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Abstract

Amorphous systems deep below the glass transition, as well as colloidal glasses at high packing fractions, concentrated
emulsions, foam systems, etc. exhibit divergent microscopic relaxation time scales and flow only upon a large enough
external loading. This dynamical phase transition of amorphous systems from the apparent solid state to the
apparent liquid state mediated by the external loading, is called the yielding transition. This transition is studied
throughout this thesis by a mesoscopic modeling approach, specifically versions of the so-called elasto-plastic model.

After introducing a general background of the glass transition and experimental systems, that are the target of
the elasto-plastic model description, a formulation of the elasto-plastic model, slightly different from the conventional
ones used in the literature, is introduced for incorporating both the shear rate control and the stress control protocols.
It is also shown that the mean-field Hebraud-Lequeux model can be derived from the spatially resolved elasto-plastic
model by assuming some approximations.

Using the shear rate control protocol, the yielding transition is firstly probed by studying the shear rate
dependence of the avalanche statistics close to criticality. A crossover from a non mean-field behavior to an apparent
mean-field behavior with respect to an increasing shear rate is evidenced. Scaling laws in the zero shear rate limit,
support the idea that the yielding transition belongs to a non mean-field universality class of a dynamical phase
transition. The dependence of the symmetry of the average shape of the stress drops on the stress drop duration,
the system size and the shear rate, leads to the interpretation that stress drops at finite shear rates result from the
superposition of individual avalanches possessing a cooperative length and time scale.

By studying the macroscopic stress fluctuation, the cooperative length scale ξc is identified as the crossover
size below which the scaling relation with the system size ∼ 1

Ld implied by the central limit theorem breaks down.
Further a saturation time scale TSc can be defined in the analysis of the time series of macroscopic plastic strain
rate. Below this time scale one observes the manifestation of Brownian dynamics. The saturation time for systems
of sizes smaller than the cooperative length ξc scales with the system size as a power law TSc ∼ Lzs , which can be
interpreted as the scaling relation between the cooperative time and the cooperative length of individual avalanches.

Further using the stress controlled protocol, the yielding transition is studied by simulating typical creep
experiments of the amorphous systems. The mesoscopic models (the elasto-plastic model as well as the mean-
field Hébraud-Lequeux model) are shown to be capable to reproduce the response of the macroscopic shear rate
to an imposed stress slightly above the yielding point in qualitatively good agreement with several experiments.
Within the mesoscopic modeling approach, the results reveal that the creep behavior depends strongly on the initial
condition of the amorphous system submitted to creep experiments.



Abstract

Les systèmes amorphes "mous", loin de leur transition vitreuse, comprennent les verres colloïdaux de haute fraction
volumique, les émulsions concentrées, les mousses, etc...L’échelle de temps pour leur relaxation microscopique est
divergente, et ils ne se mettent en écoulement que lorsque la contraint appliquée est suffisamment grande. Cette tran-
sition dynamique d’un état apparemment solide à un état apparemment liquide, suivant la contrainte imposée, est
appelé transition d’écoulement. Cette transition est étudiée dans cette thèse par l’intermédiaire d’une modélisation
mésoscopique, basé sur un modèle d’éléments élasto-plastiques en interaction.

Après une brève introduction à la transition vitreuse et aux systèmes réels supposés être décrit par le modèle
élast-plastique, une formulation du modèle différente de celle qui est habituellement présentée dans la littérature
est introduite, pour à la fois incorporer les protocole à taux de cisaillement fixé et le protocole à contraint fixée.
A travers des approximations, un modèle mésoscopique de type champ-moyen (à l’origine décrit par Hébraud et
Lequeux) est déduit à partir du modèle elasto-plastique qui contient les informations spatiales.

En appliquant le protocole à taux de cisaillement fixé, le transition d’écoulement est dans un premier temps
étudiée à travers la dépendance de la statistique des avalanches (chutes de contrainte) en taux de cisaillement.
Une transition d’un comportement de champ moyen à un comportement corrélé est observé en variant le taux
de cisaillement. Les lois d’échelle observées dans la limite des petits taux de cisaillement supportent l’idée que
la transition d’écoulement appartient à une certaine classe d’universalité de transition dynamique. L’étude de la
symétrie de la forme moyenne des chutes de contrainte en fonction de leur durée, de la taille de système et du
taux de cisaillement appliqué, conduit à l’interprétation que les chutes de contrainte résultent d’une superposition
d’avalanches individuelles possédant une longueur coopérative et un temps coopératif.

En étudiant les fluctuations de contrainte macroscopique, la longueur coopérative ξc est identifiée par un
crossover en taille de système en-dessous de laquelle le loi d’échelle avec la taille de système ∼ 1

Ld impliquée par la
théorème de limite centrale, ne fonctionne plus. En complément, une échelle de temps de saturation TSc est trouvé
dans le séries temporaire de taux de cisaillement plastique, temps en-dessous duquel la dynamique de la contrainte
peut être décrite par un mouvement Brownien. Le temps de saturation, pour les systèmes de taille plus petit que
ξc obéit à une loi d’échelle avec la taille de système TSc ∼ Lzs . Cette dernière peut être interprétée comme la loi
d’échelle entre la longueur coopérative et le temps coopératif des avalanches individuelles.

En appliquant le protocole de contrainte imposée, la transition d’écoulement est étudiée en simulant des ex-
périences de fluage sur les systèmes amorphes. Les modèles mésoscopiques (le modèle elasto-plastique et le modèle
champ moyen de Hébraud-Lequeux) sont capables de reproduire la réponse du taux de cisaillement macroscopique
pour une contrainte imposée légèrement au-dessus de la contrainte, et ceci qualitativement en accord avec les ex-
périences. A travers cette étude, il apparaît que le condition initiale influence significativement le comportement de
fluage des systèmes amorphes.
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Chapter 1

Introduction

Background

The time scale of observation is crucial when studying physical phenomena. The
general notion of a solid state of a material relies on the following observation:
Imagine a cubic block of material, by applying progressively a force dipole onto
the two anti-planes of the cube, one can impose a certain deformation of order γo
during a certain time interval of order τo. After removing the force dipole at the
end of the time interval, if the deformation is canceled by itself, so that the block of
material recovers its original shape, within a time scale τrecover � τo, then one gets
the idea that this material behaves like a “solid”. This property called “elasticity”
can be quantified by the ratio of the applied stress to the corresponding deformation,
which is the “elastic modulus”. Otherwise, if one applies the same deformation γo

but during a time interval of order τ ′o much larger than τo and if after releasing
the applied force the system stays in its deformed shape γo , then one should get
the idea of plasticity (or flow as a liquid). Moreover one can continue to apply the
same force so that the material will deform with a shear rate γo

τ ′o
. The ratio of the

applied stress to this shear rate, characterizing how hard it is to deform plastically
the material, is the so-called viscosity.

A well-known example of the above phenomenon considering the notion of a
complex solid and liquid behaviour is the mixture of water and corn flour at a
specific proportion. One can stay on the surface of the mixture of water and corn
flour (hold in a big pool) without sinking into the mixture by running fast enough
over the surface (i.e. the mixture behaves like a solid). While one sinks into the
mixture if one slows down the movement (i.e. the mixture behaves like a liquid).
The time scale for the deformation of the mixture, in the former case of running,

1



1 Introduction 2

is much shorter than in the latter case of slowing down the movement. This kind
of substance seems to be unusual because most of the materials that we experience
in life behaves at the considered time scales either only as a solid or only as a
liquid. Whereas the mixture of water and corn flour changes its behavior at this
observation time scales from a solid to a liquid, and to define this mixture as a
“solid” or “liquid” loses its sharp meaning. Another second famous example is the
pitch drop experiment: a pitch at short time scale (deformation by external loading
up to a second) shows solid behavior while under gravity it drops 1 droplet for over
about 10 years as a very viscous fluid.

The same kind of change from solid to liquid behaviour also resides in many glassy
systems such as the window glass at room temperature, but the time scale for the
change of behavior is too long to be observed in any experiments. As a consequence,
the observation at a fixed time scale on the behavior of glass forming liquid such
as silicon-dioxide at from high temperatures to low temperatures (quench to avoid
crystallization) gives an impression of a “phase transition” (called “glass transition”)
from a “liquid state” to a “solid state”, while the microscopic structure is identically
disordered in both “states”. The microscopic relaxation time scale τ(T ) can be
roughly considered as the crossover from apparent “solid state” to “liquid state” at a
given temperature T . At high temperature the microscopic relaxation time scale is
proportional to the apparent viscosity η(T ) ∼ τ(T ), so that the glass transition from
high to low temperature in experiments where time scale of observation is fixed,
can be monitored by the divergence of viscosity. Empirically the glass transition
temperature Tg is defined as the temperature when the viscosity reaches 1012Pa · s.
The glass transition happens also in systems of microscopic components of sizes
much larger than molecular size (∼ µm), in which the dynamics is controlled by
the volume fraction. Dynamical arrest i.e. divergence of microscopic relaxation
times similar as in the glass transition happens upon a critical volume fraction that
depends on the properties of the individual particles (For hard spheres this value is
for example φg ≈ 0.58). The above example of a mixture of water and corn flour can
be viewed as one of this category. In summary, the microscopic structural relaxation
time scale of systems undergoing a glass transition diverges so that these systems
behave like a “solid” for any experimentally accessible deformation rate at early
loading stage, that is to say γ̇ � τ(T )−1 as long as the accumulated deformation is
below the material dependent yielding threshold.

Above the yielding threshold (reached by the accumulated deformation γ(∆t) =

γ̇∆t or the corresponding stress σ = µγ(∆t) that glassy systems can no longer
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sustain), glassy systems either fail, e.g. the window glass, or begin to flow. However
this flow behavior is a priori different in nature compared to the the flow at high
temperature or when γ̇ < τ−1. This apparent transition from solid to liquid behavior
when passing through the yielding threshold is referred to as “yielding transition”
and the apparent fluid like behavior is characterized by non-linear rheological flow
curves with a finite yield stress. In many cases this can be well fitted by the so-
called Herschel-Bulkley expression σ = σy + Aγ̇n, so that these systems are also
referred to as “yield stress materials”. For glassy systems, the regime γ̇ � τ−1 is
mostly encountered in industrial applications, many experiments and particle based
simulations have been carried out for studying the mechanical properties of glassy
systems under this loading regime, which is also the domain of study of this thesis,
but focusing on the mesoscopic approach.

It is important to note that for the temperature range T < Tg or the high volume
fraction range φ > φg, ergodicity is broken and the dynamics of glassy systems fall
strongly out of equilibrium. Even though there are theoretical approaches to reveal
the divergence of microscopic relaxation time, they are supposed to be applied for
systems above the glass transition and where the ergodicity is valid. The study of
glassy systems well below the glass transition under external driving lacks a substan-
tial general theoretical framework. The theory of statistical physics for equilibrium
systems as well as linear response theory for weak out-of-equilibrium systems are no
longer valid approaches. Therefore phenomenological models and computer experi-
ments (such as molecular dynamic simulation on quenched systems) play an essential
role in this area to reveal physical insights underlying the macroscopic observations.

This thesis focusses on the study of the mechanical behaviors of driven glassy
systems by taking phenomenological modeling as the main approach, specifically a
mesoscopic elasto-plastic model. Mesoscopic elasto-plastic models have been devel-
oped since the early 90s, and have been modified in different ways to study various
phenomena in driven glassy systems. Appropriate formulations and versions will
also be proposed in the framework of this thesis to tackle different unsolved phys-
ical questions. With this approach, one can explore the domain of validity of the
concepts and the mechanism proposed at mescoscopic scale to enhance our current
understanding of glassy systems.
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Organization of this thesis

This thesis is organized into two parts. In part I, first a brief review is given on
the physical systems under consideration in the domain of studying driven glassy
systems by using MD simulation and by the mesoscopic modeling that is adopted in
this thesis. Then different experimental approaches and results on the mechanical
behaviors of glassy systems are presented. Further the foundation of the concepts
adopted in elasto-plastic model is discussed, and a general frame work of construction
of elasto-plastic models is presented. Part II concerns the main work and results
that have been achieved during this thesis. Different topics of driven glasses have
been tackled by using slightly different versions of elasto-plastic model. The detailed
methods and results on various topics are presented, such as avalanche dynamics,
creep phenomena and rheology with finite temperature.



Part I

Background & Construction of the

Elasto-plastic model
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Chapter 2

Glass transition & Systems Under

Consideration

In this part a brief review of glass transition is given for fixing the ideas on the
properties of the systems studied during this thesis and to identify the main the-
oretical difficulties for describing glassy systems. Then a few examples are given,
which cover most of the systems investigated by experimentalists for studying me-
chanical properties of glassy systems. The modeling method adopted in this thesis
aims at giving some physical insights into the dynamics of these systems when they
are mechanically driven.

2.1 Phenomenology of glass transition

A macroscopic measurement of an observable is given as the time average during a
time window of duration τmeasure asO(t) = 1

τmeasure

∫ t+τmeasure
t

O(Γ(t′))dt′, where Γ(t)

is the microscopic state (i.e. a point in phase space composed by all momenta and
coordinates) of the system at time t and τmeasure is the time scale of the macroscopic
measurement which is small compared to the macroscopic time scale so that the
measurement can be considered instantaneous. As long as the ergodicity assumption
is not violated, τmeasure is considered to be large enough such that the sampling of
the phase space according to Hamiltonian equation can be represented by the Gibbs
ensemble formalism (e.g. in the canonical ensemble the phase space is sampled
with weight ρ(Γ) ∼ exp(−βH(Γ)), where β = (kBT )−1 and H is the Hamiltonian
describing the equilibrium dynamics). This can only happen when the kinetic energy
is large or comparable to the potential energy barriers, which is true in the situation
where a system is coupled with a thermostat at high enough temperature.

6



2 Glass transition & Systems Under Consideration 7

By decreasing slowly the temperature of the thermostat, at each step of cooling
the system, there is enough kinetic energy to overcome potential energy barriers
to explore the phase space. Then at some point, the system will find a minimum
configurational energy (i.e. the minimum of potential energy) with high energy
barriers. Further cooling down will reduce further the kinetic energy so that the
system will be trapped for a large timescale in this configurational minimum and will
form a solid state. This final state of material is, in general, the crystallization where
all particles are arranged in an ordered manner. The corresponding temperature
below which crystallisaion takes place is the melting temperature Tm. The crystal
structure is a thermodynamically stable state. The phase transition upon Tm by
slow enough cooling is an equilibrium phase transition from a liquid to a solid.

If we decrease the temperature of the thermostat abruptly (i.e. quench) from a
high temperature where ergodicity holds, the kinetic energy is also reduced suddenly
while the particle positions are probably found to correspond to a liquid like config-
uration which is surrounded by many metastable states in the configuration space.
The low kinetic energy prevents the system to overcome rapidly the potential energy
barriers of a metastable configuration so that the system cannot sample its phase
space efficiently during a macroscopic measurement time window τmeasure, meaning
that the ergodicity assumption breaks down. The dynamics becomes slow and the
system is trapped in one metastable state for a long time before reaching another
one at lower configurational energy. The system becomes apparently a solid for all
macroscopic mechanical tests on time scales smaller than that of the microscopic re-
laxation. The system is said to enter a glassy state. The trapping in the metastable
states of the system after the quench is affected by the cooling rate, such that the
properties of the glassy state depend on it as well. After a rapid quench, the system
explores its phase space with a very slow dynamics and eventually falls into deeper
metastable states, so that the dynamical properties of the system will also depend
on the waiting time after the quench. This is the so-called “aging” phenomenon.
The difficulty to form glassy states by quenching depends on the details of the mi-
croscopic interaction between particles. It is possible (in computer simulations) to
produce a supercooled liquid with pure water as far as there are no crystallization
nuclei present. Even though supercooled water is experimentally very unstable and
easily transformed to ice with tiny perturbations, this illustrates the physical picture
of the rapid cooling down of a system. The first experiment of a rapid quench to
avoid crystallization to form a glassy state in metallic systems has been performed
on gold-silicon alloys [Klement et al., 1960].
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In both the theoretical and the experimental point of view, it is easier to study the
nature of the glass transition by quenching step by step to lower temperatures, since
at high temperature we have well established theoretical and experimental facilities
to extract information about the system. By monitoring this information along the
quenching steps to low temperatures, the characteristics of the glass transition can
be asymptotically approached.

2.1.1 Viscosity and relaxation time scale upon glass transi-

tion

At high temperature where the linear response theory holds, it is possible to derive
the Green-Kubo relation between the macroscopic viscosity and the microscopic
auto-correlations [Hansen and McDonald, 1990, Binder and Kob, 2011]

η =
1

kBTV

∫ ∞

0

dt〈σxy(0)σxy(t)〉

of σxy, the off-diagonal components of the stress tensor. Its microscopic expression
reads

σxy =
N∑

i=1

[mvi,xvi,y +
1

2

∑

j 6=i

xijFy(rij)]

where xij = xj−xi the vector from particle i pointing to particle j, vi,x x-component
of the velocity of particle i, Fy(rij) the y-component of force exerted by particle j on
i due to the pair interaction. The ensemble average can be taken for instance in the
canonical ensemble, since the system is supposed to be weakly out of equilibrium.

It is interesting to notice that the shear viscosity can be viewed as a measure of
the relaxation time (relaxation time = time scale beyond which the system dynamics
becomes uncorrelated with respect to previous states, equivalent to a loss of memory)
up to a normalization prefactor proportional to 〈σ2

xy〉. Here the relation described
in the introduction η(T ) ∼ τ(T ) is roughly justified. By monitoring the viscosity
of a glass forming liquid at each temperature along quench steps, one also gets
information about the microscopic relaxation time scale at each temperature.

The dependence of the viscosity on temperature has been measured for various
glass forming liquids, see figure 2.1 (left). This figure shows that the viscosity
increases over about 15 magnitudes if the temperature is decreased only by factor
of 3 to 4. This also indicates that the microscopic relaxation time scale increases
drastically in a small range of decreasing temperature. To make this relation between
viscosity and temperature more comparable for different materials, it is customary to
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Figure 2.1: Left: “Arrhenius plot” - Viscosity versus inverse of the temperature
in log-lin scale. Right: “Angell plot” - Viscosity versus inverse of the temperature
rescaled by Tg. [Binder and Kob, 2011]

introduce a reduced temperature scale. This is done by defining a phenomenological
“glass transition temperature” Tg such that η(Tg) = 1012Pa · s and plotting viscosity
versus Tg/T , see figure 2.1(right). For materials such as SiO2, the viscosity can be
well fitted by Arrhenius law η ∼ exp( B

kBT
), while for other systems η(T ) follows a

sub-Arrhenius law. By comparing the slope in the Angell plot at Tg, glassy systems
can be divided into two classes: “strong glasses” for those following an Arrhenius
law and “fragile glasses” for those following a sub-Arrhenius law.

The tendency of a drastic increase of viscosity indicates that a further quench to
lower temperatures will make the system behave apparently as a solid and the under-
lying microscopic dynamics is long time auto-correlated, longer than any accessible
experimental time scale.

2.1.2 Stretched exponential relaxation

A direct measure of microscopic dynamics is the “Van Hove function” G(r, t) and
its spatial Fourier transform the “coherent intermediate scattering function” F (k, t).
The spatial-temporal transform of the “Van Hove function” is the “dynamical struc-
ture factor” S(k, ω). Precisely

G(r, t) =
1

N

∑

i

∑

j

〈δ(r− (ri(t)− rj(0)))〉

F (k, t) =

∫
drd exp(−ik · r)G(r, t) =

1

N
〈ρk(t)ρ−k(0)〉
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S(k, ω) =
1

2π

∫
dt exp(iωt)F (k, t)

The “coherent intermediate scattering function” is actually the auto-correlation
function at time interval t of density fluctuations for a given mode k. This quantity
is experimentally accessible by light or neutron scattering and has been measured
for various glass forming liquids at temperatures approaching glass transition. Ex-
perimental results of F (k, t) on glycerol at temperatures above the glass transition
is shown in figure 2.2(left). The structural correlation in time becomes longer and
longer as the temperature approaches the glass transition. Smaller time intervals
for the intermediate scattering function is limited by technical issues. This part of
the auto-correlation function corresponds to the second step of relaxation at low
temperatures typically shown in the figure 2.2(right). Figure 2.2(right) corresponds
to MD model simulation results for silica. At any temperature the small plateau
at the beginning represents the ballistic regime where the interaction does not af-
fect the motion of particles. The form of the correlation function after the ballistic
regime crosses over from one step relaxation to a two step relaxation function as the
temperature decreases. At high temperature the relaxation is simply exponential,
while at temperatures approaching the glass transition, a second plateau appears
due to the so-called “cage effect” or “β-relaxation” where particles vibrate in a “cage”
formed by the surrounding particles. The caging effect takes longer and longer as the
temperature decreases. The end of the plateaus corresponds to the typical time of
the cage effect. Then a structural reorganization or a “cage break” takes place, which
is called “α-relaxation”. This “α-relaxation” is reflected in the second decay to zero
of the intermediate scattering function. At low temperatures not only the time scale
of relaxation becomes larger but also the exponential form becomes stretched. This
stretched exponential decay is well fitted by Kohlrausch-Williams-Watts (KWW)
function

Φ(t) = A exp(−(t/τβα ))

where τα refers to the time scale of “α-relaxation”. τα(T ) is found to be propor-
tional to η(T )/T and the stretch exponent β≈ 0.7 [Wuttke et al., 1996].

From the behavior F (k, t) in the glass forming regime at temperatures approach-
ing the glass transition, it strongly suggests that the “cage effect” will last for ever
and τα will go to infinity if the temperature is further decreased, which is actually
one of the predictions of the mode coupling theory [Binder and Kob, 2011]. A “Cage
effect” that lasts forever in systems quenched from high temperature to T < Tg has
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Figure 2.2: Left: Intermediate scattering function of glycerol by neutron scattering
Φ(q, t) = F (q, t)/F (q, 0), where q corresponds to the first peak in static structure
factor. From the bottom to the top T decreases from 413K to 270K, Tg ≈ 185K
for glycerol [Wuttke et al., 1996]. Right: Si − Si Intermediate scattering function
in model systems of silica [Horbach and Kob, 2001].

as a consequence that the structure of glassy systems look similar to that of its liquid
state, see figure 2.3. With its particles being trapped by their neighbors and the
similarity concerning the typical configurations compared to a liquid state, glassy
states can be viewed as frozen liquids, see figure 2.3.

2.1.3 Dynamical heterogeneities and the break down of the

Einstein relation

It is known that the stretched exponential relaxation of the correlation function is
related to dynamical heterogeneities. By tracing the mean-square displacement of
individual particles in different regions, one observes that (i) one individual particle
vibrates around its location for a while followed by periods with rather large jumps
and (ii) when particles of some regions are vibrating around their location, particles
of other regions may make significant displacements. In other words this means that
the dynamics is not homogeneous over space in a glassy state and intermittent in
time in a given region. Some regions have an exponential relaxation of shorter time
while others take a long time for decorrelating the particle positions. The form of a
stretched exponential relaxation over the whole system is the effect of summing up
over the heterogeneous relaxation dynamics of all the regions.

Dynamical heterogeneities seem also to be related with the decoupling of diffusion
coefficient and viscosity when the temperature approaches the glass transition. At
high temperature the diffusion coefficientD and viscosity η are related by the Stokes-
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Figure 2.3: Static structure factor of liquid (T = 270K) and glassy (T = 160K, 4K)
polybutadiene at ambient pressure, obtained from neutron scattering measurements.
Tg = 180K [Arbe et al., 1996]

Einstein relation Dη/T = Cst. This means that the time scale of the diffusive
process and the one governing the viscous flow are the same up to a constant factor.
This relation breaks down as soon as the temperature of the supercooled liquid
goes down to Tg. It is commonly found that the diffusion coefficient D(T & Tg)

becomes 2 to 3 order of magnitudes larger than that computed according to the
Stokes-Einstein relation when compared to the measured value of T/η(T & Tg)

[Mapes et al., 2006]. This is proposed to be explained through the existence of
the dynamical heterogeneities. The idea is that close to the glass transition, self-
diffusion is controlled by fast moving particles whereas viscosity probes the time
scale needed for all particles to move [Berthier and Biroli, 2011].

2.1.4 Thermodynamics

Across the phase transition from a liquid state to a crystalline state, some ther-
modynamic quantities vary not in a continuous fashion. This is typically described
by the Clausius-Clapeyron relation (dP

dT
) = L

T∆v
. “L” is the latent heat of the phase

transition, ∆v is the change in specific heat at the phase transition. “ dP
dT

” is the slope
of the phase coexistence curve in the Pressure-Temperature plan. The discontinuous
change in entropy across the phase transition is then computed as ∆Sm = LN/Tm

the sub-index “m” for melting. This is not the case for the entropy of a supercooled
liquid across Tm, which appears in fact to be continuous. Thus below Tm there is
an excess entropy in the supercooled liquid compared to the crystal ∆S(T ), with
∆S(T = Tm) = ∆Sm. Extrapolation of this excess entropy in supercooled liquids
leads to define the Kauzmann temperature TK [Kauzmann, 1948] at which the ex-
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cess entropy vanishes. At TK , the “ideal glass” state [Gibbs and DiMarzio, 1958]
is supposed to appear which is introduced from the idea of separating the kinetic
entropy contribution from the configurational entropy contribution.

Since supercooled liquid or glassy systems are trapped in some metastable states
by a rapid quench, the kinetic energy per particle depending on the temperature only
allows the system to mainly visit metastable states of certain depths among those of
the whole potential energy landscape. The dynamics of the supercooled liquid can
be divided into two parts: the vibration around the minimum of the potential energy
landscape and the temperature dependent sampling of potential energy minima. It
is considered that the vibrational dynamics is similar to that of a crystal state,
while the crystal has only one potential energy minimum to explore [Binder and
Kob, 2011]. So that the excess entropy of the glassy systems is considered due to
the multiple metastable configurations allowed to visit. As observed in experiments,
the rate of change of the glass entropy with respect to the temperature is faster
than that of a crystal state. Extrapolation of this tendency leads to a certain point
TK > 0 where the excess entropy becomes zero. If the excess entropy is due to
multiple configurational choices, that suggests the hypothesis that the glassy state
at TK has a unique lowest energy configuration, which would correspond to the “ideal
glass”.

In practice, the Kauzmann temperature seems to correlate with the fragility of
the glass, but this has not been yet clearly confirmed [Debenedetti and Stillinger,
2001].

2.2 Glass forming systems

“Amorphous materials” or “glassy materials” cover a large class of materials with
microscopic components of sizes that span from atomistic scale to the macroscopic
scale (∼mm). An important common feature of glassy materials is that they are
far from equilibrium systems and that the dynamics is so slow that the relaxation
time scale is out of the scope of the time scale reached by experiments and computer
simulations. With this generic descriptive “definition”, many systems can be included
in this category of materials, such as metallic glasses, colloidal assemblies, emulsions,
foams, and granular materials etc [Berthier and Biroli, 2011]. There are two sub-
categories separating these systems: (i) “Hard” glassy systems or atomic glassy
systems with components of molecular scale require for a full description quantum
mechanics to calculate the electronic structure. The elastic modulus of these systems
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is of order 100GPa. These systems easily break beyond yielding and the plastic flow
regime is short; (ii) “Soft” glassy systems consist of components that are large enough
to be treated in a classical framework. The elastic modulus is of order 100Pa. These
systems typically enter a plastic flow regime beyond yielding. In the first case, as
far as the inter-particle distance is large compared with the thermodynamic wave
length, it is convenient to treat the system, especially in computer simulations,
in a classical manner by adopting adequate semi-empirical interaction potentials,
so that in a theoretical point of view, systems in both categories share common
features of coarse-grained scales regarding their out-of-equilibrium dynamics despite
the differences in the details of their microscopic interactions.

“Hard” glass forming systems

The most prominent example of this category of glass forming systems is the win-
dow glass, made primarily of silica SiO2 (with many network modifying additives).
Some other examples are listed in figure 2.1. As mentioned above, in the study of
these systems by molecular dynamics simulation, appropriate semi-empirical poten-
tials are adopted. The parameters of these semi-empirical models are adjusted in
order to fit some properties such as the melting temperature, microscopic structure,
diffusive motion of particles and the elastic moduli [Rodney et al., 2011]. One of
the successes of the semi-empirical potential for describing the atomic dynamics of
glassy systems can be shown by comparing the static structure factor S(q) of SiO2

from neutron scattering experiments and that obtained by simulations using a well
adopted semi-empirical potential, see figure 2.4. There are several semi-empirical
potentials, such as Stillinger-Weber potential, Tersoff potential, EAM and Lennard-
Jones type potentials. These potentials have all adjustable parameters and different
terms for taking into account for example the directional or electrostatic interac-
tions between atoms, to be able to simulate for example metallic alloys of different
components. The binary Lennard-Jones potential developed by Kob and Andersen
is the most widely used, which can reproduce the properties of Ni80P20 [Rodney
et al., 2011]. Once the semi-empirical potential is chosen, either classical molecular
dynamics or Monte-carlo simulations can be performed on these systems. The glass
transition and the properties of the glassy state of these systems can be studied,
even though there are technical issues limited by the computing capacity, such as
the cooling rate for preparing a glassy state system which is usually unrealistically
fast. But still, despite these shortcomings, MD simulations give important physical
insights on the glassy systems under driving.
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Figure 2.4: Static structure factor of SiO2 at T = 300K. Open circles: Neutron
scattering experiments by Price and Carpenter[Price and Carpenter, 1987]. Solid
line: Molecular dynamics simulation by Horbach and Kob[Horbach and Kob, 1999]

“Soft” glass forming systems

“Soft” glass forming systems are in general systems of small macroscopic particles,
mostly merged in a solvent liquid. In these systems, volume fraction instead of
temperature controls the material properties. In the case of low volume fraction,
the dynamics of these particles are nothing but brownian motion, and the rheology
is dominated by the rheology of the solvent liquid. The glass transition occurs,
instead of a quench of temperature in contrast with the atomic glassy systems,
upon the increase in volume fraction up to a critical value (e.g. for hard spheres
φc ' 0.58). The effects of the volume fraction on the time correlation function for
these “soft” glass systems is similar to that of the temperature on the atomic glassy
systems. The “α-relaxation” diverges as the volume fraction approaches φc [Pusey
and van Megen, 1987]. To name some typical “model glass” systems in experimental
studies: In the first report of a glass transition of a colloidal system by Pusey &
Magen [Pusey and Van Megen, 1986], they used polymethyl-methacrylate (PMMA)
particles stabilized by poly-hydroxystearic acid (PHSA), the radius of which is ' 300

nm, and for which the interaction potential is effectively a hard sphere potential. N-
isoppropylacrylamide (NIPA) gel particles (diameter' 1 µm) used for micro-fluidics
experiments [Nordstrom et al., 2010], can be treated as Hertzian spheres. Foams
and emulsions (composed by stabilized castor oil droplets of diameter ' 0.3µm)
can be well described by a truncated harmonic or Hertzian contacts, at least at
high enough packing fractions [Durian, 1995, Bécu et al., 2006, Fall et al., 2010,
Bonn et al., 2015]. The interaction potential can be tuned from pure repulsive to
attractive for PMMA colloids by adjusting the concentration of added polystyrene,



2 Glass transition & Systems Under Consideration 16

and the attraction which is due to the “depletion” can be approximated by Asakura-
Oosawa potential [Lu et al., 2008, Poon et al., 1999]. It is also possible to tune the
interactions in emulsions from repulsive to attractive by controlling the surfactant
concentration [Durian, 1995, Bécu et al., 2006, Fall et al., 2010, Bonn et al., 2015].
Classical molecular dynamics simulations are also extensively used for studying these
systems by adopting the effective interaction potentials, parameterized to mimic the
experiments.

By tuning the poly-dispersity of “soft” glass forming systems, one can either
obtain a crystalline structure or an amorphous structure. The similarity of the
dynamics with the atomic glasses makes it possible to consider “soft” glassy systems
as a convenient “model” system to gain physical insight to the dynamics of the atomic
glasses.

“Jamming” and “Gelation”

As the effective interaction potential can be tuned in “soft” glasses from pure repul-
sive to attractive, or from long range to short range interactions and the diameter
of particles can be easily varied, the interplay between this interaction and ther-
mal fluctuations can give rise to other complex behaviors in addition to the glass
transition.

In the case where pure repulsive interactions are large compared to thermal
fluctuations or in the case where the diameter of the particles are large so that
the thermal fluctuations become negligible, systems behave like a solid only when
the volume fraction increases close to the random close packing fraction φJ = 0.64,
which is the so-called “jamming” point. In the “jammed” state, the degrees of freedom
of particles are constrained by a large enough number of contacts. The jamming
transition is a pure mechanical phenomenon and corresponds to the transition to
a state of mechanically blocked hard spheres, which is of different nature than the
glass transition.

In the case where thermal fluctuations are in competition with attractive interac-
tions, bonds between particles are formed and dissociated continuously. At φ < φg

particles may be bonded into a rigid chain network percolating throughout the en-
tire system, so that the system can sustain a finite stress at macroscopic scale and
behaves apparently like a solid. This is the so-called “gel transition”.

