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ABSTRACT

I

iii

At the beginning of each chapter a quote from a famous writer is placed with the
aim to help the reader to enter in the theory that is then proposed.

n this thesis, Sliced Inverse Regression (SIR), a method for semi-parametric dimen-
sion reduction is discussed, analyzed and extended. Three different contributions
namely, Collaborative SIR, Student SIR and Knockoff SIR are presented and dis-

discussed. Collaborative SIR aims at finding subgroups in the data that have different
characteristics and that are better described dividing the dataset. Student SIR is a robustified
version of SIR where the error is described by a multivariate t-Student distribution,
a heavy tailed distribution that is flexible to outliers. Finally Knockoff SIR is a method
to perform variable selection and to provide sparse solutions at the same time. The basic
idea comes from a paper of R. F. Barber and E. J. Candes that controls the false discovery
rate in regression procedure such as LASSO.
In the first chapter of the thesis, SIR is presented and discussed, an analysis of the state
of the art is detailed. The last part of the chapter is dedicated to give an overview of
the three different contributions. The second chapter focuses on Collaborative SIR and
includes the paper published in Communications in Statistics - Theory and Methods.
Student SIR is treated in chapter 3 where the paper is published in Computational
Statistics & Data Analysis is shown. Finally Knockoff SIR is outlined and the main results
are presented and discussed providing applications on simulated and real data. 
Dulcis in fundo the conclusion is drawn.
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1
INTRODUCTION

You see things; and you say, ’Why?’

But I dream things that never were; and I say ’Why not?

B. Shaw.

Suppose to observe a group of bombers returning after a mission. The undam-

aged plane (figure 1.1) on the left and on the right, in black, all parts hit by

bullets.

FIGURE 1.1. Undamaged plane on the left, scheme of all damages (in black)
reported by bombers in action.
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CHAPTER 1. INTRODUCTION

During World War Two, the Army Air Force asked how could they improve the odds

of a bomber making it home. Military engineers explained to the statistician that they

already knew the allied bombers needed more armor, but not where to place it since it

was not possible to cover all the aircraft. The military looked at the bombers that had

returned from enemy territory. They recorded where those planes had taken the most

damage. According to where the hits tended to group they wanted to place the armor. The

Mathematicians and Statistician Abraham Wald changed perspective dramatically and

said: the holes show where a bomber can be shot and still survive the flight home. They

idea of Wald was to deeply take into account the fact that some very useful information

was buried with the planes that never made it to home. Based on this idea he developed

a framework to deal with such a situation [57] (Wald was part of the Statistical Research

Group (SRG) founded in that period to assist the army during the war).

Taking the scheme of this experiment it is possible to build a simple but explica-

tive model, let us divide the airplane in five different areas, following Wald’s example,

A1, A2, ..., A5 and store the area hit by bullets for different planes in five corresponding

continuous variables (x1, x2, ..., x5). The goal of the analysis is to estimate the full model
function:

(1.1) y= f (x1, x2, ..., x5)

where y ∈ [0,1] is the damage of the bomber, 0 is undamaged and 1 is downed. One

first assumption could be that the damage is a function of the total area hit by bullets

y= f (x1 + x2 + ...+ x5)= f (βTX), where β= (1,1, ...,1) and X= (x1, x2, ..., x5)T . A different

assumption could take into account the vulnerability of different parts giving a weight

β proportional to the expected vulnerability of the different parts (e.g. engine, fuselage,

fuel system). A hit on the engine should be more critical than one on the fuselage. The

model:

(1.2) y= f (βTX)

gives some freedom to take into account different settings since there are no assump-

tions on the link function f but only on the argument which is supposed to be a linear

combination of the initial predictors. In general β is unknown, it is of interest to try to

look for such a vector since the link function, in our example, under the full model (1.1)

is defined on R5 while under model (1.2) is defined on R. In other words the information

is packed in just one number (e.g. the total number of hits) instead of living in higher
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1.1. REGRESSION

dimension, a dimension reduction is achieved. Regression is well known to be hard when

the dimension of the predictors is high.

The chapter is organized as follows: first a brief introduction about regression in the

general setting is sketched, a detailed description of SIR is given in section 1.2 together

with comments, analysis, the algorithm and the state of the art. The following three

sections are dedicated to an overview of respectively Collaborative SIR, Student SIR and

Knockoff SIR.

1.1 Regression

During the first years of 1800 Legendre and Gauss shaped a form of reasoning and

approach that has been then named Regression. It was a crucial moment for Statistics

and the first and most famous priority dispute over the discovery in this field [65].

Regression analysis is a complex field with the aim of finding relationships among

variables, in particular when a dependent variable Y and independent variables X are

taken into account. The assumption is that:

(1.3) Y = f (X,ε)

where ε is a random noise independent of X. Once the link function f is found it is

possible to forecast Y based on the observed value of X. Suppose, for example, that the

professor is asked to forecast the grades of his students based on some parameters (e.g.

number of lectures attended, grades in other subjects). It is evident from the example

that this analysis can be challenging and that the assumption of a link function f
between the response variable Y and the predictor space X is non trivial and highly

debated. Recently the problem of correlation vs causation has been of certain interest

in economics (in 2003 Clive Granger and Robert Engle were jointly awarded the Nobel

Memorial Prize in Economic Sciences). Depending on the assumption on the function

f regression analysis is commonly divided into parametric and non parametric. In the

first case is assumed that the function f depends on a set of parameters f (·,β) and that

the function belongs to a pre specified parametric family. In the second case f is not

assumed to be part of a specific parametric family and the analysis is carried out based

on the data point positions in the space. Generally speaking, the flexibility of the non

parametric models has the drawback of a higher number of points needed to correctly

guess the shape of the function (in particular when the dimension of the predictor space is

3



CHAPTER 1. INTRODUCTION

high). Along the spectra of possible methods in between parametric and non-parametric

models semi-parametric models try to combine the two approaches. Almost two hundred

years after the beginning of regression analysis, in 1991, the advances in technology

brought the attention of the statisticians to new problems concerning the amount of

variables that one could explore in a regression procedure. Visualization was developing

really fast but the capability of gathering data was even faster. Scanning a large pool

of variable became challenging and new theories emerged from this need to surf and

face the amount of data. Sliced Inverse Regression [47] opened a new way to achieve

dimensionality reduction when dealing with a regression problem, in such a way to avoid

parametric or non parametric model-fitting.

1.2 Sliced Inverse Regression

SIR solid ground is based on two assumptions discussed in the following paragraphs:

a model assumption and an assumption on the predictor space. In section 1.2.3 the

algorithm is presented and in paragraph 1.2.4 a simple explanation of why SIR works

is detailed. A brief discussion on the selection of the parameter k is given in paragraph

1.2.5 and then an application of SIR algorithm to a simulated dataset is shown in

paragraph 1.2.6. In the last two paragraphs asymptotic results and an overview of the

state of the art close the part relative to the basic knowledge of SIR.

1.2.1 Assumption on the model

The model assumption of SIR is that f depends only on k linear combinations (or

projections) of the predictors:

(1.4) Y = f (βT
1 X,βT

2 X, ...,βT
k X,ε)

where ε is a random noise independent of X . The parameter k is unknown and the

βi ’s ∈ Rp are the directions (that identify the weights of the linear combinations) that

we want to retrieve. Under this model, once we find the βi ’s, the regression problem

is in dimension k ≤ p i.e. the link function is from Rk → R and no longer from Rp → R.

Referring to the example in the introduction we pass from a regression problem where

the predictors are in dimension 5 to a problem where the link function depends only on

one linear combination (i.e. k = 1). If the assumption holds a dimensionality reduction

is achieved not affecting the "quality of the predictors" projecting the predictor space

4



1.2. SLICED INVERSE REGRESSION

in lower dimension. It must be noted that since no assumptions are provided for the

link function f it is not possible to directly retrieve β = (β1, ...,βk) for any symmetric

invertible matrix A of order k it follows that:

(1.5) Y = f (βTX,ε)= f (A−1(βA)TX,ε)

A−1 can be absorbed by f . Hence βi ’s are not directly identifiable but they span a unique

space called effective dimension reduction space e.d.r. The goal of SIR is to provide a

basis of the e.d.r. space.

1.2.2 Linearity Design Condition

SIR was welcomed by the community with enthusiasm and several papers have been

published to comment and think about the new idea. The main and most debated

[25, 39, 41] point is the assumption that the predictors X satisfy the following, so called,

Linearity Design Condition:

E(bTX|βT
1 X, ...,βT

k X) is linear in βT
1 X, ...,βT

k X for any b ∈Rp (LDC).

It must be noted that this condition depends on the unobserved βi ’s and therefore

cannot be directly checked. If the condition holds for each βi ∈Rp then X is elliptically

symmetric (e.g. Gaussian, t-Student). The (LDC) is the crucial assumption of SIR, an

encouraging and very interesting results from [38] shows, under mild assumptions, that if

the dimension p tends to infinity the measure of the set of standardized directions β that

violate (LDC) tends to zero. This result is closely related to a previous study [28] where

the authors show that for most high dimensional datasets almost all low dimensional

projections are nearly Gaussian. This is a very important result that should be considered

when exploring low dimensional projections since a standard approach, once n vectors in

Rp are given, is to explore low dimensional projections to infer something on the shape of

the data. This result tells that low dimensional projections are misleading since despite

the distribution of the points the projections will tend to be Gaussian (when n, p →∞ ).

When the dimension p is intermediate and no clues can be drawn from the asymptotic

results a different strategy can be employed: starting from the original predictors X
produce a new set X̃ which is "close" to X and is elliptically symmetric. A resampling

strategy has been proposed in [11] where a Gaussian distribution of sharing the same

mean and variance as the original dataset is generated and then used to select points

of the original dataset lying close to the points following the Gaussian distribution. A
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CHAPTER 1. INTRODUCTION

slightly more general approach is proposed in [24] where a non zero weight is assigned to

points that are lying close to an elliptic distribution, a fraction of points, selected by the

user, far from ellipticity is then removed. The (LDC) condition is weaker than elliptic

symmetry, there are cases in which the distribution is not elliptic but the condition holds

nonetheless since it must be verified only for the unknown k vectors βi. Under model

(1.4) and the (LDC) the following result is stated in [47]:

Theorem 1.1. The centered inverse regression curve E(X|Y )−E(X) is contained in the
linear subspace spanned by the Σβi ’s, where Σ is the covariance matrix of X.

Proof. We want to show that for each b ∈Rp in the orthogonal complement of Span(Σβ1, ...,Σβk)

bTE(X|Y )= 0. Remark that

bTE(X|Y ) = bTE(E(X|Y ,βT
1 X, ...,βT

k X)|Y )(1.6)

= E(E(bTX|βT
1 X, ...,βT

k X)|Y ).(1.7)

If E(bTX|βT
1 X, ...,βT

k )= 0 the result holds. This is indeed the case, since it is possible to

show alternatively that E(E(bTX|βT
1 X, ...,βT

k X)2)= 0.

E( E(bTX|βT
1 X, ...,βT

k X)2 ) = E( E(bTX|βT
1 X, ...,βT

k X)E(bTX|βT
1 X, ...,βT

k X) )

= E( E( bTX E(bTX|βT
1 X, ...,βT

k X)|βT
1 X, ...,βT

k X) )

= E( bTX E(bTX|βT
1 X, ...,βT

k X)|βT
1 X, ...,βT

k X)

= bTE(X
k∑

i=1
ciβ

T
i X)

= bTE(X(
k∑

i=1
ciβ

T
i X)T)

= bT
k∑

i=1
ciE(XXT)βi

= bT
k∑

i=1
ciΣβi

= 0,

under the hypothesis bTΣβi = 0 for each i = 1, ...,k this concludes the proof. �

It is interesting to underline that the first equality of the proof is always true for the,

so called, tower property, and the fact that the sigma algebra σ(Y )⊆σ(Y ,βT
1 X, ...,βT

k X).

From this result in [47] follows that the covariance matrix Σ−1cov(E(X|Y ) is degenerated

6



1.2. SLICED INVERSE REGRESSION

in any direction orthogonal to the β′
is. Consequently the eigenvectors associated to the

highest eigenvalues of Σ−1cov(E(X|Y )) form a basis of the e.d.r. space. This sets the path

to develop an algorithm.

1.2.3 SIR algorithm

In order to provide a basis of the e.d.r. space the estimation of Γ= cov(E(X|Y )) is needed,

to this end it is useful to observe that is possible to apply a monotone transformation

T :R→R to (1.4) obtaining:

(1.8) T(Y )= T( f (βT
1 X,βT

2 X, ...,βT
k X,ε)).

It is straightforward to see that the centered regression curve is nonetheless contained in

the space spanned by the Σβi ’s since the transformation can be absorbed in the function

f , since there are no assumption on f in model (1.4). Using this idea Li proposed to slice

Y in h-constant slices s1, ..., sh to give a crude estimate of the centered inverse regression

curve. Consequently in each slice

(1.9) mi = E(X|Y ∈ si)

and therefore it is possible to define Γ as:

(1.10) Γ=
h∑

j=1
p j(m j −µ)(m j −µ)T

where p j = P(Y ∈ s j) and µ= E(X ). A principal component analysis is then applied to Γ to

extract the eigenvectors related to the k highest eigenvalues that for (1.1) are spanning

the e.d.r space.

Given the response variable Y = {y1, ..., yn} and the predictors X= {x1, ..., xn} the algorithm

proceed as follows:

(i) Divide Y in h slices and compute p̂ j = 1
n

n∑
i=1

I[yi ∈ s j], where I[·] is the indicator

function

(ii) Compute m̂ j = 1
np̂ j

n∑
i=1

xiI[yi ∈ s j]

(iii) Obtain the sample covariance matrix:

(1.11) Γ̂=
h∑

j=1
p̂ j(m̂ j − µ̂)(m̂ j − µ̂)T

where µ̂ denotes the sample mean of X. Find the eigenvectors β̂1, ..., β̂k correspond-

ing to the highest eigenvalues.

7



CHAPTER 1. INTRODUCTION

Since the matrix Σ−1Γ is degenerated in any direction orthogonal to the βi ’s the

p−k last eigenvalues are null. In practice, it is rare to find zero values and, similarly to

PCA, the highest values are retained. When the covariance matrix is the identity the

eigenvalues represent the amount of variance of the inverse regression curve retained. A

more detailed description on the selection of k is given in paragraph 1.2.5.

Comments on the number of slices h: The number of slices h must be given by the

user, to avoid artificial dimension reduction h must be greater than k. A graphical tool for

the selection of h is presented in [54] where is shown that SIR has low sensitivity to the

choice of h, indeed for k < h ≤ n/2 the estimated e.d.r. directions converge, in probability,

at 1/
p

n rate to the true directions.

1.2.4 Intuition behind SIR

Let us assume the following model for X ∈R2:

(1.12) Y = g(βTX)= g(b1x1 +b2x2)

where β = (b1,b2), the link function depends on one linear combination (k = 1) of the

predictors X = (x1, x2). Given the dependence on X, it follows that when b1x1 + b2x2

remains constant the value of Y does not change. In other words the contour lines of

function g are perpendicular to the direction β. It must be noted that this fact does not

depend on the function g which is unknown, in figure 1.2 it is evident how the direction

of the contour lines do not change despite the difference in function g. Setting β= (1,1),

slicing the range of Y allows to give a crude estimate of the inverse regression curve.

In figure 1.3 the blue points are the values of the curve in each of the four considered

slices. In this example X follows a standard normal distribution and is straightforward

to see that the points tend to be distributed symmetrically with respect to the direction

β= (1,1). Therefore the mean in each slice approximately lies on the unknown direction

β goal of the analysis. Given the blue points a Principal Component Analysis of the

matrix Γ= Cov(E(X|Y )) is conducted to find the direction that maximizes the variance,

which is an estimation of β, as it is easy to see from figure 1.3. Since X follows a standard

normal distribution the covariance matrix is the identity and the spherical symmetry

causes the points to be distributed symmetrically with respect to the unknown direction

β. In general this is not the case and the distribution should look like an ellipsoid and a

correction is needed, that is exactly the role of Σ when computing PCA on Σ−1Γ.
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FIGURE 1.2. Upper left: The function g is the sin function. Upper right: The
function g is linear. Bottom left: Contour lines of the sin function. Bottom
right: Contour lines when g is linear.

1.2.5 Discussion on the unknown parameter k

The dimension k of the e.d.r space is assumed to be known when dealing with SIR,

unfortunately this is not the case in real applications. Li proposed, in the pioneering

paper [47], an hypothesis test on the nullity of the last (p−k) eigenvalues of the matrix

Σ−1Γ. In the special case of normal distribution the (p−k) smallest eigenvalues follow a

χ2 distribution with (p−k)(h−k−1) degrees of freedom. This approach has been extended

for elliptic distributions in [59] and [7]. A different approach is to define for each possible

value of k a distance between the true e.d.r. space and the estimated one, Ferré in

[31] introduced a consistent estimator for this quantity. In this direction, recently, a

bootstrap approach has been implemented in [53] and refined as a useful graphical tool

in [54]. Right after the publication of SIR many comments pointed out the problem of

the estimation of the dimension k, as Li says in his Rejoinder to comments doubting the
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FIGURE 1.3. Slices (in black) and points of X following a standard normal
distribution (red), values of E(X|Y ∈ hi), i = 1, ...,4 (in blue).

validity of the chi-squared test: invalidity does not demolish usefulness. Exactly like in

PCA, when it comes to deal with real data, the problem of selecting the right dimension

is almost philosophical, it may be well defined once the data is gathered but the situation

may change if a new sample is coming. Analyzing all the eigenvalues gives, in practice, a

quick view on the problem and useful hints on where to focus the analysis and compare

the results with the prior knowledge provided by the experts, which is by far, the most

important reference to take into account.

1.2.6 SIR in action

In this section an application of SIR is shown and discussed. Let us assume the following

model:

(1.13) Y = (5+ x1 + x2 + x3)2 +ε,

10
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where X ∈R5 follows a standard multivariate normal distribution and the error ε∼N (0,1).

A dataset of n = 500 samples, {Yi,Xi}i=1,..,n, is generated following model (1.13). Y de-

pends only on one linear combination of the predictors βTX= x1 + x2 + x3, β= (1,1,1,0,0).

The application of SIR (number of slices set to h = 10) shows, first of all, that the eigen-

values in figure 1.4 are pointing to a one-dimensional e.d.r. space: one linear combination

carries all the information needed to regress Y . This is indeed what was expected, the

quadratic trend is shown in figure 1.5 where the predictors are projected along the

first direction found by SIR. It is interesting to look at the scatterplot of the second

direction found by SIR, there is clearly no trend possible to guess from the scatterplot,

this strategy is widely used to check if residual information is contained in the directions

with small eigenvalues. In this example SIR reduces the dimension from 5 to 1 with no

loss of information.

1 2 3 4 5
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0.1
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0.8

0.9

1

eigenvalues

FIGURE 1.4. Bar plot of the five eigenvalues found by SIR. It is evident that all
the information is packed in the first eigenvalue and therefore in the linear
combination defined by the corresponding eigenvector.
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FIGURE 1.5. (a). Scatterplot of Y against the first variate found by SIR. (b).
Scatterplot of Y against the second variate found by SIR.
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1.2.7 Asymptotic results

The outcome of SIR is root n consistent [47] even when the range of each slice varies to

balance the number of observations in each slice. Useful considerations are drawn in [77]

where using the law of total covariance, E(cov(X|Y ))= cov(X)− cov(EX|Y ) the asymptotic

behavior is derived when the number of points in each slice is fixed. The asymptotic

normality, with zero mean, of the estimator Γ̂ is achieved. From the expression of the

covariance matrix is evident how a large number of samples in each slice helps to control

the asymptotic variance. The asymptotic theory of SIR is discussed in [58] where the

asymptotic normality is shown for the matrix of interest Σ̂−1Γ̂, for the projector on the

e.d.r. space and the e.d.r. directions. The convergence in law is to a normal distribution

with zero mean and the expression of the covariance matrices of the three quantity of

interest is given in explicit form. Let us assume that:

(A1) {(yi, xi), i = 1, ...,n} is a sample of independent observations from model (1.4).

(A2) The support of Y is partitioned into h fixed slices s1, s2, ..., sh such that p j 6= 0 for

each j = 1, ...,h.

(A3) The covariance matrix Σ is positive definite.

(A4) The k+1 largest eigenvalues of Σ−1Γ are non-null and satisfy:

(1.14) λ1 >λ2 > ...>λk+1, k+1≤ p.

