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1.1 Biological Context

All biological traits are influenced by both genetic and environmental factors. Quantifying these
two contributions for a particular trait is a fundamental and challenging question in biology. The
concept of heritability refers to the part of the variability of an observed trait (or phenotype)
which can be attributed to genetic causes. Several missconceptions regarding heritability are
due to the use of the term in the common language, which differs from the technical definition
in the genetic field. For instance, a frequent missconception would be that heritability is the
proportion of a phenotype that is transmitted to the next generation. Firstly, genes are passed
on from parents to offspring but phenotypes are not. Secondly, if half of the genetic effects are
indeed transmitted from each parent, this particular half is specific to each offspring. Visscher
et al. (2008) gathered these frequent questions and mistakes regarding heritability. The concept
of heritability as it is used in the field of genetics is presented in the following section.



1.1.1 Definition of heritability

As elegantly explained by Visscher et al. (2008), we consider the simple modeling where a
phenotype of interest is the result of genetic and environmental effects considered as independent:

Phenotype (P) = Genotype (G) + Environment (E).

The variance of the observable phenotypes (0123) can then be expressed as a sum of unobserved

underlying variances (02 and 0%):

0'12;» = O'év +0129.

Heritability (H?) is defined as a ratio of variances and expresses the proportion of the phe-
notypic variance that can be attributed to genetic factors:

The genetic variability may be partitioned into variances coming from different sources, in
particular the variance 0'124 of additive genetic effects. Such additive effects are characterized by
the impact of single nucleotide polymorphisms (SNPs), which are DNA sequence differences at
the positions of the genome where there exists considerable variability in the population. These
positions are actually not frequent compared to the totality of the genome: the human genome
is indeed composed of approximately 3 billions of base pairs, a very large fraction of which are
identical for all humans. In the sequel, we will consider the ”narrow sense heritability” which is
the proportion of variability explained only by additive genetic effects, defined by

o
=5
P
Since the access to the genotype of thousands of individuals has been made possible by
the spectacular decreased cost of DNA sequencing, the heritability of quantitative traits and
pathologies has become widely studied. Yang et al. (2010) estimated for instance that around
45 % of human height was explained only by the most frequent SNPs.

1.1.2 Heritability in human genetics

We will here motivate the estimation of heritability for human traits. It is indeed a step toward
the understanding of complex diseases, which have often multiple causes. We refer in particular
to diseases which are not caused by a single affected gene but are nevertheless suspected to have
a strong genetic component, probably split among different genes.

For instance, the causes of psychiatric disorders, such as autism or schizophrenia, remain vague.
A genetic component has been suggested by the results of monozygotic and dizygotic twin



studies (monozygotic twins have identical genomes while dizygotic twins share around 50% of
their genomes). These studies show that if one twin is affected by autistic disorders, the other
one is also affected in 82 to 92 % of cases for monozygotic twins (Bailey et al. (1995)), or
in 20% of cases for dizygotic twins (Hallmayer et al., 2011). Moreover, for a family which
already has an autistic child, the risk of having another one is evaluated at 20 % against 1%
in the general population. These studies describe autism as the psychiatric disease with the
most important genetic component. However, the severity of the autistic traits (language and
interaction disorders, intellectual disabilities...) can be very different for two patients with similar
causes, for instance the same mutation. It would thus seem, as it is also the case for other genetic
diseases, that the genetic background modulates the effect of a causal mutation and renders an
individual more or less sensitive to developing autistic traits. Furthermore, all studies show
that despite their identical genetic patrimony, the concordance of symptoms of monozygotic
twins is never total, which confirms an epigenetic and/or environmental component. However,
quantifying these different possible causes and potential interactions between them remains a
challenging issue.

