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Abstract

The characterization of the near surface is an important topic for the oil and gas industry.
For land and Ocean Bottom Cable (OBC) acquisitions, weathered or unconsolidated top
layers, prominent topography and complex shallow structures may make imaging at
target depth very difficult. Energetic and complex surface waves often dominate such
recordings, masking the signal and challenging conventional seismic processing. Static
corrections and the painstaking removal of surface waves are required to obtain viable
exploration information.

Yet surface waves, which sample the near surface region, are considered as signal on
both the engineering and geotechnical scale as well as the global seismology scale. Their
dispersive property is conventionally used in surface wave analysis techniques to obtain
local shear velocity depth profiles. But limitations such as the picking of dispersion
curves and poor lateral resolution have led to the proposal of Full Waveform Inversion
(FWI) as an alternative high resolution technique. FWI can theoretically be used to
explain the complete waveforms recorded in seismograms, but FWI with surface waves
has its own set of challenges. A sufficiently accurate initial velocity model is required or
otherwise cycle-skipping problems will prevent the inversion to converge.

This study investigates alternative misfit functions, that can overcome cycle-skipping
and decrease the dependence on the initial model required. Computing the data-fitting
in different domains such as the frequency-wavenumber (ω − k) and frequency-slowness
(ω − p) domains is proposed for robust FWI, and successful results are achieved with a
synthetic dataset, in retrieving lateral shear velocity variations.

In the second part of this study a FWI layer stripping strategy, specifically adapted
to the physics of surface waves is proposed. The penetration of surface waves is de-
pendent on their wavelength, and therefore on their frequency. High-to-low frequency
data is therefore sequentially inverted to update top-to-bottom layer depths of the shear
velocity model. In addition, near-to-far offsets are considered to avoid cycle-skipping
issues. Results with a synthetic dataset show that this strategy is more successful than
conventional multiscale FWI in using surface waves to update the shear velocity model.

Finally inversion of surface waves for near surface characterization is attempted on a
real dataset at the oil and gas exploration scale. The construction of initial models and
the difficulties encountered during FWI with real data are discussed.

Keywords: surface waves, full waveform inversion, near surface, inverse problems





Résumé

La caractérisation de la proche surface est un enjeu majeur pour l’industrie pétrolière.
Lors des acquisitions terrestres et Ocean Bottom Cable (OBC), les couches superfi-
cielles généralement altérées ou peu consolidées, présentent des structures géologiques
complexes et ont éventuellement des variations topographiques importantes. Les ondes
de surface, énergétiques, se propagent dans ce milieu complexe et dominent les sismo-
grammes, ce qui masque le signal utile pour le traitement sismique classique et rend
difficile l’imagerie à la profondeur du réservoir.

Il est donc important de pouvoir atténuer ces ondes, éventuellement d’appliquer des
corrections statiques et/ou d’amplitude. Ceci qui nécessite une connaissance précise du
modèle de vitesse de la proche surface. L’étude de la dispersion des ondes de surface
est couramment utilisée en sismologie globale et à l’échelle géotechnique pour évaluer
les propriétés des milieux terrestres. Il existe néanmoins des limitations: la mesure de
cette dispersion est souvent difficile et les profils de vitesses obtenus sont 1D. A l’échelle
pétrolière, l’hypothèse 1D n’est pas toujours adaptée, ce qui motive l’utilisation d’une
méthode alternative d’imagerie plus haute résolution, la méthode d’inversion de la forme
d’onde (FWI). Cependant, le modèle de vitesse initial doit être assez précis pour éviter
le ”cycle-skipping” et permettre la convergence vers la solution optimale.

Cette étude explore différentes alternatives de fonctions coûts pour résoudre le ”cycle-
skipping” et diminuer la dépendance de l’inversion à la qualité du modèle initial. En
exprimant les fonctions coûts dans le domaine ω − k (fréquence-nombre d’onde) et le
domaine ω− p (fréquence-lenteur), la FWI est plus robuste. A l’aide d’exemples synthé-
tiques, nous démontrons l’efficacité de ces nouvelles approches qui permettent bien de
retrouver les variations latérales de vitesses d’onde S.

Dans une seconde partie, nous développons une inversion FWI en ”layer stripping”,
adaptée spécifiquement à la physique des ondes de surface. Comme la profondeur de péné-
tration de ces ondes dépend de leur longueur d’onde, et donc, de leur contenu fréquentiel,
nous proposons d’inverser séquentiellement des plus hautes aux plus basses fréquences
de ces ondes pour contraindre successivement les couches superficielles jusqu’aux plus
profondes. Un fenêtrage selon la distance source-station est également appliqué. Dans
un premier temps seules les courtes distances sont inversées, au fur à mesure les données
associées à des plus grandes distances sont rajoutées, plus fortement impactées par le
”cycle-skipping”. Nous démontrons à l’aide d’exemples synthétiques l’avantage de cette
méthode par rapport aux méthodes multi-échelles conventionnelles inversant des basses



vers le hautes fréquences.

Enfin, l’inversion des ondes de surface pour la caractérisation de la proche surface
est confrontée à un cas réel. Nous discutons la construction et la pertinence du modèle
initial et les difficultés rencontrées lors de l’inversion.

Mots clés: ondes de surface, inversion de formes d’onde, proche surface, problèmes
inverse
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General Introduction

Imaging techniques, such as for seismic or medical imaging, aim to obtain information

on the properties of a medium that is otherwise inaccessible. Waves that travel through

such mediums and that can be measured on the surface, can provide diagnostic informa-

tion that is fundamental to these investigations. In the case of seismic prospection, the

medium we want to image is the subsurface of the Earth. Knowledge about subsurface

characteristics is critical for the oil and gas industry. In conventional exploration acquisi-

tions, the reflections of body waves recorded in the seismograms can provide information

on target reservoirs present underneath the Earth’s surface.

However, for land and Ocean Bottom Cable (OBC) acquisitions, topography and

weathered or unconsolidated top layers that correspond to a very complex near surface,

may lead to highly variable seismic signals difficult to interpret. In such environments,

energetic and complex surface waves may dominate these seismograms, masking the

reflections, and making the extraction of information challenging for conventional seismic

processing (see Figure 0.1). Furthermore, due to their characteristic exponential decay

with depth, these surface waves are not influenced by deep targets of interest, but only

by the near surface properties.

These surface waves, also known as ground roll, are often considered as noise, or

more precisely, as an undesired signal. As stated in Dobrin (1950), ”the geophysicist

engaged in seismic prospecting ordinarily looks upon surface waves as a perverse creation

designed to interfere with his reflections. He adjusts his equipment and field procedure

to eliminate them from his records”.

Over the years, sophisticated techniques have been developed to remove or attenuate

this coherent noise in seismic data, both during the acquisition and processing steps.

Dip- or velocity-based filters such as FK filters, Radon methods or other tools such as

static correction methods, stacking or modelling are used to filter out surface waves and

enhance the useful signal, of smaller amplitude, related to reflections (Yilmaz, 1987;
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Ernst and Herman, 1998; Herman and Verschuur, 2004). Yet this remains a difficult and

tedious task.
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Figure 0.1: Example of a seismic record acquired on land. This common shot gather
contains traces from receivers spread out for a few kilometers on either side of the source
position. The surface waves travel the slowest through the subsurface and have the
largest amplitudes as they are confined near the free surface. They can often mask
reflections of lower amplitude, which contain information on properties of the medium at
the target depth. Note that an amplitude gain has been applied for better visualization
of the data.

The aim of this study is to build on our understanding of how surface waves may

contribute to seismic velocity model building, and enhance our ability to deal with them,

so that ”surface waves can be made a useful by-product rather than a waste product of

seismic exploration” as proposed by Dobrin (1950).
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Motivation

There is an increasing interest by the oil and gas industry in the large amount of in-

formation contained in surface waves. Their dispersive property and their characteristic

high amplitudes, have historically made them a useful signal for global seismology in-

vestigations as well as near surface applications on the engineering/geotechnical scale.

Classical wave theory indicates that surface waves will contain information on the near

surface region. Surface waves have been expressly recorded and analyzed to characterize

the Earth’s crust, as the near surface region on the global scale, as well as the near sur-

face region up to 10 m depth on the engineering scale. On the intermediate oil and gas

exploration scale, surface waves could provide information on the low-velocity weathered

zone of the near surface, which could allow to better image at depth.

Successful imaging of target reservoirs at depth, for land acquisitions, depends on

sufficiently reliable static corrections, and knowledge on the geological structures in the

near surface region. Therefore, the possibility of high resolution imaging of this region,

with the use of surface waves, can be a significant advantage. Ultimately, an improved,

reliable image of the subsurface, can reduce the financial and environmental risk involved

in oil and gas exploration, by enabling to drill in exactly the right location.

Research objectives

This study is driven by the question: ”Can surface waves be used to characterize the

near surface at the oil and gas exploration scale using Full Waveform Inversion?” To

answer this question, the main aim of this thesis is to develop an alternative formulation

or strategy to perform FWI with surface waves, and overcome the known problems of

initial model dependence and cycle-skipping issues.

The first objective is to perform a sensitivity analysis on alternative misfit functions

to determine which may be more robust when considering surface waves in FWI. The

second objective deals with investigating an appropriate inversion strategy that both

targets surface waves, and results in successful velocity model building. For both of

these objectives FWI results on synthetic data examples need to be provided.

Beyond developing the methodology, the third objective of this study is to perform

FWI with surface waves on a real oil and gas exploration dataset. This experience will

15
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allow to highlight the difficulties encountered when dealing with real data and which

directions to move forward in for future studies.

Outline

The work presented in this thesis is organized into four main chapters, followed by the

conclusions and perspectives.

Chapter 1 is an introductory chapter. Surface waves are first defined, and some of

their useful properties and characteristics described. The inversion of surface waves is

then reviewed, starting with the surface wave analysis method, and investigating some of

the limitations of assumed stratified medium (1D) inversion using group velocity or phase

velocity measurements from dispersion curves. The Full Waveform Inversion (FWI)

method is then described in detail, and a comprehensive explanation of cycle-skipping

limitations for FWI is provided. A review of the literature available on applications of

FWI using surface waves on the global seismology scale, the engineering/geotechnical

scale, and the oil & gas reservoir scale follows.

In Chapter 2 I investigate the influence of different, more robust misfit functions

suitable for FWI with surface waves, and I compare them using a grid analysis. Mis-

fit functions where the data-fitting is computed in different data domains such as the

frequency-wavenumber (ω − k) and frequency-slowness (ω − p) are proposed. The gra-

dient formulation for these misfit functions is also developed. A simple 2D synthetic

example is tested to illustrate the success of these misfit functions proposed.

In Chapter 3 I investigate a realistic configuration and develop an inversion strategy to

implement for FWI using surface waves. A layer stripping approach specifically adapted

to the physics of surface waves is proposed. For this approach, high-to-low frequency

bands of data are sequentially inverted, to update the model in a top-to-bottom manner.

Several tests using a more complex 2D synthetic model taken from Pérez Solano et al.

(2014) investigate the advantages of this approach compared to the conventional multi-

scale low-to-high frequency continuation approach. Due to the strongly varying sampling

in depth of the surface waves, layer stripping techniques in the time-offset (t−x) domain

can provide a sustainable workflow, which can compete efficiently with the previously

proposed frequency-wavenumber (ω − k) domain misfit function. Different methods for

handling the complex problem of a real data application are therefore developed.

In Chapter 4, a real data application of FWI with surface waves is presented. The

16
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dataset, provided by Total, is acquired at the oil and gas exploration scale. The real

seismograms are analyzed and presented. Surface wave 1D inversion (SWODI) is used to

provide an initial study of the near surface features as well as an initial model for FWI.

The difficulties of FWI with real data are highlighted and discussed. Potential areas of

improvement and research directions for future studies are also identified.

Finally the conclusions and perspectives highlight the important aspects for the use

of surface waves in FWI and possible future research steps.
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INVERSION OF SURFACE WAVES

1.1 Surface waves and their properties

Surface waves are generated in the presence of a free surface boundary condition, as

is the case of the solid/air interface on the surface of the Earth. Unlike body waves,

surface waves do not radiate energy towards the Earth’s interior, but instead propagate

parallel to the Earth’s surface, confined to the shallow zone of the near surface. The

most common type of surface waves are Rayleigh waves, the resonant mode of the elastic

halfspace, first predicted by Rayleigh (1887).

Rayleigh waves are generated whenever a free surface is present, and propagate along

it, earning the name groundroll in the oil and gas industry. There is a coupling between

the propagation of P-waves and vertically polarized SV shear waves, which gives the

motion of Rayleigh waves. The particle motion generated by Rayleigh waves, at the free

surface of a homogeous medium, takes the shape of a retrograde ellipse at the free surface

(see Figure 1.1a).

(a) (b)

Figure 1.1: Perspective view of surface waves propagating through a grid representing an
elastic homogeneous medium. Rayleigh wave propagation generates a retrograde ellipti-
cal particle motion (a). Love waves generate a horizontal particle motion, perpendicular
to the direction of wave propagation, and are considered as a layer mode (b). The
amplitude of the surface waves decreases with depth. Illustration from Braile (2010).

Another example of surface waves are Love waves, a layer-mode propagating wave,

first discovered by Love (1911). Love waves, occur when a guided wave is generated at the

20



1.1 Surface waves and their properties

interface between a medium and the layer above, of lower velocity and limited thickness,

which itself is bounded by a free surface. They are produced by the propagation of

horizontally polarized SH shear waves, and have a shear displacement confined to the

horizontal plane. The motion of Love waves is perpendicular to the wave propagation

direction and parallel to the free surface (see Figure 1.1b). They are very sensitive to

geometrical horizontal variations of low velocity.

Rayleigh and Love waves are recorded during land seismic acquisitions. In the case of

a water layer overlaying an elastic solid medium, another type of surface wave, Scholte

waves, are created at the fluid/solid interface (Scholte, 1947). Their particle motion is

similar to Rayleigh waves, and they are generally recorded in shallow Ocean Bottom

Cable (OBC) acquisitions.

To better understand surface waves and their characteristics, one can begin from

their mathematical definition. From the expressions obtained, their physical description

and distinctive properties can then be determined and analyzed.

1.1.1 Theory of elasticity

The definition of surface waves can be derived from Newton’s law of motion. When

considering that all internal and external forces are in equilibrium, the equation of motion

is given as

∂jσij + fi = ρ
∂2ui
∂t2

, (1.1)

illustrating the relation linking body forces fi and forces originating from stresses σij

within the body, with the displacement ui in direction i. The terms ui, σij and fi, written

in index notation for a cartesian coordinate system, are each a function of position (x,y,z)

and time t. The term ρ is the bulk density.

The Earth can be considered as an elastic medium, where the stress can be expressed

as a function of strain εkl by Hooke’s law given as

σij = cijklεkl , (1.2)

where cijkl is the stiffness tensor. Equation 1.2 shows how the strain (or deformation) of

a linearly elastic medium is proportional to the stress applied.
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When considering the propagation of a wavefield in a homogeneous isotropic medium,

with a constant stiffness tensor and no preferred direction, Equation 1.2 can be expressed

as

σij = λεkkδij + 2µεij , (1.3)

where λ and µ are the Lamé parameters and δij is the Kronecker delta (equal to 1 for

i = j, and otherwise 0).

The strain tensor is related to the displacement as

εij =
1

2

(∂ui
∂xj

+
∂uj
∂xi

)
. (1.4)

Using Equations 1.3 and 1.4, the stress in Equation 1.1 can be expressed in terms of

displacement. Considering the case where no external forces are applied, and all forces

are derived from stresses, this leads to the second-order elastodynamic wave equation

given as

(λ+ 2µ)∇∇ · u− µ∇×∇× u = ρ
∂2u

∂t2
, (1.5)

where u is the displacement vector in vector notation. The solution to Equation 1.5 can

be obtained either by Helmholtz’s decomposition, giving

u = ∇Φ +∇×Ψ , (1.6)

where Φ is the scaler potential and Ψ is the vector potential, or following Kennett’s

approach (Kennett, 1983), as is done in the following section 1.1.2. The potentials Φ

and Ψ may be shown to be directly linked to compressional P-waves and shear S-waves

respectively, obeying wave equations:

∇2Φ =
1

V 2
P

∂2Φ

∂t2
(1.7)

∇2Ψ =
1

V 2
S

∂2Ψ

∂t2
, (1.8)

where VP =
√

λ+2µ
ρ

, and VS =
√

µ
ρ
. In these expressions VP and VS are respectively
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the velocities of P-waves and S-waves. One can observe that they only depend on the

properties of the material through which they propagate.

1.1.2 Resolution of the elastodynamic equation in a semi-infinite

half-space: Rayleigh wave definition

For a semi-infinite elastic half-space, the solution of the elastodynamic equation requires

to solve Equation 1.5. Alternatively one can solve the elastodynamic hyperbolic equa-

tions of order one, where the derivatives with z are considered, where z is chosen as the

vertical axis (perpendicular to stratification in the medium). This technique will then be

used for the more general case of horizontally stratified media. The system of equations

obtained from integrating Equation 1.4 in Equation 1.3 is

∂zuz =
1

λ+ 2µ
σzz −

λ

λ+ 2µ
∂xux

∂zux =
1

µ
σxz − ∂xuz

∂zσzz = ρ∂2
t uz − ∂xσxz

∂zσxz = ρ∂2
t ux − ∂xσxx , (1.9)

with

∂xσxx = 4(λ+ 2µ)∂2
xux +

λ

λ+ 2µ
∂xσzz . (1.10)

In the following, the focus will remain on the 2D propagation of Rayleigh waves, although

a similar approach may be derived for Love waves. The 2D (x, z) domain is chosen for

simplicity but an equivalent formulation may be derived in 3D either with a 3D cartesian

(x, y, z) grid, or a 3D cylindrical (r, θ, z) approach (Kennett, 1983).

The following boundary conditions also need to be applied:

• the free surface boundary condition for null stress at the free surface, giving σxz =

σzz = 0 at z = 0;

• the radiation condition at z −→∞, for which amplitudes diminish to zero at large

distances from the surface, and for which no waves propagate from infinity back

into the medium (Eringen and Suhubi, 1975).

23



INVERSION OF SURFACE WAVES

The system of equations obtained in 1.9 may be advantageously transformed into the

frequency-wavenumber (ω, k) domain (Aki and Richards, 1980; Kennett, 1983) with a

2D Fourier transform applied to both the time t and distance x axis. The transform

operator is defined as

f̂(k, z, ω) =

∫ ∫ +∞

−∞
f(x, z, t)ei(wt−kx)dxdt , (1.11)

and gives the following propagation equation in vector notation, which needs to be solved:

∂

∂z
B = −iAB , (1.12)

where the stress-displacement vector B is defined as

B =

[
û

ĉ

]
=
[
ûz ûx iσ̂zz iσ̂xz

]T

, (1.13)

containing displacement (û) and stress (σ̂) terms, and where the coefficient matrix A is

given as

A =




0 k
(
1− 2V 2

S

V 2
P

)
1

ρV 2
P

0

k 0 0 1
ρV 2
S

ρω 0 0 k

0 ρ
[
ω2 − 4k2V 2

S

(
1− V 2

S

V 2
P

)]
k
(
1− 2V 2

S

V 2
P

)
0



, (1.14)

and can be obtained directly from the system of equations in 1.9. Diagonalizing matrix

A yields

A = DΛD−1 , (1.15)

where the diagonal matrix Λ, containing the eigenvalues of A, is given as

Λ = diag
[
qP , qS, −qP , −qS,

]
. (1.16)

The terms qP and qS are the vertical wavenumbers for P-waves and S-waves respectively,

and are defined as
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qP =
(ω2

V 2
P

− k2
) 1

2
, (1.17)

and

qS =
(ω2

V 2
S

− k2
) 1

2
. (1.18)

The matrix D is chosen to be the local eigenvector matrix for A, given as

D =




qP −k −qP −k
k qS k −qS

2µk2 − ρω2 2µkqS 2µk2 − ρω2 −2µkqS

−2µkqP 2µk2 − ρω2 2µkqP 2µk2 − ρω2



. (1.19)

From integrating Equation 1.15 in Equation 1.12 one obtains

∂

∂z
B = −iDΛD−1B . (1.20)

Since a homogeneous medium is considered, the coefficient matrix A is constant, and so

the eigenvector matrix D is independent of z. One can introduce matrix V such as

B(z) = DV(z) , (1.21)

therefore obtaining a system of independent equations that can be solved, given as

∂

∂z
V(z) = −iΛV(z) . (1.22)

The solution to Equation 1.22 is given as

V(z) =




e−iqP (z−z0) 0 0 0

0 e−iqS(z−z0) 0 0

0 0 e+iqP (z−z0) 0

0 0 0 e+iqS(z−z0)




V(z0) , (1.23)

where the terms depend on the difference between the current depth z and the reference

level z0. The matrix V can be summarized in terms of upgoing (U) and downgoing
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(D) waves, characterized by their dependence on z, using Kennett’s notation (Kennett,

1983), and giving

V(z) =

[
VU(z)

VD(z)

]
. (1.24)

where VD is the downgoing wavefield for evanescent waves whose amplitudes decay with

depth, and VU is the upgoing wavefield. The components of V(z) are very similar to

the scalar and vector potentials Φ and Ψ, previously mentioned in Equation 1.6.

One can introduce the upward and downward transmission operators from z0 to z,

notated by TU and TD respectively, as

[
VU(z0)

VD(z)

]
=

[
TU 0

0 TD

][
VD(z0)

VU(z)

]
, (1.25)

giving

TD = TU =

[
e+iqP (z−z0) 0

0 e+iqS(z−z0)

]
. (1.26)

From the radiation boundary condition at z −→ ∞, the determination of terms qP

and qS in the complex plane are chosen as follows

Im(qP ) > 0 (1.27)

Im(qS) > 0 , (1.28)

to ensure the decaying of the downgoing wavefield VD, for imaginary qP and qS values

of e+iqP z and e+iqSz respectively. Following the radiation condition in a semi infinite

homogeneous half-space,

VU(z) =

[
0

0

]
. (1.29)

Following the free surface boundary condition required, for which σ̂xz = σ̂zz = 0 when

z = 0, Equation 1.21 results in
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B(0) =

[
û

0

]
= DV(0) =

[
mU mD

nU nD

][
0

VD(0)

]
, (1.30)

where mU , mD, nU and nD are the sub-matrices, in partitioned form, derived from

matrix D and the term û =
[
ûz ûx

]T
. From Equation 1.30 one obtains

nDVD(z = 0) = 0 , (1.31)

which has two solutions. Either VD = 0, which does not lead one any further, or

det(nD) = 0 . (1.32)

It is important to notice that this solution may occur without any external source applied

to the system. This explains why Rayleigh waves may be understood as a resonant mode

of an elastic halfspace. Equation 1.32 leads to the dispersion relation for Rayleigh waves

(Rayleigh, 1887), relating ω and k, such as

[
2µk2 − ρω2

]2
+ 4µ2k2

(ω2

V 2
P

− k2
) 1

2
(ω2

V 2
S

− k2
) 1

2
= 0 . (1.33)

Equation 1.33 has a solution, only if k2 > ω2

V 2
P

and k2 > ω2

V 2
S

.

One can define

k =
ω

cφ
, (1.34)

where cφ is the phase velocity. This enables to simplify Equation 1.33 to yield

[
2−

(VR
VS

)2]2

− 4
[
1−

(VR
VP

)2] 1
2
[
1−

(VR
VS

)2] 1
2

= 0 , (1.35)

where the phase velocity of Rayleigh waves (cφ = VR) is independent of angular fre-

quency ω, illustrating how Rayleigh waves in an infinite homogeneous half space are not

dispersive.

The velocity of Rayleigh waves (VR) is smaller than the velocity of S-waves and P-

waves (VR < VS < VP ). Equation 1.35 can be solved numerically to determine VR, if the

relation VS/VP is known, for example from the Poisson ratio ν. A good estimation of

the relationship between VR and VS is given by Viktorov (1967), which shows how VR is
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very much dependent on VS and to a lesser extent dependent on the Poisson ratio ν and

therefore also VP . A gross and quite often used approximation of VR is given by

VR ≈ 0.9VS . (1.36)

Surface waves in general have lower velocities compared to body waves. Travelling

through the near surface, the generally lower velocities of this weathered region further

slows down the surface waves. On the oil and gas exploration scale, surface waves are

often recorded at the same time as reflected body waves that have travelled much deeper

and covered longer distances. This is why removing surface waves is crucial for analyzing

these reflected waves in conventional seismic image processing.

1.1.3 Amplitude of Rayleigh waves with depth

Now that the boundary conditions have been applied to constrain the system of equa-

tions, one can reconsider the evolution of stress-displacement vector B with depth z,

such as

B(z) = DV(z) , (1.37)

which is equivalent to

[
û

ĉ

]
=

[
mU mD

nU nD

][
VU(z)

VD(z)

]
. (1.38)

The assumption that there is no upgoing wavefield VU(z) = 0, following the radiation

condition (see Equation 1.29), leads to

û(z) =

[
ûz

ûx

]
= mDVD(z) . (1.39)

From Equation 1.25, VD(z) can be computed by

VD(z) = TDVD(0) , (1.40)

where the transmission operator TD from Equation 1.26, from 0 to depth z is
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TD(0→ z) =

[
e−|qP |z 0

0 e−|qS |z

]
. (1.41)

From Equations 1.39 and 1.40 one can conclude that

û = mDTD(z)VD(0) . (1.42)

As the terms in the expression can be evaluated, one finally obtains an expression for

the displacement vector u for Rayleigh waves, for a given depth z, giving

û =

[
−qP e−|qP |z −ke−|qS |z
ke−|qP |z −qSe−|qS |z

]
VD(0) . (1.43)

The term VD(0) is an amplitude factor which becomes explicit when a source term is

introduced in Equation 1.12, making it possible to evaluate û(0). The solution u(x, z, t)

in the time-offset domain (t, x) can then be obtained by applying an inverse Fourier

transformation on û(k, z, ω).

To obtain an approximate quantitative indication of the change in amplitude with

depth for Rayleigh waves, one can analyse the term uz, giving the displacement of the

particle motion with depth. In the following the exponential decrease of the amplitude,

an important characteristic of surface waves is derived.

As the term VD(0) is a constant that does not vary with depth, one can simplify

Equation 1.43 to

ûz = qP e
−|qP |z + ke−|qS |z . (1.44)

For Rayleigh waves, k = kR, where kR = ω
VR

. The values of the vertical wavenumbers

qP (kR) and qS(kR) are therfore

qP (kR) = i

√
k2
R −

ω2

V 2
P

, (1.45)

and

qS(kR) = i

√
k2
R −

ω2

V 2
S

. (1.46)
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This gives the following for the displacement with depth

ûz = qP (kR)e
−z
∣∣i
√
k2R−

ω2

V 2
P

∣∣
+ kRe

−z
∣∣i
√
k2R−

ω2

V 2
S

∣∣
, (1.47)

ûz = qP (kR)e
−z|i|
∣∣ω

√
1

V 2
R

− 1

V 2
P

∣∣
+ kRe

−z|i|
∣∣ω

√
1

V 2
R

− 1

V 2
S

∣∣
. (1.48)

Assuming that VP � VS, the value of the first term on the right-hand side of Equation

1.48 can be assumed to be significantly smaller than the value of the second term. One

can therefore focus on the second term only, to obtain an approximative solution. Using

the relation in Equation 1.36 one obtains

ûz ' kRe
−z
∣∣ ω
VS

√
1

0.92
−1

∣∣
, (1.49)

ûz ' kRe
−z
∣∣ 0.48ω
VS

∣∣
, (1.50)

ûz ' kRe
−πz
λS , (1.51)

where ω = VS2π
λS

.

A rapidly decaying amplitude with depth is a significant characteristic for both

Rayleigh and Love waves, as illustrated in Figure 1.2. As surface waves propagate

through the near surface, they will only contain information on the properties of the

medium in this shallow region, and not be influenced by changes at depth. Considering

Equation 1.51, the displacement of surface waves at different frequencies will decrease

with depth z but will also depend on the wavelength λ. Therefore surface waves with

longer wavelengths, and consequently lower frequencies, will be less attenuated at a cer-

tain depth than surface waves with shorter wavelengths, and of higher frequency content.

As such, when using the information contained in surface waves to image the subsur-

face, the maximum depth of the investigation, is limited by the penetration depth of the

surface waves equivalent to about one wavelength (Grant and West, 1965; Foti, 2000;

Gedge and Hill, 2012), and can be determined by the frequency content of the signal.

The surface waves will not be influenced by properties of the layers below this depth.

Figure 1.2a illustrates how the amplitudes of both vertical and horizontal components

of Rayleigh waves decrease with depth. As the vertical and horizontal motion of Rayleigh

waves are exactly 90̊ out of phase, vertical component is greater than the horizontal one.

The horizontal displacement decreases rapidly with depth, and at a depth of about z/λ =
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Retrograde 

Vertical 

Prograde 

Particle motion 
 

 
Propagation direction 

(a) 	   	   	   	   	   	   	   	   	   	   	   	   	  (b)	  

Figure 1.2: The graph in (a) depicts the vertical (blue) and horizontal (green) displace-
ment amplitudes for a Rayleigh wave in an isotropic, homogeneous, elastic half-space, as
a function of depth z, given in terms of the wavelength. The amplitudes are normalized
against the amplitude of the motion perpendicular to the propagation direction at the
surface. Illustrations of the partical motion of a Rayleigh wave corresponding to the
respective changes with depth, starting as a retrograde ellipse, to linear vertical motion
and finally becoming a prograde ellipse are shown in (b). Figure modified from Gedge
and Hill (2012).

0.2, the displacement changes polarity. The vertical displacement increases slightly before

reaching a maximum at a depth of about 0.076λ and then decreases but does not change

polarity.

Rayleigh waves have a skin depth limited to approximately 0.94λ, at which the ver-

tical component will have decayed to about 20% of its surface value and the horizontal

component to about 10% (Strobbia, 2002; Foti et al., 2014). The larger the wavelength

of the Rayleigh wave, the deeper the skin depth and the greater the penetration depth

of the wave within the medium.

The relation between the vertical and horizontal displacement components changes
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with time and depth, as well as the particle motion, both shown in Figure 1.2b. Initially

the motion is that of a retrograde ellipse, but as the horizontal component of the Rayleigh

wave goes to zero, at a depth of λ/5, the particle motion becomes vertical linear. As the

horizontal displacement becomes negative the particle motion becomes elliptical again

but with a prograde direction, as the horizontal displacement is now in the opposite

direction.

The amplitude of surface waves will also decrease due to geometrical spreading, caused

by an increase in the surface of the wavefront, which attenuates the 3D wave propaga-

tion. However, different to body waves which propagate energy both horizontally and

vertically, and have a geometric attenuation factor of 1/r where r is the distance from the

source, the geometrical spreading of surface waves is reduced. Since the energy of sur-

face waves only decays horizontally, the amplitudes decrease by 1/
√
r during propagation

(Woods, 1968). Due to this difference, surface waves often have much higher amplitudes

compared to body waves. Their high energy generally dominates seismic recordings, es-

pecially at distances greater than on the order of one wavelength away from the source

(Foti et al., 2014). Furthermore, as they remain restricted to the near surface region,

they are generally the main cause of the shaking felt during an earthquake event.

