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Résumé / Abstract

Dans ce travail de thèse, je présente
la construction d’une nouvelle ex-

périence pour la production de gaz ultra
froids de dysprosium. En tirant parti de
la structure électronique à couche incom-
plète de ces atomes, nous visons à la réalisa-
tion de champs de jauge synthétiques, qui
pourront conduire à l’observation de nou-
velles phases (topologiques) de la matière.
Le couplage du spin atomique avec le
champ lumineux, plus efficace que pour
des atomes alcalins, permettra d’atteindre
des régimes d’interactions fortes qui restent,
jusqu’à présent, hors de portée expérimen-
tale. J’adapte des protocoles existants pour
la réalisation de champs de jauge dans le
cas de Dysprosium, en tenant compte de
son grand spin électronique (J = 8 dans
l’état fondamental). En outre, le dyspro-
sium a le plus grand moment magnétique
parmi les éléments stables, et il est donc
le meilleur candidat pour l’étude des gaz
dipolaires. Je détaille le dispositif expéri-
mental que nous avons construit et com-
ment nous effectuons le piégeage et le re-
froidissement du dysprosium. Nous étu-
dions en détail le comportement du piège
magnéto-optique, qui est réalisé sur la
transition d’intercombinaison 1S0 ↔ 3P1.
La raie étroite et le grand spin rendent
l’opération du piège très complexe. Néan-
moins, je montre que sa compréhension
devient assez simple dans le régime où
le nuage se polarise spontanément en con-
séquence de la combinaison des forces op-
tiques et gravitationnelles. Enfin, je décris
les dernières étapes du transport optique
et de l’évaporation, ce qui conduira à la
production d’un gaz dégénéré.

In this thesis I present the construction of
a new experiment producing ultra cold

gases of Dysprosium. Using the favourable
electronic structure of open-shell lanthanide
atoms, we aim at the realisation of laser-
induced synthetic gauge fields, which could
lead to the observation of novel (topolog-
ical) phases of matter. The coupling of
the atomic spin with the light field, im-
proved with respect to alkali atoms, opens
the possibility to explore strongly interact-
ing regimes that were up to now out of
experimental reach. I adapt existing proto-
cols for the implementation of gauge fields
to the case of Dysprosium, taking into ac-
count its large electronic spin (J = 8 in the
ground state). Moreover, Dysprosium has
the largest magnetic moment among the
stable elements, and is the best candidate
for the study of dipolar gases. I describe
the experimental setup that we built and
how we perform the trapping and cooling
of Dysprosium. We study in detail the be-
haviour of the magneto-optical trap, which
is performed on the 1S0 ↔ 3P1 intercombi-
nation line. The narrow linewidth and the
large spin make the trap operation quite
challenging. Nevertheless, I show that its
understanding becomes quite simple in the
regime where the cloud spontaneously po-
larises due to the interplay of optical and
gravitational forces. Finally I describe the
last steps of optical transport and evapora-
tion, which will lead to the production of a
degenerate gas.
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1
Thesis Introduction

“[...] we sent the atoms rolling, like so many marbles, and the kid whose atom
went farthest won the game. When you made your shot you had to be careful, to
calculate the effects, the trajectories, you had to know how to exploit the
magnetic fields and the fields of gravity, otherwise the ball left the track and was
eliminated from the contest.”

Cosmicomics
Italo Calvino

“[...] the Reason, a greedy, grasping thing, is only satisfied when it succeeds in
chaining some cosmic geyser, or harnessing an atomic swarm.”

The Cyberiad
Stanislaw Lem

The thesis work I am about to present deals with ultracold atoms physics, a research
field whose roots are found in the second half of past century. Already in the 1950’s,

experiments on matter control at the atomic scale were quite advanced, although it was
still science fiction in popular culturea. In the first experiments on optical pumping,
light produced by gas lamps was used to manipulate the internal (electronic) state of
the atoms. Then, the invention of the laser [2] boosted the experimental capabilities.
Soon physicists were able to extend the control of an atom’s internal state to its external
state, affecting its motion. Lasers were used to trap and cool atomic gases down to the
microkelvin regime, far beyond any previous reachable limit and much below the coldest
temperatures found in nature [3, 4, 5]. From the principles of quantum mechanics, one
knows that matter exhibits stronger wave-like properties the lower the temperature is.
If we consider a gas of atoms, where each one is described by a wave of size given by
the thermal wavelength λdB ∼ T−1/2, by lowering the temperature enough, λdB grows

aNote that the novels I quoted above were written in the same years when Richard Feynman held his
famous lecture “There’s Plenty of Room at the Bottom” in which he foretold that “ultimately - in the great
future - we can arrange the atoms the way we want; the very atoms, all the way down!” [1]
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and will eventually become comparable with the distance between the atoms. Below a
critical temperature, the waves of the single (bosonic) particles interfere with each other
constructively, and give rise to a macroscopic matter wave, the famous Bose-Einstein
condensate (BEC). This state of matter had been for long a holy grail of physics, from the
time of its theoretical prediction dating back to the 1920’s [6, 7]a. The experimental rush
to achieve the critical temperature ended successfully in 1995, when for the first time
BEC was observed in dilute ultra cold gases [8, 9]. The following studies on condensates
focused on their undulatory nature. In analogy to phenomena observed in light waves,
BECs interfere [10], exhibit long range coherence [11] and can be used to create atom
“lasers” [12, 13].

Atoms of the same species are by definition identical. In the quantum world, a
system of non-interacting indistinguishable particles will occupy a discrete set of energy
levels, with a distribution given by the quantum statistics of the particles and the
temperature. Considering the statistic, matter exists only in two different flavours:
bosons and fermions. Boson statistics do not limit the particle number that can fit a
single energy state. For example, a laser is made by bosons (photons) occupying a
single energy mode. Bose-Einstein condensation appears when the lowest energy state is
macroscopically populatedb. The condition is different for identical fermions, as Pauli
exclusion principle prevents them from occupying the same state. When temperature
approaches absolute zero, fermions occupy the ladder of available energy states starting
from the bottom, up to a maximum value (the Fermi energy). This state of matter,
called a degenerate Fermi gas, has many realisations in naturec. Using laser cooling
techniques, it has been realised in atomic gases shortly after the achievement of the first
BEC [14, 15, 16].

From Single Particle to Many-Body Physics

Due to the extreme control of the system parameters, ultra cold Bose and Fermi gases
became rapidly an ideal platform to explore degenerate states of matter, brought to the
understanding of many other research fields in physics. Since the 21st century, novel
experimental methods helped the creation of a multitude of complex, strong interacting
systems [17].

Interparticle interactions can be controlled both in magnitude and in sign using Fesh-
bach resonances [18], which allowed to access strong interacting regimes for bosons [19]
and fermions [20]. In Fermi gases, Feshbach resonances led to the observation of the
crossover from a BEC of weakly bound molecules to a superfluid of Cooper pairs [21, 22],
as described by the Bardeen-Cooper-Schrieffer theory of superconductors.

Optical manipulation using lasers gives a tremendous control on the geometry and
the dimensionality of the system. Confining a Bose gas in a two-dimensional trap, the
famous Berezinskii-Kosterlitz-Thouless transition was observed [23] and in 1D traps the
Tonks-Girardeau regime was realised [24, 25]. Also, three-dimensional “box” potentials
have been implemented to study more text book models of BEC [26].

aSuperfluid 4He is partially condensed. Nevertheless, it is a liquid, in which the atoms are strong
interacting. The original BEC theoretical prediction (which considers ideal bosonic gases) can not be applied
to 4He. Moreover, the condensed fraction in 4He is a minority part of the total number of particles.

bIn contrast with lasing, that is a non-equilibrium process, Bose-Einstein condensation can occur just by
lowering the temperature T.

cThe electrons in a ordinary metal and white dwarfs stars are well known examples.
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Using the interference pattern between two or more laser beams, one can create
periodic light structures where the atoms arrange themselves, the so-called optical
lattices, in a similar fashion of electrons in crystalline solids. This correspondence is a
practical realisation of Feynman’s famous idea of a quantum computer [27]. Making
use of ultra cold atoms, one could realise an ideal copy of the system to study, where
to perform “an exact simulation, that [...] will do exactly the same as nature.” [28]. In the
past years, optical lattices allowed to implement a lot of interesting condensed matter
models, such as the Mott insulator phase for bosons [29] and fermions [30] or spin
magnetism on a lattice [31, 32]. In recent years, the “large” separation between lattice
sites allowed to observe the fluorescence light of individual atoms using standard optical
lenses. These “quantum microscopes” offer evocative images, since for the first time is
possible to see atoms arranging in lattice structuresa and they permitted to directly probe
and manipulate strongly correlated phases of matter. Although the first microscopes
studied Bose gases [33, 34], nowadays Fermi gases are also available [35, 36].

Not Only Alkali

In the early 2000’s, experimental advances led to degenerate gases of the whole
(stable) alkali metal group [37, 38] and of two-electron atoms (1S0 in the ground state)
like Calcium [39], Ytterbium [40] and Strontium [41]. The last two elements gain interest
in recent years for the realisation of ultrastable optical lattice clocks [42, 43].

In 2005 Bose-Einstein condensation of Chromium was achieved [44] . It was the
first laser cooled atom with a large electronic spin (7S3 in the ground state), a prop-
erty that gives Chromium gases a strong magnetic character. Other elements interact
mainly via short-range isotropic potentials. On the contrary, the magnetic interaction
between atoms, called dipole-dipole interaction, is anisotropic and long-ranged, and thus
strongly modifies the behaviour of the gas. Succeeding studies shown the appearance of
pure magnetic phenomena in degenerate dipolar gases, such as magnetostriction [45],
anisotropic collapse of the BEC [46], spin relaxations [47].

In recent years other atomic species appeared in the dipolar gases panorama: open-
shell lanthanides. The incomplete electronic f -shell gives rise to a huge spin in the
ground state of these elements, which enhances the dipolar interactions in the gases even
more than in Chromium. In particular, Dysprosium (which is the element we consider
in this thesis) is found to be naturally in a configuration where the dipolar interaction
overcomes in strength the contact interaction. In addition to Dysprosium, the lanthanides
Erbium, Thulium and Holmium have also been successfully laser cooled [48, 49, 50, 51].
Magneto-optical trapping of the former two elements were further improved adopting
intercombination transitions, like the ones used for two-electron atoms traps [52, 53].
Moreover, Dysprosium and Erbium still remain the only open-shell lanthanides brought
to degeneracy, both for bosonic isotopes [54, 55] and for fermions [56, 57]. Their strong
dipolar character led to the observation of new manifestations of the magnetic nature of
degenerate gases, such as the Rosensweig instability in a quantum gas of Dysprosium [58],
typical of the behaviour of ferrofluids, or the Fermi surface deformation in a degenerate
Erbium gas [59].

aI believe that “vision” should involve optical light. Other microscopy techniques (Field Ion Microscopy,
Scanning Tunnel Microscopy, Transmission Electron Microscopy,. . . ) provide images of similar beauty, and
better spatial resolution, but one does not “see” atoms stricto sensu.
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Dysprosium and Gauge Fields
During this thesis, I constructed a new experiment on ultra cold gases of Dysprosium.

As a result of its intriguing properties, Dysprosium is now becoming a trend and many
experiments are currently under construction. Having three bosonic and two fermionic
isotopes with large natural abundance, Dysprosium makes possibility to work with both
degenerate gases, separately or in mixtures. By virtue of its extremely large spin (5 I8 in
the ground state), Dysprosium is the ideal platform to explore dipolar physics. In this
thesis, we are more interested in another aspect, namely its interactions with light, which
is strongly spin dependent, and in its peculiar spectrum, which is populated by plenty of
electronic transitions having a narrow linewidth.

Despite atoms are neutral, there exist different experimental procedures to simulate
the physics of charged particles. The narrow transitions of Dysprosium are found to
be ideal for the case of light induced gauge fields [60]. In the past years, alkali atoms
have been used by several groups to simulate synthetic gauge fields [61, 62, 63, 64].
Moreover, the momentum transfer to atoms moving in the synthetic fields made possible
the realisation of synthetic spin-orbit coupling, both in BECs [65, 66, 67] and in degenerate
Fermi gases [68, 69, 70].

The phase diagram of a spin-orbit coupled Bose gases is very rich [71, 72] and leads
to novel phases of matter such as superfluids with stripe order [73] or more exotic states
resulting from the combination of spin-orbit coupling and dipolar interactions [74, 75].
Strong spin-orbit coupling is also an essential ingredient to prepare cold atoms in new
(topological) states of matter, like exotic quantum Hall effects or topological insulators [76,
77]. Topological states recently gained a lot of experimental and theoretical interest, as
testified by the past year’s Nobel prize, since their interest is not only limited to their
appealing quantum properties but could also be useful in quantum computation [78].

Currently, a great experimental challenge is the limited strength of light-induced
gauge fields in alkali atoms, due to the large scattering rate from the excited statesa. As
a result of alkali small fine structure splitting, the heating rate can not be reduced at
will without decreasing at the same time the strength of interactions, and the strongly
coupled regime remains out of reach. On the contrary, strong coupling will be much
more accessible using Dysprosium [79], opening the doors to a whole new domain of
physics yet unexplored.

Thesis Outline
The manuscript is organised in two separate parts. I give here a brief overview of the

chapters that will follow. In the first part of this thesis I review some well established
theory on dipolar physics and light atom interaction, which are essential to understand
the physics of ultra cold Dysprosium gases, and I adapt to the case of Dysprosium some
existing protocols for the generation of light-induced gauge fields. I justify in detail the
interest in using Dysprosium and what are the differences with respect to most common
atomic species. I will particularly stress the contrast with alkali atoms.
Chapter 2 In this chapter I briefly introduce the properties of dipolar cold gases. The

subject is quite vast, so I focus more on the problematics that directly affect our
experiment. In particular, the dipole-dipole interaction induces an instability in a
degenerate gas which can be counteracted by a right choice of the aspect ratio of

aA different experimental approach to generate gauge fields relies on periodic modulation of the atomic
clouds. In this case the heating is induced by the modulation itself.
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the trapping potential. Moreover, the dipolar interactions do not conserve the total
spin. As I describe, isothermal spin-flip collisions induce heating and population
decay in atomic clouds;

Chapter 3 Dysprosium has a large spin in its ground state and a rich spectrum of
electronic excitations. In this chapter I explain how these characteristics affect
Dysprosium’s interaction with off-resonant light. I show that the light shift is
strongly dependent on the light polarisation and the electronic spin state, and I give
an example of the anisotropy of an optical trap working on the 626 nm transition. I
will also explain that there are indeed advantages in using Dysprosium instead of
alkali atoms for two-photon transitions;

Chapter 4 I will present a simple scheme that we could implement in our setup to
generate synthetic gauge fields, using Raman transitions between ground state
levels. Our goal will be to simulate the physics of a charged particle in a strong
gauge field, exploiting the reduced scattering rate of Dysprosium atoms to enter
strong coupling regimes.

The second part describes our experimental approach to produce ultra cold gases of
Dysprosium.
Chapter 5 This chapter describes in detail the experimental apparatus, which was built

from scratch during this thesis. I present our vacuum systems and our cooling
lasers, which work on a broad transition at 421 nm (used for slowing and imaging)
and on a narrow transition at 626 nm (used for the magneto-optical trap and for
the Raman coupling). Then, I present our experimental procedure to obtain a cold
jet of gaseous Dysprosium;

Chapter 6 I describe our magneto-optical trap. Open-shell lanthanides, such as Dys-
prosium, exhibit a quite rich physical behaviour, due to their large electronic spin
and the narrow linewidth associated to the cooling transition. In particular, a
spontaneous spin polarisation happens in the far detuned regime, as a result of the
balance between gravitational and optical forces. I report our detailed study on the
trap parameters, which was subject of a publication in [80];

Chapter 2 I describe the conservative traps and the experimental procedures to further
cool Dysprosium atoms. The atoms are first optically transported from the MOT
chamber to a glass cell. Then we increase the phase space density with forced
evaporative cooling in a crossed dipole trap. I report our first results on the
evaporation and the on going experimental work.

Appendices deal with more technical arguments that can be useful in the laboratory.
Appendix A I give some Dysprosium parameters which are useful to calibrate laser

frequency locks on atomic spectra and to calibrate the magnetic splitting due to the
Zeeman effect;

Appendix B I describe more in detail the absorption imaging technique with a particular
attention to the cross section corrections due to the large spin of Dysprosium;

Appendix C I introduce some of the software I developed during my thesis, with a focus
on the database that stores the metadata of the experimental results.
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Dipolar Quantum Gases

Different forces rule the interactions between atoms at low temperatures. In cold
atoms experiments, the prominent contribution is the van der Waals interaction,

which arise from the induced electrical dipole between atoms. The van der Waals
potential scales as ∼ 1/r6 for atoms in the electronic ground state, where r is the inter-
particle distance, and is thus considered as short-rangeda. On the other hand, for atoms
and molecules having a permanent dipoles (magnetic or electric) the interaction potential
falls off as ∼ 1/r3 and therefore has a long-range behaviour. This fact, in addition to the
anisotropy of the potential, modifies quite strongly the behaviour of a quantum gas. In
this chapter I review some well established consequences of working with a dipolar gas
and adapt them to the case of Dysprosium. Extensive information on cold dipolar gases
can be found in the reviews [81, 82]. In particular, I focus on some main issues that have
to be considered while building a new experiment:

• The non local character of the dipolar interactions leads to a spatial deformation of
the atomic cloud, which should be compensated by a trap geometry which avoids
instabilities;

• In atomic clouds which are not polarised in the ground state, the dipolar interaction
induces inelastic collisions. The energy released from the spin-flip events leads to a
heating of the cloud and atom loss.

The argument presented below are common with other dipolar atomic species like
Erbium and also Chromium, which is the first species that has been extensively studied
with this respect.

aIn three dimension, we define short-ranged any potential decreasing faster than 1/r3, for which the
integral

∫
dr V(r) stays finite.
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2.1 From Contact to Long-range Interaction

The exact expression of the van der Waals potential can be very difficult to describe
theoretically since the high spin of the ground state of Dysprosium gives rise to a very
complex net of molecular levels. Nevertheless some theory work has been done in this
direction [83, 84].

In cold atoms experiments we only consider scattering events at very low temper-
atures, i.e. at very low kinetic energies. In this regime one knows that for short range
potentials (as the van der Waals potential) the asymptotic part of the scattered wave
functions has a spherical symmetry (or one can say that at low temperatures collisions
happen only in s-wave). The amplitude of the scattered wave depends on a unique
parameter, the scattering length a, which more importantly is experimentally accessible
and may be tunable.

Regardless of the exact expression of the interaction potential, we can replace it by a
model potential having the same a, thus leading to the same scattering properties for low
energies. The simplest choice of this potential is the Fermi pseudopotential [85]

Ucontact(r) =
4πh̄2a

m
δ(r)

∂

∂r
r, (2.1)

that is a contact isotropic interaction. The regularising operator ∂rr prevents divergences
of the potential in case the wave function itself has a 1/r divergence [86]. The prefactor
is often called the coupling constant

g =
4πh̄2a

m
. (2.2)

Note how g solely depends on the atomic mass m and the scattering length a. It is also
interesting to notice that, even if the form is that of a contact interaction, typical values
of the scattering length are of the order of hundred Bohr radii a0, that is two orders of
magnitude larger than the size of an atom a.

In the case of magnetic atoms such as Dysprosium, one should additionally consider
the interaction due to the permanent dipole moment. Let us consider in the following
the case of two interacting magnetic dipoles µ1 and µ2

b. If the dipoles are separated by a
relative distance r = r1 − r2, the interaction takes the familiar expression:

Udd(r) =
µ0

4πr3

[
(µ1· µ2)−

3
r2 (µ1· r)(µ2· r)

]
. (2.3)

where µ0 is the vacuum magnetic permeability. One notices immediately the long-range
character of the interaction, due to the slow 1/r3 decay at infinity. In the case of atomic
magnetic dipole moment one has µi = µBgJ Ji, where gJ is the Landé factor, µB the Bohr
magneton and Ji the total angular momentum.

If the sample is spin polarised, for example by applying an external uniform magnetic
field, all the dipoles point in the same direction and the expression of the interaction

aThe order of magnitude of the scattering length is set by the van der Waals interaction range
(mC6/h̄2)1/4.

bIn the case of permanent electric dipoles, like for example in molecular gases, the interaction is obtained
by the substitution µi → di and µ0 → 1/ε0.
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Figure 2.1 – a) Interacting dipoles. b) In case of a polarised sample the interaction
depends only on the angle between them. c) Isopotential curves, note how the
interaction changes from attractive to repulsive moving from head-to-tail to side-by-
side configuration.

simplifies to:

Udd(r) =
µ0µ2

4π

1− 3 cos2 θ

r3 , (2.4)

where θ is the angle between r and the polarising field (figure 2.1.b). Note that the
interaction has a d-wave angular symmetry, which gives to the dipole interaction a strong
anisotropic behaviour, in contrast to the contact interaction (2.1). The sign is negative for
head-to-tail alignment of the dipoles, hence giving rise to an attractive force, and it is
positive (repulsive) for side-by-side dipoles (see 2.1). Notice also that the force vanishes
for θ ' 54.7°. A complete description of the scattering properties of the dipolar potential
is a difficult task and we will review some results at the end of the chapter.

Having defined both the contact interaction and the long-ranged dipole-dipole inter-
action, one may wish to compare their relative strength. Since the relevant parameter in
the first case is the scattering length a, one can define the dipolar length

add =
µ0µ2m
12πh̄2 . (2.5)

The ratio between the two lengths, often called the dipolar strength, is

εdd =
add

a
, (2.6)

and gives an estimate of the dipolar character of the gas. In table 2.1 is given a short
list of εdd for different atomic species. Since the dipolar interaction (2.3) scales as the
square of the magnetic dipole µ2 ∝ J2, for atoms with a large magnetic moment in the
ground state (Chromium, Erbium and Dysprosium, the only ones currently cooled to
degeneracy) the effect of this interaction is expected to be orders of magnitude stronger
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than in alkali (e.g. J = 1/2 for Rubidium and J = 8 for Dysprosium).

Species µ [µB] a [a0] add [a0] εdd

87Rb 1 100 0.7 0.007
52Cr 6 102.5 0.15 0.15
166Er 6.98 72 65.4 0.91
164Dy 9.93 100 130.8 1.42

Table 2.1 – Relevant parameters in dipolar gases for some laser cooled species.

2.2 Feshbach Resonance

The dipolar character of the gas, i.e. the dipolar strength εdd, can be finely tuned by
changing either the value of the dipolar length add or the scattering length a. While the
first option has been proposed using time varying magnetic fields [87], the scattering
length a is commonly finely tuned using Feshbach resonances [88]. A Feshbach resonance
occurs in a scattering event whenever the energy of the colliding particles Ecoll matches
the energy of a bound state Ebound in a closed scattering channel, leading to a resonant
modification of the scattering phase shift. As we expect from a second order perturbation,
the effect on the colliding atoms will depend on the energy difference Ecoll − Ebound
between the incoming state and the resonant bound state. The position of the latter can
be tuned using the Zeeman effect, and the resonance can thus be found by varying the
external magnetic field B (one speaks of magnetically tuned Feshbach resonance). The
scattering length, which has some background value abg far from the resonance, varies
with the magnetic field as

a(B) = abg

(
1− ∆B

B− B0

)
, (2.7)

where ∆B is the width of the resonance and B0 is the magnetic field value where the
resonance is centred (see figure (2.7)). With a Feshbach resonance both the amplitude
and the sign of the scattering length a can be tuned.

B0
0

abg

B

a

Figure 2.2 – Variation of the scattering length a(B) close to a Feshbach resonance.
Crossing the resonance the scattering length changes sign, which results in attractive
or repulsive atomic interactions.
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The resonance position can be experimentally detected by a simple atom loss spec-
troscopy as a result of the strong enhancement of three body recombination that leads
to inelastic losses close to B0. In figure 2.3 we see a plot of a Feshbach loss spectrum of
164Dy around two resonances centred at B ∼ 7.5 G. A broader scan at low fields (figure
2.4) shows an extremely dense spectrum of narrow resonances.
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Figure 2.3 – Atom loss spectrum versus magnetic field around two Feshbach reso-
nances of 164Dy. The resonance centred at B ∼ 7.10 G is quite isolated from the rest
of the spectrum at lower fields and we will use it to tune the interatomic interaction
during the evaporative cooling. This scan was taken in our laboratory with an optical
dipole trap at a temperature of ∼ 2 µK.

This forest of resonances extends to higher fields and is a common feature of open-
shell lanthanidesa, for which the large spin in the ground state generates an intricate web
of molecular states. Previous work on Erbium and Dysprosium also demonstrated that
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Figure 2.4 – Low field scan of the Feshbach spectrum. Resonances are located by the
atom loss versus the magnetic field strength. This scan was taken in a optical dipole
trap at a temperature of ∼ 2 µK.

the mean spacing between nearest-neighbours resonances is described by a Wigner-Dyson
distribution, which implies a chaotic behaviour [89, 90]. The chaos finds its origin in
the complex ensemble of bound states, which has an intricate net of avoided crossings
originating from to the strong anisotropy of the interactions [83, 91]. In addition to the

aDysprosium and Erbium are the only ones studied so far.
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rich narrow resonance spectrum of Dysprosium, two broad resonances appear at high
field (B ∼ 77 G and ∼ 179 G), which have been extensively studied [92].

Moreover, as it was first observed in reference [93], the number of resonances increases
with the temperature of the atomic cloud, which is a clear indication of scattering events
in which the incoming wave has a d-wave component [90].

2.3 Dipolar Bose-Einstein Condensates

The anisotropy of the dipolar interaction (2.3) and its alternate attractive and repulsive
behaviour drastically changes the interactions in a cold atomic gas. Let us take a look at
the main manifestations of the dipolar nature of a degenerate gas, starting with a short
reminder of the mean-field theory of condensates which we will need in the following.

2.3.1 Mean-Field Model

Let us consider N interacting bosons in an external potential Uext. The second
quantisation hamiltonian has the familiar form [94]

Ĥ =
∫

dr Ψ̂†(r)
(
− h̄2

2m
∇2 + Uext(r)

)
Ψ̂(r)

+
1
2

∫
drdr′ Ψ̂†(r)Ψ̂†(r′)Uint(r − r′)Ψ̂(r)Ψ̂(r′) (2.8)

where Ψ†(r) and Ψ(r) are the boson field creation and annihilation operators at position
r, and the term Uint(r− r′) is the two-body interaction potential, which for dipolar gases
will be the sum of the contact potential (2.1) and the dipole-dipole interaction (2.3). The
external potential Uext in cold atoms experiment is usually a confining trap, which can be
created using optical or magnetic forces. As we will see in chapter 7, at lowest order the
confining potential can be considered as harmonic. In the following we will then take

Utrap(r) =
1
2

m
(

ω2
xx2 + ω2

yy2 + ω2
z z2
)

. (2.9)

When a condensate is formed, one of the modes of the field, that we should call φ(r), is
macroscopically occupied by an atomic population N0 close to the maximum number of
particles N0 ∼ N. Therefore, following Bogoliubov’s prescription [95], we can approxi-
mate the exact hamiltonian (2.8) by splitting the field operator into condensate and not
condensate parts Ψ̂(r) = ψ(r) + φ̂(r), seeing φ̂ as a perturbation to the classical field ψ.
This last term is usually called the condensate wavefunction and is normalised to the
number of particles

∫
dr ψ∗(r)ψ(r) = N, (2.10)

so that the condensate density is given by n(r) = |ψ(r)|2. Expanding the hamiltonian in
functions of φ̂(r), the zeroth order is non trivial and gives the energy functional

H0 = E[ψ] =

=
∫

dr
(

h̄2

2m
|∇ψ(r)|2 + Utrap(r)|ψ(r)|2 +

g
2
|ψ(r)|4 + 1

2
Φdd(r)|ψ(r)|2

)
,

(2.11)
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which will be useful in the following to study the stability of the condensate state. In the
equation above, g is the contact parameter (2.2) and we introduce the dipolar potential

Φdd(r) =
∫

d3r′Udd(r− r′)|ψ(r′)|2. (2.12)

The first derivatives of the functional should vanish to have a stable minimum solution.
Calculating then δE/δψ = δE/δψ∗ = 0 one finds the famous Gross-Pitaevskii equation
(GPE)

µψ(r) = − h̄2

2m
∇2ψ(r) +

(
Utrap(r) + g|ψ(r)|2 + Φdd(r)

)
ψ(r) (2.13)

which is used to described Bose-Einstein condensates [96]. In the formula above we
introduced the chemical potential µ. The GPE is also called non-linear Schrodinger
equation due to the additional mean-field term g|ψ|2. In addition, the case of a dipolar
gas adds a non-local character to the equation, due to the dipolar contribution (2.12). The
interaction energy Uint will be dominated by the mean-field term g|ψ|2 or the dipolar
potential according to the value of the parameter εdd introduced in (2.6). Due to its
non linear and non local character the dipolar Gross-Pitaevskii equation does not have
an analytical solution, therefore the wave function is usually calculated numerically.
Nevertheless, in the following section we discuss some simple cases where an analytical
expression for the atomic density can be found using variational calculus.

2.3.2 Thomas-Fermi Approximation

In the limit of vanishing interactions (Uint = 0) the cloud size σ is given by the
equilibrium between kinetic energy (also called quantum pressure), which scales as
∼ p2/2m = h̄2/2mσ2, and potential energy, which scales as ∼ mω2σ2/2. The relevant
length scale is then given by the harmonic oscillator length σ ∼ aho = (h̄/mω)1/2, which
we will use later on.

On the contrary, when the contact interactions are present, since they scale as ∼ gn =

gN/σ3, they tend to increase the cloud size. In the limit of strongly interacting gases,
this last term overcomes the kinetic one, which can then be neglected. In the following
we will use this approximation (Thomas-Fermi approximation), which is pretty accurate
for clouds with a large atom number.

Let us then neglect the kinetic term from the GPE (2.13) and use the definition
n(r) = |ψ(r)|2. We obtain the equation

µψ(r) =
(

Utrap(r) + gn(r) +
∫

d3r′Udd(r− r′)n(r′)
)

ψ(r), (2.14)

which has the following implicit solution for the density profile

n(r) =
1
g

(
µ−Utrap(r)−Φdd(r)

)
(2.15)

If there is no dipolar interaction (Φdd = 0), the insertion of the confining potential gives
a parabolic profile, in the three spatial directions, for the equilibrium condensate density.
For the sake of simplicity, let us consider an isotropic trap, i.e. where the potential is
Utrap(r) = mωr2/2. Although an anisotropic trap could be more realistic, it is more
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difficult to solve in the dipolar case and this simplification already provides a lot of
physical insight. The density profile n(0) in the case Φdd = 0 is given by

n(0)(r) = n(0)
0

(
1− r2

R2

)
Θ(R− r) (2.16)

where the cloud semi-axis is R = (2µ/mω2)1/2 and the central density of the cloud
n(0)

0 = n(0)(0) = µ/g. The Heaviside function Θ explicitly reflects that the density has
always to be considered zero outside the Thomas-Fermi radius n(r > R) = 0.