The asymptotic behavior of SIR is described by the following theorems, stated in [58]:

Theorem 1.2. Under assumptions (A1), (A2) and (A3):

(1.15)
p

n (Σ̂−1Γ̂−Σ−1Γ)→d Φ,

where Φ is such that its vectorization, vec(Φ), is normally distributed with mean zero
and covariance matrix given in [58].

Theorem 1.3. Under assumptions (A1), (A2), (A3) and (A4):

(1.16)
p

n (P̂ −P)→d ΦP ,

where ΦP is such that vec(ΦP) is normally distributed with mean zero and covariance

matrix given in [58]. P is the Σ-orthogonal eigen-projector on the e.d.r. space, P =
k∑

i=1
Pλi

and Pλi =βiβ
T
i Σ. Similarly P̂ is defined using the sample version of Σ and βi ’s.

13
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Theorem 1.4. Under assumptions (A1), (A2), (A3) and (A4):

(1.17)
p

n (β̂ j −β j)→d Φβ j∀ j = 1, ...,k,

where Φβ j has the normal distribution with mean zero and covariance matrix given in
[58].

Theorem 1.5. Under assumptions (A1), (A2), (A3) and (A4):

(1.18)
p

n (λ̂ j −λ j)→d Φλ j∀ j = 1, ...,k,

where Φλ j has the normal distribution with mean zero and covariance matrix given in
[58].

All the theorems are stated in [58] for SIRα, SIR is obtained setting α= 0.

1.2.8 SIR skyline

First reaction of the statistical Community. The original paper of SIR is cited over

1000 times, after his publication has gained increasing attention [25, 39, 41] and many

started to think more about the inverse regression curve and its applications. The focus on

the paper evidenced the strengths and weaknesses of the method contributing to a better

understanding of the original idea. Asymptotic theory has been discussed in [47, 58, 77]

where the normality of the estimators has been well established. Despite its solid

foundations SIR is not a well known and popular tool: Can SIR be as popular as multiple
linear regression?, is asked in [14]. The impossibility of SIR to deal with functions

symmetric to vertical lines in (Y ,βTX) has led to the development of second moment

based methods like SAVE [25, 27], SIR-II and SIRα (Rejoinder [47]). Finite sample

properties are investigated in [3] and a bagging version to face small sample size is given

in [43]. Particular attention has been given to the (LDC) which is the basic assumption

of SIR. Starting from its consequences R.D. Cook proposed the idea of the central

subspace [19] and different alternatives to SIR ([21, 22]) based on maximum likelihood

approach to dimension reduction. The (LDC) holds if X is elliptically distributed, given

a non elliptical X is nonetheless possible to move the initial points to get closer to an

elliptical distribution: normal resampling [11] or re-weighting [24]. When X is a mixture

of elliptical distributions ellipticity is not global but in each component, locally, holds

true. The idea to clusterize the predictor space to force the (LDC) locally [44, 50] is the

first step of Collaborative SIR, our first contribution described in Chapter 2. The case
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of stratified population encoded in a categorical variable is treated in [13] and recently

a different approach is taken in [68]. A solution under the assumption of a Gaussian

mixture model using EM is discussed in [62] with application on classification.

Regularizations and robustified version of SIR. When the dimension p increases

and n ≤ p the covariance matrix Σ becomes singular and its inverse, used in the PCA step

(see subsection 1.2.3), brings numerical instabilities, a different page of SIR literature

tries to overcome this limitation. Different versions of SIR have been developed to over-

come this isssue: starting from the use of PCA on the predictors space before conducting

the analysis ([16, 51]) to different approaches using ridge regression ([73]) or regularized

discriminant analysis ([60, 61]). Recently in [10] a link has been established among

these methods, under the Gaussian assumption of the predictors, and an application to

Mars hyperspectral data is detailed in [9]. An interesting application to classification

combining SIR and SAVE with a shrinkage is described in [60, 61]. Not extensively

studied is the outlier sensitivity of SIR, PCA based methods are well known to be non

robust to outliers and this applies with no exception to SIR [37, 64]. To downweight this

sensitivity, robust versions of SIR have been proposed, mainly starting from the standard

model free estimators and trying to make them more resistant to outliers. Typically, in

[36] classical estimators are replaced by high breakdown robust estimators and, recently

in [30] two approaches are built: a weighted version of SIR and a solution based on the

intra slice multivariate median estimator. The second contribution, Student SIR, wants

to enrich this corner of the literature using an approach derived from the formulation of

SIR given by Cook in [19]. The idea is to introduce a noise modeled by a multivariate

t-student to robustify SIR and overcome, at the same time, the limitation arising by the

non elliptical distributed predictors and the (LDC) [34, 35, 45].

Beyond the slices. The slicing step produces a crude estimate of the centered inverse

regression curve, different strategies to estimate this curve have been developed in the

literature. In case of small sample size different slicing strategies may lead to different

results. To overcome the sensitivity to a specific choice of slicing a combination of slicing

has been proposed in [3] and its asymptotic properties derived. Furthermore a kernel

approach can be used to give an estimation of the centered inverse regression curve, in

[76] a family of estimators is presented and its convergence in distribution achieved.

The main theorem shows that the asymptotic variance does not depend on the choice of
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the kernel function. This observation supports the low sensitivity of SIR to the number

of slices.
p

n -consistency of the eigenvalues and corresponding eigenvectors is shown.

Based on this results an extension using splines is proposed in [75],
p

n -consistency is

shown using perturbation theory as in [76].

Kernel SIR. The e.d.r. space is, by definition, a linear space and a reasonable question

to ask is if there is a way to extend this approach to find non-linear e.d.r directions. In [69]

the kernel trick consists in defining a similarity function K(·, ·) that can be represented

through an inner product, < ·, · >H , in a higher dimension space via an unknown map

Φ : X→H, where H is a reproducing kernel Hilbert space:

(1.19) K(x, y)=<Φ(x),Φ(y)>H .

Linear functions in this Hilbert space are non-linear in the original predictor space X.

Using the new predictors Φ(X ) the SIR strategy can be applied under the model:

(1.20) Y = f (<β1,Φ(X )>H, ...,<βk,Φ(X )>H).

Unfortunately the map function is unknown and furthermore the high (or infinite)

dimension of the predictor space makes all the analysis not feasible. Using the kernel

function K , it is shown in [69], that using a strategy mimicking SIR is possible to retrieve

<β1,Φ(X )>H, ...,<βk,Φ(X )>H. Nonetheless, it is important to underline that the e.d.r

directions are not available, only the projected predictors are found. In presence of new

samples arriving an explicit formula is available for projection. For fast implementation,

details are given in [71].

Multivariate SIR. It is natural to try to extend SIR in the multivariate case where

the response Y ∈Rq, q > 2. A common strategy is to analyze each Y -variate separately

and then merge the results to obtain a global solution using the information from each

individual univariate regression model of type (1.4). A strategy in [2, 48] is to find which

Y -variate is most predictable from X and discard the others. An extension to SIRα can

be found in [6]. On the other hand in [55] all the variates are combined using weights

proportional to the eigenvalues of each independent univariate regression. When the

slicing strategy is complete (i.e. a "grid" is sequentially computed considering all the

Y -variates) the estimation is not feasible when the dimension q increases. K-means is

used in [63] as an alternative to slicing to overcome this issue. A more general case when

the e.d.r. space varies according to the Y -variate is discussed in [26] where the, much

tractable, marginal slicing strategy is adopted.
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Variable selection and sparsity. Nowadays with the increasing capability of tech-

nology to gather data the number of variables p considered is enormous. SIR components

are a linear combination of all the original predictors and since is desirable to have

a direct interpretation of the new variables, sparsity constraints can be introduced.

Using the generalized eigenvalue formulation penalizations terms are introduced in

[49] to obtain spare solutions. A representation of SIR as a regression-type optimization

problem combining the shrinkage idea of the lasso with SIR is provided by [52]. An

application to classification combining ridge and adaptive lasso can be found in [70]. Our

last contribution explores a different approach not enforcing sparsity using an idea from

[5] where the false discovery rate is controlled creating copies of the original predictors

with some useful characteristics to discover rejectable variables.

Other approaches and new trends. An iterative version of SIR is proposed in [8]

and an extension meant to deal with a data-stream providing a strategy to use the

information of the previous blocks to help the analysis is given in [12]. Recently, optimal

quantization has been introduced to project the predictor space on a grid and then

proceed with the analysis, property of the estimators are given in [4]. A different page of

SIR is the one concerning its application to functional data, two main papers, [32, 33],

extended the use of SIR in this framework. Attention on the assumptions has been raised

by [18]. Furthermore a robustified version of functional SIR can be found in [66]. In

case of modern biomedical images Tensor-SIR has been proposed in [29], theoretical

developments partially overlap with [46].

In this thesis Sliced Inverse Regression (SIR) (1991), is analyzed and extended in

three different contributions. The first contribution, namely Collaborative SIR, based on

an observation on the design hypothesis of SIR, is presented in chapter 2. A robustified

version of SIR, Student SIR, is then developed to take into account the well known

sensitivity to outliers of the techniques based on linear projections. The last contribution

is based on a paper of R. F. Barber and E. Candes and tackles the problem of quantifying

the false discovery rate in SIR. Conclusion and comments are finally outlined. All those

contributions are summarized in the next three paragraphs.

1.3 Collaborative SIR: an overview

Collaborative SIR is our first contribution. One of the weak points of SIR is the impossi-

bility to check if the (LDC) holds. It is known that if X follows an elliptic distribution the
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condition holds true, in case of a mixture of elliptic distributions there are no guaranties

that the condition is satisfied globally, but locally holds. Starting from this consideration

an extension of the model (1.4) is proposed.

1.3.1 The model

Let X be a random vector, X ∈Rp, from a mixture model and be Z an unobserved latent

random variable Z ∈ {1, ..., c}, where c is the number of components. Given Z = i we have

the following model:

(1.21) Y = fF(i)(βT
F(i)X )+εi,

where Y is the random variable to predict, Y ∈ R, F is an unknown deterministic

function F : {1, ..., c}→ {1, ...,D}, D ∈N. The functions f j :R→R, j = 1, ...,D are unknown

link functions between βT
j X and Y . Finally εi are random errors ∀i εi ∈ R, i.e. each

component is allowed to have a different related error. The underlying idea is to allow

the e.d.r. direction to change depending on the mixture, different components may lead to

different results. If D = 1 then F−1(1)= {1, ..., c}, the e.d.r. direction and the link functions

do not vary through all the mixture. This specific case is addressed in [44].

1.3.2 Collaborative SIR in practice

Given the predictor variable X, a clustering is performed and the variable Z is estimated.

In each cluster, SIR is applied independently. The result from each component collab-

orates to give an estimation of D. To estimate D a hierarchical merging procedure is

introduced based on the proximity measure

(1.22) m(a,b)= cos2(a,b)= (aT b)2,

between the estimated e.d.r. directions b̂1, ..., b̂c. A similar procedure has been used

in [26] to cluster the components of the multivariate response variable Y related to

the same e.d.r. spaces. Let V = {v1,v2, ...,v|V |} be a set of vectors in dimension p with

associated weights wi. We define the quantity:

λ(V )=max
v∈Rp

1
wV

|V |∑
i=1

wim(vi,v) s.t. ‖v‖ = 1

= largest eigenvalue of
1

wV

|V |∑
i=1

wivivT
i
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where wV =
|A|∑
i=1

wi is the normalization. Vector v maximizing λ(V ) is the most collinear

vector to our set of vectors given the proximity criteria (1.22) and the weights wi. To

build the hierarchy we consider the following iterative algorithm initialized with the set

A = {{b̂1}, ..., {b̂c}}:

while card(A) 6= 1

Let a,b ∈ A such that λ(a∪b)>λ(c∪d)∀c,d ∈ A
A = (A \{a,b})

⋃
a∪b

end

The weights are set equal to the number of samples in each components, i.e. wi = ni,

i = 1, ..., c. At each step the cardinality of the set A decreases merging the most collinear

sets of directions. The bottom up greedy algorithm proceeds as follows:

• First the two most similar elements of A are merged considering all the |A|× (|A|−
1)= c× (c−1) pairs.

• In the following steps the two most similar sets of vectors are merged, considering

all |A|× (|A|−1) pairs in A.

An analysis of the cost function allows to give an estimation of D. Once the estimation

D̂ is available using the information encoded in the hierarchical tree each initial cluster

is assigned to its group, i.e. F is estimated, and a final solution is calculated. Each node

at level D̂ corresponds to a different e.d.r. space.

1.3.3 Asymptotic results

Asymptotic results can be established similarly to [12]. We fix j ∈ {1, ...,D} and consider

{X t, t ∈⋃
i∈F−1( j) C i} , where C i = {t such that Zt = i}, and a sample size n j =∑

i∈F−1( j) ni

which tends to ∞. The following three assumptions are considered:

• (A1) {X t, t ∈⋃
i∈F−1( j) C i} is a sample of independent observations from the single

index model (1.21).

• (A2) For each i, the support of {Yt, t ∈C i} is partitioned into a fixed number Ht of

slices such that ph
i > 0,h = 1, . . . ,Ht.
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• (A3) For each i and h = 1, . . . ,Ht, nh,i →∞ (and therefore ni →∞) as n →∞.

Theorem 1.6. Under model (1.4), linearity condition (LDC) and assumptions (A1)-(A3),
we have:

(i) β̂ j =β j +Op(n j−1/2), where n j = min
i∈F−1( j)

ni;

(ii) If, in addition ni = θi jn j, θi j ∈ (0,1) for each i ∈ F−1( j), then
p

n j (β̂ j −β j) converges
to a centered Gaussian distribution.

1.3.4 Experimental results

Simulation studies have been established to assess the sensitivity to clustering of Collab-

orative SIR. Under different configurations it has been shown that Collaborative SIR

performs, not surprisingly, better than SIR which is not designed to face multiple e.d.r.

spaces as in model (1.21). A significative gain in the accuracy of the results is found

through the analysis. Two real datasets are then discussed, in both datasets two distinct

e.d.r. spaces have been found supporting the strategy addressed in the paper. In the

Galaxy data in figure 1.3.4 two e.d.r. spaces are retrieved by Collaborative SIR. It is

interesting to notice that an analysis of the components of the two estimated directions

evidence that different variables contribute in different way to predict Y (figure 1.7).

There is indeed a difference between the two groups that explains the results.The experts

confirm that the subdivision is not unexpected and reflects some property of the galaxies.

The same dataset has been analyzed by Student SIR and Knockoff SIR, the solution

given by Collaborative SIR is, in general, supported by this comparison. On the other

hand Knockoff SIR suggests that variable 6 that is found to be significative in one of the

groups should not be considered. Finally Collaborative SIR analyzed only the first e.d.r.

direction while our later study via Student SIR the dimension of the e.d.r space has been

estimated to k = 3. The results of the three methods show the complexity of real data, a

comparison of single solutions gives a better understanding of the general analysis.
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1.4 Student SIR: an overview

Student SIR comes from the need to robustify SIR. Since SIR is based on the estimation

of the covariance, and contains a PCA step, it is indeed sensitive to noise (see [37, 64]).

To extend SIR, the approach suggested by Cook in [19] has been used.

1.4.1 The model

A subspace S is a d.r.s. if Y is independent of X given PSX, where PS is the orthogonal

projection onto S. In other words, all the information carried by the predictors X on Y can

be compressed in PSX. It has been shown under weak assumptions that the intersection

of all d.r.s., the central subspace, is itself a d.r.s. [72]. The space found by SIR is a d.r.s.

Let us assume the following model ([10, 19]):

(1.23) X=µ+VBc(Y )+ε,

where µ ∈ Rp is a non random vector, B is a non random p×d matrix with BTB = Id,

ε ∈Rp is assumed to be Gaussian distributed, ε is assumed independent of Y , with scale

matrix V, c :R→Rd is a non random function. It directly follows from (1.23) that

(1.24) E(X|Y = y)=µ+VBc(y),

and thus, after translation by µ, the conditional expectation of X given Y is a random

vector located in the space spanned by the columns of VB. When ε is assumed to be

Gaussian distributed, Proposition 6 in [19] states that B is indeed a basis of the central

subspace. In [10, 19], it appears then that, under appropriate conditions, the maximum

likelihood estimator of B corresponds to (up to a full rank linear transformation) the SIR

estimator of the d.r.s.

The idea is to consider a different error ε modeled by a multivariate Student distribution.

Among the elliptically contoured distributions, the multivariate Student is a natural

generalization of the multivariate Gaussian but its heavy tails can better accommodate

outliers. Considering Student distributed errors it is shown that Proposition 6 in [19]

can be generalized and the inverse regression remains tractable via an Expectation-

Maximization (EM) algorithm:

Proposition 1.1. Let Xy be a random variable distributed as X|Y = y, let us assume that

Xy =µ+VBc(y)+ε,(1.25)
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with ε following a generalized Student distribution with certain parameters, c(y) ∈Rd is
function of y and VB is a p×d matrix of rank d. Under model (1.25), the distribution of
Y |X= x is the same as the distribution of Y |BTX=BTx for all values x.

1.4.2 Expectation-Maximization algorithm

In order to estimate the model parameters the following generalization to the multi-

variate Student distribution is considered. Thanks to a useful representation of the

t-distribution as a so-called infinite mixture of scaled Gaussians or Gaussian scale mix-
ture [1] the EM algorithm remains tractable. A Gaussian scale mixture distribution has

a probability density function of the form

(1.26) P(x;µ,Σ,ψ)=
∫ ∞

0
Np(x;µ,Σ/u) fU (u;ψ) du,

where Np( . ;µ,Σ/u) denotes the density function of the p-dimensional Gaussian dis-

tribution with mean µ and covariance Σ/u and fU is the probability distribution of a

univariate positive variable U referred as the weight variable. When fU is a Gamma

distribution G (ν/2,ν/2)1 where ν denotes the degrees of freedom, expression (1.26) leads

to the standard p-dimensional t-distribution denoted by tp(x;µ,Σ,ν) with parameters

µ (location vector), Σ (p× p positive definite scale matrix) and ν (positive degrees of

freedom parameter). Its density is given by

tp(x;µ,Σ,ν)=
∫ ∞

0
Np(x;µ,Σ/u) G (u;ν/2,ν/2) du

= Γ((ν+ p)/2)
|Σ|1/2 Γ(ν/2) (πν)p/2 [1+δ(x,µ,Σ)/ν]−(ν+p)/2,(1.27)

where δ(x,µ,Σ) = (x−µ)TΣ−1(x−µ) is the Mahalanobis distance between x and µ. If

fU (u;ψ) is set equal to a Gamma distribution G (α,γ) without imposing α = γ, (1.26)

results in a multivariate Pearson type VII distribution (see e.g. [40] vol.2 chap. 28) also

referred to as the Arellano-Valle and Bolfarine’s Generalized t distribution in [42]. This

generalized version is the multivariate version of the t-distribution considered in this

work, its density is given by:

Sp(x;µ,Σ,α,γ)=
∫ ∞

0
Np(x;µ,Σ/u) G (u;α,γ) du(1.28)

= Γ(α+ p/2)
|Σ|1/2 Γ(α) (2πγ)p/2 [1+δ(x,µ,Σ)/(2γ)]−(α+p/2) .(1.29)

1The Gamma distribution has probability density function G (u;α,γ)= uα−1Γ(α)−1 exp(−γu)γα where
Γ denotes the Gamma function.
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For a random variable X following distribution (1.29), an equivalent representation

useful for simulation is X = µ+U−1/2X̃ where U follows a G (α,γ) distribution and X̃
follows a N (0,Σ) distribution.

Remark 1.1 (Identifiability). The expression (1.29) depends on γ and Σ only through
the product γΣ which means that to make the parameterization unique, an additional
constraint is required. One possibility is to impose that Σ is of determinant 1. It is easy to
see that this is equivalent to have an unconstrained Σ with γ= 1.

Unconstrained parameters are easier to deal with in inference algorithms. Therefore,

it is assumed without loss of generality that γ= 1. The Arellano-Valle and Bolfarine’s

Generalized t distribution has the property that marginal and conditional distributions

remain in the Generalized Student family. This property is used to estimate the para-

meters {µ,V,B,α, c}, the function c is expanded as a linear combination of known basis

function and the coefficients matrix C estimated. The E-step of the algorithm provides

an estimation of quantities related to the weight U, then in the M-step {µ,V,B,α,C}

are calculated. The initialization of the weights is such that the first iteration of the

algorithm corresponds to the standard SIR estimators.