It should be noted that the derivation to estimate ûz in this section, does not consider

a dependence of the Rayleigh wave velocity VR on the frequency ω. However in the case

that the velocity is not homogeneous in the half-space considered, Rayleigh waves will

become dispersive. The velocity of Rayleigh waves will therefore also depend on the

frequency giving VR(ω), though this will still result in an overall exponential decay with

depth.

1.1.4 Dispersion of surface waves

One important and useful characteristic of surface waves is their dispersive property

(Lamb, 1904; Love, 1911). This occurs when the medium considered is no longer homo-

geneous, or when the topography of the free surface is no longer flat. In such cases the

phase velocity of the surface waves depends on their frequency (Aki and Richards, 2002).

Figure 1.3 shows how waves of different wavelengths propagate with different phase

velocities due to the changing properties of the medium. Since the wavelengths are

proportional to the inverse of the frequency, the phase velocity is shown to be frequency

dependent. Waves of shorter wavelength and high frequency sample the first layer of the

medium, while waves with longer wavelengths and lower frequencies sample the deeper
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structures of the medium (Babuska and Cara, 1991). As velocities generally increase

with depth, the longer wavelengths, which penetrate deeper, will generally also travel

faster. The dispersion of the surface waves can therefore provide information on velocity

changes in the subsurface (Rix, 1988).

a) 	   	   	   	   	   	   	   	  	  	  	  	  	  b)	  
	  
	  
	  
	  
	  
	  
	  
c) 	   	   	   	   	   	   	   	  	  	  	  	  	  d)	  
	  

Figure 1.3: Schematic of how the phase velocity is dependent on the wavelength of the
propagating wave. For the homogeneous medium depicted in (a) all wavelengths, each
associated to one frequency, propagate with velocity A as shown on graph (c). For
the layered medium shown in (b), the phase velocity, which now has a more complex
frequency relation, is different for each wavelength on the graph (d). Figure taken from
Strobbia (2002).

By plotting the variation of the phase velocity with frequency, one can observe the

dispersion behaviour of surface waves. In stratified media, surface waves can contain

several discrete modes for a single given frequency (see Figure 1.4), as they all satisfy

the wave equation and the free surface condition. The slowest propagating mode is called

the fundamental mode (Sheriff and Geldart, 1995). All higher modes are harmonics of

the fundamental mode, of which an infinite number exist. Surface wave phases define

dispersion curves and the fundamental mode dispersion curve is the most often used

phase measurement.

For a homogeneous halfspace medium, only the fundamental mode is present. For a

weakly heterogeneous medium, such as stratified layers, higher modes propagate as well,

but the fundamental mode remains the most energetic. For a complex medium, higher

modes may become very energetic, sometimes more than the fundamental mode, making
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Fundamental 
mode 

Higher  
modes 

Aliasing 

Figure 1.4: Synthetic example of dispersion curves, shown in the frequency-wavenumber
(ω, k) domain, for a simple layered medium. The fundamental mode is the most energetic
and can be distinguished relatively clearly. The higher modes appear to merge one with
another, although they do not intersect. For noisy datasets or when considering a more
complex medium, the higher modes, and sometimes even the fundamental mode, could
be easily misinterpreted. Aliasing of the data may further contribute to problems with
automated picking algorithms. Courtesy of Jean-Baptiste Laffitte, 2015.

the distinction between them difficult (Gucunski and Woods, 1992). At far offsets, the

separation between the different modes in the time domain becomes more evident as the

modes propagate at different velocities through the medium (Ernst and Herman, 2000)

and the wave train of the surface waves is longer.

Picked dispersion curves can provide valuable information on the velocity structure

of the subsurface, which is of interest to geophysics applications from small scale en-

gineering purposes to large scale global seismology investigations. Seismic acquisitions

on such scales have been deployed with the aim of recording surface waves travelling

through the subsurface. From phase measurements of the dispersive characterisitics of

a site, it is possible to use inversion to estimate the subsurface soil properties. Inversion

techniques are used to obtain a best fit between the actual data and modeled data, to
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retrieve an estimation of the velocity of the medium with depth. In the following two

sections of this chapter, two different inversion techniques, which are applied to surface

waves, are discussed. The first one takes advantage of surface wave dispersion curves,

by picking and inverting phases of the fundamental mode, and sometimes also those of

higher modes, to obtain a local vertical (1D) velocity profile. The second technique aims

to invert the whole recorded seismogram to obtain a high resolution, multiparameter,

multidimensional image of the subsurface.

1.2 Inversion of dispersion curves

1.2.1 Surface wave analysis methods

Using surface wave analysis methods to obtain information on the subsurface is not a new

idea. Such methods have been promoted for both near surface geotechnical applications

(Socco et al., 2010) and global seismology applications (Romanowicz, 2002). Surface

waves, with their high amplitudes, have a good signal-to-noise ratio (SNR) compared to

other wave types, and are therefore an attractive source of information for the extraction

of subsurface properties.

Surface waves have been used by seismologists to characterize the Earth’s interier

since the 1920’s, obtaining information on subsurface properties along the source-receiver

path, as well as on the earthquake source. Romanowicz (2002) provides an extensive

review. For lithospheric imaging, the group velocity can be measured and inverted

for. Dispersion curves are obtained by picking surface wave phases, in the time-offset

(t, x) domain, for narrow frequency band of data. Since larger distances are considered,

surface waves modes can be more easily distinguished and phases are better separated.

Numerous applications of surface wave tomography have been performed for crustal and

mantle imaging (Nishimura and Forsyth, 1989; Stutzmann, 1993; Macquet, 2014).

With the introduction of the spectral analysis of surface waves (SASW) method

(Heisey et al., 1982; Nazarian and Stokoe, 1984; Stokoe et al., 1994), there was an

increased momentum in the development of techniques to exploit surface waves, especially

for applications on the near surface geotechnical and engineering scale. The method

allowed a faster and theoretically grounded approach, that took advantage of the growth

in computer technology at the time. Furthermore, the use of seismic imaging as a non-

invasive and low cost technique, can be a critical advantage for certain applications,
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avoiding the need for boreholes or probes. In the SASW method, a configuration of two

receivers is required, with several active sources exerted on the ground surface. Generally

only vertical sources and vertical component receivers are used in such experiments, since

the vertical displacement of surface waves with depth is greater than the horizontal one

(Figure 1.2). Often, only Rayleigh waves are exploited, being the easiest to generate and

record with readily available equipment (Socco et al., 2010). The fundamental dispersion

curve of the surface waves can be derived from the phase delay between two seismic trains

recorded at the two receivers, for each frequency component. Yet problems may occur

when strong higher modes exist in the data. Because the method suffers from a limitation

on the frequency band, the test is repeated with several different receiver configurations

to better estimate the dispersion curves. For global seismology applications, the use of

noise (generated from passive sources) was developed, exploiting low-frequency Rayleigh

waves in the always existing ambient wavefield (Shapiro and Campillo, 2004).

The SASW method was later extended to a multiple receiver approach with the

development of the multichannel analysis of surface waves (MASW) method (McMechan

and Yedlin, 1981; Gabriels et al., 1987; Park et al., 1999; Xia et al., 1999). With multiple

receivers, the calculation of the dispersion curves is more robust and accurate, and the

data processing faster. The data traces are normalized in the frequency domain, before

being transformed by the application of a slant-stack τ − p transform and subsequent

Fourier transform on the time axis, to visualise the dispersion curves in the frequency-

slowness (ω, p) domain (McMechan and Yedlin, 1981; Luo et al., 2008) or frequency-

velocity (ω, c) domain (Xia et al., 1999; Strobbia, 2002).

Surface waves are most sensitive to the Vs parameter of the subsurface, although

several other properties influence the surface wave velocities, such as Vp, Poisson ratio,

density, and layer thickness (Nazarian, 1984; Xia et al., 1999; Foti and Strobbia, 2002).

Information on these parameters, can therefore be obtained from the inversion of surface

wave dispersion curves, as illustrated in Figure 1.5. Often only a vertical profile of Vs

with depth is obtained, while Vp and density are fixed a priori, to reduce the number of

unknowns in the ill-posed inversion problem. The medium is frequently assumed to be

layered with depth for the inversion, with number of layers given as an input parameter

for the inversion. The number of layers can be overestimated to obtain a better resolu-

tion of the Vs profile, although this can also be computationally expensive. Otherwise

the number of layers may also be a model parameter which is inverted for (Bodin and

Sambridge, 2009). The Vs property is an important lithological and geotechnical param-

eter to retrieve, useful for engineering applications as it does not have a water-masking
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effect in saturated media.

Figure 1.5: Schematic for dispersion curve inversion. As waves of different wavelengths
and frequencies sample the medium at different depths in (b) and (c), dispersion curves
can be obtained such as (e), and these can be inverted to obtain information on the
velocity of the medium with depth given in (a). Figure taken from Foti et al. (2014).

The dispersion curves need to be accurately identified and picked, and are then com-

pared to simulated dispersion curves of an estimated model, with the aim of minimizing

the difference between the two. Usually the least-squares misfit is computed and min-

imized. Several inversion algorithms have been implemented for surface wave analysis.

Local search methods are often implemented (Xia et al., 1999). Brute global methods

such as Monte Carlo, although effective (Maraschini and Foti, 2010), are computationally

expensive, as the whole model domain is sampled to find the global minimum. Semi-

global methods such as simulated annealing (Beaty et al., 2002), genetic or neighborhood

algorithms (Wathelet et al., 2004; Wathelet, 2008) are often used to optimize the problem

and reduce the model space investigated.

Socco et al. (2010) provides a comprehensive review on the surface wave analysis

method. Although the method is now conventionally used to obtain near subsurface

properties, it also has several limitations, such as the picking of dispersion curves and an

intrinsical locally laterally invariant assumption.
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1.2.2 Picking dispersion curves

To invert the dispersion curves, the phase velocity values associated with different fre-

quencies first need to be picked. This requires someone to visually identify and manually

pick points along the dispersion curves. Although dispersion curves of different modes

will never cross each other, they can often appear to merge with each other (Panza

et al., 1972), and are non-continuous, only appearing at certain frequencies, as shown in

Figure 1.4 for a synthetically computed example. This makes it difficult to identify the

fundamental and higher modes (Stutzmann and Montagner, 1994).

Often the data are visualized in the frequency-wavenumber (ω, k) domain to better

enable the distinction of different modes (see Figure 1.6). For data acquired using a linear

array of receivers, they can be transformed by the application of a Fourier transform on

both the time and offset axis (Nolet and Panza, 1976). The stacking of the data in the

(ω, k) domain also improves the signal-to-noise ratio (SNR). Prior to the transformation

the traces are often normalized to reduce the contribution of large amplitude signals in

proximity to the source. The (ω, k) domain is a natural approach for the identification

of surface waves, as the energy of the wavefield is located in eigenvalues, which are

represented by lines in the (ω, k) domain. Of course the energy of noise will also be

present, and the energy density maxima need to be picked. The resulting dispersion

curves are then transformed to the frequency-velocity (ω, c) domain through the relation

c(ω) = ω/k(ω).

Yet difficulties with mode identification may still occur, especially for noisy datasets

or when the data are not properly sampled and aliasing is present (see Figure 1.4). For

complex targets, which are often also of higher interest to investigate, features such

as the topography, lateral heterogeneities and velocity inversions, may lead to complex

dispersion curves. In many studies only the fundamental mode is inverted, being easier

and cheaper to implement. For cases where it is the most energetic mode, such an

implementation can give robust and reliable results (Gucunski and Woods, 1992). Yet

the inversion of higher modes can play an important role, especially in cases of more

complex geology, and they sometimes need to be considered to avoid misinterpretation

(Beaty et al., 2002; Ryden et al., 2004; Maraschini et al., 2010). Extracting higher

modes during the processing often increases the sensitivity and resolution obtained during

inversion (Stutzmann, 1993). Dense acquisitions with large offsets, such as those for oil

and gas exploration are sometimes more suited for inversion with higher modes (Socco

and Strobbia, 2004).
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Figure 1.6: Disperson curves for a synthetic three-layered model. The uncertainty dis-
tribution for picking the spectral maxima of the fundamental and higher modes is shown
for the frequency-wavenumber (ω − k) domain (a), and for the frequency-phase velocity
(ω−c) domain (b). Although the different modes appear to merge, they do not intersect.
Image modified from Socco and Strobbia (2004).

The human interpretation and the labor involved in manual picking has led to (semi-)

automatic strategies for a more objective identification and selection, where the spectral

maxima for the fundamental (or higher modes) is computed and traced along the disper-

sion curve. Such automated processes include algorithms based on semblance (Neidell

and Taner, 1971; Parker and Hawman, 2012) used for near surface studies, as well as a

moving window analysis and the multiple filter technique, generally used for global seis-

mology studies (Dziewonski et al., 1969; Pedersen et al., 2003). However these methods

often fail for noisy real data obtained for complex near-surface targets, where searching

for the location of the spectral maxima is not sufficient to successfully distinguish the

different modes.

An alternative approach is to invert for the full waveform of the signal, avoiding

human interpretation and picking issues, and naturally inverting implicitly for all modes

present in the data. This approach is discussed in the next section 1.3.

1.2.3 Dealing with lateral variations

Surface wave analysis methods based on dispersion curve inversion, presume a layered

medium with depth, with no significant lateral variations within each layer, which are
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intrinsically assumed to be homogeneous within the range of the experiment. When

lateral variations are present in the subsurface, the fundamental mode may be more

difficult to pick, as it is strongly weakened by heterogeneities. Lateral heterogeneities

have been shown to impact surface wave phase velocities, leading to false depth-related

dispersion with a 1D assumption during surface wave analysis (Kennett and Yoshizawa,

2002; Strobbia and Foti, 2006). For example, two fundamental modes may be present

in the dispersion curve spectrum, corresponding to two different areas of a laterally

varying region. Multioffset phase analysis methods have been developed to help detect

and locate strong lateral variatons in velocity, while aiming to maintain the data quality

and robustness from using multiple sources and receivers (Vignoli et al., 2011).

A multiple laterally invariant approach inverting local dispersion curves can be ap-

plied to obtain better results. This technique often relies on a spatial windowing of the

data. The local dispersion curves are inverted for local Vs profiles with several disjointed

inversions, to then generate a larger interpolated 2D Vs section and retrieve smooth lat-

eral variations (Bohlen et al., 2004). Boiero and Socco (2010) propose a sliding window

approach for a laterally contrained algorithm, to better image lateral variations than can

be obtained by smoothing over individual layered medium (1D) inversions. The tech-

nique relies on the minimization of a common misfit function for the whole dataset. On

the global seismology scale, a modal approach that consists in splitting the wavefield in

lateral and vertical components, has been proposed to deal with smooth lateral variations

(Maupin and Kennett, 1987; Maupin, 1988; Ernst et al., 2002).

For strong lateral contrasts however, surface wave analysis methods based on phase

measurements generally break down. There is a need for an alternative approach that

inverts for the 2D or 3D subsurface directly from seismograms without phase picking.

Full waveform inversion (FWI) is one such method that allows to use surface waves to

go beyond a layered medium assumption and will be detailed in the next section 1.3.

1.3 Full Waveform Inversion

With the increase in computer power available, and as our ability to understand com-

plex non-linear inversion has developed, Full Waveform Inversion (FWI) has become an

increasingly feasible and attractive method for the oil and gas industry. It has the ability

to outperform other velocity model building techniques in providing high resolution and

dependable models for migration, taking advantage of the full waveforms of the acquired
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data. Furthermore, being a data-driven method it has a quantitative characteristic, and

can potentially provide multiparameter models, of Vp, Vs, density, anisotropy and at-

tenuation, that can help with interpreting and understanding the subsurface properties.

The oil and gas industry has the resources to acquire increasingly dense datasets, with

long offsets and low frequencies, that are required for successful FWI. However, although

FWI is now widely implemented in seismic exploration workflows, it is less robust than

many conventional velocity model building techniques. Due to the strong non-linearities

of the problem, convergence towards a sufficiently good result is not always easy.

Yet the advantages of moving from dispersion curve inversion techniques explained

in previous section 1.2, towards FWI to image the near surface are evident. FWI allows

to go beyond the (multi) layered medium limitations and does not involve any picking

that would require human interpretation, even though difficulties related to surface waves

characteristics may need to be overcome, such as the essential forward scattering property

of surface waves.

1.3.1 Introduction to Full Waveform Inversion

FWI is a high resolution technique, used to obtain quantitative images of model parame-

ters in the subsurface by modelling the physics of the measurement. Since the early 80’s

(Lailly, 1983; Tarantola, 1984b; Mora, 1988) the FWI method has developed with the

computer resources available and has been used in a variety of applications. A schematic

detailing the conventional FWI workflow can be found in Figure 1.7. In this method the

full waveform of an observed seismogram is matched to that of a corresponding synthetic

seismogram. The synthetic seismogram is computed by propagating the wave equation

through estimated model parameters of the subsurface, and recording the propagated

wavefield at receiver points, simulating the real acquisition scheme. All phases in the

observed seismic traces are considered, and therefore different types of propagation need

to be modeled to reproduce them in the synthetic dataset. The following two sections

will describe the forward modelling and the inverse problem in more detail.

1.3.1.1 Elastic forward modelling

To generate synthetic datasets, an accurate forward modelling engine is required. Several

options exist for discretising the wave equation for FWI schemes. They include finite
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Figure 1.7: A generalized workflow for conventional FWI. The method requires a priori
information in the form of initial models, to compute synthetic data which are then
compared to the observed data. The data difference is minimized by a gradient-based
optimization algorithm, for which the gradient is computed, and the inverse problem to
obtain the model update is approximately solved. The model parameters are updated
in an iterative approach until a minimum in the data difference is obtained.

differences (FD), finite element method (FEM), spectral element method, and discontin-

uous Galerkin (DG), as well as boundary integral methods when considering stratified

media. Although discontinuous Galerkin would be the most adapted when considering

surface waves, suitable for simulating a complex topography and strong contrasts in the

medium, it is also the most costly and difficult to implement. The work presented in

this thesis employs a finite differences method, which can be simply implemented, to dis-

cretize the elastodynamics equation for 2D wave propagation in the time domain. More

details can be found in section 2.2.3. The current excessive computational demands for

3D elastic FWI makes 2D forward modelling the preferred choice for gaining experience
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and code developement, as it allows repeated runs.

The finite differences scheme is implemented with a Virieux-Levander staggered grid

stencil (Virieux, 1986; Levander, 1988) with a fourth-order accuracy in space and a

second-order accuracy in time O(∆x4,∆t2). The scheme is illustrated in Figure 1.8.

σxz	  

σxx,	  σzz	  

σxz(ifs)=0	  

σzz(ifs+1/2)	  σzz(ifs-‐1/2)	  =	  -‐	  	  	  

Figure 1.8: Implementation of the free surface boundary condition for the finite difference
Virieux-Levander staggered grid stencil, using image theory. The free surface is along
the σxz = 0 grid. Modified from (Operto et al., 2007).

Numerical modelling of the free surface is often difficult, especially when considering

a complex topography as is often the case for land acquisitions. With finite differences,

a staircase approximation can be used to discretise changes in the topography, but the

number of points required for this is often very high, and demands a large computational

cost, on the order of 60 points per wavelength (Bohlen and Saenger, 2006). The work in

this thesis will only consider cases where a flat topography can be approximated. The

free surface, which requires the normal stress to be null at the boundary, is thus imple-

mented using image theory (Virieux, 1986; Levander, 1988). The free surface boundary is

implemented along the σxz = 0 grid of the staggered grid stencil considered, as illustrated

in Figure 1.8. Due to the staggered characteristic, the Vz grid is along the boundary,

while the Vx grid is half-a-grid interval below. Knowledge of the wavefield above the

boundary is therefore used to interpolate the missing values. The remaining sides of the

model have absorbing boundary conditions, implemented with perfectly matched layers

(PML) procedure, to imitate an infinite medium (Bérenger, 1994; Hastings et al., 1996;

Hustedt et al., 2004). The PML are therefore augmented to the right, left and bottom

of the finite difference grid.

For numerical stability, the time discretization must satisfy the Courant-Friedrichs-
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Lewy (CFL) stability condition (Courant et al., 1967; Richtmyer and Morton, 1967). In

the case of 2D propagation with an accuracy of O(∆x4,∆t2), the time step ∆t is required

to satisfy the following equation

∆t ≤ 0.606
∆x

cmax
, (1.52)

where ∆x is the step-size of the finite difference grid, and cmax is the maximum velocity

present in the model parameters (Levander, 1988). Regarding the spatial discretiza-

tion, at least 10 grid points per minimum wavelength should be considered for accurate

modelling of body and surface waves.

To improve the efficiency of the forward modelling, the algorithm used for the work

presented in this thesis, is implemented with a parallel decomposition on the sources.

Each source relies on its own Message Passing Interface (MPI) process, running on a sep-

arate core of the machine. The number of required MPI communications is small, limited

to only the global misfit summation and the gradient calculation, at each iteration.

1.3.1.2 Inverse problem

The inverse problem generally comprises of a misfit funtional which needs to be minimized

by solving an optimization problem. The data residual quantifies the differences between

the observed and synthetic data giving the vector ∆d, defined as

∆d = (dobs − dcal(m)
)
, (1.53)

where dobs is the observed data and dcal is the synthetic data calculated using the es-

timated model m. There is an implicit summation over all sources and receivers. The

data may be for either or both vertical and horizontal receiver components.

The misfit value is conventionally given by the L2 norm of the data residual (Taran-

tola, 1987) defined as

C(m) =
1

2

∫ T

0

∆d†∆d dt , (1.54)

where T is the recorded trace length, and the symbol † stands for the transpose operator.

The misfit function is formulated here in the time domain, with an implicit summation

over all sources and receivers, and is twice differentiable (see Figure 1.7). Preconditioning
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or regularization terms may be included in the misfit to favor certain directions of search.

Prior information from previous inversion studies of other geophysical methods may also

be included to help drive the inversion in a certain direction. When considering data

which includes suface waves, because of their generally higher amplitudes compared to

other wave types (see section 1.1.3), they will dominate the misfit, and drive the inversion.

In the FWI scheme, the inverse problem is created by the non-linear relation between

the observed data and the true model space. It is possible to set up an acquisition on the

Earth’s surface, and record seismic waves passing through the Earth, but not to directly

obtain the physical parameters of the Earth from the recorded seismograms. Due to

the large number of model parameters, global or semi-local stochastic methods such as

neighbourhood or genetic algorithms are not yet feasible, especially if considering 3D

geometries.

The solution of the inversion can be computed with linearized iterative methods that

minimize the misfit. The method requires to start with an initial estimated model of the

subsurface coming from other geophysical investigations. At each new iteration k + 1,

the model update ∆mk+1 is added to the previously estimated model mk, in the search

for the local minimisation of the misfit function C(mk+1). This gives

C(mk+1) = C(mk + ∆mk+1) . (1.55)

When considering FWI with surface waves the model parameter that is the most sensi-

tive, as seen for the inversion of dispersion curves in section 1.2, is the velocity Vs. The

Vp and density model parameters may also possibly be inverted for and updated with

FWI.

The minimization proceeds iteratively, through repeated calculation of a local gradi-

ent. The gradient is obtained by the derivative of the misfit function with respect to the

model parameters. Considering the case of a small model perturbation, with the Born

approximation (Born and Wolf, 1980; Hudson and Heritage, 1981; Coates and Chapman,

1990), the second-order Tayler expansion of the misfit function gives

C(mk + ∆mk+1) = C(mk) +
n∑

i=1

∂C(mk)

∂mi

∆mk+1
i

+
1

2

n∑

i=1

n∑

j=1

∂2C(mk)

∂mi∂mj

∆mk+1
i ∆mk+1

j +O(m3) , (1.56)
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where n is the size of the model parameter vector. The derivative of Equation 1.56 with

respect to the model parameter ml gives

∂C(mk+1)

∂ml

=
∂C(mk)

∂ml

+
n∑

i=1

∂2C(mk)

∂mi∂ml

∆mk+1
i . (1.57)

The solution is minimized, to ideally reach ∂C(mk+1)/∂ml = 0, at which the global

minimum is attained. The estimated model is iteratively updated during the inversion

to reach the true model. The model update is obtained from

∂2C(mk)

∂m2
∆mk+1 = −∂C(m

k)

∂m
. (1.58)

The first term of the left hand side in Equation 1.58 is the second derivative of the misfit

function, also known as the Hessian matrix H, the second term of the left hand side is

the model update, and the right hand side is the gradient G of the misfit function. The

gradient provides the direction of descent towards the local minimum, while the Hessian

contains the curvature information of the misfit function. Equation 1.58 can be written

more simply as

Hk(mk)∆mk+1 = −Gk(mk) , (1.59)

also known as the normal equation, and illustrated in the FWI workflow in Figure 1.7.

The algorithm used in this study implements the adjoint state method (Chavent, 1974;

Lailly, 1983; Tromp et al., 2005; Plessix, 2006) for optimal efficiency in the calculation of

the gradient. In the time domain, the gradient can be described by zero-lag correlation of

the real forward wavefield with the back-propagated adjoint wavefield. A more detailed

explanation on the formulation of the gradient with the adjoint state method can be

found in section 2.2.5. The cost of computing the gradient is independent of the data

complexity and only depends on the number of sources. It therefore has a computational

cost on the same order as the cost of the forward modelling.

At each iteration, the locally linearlized problem expressed by the Newton equation

(1.59) needs to be solved to obtain the model update. This requires to recompute the
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gradient vector and Hessian matrix at the new position for each new iteration, until

convergence is reached. Due to the high computation costs involved, gradient-based op-

timization algorithms which does not require to explicitly compute and store the inverse

Hessian are used. The steepest descent algorithm only considers the gradient, and is the

simplest to implement, but an approximation of the influence of the Hessian is often

helpful for FWI convergence (Pratt et al., 1998). The truncated Newton method com-

putes an approximate solution of Equation 1.59 using a conjugate gradient algorithm

and computing Hessian-vector products (Métivier et al., 2013). Although Hessian effects

are considered, the method is more costly, and may not yet be appropriate for an appli-

cation of elastic FWI. For this study all inversion results, unless otherwise specified, are

computed using the limited-memory Broyden-Fletcher-Goldfarb-Shanno (l-BFGS) algo-

rithm for optimization (Nocedal, 1980; Byrd et al., 1995; Nocedal and Wright, 1999).

This quasi-Newton method has a reduced computational cost, and allows to speed up

the inversion by computing an approximation of the product −(Hk)−1Gk.

1.3.1.3 Initial models

As can be observed from Equation 1.55, an initial estimation of the parameter models

is required for inversion. The availability of sufficiently good initial models is a key

limitation for the FWI method. Furthermore, at the start of the inversion, the initial

models need to explain the observed data to within half a wavelength or cycle-skipping

occurs and the inversion will get stuck (see section 1.3.2).

Prior information on the model parameters to be inverted, needs to be obtained

from other geophysical methods. First-arrival tomography and reflection tomography

are conventionally used as velocity model building tools to provide a smooth initial Vp

model for FWI when inverting only body waves.

When considering surface waves in an elastic FWI framework, lower resolution results

from the inversion of dispersion curves may perhaps provide a smooth initial Vs model

for the near surface region. The issue of a sufficiently good initial model is especially

important for surface waves, as the inversion problem becomes highly non-linear, and

the problem of cycle-skipping is greater than for body waves.
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1.3.2 Local minima and the cycle-skipping issue

Full waveform inversion is a non-linear problem, generally formulated as a local descent

method, to minimize the data difference. This can be viewed in Figure 1.9 where the

ball will descend the slope of the local valley, by iterative calculation of the gradient, to

minimize the data misfit. However the non-linearities cause the presence of local minima

in the topography of the misfit function, and the location of the initial model is crucial

for a successful inversion (Gauthier et al., 1986). The initial model must be close enough

to the true model so that a descent path leading to the global minimum exists (such

as for point B in Figure 1.9), otherwise the inversion will get stuck in a local minimum

(such as for point A in Figure 1.9).

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3
time shift (s)

L2
 n

or
m

Classical L2 norm

B"

A"

Figure 1.9: The shape of the classical difference-based L2 norm misfit function for a
1D example, produced from comparing two wavelets that are time shifted compared
to eachother, simulating a velocity difference between the true and estimated velocity
models. When the initial model is at point A, the inversion will converge towards a local
minimum and remain stuck there. However when the initial model is closer to the true
model at point B, the inversion will converge towards the global minimum.

The presence of local minima may be explained by cycle-skipping. Figure 1.10 il-

lustrates how these two issues are related. When two traces are compared they need

to be within half a wavelength to avoid cycle-skipping, otherwise the wrong phases are

matched up and a local minimum occurs. For slow surface waves propagating in the low

velocity near surface, the problem of cycle-skipping is even greater due to their small

wavelengths.
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Figure 1.10: 2D misfit maps for the classical difference-based misfit are shown in (a) and (e), as two model parameters are
perturbated in (d). The white cross marks the global minumum. The perturbed (dcal) and reference (dobs) data traces are
shown in (b) and (f) for the two cases marked by the black cross in (a) and (e) respectively. The data difference is shown in
(c) and (g) respectively. The difference in (g) is smaller because the wrong phases match up in (f) causing a local minima.
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In Figure 1.10f the perturbated model parameters have not yet caused the first arrivals

to be very much shifted compared to the reference dataset, yet the surface waves in the

trace are clearly cycle-skipped. When performing FWI with surface waves, because the

surface waves often have a higher amplitude than other wave types, they will naturally

dominate the misfit and limit any chance of convergence. It is for this reason that

including surface waves in FWI is so challenging.

Even when only considering acoustic cases, non-linearities are present and limit the

success of FWI. Several strategies have therefore been proposed, and shown to help

mitigate this issue. In the absence of implementing a strategy to avoid cycle-skipping,

the only other possibility for a successful FWI is to start from a sufficiently good initial

model that can explain the data to within half a wavelength: a very challenging issue

for near surface imaging.

1.3.2.1 The multiscale strategy

The multiscale strategy (Bunks et al., 1995), is one way to mitigate the problem of cycle-

skipping. Described by Sirgue and Pratt (2004) in the frequency domain, it is also called

the frequency continuation approach, and is widely implemented in FWI applications,

for both acoustic and elastic, on both synthetic and real datasets. The few examples of

FWI with surface waves, on the crustal exploration scale, also implement this strategy

or a variation of it (see section 1.3.3.2).

The aim of this method is to reduce the non-linearities by first introducing only

the low frequency content of the data in the inversion, and subsequently progressing

towards the use of higher frequency data content. The resulting model obtained with

each frequency band is used as an initial model for the subsequent inversion.

Figure 1.11 illustrates the shape of the classical difference-based misfit function for

data at different frequencies. It is evident that for lower frequencies the shape of the valley

of attraction of the global minimum is more convex, allowing for convergence starting

from an initial model which is further away (Mulder and Plessix, 2008). Contrarily,

the misfit function for the high frequency data has a less convex shape, but the global

minimum is better constrained, and may lead to a higher resolution result with inversion.

By first inverting for the low frequencies, the initial update of the model is limited

to low-resolution large-scale features. As the estimated model approaches the global

minimum, convergence is possible with higher frequency data, which are inverted to
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Figure 1.11: Classical difference-based L2 norm misfit of two Ricker wavelets, both with a
peak frequency of 4 Hz (orange), 15 Hz (red) and 40 Hz (dashed purple). The wavelets
are time shifted compared to eachother, simulating a velocity difference between the
true and estimated velocity models. The convexity of the misfit shape depends on the
frequency content of the data.

update the fine scale details of the model. This multi-resolution approach permits to

incorporate increasingly short wavelengths into the model.

