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Chapter 1

Introduction

1.1 Overview of flow energy harvesting

The development of techniques that extract energy from flowing air and water dates
back to the first century A.D., and lasts to our days [Shepherd 1990]. One of the
most ancient and well-developed methods of harvesting energy from wind is the
windmills that were widely used during the 17th and 18th centuries in Western Eu-
rope (Fig. 1.1a). Due to the increasing awareness of the scarcity and non-renewable
nature of fossil fuels, windmills attract a renewed attention, and modern wind tur-
bines (Fig. 1.1b), based on a similar mechanism of ancient windmills, are being
rapidly developed in many countries. Wind turbines generates energy through their
rotary propeller, and the driving force of the latter’s rotation is not limited to air
flow. Novel concepts such as tidal turbines are recently receiving an increasing atten-
tion (Fig. 1.1c). Tidal turbines work under the same mechanism as wind turbines,
with a major difference being that the rotation of their propeller is driven by tidal
waves.

The underlying mechanism of harvesting flow energy using both wind and tidal
turbines is the solid bodies’ motion induced by surrounding fluid flows. The interest
of using flow-induced motions of solid bodies as means of energy harvesting also
gives rise to a renewed interest in a larger thematics of mechanics, i.e. the fluid-
solid interactions, as potential energy-harvesting mechanisms. Many recent works
focused on canonical flow-induced vibrations, such as the coupled mode flutter of an
airfoil [Peng 2009, Zhu 2012, Boragno 2012], or vortex-induced vibrations of a rigid
cylinder or a flexible cable [WEB1 , Bernitsas 2008, Grouthier 2014].

Another canonical and widely studied example of fluid-structure interactions is
the flutter instability of flexible plates, or flags. The present work will focus on this
phenomenon and explore its potential for energy harvesting.

1.2 Flutter instability

A flexible plate, or a flag, placed in a flow would stay at rest (left, Fig. 1.3) or flap
(right, Fig. 1.3) as a result of a competition between its rigidity, which tends to
restore the plate to its position of static equilibrium, and the pressure applied by
the surrounding flowing fluid, which pushes the plate away from this equilibrium.
Another decisive factor for the flutter motion to occur is the flag’s inertia: a flag
would not flap if it has no inertia.
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(a) (b)

(c)

Figure 1.1: (a) A medieval wind mill in Saint-Chinian, France, (b) offshore wind
turbines of Vattenfall company and (c) artistic view of a tidal turbine by SABELLA
(Source: WEB).

(a) (b)

Figure 1.2: (a) Schematic representation of an airfoil and (b) VIVACE, an energy-
harvesting device based on vortex-induced vibration [WEB1 ].
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Figure 1.3: National flags at rest (left, photo taken during COP10 in Nagoya, Japan,
18–29, Oct. 2010, courtesy to Malaka Rodrigo) and flapping (right, Source: web)

Compared with previously mentioned flow-induced motions, such as the airfoil
flutter or the vortex-induced vibration (VIV) of rigid cylinders, which are motions of
rigid bodies involving only a limited number (usually 1 or 2) of degrees of freedom,
the flexibility of the flag induces large deformations of the structure itself, thus a
large number of degrees of freedom. The dynamics of a flag flapping in a flow is
influenced not only by the velocity and direction of the incoming flow, but also by
the physical properties of the flag, including its dimension and material character-
istics. In terms of modelling, due to the large number of degrees of freedom, this
problem involves a strong coupling of governing equations of both fluid dynamics
and elasticity, hence the difficulty of solving this problem.

The earliest works on this problem are mainly experimental studies
[Taneda 1968] with theoretical analysis using the potential flow theory [Wu 1961,
Kornecki 1976]. Recently, with the advent of powerful scientific computing tools
and sophisticated experimental techniques, the flutter instability of a flag receives
an unprecedented popularity among researchers in the field of both fluid and solid
mechanics. One may divide existing works into two main categories: studies of the
stability and dynamics of a single flexible plate, and those of several flexible plates
in a uniform flow.

1.2.1 Stability and dynamics of a single flag placed in a uniform
flow

A great number of researchers have reported studies on stability and dynamics of
a single flag placed in a uniform flow [Huang 1995, Eloy 2007, Shelley 2011]. In
their experimental studies, Zhang et al. [Zhang 2000] observed the motion of a fil-
ament in a 2D flow generated by a soap-film. They observed that depending on
the length of the filament, it has two fundamental states: (i) the stretched-straight
state when the length is small, and (ii) the flapping state when the length is large.
They also observed the evolution of the flapping amplitude and frequency with the
filament’s length, and identified a hysteresis phenomenon by increasing and reducing
the filament’s length. Watanabe et al. investigated experimentally the paper flutter
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using different materials [Watanabe 2002b], and also developed theoretical models
to account for various observations in the experiments [Watanabe 2002a]. In both
studies, relations between the flutter speed and the mass ratio, i.e. the ratio between
the inertia of the fluid and solid, are identified. Other experimental and theoreti-
cal works also investigated the stability [Lemaitre 2005] and post-critical dynamics
[Eloy 2012, Virot 2013, Gibbs 2014] of a flag placed in a wind tunnel and offered
a vast catalogue of flutter properties of flags made of different materials, such as
paper, plastic, fabrics, and metals.

Recently, with the increasing capacity of scientific computing, a large amount
of numerical work has been conducted to study the flapping of a flag. The ex-
periments of Zhang et al. were reproduced by direct numerical simulation using
immersed boundary method (IBM) [Zhu 2002] and arbitrary Lagrangian Eulerian
(ALE) [Sawada 2006]. Both numerical methods gave results that are in a good
qualitative agreement with the experimental results: (i) stretched-straight state is
observed with short flags, (ii) bistability–switching between the stretched-straight
state and flapping state–is observed for longer flags.

Despite the benefit that the direct numerical simulation provides a detailed de-
scription of the dynamics of both the flow and the structure, it is time-consuming
and prohibitive for high Reynolds numbers. As a result, many simplified models
are developed to carry out faster simulations. A very popular model for describ-
ing the dynamics of a flag is the inextensible Euler-Bernoulli beam model, while a
variety of models for the fluid flow, based on the inviscid flow assumption and in-
compressibility, are used by different researchers. Alben et al. used a flexible body
vortex sheet model to compute the fluid forcing and the flow field around a flap-
ping 2D flag [Alben 2008a]. They reported that in addition to the two previously
mentioned states: i.e. the stretched-straight and periodic flapping states, a chaotic
state, characterised by undefined amplitude and frequency, may appear when the
incoming flow velocity is much larger than the critical velocity. Using a unsteady
point vortex model, Michelin et al. also identified the existence of this chaotic state
[Michelin 2008].

The experimental and numerical techniques for studying a 2D flag in a uniform
2D incoming flow are well developed and have been providing interesting insights
of flag’s flapping dynamics. However, the major drawback of these techniques is
that they consider flags of an infinite span, which is unrealistic. Many studies
therefore also focus on 3D effects on the flapping flag. In their work, Eloy et al.
highlighted that the flag’s span has a significant influence on the flag’s stability
[Eloy 2007]: with a fixed flag’s length, the onset of flapping takes place at a lower
velocity for a flag with larger span. This conclusion is supported by the study
of Gibbs et al. [Gibbs 2012], in which experiments are performed and a stability
analysis is carried out using the Euler-Bernoulli beam model to describe the flag, and
a vortex lattice model [Tang 2007] to account for fluid loading. Another model for
the fluid forcing, called Large-Amplitude Elongated-Body Theory (LAEBT), initially
developed as to describe fish locomotion [Lighthill 1971, Candelier 2011], is recently
adapted to the case of 3D flapping flags [Singh 2012b, Eloy 2012, Michelin 2013]
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Figure 1.4: Evolution of the critical velocity U∗c as a function of M∗. A flag with a
given M∗ becomes unstable if the flow velocity exceeds U∗c (Figure obtained using
the method presented in Chapter 3).

by adding drag terms corresponding to the dissipation induced by the lateral flow
separation due to the finite flag span. Meanwhile, DNS techniques are also developed
for 3D simulations using both IBM [Tian 2012] and ALE [Bourlet 2015].

In many recent studies, a uniform, inviscid, incompressible flow and the Euler-
Bernoulli beam model are used to investigate the flag’s flapping in a flow. Using
these models, the system is controlled by three dimensionless parameters: the mass
ratio M∗, the reduced velocity U∗, and the aspect ratio H∗. These parameters are
defined as:

M∗ =
ρsfL

µ
, U∗ = U∞L

√
µ

B
, H∗ =

H

L
, (1.1)

where ρsf and µ are respectively the fluid’s mass per unit surface and the flag’s mass
per unit length, L is the length of the flag, U∞ is the incoming flow velocity, B
is the flag’s bending rigidity, and H is the flag’s span. Note that in the 3D case,
ρsf = ρfH, with ρf representing the fluid’s density. Regardless of the various models
used in different works, a widely approved conclusion is that for a flag with a given
aspect ratio H∗ (H∗ =∞ in 2D cases), larger mass ratio M∗ leads to lower critical
velocity in terms of U∗, as shown in Fig. 1.4.

When U∗ < U∗c , the flag is stable and stays in the stretched-straight state. Once
U∗ > U∗c , the flag becomes unstable and reaches either a periodic flapping state
(Fig. 1.5a, b), or a chaotic flapping state depending on the flow velocity (Fig. 1.5c,
d).

Another aspect involved in the studies of a single flag in a uniform flow is the ef-
fect of walls. Mainly three configurations are under active investigation: (i) the close
presence of one single rigid wall parallel to the flag’s plane [Nuhait 2010, Dessi 2015],
(ii) the close presence of two rigid walls parallel to the flag’s plane, thus forming a
transverse confinement [Belanger 1995, Guo 2000, Alben 2015], and (iii) the close
presence of two rigid walls orthogonal to the flag’s plane, therefore forming a span-
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Figure 1.5: (a, c)Flapping motions and (b, d) of the flag’s trailing edge orientation
θ at (a, b) periodic flapping state with M∗ = 10, U∗ = 9 and (c, d) chaotic flapping
state with M∗ = 10, U∗ = 18.

wise confinement [Doaré 2011b, Doaré 2011c]. These studies showed that the pres-
ence of one or two walls in the vicinity of the flag has a destabilising effect, i.e.
the confinement reduces the critical velocity. Some studies also reported that the
confinement leads to an increase of the flag’s added mass [Belanger 1995, Guo 2000].
Post-critical behaviour of a flag in a transverse confinement is also studied numer-
ically by Alben [Alben 2015], who found that while decreasing the channel wall
distance from infinity, the flapping amplitude starts by increasing, then decreases
because it is limited by the wall. Note that in a wind tunnel test with a flag, both
transverse and spanwise confinements may exist depending on the size of the wind
tunnel’s test section.

1.2.2 Stability and dynamics of several flags placed in uniform flow

Studying the coupled motion of several flexible bodies placed in a flow is moti-
vated by natural phenomena, particularly the fish schooling [Cushing 1968]. Weihs
[Weihs 1973] pointed out that in a 2D plane, the optimal positioning of each fish in
a school should have a diamond pattern (Fig. 1.6) so that the fish that follow others
would profit from the thrust induced by the oscillatory motion of their predecessors.

The constantly improving techniques for studying a single flag’s flapping are
providing new methods to fulfil researchers’ motivation in studying the flapping of
multiple flags. Zhang et al. conducted experiments using two filaments placed side
by side in a 2D flow based on a soap film [Zhang 2000]. Their results show that
under the same incoming flow, two filaments flap in an in-phase pattern (two flags
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Figure 1.6: Horizontal layer of fish in a school, from above. The diamond pattern
is shown with the dashed line (Adapted from [Weihs 1973])

.

have the same vertical displacement) when the distance separating them is small.
The flapping becomes out of phase (two flags have the opposite vertical displace-
ment) when the two filaments are moved away from each other. The observation
of the two flapping patterns, i.e. the out-of-phase one and the in-phase one, is also
reproduced by numerical simulations of parallel 2D flags [Zhu 2003, Farnell 2004].
Using the vortex sheet model and the Euler-Bernoulli beam, Alben [Alben 2009b]
reported that the phase difference between two side-by-side 2D flags evolves almost
monotonically with the distance separating them.

Jia et al. [Jia 2007] performed more thorough experimental investigations of two
identical side-by-side filaments placed in a flowing soap film, and studied theoreti-
cally their linear stability. They suggest that the coupled dynamics of two filaments
is subject to three dimensionless parameters: the mass ratio M∗, the reduced veloc-
ity U∗, and the dimensionless form of the separation distance d, defined by:

d =
D

L
, (1.2)

where D is the dimensional form of the separation distance. According to the vari-
ation of these parameters, four flapping modes may be identified: (i) the stretched-
straight mode, (ii) in-phase mode, (iii) out-of-phase mode, and (iv) an indefinite
mode, i.e. a phase difference switching between 0 and π. Using a double-wake
model, Michelin & Llewellyn Smith [Michelin 2009] studied the linear stability of
two side-by-side flags and observed that a decreasing d induces to a destabilising ef-
fect, thereby lowering the critical velocity U∗c . Wang et al. [Wang 2010] performed
wind tunnel tests with two identical flags placed side by side and confirmed this
destabilisation. In addition, they found that when d is too small (d < 0.2), U∗c ac-
tually becomes much higher than the critical velocity of one single flag. They argue
that the very small d actually makes the two flags to behave as one single flag of a
larger thickness, thus a higher flow velocity is required to destabilise the system.

Another basic configuration involving two flags placed in tandem is also studied.



8 Chapter 1. Introduction

Still using filaments in soap-film flow, Jia & Yin [Jia 2008] performed experiments
with two filaments placed in tandem, i.e. one filament is placed directly down-
stream to the other. They investigated flapping patterns and the energy distribu-
tion of two filaments by varying the separation distance. Their results show that the
downstream filament experiences a drafting induced by the wake of the upstream
filament. As a result of the drafting, the drag force on the downstream filament is
reduced. Ristroph & Zhang [Ristroph 2008] also conducted experimental work using
a soap film and two filaments placed in tandem but found a result opposite to Jia
& Yin: the upstream filament actually experiences an inverted drafting. The drag
applied on the upstream flag is lower than the drag on the downstream flag. The
reason that they found opposite results lies probably in the different leading edge
conditions used in these two studies: in [Jia 2008], the upstream filament is fixed
at its leading edge, while the leading edge of the downstream filament is tethered
by a silk fibre fixed at the other end; in [Ristroph 2008], both flags have a fixed
leading edge. The inverted drafting is confirmed by Alben [Alben 2009b] using a
vortex sheet model, while Kim et al. [Kim 2010], using an improved version of IBM,
reported that both drafting and inverted drafting can be observed depending on the
phase difference of both flags’ vortex shedding.

During the last decade, an increasing number of researchers are interested in the
coupled dynamics of three or more flexible bodies in uniform flow. Schouveiler et
al. [Schouveiler 2009] performed wind tunnel tests with three and four side-by-side
flags. Their work reported three possible flapping modes of three flags: (i) in-phase
mode, i.e. all three flags have the same vertical motion, (ii) out-of-phase mode,
i.e. two consecutive flags have opposite vertical motions, and (iii) symmetrical
mode, i.e. the flag in the middle is stretched-straight, while the other two have
opposite vertical motions. Michelin & Llewellyn Smith [Michelin 2009] extended
the double-wake method to three and more side-by-side flags and investigated their
linear stability: for the case of three flags, they also found the three modes reported
in [Schouveiler 2009], and for the case of an infinite number of flags, the out-of-phase
mode is found to be the dominant one for small M∗ and large d, while for other
parameters, the authors reported the existence of modes with the phase difference
of any value between 0 and π.

1.2.3 Concluding remarks: why we choose piezoelectric flags

The choice of the flag’s flutter instability as an energy-harvesting mechanism is
motivated by its periodic, large-amplitude post-critical motion, which is the main
feature of the the flag’s flapping dynamics. Such motion involves a permanent
energy exchange between the flags and the surrounding fluid. Many researchers are
getting interested in this energy exchange and are seeking ways to harvest energy
from it. In general, energy harvesting based on flapping flags may follow two routes:
producing energy either from the displacement [Tang 2008, Virot 2015] or from the
deformation of the flag [Allen 2001, Singh 2012a]. The latter route has recently been
the focus of several studies based on active materials [Doaré 2011a, Dunnmon 2011,
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Giacomello 2011, Akcabay 2012, Michelin 2013]. In our work, we will be interested
in piezoelectric materials. The piezoelectric material is chosen in this work for
its property of converting a part of mechanical energy generated from mechanical
deformation to the electrical energy. In the next section, a brief introduction to
piezoelectricity will be presented.

1.3 A brief introduction to piezoelectricity

Piezoelectric materials, as the name indicates, give an “electric” response under “pres-
sure”. More precisely, such materials produce electric charge displacement when they
are deformed. The discovery of piezoelectricity is attributed to Jacques & Pierre
Curie [Curie 1880a, Curie 1880b]. However, their work in 1880 only revealed one
piezoelectric effect, the effect that generates electric charge from the material’s defor-
mation, since called direct piezoelectric effect. The other effect, called inverse
piezoelectric effect remained in shadow at that time until one year later another
French physicist, Gabriel Lippmann, who announced that according to the princi-
ple of electric charge conservation, a piezoelectric crystal should experience a slight
deformation under the influence of an external electric field [Lippmann 1881], a con-
clusion that, although based solely on mathematical arguments, was experimentally
confirmed in the same year by Jacques & Pierre Curie [Curie 1881].

In 1880, the Curie brothers published their work with the following statement
[Curie 1880b]:

Quelle que soit la cause déterminante, toutes les fois qu’un cristal hémiè-
dre à faces inclinées, non conducteur, se contracte, il y a formation de
pôles électriques dans un certain sens; toutes les fois que ce cristal se
dilate, le dégagement d’électricité a lieu en sens contraire.

In this paragraph written in French, the Curie brothers, studying only the quartz,
a naturally piezoelectric crystal, reached the conclusion that the reason of electric
charge generation under deformation is the formation of electric dipoles within the
material itself. This conclusion applies to almost all known piezoelectric materials,
though the origin of electrical dipoles varies according to the specific category where
a material lies [WEB2 , Ramadan 2014].

Knowing that electrical dipoles are the origin of piezoelectricity, we are able
to describe in a qualitative way how the direct and inverse piezoelectric effects are
produced. On one hand, without any deformation, a piezoelectric material is electri-
cally neutral, implying that its centres of both positive and negative charges coincide.
These two centres would be separated if the material is stretched, compressed, or
sheared, creating an electrical field within the material, therefore a voltage difference
is generated. An electric charge displacement would occur if the material’s positive
side and negative side are connected with a conductive wire, hence the direct piezo-
electric effect. On the other hand, an externally applied electric field would disrupt
the electrical neutrality of a piezoelectric material. In order to restore the neutrality,
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Figure 1.7: (a) Elementary cell structure of PZT and piezoelectric effects: (b) di-
rect piezoelectric effect and (c) inverse piezoelectric effect (adapted from [WEB2 ,
Thomas 2011]).

the initially coinciding positive and negative centres would repulse each other as to
create an electric field that compensates the external one. As a result, a mechan-
ical deformation occurs, and an additional stress is induced due to the material’s
elasticity, hence the inverse piezoelectric effect.

Take the elementary crystal structure of PZT (Lead zirconate titanate) for ex-
ample. Figure 1.7a shows that when the structure is neutral, its centres of positive
and negative charges are at the same point. When a mechanical strain on the x
direction is applied on the structure (Fig. 1.7b), these two centres are moved away
from each other, in the y direction, thus creating an electric field directing from
the positive centre to the negative centre. If an external electric field following the
increasing y direction is applied on the structure, in order to restore the electric neu-
trality within the structure, the centres of positive and negative charges will move
towards opposite directions, inducing consequently a deformation of structure.

Existing piezoelectric materials can fall into four categories: quartz, ceramics,
polymers, and composites [Vijaya 2012].

Quartz

Quartz is the crystalline form of silicon dioxide, and it is a naturally occurring
piezoelectric material. Besides a strong piezoelectricity, the quartz also possesses
other interesting characteristics such as high stiffness, long life, and low sensitivity
to temperature and other environmental changes, which makes it an ideal choice
for devices requiring a precise frequency control, such as electronic watches, clock
signal generators for computers and microprocessor-based instruments. However, its
high stiffness and fragility also make it unsuitable for applications involving large
deformation. Also, its unique crystalline structure makes it difficult to be shaped
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into desired forms.

Ceramics

Piezoelectric ceramics, such as PZT and Barium Titanate, are ferroelectric materials
that hold excellent piezoelectric properties. Although quartz has relatively stronger
piezoelectricity than ceramics, an advantage of ceramics over quartz is that ceramics
are prepared in the form of powder and can therefore be easily shaped into any
required geometries, such as discs, cylinders, plates, or thin films, which makes
them more widely used for actuator and transducer applications. However, their
applications are also limited by their high stiffness and brittleness.

Polymers

The most commonly known and widely used piezoelectric polymer is the Polyvinyli-
dene Fluoride (PVDF). Polymers offer rather weak piezoelectricity compared with
quartz and ceramics, but have a special advantage that they are flexible and me-
chanically more stable. They are usually obtained in the form of large-area thin
films which can afterwards be cut into any required dimension. Their excellent flex-
ibility makes them a perfect choice for applications involving large deformation and
therefore will be used in the present work.

Composite piezoelectric materials

Composite piezoelectric materials are usually made of piezoelectric ceramics, offering
strong piezoelectric effects, and softer materials such as polymer or resin that help
to improve the material’s flexibility. As a result, composite piezoelectric materials
are also interesting candidates when large deformations are required. This material
will also be tested in the present work.

1.4 Energy harvesting using piezoelectric materials

Due to their ability of converting the energy associated with mechanical deforma-
tion into the electrical energy, piezoelectric materials have been extensively stud-
ied in applications of vibration control or suppression [Hagood 1991, Bisegna 2006,
Thomas 2009, Thomas 2011, Ducarne 2012]. In recent years, many publications on
energy-harvesting techniques based on piezoelectric materials start to appear, and
this section will be dedicated to a brief review of the existing work.

The concept of piezoelectric energy generator emerged around two decades ago
[Williams 1996, Umeda 1996]. Its basic idea is to convert ambient vibration en-
ergy to useful electrical energy through piezoelectric materials implemented on vi-
bration sources. Many researchers have contributed to this field in order to im-
prove the efficiency of such energy-harvesting systems [Sodano 2004, Anton 2007,
Erturk 2011, Caliò 2014]. Some studies show that simple resonant circuits, i.e.
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resistive-inductive circuits combined with the piezoelectric material’s intrinsic ca-
pacitance [Yang 2005], offer promising opportunities to achieve high efficiency
[Shenck 2001, De Marqui 2011].

Flow energy harvesting can be achieved by exploiting the unsteady forcing of
the vortex wake generated by an upstream bluff body to force the deformation of a
piezoelectric membrane [Allen 2001, Taylor 2001, Pobering 2004]. Fluid-solid insta-
bilities offer a promising alternative as they are able to generate spontaneous and
self-sustained structural deformation of the piezoelectric structure, e.g. cross-flow
instabilities [Kwon 2010, De Marqui 2011, Dias 2013]. In their work, De Marquis et
al. [De Marqui 2011] used a resistive circuit and a resistive-inductive one, and found
in addition to the beneficial effect of the resonance to the energy harvesting, that a
resistive-inductive circuit may also affect the stability of the vibration source. How-
ever, the resonant circuit’s influence on the structure’s dynamics was not reported
in this work.

Some researchers have already worked on piezoelectric flags [Dunnmon 2011,
Doaré 2011a, Akcabay 2012, Michelin 2013]. In particular, Doaré & Michelin
[Doaré 2011a, Michelin 2013] considered a piezoelectric flag coupled with a purely
resistive output. They observed moderate efficiency, which is maximised when the
characteristic timescale of the circuit is tuned to the frequency of the flag. A signifi-
cant impact of the circuit’s properties on the fluid-solid dynamics was also identified.

1.5 Introduction of numerical models used in the present
work

1.5.1 Modelling of the fluid-structure system

In our study, we are interested in the configuration illustrated in Fig. 1.8 (left),
where a flag of length L and height H is placed in an uniform flow of velocity U∞.

Figure 1.8: (left) A schematic representation of a flag flapping in an axial flow and
(right) the view in x− y plane, where the flag’s motion takes place.
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This representation is again simplified by posing two kinematic assumptions:

• the flag’s motion is confined exclusively in the (x, y) plane (Fig. 1.8, right),
i.e. all motions depending on the z direction are neglected;

• the flag is inextensible, i.e. the flag cannot be stretched or shortened.

Under these two assumptions, the flag’s motion consists simply on a bending along
the z direction, and consequently the Euler-Bernoulli beam model is used to describe
the flag’s dynamics [Antman 1995]. This model is given as follows:

µ
∂2x

∂t2
=

∂

∂s

(
Tτ − ∂M

∂s
n

)
+ Ffluid, (1.3)

∂x

∂s
= τ . (1.4)

Equation (1.3) shows that the flag’s displacement x, a function of the Lagrangian
coordinate s and time t, is influenced by three actions: the tension T along s, which
also ensures the flag’s inextensibility, the bending moment M, which depends on
the flag’s bending rigidity B as well as the local curvature, and the fluid forcing
Ffluid. With the constitutive law of Euler-Bernoulli beam, the bending moment B
is given by:

M = B
∂θ

∂s
. (1.5)

Appropriate boundary conditions are required to complete Eq. (1.3). The bound-
ary conditions that will be considered in the present work are the so-called clamped-
free boundary conditions. These boundary conditions stipulate that the fixed end,
or the leading edge of the flag in our work, is “clamped”, meaning that neither dis-
placement nor rotation is allowed. At the same time, the free end, or the trailing
edge of the flag in our work, is not constrained by any external object apart from
the flag itself. This condition entails the cancellation of three quantities at the trail-
ing edge: the normal tension T , the bending momentM, and its first derivative in
space, representing the shear force on the flag’s cross section.

at s = 0 : x = θ = 0, (1.6)

at s = L : T =M =
∂M
∂s

= 0. (1.7)

Equation (1.4) represents the inextensibility condition, which implies that the
tension T is computed, using the boundary condition given by Eq. (1.7), by inte-
grating the tangential component of Eq. (1.3) from s = L:

T (s, t) =

∫ s

L

(
µ
∂2x

∂t2
· τ −B∂θ

∂s

∂2θ

∂s2
− Ffluid · τ

)
ds′ (1.8)

The previously mentioned LABET is chosen to model the fluid loading Ffluid. In
the limit of slender structures (H � L), Lighthill [Lighthill 1971] provides a leading
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order expression for the “reactive force” Freact which is computed from the relative
velocity of the flag to the incoming flow:

Unn + Uττ =
∂X

∂t
− U∞ex. (1.9)

The reactive force can then be derived by computing the advection of the fluid
added momentum by the flow, which is an inviscid effect. Here, instead of presenting
the rigorous proof of the LAEBT [Lighthill 1960, Lighthill 1970, Lighthill 1971],
we only show a simplified derivation of the reactive force expression in terms of
momentum conservation.

Assuming that the flag’s motion is confined in the x− y plane, we consider two
planes Π(s) and Π(s+ ds), both perpendicular to the x− y plane, intersecting the
flag at s and s + ds, thus defining a segment of length ds on the flag along its
streamwise direction. We then compute the momentum variation of the fluid flow
passing across the zone confined by the planes Π(s) and Π(s+ ds) (See Fig. 1.9 for
notations).

Figure 1.9: Configuration used for reactive force derivation.

Lighthill pointed out that the essential characteristic of an “elongated body”
is that the fluid added mass with respect of the relative motion in the normal
direction n is large, whereas in the tangential direction τ , the added mass is small
[Lighthill 1971]. As a result, the reactive force is principally due to the variation of
the normal component of the fluid’s added momentum pn in the volume defined by
I + II. The expression of pn is given by:

pn(s) = MaUn(s)n(s)ds, (1.10)

where Ma = maρfH
2 is the added mass of the fluid surrounding the flag, and we

choose ma = π/4, which is the added mass coefficient for a rectangular plate of
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width H [Lighthill 1971]. The local conservation of pn(s) in the volume I + II is
given by the following expression:

∂

∂t
(MaUnn) =

∂

∂s
(MaUnUτn)− 1

2

∂

∂s
(MaU

2
nτ )− Freact. (1.11)

The three terms on the right-hand side of Eq. (1.11) represent three contributions
to the normal momentum variation, which are:

• the advection by the flow along the tangential direction τ ;

• the difference of the fluid pressure acting on Π(s) and Π(s + ds) along the
tangential direction τ , which, according to [Lighthill 1970] can be obtained
using Bernoulli’s theorem;

• the flag’s force as a reaction to the fluid pressure, which is the opposite of the
reactive force, thus noted as −Freact.