Determining a significant genetic component of a disease also constitutes a strong argument
to refute some popular beliefs about causes of some illnesses. For instance, an important wave
of anti-vaccine movement has been fueled by a presumed connection between the hepatitis B
vaccine and multiple sclerosis. Similarly, the measles vaccine has been accused to cause autism
(Uno et al., 2012). Although no link has ever been demonstrated (Poland & Jacobson, 2001),
the consequences of the fact that many parents refuse to vaccinate their children remains a
major public health issue. Indeed, a recent study (Uno et al. (2012)) showed that more than
25% of parents in the US refused to vaccinate their children against mortal diseases like measles.
Regarding other proposed causes of autistic disorders, the ”refrigerator mother theory” was
developed by the psychiatrist Leo Kanner who claimed to observe a ”genuine lack of maternal
warmth” among his patients’ mothers. Even though this theory has since been discarded, the
mothers of autistic patients have suffered severe and unwarranted accusations for several decades.

1.1.3 Heritability in vegetal and animal genetics

In the field of vegetal and animal genetics, heritability estimation is the first step to the selection
of traits of interest, generally related to the yield of a valuable resource. We can mention the
examples of the optimization of the yield of milk, Visscher & Goddard (1995) or wheat Eid
(2009). The goal in Eid (2009) is to determine strongly heritable traits related to the yield and
then to obtain an optimal genotype. This genotype was even selected to be the most resistant
to extreme environmental conditions like water deprivation, which is currently a fundamental
issue.

If this kind of practice is generally accepted in animal genetics, it creates a controversy on
possible consequences of heritability estimations of human traits. Several studies estimated the
IQ heritability (Toro et al., 2015) and Davies et al. (2011) even announced that ” Genome-wide
association studies establish that human intelligence is highly heritable and polygenic”. The
controversy about IQ heritability is discussed in Visscher et al. (2008), who enumerates reasons
for the polemic nature of this issue. These include the very controversial definition of IQ as
a measure of intelligence as well as historical abuses related to eugenics. We will not further
discuss this controversy here, we just mention it to illustrate a frequent issue when dealing with
heritability of human features.



Having briefly argued for the general interest of estimating heritability, we will now present
the statistical modeling used to provide these estimations.

1.2 Heritability estimations in high dimensional linear mixed
models

1.2.1 State of the art

Linear Mixed Models (LMMs) have been widely used in several fields, especially in medicine
and genetics. Yang et al. (2010) proposed to estimate the heritability of human height using a
classical LMM defined as follows:

Y=XB+Zu+e (1.1)

where Y = (Y1,...,Y,) is the vector of observations of a phenotype of interest, X is a n x
p matrix of predictors (or fixed effects), 3 is a p x 1 vector containing the unknown linear
effects of the predictors, and u and e correspond to the Gaussian random effects with variances
respectively equal to o2 and o2

Moreover, Z is a n X N matrix which contains the genetic information. More precisely, the
Z; j’s are normalized random variables in the following sense: they are defined from a matrix
W = (Wij)i<i<n,1<j<n by

Joi=1,....n,j=1,....N, (1.2)

where
n

n

Wj:%ZWm, sﬁz%Z(Wi,j—Wj)Q,j:l,...,N. (1.3)
i=1 i=1

In (1.2) and (1.3) the W; ;’s are such that for each jin {1,..., N} the (W ;)1<i<n are independent

and identically distributed random variables and such that the columns of W are independent. In

genetic applications, the matrix W contains all the genetic information about all the individuals

in the study.

With this definition the columns of Z are empirically centered and have an empirical variance

equal to 1.

The LMM appears to be an intuitive modeling to describe the biological concept of heritability
as a ratio of genetic and phenotypic variances. Yang et al. (2010) and Pirinen et al. (2013)
proposed to estimate the parameter

*2
* N Oy

e UE— 14
" Not2 + o032’ (1.4)

commonly considered as the mathematical definition for heritability since it determines how the
variance is shared between u and e.



In Model (1.1), the log-likelihood conditionnaly to Z is given by:

1 1
L(B,02,0%) = —g log(27) — 3 log(|ZZ 02 4 0 *Idgn| — 5 (Y- XB)(ZZ 02 + o1dgn) (Y - X3).
(1.5)

Searle et al. (1992) gathered plenty of optimization techniques to estimate the parameters 3,
02* and 0%*, among which we can quote Henderson equations or iterative methods like Fisher-
Scoring and Newton-Raphson.