As will be also mentioned in Chapter (4), the elasto-plastic model adopted in
this thesis is based on the idea of local shear transformations, which are observed
in simulations of systems with different types of interaction potentials and in real
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Figure 2.5: Red line: the microscopic structural relaxation time scale as function
of temperature. In between the two horizontal dashed lines: the domain of experi-
mentally accessible loading time scale. Box: The applied theoretical frameworks at
their corresponding temperature domains

systems as for example in bubble rafts or colloidal glasses. However systems in which
local shear transformations are observed, have a typically a high volume fraction,
larger than that of network forming gels. Even though the boundary for fixing
a domain of validity of the elasto-plastic model is not clearly identified, it seems
more appropriate for describing systems that are deep below the glass transition, or
strongly above the jamming transition.

2.3 Some theoretical approaches

Figure 2.5 shows roughly the situation for the study of mechanical properties of
disordered materials. The microscopic relaxation time scale τ(T ) is a well defined
measurable quantity at high enough temperature. This concept resides upon ap-
proaching the glass transition from above and τ(T ) tends to diverge at lower tem-
peratures where it is not experimentally accessible. The response of the system to
an external loading from a quiescent state depends on the loading time scale, which
can be characterized by the loading strain rate. The range of experimentally acces-
sible strain rates is represented by the interval between the two dashed green lines
in the figure2.5.

Approach from the liquid side

At high temperature where γ̇−1 > τ , the sampling of the phase space of a system is
dominated by the high temperature fast dynamics, which can be described by equi-
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librium statistical mechanics. External loading can be regarded as a perturbation of
this high rate sampling, so that perturbation theory around equilibrium e.g. linear
response theory can be applied to compute macroscopic properties of the system.
As the temperature approaches Tg, the dynamics begins to slow down. Nevertheless
as far as the ergodicity is maintained, the so-called mode-coupling-theory can be
applied.

The mode-coupling-theory is base on the Zwanzig-Mori projection formalism
[Zwanzig, 1960, Mori, 1965]. The evolution of a set of observables is expressed, in-
stead of a formal Liouville expression, by a hierarchy of Langevin type equations
Ȧ = iΩA(t)−

∫ t
0
M(t− t′)A(t′) + f(t). The so-called “fluctuation force” f(t) comes

from the orthogonal part of A(t) and M(t) the memory kernel derives from f(t).
Further the evolution of f(t) can be expressed by an equation of similar form with
higher order terms of memory kernel M1(t) and fluctuation force f1(t), where f1 de-
notes the orthogonal part in the subspace excluding A. The mode coupling theory
consists to truncate the hierarchy at second order and identify a projection subspace
with the wave vectors in Fourier space, which correspond to different length scales
of observation in real space. Different Fourier modes are then coupled through the
memory kernel. Within this formalism, the investigation of density fluctuations
makes use of the static structure factor which is computed within the canonical
ensemble. That is the reason why applying mode-coupling-theory requires the er-
godicity. The success of the mode-coupling-theory for describing supercool liquids
is that it can predict a mode-coupling-temperature Tc, slightly higher than Tg, at
which the macroscopic viscosity diverges. However since ergodicity is assumed in
the procedure of MCT computing, it is not appropriate for glassy systems under
mechanical load.

Approach from the solid side: Potential energy landscape (PEL)

At temperatures well below Tg, the dynamics of glasses is very slow and there is still
no general valid theoretical frame work for describing this slow dynamics. Under
an external loading time scale γ̇−1 < τ (here assuming the concept of relaxation
time is still meaningful even if it is not measurable at very low temperature) with
a small amount of deformation, the system is perturbed by the external loading to
explore a little further its phase space around the actual state which is determined
by the slow dynamics. The system behaves as a solid. Once the loading amount is
large, the sampling of phase space is then dominated by the external loading rather
than the low temperature slow dynamics. The glassy system under external load-
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ing either yields as a complex fluid or fails. Most of the theoretical and simulation
work studying driven glass systems aims at finding proper observables to charac-
terize the stationary states under driving as well as the transient states towards
the stationary flow. It is clear from the beginning that in this field of research of
strongly out-of-equilibrium dynamics with additional driving no general theory can
be applied, so that molecular dynamics simulation and phenomenological modeling
play an essential role for acquiring and testing ideas and concepts aiming at under-
standing physics of glassy systems under external loading. Developing mesoscopic
elasto-plastic models, as adopted in this thesis, is one of these approaches. Details
of the foundation and the formulation of these models are discussed in chapter 4.

Since the dynamics of glassy systems is slow, an alternative approach, instead of
studying the sampling in the complete phase space, is to study how does a glassy
system sample its potential energy landscape. The potential energy landscape is
defined by U({ri}i), the total potential energy as function of all particle coordinates
ri, which is a hyper-surface in (Nd + 1) dimensional space, where N the number
of particles and d the system dimension. The link between the dynamics and the
way of sampling the potential energy landscape at different temperatures has been
studied earlier [Sastry et al., 1998]. The sampling of the potential energy landscape
in time can be viewed as the stochastic process of hopping from one metastable
state to another, while the hopping rates depend on the temperature. This physical
picture is actually adopted by Bouchaud’s trap model which provides a mechanism
of ergodicity breaking and is in good agreement with spin glassy systems [Bouchaud,
1992]. Following the spirit of the trap model, P. Sollich et al. proposed the so-called
“Soft Glass Rheology” model (SGR) [Sollich et al., 1997], aiming at a phenomenolog-
ical description of a way of sampling the potential energy landscape of driven glassy
systems through activated dynamics. As discussed in chapter 4, the mesoscopic
elasto-plastic model adopts somehow this picture of hopping energy barriers on a
coarse-grained level, that is, instead of considering the potential energy as function
of particle coordinates, considering the potential energy of a local block of material
as function of deformation.

There are efforts devoted to characterize the structure of the hyper-surface of
the potential energy landscape. It is generally known that the total number of
metastable states increases exponentially with the number of particles [Stillinger,
1999] and the metastable states are organized in a hierarchical structure. Several
metastable states are grouped into a meta-basin. The sampling within a meta-basin
corresponds to the β-relaxation, and the sampling over meta-basins corresponds to
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the α-relaxation [Rodney et al., 2011, Johari and Goldstein, 1970]. The complex
structure of an potential energy landscape can be visualized by the “tree graph”.
However, the correct way to understand the behavior of glassy systems under driving
in terms of energy landscape sampling is still a missing piece of the puzzle and it
remains a difficult task.

The sampling of the energy landscape under driving (or even without driving)
depends on the underlying processes of large scale observable behaviors in glassy
systems. There are several fundamental questions to be answered for bridging the
two sides, such as: How to describe the kinetics of sampling? How is the kinetics of
sampling dependent on the temperature and on the external driving? And how is
the sampling to be described on a macroscopic scale?



Chapter 3

Experimental Mechanical Behaviors

Since this thesis focuses on the study of the mechanical behavior of glassy systems
using a mesoscopic modeling approach, a brief review of the corresponding exper-
imental results for amorphous systems (i.e. systems deep in glassy state) is given
in this chapter. Within the experimentally accessible time scale, much shorter than
the microscopic relaxation time scale, amorphous systems switch from a solid state
to a liquid state trough a yielding transition, depending on the loading conditions.
Experimental studies are mainly focused on three aspects: (i) Elasticity of the ap-
parent solid like state when loading is weak; (ii) Rheology and flow in the apparently
liquid state above yielding; (iii) The transition from solid to liquid when the loading
approaches the transition point. Here we focus on the last two aspects.

In this chapter, we review some experimental results as well as some insights
from molecular dynamics simulation on the phenomenology that is mainly addressed
during this thesis by the “elasto-plastic” model.

3.1 Steady state rheology

The general idea of rheology is to find out a constitutive law relating the local stress
with the local strain rate, which makes the continuum mechanics description com-
plete. It is assumed that physical quantities such as velocity vary continuously in
space at any instant within the limit of experimentally accessible spatial resolution.
In the framework of continuum mechanics, with the knowledge of boundary condi-
tions and the knowledge of the constitutive law, it is then in principle possible to
obtain the entire information on the flow.

In the simplest case of Newtonian fluid, the local viscous stress tensor is propor-
tional to the local strain rate σ = 2ηε̇, where the dynamical viscosity η is a material

21
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parameter and constant in any situation. This dynamical viscosity can be measured
in a simple geometry of a rheological test insuring the homogeneity of a bulk flow so
that the bulk viscosity measured as the ratio of the stress applied on the bulk flow
to the bulk strain rate can be identified with the constitutive law. By comparing
for instance the steady state velocity field coming from the theoretical solution of
the Navier-Stokes equation with that coming from experimental measurements in
a different geometry, the Newtonian fluid model with constant viscosity η can be
validated.

In the study of flow of glassy materials under large deformation, especially for the
“soft” glassy systems, most of the works in the literature keep the spirit of continuum
mechanics in the sense that the velocity field can be completely computed from the
knowledge of the time dependent stress tensor field. However the situation is rather
complicated. The steady state flow of yield stress materials may either depend or
not on the loading history. This is typically reflected in the bulk rheological testing
loop of increasing the strain rate and then decreasing the strain rate. For some of the
systems of pure repulsive interaction, normally called “simple yield stress materials”,
the upward rheological testing (by increasing the bulk strain rate) gives the same
bulk rheology flow curve as the downward rheological testing (by decreasing the
bulk strain rate), suggesting that the steady state flow at a given bulk strain rate
is always the same (see figure (3.1)(a)). For other systems, a hysteresis of bulk flow
curve arises from an upward then downward rheological testing loop, suggesting that
the steady state flow depends on the loading history (see figure(3.1)(b)). Only in
the case of “simple yield stress materials”, it is expected to find a simple constitutive
law in a similar form to the Newtonian fluid so that the steady state flow depends
only on the material properties.

“Simple yield stress materials”

The complexity of “simple yield stress materials” compared to Newtonian fluids is
that the viscosity itself depends on the strain rate η(ε̇) and it diverges in the low
strain rate limit because of the existence of finite yield stress. From the point of view
of the continuum mechanics, the flow stability is affected by the property of η(ε̇).
This can be illustrated in a simple anti-plane shearing situation. The flow velocity
profile for a homogeneous shear rate ε̇ in space is unstable if d

dε̇
σ(ε̇) = d

dε̇
(η(ε̇)ε̇) < 0,

and a shear band arises when shear is started from the solid state, see Appendix A.
From the idea of the existence of a unique local constitutive law relating σ(r, t)

and ε̇(r, t), one can at least deduce two points: (i) Local stress and local stain rate
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Figure 3.1: (a) 0.1%wt. carbopol microgel under increasing (full circles) and decreas-
ing shear stresses (open circles). (b) 10%wt. bentonite solution under increasing
and decreasing stress [Bonn et al., 2015]

measured in any flow condition, if possible, at any location r and any moment t,
should fall on the same curve if one plots σ(r, t) against ε̇(r, t); (ii) The applied
bulk stress versus the bulk strain rate measured in a uniform flow, normally referred
as the “engineering flow curve”, should fall on the same curve as the one measured
locally, because the flow being uniform, macroscopic flow properties are identical to
those of local flow.

Interestingly consistencies and discrepancies with the existence of local constitu-
tive law are both found in experimental studies of simple yield stress fluids.

Experimental method for measuring the engineering flow curve

The engineering flow curve (or macroscopic flow curve) is mostly measured from a
rheometer in cone-plate geometry or coaxial-cylinder geometry. After recording the
torque versus the corresponding angular velocity, followed by an analysis assuming
the existence of the local constitutive law, a macroscopic flow curve can be produced
[Ovarlez et al., 2008, Coussot et al., 2009].

Experimental method for measuring local constitutive flow curve

The experimental method for measuring the constitutive law applied in most of the
works in the literature relies on the two following points:

1. The local stress is not directly measured by experimental facilities. The stress
field is computed by assuming mechanical equilibrium for the steady state flow
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in a rather simple geometry (straight channel or co-axial cylinders) and the
system is treated as a normal fluid even if the components are of micrometer
size much larger than normal fluid molecules. In principle, it is assumed for a
non-compressible flow:

−∇P +∇σs = 0

where σs is the frictional stress tensor related to the viscosity. By putting this
equation into a specific simple geometry and a simple loading condition, it is
possible to calculate the stress field σs(r).

2. The velocity profile is obtained by measuring the particle velocity at a given
position within a given time window, during which the particle velocity fluc-
tuates, and by taking the time average of the velocity at that position. A
velocity profile v(r) is obtained, from which a strain rate profile is computed
as ε̇(r) ≡ 1

2
(∇ � v + ∇ � vt). By plotting σ(r) against ε̇(r) in different ex-

perimental situations, e.g. changing bulk loading shear rate, it is possible to
validate the existence of a unique constitutive law governing the local stress
and the local strain rate.

The constitutive flow curve established in this way is only valid in a statistical mean-
ing involving an averaging time scale, while fluctuations of the stress and the velocity
field within this averaging time scale can be important. For fully understanding the
flow of amorphous systems, these fluctuation must be taken into account, especially
at low shear rate. For this purpose, the elasto-plastic model, which will be dis-
cussed in detail in the chapter4, taking the heterogeneous plastic activation as the
elementary building blocks could be adequate.

Comparing the engineering flow curve and the local flow curve

It has been found that in carbopol microgels [Divoux et al., 2012, Coussot et al.,
2009] dense emulsion [Ovarlez et al., 2008, Bécu et al., 2006] and foams [Ovarlez
et al., 2010], the macroscopic flow curve can be well superimposed with the local
flow curve in various geometries. The obtained flow curves can be well fitted by the
Herschel-Bulkley law with a shear thinning exponent close to one half.

In constrast, for the same dense emulsion system studied in the work of Ovarlez
et al. [Ovarlez et al., 2008], it has been reported in the work [Goyon et al., 2008]
that local flow curves measured in different loading conditions disagree with each
other and they disagree with the macroscopic one. It should be noticed that this
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discrepancy of experimental results are due to the confined geometry. In the ref-
erence [Ovarlez et al., 2008], the rheology is studied in a co-axial cylinder Couette
geometry with a gap width about 3000 times the individual particles size, while the
gap of the micro-channel in [Goyon et al., 2008] is about 50 times the individual
particles size. It is also found in [Bécu et al., 2006] that the flow curve shows some
anomalies when the Couette gap becomes too small. This discrepancy may be due to
the strongly confined geometry where the gap width is comparable with the length
scale of the non-local effects in the flow. It is proposed in the work by Nicolas and
Barrat [Nicolas and Barrat, 2013] that this discrepancy can be explained by the fact
that the wall roughness may trigger more plastic events along the boundaries.

These experimental results suggest that a local constitutive law for simple yield
stress fluids may exist only above a length scale and time scale that are involved
in experimental measurements in these specific geometries. What determines these
length and time scales can actually be addressed by elastoplastic models, from which
the physical interpretation of the obtained local constitutive law may be clarified.

3.2 Avalanches

Avalanche dynamics in amorphous systems

Amorphous systems possess a critical yield stress σy above which the global shear
rate depends on the applied stress as a power law γ̇ ∼ (σ − σy)

1
n . Experiments

on metallic glasses and foams reveal that the response of amorphous systems under
slow external driving (γ̇ → 0 or σ → σy) is intermittent. Typically the stress strain
shows serrations i.e. linear elastic loading regimes alternated by sudden stress drops
[Cantat and Pitois, 2006, Shan et al., 2008, Wang et al., 2009, Sun et al., 2010, Sun
and Wang, 2011, Sun et al., 2012, Antonaglia et al., 2014, Dennin, 2004, Lauridsen
et al., 2002]. This is because the accumulated plastic deformation increases by
bursts of plastic activity, see figure 3.2. Statistics of the stress drops observed in the
stress strain curve, at vanishing shear rate regime, i.e. close to the critical point,
shows a power law distribution [Cantat and Pitois, 2006, Shan et al., 2008, Wang
et al., 2009, Sun et al., 2010, Sun and Wang, 2011, Sun et al., 2012, Antonaglia
et al., 2014, Salerno et al., 2012] (see figure 3.2). Moreover, a self-affine geometry
is observed in driven glassy systems close to critical point. The pattern composed
by slip lines during intermittent plastic accumulation has been measured through
scanning electronic microscopy [Sun and Wang, 2011], and shows a fractal structure
characterized by a fractal dimension close to 1.6. This fractal dimension is close to
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Figure 3.2: Left: Solid line: Stress versus strain; Red line: the number of “T1” events
as function of strain[Dennin, 2004]. Right: Stress drop probability distribution
function in a foam system [Lauridsen et al., 2002]

the one measured in quasi-statically sheared athermal molecular dynamics systems
[Bailey et al., 2007].

In a series of studies on amorphous systems under shear using zero temperature
molecular dynamics simulations [Maloney and Lemaitre, 2004, Lemaître and Caroli,
2009], it has been revealed that the dynamics becomes more and more correlated for
decreasing shear rate. Typically the spatial stress fluctuations evolve from a law of
large numbers statistical behavior 〈∆σ2〉 ∼ L−d at large shear rate to a correlated
behavior 〈∆σ2〉 ∼ L−d

∗ in the low shear rate limit, where d denotes the system
dimension and d∗ < d. The transverse diffusion coefficient follows a master curve
D̂ ∼ Lf(L

√
γ̇) for a two dimensional system, where f(x) ∼ x−1 at x � 1. This

behavior can be accounted for by the assumption that plastic activities take rather
randomly place at high shear rate, while at low shear rate, they take place in a
correlated fashion into a structured cluster in space, the size of which diverges up
to the system size.

Another observable which gives a hint of the collective dynamics close to a critical
point is the average avalanche shape, which is the average shape of individual busts.
The average avalanche shape has been studied for depinning like systems, in which
the average shape of an avalanche can be affected by system properties such as
inertia, self-interaction [Laurson et al., 2013, Sethna et al., 2001, Papanikolaou et al.,
2011, Zhao et al., 2014, Zapperi et al., 2005, Le Doussal and Wiese, 2013]. The
average shape of avalanches in amorphous systems is much less explored [Antonaglia
et al., 2014].

These results clearly show that the dynamics of glassy systems in the low shear
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rate limit is strongly intermittent and self-organized, reminiscent to the phenomenol-
ogy of critical dynamics due to a phase transition. With these indications, it is nat-
ural to think that the plastic dynamics of amorphous systems close to the critical
point may be understood in a similar way as the depinning dynamics close to the
depinning point.

Avalanche dynamics analogy between the yielding and the de-

pinning

Avalanche dynamics is rather well studied in depinning systems, such as Barkhausen
noise in ferromagnets [Durin and Zapperi, 2000, 2006, Barkhausen, 1917], stick-
slip motion in earthquakes [Ruina, 1983], serration dynamics in plasticity of solids
[Dastur and Lesley, 1981], and avalanche dynamics in crack propagation [Bonamy
et al., 2008, Laurson et al., 2010], and domain wall motion [Repain et al., 2004].
A large class of intermittent dynamics under external driving, some of which are
stated above, can be described by the universality class of depinning transition.

A depinning model is usually represented as the motion of a interface in d-
dimensional space h(x, t) with x ∈ Rd−1in a quenched disorder potential V (h,x)

under an external driving force f(x) and a self interaction of the surface, typically
∇2

xh. The simplest case is an elastic line moving in a two dimensional quenched
disorder potential without thermal fluctuations:

∂th(x, t) = ν∂2
xh− ∂hV (x, h(x, t)) + f (3.1)

The average velocity of the interface v = 〈∂th〉x, where the angular brackets
denote the average over x, remains zero when the applied force f is smaller than a
critical value fc. When f & fc, the line begins to move with a velocity v ∼ (f −fc)β
with β < 1. When f � fc, v ∼ f . The geometry of the interface is characterized by
a length scale lav above which the interface is self affine characterized by a roughness
exponent ζff , and below which the interface is again self affine characterized by
another roughness exponent ζdep. The length scale lav diverges as the applied force
approaches the critical value at zero temperature lav ∼ (f − fc)−νdep . The motion
of the line in a quenched disorder under f & fc is typically performed by bursts of
segments of typical length ∼ lav . The motion below lav within a segment bust is
strongly specially correlated, which is referred to as an avalanche. This motion is not
only heterogeneous in space but also in time. Avalanches happen here and there and
separated by a some quiescent states. The statistics on the avalanche size, defined
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as the area swept by the burst of an avalanche, shows a power law distribution cut
by the crossover length scale ∼ lav if the system size is infinite [Ferrero et al., 2013].

The first similarity between the yielding and the depinning is the scaling relation
γ̇ ∼ (σ − σy)

1/n and v ∼ (f − fc)
β. Secondly power law distributions have been

found in both situations. Thirdly a divergent length scale spanning the systems size
is assumed for explaining the dependence of the diffusion coefficient on the system
size in amorphous systems under very low shear rate, which is consistent with the
phenomenology in depinning where there exists a length scale lav ∼ (f − fc)

−νdep

below which the dynamics is strongly correlated. Further, as will be discussed in
the chapter 5, an analogy resides already at the level of model construction.

Besides the similarity between yielding and depinning, there are intrinsic differ-
ences residing in the avalanche dynamics. Answering the question to what extent,
yielding dynamics is in analogy with depinning and to what extent they differ from
each other, surely will improve our understanding of the two fields.

The avalanche dynamics of amorphous systems in the low shear rate limit is of
great interest for understanding the transition from solid state to liquid state. The
results in the literature suggests that the yielding transition belongs to a universality
class of dynamical phase transition. This topic is addressed in detail during this
thesis by a mesoscopic approach in the chapter 5. Detailed definitions of avalanche
relevant quantities such as avalanche size, duration, and avalanche shape and method
of statistics will be discussed.

3.3 Creep

Creep experiments on soft amorphous systems aim at studying the transient process
from the solid state to the liquid state at an imposed stress, larger than the yield
stress or smaller when thermally activated. The experiments are performed on
soft glassy systems with either attractive or purely repulsive interactions [Divoux
et al., 2012, 2011, 2010, Siebenbürger et al., 2012, Grenard et al., 2014, Lindström
et al., 2012, Sprakel et al., 2011, Gibaud et al., 2010, Gopalakrishnan and Zukoski,
2007]. As briefly reviewed below, systems with attractive interactions and systems
with repulsive interactions share common features, but also display differences in
the transient process. To guarantee the reproducibility of experimental results, the
creep experiments always follow a well defined preshear protocol to make sure creep
experiments are performed with the same initial condition. This suggests that the
creep behavior may depend on the initial condition, however there are no creep



3 Experimental Mechanical Behaviors 29

experiments studying in detail this issue. Most of the experiments in soft materials
are performed with a Couette geometry, the gap width of which is about ∼ 103

times individual particles size.

Spatial heterogeneity

Both systems with attractive and repulsive interactions are fluidized in a spatially
heterogeneous way when a stress σ > σy is applied. During the early stage of
loading, a narrow layer close to the wall begins to flow, allowing the rest of the
material to move in a plug like manner. A wall slip is also observed at this stage.
Then a rather clear shear band develops, the width of which increases with time
until a homogeneous velocity profile established [Gibaud et al., 2010, Divoux et al.,
2011]. For systems with repulsive interactions, not only the stress imposed transient
state but also in shear rate controlled transient state, a shear band develops, the
width of which increases logarithmic in time until it fully occupies the system and
a homogeneous flow is established [Divoux et al., 2012].

Given an applied shear rate or an applied stress, by monitoring the spatial het-
erogeneity of the flow, one can determine a fluidization time scale τHf as the time
elapsed between the beginning of loading and the moment where homogeneous flow
is established.

Global behavior

The transient state is also investigated by looking at the global strain response after
applying a step function of stress of amplitude σ > σy. Typically one looks at the
curve γ̇(t) for different applied stresses. For both attractive systems and repulsive
systems, γ̇(t) shows a “S” shape in a log-log plot (see figure (3.3)). The typical
feature is that a power law decay γ̇(t) ∼ t−µ is observed on the early stage of
loading, followed by a sudden increase before reaching the final plateau, the value
which corresponds to the shear rate on the flow curve at the corresponding stress
σ [Gibaud et al., 2010, Sprakel et al., 2011, Lindström et al., 2012]. For attractive
systems, e.g. carbon black gel, a two-step increase of γ̇(t) after the power law decay
has been observed [Grenard et al., 2014]. It is worthy to note that the creep exponent
µ is not universal, and depends strongly on the detailed preparation of the systems
before the creep experiment is started. µ is reported to be close to 0.8 in carbon
black gel [Grenard et al., 2014] and ∼ 2/3 in microgel [Divoux et al., 2011]. When
σ < σy, it normally shows a logarithmic creep γ̇(t) ∼ t−1 in the infinite time limit
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Figure 3.3: Strain rate versus time with different applied stress across the yield
stress in colloidal glass [Siebenbürger et al., 2012]

[Siebenbürger et al., 2012].
From the response γ̇(t) to an imposed stress σ > σy, a fluidization time τGf can be

extracted by the time interval from the beginning of loading and the inflection point
in γ̇(t) where dγ̇/dt reaches the maximum. It is found that in repulsive systems,
such as carbopol microgel, the fluidization time found in γ̇(t) and the one obtained
by monitoring the spatial heterogeneity match each other τGf = τHf = τf . In these
systems, the fluidization time depends in a power law fashion on the distance to
yield, τf ∼ (σ − σy)−β, where β varies 3 ∼ 8 depending on the system preparation.
As stated in the above paragraph, a fluidization time τ (γ̇)

f can also be defined using
a shear rate controlled protocol. For repulsive systems, it is found to scale with the
applied shear rate as τ (γ̇)

f ∼ γ̇−α [Grenard et al., 2014, Divoux et al., 2010]. The
consistency of the two fluidization times coming from different processes is confirmed
[Grenard et al., 2014]. Actually it is verified that the Herschel-Bulkley exponent is
close to α/β, which is deduced if one admits τf ≈ τ

(γ̇)
f . In attractive systems, such

as carbon black gel, it is commonly found that τf ∼ exp(− σ
σo

) where σo is a fitting
parameter that depends on the preparation. In [Sprakel et al., 2011], an exponential
relations with two regimes between τf and σ is reported, and it can be rationalized
by the idea of bond dissociation-association balance under thermal fluctuation and
applied stress.

Aging is reported to affect the fluidization time in repulsive systems [Sieben-
bürger et al., 2012]. It is not surprising that more aged systems take longer time to
fully fluidize under imposed stress, while it seems not to affect the creep exponent
µ.

The mesoscopic elasto-plastic model is found more suitable for soft repulsive
jammed systems, such as emulsion of caster oil. In this thesis, the elasto-plastic
model will be also used to investigate the transient state when a constant stress is
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applied. Different behaviors with respect to initial conditions are studied, see 6. A
mean-field type mesoscopic model, the “Hebraud-Lequeux” model, is also adopted
for studying creep of amorphous systems, since it is well studied at imposed shear
rates in the literature. In chapter 6, the “Hebraud-Lequeux” model is reinterpreted
such that we can realize a stress control protocol, which at the end captures the
“S” shape in creep experiments. Creep power law decay and scaling relations are
discussed with respect to different initial conditions.



Chapter 4

Mesoscopic Elasto-Plastic Model

In this chapter, I will introduce and discuss the mesoscopic elasto-plastic model that
is used in this thesis to describe the deformation of amorphous materials.

Most of the modern mesoscopic models are based on the idea initiated by Argon
in late 70s [Argon, 1979] that the elementary unit of plasticity in glassy systems is the
rearrangement of a cluster of particles localized in space. Taking advantage of the
strong similarity between a mono-disperse bubble raft and a microscopic crystalline
in the structure, the dynamics of dislocations had been studied [Lawrence Bragg,
1947] in this structures. Inspired by these studies, Argon and Kuo [Argon, 1979]
studied the shearing of a poly-disperse bubble raft, which forms a disordered struc-
ture similar to that of amorphous system as seen from its radial distribution function.
They observed that the plasticity of the amorphous bubble raft proceeds by rear-
rangements of localized clusters of about ∼ 5 bubbles. This kind of mechanism
of plasticity in amorphous systems has also been supported by other observations
[Princen, 1983, Amon et al., 2012, Schall et al., 2007]. Since then this localized local
rearrangement, which can be activated either by loading or thermal fluctuations, has
been widely accepted as the elementary unit of the plasticity of amorphous systems,
at least at the phenomenological level, and various mesoscopic phenomenological
models have been built to describe the mechanical behavior under external load-
ing or relaxation at low temperature [Bulatov and Argon, 1994, Baret et al., 2002,
Picard et al., 2004].

Various mesoscopic models can be divided into two categories: those ignoring
spatial correlations between local rearrangements, considering local rearrangements
are triggered by thermal-fluctuation and external loading independently, and those
taking into account the internal interactions so that local rearrangements can be
triggered by other ones already present in the system. In this section we will focus

32
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on the general framework of the second category of mesoscopic models, which is also
the kind of model being studied through this thesis.

4.1 Basic concepts of elasto-plastic models

Local plasticity and elasticity matrix

As stated above, the plasticity of a glassy system proceeds in a heterogeneous way,
i.e. the global plasticity consists in a series of localized “plastic events”. These local
“plastic events” correspond to sudden changes of local topology. In an amorphous
bubble raft, it is specified by “T1” events, involving typically four bubbles changing
their contacts [Argon, 1979]. Similar localized processes are observed in colloidal
glasses under low strain rate [Schall et al., 2007] and in slowly sheared granular
material [Amon et al., 2012].

More quantitatively, localized plastic events can be identified by defining quan-
tities measuring local non-affine motions. Specifically, for a time interval δt during
global deformation, for a particle i, by minimizing D2

i =̂
∑

j(drj(t + δt) − Γdrj(t))

with respect to Γ, where Γ is a strain tensor, drj = rj − ri with particle j is a first
neighbor to particle i, one can obtain a minimized D2

min for particle i with a corre-
sponding Γmin. D2

min is a measure of local non-affine motion and Γmin can be seen
as a local strain. There are other quantities that can be defined for measuring local
non-affine motion in the same spirit of D2

min. It has been found out that different
non-affine measures behave in a similar way [Chikkadi and Schall, 2012]. A region
of particles where D2

min exceeds some threshold value is considered to be affected
by a plastic event [Falk and Langer, 1998, Schall et al., 2007]. By monitoring these
quantities in either molecular simulation or in experimental systems during defor-
mation [Maloney and Lemaitre, 2004, Nicolas et al., 2014b, Falk and Langer, 1998,
Chikkadi and Schall, 2012], it has been found out that plastic events take place at
very localized regions while the displacement field in other regions is rather regular
with respect to the global strain.

An important fact is that local plastic events such as the “T1” events in bub-
ble rafts are not reversible once they have taken place, i.e. the topology remains
modified even when the loading is released, while the deformation of the rest of the
system shows reversibility, i.e. the original configuration of particles can be recov-
ered when the loading is released and there is no topological changing during the
loading. A phenomenological description of this process is that under loading an
amorphous system deforms elastically in most regions with localized plastic activity.
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This phenomenology has been firstly formulated by Bulatov and Argon [Bulatov and
Argon, 1994]. In their formulation, an amorphous system is considered as composed
by many blocks, the size of which corresponds to the typical size of particle clusters
undergoing plastic events. Once a block undergoes plastic transformation triggered
by a thermal fluctuation under local stress, it is treated as Eshelby’s inclusion in
an elastic matrix, i.e. the stress released by a local plastic event within a block is
redistributed through the rest of the system according to the Eshelby propagator
computed from mechanical equilibrium [Eshelby, 1957].

The common features of elasto-plastic models [Baret et al., 2002, Picard et al.,
2004, Lin et al., 2014a, Budrikis and Zapperi, 2013, Nicolas and Barrat, 2013] are:
(i) Bulk systems are considered composed by mesoscopic cells, each of which is con-
sidered as a homogeneous medium which can sustain a certain stress. The notion of
local stress or stress field is adopted in the elasto-plastic model; (ii) Each mesoscopic
cell can undergo elastic strain or plastic strain. In the elastic state, each cell is as-
sumed to obey linear elasticity. (iii) A local criterion should be specified for a cell
to initiate plastic events. (iv) Cells are coupled through the elastic matrix. Once a
plastic event takes place on one cell, the stress of other cells are perturbed according
to a specific form, i.e. the Eshelby propagator. These features are discussed in the
following sections.

Local stress tensor

A key concept in various mesoscopic models is the local stress tensor which emerges
originally from continuum mechanics. The stress tensor is a unified way to express
the fact that a force is uniformly applied onto a flat surface. If the area of the surface
is S, the normal unit vector n ≡ ni, the applied force F ≡ Fi (where the i indexes
the coordinatesx, y or z), then the force and the surface can be related by the stress
tensor σij in such way Fi = σijSnj.

