
THÈSE
Pour obtenir le grade de

DOCTEUR DE LA COMMUNAUTÉ UNIVERSITÉ
GRENOBLE ALPES
Spécialité : Mathématiques et Informatique

Arrêté ministérial : 25 mai 2016

Présentée par

Federico Pierucci

Thèse dirigée par Pr. Anatoli Juditsky
et codirigée par Dr. Jérôme Malick, Pr. Zaid Harchaoui

préparée au sein Laboratoire Jean Kuntzmann
et de École Doctorale Mathmatiques, Sciences et technologies de
l’information, Informatique

Nonsmooth Optimization
for Statistical Learning with
Structured Matrix Regularization

Thèse soutenue publiquement le 23 juin 2017,
devant le jury composé de :

Pr. Massih-Reza Amini
Université Grenoble Alpes, Grenoble, France, Président

Pr. Alexander Nazin
Institute of Control Sciences RAS, Moscow, Russia, Rapporteur

Pr. Stéphane Chrétien
National Physical Laboratory, Teddington, Middlesex, UK, Rapporteur

Dr. Nelly Pustelnik
CNRS, ENS Lyon, Lyon, France, Examinatrice

Pr. Joseph Salmon
TELECOM ParisTech, Paris, France, Examinateur

Pr. Anatoli Juditsky
Université Grenoble Alpes, Grenoble, France, Directeur de thèse

Dr. Jérôme Malick
CNRS, Université Grenoble Alpes, Grenoble, France, Co-Directeur de thèse

Pr. Zaid Harchaoui
University of Washington, WA, USA, Co-Directeur de thèse

Contents

1 First-order optimization for machine learning: context and contributions 12

1.1 Elements of statistical learning . 12

1.1.1 Predictor functions . 13

1.1.2 Find the model in theory . 14

1.1.3 Find the model in practice . 14

1.1.4 Regularized problems . 15

1.1.5 Parameter tuning . 15

1.2 Elements of convex optimization . 16

1.2.1 Basic elements for convex analysis . 16

1.2.2 Convex optimization problems . 18

1.2.3 Gauges and atomic norms . 20

1.2.4 Oracle . 20

1.2.5 Optimization algorithms . 24

1.3 First order algorithms for convex optimization - unconstrained case 29

1.3.1 Gradient descent algorithm . 31

1.3.2 Proximal gradient algorithm . 32

1.3.3 Accelerated proximal gradient algorithm . 34

1.3.4 Accelerated gradient descent algorithm . 36

1.3.5 Composite conditional gradient algorithm . 36

1.3.6 Lagrangian matching pursuit algorithm . 38

1.4 First order algorithms for convex optimization - constrained case 39

1.4.1 Projected subgradient algorithm . 39

1.4.2 Projected gradient algorithm . 40

1.4.3 Conditional gradient algorithm . 42

1.4.4 Matching pursuit algorithm . 44

1.4.5 Orthogonal matching pursuit algorithm . 45

1.4.6 Randomized incremental algorithm . 45

1.5 Machine learning applications . 47

1.5.1 Collaborative filtering for movie advertising . 47

1.5.2 Multiclass image classification . 48

1.6 Contributions in this context . 52

1.6.1 Group Schatten norm . 52

1.6.2 Smoothing techniques for learning with first-order optimization 53

1.6.3 Conditional gradient algorithms for doubly non-smooth learning 54

2

2 Group Schatten norm 57

2.1 Introduction . 57

2.2 Notation . 58

2.3 Group Schatten norm: Definition and examples . 58

2.4 Group nuclear norm as a convex surrogate . 60

2.5 Algorithms for learning with group p-Schatten norm 65

2.5.1 Group p-Schatten norm as regularization penalty 65

2.5.2 (Accelerated) proximal-gradient algorithm . 67

2.5.3 Composite conditional gradient . 68

2.6 Illustrations . 70

2.7 Proposed applications: Initial steps . 71

2.7.1 Multiclass classification . 71

2.7.2 Collaborative filtering with attributes . 74

2.7.3 Compression of a structured database . 75

2.7.4 Feature concatenation . 76

2.7.5 Combinations . 76

2.7.6 Object cosegmentation . 77

2.7.7 Unsupervised learning . 77

2.7.8 Issue of groups that are unions of other groups 77

3 Smoothing techniques for first-order optimization 78

3.1 Introduction . 78

3.1.1 Smoothing in optimization . 78

3.1.2 Contributions and outline of this chapter . 79

3.1.3 Recalls in convex analysis . 80

3.2 Smoothing by infimal convolution . 80

3.2.1 General construction and special cases . 81

3.2.2 A simple example of smoothing by saddle-point representation: absolute value . 84

3.2.3 An advanced example of smoothing by saddle-point representation: the top-k
function . 85

3.3 Smoothing by product convolution . 92

3.3.1 General construction . 92

3.3.2 Simple examples in R and Rn . 95

3.4 Smoothing-based first-order methods for doubly nonsmooth learning problems 98

3.4.1 Composite conditional gradient . 101

3.4.2 Accelerated proximal gradient algorithm . 103

3.4.3 Incremental gradient . 105

3.5 Algebraic calculus . 106

3.5.1 Fenchel-type approximation . 106

3.5.2 Product convolution approximation . 108

3.6 Smoothing of SVM with reject option . 109

3.6.1 Smoothing of piecewise affine convex functions 110

3.6.2 Smoothing the SVM with reject . 113

4 Conditional gradient algorithms for doubly non-smooth learning 117

4.1 Introduction . 117

4.2 Smooth optimization with atomic-decomposition regularization 118

4.2.1 Learning with atomic-decomposition norms . 118

4.2.2 Conditional gradient for smooth risk . 119

3

4.2.3 Extension to non-smooth empirical risk . 121

4.3 Motivating examples . 122

4.3.1 Collaborative filtering . 122

4.3.2 Multiclass learning . 122

4.4 Smoothed Conditional Gradient algorithms . 123

4.4.1 Smoothed Conditional Gradient algorithm . 124

4.4.2 Smoothed Composite Conditional Gradient Algorithm 127

4.4.3 Smoothing the empirical risk - Application to the motivating examples 130

4.4.4 Collaborative filtering . 131

4.4.5 Multiclass learning . 131

4.5 Experiments . 133

4.5.1 Implementation details . 134

4.5.2 Collaborative filtering . 136

4.5.3 Multi-class classification . 136

4.5.4 Competing approaches . 138

4.6 Conclusion . 141

4.7 Proofs . 144

4.8 Additional results . 148

5 Conclusion 153

5.1 Summary of contributions . 153

5.2 Potential future research topics . 154

A Useful results 169

A.1 Computing the top pair of singular vectors . 169

A.2 Projection on a norm-ball . 174

A.2.1 Examples of norm-balls . 174

A.2.2 Proximal operator of quadratic function . 175

A.3 Proofs of chapter 1 . 177

A.4 Computation of a support function without projection 179

4

Résumé

La phase d’apprentissage des méthodes d’apprentissage statistique automatique correspond à la résolution

d’un problème d’optimisation mathématique dont la fonction objectif se décompose en deux parties: a) le

risque empirique, construit à partir d’une fonction de perte, dont la forme est déterminée par la métrique

de performance et les hypothèses sur le bruit sur les données; b) la pénalité de régularisation, construite à

partir d’une norme ou fonction jauge, dont la structure est déterminée par l’information à priori disponible

sur le problème à résoudre.

Les fonctions de perte usuelles, comme la fonction de perte charnière pour la classification supervisée

binaire, ainsi que les fonctions de perte plus avancées comme celle pour la classification supervisée

avec possibilité d’abstention, sont non-différentiables. Les pénalités de régularisation comme la norme

ℓ1 (vectorielle), ainsi que la norme nucléaire (matricielle), sont également non-différentiables. Le but

de cette thèse est d’étudier les problèmes d’apprentissage doublement non-différentiables (perte non-

différentiable et régularisation non-différentiable), ainsi que les algorithmes d’optimisation numérique

qui sont en mesure de bénéficier de cette structure composite.

Dans le premier chapitre, nous présentons une nouvelle famille de pénalités de régularisation, les

normes de Schatten par blocs, qui généralisent les normes de Schatten classiques. Nous démontrons les

principales propriétés des normes de Schatten par blocs en faisant appel à des outils d’analyse convexe

et d’algèbre linéaire; nous retrouvons en particulier des propriétés caractérisant les normes proposées en

termes d’enveloppes convexes. Nous discutons plusieurs applications potentielles de la norme nucléaire

par blocs, pour le filtrage collaboratif, la compression de bases de données, et l’annotation multi-étiquettes

d’images.

Dans le deuxième chapitre, nous présentons une synthèse de différentes techniques de lissage qui per-

mettent d’utiliser pour le problème doublement non-lisse des algorithmes de premier ordre initialement

adaptés aux objectifs composites avec fonction de perte différentiable. Nous montrons comment le lis-

sage peut être utilisé pour lisser la fonction de perte correspondant à la précision au rang k, populaire pour

5

le classement et la classification supervises d’images. Nous décrivons dans les grandes lignes plusieurs

familles d’algorithmes de premier ordre qui peuvent bénéficier du lissage: i) les algorithmes de gradient

conditionnel; ii) les algorithmes de gradient proximal; iii) les algorithmes de gradient incrémental.

Dans le troisième chapitre, nous étudions plus en profondeur les algorithmes de gradient condi-

tionnel pour les problèmes d’optimisation non-différentiables d’apprentissage statistique automatique.

Nous montrons qu’une stratégie de lissage adaptatif associée à un algorithme de gradient conditionnel

donne lieu à de nouveaux algorithmes de gradient conditionnel qui satisfont des garanties de conver-

gence théoriques. Nous présentons des résultats expérimentaux prometteurs des problèmes de filtrage

collaboratif pour la recommandation de films et de catégorisation d’images.

Mots clés : méthodes de prémier ordre, gradient conditionnel, lissage, norme nucléaire, appren-

tissage automatique, optimisation mathématique

6

Abstract

Training machine learning methods boils down to solving optimization problems whose objective func-

tions often decomposes into two parts: a) the empirical risk, built upon the loss function, whose shape

is determined by the performance metric and the noise assumptions; b) the regularization penalty, built

upon a norm, or a gauge function, whose structure is determined by the prior information available for

the problem at hand.

Common loss functions, such as the hinge loss for binary classification, or more advanced loss func-

tions, such as the one arising in classification with reject option, are non-smooth. Sparse regularization

penalties such as the (vector) ℓ1-penalty, or the (matrix) nuclear-norm penalty, are also non-smooth. The

goal of this thesis is to study doubly non-smooth learning problems (with non-smooth loss functions and

non-smooth regularization penalties) and first-order optimization algorithms that leverage the composite

structure of non-smooth objectives.

In the first chapter, we introduce new regularization penalties, called the group Schatten norms, to

generalize the standard Schatten norms to block-structured matrices. We establish the main properties of

the group Schatten norms using tools from convex analysis and linear algebra; we retrieve in particular

some convex envelope properties. We discuss several potential applications of the group nuclear-norm,

in collaborative filtering, database compression, multi-label image tagging.

In the second chapter, we present a survey of smoothing techniques that allow us to use first-order

optimization algorithms originally designed for learning problems with nonsmooth loss. We also show

how smoothing can be used on the loss function corresponding to the top-k accuracy, used for ranking and

multi-class classification problems. We outline some first-order algorithms that can be used in combina-

tion with the smoothing technique: i) conditional gradient algorithms; ii) proximal gradient algorithms;

iii) incremental gradient algorithms.