2.3.3 Elongation of Dipolar Clouds

We will now consider the dipolar case and proceed with a perturbative treatment. We
consider the dipolar potential given by the isotropic density distribution

Φdd(r) =
∫

dr′Udd(r− r′)n(0)(r′). (2.17)

Let us consider a polarised cloud where the dipoles are aligned in the z direction, so
that Udd can be written in the form (2.4). If we express the spatial dependence in the
following way [97]

1− 3z2/r2

r3 = − ∂2

∂z2
1
r
− 4π

3
δ(r), (2.18)

the dipolar potential can then be rewritten as

Φdd(r) = −
µ0µ2

4π

(
∂2

∂z2 φ(r) +
1
3

n(0)
0 (r)

)
(2.19)

where we define

φ(r) =
1

4π

∫
dr

n(0)(r′)
|r− r′| . (2.20)

In analogy with electrostatic problem, φ(r) is the electric potential generated by a static
charge distribution n(0)(r). The potential obeys Poisson’s equation ∇2φ = −n(0)(r),
which is satisfied by a polynom in the form φ(r) = a0 + a2r2 + a4r4 for r < R, where
is easy to check that a2 = −1/6 and a4 = 1/(20R2). Making the substitution in the
expression of the dipolar energy one finds

Φdd =
2
15

µ0µ2n(0)
0

(
x2 + y2 − 2z2

R2

)
. (2.21)

Substituting this expression and the one of the trapping potential in the Thomas-Fermi
profile (2.15), we are lead to the density distribution

n(r) = n(0)
0

(
1− x2

R2
x
− y2

R2
y
− z2

R2
z

)
(2.22)
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Like in the non-dipolar case, the profile of the cloud is parabolic but the radii depend on
the dipole strength εdd

Rx = Ry ' R
(

1− εdd

5

)
and Rz ' R

(
1 +

2εdd

5

)
. (2.23)

Φdd = 0
0

1

n(0)

n(0)
0

BB

a) b) c)

Figure 2.5 – Cloud deformation in the presence of dipolar interaction in a trap with
aspect ratio λ = 2. a) Thomas Fermi profile in an anisotropic potential without the
dipolar correction. b) dipoles aligned in ez direction, c) dipoles aligned in ex direction.
The cloud elongates in one direction and squeezes in the others.

It is now immediate to see how the dipolar interaction deforms the cloud. Starting
from the isotropic distribution (2.16) for Φdd = 0, the larger εdd, the more the cloud gets
elongated in the direction of the dipoles (here z) while it squeezes in the other directions.
This effect, known in magnetic materials as magnetostriction, has been experimentally
observed in quantum gases of Chromium in [45]. Note that equation (2.23) gives an
unphysical solution in the case of strong dipolar interaction εdd > 5, which gives some
insight on the expected instabilities, as we will see in the following.

Let us now consider a more realistic trap with cylindrical symmetry, introducing then
a cylindrical coordinate system r = (ρ, z). Defining the trap aspect ratio λ = ωz/ωρ and
the average trapping frequency ω̄ = (ω2

ρωz)1/3, the potential can be written as

Utrap(ρ, z) =
m
2
(ωρρ2 + ωzz2) =

m
2

ω̄

λ2/3 (ρ
2 + λ2z). (2.24)

The arguments above still hold, but the calculation of the potential (2.20) is much more
involved and has been carried out in [98]. Like in the simple case of isotropic trap, the
authors found that for an increasing dipolar strength εdd the cloud elongates in the
direction of the polarising field (i.e. the condensate aspect ratio κ = Rρ/Rz decreases, see
figure 2.5). Physically, this is the effect of the anisotropy of the dipolar potential Φdd,
which minimises the energy by redistributing the atoms in a head-to-tail configuration.
These considerations are valid in a perturbative regime, in the following we focus on
strongly dipolar gases for which εdd > 1 (the isotope 164Dy has εdd = 1.42, away from
Feshbach resonances).

2.4 Condensate Instabilities

Under certain conditions, Bose-Einstein condensates with pure contact interactions
are unstable: we have seen that crossing a Feshbach resonance the scattering length value
a changes from positive to negative values, and thus the inter-particle interaction from
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repulsive to attractive. Once the atoms attract each other, they accelerate towards the trap
centrea, and the cloud collapses on itself. As the collapse proceeds, the increased density
induces strong three body recombination which leads to atom losses and to the decay of
the condensate itself [99, 100, 101]b.

In the case of dipolar gases the collapse mechanism can be triggered by the dipole-
dipole interaction alone, which overcomes the contact interaction in the case εdd > 1 and
can thus drive cloud instabilities even for positive a. The following sections describe some
effects which have to be taken into account to obtain a stable condensate of Dysprosium.
The stabilisation effect has been first observed with Chromium atoms [102] and described
theoretically some years before the experimental realisation [103, 104].

2.4.1 Phonon Instability
Let us first consider the case of a homogeneous condensate (Vext = 0) with dipolar

interactions. The instability can easily be understood looking at the dispersion relation of
the dipolar BEC, which is given by the Bogolyubov excitation spectrum

E(p) =
√

E2
free(p) + 2gn

(
1 + εdd(3 cos2 α− 1)

)
Efree(p). (2.25)

The dispersion relation has an angular dependence through α, the angle in between
the external polarising field and the wave vector of the excitation p. While at short-
wavelengths the spectrum is dominated by free particle excitations E ∼ Efree(p) = p2/2m,
long-wavelength excitations are phonons, with an anisotropic behaviour

E(p) ∼ cs p =

√
gn
m
(
1 + εdd(3 cos2 α− 1)

)
p, (2.26)

where cs is the sound velocity in the gas. From the dispersion relation above, it is evident
that for α ∼ π/2 and εdd & 1 the excitations are purely imaginary and therefore an
homogeneous dipolar condensate is unstable against the density fluctuations which
propagate perpendicularly to the dipoles alignment.

2.4.2 Geometrical Stabilisation
Let us now see how the presence of a trap could stabilise a dipolar condensate

against its collapse. The problem can be accessed through a variational approach,
where the variational parameters will be the cloud sizes.We start by considering the
energy functional (2.11), in which we can identify the kinetic, trapping and interacting
contributions

E[ψ] = Ek[ψ] + Etrap[ψ] + Eint[ψ]. (2.27)

We will again consider the interaction dominated regime, so that Ek[ψ] can be
neglected. Like in the previous paragraph, the problem can be simplified for a trap with
cylindrical symmetry. We will then use the same potential given in equation (2.24). This
assumption is not necessary but provides analytical results for the integrals, while in the

aThe interaction depends linearly on the density, thus it is stronger at the centre of the cloud, where n is
higher.

bNevertheless, below a certain critical atom number, the repulsive interaction due to quantum pressure
can stop the cloud collapse, and metastable condensates with negative scattering length can exist.
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case of three different trapping frequencies one has to numerically solve the term Φdd of
the energy functional. A good Ansatz for the density distribution is an inverted parabola
profile given by the Thomas-Fermi approximation

n(r) = n0

(
1− ρ2

R2
ρ

− z2

R2
z

)
(2.28)

where the density at the trap centre is defined as n0 = 15N/(8πR2
ρRz) and the Thomas-

Fermi radii Rz and Rρ are the variational parameter. The substitution in the energy
functional gives

E
Nh̄ω̄

=
1

14a2
hoλ2/3

(
2R2

ρ + λ2R2
z
)
+

15N
7

a2
ho

R2
ρRz

(
a− add f (κ)

)
. (2.29)

We introduce here the dipolar function

f (κ) =
1 + 2κ2

1− κ2 −
3κ2arctanh

√
1− κ2

(1− κ2)3/2 . (2.30)

which is bounded f (κ) ∈ [1,−2] and monotonically decreasing with the aspect ratio (see
the plot in figure 2.6).

10−2 10−1 100 101 102
−2

−1

0

1

κ

f(
κ
)

Figure 2.6 – Dipolar function f (κ). For isotropic condensates (κ = Rρ/Rz = 1) the
function vanishes.

The expressions above can be used to evaluate the energy functional for different trap
aspect ratios λ and scattering length a. In figure 2.7 is an example for a trap geometry of
λ = 2. For high values of a the cloud deforms and stabilises to a given κ. On the contrary,
for low values, there is no local minimum and the cloud implodes.

In the limit N → ∞ the only term that matters is Eint, for which the relevant parameter
is 1− εdd f (κ), which could drive the instability. If N is finite and Eint > 0 the condensate
is always stable since the term Etrap is also positive. The energy is minimised by lowering
the density, thus the cloud expands.

On the contrary, the condition Eint < 0 is necessary but not sufficient to have an
instability. In picture 2.7 one can see the energy landscapes for different values of a and
as a function of the cloud sizes. At intermediate values there exist a local minimum, thus
the cloud accommodates its shape to minimise the energy. The state is only metastable
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since there is also a global minimum which corresponds to an unstable cloud where the
energy is minimised by a complete collapse in the ρ direction.

0.1

1

10

100

0.1 1 10 100 0.1 1 10 100 0.1 1 10 100
Rρ Rρ Rρ

Rz

a = 120 a0 a = 110 a0 a = 100 a0

Figure 2.7 – Plot of the energy Etot/Nh̄ω̄ obtained with a gaussian Ansatz. The
pictures refer to three decreasing values of the scattering length as a function of the
cloud sizes Rρ and Rz for N = 105 atoms. The confining potential is cylindrical
symmetric with trapping frequencies Rz = 2π × 200 Hz and Rρ = 2π × 100
Hz. Increasing the value of a, the cloud is stable in a local minimum position (the
metastable region in picture 2.6) which is separated by the unstable region appearing
at low κ by a saddle point. Below some critical value ac (right picture), the local
minimum merges with the unstable solution and the cloud collapses.

These instabilities were first investigated on Chromium atoms [102], which is not
naturally in the unstable regime εdd > 1. To enter this regime it was necessary to work
close to a Feshbach resonance, but the lifetime was in the same time limited [105]. Erbium
and Dysprosium have naturally a higher value of εdd without the need of Feshbach
resonances. In 2016, new studies on both atoms [106, 107, 108] found surprisingly that
the induced instabilities actually do not bring to a total collapse of the cloud as one
would have expected. The density of the cloud was indeed increasing, but it saturated to
a fixed value where the cloud became stable and self confined. This effect is not expected
in the previous mean field analysis, that we obtained by neglecting quantum fluctuations.
These fluctuations arise from the term φ̂(r) that we neglected at the beginning, and they
are actually responsible of this new stabilisation mechanism [109]. In fact, if we consider
the energy corrections to first order, they result in a positive term which adds to the
interactions, which can then be rewritten as

Eint ∼ gn2(1− εdd f (κ)) + δE. (2.31)

Here, we recast the interaction energy from (2.29) to explicit the dependence on the
density n. For a dipolar gas, the additional term δE is given by the famous Lee-Huang-
Yang correction [110] with an additional dependence on the dipolar strength εdd, which
has been calculated in [111] and gives

δE ∼ gn2

2
128
√

na3

15
√

π

(
1 +

3
2

ε2
dd
)
. (2.32)

The dipole interaction εdd then amplifies this correction term. From (2.31) it is then
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evident that when one expects a collapse for εdd f (κ) > 1 the quantum fluctuations could
stabilise the cloud.

2.5 Dipolar Relaxation

Up to now we considered elastic interactions between atoms. In this section we will
focus on the inelastic character of dipolar collisions, which also leads to a redistribution
of the spin states.

In contrast with spin-exchange collisions, which conserve the total spin even if the
individual ones can be flippeda, the dipole-dipole interaction does not commute with the
total spin. Therefore, even starting with a polarised cloud, the spins can be flipped by the
dipolar interaction. The major problem we will focus on is the dipolar relaxation, which
happens in atomic clouds where more than one spin state is present or, in general, if the
cloud is not polarised in the absolute ground state. Spin relaxation is a major problem for
cold trapped clouds, since the released energy after the collision results in rapid heating
or atom loss. As we will see, dipolar relaxation depends on the cloud temperature and
the external magnetic fields, but has different behaviour for bosons or fermions.

Let me point out again that, as much of the physics discussed above, these collisions
are common to any atomic gas, and can be problematic also for alkali atoms with large
spin (for example Cesium).

2.5.1 Spin-flip Interaction

Let us start by rewriting the expression of the dipolar potential (2.3) in a more
symmetric way. By explicitly rewriting the scalar products in spherical coordinates
r = (r, θ, φ), we obtain the expression

Udd =
µ0µ2

Bg2
J

4πr3

2

∑
m=−2

T2,m, (2.33)

where T2,m is a rank 2 spherical tensor whose components are given [112] as

T2,0 = (3 cos2 θ − 1)
(

J1z J2z −
1
4
(J1+ J2− + J1− J2+)

)

T2,1 =
3
2

sin θ cos θe−iφ(J1z J2+ + J1+ J2z)

T2,−1 =
3
2

sin θ cos θeiφ(J1z J2− + J1− J2z)

T2,2 =
3
4

sin2 θe−2iφ J1+ J2+

T2,−2 =
3
4

sin2 θe2iφ J1− J2−

(2.34)

Here, we used the usual definition of the ladder operator J± = Jx ± i Jy. The angular
dependence of the tensor can be rewritten using the spherical harmonics Y`,m and by
defining the operator S`,m, whose components act only in spin space and are given

aSpin-exchange collisions are ∝ Ĵ1 · Ĵ2
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by [113]

S2,0 = −
√

3
2

(
J1z J2z −

1
3

J1 · J2

)

S2,±1 = ±1
2
(J1z J2± + J1± J2z)

S2,±2 = −1
2

J1± J2±.

(2.35)

We can then rewrite the interaction as

Udd =

√
24π

5

µ0µ2
Bg2

J

4πr3

2

∑
m=−2

Y∗2,m(θ, φ)S2,m, (2.36)

Except for the component S2,0, the operator does not conserve the total spin, since S2,1

(S2,−1) flips one spin up (down) and S2,2 (S2,−2) flips both the spins up (down).

We see that the orbital angular momentum ` is also not conserved in a dipole-dipole
collision, since the calculation of the angular part of the potential expectation value will
involve an integral on the spherical harmonics in the form

∫
dΩ Y`′ ,m′Y2,MY`,m =

√
5

4π
(2`′ + 1)(2`+ 1)

(
`′ 2 `

0 0 0

) (
`′ 2 `

m′ M m

)
. (2.37)

From the orthogonality relation of the Wigner 3-j symbols, the dipole interaction has a
selection rule for the orbital quantum number ∆` = `′ − ` = 0,±2 and for its projection
m + M + m′ = 0. Note as an example that if two particles collide in s-wave they will
scatter in d-wave.

2.5.2 Dipolar Scattering

I show here a simplified model for the calculation of the dipolar scattering cross
sections. In the following section I give then the exact result that can be found in the
literature. Let us consider the scattering of two atoms interacting via the dipolar potential.
We will use standard scattering theory notation in the following. The familiar asymptotic
form of the scattered wave function is

lim
r→∞

ψsc(r) = eik·r + f (k′, k)
eikr

r
(2.38)

where h̄k and h̄k′ are the relative momenta for the incoming and outgoing wave respec-
tively. The coefficient of the spherical wave is the scattering amplitude f (k′, k), which
contains the information on the scattering potential and is given by

f (k′, k) = − m
4πh̄2

∫
dr′ e−ik·r′U(r′)ψsc(r′). (2.39)

The exact expression of the ψsc(r) requires to solve the auto consistent equation (2.38)
which results in an infinite series (Born series) [114]. The most commonly used ap-
proximation is to stop the series at the first term, so that ψsc(r′) is the incoming wave
ψ0(r′) = eik·r′ , and the scattering amplitudes turns out to be the Fourier transform of the
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potential (Born approximation)

f (B)(k′, k) = − m
4πh̄2

∫
dr′ e−ik·r′U(r′)eik′·r′ = − m

4πh̄2 U(k′, k) (2.40)

The scattering amplitude is also related to the total scattering cross section σ =∫
dΩ| f (k′, k)|2. For colliding bosons, the differential cross section is obtained by sym-

metrising the scattering amplitude

σ =
∫

dΩ
∣∣ f (k, θ) + f (k, π − θ)

∣∣2 (2.41)

where the integration should be done only on one hemisphere since the particles
are indistinguishable. As we have reminded at the beginning of the chapter, for
short range potentials, the scattering amplitude tends to the scattering length at low
temperatures f (k′, k)→ −a, which is symmetric and k-independent, and gives the well
known cross section for two identical bosons

σ = 8πa2. (2.42)

It will be a fundamental parameter for the evaporative cooling as we will see in chapter 7.
We now return to the dipolar potential, for which a scattering event can change the

internal spin state of the colliding atoms. We will write the scattering states
∣∣ψsc

〉
=∣∣k, αβ

〉
, where α and β label the internal (spin) state. The scattering wave function is then

written as [115]

ψsc(r) = eik·r∣∣αβ
〉
+ ∑

α′β′
fα′β′ ,αβ(k′, k)

eikr

r
∣∣α′β′

〉
, (2.43)

for which the scattering amplitude (2.40) becomes at the Born approximation

fα′β′ ,αβ(k′, k) = − m
4πh̄2

〈
α′β′

∣∣Udd(k′, k)
∣∣αβ
〉

(2.44)

Let us consider as an example the single spin-flip event represented in picture 2.8.
The cloud is supposed to be completely polarised in a state |J = 8, mJ = 8〉, which can
relax via the dipolar interaction to the state at lower energy |J = 8, mJ = 7〉. When the
released Zeeman energy ∆EZ � kBT it leads to atom losses, therefore severely limiting
the lifetime of the trapped cloud.

In the following we will proceed with some approximations, that will anyway give
some insight of the correct scaling laws for dipolar collisions. Let us consider a polarised
sample, with all the atoms in the state

∣∣J, mJ = J
〉
, which we label

∣∣↑
〉
. A spin-flip event

will change the state to
∣∣J, mJ = J − 1

〉
=
∣∣↓
〉
. When considering a binary system, the

initial internal state is then labelled
∣∣αβ
〉
=
∣∣↑↑
〉
. Following a dipolar collision, the

interaction could flip one or both spins
∣∣↑↑
〉
→
∣∣↓↑
〉
+ ∆EZ (2.45)∣∣↑↑

〉
→
∣∣↓↓
〉
+ 2∆EZ. (2.46)

The released energy ∆EZ is equal to the Zeeman splitting between levels (appendix A).
Let us simplify the problem by considering the limiting case of small initial relative
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Udd

|mJ = 8〉

|mJ = 7〉

|mJ = 8〉

|mJ = 8〉

∆EZ

|mJ = +8〉

|mJ = −8〉

Figure 2.8 – Dipolar collision with a single spin-flip process, starting with the atoms
in the stretched state |J = 8, mJ = 8〉. The energy released after the collision is the
Zeeman energy ∆EZ, which can lead to atom loss.

momentum of the colliding particles with respect to the final one (k � k′), so that the
initial wave function is approximatively unity ψ0 → 1. The matrix element of the dipole-
dipole Udd(k′, 0) interaction, given by the Fourier transform of the dipole interaction, is

Udd(k′, 0) =
∫

dr Udd(r)e−ik′·r. (2.47)

To exploit the symmetries of the dipolar potential in the form (2.36), let us consider the
spherical expansion of the plane wave

eik′r = 4π
∞

∑
`=0

`

∑
m=−`

i` j`(k′r)Y∗`m(k̂
′)Y`m(θ, φ) (2.48)

where j` are the spherical Bessel functions and k̂′ is the versor of the momentum k′. The
integral (2.47) can then be separated into radial and angular contributions. From (2.36)
and the orthogonality of the spherical harmonics

∫
Y∗`′m′Y`mdΩ = δ`′`δm′m, the only

contribution from the plane wave expansion will be the ` = 2 term. The remaining radial
contribution to the integration, which is given by

R` =
∫ ∞

0
dr r2 j`(k′r)

1
r3 . (2.49)

In the current case one has R2 = 1/3. We can then rewrite the matrix element as

Udd(k′, 0) =

√
24
5π

µ0(gJµB)
2

4π

4π

3

2

∑
m=−2

Y∗2,m(k̂
′)S2,m (2.50)

For the scattering state (2.43) and in the case of distinguishable particles (we will
consider the quantum statistics at the end of the section), the ratio between incoming
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and outgoing currents gives the scattering cross section

dσα′β′ ,αβ

dΩ
= | fα′β′ ,αβ|2

v′

v
= | fα′β′ ,αβ|2

k′

k
. (2.51)

For the initial state
∣∣↑↑
〉
, we obtain after substituting (2.44) and integrating over the solid

angle

σα′β′ =
m2

4πh̄4

∣∣∣
〈
α′β′

∣∣Udd(k′, 0)
∣∣↑↑
〉∣∣∣

2 k′

k
, (2.52)

which, explicitly writing the matrix element and again from the orthogonality of the
spherical harmonics, gives

σα′β′ =
32π

15

(
µ0(gJµB)

2m
4πh̄2

)2

∑
m

∣∣∣
〈
α′β′

∣∣S2,m
∣∣↑↑
〉∣∣∣

2 k′

k
. (2.53)

So we are left with the evaluation of the expectation value of the spin operator (2.35).

Let us consider explicitly the case of the single spin-flip event in figure 2.8. The
expectation value of the spin component of the interaction Udd given in equation 2.36 is

〈
m′1, m′2

∣∣ Ĵ1z Ĵ2−
∣∣m1, m2

〉
= m1

√
J(J + 1)−m2(m2 + 1) δm′1,m1

δm′2,m2−1 (2.54)

where mi is the spin projection referring to the i−th particle. In the specific case we are
considering, where the atoms start in the state

∣∣↑↑
〉
=
∣∣J, J

〉
, and the expectation value is

thus

〈
α′β′

∣∣ Ĵ1z Ĵ2−
∣∣↑↑
〉
=
√

2J3δα′ ,↑δβ′ ,↓ (2.55)

Taking the square of the expectation value and substituting in formula (2.53) we
finally obtain

σ(1) =
64π

15
J3
(

µ0(gJµB)
2m

4πh̄2

)2 k′

k
(2.56)

as the cross section for a single spin flip event. Notice that the dependence on the atomic
species enters only via the mass and the spin σ(1) ∝ g4

J J3m2, which justifies the fact that
dipolar relaxation is a major problem for large spin atoms. The explicit expression for
k′/k for a single spin-flip can be recovered from the energy conservation

h̄2k′2

m
=

h̄2k2

m
+ ∆EZ, (2.57)

which, writing the formula for the Zeeman energy, gives

k′

k
=

√
1 +

mµBµ0gJ B
h̄2k2

. (2.58)

Note that in the double spin-flip case the released energy is doubled 2∆EZ and the matrix
element will be different. In both cases, in the limit of low initial energy k→ 0 (i.e. low
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initial temperature) we expect k′/k ∝ B1/2.

2.5.3 Effect of Particle Statistics

Extending this calculation to a general case requires more involved calculations, since
one has to consider a plane wave expansion (2.48) also for the initial wave function
ψ0 = eikr. In the frame of the Born approximation, the complete expression for the
scattering cross section of indistinguishable particles is given in [47]. In this paper one
can find the cross section for zero, one or two spin flips events, that are respectively given
by

σ(0) =
8π

15
J4
(

µ0(gJµB)
2m

4πh̄2

)2 2
3
[
1± h(1)

]
(2.59)

σ(1) =
8π

15
J3
(

µ0(gJµB)
2m

4πh̄2

)2[
1± h(k′(1)/k)

] k′(1)

k
(2.60)

σ(2) =
8π

15
J2
(

µ0(gJµB)
2m

4πh̄2

)2[
1± h(k′(2)/k)

] k′(2)

k
. (2.61)

The function h is plotted in figure 2.9. The sign ± above accounts for the particle statistics,
+ being for the bosons and − for fermions. The dependence on the final momenta is
enclosed in the function

h(x) = −1
2
− 3

8
(1− x2)2

x(1 + x2)
log

(1− x)2

(1 + x)2 , (2.62)

which is defined in the interval h(x) ∈ [1, ∞) and is monotonically increasing in its
domain from h(1) = −1/2 to h(x → ∞) = 1− 4/x2.

1 5 10
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Figure 2.9 – Plot of the h(x) function defined in the main text.

Using the cross section definition, one usually introduces the dipolar relaxation loss
rate, which is given by

βdd = 2
〈
(σ(1) + σ(2))v

〉
th = 2

〈
(σ(1) + σ(2))

h̄k
m/2

〉
th

, (2.63)

where the brackets label the thermal average over the initial relative velocity of the atoms
v (or momentum k). The factor 2 accounts for the loss of the pair of atoms after each
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collision. The quantity βdd is experimentally accessible by measuring the population
decay in the trap.

We now focus on the sign of the function h, which gives opposite behaviour of the
cross section for the two statistics. In the asymptotic case k′ � k, which according
to (2.58) is the regime of high magnetic fields B or low temperatures, the fermionic
inelastic cross sections σ(1) and σ(2) vanish as (T/B)1/2. This suppression has been
experimentally observed in 161Dy [116]. On the contrary, in our case we focus on the
bosonic isotope 164Dy, for which the cross section increases as σ(i) ∼ (B/T)1/2. Due to
the additional dependence on the initial relative momentum k, the loss rate parameters
scale as βdd ∼ T/B1/2 and βdd ∼ B1/2 for identical fermions and bosons respectively.
Therefore, in the case of dipolar bosons the relaxation is suppressed only in the limit
B→ 0.

In our case, we will see that the magneto-optical trap polarises the atoms in the
absolute ground state

∣∣J = 8, mJ = −8
〉
. Once we load the atoms in the optical dipole

trap, they are thus protected against dipolar relaxation.
In figure 2.10 we plot the loss rate β

(1)
dd associated with one single spin-flip collision,

for both fermions and bosons at different initial temperatures a, where the opposite
behaviour in the two cases is clear.

0 0.2 0.4 0.6 0.8 1
10−12

10−11
T = 1 µK

T = 100 nK

B [G]

β
(1
)

[c
m

3
s−

1 ]

0 0.2 0.4 0.6 0.8 1
10−13

10−12

T = 1 µK

T = 100 nK

B [G]

β
(1
)

[c
m

3
s−

1 ]

a) b)

Figure 2.10 – Loss rate parameter for a single spin flip event as given in equa-
tion (2.61) as a function of the magnetic field B, for a) identical bosons and b)
fermions. Note the different behaviours as a function of initial temperature.

As a final remark, we notice in (2.60) that the elastic cross section remains finite
for fermions also in the limit of vanishing k, which means at T → 0. If the interaction
potential was purely short ranged, the elastic scattering of fermions would have been
suppressed at low T. On the contrary, collisions between identical fermions are permitted
in dipolar gases, and this fact has been successfully exploited in Erbium and Dysprosium
gases to reach quantum degeneracy with standard evaporative cooling [57, 56].

With this observation we conclude the considerations on the dipolar nature of Dys-
prosium. All the problems presented in this chapter had to be carefully considered while
constructing an experiment on ultra cold dipolar gases, since they are a clear obstacle to
the achievement of Bose-Einstein condensation.

aWe consider here thermal gases, for which the velocities are calculated from a Maxwell-Boltzmann
distribution.



3
Off-Resonant Light-Atom Interaction

In this chapter I review several aspects of the off-resonant interaction between an atom
and laser light. Despite dipole forces are usually spin-independent, for Dysprosium

atoms the interaction is complicated by its large spin in the ground state and its excitation
spectrum with many narrow transitions. I focus mainly on the coupling of the atomic
spin to the light polarisation and on the consequent advantages of Dysprosium over
other atomic species (in particular over alkali atoms). We first consider a simple two level
atomic model before dealing with the whole electronic structure of the atom. At the end
of the chapter I consider the specific examples of the anisotropy in conservative traps
for Dysprosium (see chapter ??) and the implementation of Raman transitions between
ground state levels (see next chapter).

3.1 AC Stark Interaction

Let us consider a monochromatic electromagnetic wave at frequency ω prepared in a
quasi-classical state, so that it can be written as:

EL = eLE e−iωt + c.c., (3.1)

where E is the field magnitude and eL is the polarisation vector. We consider the
atom-light coupling to be described by the electric dipole interaction [117]

V̂AL = −d̂ · EL = −d̂ · eL E e−iωt + h.c., (3.2)

where d̂ is the atomic dipole operator.
In the following we will assume the frequency of the light ω as being far from any

atomic resonance. In this case, there is no real transition to any excited state, and we
can consider only the ground state being populated. We can analyse the problem in
the standard formalism of second order perturbation theory. Via a virtual absorption
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and emission of a photon, the dipole operator couples the ground state |g
〉

to all excited
states |e

〉
and then back to the ground state. The process mixes the ground state with the

excited states, leading to a shift in the energy that can be written as

δEg = −∑
e

(〈
g|d · E∗L|e

〉 1
Eg − Ee − h̄ω

〈
e|d · EL|g

〉

+
〈

g|d · EL
∣∣e
〉 1

Eg − Ee + h̄ω

〈
e|d · E∗L|g

〉)
(3.3)

This shift is the well known “light shift”, sometimes called in the literature AC (or
dynamical) Stark shift, in contrast with the static Stark effect, which has a similar
expression but without the oscillating term for the electric field.