1.4.3 Simulation results

During the simulations different models have been analyzed and Student SIR has been

compared to standard SIR and four other approaches. Contour Projection (CP-SIR)

[56, 67] applies the SIR procedure on a rescaled version of the predictors. Weighted

Canonical Correlation (WCAN) [74] uses a basis of B-splines first estimating the di-

mension d of the central subspace and then the directions from the nonzero robustified

version of the correlation matrices between the predictors and the B-splines basis func-

tions. The idea of Weighted Inverse Regression (WIRE) [30] is to use a different weight

function capable of dealing with both outliers and inliers. SIR is a particular case of

WIRE with constant weighting function. Slice Inverse Median Estimation (SIME) re-

places the intra slice mean estimator with the median which is well known to be more

robust. All values referring to CP-SIR, WCAN, WIRE, SIME in the tables are directly

extracted from [30].

Three different regression models (I,III,III) and three different distributions of X
(i,ii,iii) are considered. Models I,III are homoscedastic while model II is heteroscedastic.

Case (ii) is built to test the sensitivity to outliers while the distribution of X is elliptical.

In (iii) a non-elliptical distribution of X is considered. The dimension is set to p = 10,

25



CHAPTER 1. INTRODUCTION

the dimension of the e.d.r. space is d = 1 for I,II and d = 2 for III. The nine different

configurations of X and Y are simulated with a number of samples varying depending

on the experiment. In all tables Student SIR is compared Values relative to SIR have

been recomputed using [23]. To compare the methods the following proximity criteria

has been adopted:

r(B,B̂)= trace(BBTB̂B̂T)
d

.(1.30)

The above quantity r ranges from 0 to 1 and evaluates the distance between the sub-

spaces spanned by the columns of B and B̂. If d = 1, r is the squared cosine (1.22) between

the two spanning vectors. Values close to one show a good performance of the algorithms.

In table 1.1 (a) Student SIR shows its capability to deal with different configurations.

The proximity criterion (1.30) in Table 1.1 (a) is very close to one, for the first two re-

gression models independently of the distributions of the predictors. In the Gaussian

case, Student SIR and SIR are performing equally well showing that our approach has

no undesirable effects when dealing with simple cases. For configuration III− (iii), a

slightly different value has been found for SIR compared to [30]. In this configuration

however the trend is clear: standard SIR, Student SIR, WIRE and SIME show similar

performance. In contrast, configurations I− (ii),II− (ii),III− (ii) illustrate that Student

SIR can significantly outperform SIR. This is not surprising since the standard multi-

variate Cauchy has heavy tails and SIR is sensitive to outliers Table 1.1 (b) illustrates

on model I the effect of the sample size n: Student SIR exhibits the best performance

among all methods. It is interesting to observe that, in case (ii), the smaller value of r
for standard SIR does not depend on the sample size n. In contrast, adding observations

results in a better estimation for Student SIR.

A test on real data in high dimension has been performed to compare SIR and Student

SIR. The Galaxy dataset corresponds to n = 362,887 different galaxies. This dataset has

been already used in [15] with a preprocessing based on expert supervision to remove

outliers. In this study all the original observations are considered, removing only points

with missing values, which requires no expertise. The response variable Y is the stellar

formation rate. The predictor X is made of spectral characteristics of the galaxies and

is of dimension p = 46. The results show that when small sample sizes are considered

Student SIR is more reliable being robust to eventual outliers. The BIC estimated the

dimension of the e.d.r. space to k = 3, unfortunately in our previous study we analyzed

only the first component of Collaborative SIR, an interesting parallel can be done with
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our last contribution Knockoff SIR (paragraph 1.5.2) that is supporting the decision of

Student SIR pointing out that only three directions are informative.

Model X Method
SIR CP-SIR WCAN WIRE SIME st-SIR

(i) .99(.01) .99(.01) .98(.01) .98(.01) .99(.01) .99(.01)
I (ii) .63(.18) .92(.04) .88(.06) .87(.07) .91(.04) .98(.01)

(iii) .99(.01) .86(.12) .72(.27) .98(.01) .97(.01) .99(.01)
(i) .99(.01) .98(.01) .98(.01) .98(.01) 98(.01) .99(.01)

II (ii) .61(.18) .92(.04) .89(.06) .87(.08) .91(.05) .98(.01)
(iii) .99(.01) .67(.25) .69(.28) .98(.01) .97(.02) .99(.01)
(i) .88(.06) .87(.06) .89(.05) .86(.06) .87(.06) .87(.06)

III (ii) .40(.13) .78(.10) .78(.11) .76(.11) .78(.10) .85(.06)
(iii) .84(.07) .63(.12) .67(.13) .85(.07) .85(.07) .84(.07)

(a)

Model X n Method
SIR CP-SIR WCAN WIRE SIME st-SIR

I

(i)

50 .95(.03) .91(.09) .86(.11) .88(.11) .90(.08) .95(.03)
100 .98(.01) .96(.03) .96(.03) .95(.03) .96(.02) .98(.01)
200 .99(.01) .99(.01) .98(.01) .98 (.01) .99(.01) .99(.01)
400 1(.00) .99(.00) .99(.00) .99 (.01) .99(.00) 1(.00)

(ii)

50 .60(.22) .66(.18) .57(.23) .49(.24) .59(.21) .90(.07)
100 .62(.21) .85 (.08) .78(.11) .73(.15) .81(.10) .96(.02)
200 .62(.20) .92(.04) .88(.06) .87(.07) .91(.04) .98(.01)
400 .62(.18) .96(.02) .94(.03) .93(.03) .96(.02) .99(.00)

(iii)

50 .95(.02) .45(.29) .18(.19) .73(.25) .86(.09) .95(.02)
100 .98(.01) .66(.25) .35(.29) .94(.04) .94(.04) .98(.01)
200 .99(.01) .86(.12) .72(.27) .98(.01) .97(.01) .99(.00)
400 .99(.00) .96(.04) .96(.04) .93(.03) .99(.01) .99(.00)

(b)

Table 1.1: (a) Average of the proximity measure r (eq. (1.30)) for sample size n = 200; and (b) effect of
sample size n on the average proximity measure r, both over 200 repetitions with standard deviation in
brackets. Six methods are compared. SIR: sliced inverse regression; CP-SIR: contour projection for SIR;
WCAN: weighted canonical correlation; WIRE: weighted sliced inverse regression estimation; SIME: sliced
inverse multivariate median estimation and st-SIR: Student SIR. In all cases, the number of slices is h = 5
and the predictor dimension p = 10. Best r values are in bold.
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1.5 Knockoff SIR: an overview

Knockoff SIR is an extension of SIR to perform variable selection and give sparse

solution that has its foundations in a recently published paper [5] that focuses on the

false discovery rate in the regression framework.

1.5.1 The idea

The underlying idea of [5] is to construct copies of the original variables that have some

properties. From the comparison between the true and the false variables informations

can be used to decide weather the variable is active or not in the specific regression

framework. Let us assume to have a X ∈ Rp×n dataset and to construct such copies

X̃ ∈ Rp×n the following theorem establishes the behavior of SIR on the concatenation

[X,X̃] ∈R2p×n:

Theorem 1.7. Given the predictors X= {x1, ..., xn} ∈Rp×n and a response variable
Y = {y1, ..., yn} ∈ Rn×1 let us denote by B̂ the SIR estimator of B ∈ Rpxk in the following
regression model:

(1.31) Y = f (XB,ε)

where f is an unknown link function and ε is a random error independent of X. The
k-columns of B span the e.d.r. space [47]. When n > 2p let us consider a knockoff filter
X̃ ∈Rp×n of the form:

(1.32) X̃= ATX+ (ŨC)T ,

defined in section 4.2, and the concatenation [X,X̃] ∈R2p×n. The SIR estimator B̃ ∈R2pxk

for the concatenation [X,X̃] has each column B̃ j of the form:

(1.33) B̃ j = [B̂ j,0]

where 0 is a p-dimensional vector of all zeros, and B̂ j is SIR estimation computed on X

This theorem establishes that the true variables are preferred by SIR when the

concatenation is analyzed. When a variable has a non zero weight in a linear combination

found by SIR its value can be compared to the one of the corresponding copy variable. If

they differ it means that the true variable is indeed active, if the result shows that the

weight is similar it means that the algorithm cannot distinguish the true from the copy

suggesting that the weight found is due to numerical instabilities of the solution.
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1.5.2 Simulation results

Extensive analysis have been made both on simulated and real data. On simulated data

two regression models are considered with different dimension of the e.d.r. space. Results

from the first test case refers to the following regression model:

(1.34) Y = (x1 + x2 + x3 −10)2 +ε,

where X= (x1, ..., x10) ∈R10 is a vector of independent standard normal distributions and

ε is a standard normal error independent of X. To asses the quality of the estimations

two indexes are considered: True Inclusion Rate (TIR), the ratio of the number of

correctly identified active predictors to the number of truly active predictors; and the

False Inclusion Rate (FIR), the ratio of the number falsely identified active predictors to

the total number of inactive predictors. In our test there are 3 active predictors and 7

inactive. A study on the sensitivity to the number of sample n is shown in Table 1.5.2.

n TIR FIR #-slices
25 .81(.25) .48(.20) 2
50 1(.0) .16(.16) 5
75 1(.0) .09(.12) 7

100 1(.0) .08(.10) 10
150 1(.0) .08(.11) 15
200 1(.0) .06(.11) 20
250 1(.0) .05(.08) 25
300 1(.0) .04(.08) 30
400 1(.0) .04(.06) 30

TABLE 1.2. Study on the sensitivity to the number of sample n, averages (and
standard deviation in brackets) are obtained over 100 iterations. True
Inclusion Rate (TIR) and False Inclusion Rate (FIR) are shown. The number
of slices has been selected such that at least 10 samples are contained in
each slice.

The quality of the estimation is good and the standard deviation decreases with the

increasing number of samples. An application to the Galaxy dataset supports results

that have been already obtained by Collaborative SIR and Student SIR. The predictor

space is made of spectral characteristics of the galaxies and is of dimension p = 46

with n = 362,887 points. In the first e.d.r. directions the only active variables found are

{2,3,23,40,45} this is exactly matching the results of Collaborative SIR, the variable

6 selected by Collaborative SIR is estimated inactive in all e.d.r directions, doubts can
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be cast to the selection of variable 6 for the analysis. According to the result of BIC

in Student SIR we tested the e.d.r. directions relative to the five highest eigenvalues

obtaining that for the first three e.d.r. directions active variables have been found.

Grouping the active variables through the first three directions gives only seven variables:

{2,3,23,40,42,43,45}. This means that by default the analysis could be directly performed

on the seven predictors avoiding the other 39. The fourth and fifth and further directions

with smaller eigenvalues resulted with no active variables supporting the decision of

Student SIR.
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COLLABORATIVE SIR

How can we live without our lives?

How will we know it’s us without our past?

J. Steinbeck.

Collaborative SIR has been accepted for publication in Communications in Statistics-
Theory and Methods.

2.1 Overall Idea

To give an intuitive idea of what Collaborative SIR is meant for, the example of the

bombers in the Introduction will be considered. Suppose that X= (x1, x2, ..., x5) is the area

hit by bullets for different aircrafts in five corresponding continuos variables (as in Wald’s

paper each aircraft is divided in five areas). Our goal is to predict Y ∈ [0,1], the damage

of the bomber, 0 is undamaged and 1 is downed. After a campaign of different days and

actions the data is gathered in X . It is reasonable to assume that different missions

required different classes of aircrafts, each class of aircraft with his own characteristics

and therefore vulnerability (list of US bombers in WW II in figure 3.1). If the information

about the class of each fleet is available one could apply SIR independently in each group,

in case this information is not observable, a clustering can be used to obtain a reasonable

partition. Collaborative SIR uses the information from each cluster and, taking into

account the sample size in each group, merges the groups with similar direction β (in the

example this corresponds to similar estimated vulnerability characteristics). Solutions
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in different clusters collaborate to form the final outcome, the reliability of each solution

is function of the sample size.

FIGURE 2.1. U.S. aircrafts during WW2. A story within the history is the one
of unofficial plane spotters. Unfortunately, even children were asked to
support war and served as unofficial auxiliary of the Army Air Forces
Ground Observer Corps (aka GOC). Coca-Cola offered a popular manual
called Know Your Planes for only ten cents. Even card games served at this
scope.
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Abstract

Sliced Inverse Regression (SIR) is an effective method for dimensionality
reduction in high-dimensional regression problems. However the method has
requirements on the distribution of the predictors that are hard to check
because they depend on unobserved variables. It has been shown that if
the distribution of the predictors is elliptical then these requirements are
satisfied. In case of mixture models the ellipticity is violated and in addition
there is no assurance of a single underlying regression model among the
different components. Our approach clusterizes the predictors space to force
the condition to hold on each cluster and includes a merging technique to
look for different underlying models in the data. SIR, not surprisingly, is
not capable of dealing with a mixture of Gaussians with different underlying
models whereas our approach is able to correctly investigate the mixture. A
study on simulated data as well as two real applications is provided.

Keywords: Mixture models, inverse regression, sufficient dimension
reduction

1. Introduction

In multidimensional data analysis, one has to deal with a dataset made of
n points in dimension p. When p is large, classical statistical analysis meth-
ods and models fail. Supervised and unsupervised dimensionality reduction
(d.r.) techniques are widely used to preprocess high dimensional data retain-
ing the information useful to solve the original problem. Recently, more and
more investigations aim at developing non-linear unsupervised techniques to
better adapt to the complexity of our, often non-linear, World. Van der



Maaten et al. [24] provide an interesting review concluding that even if the
variety of non-linear methods is huge, Principal component Analysis (PCA)
[19], despite its intrinsic limitations, is still one of the best choices. PCA is
not the best in specific cases (i.e. when additional information on the struc-
ture of the data are available) but, as expected, is rather general and can be
easily controlled and applied. What about the case of supervised d.r.? In
unsupervised d.r. one is interested in preserving all the information getting
rid of the redundancies in the data. In other words, to catch the intrinsic
dimensionality of the data, which is the minimum numbers of parameters
needed to describe it [11]. In supervised d.r. a response variable Y is given
and the analysis aims at providing a prediction (classification, when Y is
categorical, or regression, when Y is continuous). Encoded in Y there is
additional information of what we want to select in the data. Estimating
the intrinsic dimensionality is no more our goal since we are oriented by the
information present in Y .
Regression framework is characterized by the assumption of a link function
between X and Y i.e. Y = f(X, ε), where ε is a random noise. In this envi-
ronment it can be assumed that only a portion of X is needed to correctly
explain Y . This is a reasonable assumption since data nowadays are rarely
tailored on the application and filled by too many details. If Y depends on
the multivariate predictor through an unknown number of linear projections
Y = f(XTβ1, ..., X

Tβk, ε) the effective dimension reduction (e.d.r) space is
what we are looking for [15]. It is defined as the smallest linear space con-
taining the information needed to correctly regress the function f . Under the
previous assumption the e.d.r space is spanned by β1, ..., βk. Sliced Inverse
Regression (SIR) [15] has proven to achieve good results retrieving a basis
of the e.d.r. space. Recently, many papers focused on the complex structure
of real data showing that often the data is organized in subspaces (see [14]
or [23] for a detailed discussion and references). Our hypothesis is that the
e.d.r. space is not unique all over the data and varies through the compo-
nents. We introduce a novel technique to identify the number of e.d.r. spaces
based on a weighted distance. With this paper we try to give an answer to
the question: Can SIR be as popular as multiple linear regression? [5].
In section 2 we rapidly describe SIR and provide a discussion on the lim-
itations of the method. The following section 3 is the core of our paper,
where our contribution, Collaborative SIR is introduced. Motivation and
main problem are described. Asymptotic results are established under mild
conditions. The simulation study, section 4, is where the performances of
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Collaborative SIR are shown and analyzed under specific test cases. The
stability of the results is detailed and commented. In section 5 two real data
applications are reported showing the interest of this technique. A discussion
and conclusion are finally drawn encouraging the community to improve our
idea.

2. Sliced Inverse Regression (SIR)

2.1. Method

Back in 1991, Li [15] called SIR a data-analytic tool : Even if the per-
formance of computers and the capability to explore huge dataset increased
tremendously, SIR remains a useful tool for d.r. in the framework of regres-
sion. The visualization of high dimensional datasets are nowadays of extreme
importance because human beings are still, unfortunately, limited by a per-
ception which only allows us to display 3 dimensions at a time while the
capability to gather data is amazingly increasing. When p is large a possible
approach is to suppose that interesting features of high-dimensional data are
retrievable from low-dimensional projections, in other words the model Li
proposed is:

Y = f(XTβ1, ..., X
Tβk, ε) (1)

where Y ∈ R is the response variable, X is a random variable, X ∈ Rp

(Σ = Cov(X), µ = E(X)). ε is a random error independent of X. If k � p
the functions depends on k linear combinations of the original predictors and
the d.r. is achieved. The goal of SIR is to retrieve a basis of the e.d.r space.
Under the Linearity Design Condition:

(LDC) E(XT b|XTβ1, ..., X
Tβk) is linear in XTβ1, ..., X

Tβk for any b ∈ Rp

Duan and Li [10] showed that the centered inverse regression curve is con-
tained in the k-dimensional linear subspace of Rp spanned by Σβ1, ...,Σβk. If
we consider a monotone transformation T (·) of Y , the matrix Σ−1Γ is degen-
erated in any direction orthogonal to β1, ..., βk, where Γ = Cov(E(X|T (Y ))).
Therefore the k eigenvectors corresponding to the k non zero eigenvalues
form a basis of the e.d.r. space. To estimate Γ, Li [15] used a slicing proce-
dure as candidate for T (·). Dividing the range of Y in non-overlapping slices,
s1, ..., sH(H > 1). Γ can then be written as:
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Γ =
H∑

h=1

ph(mh − µ)(mh − µ)T ,

where ph = P (Y ∈ sh) and mh = E(X|Y ∈ sh). The estimator Γ̂ can
then be defined substituting ph,mh with the corresponding sample versions.
The range of Y can be divided setting the width or the proportion of samples
ph in each slice, through the paper we adopted the second slicing strategy
[5]. The k eigenvectors corresponding to the largest eigenvalues of Σ̂−1Γ̂ are
the estimation of a basis of the e.d.r. space.

2.2. Limitations

SIR’s theory is well established and comes fully equipped by asymptotic
results [13, 20]. Two main limitations affect the building:

• The inversion of the estimated covariance matrix Σ̂;

• The impossibility to check if the (LDC) holds.

When the number of samples is n ≤ p the sample covariance matrix is
singular, and when the variables are highly correlated (e.g. in hyperspectral
images) the covariance matrix is ill conditioned. To compute the e.d.r direc-
tions the inversion of Σ̂ must be achieved, recently many papers faced this
problem and provided solutions ([6, 17, 21, 22, 25]). An homogeneous frame-
work to perform regularized SIR has been proposed in [2] where, depending
on the choice of the prior covariance matrix, the above mentioned techniques
can be obtained and extended.

The (LDC), less studied in literature, is the central assumption of the theory
and it depends on the unobserved e.d.r. directions, therefore it cannot be
directly checked [26]. It can be proved that if X is elliptical distributed the
condition holds. This condition is much stronger than (LDC) but easier to
verify in practice since it does not depend on the β1,...,βk. Good hope comes
from a result of Hall and Li [12] that shows that, when the dimension p tends
to infinity, the measure of the set of directions for which the (LDC) does not
hold tends to zero. The condition becomes weaker and weaker as soon as
the dimension increases. The intuition comes from [9] where the authors
show that high dimensional dataset are nearly normal in most of the low
dimensional projections. If X follows an elliptical distribution the (LDC)
condition holds, it is desirable to work in the direction that allows us to use
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this property. Unfortunately when X follows a mixture of elliptical distribu-
tions this property is not globally verified. Kuentz and Saracco [14] using an
idea from [16] proposed to clusterize the space to look locally for ellipticity
rather than globally. Chavent et al. [4] introduced categorical predictors to
distinguish different populations. This is our very start, assuming X from
a mixture model we focus on decomposing the mixture and we extend the
basic model to improve SIR’s capability to explore complex datasets.

3. Collaborative SIR

First, we give a motivation and introduce in subsection 3.1 the population
version of Collaborative SIR. Second, a sample version in different steps
is detailed and an algorithm is outlined (subsections 3.2-3.5). For sake of
simplicity we will focus on the case when k = 1 i.e. the effective dimension
reduction space is of dimension one.

3.1. Population version

In SIR the underlying model through the whole predictors space is Y =
f(βTX, ε). When dealing with complex data one could allow the underlying
model to change depending on the predictor space. Mixture models provide
a good framework to deal with such hypothesis considering the data a real-
ization from a weighted sum of distributions with different parameters. As
mentioned before, in such case there is no straightforward way to check if the
(LDC) holds. Let X be a random vector, X ∈ Rp, from a mixture model
and be Z an unobserved latent random variable Z ∈ {1, ..., c}, where c is the
number of components. Given Z = i we have the following model:

Y = fF (i)(β
T
F (i)X) + εi, (2)

where Y is the random variable to predict, Y ∈ R, F is an unknown
deterministic function F : {1, ..., c} → {1, ..., D}, D ∈ N. The functions
fj : R → R, j = 1, ..., D are unknown link functions between βjX and Y .
Finally εi are random errors ∀i εi ∈ R, i.e. each component is allowed to
have a different related error.