In the third chapter, we study further conditional gradient algorithms for solving doubly non-smooth

7

optimization problems. We show that an adaptive smoothing combined with the standard conditional

gradient algorithm gives birth to new conditional gradient algorithms having the expected theoretical

convergence guarantees. We present promising experimental results in collaborative filtering for movie

recommendation and image categorization.

Keywords: first-order optimization, conditional gradient, smoothing, nuclear-norm, machine

learning, mathematical optimization

8

Acknowledgments

The success of this work is due also to the people who shared their time with me during the last years.

A special thank goes to my supervisors for their attention and for the challenging research subject

proposed to me, my scientific results are also the fruit of the exchanges with them; to my parents for

moral support and good advises; to my friends around the world for the extra activities that we did

together; to my colleagues for their patient explanations and challenging discussions; to all the other cool

people that I met everywhere for their interesting exchanges.

9

Introduction

“Those who are enamored of practice without theory are like a pilot who goes into a ship without rudder

or compass and never has any certainty where he is going. Practice should always be based on a sound

knowledge of theory.” - Leonardo da Vinci

This work is in the intersection of optimization and machine learning, introduced in the next two

sections. The two fields have often different terminologies to indicate the same mathematical objects.

The simplicity of the objective functions we use in our applications is justified by this way to approximate

and re-define the real word applications.

In this work, we deal with convex objective functions, possibly nondifferentiable, and iterative al-

gorithms with complexity bounds. We focus here on convex optimization algorithms. Indeed, we seek

worst-case and finite-time theoretical guarantees of convergence in terms of objective evaluations. In

convex optimization, these theoretical guarantees can be derived under verifiable conditions of the objec-

tive such as smoothness. In contrast, unless one makes stringent and often difficult to verify assumptions

on the objective, worst-case theoretical guarantees non-convex optimization give at best a rate of conver-

gence to a stationary point of the objective.

In the first chapter we introduce the state of art of convex optimization, statistical learning and first

order algorithms to make this work self contained. We then present briefly our three contributions in

this context. The next chapters are dedicated to each contribution. A conclusion section discusses some

perspectives for future research. Finally the appendix contains a table of the notation we use and several

additional results useful to understand the subject and the proofs. We chose to use the language of

optimization, but to not to lose a part of the audience we indicate regularly the corresponding terms used

in machine learning.

10

Notation

f, F convex functions of the variables to optimize x and y

L Lipschitz constant of∇f
µ constant of strongly convexity

E space where x is defined, we consider Rn or Rd×k

n dimension of the space E. For matrices we use n = dk
xt ∈ E iterates generated by an iterative algorithm,

or in general, when the index is subscript, elements of a sequence

xi ∈ R the i-th entry of x ∈ E, with i = 1 . . . n also for matrices

x⋆ optimal solution

f∗ Fenchel conjugate of f
Q ⊂ E subset for constrained optimization (often closed convex)

iQ indicator function on the set Q
τε number of iterations needed to satisfy a termination criterion

πQ(x) projection of x onto a set Q ⊂ E
proxγg(x) Moreau-type proximal operator of function g

‖x‖p p-norm
(∑n

i=1(x
i)p
) 1

p , with p ≥ 1

‖x‖σ,1 nuclear norm, i.e. sum of singular values of x

‖x‖ euclidean norm, if not specified differently

σQ support function of set Q
d ∈ D atoms

ci ∈ R weights of atomic decomposition∑
i∈I c

idi ∈ E atomic decomposition of a variable

‖·‖D atomic norm

y 7→ x̄(y) linear minimization operator on D
B∞ ball of infinity norm {x ∈ E | ‖x‖∞ ≤ 1}
Bp ball of p-norm

{
x ∈ E

∣∣∣ ‖x‖p ≤ 1
}

, with p ≥ 1

Bσ,p ball of Schatten p-norm, i.e of matrices whose singular values

have bounded p-norm
{
x ∈ Rd×k

∣∣∣ ‖s(x)‖p ≤ 1
}

W:i column i of a matrix

Wi: row i of a matrix

Table 1: Summary table of notation, that is defined step by step in the text.

11

Chapter 1

First-order optimization for machine

learning: context and contributions

Many branches of both pure and applied mathematics are in great need of computing instruments to

break the present stalemate created by the failure of the purely analytical approach to nonlinear

problems

John von Neumann

With this chapter we present an overview on concepts, theorems, algorithms, and examples, that are

fundamental milestones to develop our thesis. Most of the definitions are spread in the text and are placed

where they are used for the first time. The main references for this chapter that can be considered as

milestones are Nesterov (2004) Bertsekas (2004) Hiriart-Urruty and Lemarechal (1996) Hiriart-Urruty

and Lemarechal (1993) for the field of convex optimization, and Hastie et al. (2008); Huber (1981);

Vapnik (2005) for the part of statistical learning.

Once the context of this thesis is thus settled, we finish this chapter with a summary of our main

contributions, developed in the following chapters.

1.1 Elements of statistical learning

“A problem of finding the desired dependence using a limited number of observations". Vapnik (2005),

about learning.

The principle of statistical learning is that there is a phenomenon of the real world that we want to

12

learn and generalize by studying a set of observations.

A learning algorithm takes as input a huge sample of observations and returns a model that describes

the phenomenon and that is generalized also for non observed data. This process is completely automatic

and defined by optimization algorithms. Let us take as instance one of our application: statistical image

classification. The dataset is based on a collection of pictures and associated labels that describe their

content. A vector x is extracted from one picture and represents some of its important characteristics,

called features. The response y is the label associated to that picture. The challenge is to observe a

lot of pictures for which the label is known and learn a function that predicts the associated label of

any new picture. We need then to define another function, the empirical risk, that is big when a lot of

prediction are wrong. The optimization algorithm is then used to minimize the empirical risk and obtain

good predictions. The aim is to build a model capable of accurate predictions.

1.1.1 Predictor functions

x

y F(·,W1)

F(·,W2)

• •
•
• •

• • • •
•
••••
•(xi,yi)

••
•
•
••
• ••

Figure 1.1: Two predictor functions F(·,W1) and F(·,W2) based on data (xi,yi).

More formally, a feature vector x has distribution F (x), and a response y has conditional distribution

F (y|x). A learning machine implements a class of predictor functions

F = {x 7→ F(x,W) |W ∈ E} , (1.1)

where E is a set of parameters. When a particular W is chosen, the predicted response associated to each

x is ŷ = F(x,W).

13

1.1.2 Find the model in theory

Again, the aim is to find the best function F , i.e. the best W, that can give good predictions on observa-

tions and generalizes also on non-observed data. The training task consists in selecting the best function,

which is based on a train set of independent identically distributed (i.i.d.) observations

p1 = (x1,y1), . . . , pN = (xN ,yN) (1.2)

drawn with the distribution F (x,y) = F (x)F (y|x). The only information available is in the train set,

being the distribution F (x,y) unknown. To select the best function one define a loss ℓ(y, ŷ). The worst

the predictor function, the bigger the loss. We will see examples of loss later when we use them, starting

at section 1.5.

Once the loss and the set of functions are chosen, the theoretical risk

R(W) :=

∫
ℓ(y,F(x,W))dF (x,y), (1.3)

has minimum at W⋆, which defines the best function F(· ,W⋆).

1.1.3 Find the model in practice

The previous result is only theoretical; we see here how to estimate the model using data.

To minimize the risk (1.3) on the basis of empirical data (1.2) one has to substitute the risk with the

empirical risk

Remp(W) =
1

N

N∑

i=1

ℓ(yi,F(xi,W)) (1.4)

We minimize (1.4) rather than the abstract problem, obtaining a solution approximating W⋆. This tech-

nique is called empirical risk minimization (ERM) inductive principle. We note that the loss function is

referred to only one example and the empirical risk is the average of the loss on all the data.

Clearly the current ERM problem

min
W∈E

Remp(W) (1.5)

is ill-posed, i.e. small changes in the data could result in a big change of the solution, and then in the

predictor function. More precisely, the optimization on new data x
(δ)
i close to the previous one, where

∑N
i=1

∥∥∥xi − x
(δ)
i

∥∥∥ ≤ δ is arbitrarily small, can cause a large deviation in the solutions W and W(δ), i.e.
∥∥W −W(δ)

∥∥ is big. By consequence there is a big difference also on the two predictors F(·,W) and

14

F(·,W(δ)).

1.1.4 Regularized problems

Now we want show how to avoid the issues of ill-posedness of the problem (1.5).

The structural risk minimization consists in the minimization of the empirical risk together with an-

other term called regularization Vapnik and Chervonenkis (1974). This leads to look for solutions in a

more restricted space.

Let us see in detail the two ways to restrict the solutions: the regularized problem

min
W∈E

Φλ(W) := Remp(W) + λΩ(W), (1.6)

where Ω is called regularizer, and the constrained problem

min
Ω(W)≤r

Remp(W), (1.7)

for any λ, r > 0. A consequence of solving the regularized problem (1.6) and the constrained prob-

lem (1.7) is that the admissible predictor functions are more “simple” and have a particular structure.

For instance, in our applications that we present at section 1.5, we are interested in predictor functions

composed with linear applications defined by a low rank matrix.

The restriction to simple predictor functions can be done by taking for Ω an atomic norm, defined at

section 1.2.3. Then the solution of (1.6) or (1.7) tends to be written as linear combination of atoms. For

example, the optimization where Ω is the nuclear norm has tendency to give low rank solutions.

1.1.5 Parameter tuning

The capacity of a predictor function to generalize to non-observed data is related to the choice of λ and

r. Each choice of λ or r defines a different optimization problem and return a different optimal solution,

so they can be considered hyperparameters.

A technique to learn the best λ⋆ is to observe the empirical risk on an independent set called validation

set. An algorithm is run on the train set on a grid of values for λ, then λ is chosen so that it minimizes

the empirical risk on validation set. If the experiment is run correctly, the empirical risk on validation set

decreases and then increase again, for increasing λ. The smallest λ corresponds to a model overfitted on

the known data, where we can say also that there is no learning. Bigger λ refers to a better model, but

when λ gets too large, the empirical risk gets bigger again, because the learned function is too simple,

15

e.g. it can be constant zero, and is unsuitable for prediction. On the other hand, when there is overfitting,

the empirical risk on the train set will be small when λ is close to zero. A third independent test set can

be used to observe the empirical risk related to λ⋆, but here no more tuning is allowed. The test set is

used only to have a final check.

To learn r⋆, in the constraint case (1.7), there is the same behaviors and the same way to tune on

validation set.

1.2 Elements of convex optimization

In the previous section we have seen why we minimize specific functions and what is their meaning from

the statistical point of view. Now the interest is to see how to optimize these problems in an efficient way

for large scale problems.

We start this section by introducing briefly several definitions, terms of language, theorems and algo-

rithms that are a ground knowledge for this thesis. We introduce then a class of algorithms called first

order algorithms, and we clarify the motivations of our study.

1.2.1 Basic elements for convex analysis

Our working space is called E, and is R, Rn or Rd×k. Most of the results are valid for the tree sets; we

will specify when we need one specific space, e.g. some matrix norms apply only to E = Rd×k.

