in practice one can compute easily the cost
of the compound module c from the elementary costs cl.

Remark 13. Note that the combination of deformation module is an associative and
commutative law.
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4.1.2 Large deformations

In this section, we show how large deformations can be generated from a given
deformation module M = (O, H, ζ, ξ, c) satisfying UEC (see Definition 19, we denote
V the corresponding Hilbert space). These large deformations are obtained by the
integration of a trajectory of vector fields v : t ∈ [0, 1] 7→ vt ∈ V that are modular,
meaning that at each time t one can write vt = ζot

(ht) with (ot, ht) ∈ O × H. During
the integration of the trajectory we want the geometrical descriptor of the module to be
transported by the flow and therefore, denoting ϕv the flow of v (see Proposition 15),
that vt belongs to ζot

(H), with ot = ϕv
t (ot=0).

Definition 21. Let a, b ∈ O. We denote Ωa,b the set of mesurable curves t 7→ (ot, ht) ∈
O × H where ot is absolutely continuous (a.c.), starting from a and ending at b, such
that, for almost every t ∈ [0, 1], ȯt = ξot

(vt), where vt
.= ζot

(ht), and

E(o, h) .=
∫ 1

0
cot

(ht)dt < ∞.

The quantity E(o, h) is called the energy of (o, h) and Ωa,b is the set of controlled
paths of finite energy starting at a and ending at b.

If UEC is satisfied, we can build large deformations from these trajectories :

Proposition 20. Let us suppose that M satisfies UEC. Let (o, h) ∈ Ωa,b and for each
t, vt = ζot

(ht). Then v ∈ L2([0, 1], V ) ⊂ L1, the flow ϕv exists, h ∈ L2([0, 1], H) and for
each t ∈ [0, 1], ot = φv

t .o0. The final diffeomorphism ϕv
t=1 is called a modular large

deformation generated by a.

Proof. Let (o, h) ∈ Ωa,b and v : t ∈ [0, 1] 7→ vt
.= ζot

(ht). From the UEC we get:
∫ 1

0 |v(t)|2V dt ≤ C
∫ 1

0 cot
(ht)dt < ∞ since (o, h) ∈ Ωa,b. Then v ∈ L2([0, 1], V ) ⊂

L1([0, 1], V ) ⊂ L1([0, 1], Cℓ
0(Rd)) and its flow ϕv can be defined. As explained in Propo-

sition 16 we can deduce that o(t) = ϕv
t · a for each t.

Let us now define, for o ∈ O, ||c−1
o || := sup|h|H=1 co(h)−1 (well defined as H is of finite

dimension). As o 7→ co and t 7→ o(t) = ϕv
t · a are continuous, supt ||c−1

ot
|| is finite and

then
∫ 1

0 |ht|2Hdt ≤ (supt ||c−1
ot

||) ∫ 1
0 cot

(ht)dt < ∞ so h ∈ L2([0, 1], H).

Remark 14. A modular large deformation is parametrized by an initial value of geo-
metrical descriptor ot=0 and a trajectory of control h ∈ L2([0, 1], H).

4.2 Collection of deformation modules

We present here a list of possible deformation modules. Most of these modules will be
used in the numerical experiments in Chapter 7. Some modules will be presented only
in dimension 2, but may be easily generalized in higher dimensions. In the first section
we present the different shape spaces of geometrical descriptors (and their infinitesi-
mal action) that will be used. In next sections will be presented different examples of
deformation modules that can be built thanks to these geometrical descriptors.
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4.2.1 Different spaces of geometrical descriptors

4.2.1.1 Points

A widely used case will be when the geometrical descriptor is made of one point: the
space of geometrical descriptors is O .= R

d.

4.2.1.1.1 Fixed points A first possibility is that the geometrical descriptor belongs
to a fixed background and then is not transported by diffeomorphisms. In this case the
action of diffeomorphisms is (o, φ) ∈ O×Diffℓ

0(R
d) 7→ o and then the infinitesimal action

is ξ : (o, v) ∈ O × Cℓ
0(Rd) 7→ 0.

4.2.1.1.2 Transported point However in general one wants for points generating
vector fields to be transported with the ambient space. The natural corresponding action
of diffeomorphisms is (o, φ) ∈ O × Diffℓ

0(R
d) 7→ φ(o) and then the infinitesimal action is

ξ : (o, v) ∈ O × Cℓ
0(Rd) 7→ v(o).

4.2.1.2 Vectors attached to points

We will now study the case where the geometrical descriptor is made of a vector attached
to a point: here the geometrical prior on the generated vector field will depend on a
direction and not only a localisation. We give different possible rules for updating this
direction during the integration process.

4.2.1.2.1 Fixed direction A first possibility is for the vector to be kept constant
during integration, meaning that it is linked to a fixed background and not to the shape
that is deformed. The shape space is O .= R

d × R
d, the action of diffeomorphisms

is (o, φ) ∈ O × Diffℓ
0(R

d) 7→ (φ(z), u) and then the infinitesimal action is ξ : (o, v) ∈
O × Cℓ

0(Rd) 7→ (v(z), 0), with o = (z, u).

4.2.1.2.2 Direction updated by the differential If one wants the direction at-
tached to a point to be transported, a natural way is to update it thanks to the derivative
of the diffeomorphism. The shape space is still O .= R

d × R
d, the action of diffeo-

morphisms becomes here (o, φ) ∈ O × Diffℓ
0(R

d) 7→ (φ(z), dφz · u) and we deduce the
infinitesimal action ξ : (o, v) ∈ O × Cℓ

0(Rd) 7→ (v(z), dvz · u), with o = (z, u).

4.2.1.2.3 Direction of constant norm In the previous action of diffeomorphisms,
the norm of the vector changes while it is transported by the diffeomorphism whereas
sometimes it may be interesting for it to be of constant norm. In this framework we need
to ensure that this norm is not null and then we define a new shape space O .= R

d×(Rd−
{0}) associated with the action (o, φ) ∈ O × Diffℓ

0(R
d) 7→ (φ(z), dφz ·u

|dφz ·u|) where o = (z, u).

Then the infinitesimal action is given by (o, v) ∈ O ×Cℓ
0(Rd) 7→ (v(z), dvz ·u

|u| − 〈u,dvz ·u〉
|u|3 u).
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Figure 4.5: Example of vector field generated by the deformation module generating
one unconstrained translation at scale σ. Geometrical descriptor (centre of translation):
blue cross; Control (vector of translation): red arrow; the dotted circle is centred at
geometrical descriptor and its radius is σ. Left: Vector field generated by this geomet-
rical descriptor and this control in green. Right: Deformation of the ambient space and
geometrical descriptor under the action of the vector field.

4.2.1.2.4 Direction updated by adjoint action A last possibility is for the vector
to be updated by the adjoint action. Here there is no need to ensure that the norm of the
vector is not null and then the shape space is O .= R

d×R
d. The action of the deformation

φ on the geometrical descriptors o is (φ, o = (z, u)) 7→ (φ(z), (dφ−1
φ(x))

Tu), where the
second part is the so-called adjoint action. If one considers the direction u as the normal
to an infinitesimal surface patch, then (dφ−1

φ(x))
Tu is the direction of the normal of the

deformed surface patch. The infinitesimal action on geometrical descriptors writes now
ξo(v) = (v(z),−dvT

z u) (with o = (z, u)).

4.2.2 Deformation module generating a sum of local transla-
tions

4.2.2.1 Unconstrained local translations

This deformation module enables us to see the construction of [DPGJ11] as an instance
of a deformation module and was detailed in Section 4.1.1.2.1. The cost of this defor-
mation module is c : (o = (zi), h = (αi)) 7→ |ζo(h)|2Vσ

=
∑

i,j Kσ(zi, zj)αT
i αj. Another

possibility to generate sums of translations would be to consider the combination of mod-
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Figure 4.6: Example of vector field generated by the deformation module generating
a sum of two unconstrained translations at scale σ. Geometrical descriptor (centres
of translations): blue crosses; Control (vectors of translation): red arrows; the dotted
circles are centred at geometrical descriptor (the two centres of translations) and of
radius σ. Left: Vector field generated by this geometrical descriptor and this control in
green. Right: Deformation of the ambient space and geometrical descriptor under the
action of the vector field.

ules creating one translation, such that the cost would be
∑

i |Kσ(·, zi)αi|2Vσ
=
∑

i |αi|2.
The first case is more interesting because minimizing the cost tends to separate centres zi

and then forces local translations of the same scale to act everywhere it is needed, while
in the second case several could converge to the same location, making it redundant.
In Figures 4.5 and 4.6 we present two examples of vector fields that can be generated
by such deformation modules. We also present the deformed grid and the transported
geometrical descriptors under this infinitesimal action. In Figure 4.5 we present the
case of the deformation module generating one translation (O = R

2), and in Figure 4.6
we present the case of the deformation module generating a sum of two translations
(O = R

2 × R
2).

4.2.2.2 Example of combination: a multi-scale sum of local translations

Let us set P scales σl and for each l a number of translations Dl. We present here
the construction of the deformation module that generates vector fields that are a
sum of multi-scale local translations, with Dl translations for each scale σl. For each
l can be built, as defined in Section 4.1.1.2.1, a module M l generating vector fields
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that are a sum of Dl local translations acting at scale σl. The multi-scale module
M is then the combination of these modules M l (see Section 4.1.1.4). In particular
the vector field created by geometrical descriptor o = (zl

j) ∈ O .= Πl

(

(Rd)Dl

)

and

control h = (αl
j) ∈ H

.= Πl

(

(Rd)Dl

)

is ζo(h) =
∑

l

∑

j Kσl
(zl

j, ·)αl
j. It is clear here

that, unlike in the framework of [RVW+11] where vector fields are generated thanks
to a sum of gaussian kernels, centres of local translations are different for each scale.
This property is kept for optimal trajectories (minimising the cost) as we force these
points to be different at initial time. The cost is, for o = (zl

j) ∈ O and h = (αl
j) ∈ H,

co(h) =
∑

l

∑

j Kσl
(zl

j, z
l
j′)αlT

j α
l
j′ . Even though this cost is similar to the framework

of vector bundle presented in [SNLP11], the control variables which are optimised in
our framework are only the vectors of local translations h = (αl

j) ∈ H and not the
global vector field. Therefore, optimal trajectories are different from the vector bundle
framework and the decomposition of the vector field in a sum of local translations
acting at different scales and centres at different points is preserved.

Remark 15. This example corresponds to one of the models that we first developed
which was presented in Section 2.3.2.

4.2.2.3 Deformation module generating a sum of local translations with a
prior on the directions

In the previous examples of deformation modules based on local translations (Sec-
tions 4.2.2.1 and 4.2.2.2), the direction and magnitude of the translation vector were
considered as control parameters. Therefore, during the integration of the flow, the di-
rection of the translation at each time needs to be determined as a optimal solution for a
given criterion. By contrast, we may want to update the direction of the translation dur-
ing deformation by using a prior rule, thus considering the direction no more as a control
parameter but as a geometrical descriptor instead. In this case, only the magnitude of
the translation vector is considered as a control parameter and the geometrical parameter
is formed of a vector attached to a point. The shape space of geometrical descriptors O
and the infinitesimal action ξ on the geometrical descriptor can then be chosen between
the four possibilities presented in Section 4.2.1.2. We set a scale σ ∈ R

∗
+. The space

of control is H .= R and we define the field generator ζ : (o, h) ∈ O × H 7→ hKσ(z, ·)u
with o = (z, u). The cost is given by co(h) = |ζo(h)|2Vσ

= |u|2h2 (with o = (z, u)). Then
M

.= (O, H, ζ, ξ, c) is a deformation module satisfying UEC. If we consider a compound
module combining this deformation module with others, the direction of the translation
at integration time t will only depend of the generated global diffeomorphism φ and
the direction u at time t = 0. This deformation module M can be generalized to the
deformation module M̃ .= (Õ, H̃, ζ̃, ξ̃, c̃) generating vector fields that are a sum of P
local translations at scale σ by setting Õ .= OP , H̃ .= R

P (the control is made of P
scalars), and for o = (oi)1≤i≤P ∈ Õ, h = (hi) ∈ H, v ∈ Cℓ

0(Rd), ζ̃o(h) .=
∑

i ζoi
(hi),

ξ̃o(v) = (ξoi
(v))i and co(h) = |ζ̃o(h)|2Vσ

. Such deformation modules will be used in exam-
ples in Section 7.3 and 7.4. In Figures 4.7 and 4.8 we present two examples of vector
fields that can be generated by deformation modules generating a sum of two transla-



CHAPTER 4. BUILDING MODULAR LARGE DEFORMATIONS 72

Figure 4.7: Example of vector field generated by the deformation module generating a
sum of two translations at scale σ with fixed directions. Geometrical descriptor (2 points
and 2 vectors): blue crosses for centres of translations and blue arrows for directions
of translations; control (2 scalars): lengths and directions of the two red arrows; the
dotted circles are centred at centres of translations and of radius σ. Left: Vector field
generated by this geometrical descriptor and this control in green. Right: Deformation
of the ambient space and geometrical descriptor under the action of the vector field
(centres of translations are transported but directions remain constant).

tions with priors on directions, as well as the displacement of geometrical descriptors
under this infinitesimal action. In Figure 4.7 we present the case where directions are
fixed (the infinitesimal action on them is null: they stay steady under actions on vec-
tor fields) while in Figure 4.8 we present the case where directions are updated by the
differential and are of constant norm.

4.2.3 Constrained local transformations

In Section 4.1.1.2 we presented the example of a deformation module generating vector
fields in dimension 2 that are always a local scaling at a fixed scale σ. Such a local
vector field, centred at a point o ∈ R

2 and acting at a scale σ, is generated thanks
to local translations carried by 3 points zi close to o with respect to σ. Points zi are
chosen in a fixed manner from o, at a distance from o that we set equal to δ

.= 1
3
σ.

Then in dimension 2, in order to build a local vector field at scale σ around o ∈ R
2 we

define: z1(o, σ) = o+ δ(1, 0), z2(o, σ) = o+ δ(1
2

√
3,−1

2
) and z3(o, σ) = o+ δ(−1

2

√
3,−1

2
).

This setting can be generalized in dimension 3: in order to build a local vector
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Figure 4.8: Example of vector field generated by the deformation module generating
a sum of two translations at scale σ with directions of constant norm. Geometrical
descriptor (2 points and 2 vectors): blue crosses for centres of translations and blue
arrows for directions of translations; control (2 scalars): lengths of the two red arrows;
the dotted circles are centred at centres of translations and of radius σ. Left: Vector field
generated by this geometrical descriptor and this control in green. Right: Deformation
of the ambient space and geometrical descriptor under the action of the vector field
(centres and directions of translations are transported).

field at scale σ around o ∈ R
3 we build 4 points z1 as vertices of a regular polygon

centred at o, i.e. we set z1(o, σ) = o + δ√
3
(−1,−1, 1), z2(o, σ) = o + δ√

3
(−1, 1,−1),

z3(o, σ) = o+ δ√
3
(1,−1,−1) and z4(o, σ) = o+ δ√

3
(1, 1, 1).

Let us set a point o ∈ R
d (d = 2 or 3) and build a local vector field v centred at

o and equal to 0 at o. Similarly to the example presented in Section 4.1.1.2, we build
it as the interpolation of local translations centred at points zi(o, σ). Vectors of these
translations are taken as the values of the wanted vector field at these points so that
the built vector field is their interpolation. The control associated to this deformation
module is a scalar, and the generated vector field is its multiplication with the sum
of these d + 1 translations. We emphasize here that points zi(o, σ) and vectors of the
translations they carry are intermediate tools used to compute the vector field but that
this latter is totally defined by the value of the geometrical descriptor and the control.

In a more general setting, we can build the deformation module that gener-
ates vector fields that are a sum of P replications of the same local vector field v
at P different locations. We set O .= (Rd)P , H .= R

P and, for o = (oi)i ∈ O,
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ζo : h = (hi) ∈ H 7→ ∑P
i=1 hi

∑d+1
j=1 Kσ(zj(oi, σ), ·)dj(oi, σ) (with dj(oi, σ) = v(zj(oi, σ))),

ξo : v ∈ Cℓ
0(Rd) 7→ (v(oi))i ∈ TO (application of the vector field to each point),

co : h = (hi)i ∈ H 7→ |ζo(h)|2Vσ
. As for the deformation module generating one local

scaling, it can be easily shown that M = (O, H, ζ, ξ, c) is a deformation module
satisfying UEC.

We introduce here two additional example of this construction.

4.2.3.1 Example of combination: a local scaling and a local rotation

We have presented in Section 4.1.1.2 how one could build deformation modules gen-
erating locally a scaling or a rotation. We consider here the deformation module
M = (O, H, ζ, ξ, c) obtained by the combination of two deformation modules gener-
ating constrained local transforms in dimension 2: the first one M1 = (O1, H1, ζ1, ξ1, c1)
generates a scaling at scale σ1 and the second one M2 = (O2, H2, ζ2, ξ2, c2) generates
a rotation at scale σ2 = σ1/3. Let us detail elements defining M . The space of geo-
metrical descriptor is the space couples of points (centres of a scaling and a rotation):
O = O1 × O2 = R

2 × R
2. The space of controls is the space of couples of two scalars:

H = H1 × H2 = R × R. Let o = (o1, o2) ∈ O and let h = (h1, h2) ∈ H, we de-
fine now how the vector field ζo(h) is built. We use the definition of points zj(o, , σ)
from a centre point of R

2 and a scale σ as given previously. These points will carry
local translations enabling to build the local scaling centred at o1 and the local ro-
tation centred at o2. We need to define vectors of these translations: they are the
value that we want the vector field to take at these points. Then for the scaling we
define d1

1 = (0, 1), d1
2 = (1

2

√
3,−1

2
), d1

3 = (−1
2

√
3,−1

2
) and for the rotation we define

d2
1 = (−1, 0), d2

2 = (1
2
, 1

2

√
3), d2

3 = (1
2
,−1

2

√
3). These points and these vectors are the

needed intermediate tools and can be seen in Figure 4.9. Then the vector field generated
by o and h is

ζo(h) = h1
3
∑

j=1

Kσ1(zj(o1, σ1), ·)d1
j + h2

3
∑

j=1

Kσ2(zj(o2, σ2), ·)d1
j .

The infinitesimal action is given by the application to each point of the geometrical
descriptor: ξ : (o, v) ∈ O × Cℓ

0(Rd) 7→ (v(o1), v(o2)) where o = (o1, o2). Last, the cost is
given by the sum of the two costs: for o = (o1, o2) ∈ O and h = (h1, h2) ∈ H,

co(h) = c1
o1(h1) + c2

o2(h2)
= (h1)2∑

j,j′ Kσ1(zj(o1, σ1), zj′(o1, σ1))d1T
j d1

j′

+(h2)2∑

j,j′ Kσ2(zj(o2, σ2), zj′(o2, σ2))d2T
j d2

j′

In Figure 4.9 we present an example of large deformation (see Proposition 20) gen-
erated by M . The deformation at each time is represented by the deformation of the
grid. We can see that geometrical descriptors are transported by the global flow cre-
ated by the two deformation modules. As its scale is smaller, the area of action of the
local rotation is smaller than the one of the scaling. Then the area of influence of the
local rotation is transported by the vector field created by the local scaling, while the
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t=0 t=0.5 t=1

Figure 4.9: Example of a large deformation. Geometrical descriptors are in blue (triangle
for scaling, circle for rotation). Vectors are intermediate tools used to build vector fields
(magenta for rotation and green for scaling)

geometrical descriptor of the local scaling is almost constant. We represent also in this
figure intermediate tools dj, which are recomputed at each time from the geometrical
descriptors (centres of the scaling and rotation) and therefore are not transported by the
flow. This example shows how complex modular large deformations can be naturally
built from simple base modules, and how their mutual interaction during the integration
of the trajectory is encoded in the compound deformation module. We emphasize here
that in order to build such a complex deformation module, one only needs to define a
deformation module generating a local scaling, a deformation module generating a local
rotation, and then to apply the simple combination rules presented in 4.1.1.4.

4.2.3.2 Spreading

We introduce here a deformation module that generates a local uni-directional spreading
along a direction. The geometrical descriptors are made of one point z and one vector
u and then the shape space O and the infinitesimal action ξ can be chosen between the
four possibilities presented in Section 4.2.1.2. The vector field generated by o = (z, u)
and a control h ∈ R is a uni-directional spreading along the direction u. In order to
build this in practice, we set a scale σ and to a geometrical descriptor o = (z, u) ∈ O
we associate points zi(o, σ) .= zi(z, σ) as defined previously. These points zi(o, σ) carry
translations enabling to generate the vector field, and vectors defining these translations
are, for each i, di(o, σ) .= (yi(o, σ)Tu)u, with o = (z, u) and yi(o, σ) .= zi(o, σ) − z. Then
ζo(h) = h

∑

i Kσ(zi(o, σ), ·)di(o, σ), see Figure 4.10 for an example.

4.2.4 Anisotropic deformation

Let us set a deformation module M = (O, H, ζ, ξ, c) such that each geometrical descrip-
tor o ∈ O is composed of at least one point, ie o can be written o = (z, o1) with z ∈ R

d.
We also supposed that vector fields generated by o = (z, o1) ∈ O are localized at a
scale σ in an isotropic area centred at o1. M can for instance be one of the deformation
modules generating one local translation (see Section 4.2.2) or one constrained affine
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Figure 4.10: Example of vector field generated by the deformation module generating
a local spreading at scale σ. Geometrical descriptor (one point and one vector): blue
cross for centre of spreading and blue arrow for the direction of spreading; control (one
scalar): length and direction of the red arrow; the dotted circle is centred at the centre of
spreading and of radius σ; black crosses and black arrows are intermediate tools used to
build vector fields (zi and di). Left: Vector field generated by this geometrical descriptor
and this control in green. Right: Deformation of the ambient space and geometrical
descriptor under the action of the vector field.

deformation (see Section 4.2.3). We present here a concrete generic method to build a
deformation module M̃ = (Õ, H̃, ζ̃, ξ̃, c̃) generating vector fields of the same type and
which is localized in an anisotropic area. The geometrical descriptor will be formed
of two components, the first belonging to O, and the second made of d − 1 vectors
(with d the dimension of the ambient space) which will define directions of anisotropy:
Õ .= O×(Rd)d−1. From a geometrical descriptor õ = (o, u1, · · · , ud−1) ∈ Õ = O×(Rd)d−1

we compute a set of points Λõ
.= {z+

∑d−1
k=1 σjkuk | ∀k ∈ [|1, d−1|],−rk ≤ jk ≤ rk} where

o = (z, o1) and for each k, the coefficient of anisotropy rk is a fixed positive integer. We
define H̃ .= H. We can now define the field generator as the sum of the vector fields
that would be created by the O component of the geometrical descriptor, but centred
at points of Λõ:

ζ : (õ, h) ∈ Õ × H̃ 7→
∑

x∈Λõ

ζ(x,o1)(h)

where õ = (z, o1, u1, · · · , ud−1). The cost c̃ is defined thanks to the norm of the generated
vector field in the RKHS Vσ: c̃õ(h̃) .= |ζ̃õ(h̃)|2Vσ

. Last we need to define the infinitesimal
action: we set ξ : (õ, v) ∈ Õ × C1

0(Rd) 7→ (ξo(v), ξ1
(z,u1)(v), · · · , ξd−1

(z,ud−1)(v)) with õ =
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Figure 4.11: Sum of 5 gaussian functions of scale 1, centred at red crosses. Distance
between these centres is 0.5 (left), 1 (middle) and 2 (right).
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Figure 4.12: Examples of the resulting localisation function in the direction of the
anisotropy. In black is plotted the gaussian function centres at the circled point and
of scale 1. In blue are plotted the sums of 2r+ 1 gaussian functions of scale 1 centred at
red crosses (r equals successively 0, 1, 2 and 3). Distance between these centres is 1.

(o, u1, · · · , ud−1), o = (z, o1) and for each k, ξk one of the four possible infinitesimal
actions on couples of one point and one vector (see Section 4.2.1.2). One may want
to favour actions which keep the vector or its length constant as the length of vectors
ui plays an important role here. Indeed, in practice the localization of the vector field
is often performed thanks to a Gaussian kernel, we present in Figure 4.11 the plot of
sums of such Gaussian functions centred at points regularly spaced, for different values
of distances between these points. One can see that there are three modes depending on
the distance: when it is to small, the sum acts like one Gaussian kernel, on the opposite
when it is too big, the resulting sum is different Gaussian kernel. The last mode is the
one which we are interested in: in the intermediate range, the sum of kernels results in
a new local function of bigger scale. In Figure 4.12 we present the resulting localisation
function in the direction of the anisotropy for different values of coefficient of anisotropy
r.

We introduce here two examples of this construction in dimension 2 and one in
dimension 3.
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Figure 4.13: Example of vector field generated by the deformation module generating an
anisotropique unconstrained local translation at scale σ. Geometrical descriptor: blue
cross for centre of spreading and blue arrow for the direction of anisotropy; control: red
arrow; the dotted circle is centred at the centre of spreading and of radius σ; intermediate
tools used to build the vector fields: black crosses are the points o+σju and black arrows
are equal to the control, attached to these points. Left: Vector field generated by this
geometrical descriptor and this control in green. Right: Deformation of the ambient
space and geometrical descriptor under the action of the vector field.

4.2.4.1 Anisotropic local translation in dimension 2

We will present here the construction of the deformation module M̃ = (Õ, H̃, ζ̃, ξ̃, c̃)
generating an unconstrained local translation localized in an anisotropic area. We first
set M = (O, H, ζ, ξ, c) the deformation module generating an unconstrained isotropic
local translation as defined in Section 4.2.2.1 of scale σ ∈ R

∗
+ in dimension 2: O = R

2,
H = R

2, ζ : (o, h) ∈ O × H 7→ Kσ(o, ·)h, ξ : (o, h) ∈ O × Cℓ
0(Rd) 7→ v(o) and

c : (o, h) ∈ O × H 7→ |h|2. Let us set a coefficient of anisotropy r ∈ N. In this example
we will impose that the direction of anisotropy remains steady during the integration of
the diffeomorphism: Õ = O × R

2 and ξ : (õ, v) ∈ Õ × Cℓ
0(Rd) 7→ (ξo(v), 0) = (v(o), 0)

with õ = (o, u). The field generator is

ζ̃ : (õ, h) 7→
j=r
∑

j=−r

Kσ(o+ σju, ·)h

where õ = (o, u). See Figure 4.13 for an example of generated vector field for r = 2.



CHAPTER 4. BUILDING MODULAR LARGE DEFORMATIONS 79

Figure 4.14: Example of vector field generated by the deformation module generating an
anisotropique local spreading at scale σ. Geometrical descriptor: blue cross for centre of
spreading, horizontal blue arrow for the direction of spreading and vertical blue arrow
for the direction of anisotropy; control: length and direction of the red arrow; the
dotted circle is centred at the centre of spreading and of radius σ; intermediate tools
used to build the vector fields: black crosses the points zi(z + σju, σ) and black arrows
vectors h(yi(z+σju, σ)Tw)w. Left: Vector field generated by this geometrical descriptor
and this control in green. Right: Deformation of the ambient space and geometrical
descriptor under the action of the vector field.

4.2.4.2 Anisotropic local spreading in dimension 2

Let us set σ ∈ R
∗
+ and M = (O, H, ζ, ξ, c) the deformation module generating one local

Spreading at scale σ in dimension 2 (see Section 4.2.3.2). We choose the update by the
adjoint action for infinitesimal action: O = R

2 × R
2 and ξ : (o, v) ∈ O × Cℓ

0(Rd) 7→
(v(z),−dvT

z w) where o = (z, w). We set an anisotropic coefficient r ∈ N, we will
now define the deformation module M̃ = (Õ, H̃, ζ̃, ξ̃, c̃) generating a local spreading
localized in an anisotropic area. We will consider the action of diffeomorphisms on
the vector of anisotropy such that its norm remains constant. Then Õ .= O × (R2 −
{0}) = R

2 × R
2 × (R2 − {0}) and the infinitesimal action is ξ̃ : (õ, v) ∈ Õ × Cℓ

0(Rd) 7→
(v(z),−dvT

z w,
dvz ·u

|u| − <u,dvz ·u>
|u|3 u) where õ = (z, w, u). We can define the space of control

H̃
.= H = R and the field generator:

ζ̃ : (õ, h̃) ∈ Õ × H̃ 7→ h̃
j=r
∑

j=−r

3
∑

i=1

Kσ(zi(z + σju, σ), ·)(yi(z + σju, σ)Tw)w
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where õ = (z, w, u) and for any point x, points zi(x, σ) are defined in Section 4.2.3 and
yi(x, σ) .= zi(x, σ) − x. See Figure 4.14 for an example.