The choice of the single frequencies or frequency bands used in this multiscale method

is critical and needs to allow for a continuous sampling of vertical wavenumbers for no

loss of information (Pratt et al., 1996; Sirgue and Pratt, 2004; Operto et al., 2004; Mul-

der and Plessix, 2008). This selection also permits to invert only a coarse sampling of

frequencies, to exploit redundancy in wavenumber coverage, and reduce the computa-

tional time required to obtain a satisfactory result. However, the success of this method

is limited by the requirement of low frequency data, which are often absent or very noisy

in acquisitions for oil and gas exploration.

1.3.2.2 Other strategies to avoid cycle-skipping

Many strategies have been proposed to avoid cycle-skipping. One approach is based on

phase unwrapping in the source-receiver plane for frequency domain FWI, which aims to

eliminate phase ambiguity, yet this implementation is often difficult (Choi and Alkhalifah,

2012; Alkhalifah, 2013). Further strategies include dynamic warping (Ma and Hale,

2013), deconvolution-based functions (Luo and Sava, 2011; Warner and Guasch, 2014),
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Laplace domain approaches (Shin and Cha, 2008; Ha and Shin, 2012), and semblance-

based optimization schemes (Pratt and Symes, 2002; Gao et al., 2014) to name a few.

Certain such methods have been targeted for initial model building rather than providing

a final result, as large scale features can sometimes be recovered even in the absence of

low frequencies. Yet these methods have not yet been applied to elastic FWI using

surface waves. As they were designed for other applications, they also do not try to take

advantage of the information specifically contained in surface waves.

Other strategies propose to use alternative misfit functions that are more robust,

though still considering a measure of the data difference. FWI applications that only

consider body waves, show these approaches to be less sensitive to model perturbations

in the data, or more adapted to deal with noise. Alternative norms to measure the misfit

include the L1 norm (Crase et al., 1990; Djikpéssé and Tarantola, 1999), the hybrid

L1/L2 norm (Brossier et al., 2010), the Huber norm (Guitton and Symes, 2003), and

the student’s t-distribution (Aravkin et al., 2011; van Leeuwen et al., 2013). These make

the FWI algorithm more robust, and less sensitive to outliers. However with a strict

data-matching of both amplitude and phase, they all suffer from cycle skipping and local

minima and are probably not more suitable with regard to FWI of surface waves.

Others have proposed to use a zero-lag cross-correlation misfit function (Routh et al.,

2011), where the similarity of the two datasets is maximized in the optimization. Fur-

ther solutions come from FWI applications on global seismology scales, where surface

waves are considered. Envelope and phase only misfit functions appear to mitigate

cycle-skipping, and help recover the large-scale features of the model (Bednar et al.,

2007; Fichtner et al., 2008; Bŏzdag et al., 2011; Luo and Wu, 2015). However all of

these alternative fomulations may still suffer from cycle-skipping in the absence of low

frequencies.

The option of alternative misfit functions specifially designed for FWI with surface

waves at the crustal exploration scale, is discussed and investigated in detail in Chapter

2. Alternative formulations such as the cross-correlation based misfit (van Leeuwen and

Mulder, 2010), a Singular Value Decomposition (SVD) based misfit (Moghaddam and

Mulder, 2012), and a multiscale wavelet decomposition formulation (Yuan et al., 2014),

as well as taking advantage of different data domains (Masoni et al., 2013; Pérez Solano

et al., 2014) when comparing datasets are addressed.
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1.3.3 Full Waveform Inversion with surface waves

Full waveform inversion can be used to image the subsurface of the Earth for various

applications and on different scales. Each comes with their own set of difficulties and

problematics. Including surface waves within an elastic FWI scheme, as signal to be

inverted, has already been achieved on the global and on the near surface scales, while

the applications at the oil and gas exploration scale remain limited.

1.3.3.1 From the global scale to the near surface scale

On the global and continental scale, seismologists perform FWI using surface waves to

image areas of interest, such as tectonic plate boundary zones, deducing properties of

structures on the crustal or mantle scale Lévêque et al. (1991); Fichtner et al. (2009);

Tape et al. (2010); Lekić and Romanowicz (2011). These observed surface waves are often

generated during large earthquakes, and travel very long distances along the surface of

the Earth, making data availability and sparse spatial distributions one of the main

limitations at this scale. The lack of dense acquisitions or sufficiently large ranges of

source-receiver distances, as well as the computational cost of modelling such large scale

structures are the major obstables that need to be confronted.

Yet at this larger scale, where the heterogeneities of the Earth’s crust are weaker,

the inversion process is generally also more linear. Surface waves are slowed down by

propagating for a longer time through the medium. It is relatively easier to distinguish

between different phases at such long offsets, than for seismic recordings at the oil and gas

exploration scale. Furthermore the recorded surface waves are of much lower frequency

than the signal produced by active sources for exploration, and the problem of cycle-

skipping when the analyzing waveform differences is greatly reduced. Still, adapted

and more robust misfit functions, based on phase and envelope formulations, are often

implemented to reduce the non-linearity of the inversion problem and to account for

biased or uncalibrated amplitudes (Fichtner et al., 2008; Bŏzdag et al., 2011). For the

low resolution required at such large scales, and for the recovery of weak heterogeneities,

such robust misfit functions are generally sufficient for convergence.

On the opposite end of the spectrum, on the near surface scale, there is also a great

need to image the subsurface, especially for geotechnical engineering purposes. Informa-

tion on the characteristics of the soil in the first few meters below the surface, obtained

from non-invasive techniques, is valuable for the construction of infrastructure, evaluation
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of natural risk hazards, investigations related to archeological sites, and environmental

issues.

The near surface is often very complex. Weathered surfaces, difficult topographies,

low velocity layers, and shallow geologic structures with strong heterogeneities are all

characteristics of this region. This makes seismic methods for imaging the subsurface at

this scale a challenging problem to tackle. Furthermore the active sources available for

such investigations sometimes lack the high frequencies needed to image with sufficient

detail. Yet surface waves have high amplitudes compared to other seismic waves, and

therefore a high signal-to-noise ratio. This makes them a valuable source of information

at this scale.

Most of the classical seismic methods are based on a simple velocity distribution

assumption, such as a (locally) layered Earth for dispersion analysis of surface waves using

MASW, or an increasing velocity with depth for refraction seismic. In such cases, lateral

variations, velocity inversion or strong heterogeneities, push classical seismic methods

towards their limits of applicability and reliability. As an alternative to such methods,

FWI allows to avoid any assumptions on subsurface complexities. Using FWI for near

surface characterization can be tackled by early waveform tomography using either P or

SH waves to improve resolution compared to classical ray-based tomography (Ellefsen,

2009; Smithyman et al., 2009). More recently there have also been attempts to exploit

the full (visco-)elastic waveform including surface waves (Gélis et al., 2007; Romdhane

et al., 2008, 2011; Bretaudeau et al., 2013; Schäfer et al., 2013; Groos et al., 2014).

The first to consider elastic models with a free surface, and try to use surface waves

in the context of FWI, was Gélis (2005), who aimed to detect an underground cavity

in the near surface. Although the investigation was successful when using elastic body

waves, the study resulted in the conclusion that including surface waves in FWI makes

the problem highly non-linear. The work of Gélis (2005) highlights some of the difficulties

and limitations of the method. As surface waves are more energetic than other waves,

they control the misfit and drive the inversion, aggravating the problem of cycle-skipping

for FWI, since they travel more slowly. Inversion for a Vs model only was shown to be

most successful, with multiparameter inversion, or inverting for Vp only, being more

difficult. The implementation of a multiscale strategy going from low to high frequency

content was shown to be very helpful, though ultimately the choice of a sufficiently close

initial model appeared to be critical for successful convergence.

A second application of FWI with surface waves at the near surface scale, considers a
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simple two layer model with the aim of recovering a slightly dipping interface (Romdhane

et al., 2008). The study illustrates the limitations of the MASW method for recovering

lateral velocity variations, compared to the more successful results with FWI. Again

a multiscale strategy from low-to-high frequencies is implemented to help avoid cycle

skipping. However the success of the inversion is once again linked to the prior knowledge

of a kinematically correct initial model.

A rather successful application that uses surface waves in an FWI scheme was per-

formed by Bretaudeau et al. (2013) with a lab-scale experiment designed to mimic a

real case scenario. Although scaled down to the millimeter scale, the diffraction of the

surface waves was exploited to detect an anomaly in the medium for a ”real” dataset.

Shown in Figure 1.12 are the initial and final Vs models. No dispersion is present as

the background velocity is constant and known. Yet the example illustrates our capacity

to extract information contained in the surface waves by FWI, at least when the initial

kinematics are correct.

(a)$

(b)$

Figure 1.12: Image of the initial Vs model (a), and the recovered Vs model using FWI
(b). The white velocity profile is for the true lab-scale medium, and the black velocity
profile is shown for the initial and final estimated velocity models. Artifacts in the
result are related to the imperfect source wavelet inversion and noise during the “real”
experiment. Figure modified from Bretaudeau et al. (2013).

The previous examples all consider the recovery of a heterogeneity of contrasting

properties within a relatively homogeneous and well known background model. Recently,
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Schäfer et al. (2013) presented a real dataset application, which illustrates some of the

complexities that arise when the kinematics are not well known. The study considers

the prospection of a fault in the first 15 m below the surface, and uses a linear velocity

gradient as a starting Vs model for FWI. Only the low frequency content is successfully

inverted. The addition of higher frequencies causes local minima to occur, even when

smoothing preconditioning strategies are implemented. The study concludes that a more

accurate initial model is required to obtain a good result. Furthermore it notes the

importance of taking into account attenuation for elastic cases (Groos et al., 2014).

1.3.3.2 At the oil and gas exploration scale

Bridging the gap between the global scale and the near surface scale, applications of

FWI with surface waves performed at the crustal exploration scale are few. There are

several problematics at this scale which have limited success. Acquisitions for the oil and

gas industry generally lack the low frequencies attained at the global scale, and there is

often a limited aperture and/or illumination. More critically, the targets of interest are

often very complex and highly heterogeneous.

Almost all successful FWI applications at the oil and gas exploration scale assume an

acoustic approximation. One successful attempt at elastic FWI using only body waves,

implements a hierarchical multiparameter approach (Prieux et al., 2013a,b). In a first

step only a Vp model is inverted for with acoustic FWI. In a second step a multiparameter

FWI is performed to update parameters such as density and attenuation, again assuming

an acoustic approximation. At this stage, elastic FWI using only body waves is finally

performed to improve the Vs model. However applications of elastic FWI remain limited

to simple environments and are generally only used for interpretation (Mordret et al.,

2011).

There have been even fewer attempts of elastic FWI with the inclusion of surface

waves. One approach to help mitigate the non-linearities caused by surface waves has

been to apply a time damping to the data for frequency domain FWI (Brossier et al.,

2009). This preconditioning of the data, helps the convergence of the inversion problem

by permitting to window specific arrivals (Sheng et al., 2006; Sears et al., 2008). The

shape of the misfit function can be shown to be more convex when computing the data

differences for damped datasets rather than full datasets (see Figure 1.13).

The implementation by Brossier et al. (2009) in the frequency domain, by means of

complex frequencies (ω + iγ), allows to initially select P-wave events at wide-apertures
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Figure 1.13: The misift for a full dataset (solid) and a damped dataset (dashed) as a
function of one model parameter. Figure modified from Brossier et al. (2009).

while damping shorter aperture P-wave events and converted waves, as well as free-

surface multiples and surface waves. As the time-damping is relaxed during the inversion,

more strongly non-linear signal is added. This is illustrated in Figure 1.14, showing a

synthetic dataset computed for a marine Ocean-Bottom-Cable (OBC) acquisition, to

which different damping values have been applied. Looking at the figure, one can observe

how surface waves (in this case Scholte waves) at progressively longer offsets are included

in the selected data. By the time the surface waves at mid to long offsets are inverted,

the kinematics of the estimated velocity models have already been largely corrected by

body waves.

Figure 1.14: Synthetic data with a time-damping applied from the first-arrival time. The
time-damping is progressively relaxed in (a) through (d); the damping term is given by
the value of the imaginary frequency γ. Figure taken from Brossier et al. (2009).

The results of an application of this method by Brossier et al. (2009) on a dip section

of the SEG/EAGE Overthrust model are given in Figure 1.15. The Vp model is greatly

improved with the time-damping strategy, validating the possibility to include surface

waves in a FWI framework at this scale. The Vs model is also inverted and improved,
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suggesting that the elastic wave propagation considered has helped the inversion. Yet the

real value that the surface waves bring to the inversion is not evident. Compared to the

same synthetic test without a free surface boundary condition, one can only observe a

substantial increase in the non-linearity when surface waves are included (Brossier et al.,

2009).

Further work by Romdhane et al. (2011) successfully tested this strategy on a more

near surface application considering a complex topography. The implementation of this

strategy was critical for convergence to occur. The study also highlighted how using

both vertical and horizontal receiver components produced a better result, while with

only vertical component receivers the final solution was degraded by 24%.

For both case studies, it is not fully clear if the estimated velocity model is corrected

by the information provided by surface waves, or rather that the surface waves are only

sufficiently well modelled to allow the inversion to be essentially driven by body waves in

an elastic case. There is a need for new strategies, better adapted to exploit surface waves,

and specialized for near surface exploration at the oil and gas scale. In the following,

Chapters 2 and 3 will deal with finding an alternative, more robust, misfit function, and

a strategy, specifically adapted to surface waves, to successfully invert them within an

FWI scheme.
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(a)$

(b)$

(c)$

(d)$

Figure 1.15: True model (a), intial model (b), and the resulting models from 2D frequency
domain FWI without (c) and with (d) the implementation of a time-damping approach.
Figure modified from Brossier et al. (2009).
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ALTERNATIVE MISFIT FUNCTIONS FOR ROBUST FWI

2.1 Introduction

There is still a need to investigate strategies that can specifically exploit the potential

information contained in surface waves. Finding a more suitable and robust misfit func-

tion is an important ingredient for such strategies. Ideally one would like to obtain a

solution such as the one shown in Figure 2.1.

Figure 2.1: With an increased convexity in the shape of the misifit function, as shown
progressively from (a) to (e), one can avoid the problem of local minima and cycleskip-
ping, and allow the possibility to converge even when starting with an initial model which
is far from the global minimum. Figure taken from Bunks et al. (1995).

A convex shape and a lack in local minima are two key features that a suitable misfit

function should possess. This will allow the possibility to converge even when starting

with an initial model which is far from the global minimum. However, with more robust

misfit functions, the region of the global minimum, at the center of a convex valley, may

become very flat, and may lead to a lower resolution of the final model obtained. When

this occurs, the resulting model can be used as an initial model for further inversions

with less convex misfit functions, as it is now closer to the true model and has a higher

chance to converge, as proposed by Bunks et al. (1995) in a multigrid approach.

Some robust misfit functions that have been used to mitigate cycle-skipping issues

are discussed in section 1.3.2.2, yet these do not take advantage of the physical char-

acteristics of surface waves. The following article investigates alternative more robust

misfit functions, adapted to the inversion of surface waves, and their integration in a

FWI scheme. Tests with synthetic data are illustrated to evaluate thier performance.
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2.2 Robust Full Waveform Inversion with surface

waves

Robust Full Waveform Inversion with surface waves

I. Masoni, R. Brossier, J-L. Boelle, M. Macquet, and J. Virieux

2015, Seismic Technology, 11(4), p. 48-59,

doi: 10.3997/2405-7495.2015114

2.2.1 Abstract

We have investigated a local optimization procedure for seismic imaging by full wave-

form inversion of surface waves. These waves are highly energetic when considering

near-surface imaging and present dispersive effects as well as significant forward scat-

tering. These propagation behaviours have led us to consider alternative data domains

where the data fitting should be performed. The frequency-slowness domain as well as

the frequency-wavenumber domain have been considered. We have shown how to build

the gradient of the misfit function in these two domains based on the adjoint approach.

The adjoint source term has been estimated with a systematic procedure based on La-

grangian multiplicators, making the cost of the procedure identical to the one formulated

in the standard time-offset domain.

A simple 2D synthetic example shows that the reconstruction of the shear velocity is

possible, although real applications could require a more extensive investigation includ-

ing windowing and filtering, as a hierarchical strategy appears to be necessary when

considering surface waves with high variations in amplitude.

A linearised approach is therefore possible and quite efficient. This avoids the picking

of dispersion curves and attempts to fill in the velocity spectrum, extending our search

domain to models with lateral velocity variations as done previously using global model

search.

Keywords: Surface waves, Inverse theory, Dispersion curve analysis, Velocity spec-

trum, Full waveform inversion
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2.2.2 Introduction

The recorded seismic signals at the free surface provide a complex signature we may

need to analyze and decipher. Of the different recorded phases in seismograms or traces,

surface waves are the most energetic ones and can provide interesting information on tar-

geted zones from near surface to deep structures. In exploration seismics, these phases

are considered as noise, although they have been intensively used in seismology for litho-

spheric reconstruction (van der Lee, 2002), mantle imaging (Nolet, 1977; Romanowicz,

2003) and for global Earth imaging (Lerner-Lam and Jordan, 1983). Shear wave velocity

(and bulk velocity and density to a lesser extent) influences the propagation of surface

waves through the dispersion relation. Seismic imaging with these surface waves proceeds

in a rather different way compared to using body waves as they are dispersive in het-

erogeneous media (Aki and Richards, 2002) and provide forward scattering interaction

with the free surface when propagating almost horizontally.

Through time-frequency analysis based on moving Gaussian filter (Cara, 1973), dis-

persion curve analysis is built at each station: the fundamental mode is picked manually

or automatically for different frequencies. Phase differences are obtained between two

stations when considering earthquakes. From these 2D mapping of apparent Rayleigh

wave phase velocities between two stations at different frequencies, a 3D mapping of the

S-wave phase velocities is reconstructed, using the different vertical variations of normal

modes with frequency. Although difficult, the detection and the interpretation of the

fundamental mode is easier at large scale than at short scale as for subsurface imaging.

This has led to consider surface waves as ground rolls and, therefore, noise, although

they carry the most important part of the energy in subsurface imaging.

When considering active sources for the emission of seismic waves at shallow depths

from tens of meters to few hundreds of meters, the interpretation of surface waves has

been promoted as the spectral analysis of surface waves (SASW) using two stations

and many active sources as hammers. The picking of dispersion curves done through

frequency-wavenumber or slant analysis provides phase velocity diagrams enabling the

reconstruction of a local 1D shear-wave model (McMechan and Yedlin, 1981; Heisey

et al., 1982; Nazarian and Stokoe, 1984; Stokoe et al., 1994). This method has been

efficiently used in many geotechnical engineering investigations leading to 1D S-wave

profiles. Later, an extension to many stations as for refraction seismic investigations,

through the multichannel analysis of surface waves (MASW) (Park et al., 1999), has

allowed improved reconstructions of the 1D S-wave velocity profile. Phase analysis on
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multiple stations enables a better detection of unwanted energy bursts and a better de-

tection/delineation of the dispersion curve which is used for the profile reconstruction.

This approach, intrinsically valid for laterally invariant media, has been extended to

smoothly varying medium but is still strongly limited by the requirement to pick and in-

terpret dispersion curves as well as the local constant-velocity layer-based representation

of the subsurface (Socco and Strobbia, 2004; Boiero and Socco, 2010; Bergamo et al.,

2012). Real applications have been performed in different subsurface environments, but

detection of low velocity zones is still difficult for the dispersion-curves interpretation,

especially when considering higher modes (Gabriels et al., 1987; Louie, 2001; O’Neil,

2004; Park et al., 2005).

Therefore, mainly the fundamental mode of Rayleigh waves has been used in most

applications and efficient inversion schemes have been designed for recovering the S-wave

velocity profile. Linearised approaches (Herrmann, 1987) are used and complemented by

pure Monte-Carlo perturbation (Shapiro et al., 1997). Semi-global search such as the

neighbourhood algorithm has been promoted by Wathelet (2008); Wathelet et al. (2008)

for more efficient exploration of the model space with constraints. Very few studies

include waveform inversion of surface waves using non-local investigations (Ryden and

Park, 2006; Maraschini and Foti, 2010) where one escapes the problem of detecting

and interpreting dispersion curves. In these investigations, the extensive exploration of

the model space is limited to a rather simple model description. Other studies based

on linearised approaches do not focus on surface waves but on the entire seismogram:

the so-called full waveform inversion includes both body and surface waves and turns

out to be difficult even on synthetic data (Gélis et al., 2007; Romdhane et al., 2011;

Schäfer et al., 2013) for near-surface targets. Brossier et al. (2009) have shown that

preconditioning the data by time damping allows successful reconstruction of acceptable

models while considering the entire waveform on a section of the SEG/EAGE overthrust

crustal model using elastic wave propagation with a free surface. The contribution of

the surface waves is unclear as one wonders if the body waves are mainly driving the

imaging process.

Specific developments of local optimization of surface waveforms deserve an investi-

gation starting from the definition of the misfit function between observed seismograms

and synthetic ones at the free surface. In order to avoid local minima, an analysis of dif-

ferent misfit functions has been performed by Masoni et al. (2013) in the framework of a

linearised formulation which can be considered as an extension from the dispersion curve

analysis towards an interpretation of the full velocity spectrum. Other investigations
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have also shown potential interests (Pérez Solano et al., 2014; Yuan et al., 2014).

In this paper, we shall detail the different misfit functions to be used when considering

the waveforms of surface waves. After reviewing the elastic wave equation solved with

a finite difference scheme to allow lateral variations of material properties, we formulate

the optimization procedure using the adjoint formulation for the minimisation of the

three misfit functions we have considered. We show how to solve the related adjoint

wave equation with a specific source term. We finally proceed with a simple synthetic

example to show how we can reconstruct the velocity spectrum starting from an initial

model we construct. A complete workflow starting from a MASW analysis to a FWI

procedure is beyond the scope of this paper devoted to the design of the optimization

scheme in the particular case of surface waves.

2.2.3 Forward modelling

In a 2D medium, seismic waves follow the elastodynamics equation which can be re-

cast into first-order hyperbolic partial differential equations with particle velocity vector

(vx, vz) and symmetrical stress tensor, recasted as the vector (σxx, σzz, σxz), as spatially

varying unknowns to be constructed. We consider a time formulation where these equa-

tions can be written explicitly as

ρ
∂vx
∂t

=
1

ρ

∂σxx
∂x

+
∂σxz
∂z

+ fvx

ρ
∂vz
∂t

=
1

ρ

∂σxz
∂x

+
∂σzz
∂z

+ fvz
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∂t

= (λ+ 2µ)
∂vx
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∂t

= (λ+ 2µ)
∂vz
∂z

+ λ
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∂t

= µ

(
∂vx
∂z

+
∂vz
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)
+ gσxz ,

(2.2)

where Lamé coefficients λ and µ as well as the density ρ characterise the medium prop-

erties and can spatially change. We have made the spatial dependence implicit in the

writing of these equations. External sources could be applied as forces (fvx , fvz) or as

an internal time-derivative of stress tensor (gσxx , gσzz , gσxz). We have discretised these

equations at nodes of a staggered finite-difference grid. The spatial derivatives are ap-
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proximated by a fourth-order central finite-difference stencil (Levander, 1988) and the

explicit time integration relies on a second-order leap-frog scheme.

This system could be given to the vector ut = (vx, vz, σxx, σzz, σxz)
t with a compact

expression

∂tu(t,x) = Ax(x,m)∂xu(t,x) + Az(x,m)∂zu(t,x) + s(t,x), (2.3)

where differential operators Ax and Az depend on the model parameters m at the position

x in the model. The transpose of a vector is denoted by the symbol t. A conservative

form could be designed by considering symmetrical compliance operator S(m,x) leading

to an implicit differential system

S(x,m)∂tu(t,x) = Hx(x)∂xu(t,x) +Hz(x)∂zu(t,x) + S(m,x)s(t,x), (2.4)

where symmetrical differential operators Hx and Hz are composed of values one or zero

and do not depend on the model properties (Burridge, 1996). Please note that this

transformation modifies the source term in this conservative expression. Expression

(2.4) is not very useful for modelling as it turns out to be implicit in time, but is

quite interesting for the formulation of the inversion because it is self-adjoint and terms

depending on both model properties and spatial derivatives can be split.

Boundary conditions are crucial for proper surface wave simulations as well as ab-

sorbing boundary conditions for mimicking the extended infinite medium. For flat free

surfaces, we have considered the stress imaging condition (Levander, 1988; Robertsson,

1996) which presents a good compromise between computational cost and accuracy,

although a limited number of propagated wavelengths can be considered to avoid accu-

mulation of numerical dispersion. The free surface interface goes through nodes sampling

stress components (σxx, σzz) and velocity component vx. Finally, the three other edges

of the simulation box are implemented with Perfectly Matched Layers (Bérenger, 1994)

to mimic a non-reflecting infinite medium.

This finite difference modelling tool will be the forward modelling kernel in the opti-

mization scheme we shall consider, whichever data domain is used for comparing observed

and synthetic data.
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2.2.4 Misfit function analysis

FWI is a data-fitting imaging technique used to derive quantitative models of the sub-

surface considering the entire set of waves, including surface waves (Virieux and Operto,

2009). It aims to solve the ill-posed inverse problem of deriving the model parameters

that describe the subsurface from observed seismic data. At the oil & gas exploration

scale, FWI is up to now mainly used to image at depth considering an acoustic ap-

proximation to delineate high resolution velocity models for migration, only using body

waves.

The method aims to match the full observed seismogram with a corresponding syn-

thetic seismogram computed from an initial velocity model, solving a local optimization

problem. To measure the residual between the observed and the calculated seismograms,

the L2 norm of the difference is conventionally used, fitting both amplitude and phase

information of the waveforms (Tarantola, 1984a; Pratt et al., 1998). This L2 norm gener-

ally focuses on the sample-to-sample difference between the observed and the computed

data in a given domain, generally the time-offset domain (t, h), or frequency-offset (ω, h)

for frequency-domain FWI, leading to the following misfit function

Ct,h =
1

2

(
dobs(t, h)− dcal(t, h)

)2
, (2.5)

where we assume an implicit summation over sources and receivers. By exploiting the

full information content of the data and employing a strict data-matching approach,

this method is able to produce very high resolution results, but may therefore not be

very robust or stable. FWI is indeed susceptible to non-linearity problems such as cycle

skipping and local minima, which reduce the convexity of the misfit function (Mulder

and Plessix, 2008). As a result, the initial predicted velocity model needs to be accurate

enough so that it lies within the small basin of attraction of the global minimum, meaning

that it has to be kinematically correct. Otherwise the minimisation easily ends up in the

nearest minimum without ever reaching the global minimum, and converges to a wrong

velocity model. It is believed that the initial model has to explain the data to within

half a wavelength to avoid cycle skipping and converge.

In order to relax this constraint, we may either design a more robust comparison cri-

terion between observed and synthetic data or we may consider comparing observed and

synthetic data on a sample-by-sample strategy in different domains. In the following, we

shall initially analyze different misfit functions before going more in detail on alternative

domains for sample-to-sample comparisons of data with a main focus on surface waves.
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2.2.4.1 Robust misfit design

Designing a more robust misfit comparison between observed data and synthetic data

could prevent cycle skipping problems and local minima issues related to the essentially

oscillating nature of seismic waves. Extracting time-shifts to be minimised by the cross-

correlation of windowed waveforms has been promoted by Luo and Schuster (1991);

Tromp et al. (2005). A maximisation of the cross-correlation function between observed

and calculated data to focus energy close to zero-time lag is used by van Leeuwen and

Mulder (2010); Brossier et al. (2015). These comparisons based on cross-correlation

between two signals are robust with respect to cycle-skipping but face ambiguity when

considering several events. Zero-lag cross-correlation to minimise the effect of amplitude

in the misfit (Routh et al., 2011) or a phase-only misfit function (Bednar et al., 2007)

could mitigate amplitude effects but are sensitive to cycle-skipping unless unwrapping

is performed adequately. Integration of the signal preventing the oscillation appears to

be sensitive to noise and amplitude prediction (Donno et al., 2013). The use of the

envelope of the signal also appears to relax the initial model accuracy but cycle-skipping

is still present (Bŏzdag et al., 2011). Deconvolution is also an alternative and has been

proposed by Luo and Sava (2011).

VS = 450m/s ± 30m/s 
VP = 1500m/s 

VS = 600m/s 
VP = 2000m/s 

depth = 20m ± 5m 

160 receivers every 12.5m 

 1 vertical source far offset = 2km 

3D propagation  in 
horizontally layered media 

Figure 2.2: Design of a simple model with two parameters defined as the depth of the
interface and the S-wave velocity in the upper layer

In order to illustrate differences between different misfit functions, we consider the

cross-correlation Xcorr(τ) between the observed and synthetic data

Xcorr(τ) =
nt∑

t=1

dobs(t+ τ)dcal(t) (2.6)
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and the normalised cross-correlation XcorrN(τ)

XcorrN(τ) =
Xcorr(τ)

|| dobs|| || dcal||
. (2.7)

This cross-correlation function (2.7) is insensitive to the amplitudes of the wavelet and

allows to access the phase of the data. This function is used by van Leeuwen and Mulder

(2010); Brossier et al. (2015) to define a weighted norm of the normalised cross-correlation

through the expression

CWi
=

1

2

nτ∑

τ=1

(Wi(τ)XcorrN(τ))2, (2.8)

where the weight Wi(τ) is applied at each time sample. The width and the convexity

of these misfit functions are modified depending on the applied weighting. Two types of

weighting are considered through the following expressions

W1(τ) = (τ/τmax)
2 (2.9)

W2(τ) = −e−ατ2 .

The first weighting W1 linearly penalises the values further away from zero-lag value while

the second one concentrates on values near by the zero-lag (van Leeuwen and Mulder,

2010). If the observed and the synthetic data match, the energy in the cross-correlation

is maximised at zero-lag, and the energy at zero-lag is subsequently annihilated by the

penalty function. The weighted norm can only be zero if the wavelet is a delta pulse

and all cross-talk is excluded by choosing an appropriate maximal shift. However, the

cross-correlation function suffers from cross-talk between different events in traces which

leads to significant energy away from zero-lag even for perfectly fitting data (this is also

true for the auto-correlation of the signal). This effect limits the application of such

a misfit to windowed data or when one arrival dominates, which could be the case for

surface waves.

In order to illustrate the impact of the three different misfit functions C(t,h), CW1 , CW2 ,

we consider a simple model with two parameters which are perturbed in order to exten-

sively sample the misfit function: the velocity of the first layer and the thickness of this

layer (Figure 2.2). Using finite-difference modelling the true data values are computed,

as well as the synthetic data values for each model sampling the two-parameter space.

The range of the perturbed layer depth is of 15 m to 25 m, while the true depth is

20 m, and the perturbed layer velocity ranges from to 480 m/s, while the true value is
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2.2 Robust Full Waveform Inversion with surface waves

450 m/s. Figure 2.3 illustrates the difficulties of the standard sample-by-sample misfit

function and the advantages of considering normalised cross-correlations at the expense

of an additional parameter coming from the weight.

These cross-correlation based misfit functions can be quite interesting alternatives

when starting from crude initial models although the expected resolution characterised

by the shape of the attraction basin may be quite poor. Furthermore, cross-talk effects

may require to window the data and the inaccuracy of the source wavelet could mitigate

this robustness as the cross-correlation is quite sensitive to the spectrum of the data.