In continuum mechanics, a system is considered to be composed by small elemen-
tary parts which are always classical physical systems so that macroscopic physical
quantities are associated with each elementary part coordinated by a position x

at a moment t, possessing a volume δv with a mass δm etc. Conservation laws
govern the evolution of the system, for which the conserved quantities are defined
in a classical manner. The internal interaction between different elementary parts
are involved for expressing these conservation laws, e.g. the momentum conserva-
tion of a subset of elementary parts enclosed in a volume D calls the sum of force
Fiδt = δt

∫
x∈∂D dFi(x), applied on the surface ∂D during δt. Each dFi(x) is due to
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the interaction between elementary parts at the position x, which is a local intrin-
sic property, independent on the considered volume surface ∂D. On an elementary
surface of an elementary part, the force can be considered to be uniformly applied,
so that dFi(x) = Σi(x)[n(x)ds)]. Supposing an elementary surface n can be de-
composed as a linear combination of two surfaces n = αn1 + βn2 and supposing
that the force felt by dsn is the same linear combination of the forces felt by the
two component surfaces, i.e. Σi(αn1ds + βn2ds) = αΣi(n1ds) + βΣi(n2ds). These
leads to associate with Σi(nds) a matrix form associated to the position x, which
is the local stress tensor, i.e. Fi =

∫
x∈∂D σij(x)nj(x)ds(x). With Green’s theorem,

Fi =
∫
x∈D ∂xjσij(x)dv, so that ∂xjσij can be seen as a body force acting for the local

conservation of momentum. Without any external body force and with ui denoting
the velocity field, momentum conservation reads:

D

Dt
(ρui) = ∂t(ρui) + ∂j(ρuiuj) = ∂lσil (4.1)

.This equation gives actually the definition of the local stress tensor from a macro-
scopic point of view. By substituting the microscopic expression of local momentum
in the above equation, it is possible to find out the microscopic expression cor-
responding to the local stress tensor. This method is adopted in several works
[Irving and Kirkwood, 1950, Lutsko, 1988, Goldhirsch and Goldenberg, 2002] for
deriving the microscopic expression of the local stress tensor. The microscopic
expression for momentum density [Irving and Kirkwood, 1950, Lutsko, 1988] is
ρ(x)ui(x)=̂

∑N
k=1 Pk,i(t)δ(x−Rk(t)) where k denotes the particles. The delta func-

tion is replaced by a smooth coarse-grain function [Goldhirsch and Goldenberg, 2002]
for expressing the momentum density.

Despite of the different ways for expressing the microscopic local stress tensor,
All these studies lead to the conclusion that the local stress tensor comes from one
part due to kinetic energy and the other part due to the interaction of particles.
Due to the slow dynamics in glassy systems, the kinetic contribution to the local
stress tensor is negligible and for any athermal system, the local stress tensor can
be computed directly from particle positions.

Mathematically this microscopic expression of the local stress tensor can be as-
sociated with a position x for any wanted precision, while physically the idea of the
local stress tensor in continuum mechanics is valid only above a length scale. The
local stress tensor σm,kij has been computed as an average over a coarse-grained block
k with a certain linear size w [Yoshimoto et al., 2004, Mizuno et al., 2013]. In the
work by Goldhirsch [Goldhirsch and Goldenberg, 2002], this coarse-grain process is
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systematically done by introducing a smooth coarse-graining function. It is worth
to notice that the stress tensor averaged over all blocks gives the bulk stress tensor
[Parrinello and Rahman, 1982, Lemaître and Maloney, 2006]

1

M

M∑

k=1

σm,kij =
1

M

M∑

k=1

1

wd

∫

Dk
dxdσij(x) = σBij (4.2)

In conclusion the local stress tensor is a quantity rather well defined. Its mi-
croscopic expression is consistent with its macroscopic physical meaning. A spatial
average of the local stress tensor gives the macroscopic stress tensor.

Linear elasticity

In the theory of linear elasticity of solids, the local stress tensor is related with the
local deformation, i.e. the strain tensor, through a linear tensor product, Hooke’s
law:

σij = Cij,klekl

If the system is isotropic Cij,kl = λδijδkl+µ(δikδjl+δilδjk). The strain tensor is given
by eij = 1

2
(∂iuj +∂jui) with ui representing the displacement field. This relation can

be interpreted as the fact that in a solid state the internal interaction characterized
by the stress tensor is caused by the deformation characterized by the strain tensor
from its reference state and this deformation is the apparent macroscopic state of the
a microscopic equilibrium state balanced by the external loading and the potential
force of the configuration. This linear elasticity can be derived from the assumption
that the local free energy density can be approximated, for small deformations, by
a quadratic form of strain tensor components. One finds Hooke’s linear elasticity if
one writes the Taylor expansion of the free energy density up to the second order of
the local strain tensor [Landau and Lifshitz, 1986]. In isotropic elasticity:

F = F0 +
1

2
λ(eii)

2 + µeklekl

where the term after λ is the squared sum of all the diagonal components and after
µis the sum over all the squared components. λ and µare the Lamme coefficients,
from which the bulk modulus K = λ+ 2

3
µ and the shear modulus is identically µ.

Glassy systems below the yielding threshold behave like an isotropic elastic solid.
The bulk elasticity of glassy systems is well described by Hooke’s law [Maeda and
Takeuchi, 1978, Lemaître and Maloney, 2006, Mizuno et al., 2013]. Under a global
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loading condition below yielding, the particle displacements show a great non-affinity
in glassy systems, which is important for the determination of macroscopic elastic
properties [Lemaître and Maloney, 2006]. Is it possible to describe a glassy state as
composed by elementary blocks with each of them possessing the linear elasticity,
which is an important building block of elasto-plastic model.

The attempt to relate the local stress tensor with a local strain requires a well
defined displacement field. In contrast with the local stress tensor, there seems no
unique way to define a macroscopic displacement field. Two kinds of approaches are
adopted in literature: (i) The local elastic constant is computed by assuming a small
local strain identical to the global strain, then the local stress computed as the prod-
uct of the local elastic constant and the bulk strain can be compared with the local
stress computed directly by the microscopic expression to validate the local linear
elasticity [Lutsko, 1988, Mizuno et al., 2013]; (ii) Introducing a coarse-graining func-
tion of width w (the same in the previous section for local stress) to define a smooth
displacement field from which the local strain tensor is computed [Goldhirsch and
Goldenberg, 2002, Tsamados et al., 2009], the elastic constant involving six indepen-
dent tensor components can be determined with two loading modes. By applying a
third loading mode, the local stress computed by the microscopic expression and the
local stress computed from elastic constant can be compared to validate the local
linear elasticity. It is found that the deviation from the linear elasticity approach
decreases as a power law with the coarse-grain width w and converges to zero if w
goes to the system size. This indicates that even if there is no typical length scale
above which the local linear elasticity approach can be considered exact, beyond a
reasonable value of coarse-grain length scale, the error remains below an acceptable
value ∼ 5%.

These studies made a reasonable analysis of the condition under which the local
linear elasticity approach holds for glassy materials. Beside, the local elastic constant
is not homogeneous in space and during the loading, the elastic constant of a region
close to a plastic rearrangement decreases drastically [Tsamados et al., 2009].

Criteria for local plastic events

Efforts for correlating local properties of amorphous systems with local plastic events
have been made through molecular dynamics simulations. Several local properties
are studied, such as the local density [Spaepen, 1977], local potential energy [Shi
et al., 2007], the short range order [Shi and Falk, 2005], shear modulus [Tsamados
et al., 2009]. A recent paper [Patinet et al., 2016], compared the capability of
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predicting plastic events of all the above local properties along with the local yield
stress. It is found out that the local yield stress is the most relevant quantity to
quantify the susceptibility of plastic events to loading. From the state where the
local yield stress is measured, about the first 35 plastic events during shear can be
identified with the lowest yield stress regions at the beginning. The maximum strain
for which the local yield stress is strongly correlated with plastic events is about 0.07

[Patinet et al., 2016].
The local criteria for a plastic event taking place differs one from each other in

various mesoscopic elasto-plastic model in the literature. In a recent study [Patinet
et al., 2016], a relatively important correlation is found between local plastic events
and the local plastic property in an quenched molecular dynamic system. An usual
macroscopic athermal quasi-static shear was applied onto the prepared glassy system
from a reference state, allowing non-affine motions of particles only inside a chosen
mesoscopic scale block and the difference between the local stress at which a plastic
event takes place and the local stress before quasi-static shear was computed as the
local yield stress for the mesoscopic scale block. The local yield stress was computed
for each of the blocks inside the system and they performed again from the same
reference state, allowing non-affine motions of all particles, to observe where to
happen plastic events. They showed that there is an important correlation between
the smallest values of local yield stress and plastic events, i.e. blocks with small
value of local yield stress have more chance to occur plastic events. The predictive
capacity of local yield stress probed in this way remains reasonable at least for about
the first 75 plastic events. Although in the study [Patinet et al., 2016], the local
stresses at which local plastic events take place are not compared directly with the
local yield stresses determined before the macroscopic loading, to take a random
local stress threshold for plastic event criteria seems to be the most adequate.

Interaction via the elastic matrix

Interaction among plastic events in glassy systems has been studied in both exper-
iments [Schall et al., 2007, Chikkadi and Schall, 2012, Chikkadi et al., 2012, 2011,
Le Bouil et al., 2014, Jensen et al., 2014] and in molecular simulations [Maloney and
Lemaitre, 2004, Lemaître and Caroli, 2007, 2009, Puosi et al., 2014, Tanguy et al.,
2006].

In experimental studies, the non local effect is revealed by looking at the spatial
correlation of non-affine motion, e.g. D2

min and local strain Γmin. The results are
quite robust. The correlation function of D2

min shows isotropic power law decay in
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Figure 4.1: Left: Spatial correlation of local plastic strain within a global strain.
Bulk shear along y direction [Jensen et al., 2014]. Right: The exact solution of the
response of the elastic matrix to a spherical inclusion, i.e. Eshelby’s propagator,
computed numerically

space, see the references above. The correlation function of the local strain Γmin has
a quadrupolar symmetry and show both correlation and anti-correlation, decaying
as a power law. This is very reminiscent to the strain field of an Eshelby inclusion,
see figure 4.1.

The agreement between the correlation map and the response of the elastic ma-
trix to an inclusion strongly supports the idea that a plastic event redistributes
positive and negative stress according to the quadrupolar form so that regions with
positive perturbation have more chance to produce a positive plastic strain and
regions with negative perturbation have more chance to produce negative plastic
strain. In this way, one plastic event triggers other plastic events in a specific ge-
ometry.

In molecular simulation, non-local effects can be directly revealed by looking at
the non-affine displacement field in athermal systems sheared quasi statically. Typ-
ically during global plastic deformation, several spots with outstanding non-affine
motion amplitude can be identified. These spots are identified as local plastic events.
In addition, the non-affine displacement field shows a long range quadrupolar form.
The pattern of highly non-affine spots surrounded by long range quadrupoles of cor-
related motion persists even when the applied deformation rate is finite [Lemaître
and Caroli, 2009]. Not only the non-affine motion but also the stress field display a
long range quadrupolar response around plastic events. This non-local effect of a lo-
cal plastic event has been well investigated by introducing an artificial plastic event
in the middle of a system and averaging over several realization of the surrounding
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displacement field. The averaged result is very well in agreement with the Eshelby
theory at long range and deviates a bit at short range [Puosi et al., 2014].

In the elastoplastic model, once a mesoscopic cell undergoes plastic strain, it is
treated as an Eshelby inclusion. The non-local effect is modeled by the response
of an homogeneous linear elastic matrix to this inclusion [Argon, 1979], which has
been widely adopted in various elastoplastic model. This response can be computed
analytically if the shape of the inclusion is considered as elliptical [Eshelby, 1957].
The basic assumption is that at each local position linear elasticity holds and the
elastic constants are uniform in space. Even if this assumption is not true according
to a work by Tsamados [Tsamados et al., 2009], the interaction propagator derived
from this assumption represents well the averaged feature of the response to local
plastic events [Puosi et al., 2014].

Discussion of the assumptions in mesoscopic elasto-plastic mod-

eling

Global plasticity is well defined in the athermal quasi-static limit. A non reversible
process at the scale of the system is evidenced by the drastic global stress (or en-
ergy) drop within a very small, ideally zero, global strain increment. The global
plasticity finds its clear interpretation in the picture of potential energy landscape
(PEL). That is the hopping from one basin to the neighboring one, which is directly
reflected in a drastic energy drop within a tiny strain increment in the energy strain
curve. According to the study [Maloney and Lemaitre, 2004], a global stress drop in
athermal quasi-static sheared glassy system involves several clusters of particles with
large values of relative displacement, i.e. plastic events. The ensemble of several
local rearrangements correspond to a well defined global non reversible process.

The notion of plastic events is introduced by direct observation of localized non-
reversible particle rearrangement as discussed above. As far as the stress redistribu-
tion due to one plastic event is modeled by the Eshelby propagator, the cluster of
particles having undergone a plastic rearrangement is seen as an inclusion. It means
that this cluster of particles after the plastic event admits a stress free eigenstrain
compared to the stress free state before the plastic event. Particle clusters of a
typical plastic event size are treated as an elementary cell of homogeneous material.
An Eshelby inclusion can be understood as follows: one part of an elastic matrix is
taken away outside of the matrix, undergoes a plastic strain, i.e. the eigenstrain,
is forced back to its original shape and put back to the matrix. From this point of
view, by performing a plastic event, a cluster (or an elementary cell in the elasto-
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plastic model) undergoes a non-reversible process independently of the rest of the
system. One can pursue the reasoning further along this line: since the independent
plastic deformation of the cluster involves several particles interacting with each
other (the number of particles of order 10 ∼ 100), it is natural to introduce a “local
potential energy landscape” constructed by the coordinates of these particles. It is
then possible to interpret the local plastic event as the hopping from one basin to
the next, allowing a collective particle motion looking like the apparent eigenstrain.
Here comes the idea of a local yield stress or a local energy barrier [Nicolas et al.,
2014a, Bulatov and Argon, 1994] which is a specific concept of mesoscopic modeling.
Note that the idea of this local yield stress is similar but different from the local
yield stress studied in [Patinet et al., 2016] related with plastic events, which takes
into account of the interaction with all particles in the system but neglects their
non-affine motion, while the local yield stress introduced here is based on the local
potential energy landscape.

This interpretation of the local plastic event as the hopping in a local-PEL has
an obvious weakness, that particles inside the cluster of plastic event interact with
particles elsewhere. The potential energy landscape of a cluster of particles changes
its form due to the motion of particles outside of the cluster during the bulk defor-
mation. This makes the hopping from one basin to another loosely defined at the
level of a restricted subsystem.

Apart from the direct visualization of local plastic events, a way to reveal the
local non-reversible process suggested by mesoscopic modeling, would be to look for
sudden drops in local stress strain curve in the same way that it is used to identify
global non-reversible process. This turns out to be difficult. In most cases, the local
stress at a mesocopic scale is defined in two ways: the first one consists in dividing
space on a regular grid and averaging over particles in the block the microscopic
stress discussed above. Upon increasing strain, an artifact can be introduced because
the number of particles inside the small box fluctuates, so that the drastic change
in local stress defined in this way can hardly be interpreted physically. The second
way is to define a mesoscopic local stress using a coarse-graining function φ(x) as
in [Goldhirsch and Goldenberg, 2002], which also has the same pathology as the
first one. Meanwhile it is a little improved because if the φ(r) is taken smooth
enough such that the number fluctuations contribute smoothly to the local stress,
the drastic change of local stress may give some physical insight at the mesoscopic
scale. But there has been, to my knowledge, no effort in the literature to investigate
this question.
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Another question is the following: with the discussion above about the local
plastic event in the elasto-plastic modeling, one global stress drop (one global non-
reversible process) is seen as composed by several coupled local non-reversible pro-
cesses. How can this picture be justified and connected with the full Nd degree of
freedom description? No effort has been done in the literature about this question.

The observed local reversible deformation and local non reversible deformation
of an amorphous system are actually two facets of the same physical process as the
system undergoes a global plasticity, the microscopic interpretation of which is the
hopping between inherent structures. The distinction of local elasticity and local
plasticity in the elasto-plastic model remain phenomenological.

Even though there are no answers to the questions asked above, it has been shown
that by carefully fitting the Eshelby’s inclusion parameter with plastic events in
molecular dynamics simulation, a mesoscopic model can very well reproduce the bulk
stress strain curve obtained from molecular dynamics [Albaret et al., 2016]. This
can be taken as a practical justification of using this decomposition into elementary
local plastic events in elastoplastic models, in spite of the questions raised above
concerning the link to the global PEL picture.

4.2 Formulation

A general formalism incorporating the qualitative elements discussed in the previous
sections is introduced in this section. The general assumptions will be the following:
the system is composed of elementary cells which are assumed to be homogeneous.
Each cell can individually undergo, in a heterogeneous fashion, plastic deformation
and elastic deformation obeying linear elasticity. The elastic moduli of all cells
are assumed to be identical. Cells interact with each other as a response to the
heterogeneity of plasticity, following mechanical equilibrium in continuum mechanics
(Eshelby’s problem).

The formalism will be presented in this chapter in a little different way than it
was done in the literature, for incorporating both the shear rate control and the
stress control protocol. An absolute plastic interface is introduced, which moves
constantly forward under the external loading.
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4.2.1 Static state: Mechanical equilibrium & Heterogeneity

of the stress field and the plastic strain field

Reference state

A reference frame has to be always fixed for defining a displacement field and further
for defining the strain of a system. By taking the state of an amorphous system
at t = to as the reference state, it is possible to define the apparent displacement
field at moment to + ∆t noted as u(x, to + ∆t) ≡ ui(xj, to + ∆t). As long as the
deformation is weak, it is usual to define the strain tensor as:

ε∆ij =
1

2
(∂iuj + ∂jui) (4.3)

where ∂i = ∂
∂xi

. The upper index ∆ is for making correspondence with the ∆t and
refers to the the deformation from the reference state. The apparent displacement
field ui is assumed to be a sum of a displacement field of plastic nature and a
displacement field of elastic nature, i.e. ui = upli +ueli . One elementary volume D at
x ≡ xi, undergoing ui = upli + ueli during ∆t, undergoes plastic strain:

εpl,∆ij =
1

2
(∂iu

pl
j + ∂ju

pl
i )

∣∣∣∣
x

(4.4)

and elastic strain:
εel,∆ij =

1

2
(∂ju

el
i + ∂iu

el
j )

∣∣∣∣
x

(4.5)

. The total strain is also composed by the two parts

ε∆ij = εpl,∆ij + εel,∆ij (4.6)

The reference state can be chosen arbitrarily as far as it is in a mechanical
equilibrium. The stress field of the reference state can be of any form σRij without
any specification, except for

∂jσ
R
ij = 0 (4.7)

. The general assumption of linear elasticity implies then that a residual elastic field
satisfying σRij = λδijε

el,R
kk + 2µεel,Rij is embedded in the reference state.

Local plasticity

The plastic strain field εpl,∆ij characterizes the non-reversible plastic events of all
elementary cells over all the system during ∆t. The phenomenology of local re-



4 Mesoscopic Elasto-Plastic Model 44

arrangement during bulk deformation is formulated by writing εpl,∆ij (x, to + ∆t) =
∑

xa
A(x − xa)ε

a∆
ij , where xa is the position of one plastic event during ∆t, εaij the

amplitude of local plastic strain and A(x) equals to 1 (0) inside (outside) the region
of a local rearrangement. In the extreme case where there is only one plastic event,
we have εpl,∆ij (x) = A(x− xo)ε

pl,∆
o .

Mechanical equilibrium

The elastic deformation εel,∆ij during ∆t can be viewed as the response of an ho-
mogeneous elastic medium to the non-homogeneous plastic deformation εpl,∆ij . As a
result, after ∆t, any elementary volume D sustains a local stress perturbation:

σ∆
ij = λδijε

el,∆
kk + 2µεel,∆ij (4.8)

The stress field at to + ∆t is then σRij + σij. The apparent displacement field ui can
be computed by assuming mechanical equilibrium which requires

∂j(σ
∆
ij + σRij) = 0 (4.9)

Taking into account expressions (4.7), (4.8), (4.3) and (4.6), one arrives at

(λ+ µ)∂i(∂lul) + µ(∂l∂l)ui = −fi (4.10)

with
fi = −(λ∂iε

pl,∆
kk + 2µ∂jε

pl,∆
ij ) (4.11)

for any plastic strain field.
Because of the linearity of this equation, it is convenient to solve it in Fourier

space,
ûi = Ξ−1

ij f̂j

with
f̂i = i(λqiε̂

pl,∆
kk + 2µqj ε̂

pl,∆
ij ) (4.12)

Ξij is detailed in Appendix B.
One can further assume, for simplification, that the medium is incompressible :

∂lul = ∂lu
pl
l = 0 (4.13)
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With this assumption the mechanical equilibrium changes its general form to:

−∂iP T + ∂jσ
T
ij = 0

The upper index indicates the final pressure P T = PR + P∆ and the final stress
σTij = σRij + σ∆

ij . Mechanical equilibrium in the reference state requires −∂iPR +

∂jσ
R
ij = 0. The above equations and the constraint of incompressibility (4.13) result

in the equation required by the mechanical equilibrium for the perturbed stress and
pressure field due to plastic events

−∂iP∆ + µ(∂l∂l)ui = −f Ii (4.14)

with
f Ii = −2µ∂jε

pl,∆
ij (4.15)

The solution in Fourier space is straightforward, from which one deduces the
expression for the stress perturbation field due to plastic events in Fourier space

σ̂∆
ij = 2µĜij,klε̂

pl,∆
kl (4.16)

with
Ĝij,kl =

δjlqiqk + δikqjql
q2

− 2
qiqjqkql
q4

− δikδjl (4.17)

The detail of calculation is in Appendix B.
It is important to note that (i) the symmetry Ĝ(−q) = Ĝ(q) implies that in

real space G is a even function G(x) = G(−x). (ii)the propagator Ĝij,kl is not
defined at qi = 0 This zero wavevector value is the integral of the response over
space: Ĝij,kl(q = 0) =

∫
Gij,kl(x)dxd. To determine the zero wavevector Fourier

component, we use the property that the total stress response to an internal plastic
event taking place in the material is zero, we rewrite the expression (4.16) in real
space:

σ∆
ij (x) = 2µ

∫
GN
ij,kl(x− y)εpl,∆kl (y)dyd (4.18)

where we have introduced the total response function GN
ij,klinstead of Gij,kl. The

condition of zero total stress then imposes

1

V

∫
σ∆
ij (x)dxd = 2µĜN

ij,kl(0)

∫
εpl,∆kl (y)dyd = 0
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from which
ĜN
ij,kl(0) = 0 (4.19)

and
ĜN
ij,kl(q 6= 0) = Ĝij,kl (4.20)

So any internal stress fluctuation only due to the heterogeneous plastic strain
field can be expressed by (4.18) with the above definition of ĜN

ij,kl which guarantees
a macroscopically stress free state.

Superposition of stress fields

σRij in the above section is the stress field in the reference state. It can be in general
of any form as long as it satisfies the mechanical equilibrium. Let us assume it to be
the internal heterogeneous stress field due to the heterogeneous feature of amorphous
systems in a (macroscopic) stress free state, so that the integral of σRij over space
vanishes.

Using the notation σINTij for σ∆
ij +σRij described above for the internal stress only

due to the heterogeneous plastic strain field changing, i.e. local plastic events. Simi-
larly P INT for P∆ +PR described above. The mechanical equilibrium is guaranteed
by (4.14). Thanks to the linearity of this mechanical equilibrium equation, any ex-
ternal perturbation σEXTij and PEXT satisfying the mechanical equilibrium can be
added to the internal stress and pressure without violating mechanical equilibrium.

We can write the total stress field

σij = σEXTij + σINTij

with
1

V

∫
σINTij (x)dxd = 0

and the bulk stress

〈σij〉 =
1

V

∫
σij(x)dxd =

1

V

∫
σEXTij (x)dxd

Also we can decompose the local elastic strain into two parts εelij = εel,INTij +

εel,EXTij , in the case of an incompressible medium:

σINTij = 2µεel,INTij = 2µ(εel,∆ij + εel,Rij )
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and
σEXTij = 2µεel,EXTij

Since mechanical equilibrium is assumed for the stress field in the reference state
(4.7), a fictitious plastic strain field can be always reconstructed by replacing σij
and εplij by σRij and εpl,Rij respectively in (4.18). In Fourier space for q without zero
components:

ε̂pl,Rij =
1

2µ

(
ĜN

)−1

ij,kl

σ̂Rkl

For q with zero components, it is simple to impose ε̂pl,Rij = 0. This fictitious
plastic strain field has no specific physical meaning and is simply introduced to
make the formulation more elegant.

Let us cite two specific examples of an external applied stress field (i) a uniform
shear with imposed shear stress σEXTij = constant over all the system; (ii) a uniform
gradient of pressure applied on a two dimensional channel along x: ∂xPEXT = Cst

p ,
mechanical equilibrium and geometric symmetry implies that the external stress is
given by σEXTxy = σEXTyx = Cst

p y + constant and σEXTxx = −σEXTyy = constant.

Summary

To summarize, at every instant an amorphous system is supposed to be in a mechan-
ical equilibrium state, which can be characterized by a plastic strain field, which is
heterogeneous in general:

εplij(x, t) = εpl,Rij + εpl,∆ij (4.21)

The internal stress field due to plastic heterogeneity can be uniquely defined by the
plastic strain field through

σINTij (x, t) = 2µ

∫
dydGN

ij,kl(x− y)εplkl(y, t) (4.22)

An external stress field, which can be applied in any form for simulating the external
loading condition, adds up with the internal stress to give the total stress field

σij(x, t) = σINTij (x, t) + σEXTij (x, t) (4.23)

Outside the plastic regions, the elastic strain field is related to the stress field using
linear elasticity σ∗ij = 2µεel,∗ij for an incompressible material, where the upper index
∗ represents any of “total”, “internal” and “external”.
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For simplicity a scalar version of this description is adopted in the thesis. Only
the pure shear along x direction is considered, i.e. only the xy component is taken
into account. In this case, by writing σ for σxy and similarly for other quantities,
the equations above become

σINT (x, t) = 2µ

∫
dydGN(x− y)εpl(y, t) (4.24)

σ(x, t) = σINT (x, t) + σEXT (x, t) (4.25)

with ĜN(0) = 0 and in a 2d system

ĜN(q) = −4
q2
xq

2
y

q4
(4.26)

and in a 3d system

ĜN(q) = −4q2
xq

2
y + q2

zq
2

q4
(4.27)

4.2.2 Dynamics

At every instant, an amorphous system is assumed to be in a mechanical equilib-
rium state which comes from the assumption that the system is in the strongly
overdamped regime because of internal dissipation. This is taken into account by
the relation instantaneously satisfied at all time by the internal stress field and the
heterogeneous plastic strain field, i.e. equation (4.22).

From equations (4.22) and (4.23), at moment t, the state of a system is inde-
pendently determined by the plastic strain field εplij and the external loading σEXTij .
The time evolution of these two quantities determines then the complete dynamics
of the system. The dynamics of σEXTij is an input signal corresponding to the ex-
ternal loading, which should be independent on any state variable of the system.
The dynamics of εplij should be a functional of state variables, reflecting the internal
properties of the system.

The dynamics of εplij consists of two parts: (I) Where and when takes place a
plastic event, and when a plastic event stops. As shown in many molecular dynamic
simulations and in experiments, plastic events occur in a random and localized
fashion over all the system (II) When a plastic event is taking place at a position
x, how does the plastic strain εplij(x) vary with respect to the state variables, i.e.
a functional should be specified ∂tε

pl
ij(x, t)[σij(y, t); ε

pl
ij(y, t)]. These two parts of

dynamics of local plastic strain have been chosen in various ways in the literature.
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In the following sections, the rules for the scalar version of the model adopted in
this thesis will be introduced.

Criteria for the activation and the relaxation of local plastic events

An elementary cell at x undergoing a plastic event is said to be in its plastic state,
in which the local plastic strain rate is non zero ε̇pl(x) 6= 0, otherwise it is said to
be in its elastic state ε̇pl(x) = 0. A state variable n(x, t) is introduced: n(x, t) = 0

if the cell at x is in the elastic state and n(x, t) = 1 if the cell is in the plastic state.
A local stress barrier of stress σY (x) is introduced to determine whether a cell

in the elastic state becomes plastic. For a cell n(x, t) = 0, it will becomes plastic
n(x, t + δt) = 1, if σ(x) = σYij (x) and it will remain elastic if σ(x) < σY (x). The
local stress barrier σY is drawn from a probability distribution independently for

each site. The stress barrier σY corresponds to a energy barrier EY =

(
σY
)
2

4µ
. It is

assumed there is a minimum energy barrier below which the probability is zero and
above which the energy barrier is exponentially distributed

P (EY )dEY = dEY Θ(EY − Emin)ν exp
(
− ν(EY − Emin)

)
(4.28)

where Θ(x) is the Heaviside function, ν a normalization factor. Each time a cell
becomes plastic, the plastic event happening in this cell as well as the plastic events
happening before the next plastic event in this cell make changes of the particles
configuration, which in turn modify the local stress barrier for the cell to encounter
the next plastic event, so that the local stress barrier is renewed, once a plastic event
occurs, by randomly choosing its value from the above distribution, that is also to
say that there is no strain hardening or strain softening effect built into the model.

Once a cell becomes plastic, local plastic strain begins to accumulate within this
plastic event. Another parameter γc is introduced for deciding when the cell will
become elastic again. It becomes elastic when the totally accumulated strain reaches
γc

2

∫
dt(ε̇pl(t) + ε̇el(t)) ≥ γc (4.29)

For consistency, it is considered that the minimum energy barrier is related to
the plastic threshold γc through

Emin =
µγ2

c

4
(4.30)

The elastic strain rate in formula (4.29), comes from both the external loading
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and the plastic events of other cells which perturbs the stress of the cell in consid-
eration.

Local dynamics

Elementary cells are modeled as “dashpot” modules, i.e. a resistance in series with a
spring. The plastic strain plays the role of the resistance and the elastic strain plays
the role of the spring. The stress proportional to the elastic strain is exerted on the
resistance. The local plastic strain rate, when the cell is in plastic state n(x) = 1,
is proportional to the local stress and it is zero if it is in elastic state n(x) = 0.

∂tε
pl(x, t) = n(x, t)

σ(x, t)

2µτ
(4.31)

where τ is a time scale parameter.

Summary

These rules of alternation of local state and the local dynamics equation (4.31)
complete the model with equations (4.24)(4.25).

Within this formulation, it is natural to make a stress control protocol by defin-
ing the function σEXT (x, t), injecting it into the model and solving the model by
numerical integration.

It is also useful to define the global strain for making a shear rate control protocol,
which is mostly encountered in experiments and molecular dynamics simulation. The
local total strain writes ε(x) = εpl(x) + εel(x) = εpl(x) + εel,INT (x) + εel,EXT (x). The
global strain is the average over space

〈ε〉 =
1

V

∫
dxdε(x) = 〈ε〉pl + 〈ε〉el = 〈ε〉pl + 〈ε〉el,EXT (4.32)

For imposing a constant shear rate 〈ε̇〉, one should adjust the applied stress with
respect to the global plastic strain rate. If an uniform stress field is applied for pure
shear, it should be updated according to global plastic strain, from equation (4.32):

σ̇EXT = 2µ〈ε̇〉 − 2µ〈ε̇〉pl (4.33)

The stress field evolves as ∂tσ(x, t) = σ̇EXT + ∂tσ
INT (x, t) which is equivalent to

∂tσ(x, t) = 2µ〈ε̇〉+ 2µ

∫
dyd
(
GN(x− y)− 1

V

)
∂tε

pl(y, t) (4.34)
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One can define a propagator G(x) = GN(x)− 1
V
. This form of the elasto-plastic

model is what has been used in references [Picard et al., 2004, Nicolas and Barrat,
2013].