4.2.4.3 Anisotropic local translation in dimension 3

In this last example we will present the example of a deformation module M̃ =
(Õ, H̃, ζ̃, ξ̃, c̃) generating a translation with prior on the direction of translation in dimen-
sion 2 and localized in an anisotropic area. Let us first set σ ∈ R

∗
+ and M = (O, H, ζ, ξ, c)

the deformation module generating one local isotropic translation with prior on the di-
rection. We update the vector of translation thanks to differentials: O = R

3 × R
3 and

ξ : (o, v) ∈ O×Cℓ
0(Rd) 7→ (v(z), dvzw) with o = (z, w). We can now define M̃ . As we are

now in dimension 3, the anisotropy will be defined thanks to 2 vectors. Let us set r1 and
r2 two coefficients of anisotropy. We will take the action on vectors of anisotropy so that
they remain constant: Õ .= O ×R

3 ×R
3 and ξ̃ : (õ, v) ∈ Õ ×Cℓ

0(Rd) 7→ (v(z), dvzw, 0, 0)
with õ = (z, w, u1, u2). We set H̃ .= H = R and the field generator is then

ζ̃ : (õ, h̃) ∈ Õ × H̃ 7→ h̃
r1
∑

k1=−r1

r2
∑

k2=−r2

Kσ(z + σk1u1 + σk2u2, ·)w

where õ = (z, w, u1, u2).

4.2.5 Unconstrained local affine transformations

We present here the deformation module generating vector fields that are locally an
affine deformation (at a fixed scale σ), without any other prior on the local defor-
mation pattern. We explain here the construction in dimension 2 without loss of
generality. For o ∈ R

2 we define points (zj(o, σ))j as in the previous case. We
define spaces O .= R

2, H
.= (R2)3 (groups of 3 vectors of R

2) and applications
ζ : (o, h = (αj)) ∈ O × H 7→ ∑

j Kσ(zj(o), ·)αj, ξo : v ∈ Cℓ
0(R2) 7→ v(o) and

co : h = (αj) ∈ H 7→ |ζo(h)|2Vσ
. Then M = (O, H, ζ, ξ, c) is a Ck-deformation mod-

ule that satisfies UEC and generates vector fields that are unconstrained local transfor-
mations at scale σ. This example differs from the sum of translation in Section 4.1.1.1
(example 1) as the 3 centres of translations here are glued together. This example differs
also from Section 4.2.3 as here the directions dj are free to generate any local transform.
These directions become then control parameters, whereas they were a function of the ge-
ometrical descriptor in the previous example. Similarly to previous examples local affine
transforms may be combined into a deformation module creating a superimposition of
P unconstrained local transforms at different locations. This module class differs from
the poly-affine framework [SPR12] in that the neighbourhood which is affected by the
local affine transformation is transported by the global deformation via the infinitesimal
feedback action ξ.

4.2.6 External force

In some cases it might be useful to consider a deformation module whose geometrical
descriptors are attached to a fixed background and then are not transported during the
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Figure 4.15: Example of geometrical descriptor and control of deformation module gen-
erating boundary motion. Left: The geometrical descriptor is composed of the image
and the blue points representing landmarks xi. In red are the vectors h∇I(xi) generating
the vector field ζo(h) (here h = 3). Right: Deformation of the geometrical descriptor
(image and landmarks) under the action of the vector field they generate.

integration of the flow. Any of the previous deformation modules can be adapted to this
case by setting the infinitesimal action ξ to zero.

4.2.7 Boundary motion (image geometrical descriptor)

We give here an example of deformation module where geometrical descriptors are not
only geometrical shapes but composed of N landmarks and an image (N being fixed). In
the deformation module that we present here, landmarks are a discretisation of an area of
the image but one could define them as points of interest. The generated vector field will
be defined thanks to the gradient of the image at this points, allowing motion orthogonal
to boundaries. We define O = (R2)N × C∞(R2,R), it is a shape space associated with
the following action of diffeomorphisms: for φ ∈ Diffℓ

0(R
d) and o = (x1, · · · , xN , I) ∈ O,

φ · o = (φ(x1), · · · , φ(xN), I ◦ φ−1). Then the infinitesimal action is given by ξo : v ∈
Cℓ

0(R2) 7→ (v(x1), · · · , v(xN),−dI(v)) where o = (x1, · · · , xN , I) ∈ O. We set a scale
σ > 0 and we define H = R and

ζ : (o, h) ∈ O ×H 7→
N
∑

i=1

hKσ(xi, ·)∇I(xi)

with o = (x1, · · · , cN , I). The cost is defined by c : (o, h) ∈ O×H 7→ |ζo(h)|2Vσ
. In Figure

4.15 we present an example of geometrical descriptor for this deformation module (we
fix N = 28), as well as its transport by the vector field it generates itself (for a control
h equal to 3).



CHAPTER 4. BUILDING MODULAR LARGE DEFORMATIONS 82

4.2.8 Silent modules

We present here a last example of deformation modules: modules generating a vector
field that is always null. For a choice a Ck-shape space O of order ℓ with infinitesimal
action ξ, we set H .= {0} (null space for the controls) and for o ∈ O, ζo : h ∈ H 7→ 0,
co : h ∈ H 7→ 0. Then M = (O, H, ζ, ξ, c) defines a Ck-deformation module of order ℓ
satisfying UEC, which will be referred to as the silent deformation module induced
by shape space O. For instance, if O is the shape space made of a collection of points
as in the examples of landmarks (Section 4.1.1.1) and we combine M with other (active)
deformation modules, then points of O will feel the velocity field generated by active
modules located around them, and move accordingly, but will not contribute to this
velocity field. The introduction of silent modules is necessary if one wants to use active
deformation modules whose geometric descriptors do not derive from the input shape
data, for instance for scaling module whose center is not forced to be a vertex or point
of the input shape data, or for the direction of a translation which is not forced to be
normal to a surface mesh.
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5.1 Sub-Riemannian setting

We explain here how modular large deformations may be used to provide shape spaces
with a sub-Riemannian metric, and therefore define a distance between shapes.

We consider a Ck-deformation module M = (O, H, ζ, ξ, c) of order ℓ ∈ N
∗. A ge-

ometrical descriptor of the module is a “shape” in the shape space O and, intuitively,
the orbit of this geometrical descriptor under the action of a regular group of diffeo-
morphisms forms a Riemannian manifold. If one considers only the diffeomorphisms
which result from the integration of a modular velocity field (generated by the mod-
ule M), then one provides this Riemannian manifold with a sub-Riemannian structure
(Section 5.1.1). This construction allows the definition of a sub-Riemannian distance
and of optimal trajectories between two geometrical descriptors in the shape space O
(Section 5.1.2).

5.1.1 A sub-Riemannian structure on O
We suppose that M satisfies UEC, and we set a space of vector fields V and a constant
C > 0 such that V is continuously embedded in Cℓ+k

0 (Rd) and for all o in O, for all
h in H, ζo(h) is in V and |ζo(h)|2V ≤ Cco(h). We use now the notion of continuous
sub-Riemannian structure on a manifold, following the definition given in [Arg14].

Definition 22. Let M be a manifold of finite dimension. We define a continuous
sub-Riemannian structure on M as a triple (E , g, ρ), where E → M is a smooth
vector bundle on M endowed with a smooth, Riemannian metric g, and ρ : E → TM is
a continuous vector bundle morphism.

The composition of the field generator ζ with the infinitesimal action ξ yields a
continuous vector bundle morphism ρ : (o, h) ∈ O × H 7→ (o, ρo(h) = ξo ◦ ζo(h)) ∈ TO.
Moreover, the cost c induces a smooth Riemannian metric g on the vector bundle O×H.
Then (O ×H, g, ρ) defines a continuous sub-Riemannian structure on O, which we will
denote OH . This structure is the key to define trajectories of modular deformations. At
each shape o ∈ O is attached the space ζo(H) of vector fields that can be generated by
o. The horizontal space ρo(H) = ξo(ζo(H)) is the set of tangent vectors of ToO that
can be obtained by the action of the geometrical descriptor o on itself.

Remark 16. Note that the dimension of the horizontal space at o ∈ O, namely the
rank of ρo(H), may depend on o. For instance, let us consider the deformation module
M = (O, H, ζ, ξ, c) obtained by combining a module M1 = (O1, H1, ζ1, ξ1, c1) generating
a local scaling in R

2 at scale σ (see Section 4.1.1.2.2, geometrical descriptors are points,
controls are scalars) and a module M2 = (O2, H2, ζ2, ξ2, c2) generating a sum of three
local translations in R

2 at scale σ (see Section 4.1.1.2.1, geometrical descriptors are
triplets of points, controls are triplets of vectors). For each geometrical descriptor o =
(o1, o2 = (zi)1≤i≤3) ∈ O1 × O2 = R

2 × (R2)3 and each control h = (h1, h2 = (αi)1≤i≤3) ∈
H1 × H2 = R × (R2)3, the generated vector field is ζ(o, h) = h1∑

j K(zj(o1), ·)dj(o1) +
∑

i K(zi, ·)αi with zj(o1) and dj(o1) defined in Section 4.1.1.2.2. Then in the particular
case where o1 and o2 = (zi)i are such that zi = zi(o1) for i ∈ {1, 2, 3}, dim(ξo(ζo(H))) =
2 × 3 = 6 while in other cases dim(ξo(ζo(H))) = 2 × 3 + 1 = 7.
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The cost c equips the vector bundle O × H with a metric g, which may be used to
derive a metric gO on OH : if δo, δo′ ∈ ρo(H), let h, h′ ∈ Ker(ρo)⊥ (orthogonal for
the metric go on H) such that ρo(h) = δo and ρo(h′) = δo′, then gO

o (δo, δo′) .= go(h, h′).
Note that for δo ∈ ρo(H), |δo|2o

.= gO
o (δo, δo) = inf{co(h) | ρo(h) = δo, h ∈ H}. This

sub-Riemannian metric gO will be the one used to build the new distance on O.
We will now present some definitions and results given in [AB14], which allow the

definition of a sub-Riemannian distance on O.

Definition 23. [AB14] Let M be a smooth manifold of finite dimension equipped with
a continuous sub-Riemannian structure (E , g, ρ). A horizontal system is a curve
t ∈ [0, 1] 7→ (q(t), u(t)) ∈ E such that t ∈ [0, 1] 7→ u(t) ∈ Eq(t) is of class L2 (ie
∫ 1

0 gq(t)(u(t), u(t))dt < ∞), and its projection t 7→ q(t) is absolutely continuous and sat-
isfies for almost every t ∈ [0, 1], q̇(t) = ρq(t)u(t). A horizontal curve is the projection
q to M of a horizontal system (q, u).

Remark 17. For a, b ∈ O, space Ωa,b (see Definition 21) is exactly the set of horizontal
system connecting a and b.

Definition 24. [AB14] Let o : [0, 1] −→ O be a horizontal curve, we define its sub-
Riemannian length:

l(o) =
∫ 1

0
|ȯt|ot

dt =
∫ 1

0

√

gO
ot

(ȯt, ȯt)dt.

For a, b ∈ O we can then define the sub-Riemannian distance

D(a, b) = inf{l(o) | ∃h : (o, h) ∈ Ωa,b}.

Lemma 3. [AB14] Let o be a horizontal curve of positive length. There exists a hori-
zontal curve õ and a Lipschitz bijective reparametrization γ : [0, 1] −→ [0, 1] such that
õ = o ◦ γ and for almost every t, | ˙̃o(t)|õ(t) = l(o).

Definition 25. [AB14] Let a, b ∈ O and (o, h) ∈ Ωa,b. We define the length of (o, h)
by

l(o, h) =
∫ 1

0

√

cot
(ht)dt

and we set
DH(a, b) = inf{l(o, h) | (o, h) ∈ Ωa,b}.

Remark 18. If Ωa,b is empty, both D(a, b) and DH(a, b) have an infinite value.

We will now show that studying D and DH amounts to considering same trajectories,
and that D is a real distance on O.

Definition 26. [AB14] Let o : [0, 1] −→ O be a horizontal curve, for each t ∈ [0, 1], let
h⋆(t) ∈ H be the only element of H such that co(h⋆(t)) = |ȯt|2o. We say that h⋆ : t 7→ h⋆(t)
is the minimal control associated with o.

Lemma 4. [AB14] Let o : [0, 1] −→ O be a horizontal curve, its minimal control h⋆ is
measurable and of class L2.
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Thanks to the previous lemma, we can deduce the following proposition:

Proposition 21. [AB14] Let a, b ∈ O, D(a, b) = DH(a, b).

We can now prove that D defines a distance on O.

Proposition 22. As M satisfies UEC, the sub-Riemanian distance D is a true distance
on O.

Proof. It is clear that D is a pseudo-distance, we need to show that if D(a, b) = 0
then a = b. We will use a result proved in [ATTY15]: if we set for φ ∈ Diffℓ

0(R
d),

d(Id, φ) .= inf{∫ 1
0 |vt|V dt | ∀t vt ∈ V and ϕv

t=1 = φ} (we remind that V is the Hilbert
space of vector fields defined UEC) and for a, b ∈ O, dist(a, b) = inf{d(Id, φ) | φ · a = b}
then dist defines a distance (taking its value in [0,+∞]).
Let a, b ∈ O such that D(a, b) = 0, then there exists (on)n∈N such that for each n there
exists hn such that (on, hn) ∈ Ωa,b and l(on) −→ 0. By choosing hn the minimal control
of on, we also have l(on, hn) −→ 0. Yet, thanks to the UEC, for each n, dist(a, b) ≤
∫ 1

0 |ζon(hn)|V ≤
√
C
∫ 1

0

√

con(hn) =
√
Cl(on, hn) −→ 0. Then a = b.

5.1.2 Optimal trajectories

Thanks to Proposition 21, the minimum of l in Ωa,b (for a, b ∈ O) is equal to the distance
between a and b. However the quantity l(o, h) =

∫ 1
0

√

co(h) is hard to study and then it
is necessary to link it with the energy E(o, h) =

∫ 1
0 co(h).

Proposition 23. [AB14] Let a, b ∈ O and let (o, h) be in Ωa,b. Then (o, h) minimizes
E in Ωa,b if and only if it minimizes l in Ωa,b and its cost co(h) is constant.

Remark 19. We deduce that along minimizers (if they exist), DH(a, b)2 = l(o, h)2 =
E(o, h).

Propositions 21 and 23 show that calculating the distance D(a, b) between two el-
ements a, b of O amounts to looking for horizontal systems minimizing the energy E,
which is easiest to study. Therefore, in the next paragraph we characterize horizontal
systems minimizing E. We need here to restrict ourselves to a certain type of shapes,
obtained through an adaptation of a definition given by S. Arguillère in [ATTY15].

Definition 27. An element o of O, is said to be of compact support if there exists
a compact set K of R

d such that for all φ ∈ Dℓ
0(R

d), φ · o only depends on φ|K and
φ ∈ Dℓ

K 7→ φ · o is continuous with Dℓ
K := {φ|K | φ ∈ Dℓ

0(R
d)} equipped with the

distance deduced from the norm on {v|K | v ∈ Cℓ
0(Rd)}: |v|ℓ,K = sup{|∂ℓ1+···+ℓd v(x)

∂x
ℓ1
1 ···xℓd

d

| | x ∈
K, (ℓ1, · · · , ℓd) ∈ N

d, ℓ1 + · + ℓd ≤ ℓ}.

Remark 20. Examples presented in Section 4.2 correspond to geometrical descriptors
of compact support.
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Lemma 5. Let o ∈ O be of compact support and let K be a compact set of Rd such that
for all φ of Dℓ

0(R
d) φ · o only depends on K and φ ∈ Dℓ

K 7→ φ · o is continuous. Then for
each φ ∈ Dℓ

0(R
d), φ · o is of compact support and ψ ∈ Dℓ

0(R
d) 7→ ψ · (φ · o) only depends

on the compact set φ(K).

Proof. Let φ, ψ and ψ′ be elements of Dℓ
0(R

d) such that ψ|φ(K) = ψ′
|φ(K). Then ψ ·(φ·o) =

(ψ ◦ φ) · o = (ψ′ ◦ φ) · o because ψ ◦ φ|K = ψ′ ◦ φ|K . Then ψ · (φ · o) = ψ′ · (φ · o) and we
conclude that for all ψ ∈ Dℓ

0(R
d), ψ · (φ · o) only depends on φ(K). Besides from Faà di

Bruno’s formula one gets that for φ an element of Dℓ
0(R

d), there exists a constant C|φ|ℓ,K

such that for each ψ, ψ′ in Dℓ
0(R

d), |ψ ◦ φ − ψ′ ◦ φ|ℓ,K ≤ C|φ|ℓ,K
|ψ − ψ′|ℓ,φ(K). Then for

φ ∈ Dℓ
0(R

d), ψ ∈ Dℓ
0(R

d) 7→ ψ · (φ · o) is continuous and therefore φ · o is of compact
support.

Let a and b be two geometrical descriptors of compact support, we prove here the
existence of minimizers of the energy defined in Definition 21 (if Ωa,b is non-empty), and
therefore of trajectories reaching sub-Riemannian distance D.

Theorem 5. We recall that the deformation module M satisfies UEC. If Ωa,b is non-
empty, the energy E reaches its minimum on Ωa,b.

Proof. Let (on, hn) be a minimizing sequence of E in Ωa,b and let, for each n, ϕn

be the flow associated to (on, hn) as defined in Proposition 20: ϕn = ϕvn with
vn = ζon(hn). Since

∫ 1
0 |vn

t |2V dt ≤ CE(on, hn) (from UEC), the sequence (vn)n is bounded
in L2([0, 1],Rd) so up to the extraction of a subsequence we can assume that vn con-
verges weakly to v∞ ∈ L2([0, 1],Rd). Let us define ϕ∞ the flow of v∞. As a is of compact
support, there exists K compact of Rd such that for all φ ∈ Dℓ

0(R
d), φ·a only depends on

φ|K . Moreover, as K is compact, [Gla05] shows that sup(t,x)∈[0,1]×K |ϕn
t (x)−ϕ∞

t (x)| −→ 0
so that, as φ ∈ Dℓ

K 7→ φ · a is continuous, on
· = φn

· · a converges to o∞
· = φ∞

· · a uniformly
on [0, 1]. Therefore there exists a compact set L of O such that for all t, o∞

t ∈ L and
for all n, on

t ∈ L. Then supo∈L ||c−1
o || (see proof of Proposition 20) is finite and for

each n:
∫ 1

0 |hn(t)|2Hdt ≤ supo∈L ||c−1
o ||E(on, hn). Therefore hn is bounded in L2([0, 1], H)

so up to the extraction of a subsequence we can assume that hn converges weakly to
h∞ ∈ L2([0, 1], H). Let us show that (o∞, h∞) ∈ Ωa,b. Let w ∈ L2([0, 1], V ), we have

| ∫ 1
0 〈v∞

t − ζo∞

t
(h∞

t ), wt〉V dt| ≤ | ∫0〈v∞
t − ζon

t
(hn

t ), wt〉V dt|
+| ∫ 1

0 〈ζon
t
(hn

t ) − ζo∞

t
(hn

t ), wt〉V dt|
+| ∫ 1

0 〈ζo∞

t
(hn

t ) − ζo∞

t
(h∞

t ), wt〉V dt.

As ζon(hn) converges weakly to v∞ the first term tends to 0. In the same way,
h ∈ L2([0, 1], H) 7→ ∫ 1

0 〈ζo∞

t
(ht), wt〉V dt is continuous since, as ζ is of class at least C1

with respect to o, o ∈ O 7→ ζo ∈ L(H, V ) is bounded on L (which contains o∞
t for all t).

Then as hn weakly converges to h∞,
∫ 1

0 〈ζo∞

t
(hn

t )−ζo∞

t
(h∞

t ), wt〉V dt tends to 0. Therefore

| ∫ 1
0 〈v∞

t − ζo∞

t
(h∞

t ), wt〉V dt| ≤ lim sup | ∫ 1
0 〈(ζon

t
− ζo∞

t
)(hn

t ), wt〉dt|
≤ lim sup(

∫

0 |wt|2V dt
∫ 1

0 ||ζon
t

− ζo∞

t
||2|hn

t |2Hdt)1/2

= 0
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since hn is bounded in L2([0, 1], H) and, as on uniformly converges to o∞, ||ζon
t

−
ζo∞

t
|| −→ 0. Since w is arbitrary, v∞ = ζo∞(h∞) and ȯ∞

t = ξo∞

t
(v∞

t ) so that (o∞, h∞) ∈
Ωa,b. We now need to show that E(o∞, h∞) = limE(on, hn). Since h 7→ ∫ 1

0 co∞

t
(h)dt

is continuous and convex
∫ 1

0 co∞

t
(h∞

t )dt ≤ lim inf
∫ 1

0 co∞

t
(hn

t )dt. Moreover since c is a
continuous metric, there exists C : o 7→ Co continuous such that co(h) = (Coh|h)H⋆ , so
that | ∫ 1

0 (co∞

t
(hn

t ) − con
t
(hn

t ))dt| ≤ (supt ||Co∞

t
− Con

t
||) ∫ 1

0 |hn
t |2Hdt −→ 0. Then we obtain

∫ 1
0 co∞

t
(h∞

t )dt ≤ lim inf
∫ 1

0 con
t
(hn

t )dt and E(o∞, h∞) ≤ lim inf E(on, hn) = limE(on, hn).
We conclude that E(o∞, h∞) = limE(on, hn) since (o∞, h∞) belongs to Ωa,b.

5.2 Modular comparison of shapes

In this section we study the computation of optimal trajectories in practice, by studying
the inexact matching problem between two shapes of a common shape space. In the
first section we will present the case where these two shapes are in the shape space of
geometrical descriptors of a deformation module. In the general case (which will be
studied in Section 5.2.2), M is a compound module built from a silent module induced
by the shape space of input shape data and user-defined deformation modules.

5.2.1 A first matching problem

We set a deformation module M = (O, H, ζ, ξ, c) satisfying UEC and we will now explain
how optimal trajectories can be computed. Let a and b be two shapes of O of compact
support. We consider the practical case where the target shape b does not derive from
the source shape a by the action of a modular diffeomorphism. We propose to find the
“optimal” shape b̂ in the orbit of a, i.e. such that b̂ = φ.a, so that the deformed shape
b̂ = φ.a falls as close as possible to b in the sense of a measure µ which is supposed
given with O (it is typically the Euclidean distance when O is formed of landmarks or
can be more sophisticated in case of currents or varifolds). Simultaneously we derive the
differential equations to compute the optimal trajectory between a and b̂.

This construction may be seen from a statistical point of view using the following
generative model: we suppose that the probability density function (with respect to a
given reference measure) of the transformation b̂ of a through a modular large defor-
mation is proportional to exp(−D(a, b̂)2/σ2

0) where D is the sub-Riemannian distance
built on O (see Section 5.1). We also suppose that, the density of the conditionnal
distribution of b given b̂ is proportional to exp −(µ(b̂, b)/σ2

1). Eventually, we want to
estimate the most probable b̂, given a and b: the likelihood of b̂ knowing a and b is
proportional to exp(−D(a, b̂)2/σ2

0) × exp(−µ(b̂, b)/σ2
1) and its maximisation amounts to

the minimisation of:

µ(b̂, b)/σ2
1 +D(a, b̂)2/σ2

0 (5.1)

As shown in Theorem 5, for each b̂ such that D(a, b̂) is finite, there exists a trajectory
h⋆ of controls such thatD(a, b̂) =

∫

√

co(h⋆), with o satisfying ot=0 = a and ȯ = ξo◦ζo(h⋆).
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Then minimizing (5.1) with respect to b̂ amounts to minimizing the following quantity
with respect to h

1
σ2

1

µ(ot=1, b) +
1
σ2

0

( ∫

√

cot
(ht)dt

)2

(5.2)

where ot=0 = a and ȯ = ξo ◦ ζo(h).
Besides, thanks to Proposition 23, we know that along minimizing trajectories one

gets
(

∫

√

cot
(ht)dt

)2

=
∫

cot
(ht)dt. Then maximizing (5.2) amounts to minimizing the

following quantity with respect to h

Ja,b(h) =
1
σ2
µ(ot=1, b) +

∫

cot
(ht)dt (5.3)

with σ = σ1

σ0
, ot=0 = a and ȯ = ξo ◦ ζo(h). The first term of this sum will be referred to

as the Data term while the second one will be called the Regularity term.
A trajectory o of O starting at a such that there exists h ∈ L2([0, 1], H) so that (o, h)

is a horizontal system (see Definition 23) and h minimizes Ja,b, will be called an optimal
trajectory starting at a, or a geodesic. These trajectories can be well characterized
thanks to the next result, which we prove following the idea of the proof of [Arg14].

Theorem 6. We recall that M = (O, H, ζ, ξ, c) is a Ck-deformation module of order Cℓ

satisfying UEC. We suppose k, l ≥ 2 and that µ is C1. If h ∈ L2([0, 1], H) minimizes
functional Ja,b then, with o : [0, 1] −→ O starting at a and satisfying ȯ = ξo ◦ ζo(h), there
exists a path η : t ∈ [0, 1] −→ ηt ∈ T ∗

ot
O such that with

H : (o, η, h) ∈ T ∗O ×H 7→
(

η|ξo(ζo(h))
)

− 1
2
co(h)

the Hamiltonian of the system, ηt=1 = −∂1µ(ot=1, b) and (in a local chart)











do
dt

= ξo ◦ ζo(h)
dη
dt

= −∂H
∂o

∂H
∂h

= 0
(5.4)

Proof. In this proof we suppose that O is an open subset of RN . As previously we as-
sociate to each h ∈ L2([0, 1], H) the absolutely continuous trajectory oh of O such that
ot=0 = a and ȯh

t = ξot
◦ ζot

(ht). For each h ∈ L2([0, 1], H), oh is absolutely continuous on
[0, 1] and then belongs to H1

a([0, 1],O) (elements in H1([0, 1],O) starting at a). We define
the new functional J̃ : (o, h) ∈ H1([0, 1],O) ×L2([0, 1], H) 7→ ∫ 1

0 co(h) +µ(ot=1, b). Then
h ∈ L2([0, 1], H) minimizes J if and only if (oh, h) minimizes J̃ under the constraint
0 = Γ(o, h) .= ȯ − ξo ◦ ζo(h). Functions J̃ and Γ are of class C1 and ∂oΓ is an iso-
morphism for each (o, h) ∈ H1([0, 1],O) × L2([0, 1], H). Indeed let o ∈ H1([0, 1],O),
h ∈ L2([0, 1], H) and α ∈ L2([0, 1],RN), we can define δo ∈ H1

0 ([0, 1],RN) by
δo(t = 0) = 0 and δ̇o = ∂o(ξo ◦ ζo(h)) + α (the solution is well defined). Then
α = ∂oΓ(o, h) · δo and therefore ∂oΓ(o, h) is surjective. Moreover ∂oΓ(o, h) in injec-
tive as for δo ∈ H1

0 ([0, 1],RN), ∂oΓ(o, h)δo = 0 implies δo = 0 by Cauchy uniqueness.
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We therefore deduce (thanks to the implicit function theorem) that Γ−1({0}) is a man-
ifold.
Let (o, h) be a minimizer of J̃ over the set Γ−1({0}), from [Kur76] (Theorem 4.1)
can be shown that there exists a non trivial Lagrange multiplier η ∈ L2(0, 1,RN)∗ =
L2(0, 1,RN,∗) such that dJ̃(o,h) + (dΓ(o,h))⋆(η) = 0. It is shown in [ATTY15] that
η̇ = −∂oH and ∂hH = 0.

Remark 21. As co is positive definite, there exists an invertible symmetric operator
C : o ∈ O 7→ Co ∈ L(H,H∗) such that for all (o, h) ∈ O × H, co(h) = (Coh|h). Then
the third equality in (5.4) allows to compute h: h = C−1

o ρ∗
oη with ρo = ξo ◦ ζo and ρ∗

o

such that (η|ρo(h))T ∗

o O = (ρ∗
oη|h)H .

We define the reduced Hamiltonian

Hr(o, η) .= H(o, η, C−1
o ρ∗

o(η)) =
1
2

(ρ∗
o(η)|C−1

o ρ∗
o(η)) =

1
2
co(C−1

o ρ∗
o(η)) (5.5)

and as ∇hH = 0, the system of equations (5.4) can be written:
{

do
dt

= ∂Hr

∂η
= ρo(C−1

o ρ∗
o(η))

dη
dt

= −∂Hr

∂o

(5.6)

Proposition 24. If the module M is Cj of order ℓ with j, ℓ ≥ 2 then solutions of
Equation (5.6) exist for any (ot=0, ηt=0) and are totally defined by these initial values.