A closed convex function f is such that (i) for all t ∈ [0, 1] and for all x, y ∈ dom(f)

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

and (ii) f has a closed epigraph {(x, r) ∈ E × R | r ≥ f(x), r ∈ R, x ∈ dom(f)}. The second condi-

tion is the closeness and avoids pathological behavior of f at the boundary of its domain. If not differently

specified, in this chapter any function is closed convex. We highlight that we use the term “convex func-

tion” meaning “closed convex function”.

In this context, a function is said L-smooth when it is differentiable and its gradient ∇f is Lipschitz

with constant L with respect to a norm ‖·‖, i.e. for all x, y in the domain of f

‖∇f(x)−∇f(y)‖∗ ≤ L ‖x− y‖

where and ‖·‖∗ is the dual norm. When not specified ‖·‖ is the euclidean or the Frobenius norm. A

16

subgradient of f at x is a vector s ∈ E s.t. for all y in the domain of f

f(y) ≥ f(x) + 〈s,y − x〉.

A function is said strongly convex with parameter µ > 0 when

f(y) ≥ f(x) + 〈s,y − x〉+ µ

2
‖y − x‖2 (1.8)

for any subgradient s of f at x.

We assume a function f : E → R minorized by an affine function. Then the Fenchel conjugate of a

function f , also called convex conjugate, is

f∗(y) := max
x∈dom(f)

〈x,y〉 − f(x). (1.9)

The obtained function f∗ is convex. If the domain of f is nonempty, then f∗ never takes the value −∞.

One important consequence of this definition is the Fenchel duality theorem: if the relative interiors of

the domains of f and g have nonempty intersection, i.e. ri(dom f) ∩ ri(dom g) 6= ∅, then

inf
x∈dom(f)∩dom(g)

f(x) + g(x) = −min
y∈E

f∗(y) + g∗(−y), (1.10)

supposing that the inf of the first part is finite. The Fenchel duality theorem is useful to prove the

convergence of some algorithms, in particular the certificate, introduced in section 1.2.5.

The Fenchel conjugate solves also the problem of finding the inverse operator of the derivation. Sup-

pose that the mapping x 7→ ∇f(x) is differentiable. Formally, the question is whether, given s ∈ E, it is

possible to find an x ∈ E such that s = ∇f(x). The answer is that the map

s 7→ x = ∇h(s)

is the inverse operator of ∇f , where h(s) := f∗(s) is the Fenchel conjugate of f .

Let Q be a nonempty set in Rn. The function σQ : Rn → R ∪ {+∞} defined by

σQ(x) := sup
y∈Q
〈y,x〉

is called support function of Q. A support function is finite everywhere iff Q is bounded.

Details on this argument can be found at (Hiriart-Urruty and Lemarechal, 1993, Chap. E).

17

1.2.2 Convex optimization problems

In this section we define optimization problems and underline that is worthless to look for exact solutions

that need a huge computational effort.

We are interested in convex problems because they have the outstanding property of “local to global

phenomenon". In fact (i) the subdifferential at one point contains global information of a linear lower

bound on the whole function, and (ii) a local minimum is also global. In addition, (iii) a concept called

lower bound, that we will introduce in section 1.2.5, is known only for convex problems. From here the

functions we optimize are called F , f , and g.

Let us take the problem of minimizing a convex function F on (a subset of) E, written as

P : min
x
F (x), (1.11)

were F is called the objective. When the optimization is on the whole space E, we call P an uncon-

strained optimization problem

min
x∈E

F (x). (1.12)

When optimizing on a subset Q ⊂ E, we call P a constrained optimization problem.

min
x∈Q

f(x), (1.13)

were f is convex.

Any constrained problem (1.13) can be rewritten in form of unconstrained optimization using the

indicator function

iQ(x) :=




0 x ∈ Q

+∞ x /∈ Q
(1.14)

of the constraint set Q. As the indicator function is an extended value function, iQ : E → R ∪ {+∞},
the new formulation

min
x∈Q

f(x) = min
x∈E

f(x) + iQ(x)

of problem (1.13) is useful only for theoretical approaches. The new objective could lose some interesting

properties after this transformation. For example, given f differentiable, the resulting f + iQ is no more

differentiable on the whole space. Therefore, it is worth to keep the constrained problem (1.13), as we

see in Section 1.4.

Let us introduce other definitions.

18

x

f

x⋆ x̃⋆

•ε

Figure 1.2: The optimal solution x⋆ and an ε-optimal solution x̃⋆ for the optimization of f .

Optimal Solution An optimal solution x⋆ ∈ E for the problem (1.11) is a point of minimum of F , i.e.

for all x in E (or in Q for constrained optimization)

F (x⋆) ≤ F (x).

A necessary and sufficient optimality condition for x⋆ to be an optimal solution of (1.11) is that zero is a

subgradient of F at x⋆

0 ∈ ∂F (x⋆). (1.15)

This implies that:

(i) When F is differentiable a necessary and sufficient optimality condition for the unconstrained

problem (1.12) is ∇F (x⋆) = 0.

(ii) For the constraint optimization (1.13), a necessary and sufficient optimality condition is

〈s,x− x⋆〉 ≥ 0

for all x inQ, for all subgradients s in ∂f(x⋆). The condition (1.15) is only a necessary condition if F is

not convex.

ε-optimal solution As the joke at the beginning of this section suggests, to look for an optimal solution

is worthless, computationally expensive, and often not possible to compute in practice, especially in

learning tasks. We define then an approximate solution that is close to the optimal solution, but allows an

19

accuracy ε > 0 on the minimum. We note that in this context the solution x⋆ is better when the accuracy

ε is smaller. An ε-optimal solution is x⋆ ∈ E such that, for all x in E

F (x⋆) ≤ F (x) + ε.

For constrained optimization, the latter is for x, x⋆ ∈ Q.
The expression “to solve a problem" we mean to find an approximate ε-optimal solution.

1.2.3 Gauges and atomic norms

In this section we define an extension of the norm: the gauge, also called Minkowski functional. It will

be used in some problems to define the objective.

Let Q ⊂ E be a set that contains the origin. The gauge function of Q is defined

ΩQ(x) := inf {t > 0 |x ∈ tQ} ,

If no t satisfies the inequality, then ΩQ(x) = +∞. Any norm is a gauge, but a gauge is not always

a norm. In fact there is a counterexample when ΩQ(x) 6= ΩQ(−x), which happens in case Q is not

symmetric to the origin.

Given a gauge Ω, a dictionary

D = {di}i∈I

is a family of elements in a Hilbert space H, of unit gauge Ω(di) = 1, such that the linear span of D is

dense inH.

When Q is the convex envelope of a dictionary D, then the gauge

‖x‖D := inf {t > 0 |x ∈ t co(D)} (1.16)

is called atomic norm of the atom set D, and the points di are called atoms, with ‖di‖D = 1.

We can think the atoms as the simplest elements inH; e.g. the matrices of rank one, when ‖·‖D is the

nuclear norm, or the matrices with an entry equal to one and the others equal to zero, when ‖·‖D = ‖·‖1.

1.2.4 Oracle

We approach now to the algorithmic part of this presentation and describe an object that is used at each

iteration. In a general definition, an oracle is a unit that answers the questions of the algorithm. The

20

answer depends only on the information collected during the previous iterations.

Oracles can be classified by the order of derivatives. A zero order oracle returns the value of F (x)

given x. A first order oracle returns the value of F (x) and a subgradient s ∈ ∂F (x); if F is differentiable,

we have also the gradient ∇F (x). If the function is twice differentiable a second order oracle is defined

and it returns F (x),∇F (x) and also the hessian ∇2F (x). When dealing with large scale problems, a

second order oracle is usually inefficient, because it can be expensive to compute and memory demanding.

On the other hand, a first order oracle gives too few information and leads to a slow convergence.

We see now three operators that are used in combination with oracles inside the algorithms described

in the following sections.

Projection operator We define the projection operator of a closed convex set Q, which is just the

projection of a point x onto Q
πQ(x) := argmin

y∈Q
‖y − x‖2 . (1.17)

It consist in finding the point y⋆ in Q closest to x. By the convexity of Q this point is unique.

Moreau-type proximal operator The Moreau-type proximal operator, or just prox, is a natural exten-

sion of the notion of projection operator. The prox operator of a convex function g with parameter γ is

defined as

proxγg(x) := argmin
y∈E

g(y) +
1

2γ
‖x− y‖2 . (1.18)

Let us see several examples of proximal operators for different choice of g.

Example 1. (i) Indicator function. g(x) = iQ(x), where Q is a closed convex set. Then the prox is the

projection on Q
proxγiQ(x) = πQ(x). (1.19)

Next examples lead to extensions of projection operator.

(ii) ℓ1 norm. We have g(x) = λ ‖x‖1. Then the prox is the so-called the soft thresholding proxγ‖·‖1
(x) =

pγ(x), where each entry i is

(pγ(x))i =





xi + γ xi ≤ −γ

0 −γ < xi ≤ γ

xi − γ γ < xi.

(1.20)

We plot this prox on Figure 1.3.

21

Figure 1.3: Prox of g(x) = λ ‖x‖1. Axis represent x1, x2 . Each arrow represents proxγg(x) and is

placed at x.

(iii) Nuclear-norm regularization. g(x) = ‖x‖σ,1, with x ∈ Rd×k. Using a singular value decompo-

sition we rewrite x = UsV⊤. Then proxγ‖·‖σ,1
(x) = Upγ(s)V⊤, where pγ(s) is the prox found in the

previous example.

(iv) Zero. When g = 0 the prox is the identity function

prox0(x) = x (1.21)

and the proximal gradient algorithm reduces to gradient descent, Algorithm 1.

Proofs of these examples are in the appendix A.2.2. For a complete study of the properties of the

proximal operator, we refer the interested reader to Combettes and Pesquet (2011).

Linear minimization operator The Linear Minimization Operator is a function that solves a linear

sub-problem

y 7→ x̄(y) = argmax
x∈D

〈y,x〉. (1.22)

and returns an atom of the dictionary.

Let us see several examples of linear minimization operator, by defining Q as the convex hull of D.

Example 2. (i) The cone Q = {x ∈ Rn×n |x � 0, tr(x) = 1} of positive semidefinite matrices with

trace equals one. This convex set, also called spectrahedron, is a natural generalization of the simplex

Hazan (2008).

Then the linear minimization operator is the matrix of rank one which is given by the eigenvector

22

s

d

x̄t

Q xt

Figure 1.4: Linear minimization operator on a closed convex set Q with respect to the direction s. d =
LMO(xt). The dashed lines are orthogonal to s. It is possible to see that the descent direction d is not

aligned with s, but is directed to a corner of Q. This corner corresponds to the element of the dictionary

that will be added to the sequence of atoms that compose the next iterate xt+1.

related to the largest eigenvalue (λ,v) = eigsmax(s), then

x̄(s) = vv⊤. (1.23)

This linear minimization operator can be computed with Lanczos algorithm (Algorithm 16) presented at

section A.1.

(ii) Maximization on the ball of nuclear norm Q =
{
x ∈ Rd×k

∣∣∣ ‖x‖σ,1 ≤ 1
}

. Then the linear

minimization operator is the matrix of rank one which is the given by the two singular vectors related to

the largest singular value (u, d,v) = svdmax(s),

x̄(s) = uv⊤. (1.24)

We show how to approximate svdmax in section A.1. We obtained this result by adapting Lanczos algo-

rithm Lanczos (1961) Cullum et al. (1983) that finds the largest eigenvalue and related eigenvector.