Under the model (2), D is the number of different e.d.r spaces. The goal
is to find a basis of the D one-dimensional spaces spanned by β1, ..., βD.
The number D (D ≤ c) of e.d.r. spaces is unknown and the link function
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may change depending on the component. Function F selects the underlying
model for the specific component. It is assumed that the (LDC) holds in
each component:

(LDC) ∀i = 1, ..., c E(XT b|XTβF (i), Z = i) is linear in XTβF (i) for any b.

Given Z = i, we define the mean µi = E(X|Z = i), the covariance matrix
Σi = Cov(X|Z = i) and Γi = Cov(E(X|Y, Z = i)). Hence the eigenvector
bi corresponding to the highest eigenvalue of Σ−1i Γi, is a basis of the e.d.r.
space: Span{bi} = Span{βF (i)} from SIR theory [15].
If F : {1, ..., c} → {1, ..., D} is known, the inverse image of the elements
j ∈ {1, ..., D} can be defined:

F−1(j) = {i ∈ {1, ..., c} s.t. F (i) = j},

since F is not required to be injective, an e.d.r direction βi may be asso-
ciated with several components. Suppose that {bi, i ∈ F−1(j)} are observed,
given the proximity criteria

m(a, b) = cos2(a, b) = (aT b)2, (3)

the “most collinear vector” to the set of directions {bi, i ∈ F−1(j)} is the
solution of the following problem:

max
v∈Rp,‖v‖=1

∑

i∈F−1(j)

m(v, bi) = max
v∈Rp,‖v‖=1

∑

i∈F−1(j)

(vT bi)
2 =

= max
v∈Rp,‖v‖=1

vT
( ∑

i∈F−1(j)

(bib
T
i )
)
v = max

v∈Rp,‖v‖=1
vT (BT

j Bj)v,

where Bj = [bi,i∈F−1(j)]. Using Lagrange multipliers is easy to show that
vector v must be an eigenvector of the matrix (BT

j Bj) and, since we want
to maximize, it will be the one associated with the largest eigenvalue. The
following lemma motivates this argument.

Lemma 1. Assuming the (LCD) and model (2) the eigenvector β̃j associated
to the only non-zero eigenvalue of the matrix [BjB

T
j ] is collinear with βj.

Proof. For each i ∈ F−1(j), bi is collinear with βj, bi = αiβF (i), αi ∈ R \ {0}.
Since Bj = [αiβi, i ∈ F−1(j)] we have:
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[BjB
T
j ] =

∑

i∈F−1(j)

α2
iβjβ

T
j = ‖α‖2βjβTj . This concludes the proof.

This lemma shows that β̃j is an e.d.r. direction for each j and the prece-
dent argument gives a strategy to estimate the directions βj based on the
proximity criteria (3).

Remark. If D = 1 then F−1(1) = {1, ..., c}, the e.d.r. direction and the link
functions do not vary through all the mixture. This specific case is addressed
in [14].

3.2. Sample version: Z is observed, F and D known

Let {Y1, ..., Yn} be a sample from Y , {X1, ..., Xn} a sample from X,
{Z1, ..., Zn} a sample from Z. We suppose Zi observed at this stage. Let
Ci = {t such that Zt = i} and ni = card(Ci).
We can now estimate for each Ci the mean and covariance matrix:

X̄i =
1

ni

∑

t∈Ci
Xt, Σ̂i =

1

ni

∑

t∈Ci
(Xt − X̄i)(Xt − X̄i)

T , for each i = 1, ..., c.

To obtain an estimator for Γi, we introduce as in classical SIR a slicing.
For each Ci we can define the slicing Ti of Yi into Hi ∈ N slices (Hi > 1 ∀i =
1, ..., c). Let s1i , ..., s

Hi
i be the slicing associated to Ci, Γi = Cov(E(X|Y, Z =

i)) can be written as:

Γi =

Hi∑

h=1

phi (m
h
i − µi)(mh

i − µi)T ,

where phi = P (Y ∈ shi |Z = i), mh
i = E(X|Z = i, Y ∈ shi ). Let us recall

that µi = E(X|Z = i) and Σi = Cov(X|Z = i), as defined in section 3.1.

Let nh,i =
∑

t∈Ci
I[Yt ∈ sht ], where I is the indicator function. Replacing phi ,m

h
i

with the corresponding sample versions, it is possible to estimate Γi:
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Γ̂i =

Hj∑

h=1

p̂hi (m̂
h
i − X̄i)(m̂

h
i − X̄i)

T ,

where p̂hi =
nh,i
ni

and m̂h
i =

1

nh,i

∑

t∈Ci
XtI[Yt ∈ sht ]. The estimated e.d.r. direc-

tions are then b̂1, ..., b̂c where b̂i is the major eigenvector of the matrix Σ̂−1i Γ̂i.
This allows us to estimate Bj and βj:

• (i) B̂j = [b̂i,i∈F−1(j)], i ∈ {1, ..., c}, B̂j is a p× |F−1(j)| matrix;

• (ii) β̂j ∀j = 1, ..., D is the major eigenvalue of B̂T
j B̂j.

Asymptotic results can be establish similarly to Chavent et al. [3]. We
fix j ∈ {1, ..., D} and consider {Xt, t ∈

⋃
i∈F−1(j) Ci} and a sample size

nj =
∑

i∈F−1(j) ni which tends to ∞. The following three assumption are
considered:

• (A1) {Xt, t ∈
⋃
i∈F−1(j) Ci} is a sample of independent observations

from the single index model (2).

• (A2) For each i, the support of {Yt, t ∈ Ci} is partitioned into a fixed
number Ht of slices such that phi > 0, h = 1, . . . , Ht.

• (A3) For each i and h = 1, . . . , Ht, nh,i → ∞ (and therefore ni → ∞)
as n→∞.

Theorem 1. Under model (2), linearity condition (LDC) and assumptions
(A1)-(A3), we have:

(i) β̂j = βj +Op(n
j−1/2), where nj = min

i∈F−1(j)
ni;

(ii) If, in addition ni = θijn
j, θij ∈ (0, 1) for each i ∈ F−1(j), then√

nj(β̂j − βj) converges to a centered Gaussian distribution.

Proof. (i) For each i ∈ F−1(j) and under the assumptions (LC), (A1)-(A3),

from the SIR theory [15] each estimated EDR direction b̂i converges to βj
at root nj rate: that is, for i ∈ F−1(j), b̂i = βj + Op(n

j−1/2
). We then

have B̂T
j B̂j = BT

j Bj + Op(n
j−1/2). Therefore the principal eigenvector of

B̂T
j B̂j converges to that corresponding to BT

j Bj at the same rate: β̂j =

8



βj + Op(n
j−1/2

). The estimated e.d.r. direction β̂j converges to an e.d.r.
direction at root nj rate.

(ii) The proof is similar to the one of Chavent et al. [3], Theorem 2.

In the following sections a merging algorithm is introduced to infer the num-
ber D based on the collinearity of the vectors bi and a procedure is given to
estimate the function F .

3.3. Sample version: D unknown, Z is observed and F known

We assumed, so far, D known. To estimate D a hierarchical merging
procedure is introduced based on the proximity measure (3) between the
estimated e.d.r. directions b̂1, ..., b̂c. A similar procedure has been used in
Coudret et al. [8] to cluster the components of the multivariate response vari-
able Y related to the same e.d.r. spaces.

Definition. Let V = {v1, v2, ..., v|V |} be a set of vectors in dimension p
with associated weights wi. We define the quantity λ(V ):

λ(V ) = max
v∈Rp

1

wV

|V |∑

i=1

wim(vi, v) s.t. ‖v‖ = 1

= largest eigenvalue of
1

wV

|V |∑

i=1

wiviv
T
i

where wV =

|A|∑

i=1

wi is the normalization. Vector v maximizing λ(V ) is the

most collinear vector to our set of vectors given the proximity criteria (3)
and the weights wi. To build the hierarchy we consider the following itera-
tive algorithm initialized with the set A = {{b̂1}, ..., {b̂c}}:

while card(A) 6= 1

Let a, b ∈ A such that λ(a ∪ b) > λ(c ∪ d)∀c, d ∈ A
A = (A \ {a, b})⋃ a ∪ b
end

the weights are set equal to the number of samples in each components,
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i.e. wi = ni, i = 1, ..., c. At each step the cardinality of the set A decreases
merging the most collinear sets of directions (Fig. 1). The bottom up greedy
algorithm proceeds as follows:

• First the two most similar elements of A are merged considering all the
|A| × (|A| − 1) = c × (c − 1) pairs (b̂1, b̂2 are selected to be merged in
Fig. 1).

• In the following steps the two most similar sets of vectors are merged,
considering all |A| × (|A| − 1) pairs in A (e.g. in the second step
A = {{b̂1, b̂2}, {b̂3}, ..., {b12}} in Fig. 1)

Therefore it is possible to infer the number D of underlying e.d.r. spaces
analyzing the values of λ in the hierarchy (Fig. 2) looking for a discontinuity
that will occur when two sets with different underlying βj (i.e. non collinear)
are merged. We automatically estimate D with the following procedure:

(i) Draw a line from the first value of the graph (1, λ1) to the last (c, λc).

(ii) Compute the distance between points in the graph and the line.

(iii) Select the merging point maximizing that distance. D̂ = c−number of
merge selected.

Once achieved an estimation of D, D̂, function F can be estimated. Even if
we used an automatic procedure, a visual selection of D̂ depending on the
task and previous knowledge is strongly recommended.

3.4. Sample version: F unknown

For each node of the tree at level D̂, the “most collinear direction”, us-
ing (3), is computed. Solving the related D̂ diagonalization problems gives
β̂1, ..., β̂D̂. In the following paragraph a procedure for the estimation F̂ of
the function F is detailed.

Once the candidates β̂1, ..., β̂D̂ are estimated, the whole data (X,Y ) is
considered to estimate F . Starting from i ∈ {1, ..., ĉ} the goal is to find
j ∈ {1, ..., D̂} such that F (i) = j, under certain conditions. The D̂ covariance
matrices of the distributions (XT

t β̂j, Yt), t ∈ Ci, j ∈ {1, ..., D̂} are considered.
The idea is to select the direction that best explains Yt, t ∈ Ci among the
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estimated directions β̂1, ..., β̂D̂.
Let us assume fj functions “locally” linear (A4): fj can be approximated
with piecewise linear functions so that Yt = fj(X

T
t βj) = kiX

T
t βj, ∀t ∈ Ci,

i ∈ F−1(j).
Lemma 2. Let j ∈ {1, ..., D}. Under assumption (A4) the e.d.r. direction
βj is the vector minimizing the second eigenvalue of the covariance matrix of
the pairs (XTβs, Y )s=1,...,D.

Proof. We have that:

cov(XTβs, Y ) = cov(XTβs, kiX
Tβj) =

(
βTs Σβs kiβ

T
s Σβj

kiβsTΣβj k2i β
T
j Σβj

)
=

=

(
〈βs, βs〉 ki〈βs, βj〉
ki〈βs, βj〉 k2i 〈βj, βj〉

)
=

(
‖βs‖2 ki〈βs, βj〉

ki〈βs, βj〉 k2i ‖βj‖2
)

where the scalar product and the norm are induced by Σ. The characteristic
polynomial is p(λ) = λ2 − λ(‖βs‖2 + k2j‖βj‖2) + k2j (‖βs‖2‖βj‖2 − 〈βs, βj〉2).
We have ∆ = (‖βs‖2 − k2j‖βj‖2) + 4k2j 〈βs, βj〉2 > 0. From Cauchy-Schwarz
inequality λ1, λ2 ≥ 0 and λ2 = 0 if and only if the equality holds. Since βs,
s = 1, ..., D are linearly independent it follows that λ2 = 0 if and only if
βs = βj ⇔ s = j.

In practice, fixed i = {1, ..., ĉ}, vectors β̂j, j = 1, ..., D̂ are the candidates
for (Xt, Yt), t ∈ Ci. Lemma 2 is stating that under the assumption (A4) the
vector β̂j minimizing the second eigenvalue of (XT

t β̂s, Yt), s=1,...,D, t ∈ Ci
is such that j = F (i). We require the functions to be locally linear, if
the functions are approximately linear the estimation will work. In case of
dramatic non linearities the method may lead to unreasonable results. A
possibility is to resize the interval where we want to regress the functions
and zoom until we find a reasonable local behavior of the functions.
It must be noted that in case D is overestimated D̂ > D (e.g. due to
instabilities in the estimation of the direction in some components) in the
simulation we observed that the estimation of F mitigates this error often
avoiding to select the aberrant directions βj, j > D.

3.5. Estimation of Z via clustering

To estimate the latent variable Z the explanatory space X is partitioned
using a k-means algorithm. It is worth noticing that we decided to use k-
means for simplicity and also to compare our results with [14]. Twenty initial
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random centroids are chosen as initialization of k-means, the one minimizing
the sum of squares is retained.

Figure 1: Hierarchy built following the proximity criteria (3).
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Figure 2: Cost function λ(A), the number D of unknown e.d.r directions decreases at
each step by one. D̂ = c−number of merge selected. In the example above c = 12.
The algorithm selects merge step 9 which corresponds to the correct estimation of the
parameter: D̂ = 3.

4. Simulation study

We performed a study on simulated data, this was the opportunity to
test in a controlled setting and evidence the weaknesses and strengths of the
method. Two aspects are of interest:

(A) Study the sensitivity to clustering (estimation of Z).

(B) Analyze the quality of the estimation compared to SIR performed in-
dependently in each cluster.

The first experiment is performed on the same dataset to study the effect of
different initializations of k-means and how the quality of clustering affects
the result. In the second experiment different simulated datasets are analyzed
to test the method under a variety of different conditions.
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4.1. Test case A

To study the sensitivity to clustering n = 2500 samples from Gaussian
mixture model are drawn with uniform mixing proportions and c = 10
components. Each component follows a Gaussian distribution N (µi,Σi),
Σi = Qi∆Q

t
i where Qi is a matrix drawn from the uniform distribution on

the set of orthogonal matrices and ∆ii = ( (p+1−i)
p

)θi . The parameter θi is
randomly drawn from the standard uniform distribution. To prevent too
close centroids, each entry of the µi is the result of adding two samples from
the standard uniform distribution. In figure 3 the projection on the two first
principal components of the considered mixture is reported, different colors
represent different components. Data in figure 3 appear mixed and cluster-
ing non-trivial. Clustering centroids are randomly initialized 100 times, the
iterations of k-means are limited to five to prevent the clustering to converge.
The number of clusters is supposed to be known. Y is simulated as follows:

• For each i ∈ {1, ..., c}, one of the two possible directions βj ∈ {β1, β2}
is randomly selected with probability 1/2.

• Yt = sinh(XT
t βj) + ε, ∀t ∈ Ci, i ∈ F−1(j) where ε ∼ N (0, 0.12) is an

error independent of Xt.

The two e.d.r. spaces are randomly generated and orthogonalized: βt1β2 = 0.
We are interested in the case when we insert in the same cluster samples
from different components. This is the case when we estimate Z by Ẑ such
that for some (t1, t2) we have Ẑt1 = Ẑt2 but Zt1 6= Zt2 .

For each of the 100 runs of k-means the estimated directions for Col-
laborative SIR {β̂F̂ (1), ..., β̂F̂ (c)} are considered. The number of samples in
each slice is set to 250 resulting in H = 10 uniform slices. The average of the
squared cosines (3) between the estimated and real direction {βF (1), ..., βF (c)}
is computed (see column 2 Table 1). The 100 results are then averaged. In
the cases where clustering has zero error (fig. 4) the average of the quality
measure is 0.8958. Averaging only on the runs of k-means with more than
10 percent of error (fig. 4) the quality measure decreases to 0.8273. This
shows that even if, not surprisingly, an error on the estimation of Z affects
the solution, the influence is, empirically proved, not to be severe. It must
be noted that we obtain the worst results when we insert in the same clus-
ters samples with different underlying models: Ẑt1 = Ẑt2 but Zt1 6= Zt2 and
there is no j such that Zt1 , Zt2 ∈ F−1(j). This is indeed the reason why we
extended SIR’s theory.
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Figure 3: Projection on the two first principal components of the considered mixture,
different colors represent different components.
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Figure 4: Histograms of the percentage of badly clustered samples over 100 runs of k-
means.
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4.2. Test case B

To investigate the strengths and limitations of the method 100 different
mixture of Gaussian models for different numbers of total samples (10000,
5000, 2500) are generated. Only the case where n = 2500, dimension p = 200,
D = 2, c = 10 and βT1 β2 = 0 is displayed here. The response variable Y is
generated as in test case A for each of the 100 datasets. The same slicing
strategy with H = 10 is applied. We selected such dimension p to mimic the
dimensionality of hyperspectral satellite sensors that are of interest in future
works. The number of clusters is supposed to be known. Not surprisingly, as
soon as the dimension decreases the performance of the algorithm are more
and more stable, e.g. at dimension p = 50 the performance are still stable
and accurate. Analyzing the histograms of the differences of the average of
the squared cosines (Table 1) between Collaborative SIR and SIR (figure 5)
it is evident that Collaborative SIR is always improving the quality of the
estimation leading to a significant difference. The average and standard de-
viation of the 100 quality measures is 0.50 ± 0.05 for SIR and 0.80 ± 0.07
for Collaborative SIR. Since the quality measure is bounded to 1, a relevant
improvement is found using Collaborative SIR. In figure 6 we show the es-
timation D̂ of the number of e.d.r. spaces. The estimation is concentrated
around the true value, D = 2.

Table 1: Quality measure

SIR Collaborative SIR

1

c

c∑

i=1

cos2(b̂i, βF (i))
1

c

c∑

i=1

cos2(β̂F̂ (i), βF (i))

4.3. Comments on simulation results

In the simulations the sensitivity to clustering and the effective gain in
using Collaborative SIR are analyzed. Several tests changing the dimension
p, and the collinearity of the βj were carried out. As soon as the directions get
collinear our model is no more identifiable, despite that, the results are not
affected. When the vectors are, in the limit, collinear the e.d.r spaces simply
reduce to one. Non orthogonal e.d.r. directions and multiple e.d.r. spaces
(D = 3) have been analyzed reporting good results in case of orthogonality
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and non orthogonality of the βj’s. Simulations are interesting but cannot
cover the complexity of the real application. In the following, two real dataset
where Collaborative SIR shows its capabilities are discussed and analyzed.
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Figure 5: Histograms of the difference between the quality measure (table 1) of Collabo-
rative SIR and SIR obtained over 100 different dataset.

5. Real data application

We show, in the following, two real applications where the number D of
different effective dimension spaces differs from one. Nevertheless, it must
be underlined that for many different datasets D = 1 was found. This is
extremely satisfying because it means that in those cases a single underlying
model, Y = f(βTX, ε), is the best choice for the considered dataset. First,
the Horse-mussel dataset, that can be found in Kuentz and Saracco [14], is
considered. Second, a dataset composed of different parameters on galaxies
is investigated. Finally a discussion on possible improvements, strengths and
limitations is drawn.

5.1. Horse-mussel dataset

The horse-mussel dataset X is composed of n = 192 samples of different
numerical measures of the shell: length, width, height and weight (p = 4, a
detailed description can be found in Cook and Weisberg [7]). The response
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Figure 6: Bar plot of frequencies of the number of estimated e.d.r spaces D̂ over 100
different dataset, D = 2.

variable Y to predict is the weight of the edible portion of the mussel. To
compare to [14] the discrete response variable was transformed into a con-
tinuous variable Y = Y + ε, ε ∼ N(0, 0.012). The clustering obtained by [14]
was adopted and the number of slices set to four: Hi = 4 for all i ∈ {1, ..., 5}.
The following algorithm is used to analyze and compare SIR, cluster SIR and
Collaborative SIR:

(1) Randomly select 80% of X for training T and 20% for validation, V .

(2) Apply SIR, cluster SIR and collaborative SIR on the training.

(3) Project and regress the functions using the training samples (we fitted
a polynomial of degree 2)

(4) Compute the Mean Absolute Relative Error (MARE) on the test.

MARE=
1

|V |
∑

Y ∈V

Y − Ŷ
Y

, where Ŷ is our estimation.