In principle, the energy of the excited levels should be complex to account for their
natural lifetime. If Γe is the natural decay rate of the state |e

〉
, the energy should be

written as Ee − ih̄Γe/2. In this case, the shift will be given by the real part of the formula
above, while the imaginary part adds a finite lifetime to the ground state accounting for
the photon scattering rate. Introducing the transition frequency ωeg = (Eg − Ee)/h̄, we
can rewrite the previous equation as

δEg = −
[

1
h̄ ∑

e

(
1

ωeg −ω− iΓe/2
+

1
ωeg + ω− iΓe/2

)∣∣〈e|d · ε|g
〉∣∣2
]
|E |2

= −α(ω)|E |2,
(3.4)

where we defined the frequency dependent atomic polarisability α(ω). It is usual to
consider separately the real part of the ground state energy shift and the imaginary part

δEg = Vg − ih̄
Γg

2
. (3.5)

Let us first consider the real part

Vg(ω) = −Re{α(ω)}|E |2. (3.6)

Using the expression for the laser intensity I = 2ε0c|E |2, and explicitly writing the
dependence of the intensity on the position I = I(r), we recover the familiar expression
of the dipole potential

V(r, ω) = − 1
2ε0c

Re{α(ω)}I(r), (3.7)

which is the basis of conservative optical traps [118]. From the above definition we can
write also an expression for the photon (Rayleigh) scattering rate

Γg(r, ω) =
1

h̄ε0c
Im
{

α(ω)
}

I(r). (3.8)

Let us now put ourselves in the framework of the rotating wave approximation (RWA)
and neglect the counter-rotating term in equation (3.4). Within this approximation we
recover another well known result. The real part of the ground state energy shift scales
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as

Vg ∝
ω−ωeg

(ωeg −ω)2 + Γ2
e /4

, (3.9)

and the potential is thus attractive for red detuned laser frequencies (ω < ωeg) and
repulsive otherwise. Also, we see that the scattering rate has the expected Lorenzian
shape:

Γg ∝
Γe/2

(ωeg −ω)2 + Γ2
e /4

. (3.10)

As a concluding remark, we point out the different dependence on laser detuning.
While the lifetime decreases as Γg ∼ 1/∆2, the light shift decay is softer as Vg ∼ 1/∆.
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Figure 3.1 – Real and imaginary part of the dynamical Stark shift in the rotating
wave approximation, respectively leading to the ground state light shift and scattering
rate.

3.2 Light Shift Operator

The last results do not consider the internal structure of the atoms. More formal
results are well known from optical pumping theory [119]. In this section, I will briefly
sketch the calculation of the light shift, mainly following the treatment of [120], since it
clarifies the notation I will use throughout the chapter and allows to easily make some
fundamental remarks on the light-atom coupling.

Let us start by rewriting the AC Stark energy shift (3.3) as the expectation value
δEg =

〈
g|Ĥeff|g

〉
of an effective hamiltonian

Ĥeff = P̂g
[
(E∗L · d̂)R+ω(EL · d̂) + (EL · d̂)R−ω(E∗L · d̂)

]
P̂g, (3.11)

where we define the frequency-dependent operators

R±ω = −1
h̄ ∑

e

P̂e

ωeg ±ω− iΓe/2
, (3.12)

and we defined the projectors on the ground and excited states, respectively P̂g = |g
〉〈

g|
and P̂e = |e

〉〈
e|, where |g

〉
and |e

〉
contain all the relevant quantum numbers, that we

will explicit in the following.
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3.2.1 Tensor Polarisability
We neglect the fast oscillating term R+ω in equation (3.11) using the rotating wave

approximation. In the case of a laser detuning ∆ = ωeg − ω larger than the transition
linewidth (∆ > Γe/2) we can further simplify the expression as

1
∆− iΓe/2

' 1
∆
+ i

Γe/2
∆2 (3.13)

These assumptions are not necessary, but they give a lighter notation. In the following
we will give also the exact formulae.

In the specific case of bosonic isotopes of Dysprosium, for which the nuclear magnetic
moment I = 0, there is no hyperfine structure. For fermionic isotopes, we will consider
the detuning being large with respect to the hyperfine splitting ∆ � ∆HFS

a, so that
the projector operator on the excited state couples only to the fine structure basis
P̂′J = ∑m′J

∣∣J′, m′J
〉〈

J′, m′J
∣∣.

In the following we will also write explicitly the quantum numbers for the ground
state manifold |g

〉
= |J, mJ

〉
. Let us consider the real part of the effective hamiltonianb.

We define the light shift operator

V̂ = −E∗L · α̂ · EL, (3.14)

where the atomic polarisability is now a tensor, given by [121]

α̂ = −
P̂J d̂ P̂′J d̂ P̂J

h̄∆

= − 1
h̄∆ ∑

J′
∑
m′J

|J, mJ
〉〈

J, mJ |d̂|J′, m′J
〉〈

J′, m′J |d̂|J, mJ
〉〈

J, mJ |,
(3.15)

Note that the projectors act on the whole ground state J manifold, since the shift may be
different for different magnetic levels.

We can use the Wigner-Eckart theorem to factor out the angular dependence of the
matrix element on the given Zeeman sub levels

〈
J′, m′J

∣∣d̂q
∣∣J, mJ

〉
=
〈

J′, mJ + q
∣∣d̂q
∣∣J, mJ

〉
= cmJ ,q

〈
J‖d̂‖J′

〉
, (3.16)

where q is the index of the spherical basis

ε+ = − (ex + iey)√
2

, ε− =
(ex − iey)√

2
, and ε0 = ez, (3.17)

and cmJ ,q is the Clebsch-Gordan coefficient for the transition

cmJ ,q =
〈

J, mJ |1, q; J′, m′J
〉

= (−1)J′−1+mJ
√

2J + 1

(
J′ 1 J

m′J q −mJ

)
.

(3.18)

aA posteriori, this assumption is satisfied since ∆HFS . 1 GHz while we will consider detuning of the
order of THz.

bTo get the imaginary part, and hence the scattering rate Γscat, one should make the substitution
∆→ 2∆2/Γe in the following results and divide by h̄.
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The reduced matrix element dJ J′ =
∣∣〈J‖d‖J′〉

∣∣ can be calculated from the Fermi golden
rule using the linewidth

ΓJ J′ =
ω3

J J′

3πε0h̄c3 d2
J J′ , (3.19)

or from the transition probability coefficientsa

AJ J′ =
ω3

J J′

3πε0h̄c3
1

2J′ + 1
d2

J J′ . (3.20)

As the reduced matrix element is independent on the Zeeman level, we can define the
normalised atomic rising operator D̂† and its hermitian conjugate, the atomic lowering
operator D̂, whose components are given by

D̂†
µ =

(P̂J d̂ P̂′J)µ

dJ J′
= ∑

m′J

∣∣J′, m′J
〉〈

J′, m′J
∣∣ d̂
dJ J′

∣∣J, mJ
〉〈

J, mJ
∣∣

= ∑
q

eµ · ε∗q cmJ ,q
∣∣J′, mJ + q

〉〈
J, mJ

∣∣,
(3.21)

where the scalar product projects the spherical basis ε∗q of the operator into the cartesian
basis eµ. We can use these operators to rewrite the light shift operator as

V̂ = −
d2

J J′ |E |2
h̄∆

e∗L · D̂D̂† · eL, (3.22)

where we separate the electric field amplitude E from the polarisation eL. Note that in the
literature, the above formula is often written in terms of the Rabi frequency ΩR = dE/h̄.
Substituting the explicit value of the matrix element and expressing the field as light
intensity, we get

V̂ = VJ J′ e∗L · D̂D̂† · eL (3.23)

where using (3.19) the prefactor is

VJ J′ = −
h̄Ω2

R
∆

= − 3πc2

2ω3
J J′

ΓJ J′

∆
I. (3.24)

Let us consider equation (3.23), since all the relevant physics is in there. We see that
light shift operator is separated in two different parts. VJ J′ contains the information on
the strength of the coupling, given by the matrix element and on the laser intensity and
detuning. All the angular dependence of the shift is enclosed in the second adimensional
part, which describes how the light polarisation couples to the internal spin state of the
atoms. In the following we analyse the symmetries of this term.

Let us consider the product of the rising and lowering operators DD†, which are both
vector operators (i.e. tensors of rank 1). This kind of product is called a dyad, which
using standard tensor properties [123] is usually decomposed into a complete set of

aThis is the convention for the data from [122].
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irreducible spherical tensors T(K) of rank K = 0, 1, 2

D̂µD̂†
ν = T(0) + T(1) + T(2)

=
D̂ · D̂†

3
δµν +

D̂µD̂†
ν − D̂νD̂†

µ

2
+

( D̂µD̂†
ν + D̂νD̂†

µ

2
− D̂ · D̂†

3
δµν

)
.

(3.25)

These different components are respectively a scalar, a vector (or antisymmetric tensor)
and a traceless symmetric tensor. Therefore, the light shift has the symmetries of this
decomposition and is separated accordingly in three parts

V̂ = V̂scal + V̂vect + V̂tens. (3.26)

In the following we will describe the effect of the single components.

No Hyperfine Structure

To further develop the calculation one uses the recursion relations for the Clebsh-
Gordan coefficients to rewrite the atomic operator (3.21) in terms of spin operators. We
will give the final result as in [124], on which we will base the calculations of the rest of
the chapter

V̂scal = αs
J 1̂|EL|2 (3.27)

V̂vect = −iαv
J (E∗L × EL)·

Ĵ
2J

(3.28)

V̂tens = αt
J
3[(E∗L· Ĵ)(EL· Ĵ) + (EL· Ĵ)(E∗L· Ĵ)]− 2 Ĵ2

2J(2J − 1)
. (3.29)

For a given J state, the factors αs
J , αv

F, αv
J are respectively the scalar, vector and tensor

polarisabilities, which are given by the following expressions:

αs
J =

√
1

3(2J + 1)
α(0) (3.30)

αv
J = −

√
2J

(J + 1)(2J + 1)
α(1) (3.31)

αt
J = −

√
2J(2J − 1)

3(J + 1)(2J + 1)(2J + 3)
α(2), (3.32)

with the frequency dependent polarisability α(K) given as

α(K)(ω) = (−)K+J
√

2K + 1 ∑
J′
(−)J′

{
1 K 1
J J′ J

}
VJ J′

|E |2 , (3.33)

where VJ J′ was defined in 3.24. The curly brackets stand for the Wigner-6j symbol [125].

The formulae above are valid within the RWA. If we remove this assumption we have
to keep the counter rotating term R+ω in the light shift operator (3.11). In this case we
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get a different expression for the polarisability

α(K)(ω) = (−)K+J+1
√

2K + 1 ∑
J′
(−)J′

{
1 K 1
J J′ J

}
d2

J J′

× 1
h̄

Re
{

1
ωJ′ J −ω− iΓJ′ J/2

+
(−1)K

ωJ′ J + ω− iΓJ′ J/2

}
. (3.34)

If we consider the imaginary part instead of the real one, we would then get the imaginary
part of the operator (3.11), which corresponds to the scattering operator Γ̂scat.

With Hyperfine Structure

In the case where the ground state has an hyperfine structure, the expression above
are slightly modified, since the relevant quantum numbers are now

∣∣J IF
〉
. Nevertheless,

the dipole operator acts only in the space of the electronic spin and not on the nuclear
spin d̂ = 1̂I ⊗ d̂J , so that the calculation remains the same if we factor out the nuclear
spin from the tensor decomposition using the following formula valid for a rank-K
tensor [126]

〈
J IF‖T(K)‖J IF

〉
= (−1)F+I+J+K(2F + 1)

{
F K F
J I J

} 〈
J‖T(K)‖J′

〉
. (3.35)

The expressions above are then modified since the atomic operators project on the F
manifold instead of J. The total light shift is thus

V̂ = αs|EL|21̂− iαv(E∗L × EL)·
F̂

2F

+ αt 3[(E∗L· F̂)(EL· F̂) + (EL· F̂)(E∗L· F̂)]− 2F̂2|EL|2
2F(2F− 1)

, (3.36)

where the polarisabilities are now given by

αs
F = αs

J , (3.37)

αv
F = (−1)J+I+F

√
2F(2F + 1)

F + 1

{
F 1 F
J I J

}
α(1), (3.38)

αt
F = (−1)J+I+F+1

√
2F(2F− 1)(2F + 1)

3(F + 1)(2F + 3)

{
F 2 F
J I J

}
α(2), (3.39)

with the same definition of α(K) as before.

3.2.2 Light Polarisation and Fictitious Fields

The tensor decomposition of the polarisability reveals how the different components
of the light shift correspond to different physical effects on the ground state spin manifold.
The scalar light shift V̂scal is both polarisation and state independent. The energy shift
(and the scattering rate) are then the same for all magnetic levels mF, disregarding of
the field polarisation. The rank-1 and rank-2 components of the polarisability are more
interesting since they can drive spin dynamics. It is often useful to regard their effect as
the action of a fictitious electromagnetic field on the atomic spin space.
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Looking at equation (3.36) one can notice that the vectorial part of the light shift is
analog to an effective magnetic field giving a Zeeman interaction V̂vect = −Beff · F̂. The
magnitude of the fictitious magnetic field is

Beff =
αv

2µBgFF
i(E∗L × EL). (3.40)

Since the polarisation of the light is always transverse, Beff will point in the direction
of the light propagation. In the same manner, one can interpret the tensor part of the
hamiltonian as an effective electric field Eeff producing a second order Stark effect [119,
127].

F

eπ
Eeff

F

eσ
Beff

Eeff

Figure 3.2 – The light shift acts on the atomic spin manifold F as fictitious fields
according to the light polarisation.

The symmetries of these fictitious fields correspond to the symmetries of the light
polarisation. Take for example the case of the effective magnetic field Beff, which is a
pseudovector. We could not expect to create such a field using linear polarised light,
because this one is invariant under reflection. If instead we use circular polarised light,
since σ− and σ+ light are mirror images one of the other, we expect them to generate
opposite Beff fields, as it is indeed the case.

Let us now consider a general light polarisation, taking the specific case of a laser
propagating in the ez direction. Using Jones notation, the polarisation is an arbitrary
transverse vector in the form

EL = eLE eikz =

(
cos θ

sin θeiφ

)
E eikz (3.41)

up to a general phase, that here we set equal to unity. Here θ is the angle of polarisation
and φ is the relative phase. We define also the ellipticity parameter A = sin 2θ, which is
equal to unity for a perfectly circular polarisation.

Since the scalar part is invariant on polarisation, let us consider first the vector part.
Computing the products (e∗L × eL) · F̂ one gets

V̂vect = VJ J′α
v
FA sin φ

F̂z

F
. (3.42)

As we said, in the case of linearly polarised light the dephasing vanishes φ = 0 and so
does the vector light shift. The tensor part depends on the field polarisation via the term
(e∗L· F̂)(eL· F̂) + (eL· F̂)(e∗L· F̂). The computation gives

V̂tens = VJ J′α
t
F

3
F(2F− 1)

(
cos2 θF̂2

x + sin2 θF̂2
y +A cos φ

{F̂x, F̂y}
2

− F̂2

3

)
, (3.43)

where curly brackets denote the anticommutator between the spin operators.
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Let us suppose there is an external magnetic field, which is large enough to permit to
treat the effect of the light shift operator on a given magnetic level |F, mF

〉
as a first order

perturbation

V(mF) =
〈

F, mF
∣∣V̂
∣∣F, mF

〉
. (3.44)

Let us study as an example two limit cases which are experimentally relevant. We
consider first a linearly polarised light. Setting the quantisation axis along the polarisation
direction, say ex, the light shift has the form [128]

V(mF) = V0

(
αs

F + αt
F

3m2
F − F(F + 1)
F(2F− 1)

)
. (3.45)

For perfectly circular polarised light we have A = 1, and φ = ±π/2 where the sign
stands for right-hand and left-hand polarisation respectively. Choosing the quantisation
axis along the light propagation direction ez, we obtain

V(mF) = V0

(
αs

F ± αv
F

mF

2F
− αt

F
3m2

F − F(F + 1)
2F(2F− 1)

)
. (3.46)

Note that all previous results remain valid for atoms without hyperfine structure (just
substitute F with J in the formulae), since the α coefficients are independent on the light
polarisation.

3.3 Alkali Atoms

Let us now apply the previous results in the specific case of alkali atoms, before
comparing to the case of Dysprosium in the next section

3.3.1 Line Structure
Understand the atomic structure of alkali is quite simple since they only have one

valence electron. The ground state is a 2S1/2 and they are thus spherical in the ground
state (L = 0). Dipole transition can excite the electron to an upper P state, which the spin-
orbit interaction splits in the states 2P1/2 and 2P3/2. In reminiscence of the Fraunhofer
lines these are often called D1 and D2 transitions. We will stick to this notation in the
following and we will label the (fine structure) energy splitting as EFS = h̄∆FS.

Since the ground state is spherical, we expect the Stark shift to be isotropic. Anisotropy
can thus exist only if the light couples to the electronic or nuclear spin state (if they
do not vanish S, I 6= 0). Nevertheless, if the detuning with respect to the hyperfine
structure is big, only the electron spin plays a role. The alkali spin in the ground state
is J = S = 1/2, thus the operator D̂D̂† acts on a two-dimensional manifold. The tensor
decomposition (3.25) can have only four independent terms, and hence it stops at the
vector contribution. To see that the rank-2 tensor contribution vanishes, one could also
notice that the 6j-symbol (3.34) vanishes for J = 1/2 and K = 2.

In the frame of the RWA and using the formulae from the previous section, we can
explicitly write the light shift as a sum of the contributions of the D1 and D2 lines

V̂ = ∑
J′=D1 ,D2

(
αs

J′ 1̂− iαv
J′(e
∗
L × eL) ·

Ĵ
2J

)
= −h̄Ω2

R

(
α01̂− iα1(e∗L × eL) ·

Ĵ
2J

)
(3.47)
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Figure 3.3 – a) Optical transition for an alkali atom. The ground state couples to the
excited states 2P1/2 and 2P3/2 (respectively called D1 and D2 line) which are split by
the fine structure ∆FS as a consequence of the atomic spin-orbit interaction. b) Scalar
part of the atomic polarisability for Rubidium.

Note that, as we have seen, for linear polarisation the vector light shift vanishes and one is
left with a pure isotropic scalar shift. We define the coefficient for the scalar polarisability

α0 =
1
3

(
1

∆D1

+
2

∆D2

)
(3.48)

and the vector part

α1 =
1
3

(
1

∆D1

− 1
∆D2

)
(3.49)

In the case of large detuning with respect to the fine splitting, ∆D1 ' ∆D2 = ∆� ∆FS, the
vector contribution can be approximated as

α1 =
1
3

(
1

∆D1

− 1
∆D2

)
∼ ∆FS

∆2 (3.50)

Note that the vector term is strongly suppressed at large detuning, with respect to the
scalar one, since they decay differently as α0 ∼ ∆−1 and as α1 ∼ ∆−2. This effect, which
physically is due to the destructive interference between the two virtual transitions,
should not be surprising. As we mentioned already, the anisotropy in the polarisability
is generated solely from the coupling to the excited manifold, if the detuning ∆ is too
large to resolve the fine structure ∆FS, it is clear that the vector term is suppressed.

3.3.2 Raman Coupling

In the next chapter we will make use of Raman coupling between ground state
Zeeman levels. We consider a “Λ” configuration (figure 3.4), in which one couples two
levels in the ground state manifold via a two photon (Raman) transition. One needs then
two laser fields, of frequency ω1 and ω2, having also a different polarisation in order to
exchange momentum with the atomic spin. We will further discuss this scheme in the
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next chapter, while in the following we focus on the main limitation of this technique,
that is the heating induced by the laser coupling.

ω1
ω2

∆

|g〉
|g′〉

|e〉

Figure 3.4 – Raman transition in a “Λ” configuration coupling two adjacent mag-
netic levels of the ground state. In the case considered in this paragraph,

∣∣e
〉

is the
D1 or D2 line of the alkali’s excited manifold. In the far detuned case the two lines
will be indistinguishable for the laser light.

We have seen that the photon exchange with the light fields leads to a scattering rate
Γscat from the ground state. Every scattered photon will transfer the recoil energy Er to
the atom. The power dissipated in the process is given by

Pscat = ErΓscat =
h̄2k2

2m
Γscat, (3.51)

from which one can get the heating rate Q̇ = Pscat/kB.
The coupling between states is driven by the spin-dependent part of the light shift

hamiltonian, which in the alkali case reduces solely to the vector term. The relevant
figure of merit for Raman coupling is then given by

M =
Vvect/h̄

Γscat
, (3.52)

where we divide by h̄ to have an adimensional definition. The main problem of alkali
atoms comes from the fact that the detuning dependence of the vector part, as we have
seen in the previous section, is given by

Vvect ∼
1
3

h̄Ω2
R

∆FS

∆2 (3.53)

and has then the same scaling as the scattering rate

Γscat = Ω2
R

Γ
6

(
1

∆2
D1

+
2

∆2
D2

)
∼ 1

2
Ω2

R
Γ

∆2 (3.54)

As a consequence, the ratio between the vector light shift and the scattering rate is
bounded. The merit factor is then bounded too and scales as

M ∼ 2
3

∆FS

Γ
. (3.55)

One is then limited by this ratio and the best coupling can hence be obtained for
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alkali atoms having the largest hyperfine splitting ∆FS, such as Rubidium, for which
M ' 8× 105. For this merit factor and for a coupling strength of the order of one recoil
energy Vvect/h̄ = 1Er/h̄ ' 2π× 3.7 kHz, we get a heating rate of Q̇ ' 5 nK s−1. Although
the heating rate is quite low, it limits significantly the lifetime of Raman coupled samples,
for example to 1.4 s in reference [61]. The heating rate is much more dramatic in the
case of fermionic alkali, like Lithium or Potassium (M ' 1× 103 and M ' 2× 105

respectively), where a significant increase in the gas temperature has been measured for
example in reference [69]. For the same coupling strength as above Vvect = 1Er , we get
indeed heating rates as large as Q̇ ' 115 nK s−1 for Potassium and Q̇ ' 1.5 mK s−1 for
Lithium.

3.4 Dysprosium

Let us now switch to the case of Dysprosium atoms. Note that the following argu-
ments can also apply to lanthanide atoms with a similar electronic structure, like Erbium
(but not Ytterbium which is spherical in the ground state 1S0).
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Figure 3.5 – Real part of the polarisability for Dysprosium atoms. The transitions
data are taken from [122]. Note that the asymptotic values of vector and tensor part
are vanishing, while the scalar contribution remains the finite. The arrow points at
the 626.082 nm transition on which we focus on in the following.

3.4.1 Line Structure

The Dysprosium spectrum is characterised by the presence of strong transitions
(Γ ' 2π × 30 MHz), which are comparable to the D1 and D2 lines in alkali. They sit
in the blue part of the optical spectrum at 405, 419 and 421 nm. This singlet structure
originates from the j-j coupling of the valence electron optical transition 1S0 → 1P1 to
the 5 I8 spectral term of the inner shell electrons (thus J = 7, 8, 9 for the three transitions
respectively). If these lines alone were present in the spectrum, the tensor part of the light
shift would cancel at large detuning like for alkali atoms. On the contrary, Dysprosium’s
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spectrum has many weaker transitions at lower energies (see appendix A), which are quite
far from the strong blue ones and have a large splitting, typically of some nanometers (it
is wide due the j-j coupling mechanism, like for the blue lines above).

In figure 3.5 we plot the real part of Dysprosium polarisability calculated using
equation (3.39)a. The calculations are performed on a limited set of energy levels and
more complete results are given in reference [84]. In the same study, one finds that the
tensor and vector contributions to the polarisability do not vanish at large detunings
but tend to finite values, which however are quite weak since they are two orders of
magnitude smaller the scalar term.

Our goal will be to exploit the light shift of these resonances, the total scattering rate
being drastically reduced with respect to the alkali atoms scenario. In fact, the scattering
from these transitions will be small due to their narrow line width. Therefore, as one
can see in figure 3.6, far from any narrow transition the scattering is dominated by the
background value given by the strong blue transitions (whose scattering is also weak in
the red side of the optical spectrum).
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Figure 3.6 – Imaginary part of the polarisability for Dysprosium atoms. As in
previous image, data are from [122] and calculation uses equation (3.39). Note that
far from any single transition, the only relevant contribution comes from the broad
lines at ∼ 400 nm.

In figure 3.6 one can also see that at infrared wavelengths all components contribute
to the imaginary part of the polarisability, while the real part was essentially domi-
nated by the scalar term. The scattering rate is then expected to depend on the light
polarisation for far detuned traps, as it was proved in [84] and in previous similar work
on Erbium atoms [129]. The theoretical treatment was recently refined by the addi-
tion of configuration-interaction mixing between excited levels in the case of Holmium
atoms [130], which is also a lanthanide.

Previous experimental works in the group of Lev in Stanford focused on the narrow-

aThe results are in atomic units. The conversion factor for the electric polarisability in SI units is
1 at.u. = e2a2

0/Eh = 1.648× 10−41 C2 m2 J−1
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Figure 3.7 – a) Relevant transitions for Dysprosium that we consider in the text.
The spectral terms refer only to the valence electrons configuration. The strong
transitions in the blue at ∼ 400 nm are detuned ∆b from the laser frequency ω,
which is close to a narrow transition. We will consider the transition at 626.082 nm
and label the relative detuning as ∆r. b) Real part of the polarisability close to the
626 nm transition. Real, vector and tensor components are the solid, dotted and
dashed lines respectively.

line transition at 741 nm (Γ = 2π × 2 kHz) [131]. We plan to work instead on the
transition at 626 nm, which has a line width Γ = 2π × 135 kHz. It is the same transition
we are using for the magneto optical trapping and is experimentally quite convenient,
since we can use the same type of laser setup. In the following we will consider the light
shift given by this line alone, since all other transitions are far (with respect to their line
widths). On the contrary, we should instead consider the blue lines for the computation
of heating rates and scalar polarisability. Figure 3.7 shows this simplified line structure.

3.4.2 Light Shift Anisotropy at 626 nm

We consider here the case of the bosonic isotope 164Dy, which has I = 0 and hence
no hyperfine interaction. We want to create an optical trap (chapter 7) for Dysprosium
atoms using the 626 nm transition. If the laser frequency is close to resonance we can use
the RWA formula

V̂r = V0,r

(
α01̂|eL|2− iα1(e∗L× eL)·

Ĵ
2J

+ α2
3[(e∗L· Ĵ)(eL· Ĵ) + (eL· Ĵ)(e∗L· Ĵ)]− 2 Ĵ2

2J(2J − 1)

)
(3.56)

where V0,r is the coefficient defined in equation (3.24), which, using the parameters of the
red transition, is then

V0,r =
3

16π2c2
λ3

r Γr

∆r
I (3.57)

The 626 nm transition couples the ground state J = 8 to the excited state J′ = 9. Following
the formulae given in previous sections, the numerical values of the polarisability
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coefficients are

α0 =
19
51

α1 =
152
153

α2 = − 40
153

(3.58)

Notice how the contributions of the different terms are comparable. Therefore one would
do a significant error if one would neglect the anisotropic terms.

In our simplified model, the total light shift is the sum of the red and blue lines
contributions V̂ = V̂b + V̂r. Since we are far from the blue transition, the same argument
that we found in alkali atoms is valid also for Dysprosium: the only non vanishing
contribution comes from the scalar polarisability. Moreover, since the detuning is very
large, the RWA does not hold. We have then to consider also the counter rotating term,
which gives for the light shift

V̂b = V0,b1̂

(
1

ω−ωb
+

1
ω + ωb

)
= V0,b1̂

2ωb

ω2 −ω2
b

(3.59)

In the specific case of λ ∼ 626 nm, neglecting the counter rotating term will give an error
of ∼15% on the result. Here, we defined

V0,b =
3πc2Γb

2ω3
b

I (3.60)
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Figure 3.8 – Anisotropy of the trapping potential in the proximity of the 626 nm
transition for the atomic state

∣∣J = 8, mJ = −8
〉
. The three curves show the light

shift for different polarisation of the light field.

As a numerical example, let us consider the case of atoms polarised in the absolute
ground state

∣∣g
〉
=
∣∣J = 8, mJ = −8

〉
. The total light shift is given by

〈
g
∣∣V̂
∣∣g
〉
= C V0,r(ω) + Vb(ω). (3.61)

In this expression we can see practically what we observed in the first section: all the
angular dependence on the light shift is contained in C, which is a numerical factor. In
the case of light polarised linearly along the quantisation axis one finds C = 37/153. In
the case of right- or left-hand circular polarised beam, propagating in the direction of the
quantisation axis, C = 1 and C = −1/153 respectively.

In figure 3.8 the results are given in µK for circular light and linear light, normalised on
a laser intensity of I = 1 W mm−2. These results coincide with the light shift calculated
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from the total spectrum within some per mille error, justifying to consider the red
transition “alone”.

Let us remind that the polarisation dependence does not concern the trapping
potential alone but also the heating rate associated with the imaginary part of the
polarisabilities.
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Figure 3.9 – The heating rate associated with the potential taken from the equa-
tion (3.56).

An experimental measurement of trap anisotropy was performed in Stanford using
linearly polarised light at two different angles with respect to the quantisation axis on
the ultra narrow transition at 741 nm [132].

3.4.3 Raman Coupling
We consider now a Raman transition as we did for alkali atoms, but addressing the

626 nm transition of Dysprosium. We already know that the interaction has to take into
account the tensor term, since it has the same order of magnitude than the scalar one.
The Raman coupling is then proportional to Vvect ∼ Vtens ∼ V0,r/∆r. The blue line is far
from resonance and contributes only to the scalar shift, that does not enter the Raman
coupling. Nevertheless, the blue transition has instead to be taken into account for the
calculation of the total scattering rate

Γscat = Γscat,b + Γscat,r ∼ V0,b
Γb

∆2
b
+ V0,r

Γr

∆2
r

(3.62)

The merit factor is thus

M ∼ V0,r

∆r

(
V0,b

Γb

∆2
b
+ V0,r

Γr

∆2
r

)−1

∼
(

Γ2
b∆r

∆2
bΓr

+
Γr

∆r

)−1

, (3.63)

which is maximised for a choice of red detuning

∆r =
∆b

Γb
Γr. (3.64)

Since the ratio between the linewidths is Γb/Γr ' 0.5% and ∆b ∼ 200 nm, one should
expect an optimum merit factor for ∆r ' 1 nm. For the detuning choice above, one gets

M ∼ ∆b

Γb
. (3.65)
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Therefore, one can easily gain some orders of magnitude with respect to alkali atoms,
where the merit factor was M ∼ ∆FS/Γ, since the fine structure splitting of the D1 and
D2 lines is only a few nanometers wide (∆FS ' 15 nm for Rubidium, ∆FS ' 3 nm for
Potassium), while here the detuning is ∆b ' 205 nm.

σ+
π

∆r

|J = 8, mJ = −8〉

|J = 8, mJ = −7〉

|J′ = 9〉

−6 −4 −2 0 2 4 6

106

107
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M

Figure 3.10 – The scheme of the considered example Raman transition π − σ+ and
the calculated figure of merit as a function of the laser detuning from the 626 nm
resonance. One finds an optimum at ∆r ' −1.1 nm.