Proof. In this case (o, η) 7→ Hr(o, η) is of class at least C2 so (o, η) 7→ (∂Hr

∂η
,−∂Hr

∂o
) is at

least C1.

Then by choosing an initial momentum η ∈ T ∗
o O one can generate an optimal trajec-

tory starting at a. Optimal trajectories are parametrized by initial values of geometrical
descriptor and momentum, so in dimension 2 × dim(O).

Remark 22. From Equation (5.4) we re-deduce that cost co(h) is constant along min-
imizing trajectories. Indeed let (o, h) be such an optimal trajectory and let η be the
trajectory of momenta, such that (o, η, h) satisfies Equation (5.4). Then, as ρo(h) = ξo ◦
ζo(h) = ∇ηH, one gets: dH

dt
= ∂oHdo

dt
+∂ηHdη

dt
+∂hHdh

dt
= (∇oH,∇ηH)− (∇ηH,∇oH) =

0. So the Hamiltonian is constant along optimal trajectories and as it is equal to half of
the cost,

∫ 1
0 co(h) = cot=0(ht=0) along minimizing trajectories.

Remark 23. Let (o, η) ∈ T ∗O. If (hk)k is an orthonormal basis of H for go, then let
(αk)k be the coefficients of C−1

o ρ∗
o(η) in this basis: C−1

o ρ∗
o(η) .=

∑

k αkhk. Then for each
k:

αk = go(C−1
o ρ∗

o(η), hk)
= (ρ∗

o(η)|hk)H∗

= (η|ρo(hk))T ∗

o O.

Then we see that the k−th coefficient αk of C−1
o ρ∗

o(η) is equal to the application of η to
the speed of o generated thanks to k−th element of the orthonormal basis.
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5.2.2 The matching problem in practice

We will now consider the practical case when one wants to study the differences between
two shapes f 1 and f 2 belonging to a common shape space F , thanks to a deformation
module M1 = (O1, H1, ζ1, ξ1, c1) independent from the shape space F (and satisfying
UEC). We first build the silent deformation module M2 = (F , H2, ζ2, ξ2, c2) induced
by shape space F (see Section 4.2.8) and its combination M = (O, H, ζ, ξ, c) with
M1 (see Section 4.1.1.4). Then M is a deformation module satisfying UEC and for
a = (o, f) ∈ O = O1 ×F , h = (h1, 0) ∈ H = H1 ×{0}, the application to a of the vector
field generated by a and the control h is

ξo ◦ ζo(h) = ξo ◦ ζ1
o1(h1) = (ξ1

o1 ◦ ζo1(h1), ξ2
f ◦ ζo1(h1)).

The sub-Riemannian distance is now defined for the augmented data set containing the
input data and the geometrical descriptors of the user-defined modules. In this case,
this distance cannot be used to compare directly the input shape with another input
shape data, since first, one may not assume that the second shape derives from the
input shape by a modular deformation, and second, one does not know what would be
the corresponding component in O1 of the geometrical descriptor for the second shape.
The strategy will then be to determine optimal trajectories for a given value of initial
geometrical descriptor, and then to estimate the component in O1 for this geometrical
descriptor which is most appropriate (the component in F being the fixed source shape).

Similarly to the previous section the inexact matching problem between two shapes
a, b of O = O1 × F amounts to minimizing

Ja,b(h) =
1
σ2
µ(ot=1, b) +

∫

cot
(ht)dt (5.7)

with ot=0 = a and ȯ = ξo ◦ ζo(h). Besides as in practice we only have information about
the second component of geometrical descriptors (belonging to F), the attachment term
function µ will only depend on this second component so that Ja,b does not depend on
the first component of b and will be written:

Jo1
0,f1,f2(h) =

1
σ2
µ(ft=1, f

2) +
∫

c1
o1(h1)

with o = (o1, f) starting at ot=0 = (o1
0, f

1), h = (h1, 0) and ȯ = (ȯ1, ḟ) =
(

ξ1
o1◦ζ1

o1(h1), ξ2
f ◦

ζ1
o1(h1)

)

.

As previously we define the Hamiltonian H : (o, η, h) ∈ TO × H 7→ (η|ξo ◦ ζo(h)) −
1
2
co(h) and we can show that optimal trajectories (o, h) are such that there exists a path
η : t ∈ [0, 1] 7→ ηt ∈ T ∗

ot
O so that











do
dt

= ξo ◦ ζo(h)
dη
dt

= −∂H
∂o

∂H
∂h

= 0
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Remark 24. It is important to note that even though h = (h1, 0), ρ∗
o(η) 6= ρ1,∗

o1 (η1) (with
η = (η1, η

2) ∈ T ∗
o1O1 × T ∗

f F and ρ1
o1 = ξ1

o1 ◦ ζ1
o1). Then, even though the component

of geometrical descriptor belonging to F generates only a null vector field, its initial
momentum has an influence on the trajectory.

Optimal trajectories are parametrized by initial values of geometrical descriptor and
momentum, so now in dimension 2 × (dim(O1) + dim(F)). In order to solve the inexact
matching problem, the strategy is to minimizing Jo1

0,f1,f2 by searching only amongst
minimizing trajectories. Therefore we define

J(o1
t=0, ηt=0, f

1, f2) =
1
σ2
µ(ft=1, f

2) +
∫

c1
o1(h1) (5.8)

where o = (o1
t=0, f) starts at (o1

t=0, f
1), h = (h1, 0) satisfies h = C−1

o ρ∗
o(η) (with Co

defined in Remark 21) and (o, η) satisfies the following differential equation
{

do
dt

= ∂Hr

∂η
= ρo(C−1

o ρ∗
o(η))

dη
dt

= −∂Hr

∂o

As the cost co(h) is constant along optimal trajectories, it amounts to minimizing

J(o1
t=0, ηt=0, f

1, f2) =
1
σ2
µ(ft=1, f

2) + c1
o1(h1) (5.9)

The study of an optimal large deformation generated by deformation module M1

in order to match f 1 onto f 2 is now reduced to the estimation of best initial variable
o1

t=0 ∈ O1 and η ∈ T ∗
o1

t=0
O1 × T ∗

f1F . In practice this estimation is performed thanks to a
gradient descent process.

5.2.3 Interpretation of the initial momentum ?

In the previous section we saw that geodesic trajectories are parametrized by an initial
value of geometrical descriptor and momentum. In this section we study the link between
the momentum and the corresponding vector field.

5.2.3.1 ζo(H) is a RKHS

We consider here a deformation module M = (O, H, ζ, ξ, c) satisfying the Uniform Em-
bedding Condition. Let V a Hilbert space continuously embedded in Cℓ+k

0 (Rd) and C > 0
so that for all (o, h) ∈ O × H, ζo(h) ∈ V and |v|2V ≤ Cco(h). For each o ∈ O, ζo(H)
is of finite dimension (since H is of finite dimension) then it is a RKHS. We suppose
now that V is a RKHS with K : V ∗ 7→ V its kernel, let us express the kernel of ζo(H)
in function of K. Let us set o ∈ O and study ζo(H) equipped with the inner product
〈v, v′〉ζo(H)

.= go(h, h) with h, h′ ∈ (ker ζo)⊥ such that ζo(h) = v, ζo(h′) = v′ (see Section
5.1.1). We define πo : V −→ ζo(H) the orthogonal projection on ζo(H) in V , and its dual
π∗

o : ζo(H)∗ 7→ V ∗ such that for γ ∈ ζo(H)∗ and v ∈ V , (γ|πo(v))ζo(H)∗ = (π∗
o(γ)|v)V ∗ .

Then if γ is in ζo(H)∗, π∗
oγ is in V ∗ and we can show that Kπ∗

oγ is in ζo(H): let v be
in the orthogonal of ζo(H) in V , then 〈Kπ∗

oγ, v〉V = (π∗
oγ|v)V ∗ = (γ|πo(v))ζo(H)∗ = 0
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because πo(v) = 0. We deduce that Kπ∗
oγ is in ζo(H).

We now define Λ : ζo(H) −→ ζo(H) such that for v and v′ in ζo(H), 〈Λ(v), v′〉o = 〈v, v′〉V :
let (wi)i be an orthonormal basis of ζo(H) for 〈·, ·〉V and let (w′

i)i be an orthonormal
basis of ζo(H) for 〈·, ·〉ζo(H). For v =

∑

i αiwi we define Λ(v) =
∑

i〈v, w′
i〉Vw

′
i. Then let

v′ =
∑

i βiw
′
i ∈ ζo(H) and let v =

∑

i αiwi, one gets

〈Λ(v), v′〉o = 〈∑i〈v, w′
i〉Vw

′
i,
∑

k βkw
′
k〉o

= 〈∑i〈v, w′
i〉Vw

′
i,
∑

k βkw
′
k〉o

=
∑

i〈v, w′
i〉V βi

We conclude
〈Λ(v), v′〉o = 〈v, v′〉V .

Then for γ ∈ ζo(H)∗ and v ∈ ζo(H), ΛKπ∗
o(γ) is in ζo(H) and

〈ΛKπ∗
o(γ), v〉o = 〈Kπ∗

o(γ), v〉V

= (π∗
o(γ)|v)V ∗

= (γ|πo(v))ζo(H)∗

= (γ|v)ζo(H)∗

This shows that the kernel of ζo(H), equipped with 〈·, ·〉ζo(H), is ΛKπ∗
o . This expres-

sion links the kernel of ζo(H) with the kernel of V . However this dependence in V is
artificial since one could choose another space of vector fields V allowing M to satisfy
UEC. This is why we will now use a more constructive approach in order to give a new
expression of this kernel.
Let (ei)i be an orthonormal basis of ker(ζo(H))⊥ ⊂ H (for the metric go given by
the cost c). For each i we set fi = ζo(ei) ∈ ζo(H). Then (fi) is an orthonor-
mal basis of ζo(H) for 〈·, ·〉o. We can associate to this basis of ζo(H) the dual ba-
sis (f ∗

i )i of ζo(H)∗ defined by: for i, j, (f ∗
i |fj)ζo(H)∗ = δi,j. We can now define

Ko :
∑

i αif
∗
i ∈ ζo(H)∗ 7→ ∑

i αifi ∈ ζo(H), let us show that it is the kernel of ζo(H). Let
γ =

∑

i αif
∗
i in ζo(H)∗ and v =

∑

i βifi ∈ ζo(H), then

〈Koγ, v〉ζo(H) = 〈∑i αiKof
∗
i ,
∑

j βjfj〉ζo(H)

= 〈∑i αifi,
∑

j βjfj〉ζo(H)

=
∑

i αiβi

= (
∑

i αif
∗
i |∑j βjfj)ζo(H)∗

= (γ|v)ζo(H)∗

Remark 25. Thanks to this expression of the kernel Ko, we can easily recover the
expression we had given in Chapter 2, Section 2.3.2 for the particular case of the defor-
mation module generating a multi-scale sum of translations. Indeed, let σ1, · · · , σN be
N elements of R∗

+ and for each i let Di ∈ N
∗. We set for each i, M i = (Oi, H i, ζ i, ξi, ci)

the deformation module generating a sum of Di translations at scale σi in dimension
d, and then we define M = (O, H, ζ, ξ, c) the combination of deformation modules M i.
In particular, for each i, Oi = R

dDi and H i = R
dDi. Let us set o = (zi

j)1≤i≤N ,1≤j≤Di

in O =
∏

i Oi. For each i we define the matrix Ki(zi) of size Di × Di such that is
entry (j, j′) equals Kσi

(zi
j, z

i
j′), and Ci

.= Ki(zi)−1/2 (Ki(zi) is a positive definite ma-
trix). If we follow the same reasoning as previously, the orthonormal basis of ζo(H)
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which we obtain is (
∑

k Kσi
(zi

k, ·)Ci(k, j)αu)1≤i≤N ,1≤j≤Di ,1≤u≤d where (αu)u is the canon-
ical basis of Rd. Let us denote (γi,j,u)1≤i≤N ,1≤j≤Di ,1≤u≤d the dual basis of ζo(H)∗. Then
let x ∈ R

d and β ∈ R, we set δβ
x : v ∈ ζo(H) 7→ 〈v(x), β〉Rd. It is easy to see that

δβ
x =

∑

i,j,u

∑

l Kσi
(zi

l , x)Ci(l, j)β(u)γi,j,u. Then, by definition,

Koδ
β
x =

∑

i,j,u

∑

l Kσi
(zi

l , x)Ci(l, j)β(u)
∑

k Kσi
(zi

k, ·)Ci(k, j)αu

=
∑

i,k Kσi
(zi

k, ·)
∑

l Kσi
(zi

l , x)
∑

j Ci(l, j)Ci(j, k)β
=

∑

i,k Kσi
(zi

k, ·)
∑

l Kσi
(zi

l , x)(C2
i )l,kβ

because Ci is symmetric by construction. Then, as C2
i = Kσi

(zi)−1, we obtain

Koδ
β
x =

∑

i,k

Kσi
(zi

k, ·)(Kσi
(zi

l , x)Kσi
(zi)−1)kβ

with Kσi
(x, zi) = (Kσi

(x, zi
1), · · · , Kσi

(x, zi
Di

)). We recognize here the expression
given Section 2.3.2.

5.2.3.2 Link between initial vector field and initial momentum

In this section we also consider a deformation module M = (O, H, ζ, ξ, c) satisfying
the Uniform Embedding Condition and we define V the Hilbert space continuously
embedded in Cℓ+k

0 (Rd) and C > 0 so that for all (o, h) ∈ O × H, ζo(h) ∈ V and
|v|2V ≤ co(h).

We set now (o, η) ∈ T ∗O, the corresponding geodesic control is h .= C−1
o (ξo ◦ ζo)∗(η)

and the generated vector field is vo,η .= ζo(C−1
o (ξo ◦ ζo)∗(η)). We define ξ∗

o ∈ V ∗ so
that for all δo ∈ ToO, for all v ∈ V , (η|ξo(v))T ∗

o O = (ξ∗
o(η)|v)V ∗ . We also set F the

orthogonal of ζo(H) in V and, as previously, we consider πo : V 7→ ζo(H) the orthogonal
projection on ζo(H). Then we can decompose V ∗ in V ∗ = π∗

o(ζo(H)∗) + (Id− πo)∗(F ∗).
Note that for γ ∈ V ∗, there exists a unique γ1 ∈ ζo(H)∗ and a unique γ2 ∈ F ∗ such
that γ = π∗

o(γ1) + (Id − πo)∗(γ2). We denote Po : γ ∈ V ∗ 7→ Po(γ) ∈ π∗
o(ζo(H)∗) the

projection on π∗
o(ζo(H)∗).

Proposition 25. If we set ξ∗
o(η) = π∗

o(γ1) + (Id − πo)∗(γ2) with γ1 ∈ ζo(H)∗, γ2 ∈ F ∗

then
ζo(C−1

o (ξo ◦ ζo)∗(η)) = Koγ1.

This property can be represented by the following commutative diagram (we recall that
Ko = ΛKπ∗

o):

ξ∗
o(η) ∈ V ∗ Po

//

ζ∗

o

��

π∗
o(γ1) ∈ V ∗ K

// Kπ∗
o(γ1) ∈ ζo(H) ⊂ V

Λ

��

(ξo ◦ ζo)∗(η) ∈ H∗

C−1
o

��

C−1
o (ξo ◦ ζo)∗(η) ∈ H

ζo
// ζo(C−1

o (ξo ◦ ζo)∗(η)) ΛKπ∗
o(γ1) ∈ ζo(H) ⊂ V
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Proof. Let v ∈ ζo(H) and let h1 ∈ ker(ζo)⊥ so that ζo(h1) = v (with Ker(ζo)⊥ = {h̃ ∈
H | ∀h̄ ∈ ker(ζo), go(h̄, h̃) = 0}). Then, as C−1

o (ξo ◦ ζo)∗(η) belongs to Ker(ζo)⊥,

〈ζo(C−1
o (ξo ◦ ζo)∗(η)), v〉ζo(H) = go(C−1

o (ξo ◦ ζo)∗(η), h1)
= ((ξo ◦ ζo)∗(η)|h1)H∗

= (ξ∗
o(η)|ζo(h1))V ∗

= (ξ∗
o(η)|v)V ∗

= (γ1|v)ζo(H)∗

= 〈Koγ1, v〉ζo(H)

This proposition shows that the vector field generated by (o, η) ∈ T ∗
o O is obtained

through a projection on ζo(H)∗ of the dual vector field ξ∗
o(η) which encodes η as a

function on speeds of o.
The following proposition gives another intuition of the link between η and the speeds

it confers on o.

Proposition 26. For all o, η ∈ T ∗
o O, we have

η ⊥ {δo ∈ ξo ◦ ζo(H) | gO
o (δo, ξo(vo,η)) = 0}.

Proof. Let δo ∈ ξo ◦ ζo(H) such that gO
o (δo, ξo(vo,η) = 0. Then h = C−1

o (ξo ◦ ζo)∗(η)
belongs to ker(ξo ◦ ζo)⊥. Indeed, let h̃ ∈ ker(ξo ◦ ζo), then

go(h, h̃) = go(C−1
o (ξo ◦ ζo)∗(η), h̃) = ((ξo ◦ ζo)∗(η)|h̃)H∗ = (η|ξo ◦ ζo(h̃))T ∗

o O = 0.

We can write δo = ξo ◦ ζo(h1) with h1 ∈ ker(ξo ◦ ζo)⊥. Then :

0 = gO
o (δo, ξo(vo,η)) = go(h1, C

−1
o (ξo ◦ ζo)∗(η)) = (η|ξo ◦ ζo(h1))T ∗

o O.

This proposition shows that η is orthogonal (for the co-metric) to all horizontal
speeds (i.e. in ξo ◦ ζo(H)) which are orthogonal (for the sub-Riemannian metric) to the
geodesic speed generated by η.

5.2.3.3 Changing the metric

We briefly study here the influence of the choice of the cost on geodesic controls. Let us
consider a deformation module M = (O, H, ζ, ξ, c) obtained thanks to the combination of
N deformation modules M i = (Oi, H i, ζ i, ξi, ci) satisfying UEC. Let us consider another
deformation module M̃ = (O, H, ζ, ξ, c̃), similar to M except in the definition of the
cost, and let us study how different are geodesic controls for M and M̃ .
As explained in Remark 21, we can define operators C : O ×H 7→ H∗ and C̃ : O ×H 7→
H∗ such that for (o, h) ∈ O × H, (Co(h)|h)H∗ = co(h) and (C̃o(h)|h)H∗ = c̃o(h). The
difference between costs c and c̃ leads to a difference between C and C̃. Then for a given
(o, η) in T ∗O, the corresponding geodesic control for M is C−1

o (ξo ◦ ζo)∗(η) while for M̃
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it is C̃−1
o (ξo ◦ ζo)∗(η). We see that a same element of H∗ is associated to (o, η) with M

and M̃ but that Co and C̃o do not associate the same control to this element of H∗.
Let us consider the particular case where c̃ is defined by, for o = (oi)i ∈ O =

∏Oi and
h = (hi)i ∈ H =

∏

H i, c̃o(h) = α1c
1
o1(h1)+

∑

i≥2 c
i
oi(hi) with α1 > 0 fixed. We recall that

by definition, for o = (oi)i ∈ O =
∏Oi and h = (hi)i ∈ H =

∏

H i, co(h) =
∑

i c
i
oi(hi).

Let us set o = (oi)i ∈ O, we denote go and g̃o the metrics on H which come respectively
from co and c̃o. We will also denote gi

oi the metric on H i which comes from ci
oi for each

i ∈ [|1, N |]. Let h1 = (hi
1)i be in H and let γ ∈ H∗, we denote h2 = (hi

2)i
.= C−1

o γ
and h̃2 = (h̃i

2)i
.= C̃−1

o γ. Then (γ|h1)H∗ = go(C−1
o γ, h1) = go(h2, h1) =

∑

i g
i
oi(hi

2, h
i
1).

Similarly one gets (γ|h1)H∗ = g̃o(C̃−1
o γ, h1) = g̃o(h̃2, h1) = α1g

1
o1(h̃1

2, h
1
1)+

∑

i≥2 g
i
oi(h̃i

2, h
i
1).

Then
∑

i

gi
oi(hi

2, h
i
1) = α1g

1
o1(h̃1

2, h
1
1) +

∑

i≥2

gi
oi(h̃i

2, h
i
1) .

This equality is true for all controls h1, so we deduce that h1
2 = α1h̃

1
2 and for all i ≥ 2,

hi
2 = h̃i

2. As a consequence, the geodesic controls h = (hi)i and h̃ = (h̃i)i associated to
a value (o, η) in T ∗O with respectively M and M̃ , will have all their components equal
except for the one of H1 which will satisfy

h̃1 =
1
α1

h1 .

This suggests that one can favour the use of the deformations generated by M1 in its
combination with deformation modules M i by using a weighted sum where the weight
of cost c1 is smaller than one and all other weights are equal to one. This will be studied
in Sections 7.2.5 and 7.3.5.

5.3 Modular analysis of shape variability

5.3.1 Principle

In the previous section we have shown how modular large deformations can enable to
study differences between two shapes. We will now study how this geometrical frame-
work may be used to infer statistical properties from a series of P shapes data fk

target

belonging to a common shape space F . We compute an atlas of these shapes which
means that we build one shape, corresponding to a mean shape, and P deformations,
each one transporting the template as close as possible to one shape. In our framework
we set a deformation module M̃ = (Õ, H̃, ζ̃, ξ̃, c̃) and we want the deformations to be
modular large deformations. Then computing an atlas will correspond to computing one
mean shape, one initial value of the geometrical descriptor, and modular large deforma-
tions generated by it transporting the mean shape as close as possible to target shapes.
Following the idea presented in Section 5.2.2, we will build a deformation module M
by combining M̃ and the silent deformation module induced by F . Then computing an
atlas of the data set will correspond to computing one initial value of the (compound)
geometrical descriptor, and modular large deformations generated by it, bringing its
silent component as close as possible to target shapes. Geometrical descriptors of the
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silent deformation module play the role of an “average” of the data set. The active de-
formation module is a dictionary, in which the shape variations seen in the data may be
decomposed. The choice of the types of modules is left to the user, whereas parameters
such as the initial position of their geometrical descriptors are to be optimised for a
given training shape data set. In the spirit of [DPC+14], the user provides an exam-
ple of template shape with the desired topology (i.e. number of points, edges between
points, number of connected components, etc..), and the atlas construction method will
optimize its shape (i.e. the position of the points or vertices) to be at the “center” of
the training samples. The method needs to optimize at the same time the other geo-
metrical descriptors and find the P modular large deformations φk, so that each warped
template resembles as much as possible to one of the target shapes fk

target. Given the
initial position of geometrical descriptors, modular large deformations that need to be
estimated are parametrized by initial momenta. So finally the method will estimate
one initial position of geometrical descriptors and P initial momenta. These momenta
may be used subsequently for other statistical tasks, such as clustering, classification or
regression with covariates. We will now detail this construction.

5.3.2 Building an atlas of shapes

5.3.2.1 Framework

Let F be a shape space of order ℓ ≥ 2, let fk
target be a series of P different shapes of

F , and let M̃ = (Õ, H̃, ζ̃, ξ̃, c̃) be the deformation module thanks to which we want to
study this series of shapes. Similarly to Section 5.2.2, we build M = (O, H, ζ, ξ, c) the
compound module of M̃ and the silent deformation module induced from F . We suppose
that M̃ (and then M) is Cj of order ℓ and satisfies UEC. The estimation of the atlas
may be done in a coherent Bayesian framework. However, the derivation of a Bayesian
approach as in [AAT07, AKT+10] is out of the scope of this thesis, and we propose here
a more straightforward extension of the geometrical construction of Section 5.2.1. It is
the analogue of the concept of Fréchet mean, which has been used intensively in the
field of Computational Anatomy [LDJ05, JDJG04, DPC+14]. This approach amounts
here to minimising the following quantity with respect to the geometrical descriptors
otemp ∈ O = Õ × F and P trajectories hk ∈ L2([0, 1], H):

1
σ2

∑

k

µ(fk
t=1, f

k
target) +

∫ 1

0
cok(hk) (5.10)

with for each k, ok
t=0 = otemp and ȯk = ξok ◦ ζok(hk).

Like in Section 5.2.1, can be shown that for a fixed value of otemp, the minimizer
(hk)k of (5.10) is such that there exist P trajectories ηk : t ∈ [0, 1] 7→ ηk

t ∈ T ∗
ok

t
O so that,

with H : (o, η, h) ∈ T ∗O ×H 7→ (η|ξo(ζo(h))) − 1
2
co(h),















hk = hok,ηk .= C−1
ok ρ∗

okηk

dok

dt
= ξok ◦ ζok(hk)

dηk

dt
= −∂H

∂o
(ok, ηk, hk)

(5.11)



CHAPTER 5. FROM A GEOMETRICAL MODEL TO THE STUDY OF SHAPES100

where C : o ∈ O 7→ Co is smooth and satisfies for each h ∈ H, co(h) = (Coh|h)H∗ ,
and ρ∗

o is such that, for all h ∈ H, η ∈ T ∗
o O, (η|ρo(h))T ∗

o O = (ρ∗
o(η), h)H∗ . Then

whole trajectories (ok, ηk, hk) are defined by initial values of ok and ηk. Moreover,
thanks to Remark 22, the cost is constant along optimal trajectories and so for each
k: cotemp

(hotemp,ηk
0 ) =

∫ 1
0 cok(hok,ηk

). Therefore computing the atlas of shapes fk
target,

k = 1 · · ·P thanks to the deformation module M̃ amounts to minimizing:

E(otemp, (ηk
0)k) =

P
∑

k=1

cotemp
(hotemp,ηk

0 ) +
1
σ2
µ
(

φok,ηk · ftemp, f
k
target

)

(5.12)

where for each k, (ok, ηk) starts at (otemp, η
k
0) and satisfies Equation (5.11), and

φok,hk

= ϕvk

t=1 with vk = ζok(hk). As previously, the first term of this sum will be referred
to as the Regularity term while the second one will be called the Data term.

Note that the initial value of geometrical descriptor otemp is common to all subjects
but that the trajectory ok (starting at otemp) obtained by integrating Equation (5.11) is
specific to each subject as it depends on the initial momentum ηk

0 , which is specific to
each subject.

Remark 26. A matching problem corresponds to an atlas problem where the template
shape is fixed (equal to the source shape) and the series of data shape only has one
element (equal to the target shape).

We emphasize here that the estimated otemp = (õtemp, ftemp) has two components.
The second one ftemp is the template and corresponds to an average of the data set,
while the first one õtemp is a common geometric characterization of the variability among
the population of shapes.

5.3.2.2 Parameters

The computation of an atlas depends on several parameters. In this thesis we suppose
that they are known but we give here some ideas to estimate them in future works.

In practice the deformation module that is used is obtained through combination of
base-deformation modules Mi = (Oi, H i, ζ i, ξi, ci). The compound cost is defined as the
sum of costs ci but in a more general setting one we could consider the compound cost as-
sociated to o = (oi) ∈ ∏

i Oi and h = (hi)i ∈ ∏

i H
i defined as co(h) =

∑

i αic
i
oi(hi) where,

for each i, αi > 0. By choosing different values for coefficients αi, one can favour certain
deformations over others, and especially the way these deformations are generated by
our deformation modules. These coefficients could then be learnt from a population by
developing a Bayesian-framework along the lines of [AAT07, GCW+13]. Similarly, initial
momenta could be considered as following a centred gaussian distribution of covariance
matrix Σ so that ηT Ση = co(ho,η) where ho,η = C−1

o ρ∗
o(η). The matrix Σ depends on

the geometrical descriptor o and on the coefficients αi which may therefore be estimated
through an E-M algorithm.

A Bayesian framework could also be developed in order to optimize the balance
coefficient 1/σ2 between data and regularity terms.
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5.4 Discussion about the model

In the framework presented in Sections 5.2 and 5.3, the dimension of geodesics is at least
equal to the dimension of the shape which is transported. As this dimension is very high
in practice, one may want to develop a smaller-dimension framework. We will introduce
such a possible framework. Let us set a deformation module M1 = (O1, H1, ζ1, ξ1, c1)
and a data shape space F .