4.2.3 Algorithm scheme

The numerical implementation of the elasto-plastic model described above is summa-
rized by the following algorithm schemes providing a complete vision of the elasto-
plastic model. In the following for simplicity all strain ε is replaced by γ/2.
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Shear rate control protocol

Algorithm 4.1 Shear rate control protocol
Fixing the applied shear rate γ̇ = 2ε̇
Initialization of σ(x),σY (x),n(x)
Initialization t = 0
while t < Tmax do

Compute local plastic strain rate: ∂tγpl(x, t) = n(x, t)σ(x,t)
µτ

Compute local stress changing rate: ∂tσ(x, t) = µγ̇+µ
∫
dydG(x−y)∂tγ

pl(y, t)
Update local stress: σ(x, t+ δt) = σ(x, t) + δt∂tσ(x, t)
Update local state:
if n(x, t) == 0 then

if σ(x, t) > σY (x) then
n(x, t+ δt) = 1
σY (x) is renewed from P (σY )

end if
else

if γac(x, t) >= γc then
n(x, t+ δt) = 0
γac(x, t+ δt) = 0

else
Compute local strain accumulation during the ongoing plastic event:
γac(x, t+ δt) = γac(x, t) + δt

[
∂tγ

pl(x, t) + 1
µ
∂tσ(x, t)

]

end if
end if
t+ = δt

end while
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Stress control protocol

Algorithm 4.2 Stress control protocol
Fixing the applied shear stress σEXT (x)
Initialization of the plastic interface γpl(x)
Initialization of σY (x),n(x)
Initialization t = 0
while t < Tmax do

Compute Internal stress: σINT (x, t) = µ
∫
dydGN(x− y)γpl(y, t)

Compute local stress: σ(x, t) = σINT (x, t) + σEXT (x)

Compute local plastic strain rate: ∂tγpl(x, t) = n(x, t)σ(x,t)
µτ

Update the plastic interface: γpl(x, t+ δt) = γpl(x, t) + δt∂tγ
pl(x, t)

Update local state:
if n(x, t) == 0 then

if σ(x, t) > σY (x) then
n(x, t+ δt) = 1
σY (x) is renewed from P (σY )

end if
else

if γac(x, t) >= γc then
n(x, t+ δt) = 0
γac(x, t+ δt) = 0

else
Compute local strain accumulation during the ongoing plastic event:
γac(x, t+ δt) = γac(x, t) + δt

[
∂tγ

pl(x, t) + 1
µ
∂tσ(x, t)

]

end if
end if
t+ = δt

end while
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4.2.4 Mean-field approach at the mesoscopic scale

At each moment t, it is possible to construct a stress probability distribution P(σ, t)dσ

from the stress field σ(x, t). The probability distribution P(σ, t) represents at a given
moment t how the local stress is distributed over the system. Schematically

P(σ, t)dσ=̂
1

V

∫
dxdΘ

(
σ(x, t)− σ

)
Θ(σ + dσ − σ(x, t)) (4.35)

An effective evolution equation on P(σ, t) can be constructed for describing the
evolution of the system. In the literature the Hebraud-Lequeux model [Hébraud
and Lequeux, 1998] and the KEP model [Bocquet et al., 2009] are of this kind.
These models were built for amorphous systems under fixed shear rate. By making
approximations, the Hebraud-Lequeux model can be deduced from the KEP model.
The Hebraud-Lequeux model reads

∂tP(σ, t) = −µγ̇∂σP(σ, t) +αΓ(t)∂2
σP(σ, t) + Γ(t)δ(σ)− 1

τ̃
Θ(|σ|−σc)P(σ, t) (4.36)

The Hebraud-Lequeux model assumes that local plastic events take only place
with a probability per unit time 1

τ̃
, when local stress exceeds in absolute value a

uniform threshold, i.e.
∣∣σ
∣∣ > σc. Once a plastic event takes place, the local stress

drops back to the origin. This mechanism gives the last two terms on the right hand
side of the equation (4.36), where Γ(t) = 1

τ̃

∫
dσΘ(|σ| − σc)P(σ, t) represents the

total rate of plastic events. The first term comes from a global driving shear rate γ̇
which would instantaneously shift the whole distribution function up to µγ̇ per unit
of time. The second term comes from the mechanical coupling between different
sites in the system induced by the propagator GN(∆x). This mechanical coupling is
modeled by a diffusion of the local stress, with the diffusion coefficient proportional
to the rate of plastic events and α the coupling strength. This model is shown to
reproduce well the Herschel-Bulkley law in the small shear rate limit.

It will be shown in the following that, by changing a little the local yielding
criteria and making approximating assumptions, the Hebraud-Lequeux type model
can be derived from the spatial resolved elasto-plastic model, and similarly the
mean-field model can also be used to describe an amorphous system under either
fixed shear rate or fixed shear stress.

From the elasto-plastic model to the Hebraud-Lequeux type model

Let us make two modifications in the elasto-plastic model presented above.
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1. Local criteria of plastic events: If the local stress is larger than a unique
threshold |σ(x, t)| > σc, the small region at x has probability 1

τ̃
per unit of

time to undergo a local plastic event.

2. Plastic events are instantaneous, i.e. local rearrangements are considered much
faster than the any time scale of external loading. If ta is one of the moments
where a plastic event happens at x, the plastic shear rate at x is schematically
represented:

∂tγ
pl(x, t) = −σ(x, t)

GN
o µ

∑

ta

δ(t− ta) (4.37)

where a time scale is omitted due to the delta function. This formula means
that the plastic strain δγpl(x) at a small time interval after and before the
moment of plastic event ta is finite and equals to −σ(x,ta)

GNo µ
, with GN

o = GN(0) <

0. This design makes the stress drop at x only due to local plastic event at x

equal to the local stress itself σ(x, ta − 0+). Precisely if only one plastic event
takes place at x

δσINT (x) = µ

∫
dydGN(x− y)δγpl(y) = µGN(0)

(
− σ(x)

GN
o µ

)
= −σ(x) (4.38)

This design is consistent with the assumption of Hebraud-Lequeux model
[Hébraud and Lequeux, 1998] and another version of the elasto-plastic model
[Lin et al., 2014a].

With the above modifications, let us check how the local stress varies during a small
time interval δt

δσ(x) = δσEXT − 1

GN
o

∑

y∈A

GN(x− y)σ(y) (4.39)

where y ∈ A denotes the regions where a plastic event takes place during the small δt
and the integral is replaced by a summation for simplification. Since δt is small and
the local stress will drop close to zero if one plastic event happens at the same place,
there can only happen one plastic event for a given position during δt. The second
part of the right hand side of equation (4.39) can be seen as a random variable over
all x with zero mean value because of 1

V

∑
xG

N(x − y) = 0. We can regard this
random variable as a mechanical noise ξC as function of x:

ξC(x) = − 1

GN
o

∑

y∈A

GN(x− y)σ(y) (4.40)

with 〈ξC〉x = 0.
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For regions where there happen a plastic event during δt , i.e. x ∈ A, equation
(4.39) can be written in another form:

δσ(x) = δσEXT − σ(x)− 1

GN
o

∑

y 6=x,y∈A

GN(x− y)σ(y) (4.41)

For regions where no plastic events happen, i.e. x ∈ AC , the equation (4.39) keeps
its form. Let us denote ξ′

ξ
′
(x) =

{ − 1
GNo

∑
y 6=x,y∈AG

N(x− y)σ(y) x ∈A
− 1
GNo

∑
y∈AG

N(x− y)σ(y) x ∈ AC
(4.42)

the average of which
〈ξ′〉x = 〈ξC〉x + 〈σ〉x∈A = 〈σ〉x∈A (4.43)

A zero mean mechanical noise can be defined as

ξ(x)=̂ξ
′
(x)− 〈σ〉x∈A (4.44)

For regions x ∈ A during δt

δσ(x) =
(
δσEXT + 〈σ〉x∈A

)
− σ(x) + ξ(x) (4.45)

For regions x ∈ ACduring δt

δσ(x) =
(
δσEXT + 〈σ〉x∈A

)
+ ξ(x) (4.46)

The P(σ, t) defined in (4.35) evolves under three effects according to (4.45) and
(4.46): (i) An uniform driving δσEXT + 〈σ〉x∈A; (ii) For those undergoing plastic
events, local stress drops back to origin; (iii) Zero mean noise ξ(x).

The first two effects give rise to a partial derivative equation of P(σ, t):

∂tP(σ, t) = −
(δσEXT + 〈σ〉x∈A

δt

)
∂σP(σ, t) + Γ(t)δ(σ)− 1

τ̃
Θ(|σ| − σc)P(σ, t) (4.47)

with
Γ(t) =

1

τ̃

∫
dσΘ(|σ| − σc)P(σ, t) (4.48)

representing the quantity of plastic events per unit time. We can also write:

〈σ〉x∈A =
δt

τ̃

∫
dσΘ(|σ| − σc)P(σ, t)σ (4.49)
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If we assume that the noise ξ(x) is Gaussian distributed noise with an amplitude
proportional to the number of plastic events during δt, the effect of the mechanical
noise ξ(x) gives rise to a diffusion term D(t)∂2

σP(σ, t) adding up to the evolution
equation of P(σ, t). The diffusion coefficient is proportional to the rate of plastic
events, i.e. D(t) = αΓ(t) with α representing the coupling strength.

A straightforward calculation from definition (4.37) leads to µδt〈γ̇pl〉 = − 1
GNo
〈σ〉x∈A.

We can define a bulk plastic shear rate up to a constant prefactor − 1
GNo

, always keep-
ing the same physical meaning

γ̇pl=̂−GN
o 〈γ̇pl〉 = 〈σ〉x∈A =

1

µτ̃

∫
dσΘ(|σ| − σc)P(σ, t)σ (4.50)

The external loading σEXT is of pure elastic nature and it is interpreted in the
context of the elasto-plastic model as the bulk stress. By changing the notation
µγ̇el = δσEXT

δt
and γ̇ = γ̇el + γ̇pl, the full evolution of P(σ, t) reads:

∂tP(σ, t) = −µγ̇∂P(σ, t) + αΓ(t)∂2
σP(σ, t) + Γ(t)δ(σ)− 1

τ̃
Θ(|σ| − σc)P(σ, t) (4.51)

which is the Hebraud-Lequeux (HL) model [Hébraud and Lequeux, 1998]. The new
thing that we can add here is that the γ̇ in HL model is interpreted as composed by
a pure elastic part and a pure plastic part. The elastic part is the external loading
playing the role of input signal and the plastic part is expressed by equation (4.50).
It can be verified by integrating on both sides of (4.51) with

∫
dσσ :

d

dt
〈σ〉 = µγ̇ − µγ̇pl = µγ̇el = σ̇EXT (4.52)

Shear stress and shear rate control protocol

If one wants to apply shear rate control protocol, it is nothing but the original HL
model by letting γ̇(t) vary and implementing a feedback algorithm.

If one wants to apply a constant shear stress, it consists to initiate the P(σ, t = 0)

such that 〈σ〉(t = 0) equals the stress one wants to apply and to replace γ̇ by γ̇pl

according to equations (4.50) and (4.52).
If one wants to apply a variable shear stress, for example the oscillatory shear

stress, it consists to replace γ̇ by the sum of the desired γ̇el(t) and γ̇pl according to
equation (4.50) after initialization giving the wanted bulk stress at the t = 0 and to
let the equation evolve. The implementation of this protocol resembles to a linear
feedback loop on γ̇(t) often encountered in experiments, but we have here a zero
delay time.
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4.3 The analogy with depinning model

Let us briefly recall the formalism of the elasto-plastic model and the formalism of
the depinning model.

1. Depinning model

η∂th(x, t) = ν∂2
xh+ f − ∂hV (x, h(x, t))

2. Elasto-plastic model, with η′ = µτ

η
′
∂tγ

pl(x, t) = n(x, t)
(
µ

∫
dyGN(x− y)γpl(y, t) + σEXT

)

One can identify some similarities between these two equations. The depinning
model describes the motion of the interface motion h(x, t) under self-interaction,
the external driving and the quenched disorder potential energy landscape. The
elasto-plastic model describes the motion of the plastic interface γpl(x) = 2εpl(x)

under self-interaction, external driving and plastic events activation.
The kinetic object

h(x, t)↔ γpl(x, t)

The self-interaction
ν∂2

xh↔ µGN(x) ∗ γpl(x, t)

The external driving
f ↔ σEXT

The alternation dynamics of plastic events n(x) : 0
 1 can be viewed as pinning
disorder analogue to the quenched disorder in the depinning model −∂hV (x, h) .
This kind of analogy between the two models are also discussed in [Lin et al., 2014a,
Tyukodi et al., 2016, Weiss et al., 2014].

The important difference between these two models is that the self-interaction in
the depinning model is convex while the self-interaction of the elasto-plastic model
is not.

The dynamical phase transition of the depinning model can be summarized by
v = 〈∂th〉 ∼ (f − fc)

β while the amorphous systems admit the Herschel-Bulkley
law, for stress control protocol or for large enough system size shear rate control
protocol, γ̇ = 〈∂tγpl〉 ∼ (σ−σc)1/n. If there is any critical dynamics associated with
a dynamical phase transition at the yielding point of an amorphous system, it is
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natural to draw the physical picture of this critical phenomenon by inspiration from
the depinning model.



Part II

Topics
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Chapter 5

Critical dynamics close to the

yielding transition

Broadly speaking, the yielding transition for an amorphous system deep below the
glass transition refers to the transition between a liquid like behavior and a solid
like behavior when the globally applied stress varies across a critical value, i.e. the
macroscopic yield stress. In this chapter, the yielding transition of an athermal
amorphous system is probed using the mesoscopic elasto-plastic model described in
the previous chapter.

From a microscopic point of view, below the yielding point, an athermal glassy
system is trapped into a metastable basin of the potential energy landscape. Beyond
the yielding point, the global strain rate response can be interpreted microscopically
as the traveling through the potential energy landscape with an averaged velocity
in the configuration space compatible with the global strain rate. The manner
by which the system of Nd degrees of freedom travels across the potential energy
landscape, corresponding to the steady state shear, is a priori different depending
on the loading conditions, e.g. higher or lower applied external stress (or shear rate).
Using molecular dynamics simulations, it has been shown that:

1. Not only in the quasi-static regime but also at relatively high shear rate, the
localized plastic events are still the relevant process for the global deformation,
which supports the idea of using mesoscopic modeling for probing the change
of dynamical regimes as the value of the applied external shear rate approaches
zero.

2. The steady state dynamics becomes more and more collective when the ap-
plied shear rate tends to zero, in contrast with a rather random uncorrelated

61
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dynamics at high shear rate. Dynamical properties converge to the quasi-static
limit for decreasing shear rate.

From a mesoscopic point of view of athermal systems, a plastic event is activated
only due to a local stress increase. Higher shear rates or higher applied stresses
will clearly activate more plastic events per unit time randomly in space, while the
elastic interactions described by the Eshelby stress propagator becomes more and
more dominant for the activation of plastic events if the applied shear rate or external
stress is relatively low. In the limit of zero shear rate, each of the successive plastic
events must be activated by the previous ones. As a consequence a more collective
steady state dynamics is expected to emerge when the applied shear rate approaches
zero from a finite value.

Using the elasto-plastic model for probing the steady state dynamics for different
shear rates approaching the low driving limit, will give some insights for understand-
ing the yielding transition of amorphous systems at larger scales than the molecular
dynamics. Comparing the results from mesoscopic model with those coming from
molecular dynamics will also help to improve the understanding of the physics in a
mesoscopic picture.

Throughout this chapter, a shear rate controlled elasto-plastic model is used to
study the steady state dynamics of athermal glassy systems under different applied
shear rates approaching the quasi-static shear limit. In the first section, the shear
rate dependent avalanche statistics is investigated, showing critical behavior in the
low shear rate limit. It is proposed in the literature that the critical behavior at
the yielding transition involves a cooperative length scale. In the second, third
and the fourth sections, different approaches are tested for probing this cooperative
length scale. It is found, as discussed in the fourth section, that this length scale is
evidenced by studying the macroscopic stress fluctuations.

The shear rate control protocol of the elasto-plastic model is used throughout
this chapter for studying the steady state critical dynamics close to the yielding
transition. The mathematical representation given in equations (4.34) and (4.31) is
recalled here (Note that the notations have slightly changed γ̇ = 2〈ε̇〉 and γpl = 2εpl):

∂tσ(x, t) = µγ̇ + µ

∫
dydG(x− y)∂tγ

pl(y, t) (5.1)

∂tγ
pl(x, t) = n(x, t)

σ(x, t)

µτ
(5.2)

The criteria of activation and relaxation of plastic events are those presented in
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the previous chapter 4. Details of the numerical implementation can be found in
the Appendix C.

5.1 Avalanche statistics

The collective motion of athermally driven amorphous systems is well defined in the
zero shear rate limit in both molecular dynamics and in the elasto-plastic modeling
approach. As the shear rate increases, the evidence of collective motion may be
obscured gradually by the external loading. For probing the shear rate dependent
properties of the different dynamical regimes, we should construct an object that
can be clearly defined from the observables at any given shear rate and that can
represent as much as possible the collective motion in zero shear rate limit.

Inspired by experimental studies and molecular dynamics simulations in the low
shear rate limit, we consider sudden macroscopic stress drops as signatures of global
plasticity, these are commonly referred to as avalanches. One such avalanche is a col-
lective motion of many particles, inducing the transition from one metastable basin
of the system to another. This process involves several local plastic rearrangements.
The interpretation of global stress drops as avalanches may be less adequate for high
shear rates, however macroscopic stress drops can always be clearly defined from the
stress time series as long as the dynamics is intermittent. In this framework global
stress drops correspond to a negative time derivative of the stress.

It is straightforward, by averaging over space on both sides of equation (5.1),
that

1

µ

d

dt
〈σ〉x = γ̇ − 〈γ̇pl〉x (5.3)

where 〈•〉x=̂ 1
V

∫
dxd•. The time derivative of the stress represents how the global

velocity of the plastic interface fluctuates around the macroscopic strain rate. The
equation can be schematically represented by the figure 5.1. In the case where
there are few plastic events, the plastic interface grows much more slowly than
the global shear rate, so that the global elastic strain would accumulate and so
does the macroscopic stress. In the case where there happens a burst of plastic
events, releasing the energy stored in the elastic deformation, the average level of
the plastic interface would catch up with the global total strain and the averaged
macroscopic stress would drop. The situation where the global stress increases can
be interpreted as a passive state of the system with respect to the applied shear rate
and the situation where the global stress decreases can be interpreted as an active
state of the system, i.e. the plastic interface is “ready to catch up” with the global
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Figure 5.1: An amorphous system described by the elasto-plastic model can be
globally represented by a visco-elastic modulus. The left extremity is assumed to
be the zero deformation. The right extremity represents the global deformation
composed by a global plastic deformation that is represented by the node linking
the viscous modulus and the spring representing the global elastic strain, which is
proportional to the macroscopic stress.

shear rate.
Another hint on how to define avalanches within our dynamics could come from

the analogy between the formulation of the elasto-plastic model and that of the
depinning model. In the depinning scenario one collective event, i.e. an avalanche,
can be clearly identified from the motion of the elastic line in a two dimensional dis-
ordered environment. When the driving force is approaching the critical force from
above f → fc + 0+, because of the convexity of the self-interaction in the depinning
model, the intermittent forward motion of the elastic line is always manifested by
a forward motion of compact segments. The size of one avalanche can be identified
as the area swept by one of these segments of the elastic line (see figure 5.2).

From the analogy discussed in Chapter 4, the plastic interface plays somehow the
same role as the elastic line. However, the difficulty for the elasto-plastic model to
define an avalanche in a similar way as in the depinning model, is that the forward
motion of the plastic interface has a sparse geometry because of the non-convex
self-interaction given by the quadrupolar geometry of the Eshelby propagator (see
figure 5.2). The only situation in which the forward motion of the plastic interface
can be regarded as an event of pure internal collective motion, i.e. an avalanche, is
the quasi-static shear. In this case, the shear strain is increased for activating only
one plastic event and then kept constant. Thus, the following forward motion of the
plastic interface is only due to the plastic events that are activated by previous ones
through the internal self-interactions. In analogy with the avalanche definition in the
depinning model and also for probing the non-trivial dimensionality of the plastic
interface increment within one collective event (one avalanche), it is convenient to
define, in the quasi-static shear limit, the avalanche size as Sav =

∫
dx∆γpl(x) =

Ld〈∆γpl〉x. This is consistent with the meaning of the macroscopic stress drop at
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Figure 5.2: Left: The collective motion of one avalanche of a one dimensional elastic
interface in a two dimensional disordered environment; Right: A schematic pre-
sentation of the increment of the two dimensional plastic interface for one event of
collective motion in the quasi-static shear limit. Colors correspond to the amplitudes
of the strain increment.

γ̇ = 0 in equation (5.3) up to a factor of Ld.
From the above analysis, the steady state time series of the stress velocity can

be a good observable to study the intermittent dynamics of a flowing amorphous
system crossing over from a regime dominated by external activations at high shear
rates to a fully self-correlated regime close to the zero shear rate limit, i.e. the
critical point of the yielding transition. In the following the precise definitions of
the different studied quantities and results will be presented.

5.1.1 Definitions

By numerical integration of the elasto-plastic model, defined in equations (5.1) and
(5.2), for a given linear system size L and a given applied shear rate γ̇, one can easily
obtain the time series of the rate of change of the macroscopic stress d

dt
〈σ〉x. The

simulation is performed for both three dimensional (d = 3) and two dimensional
(d = 2) systems. Since the quantity of interest is the stress drop, for simplicity the
time series of the negative time derivative of the macroscopic stress vn(t)=̂− d

dt
〈σ〉

is taken for further analysis. A typical shape of vn(t) is shown in figure 5.3.

Stress drop

From the time series vn(t), if vn(t) is a ideal continuous function of time t, one stress
drop, noted V (t), refers to one segment of the time series of the negative stress time
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Figure 5.3: The negative time derivative of the macroscopic stress of a two dimen-
sional system, γ̇ = 10−4, L = 512. Inset: A typical segment of stress drop V (t)
marked by red color.

derivative vn(t) that is defined on the time interval [tS, tE], such that ∀t ∈ (tS, tE),
V (t)=̂vn(t) > 0 and V (tS)=̂vn(tS) = V (tE)=̂vn(tE) = 0.

Because of the numerical discretization, it is mostly encountered that a time
interval [tS + ∆t, tE − ∆t]=̂{tS + ∆t, tS + 2∆t, ..., tE − ∆t} such that ∀t ∈ {tS +

∆t, tS+2∆t, ..., tE−∆t}, vn(t) > 0 is however in the middle of the two extremities tS
and tE such that vn(tS) < 0 and vn(tE) < 0. The numerical correction of the stress
drop definition is simply V (t) with t ∈ [tS, tE]=̂{tS, tS + ∆t, tS + 2∆t..., tE}, such
that ∀t satisfying tE + ∆t 6 t 6 tE −∆t, V (t)=̂vn(t) > 0 and V (tS) = V (tE) = 0

with vn(tE) ≤ 0 and vn(tS) ≤ 0.
Several stress drops can be identified from one time series vn(t), as shown in

the figure 5.3. In the inset a zoom on one individual stress drop is shown. We can
distinguish each stress drop from others by adding an index Vi(t). Given a stress
drop Vi(t) defined on [tiS, t

i
E], we characterize it by defining the following quantities.

The size of one stress drop

The size of one stress drop Vi(t) is meant to capture the signature of a collective
motion when the shear rate approaches quasi-static limit γ̇ → 0. The size of one
stress drop, noted Si is defined as

Si=̂L
d

∫ tiE

tiS

dtVi(t) (5.4)
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where L denotes the linear system size and d the dimension of the system. It is
straightforward to see that Si is equivalent to the avalanche size Sav = Ld〈∆γpl〉x in
the quasi-static limit.

The duration of one stress drop

The duration Ti of one stress drop Vi(t) is defined as

Ti=̂t
i
E − tiS (5.5)

The average shape of stress drops of a given duration T

Given a long enough time series vn(t), we can extractMtotal stress drops {Vi(t)}i=1,..,Mtotal

with corresponding durations {Ti}i=1,...Mtotal
. Defining M(T ) the number of stress

drops with a duration Ti ≤ T , i.e. M(T )=̂
∑Mtotal

i=1 Θ(T − Ti), ∆MT (∆T ) = M(T +

∆T/2)−M(T−∆T/2) is the number of stress drops with duration Ti ∈ I(T,∆T )=̂[T−
∆T
2
, T + ∆T

2
].

For a given stress drop Vi(t) of duration Ti, one can define the rescaled form
Ṽi(t̃)=̂Vi(t̃Ti) which is defined on t̃ ∈ [0, 1]. The average shape of stress drops of
duration T within a time window ∆T , noted as VT (t̃; ∆T ), is defined as

VT (t̃; ∆T )=̂
1

∆MT (∆T )

∑

i,Ti∈I(T,∆T )

Ṽi(t̃) (5.6)

If we have an infinitely long time series vn(t) which gives rise to Mtotal → ∞, the
limit of VT (∆T → 0) can be assumed to exist, i.e.

VT (t̃)=̂ lim
∆T→0

VT (t̃; ∆T ) (5.7)

The function VT (t̃) defined on [0, 1] is the average stress drop shape of duration T .
The numerical integration cannot be infinitely long, practically a time window ∆T

is always chosen of finite duration for obtaining a compromise regarding significant
statistics without biasing too strongly the real form of VT (t̃).

Distance to the instability

Taking a snapshot of the stress field σ(x, t) and the yield stress field σY (x, t), one can
define the field of the distance to the instability x(x, t)=̂σY (x, t)−σ(x, t). Discarding
the negative values of x which are mainly undergoing plastic events, one can produce
the probability distribution of x over all the system P(x). This quantity is supposed
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to be crucial for the mechanical stability of the system. In the quasi-static shear
limit, if P(x) ∼ xθ is assumed for small x [Lin et al., 2014b], θ is required to be larger
than zero for an unique firstly activated plastic event triggering in the following a
finite number of plastic events, i.e. any avalanche should stop at some point in
the quasi-static shear limit, as far as the self-interaction intensity decreases with
the distance in a power law with an exponent equal to the system dimension [Lin
et al., 2014b]. Numerically several snapshots of x(x, t) at well separated moments
are taken for producing P(x) regarding of the finite size effect.

5.1.2 Results

A brief summary of the results is given in this section, followed by the published
paper in the next section, which includes all the details of these results.

Scaling law when γ̇ → 0

For a given γ̇, a linear system size L and a dimensionality d(2 or 3), by a long
time simulation, a long enough time series of negative stress velocity segments vn(t)

is obtained, from which an ensemble of stress drop sizes {Si} and an ensemble of
stress drop durations {Ti} are extracted. A statistical analysis is performed on these
quantities. For shear rates γ̇ ≤ 10−3, the results begin to converge, so that these
results are supposed to reveal the critical dynamics of the yielding transition. The
results presented in this section are mainly for γ̇ ≤ 10−3.

1. The probability distribution of stress drop sizes PS(S;L). PS(S;L)

does not show any shear rate dependence for γ̇ ≤ 10−3, but manifests finite
size effects. For large enough S, such that the numerical precision does not
affect the results, PS(S;L) shows a power law distribution with a cut-off Sc at
large values, determined by finite size effects. PS(S;L) can be represented in a
universal form PS(S;L) ∼ S−τfS(S/Ldf ). This is supported by the collapsing
the data of all distributions PS(S;L) onto a master curve, when rescaling
PS → PSLτdf and S → S/Ldf .

(a) We find that the size distribution exhibits power law behavior with an
exponent τ≈ 1.28 for two dimensional system and τ ≈ 1.25 for a three
dimensional system, consistent with the results from molecular dynamics
simulation [Salerno et al., 2012, Salerno and Robbins, 2013] and previous
results from elasto-plastic models [Budrikis and Zapperi, 2013, Talamali
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et al., 2011, Lin et al., 2014a]. The values of τ for the two space dimen-
sions are clearly different from the mean-field value commonly used in
the avalanche literature τMF = 1.5. This suggests that the mean-field
approach, by assuming equal interaction strength among all sites of an
amorphous system, may not be adequate.

(b) As discussed in the previous section, in the low shear rate limit the size
of a stress drop approximates the size of one avalanche in the quasi-static
shear limit, the largest linear extension is limited by the finite size of
the system, so that the exponent df characterizes how one avalanche
size scales with its linear extension. We find that df reveals a fractal
dimension of the avalanches of order ≈ 0.9 for a 2-D system and ≈ 1.3

for a 3-D system. This suggests that the avalanches in the quasi-static
shear limit as well as the largest event at a finite but small shear rate,
exhibits a non-trivial structure of fractal geometry (df 6= d).

2. The probability distribution of the stress drop durations PT (T ; γ̇).
In contrast with PS(S;L), PT (T ; γ̇) displays a shear rate dependence without
finite size effects. For a large enough duration T where numerical precisions do
not affect the results, PT (T ; γ̇) shows a power law distribution with a cut-off
Tc at large values, determined by the external shear rate γ̇. All curves collapse
onto a master curve if one plots the rescaled quantities PT → PT γ̇ατ ′ and
T → T γ̇α, suggesting the scaling PT (T ; γ̇) ∼ T−τ

′
fT (T γ̇α). In both 2-D and

3-D systems, τ ′ is found close to 1.4. α is an exponent characterizing how
the duration of the largest stress drop scales with the finite shear rate. α is
found to be approximately 0.38 in a 2-D system and approximately 0.3 in a
3-D system.

3. The scaling between stress drop size S and duration T . Similar to the
definition of the average shape of stress drops of duration T , one can define
the average stress drop size, noted S̄(T ;L, γ̇):

S̄(T ;L, γ̇)=̂ lim
∆T→0

1

∆MT (∆T )

∑

i,Ti∈I(T,∆T )

Si (5.8)

An averaging time window is taken to generate S̄(T ) from numerical results.

(a) For any given γ̇ and L, a perfect scaling relation is found S̄ ∼ T δ, with
δ ≈ 1.58 for both 2-D and 3-D systems.
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(b) The prefactor of this relation C(γ̇, L) depends on shear rate and on the
linear system size. Precisely S̄ ≈ C(γ̇, L)T δ, with the scaling relation
C ∼ γ̇αδLdf . The last scaling relation is derived by the observation that
the straight segments in log-log scale of S̄(T ; γ̇, L) for different γ̇ and L,
collapse onto one segment when performing the rescaling S̄/Ldf and T γ̇α.

(c) It is worthy to notice that the large value extremity of one segment S̄(T )

is determined by the larger value cut-off Sc and Tc. Sc scales only with
the systems size L with the exponent df and Tc scales only with the shear
rate γ̇ with the exponent −α.

4. Probability distribution of the distance to the instability P(x; γ̇). For
γ̇ → 0, P(x) converges to the same curve for any system size at small value of
x: P (x) ∼ xθ with θ ≈ 0.52 for 2-D and ≈ 0.37 for 3-D, which compares fairly
well with the former results in the literature [Lin et al., 2014b].

Crossover to mean-field description as γ̇ increases

1. Rheology. The rheological flow curve is probed by computing time average of
macroscopic stress over a large strain window of order 10 within the stationary
state for a given shear rate γ̇. σ(γ̇) = 1

∆γ

∫ γo+∆γ

γo
dγ〈σ〉x. For small shear rates

(γ̇ < 10−3) one can find a dynamical yield stress σc, well fitting γ̇ ∼ (σ(γ̇)−σc)β
with β ≈ 1.55. For larger shear rates above γ̇ > 10−3, β is found to be
close to 2, as predicted by Hebraud and Lequeux [Hébraud and Lequeux,
1998, Agoritsas, Elisabeth et al., 2015]. This crossover towards the mean-field
picture for the estimation of the flow curve can be justified by the fact that
the mechanical noise changes to be consistent with the mean-field assumption
as γ̇ increases above a value of 10−3.

2. Mechanical noise. The mechanical noise can be derived from equation (5.1)

d

dt
σ(x) = µγ̇ + n(x, t)G(0)

σ(x)

τ
+ ξ(x) (5.9)

with
ξ(x) =

1

τ

∑

y 6=x

G(x− y)n(y)σ(y) (5.10)

By taking enough independent statistics of the local stress velocity field, local
state field and local stress field, it is possible to obtain a representative en-
semble of the mechanical noise, from which a probability distribution can be
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Figure 5.4: Left: pdf of the mechanical noise in 2 dimensions, for different shear
rates; Right: same as left panel, in 3 dimensions. Inset: Open circles represent the
standard deviation of the probability distribution versus shear rate. The red straight
line is a guide for the eye.

derived. The results for different shear rates and different dimensionalities are
shown in figure 5.4. It is clear from these results that the probability distribu-
tion of the mechanical noise depends on the shear rate regime, justifying the
adequate description of the diffusion in the stresses at large enough shear rates
[Hébraud and Lequeux, 1998]. For small shear rates, the diffusive description
for the local stresses is no longer valid. This crossover of the mechanical noise
from a mean-field behavior to a non mean-field behavior will be discussed in
details in [Ferrero et al., 2016].

3. Probability distribution of stress drop size PS(S). The exponent τ of the
power law distribution PS(S) increases monotonically with the shear rate γ̇ >
10−3. At a relatively high shear rate γ̇ & 10−2, an exponent comparable with
the mean-field exponent τMF = 1.5 is recovered [Dahmen et al., 2009, 2011,
Antonaglia et al., 2014], which may explain why this exponent is measured in
many occasions, although one would expect the true critical exponent to be
smaller.

4. Probability distribution of the distance to the instability P(x). For
small value of x the distribution exhibits a power law behavior with P(x) ∼ xθ.
The exponent θ decreases monotonically as the shear rate increases form 10−3

to 10−1. For higher shear rates (γ̇ ≈ 10−1.4) , the exponent θ reaches a value
very close to zero. This crossover of the exponent θ indicates that the local
dynamics of x crosses over from mechanical noise dominated regime at low
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shear rate to a shear rate dominated regime, which resembles that of depinning
problem. The random kicks from plastic events on x are much smaller than
the decrease caused by the high shear rate. In the depinning problem, x goes
monotonously to zero as the kicks have always the same sign, because of the
convex self-interaction.