To give a more quantitative estimate of the optimum detuning, we consider as a
specific example a Raman transition using a π polarised electric light and a σ+ polarised
one. We suppose that the two lasers have the same intensity Iπ = Iσ+ = I and that
we couple the states

∣∣J, mJ = −J
〉

and
∣∣J, mJ = −J + 1

〉
of the ground state J = 8

(see figure 3.10). We can then numerically compute the merit factor using the whole
expression of the polarisability. The result is plotted in figure 3.10. It is clear that one
can find an optimum detuning at ∆ ' −1.1 nm, which corresponds to the detuning we
found by dimensional analysis above. The heating rate at optimum detuning is as low as
Q̇ ' 0.3 nK s−1 for a coupling strength V0,r = 1Er.

The heating rate is reduced by almost one order of magnitude with respect to
Rubidium and by two orders of magnitude with respect to Potassium. This low scattering
should lead to much longer lifetimes of the atomic cloud in the presence of a Raman
coupling. In the next chapter we will consider a possible implementation of light-induced
synthetic gauge fields, which will benefit from the use of Dysprosium over other atomic
species.



4
Towards Synthetic Gauge Fields

In this chapter I describe a possible implementation of a synthetic magnetic field in a
cloud of ultracold Dysprosium atoms, exploiting the advantages of this atomic species

presented in the previous chapter. The motion of a particle of charge q in a magnetic
field is driven by the minimal coupling hamiltonian, which is

Ĥ =
1

2m

(
p̂− qA(r̂)

)2
, (4.1)

where A is the electromagnetic vector potential and p̂ the momentum operator. Despite
the simplicity of the hamiltonian, quantum particles in gauge fields give rise to an
incredible variety of phenomena of great interest in contemporary physics such as the
quantum Hall effect or spin orbit coupling and topological insulators (the latter cases
have a non-Abelian gauge potential Â). A priori, ultracold gases might not seem a suitable
system to study such physics, since atoms are neutral (q = 0) and are thus unaffected
by (4.1) .

Nevertheless, in the past years different methods have been realised or proposed to
engineer gauge fields in cold atoms. These fields are called “synthetic” or “artificial”,
meaning that they are not generated from charge distributions or currents as “real”
electromagnetic fields, but still they affect the motion of the atoms in the same manner as
a real field would do.

The most widely known method that has been implemented is to set the gas in
rotation. In fact, in the reference frame co-rotating with the trap, one atom moving with
a velocity v will be affected by the Coriolis force F = 2mv×Ω, where Ω is the angular
velocity of the rotating cloud. This fictitious force is clearly equivalent to the Lorentz
force by setting 2mΩ = qB. The rotation will induce also a centrifugal force, which
can be compensated by the confining potential, and the system is then described by a
time independent hamiltonian which is equivalent to (4.1). In the case of interacting
gases one expects to observe a lattice of vortices in the atomic density, oriented along
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the rotation axis (equivalently, along the magnetic field), as it was indeed observed in
rotating condensates [133, 134, 135].

In the last years, novel techniques rely instead on clever couplings to the light field
(see the extensive reviews [136, 60]). In this chapter we will see that the manipulation of
the atomic internal state using Raman transition can give rise to synthetic fields (which,
in contrast with rotating condensates, appear directly in the laboratory frame). In the
previous chapter we explained that the spectrum and the large spin of Dysprosium can
reduce the heating rate of Raman transitions, with respect to an alkali gas having the
same coupling strength (or equivalently, one can increase the coupling strength for the
same heating rate). Therefore, Dysprosium should allow to reach light-induced gauge
fields much stronger in magnitude than what has been realised so far.

4.1 Light-induced Gauge Fields

The basic idea of this method relies on a spatially varying atom-light interaction. Via
two-photon transitions, Raman lasers are used to couple neighbouring Zeeman levels∣∣mJ
〉

of the atom, which are degenerate in the absence of external fields. The eigenstates
of the coupling hamiltonian, the so called “dressed states”, are linear combinations of the
electronic ground state levels

∣∣mJ
〉
. When the Raman coupling is spatially dependent,

the dressed states and their eigenenergies also vary in space. If the system is prepared
in one specific dressed state and the atom moves slowly enough to remain in this state
(adiabatic following), the atomic wave function can acquire a non-trivial Berry’s phase,
whose value depends solely on the geometry of the adiabatic surface where the dressed
state is evolving [137]. The acquired phase is equivalent to the Aharanov-Bohm phase
that a charge particle picks up moving in a magnetic field [138]. One can thus identify
the synthetic gauge field with the engineered Berry’s curvature.

In the following section we give an explicit expression for the synthetic field before
describing a practical implementation. For the theoretical derivation I follow closely
references [139]. To avoid confusions, I stick to the notation of the previous chapter: Beff
will label the fictitious Zeeman field appearing in the light-atom coupling and I will use
calligraphic B for the synthetic gauge field.

4.1.1 Hamiltonian and Eigenstates
Let us consider the case of an atom moving in an external potential V(r), while

the internal variables are subjected to a spatially inhomogeneous coupling Ĥint(r). The
hamiltonian describing the dynamics of both internal (electronic) and external (centre of
mass) variables of the atom is

Ĥ(r) =
(

p2

2m
+ V(r)

)
1̂ + Ĥint(r), (4.2)

where the identity 1̂ and the operator Ĥint(r) act on the internal state of the atom. In
the following, we consider the case of a pure vectorial coupling of the light to the spin,
equivalent to an effective magnetic field Beff(r), as we described in the previous chapter
(hence we neglect for the moment the rank-2 tensor part of the light shift). The interaction
is written as

Ĥint(r) = −µ̂ · Beff(r), (4.3)
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where the operator is defined as µ̂ = gJµB Ĵ. The laser frequency is assumed to be
far detuned from the excited state, so that the spin dynamics belongs to the (2J + 1)-
dimensional ground state manifold. The external potential V(r) appearing in (4.2) is
provided by the scalar part of the light shift.

Let us parametrise the effective field as Beff = BeffeB, where the unit vector eB = (θ, φ)

is given by the spherical angles (see figure 4.1), that one defines as

cos θ =
Beff

z

Beff and tan φ =
Beff

y

Beff
x

. (4.4)

r

(0, 0, 0)

Beff

x

y

z

φ

θ

Figure 4.1 – Parametrisation of the effective field Beff(r).

Using this parametrisation, equation (4.3) can be written as Ĥint = −gJµBBeff Ĵu, where
Ĵu is the spin operator projected on the effective field direction. One can relate it to Ĵz by
the unitary transformation

Ĵu = Û Ĵz Û† with Û = R̂z(φ)R̂y(θ)R̂†
z(φ), (4.5)

where we use the standard definition for the rotation operators

R̂j(ϕ) = exp
(
− i

h̄
Ĵj ϕ

)
, (4.6)

which rotates of an angle ϕ around the j-axis. For each atomic position r, the interaction
hamiltonian can be diagonalised using the unitary transformation (4.5), and one finds
the eigenstates (dressed states)

∣∣ψmJ

〉
= Û

∣∣mJ
〉
= exp

[
i
(

mJ −
Ĵz

h̄

)
φ

]
exp

[
−i

Ĵy

h̄
θ

]∣∣mJ
〉

(4.7)

with eigenenergies EmJ = gJµBmJ Beff. If an atom is prepared in a dressed state
∣∣ψmJ

〉

and its kinetic energy is smaller than the splitting ∆E = gJµBBeff between neighbouring
energy surfaces, one can neglect the contributions from m′J 6= mJ , since during the atomic
motion the internal state will follow adiabatically the space dependence of

∣∣ψmJ

〉
.

Separating internal and external atomic variables, we can write the total (space
dependent) wave function as

∣∣Ψ(r, t)
〉
= ∑

mJ

φmJ (r, t)
∣∣ψmJ

〉
(4.8)

where φmJ (r, t) is the wave function describing the atom’s centre of mass motion.
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One can now write the the Schrödinger equation for the wave function ih̄∂t
∣∣Ψ
〉
=

Ĥ|Ψ
〉
, project it on the selected state

〈
ψmJ

∣∣, and find that the evolution of the centre of
mass motion ih̄∂tφmJ = Hc.m.φmJ is governed by a hamiltonian

Hc.m. =
1

2m

(
p−A(r)

)2
+ EmJ (r) + V(r) + V(r), (4.9)

where the vector potential is defined as

A(r) = ih̄
〈
ψmJ

∣∣∇
∣∣ψmJ

〉
, (4.10)

and the scalar potential is given by

V(r) = h̄2

2m ∑
m′J 6=mJ

∣∣〈ψm′J

∣∣∇
∣∣ψmJ

〉∣∣2. (4.11)

The hamiltonian (4.9) is equivalent to the minimal coupling hamiltonian (4.1) for a
particle of electric charge q = 1. The differences are in the physical origin of the gauge
potential A and in the presence of the additional potentials V(r) and EmJ (r). Note that
the latter is equivalent to the potential energy surfaces one finds in quantum molecular
chemistry. In fact, the analogy emerges from the separation of fast and slow evolution
of the variables. Here, we split the internal and external atomic parameters, while in
molecules the separation applies to the different time scales of nuclear and electronic
motion (the famous Born-Oppenheimer approximation).

4.1.2 Geometric Potentials

It is usual to refer to artificial potentials as "geometrical", in order to stress their origin.
In fact, we will see in the following that they indeed are generated from non trivial angles
θ(r) and φ(r). Let me add an additional caveat: here we use the terms “vector potential”
and “scalar potential”, but they should not be confused with their homonyms in the
previous chapter.

Let us explicitly give the dependence of the gauge fields on the Zeeman field Beff.
One should first calculate the matrix elements

〈
ψm′J

∣∣∇
∣∣ψmJ

〉
=

i
h̄

ei(mJ−m′J)φ
〈
m′J
∣∣
[(

h̄mJ − R̂†
y(θ) ĴzR̂y(θ)

)
∇φ− Ĵy∇θ

]∣∣mJ
〉
. (4.12)

Let us remind that the dependence on the spatial position r is implicit in the angles.
From the rotation of the spin operator Ĵz, one gets R̂†

y(θ) ĴzR̂y(θ) = Ĵz cos θ + Ĵx sin θ.

Taking the diagonal terms of equation (4.12), and using the fact that
∣∣mJ
〉

is an
eigenstate of the operator Ĵz, we get the expression for the vector potential

A(r) = h̄mJ(1− cos θ)∇φ. (4.13)

From the potential, one can also calculate the synthetic magnetic field

B(r) = ∇×A(r) = h̄mJ∇(cos θ)×∇φ. (4.14)

Notice the dependence on mJ of both the potential and the field. Using the large mJ = 8
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in Dysprosium’s stretched spin state, we could gain in magnitude with respect to other
atomic species. Note also the constraint given by the equation above to have a non
vanishing field B: both angles should have finite gradients, which should not be parallel.

From equation (4.12) one additionally gets the off diagonal elements, which can be
inserted in equation (4.11) to obtain the scalar potential

V(r) = h̄2

2m

(
J(J + 1)−m2

J

)(
(∇θ)2 + sin2 θ(∇φ)2

)
. (4.15)

Note that the scalar potential is maximum for mJ = 0, where A = 0. This potential will
sum to the scalar light shift and one has to ensure that the trapping potential will not be
significantly deformed. Physically, we see from equation (4.11) that this potential has the
form of a kinetic energy associated to the coupling to the other dressed states. In fact,
the adiabatic elimination of these states gives rise to an oscillatory micro-motion of the
centre of mass, whose kinetic energy is represented by V(r) [140].

4.2 Implementation with Dysprosium

Let us now consider a possible implementation in a Dysprosium gas (here bosons).
The following calculations are inspired by references [141, 142] using a slightly different
geometry. We consider a Raman configuration that induces coupling between ground
state levels, where the laser frequency is close to the λ = 626 nm transition. The
laser coupling with the atomic spin is described by the light shift operator that we
analysed in detail in the previous chapter and, for the considered transition, we refer to
equation (3.56). The laser frequencies are detuned of ∆ from the excited state resonance,
which we showed to be optimal for ∆ ∼ 1 nm. In the following we calculate the light
shift in the case of a spatially varying beam intensity, and we give an expression for the
artificial potentials and magnetic field.

. . .

. . .

π π ππ

σ− σ−σ−

σ+ σ+σ+

J′ = 9

J = 8

∆

Figure 4.2 – Raman coupling between degenerate ground state levels
∣∣mJ
〉
, with

−8 < mJ < 8. In the considered example, the levels correspond to the transition at
626 nm we analysed in the previous chapter.

In contrast with the following calculations, an experimental implementation of syn-
thetic gauge fields in Dysprosium has been realised using the fermionic isotope 161Dy
in the presence of a large external magnetic field B, which produces a large quadratic
Zeeman effect that restrict the Raman coupling to an effective two-level system [143]. We
use instead 164Dy and as we explained in chapter 2, large magnetic fields in a bosonic
cloud can not be used, since the dipolar relaxation will induce heating and atom loss in
the trap.
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4.2.1 Experimental Scheme

In order to couple adjacent Zeeman levels we need two light beams, whose electric
fields we label as E1 and E2. The first beam has a linear (π) polarisation and the second
a circular (σ+) one, and they cross at a right angle k1⊥k2. The spatial variation of
the coupling, i.e. of Zeeman field Beff, is provided by an offset in the propagation
directions (i.e. the laser beams do not overlap), which gives a light intensity gradient in
the transverse direction (see figure 4.3).

ex

ey

ez

eX

eY

eZ

2d

E1

E3 E2

Figure 4.3 – Experimental geometry for the Raman coupling. The two laser beams
counter propagate and cross with at a right angle. Beam 1 is linearly polarised along
Z while beam 2 and 3 are circularly polarised.

In the following, we assume that the atomic cloud is strongly confined in a quasi
bidimensional geometry in the (x, y) plane. We can write the light fields (neglecting the
z dependence) as

E1 = e1E1 exp
(
− (y− d)2

w2 + i
kx√

2

)
,

E2 = e2E2 exp
(
− (y + d)2

w2 − i
kx√

2

)
,

(4.16)

where w is the beam waist, supposed equal for the two beams, and 2d is the distance
between the axes of the beamsa. In addition to these fields, we need a third beam

E3 = e3E3 exp
(
− (y− d)2

w2 − i
kx√

2

)
, (4.17)

to obtain a symmetric scalar potential, as we will see in the following.
We will proceed with the calculation in the rotated reference frame whose axes

coincide with the propagation directions of the lasers (see figure). We will label the
new coordinate system as (X, Y, Z), where eX = (ex + ez)/

√
2, eY = ey and eZ =

(ez − ex)/
√

2.

aWe consider to work closely to the beam foci, so that we can neglect the dependence of the laser profile
on the x direction.
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The first beam is linearly polarised along e1 = eZ axis. The other beams have opposite
circular polarisation that we can write as e2 = −(eX + ieY)/

√
2 and e3 = (eX − ieY)/

√
2.

Let us suppose the third beam has a different frequency with respect to the two othersa,
so they do not interfere.

The hamiltonian describing the system is (4.2) and we can use the findings of the
previous section. The effective magnetic field for the internal degrees of freedom of the
atoms is given by equation (3.40), which in the present case is written as

Beff = −i
α1V0

2JµBgJ

[
(E1 + E2)

∗ × (E1 + E2) + E∗3 × E3
]
. (4.18)

Let us remind that V0 ∼ h̄d2
J J′/∆, where dJ J′ is the matrix element, ∆ is the detuning

from the excited state, and the coefficient α1 = 152/153 for the 626 nm transition. As we
noticed in the previous chapter, the circular beams will create two effective fields pointing
along their propagation direction eZ, with opposite signs as a result of their opposite
circular polarisations, while the cross product of beam 1 and 2 will give a contribution in
the (X, Y) plane. The explicit expression of the effective Zeeman field is

Beff =
α1V0

2JµBgJ

(
(I2 − I3)eZ +

√
2I1 I2

[
cos(
√

2kx)eX + sin(
√

2kx)eY
])

(4.19)

where we introduced the laser intensities I. Note that a different experimental setup
can rely on a spatially varying detuning ∆, i.e. V0 in equation (4.18) to induce a position
dependent Beff. In our case, we use instead the spatial variation of the light intensity. In
the paraxial approximation, the intensities depend only on y and are

I1,3(y) = |E1,3|2 exp
(
−2

(y− d)2

w2

)
and I2(y) = |E2|2 exp

(
−2

(y + d)2

w2

)
. (4.20)

Using the parametrisation of figure 4.1, we get the effective field angles

θ = tan−1
√

2I1 I2

I2 − I3
and φ =

√
2kx (4.21)

The necessity of a third beam is clear, otherwise one could not obtain a symmetric
expression for the angle θ. For this purpose, in the following we consider I1 = 2I3 and
I2 = I3 as relative amplitudes of the electric fields. For this choice of intensities, we get

θ = − 1
sinh(4dy/w2)

(4.22)

4.2.2 Expected Results
The calculation of the synthetic potentials is straightforward. We suppose the adiabatic

condition is verified and the atoms are in the lowest dressed state. Using the formulae
given in the previous section we get the vector potential

A(r) =
√

2h̄J
[

1− tanh
(

4dy
w2

)]
keX , (4.23)

aThe frequency difference should be small compared to the detuning from the resonance, but this is
easily done since ∆ ∼ 1 THz.



50 Chapter 4. Towards Synthetic Gauge Fields

which gives the synthetic magnetic field

B(r) = 4
√

2h̄J
kd
w2 sech2

(
4dy
w2

)
eZ. (4.24)

As we mentioned before, note the pure geometric origin of the potentials. The strength
of the field is solely determined by the beams relative position and the waist. Note also
that the field vanishes as expected for d = 0, since the spatial variation of the angle θ is
also vanishing. The formulae are equivalent to the findings of reference [141], but the
field magnitude is increased by the large J = 8 of Dysprosium (instead of the 1/2 case
considered there). The field magnitude at the origin will be

B(0) = 24
√

2h̄
kd
w2 eZ. (4.25)

One also finds that the scalar potential is given by

V(r) = h̄2 J
2m

(k2 + 8d2/w4) sech2
(

4dy
w2

)
(4.26)

The results are shown in figure 4.4.
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Figure 4.4 – Synthetic fields generated by the considered geometry. The dashed curve
in the first plot is the intensity profile of the laser beams along y. This plot is obtained
for w = d = 10 µm.

A clear indication of the presence of the geometric field would be the observation of
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vortices in the condensed cloud. The surface density of such vortices is given by [144]

ρvortex =
mωc

2πh̄
, (4.27)

where we introduced the cyclotron frequency ωc = q|B|/m, in this case for a particle of
unit charge q = 1. For the magnetic field calculated above, we get

ρvortex = 24
√

2
kd

πw2 , (4.28)

from which we can estimate the number of vortices Nvortex = πR2ρvortex, with R the cloud
size. Assuming for simplicity w = d and choosing the waist of the beams approximately
equal to the cloud size, which is typically of the order of R ∼ 10 µm for N ∼ 104

condensed atoms [54], we get that the number of observable vortices is Nvortex ∼ 35.

4.2.3 Tensor Laser Coupling

In the case we include the tensor term, the interacting part of the hamiltonian (4.3) is
given by the whole light shift operator (not just the effective magnetic field), and should
be properly diagonalised. The tensor part of the interaction can be explicitly calculated
for the considered beam configuration. The light shift is given by

V̂tens =
α2V0

2J(2J − 1)

(
3[(E1 + E2)

∗· Ĵ)][(E1 + E2)· Ĵ] + 3[(E1 + E2)· Ĵ][(E1 + E2)
∗· Ĵ]

+ 3(E∗3 · Ĵ)(E3· Ĵ) + 3(E3· Ĵ)(E∗3 · Ĵ)− 2 Ĵ2
)

, (4.29)

where V0 is the same as the vector coupling and the factor α2 = −40/153. The calculation
leads to the following potential

V̂tens =
α2V0

2J(2J − 1)

(
3
√

2I1 I2(cos φ ĴX + sin φ ĴY) ĴZ + 3
√

2I1 I2 ĴZ(cos φ ĴX + sin φ ĴY)

+ 3(2I1 − I2 − 2I3) Ĵ2
Z + (I2 − 2I1 + 4I3)J(J + 1)

)
. (4.30)

Notice that it appears the same dependence on the operators ĴX and ĴY as in the vector
case. We can define the operator Ĵu, acting on the direction defined by u = cos φ eX +

sin φ eY and write the spin-dependent part of the hamiltonian as

V̂ ∝
√

2I1 I2

(
Ĵu + ε{ ĴZ, Ĵu}

)
+ I2 ĴZ + ε(2I1 − I2 − 2I3) Ĵ2

Z, (4.31)

where curly brackets label the anticommutator. Here, we introduce the parameter ε,
which multiplies the tensor interaction and is given by

ε =
3α2

(2J − 1)α1
=

8
152
' 0.053 (4.32)

The tensor term is thus a small perturbation to the vector light shift.
To check its contribution to the geometric fields, we diagonalise numerically the total
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light shift (3.56). In figure 4.5 we show the resulting geometric gauge field and poten-
tial. The tensor term induces an anisotropy in the fields, which can be experimentally
compensated by a right choice of the ratio between the laser amplitudes (see figure).
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Figure 4.5 – Synthetic fields calculated from the numerical diagonalisation of the
light shift operator. The dotted curves correspond to the intensity setup of the previous
graph I2 = I3 = I1/2. Solid lines are a more symmetric configuration for I1 = 2I3
and I2 = 4.325 I3, which guarantees an harmonic potential in y = 0.

4.2.4 Experimental Requirements

As we noticed at the beginning of the chapter, the adiabatic approximation adds a
constraint on the energy separation between the adiabatic surfaces gJµBBeff = h̄ΩR/∆�
Er = h× 3.1 kHz. To check the validity of the findings above one could numerically solve
the spinor Gross-Pitaevskii equation describing the different spin states of the condensate,
which is a non trivial problem due to the large dimension (2J + 1) = 17 of the Hilbert
space.

Let us consider the different experimental requirements on the system parameters.
The scalar potential adds to the external trapping potential and should be correctly
counterbalanced. Close to the origin, we can expand (4.26) up to the second order.
Retaining only the terms in k2, since kw� 1, we get

V(r) = h̄2 J
k2

2m
− 8h̄2 J

d2k2

mw4 y2 +O(y4). (4.33)

We get then an anti-trapping frequency

ωatrap = i4
√

J
h̄kd
mw2 , (4.34)

which should be canceled by an additional laser or should be kept smaller than the
trapping frequencies. Typically, the final frequencies at the end of evaporative cooling
are of the order of ωtrap ∼ 2π × 100 Hz. Assuming again w = d, we should then choose
w� 70 µm to have a negligible anti trapping contribution.
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Let us consider now the constraints on the residual real magnetic fields, whose
fluctuations add to the effective Beff, possibly destroying the synthetic fields.

In the case of an external magnetic field in the X direction B = BXeX, its contribution
should be negligible in front of the light-shift induced field Beff · eX which is > Er/gJµB J
in the adiabatic regime. This gives the condition BX < 220 µG for a coupling strength of
1Er. Higher coupling strengths require a less demanding constraint. For a field B = BYeY
one gets the same result.

If the external field is pointing instead along the Z direction B = BZeZ, it will add to
the term ∝ (I2 − I3), which is ∼ 4yd/w2 close to the origin. The external field BZ will
then shift the centre of the synthetic field. We require the shift to be smaller than d. By
taking again w = d and a coupling strength of 1Er, we get BZ < 7 mG.

This technical requirements are experimentally feasible, but require an excellent
stabilisation of the magnetic field fluctuations. Previous data show that the magnetic
field fluctuations are currently . 10 mG in our experiment, and an active stabilisation of
magnetic noise is an on going work.

In summary, the implementation of gauge fields on Dysprosium with the proposed
scheme should constitute a significant improvement over alkali atoms. We expect to
enter strongly coupled phases, with more observable vortices and the reduced photon
scattering should lead to long lived vortices, which at equilibrium will arrange in the
familiar Abrikosov lattice. Previous work on alkali could only obtain a limited number
of vortices, which decay fast due to the atom loss induced by the residual photon
scattering [61]. Moreover, the dipolar properties of Dysprosium should modify the
structure of the vortex lattice, leading to phases of different symmetry [145].
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5
Experimental Setup

Most of the work I carried out during this thesis was designing and constructing a
new apparatus to cool Dysprosium atoms down to degeneracy. In this chapter I

describe in detail our experimental setup. I detail the vacuum system, where we produce
the atomic gas. Then I continue on the tools we use to manipulate the atoms: lasers and
magnetic fields. I also shortly expose the way we pilot the experiment and how we take
data.

I subsequently explain how we produce an atomic beam of Dysprosium starting from
a high temperature oven. Having cold and slow atoms is essential to capture them in a
magneto optical trap, which will be the subject of the next chapter.

5.1 Vacuum System

As any experiment where the contact with the environment should be avoided, the
production of degenerate atomic gases requires working in ultra high vacuum (UHV)
conditions. The experiments are thus performed in a vacuum chamber, where all residual
gas has been pumped away. In fact, collisions with the residual background gas typically
lead to atom losses and can limit the trap lifetime. The mean time between collisions
τcoll must hence be larger than the desired lifetime of the trap, giving the constraint on
pressure. To obtain a BEC via evaporative cooling one typically needs τcoll > 10 s and
hence UHV conditions, which means that the pressure of the environment surrounding
the sample should be p < 10−10 mbar.

To achieve this low pressure, our vacuum chamber is divided in two main sections.
They are separated by a differential pumping stage, that permits to maintain a steady-
state pressure difference between both. Ordering by decreasing pressures the various
parts, first is the atomic source, followed by the spectroscopy chambers, then the slower,
and last come the chambers where we trap and manipulate the atoms.
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5.1.1 High Vacuum Part
In the first section of the vacuum chamber the typical pressure is of a few 10-9 mbar,

so one can only speak of high vacuum (HV). The main limitation to achieve lower
pressures is the oven where we evaporate Dysprosium. It is constantly maintained at
high temperatures (hundreds of ◦C), and the induced degasing from the chamber walls
contributes to the increase of the pressure.

The oven is facing the rest of the apparatus and is directly connected to a small CF40
cubic chamber, where four windows allow us to perform laser spectroscopy of the 626 nm
transition directly on the atomic jet. On top of the cube, a cross piece holds on one side
a 40 L ion pump and on the opposite side the main valve of the system. The valve is
opened only during the procedures to refill the exhausted oven.

main valve

shutter

oven

slower coils

glass cell

Figure 5.1 – Technical drawing of the vacuum chamber (top and isometric view). A
more detailed description is given in the main text.

Following the propagation of the atomic jet, we find an octagonal chamber where eight
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CF40 windows are used to send laser cooling beams, to perform saturated absorption
spectroscopy on the 421 nm transition and to collect the fluorescence of the beam itself.

After this chamber is mounted a gate valve. This valve is always closed during the
oven refill procedure, so that the vacuum in the following section of the chamber is
preserved even if the previous is exposed to atmospheric pressure.

Behind the gate valve we have a 20 L s−1 ion pumpa and a mechanical shutterb , both
mounted on a cross piece. The latter is simply a metallic rod externally controlled by a
linear magnetic actuator, and it can be used to completely block the beam of atoms and
prevent them to enter the MOT chamber.

5.1.2 Ultra-High Vacuum Part

After the shutter, the atomic beam enters the Zeeman slower tube, which connects
the HV side of the chamber to the UHV section. The tube is 50 cm long and has a
increasing internal diameter, thus ensuring a differential pumping stage between the
slower entrance and the MOT chamber.

We need to send a laser beam propagating along the atomic jet axis. The easiest way
is to have a window facing the oven, but we found that the deposit of Dysprosium is
sufficient to metallize the glass in a few hours. We therefore installed in the vacuum
chamber a 45◦ aluminium mirror. The laser beam enters from a window on the side and
is reflected in the oven direction. The coating of the aluminium surface with dysprosium
does not affect significantly the reflectivity of the mirror itself.

The slower tube and the vacuum piece where the aluminium mirror sits are mounted
on opposite connections with respect to the MOT chamber. The latter has the shape of a
cubec with six CF60 windows on the facets and eight CF16 connections on the vertices.

Two coplanar pairs of opposite CF16 connections give the above mentioned Zeeman
slower axis and the dipole trap axis. The dipole laser enters the chamber through a 2◦

angled window, to avoid direct reflections of the beam. On this window we installed a
metallic shield equipped with a temperature interlock to avoid excessive thermal heating
of the glass-to-metal connection, which may cause (and did) a dangerous vacuum leak.
Due to the cube symmetry of the chamber, the two aforementioned axes cross at 70.5◦.

The four remaining CF16 flanges have windows that permit additional optical access
to the atoms in the MOT. The six CF60 windows are used for two imaging axes and
to send the MOT laser beams themselves, the big diameter of the windows allowing a
wide diameter (and thus a wide capture region). One of the CF60 windows is actually
mounted on the cube via a CF60 cross, where additional pumping is provided by a non
evaporable getter pumpd and a 40 L s−1 ion pump. Those pumps keep the pressure as
low as 4× 10-10 mbar in the MOT chamber. Note that our entire vacuum apparatus has
never been baked out, an operation which could in principle reduce the final pressure.
Nevertheless, since the pressure is low enough to ensure stable operation of the traps, we
decided to not bake the system.

The production of the degenerate gas of Dysprosium and the following experiments
are performed in a glass cell. This ensures much more optical access and permits to work

aVacIon Plus 20, Varian Inc.
bLSM DU-30-1,0, MBE-Komponenten GmbH
cMCF450-SphCube-E6A8, Kimball physics
dCapaciTorr D400-2, SAES Getters SpA
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much closer to the atoms than a standard vacuum chamber would do. The cella has a
square section of 2.5 cm per side, and is 6 cm long. Every glass facet is 5 mm thick and is
not AR coated. It is thus preferable send the laser beams at the Brewster angle in order
to avoid troublesome reflections.

The glass cell is connected to the MOT chamber via a differential pumping stage that
ensures a pressure lower than 1× 10-11 mbar. This differential pumping stage consists in
a custom Tee shaped piece with two CF16 flanges that link the cell to the chamber, and a
larger CF40 side that leaves space to a hybrid ion–getter pumpb.

5.2 Laser System for Near-Resonant Light
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Figure 5.2 – Simplified scheme of the optical setup for the blue light. The main laser
is split into different paths, which serve for different purposes, as indicated in the
drawing. The frequency of the difference outputs are adjusted by means of acousto
optical modulators (AOM). See main text for more details.