A natural idea to estimate heritability is to estimate the variance parameters o} and o2 in
order to obtain an estimator as the ratio:

NG,2 /(N2 + 6.2).
Pirinen et al. (2013) noticed that the model defined in (1.1) could be reparameterized with S,
n* and 0*2 = No}? 4+ 032 as new parameters. More precisely,

Y ~ N (Xﬂ, 7o ?R + (1 — 77*)0*21an) :

where R = ZZ'/N.

Let U be the orthogonal matrix (U'U = UU’ = Idg») such that URU’ = diag(\y,...,\,) is a
diagonal matrix having its diagonal entries equal to A, ..., A,. Hence, Y = U'Y is a zero-mean
Gaussian vector having a covariance matrix equal to diag(n*o*?A; + (1 —n*)o*2, ..., n* 02\, +
(1 —1*)o*?), where the \;’s are the eigenvalues of R. Let us also denote X = U’X. Finally they
computed and maximized the log-likelihood:

n

1< 1 (Y; — Xj3)2
Ln(B,0%,7) = _g log(0?) - z; log(n(\i = 1) +1) = 5 z; D41 glog(Qw), (1.6)

where Y = (Y1, ..., Yy,).

The aforementioned approaches raise two main concerns: firstly, they all have been validated in
the framework where N is fixed and n goes to infinity. Indeed, using classical results of the LMM,
we can obtain properties of consistency and asymptotic normality for the maximum likelihood
estimator of heritability. However, since in practice the number N of SNPs is widely greater
than the number of individuals n, it would be more appropriate to validate these methods in
the framework where n and N go to infinity, with n/N going to a € (0, 400).

Moreover, they all have been developed in a non sparse Gaussian framework, which would imply
that all the available genetic information would impact the observed phenotype. This unlikely
hypothesis has been discussed in particular by Jiang et al. (2014), who studied the potiential
error caused by non impacting SNPs in the model when considering a maximum likelihood
approach from both theoretical and numerical points of view.

We have only mentioned heritability estimation in linear mixed models, but there exist other
ways to define and estimate heritability. Indeed, important theoretical results on heritability
estimation have been proven in the framework where n and N go to infinity, with n/N going to
a € (0,400), in the linear model

Y=X3+¢ (1.7)



where the random component comes from the residual vector € which is assumed to be a zero-
mean Gaussian vector with variance o2 and from the "SNP matrix” X which columns are
assumed to be independent and identically distributed Gaussian variables. The heritability in
this model is defined as the ratio

«_ 18l

— . 1.8
7+ (18)

n

An advantage of this model is that there is no assumption on the distribution of 3, in partic-
ular on its sparsity. However, strong assumptions are required on the stucture of the matrix
X. Several methods were proposed to estimate heritability in Model (1.7). Dicker (2014) pro-
posed a method-of-moments estimator which is asymptotically normal when n, N — 400 and
n/N — a € (0,400). Janson et al. (2015) developed the Eigenprism procedure to build accu-
rate confidence intervals for the heritability in finite sample size and also studied the asymptotic
behavior of their estimator when n, N — 400 and n/N — a € (0,4+00). Dicker & Erdogdu
(2016) studied the properties of the maximum likelihood estimator and conducted a numerical
comparison of the aforementioned methods which showed that the maximum likelihood estima-
tor had a smaller empirical variance than the two others. Dicker & Erdogdu (2016) showed the
consistency and the asymptotic normality of the maximum likelihood estimator and computed
as well an explicit form of the asymptotic variance.

In the same model, Verzelen & Gassiat (2016) studied the optimality of different procedures
depending on the sparsity. Indeed, Verzelen & Gassiat (2016) compared the performances of an
approach with variable selection (Gauss-LASSO estimator) and without selection (dense estima-
tor) in different sparsity regimes. They computed for each range of sparsity values the minimax
risk and proposed an adaptive estimator which achieves the minimax risk in all sparsity regimes.