(iii) The ball of norm one Q =
{
x ∈ Rn

∣∣∑
i

∣∣xi
∣∣ ≤ 1

}
. Then the linear minimization operator is

x̄(s) = − sign(si⋆)ei⋆ , where i⋆ = argmaxi=1...n |si| and ei are vectors of the standard base of Rn.

This works as well when s is a matrix.

(iv) The probability simplex Q =
{
x ∈ Rn

∣∣xi ≥ 0,
∑

i x
i = 1

}
. Then the linear minimization

operator is

x̄(g) = ei⋆ (1.25)

with

i⋆ = argmax
i=1...n

xi

23

The computation of this operator has complexity O(n).

Proof. (Of equation (1.25)) Here the set Q is the convex envelope of the set D = {e1 . . . en} of the

vectors of the standard base in Rn. Then

max
y∈Q
〈x,y〉 = max

y∈D
〈x,y〉 = max

i=1...n
〈x, ei〉 = max

i=1...n
xi.

We call i⋆ the index where the maximum of the last expression is attained, i.e.

i⋆ = argmax
i=1...n

xi

then the first expression has maximum at ei⋆ .

Sparsity The optimization with atomic norms leads to sparse representation of iterates, that are built

with linear combinations on atoms. Sparsity does not mean only matrices or vectors with few nonzero

entries. A variable is sparse when the atoms needed to form it are few. For example, if we consider the

nuclear norm, a sparse matrix is just one that have rank much smaller than the maximum possible for a

matrix of the same size, i.e. a sparse matrix is linear combination of few rank-one matrices.

To build sparse representation of complex signals we need dictionaries of vectors. These dictionary

are bigger than bases, or better, they are overcomplete bases. Sparse representation in redundant dic-

tionaries can improve pattern recognition, compression, and noise reduction. Processing is faster and

simpler, and could be less memory demanding, in a sparse representation when few coefficients reveal

the information we are looking for, i.e. the solution of an optimization problem Mallat (2009).

For instance, we will see that working with low rank matrices, instead to consider a full matrix W,

we work directly with its factorization USV⊤.The matrix S is diagonal, U and V have few columns.

The space needed to work with the decomposition is then orders of magnitude smaller than the full size

of W.

1.2.5 Optimization algorithms

We introduce in this section notions related to convergence of optimization algorithms, useful to compare

algorithms and related “efficiency”.

The performance of a numerical algorithm M on a problem P is the total amount of computational

efforts required by M to solve P, where to solve a problem means to find an ε-optimal solution.

24

The notion of complexity helps to measure the performance and the computational effort of an algo-

rithm. The arithmetical complexity measures the total number of arithmetical operations needed to reach

a solution with accuracy ε. The analytical complexity counts just the calls of oracle to reach an accu-

racy ε. The study of analytical complexity is easier and enough informative to estimate the arithmetical

complexity of the algorithm. One just needs to multiply the number of oracle calls to the cost of one

iteration, which is the sum of the analytical complexity of the oracle and the cost of the other operations.

Oracles and other operations, e.g. the projection onto a set and the minimization of a sub-problem, are

interesting only when they are easy to compute. This also is an intuitive definition, and basically means

that an algorithm is not usable in practice when inside each iteration there is an operation as expensive as

the solution of the whole problem.

Convergence

We consider the problem 1.12. We say that the sequence of iterates {xt}t≥1 generated by an algorithm,

starting at x0, converges to a point x⋆ when for any accuracy ε > 0 exists a number T of iterations s.t.

|F (xt)− F (x⋆)| ≤ ε

for all t ≥ T . We define the class F of functions that share some properties, e.g. the class of L-smooth

functions and the class of µ-strongly convex functions.

Upper bounds

Given a class F of problems, an oracle O, and an algorithm that generates a sequence of iterates xt, the

upper bound is a sequence {ut}t such that for all objectives F ∈ F it can be proved that

(
min
i=1...t

F (xi)
)
− F (x⋆) ≤ ut,

where the comparison is between the optimal F (x⋆) and the smallest objective in the previous iterations.

It could be used just F (xt) if we consider descent algorithms, but this definition is also valid for those

algorithms that sometimes can ascend, e.g. projected gradient descent. The sequence ut is also called

rate of convergence of an algorithm for a given class of functions.

25

Lower bounds

The upper bound is informative and can be used to compare the performance of two algorithms, for

example, we say that an algorithm with upper bound ofK/t2 is faster and more efficient than another one

with rate of H/t, with H , K > 0. Nevertheless, there are two big issues:

(i) The upper bound is related to a chosen algorithm;

(ii) The proof of the upper bound could be too rough.

In the first case (i), a better convergence for that class could be reached just changing the algorithm; in

the second case (ii), it could exist a proof of convergence, of the same algorithm, that gives a faster upper

bound, e.g. one has proved that for one algorithm ut is O(1/t), but there exists a proof showing that ut

is O(1/t2).

Therefore we need to define a new bound that describes the difficulty of a class of functions, whatever

the algorithm is.

Given a class F , the lower bound is a sequence ℓt such that there exist a function F ∈ F , the “worst”

function in the class, that gives

ℓt ≤ min
i=1...t

F (xi)− F (x⋆),

for any first order oracle that gives answers based on iterates x0, . . . ,xt and (sub)gradients s0, . . . st

collected until time t. The concept of lower bound appeared first in Nemirovski and Yudin (1983). Also

compare Nesterov (2004). The lower bounds are independent from the oracle or from algorithm and are

studied to know if an algorithm can be improved for a given problem.

A first order black-box algorithm is a mapping from the previous iterates x0, . . . ,xt and relative

(sub)gradients s0, . . . , st to the new iterate xt+1.

We see now lower bounds for problems that we will solve with black-box algorithms in the next

sections. We consider the problem 1.12 and we suppose that

x0 = 0 (1.26)

xt+1 ∈ span{s0, . . . , st}, for any t ≥ 0 (1.27)

Then

• there exists a Lipschitz objective F s.t. ℓt = O(1/
√
t);

• there exists an L-smooth objective F , s.t. ℓt = O(1/t2);

26

• there exists an L-smooth and µ-strongly convex objective F , s.t. ℓt = O(k−t),

where in the third case

k =

√
L−√µ√
L+
√
µ

Nemirovski and Yudin (1983)Nesterov (2004). This means that no first order algorithm that respects

hypothesis (1.26) and (1.27) can optimize the worst objective of F faster than ℓt.

Given an objective function the lower bound is obtained theoretically, without the need to propose an

algorithm. In fact, the lower bound can be found directly by defining the most difficult objective in the

class, or using a resisting oracle, i.e. an oracle that creates the worst problem for each concrete algorithm

Nesterov (2005). It is needed to argue that if the number of queries to the oracle is too small, then we do

not have enough information about the function to identify an ε-optimal solution.

If the lower bound is proportional to the upper bound of an algorithm, then that algorithm is called

optimal.

Certificate

We have seen at sections 1.2.5 and 1.2.5 the complexity bounds as theoretical information that can be used

to compare algorithms, but complexity bounds are not observable, i.e. they depend on some constant that

can be determined only with the knowledge of the optimal solution. A typical example of these constants

is the distance between initial iterate and optimal solution. So, even if lower or upper bound are known for

an algorithm, these bounds remain theoretical and cannot be used to implement algorithms. In addition,

as complexity bounds are related to the hardest problem in the class, it can happen that the objective

function is simpler and there is no need to run the algorithm for many iterations to obtain an ε-optimal

solution. We introduce now a more practical concept that is used to decide if more iterations are needed.

We see now a third bound that is explicit and can be used in practice in the implementation: the

certificate. A certificate of an algorithm is a sequence Gt that bounds from above the approximation

quality, i.e.

F (xt)− F (x⋆) ≤ Gt, (1.28)

where Gt depends only on the previous iterates x0, . . . ,xt. The certificate should not be confused with

the upper bound, the difference between them is strong: here the last iterate xt is no more compared

theoretically with the optimal solution, but can be evaluated using only the iterates x0, . . . ,xt−1.

A certificate is interesting when it is proportional to the upper bound. In this case the approximation

quality can be controlled by the certificate. Otherwise, if the certificate converges slower than the upper

27

bound, it is not worth to use it. Of course, if a certificate for an algorithm is faster than the proved upper

bound, then the certificate becomes a more efficient new upper bound.

The certificate is an observable criteria, and it has be easy to compute in order to be used as termination

criterion, as it must be checked at each iteration. We will see in section 1.3.5 an algorithm that includes

the certificate as “free” product of its iterations. This means that the only operations used to find a solution

are enough to make available a certificate, without additional computation.

Complexity bounds

Instead of focusing on the accuracy as function of iterations, we can reverse the point of view and focus on

the number of iterations as a function of the accuracy. The complexity bound is the number of iterations

needed to have an accuracy of ε for the worst objective in the class. If we show that we need at most T̄

iterations of the algorithm to achieve an accuracy ε, then T̄ is called upper complexity bound. If we show

we need at least T iterations then T is called lower complexity bound. For example, in one algorithm with

convergence rate
c1
t
≤ F (xt)− F (x⋆) ≤

c2√
t
,

upper complexity bound is t̄ = (c2/ε)
2 (since c2/

√
t ≤ ε implies (c2/ε)

2 ≤ t), and the lower complexity

bound is T = c1/ε.

Scalability

The next definition is intuitive. We say that an algorithm is more scalable than another one, with respect

to the size n of the problem, when the cost of its oracle and the rate of convergence depends in a minor

way on n. For example, an algorithm with convergence rate O(n/t2) is more scalable than another one

with rate O(n3/t2). The best would be to have algorithm and oracle which do not depend at all on the

size n. We are then interested in iterative algorithms that use first order oracles. These algorithms make

a trade off between high scalability with respect to n and efficient rate of convergence with respect to the

number of iterations t.

Termination criterion

We have seen at Section 1.2.5 the complexity bounds as theoretical information that can be used to

compare algorithms, but complexity bounds are not observable, i.e. they depend on some constant that

can be determined only with the knowledge of the optimal solution. In addition, as complexity bounds

are related to the hardest problem in the class, but it can happen that the objective function is more simple

28

and there is no need to run the algorithm for many iterations to obtain an ε-optimal solution. We introduce

now a more practical concept that is used to decide if more iterations are needed.

A termination criterion is a decision rule used to determine when to stop the iterative algorithm.

The choice of a good termination criterion is important, because if the criterion is too weak the solution

obtained may be useless; if the criterion is strict, it may lead to an algorithm that never stops or that may

have a huge computational cost. Examples of simple termination criteria used in practice are (i) to fix a

maximum number of iterations or (ii) to fix a maximum amount of computing time. These criteria are

simple and give no information about the quality of the solution. We present now a criterion that is more

reliable: (iii) the certificate.

We highlight that using a stopping criterion there is no more theoretical interest in the worst function

of the class; an algorithm stops when the criterion is satisfied for the current objective function.

A termination criterion based on the certificate (1.28) takes into account that when the next condition

is satisfied

Gt ≤ ε

the algorithm has reached an ε-optimal solution xt.

An important aspect in this thesis is that the algorithms are validated by upper bounds, lower bounds

and convergence proofs, rather than excellent experimental tests run on machines. We run also tests,

which are necessary to give evidence for the statistical learning tasks, that are based on observations of

data. But these tests are not meant to validate the optimization.

1.3 First order algorithms for convex optimization - unconstrained

case

“Nothing is more practical than a good algorithm.”