Most of the techniques in cold atom experiments rely on the manipulation of atoms
by near-resonant light. In the following, we describe the various lasers we use in our
experiment and their different purposes. The two laser cooling transitions of Dysprosium
are in visible spectrum, at 626 nm and 421 nm. After describing the setup to produce
these wavelengths, we will see how we perform the frequency stabilisation for the two
lasers.

amanufactured by Hellma Analytics
bNEXTorr D 100, SAES Getters SpA
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5.2.1 Blue Laser Setup
The source of blue light is a commercial second harmonic generation systema. It

consists in an extended cavity diode laser and a tapered amplifier delivering 1.2 W at 840
nm. The infrared light is then frequency doubled using a non linear crystal placed in a
bow tie cavity. At optimum the laser can produce about 600 mW at 421 nm.

Most of the laser power is used for transverse cooling the atomic beam, hence the
laser frequency is detuned of −Γ/2 from the atomic resonance, to maximise the cooling
efficiency. About 200 mW are drawn at the laser output and shaped into an elliptical
beam. The beam is then split in half and sent on the atomic jet from two orthogonal
directions.

The remaining power is dispatched on different paths for imaging, spectroscopy and
Zeeman slowing, which uses about 60 mW of power.
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Figure 5.3 – Optical setup for frequency lock of the blue laser. The pump beam is
modulated via an EOM and counter propagates along the probe optical path, crossing
twice the atomic beam. Probe light is collected by a photodiode and the signal is sent
to the lock-in amplifier for the PDH detection. On the right the recorded oscilloscope
tracks for both the fluorescence and the error signal after the demodulation. Legend
in Figure 5.2.

The frequency lock of the laser is done on the error signal obtained from modula-
tion transfer spectroscopy performed on the atomic jet, in a typical pump and probe
experiment. About 2 mW of pump power and 0.5 mW of probe power are sent on the
atoms in contra propagating directions. The pump is modulated at 16 MHz using an
electro-optical modulator (EOM) and transfers the modulation to the probe beam via the
interaction with the atoms. The probe signal is then collected with a rapid photodiodeb

with a bandwidth larger than the modulation frequency. The signal is then demodulated
by a home made lock-in amplifier to recover the dispersive curve shown in Figure 5.3.

aTA-SHG Pro, TOPTICA Photonics AG
bPDA8A/M, Thorlabs Inc.
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We then feed back this error signal to the laser diode current. The frequency stability in
closed loop operation is ∼ 1 MHz. This is good enough for the experiment operation,
since the natural linewidth of this transition is very large (Γ = 2π × 32 MHz).

5.2.2 Red Lasers Setup
We have two identical setups for the red light at 626 nm. The two lasers share

the construction design, since we need independent high power sources for the MOT
trapping light and the Raman coupling beam. To produce the light we followed the setup
described in ref [146] and used on for Be+, which consists in a sum–frequency generation
(SFG) scheme.
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Figure 5.4 – Setup for the sum frequency generation of the MOT light. The two
infrared lasers are superimposed with a dichroic mirror and than focalised with a
single lens into the non linear crystal. We filter the generated red light from the
remaining IR with two additional dichroic mirrors. We then dispatch the red light
to the spectroscopy setup, the MOT cluster and the Doppler cooling. Legend in
Figure 5.2.

Sum-frequency generation
SFG is a second order nonlinear process used to produce light at the sum of the

incoming frequencies. This phenomenon takes place in non-linear material where
two photons can be annihilated to create a new photon at the sum of the frequencies
ω3 = ω1 + ω2.

Unless the phase matching condition ∆k = k3 − k1 − k2 = 0 is maintained all along
the crystal, different waves created at the different points in the crystal will interfere
destructively if they are generated at a distance Lc = π/∆k.

To prevent this to happen, one uses periodically poled crystals, in our case periodically
poled lithium niobate (PPLN), which consists in an array of thin slices of crystal with
alternated direction of the optical axis. If the width of every slice Λ is exactly Lc, one
recovers the constructive interference between the incoming waves. This condition is
called quasi-phase matching.
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The crystal is held in a small oven that permits to control its temperature, that in turn
permits the regulation of the phase mismatch

∆k = 2π

(
n3(T)

λ3
− n1(T)

λ1
− n2(T)

λ2

)
. (5.1)

The values for the refractive indices for different temperatures and wavelenghts are
calculated from the Sellmeier [147] equation for the lithium niobate.
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Figure 5.5 – Scheme of the SFG of the red light. The size of the crystal L sets the
Rayleigh length zR for the two focalised IR beams. On the left, the power of the
generated red light as a function of crystal temperature. Solid line is the theoretical
curve from equation 5.3.

Boyd and Kleinman [148] studied the propagation of two gaussian beams focused in
a crystal with second order non linearities: the total output power for the sum frequency
wave P3 = n3ε0cπw2

0|E3|2 is found by solving the non-linear wave equation for the electric
fields by integrating the intensity profile over both the radial direction and the crystal
length. For input powers P1 and P2 of the same order of magnitude, the generated power
P3 results in simply being proportional to their product

P3 = αP1P2, (5.2)

with the proportionality coefficient given by

α =
32π2d2

effL

ε0c λ1λ2λ3
3

(
n1/λ1 + n2/λ2 + n3/λ3

)2 h(a, b). (5.3)

The h factor is called the Boyd and Kleinman factor and its expression is given by

h(a, b) =
1
4a

∣∣∣∣
∫ a

−a
dτ

e−ibτ

(1 + iτ)

∣∣∣∣
2

(5.4)

where one defines the adimensional parameters a = L/2zR and b = (∆k − 2π/Λ)zR.
From the optimal value a = 2.84 and the crystal length L = 4 cm one extracts the
optimum value zR ∼ 7 mm for the two incoming lasers. This length fixes the waist of the
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two beams. The optical setup is thus very simple. We adjust the lasers waist with two
independent telescopes and then we focus them in the centre of the crystal, after having
them superposed using a dichroic mirror.

In our setup we produce the 626 nm light by mixing the output of two fiber amplifiers
at 1051 nm and 1550 nm. For this wavelength we expect a typical conversion efficiency of
7 W W−2 in front of a ∼ 6.7 W W−2 measured efficiency. The setup for the MOT light uses
two amplifiers delivering 5 W each at their respective frequenciesa. The laser amplifiers
are seeded by two narrow line diode lasersb. For the Raman light we expect to use more
power, so we have different amplifiers, the one working at 1050 nm delivering 10 Wc. The
amplifier at 1050 nm shares the seed laser with the MOT laser setup. On the other hand,
since we will need a broader control range in frequency, the 1550 nm amplifier is seeded
by a wide scan range laser dioded.
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Figure 5.6 – Laser setup for the frequency lock of the 626 nm laser. To increase
the signal we use a large area photodiode. The signal is also doubled by collecting
the fluorescence from the opposite direction and retrorefleting it on the photodiode.
On the right, the Lamb dip signal (red) and the obtained error signal after lock-in
detection. Is also visible a small signal of the 15/2→ 17/2 transition of the 163Dy
fermionic isotope.

Since the linewidth of the atomic transition is only 135 kHz wide, one needs a very
stable frequency lock. One option is to use a ultraslow expansion (ULE) cavity, which
normally can provide very narrow frequency lock and has a negligible frequency drift on
daily basis.

In our case we obtain a stable lock by spectroscopy techniques on the atomic jet.

aKeopsys and Koheras Boostik HPA, NKT Photonics
bKoheras AdjustiK, NKT Photonics
cALS-IR-1030/1064 High Power, Azur Light Systems
dDL 100, TOPTICA Photonics AG
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The line being so narrow, it was difficult to find a modulation transfer signal. We tried
locking on the fluorescence but it could not provide a stable operation of the MOT: due
to the large width of the Doppler broadened profile (some tens of MHz), it was difficult
to achieve a narrow lock. What turned out to work nicely is a frequency stabilisation on
the Lamb dip, which is simply obtained by retro reflecting the laser beam on itself, so
one can burn a hole at the fluorescence profile centre.

In strong saturation regime (s� 1) the Lamb dip profile is given by [149]:

a(ω) = a0(ω)

[
1− s

2

(
1 +

(Γs/2)2

(ω−ω0)2 + (Γs/2)2

)]
, (5.5)

where a0(ω) is the Doppler broadened line shape and Γs = Γ
√

1 + s is the saturation
broadened linewidth and ω0 is the resonance frequency. Both the depth and the width of
the peak depend on laser intensity, thus the spectroscopy beam should be stabilised in
power to avoid fluctuations of the error signal. The error itself is generated by modulating
the spectroscopy beam frequency at 20 kHz and demodulating the collected fluorescence
light using a low-signal low-noise lock-in amplifiera. The spectrum of the 164Dy line
and its error signal are plotted in figure 5.6 together with the laser setup. The residual
rms noise on the frequency in close loop operation is estimated to be about 5 to 10 kHz,
which is enough to ensure a stable operation of the MOT.
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Figure 5.7 – Modulation transfer spectroscopy on the I2 vapour cell (blue spectrum)
and fluorescence spectrum on the 626 nm transition of Dysprosium (green spectrum).
The molecular hyperfine structure of Iodine is ∼ 1 GHz broad and is centred around
the 160Dy peak (see appendix A for the complete spectrum).

The technique described above works quite well for the isotope we currently use in
our setup, the 164Dy boson. Nevertheless, in case one needs to change isotope, the fluo-
rescence signal is strongly reduced (see the full experimental spectrum in appendix ??.3).
Molecular iodine I2 has a very rich spectrum due to the numerous hyperfine and roto–
vibrational states of the molecule. Luckily enough there are two absorption peaks in
the frequency range of the 626 nm transition of Dysprosium. We have a 50 cm glass
cell filled with gaseous I2 on which we perform saturated absorption spectroscopy. The

aSRS SR510 Lock-In Amplifier
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error curves are similar to the ones obtained by the previously mentioned Lamb-dip
stabilisation and are conveniently situated few tens of megahertz away from the relevant
transitions for the 163Dy fermionic isotope.

5.3 Magnetic Field Control

As we have seen in the first chapters, working with a dipolar gas of highly magnetic
atoms and realising artificial gauge fields require both a precise control of the magnetic
fields and gradients.

We have different sets of magnetic coils in our setup, that I will shortly list below.

Zeeman slower coils

A set of coils is mounted in the direction of propagation of the atomic jet and
constitute our Zeeman slower. I shall speak more in detail about the way we choose the
field profile in section 5.5.3. The coils use currents up to 30 A, which necessitates enough
cooling capacity. The coils are winded on a metallic water cooled cylinder – which
encloses the vacuum chamber tube where the atoms are moving – and are surrounded
by a second water cooled shell. To help dissipate the power we used thermal conducting
glue for the cooling shields and for the coils themselves.

MOT chamber coils

The trap gradient is provided by a pair of coils connected in anti-Helmoltz configu-
ration. Since we may need high current, these coils were winded using hollow copper
wires, which can be cooled by flowing water inside the wires themselves.

Compensation cage

Three big pairs of coils in Helmholtz configuration provide a general offset field on
the experimental table. The coils enclose the UHV section of our experiment and are
∼ 1.5 m wide, since we need a uniform magnetic field over a distance of ∼ 0.3 m while
we perform the optical transport of the atoms from the MOT centre to the glass cell.

Science cell cage

The most crucial part of our setup is the glass cell, where all the future experiments
will be performed. To maximise the control of the fields, the glass cell was enclosed in
a plastic structure where we have mounted eight pairs of coils. Six pairs of coils are
mounted along the three spatial directions, two for each direction. For each axis, one of
the pairs is connected in an Helmholtz configuration and the second in anti-Helmholtz,
which allow us to apply three independent field gradients and three bias fields. For the
vertical direction we have an additional pair of coils made of hollow copper wire, which
will be useful in case we need to work with high currents and low inductances.

5.4 Data Acquisition

The typical data we acquire are absorption images of the atomic clouds.The way
one takes these images is a quite standard technique, nevertheless Dysprosium requires
some additional care since the resonant scattering is strongly dependent on the light
polarisation due to the high spin in the ground state (see appendix B).
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We currently have six cameras installed on our experiment. To take the images in the
MOT chamber which we will see in the next chapter we use a Lumenera cameraa, which
is imaging along one of the MOT’s proper axis. For a better imaging quality in the science
chamber we use a Pixelfly camerab, which has both lower noise and higher quantum
efficiency (∼ 0.5 at 421 nm). This optical axis of this imaging is perpendicular to the cell.
We have also a second perpendicular axis, from which we image the atoms from the top.
Currently it also uses a Lumenera camera but we plan to install a better camera and high
numerical aperture lenses in the future. In addition to these cameras, we have additional
ones along the propagation direction of each optical dipole trap. These on-axis cameras
are used to center the traps on the atoms and eventually to implement a feedback loop to
actively cancel pointing errors.

Slower beam

Atoms

DT1
(optical transport)

DT2
PixelFly

DT3

MOT

Figure 5.8 – Cut view of the UHV section of the vacuum chamber together with the
horizontal images axes. In addition to the MOT imaging, we have one camera for
every axis of an optical dipole trap (DT). Not in the drawing: the vertical imaging
on the glass cell. The incoming direction of the atoms and of the slower light in the
MOT chamber are also shown.

The typical measurements we perform require a lot of sequential steps (before taking
the image of the cloud), which constitute a full experimental cycle. In each time step of
the experimental sequence we need to send digital or analog signals, often with a time
resolution of the order of millisecond or lower.

The experiment is driven via a chassisc with a PCI bus in which we installed different
cards that provide both digitald and analoge outputs. The outputs of the cards are
synchronised on the clock signal provided by an external FPGAf with a 10MHz sampling
rate. To limit the number of buffer outputs during a sequence we use a variable timebase,
meaning that the clock sampling varies according to the time precision we demand along
the sequence.

To program the experimental sequence we use the Cicero free software [150]. It

aLumenera Lm 135
bPCO pixelfly
cNational Instruments NI PXIe-1065
dNI PXIe-6535
eNI PXI-6713 and NI PXI-6733 for 16 bit resolution
fFPGA reference
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has a practical graphical interface that permits to visually program single outputs of
the digital and analog channels. It also has a efficient RS232 interface that we use to
communicate with experimental hardware not included in the chassis. The additional
possibility to create socket pairs allows to send information via TCP/IP protocol to
other computers, thus easily allowing interfacing Cicero with other softwares which I
developed during this thesis. These softwares take care of the camera control, of magnetic
and temperature probes, and of both live- and post-analysis of the data. Every software
relies on a database, where all the metadata concerning a single experimental run are
stored (or recovered). More technical details on both the database and the softwares can
be found in appendix C.

Cicero itself is the client of a server software called Atticus, which takes care of the
communication to the NI cards and the other hardware.
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Other Devices
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Figure 5.9 – Flow chart of the experimental sequence loop controlled by Cicero: after
the initialisation the experiment runs until an image is taken and the data saving is
triggered. Arrows show the main communications taking place between software and
hardware.

5.5 A Slow Jet of Dysprosium Atoms

Now that I described the experimental setup, I shall focus on how we produce
an atomic jet in our vacuum chamber starting from solid Dysprosium. Having atoms
in the gas phase inside the vacuum chamber is the very starting point of every cold
atom experiment. Atoms having low vapour pressure at ambient temperature, can be
evaporated just by heating a small dispenser. In our case, one needs a special oven, since
the vapour pressure of Dysprosium is negligible up to ∼ 1000 K.

5.5.1 Effusion Oven

An evaporation oven is in principle an elementary device: it consists of a crucible,
where the material is stored, surrounded by a cage of wires. As electrical current is let
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pass through the wires, they heat up the crucible and the material will start to evaporate.
By adjusting the temperature, one can adjust the pressure of the gas at will.

In spite of the simplicity of the principle, care should be taken in the construction of
the oven. Since we need high temperature, both the wires and the crucible should be
machined from high melting point metals, such as Wolfram (W) or Tantalum (Ta). In our
case W forms alloys with Dy at high temperatures, with the risk of serious damaging the
oven itself, hence our choice of a Ta crucible.

The wires will heat up not only the crucible but all the rest of the chamber unless some
shielding is provided. To prevent this problem, our oven is enclosed in a metallic shelter
which is in turn enclosed in a in-vacuum water cooled cylinder. An additional water
cooling is externally provided from the outside to further cool the chamber parts facing
the oven. With all these precautions, the vacuum chamber stays at room temperature
even during normal operation of the oven.

The oven itself is a commercial double effusion cella.
We load ∼ 10 g of Dysprosium inside the crucible every time we refill the oven. Usual

working temperature is around 1050 ◦C. In this case, the mean free path of an atom in the
oven is bigger than the oven size, the dominating interaction being the collisions between
the atom and the walls of the oven, not the collision with the surrounding particles.
Therefore one can use the theory of effusive flows. Under such conditions, the number of
atoms emerging in a solid angle dΩ (per unit time) will be:

dΦ = nv̄ cos θ A
dΩ
4π

(5.6)

where n is the atomic density in the oven volume, v̄ is the average velocity inside, A is
the exit orifice’s area and θ is the angle relative to the normal of the plane containing
the oven’s aperture. Note that in these equations one assumes that the thickness of the
aperture is small enough to be neglected.
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Figure 5.10 – Picture of the disassembled crucible (a) and an inside view of the oven,
with the array of heating wires. The graph shows the time needed to exhaust 10g of
Dy as a function of the oven temperature.

aCreaTec DFC-40-10290-WK-SHo-Col
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The cosine dependence of the outgoing beam can constitute a problem: a lot of the
emerging Dy will simply stick on the chamber’s walls and be lost. This problem is
solved by replacing the simple aperture with a collimation tube. The atoms escaping
at considerably large angles will hit the tube’s wall and be either stuck or expelled at
smaller angles.

In the presence of this setup modification the approximation made on the thin
thickness of the aperture is not valid anymore and the flux is decreased by a factor
1/κ [151]. The calculation for a cylindrical collimation tube gives 1/κ = 8r/3`, where r
is the cylinder’s radius and ` its length. We get:

Φ =
2
3

r
`

nv̄A. (5.7)

If the temperature of the collimating tube is lower than the effusion cell, Dysprosium
could condense and eventually block the tube. The oven we use in our setup has a
separate heating part, called the hot lip (HL), which has the purpose to maintain the
temperature of the collimating tube higher than the rest of the oven, preventing thus
Dysprosium to condensate.

Velocities Distribution for Atomic Jet

On the inside of the oven the velocity v is distributed according to the well known
3-dimensional Maxwell distribution. However, in the light of equation (5.7), one sees
that the probability for an atom to emerge from the source is directly proportional to its
velocity. Therefore, considering this additional dependence, the probability distribution
of the velocities in the atomic jet will be

P(v) ∝
(

v
v∗mp

)3

exp
(
− v2

v2∗
mp

)
. (5.8)

The distribution is different with respect to a thermal gas and therefore one has new
values for both the most probable velocity and the average velocity, respectively vmp =√

3kBT/m and v̄ = 3/4
√

π vmp For our oven working at 1050 ◦C and for the 164Dy boson,
we get vmp = 460 m s−1.

5.5.2 Transverse Cooling

Even in presence of a collimating tube, the atomic jet is diverging with quite a strong
angle (& 90◦) after the oven exit. To prevent the atoms to deposit on the widows next
to the oven output we installed a pierced gasket to block the most diverging part of
the atomic jet. This method will save the windows but has two main disadvantages:
first, a lot of atoms will get lost, stick on the collimation walls, and second this kind of
collimation does not prevent the beam to further expand. If the path taken by the atoms
is long enough, like in our case during the passage through the Zeeman slower, many of
the atoms will anyways get lost before reaching the trapping region of the MOT.

A standard method that actually permits both to narrow the atomic beam and to
damp the transverse motion of the atoms is to perform Doppler cooling in the transverse
direction. This cooling relies on the radiation pressure force due to the momentum kick
h̄k of the absorbed photons. Doppler cooling increases considerably the flux in the beam
direction, and one can gain some orders of magnitude on the brightness (and a factor of
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Figure 5.11 – An aperture is placed after the oven exit to block the most diverging
part of the atomic jet. We then proceed to a two dimensional transverse cooling of the
atomic beam to increase the brilliance and prevent further divergence.

4 in the number of captured atoms in the MOT).
For the transverse cooling of the Dysprosium jet we send two perpendicular laser

beams at the 421 nm transition and retro-reflect them on the atoms. In order to maximise
the interaction region, we shape the laser beam into an ellipse with 1:3 aspect ratio that
better matches the atomic beam profile, the major axis of the ellipse being aligned on the
Dysprosium jet direction.

5.5.3 Zeeman Slower

We have seen that the thermal velocity of the atoms right after the oven exit is about
∼500 m s−1. They are too fast to be captured in a MOT since, as they fly through the
trapping beams, they do not have time to scatter enough photons.

The velocity can be reduced using a Zeeman slower: sending resonant light against
the atoms, the radiation pressure force is strong enough to slow them down, provided
there are enough scattering events. We remind the familiar expression of the light force,
to give then some relevant experimental parameter for Dysprosium

Frad = h̄k
Γ
2

s
1 + s + 4∆2/Γ2 (5.9)

which depends on the linewidth Γ and the saturation parameter s = I/Is and the laser
detuning ∆ = ωL −ω0. For resonant light, equation (5.9) gives the deceleration:

a(∆ = 0) =
h̄kΓ
2m

s
1 + s

= ηamax (5.10)

where the parameter η < 1 is often called the security parameter, which limits the
maximum slower deceleration (depending on the saturation parameter s), which is
defined as amax = h̄kΓ/2m. For the blue transition of Dysprosium amax = 5.8× 105m s−2.

Let us suppose an atom is moving along ẑ at a velocity v, and the laser counter-
propagates in the −ẑ direction. Due to the Doppler effect, the resonance condition is
fulfilled only by a precise velocity class (if the laser does frequency is fixed), so that the
atoms get off resonance as soon as slow down. The resonance can be maintained using
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spatially varying magnetic field B, which adds a Zeeman effect to the local detuning

δ(z) = ∆− kv(z) + δµ
B(z)

h̄
. (5.11)

Here δµ = µ′ − µ = µB(gJ′mJ′ − gJmJ) is the difference in magnetic moment between the
ground state and the excited state, with gJ and gJ′ the respective Landé g-factors. When
the magnetic field profile B(z) is well chosen, it compensates the Doppler effect along
the whole deceleration distance, maintaining the atoms always on resonance with the
laser light.
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Figure 5.12 – Schematic drawing of the apparatus and plot of the magnetic field B
along the slower axis z. The points a) and c) mark the entrance of the slower and the
MOT centre position. From the section of the Zeeman slower, one notices that it is
constituted by a stack of coils. The blue laser is reflected by an in-vacuum mirror and
aligned against the atomic jet. The focus is before the slower entrance, to slow down
the atoms in the transverse direction as well.

Imposing the condition of constant deceleration, one gets the velocity profile

v(z) = v0

√
1− 2ηamaxz

vc
. (5.12)

The capture velocity v0 is chosen to be the most probable thermal velocity at the oven
exit v0 = vmp =

√
3kBT/m = 460 m s−1. Every atom with velocity lower than v0 could

be slowed if the magnetic field has the ideal theoretical profile. The latter could be
straightforwardly computed from the condition δ(z) = 0 as

Bideal = Bbias + B0

√
1− 2ηamaxz

v0
. (5.13)

The field has thus a square-root dependence on the distance and a high B0, that can be



5.5 A Slow Jet of Dysprosium Atoms 71

shifted by a bias component Bbias. These two terms are respectively

B0 = − h̄kv0

δµ
and Bbias = −

h̄∆
δµ

. (5.14)

The choice of the laser detuning ∆ is completely free, but it will determine the value
of the bias field Bbias. Having a small detuning ∆ ∼ 0 or a very large one both have
disadvantages, since in the first case the field will decrease along the slower but at the
MOT position the light will be resonant with the trapped atoms (which could then be
pushed out of the MOT by the radiation force), in the second case the light will not
be resonant at the MOT position but the high value of Bbias could deform the MOT
quadrupolar field, in particular for low MOT gradient fields.

In our experiment the slower is built in a spin-flip configuration, i.e. the magnetic
field crosses zero. This allows us to work with lower fields (which also helps to keep
residual gradients at the MOT position very low). The laser detuning is ∆/2π ∼ 500
MHz, which corresponds to ∆ = −15× Γ from the resonance. Even if this detuning is
quite large, the residual optical force is still large enough to perturb the atoms in the
trap. For this reason the centre of the MOT is slightly lower than the beam, to avoid
undesirable light forces.
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Figure 5.13 – Evolution of the atomic velocity before and after the Zeeman slower.
Notice that the three graphs share the same vertical axis. a) Probability distribution of
velocities at the oven working temperature. Plot from equation (5.8). b) Trajectories
of the velocities along the slower. Two grey vertical lines mark the entrance of the
slower and the MOT centre position, at ∼ 60 cm distance. c) Fluorescence signal of
the 164Dy boson collected at the MOT position as a function of atomic velocity. The
green (blue) spectrum shows the fluorescence in the case the slower is off (on). The
grey shaded area represents the velocity class that can be captured by the MOT.

The total length L of the slower is fixed by the desired final velocity vf, which is
fixed by the MOT capture velocity. For our experimental parameters vf ∼ 8 m s−1 (see
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chapter 6), and is given by

L =
v2

0 − v2
f

2ηamax
, (5.15)

which in our case is L = 50 cm.
Before trying to operate the magneto-optical trap, we separately tested the efficiency

of the slower by spectroscopy on the atomic jet. For this purpose we use a laser diode
at 421 nma. We shine the light on the atoms after the passage into the slower, from an
angled direction. In this way we were able to sense the velocity distribution along the
propagating direction. Then we collect the fluorescence with a large area photodiode.
The calibration of the zero velocity position was done by simultaneously collecting a
reference spectrum from a direction perpendicular to the atoms’ propagation direction.
The results of this measurement are presented in Figure 5.13, along with the theoretical
distribution of velocities before the cooling process and the velocity evolution in the
Zeeman slower. After this test we are sure the atoms are sufficiently slow to be trapped
in the MOT, which is the subject of next chapter.

aTopic diode reference
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Narrow Line MOT

Trapping atoms in a magneto optical trap (MOT) is the first fundamental step of every
ultra cold atoms experiment. Dysprosium MOTs are quite different from the more

common alkali or alkali-earth atoms. In particular:
• the optical cooling is performed on a narrow transition, thus the optical forces are

much weaker;
• the total angular momentum quantum number in the ground state is J = 8, yielding

to a rich spin structure.
Indeed, we shall see some interesting consequences of the non trivial physics arising

from the combination of these characteristics and I also give a theoretical model to
understand them. Before we turn to the analysis of the experimental results, I make
a short historical excursus on Dysprosium traps and, starting from the cold atomic jet
described in the previous chapter, I describe our experimental realisation of the MOT.

6.1 Magneto Optical Trapping of Dysprosium

The first Dysprosium MOT was realised in Stanford in 2010 using the strong blue
line as cooling transition [152], in the light of previous work on repumper-less MOT of
Erbium atom carried on by J. J. McClelland at NIST [48]. Even if the blue transition is
not completely closed, atoms escaping in dark metastable states can still be magnetically
trapped in the quadrupole MOT field thanks to their large magnetic moment, until
they relax back in the ground state and enter again the cooling cycle. With this kind
of trap one achieves typical temperatures of ∼ 1 mK. Lower temperatures can only be
obtained with a second MOT, which is loaded from the first one, working on the 1.8
kHz ultra-narrow 741 nm transition, in a similar fashion of how Strontium MOT are
produced [153]. In this manner a dense cloud at 2 µK can be reached (the temperature
being however far from the Doppler limit of 84 nK) [131] .

Unlike this previous work, designing our laser cooling apparatus we followed the
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scheme for Erbium MOT used of the experimental group in Innsbruck [52], where the
cooling is performed using an intercombination line (in our case the 626 nm transition),
as it is the case in previous work on Ytterbium atoms [154]. These atomic species are also
lanthanides, and thus possess optical transitions with similar properties. In particular
the narrow MOT and the strong blue transitions are associated to the same electronic
excitations in the three atomic species. At the same time of our studies, this laser cooling
scheme has been successfully used in the group of T. Pfau in Stuttgart to produce the
first Dy MOT using this transition [53]. Despite these previous works on Erbium and
Dysprosium already successfully demonstrate the efficiency of the trapping and, as we
will see, the spontaneous polarisation of the atomic cloud, in the following we provide
a deeper and more complete analysis of the evolution of the MOT parameters, that we
published in [80].

Intercombination lines are very narrow compared to the D2 lines used in alkali
atoms experiments, where linewidths are of the order of few MHz. The Dysprosium
transition, having a linewidth as narrow as Γ/2π = 135 kHz permits to have a low
Doppler temperature of TD = 3.26 µK. This lower limit is comparable to the temperature
experimentally achieved using the 741 nm. Moreover, since the 626 nm transition is
broader, the capture velocity is increased, thus permitting a direct load of the atoms from
the Zeeman slowed beam and avoiding the use a double colour MOT.

The geometry of our MOT is represented in figure 6.1. Two MOT beams propagate
along the strong gradient axes ex in the horizontal plane while the other four lie on the
plane (0, y, z) and are sent from 45°angled directions.

b) Coil axisa) Horizontal plane

k4

k5

k6

k3
ẑ

ŷx̂

gg

k2k1

Slower Beam

Atomic Jet

ŷ

x̂ẑ

Figure 6.1 – Scheme of the experimental geometry for the magneto optical trap
viewed from two different axis. Two beams are in the horizontal plane while the
others arrive from 45°. In orange and blue the directions of propagation of the atoms
arriving in the MOT and the slowing light. The coils and the gravity direction are
also shown in the figures.
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6.1.1 MOT Loading
On the previous graph, we can see that the slowing beam is crossing the centre of the

chamber. The residual optical force could induce atom losses from the trap. Therefore, as
we load the MOT, we shift the zero of the magnetic field quadrupole B = b(−x, y/2, z/2)
below the slower axis by adding a vertical uniform field Bcomp = −B0ez.

The narrowness of the line has a direct consequence on the maximum velocity that
can be captured in the trap. In fact, only atoms with a velocity up to a certain value vc

can be captured, while the others will simply fly through the MOT. Having defined the
maximum deceleration due to the laser light amax in equation (5.10), if the atom interacts
with the light in a region given by the beam diameter 2w0, the capture velocity will be

vc =
√

amax2w0 =

√
h̄kΓ
m

w0. (6.1)

We clearly see the interest of having wide beams as long as we can saturate the optical
transition. In our experiment the waist of the beams is w0 = 20 mm, leading to a capture
velocity of vc ∼ 8 m s−1.
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Figure 6.2 – Loading curve of the MOT. Number of atoms as a function of charging
time. From the fit we obtain a loading rate 6(1) × 107 atoms per second and a
saturation value Nmax = 3.1(5)× 108.

Another consequence of working with a narrow line is that the Doppler force will be
resonant only with a reduced velocity class of atoms. Thus a very low number of atoms
can be captured by the MOT at the exit of the slower, the rest of them being either too
fast or too slow to be affected by the light.