We computed 100 different training and validation set. In figure 7 the box
plots of the three different methods are shown. It must be noted that this
dataset is low dimensional: p = 4. However it is of interest that the number
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Figure 7: Box plots of MARE for Collaborative SIR, SIR and Cluster SIR using 100
different initializations.

of e.d.r. spaces found is D̂ = 2. In figure 9 the data is decomposed and the
regression of the two link functions appears easier compared to the regression
in figure 8 where the cloud of point is thicker and not well shaped. Using
different regression techniques (Gaussian kernel and polynomial regression)
the results do not change significantly. On this dataset Collaborative SIR
performed better than SIR and cluster SIR. In addition, this result suggests
that two subgroups are present in the data.

5.2. Galaxy dataset

The Galaxy dataset is composed by n = 292766 different galaxies. Aber-
rant samples have been removed from the dataset after a careful observation
of the histograms in each variable supervised by experts. The response vari-
able Y is the specific stellar formation rate. The predictor X is of dimension
p = 46 and is composed of spectral characteristics of the galaxies. For all
the tests the number of samples in the first H − 1 slices is the closest integer
to n/H, H = 1000. We applied Collaborative SIR on the whole dataset to
investigate the presence of subgroups and different directions.
After different runs and number ĉ = {2, 3, 4, 5, 6, 7, 8, 9, 10} of clusters we
observed two different subgroups and hence directions β̂1, β̂2.

Best results are reported with ĉ = 5, in figure 10 the two non linear link
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Figure 8: Graph of Y and the projection along the direction β̂ found by SIR.

functions are shown. Clouds are thick but they show a very clear trend in
the distributions. This dataset is a good example of how, in high dimension,
two families can be found in a dataset using Collaborative SIR.
In figure 11 the distribution of the coefficients of the two directions are pre-
sented. It is interesting to observe how some variables are contributing in
both linear combinations but that there is a reasonable difference in four
variables (variables 2, 3, 6 and 23). The d4000n (variable 40), found to be
relevant for both directions, is often used to estimate the specific stellar for-
mation rate. Experts are working on a possible physical interpretation of
the results. Even if the link functions look similar, we observe a significant
difference in the coefficient of the two directions. This could lead to a better
understanding and designing of further analysis of this kind of data.
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Figure 9: (Top) Graph of Y and the projection along the first direction β̂1 found by Collab-

orative SIR. (Bottom) Graph of Y and the projection along the second direction β̂2 found

by Collaborative SIR. The directions β̂1, β̂2 found are nearly orthogonal cos2(β̂1, β̂2) = 0.01
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5.3. Discussion on dimension k and the number of clusters c

In the whole paper we presented results for dimension k = 1 (Y =
f(XTβ1, ..., X

Tβk)), the assumption is that e.d.r. spaces are one-dimensional.
It is worth noticing that the entire approach can be easily extended to a
higher k, it is sufficient to give a proximity measure between the linear sub-
spaces (e.g. Trace in [3]). If the dimension k is uniform in all the e.d.r.
spaces the same strategy can be applied leading to a hierarchical merging
tree. In case the dimension k varies depending on the mixture the proximity
between e.d.r. spaces with different k is set to zero. It must be noted that
the estimation of the dimension k is a classical problem for SIR ([15, 1]), a
solution in real application is described in [18] where a graphical approach
is proposed to analyze the information of the single projections XTβj versus
Y . SIR is a method to reduce dimensionality to “better” perform regression.
When a regression is performed the visualization of the results is crucial,
that is one of the reasons for dimensionality reduction. If the dimension k
is greater than 2 visualization is not possible. This explains why SIR and
its variants have mainly been applied with k = 1. Collaborative SIR is first
dividing the predictors space into clusters, it seems natural to assume that
dimension k locally would be smaller than globally i.e. that considering k = 1
is not a severe restriction if a visualization is needed. Finally another draw-
back of increasing dimensionality is that the samples become be more and
more sparse and not cover enough the surface we want to regress, different
regression techniques may lead to dramatically different results. The prob-
lem of dimension k could be the reason why SIR is not yet widely used.
We did not give an automatic way of selecting the number of clusters. In
SIR literature Kuentz and Saracco [14] translate the selection in an opti-
mization problem. Nowadays, with the increasing capabilities of sensors,
data are complex and complicated and is hard to define a general criteria,
ignoring previous knowledge, that could work for any kind of data. The
number of clusters is deeply connected with how we want to group elements,
the same data can show two possible “correct” clustering, depending on the
task. Since SIR and collaborative SIR are fast and simple techniques the
user, using prior information, should orient the clustering and try different
values for the parameters and empirically check which is the most suitable
for the purpose. Developing flexible clustering capable of incorporating prior
knowledge is one of our interests.
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6. Conclusion and future work

Sliced Inverse Regression is an interesting and fast tool to explore data
in regression, it is yet not so popular [5] but has well established theory and
simple implementation. If the link function turns out to be linear SIR, not
surprisingly, is outperformed by linear regression techniques, but in case of
evidence of non linearity, linear regression techniques force the model re-
sulting in poor estimations. Collaborative SIR is meant to deal with the
increasing complexity of the dataset that statisticians are asked to analyze.
Often there is no reasonable criteria of gathering the samples resulting in
dataset that are, at least, a mixture of different phenomena and/or full of
ambiguous samples. The hypothesis of having different families with different
underlying models gives flexibility not affecting tractability. We encourage
the community to improve our idea. A robustified version of SIR will be our
main field of research for the next period.
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STUDENT SIR

Four legs good, two legs better! All Animals Are Equal.

But Some Animals Are More Equal Than Others.

G. Orwell.

Student SIR has been accepter for publication in Computational Statistics and Data

Analysis - Special issue on Robust Analysis of Complex Data.

3.1 Overall Idea

To give an intuitive idea of what Student SIR is meant for, the example of the

bombers in the Introduction will be considered. Suppose that X = (x1, x2, ..., x5)

is the area hit by bullets for different aircrafts in five corresponding continuos

variables (as in Wald’s paper each aircraft is divided in five). Our goal is to predict Y ∈
[0,1], the damage of the aircraft, 0 is undamaged and 1 is downed. The presence of outliers

always brings problems in the estimation of statistical parameters (e.g. covariance

matrix). Like PCA, SIR makes no exception, the presence of outliers affects the estimation

of β in model (1.4). Two approaches are common in this area: identify and remove the

outliers before the analysis or downweight their importance. Student SIR takes the

second option. The following episode motivates the use of Student SIR to analyze bombers

in action showing the possible presence of outliers:

On Dec. 20, 1943, a young American named Charles "Charlie" Brown was on his
first World War II mission. Flying in the German skies, Brown’s B-17 bomber was shot
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and badly damaged and the crew was helpless: one could not walk, one could not use
his hands, one with a leg bone off and one dead. In such desperate time a Luftwaffe ace
Franz Stigler appeared with his fighter. All was lost. But Franz Stigler could not shoot.
He escorted the B-17 on the border in direction of Sweden. When Charles decided to try to
make it to England Franz gave a wave salute and left.

"Have you ever seen a bomber so severely damaged?" Has been asked in 1997 in

an interview to Franz Stigler: "Not flying". This bomber with respect to our analysis

can be, with no doubt, considered an outlier. The government decided to classify this

episode because it showed the humanity of the enemy. Charles Brown managed to find

Stigler several years later. They became close friends, and remained so, until their deaths

within several months of each other in 2008. Student SIR downweights the importance

of outliers during the estimation of the parameters, importance that in other fields must

be enhanced and brought as an example.

FIGURE 3.1. The crew of "Ye Olde Pub." Kneeling L-R: Charlie Brown, Spencer
Luke, Al Sadok, and Robert Andrews. Standing L-R: "Frenchy" Coulombe,
Alex Yelesanko, Richard Pechout, Lloyd Jennings, Hugh Eckenrode, and
Sam Blackford. PHOTO COURTESY ADAM MAKOS.
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aInria Grenoble Rhône-Alpes & LJK, team Mistis, 655, av. de l’Europe, Montbonnot,
38334 Saint-Ismier cedex, France.

bGIPSA-Lab, Grenoble INP, Saint Martin d’Hères, France.
cInstitute of Statistics, Graz University of Technology, Kopernikusgasse 24/III, A-8010

Graz, Austria.

Abstract

Sliced Inverse Regression (SIR) has been extensively used to reduce the di-

mension of the predictor space before performing regression. SIR is originally

a model free method but it has been shown to actually correspond to the max-

imum likelihood of an inverse regression model with Gaussian errors. This

intrinsic Gaussianity of standard SIR may explain its high sensitivity to out-

liers as observed in a number of studies. To improve robustness, the inverse

regression formulation of SIR is therefore extended to non-Gaussian errors

with heavy-tailed distributions. Considering Student distributed errors it

is shown that the inverse regression remains tractable via an Expectation-

Maximization (EM) algorithm. The algorithm is outlined and tested in the

presence of outliers, both in simulated and real data, showing improved re-

sults in comparison to a number of other existing approaches.

Keywords: Dimension reduction, Inverse regression, Outliers, Robust

estimation, Generalized Student distribution.

∗Corresponding Author
Email address: al.chiancone@gmail.com (Alessandro Chiancone)

Preprint submitted to Computational Statistics and Data Analysis August 8, 2016



1. Introduction

Let us consider a regression setting where the goal is to estimate the

relationship between a univariate response variable Y and a predictor X.

When the dimension p of the predictor space is 1 or 2, a simple 2D or 3D

plot can visually reveal the relationship and can be useful to determine the

regression strategy to be used. If p becomes large such an approach is not

feasible. A possibility to overcome problems arising in the context of regres-

sion is to make the assumption that the response variable does not depend

on the whole predictor space but just on a projection of X onto a subspace of

smaller dimension. Such a dimensionality reduction leads to the concept of

sufficient dimension reduction and to that of central subspace [1]. The cen-

tral subspace is the intersection of all dimension-reduction subspaces (d.r.s.).

A subspace S is a d.r.s. if Y is independent of X given PSX, where PS is the

orthogonal projection onto S. In other words, all the information carried by

the predictors X on Y can be compressed in PSX. It has been shown under

weak assumptions that the intersection of all d.r.s., and therefore the central

subspace, is itself a d.r.s. [2]. It is of particular interest to develop methods to

estimate the central subspace as once it is identified, the regression problem

can be solved equivalently using the lower-dimensional representation PSX

of X in the subspace.

Among methods that lead to an estimation of the central subspace, Sliced

Inverse Regression (SIR) [3] is one of the most popular. SIR is a semipara-

metric method assuming that the link function depends on d linear com-

binations of the predictors and a random error independent of X: Y =

f(βT1 X, . . . , βTd X, ε). When this model holds, the projection of X onto the

space spanned by the vectors {βi, i = 1, . . . , d} captures all the information

about Y . In addition, [3] shows that a basis of this space can be recovered

using an inverse regression strategy provided that the so called linearity con-

dition holds. It has been shown that the linearity condition is satisfied as

soon as X is elliptically distributed. Moreover, this condition approximately

holds in high-dimensional datasets, see [4]. However, solutions have been
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proposed to deal with non elliptical distributed predictors and to overcome

the linearity condition limitation [5, 6, 7].

The inverse regression approach to dimensionality reduction gained then

rapid attention [8] and was generalized in [9] which shows the link between

the axes spanning the central subspace and an inverse regression problem

with Gaussian distributed errors. More specifically, in [10, 9], it appears

that, for a Gaussian error term and under appropriate conditions, the SIR

estimator can be recovered as the maximum likelihood estimator of the pa-

rameters of an inverse regression model. In other words, although SIR is

originally a model free method, the standard SIR estimates are shown to

correspond to maximum likelihood estimators for a Gaussian inverse regres-

sion model. It is then not surprising that SIR has been observed, e.g. in

[11], to be at best under normality and that its performance may degrade

otherwise. Indeed, the Gaussian distribution is known to have tails too light

to properly accommodate extreme values. In particular, [12] observes that

SIR was highly sensitive to outliers, with additional studies, evidence and

analysis given in [13]. To downweight this sensitivity, robust versions of SIR

have been proposed, mainly starting from the standard model free estima-

tors and trying to make them more resistant to outliers. Typically, in [14]

classical estimators are replaced by high breakdown robust estimators and,

recently in [15] two approaches are built: a weighted version of SIR and a

solution based on the intra slice multivariate median estimator.

As an alternative, we propose to rather exploit the inverse regression for-

mulation of SIR [10, 9]. A new error term modeled by a multivariate Student

distribution [16] is introduced. Among the elliptically contoured distribu-

tions, the multivariate Student is a natural generalization of the multivariate

Gaussian but its heavy tails can better accommodate outliers. The result in

Proposition 6 of [9] is extended from Gaussian to Student errors showing that

the inverse regression approach of SIR is still valid outside the Gaussian case,

meaning that the central subspace can still be estimated by maximum likeli-

hood estimation of the inverse regression parameters. It is then shown that
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the computation of the maximum likelihood estimators remains tractable in

the Student case via an Expectation-Maximization (EM) algorithm which

has a simple implementation and desirable properties.

The paper is organized as follows. In Section 2 general properties of the

multivariate Student distribution and some of its variants are first recalled.

The inverse regression model is introduced in Section 3 followed by the EM

strategy to find the maximum likelihood estimator, the link with SIR and

the resulting Student SIR algorithm. A simulation study is carried out in

Section 4 and a real data application, showing the interest of this technique,

is detailed in Section 5. The final section contains concluding remarks and

perspectives. Proofs are postponed to the Appendix.

2. Multivariate generalized Student distributions

Multivariate Student, also called t-distributions, are useful when dealing

with real-data because of their heavy tails. They are a robust alternative to

the Gaussian distribution, which is known to be very sensitive to outliers.

In contrast to the Gaussian case though, no closed-form solution exists for

the maximum likelihood estimation of the parameters of the t-distribution.

Tractability is, however, maintained both in the univariate and multivariate

case, via the EM algorithm [17] and thanks to a useful representation of the

t-distribution as a so-called infinite mixture of scaled Gaussians or Gaussian

scale mixture [18]. A Gaussian scale mixture distribution has a probability

density function of the form

P (x;µ,Σ,ψ) =

∫ ∞

0

Np(x;µ,Σ/u) fU(u;ψ) du, (1)

whereNp( . ;µ,Σ/u) denotes the density function of the p-dimensional Gaus-

sian distribution with mean µ and covariance Σ/u and fU is the probabil-

ity distribution of a univariate positive variable U referred to hereafter as

the weight variable. When fU is a Gamma distribution G(ν/2, ν/2) where

ν denotes the degrees of freedom, expression (1) leads to the standard p-

dimensional t-distribution denoted by tp(x;µ,Σ, ν) with parameters µ (lo-
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cation vector), Σ (p×p positive definite scale matrix) and ν (positive degrees

of freedom parameter). Its density is given by

tp(x;µ,Σ, ν) =

∫ ∞

0

Np(x;µ,Σ/u) G(u; ν/2, ν/2) du

=
Γ((ν + p)/2)

|Σ|1/2 Γ(ν/2) (πν)p/2
[1 + δ(x,µ,Σ)/ν]−(ν+p)/2, (2)

where δ(x,µ,Σ) = (x − µ)TΣ−1(x − µ) is the Mahalanobis distance be-

tween x and µ. The Gamma distribution has probability density function

G(u;α, γ) = uα−1Γ(α)−1 exp(−γu)γα, where Γ denotes the Gamma function.

If fU(u;ψ) is set equal to a Gamma distribution G(α, γ) without imposing

α = γ, (1) results in a multivariate Pearson type VII distribution (see e.g.

[19] vol.2 chap. 28) also referred to as the Arellano-Valle and Bolfarine’s

Generalized t distribution in [16]. This generalized version is the multivariate

version of the t-distribution considered in this work, its density is given by:

Sp(x;µ,Σ, α, γ) =

∫ ∞

0

Np(x;µ,Σ/u) G(u;α, γ) du (3)

=
Γ(α + p/2)

|Σ|1/2 Γ(α) (2πγ)p/2
[1 + δ(x,µ,Σ)/(2γ)]−(α+p/2) . (4)

For a random variable X following distribution (4), an equivalent represen-

tation useful for simulation is X = µ + U−1/2X̃ where U follows a G(α, γ)

distribution and X̃ follows a N (0,Σ) distribution.

Remark 1 (Identifiability). The expression (4) depends on γ and Σ only
through the product γΣ which means that to make the parameterization unique,
an additional constraint is required. One possibility is to impose that Σ is
of determinant 1. It is easy to see that this is equivalent to have an uncon-
strained Σ with γ = 1.

Unconstrained parameters are easier to deal with in inference algorithms.

Therefore, we will rather assume without loss of generality that γ = 1 with

the notation Sp(0,V, α, 1) ≡ Sp(0,V, α) adopted in the next Section.
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3. Student Sliced Inverse Regression

Let X ∈ Rp be a random vector, Y ∈ R the real response variable and

SY |X the central subspace spanned by the columns of the matrix β ∈ Rp×d.

In the following, it is assumed that dim(SY |X) = d where d is known and

d ≤ p. To address the estimation of the central subspace, we consider the

inverse regression formulation of [9], which models the link from Y to X. In

addition to be a simpler regression problem, the inverse regression approach

is of great interest because Proposition 6 in [9] states that in the Gaussian

case, an estimation of the central subspace is provided by the estimation of

the inverse regression parameters. In Subsection 3.1, the inverse regression

model of [9] is extended by considering Student distributed errors. It is

then shown in Subsection 3.2 that the estimation of the extended model

is tractable via an Expectation-Maximization algorithm (EM). A link with

SIR is presented in Subsection 3.3 and the resulting Student SIR algorithm

is described in Subsection 3.4.

3.1. Student multi-index inverse regression model

In the spirit of [9, 10] the following regression model is considered

X = µ+ VBc(Y ) + ε, (5)

where µ ∈ Rp is a non random vector, B is a non random p × d matrix

with BTB = Id, ε ∈ Rp is a centered generalized Student random vector

following the distribution given in (4), ε is assumed independent of Y , with

scale matrix V, c : R → Rd is a non random function. It directly follows

from (5) that

E(X|Y = y) = µ+ VBc(y), (6)

and thus, after translation by µ, the conditional expectation of X given Y

is a random vector located in the space spanned by the columns of VB.

When ε is assumed to be Gaussian distributed, Proposition 6 in [9] states

that B corresponds to the directions of the central subspace β. In [9, 10],

it appears then that, under appropriate conditions, the maximum likelihood
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estimator of B is (up to a full rank linear transformation) the SIR estimator

of β, i.e. Span{B} = Span{β}. Proposition 6 in [9] can be generalized to

our Student setting, so that B still corresponds to the central subspace. The

generalization of Proposition 6 of [9] is given below.

Proposition 1. Let Xy be a random variable distributed as X|Y = y, let us
assume that

Xy = µ+ VBc(y) + ε, (7)

with ε following a generalized Student distribution Sp(0,V, α), c(y) ∈ Rd is
function of y and VB is a p × d matrix of rank d. Under model (7), the
distribution of Y |X = x is the same as the distribution of Y |BTX = BTx
for all values x.

The proof is given in Appendix 7.1. According to this proposition, X can be

replaced by BTX without loss of information on the regression of Y on X.

A procedure to estimate B is then proposed in the next Section

3.2. Maximum likelihood estimation via EM algorithm

Let (Xi, Yi), i = 1, . . . , n be a set of independent random variables dis-

tributed according to the distribution of (X, Y ) as defined in (5). The un-

known quantities to be estimated in model (5) are {µ,V,B, α} and the

function c(.). Regarding c, we focus on projection estimators for each coor-

dinate of c(.) = (c1(.), . . . , cd(.)). For k = 1, . . . , d, function ck(.) is expanded

as a linear combination of h basis functions sj(.), j = 1, . . . , h as

ck(.) =
h∑

j=1

cjksj(.), (8)

where the coefficients cjk, j = 1, . . . , h and k = 1, . . . , d are unknown and to

be estimated while h is supposed to be known. Let C be a h×d matrix with

the kth column given by (c1k, . . . , chk)
T and s(.) = (s1(.), . . . , sh(.))