(Good old principle)

We have seen in the previous sections a general description of what is optimization and how to obtain

problems to solve which are meaningful from the statistical point of view. In these two sections we

make an overview of several fundamental algorithms, that solve convex problems, and that can handle in

particular the large scale dimension of a problem. We start with the algorithms that minimize a function

on the whole space E, then we add some constraints and present the corresponding algorithms.

Let us suppose we want to optimize an objective F that belongs to a classF of functions. A first order

algorithm that optimizes an objective F on a closed convex Q, or on the whole space E, is an algorithm

29

that knows in advance Q and the class F , but does not know what exactly F is. A first order algorithm

discovers F step by step through the first order oracle and finds the iterates xt with a rule. The output

of the rule at the step t is based only on the structure of Q and on the first order information related to

previous iterates x0, . . . ,xt−1 provided by the oracle. So the rule is said to be non-anticipating Juditsky

and Nemirovski (2010).

In addition, also the termination criterion is non-anticipating and depends only on the information

collected during the previous iterations.

The increasing interest for large scale problems makes first order algorithms more interesting than

second order algorithms. The latter are more efficient in terms of (few) calls to the oracle, but each call

to the oracle can become suddenly expensive when the size of the problem increases, both in terms of

computations and in terms of memory. For example, if the optimization is in Rn, the gradients of the

objective have size n, while the Hessian has dimension n2. Taking a quite small n = 106, the gradient

needs 4 Mega byte of memory and the Hessian 4 Tera byte. Sure, may be there is a way to avoid to store

all this matrix, but second order algorithms need at least to compute them.

Let us summarize some good properties of first order algorithms with hypothesis 1.26 and 1.27,

applied to large scale problems:

i) Cheap iterations, in general, when the constraint are simple, but this depends also on the cost of the

oracle. One iteration costs O(n), where n is the dimension of the space.

ii) The rate of convergence is (almost) independent on the dimension of the problem, when the geometry

of the problem is favorable.

iii) Adapt to find medium accuracy solutions for large scale convex problems.

But there are also bad news:

I) The rate of convergence is sublinear, can be linear only with strongly convexity of the objective.

II) The performance of a first order algorithm is strictly related to the Lipschitz constant L and the size

of Q, e.g. its diameter.

III) first order algorithms cannot find high accuracy solutions in a reasonable time.

In the next sections we present the main types of first order algorithm, each type is shown through a

precise algorithm.

30

1.3.1 Gradient descent algorithm

In unconstrained minimization the optimization is done in the whole space E. The simplest scheme for

unconstrained minimization is the gradient algorithm, also called steepest descent algorithm. Given a

differentiable F , Algorithm 1 solves the problem

min
x∈E

F (x).

A descent direction at x is a vector d such that 〈∇F (x),d〉 < 0. In this algorithm the descent

direction is the direction of the fastest local decrease of F at x̄ is the antigradient, i.e. the direction

d = −∇F (x̄) opposite to the gradient.

Algorithm 1 Gradient algorithm

Choose x0 ∈ E
for t = 0, 1, 2 . . . do

xt+1 = xt − ht∇F (xt)
end for

The sequence ht is called step size, (or learning rate, in statistical learning) and can be chosen in

different ways. The step size can be chosen in advance, constant or with a decreasing sequence; or it can

be found during the iterations through a line search. The line search in a direction d from a (fixed) point

xt consist in finding an h > 0 such that F (xt+hd) has a “sufficient” decrease. The exact line search that

minimizes F (xt + hd) is purely theoretical and can be computed in finite time only when the structure

of the objective makes possible to find an exact formula.

An inexact line search solves a sub problem using a termination criterion, as for instance, the Wolfe

rule, or the Goldstein-Armijo rule, when the gradient is too expensive to compute. This strategy is used in

the majority of the practical algorithms. The gradient descent can be used for any differentiable function,

but without any stronger assumption we can only say that it converges to a stationary point. We do not

know even if it is a local minimum. If the function is convex the results are more interesting.

For an L-smooth function F and a fixed stepsize h = 1/L, the upper bound is

F (xt)− F (x⋆) ≤
2L ‖x0 − x⋆‖2

t+ 4
(1.29)

The (1.29) is called sublinear rate of convergence because it is slower than linear rate, i.e. when the

upper bound is exponential. In terms of complexity using gradient descent, each new right digit of the

solution demands an amount of computations comparable with the total amount of the previous work.

31

In addition this algorithm is not optimal for smooth functions, in fact the lower bound for the class of

smooth functions is O(1/t2), as seen in sec 1.2.5.

Gradient descent is much more efficient when F is strongly convex, and the upper bound is

F (xt)− F (x⋆) ≤
L

2

(
L− µ
L+ µ

)2t

‖x0 − x⋆‖2 (1.30)

with the optimal stepsize h = 2/(µ+L). The (1.30) is called linear rate of convergence and is fast: each

new right digit of the solution demands a constant amount of computation. Nevertheless, this amount of

computation is related to the cost of the oracle, and it is worth to use gradient descend combined with a

cheap and scalable oracle. More details and proofs at chapter 4 of Nesterov (2004).

In addition we notice that in both cases the convergence of gradient descent depends on the distance

from the solution of the start point, but not on the dimension of the problem. Then gradient descent is

scalable with respect to the size of the problem.

1.3.2 Proximal gradient algorithm

The previous algorithm is used to optimize a function considered as a black box. Now let us start to

consider also the structure of the objective, that restricts the class of functions to optimize, but allows to

develop better algorithms.

Suppose we want to optimize a convex function that is a sum or a composition of more simple func-

tions. To prove that it is convex we need to analyze its components, it is impossible to prove convexity

numerically. Then the objective is no more a black box, but we can say something about its structure and

use it for an algorithm.

The problem to solve is

(P) min
x∈E

F (x) := f(x) + g(x) (1.31)

where f is L-smooth and g is convex, possibly non differentiable.

This decomposition is motivated for applications in statistical learning, where f is the empirical risk

and g is a regularization term, and for applications in signal processing for compression, denoising and

pattern recognition. W describe the problem at section 1.3.6.

Proximal gradient is a first order algorithm, in which the most expensive operation in each iteration is

the evaluation of the proximal operator (1.18). Then the scalability of the algorithm depends on the type

of the function g. When g has a cheap proximal operator, proximal gradient algorithms are scalable.

As instance of proximal gradient, let us see the iterative shrinkage-thresholding algorithm (ISTA) of

32

Beck and Teboulle (2009).

Algorithm 2 ISTA

Choose x0 ∈ E
for t = 1, 2, . . . do

xt = prox 1
L
g(xt−1 − 1

L∇f(xt−1))
end for

The upper bound for ISTA is

F (xt)− F (x⋆) ≤
L ‖x0 − x⋆‖2

2t
. (1.32)

For the proof of convergence see Theorem 3.1 in Beck and Teboulle (2009). This algorithm is not optimal.

In fact, the lower bound of the composite problem (1.31) is O(1/t2), as shown in Nemirovski and Yudin

(1983). We will see in section 1.3.3 an optimal algorithm for the problem (1.31).

For more about this algorithm, that belongs to the forward-backward iterative scheme, we refer to

Passty (1979) Bruck (1977) Combettes and Wajs (2005).

Certificate for composite problems Now we study a certificate for composite problems of type (1.31).

The dual problem of (P) is

(D) max
y∈E
−f∗(y)− g∗(y),

where f∗ and g∗ are the Fenchel conjugates of respectively f and g, defined at (1.9).

A certificate for the problem (P) is the sequence

Gt = 〈xt,∇f(xt)〉+ g(xt) + g∗(−∇f(xt)). (1.33)

This certificate is computationally useful when g and its conjugate g∗ are easy to compute, and does

not need to compute f∗, that in practice could be expensive. So the gap Gt is a certificate because we

can calculate it with the information collected until the step t, we just need as hypothesis that we know

an explicit form of g∗. For example, if g is a norm, then g∗ is the indicator function of the polar of the

unit ball of g.

Proof. (Of equation (1.33)) By Fenchel duality theorem (1.10) the minimum of (P) is equal to the maxi-

33

mum of (D). With this result we bound the optimal value F (x⋆) = f(x⋆) + g(x⋆)

− f∗(yt)− g∗(−yt) ≤ f(x⋆) + g(x⋆) ≤ f(xt) + g(xt)

⇐⇒ f∗(yt) + g∗(−yt) ≥ −f(x⋆)− g(x⋆) ≥ −f(xt)− g(xt)

⇐⇒ f(xt) + g(xt) + f∗(yt) + g∗(−yt) ≥ +f(xt) + g(xt)− f(x⋆)− g(x⋆) ≥ 0

⇐⇒ f(xt) + f∗(yt) + g(xt) + g∗(−yt) ≥ F (xt)− F (x⋆) ≥ 0.

As this result is valid for all xt,yt, if we choose yt = ∇f(xt), then by Fenchel equality

f(xt) + f∗(yt) = 〈xt,∇f(xt)〉

we can eliminate f∗ and deduce

〈xt,∇f(xt)〉+ g(xt) + g∗(−∇f(xt)) ≥ F (xt)− F (x⋆) ≥ 0.

For instance, for the problem

min
x∈Rn

f(x) + ‖x‖1 ,

the certificate found in this way is

Gt = 〈xt,∇f(xt)〉+ ‖xt‖1 + i{y |maxi|yi|≤1}(∇f(xt))

We observe that this certificate is not useful because it could be infinity even if the found solution is

ε-optimal.

1.3.3 Accelerated proximal gradient algorithm

This algorithm is a faster version of proximal gradient, presented first in Nesterov (1983), and then in two

works Nesterov (2007a) and Beck and Teboulle (2009). Known also as Nesterov’s accelerated proximal

gradient, it can be seen as a general algorithm of which the accelerated projected gradient and accelerated

gradient algorithms are particular cases.

First we define a fast iterative algorithm as in definition 3.1 of Beck and Teboulle (2012). Given the

problem

min
x∈E

F (x) = f(x) + g(x),

34

where f is L-smooth and g is subdifferentiable convex, an iterative algorithm is “fast” with constant

0 < k <∞, if it generates a sequence {xt} s.t.

F (xt)− F (x⋆) ≤
Lk

t2
.

The constant k possibly depends on x0 and x⋆.

As instance, we show the fast iterative shrinkage-thresholding algorithm (FISTA), described by Beck

and Teboulle (2009).

Algorithm 3 FISTA

Choose x0 ∈ E
y1 = x0

α1 = 1
for t = 1, 2, . . . do

xt = prox 1
L
g(y − 1

L∇f(y))
αt+1 = 1

2

(
1 +

√
1 + 4α2

t

)

yt+1 = xt +
(

αt−1
αt+1

)
(xt − xt−1)

end for

The convergence of FISTA is

F (xt)− F (x⋆) ≤
2L ‖x0 − x⋆‖2

(t+ 1)2
. (1.34)

Note the difference between (1.32), which is O(1/t), and (1.34), which is O(1/t2). In fact the latter is

much more efficient from the computational point of view.

Recent works There are several recent works on (accelerated) proximal gradient. The evaluation of

the proximity operator may generate approximation errors. In Schmidt et al. (2011) it is proposed an

analysis of the convergence of (accelerated) proximal gradient algorithms that includes the error that is

generated. As main result the convergence rate with errors is shown equal to the exact version, i.e. when

the proximal operator is evaluated analytically. An overview of (accelerated) gradient algorithms is given

in Nesterov (2013), where the class of problems is restricted to the minimization of a smooth function

plus a nonsmooth convex regularizer. In fact, for general nonsmooth and nonconvex objectives, it is

proved that it is NP-hard to know whether it exists a descent direction given a point. This article shows

that convex and nonconvex cases can be solved with composite gradient mapping and have the same

complexity of minimizing only the differentiable function. Efficient line search methods are shown for

all algorithms.