Further research would be required to tackle these problems. In the following, we focus

on the sample-to-sample strategy, considering alternative domains.
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Figure 2.3: Misfit values for the three different misfit functions we have investigated. On
the left panel (a), one can see that the classical misfit function has many local minima
while the middle panel (b), penalising values far from zero-lag, is more noisy. The right
panel (c) presents a nice smooth valley, given by the Gaussian windowing which needs
to be carefully designed.

2.2.4.2 Sample-by-sample strategy

We may benefit from dense acquisition sampling for an improved analysis of the sample-

by-sample comparison. Alternative misfit functions can be used following similar strate-

gies as those used in dispersion curve analysis. McMechan and Yedlin (1981) have

transformed data in the frequency-slowness domain while Gabriels et al. (1987) have

considered data transformed to the frequency-wavenumber domain. This leads us to
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propose the following misfit functions for FWI, first in the ω − p domain

Cω,p =
1

2

(
| dobsN (ω, p)| − | dcalN (ω, p)|

)2
, (2.10)

and then in the ω − k domain after two Fourier transforms of the data

Cω,k =
1

2

(
| dobsN (ω, k)| − | dcalN (ω, k)|

)2
. (2.11)

The data is normalized before being transformed to the alternative domain. The phase

has also been removed from these two new misfit functions, and only the amplitude of

the velocity spectrum is considered. This strategy is related to dispersion curve analysis

where maximum-energy picks allow the extraction of the apparent dispersion velocity at

each frequency (Pérez Solano et al., 2014). A related misfit design has been promoted

by Maraschini et al. (2010) for the particular case of layered media in order to avoid

detection and picking of dispersion curves.

Applying a linear moveout (LMO) to obtain data in the ω − p domain or applying

a wavenumber Fourier transform to obtain data in the ω − k domain separates events

through slopes or wavenumbers. This might allow the extraction of kinematic informa-

tion in a more robust manner. Furthermore the stacking involved in the transformation

may also make the misfit function more efficient in the presence of noise. In these do-

mains, we may have a better identification of frequency-dependent dispersion effects.

Moreover, because we consider the modulus of the data, the misfit function is no more

sensitive to the phase of the source wavelet, but should not limit the capacity of fitting

the kinematic properties contained in the data. The simple example we have considered

may help illustrate the effects of these transformations. Figure 2.4 displays the misfit

function structure where one can observe major differences between the (t, h) domain

and both the transformed (ω, p) and (ω, k) domains, which have a broad attraction basin.

Of course, this structure may be due to the simple description of the model space.

We may now consider how to update the model parameters while considering the

comparison of data in these different domains, but still doing the forward modelling

in the (t, h) domain using the finite-difference engine we have selected through time

integration of the differential system (Equation 2.3).
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Figure 2.4: Sample-by-sample differential misfit values for the three different domains we
consider. The left panel (a) is the same as the one in Figure 2.3, while the middle panel
(b) is for the (ω, k) domain and the right panel for the (ω, p) domain. Relation k = ωp
between slowness and wavenumber leads to a similar structure of the misfit functions.

2.2.5 Optimization approach

We shall proceed by a linearized approach for updating the model, and we may there-

fore estimate the gradient operator of each misfit function and eventually the effect of

the Hessian operator on the model perturbation vector. In this work, we shall concen-

trate on the estimation of the gradient and we shall consider quasi-Newton approaches

for updating the model (Byrd et al., 1995). We shall proceed following Plessix (2006)

by constructing a Lagrangian function for each domain in which the seismic data are

expressed.

2.2.5.1 Misfit in the domain (t, h)

We shall first consider the generic scalar product

< f(t,x)|g(t,x) >T,Ω2=

∫

T

∫∫

Ω2

dtdx f(t,x)†g(t,x), (2.12)

over the time window [0, T ] and the 2D space Ω2. Note that symbol † denotes the

transpose complex conjugate of a complex number vector if f(t,x) is defined in Cn.

The misfit function will be defined still assuming an implicit summation over sources
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through the expression

Ct,h(m, dcal) =
1

2
||dobs(t, h)− dcal(t, h)||2T,Ωr

=
1

2
< dobs(t, h)− dcal(t, h)|dobs(t, h)− dcal(t, h) >T,Ωr , (2.13)

where Ωr is the receiver space.

We shall consider the following Lagrangian

L(m, dcal, u, ξ, ζ) = Ct,h(m, dcal)+ < ξ(t, h)|dcal(t, h)−Rhu(t,x) >T,Ωr

+ < ζ(t,x)|S∂tu(t,x)−Hx∂xu(t,x)−Hz∂zu(t,x)− Ss(t,x) >T

+ < ζ(0,x)|u(0,x) >, (2.14)

which must have derivatives equal to zero for the different arguments which are considered

as independent (Chavent, 2009). Please note that we have considered here the differential

system (Equation 2.4) with an initial value condition, and that spatial dependency on

operators S, Hx and Hz have been removed for compactness.

Zeroing the derivative with respect to the vector ζ gives the state equation of wave

propagation at all spatial positions and all times, while zeroing the derivative with respect

to the vector ξ will define the state equation which projects the wavefield u(t,x) at

receiver positions through the operators Rh.

Zeroing the derivative with respect to the state variable u(t,x) and dcal(t, h) leads to

the definition of two adjoint variables

ξ(t, h) = dobs(t, h)− dcal(t, h) = ∆d(t, h) (2.15)

and

S∂tζ(t,x)−Hx∂xζ(t,x)−Hz∂zζ(t,x) =
∑

Ωr

Rt
hξ(t, h)

subject to ζ(T,x) = 0 (2.16)

Note that the prolongation operator Rt is the transpose of the operator R. Note also that

because of the self-adjoint expression of the wave-equation (2.4), the ζ adjoint equation is

a wave-equation problem similar to the state equation, but subjected to a final condition.
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This adjoint-equation is classically solved using the change of variable τ = T − t, giving

−S∂τζ(T − τ,x)−Hx∂xζ(T − τ,x)−Hz∂zζ(T − τ,x) =
∑

Ωr

Rt
h

(
∆d(T − τ, h)

)

subject to ζ(0,x) = 0. (2.17)

Finally, one can observe that the partial differential equation of the adjoint system is

very close to the one of the forward wavefield with a specific source term, gathering the

residues at receivers positions.

One can deduce the gradient by taking the derivative of the Lagrangian with respect

to each model parameter mi through the expression

∂L
∂mi

=
∂C

∂mi

=
〈
ζ(t,x)|∂S(m)

∂mi

∂tu(t,x)
〉
T

=

∫

T

dt ζ(t,x)t
∂S(m)

∂mi

∂tu(t,x) (2.18)

away from active sources. The expression shows that the gradient is the zero-lag cross-

correlation between the adjoint wavefield and the derivative of the incident wavefield

multiplied by a local scattering operator expressed with parameter derivatives of the

compliance matrix. The scattering operator expresses both the illumination of the scat-

tering point by the incident wavefield and the re-emission capacity towards the receiver

through the adjoint wavefield.

2.2.5.2 Misfit in the domain (ω, p)

The misfit function is expressed in the (ω, p) transformed domain through the expression

Cω,p(m, d̄calN ) = || |d̄obsN (ω, p)| − |d̄calN (ω, p)| ||2F,P
= < |d̄obsN (ω, p)| − |d̄calN (ω, p)| | |d̄obsN (ω, p)| − |d̄calN (ω, p)| >F,P ,

(2.19)

where F is the space of considered frequencies and P the space of considered slownesses.

We note the linear move-out (LMO) transform of the wavefield at receivers u(t, h),

known also as the slant stack, as

ũ(t, p) =

∫

Ωr

dh u(t+ ph, h), (2.20)
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and the Fourier transform of ũ(t, p) with the compact notation

ū(ω, p) =

∫

T

dt ũ(t, p)e−iωt. (2.21)

We construct the related Lagrangian L(m,u, dcal, dcalN , d̃calN , d̄calN , λ1, λ2, λ3, λ4, λ5) with

five adjoint wavefields related to applied transformations, normalisation and differentia-

tion as the following expression

L = Cω,p(m, d̄calN ) +
〈
λ1(ω, p)|d̄calN (ω, p)−

∫

T

dt d̃calN (t, p)e−iωt
〉
F,P

+
〈
λ2(t, p)|d̃calN (t, p)−

∫

Ωr

dh dcalN (t+ ph, h)
〉
T,P

+
〈
λ3(t, h)|dcalN (t, h)− dcal(t, h)

||dobs(h)||
〉
T,Ωr

+
〈
λ4(t, h)|dcal(t, h)−Rhu(t,x)

〉
T,Ωr

+
〈
λ5(t,x)|S∂tu(t,x)−Hx∂xu(t,x)−Hz∂zu(t,x)− Ss(t,x)

〉
T

+
〈
λ5(0,x)|u(0,x)

〉
, (2.22)

We may proceed in the same way as for the (t, h) domain. The derivative with respect

to each adjoint variable λi will provide states equations of computation and transforma-

tions requested on data. The derivatives with respect to the variable d̄calN provides the

definition of the adjoint variable λ1 through the expression

λ1(ω, p) = (d̄obsN (ω, p)− d̄calN (ω, p))
d̄calN (ω, p)†

||d̄calN (ω, p)|| . (2.23)

Note that d̄calN (ω, p)†/||d̄calN (ω, p)|| represents the opposite of the phase of d̄calN (ω, p),

meaning that if d̄calN (ω, p) = Reiφ, then d̄calN (ω, p)†/||d̄calN (ω, p)|| = e−iφ.

The derivative with respect to the variable d̃calN provides the adjoint variables λ2

through the expression

λ2(t, p) =

∫

F

dω λ1(ω, p)eiωt, (2.24)

giving the adjoint of the Fourier transform of the λ1 variable, an inverse Fourier transform

if F is considering the whole frequency range. The derivative with respect to the variable

dcalN requires a change of variable t′ = t + ph and we assume that boundaries have no

impact on the interval defined for variable t and for t′ and we can obtain the following
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expression

λ3(t, h) =

∫

P

dp λ2(t− ph, p), (2.25)

giving the adjoint of the LMO transform of λ2, an inverse LMO transform if P is con-

sidering the whole range of slownesses. The derivative with respect to the variable dcal

gives us

λ4(t, h) =
λ3(t, h)

||dobs(h)|| . (2.26)

Finally the derivative with respect to the variable u(t,x) gives the partial differential

equation of the adjoint variable λ5

S∂tλ5(t,x)−Hx∂xλ5(t,x)−Hz∂zλ5(t,x) =
∑

Ωr

Rt
hλ4(t, h)

subject to λ5(T,x) = 0. (2.27)

One can see that the source of the adjoint wavefield can be recursively deduced from the

different transformations/normalisation (Equations 2.23, 2.24 2.25, 2.26, 2.27), making

the gradient computation (2.18) feasible in the (ω, p) domain.

2.2.5.3 Misfit in the domain (ω, k)

We can proceed in exactly the same way for the (ω, k) domain. The misfit function is

expressed in the (ω, k) transformed domain through the expression

Cω,k(m, d̄calN ) = || |d̄obsN (ω, k)| − |d̄calN (ω, k)| ||2F,K
= < |d̄obsN (ω, k)| − |d̄calN (ω, k)| | |d̄obsN (ω, k)| − |d̄calN (ω, k)| >F,K ,

(2.28)

where F is the space of considered frequencies and K the space of considered wavenum-

bers. We note the wavenumber Fourier transform of the wavefield at receivers u(t, h)

ũ(t, k) =

∫

Ωr

dh u(t, h)e−ikh (2.29)

and the Fourier transform of ũ(t, k) with the compact notation

ū(ω, p) =

∫

T

dt ũ(t, k)e−iωt. (2.30)
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We construct the related Lagrangian L(m,u, dcal, dcalN , d̃calN , d̄calN , µ1, µ2, µ3, µ4, µ5) with

five adjoint wavefields related to applied transformations, normalisation and differentia-

tion as the following expression

L = Cω,k(m, d̄calN ) +
〈
µ1(ω, k)|d̄calN (ω, k)−

∫

T

dt d̃calN (t, k)e−iωt
〉
F,K

+
〈
µ2(t, k)|d̃calN (t, k)−

∫

Ωr

dh dcalN (t, h)e−ikh
〉
T,K

+
〈
µ3(t, h)|dcalN (t, h)− dcal(t, h)

||dobs(h)||
〉
T,Ωr

+
〈
µ4(t, h)|dcal(t, h)−Rhu(t,x)

〉
T,Ωr

+
〈
µ5(t,x)|S∂tu(t,x)−Hx∂xu(t,x)−Hz∂zu(t,x)− Ss(t,x)

〉
T

+
〈
µ5(0,x)|u(0,x)

〉
, (2.31)

Following the same strategy, the adjoint expressions are successively obtained

µ1(ω, k) = d̄obsN (ω, k)− d̄calN (ω, k)
d̄calN (ω, k)†

||d̄calN (ω, k)|| , (2.32)

giving the residues,

µ2(t, k) =

∫

F

dω µ1(ω, k)eiωt, (2.33)

giving an adjoint temporal Fourier transform,

µ3(t, h) =

∫

K

dk µ2(t, k)eikh, (2.34)

giving an adjoint spatial Fourier transform,

µ4(t, h) =
µ3(t, h)

||dobs(h)|| , (2.35)

giving the normalisation

S∂tµ5(t,x)−Hx∂xµ5(t,x)−Hz∂zµ5(t,x) =
∑

Ωr

Rt
hµ4(t, h)

subject to µ5(T,x) = 0 (2.36)

giving the partial differential equation of the µ5 adjoint variable.

Again, one can see that the source of the adjoint wavefield µ5 can be recursively
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deduced from the different transformations and normalization (Equations 2.32, 2.33,

2.34, 2.35, 2.36), making the gradient computation (2.18) feasible in the (ω, k) domain.

2.2.6 Illustrative synthetic example

We shall consider a simple synthetic example where an oblique velocity gradient is as-

sumed in the upper layer as illustrated in Figure 2.5a. The shear velocity increases

laterally by 0.5 s−1, and the vertically by 5 s−1. The P-wave velocity is determined by

a constant poisson ratio, and the density is homogeneous. The acquisition simulated is

a fixed-spread consisting of 24 vertical sources and 48 multi-component receivers evenly

spaced on the surface of the 600 m long model. The resulting data in the t−x domain is

shown in Figure 2.6. We can see quite dispersive surface waves coming from the gradient

in the true model. We consider an initial model with two layers of constant velocities: we

have eliminated the gradient in the upper layer as can be seen in Figure 2.5b. Differences

with the initial data are quite strong even for the phase evolution of surface waves and

one may wonder how the FWI will perform on these datasets. One may also look at the

data in the phase velocity spectrum as shown in Figure 2.7 which is the standard domain

when analysing the dispersion of surface waves.

We perform the FWI reconstruction of the shear velocity both in the ω − p domain

and in the ω − k domain. Both approaches extract information from the data in the

frequency range we consider. Figures 2.5c-2.5d show the reconstructed models, while the

fit of the data is shown in Figure 2.6 viewed in the domain where the data is collected,

and in Figure 2.7 which highlights the dispersion of the surface waves. The depth of

penetration of the surface waves controls the depth at which we can reconstruct the

velocity which reaches the depth of the first layer at 20 m depth.
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Figure 2.5: Model description and reconstruction: the top two models represent the true
model with an oblique gradient (a) and the initial two-layered model (b). The bottom
two models represent the reconstructed model when performing FWI in the ω−p domain
(c) and the reconstructed model when performing FWI in the ω− k domain (d). Please
note that in this example the horizontal gradient reconstruction is more successful for
FWI in the ω − k domain.
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2.2 Robust Full Waveform Inversion with surface waves

Figure 2.6: The true data with strong energetic dispersive surface waves (a); the initial
data for the two-layered model (b) and the difference to the true data (c); the final data
after FWI in the ω − p domain (d) and the difference to the true data (e); and the final
data after FWI in the ω − k domain (f) and the difference to the true data (g). In this
example, the FWI performs better in the ω − k domain than in the ω − p domain.
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Figure 2.7: Represented in the top row are the true velocity spectrum (a), the initial spectrum for the simple two-layer model
(b) and the velocity spectrum differences (c). The bottom row represents the final velocity spectrum for the FWI result in
the ω − p domain (d), and the difference with the true velocity spectrum (e); and the final velocity spectrum for the FWI
result in the ω− k domain (f), and the difference (g). In this example, the FWI performs better in the ω− k domain than in
the ω − p domain.
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2.2 Robust Full Waveform Inversion with surface waves

The inversion result of the shear velocity structure shown in Figure 2.5c obtained

with the expression of the data in the (ω, p) domain leads to the data displayed in

Figures 2.6d-2.6e and in Figures 2.7d-2.7e. One can observe that the data misfit is

still quite strong. It is also interesting to examine the data in the domain related to

the optimization procedure. Figure 2.8 shows the data in the (ω, p) domain and how

the inversion attempts to fit some particularly energetic packets leading to some strong

misfits in specific parts of the domain.

The inversion result of the shear velocity structure obtained using the expression of

the data in the (ω, k) domain leads to Figures 2.6f-2.6g, where one can note that the

data misfit is much better than for the (ω, p) domain. The data is also represented in the

data domain where the optimization is performed in Figure 2.9. The inversion performs

much better than in other domains as can be seen from the difference between the true

data and the recovered data (Figure 2.9e). The pattern one can see in the final data

structure has been successfully updated from the simple initial dispersion curves, and

the velocity spectrum has been filled-in.
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Figure 2.8: The true data in the (ω, p) domain (a); the initial data and the difference to
the true data (b,c); the recovered data after FWI in the (ω, p) domain and the difference
to the true data (d,e). Some particularly energetic packets can be observed.

2.2.7 Conclusion and Perspectives

We have presented a systematic framework to exploit the full velocity spectrum of sur-

face waves, while explicitly taking into account their dispersive behaviour, as part of a

FWI scheme. We have formulated the inversion through a local optimization procedure,
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Figure 2.9: The true data in the (ω, k) domain (a); the initial data and the difference to
the true data (b,c); the recovered data and the difference to the true data (d,e). One can
see a significantly reduced misfit between the initial data difference and the final data
difference with less energetic patterns than for the (ω, p) domain.

considering data transformed to alternative data domains such as the (ω, p) domain and

the (ω, k) domain. We have shown that we are able to extract useful information from

surface waves in an automatic way, and without relying on dispersion curve picking or

assuming a layered medium. Furthermore, the workflow is still affordable as it relies on

a local optimization procedure and avoids a systematic exploration of the model space,

which would require a more intensive exploration workflow.

The synthetic example we consider has a relatively dispersive behaviour as the model

contains combined vertical and lateral velocity gradients. A systematic investigation of

the inversion procedure when considering more complex models will be the purpose of

further work. Surface waves may have strong energetic pulses and can generate complex

forward and backward scattering in complex subsurface environments. We therefore

expect that specific windowing and filtering approaches may be necessary to perform

inversion in more complex cases, although such operations should be relaxed in the final

steps of the inversion.
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2.3 Other proposed misfit functions

A complete comparison of alternative misfit functions is presented in Masoni et al. (2013)

(see appendix A), which analyzes difference based and cross-correlation based misfit

functions, for various data domains, as well as a Singular Value Decomposition (SVD)

based misfit function. The analysis validates the work by Pérez Solano (2013) and Pérez

Solano et al. (2014), which propose the same robust misfit function in the frequency-

wavenumber (ω, k) domain, but also implement a windowing in offset. In the time-offset

(t, x) domain, this windowing in offset helps with cycle-skipping effects, as the long offsets

which are most cycle-skipped are removed. In the (ω, k) domain, the offset windowing

helps dealing with lateral velocity varations and 2D effects. An optimal maximum offset

value is determined by the equilibrium between the smearing that occurs with long

offsets and amplitude instabilities for short offsets. The added value of the surface waves

included in the FWI remains however slightly ambiguous, since for the synthetic tests

shown by Pérez Solano (2013), the P-wave velocity model is equally well recovered by

the inversion as the shear wave velocity model. However the inversion of the Lamé

parameters rather than the P-wave and shear wave velocities directly may have played

an important role in the results.

Work by Yuan et al. (2014) and Yuan et al. (2015), follows a different approach for

FWI with surface waves. An envelope misfit function is implemented as a more robust

alternative to the classical misfit function. Furthermore a particular multiscale approach

based on a wavelet decomposition is applied during inversion to help with cycle-skipping

issues. The wavelet decomposition, allows to invert low to high frequency data, as shown

by the frequency spectra for wavelet functions of different scales in Figure 2.10. This

approach helps mitigate cycle skipping by updating the model from large scale to more
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ALTERNATIVE MISFIT FUNCTIONS FOR ROBUST FWI

detailed features, similar to conventional frequency continuation multiscale approaches.

The presence of low frequency data is however critical for successful convergence. Yuan

et al. (2015) seperately inverts surface waves and body waves, showing the significant

contribution of both wave types in the synthetic example they present.
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Figure 2.10: Frequency spectra for wavelet functions of family D12 as used by Yuan et al.
(2015). Courtesy of Jean-Baptiste Laffitte, 2015

Silvestrov et al. (2015) performs a numerical sensitivity analysis of the Hessian matrix,

considering FWI with surface waves. The study further validates that an (ω, k) domain

misfit function, as proposed by Masoni et al. (2013) and (Pérez Solano et al., 2014), is

more robust for the inversion of surface waves.
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STRATEGY FOR FWI WITH SURFACE WAVES

3.1 Introduction

In the previous Chapter 2, several alternative more robust misfit functions for Full Wave-

form Inversion (FWI) with surface waves, are investigated and compared. The selection

of a suitable misfit function is a key ingredient that needs to be considered. Yet other

steps in the inversion process may also play important and critical roles in the develop-

ment of a strategy to enable successful FWI using surface waves. This chapter investi-

gates and discusses an inversion strategy specifically adapted to the physics of surface

waves. The synthetic model used for the tests performed in this chapter, is taken from

Pérez Solano et al. (2014), and illustrated in Figure 3.1.

This model was constructed to explore near surface problematics, considering a maxi-

mum depth of 12 m over a distance of 58 m. The S-wave and P-wave velocity models are

related by a constant poisson ratio (VP/VS = 2.0), with velocities that generally increase

with depth. Two high velocity anomalies at the center of the model, are the targets to

be recovered during inversion. The velocities of the models are quite low compared to

typical values found for oil and gas reservoir models, and are consistent with the near

surface region that is considered. A homogeneous density model of ρ = 1000 kgm−3 is

used.
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Figure 3.1: The true S-wave (a) and P-wave (b) velocity models used to create the syn-
thetic dataset for this investigation. A homogeneous density of 1000 kgm−3 is considered.
Models used with permission from Pérez Solano et al. (2014).
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3.1 Introduction

Similar testing conditions are used as in Pérez Solano (2013). Regarding the acquisi-

tion, the synthetic data is recorded by 145 vertical and horizontal component receivers,

placed 0.2 m below the surface, with an equidistant spacing of 0.4 m between receivers.

For all inversion tests, both vertical and horizontal receiver components are inverted

together. To create the dataset, 20 vertical sources are simulated. These are also posi-

tioned at 0.2 m below the surface, with an equidistant spacing of 2.5 m between each

source. The source wavelet used is the primitive of a 40 Hz Ricker wavelet. The for-

ward modelling scheme implemented is the same as described in section 2.2.3, using a

staggered finite-difference grid. The spatial discretization step of the synthetic models

is set to 0.1 m, to guarentee at least 10 discretization points per wavelength. The time

discretization step for the simulated receivers is set to 0.04 ms to satisfy the Courant-

Friedrichs-Lewy (CFL) stability condition given in Equation 1.52 of section 1.3.1.1. An

example shot of the resulting true dataset is shown in Figure 3.2. One can observe that

the surface waves are of a dispersive nature, and are the signal with the most dominant

amplitude.

First the conclusions on misfit function robustness from Chapter 2 are validated, by

testing the proposed alternative misfit functions described in section 2.2.4. Inversion

is performed using both the conventional L2 norm of the difference in the time-offset

(t, x) domain, and the more robust misfit in the frequency-wavenumber (ω, k) domain.

For these tests, only the shear velocity was inverted for, using true and known P-wave

velocity and density models. The inversion was performed using an l-BFGS optimization

(Byrd et al., 1995; Nocedal and Wright, 2006), with a small wavelength adaptive Gaus-

sian smoothing applied to the gradient after each iteration (see section 1.3.1.2 for more

details). The SEISCOPE optimization toolbox (Métivier and Brossier, 2016) was used to

implement this minimization scheme. The initial shear velocity model (see Figure 3.3a)

consists of a linear gradient, with correct minimum and maximum velocities as found

in the true model, and similar to the one used in Pérez Solano (2013). The aim is to

minimize the difference between the true and the calculated data and to recover the two

high velocity anomalies in the true model.

The initial difference between true data and the one corresponding to the initial model

used (Figure 3.2c), illustrates that almost all of the dispersed surface waves still need to

be explained by the inversion. The strong cycle-skipping that can be observed from the

initial residual, does not allow convergence when using the conventional (t, x) domain

misfit. When FWI is attempted, the inverted shear velocity model diverges at the the

first iteration, and remains stuck in a local minimum, as illustrated in Figure 3.3b. By
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STRATEGY FOR FWI WITH SURFACE WAVES

analyzing the resulting data (Figure 3.2d) that correspond to the shear velocity model

obtained, one can observe that the phases have been wrongly matched, not allowing the

inversion to converge towards the global minimum.

Figure 3.2: Example of a common shot gather for the true data (a); the initial data (b)
and the difference with the true data (c); the final data after FWI using the conventional
(t, x) domain misfit (d); the final data after FWI using the (ω, k) domain misfit and
depth preconditioning (e) and the difference with the true data (f). A small gain is
applied to the true data (a) for visualization purposes only, all other figures (b) to (f)
have the same color scale as (a).

When the more robust (ω, k) domain misfit is implemented, the shear velocity is

updated in the top of the model, but little or no update occurs at depths below 5 m, as

can be observed in Figure 3.3c. This is most likely due to the characterisitic exponential

decrease in amplitude with depth of surface waves (detailed in section 1.1.3). Applying a

depth preconditioning to the model update can be shown to greatly improve the inversion

result.
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3.1 Introduction

3.1.1 Depth preconditioning

A preconditioned l-BFGS optimization (Byrd et al., 1995; Nocedal and Wright, 2006) is

investigated and implemented. From an initial guess m0, each new iteration is given as

mk+1 = mk + αk∆mk, (3.1)

where αk is the steplength computed from a linesearch, and ∆mk is the model update

for iteration k. When a preconditioning is implemented, the descent direction is given

as

∆mk = −Q̃k∇f(mk), (3.2)

where ∇f(mk) is the gradient of the function f(mk) at point mk, and Q̃k is the l-BFGS

approximation of the inverse Hessian operator H(mk)
−1 = ∇2f(mk)

−1 computed from an

initial estimation Pk ofH(mk)
−1. The preconditioning Pk applied in this investigation is a

vertical scaling linear with depth z, and is applied on the inverse Hessian approximation.

This weighting increases the importance of the model update at depth compared to the

near surface, and partially compensates for the decrease of surface wave amplitudes with

depth.

Such depth preconditioning strategies have already been used in applications with

electromagnetic waves as well as with surface waves (Plessix and Mulder, 2008; Pérez

Solano, 2013), and are essential to balance the model update and retrieve velocity anoma-

lies at depth.

The final shear velocity model obtained after FWI using the (ω, k) domain misfit

function and a depth preconditioned optimization, is illustrated in Figure 3.3d. The two

high velocity anomalies, present in the true model, can be identified. However the model

remains of low resolution and details are not recovered. The final data and the difference

to the true data set, for the resulting shear velocity model, is illustrated in Figures 3.2e

and 3.2f. The final data reveals that the dispersion observed in the true data has been at

least partially explained. When comparing the final difference to the difference between

the true and the initial data, illustrated in Figure 3.2c, one can observe that the data is

relatively well recovered. The data misfit is minimised to less than 5 percent of the initial

value. Yet both high and low frequency content still remains in the final data difference,

and the far offsets are less well explained (see Figure 3.2f). The depth preconditioning

does not however improve the result obtained from FWI when using the (x, t) domain

misfit function, as the data remains cycle-skipped, and the inversion does not converge.
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Figure 3.3: Shear velocity model inversion results, using the initial model (a); using
the conventional (x, t) misfit (b); using the more robust (ω, k) domain misfit without a
depth preconditioning (c); and using the more robust (ω, k) domain misfit with a depth
preconditioning implemented (d).

This result further validates the conclusions of section 2.2.7: the (ω, k) domain misfit

function is found to be more robust to cycle-skipping than the conventional misfit func-

tion computed in the (t, x) domain, although a lower resolution in the resulting velocity

model can be expected. A sequential inversion with the conventional (t, x) domain mis-

fit function, using the final model obtained with the (ω, k) domain misfit function as an
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3.2 Layer stripping approach

initial model, unfortunately does not converge, as the cycle-skipping is not completely

overcome.

This investigation also highlights the critical importance of implementing a depth

preconditioning for FWI using surface waves. For these tests, no frequency filtering

strategy was implemented, and all frequencies where therefore inverted for simultane-

ously. However it is important to note that the presence of low frequency content in

the data is also an essential factor that will allow, or limit, convergence. For example,

similar inversion tests using a source wavelet with a lower peak frequency were found to

converge better, with lower final data misfit values, and successful final shear velocity

models. The following section investigates which frequency filtering strategy is most

adapted for a successful inversion of surface waves.

3.2 Layer stripping approach

Layer stripping is a well known approach used in inversion methods (Gibson et al., 2009;

Shi et al., 2015). Initially, only the top layer of a model is recovered, then the underlying

layers are sequentially updated, as observable data corresponding to the upper layers

will have been previously explained. For this approach, different parts of the data need

to explain properties at different layer depths of the model, as the model is recovered

layer by layer, in a top-to-bottom manner.

Such layer stripping approaches have already been proposed for FWI applications

using reflection data, where a complex near surface, or overburden region, prevents

successful imaging of deeper targets (Wang and Rao, 2009; Bian and Yu, 2011). In

such cases layer stripping approaches can remove the effect of upper layers and help the

inversion. Wang and Rao (2009) propose a procedure in which the top layer of the velocity

model is fixed, and the data of the corresponding time window frozen. Gradually the

model is allowed to update layer by layer, until only the bottom layer is retrieved, using

data recorded during later and later time intervals. One of the pitfalls of this method

is the need to correctly relate the chosen time interval to the associated layer depth

explained by the data. Bian and Yu (2011) argument that, due to the relation between

model velocity, depth of model and time taken, the method is not adapted for lateral

heterogeneities. They propose a similar method, where a damping is applied to both

observed and calculated datasets in the misfit function. The relevant sensitivity kernels

and Born wave-paths suggest that larger damping constants will result in a reduced
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contribution from deeper targets to the wavefield response. Therefore, as the damping

constants applied are gradually decreased, successively deeper parts of the model appear

to be ”automatically” allowed to update.

A similar progressive time damping FWI approach is used by Shipp and Singh (2002),

which also implement a progressive offset windowing. Initially only the shallow part of

the model is inverted for, by computing the model update only up to a certain depth.

The following stages however, first aim to recover the deeper large scale structures with

undamped, long offset data, and afterwards the smaller scale features are progressively

recovered with damped, short offset data. A good relation between the offset selection

and the model depth recovered with FWI is illustrated for reflection data. The reverse

strategy is used by Métivier et al. (2016) which apply a time windowing with progressively

increasing offsets for FWI in a layer stripping, top-to-bottom approach, to help recover

salt structures present in the model.