Avalanches & stress drops

The average shape of stress drops of duration T , VT (t̃) is found to be well fitted by
the formula proposed for depinning problem [Laurson et al., 2013]

VT (t̃) ∝ B
(
t̃(1− t̃)

)c(
1− as(t̃−

1

2
)
)

(5.11)

c is found to be independent of other parameters and the relation proposed in
[Laurson et al., 2013] c = δ − 1 is confirmed. as is a parameter characterizing the
degree of asymmetry of VT (t̃). The amplitude B depends on the duration T . As c
is fixed for all durations and as conserves the integral of VT on [0, 1], B determines
the average size of stress drops of the same duration. From the definition (5.8),
S̄ ∝ TB(T ) ∼ T δ. By consequence B ∼ T δ−1. It is actually found B ∼ T 0.6,
recalling that δ ≈ 1.58 independent on the dimension, so that the relation B ∼ T δ−1

is confirmed, justifying the good fitting of the formula (5.11).
For characterizing the asymmetry of the average shape, another purely geomet-

rical asymmetry parameter ag can be defined as

ag=̂

∫ 1

0

dt̃

∣∣VT (t̃)− VT (1− t̃)
∣∣

VT (t̃) + VT (1− t̃) (5.12)

The larger ag, the more asymmetric is the shape, as is the case for the formerly
introduced as. Qualitatively as and ag show the same dependence on system size
L, shear rate γ̇ and the duration of an stress drop T . For the system sizes and
shear rates that are tested, ag is found, for a 3-D system, to scale with these three
quantities as

ag ∼ T−0.43γ̇−0.37L−1.25 (5.13)

Assuming that plastic events take place in a purely random fashion without any
correlation in space and in time, the spatial-temporal plastic activity map should
be isotropic and no privileged time direction can be identified, in which case the
average shape of stress drops should be symmetric in time, i.e. as = ag = 0. As far
as ag (or as) is significantly different from zero, it implies that correlations in space
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and in time in the arrangement of plastic events begin to manifest themselves.
The duration T and the linear system L can be regarded as a spatial-temporal

window of observation. Increasing either T or L makes the observation window
larger. ag can be seen as the intensity of correlation over the entire observation
window. The larger ag is, the more pronounced is the manifestation of the correla-
tions in the occurrence of plastic events. We can infer from (5.13), that increasing
the observation domain by either increasing T or L will decrease the intensity of
correlations over the entire observation window. For a fixed observation window,
the intensity of correlation is inversely proportional to the shear rate.

A unified interpretation of this observation is that the intensity of correlations
over the entire observation window is determined by the ratio of the spatio-temporal
correlation domain to the observation window. Let us denote Dc the domain of
correlation and Do for the window of observation. The intensity of correlation over
the observation window is weak and tends to vanish if Dc

Do
→ 0 and the intensity of

correlation is large if Dc
Do
& 1. The size of the domain of correlation Dc is inversely

related with the shear rate as shown in equation (5.13).
Equation (5.13) indicates that ag diverges with γ̇ → 0, which can be interpreted

for a finite system as system spanning spatio-temporal correlations.. This is what
happens in the quasi-static shear limit, where each stress drop corresponds to one
avalanche, i.e. one event composed by fully correlated local plastic activities, the
upper bound of which is only limited by the system size. This conceptual domain
of spatial-temporal correlations Dc can be clearly identified with one avalanche in
the limit of quasi-static shear.

As soon as the shear rate increases to finite values, the avalanches as well as
the correlation domain Dc become loosely defined. With the above analysis of the
dependence of the asymmetric parameter on the shear rate, the duration and the
system size, we propose the following scenario: One avalanche is an event com-
posed by fully self-correlated plastic activities. Avalanches are interrupted for any
reasonable finite shear rate. One avalanche can be characterized by a domain of
spatio-temporal correlations Dc, the measure of which, even it is not clear how to
access it, is inversely proportional to the shear rate γ̇. In the zero shear rate limit
each domain of plasticity corresponds to one avalanche, the largest of which spans
the whole system. Macroscopic stress drops as well as the plasticity in an amor-
phous system at a finite shear rate proceeds with the spatial-temporal superposition
of avalanches. The intensity of correlation measured as the symmetry of the average
shape of stress drops is weaker or stronger dependent on the ratio of the typical size
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of the correlation domain of an avalanche to the size of the observation window.

5.1.3 Publication associated with this chapter - Liu et al.,

Physical Review Letters 116, 065501 (2016).
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We study stress time series caused by plastic avalanches in athermally sheared disordered materials.
Using particle-based simulations and a mesoscopic elastoplastic model, we analyze system size and shear-
rate dependence of the stress-drop duration and size distributions together with their average temporal
shape. We find critical exponents different from mean-field predictions, and a clear asymmetry for
individual avalanches. We probe scaling relations for the rate dependency of the dynamics and we report a
crossover towards mean-field results for strong driving.
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Many materials respond to slow driving with strongly
intermittent dynamics. Examples include Barkhausen noise
in ferromagnets [1–3], stick-slip motion in earthquakes [4],
serration dynamics in plasticity of solids [5], and avalanche
dynamics in crack propagation [6,7], driven foams [8], and
domain wall motion [9].
As in equilibrium critical phenomena, global quantities

linked to such bursting collective events are usually power-
law distributed and allow for the introduction of scaling
functions. In the slow driving limit, the onset of motion can
be interpreted as an out-of-equilibrium phase transition,
suggesting the existence of families of systems that display
similar avalanche statistics. To better identify this univer-
sality classes, both experimental [10–17] and theoretical
[13,18–21] works have discussed the avalanche “shapes,”
going beyond the study of scaling exponents.
In deformation experiments of amorphous systems, such

as grains, foams, or metallic glasses, avalanche dynamics
are typically evidenced in the time series of the deviatoric
component of the stress tensor. In the limit of vanishing
deformation rate, we approach the so-called “yielding
transition.” The question of whether or not yielding can
be characterized as a continuous dynamical phase transi-
tion, belonging to a specific universality class, is still under
debate. The analysis of avalanche statistics close to yielding
has, therefore, a particular relevance.
In this Letter, we study the emerging yielding dynamics

in a simple shear geometry with imposed driving rate. Our
focus lies on the shear-rate dependence of the avalanche
statistics and thus complements recent quasistatic (QS)
studies [22–25]. To address the low shear-rate regime, we
use a coarse-graining approach, proven to yield qualitative
and quantitative relevant predictions [26–31], and compare
the low shear-rate results of our mesoscale model with
quasistatic particle-based simulations.
Molecular dynamics (MD).—We consider a mixture of A

and B particles interacting via a Lennard-Jones potential:

VABðrÞ ¼ 4ϵAB½ðσAB=rÞ12 − ðσAB=rÞ6�, with r being the
distance between two particles. Units of energy, length,
and mass are defined by ϵAA, σAA andmA, the unit of time is
given by τ0 ¼ σAA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðmA=ϵAAÞ
p

. The potential is truncated
at Rc ¼ 2.5 and a force smoothing is applied between an
inner cutoff Rin ¼ 2.2 and Rc. The two species of particles
have equal mass m, but different interaction parameters to
prevent crystallization. We set ϵAA ¼ 1.0, ϵAB ¼ 1.5,
ϵBB ¼ 0.5, σAA ¼ 1.0, σAB ¼ 0.8, σBB ¼ 0.88, and
m ¼ 1. The ratio of particles of species A and B is chosen
NA=NB ¼ 13=7 and 8=2 for 2d and 3d systems, respec-
tively. Glassy states are obtained (with LAMMPS [32]) by
quenching to zero temperature at constant volume systems
equilibrated at T ¼ 1. An athermal system is achieved by
applying to each particle a viscous drag force Fdrag ¼ −Γv,
where v is the particle peculiar velocity. We condition the
dynamics to be strongly overdamped [22,33] (Γ ¼ 1).
Avalanche statistics are obtained following a quasistatic
protocol [22,23]. We impose simple shear at rate _γ ¼ 10−6

by deforming the box dimensions and remapping the
particle positions. Following Ref. [22], the shear rate _γ
is set to zero when a steep increase in kinetic energy occurs
(onset of plastic deformation) and only restored when the
kinetic energy drops below a threshold.
Elastoplastic (EP) model.—We coarse grain an amor-

phous medium onto a mesoscopic lattice: each node
represents a block of material holding exactly one shear
transformation [33–36], for which we assume the same
geometry as the globally applied simple shear. To each site i
we associate a local scalar shear stress σi and a state
variable ni, indicating whether the site plastically deforms
(n ¼ 1) or not (n ¼ 0). Local stresses evolve with the
overdamped dynamics:

∂tσi ¼ μ_γ þ μ
X

j

Gij∂tγ
pl
j ; ð1Þ
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with μ ¼ 1 the elastic modulus, _γ the externally applied
shear rate, τ ¼ 1 a mechanical relaxation time, and
∂tγ

pl
j ¼ njσj=μτ the strain rate produced by a plastic

rearrangement at site j. Gij denotes the discretized
Eshelby propagator [37], which obeys a quadrupolar
symmetry in the shear plane with a dipolar long-range
character, Gðr; r0Þ ¼ cosð4θrr0 Þ=jr − r0jd. A site yields
(ni ¼ 0 → 1) when its stress reaches a local threshold,
σi ≥ σyi , and recovers its elastic state (ni ¼ 1 → 0) when a
prescribed local deformation increment is attained after
yielding,

R j∂tσi=μþ ∂tγ
pl
i jdt ≥ γc. Each time a site yields

a new yield stress, σyi is drawn from a distribution of mean
σ0. Model details and parameter choices can be found in
Ref. [38] and in the Supplemental Material [39].
Stress-drop statistics and shear-rate dependence.—

From the stress-time series we individualize stress drops
and define an extensive quantity S proportional to the
absolute stress difference multiplied by the system volume.
We compare in Fig. 1 the stress-drop distributions PS in the
limit of low _γ for the elastoplastic (EP) model with the
quasistatic molecular dynamics (MD) results. In both two
(2D) and three dimensions (3D), apart from a plateau
regime for small stress drops that depends on shear rate,
numerical integration step, and system size, we fit the data
using a power law PS ∼ S−τfðS=ScÞ, with f an exponen-
tially decaying cutoff function (exponent definitions in
Table I). Noticing that the distributions PS become inde-
pendent of _γ in the zero shear-rate limit and in agreement
with previous works [23,25], we postulate a system-size-
dependent cutoff Sc ∼ Ldf , with df the fractal dimension
of the avalanches [23,25,49]. The comparison of these

stress-drop statistics with MD results reveals a fair agree-
ment, up to an arbitrary scaling factor related to the
difference in simulated length scales.
The fitted values of τ for the EP model, both in two and

three dimensions (τ2D ≃ 1.28, τ3D ≃ 1.25), compare very
well with our and earlier obtained MD results [22,23], are
compatible with previous lattice models [54], and lie within
error bars of those provided by FEMmodels [55]. Still, they
disagree with what was obtained with quasistatic protocols
in cellular automaton models [25] (especially in 3D, where
τQS3D ≃ 1.43), and they contrast even more with the usual
mean-field (MF) prediction [52] τMF ¼ 3=2 (see Ref. [56]
for an alternative analysis). The values obtained for df
(d2Df ≃ 0.9, d3Df ≃ 1.3) are compatible with quasistatic MD
simulations, but slightly smaller than those reported in
automaton models [25]. They suggest a line geometry of
the correlated slip events [24,57], with a modest but clear
trend towards a more compact structure in 3D.
Some main results concerning the finite driving rate are

summarized in Fig. 2 for the 3D EP model; similar results
are found for the 2D case (not shown). The consequences of
applying a finite shear rate are twofold [58].
(I) The first important observation is that with increasing

driving rate the critical exponents tend towards the mean-
field predictions. The yielding exponent β, for example,
defined through _γ ∝ ðσ − σcÞβ, can be derived from the fits
in Fig. 2(a) rendering a nontrivial value β≃ 1.55 in the low
shear-rate regime. For larger shear rates, this value crosses
over to β ∼ 2 predicted by the Hebraud-Lequeux model
[51]. By sliding a fixed size logarithmic window in _γ
(comprising∼12 points of the main plot data set) and fitting
within, we show the resulting 1=β as a function of the
starting position of the window in the inset of Fig. 2(a).
Similarly we observe a crossover of the exponents in the
steady-state distribution Px of the local stress excess
[53,59], xi ≡ σyi − σi; see Fig. 2(b). Again, in the limit
of vanishing shear rates, we observe the curves approaching
a shape that initially grows as Px ∼ xθ, with a nontrivial
exponent, as found in the quasistatic case [25,53], attrib-
uted to an anomalous random walk process of the local
stress with an absorbing boundary condition at x ¼ 0 [60].
However, as we increase the shear rate, Px changes,
eventually yielding θ≃ 0. The driving progressively
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FIG. 1. Stress-drop size distributions. Main panels show rescaled
distributions LdfτPS versus S=Ldf of the EP model compared to
MD quasistatic simulations (arbitrary shift applied for the com-
parison). Insets show not-scaled curves. (a) 3D EP model data for
linear system sizes L ¼ 16 (green circles), 32 (orange squares), 64
(blue diamonds), 128 (plum triangles), and shear rate 10−4 (full
symbols). For L ¼ 32, _γ ¼ 10−3, 10−5 are also shown (light and
dark orange open squares). Gray scale triangles correspond to
quasistatic 3DMDwithL ¼ 40, 60, 80 (from light to dark). (b) 2D
EP data for linear system sizes L ¼ 256 (green circles), 512
(orange squares), 1024 (blue diamonds), and 2048 (plum triangles)
at _γ ¼ 10−5. Gray scale triangles correspond to quasistatic 2D MD
with L ¼ 80, 160, 320 (from light to dark).

TABLE I. Measured exponents for the avalanche statistics.

Expression EP 2D EP 3D (1=r2) depinning 1D MF

β _γ ∼ ðΔσÞβ 1.54(2) 1.55(2) 0.625(5) [50] 2 [51]
τ PS ∼ S−τ 1.28(5) 1.25(5) 1.25(5) [6,7] 1.5 [52]
df Sc ∼ Ldf 0.90(7) 1.3(1) ∼1.38 [50] � � �
τ0 PT ∼ T−τ0 1.41(4) 1.44(4) ∼1.43 [6] 2 [52]
α Tc ∼ _γ−α 0.38(4) 0.30(4) � � � � � �
z T ∼ lz ∼0.57 ∼0.82 0.77(1) [50] � � �
δ S ∼ Tδ 1.58(7) 1.58(5) ∼1.7 [6] 2 [52]
θ Px ∼ xθ 0.52(3) 0.37(5) 0 1 [53]
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dominates over the signed kicks from elastic interactions,
yielding a biased diffusion of the x’s values. This ultimately
produces a strictly positive local stress evolution, resem-
bling the x dynamics of the depinning problem [25]. The
inset of Fig. 2(b) shows a feature compatible with the shear-
rate dependence of Px and with the β crossover. For
different shear rates, we plot k_γS1.5PS versus S, where
k_γ is an arbitrary scaling coefficient to separate the curves
and improve visualization. We observe a range of low shear
rates where the slope of the transformed distributions is
almost unchanged and fully consistent with Fig. 1(a).
Above a rate of deformation of about ∼0.015, curves
progressively flatten, eventually becoming horizontal.
Plotting S1.5PS, we show the departure of PS from the
MF expectation PMF

S ∝ S−1.5 as the critical point is
approached. When investigating the distribution of stress
fluctuations ηi ¼

P
j≠iGijðnjσj=τÞ on each site, we find

consistently a change from a peaked distribution with fat
tails towards Gaussian-like distributions as we increase the

shear rate. We infer from this that the strong correlations at
vanishing shear rates (reason for the nontrivial criticality)
become negligible for stronger driving, so that the expo-
nents end up being well described by mean-field
assumptions.
(II) The second consequence of a finite driving rate is

that the critical scaling regime shows not only finite size but
also finite shear-rate effects [57,61]. When imposing a
finite deformation rate, each stress drop is characterized not
only by its magnitude or size S, but also by its duration T.
For each stress drop we define a given duration T as the
time elapsed between the beginning and the end of the
drop. In Fig. 2(c) we present the distributions of durations
PT for a fixed system size and different shear rates. In the
probed shear-rate regime we find the dependence on L to be
negligible; thus, PTðT; L; _γÞ≡ PTðT; _γÞ. The main panel of
Fig. 2(c) shows rescaled curves assuming the functional
dependence PT ∼ T−τ0gðT _γαÞ, with g an exponentially
decaying function. We obtain for the 3D case, τ03D ¼
1.44 and α3D ¼ 0.3. Naturally, we expect the scaling of
PT to be dominated by a growing length scale ξ in the
critical limit, where the relations T ∼ ξz and S ∼ ξdf hold.
Therefore, we expect a scaling relation S ∼ Tδ with
δ ¼ df=z, that we observe over a range of shear rates,
yielding the exponent δ3D ∼ 1.58 [see Fig. 2(d)], in contrast
to the mean field δMF ¼ 2. More generally, we observe
empirically a power-law scaling of S with T, _γ, and L.
Actually, extending the dependencies of the cutoff values in
size Sc ¼ Ldf and duration Tc ¼ _γ−α, the mean S at each T
should follow S̄ðT; L; _γÞ ¼ CðL; _γÞTδ, with CðL; _γÞ∼
Ldf _γαδ. This relation is fairly verified for the dependence
on _γ, illustrated in Fig. 2(d). A rescaling of the size
dependence leads to an exponent larger by 15% than df
estimated from PS.
Stress-drop shapes.—We address now the analysis of the

functional form of the stress drops, i.e., the time evolution of
the stress-drop velocity [15–17,52]. In Fig. 3(a) we show
rescaled stress-drop velocities VT (stress-drop shapes) for a
3D system, averaged over drops of the same duration T
within the power-law scaling regime of Fig. 2(d). We
observe that drops of short duration show a noticeable
asymmetric shape, with faster velocities at earlier times. As
duration increases, the shape becomes gradually more
symmetric. To analyze this asymmetry of stress-drop shapes
for different durations, system sizes, and applied shear rates,
we fit them with a formula proposed in Ref. [16], VTð~tÞ ∝
B½~tð1 − ~tÞ�c½1 − asð~t − 0.5Þ� (see also Refs. [15,62]), with B
the amplitude of the shape and as a parameter quantifying
the deviation from a symmetric inverted parabola. We
confirm the expected relation c ¼ δ − 1 [recall S ∝ Tδ

and compare Figs. 3(b) and 2(d)]. In our range of parameters
c is almost independent of L and _γ. More relevant for
our analysis is the behavior of the fitting parameter as [see
Fig. 3(b), inset], which shows clearly the crossover from
nearly symmetric to asymmetric shapes as we focus on
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FIG. 2. Shear-rate dependency of the dynamics for the 3D EP
model. (a) Log-log plot of Δσ0 ≡ ðσ − σcÞ=σ0 versus _γ. Circles
correspond to the best estimation of σc=σ0 ¼ 0.687, and crosses,
to choices of 0.683 and 0.691 instead. Full and dashed lines are
power-law fits in selected ranges (extrapolated for comparison).
Inset: Crossover of 1=β as explained in the text. (b) Steady-state
distributions Px of the local distances to threshold x≡ σy − σ for
different shear rates _γ ∈ f10−1.4;…; 10−5g. Inset: Stress-drop
distributions for _γ ∈ f10−1;…; 10−3g, rescaled and shifted as
explained in the text. Arrows indicate the sense of increasing
shear rate. (c) Rescaled distributions of stress-drop duration
_γ−ατ

0
PT versus T _γα for _γ ¼ 10−2, 10−3, 10−4, 10−5 (from light

blue to dark plum, left to right in inset), and system sizes L ¼ 64
(closed symbols) and 128 (open symbols). The dashed line shows a
law PT ∼ T−1.44. Inset: Unscaled data. (d) Average size S̄ for
stress drops of the same duration as a function of T _γα for L ¼ 64
and _γ ¼ 10−2, 10−3, 10−4, 10−5. The dashed line shows S̄ ∼ T1.58.
Inset: Unscaled data, shear rate decreases from left
to right.
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shorter durations T. To avoid a fit with various parameters,
we use an alternative, purely geometrical measurement of the
asymmetry that is relevant even beyond the scaling regime,
ag ¼ R

1
0 f½jVTð~tÞ − VTð1 − ~tÞj�=½VTð~tÞ þ VTð1 − ~tÞ�gd~t.

When computing agðTÞ for different shear rates at fixed T
and L, ag increases as _γ decreases, whereas for fixed T and _γ,
ag decreases as L increases [see inset of Fig. 3(a)]. In the
quasistatic limit, where just one independent avalanche
occurs at a time, we expect asymmetric stress-drop shapes
characterizing individual avalanches. When we increase the
driving rate at fixed system size or, equivalently, increase the
system size at a fixed rate, we expect stress drops to result
from many independent avalanches, since the density of
plastic regions is determined and increased by the driving
strength [57]. Here, the resulting stress-drop shape draws
closer to the mean-field symmetric shape.
Conclusions.—We studied, with a mesoscopic model,

the avalanche statistics close to the yielding transition,
verifying the relevance of our approach by comparing with
particle-based quasistatic simulations. In Table I we sum-
marize the critical exponents obtained for 2D and 3D. Our
results clearly reinforce the idea of a nontrivial universality
class for the yielding transition, in agreement with earlier
findings [23,25,54]. Our estimated exponents confirm
within error bars the scaling relations proposed by Lin
et al. [25]. We also note that our values of τ and τ0 are
indistinguishable from the exponents expected for the 1D
long-range (1=r2) depinning universality class [6,7].
Although the loading path dependence of the critical
exponents remains an open issue, this is an interesting
accordance and points towards the role played by the
avalanche slip-line geometry.
In the regime of larger shear rates we find that several

exponents of the stress-drop statistics draw closer to mean-
field predictions. The rise of an increasing number of

independent regions with yielding activity (parallel occur-
ring avalanches) justifies the crossover to trivially random
statistics. In particular, our data reveal a yielding exponent
approaching the prediction of the Hébraud-Lequeux model
[51,63,64]. Further, the finite shear-rate protocol allows for
the introduction of an additional exponent α that should
enter the scaling relations, given Tc ∼ _γ−α. If we assume a
usual scaling scenario, we expect a diverging length scale
depending on the distance to the yielding point
ξ ∼ ðσ − σcÞ−ν, such that ξ ∼ _γ−ν=β, since _γ ∼ ðσ − σcÞβ.
Then, Tc ∼ ξz yields directly the scaling relation α ¼ zν=β.
We have not measured ν, but assuming ν ¼ 1=ðd − dfÞ
[25] to be valid, we get α2D ¼ 0.34 and α3D ¼ 0.31, close
to our estimated values.
Within the scaling regime for T we observe both

asymmetric and symmetric stress-drop shapes depending
on system size, shear rate, and duration. This is why we
propose to distinguish between individual avalanches
(resulting from correlated plastic events) and stress-drop
shapes (resulting from many independently occurring
avalanches).
The combined study of avalanche size and duration

distributions and avalanche shapes has played an essential
role in our understanding of the universal aspects of
crackling noise and depinning dynamics. With this work,
we provide a first numerical prediction of similar quantities
in the case of the yielding transition, with a clear indication
of a complex non-mean-field behavior. We hope this work
will stimulate and provide a benchmark for future exper-
imental studies on systems undergoing a continuous
yielding transition, for which detailed data on noise
statistics are presently very scarce.
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5 Critical dynamics close to the yielding transition 80

5.2 Geometry of the plastic interface

As mentioned in chapter 4, the dynamics of the elasto-plastic model can be viewed
as the motion of the plastic interface under the self-interaction via the propagator
GN(x), an external driving and the system disorder. This point of view establishes
an analogy between the elasto-plastic model and the depinning model. The essential
difference is that the self-interaction in the depinning model is convex while it is non-
convex in the elasto-plastic model.

In the depinning model the geometry of the interface is relevant for interpreting
the avalanche dynamics, as mentioned in chapter 3. Typically in two dimensional de-
pinning models, a crossover length scale lav can be identified from the structure factor
of the elastic line, above and below which the elastic line manifests self-affine geom-
etry characterized by different roughness exponents reflected in the different power
law below and above l−1

av in the structure factor. The length scale lav is interpreted
as the typical cooperative length scale of the collective motion, i.e. avalanches.

It is then natural to ask how the motion of the plastic interface and its geometry
are related to the avalanche dynamics in the elasto-plastic model. Is it possible to
determine the cooperative length scale by studying the geometry of the plastic inter-
face? A preliminary study of this question in two dimensional systems is presented
in this section. Specifically the geometry of the plastic interface is characterized by
its power spectral density considering only the "hard" Fourier modes, as explained
below.

Hard and soft modes

In the depinning model, the self-interaction term ∇2h gives on a Fourier mode
of wave vector q a restoring force −

∣∣q
∣∣2ĥ, which is always opposite to the mode

amplitude. It means that there is no soft mode in the depinning model, i.e. if left
to move freely only under self-interaction, the elastic line becomes always flat at the
end. With additional external driving and quenched disorder, the force exerted on
any Fourier mode, (except for the q = 0, which is the global forward motion), is
balanced between the self-interaction and the quenched disorder. As a result, the
width of the elastic line is always finite as long as the system size is finite. This leads
to an alternative way of measuring the roughness exponent, which is to measure how
does the width of a segment scale with the segment size.

In contrast with the self-interaction in the depinning model, the self-interaction of
the elasto-plastic model in Fourier space written as ĜN ∝ − q2xq

2
y

q4
, admits soft modes,
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i.e. Fourier modes q such that qxqy = 0. We define the "hard" modes q are such
that qxqy 6= 0. The internal stress σ̂INT exerted on the soft modes vanishes, while
it is always opposite to the amplitude of the plastic interface for the hard modes.
This means that the width of the plastic interface in the elasto-plastic model is
not bounded by its self-interaction. The self-interaction ignores any superposition
of one directional variation of the plastic interface. Under the external driving
and the system disorder, the force exerted on hard modes are balanced between
the self-interaction and the system disorder, while the amplitude of the soft modes
is amplified constantly by the disorder. As a consequence, during the growth of
plastic interface, soft modes grow linearly with time, with an average velocity that
fluctuates around a stationary value, while hard modes reach and then fluctuate
around a stationary value instead of growing infinitely with time. This effect is well
studied in [Tyukodi et al., 2016] and here visualized in the figure 5.5, where the
contribution of all hard modes to the interface width WH(t) and the corresponding
contribution of all soft modes WS(t) are plotted versus the global strain γ. WS(t)

and WH(t) are defined as

WH(t) =
∑

q,qxqy 6=0

∣∣γ̂pl
∣∣2(q, t) (5.14)

WS(t) =
∑

q,qxqy=0

∣∣γ̂pl
∣∣2(q, t)−

∣∣γ̂pl
∣∣2(0, t) (5.15)

Because of these non bounded soft modes, the roughness exponent, if there is
any for the elasto-plastic model, can not be accessed by the the scaling of the width
with the system size and it would be more adequate to characterize the geometry
of the plastic interface only for the hard modes in Fourier space, since the plastic
interface in the stationary state admits a stationary geometry only on these hard
modes.

Structure factor on the hard Fourier modes of the plastic in-

terface

The structure factor S(q) of the plastic interface in the stationary state is obtained
by the time average of the instantaneous structure factor, i.e.

S(q) =
∣∣γ̂pl
∣∣2(q) (5.16)
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Figure 5.5: The contribution of the soft modes to the width of the plastic interface
WS(γ) (green) and the contribution of the hard modes to the width of the plastic
interface WH(γ) (red) as a function of strain γ.

where the “•=̂ limT→∞
1
T

∫
dt•” stands for the time average. The stationary structure

factor of the plastic interface (without the soft modes) for different shear rates and
for a system size Ld = 5122 are shown in the figure 5.6 on a logarithmic scale.

The stationary structure factor seems not to depend on the applied shear rate
γ̇. The form of the logarithm of the structure factor is very reminiscent of the self-
interaction kernel, i.e. ĜN(q) in Fourier space (see right panel of figure 5.7), which
is not isotropic. Since the local yield stress is picked randomly independently from
one site to another, the system disorder, i.e. the local yield stress field σY (x), can
be viewed as a spatial white noise applied on the plastic interface, i.e. the average
intensity of the noise applied on each mode of the plastic interface is the same,
denoted as ns. In the stationary state, the amplitude of the plastic interface on a
mode γ̂pl(q) is due to the compromise between the self-interaction and the system
disorder, i.e. ns ≈

∣∣Ĝ(q)
∣∣∣∣γ̂pl(q)

∣∣ in a schematic way, which implies
∣∣γ̂pl(q)

∣∣ ∼
1/
∣∣Ĝ(q)

∣∣. As a consequence, softer modes, i.e. the modes with smaller
∣∣ĜN(q)

∣∣, have
to be stretched more than the harder modes, i.e. the modes with larger

∣∣ĜN(q)
∣∣, to

balance the effect of system disorder, and hence contribute larger amplitudes to the
stationary structure factor.

To characterize the profile of the structure factor S(q), S(qx) for the system size
L = 512 at fixed qy equal to the largest wave vector is shown in the figure 5.8(left).
A scaling regime over about one decade can be seen. Even if there is an important
scatter in the data, a power law can be roughly measured as S(qx) ∼ q−2.5

x . For
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Figure 5.6: Logarithm of the stationary structure factor of system size Ld = 5122

for the shear rates γ̇ = 10−2, 10−3, 10−4, 10−5.
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Figure 5.7: Left: Stationary structure factor of a system of L = 32 with γ̇ = 10−3.
Right: The self-interaction kernel ĜN(q).
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Figure 5.8: Left: Stationary structure factor of a system of L = 512 along qx at
the largest qy. Right: Stationary structure factor of a system of L = 32 along qx at
various qy. for a shear rate of γ̇ = 10−3.

having a good statistics the same structure factor is computed for a system of size
L = 32 at a shear rate γ̇ = 10−3. This structure factor is shown in the left panel of
figure 5.7. The profile S(qx) at different qy is shown in the right panel of figure 5.8.
Because of the quadrupolar symmetry of the structure factor, the series of S(qx)

at different qy can represent quantitatively the whole structure factor. The scaling
regime on qx is limited from 0 up to qx = qy and the scaling exponent is measured
close to 2.7, which is consistent with the result for the larger system size L = 512.

The fact that the scaling regime for the directional component qx (or qy) is
limited from zero to qx = qy (or qy = qx), can be interpreted as a complex self-affine
geometry of the plastic interface. The self affine geometry can be observed along
the direction x only if the wave length scale that is chosen to coarse grain along the
other direction y is large enough.

Conclusion

By analyzing the stationary structure factor of the plastic interface, we find that
the geometry of the plastic interface seems insensitive to the shear rate, i.e. the
dynamical information is not encoded in the geometry of the plastic interface. The
structure factor keeps information about the self-interaction kernel, and a scaling
law is found in a specific situation, suggesting a complex self-affine geometry not
directly observable on the plastic interface due to the existence of soft modes.
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5.3 Two point correlations

The cooperative dynamics is encoded in the spatio-temporal map of plastic events.
The spatio-temporal pattern of plastic events, if there is any, characterizes the dy-
namical regime of the system. The dynamical cooperative length scale may be
found by investigating the spatio-temporal map of plastic events. A quantity which
is equivalent to the plastic events and contains even more information, is the ve-
locity field of the plastic interface ∂tγpl(x, t). The two point correlation function of
the plastic strain field of a two dimensional system is investigated in this section in
an attempt to directly visualize the spatial-temporal extension of the cooperative
dynamics.

A temporally coarse-grained local increment of the plastic strain field can be
constructed from the velocity field of the plastic interface

δγpl(x, t; δT ) =

∫ t+ δT
2

t− δT
2

∂tγ
pl(x, s)ds (5.17)

where δT is the coarse-grained time scale which is fixed such that δT γ̇ = δγ = 0.002.
This strain field increment is therefore indicative of the plastic activity taking place
during a fixed amount of strain. Hereafter δγpl(x, t; δT ) is replaced by δγpl(x, t) for
δT fixed in this way. For investigating how the plastic strain taking place at position
x at moment t correlates with the plastic strain at x′ = x+∆x at moment t′ = t+∆t,
a two point correlator Cδγpl(∆x,∆t) is estimated from the entire spatial-temporal
map of the velocity of the plastic interface ∂tγpl(x, t). Cδγpl(∆x,∆t) is numerically
defined as

Cδγpl(∆x,∆t)=̂
〈δγpl(x, t)δγpl(x + ∆x, t+ ∆t)〉x − 〈δγpl〉x

2

〈
(
δγpl

)2〉x − 〈δγpl〉x
2

(5.18)

where the spatio-temporal average 〈〉x (replacing the ensemble average because of
the stationary state of stochastic dynamics) is the average over space and time of
the spatio-temporal map of δγpl(x, t).

For comparing the correlation among plastic events for different shear rates,
it is more convenient to compute the quantity at a fixed macroscopic strain, i.e.
Cδγpl(∆x, ∆γ

γ̇
), since both local yielding criteria and local healing criteria involve

a strain scale (〈σy〉/µ and γc) rather than a time scale. It is worth noticing that
Cδγpl(∆x,∆t) ≈ Cδγpl(∆x,∆t = 0) for ∆t� δT , because of the integral over δT in
expression (5.17) implying that δγpl(x, t; δT ) ≈ δγpl(x, t+ ∆t; δT ) if ∆t� δT .
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Figure 5.9: Two point correlation map for γ̇ = 10−3 at ∆γ = 0.002, 0.006, 0.010
form the left to the right.

Figure 5.10: Two point correlation map for γ̇ = 10−4 at ∆γ = 0.002, 0.006, 0.010
form the left to the right.