5.4.1 A smaller-dimension framework

5.4.1.1 Presentation of the SIGS framework

We explore here a smaller-dimension version of our framework based on the idea de-
veloped in [DPC+14]. The idea is to consider, amongst large deformations that can be
generated by deformation module M1 = (O1, H1, ζ1, ξ1, c1), those that are a geodesic
for this deformation module (and not for the combination of M1 and the silent mod-
ule induced by F). We know that these geodesics are parametrized by initial variables
(o1

0, η
1
0) ∈ TO1 then in dimension 2 × dim(O1): to each initial value (o1

0, η
1
0) ∈ T ∗O1 we

associate an optimal trajectory (o1, h1) following the approach presented in 5.2.1. This
trajectory then enables to build a trajectory of vector fields v which gives a trajectory of
diffeomorphisms ϕv thanks to which we can transport shapes of F . Therefore in order
to study the matching of two shapes f 1 and f 2 thanks to M1, in this framework we will
minimize the following functional with respect to (o1

0, η
1
0) ∈ T ∗O1:

J̃(o1
0, η

1
0, f

1, f2) =
1
σ2
µ
(

ϕ
ζ1

o1 (h1)

t=1 · f 1, f2
)

+ c1
o1(h1) (5.13)

where (o1, η1) starts at (o1
0, η

1
0) , and satisfies ,with ρ = ξ ◦ ζ, H1

r : (o1, η1) ∈ TO1 7→
1
2
co1(C−1

o1 ρ
1,∗
o1 (η1)) the reduced Hamiltonian,







do1

dt
= ∂H1

r

∂η1 = ρo1(C−1
o1 ρ

1,∗
o1 (η1))

dη1

dt
= −∂H1

r

∂o1

and ϕζ1
o1 (h1) is the flow of the trajectory of vector fields ζ1

o1(h1).
In this framework we restrict ourselves to a set of geodesics which is independent from

the data shapes, therefore we will call it the shape-independent geodesic set (SIGS)
framework. On the contrary, the framework which we have developed in Sections 5.2
and 5.3 will be denoted the shape-dependent geodesic set (SDGS) framework.

Remark 27. In the case where we take for M1 a deformation modules generating sums
of local translations at a fixed scale σ, this framework corresponds exactly to the frame-
work developed in [DPC+14].

Proposition 27. Trajectories that can be generated by the SIGS framework are exactly
trajectories of the SDGS framework parametrized by an initial momentum η = (η1, η2)
such that the second component η2 is null.
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Proof. Indeed let (o1
0, f

1) ∈ O = O1 × F , η1
0 ∈ To1

0
O1 and let us consider the trajectory

(o1, f, η1) that can be built from (o1
0, f

1, η1
0) in the SIGS framework. The trajectory

(o1, η1) starts at (o1
0, η

1
0) and satisfies, with H1

r(o1, η1) = 1
2
c1

o1(C1,−1
o1 ρ1,⋆

o1 (η1)),






do1

dt
= ∂H1

r

∂η1 = ρo1(C1,−1
o1 ρ1,⋆

o1 (η1))
dη1

dt
= −∂H1

r

∂o1

where C1,−1
o1 = (C1

o1)−1. Then the trajectory f starts at f 1 and satisfies
ḟ = ξ2

f ◦ ζ1
o1(C1,−1

o1 ρ1,∗
o1 (η1)).

We define the trajectory η2 : t 7→ 0 ∈ T ∗
ft

F . Let us now show that (o1, f1, η1, η2)
satisfies the geodesic equation for the SDGS framework. We set M2 = (F , {0}, ζ2, ξ2, c2)
the silent deformation module (see Section 4.2.8) induced by F and we build M =
(O, H, ζ, ξ, c) the combination of M1 and M2 (see Section 4.1.1.4). For o = (o1, f) ∈
O = O1 × F and h = (h1, 0) ∈ H = H1 × {0},

ρo(h) .= ξo ◦ ζo(h) = (ξ1
o1 ◦ ζ1

o1(h1), ξ2
f ◦ ζ1

o1(h1)) = (ρ1
o1(h1), ξ2

f ◦ ζ1
o1(h1)).

Then for (o, η) = (o1, f, η1, η2) ∈ T ∗
o O,

(η|ρo(h))T ∗

o O = (η1|ρ1
o1(h1))T ∗

o1 O1 + (η2|ξ2
f ◦ ζ1

o1(h1))T ∗

f
F

and we deduce:

ρ∗
o(η) =

(

ρ1,∗
o1 (η1) + (ξ2

f ◦ ζ1
o1)∗(η2), 0

)

Then C−1
o ρ∗

o(η) =
(

C1,−1ρ1,∗
o1 (η1)+C1,−1(ξ2

f ◦ζ1
o1)∗(η2), 0

)

and we deduce that the reduced

Hamiltonian can be written

Hr(o, η) =
1
2
c1

o1

(

C1,−1ρ1,∗
o1 (η1) + C1,−1(ξ2

f ◦ ζ1
o1)∗(η2)

)

.

This shows first that for the trajectory (o, η) = (o1, f1, η1, η2), as η2 = 0, geodesic
controls for the SDGS framework are the same as these for the fixed dimension. We
deduce that the geometrical descriptors follow the SDGS geodesic evolution:

ȯ = ρoC
−1
o ρ∗

o(η).

Besides, ρ∗
o(η) = (ρ1,∗

o1 (η1), 0) for each t and then, we can show that the momentum
η = (η1, η2) also follows the SDGS geodesic evolution:

−∂Hr

∂o1 (o1, f, η1, η2) = −1
2

∂c1

∂h1 (o1, C−1
o ρ∗

o(η)) · ∂C−1
o ρ∗

o(η)
∂o1 (o1, f, η1, η2)

= −1
2

∂c1

∂h1 (o1, C1,−1ρ1,∗
o1 (η1)) · ∂C1,−1ρ1,∗

o1 (η1)

∂o1 (o1, f, η1, η2)
= −∂H1

r

∂o1 (o1, η1)
= η̇1
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AB

C D

Figure 5.1: Source shape: magenta circles A and B. Target Shape: black crosses C
and D. Goal: matching A with C and B with D thanks to a local translation centred at
A.

and

−∂Hr

∂f
(o1, f, η1, η2) = −1

2
∂c1

∂h1 (o1, ρoC
−1
o ρ∗

o(η)) · ∂C−1
o ρ∗

o(η)
∂f

(o1, f, η1, η2)
= 0
= η̇2

5.4.1.2 Limits of the SIGS framework: a simple example

A legitimate question is whether this sub-space of trajectory is big enough to capture
the modular differences between the two shapes f 1 and f 2. We present here a simple
example where the SIGS approximation is not satisfying. Let us consider the two shapes
f 1 = (A,B) and f 2 = (C,D) presented in Figure 5.1: A needs to be matched onto C
and B onto D. The data shape space F is then the space of two landmarks in R

2. Let us
assume that we want to match these two shapes thanks to a large deformation generated
by a local translation initially centred at A. Then we consider the deformation module
M1 = (O1, H1, ζ1, ξ1, c1) that generates vector fields that are always a local translation
at a fixed scale σ = 1: O1 = R

2, H1 = R
2, ζ1

o1(h1) = Kσ(o1, ·)h1, ξ1
o1(v) = v(o1)

and c1
o1(h1) = |h1|2. In this example we set the initial position of the centre of the

translation at A. If we use the SDGS framework presented in Section 5.2.2, we consider
M = (O, H, ζ, ξ, c) the compound module of M1 and the silent module induced by F ,
and we want to find a value of initial momentum η = (η1, η2) ∈ T ∗

AO1 × T ∗
A,BF = (R2)3

so that it minimizes

J(A, η, f 1, f2) =
1
λ

(

|ϕv
t=1(A) − C|2 + |ϕv

t=1(B) −D|2
)

+ |h1
t=0|2

where v = ζo(h) = Kσ(o1, ·)h1, o .= (o1, f) .= (o1, fA, fB) ∈ O1 × F = (R2)3,
h = (h1, 0) is defined by

h = C−1
o ρ∗

o(η) = η1 +Kσ(o, fA)ηA +Kσ(o, fB)ηB
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t = 0 t = 0.2 t = 0.4

t = 0.6 t = 0.8 t = 1

Figure 5.2: SDGS framework. Trajectory of source shape: magenta circles. Red ar-
rows are the control at each time, marine blue arrows are initial momenta corresponding
to the silent deformation module (attached to the source shape) and the purple arrow
is the initial momentum corresponding to the deformation module generating a local
translation (attached to the centre of the translation).

with η2 = (ηA, ηB) and o starts at ot=0 = (A,A,B) and satisfies for each t:

ȯt = ξot
◦ ζot

(ht)

=
(

ζot
(ht)(o1

t ), ζot
(ht)(fA

t ), ζot
(ht)(fB

t )
)

=
(

h1
t , Kσ(o1

t , f
A
t )h1

t , Kσ(o1
t , f

B
t )h1

t

)

.

The optimal trajectory is parametrized by the initial value of the momentum and
is then parametrized in dimension 6. We estimate this initial momentum thanks to a
gradient descent, the resulting trajectory is presented in Figure 5.2.

Let us now consider the same matching problem with the SIGS framework: we restrict
ourselves to optimal trajectories for the module M1 whose geometrical descriptor starts
at A. Such trajectories are parametrized by an initial momentum η1

0 ∈ T ∗
o1O1 = R

2. For
a given initial momentum η1

0 ∈ T ∗
o1O1, the corresponding trajectory of control satisfies:

h1 = C−1
o1 ρ

1,∗
o1 (η1) = η1. Besides the reduced Hamiltonian is Hr(o, η) = 1

2
c1

o1(C−1
o1 ρ

1,∗
o1 (η1))

so hereHr(o, η) = |η1|2. Therefore ḣ1 = η̇1 = −∂Hr

∂o1 (o1, η1) = 0 so for optimal trajectories
the control is constant. Then studying the matching problem in the SIGS framework
amounts here to minimize the following quantity with respect to η1

0:

J(A, η1
0, f

1, f2) =
1
λ

(

|ϕv
t=1(A) − C|2 + |ϕv

t=1(B) −D|2
)

+ |η1
t=0|2
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t = 0 t = 0.2 t = 0.4

t = 0.6 t = 0.8 t = 1

Figure 5.3: SIGS framework. Trajectory of source shape: magenta circles. Red arrows
are the control at each time, it is equal to the momentum.

where v = ζ1
o1(η1

0) = Kσ(o1, ·)η1
0 and ȯ1 = η1

0. The optimal trajectory is here
parametrized in dimension 2 and the initial momentum η1

0 is estimated by a gradi-
ent descent, the resulting trajectory is presented in Figure 5.3. Here we can see that the
needed deformation to transform f 1 into f 2 cannot be well approximated by this SIGS
framework as it requests a non-constant trajectory of control. However we will show in
Chapter 7 that in general for complex deformation modules, this approximation allows
to build satisfying trajectories.

5.4.2 An optimal dimension ?

5.4.2.1 An intermediate framework

In the previous example was shown that in some cases the SIGS framework is not
satisfying. However, the SDGS framework gives optimal trajectories parametrized
in a dimension that can be uselessly high. We suggest here an intermediate frame-
work where we build a silent deformation module M3 = (O3, H3, ζ3, ξ3, c3) indepen-
dent from the data shape space F , we combine it with the user-defined deformation
module M1 and we apply the SIGS framework with the new deformation module
M̃

.= C(M1,M3) .= (Õ, H̃, ζ̃, ξ̃, c̃). In practice the space of silent geometrical descriptor
O3 will be a space of landmarks (but it is of course not necessary). In this frame-
work matching two shapes f 1 and f 2 thanks to the deformation module M1 amounts to
fixing a number of silent landmarks Ns, building the corresponding silent deformation
module M3 = (O3, H3, ζ3, ξ3, c3) (with O3 = R

dNs where d is the dimension of the am-
bient space), then considering the compound deformation module M̃ .= C(M1,M3) and
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minimizing the following functional :

J(o1
0, o

3
0, η

1
0, η

3
0, f

1, f2) =
1
λ
µ
(

ϕv
t=1 · f 1, f2

)

+ c1
o1

0
(h1

t=0)

where v = ζ̃õ(C̃−1
õ ρ̃∗

õ(η̃)) with õ = (o1, o3) and η̃ = (η1, η3) start at õt=0 = (o1
0, o

3
0) ∈ Õ,

η̃t=0 = (η1
0, η

3
0) ∈ T ∗

õt=0
Õ and satisfy with Hr(õ, η̃) = 1

2
c̃õt=0(C̃−1

õ ρ̃∗
õ(η̃))

{

dõ
dt

= ∂Hr

∂η̃
= ρ̃õ(C̃−1

õ ρ̃∗
õ(η̃))

dη̃
dt

= −∂Hr

∂õ
.

The initial position of geometrical descriptors of this new silent deformation is opti-
mized, and can then be interpreted as significant areas for the matching problem.

By choosing a particular number of silent landmarks Ns (or in general a particular
space of geometrical descriptors for the silent deformation module), we can choose the
dimension of the trajectories that we restrict ourselves to. However in practice there is
no easy way to guess the optimal dimension a priori, but it could be estimated through
a Bayesian framework following the idea of [AK15] where a notion of active and inactive
control point in the sparse LDDMM model is presented. This Bayesian approach is not
studied here.

5.4.2.2 Back to the example

We come back to the example of the previous section 5.4.1: the data shape space F is
R

2 × R
2 and we want to match f 1 = (A,B) onto f 2 = (C,D) (see Figure 5.1) thanks

to a modular large deformation generated by the deformation module M1 that creates
vector fields equal to a local translation at a fixed scale σ. Besides we impose that the
initial position for the center of the translation is A.
We consider the shape space of one landmark O3 = R

2, we build the silent deformation
module M3 induced by this shape space and then M̃ the compound deformation module
of M1 and M3. We can show that if we force the initial geometrical descriptor o =
(o1, o3) ∈ O1 × O3 to be equal to f 1, then the SIGS framework with M̃ is equivalent to
the SDGS framework with M = C(M1,M2) (with M2 the silent deformation module
induced by F). This will show that, even though in the SDGS framework optimal
trajectories are parametrized in dimension 6, in fact they lie in a subspace of dimension
at most 4. In order to highlight this, let us first consider equations of optimal trajectories
in the SDGS framework for deformation module M = C(M1,M2). The geodesic control
associated to geometrical descriptor o = (o1, fA, fB) ∈ O1 × F and a momentum η =
(η1, ηA, ηB) ∈ T ∗

o1O1×T ∗
f F (with f = (fA, fB)) is h = η1+Kσ(o1, fA)ηA+Kσ(o1, fB)ηB.

The reduced Hamiltonian equations (5.2.2), becomes here: ȯ1 = h, ḟA = K(o1, fA)h,
ḟB = K(o1, fB)h and

η̇1 = −(hTηA)∂1Kσ(o1, fA) − (hTηB)∂1Kσ(o1, fB)
η̇A = −(hTηA)∂2Kσ(o1, fA)
η̇B = −(hTηB)∂2Kσ(o1, fB).

Besides, if we set o1
t=0 = fA

t=0 = A, then for each t, o1
t = fA

t . Therefore the geodesic
control is h = η1 + ηA + Kσ(o1, fB)ηB and previous equations become ȯ1 = h, ḟA = h,
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ḟB = K(o1, fB)h and
η̇1 = −(hTηB)∂1Kσ(o1, fB)
η̇A = 0
η̇B = −(hTηB)∂2Kσ(o1, fB).

Then let us introduce η̃ = η1 + ηA, the system (o1, η̃, fB, ηB) satisfies, with h =
η̃ +Kσ(o1, fA)ηA, ȯ1 = h, ḟB = K(o1, fB)h and

˙̃η = −(hTηB)∂1Kσ(o1, fB)
η̇B = −(hTηB)∂2Kσ(o1, fB).

This is the equation, for the deformation module M̃ = C(M1,M3), of the optimal
trajectory with initial geometrical descriptor equal to (A,B) and initial momentum
(η̃t=0, η

B
t=0). Then with the SIGS framework for the deformation module M̃ , we can build

the same trajectories as with the SDGS framework: the dimension of SDGS geodesic
with geometrical descriptor starting at (A,A,B) is at most 4. Here the intermediate
framework is perfectly adapted.

5.4.2.3 Dimension of geodesics in a simple example

A consequence of the sub-Riemannian framework is that there may exists several
geodesics starting at the same geometrical descriptors ot=0 and with the same initial
speed ȯt=0. Let us study these trajectories in the case of the deformation module
M = (O, H, ζ, ξ, c) obtained through the combination of M1 = (O1, H1, ζ1, ξ1, c1) gen-
erating a local translation at scale σ in dimension 2 (then O1 = R

2 and H1 = R
2),

and the silent module M2 = (O2, H2, ζ2, ξ2, c2) with shape space O2 = R
2 (space of

one landmark). Then O = O1 × O2 = R
2 × R

2. For a value (o1, o2, η1, η2) ∈ T ∗O,
the geodesic control is ho,η = η1 + Kσ(o1, o2)η2, then the reduced Hamiltonian is
Hr(o, η) = 1

2
|η1 +Kσ(o1, o2)η2|2. We deduce the following geodesic equations:


























do1

dt
= η1 +Kσ(o1, o2)η2

do2

dt
= Kσ(o1, o2)(η1 +Kσ(o1, o2)η2)

dη1

dt
= −(η1 +Kσ(o1, o2)η2)Tη2(−2/σ2)Kσ(o1, o2)(o1 − o2)

dη2

dt
= −dη̃1

dt
.

(5.14)

As the geodesic control is h = η1 +Kσ(o1, o2)η2, it can be easily seen that its speed is
ḣ = (−2/σ2)(1 −Kσ(o1, o2))K(o1, o2)h∧ ((o1 − o2) ∧ η2) where ∧ is the cross product in
R

3 and R
2 is seen as a subspace of R3. The system of equations (5.14) can be re-written

in function of the geometrical variable u .= o1 − o2, h = η1 +Kσ(o1, o2)η2 and η2 :










du
dt

= (1 −Kσ(u))h
dh
dt

= (−2/σ2)(1 −Kσ(u))K(u)h ∧ (u ∧ η2)
dη2

dt
= hTη2(−2/σ2)Kσ(u)u

where K(u) .= exp(− |u|2
σ2 ). Let us set initial values u0, h0 and study the geodesic

trajectories that we can build thanks to an initial η2
0. Let us suppose that η2

0 and η̃2
0

generate trajectories of control h and h̃ that are equal. Then ḣt=0 = ˙̃ht=0 and we can
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deduce u0 ∧ η2
0 = u0 ∧ η̃2

0 (since they are orthogonal to the 2-D plane). The expression
of the second derivative of the geodesic control is

d2h/dt2 = (−2/σ2)K(u)(1 −K(u))
(

(−2/σ2)(1 − 2K(u))(uTh)h ∧ (u ∧ η2)

+(−2/σ2)K(u)(1 −K(u))(h ∧ (u ∧ η2)) ∧ (u ∧ η2)

+(1 −K(u))h ∧ (h ∧ η2)
)

From this equation, as u0 ∧ η2
0 = u0 ∧ η̃2

0, we obtain that d2h/dt2 = d2h̃/dt2 at time
t = 0 then h0 ∧ (h0 ∧ η2

0) = h̃0 ∧ (h̃0 ∧ η̃2
0) and then h0 ∧ η2

0 = h̃0 ∧ η̃2
0. If h0 and u0

are not collinear we can deduce that η2
0 = η̃2

0. Therefore the only way to generate same
trajectories of controls with different momentum η2 is to have at each time u ∧ h = 0.
Besides d

dt
(u ∧ h) = u ∧ ḣ since u̇ is collinear to h, and as hT ḣ = 0 (|h|2 is constant) we

deduce, if h collinear to u, that ḣ needs to be null. Then from the expression of ḣ one
gets that u∧ η2 needs to be null, ie η2 needs to be collinear to u. Then η2

0 6= η̃2
0 generate

different trajectories of controls except if they are collinear to u and h too. We can
easily show that if (u, h, η2) satisfies this condition (all collinear), then the trajectory
of geodesic control only depend on the initial value of control h, not on η2, and is a
constant trajectory. This simple example shows several things. First, different initial
momenta can give the same geodesic trajectory: here if η1 and η2 are collinear to u,
the geodesic trajectory only depends on the value of η1 + K(u)η2. Second, the same
initial geodesic control h (and then same initial speed ȯt=0) can correspond to different
geodesic trajectory. For instance if η1

0 is not collinear to u, we showed that the initial
momentum (η1

0 +K(u)u,−u) will generate a geodesic trajectory which is different from
the one generated by the initial momentum (η1

0, 0). However these to initial momenta
will generate the same initial geodesic control (equal to η1

0). Last, the example shows
that an optimal dimension might not be globally relevant.
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6.1 Introduction

We presented in Section 5.2 how our model enables to compare two shapes by computing
a modular large deformation warping the first as close as possible to the second one. Then
in Section 5.3 we presented how we could study a population of shapes by computing
an atlas. In this chapter we study the computational aspects of our framework. We
will concentrate on the atlas computation since matching one shape onto another is
equivalent to studying the atlas problem while fixing the template equal to the first
shape and having only one shape in the population equal to the second shape.

We suppose that we want to compute an atlas of P shapes f targets
k belonging to a

shape space F (with infinitesimal action ξF ) thanks to a deformation module M̃ =
(Õ, H̃, ζ̃, ξ̃, c̃). We recall that we need to consider the silent deformation module M0 =
(O0, H0, ζ0, ξ0, c0) induced by F : O0 = F , H0 = {0}, ζ0 = 0, ξ0 = ξF and c0 = 0. Then
we define M the combination of the silent deformation module M0 = (F , H0, ζ0, ξ0, c0)
induced by F and the deformation module M̃ . In particular O = F × Õ. As explained
in previous section, the theoretical computation of the atlas amounts to minimizing the
following quantity over (otemp, (ηk,0)k) ∈ ∏

O T
∗O:

E(otemp, (ηk,0)k) =
P
∑

k=1

cotemp
(hotemp,ηk,0) +

1
σ2
µ
(

fk(t = 1), f target
k

)

(6.1)

where for each k, we denote ok = (fk, õk), (ok, ηk) : [0, 1] 7→ T ∗O starts at
(ok(t = 0), ηk(t = 0)) = (otemp, ηk,0) ∈ T ∗O and satisfies:











hk = hok,ηk
.= C−1

ok
ρ⋆

ok
ηk

dok

dt
= ξok

◦ ζok
(hk)

dηk

dt
= −∂H

∂o
(ok, ηk, hk)

(6.2)

with H(o, η, h) = (η|ξo ◦ ζo(h)) − 1
2
co(h) the Hamiltonian. In the following we will show

how these equations can be easily computed in practice.
This chapter is organized as follow: in a first section 6.2 we present the global struc-

ture of the algorithm we built. In a second section 6.3 we introduce some mathematical
results which are needed in the implementation. In the last section 6.4 we present explicit
calculus in a simple example.

6.2 Structure of the algorithm

6.2.1 Global presentation of the gradient descent

We present here the global pseudo-code for the estimation of an atlas: we are given
P shapes f1, · · · , fP of a shape space F and a deformation module M̃ = (Õ, H̃, ζ̃, ξ̃, c̃)
thanks to which we want to build this atlas. Shapes fk are implemented thanks to column
matrices of points which will be denoted fk, and potentially a matrix of connectivity.
In general in this chapter we will denote X the implementation in the algorithm of the
mathematical notion X. As explained in Section 4.1.1.4, a simple way to build complex
deformation modules is to see them as the compound deformation module of simple ones.
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Therefore in practice, we consider N base-deformation module M i = (Oi, H i, ζ i, ξi, ci) so
that the deformation module M̃ their combination. For each i, geometrical descriptors
oi of Oi are implemented as column matrices which will be denoted oi. As recalled
previously, in order to compute the atlas of shapes fk thanks to M̃ we need to consider
its combination M

.= (O, H, ζ, ξ, c) with the silent deformation module induced by F .
Then each geometrical descriptor o = (f, o1, · · · , oN) ∈ O = F × O1 × · · · × ON is
implemented as a list o of the matrices f, o1, · · · , oN . In order to compute the atlas
we need to estimate such an initial geometrical descriptor otemp as well as P initial

momenta (one per subject) ηk,0 = (ηf
k,0, η

1
k,0, · · · , ηN

k,0) ∈ TfF × To1O1 × · · · × ToN ON .
Similarly to geometrical descriptors, each of these initial momenta is implemented as a
list ηk,0 of column matrices, and then the total initial momentum η0 is implemented as
a list of a lists of matrices. The estimation of the initial geometrical descriptor otemp

and the initial momentum η0 so that they minimize Equation (6.1) is performed thanks
to a gradient descent. A global view of the implementation of this gradient descent
is presented in Algorithm 1. We present separately the computation of the energy in
the Algorithm 2 where the integration of Equation 6.2 is performed thanks to an Euler
integration scheme. We will present how the cost and the derivatives of the Hamiltonian
are implemented in next Section 6.3.2.1. We also present separately an overview of
the computation of the gradient in the Algorithm 3, the reason why we perform the
given differential equation is presented in Section 6.3.2.2. Its numerical resolution is also
performed via an Euler integration scheme.
We implemented our algorithm in the software Deformetrica [DPC+14], so that the data
attachment term µ(fk(t = 1), f target

k ), and its derivatives, can be automatically computed
for a large collection of shapes: point clouds, curve and surface meshes in 2D and
3D (corresponding to currents or varifolds and then without point of correspondence).
Therefore we do not detail the computation of µ and its derivatives.

6.2.2 Object-oriented implementation

We present now how this method is implemented in practice. We use an object-oriented
language as the proposed modular deformation framework is very well adapted for this
type of implementation. The structure is presented in Figure 6.1. All kind of modules
(such as these presented in Section 4.2) inherit from a single abstract module class,
named ABSTRACTMODULE, which contains abstract methods defining the deforma-
tion module. Attributes of this class are matrices of GEOMETRICALDESCRIPTOR,
MOMENTUM and CONTROL. This class is also defined thanks to three methods
which use values of these attributes. The first method is COMPUTEVECTORFIELDS,
it implements the field generator ζ. Its input is a matrix of points and its output is
a new matrix (of the same size) with the application of the vector field generated by
the deformation module thanks to the values of GEOMETRICALDESCRIPTOR and
CONTROL to this list of points. The second method is APPLYMODULE, it takes in
input a second deformation module and returns the application of the its application to
the geometrical descriptors, this implements the infinitesimal action ξ. The last method
is COMPUTEB, it computes the matrix B(o) such that for each (o, h) ∈ O × H,
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Algorithm 1 Gradient Descent
Input: :

• P targets f target
k , k = 1 · · ·P

• M a deformation module

• Initialisation of otemp (list of N + 1 matrices)

• Initialisation of η0 = [η1,0, · · · , ηP,0] (list of P lists of N + 1 matrices)

• ǫ (criterion to stop the gradient descent)
E

.= E(otemp, η0) (see Algorithm 2)
Gradient Descent :
iter

.= 0
while iter < iter_max & stop == FALSE do

Grad = Grad(otemp, η0) (see Algorithm 3)
Found

.= FALSE
iter_line_search

.= 0
while Found == FALSE do

õtemp
.= otemp − Step×Gradotemp

for k = 1 · · ·P do
η̃k,0

.= ηk,0 − Step×Gradηk,0

end for
Ẽ = E(õtemp, η0) (see Algorithm 2)
iter_line_search = iter_line_search+ 1
Found

.= Ẽ < E OR iter_linesearch = iter_linesearch_max
end while
if iter_line_search == iter_line_search_max then

stop
.= TRUE

else
iter = iter + 1
otemp = õtemp

η0 = η̃0

stop
.= ”(E − Ẽ) > ǫE”

E = Ẽ
end if

end while
Output: (otemp, η0)
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Figure 6.1: Schematic view of the oriented-object implementation.
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Algorithm 2 Compute_Energy E(otemp, (ηk,0)k) (Equation (6.1))

E = 0
for k = 1 · · ·P do

Integrate Equation (6.2)
Save trajectories (ok(t), hk(t), ηk(t))
E = E + cok(t=0)(hk(t = 0)) + 1

σ2µ(fk(t = 1), f target
k ) where

ok(t) = (fk(t), o1
k(t), · · · , oN

k (t))
end for

Output: E

Algorithm 3 Compute_Gradient Grad(otemp, (ηk,0)k)
Gradotemp

= 0
for k = 1 · · ·P do

Initialise νt=1 = (νo,t=1, νη,t=1) = 1
σ2 ∇ok(t=1),ηk(t=1)µ(fk(t = 1), f target

k )
Integrate backward ν̇ = d(∇(ok,ηk)H)(ok,ηk) · (−νη, νo)
Gradotemp

= Gradotemp
+ νo,t=0

Gradηk,0
= νη,t=0

end for
Output: Grad = (Gradotemp

, Gradηk,0
, k = 1 · · ·P )

co(h) = hTB(o)h where h is the column vector representing control h. These three
methods can also compute the derivations of ζ, ξ and B.
Then a meta class named MODULARDIFFEO has as attributes a list of base-modules.
Its methods implement the combination rules whose implementation will be detailed in
Section 6.3. First the method COMPUTECONTROLGEODESIC computes geodesic
controls from values of geometrical descriptor and momenta thanks to methods of
ABSTRACTMODULE. A second method APPLYSELF enables to compute speeds
of geometrical descriptors and momenta from their values. The geodesic trajectories
of these variables are computed thanks to an integration scheme in a method INTE-
GRATEFORWARD. The last method of this class is INTEGRATEBACKWARD. It
enables, from final values of geometrical descriptors, momenta and their adjoints, to
compute the directional derivative which will be presented in Proposition 30 and then
the backward integration necessary in the computation of the gradient (Algorithm 3).
The class MODULARDIFFEO is itself the attribute of the class ATLAS which performs
the gradient descent presented in Algorithm 1 thanks to a method GRADIENTDES-
CENT. The computation of the Energy (Algorithm 2) and the gradient (Algorithm 3)
are made thanks to calls to its attribute MODULARDIFFEO. A schematic view of the
computation of an atlas thanks to the ATLAS class is presented in Figure 6.2.