Beyond the interest in reducing the effects of the top layers on the recovery of deeper

structures, applying a layer stripping approach to FWI with surface waves, also allows

one to take advantage of a special physical property. Surface waves of shorter wavelength

and higher frequency will sample the top layers of a medium, while waves with longer

wavelengths and lower frequencies will sample deeper parts of a medium (see section

1.1.4 and Figure 1.3). As such, when applying a frequency filtering strategy on the data,

it will contain information related to a specific depth of the model, which can then be

recovered. In the following, a high-to-low frequency filtering strategy, complemented by

a progressive offset tapering, is proposed for FWI with surface waves, to update first the

upper part of the model and then the deeper, in a layer stripping approach.

A high-to-low frequency filtering strategy goes against all literature on FWI. To

avoid cycle-skipping issues, a multiscale frequency continuation approach is convention-

ally applied (Bunks et al., 1995; Sirgue and Pratt, 2004), inverting low-to-high frequency

content of the data. The progressive increase in frequency corresponds to updating first

the large-scale and then the more detailed features of the velocity model. Further details

on this strategy can be found in section 1.3.2.1. Such a strategy is implemented in Pérez

Solano (2013) for FWI with surface waves. The wavelet-multiscale approach employed

by Yuan et al. (2014) for FWI with surface waves, is also equivalent to filtering first the

low frequency content and moving to higher frequencies as the inversion progresses (see

Figure 2.10).
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3.2.1 Motivation

A high-to-low frequency filtering strategy can be shown to be a natural way to deal

with the inversion of surface waves, when observing the relation between the frequency

content of the data and the penetration depth of the model update. Sensitivity kernels (or

Frechet derivatives) play an important role in understanding and analyzing an inversion

method. They provide an insight on both the sensitivity and the resolution of the model

update that can be obtained from the information contained in the data. Sensitivity

kernels are computed as the first gradient calculation for one source and one receiver.

Figure 3.4 shows two sensitivity kernels, obtained from summing over all sources

and receivers, using data filtered by two different frequency bands. The effect of the

frequency content of the data on the model update is therefore analyzed, using as a test

case the model and data from the previous section 3.1. When a high frequency bandpass

filter of 70− 110 Hz is applied, the update appears restricted to the upper layer of the

model, as can be observed in Figure 3.4a. When a lower frequency bandpass filter of

35 − 55 Hz is applied, the update has significant amplitudes down to a depth of about

6 m as shown in Figure 3.4b. These results reflect the relationship between frequency

and depth penetration illustrated in Figure 1.3 and further discussed in section 3.2.4.

One disadvantage of a high-to-low frequency filtering strategy however, is that the

resolution of the model update will decrease progressively with each frequency band used.

One can observe from Figures 3.4a and 3.4b that when data of low frequency content

is used, the resolution of the model update is lower. As such, the resolution will also

decrease with the depth of the model.

In the following layer stripping strategy proposed, data filtered by sequential fre-

quency bands, going from high to low frequencies, are inverted. The resulting model

at each frequency step is used as an initial model for the next frequency band. The

gradient is frozen below an estimated penetration depth of the surface waves. To avoid

a deterioration of the upper layers, after they have been obtained using high frequency

data, and therefore with a high resolution, the top of the gradient is also frozen for

later updates with frequency band steps of lower frequency content. Such windowing

specifically targets the use of surface waves to update the model. Body waves are not

explicitly removed from the data, and may still be used to update the model. However

the combined filtering and windowing of the gradient favours the information coming

from surface waves to update the model. This strategy is therefore specifically adapted

to near surface applications of FWI using surface waves.
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Figure 3.4: Sensitivity kernels, summed over all sources and receivers, for data of fre-
quency band 70− 110 Hz (a) and 35− 55 Hz (b). One can observe that with the lower
frequency band the model is updated at greater depths, but is also of lower resolution.
The color scale for the amplitude is the same for both sensitivity kernels. Note that a
wider frequency range is chosen for the high frequency window, due to a lower amplitude
of the data spectrum at these frequencies, to compensate for an equal amount of energy
(see section 3.2.4).

3.2.2 Layer stripping workflow

The workflow proposed for the layer stripping strategy, integrated within a FWI scheme,

is illustrated in Figure 3.5. Similar to a conventional FWI scheme, starting models

for each model parameter (V p, V s, ρ) are required, as well as the acquisition geometry

to simulate the true acquisition of the observed data, and an estimation of the source

wavelet to use for the forward modelling.

The input parameters related to the layer stripping strategy include the minimum and

maximum frequencies to define the frequency band that will be used, and the minimum

and maximum depth of the layer to be updated. The choice of these parameters, the

width of the frequency bands, and the depth of the layers, are discussed in more detail

in section 3.2.4.

The velocity of the surface waves is assumed to depend mainly on the shear wave

velocity as shown in Equation 1.36. The average frequency, and the average shear velocity
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3.2 Layer stripping approach

of the initial model are therefore used to provide an estimation of the penetration depth

of the surface waves during each frequency band step, estimated as equivalent to one

wavelength.

Figure 3.5: Simplified schematic to illustrate how the layer stripping strategy is inte-
grated within the FWI algorithm. The workflow within the purple box is repeated for
each frequency band step. The workflow within the green box is parallelized over sources,
to reduce computing time.

Both observed and calculated data, are first windowed in offset while the data are

organized in the time-offset (t, x) domain. Only short offsets are kept when using high

frequency bands, while longer offsets are progressively allowed when lower frequency
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bands are used. The progressive windowing enforces the layer stripping approach, focus-

ing only on surface waves that contain information on the layer to be updated. Inspired

by techniques applied to conventional surface wave analysis using dispersion curves, the

offset windowing allows a valid 1D assumption, and therefore to obtain a better image

of the local fundamental surface wave mode (see section 1.2). This can be an advantage

when the data misfit is calculated in the (ω, k) domain. In addition, the limited offsets

reduce the dependence on the initial model, helping to avoid cycle-skipping problems and

the presence of local minima. The windowing is implemented so that the whole dataset

is considered when the lowest frequencies are reached.

The maximum offset length is determined as a function of the penetration depth for

each frequency band step. The relation between the penetration depth and a suitable

offset range, was investigated by analyzing the model update for a single frequency and

varying offset ranges, using a homogeneous initial model. For the model and acquisition

described in section 3.1.1, the point where an increase in offset range no longer brought

a significant amount of information to the model update was found to be close to

xmax ' 5
( V̄S
f̄

)
' 5λ̄S, (3.3)

where xmax is the maximum offset allowed, V̄S the average shear velocity (in m/s),

f̄ the average frequency (inaa Hz), and λ̄S the average wavelength of surface waves

(in m). A windowing, determined by the maximum offset (xmax) allowed between a

receiver position and the source, is applied to the data in the time-offset (t, x) domain.

A Hanning function, given as H(i) =
(
0.5
(
1 − cos

(
πi
N−1

)))2
, where N is the length of

the taper, is applied on either side of the offset window, to avoid ringing artifacts due

to Gibb’s phenomenon. During inversion tests, the xmax parameter was not found to

be very critical, and is therefore calculated automatically within the algorithm following

Equation 3.3, using the initial model for each frequency step to compute an average shear

velocity. It should be noted however, that the relation described in Equation 3.3 may be

case dependent, and may therefore have to be modified for datasets at different scales or

with different acquisition parameters.

This offset windowing step is similar in some aspects to the offset windowing in the

w-AWI workflow presented by Pérez Solano et al. (2014). Both propositions aim to

help with cycle-skipping issues, and increase the lateral resolution during inversion. Yet

differently to work by Pérez Solano et al. (2014), the offset windowing in this workflow

follows a layer stripping approach, since it is directly driven by the penetration depth of
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the surface waves used to update the shear velocity model.

After being windowed in offset, observed and calculated data are transformed to the

frequency-offset (ω, x) domain by the application of a Fourier transform on the time

axis. For a given source and frequency, a normalization by the root mean square (rms)

of the data is applied. This allows to whiten the data, giving each frequency the same

weight. The very low and very high frequency content is therefore boosted, making their

contribution to the data misfit important.Although this may be problematic in cases of

low signal-to-noise ratio, the information from a wide frequency range is required for

inversion of surface waves.

A band-pass filter is subsequently applied to the data, with cutoff frequencies deter-

mined by the input minimum and maximum frequency parameters. As with the offset

windowing, a Hanning taper on either side of the filter is implemented in the frequency

domain, to avoid ringing artifacts due to Gibb’s phenomenon. An inverse Fourier trans-

form on the frequency axis is then applied to the data to return to the time-offset (t, x)

domain.

The misfit between the observed and calculated data is then obtained using either

the conventional L2 norm of the difference in the (t, x) domain, or the more robust misfit

function in the (ω, k) domain discussed in section 2.2.4. The misfit formulations, are

slighlty modified from section 2.2.4 to include the offset windowing applied during the

layer stripping strategy. The modified formulations of the two misfit functions are given

as

Ct,x =
1

2

∑

S

∑

R

wR

(
dobs(t, x)− dcal(t, x)

)2
, (3.4)

and

Cω,k =
1

2

∑

S

∑

R

wR

(
| dobsN (ω, k)| − | dcalN (ω, k)|

)2
, (3.5)

where wR is the weighting (between 0 and 1) applied to the receivers R during the

windowing in offset, and determined by the maximum offset (xmax) and a Hanning

function as described above.

The gradient is then calculated for the relevant misfit function used, as described in

section 2.2.5 using the adjoint method. The adjoint source is slightly modified to include

the windowing in offset.

Only the gradient values within a depth layer defined by the minimum and maximum

depth parameters are considered. The minimum depth is introduced to avoid reducing
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the resolution of the top part of the model, already retrieved with high frequency data,

and the maximum depth is defined by the penetration limit of surface waves. A Hanning

function is used to taper both sides of the depth window, to avoid abrupt changes in

the model update. The tapering applied also reduces the sensitivity to the choice of

minimum and maximum depth parameters, and is therefore of significant length. The

choice of tapering is further discussed in section 3.2.4.

A wavelength adaptive Gaussian smoothing with a small correlation length is then

applied to the gradient to remove high frequency artifacts, such as an imprint of the

acquisition. The smoothing parameters are kept constant for all frequency band steps.

All tests presented in this chapter implement correlation lengths, given as a fraction

of the local wavelength considering a 40 Hz source, of 0.4 in the x direction and 0.2

in the z direction. The smoothing applied may also smoothen the edges of the depth

layer update, and a leakage of the gradient to above or below the layer may occur. A

depth preconditioned l-BFGS optimization, as described in section 3.1.1, is used for the

inversion. This accounts for the exponential decrease of surface wave amplitudes with

depth. A convergence criterion as well as a maximum number of iterations are used as

stopping criteria to define a final model, which is then used as an initial model for the

following frequency band. For all tests in this chapter, the inversion is allowed to continue

until the update is minimal, and the relative misfit function value, normalized by the

initial value, is less than 0.0001. Although only a maximum number of 50 iterations are

allowed, convergence always occurs before this limitation is reached.

The workflow is repeated for each frequency band. To reduce the computing time the

algorithm is parallelized over each shot gather with a Message Passing Interface (MPI)

communicator to perform the global misfit summation and gradient calculation at each

iteration. The final model obtained with the last frequency band is the resulting model

obtained with layer stripping FWI.

3.2.3 Illustrative synthetic example

The model and acquisition geometry presented in section 3.1 are used to test and com-

pare the proposed layer stripping high-to-low frequency approach to the conventional

multiscale low-to-high frequency strategy. For the inversion only the shear velocity pa-

rameter is inverted for, while P-wave velocity and density models are considered as true

and known. The true source wavelet is also considered as known for the inversion. The

initial shear velocity model is a linear velocity gradient with true minimum and maximum
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velocities as illustrated in Figure 3.3a.

The final models after FWI using the layer stripping approach, are obtained after 8

frequency band steps, following the workflow presented in previous section 3.2.2. The

frequency bands used are 70−110 Hz, 60−90 Hz, 50−80 Hz, 45−70 Hz, 40−60 Hz,

35− 55 Hz, 25− 45 Hz and 20− 38 Hz. These correspond to overlapping layer depths,

on which a significant depth tapering of 1.2 m is applied. The choice of the minimum

and maximum frequency and depth window parameters (see Figure 3.16), as well as the

choice in taper length, are discussed in the following section 3.2.4.

Results for both the more robust misfit function in the (ω, k) domain, as well as the

conventional L2 norm of the difference in the (t, x) domain are presented. For both misfit

functions, the final model after each frequency step is illustrated in Figures 3.6 and 3.7

respectively. It can be observed that the model is updated in a top-to-bottom manner,

as lower frequency bands are used. One can observe that the first four frequency band

steps, recover the top low velocity layer. The model update during the frequency band

step of 35 − 55 Hz, recoveres the two high velocity anomalies. Only the last frequency

band step of 20− 38 Hz images the interface with the high velocity deeper layer.

Comparing the two tests for the different misfit functions, one can observe that when

the misfit function in the (ω, k) domain is implemented (Figure 3.6), the model update

contains a few, small, high and low velocity artifacts. While when the conventional L2

norm of the difference in the (t, x) domain is implemented (Figure 3.7), the results at

each frequency step appear smoother. A comparison of the two different misfit functions

for layer stripping FWI is discussed in section 3.2.5.

The layer stripping approach appears very effective against cycle-skipping issues, as

the inversion for each frequency band step can be observed to converge in the right

direction. For both misfit functions tested, the final models, pictured again in Figures

3.8b and 3.8c, are of much higher resolution than obtained when no frequency strategy is

implemented (such as in Figure 3.3d). The final models resemble the true model (Figure

3.8d) very well, as can be observed from the data misfit (see Figure 3.14). The two high

velocity anomalies are recovered as well as their geometry. In addition, the smaller low

velocity anomaly at 3 m depth, as well as the high velocity layer at 7.8 m depth are also

partially seen and recovered by the data during the inversion. The inversion does not

appear to have difficulties in recovering lateral variations in velocity. The small artifacts

present on the extreme ends of the model can be explained by a lack of illumination, as

the acquisition does not extend beyond the model.
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Figure 3.6: Evolution of the resulting shear velocity model at each frequency band step
(1) to (8) when using the misfit function in the (ω, k) domain. For each step a frequency
band and depth layer are given as parameters to filter the data and window the model
update. The depth values mark the mid-point of the 1.2 m taper applied during the
depth windowing. This layer stripping strategy progressively updates the model in a
top-to-bottom manner, using a high-to-low frequency approach. The initial and true
shear velocity models are also shown for reference.
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Figure 3.7: Evolution of the resulting shear velocity model at each frequency band step
(1) to (8) when using the conventional L2 norm of the difference in the (t, x) domain.
For each step a frequency band and depth layer are given as parameters to filter the data
and window the model update. This layer stripping strategy progressively updates the
model in a top-to-bottom manner, using a high-to-low frequency approach. The initial
and true shear velocity models are also shown for reference.
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Figure 3.8: Comparison of final shear velocity models obtained after FWI using a low-
to-high frequency approach and a misfit function in the (ω, k) domain (a); using a layer
stripping approach and a misfit function in the (ω, k) domain (b); using a layer stripping
approach and the conventional misfit function in the (t, x) domain (c). The true shear
velocity model (d) is shown below for reference.

To better evaluate the results from the layer stripping approach, they are compared to

those obtained from FWI using a more conventional low-to-high frequency strategy. For

this approach the observed and calculated data are band-pass filtered using 6 successive

frequency bands, with a low-cut frequency of 10 Hz and high-cut frequencies of 18 Hz,
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25 Hz, 36 Hz, 50 Hz, 80 Hz and 110 Hz, progressively allowing high frequency data in

the inversion. The final model from each frequency band step is used as the initial model

for the next frequency band, as the model update becomes finer at each step with higher

frequency detail. No offset windowing is applied and the whole gradient is considered.

The misfit function in the (ω, k) domain is implemented. All other FWI parameters are

kept consistent to the previous tests.

Starting with low frequencies is conventionally used to overcome cycle-skipping is-

sues, and the final shear velocity model after FWI using this approach (see Figure 3.8a)

successfully converges towards the true model. Yet the final models obtained with the

layer stripping approach appear to better recover the true model, especially with a higher

resolution at depth. The layer stripping allows to previously explain the top layers, so

that the deeper part can then be more accurately recovered. Furthermore the depth win-

dowing allows to focus the model update layer by layer, avoiding cycle-skipping issues

and local minima in the inversion.

When applying the layer stripping approach, it is essential to implement a frequency

window rather than gradually add low frequency content, as otherwise the inversion may

get stuck in a local minima, due to cycle-skipping of the high frequency data, when longer

offsets are intruduced. The layer stripping strategy does not inherently overcome the

cycle-skipping limitations during inversion, rather, it is the data selection and gradient

windowing which reduce the dependence on the initial model and are critical to avoid

inverting cycle-skipped data, allowing convergence.

One of the important advantages of the layer stripping approach is that it does not

depend on the low frequency content of the data, which is often missing from real ac-

quisitions, for successful convergence. For conventional low-to-high frequency FWI, the

low frequencies are critical for overcoming the cycle-skipping problem and allowing con-

vergence. In both layer stripping tests presented, the lowest frequency used is 20 Hz,

which is only useful for recovering the deeper part of the model. Instead for the conven-

tional low-to-high frequency FWI test, a low-cut frequency of 10 Hz is required, since a

deteriorated shear velocity model is obtained when using a low-cut frequency of 20 Hz.

To evaluate the results from the two different frequency strategies, the final data and

the final difference to the true data are plotted in Figure 3.9 for each test. Although all

final datasets recover the true data relatively well (see Figure 3.10), the illustrations of

the data difference reveal that the FWI results obtained with the layer stripping approach

are slightly better, especially for longer offsets. It is interesting to note that the data
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residual after conventional low-to-high frequency FWI has a rather low frequency content

compared to the data residual after layer stripping FWI (see Figures 3.9 and 3.10). This

suggests that large scale features of the model are not as well recovered with conventional

low-to-high frequency FWI compared to when the layer stripping method is implemented.

Figure 3.9: Example of a common shot gather for final data after conventional low-to-
high (LH) frequency FWI with an (ω, k) misfit function (a) and the difference to the
true data (d); final data after layer stripping (LS) FWI with an (ω, k) misfit (b) and the
difference to the true data (e); final data after layer stripping (LS) FWI with an (t, x)
misfit (c) and the difference to the true data (f). All figures have the same color scale.
The traces marked by the red dotted lines are compared in Figure 3.11.

A comparison of individual data traces is shown in Figure 3.11. By comparing the

true data (black) with the initial data (grey), one can observe that at far offsets, the

phases of the initial data trace match the wrong phases of the true data trace. For misfit

minimization in the (t, x) domain, the data are strongly cycle-skipped at far offsets, and

may even be cycle-skipped at shorter offsets, although this is less evident.

The comparison with the final data reveals that at short offsets, both the conventional

low-to-high frequency FWI result (blue), and the layer stripping FWI result (red), fit

the true data well. As further offsets are considered, there is a clear improvement in the
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Figure 3.10: Example of a common shot gather for the true data (a); initial data (b);
difference between initial and true data (c); difference between final data after conven-
tional low-to-high frequency FWI with an (ω, k) misfit function and the true data (d);
difference between final data after layer stripping FWI with an (ω, k) misfit function and
the true data (e); difference between final data after layer stripping FWI with an (t, x)
misfit function and the true data (f). A small gain is applied to the true data (a) only
for visualization purposes, all other figures (b) to (f) have the same color scale as (a).

data fitting when the layer stripping approach is implemented, and the final data trace

is no longer cycle-skipped. Instead, the final data trace for the conventional low-to-high

frequency approach does not match all the phases correctly. This trace analysis explains

the successful results obtained by Pérez Solano et al. (2014) for a similar inversion test

(see section 2.3), who use a conventional low-to-high frequency approach, but implement

a constant offset window, therefore removing the cycle-skipped data at far offsets, and

allowing convergence.

To further compare these results for the different FWI strategies tested, the final data

and difference to the true data is also analyzed in the frequency-wavenumber (ω, k) and

frequency-velocity (ω, c) domains. As can be observed in Figure 3.12c, the fundamental

mode of the initial data is shifted compared to the fundamental mode found for the
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Figure 3.11: Comparison of a single trace at varying offsets of 15 m (a), 25 m (b), 35 m
(c), and 45 m (d), located by the red dotted lines on the common shot gather in Figure
3.9. The compared traces are: the true data (black), the initial data (grey), the final
data after conventional low-to-high (LH) frequency FWI with an (ω, k) domain misfit
function (blue dashed), and the final data after layer stripping (LS) FWI with a (t, x)
domain misfit function (red dashed).

true data. All three FWI results are able to correct for this. However, as can be seen

in the final differences (Figures 3.12d, 3.12e and 3.12f) the results with layer stripping

FWI are better able to reconstruct the higher modes and the low frequency part of the

fundamental mode. It is interesting to note that even though the very low frequencies

are not inverted in the layer stripping FWI, implementing frequency bands only down

to 20 Hz, they have been corrected by the inversion.

When comparing the global misfit in the (ω, k) domain for the complete final datasets

obtained from FWI, the smallest value is obtained for the result from layer stripping FWI

using the (ω, k) domain misfit function, minimizing the misfit to less than 1 percent of the

initial value. The result from layer stripping FWI using the (t, x) domain misfit function

reduces the misfit to 1.3 percent of the initial value, and the result from conventional

low-to-high frquency FWI reduces the misfit to 3.7 percent of the initial value.
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Figure 3.12: Example of the (ω, k) spectrum for a single shot, for the true data (a);
initial data (b); difference between initial and true data (c); difference between final data
after conventional low-to-high frequency FWI with an (ω, k) misfit function and the true
data (d); difference between final data after layer stripping FWI with an (ω, k) misfit
function and the true data (e); difference between final data after layer stripping FWI
with an (t, x) misfit function and the true data (f). A small gain is applied to the true
data (a) only for visualization purposes, all other figures (b) to (f) have the same color
scale as (a).

The same conclusions are reached when analyzing data in the frequency-velocity (ω, c)

domain, which is conventionally used for dispersion curve inversion. The final differences

for the results from layer stripping FWI (Figures 3.13e and 3.13f) are much smaller

than when the conventional low-to-high frequency FWI is implemented, suggesting that

the velocity model was better recovered. It is also interesting to note that the final

difference for both layer stripping FWI results is more important for high frequencies.

This suggests that details are still missing in the final shear velocity model, or that

perhaps the parameters chosen for the first few frequency steps in the layer stripping

approach may not have been optimal.

The analysis of the data in the different domains supports the success of the layer

stripping approach for FWI. A low frequency band is the last to be inverted with layer
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Figure 3.13: Example of the dispersion curves for a single shot, for the true data (a);
initial data (b); difference between initial and true data (c); difference between final data
after conventional low-to-high frequency FWI with an (ω, k) misfit function and the true
data (d); difference between final data after layer stripping FWI with an (ω, k) domain
misfit function and the true data (e); difference between final data after layer stripping
FWI with an (t, x) domain misfit function and the true data (f). A small gain is applied
to the true data (a) for visualization purposes, all other figures (b) to (f) have the same
color scale.

stripping FWI, allowing to fully correct the model at depth as the top layers have already

been dealt with. Instead, for the conventional low-to-high frequency approach, the low

frequencies are the first to be inverted, and although they avoid cycle skipping issues,

their full potential is limited for recovery at depth because the top layers of the shear

velocity model are not yet corrected.

To perform an objective quality control on the inversion results, the L2 norm of the

difference in the (t, x) domain between the whole, unfiltered, true data, and the final data

obtained after each frequency band step during FWI, is plotted in Figure 3.14. The plot

enables an analysis of the raw misfit evolution during inversion. One can observe that

for FWI using the conventional low-to-high frequency approach, and an (ω, k) domain

misfit function, the raw misfit reaches a local minima during the fourth frequency step.
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The continued convergence during the following frequency step is further validation that

the (ω, k) domain misfit function is more robust to cycle-skipping than the conventional

(t, x) domain misfit function. For both layer stripping FWI tests, the raw misfit decreases

regularly for each successive frequency band step, as if finding a path within the global

valley of attraction that avoids the locations of local minima. The choice of this path

allows the less robust classical (t, x) domain misfit function to be equally successful as

the (ω, k) domain misfit function during inversion.

Figure 3.14: The conventional (t, x) domain misfit is used to calculate the difference
between the true data, and the data corresponding to the model obtained after each
frequency band step, to provide a misfit evolution. The misfit evolution for both the
conventional low-to-high frequency strategy and the layer stripping strategy are plotted.
This objective comparison shows how the layer stripping approach has a smoother misfit
evolution, and gives a greater final reduction of the misfit value. Note that the y-axis is
plotted on a log scale.

The final shear velocity model, obtained with the conventional low-to-high frequency

approach and a misfit in the (ω, k) domain, reduces the data misfit by less than 5 percent

of the initial value. A better performance is achieved when the layer stripping approach

is applied, and using a misfit in either the (ω, k) domain or the (t, x) domain. Both final

shear velocity models reduce the misfit by less then 1 percent of the initial value.
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When the final model obtained from layerstripping FWI with the (t, x) domain misfit

is used as an initial model for FWI using all frequencies together (no filtering), to update

the complete model (no depth windowing), using the (t, x) domain misfit, the inversion

appears to converge, as the data are no longer cycle-skipped. Yet the small number of

iterations, only produce a very minimal update of the shear velocity model.

To conclude, this synthetic example has illustrated that employing a layer stripping

approach for FWI with surface waves is more successful than the conventional low-to-

high frequency approach. The layer stripping FWI allows to overcome the cycle-skipping

issue so that very successful results can be obtained with a conventional misfit function

in the (t, x) domain, and there is no apparent need of an alternative, more robust,

misfit function for convergence to occur. Furthermore the strategy does not rely on low

frequency content in the data for convergence, as opposed to conventional low-to-high

frequency FWI.

3.2.4 Parameter selection analysis

The main pitfall for layer stripping FWI, as mentioned by Bian and Yu (2011), is the

sensitivity to the choice of parameters. The data which is selected and inverted needs to

fit to the correct depth which is updated. The parameter xmax, which describes the offset

windowing, is found to be less sensitive than the relation between frequency and depth

parameters, and is therefore automatically calculated within the algorithm following

Equation 3.3. Ultimately, the correct relation between the choice of the frequency band

and the depth window, will depend on the velocity of the layer to be recovered in the

model, and is therefore not well known. Yet there are several factors that can lead one

to make educated inversion parameter choices.

The natural frequency content of the source is used to determine the choice of fre-

quency bands used during layer stripping. Slightly larger frequency windows are selected

for the initial high frequency bands, for which the frequency spectrum of the data has low

amplitudes (see Figure 3.15). Where the spectrum of the data is of higher amplitude,

and where one can expect a better illumination of the velocity model, the frequency

bands are more tightly sampled.

Chosing frequency windows that gradually decrease in size for layer stripping FWI,

also corresponds to the inverse of the frequency ranges used in the conventional low-

to-high frequency approach (Bunks et al., 1995; Sirgue and Pratt, 2004). This general

guideline can be further explained by lower frequencies having larger wavelengths, and
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3.2 Layer stripping approach

Figure 3.15: Frequency spectrum of the whole true observed data. The energy peaks can
be related to the source wavelet with peak frequency of 40 Hz, and also correspond to
frequencies which contain information on the main velocity anomalies in the parameter
models. The frequency band ranges for layer stripping FWI steps 1-8 (see Figure 3.16)
are superimposed on the graph.

therefore a smaller range of frequencies are required to recover a layer of a certain size.

The low frequency bands are however kept sufficiently wide to allow the matching of

distinct surface wave modes in the (ω, k) domain.

A first good indication for chosing the depth layer to be recovered for a specific

frequency band is to analyze the sensitivity kernels, such as illustrated in Figure 3.4.

The depth at which the amplitudes of the sensitivity kernel for a given frequency band

are no longer significant, will be equivalent to the penetration depth, and should be

the maximum depth considered for the depth layer selection. This is how the depth

parameters for the tests presented in Figures 3.6 and 3.7 are chosen.

However the penetration depths obtained from the sensitivity kernels are dependent

on the initial model provided for FWI. An efficient way to evaluate the chosen layer

depths for each frequency band is to compare them to the estimated wavelength of the

surface waves such as illustrated in Figure 3.16. The wavelength is estimated as

λ ' V̄S
f̄
, (3.6)

using the average frequency f̄ of the frequency band and the average shear velocity V̄S

of the depth layer of the initial model for each frequency band step. The average shear

velocity value, used to compute the wavelength, is therefore updated at each frequency

band step, as the chosen depth layers overlap eachother.
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Figure 3.16: Plot of frequency band against depth window parameters used for FWI
with a layer stripping approach to produce the results in Figures 3.6 and 3.7. Each
color corresponds to a frequency band inversion step. The dotted lines correspond to
the extent of the taper outside of the depth value chosen; for simplicity the extent of
the inside taper, equivalent in length, is not plotted. The tapering implemented for the
frequency windowing is also not illustrated. An estimation of the average wavelength
is plotted in black, obtained from average frequency and shear velocity values using
Equation 3.6.

The plotted estimated wavelength correlates well with the maximum depth chosen

for each layer. This result is in line with literature describing the penetration depth of

surface waves to be roughly equivalent to one wavelength (Grant and West, 1965; Foti,

2000; Gedge and Hill, 2012), further details can be found in section 1.1.3. The plot

confirms that the penetration depths used for layer stripping FWI, and estimated using

the sensitivity kernels, are well chosen. Furthermore the maximum depth estimated from

sensitivity kernels can be automatically corrected by the algorithm during inversion,

to at least reach the estimated wavelength of the layer, as calculated using Equation

3.6. This correction corrects for the intial dependency on the initial model, and the

estimated wavelength is computed using the average shear velocity updated during each

new frequency band step.
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The special relationship between frequency content and penetration depth is further

investigated in Figure 3.17. The inital shear velocity model used for the FWI tests has

a linear velocity gradient that can be defined as

V̄S(s) = V0 + αz, (3.7)

where V0 is the shear velocity at the surface (160 m/s), α the shear velocity gradient

(15 s−1) and z the depth. If the penetration depth is considered equivalent to the

wavelength (z = λ), as observed in Figure 3.16, one can obtain a new expression for

Equation 3.6 given as

f̄ = α +
V0

z
, (3.8)

directly relating the average frequency to use, for each penetration depth considered.
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Figure 3.17: The relation given in Equation 3.8, and considering the initial shear veloc-
ity model used for FWI, is plotted (blue dashed). The average frequency and relative
penetration depth parameter values used for layer stripping FWI are also plotted (red)
with depth error bars representing the taper length.

Equation 3.8 is plotted in Figure 3.17 considering the initial shear velocity model

used for the FWI tests. For the penetration depth considered during each of the eight

frequency band steps of layer stripping FWI (as given in Figure 3.16), the average fre-

quency used is plotted on Figure 3.17 as well. The figure shows that the parameters

chosen for layer stripping FWI correspond very well to the theoretical relation given

in Equation 3.8. Deviations from the theoretical curve may be linked to the low and

high velocity anomalies present in the true model. These observations further validate

the choice of parameters, and may be used as a good indicator when the initial model
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available is reliable.