We address the problem by two means. First, the line is broadened by using high laser
intensity. Since the saturation intensity is just about 72 µW cm−2 it is easy to work with
high saturation parameters. In our case we typically have a power of P = 50 mW per
beam, resulting in a saturation parameter s = I/Is ∼ 50 per beam. Second, the linewidth
of the laser is broadened by sideband modulation. This permits to enlarge the velocity
class addressed by the laser light and thus increases the efficiency of the MOT loading.
By an acousto-optic modulator we introduce sidebands spaced by 135 kHz over a total
frequency range of δ f ∼ 6 MHz. The broadened spectrum and the resulting captured
atom number is presented in figure 6.3.
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Figure 6.3 – Recorded power spectra of the RF used to modulate the MOT light. Blue
(green) curve is with (without) frequency broadening. On the right, the resulting
atom number in the MOT after 6 s loading time, as a function of laser detuning ∆,
with ( ) or without ( ) broadening. The frequency zero is set at the atomic resonance.

6.1.2 Compressed MOT

After the loading process the MOT is still too large and too hot to permit an efficient
loading of the dipole trap. Therefore we proceed with a compression phase in which
we reduce the light intensity, reducing the photon scattering and thus the heating of the
trapped atoms. At the same time, since the Zeeman light has been turned off after the
loading of the MOT, we shift the quadrupole position back into the centre of the chamber,
preparing the alignment of the dipole trap.

t
I/Is 50 0.1

∇B 1.7 G cm−1

δ f ∼ 6 MHz

∆ −3 MHz −1.5 MHz

HoldCompressShiftLoad

6 s 30 ms 400 ms 500 ms

T

∼ 150 µK ∼ 15 µK

N ∼ 3× 108
ẑ

ŷ

Figure 6.4 – Variation of the MOT parameters along the compression sequence. The
laser detuning ∆ is diminished while decreasing the light intensity. Below in situ
images of MOT before and after compression. The dependence of the MOT parameters
on the final values will be the subject of the next sections.
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We compensate the loss of intensity, and hence the lowering of the optical force
strength, by reducing the detuning ∆. Also, the sideband modulation is turned off during
the whole process. A scheme of the changing parameters is presented in figure 6.4, along
with the in situ images of the trapped atoms at the beginning and at the end of the
compression phase. Temperatures diminish from values higher than 200 µK down to
15 µK.

We experimentally find that the final parameters of the compression phase change
quite drastically the behaviour of the MOT. Let us take a closer look to the different
regimes we can explore by varying the laser intensity of frequency.

6.2 MOT Position

We first investigate the effect of the laser detuning ∆ on the cloud centre position,
which drops for increasing values of ∆, as shown in figure 6.5.
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Figure 6.5 – Position of the atomic cloud center zc as a function of laser detuning
∆. The two data sets are taken for different quadrupole field strengths. On the right:
in-situ image of the cloud for large detuning. The atoms are clearly shifted down
with respect to the center of the trap, indicated by a cross. The dashed line is an
isomagnetic curve.

The key factor to understand the physics of a narrow line MOT is that the optical
forces are much lower than for alkali atoms and one should expect gravity force to play a
crucial role. To quantify this effect it is useful to introduce the adimensional parameter

η =
h̄kΓ
2mg

∼ 168, (6.2)

that is the ratio between the maximal optical force and the gravity force. The given value
is for our MOT parameter. For comparison, η ∼ 105 for alkali MOT working on the D2

line (while it is smaller than our case for alkali-earth MOTs).
Clearly then, what is happening is that gravity tends to push down the atomic cloud

as the optical force gets weaker, since the equilibrium condition requires the two forces
to compensate each other Frad + mg = 0. Let us consider for the sake of simplicity a
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two-level atomic model driven by σ− polarised light. If we restrict the calculation of the
optical force in the vertical direction ez, we just have to sum the contributions of the four
beams in the (z, y) plane. We get

Frad =
h̄kΓ

2
s

1 + 2s + 4∆2
loc/Γ2

ez, (6.3)

where ∆loc is the local detuning at the position of the atomic cloud centre zc, which
takes into account for the Doppler effect and the local Zeeman effect. The equilibrium
condition for the forces leads to

s
1 + 2s + 4∆2

loc/Γ2
=

1
η

, (6.4)

which gives the interesting result of ∆loc being independent on the laser detuning ∆ or
the magnetic gradient ∇B = (−b, b/2, b/2), varying only with the saturation intensity s:

∆loc = −
Γ
2

√
(η − 2)s− 1. (6.5)
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Figure 6.6 – Local detuning ∆
(mJ→m′J)
loc as a function of the laser detuning ∆. Data are

calculated from the MOT position taking into account an ambient residual gradient
∇B = −0.094(2) G cm−1. Open and filled symbols refer to the different magnetic
gradients of figure 6.5. The σ− component of the light saturates to the constant value.
The solid line is the theoretical value calculated from the formula given in the main
text.

This can be proved refining the model by taking into consideration different light

polarisations. The local detunings ∆
(−8→m′J)
loc (with m′J ∈ {−9,−8,−7}) are calculated

from the data presented in figure 6.5 and using the expression for the position dependent
detuning as in formula (5.11). We also plot the value of ∆−8→−9

loc as calculated from
the above equation, which agrees quite well with the data at large laser detuning. One
may wonder why a two level model is capable of describing this result, even though
Dysprosium has a rich spin structure. Figure 6.6 brings element of understanding. By
looking at the local detuning for the three different light polarisations, we see that only σ−
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component saturates to an asymptotic value when increasing |∆|, while the π and σ+ get
further off resonant. The predominance of σ− light will therefore lead to optical pumping
of the electronic spin to the absolute ground state, the only relevant optical transition
remaining |J = 8, mJ = −8〉 ←→ |J′ = 9, mJ′ = −9〉. The cloud is hence polarised for
large laser detunings ∆ . −2π × 1 MHz, justifying the two-level assumption.

6.3 Spin Composition

By looking at the previous results, it is interesting to study how the different electronic
states will be populated in the small detuning regime, where all polarisations become
resonant. We know that when we eventually transfer atoms into the dipole trap, they
undergo dipolar relaxation and get lost from the trap if the cloud is not polarised (see
chapter 2). In the following let us attempt to write a simple theoretical model for the
atoms in the trap, based on optical pumping for the populations in the spin states.

6.3.1 Rate Equation Model

One should in principle solve the optical Bloch equations for the whole electronic spin
ensemble to obtain the time evolution of the populations. We can simplify the problem
by neglecting the coherences and therefore considering just the pumping rates.

Let us consider the spontaneous emission from the excited state manifold J′. Every
relaxation channel from an excited state |J′, mJ + q〉 → |J, mJ〉 will have a decay rate
given by

ΓmJ ,q = Γ|cmJ ,q|2, (6.6)

that is the natural linewidth Γ weighted by the square of the Clebsh-Gordan coefficient

cmJ ,q =
√

2J′ + 1
(

J′ 1 J
mJ + q −q −mJ

)
, (6.7)

where we used the Wigner 3-j symbol notation [94]. The index q ∈ {1, 0,−1} accounts
for the light polarisation. For the interested reader, numerical values of the coefficients
can be found in figure B.3.

Let us label the MOT beams with the index p ∈ {1, 2, ..., 6}. Each of the beams will
couple to the transition |J′, mJ + q〉 ←→ |J, mJ〉 with a rate given by

γmJ ,q,p = smJ ,q,p
Γ
2
|cmJ ,q|2 (6.8)

where we defined the transition-dependent saturation parameter

smJ ,q,p =
s0

1 + 4∆2
mJ ,q,p/Γ2 (e

∗
q · εp)

2 (6.9)

with s0 being the resonant saturation parameter for every single beam and the scalar
product giving the projection of each beam in the polarisation basis. The detuning
accounts for both Zeeman and Doppler effect

∆mJ ,q,p = ∆ + δµ − kp· v, (6.10)
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where δµ is the difference between the ground state and excited state magnetic moment,
as defined in equation (5.11), and kp is the beam wave vector.

We can now write the rate equations for populations in both the ground and excited
electronic states, that we shall respectively call ΠmJ and Π′m′J . For every state we need to

sum the contributions from the coupling to each laser beam and the spontaneous decay.
Neglecting coherences, we are lead to the following system of equations





Π̇mJ = ∑
q

(
ΓmJ ,q + ∑

p
γmJ ,q,p

)
Π′mJ+q −∑

p,q
γmJ ,q,pΠmJ

Π̇′m′J = ∑
p,q

γm′J−q,q,pΠm′J−q −∑
q

(
Γm′J−q,q + ∑

p
γm′J−q,q,p

)
Π′m′J

(6.11)

For the Dysprosium MOT on the 626 nm transition J′ = 9 and J = 8, the absolute ground
state being |g〉 = |8,−8〉. We thus have a system with (2J′ + 1) + (2J + 1) = 36 coupled
equations. Since we are interested in the equilibrium properties of the MOT we can just
consider the solution of the steady state system Π̇mJ = Π̇′m′J = 0.

Once we have the population in the excited states we can write the total force acting
on the atoms. In the case of a two level system, each beam contribution will simply be
Frad = h̄kΓΠ′. In the low saturation regime, we can consider the beams as independent,
hence the total force is given by the sum of the six beams Frad = ∑6

p=1 Frad,p. In our case,
we should use the right Clebsh-Gordan coefficients to account for the different Zeeman
states, which gives for each beam

Frad,p = h̄kpΓ ∑
m′J

sm′J−q,q,p|cm′J−q,q|2

∑p sm′J−q,q,p|cm′J−q,q|2
Π′m′J (6.12)

a) b)

−2 −1 0 1 2

−8

−4

0

4

8

∆1

∆ 2

z [cm]

〈J
z〉

−2 −1 0 1 2

−10

0

10

∆
1

∆
2

z [cm]

F z
/

m
g

Figure 6.7 – a) Total force in the vertical direction Fz acting on an atom at rest
calculated from equation (6.13). b) Average population 〈Jz〉 as a function of the
vertical position z. Different colours are for different laser detuning: green is for
∆2 = −2 MHz and blue is closer to resonance ∆1 = −0.5 MHz. The points in the
two plots mark the equilibrium position zc, defined at Fz = 0.

Once we have inserted the steady state solution in the previous formula, we can plot
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the total force F acting on an atom at rest. The total force should account also for the
gravity and the magnetic contribution:

F = Frad −mg − µB

2

(
gJ ∑

mJ

ΠmJ mJ + gJ′ ∑
m′J

Πm′J
mJ′

)
∇B, (6.13)

where gJ , gJ′ are the Lande’s factors for the ground and excited state (see appendix A). A
plot of the force in the vertical plane Fz = F · ez is shown in figure 6.7. One can see how
the gravity breaks the symmetry of the trap, shifting the equilibrium position zc further
below the trap centre for decreasing laser detuning. On the second graph, one can see
the average 〈Jz〉 calculated from the steady state populations ΠmJ at different position.
From the plot it is clear that the drop of the equilibrium position leads to a progressive
spontaneous polarisation of the MOT 〈Jz〉 → −8 as the detuning is increased.

6.3.2 Stern-Gerlach Imaging
To validate experimentally the theory we need to measure the population in the

different electronic spin states. A simple way of doing so is to perform a Stern-Gerlach
imaging.

This technique consists in applying a strong magnetic gradient, say in the z directiona.
The force that one atom experiences depends on its internal magnetic state mJ . Atoms
in |mJ = 0〉 will not be affected, while positive and negative |mJ〉 will be accelerated in
opposite direction with a magnitude given by

a(z) = − µB

mh̄
gJmJ∂z|B|. (6.14)

Therefore it is possible to split the cloud according to the internal electronic state of the
atoms, provided that one has let enough time for the single components to spatially
separate one from each other. It is then easy to recover the population in each |mJ〉 state
just by fitting the single clouds.

V

U

SG coil

2.2 mF

U

Vc

Figure 6.8 – Scheme of the Stern Gerlach circuit. When the IGBT is opened the
capacitor discharges on the coil. With our setup we have a peak current of 480 A in 4
ms.

With respect to usual Stern-Gerlach measures with ultra cold atom, our measure
shows additional difficulty since the cloud is relatively quite hot and large and the coil

aHere, we mean that there is a strong magnetic gradient plus a uniform field in the vertical direction.
The gradient alone can not be unidirectional because ∇ · B = 0.
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is quite far. Normally to have a clear separation of the components it is sufficient to
increase the TOF, since the distance grows with the square of the time while the size
grows linearly. In our case we could not wait longer since the cloud is already much
diluted and the signal gets too weak. Besides, the heating of the coil did not permit to
further increase the magnetic gradient.
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Figure 6.9 – Histogram of population ΠmJ in the different Stern Gerlach imaging of
the MOT. By applying a magnetic field gradient during the time of flight, the cloud
splits into its magnetic states. a, b and c pictures are taken for decreasing values of
laser detuning ∆. One can clearly see the polarisation of the MOT in the absolute
ground state |mJ = −8〉 in picture a. The image at B = 0 is the reference for picture
c.

We generate the field gradient using a coil aligned on the gravity axis, where we
discharge a large 2.2 mF capacitor. The electrical circuit is sketched in figure 6.8. The
discharge gives a peak current of 480 A in ∼ 4 ms, which provides a field of 30 G cm−1 at
the MOT position. The main limitation in using higher currents is the power dissipation
in the coil, since the experimental geometry did not permit to include some cooling
element for the wires.

Some images taken for different detuning are presented in figure 6.9. For every
detuning a reference image without magnetic gradient is taken. This will be used to
recover the position of the |mJ = 0〉 state, that is not affected by the magnetic force. A
multiple gaussian fit of the clouds, weighted with the proper coefficients (see appendix B)
is used to recover the relative population in every Zeeman level ΠmJ .

Once we obtained the ΠmJ we calculate the mean spin projection 〈Jz〉 for the various
detunings. The results are plotted in figure 6.10 and show a quite good agreement with
the theory curve calculate from the rate equation model.
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Figure 6.10 – Mean spin projection 〈Jz〉 for different detunings of the MOT light.
Data points are the average population obtained from the Stern-Gerlach measure.
The data points a,b and c refer to the previous image. The solid line is the theoretical
value from the model.

6.4 Temperature

As we have mentioned, the narrow line width of our MOT transition width gives
a Doppler limit temperature of TD ∼ 3 µK. In our setup we achieve T as low as
15 µK on normal operation. This value depends strongly on the laser detuning ∆
and the saturation parameter s as we will see. Let us now provide some quantitative
formulae in the simple case of polarised MOT. We previously mentioned that for large
detuning that the only relevant optical transition is driven by σ− light between the
|J = 8, mJ = −8〉 ←→ |J′ = 9, mJ′ = −9〉 states. In this case we recover an effective two
level system and we can derive some analytical expressions for the MOT temperature.

For very low velocities, the force can be expanded linearly F = mαv. This permits
to define an effective friction coefficient α. Nevertheless the radiative forces we have
considered so far are assumed to be average values. The total force has also a random
fluctuating component δF(t), which is the Langevin force associated to the stochastic
radiative process, and that we neglect since 〈δF(t)〉 = 0. Nevertheless, the fluctuations
of the force 〈δF(t)δF(t′)〉 = 2Dδ(t− t′) (where D is the diffusion coefficient), affect the
position of an atom at the centre of the trap, which is described by a Brownian motion.
This diffusive behaviour of the atoms gives a lower bound to the achievable temperature
in the trap, which can be recovered using the Einstein relation

T =
D

mαkB
, (6.15)

provided that one can give an expression for the diffusion coefficient D.

Let us now attempt to derive the temperature T. Let us start by the linearisation of
the radiative pressure force around the equilibrium point rc, which gives

Frad(v) = −mα

(
2
3

vxex + vyey + vzez

)
+O(v2). (6.16)
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Here, the α coefficient has the following expression

α =
3
√

s0(η − 2)− 1
η2s0

Er

h̄
(6.17)

where η has been already defined in equation and Er = h̄k/2m is the recoil energy
associated to a photon momentum kick. The damping coefficient α is directly related to
the equilibration time τ = 1/(2α), which one can access experimentally. In figure 6.11 we
plot the relaxation of the MOT temperature to the equilibrium value for ∆ = −2π × 1.84
MHz and s = 0.65. The time constant that we get from an exponential fit is τ ∼ 29(11)ms,
which corresponds to a value of α = 17(6) s−1, which is smaller than the calculated value
α = 47(2) s−1 given by the equation above but of the right order of magnitude.
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Figure 6.11 – a) Evolution of the MOT temperature T after the compression phase.
The equilibration time is directly related to the velocity damping coefficient α. b)
Temperature as a function of laser detuning ∆ at fixed saturation parameter s = 0.65.
In the polarised regime, T saturates to a finite value, calculated from equation (6.20)
and shown as a solid line. The dark circles will be referred to in picture 6.12.

Let us now consider the diffusion coefficient D, which is given by the sum of two
different contributions, since both the absorption of a photon and the spontaneous
emission are stochastic processes. Let us label the two different contributions Dabs and
Dem.

To obtain the absorption Dabs one needs to calculate the rate at which every single
beam is scattered. In the (x, y, z) basis defined in figure 6.1, the diffusion matrix is
diagonal and is given by

Dabs =
1

16η
h̄2k2Γ




2 0 0
0 3 0
0 0 3


 . (6.18)

The diffusion due to the spontaneous emission is also anisotropic due to the intrinsic
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anisotropy of the dipole scattering

Dem =
1

20η
h̄2k2Γ




3 0 0
0 3 0
0 0 4


 (6.19)

Summing the two diffusion coefficients and using the expression given above, we
finally get the following expression for the equilibrium temperature




Tx

Ty

Tz


 =

h̄Γ
kB

sη

2
√

s(η − 2)− 1




33/120
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 . (6.20)

Note the slight anisotropy in the three directions, which however is below the experimen-
tal resolution of our setup.
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Figure 6.12 – a) Evolution of the asymptotic value (at large detuning) of T as a
function of the saturation intensity s. Points taken for two different detunings:
∆ = −2π × 1.84 MHz and ∆ = −2π × 2.54 MHz. The solid line represents the
values given by equation (6.20). The filled points were presented in figure 6.11. We
attribute the deviation from theory at low s to the residual noise in the intensity lock,
the frequency spectrum of which is presented in b). The expected increase in T is
plotted as a dashed line in a).

In the figures and in the following formula we will consider T = Tz. The minimum
temperature is achievable for s = 2/(η − 2), which corresponds to a local detuning
∆loc = −Γ/2 (as in standard Doppler cooling theory), and is given by

Tmin =
31
60

η

(η − 2)
h̄Γ
kB
' 3.4 µK (6.21)

that as η � 1 is very close to the standard Doppler limit TD = h̄Γ/2kB We measure the
temperature in our MOT using standard time-of-flight technique (see appendix B.2 for
more details). Temperatures as a function of the light intensity are plotted in figure 6.12.
The two data set presented are taken at two different laser detunings ∆ in the spin
polarised regime and are consistent with an independence of T on ∆. We see that the data
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agree with the theory in a range of two order of magnitude for the saturation parameter
0.1 ≤ s ≤ 10. At higher values, we expect a depolarisation of the cloud and hence the
previous formulae are not valid. For lower values, we notice significant heating for
s ≤ 0.1, while we expect to reach a minimum temperature at s ∼ 0.01. This is due to a
technical limitation of our setup. During the MOT operation the intensity of the cooling
laser is servo-locked to a PID controller. Nevertheless, as we can see in figure 6.12.b,
the spectral density of the servoed intensity has some residual noise, leading to a time
dependent saturation parameter s(t). The fluctuations in intensity shake the position
the trap equilibrium position zc(t). In the z axis the atom dynamics will be described by
Newton’s equation

mz̈ = −mω2
0κz
(
z− zc(t)

)
−mαż + δF(t), (6.22)

where ω0 =
√

κz/m is the trap frequency (additional details in the next paragraph, see
equation (6.27)) and, as we have seen above, δF(t) is the stochastic force. Integrating the
equation of motion and taking the rms value for the velocity, we get

〈ż2〉 = D
m2α

+

(
dzc

ds

)2 ∫
dω

ω4
0ω2

(ω2
0 −ω2)2 + ω2α2

S(ω). (6.23)

We can get the temperature by T = m〈ż2〉/kB, which we represent in figure 6.12 as
a dashed line. If the noise was not present we recover of course Einstein’s relation.
In principle, improving the electronics of our intensity lock could reduce the final
temperatures that we achieve in the MOT. Since we already vary the intensity over a
range of almost three orders of magnitude, further improvements will require a better
electronic circuit with a logarithmic amplifier.

6.5 Size and Density

Let us now consider the variations of MOT dimension and density, which are both
fundamental parameters for the charging of an optical dipole trap. In the proximity of
the centre of the MOT, where the force vanishes at the equilibrium position, the force is
linear in the displacement. To first order in position it can be written as

Frad(r) = −κxxex − κyyey − κzzez +O(r2) (6.24)

The spring constants obtained after linearisation are then

κx =
2mg
|zc|

, (6.25)

κy = κx/2, (6.26)

κz =
4mg δµ∇B|∆loc|

s η h̄ Γ2 . (6.27)

It is interesting to notice how the constants in the horizontal plane do not depend
explicitly on the parameters of the laser light, which appear only in the position of the
cloud zc. The one half factor between κx and κy can be easily understood, since x̂ is the
strong axis of the magnetic quadrupole, where the field gradient is twice larger than in
the other directions.
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Figure 6.13 – MOT size as a function of laser detuning (green squares are for σz and
blue circles for σy). Data points are standard deviation σ assuming a gaussian shape
as fitting function. On the right, volume V of the cloud for different atom numbers
N, which shows two different regimes: a linear increase and a saturation for low N.

For every spatial direction i ∈ {x, y, z} we can derive an expression of the rms radius
of the cloud σi via the thermodynamic relation

kBT = κiσ
2
i . (6.28)

As one can clearly see in the in-situ images of the atoms, the cloud has a non gaussian
shape which should in principle be taken into account. Nevertheless, looking at fig-
ure 6.13, the simple formulae provided above capture quite well the variation of the sizes
with the laser detuning. The agreement is less good for the vertical direction, where
we expect a constant behaviour for σz as both the temperature and the local detuning
are constant in the polarised regime, as we have seen in the previous sections. This
variation can originate from non linear effects, which are not completely negligible given
the non-gaussian cloud shape.

For a given value of laser detuning and intensity, we observe an increase of the cloud
volume V with the atom number N. This should not be surprising, since atoms in the
trap experience a repulsive force between them due to the radiation pressure generated
by the spontaneous emission of photons. In this regime, we expect the MOT to have
a core of uniform density nmax, hence a linear increase of the MOT size with the atom
number [155, 156]. For atom numbers lower than a threshold value Nc, we expect this
effect to be weak and thus the volume V = (2π)3/2σxσyσz almost independent of the
number atoms N. From our imaging axis we do not have direct access to σx , that is thus
taken to be twice larger than σy following equation 6.26.

To account for the two regimes observed experimentally, we fit the data with the
empirical formula

V = Vsingle atom + c (N − Nc)Θ(N − Nc), (6.29)

were c is the curve slope and Θ the Heaviside step function.
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6.6 Inelastic Light Assisted Collisions
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Figure 6.14 – Decay of the atom number in the magneto optical trap for a laser
detuning ∆ = −2.54× 2π MHz and a saturation parameter s = 0.65. The plots
are in log scale. The dashed curve represent the asymptotic one-body decay at large
time scales. Data are fitted using expression 6.31.

Having a look at the MOT sizes in figure 6.13, one may think that working close to
resonance is the best option since it gives denser clouds, thus improving the subsequent
loading of the dipole trap. Unfortunately, we observe a reduction in the lifetime of the
MOT when we get closer to the resonance. Typical data are presented in figure 6.14.

We attribute these losses to light assisted collisions. I shall briefly explain the
underlying mechanism of the losses and show how it is possible to get a qualitative
agreement with our data using simple arguments.

6.6.1 Radiative Redistribution
Let us consider a binary collision in the presence of laser light. The absorption of a

photon of frequency h̄ωL excites one of the two atoms in an upper molecular potential.
The atoms will then approach each other until the excited atom relaxes back to the
ground state by spontaneously emitting a red detuned photon at an energy h̄ω < h̄ωL

(see figure 6.15). This kind of process is called radiative redistribution [157] and can be
described by the following kind of reaction

Dy + Dy + h̄ωL → Dy∗2 → Dy + Dy + h̄ω + 2Ek, (6.30)

where the internal electronic energy h̄(ωL −ω) has been converted in kinetic energy Ek
for the two atoms. If the gained energy exceeds the capture capabilities of the MOT, the
pair of atoms is lost from the trap.

Experimentally we can investigate the loss of atoms by looking at the decay of the
number of trapped atoms in the MOT. After a loading period, the Zeeman slower light is
turned off. The decay of the population N in the trap is described by

Ṅ = −N
τ
− β n̄N, (6.31)

with τ being the one-body lifetime, which accounts for collisions with the residual gas
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Figure 6.15 – Scheme of a radiative redistribution process for an atom pair. r is the
relative distance between the particle. a) The absorption of a photon h̄ωL excites one
of the two atoms to an upper molecular potential. b) The atom pair shrinks along
the excited molecular potential. c) Relaxation to the ground state via spontaneous
emission. The internal energy has been converted to kinetic energy for the two atoms.

in the chamber, and β the two-body loss coefficient. Before turning to the experimental
results, let us discuss a theoretical calculation that agrees quite well with the observed
losses.

6.6.2 Calculation of the two-body loss coefficient β

Let us consider two atoms in their electronic ground state with a relative internuclear
distance r = r1 − r2. The rate at which one atom can get excited in the upper level is
given by

Γasso(r) =
∣∣cmJ ,q

∣∣2 Γm

2
2s

1 + 4
(
∆(r)/Γm

)2 , (6.32)

where Γm and ∆(r) are the lifetime of the molecular state and the detuning at the position
where the excitation occurs. The detuning ∆(r) = ∆loc +V(r)/h̄ can be explicitely written
if one knows the form of the molecular state. Molecular potentials arise from resonant
dipole-dipole interactions, the main interaction scaling thus with the usual −C3/r3

dependence. For Dysprosium atoms, there are 2(2J′ + 1)(2J + 1) = 646 molecular states.
In order to simplify the problem we consider a toy-model with only one single effective
molecular potential

V(r) = −λ
h̄Γm

(kr)3 , (6.33)

where we defined an effective lifetime Γm = µΓa and the parameter λ which accounts for
the average of all possible excited states. The mean values of these parameters averaged
over the 323 attractive molecular potentials are λ̄ ' 0.68 and Γ̄m = µ̄Γ ' 1.05Γ.

As pointed out in last section, an atom pair can be lost if the acquired kinetic
energy after the relaxation Ek is larger than a threshold energy E∗, corresponding to
the maximum that can be captured in the MOT. From the capture velocity defined in

aThe parameter µ accounts for the difference in lifetimes of the excited states with respect to the bare
linewidth Γ.
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Figure 6.16 – Association rate Γasso(r) to the excited state for different values of
the local detuning ∆loc. The maxima occur at the Condon distance RC, defined for
V(RC) = h̄∆loc. Note that for large detuning, substituting Γasso(r) by a Dirac-δ
distribution is better justified.

equation (6.1), one gets E∗ ' 500h̄Γ. We can then define the probability Ploss of losing
one atom that was previously excited in the molecular state at position ri by calculating
the probability for that atom to relax back into the ground state with its kinetic energy
Ek > E∗. Therefore we can write

Ploss(ri) =
∫ ∞

0
dt Γm e−ΓmtΘ [Ek(ri, t)− E∗] , (6.34)

where Γme−Γmτ is the probability density of a spontaneous emission event to occur at
time τ and Θ is the Heaviside step function. The meaning of this integral is that we
have just to consider times long enough for the atoms to acquire enough kinetic energy.
In order to get an explicit expression, let us consider the energy conservation of the
radiative redistribution process (6.30). Let us also neglect the initial kinetic energy of the
atom pair, since the typical velocities in the MOT are much lower than the ones acquired
after the relaxation. In the centre of mass frame we can then write

λ
h̄Γm

(kr0)3 =
1
2

mrṙ2 − λ
h̄Γm

(kr)3 , (6.35)

where r0 is the initial relative distance between the atoms, r is the distance when the
relaxation event occurs and mr = m/2 is the reduced mass. We can rewrite the previous
expression as

dr

√
1

(r0/r)3 − 1
= 2

√
λh̄Γm

m(r0k)3 dt. (6.36)

Recasting the variable r/r0 as x and performing the integration, we get

t = f (x)
r5/2

0
2

√
mk3

λh̄Γm
= f (x)

(kr0)5/2

2

√
h̄

2λErΓm
(6.37)
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where we defined the integral

f (x) =
∫ 1

x
du
√

1
u3 − 1

(6.38)

Since when the relaxation occurs, the final distance is very small compared to the initial
one (r � r0), we can safely set r ∼ 0 (x = 0). The integral has then an exact expression
using Euler’s gamma function as f (0) =

√
π/3 ΓE(5/6)/ΓE(4/3) ∼ 0.747. Substituting

the time expression in the formula (6.34) and performing the integration, we obtain the
following equation for the loss coefficient

Ploss(ri) = exp

(
− µ

2
√

λ
(kri)

5/2

√
h̄Γ
2Er

f

[(
1 +

E∗

|Vmol(ri)|

)−1/3
])

, (6.39)

where the argument of f (r/r0) is obtained by energy conservation and by the condition
Ek > E∗.

Let us now put the pieces together. Assuming a constant density in the trap n, the
atom number decay will be given by integrating the association rate and the consequent
loss probability over every atom pair in the cloud:

Ṅ = −n2

2

∫
dr1dr2 Γasso(|r1 − r2|)2Ploss(|r1 − r2|). (6.40)

The factor 1/2 is necessary to avoid double counting, while the loss coefficient has to be
counted twice since losses occur in pairs. Recasting the integral in relative coordinates
and carrying out the integration over the volume of the cloud, we obtain Ṅ = −βnN,
with the two body coefficient given by

β = 4π
∫

dr r2Γasso(r)Ploss(r). (6.41)

By substituting (6.32) and (6.39) into the previous equation, we can proceed to numer-
ical integration. The full curve of β(∆) is shown in figure 6.17 to have a good agreement
with the experimental data points obtained from the fit of population decay (6.31).