T . Then,

model (5) can be rewritten as

X = µ+ VBCT s(Y ) + ε, with ε ∼ Sp(0,V, α), (9)
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where Sp(0,V, α) is the multivariate centered generalized Student distribu-

tion with scale matrix V. For each i, it follows that conditionally to Yi,

Xi ∼ Sp(µ+ VBCT si,V, α) where si=s(Yi). The density of the generalized

Student distribution is available in closed form and given in (4). However

to perform the estimation, a more useful representation of this distribution

is given by its Gaussian scale mixture representation (3). Introducing an

additional set of latent variables U = {U1, . . . , Un} with Ui independent of

Yi, one can equivalently write:

Xi|Ui = ui, Yi = yi ∼ Np(µ+ VBCT si,V/ui), (10)

Ui|Yi = yi ∼ G(α, 1). (11)

Let us denote by θ = {µ,V,B,C, α} the parameters to estimate from

realizations {xi, yi, i = 1, . . . , n}. In contrast to the Gaussian case, the

maximum likelihood estimates are not available in closed-form for the t-

distributions. However, they are reachable using an Expectation-Maximization

(EM) algorithm. More specifically, at iteration (t) of the algorithm, θ is

updated from a current value θ(t−1) to a new value θ(t) defined as θ(t) =

arg maxθQ(θ,θ(t−1)). Considering the scale mixture representation above,

a natural choice for Q is the following expected value of the complete log-

likelihood:

Q(θ,θ(t−1)) = EU [

n∑

i=1

logP (xi, Ui|Yi = yi;θ)|Xi = xi, Yi = yi;θ
(t−1)] (12)

=
n∑

i=1

EUi [logP (xi|Ui, yi;µ,V,B,C)|xi, yi;θ
(t−1)] + EUi [logP (Ui;α)|xi, yi;θ

(t−1)]

= −1

2
n log det V +

1

2
p

n∑

i=1

EUi
[log(Ui)|xi, yi;θ

(t−1)]

− 1

2

n∑

i=1

EUi
[Ui|xi, yi;θ

(t−1)] (µ+ VBCT si − xi)
TV−1(µ+ VBCT si − xi)

+
n∑

i=1

EUi
[logP (Ui;α)|xi, yi;θ

(t−1)] .

Note that all computations are conditionally to the Yi’s and no assumption
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is made on the distribution of the Yi’s. The E-step therefore consists of

computing the quantities

ūi
(t) = EUi

[Ui|xi, yi;θ(t−1)] , (13)

ũi
(t) = EUi

[logUi|xi, yi;θ(t−1)] , (14)

while the M-step divides into two-independent M-steps involving separately

parameters (µ,V,B,C) and α. The second quantity (14) is needed only

in the estimation of α. The following notation is introduced for the next

sections:

ū(t) =

∑n
i=1 ūi

(t)

n
(15)

ũ(t) =

∑n
i=1 ũi

(t)

n
. (16)

E-step. The quantities (13) and (14) above require the posterior distribution

of the Ui’s. This distribution can be easily determined using the well known

conjugacy of the Gamma and Gaussian distributions for the mean. It follows

then from standard Bayesian computations that the posterior distribution is

still a Gamma distribution with parameters specified below,

p(ui|Xi = xi, Yi = yi;θ
(t−1))

∝ Np(xi;µ(t−1) + V(t−1)B(t−1)C(t−1)T si,V
(t−1)/ui) G(ui;α

(t−1), 1)

= G(ui;α
(t−1) +

p

2
, 1 +

1

2
δ(xi, µ

(t−1) + V(t−1)B(t−1)C(t−1)T si,V
(t−1))),

where δ(xi,µ+VBCT si,V) = (µ+VBCT si−xi)
TV−1(µ+VBCT si−xi) is

the Mahalanobis distance between xi and µ+ VBCT si when the covariance

is V.

The required moments (13) and (14) are then well known for a Gamma

distribution, so that it comes,

ū
(t)
i =

α(t−1) + p
2

1 + 1
2
δ(xi, µ(t−1) + V(t−1)B(t−1)C(t−1)T si,V(t−1))

and

ũ
(t)
i = Ψ(α(t−1) +

p

2
)− log(1 +

1

2
δ(xi,µ

(t−1) + V(t−1)B(t−1)C(t−1)T si,V
(t−1))) ,
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where Ψ is the Digamma function. As it will become clear in the following

M-step, ū
(t)
i acts as a weight for xi. Whenever the Mahalanobis distance of xi

to µ(t−1) +V(t−1)B(t−1)C(t−1)T si increases, the weight ū
(t)
i of xi decreases and

the influence of xi in the estimation of the parameters will be downweighted

in the next iteration. The idea of using weights to handle outliers is common

in the literature, Weighted Inverse Regression (WIRE) [15] gives weights

through a deterministic kernel function to ensure the existence of the first

moment. Our approach does not require previous knowledge to select an

appropriate kernel and refers to the wide range of t-distributions (the Cauchy

distribution for which the first moment is not defined lies in this family).

M- step. The M-step divides into the following two independent sub-steps.

M-(µ,V,B,C) substep. Omitting terms that do not depend on the pa-

rameters in (12), estimating (µ,V,B,C) by maximization of Q consists,

at iteration (t), of minimizing with respect to (µ,V,B,C) the following G

function,

G(µ,V,B,C) = log det V+
1

n

n∑

i=1

ūi
(t) (µ+VBCT si−xi)

TV−1(µ+VBCT si−xi) . (17)

To this aim, let us introduce (omitting the index iteration (t) in the notation)

the h× h weighted covariance matrix W of s(Y ) defined by:

W =
1

n

n∑

i=1

ūi (si − s̄)(si − s̄)T ,

the h× p weighted covariance matrix M of (s,X) defined by

M =
1

n

n∑

i=1

ūi (si − s̄)(xi − x̄)T ,

and Σ the p× p weighted covariance matrix of X

Σ =
1

n

n∑

i=1

ūi (xi − x̄)(xi − x̄)T , (18)

10



where

x̄ =
1∑n
i=1 ūi

n∑

i=1

ūixi and (19)

s̄ =
1∑n
i=1 ūi

n∑

i=1

ūisi. (20)

We derive then the following lemma.

Lemma 1. Using the above notations, G(µ,V,B,C) can be rewritten as

G(µ,V,B,C) = log det V + tr(ΣV−1) + tr(CTWCBTVB)− 2tr(CTMB)

+ ū (µ− x̄ + VBCT s̄)TV−1(µ− x̄ + VBCT s̄) .

The proof is given in Appendix 7.2. Thanks to this representation of G(.)

it is possible to derive the following proposition which is a generalization to

the multi-index case and Student setting of the result obtained in case of

Gaussian error ε in [10].

Proposition 2. Under (9), if W and Σ are regular, then the M-step for
(µ,V,B,C) leads to the updated estimations (µ̂, V̂, B̂, Ĉ) given below

• B̂ is made of the eigenvectors associated to the largest eigenvalues of
Σ−1MTW−1M,

• V̂ = Σ− (MTW−1MB)(BTMTW−1MB)−1(MTW−1MB)T ,

• Ĉ = W−1MB̂(B̂T V̂B̂)−1 and

• µ̂ = x̄− V̂B̂ĈT s̄.

The proof is detailed in Appendix 7.3. Regarding parameter α it can be

updated using an independent part of Q as detailed in the next M-step.

M-α substep.

11



Parameter α can be estimated by maximizing independently with regards

to α,
n∑

i=1

EUi
[logP (Ui;α)|xi, yi;θ(t−1)] . (21)

Then, since

EUi
[log p(Ui;α)|xi, yi;θ(t−1)] = −ūi(t) + (α− 1)ũi

(t) − log Γ(α) , (22)

setting the derivative with respect to α to zero, we obtain that α̂ = Ψ−1(ũ),

where Ψ(.) is the Digamma function.

In practice, for the procedure to be complete, the choice of the h basis

functions sj needs to be specified. Many possibilities for basis functions are

available in the literature such as classical Fourier series, polynomials, etc.

In the next section, we discuss a choice of basis functions which provides the

connection with Sliced Inverse Regression (SIR) [3].

3.3. Connection to Sliced Inverse Regression

As in the Gaussian case [9, 10], a clear connection with SIR can be es-

tablished for a specific choice of the h basis functions. When Y is univariate

a natural approach is to first partition the range of Y into h+ 1 bins Sj for

j = 1, . . . , h+ 1 also referred to as slices, and then defining h basis functions

by considering the first h slices as follows,

sj(.) = 1I{. ∈ Sj}, j = 1, . . . , h, (23)

where 1I is the indicator function. Note that it is important to remove one

of the slices so that the basis functions remain independent. However, the

following related quantities are defined for j = 1, . . . , h+ 1:

nj =
n∑

i=1

ūi1I{yi ∈ Sj},

fj =
nj
n
. (24)

12



They represent respectively the number of yi in slice j weighted by the ūi

and the weighted proportion in slice j. The following weighted mean of X

given Y ∈ Sj is then denoted by

x̄j =
1

nj

n∑

i=1

ūi1I{yi ∈ Sj}xi, (25)

and the p× p “between slices” covariance matrix by

Γ =
h+1∑

j=1

fj(x̄j − x̄)(x̄j − x̄)T .

In this context, the following consequence of Proposition 2 can be established.

Corollary 1. Under (9) and (23), if Σ is regular, then the updated estima-
tion B̂ of B is given by the eigenvectors associated to the largest eigenvalues
of Σ−1Γ. In addition, Γ = MTW−1M.

The proof is given in Appendix 7.4. When all ūi = 1, the iterative EM

algorithm reduces to one M-step and the quantities defined in this section

correspond to the standard SIR estimators. The EM algorithm resulting from

this choice of basis functions is referred to as the Student SIR algorithm. It

is outlined in the next section.

3.4. Central subspace estimation via Student SIR algorithm

The EM algorithm can be outlined using Proposition 2 and Corollary 1.

It relies on two additional features to be specified, initialization and stopping

rule. As the algorithm alternates the E and M steps, it is equivalent to start

with one of this step. It is convenient to start with the Maximization step

since the initialization of quantities ūi, ũi can be better interpreted. If ūi is

constant and ũi = 0, the first M-step of the algorithm results in performing

standard SIR. Regarding an appropriate stopping rule of the algorithm, EM’s

fundamental property is to increase the log-likelihood at each iteration. A

standard criteria is then the relative increase in log-likelihood, denoted by

13



∆(θ(t),θ(t−1)), between two iterations. At each iteration, for current param-

eters values, the log-likelihood is easy to compute using (4) and (9). Another

natural criterion is to assess when parameter estimation stabilizes. Typically,

focusing on the central subspace B, the following proximity measure [20, 21]

can be considered:

r(B, B̂) =
trace(BBT B̂B̂T )

d
. (26)

The above quantity r ranges from 0 to 1 and evaluates the distance between

the subspaces spanned by the columns of B and B̂. If d = 1, r is the squared

cosine between the two spanning vectors. Although not directly related to

the EM algorithm, in practice this criterion gave similar results in terms of

parameter estimation. Experiments on simulated and real data are reported

in the next two sections.

3.5. Determination of the central subspace dimension

Determining the dimension d of the central subspace is an important issue

for which different solutions have been proposed in the literature. Most users

rely on graphical considerations, e.g. [22]. A more quantitative approach is to

use cross validation after the link function is found. Although in that case, d

may vary depending on the specific regression approach that the user selected.

Other methods that can be easily used on real data, are mainly based on

(sequential) tests [3, 23, 24, 20, 25, 11]. An alternative that uses a penalized

likelihood criterion has been proposed in [26]. In our setting, formulated

as a maximum likelihood problem, the penalized likelihood approach is the

most natural. For a given value d of the central subspace dimension, we

therefore propose to compute the Bayesian information criterion [27] defined

as BIC(d) = −2L(d) + η log n , where η = p(p+3)
2

+ 1 + d(2p−d−1+2h)
2

is the

number of free parameters in the model and L(d) is the maximized log-

likelihood computed at the parameters values obtained at convergence of

the EM algorithm. Computing L(d) is a straightforward byproduct of the

algorithm described above as this quantity is already used in our stopping

14



Algorithm 1 Student SIR algorithm
Set h and partition the Y range into h+ 1 slices.

Set the e.d.r. space dimension d and the desired tolerance value for convergence δ.

Initialize the ū
(0)
i , ũ

(0)
i ’s with ū

(0)
i = 1 and ũ

(0)
i = 0 for all i = 1, . . . , n

(this first iteration of the algorithm gives the SIR estimation of Γ and B).

while ∆(θ(t),θ(t−1)) < δ do

M-step

Compute:

• ū(t) and ũ(t) (eq. (15) and (16)), f (t) = (f
(t)
1 , . . . f

(t)
h )T and f

(t)
h+1 (eq. (24)),

• x̄
(t)
j and x̄(t) (eq. (25) and (19)),

• Σ(t) (eq. (18)),

• M(t) where each row is given by M
(t)
j,. = f

(t)
j (x̄

(t)
j − x̄(t))T for j = 1, . . . , h,

• W(t)−1 = diag

(
1

f
(t)
1

, . . . , 1

f
(t)
h

)
+ 1

f
(t)
h+1

O, where O is the h× h matrix defined

by Oij = 1,

• Γ(t) = M(t)TW(t)−1M(t),

• B(t) matrix of the d eigenvectors associated to the d largest eigenvalues of

Σ(t)−1Γ(t),

• V(t) = Σ(t) − Γ(t)B(t)(B(t)T Γ(t)B(t))−1(Γ(t)B(t))T ,

• C(t) = W(t)−1M(t)B(t)(B(t)TV(t)B(t))−1,

• µ(t) = x̄(t) −V(t)B(t)C(t)T s̄(t),

• α(t) = Ψ−1(ũ(t)).

E-step

Update the ūi, ũi’s using the quantities estimated in the M-step:

ūi
(t+1) =

α(t) + p
2

1 + 1
2δ(xi,µ(t) + V(t)B(t)C(t)T si,V(t))

,

ũi
(t+1) = Ψ(α(t) +

p

2
)− log(1 +

1

2
δ(xi,µ

(t) + V(t)B(t)C(t)T si,V
(t))) .

end while
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criterion. Following the BIC principle, an estimator of d can then be defined

as the minimizer of BIC(d) over d ∈ {1, . . . ,min(p, h)}. The performance of

this criterion is investigated in the simulation study in Section 4 and used on

the real data example of Section 5. The simulation study reveals that BIC

can provide correct selections but requires large enough sample sizes. This

limitation has been already pointed out in the literature (see e.g. [28]).

4. Simulation study

Student SIR is tested on simulated data under a variety of different models

and distributions for the p-dimensional random variable X. The behavior of

Student SIR is compared to SIR and four other techniques arising from the

literature that claim some robustness. For comparison, the simulation setup

described in [15, 14] is adopted.

4.1. Simulation setup

Three different regression models are considered:

I : Y = 1 + 0.6X1 − 0.4X2 + 0.8X3 + 0.2ε,

II : Y = (1 + 0.1ε)X1,

III : Y = X1/(0.5 + (X2 + 1.5)2)) + 0.2ε,

where ε follows a standard normal distribution. The three models are com-

bined with three possible distributions for the predictors X:

(i) X is multivariate normal distributed with mean vector 0 and covariance

matrix defined by its entries as σij = 0.5|i−j|;

(ii) X is standard multivariate Cauchy distributed;

(iii) X = (X1, . . . , Xp)
T , where each Xi is generated independently from a

mixture of normal and uniform distributions denoted by 0.8N (0, 1) +

0.2U(−ν, ν) where ν is a positive scalar value.
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Models I, III are homoscedastic while model II is heteroscedastic. Case (ii)

is built to test the sensitivity to outliers while the distribution of X is ellip-

tical. In (iii) a non-elliptical distribution of X is considered. The dimension

is set to p = 10, the dimension of the e.d.r. space is d = 1 for I, II and d = 2

for III. The nine different configurations of X and Y are simulated with a

number of samples varying depending on the experiment. In all tables Stu-

dent SIR is compared with standard SIR and four other approaches. Contour

Projection (CP-SIR) [29, 30] applies the SIR procedure on a rescaled version

of the predictors. Weighted Canonical Correlation (WCAN) [31] uses a ba-

sis of B-splines first estimating the dimension d of the central subspace and

then the directions from the nonzero robustified version of the correlation

matrices between the predictors and the B-splines basis functions. The idea

of Weighted Inverse Regression (WIRE) [15] is to use a different weight func-

tion capable of dealing with both outliers and inliers. SIR is a particular case

of WIRE with constant weighting function. Slice Inverse Median Estimation

(SIME) replaces the intra slice mean estimator with the median which is well

known to be more robust. All values referring to CP-SIR, WCAN, WIRE,

SIME in the tables are directly extracted from [15]. Values relative to SIR

have been recomputed using [32].

4.2. Results

To assess the sensitivity of the compared methods to different setting

parameters, four sets of tests are carried out and reported respectively in

Tables 1 and 2. First, the 9 configurations of X and Y models are tested for

fixed sample size n = 200, number of slices h = 5 and p = 10 (Table 1 (a)).

Then, the effect of the sample size is illustrated for model I (Table 1 (b)).

The number of slices is varied to evaluate the sensitivity to the h value (Table

reftb3 (a)) and at last, different values of ν are tested in the model (iii) case

(Table 2 (b)). In all cases and tables, the different methods performance

is assessed based on their ability to recover the central subspace which is

measured via the value of the proximity measure r (26).

Student SIR shows its capability to deal with different configurations.
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The proximity criterion (26) in Table 1 (a) is very close to one, for the first

two regression models independently of the distributions of the predictors.

In the Gaussian case, Student SIR and SIR are performing equally well show-

ing that our approach has no undesirable effects when dealing with simple

cases. For configuration III− (iii), a slightly different value has been found

for SIR compared to [15]. In this configuration however the trend is clear:

standard SIR, Student SIR, WIRE and SIME show similar performance. In

contrast, configurations I−(ii), II−(ii), III−(ii) illustrate that Student SIR

can significantly outperform SIR. This is not surprising since the standard

multivariate Cauchy has heavy tails and SIR is sensitive to outliers [14].

Table 1 (b) illustrates on model I the effect of the sample size n: Student

SIR exhibits the best performance among all methods. It is interesting to

observe that, in case (ii), the smaller value of r for standard SIR does not

depend on the sample size n. In contrast, adding observations results in a

better estimation for Student SIR.

It is then known that SIR is not very sensitive to the number of slices

h [22]. In Table 2 (a), an analysis is performed with varying h. Student SIR

appears to be as well not very sensitive to the number of slices.

Extra inliers as well as outliers can affect the estimation. In case (iii),

parameter ν is controlling the extra observations magnitude. Under different

values of ν = 0.5, 0.2, 0.1, 0.05 ,Table 2 (b) shows that both SIR and Student

SIR are robust to inliers while CP-SIR and WCAN fail when ν is small and

extra observations behave as inliers concentrated around the average.

In addition, a study on the behavior of SIR and Student SIR when X fol-

lows a standard multivariate Student distribution, with different degrees of

freedom (df), is shown in Table 3 (a). The multivariate Cauchy of model (ii)

coincides with the multivariate Student with one degree of freedom. This

setting is favorable to our model which is designed to handle heavy tails.

Not surprisingly, Student SIR provides better results for small degrees of

freedom but the difference with SIR is reduced as the degree of freedom

increases and the multivariate Student gets closer to a Gaussian. The stan-
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dard deviation follows the same trend. In case III − (ii) the convergence

of SIR becomes extremely slow. Regarding computational time, results are

reported in Table 3 (b). Student SIR has multiple iterations, which increases

computational time compared to SIR. It is interesting that, in the cases in

which SIR fails (I− (ii), II− (ii), III− (ii) see Table 1), the convergence of

Student SIR is fast, requiring less than a second on a standard laptop (Our

Matlab code is available at https://hal.inria.fr/hal-01294982). All reported

results have been obtained using a threshold of 0.01 for the relative increase

of the Log-likelihood.

At last, the use of BIC as a selection criterion for the central subspace

dimension d is investigated. As an illustration, last column of Table 3 (b)

shows the number of times the criterion succeeded in selecting the correct

dimension (i.e. d = 2 in this example) over 200 repetitions. BIC performs

very well provided the sample size is large enough, this phenomenon being

more critical as the number of outlying data increases. This is not surprising

as this limitation of BIC has often been reported in the literature.

To summarize, through these simulations Student SIR shows good perfor-

mance, outperforming SIR when the distribution of X is heavy-tailed (case

(ii)) and preserving good properties such as insensitivity to the number of

slices or robustness to inliers that are peculiar of SIR.

5. Real data application: The galaxy dataset

5.1. Data

The Galaxy dataset corresponds to n = 362, 887 different galaxies. This

dataset has been already used in [33] with a preprocessing based on expert

supervision to remove outliers. In this study all the original observations

are considered, removing only points with missing values, which requires no

expertise. The response variable Y is the stellar formation rate. The predic-

tor X is made of spectral characteristics of the galaxies and is of dimension

p = 46.
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5.2. Evaluation setting

The number of samples n is very large and the proportion of outliers is

very small compared to the whole dataset. The following strategy is adopted:

1000 random subsets of X of size na = 3, 000, Xa
i , i = 1, . . . , 1000 and size

nb = 30, 000, Xb
i , i = 1, . . . , 1000 are considered to compare the performance

of SIR and Student SIR. First a reference result B̂SIR, B̂st-SIR is obtained

using the whole dataset X, using respectively SIR and Student SIR with

the dimension of the e.d.r. space set to d = 3 and the number of slices to

h = 1000. The value d = 3 was selected via BIC computed for d = 1, ..., 20,

which is reliable for such a large sample size. The proximity measure r (26)

between the two reference spaces is r(B̂SIR, B̂st-SIR) = 0.95. SIR and st-SIR

are identifying approximately the same same e.d.r. space.