In this architecture one can see that the definition of new modules is as simple as
“plug-and-play”. A collection of base deformation modules has been implemented and
one only needs to set their parameters (such as the scale for local translations) to use
them in the computation of the atlas. In order to implement a new deformation module,
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Figure 6.2: Schematic view of the computation of an atlas.
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the only requirement is to define functions COMPUTEVECTORFIELDS, APPLYMOD-
ULE and COMPUTEB, then it is directly incorporated in the global algorithm and can
be used.

6.3 Mathematical aspects of the algorithm

In this section we will present in detail how we implemented the calculus required to
compute the gradient descent minimizing (6.1). For each k we set Ek(otemp, ηk,0) =

cotemp
(hotemp,ηk0 )+ 1

σ2µ
(

fk(t = 1), f target
k

)

so that E(otemp, (ηk,0)k) =
∑P

k=1 Ek(otemp, ηk,0).

Then

∇otemp
E(otemp, (ηk,0)k) =

P
∑

k=1

∇otemp
Ek(otemp, ηk,0)

and for each k,
∇ηk,0

E(otemp, (ηk′,0)k′) = ∇ηk,0
Ek(otemp, ηk,0).

In this section we fix k and we detail how to compute ∇Ek, the computation of ∇E is
then easily obtained by summations. We denote REGk(otemp, ηk,0) = cotemp

(hotemp,ηk0 )

and DATAk(otemp, ηk,0) = 1
σ2µ

(

fk(t = 1), f target
k

)

.

We first give in Section 6.3.1 a theoretical result which is needed and then in Sec-
tion 6.3.2 we present how energy Ek and its gradient can be computed.

6.3.1 Theoretical gradient computation

The first term of Ek is REGk(otemp, ηk,0) = cotemp
(hotemp,ηk,0) = cotemp

(C−1
otemp

ρ∗
otemp

ηk,0), it
explicitly only depends on (otemp,k,0 ) so there is no theoretical problem to the computa-
tion of the gradient (see Section 6.3.2 for the detail of its implementation). The second

term is DATAk(otemp, ηk,0) = 1
σ2µ

(

fk(t = 1), f target
k

)

, it depends on values at time t = 1

of ok = (fk, o
1
k, · · · , oN

k ), so in order to calculate its gradient we use the following result
(see [Arg14]):

Proposition 28. Let n ∈ N, let U be an open subset of R
n, w : U −→ R

n be a
complete Cj vector field on U (j ≥ 1), G be the function of class C1 defined on U by
G(q0) = g(qt=1) where g is a function of class C1 and q : [0, 1] −→ R

n is the solution
of q̇t = w(qt) for almost every t ∈ [0, 1] and qt=0 = q0. Then ∇G(q0) = Z(1) where
Z : [0, 1] −→ R

n is the solution of Ż(t) = dwT
q(1−t)Zt for almost every t ∈ [0, 1] and

Z(0) = ∇g(qt=1).

In our case we have U = T ∗O = T ∗F × T ∗O1 × · · ·T ∗ON , q = (ok, ηk) : t ∈
[0, 1] −→ (ok(t), ηk(t)) ∈ T ∗O, g(ok(t = 1), ηk(t = 1)) = µ

(

fk(t = 1), f target
k

)

with ok = (fk, o
1
k, · · · , oN

k ), and w(ok, ηk) = (∂ηH,−∂oH)(ok, ηk, h
ok,ηk) with

H and hok,ηk defined in Equation (6.2) (See Proposition 29 for the practi-
cal computation of geodesic control hok,ηk). Then the gradient of the quan-
tity µ(fk(t = 1), f target

k ) with respect to initial values (ok(t = 0), ηk(t = 0))
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can be computed by first integrating Equation 6.2. Then an adjoint variable
ν ∈ T(ok(t=1),ηk(t=1))T

∗O is initialized with ν(t = 1) = ∇(ok(t=1),ηk(t=1))µ(fk(t = 1), f target
k )

such that only the adjoint variable of fk
t=1 is non zero. Finally by integrating

ν̇t = dwT
(ok(1−t),ηk(1−t))νt, where w(ok, ηk) = (∇ηk

Hr,−∇ok
Hr)(ok, ηk), one obtains

∇(ok(t=0),ηk(t=0))µ(fk(t = 1), f target
k ) = ν(t = 0).

6.3.2 Computation in practice

We will explain in this section how previous equations are implemented. We will first
detail the computation of the energy Ek, ie the implementation of geodesic controls and
of the integration of the forward Equation (6.2). These calculus will also enable to obtain
directly the derivation of the regularity term. Then we will present how the backward
integration of Section 6.3.1 is computed, allowing to compute the gradient of the data
term. We recall that in practice the deformation module M = (O, H, ζ, ξ, c) that we
consider is a combination of N deformation modules M i = (Oi, H i, ζ i, ξi, ci) and a silent
deformation module M0 = (O0, H0, ζ0, ξ0, c0). Let us set such deformation modules. As
detailed previously, they are implemented thanks to their methods COMPUTEVEC-
TORFIELD, APPLYMODULE and COMPUTEB. In the following equations, we will
denote ζ the function of a deformation module which takes in input a matrix of geomet-
rical descriptor, a column matrix of controls, and returns a vector field. It corresponds to
the implemented function COMPUTEVECTORFIELD. We also implement its deriva-
tives: we denote ζ(l, o, h) the column vector corresponding to the derivative of ζo(h) with
respect to the l−th component of o, with o a column matrix of geometrical descriptor
and h a column matrix of control. We will denote ξ the function of a deformation module
which takes in input a matrix of geometrical descriptor and a vector field (potentially
generated by another deformation module) and returns the matrix of the application of
the vector field to the geometrical descriptor. We will also denote ξ(l, o, v) the column
vector corresponding to the derivative of ξo(v) with respect to the l−th component of o,
with o a column matrix of geometrical descriptor and v a vector field. This function cor-
responds to the implemented function APPLYMODULE. Note that these two functions
ζ and ξ are not exactly these that are implemented: they use the notion of vector field
while in practice only notions of matrices and deformation modules are used. However
they will be used in the following for simplicity. Last, we will denote B(o) the matrix
depending on the geometrical descriptor o such that for all control h, co(h) = hTB(o)h,
with h the column matrix of control. We will also denote B(l, o) the matrix corre-
sponding to the derivative of B(o) with respect to the l−th component of o so that

for all controls h, ∂co(h)
∂o(l)

= hTB(l, o)h. This function corresponds to COMPUTEB. For
each deformation module M i we will denote X i its implementation of X. Geometrical
descriptors, momenta and controls will be implemented by column vectors.
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6.3.2.1 Forward integration

We will exhibit the expression of the geodesic control ho,η = C−1
o ρ∗

oη and ∂H
∂o

in terms
of functions ζ, ξ, B and their derivatives. Indeed deformation modules are defined by
these functions and their derivatives, and then will be implemented thanks to them (see
Section 6.2.2).

Proposition 29. We denote Ci
j(o

i) the j-th column of the matrix Bi(oi)−1
. Then the

j-th component of the control of i-th module for geodesics with geometrical descriptors
o = (oi)i ∈ ∏

i Oi and momenta η = (ηi)i ∈ ∏

i T
∗
oiOi is

hi(j) =
∑

l

(

ξl(ol, ζ i(oi, Ci
j(o

i)))
)T

ηl.

Proof. For each i, l ∈ {1, · · · , N} and oi ∈ Oi, ol ∈ Ol let us define a matrix Ai,l(oi, ol)
of size dim(Oi)×dim(H l) such that ξi(oi, ζ l(ol, hl)) = Ai,l(oi, ol)hl. Then we can rewrite
the Hamiltonian, see Theorem 6, as follow :

H(o, η, h) =
∑

i

∑

l

(ηl)TAl,i(ol, oi)hi − 1
2

∑

i

(hi)TBi(oi)hi

We can then deduce that along geodesic trajectories, as ∇hH = 0, for each i

hi =
∑

l

Bi(oi)
−1
Al,i(ol, oi)

T
ηl =

∑

l

(

Al,i(ol, oi)Ci(oi)
)T

ηl

Then the j-th component of hi is

hi(j) =
∑

l

(

Al,i(ol, oi)Ci
j(o

i)
)T

ηl =
∑

l

(

ξl(ol, ζ i(oi, Ci
j(o

i)))
)T

ηl.

Remark 28. Note that in this equality we see that a momentum ηl influences hi through
the inner product of a vector field generated by the i− th deformation module applied to
geometrical descriptor ol. We had already pointed it out in Remark 23.

Thanks to this Proposition, we see that if we know for each base-deformation module
M i, its field generator ζ i, its infinitesimal action ξi and its cost ci (implemented thanks to
matrices Bi), we can compute geodesic controls. Once this geodesic control is computed,
it is easy to compute speeds of geometrical descriptor o = (oi)1≤i≤N and momentum
η = (ηi)1≤i≤N . Let us set (o, η) = (oi, ηi) ∈ O =

∏

i Oi, let h = (hi) ∈ H =
∏

i H
i be the

corresponding geodesic control and let i ∈ [|1, n|],doi

dt
= ξi

oi(ζo(h)) and then

ȯi =
N
∑

l=1

ξi(oi, ζ l(ol, hl)) .
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The velocity of the momentum is given by derivating the Hamiltonian: H(o, η, h) =
(η|ξo ◦ ζo(h)) − 1

2
co(h) then

∂H
∂o

(o, η, h) · δo =
(

η|(∂ξo

∂o
(o) · δo) ◦ ζo(h)

)

+
(

η|ξo ◦ (
∂ζo

∂o
(o) · δo)(h)

)

− 1
2
∂co(h)
∂o

(o)δo .

Then let D be the dimension of Oi, let j ∈ [|1, D|] and let X(j) refer to the j−th
component of X, then

−dηi(j)
dt

= ∂H
∂oi(j)

(o, η, h)

=
(

η|( ∂ξo

∂oi(j)
(o)) ◦ ζo(h)

)

+
(

η|ξo ◦ ( ∂ζo

∂oi(j)
(o))(h)

)

− 1
2

∂co(h)
∂oi(j)

(o)

=
∑

l

(

ηl|( ∂ξl

ol

∂oi(j)
(o)) ◦ ζo(h)

)

+
∑

l

(

η|ξo ◦ (
∂ζl

ol

∂oi(j)
(o))(hl)

)

− 1
2

∑

l

∂cl

ol
(h)

∂oi(j)
(o)

=
(

ηi|( ∂ξi

oi

∂oi(j)
(oi)) ◦ ζo(h)

)

+
(

η|ξo ◦ (
∂ζi

oi

∂oi(j)
(oi))(hi)

)

− 1
2

∂ci

oi (hi)

∂oi(j)
(oi)

=
∑

l

(

ηi|( ∂ξi

oi

∂oi(j)
(oi)) ◦ ζ l

ol(hl)
)

+
∑

l

(

ηl|ξl
ol ◦ (

∂ζi

oi

∂oi(j)
(oi))(hi)

)

− 1
2

∂ci

oi (hi)

∂oi(j)
(oi)

Finally we showed that speeds of geometrical descriptor and momentum can easily
be obtained by defining functions ζ, ξ, c and their derivatives for each base deformation
module, and then implementing the following combination rules: for lists of matrices
o = [o0, · · · , oN ] and η = [η0, · · · , ηN ] the geodesic speeds (encoded as lists of matrices)
are















ȯi =
∑N

l=1 ξ
i(oi, ζ l(ol, hl))

˙ηi(j) = −∑

l(ηi)T ξi(j, oi, ζ l(ol, hl)) −∑

l(ηl)T ξl(ol, ζ i(j, oi, hi))
+1

2
(hi)TBi(j, oi)hi

(6.3)

These expressions enable also to compute the derivation of the regularity term co(h).
Indeed, thanks to Equation (5.5), co(ho,η) = 2H(o, η, ho,η) with ho,η the geodesic control
associated to o and η. Then

∂co(ho,η)
∂(o,η)

= 2∂H(o,η,ho,η)
∂(o,η)

= 2 ∂H
∂(o,η)

(o, η, ho,η) + 2∂H
∂h

(o, η, ho,η) · ∂ho,η

∂(o,η)
(o, η, ho,η)

= 2 ∂H
∂(o,η)

(o, η, ho,η)

since by definition ∂H
∂h

(o, η, ho,η) = 0. Then as (ȯ, η̇) =
(∇ηH(o, η, ho,η),−∇oH(o, η, ho,η)), one gets ∂co(ho,η)

∂(o,η)
= (−2η̇, 2ȯ) which is given by

previous Equation 6.3. We deduce that matrices implementing the derivatives of the
first term of Ek with respects to variables ηi and oi(j) are:















∇oi(j)REGk = 2
∑

l(ηi)T ξi(j, oi, ζ l(ol, hl)) + 2
∑

l(ηl)T ξl(ol, ζ i(j, oi, hi))
−(hi)TBi(j, oi)hi

∇ηiREGk = 2
∑N

l=1 ξ
i(oi, ζ l(ol, hl))

(6.4)
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6.3.2.2 Adjoint equation

Thanks to proposition 28 we can now compute the derivative of functional Ek. However,
we need to compute second derivatives of the Hamiltonian H, which in practice can
only be done through a long computation time. In order to overcome this drawback,
S. Arguillère showed in [Arg14] that this second derivative can be obtained thanks to a
directional derivative which is easy to approximate. We recall this result in the following
proposition.

Proposition 30. Let f : (o, η) ∈ T ∗O 7→ (∇ηH,−∇oH)(o, η, ho,η), and let
((o, η), (νo, νη)) ∈ T ∗T ∗O, then dfT

(o,η) · (νo, νη) = d(∇(o,η)H)(o,η,ho,η) · (−νη, νo).

Proof. We have :

dfT
(o,η) · (νo, νη) = ∇(o,η)(〈f(o, η), (νo, νη)〉)(o, η)

= ∇(o,η)(〈∇ηH, νo〉 − 〈∇oH, νη〉)

=

(

∇o(∇ηHTνo) − ∇o(∇oHTνη)
∇η(∇ηHTνo) − ∇η(∇oHTνη)

)

=

(

∇η(∇oH)νo − ∇o(∇oH)νη

∇η(∇ηH)νo − ∇o(∇ηH)νη

)

= ∇η(∇(o,η)H)νo + ∇o(∇(o,η)H)(−νη)

So finally dfT
(o,η) · (νo, νη) = d(∇(o,η)H)(o,η,ho,η) · (−νη, νo).

The computation of the gradient of the Hamiltonian was explained in Section 6.3.2.1
(see Equation 6.4) and then the temporal derivative of the adjoint variable can be
obtained thanks to two estimations of this gradient at (o, η) and (o, η) + δs(−νη, νo)
with δs small enough.

6.4 Explicit calculus in an example

We will detail here the case where one wants to compute an atlas of two shapes f target
1

and f target
2 , each one composed of 3 landmarks, thanks to a deformation module obtained

by combination of a deformation module M1 = (O1, H1, ζ1, ξ1, c1) generating a sum of
two unconstrained translations at scale σ1 (see Section 4.2.2) and a deformation module
M2 = (O2, H2, ζ2, ξ2, c2) generating a local scaling at scale σ2 (see Section 4.2.3). We
will restrain ourselves to the 2 dimensional case. We recall the definitions of deformation
modules M1 and M2:

• M1:

– O1 = (R2)2, H1 = (R2)2
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– ζ1(o1, h1) = Kσ1(z1, ·)α1 +Kσ1(z2, ·)α2 where o1 = (z1, z2) and h1 = (α1, α2

– ξ2(o1, v) ∈ (R2)2(v(z1), v(z2)) where o1 = (z1, z2)

– c1(o1, h1) = |ζ1
(z1,Z2))((α

1, α2))|2Vσ1
= |α1|2 + |α2|2 + 2Kσ1(z1, z2)〈α1, α2〉 where

o1 = (z1, z2) and h1 = (α1, α2)

• M2 :

– O2 = R
2, H2 = R

– ζ2(z, α) =
∑3

j=1 Kσ2(z + dj, ·)djα where d1 = 0.3σ2(0,−1), d2 =

0.3σ2(−
√

3
2
, 1

2
), d3 = 0.3σ2(

√
3

2
, 1

2
)

– ξ2(z, v) = v(z)

– c2(z, α) = |ζ2
z (α)|2Vσ2

=
∑

1≤j,j′≤3 Kσ2(z + dj, z + dj′)α2〈dj, dj′〉

Remark 29. We emphasize that we will detail here all calculus as an example, for
comprehension purpose, but that in practice one only implements functions ζ, ξ and c
(and their derivatives) of each deformation module, as well as combination rules in the
class MODULARDIFFEOS (which does not depend on the modules that are used and so
only has to be implemented once).

6.4.1 Procedure

We first have to set the two parameters σ1 and σ2. We then use 3 base module: M1

(generating sums of two local translations at scale σ1), M2 (generating local scalings
at scale σ2) and M0 = (O0, H0, ζ0, ξ0, c0) the silent deformation module induced by
(R2)3 (shape space to which f1 and f2 belong). Then O0 = (R2)3. In the computation
of the atlas we will estimate one shared initial geometrical descriptor otemp and two
initial momenta. The geometrical descriptor is made of one template ftemp ∈ (R2)3

(made of three landmarks similarly to f target
1 and f target

2 ), initial values for the centres of
translations o1

temp
.= (z1

temp, z
2
temp) ∈ (R2)2, an initial value for the center of the scaling

o2
temp ∈ R

2. Each of the two initial moment is a dual variable of otemp and then belongs
to (R2)3 × (R2)2 × R

2. As we proceed by gradient descent, we need to initiate these
three variables. The mean shape ftemp can be initialized at the Euclidean mean of
f target

1 and f target
2 , the center of the scaling at the center of temp and the two centres of

translations regularly positioned around it. Momenta are in general initialized at zero.
Then we perform a gradient descent in order to minimize functional 6.1. In our case the

attachment term is given by the euclidean distance between landmarks:
∑2

k=1 µ
(

fk(t =

1), fk
target

)

=
∑2

k=1

∑3
j=1 |xk

j (t = 1) − xk
j,target|2 where for each k, xk = (xk

1, x
k
2, x

3
3) and

xk
target = (xk

1,target, x
k
2,target, x

k
3,target). The regularity term, the forward and backward

integrations will be detailed in next sections.
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6.4.2 Energy

We will first explain how one can compute the regularity term
∑2

k=1 co(hk) from values
of geometrical descriptor o and controls hk, k ∈ {1, 2}, (which in practice will be a
geodesic controls computed thanks to Proposition 29, see next Section 6.4.3 for its
computation). The space of controls is H .= H0 × H1 × H2 = {0} × (R2)2 × R. Let
us set for k ∈ {1, 2}, hk = (0, α1

k, α
2
k, βk) with α1

k, α
2
k ∈ R

2 and βk ∈ R. We also set
o = (o0, o1, o2) ∈ O0 × O1 × O2, and o1 = (z1, z2) ∈ O1 = (R2)2. Then the energy will
be given by

∑2
k=1 co(hk) =

∑2
k=1 c

0
o0(0) + c1

(z1,z2)((α
1
k, α

2
k)) + c2

o2(βk)
=

∑2
k=1 |α1

k|2 + |α2
k|2 + 2Kσ1(z1, z2)〈α1

k, α
2
k〉

+
∑

1≤j,j′≤3 Kσ2(z + dj, z + dj′)α2
k〈dj, dj′〉

In practice in order to compute this energy we define for each deformation module
M i a function Bi which associate to each geometrical descriptor oi ∈ Oi a matrix Bi(oi)
so that with hi the column vector representation of a control, the cost equals hiTBi(oi)hi.
Let us explicit these matrices in our example. For deformation module M0, as the space
of controls is the null space, B0(o0) is the empty matrix for all o0 ∈ O0. For deformation
module M1, let o1 = (z1, z2) ∈ O1 = (R2)2, the control is of dimension 4 then B1(o1) is
of size 4 × 4:

B1(o1) =











1 0 Kσ1(z1, z2) 0
0 1 0 Kσ1(z1, z2)

Kσ1(z1, z2) 0 1 0
0 Kσ1(z1, z2) 0 1











=

(

1 Kσ1(z1, z2)
Kσ1(z1, z2) 1

)

⊗ I2

(6.5)

where I2 is the identity matrix in dimension 2 and ⊗ is the Kronecker product of
matrices.

For deformation module M2, let o2 ∈ O2 = R
2, the control is of dimension 1 then

B2(o2) is of size 1 × 1:

B2(o2) =
∑

1≤j,j′≤3 Kσ2(o2 + dj, o
2 + dj′)〈dj, dj′〉

= 0.3σ 1
2

∑

1≤j,j′≤3 Kσ2(o2 + dj, o
2 + dj′)

= 0.3σ 1
2

(

3 + 6Kσ2(o2 + d1, o
2 + d2)

) (6.6)

with dj given at the beginning of this Section 6.4, last line is obtained thanks to the fact
that values of Kσ2(o2 + dj, o

2 + dj′) are all equal for j 6= j′ and equal 1 for j = j′.

6.4.3 Geodesic controls

We will here detail how one can compute geodesic control from values of geometrical
descriptor o = (o0, o1, o2) ∈ O1 × O2 × O3 and momentum η = (η0, η1, η2) ∈ T ∗

o0O0 ×
T ∗

o1O1 × T ∗
o2O2 thanks to Proposition 29. We set o0 .= (a, b, c) ∈ O0 = (R2)3 and
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o1 .= (z1, z2) ∈ O1 = (R2)2. We need to compute inverses of matrices Bi (see 6.5 and
6.6): for o1 = (z1, z2) ∈ O1 = (R2)2

B1(o1)−1 = 1
1−Kσ1 (z1,z2)2

(

1 −Kσ1(z1, z2)
−Kσ1(z1, z2) 1

)

⊗ I2

and for o2 ∈ O2 = R
2, B2(o2)−1 = 1

0.3σ 1
2

(

3+6Kσ2 (o2+d1,o2+d2)

) .

We set o0 = (y1, y2, y3) ∈ O0 = (R2)3, η0 = (η0
1, η

0
2, η

0
3) ∈ T ∗

o0O0 = (R2)3, o1 =
(z1, z2) ∈ O1 = (R2)2 and η1 = (η1

1, η
1
2) ∈ T ∗

o1O1 = (R2)2. We want to compute the
geodesic control h ∈ H = H0 × H1 × H2 corresponding to o and η. We can write
h = (0, α, β) ∈ H0 ×H1 ×H2 = {0} × (R2)2 × R. Control α is of dimension 4, first two
components corresponding to the vector of the first translation (centred at z1) and last
two components corresponding to the vector of the second translation (centred at z2).
We use the expression given in Proposition 29. Let u ∈ [|1, 4|], we denote C1

u the u−th
column of B1(o1)−1, it has 4 lines and we set γ1 the 2D vector made of the first two
components, and γ2 the 2D vector made of the last two components. Then the u − th
component of α is

α(u) =
∑2

i=0

(

ξi
oi(ζ1

o1(C1
u(o1))

)T

ηi

=
∑2

i=0

(

ξi
oi(
∑2

r=1 Kσ1(zr, ·)γr)
)

ηi

=
∑3

j=1

(

∑2
r=1 Kσ1(zr, yj)γr)

)T

η0
j +

∑2
j=1

(

∑2
r=1 Kσ1(zr, zj)γr)

)T

η1
j

+
(

∑2
r=1 Kσ1(zr, o

2)γr)
)T

η2

We denote γ = B2(o2)−1 ∈ R, the control of the second deformation module is the
scalar

β =
∑2

i=0

(

ξi
oi(ζ2

o2(γ)
)T

ηi

=
∑2

i=0

(

ξi
oi(
∑3

r=1 Kσ2(o2 + dr, ·)γdr)
)

ηi

=
∑3

j=1

(

∑3
r=1 Kσ2(o2 + dr, yj)γdr)

)T

η0
j +

∑2
j=1

(

∑3
r=1 Kσ2(o2 + dr, zj)γdr)

)T

η1
j

+
(

∑3
r=1 Kσ2(o2 + dr, o

2)γdr)
)T

η2

=
∑3

j=1

(

∑3
r=1 Kσ2(o2 + dr, yj)γdr)

)T

η0
j +

∑2
j=1

(

∑3
r=1 Kσ2(o2 + dr, zj)γdr)

)T

η1
j

since
∑3

r=1 Kσ2(o2 + dr, o
2)dr =

∑3
r=1 exp − |dr|2

σ2
2
dr = 0 because vectors dr all have the

same norm and their sum equals 0. One can note here that momentum of deformation
module M2 does not influences its geodesic control. This could have been figured out
from Remarks 23 and 28 since vector fields generated by its geometrical descriptor has
a null action on its geometrical descriptor.



CHAPTER 6. ALGORITHM 125

6.4.4 Integration of trajectories

The Hamiltonian is:

H(o, η, h) = (ξo(ζo(h))|η) − 1
2
co(h)

=
∑

0≤i,j≤2(ξi
oi(ζoj (hj))|ηi) − 1

2

∑2
i=0 c

i
oi(hi)

=
∑2

r=1

∑3
s=1 Kσ1(zr, ys)η0T

s α1
r +

∑

1≤r,s≤2 Kσ1(zr, zs)η1T
s α1

r

+
∑2

r=1 Kσ1(zr, o
2)η2T +

∑3
r=1

∑3
s=1 Kσ2(o2 + dr, ys)βη0T

s dr

+
∑3

r=1

∑2
s=1 Kσ2(o2 + dr, zs)βη1T

s dr

where o = (o0, o1, o2) ∈ O = O0 ×O1 ×O2, o0 = (y1, y2, y3) ∈ O0 = (R2)3, o1 = (z1, z2) ∈
O1 = (R2)2, o2 ∈ O2 = R

2, h = (0, α, β) ∈ H = H0 × H1 × H3, α = (α1, α2) ∈ H1 =
(R2)2, β ∈ H2 = R. We recall that c0 = 0, ζ0 = 0, ξ0 = 0 and ξ2 ◦ ζ2 = 0.

From this expression of the Hamiltonian and the geodesic controls (see previous Sec-
tion 6.4.3) it is easy to integrate forward and backward trajectories which enable to
compute the energy and its gradient. However we saw in this example how fastidious
it would be to compute all these equations each time we want to use a new combina-
tion of base-deformation modules. This is why our oriented-object implementation is
particularly adapted. We only have to implement combination rules ones, and for each
deformation module we only have to define its methods (defining functions ζ, ξ and
c) ones. They depend on different parameters that need to be specified at each time,
such as the scale σ or the number of local translations for instance. Then it is directly
possible to compute an atlas with any combination of these deformation modules.
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Figure 7.1: Building an atlas using a prior. Target shapes

7.1 Studying a population with different priors

We present here how simple priors can be used to study a population of shapes. We
use simple examples of populations (curves with a hump at different locations) and we
study the variability by forcing deformations to be of very simple types (displacement
of the hump or folding and unfolding patterns). In the case where different patterns
of deformations could explain the variability but one possesses an additional knowledge
specifying which pattern should be used, we show that this knowledge can be easily
incorporated in the deformation model.