Using the following relations:

∂n

∂t
= −∂θ

∂t
τ ,

∂n

∂s
= −∂θ

∂s
τ ,

∂τ

∂s
=
∂θ

∂s
n, (1.12)

we can rewrite Eq. (1.11) into the following form:

Freact = −Ma

(
∂Un
∂t
− ∂

∂s
(UnUτ ) +

1

2
U2
n

∂θ

∂s

)
n + Un

(
∂θ

∂t
− Uτ

∂θ

∂s
− ∂Un

∂s

)
τ .

(1.13)
By calculating the time derivative of Eq. (1.9), and using the inextensibility condi-
tion of Eq. (1.4), we may obtain the following result:

∂θ

∂t
− Uτ

∂θ

∂s
− ∂Un

∂s
= 0, (1.14)

thus cancelling the tangential component in Eq. (1.13). Replacing Ma by maρfH
2

in Eq. 1.13, we obtain therefore the expression of the reactive force:

Freact = −maρfH
2

[
∂Un
∂t
− ∂

∂s
(UnUτ ) +

1

2
U2
n

∂θ

∂s

]
n. (1.15)

Candelier et al. [Candelier 2011] recently proposed an analytic proof of this result,
and successfully compared it to RANS simulations for fish locomotion problems.
These authors also stated that in the case of spontaneous flapping, it is necessary
to account for the effect of lateral flow separation, which is a 3D effect. Here, we
choose an empirical “resistive” force model given by the following term [Taylor 1952,
Eloy 2012, Singh 2012b]:

Fresist = −1

2
ρHCd|Un|Unn, (1.16)

where Cd = 1.8 is the drag coefficient for a rectangular plate in transverse flow
[Buchak 2010]. Note that in [Taylor 1952], the resistive force had two additional
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Figure 1.10: (a) Schematic representation of a flag covered by straps of piezoelectric
materials and (b) schematic view of pairs of piezoelectric patches.

terms that account for the skin friction, which is irrelevant to the present work.
The fluid forcing is the sum of these two terms:

Ffluid = Freact + Fresist. (1.17)

The applicability of this result to flapping flag was confirmed experimentally, at
least up to an aspect ratio H∗ = 0.5, the value considered in our work [Eloy 2012].

We may notice that the viscous effect is neglected in the above model. This
assumption is justified by the fact that the flapping flag dynamics considered here
implies a large Reynolds number. A 10 cm long/wide flag in a wind flowing at
around 5 m/s, or a water current of around 0.5 m/s leads to Re ∼ 104. Such order of
magnitude of Re can also be obtained using configurations of existing experimental
works [Eloy 2012, Virot 2013].

1.5.2 Piezoelectric effects

The surface of the flag is covered by piezoelectric patches (Fig. 1.10a). These patches
are placed by pairs, i.e. every patch on one surface is paired with an identical one on
the opposite surface. The left and right ends of the ith pair are respectively denoted
by s−i and s+

i (Fig. 1.10b). When deformed, each patch generates an electric charge
displacement Qki due to the direct piezoelectric effect. This quantity is given by the
following equation [Ducarne 2012]:

Q
(k)
i = χ[θ]

s+i
s−i

+ C(k)V
(k)
i , (1.18)

where χ is a mechanical/electrical conversion factor quantifying the proportion of
the flag’s deformation energy being converted to the electrical energy. V (k)

i is the
voltage difference between the two electrodes of the ith piezoelectric patch. And C(k)

i

is the intrinsic capacity of the ith piezoelectric patch [Erturk 2009]. Equation (1.18)
applies to both patches in the ith piezoelectric pair. The superscript k takes values 1
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or 2, indicating one surface and the other of the flag (Fig. 1.10b). If the two patches
are connected in series in the same loop, with reversed polarity, the consequence
is that since each patch experiences a deformation opposite to the other, the same
quantity of electric charge passes through these two patches in the same direction,
and that the same voltage is applied on each patch. If Qi and Vi denote respectively
the electric charge and the voltage of the ith piezoelectric pair, we obtain following
expressions:

Qi = Q
(1)
i = Q

(2)
i (1.19)

Vi = 2V
(1)
i = 2V

(2)
i (1.20)

Also, since two patches are identical, they have the same intrinsic capacity. The
equivalent capacity of the ith pair, as a result of a connection in series, is half of the
intrinsic capacity of each patch:

Ci =
C(1)
i

2
=
C(2)
i

2
(1.21)

The inverse piezoelectric effect, i.e. the elastic stress induced by an external
voltage, is modelled as an additional torque applied on the segments of the flag that
are covered by piezoelectric pairs [Thomas 2009]:

Mpiezo = −
∑
i

χViFi (1.22)

where the function F is defined as:

Fi(s) =

{
1 if s−i < s < s+

i

0 if elsewhere
(1.23)

Piezoelectric effect therefore adds a new contribution on the bending moment ap-
plied on the flag, which is now written as:

M = B
∂θ

∂s
−
∑
i

χViFi. (1.24)

Finally, a relation exists between the electric charge Qi and the voltage Vi, which
depends on our choice of external circuits. This relation will for now be written in
its generic form as:

F (Vi, Qi) = 0 (1.25)

The complete system of equations describing a flag covered by a finite number
of piezoelectric patches is therefore given by:

µ
∂2x

∂t2
=

∂

∂s

[
Tτ − ∂

∂s

(
B
∂θ

∂s
−
∑
i

χViFi

)
n

]
+ Ffluid, (1.26)

Qi = χ[θ]
s+i
s−i

+ CiVi, (1.27)

F (Vi, Qi) = 0. (1.28)
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And the clamped-free boundary conditions are given by:

at s = 0 : x = θ = 0, (1.29)

at s = L : T = B
∂θ

∂s
− χV = B

∂2θ

∂s2
= 0. (1.30)

1.5.3 Dimensionless equations

We suppose first that all piezoelectric pairs are of identical length, lp, and introduce
the linear density of capacitance c, defined as:

c =
C
lp
. (1.31)

Equations (1.26)–(1.30) are then written into dimensionless form using L, L/U∞
and ρfHL as characteristic scales of length, time and mass, respectively. We choose
U∞
√
µc as the characteristic scale for linear density of electric charge (Qi/lp), and

U∞
√
µ/c for voltage (V ). We naturally obtained three dimensionless parameters

M∗, U∗ and H∗ defined previously. An additional dimensionless parameter, α is
found to characterise the piezoelectric coupling:

α =
χ√
Bc

. (1.32)

This parameter measures the intensity of the mutual forcing between the piezoelec-
tric patches and the flapping flag, therefore would command a crucial impact on
the energy transfer between the flag and the patches, and consequently on the en-
ergy harvesting performance. We also expect that other dimensionless parameters,
characterising electrical properties of the system, will be obtained according to the
nature of the circuit to be used.

The flag, the piezoelectric patches, and an electric circuit, constitute the coupled
system at the core of the present work. The behaviour of this system is therefore
described by the following system of dimensionless equations:

∂2x

∂t2
=

∂

∂s

[
T τ − ∂

∂s

(
1

U∗2
∂θ

∂s
− 1

U∗

∑
1

αViFi

)
n

]
+M∗Ffluid, (1.33)

Qi =
α

U∗
[θ]

s+i
s−i

+ Vi, (1.34)

F (Vi, Qi) = 0. (1.35)

And the dimensionless boundary conditions are:

at s = 0 : x = θ = 0 (1.36)

at s = 1 : T =
1

U∗2
∂θ

∂s
− α

U∗
V =

1

U∗2
∂2θ

∂s2
= 0. (1.37)

The above system of equations serves as the root of the following chapters of this
work. In addition, two different models will be used to compute the fluid forcing:
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Figure 1.11: Rectangular section defined by amplitude A and width H.

one model is the LAEBT presented previously of which the expression is given by
Eqs. (1.15)–(1.17), and the other model is the vortex sheet model introduced in
[Alben 2009a].

In Eqs. (1.33)–(1.34), same notations are used for dimensionless variables x, s,
t, V and Q. Throughout this manuscript, no distinction will be made between
dimensional and dimensionless variables.

1.6 Energy harvesting

The last important part of the modelling stage is to define the harvested energy.
As such definition cannot be based on a specific everyday application (e.g a fan,
a lamp bulb, or a mobile phone charger...) at the current stage, we will simply
consider the most common way of electrical energy consumption: the Joule effect.
More precisely, a resistor is placed in the circuit and the dissipation in this resistor
is defined as the harvested energy. Although an expression of the harvested power,
noted by P hereinafter, depends on the configuration of a given circuit and therefore
is not given at this stage, a definition of the efficiency can already be obtained by
choosing a reference. As in other studies on energy harvesting involving flags, we
choose the kinetic energy flux of the fluid flow passing through the rectangular
section delimited by the flag’s width and its peak-to-peak amplitude 2A (Fig. 1.11).

The efficiency η is therefore given by the following expression:

η =
< P >

1
2ρfHLU

3
∞ × 2 < A >

, (1.38)

where A is the amplitude of the flag and the operator <> gives the time average of
a quantity. By using the quantity ρfL2HU2

∞ as the characteristic scale of energy,
the efficiency is given in non-dimensional form by:

η =
< P >
< A >

, (1.39)
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where A now denotes the dimensionless amplitude of the flag.

1.7 Energy harvesting using piezoelectric flag connected
to resistive circuits

We choose to single out this part as we consider the studies using resistive
circuits constitute an important precursor of our work. Some previous works
[Dunnmon 2011, Doaré 2011a, Michelin 2013] reported results obtained using a cir-
cuit containing only a resistor. The generic relation between electric charge and
voltage given by Eq. (1.25), for this particular circuit becomes:

V +R∂Q
∂t

= 0, (1.40)

where R represents the resistor connected in the circuit.
In [Dunnmon 2011], the authors reported an experimental study using piezoelec-

tric patch based on PZT. They argued that a considerable amount of energy would
be harvested using piezoelectric materials if aeroelastic energy harvesters could be
carefully designed as to optimise relevant operating parameters.

Such optimisation is reported in [Doaré 2011a, Michelin 2013] where the authors
used theoretical and numerical tools to study both a piezoelectric flag’s linear sta-
bility [Doaré 2011a] and post-critical dynamics [Michelin 2013] when it is connected
to resistive circuits. They pointed out that:

• in terms of the linear stability [Doaré 2011a], the resistance stabilises the sys-
tem when the mass ratio M∗ is small, while a destabilising effect of resistance
is observed with large M∗, consistent with previously reported results on the
destabilisation by damping [Doaré 2010];

• a tuning between the circuit’s characteristic time scale and the flapping pe-
riod leads to a maximal efficiency. Within the range of parameters used in
[Michelin 2013], a maximal efficiency of around 10% is achieved withM∗ ∼ 20.
The results also suggest that higher efficiency can be expected with even larger
M∗.;

• a critical impact on the coupled system’s dynamics by the piezoelectric cou-
pling is observed [Doaré 2011a, Michelin 2013]. The authors reported that
when the piezoelectric coupling, characterised by α, is strong, both the flap-
ping frequency and amplitude showed modifications, resulting from the damp-
ing induced by resistor.

The results in [Doaré 2011a, Michelin 2013] highlight for the first time the im-
portant role of piezoelectric coupling in the energy harvesting: the efficiency is found
to be scaled as α2. The authors also found that the choice of electric circuits for
energy harvesting might have a critical impact on the system’s dynamics and per-
formance, even when the most elementary local resistive circuit is concerned. It
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is therefore reasonable and interesting to expect that other kinds of circuits would
bring about different impacts to the system, influencing consequently the energy-
harvesting efficiency. Studying impacts of different circuits constitutes therefore an
important part of the present work.

1.8 Outline of manuscript

The present work will be elaborated in four chapters. Chapters 2–4 will focus on
impacts of output circuits on the energy harvesting as well as on the dynamics of the
flags. In Chapter 2, we will study a flag totally covered by one pair of piezoelectric
patches, and connected to a resistor as well as an inductor, which, combined with
the piezoelectric pair’s intrinsic capacity, provides an additional natural frequency to
the system. We will study, principally by experimental means but also numerically,
the resonant property of the system and its impacts on the energy harvesting per-
formance. In Chapter 3, the other case of piezoelectric coverage will be investigated:
we will consider that the flag is totally covered by pairs of piezoelectric patches of in-
finitesimal size. This type of coverage can strengthen the inverse piezoelectric effect
on the flag’s dynamics, as the additional torque is adapted to the local curvature
of the flag. Each piezoelectric pair on the flag is connected to a resistive-inductive
circuit. In this chapter, we identify a strong coupling phenomenon between the
piezoelectric flag and the circuit and the energy-harvesting performance is consid-
erably improved compared with results reported in [Michelin 2013]. In Chapter 4,
instead of connecting each piezoelectric pair to separated circuits, we will use an
electric network that interlinks these piezoelectric pairs. The impacts on the energy
harvesting as well as the flag’s dynamics of the electric network will be studied in
this chapter. In Chapter 5, we will turn to the coupled flutter of two flags, and the
way it impacts the energy harvesting performance.





Chapter 2

Single Piezoelectric Coverage

In this chapter, a flag covered by one single pair of piezoelectric patches will be
studied. As a natural continuation of previous works on purely resistive circuits
[Dunnmon 2011, Doaré 2011a, Michelin 2013], a different circuit will be used. This
new circuit contains two components: a resistor, which is indispensable for modelling
the energy harvesting, and an inductor, which introduces resonant properties to the
circuit. We will mainly focus on experimental studies. Numerical studies will also
be carried out to complement the experimental results. In addition, a simple current
source model will be used to conjecture whether piezoelectric effects apply an impact
on the flapping dynamics.

2.1 Experimental set-up

Our experiments are conducted using two prototypes of piezoelectric flag made of
two different piezoelectric materials: Polyvinylidene Difluoride (PVDF) and Macro-
Fibre Composite (MFC). To fabricate these prototypes, two piezoelectric patches, of
identical size, are glued face-to-face and connected with reversed polarity, forming
therefore a flag covered by one single piezoelectric pair.

Experiments with these two flags are performed in a same wind tunnel, here-
inafter referred to as Tunnel A, whose test section is 10 cm’s wide and 4 cm’s high
[Doaré 2011c] (Fig. 2.1a). The maximal flow velocity that Tunnel A could reach is
around U∞ = 50 m/s. The wind tunnel’s shape therefore prescribes the limits of
our prototypes’ dimension, as well as the way they are placed in the wind tunnel.
PVDF being a paper-like, soft and easily sizeable polymer, the flag based on this
material is made to be 9.5 cm’s long and 2.5 cm’s wide so that it can be placed
in Tunnel A in the way shown in Fig. 2.1a. This positioning of flag minimises the
influence of the flag’s weight on its flapping motion as the gravity acts in the span-
wise direction, which is perpendicular to the transverse direction. MFC, however,
is a prefabricated patch which cannot be reshaped. As the patch’s dimension is 9.3
cm×8.9 cm, prohibiting a similar positioning as the PVDF flag, it has to be placed
horizontally in Tunnel A (Fig. 2.1b). With this positioning, the gravity acts in the
transverse direction, which is the same direction as the flag’s flapping motion. It
is therefore necessary to evaluate the importance of the gravity’s influence on the
flag’s dynamics. One can compare the order of magnitude of the gravity-induced
torque on the flag, with that of the elastic torque of the flag:

ε = O
(
gravity-induced torque

elastic torque

)
= O

(
mgL2

EHh3

)
. (2.1)
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Figure 2.1: Experimental setup: (a) a PVDF piezoelectric flag and (b) a MFC
piezoelectric flag in Tunnel A. Both flags are connected with an external circuit and
measurement device (c).

Length Width Thickness Mass Young’s Modulus
PVDF 9.5 cm 2.5 cm 40 µm 5.5×10−4 kg 2 GPa
MFC 9.3 cm 8.9 cm 0.4 mm 1.3×10−2 kg 20 GPa

Table 2.1: Geometric and mechanical properties of piezoelectric patches.

In Eq. (2.1), m is the mass of one MFC patch, E is the MFC’s Young’s modulus, and
L, H, h are respectively the length, the width and the thickness of the MFC patch.
These quantities are shown in Table 2.1. One can obtain that for MFC, ε ∼ 10−2.
This result shows that compared with the MFC flag’s rigidity, the gravity’s effect
is relatively small and can be neglected. As a result, for any tests performed on
the MFC flag positioned as in Fig. 2.1b, one can assume that the gravity is absent.
Visually, it is also observed that the MFC flag remains horizontal in its streamwise
direction when the flow velocity is 0, which confirms our assumption.

Evidently, for each individual test, only one flag is placed in the wind tunnel.
The first series of experiments are performed with the PVDF flag which is clamped
to keep a length of 8.5 cm, and the MFC flag. Their respective motion are shown
in Fig. 2.2.

The circuit is constructed by connecting an inductor in parallel with a variable
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Figure 2.2: Flapping of (left) a PVDF flag and (right) an MFC flag

Figure 2.3: “Effective length” of the PVDF flag.

resistor ranging from 5 Ω to 108 Ω. This circuit is then connected to the flag, and
to a data acquisition board (DAQ) (Fig. 2.1c), which records the output voltage V
using the software LabView R©. Based on V , one may compute the harvested power
P:

P =
V 2

R
. (2.2)

2.2 Comparison between PVDF and MFC

Based on the descriptions in the previous section, one can infer that the MFC flag
is more rigid then the PVDF flag, and will consequently wonder whether within the
flow velocity range of the wind tunnel, both flags would become unstable and flap.

We start by examining the critical velocity for the PVDF flag of different values
of L. As the total length of the PVDF flag is 9.5 cm (Table 2.1), we vary the
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Figure 2.4: Critical instability velocity for the PVDF flag in Tunnel A.

“effective length”, i.e. the length of the flag’s portion exposed to the fluid flow and
is susceptible to flap, by adjusting the position at which the flag is clamped. The
other portion of the flag is attached to a rigid plate parallel to the flow so that its
influence on the flow would be minimised (Fig. 2.3). For each L, we first increase
the flow velocity U∞ from 0 to a value Uuc at which the flag starts to flap; then the
flow velocity is decreased from Udc to another value Uuc at which the flapping stops.
In Fig. 2.4, the values of Uuc and Udc obtained using the PVDF flag are plotted with
different L.

We observe first that the critical velocity Uc shown in Fig. 2.4 is consistent with
existing work on experimental study in two ways:

• Many works studying the critical velocity have reported a bistability
[Alben 2008a, Michelin 2008, Eloy 2008, Eloy 2012, Virot 2013]: the coexis-
tence of flapping and motionless states over a certain range of flow velocity.
This phenomenon is also observed in the present experiment using PVDF flag.
For every value of L, we observe the existence of bistability over a flow velocity
range, of which the lower boundary is always Udc , and the higher boundary is
Uuc .

• For a given value of width H, longer flags become unstable at a lower velocity.
This observation is consistent with experimental results reported in previous
work [Yamaguchi 2000b, Yamaguchi 2000a, Eloy 2007, Virot 2013].

Moreover, the measurement of critical velocity of the PVDF flag shows that the flag
becomes unstable at reasonable flow velocities, well below the Tunnel A’s limitation.
We can therefore expect to perform tests using the PVDF flag with a large range of
U∞ and L.
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Figure 2.5: Equivalent circuit of experimental set-up.

The MFC flag is however more difficult to be set in motion. As MFC is a
composite based on PZT, a piezoelectric ceramic, it inherits the rigidity of PZT. A
considerably large flow velocity is mandatory to destabilise the flag. To accelerate
the flow in Tunnel A beyond its limitation, the wind tunnel’s cross section has to be
further reduced, leaving a height of only 2.5 cm, which limits significantly the flag’s
flapping amplitude. Using the MFC flag of the dimension indicated in Table 2.1,
The measurement gives Uuc = 57.6 m/s, a value close to the maximal velocity that
Tunnel A is capable of achieving even under further confinement, and Udc = 49.5

m/s, indicating the existence of the bistability. The results of critical velocity of
MFC flag exclude the idea of reducing further its “effective length”, which would
surely lead to another critical velocity that is prohibitively large for Tunnel A.

From the above comparison, one may conclude that the PVDF flag offers a
wider manoeuvrability for experimental study: within the limitation of experimental
devices, we can perform tests over a larger range of U∞ and L, while with the MFC
flag, only one value of L and a very small range of U∞ are available. For this reason,
this chapter will mainly focus on studying the PVDF flag, using both experimental
and numerical means. Some experimental results obtained using MFC flag will only
be briefly presented at the chapter’s end.

2.3 Modelling of a flag covered by one piezoelectric pair

2.3.1 Simple current source model neglecting piezoelectric feed-
back

The system composed of the flag, the resistive-inductive circuit, and the DAQ can be
described using the equivalent circuit shown in Fig. 2.5. According to Fig. 2.5, the
equivalent circuit consists of an electric current source in parallel connection with an
inductor of inductance L, a resistor of resistance R, and a capacitor C which comes
from the intrinsic capacitance of piezoelectric patches. For the sake of consistency
in notation, in the following text, we will use C = cL, where c is the linear density
of capacitance, as introduced in Chapter 1, and L is the effective length of the flag,
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as shown in Fig. 2.3. This equivalent circuit also takes into account the internal
resistance of the inductor RL, which is connected in series with the inductance, and
that of the DAQ, Rd, which is in parallel connection with other elements.

From the voltage signal as shown in Fig. 2.6, we can assume that the current
source’s output takes a harmonic form:

I(t) = I0ejωt, (2.3)

where ω = 2πf with f being the flapping frequency. The amplitude I0 depends on
the conversion factor χ and the flag’s leading edge angle while flapping. Using this
model, we can compute analytically the dissipation rate in R, i.e. the harvested
power P:

P = IRI∗RR, (2.4)

where IR represents the current passing through R, given by:

IR =
jωI0ejωt

1 +
R

jLω +RL
+
R
Rd

+ jωCR
, (2.5)

and I∗R is its complex conjugate.
While this model does not replace the nonlinear numerical simulation, we use it

as a mean of conjecturing whether an inverse effect is applied on the flag’s dynamics,
as no such effect is included in this model. In the upcoming experimental study, the
prediction obtained from this model, referred as Simple Current Source Model
hereinafter, will be compared against experimental results. The conjecture is based
on the fact that flag’s dynamics would remain unaltered under weak inverse piezo-
electric effect, therefore good agreement would be found between experimental data
and Eq. (2.4), whether or not the system is at resonance. If the inverse piezoelectric
effect is strong and that the dynamics of the flag is impacted, the Simple Current
Source Model would no more agree with experiments. In the Simple Current Source
Model, we choose a constant amplitude by supposing that a permanent flapping
regime is reached, and that the coupling is weak enough so that the flag’s dynamics
is not influenced by the inverse piezoelectric effect. Theoretically, this amplitude
depends on both the angle of the trailing edge and the mechanical/electrical con-
version factor χ. In our work, I0 is determined using a purely resistive circuit: first,
experiments are performed using a purely resistive circuit with varying R, and then
I0 is chosen as the value which allows the Simple Current Source Model, also using
a resistive circuit, to show a good agreement with experimental data.

2.3.2 Nonlinear numerical model

As the flag is covered by one single pair of piezoelectric patches, the expressions of
piezoelectric effects, derived from Eqs. (1.18) and (1.22) are written as:

Q = χθ(s = L) + clV, (2.6)

Mpiezo = −χV. (2.7)
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Equation (2.6) indicates that with a flag totally covered by one single piezoelectric
pair, the critical variable relating to the electric charge displacement is the angle of
the flag’s trailing edge.

We need to find the relation between Q and V to close our modelling. For the
circuit presented in Fig. 2.5, this relation is written as follows:

V + Z · ∂Q
∂t

= 0, (2.8)

where Z is the operator of impedance corresponding to the resistor, inductor and
the internal resistance of the DAQ in parallel connection. This operator is given as:

Z =
1

1

R
+

1

L ∂
∂t +RL

+
1

Rd

. (2.9)

In Eq. (2.8), we replace Z by Eq. (2.9), and Q by Eq. (2.6) to obtain the following
relation describing the circuit’s behaviour under the forcing of the piezoelectric flag:

ReLcL
∂2V

∂t2
+ (ReRLcL+ L)

∂V

∂t
+ (Re +RL)V + χReL

∂2θ

∂t2
+ χReRL

∂θ

∂t
= 0,

(2.10)
where Re is the equivalent resistance of R and Rd in parallel connection:

Re =
RRd
R+Rd

. (2.11)

Using the same characteristic scales introduced in Chapter 1, the non-
dimensional form of Eqs. (2.6)–(2.10) is written as follows:

Q =
α

U∗
θ(s = 1) + v, (2.12)

Mpiezo = − α

U∗
V, (2.13)

∂2V

∂t2
+

(
βLω

2
0 +

1

βe

)
∂V

∂t
+

(
1 +

βL
βe

)
ω2

0V +
α

U∗
∂2θ

∂t2
+

α

U∗
βLω

2
0

∂θ

∂t
= 0. (2.14)

Two new dimensionless parameters, β and ω0, appear in the above equations.
Their definitions are given below:

β = cRU∞, ω0 =
1

U∞

√
L

Lc
(2.15)

The parameter β characterises the rate of dissipation in a given resistor, there-
fore, while β represents the harvesting resistor, the internal resistance of inductor
RL and DAQ Rd are represented by βL and βd, respectively. βe represents the
equivalent resistance given by Eq. (2.11). The parameter ω0 is the dimensionless
natural frequency of the circuit.

Equations (2.12)–(2.14) are then incorporated into the system of equations
(1.33)–(1.34) to establish the system to be solved for the numerical study.
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2.4 Characterisation of the coupling coefficient α

As defined by Eq. (1.32) in Chapter 1, the coupling coefficient α is determined by
three quantities: the conversion factor χ, the bending rigidity B, and the capacitance
per unit length c. Among these quantities, c can be measured directly. We first
measure C using a multimeter, which gives C = 14 nF. This measured C is then
divided by the effective length of the flag to obtain c. Note that since the whole
PVDF flag, i.e. both the clamped part and the effective part (Fig. 2.3), is connected
in the circuit, the total intrinsic capacitance C is the same regardless of the value
of the effective length L. As a result, the linear density of capacitance c based on
c = C/L depends on the effective length L: larger effective length L leads to lower
c.

Some other measurements are required to determine B and χ. In this section,
we will simply outline the methodology employed to determine each quantity. More
experimental details are to be found in Appendix A.

2.4.1 Measurement of B

As the flag is considered as a three-layer sandwich plate, whose width is H, its
bending rigidity B could be computed using a dedicated formula [Lee 1989]:

B =
E0h

3
0H

12(1− ν2
0)

+
2EphpH

1− ν2
p

(
h2

0

4
+
h0hp

2
+
h2
p

3

)
, (2.16)

where E are ν are respectively the Young’s modulus and the Poisson’s coefficient of
corresponding material, h is the thickness of a layer. The subscripts 0 and p indicate
the middle layer and the piezoelectric layers of the flag. However, the middle layer
of the flag is a double-sided bonding tape, of which the Young’s modulus E0 and
thickness h0 are difficult to ascertain. It is therefore more practical to measure the
flag’s free vibration frequency f0, which, at the first vibration mode, is given by
[Timoshenko 1953]

f0 =
3.515

2πL2

√
B

µ
, (2.17)

where µ is the flag’s mass per unit streamwise length. The bending rigidity is
therefore computed from Eq. (2.17).

2.4.2 Measurement of χ

The conversion factor χ is formally given by:

χ =
e31(hp + h0)H

2
, (2.18)

where e31 is a piezoelectric coefficient. Again, h0 is difficult to measure due to
the nature of the middle layer made of double-sided bounding tape. Our method
consists therefore of exploiting the direct piezoelectric effect given by Eq. (2.6). We
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Figure 2.6: Examples of measurement of (left) voltage and (right) angle for L = 8 cm
and U = 11.3 m/s.

connect the flag only to the DAQ, equivalent to a resistance of Rd = 106 Ω. The
electric charge displacement Q can be obtained from Ohm’s law:

∂Q

∂t
+

V

Rd
= 0. (2.19)

Replacing Q in Eq. (2.6) by Eq. (2.19), we obtain:

χ
∂θ

∂t

∣∣∣∣
s=L

+ C ∂V
∂t

+
V

Rd
= 0. (2.20)

By considering that V = V0ejωt and θ = Θ0ejωt, the previous equation can be
rewritten as:

χ =
V0

ωΘ0

√
1

R2
d

+ ω2C2, (2.21)

with ω = 2πf .
It is therefore necessary to measure the flapping frequency f and the amplitude

of the flag’s trailing edge orientation Θ0. The flapping frequency is equal to the
frequency of voltage signal, which is recorded by DAQ. Another quantity to be
measured is the amplitude of trailing edge orientation Θ0. As Tunnel A is fabricated
using plexiglass, it is transparent so that we could film the motion of the flapping
flag using a high-speed camera (Phantom R© v9). Among all frames in the recorded
film, we choose the frames where the flag exhibits a maximal trailing-edge angle,
and measure this angle using ImageJ R©. Examples of measurements are shown in
Fig. 2.6.