1.2.2 Contribution

Our first contribution was to propose an estimator for heritability in the context where n and
N go to infinity, with n/N goes to a € (0,+00) and to establish its theoretical properties. This
work is developed in Chapter 2 of this manuscript and has been published in the Electronic
Journal of Statistics. We studied a model as the one defined in (1.1) except that we assumed
that the random effects could be sparse, that is that only a proportion ¢ of the components of
u were non-zero:

g (1 —q)d + gN(0,0%?) forall 1< i< N and e ~ N (0, 022Ian> , (1.9)
where Idgn denotes the n x n identity matrix, ¢ is in (0, 1], and d¢ is the point mass at 0.
Up to considering the projection of Y onto the orthogonal of the image of X and for notational
simplicity, we studied the following model

Y=Zu+e. (1.10)

Moreover, since in our case we are only interested in estimating n*, we plugged in L,, defined in
(1.6) an estimator of 0*2, that is



We implemented an estimator of #* as the maximizer of this likelihood function depending only
on parameter 7:

We obtained two main results in the framework where n and N go to infinity, with n/N going
to a € (0,400): first, we proved that our estimator was y/n-consistent despite the presence of
null components in the random effects. This result was obtained under mild assumptions on the
matrix W and for any unknown sparsity q.

Then we established a central limit theorem under the additional assumption that for all ¢ and
J, Z; j were Gaussian variables with zero mean and unit variance. We computed a closed-form
expression for the asymptotic variance, given by

(a,n*, q) = = (Z —tt 375(2;77*;*) CI - 1> S(a, ") (1.12)
where
o) ={ [ () - (f o) |
and

N AN —1) A A—1 2
Stam) = U o T - [ Gt [ (n*(Al)H)dWW] |

In the previous expression du,(\) is the density of Marchenko-Pastur, which is the distri-

bution of the eigenvalues of ZZ'/N. This distribution obtained by Marchenko & Pastur (1968)
was a key element to establish the proof of our results. We implemented this approach in the R
package HILMM, which is available on the CRAN.
We also conducted a simulation study with finite sample size corresponding to realistic practical
studies. We showed that although the asymptotic variance defined in (1.12) was theoretically
depending on the sparsity ¢, its influence was barely noticeable in practice. However, the asymp-
totic variance was shown to be very sensitive to the parameter a = n/N: more precisely, when
the number of observations is very small compared to the size of the random effects (which is of-
ten the case in genetic studies), the variance of the heritability estimator increases substantially.
This numerical result motivated the idea of developing a variable selection approach in order to
reduce the size of the random effects and to improve the accuracy of heritability estimation.

1.3 Variable selection in the random effects of a high dimen-
sional sparse linear mixed model

Motivated by the numerical performance of our estimator described in the previous section, it
appeared to be a good idea to include a variable selection step in our method. The aim of this
variable selection step is to recover the support of the random effects, which means in practice
that we want to find the SNPs involved in the phenotypic variations. We would then consider
only the matrix of SNPs reduced to these relevant SNPs and estimate the heritability with

11



smaller standard error than we would have obtained with the whole matrix of SNPs. Let us
first present the existing methods and results regarding variable selection in the random effects
of sparse linear mixed models.

1.3.1 State of the art

Although the case of linear mixed models has received less attention than the linear model, there
exist several methods to perform variable selection in linear mixed models.

Several works focus on selecting variable in the fixed effects of sparse LMMs, as for instance
Schelldorfer et al. (2011). For a complete review of these methods, we refer the reader to the
work of Miiller et al. (2013). Regarding selection in the random effects, we are only aware of
the work of Fan & Li (2012) and Bondell et al. (2010). Bondell et al. (2010) proposed indeed
a method to select jointly fixed effects and random effects based on a EM algorithm. Fan & Li
(2012) proposed a penalized criterion with a particular penalty named SCAD (Smoothly Clipped
Absolute Deviation) which combines L1 and L2 penalties. Both methods can be computationally
very demanding in high dimension: on the one hand, the EM algorithm, on the other hand, the
cross validation to choose the two regularization parameters.

Variable selection in such high dimensional frameworks as those we are interested in can be
very tricky, as proven by Verzelen (2012) who studied the case of the random linear model defined
in Equation (1.7). Verzelen (2012) indeed established that if the condition Nqlog(1/q) >> n
holds, namely when the number of causal SNPs (that is the number of non null components
in the random effects) is larger than the number of individuals, the support cannot be fully
recovered.