It is also possible to write an analytical expression of β if we consider a strict resonance
condition, i.e. substituting the Lorentz profile of equation (6.32) with a Dirac δ distribution.
As one can see from figure 6.16, this approximation is more justified for large detuning.
Therefore, making the substitution we finally find the expression for the loss parameter

βmJ ,q = ΠmJ

2π2λ2µ

3

∣∣cmJ ,q
∣∣2
(

Γ

∆(mJ→mJ+q)
loc

)2

exp


−C

∣∣∣∣∣
Γ

∆(mJ→mJ+q)
loc

∣∣∣∣∣

5/6√
h̄Γ
Er


 s Γ

k3 , (6.42)

where we introduced the numerical constant

C =

√
π

2
ΓE(5/6)

6 ΓE(4/3)
λ1/3µ ' 0.264 λ1/3µ. (6.43)

and ΓE comes from using the expression of f (0) given above for x ∼ 0. The formula is
valid for a given spin level mJ and light polarisation q.

As we described in the previous sections, for large laser detuning ∆ the only relevant
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Figure 6.17 – Two-body loss coefficient β as a function of the laser detuning ∆. At
large detuning we observe a saturation as we enter the spin polarised regime. The
dashed black line is the theoretical prediction obtained from equation (6.41) using
Γ̄m and λ̄, while the solid blue line is a fit obtained with the two parameters as free
parameters. The dotted line is the asymptotic expression in the polarised regime given
by equation (6.44).

transition is |J = 8, mJ = −8〉 ←→ |J′ = 9, mJ′ = −9〉. The loss coefficient in this case is
then

β = β−8,−1 =
2π2λ2µ

3

(
Γ

∆loc

)2

exp

[
−C

∣∣∣∣
Γ

∆loc

∣∣∣∣
5/6
√

h̄Γ
Er

]
s Γ
k3 , (6.44)

which is independent of the laser detuning. As one can see in figure 6.17, this formula
gives the asymptotic behaviour we observe when entering the spin polarised regime at
∆ ≤ −2π × 1.5 MHz.

As a conclusion, we emphasise that a large laser detuning is the best choice in order
to minimise atom losses. Therefore in the following we shall work in the spin polarised
regime. In the next chapter we shall see how we transfer the atoms from the MOT into a
conservative trap and we further cool them to lower temperatures.



7
Towards Dysprosium BEC

The last step towards the achievement of a Bose-Einstein condensate is evaporative
cooling, which is the universally used technique to reach quantum degeneracy in

atomic gases. Dysprosium may add some difficulties compared to other atomic species
for the reasons we have seen in the first chapters: the trap aspect ratio influences the
stability of condensed clouds and the magnetic field has to be carefully calibrated as well
to avoid (or exploit) the Feshbach resonances. In this chapter I describe the final optical
traps and our optimisation of the evaporation process.

7.1 Optical Dipole Trap

Further cooling of the atoms requires traps where the lowest achievable temperature
is not limited by photon scattering. We have seen in chapter 3 that intense light fields
induce a displacement of the atomic energy levels and that, far from resonances, the
associated scattering rate is strongly suppressed. One can then use the light shift to
create conservative traps for the atoms, called optical dipole traps (DT). The traps can
be designed by carefully choosing the intensity profile of the laser I(r), which is indeed
directly proportional to the optical dipole potential

Udip(r) = −
1

2ε0c
Re
{

α(ω)
}

I(r), (7.1)

where Re
{

α(ω)
}

is the real part of the polarisability of the atom at the laser frequency
ω, which was largely discussed in chapter 3. In this chapter we consider traps operating
with near-infrared frequencies, where the light shift is independent on the atomic spin.
In the following we focus on the trap engineering and characterisation.
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7.1.1 Trap Frequencies

We start by defining some known quantities that we will use to describe our optical
traps. Let us consider light propagating as an ideal gaussian beam along the z axis. Let
us remind that the intensity profile for a gaussian beam is given by

I(ρ, z) = I0

(
w0

w(z)

)2

exp
(
− 2ρ2

w2(z)

)
(7.2)

where ρ is the radial coordinate (with respect to the propagation axis z) and w0 is the
1/e2 radius of the beam at the focus position z = 0, called the beam waist. The beam
radius expands along the propagation direction as w(z) = w0 (1 + (z/zR)

2)1/2, where
one defines the Rayleigh length zR = πw2

0/λ. The intensity at the waist position is
defined as:

I0 = I(0, 0) =
2P

πw2
0

, (7.3)

where P is the laser beam total power. Far from focus (z� zR) the beam diverges in a
cone like shape, where the angle between the propagating direction and the beam radius
w(z) is given by θ = λ/(πw0). If the beam is not perfectly gaussian, it will have a larger
diffraction angle. This deviation is usually quantified by the quality factor M2, so that
the angle becomes θ = M2λ/(πw0), and hence the ratio between zR and w0 is modified
accordingly. We should keep in mind that a quality factor M2 6= 1 will modify the
following formulae, but we suppose to work with perfect beams, which is experimentally
a good assumption since our dipole traps are laser outputs from single mode optical
fibres.
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Figure 7.1 – The measured intensity profile of the laser beam is plotted above, the
solid line being a lorentzian fit giving the waist w0. Below, a 2D plot of the same
beam in the (ρ, z) plane (it has a cylindrical symmetry). On the bottom, the expected
trap depth for the measured parameters P = 40 W and w0 = 35µm assuming
α = 160 a.u..
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In the radial and axial directions, the beam intensity follows a gaussian and a
lorentzian distribution respectively. When the dimensions of the atomic cloud are
sufficiently smaller than the beam sizes (σρ � w0 and σz � zR), at lowest order the exact
potential can be approximated by a three dimensional harmonic trap

UDT(ρ, z) = − U0

1 + (z/zR)2 exp
(
− 2ρ2

w2
0(1 + z2/z2

R)

)

' −U0 +
m
2

(
ω2

ρρ2 + ω2
z z2
)

,
(7.4)

where we defined the radial and axial trapping frequencies

ωρ =
2

w0

√
U0

m
, (7.5)

ωz =
1
zR

√
2U0

m
. (7.6)

Note that the ratio of the two frequencies
√

2 zR/w0 is given by the geometry of the
gaussian beam and is independent of both the atomic parameters and the laser power.
U0 is the potential at the trap centre and, according to the above definitions, is defined as

U0 =
1

2ε0c
Re{α}I0 ∝

P
w2

0
. (7.7)

Therefore, to generate deeper potentials one should increase the laser power or focalise
the beam to a tighter spot. In figure 7.1 the profile of our dipole trap is given.

7.1.2 Dipole Trap Loading
Starting with the MOT at a temperature T ∼15 µK we can transfer the atoms directly

into a dipole trap, provided that the potential is deep enough. We use a (longitudinal)
multimode fibre laser emitting 50 W at 1070 nma. The laser is tightly focused on the
MOT centre position, with a measured waist of w0 = 30.8(1) µm and M2 = 1.32. Due to
losses along the optical path, only ∼ 40 W shine on the atoms, still this power is sufficient
to provide a trap depth U0 ∼ 1.0 mK.

To load the dipole trap we switch on the IR light right after the MOT has been
compressed. The MOT is left on during 600 ms to increase the captured atom number,
and then the red light is switched off. During the first milliseconds after the loading we
observe fast losses in the optically trapped atoms, due to the equilibration dynamics in
the dipole trap.

We transfer ∼ 10% of the atoms from the MOT into the dipole trap. Even if the
potential is deep enough, the size mismatch is very large, since the dipole trap is radially
at least one order of magnitude smaller than the MOT. To increase the transfer efficiency
we actually do not load the atoms at the trap centre but at z ' 1.25 zR from the beam
focus, where the radial size of the dipole trap is slightly larger. Further away from
focus the loading is less efficient because the DT is shallower. The loading procedure is
summarised in figure 7.2, in which we see that the maximum number of atoms that we
can transfer from the MOT is ∼ 4.5× 106.

aYLR 50W, IPG Photonics
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Figure 7.2 – a) Atoms loaded in the dipole trap as a function of the dipole trap focus
position. We load more atoms if we are off centred, where the size of the trap is ∼ 2.5
times larger. At larger distances the trap is weaker and we lose the atoms. b) Atoms
charged in the dipole vs total atom number in the MOT.

In the following we investigate a precise characterisation of the dipole trap by fre-
quency measurements.

7.2 Frequency Measurements

To calculate a priori the potential Udip one measures the beam profile of the trap in situ,
to exclude the presence of optical aberrations, and then use equation (7.1) if one knows
exactly the value of the atomic polarisability α(ω). For Dysprosium, there are different
experimental values of Re{α} = 102(20) a.u. at 1070 nm [158], Re{α} = 136(15) a.u.
and 116 a.u. at 1064 nm [158, 54], which all disagree with the theoretical prediction
Re{α} = 164 a.u. [84].

We rely then on experimental measurements, where we obtain Udip by direct measur-
ing the trapping frequencies and recovering the value of the potential with equations (7.6).
At equilibrium the atoms sit at the trap bottom with a spatial extent given by the Boltz-
mann distribution (for a thermal cloud). We then excite an oscillation mode and observe
the cloud response. The measurement can be repeated at different laser power to check
the expected scaling ωi ∝ P1/2 and deduce the value of α. Note that the main error comes
from the waist measurement precision since α ∝ w4

0 or α ∝ w6
0 if one uses the radial or

axial frequency respectively.

7.2.1 Sloshing and Breathing Modes

Measurements of radial and axial frequency are achieved in different manners. In the
axial direction, we “kick” the atoms and then observe the cloud sloshing back and forth in
the trap. The “kick” is done by a sudden displacement of the focus position by a distance
∆z ∼ zR/10. The following oscillation of the centre of mass position is shown in figure 7.3.
The damping we observe is indeed expected if one takes into account the dephasing of
the oscillations due to the trap anharmonicity and the frequency distribution resulting
from the initial thermal energy distribution of the atoms.
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Figure 7.3 – a) Kick excitation of the axial mode: the oscillation is triggered by a
sudden displacement of the trap position. b) The oscillation of the cloud’s centre
of mass position after the trap kick. A fit with the response function of a damped
oscillator gives the trap frequency.
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Figure 7.4 – a) Breathing (monopole) mode of the cloud. b) Excitation ramp and c)
data for the trap transverse sizes σρ (errors are smaller than the point size). After the
sudden restore of the initial power, the size is measured after a variable time t∗. In
this case also the data are fitted using the response function of a damped oscillator.

In our setup we can only shift the focus axially, so for the radial frequency we excite
instead the breathing mode of the trap, i.e. the monopole oscillation of the transverse
size σρ. The excitation is obtained by lowering the beam intensity to ∼ 40% of the initial
power, before rapidly jumping back to the initial value. The sudden recompression of the
trap triggers the breathing mode. We show the experimental results in figure 7.4.

Both measurements were done at full laser power and the result of the fits gives
fρ = 1.96(4) kHz and fz = 10.7(8) Hz.

Using the experimental values together with equations (7.6), we obtain a polarisability
Re{α} = 117 a.u. As we already mentioned, this value is subject to a strong dependence
on the experimental uncertainties, such as the error in the beam waist. In addition, the
measurement of trap frequencies supposes that all the atoms sit at the bottom of the
harmonic potential well, thus neglecting anharmonic effects which can lower the effective
frequency, leading to an underestimation of the polarisability. These facts can explain the
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discrepancy we find with the theoretical value, which should in principle give a lower
bound (if not coincide) to the experimental measurement.

7.2.2 Parametric Excitations
A second method to characterise the trapping frequencies is a parametric excita-

tion. Parametric excitations occur in harmonic systems whenever one of the oscillator
parameters is varied in time, for example the frequency ω0:

ρ̈ + ω2(t)ρ = 0 with ω(t) = ω0
(
1− ε cos(Ωt)

)
(7.8)

If the system is driven at the double of its trap frequency (Ω = 2ω0), the amplitude of
the oscillations increases exponentially [94]. In our case, we modulate the power of the
laser P(t) = P0

(
1− εP cos(Ωt)

)
, with Ω being close to the expected trap frequency. The

modulation amplitude εP should not be too large, to avoid atom losses. The data in
figure 7.11 are taken for εP = 0.035. We then measure the heating rate (i.e. the increase in
σρ) to locate the parametric resonance and recover ωρ. A fit on the resonance position
gives 2 fy = 3.7 kHz, which is in agreement with the breathing mode measurement.
Figure 7.11 also shows a minimum at frequencies slower than the resonance. This cooling
is justified by the selective evaporation of more energetic atoms, which experience a
different resonant frequency as a result of the trap anharmonicity [159].
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Figure 7.5 – a) Laser power ramp. The power is modulated during a time t∗ = 100
ms. b) The transverse size of the cloud σy, which is directly related to the atoms’
temperature, is increasing as soon as the modulation frequency approaches the trap
frequency.

7.3 Optical Transport

As we have seen in chapter 5 the MOT and the glass cell, where we perform the final
stages of the cooling, are on different parts of the experimental chamber. Therefore, we
need to move the atoms from one place to the other, over a distance of ∼ 28 cm. The
transport consists in displacing the trapping potential, i.e. the beam focus position, and
letting the atoms follow the movement of the trap. Transport of atomic clouds has been
experimentally realised both in magnetic and optical traps. For the second case, there
are two possible ways to proceed: either the focus is shifted by mechanically moving the
focalising lens [160], or the setup is in a static configuration but one uses adaptive optics
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such as focus-tunable lenses [161]. Following previous work in our research team, we
choose the first option, using a magnetic levitating translation stagea.

7.3.1 Experimental Setup

Moving Stage

Transport

∼
280

m
m

Power ServoRotating WP

+800

g

Figure 7.6 – Scheme of the experimental setup for the dipole trap. The IPG laser
is focused on the MOT. After ∼ 10% of the atoms are loaded into the DT, the
translation stage is moved, shifting the focus position (and hence moving the atoms)
into the glass cell. The picture shows the trapped atoms in the DT after the release of
the atoms in the MOT. The uncultured atoms are falling below the dipole trap.

A scheme of our experimental setup is shown in figure 7.6. The IPG laser is filtered in
polarisation by a first polarising cube. Then we use a rotating wave plate on a servomotor
and a Glan-Taylor polariser to control the laser power. The analog control of the laser is
not sufficient to achieve low intensities, since it is limited to 10% of the maximum power.
To control the power we rather use a rotating wave plate instead of an AOM for different
reasons: it preserves the good beam mode quality from the fibre output, there is no loss
of power and we avoid thermal lensing issues. On the other hand the response time of
the rotating plate is quite slow (40 Hz bandwidth). This is not an issue in our case, since
the typical time scales of the evaporation power ramps are some seconds. High frequency
noise is canceled by working with the laser analog control in closed loop operation on a
faster PID controller.

aANT130-160-L-PLUS-25DU-MP, Aerotech
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The laser beam diameter is broadened with a telescope and focused by a +800 mm
lens on the atoms, after passing through a retro reflector, which is on the moving stage.
By moving it, we reduce the optical path of the beam before it enters the chamber, and
thus we move further the focus position.

All mechanical vibrations of the stage couple to the trap position and, as we have
seen already for the MOT, shaking the trap heats up the cloud and can eventually lead to
atom losses. For this reason, instead of displacing the lens we displace the reflector. The
retro reflector is built with three mirrors mounted on three orthogonal planes, therefore
by geometry the reflected beam will exit parallel to the incoming oneb, whatever the
incoming angle of incidence. This should sensibly reduce the coupling of pitch and jaw
mechanical noise to the beam pointing position [162].

7.3.2 Accelerating Potential
The relevant time scale for the transport is set by the axial trapping frequency. If

the acceleration is too fast, the sloshing motion after the transport stops can heat up the
cloud and lead to losses. We mention that it has been shown that a right choice of the
acceleration (and deceleration) profiles avoids atom losses even with ramps faster than
the adiabatic limit (in literature this is called shortcut to adiabaticity [163]). In our case
the cloud is relatively hot and a linear acceleration ramp provides almost perfect (& 90%)
transfer efficiency.
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Figure 7.7 – a) Trap deformation along the axial direction z for different accelerations
a during the transport. The tilt lowers the trap depth to an effective value Ueff. b)
Transported atom number as a function of time, i.e. of the acceleration, for a fixed
maximum velocity. Slow transport induces also losses due to lifetime limitation.

In our setup, we have to consider two additional problems. First, the lifetime of the
dipole in the MOT chamber is quite poor (∼ 1 s) and we should then transfer the atoms
quite rapidly (see figure 7.8). Second, during the transport the trap potential along the
optical axis z is deformed by the acceleration a of the trap

Utot(ρ, z) = − U0

1 + (z/zR)2 exp
(
− 2ρ2

w(z)2

)
+ maz. (7.9)

bit is the same principle of bicycle retroreflectors.
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The additional term tilts the trap in the transport direction which is the weak confining
axis. In the limit amax ∼ U0/mzR ∼ 10 m s−2, the tilt is strong enough that the potential
has no longer a minimum and one completely loses the atomsa.

In figure 7.7.b we plot the transported atom number versus transport time (shorter
times have stronger accelerations). The maximum at t = 1.1 s (amax = 1 m s−2) is a
compromise between moving fast enough to avoid losses due to the poor vacuum of the
MOT chamber and slow enough to avoid spilling atoms from the trap and to avoid the
non adiabatic effects that we mentioned above.

7.3.3 Transport Efficiency

In figure 7.8, we plot transport data for different final positions of the trap, taken after
a back and forth path. The furthest point is at the centre of the glass cell, at z ∼ 280 mm
from the starting position. We attribute the strong atom loss in the central region of the
transport to the presence of magnetic gradient from a nearby ion pump. Experimentally,
we maximise the number of transported atoms adding a small bias magnetic field when
the atoms pass in the region 100 . z . 200 mm. We also find that the lifetime of the trap
depends crucially of the polarisation angle of the trapping light with respect to the field.
We find that the optimal polarisation is linear and perpendicular to the direction of the
guiding magnetic field.
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Figure 7.8 – a) Back and forth transport curve. Here z0,max is the furthest position
reached before bringing back the cloud. The cloud is displaced to z0,max, where we
wait a variable amount of time in order to have all data points taken after the same
total time. b) Lifetime curves in the MOT chamber (green squares) and in the science
cell (blue dots). The number of atoms in the dipole trap is plotted as a function of
the holding time t, the solid lines give the respective lifetimes τ = 1.03(5) s and
τ = 7.2(3) s. The inset shows the fast relaxation in the MOT chamber in the first
200 ms due to plain evaporation.

aWe mention that to provide a much tighter confinement in the axial direction a possible solution is
to use a standing wave trap. By changing the phase of one of the interfering beams the lattice position is
shifted and the atoms will move as if they were on a conveyor belt [164]. We did not implement this setup
since it is more technically demanding and it requires a single mode laser.
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7.4 Crossed Dipole Trap

Due to the different frequencies in z and ρ axes, a single beam trap is elongated in
the weak z direction, resulting in a cigar shaped trap. To obtain a tight confinement
along the three axes, we cross a second laser beam from a transverse direction. The
passage to a cross dipole trap (CDT) has two main benefits. First, the squeezing of the
cloud size increases the density, and hence the collision rate, which is fundamental for
the subsequent evaporative cooling. Furthermore, the passage from a cigar shape to a
pancake shape gives the right geometry for stabilising the cloud against dipolar collapse
(see chapter 2).

We use a single mode laser as second dipole trap (which we label DT2), delivering
7 W at 1064 nma, propagating along Z direction. DT2 enters the glass cell at the Brewster
angle (see picture 7.10) so it crosses DT1 roughly at an angle θ ' 35◦. To obtain an
oblate trap (ωY > ωX) the cross section of the beam is shaped into an ellipse of aspect
ratio 1:1.65 using cylindrical lenses (with measured beam waists wX = 44.8(2)µm and
wY =28.3(1)µm). The potential is no more cylindrically symmetric along the propagation
axis

UDT2(X, Y, Z) = − U0

wX(Z)wY(Z)
exp

(
−2
( X2

w2
X(Z)

+
Y2

w2
Y(Z)

))

' −U0 +
m
2

(
ω2

XX2 + ω2
YY2 + ω2

ZZ2
)

,
(7.10)

where ωX and ωY are now calculated from formula 7.6 using their respective waists. At
full power we measure ∼ 5 W on the atoms, giving as maximum trapping frequencies
fX = 424(3) Hz, fY = 699(5) Hz and fZ = 3.9(1) Hz. A measurement of the trap
frequency of DT2 in a wide range of power is plotted in figure 7.9. The fit shows the
expected square root dependence on the laser power ω ∝

√
P.

At low power the trap is sufficiently shallow that the gravitational energy mgw0 ∼ U0

and thus the atoms can spill out of the trap, like it was the case in the accelerating
transport ramp. Since in this case the trap is static, we compensate the effect of the
gravity by adding an opposite magnetic force

Utot(r) = UDT(r) + mgzez + Umag(r). (7.11)

For a Dysprosium cloud in the ground state
∣∣J = 8, mJ = −8

〉
, a vertical magnetic field

gradient of ∂z|B| ' 3 G cm−1 cancels completely the gravity field and the centre of mass
of the cloud levitates even if the trap beams are switched off.

The CDT is obtained by superposing the focus of DT1 and DT2. To get the frequencies
of the crossed trap, we have to consider the sum of the two harmonic potentials from the
two separate trapping beams. In the horizontal plane, the sum of the potentials gives

UCDT(x, z) = UDT1(x, z) + UDT2(x, z)

=
[

x z
]([ ω2

x,1 0
0 ω2

z,1

]
+ R(θ)

[
ω2

X,2 0
0 ω2

Z,2

]
RT(θ)

)[
x
z

]
,

(7.12)

where we arbitrarily choose the reference frame (x, z) as the proper directions of the first

aALS-IR-10-1064-SF, Azur Light System
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Figure 7.9 – Measurement of the trapping frequencies in the transverse directions
for the elliptic dipole trap DT2. The fit shows the expected behaviour f ∝

√
P.

The deviations for low power along the vertical direction y are due to the gravity
deformation of the trap.

beam and R(θ) is the two dimensional rotation matrix by an angle θ. The diagonalisation
of the resulting matrix gives the eigenaxes and eigenfrequencies of the total ellipsoid
potential. In the vertical direction y (which is the same for the two laser beams) the total
frequency is the quadratic sum

ωy = (ω2
y1
+ ω2

y2
)1/2. (7.13)

From the measured values at maximum laser power, the crossed dipole trap has the
frequencies fx′ = 2030 Hz, fz′ = 239 Hz and fy = 2120 Hz (x′ and z′ are the eigenaxes
resulting from the diagonalisation of 7.12).

x̂

ẑ

θB

DT1

DT2

Figure 7.10 – Crossed dipole trap configuration. The atom cloud is at the glass cell
centre. One finds the effective trapping frequencies from the contribution of the two
separate traps. The second trap is horizontally polarised and it enters the cell at
Brewster’s angle θB ' 53◦ to minimise reflections from the uncoated glass surface.
The picture is taken after a first evaporation in DT1.
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7.5 Evaporative Cooling

The goal of the following experimental procedure is to further reduce the temperature
of the cloud. We will use evaporative cooling, whose basic principle consist in letting
the hottest particles (those with an energy larger than the trap depth U0) escape the trap,
so that the remaining atoms eventually thermalise at a much lower temperature. The
decrease of the temperature slows down the process, since the average energy of the
particles becomes much smaller compared to U0. Since the atoms in the trap have a finite
lifetime, the evaporation needs to be forced by continuously lowering the trap depth.

7.5.1 The Cooling Process

The thermalisation process relies on elastic collisions between the atoms in the trap.
The time scale of the forced evaporation has then to be larger than the average time
between collisions τcoll. In a cloud of density n and with average thermal velocity v, the
elastic collision rate is given by

Γcoll = τ−1
coll = nσv, (7.14)

where σ is the scattering cross section for identical bosons. At low temperatures σ = 8πa2

(see chapter 2), so Γcoll = 8πna2v. In the trap DT1, just after the atoms have been
transported in the glass cell, we have Γcoll ' 130 s−1 (away from Feshbach resonances).
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Figure 7.11 – Scheme of the evaporation process. The trap has a depth U0 = ηkBT.
After the particles in the high-energy tail of the distribution (Ek > U0) are lost from
the trap, the remaining particles thermalise at a lower energy via elastic collisions. If
the trap depth is kept constant the process slows down, so one lowers the potential to
force the evaporation.

Other processes different from evaporation make the atoms escape from the trap
without decreasing the temperature. These processes mainly consist of collisions with the
background gas, inelastic collisions in the cloud and additional heating due to technical
limitation (e.g. fluctuations of the laser intensity). Experimentally, this limits the total
time of the evaporation and one has to find the right compromise between τcoll and the
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timescale dictated by atom losses τloss.
The final goal of the evaporation process is to reach quantum degeneracy. The

relevant parameter is in this case the phase space density D = nλ3
dB. For a perfect (non

interacting) Bose gas in a harmonic confining potential, the phase space density is given
by

D =

(
h̄ω̄

kB

)3 N
T3 . (7.15)

where ω̄ = (ωxωyωz)1/3 is the geometric mean of the trapping frequencies. The conden-
sation threshold is attained at D = 2.61, which gives as critical temperature for the phase
transition

Tc = 0.94
h̄
kB

ω̄N1/3. (7.16)

The cooling is performed in a discrete set of steps where one lowers the trap depth.
After each step the atom number reduces from an initial value Ni to a final number Nf.
In heuristic models of evaporation, all relevant quantities scale as (Nf/Ni)x, where x is a
power coefficient. We are particularly interested in the increase in phase space density,
which gives the cooling efficiency of the process. In order to characterise the efficiency, it
is usual to define the parameter

γ = − log(Df/Di)

log(Nf/Ni)
, (7.17)

which compares the increase in phase space density with the atom loss.

7.5.2 Evaporation with Longitudinal Multimode Laser
At full laser power, the ratio between the potential depths of the trapping lasers

in (7.12) is UDT2 /UDT1 ∼ 0.1. The atoms are mostly trapped in DT1 (the transport beam)
and we proceed to lower its power to reach comparable trap depths. We perform a first
evaporation, decreasing linearly the power of the IPG down to 10% of its initial value.
In the process we reduce the atom number from N ' 4.5× 106 (just after transport) to
N ' 5× 105, while the temperature decreases from T = 120 µK to T = 14 µK.

At the end of this first evaporation, the atoms are mostly trapped in the crossed
region. In the following steps we lower the depths of the two lasers together. To optimise
the evaporation we split the ramps of the laser power into linear steps of which we vary
the duration, the slope and the final power to find the optimum experimental values. In
figure 7.12 we show the result after an optimisation of a two-step evaporation ramp. The
total cooling efficiency of the ramp is γ ' 0.9.

At low intensities, the trap is quite deformed by the gravity. We have found experi-
mentally that the tilt of the trap actually helps the cooling process since it reduces the
trap depth for a given frequency.

At laser power lower than UCDT/kB ∼ 10 µK we expect to completely lose the atoms
if we do not counterbalance the gravity, as in equation (7.11). The use of magnetic field
appeared to be problematic, as we can see in figure 7.13. We observe strong heating for
increasing strength of the magnetic field, which severely limits the lifetime of the atoms
in the trap. We attribute the heating and the atoms loss to the multimode structure of
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Figure 7.12 – Evaporation in the crossed trap with DT1 and DT2. On the left, the
trap depth as a function of time. The evaporation ramp is made of two linear steps.
On the right the evolution of the atom number, the temperature and the phase space
density as a function of the potential depth.

the laser we use for the DT1. A similar problem was observed in the Stuttgart group
when using a similar multimode laser [165]. We are then forced to work at very low
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Figure 7.13 – Increase in the cloud size (i.e. in the temperature) and atom loss as
a function of the magnetic field B = (0, 0, B). We attribute the modulation to the
mode spacing of the DT1 laser.

fields to avoid heating and losses while proceeding with the evaporation. Moreover, the
control of Feshbach resonances in the crossed trap is spoiled by the heating, so we can
not control the scattering length in this crossed trap. The best measures values after
evaporation optimisation were N = 1.5× 103 atoms at T = 50 nK, with a phase space
density of D ∼ 0.1.
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7.5.3 Second Crossed Trap
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Figure 7.14 – Scheme of the laser setup for the third trap dipole trap DT3, which
mirrors the setup for DT2. We servo the laser power using an AOM and the beam is
elliptically shaped by a telescope using cylindrical lenses.

In order to get rid of the multimode laser, we then installed a third dipole trap (DT3),
which uses the same model of single mode laser as DT2. The optical setup mirrors the
one for DT2, with an AOM to control the laser power and a cylindrical telescope to
shape the beam cross section into an ellipse. The measured frequencies of the third
trap are fx = 380(10) Hz, fy = 575(15) Hz and fz = 3.06(3) Hz at full power (∼ 8 W on
the atoms). The beam is sent on the atoms from the opposite site of the glass cell with
respect to DT2, and the two traps cross at an angle of ' 90.1◦ (see picture 7.14). Since
the beams are perpendicular, the crossed trap frequencies in the horizontal plane are
well approximated by the fx of the single beams, while vertically one has fy = 905 Hz
according to formula (7.13).

As for the previous case, we first lower the power of the multimode laser DT1 to
20% of its initial value, having N ' 1.5× 106 left in the trap. In the crossed dipole
trap we typically load N ' 4.5× 105 at a temperature T = 14 µK. The three beams are
present at this instant, then the power in DT1 is slowly ramped to zero before starting
the evaporation in DT2 and DT3.
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Figure 7.15 – Preliminary results on evaporative cooling in the new crossed dipole
trap.

Preliminary evaporation ramps seem promising. At the time of this thesis writing,
we reach temperature as low as T ' 30 nK with N ' 2× 103. The phase space density is
close to the condensation threshold (see picture 7.15), but we are not expecting a stable
condensate for our trap aspect ratio. To reach a stable configuration, we are currently
characterising the evaporation ramps at different background scattering lengths, that we
can now tune using Feshbach resonances since we are no more limited by the magnetic
field induced losses as in the previous trap.



8
Conclusion and Perspectives

In this manuscript I presented the construction of a new experiment on ultracold
Dysprosium gases. The experiment was built from scratch three years ago, in the new

laboratories of the Collège de France in Paris, and is now fully working and producing
ultracold gas of Dysprosium. I gave a detailed description of the setup and of our
experimental procedures to trap and cool the atoms. I presented a detailed study of the
magneto optical trap, that we published in [80].

After the first studies of forced evaporative cooling in a crossed dipole trap using
a (longitudinal) multimode laser, we currently changed our experimental setup and
we load the atoms in a second crossed trap, which uses only single mode lasers. The
results on the new setup look promising and we expect to achieve soon the condensation
threshold. At the time of this thesis writing, we reach temperatures as low as T ' 40 nK
with N ' 2× 103 and phase space density D ∼ 1.