The spatio-temporal maps of the correlation Cδγpl(∆x,∆t = ∆γ/γ̇) are shown
in figure 5.9 for γ̇ = 10−3, in figure 5.10 for γ̇ = 10−4 and in figure 5.11 for γ̇ = 10−5.
From these results, we have the following observations:

1. The two point correlations for a given ∆t = ∆γ/γ̇ follow the shape of the prop-
agator GN(x). Plastic strain is more correlated along the positive branches
of the propagator GN(x), showing the quadrupolar symmetry. For a delay
time corresponding to a given strain difference, with ∆t = ∆γ/γ̇, systems

Figure 5.11: Two point correlation map for γ̇ = 10−5 at ∆γ = 0.002, 0.006, 0.010
form the left to the right.
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Figure 5.12: Left: The two point correlation function at ∆γ = 0.002 for different
shear rates along the strongly correlated direction as marked by the black line with
double arrows in the right figure.

with a lower applied shear rate show stronger spatial correlations. This can
be seen by plotting the correlation Cδγpl along one of the strongly correlated
directions for different shear rates, as shown in figure 5.12. The correlation
along the strongly correlated direction decays as a power law with the distance
to the center. It is clear from the data that the correlations decay slower for
lower shear rate, suggesting the dynamics is more cooperative for lower shear
rates. However since the decay of the correlation in space follows a power law,
there is no characteristic length to be identified by looking at the two point
correlation.

2. The intensity of the two point correlations decays with the delay time in a
monotonic way. This time dependence of the correlations can be characterized
by the intensity of correlation at ∆γ = γ̇∆t defined as

Ic(∆γ) =
1

V

∫
d∆xd

∣∣Cδγpl(∆x,∆t =
∆γ

γ̇
)
∣∣ (5.19)

where the absolute value is used to avoid compensations between positive and
negative parts in the correlations. Ic(∆γ) for different shear rates are shown in
the figure 5.13. A power law decay can be seen in the figure. Large fluctuations
in the tail are due to the lack of statistics which makes it difficult to identify
a characteristic time scale of correlation.

In conclusion, by looking at the two point correlations, it is found that the dynamics
is more cooperative and a larger spatial domain is involved in the correlation for
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Figure 5.13: Intensity of the two-point correlations as function of ∆γ for different
shear rates.

lower shear rates. However the spatial decay as well as the temporal decay follows
a power law, which makes it impossible to extract a characteristic length and time
scale for the cooperative dynamics.

5.4 Macroscopic stress fluctuations

Our study of avalanche statistics of the elasto-plastic model in the low shear rate
limit reveals the critical behavior of the yielding transition, which is consistent with
the results under quasi-static shear reported by Lin et al [Lin et al., 2014a]. A
dynamical cooperative length ξc is assumed to be an important quantity for the
yielding transition [Lin et al., 2014a], and is supposed to diverge as the system
approaches to the yielding point. However this length scale has not yet been clearly
evidenced.

On another hand, most studies of avalanches rely on the stress drops as promi-
nent observable. A phenomenological characterization of the time series of the time
derivative of the stress may be useful to understand the behavior of the stress time
series and further to understand the stress drop statistics.

According to equation (5.3), the time derivative of the macroscopic stress d
dt
〈σ〉x
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is equivalent to the macroscopic plastic strain rate 〈γ̇pl〉x , which is

〈γ̇pl〉x =
1

µτ

(
1

Ld

∑

x

n(x)σ(x)

)
(5.20)

If n(x)σ(x) can be considered as identically distributed and independent ran-
dom variables from a distribution of finite mean and variance, then 〈γ̇pl〉x, as the
average of Ld identical independent random variables, should follow the central limit
theorem. This typically corresponds to the situation where the dynamical cooper-
ative length scale ξc, if there exists any, is much smaller than the system size, so
that plastic events are activated independently in a random manner by the external
loading. If the central limit theorem behavior breaks down in some situations, it is
then expected to indicate that the system size gets close to, or is smaller than, the
dynamical cooperative length scale ξc.

In this section, the dynamical cooperative length scale ξc is first probed by look-
ing at the dependence of the variance of 〈γ̇pl〉x on the system size Ld at different
applied shear rates. Then, by studying the power spectral density, the mean-square
displacement and the covariance function of the time series 〈γ̇pl〉x for system sizes
both larger or smaller than ξc, it is shown that a saturation time scale T Sc resides
in the time series 〈γ̇pl〉x, below which the macroscopic plastic strain rate exhibit
dynamics well approximated by a Brownian motion. Above T Sc the stationary state
begins to show up in the time series 〈γ̇pl〉x. For systems of size above the coopera-
tive length scale ξc, T Sc only depends on the applied shear rate γ̇ and diverges with
decreasing γ̇ as a power law. For systems of size below ξc, T Sc is shown to be system
size dependent in a power law fashion T Sc ∼ Lzs , which can be interpreted as the
scaling relation between the full temporal extension and the cooperative length of
the cooperative dynamics. At the end of this section, the assumption of Brownian
motion in short time (T < T Sc ) dynamics of 〈γ̇pl〉x are then used to rationalize some
behaviors of the macroscopic plastic strain. Since according to equation (5.3), 〈γ̇pl〉x
is equivalent to the time derivative of the stress, we will mainly talk about the plastic
shear rate which can fully stand for the macroscopic stress velocity. These studies
are done for two dimensional systems, using time series of the macroscopic plastic
strain in the stationary state.
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5.4.1 Observed quantities

Variance of the macroscopic plastic strain rate V ar(〈γ̇pl〉x)

Thanks to the stationary state of the time series of 〈γ̇pl〉x(t), the numerical estimate
of its variance can be realized by taking the time average

V ar(〈γ̇pl〉x) = 〈γ̇pl〉2x − 〈γ̇pl〉x
2

(5.21)

This quantity is a characterization of the global stationary state of the time series
of 〈γ̇pl〉x(t) for a given system size Ld under a given applied shear rate γ̇.

Power spectral density of the time series of 〈γ̇pl〉x

By rescaling the time series of 〈γ̇pl〉x(t) in time and in the amplitude with a proper
ratio, i.e. t→ λt and 〈γ̇pl〉x → λαs〈γ̇pl〉x where αs is introduced to characterize the
rescaling procedure, it is observed that the new time series 〈γ̇pl〉∗x(t)=̂λαs〈γ̇pl〉x(λt)

looks quite similar, in a statistical sense, to the original time series in the same
time scale and the amplitude scale. This scale invariance and the exponent αs are
accessible by looking at the power spectral density of 〈γ̇pl〉x(t). Specifically such a
scale invariant time series shows power law power spectral density

∣∣〈ˆ̇γpl〉x
∣∣2 ∼ ω−αp ,

and αp = 2(1 − αs), where the power spectral density
∣∣〈ˆ̇γpl〉x

∣∣2(ω) is the squared
modulus of the Fourier transform of 〈γ̇pl〉x. The derivation of the relation between
αp and αs is found in the Appendix D.

The time frequency ω has the unit [T ]−1. For comparing results from different
shear rate with respect to the macroscopic strain γ, a dimensionless “strain fre-
quency” ω̄=̂ω/γ̇ is defined. In the following, the power spectral density of the time
series of 〈γ̇pl〉x for different system sizes Ld under different applied shear rates γ̇ are
considered as a function of the “strain frequency” ω̄.

The mean-square displacement of 〈γ̇pl〉x

Given the time series of 〈γ̇pl〉x(t) for a given shear rate γ̇ and a given system size
Ld, under the assumption that the time series is stationary, the mean square dis-
placement of 〈γ̇pl〉x, noted

(
∆〈γ̇pl〉x

)2 is measured as

(
∆〈γ̇pl〉x

)2
=̂ lim

T→∞

1

T

∫ T

0

dt
(
〈γ̇pl〉x(t+

∆γ

γ̇
)− 〈γ̇pl〉x(t)

)2 (5.22)
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The mean-square displacement
(
∆〈γ̇pl〉x

)2 is actually equivalent to the variance

V ar(∆〈γ̇pl〉x), since ∆〈γ̇pl〉x
2

=

(
〈γ̇pl〉x(t+ ∆t)− 〈γ̇pl〉x(t)

)2

= 0.

It is also worth mentioning that
(
∆〈γ̇pl〉x

)2 at relatively large ∆γ = γ̇∆T where
the correlation between 〈γ̇pl〉x(t+ ∆T ) and 〈γ̇pl〉x(t) becomes weak, is proportional
to the variance V ar(〈γ̇pl〉x). This implies that at such large ∆γ,

(
∆〈γ̇pl〉x

)2 scales
with the system size in the same way as V ar(〈γ̇pl〉x). Actually

(
∆〈γ̇pl〉x

)2
=
(
〈γ̇pl〉x(t+ ∆T )− 〈γ̇pl〉x(t)

)2
= 2〈γ̇pl〉2x − 2〈γ̇pl〉x

2
= 2V ar(〈γ̇pl〉x)

(5.23)
where 〈γ̇pl〉x(t+ ∆T )〈γ̇pl〉x(t) ≈ 0 implied by the weak correlation.

For comparing results from different applied shear rates γ̇, the mean-square dis-
placement as function of the macroscopic strain ∆γ is considered in the following.

Covariance of a plastic strain rate series starting from the originγ̇plw

A plastic strain rate time series starting from the origin can be constructed using
γ̇plw (∆t; to). This quantity, labeled by time to, is defined as

γ̇plw (∆t; to)=̂〈γ̇pl〉x(to + ∆t)− 〈γ̇pl〉x(to) (5.24)

where ∆t > 0 and γ̇plw (∆t = 0; to) = 0 as can be verified from the definition. to labels
the starting point for the construction of γ̇plw (∆t).

It will be argued in the following that, this time series γ̇plw (∆t) behaves as a
Brownian motion departing from the origin within a saturation time scale T Sc . For
the numerical estimate of the two-time covariance of γ̇plw (∆t) for a series measured
over the total time range ∆tT , the amount of γ̇plw (∆t; tio) can be constructed from
the time series of 〈γ̇pl〉x with 0 < ∆t < ∆tT and ti+1

o − tio = ∆tT . The ensemble
of all time series γ̇plw (∆t; tio) can be regarded as an ensemble of realizations, with
i = 1, 2, ..., Nr. Thanks to the stationary state of the whole time series, the ensemble
average 〈•〉E can be estimated by the realization average 1

Nr

∑
i •, if the realization

is large enough. This leads to the estimation of the two time covariance of γ̇plw (∆t),
denoted Cw(s, t), as

Cw(s, t) = 〈γ̇plw (s)γ̇plw (t)〉E =
1

Nr

Nr∑

i=1

γ̇plw (t; tio)γ̇
pl
w (s; tio) (5.25)
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Figure 5.14: Rescaled variance of macroscopic plastic strain rate γ̇−κs ·
(
∆〈γ̇pl〉x

)
2 as

a function of system size Ld. κs ≈ 0.7 for the best collapse. System sizes L = 32, 64,
128, 256, 512, 1024, 2048. Red and green dashed lines of different scaling regimes
as a guide for the eyes. Inset: non rescaled variance of global plastic strain rate as
a function of system size.

5.4.2 Existence of the cooperative length scale ξc

The cooperative length ξc can be accessed by looking at the variance of the macro-
scopic plastic strain rate and the long time mean-square displacement of the macro-
scopic strain rate, which are shown in figure 5.14 and figure 5.15.

Firstly, at high shear rates γ̇ ≥ 10−4, the variance of the macroscopic plas-
tic strain rate follows well the behavior implied by the central limit theorem, i.e.
V ar(〈γ̇pl〉x) ∼ L−d, see the figure 5.14. This central limit theorem behavior for
γ̇ ≥ 10−4 can also be confirmed in the power spectral density of the time series
〈γ̇pl〉x(t). As shown in figure 5.16, for collapsing all power spectral density functions
for applied shear rates γ̇ ≥ 10−4, it is sufficient to rescale the function vertically by∣∣〈ˆ̇γpl〉x

∣∣2 → Ld
∣∣〈ˆ̇γpl〉x

∣∣2 (the large strain frequency discrepancy is a technical issue
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relatively large fluctuation making the different scaling regimes less distinguishable.



5 Critical dynamics close to the yielding transition 94

that will be discussed in the following). It is worth noticing that

V ar(〈γ̇pl〉x) ∝
∫
dω̄
∣∣〈ˆ̇γpl〉x

∣∣2(ω̄)−
∣∣〈ˆ̇γpl〉x

∣∣2(0)

Hence the collapse obtained by rescaling with the system size confirms that the vari-
ance of the instantaneous macroscopic plastic strain rate scales with the system size
as V ar(〈γ̇pl〉x) ∼ 1/Ld for γ̇ ≥ 10−4. This strongly indicates that, at these relatively
high shear rate, the probed system sizes are large enough to not let the cooper-
ative dynamics manifest and to let 〈γ̇pl〉x behave as the average of Ld identically
distributed independent random variables.

However at shear rate γ̇ = 10−5, two scaling regimes of different scaling exponents
can be clearly identified across a crossover length scale ξc, residing between L = 128

and L = 256 in the variance of the macroscopic plastic strain rate, see figure 5.14.
Below ξc the central limit theorem behavior breaks down and the variance of the
global plastic shear rate scales with the system size as V ar(〈γ̇pl〉x) ∼ (Ld)−0.8, from
which one can define a dimensionality dv ≈ 0.8d. In the power spectral density
(figure 5.16) for γ̇ = 10−5, because of lack of statistics, the scatter in the data does
not allow one to determine the scaling with the system size.

The fact that below ξc the central limit theorem type behavior breaks down and
the variance V ar(〈γ̇pl〉x) decreases with system size more slowly than 1

Ld
, suggests

that the spatial extension of the cooperative dynamics differing from a totally ran-
dom dynamics under the applied shear rate γ̇ = 10−5 saturates to the system size.
Hence the crossover length scale ξc can be used as a measure for the spatial extension
of the cooperative dynamics (i.e. the cooperative length scale) at a given shear rate.
According to the assumption that ξc diverges as the system approaches the yielding
transition, i.e. γ̇ → 0 [Lin et al., 2014a, Lemaître and Caroli, 2009], the fact that
we see only the crossover length scale for the lowest shear rate, can be interpreted
through the fact that the dynamical cooperative length ξc becomes so small for
higher shear rates that it falls out of the domain of system sizes investigated here.
For probing how ξc depends on the shear rate γ̇, leading to a direct measurement
of the scaling relation hypothesized for the yielding transition, one would need to
simulate slower shear rates, which is limited here by the computational capacity.
Nevertheless there is a direct evidence of the existence of a dynamic cooperative
length scale across which the dynamics changes qualitatively.

Secondly by rescaling vertically V ar(〈γ̇pl〉x)→ γ̇−κs ·V ar(〈γ̇pl〉x), it is possible to
collapse all curves at length scales larger than ξc (figure 5.14). That is to say above
the cooperative length L > ξc, the variance scales with shear rate as V ar(〈γ̇pl〉x) ∼
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γ̇κs , with κs ≈ 0.7.
Finally as implied by equation (5.23), the long time mean-square displacement of

the macroscopic plastic strain rate should scale with system size L and the applied
shear rate γ̇ in the same way as the variance of the macroscopic plastic strain rate
V ar(〈γ̇pl〉x), as is confirmed in the figure 5.15. The same crossover length scale ξc
can be identified.

In conclusion, the cooperative length of the cooperative dynamics is evidenced
by both the variance and the long time mean-square displacement of the macroscopic
plastic strain rate. Below this length scale a new dimensionality dv ≈ 0.8d can be
extracted, and above both quantities obey the central limit theorem and an exponent
κs ≈ 0.7 is measured for the scaling relation V ar(〈γ̇pl〉x) ∼ γ̇κs .

5.4.3 The saturation time scale T S
c in the time series of 〈γ̇pl〉x

A saturation timescale T Sc can be identified in the time series of 〈γ̇pl〉x by looking at
the power spectral density and the mean-square displacement of macroscopic plastic
strain rate 〈γ̇pl〉x(t).

Power spectral density of 〈γ̇pl〉x(t) The power spectral density of 〈γ̇pl〉x as
function of the “strain frequency” ω̄ is shown in the figure 5.16.

First, let us mention some technical issues about the large strain frequency dis-
crepancy in the collapse by the system size rescaling and the small frequency bound-
ary.

• (i) For all shear rates and system sizes, a large characteristic frequency (i.e.
small time scale) and a small characteristic strain frequency ω̄vc (i.e. a large
time scale) can be identified, separated by a clear scaling regime regime. The
power spectral density beyond the large characteristic frequency seems to differ
from each other, depending on the system size. This large frequency behavior
is related to the numerical precision of recording the time series of stress.
The numerical precision being fixed, information is gradually lost at small
time scales from larger system sizes, because macroscopic stress fluctuations at
small time scales decrease below the numerical precision for increasing system
sizes. The large frequency behavior is therefore better reflected by that of
small system size results. The large frequency boundary of the power spectral
density is limited by the precision of the elementary numerical integration step.
By increasing the precision of the elementary numerical integration time step,
it is expected that the scaling regime will continue until very large frequency.
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Figure 5.16: Rescaled power spectral density
∣∣〈ˆ̇γpl〉x

∣∣2 as function of the rescaled
“strain frequency” ω̄ = ω/γ̇. Curves of different shear rate are shifted vertically
for better visualization by dividing a power three of their shear rates. Shear rate
decreases form 10−2 to 10−5 from bottom to top. Red dashed line with slope of −2
for guiding eyes. For each shear rate, there are curves for the linear system sizes
L = 32, 64, 128, 256, 512, 1024, 2048. For a given shear rate γ̇ ≥ 10−4, the vertical
rescaling

∣∣〈ˆ̇γpl〉x
∣∣2 → Ld

∣∣〈ˆ̇γpl〉x
∣∣2 is enough to collapse all curves of different system

sizes.
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• (ii) The small frequency boundary of power spectral density ω̄min is limited by
the longest segment of time series that can be taken for having a satisfactory
statistics over all the time series, i.e. ω̄min = 1/∆γmax with ∆γmax = 0.2,
since the length of the time series is limited by the simulation time and the
capacity of data treatment of the used software. Actually the cloud of points
for the shear rate γ̇ = 10−5 is due to the lack of statistics, nevertheless the
scaling regime and the smaller characteristic frequency are still statistically
well captured.

A small characteristic frequency ω̄vc can be identified beyond which the power spec-
tral density behaves as a power law with the strain frequency ω̄. Below ω̄vc the am-
plitude of the power spectrum becomes smaller and smaller. This is consistent with
the fact that the fluctuation of 〈γ̇pl〉x(t) at large time scale is bounded for all shear
rate and system size by the local yield stress, since 〈γ̇pl〉x(t) = 1

Ld

∑
x n(x, t)σ(x, t),

with 〈n〉x(γ̇) < Ld and 〈σ〉x(γ̇) < 〈σy〉dym(γ̇), where 〈σy〉dym(γ̇) is the average yield
stress averaged for the shear rate γ̇.

The smaller characteristic frequency ω̄vc delimiting one extremity of the scaling
regime depends on the applied shear rate γ̇. For γ̇ ≥ 10−4 for which all system
sizes are larger than the cooperative length L > ξc, it is possible to rescale the
frequency ω̄ → ω̄/γ̇−η, with η a new exponent, to place the crossover region for all
shear rates at the same horizontal position, see figure 5.16, with η measured to be
approximately 0.55. A strain scale can be defined as γvc = 1/ω̄vc ∼ γ̇η and a time
scale T vc = γvc /γ̇ ∼ γ̇η−1. One can conclude that the plastic shear rate time series
(as well as the stress time derivative) of a system under shear rate γ̇, exhibits scale
invariance within a strain scale γvc ∼ γ̇η (or a time scale T vc ∼ γ̇η−1). This scaling
relation is only valid for systems approaching the yielding transition, i.e. γ̇ small.

For γ̇ = 10−5 because of the lack of statistics, the characteristic frequency ω̄vc is
not precisely accessible.

It will be argued, in the following, that the strain scale γvc (or the time scale T vc )
found in the power spectral density for γ̇ ≥ 10−4 also characterizes the mean-square
displacement of 〈γ̇pl〉x as function of the macroscopic strain ∆γ.

Mean-square displacement of 〈γ̇pl〉x(t) The mean-square displacement as a
function of global strain ∆γ for different system sizes and applied shear rates are
shown in figure 5.17.

For systems of all sizes under the applied shear rate γ̇ ≥ 10−4 and for systems
of size L ≥ 256 > ξc > 128 under the applied shear rate γ̇ = 10−5, it is possible to
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Figure 5.17: Rescaled mean-square displacement
(
∆〈γ̇pl〉x

)
2 as function of the

rescaled global strain ∆γ/γ̇ηd . Shear rate decreases from 10−2 to 10−5 from top
to bottom. +: γ̇ = 10−2; •: γ̇ = 10−3; ∗:γ̇ = 10−4; ×: γ̇ = 10−5; For each shear
rate, the curves plotted are for the linear system sizes L = 32, 64, 128, 256, 512,
1024, 2048. For shear rate γ̇ ≥ 10−4, the vertical rescaling is enough for collapsing
all curves for different system sizes onto one master curve. Dashed blue line of linear
growth for guiding eyes.
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collapse the entire mean-square displacement curves for a given shear rate just by
a vertical rescaling

(
∆〈γ̇pl〉x

)
2 → Ld

(
∆〈γ̇pl〉x

)
2, see figure 5.17. This confirms the

central limit theorem behavior for systems of size L > ξc as discussed previously. It
is worth noticing that not only the long time mean-square displacement but also the
short time mean-square displacement behave as implied by the central limit theorem,
since the entire curves collapse to a unique one after rescaling by the system size.

A unique crossover macroscopic strain γdc can be identified for all mean-square
displacement curves obtained for different system sizes L for a given shear rate γ̇.
Below γdc the mean-square displacement of 〈γ̇pl〉x grows linearly with global strain
∆γ (also linearly with ∆T = ∆γ/γ̇) and beyond γdc the mean-square displacement
saturates to a constant. For a given shear rate γ̇, the unique collapse curve for
systems of size L > ξc suggests that a unique γdc is associated with a given shear
rate γ̇ when L > ξc. As shown in figure 5.17, it is possible to put the crossover region
in the same horizontal position for systems of size L > ξc by rescaling ∆γ → ∆γ/γ̇ηd

and ηd ≈ 0.55.
Since only one macroscopic strain scale (or one time scale = strain/γ̇) is found in

both the mean-square displacement and the power spectral density of the same time
series for a given shear rate, the strain scales found in either of the two observations
have to be the same, which is indeed observed by finding the same dependence on
the shear rate γvc ∼ γ̇η and γdc ∼ γ̇ηd with η ≈ 0.55 ≈ ηd. It is then adequate to
define a unique scale for the saturation of the macroscopic strain γSc = γdc = γvc (or
an unique time scale T Sc = T dc = T vc = γSc /γ̇). For the case L > ξc, γSc (T Sc ) depends
only on the shear rate as γSc ∼ γ̇η (T Sc ∼ γ̇η−1), with η ≈ 0.55. One should mention
as a side remark, that as the quality of the data for the shear rate γ̇ = 10−5 in
the figure 5.16 is not very good, it is difficult to distinguish the crossover frequency
ωvc = 1/γvc for different system sizes L ≤ 128 for γ̇ = 10−5, which is not contradictory
with the observations here.

Conclusion A saturation time scale T Sc (or equivalently a saturation strain scale
γSc = γ̇T Sc ) resides in the time series of the 〈γ̇pl〉x(t) below which the time series
exhibits statistically meaningful self-similarity and the mean-square displacement
grows linearly with time (or the macroscopic strain). When L > ξc, T Sc (or γSc )
depends only on the shear rate as T Sc ∼ γ̇η−1 (or equivalently γSc ∼ γ̇η). The
saturation time scale T Sc for L < ξc is discussed in the next section.
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Figure 5.18: Rescaled mean-square displacement Ldv ·
(
∆〈γ̇pl〉x

)
2 as function of

rescaled global strain ∆γ/Lzs for shear rate γ̇ = 10−5 and system size L < ξc. zs is
measured to be ≈ 0.42

5.4.4 A scaling relation between the cooperative time and

the cooperative length

For an applied shear rate γ̇ = 10−5, by doing the vertical rescaling
(
∆〈γ̇pl〉x

)
2 →

Ld
(
∆〈γ̇pl〉x

)
2, it is only possible to collapse the whole mean-square displacement

curves of system sizes L > ξc, while for L < ξc only the linear growth regime,
i.e. ∆γ < γSc , can be collapsed together, see figure 5.17. For L < ξc the mean-
square displacement of the macroscopic plastic strain rate at large ∆γ > γSc scales
as studied above with the system size in a power law as

(
∆〈γ̇pl〉x

)
2 ∼ L−dv . This

indicates that the saturation strain γSc begins to depend on the system size when
L < ξc, as seen in figure 5.17.

If we interpret the saturation global strain scale γSc as an indicator of the moment
of full development of cooperative dynamics limited by the spatial extension under a
certain applied shear rate γ̇, the dependence of γSc on the system size L < ξc can be
seen as the temporal extension of the cooperative dynamics induced by the spatial
constraint. It is then possible to obtain the relation between the spatial extension
and the temporal extension of the cooperative dynamics under a given shear rate,
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by using the fact that the spatial extension of the dynamics ξc reaches the system
size at this specific value of the strain.

Practically this relation can be accessed by trying to collapse the mean-square
displacement curves for γ̇ = 10−5 and L < ξc in the figure 5.17 by firstly shifting
vertically according to the scaling relation between the long time mean-square dis-
placement and system size, i.e.

(
∆〈γ̇pl〉x

)
2 → Ldv ·

(
∆〈γ̇pl〉x

)
2, and then shifting

horizontally with ∆γ → ∆γ/Lzs , where the exponent zs is to be measured. If all
curves collapse to a master curve, the horizontal shifting leads to a scaling relation
Tc ∼ ξzsc , since ∆T = ∆γ/γ̇. The figure 5.18 shows the result, and the exponent zs
is measured to be close to 0.42. A similar scaling relation between a length scale and
a time scale T ∼ ξz is also suggested in a former work [Lin et al., 2014a], and the
exponent is measured to be z ≈ 0.57 [Lin et al., 2014a] similar to the value of our
study of avalanche dynamics earlier in this chapter. Since it is still not clear if z and
zs should be interpreted in the same way, they are not supposed to be comparable
quantitatively.

5.4.5 Brownian motion signatures blow the saturation time

scale T S
c

Several signatures of the Brownian motion (i.e. Wiener process) are observed below
the saturation time scale T Sc in the time series of 〈γ̇pl〉x by looking at the power
spectral density, the mean-square displacement and the covariance function Cw(s, t).
The object which behaves as a Wiener process starting from zero is the reconstructed
plastic strain rate time series γ̇plw (∆t; to), see the equation (5.24), with ∆t < T Sc .

Power spectral density The first signature of Brownian motion resides in the
power spectral density

∣∣ˆ̇γpl
∣∣2(ω̄). The power spectral density of a Brownian motion

is a power law in frequency of exponent two, i.e. ∼ ω−2. This is actually observed
in the power spectral density of the macroscopic plastic strain rate. A clear scaling
regime covers about three decades for shear rates γ̇ ≥ 10−4 above the saturation
strain frequency ω̄Sc = 1/γSc . The power law in the spectral density for γ̇ ≥ 10−4 is
measured to be

∣∣ˆ̇γpl
∣∣2 ∼ ω̄−αp with αp ≈ 2, (see the figure 5.16). This power law with

exponent −2 in the power spectral density above ω̄Sc suggests that Brownian motion
signatures reside in the time series of 〈γ̇pl〉x for a time scale smaller than T Sc . For
γ̇ = 10−5 the lack of statistics induces a large scatter in the power spectral density,
which makes it difficult to measure a power law, see figure 5.16. From the power
spectral density, the Brownian motion signature is more pronounced for γ̇ ≥ 10−4.
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Mean-square displacement The second signature of Brownian motion is found
in the linear growth of the mean-square displacement with the macroscopic strain
below γSc , see the figure 5.17. Comparing the expression of the mean-square displace-
ment 5.22 and the definition 5.24 of γ̇plw (∆t; to), one finds that

(
∆〈γ̇pl〉x

)
2 =

(
γ̇plw
)2.

The fact that for all shear rates
(
γ̇plw
)2 ∼ ∆γ ∼ ∆t for ∆γ < γSc suggests that

γ̇plw (∆t) behaves like a Brownian motion for ∆t < T Sc (or equivalently ∆γ < γSc ).
It is worth to notice that the diffusion coefficient within the linear growth regime,

i.e. ∆γ < γSc , is inversely proportional to the system size Ld, which is confirmed
by the fact that by rescaling the mean-square displacement with the system size
according to the central limit theorem, all curves of different system sizes collapse
to an unique curve for a given shear rate, even for L < ξc, as far as ∆γ < γSc , see
the figure 5.17.

Covariance The last signature of Brownian motion is the covariance function of
γ̇plw (∆t). If Wt is a standard Brownian motion process which is not a stationary
process, the covariance Cv(s, t) = 〈WtWs〉 depends on the two times t and s, and
Cv(s, t) = min(t, s). For testing this property, the covariance function Cw(s, t) of
the reconstructed plastic strain rate (starting from zero), estimated as the expres-
sion 5.25, is investigated for all shear rates within a total time interval smaller than
T Sc . The covariance Cw is shown as function of ∆γ=̂tγ̇ for a fixed ∆γs=̂sγ̇. We have
0 < ∆γ < γtot < γSc (γ̇, L), and ∆γs is set to be one fifth of the γtot. Shown in the
figure 5.19, the behavior of the covariance function, as required by the property of
Brownian motion, grows linearly with ∆γ when ∆γ < ∆γs and becomes a constant
once ∆γ > ∆γs. It is worth to notice that the short time (smaller than T Sc ) covari-
ance behaves in the same way for all system sizes, as far as the time scale is within
the saturation time T Sc . This behavior of the covariance is another strong signature
of the Brownian motion of γ̇plw within the saturation time scale T Sc .

Conclusion With the signatures of the Brownian motion in the power spectral
density, the mean-square displacement and the covariance function within the satu-
ration time scale T Sc , the time series of 〈γ̇pl〉x can be described in a phenomenological
way as a Brownian motion. Specifically given the macroscopic plastic strain rate at
moment to of a system of size L under shear rate γ̇, the macroscopic plastic strain
rate at a time t = to + ∆t with ∆t < T Sc can be expressed as

〈γ̇pl〉x(t) = 〈γ̇pl〉x(to) + γ̇plw (∆t) (5.26)
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where γ̇plw (∆t) is zero departing Brownian motion, the diffusion constant of which
is inversely proportional to the system size Ld. If the system size is larger than the
cooperative length L > ξc, T Sc ∼ γ̇η−1 with η ≈ 0.55, otherwise if L < ξc, T Sc ∼ Lzs

with zs. Rationalizing the above scaling relations and the Brownian motion behavior
would significantly improve our understanding of the elasto-plastic model.

5.4.6 Conclusion

The full spatial extension ξc of the cooperative dynamics in the elasto-plastic model
is evidenced by numerical tests, even though the dependency of ξc on the shear rate
γ̇ is not accessible because of numeric computing capacity. The temporal extension
and the spatial extension of the cooperative dynamics are related by Tc ∼ ξzsc with
zs ≈ 0.42.

Above the cooperative dynamic length scale L > ξc, the fluctuations of the
macroscopic plastic strain rate behave as implied by the central limit theorem, i.e.
V ar(〈γ̇pl〉x) ∼ L−dγ̇κs with κs ≈ 0.7. Below the dynamical cooperative length scale
L < ξc, the fluctuations of the macroscopic plastic strain rate decrease slower than
the central limit theorem would predict, i.e. V ar(〈γ̇pl〉x) ∼ L−dv with dv ≈ 0.8d.

The time series of the macroscopic plastic strain rate ∆〈γ̇pl〉x(∆t) = 〈γ̇pl〉x(t +

∆t) − 〈γ̇pl〉x(t) behaves apparently as a Brownian motion at small global strain
scale ∆γ < γSc (or equivalently a short time scale ∆T < T Sc = γSc /γ̇). Above
the cooperative dynamical length scale L > ξc, γSc ∼ γ̇η with η ≈ 0.55 (equivalently
T Sc ∼ γ̇η−1). Below this value the dynamical length scale L < ξc, we obtain γSc ∼ Lzs

(equivalently T Sc ∼ Lzs). Below the crossover global strain scale γSc , the diffusion
coefficient of the Brownian motion scales like the inverse of the system size, i.e.(
∆〈γ̇pl〉x

)
2 ∼ L−d∆γ, for ∆γ < γSc .