In our experiment, we obtained B = 1.178 × 10−5 N·m2 and χ = 1.45 × 10−7

C. These measurements allow us to conclude that for the PVDF flag used in the
experimental study, we have α ∼ 0.085 for L = 6 cm, and α ∼ 0.1 for L = 8 cm
(see Appendix A). These values are to be kept also for the later numerical study.
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2.5 Experimental and numerical results

In this section, we will first present experimental and numerical results obtained with
PVDF flag. By having the flag and the circuit working at resonance, our goal is to
identify the effect of such resonance on the energy harvesting. In order to achieve
this objective, we need to construct a circuit, as shown in Fig. 2.5, that is able to
resonate with the PVDF flag flapping at a certain frequency. Next, experimental
results obtained using the MFC flag will be presented. An indication of a feedback
coupling is observed using the MFC flag.

2.5.1 PVDF flag in Tunnel A

We first perform experiments in Tunnel A with the flag being connected solely to
the DAQ in order to obtain the flags’ flapping frequency f at a certain flow velocity.
This frequency f is then chosen as the required natural frequency of the resonant
circuit. With the flag’s capacitance C, we can determine, from the expression of the
circuit’s natural frequency, the inductance L necessary to obtain a resonance:

f =
1

2π
√
LC

. (2.22)

For the PVDF flag, clamped at a position so that its effective length is L = 8 cm,
we have chosen a flow velocity of U∞ = 12.2 m/s, and obtained a frequency of 40.8
Hz. The value of inductance leading to resonance is then L ∼ 1000 H.

After having determined the inductance necessary for reaching a resonance, we
perform tests with different circuits connecting to the PVDF flag: a purely resistive
circuit, i.e. a circuit without inductor; a resonant circuit with an inductor of L = 600

H and RL = 3000Ω, and a second resonant circuit with L = 1000 H, allowing
the resonance, and RL = 2000Ω. These choices of parameters will, on one hand,
allow the comparison between the cases with and without inductance, and on the
other hand, with varying inductance, highlights effects that would appear with the
resonance. For all three tests, the flow velocity is kept to be U∞ = 12.2 m/s. We
vary the value of the harvesting resistance R, record the voltage signal for each value
of R, and calculate the time average of harvested power P. The average harvested
power as function of R for all three cases is presented in Fig. 2.7. Results obtained
with Simple Current Source Model are plotted in the same figure for comparison.

From Fig. 2.7, we observe that when the inductive-resistive circuit is in resonance
with the flapping flag, the harvested power increases considerably compared with
the purely resistive case and the non-resonant case. In addition, the predictions of
Simple Current Source Model are in fairly good agreement with the experimental
data, in terms of both the maximal harvested power and the optimal resistance
for all three cases. These results suggest that the presence of inductance improves
the energy harvesting performance by resonance, and the good agreement implies
that the dynamics of the flag is marginally affected, which is also reflected by the
identical flapping frequencies recorded in all three tests (Fig. 2.7b).
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Figure 2.7: (a) Harvested power and and (b) flapping frequencies using PVDF flag
of L = 8 cm, H = 2.5 cm and U∞ = 12.2 m/s. In (a, b), experimental results are
plotted with markers. In (a), Simple Current Source Model predictions are plotted
with curves. In (b), the curves represent the natural frequency of the corresponding
circuit used for Simple Current Source Model.

We attempt now to compare the experimental results with numerical ones ob-
tained using the full nonlinear simulation. The experimental configuration, i.e. a
flag of L = 8 cm, H = 2.5 cm, and a flow velocity of U∞ = 12.2 m/s, corresponds to
M∗ = 0.547, H∗ = 0.3125, and U∗ = 14.5 for the nonlinear numerical simulation.
By running the simulation using these parameters with α = 0, we soon identified a
large discrepancy: the experimental flapping frequency, f = 41 Hz, is ω = 1.9 when
converted to its dimensionless form, while numerical simulation gives ω = 1.014.
Another discrepancy lies in the flapping amplitude Θ0. Experimentally, we ob-
served Θ0 = 82◦ = 1.43 rad, which is significantly larger than the numerical result:
Θ0 = 0.43 rad. Despite the discrepancies, we still performed the simulation with
α = 0.1 to finish the comparison. However, instead of choosing ω0 = 1.9, matching
the circuit’s natural frequency in the experiment, we set ω0 = 1.014 for numerical
simulation as to bring forward the effects of resonance. We plot in Fig. 2.8 the
harvested power, still noted as P but rendered dimensionless using the characteris-
tic quantity ρfLHU3

∞, as a function of β, the dimensionless harvesting resistance.
In Fig. 2.8, a large discrepancy is observed between two results, with the nonlinear
numerical simulation significantly underestimating the harvested power, even at res-
onance. The key factor responsible for the discrepancies should be the confinement
of Tunnel A, whose width is of the same order of magnitude of the flag’s length.
It has been observed that the confinement may result to an increased added mass
of fluid [Belanger 1995]. The large fluid added mass strengthens the fluid forcing,
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Figure 2.8: Dimensionless harvested power P as function of β, obtained both experi-
mentally using Tunnel A, and numerically using nonlinear simulation. Experimental
parameters are L = 8 cm, U∞ = 12.2 m/s, and f = 41 Hz, numerical parameters
are M∗ = 0.547, H∗ = 0.3125, U∗ = 14.5, and ω0 = 1.014.

Figure 2.9: PVDF piezoelectric flag placed in the Tunnel B. The three walls in gray
are opaque, and the only wall in white is transparent.

and consequently leads to a higher flapping amplitude, as well as a higher harvested
energy.

2.5.2 PVDF flag in Tunnel B

The effect of confinement can be confirmed by performing experiments in a more
spacious wind tunnel, referred as Tunnel B in the following (Fig. 2.9). Tunnel B has
a cross section of 50 cm × 50 cm, much larger than Tunnel A, and a less significant
confinement effect is expected.

In order to asses the effect of confinement, we first measure both the flapping
frequency ω and amplitude Θ0 for a flag in Tunnel B. However, the drawback of
Tunnel B is the opaque walls of its test section (Fig. 2.9, gray walls) so that a direct
filming in the transverse direction is impossible. Therefore, while the frequency ω
can still be measured directly using the DAQ, a slightly more convoluted method
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Figure 2.10: Dimensionless flapping frequency ω measured in Tunnel A and Tunnel
B, compared with the frequency obtained by nonlinear numerical simulation as a
function of U∗. In (a) L=5 cm (M∗ = 0.342, H∗ = 0.5), (b) L=6 cm (M∗ = 0.410,
H∗ = 0.417), (c) L=7 cm (M∗ = 0.479, H∗ = 0.357), (d) L=8 cm (M∗ = 0.547,
H∗ = 0.313).

based on Eq. (2.21) is used to measure the flapping amplitude Θ0. Having deter-
mined χ for the PVDF flag, Eq. (2.21) could be rewritten into the following form
and be used to compute Θ0 from measurable quantities V0 and ω:

Θ0 =
V0

ωχ

√
1

R2
d

+ ω2C2, (2.23)

We first perform tests with a piezoelectric flag connected solely to DAQ. For the
measurement of ω, four values of L are used: L=5 cm, L=6 cm, L=7 cm, and L=8
cm. For each L, the flag’s flapping frequency with varying U∞ in both Tunnel A
and Tunnel B are measured and plotted in Fig. 2.10. The results obtained using
nonlinear simulation with varying U∗ are plotted in the same figure as to compare
with the experimental results.

In Fig. 2.10, we can clearly identify a significant effect of confinement: in Tunnel
B, for each L, we measured different ω compared with results obtained in Tunnel
A. This discrepancy is increasingly visible with longer flags. Meanwhile, with the
experiments performed in Tunnel B, we also obtained ω close to nonlinear simulation
results.
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U∞ (m/s) 20.26 20.79 21.27 21.94 22.45
V0 (V) 7.46 8.29 8.65 9.27 9.78
f (Hz) 53.86 56.09 57.78 59.68 60.96
ω (rad) 338.44 352.40 363.06 374.99 383.00

Table 2.2: Measurement with PVDF flag of L = 6 cm in Tunnel B

U∞ (m/s) 14.98 15.75 16.61 17.58 18.52 19.48 20.75
V0 (V) 6.85 7.72 8.59 9.43 10.10 10.59 11.12
f (Hz) 33.67 35.35 37.50 39.68 41.68 43.63 46.35
ω (rad) 211.53 222.13 235.62 249.34 261.91 274.10 291.24

Table 2.3: Measurement with PVDF flag of L = 8 cm in Tunnel B

Our measurement of amplitude Θ0 is performed using L=6 cm, and L=8 cm.
Experimentally, we measure V0 and f for each L. These results are shown in Ta-
ble 2.2 for L = 6 cm and Table 2.3 for L = 8 cm.

Using the results shown in these two tables, the values of Θ0 are computed using
Eq. 2.23, and are plotted in Fig. 2.11. The results on Θ0 obtained using nonlinear
simulation for both L are also presented in Fig. 2.11 for comparison. In Fig. 2.11,
we observe that for both L = 6 cm and L = 8 cm, a fairly good agreement is found
between experimental results and the nonlinear numerical simulation in terms of Θ0.
With the previously reported results on flapping frequency, this observation corrob-
orates our statement that the discrepancies obtained between experimental results
and the nonlinear simulation using Tunnel A are due to the tunnel’s confinement
effect. With Tunnel B, offering a more spacious test section thus less confinement,
the nonlinear simulation and experimental results reach a satisfactory agreement
in terms of ω and Θ0. The next step is to investigate the energy harvesting using
Tunnel B.

With Tunnel B, we choose two configurations where the flag and the circuit would
function at resonance. The first case corresponds to L = 6 cm, U∞ = 20.9 m/s,
leading to a flapping frequency of f = 56.8 Hz that matches the natural frequency
of a circuit with an inductor of L = 530 H. In the second case, we have L = 8 cm,
U∞ = 17.82 m/s, yielding f = 41 Hz matching the natural frequency of a circuit
with an inductor of L = 1000 H. For each configuration, the same protocol as with
Tunnel A is used: we vary the harvesting resistance R and record voltage signal V
for each value of R. The harvested power P is computed based on V and R, and
rendered dimensionless using ρfLHU3

∞. Nonlinear simulations are also carried out
using parameters corresponding to each configuration: for the first one (L = 6 cm),
we have α = 0.085, M∗ = 0.410, H∗ = 0.417, U∗ = 17.91 and ω0 = 1.06, while for
the second one (L = 8 cm), we have α = 0.1, M∗ = 0.547, H∗ = 0.313, U∗ = 21.18,
and ω0 = 1.14. The simulation is performed with varying β, in accordance with
varying R in experiments.

In Fig. 2.12, we plot P as function of β, obtained both by experiments in Tunnel
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Figure 2.11: Estimation of Θ0 in experiments and nonlinear numerical simulation
results in Tunnel B, for (a) L = 6 (M∗ = 0.410, H∗ = 0.417) cm and (b) L = 8 cm
(M∗ = 0.547, H∗ = 0.313).

B and by the nonlinear simulation. A fairly good agreement is found between results
obtained using Tunnel B and the numerical simulation. This observation confirms
that the confinement of Tunnel A indeed leads to a larger flapping amplitude Θ0,
and subsequently increases the harvested energy. This agreement also validates the
numerical code for further numerical study. The slight discrepancy can be explained
by the difference observed between the estimation of Θ0 by nonlinear numerical
simulations and the experimental results (Fig. 2.11).

2.5.3 MFC flag and feedback of piezoelectric effect

As mentioned earlier, we will only briefly present results obtained with MFC flag as
the material’s rigidity hinders experimental study with large range of parameters.
Here, we will also exclude nonlinear simulations with MFC flag for the following
reasons. On one hand, the results with PVDF flag in Tunnel A have already shown
the strong effect of confinement which is not taken into account by the nonlinear
numerical model. Knowing that the MFC flag requires additional confinement in
Tunnel A in order to accelerate the flow, the experimental conditions would only
become more complicated for the nonlinear model. On the other hand, the MFC
flag presents an aspect ratio of H∗ ∼ 1 (c.f. Table 2.1), making it not sufficiently
slender for a nonlinear simulation based on a slender body model. Despite these
limitations, our persistence in studying the MFC flag is motivated by its potentially
stronger piezoelectric effects.

This potential can be evinced by an estimation of α associated with the MFC
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Figure 2.12: Dimensionless harvested power P obtained both from experiments and
nonlinear numerical simulations as function of β. In (a): α = 0.085, L = 6 cm,
f = 56.8 Hz, U∞ = 20.9 m/s, L = 530 H and RL = 1000Ω and in (b): α = 0.1,
L = 8 cm, f = 41.1 Hz, U∞ = 17.82 m/s, L = 1000 H and RL = 2000Ω
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flag using Eq. 1.32. However, with MFC, except c, which is directly measured to be
c = 13.35 µF/m, we can only roughly estimate B and χ for two reasons:

• The MFC being too rigid, its free vibration cannot last for even one measurable
period. So measuring its free vibration frequency is impossible. As a result,
B is calculated using the materials Young’s modulus E = 20 GPa, and its
geometry, given in Table 2.1, by neglecting the middle layer’s thickness. The
results is B = 0.01 N·m2

• As the MFC flag’s length is difficult to adjust, and that the operative velocity
range is small, we have only used one value of U∞ to measure Θ0, V0 and ω
for computing χ using Eq. (2.18).

With U∞ = 52.04 m/s and L = 9 cm. Our measurement gives: V0 = 8.02 V,
Θ0 = 0.20 rad, and ω = 569.26. From these results, we obtain χ = 4.87 × 10−5

C, leading to α = 0.15, a value implying a stronger piezoelectric coupling than the
PVDF flag.

Our next step is to perform tests with the MFC flag connected to a resonant
circuit. Except being placed differently in Tunnel A, the MFC flag involves a similar
experimental protocol as the PVDF flag. Using the flag connected solely to the
DAQ, the flag’s flapping frequency, therefore the required natural frequency of the
circuit, is found to be f = 86.51 Hz at a flow velocity of U = 52.04 m/s, reaching
the limitation of Tunnel A. From Eq. (2.22), we obtain that a resonance would be
achieved using an inductor of L ∼ 3 H.

We plot in Fig. 2.13a the harvested power P as function of R obtained both
using experiments and the Simple Current Source Model. In Fig. 2.13b, flapping
frequencies are plotted in comparison with the natural frequency for each circuit
used in Simple Current Source Model. For the MFC flag, we can first identify the
effects of resonance, similar to the case with the PVDF flag: at resonance, the
harvested power increases considerably and a good agreement is found between the
experimental data and the prediction of Simple Current Source Model (Fig. 2.7a).
The flapping frequency, seen from Fig. 2.7b, is seemingly insensitive to the circuit’s
frequency.

We may however notice that with the MFC flag, a discrepancy exists between
the prediction and experimental data for the case where L = 2.09 H and RL = 261

Ω (Fig. 2.13a). The Simple Current Source Model predicts much lower harvested
power than experimental results. The natural frequency of the corresponding circuit
is distant from the resonant value f ∼ 86.51 Hz (Fig. 2.13b). The difference between
these two cases lies therefore primarily in the internal resistance of inductor RL,
which dissipates electrical energy and therefore adds damping in a resonant system.
With identical inductance, an inductor with lower RL possesses a lower damping.
A stronger effect of inductance can therefore be observed. This strong inductive
effect leads to a high voltage, and consequently enhances the direct piezoelectric
effect and acts in favour of the energy harvesting. Moreover, the fact that the
Simple Current Source Model fails to predict the experimental results may also
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Figure 2.13: (a) Harvested power and (b) flapping frequencies using MFC flag with
U∞ = 52.04 m/s and L = 9 cm. In (a, b), experimental results are plotted using
markers. In (a), Simple Current Source Model predictions are plotted with curves.
In (b), the curves represent the natural frequency of the corresponding circuit used
for the Simple Current Source Model.

imply the existence of a feedback due to the inverse piezoelectric effect. When the
coupling is strong enough, and when the circuit’s damping is sufficiently reduced,
this feedback introduces variations to the dynamical properties of the piezoelectric
flag and enhances the energy harvesting. These variations are not taken into account
by the Simple Current Source Model used here.

In order to further asses the potential feedback, we are interested in the frequency
of the voltage signal, which is identical to the flapping frequency ω, an indicator of
the flag’s flapping dynamics. A comparison will be made between the frequencies
obtained with and without an inductor in the circuit. In order to maximise the
possibility of observing a feedback, the harvesting resistor R is removed from the
circuit so that the circuit’s damping is minimised. Both the PVDF flag and the MFC
flag are used for this comparison. For each flag, placed in a given flow velocity,
the voltage signal is recorded with and without the inductor in the circuit. The
frequencies of the voltage signal in both cases (with inductor/without inductor)
are then computed and compared with each other in order to identify any possible
difference, a sign of an existing feedback. For the MFC flag, the flow velocity is
set as U∞ = 56.4 m/s, leading to a flapping frequency of f = 90.61 Hz without
inductor. For the PVDF flag of length L = 6 cm, we use U∞ = 21.3 m/s and the
resulting frequency is f = 57.8 Hz without inductor. The inductor to be used for
the MFC flag is L = 2.09 H and RL = 261 Ω, and for the PVDF flag, we have
L = 530 H and RL = 1000 Ω.
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Figure 2.14: Spectra of electrical voltage Ṽ for (a) the MFC flag at U∞ = 56.4 m/s,
in Tunnel A and (b) the PVDF flag of L = 6 cm at U∞ = 21.3 m/s, in Tunnel B.
For both flags, no harvesting resistor is connected in the circuit.

The spectra of the voltage signal Ṽ are plotted in Fig. 2.14 for both flags. We
can clearly observe that in the case of MFC flag, the peak of the spectrum obtained
with inductor is separated from that of the spectrum obtained with open circuit
(Fig. 2.14a), while with the PVDF flag, the peaks of both spectra are centred at
the same frequency (Fig. 2.14b). This observation clearly shows that the feedback
will certainly appear when the coupling is strong and the circuit’s damping is low
(small RL).

Due to the limitations of our experimental devices, such as the insufficient flow
velocity and the small wind tunnel, our experimental investigation of the feedback
effect stops here. Further experimental study with materials such as MFC requires
larger scale devices, as we can see that with current experimental conditions, the
MFC flag starts to flap only at a very large velocity (U∞ ∼ 50 m/s). With larger
wind tunnels, we would be able to fabricate a prototype with MFC larger than the
present one both in width and length. A flag with this larger dimension is expected
to become unstable at a much lower flow velocity.

2.6 Summary and conclusion

In this chapter, we studied experimentally the energy harvesting using a piezoelec-
tric flag connected to a resonant circuit. We indeed observed the beneficial effect
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brought by the resonant circuit to the energy harvesting: an increased harvested
power. The nonlinear numerical model also showed a fairly good agreement with
the experimental study, highlighting in the meantime the important confinement
effect. Experimental studies with a more potent piezoelectric material have shown
promising signs of a potential feedback effect from the circuit to the dynamics of
the flag.

Indeed, to reach the resonance, large inductance is needed for such low fre-
quency applications. However, it is not prohibitively colossal and such inductors
are still commercially available, showing optimistic perspective of the technology on
the electrical aspect. The critical problem lies still in the aspects concerning the
piezoelectric materials. Composite materials seem to be a good option for future
development of piezoelectric flags, as they are more flexible than ceramics, and are
capable of offering a stronger coupling than polymers.

The Simple Current Source Model, neglecting the feedback effect, presented in
this chapter is proved to be a valid model to estimate energy-harvesting performance
when the piezoelectric coupling is weak. Its validity is however challenged when the
coupling becomes strong, inducing a feedback, in which case it is mandatory to
incorporate the inverse piezoelectric effect into the modelling. As to study the full
piezoelectric coupling, i.e. incorporating both the direct and inverse piezoelectric
effects, the nonlinear model used in this chapter, considering the inverse piezoelectric
effect as an added torque on the flag, is a good candidate whose validity is proved for
weak piezoelectric coupling (PVDF flag, α ∼ 0.1) by the estimations of the flapping
amplitude and the harvested power, which are in good agreement with experimental
results. We will extend this model to stronger piezoelectric coupling, as already
done in several works using purely resistive circuits [Doaré 2011a, Michelin 2013,
Piñeirua 2015], in the following chapters using resonant circuits.

The experimental studies presented in this chapter clearly identify the resonance
as a key mechanism that improves the performance of energy-harvesting piezoelectric
flags. When the flag is at resonance with the harvesting circuit, at least twice
as much as energy is harvested than using a circuit without resonant properties
(e.g. purely resistive circuits). This conclusion, i.e. resonance improves energy
harvesting, should also be applied to other kinds of vibration energy harvesters.
One path to improve their performance is to couple the vibration source (e.g. the
flag in the present work) with a resonant oscillator (e.g. the circuit in the present
work). Moreover, the potential feedback from the resonant oscillator to the vibration
source would also be an effect acting in favour of the energy harvesting. In the next
chapter, we will focus on investigating this potential feedback effect.



Chapter 3

Fluid-solid-electric lock-in

In this chapter, a numerical study is conducted to investigate a flag covered by an
infinite number of piezoelectric pairs. To each pair, a resistive-inductive circuit is
connected.

This configuration enhances the piezoelectric coupling by the fact that more
than one piezoelectric pairs cover the flag. As a result, the piezoelectric effects are
expected to be adapted to the local curvature of the flag, thereby introducing a
stronger feedback coupling. This chapter will focus on the role of this feedback
coupling and the impacts thereof on the energy harvesting.

Modifications on the modelling of piezoelectric effects will be elaborated in the
next section. Some results will then be presented in terms of linear stability, nonlin-
ear dynamics, and finally the energy harvesting performance. A discussion on the
importance of the coupling factor α will also be presented at the end of this chapter.

3.1 Modelling of a flag continuously covered by pairs of
piezoelectric patches

The flag is covered by more than one piezoelectric pairs, as shown in Fig. 3.1a. To
each pair, a resistive-inductive circuit is connected (Fig. 3.1b).

To simplify the problem, we assume that each pair has the same length and that
each circuit has identical resistance and inductance. Further assumptions consist of
considering the flag’s surface to be fully and continuously covered by piezoelectric
pairs (si+ = si+1

− ), and the streamwise length of each pair lp to be infinitesimal com-
pared with the flag’s length (lp � L). These assumptions imply that the system’s
electric state can be characterised by the linear density of quantities such as Q, V , G,
C, and L, which are defined as: q = Q/lp, v = V , g = G/lp, c = C/lp, l = Llp. Note
that in this chapter, the resistors are characterised by their conductance G, instead
of their resistance R. The quantities q and v are therefore continuous functions of
the Lagrangian coordinate s. The expressions of piezoelectric effects, derived from
Eqs. (1.18) and (1.22) are written as:

q = χ
∂θ

∂s
+ cv, (3.1)

Mpiezo = −χv. (3.2)

It is useful to note that the derivative term in Eq. (3.1) is a result of the previously
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Figure 3.1: In (a): a flag covered by pairs of piezoelectric patches and in (b):
piezoelectric pairs connected to resistive-inductive circuits, inductors and resistors
are in parallel connection

mentioned assumptions:

∂θ

∂s
= lim

l→0

[θ]
s+i
s−i

l
(3.3)

The fact that the voltage v is a continuous function of s brings a modification
in the boundary condition at trailing edge s = L, representing physically the can-
cellation of the shear force. We recall here that this condition is written in its most
generic form as:

at s = L :
∂M
∂s

= 0, (3.4)

where the bending moment M, in the case of continuous coverage by small piezo-
electric pairs, is given as:

M = B
∂θ

∂s
− χv. (3.5)

Then the boundary condition on the shear force is written as:

at s = L :
∂M
∂s

= B
∂2θ

∂s2
− χ∂v

∂s
= 0. (3.6)

Note that with one single piezoelectric pair, the voltage induces simply a local added
torque at s = L, which does not contribute to the shear force.

The last part of modelling is to find the equivalent circuit, which is similar to
that in Chapter 2, albeit that all quantities are replaced by their linear density in
this chapter (Fig. 3.2). The relation linking q and v based on this equivalent circuit
is given by the following equation:

v + gl
∂v

∂t
+ l

∂2q

∂t2
= 0 (3.7)
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Figure 3.2: Equivalent circuit of a infinitesimally small piezoelectric pair connected
to a resistive-inductive loop, in the limit of continuous distribution

The dimensionless form of Eqs. (3.1)–(3.2), using the same characteristic scales
as in previous chapters, are obtained as follows:

q =
α

U∗
∂θ

∂s
+ v, (3.8)

Mpiezo = − α

U∗
v, (3.9)

and the dimensionless form of Eq. (3.7) is:

βω2
0v +

∂v

∂t
+ β

∂2q

∂t2
= 0, (3.10)

where the two parameters β and ω0 are defined as:

β =
cU∞
gL

, ω0 =
L

U∞
√
lc
. (3.11)

Note that β and ω0 hold similar definitions as in Chapter 2, except that in Eq. (3.11)
they are based on linear density of G, C, and L.

The complete set of dimensionless equations to be solved for this configuration
is written as follows:

∂2x

∂t2
=

∂

∂s

[
Tτ − ∂

∂s

(
1

U∗2
∂θ

∂s
− 1

U∗
αv

)
n

]
+M∗Ffluid, (3.12)

Ffluid = −maH
∗
[
∂Un
∂t
− ∂UnUτ

∂s
+

1

2
U2
n

∂θ

∂s

]
n− 1

2
Cd|Un|Unn, (3.13)

βω2
0v +

∂v

∂t
+ β

∂2v

∂t2
+
αβ

U∗
∂3θ

∂t2∂s
= 0, (3.14)

with the following boundary conditions:

at s = 0 : x = θ = 0 (3.15)

at s = 1 : T =
1

U∗2
∂θ

∂s
− α

U∗
v =

1

U∗2
∂2θ

∂s2
− α

U∗
∂v

∂s
= 0. (3.16)

The harvested energy in this case is defined as the sum of rate of dissipation in
all resistors. The dimensionless form of this quantity is given by:

P =

∫ 1

0

v2

β
ds. (3.17)
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As a reminder, the efficiency is computed using the definition given by Eq. (1.39):

η =
< P >
< A >

, (3.18)

where A is the dimensionless amplitude of the flag.

3.2 Linear stability

In this section we are interested in the effect of the inductance, measured by ω0,
on the critical velocity U∗c . The dependence of U∗c on the mass ratio M∗ and the
resistance β, in the case of purely resistive circuits, is studied in previous works
[Eloy 2007, Doaré 2011a, Michelin 2013].

At the initial stage of instability, we assume small vertical displacement, i.e
y � 1, allowing linearisation of Eqs. (3.12)–(3.14). The resulting linear equations
are:

(1 +Ma)
∂2y

∂t2
+ 2Ma

∂2y

∂t∂s
+Ma

∂2y

∂s2
+

1

U∗2
∂4y

∂s4
− α

U∗
∂2v

∂s2
= 0, (3.19)

βω2
0v +

∂v

∂t
+ β

∂2v

∂t2
+
αβ

U∗
∂4y

∂t2∂s2
= 0, (3.20)

and the linearised boundary conditions are:

at s = 0 : y =
∂y

∂s
= 0 (3.21)

at s = 1 :
1

U∗2
∂2y

∂s2
− α

U∗
v =

1

U∗2
∂3y

∂s3
− α

U∗
∂v

∂s
= 0. (3.22)

The coefficient Ma is defined by Ma = maM
∗H∗, representing the added mass of

the fluid surrounding the flag. As in the following, we will fixM∗ = 1 and H∗ = 0.5,
in the linear regime, the fluid forcing on each cross-section of the flag depends only
on two parameters: ma and U∗.

The classical Galerkin decomposition method is used to solve Eqs. (3.19) and
(3.20) by assuming that both the vertical displacement y and the streamwise volt-
age distribution v are linear combination of a set of orthogonal functions. For y,
this function set is chosen to be φi(x) which are free vibration eigenmodes of a
cantilevered beam without piezoelectric coupling, therefore the second derivative of
φi(x) with respect to x, denoted by φ′′i (x), are chosen for the voltage v in order to
satisfy clamped-free boundary conditions given by Eqs. (3.21)–(3.22). Consequently,
y and v can be written as:

y =
N∑
i=1

Yie
jωtφi(x), and v =

N∑
i=1

Vie
jωtφ′′i (x). (3.23)

The expansion given in Eq. (3.23) takes y and v proportional to ejωt. Therefore, Yi
and Vi are simply complex constant. Following Eq. (3.23). The resulting equations
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Figure 3.3: Evolution of the critical velocity with ω0 for four different values of β
and α = 0.3.

are then projected onto φi(x) and φ′′i (x). Equations (3.19) and (3.20) are then
recast as an eigenvalue problem and the coupled system is unstable if one of its
eigenfrequencies has a positive imaginary part.