35

1.3.4 Accelerated gradient descent algorithm

This algorithm is an accelerated version of gradient descent at section 1.3.1, i.e. its rate of convergence is

O(1/t2) instead of O(1/t).

The problem to solve is

min
x∈E

F (x)

where F is L-smooth. We see that this problem is a particular case of (1.36).

If the problem is rewritten as

min
x∈E

F (x) + 0,

we see that the assumptions to use accelerated proximal gradient at section 1.3.3 are verified. In particular,

the proximal operator of g = 0 is the identity function, as seen at equation (1.21).

Then the accelerated gradient algorithm is a particular case of accelerated proximal gradient algo-

rithms. The convergence of accelerated gradient is

F (xt)− F (x⋆) ≤
2L ‖x0 − x⋆‖2

(t+ 1)2
.

Despite accelerated proximal gradient and accelerated gradient share the same convergence rate, the

latter has a much cheaper oracle. On the other hand, accelerated proximal gradient could be more useful

for statistical learning because it allows to solve problems with a regularization g that possibly is not

differentiable.

1.3.5 Composite conditional gradient algorithm

The composite conditional gradient algorithm is a regularized version of the conditional gradient algo-

rithm Dudik et al. (2012); Harchaoui et al. (2012b) that we will present in Section 1.4.3.

The regularized problem to solve is

min
x∈E

F (x) := f(x) + λ ‖x‖D , (1.35)

where f is L-smooth, ‖·‖D is the atomic norm defined at (1.16) on the set of atoms D, the dictionary.

Despite this is the same problem as (1.31), here we highlight that the regularization is an atomic norm.

In fact, composite conditional gradient uses the structure of D to retrieve a sparse solution. As this

algorithm finds at each iteration a new atom in D through a step, called greedy step Temlyakov (2012),

composite conditional gradient is a greedy algorithm. A greedy step maximizes a function determined by

36

the information from the previous steps of the algorithm.

For composite conditional gradient the greedy step consists in the computation of the linear mini-

mization operator (1.22) that returns atoms dt. A linear combination of them will form the solution of the

problem. To have scalability of composite conditional gradient we assume that the linear minimization

operator can be solved in time polynomial in n. We will discuss this point at the end of this section.

Algorithm 4 Composite Conditional Gradient

Choose x0 ∈ E
for t = 1, 2 . . . do

x̄t = argminx∈Q〈∇f(xt−1),x− xt−1〉
xt = x̄t

c⋆ = argminc∈Rt, c≥0 f(
∑t

τ=1 c
τxτ) + λ

∑t
τ=1 c

τ

Update xt =
∑t

τ=1 c
τ
⋆xτ

end for

The last line of the algorithm that updates the iterate xt is optional and just shows a formula to get xt.

In practice and normally, it is possible and suitable to code the composite conditional gradient using all

the time the atomic decomposition of the iterate.

From Theorem 3 at Harchaoui et al. (2012b), we report the upper bound of composite conditional

gradient

F (xt)− F (x⋆) ≤
8LD2

t+ 14
t ≥ 2,

where D is the problem-domain parameter in the norm ‖·‖D, defined at Harchaoui et al. (2012b).

We see then that the composite conditional gradient algorithm is not optimal in the usual information-

based complexity framework.

Discussion When the setQ = co(D) is a polyhedron, conditional gradient is slow, because the direction

of descent is often towards a vertex, and by consequence can be orthogonal to the direction to reach

the optimal solution Bertsekas (2004). Conditional gradient is recommended when the accuracy of the

solution is not very relevant. In fact, for large scale problems, we are interested in a large accuracy;

conditional gradient is enough to get a bit closer to the solution in a reasonable time.

The most important property of conditional gradient is that it produces sparse iterates. The greedy step

returns atoms, that are outputs of the linear minimization operator composed with a first order oracle. The

iterates are linear combinations of these atoms and the solution also. Sparse variables are more tractable

from the computational point of view because they are controlled by few coefficients, they need less

memory. Then the computational effort is reduced. It is strongly recommended to use algorithms that

handle sparse representation for large scale optimization.

37

To solve problem (1.35) one could choose proximal gradient algorithm, but in some cases composite

conditional gradient is more useful. We compare the two algorithms from the practical point of view.

We saw that proximal gradient has analytical complexity of O(1/t2), whether composite conditional

gradient has only O(1/t). Then proximal gradient seems to be much more efficient. But if we think

in this way, we forget that the analytical complexity just measures the calls to an oracle, without taking

into account whether the oracle is cheap or not. To compare the two algorithms more fairly, one should

estimate also the arithmetical complexity, and take into account the cost of the oracle.

A key property of composite conditional gradient from a computational perspective is the replacement

of the proximal greedy step present in (accelerated) proximal algorithm, described at section 1.3.4, with a

linear optimization onQ, the linear minimization operator. For certain types of atomic norms this greedy

step can be a much simpler and scalable subproblem.

In fact, when the prox of the atomic norm is expensive to compute, e.g. the prox of nuclear norm, it

could be better to use another type of first order oracle: the linear minimization operator (1.22). The point

of view changes: an oracle could become a computational bottleneck of an algorithm. Another problem

is scalability of the oracle. As instance we take again the nuclear norm: For small size problems prox

operator and linear minimization operator are comparable, and this makes accelerated prox gradient more

suitable; But sliding to large scale, the prox becomes very expensive, as it needs a full singular values

decomposition, whether the linear minimization operator still remains usable in practice, as it needs just

the maximum vector pair of the singular value decomposition.

Another strength in favor of conditional gradient with respect to proximal gradient is that conditional

gradient is valid for an arbitrary norm. In fact it is requested to find a norm with respect to that the gradient

of f is Lipschitz Bubeck (2014). On the other hand, proximal gradient requires ∇f to be Lipschitz with

respect to the Euclidean norm.

We conclude that for some atomic norms and problem scale, the prox operator is cheaper than the

linear minimization operator, ans then the best algorithm is accelerated prox. For other atomic norms

and different scale, the linear minimization operator is cheaper and more scalable than prox operator, and

then may be it is worth to use composite conditional gradient.

1.3.6 Lagrangian matching pursuit algorithm

We conclude this section with an algorithm more related to signal processing. The problem solved with

lagrangian matching pursuit can be seen as a particular case of the ones described in the previous sec-

tions.The main difference is that some variables, instead of being vectors, are sequences or functions of

real variable. Proximal methods can also solve this problem.

38

Suppose it is given a signal x ∈ E that want to decompose as a weighted sum of more simple signals.

This process of finding these more simple signals and related coefficients is called signal compression.

A deep and accurate description can be found in Mallat (2009).

Lagrangian matching pursuit computes a sparse approximation

x⋆ =
∑

i∈I
cidi

of x by solving the regularized problem

min
{ci}i∈I

1

2

∥∥∥∥∥θ −
∑

i∈I
cidi

∥∥∥∥∥

2

+ λ
∑

i∈I

∣∣ci
∣∣ . (1.36)

1.4 First order algorithms for convex optimization - constrained

case

In the previous section we have seen algorithms to optimize unconstrained problems. Now let us see by

symmetry the respective algorithms for problems where the objective is minimized on a closed convex

set Q.

1.4.1 Projected subgradient algorithm

We start from an algorithm that considers the objective as a black box with unknown structure.

The projected subgradient optimization algorithm solves the problem

min
x∈Q

f(x), (1.37)

whereQ is a convex set and the function f is convex, possibly nondifferentiable and Lipschitz continuous

with constant L.

Projected subgradient ignores the structure of the objective function, that is why it is called black box

algorithm. The shape of the constraintQ is hidden and managed by the projection (1.17), whose efficiency

determines the practical (in)utility of this algorithm, i.e. the algorithm is useful when the projection

operator is cheap.

We notice that the subgradient is normalized, as its norm is not informative.

The stepsize ht must be chosen to decrease in a particular way, because the subgradient is normalized.

39

Algorithm 5 Projected Subgradient Optimization

Choose x0 ∈ dom(f) and a sequence of step lengths {ht}t>0 s.t. ht > 0, ht → 0,
∑∞

t=0 ht =∞
for t = 0, 1, 2, . . . do

Choose st ∈ ∂f(xt)
if st = 0 then

Exit

end if

xt+1 = πQ(xt − ht(st/ ‖st‖))
end for

If by chance a subgradient is zero, then the algorithm stops and the current xt is the optimal solution.

The upper bound is

min
k=0...t

f(xk)− f(x⋆) ≤
LR√
t+ 1

,

where R is the radius of a ball that contains Q and L the Lipschitz constant of f . This algorithm is slow,

but as the lower bound for Lipschitz nondifferentiable functions is O(1/
√
t), see section 1.2.5, it is also

optimal and cannot be improved.

1.4.2 Projected gradient algorithm

Projected gradient is similar to the projected subgradient, it has the same problem with the projection

operator, which could be expensive. Nevertheless there is a difference: here the norm of the gradient gets

smaller when approaching the optimal solution, and is used to adapt the stepsize.

The projected gradient descent algorithm solves the problem

min
x∈Q

f(x), (1.38)

where Q is a convex set and f is a convex differentiable function.

We see now that this algorithm generates a sequence of so-called feasible points by searching along

the descent directions. A point x is feasible if it satisfies all the constraints, i.e. x is feasible iff x ∈ Q. A

feasible direction at x ∈ Q is a vector d such that for all α > 0 sufficiently small x+ αd ∈ Q. Feasible

directions algorithms are well described in Bertsekas (2004).

Projected gradient finds the descent direction using the same principle as gradient descent, i.e. use the

steepest descent to find a descent direction. Here as there is an additional constraint, which is taken into

account by adding a projection operator to the algorithm.

The discussion related to the cost of oracles that we made in section 1.3.5 applies also to projections.

To project on a convex ball could be expensive and not usable in practice for large scale problems,

40

depending on the shape of Q. So, if we want to implement and run the gradient descent in “human

time", let us suppose also that the projection onto Q is easy to compute and scalable with respect to the

size of the space n.

Algorithm 6 Projected Gradient Descent

Choose x0 ∈ dom(f)
for t = 0, 1, 2, . . . do

x̄t = πQ(xt − ht∇f(xt))
d = x̄t − xt

xt+1 = xt + αtd

end for

At each iteration t, αt ∈ (0, 1] is the stepsize that can be chosen with line search, ht > 0 is a scalar

that can be constant for all iterations, differently from subgradient algorithms, because here the gradient

gets smaller when approaching to the solution. Here the feasible direction d = x̄t − xt .

The rate of convergence of projected gradient is the same as that of gradient descent algorithm

O

(
1

t

)
.

This algorithm is faster than projected subgradient, because here the norm of the gradient is informative

and decreases while xt approaches to the solution, but it is not optimal. In fact, for a smooth function

the lower bound is O(1/t2), as seen in sec 1.2.5. The next algorithm is a faster and optimal version of

projected gradient.

Accelerated projected gradient algorithm A way to accelerate the projected gradient consists in re-

formulate the objective function and then apply accelerated proximal gradient algorithm, described at

Section 1.3.3.

The problem to optimize is (1.38), with f L-smooth convex. Using the indicator function of Q, an

equivalent formulation is

min
x∈E

f(x) + iQ(x).