Regarding heritability estimation, the idea of introducing a variable selection step beforehand
was already proposed by Guan & Stephens (2011) in a Bayesian framework. Guan & Stephens
(2011) proposed indeed an approach, named BVSR (Bayesian Variable Selection Regression),
that is very efficient to estimate heritability in a very sparse framework but which is biased
when the number of causal SNPs is high. Zhou et al. (2013) then proposed a practical approach,
called BSLMM (Bayesian Sparse Linear Mixed Model) defined as an hybrid estimator between
BVSR and a classical maximum likelihood approach (without selection). This hybrid estimator
behaves closely to BVSR in very sparse frameworks and like the maximum likelihood estimator
(no selection) otherwise. These numerical observations of Zhou et al. (2013) are consistent
with the theoretical grounds established by Verzelen & Gassiat (2016) in the linear model and
described in Section 1.2.1.

1.3.2 Contribution
Methodology

We proposed a practical variable selection method to improve the accuracy of heritability es-
timation. This work has been submitted for publication and is contained in Chapter 3 of this
manuscript. Our method is implemented in the R package EstHer available on the CRAN.
Our approach has two main features: firstly, it is very efficient from a statistical point of
view since it provides confidence intervals considerably smaller than those obtained with methods
without variable selection. Secondly, its very low computational burden makes it usable on very

12



large data sets coming from quantitative genetics. Our method can handle ultra high dimension
scenarios by using as a first step the Sure Independence Screening developed by (Ji & Jin, 2012).
Then we apply a LASSO criterion (Tibshirani, 1996) combined with the stability selection
(Meinshausen & Biithlmann, 2010). We also propose a methodology to compute confidence
intervals based on a non parametric bootstrap approach and validated on synthetic data. In
the course of the numerical study, we observed similar conclusions to those obtained by Zhou
et al. (2013) in the Bayesian framework: in very sparse scenarios (namely, less than 200 causal
SNPs out of 100 000), the estimator which includes a variable selection step is unbiased and
its variance is substantially smaller than the variance of the ML estimator. However, when the
number of causal SNPs is high, the selection step is not efficient and the corresponding estimator
can severely underestimate the heritability. We developed a criterion based on the data in order
to have an idea of the sparsity regime and whether we should apply a variable selection technique
or not. We developed a hybrid estimator able to adapt according to the sparsity and we showed
on synthetic data that this procedure allows us to reduce substantially the confidence intervals of
the heritability estimations compared to a classical maximum likelihood estimator in very sparse
scenarios. Otherwise, if the number of causal SNPs is too high, our hybrid estimator behaves like
the maximum likelihood estimator, which was expected after introducing the decision criterion
we proposed. The benefit of our method compared to the Bayesian approach developed by
Zhou et al. (2013) lies mainly in substantially smaller computational times than for MCMC
procedures, and also we do not have to deal with the settings of the different parameters in
order to ensure the convergence of the algorithms.

Applications in human neuroanatomy and in animal genetics

We applied this method to two different datasets.

The first one comes from the European project IMAGEN, which is a study on teenagers’
mental health. We estimated the heritability of the brain volume and the volumes of the different
subcortical regions. Six phenotypes out of nine did not pass the criterion so we can suspect that
a large number of SNPs are involved in their variations, and we obtained similar results to
those obtained with a classical maximum likelihood approach, such as those obtained by Toro
et al. (2015) who studied the same data thanks to the software GCTA developed by Yang et al.
(2011). However, for the other three phenotypes, we obtained heritability estimations with very
small standard errors as well as a list of potential causal SNPs, the relevance of which could be
analyzed from a biological point of view. This application to neuroanatomical data is described
after the description and the validation of our method on synthetic data in Chapter 3 of this
manuscript.