The evolution with ω0 is shown on Fig. 3.3. For ω0 � 1, corresponding to the
configuration where the circuit’s natural frequency is much larger than the flapping
frequency, the impedance resulting from the inductance is negligible compared with
the resistance, therefore the inductor acts as a short-circuit, and U∗c converges,
regardless of β, to U0

c , the critical flow velocity without coupling (α = 0). For
ω0 � 1, the inductance-induced impedance is so large that the electric charge
displacement takes place only in the resistor. As a result, we obtain U∗c > U0

c ,
illustrating the stabilising effect of the resistance [Doaré 2011a]. Note that for larger
values of M∗, resistance may exhibit a destabilising effect [Doaré 2011a], which is
comprised in a more general case of destabilisation by damping [Doaré 2010]. For
intermediate values of ω0 (0.1 < ω0 < 1), we observe a significant destabilising
effect of inductance for intermediate and large values of β. This destabilisation
increases with β, as the circuit becomes dominated by inductive effects. For small
β, however, no such destabilisation is observed, as the circuit transitions directly
from its resistive limit (small ω0) to its short circuit limit (large ω0). These results
highlight the positive impacts of the circuit’s inductive behaviour: the instability
threshold may be lowered, resulting in energy harvesting with slower flow velocity.

In order to determine the origin of this destabilisation, it is necessary to probe
the evolution of eigenvalues with ω0. For this purpose, we choose U∗ = 10 and
β = 52. This value of U∗ is lower than U0

c but higher than the minimum critical
velocity of β = 52 (see Fig. 3.3), therefore is an appropriate choice to study the
origin of the destabilisation. Figure 3.4 shows the evolution of the two most unstable
pairs of eigenvalues with ω0 at U∗ = 10 and β = 52. Starting from ω0 � 1 and
decreasing ω0, the electrical circuit evolves successively from short circuit, to RLC
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and the other plotted in red. In (b), <ω = ω0 is plotted as a reference.

loop, and finally to a purely resistive circuit. Instability occurs when the imaginary
part of any mode becomes positive.

In the absence of coupling (ω0 � 1), both pairs each consists of two eigenvalues:
one is associated with an electrical mode, with the frequency (real part of the corre-
sponding eigenvalue) equal to ω0; the other is associated with a mechanical mode,
with the frequency independent of ω0. Decreasing ω0 leads to interactions between
the electrical and mechanical modes, successively within each pair. This interaction
destabilises the mechanical mode, leading to the flag’s instability at intermediate
ω0 (Fig. 3.4). Note that this interaction within other pairs also leads to an increase
of =(ω0) for the mechanical mode, but does not lead to instability (at least for
M∗ = 1).

3.3 Nonlinear dynamics and energy harvesting

Above the critical velocity, the unstable coupled system experiences an exponential
growth in the flag’s flapping amplitude, which eventually saturates due to nonlinear
effects. A direct integration of the fluid-solid-electric system’s nonlinear equations
Eqs. (3.12)–(3.14) is performed using an implicit second order time-stepping scheme
[Alben 2009a]. The flag is meshed using Chebyshev-Lobatto nodes, and a Cheby-
shev collocation method is used to compute spatial derivatives and integrals. At
each time step, the resulting nonlinear system is solved using Broyden’s method
[Broyden 1965]. The simulation is started with a perturbation in the flag’s orienta-
tion (θ(s, t = 0) 6= 0), and is carried out over a sufficiently long time frame so as to
reach a permanent regime.

The reduced flow velocity is chosen at U∗ = 13, a value sufficiently higher than
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Figure 3.5: Flapping motion of flags at α = 0.3, β = 52, U∗ = 13 and (a) ω = 0.25

(no lock-in), (b): ω0 = 3.85 (no lock-in), (c): ω0 = 0.32 (lock-in).

the critical velocity U∗c . The flapping motion of the flag is plotted in Fig. 3.5 for
three different values of ω0, and the energy-harvesting efficiency and the flapping
frequency as function of ω0 are plotted in Fig. 3.6.

The flag’s behaviour is observed to vary drastically with different ω0 (Fig. 3.5).
When ω0 is within the range of destabilisation, the flag undergoes a remarkably
larger deformation (Fig. 3.5c) than with other values of ω0 (Fig. 3.5a, b).

Figure 3.6a shows the evolution of the efficiency with ω0, and demonstrates that
this increased flapping amplitude indeed leads to a significant efficiency improve-
ment: a maximum efficiency of 6% is obtained here, significantly higher than the
optimised efficiency obtained at M∗ = 1 and U∗ = 13 without inductance (∼ 0.1%)
[Michelin 2013].

Within the high efficiency range, the flapping frequency is deviated and locks
onto the natural frequency of the circuit, ω0 (Fig. 3.6b). A frequency lock-in is
therefore observed here, similar to the classical lock-in observed in Vortex-Induced
Vibrations (VIV) [Williamson 2004, Grouthier 2013]: the frequency of an active
oscillator (the flag) is dictated by the natural frequency of a coupled passive oscillator
(the circuit). The lock-in range is extended by a reduction of the circuit’s damping
(1/β), consistently with what is observed in VIV for varying structural damping
[King 1973]. The lock-in range leading to high efficiency coincides with the range
of ω0 associated with the destabilisation by inductance (Fig. 3.3). This suggests
that a coupled piezoelectric flag, once destabilised by inductive effects, may flap at
a frequency close to the natural frequency of the circuit. As a result, a permanent
resonance takes place between the flag and the circuit, leading to increased flapping
amplitude and harvesting efficiency.

By varying ω0 within the lock-in range, Fig. 3.6 shows that when the frequency
of the output circuit matches the short-circuit natural frequency of the flapping flag
(ω ∼ 1.35), the maximal efficiency is obtained for every value of β. This observa-
tion highlights again the interest of forcing piezoelectric structures at their natural
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Figure 3.6: (a) Harvesting efficiency η and (b) flapping frequency ω as a function of
ω0 for four different values of β and α = 0.3, U∗ = 13.

frequencies for energy harvesting, as suggested by previous studies, where maximal
efficiency is observed when the external forcing resonates with the piezoelectric sys-
tem [Allen 2001, Roundy 2005, Ng 2005]. The existence of a lock-in extends this
effect to a larger range of parameters, by maintaining the circuit working at reso-
nance, hence guaranteeing efficient energy transfers from the flag to the circuit.

In order to illustrate the circuit’s resonance, we are interested in the energy
transfer within the coupled system in this regime. The mechanical energy balance
is straightforward to obtain. By multiplying Eq. (3.12) with the derivative in time
of x, we have:

∂x

∂t
· ∂

2x

∂t2
=
∂x

∂t
· ∂
∂s

[
Tτ − ∂

∂s

(
1

U∗2
∂θ

∂s
− 1

U∗
αv

)
n

]
+M∗

∂x

∂t
· Ffluid. (3.24)

Using the inextensibility condition given by Eq. (1.4), we can arrange Eq. (3.24)
into the following form:

1

2

∂

∂t

[(
∂x

∂t

)2
]

= − 1

U∗2
∂

∂t

[(
∂θ

∂s

)2
]

+
α

U∗
v
∂2θ

∂s∂t
+M∗

∂x

∂t
·Ffluid+

∂Fmech

∂s
. (3.25)

The above equation gives the local balance of mechanical energy, where Fmech is the
mechanical energy flux, given by:

Fmech = Tτ · ∂x
∂t

+
∂θ

∂t

(
1

U∗2
∂θ

∂s
− α

U∗
v

)
− ∂x

∂t
· ∂
∂s

(
1

U∗2
∂θ

∂s
− α

U∗
v

)
n. (3.26)

We are now interested in the global form of mechanical energy balance, which is
given simply by integrating Eq. (3.25) from 0 to 1. Using the boundary conditions,
it is straightforward that: ∫ 1

0

∂Fmech

∂s
ds = 0. (3.27)
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Therefore, integrating Eq. (3.25) yields:

∂Ep
∂t

+
∂Ek
∂t

=Wf − T , (3.28)

where Ep and Ek are respectively the flag’s potential and kinetic energy, given in
their dimensionless form by:

Ep =
1

2

∫ 1

0

1

U∗2

(
∂θ

∂s

)2

ds, Ek =
1

2

∫ 1

0

(
∂x

∂t

)2

ds. (3.29)

The term Wf is the rate of work of fluid force, and T is the rate of energy transfer
from the structure to the circuit through piezoelectricity. They are given by:

Wf = M∗
∫ 1

0
Fflluid ·

∂x

∂t
ds, T = − α

U∗

∫ 1

0
v
∂2θ

∂t∂s
ds. (3.30)

Next, we need to find the balance of electrical energy. We first introduce the relation
between the voltage applied on an inductor, and the electric charge flowing through
it, noted as qI . In its dimensionless form, this equation reads:

v =
1

ω2
0

∂2qI
∂t2

. (3.31)

In the first term of Eq. (3.14), the variable v is replaced by Eq. (3.31), yielding:

∂2qI
∂t2

+
1

β

∂v

∂t
+
∂2v

∂t2
+

α

U∗
∂3θ

∂t2∂s
= 0. (3.32)

Integrating Eq. (3.32) with respect of t, and multiplying the resulted expression by
v yields:

∂
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[
1

2ω2
0

(
∂qI
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)2
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1

2

(
∂v
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)2
]

+
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β
+ v
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U∗
∂2θ

∂t∂s
= 0. (3.33)

Equation (3.33) gives the local balance of electrical energy. The global form of
electrical energy balance is given also by integrating Eq. (3.33) from 0 to 1, which
is:

∂EC
∂t

+
∂EI
∂t

= −P + T , (3.34)

where EC and EI are respectively energy stored in capacitors and inductors, given
in their dimensionless form by:

EC =
1

2

∫ 1

0
v2ds, EI =

1

2ω2
0

∫ 1

0

(
∂qI
∂t

)2

ds. (3.35)

In the electrical energy balance, one can also find the harvested power P and the
rate of energy transfer T .

We are now interested in the balance of both mechanical energy and electrical
energy of the system with and without lock-in. The comparison of both cases are
plotted in Fig. 3.7. When the system is not at lock-in and ω0 � 1 (Fig. 3.7a),
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the dominant balance of the electrical energy conservation takes place between the
intrinsic capacitance and the piezoelectric patches, while the inductance and the re-
sistance contribute a negligible part to the energy balance. The role of capacitance
in this case is actually equivalent to a small added rigidity, as it stores and releases,
throughout the period, electrical energy converted from mechanical energy by piezo-
electric patches. When the system is not at lock-in but with ω0 � 1 (Fig. 3.7c),
the dominant balance of the electrical energy conservation takes place between the
inductance in the circuit and the piezoelectric patches, while the intrinsic capac-
itance and the resistance contribute little to the energy balance. The inductance
in this case acts as an added mass and exchanges energy with the flag throughout
the period. In these two cases, the piezoelectric effects marginally affect the flag’s
dynamics, as the mechanical energy balance of the flag is dominated by the fluid
forcing (Fig. 3.7d, f).

When the flapping frequency is locked to the circuit’s (Fig. 3.7b), the electri-
cal energy balance is dominated by the periodic exchange between the inductance
and capacitance, proving that the circuit is working at its resonance regime. A
more active role of the circuit is consequently observed also on the dynamic of the
flag, as the rate of work of the piezoelectric forcing becomes comparable to that of
the fluid forcing (Fig. 3.7e). It is however worthwhile to note that the permanent
regime represented by this energy balance showing the circuit working at resonance
requires a long transient period to be reached. During this period, the capacitor
and the inductor are charged, energy therefore accumulates in the electrical circuit,
leading to the resonant behaviour consisting of strong energy exchanges between the
capacitance and inductive components. This results in

• a large flapping amplitude of the flag forced by the piezoelectric patches, and

• a large amount of dissipation in the resistance .

This lock-in and the increased efficiency are not possible with purely resistive circuit
[Michelin 2013], since an essential element of this mechanism is the periodic energy
exchange between two forms of electrical energy. We can therefore conclude that
the resonant property of a resisitive-inductive circuit may lead to a frequency lock-
in phenomenon that significantly enhances the energy-harvesting performance of a
piezoelectric flag.

3.4 Impact of the coupling factor

A decisive factor is the intensity of piezoelectric coupling, characterised by α in this
work. In practice, the coupling coefficient α, defined in Eq. (1.32), depends primarily
on the materials used for the piezoelectric flag, as well as the geometries of the flag
and piezoelectric electrodes [Doaré 2011a]. The importance of the coupling factor
has been reported by many studies on energy harvesting by piezoelectric systems
[Anton 2007, Caliò 2014]. In [Doaré 2011a, Michelin 2013], when the coupling is
weak and the amplitude does not depend on α, a dependence of the harvesting
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Figure 3.7: (a, b, c) Electrical and (d, e, f) mechanical energy balance for (a, d) ω0 =

0.25, (b, e) ω0 = 0.32, (c, f) ω0 = 3.85, and α = 0.3, U∗ = 13, β = 52. The operator
˙ denotes derivatives in time.
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Figure 3.8: Evolution of the critical velocity with ω0 for different values of α. Other
parameters are β = 52, M∗ = 1.

efficiency to α2 was identified. This dependence is expected as from Eq. (3.8), one
can infer that the voltage v is proportional to α. And as the harvested power P is
proportional to v2, it is straightforward that P ∼ α2, hence η ∼ α2.

In the present work, the influence of α is observed both in terms of critical veloc-
ity (Fig. 3.8) and the lock-in range (Fig. 3.9). In Fig. 3.8, lower critical velocities and
larger destabilisation range in terms of ω0 are observed with increasing α. Fig. 3.9
shows that the range of frequency lock-in also increases with increasing α. The
impact of the coupling coefficient α on the system’s performance is again identified:
a strong piezoelectric coupling is desired so that the beneficial effects of a resonant
circuit, namely the destabilisation and the frequency lock-in, can be obtained.

It is nonetheless necessary to mention that using available materials, we only
have a limited range of possible values of α. For example, the PVDF used in our
experimental study presented in the previous chapter may yield α ∼ 0.1, and as
mentioned in [Doaré 2011a], using material with better piezoelectric property, such
as PZT, and a steel plate as the flag, one might expect α ∼ 0.3.

One might also expect improving α by considering materials of small Young’s
modulus E, therefore the bending rigidity B, which has an impact on α according to
Eq. (2.16), would decrease. While we have a limited choice of piezoelectric materials,
one might choose softer materials for the flag. However, this idea is not practical. For
example, if we choose a flag based on Mylar (E0 = 4 GPa) covered with PZT patches
(Ep = 60 GPa), the three-layer flag will be extremely heterogeneous. As a result,
when the flag flaps, the middle layer made of soft material is not strong enough so
that two piezoelectric patches will not be able to exhibit opposite deformation, but
identical deformation. As a result, their effect would cancel out each other’s, thus no
electricity would be generated. Meanwhile, in [Ducarne 2012], the authors included
the thickness of the flag h0 and that of the piezoelectric patches hp in their study.
They found that the optimal value for hp decreases with decreasing E0, leading to



3.5. Perspective: lock-in with one single piezoelectric pair 55

10
−1

10
0

0

0.02

0.04

0.06

ω0

η

(a)

 

 

α = 0.1 α = 0.2 α = 0.3

10
−1

10
0

10
−1

10
0

10
1

ω0

ω

(b)

Figure 3.9: (a) Harvesting efficiency and (b) flapping frequency ω as a function of ω0

for different values of α. Other parameters are β = 52, M∗ = 1, U∗ = 13, H∗ = 0.5.

a lower conversion factor χ. As a result, using softer materials for the flag would
only marginally improve the coupling.

3.5 Perspective: lock-in with one single piezoelectric
pair

One might wonder whether the lock-in phenomenon, observed in this chapter using
a continuous coverage of infinitesimal piezoelectric pairs, would be expected with
more realistic configurations, such as a flag covered with one piezoelectric pair. In
order to exploit this perspective, the configuration studied in Chapter 2 is revisited,
using a much stronger piezoelectric coupling, α = 0.3, and an ideal inductor which
has zero internal resistance. Eq. 2.14 is therefore modified accordingly and is written
as:

∂2V

∂t2
+ β

∂V

∂t
+ ω2

0V +
α

U∗
∂2θ

∂t2
= 0. (3.36)

Based on Eq. (3.36), together with the beam equation as well as boundary con-
ditions, we use numerical simulations to compute the energy harvesting efficiency as
well as the flag’s dynamics. The efficiency and the flapping frequency are presented
in Fig. 3.10. While the flapping frequency matches the circuit’s natural frequency
(Fig. 3.10b), we indeed observe a peak of η (3.10a), a result of resonance.

In terms of flapping motion, we observe that at resonance, the flag flaps with a
much larger amplitude (Fig. 3.11b) than without resonance (Fig. 3.11a). In terms
of flapping frequency (Fig. 3.10b), we do not observe a lock-in with an extent as
large as in the cases presented in Fig. 3.6b. However, within a small range of ω0,
the flag’s flapping frequency seems to be following the circuit’s natural frequency.
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Figure 3.10: (a) Harvesting efficiency η and (b) flapping frequency ω as a function
of ω0 for α = 0.3, and β = 13 (blue, dash-dot), β = 52 (green, dashed)
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Moreover, the large amplitude observed at resonance (Fig. 3.11b) suggests that a
strong coupling exists between the flag and the circuit, even if the flag is covered
only by one single piezoelectric pair.

A recent study [Piñeirua 2015], using purely resistive circuit but a flag covered by
a finite number of piezoelectric pairs, reported that by optimising the positioning and
the number of piezoelectric pairs on the flag, one might expect an energy-harvesting
performance of the same order as the continuous coverage of infinitesimally small
piezoelectric pairs. It is reasonable to expect their results to also apply with resistive-
inductive circuits: with a finite number of piezoelectric pairs, not only a better
efficiency would be observed, but also a frequency lock-in would be achieved.

3.6 Conclusion

The results presented here provide a new insight on the dynamics of a piezoelectric
energy-harvesting flag. First and foremost, they emphasise how the fundamental
dynamics of the energy harvesting system and of the output circuit may strongly
impact the motion of the structure and its energy harvesting performance. Also,
they identify two major performance enhancements associated with the resonant
behaviour of the circuit, namely

• a destabilisation of the fluid-solid-electric system, leading to spontaneous en-
ergy harvesting at lower velocity; and

• a lock-in of the fluid-solid dynamics on the circuit’s fundamental frequency,
resulting in an extended resonance and a significant increase of the harvested
energy.

This lock-in behaviour at the heart of both effects above is classically observed in
VIV where it is also responsible for maximum energy harvesting [Grouthier 2014]; it
is in fact a general consequence of the coupling of an unstable fluid-solid system to
another oscillator’s dynamics. We therefore expect that the conclusions presented
in the present work go beyond the simple inductive-resistive circuit considered here,
and should be applicable to a much larger class of resonant systems. Such systems
could be other forms of electrical output circuits, or other mechanical oscillators.
In his work, Emmanuel Virot [Virot 2015] studied the coupling between a flag and
a mass-spring system. He identified a frequency lock-in between the flag and the
spring, leading to significantly larger amplitude of the flag. This concept is inti-
mately associated with the lock-in phenomenon reported in our work and therefore
constitutes an interesting path to follow.

To a larger extent, the lock-in phenomenon could be considered as a consequence
resulting from any coupling of two or more vibration systems. Such mechanism
could therefore be applied to other kinds of vibration-based energy-harvesting tech-
nologies, such as electrostatic energy harvesting [Perez 2015], and energy harvesting
using magnetic induction.
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The critical impact of the coupling coefficient α on the system’s performance is
also underlined in the present work through its strong influence on the destabilisation
range and the lock-in range. The choice of the piezoelectric materials is therefore
essential in the practical achievement of high efficiency.

These results nonetheless illustrate the fundamental insights and technological
opportunities offered by the full coupling of a passive resonant system (electric, me-
chanical or other) to an unstable piezoelectric structure for the purpose of energy
harvesting. The lock-in phenomenon and the enhanced performance demonstrated
by the coupling between the piezoelectric flag and a simple resonant circuit open
the perspective of applying different kinds of resonant systems to energy-harvesting
piezoelectric system. The choice of an inductive circuit is motivated by its sim-
plicity, while in practice, other designs of resonant circuits may present important
advantages over the proposed formulation in our work. Meanwhile, complex cir-
cuitry, such as electric networks [Bisegna 2006] and active circuits [Lefeuvre 2006],
also represent interesting perspectives of the present work. In the next chapter, we
will investigate one of the above mentioned complex circuitry, namely the non-local
electric network.



Chapter 4

Non-local electric network

Flags covered by continuously distributed small piezoelectric pairs will remain the
subject of interest in this chapter. However, a different kind of circuit will be used
to these flags. Instead of circuits connecting only the two patches within each
piezoelectric pair, which are referred as local circuits, we are interested in a non-
local electric network that is deployed on the flag and connects all piezoelectric pairs
to their neighbours.

In [Bisegna 2006], it has been shown that using electric networks could enhance
vibration control of structures by piezoelectric patches, it is therefore reasonable to
imagine that interesting effects would also be introduced to energy harvesting using
electric networks. Moreover, each local circuit harvests solely the energy produced
by the piezoelectric pair to which it is connected, and consequently separates the
flag into a set of independent electricity sources so that the flag’s dynamic as a
whole is not involved. Also, it is quite unlikely that energy harvested in each local
circuit would practically be “summed”. The advantage of non-local networks over
local circuits is that they effectively connect all piezoelectric pairs on the flag into
one single circuit, thereby making the whole flag into a single electricity source. For
this reason, compared with the local circuits studied in the previous chapter, non-
local electric networks are more likely to be applied in a prototype of a flag covered
by multiple piezoelectric patches.

4.1 Equations of non-local electric network

We are interested in the configuration given in Fig. 4.1. On each surface of the
flag, an electric network interlinks piezoelectric pairs, following [Bisegna 2006]. In
Fig. 4.1, the impedance embedded in the electric network is denoted by Z for the
sake of generality. The equivalent circuit of Fig. 4.1 is obtained and given in Fig. 4.2.

From the equivalent circuit presented in Fig. 4.2, one may derive the governing
equations of this electric network using Kirchhoff’s laws. Similar to Chapter 3, gov-
erning equations of the electric network interlinking a finite number of piezoelectric
pairs distributed on the flag will be derived; next, using the same assumptions in
Chapter 3, the corresponding governing equations will be derived for the continuous
distribution of infinitesimal piezoelectric pairs.
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Figure 4.1: (left) 3D schematic representation of a piezoelectric flag with (right)
a detailed representation of non-local electric network connected with piezoelectric
pairs.

Figure 4.2: Equivalent circuit of a piezoelectric flag connected with a non-local elec-
tric network. All quantities associated to the upper surface (resp. lower surface) are
denoted with the superscript A (resp. B). Red oval arrows indicate the prescribed
positive direction when applying the Kirchhoff’s laws.
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4.1.1 Flag covered by a finite number of piezoelectric pairs

We consider first the situation where the flag is covered by a finite number of piezo-
electric pairs of same length lp. These pairs are continuously distributed on the flag
so that si+1 − si = s+

i − s
−
i = lp. Applying Kirchhoff’s current law on the nodes

associated with the ith piezoelectric pair, we obtain:

IAi−1 − IAi −
∂qi
∂t
lp = 0, (4.1)

IBi−1 − IBi −
∂qi
∂t
lp = 0, (4.2)

where q = Q/lp is the linear density of electric charge flowing through the piezo-
electric pairs.

We apply then Kirchhoff’s voltage law on the loop between the i − 1th and ith

pair. It yields:
Vi−1 − Vi − ZAi−1 · IAi−1 − ZBi−1 · IBi−1 = 0. (4.3)

Note that the impedance Z are defined as operators. As simple examples, a such
operator corresponding to a resistor R, applied on an electric current I, is given by:

ZR · I = RI, (4.4)

and for an inductor L, we have:

ZL · I = LdI

dt
. (4.5)

4.1.2 Periodic networks and continuous limit

A simplification proposed in [Bisegna 2006] is to consider that the electric networks
on the upper and lower surfaces of the flag are periodic, meaning that between any
two consecutive piezoelectric pairs, the impedance is identical, i.e. ZAi = ZA, and
ZBi = ZB. As a result, Eq. (4.3) becomes:

Vi−1 − Vi − ZA · IAi−1 − ZB · IBi−1 = 0, (4.6)

Using the notations introduced in Chapter 1, we may write:

Ii−1 = I(si − lp/2), Ii = I(si + lp/2), (4.7)

Zi−1 = Z(si − lp/2), Zi = Z(si + lp/2), (4.8)

Vi = V (si), (4.9)

Qi = Q(si). (4.10)

We consider also linear density of impedance: zA = ZA/lp and zB = ZB/lp, respec-
tively on the upper and lower surfaces of the flag. As a result of introducing these
lineic quantities, Eqs. (4.1)–(4.3) become:

IA(si − lp/2)− IA(si + lp/2)− q̇(si)lp = 0, (4.11)
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IB(si − lp/2)− IB(si + lp/2)− q̇(si)lp = 0. (4.12)

V (si−1)− V (si)− zAlp · IA(si − lp/2)− zBlp · IB(si − lp/2) = 0. (4.13)

The continuous limit is obtained by studying Eqs. (4.11)–(4.13) at the limit
where lp → 0. Equations (4.11)–(4.12) yield:

∂q

∂t
= −∂I

A

∂t
, (4.14)

∂q

∂t
= −∂I

B

∂s
. (4.15)

And Eq. (4.13) yields the following continuous equation:

∂v

∂s
+ zA · IA + zB · IB = 0. (4.16)

From Eqs. (4.14) and (4.15), we obtain:

∂IA

∂s
=
∂IB

∂s
. (4.17)

Supposing that the flag’s trailing edge is not directly connected to its leading edge,
implying IA(s = 0) = IB(s = 0) and IA(s = L) = IB(s = L), we can integrate the
previous equation to obtain:

IB = IA = I. (4.18)

We replace in Eq. (4.16) the quantity IB by Eq. (4.18), it yields:

∂v

∂s
+ z · I = 0, (4.19)

where z = zA + zB. Equation (4.19) shows that the configuration in Fig. 4.1 is
equivalent to its one-side version, i.e. it is not important on which side of the flag
the impedance z is embedded. Consequently, in the remaining of this document, no
distinction will be made between the surfaces A and B. As a result, Eqs. (4.14) and
(4.15) become simply one equation:

∂q

∂t
+
∂I

∂s
= 0. (4.20)

4.1.3 Boundary conditions and energy balance

Besides different equations for the system’s electric state, another novelty introduced
by the electric network is that boundary conditions are required to close these equa-
tions. Since the flag has a finite length, so does the electric network deployed on
it. Therefore at leading edge (s = 0) and trailing edge (s = L), additional relations
between v and I should be prescribed.
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In our study, we consider two simple configurations of boundary conditions, both
consisting of attaching an external resistor, Rext, to either the leading edge (Type
A) or the trailing edge (Type B), while on the other edge, the piezoelectric patches
are connected by a wire. As an example, the boundary conditions of Type A is
presented in Fig. 4.3.

Figure 4.3: Boundary conditions (Type A): a harvesting resistor Rext is connected
at the leading edge of the flag. On the trailing edge, two patches are connected by
a conducting wire.

The resistor Rext is the useful load of the electric network, and will be referred
as “harvesting resistor” in the following text.

By applying Kirchhoff’s laws, these boundary conditions are given by the fol-
lowing equations:

Type A: z · v(0, t) = Rext
∂v

∂s

∣∣∣
s=0,t

, v(L, t) = 0, (4.21)

Type B: v(0, t) = 0, z · v(L, t) = −Rext
∂v

∂s

∣∣∣
s=L,t

, (4.22)

Therefore, the system of equations describing the electric network is:

∂v

∂s
+ z · I = 0, (4.23)

∂q

∂t
+
∂I

∂s
= 0, (4.24)

with the boundary conditions given by one of Eqs. (4.21) or (4.22). Note that in
Eqs. (4.23) and (4.24), v is the voltage applied on the piezoelectric pairs, and q is
the linear density of electric charge flowing through the piezoelectric pairs.