Then the proximal operator of iQ returns the projection on Q, as seen in 1.19.

The accelerated projected gradient is a fast algorithm and has complexity O(1/t2), but it needs to

compute a projection at each iteration. The cost of the projection operator can be expensive and depends

on shape number of dimensions of Q. In that case it could be interesting to chose an algorithm that is

slower, but that has an oracle easier to compute. We will see one in the next section.

41

f

xt

•
f(xt)

r

dt

•
Q

•

�

�

Gt

Figure 1.5: Conditional gradient. At xt the algorithm finds the gradient, then builds the tangent r. The

minimum of r overQ is dt, the output of the linear minimization operator. The certificate at iteration t is

Gt .

1.4.3 Conditional gradient algorithm

In the previous section 1.4.2, we saw a fast algorithm for constraint optimization based on the proximal

operator, accelerated projected gradient. Here we present another algorithm that solves to same problem

(1.38) of minimizing an L-smooth function f over a convex Q, conditional gradient Frank and Wolfe

(1956) Demyanov and Rubinov (1970), for which we saw a regularized version at section 1.3.5. Another

well known name for it is Frank-Wolfe algorithm.

The central operation in conditional gradient is also used

There are two algorithms used for signal compression, denoising and pattern recognition that are

based on the scheme of conditional gradient: matching pursuit algorithm and orthogonal matching pur-

suit. They are described at sections 1.4.4 and 1.4.5.

The upper bound of conditional gradient is

f(xt)− F (x⋆) ≤
2L

t+ 1
t ≥ 2,

while the lower bound for smooth functions, as seen at 1.2.5, is O(1/t2).

42

Algorithm 7 Conditional Gradient

Choose x0 ∈ dom(f)
for t = 0, 1, 2 . . . do

x̄t = argminx∈Q〈∇f(xt),x− xt〉
dt = x̄t − xt

xt+1 = xt + hdt

end for

Despite conditional gradient is not optimal and has a slower rate of convergence than accelerated

projected gradient, it could be more suitable depending on the shape of Q. In fact, if the projection on Q
is expensive and the linear minimization operator (1.22) ofQ is cheaper, then it is worth to use conditional

gradient.

At each iteration this algorithm calls the Linear Minimization Operator, computes a descent direction

d, and finds the next point through line search with h ∈ [0, 1]. We notice that ifQ is the convex envelope

of D, this oracle is the same as the one used in composite conditional gradient, equation 1.22.

At the first line of the iteration we can recognize the linear minimization operator, that we defined at

(1.22). At each iteration a new atom is generated by this line, called greedy step.

The sequence

Gt := max
x∈Q
〈∇f(xt−1),xt−1 − x〉 = 〈∇f(xt−1),xt−1 − x̄t〉 (1.39)

is the accuracy certificate of conditional gradient.

The quantity

〈∇f(xt−1),xt−1 − x̄t〉 ≤ ε,

which implies

F (xt)− F (x⋆) ≤ ε

is a stopping criterion; see Harchaoui et al. (2014); Jaggi (2013) for details and discussion.

This observable stopping criterion is cheap because it is “automatically" computed as by-product of

every iteration of composite conditional gradient. In fact, the greedy step at the beginning of each iteration

gives already the solution of the maximization problem that defines Gt.

This certificate is important for two reasons: It demands no additional cost in the algorithm, as the

information is already generated by the greedy step; It has the same complexity O(1/t) of the upper

bound, so it is worth to control the algorithm using the certificate.

The conditional gradient algorithm belongs to the class of feasible directions algorithms for constraint

43

optimization Bertsekas (2004).

1.4.4 Matching pursuit algorithm

The aim of matching pursuit is to select T vectors in a redundant dictionary D = {di}i∈I , where I is a

set of indices, and compute an optimal approximation of a signal x ∈ E. This problem is NP-hard Mallat

(2009). Matching pursuits are iterative algorithms that select vectors from the dictionary one by one

to build an ε-optimal approximation xT . Possible applications are compression, denoising and pattern

recognition.

The problem to solve is 


min{ci}i∈I

1
2

∥∥x−∑i∈I c
idi

∥∥2

s.t. |supp (c)| ≤ T ,

(1.40)

where the support of c contains the indices i for which the coefficient ci are different from zero,

supp (c) :=
{
i ∈ I

∣∣ ci 6= 0
}
.

This problem can be formulated as linear program, while the Lagrangian pursuit at section 1.3.6 can

not.

Algorithm 8 Matching pursuit

Input signal x, relaxation factor α ∈ (0, 1]
R0 = x

for t = 0, 1, 2 . . . T do

dit s.t. |〈Rt, dit〉| ≥ α supi∈I |〈x, di〉|
Rt+1 = Rt − 〈Rt, dit〉dit

ct⋆ = 〈Rt, dit〉
end for

Return xT =
∑T−1

t=0 ct⋆dit

Algorithm 8 describes matching pursuit, where the values Rt are called residues and the coefficients

of the decomposition are ct and the atoms are dit . The matching pursuit returns a solution

xT =

T−1∑

t=0

ct⋆dit

and has linear convergence

‖x− xT ‖2 = O(kT),

44

with a constant 0 < k < 1.

1.4.5 Orthogonal matching pursuit algorithm

This is a version of matching pursuit that improves the approximation by orthogonalizing the directions of

projection with a Gram-Schmidt procedure. At each iteration the vector dit that is found is orthogonalized

with respect to all the previous vectors and the vector ut is obtained.





min{ci}i∈I

1
2

∥∥x−∑i∈I c
idi

∥∥2

s.t. |supp (c)| ≤ T

{di}i∈supp(c) are orthogonal

(1.41)

Algorithm 9 Orthogonal matching pursuit

Input signal x, α ∈ (0, 1]
R0 = x

for t = 0, 1, 2 . . . T do

dit s.t. |〈Rt, dit〉| ≥ α supi∈I |〈x, di〉|
ut = dit −

∑t−1
i=0

〈dit
,ui〉

‖ui‖2 ui

Rt+1 = Rt − 〈Rt,ut〉
‖ut‖2 ut

ct⋆ = 〈Rt,ut〉
‖ut‖2

end for

Return xT =
∑T−1

t=0 ct⋆ut

The coefficients are ct and the atoms are the normalized vectors ut.

Orthogonal matching pursuit has linear convergence, but for large T the Grahm-Schmidt orthogonal-

ization, the search for ut increases significantly the arithmetical complexity of each iteration.

The main reference for (orthogonal) matching pursuit is Mallat (2009).

1.4.6 Randomized incremental algorithm

We focus here on a general family of randomized incremental algorithms based on the principle of

majorization-minimization. The principle consists in iteratively minimizing a majorizing surrogate of

the objective function. We see an instance of randomized incremental algorithm in which the objective

is decomposed in sum of functions. We present the minimization by incremental surrogate optimization

(MISO), proposed in Mairal (2013).

45

Here the optimization problem is

min
x∈Q

f(x) =
1

J

J∑

j=1

f j(x),

where Q is a convex subset of Rn, f j are a convex functions.

Algorithm At each iteration t, MISO finds surrogates gjt of the original functions f j . It is assumed that

the surrogates are majorant of the original function and the difference gjt − f j is L-smooth.

Algorithm 10 Minimization by Incremental Surrogate Optimization

Choose x0 ∈ Q
For all j = 1 . . . J choose surrogates gj0 of f j near x0

for t = 1, 2, . . . do

Randomly pick up an index ĵt ∈ 1, . . . , J

Choose a surrogate gĵtt of f ĵt near xt−1.

gjt = gjt−1 , for t 6= ĵt
Compute a surrogate function gt of f near xt−1

Update xt ∈ argminx∈Q
1
J

∑J
j=1 g

j
t (x)

end for

Convergence If the surrogates gjt are L-smooth and ρ-strongly convex, with ρ ≥ L, then the conver-

gence for MISO is

E[f(xt)− f(x⋆)] ≤
LJ ‖x⋆ − x0‖2

2t
.

In addition, when f is also µ-strongly convex, the upper bound is linear

E[f(xt)− f(x⋆)] ≤ 1
2 ‖x⋆ − x0‖2

(
(1− 1

J) +
1
J

L
ρ+µ

)t−1

An overview of first-order convex optimization algorithms and their iteration-complexity is given in

Table 1.1.

Unconstrained opt. algorithm Constrained opt. algorithm Analytical complexity

Gradient descent Projected gradient O(1/t)
Proximal gradient O(1/t)

Randomized incremental O(1/t)
Composite conditional gradient Frank-Wolfe O(1/t)
Accelerated proximal gradient O(1/t2)
Accelerated gradient Accel. projected gradient O(1/t2)

Table 1.1: First column first order algorithms for unconstrained optimization, second column first order

algorithms for constrained optimization, third column magnitude of analytical complexity.

46

1.5 Machine learning applications

In our studies we apply our theoretical results to statistical image classification and collaborative filtering.

Let us start by defining some general notation used in machine learning, that we will use in the next

sections to present our applications.

i = 1, . . . , N indices of data

yi ∈ R response

xi feature vector

(x1,y1), . . . , (xN ,yN) observations of the random variables x and y

S ⊂ E set of parameters (scalars, vectors, or matrices;

constraint or the whole space)

W ∈ S the model, i.e object containing all the parameters

of a predictor function

Wi,j ∈ R indicates the entry of row i and column j
W:,j ∈ Rd indicates the j-th column of W

x 7→ F(W,x) predictor function for a fixed W

ŷ = F(W,x) prediction for x with model W

ℓ(W,x,y) is a loss function

R(W) := 1
N

∑N
i=1 ℓ(W,xi,yi) is the empirical risk

ℓ01(W,x,y) =

{
0, ŷ = y

1, ŷ 6= y
gives 0 for a correct prediction and 1 otherwise

λ > 0 regularization parameter

Table 1.2: Summary of the notation used in the sections related to applications. We remind that here

x and y are related to the dataset and have a completely different meaning of the x and y used in the

sections about optimization. We do not minimize with respect to x or y, but we minimize with respect to

W.

1.5.1 Collaborative filtering for movie advertising

Collaborative filtering, or matrix completion, consists in the generation of a low-rank matrix from few

known approximate entries. This entries are ratings of users to movies they have seen. The aim of this

task is to predict, i.e. to guess, what rating someone would give to a movie he hasn’t yet seen. This kind

of prediction could be used, for instance, to advise to watch the movies for which we predict high rating.

Here the feature vector xi belongs to R2.

We use the loss ℓ(w,x) = |w − x|, based on ℓ1 norm Huber (1981), that ensures robustness to

outliers.

The feature vector xi = (x1
i ,x

2
i) = (row, column) ∈ N2 contains just two integers that represent (1)

the index for an user and (2) the index for a movie. So {xi}Ni=1 is the list of observed entries. A response

47

yi is the rating of the user number x1
i for the movie number x2

i and is stored in the matrix Y at row x1
i

and column x2
i .

We have the regularized problem

min
W∈Rd×k

1

N

N∑

i=1

∣∣∣Wx1
ix

2
i − yi

∣∣∣+ λ ‖W‖D

and the constraint problem 



min
W∈Rd×k

1
N

N∑
i=1

∣∣∣Wx1
ix

2
i − yi

∣∣∣

s.t. ‖W‖D ≤ r

The predicted value is just an entry of W :

ŷ = F(W,x) = Wx1x2

.