To reduce the sensitivity to the minimum and maximum layer depths chosen a ta-

pering is applied to the gradient. The taper implemented is a Hanning function given

as H(i) =
(
0.5
(
1 − cos

(
πi
N−1

)))2
, where N is the length of the taper. FWI tests with

depth window tapering are shown to produce better results compared to tests with no

depth tapering (see Figure 3.18). Furthermore large values of N are found to be the

most successful, though the taper length should evidently not exceed the initial width of

the depth window layer.
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Figure 3.18: Final shear velocity models using the layer stripping approach, and a misfit
in the (t, x) domain: when no depth window tapering is applied (a), and when a depth
window tapering of 1.2 m is applied (b). The true shear velocity model is shown for
reference (c). The tapering reduces the sensitivity to the chosen depth parameters, and
improves the inversion result. Similar results are obtained when the misfit in the (ω, k)
domain is used.

Figure 3.18 illustrates the result with layer stripping FWI and the (t, x) domain
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misfit, without depth tapering (a) and with a depth tapering of 1.2 m (b). All other

FWI parameters are kept constant throughout these two tests. A wide depth tapering

is shown to improve the quality of the inverted shear velocity model.

For an objective quality control, the raw (t, x) domain difference between the true

data and the data corresponding to the final model was calculated. When no tapering is

implemented, the raw misfit value of 9.499×10−6 remains larger then the value obtained

with tapering, although still an order of magnitude smaller than the value that is obtained

when a conventional low-to-high frequency strategy is applied (see Figure 3.14).

To conclude, the plot in Figure 3.16 illustrates two general guidelines for parameter

choices. The first is that depth windows should gradually increase in size when the

frequency content is lowered. This can be explained physically since lower frequencies

have larger wavelengths, and will therefore update a larger area. The second is that

frequency windows should gradually decrease in size, as previously discussed in this

section. Sensitivity kernels as well as wavelength estimations can guide the selection of

the layer depth parameter for each frequency band, and the sensitivity to the parameters

chosen is reduced when a depth window tapering is implemented. As a quality control,

the final data difference and the misfit of the final whole dataset in the (t, x) domain can

be used to determine the successfulness of the inversion.

3.2.5 Parameter sensitivity and misfit function selection

In certain cases, frequency and depth parameters may be inadequately chosen during

layer stripping FWI. The sensitivity of the FWI to the choice of parameters is therefore

investigated by testing layer stripping FWI with linearly increasing parameter values.

Although a general guideline of increasing depth window size, and decreasing frequency

band size for each successive step is maintained, the chosen parameters are not directly

related to the sensitivity kernels or an estimated wavelength. All other FWI parameters

are kept constant to the previous layer stripping test, while both misfits in the (ω, k)

domain and the (t, x) domain are tested. Again 8 frequency band steps are successively

inverted for, the frequency and depth parameters for each step are pictured in Figure

3.19. This regular windowing allows to test the sensitivity to parameters which may not

be well chosen.

The final shear velocity models obtained from layer stripping FWI using the misfit

function in the (ω, k) domain and the conventional misfit in the (t, x) domain are shown

in Figures 3.20a and 3.20b respectively. The inadequate choice of frequency and depth
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Figure 3.19: Plot of frequency band against depth window parameters used for FWI
with a layer stripping approach to produce the results in Figure 3.20. The frequency
and depth windows increase linearly during each successive step, corresponding to a new
color. Note that for simplicity the depth taper is included within the depth window
value.

window parameters, results in a reduced quality of the final model obtained with the

conventional (t, x) domain misfit. However the resulting shear velocity model is clearly

less successful when the (ω, k) domain misfit is used. The inversion has more difficulty in

recovering the two high velocity anomalies, and several artifacts are present in the final

model. This suggests that the (ω, k) domain misfit function has a higher sensitivity to

the layer stripping parameters chosen, and appears less robust when the layer stripping

approach is implemented.

When the conventional (t, x) domain misfit is used, the resulting shear velocity model

remains smooth and no significant artifacts are introduced. Furthermore the FWI is still

able to reduce the (t, x) domain misfit for the complete final dataset down to 3.993×10−6,

equivalent to less then 1 percent of the initial value. This raw misfit value is of the same

order of values obtained by layer stripping FWI with adequately chosen parameters (see

Figure 3.14). This suggests that when a (t, x) domain misfit is implemented in the

layer stripping approach, the sensitivity to the frequency and depth parameters is not

significantly high to prevent convergence.

The instability when implementing the misfit function in the (ω, k) domain, is due to

cycle-skipping. The layer stripping approach is not well adapted to data minimization

118



3.2 Layer stripping approach

0

3

6

9d
e

p
th

 (
m

)

0 10 20 30 40 50
distance (m)

True Vs model

160

340

V
s 

(m
/s

)

(a)

(b)

(c)

0

3

6

9d
e
p
th

 (
m

)

0 10 20 30 40 50
distance (m)

Final Vs model - layer stripping approach in (f,k)

160

340

V
s 

(m
/s

)

0

3

6

9d
e
p
th

 (
m

)

0 10 20 30 40 50
distance (m)

Final Vs model - layer stripping approach in (t,x)

160

340

V
s 

(m
/s

)
Figure 3.20: Final shear velocity models using the layer stripping approach with a misfit
function in the (ω, k) domain (a) and a misfit function in the (t, x) domain (b). The
true shear velocity model is shown for reference (c). Frequency and depth windowing
parameters are chosen to linearly increase during each inversion step.

in the (ω, k) domain. The selection of high frequencies at the beginning of the inversion,

and the whitening of the frequency spectrum (see section 3.2.2 for more details), leads

to complex higher modes having a significant importance in the calculation of the misfit.

Figure 3.21 illustrates the true, initial and final data traces for data at the moment

that the misfit is calculated, for both the (ω, k) and the (t, x) domain misfit functions.

The data shown are filtered in frequency and windowed in offset, according to the first

frequency band step implemented for layer stripping FWI. By analyzing the traces in

the (ω, k) domain (see Figure 3.21c), one can observe that cycle skipping of the higher

modes occurs, which will cause local minima during the inversion. The cycle-skipping

occurs due to the high frequency window and the whitening of the frequency spectrum

required for the layer stripping approach.
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Figure 3.21: Comparison of the true data, after offset windowing and frequency filtering
according to the first frequency band step, at the moment when the misfit is computed,
for the misfit function in the (ω, k) domain (a) and the misfit function in the (t, x) domain
(b). An example trace, is plotted for the true data (black), the initial data (blue) and
the final data after the first frequency band step has been inverted (red), for the (ω, k)
domain misfit function (c) and the (t, x) domain misfit function (d). The chosen traces
are marked in red on (a) and (b) respectively. One can observe that cycle skipping occurs
in (c) in the (ω, k) domain but not in (d) in the (t, x) domain.

In addition, the selection of smaller windows for the low frequencies, required for the

layer stripping approach, may also make the (ω, k) domain unsuitable, as the robustness

of this domain results from being able to match the fundamental mode over a range of

frequencies.

By comparison, the layer stripping approach reduces cycle-skipping in the (t, x) do-

main. By analyzing the traces in Figure 3.21d, one can observe that no cycle skipping

occurs. The initially strong windowing in offset removes cycle-skipped data at far of-

fets from the misfit calculation. Furthermore, the high frequencies which are initially

selected, will also be those which will be the most attenuated, and will therefore rely less

on the initial model, which may also reduce cycle skipping issues.
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3.2.6 Quality control

A final quality control is performed on the successful result obtained in section 3.2.3,

using layer stripping FWI and the (t, x) domain misfit function (see Figure 3.7). To

determine if the cycle skipping observed in Figure 3.21 has been overcome, the misfit

function in the (ω, k) domain is used to compare the data corresponding to the final

model obtained in Figure 3.7, with the true data, filtered for the high frequency band of

70− 100 Hz.

Figure 3.22 shows the results of the quality control exercise. The difference between

true and final data in the (ω, k) domain is shown to be very small in Figure 3.22c, even

for the high frequency band considered, suggesting that the data features observable in

the (ω, k) domain have been recovered. Four example traces are compared in more detail

in Figures 3.22d-3.22g. One can observe that the phases and amplitudes of the final data

match the true data relatively well. The cycle-skipping that is present for the initial data

has been at least partially overcome for the final data, validating the success of the layer

stripping method.

When a sequential inversion using the (ω, k) domain misfit function is performed, and

using the final model from Figure 3.7 as an initial model, only a small number of iterations

occur and the shear velocity model is not significantly modified. The inversion result

remains close to the initial model, and does not converge further, suggesting a strong

smoothing of the intial shear velocity model may be required to restart convergence for

inversion.
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Figure 3.22: Comparison of the true data (a), the final data from layer stripping FWI
using the (t, x) domain misfit function (b), and the difference (c), after offset windowing
and frequency filtering according to the high frequency band of 70 − 100 Hz, at the
moment when the misfit is computed, for the misfit function in the (ω, k) domain. Four
example traces are plotted in (d) to (g), for the true data (black), the initial data (blue)
and the final data obtained from layer stripping FWI with the (t, x) domain misfit
function (red). The position of the selected traces are marked by the black dashed lines
on (a).
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3.3 Far initial models

The FWI method inherently relies on the availability of an initial model. Only a suffi-

ciently accurate initial model will allow convergence to occur. In this section the layer

stripping FWI workflow is tested using initial models which are far from the true model,

to investigate the sensitivity to the initial model when implementing this approach.

3.3.1 Far initial shear velocity model

For all previous FWI tests presented in this Chapter, the initial shear velocity model

used is relatively close to the true model. Being a vertical velocity gradient (see Figure

3.3a), the main updates by FWI consist in lateral variations and imaging of the velocity

anomalies. In this section an initial shear velocity model with velocities far away from

the true velocity values is considered. This far initial model, pictured in Figure 3.23a,

contains a small linear gradient, but does not have correct velocity values for the top

layers or the layer at depth, appearing almost homogeneous.

Layer stripping FWI tests, implementing either the conventional (t, x) domain misfit

function, or the more robust (ω, k) domain misfit function are investigated. Conventional

low-to-high frequency FWI with the (ω, k) domain misfit function is also tested. Again

only the shear velocity is inverted for while the P-wave velocity and density are considered

true and known. The same acquisition as in the previous section is simulated, and the

same frequency band and depth window parameters as illustrated in Figure 3.16 are

applied for the layer stripping approach.

As can be observed from the data difference between the true and the initial data

(see Figures 3.24a - 3.24c), cycle-skipping is strongly present. This is especially the case

for far offsets (see Figure 3.25b), but even at close offsets, arrivals present in the true

data are non existent in the initial data (see Figure 3.25a).
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Figure 3.23: Far initial shear velocity model (a); final shear velocity model obtained with
layer stripping FWI and the (ω, k) domain misfit function (b); final shear velocity model
obtained with layer stripping FWI and the (t, x) domain misfit function (c); final shear
velocity model obtained with conventional low-to-high frequency FWI and the (ω, k)
domain misfit function (d); and true shear velocity model (e).
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Figure 3.24: Example of a common shot gather for the true data (a); the far initial data
(b) and the difference to the true data (c); the final data after a layer stripping FWI
with a (t, x) domain misfit function (d) and the difference to the true data (e); the final
data after conventional low-to-high frequency FWI with a (ω, k) domain misfit function
(f) and the difference to the true data (g). A small gain is applied to the true data (a)
for visualization purposes, all other figures (b) to (f) have the same color scale.

The final shear velocity models obtained from layer stripping FWI with the (ω, k)

domain and the (t, x) domain misfit functions are shown in Figures 3.23b and 3.23c

respectively. When the (ω, k) domain misfit function is implemented, the inversion ex-

plodes and does not converge. The high frequency windowing and spectral whitening

applied in the layer stripping approach does not seem adapted to comparing data in this

domain (see Figure 3.21). Instead, inversion with the conventional (t, x) domain misfit

function converges to an interesting result. The top low velocity layer missing in the

initial model is recovered, as well as an indication of the two high velocity anomalies in

the middle of the model. The high velocity layer at depth is however not recovered.

For conventional low-to-high (LH) frequency FWI with the (ω, k) domain misfit func-

tion, the resulting shear velocity model appears of very low resolution, but recovers the

top low velocity layer as well as the two high velocity anomalies to some extent, and even

somewhat detects the deep high velocity layer. The model obtained appears similar, if
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Figure 3.25: Comparison of a single trace at short offset (a) and at far offset (b), located
by the red dotted lines on the common shot gather in previous Figure 3.24. The traces
compared are: the true data (black), the initial data (grey), the final data after con-
ventional low-to-high (LH) frequency FWI with an (ω, k) domain misfit function (blue
dashed), and the final data after layer stripping (LS) FWI with a (t, x) domain misfit
function (red dashed).

not slightly better to the one obtained with layer stripping FWI and the (t, x) domain

misfit function.

When comparing individual data traces, as illustrated in Figure 3.25, it is not clear

which method produces the better result. The final data traces generally follow the

traces of the true data, both at short and far offsets, but not perfectly. Both methods

also greatly improve the data difference as shown in Figures 3.24e and 3.24g, though a

considerable data residue remains for both cases. For conventional low-to-high frequency

FWI the data residue can be observed to be especially significant at far offsets. For

layerstripping FWI the data residue is more spread out, but the raw misfit of the complete

final data is slightly larger than for conventional low-to-high frequency FWI. For both

methods, the inversion is able to reduce the raw misfit for the complete final dataset to

less than 2 percent of the initial misfit value.

These results suggest that when starting from a far initial model, layer stripping

FWI will still allow the velocity model to be updated and for inversion to converge in

the right direction. However the layer stripping method no longer has many advantages

compared to the conventional low-to-high frequency FWI when using the robust (ω, k)

domain misfit function. For both methods the quality of the velocity model recovered is

reduced. It is important to note however that the layer stripping FWI does not rely on
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3.3 Far initial models

the presence of low frequencies in the data, while the conventional low-to-high frequency

FWI requires these low frequencies to converge, when starting from a far initial model.

On the other hand, if low frequency content is available for the inversion, conventional

low-to-high frequency FWI may possibly provide a better initial model for layer stripping

FWI, when the starting model is very far from the true one.

3.3.2 Far initial P-wave velocity model

For real data cases, when considering FWI with surface waves to recover the near surface,

the initial shear velocity model can often be obtained from the inversion of dispersion

curves. Dispersion curve inversion can produce 1D shear velocity profiles (see section

1.2). Although they provide only limited information on lateral variations, they can

be relatively accurate. For the same near surface region, it is more difficult to obtain

a good P-wave initial model, since first arrival tomography can only provide a very

low resolution result. In this section, the case of a far initial P-wave velocity model is

therefore investigated.

All previous tests in this Chapter consider a correct P-wave and density model and

only invert for the shear velocity model. In this section, an initial P-wave velocity model

which is far from the true model will be considered and inverted for simultaneously with

the shear velocity. This far initial model has a small linear velocity gradient, but appears

almost homogeneous around 480 m/s (see Figure 3.26b). The initial shear velocity model

consists of a linear gradient with correct minimum and maximum velocities, as used in

previous tests (see Figure 3.26a). The density is considered true and known during the

inversion. The same acquisition parameters are used as in section 3.2.3, and the same

frequency and depth windows for layer stripping are chosen as in Figure 3.16.

The final shear wave and P-wave velocity models obtained from inversion are illus-

trated in Figure 3.27. When layer stripping FWI is implemented the inversion appears

insensitive to the P-wave velocity model, resulting in only a minimal update to the

model, not visually evident from Figure 3.27d. The shear wave velocity is successfully

updated, and the two high velocity anomalies are recovered. This result suggests that

layer stripping FWI is mainly driven by the misfit minimization of surface waves, as is

expected with this approach, and is therefore more sensitive to the shear velocity model.

The layer stripping approach is therefore promoted for cases when the P-wave velocity

of the medium is not well known.

For conventional low-to-high frequency FWI, the inversion appears limited by the far

127



STRATEGY FOR FWI WITH SURFACE WAVES

0

3

6

9d
e
p
th

 (
m

)

0 10 20 30 40 50
distance (m)

Far initial Vp model

320

680

V
p
 (

m
/s

)

(a)

(b)

0

3

6

9d
e
p
th

 (
m

)

0 10 20 30 40 50
distance (m)

Initial Vs model

160

340

V
s 

(m
/s

)

Figure 3.26: Initial shear wave velocity model (a) and initial far P-wave velocity model
(b) used for inversion.

initial P-wave velocity model, which is wrongly updated, and causes the inversion to fail

to converge. As a result the shear velocity model is only weakly updated, and the two

high velocity anomalies are not retrieved.

The same test for conventional low-to-high frequency FWI was repeated, for inversion

of the shear velocity only, keeping the far initial P-wave velocity model fixed. However the

resulting shear velocity model was not improved, and the inversion did not successfully

converge. This result suggests that surface waves are not the only arrival used to drive

the inversion, and convergence remains stuck in a local minima due to cycle-skipping

occuring for other phases.

Figure 3.28 illustrates an example of the data for these inversion results. The differ-

ence between the final data after layer stripping FWI and the true data (Figure 3.28e)

appears reduced for the dispersed surface waves, compared to the initial difference (Fig-

ure 3.28c), but remains present for the first arrival and other phases. The relative success

of the layer stripping method compared to conventional low-to-high frequency FWI can

be observed when individual traces are analyzed in Figure 3.29.
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Figure 3.27: Final shear wave and P-wave velocity models obtained for the conventional
low-to-high frequency FWI and a (ω, k) domain misfit function (a-b); and for layer
stripping FWI with the (t, x) domain misfit function (c-d). The true shear velocity
model (e) is shown for comparison.
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Figure 3.28: Example of a common shot gather for the true data (a); the far initial
data (b) and the difference to the true data (c); the final data after a layer stripping
FWI with a (t, x) domain misfit function (d) and the difference to the true data (e); and
the difference between the true data and the final data after conventional low-to-high
frequency FWI with a (ω, k) domain misfit function (f). A small gain is applied to the
true data (a) for visualization purposes, all other figures (b) to (f) have the same color
scale.

One can observe that at short offsets (see Figure 3.29a), the final data after both the

layer stripping FWI and the conventional low-to-high frequency FWI, is able to recover

the true surface waves present in the data. The other phases present in the trace are

slightly less well recovered by both methods. At far offsets (see Figure 3.29b), the final

data from layer stripping FWI recovers the surface wave phases better than the final data

after conventional low-to-high frequency FWI. Neither of the FWI methods are however

able to fit the first arrival or other guided waves.

This inversion test presents another advantage of the layer stripping approach: the

lack of dependency on the P-wave model. Due to the offset ranges, frequency ranges, and

gradient depths selected, surface waves are clearly priviliged in driving the inversion. As
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Figure 3.29: Comparison of a single trace at short offset (a) and at far offset (b), located
by the red dotted lines on the common shot gather in previous Figure 3.28a. The
traces compared are: the true data (black), the initial data (grey), the final data after
conventional low-to-high (LH) frequency FWI with an (ω, k) domain misfit function (blue
dashed), and the final data after layer stripping (LS) FWI with a (t, x) domain misfit
function (red dashed).

surface waves are more sensitive to the shear velocity, this parameter is recovered, while

the P-wave velocity is only minimally updated. The inversion result is a clear indication

that surface waves are driving the FWI, which is not proven in other applications of FWI

with surface waves (Pérez Solano, 2013; Pérez Solano et al., 2014; Yuan et al., 2014).

3.4 Conclusion and perspectives

This chapter investigates a strategy to deal with surface waves for FWI. The inversion of

sequential frequency bands of data, such as multiscale approaches or for layer stripping,

is shown to improve the inversion. Offset windowing such as used for layer stripping or

by Pérez Solano et al. (2014) is also essential to reduce cycle-skipping problems. Finally,

the depth variation of the model update, either by gradient preconditioning or layer

stripping, is found to be another key ingredient for successful inversion. However it is

the combination of all of these features which is required to overcome the difficulties of

surface wave FWI, in addition to the alternative misfit functions discussed in chapter 2.

For the layer stripping approach presented in this chapter, high-to-low frequencies

are inverted, combined with short to long offsets and top to bottom depth layers. The

frequency filtering is the opposite of multiscale approaches that are conventionally used

131



STRATEGY FOR FWI WITH SURFACE WAVES

for FWI, but specifically adapted to the physics of surface waves. The relation between

frequency and depth windows, one of the pitfalls for layer stripping approaches, can be

determined by sensitivity kernels, as well as average wavelength calculations.

Synthetic tests are performed to compare layer stripping FWI with conventional

multiscale FWI, testing different misfit functions. While the (ω, k) domain may lead to

cycle-skipping during the initial selection of high frequencies, the (t, x) domain misfit

function produces very successful results. These results are better than those obtained

with conventional multiscale FWI, and have lower misfit values, validating the layer

stripping strategy for FWI.

Layer stripping approaches as well as depth preconditioning are shown to help mit-

igate difficulties related to forward scattering features of surface waves, where locating

velocity anomalies considering long offsets is difficult. Different to Pérez Solano et al.

(2014), long offset data is therefore allowed to be inverted.

One of the advantages of layer stripping FWI is that it does not rely on low frequency

data, often missing from real data acquisitions, to converge. Tests with far initial models

show that layer stripping FWI is able to at least partially overcome cycle skipping,

although an initial inversion using the more robust (ω, k) domain misfit function and a

multiscale approach may be more favorable when low frequency data is present. Layer

stripping FWI is also shown to be insensitive to the P-wave velocity parameter, validating

the theory that surface waves are targeted to drive the FWI and update the shear velocity

model.

As a perspective one could envision to use a combination of both layer stripping FWI

(with the (t, x) domain misfit function) as well as multiscale FWI (with the (ω, k) domain

misfit function), in a V-cycle workflow, switching from one strategy to the other, to slowly

but consistently build a velocity model. Thus taking advantage of both retrieving the

top layers of the medium and improving the overall resolution moving from low-to-high

frequencies.

Although successful results have been achieved using synthetic examples, difficulties

may be encountered when considering a real data application. For example an accurate

enough or kinematically compatible initial model may not be available, or a significant

presence of noise may be present in the data, or the acquisition design may not be well

adapted. The methodology developed in this chapter is applied on a real data case

study in the following Chapter 4, which highlights the problems that may occur when

performing FWI with surface waves on real data.
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Real Data Case Study
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REAL DATA CASE STUDY

4.1 Case study background & acquisition

In this chapter, possibilities and challenges for performing Full Waveform Inversion

(FWI) on a real dataset including surface waves are investigated. The dataset con-

sists of a single line of 12 km, recently acquired on land, to perform 2D imaging of the

subsurface. The location of this dataset, provided by Total, will not be detailed for con-

fidentiality reasons. The methodology developed in Chapters 2 and 3 is tested on this

real case scenario. This is one of the first applications of FWI with surface waves on a

real dataset at the oil and gas exploration scale. The results obtained may provide a

better understanding of the near surface with direct implications for exploration studies

of deeper targets. Moreover this study will explore the challenges to be solved when

considering surface wave inversion of real data.

The real dataset was acquired towards the bottom of a mountainside, a schematic of

the location is given in Figure 4.1. Several superimposed alluvial fans originating from

the top of the mountain have deposited layers of alluvial debris on top of a sedimentary

bedrock, creating a low velocity near surface layer. On the surface, a small amount of

vegetation is present, consisting mainly of shrubs.

alluvial&fans&

slope&

start&of&line&

end&of&
line&

Figure 4.1: Schematic showing the location of the acquired line and subsurface imaged
within the environmental setting.

The geology of the bedrock is mainly defined by flat layers of deposited sedimentary

rock. Previous exploration studies have shown that subsurface P-wave velocities are in
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4.1 Case study background & acquisition

the range of 2500 m/s to 3500 m/s in the top 200 m of the subsurface, much higher than

what is generally considered in civil engineering case studies, as considered in Chapter

3. The characteristic high velocities of the medium suggest that it is very compact and

hard.

The line is located perpendicular to the slope direction, and therefore has a relatively

flat topography, only interrupted by two canyons creating a topography variation of

maximum 30 m over a width of 500 m, containing small streams flowing in the direction

of the slope.

The dataset was obtained using two vibroseis energy sources, with a distance between

each source station of 20 m, giving a total of 600 shots. For each source position, four

sweeps were recorded separately by all receivers and then stacked. The sweep profile has

a starting frequency of 4 Hz and a stopping frequency of 90 Hz. A linear sweep rate

was applied, with a sweep length of 16 s. The data was recorded by 601 receiver stations

spaced 20 m apart, each consisting of an array of 12 inline geophones, spaced 1.66 m

apart. The geophones are vertical component and have a 10 Hz natural frequency. A

typical amplitude response of the geophones is shown in Figure 4.2, illustrating the flat

response between a frequency of 10 Hz and > 240 Hz, while the output is divided by

100 for a frequency of 1 Hz. The data acquired was preprocessed on the field, to create

the provided dataset, which has a record length of 6 s with a sample interval of 0.002 s.

Figure 4.2: Typical amplitude response for a geophone with a 10 Hz natural frequency,
as used during the real data acquisition. Figure taken from Sercel (2016).
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4.1.1 Analysis of common shot gathers

Two examples of common shot gathers at the beginning and in the middle of the acquired

line are shown in Figure 4.3. One can observe the direct wave pointed out by (A), which

can be roughly estimated to travel at about 3300 m/s. The refracted wave marked by

(B) is possibly created by an interface that is roughly calculated to be below 900 m,

and therefore outside of the region that will be considered for the inversion of surface

waves. These waves will therefore not be recovered, and may have to be muted. The

main surface wave package is marked by (D), and is the slowest travelling waveform of

interest. Velocities may be roughly calculated at 1100 m/s and appear to increase for

far offsets. The surface wave amplitudes appear to strongly decrease with offset, due to

attenuation and possible lateral herterogeneities. Slightly faster waves, marked by (C),

may be interpreted as either refracted shear waves, converted waves or guided waves.

These could be considered as higher modes for surface waves. Finally the slow signal

marked by (E) is assumed to be the airwave and considered as noise.

To better comprehend the different waveforms and where they origin, simple forward

modelling using a layered velocity model is performed (see Figure 4.4). Velocities and in-

terface layers of the shear velocity, P-wave velocity and density models are approximated,

using information from the initial model building in section 4.2.1, and well information

which is only available for the deeper part. A discrete wavenumber summation method

(Bouchon and Aki, 1977) is used to model horizontally layered media with a free surface,

and simulating 3D elastic wave propagation with a Ricker wavelet source of 40 Hz peak

frequency.

As one can observe from Figure 4.4, the surface wave package does not significantly

change when depths below 120 m are considered. The surface waves are only impacted

by the near surface region, and therefore only propagation within this region is required

to model these waves. It is interesting to note that the guided waves or higher modes

marked by (C) in Figure 4.3 only appear when a strong velocity contrast is present due

to the presence of a high velocity layer below the first 100 m of the shallow low velocity

zone (see Figure 4.4b). The reflections present in the observed dataset are shown to

origin from very deep P-wave velocity contrasts, as they are retrieved in Figure 4.4c

using velocity models up to 3.2 km in depth.
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Figure 4.3: Two examples of common shot gathers, located at the beginning and in the
middle of the acquired line respectively. Highlighted are the direct wave (A), a refracted
wave (B), the surface waves (D), other guided waves (C), and the airwave (E).
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Figure 4.4: Synthetic shot gathers computed with a layered velocity model, considering
depths up to 80 m in (a), 120 m in (b) and 3.2 km in (c). The surface wave package
does not significantly change when depths below 120 m are considered.
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A close up of the surface waves in the observed dataset is shown in Figure 4.5. One

can easily track the continuity of the surface wave phases in the wiggle traces. The

quality of the surface waves, and the strong signal to noise ratio makes this dataset ideal

for an investigation of FWI with surface waves.
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Figure 4.5: Detail of a commom shot gather (shot 198) illustrated in wiggle form with
an AGC applied.

The spectrum of the whole dataset is visualized in Figure 4.6. Some noise is present

at frequencies below 3 Hz. The lowest frequency content of the data occurs at 4−5 Hz,

which is the starting frequency of the vibroseis sweep. Peaks in the spectrum occur at

15 Hz and 18 Hz. Only minimal data is present with frequencies above 50 Hz. When

the data is muted to focus on the surface waves, the frequency content is shown to be in

the range of 5 Hz to 30 Hz, with significant peaks at frequencies between 15 − 20 Hz

as shown in Figure 4.7.

The frequencies considered for this study are lower than the peak frequency of 40 Hz

used for the synthetic example presented in Chapter 3. However the size of the subsurface

to be imaged, and wavelengths required, are also much larger than those previously

considered.

Considering an average surface wave velocity of 1100 m/s and a minimum frequency

content of 5 Hz, the penetration depth of surface waves, and therefore the maximum

depth one can hope to recover is 220 m (see Equation 3.6). Similarly if the maximum
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Figure 4.6: Frequency spectrum of the whole dataset: the frequency content of the data
starts at 4− 5 Hz and dies out above 50 Hz.

Figure 4.7: Frequency spectrum of a muted version of the data focused on surface waves:
the frequency content of the surface waves starts at 5 Hz and dies out above 30 Hz.

frequency content of surface waves considered is of 30 Hz, the resolution achievable is

on the order of 35 m.

The common shot gathers in Figure 4.3 are shown in the frequency-wavenumber

(ω, k) domain in Figure 4.8. In Figure 4.8a, the fundamental mode is visible between

6− 18 Hz, but appears relatively weak compared to other signal. As the shot is at the

beginning of the line, the mode is only visible on the forward side of the spectrum. In

Figure 4.8b, the fundamental mode is clearly visible between frequencies 5− 25 Hz. As

the shot is in the middle of the line, the mode appears on both forward and reverse sides.

These appear to overlap relatively well, suggesting that subsurface velocities do not vary

significantly on either side of this source position, and that laterally invariant surface

wave analysis methods may be used to successfully retrieve a shear velocity model.
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4.1 Case study background & acquisition

Figure 4.8: Common shot gathers from Figure 4.3, located at the beginning (a) and in
the middle (b) of the acquired line viewed in the (ω, k) domain.

4.1.2 Data pre-processing for FWI

Several pre-processing steps were applied to the raw dataset by CGG, to help remove

some of the noise present, as illustrated for an example common shot gather in Figure

4.9a. A reverse polarity correction was applied to certain data traces, which had been

recorded with a wrong polarity. Certain very noisy traces were muted and interpolated

from neighboring traces. Furthermore a de-spiking process was applied to the data. The

de-spiking, applied in the frequency-space (ω − x) domain, is used to zero or rescale

spikey spectral gates of the data. An FX-decon filter was applied to optimally extract

linear features and suppress random noise (Gulunay, 1986).

After the noise removal, a spatial regularization was applied to the whole dataset

to obtain a fixed grid spacing between sources and receivers, as is assumed in the FWI

algorithm used for this study. Missing source positions, such as at the location of the

canyons, were interpolated using neighboring shots. An example common shot gather of

the data before and after pre-processing is illustrated in Figure 4.9. The data were then

resampled in time to obtain a sample interval of 0.4 ms to accommodate the Courant-

Friedrichs-Lewy (CFL) stability condition of the FWI algorithm used (see Equation

1.52), and allow a spatial discretization step of 3 m for the velocity models.

The real data was obtained using point sources that produce wavefields that have a

3D geometrical spreading in the subsurface media. A 3D forward modelling algorithm

could appropriately simulate such point source wave propagation. However 3D elastic

FWI is difficult due to the excessive computational requirements. The forward modelling
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Figure 4.9: An example common shot gather of the raw data (a) and of the pre-processed
data (b) after noise removal and regularisation processing steps. Different sources of noise
that are corrected for during the pre-processing step are pointed out in (a).
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algorithm used in this study is 2D, and therefore implicitly propagates a transverse line

source, assuming the invariance of the 3D velocity model along the transverse direction.