The harvested power P, is consequently defined as:

Type A: P =
< v2(0, t) >

Rext
, (4.25)

Type B: P =
< v2(L, t) >

Rext
. (4.26)
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4.1.4 Dimensionless Equations

Using the same characteristic scales as in previous chapters, the dimensionless form
of Eqs. (4.23) to (4.24) are written as:

∂v

∂s
+ z̃ · I = 0, (4.27)

∂q

∂t
+
∂I

∂s
= 0. (4.28)

Notice that z̃ is defined as “dimensionless impedance”. For different types of com-
ponents (resistor, inductor,), this quantity is expressed as:

z̃R · I = βI, (4.29)

z̃L · I =
1

ω2
0

∂I

∂t
, (4.30)

where:
β =

RCU∞
L

, ω0 =
L

U∞
√
LC

. (4.31)

It is important to mention that R and L in Eq. (4.31) represent the total resistance
or inductance in the embedded circuit, while C is the total intrinsic capacitance of
all piezoelectric pairs. Although the electric state is characterised here by linear
quantities, we do not choose linear densities of R, L and C in the definitions of β
and ω0 as to keep their definition formally similar to those in previous chapters.

The boundary conditions are also written in dimensionless form as:

Type A: z̃ · v(0, t) = βext
∂v

∂s

∣∣∣
s=0,t

, v(1, t) = 0, (4.32)

Type B: v(0, t) = 0, z̃ · v(1, t) = −βext
∂v

∂s

∣∣∣
s=1,t

, (4.33)

where the parameter βext, given by:

βext =
RextCU∞

L
(4.34)

characterises the external harvesting resistor. The dimensionless harvested power is
therefore given by:

Type A: P =
< v2(0, t) >

βext
(4.35)

Type B: P =
< v2(1, t) >

βext
(4.36)

Equations (4.27)–(4.33) are combined with Eqs. (3.8), (3.9), (3.12) and (3.13),
as well as the clamped-free boundary conditions given by Eqs. (3.15)–(3.16), to
constitute the governing equations of the coupled system.



4.2. Purely resistive circuits 65

In the next two sections, we will investigate two fundamental circuits. In Sec-
tion 4.2, the embedded impedance is only composed of resistors, and the corre-
sponding circuits will be referred as “purely resistive circuits”; while in Section 4.3,
inductors constitute the embedded impedance, and the corresponding circuits will
be referred as “purely inductive circuits”.

4.2 Purely resistive circuits

Purely resistive circuits imply that the impedance is given by z̃ = β, therefore the
equation describing the circuit is:

∂v

∂t
− 1

β

∂2v

∂s2
+

α

U∗
∂2θ

∂s∂t
= 0. (4.37)

The two types of boundary conditions are written as:

Type A: βv(0, t) = βext
∂v

∂s

∣∣∣
s=0,t

, v(1, t) = 0, (4.38)

Type B: v(0, t) = 0, βv(1, t) = −βext
∂v

∂s

∣∣∣
s=1,t

. (4.39)

We choose for now to study only boundary conditions of Type A. Using nonlin-
ear numerical simulations, we vary β and βext to study the influence of embedded
resistors and harvesting resistor on the harvesting efficiency. The efficiency η as
a function of both β and βext is plotted in Fig. 4.4a, b, respectively for M∗ = 1

and M∗ = 10. Figures 4.4c, d show the flapping motion corresponding to these two
values of M∗. Other parameters are α = 0.3, H∗ = 0.5, and U∗ = 15.

For both values of M∗, the simulations show that the flapping dynamics for
both M∗ are barely impacted by varying β and βext: for M∗ = 1, the flapping
frequency is ω = 1.76, and for M∗ = 10, we obtained ω = 6.67. In terms of energy
harvesting, we observed that no energy is harvested at large values of βext and β.
This result is expected: the case of large βext is equivalent to an open circuit at
s = 0 and therefore no dissipation is possible; large values of β correspond to large
embedded resistors, in which case the entire electric network is equivalent to an open
circuit, and consequently no electric charge is flowing in the network. Meanwhile,
we observe that there are two peaks of harvesting efficiency for both values of M∗.
These two peaks are separated by a zone where efficiency is almost 0. An explanation
to the observation of two peaks can be partly obtained by studying the response
of Eq. (4.37) with the boundary condition given by Eq. (4.38) under a prescribed
forcing.

In Eq. (4.37), we will replace the last term, corresponding to a forcing resulted
from the flag’s flapping, by a simpler forcing term. Equation (4.37) becomes there-
fore a diffusion equation with a oscillating source term. This operation will lead to a
relation between β and βext that determines the location of the maximal harvested
power.
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Figure 4.4: In (a, b): harvesting efficiency η as a function of β and βext for (a)

M∗ = 1 and (b) M∗ = 10, with boundary conditions of Type A. Other parameters
are α = 0.3, H∗ = 0.5, and U∗ = 15. Values of βext given by Eq. (4.42) is presented
by the dashed curve. In (c, d): flapping motion for (c)M∗ = 1, β = 0.13, βext = 0.07,
ω = 1.7 and (b) M∗ = 10, β = 794.7, βext = 9.3 and ω = 6.2. In both cases, α = 0.3,
H∗ = 0.5 and U∗ = 15.
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Since the deformation of a flapping flag is similar to a propagative wave, the
forcing term can take the form of θ = Θ0ej(ks−ωt), where Θ0 is a constant, and ω
is the flapping frequency. The substitution of θ in Eq. (4.37) by this expression
suggests that the voltage v, as a linear response of the forcing θ, must also take a
similar form, as

v(s, t) = Ṽ0ej(ks−ωt), (4.40)

where Ṽ0, the complex amplitude of v, is a function of β and βext. We therefore
attempt to find the maximum of harvested power, which, in the current case, is
given by:

P =
Ṽ0Ṽ

∗
0

βext
, (4.41)

where Ṽ ∗0 denotes the complex conjugate of Ṽ0. For a given value of β, we derive an
expression of βext maximising P, which is the following:

β2
ext =

β(1 + e−2
√

2βω − e−2
√

2βω cos
√

2βω)

ω(1 + e−2
√

2βω + e−2
√

2βω cos
√

2βω)
. (4.42)

The result obtained using Eq. (4.42) is also plotted on Fig. 4.4a, b with black
dashed curves, superposing the nonlinear numerical simulation results. We notice
that Eq. (4.42) does not depend on k, suggesting that in the case of finite length flags,
this relation stands valid for all vibration modes. In Fig. 4.4a, b, we can observe that
for both values of M∗, the curve crosses the peaks of energy-harvesting efficiency,
while the flapping motion corresponding to these twoM∗ are different (Fig. 4.4c, d).
The good agreement of Eq. (4.42) with the results of numerical simulations confirms
the validity of the relation between β and βext, given by Eq. (4.42), that leads to high
harvesting efficiency, and that this relation is valid regardless of vibration mode.

The reason of the zero-efficiency zone separating two peaks for both M∗ can be
found by investigating the dissipation in the embedded resistors. This dissipation
rate is formally given by:

Pint =
1

β

∫ 1

0
v2ds. (4.43)

Michelin & Doaré [Michelin 2013] found that the maximal dissipation rate is
achieved when the perfect tuning is reached between the circuit’s characteristic
time scale and the flapping frequency. In our case, the circuit’s characteristic time
scale τ can be obtained by solving the circuit’s equation without the coupling term:

∂2v

∂s2
− β∂v

∂t
= 0, (4.44)

with the corresponding boundary conditions given by Eq. (4.38). The solution yields:

τ =
β

λ2
, (4.45)

where λ is determined by the following equation:

λ

tanλ
+

β

βext
= 0. (4.46)
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Figure 4.5: (a) Harvested power P and (b) embedded dissipation rate Pint as function
of β and βext, with boundary conditions of Type A, α = 0.3, H∗ = 0.5, M∗ = 1 and
U∗ = 15. Values of βext given by Eq. (4.42) is presented by the dashed curve in (a),
and values of β given by Eq. (4.47) is presented by the dashed curve in (b).

Hence the optimal tuning implies:

βωλ−2 = 2π. (4.47)

In Fig. 4.5, we plot both the harvested power P (Fig. 4.5a) and the rate of
dissipation in the embedded resistors Pint (Fig. 4.5b) for α = 0.3, U∗ = 15, M∗ = 1

and H∗ = 0.5. We observe that the dissipation in embedded resistors Pint is indeed
maximal when βωλ−2 ∼ 2π (Fig. 4.5b). When Pint reaches its maximum, the
harvested power P decrease almost to 0, suggesting that a majority of electrical
energy is dissipated in the embedded resistor and little is left for the harvesting
resistor. The area of the maximal P is therefore cut through by the zone of the
maximal Pint, hence the presence of two peaks.

The above observation clearly suggests that a maximal dissipation in embed-
ded resistors impairs the energy harvesting. A perfect tuning between τ and ω is
undesirable to energy harvesting and therefore should be avoided when designing
energy-harvesting devices based on the present electric networks.

4.3 Purely inductive circuits

4.3.1 Frequency lock-in

In a purely inductive circuit, the impedance z̃ is given by Eq. (4.30), hence the
governing equation of the circuit:

∂2v

∂t2
− ω2

0

∂2v

∂s2
+

α

U∗
∂3θ

∂t∂s2
= 0, (4.48)
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Figure 4.6: (a) Harvesting efficiency and (b) flapping frequency as a function of ω0,
with boundary conditions of Type B, α = 0.3, M∗ = 1, U∗ = 15, βext = 0.15

with following boundary conditions given by:

Type A:
∂v

∂t

∣∣∣
s=0,t

= βextω
2
0

∂v

∂s

∣∣∣
s=0,t

v(1, t) = 0, (4.49)

Type B: v(0, t) = 0
∂v

∂t

∣∣∣
s=1,t

= −βextω2
0

∂v

∂s

∣∣∣
s=1,t

. (4.50)

Equation (4.48) is actually a wave equation with a source term. In this case, the
parameter ω0 represents the ratio of electrical phase speed to the flow speed.

In the case of purely inductive circuits, we study for now only the boundary
conditions of Type B. We are interested in the evolution of both harvesting efficiency
η and flapping dynamics, represented by the frequency ω, with varying ω0 and βext,
which are two controlling parameters of the electric network’s property. We choose
α = 0.3, U∗ = 15, M∗ = 1 and H∗ = 0.5 for numerical simulations. In Fig. 4.6,
both quantities are plotted with varying ω0 and βext = 0.15, a relatively small value;
while in Fig. 4.7, we plot the two quantities with βext = 141, a larger value.

The harvesting efficiency (Figs. 4.6a and 4.7a) and the flapping frequency
(Figs. 4.6b and 4.7b) are reminiscent of results presented in Chapter 3 (Fig. 3.6). In
both figures, we can observe an increase in harvesting efficiency accompanied with
“frequency lock-in”. However, with the non-local electric network, the value which
the flapping frequency locks to is not ω0. And with varying ω0, the frequency locks
to multiple values.

The answer to this observation is to be sought by studying the circuit’s property
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Figure 4.7: (a) Harvesting efficiency and (b) flapping frequency as a function of ω0,
with boundary conditions of Type B, α = 0.3, M∗ = 1, U∗ = 15, βext = 141

from its governing equation. The equation of the circuit without forcing term reads:

∂2v

∂t2
− ω2

0

∂2v

∂s2
= 0. (4.51)

with boundary conditions given by Eq. (4.50). It is a wave equation of which the
general solution has the form:

v(s, t) = Ṽ0f̃(s)ejω̃t, (4.52)

where f̃(s) = ejλ̃s + C̃e−jλ̃s is the solution of the Helmholtz’s equation:

∂2f̃

∂s2
+ λ̃2f̃ = 0, (4.53)

with λ̃ = ±ω̃/ω0.
Using boundary conditions of Type B, given by Eq. (4.50), we can determine

that C̃ = −1, and the complex λ̃, which has two expressions according to the value
of βextω0:

βextω0 < 1 : λ̃ = nπ +
j

2
ln

(
1− βextω0

1 + βextω0

)
, (4.54)

βextω0 > 1 : λ̃ =

(
n+

1

2

)
π +

j

2
ln

(
βextω0 − 1

βextω0 + 1

)
, (4.55)
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where n is 0 or a positive integer. The real part of λ̃ corresponds to the natural
frequency of the circuit, while the imaginary part represents the damping induced
by the harvesting resistor. We can see that the value of βextω0 has an important
influence on the circuit’s behavior: if βextω0 � 1, we have λ̃ ∼ nπ, therefore the
natural frequency of the circuit is consequently given by:

ωc = ω0λ̃ = nπω0, (4.56)

and the corresponding mode f̃(s) is

f̃(s) = ejλ̃s − e−jλ̃s = ± sinnπs. (4.57)

while when βextω0 � 1, we have λ̃ ∼ (n+ 1/2)π, the natural frequency is therefore:

ωc = ω0λ̃ =

(
n+

1

2

)
πω0, (4.58)

and the corresponding mode f̃(s) is

f̃(s) = ejλ̃s − e−jλ̃s = ± sin

(
n+

1

2

)
πs. (4.59)

These results suggest that instead of one single value ω0, the inductive circuit
possesses more than one natural frequencies depending on the value of βextω0. It
is therefore reasonable that the flapping frequency does not lock to ω0. Moreover,
these results also imply that the lock-in phenomenon should be observed not only
at one single frequency, but at multiple values. This is also confirmed by numerical
simulation. In Fig. 4.6, we have βext = 0.15, leading to βextω0 � 1 for the considered
range of ω0, and a natural frequency given by Eq. (4.56). Therefore the flapping
frequency locks successively to πω0 and 2πω0 with decreasing ω0 (Fig. 4.6b). In
Fig. 4.7, βext = 141, we then have βextω0 � 1. The circuit’s natural frequency
is therefore determined by Eq. (4.58). The flapping frequency in this case locks
successively to π/2, 3π/2 and 5π/2 with decreasing ω0.

Figure 4.8 shows the flapping motion of flags (Fig. 4.8a,c) at each range of
frequency lock-in, and the corresponding voltage profile along the flag (Fig. 4.8b, d)
for the case of βext = 0.15. As expected, the flag flaps with large amplitude when it
is at lock-in. The voltage profile also shows a form close to sin(nπs), which is the
mode shape predicted by Eq. (4.57). For the case of βext = 141, results are presented
in Fig. 4.9 and the same remarks apply. The accordance between the voltage profile
and the electric mode shape indicates that while the system is at lock-in, the high
harvesting efficiency is a result of the circuit working at resonance.

Meanwhile, we observe that for both cases (βextω0 � 1 and βextω0 � 1), similar
efficiencies are obtained while the system works at lock-in, suggesting comparable
amount of dissipation in βext in both cases. This observation can be explained from
the electrical mode shapes in Figs. 4.8 and 4.9. When βextω0 � 1, the electrical
mode shape shows relatively low voltage at the trailing edge. However, as the circuit
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is connected to a small harvesting resistance, the electrical current passing through
the resistor is large enough to ensure a significant dissipation. When βextω0 � 1,
the circuit is connected to a large resistance, but the electrical modes in this case
give a large voltage at the trailing edge, thus a large amount of dissipation in the
resistor.

4.3.2 Energy harvesting at βextω0 ∼ 1

In Eqs. (4.54) and (4.55), we can see that the imaginary part of λ̃ is determined by
the following expression:

Im(λ̃) =
1

2
ln

(∣∣∣∣βextω0 − 1

βextω0 + 1

∣∣∣∣) . (4.60)

Equation (4.60) leads to the consequence that Im(λ̃) = −∞ when βextω0 = 1. This
infinite damping implies two consequences: (i) as the circuit’s natural frequency
becomes purely imaginary, the frequency lock-in is not going to happen; (ii) a perfect
absorption of the electric modes is introduced by the system’s damping, of which
the only contribution come from the harvesting resistor at s = 1. With this perfect
absorption condition, theoretically any electrical energy generated in the circuit
would be absorbed and dissipated by the harvesting resistor βext. It is therefore
expected that significant improvement would be achieved under this condition even
without frequency lock-in. This prediction is confirmed by results in Fig. 4.10,
which shows η and ω as functions of βext for a value of ω0 that does not lead to
lock-in. We observe that when βextω0 ∼ 1, an increased harvesting efficiency is
obtained even without having the system working at lock-in, as the frequency ω

is unchanged, although the efficiency is not yet comparable to that obtained with
frequency lock-in.

4.4 Electrical energy flux

In previous parts of this chapter, we studied two basic circuits using two types of
boundary conditions. The critical factor that determines which type of boundary
conditions to use is the electrical energy flux introduced by the electric network.

From Eqs. (4.27) and (4.28), as well as the direct piezoelectric effect, given
by Eq. (3.8), we can derive the equations of local electrical energy conservation.
Replacing q in Eq. (4.28) by Eq. (3.8), and multiplying the resulting equation by v,
we obtain:

v
∂v

∂t
+ v

∂I

∂s
+

α

U∗
v
∂2θ

∂t∂s
= 0, (4.61)

which can be arranged and be rewritten as:

1

2

∂

∂t
(v2) +

∂

∂s
(vI)− ∂v

∂s
I +

α

U∗
v
∂2θ

∂t∂s
= 0. (4.62)
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Figure 4.10: Harvesting efficiency and flapping frequency with α = 0.3, M∗ = 1,
U∗ = 15, and ω0 = 6.7.

Equation (4.27) leads to:
∂v

∂s
I = −(z · I)I. (4.63)

Equation (4.62) can therefore be written as:

∂Ec
∂t

+ Pz = T +
∂Felec
∂s

, (4.64)

where EC , Pz, and T are respectively the energy stored in the intrinsic capacitance,
the rate of electrical energy variation due to embedded impedance, and the rate of
energy transfer from the structure to the circuit. They are given by:

EC =
1

2
v2, Pz = (z · I)I, T = − α

U∗
v
∂2θ

∂t∂s
. (4.65)

In the case of the purely resistive circuits, Pz = βI2 represents the rate of dissipation
in the embedded resistors, and with the purely inductive circuits, Pz is the variation
of energy stored in the inductance. The electrical energy flux, Felec, is given by:

Felec = −vI. (4.66)

The average in time of Felec gives information about the direction of propagation
of electrical energy. A better energy harvesting strategy should consist of placing the
harvesting resistor on the spot towards which a larger amount of electrical energy
converges.

In the case of purely resistive circuits, we plotted the time average of Felec for
both Types of boundary conditions in Fig. 4.11. We observe that with Type A, a
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Figure 4.11: Electrical energy flux along the flag using the boundary conditions of
Type A and Type B, with α = 0.3, M∗ = 1, U∗ = 15, β = 0.13 and βext = 0.067.

small amount of electrical energy is flowing towards and absorbed at s = 0, while a
much higher peak of electrical energy flux, situated close to s = 1, is heading towards
the trailing edge. With boundary conditions of Type B, a much larger amount of
electrical energy is absorbed at s = 1. A high peak of electrical energy flux is also
observed heading towards s = 0. However, this peak is situated far from s = 0, and
is decaying rapidly with decreasing s. These results shows clearly that for the same
set of parameters, circuits with the boundary conditions of Type B prevails against
Type A in terms of energy harvesting.

The efficiency of energy harvesting with Type B is plotted in Fig. 4.12. Com-
paring Figs. 4.4a and 4.12, we observe that with the harvesting resistor placed at
the trailing edge, the system harvests nearly 10 times more energy than a resistor
placed at the leading edge for the considered parameters. This advantage possessed
by the trailing edge harvesting is also reflected in terms of energy dissipation in both
embedded resistors and harvesting resistors, plotted in Fig. 4.13. In Fig. 4.13, one
can observe that not only more energy is harvested by Rext (Fig. 4.13a), but also
less energy is dissipated in the embedded resistors (Fig. 4.13b), which is beneficial
to the energy harvesting.

In the case of purely inductive circuits, the same observation holds. In Fig. 4.14,
we plot electrical energy flux for both types of boundary conditions using purely
inductive circuit, with the parameters satisfying βextω0 ∼ 1. Figure 4.14 shows that
for the same set of parameters, the boundary conditions of Type B allows almost all
electrical energy flux being directed towards the trailing edge, leading to a better
energy harvesting performance; while with Type A, only a small amount of electric
energy flux is heading toward the leading edge, and the majority of energy flux still
tends to flow towards s = 1.

An indication of the reason why more electrical energy flux heads towards the
trailing edge could be found by studying the relation between Felec and the mechan-
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Figure 4.13: (a) Harvested power P and (b) embedded dissipation rate Pint as
function of β and βext, with boundary conditions of Type B. α = 0.3, H∗ = 0.5,
M∗ = 1 and U∗ = 15. Values of βext given by Eq. (4.42) is presented by the dashed
curve in (a), and values of β given by Eq. (4.47) is presented by the dashed curve
in (b).
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Figure 4.14: Electrical energy flux along the flag with α = 0.3, M∗ = 1, U∗ = 15,
ω0 = 6.7 and βext = 0.04 (βextω0 ∼ 1), for the boundary conditions of Type A
(dash-dotted) and Type B (solid)

ical energy flux Fmech, defined in the previous chapter by Eq. (3.26). We notice
that in Eq. (3.26), two terms represent the contribution of piezoelectric effects to
the mechanical energy fluxes. They are given by:

Fp1 = − α

U∗
v
∂θ

∂t
, Fp2 =

α

U∗
v
∂x

∂t
· n. (4.67)

From Eq. (4.28), and the direct piezoelectric effect, given by Eq. (3.8), one may
notice that the electric current I and the derivative in time of θ are closely related
through:

∂I

∂s
= −∂q

∂t
=

α

U∗
∂2θ

∂t∂s
+
∂v

∂t
. (4.68)

Equation (4.68) shows that:

I ∼ ∂θ

∂t
, (4.69)

suggesting that the electrical energy flux is related to Fp1. We plot the three quan-
tities, i.e. Fp1, Fp2 and Felec in Fig. 4.15, using a configuration where βext = 0,
i.e. both at leading edge and trailing edge of the flag, two piezoelectric patches are
connected by a conducting wire instead of a harvesting resistor. As a result, the
influence of boundary conditions on the electrical energy flux is excluded.

The results in Fig. 4.15 clearly show the almost identical evolution of Fp1 and
Felec. Both Fp1 and Felec show a much higher peak of energy flux flowing towards
s = 1 near the trailing edge, while for the part of energy flux heading towards
s = 0, the peak is much lower. Physically, this observation can be explained by
the clamped-free boundary conditions applied on the flag. Equation (4.69) shows
that the order of magnitude of I, subsequently that of Felec, is proportional to the
derivative in time of θ, which is zero at the fixed leading edge, and increases as we
move towards the free trailing edge, leading to a high peak of electrical energy flux
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Figure 4.15: Electrical energy flux and the contributions of piezoelectric effects to
the mechanical energy flux along the flag with βext = 0, α = 0.3, M∗ = 1, U∗ = 15,
and β = 0.13.

near the trailing edge. This explanation suggests that near the free end of a flag, one
can expect more electrical energy flux available, it is therefore preferable to connect
the harvesting resistor to the electrodes situated at the free end of the flag in order
to profit from this abundance of energy flux.

4.5 Conclusion and perspectives

In this chapter, we investigated the energy harvesting of piezoelectric flags using a
non-local electric network. By studying two elementary configurations, i.e. purely
resistive circuits and purely inductive circuits, we observed that by connecting all
piezoelectric pairs into one circuit, such non-local electric networks allow energy
harvesting by a harvesting resistor placed at one end of the flag. This resistor
harvests energy through the electric energy flux flowing along the flag. In the case
of purely resistive circuit, the dissipation in the embedded resistors acts against
the energy harvesting, therefore needs to be suppressed by avoiding the resistors’
tuning with the flapping motion. With purely inductive circuits, we identified that
even without frequency lock-in, inductance could act in favour to energy harvesting
by applying a perfect absorption boundary condition on either the leading edge or
the trailing edge (preferred) of the flag, although frequency lock-in is still a more
desirable effect to the energy harvesting.

As mentioned at the beginning of the chapter, in practice, non-local electric net-
works are more likely to be used than local circuits studied in the previous chapter.
The results in this chapter showed the feasibility of such concept and proved that
such electric network induces a deeper interaction between the electrical system
and the fluid-solid system: the non-local circuits introduce modal dynamics to the
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electrical system that interacts with the flag’s flexibility, leading to a lock-in phe-
nomenon at multiple frequencies. Although the results presented here are obtained
using the assumption of infinitesimal piezoelectric electrodes, we expect them to be
also applicable in other configurations consisting of a flag covered by piezoelectric
electrodes of finite size [Piñeirua 2015].

The benefit of coupling the piezoelectric flag with a resonant system is again
found in this chapter. The inductive network, acting as a multi-modal oscillator,
induces a frequency lock-in to the coupled fluid-solid-electric system. This lock-in
phenomenon maintains the circuit working at resonance, thus yielding a high energy-
harvesting efficiency. Moreover, as in the previous chapter, where we found common
points between the piezoelectric flag coupled with resistive-inductive loop with VIV
of rigid cylinders through the frequency lock-in phenomenon, a similar comparison
can be made here between the non-local electric network and the VIV of flexible
cables [Grouthier 2014]. As a flexible cable, an inductive network possesses multiple
natural frequencies and natural electrical modes, which appear while frequency lock-
in, as shown in Figs. 4.8 and 4.9. The fact that with non-local electric networks,
energy harvesting becomes efficient by exploiting electrical energy flux, is also similar
to the results in [Grouthier 2014], that a flexible cable generates a mechanical energy
flux and produces an efficient energy harvesting.

A more promising strategy to fully exploit the frequency lock-in as well as en-
ergy fluxes is to position harvesters at spots corresponding to crests of electric wave,
making use of the large amplitude of electric voltage. However, the locations of
energy harvesters might also modify the voltage distribution as well as the electrical
energy flux. It is therefore important to understand the impact of the energy har-
vesters’ positions on the electrical modes and identify optimal locations of harvesting
resistors in future work.



Chapter 5

Coupled flutter

This chapter will focus on the influence of the hydrodynamic coupling between two
flags on energy harvesting. The motivation of studying the energy harvesting of two
flags lies in the small quantity of energy that one single piezoelectric flag can harvest.
Using more than one flags is an interesting path of designing further applications
capable of harvesting a large quantity of energy. Investigating the coupling of two
flags constitutes a first step on this path.

The coupled flutter is an intriguing subject associated with flapping flags. It in-
volves two or more flexible flags placed in a flow. Under the action of the flow, these
flags will become unstable and flap. So far, the most extensively studied configura-
tions are: (i) two flags placed side by side and (ii) two flags placed in tandem. Using
ingenious techniques consisting of soap film and flexible filaments, some experimen-
tal works [Zhang 2000, Jia 2007] are performed to study two flags placed side-by-side
in a 2D uniform flow. The results showed that with varying distance which sepa-
rates the two flags, the flags establish sometimes an in-phase flapping, sometimes an
out-of-phase flapping. This conclusion is substantiated by many numerical studies
[Zhu 2003, Farnell 2004, Alben 2009b] where similar observations were found. Some
studies, using analytic and numerical approaches, examined the linear stability of
two flags placed side by side [Jia 2007, Michelin 2009]. They also found that accord-
ing to the distance, the most unstable flapping mode switches between the in-phase
mode and the out-of-phase mode. In addition, they also discovered the destabilising
effect of small distance.

Two flags placed in tandem, i.e. one flag on the direct downstream of the other,
are also studied by numerous researchers [Ristroph 2008, Zhu 2009, Alben 2009b].
In this configuration, the trailing flag (flag placed downstream) is necessarily forced
by the wake of the flapping of the leading flag (flag placed upstream), leading to
two consequences which are the following:

• Compared with one single flag’s flapping, the amplitude of the leading flag
is reduced and that of the following flag is increased. In [Ristroph 2008],
the authors explained that the reduction of the leading flag’s amplitude is a
result of the following flag’s fixed leading edge, suppressing lateral flow near
the leader’s trailing edge, thus indirectly confining the leading flag. As for
the follower’s amplitude, its increase is mainly the result of the leading flag’s
wake, forcing the follower, and therefore leading to a large amplitude.

• Compared to the case of one single flag, the leading flag experiences less drag,
while the trailing flag experiences more drag, contrary to the intuition based
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Figure 5.1: Definition of separation distance D for (a) side-by-side flags and (b)

tandem flags.

on fixed rigid bodies. Ristroph & Zhang suggested that this observation,
named as inverted drafting, is a direct consequence of the different amplitude
experienced by the two flags [Ristroph 2008]. As the drag is proportional to
the cross-section occupied by the flag’s motion, characterised by its amplitude,
the flag with smaller amplitude, i.e. the leader, experiences less drag than the
follower, which flaps with a larger amplitude.

Energy harvesting using two piezoelectric flags is a relatively new field of study
and one could not find many existing work. Recently, Song et al. [Song 2014]
assessed energy harvesting potential of two piezoelectric flags placed in tandem and
found that the larger amplitude of the trailing flag enhances the energy harvesting
performance.