The second application is the study of a trout species named Salmo trutta. This brown
trout, which lives in fresh water, may or may not, during its life, decide to leave fresh water
to migrate to the sea. This migration has a major impact in the trout conservation, and we
alm to understand the reasons of this decision. It appears that growth during the freshwater
phase could potentially be a critical factor determining the fate of individuals as brown trout
(remained in fresh water) or sea trout; indeed, if a fish is growing fast in fresh water then there
is no real need to go to the sea where survival rate is much lower. However, if it is struggling to
grow in fresh water, then the benefit of going to sea and having better growth prospects might

13



compensate the higher predation risk. Hence we aim to investigate the proportion of genetics
and environment effects in length variations, and if possible we would like to determine which
SNPs and environmental variables are associated with growth patterns. The size of this data set
was substantially smaller than in the previous application: we had indeed access to the length
of 192 trouts, the genotype of which is described by 4069 SNPs. We noticed, according to the
results of a numerical study, that our R package EstHer, which was dedicated to the analysis
of very large datasets, was not efficient in this case. However, when removing the first step
of our method, the Sure Independence Screening, which was specific to ultra high dimension
frameworks, we obtained satisfactory results again. This application is described in Chapter 4.

1.4 Heritability estimation for binary traits

We are interested in the extension of the previous methods to the heritability estimation of a
disease, where the observations are categorical (patient or control). We found in the literature
different models used to define and estimate heritability for binary data.

1.4.1 Generalized Linear Mixed Model and Liability Model

An intuitive generalization of the previous work for estimating the heritability of a binary trait
would be to consider the following Generalized Linear Mixed Model:

Y; ~ B(g), (1.13)
with ¢; = ¢g(1;) where g is a link function and 1; is defined as

l1=Zu+e, (1.14)

with u ~ N(0,072) and e ~ N(0,0+2), as in the classical LMM defined in Section 1.2.
A classical choice of link function in the case of binary data is for instance

exp(z)
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which ensures that ¢; € (0,1).
The heritability can then be defined at the liability scale, that is the heritability of the contin-
uous variable 1 which is identical to the definition of heritability in the previous sections when
considering a Gaussian phenotype:
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Another modeling and definition for heritability of a binary trait was proposed by Falconer
(1965), who assumed that the binary observations could be seen as an indicator function of a
Gaussian variable exceeding a certain threshold ¢:

Y =1g,5, (1.16)
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with 1; defined by the same expression (1.14) as in the previous model.

The unobserved Gaussian variable 1 is also called the liability in this modeling, which is
usually called the ”liability model” (Falconer (1965), Lee et al. (2011), Tenesa & Haley (2013)).
The heritability is then also defined as the heritability at the liability scale as written in Equation
(1.15).

1.4.2 Existing methods for heritability estimation in the liability model

In the literature specific to the heritability of binary phenotypes, we found methods for her-
itability estimation based on each of the previously described models. For the first modeling
described in Equation (1.13), de Villemereuil et al. (2013) proposed to estimate the variance
of the random effects 0> by using MCMC methods developed by Hadfield (2010) and then to
estimate the heritability as
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where the first 1 in the denominator stands for the residual variance and the second 1 for
the distribution-specific variance of a probit-link function (Nakagawa & Schielzeth, 2010). The
residual variance is indeed set to 1 because the binary data do not provide enough information
to infer both variances 02 and o72.
Since the expression of the likelihood is not possible to optimize directly, Breslow & Clayton
(1993) proposed to maximize a penalized quasi-likelihood, using a Laplace approximation of the
likelihood. This method has been shown to underestimate the variance parameters, for instance
in the numerical comparative study performed by de Villemereuil et al. (2013).
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Regarding the procedures based on the second modeling defined in Equations (1.16) and
(1.14), Lee et al. (2011) proposed to use a maximum likelihood approach as if the binary traits
were Gaussian, and then to apply a multiplicative factor to correct this approximation. Golan
et al. (2014) showed that this heritability estimator was strongly biased in several realistic
scenarios, in particular it was very sensitive to the prevalence of the disease (when the disease
is rarer, the bias increases). The estimator also underestimates the heritability when the real
heritability is high.

Weissbrod et al. (2015) presented a different methodology to estimate heritability also in the
liability model. They proposed a maximum likelihood based strategy to rebuild the underlying
liability before estimating the heritability. More precisely, they differentiated the likelihood with
respect to u and e and m