Spreading transformations for 3D-to-2D media therefore need to be applied to the ob-

served data, to simulate the response to a transverse line source, and allow an appropriate

comparison between observed and calculated data (Schäfer et al., 2014; Forbriger et al.,

2014).

In this study the observed data are multiplied by
√
t, where t is the recorded time,

as supported by the specific amplitude decay of surface waves in 2D and 3D. This pre-

processing 3D-to-2D geometrical spreading correction has been used for previous similar

studies (Bretaudeau et al., 2013; Pérez Solano, 2013), although others argue that it

may be insufficiant for FWI, when applied to waves propagating with different phase

velocities, such as P, S and Rayleigh waves (Schäfer et al., 2014).

4.2 Surface wave inversion

4.2.1 Initial models for FWI

First break picking and inversion was performed on the dataset to provide an initial P-

wave velocity model for FWI. This model was also used as an input for Surface Wave 1D

Inversion (SWODI), for which dispersion curves were picked to obtain a shear velocity

model of the near surface region.

Figure 4.11a illustrates the first 228 m of the model obtained by the first break travel

time inversion. For the near surface region considered, the P-wave velocities retrieved

do not vary greatly, with velocities ranging between 2800 − 3250 m/s. The velocities

retrieved generally increase with depth, and are slightly higher on the right hand side

of the model. The resolution is very low due to the method not being well adapted

to retrieve the shallow near surface region. The ray coverage for the tomography is

illustrated in Figure 4.10. For the first 300 m the fold appears high, although slightly

reduced on the edges of the acquisition.

The initial density model (see Figure 4.11c), was chosen to be constant at 2200 kgm−3.

This value was arbitrarily chosen based on average values of the sedimentary rock types

present in the region, because no in situ values or well information were available for this

near surface region.
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Figure 4.10: Ray coverage for first break travel time inversion of the real data to obtain
an initial P-wave velocity model. Note that the distance coordinates are local, but data
is only present for the 12 km length of the acquisition line. The depth of the inversion
(also in local coordinates) extends beyond the near surface region considered for inversion
of surface waves.

4.2.1.1 Surface wave 1D inversion

Two separate studies of conventional surface wave 1D inversion (SWODI) were per-

formed on the dataset. This surface wave analysis method, described in detail in section

1.2, assumes a stratified medium and obtains a shear velocity profile with depth from

the inversion of dispersion curves. Multiple laterally invariant inversions allow to pro-

duce an image of the lateral variations in the shear velocity model. Although the same

methodology is used for both studies, different algorithms and tuning parameters were

independently applied, leading to two separate shear-velocity models. The comparison

allows a quality control and validation of the models, and to evaluate epistemic uncer-

tainties.

For the first study, common midpoint (CMP) gathers every 10 m along the acquired

line, were first preprocessed. A compensation for the natural attenuation of surface waves

was applied to the data. The data were then muted to focus on the surface wave energy

and reduce the ambient noise. Note that the guided waves marked by (C) in Figure 4.3

were also removed. The mute facilitates the building of good spectral estimations on

which the fundamental mode can be picked. Several tests with varying offset windows

were performed to reach an equilibrium between the presence of low frequency content

with a high penetration depth, obtained by far offset data, and minimizing the presence

of 2D effects that are caused by such far offset data.

The fundamental mode was picked in the (ω, k) domain, computed using the Capon

spectral estimator (Capon, 1969). The picking was aided by an automatic search for

the local maximum of the spectrum, and an extrapolation of the dispersion curve to
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higher and lower frequencies. Furthermore an interpolation strategy allowed to reduce

the number of dispersion curves manually picked. Examples of the (ω, k) spectra and

picks are shown in Figure 4.14. Although some higher modes may have been identified,

only the fundamental mode was inverted.

The initial shear velocity model for SWODI (see Figure 4.11b), was obtained from

applying a constant Poisson ratio of VP/VS = 2.0 to the P-wave model obtained from

first break tomography. Alternative initial shear velocity models such a homogeneous

model, or velocities based on a V30 model (Brown et al., 2000; Martin and Diehl, 2004)

did not suffice for convergence to occur. The topography of the selected initial models

was smoothed over 300m for the inversion.

Figure 4.11: Initial P-wave (a), shear wave (b) and density (c) models used for SWODI.
The real topography is plotted in red. Note that the color scale is different for each
model.
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Only the shear wave velocity was inverted for, while the P-wave velocity and density

were kept fixed. The forward modelling kernel is based on the hypothesis of a 1D

horizontally layered model. An assumed 37 layers, each with a thickness of 6 m, were

inverted for, with a final layer at depth representing the infinite half space, fixed with

a shear velocity of 2000 m/s (see Figure 4.11b). The depth of the model is therefore

222 m. Within each layer the velocity was assumed to be constant. Velocity inversions

with depth were allowed by the inversion. The resulting 2D model of the subsurface

therefore consists of several 1D inversions.

The L2 norm of the difference of dispersion curves was used as a misfit function to

compare picked dispersion curves with the ones obtained by the current velocity model.

The Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 1963) was then used

as a local search method to navigate in the parameters domain and minimize the misfit

function. For the cases where the inversion did not converge, the shear velocity was

interpolated.

The final shear velocity model obtained by SWODI is illustrated in Figure 4.12 with

the smoothed topography. One can observe that very strong velocity anomalies are

present. A low velocity top layer of about 20 m can be identified along the whole line,

with velocities of 800−900 m/s. A relatively consistent velocity inversion can be observed

at around 60 m depth relative to the surface. Strong velocity contrasts sometimes appear

at a depth of around 110 m. This may be coherent with the results shown in Figure 4.4b,

were the presence of higher modes observed in the data are found to be linked to such a

feature. However the model appears poorly constrained at depths greater than 125 m,

suggesting that a lower confidence level should given to lower depths, as this may be the

maximum penetration depth for the frequency content of the data used for inversion.

Figure 4.12: Final shear wave velocity model obtained by SWODI. The smoothed to-
pography is plotted in orange. Note that velocities above 2000 m/s were clipped.
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To be used for FWI, the shear-velocity model will have to be heavily smoothed, as the

strong lateral variations and contrasts will create instabilities in the forward modelling

(discussed in section 4.2.1.3), and produce significant backscattering which is not as

evident in the observed data.

A separate SWODI was performed on the same dataset by CGG. This second in-

version was computed using the same initial P-wave velocity, shear velocity and density

models and similar inversion parameters, but using CGG in-house picking and inversion

tools. The comparison of the two inversion results can be used as a quality control. The

resulting shear velocity model obtained by CGG is compared to the one obtained by the

first study in Figure 4.13.

One of the main differences is that the picking of the dispersion curves by CGG

was done semi-automatically, as each picking was guided by neighboring picks, leading

to a smoother result. The fundamental mode is assumed as the most energetic and

predominant signal, and is the only mode picked. The picked frequencies are not as

high as those for the first study. Certain artifacts present at the surface level in the

final model obtained by CGG may be due to the lack of high frequency information in

the picked dispersion curves, leading to velocities being extrapolated up to the surface.

One can observe anomalous velocity values in the top surface layer, which appears less

continuous than in the model obtained from the first study (see Figure 4.13).

Again, only the shear velocity was inverted in the inversion by CGG. For the inversion,

25 layers of 5 m thickness, each of a constant shear velocity, were assumed. The resulting

model is therefore only 125 m deep, and appears relatively well constrained up to this

depth, as opposed to the model from the first study. For this second inversion, a smoothed

topography over 1 km was applied. This is also the length of the array that was used

for the computation of the dispersion curves.

The SWODI results compared in Figure 4.13 are a clear example of how manual

picking and inversion parameters can lead to very different models. One can observe

that the model obtained by CGG (Figure 4.13b) is much smoother and displays a smaller

range of velocities than the model obtained in the first study shown in Figure 4.13a. Yet

certain similarities between the two models allow the validation of certain subsurface

features. The low velocity top layer about 20 m deep, is recovered by both studies.

The velocity inversion at about 60 m from the surface is also present in both results.

Furthermore a strong lateral velocity discontinuity is imaged in both models, just after

the first 2 km of the acquired line (marked by the red dashed line in Figure 4.13).
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Figure 4.13: Final shear wave velocity models obtained from two separate SWODI stud-
ies. Note that only the first 110 m are shown of the velocity model in (a), for a fair
comparison to the velocity model in (b) provided by CGG. The topography is also flat-
tened for both models. The red dashed line marks a strong lateral velocity discontinuity.

The left-hand side of the discontinuity appears to have lower shear velocity values than

the right-hand side. From observations of satellite imagery, the discontinuity in the

subsurface appears to match with the edge of an alluvial fan, visible on the surface of

the terrain, and located on the faster right hand side of the discontinuity.

4.2.1.2 Quality control of dispersion curves

A more detailed quality control can be achieved by analysis of the dispersion curves.

Selected (ω, k) domain spectra of the data are illustrated in Figure 4.14. The picked

fundamental mode (green dashed line) and fundamental mode corresponding to the final

model obtained in the first study by the SWODI approach (blue solid line) are plotted on

the top of the spectra. The position of the gathers in relation to the final shear velocity

model of the first study is given in Figure 4.14e for reference.
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Figure 4.14: Selected CMP gathers in the (ω, k) domain (a-d), on which the fundamental
mode was picked (green dashed line). The fundamental mode of the final SWODI model
from the first study, and shown for reference in (e) is also plotted for a quality control
(blue solid line). Note that a normalisation is applied on both frequency and spatial
frequency axis for better visualisation of the spectrum and all spectra have the same
color scale. The final shear wave velocity model is flattened, as required by the FWI
algorithm, and velocities above 1800 m/s where clipped. The location of the CMP
gathers is marked by black dashed lines.
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One can observe that, for certain regions, the fundamental mode is strongly visible

in the (ω, k) spectrum, and is correctly retrieved within a frequency range of 4− 30 Hz

(see Figures 4.14b and 4.14d). These results indicate a good quality of the final shear

velocity model, perhaps due to a homogeneous subsurface.

However regions exist were the (ω, k) spectrum is more complex and energetic higher

modes can be identified at higher frequencies. For these spectra, the picking of the

fundamental mode is limited to 15 Hz (see Figure 4.14a). For these areas the resulting

shear velocity model often yields a high velocity contrast at depth. This is coherent with

the results in Figure 4.4b, where the appearence of higher modes is shown to be linked to

the presence of a high velocity contrast. Yet this high velocity contrast does not appear

to be laterally consistent in the model, and the lateral variations retrieved may not be

reliable.

An interesting area to analyze is the location of the lateral velocity discontinuity,

retrieved by both models, just after the first 2 km of the line. An example of the

(ω, k) spectra before, at the discontinuity, and after is shown in Figure 4.15. Comparing

the spectra before and after, one can observe a change in the slope of the fundamental

mode, indicating an increase in velocity from before to after the discontinuity. The

spectrum located at the discontinuity appears smeared, as if two dispersion curves of

different velocities, coming from the forward and reverse sides of the spectrum, were

superimposed. The analysis further validates the presence of a strong lateral velocity

discontinuity at this location.

There are several other regions along the 12 km line, where significant 2D effects

may be observed, and where only a limited convergence of SWODI occurred for the first

study. An example spectrum is shown in Figure 4.14c, in which the fundamental mode

appears to split at a frequency of about 15 Hz. The spectra may be explained by an

occurrence of two fundamental modes due to 2D effects, or due to a significant portion

of energy transferred to higher modes. The subsurface geology may be more complex for

this region, and its reconstruction beyond the limitations imposed by 1D inversion.

Local 2D effects can also be observed in Figure 4.14c for gather 624. It is interesting

to note that on either side of this region, the fundamental mode is clearly visible, as

illustrated in gathers 560 and 690 (Figures 4.14b and 4.14d). This shows that the strong

variations in the shear velocity encountered are local. Dealing with such 2D effects is

one of the limitations of conventional surface wave inversion that may be overcome by

FWI.
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Figure 4.15: Selected CMP gathers in the (ω, k) domain located before (a), during (b)
and after (c) a lateral velocity discontinuity retrieved by both shear velocity models just
after the first 2 km. The final model of the first study is shown for reference, on which
the CMP locations are marked by the dashed lines. The picked fundamental mode (green
dashed line) and the fundamental mode of the final model obtained by the first study
(blue solid line) are plotted. Note that a normalisation is applied on both frequency and
spatial frequency axis for better visualisation of the spectrum.

4.2.1.3 Selection of initial models

One can interpret the regions of strong velocity contrasts at depth, present in the SWODI

results of the first study, as caused by the presence of higher modes. Although a high

velocity contrast appears to be validated by the test shown in Figure 4.4, a lower con-

fidence level is given to the lateral variations retrieved, especially since the geology of

the area is assumed to be flat. The semi-automatic picking by CGG may have helped

to avoid picking instabilities due to higher modes, providing a smoother, shallower and

simpler result, with velocity variations that appear as more realistic. The quality control

analysis privileges the shear velocity model obtained by CGG to be used as an initial

model for FWI.

Another significant reason to prefer the model obtained by CGG compared to the

one from the first study, is related to the numerical instabilities that may occur during

forward modelling for FWI at the oil and gas exploration scale. Even when the shear
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velocity model from the first study is heavily smoothed, the strong velocity contrasts

cause the absorbing boundary conditions (implemented with perfectly matched layers

procedure), to explode, leading to the presence of significant artifacts in the data.

Such instabilities are characteristic for strong Poisson ratio variations located close

to the model boundaries during elastic modelling, especially on the real exploration data

scale. Implementing absorbing boundary conditions as proposed by Cerjan et al. (1985)

may be a possible solution to mitigate artifacts. Otherwise one may rely on smoothing

strategies for the zones close to the boundaries, or a tapering of the shear velocity to

reach an acoustic propagation at the model boundary to help reduce such instabilities,

but they remain difficult to deal with. The initial model for FWI is therefore required

to be smooth, and the smoother shear velocity model obtained by CGG does not create

these numerical instabilities.

An additional Gaussian smoothing over 14 m vertically and 150 m horizontally was

applied on the shear velocity model obtained by CGG to finalize it as an input for

FWI. Both this shear velocity model and the P-wave velocity model obtained from first

break travel time inversion, were then resampled to a spatial discretization step of 3 m,

to guarantee at least 10 discretization points per wavelength. Furthermore they were

flattened as required by the assumptions of the FWI algorithm used.

Figure 4.16: P-wave velocity (a) and shear wave velocity (b) input models for FWI. Note
that the two models are obtained at different resolutions.

Figure 4.16 illustrates the finalized P-wave velocity and shear wave velocity models

used as inputs for FWI. It is important to note that the two models have been obtained at
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4.2 Surface wave inversion

different resolutions. One could assume that the weak velocity variation in the initial P-

wave model, obtained at very low resolution for the shallow near surface scale considered,

has very little impact on the surface waves simulated during the forward modelling.

Yet how good are these initial models and are they sufficiently accurate for FWI? It

is not evident to answer this question. No well information is available and no other non-

seismic geophysical prospection was performed. The only way to analyze and validate

them is through forward modelling and the comparison of calculated data with the

observed dataset.

4.2.2 Impact of receiver array

A validation test for the impact of the receiver arrays used in the real acquisition is

investigated here. Receiver arrays are implemented to help reduce the surface noise

recorded during real acquisitions, as required for conventional seismic processing. The

aim of this study however, relies on the presence of surface waves, which may have been

weakened at high frequencies due to the arrays. Furthermore, side effects such as spatial

averaging and loss of lateral resolution may also occur.

The observed data was acquired with receiver arrays consisting of 12 inline vertical

geophones, spaced 1.66 m apart, to create receiver stations every 20 m. This acts as a

spatial filtering (see Figure 4.17) when the traces of the receiver stations are summed

together. The response of such a filter is usually analyzed in the wavenumber domain,

where a simple calculation shows that

∫ a

−a
eikxdx = 2

∫ a

0

cos(kx)dx =
2

k

[
sin(kx)

k

]a

0

=
2 sin(kx)

k
= 2a

(
sin(ka)

ka

)
. (4.1)

The maximum distance of the stations to the center of the array is considered to

be a = 10 m. The impulse response of the filter is illustrated in Figure 4.17, showing

that the first spatial notch occurs at λ = 2a. Surface wave amplitudes of wavelengths

λ = 20 m will therefore be filtered, as destructive interference of the phase eikx will

occur. The first spatial notch corresponds to a frequency of 50 Hz when an average

surface wave velocity of 1000 m/s is considered.

During FWI, the forward modelling is computed considering single vertical receivers

spaced 20 m apart (see Figure 4.18). To investigate the impact of this acquisition
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Figure 4.17: Schematic of spatial filter and impulse response applied to the data due to
the array acquisition.

difference on the data, a simple forward modelling test is performed to compute data

with simulated receiver arrays and with simulated single receiver positions, keeping all

other modelling parameters constant. A staggered finite-difference grid is used for the

forward modelling such as described in section 2.2.3. The initial shear velocity and P-

wave velocity models illustrated in Figure 4.16, as well as a homogeneous density model

of ρ = 2200 kgm−3 are used as input models. A Ricker of 20 Hz peak frequency is used

as the source wavelet. The simulated receiver arrays are computed as the mean of 12

individual receivers spaced 1.66 m apart, to limit differences in amplitude.

20m$ 20m$

Array$of$12$receivers$

Figure 4.18: Schematic of single receiver acquisition (left) used to obtain the calculated
data and receiver arrays (right) actually used for the acquisition of the observed data.

An example common shot gather for both modelling computations, bandpass filtered

between 4 − 25 Hz, as well as the difference between the two is shown in Figure 4.19.

One can observe that at low frequencies the data are almost equivalent, but for higher

frequencies differences in the data occur, as is expected. From a closer analysis of an

example trace in Figure 4.19d, it appears that the difference is mainly in amplitude,

and that the phases are not significantly impacted. The signal-to-noise ratio for surface

waves will therefore be poor at medium to high frequencies (> 25 Hz), suggesting that

layer stripping inversion strategies investigated in Chapter 3 may not be well adapted

for this dataset. To conclude one can assume that the difference in acquisition between

the real observed data and the data computed with single receiver positions is minimal
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and may not significantly impact FWI when only low frequency data is considered.

Figure 4.19: Example common shot gather obtained from modelling tests with simulated
single receiver positions (a) and with simulated receiver arrays (b), bandpass filtered
between 4 − 25 Hz, and the data difference (c). An example trace is compared in (d),
located by the black dashed line in (a).

4.2.3 Source estimation

The source signature is estimated following the strategy proposed by Pratt (1999). The

estimation problem is posed in the frequency domain, where the source terms in the

modelling of the synthetic data are assumed to be multiplied by an unknown source

signature s(ω), a complex scalar. When assuming that the other model parameters,

such as the shear or P-wave velocity models, are known, the source signature can be

obtained by minimizing the L2 norm of the data difference, where the minimum misfit

occurs when

s(ω) =
d∗caldobs
d∗caldcal

, (4.2)

where dobs is the observed real data, dcal is the calculated data with a Dirac impulse as a

source, and the symbol ∗ represents the complex conjugate. Although the initial velocity

models are only approximate for this inversion, Pratt (1999) claims that significantly

good estimation of the source wavelet may be achieved.
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Source inversion is performed on the real dataset. The shear wave velocity and P-

wave velocity initial models illustrated in Figure 4.16 are used, as well as a homogeneous

density model of ρ = 2200 kgm−3 as also assumed by SWODI. The forward mod-

elling scheme implemented is the same as described in section 2.2.3, using a staggered

finite-difference grid. Only the subsurface covered by the initial models, surrounded by

absorbing boundary conditions and the free surface condition at the top, is considered

for the propagation of waves. Therefore only the real data with receivers and sources

located within the lateral boundaries of the shear velocity model is selected and used.

The real acquisition of the observed data is simulated to compute the calculated data.

The topography is assumed as flat for the forward modelling. This assumption is

constrained by the finite-difference scheme and free surface condition implemented in the

algorithm. Considering an average surface wave velocity of 1100 m/s and a maximum

frequency for surface waves of 30 Hz, giving a minimum wavelength of over 30 m,

one could evaluate the true variation in topography as near negligible, and validate

the assumption. Backscattering due to the canyons cutting through the acquisition

line, is only weakly visible in the observed data, and may not have a strong impact

on the misfit calculation. The limitations of a flat topography assumption are further

discussed in section 4.4.1 of the perspectives, showing that this assumption appears valid

for frequencies between 4 − 15 Hz, but may cause cycle-skipping for higher frequency

data content.

The observed data was obtained from the correlation of consecutive vibroseis sweeps.

As expected, the source function obtained from inversion is therefore non-causal, but

rather zero-phase, with energy arriving before time zero. To simplify the manipulation

of the source wavelet, a small time shift was applied to the real dataset, to obtain a causal

source wavelet during inversion. Such a manipulation can be theoretically justified to be

correct, as the time shift applied to the observed data was kept consistant for all futher

manipulations and for later inversions.

Several mutes were also tested and applied to the observed and calculated data, to

focus on certain waveforms such as surface waves or the direct wave, as well as muting the

near offsets or far offsets. The sources obtained from inversion are then filtered between

4 − 90 Hz, which is the frequency spectrum of the vibroseis used for acquisition, and

tapered to zero at the ends. Examples of two different source functions obtained are

shown in Figure 4.20.

Very similar wavelets are obtained when using a mute that allows only surface waves,
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Figure 4.20: Source function obtained with a wide mute allowing surface waves and the
direct wave: with near offsets removed (red); and near offsets included (blue).

and a mute that includes also other waveforms such as the direct wave. This is due to

the surface waves having superior amplitudes, and therefore driving the inversion. The

removal of near offset data has a bigger impact on the source function obtained. However

the phases of the different sources obtained match well (see Figure 4.20), suggesting that

the source inversion is relatively stable.

The source function obtained with a wide mute allowing surface waves and the direct

wave, and with near offsets included, was chosen as the source used to compute the

calculated data, as it provided the best match when calculated data and real data were

compared.

4.2.4 Forward modelling and cycle-skipping analysis

The same initial models and forward modelling used for the source estimation are used

to compute the calculated data using the source wavelet obtained in section 4.2.3. An

initial comparison of the calculated and observed data allows to evaluate the differences,

whether or not cycle-skipping is present, and if convergence is possible with FWI.

One of the significant factors that will create a data difference, and which is not

considered in the forward modelling, is attenuation. Attenuation may create differences

in amplitude especially for far offsets, and is a parameter that should be considered

for perspective studies. Scaling coefficients may be used to consider attenuation effects

during source estimation (Groos et al., 2014), although using appropriate viscoelastic

modelling with a priori values for the quality factor Q is more accurate. On the gobal

seismology scale, attenuation can even be retrieved from the inversion of surface waves

(Romanowicz, 1995), suggesting a potential for future studies at the oil and gas scale.
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In the following investigation, phase differences of surface waves will be analyzed,

since the aim of the inversion is to retrieve the kinematics rather than the amplitudes.

The phase differences between observed and calculated data will lead to an initial guess

for the presence of cycle-skipped data and local minima for FWI. Low frequency data is

investigated, for both the time-offset (t, x) domain and the frequency-wavenumber (ω, k)

domain, to determine the possible use of multiscale strategies for FWI.

4.2.4.1 Analysis of low frequency data (4− 15 Hz)

A selected common shot gather located at the beginning of the line, and bandpass filtered

between 4 − 15 Hz, is shown for observed and calculated data in Figure 4.21. One can

observe that several of the waveforms present in the observed data are not present in the

calculated data. Refracted and reflected waves coming from interfaces below the depth

of the near velocity model used to compute the calculated data will not be retrieved by

the forward modelling. The guided waves indicated in Figure 4.3 are not retrieved either,

at least by the initial models available.

At an offset of about 2 km, the initial phases of the surface wave package, filtered

between 4−15 Hz, appear to roughly fit calculated data. Cycle-skipping occurs however

for surface wave phases within the package. The same result is obtained at an offset

of about 4 km, although a significant difference in amplitude between observed and

calculated data can be observed. This first comparison is very positive, suggesting that

the fundamental mode was correctly picked and inverted. The result validates the shear

velocity values provided by the initial model.

Conventional FWI in the (t, x) domain would not be able to converge due to the cycle-

skipping effect present for the surface waves. Multiscale approaches would also not be

helpful in the (t, x) data domain. Only time damping strategies, or layer stripping may

help overcome the cycle-skipping problem. However layer stripping strategies are not

an optimal solution as previous analysis has shown that the medium to high frequency

surface waves have a low signal-to-noise ratio (see section 4.2.2). Computing the data

misfit in alternative domains, such as the (ω, k) domain, can be a more robust approach

to mitigate the cycle-skipping feature present.

Another selected common shot gather, viewed in the (ω, k) domain, and bandpass

filtered between 4 − 15 Hz is shown for observed and calculated data in Figure 4.22.

One can observe that the fundamental mode appears as the most energetic signal in

both datasets, Observed and calculated traces are compared at a frequency of 7.6 Hz,
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Figure 4.21: A selected common shot gather at the beginning of the line, filtered between
4−15 Hz, shown for the observed data (a) and the calculated data (b) in the time-offset
(t, x) domain. Two traces, located by the black dashed lines, are visualized and compared
in (c) and (d). The arrow marks the start of the surface wave package. Although the
initial phases of the surface waves appear to roughly match, cycle-skipping of surface
wave phases is also present at both offsets. Note that the amplitudes of the observed
and calculated data are shown at the same scale.

showing that the peak of the fundamental mode is well matched. At such low frequencies,

cycle-skipping effects do not appear to occur in the (ω, k) domain. At a slightly higher

frequency of 12.2 Hz, the energetic peak of the fundamental is still sufficiently well

matched between observed and calculated, although the data appears more vulnerable to

cycle-skipping problems, due to the presence of secondary energy peaks in the observed

data, and differences in amplitude between observed and calculated traces. The well

matching peaks in energy corresponding to the fundamental mode, validate the initial

shear velocity model obtained by Surface Wave 1D Inversion (SWODI) in section 4.2.1,

which only uses information from picked fundamental modes for inversion.
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Figure 4.22: A selected common shot gather in the middle of the line, filtered between
4−15 Hz, shown for the observed data (a) and the calculated data (b) in the frequency-
wavenumber (ω, k) domain. Two traces, located by the black dashed lines, at a frequency
of 7.6 Hz (c) and 12.2 Hz (d) are selected and compared. The peak of the fundamental
mode appears to correlate well between observed and calculated data. Note that the
amplitudes of the observed and calculated data are shown at the same scale.

This analysis suggests that FWI with a misfit function in the (ω, k) domain and a

multiscale approach inverting low-to-high frequencies may possibly converge. The (ω, k)

domain is shown to be more robust than the (t, x) domain when considering low frequency

data for multiscale strategies.

4.2.4.2 Muting and windowing in offset

To further analyze the data difference between observed and modelled data, a mute is

applied in the time-offset (t, x) domain. This mute allows to focus on the surface waves,

and tries to remove the reflected and guided waves (marked by B and C in Figure 4.3),

which are not retrieved by the forward modelling as only the shallow near surface region
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is considered for wave propagation, and these phases originate from much deeper. As a

consequence the direct arrival which is retrieved by the forward modelling is also muted.

A windowing in offset is then also applied to remove both the strong amplitudes at

short offsets, and the far offests that may be more strongly cycle-skipped. Examples of

common shot gathers before and after the mute and windowing, are shown in Figure

4.23.

The receiver information at offsets less than 450 m is therefore removed. For the real

dataset considered, it is clear that Equation 3.3 obtained in Chapter 3 to calculate a

maximum offset, is no longer valid and much larger offsets need to be considered such

as xmax ' 10λ̄S up to xmax ' 20λ̄S.

Figure 4.23: A selected common shot gather of the observed data before (a) and after
(b) muting in the time-offset (t, x) domain, and windowing in offset.

4.2.4.3 Masking in the (ω, k) domain

To further focus on the correctly modelled fundamental mode observed in the frequency-

wavenumber (ω, k) domain, as illustrated in Figure 4.22, a masking is applied while in

the (ω, k) domain to remove higher modes and other signals. Masking in the (ω, k)

domain has already been mentioned by Pérez Solano (2013) as a possible perspective for

FWI with surface waves, to allow a progressive inversion of first the fundamental mode

and then higher mode information.

In the (ω, k) domain, a straight line passing through the origin corresponds to a

constant phase velocity. As such, prior information on the velocity of surface waves may

help define a section of the (ω, k) spectrum to keep and a section to remove. In this study,
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a weighting is created, tapered on either side with a Hanning function, and applied to

the (ω, k) spectrum to prioritize the fundmental mode. The weighting is designed using

the modelled data, which is cleaner and has a clear fundamental mode. The data are

previously muted, tapered, and filtered with a low frequency bandpass (4− 16 Hz).

An example of a common shot gather in the (ω, k) domain, with the weighting applied,

is shown in Figure 4.24 for both observed and calculated data. One can observe that for

the low frequencies considered, the fundental mode is correctly selected by the applied

weighting. Furthermore the energy peaks of the fundamental fit well between observed

and calculated data, although secondary peaks are visible at higher frequencies as seen

in the trace analysis in Figures 4.24c - 4.24d.
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Figure 4.24: A selected common shot gather, muted in the (t, x) domain, filtered between
4 − 15 Hz, is shown in the frequency-wavenumber (ω, k) domain for the observed data
(a) and the calculated data (b). A weighting has been applied in the (ω, k) domain to
focus on the fundamental mode. Two example traces, at a frequency of 7.6 Hz (c) and
12.2 Hz (d) are selected and compared. The peak of the fundamental mode appears to
correlate well between observed and calculated data. Note that the amplitudes of the
observed and calculated data are at the same scale.
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4.2 Surface wave inversion

The data which has been weighted in the (ω, k) domain, can be tranformed back

to the time-offset (t, x) domain to observe what signal is contained in the fundamental

mode. The shot gather previously pictured in Figure 4.24, is illustrated in Figure 4.25

transformed back to the (t, x) domain. As expected, the signal is almost of constant

slope and strongly oscillating.

Selected traces between observed and calculated data are compared in Figures 4.25c

- 4.25e. At near offsets (see Figure 4.25c), the initial two modelled phases, at relatively

low frequency, appear to arrive too slow compared to the true phases. The next phase

however, appears to fit well with the true phase. The following modelled phases, at

relatively higher frequencies arrive too fast compared to the observed ones, and cycle-

skipping clearly occurs. At medium offsets (see Figure 4.25d), the first four modelled

phases, at relatively low frequency, appear to arrive too slow compared to the true

phases, possibly causing cycle-skipping. However the following phases, at slighty higher

frequencies, fit well once again. The final phases, at even higher frequencies, illustrate

again a phase shift, as the modelled phases arrive too fast compared to the true ones.

At far offsets, beyond 3000 − 3500 m distance from the source position, the previously

observed trend is no longer valid. All modelled phases appear too slow compared to the

true ones, clearly causing cycle-skipping to occur (see Figure 4.25e). The differences in

amplitude visible for medium to far offsets, and especially for the higher frequencies is

due to attenuation effects not being considered during the propagation of the modelled

data.