5.1 Two piezoelectric flags connected in one circuit

5.1.1 Electrical circuits

In our work, we will focus on the most studied configurations, i.e. two flags placed
either side by side or in tandem. As presented in Chapter 1, an additional parameter,
the separation distance D, will be involved in the modelling of the problem. For the
flags placed side by side, D is taken as the distance separating the two flags’ leading
edge (Fig. 5.1a), while for two flags in tandem, D is taken as the distance separating
the leading flag’s trailing edge, and the following flag’s leading edge, when both flags
are at rest (Fig. 5.1b). The corresponding dimensionless parameter is defined as:

d =
D

L
. (5.1)

In [Song 2014], Song et al. investigated two flags placed in a flow but electrically
independent, i.e. their electrodes are not connected in the same circuit. As a result,
only hydrodynamic effects were discussed in their work. However, as discussed in
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Figure 5.2: Schematic representation of two piezoelectric flags connected to an
energy-harvesting electric system.

previous chapters, piezoelectric effects may also play crucial role on the flapping
dynamics as well as on the energy harvesting. It is therefore reasonable to ask the
following question: if two flags are coupled both hydrodynamically and electrically,
how would the hydrodynamic coupling interact with the piezoelectric coupling?
More precisely, will these two couplings enhance each other? or impair each other?
In order to investigate these questions, we will couple the two flags electrically by
connecting their electrodes into a same electric loop (Fig. 5.2).

Each flag considered here is covered by one single piezoelectric pair. From this
piezoelectric pair, an electrode stretches out of each patch (see Fig. 5.2), which makes
two electrodes per flag, respectively denoted as T for “top” and B for “bottom”, with
the index 1 and 2 distinguishing flag 1 and flag 2. In the following, flag 1 designates
the upper flag in the side-by-side configuration, and the leading flag in the tandem
configuration.

As for the circuit into which the flags’ electrodes will be plugged, we will consider
two simple configurations: a circuit containing only a resistor, called resistive circuit
(Fig. 5.3a), and a circuit containing a resistor and an inductor connected in parallel,
called inductive-resistive circuit (Fig. 5.3b). Two flags are connected to each circuit
and we consider that the flags are in parallel connection (Fig. 5.3).

Due to the fact that each flag has two electrodes, we may consider two types of
connections. The first one is to join T1 to T2, and B1 to B2. As we consider this
connection to be the “normal” way to connect the electrodes, it will be referred as
“normal connection” (NC) hereinafter. The second one is to join T1 to B2, and B1 to
T2, which will be referred as “inverse connection” (IC) in contrast with the normal
connection.

As a result of these two types of connections, the dimensionless equations of
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Rext

Rext

Figure 5.3: Equivalent circuit of two piezoelectric flags in parallel connection to (a)

a purely resistive circuit, and (b) a parallel resistive-inductive circuit.

direct piezoelectric effect are written as follows:

Normal connection: Q1 = 2[αθ1(1) + V ], (5.2)

Q2 = 2[αθ2(1) + V ], (5.3)

Inversed connection: Q1 = 2[αθ1(1) + V ], (5.4)

Q2 = 2[−αθ2(1) + V ]. (5.5)

Indeed, if two flags’ electrodes are connected to the same circuit, the voltage applied
on them should be identical, hence the term +V in all 4 equations. However,
for a flag with inverse connection, the electric charge generated by a deformation
characterised by θ(1) is of the opposite sign to the electric charge that would have
been generated had the flag’s electrodes are plugged in with normal connection,
therefore the presence of “−αθ2(1)” in Eq. (5.5), as opposed to the corresponding
term in Eq. (5.3).

Governing equations for both connections are then derived. The dimensionless
equations describing resistive circuits’ behaviour are given as follows:

NC: 2
∂V

∂t
+
V

2β
+

α

U∗

(
∂θ1

∂t

∣∣∣
s=1

+
∂θ2

∂t

∣∣∣
s=1

)
= 0, (5.6)

IC: 2
∂V

∂t
+
V

2β
+

α

U∗

(
∂θ1

∂t

∣∣∣
s=1
− ∂θ2

∂t

∣∣∣
s=1

)
= 0, (5.7)
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and the equations for resistive-inductive circuits are written as:

NC: 2
∂2V

∂t2
+

1

2β

∂V

∂t
+
ω2

0

4
V +

α

U∗

(
∂2θ1

∂t2

∣∣∣
s=1

+
∂2θ2

∂t2

∣∣∣
s=1

)
= 0, (5.8)

IC: 2
∂2V

∂t2
+

1

2β

∂V

∂t
+
ω2

0

4
V +

α

U∗

(
∂2θ1

∂t2

∣∣∣
s=1
− ∂2θ2

∂t2

∣∣∣
s=1

)
= 0. (5.9)

Equations (5.6)–(5.9) are obtained using the same characteristic scales used in previ-
ous chapters, so the dimensionless parameters β, α and ω0 hold the same definitions
as in Chapter 2.

Equations (5.6)–(5.9) suggest that the normal and inverse connections would
act in favour of different phase shifts through piezoelectric effects. For example,
in the normal connection, the additional torque induced by piezoelectric effects is
identical on both flags. As a result, the normal connection favours the state of
two flags having an in-phase flapping. The inverse connection, on the contrary,
would favour the state of two flags having an out-of-phase flapping. As the effects
of each connection are expected to be opposite to the other, in the following, we
will centre our presentation on the normal connection, while the results obtained
using the inverse connection will be briefly presented and compared with the normal
connection.

5.1.2 Harvesting efficiency

For the case of two flags, the energy-harvesting efficiency is defined, in its dimen-
sionless form, by the following expression:

η =
< P >

< A1 > + < A2 >
, (5.10)

where < P > is the time average of the rate of dissipation in the harvesting resistor
R, given in its dimensionless form by:

P =
V 2

β
, (5.11)

and A1 and A2 are respectively the dimensionless flapping amplitude of flag 1 and
flag 2. This definition is actually based on the same principle of the efficiency defined
in the case of one single flag: they are both defined as the ratio between the useful
harvested energy and the energy of the fluid flow in contact with the flags.

5.2 Fluid forcing: vortex sheet model

As mentioned in Chapter 1, the vortex sheet model for the fluid forcing will be used
for this chapter, as the slender body approach based on Lighthill’s LAEBT, in is
local form presented in this work, is unable to reveal how the presence of a solid
body, flexible or not, would alter the characteristics of the surrounding flow. The
modelling of such characteristics is however paramount in the study of hydrodynamic
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coupling of two or more flags. Consequently, we abandon the slender body approach
and adopt the vortex sheet model [Alben 2009a], which has already been used for
the study of two flags’ coupled flutter [Alben 2009b].

In high Reynolds number flows, a vortex sheet is a simplified modelling for the
effect of viscosity in producing vorticity within boundary layers along a solid/flow
interface, which, in our case, is the flag. The vorticity is developed along the flag,
and is shed from the flag’s trailing edge. The vorticity zone corresponding to each
flag (flag i, i = 1, 2) is modelled as a vortex sheet represented by the contour Ci,
which is composed of a bound vortex sheet attached to the flag, denoted by the
contour Cif , and a free vortex sheet representing the wake being shed from the flag’s
trailing edge, denoted by Ciw [Alben 2009a]. This vortex sheet is characterised by
its strength γ(s, t), which gives the tangential velocity jump across Ci. The flow is
inviscid and irrotational outside of each vortex sheet, and its velocity is a sum of
a uniform base flow along the x-direction, and the velocity induced by the vortex
sheets through the Biot-Savart kernel [Saffman 1992]. In the case of two flags, the
velocity of the flow is written in dimensionless form as:

Ũ(x, t) = ex +
1

2πj

∫
C1

γ1(s′, t)

x− x1(s′, t)
ds′ +

1

2πj

∫
C2

γ2(s′, t)

x− x2(s′, t)
ds′, (5.12)

where Ũ denotes the complex conjugate of the flow velocity U. The first integral
on the right-hand side of Eq. (5.12) represents the contribution of the vortex sheet
belonging to flag 1, and the second integral represents the contribution given by the
vortex sheet of flag 2. It is therefore necessary to find γ in order to obtain the full
description of the flow.

The variable γ is determined by studying the relation between the flag and the
vortex sheet. The presence of the flag on Cif enforces the condition of impermeability,
i.e. the normal component of the vortex sheet velocity ui should be equal to the
normal component of the flag’s velocity, given by ∂xi/∂t. Taking the flag 1 for
example, its impermeability condition is written as:

∂x1

∂t
· n1 = u1(s, t) · n1, s ∈ C1

f . (5.13)

In Eq. (5.13), the motion of the flag is governed by the Euler-Bernoulli beam model
with the clamped-free boundary conditions, as given by Eq. (1.3) in Chapter 1;
while the velocity of the vortex sheet u is found through averaging the limits of U
from above and below C1

f . The velocity of the vortex sheet of flag 1, noted by u1 in
Eq. (5.13), is given by:

ũ1(s, t) = ex+
1

2πj
−
∫
C1

γ1(s′, t)

x1(s, t)− x1(s′, t)
ds′+

1

2πj

∫
C2

γ2(s′, t)

x1(s, t)− x2(s′, t)
ds′, (5.14)

where the the first integral on the right-hand side is a principal-value integral. In
order to solve Eq. (5.13), an additional constraint is required on the total circula-
tion about the flag and its shed vortex sheet. At each instant, the value of γ at
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the trailing edge of the flag (s = 1), representing the rate of circulation flux from
C1
f into C1

w, is determined by an unsteady Kutta condition which enforces a finite
velocity [Jones 2003]. Meanwhile, on the free vortex sheet C1

w, Helmholtz’s circu-
lation theorem [Saffman 1992] ensures that the circulation of any material points
on C1

w, where there is no pressure jump, is invariant with time and space, i.e. the
circulation of a material point located on s at a given instant t on C1

w is equal to its
circulation when it is shed at s = 1 at a previous instant t0. This circulation can be
computed by applying Kelvin’s theorem on C1

f :

Γ1(s, t) =

∫ s

sm

γ1(s′, t)ds′ = Γ1(1, t0) =

∫ 1

0
γ1(s′, t0)ds′, s ∈ C1

w, (5.15)

where sm represents the Lagrangian coordinate of the most dowstream point in the
free vortex sheet. The invariance of Γ makes it convenient to describe the behaviour
of Ciw by studying its evolution in the Lagrangian frame attached to its average
velocity.

The fluid forcing Ffluid applied on the flag 1 is the difference of the pressure
forces above and below C1

w. It is obtained using the Bernoulli’s theorem [Jones 2003,
Michelin 2008, Alben 2009a].

Ffluid = [p]1(s, t)n1 =

(∫ s

0

∂γ1

∂t
+ [ur1(s, t) · τ 1]γ1(s, t)

)
n1, (5.16)

where ur1 is the relative velocity between the flag 1 and the velocity of the vortex
sheet C1

f . With the pressure [p]1(s, t) applied on flag 1, it would perceive the presence
of flag 2 and act consequently, thereby revealing the hydrodynamic coupling. The
hydrodynamic effect is applied on the flag 2 in the reciprocal way.

The fluid-solid system of two flags is therefore described by Eqs. (5.13)–(5.16),
as well as the Kutta’s condition taken as a boundary condition for the vortex sheet
at s = 1. These equations are solved numerically using a second-order scheme
for the time-marching, and a Chebyshev collocation method for the derivation and
integration in space. The numerical solution allows us to obtain γ, x, and the
circulation Γ of Ciw, which are necessary quantities for describing the dynamics
of the fluid-solid system. The details of the numerical method can be found in
Appendix B.

5.3 Side-by-side flags

In this section, we will study the energy harvesting using two flags placed side-
by-side. The main part of this section will be dedicated to the study of resistive
circuits, while the results obtained using inductive circuits will be briefly presented
at the end of the section. The interaction between the hydrodynamic coupling and
the piezoelectric effects as well as their impacts on the energy harvesting will be the
centre of this section. An important feature of coupled flutter is the phase difference
∆φ between two flags. Many studies [Zhang 2000, Farnell 2004, Jia 2007] reported
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Figure 5.4: Flapping motion of two side-by-side flags without piezoelectric coupling
(α = 0). In (a): d = 0.5, in-phase flapping and in (b): d = 1.5, out-of-phase
flapping. Other parameters are M∗ = 3 and U∗ = 13.

two possible states: (i) in-phase flapping, or ∆φ = 0, and (ii) out-of-phase flapping,
corresponding to ∆φ = ±π. The transition between the two states occurs when the
distance separating the two flags varies. In order to illustrate how the phase shift
impacts the energy harvesting, we choose at first two distances: d = 0.5, where two
flags of M∗ = 3 and U∗ = 13 with α = 0 exhibit in-phase flapping (Fig. 5.4a), and
d = 1.5, where the flapping is out of phase (Fig. 5.4b).

Using the parameters M∗, U∗ and d, we investigate the influence of these two
flapping states on the energy harvesting. As mentioned previously, we will elaborate
our presentation using the normal connection. In the last paragraph of this section,
results obtained using the inverse connection will be briefly presented, and then
compared with the normal connection.

5.3.1 Influence of in-phase and out-of-phase flapping

We start by assessing the influence of the flapping pattern on the energy-harvesting
performance. We place two flags at two different distances, one corresponding to
an in-phase flapping and the other an out-of-phase flapping. The energy harvesting
efficiency for both cases are plotted in Fig. 5.5.

In Fig. 5.5, we observe that with normal connection, the in-phase flapping mode
leads to a much higher energy-harvesting efficiency than the out-of-phase flapping
mode. These results show that the phase difference has an important impact on
the energy harvesting. We can explain this observation by examining the equations
describing the resistive circuit using the normal connection. In Eq. (5.6), the term
accounting for the electric charge generation reads:

coupling =
α

U∗

(
∂θ1

∂t

∣∣∣
s=1

+
∂θ2

∂t

∣∣∣
s=1

)
. (5.17)

This term involves time derivatives of two flags’ trailing edge angle: θ1(1) and θ2(1),



5.3. Side-by-side flags 89

10
−2

10
0

10
2

0

0.5

1

1.5
x 10

−3

β

η

 

 

d = 0.5, in-phase

d = 1.5, out-of-phase

Figure 5.5: Harvesting efficiency η as function of β with d = 0.5 and d = 1.5 using
Normal Connection. Other parameters are M∗ = 3, U∗ = 13, α = 0.3.

which are of same order of magnitude both in the case of in-phase and out-of-phase
flapping, but of different sign in the latter case. As a result, with the normal
connection, the in-phase flapping leads to a reinforced coupling while the out-of-
phase flapping cancels out the coupling, leading to a negligible amount of harvested
energy.

In addition, the flapping frequencies of both flags are almost identical, ω1 = ω2 =

3.26, and are not changed with varying β. The value of β leading to the maximal
efficiency corresponds to the situation where the circuit’s time scale is tuned with the
flags’ flapping frequency, as reported in [Michelin 2013]. In the case of two flags, the
circuit’s characteristic time scale is determined by the resistance and the intrinsic
capacitance of both flags, and the perfect tuning is achieved when βω ∼ 1/2.

5.3.2 Influence of separation distance d

In [Alben 2009b], Alben, also using the vortex sheet model, has found that instead
of switching between 0 and π, ∆φ actually varies continuously with the distance d.
Based on the results in Fig. 5.5 showing the critical impact of ∆φ, we may expect
that the evolution of efficiency η would follow the variation of ∆φ. In Fig. 5.6, we
plot the phase difference ∆φ (Fig. 5.6a) and the harvesting efficiency η (Fig. 5.6b)
as function of d, for different values of α. In Fig. 5.6, For α = 0.3 and α = 0.6,
we observe that at small values of d, ∆φ evolves in the same way as the case of
α = 0 (Fig. 5.6a), with ∆φ ∼ 0 at first, leading to high efficiency η (Fig. 5.6b),
which starts to drop as ∆φ varies to −π with increasing d. However, at large d,
∆φ no longer follows the evolution obtained with α = 0, and tends to a fixed value
that is close to ∆φ = 0. Meanwhile, η starts to increase again as d increases, which
undoubtedly due to a flapping pattern tending to an in-phase one, favoured by the
normal connection.

The results shown above suggest that when two flags are close, the hydrodynamic
effect still dominates, and acts either to enhance the energy harvesting or to diminish
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Figure 5.6: (a) Phase shift ∆φ and (b) harvesting efficiency η as function of distance
d, for α = 0, α = 0.3, and α = 0.6, using normal connection. Other parameters are
M∗ = 3, U∗ = 13, β = 0.15.

it. The hydrodynamic effect is weakened with increasing d, giving an opportunity to
the piezoelectric effect to take control of the flapping pattern. With the parameters
used in Fig. 5.6 (M∗ = 3 and U∗ = 13), the piezoelectric effect acts in phase and
therefore dictates the phase difference ∆φ.

At some other cases, the piezoelectric coupling still impacts on ∆φ but may
not be completely in favour of the energy harvesting. In Fig. 5.7, the phase shift
(Fig. 5.7a) and the efficiency (Fig. 5.7b) are plotted for M∗ = 3 and U∗ = 15 with
varying distance d. Figure 5.7a shows that with M∗ = 3 and U∗ = 15, the phase
difference ∆φ undergoes a steeper evolution with varying d at α = 0. Under the
effect of piezoelectric coupling, characterised by α = 0.3, the evolution of ∆φ with d
is altered, and remains at a value close to −π, which is not favoured by the normal
connection used in this case. Meanwhile, at ∆φ = 0, a peak of η is found, confirming
that ∆φ = 0 indeed enhances energy harvesting with the normal connection.

From Fig. 5.6, where different values of α are tested, we can see that with larger
α, the piezoelectric effect seemingly takes control of ∆φ at smaller d. It is therefore
interesting to determine a characteristic distance dc above which the piezoelectric
effect becomes dominant compared to the hydrodynamic forcing.

Scaling law between the hydrodynamic and piezoelectric forcing

The piezoelectric effect, represented in its dimensional form by an added torque
Mpiezo on each flag’s trailing edge, is scaled as:

Mpiezo ∼ χ[V ] ∼ χ2[θ]

C
, (5.18)

where [θ] is the scale of leading edge angle. With the parameters studied in the
present work, we have [θ] ∼ O(1). The fluid forcing on one flag due to the motion
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Figure 5.7: (a) Phase shift ∆φ and (b) harvesting efficiency η as function of distance
d for α = 0 and α = 0.3 using normal connection. Other parameters are M∗ = 3,
U∗ = 15, β = 0.15.

of the other flag, noted asMfluid, is scaled as:

Mfluid ∼ ρsf [u]2L2, (5.19)

where [u] is the scale of velocity perturbation due to the other flag, which is scaled
as, according to the Biot-Savart kernel given by Eq. (5.12):

[u] ∼ U∞
L

D
. (5.20)

Therefore, Eq. (5.19) becomes:

Mfluid ∼ ρsfL2U2
∞
L2

D2
. (5.21)

The relative importance betweenMpiezo andMfluid is given by their ratio:

Mpiezo

Mfluid
∼ χ2[θ]

ρsfL
2U2
∞C

(
D

L

)2

∼
(
d

d∗c

)2

. (5.22)

Equation (5.22) shows that the ratio of Mpiezo and Mfluid is proportional to the
square of the ratio between the dimensionless distance d, and a dimensionless critical
distance d∗c , given by:

d∗2c =
ρsfL

2U2
∞C

χ2[θ]
= U2

∞L
2 µ

B

ρsfL

µ

BC
χ2[θ]

. (5.23)

WhenMpiezo andMfluid are of the same order of magnitude, one has d ∼ d∗c . When
d < d∗c , the hydrodynamic forcing remains dominant and controls the evolution
of ∆φ. When d > d∗c , the fluid forcing becomes less important and is eventually
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Figure 5.8: Phase shift ∆φ of the most unstable mode as a function of d and U∗,
for two side-by-side flags with M∗ = 3 and α = 0.

subdued by the piezoelectric forcing. In Eq. (5.23), one may recognise the definitions
of α, M∗, and U∗ from the above relation. We therefore obtain:

d∗c =
U∗

α

√
M∗

[θ]
. (5.24)

Equation (5.24) implies that d∗c is proportional to α−1, suggesting that under a
stronger piezoelectric coupling, the piezoelectric forcing takes control of the system
over the fluid forcing at a smaller distance.

Linear analysis

To confirm the relation d∗c ∼ α−1, we use the method proposed in [Alben 2008b]
to convert the governing equations into a nonlinear eigenvalue problem (see Ap-
pendix C). Solving this eigenvalue problem allows us to obtain the phase difference
of the most unstable mode with a given set of parameters.

Without piezoelectric coupling (α = 0), we show in Fig. 5.8 the phase shift ∆φ

of the most unstable mode for M∗ = 3, while varying U∗ and d. For every tested
value of d, above the critical velocity, we observe a phase shift of ∆φ = π, which
is switched to ∆φ = 0 at a higher velocity (U∗ > 20) without showing continuous
evolution with either U∗ or d. Unlike the results of nonlinear simulations, the fact
that the linear analysis gives only ∆φ = π or ∆φ = 0 is a necessary consequence
due to symmetry reasons which are well explained in [Michelin 2009].

The next step is to choose several values of U∗ corresponding to ∆φ = π, and
then to observe the variation of ∆φ with different values of d, and varying piezo-
electric coupling, characterised by α. Figure 5.9 shows ∆φ of the most unstable
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mode as function of α and d, with β = 0.15 and 3 different values of flow velocity:
U∗ = 12, U∗ = 13, and U∗ = 15.

We observe that for each value of U∗, the phase shift ∆φ, which is π for α = 0,
switches from π to 0 at a certain distance. A relation indeed exists between α and
the value of d above which the switch of phase difference happens. As shown in the
inset of Fig. 5.9, for all values of U∗, this relation is scaled as d ∼ α−1, showing good
agreement with Eq. (5.24). One will therefore ask whether in nonlinear simulations,
same results would be obtained.

Comparison between linear and nonlinear results

As we observed previously that in nonlinear simulations, ∆φ does not switch between
π and 0 but evolves continuously between −π and π, it is therefore necessary to
define a criterion in terms of ∆φ to illustrate the influence of piezoelectric effect.
This criterion is chosen as ∆φc = 1. For fixed values of M∗ and U∗, nonlinear
simulations are performed by varying α and d. For each value of α, we identify
the first value of d for which ∆φ < ∆φc as the critical distance dc above which the
piezoelectric effect will take control over the hydrodynamic effect.

We plot the critical distance dc as a function of α obtained from nonlinear
numerical simulation in Fig. 5.10. The relation d∗c ∼ α−1 is also plotted in the same
figure for comparison. We observe first that with increasing α, the critical distance
dc decreases. It shows that a stronger piezoelectric coupling indeed shows effect at
a smaller distance. However, the evolution of dc with α does not follow d∗c ∼ α−1.
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Figure 5.10: (©) Nonlinear results of critical distance dc for ∆φ = 1 as a function of
α. Other parameters are M∗ = 3, U∗ = 13. Comparison between nonlinear results
and (curve) the relation dc ∼ α−1.

This discrepancy would also be a result of complexity of the nonlinear simulations.
While the origin of this discrepancy remains an open question, a possible explanation
might reside in the large deformation of both flags in the nonlinear regime. Such a
large deformation is not taken into account in the linear analysis, where only small
vertical displacements are considered.

5.3.2.1 Inverse connection

In this section, we present briefly the results obtained using the inverse connection.
We mentioned that since the inverse connection reverses the piezoelectric effects,
the results obtained using this connection are expected to be somehow “inverse"
compared with the normal connection.

In Fig. 5.11, we plot the phase difference ∆φ (Fig. 5.11a) and the energy har-
vesting efficiency η (Fig. 5.11b) using the inverse connection for different values of
α. The observations indeed suggest that the inverse connection leads to the oppo-
site results with the normal connection. At small d, where the hydrodynamic effect
still dominates, the in-phase flapping leads to low harvesting efficiency, while the
out-of-phase flapping leads to high harvesting efficiency. With increasing d and a
weakening hydrodynamic effect, the piezoelectric effect’s impact becomes visible on
the phase shift, which stops following the evolution of ∆φ obtained with α = 0 and
stays close to ∆φ = π, the flapping pattern favoured by the inverse connection.
Meanwhile, with larger α, the piezoelectric effect takes control of ∆φ at smaller d.

5.3.2.2 Summary on resistive circuits

We investigated the energy-harvesting performance of two side-by-side flags whose
electrodes are connected to one resistive circuit. While the normal connection tends
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Figure 5.11: (a) Phase shift ∆φ and (b) harvesting efficiency η as function of distance
d, for α = 0, α = 0.1, α = 0.3, and α = 0.6, using the inverse connection. Other
parameters are M∗ = 3, U∗ = 13, β = 0.15.

to impose an in-phase flapping of two flags, the inverse connection tends to favour
an out-of-phase one. However, when the distance separating two flags is small, the
action of both connections is observed to be too weak to have an observable influence
on the flapping pattern. The phase difference ∆φ is therefore still controlled by the
hydrodynamic effect that impacts critically the energy harvesting. With increasing
d, as indicated by Eq. (5.22), the hydrodynamic effect is weakened and is eventu-
ally prevailed by the piezoelectric effect, which starts to impose a visible impact on
the phase shift ∆φ so that the latter would be sometimes beneficial to the energy
harvesting. However, the piezoelectric effect reveals itself only at large distance,
otherwise, a potent coupling coefficient is necessary. Our results also suggest that
at small d where hydrodynamic effect is still strong, one has to adapt the connec-
tion to the flapping pattern in order to maintain a satisfactory energy-harvesting
performance.

5.3.3 Resistive-inductive circuits

A perspective of the work on the purely resistive circuits is to add inductance in the
circuit. As seen in previous chapters, the inductance introduces resonant properties
to the circuit, and is capable of strengthening the piezoelectric effects. In this
section, the resistive-inductive circuits will be studied. The results obtained using
both normal and inverse connections will be presented.

A resistive-inductive circuit introduces a natural frequency ωc to the circuit,
which is given by:

ωc =
ω0√

2
, (5.25)

as two flags are connected in the same circuit, resulting to twice the intrinsic capaci-
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Figure 5.12: (a) Flapping frequency ω and (b) harvesting efficiency η with the normal
connection, d = 1.5, α = 0.3, M∗ = 3, U∗ = 13, β = 10

tance. Since in previous chapters, we have already identified improvement of energy
harvesting by resonance, it would be reasonable to start by observing the effect of
resonance on two flags.

In Fig. 5.12, we plot the evolution of flapping frequency of both flags, ω1, ω2

(Fig. 5.12a) and the energy harvesting efficiency η (Fig. 5.12b). Unsurprisingly,
figure 5.12 shows that when the flapping frequency matches the circuit’s natural
frequency (Fig. 5.12a), the energy harvesting efficiency η reaches its peak value, an
expected consequence of resonance (Fig. 5.12b). However, for the set of parameters
used in Fig. 5.12, d = 1.5 should correspond to an out-of-phase flapping when α = 0

(Fig. 5.4b), which is not favoured by the normal connection used here, and should
diminish the energy harvesting. In this sense, such a high efficiency is also somehow
an unexpected result.

The explanation to the seemingly unexpected high efficiency observed in Fig. 5.12
can be found by studying the flapping motion at resonance. The motion of flags
in resonance with the resistive-inductive circuit are plotted in Fig. 5.13b, c, respec-
tively for the normal connection and the inverse connection. These two cases are
in comparison with the motion at α = 0, plotted in Fig. 5.13a. In Fig. 5.13b, we
can see that instead of being out-of-phase as in Fig. 5.13a, where α = 0, the flap-
ping motion is in-phase, a state favoured by the normal connection, leading to high
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Figure 5.13: Flapping motion of two flags with d = 1.5, M∗ = 3, U∗ = 13 and (a)

α = 0, (b) α = 0.3, β = 10, ω0 = 4.88, normal connection at resonance, η = 0.011,
and (c) α = 0.3, β = 10, ω0 = 4.88, inverse connection at resonance, η = 0.029.

harvesting efficiency. By adding an inductance, the circuit is capable of altering the
flapping pattern to the one that is favoured by the given connection. The inductance
therefore reinforces the piezoelectric effect so that it could apply a strong impact
on the flapping pattern even at a small distance, where a resistive circuit is unable
to manifest a visible impact. Moreover, as shown in Fig. 5.13c, if the connection is
already the one in favour of the flapping pattern, two flags will keep flapping that
way but with a much higher amplitude at resonance (Fig. 5.13), leading to a higher
efficiency (η = 0.029).

The strengthened piezoelectric effect is effectively maintained at larger distances,
as shown in Fig. 5.14. At such distances, the flapping pattern is always controlled
by the piezoelectric effect, leading to ∆φ = 0 for the normal connection (Fig. 5.15).
As a result, the favoured flapping pattern is reinforced by the resonance, leading to
an increased harvesting efficiency and a large flapping amplitude.