5.3. Results

Let B̂SIR
i , B̂st-SIR

i be the estimations of the basis of the e.d.r. space for the

random subsets Xa
i , i = 1, . . . , 1000 using respectively SIR and Student SIR.

The proximity measures rSIRi = r(B̂SIR, B̂SIR
i ) and rst-SIRi = r(B̂st-SIR, B̂st-SIR

i )

are considered. All results are obtained setting the number of slices to h = 10.

The means (and standard deviations) of the resulting proximity measures

r are respectively 0.86(0.09) for SIR and 0.87(0.09) for Student SIR. The

experiment is better visualized in Figure 1 (a) where histograms show that

Student SIR performs better than SIR most of the time. As expected SIR is

less robust than Student SIR, obtaining with a higher frequency low values of

r. The histograms show a difference between values around r = 0.96 (23.8%

of random subsets for Student SIR, 17.2% for SIR).

In the second test, the sample size of the subsets is increased to nb =

30, 000. Accordingly, the number of slices is increased to h = 100. Not

surprisingly, the means (and standard deviations) of rSIRi and rst-SIRi are in-

creasing to 0.97(0.04) and 0.99(0.00). Student SIR however still performs

better than SIR (Figure 1 (b)) with some low values of the proximity mea-

sure for SIR while Student SIR has almost all the values (93.4% of random
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subsets) concentrated around r = 0.98. The difference between the two ap-

proaches is then further emphasized in Figure 2 where the cloud of points

in the upper left corner of the plot corresponds to datasets for which SIR

was not able to estimate a correct basis of the e.d.r space while Student SIR

shows good performance. Even if the true e.d.r space is unknown, this analy-

sis suggests that Student SIR is robust to outliers and can be profitably used

in real applications.
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Figure 1: Histograms of the proximity measure (26) rSIRi = r(B̂SIR, B̂SIR
i ) (blue) and

rst-SIRi = r(B̂st-SIR, B̂st-SIR
i ) (red) for i = 1, . . . , 1000 random subsets of X of size na=3000

(a) and nb=30,000 (b).
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Figure 2: Horizontal axis rSIRi , vertical axis rst-SIRi , i = 1, . . . , 1000, proximity measures

computed using subsets of X of size nb = 30, 000. Almost all points are lying above the

line y = x indicating that Student SIR improves SIR results and significantly so for the

subsets in the upper left corner.
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Model X Method

SIR CP-SIR WCAN WIRE SIME st-SIR

(i) .99(.01) .99(.01) .98(.01) .98(.01) .99(.01) .99(.01)

I (ii) .63(.18) .92(.04) .88(.06) .87(.07) .91(.04) .98(.01)

(iii) .99(.01) .86(.12) .72(.27) .98(.01) .97(.01) .99(.01)

(i) .99(.01) .98(.01) .98(.01) .98(.01) 98(.01) .99(.01)

II (ii) .61(.18) .92(.04) .89(.06) .87(.08) .91(.05) .98(.01)

(iii) .99(.01) .67(.25) .69(.28) .98(.01) .97(.02) .99(.01)

(i) .88(.06) .87(.06) .89(.05) .86(.06) .87(.06) .87(.06)

III (ii) .40(.13) .78(.10) .78(.11) .76(.11) .78(.10) .85(.06)

(iii) .84(.07) .63(.12) .67(.13) .85(.07) .85(.07) .84(.07)

(a)

Model X n Method

SIR CP-SIR WCAN WIRE SIME st-SIR

I

(i)

50 .95(.03) .91(.09) .86(.11) .88(.11) .90(.08) .95(.03)

100 .98(.01) .96(.03) .96(.03) .95(.03) .96(.02) .98(.01)

200 .99(.01) .99(.01) .98(.01) .98 (.01) .99(.01) .99(.01)

400 1(.00) .99(.00) .99(.00) .99 (.01) .99(.00) 1(.00)

(ii)

50 .60(.22) .66(.18) .57(.23) .49(.24) .59(.21) .90(.07)

100 .62(.21) .85 (.08) .78(.11) .73(.15) .81(.10) .96(.02)

200 .62(.20) .92(.04) .88(.06) .87(.07) .91(.04) .98(.01)

400 .62(.18) .96(.02) .94(.03) .93(.03) .96(.02) .99(.00)

(iii)

50 .95(.02) .45(.29) .18(.19) .73(.25) .86(.09) .95(.02)

100 .98(.01) .66(.25) .35(.29) .94(.04) .94(.04) .98(.01)

200 .99(.01) .86(.12) .72(.27) .98(.01) .97(.01) .99(.00)

400 .99(.00) .96(.04) .96(.04) .93(.03) .99(.01) .99(.00)

(b)

Table 1: (a) Average of the proximity measure r (eq. (26)) for sample size n = 200; and

(b) effect of sample size n on the average proximity measure r, both over 200 repetitions

with standard deviation in brackets. Six methods are compared. SIR: sliced inverse

regression; CP-SIR: contour projection for SIR; WCAN: weighted canonical correlation;

WIRE: weighted sliced inverse regression estimation; SIME: sliced inverse multivariate

median estimation and st-SIR: Student SIR. In all cases, the number of slices is h = 5 and

the predictor dimension p = 10. Best r values are in bold.
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Model X h Method

SIR CP-SIR WCAN WIRE SIME st-SIR

I

(i)

2 .96(.02) .95(.03) .98(.01) .94(.03) .95(.03) .95(.02)

5 .99(.01) .98(.01) .98(.01) .98(.02) .98(.01) .99(.00)

10 .99(.00) .99(.01) .98(.01) .98 (.01) .98(.01) 1(.00)

20 1(.00) .99(.01) .98(.02) .98 (.02) .98(.01) 1(.00)

(ii)

2 .60(.18) .90(.05) .60(.34) .87(.06) .89(.06) .95(.02)

5 .62(.18) .92 (.04) .89(.06) .88(.07) .92(.04) .98(.01)

10 .63(.19) .92(.04) .88(.07) .87(.07) .86(.08) .99(.00)

20 .65(.21) .91(.05) .85(.08) .85(.08) .69(.14) 1(.00)

(iii)

2 .96(.02) .91(.06) .84(.20) .95(.02) .94(.05) .95(.02)

5 .99(.00) .64(.26) .67(.28) .98(.01) .98(.01) .99(.00)

10 1(.00) .63(.26) .48(.31) .98(.01) .98(.01) 1(.00)

20 1(.00) .53(.28) .43(.30) .98(.01) .98(.01) 1(.00)

(a)

Model Y ν Method

SIR CP-SIR WCAN WIRE SIME st-SIR

(iii)

I

.5 .99(.01) .98(.01) .96(.02) .96(.02) .98(.01) .99(.01)

.2 .99(.01) .96(.02) .87(.15) .97(.01) .97(.01) .99(.01)

.1 .99(.01) .86(.12) .72(.27) .98 (.01) .97(.01) .99(.01)

.05 .99(.01) .58(.24) .65(.30) .98 (.01) .97(.01) .99(.01)

II

.5 .99(.01) .98(.01) .96(.02) .96(.02) .98(.01) .99(.01)

.2 .99(.01) .96 .03) .86(.16) .98(.01) .98(.01) .99(.01)

.1 .99(.01) .67(.25) .69(.28) 98(.01) .97(.02) .99(.01)

.05 .99(.01) .28(.24) .59(.29) 98(.01) .97(.01) .99(.01)

III

.5 .88(.06) .85(.07) .84(.08) .77(.11) .87(.06) .88(.05)

.2 .84(.07) .76(.12) .71(.13) .84(.08) .86(.06) .84(.07)

.1 .84(.07) .63(.12) .67(.13) .85(.07) .85(.07) .84(.07)

.05 .83(.07) .58(.10) .65(.13) .86(.07) .86(.07) .82(.07)

(b)

Table 2: Effect of the number of slices (a) and of inlier magnitude ν (b) on the average

proximity measure r (eq. (26)), over 200 repetitions with related standard deviation in

brackets. Six methods are compared. SIR: sliced inverse regression; CP-SIR: contour

projection for SIR; WCAN: weighted canonical correlation; WIRE: weighted sliced inverse

regression estimation; SIME: sliced inverse multivariate median estimation and st-SIR:

Student SIR. In all cases, the sample size is n = 200 and the predictor dimension p = 10.

Best r values are in bold.
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Model - X df Method

SIR st-SIR

3 .94(.05) .99(.00)

I - (ii) 5 .98(.02) .99(.00)

7 .98(.01) .99(.00)

10 .99(.01) .99(.00)

3 .94(.05) .99(.00)

II - (ii) 5 .97(.02) .99(.00)

7 .98(.01) .99(.00)

10 .99(.01) .99(.00)

3 .82(.08) .90(.04)

III - (ii) 5 .88(.05) .92(.03)

7 .90(.04) .92(.03)

10 .90(.04) .92(.03)

30 .91(.03) .92(.03)

Model - X n Method

SIR st-SIR BIC

200 .00(.00) .13(.05) 25/200

300 .01(.00) .09(.03) 109/200

III-(i) 400 .04(.01) .33(.16) 156/200

500 .05(.01) .43(.17) 189/200

1000 .10(.02) .51(.17) 200/200

200 .00(.00) .13(.05) 21/200

300 .01(.00) .09(.05) 19/200

III-(ii) 400 .04(.01) .33(.20) 39/200

500 .05(.01) .43(.18) 90/200

1000 .10(.02) .51(.20) 200/200

200 .00(.00) .13(.05) 0/200

300 .01(.00) .13(.04) 12/200

III-(iii) 400 .04(.01) .38(.16) 22/200

500 .05(.01) .34(.13) 16/200

1000 .10(.02) .51(.17) 198/200

(a) (b)

Table 3: (a) Effect of the degree of freedom (df) on the average of the proximity measure r

(eq.(26)) for sample size n = 200, the number of slices is h = 5 and the predictor dimension

p = 10; and (b) Effect of the sample size on the computational time in seconds (standard

deviations in brackets) and ratio of correct selections (d = 2) for BIC over 200 runs.
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6. Conclusion and future work

We proposed a new approach referred to as Student SIR to robustify SIR.

In contrast to most existing approaches which aim at replacing the standard

SIR estimators by robust versions, we considered the intrinsic characteriza-

tion of SIR as a Gaussian inverse regression model [9] and modified it into

a Student model with heavier tails. While SIR is not robust to outliers,

Student SIR has shown to be able to deal with different kind of situations

that depart from normality. As expected, when SIR provides good results,

Student SIR is performing similarly but at a higher computational cost due

to the need for an EM iterative algorithm for estimation.

Limitations of the approach include the difficulty in dealing with the case

p > n or when there are strong correlations between variables. Student SIR

as well as SIR still suffer from the need to inverse large covariance matrices.

A regularization, to overcome this problem, has been proposed in [10] and

could be extended to our Student setting. Another practical issue is how to

set the dimension d of the central subspace. We have proposed the use of

BIC as a natural tool in our maximum likelihood setting. It provided good

results but may be not suited when the sample size is too small. A more

complete study and comparison with other solutions would be interesting.

To conclude, Student SIR shows good performance in the presence of

outliers and is performing equally well in case of Gaussian errors. In our

experiments, the algorithm has shown fast convergence being a promising

alternative to SIR since nowadays most datasets include outliers. Future

work would be to extend this setting to a multivariate response following the

lead of [34, 35].
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7. Appendix: Proofs

7.1. Proof of Proposition 1

The proof generalizes the proof of Proposition 6 in [9] to the general-

ized Student case. It comes from (7) that Xy follows a generalized Student

distribution Sp(µy,V, α) where µy = µ+ VBc(y). Generalized Student dis-

tributions have similar properties to Gaussian distributions (see for instance

section 5.5 in [16]). In particular any affine transformation of a generalized

Student distribution remains in this family. It follows that BTX|Y = y is

distributed as Sd(BTµy,B
TVB, α). Similarly, marginals and conditional dis-

tributions are retained in the family. It follows that X|BTX = BTx, Y = y

is also a generalized Student distribution Sp(µ̃, Ṽ, α̃, γ̃) with

µ̃ = µy + VB(BTVB)−1(BTx−BTµy)

= µ+ VB(BTVB)−1(BTx−BTµ)

Ṽ = V −VB(BTVB)−1BTV

α̃ = α + d

γ̃ =
1

2
+ (BTx−BTµy)

T (BTVB)−1(BTx−BTµy)

=
1

2
+ εTB(BTVB)−1BTε ,

from which it is clear that Ṽ, α̃, γ̃ and µ̃ do not depend on y. It follows that

X|BTX = BTx, Y = y has the same distribution as X|BTX = BTx for all

values x. Consequently Y is independent on X conditionally to BTX which

implies that Y |X = x and Y |BTX = BTx have identical distributions for all

values x.

Note that for the proof of the proposition, it was necessary to show that

the independence on y holds for each parameter of the distribution and not

only for the mean. The independence on y of the mean is actually straight-

forward using [9] where it appears that the proof that E[X|BTX, Y = y]

27



does not depend on y is independent on the distribution of ε. Indeed the

proof uses only the properties of the conditional expectation seen as a pro-

jection operator. This means that in our case also, B corresponds to the

mean central subspace as defined by E[X|BTX, Y = y] = E[X|BTX].

7.2. Proof of Lemma 1

The proof is adapted from the proof of lemma 1 in [10] taking into account

the additional quantities ūi’s. Let us remark that

R
def
= G(µ,V,B,C)− log det V =

1

n

n∑

i=1

ūiZ
T
i V−1Zi, (27)

where we have defined for i = 1, . . . , n,

Zi = µ+ VBCT si − xi (28)

= (µ− x̄ + VBCT s̄) + VBCT (si − s̄)− (xi − x̄) (29)

def
= Z1 + Z2,i − Z3,i. (30)

Since Z2,. and Z3,. are centered, replacing the previous expansion in (27)

yields

R = ū ZT
1 V−1Z1+ 1

n

∑n
i=1 ūiZ

T
2,iV

−1Z2,i+
1
n

∑n
i=1 ūiZ

T
3,iV

−1Z3,i− 2
n

∑n
i=1 ūiZ

T
2,iV

−1Z3,i,

where

ZT
1 V−1Z1 = (µ− x̄ + VBCT s̄)TV−1(µ− x̄ + VBCT s̄),

1

n

n∑

i=1

ūiZ
T
2,iV

−1Z2,i = tr(CTWCBTVB),

1

n

n∑

i=1

ūiZ
T
3,iV

−1Z3,i =
1

n

n∑

i=1

ūitr((xi − x̄)TV−1(xi − x̄))

=
1

n

n∑

i=1

ūitr(V
−1(xi − x̄)(xi − x̄)T )

= tr(V−1Σ) and

1

n

n∑

i=1

ūiZ
T
2,iV

−1Z3,i = tr(CTMB),

and the conclusion follows.
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7.3. Proof of Proposition 2

Cancelling the gradients of G(µ,V,B,C) yields the system of equations

1

2
∇µG = V̂−1(µ̂− x̄ + V̂B̂ĈT s̄) = 0, (31)

1

2
∇BG = V̂B̂ĈT (ūs̄s̄T + W)Ĉ−MT Ĉ + ū(µ̂− x̄)s̄T Ĉ = 0, (32)

1

2
∇CG = ū(s̄s̄T ĈB̂T V̂B̂ + s̄(µ̂− x̄)T B̂) + WĈB̂T V̂B̂−MB̂ = 0, (33)

∇VG = V̂−1 + B̂ĈT (ūs̄s̄T + W)ĈB̂T+ (34)

− V̂−1
(
ū(µ̂− x̄)(µ̂− x̄)T + Σ

)
V̂−1 = 0. (35)

From (31), we have

µ̂ = x̄− V̂B̂ĈT s̄. (36)

Replacing in (32) and (33) yields the simplified system of equations

V̂B̂(ĈTWĈ) = MT Ĉ, (37)

WĈ(B̂T V̂B̂) = MB̂. (38)

It follows from the last equality that

Ĉ = W−1MB̂(B̂T V̂B̂)−1 . (39)

Multiplying (37) by BTVB on the left, we get

V̂B̂ĈTWĈB̂T V̂B̂ = MT ĈB̂T V̂B̂, (40)

and assuming W is regular, (38) entails Ĉ(B̂T V̂B̂) = W−1MB̂. Replacing

in (40) yields

V̂B̂ĈTWĈB̂T V̂B̂ = MTW−1MB̂. (41)

Now, multiplying (34) on the left and on the right by V̂ and taking account

of (36) entails

Σ = V̂ + V̂B̂(ĈTWĈ)B̂T V̂. (42)

As a consequence of (42), it comes

ΣB̂ = V̂B̂(I + ĈTWĈB̂T V̂B̂), (43)
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and

V̂B̂ = Σ̂B̂(I + ĈTWĈB̂T V̂B̂)−1. (44)

Using this expression of V̂B̂ above in (41), it comes

B̂
(
I + (ĈTWĈB̂T V̂B̂)−1

)−1
= Σ−1MTW−1MB̂ , (45)

which means that the columns of B̂ are stable by Σ−1MTW−1M and thus are
eigenvectors of Σ−1MTW−1M. Let us denote by λ1, . . . , λd the associated
eigenvalues. Matrix Σ−1MTW−1M is of size p × p and of rank at most
min(h, p) since W is assumed to be regular. In practice we will assume h ≥ d
and p ≥ d. Therefore d ≤ min(h, p). It remains to show that λ1, . . . , λd are
the d largest eigenvalues. To this aim, we observe that using successively
(38) and (42),

G(µ̂, V̂, B̂, Ĉ) = log det V̂ + trace(ĈB̂T V̂B̂CTW) + trace(V−1Σ)− 2trace(B̂ĈTM)

= log det V̂ + trace(M̂B̂ĈT ) + p+ trace(M̂B̂ĈT )− 2trace(B̂ĈTM)

= p+ log det V̂.

Let us consider the two following matrices, ∆1 = BĈTWĈB̂T V̂ and ∆2 =

ĈTWĈB̂T V̂B. ∆1 is p × p of rank at most d and ∆2 is d × d of rank d,

invertible with positive eigenvalues denoted by δ1, . . . , δd . The eigenvalues

of ∆2 are that of ∆1 too. Indeed consider yk an eigenvector for δk, then

ĈTWĈB̂T V̂Byk = δkyk. Multiplying on the left by B̂ and considering

zk = B̂yk, it comes that δk is also an eigenvalue for ∆1. Using (42), it

follows then

log det V̂ = log det Σ− log det(I + ∆1) = log det Σ−
d∑

k=1

log(1 + δk) .

Multiplying (45) by B̂T and using B̂T B̂ = I, it comes

I + ∆−12 = (B̂TΣ−1MTW−1MB̂)−1 = diag(1/λk) from which δk = 1
1−λk − 1

can be deduced. Finally,

G(µ̂, V̂, B̂, Ĉ) = p+ log det Σ +
d∑

k=1

log(1− λk) .
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G is then minimized when the λk are the largest. As a consequence of (42),

it also comes that

V̂ = Σ− V̂B̂(ĈTWĈ)B̂T V̂. (46)

Replacing V̂B̂ in (46) by the expression given in (37), it comes

V̂ = Σ−MT Ĉ(ĈTWĈ)−1ĈTM. (47)

Grouping the results in (47), (39), (36) and the considerations after (45) gives

the Proposition.