7.1.1 Two equally plausible priors

In this section, we study the set of shapes presented in Figure 7.1: each shape has a
hump, three of them have the hump rather on their left part, and three other have
it on their right part, all at variable locations. Intuitively, there are two possible de-
scriptions of the variability of this collection of shapes. One possibility is to consider
that shapes derive from a “template” shape with one central hump by random trans-
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Figure 7.2: Building an atlas using a prior. Prior: horizontal displacement. Tem-
plate at time t = 0 (purple curve) and other geometrical descriptor (blue cross).
Targets in black. The black vector is the fixed parameter that defines the direction
of the translation. Left: Before optimisation. Right: After optimisation.

lations of the hump in either direction. Another possibility is to consider that shapes
derive from “template” shape by unfolding the hump in one place and fold a hump
at another place. These two models of shape variability would explain the observed
samples equally well, and the problem is undecidable without assuming priors on the
solution. Determining the template reflecting the structure in the data set, and allowing
to study its variability is a well-known problem in computer vision and shape analysis,
as described in [KT97, MV07] for instance. If no point-correspondence is assumed, the
current implementation of most statistical shape analysis techniques will give one or the
other solution in an unpredictable way depending mostly on implementation choices,
initialisation, regularisation techniques, etc..

We show here that our approach based on modular deformations allows the user to
decide beforehand which solution he wants to favor. The addition a such a prior on the
sought solution is possible by the design of relevant modules.

7.1.1.1 Displacement of the hump

To obtain a description of shape variability based on horizontal translations of the hump,
we use a user-defined deformation module, which generates a vector field that is always
a horizontal translation at a fixed large scale σ (see Section 4.2.2.3, here we use σ = 3
and a constant direction of translation). We initialise the template curve with a shape
with no hump, include it into a silent module and combine it with the translation
module. We minimize the functional (5.12), where µ is the varifold distance between
the curves, which measures how well two curves are superimposed without the need to
have point correspondence and consistent orientation [CT13]. The minimisation results
is the optimal geometrical descriptors of the compound module, here the position of
the vertices of the template curve and the base point of the translation, and one initial
momentum per target shapes characterising the deformation of the template curve to
the corresponding target shape. In Figure 7.2 (left part) we present the initialisation of
the template and the geometrical descriptor, momenta ηk

0 are initialized at zero. The
fixed horizontal vector u = (1, 0) is plotted in black, it is not optimised during the
gradient descent and does not evolve during the integration of the trajectory of vector
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Figure 7.3: Building an atlas using a prior. Prior: horizontal displacement. Tem-
plate at time t (in purple), target shapes are in black. Other geometrical descriptor
at time t (blue cross). First line: momenta at t = 0 (in marine blue are momenta at-
tached to the template’s points and in blue the one attached to center of the translation
with fixed direction). Three lower lines : the black vector is the fixed parameter that
defines the direction of the translation, controls at t are represented by the length of
the red arrow.
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Figure 7.4: Building an atlas using a prior. Prior: vertical displacements. Tem-
plate at time t = 0 (purple curve) and other geometrical descriptor (blue crosses).
The black vector is the fixed parameter that defines the direction of the translation.
Targets in black. Left: Before optimisation. Right: After optimisation.

field. In Figure 7.2 (right part) we display the optimized shared parameters of optimal
trajectories: the optimized template and position for the geometrical descriptor at time
t = 0. The diffeomorphic deformation from the template to one target is parametrized
by values at time t = 0 of the template, the geometrical descriptor and the momentum
(dual variable of these quantities). We present on Figure 7.3, for two subjects, this
parametrization of trajectories (first row), and also the transport of the template to
targets with the geometrical descriptor and the control (last three rows). As the control
is scalar, it is plotted as the length of the vector of the translation: the unit horizontal
vector (fixed parameter) is plotted in black and in red is plotted this vector multiplied
by the scalar control.

7.1.1.2 Folding and unfolding patterns

By contrast, we may decide to describe the variability in this same data set by using
folding/unfolding pattern. The corresponding prior in the deformation model is encoded
by one deformation module generating vector fields that are always a sum of two vertical
translations at a fixed small scale σ (see Section 4.2.2.3, here we use σ = 0.4 and
constant directions of translations). In Figure 7.4 can be seen the template and other
geometrical descriptors before and after optimisation, as well as fixed vertical vectors .
Parametrisation of minimizing trajectories, and trajectories of the template, geometrical
descriptors and controls are plotted in Figure 7.5 for two subjects. As previously, controls
can be seen in the lengths of vertical vectors, black vectors being fixed vertical unit
vectors.

7.1.1.3 Fitting with data

In these two experiments the data term
∑P

k=1
1

σ2µ
(

φok,ηk · ftemp, f
k
target

)

(see Equa-

tion (5.12)) decreases significantly during the optimisation process (divided respectively
by 120 and 55). From these strong decreasing, we can deduce that both priors allow to
study the variability amongst the population, even though the first one seems to explain
a larger part of the variance.
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Figure 7.5: Building an atlas using a prior. Prior: vertical displacements. Tem-
plate at time t (in purple), target shapes are in black. Other geometrical descriptor
at time t (blue crosses). First line : momenta at t = 0 (in marine blue are momenta
attached to the template’s points and in blue the ones attached to centers of transla-
tions with fixed direction). Three lower lines : black vectors are the fixed parameter
that defines the directions of translations, controls at t are represented by the lengths
of red arrows.
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These two experiments show that one may obtain different templates and deforma-
tions from the same data set by using different prior on shape variability. Our method
allows the user to easily encode such prior in an intuitive and controlled manner by the
design of suitable modules.

7.1.1.4 Recovering dimension of the population

Even though we have 6 subjects, our population is of dimension 1. Let us study whether
this dimension can be recovered thanks to initial momenta. This would mean that these
two priors allow to describe the variability of the population thanks to a parameter of
dimension one which is not mandatory, even if the dimension of the population is one.
For the first prior, however it is straightforward: the control is of dimension 1 and the
cost is equal to the square of its norm, then the absolute value of the control is constant
along optimal trajectories (because the cost is). Then, as it is a continuous trajectory,
the control is constant. This shows that in this particular case, the initial value of
the control determines the geodesic trajectory. We deduce that the space of geodesic
trajectory (for a fix value of initial geometrical descriptor) is of dimension one and we
will show that this property can be recovered in the initial momenta (which is of high
dimension even though we know that the dimension of geodesic trajectory is one). For
the second prior the control is of dimension 2 and then can be non constant even if its
norm is. Therefore the space of geodesic trajectories is not of dimension one in this
case. However, we will show now that the 6 initial momenta of our population lie in a
subspace of dimension one.

In order to verify this, for each experiment, we compute a Principal Component
Analysis on initial momenta, and we obtain the principal direction (one for each prior).
In Figure 7.6 and 7.6 can be seen the result of shooting with these initial momenta.
Then we compare the norm of each initial momentum with the norm of its orthogonal
projection on the orthogonal of the principal direction (here we use the euclidean scalar
product to perform these projections as we do not have any natural inner product on
the cotangent space). For each subject, the norm of its projected initial momentum is
always less than 2.10−8 times the norm of the momentum in the case of the first prior,
and always less than 4.10−4 times the norm of the momentum in the case of the second
prior. This shows that in both cases the space of initial momenta is in fact of dimension
1.

7.1.2 Another population: only one adapted prior

We present now the results obtained for another data set presented in Figure (7.8):
here humps are at various locations. In Figure 7.9 is presented the initialisation and
optimisation of the template and geometrical descriptor if we incorporate the first kind
of prior in the deformation model, ie we use the deformation module generating always
a horizontal translation. The template has one big centred hump and the data term is
divided by 46 during the gradient descent. In Figure 7.10 are presented the same results
but if we use the other kind of prior, ie the deformation module generating always a
sum of two vertical translations. The optimised template seems less appropriate than
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Figure 7.6: Shooting in the principal direction. Prior: horizontal displacements.
Template at time t = 1 (in purple). Other geometrical descriptor at time t = 1
(blue cross). Black vector is the fixed parameter that defines the direction of translation,
control is represented by the length of the red arrow.

Figure 7.7: Shooting in the principal direction. Prior: vertical displacements.
Template at time t = 1 (in purple). Other geometrical descriptor at time t = 1
(blue crosses). Black vectors are the fixed parameter that defines the directions of
translations, control is represented by the lengths of the red arrows.
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Figure 7.8: Building an atlas using a prior. A different data set.

the previous one. This is confirmed by the evolution of the data terms during the two
gradient descents : it is only divided by 3. Here by comparing the decrease of the data
term we understand that the first prior is more adapted to this data set, and then that
the variability among the population is better described by horizontal displacements.
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Figure 7.9: Building an atlas using a prior. Prior: horizontal displacement. Tem-
plate at time t = 0 (purple curve) and other geometrical descriptor (blue cross).
Black vector is the fixed parameter that defines the direction of translation. Targets in
black. Left: Before optimisation. Right: After optimisation.
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Figure 7.10: Building an atlas using a prior. Prior: vertical displacement. Tem-
plate at time t = 0 (purple curve) and other geometrical descriptors (blue crosses).
Black vectors are the fixed parameters that define the direction of translations. Targets
in black. Left: Before optimisation. Right: After optimisation.
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Figure 7.11: The source shape in purple and the three target shapes which will be
considered in black.

7.2 A study of several priors with several imper-

fectly aligned target shapes

In this section we study the registration of two curves represented by currents (see
Section 3.3.1), with different possibilities of rigid alignment of the target shape. In
Figure 7.11 are plotted the three target shapes which will be considered, as well as
the source shape. These three curves are simplified representations of one-dimensional
section of hippocampi. Then, matching two hippocampi would be a generalisation of
this 2D-matching in three dimension. In general before performing such a registration,
one rigidly aligns the two shapes. However, this global rigid alignment may not align in a
satisfying way all corresponding areas of the two hippocampi. For instance in Figure 7.12
one can see that even though global shapes are rigidly aligned, the alignment is not
satisfying locally. This is the reason why we will study the registration of the source
shape with these misaligned targets.
We will perform these registrations thanks to four different deformation modules in order
to compare the stability of the deformation pattern they generate with variations of rigid
alignments.

7.2.1 Presentation of the four deformation modules

7.2.1.1 Module M1: sum of translations

The first deformation module M1 that we consider generates a sum of local translations
at scale σ = 40 (see Section 4.2.2.1). We fix this scale, and regularly initialize centres
of translations (geometrical descriptors) around the Source shape. We obtain then a
deformation module generating 60 local translations at scale 40.
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Figure 7.12: Hippocamp, amygdala and putamen for two subjects (green and orange)
with a global rigid registration.

7.2.1.2 Module M2: multi-scale sum of translations

The second deformation module which we consider is obtained through the combination
(see Section 4.1.1.4) of the previous deformation module M1 with the deformation mod-
ule generating one translation at scale 600. This scale is large with respect to the size
of curves so that the translation at scale 600 is a rigid one in the area of curves. The
goal of this compound deformation module M2 is to generate a multi-scale deformation,
capturing both rigid and non linear deformations. The geometrical descriptor is now
formed of the 60 centres of translations at scale 40 and the centre of the translation at
scale 600.

7.2.1.3 Module M3: studying deformation of humps

We build a third deformation module M3 so that it will help studying the translations
of humps and hollows, as well as their change of widths. To this end we build M3

as the combination of the previous deformation module M2 with two new deformation
modules. The first one generates a sum of three anisotropic local translations with prior
on directions (see Section 4.2.4) at scale 60 with coefficient of anisotropy equal to 1
(which means that each anisotropic translation is generated as a sum of three isotropic
translations aligned in the direction of anisotropy). The direction of anisotropy is fixed to
the vertical direction, the direction of the translation is fixed to the horizontal direction.
Both are kept constant during the optimisation process as well as the integration of
trajectories. The second deformation module that we combine generates a sum of three
local anisotropic spreading (see Section 4.2.4) at scale 60 with coefficient of anisotropy
also equal to 1. As for anisotropic translations, the direction of anisotropy is fixed to
the vertical direction, the direction of spreading is fixed to the horizontal direction and
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Figure 7.13: Target 1.. Source (in purple) and target (in black).

both are not transported by the flow.

7.2.1.4 Module M4: dissociating horizontal and vertical movements

In the deformation module M3, local horizontal displacements can be generated both
by the isotropic translations at scale 40 and the anisotropic spreadings and translations
at scale 60. In order to dissociate vertical and horizontal local displacements, we build
a new deformation module M4 as the combination of four deformation module: the
first one generates one unconstrained translation at scale 600, the second generates
a sum of four anisotropic spreadings at scale 60, the third generates a sum of four
anisotropic translations at scale 60. Instead of combining these deformation modules
with a deformation module generating unconstrained translations, we add translations
with prior on the direction, constrained to generate vertical displacements. Then we
have anisotropic horizontal displacements and isotropic vertical displacements, which
seems to be a prior adapted to our data.

7.2.2 Results of these registrations

7.2.2.1 Target 1

We will first present the registrations of the source shape with the aligned target shape
(target 1, see Figure 7.13) thanks to the four deformation modules. In these four cases
we estimate an initial value of active geometrical descriptor and an initial momentum
(dual variable of the active geometrical descriptors and the source shape). Momenta
are always initialized at the null vector. All these variable are estimated thanks to a
gradient descent (as presented in Chapter 6).

Module M1. With the deformation module M1, the initial geometrical descriptor
to estimate is formed of 60 centres of the translations at scale 60. The momentum
is formed of a dual variable of the source shape, and a dual variable of these centres
of translations. In Figure 7.14 can be seen the initialisation of geometrical descriptors
and their initial position after the gradient descent. They did not move much during
the optimisation process. In Figure 7.15 we plot the initial momentum parametrizing
the geodesic deformation in the first row. In other rows are plotted the evolution of
the source shape during the integration of the flow, as well as the control (vectors of
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Figure 7.14: Target 1, module M1. Source (in purple) and target (in black). △:
geometrical descriptor (centres of translations). Left: before optimisation. Right: after
optimisation.

translations). We can see that the matching is of good quality and that the deformation
is intuitively satisfying.

Module M2. With the deformation module M2, the initial geometrical descriptor to
estimate is formed of 60 centres of the translations at scale 60, and of the centre of
the translation at scale 600. The momentum is formed of a dual variable of the source
shape, and a dual variable of these centres of translations. In Figure 7.16 can be seen
the initialisation of geometrical descriptors and their initial position after the gradient
descent. In Figure 7.17 we plot the initial momentum in the first row. In other rows are
plotted the evolution of the source shape during the integration of the flow, as well as
the controls.
By comparing with the previous Section 7.2.2.1, we see that visually the same types of
deformation is occurring, except for the creation of the small hump, and that the centres
of translations at scale 40 have not moved during the optimisation process, similarly to
Section 7.2.2.1. However the controls (vector of translations) are not the same. In
particular with the deformation module M2, the translation at scale 600 generates a
large translation toward the right part of the curve and, in order to compensate, vector
of translations at scale 40 on the left part generate small translations toward the left
part. On the contrary, in Section 7.2.2.1, these translations have null vectors. But on
the right hand of the curve, a translation to the right seems necessary and it is carried
by small translations in Section 7.2.2.1, while it is carried by the large translation at
scale 600 in the multi-scale framework and then vectors of small translations are in this
part of smaller norm. Besides from the grid deformations of Figures 7.15 and 7.17, we
can see that with M2 the final deformation seems smoother (especially in the right-part
of the grid).

Module M3. With the deformation module M3, the initial geometrical descriptor to
estimate is formed of the centre of the translation at scale 600, 60 centres of the trans-
lations at scale 60 and the centres of the anisoptropic spreadings and translations. The
momentum is formed of a dual variable of the source shape, and a dual variable of these
centres. In Figure 7.18 can be seen the initialisation of geometrical descriptors and their
initial position after the gradient descent. In Figure 7.19 we plot the initial momen-
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Figure 7.15: Target 1, module M1. Source at time t (in purple) and target (in
black). Geometrical descriptor at time t: △ (centres of translations). First line:
Momentum at t = 0. Three lower lines: Control at time t: red arrows (vector of
translations).
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Figure 7.16: Target 1, module M2. Source (in purple) and target (in black). △:
geometrical descriptor (centres of translations), scales: 600 and 40. Left: before optimi-
sation. Right: after optimisation.

tum in the first row and, in other rows, the evolution of the source shape during the
integration of the flow, as well as the controls. For each anisotropic translation, the cor-
responding geometrical descriptor is a point associated with 2 directions (anisotropy and
translation), and the corresponding control is a vector of dimension 2. The correspond-
ing vector field is generated thanks to 3 points (one equal to the geometrical descriptor,
one above and one below, since the direction of anisotropy is vertical and the anisotropic
coefficient is one) represented by black circles and we plot the control vector attached to
these three points for visualisation purpose. For each anisotropic spreading, the corre-
sponding geometrical descriptor is a point associated with 2 directions (anisotropy and
translation), and the corresponding control is a scalar. The corresponding vector field is
generated thanks to 9 points (vertices of three triangles which are aligned in the vertical
direction of anisotropy) represented by black crosses and 9 vectors attached to these
points (see Section 4.2.4.2). Here as directions of anisotropy and spreading are orthog-
onal, vectors attached to the top of the triangles are always null, all these attached to
the bottom-right vertices are equal and all these attached to the bottom-left vertices are
the opposite of these attached to the bottom right. The control is represented by the
length and direction of these 6 non-null vectors.

We can see that this deformation module allows also a good registration. However,
only one anisotropic transform seems really useful: the translation with prior on the
direction at the extreme right. Here non linear patterns are rather generated thanks to
the local unconstrained translations.

Module M4. With the deformation module M4, the initial geometrical descriptor
to estimate is formed of the centre of the translation at scale 600, 60 centres of the
translations with prior on the direction at scale 60 and the centres of the anisoptropic
spreadings and translations. The momentum is formed of a dual variable of the source
shape, and a dual variable of these centres. In Figure 7.20 can be seen the initialisation
of geometrical descriptors and their initial position after the gradient descent.

In Figure 7.21 we plot the initial momentum in the first row. In other rows are
plotted the evolution of the source shape during the integration of the flow, as well as
the controls. Controls of anisotropic spreadings and translations will be represented in
the same way as in previous section. Similarly, for each isotropic vertical translation, the
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Figure 7.17: Target 1, module M2. Source at time t (in purple) and target (in
black). Geometrical descriptor at time t: △ (centres of translations), scales: 600
and 40. First line: Momentum at t = 0. Three lower lines: Control at time t: red
arrows (vector of translations).
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Figure 7.18: Target 1, module M3. Source (in purple) and target (in black). Geomet-
rical descriptor: △ (centres of translations, scale 600 and 40), blue vectors attached to
× (anisotropic spreading, scale 60), blue vectors attached to ◦ (anisotropic translations
with prior on direction, scale 60). Left: before optimisation. Right: after optimisation.

corresponding control is a scalar and it will be represented by the length and direction
of the vertical vector attached to the corresponding point (geometrical descriptor). We
can see that this deformation module also allows good registration. Here deformations
are more constrained and a combination of allowed displacements are used in order
to generated complex movements. For instance with the three previous deformation
modules, the small hump is created thanks to an oblique translation while with this
more constrained one, the small hump is generated thanks to the combined action of a
vertical translation and an anisotropic spreading.

7.2.2.2 Target 2

We will now present the registrations of the source shape with the second target (see
Figure 7.22), using the same deformation modules as previously. Geometrical descriptors
and momenta are initialized similarly to the previous Section. Results are presented in
Figures 7.23, 7.24, 7.25 and 7.26. It is clear here that the deformation module M1

generating a sum of translations (Figure 7.23) is not satisfying. The problems seems to
come from the current measure: folds are created, so that their norm is null for currents.
Besides we see that the deformation pattern is very complicated. This is due to the fact
that sums of local translations can generate very complex local transforms and as the
current measure is not adapted here, during the gradient descent converges to a solution
minimizing the energy but in a way which is not satisfying. On the contrary, M2 (see
Figure 7.24) performs a very good matching. Here allowing a movement at a large scale
enables translations at the smaller scale to generate satisfying local displacements. The
third deformation module M3 (see Figure 7.25) does not perform good registration. This
is not intuitive because this deformation module is a combination of the one generating
the multi-scale sum of translations with an other deformation module: it should be able
to perform registration at least as good as M3. This shows that local (but not global)
minima can be a real issue. The last deformation module M4 (see Figure 7.26) allows
to perform a good registration: the addition of constraints (translations at scale 40 are
constrained to be vertical) enables to obtained a more satisfying result.
We can see on Figures 7.24 and 7.26 that we obtain the same pattern of deformations
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Figure 7.19: Target 1, module M3. Source at time t (in purple) and target (in
black). Geometrical descriptor at time t: △ (centres of translations, scales 600 and
40), blue vectors attached to × (anisotropic spreading, scale 60), blue vectors attached to
◦ (anisotropic translations with prior on direction, scale 60). First line: Momentum at
t = 0. Three lower lines: Intermediate tools in black (× for spreading, ◦ for translations
with prior on direction) and Control at time t in red.
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Figure 7.20: Target 1, module M4. Source (in purple) and target (in black). Ge-
ometrical descriptor: △ (centres of translations, scale 600), blue vectors attached to ×
(anisotropic spreading, scale 60), blue vectors attached to ◦ (anisotropic translations
with prior on direction, scale 60), blue vectors attached to ♦ (isotropic translations with
prior on direction, scale 40). Left: before optimisation. Right: after optimisation.

as in the previous section when shapes were centred.

7.2.2.3 Target 3

We study now the registration of the source shape and the third target (see Figure 7.27).
We show the results obtained with deformation modules M2 and M4 as, from the pre-
vious section, they are the only two susceptible to perform good registrations. Results
are presented in Figures 7.28 and 7.29. We see that here they are not able to perform a
good matching: they both fall in a local minimum.

7.2.2.4 Conclusion

These four deformation modules seem to allow good registration when shapes are well
aligned. However, when shapes are displaced, optimised deformation patterns are no
longer satisfying. This seems to be due to a too small scale for the current distance: the
right part of the target curve is not taken into account because it is too far from the
source shape with respect to other parts of the target shape. This is why in the next
section we study a multi-scale data-attachment term.

7.2.3 A multi-scale data attachment term

In previous experiments we used the same kernel for currents for all experiments: it is
equal to 50. However it seems clear that when the two shapes are far from each other,
this scale does not allow to see long distance differences. Then some parts of the target
curve might not be taken into account. On the contrary, if the scale of currents is to
big, fine differences in hump patterns will not be taken into account. This suggests
that we should use a multi-scale data attachment term. We perform here a common
approximation of this idea: we change the scale of the currents at the middle of the
optimisation process. This is not totally satisfying because we change the functional to
minimize. However, this can be seen as an approximation of a data attachment term
obtained by summing the distances obtained with two scales of kernels: in the first



CHAPTER 7. NUMERICAL EXPERIMENTS 147
M
o
m
e
n
ta

t=
0

0 50

C
o
n
tr
o
l

t=
0

C
o
n
tr
o
l

t=
0
.3

C
o
n
tr
o
l

t=
0
.6

C
o
n
tr
o
l

t=
1

Figure 7.21: Target 1, module M4. Source at time t (in purple) and target (in
black). Geometrical descriptor at time t: △ (centres of translations, scale 600),
blue vectors attached to × (anisotropic spreading, scale 60), blue vectors attached to
◦ (anisotropic translations with prior on direction, scale 60), blue vectors attached to
♦ (isotropic translations with prior on direction, scale 40). First line: Momentum at
t = 0. Three lower lines: Intermediate tools in black (× for spreading, ◦ for translations
with prior on direction) and Control at time t in red.
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Figure 7.22: Target 2. Source (in purple) and target (in black).

phase, the two shapes are too far from each other and then only the distance for the
large scale in non zero, while in the second phase shapes are close to each other and
the distance for the large scale is close to zero whereas the distance for the small scale
is now non zero. We emphasize here that even though we change the scale of currents,
the scale of deformations do not change: it does not correspond to performing first rigid
and then non linear registration. We still optimize simultaneously deformations at small
and large scale. We present here the results for the three possible target shapes and the
four deformation modules, we use two scales for currents: first we set it to 100 and after
a fixed number of iterations (here 500) we change it to 30.

7.2.3.1 Target 1

We first present the result of this multi-scale data attachment term with the centred
data since we need to ensure that we obtain the same result (i.e. same optimized geo-
metrical descriptor and trajectory of controls) as when we directly register with a small
scale for currents. For deformation module M1, the result is presented in Figure 7.34
and one can see that it is similar to the one obtained Section 7.2.2.1. For the second
deformation module M2 (see Figure 7.35), results are also similar even though in this
case of multi-scale data attachment term some controls are larger and enable to per-
form a registration slightly more efficient. For the third deformation module M3 (see
Figure 7.36), the result is less satisfying: geometrical descriptor of anisotropic spread-
ings and anisotropic translations are not optimized the same way. However, geometrical
descriptors of isotropic translations, as well are their controls, are very similar to Sec-
tion 7.2.2.1. This seems to be due to the fact that these anisotropic deformations do not
have a large influence on the global deformation: most of the transform is generated by
the isotropic translations. In this sense, it is not surprising that their is no stability on
the optimisation of geometrical descriptors for anisotropic spreadings and translations.
On the opposite for deformation module M4 (see Figure 7.37) we recover the stability
in optimisation: as translations at scale 40 are constrained to be vertical, horizontal
displacements need to be generated thanks to anisotropic spreading and translations.



CHAPTER 7. NUMERICAL EXPERIMENTS 149

M
o
m
e
n
ta

t=
0

0 50
C
o
n
tr
o
l

t=
0

C
o
n
tr
o
l

t=
0
.3

C
o
n
tr
o
l

t=
0
.6

C
o
n
tr
o
l

t=
1

Figure 7.23: Target 2, module M1. Source at time t (in purple) and target (in
black). Geometrical descriptor at time t: △ (centres of translations). First line:
Momentum at t = 0. Three lower lines: Control at time t: red arrows (vector of
translations).
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Figure 7.24: Target 2, module M2. Source at time t (in purple) and target (in
black). Geometrical descriptor at time t: △ (centres of translations), scales: 600
and 40. First line: Momentum at t = 0. Three lower lines: Control at time t: red
arrows (vector of translations).
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Figure 7.25: Target 2, module M3. Source at time t (in purple) and target (in
black). Geometrical descriptor at time t: △ (centres of translations, scales 600 and
40), blue vectors attached to × (anisotropic spreading, scale 60), blue vectors attached to
◦ (anisotropic translations with prior on direction, scale 60). First line: Momentum at
t = 0. Three lower lines: Intermediate tools in black (× for spreading, ◦ for translations
with prior on direction) and Control at time t in red.
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Figure 7.26: Target 2, module M4. Source at time t (in purple) and target (in
black). Geometrical descriptor at time t: △ (centres of translations, scale 600),
blue vectors attached to × (anisotropic spreading, scale 60), blue vectors attached to
◦ (anisotropic translations with prior on direction, scale 60), blue vectors attached to
♦ (isotropic translations with prior on direction, scale 40). First line: Momentum at
t = 0. Three lower lines: Intermediate tools in black (× for spreading, ◦ for translations
with prior on direction) and Control at time t in red.
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Figure 7.27: Target 3. Source (in purple) and target (in black).

7.2.3.2 Target 2

We present here the result we obtain with this multi-scale data-attachment term for
shapes of Section 7.2.2.2. In Figure 7.34 we see that the first module M1 still does not
allow to perform a satisfying registration. On the contrary, in Figure 7.36, one can see
that now the trajectory obtained thanks to M3 is satisfactory: the multi-scale data at-
tachment term enables to use the multi-scale deformations. The two other deformations
modules M2 (see Figure 7.35) and M4 (see Figure 7.37) are still satisfying. Besides,
optimisation of geometrical descriptors are similar but trajectories of controls are dif-
ferent for some translations at scale 40 (unconstrained for M2 and constrained to be
vertical for M4) and the registration is of slightly better quality with these multi-scale
data attachment term. However, same patterns of deformations are used to match the
source shape into the target shape, and they are generated in similar ways with the two
data attachment terms.

7.2.3.3 Target 3

As a last example, we present the result we obtain with this multi-scale data-attachment
term for the target shape of Section 7.2.2.3. In Figure 7.38 we see that similarly to the
previous example, the first module M1 does not allow to perform a satisfying registra-
tion. For the three other deformation modules (see Figures 7.35, 7.40 and 7.41). This
shows that a multi-scale data attachment term is more natural in case of multi-scale
deformations.