5.4 Flags in tandem

Two flags placed in tandem are more sensitive to the hydrodynamic effect, as the
trailing flag is permanently forced by the leading flag’s wake. In this section, we will
study whether the energy harvesting would be efficient under such strong hydrody-
namic forcing. In particular, we are going to investigate whether the piezoelectric
effect would still be able to prevail over the hydrodynamic effect. And if yes, under
what condition the piezoelectric effect prevails and what influence it might have on
the energy harvesting. In this part, we will study exclusively the normal connection.
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at resonance, with M∗ = 3, U∗ = 15, β = 10, and ω0 = 4.88, using the normal
connection.

5.4.1 Resistive circuit

We start by using the resistive circuit. The phase shift ∆φ and the energy harvesting
efficiency η as functions of d are plotted in Fig. 5.16. The results presented in
Fig. 5.16 show that under the action of a resistive circuit with α = 0.3, the evolution
of the phase difference ∆φ with d is identical to that in the case of α = 0 (Fig. 5.16a),
while the peaks of η are observed only when ∆φ = 0 (Fig. 5.16b), favoured by
the normal connection. This observation suggests that with the resistive circuit,
the flapping pattern is primarily controlled by the hydrodynamic effect, and the
harvesting efficiency η is increased only when the flapping pattern is favoured by
the connection.

5.4.2 Resistive-inductive circuit

Next, we turn to the resistive-inductive circuit, which, in the side-by-side case,
enhanced the piezoelectric effect so that it prevails against the hydrodynamic effect
even at small d. The phase shift ∆φ and the energy harvesting efficiency η obtained
with the resistive-inductive circuit are plotted in Fig. 5.17. From Fig. 5.17a, we
observe that the phase shift is slightly deviated from, but in general still follows the
evolution of ∆φ in the case of α = 0. The harvesting efficiency η shows a similar
evolution with the case of purely resistive circuit: despite its significant increase
due to the resonance, this improvement happens only at values of d corresponding
to ∆φ = 0. This result suggests that with two flags in tandem, the hydrodynamic
effect still plays a dominant role and dictates the evolution of ∆φ, thereby that of
η with d.

However, when the resonance occurs at ∆φ = 0, the piezoelectric effect is capa-
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Figure 5.15: Flapping motion of two flags using resistive-inductive circuit, using the
normal connection α = 0.3, M∗ = 3, U∗ = 13, β = 0.15 and (a): d = 2.6, η = 0.018,
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Figure 5.17: (a) Phase shift ∆φ and (b) harvesting efficiency η as function of distance
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ble of exhibiting a stronger impact that overshadows the hydrodynamic effect on the
flapping pattern, which is different to that determined solely by the hydrodynamic
effect. In Fig. 5.18, we plot the flapping motion of two flags at three values of d, cor-
responding to ∆φ 6= 0 (Fig. 5.18a, c), and ∆φ = 0 (Fig. 5.18b). When d corresponds
to a value of ∆φ close to 0 (Fig. 5.18b), in addition to a high harvesting efficiency,
we also observe that the leading flag has a slightly larger amplitude than the trail-
ing flag, which is the opposite to the existing results of two flags placed in tandem
[Ristroph 2008, Alben 2009b]. This observation suggests that the hydrodynamic ef-
fect which reduces the leading flag’s amplitude is subdued by the piezoelectric effect
enhanced by resonance. Meanwhile, the trailing flag shows no larger amplitude,
suggesting that it’s motion is dominated by a hydrodynamic forcing stronger than
the effect of resonance. When ∆φ is far from 0 (Fig. 5.18a, c) the flapping motion
corresponds to the classically reported version: the leading flag has a smaller ampli-
tude compared to the trailing flag. The hydrodynamic effect disrupts the resonance,
leading to low harvesting efficiency.

5.5 Conclusion and perspectives

In this chapter, we investigated the coupled flutter and its effects on energy har-
vesting. We considered that the two flags’ electrodes are connected to the same
harvesting circuit, therefore in addition of the hydrodynamic coupling, an electrical
coupling via the piezoelectric effects is added between them.

Both resistive circuits and resistive-inductive circuits are investigated, with flags
both placed side by side and in tandem. With flags placed side-by-side, impacts
issued from the piezoelectric effects are found on the flapping pattern: with resistive
circuits, the flapping pattern is altered by the piezoelectric effect when two flags are
sufficiently distant from each other. However, this change in the flapping pattern
does not necessarily act in favour to the energy harvesting. When inductance is
added, the piezoelectric effect is significantly strengthened when the flags and the
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Figure 5.19: (a) Harvesting efficiency η with two side-by-side flags and M∗ = 3,
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is used and β = 0.15.

circuit are at resonance. The reinforced piezoelectric effect is able to reverse the
flapping pattern into the one favourable to the energy harvesting. However, the
piezoelectric effects on the flags’ flapping are almost unremarkable if the two flags
are placed in tandem. The flags’ flapping pattern is primarily dictated by the
hydrodynamic effect, which overshadows the electrical coupling generated by both
resistive and inductive circuits.

Compared with the configuration proposed in [Song 2014], i.e. two flags electri-
cally independent, we believe that our results showed a new perspective by connect-
ing two flags’ electrodes in the same circuit. In Fig. 5.19, we provide a comparison
between the energy-harvesting performance obtained using both normal and inverse
connections, as well as a third configuration where two flags’ electrodes are connected
to separated circuits. Both the energy harvesting efficiency and phase difference are
plotted. In terms of η (Fig. 5.19a), it is clear that when the chosen connection is
favourable to a phase difference, and when d is sufficiently large so that ∆φ is con-
trolled by the piezoelectric effects, two flags connected in the same circuit deliver an
output comparable with the sum of two flags connected in separated circuits. While
two electrically independent flags would be useful to power two different devices,
the advantage of the configuration studied in the present work, i.e. the summed
and synchronised output, over the one in [Song 2014] makes it conceivable to design
energy-harvesting systems based on the “two-flags-in-one-circuit” configuration that
is capable to fuel devices which are too energy-consuming for one single piezoelectric
flag.

Between the side-by-side and tandem configurations, we observed that the tan-
dem configuration is more sensitive to the hydrodynamic effect, even at relatively
large distances (d ∼ 5) with inductive circuits, while in the side-by-side config-
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uration, such distances are already sufficiently large to enable a flapping pattern
controlled by piezoelectric effect. In reality, as it evolves downstream, the wake of
the leading flag would surely be dissipated by viscosity so that it would not be “felt”
by the following flag at large distances. In such case, one might expect the flap-
ping pattern to be controlled by the piezoelectric effect. However, the effects that
could have been brought by the hydrodynamic coupling, such as large amplitude
of the trailing edge, which is beneficial to the energy harvesting, would have gone
also with the dissipated wake, and the “tandem” configuration becomes equivalent
to the side-by-side configuration at very large distances. We therefore believe that
it is preferable, in terms of the ability of controlling flapping pattern, to opt for
the side-by-side configuration, as it is less sensitive to hydrodynamic effects, and
therefore is more likely to produce a synchronised output.

It would be however regrettable that the large amplitude of the trailing flag in
the tandem configuration could not be exploited. One may envision, for the tandem
configuration, a “feedback” device that adjust the distance between the two flags so
that they flap in phase while the trailing flag would take profit from the leading flag’s
wake and produces a large amplitude. In addition, output-synchronising techniques
through interfacing circuits are also interesting perspectives for harvesting energy
with two unsynchronised flags, in both side-by-side and tandem case [Chen 2015].

Further works on this subject can be developed through the following paths:

• A thorough assessment of the influence of the coupling coefficient α. In our
work with the side-by-side configuration, we have already identified its influ-
ence on the critical distance dc above which piezoelectric effect starts to impact
significantly on the phase shift ∆φ. However, there are other issues associated
with α that are not addressed in our work. For instance, in Fig. 5.6, it can
already be seen that two different values of α lead to different ∆φ when d is
very large. And in Fig. 5.7, the value of ∆φ at very large d is not close to 0,
which might also be a consequence of α. It is therefore necessary to study the
role of α in the value of ∆φ at very large distances.

• In terms of numerical methods used for nonlinear simulations, it would be of
great interest to develop other models that is capable of accounting for a finite
span, which is closer to the real life situation. In [Candelier 2013], Candelier
proposed a variation of Lighthill’s LAEBT that is compatible with a non-
uniform flow. Inspired by this work, Jérôme Mougel & Sébastien Michelin in
LadHyX have been working on an new method based on LAEBT to simulate
the flapping of two side-by-side flags. Other works using alternative methods,
such as ALE [Gurugubelli 2014], may also provide new insights on this aspect.





Chapter 6

Conclusion and perspectives

6.1 Conclusion

The goal of this dissertation is to identify the impact of different factors involved in
a energy-harvesting mechanism based on piezoelectric flags. More precisely, three
major factors impacting critically the energy-harvesting performance of piezoelectric
flags are identified: the impact of circuits used for harvesting energy from piezoelec-
tricity, the piezoelectric material used for fabricating the flag, and the impact of
other flags in the same flow.

Firstly, a circuit containing a resistor and an inductor is chosen and the sensitiv-
ity of the coupled fluid-solid-electric system to the circuit’s properties is investigated.
In Chapter 2, experiments are performed to show that the resonant property of the
inductive-resistive circuit indeed enhances the energy-harvesting performance: in
the experiments, resonant circuits allow to harvest twice as much the energy as
with a purely resistive circuit. Also, differences brought by the choice of materials
are identified. The understanding of these two aspects is deepened through nu-
merical studies conducted in Chapters 3 and 4. In these two chapters, a frequency
lock-in mechanism is identified, using two different types of circuits. This lock-in
phenomenon is able to considerably improve a piezoelectric flag’s energy-harvesting
efficiency. The common ingredient of these two types of circuits is still their res-
onant property, which is the underlying key factor of the improvement in energy
harvesting associated with these two types of circuits. Besides, this frequency lock-
in phenomenon is equally determined by the choice of materials, characterised by
the coupling coefficient α: a more potent material, capable of offering a larger α,
would allow a larger range of lock-in, as well as a higher harvesting efficiency.

In Chapter 5, the influence of the presence of an additional piezoelectric flag,
both in the flow and in the circuit, on the energy harvesting is studied. The impor-
tance of flapping pattern to the energy harvesting is identified: the flapping pattern,
characterised by the phase shift between two flags, could be constructive and de-
structive to the energy harvesting. Connecting the electrodes of the two flags in
the same circuit tends to alter the phase shift in the way that the latter would be
always favourable to the energy harvesting.

Based on the results of the present work, one may draw the following conclusion:
Using resonant circuits, the performance of energy-harvesting piezoelec-
tric flags can be considerably improved through the piezoelectric effects
enhanced by resonance.

This conclusion is substantiated by the following observations:
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6.1.1 Frequency lock-in

The essential reason of the frequency lock-in observed in the present work is the use
of resonant circuits. Through resonance, the circuit produces large voltage, thereby
enhancing the inverse piezoelectric effect and controlling the flag’s dynamics.

By using local circuits presented in Chapter 3, the numerical study showed that
thanks to the frequency lock-in, an efficiency of η ∼ 6% is achieved with a flag
covered by continuously distributed piezoelectric electrodes, and η ∼ 4% with a
flag covered by a single pair of electrodes. Note that these efficiencies are obtained
only with M∗ = 1, U∗ = 13, and α = 0.3, which are parameters that only lead
to η ∼ 0.1% with resistive circuits [Michelin 2013]. Based on the conclusion in
[Michelin 2013] that larger M∗ would lead to even higher efficiency, it is reasonable
to expect even higher harvesting efficiency to be achieved through the frequency
lock-in phenomenon by exploring a larger range of parameters.

A new perspective is opened by the observation of the frequency lock-in at
multiple frequencies using non-local inductive networks. This result implies that
with a given inductive network, characterised by its inductance ω0, frequency lock-
in may occur between the circuit and flags flapping at different frequencies. One
can therefore expect that under certain flow conditions for which the flag’s flapping
frequency tends to vary greatly, this type of resonant network would be capable to
adapt to the varying frequency, thereby maintaining the system to work at frequency
lock-in and to yield a high efficiency.

6.1.2 Two flags’ synchronisation through the fluid-solid-electric
resonance

While more flags indeed imply a larger quantity of harvested energy, the real ques-
tion is to synchronise and sum each flag’s productivity. The results in Chapter 5
using two side-by-side flags showed that even when the distance separating the two
flags is small, i.e. the hydrodynamic effect remains strong, connecting two flags’
electrodes to a resonant circuit can successfully synchronise the motion of the two
flags through the inverse piezoelectric effect enhanced by resonance. This resonance-
induced synchronisation effectively incorporates the productivity of each flag, and
yields a high efficiency.

6.2 Perspectives

The present dissertation constitutes a first step of investigating the potential of
piezoelectric flags as an energy-harvesting mechanism. This work demonstrated a
strong potential for such energy-harvesting concept, and clearly pointed out that
a promising path of development is to consider the coupling of the piezoelectric
flags with resonant circuits. Meanwhile, more work need to be done in order to
fully exploit other aspects relating to piezoelectric flags. In addition to specific
perspectives presented at the end of each chapter, several more general directions
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towards which future work may advance are outlined here.

6.2.1 External forcing-induced vibration of piezoelectric flag

Large deformation of piezoelectric flag is always beneficial to the energy harvesting.
Such large amplitude is achieved in our work through an instability, while other
routes towards large amplitude are available. Another route leading to large am-
plitude vibration of flexible structures consist of making use of a bluff body’s wake
as a forcing to drive a structure. This idea is already proposed in [Allen 2001]. A
piezoelectric membrane will oscillate under the action of the bluff body’s wake and
consequently converting mechanical deformation to electricity. With such concept,
the piezoelectric membrane may oscillate even with a low flow velocity, without
the need of triggering an instability. Further work on this subject may focus on a
configuration involving more than one piezoelectric membranes and study the in-
teraction of the bluff body’s wake and that of the piezoelectric membranes, and the
consequence on the energy harvesting.

6.2.2 Flags placed in other types of flows

In the present work, we studied piezoelectric flags placed in inviscid, incompressible
uniform flows. It is therefore natural to imagine piezoelectric flags being used in
other flows. An interesting example would be flows of the waste gas emitted by
vehicle engines. Such flows are usually non-uniform and highly turbulent. It is
therefore interesting to study how the turbulence impacts the energy harvesting
using piezoelectric flags. In addition, the high temperature of these gas flows would
provide additional challenges if one continues on this path.

Another domain where energy-harvesting piezoelectric flags would be applied is
the biomedical applications. Some researchers proposed in vivo piezoelectric energy-
harvesting systems to power other in vivo devices monitoring body functioning. The
flows of the body fluid are highly viscous. It is therefore essential to understand the
role of the viscosity on the energy harvesting.

6.2.3 Flags positioned in alternative configurations

Configurations with flags placed in a different manner than the one in our work are
also interesting objects for future investigation. An example of alternative configura-
tions is the inverted flag, i.e. a flag with a free leading edge but a fixed trailing edge.
Dynamics of such flags have been recently studied [Kim 2013, Ryu 2015, Tang 2015]
and research work on energy harvesting using such configuration is in its starting
stage: with this configuration, a flag is able to flap, thereby converting energy into
electrical form at a much lower flow velocity [Gurugubelli 2015]. The drawback
of this configuration is that the flag would be more likely to show buckling when
the flow velocity is too large [Kim 2013]. Additional efforts are therefore needed to
advance on this subject. Meanwhile, the configuration consisting of placing a flag
perpendicular to the incoming flow constitutes also an interesting option to study.
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Appendix A

Measurement of coupling
coefficient of the PVDF flag

In this appendix, we explain the process employed to determine the coupling co-
efficient α, for the PVDF flag used in the experimental study (Chapter 2). The
coupling coefficient is defined as:

α =
χ√
Bc

, (A.1)

where χ, B and c = C/L are the mechanical/electrical conversion factor of PVDF,
the bending rigidity and the linear density of the intrinsic capacitance of the piezo-
electric pair, respectively. Among these quantities, c can be obtained directly by
measuring the effective length L and the total capacitance C (C = 14 nF) of the
flag. Note that since the entire flag, i.e. both the clamped part and the effective
part, is connected in the circuit, the total intrinsic capacitance remains the same
regardless of the effective length. The values of c obtained for different L are shown
in Table A.1:

L (cm) 5 6 7 8
c (µF/m) 0.28 0.23 0.2 0.175

Table A.1: Measurements of linear density of intrinsic capacitance c with different
values of effective length L.

The following text will therefore mainly focus on the determination of χ and B.

A.1 Measurement of B

The bending rigidity of a three-layer sandwich plate of width H is given by the
following formula [Lee 1989]:

B =
E0h

3
0H

12(1− ν2
0)

+
2EphpH

1− ν2
p

(
h2

0

4
+
h0hp

2
+
h2
p

3

)
, (A.2)

where E are ν are respectively the Young’s modulus and the Poisson’s coefficient of
corresponding material, h is the thickness of a layer. The subscripts 0 and p indicate
the middle layer and the piezoelectric layers of the flag.
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Figure A.1: Example of voltage signal obtained using flag with L = 8 cm.

Since it is difficult to determine the Young’s modulus of the middle layer, which
is made of a double-face adhesive strap, we opt an alternative way to determine
B, which is based on the flag’s first natural frequency, using the following equation
[Timoshenko 1953]:

f0 =
3.515

2πL2

√
B

µ
, (A.3)

where µ is the mass per unit length of the flag.
To measure the natural frequency f0, we choose the flags of two different lengths:

L = 7 cm and 8 cm. The choice of the lengths is based on two considerations: on one
hand, 8 cm is the maximal effective length that the piezoelectric flag could reach; on
the other hand, for smaller values of length, the free vibration is too quickly damped
out and we could not retrieve any usable vibration period.

Each flag is then connected to a data acquisition board (DAQ) so that the
vibration-induced voltage signal would be recorded. For each test, we bend initially
each flag by fixing one end and displacing the other. At t = 0, the displaced end is
released and the flag undergoes a damped vibration, during which a voltage signal
is generated and recorded, as shown in Fig. A.1.

For each flag, such test is performed several times and for each test. Two or
three usable vibration periods are extracted from each test, and the average period
is taken from 15 measurements, from which the natural frequency is deduced. In
Table A.2, we show results obtained with two flags. The results show that it is
reasonable to choose B = 1.178× 10−5 N·m2 for the rest of our work.

A.2 Measurement of χ and α

In Chapter 2, we showed that with a PVDF flag connected directly to the data
acquisition board (DAQ), without any additional loading in the circuit, χ can be
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Length (cm) T (s) f (Hz) B (N ·m2)
7 0.168±0.006 5.952±0.2 1.217× 10−5

8 0.227±0.005 4.405±0.1 1.137× 10−5

Table A.2: Measurement results and bending rigidity obtained with flags of length
L = 7 cm and 8 cm.

Length (cm) U1 (m/s) U2 (m/s) U3 (m/s) U4 (m/s)
5 19.4 20.3 20.9 21.8
6 15.7 16.3 17.5 18.5
7 11.9 12.9 13.7 14.8
8 11.3 12.2 13.5 14.1

Table A.3: Length of each flag and flow velocity used in each test

computed using the following equation:

χ =
V0

ωΘ0

√(
1

R2
d

+ ω2C2

)
, (A.4)

with ω = 2πf is the flapping frequency in rad/s. V0 and Θ0 are respectively the
amplitude of the voltage and the leading edge angle while flapping, and Rd is the
internal resistance of the DAQ, which is fixed at Rd = 106Ω.

We perform experiments using flags of four different lengths: L = 5 cm, 6 cm, 7

cm, and 8 cm. And for each flag, wind tunnel tests are performed with four different
flow velocities listed in Table A.3. During each test, a high speed camera is used to
record the flapping motion, and the DAQ is used to record the voltage signal. Both
recordings are then used to extract f , Θ0 and V0 for each test, as shown in Fig. A.2.

The results obtained from measurement as well as calculation are shown in Ta-
bles A.4–A.7. The values of α corresponding to different effective length L are shown
in Table A.8.

Velocity (cm/s) f (Hz) Θ0 (degree) Θ0 (rad) V0 (V) χ (C) α

19.4 79.1 74.2 1.30 12.26 1.34× 10−7 0.074
20.3 81.1 91.5 1.60 13.21 1.17× 10−7 0.064
20.9 82.3 96.4 1.68 13.90 1.17× 10−7 0.064
21.8 86.3 100.1 1.75 14.78 1.19× 10−7 0.066

Table A.4: Experimental results and α obtained with L = 5 cm
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Figure A.2: Examples of measurement of (left) voltage and (right) angle for L = 8

cm and U = 11.3 m/s.

Velocity (cm/s) f (Hz) Θ0 (degree) Θ0 (rad) V0 (V ) χ (C) α

15.7 59.7 77.8 1.36 11.74 1.23× 10−7 0.074
16.3 61.5 81.1 1.42 13.09 1.32× 10−7 0.079
17.5 65.3 82.4 1.44 15.06 1.49× 10−7 0.090
18.5 69.4 86.8 1.51 16.44 1.54× 10−7 0.093

Table A.5: Experimental results and α obtained with L = 6 cm

Velocity (cm/s) f (Hz) Θ0 (degree) Θ0 (rad) V0 (V ) χ (C) α

11.9 43.6 72.5 1.27 10.18 1.16× 10−7 0.076
12.9 45.8 74.2 1.30 12.44 1.38× 10−7 0.090
13.7 48.8 79.4 1.39 14.34 1.49× 10−7 0.097
14.8 52.4 87.8 1.53 18.84 1.76× 10−7 0.115

Table A.6: Experimental results and α obtained with L = 7 cm

Velocity (cm/s) f (Hz) Θ0 (degree) Θ0 (rad) V0 (V ) χ (C) α

11.3 37.5 77.7 1.36 13.51 1.46× 10−7 0.101
12.2 40.5 84.7 1.48 14.92 1.47× 10−7 0.102
13.5 44.2 88.4 1.54 16.82 1.58× 10−7 0.110
14.1 45.5 90.0 1.57 17.19 1.58× 10−7 0.110

Table A.7: Experimental results and α obtained with L = 8 cm

L (cm) 5 6 7 8
α 0.067±0.006 0.084±0.01 0.094±0.02 0.106±0.004

Table A.8: Values of the coupling coefficient α corresponding to different values of
effective length L.



Appendix B

Flexible body vortex sheet model

B.1 Governing equations

In this appendix, we will be interested in the vortex sheet model applied on one
single flag. The extension to the situation of two flags is straightforward. Following
the notations introduced in Chapter 5, C represents the contour of the vortex sheet,
and C = Cf + Cw, with Cf representing the bound vortex sheet and Cw the free
vortex sheet. The system of dimensionless equations to be solved is the following:

ũ(s, t) = ex +
1

2πi
−
∫
Cf

γ(s′, t)

x(s, t)− x(s′, t)
ds′ +

1

2πi

∫
Cw

γ(s′, t)

x(s, t)− x(s′, t)
ds′, (B.1)

∂x

∂t
· n = u(s, t) · n, s ∈ Cf , (B.2)

Ffluid = [p](s, t)n =

(∫ s

0

∂γ

∂t
+ [ur(s, t) · τ ]γ(s, t)

)
n, s ∈ Cf (B.3)

Γ(s, t) =

∫ s

sm

γ(s′, t)ds′ = Γ(1, t0) =

∫
Cf

γ(s′, t0)ds′, s ∈ Cw. (B.4)

∂2x

∂t2
=

∂

∂s

[
Tτ − ∂M

∂s
n

]
+M∗Ffluid, (B.5)

with the clamped-free boundary conditions:

at s = 0 : x = θ = 0, (B.6)

at s = 1 : T =M =
∂M
∂s

= 0. (B.7)

Equation (B.1) computes the velocity of the vortex sheet by taking the limits
of flow velocity above and below the vortex sheet, Eq. (B.2) is the impermeability
condition applied on the flag, Eq. (B.3) computes the pressure jump on the flag,
Eq. (B.4) is Kelvin’s theorem for computing the circulation Γ of each material point
on the free vortex sheet Cw, using the invariance of circulation, and Eq. (B.5) is
the Euler-Bernoulli beam model with the clamped-free boundary conditions given
by Eqs. (B.6) and (B.7).

Before introducing more details, we would like to mention that in the following
text, we use complex numbers to represent 2D vectors. For example, the variable
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x̂ = x + iy is the complex representation of vector x, and x̃ would be its complex
conjugate. The scalar product of two vectors ŵ1 = a + ib and ŵ2 = c + id is given
by the following relation:

w1 ·w2 = Re(ŵ1w̃2), (B.8)

which shall be extensively used in the forthcoming text.
Another prerequisite is about the dimensionless equations. In all Chapters of

the present work, the length of the flag L is chosen as the characteristic length of
the system, the flag being placed between 0 and L, the corresponding dimensionless
coordinates is therefore 0 ≤ s ≤ 1. However, in order to solve the Eqs. (B.1) and
(B.2), it is necessary to extensively use the properties of Chebyshev polynomials,
which are defined between −1 and 1. As a result, in this appendix, we exceptionally
opt for another non-dimensionlisation, which is based on the half-length of the
flag L/2, with the flag being placed between −L/2 and L/2. The dimensionless
coordinate corresponding to the flag becomes −1 ≤ z ≤ 1. The results presented
in Chapter 5 are converted from the half-length non-dimensionalisation through a
rescaling.

Using the complex representation, and the new characteristic length L/2, we
may rewrite Eq. (B.1)–(B.7) into the following form:

Average velocity of the vortex sheet

ũ(z, t) = 1 +
1

2πi
−
∫ 1

−1

γ(z′, t)

x̂− x̂(z′, t)
dz′ +

1

2πi
−
∫ zmax

1

γ(z′, t)

x̂− x̂(z′, t)
dz′, z ∈ C (B.9)

Impermeability condition

Re

(
∂x̂

∂t
ñ

)
= Re (û(z, t)ñ) , z ∈ Cf , (B.10)

Kelvin’s theorem

Γ(z, t) =

∫ z

zm

γ(z′, t)dz′ = Γ(1, t0) = −
∫ 1

−1
γ(z′, t0)dz′, z ∈ Cw. (B.11)

Bernoulli’s theorem for the pressure jump

[p](z, t) =

∫ z

−1

∂γ

∂t
+ ûr(z, t)γ(z, t), (B.12)

where ûr, the average of the relative tangential fluid velocities on either sides of the
flag is given by:

ûr(z, t) = Re

((
û− ∂x̂

∂t

)
τ̃

)
. (B.13)
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Euler-Bernoulli Beam model

∂2x̂

∂t2
= 2

∂T τ̂

∂z
− 8

U∗2
∂

∂z

(
∂κ

∂z
n̂

)
− 1

2
M∗[p]n̂ (B.14)

with the clamped-free boundary conditions:

at z = −1 : x̂ = θ = 0, (B.15)

at z = 1 : T = κ =
∂κ

∂z
= 0. (B.16)

In Eq. (B.14), κ = ∂θ/∂z is the local curvature of the flag.

B.2 Calculation of the free vortex sheet

The second integral on the right-hand side of Eq. (B.9) can be re-parametrised using
the invariance of Γ on the free vortex sheet. Using Eq. (B.11), we actually have:

γ(z, t)dz = dΓ, z ∈ Cw (B.17)

thus Eq. (B.9) is rewritten as:

ũ(z, t) = 1 +
1

2πi
−
∫ 1

−1

γ(z′, t)

x̂− x̂(z′, t)
dz′ − 1

2πi
−
∫ Γt(t)

0

dΓ′

x̂(Γ, t)− x̂(Γ′, t)
, (B.18)

where

Γt(t) =

∫ 1

zmax

γ(z′, t)dz′ = −
∫ 1

−1
γ(z′, t)dz′ (B.19)

is the total circulation of the free vortex sheet.
Another problem of this integral is that it is singular at z = 1. This singularity

can be removed using a smoothing parameter δ [Krasny 1986]. Using this smoothing
parameter, Eq. (B.18) becomes:

ũ(z, t) = 1+
1

2πi
−
∫ 1

−1

γ(z′, t)

x̂− x̂(z′, t)
dz′− 1

2πi

∫ Γt(t)

0

x̂(Γ, t)− x̂(Γ′, t)

|x̂(Γ, t)− x̂(Γ′, t)|2 + δ2
dΓ′. (B.20)

The value of the smoothing parameter is set to be δ = 0.2 for the present work
as used in [Alben 2008a]. In [Alben 2009a], Alben pointed out that this smoothing
using a constant δ would introduce a discontinuity of γ at z = 1, as no such smooth-
ing is used for the bound vortex sheet, and consequently impair the description of
the details of the vortex shedding. The author proposed a tapered δ-smoothing
[Alben 2009a, Alben 2010] consisting of setting δ as a function of z on the free vor-
tex sheet: δ = 0 at z = 1, and tends asymptotically to a constant value δ0 with
increasing s, thereby ensuring a smooth transition from the bound vortex sheet to
the free vortex sheet at z = 1. This tapered smoothing is however not used in
the present work as we focus mainly on the coupled flapping instead of the vortex
shedding.
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The evolution of the free vortex sheet is described by the Birkhoff-Rott equation
[Saffman 1992], which states that the fluid particles in the free vortex sheet move
with the mean velocity û given in Eq. (B.20). This equation is written as:

∂x̃

∂t
(Γ, t) = 1 +

1

2πi
−
∫ 1

−1

γ(z′, t)

x̂(Γ, t)− x̂(z′, t)
dz′ − 1

2πi

∫ Γt(t)

0

x̂(Γ, t)− x̂(Γ′, t)

|x̂(Γ, t)− x̂(Γ′, t)|2 + δ2
dΓ′,

x̂(Γ, t) ∈ Cf .
(B.21)

The circulation of every material point, except the one at z = 1, on the free
vortex sheet is known since its circulation is computed at the moment when it is
shed from z = 1 using Eq. (B.11). The next section will show the method to find
the circulation of the material point at z = 1 as well as the strength γ of the bound
vortex sheet Cf .