7.4. Proof of Corollary 1.

Let us remark that, under (23), the coefficients Wij of W have an explicit

form:

W =
1

n

n∑

i=1

ūi (si − s̄)(si − s̄)T

=
1

n

n∑

i=1

ūi sis
T
i −

2

n

n∑

i=1

ūi sis̄
T +

1

n

n∑

i=1

ūi s̄s̄T

=
1

n

n∑

i=1

ūi sis
T
i −

2ff t

ū
+
ff t

ū

=
1

n

n∑

i=1

ūi sis
T
i −

ff t

ū
,

where f = (f1, ..., fh). Using (23) the first sum corresponds to diag(f1, ..., fh)

leading to W = diag(f1, ..., fh) −
ff t

ū
. The inverse matrix of W can be

calculated using Sherman-Morrison formula:

W−1 = diag

(
1

f1
, . . . ,

1

fh

)
+

1

fh+1

O,

where O is the h × h matrix defined by Oij = 1 for all (i, j) ∈ {1, . . . , h} ×
{1, . . . , h}. Using (23) the jth row of M is given by:
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1

n

n∑

i=1

ūi(1I{yi ∈ Sj} − s̄j)(xi − x̄)T =
1

n

n∑

i=1

ūi1I{yi ∈ Sj}xT
i −

1

n

n∑

i=1

ūi1I{yi ∈ Sj}x̄T

− 1

n

n∑

i=1

ūis̄jx
T
i +

1

n

n∑

i=1

ūis̄jx̄
T

= fjx̄j
T − fjx̄T − fjx̄T + fjx̄

T

= fj(x̄j − x̄)T ,

for all j = 1, . . . , h. Now taking into account that O2 = hO, we have

MTW−1M =
h∑

j=1

fj(x̄j − x̄)(x̄j − x̄)T +
1

fh+1

MTOM

=
h∑

j=1

fj(x̄j − x̄)(x̄j − x̄)T +
1

hfh+1

(MTO)(MTO)T . (48)

Now, remarking that all the columns of MTO are equal to

h∑

j=1

fj(x̄j − x̄) =
h+1∑

j=1

fj(x̄j − x̄)− fh+1(x̄h+1 − x̄) = −fh+1(x̄h+1 − x̄),

where fh+1 = 1
n

n∑

i=1

ūi1I{yi ∈ Sh+1} = ū−
h∑

j=1

fj it follows that

(MTO)(MTO)T = hf 2
h+1(x̄h+1 − x̄)(x̄h+1 − x̄)T

and thus replacing in (48) yields

MTW−1M =
h+1∑

j=1

fj(x̄j − x̄)(x̄j − x̄)T = Γ.

The result is then a consequence of Proposition 2.
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4
KNOCKOFF SIR

The inferno of the living is not something that will be; if there is one,

it is what is already here, the inferno where we live every day,

that we form by being together. There are two ways to escape suffering it.

The first is easy for many: accept the inferno and become such a part of it

that you can no longer see it. The second is risky and demands constant

vigilance and apprehension: seek and learn to recognize who and what,

in the midst of inferno, are not inferno, then make them endure,

give them space.

I.Calvino.

This last chapter is dedicated to the development of an extension of SIR providing

sparse solutions and able to perform variable selection. The strategy to achieve

sparsity differs from what can be found in [49] or [52] where the shrinkage idea if

lasso is adapted to SIR. The solution given in the following makes use of knockoff filters

([5]). A knockoff filter is a copy of the original dataset X with certain properties that will

be discussed in the next section. In section 4.2 the adaptation to SIR is described and

motivated by a theorem. Finally the two remaining sections are dedicated respectively to

the analysis of simulation results and a real data application.
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CHAPTER 4. KNOCKOFF SIR

4.1 Knockoff filter

Let X= {x1, ..., xn} ∈Rp×n be the set of observed predictors and denote by Σ̂=XTX. It is

further assumed without loss of generality E(X) = 0 and diag(Σ̂) = 1. A knockoff filter

X̃= {x̃1, ..., x̃n} ∈Rp×n is a set of points such that:

(4.1) X̃TX̃= Σ̂ and XTX̃= Σ̂−diag{s}

where s is a p-dimensional nonnegative vector. The knockoff has the same structure of

the covariance matrix. Couples variables of X, (X j,Xk) (columns of X) and (X j,X̃k) have

the same correlation for k 6= j. On the diagonal, results that:

(4.2) XT
j X̃ j = Σ̂ j j − s j = 1− s j.

In other words each variable X j interacts with the other variables Xk in the same way as

the knockoffs X̃k for k 6= j. The comparison of a variable X j and its knockoff X̃ j gives a

correlation of 1− s j; the choice of s is crucial to allow our procedure to distinct a knockoff

copy from the true variable. Let us concatenate X and the knockoff X̃, [X,X̃] ∈R2p×n and

look at:

(4.3) Σ̃= [X , X̃ ]T[X , X̃ ]=
[

Σ̂ Σ̂−diag{s}

Σ̂−diag{s} Σ̂

]
,

for our purpose Σ̃must be a covariance matrix and therefore positive semidefinite. This is

true, as stated in [5], when diag{s} and 2Σ̂−diag{s} are positive semidefinite. A knockoff

filter can be obtained using the following formula:

(4.4) X̃= ATX+ (ŨC)T ,

where A = (I − Σ̂−1diag{s}), Ũ is a n× p matrix orthogonal to the span of the columns of

X, Span{X }, and CCT = 2diag{s}−diag{s}Σ̂−1diag{s}. Such Ũ exists only if n ≥ 2p. This

assumption is not restrictive and lies in the comfort zone for SIR, it is in fact well

known that when n ≤ p instabilities arise in the inversion of the covariance matrix [9].

Depending on the choice of s knockoffs with different properties are considered in [5]:

Equi-correlated knockoffs. In this case all couples of variables are required to have

the same correlation, for all j:

(4.5) XT
j X̃ j = 1−min{2λmin(Σ̂),1}.

where λmin(Σ̂) is the smallest eigenvalue of the matrix Σ̂. In case of equi-correlated

knockoffs this choice of s minimizes the absolute value of the correlation |XT
j X̃ j|.

100



4.2. MAIN RESULT: KNOCKOFF SIR

SDP knockoffs. A different possibility is to drop the equi-correlated assumption and

provide the minimal average correlation for each pair of variables:

(4.6)

minimize
∑

j
(1−s j) such that 0≤ s j ≤ 1 and 2Σ̂−diag{s} is positive semidefinite.

This optimization problem can be efficiently solved via semidefinite programming

(SDP).

A fast implementation in Matlab allows to generate both (see Matlab package), through

the analysis the first typology of knockoffs variables has been used.

4.2 Main result: Knockoff SIR

In this section the main result is presented: a theorem on the behavior of SIR when the

knockoffs are added to the analysis. Let us show first the following Lemma:

Lemma 4.1. The SIR covariance matrix Γ̃ (see subsection 1.2.3) for the concatenation
[X,X̃] has the form:

(4.7) Γ̃=
[
Γ̃1 Γ̃2

Γ̃3 Γ̃4

]

where the four p× p matrices are

(i) Γ̃1 = Γ̂ the covariance matrix for SIR calculated on X

(ii) Γ̃2 = Γ̂A

(iii) Γ̃3 = AT Γ̂

(iv) Γ̃4 = AT Γ̂A+
h∑

j=1

1
n jn

n∑
i=1

I[yi ∈ s j] f̃ i f̃ T
i , where f̃ i = (ŨC)T

i is a column vector,

n j =∑n
i=1 I[yi ∈ s j] and A, C and Ũ are from equation (4.12).

Proof. After dividing Y in h slices {s1, ..., sh} (subsection 1.2.3) the SIR covariance matrix

has the form:

(4.8) Γ̂=
h∑

j=1

n j

n
m̂ jm̂T

j
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where m̂ j = 1
n j

n∑
i=1

xiI[yi ∈ s j]. From (4.8) is straightforward to see that Γ̃1 = Γ̂ since only

the first p variables of [X,X̃] are involved in the calculation and thus only X contributes.

For Γ̃2 from the definition follows that:

(4.9) Γ̃2 =
h∑

j=1

n j

n
m̂ jm̃T

j ,

where m̃ j = 1
n j

n∑
i=1

x̃iI[yi ∈ s j]= 1
n j

n∑
i=1

(AT xi + (ŨC)T
i)I[yi ∈ s j]. Therefore it follows that:

(4.10) Γ̃2 =
h∑

j=1

n j

n
m̂ jm̂T

j A+
h∑

j=1
m j

(
1
n j

n∑
i=1

(ŨC)iI[yi ∈ s j]

)
.

The first term of this equation is simply Γ̂A, the second term is a p× p zero matrix since

by construction XŨ = 0. A similar procedure gives Γ̃3 and Γ̃4.

�

Theorem 4.1. Given the predictors X= {x1, ..., xn} ∈Rp×n and a response variable
Y = {y1, ..., yn} ∈ Rn×1 let us denote by B̂ the SIR estimator of B ∈ Rp×k in the following
regression model:

(4.11) Y = f (XB,ε)

where f is an unknown link function and ε is a random error independent of X. The
k-columns of B span the e.d.r. space [47]. When n > 2p let us consider a knockoff filter
X̃ ∈Rp×n of the form:

(4.12) X̃= ATX+ (ŨC)T ,

defined in the previous section, and the concatenation [X,X̃] ∈R2p×n. The SIR estimator
B̃ ∈R2pxk for the concatenation [X,X̃] has each column B̃ j of the form:

(4.13) B̃ j = [B̂ j,0]

where 0 is a p-dimensional vector of all zeros.

Proof. Without loss of generality let E([X,X̃]) = 0 and let us focus on the case where

k = 1, B̃ ∈R2p×1. For construction it follows:

(4.14) Σ̃= [X , X̃ ]T[X , X̃ ]=
[

Σ̂ Σ̂−diag{s}

Σ̂−diag{s} Σ̂

]
,
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for a given vector s, where Σ̂=XTX. We want to show that

(4.15) Γ̃B̃=λΣ̃B̃.

Using Lemma 4.1 and B̃ j = [B̂ j,0] is easy to see that the problem can be decomposed in

two parts:

Γ̂B̂=λΣ̂B̂(4.16)

AT Γ̂B̂=λ(Σ̂−diag(s))B̂,(4.17)

since Γ̂ is the covariance matrix of SIR the first equation holds true, the second follows

immediately using A = (I − Σ̂−1diag{s}). �

This theorem shows that when the knockoff filter is added we can expect that SIR

will privilege the true variables against the copies. Analyzing each component in the

estimated directions B̂i, i = 1, ..,k it is possible to compare the values obtained with the

corresponding one of the copy. What is expected is that when the true direction Bi has

non null components Bi,1, ...,Bi,p the estimated values B̂i,1, ...,B̂i,p and the copies will

differ significantly. Therefore for each direction found by SIR on the concatenation [X,X̃]

we claim that it is possible to distinguish the variables involved and the one that are not.

In particular when different knockoff filters are applied to the same dataset X a statistic

can be extracted, the components that behave like their copies are to be discarded while

the ones that differ are to be considered informative.

Knockoff SIR in practice. Knockoff SIR proceeds first to the calculation of N dif-

ferent knockoff filters starting from X ∈ Rp×n. Let us assume that the e.d.r space has

dimension k = 1 to lighten the notation. The N e.d.r. directions found by SIR applied to

the N concatenations produce B̃1, ...,B̃N . The following p statistics are considered:

(4.18) {(B̃1,i, ...,B̃N,i), (B̃1,i+p, ...,B̃N,i+p)} for i = 1, ..., p

A Wilcoxon-Mann-Whitney test is used to establish if the two samples {B̃1,i, ...,B̃N,i}

and {B̃1,i+p, ...,B̃N,i+p} are coming from the same distribution, which means the variable i
should not be selected, or from different ones which means the variable i is informative

and must be selected. This result enforce sparsity of the solution without any constraint

on the number of non null entries (that is unknown). The following two sections are

dedicated to show the results on simulated and real data.
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4.3 Simulation results

In this section two test cases are considered with different e.d.r. space dimension (k = 1,2).

Test case A: k = 1. Let us consider the following regression problem:

(4.19) Y = (x1 + x2 + x3 −10)2 +ε,

where X= (x1, ..., x10) ∈R10 is a vector of independent standard normal distributions

and ε is a standard normal error independent of X. In accordance to [52] we consider the

True Inclusion Rate (TIR), the ratio of the number of correctly identified active predictors

to the number of truly active predictors; and the False Inclusion Rate (FIR), the ratio of

the number falsely identified active predictors to the total number of inactive predictors.

In our test there are 3 active predictors and 7 inactive. A study on the sensitivity to the

number of sample n is shown in Table 4.3. Results are obtained over 100 repetitions,

in each repetition 1000 knockoff filters are generated to provide a statistic and the

Wilcoxon-Mann-Whitney test at significance level α= 0.05 has been applied to each of

the p-predictors to establish if they must be considered active or inactive. In Table 4.3

the capability of Knockoff SIR are shown, it is evident how, even when the number of

samples is small, good results are obtained with high value of TIR and low value of FIR.

n TIR FIR #-slices
25 .81(.25) .48(.20) 2
50 1(.0) .16(.16) 5
75 1(.0) .09(.12) 7
100 1(.0) .08(.10) 10
150 1(.0) .08(.11) 15
200 1(.0) .06(.11) 20
250 1(.0) .05(.08) 25
300 1(.0) .04(.08) 30
400 1(.0) .04(.06) 30

TABLE 4.1. Study on the sensitivity to the number of sample n, averages (and
standard deviation in brackets) are obtained over 100 iterations. True
Inclusion Rate (TIR) and False Inclusion Rate (FIR) are shown. The number
of slices has been selected such that at least 10 samples are contained in
each slice.

Selection of the number of e.d.r. directions k. An analysis of the active predictors

for the second direction found by Knockoff SIR evidence that this method can be used to
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select the dimension k. In the example k = 1 only the first component brings information.

On the second direction found (n = 200) over 100 repetitions on the average 0.04 (0.06)

predictors have been found active pointing out that this direction is not reliable. For the

third direction the average of active predictors is decreasing (as expected for the property

of SIR) to 0.01(.04), the trend is common in all directions.

Test case A: k = 2. Let us consider the following regression problem:

(4.20) Y = sign (βT
1 X) log(|βT

2 X+5|)+0.2ε

where X= (x1, ..., x20) ∈R20 is a vector of independent standard normal distributions

and ε is a standard normal error independent of X. Two configurations are considered

for the e.d.r. directions β1,β2:

(i) β1 = (1,1,1,1,0, ...,0), β2 = (0, ...,0,1,1,1,1)

(ii) β1 = (1,1,0.1,0.1,0, ...,0), β2 = (0, ...,0,0.1,0.1,1,1)

For each configuration 100 replications are considered to evaluate the average TIR and

FIR. The e.d.r. directions found by SIR have the property that Span{β̂1, β̂2}=Span{β1,β2}

this does not imply that the e.d.r. directions correspond directly to the true. A generaliza-

tion of TIR and FIR to multiple dimension is needed to account this property. TIR and

FIR are calculated as follows:

• For the two e.d.r. directions compute two binary p-vectors, h1 and h2. When the

i-variable is active assign one, otherwise zero.

• TIR is the ratio of the number of identified active components of max(h1,h2) over

the number of truly active components of β1
⋃
β2.

• FIR is the ration of the number of inactive components of max(h1,h2) over the

number of inactive components of β1
⋃
β2.

The results in Table 4.3 show that Knockoff SIR is capable of dealing with multiple

dimension when the relative importance of the variable is equal (case (i)) but, in analogy

with [49] has troubles in identifying the variables with a small relative importance. In

the second configuration (ii) half of the active variables have 0.1 weight that is not

retrieved by Knockoff SIR.
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TIR FIR
(i) .95(.09) .01(.03)
(ii) .52(.05) .01(.03)

TABLE 4.2. Study under different configurations, (i)−(ii), of the e.d.r. directions.
The average and the standard deviation (in brackets) are calculated over
100 iterations.

Selection of the number of e.d.r. directions k. An extremely interesting behavior

is shown when the procedure is applied to the third direction, the analysis of the

eigenvalues in Figure 4.1 suggests that the first two directions are to be considered

but the third and the following are uncertain. The result of Knockoff SIR shows that, in

both configurations, all variables in the third direction are inactive. The same trend is

observed in each direction associated with smaller eigenvalues.

0 5 10 15 20 25
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0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
eigenvalues

Figure 4.1: Barplot of the eigenvalues relative to the e.d.r. direction found by SIR applied
to X with no knockoffs.
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4.4 A real data application

The Galaxy dataset discussed in Collaborative SIR and Student SIR has been used as

a real data application and to compare to the other contributions to verify if consistent

results are given through the analysis. The Galaxy dataset corresponds to n = 362,887

different galaxies. This dataset is used in [15] with a preprocessing based on expert

supervision to remove outliers. In this study all the original observations are considered,

removing only points with missing values, which requires no expertise. The response

variable Y is the stellar formation rate. The predictor space X is made of spectral

characteristics of the galaxies and is of dimension p = 46. Knockoff SIR has been used

to identify which are the active variables in the e.d.r. directions, from Student SIR we

have a hint that the e.d.r. space dimension k should be 3. This is confirmed by the naive

analysis of the eigenvalues in Figure 4.2 obtained by SIR on the original Galaxy data X.

Extensive tests have been made adding knockoff filters to the analysis. For eigenvectors

corresponding to the first five higher eigenvalues 1000 different knockoff filters have been

used to provide a statistic to assign to each variable an active or inactive label. In the first

e.d.r. directions the only active variables found are {2,3,23,40,45} matching the results of

Collaborative SIR, the variable 6 selected by Collaborative SIR is not estimated active in

any of the first three e.d.r directions, doubts can be cast to the selection of variable 6 for

the analysis. According to the result of BIC in Student SIR we tested the e.d.r. directions

relative to the five highest eigenvalues obtaining that for the first three e.d.r. directions

active variables have been found. Grouping the active variables through the first three

directions gives only seven variables: {2,3,23,40,42,43,45}. This means that by default

the analysis could be directly performed on the seven predictors avoiding the other 39.

The fourth and fifth and further directions with smaller eigenvalues resulted with no

active variables supporting the decision of Student SIR.

Comments. Knockoff SIR is a procedure that rather than providing sparse solutions

provides insight to orient the analysis selecting only some variables in the predictor

space. If inactive variables through all the considered directions are found they can be

removed from the beginning as a preliminary dimension reduction before rerunning

SIR. The use of Knockoff SIR in the selection of dimension k, even if no theoretical

results have been established is of great interest. Further studies will be dedicated to a

better understanding of this phenomena and to find better statistics to discard active

and inactive variables. The computational complexity is for each run the one of SIR on

the concatenation of X and its knockoff filter.
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Figure 4.2: Barplot of the eigenvalues relative to the e.d.r. direction found by SIR applied
to the Galaxy dataset X with no knockoffs.
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CONCLUSION

I realized then that a man who had lived

only one day could easily live for a hundred years in prison.

He would have enough memories to keep him from being bored

A.Camus.

D imension reduction is a broad field that can be seen through the eyes of a Math-

ematician as well as from a Poet. Both approaches select or enhance different

characteristics of a phenomena. In this thesis three different extensions of the

well known method SIR have been proposed. Each contribution is focusing on a different

aspect of the original method trying to improve or at least to better explore under which

conditions this method can be applied, when could not work and what can bring to the

analysis. I believe that Statistics is a powerful tool to analyze and look at the data, but I

also tend to agree completely with the following sentence from R.D. Cook extracted by

[20]:

Findings that are not accompanied by an understanding of how the data and model
interacted to produce them should ordinarily be accompanied by a good dose of skepticism.

The increasing capability of the technology to gather data is bringing new exciting

problems to Statistics and dimension reduction seems to be of greater importance now. A

result of an algorithm, though, should be carefully analyzed before drawing conclusions

on the phenomena itself. Tim Harford delivered the 2014 Significance lecture at the
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Royal Statistical Society International Conference where he raised a question: Big data:
are we making a big mistake?. The idea of Harford is that when the dimension increases

the traps lying in the data become more and more tricky to discover. In my personal view

I see an analogy with the recycling process. If all products are thrown in the same bucket

is really hard to find a fast and effective solution to differentiate categories, indeed many

countries started the process of recycling from each house, separating in categories before

the "analysis". As is easy to see in the Galaxy dataset from the three different analysis it

appears that few variables are contributing to forecast the stellar formation rate, experts

should be more careful and try to avoid to cluster variables having faith in statistical

approaches to discard what is not informative. The understanding of the original prob-

lem should be good enough to judge the results of the algorithm that can orient further

analysis. The choice to analyze the Galaxy data in all our contributions gave us the

possibility to compare and check if the results obtained under different methodologies

were consistent. It is indeed the case and is encouraging for further analysis of this

dataset in collaboration with experts.

In the short term our project is to organize the material regarding Knockoff SIR in

a paper to have a feedback from the community. Extensions in the framework of Student

SIR are possible introducing a generalization of the multivariate t-Student distribution

with variable marginal amounts of tailweight. The different aspects of dimensionality

reduction explored brought me to develop a genuine interest for Computational Topology

which is under investigation thanks to the links established at TU Graz.

Not part of this thesis but part of my PhD is a paper [17] on classification published in

Pattern Recognition Letters and an unpublished paper with philosophical reasoning on

dimensionality reduction and classification that can be found here (by far my best work).
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