5.4.7 Rationalizing the variance of 〈∆γpl〉x using the conclu-

sions for 〈γ̇pl〉x(t)

The macroscopic plastic strain during ∆γ is the integral of global plastic strain rate.
The macroscopic plastic strain between t and t+ ∆T = t+ ∆γ/γ̇ is

〈∆γpl〉x(∆γ; t) =

∫ t+∆T

t

〈γ̇pl〉x(s)ds (5.27)



5 Critical dynamics close to the yielding transition 105

Thanks to the stationary state, a numerical estimate of the variance 〈∆γpl〉x(∆γ) is
obtained from

V ar(〈∆γpl〉x) = 〈∆γpl〉2x − 〈∆γpl〉x
2

(5.28)

we have the average macroscopic plastic strain

〈∆γpl〉x =

∫ ∆T

0

〈γ̇pl〉x(t)dt = γ̇∆T = ∆γ (5.29)

and the average square macroscopic plastic strain

〈∆γpl〉2x = lim
T→∞

1

T

∫ +T
2

−T
2

dt0

{∫ t0+∆T

t0

dt

∫ t0+∆T

t0

ds〈γ̇pl〉x(t)〈γ̇pl〉x(s)

}
(5.30)

At short times∆T < T Sc , we assume a Brownian motion for the dynamics of
〈γ̇pl〉x(t), i.e.

〈γ̇pl〉x(t) = 〈γ̇pl〉x(t0) + γ̇plw (t− t0)

where γ̇plw (t − t0) is a Wiener process starting from zero. By changing variables
t→ ∆t = t− t0 and s→ ∆s = s− t0, the equation (5.30) becomes

〈∆γpl〉2x =

∫ ∆T

0

d∆t

∫ ∆T

0

d∆s

{
〈γ̇pl〉2x + γ̇plw (∆t)γ̇plw (∆s)

}
(5.31)

The cross terms vanish due to the independence between γ̇plw (t−t0) and 〈γ̇pl〉x(t0),
which is a property of a Wiener process. Taking into account of the covariance of a
Wiener processγ̇plw (∆t)γ̇plw (∆s) = Cv(∆t,∆s) ∼ min(∆t,∆s), equation (5.31) leads
to

〈∆γpl〉2x ∼
(
〈γ̇pl〉2x

)
∆T 2 +O(∆T 3) (5.32)

Inserting equations (5.32), (5.29) into (5.28), It is straightforward to show, by
replacing γ̇2 = 〈γ̇pl〉x

2
,

V ar(〈∆γpl〉x) ∼ V ar(〈γ̇pl〉x) ·∆T 2 +O(∆T 3) (5.33)

By changing variable ∆γ = γ̇∆T , one gets

V ar(〈∆γpl〉x) ∼ V ar(〈γ̇pl〉x)

γ̇2
·∆γ2 +O(∆γ3) (5.34)

These predictions can be tested by the following observations on the data from
simulations that are shown in the figure 5.20 and 5.21:
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1. For small time scales ∆T < T Sc (or equivalently ∆γ < γSc ) the variance of the
macroscopic plastic strain should increase quadratically with the strain ∆γ

(see figure 5.20).

2. The variance of the plastic strain V ar(〈∆γpl〉x) should scale in the same way
as the variance of the plastic strain rate V ar(〈γ̇pl〉x) with the system size, as
long as ∆γ is small and relatively far from γSc so that the Brownian motion
description works well. Curves collapse well by rescaling with the system size
Ld · V ar(〈∆γpl〉x) implying that V ar(〈∆γpl〉x) ∼ L−d as V ar(〈γ̇pl〉x) does for
L > ξc, see figure 5.20 and left panel of figure 5.21. For L < ξc, see left panel of
figure 5.21 at γ̇ = 10−5 and Ld ≤ 1282, the variance of the plastic strain scales
with the system size as V ar(〈∆γpl〉x) ∼ L−0.8d, and so does the variance of
the macroscopic plastic strain V ar(〈γ̇pl〉x) ∼ L−0.8d in the left panel of figure
5.14.

3. Since the variance of the plastic strain rate scales with the shear rate V ar(〈γ̇pl〉x) ∼
γ̇κs with κs ≈ 0.7, as seen in figure 5.14(left), the variance of the plastic strain
should scale with the shear rate V ar(〈∆γpl〉x) ∼ γ̇(κs−2). Figure 5.21(left)
shows the scaling of the variance of the plastic strain with shear rate at a
small ∆γ by the collapsing all curves obtained for L > ξc after rescaling
V ar(〈∆γpl〉x)→ γ̇κp ·V ar(〈∆γpl〉x). That is to say V ar(〈∆γpl〉x) ∼ γ̇−κp with
κp ≈ 1.3 for the best collapse, which is consistent with 2− κs ≈ 1.3.

4. The predictions work less well when ∆γ approaches from below to the sat-
uration strain ∆γ . γSc , as shown in figure 5.21(left). The variance of the
macroscopic plastic strain for large systems L > ξc still follows the central
limit theorem predictions, i.e. V ar(〈∆γpl〉x) ∼ L−d, and the scaling with the
shear rate is still close to that when ∆γ is small, i.e. κp ≈ 1.2 for the best
collapse. For small system sizes L < ξc, one finds V ar(〈∆γpl〉x) ∼ L−0.65d

which is not consistent with the above predictions, indicating that some com-
plexity appears when approaching ∆γ ≈ γSc which gives a different scal-
ing exponent ds ≈ 0.65d < dv ≈ 0.8d. The variance of the macroscopic
plastic strain V ar(〈∆γpl〉x) after entering the saturation regime can be es-
timated roughly by assuming that V ar(〈∆γpl〉x) grows monotonically un-

til γSc then turns to be a constant, noted V S=̂V ar(〈∆γpl〉x)

∣∣∣∣
∆γ>γSc

, within

the saturation. With these assumptions, according to the equation (5.34),
V S ∼ V ar(〈γ̇pl〉x)

γ̇2
·
(
γSc
)2 ∼ γ̇κs+2η−2 ∼ γ̇−0.2, implying that the saturated vari-

ance of the macroscopic plastic strain diverges with decreasing shear rate for
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Figure 5.20: Rescaled variance of global plastic strain Ld · V ar(〈∆γpl〉x) as function
of global strain ∆γ. Left: Shear rate decreases from 10−2 to 10−4 from bottom
to top. ×: γ̇ = 10−2; •: γ̇ = 10−3; +: γ̇ = 10−4. Different colors correspond to
system sizes L = 32, 64, 128, 256, 512, 1024, 2048. The collapse is rather good when
rescaling with the system size. Large fluctuations at high strain ∆γ are due to lack
of statistics. Right: Shear rate γ̇ = 10−5. The correspondence between the color and
the system size is the same as it is in the left panel. Only curves for large system
sizes L > 128 collapse well after rescaling with L to the power d. Blue dashed lines
show a quadratic growth as a guide to the eye.

L > ξc. This is confirmed by the curves in the figure 5.20, where despite
the relatively large fluctuations, the tendency of the saturated variance of the
macroscopic plastic strain to increase with decreasing shear rate is evidenced.
Because of the fluctuations, the scaling V S ∼ γ̇−0.2 can not be measured
precisely. It is worth to notice that for a given system size L the scaling
V S ∼ γ̇κs+2η−2 can only be valid above a shear rate γ̇L, with ξc(γ̇L) = L. For
smaller shear rate, the cooperative length exceeds the systems, and the scaling
between the variance V ar(〈γ̇pl〉x) and the shear rate γ̇ is not known.

5.5 Conclusion

The critical dynamics close to the yielding transition has been probed by various
approaches in this chapter. First, the driving rate dependence of the avalanche
statistics is systematically studied. Various power laws and scaling relations in the
zero shear rate limit are found to be consistent with the results in the literature,
which reinforces the idea that the yielding transition belongs to the universality
class of a dynamical phase transition. The crossover from non-mean-field to a mean-



5 Critical dynamics close to the yielding transition 108

103 104 105 106

Ld

10−8

10−7

10−6

10−5

γ̇
κ
p
·V

a
r(
〈∆
γ
pl
〉 x

)/
∆
γ

2 ,κ
p
≈

1.
3

∼ (Ld)−1.0

∼ (Ld)−0.8

γ̇ = 10−2.0,∆γ = 1e−5.0

γ̇ = 10−3.0,∆γ = 1e−4.67778070527

γ̇ = 10−4.0,∆γ = 1e−4.67778070527

γ̇ = 10−5.0,∆γ = 1e−4.74232142513

103 104 105 106

Ld

10−8

10−7

10−6

10−5

γ̇
κ
p
·V

a
r(
〈∆
γ
pl
〉 x

),
κ
p
≈

1.
2

∼ (Ld)−1.0

∼ (Ld)−0.65

γ̇ = 10−2.0,∆γ = 0.00025

γ̇ = 10−3.0,∆γ = 0.00025

γ̇ = 10−4.0,∆γ = 0.00025

γ̇ = 10−5.0,∆γ = 0.00025
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dashed lines guiding eyes for different scaling regimes. Right: Rescaled variance of
global plastic strain γ̇κp ·V ar(〈∆γpl〉x) as function of system size at ∆γ close to γSc .
κp ≈ 1.2 for the best collapse. Red and blue dashed lines guiding eyes for different
scaling regimes. Inset non-rescaled variance.

field like behavior of the mechanical noise, the distribution of the distance to the
instability P(x) as well as the distribution of the stress drop sizes with respect
to the applied shear rate are evidenced. The idea that macroscopic stress drops
result from the spatial-temporal superposition of individual collective motions, i.e.
avalanches coming from the cooperative dynamics, is justified by the observation
that the symmetry of the average avalanche shape depends on the duration, the
system size and the applied shear rate. However the hypothesis of the existence of a
dynamical cooperative length scale diverging as approaching the yielding transition
can not be probed directly by the statistics of the stress drops.

Inspired by the analogy between the elasto-plastic model and the depinning
model, the geometry of the plastic interface is characterized by its "hard" Fourier
modes. Unlike in depinning models, the geometry of the plastic interface is not
isotropic and seems to be insensitive to the shear rate. The non isotropic form
in Fourier space of the plastic interface is related with the strength of the self-
interaction kernel, i.e. the propagator ĜN . Because of the complexity of the ge-
ometry of the plastic interface, there is no characteristic length scale that can be
identified, such as the lav in the depinning elastic line, for characterizing the coop-
erative dynamics of the elasto-plastic model.

For probing the cooperative length scale, the two point correlations of the plastic
shear rate field is investigated for different shear rates. It is evidenced that spatio-
temporal correlations become increasingly important as the shear rate decreases. A
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power law decay of the correlations along the strong correlation axis from the center
at a given time delay is found. The overall system correlation intensity decays as
a power law with the delay time. Because of the power law behavior, there is no
characteristic length scale to be identified for the dynamical cooperative length.

Finally, by comparison with the central limit theorem predictions, the study on
the macroscopic stress fluctuation (equivalent to the macroscopic plastic strain rate
fluctuation) reveals the existence of a cooperative length scale ξc below which the
central limit theorem breaks down indicating dynamical correlations. A saturation
time scale T Sc is revealed to depend only on the shear rate when L > ξc and to
depend on the system size L for L < ξc. From the dependence of T Sc on the system
size, a scaling relation between the cooperative time and the cooperative length is
obtained Tc ∼ ξzsc . This scaling relation is reminiscent of the one proposed in the
literature, however this similarity should be interpreted prudently. It is not clear if
the relation found here can be interpreted in the same way as the one found in the
literature. Furthermore we found that the short time (∆t < T Sc ) dynamics of the
macroscopic plastic strain rate closely resembles the one of a Brownian motion. The
assumption of the short time Brownian dynamics of the macroscopic plastic strain
rate is then used to rationalize the behavior of the variance of the macroscopic plastic
strain.

From these studies, it is clear that a finite size effect manifests when the applied
shear rate decreases, indicating that a cooperative length scale is involved in the
dynamics close to the yielding transition. Power laws found close to the yielding
transition, strongly suggests that the yielding transition exhibits critical dynamics
at a dynamical phase transition involving a divergent dynamical length scale. This
length scale is evidenced in the system size dependent fluctuation of the macroscopic
stress. More detailed simulations and lower shear rates should be used for reveal-
ing the divergence of the cooperative length scale as the system approaches at the
yielding point to deepen our understanding of the critical dynamics.



Chapter 6

Creep

As argued already in chapter 3, the creep experiment is an important part of the
study of the mechanical behavior of the soft glassy systems. In this chapter, the creep
behavior of amorphous systems is investigated by mesoscopic modeling approaches.
The mean-field Hebraud-Lequeux model and the elasto-plastic model are discussed,
respectively, in the first and second part of this chapter.

This study is focused on the macroscopic behavior during creep experiments
on amorphous systems, i.e. the macroscopic shear rate evolution when a constant
macroscopic shear stress is imposed to the system. In experiments, it is mainly
observed that (i) the macroscopic shear rate undergoes a power law decay with time
γ̇(t) ∼ t−µ, where the exponent µ depends on the material and the preparation
protocol, followed by a rapid increase up to the steady state value that should
correspond to the flow curve value at the imposed macroscopic stress, if σ is larger
than the macroscopic yield stress σy. γ̇(t) shows an “S” shape, see the figure 6.1.
(ii) The fluidization time scale τf scales with the distance to the yield stress, i.e.
τf ∼ (σ−σy)−β, the exponent β again dependent on the material and the preparation
protocol. (iii) If the imposed stress is smaller than the yield stress, a logarithmic
creep is found in the large time limit, i.e. γ̇ ∼ t−1 as t→∞.

Besides, for creep experiments in soft matter systems, the systems are usually
pre-sheared according to a well defined protocol, in order to achieve reproducible re-
sults. This suggests strongly that the creep behavior depends on the initial condition
of the system.

In the following sections, these macroscopic observables are probed by the meso-
scopic models using a stress controlled creep protocol. The main discussion will
focus on the dependence of the creep behavior on the initial conditions.
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Figure 6.1: Strain rate versus time for different applied stresses across the yield stress
in a colloidal glass. Left: Creep for different imposed stresses. Right: the three colors
correspond to three different imposed stresses. From the left to the right of the four
curves for each imposed the stress, the waiting times are tw = 60, 600, 3600, 6000s,
i.e. the age of the sample is increasing [Siebenbürger et al., 2012].

6.1 Creep via the mean-field model

The main framework for the mean-field description of the creep has already exposed
in the chapter 4. We recall the model equation here:

∂tP(σ, t) = −µγ̇(t)∂P(σ, t)+αΓ(t)∂2
σP(σ, t)+Γ(t)δ(σ)− 1

τ̃
Θ(|σ|−σc)P(σ, t) (6.1)

The stress controlled protocol consists of setting γ̇(t) = 1
µτ̃

∫
dσΘ(|σ| − σc)P(σ, t)σ,

which makes sure that the macroscopic stress 〈σ〉 =
∫
dσσP(σ, t) stays constant.

The consistency of the stress controlled protocol with the shear rate controlled
protocol is checked by comparing the flow curves coming from the two protocols for
different values of the model parameter α, as shown in figure 6.2.

Defining the initial condition In the stress controlled version of the model, the
evolution of P(σ, t) is automatically determined by the dynamics and the initial
condition Po(σ) = P(σ, t = 0). The imposed stress is given by 〈σ〉 = σIMP =∫
dσσPo(σ). Thus the imposed stress is adjusted by varying the shape of Po(σ)

while keeping the mean equal to σIMP .
A Gaussian distribution of Po(σ) is chosen for simplicity. The mean of the

Gaussian distribution is set to be the imposed stress. The second parameter that
defines the Gaussian distribution is the standard deviation. The standard deviation
can be interpreted as the aging effect on the system. A more relaxed system, i.e. a
system with larger age, is expected to be more homogeneous in its local stress field,
which leads to more peaked stress distributions, i.e. a smaller standard deviation.
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Figure 6.2: The flow curves of the Hebraud-Lequeux model with two protocols are
compared. Three values of α are tested.

A less relaxed system, i.e. younger age, for the same reason, should admit a larger
stress distribution, i.e. larger standard deviation. By noting std for the standard
deviation of Po(σ), the degree of relaxation can be characterized by the inverse of
this quantity given by (std)−1.

Another model parameter is the α parameter representing the strength of the
mechanical coupling between the mechanical noise and the surrounding activity,
which also determines the dynamical yield stress, i.e. σy(α). Given a parameter
α, we choose to set a series of ∆σ = σIMP − σy(α) between 0.1 and 0.3 (σc = 1).
The domain of ∆σ is chosen to have a as small as possible lower limit such that the
numerical resolution is still reliable and σIMP still remains in the scaling regime of
the flow curve. Technically the numerical cost for a reliable result increases as ∆σ

approaches zero.
Three values of α, 0.2, 0.3, 0.4 are chosen. For each value of α the creep behavior

is investigated for several standard deviations of the initial condition Po(σ) and of
the distance to the yield stress ∆σ .

Method For resolving numerically the partial derivative equation (6.1), a usual
finite difference method is adopted. The domain of σ is chosen from −10 to 10,
while at

∣∣σ
∣∣ ≥ 5 the P(σ, t) is of order of magnitude ≤ 10−9. Periodic boundary

conditions are used. It is worth noting that for having a stable time integration and
a reasonable accumulated error, the time step of the numerical integration δt should
be smaller that (δσ2/2), where δσ the finite difference in σ.
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To regularize the equations for the numerical integration, the delta function
and the step function in the equation (6.1) are replaced by a Gaussian distribution
of a very narrow width and hyperbolic functions with very sharp derivatives at∣∣σ
∣∣ = σc = 1 respectively.

Results

The macroscopic shear rate γ̇(t) Interestingly, the macroscopic shear rate
γ̇(t) as function of time under creep at a fixed shear stress shows a qualitative
agreement with experimental results. Typically the non-linear response of the early
stage decay and the late sudden increase are reproduced by the imposed stress
version of the model. Within the domain of ∆σ that is investigated here, the power
law decay does not converge to a unique creep exponent as ∆σ approaches zero.
The power law decay regime covers a larger area and the creep exponent µ becomes
larger as ∆σ becomes smaller. Among all the value of tested parameters and ∆σ, we
can identify a creep exponent µ ≈ 1 for a specific setting of parameters, as shown in
figure 6.3(left), which is not far from the experimental result on the colloidal glass,
as shown in figure 6.1.

The dependence of the macroscopic shear rate γ̇(t) under creep on the age of the
system is also qualitatively captured by 6.3(right) to compare with figure 6.1(right).
The fluidization time increases with the age of the system, i.e. more relaxed systems
take a longer time to fully fluidize under the imposed stress.

The scaling relations. The fluidization time τf is defined here as the inflection
point of the creep curve γ̇(t), i.e.

d

dt
γ̇

∣∣∣∣
t=τf

= Max(
d

dt
γ̇

∣∣∣∣
t>0

) (6.2)

The way τf depends on the imposed stress ∆σ for different values of the model
parameter α and for different degrees of relaxation of the system, i.e. the standard
deviation of Po(σ), is shown in the figure 6.4.

As shown in figure 6.4, the power law between the fluidization time τf and the ∆σ

is more pronounced in less relaxed systems, i.e. larger standard deviations, and for
weaker coupling strengths. Besides, the scaling exponent β (recalling τf ∼ ∆σ−β)
depends on the coupling strength and on the relaxation of the system. The measured
exponent β as function of α and std, is shown in figure 6.5. However we should keep
in mind that β measured for small std (well relaxed systems) does not make sense
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Figure 6.3: Macroscopic shear rate 〈γ̇pl〉x(t) as a function of time. Left: Creep for
different ∆σ (from top to bottom, ∆σ = 0.28, 0.26, 0.24, 0.22, 0.2, 0.18, 0.16, 0.14,
0.12, 0.1) for α = 0.3 and the standard deviation of Po(σ) equal to 0.3; Right: Creep
for different standard deviations (from top to bottom, std = 0.38, 0.36, 0.34, 0.32,
0.3, 0.28, 0.26) for α = 0.3 and ∆σ = 0.14.

Figure 6.4: The scaling between τf and ∆σ for different degrees of relaxation of the
system. Right α = 0.2; Middleα = 0.3; Left α = 0.4
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Figure 6.5: β as function of the degree of relaxation of the system characterized
by the standard deviation std of the initial distribution of the stresses for different
coupling strengths.

for the power law but for characterizing how fast the τf decreases with ∆σ. The
larger β is, the faster τf decreases with ∆σ, i.e. the fluidization time τf is more
sensitive to ∆σ. From the figure 6.5, it can be observed that the fluidization time
τf is less sensitive to the distance to the yielding point ∆σ for systems of weaker
coupling and for systems that are less relaxed.

Conclusion According to the above results, the mechanism of mechanical cou-
pling between noise fluctuations of the local stresses and the plastic activity, is able
to reproduce a typical creep behavior and the dependence of the creep on the degree
of relaxation of the system. These findings are in good qualitative agreement with
experimental observations. As one typical feature for example the “S” shape in the
macroscopic shear rate response is reproduced. Further by adjusting the coupling
strength and the degree of relaxation, the model reveals that the fluidization time
scale becomes less sensitive to the imposed stress as the system is less relaxed or if
the different regions inside the system are only weakly coupled mechanically.

Attempt to rationalize the non-linear response in γ̇(t) An analysis of ef-
fective dynamical equations is performed to gain some qualitative understanding of
the non-linear response in γ̇(t) under fixed stress, as shown in figure 6.3.
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Effective dynamics One can use equation (6.1), with

γ̇ =
1

µτ̃

∫
Θ(|σ| − σc)P(σ)σdσ

Γ =
1

τ̃

∫
Θ(|σ| − σc)P(σ)dσ

assuming that at σc, P(σ) admits second derivative i.e. P ′′(σ = σc) exists. By
performing the integral on both sides of the Hebraud-Lequeux equation over σ > σc,
we can obtain the dynamics of Γ and by multiplying σ on both sides then performing
the integral over σ > σc, we can obtain the dynamics of γ̇. As a result, an effective
dynamics of Γ(t) and γ̇(t) is derived in the following expressions:

d

dt
γ̇ = A(t)γ̇ +B(t)Γ + γ̇Γ (6.3)

d

dt
Γ = C(t)γ̇ +D(t)Γ (6.4)

with C = G0

τ
(Pc − P−c), D =

α(P
′
−c−P

′
c )−1

τ
, A = (P−c+Pc)σc−1

τ
, B = α

τG0
(Pc −

P−c − σc(P ′−c + P
′
c)) and where Pc(t)=̂P(σc, t), P−c(t)=̂P(−σc, t), P ′c(t)=̂∂σP(σc, t),

P
′
−c(t)=̂∂σP(−σc, t).
The equation (6.3) and (6.4) constitute an effective dynamical system of the

state variable (γ̇,Γ), while the coefficients A, B, C, D vary in time.

Instantaneous dynamical flow The instantaneous velocity of γ̇ and Γ is then
determined by the instantaneous dynamical flow of the effective dynamics defined
by the coefficients A(t), B(t), C(t), D(t), while the evolution of the coefficients are
determined by the full dynamics equation (6.1). Therefore the effective dynamical
equations above are not closed equations describing the full dynamics.

The evolution of γ̇ and Γ can then be regarded as the time integration of their
instantaneous velocity according to the effective dynamics determined by the coef-
ficients A,B,C,D varying in time. For testing this idea, the coefficients A,B,C,D
as well as the γ̇(t) and Γ(t) are recorded during a simulation of the full Hebraud-
Lequeux model. Then the recorded time series of A,B,C,D and the initial values
γ̇o = γ̇(t = 0) and Γo = Γ(t = 0) are injected into the effective dynamical equations
(6.3) (6.4) for computing the “effective dynamic” time series of γ̇ed(t) and Γed(t),
which are then, together with γ̇(t) and Γ(t), plotted in the same figure 6.6(right).
It can be seen that they agree very well.
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Figure 6.6: Left: A typical macroscopic shear rate response to an imposed stress.
Three regimes are separated by two time scales tmin and tsta. Right: Validation of
the idea of the effective dynamics.

From the macroscopic shear rate response γ̇(t), we can identify three regimes,
separated by two time scales tmin and tsta, see the figure6.6(left). The time tmin
is defined as the moment where γ̇(t) reaches the minimum and tsta is the moment
where the system enters the stationary state. The three regimes are (i) the decaying
regime, t < tmin; (ii) the increasing regime, tmin < t < tsta; (iii) and the stationary
regime, t > tsta.

At any given time, it is interesting to study the stability of the effective dynamical
system as if the coefficients were fixed in time with respect to regimes for a qualitative
understanding of the non linear behavior of the shear rate γ̇(t), especially for the
first two regimes where the assumption is that the coefficients evolve more slowly
than the variables themselves . The fictitious dynamical system obtained for fixed
coefficients A, B, C and D has two fixed points, with a stability that depends on the
values of the coefficients.

At any instant t, the effective dynamical system admits two fixed points:

Γs,1 = 0, γ̇s,1 = 0 (6.5)

and
Γs,2(t) =

C(t)B(t)

D(t)
− A(t), γ̇s,2(t) =

A(t)D(t)

C(t)
−B(t) (6.6)

The stability analysis of the two instantaneous solutions is given in the Appendix
E using the method of linearization around the fixed points. The dynamical flow of
the effective dynamical system within the three regimes are shown respectively in
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figure 6.7.
(i) In the decaying regime t < tmin, the zero fixed point is stable, all states around

zero are attracted toward the origin, which leads to the decay of γ̇(t) and Γ(t), see
the figure 6.7(left); (ii) In the increasing regime tmin < t < tsta, the zero fixed point
becomes unstable and the far away non zero fixed point γ̇s,2 > 0, Γs,2 > 0 becomes
stable. The actual state

(
γ̇(t),Γ(t)

)
lies in between the two fixed point following a

velocity towards the non zero fixed point, which gives rise of the increase of γ̇ and
Γ, see the figure 6.7(right).

When running the complete model, one observes that the transition from the
decay to the increase of the variation of the shear rate corresponds to an exchange
of stability of the fixed points due to the actual time evolution of the coefficients A,
B, C and D, thus the system first appears to converge to the zero fixed point, then
departs from it rapidly.

(iii) In the stationary regime t > tsta, the zero fix point is stable and the non-
zero one is unstable. The only true fix point derived from the effective dynamics is
the zero fix point, whereas the stability of the steady state solution must be tested
using the whole formalism, i.e. the equation (6.1), the effective dynamics is not
sufficient. However when analyzing the effective dynamics one can observe that at
the beginning of the stationary regime, the dynamical flow changes rapidly from
pointing outward from the origin to pointing inward towards the origin, while the
non-zero fixed point of the effective dynamics moves (remember the time dependence
of the coefficients) much faster than the actual state

(
γ̇(t),Γ(t)

)
. Very quickly, the

non-zero fixed point catches up with the actual state, and finally the system state
point

(
γ̇(t),Γ(t)

)
remains on the non-zero fixed point and stays there forever, as

shown in the figure 6.7(bottom).
That the stationary state cannot be analyzed in the same way as in the first two

regimes may be related to the fact that now everything A, B, C, D, γ̇, Γ evolves
on comparable time scales so that describing things with the effective equations
becomes meaningless. This has to be investigated further in the future.

Conclusion The effective dynamics can be used to rationalize the different
trends the non-linear response of the macroscopic shear rate to an imposed stress.
However this method is limited to a qualitative analysis and does not allow for
quantitative predictions.



6 Creep 119

Figure 6.7: The stream lines of the effective dynamical system at time t; Blue
square: the actual state

(
γ̇(t),Γ(t)

)
; Red circle: the relevant fixed point of the

effective dynamic system; Left: t < tmin; Right: tmin < t < tsta; Bottom: t > tsta.
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Figure 6.8: Left: The flow curves obtained from the stress controlled protocol and
from the shear rate controlled protocol with PY (σY ) being a Rayleigh distribution.
Right: Dashed lines: shear rate control protocol; Triangles: stress control protocol;
Blue: PY (σY ) uniform distribution; Red: Gaussian; Green: Rayleigh. The Herschel-
Bulkley fitting exponent n ≈ 0.58 for the uniform distribution and n ≈ 0.57 for both
the Gaussian and Rayleigh distribution

6.2 Creep via the elasto-plastic model

Modeling the mechanical coupling of different mesoscopic regions as a diffusion of
the local stress, according to the analysis of the mechanical noise in the chapter 5, is
only valid at a relatively high shear rate, corresponding to a relatively high imposed
stress. For a more realistic spatially resolved description of the creep behavior
of amorphous systems, the elasto-plastic model using the fixed stress protocol is
studied. The study of the creep of amorphous systems by the elasto-plastic model in
this section is done only for two-dimensional systems. A couple of preliminary results
of the creep dynamics of the elasto-plastic model are presented in the following.

The stress controlled protocol of the elasto-plastic model was introduced in chap-
ter 4. It is worth recalling that, in the stress controlled protocol, the macroscopic
shear rate is equivalent to the macroscopic plastic shear rate, i.e. γ̇(t) = 〈γ̇pl〉x(t).

Before discussing the creep behavior of the elasto-plastic model, the consistency
between the stress control protocol and shear rate control protocol is verified by
comparing the flow curves produced by the two protocols. The steady state flow
curves of the two protocols are in agreement, see figure 6.8.

Defining the initial condition of the elasto-plastic model Given the dynam-
ical rules, the initial condition of the elasto-plastic model is defined by the initial
plastic interface γpl(x, t = 0), which gives the initial internal stress field through
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σINT (x) = µGN(x) ∗ γpl(x) and the initial local yield stress field σY (x, t = 0) which
is chosen for each site independently from a probability distribution PY (σY )dσY .
Together with the imposed stress 〈σ〉x = σEXT = σIMP , σINT (x) and σY (x) de-
termine how many plastic events will occur and where these plastic events will be
activated. Once this first step of activation at time t = 0 is determined, the following
behavior at t > 0 is automatically determined by the dynamics of the model.

Since in studies using molecular dynamics of quenched glassy systems, no spatial
correlations of either the local stress or the local yield stress (the measurement of
the later one is still under investigation, the last result is found in reference [Patinet
et al., 2016]) has been found, the spatial correlations are also discarded in this study,
which implies that the spatial distribution of the first step of activation of plastic
events has no specific structure and is almost homogeneous over the system. In this
case, the initial condition is effectively only determined by the probability distri-
bution P(x), where x=̂σY (x)− σ(x). The sites of negative x are almost uniformly
distributed over the system, and will be the activated at time zero t = 0.

To simplify the numerical implementation of the initial condition, we choose to
make the initial plastic interface flat which makes the internal stress uniformly zero
and we choose to change the initial condition by changing the probability distribution
of local yield stresses PY (σY ). By applying the external stress as the imposed stress
σEXT = σIMP leading to P(x) ≡ PY (x + σIMP ), a spatially uniformly distributed
portion P =

∫ 0

−∞P(x)dx of all sites of the system are activated at t = 0.
The functional forms of the probability distribution of local yield stresses that are

tested for simulating the creep of amorphous systems are the followings: (1) uniform
distribution; (2) Gaussian distribution and (3) Rayleigh distribution, introduced in
chapter 4. All these three forms of probability distributions are set to the same
mean and the same variance for the results to be comparable.

To confirm that the specific form of the local yield stress distribution does not
lead to a drastic change in the dynamics, the flow curves of the dynamics for all
three types of PY (σY ) using both stress control and shear rate control protocols are
compared, see the figure 6.8(right). The Herschel-Bulkley exponent is not sensitive
to PY (σY ), which confirms that the dynamics is neither.

Results

The macroscopic shear rate γ̇(t) The macroscopic shear rate γ̇ = 〈γ̇pl〉x(t)

as function of time for a number of imposed stresses close to the dynamical yield
stress for the three type of PY (σY ) are shown in the figure 6.9.
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Figure 6.9: Macroscopic shear rate〈γ̇pl〉x(t) as function of time for three types of
PY (σY ). The imposed stress decreases from the top to the bottom in each figure.
Left: PY (σY ) uniform; Middle: PY (σY ) Gaussian; Right: PY (σY ) Rayleigh

The behavior for uniform and Gaussian distributions of PY (σY ) appear quite
similar. The macroscopic shear rate starts with plateau, then decays as a power
law, and finally reaches the shear rate of the stationary state corresponding to the
imposed shear stress. For the small stresses, some of the shear rates suddenly go
to zero due to finite size effects. The behavior of the Rayleigh distribution differs
slightly from the others, but only in the early stages, where the shear rate starts
with a remarkable increase. However in all of these cases, the “S” shape, that was
found in the mean-field description, does not appear here.

The scaling relations For all the three types of probability distributions of
PY (σY ), it is possible to collapse the decaying and the stationary parts of all the
curves γ̇(t) by rescaling the shear rate with γ̇ → γ̇/γ̇s where γ̇s indicates the shear
rate of the stationary state for the corresponding shear stress, and by rescaling the
time with t → t/γ̇−αcs with αc ≈ 1.25. See the figure 6.10. This suggests that
the fluidization time τf ∼ γ̇s

−αc , which, together with the Herschel-Bulkley law
γ̇s ∼ (σ − σy)

1
n , implies that τf ∼ (σ − σy)−βc with βc = αc/n ≈ 1.25/0.57 ≈ 2.2.

Let us just mention that in experiments on carbopol gel systems the exponent βc is
found to reside between 3 ∼ 8 depending on the preparation protocol.