7.2.4 Interpretation of optimized parameters

We will now study how parametrization of trajectories can be interpreted, by comparing
the different results we obtained for the three different target shapes for deformation
modules M2, M2 and M3. The deformation module M1 does not give satisfying regis-
trations and then it will not be considered here. We will only consider results obtained
with multi-scale data-attachment term because from the results we presented earlier, it
is the only one allowing good registrations.



CHAPTER 7. NUMERICAL EXPERIMENTS 154

M
o
m
e
n
ta

t=
0

0 50

C
o
n
tr
o
l

t=
0

C
o
n
tr
o
l

t=
0
.3

C
o
n
tr
o
l

t=
0
.6

C
o
n
tr
o
l

t=
1

Figure 7.28: Target 3, module M2. Source at time t (in purple) and target (in
black). Geometrical descriptor at time t: △ (centres of translations), scales: 600
and 40. First line: Momentum at t = 0. Three lower lines: Control at time t: red
arrows (vector of translations).



CHAPTER 7. NUMERICAL EXPERIMENTS 155

M
o
m
e
n
ta

t=
0

0 50

C
o
n
tr
o
l

t=
0

C
o
n
tr
o
l

t=
0
.3

C
o
n
tr
o
l

t=
0
.6

C
o
n
tr
o
l

t=
1

Figure 7.29: Target 2, module M4. Source at time t (in purple) and target (in
black). Geometrical descriptor at time t: △ (centres of translations, scale 600),
blue vectors attached to × (anisotropic spreading, scale 60), blue vectors attached to
◦ (anisotropic translations with prior on direction, scale 60), blue vectors attached to
♦ (isotropic translations with prior on direction, scale 40). First line: Momentum at
t = 0. Three lower lines: Intermediate tools in black (× for spreading, ◦ for translations
with prior on direction) and Control at time t in red.
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Figure 7.30: Target 1, multi-scale data attachment term, module M1. Source
at time t (in purple) and target (in black). Geometrical descriptor at time t: △
(centres of translations). First line: Momentum at t = 0. Three lower lines: Control
at time t: red arrows (vector of translations).
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Figure 7.31: Target 1, multi-scale data attachment term, module M2. Source
at time t (in purple) and target (in black). Geometrical descriptor at time t: △
(centres of translations), scales: 600 and 40. First line: Momentum at t = 0. Three
lower lines: Control at time t: red arrows (vector of translations).
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Figure 7.32: Target 1, multi-scale data attachment term, module M3. Source at
time t (in purple) and target (in black). Geometrical descriptor at time t: △ (centres
of translations, scales 600 and 40), blue vectors attached to × (anisotropic spreading,
scale 60), blue vectors attached to ◦ (anisotropic translations with prior on direction,
scale 60). First line: Momentum at t = 0. Three lower lines: Intermediate tools in
black (× for spreading, ◦ for translations with prior on direction) and Control at time
t in red.
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Figure 7.33: Target 1, multi-scale data attachment term, module M4. Source
at time t (in purple) and target (in black). Geometrical descriptor at time t: △
(centres of translations, scale 600), blue vectors attached to × (anisotropic spreading,
scale 60), blue vectors attached to ◦ (anisotropic translations with prior on direction,
scale 60), blue vectors attached to ♦ (isotropic translations with prior on direction, scale
40). First line: Momentum at t = 0. Three lower lines: Intermediate tools in black (×
for spreading, ◦ for translations with prior on direction) and Control at time t in red.
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Figure 7.34: Target 2, multi-scale data attachment term, module M1. Source
at time t (in purple) and target (in black). Geometrical descriptor at time t: △
(centres of translations). First line: Momentum at t = 0. Three lower lines: Control
at time t: red arrows (vector of translations).



CHAPTER 7. NUMERICAL EXPERIMENTS 161

M
o
m
e
n
ta

t=
0

0 50
C
o
n
tr
o
l

t=
0

C
o
n
tr
o
l

t=
0
.3

C
o
n
tr
o
l

t=
0
.6

C
o
n
tr
o
l

t=
1

Figure 7.35: Target 2, multi-scale data attachment term, module M2. Source
at time t (in purple) and target (in black). Geometrical descriptor at time t: △
(centres of translations), scales: 600 and 40. First line: Momentum at t = 0. Three
lower lines: Control at time t: red arrows (vector of translations).
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Figure 7.36: Target 2, multi-scale data attachment term, module M3. Source at
time t (in purple) and target (in black). Geometrical descriptor at time t: △ (centres
of translations, scales 600 and 40), blue vectors attached to × (anisotropic spreading,
scale 60), blue vectors attached to ◦ (anisotropic translations with prior on direction,
scale 60). First line: Momentum at t = 0. Three lower lines: Intermediate tools in
black (× for spreading, ◦ for translations with prior on direction) and Control at time
t in red.
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Figure 7.37: Target 2, multi-scale data attachment term, module M4. Source
at time t (in purple) and target (in black). Geometrical descriptor at time t: △
(centres of translations, scale 600), blue vectors attached to × (anisotropic spreading,
scale 60), blue vectors attached to ◦ (anisotropic translations with prior on direction,
scale 60), blue vectors attached to ♦ (isotropic translations with prior on direction, scale
40). First line: Momentum at t = 0. Three lower lines: Intermediate tools in black (×
for spreading, ◦ for translations with prior on direction) and Control at time t in red.
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Figure 7.38: Target 3, multi-scale data attachment term, module M1. Source
at time t (in purple) and target (in black). Geometrical descriptor at time t: △
(centres of translations). First line: Momentum at t = 0. Three lower lines: Control
at time t: red arrows (vector of translations).
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Figure 7.39: Target 3, multi-scale data attachment term, module M2. Source
at time t (in purple) and target (in black). Geometrical descriptor at time t: △
(centres of translations), scales: 600 and 40. First line: Momentum at t = 0. Three
lower lines: Control at time t: red arrows (vector of translations).
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Figure 7.40: Target 3, multi-scale data attachment term, module M3. Source at
time t (in purple) and target (in black). Geometrical descriptor at time t: △ (centres
of translations, scales 600 and 40), blue vectors attached to × (anisotropic spreading,
scale 60), blue vectors attached to ◦ (anisotropic translations with prior on direction,
scale 60). First line: Momentum at t = 0. Three lower lines: Intermediate tools in
black (× for spreading, ◦ for translations with prior on direction) and Control at time
t in red.
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Figure 7.41: Target 3, multi-scale data attachment term, module M4. Source
at time t (in purple) and target (in black). Geometrical descriptor at time t: △
(centres of translations, scale 600), blue vectors attached to × (anisotropic spreading,
scale 60), blue vectors attached to ◦ (anisotropic translations with prior on direction,
scale 60), blue vectors attached to ♦ (isotropic translations with prior on direction, scale
40). First line: Momentum at t = 0. Three lower lines: Intermediate tools in black (×
for spreading, ◦ for translations with prior on direction) and Control at time t in red.
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7.2.4.1 Optimized geometrical descriptor

Let us first study the optimization of geometrical descriptor.
For the deformation module M2, as the distance between centres of translation at scale
40 is equal to 40, they do not move much during the optimisation and then their opti-
mized initial position cannot really be interpreted.
For M3, centres translations at scale 40 are also close to each other and then do not move
a lot during the optimization process. Centres of anisotropic spreadings and translations
are very similar for first target shape and the third one (which are close to each other
with respect to the second target). The only centre optimized similarly for the second
target is a centre of anisotropic translation, around the creation of the small hump. For
all other centres of anisotropic transforms, the optimisation is different. As pointed out
previously, this is probably due to the fact that most of the global deformations are
generated thanks to the isotropic translations at scale 40.
For the last deformation module, the optimized positions of centres of anisotropic spread-
ings and translations are similar for the three types of targets: with this constrained de-
formation module they are always needed in the same locations to enable the matching
of the source shape onto the target one, regardless the rigid translation. Similarly, opti-
mized positions of centres of isotropic translations are similar for the three experiments.
This is probably due to two factors: first there are here less translations at scale 40
here than for M2 and M3 and then their centres need to move during the optimisation
process. Besides as here translations are constrained to be vertical, the deformation they
can generate is less rich. Then for different positions of their centres, it is not possible to
generate similar transforms while it is in general possible for unconstrained translations:
by constraining the deformation model, we increase the stability of the optimisation
with respect to rigid displacements.

These experiments show that if the constraints are adapted, the optimization of
initial geometrical descriptors can be interpreted since it does not depend on rigid
displacements. However, when deformations are not constrained enough, we loose this
interpretability. On the opposite, if the deformation is too constrained, a particular
geometrical descriptor could be needed at different locations, and then its convergence
would depend on initial conditions (and then would not be meaningful).

7.2.4.2 Trajectories of controls

For deformation module M4, as horizontal and vertical displacements are dissociated,
controls can be naturally interpreted. Besides trajectories of controls for all deformations
except the translation at scale 600 are very similar for all experiments, which confirm
that they are meaningful. Then for this deformation module, studying the control
corresponding to a particular type of displacement at a particular location, allows to
study how this displacement occurs. This is not the case for M3. As we explained
previously, the sum of unconstrained translations at scale 40 enables to generate a very
rich set of deformations, and then parameters of anisotropic transforms cannot be as
well interpreted. We see on figures 7.32, 7.36 and 7.40 that when their controls is non
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zero, unconstrained translations around them often generate a similar transforms. Then
here their control cannot really be interpreted as the strength with which this type of
deformation is needed here. This is a general remark which is due to the non injectivity
of the field generator. The same phenomenon occurs with deformation module M2:
translations at scale 40 also carry slightly the rigid translation. This can be seen by
comparing controls of translations located in similar area for the registrations of the
three targets: their controls are "biaised" in the direction of the translation at scale 600.

As a conclusion one should note that controls cannot be directly interpreted. However
when the deformation model is constrained enough, this interpretation can be done
without reserve. In general it is not the case, and controls can be used to interpret the
type of deformations that are necessary, but not really to interpret the strength with
which they are needed.

7.2.4.3 Comparison of initial momenta

One thing to be noted is that for deformation module M2, silent initial momenta carried
by the source shape for the three different targets are similar. This is also the case for
deformation module M4 but for deformation module M3, the silent initial momenta are
similar only between the centred target shape and the third one: only when initial geo-
metrical descriptors are optimized similarly. This is at first sight surprising because the
deformations needed are really different and a priori, the silent momenta should carry
different information. However, the only difference is the rigid registration, which is en-
coded by the control of the translation at scale 600. Let us we denote M̃ = (Õ, H̃, ζ̃, ξ̃, c̃)
the deformation module generating a local translation at scale 600, ξ the infinitesimal
action on our data curves and (e1, e2) an orthonormal basis of R

2. From Remark 23
we obtain that for u ∈ {1, 2}, the gradient at f of the u−th component of the geodesic
control h̃ of M̃ with respect to the silent momentum is ξf ◦ ζ̃(eu). Besides, there is no
reason for this control to vary during the integration of the geodesic trajectory: as it
affects all points in the same manner, the trajectories of least cost are the constant ones.
Then the gradient of the u−th component of the rigid translation is roughly ξf ◦ ζ̃(eu)
and since ζ̃(eu) is roughly a rigid transform, the gradient will be the same for all points of
the curves. As a consequence, all vectors of the initial silent momentum will contribute
similarly to the rigid registration. Then the influence of the needed rigid translation
on the initial momentum is distributed similarly on all points of the curve and it is
negligible compared with influences of more local deformation patterns (which will not
be spread on all momenta but only on a few of them). This explains why they are so
similar to each other. As an illustration, we subtract this "rigid translation contribution"
from initial momenta obtained thanks to the deformation module M4 for the matching
with the second target, and we compute the new geodesic trajectory corresponding to
this new momentum: it is displayed in Figure 7.42. We see that the deformation is close
to the one we obtained previously, except that the rigid translation is almost null.
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Figure 7.42: Target 2, multi-scale data attachment term, module M4, shoot-
ing with rigid part removed. Source at time t (in purple) and target (in black).
Geometrical descriptor at time t: △ (centres of translations, scale 600), blue vectors
attached to × (anisotropic spreading, scale 60), blue vectors attached to ◦ (anisotropic
translations with prior on direction, scale 60), blue vectors attached to ♦ (isotropic
translations with prior on direction, scale 40). First line: Momentum at t = 0. Three
lower lines: Intermediate tools in black (× for spreading, ◦ for translations with prior
on direction) and Control at time t in red.
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Figure 7.43: Target 1, multi-scale data attachment term, module M̃3. Source at
time t (in purple) and target (in black). Geometrical descriptor at time t: △ (centres
of translations, scales 600 and 40), blue vectors attached to × (anisotropic spreading,
scale 60), blue vectors attached to ◦ (anisotropic translations with prior on direction,
scale 60). First line: Momentum at t = 0. Three lower lines: Intermediate tools in
black (× for spreading, ◦ for translations with prior on direction) and Control at time
t in red.
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Figure 7.44: Target 2, multi-scale data attachment term, module M̃3. Source at
time t (in purple) and target (in black). Geometrical descriptor at time t: △ (centres
of translations, scales 600 and 40), blue vectors attached to × (anisotropic spreading,
scale 60), blue vectors attached to ◦ (anisotropic translations with prior on direction,
scale 60). First line: Momentum at t = 0. Three lower lines: Intermediate tools in
black (× for spreading, ◦ for translations with prior on direction) and Control at time
t in red.
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Figure 7.45: Target 3, multi-scale data attachment term, module M̃3. Source at
time t (in purple) and target (in black). Geometrical descriptor at time t: △ (centres
of translations, scales 600 and 40), blue vectors attached to × (anisotropic spreading,
scale 60), blue vectors attached to ◦ (anisotropic translations with prior on direction,
scale 60). First line: Momentum at t = 0. Three lower lines: Intermediate tools in
black (× for spreading, ◦ for translations with prior on direction) and Control at time
t in red.
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7.2.5 Favouring some deformation patterns by changing the
metric

We saw that when using the deformation module M3, the anisotropic spreadings and
translations had controls almost equal to zero along the trajectories and that the opti-
misation of their initial geometrical descriptors were not similar for the three positions
of the target shape. We concluded that these two phenomena had a common cause: the
non linear deformation patterns are generated by the local translations at scales 40. In
this section we study the idea, presented in Section 5.2.3.3, that it is possible to favour
the use of the deformation generated by one of the combined deformation modules by
changing the combination rule for the costs.
The deformation module M3 is built as the combination of four deformation modules
and its cost is given by the sum of the costs of these four deformation modules. We build
now a different module M̃3 which is similar to M3 = (O3, H3, ζ3, ξ3, c3) except that in
the compound cost, the contributions of the module generating the anisotropic spread-
ing, and the one generating the anisotropic translations are divided by 3: we can write
M̃3 = (O3, H3, ζ3, ξ3, c̃3). Then with this deformation module M̃3, using anisotropic
spreadings and translations "costs" three times less than with M3. As a consequence,
geodesic trajectories are not the same with M̃3 as with M3, and in particular to a given
momentum corresponds now an other geodesic control as presented in Section 5.2.3.3.
We present in Figures 7.43, 7.44 and 7.45 the results of the registrations with M̃3 for
the three target shapes. We can see that controls associated to the anisotropic spread-
ings and translations are now clearly non null. Besides the optimised positions of their
geometrical descriptors are now similar for the three positions of the target shapes.
This experiment shows first that the fact that the optimisations of their geometrical
descriptors were different for the different target shapes was due to the fact that these
deformations were not really used to generate the non linear patterns. It also confirms
that we are able to favour one of the combined deformation modules by reducing its
costs: the non-weighted sum that we have been defining for compound costs is not the
only possibility and might not be the most adapted in some cases.

7.3 Performing jointly rigid and non linear registra-

tion to study variability among the population

In this section we present the construction of an atlas from a collection of 40 rabbit
profiles (see Figure 7.46 for examples) with variable ear size and variable positioning
of the shape in the ambient space. These shapes are encoded as varifolds (see 3.3.2,
[CT13]) so that no point-correspondence is assumed. We propose here to combine rigid
registration and local deformation in a single optimisation, whereas in the vase majority
of cases shapes are rigidly registered as a pre-processing step before statistical analysis.
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Figure 7.46: Performing jointly rigid and non linear registration. Target shapes
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Figure 7.47: Performing jointly rigid and non linear registration. SDGS frame-
work. Template at time t = 0 (purple shape) and other geometrical descriptors:
rotation’s one is the blue circle, the translation’s ones is the blue square and translations
with transported vectors’ ones have their dot-component represented by blue diamonds
and their vector components represented by green arrows. Targets in black. Left:
Before optimisation. Right: After optimisation.
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Figure 7.48: Performing jointly rigid and non linear registration. SDGS frame-
work. Template at time t (in purple), target shapes are in black. Other geomet-
rical descriptors at time t: rotation’s one at the blue circle, the translation’s one at
the blue square, translations with updated directions ones have their dot-component at
blue diamonds and their vector-component represented by green arrows. Left column:
Momenta at t = 0 in blue, attached to their geometrical descriptor (translations with
update directions’ ones have their vector-component represented in green, attached to
the center of the translation). Three right-hand columns: Controls at time t : the red
arrow attached to the blue square is the translation’s one, the rotation’s one is repre-
sented by the portion of the black circle coloured in red, and the one of translations with
transported vectors are represented by the lengths and orientations of the red arrows
attached to the blue diamond.
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7.3.1 Using an adapted deformation module

To this end, we propose to use a deformation module M which is the combination of
three deformation modules: the first one generates vector fields that are a rotation at
scale 5000 (see Section 4.2.3), the second one generates vector fields that are a transla-
tion at scale 5000 (see Section 4.2.2). The last deformation module generates a sum of
two translations prior on directions, with directions updated by adjoint action, at scale
600 (See Section 4.2.2.3). The first two modules encode a rigid body transformation (at
the scale of the shapes), and the third one encodes local non-linear deformation pat-
terns. In Figure 7.47 are plotted template and other geometrical descriptors at t = 0,
before and after optimisation. Note that the geometrical descriptor of the deformation
module generating a sum of two translations with prior on directions is composed of
two points and two vectors : the initial directions of these two vectors are shared by all
subjects. The optimised initial directions are along ears : the variability amongst the
population at this scale is in the direction of ears, which was expected. Besides, as a
consequence, values of associated controls measure the growth or shrinking of ears and
then this particular feature can be studied independently from the rigid registration. In
Figure 7.48, on the first columns, are presented parametrisation of minimizing trajecto-
ries (template,other geometrical descriptors and momenta) for three subjects. Note that
momenta associated to the sum of two translations with updated directions have two
components: one associated to base points of translations, and one to vectors of trans-
lations. All these vectors are represented attached to the base point of the translation,
but in different colors. In the three columns on the right hand side of this figure are
represented the trajectory of the template, geometrical descriptors and controls for these
three subjects. Controls associated to translations with updated direction are scalar so
they are represented as lengths of vectors. The geometrical descriptor of the rotation
is a blue circle, circled by a black one. The control associated to the rotation (scalar)
is represented by the portion of this black circle which is coloured in red (the control is
positive if the colouring is anti-clockwise and negative otherwise).

7.3.2 Comparison with the Sparse LDDMM framework
[DPGJ11]

We compare our result with the one obtained by rigidly registering data beforehand and
then applying the framework developed in [DPGJ11]: in this framework the vector field
is built as a sum of local translations carried by control points. We use here 50 control
points, and we set the scale of translations equal to 500. In Figure 7.49 we present
the targets after the rigid registration, as well as the initial position of the template
and control points, before and after optimisation. In Figure 7.50 are presented the
parametrisation of optimal trajectories for several subjects (in this framework momenta
are equal to controls) and the evolution of the template, control points and controls.
One can see that non linear deformations are now necessary not only in the area of the
ears, but also in the inferior part of the head. This fact is the direct consequence of the
rigid-body registration, which does not align the inferior parts of the heads. It shows the
sub-optimality of the greedy approach that consists in optimising the rigid part and the
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Figure 7.49: Performing rigid before non linear registration. Framework
[DPGJ11]. Template at time t = 0 (purple) and control points (blue crosses). Tar-
gets in black. Left: Before optimisation. Right: After optimisation.
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Figure 7.50: Performing rigid before non linear registration. Framework
[DPGJ11]. Template at time t (in purple), target shapes are in black. Control
points at time t (blue crosses). Left column: Momenta at t = 0 (blue arrows). Three
right-hand columns: Controls at time t in red.



CHAPTER 7. NUMERICAL EXPERIMENTS 180

1000 3000

Initialisation

1000 3000

−1000

1000

3000

Optimisation

Figure 7.51: Performing jointly rigid and non linear registration. SIGS frame-
work. Template at time t = 0 (purple shape) and other geometrical descriptors:
rotation’s one is the blue circle, the translation’s ones is the blue square and translations
with transported vectors’ ones have their dot-component represented by blue diamonds
and their vector components represented by green arrows. Targets in black. Left:
Before optimisation. Right: After optimisation.

non-linear part in two consecutive step. Very few mathematical frameworks may deal
with this issue, whereas it is well-known in the statistical shape analysis community.
By contrast, the method that we present here allows the joint optimisation of linear
and non-linear deformation patterns by the use of combined deformation modules at
various scales. The resulting explanation of the variability seen in the data is much
more satisfying by displaying a fixed head and ears of variable sizes.

7.3.3 With the SIGS framework

7.3.3.1 Presentation

In the SDGS framework presented in Section 7.3.1, we combine deformation module M
with the silent deformation module induced by the data shape space. Then optimal
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Figure 7.52: Performing jointly rigid and non linear registration. SIGS frame-
work. Template at time t (in purple), target shapes are in black. Geometrical
descriptors at time t: rotation’s one at the blue circle, the translation’s one at the
blue square, translations with updated directions ones have their dot-component at blue
diamonds and their vector-component represented by green arrows. Left column: Mo-
menta at t = 0 in blue, attached to their geometrical descriptor (translations with
update directions’ ones have their vector-component represented in green, attached to
the center of the translation). Three right-hand columns: Controls at time t : the red
arrow attached to the blue square is the translation’s one, the rotation’s one is repre-
sented by the portion of the black circle coloured in red, and the one of translations with
transported vectors are represented by the lengths and orientations of the red arrows
attached to the blue diamond.
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Figure 7.53: Decreasing of the data attachment term for the two proposed
frameworks. x axis: number of iterations, y axis: data attachment term. Left: total
curve. Right: zoom.

deformations transporting the mean shape to each subject are parametrized by an
initial momenta of this compound deformation module and its dimension is higher
than the dimension of data shapes. As explained in Section 5.4.1, it is possible to
restrict ourselves to deformations parametrized in smaller dimension: we consider
optimal trajectories that can be generated by M and then search, amongst them, the
ones that enable to transport the mean shape as close as possible to data shapes. In
this framework we estimate one mean shape, one initial geometrical descriptor (of M ,
so only centers of translations, rotation and directions of translations with prior on
directions) and 40 initial momenta. Here momenta are dual variable for deformation
module M and then are of dimension of its geometrical descriptor: 12 (2 for the
translation, 2 for the rotation and 4 for each translation with prior on direction). Initial
position for the mean shape and geometrical descriptor are presented in Figure 7.51
before (left) and after (right) optimization. We also present in Figure 7.52 the
parametrization of minimizing trajectories (template, initial geometrical descriptors
and momenta) and trajectories of template, geometrical descriptors and controls. It
can be seen that in this SIGS framework there is no momentum attached to the template.

7.3.3.2 Comparison with the SDGS framework

In Figure 7.53 we plot the decreasing of the data-attachment term for both SDGS and
SIGS framework. One can see that at the beginning of the optimisation process, the
SDGS framework seems more efficient. Nevertheless this is no longer true after around
300 iterations. This is confirmed by the comparison of Figure 7.47 with 7.51 and 7.48
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with 7.51. One can also see that initial geometrical descriptors and trajectories of con-
trols are close between the two frameworks (even though not equal). Initial momenta on
the contrary are necessary different since in the SDGS framework there is an additional
momentum attached to the mean shape. We can see that, as a consequence, initial
momenta for the SIGS framework are of larger norm. This comes from the fact that
each component of the control is equal to the application of the momenta to a speed
the corresponding deformation module can generate (see Proposition 29). Then here
controls associated to the translation, rotation or a translation with prior on direction
will be influenced by points which are close to their centre with respect to their scale.
Therefore in the SDGS framework momenta attached to geometrical descriptors which
are close to one of these centres will increase the norm of the corresponding control. In
the SDGS framework momenta attached to the mean shape will be taken into account
on the computation of controls while in the SIGS framework, only momenta attached to
centres and vectors of the translations, rotation and translation with prior on direction
will count. Then in the second case they have to be larger in order to obtain controls
with norms of the same order as in the SDGS framework.

7.3.4 Recovering the dimension of the population

The population of shapes we study is of dimension 5 as in fact they all derive from
the same rabbit-head profile which has been rigidly translated (dimension 2), rotated
(dimension 1) and whose ears’ lengths have been changed (dimension 2). In order to
study whether we can recover this dimension from initial momenta, we perform a PCA
on initial momenta. Then for each n from 1 to 10, we project momenta on the orthogonal
of the subspace generated by the first n principal directions and we consider the ratio,
for each momentum, of the norm of this projection with the norm of the momentum. In
Figure 7.54 we plot the maximum value taken by this ratio amongst the 40 momenta,
for each number of principal directions n. We can see that for n = 5, for all subjects’
momentum the residual norm of the projection on the 5-dimensional space is less than a
percent of the norm which means that the 40 momenta roughly leave in this subspace of
dimension 5. However, 5 is also the dimension of initial controls and then we need to be
sure that the reason why momenta leave in a subspace of dimension 5 is because it is the
dimension of the population and not because it is the subspace of the initial controls. In
order to do so we study a new population of shapes which is built similarly but where
the two ears of each subject are constrained to be of the same size: the dimension of this
new population is 4. We compute an atlas of this population with the same deformation
module, so that the dimension of initial controls is still 5. Three examples of geodesic
trajectories can be seen in Figure 7.55. As previously we perform a PCA and study the
norm of the projection on the orthogonal of the subspace of n principal directions for
n from 1 to 10. We plot the maximum of the quotient of this residual norm and the
norm of momenta in Figure 7.54. We can see that here only 4 dimensions are sufficient
to generate these 40 momenta.