This analysis on the signal contained by the fundamental mode of the surface waves

suggests that overall the initial velocity model used to create the modelled data may be

a bit too slow, especially considering the long wavelength scale, and therefore the deeper

part of the model. The velocity model appears to work well for medium frequency data

at near to medium offsets. However the cycle-skipping issue for signal at frequencies

higher than 10 − 15 Hz, suggests that areas in the top half of the velocity model may

be too fast.

4.2.5 Full Waveform Inversion

Although the forward modelling and cycle-skipping analysis presented in the previous

section highlights many difficulties, FWI is attempted on the real dataset. Layer stripping

strategies for FWI are not investigated because of the low signal-to-noise ratio for high

frequency surface waves, due to the array acquisition design (see section 4.2.2), and lack
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Figure 4.25: The same common shot gather as in Figure 4.24 is shown for observed
(a) and calculated (b) data, transformed back to the time-offset (t, x) domain, after a
weighting has been applied in the (ω, k) domain. Example traces comparing observed
and calculated data, located by the black dashed lines, are shown in (c) to (e). Note
that the amplitudes of the observed and calculated data are shown at the same scale.

of topography modelisation (see section 4.4.1).

Multiscale FWI with a misfit function in the frequency-wavenumber (ω, k) domain
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4.2 Surface wave inversion

is therefore performed. The (ω, k) domain misfit function, presented in section 2.2.4.2

by Equation 2.11 is considered as the most robust option for this real dataset. For low

frequency data, the energetic peak in the (ω, k) domain, created by the fundamental mode

of the surface waves, is already approximately retrieved by the initial model, suggesting

that convergence with FWI could be possible (see Figure 4.22). Different initial frequency

bands are tested for inversion, such as 4− 6 Hz or 4− 10 Hz.

Another factor that is taken into account for FWI with a real dataset, which has

previously not been discussed for inversion of synthetic data examples, is the muting of

near offsets. Offsets less than 450 m are removed due to their proximity to the source,

and their strong amplitudes (see Figure 4.23). Similarly to the layer stripping strategy

presented in section 3.2.2, a maximum offset is also considered, and offsets larger than

4200 m are removed.

A mute in the time-offset (t, x) domain is also applied to focus only on the surface

waves and remove the wavetypes that will not be modelled in the synthetic data, such

as shown in Figure 4.23.

Only the shear velocity model is inverted during FWI, while the P-wave velocity and

density models are kept constant. Differently to layer stripping approaches, the whole

depth of the gradient is considered for the model update.

Due to limited computer resources, only the first 200 shot gathers where inverted.

As the FWI algorithm used is not intended for production purposes, large memory

requirements make repeated runs difficult. This factor is further amplified due to the

size of the data and the small discretization steps required for the stability conditions of

the algorithm. The reduction of common shot gathers, easily removed due to the parallel

nature of the code, allows the algorithm to be run repeatedly for testing.

Unfortunately several FWI tests with different parameter variations resulted in a

linesearch failure. This occurs after 20 misfit function and gradient evaluations, when no

proper scaling of the descent direction is found. This failure indicates that the computed

descent direction is not accurate enough, and underlines the nonlinearity of the misfit

function. This result is most likely due to the occurence of cycle-skipping, and significant

differences in amplitude between observed and calculated data created by attenuation

effects.

However when a masking in the frequency-wavenumber (ω, k) domain is applied, the

FWI is able to update the model at the first iteration. The masking applied is the same

as discussed in section 4.2.4.3 and focuses on the fundamental mode information. The
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frequency window considered for FWI is 4− 10 Hz. The updated shear velocity model

after FWI is shown in Figure 4.26b.
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Figure 4.26: Initial shear velocity model (a), updated shear velocity model after FWI
(b), and the difference between the two (c).

When compared to the starting model, one can observe that the velocities in the top

layer have been reduced, while the velocities at depth have generally been increased (see

Figure 4.26c). The difference between the models is zero beyond 6 km from the start of

the line, because only the first 200 common shot gathers are considered, and therefore

very few data are available to update the right hand side of the model.

The misfit of the data is decreased by 30 percent of the initial misfit value by the FWI.

The data modelled using the updated shear velocity model, and low bandpass filtered,

is compared to the initial and true data, in both the (t, x) and the (ω, k) domains in

Figures 4.27 and 4.28 respectively. Because only the left hand side of the model has

been recovered the first common shot gather is analyzed. In the (t, x) domain, one can

observe that the FWI has not converged in the right direction, as the updated data trace

is further away from the observed than the initial one (see Figures 4.27d and 4.27e).

By looking at the same common shot gather in the (ω, k) domain, which was used
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4.2 Surface wave inversion

Figure 4.27: Common shot gather filtered between 4−15 Hz for the initial data (a), the
updated data (b) and the observed data (c). Two example traces, located by the black
dashed lines, are illustrated in (d) and (e).

to compute the data misfit, one can understand that the FWI has converged towards

a local minimum due to cycle-skipping effects. Figure 4.28d shows how the FWI has

shifted the energy peak of the synthetic data to fit a secondary energy peak of the

observed data. The main energy peaks of synthetic and observed data, corresponding to

their fundamental modes, are now further apart.

Unfortunately, this result is inevitable when the initial velocity models provided to

the FWI are not sufficiently accurate. Although the (ω, k) domain misfit function is more

robust than the conventional (t, x) domain misfit function, it is not immune to cycle-

skipping issues. This is especially evident for this real case scenario where secondary

energy peaks corresponding to higher modes are present.
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Figure 4.28: The same common shot gather as in Figure 4.27, filtered between 4−15 Hz,
is shown in the (ω, k) domain for the initial data (a), the updated data (b) and the
observed data (c). An example trace, located by the black dashed line, shows the effects
of cycle-skipping in (d).

4.3 Conclusion and evaluation

To conclude, this chapter examines the possibilities and difficulties that may occur when

applying FWI with surface waves on a real data application. This case study contains

each step required for FWI, starting from the initial model building, and identifies some

of the challenges that need to be tackled.

First of all, the dataset used for this study may not have been the ideal example, due

to the array acquisition design, the lack of multicomponent receivers, and the topography

that could not be taken into consideration by the modelling algorithm used. Furthermore

no well data or other non-seismic geophysical prospection information was available for

the near surface region to help with the initial model building or data validation.

The step of initial model building illustrates typical problems with dispersion curve

picking due to lateral variations, providing the motivation to move towards FWI of

surface waves. The results show that very different shear velocity models can be obtained

from surface wave 1D inversion (SWODI), for the same dataset. The parameters chosen

and the different algorithms available can have a significant impact on the result. It

would be interesting to try FWI with modified initial models, for example by integrating
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a high velocity layer at the bottom of the model, whose presence is suggested by tests

shown in Figure 4.4.

The initial model building investigation also identifies the difficulties that may occur

with the absorbing boundary conditions during elastic forward modelling, when high

shear velocity contrasts are present in the model close to the boundaries. Solutions for

this modelling issue may need to be further investigated for future studies.

The source wavelet was only estimated once for FWI. Ideally it could be further

improved once the initial velocity models have been updated with FWI, to provide a

more accurate wavelet.

Several mutes in both the time-offset (t, x) domain and in the (ω, k) domain where

applied to the data for both analysis purposes and during FWI. More work could be

done to better tailor these manipulations on the real data, and perhaps improve the

results. Yet the analysis of the model update obtained clearly shows the presence of

cycle-skipping effects and convergence towards a local minima. As pointed out from the

beginning of this thesis, it is the key issue that needs to be solved for successful FWI

with surface waves.

Finally, several aspects of the forward modelling could be improved and perhaps lead

to more successful results, as further discussed in the perspectives.

4.4 Perspectives

Several aspects of the forward modelling could be improved and perhaps lead to more

successful results. The added value of 3D wave propagation for this dataset, compared

to the added computational cost required may be debatable, but features such as topog-

raphy, attenuation and even improved 3D-to-2D conversion could significantly impact

the results at little additional cost.

4.4.1 Dealing with topography

One of the limitations of the forward modelling in the FWI algorithm used in this study,

is the assumption of a flat topography. This assumption is constrained by the finite-

difference scheme and free surface condition implemented in the algorithm. Complex to-

pographies are difficult to handle due to the regular pattern of finite difference schemes,
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and they require a greater computational cost for implementation of free surface bound-

aries (Gao et al., 2015). The real data investigated in this chapter were however acquired

on a line crossing two small canyon features, giving a variation in elevation of up to 30 m

(see Figure 4.29).
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Figure 4.29: Topography profile of the acquired line for the real data considered in
Chapter 4, showing the location of the two canyons. Note that the vertical axis is
exaggerated.

To evaluate the flat topography assumption, forward modelling tests using a different,

more complete algorithm, capable of handling topography, are performed. This new

propagator is implemented with a curvilinear scheme, to model elastic wave propagation

in the presence of curved topography and a free surface condition (Tarrass et al., 2011),

and can be incorporated within an FWI algorithm for future studies. The curvilinear

transformation, based on a 1D transformation along the depth axis, allows to propagate

the wave equation through the domain (η, ξ), with the relation between depth z and η

following a coordinate transformation given as

z = ztopo(x) + (η − z0)
(zmax − ztopo(x))

(zmax − z0)
, (4.3)

η = z0 + (z − ztopo(x))
(zmax − z0)

(zmax − ztopo(x))
. (4.4)

where z0 is a reference topographic value (Tarrass et al., 2011). This domain transforma-

tion is represented in Figure 4.30, where the initial medium is stretched or compressed

to obtain a flat surface in the (η, ξ) domain. This curvilinear domain allows to imple-

ment an efficient finite differences scheme for the wave propagation and avoid staircase

approximations when considering topography.

Using a Ricker of 20 Hz peak frequency as a source wavelet, and the initial models
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Figure 4.30: Initial Cartesian models with topography are transformed into models with
curvilinear coordinates and having a flat topography. Modified from Tarrass et al. (2011).

obtained in section 4.2.1, synthetic data is modeled using the curvilinear propagator,

with and without the true topography applied. The shear velocity models used are

shown in Figure 4.31 with and without the true topography applied.
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Figure 4.31: Shear velocity model without (a) and with (b) topography, used for forward
modelling with the curvilinear propagator. Note that the vertical axis is exaggerated.

Example common shot gathers for one source at the beginning of the line and for

another in the middle are shown in Figures 4.32a-4.32d. A low frequency bandpass of

4 − 15 Hz is applied to the data for the comparison. In Figure 4.32c one can observe

backscattering occurring at a distance of about 3.5 km, at the location of the first canyon

in the topography profile, and at other locations to a lesser extent. Backscattered surface

waves can be clearly observed to originate at both canyon locations in Figure 4.32d.

For the observed data considered in this chapter, backscattering due to the presence

of the canyons is only weakly visible. An example common shot gather where it can
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Figure 4.32: Example common shot gathers for data modeled without topography (a-b)
and with topography (c-d) using the curvilinear propagator. The data are low bandpass
filtered between 4−15 Hz. A comparison of individual traces, located by the solid black
line is shown in Figure 4.34.

be observed is shown in Figure 4.33. Although often a weak signal in real data, correct

modelling of backscattering effects may help to better localize the position of velocity

anomalies, and improve inversion results (Schwenk et al., 2014). The ability to take

into account topography variations in the forward modelling scheme used by the FWI

algorithm is therefore a very interesting perspective for future studies.

Individual traces of the modeled data for the low frequency band of 4 − 15 Hz are

compared in Figures 4.34a-4.34b. The chosen traces are located directly after where the
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Figure 4.33: Example common shot gather of the observed data with a bandpass filter
of 6− 9 Hz applied, where a weak backscattered signal (circled) created by the presence
of two canyons (indicated by the dashed lines) can be observed. The topography profile
is shown above for reference.

surface waves pass through the two canyon features. Although differences in amplitude

are evident, the phases appear to match well, suggesting that the present topography

does not create cycle-skipping effects at this frequency scale. However when the low

bandpass filter is widened to 4− 27 Hz, and higher frequencies are considered, the trace

comparison matches less well as shown in Figures 4.34c-4.34d. Although the main phases

are not cycle-skipped, small phase differences are present in the traces, as highlighted

by the green circles, and the assumption of a flat topography may not be valid. To

apply layer stripping FWI strategies that start with the inversion of high frequency

data, topography would need to be taken into account in the forward modelling for a

successful inversion.

This analysis mainly validates the flat topography assumption for the case study

considered in this chapter. However, considering a forward modelling propagator capable

of handling topography effects may be much more significant for other real data cases,
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Figure 4.34: Comparison of individual traces, located by the solid black lines in Figure
4.32, for data filtered between 4−15 Hz in (a-b) and for data filtered between 4−27 Hz
in (c-d). The blue line represents data modelled without topography, and the red line
represents data modelled with topography. The green circles highlight phase differences
visible in the higher frequency band.

and is an important area of research for future studies.
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Conclusions

This study assumes that surface waves, conventionally treated as noise by the oil and gas

community, can potentially be used to characterize the near surface on the exploration

scale. A better understanding of this shallow zone, and a potential improvement for

imaging and interpretation of deeper targets, at no extra exploration cost, is an important

resource for the oil and gas industry.

The investigation presented in this study, goes beyond the limitations of conventional

surface wave inversion, based on a layered model assumption, and tackles the challenges

of Full Waveform Inversion (FWI) with surface waves. Although more commonly applied

to body waves, FWI allows to recover lateral velocity variations with high resolution

capabilities.

The first part of this study uses synthetic examples to develop and adapt the con-

ventional FWI method to include surface wave data. In Chapter 2 it is shown that

misfit functions where the data-fitting is computed in different data domains, such as

the frequency-wavenumber (ω − k) and frequency-slowness (ω − p) domains, are more

robust alternatives to conventional FWI. These robust misfit functions can overcome

cycle-skipping limitations that often occur when dealing with surface waves. These mis-

fit functions are shown to have more convex valleys of attraction and reduced local

minima when considering the topography of the data misfit for two model parameters

in a grid analysis compared to the conventional misfit function in the time-offset (t− x)

domain. Successful inversion results are obtained with these robust misfit functions on

a synthetic dataset to retrieve lateral variations in shear velocity.

Different strategies for FWI with suface waves are investigated and proposed in Chap-

ter 3. Synthetic data examples are used to promote a layer stripping approach specifically

adapted to the physics of surface waves for FWI. Different to previous literature on FWI,
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high-to-low frequencies are inverted, combined with short to long offsets, to sequentially

update top to bottom depth layers. This innovative layer stripping strategy for FWI is

shown to provide better results than those obtained with conventional multiscale FWI.

Furthermore, unlike multiscale approaches, layer stripping FWI does not rely on the

presence of low frequency data, often missing from real data acquisitions, to converge.

The layer stripping method is able to target the surface waves to drive the FWI, giving

evidence that surface waves can update the shear velocity model and help characterize

the near surface region.

In the final part of this study, a real data application is presented, illustrating the

difficulties involved and the possible near surface characterization achieved with surface

waves. Initial velocity models are obtained from first break travel time inversion and

Surface Wave 1D Inversion (SWODI). The analysis of the dispersion curve picking clearly

shows the laterally invariant limitations of SWODI, a clear motivation for moving to

FWI with surface waves. The analysis comparing the synthetic data and the observed

data highlights the potential cycle-skipping problems, and the significant propagation

differences, such as the lack of attenuation in the synthetic data. The misfit function in

the (ω − k) domain is shown as a more robust option compared to conventional FWI,

but cycle-skipping features prevent the FWI from converging in the right direction. This

final chapter leads to several suggestions for improvements in both forward modelling

and FWI strategies, as discussed in the perspectives.

Although the real data case study suggests that further research is still necessary, the

work presented in this study contributes to the truth behind the words of Dobrin (1950):

”surface waves can be made a useful by-product rather than a waste product of seismic

exploration”.

Perspectives

Full Waveform Inversion (FWI) is currently a subject of strong interest and extensive

research for the oil and gas industry. Moving from acoustic to elastic and to visco-

elastic modelling, from 2D to 3D and 4D acquisitions, from synthetic case studies to real

industry datasets, are some examples of challenges that are currently tackled.
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Forward modelling

As larger, more powerful computers become available, the capabilities of forward mod-

elling techniques may become more enhanced. Sufficiently accurate modelling of an

elastic 3D medium, considering anisotropy and attenuation effects, and with a free sur-

face condition following a complex topography profile, is currently a very important and

active subject of research and investigation.

One perspective to extend the results presented in this study, is to improve the for-

ward modelling of surface waves. Propagators other than finite differences (implemented

in this study) may be more adapted to dealing with the simulation of a complex to-

pography and a curved free surface condition. Of course regions with topography are

also those where an understanding of the near surface would be most beneficial to depth

imaging exploration projects. The added value of being able to model topography, for

example by implementing a curvilinear propagator (Tarrass et al., 2011), are discussed

in section 4.4.1 for the real data case study analyzed in Chapter 4. Other options such

as the discontinuous Galerkin method may also be a potential approach.

Beyond the different propagators available, the implementation of different absorbing

boundary conditions or free surface conditions may also be investigated. For example

numerical artifacts are often encountered due to the PML (Perfectly Matched Layers)

boundary condition for elastic propagation at the oil and gas exploration scale, when

significant variations in the Poisson ratio are present close to the edges of the velocity

models used. Such artifacts, as encountered during the real data case study in Chapter

4, are difficult to resolve.

From the difficulties that occur when dealing with a real dataset in Chapter 4, it is

also very clear that attenuation is an important parameter that should be included in

further studies of surface wave inversion. Significant differences in amplitude between

observed and calculated data, especially a longer offsets, are clearly visible. Both in-

trinsic attenuation and the attenuation due to scattering should be taken into account.

The importance of attenuation has already been underlined by studies of surface wave

inversion at the geotechnical and engineering scale (Lai, 1998; Groos et al., 2014). Groos

et al. (2014) compares data modelled using elastic and viscoelastic propagators, showing

significant distance dependent and frequency dependent damping differences that impact

FWI results. Retrieving an attenuation parameter from inversion may be difficult, but

implementing viscoelastic propagation with a fixed damping parameter, could be critical

for future studies of surface waves.
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An extension to 3D may also be a future perspective, as computational availability

make 3D elastic FWI a reality. The methodology developed by this study in 2D may

be extended to 3D without major difficulties. Furthermore 3D wave propagation would

result in better modelling of amplitudes, avoiding 3D-to-2D conversion issues.

Surface wave inversion strategy

The results presented in Chapter 3 using a synthetic data example promote a layer

stripping strategy for FWI with surface waves. A direct extension of this work could

investigate the combined use of both layer stripping strategies with conventional multi-

scale approaches, for example in a V-cycle workflow, taking advantage of the different

strengths of both strategies to slowly but consistently build a velocity model. Layer

stripping FWI would help recover the top layers of the velocity model, while the multi-

scale FWI would improve the overall resolution when moving from one frequency band

to the next.

The synthetic results obtained in Chapter 3 using layer stripping FWI highlight

that surface wave information can help retrieve the shear wave velocity model much

better than the P-wave velocity model. While this allows a certain insensitivity to

the initial P-wave velocity model, this parameter is only weakly updated with each

iteration. A possible extension of this study would be to update the P-wave velocity

model at each iteration based on the shear-velocity model and assuming a known Poisson

ratio. To implement this, the gradient term would need to be modified as the P-wave

velocity parameter would depend on the shear wave velocity, so that after each update

of the shear-wave velocity model during inversion, the P-wave velocity model can also

be updated.

Another possible extension to the work presented in Chapter 3 is to further adapt

the depth preconditioning implemented to the physics of surface waves. Instead of ap-

plying a vertical scaling linear with depth, an exponential depth preconditioning could

be tested to compensate for the exponential decrease of surface wave amplitudes with

depth. The preconditioning could also be made dependent on the frequency band consid-

ereded during each consecutive step in layer stripping FWI, as surface wave amplitudes

decrease differently at different frequencies. This could further improve the recovery of

deep layers, imaged in the last stages of layer stripping FWI.

Finally, for the real data application in Chapter 4, a masking in the frequency-

wavenumber (ω, k) domain is tested when performing an analysis on the data. Masking
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data in (ω, k) domain could be used during FWI with surface waves, in a multiscale

approach, allowing first to focus only on the fundamental mode, and gradually trying to

invert higher mode information. Investigating different ways to create such masks could

also be very interesting, and could be inspired by available semi-automatic picking tools

used for picking dispersion curves for conventional surface wave analysis.

As a final remark for future studies on FWI with surface waves at the oil and gas

exploration scale, it is also important that real datasets are acquired for the purpose of

near surface characterization, and that the surface waves recorded are not destroyed by

pre-processing procedures on the field, such as with the use of arrays. Multicomponent

acquisitions may also be beneficial for surface wave inversion. Furthermore well infor-

mation for the shallow near surface zone would also be useful to constrain and validate

results. It is also interesting to note that ideally non-seismic methods that also sample

the near surface could provide additional information and potentially be used in a joint

inversion to better characterize the near surface region. In the future, adequate inte-

gration of near surface characterization studies within exploration projects, for example

through statics, will also have to be investigated.
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Complementary Publications

Alternative misfit functions for FWI applied to surface waves

I. Masoni, R. Brossier, J. Virieux, and J-L. Boelle

2013, EAGE Technical Program Expanded Abstracts, Th P10 13,

Summary

The aim of this study is to determine the advantages and limitations of different misfit

functions for an application of Full Waveform Inversion (FWI) to surface waves. The

difference-based L2 norm, classically used in FWI and sensitive to both amplitude and

phase information, suffers from cycle-skipping and local minima. For slow surface waves

propagating in the low velocity near surface, the problem of cycle-skipping is even greater

due to their small wavelengths. In the absence of low frequencies, convergence may not be

possible when starting from a smooth initial mode. Alternative misfit functions applied

in various data domains are therefore investigated with the aim of overcoming this issue.

Taking the difference-based L2 norm as a basis for comparison, simple synthetic tests are

conducted to evaluate a weighted cross-correlation and a singular value decomposition

approach as alternative misfit functions, as well as investigating the effect of calculating

the residual in different data domains such as the (ω− k), (τ − p) and (ω− p) domains.



Introduction

The construction of subsurface velocity models is a central problem for oil & gas exploration. As well
known prolific hydrocarbon basins have been explored and produced, it is now necessary to investigate
more complex regions, such as on-shore foothills. In such cases, the heterogeneous near-surface has a
great impact on the complexity of seismic propagation and can obstruct the imaging of deeper targets.

Although conventionally viewed as coherent noise or "ground roll", surface waves sample the near sub-
surface and can be used for imaging. In civil engineering, dispersion curve inversion allows imaging
the first tens of meters. However this approach relies on a 1D assumption and only smooth lateral het-
erogeneities are tolerated. An alternative method may be Full Waveform Inversion (FWI), that extends
beyond 1D limitations and avoids time picking or dispersion analysis.
Classical FWI

FWI is a high resolution technique used to derive quantitative models of the subsurface by matching
the full observed seismogram with a corresponding synthetic seismogram calculated from a velocity
model, and solving a local optimization problem. The L2 norm of the difference is conventionally used
to calculate the misfit (Tarantola, 1984), fitting both the amplitude and the phase of the waveforms:

Cdi f f = ∑
t

∑
x

1
2
(
dobs(t,x)−dcal(t,x)

)2
, (1)

where dobs(t,x) is the measured data and dcal(t,x) is the calculated data recorded at time t and offset
x. As the misfit function is minimized in a least-squares sense, the model is iteratively updated with a
gradient-based descent method until a minimum is reached (Virieux and Operto, 2009).

By exploiting the full data content and using a strict data-matching approach, this method appears to be
very sensitive and may not be robust. Non-linearities, such as cycle skipping, can reduce the convexity
of the misfit function (Bunks et al., 1995; Mulder and Plessix, 2008) and the minimization may get
stuck in a local minimum. In the absence of very low-frequency data, the initial velocity model needs
to explain the data to within half a wavelength, so that it lies within the small basin of attraction of the
global minimum and can converge. For slow surface waves propagating in the low velocity near surface,
the problem of cycle-skipping is even greater due to their small wavelengths.

Synthetic datasets were created using a discrete wavenumber summation method (Bouchon and Aki,
1977), for horizontally layered media with a free surface, and simulating 3D elastic wave propagation
with a Ricker wavelet source of 10 Hz peak frequency. Figure 1a shows the two-layer model used to
create the "observed" dataset to which random Gaussian noise is added (Figure 1b). A grid analysis is
performed on the S-velocity and the depth of the first layer to investigate the accuracy required for the
initial model. Even for this simple framework and only small shifts in the model parameters (example
in Figure 1c), the grid analysis result for the classical difference-based L2 norm approach (Figure 2a)
contains many local minima due to the high amplitude of the surface waves that dominate the misfit.

In this study, alternative, more robust, misfit functions applied in various data domains are investigated
to improve the convexity of the valley of attraction and reduce the presence of local minima. To evaluate
the misfit functions, grid analysis results for the same synthetic test are compared.
Alternative misfit functions

Current solutions to calculating the misfit more robustly are based on other norms such as the hybrid
L1/L2 or Huber norm (Brossier et al., 2010; Guitton and Symes, 2003) or on zero-lag cross-correlation
(Routh et al., 2011), but these also suffer from cycle-skipping in the absence of low frequencies.

A weighted cross-correlation proposed by Van Leeuwen and Mulder (2008) is investigated here as a
more robust alternative to the classical difference-based L2 norm. The misfit is given by a cross correla-
tion on the time axis of the observed and calculated data where events are separated by arrival times.

CWi = ∑
∆t

∑
x

1
2

(
Wi(∆t)∑

t
dobs(t +∆t,x)dcal(t,x)

)2
. (2)
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The weighting Wi(∆t) is applied to each time sample. Two weightings are tested in this study. The first
W1(∆t) = ∆t/∆tmax, linearly penalizes with distance away from zero lag. The second W2(∆t) = e−α∆t2

is a Gaussian weighting to maximize zero-lag energy and with a width controlled by the α parameter,
giving a misfit function whose negative is minimized. An appropriate width needs to be chosen to at
least be in the order of the length of the wavelet, since it can greatly influence the convexity of the misfit
function (Van Leeuwen and Mulder, 2008).

The grid analysis result for the penalized version of the cross-correlation (Figure 2b) illustrates how it
is highly sensitive to noise at large lags and not robust enough. Instead the sensitivity of the Gaussian
weighted cross-correlation can be better tuned to obtain a convex result with no local minima (Figure
2c) allowing convergence from an initial model further away from the true one. The weighting applied
to the cross-correlation is therefore critical for a stable misfit function.

The weighted cross-correlation is however not sensitive to the frequency and phase rotation of an event.
Due to the dispersive property of surface waves, the frequency may contain key information on the depth
of the signal and may need to be identified. Furthermore "cross-talk" may occur for multiple arrivals.
Therefore coupling this misfit function with a strategy to separate arrivals, such as comparing data in a
different domain, needs to be considered.

For comparison, a recently proposed misfit function based on a singular-value decomposition (SVD)
approach (Moghaddam and Mulder, 2012) is also tested. An SVD is applied to data matrix A(ω), of
size number of receivers by number of sources, for each frequency so that Aobs(ω) = UobsSobsVH

obs.
When the calculated data is equal to the observed data then the matrix S(ω) = UH

obsAcal(ω)Vobs, will be
diagonal. A weighting Wi j is applied to the misfit function to linearly penalize the off-diagonal values:

CSV D = ∑
ω

∑
i

∑
j

1
2
(
Wi jSi j(ω)

)2
. (3)

The grid analysis result (Figure 2d) shows a larger basin of attraction than the classical difference-based
L2 norm, but sensitivity is lacking to ensure convergence for high S-velocities and small layer depths.

Alternative data domains

The data domain in which observed and calculated datasets are compared also affects the sensitivity of
the misfit function. Perez Solano et al. (2012) proposes the (ω,k) domain, to reduce the presence of
local minima for the difference-based L2 norm (Eq 4). A weighted cross-correlation of the modulus of
the (ω,k) data is applied on the wavenumber k-axis (Eq 5):

Cdi f f = ∑
ω

∑
k

1
2
(
|dobs(ω,k)|− |dcal(ω,k)|

)2
, (4)

CWi = ∑
ω

∑
∆k

1
2

(
Wi(∆k)∑

k
|dobs(ω,k+∆k)||dcal(ω,k)|

)2
. (5)

The (τ, p) domain or "slant-stack" is also investigated. In this domain, data have undergone a linear
move-out (LMO) correction, and are summed over the offset axis. This is done for a range of slowness
p values. Separating events by their slowness may reduce the cycle-skipping problem, and stacking may
also make the misfit function more robust in the presence of noise. Both the difference-based L2 norm
(Eq 6) and a weighted cross-correlation applied on the slowness p axis (Eq 7) are considered:

Cdi f f = ∑
τ

∑
p

1
2
(
dobs(τ,p)−dcal(τ,p)

)2
, (6)

CWi = ∑
τ

∑
∆p

1
2

(
Wi(∆p)∑

p
dobs(τ,p+∆p)dcal(τ,p)

)2
. (7)

75th EAGE Conference & Exhibition incorporating SPE EUROPEC 2013
London, UK, 10-13 June 2013



Finally, the (ω, p) domain, equivalent to the (ω,k) domain but with a different sampling, may also help
separate events by their slowness p as well as identify their frequency ω , which can be helpful to use
the dispersive property of surface waves. Again the difference-based L2 norm (Eq 8) and the weighted
cross-correlation (Eq 9) misfit functions are tested:

Cdi f f = ∑
ω

∑
p

1
2
(
|dobs(ω,p)|− |dcal(ω,p)|

)2
, (8)

CWi = ∑
ω

∑
∆p

1
2

(
Wi(∆p)∑

p
|dobs(ω,p+∆p)||dcal(ω,p)|

)2
. (9)

The difference-based L2 norm becomes more convex in all alternative data domains tested as shown by
Figures 2(e,h,k). Convergence is especially successful in the (ω,k) and (ω, p) domains. The ω domain
appears to efficiently mitigate non-linearities related to dispersive effects. Where local minima are no
longer present, it may be possible to start with an initial model far from the true one.

On the other hand, the penalized cross-correlation is not very successful. Noise dominates the misfit in
the (ω,k) domain (Figure 2f), and the global minimum is no longer at the true S-velocity and depth of
the layer for the other tested domains (Figures 2i, 2l). Yet when a gaussian weighting is applied, the
global minimum is correctly centered and the convexity can be tuned by the α parameter (Figures 2j,
2m). Only in the (ω,k) domain (Figure 2g), some local minima remain present even with an optimized
weighting, limiting convergence.
Conclusions

We have used numerical tests to compare alternative FWI misfit functions for surface wave applications.
Both previously proposed SVD (Moghaddam and Mulder, 2012), and difference-based (ω,k) domain
(Perez Solano et al., 2012) misfit functions are validated as improvements to classical difference-based
FWI. Furthermore the difference-based (ω, p) domain approach as well as a Gaussian weighted cross-
correlation in the (t,x), (τ, p) and (ω, p) domains are also shown to be promising alternatives. Cross-
correlations on other axis or double cross-correlations (Van Leeuwen and Mulder, 2008) could also be
tested. Our future work will investigate the robustness of these misfit functions on laterally varying
models.
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Figure 1 Two-layer model (a) used to create the observed dataset with added random Gaussian noise
(b), and an example of the calculated dataset for a layer S-velocity at 480 m/s and depth of 15 m (c).
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Figure 2 Two-parameter grid analysis for all misfit functions tested in this study (a-m), for an observed
dataset with the true global minimum at 450 m/s layer S-velocity and 20 m layer depth.
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