B.3 Calculation of the bound vortex sheet

In this section, we present the solution to all variable attached to the flag, i.e. the
bound vortex sheet’s strength γ and x̂

The strength of the bound vortex sheet γ is computed using Eqs. (B.10) and
(B.18), as well as the Kutta’s condition imposing a finite flow velocity at z = 1.
According to [Muskhelishvili 2008], the general solution of γ(z, t) has inverse-square
singularities at z = ±1. We therefore define v(z, t), the bounded part of γ(z, t), by:

γ(z, t) =
v(z, t)√
1− z2

. z ∈ Cf (B.22)

Using v(z, t), Eq. (B.10) is written as:

Re

(
n̂
∂x̃

∂t

)
= Re

(
n̂

(
1 +

1

2πi
−
∫ 1

−1

v(z′, t)√
1− z′2(x̂(z, t)− x̂(z′, t))

dz′

− 1

2πi

∫ Γt(t)

0

x̂(z, t)− x̂(Γ′, t)

|x̂(z, t)− x̂(Γ′, t)|2 + δ2
dΓ′

))
, z ∈ Cf ,

(B.23)

and the Kutta’s condition is:
v(1, t) = 0. (B.24)

To find v(z, t) from the integro-differential equation given by Eq. (B.23), we
define a function f by:

f(z, t) = −Re

(
n̂

(
1− 1

2πi

∫ Γt(t)

0

x̂(z, t)− x̂(Γ′, t)

|x̂(z, t)− x̂(Γ′, t)|2 + δ2
dΓ′ − ∂x̃

∂t

+
1

2πi

(
∂x̂

∂z

)−1

−
∫ 1

−1
K(z, z′, t)

v(z′, t)√
1− z′2

dz′

))
, z ∈ Cf ,

(B.25)
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where the term K(z, z′, t) is the regular part of the Cauchy-type kernel appeared in
Eq. (B.23):

1

x̂(z, t)− x̂(z′, t)
=

(
∂x̂

∂z

)−1 1

z − z′
+

(
∂x̂

∂z

)−1

K(z, z′, t), z 6= z′, z, z′ ∈ Cf .

(B.26)
The value of K(z, z′, t) can be evaluated at singularity z = z′ by expanding x̂ into
Taylor series about z = z′ :

K(z, z′, t) = i
κ(z, t)

2
, z ∈ Cf (B.27)

Using the function f and the Kelvin’s theorem, we give the expression for v(z, t) as
the following one:

v(z, t) = 2
N∑
k=1

fk(t) sin θ sin kθ − f1(t)− 2f0(t)z +
Γt(t)

π
, (B.28)

and the expression of the Kutta’s condition (Eq. (B.24)) as:

− f1(t)− 2f0(t) +
Γt(t)

π
= 0. (B.29)

In Eqs. (B.28) and (B.29), fi are the expansion of the function f on Chebyshev
polynomials of the first kind [Mason 2002]:

f(z, t) =
N∑
k=0

fk(t)Tk(z), (B.30)

The last element necessary to evaluate the function f is the information of the
flag’s displacement, which can be obtained from Eq. (B.14). The flag’s motion is
computed based on the local curvature κ. We integrate κ once to recover θ, and
twice to obtain x̂, by considering the clamped-free boundary conditions:

θ(z, t) =

∫ z

−1
κ(z′, t)dz′, x̂(z, t) =

∫ z

−1
eiθ(z′,t)dz′. (B.31)

If we replace x̂ in Eq. (B.14) using Eq. (B.31), the curvature κ becomes the only
unknown in Eq. (B.14).

Equations (B.28), (B.29), and (B.14) constitute a nonlinear system allowing us to
obtain v(z, t), Γt, and κ, which are variables necessary to reconstruct the dynamics
of both the flag and its vortex sheet.

B.4 Numerical method

We present in this section some details of the numerical method used to solve the
nonlinear system composed by Eqs. (B.28), (B.29), and (B.14). The numerical
solution is performed using a coupled explicit-implicit method.
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Initialisation At t = t1 = 0, we assume that the flag is at rest but has an initial
deformation. This condition is given by:

x̂(z, 0) 6= 0,
∂x̂

∂t
= 0, κ(z, 0) 6= 0. (B.32)

For the vortex sheet, we assume that at t = t1 = 0, both the bound vortex sheet Cf
as well as the free vortex Cw has zero vorticity, which is expressed as:

v(z, 0) = 0,−1 ≤ s ≤ 1,

Γt(1, 0) = 0.
(B.33)

For subsequent time steps tk+1, with k=1, 2,..., we first apply an explicit method
to compute the evolution of the free vortex sheet, which is convected downstream
by its local velocity given by Eq. (B.21), and can be computed using the values
of x̂(z, t), ∂x̂(z, t)/∂t, v(z, k) and x̂(Γ, t) at previous time steps. We then use a
Forward Euler scheme to compute the position of the newly created point at t = tk
using the previously local velocity:

x̂k(tk+1) = x̂f (tk) + (tk+1 − tk)
∂x̂

∂t

∣∣∣∣
x̂=x̂k,t=tk

(B.34)

and a second-order explicit Adams-Bashforth scheme to compute the displacement
of the remaining k − 1 points convected by local velocities at times tk and tk−1

x̂j(tk+1) = x̂j(tk) + (tk+1 − tk)

(
A
∂x̂

∂t

∣∣∣∣
x̂=x̂j ,t=tk

+ (1−A)
∂x̂

∂t

∣∣∣∣
x̂=x̂j ,t=tk−1

)
,

j = 1, ..., k − 1,

(B.35)

where the parameter A is given by:

A =
tk + tk+1 − 2tk−1

2(tk − tk−1)
. (B.36)

For the bound vortex sheet, i.e. the flag, the variables v and κ are computed
using an implicit method on N Chebyshev-Lobatto nodes in −1 ≤ z ≤ 1. The
total circulation Γt, which is also the circulation of the newly created point of the
free vortex sheet, located at z = 1, is also computed at this step. The integration
and derivations in space of κ are computed using collocation operators introduced
in [Weideman 2000]. At the time step t = tk+1, the discrete nonlinear system
F(q) = 0, solving the body variables, is given by, for i = 1, ..., N :

Fi(q) = v(zi, tk+1)− 2

N∑
j=1

fj(t) sin θ sin jθ + f1(t) + 2f0(t)− Γt(t)

π
. (B.37)
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Fi+N (q) = Re

(
∂2x̂

∂t2

∣∣∣∣
zi,tk+1

ñ

)
+

8

U∗2
∂2κ

∂z2

∣∣∣∣
zi,tk+1

− T (zi, tk+1)κ(zi, tk+1) +
M∗

2
[p](zi, tk+1),

F2N−1(q) = κ(zN , tk+1),

F2N−2(q) =
∂κ

∂z

∣∣∣∣
zN ,tk+1

.

(B.38)

F2N+1(q)− f1(t)− 2f0(t) +
Γt(t)

π
= 0. (B.39)

Equations (B.37), (B.38), and (B.39) are respectively the projection on the
Chebyshev-Lobatto nodes of Eqs (B.28), (B.14), and (B.29). The vector of un-
knowns q is given by:

qj = v(zj , tk+1), j = 1, ..., N,

qj+N = κ(zj , tk+1), j = 1, ..., N,

q2N+1 = Γt(tk+1).

(B.40)

This nonlinear system is solved with the Broyden’s method, an iterative quasi-
Newton method proposed in [Broyden 1965]. At t = tk+1, an initial guess of q0

k+1 is
obtained using a second-order extrapolation with qk and qk−1. This initial guess is
then used for iterations until a solution qk+1 satisfying F(q) = 0 is found. In order to
ensure small relative changes in the solution between time steps, we use an adaptive
time stepping. At each time step, we compute the relative difference between the
current solution qk+1 and the initial guess q0

k+1. If the relative difference exceeds
a tolerance ε, the time step is multiplied by 0.95, while if the relative difference is
smaller than ε/3, the time step is multiplied by 1.05. The solution at t = tk+1 is
computed again using the new time step. In the current work, we choose ε = 0.005.





Appendix C

Linear equations for Flexible body
vortex sheet model applied on two

flags

In this appendix, we will present the formulation of an eigenvalue problem using
the flexible body vortex sheet model. In [Alben 2008b], an eigenvalue problem
is formulated using the same model applied on a single flag. In this text, this
formulation will be extended to two flags placed side by side.

Before showing details of formulation, we establish the terminology that will be
used in the following text. In our point of view, the flag placed over the other will
be referred as the flag 1, and the one below as the flag 2. The distance separating
the two flags is d. In order to use Cheybshev polynomials, all variables are rendered
dimensionless using the same characteristic scales as in Appendix B.

Firstly, we write the governing linear equations of the coupled dynamics of the
two flags. Note that at this stage, only the equations of the flag 1 will be presented,
and those of the flag 2 are straightforward to obtain by changing indexes.

∂2y1

∂t2
+

8

U∗2
∂4y1

∂x4
1

+
M∗

2
[p]1 = 0, (C.1)

∂γ1

∂t
+
∂γ1

∂s
=
∂[p]1
∂x1

. (C.2)

∂y1

∂t
+
∂y1

∂x1
=

1

2π
−
∫ 1

−1

γ1(x′1, t)

x1 − x′1
dx′1 +

1

2π
−
∫ C1

w

1

γ1(x′1, t)

x1 − x′1
dx′1 + U2→1(x1, t), (C.3)

−
∫ 1

−1

γ1(x′1, t)

x1 − x′1
dx′1 + Γ1(1, t) = 0. (C.4)

Equations (C.1)–(C.4) represent respectively the Euler-Bernoulli beam model,
the Bernoulli’s theorem for computing the pressure jump, the impermeable condi-
tion on the flag, and the Kelvin’s theorem concerning the total circulation. The
variable x1 is the coordinate along the flag and the free vortex sheet, y1 is the flag’s
vertical displacement, γ1 is the vorticity strength. The term U2→1(x1, t) in Eq. (C.3)
represents the contribution of the lower flag to the flow field surrounding the upper
flag. It is given by:

U2→1(x1, t) =
1

2π

∫ 1

−1

γ2(x′2, t)(x1 − x′2)

(x1 − x′1)2 + d2
dx′2 +

1

2π

∫ C2
w

1

γ2(x′2, t)

(x1 − x′1)2 + d2
dx′2 (C.5)
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We assume that all variables take the following form:

y1 = Y1(x1)e−iωt, γ1 = g1(x1)e−iωt, v1 = V1(x1)e−iωt, Γ1 = Γ1(x1)e−iωt,

(C.6)
where v1 is the regular part of γ1, defined by:

v1(x1, t) =
γ1(x1, t)√

1− x′21
, V1(x1) =

g1(x1)√
1− x′21

. (C.7)

Using variables in the form presented in Eq. (C.6), we will show how to re-write
Eqs. (C.1)–(C.4) into an eigenvalue problem.

Let us start with Eqs (C.1) and (C.2). By developing time derivatives in these
two equations, we have:

− ω2Y1(x1) +
8

U∗2
∂4Y1(x1)

∂x4
1

+
M∗

2
[p1](x1) = 0, (C.8)

[p1](x1) = −iω

∫ x1

−1
g1(x′1)dx′1 + g1(x1). (C.9)

Hence

− ω2Y1(x1) +
8

U∗2
∂4Y1(x1)

∂x4
1

− iω
M∗

2

∫ x1

−1
g1(x′1)dx′1 +

M∗

2
g1(x1) = 0. (C.10)

Next, we re-write Eq. (C.3) into the following form:

−iωY1 +
∂Y1

∂x1
=

1

2π
−
∫ 1

−1

V1(x′1)√
1− x2

1(x1 − x′1)
dx′1 +

1

2π

∫ 1

−1

V2(x′2, t)(x1 − x′2)√
1− x2

2[(x1 − x′2)2 + d2]
dx′2

+
1

2π
−
∫ Cw

1

g1(x′1, t)

x1 − x′1
dx′1 +

1

2π

∫ Cw

1

g2(x′2, t)

(x1 − x′1)2 + d2
dx′2.

(C.11)

We use now the following change of variables:

x1 = cos θ1 → dx1 = − sin θ1dθ1. (C.12)

As x ∈ [−1, 1], the variable θ is defined as θ ∈ [π, 1] This change of variable also
implies that: √

1− x2
1 = | sin θ1|. (C.13)

Using Eqs. (C.12) and (C.13), for both flags, Equations (C.10) and (C.11) be-
comes:

− ω2Y1(x1) +
8

U∗2
∂4Y1(x1)

∂x4
1

− iω
M∗

2

∫ θ1

0
v1(θ′1)dθ′1 +

M∗

2

v1(x1)√
1− x2

1

= 0. (C.14)

− ω2Y2(x2) +
8

U∗2
∂4Y2(x2)

∂x4
2

− M∗

2
iω

∫ θ2

0
v2(θ′2)dθ′2 +

M∗

2

v2(x2)√
1− x2

2

= 0. (C.15)
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−iωY1 +
∂Y1

∂x1
=

1

2π
−
∫ 1

−1

V1(x′1)√
1− x2

1(x1 − x′1)
dx′1︸ ︷︷ ︸

A1

+
1

2π

∫ 1

−1

V2(x′2, t)(x1 − x′2)√
1− x′22 [(x1 − x′2)2 + d2]

dx′2︸ ︷︷ ︸
B1

+
1

2π
−
∫ Cw

1

g1(x′1, t)

x1 − x′1
dx′1︸ ︷︷ ︸

C1

+
1

2π

∫ Cw

1

g2(x′2, t)

(x1 − x′2)2 + d2
dx′2︸ ︷︷ ︸

D1

(C.16)

−iωY2 +
∂Y2

∂x2
=

1

2π
−
∫ 1

−1

V2(x′2)√
1− x2

2(x2 − x′2)
dx′2︸ ︷︷ ︸

A2

+
1

2π

∫ 1

−1

V1(x′1, t)(x2 − x′1)√
1− x′21 [(x2 − x′1)2 + d2]

dx′2︸ ︷︷ ︸
B2

+
1

2π
−
∫ Cw

1

g2(x′2, t)

x2 − x′2
dx′1︸ ︷︷ ︸

C2

+
1

2π

∫ Cw

1

g1(x′1, t)

(x2 − x′1)2 + d2
dx′1︸ ︷︷ ︸

D2

(C.17)
For Eq. (C.4), the Kelvin’s theorem, we use the invariance of the circulation

Γ1(x1, t) on each material point of the free vortex sheet that is convected downstream
at dimensionless speed 1. Therefore, the material point at location x ≥ 1 at time t
was at location x = 1 at time t− (x− 1). Thus by Eq. (C.6), we have:

Γ1(x, t) = Γ0
1e−iω(t−(x1−1)), 1 ≤ x ≤ Cw. (C.18)

As a result, the vorticity strength on the free vortex sheet is given by:

γ1(x1, t) =
∂Γ1

∂x1
= iωΓ0

1e−iω(t−(x1−1)), 1 ≤ x ≤ Cw, (C.19)

and
g1(x1) = iωΓ0

1eiω(x1−1), 1 ≤ x ≤ Cw. (C.20)

Note that the result in Eq. (C.20) are to be applied to Eqs. (C.16) and (C.17), to
simplify the calculation of terms C1, D1, C2 and D2.

The Kelvin’s theorem is therefore written, for both flags as:∫ π

0
v1(θ1)dθ1 + Γ0

1 = 0, (C.21)∫ π

0
v2(θ2)dθ2 + Γ0

2 = 0, (C.22)

Equations (C.14)–(C.17), and (C.21)–(C.22) are then to be written into matrix
form. All body variables Y and V will be expanded using Chebyshev polynomials
as:

Y1(x1) =
m+1∑
k=1

Y k
1 Tk(x1), Y2(x2) =

m+1∑
k=1

Y k
2 Tk(x2),

V1(x1) =

m+1∑
k=1

V k
1 Tk(x1), V2(x2) =

m+1∑
k=1

V k
2 Tk(x2),

(C.23)
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where Tk are the Cheybshev polynomials of the first kind.
We still start with Eqs. (C.14) and (C.15), their matrix form is written as:

−ω2I ·Y1 − iωIPh ·V1 +
8

U∗2
D4 ·Y1 + K ·V1 = 0, (C.24)

−ω2I ·Y2 − iωIPh ·V2 +
8

U∗2
D4 ·Y2 + K ·V2 = 0. (C.25)

where

{Y1(2)}k = Y1(2)(xk), {V1(2)}k = V1(2)(xk), k = 1, ...,m+ 1. (C.26)

In Eqs. (C.24) and (C.25), I is a N × N identity matrix. The operator IPh is an
N × N matrix that multiplies an vector to obtains the latter’s integration on θ.
To give an example, supposing an vector q given by the function q(x) defined on
x ∈ [−1, 1] as:

{q}j = q(xj) = q(cos θj). (C.27)

where θ ∈ [π, 0]. The operator IPh gives the following result:

IPh · q = Q, (C.28)

where Q is given by:

{Q}j =

∫ θj

0
q(cos θ′)dθ′. (C.29)

The operator Dn computes the nth derivative in space of this vector on every node.
Finally, the operator K is a diagonal matrix that is defined by:

{K}j,j =
1√

1− x2
j

. (C.30)

Equations (C.16) and (C.17) are slightly more difficult to be written into matrix
form. The following identity will be used in the ensuing calculation:∫ 1

−1

Tn(x′)√
1− x′2(x− x′)

dx′ = −πUn−1(x), (C.31)

where Un are the Chebyshev polynomials of the second kind. Using this equality,
the terms A1 and A2 are written as follows:

A1 : −1

2
U · Inv ·V1, A2 : −1

2
U · Inv ·V2. (C.32)

In Eq. (C.32), U is defined as:

{U}j,1 = 0, {U}j,k = Uk−1(xj), k = 2, ..., N. (C.33)

The operators Inv multiplies a vector a to obtain another vector ã composed by
the coefficients obtained by expanding the vector a on {Tn}:

a =

N∑
k=1

ãkTk(x) → ã = Inv · a. (C.34)
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The terms B1 and B2 are written as:

B1 :
1

2π
L1 · Inv ·V1, B2 :

1

2π
L2 · Inv ·V2, (C.35)

where the operators L1 and L2 are defined as

{L1}j,k =

∫ 1

−1

Tk(x
′
2)(xj1 − x′2)√

1− x′21 [(xj1 − x′2)2 + d2]
, {L2}j,k =

∫ 1

−1

Tk(x
′
1)(xj2 − x′1)√

1− x′22 [(xj2 − x′1)2 + d2]
.

(C.36)
Using Eqs. (C.20), the terms B1 and B2 are written as:

C1 :
1

2π
iωΓ0

1

∫ Cw

1

ei(x′1−1)

x1 − x′1
→ ωΓ0

1b1,

C2 :
1

2π
iωΓ0

2

∫ Cw

1

ei(x′2−1)

x2 − x′2
→ ωΓ0

2b2,

(C.37)

where the vectors b1 and b2 are given by:

{b1}j =
i

2π

∫ Cw

1

ei(x′1−1)

xj1 − x′1
, {b2}j =

i

2π

∫ Cw

1

ei(x′2−1)

xj2 − x′2
. (C.38)

Finally, the terms D1 and D2 are written as

D1 :
1

2π
iωΓ0

2

∫ Cw

1

ei(x′2−1)(x1 − x′2)

(x1 − x′2)2 + d2
→ ωΓ0

2b2→1,

D2 :
1

2π
iωΓ0

1

∫ Cw

1

ei(x′1−1)(x2 − x′1)

(x2 − x′1)2 + d2
→ ωΓ0

1b1→2,

(C.39)

where the vectors b2→1 and b1→2 are given by:

{b2→1}j =
i

2π

∫ Cw

1

ei(x′2−1)(xj1 − x′2)

(xj1 − x′2)2 + d2
, {b1→2}j =

i

2π

∫ Cw

1

ei(x′1−1)(xj2 − x′1)

(xj2 − x′1)2 + d2
.

(C.40)
The matrix form of Eqs (C.16) and (C.17) are finally obtained as:

− iωY1 − ωΓ0
1b1 − ωΓ0

2b2→1 + D1 ·Y1 +
1

2
U · Inv ·V1 −

1

2π
L1 · Inv ·V2 = 0,

(C.41)

− iωY2 − ωΓ0
1b1→2 − ωΓ0

2b2 + D1 ·Y2 −
1

2π
L2 · Inv ·V1 +

1

2
U · Inv ·V2 = 0.

(C.42)

Finally, the matrix equations corresponding to the Kelvin’s theorem are the
following:

IPhπ0 ·V1 + Γ0
1 = 0, (C.43)

IPhπ0 ·V2 + Γ0
2 = 0, (C.44)
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where the operator IPhπ0 multiplies a vector to compute its integration over the
interval [0, π].

The nonlinear eigenvalue problem is therefore written as:

ω2A2 + ωA1 + A0 = 0. (C.45)

The matrices A2, A1, and A0 take the following form:

A2 =

[
A1

2 O

O A2
2

]
, A1 =

[
A1

1 A2→1
1

A1→2
1 A2

1

]
, A0 =

[
A1

0 A2→1
0

A1→2
0 A2

0

]
. (C.46)

And their components are given by following matrices:

A1
2 =

−I O 0

O O 0

0T 0T 0

 , A1
1 =

 O −iIPh 0

−iI O −b1

0T 0T 0

 , A2→1
1 =

O O 0

O O −b2→1

0T 0T 0


(C.47)

A1
0 =

 8
U∗2D4 K 0

D1
1
2U · Inv 0

0T IPhπ0 1

 , A2→1
0 =

O O 0

O 1
2L1 · Inv 0

0T 0T 0

 (C.48)

A2
2 =

−I O 0

O O 0

0T 0T 0

 , A2
1 =

 O −iIPh 0

−iI O −b2

0T 0T 0

 , A1→2
1 =

O O 0

O O −b1→2

0T 0T 0


(C.49)

A2
0 =

 8
U∗2D4 K 0

D1
1
2U · Inv 0

0T IPhπ0 1

 , A1→2
0 =

O O 0

O 1
2L2 · Inv 0

0T 0T 0

 (C.50)

Note that O is a N ×N zero matrix, and 0 is a N × 1 zero vector.
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Nomenclature

α Coupling coefficient

β Ratio between the resistance’s dissipation rate and the flow time scale

βext Ratio of dissipation rate in the harvesting resistor and the flow time scale

τ Flag’s tangential vector

χ Mechanical/Piezoelectric conversion factor

∆φ Phase difference of two flags placed in the same flow

η Harvesting efficiency

γ Strength of the vortex sheet

Ffluid Fluid’s pressure on the flag, both dimensional and dimensionless form

Freact Reactive force

Fresis Resistive force

n Flag’s normal vector

x Flag’s displacement, both dimensional and dimensionless form

A Flag’s amplitude, both dimensional and dimensionless forms

C Intrinsic capacitance of one piezoelectric pair

EC Energy stored in intrinsic capacitance

EI Energy stored in inductance

Ek Flag’s kinetic energy

Ep Flag’s potential energy

G Electrical conductance of a resistor

I Electric current

L Inductance of an inductor

M Flag’s bending torque, both dimensional and dimensionless form

P Harvested power, both dimensional and dimensionless forms

R Resistance of a harvesting resistor in local circuit



142 Nomenclature

Rd Internal resistance of DAQ

RL Internal resistance of inductor

T Rate of energy transfer from the structure to the circuit

Wf Rate of work of fluid force

µ Flag’s mass per unit length

ν Poisson’s coefficient

ω Frequency in radian

ω0 Dimensionless natural frequency of a LC circuit

Rext Harvesting resistor in electric network

ρsf Fluid mass per unit surface

ρf Fluid density

θ Flag’s orientation

B Flag’s bending rigidity

C Contour of the vortex sheet

c Linear density of capacitance

Cd Drag coefficient

Cf Contour of the vortex sheet attached to the flag

Cw Contour of the vortex sheet representing the shed wake

D Distance separating two flags

d Dimensionless form of the distance separating two flags

E Young’s modulus

f Frequency in Hertz

Felec Electrical energy flux

Fmech Mechanical energy flux

Fp1, Fp2 Contribution of piezoelectric effects to mechanical energy flux

g Linear density of conductance

H Flag’s width



Nomenclature 143

H∗ Aspect ratio

h0 Thickness of a flag’s middle layer

hp Thickness of piezoelectric layer

I Electric current in the electric network

L Flag’s length

l Linear density of inductance

lp Length of one piezoelectric pair

m Mass of the MFC flag

M∗ Mass ratio fluid/solid

ma Added mass coefficient

Q Electric charge displacement in one piezoelectric pair

qI Electric charge displacement in inductance

T Flag’s tension, both dimensional and dimensionless form

U∗ Reduced velocity

U∗c Critical velocity for instability

U∞ Incoming flow velocity

Uτ Tangential component of relative velocity

Un Normal component of relative velocity

V Voltage applied on one piezoelectric pair

Z Electrical impedance

z Linear density of impedance





Récupération d’énergie par drapeaux piézoélectriques

Résumé: L’instabilité de flottement de structures flexibles (ex : drapeaux) en écoulement
axial constitue un exemple classique d’instabilité par interaction fluide-structure. Cette
instabilité entraîne un flottement spontané et auto-entretenu de grande amplitude du
drapeau. En ce sens, ce phénomène présente un intérêt pour la récupération d’énergie d’un
écoulement, s’il est possible de convertir l’énergie associée au mouvement solide en électricité.
Les drapeaux piézoélectriques représentent une piste pour exploiter ce phénomène : ces
drapeaux sont recouverts de matériaux piézoélectriques, capables de convertir la déformation
de la structure en transfert de charge et en énergie électrique. Dans cette thèse, nous
proposons d’étudier ce concept de récupération d’énergie par des moyens expérimentaux et
numériques, et en particulier l’impact du circuit récupérateur sur la dynamique du système
fluide-solide-électrique. Nos résultats montrent que le drapeau piézoélectrique constitue un
concept prometteur pour la récupération d’énergie. Dans un premier temps, on illustre une
amélioration de l’efficacité par le phénomène de l’accrochage de fréquence. Dans un second
temps, nous étudions la performance de récupération d’énergie de deux drapeaux placés
dans un même écoulement et interagissent au travers de l’écoulement (interactions hydrody-
namiques) et par leur connexion à un même circuit aval (interactions électrodynamiques).
Mot clef : Instabilité de flottement, récupération d’énergie, drapeaux piézoélectriques,
accrochage de fréquence, couplage hydrodynamique

Energy harvesting by piezoelectric flags

Abstract: The flutter instability of flexible plates, or flags, in an axial flow is a canonical
fluid-structure instability that results in the flags’ large-amplitude spontaneous and self-
sustained flapping. This phenomenon consequently appears as an interesting mechanism for
flow energy harvesting, if the mechanical energy associated with this solid motion can be
converted into electrical form. One route to exploit this mechanism is the concept of so-called
piezoelectric flags: these flexible plates covered by piezoelectric materials which convert
mechanical energy into electrical energy through the materials’ mechanical deformation.
In this thesis, we propose to study both experimentally and numerically this concept of
energy harvesting. Our results illustrate promising perspective of harvesting energy with
piezoelectric flags. We first show that by using circuits possessing resonant properties, the
energy harvesting becomes more efficient through a frequency lock-in phenomenon. Second,
we studied the energy-harvesting performance of two flags placed in the same fluid flow
and are coupled through the flow (hydrodynamic coupling) and through the output circuit
(electrodynamic coupling).
Keywords: Flutter instability, energy harvesting, piezoelectric flags, frequency lock-in,
hydrodynamic coupling
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