A power law decay can be identified from the rescaled macroscopic shear rate
creep curves in the figure 6.10. The decaying exponent µ is measured to be close
to 0.5, i.e.γ̇ ∼ t−µ with µ ≈ 0.5, for the Gaussian distribution and the uniform
distribution of PY and slightly smaller than 0.5 for the Rayleigh distribution. The
measured exponent µ ≈ 0.5 is not too far from the decaying exponent measured for
the carbopol gel, which is given to be approximately 2/3.
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Figure 6.10: The rescaled macroscopic shear rate γ̇/γ̇s as function of the rescaled
time t/γ̇−αc , αc ≈ 1.25.

Conclusion By a simple mechanical coupling mechanism, i.e. plastic events
interact with each other through the elastic medium through the Eshelby propagator,
the elasto-plastic model can qualitatively reproduce the scaling relations in the creep
experiments of amorphous systems.

However to reproduce the “S” shape in the macroscopic shear rate and to obtain
more quantitatively comparable results, a more sophisticated way for defining the
initial condition is required. One way is to compare carefully the elasto-plastic model
with the molecular dynamics [Sentjabrskaja et al., 2015, Chaudhuri and Horbach,
2013] to obtain a more realistic representation of the initial condition, e.g. the initial
stress distribution and the initial threshold distribution.



Chapter 7

Outlook

During this thesis, the elasto-plastic model has been used to study the yielding
transition of athermal amorphous systems. Signatures of critical dynamics close
to a dynamical phase transition are revealed by the investigation of the statistics
of avalanches in the zero shear rate limit. The idea that the jerky motion of the
macroscopic stress under external shearing results from the composition of individual
avalanches, where the term “individual avalanche” refers to a spatio-temporal domain
related by cooperative dynamics, is supported by the study of the stress drop shapes
and the study of the macroscopic stress fluctuations. Finally it is shown that the
elasto-plastic model version for externally applied stress reproduces a creep behavior
that agrees qualitatively well with typical experimental data.

Despite the success of the elasto-plastic model for describing the mechanical
behavior of amorphous systems, the dynamics of the model under different load-
ing conditions, i.e. stress control or rate control and the distance to the yielding
point, is not completely understood. Understanding the activation dynamics of the
elasto-plastic model should be an important step forward for revealing the nature of
plasticity in amorphous systems. Comparing results from molecular dynamics sim-
ulations and experiments with the activation dynamics of the elasto-plastic model
will lead to either a validation or means to enhance the ingredients adopted in the
mesoscopic elasto-plastic approach. A specific question would be, in which sense,
the activation dynamics of the elasto-plastic model under quasi-static shear is con-
sistent with the process of hopping from one meta-stable basin to another in the
molecular dynamic systems under athermal quasi-static shear.

The study of the macroscopic stress fluctuation in this thesis provides a clue
for a deeper understanding of the cooperative dynamics. More system sizes and
lower shear rates in both two dimensional and three dimensional systems should be
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tested for revealing how the cooperative length scales with the applied shear rate.
Some remaining questions are the question of what is the origin of the apparent
Brownian dynamics for the velocity of the macroscopic plastic strain rate below the
saturation time scale and why does the saturation time depend on the system size
when smaller than the cooperative length in such a way. Answering these questions
may provide explications for the shear rate dependent cutoff in the stress drop
duration distribution function in our study of the statistics of avalanches.

As mentioned earlier, for now the elasto-plastic model can not produce the typical
“S” shape in the creep curve. It is argued in the chapter 6 that the initial condition
strongly affects the creep behavior. Usually these initial conditions are created by
a pre-shearing protocol in the experiments for guaranteeing reproducible results. A
direct characterization at the level of the structure, stress field, etc, and the link of
this characterization with the creep behavior are very scarce. This can be tackled on
one hand by the elasto-plastic model, concretely by systematically tuning the initial
stress field and studying how the creep behavior is affected by this tuning, and
on the other hand by taking the initial condition from actual molecular dynamics
simulations for a quenched amorphous system. Like this one can try to understand
how this initial conditions affect the creep behavior through its build-in dynamics.

Up to now, we are always talking about the athermal elasto-plastic model and
its properties. A way for introducing the thermal activation of plastic events is by
introducing an additional probability for activating plastic regions ∝ exp(−D/T ),
where T representing the temperature, and D for the free energy barrier of local
plastic rearrangement [Bulatov and Argon, 1994]. The issue of what is the most
adequate way for introducing temperature in the elasto-plastic model is still under
debate. By introducing the thermal activation, various phenomena under the ther-
mal effect can be addressed. For example the rheology of amorphous system under
finite temperature using the modified elasto-plastic model has been tested during
this thesis, it is not presented in a separate chapter because the results remain still
very preliminary. One short presentation of the rheology under finite temperature
is shown in the figure 7.1. At zero temperature, the Herschel-Bulkley law with ex-
ponent ≈ 0.5 is recovered. As the temperature increases, the system changes from
a shear thinning material to a shear thickening material.

Even though the mesoscopic elasto-plastic model is more likely a very phe-
nomenological model involving a set of parameters which are difficult to access
experimentally, it contains the main ingredients of the mechanism of the plastic-
ity of amorphous system coming from realistic systems. Understanding how the
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Figure 7.1: Flow curves at different temperatures, stress versus shear rate. The
temperature increases from the top to the bottom.

basic mechanisms work together giving rise to non-trivial properties is an impor-
tant task to make progress in the study of the mechanical properties of amorphous
systems, and there still remain many aspects to be understand and studied for the
future.
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Appendix A

Shear band formation with

continuum mechanics

Instability of velocity profile

Imagine two infinite flat planes with a gap h perpendicular to the z direction. The
bottom one of altitude z = 0, and the upper one z = h. A viscous non-newtonian
incompressible fluid flows between the gap along direction x, so that the steady
state velocity field under constant shear rate along x is simply the vx = u(z) and
vy = vz = 0 .

The local momentum conservation reads (using the notation of Einstein’s sum-
ming convention):

∂t(ρvi) + vj∂j(ρvi) = ∂jσij (A.1)

For incompressible fluids:

∂tvi + vj∂jvi = −1

ρ
∂iP +

1

ρ
∂jσ

S
ij (A.2)

where P the hydrostatic pressure separated from the pure shear stress σSij.
If we deal with a Newtonian fluid we have: ∂jσSij = η(∂j∂j)vi. For non-newtonian

fluids, in general we write : σSij(~x∗, t) = Σij(∂kvl|~x=~x∗,t). σSxx = σSzz = 0 for the pure
shear along x, and σSxz = σSzx = Σ(∂zu) = Σ(γ̇) , γ̇ = ∂zu is the local shear rate.
Here Σ(γ̇) is then the constitutive law flow curve. A.2 is written explicitly:

∂tu = −1

ρ
∂xP +

1

ρ
∂zΣ(∂zu(z, t)) (A.3)
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0 = −1

ρ
∂zP +

1

ρ
∂xΣ(∂zu(z, t)) (A.4)

In the steady state we can write u(z, t) = γ̇z and P = Po everywhere. This
corresponds to the case where we do not impose any pressure gradient at the ex-
tremities of the system, and drive the fluid only by imposing a shear rate γ̇ on the
two plans with gap of h. Now we investigate if this steady velocity profile is stable.

We keep always the zero pressure gradient at the extremities of the system. And
we add a small perturbation δu(z, t) on the velocity profile, where δu(z, t) depends
only on z (and on t). And we denote δP as perturbation on the pressure field. The
equation A.4 keep its form for δP and δu, when we replace P and u by P + δP and
u+ δu and reduce to the first order of δ. A.3 turns out to be:

∂tδu−
1

ρ

dΣ

dγ̇
(γ̇)∂2

zδu =
1

ρ
∂xδP (A.5)

The left hand side only depends on z, such that we have throughout the system
δP = L.H.S(z, t)x + cst(z, t). Since we keep always the zero pressure gradient at
the ends of the system, we should have that the left hand side of the equation is
zero (L.H.S(z, t) = 0). Therefore it follows that

∂tδu =
1

ρ

dΣ

dγ̇
(γ̇)∂2

zδu (A.6)

and in Fourier space:

∂tδuk = −k2 1

ρ

dΣ

dγ̇
δuk (A.7)

It is clear that the perturbation will vanish if dΣ
dγ̇
> 0 and the perturbation will

grow if dΣ
dγ̇
< 0 which means that the homogeneous profile of velocity is unstable.

Shear banding

Shear bands can be formed in systems with a constitutive law exhibiting a negative
slope regime if it is driven to flow from a solid state with a fixed shear rate smaller
than a critical value γ̇c . Typically Σ(γ̇ → 0) = σy ; Σ(γ̇ > 0) > 0 ; dΣ

dγ̇
|0<γ̇<γ̇min < 0

; dΣ
dγ̇
|γ̇>γ̇min > 0 ; Σ(γ̇min) = σmin. γ̇c 6= 0 is defined as Σ(γ̇c) = σy.
When sheared starting from a solid state with any fixed shear rate γ̇, the system

begin to flow only when γ̇t ∼ σ(t) reaches σy. If γ̇ < γ̇c , since any velocity profile
for γ̇ < γ̇min is unstable, at the moment σ(t) reaches σy, the reasonable way to
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keep macroscopic shear rate γ̇ < γ̇c is to separate the flow into two parts: one with
zero velocity, the other one with velocity profile γ̇c and its width occupies a portion
q = γ̇/γ̇c of the entire width of the bulk system. At the same time the bulk applied
stress is always σy as far as γ̇ < γ̇c.

When decreasing the shear rate step by step from a high shear rate steady state
and at each step waiting for the system to achieve the new steady state, the flow
velocity profile would be linearly homogeneous (no shear banding) for γ̇ > γ̇min and
the flowing state is situated on the positive slope regime of the flow curve. Below
γ̇min , the bulk stress stays at σmin and the shear band appears again with one part
of zero velocity profile and the other at γ̇min .

The apparent bulk flow curve for this kind of systems also presents a hysteresis
but only below γ̇c. Above γ̇c upward-downward loop of rheological test gives the same
bulk flow curve in contrast with the so-called “thixotropic” yield stress materials



Appendix B

Fourier space calculation of the

elastic propagator

Compressible mechanical equilibrium

The mechanical equilibrium for a compressible displacement field u(x) ≡ ui(xj)

under a arbitrary body force f(x) ≡ fi(xj) leads to the equation(4.10), which is
recalled here

(λ+ µ)∂i(∂lul) + µ(∂l∂l)ui = −fi (B.1)

The linearity of this equation is convenient for the resolution in the fourier space,
since TF (∂i·) = −iqi· where qi is the wave vector component along the direction i.
Hence in fourier space the equation(B.1), becomes

−(λ+ µ)qiqlûl − µqlqlûi = −f̂i (B.2)

By defining
Ξij = (λ+ µ)qiqj + µqlqlδij (B.3)

the equation(B.2) becomes
Ξijûj = f̂i (B.4)

Hence
ûi = Ξ−1

ij f̂j (B.5)
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Non-compressible mechanical equilibrium

The mechanical equilibrium for a non-compressible diplacement field u(x) ≡ ui(xj)

under a arbitrary body force f I(x) ≡ f Ii (xj) leads to the equation(4.14), which is
recalled here

−∂iP∆ + µ(∂l∂l)ui = −f Ii (B.6)

The non-compressible displacement field satisfies

∂iui = 0 (B.7)

In fourier space
iqiP̂

∆ − µqlqlûi = −f̂ Ii (B.8)

and
−iqiûi = 0 (B.9)

Taking the inner product of both sides of the equation(B.8) with the wave vector,
thanks to the equation(B.9), one arrives, for

∣∣q
∣∣ 6= 0,

P̂∆ = i
qif̂

I
i

q2
(B.10)

Then inserting the above equation into the equation(B.8), one gets

ûi =
1

µ

( 1

q2
f̂ Ii −

qiql
q4
f̂ Il
)

(B.11)

Let us recall that the local stress σ∆
ij = 2µεelij = 2µ(ε∆ij−εpl,∆ij ) with ε∆ij = 1

2
(∂iuj+∂jui)

(see the equation(4.3)) and the body force due to plastic strain is, the equation(4.15),
f Ii = −2µ∂jε

pl,∆
ij . In fourier space

σ̂∆
ij = −iµ(qjûi + qiûj)− 2µε̂pl,∆ij (B.12)

f̂ Ii = 2iµqj ε̂
pl,∆
ij (B.13)

Inserting (B.11) and (B.13) into (B.12), one arrives

σ̂∆
ij = 2µ

(
δjkqiql + δikqjql

q2
− 2

qiqjqkql
q4

− δikδjl
)
ε̂pl,∆kl (B.14)
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Because of the symmetry εpl,∆kl = εpl,∆lk , one can exchange the index k and l in the
first term of the numerator of the first fraction in the parenthesis to get

σ̂∆
ij = 2µ

(
δjlqiqk + δikqjql

q2
− 2

qiqjqkql
q4

− δikδjl
)
ε̂pl,∆kl (B.15)

One can defined a propagator Ĝij,kl as

Ĝij,kl=̂
δjlqiqk + δikqjql

q2
− 2

qiqjqkql
q4

− δikδjl (B.16)

The equation (B.15) reads then

σ̂∆
ij = 2µĜij,klε̂

pl,∆
kl (B.17)

It is worth to notice that the propagator Ĝij,kl is defined only for the non-zero modes,
i.e.

∣∣q
∣∣ 6= 0.



Appendix C

The supplementary material

Here after is the supplementary material of our paper Driving Rate Dependence of
Avalanche Statistics and Shapes at the Yielding Transition, including some details
of the model parameter, the numerical implementation on GPU parallel computing
and fitting procedures.
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F-69007 Lyon, FranceUniv. Grenoble Alpes, LIPHY, F-38000 Grenoble, France

(Dated: January 22, 2016)

We describe in detail the model used in the manuscript and explain our numerical implementation
set to run in parallel on GPUs. We provide also some details about the post-processing and analysis
of the raw simulation results.

THE MESOPLASTIC MODEL

We study the scalar elasto-plastic model in two (2d)
and three dimensions (3d) under the presence of an im-
posed shear-rate, following the modifications proposed
by Nicolas et al. [1] to the model of Picard and co-
workers [2, 3].

An amorphous system is represented by a coarse-
grained scalar field σ(r, t), denoting the instantaneous
deviatoric shear stress of the system at spatial position
r and time t upon the application of a simple shear. An
over-damped dynamics is imposed for this scalar quan-
tity following some basic rules: (i) The stress loads lo-
cally in an elastic manner while it is below a certain yield
stress σY(r). (ii) When the local stress overcomes the
local yield stress, a plastic event occurs. Dissipation oc-
curs locally, expressed as a progressive drop of the local
stress, together with a redistribution of the stresses in
the rest of the system, provided by a long-range elas-
tic perturbation. This process stops when a criterion for
the accumulated local strain is met, the region recovers
its elastic properties and a new local yield threshold is
chosen from a given distribution.

The shear stress perturbation caused on the system is
computed within the framework of tensorial linear elas-
ticity assuming an isotropic incompressible material [2].
A Green’s function G(r, r′) relates the stress variation
δσ at each point in space with the corresponding com-
ponent of the plastic strain γpl(r′; t) associated with a
plastic event occurring at r′. The perturbation given by
the elastic propagator G(r, r′) can be approximated by
the far field expression [2, 3] of the continuum mechanics
solution [4]

δσ(r, t) = µ

∫
dr′G(r, r′)γpl(r′; t) (1)

where µ is the shear modulus. This kernel decays with
the distance as 1/rd (r ≡ |r − r′|) and changes sign ac-
cording to the angle sustained between the shear direc-
tion and the interaction vector θ ≡ arccos((r−r′)·rγ̇(ext)),
with a particular quadrupolar symmetry. For example,
in 2d we have G(r, r′) ≡ G(r, θ) ∼ 1

πr2 cos(4θ) in polar

coordinates. The self interaction G0 ≡ G(r, r) is chosen
to be a negative constant that rules the local dissipation
rate.

Dynamics at zero temperature

We can define the model as a d-dimensional scalar field
σ(r), r ≡ (x1, x2, . . . , xd) subjected to the following evo-
lution in real space

d

dt
σ(r, t) = µγ̇(ext) +

d

dt
δσ(r, t) (2)

= µγ̇(ext) + µ

∫
dr′G(r, r′)

d

dt
γpl(r′; t) (3)

where we have imposed a global elastic loading γ̇(ext) on
top of the perturbation induced by plastic events.

The picture is completed by a dynamical law for the
plastic strain γpl. Following [3], we use a law relating the
plastic strain velocity of a region undergoing a plastic
deformation to the instantaneous local stress.

d

dt
γpl(r, t) =

1

µτ
n(r, t)σ(r, t) (4)

Here τ is just a mechanical relaxation time that fixes
the time units, n(r) is a local “state variable” which takes
values n = {0, 1} indicating whereas the system at posi-
tion r is plastically active (n = 1) or not (n = 0).

The concept of “active” and “inactive” regions is inti-
mately related to the discretization of space. Let us say
for the moment that different “patches” of the system
hold at each time a single value of n(r), that is modified
according to the following local rules:

n(r, t) :

{
0→ 1 if σ > σy

0← 1 when
∫
dt′|∂tσ(t′)/µ+ γ̇pl(t′)| ≥ γc

(5)
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Model parameters

As in Ref [1] we choose randomly from a distribution
the local yield thresholds σy. More precisely, we imagine
a potential energy landscape (PEL) with energy barriers
Ey ≡ σ2

y/4µ. This landscape is composed of metabasins
of exponentially distributed depths Ey. Small jumps be-
tween PEL basins are neglected and only larger jumps
corresponding to the irreversible rearrangements at low
enough temperature are considered. In other words, a
lower cutoff Emin

y = µγ2c/4 is introduced in the energy
barrier distribution

P (Ey) = Θ(Ey − Emin
y )λe−λ(Ey−Emin

y ). (6)

The parameters λ and γc determine the average yield
strain 〈γy〉. We have choose here γc = 0.035 and λ = 700
such that 〈γy〉 ' 7, 7%, which is a realistic value. The
distance (in terms of strain) among metabasins minima
can be expressed in units of the strain γc used to define
the cutoff Emin

y . For simplicity, this distance is choosen to
be equal to γc. Therefore, once it yields, a block will re-
main plastic until it has accumulated a total strain equal
or greater than γc.

The time and stress units, τ and µ are chosen to be
the unity without loose of generality.

NUMERICAL APPROACH

Our system is described by a 3d (or else 2d) scalar
field σ(r), and a state variable n(r) for each block of a
spatially discretized space. This is, each spatial block of
volume v0 = δxδyδz, centered at position r = {x, y, z}
is represented by a single value of the scalar fields in the
nodes of a cubic lattice {x± δx/2, y± δy/2, z± δz/2} →
(i, j, k) .

In practice, we have a Lx ×Ly ×Lz array of real vari-
ables σijz representing the local stresses and a boolean
array nijz with identical dimensions holding the binary
state of the blocks. Further, we discretize also the time t
in Eq.2, choosing a small discrete time step dt� 1 that
we keep constant during all the simulation process.

In order to simulate the equation of motion (2) for the
local stresses, beforehand we choose a mechanically stable
initial configuration σijz(t = 0). Such a configuration
has to ensure that the sum of all stresses in each column
or row of the cubic box should be equal. Typically we
choose σijk = 0 for all {i, j, k}, and consistently, all state
variables to be initially on the “inactive” state nijk = 0.

Once we have an initial configuration at hand, we
evolve Eq.2 with a simple Euler integration method.
We avoid any kind of numerical integration problems by
choosing an integration time step dt small enough. We
have used in this work dt = 10−2 and 10−3, which are

sufficient to avoid integration problems. Notice neverthe-
less, that certain minor details of the resulting curves can
depend on dt, as for example the lower cutoff of PS and
PT . This effect of a finite integration step is more promi-
nent at large driving rates as can be seen in Fig.2b-inset
of the manuscript.

σijk(t+dt) = µγ̇(ext)dt+µdt
∑

i′j′k′

G(ijk),(i′j′k′)ni′j′k′(t)
σi′j′k′(t)

µτ

(7)
After each integration step for σijk we update the state

variables nijk according to the rules defined in Eq.5. In
there, n changes from 0 to 1 as soon as the local stress
overcomes the local threshold. If so, an auxiliary variable
is set to accumulate (from zero) the local strain during its
evolution. When the accumulated total strain reaches a
given value γc the active phase stops, and n goes back to
0. The dynamics goes on, updating consistently σijk and
nijk, until a stop criterion is matched (total simulation
time, total strain deformation, etc.).

Boundary conditions and spectral method for the
dynamics

Numerical simulations are done in finite size systems.
Contrary to fully-connected models, in this case space is
defined and we are forced to define boundary conditions.
Since we are interested in bulk quantities, we can choose
periodic boundary conditions (p.b.c.) in all directions
without loose of generality. In problems where the anal-
ysis of wall effects on the system rheology is particularly
relevant, the numerical approach is different from the one
we present here (see for example [2, 5]). The choice of
p.b.c. will also simplify the numerical implementation.
In particular, it allows for the use of a technique called
pseudo-spectral method, that we describe in the follow-
ing.

The second term on the RHS of Eq.2 is an integral
over all space, since the kernel G(r, r′) is long-range. If
we Fourier transform with respect to the variable r′, the
integral over space is simplified to independent products
for each Fourier mode q

∫
dr′G(|r − r′|)n(r′)σ(r′) −→ Gqñ(q)σ̃(q)

(8)
This transforms a non-local, time-consuming, sum over
spatial coordinates into a local operation in the Fourier
modes that can be trivially performed in a parallel
scheme. Therefore we can evolve the local stresses in
Fourier space according to the transformed equation of
motion

∂σq
∂t

= µγ̇δ(q) +
1

τ
Gqñ(q)σ̃(q) (9)
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Of course, since after each update of σ(r) we need to
update also n(r), it is necessary to transform stresses
back to real space. So the process includes two Fourier
transforms (one forward and one backward) at each time-
step of the dynamics. Nevertheless, with this technique
we reduce the computing time for the convolution (Eq.8)
from O(N2) to O(N log(N)). In addition, this operation
is highly optimized in standard libraries (e.g., FFTW3,
cuFFT) that make the method even more suitable for a
parallel implementation.

PARALLEL IMPLEMENTATION ON GPU

In the last years the use of GPUs to accelerate simula-
tions has burst out in many areas of physics and science
in general.

Following previous GPU implementations from some
of us [6? , 7], we have implemented a GPU-based
parallel implementation of the elasto-plastic model de-
scribed above. Our codes are written in C++ and C for
CUDA [8]. For this project we had worked with NVIDIA
GPUs. The CUDA programming framework makes it
simpler the access to many low level directives, preserv-
ing a more compact and easy to read code[9]. Simula-
tions were ran on Kepler architecture (GK208) GPUs,
the Tesla K20.

Update routine, CUDA kernels and main stream

We use an algorithm developed from scratch to im-
plement our model. Self-developed CUDA kernels and
available optimized parallel libraries are used alternately.
Among the libraries we can name: the GPU-suited Fast
Fourier Transform library cuFFT [10] from the NVIDIA
CUDA Toolkit, the STL-like Thrust library [11] of paral-
lel standard algorithms (reductions, scannings, searches,
etc.) and the counter-based Random Number Genera-
tor named PHILOX, from the Random123 open-source
library [12].

As anticipated in the previous section, the equation of
motion for the local stresses is resolved in several steps:

1) Computation of γ̇pl(r) in real space, basically the
product σ(r)n(r) times constants (Eq.4).

2) Discrete Fourier transform (DFT) of γ̇pl(r).

3) Gq times γ̇plq pointwise multiplication (Eq. 8)

4) Euler step integration in Fourier space using the
increment of Eq.7.

5) Inverse discrete Fourier transform of the resulting
σ̃(q) giving as a result the scalar stress field at the
incremented time σ(r, t+ dt).

6) Update of state variables n(r) according to Eq.5.

From a computational viewpoint, steps 1, 3, 4 and
6 can be trivially computed in parallel, since we need
only to read and write arrays locally with no interdepen-
dence. This is easily implemented in massively parallel
routines with a SIMD (Single Instruction Multiple Data)
approach. We use either self-developed CUDA kernels or
Thrust well-settled functions for each of this steps. At
steps 2 and 5, we make use of the cuFFT library, espe-
cially powerful in the transformations of real or complex
arrays with an x dimension being strictly a power of two.

Besides the evolution of the system, we need also to cal-
culate certain physical quantities with some frequency as
time evolves. We are interested, for example, in instan-
taneous global values as the average stress and average
activity. To account for this measurements, we make in-
tensive use of Thrust routines, as the parallel reduce.

Our CUDA kernels are moderately optimized, trying
to keep aligned and coalesced memory access, avoiding
threads divergence and atomic functions. Further op-
timizations are still possible, but we choose to preserve
code readability over elaborated tricks that obfuscate the
code for a negligible speedup. As defensive programming
techniques we use assertions and each routine is indepen-
dently tested before implementation.

The structure of the main stream is simply as follows:

• Initialization

• Time loop:

– System Update (as itemized above)

– if (condition) Measures

– if (condition) Print results

• Final averages, printing and cleaning.

We have created a C++ class to host our functions and
keep a clean main() routine where we set up the physical
protocol for the simulation. CUDA kernels, used by the
class functions, are described in a separate file for further
clearness.

Validation of the overall program is made by comput-
ing a full flow curve in a wide range of shear-rates and
comparing with independent serial implementations of
the same model. These tests also serve us to know that
with the parallel implementation and the use of a GPU
we obtain a speed up of 100x and beyond respect to a
single-CPU serial version of the same algorithm.

Our source codes are freely available to download,
modify and use under GNU GPL 3.0 at [13].

POST-PROCESSING AND DATA ANALYSIS

To obtain compound averages as the distributions of
stress drop sizes or the avalanche shapes presented in
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the manuscript, we make use of Python scripts [14] do-
ing a post-processing of the stress time series output by
our algorithm. Since data files attain a considerable size
(up to a couple of gigabytes), care is taken in using fast
load functions and list operations rather than array op-
erations, to reduce the processing time; which is, in any
case, always much shorter than the simulation time to
obtain the raw data.

Power-laws exponent fitting and error estimation
procedure

In Fig. 1 and Fig. 2 of the manuscript scaling regimes at
low shear rate span over wide ranges (about four decades
for PS and two decades for PT or Px). As the scaling
regimes can be quite clearly identified by eye, we perform
power-law fits in manually selected regions, avoiding the
lower and upper cutoffs. Of course, this introduce a small
variation of the fitted exponents and an uncertainty, that
is considered in the error bar estimation of the measured
exponents.

Having determined the values of τ and τ
′

from PS
and PT respectively, we fix them and proceed to scaling
analyses of data at different L and γ̇ to estimate the
exponents df and α that provide the best collapse of the
upper (exponential) cutoff of the distributions. We can
qualify the collapse either by eye or by computing the
relative deviations of the rescaled curves. This allows us
to have an error of estimation for exponent values within
the indicated error bars.

We have also tried a more sophisticated and systematic
way of estimating the exponent of power law histogram
as described in the work by Planet et al. [15]. However,
it does not give us better estimations than the ones we
extract from the ad hoc fittings.

In Table 1 of the manuscript we present all our fitted
exponents with their corresponding error bars. The only
non measured exponent is z, that is computed from the
relation z = df/δ.

Stress-drop shape averages and comparison with
analytical predictions

Each stress-drop has a certain duration T . To ana-
lyze the stress-drop shapes, we consider only the stress-
drops of durations T that belong to the scaling regime of
PT . This is, in the window of T in which PT is a power
law. We are interested in the average shape of stress
drops at different T . In order to improve the statistics
of the shape averages we do a logarithmic binning on T ,
with a rather small binning step, and consider the mid
value in logarithmic scale of each bin as representative of
the duration of all stress-drops found within the bin. In
this way, we are able to collect a good amount of stress

drops with the “same” duration. The average shape
of the stress-drops within a bin centered at T , is com-
puted as follows: Each stress-drop i can be represented
as Vi(t). First we rescale all stress-drops on their dura-
tion Ti defining Ṽi(t̃) ≡ Vi(t̃Ti), where t̃ = t/Ti ∈ [0, 1].
Then, we define the average shape of the stress-drops as
VT (t̃) ≡ 1

NT

∑
i Ṽi(t̃), with NT the number of stress-drops

found in the interval.
Once we get VT (t̃) for different T , we fit them with the

equation proposed in [16], VT (t̃) ∝ B(t̃(1− t̃))c(1−as(t̃−
0.5)), leaving B, c and as as free parameters. From this
fitting, we find the power law dependence of B on T , the
exponent c ≈ δ−1, and the behavior of as(T ), presented
in Fig.3(b) of the manuscript.

Multi-parameter dependence of the shape
asymmetric values as and ag

We have characterized the “degree of asymmetry” of a
stress drop shape with the parameters as and ag defined
in the manuscript.

We propose a common functional dependence for both
of them with γ̇, L, T as ax ≈ CL−bγ̇−εT−m, whit C
being a prefactor. A first step is to rescale ax getting
ãx ≡ axL

bγ̇ε. If our assumption is right and the value
of b and ε are well chosen, ãx(T ) for different γ̇ and L
can be collapsed together on the same curve ãx = CT−m.
Indeed, this is what we observe. The rescaled and merged
data sets are used to process a unique power law fitting.
We fit log10(ãx) versus log10(T ) with y = kx + κ by a
least-square method, where k = −m and C = 10κ. For a
chosen pair (b, ε), the least-square fitting method gives us
the error E(b, ε) qualifying the fit. We span our choices
over a wide domain of (b, ε) and repeat the procedure
for each pair, obtaining a surface E(b, ε). The minimum
of E(b, ε) provides therefore the best possible choice of
(b, ε). After fixing them, we extract the parameters m
and C from the corresponding fit of the rescaled data.

This proposed functional dependence and the above
explained procedure allow us to display as or ag in a
continuum plane L-γ̇, as shown in the inset of Fig.3(a)
in the manuscript.
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Appendix D

Self-similarity of time series and its

power spectral density

Supposing f(t) is a scale invariant zero mean stationary time series, defining g(t)=̂λαsf(tλ),
the fact that f(t) and g(t) are statistically similar can be formulated as Cf (τ) ∼
Cg(τ), where the auto-correlation function

Cf (τ) = lim
T→∞

1

T

∫ +T
2

−T
2

dtf(t)f(t+ τ) (D.1)

By applying the definition of g(t), the definition of the auto-correlation function
and the property that the power spectral density is the fourier transform of auto-
correlation function, one arrives at

∣∣f̂
∣∣2(ω) ∼ λ2(αs−1)

∣∣f̂
∣∣2(
ω

λ
) (D.2)

By taking the derivative on both sides with respect to λ of the above equation
and imposing λ = 1, it is straight forward to get

∣∣f̂
∣∣2(ω) ∼ ω2(αs−1) ∼ ω−αp (D.3)

so that
αp = 2(1− αs)

It is also worth to notice that 〈f 2〉t = Cf (0) =
∫
dω
∣∣f̂
∣∣2(ω), meaning, without

losing generality, that the variance

V ar(f) = 〈f 2〉t − 〈f〉2t =

∫
dω
∣∣f̂
∣∣2(ω)−

∣∣f̂
∣∣2(0) (D.4)
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which means that the average amplitude of the power spectral density is proportional
to the variance of the time series f(t).



Appendix E

Linear stability analysis of the

effective dynamics of the

Hebraud-Lequeux model

For any given P±c(t) and P ′±c(t) at the moment t, there are two stationary states:

Γs,1 = 0, γ̇s,1 = 0 (E.1)

and
Γs,2(t) =

C(t)B(t)

D(t)
− A(t), γ̇s,2(t) =

A(t)D(t)

C(t)
−B(t) (E.2)

The first conclusion can be extracted here. For the system has a fix point of non
zero γ̇ , we should have

Γs,2 > 0, γ̇s,2 > 0

which gives:
C

D
< 0

AD

C
> B

Linear stability analysis gives for point zeros

d

dt
δγ̇ = Aδγ̇ +BδΓ

d

dt
δΓ = Cδγ̇ +DδΓ
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linear stability analysis gives for the non-zero point

d

dt
δγ̇ =

BC

D
δγ̇ +

AD

C
δΓ

d

dt
δΓ = Cδγ̇ +DδΓ

let the following matrix the linearization of the fix points

(
a b

c d
)

The stability can be achieved by standard linear stability analysis.
For that the system have eigen values in real space λ

λ =
(a+ d)±

√
(a+ d)2 − 4(ad− bc)

2

we should have
(a+ d)2 ≥ 4(ad− bc)

for the fix point to be stable, one should impose

a+ d < 0

ad− bc > 0

Trace of the zero fix point
τ0 = A+D

Determinant of zero fix point

∆0 = AD −BC

Trace of the non-zero fix point

τ ∗ =
BC

D
+D = A− ∆0

D
+D = τ0 −

∆0

D

The determinant of non-zeros fix point

∆∗ = BC − AD = −∆0
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The positivity of non-zero fix point gives:

C

D
< 0

AD

C
> B

The stability of the non-zero fix point implies:

τ ∗ < 0

∆∗ < 0

so that for the non-zeros fix point to be positive and stable:

C < 0

D > 0

A < −D

AD < BC < −D2

Oscillatory stable spiral and Stable fix point corresponds respectively:

−4AD > (or <)
B2C2

D2
+D2 − 2BC