In the manuscript I explained that working with Dysprosium is quite different than
the most common laser cooled atomic species due to its peculiar characteristics, which
manifest in different ways the experiment.

I illustrate how the combination of Dysprosium’s large spin and the characteristics
of two-electron atoms traps (which work on narrow linewidth transitions) gives rise to
interesting mechanisms in the MOT. In particular, gravity plays a crucial role due to its
interplay with optical forces, leading to a spin polarisation of the trapped atoms.

Dysprosium is the most magnetic element in the periodic table, which makes it the
best candidate to study dipolar physics. On the other hand, I review some consequences
of the dipole-dipole interaction which introduce experimental challenges, such as dipolar
relaxation and dipolar instability, the latter requiring a good design of the optical traps
geometry.

The spin-light coupling has a tensorial nature that offers interesting possibilities. The
polarisation of the laser beams and the internal atomic state drastically influence the
behaviour of conservative traps, which are usually considered as spin-independent. More-



110 Chapter 8. Conclusion and Perspectives

over, the electronic spin can be manipulated with the right choice of light polarisation. I
showed that the residual heating of two-photon transitions between ground state Zeeman
levels is considerably reduced with respect to alkali atoms, making Dysprosium a great
system for the study of spin-light coupling. Raman transitions are also a fundamental
ingredient to generate light-induced artificial gauge fields in ultracold atomic clouds.
I discussed a practical implementation in our setup and evaluated the experimental
requirements and the expected results.

On the experimental setup, we are currently building the optical dipole trap using
light at 626 nm, which is the transition I considered in detail to study spin-light coupling.

Future Perspectives

During this thesis we worked solely with the isotope 164Dy, which is a boson. In
our future plans we will proceed to trap and cool 161Dy, a fermion. Evaporative cooling
should work straightforwardly [56], as a result of the finite cross-section for dipolar
elastic-collisions at low temperatures.

Following the implementation of synthetic gauge fields, we will focus on the study
of spin-orbit coupled gases, in a gas of fermionic Dysprosium. We are particularly
interested in the study of topological superfluids and insulators, which can be realised
using spin-orbit coupling. Topological insulators are extremely interesting systems which
are insulating in the bulk and have gapless states at the edges [76]. In our future project,
we will study a p-wave superfluid (which is an exotic superconductor with an anti-
symmetric Cooper pairing), which can be realised in one dimensional atomic wires [166].
Also in this case we should benefit from the reduced heating from atomic species as
Dysprosium [167].

The interest of such a system relies on its exotic edge excitations. In particular it
exhibits zero-energy modes, which are Majorana bound states. These quasi-particles are
linked to the famous Majorana fermions, which are fundamental particles that are their
own antiparticles [168].

In the last years Majorana quasi-particles have been observed in condensed matter
topological superconductors [169]. The realisation of such a system within our setup
should benefit from the standard techniques of ultracold atoms physics, which can
provide a clearer indication of a topological order in the system [170]. The principal
interests in Majorana excitations are their non-locality and their non-Abelian statistics.
These properties can be exploited to encode extremely robust qubits with respect to
environment perturbations (the so-called “topologically protected” qubits), due to the
negligible probability of unwanted non-local processes that destroy the coherence. In this
respect, Majorana fermions are one of the best candidates to realise quantum computation
protocols [171].
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A
Dysprosium

Dysprosium (Dy) still remains uncommon in cold atoms experiments, so it can be
worth introducing its physical properties. In order to find this element on the

periodic table we have to look into the lanthanides line (the so called rare earth metals),
were it sits at number 66.

Dysprosium is found in nature as a bright silver-coloured metal. It crystallises in
an hexagonal closed-packed form. Dysprosium is also very soft to be machined, which
makes it very easy to cut if bought in large chunks.

One of the most striking properties of Dysprosium is the fact that it possesses the
highest magnetic dipole moment among all elements, 10 Bohr magnetons (µB). This
characteristic makes it one of the best suitable candidates for the study of strong dipole–
dipole interactions.

A.1 Basic Properties

In comparison to other laser–cooled species, one good characteristic of Dysprosium is
the presence of two stable fermionic isotopes and two stable bosonic isotopes, each of
them with a natural abundance close to 25%. In total Dysprosium is found in nature as a
mixture of seven stable isotopes, the most common among them are listed in figure A.1.

Dysprosium’s melting point at 1 atm is quite elevated: 1412 ◦C. For this reason one
needs a high temperature oven to evaporate the sample. The black body radiation of the
oven keeps heating a part of our UHV vessel, which in general causes degradation of the
vacuum quality (due to the increased desorption rate from the chamber walls). Luckily it
turns out that Dy exhibits getter properties, which means that particles in the chamber
stick on the coating generated by the lost atoms on the vacuum walls and thus lowering
the vacuum pressure.
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Figure A.1 – (a) Dysprosium vapour pressure as a function of temperature. The
typical oven operation is at 1050 ◦C. (b) Natural isotopes Dysprosium. Fermions are
in lighter blue.

A.2 Atomic Spectrum

Dysprosium belongs to the family of elements possessing a submerged electron
shell. Its valence shell has 12 more electrons than the previous noble gas, Xenon. These
electrons first occupy the 6s states, leaving the underlying 4 f shell partially unfilled. The
electronic configuration of the ground state is thus

[Xe]4 f 106s2.

The spin-orbit interaction of the electrons in the incomplete 4 f shell gives rise to a
huge 5I8 spectral term for the ground state (as written in the standard Russell-Saunders
notation 2S+1LJ).

La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Rb Cr

5 I8

3H6

1S0

6H 15
2

4 I 15
2

2F7
2 7S3

2S 1
2

Figure A.2 – Ground state total angular momentum J of lanthanides. For atoms
that had been laser cooled is also indicated the spectral term of the ground state [172].
The atomic species in lighter colour can not be laser cooled since they do not have
an inverted fine structure multiplet in the ground state. Rb and Cr are aside for
comparison.
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Among all natural stable elements, Dysprosium possesses the largest spectral term in
the ground state (see figure A.2 to compare to other Lanthanides).

A.2.1 Laser Cooling Transitions

The level scheme of Dysprosium presents plenty of lines (Figure A.3). Nevertheless,
as we will see below, the only transitions that are actually interesting for our purposes
are the ones regarding the 6s-electrons, while the f shell will mostly be responsible of the
magnetic properties of the atom. From a laser cooling perspective, Dysprosium seems to
be equivalent to an alkali-earth atom, which has only two valence electrons.
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Figure A.3 – Dy energy level structure. Green and black lines refer respectively to
the even and odd parity of the levels. The red and blue optical transitions used for
laser cooling are the triplet and singlet excitation of one electron from the outer shell.

The transitions we consider are due to the promotion of one 6s electron to the upper
6p state, which can happen both in a singlet or triplet state. Remember also that for heavy
atoms the electronic spin-orbit interaction is stronger than the individual spin-spin or
orbit-orbit interactions. For the excited states of Dysprosium, the spin and orbital angular
momentum of the outer 6s6p and the submerged 4 f shells will individually couple to
total angular momenta, j1 and j2 respectively, which subsequently couple together. For
this jj–coupling we use the standard spectroscopic notation (j1, j2)J . The two mentioned
lines are:

• The first case is the blue transition at 421 nm between the [Xe]4f106s2 5I8 ground
state and the [Xe]4f10(5I8)6s6p(1P0

1)(8,1)0
9 excited state. This strong transition has

a broad linewidth Γ = 2π × 32.2 MHz, which makes it suitable for cooling and
slowing the Dy atoms.

• The second case is the 626 nm closed transition between the ground state and the
[Xe]4f10(5I8)6s6p(3P0

1)(8,1)0
9 excited state. Since the ground state is a singlet state

6s2 (1S0), it is a spin changing transition (so–called intercombination line) that is
partially electric–dipole–forbidden, resulting in a narrow linewidth Γ = 2π × 135
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kHz. This fact gives rise to some peculiar properties of the MOT, as explained in
detail in chapter 6.

The fundamental parameters of these two transitions are summarised in A.1: Γ is the
spontaneous decay rate, τ = 1/Γ is the natural lifetime. From these parameters and the
wavelenght we can calculate the useful quantities for laser cooling and trapping, like the
saturation intensity Is = πhc/3τλ3, the Doppler cooling temperature limit TD = h̄Γ/2kB

and the limit temperature due to photon recoil Tr = h̄k2/mkB.

λ Γ τ Γ/2π Isat TD Tr

421.291 nm 2.02× 108 s−1 4.94 ns 32.2 MHz 56.4 mW cm−2 774 µK 660 nK
626.082 nm 8.5× 105 s−1 1.2 µs 135 kHz 72 µW cm−2 3.2 µK 298 nK

Table A.1 – Laser cooling parameters for the 421 nm and the 626 nm optical
transitions. Data from [131, 173].

A.2.2 Hyperfine structure

Hyperfine structure summarises the deviation in the atomic spectrum from the most
simple atomic picture – the one that considers the nucleus as being a point like source of
infinite mass for the central potential. In reality, the nucleus does not have an infinite
mass, nor is a perfect electric monopole, and this gives rise to additional corrections.

For atoms were the nucleus has a nuclear spin I 6= 0, the fine structure energy levels
are further split into more components, due to the interaction of the electron total angular
momentum and the nucleus magnetic moment M = gIµN I/h̄. The good quantum
number will be in this case F = I + J and the states will be labeled according to the
usual angular momentum sum rule. Bosons and fermions have integer or half integer
nuclear spin. In the case of Dysprosium I = 0 for the bosons, so there is no hyperfine
structure, while I = 5/2 for the fermionic isotopes. Therefore we expect that the energy
levels of the fermions are split into 6 hyperfine levels.

In addition to this effect one has to consider that different isotopes have different
nuclear mass, which gives rise to an isotopic shift. The shift is linear in the mass change.
In the fermion case one has to consider the weighted centre of the hyperfine levels to
calculate the shift.

We performed high resolution spectroscopy on the atoms and we were capable to
resolve the whole hyperfine structure.

A.2.3 Laser spectroscopy

In A.4 one can see the experimental spectra of the two optical transitions previously
considered in this chapter. The laser frequency was varied by some GHz around
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Figure A.4 – Experimental spectra (points) and Voigt fit (solid line) for the two
considered optical transitions. Bosonic isotopes are indicated by boxes. Both frequency
axes are centred on the 164Dy line. Note that the red transition extends over a broader
frequency range.

the resonance and the fluorescence was collected on a large area photodiode. Every
fluorescence peak in the data is fitted using a Voigt function, which is a convolution
of a Lorentzian and a Gaussian profile. These two profiles respectively account for the
natural linewidth of the transition and for the broadening effects of the line. The latter
effects are mainly due to the temperature (Doppler) broadening, since in our case we are
performing the spectroscopy on the thermal jet at the output of the high temperature
oven.

One can clearly see the hyperfine structure of the ground state of the two stable
fermionic isotopes. The two isotopes have the nuclear spins with opposite sign, which
results in a relative inversion of the hyperfine levels.

A.3 Magnetic Properties

In the following paragraph I will list some formulae that can be useful when dealing
with the magnetic properties of Dysprosium.
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A.3.1 Magnetic Moment

The magnetic moment of an atom is given by:

µ = mJ gJµB (A.1)

where mJ is the considered magnetic sub-level, µB is the Bohr magneton and gJ is the
Lande’s g-factor. The latter can be calculated using the following formula in the case of
pure spin-orbit interaction (as in the ground-state):

gJ = 1 + (gS − 1)
J(J + 1)− L(L + 1) + S(S + 1)

2J(J + 1)
. (A.2)

gS is the gyromagnetic ratio of electron, given within the first order correction from
quantum electro-dynamics by:

gS = 2
(

1 +
α

2π
+ . . .

)
∼ 2.0023. (A.3)

For Dysprosium, the ground state g-factor calculated from the formula above is gJ ∼ 1.251.
More precise theoretical values should include relativistic corrections that give slightly
lower values. Experimentally, the measured value is gJ = 1.241. The absolute ground
state |J = 8, mJ = −8〉 then has a magnetic moment:

µ = mJ gJµB = −9.93µB (A.4)

which is the highest magnetic moment among all elements already cooled to quantum
degeneracy, and is only exceeded in nature by Terbium (Tb) which has µ = −9.94µB in
its ground state.

In the case of the excited states, one also has to additionally consider the jj−coupling
scheme. If the coupling happens between two states j1 and j2, the formula of gJ is then
given by:

gJ = gj1
J(J + 1)− j2(j2 + 1) + j1(j1 + 1)

2J(J + 1)
+ gj2

J(J + 1)− j1(j1 + 1) + j2(j2 + 1)
2J(J + 1)

. (A.5)

For the transitions we considered in this thesis j1 = 8 and j2 = 1. Only gj1 6= gj2 since the
transition on the blue has S = 0 while the red has S = 1. The formula gives gJ = 1.223
for the blue transition and gJ = 1.278 for the red. The result is precise within a few per
mille error from the measured values, which are gJ = 1.22 and gJ = 1.29 respectively.

In the case of fermionic isotopes one expects also the splitting for the hyperfine
structure to follow

gF = gJ
F(F + 1)− I(I + 1) + J(J + 1)

2F(F + 1)
(A.6)

A.3.2 Zeeman Effect

The presence of a magnetic field B lifts the degeneracy of the magnetic sublevels
inside a J manifold, in the same way that the spin-orbit interaction gives rise to the fine
structure. In the case of weak fields (weak compared to the fine structure splitting), the
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shift is of first order in the magnetic field B and can be written as

∆EZee = µBmJ gJ B, (A.7)

were the ∆E is with respect to the energy at B = 0. In practice, it is more useful to rewrite
the shift in terms of frequencies:

∆νZee = mJ gJ
µB

h
B, (A.8)

where h is the Plank constant, so that µB/h ∼ 1.4 MHz G−1. We mainly work with a
polarised cloud in the |J = 8, mJ = −8〉 ground state and figure A.5 lists the Zeeman
shifts for the two optical transitions we consider in this thesis. These values can be
useful e.g. for calibrating the magnetic field during the imaging process. The shift can be
written simply as

∆νZee,q =
µB

h
(mJ gJ −mJ+qgJ′)B (A.9)

were the index q ∈ {−1, 0, 1} accounts for the polarisation of the light (σ−, π and σ+
respectively ). Remember that for fermions, in the case of small magnetic fields compared
to the hyperfine structure, the shift will be given instead by

∆EZee = µBmFgFB. (A.10)

σ+ π σ−

|mJ = −8〉

|mJ′ − 9〉
|mJ′ − 8〉
. . .

J

J′

B

E

Zeeman shifts [MHz G−1]

λ ∆ν1 ∆ν0 ∆ν−1

421 nm 1.93 0.22 -1.48
626 nm 1.25 -0.56 -2.36

Figure A.5 – Zeeman shifts for the ground state and the excited state addressed by
the two optical transition considered before. Since the atomic cloud is polarised in
the |J = 8, mJ = −8〉 state, we consider the only three transition starting from this
state.



B
Imaging Dysprosium Clouds

Most of the data presented in this thesis are obtained by the analysis of pictures of
the atomic cloud. In the following I will briefly summarise the most important

ideas on imaging.

B.1 Absorption Imaging

In our setup we use absorption imaging. Despite the existence of other imaging
technics (fluorescence, phase contrast imaging, ...), absorption imaging is quite easy to
setup and calibrate and provides high signal to noise results. In brief it consists in shining
resonant light on the atoms and collecting the casted shadow on a CCD.

A light beam propagating along the z direction through an atomic cloud of density
n(x, y, z) will be absorbed accordingly to the Lambert-Beer law, thus the collected intensity
on the camera chip will be

I(x, y) = I0(x, y) exp
(
−
∫

dz n(x, y, z) σ(δ)

)
. (B.1)

The atomic density, integrated along the cloud thickness, is multiplied by the light
scattering cross section:

σ(δ) =
σ0

1 + 4(δ/Γ)2 (B.2)

where σ0 = 3λ2/2π is the resonant absorption cross section for a two level system. Note
how the cross section depends only on the wavelength of the optical transition and is
thus much bigger than the size of an atom. The resonance frequency is easily located
after a frequency scan like the one in figure B.1.

Setting the imaging frequency exactly at resonance (δ = 0) we can directly recover
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Figure B.1 – Resonance curve using light at 421 nm. The profile is Lorentzian,
following the scattering cross section expression (B.2), the width being the natural
line width Γ = 2π × 32 MHz.

the atomic column density by analysing the transmitted intensity:

n̄(x, y) =
∫

dz n(x, y, z) = − 1
σ0

ln
(

I(x, y)
I0(x, y)

)
=

1
σ0

OD(x, y) (B.3)

Here, the last equality should be taken as a definition for the optical density OD.

B.1.1 Dark-frame subtraction
Various noise sources may reduce the image quality: dark currents (charge carriers

excited by thermal energy), transfer noises, read out noise (from the amplification stage
in the ADC), hot pixels (due to charge leaks from the electronics to the image sensor), etc.
Some of this noise constitutes a fixed pattern and only depends on the exposure time
of the chip.. This kind of noise can be reduced or even canceled by using the dark field
correction: we collect a dark image Ibgd with the same exposition time than the image
we want to analyse. Than we subtract the dark frame to the image and obtain a picture
clean from fixed pattern noise and from any background light that might still be present.

Atoms Camera

f1 f2

Iatoms Iprobe Ibgd OD

Figure B.2 – Typical imaging setup. Below, the construction of an image of the
atoms in the dipole trap. The image with atoms, without atoms and the dark frame
are combined together to give the optical density of the cloud as in equation (B.4).

If we want to get the collected intensity with only the probe beam present I0 or with
the probe beam and the atoms I we simply take the two pictures and a background
image with same exposure time, so that I0 = Iprobe − Ibgd and I = Iatoms − Ibgd. It is thus
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very simple to obtain the optical density from equation B.3:

OD = ln
(

Iprobe − Ibgd

Iatoms − Ibgd

)
(B.4)

B.1.2 Cross section corrections

Formula B.3 is in general underestimating the density, since the cross section formula
is valid for a two level system. In the real atom this can almost be realised imaging the
most stretched states with perfectly circular light. In general one has to multiply the
expression for the cross section B.2 by the correct Clebsch-Gordan coefficient. For the
imaging transition used in our experiment, the coefficient are plotted in figure B.3.
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Figure B.3 – Clebsch-Gordan coefficients cmJ ,q for the Zeeman states mJ < 0. The
values are symmetric for positive states cmJ ,q = c−mJ ,−q. In green and blue are the
coefficients for σ+ and σ− light respectively (q = ±1) and in red for π polarisation
(q = 0).

We typically work with a spin polarised cloud in the |J = 8, mJ = −8〉 ground state.
Therefore we should take into account the cross section reduction if we are not imaging
on the cycling transition. According to the light polarisation, the effective cross section is:

σ = σ0

(
eσ− +

1
9

eπ +
1

153
eσ+

)
· ε, (B.5)

where ε is the polarisation of the imaging light in the circular basis. Taking this into
account is mandatory to get the right atom number in Stern Gerlach images, like the
one presented in chapter 6. A good calibration requires also checking the guiding field
direction and strength, in order to be certain of the quantification axis.

Nevertheless, this is still an approximation, valid only for very low saturation param-
eters and short pulses (compared to the optical pumping time). In fact, the imaging light
will in general optically pump the atoms and a cloud prepared |J = 8, mJ = −8〉 will
depolarise during the imaging pulse. Thus, a more careful estimation of the cross section
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requires to solve the optical Bloch equations to recover the dynamics in the electronic
spin states undergoing optical pumping from imaging light (see an example in figure B.4).
The total cross section should be then calculated using the time dependent populations.
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Figure B.4 – Evolution of the population in the ground state spin states when atoms
interact with a pi polarised light with saturation parameter s = 0.1. The number on
the solid lines refers to the considered |mJ〉 state.

B.2 Thermometry

Temperature measurement are performed by time-of-flight imaging (TOF): as the trap
is suddenly switched off, the cloud start to fall and to ballistically expand due to atoms
initial velocity.

B.2.1 Thermal Clouds
Let us consider the case of an atomic cloud at a temperature above the condensation

threshold T > Tc. In the classics limit the phase space density follows a Maxwell
distribution:

f (r, p) = e
(

µ−E(r,p)
)

/kBT. (B.6)

The spatial density in the trap n(r) is then obtained by integrating f (r, p) over the
momenta p. Turning off the trap, the gas will expand freely according to the initial
velocity of atoms r(t) = r0 + pt/m. The integration over the initial positions and the
momenta give in this case:

nTOF(r, t) =
1

λ3
dB

∏
i

1√
1 + ω2

i t2
e
(

µ−mω2
i r2

i /2(1+ω2
i t2)
)

/kBT (B.7)

At times t longer than the inverse frequency 1/ωi the width of the exponential is no
more anisotropic since it loses the dependence on the initial frequency. The cloud then
expands isotropically, the rms sizes σx,z will increase linearly with the time t according to
the initial thermal temperature. We can then fit the size using the following function to
recover the temperature in the trap:

σ2
i (t) = σ2

0,i +
kBT
m

t2 (B.8)
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By varying the flight time, i.e. the waiting time after which the image is taken, one can
get the velocity of the cloud and hence its temperature.
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Figure B.5 – Vertical size σz and position z of the cloud as a function of time of flight.
On the right, a stroboscopic picture of the falling cloud.

Note that in the absence of any magnetic field, the centre of mass motion can be used
to calibrate the imaging magnification with the local gravity.



C
Notes on the Experiment Database

Since during this thesis I worked on the construction of a new experimental apparatus,
one has to know I put a lot of effort in designing the softwares that we use on a daily

basis. The main point is the implementation of the database that stores every metadata
related to the images. In addition to the database the programs I developed take care
of fitting the pictures and recover and analyse the data once they are stored into the
database.

C.1 Database

As any respectful experiment we need a lot of statistics to have meaningful results.
Statistics means lots of data, and lots of data need some kind of organisation. The usual
way informatics deals with a big quantity of information is databases.

A database is an organised data structure that permits very fast operations on the
stored informations (searching, ordering, filtering, etc.), and can easily link to external
files that are not actually part of the database itself.

We choose to use the MySQL language, which is one of the most spread database
management systems (DMS), being also the basis of the common open-source LAMP
(Linux-Apache-MySQL-Perl/PHP/Python) servers.

MySQL is a relational DMS. It means that data are stored using relations between
them (in databases jargon, the relations are called tables). Each single value recorded in
the database should be univocally recovered by resorting the combination of the relation
(i.e. the table name), a primary key and of a column name. The examples presented in
the next section will make all of this much more understandable.

C.1.1 Structure of the database

During the design of the database, one should also pay attention to avoid single big
tables. The relations should be made as fundamental as possible, without of course losing
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any information, such that any possible modification can be made on the small tables
without affecting the rest of the database nor the definition of the tables themselves. This
process is called database normalisation.

To be more clear, let us give an example. Let us suppose that for every measure we
take in our experiment we want to store details about the laser powers, the voltage we
read on some photodiodes, etc. The simplest idea is to organise the data as the table
shown below, storing in a single line of the table all informations regarding a certain
measure.

1 mysql> SELECT * FROM simple_table;
2 +-----+----------------------+-------------+------------+-----------------+---
3 | id | date | blue power | MOT fluo | V photodiode 1 | ...
4 +-----+----------------------+-------------+------------+-----------------+---
5 | 1 | 2015-11-05 09:27:35 | 2.1 | 7.7 | 1.2 | ...
6 | 2 | 2015-11-05 09:27:43 | 2.4 | 7.5 | 1.3 | ...
7 ...

This will definitely permit to univocally recover any value we want. Moreover, here
one can see the interest of having a database for later data analysis. For example, recover
data where the fluorescence of the MOT was bigger than some value reads simply:

1 mysql> SELECT id FROM simple_table WHERE MOT fluo >= 3.0;

The problem in this example is that the database is not in a normalised form. What
will happen if one day we want to add a variable? Or if at some point we remove the
variable blue_laser_pow and we don’t want to register its value anymore? In the first
case we will be obliged to modify the table definition and, in the second case, we have to
keep a column that we are never going to use anymore.

Let us look at the normalised version of the previous simple example. The single
table get decomposed into more fundamental information:

1 mysql> SELECT * FROM measures;
2 +-----+----------------------+
3 | id | date |
4 +-----+----------------------+
5 | 1 | 2015-11-05 09:27:35 |
6 | 2 | 2015-11-05 09:27:43 |
7 ...
8 mysql> SELECT * FROM parameters;
9 +-----+----------------------+

10 | id | name |
11 +-----+----------------------+
12 | 1 | blue power |
13 | 2 | MOT fluo |
14 ...
15 mysql> SELECT * FROM parameter_values;
16 +------------+--------------+-------+
17 | measure_id | variable_id | value |
18 +------------+--------------+-------+
19 | 1 | 1 | 2.1 |
20 | 1 | 2 | 7.7 |
21 ...
22 | 2 | 1 | 2.4 |
23 ...

One can clearly see that decomposing the information in more fundamental relations,
the problems mentioned above are solved. Adding a new variable simply requires to add
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a new line on the table with the variables definitions. If one measurement does not use a
variable, simply it will not be saved on the results table.

After these premises, the structure of our database should be more clear. This is a
scheme of our current databases table:

sequence

id name date

image

id name date sequence id

cicero variables

id name

parameters

image id cicerovariable id value

sensor

id name description

fit functions

id name

fit parameter

id name

fit

id image id function id

results

fit id param id value

sensor value

sensor id date value

Figure C.1 – Current relational scheme of our database. Arrow indicate foreign keys
to a given table and were they are stored.

Note that the database includes also to the storage of the data analysis results, as
we will see in the following section. An additional database stores the values read
from different sensors connected to a data logger running on a Raspberry Pi server.
we typically monitor the temperatures in the room and the magnetic field at different
positions.

C.2 Data Analysis

The database stores all the metadata and the path to the actual data, which are the
images taken at the end of a sequence. The model operation we perform on these images
is first getting the optical density and than perform some kind of fit.

C.2.1 Image fitting
For usual fitting function (2D gaussian, etc.), results can be analysed both in real time

(during a sequence) or at any later moment using the program fit.py. The program
uses the ipython qt console to have an immediate visual feed of optical density plot,
marginal distributions and fit result, giving a rapid information on the cloud position
and atom number.

The results of the fit of every single image constitute a dictionary that looks like the
following:
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1 data = {
2 ’fit function’ : fit_name,
3 ’fit results’ : {’center_x’: x0, ’center_y’: y0, ’sigma_y’: y0, ...
4 ’fit errors’ : {’center_x_e’: x0, ’center_y_e’: y0, ’sigma_y_e’: y0, ...
5 ’N’ : atom_number,
6 ’N_error’ : atom_number_error,
7 ’variables’ : scanning_sequence_variables,
8 ’camera’: {’name’ : camera_name, ’magnification’ : M, ’pixel_size’: pxs}
9 }

Once the single images have been fitted these results are then serialised in a python pickle
file as backup and are uploaded in the database along with all the other measurements
metadata.

C.2.2 Data processing
The informations stored in the database can be recovered and analysed via the

program data_analysis.py.
The program starts a connection with the database and permits the more usual

operation that we perform on the fit results. Typically it is possible to plot one of the
scanning variable vs some result, average or rescale the data. The communication with
the database is useful to filter the results using any other stored metadata (for example we
may want to retrieve the atom number restrictedly for measurements when the power in
the slower was a certain value, the magnetic field of a coil was inside a given range, etc.).
The program contains also the mostly used fit functions for the routine measurements
(like decay curves, TOF sequences) and allows to easily add any custom function that
one may need for future use.
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Résumé
Dans ce travail de thèse, je présente la construction
d’une nouvelle expérience pour la production de gaz ul-
tra froids de dysprosium. En tirant parti de la struc-
ture électronique à couche incomplète de ces atomes,
nous visons à la réalisation de champs de jauge synthé-
tiques, qui pourront conduire à l’observation de nouvelles
phases (topologiques) de la matière. Le couplage du spin
atomique avec le champ lumineux, plus efficace que pour
des atomes alcalins, permettra d’atteindre des régimes
d’interactions fortes qui restent, jusqu’à présent, hors de
portée expérimentale. J’adapte des protocoles existants
pour la réalisation de champs de jauge dans le cas de
Dysprosium, en tenant compte de son grand spin élec-
tronique (J = 8 dans l’état fondamental).
En outre, le dysprosium a le plus grand moment magné-
tique parmi les éléments stables, et il est donc le meilleur
candidat pour l’étude des gaz dipolaires.
Je détaille le dispositif expérimental que nous avons con-
struit et comment nous effectuons le piégeage et le re-
froidissement du dysprosium. Nous étudions en détail le
comportement du piège magnéto-optique, qui est réalisé
sur la transition d’intercombinaison 1S0 ↔ 3P1. La raie
étroite et le grand spin rendent l’opération du piège très
complexe. Néanmoins, je montre que sa compréhension
devient assez simple dans le régime où le nuage se po-
larise spontanément en conséquence de la combinaison
des forces optiques et gravitationnelles.
Enfin, je décris les dernières étapes du transport optique
et de l’évaporation, ce qui conduira à la production d’un
gaz dégénéré.

Mots Clés

dysprosium, gaz ultra froids, champ de gauge artificiel,
gaz dipolaires.

Abstract
In this thesis I present the construction of a new exper-
iment producing ultra cold gases of Dysprosium. Us-
ing the favourable electronic structure of open-shell lan-
thanide atoms, we aim at the realisation of laser-induced
synthetic gauge fields, which could lead to the observa-
tion of novel (topological) phases of matter. The cou-
pling of the atomic spin with the light field, improved
with respect to alkali atoms, opens the possibility to ex-
plore strongly interacting regimes that were up to now
out of experimental reach. I adapt existing protocols for
the implementation of gauge fields to the case of Dyspro-
sium, taking into account its large electronic spin (J = 8

in the ground state).
Moreover, Dysprosium has the largest magnetic moment
among the stable elements, and is the best candidate for
the study of dipolar gases.
I describe the experimental setup that we built and how
we perform the trapping and cooling of Dysprosium. We
study in detail the behaviour of the magneto-optical
trap, which is performed on the 1S0 ↔ 3P1 intercom-
bination line. The narrow linewidth and the large spin
make the trap operation quite challenging. Nevertheless,
I show that its understanding becomes quite simple in
the regime where the cloud spontaneously polarises due
to the interplay of optical and gravitational forces.
Finally I describe the last steps of optical transport and
evaporation, which will lead to the production of a de-
generate gas.

Keywords

Dysprosium, ultracold gases, synthetic gauge field, dipo-
lar gases.
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