CHAPTER 7. NUMERICAL EXPERIMENTS 184

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Symmetrical population

Asymmetrical population

Figure 7.54: Ratio of norms. x axis: number n of principal directions , y axis:
maximum ratio of the norm of the projection of momenta on the orthogonal of the
subspace of first n principal directions and the norm of the momenta. In red is the plot
for the population with the two ears of different sizes, and in blue for the population
with the two ears of same size.
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Figure 7.55: Performing jointly rigid and non linear registration, symmetric
population. SDGS framework. Template at time t (in purple), target shapes are in
black. Other geometrical descriptors at time t: rotation’s one at the blue circle, the
translation’s one at the blue square, translations with updated directions ones have their
dot-component at blue diamonds and their vector-component represented by green ar-
rows. Left column: Momenta at t = 0 in blue, attached to their geometrical descriptor
(translations with update directions’ ones have their vector-component represented in
green, attached to the center of the translation). Three right-hand columns: Controls
at time t : the red arrow attached to the blue square is the translation’s one, the rota-
tion’s one is represented by the portion of the black circle coloured in red, and the one
of translations with transported vectors are represented by the lengths and orientations
of the red arrows attached to the blue diamond.
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Figure 7.56: Performing jointly rigid and non linear registration, symmetric
population, large scale of rotation. SDGS framework. Template at time t = 0
(purple shape) and other geometrical descriptors: rotation’s one is the blue circle,
the translation’s ones is the blue square and translations with transported vectors’ ones
have their dot-component represented by blue diamonds and their vector components
represented by green arrows. Targets in black. Left: Before optimisation. Right: After
optimisation.
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Figure 7.57: Performing jointly rigid and non linear registration, symmet-
ric population, large scale of rotation. SDGS framework. Template at time t
(in purple), target shapes are in black. Other geometrical descriptors at time t:
rotation’s one at the blue circle, the translation’s one at the blue square, translations
with updated directions ones have their dot-component at blue diamonds and their
vector-component represented by green arrows. Left column: Momenta at t = 0 in
blue, attached to their geometrical descriptor (translations with update directions’ ones
have their vector-component represented in green, attached to the center of the trans-
lation). Three right-hand columns: Controls at time t : the red arrow attached to the
blue square is the translation’s one, the rotation’s one is represented by the portion of
the black circle coloured in red, and the one of translations with transported vectors
are represented by the lengths and orientations of the red arrows attached to the blue
diamond.
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Figure 7.58: Performing jointly rigid and non linear registration, symmetric
population, large scale of rotation, change of metric. SDGS framework. Tem-
plate at time t = 0 (purple shape) and other geometrical descriptors: rotation’s
one is the blue circle, the translation’s ones is the blue square and translations with
transported vectors’ ones have their dot-component represented by blue diamonds and
their vector components represented by green arrows. Targets in black. Left: Before
optimisation. Right: After optimisation.
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Figure 7.59: Performing jointly rigid and non linear registration, symmet-
ric population, large scale of rotation, change of metric. SDGS framework.
Template at time t (in purple), target shapes are in black. Other geometrical
descriptors at time t: rotation’s one at the blue circle, the translation’s one at the
blue square, translations with updated directions ones have their dot-component at blue
diamonds and their vector-component represented by green arrows. Left column: Mo-
menta at t = 0 in blue, attached to their geometrical descriptor (translations with
update directions’ ones have their vector-component represented in green, attached to
the center of the translation). Three right-hand columns: Controls at time t : the red
arrow attached to the blue square is the translation’s one, the rotation’s one is repre-
sented by the portion of the black circle coloured in red, and the one of translations with
transported vectors are represented by the lengths and orientations of the red arrows
attached to the blue diamond.
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7.3.5 An example of non adapted parameters

We present now the same atlas computation as previously but with another scale for
the translation and rotation: it is now 15000 instead of 5000. We show the results in
Figures 7.56 and 7.57. It is at first surprising: vectors of the two translations with
prior on direction are orthogonal to the direction of the ears. Besides at the end of the
convergence the data attachment term is still 40 times larger than the regularity term:
the problem comes from a local minimum, not from a too small weight for the attachment
term. In fact we notice that vectors of the two translations with prior on direction are
in the directions of the vector field that the rotation at scale 15000 generates at their
centres. Besides we can see that the rotation at scale 15000 has controls almost equal
to zero for all subjects. This enables to understand why the gradient descent converged
to this configuration: it seems that the two translations with prior on direction generate
locally the needed large rotation. However, whatever its scale is, the rotation needs the
same control (and then the same cost) in order to realize a rotation at the same angle, so
here the bigger scale of the rotation should not be a problem. However, with the same
reasoning as in Section 7.2.5, we can see that the control of the large rotation is constant
along geodesic trajectories and that its gradient with respect to initial momenta is given
by the application of this rotation to geometrical descriptors with a control equal to one.
Besides, since the rotation is equal to 0 at its centre and since its scale is too large with
respect to the size of the data, the application of this rotation to geometrical descriptors
with a control equal to one gives almost a null speed. Then here the problem comes from
the fact that the gradient with respect to initial momenta of the control of the rotation
is too small with respect to gradients of other trajectories of controls. Then during the
optimisation process, the control of the rotation remains almost equal to zero and, to
compensate, the directions of translations with prior on directions align themselves with
this needed vector field.
In order to verify this hypothesis, using the idea introduced in Section 5.2.3.3 (similarly
to Section 7.2.5), we perform an atlas of the same population, with a deformation module
similar as previously except that we divide the cost of the rotation at scale 15000 by 10.
Results can be seen in Figures 7.58 and 7.59: the control of the rotation is no longer
null and vectors of translations with prior on direction are aligned with ears. We deduce
that the problem came indeed from the weight of the rotation in the compound cost.
This example shows that one needs to be cautious when choosing parameters of the
deformation module and then interpreting optimized variables.
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Figure 7.60: Building an atlas with weak priors. Target shapes

7.4 An example of atlas with a weak prior

In this last example we compute an atlas of the five shapes of skulls presented in 7.60.
Similarly to previous examples, shapes are encoded as varifolds (see 3.3.2) so that no
point-correspondence is assumed. Here, we do not have clear prior to include in the
model. Therefore, we use a deformation module M obtained by combining 7 deformation
modules: one generating a translation at large scale (σ = 200, see Section 4.2.2.1), one
generating a rotation at large scale (σ = 200, see Section 4.2.3), one generating a sum
of two rotations at middle scale (σ = 100, see Section 4.2.3), one generating a sum
of two scalings at middle scale (σ = 100, see Section 4.2.3), one generating a sum of
four rotations at small scale (σ = 50, see Section 4.2.3), one generating a sum of four
scalings at small scale (σ = 50, see Section 4.2.3) and one generating a sum of 16
translations with prior on directions so that they are updated by adjoint action at small
scale (σ = 50, see Section 4.2.2.3). The first two deformation modules (those at large
scale) enable to perform rigid registration simultaneously with finer deformations. At the
smallest scales, translations with prior on the direction have shared initial positions and
directions for all subjects, and their directions are transported by the flow. Using this
deformation module instead of one generating translation as in Section 4.2.2.1, allows to
interpret initial vectors of these translations as directions of greatest variability among
the population (at the small scale). In the first Section 7.4.1 we present the result
obtained using this deformation module, in the following 7.4.2 one we present the result
obtained using this deformation module in the SIGS setting (see Section 5.4.1), and in
Section 7.4.3 we present the result obtained when we combine this deformation module
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Figure 7.61: SDGS framework. Template at time t = 0 (purple shape) and geo-
metrical descriptors: � (translations), ◦ (rotations), △ (scalings) and green vectors
attached to ♦ (translations with updated directions). The color and size of markers rep-
resent the scale (200,100,50). Black shapes are the targets. Left: Before optimisation.
Right: After optimisation.

with a deformation module generating a sum of translations (see Section 4.2.2.1) at small
scale.

7.4.1 SDGS framework

We first present the results obtained thanks to the SDGS framework (see Section 5.3.2).
We recall that to perform this we combine the deformation module M with the silent
deformation module (see Section 4.2.8) induced by the data shape space (here space of
varifolds). We perform a gradient descent in order to estimate an optimal geometrical
descriptors (made of an initial geometrical descriptor for deformation module M and an
initial mean shape) and 5 initial momenta (one per subject). The initialisation of the
geometrical descriptor can be seen in Figure 7.61 (left): the component corresponding
to data shapes is initialized so that it has the same topology as data shapes, and other
components are initialized on a regular lattice (one per type of deformation and scale).
Initial momenta are initialized at zero. In Figure 7.61 (right) can be seen the initial
value of geometrical descriptors after optimisation: they are updated during optimisa-
tion to regions of interest. Parametrization of minimizing trajectories (template, initial
other geometrical descriptors and momenta) and trajectories of template, geometrical
descriptors and controls can be seen in Figure 7.62 for three skulls. Controls associated
to translations with prior on directions are scalars and are represented by lengths of
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Figure 7.62: SDGS framework. Template at time t (in purple), target shapes
are in black. Geometrical descriptors at time t: � (translations), ◦ (rotations), △
(scalings) and green vectors attached to ♦ (translations with updated directions). The
color and size of markers represent the scale (200,100,50). Left column: Momenta at
t = 0. Three right-hand columns: Controls at time t in red (vector for the translation,
portion of the blue circle coloured in red for rotations, ratio between the blue and
red triangles for scalings and length of the red vectors for translations with updated
direction).
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Figure 7.63: Decreasing of the data attachment term for the three proposed
frameworks. x axis: number of iterations, y axis: data attachment term. Left: total
curve. Right: zoom.

vectors attached to blue diamonds. Rotations have their geometrical descriptors repre-
sented by blue circles, and their controls (scalars) by the portion of these blue circles that
are coloured in red (the control is positive if the colouring is anti-clockwise and negative
otherwise). Geometrical descriptors of scalings are represented by blue triangles, and for
each one a red triangle corresponding to the image of the blue one by this scaling enables
to represent the scalar control. From these results one can see, for example, that the size
of the cranium is a feature that varies importantly amongst the population as one center
of the two local scalings at scale 100 is in this after optimisation, and trajectories of
the corresponding control are very different for all skulls: negative for skull one (the red
triangle is very small so the control is highly negative: his cranium is smaller than the
template), close to zero for skull three (the red triangle is almost of the size of the blue
one: his cranium is almost of same size as the template) and positive for skull five (the
red triangle is bigger than the blue one: his cranium is bigger than the template). Other
features of great variabilities can be deduced from this results such as, for instance, the
shape of the back of the head or the area around the jaw and the nose, by inspecting
the initial direction of vectors of the corresponding translations with prior on directions.
The decreasing of the data attachment term (see Equation (5.12)) during the gradient
descent is plotted in Figure 7.63.
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Figure 7.64: SIGS framework. Template at time t = 0 (purple shape) and geo-
metrical descriptors: � (translations), ◦ (rotations), △ (scalings) and green vectors
attached to ♦ (translations with updated directions). The color and size of markers rep-
resent the scale (200,100,50). Black shapes are the targets. Left: Before optimisation.
Right: After optimisation.
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Figure 7.65: SIGS framework. Template at time t (in purple), target shapes are in
black. Geometrical descriptors at time t: � (translations), ◦ (rotations), △ (scalings)
and green vectors attached to ♦ (translations with updated directions). The color and
size of markers represent the scale (200,100,50). Left column: Momenta at t = 0. Three
right-hand columns: Controls at time t in red (vector for the translation, portion of
the blue circle coloured in red for rotations, ratio between the blue and red triangles for
scalings and length of the red vectors for translations with updated direction).



CHAPTER 7. NUMERICAL EXPERIMENTS 197

7.4.2 SIGS framework

7.4.2.1 Presentation

In the SDGS framework presented previously, we combine deformation module M
with the silent deformation module induced by the data shape space. Then optimal
deformations transporting the mean shape to each subject are parametrized by an initial
momenta of this compound deformation module and its dimension is higher than the di-
mension of data shapes. As explained in Section 5.4.1, it is possible to restrict ourselves
to deformations parametrized in smaller dimension: we consider optimal trajectories
that can be generated by M and then search, amongst them, the ones that enable to
transport the mean shape as close as possible to data shapes. In this framework we
estimate one mean shape, one initial geometrical descriptor (of M , so only centers of
translations, rotations, scalings and directions of translations with prior on directions)
and 5 initial momenta. Here momenta are dual variable for deformation module M
and then are of dimension of its geometrical descriptor: 92 (2 for each translation,
scaling, rotation and 4 for each translation with prior on direction). As previously these
geometrical descriptors are initialized on a regular lattice, and momenta are initialized
at zero. Initial position for the mean shape and geometrical descriptor are presented in
Figure 7.64 before (left) and after (right) optimization. We also present in Figure 7.65
the parametrization of minimizing trajectories (template, initial geometrical descriptors
and momenta) and trajectories of template, geometrical descriptors and controls. It
can be seen that in this SIGS framework there is no momentum attached to the template.

7.4.2.2 Comparison with the SDGS framework

By comparing Figures 7.61 with 7.64 and 7.62 with 7.65 we can see that initial geomet-
rical descriptors and trajectories of controls are close between the two frameworks (even
though not equal). Initial momenta on the contrary are necessary different since in the
SDGS framework there is an additional momentum attached to the mean shape. For
the same reasons as those presented in Section 7.3.3.2, initial momenta for the SIGS
framework are of larger norm.

The decreasing of the data attachment term (see Equation (5.12)) during the gradient
descent is plotted in Figure 7.63. We can see that this SIGS framework not only allows
to decrease the data-attachment term, but also enables to obtain a smaller one for a
same number of iterations. First this shows that the variability among this population
can be well captured thanks to the this framework. The fact that better registration
can be performed here thanks to the SIGS framework is probably due to the fact that
in this framework the dimension of the parameters (initial momenta) to optimize are
smaller than in the SDGS framework, and then this parameter is more easily estimated.

7.4.3 With additional small translations

We now combine M with a deformation module generating a sum of 36 translations at
scale 30, and we compute the atlas using the SDGS framework. Unconstrained local
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Figure 7.66: With additional small translations. Template at time t = 0 (purple
shape) and geometrical descriptors: � (translations), ◦ (rotations), △ (scalings) and
green vectors attached to ♦ (translations with updated directions). The color and size of
markers represent the scale (200,100,50,30). Black shapes are the targets. Left: Before
optimisation. Right: After optimisation.
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Figure 7.67: With additional small translations. Template at time t (in purple),
target shapes are in black. Geometrical descriptors at time t: � (translations),
◦ (rotations), △ (scalings) and green vectors attached to ♦ (translations with updated
directions). The color and size of markers represent the scale (200,100,50,30). Left
column: Momenta at t = 0. Three right-hand columns: Controls at time t in red
(vectors for the translations, portion of the blue circle coloured in red for rotations,
ratio between the blue and red triangles for scalings and length of the red vectors for
translations with updated direction).
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translations enable to generate rich deformation fields and then by combining this new
deformation module we will allow additional, almost unconstrained, local displacements.

Initial geometrical descriptors before and after optimisation are plotted in Fig-
ure 7.66. One can see that initial centres of translations do not migrate much during
the optimisation process, this is due to the fact that they are relatively close to each
other (and to areas of interest) with respect to their scale (the space between to consec-
utive centres is equal to the scale). In Figure 7.65 are presented the parametrization of
minimizing trajectories (template, initial geometrical descriptors and momenta) and tra-
jectories of template, geometrical descriptors and controls for three subjects. Trajectories
of controls for scaling and rotations and the large translation are close to trajectories
obtained without these small translations. Centres and directions of translations with
prior on the direction are also close to the first framework, but one can see that local
displacements at small scale is carried both by these translations with prior on directions
and by the unconstrained ones.

In Figure 7.63 we plot the decreasing of the data attachment term during the gradi-
ent descent. One can see that this new deformation module enables the data attachment
term to decrease more than when the deformation module M is used. This is probably
due to a better approximation to fine necessary displacements. Nevertheless the dif-
ference is small with respect to initial data attachment term, suggesting that the first
deformation module M enables to capture the variability amongst the population is a
satisfactory manner.
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In this thesis we presented a new deformation model enabling to incorporate naturally
and easily complex constraints. This enables to study shapes from a chosen point of view,
which corresponds to a prior in the deformation model. We showed that our framework
enables to study a large diversity of shapes, thanks to a large diversity of priors. In
particular, it is possible to incorporate very strong priors (for instance in Section 7.1) as
well as very weak ones (for instance in Section 7.4). Our framework can be used to study
differences between shapes with two methods: the matching framework for registering
a shape onto an other one, and the atlas computation to study the variability amongst
a population of shapes. In both these methods the idea is to fix a deformation module
(implementing the prior) and to estimate an initial geometrical descriptor as well as
one (or one per subject in the atlas computation) modular large deformation generated
by this geometrical descriptor. The geometrical descriptor corresponds to a geometrical
characterization of the shape variability, using the vocabulary allowed with the chosen
deformation module. The geometrical descriptor is composed of two components: an
active one which will generate the deformation, and a silent one which is a shape of
the data shape space. In the matching problem the silent one is equal to the source
shape and then is not optimized, while in the case of the atlas computation, the silent
one is the template (corresponding to a mean shape) and is optimized. Modular large
deformations are parametrized thanks to a dual variable of the total initial geometrical
descriptor called the momentum. We emphasized in Chapter 5 that the momentum of
the silent component of the initial geometrical descriptor has a fundamental role in the
generation of large deformations, even though this component does not directly creates
a vector field. Our framework raises many questions and perspectives, let us present
them.

8.1 Application to shapes in dimension 3

In all examples that we presented in Chapter 7, the studied shapes are curves embedded
dimension 2. However, as explained in Section 4.2, building deformation modules in
higher dimension is as simple as building them in dimension 2. This is the object of
current considerations. An interesting further work would also be to incorporate image
data in order to use icono-geometric shapes similarly to [FDY+14].

8.2 Role of the initial momentum

In Sections 5.2.1 and 5.2.3 we studied the link, for a fixed geometrical descriptor o,
between the initial momentum η and the associated geodesic control ho,η. Remark 23
links in a very intuitive way the coefficients of the geodesic control in an orthonormal
basis with the momentum. Besides it allows to re-deduce Proposition 26 which states
that if Fo,η ⊂ ξo ◦ ζo(H) is the orthogonal in ξo ◦ ζo(H) (for the metric go given by the
cost) of the velocity ξo ◦ ζo(ho,η) generated by o and η, then η is orthogonal for the
co-metric to Fo,η. We also saw in Proposition 25 that the geodesic vector field ζo(ho,η

can be considered as a projection of the dual variable ξ∗
o(η) brought in ζo(H) thanks
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to its kernel. All these properties allow to understand how the initial momentum and
the initial vector field are linked. However, as our framework is a Sub-Riemannian one
(and not Riemannian), the initial vector field does not determine the geodesic trajectory.
We introduced several examples in Sections 5.4.1.2, 5.4.2.2 and 5.4.2.3 showing that the
dimension of geodesics, and the influence of the initial momentum on them is not trivial.
The complete geometrical understanding of the role of this initial momentum is still to be
performed. In particular if the deformation module we use is the combination of several
base-deformation modules, it would be interesting to understand whether the influence
of the different types of vector fields which are combined (through the combination of
deformation modules) can be recovered from the initial momentum. It is important to
note that studying the influence of a particular type of vector field is not equivalent to
studying the influence of a particular deformation module since different deformation
modules may generate locally similar vector fields. Another point of view on the initial
momentum could be the statistical one: by studying the distribution of initial momenta
of a population after an atlas computation could enable to understand their role in the
geodesic trajectories. In particular we showed in the simple example of Section 7.3 that
a Principal Component Analysis performed on initial momenta allowed to recover the
dimension of the population. In a more general setting, performing a Principal Geodesic
Analysis [Fle04, FLPJ04] might help extracting a meaningful sub-manifold of initial
momenta.

8.3 Influence of the cost

In the definition of a deformation module, the choice of the cost is central but its influence
has still to be studied. In particular, in the definition of the compound deformation
module, the compound cost is built as the sum of costs, but it could be defined as
a weighted sum. We explained in Section 5.2.3.3 how weighting this sum influences
the geodesic cost associated to a given geometrical descriptor and a given momentum.
Besides we gave two examples in Sections 7.2.5 and 7.3.5 suggesting than one can favour
the "use" of one of the combined deformation module by lowering its weight in the
compound cost.
In a more generic framework, one could multiply the matrix representing the metric go

by a chosen matrix, allowing more complex compound costs. In order to determine these
weights a statistical framework should be developed.
Note also that if a deformation module satisfies UEC, and if we modify its cost by
adding a smooth function of (o, h) which is a positive semidefinite quadratic form on H,
we obtain again a deformation module satisfies UEC. This way it could be possible to
take into account another type of regularity.
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8.4 Selection of models and interpretation of vari-

ables

In Section 7.2 we studied the stability of optimized geometrical descriptors and geodesic
trajectories for the matching problem. We showed that optimized initial geometrical
descriptors cannot really be interpreted when the deformation module which is used
is not totally adapted in terms of constraints. For instance if a geometrical descriptor
is not used to generate a vector field, its position might move during the optimisation
process without its optimized position to be meaningful in terms of generated vector
field. On the opposite, we saw that if the constraints are adapted, then the initialization
of initial geometrical descriptor seems more stable, in particular to rigid translations
of data. The same phenomenon occurs with trajectories of vector field. In practice
determining whether a particular geometrical descriptor’s position is meaningful or not
can be intuited. But it seems necessary to develop a rigorous and systematic method to
determine it. In a more general setting, it would be very useful to elaborate a method
allowing to assess how adapted a deformation module is to a certain population of shapes.
Then different deformation modules could be used to compute an atlas of a population of
shapes, and knowing which one is the most adapted would give an additional knowledge
on this population of shapes. Besides, this would remove the subjective choice of the
deformation module.

8.5 Building a vocabulary

The question of the optimization of initial geometrical descriptor for an atlas case is
different from the matching case. Indeed in the second case one needs to estimate one
position for them allowing to transport a source shape onto a target shape, while for
the atlas computation one needs to estimate one position which allows to transport a
common template shape onto all subjects. Then in the atlas computation, the notion
of vocabulary is particularly relevant: by choosing a particular deformation module to
compute the atlas of a population of shapes, we use a particular vocabulary to describe
its variability. We showed in Section 7.1 that several choices of vocabulary could lead
to several template estimation. Similarly to the matching case, it would be interesting
elaborate a method to compare the relevance of two choices for this deformation module.
In the matching case this method should rely on the quality of the registration, while in
the atlas case it should takes into account the quality and the relevance of the variability
description. This could be performed thanks to probabilistic framework, by estimating
the likelihood of a population through the repartition of initial momenta. For instance
in Section 7.1.1, even though the two priors allow to describe the shape variability, it
seems unlikely to have folding and unfolding patterns while each subject has only one
hump.
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8.6 Statistical point of view

In this thesis we have favoured a geometrical study of our framework but it should
be completed with a statistical study. First, in Section 5.2.1 we introduced a rigorous
probabilistic framework to develop the inexact matching problem when initial and final
geometrical descriptors are fixed. In Section 5.2.2 we generalized it to the case where
only part of initial and final geometrical descriptors are known (the silent component)
and that we want to estimate the unknown one (the active component). Then we again
generalized it in Section 5.3 to the computation of atlas, where the initial geometrical
descriptor it totally unknown, and only part of the final ones are known. However in
order to develop the probabilistic reasoning of Section 5.2.1, we introduced a Gaussian
probabilistic law centred in the initial geometrical descriptor, and in the maximization of
the likelihood we could remove the normalization term of this Gaussian measure because,
given the initial geometrical descriptor, it is constant. But it does depend on the value
of the initial geometrical descriptor: here we neglect this influence but a more rigorous
framework such as the one developed in [AAT07] should be built. We should also follow
the lead of this article to build a coherent statistical framework for parameters of our
deformation modules. In particular it seems necessary to estimate scales of deformations
as well as the number of replications of local transforms that we use (for instance the
sum of local translations or scalings).
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Titre : Approche modulaire sur les espaces de formes, géométrie sous-
riemannienne et anatomie computationnelle

Mots clefs : Espaces de formes, anatomie computationnelle

Résumé : Dans cette thèse nous développons un nouveau modèle de défor-
mation pour étudier les formes. Les déformations, et les difféomorphisms en
particulier, jouent un rôle fondamental dans l’étude statistique de formes,
comme un moyen de mesurer et d’interpréter les différences entre des objets
similaires. Les difféomorphismes résultent généralement d’une intégration
d’un flot régulier de champs de vitesses, dont les paramètres n’ont jamais
encore vraiment permis de contrôler localement les déformations. Nous pro-
posons un nouveau modèle dans lequel les champs de vitesses sont construits
grâce à la combinaison de quelques champs de vecteurs locaux et interpré-
tables. Ces champs de vecteurs sont générés à l’aide d’une structure que
nous appelons module de déformation. Un module de déformation génère
un champs de vecteurs d’un type particulier (par exemple : homothétie)
choisi à l’avance: cela permet d’incorporer des contraintes dans le modèle
de déformation. Ces contraintes peuvent correspondre à un savoir que l’on
a sur les formes étudiées, ou à un point de vue à partir duquel on veut étu-
dier ces formes. Dans un premier chapitre nous définissons les modules de
déformation et nous en donnons des exemples variés. Nous expliquons éga-
lement comment construire facilement un module de déformation adapté
à des contraintes complexes en combinant des modules de déformations
simples. Ensuite nous construisons des grandes déformations modulaires en
tant que flots de champs de vecteurs générés par un module de déforma-
tion. Les champs de vecteurs générés par un module de déformation sont
paramétrés par deux variables : une géométrique (descripteur géométrique)
et une de contrôle. Nous associons également un coût à chaque couple de
descripteur géométrique et de contrôle. Dans un deuxième chapitre nous ex-
pliquons comment utiliser un module de déformation donné pour étudier des
formes. Nous construisons tout d’abord une structure sous-Riemannienne
sur l’espace défini comme le produit de l’espace de formes et de celui des

descripteurs géométriques. La métrique sous-Riemannienne vient du coût
choisi : nous munissons le nouvel espace d’une métrique choisie, qui en gé-
néral n’est pas le pull-back d’une métrique sur les champs de vecteurs mais
tient compte la manière dont les champs de vecteurs sont construits à partir
des contraintes. Grâce à cette structure nous définissons une distance sous-
Riemannienne et nous montrons l’existence des géodésiques (trajectoires
dont la longueur vaut la distance entre les points de départ et d’arrivée).
L’étude des géodésiques se ramène à un problème de contrôle optimal, elles
peuvent être obtenues grâce à un formalisme Hamiltonien. En particulier
nous montrons qu’elles peuvent être paramétrées par une variable initiale,
le moment. Après cela nous présentons les grandes déformations modu-
laires optimales transportant une forme source sur une forme cible. Nous
définissons également l’atlas modulaire d’une population de formes par la
donnée d’une forme moyenne et d’une grande déformation modulaire par
forme transformant la forme moyenne en cette forme. Dans la discussion
nous étudions un modèle alternatif dans lequel les géodésiques sont para-
métrées en dimension plus petite. Dans un troisième chapitre nous présen-
tons l’algorithme implémenté pour obtenir les grandes déformations ainsi
que la descente de gradient estimant les atlas. Dans un dernier chapitre
nous présentons plusieurs exemples numériques grâce auxquels nous étu-
dions certains aspects de notre modèle. En particulier nous montrons que
le choix du module de déformation utilisé influence la forme moyenne, et
que choisir un module de déformation adapté permet d’effectuer simulta-
nément des recalages rigides et non linéaires. Dans le dernier exemple nous
étudions des formes sans a priori, nous utilisons donc un module corres-
pondant à des contraintes faibles et nous montrons que l’atlas obtenu est
toujours intéressant.
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Abstract : This thesis is dedicated to the development of a new deforma-
tion model to study shapes. Deformations, and diffeormophisms in particu-
lar, have played a tremendous role in the field of statistical shape analysis,
as a proxy to measure and interpret differences between similar objects but
with different shapes. Diffeomorphisms usually result from the integration
of a flow of regular velocity fields, whose parameters have not enabled so
far a full control of the local behaviour of the deformation. We propose
a new model in which vector fields, and then diffeomorphisms, are built
on the combination of a few local and interpretable vector fields. These
vector fields are generated thanks to a structure which we named defor-
mation module. Deformation modules generate vector fields of a particular
type (for instance: a scaling) chosen in advance: they allow to incorporate a
constraint in the deformation model. These constraints can correspond ei-
ther to an additional knowledge one would have on the shapes under study,
or to a point of view from which one would want to study these shapes.
In a first chapter we introduce this new notion of deformation module and
we give several examples to show how diverse they can be. We also explain
how one can easily build complex deformation modules adapted to com-
plex constraints by combining simple base deformation modules. Then we
introduce the construction of modular large deformations as flows of vec-
tor fields generated by a deformation module. Vector fields generated by a
deformation module are parametrized by two variables: a geometrical one
named geometrical descriptor and a control one. We build these large defor-
mations so that the geometrical descriptor follows the deformation of the
ambient space. Then defining a modular large deformation corresponds to
defining an initial geometrical descriptor and a trajectory of controls. We
also associate a notion of cost for each couple of geometrical descriptor and
control. In a second chapter we explain how we can use a given deformation
module to study data shapes. We first build a sub-Riemannian structure on

the space defined as the product of the data shape space and the space of
geometrical descriptors. The sub-Riemannian metric comes from the chosen
cost: we equip the shape space with a chosen metric, which is not in general
the pull-back of a metric on vector fields but takes into account the way
vector fields are built with the chosen constraints. Thanks to this structure
we define a sub-Riemannian distance on this new space and we show the
existence, under some mild assumptions, of geodesics (trajectories whose
length equals the distance between the starting and ending points). The
study of geodesics amounts to an optimal control problem, and they can be
estimated thanks to an Hamiltonian framework: in particular we show that
they can be parametrized by an initial variable named momentum. Thanks
to these notions of distance, and geodesic, we can define optimal modu-
lar large deformations transporting a source shape into a target shape. We
also define the modular atlas of a population of shapes which is made of
a mean shape, and one modular large deformation per shape transforming
the mean shape into these shape. In the discussion we study different al-
ternative models where geodesics are parametrized in lower dimension. In
a third chapter we present the algorithm that was implemented in order
to compute these modular large deformations and the gradient descent to
estimate the optimal ones as well as mean shapes. In a last chapter we
introduce several numerical examples thanks to which we study different
aspects of our model. In particular we show that the choice of the used
deformation module influences the form of the estimated mean shape, and
that by choosing an adapted deformation module we are able to perform
in a satisfying and robust way simultaneously rigid and non linear regis-
tration. In the last example we study shapes without any prior knowledge,
then we use a module corresponding to weak constraints and we show that
the atlas computation still gives interesting results.

Université Paris-Saclay

Espace Technologique / Immeuble Discovery

Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

2