MovieLens dataset We test our approach on the MovieLens dataset for collaborative filtering, de-

scribed in Miller et al. (2003) and available at http://grouplens.org. This dataset contains eval-

uations of movies made by customers, represented by the sparse matrix Y ∈ Rd×k. As every customer

evaluated only a small number the movies, Y is sparse. Here completing Y means predicting how a

customer would evaluate a movie which he hasn’t seen. Entries of Y are normalized dividing by the max

entry of Y which is 5. So Y has entries in [0, 1].

71 567 users

10 681 movies

10 000 054 ratings

then the sparsity of the resulting matrix Y is 1.3 Some real data from MovieLens are represented at

Fig.1.6.

1.5.2 Multiclass image classification

Let us introduce two types of classification: the classical multiclass classification, called top-1 classifi-

cation, and an extension that is often used in machine learning, especially in computer vision, the top-k

multiclass classification. The fundamental distinction between them is how to define if an example has

been correctly classified.

48

http://grouplens.org

0 100 200

50

100

150

200
0 100 200

50

100

150

200

Figure 1.6: View of first 200 rows and columns of Movielens data. (Left) the input matrix of observations

Y, where the non observed ratings are drawn in white, (right) the low rank solution W obtained running

SCCG. The highest ratings are black, then red. The more poor ratings are and yellow and white.

Top-1 classification

Here the feature vector xi belongs to Rd. Let p1 = (x1, y1), . . . , pN = (xN , yN) be labeled training

data examples, where xi ∈ Rd are feature vectors, k is the number of classes and the integers yi ∈
[1 . . . k] are the associated class labels. A linear classifier is specified by a separate weight vector W:y ∈
Rd. For a given test example x ∈ Rd, the predicted class is

ŷ = F(x,W) := argmax
j=1...k

W:j⊤x. (1.42)

An example pi is said to be correctly classified if the prediction and the true label coincide, as defined by

the 0-1-loss

ℓ01top,1(W,x,y) =





0 if y = argmax
j=1...k

W:j⊤x (correct classification)

1 if y 6= argmax
j=1...k

W:j⊤x (misclassification).

(1.43)

The optimization task consists in finding a model W to minimize the top-1 misclassification error

R01
top,1(W) :=

1

N

N∑

i=1

ℓ01top,1(W,xi,yi). (1.44)

and the top-1 accuracy is defined as

acctop,q(W) := 1−R01
top,1(W). (1.45)

49

But R01
top,1 is not convex and hard to optimize. Let us present a convex upper bound of it.

We first define the affine map Ax,y : R
d×k → Rk for classification related to the example p = (x,y)

Ax,yW := {1− δ(j,y) + (W:j −W:y)⊤ x}kj=1. (1.46)

where δ(j, i) := 0, if j 6= i, 1 otherwise. The hinge function for top-1 multiclass is defined as

ℓHtop,1(W,x,y) := max
j=1...k

(Ax,yW)j

and is an upper bound of (1.43), i.e. for all W ∈ Rd×k

ℓHtop,1(W,x,y) ≥ ℓ01top,1(W,x,y),

and this is because Ax,yW has always one nonnegative entry so that

max
j=1...k

(Ax,yW)j ≥ 0.

A convex upper bound of the misclassification error is

RH
top,1(W) :=

1

N

N∑

i=1

ℓHtop,1(W, (xi,yi)).

So now we have a convex function RH
top,1(W) to optimize. It is still an ill-posed problem, so we are

interested to optimize a regularized (doubly) nonsmooth version

min
W∈Rd×k

RH
top,1(W) + λ ‖W‖D =

1

N

N∑

i=1

max
j=1...k

(Axi,yi
W)j + λ ‖W‖D , (1.47)

and a nonsmooth constrained version

min
‖W‖D≤r

RH
top,1(W) =

1

N

N∑

i=1

max
j=1...k

(Axi,yi
W)j (1.48)

The problems (1.48) and (1.48) are now convex and good to optimize. The only issue with them is

the nondifferentiability: state of art algorithms treat this condition in a bad way, especially (1.47), which

is doubly nonsmooth.

50

Top-q classification

Let us see another more general type of multiclass classification, of which the one we introduced above

is a particular case. Here we are interested in predicting q classes instead of only one. We assume that:

(i) Any image contains more than only one object. Even if there is a central big one, several other small

objects appear. (ii) Speaking of a dataset, the ground truth, i.e. the true label of each image, is subjective

and depends on the personal choice of the human. The function we learn associates to each image a list

of q labels ordered by relevancy, instead of having only the best one as in top-1 classification. Then the q

predicted classes by the model W for the example x are given by

(ŷ(1), . . . , ŷ(q)) = F(W,x) := q-argmax
j=1...k

W:j⊤x, (1.49)

where q-argmax returns a set of q values instead of only one as in the traditional argmax operator.

One motivation to use the prediction function (1.49) is when two objects A and B are similar, for

example two types of trees. It is acceptable that (1.49) predicts both of them among the first q results and

does not take care too much of the subjective choice of the ground truth. On the other hand, the top-1 can

predict A when the true is B, and we would get the same error as predicting any other object. An example

of subjective labeling is an image with a bee on a flower. It could have the label bee, but the classifier

gives the top score to the class flower and the second top score to bee. While the top-1 accuracy would

accept only flower and consider this a misclassification, a top-q accuracy (here q ≥ 2) would consider

it as a good classification.

Another motivation is to use top-q inside a sequence of computer programs. For example a first

program could find the best q “candidate” classes for the given image. After that, a second program could

apply object detection to identify bounding boxes of different objects and a third program could apply

filters to find the most relevant class. For large scale number of classes k it is considered good to have

the true class predicted among the first q of highest score. We assume that q is much smaller than k, for

example q = 5 or q = 10. Top-q accuracy is commonly used to evaluate the performance of a classifier.

Let us define first the misclassification top-q loss

ℓ01top,q(W,x,y) =





0 if y ∈ q-argmax
j=1...k

W:j⊤x correct classification

1 if y /∈ q-argmax
j=1...k

W:j⊤x misclassification.

(1.50)

The top-q error, that is the empirical risk, is defined as the rate of true labels yi not present among the

51

first q predicted

R01
top,q(W) :=

1

N

N∑

i=1

ℓ01top,q(W,xi,yi) (1.51)

and the top-q accuracy is defined as

acctop,q(W) := 1−R01
top,q(W). (1.52)

We shall generalize to top-q the convex hinge presented for the top-1 in this section.

1.6 Contributions in this context

In this section we introduce our contributions presented with details in the next chapters. We define and

study a new norm for matrices that are decomposed into groups. We describe first some techniques for

the construction of surrogates that approximate nonsmooth functions. Then we create new algorithms

based on conditional gradient to solve nonsmooth optimization problems using smoothing as a tool. Each

contribution is presented in its main lines together with some recent related work. More details and further

references are given in corresponding chapters.

1.6.1 Group Schatten norm

W1

W2

W3

W2

W3

W1

=

Figure 1.7: The matrix on the left is composed by the matrices on the right, that we call ‘groups’.

52

Contribution The popular nuclear norm, i.e. the sum of singular values of a matrix, is the convex hull of

the rank, properly restricted to a ball of its domain. The nuclear norm used as regularizer in optimization

problems has the useful property of generating low rank solutions, which improves robustness of models

in statistical learning tasks. The Schatten norm is a generalization of matrix norms as the Frobenius norm,

the ℓ1 norm and the ℓ∞ norm.

Here we introduce a new mathematical object: the group Schatten norm, as generalization of Schatten

norm for matrices that are decomposed into groups. We call groups the submatrices obtained by elimi-

nating rows and columns, possibly non-contiguous. The name group Schatten norm comes then from the

groups in which the full matrix is decomposed, and the Schatten norm, that is applied to each group.

This contribution is two-fold: in the first part we study the properties of the group Schatten norm from

the point of view of convex analysis and we consider it as the convex envelope of the reweighted group

rank function; In the second part we consider one particular instance of group Schatten norm: the group

nuclear norm. We apply the group nuclear norm as regularizer for optimization problems, which has the

interesting property of forcing the solution to have low rank in each group. In addition we illustrate an

application for matrix completion, where we reconstruct a matrix from a small sample of its entries.

We discuss potential applications of the group nuclear norm, divided into tree categories: collaborative

filtering, database compression, multi attribute image classification. In the latter, the strength point of the

group nuclear norm is that it can take into account a tree hierarchy of the examples and at the same time

it can handle attributes independently from the hierarchical structure.

Related works The recent Tomioka and Suzuki (2013) independently proposed a norm similar to our

group Schatten norm, the ‘latent’ norm for tensors, that can be used to regularize convex problems and

obtain an equivalent of low-rank solution, where the rank is extended to tensors. From both theoretical

and empirical approach the latent norm performs better than the other ‘overlapped’ norms for tensors.

1.6.2 Smoothing techniques for learning with first-order optimization

Contribution Nonsmooth problems are key tools for applications in machine learning because they

lead to more robust predictive models. The main issue with these problems is that state of the art al-

gorithms, as subgradient or bundle-type algorithms, are not scalable with the size of the space when

optimizing some particular nonsmooth function, as instance the nuclear norm. On the other hand, to op-

timize a smooth objective is in general easier and faster, but the key property of model robustness could

vanish. Therefore, the practical advantages of nonsmooth optimization suggests to study algorithms that

can handle nonsmooth functions. We are interested in surrogate functions and scalable algorithms to

53

approximate the nonsmooth objectives and to solve nonsmooth problems.

This contribution is divided in two: in the first part we describe the construction of smooth surrogates

approximating nonsmooth functions; in the second part we propose new algorithms to solve nonsmooth

optimization problems. The action of building a surrogate to approximate a nonsmooth function is de-

noted “smoothing". We present a simple framework of smoothing that can be summarized into two main

classes of smoothing techniques: i) The smooth surrogate is obtained by infimal convolution of the non-

smooth function with a smooth convex function Beck and Teboulle (2012). To this class belong the

Moreau-Yosida transform, the Fenchel-type approximation, the Nesterov smoothing and the asymptotic

function smoothing. ii) The smooth surrogate is obtained by convolution of the nonsmooth function with

a measurable function Duchi et al. (2012).

We develop also a new way to smooth the top-k error, used in ranking and classification. We show

also how to apply the smoothing to collaborative filtering for movie advertising and multiclass image

classification.

In the second part we propose three new algorithms for nonsmooth problems, obtained by combining

these smoothing techniques with state of art algorithms: composite conditional gradient, FISTA, and

MISO. We take advantage of the smoothing to partially smooth the objective and plug the surrogate into

the algorithm.

Related works Fast gradient methods as FISTA suffer from error accumulation when the subproblem

for the oracle returns an approximate solution. This issue is tackled in Devolder et al. (2014), where the

notion of inexact first-order oracle is introduced and better convergence results are obtained for smoothed

max-representable functions. An example of inexact oracle is given by the approximation by a smooth

function of the objective.

An extension of Nesterov method and FISTA, called proximal iterative smoothing algorithm, is pre-

sented in Orabona et al. (2012). This algorithm optimizes an objective function that is the sum of three

convex parts: of which one smooth, and one Lipschitz. The proximal operators of the nonsmooth parts

are supposed to be easy to compute. Applications are robust PCA, sparse inverse covariance selection,

and collaborative filtering and clustering regularized with the max-norm. An advantage of this algorithm

is that it has an optimal stepsize without knowing in advance the number of iterations.

1.6.3 Conditional gradient algorithms for doubly non-smooth learning

Contribution The problems we want to solve here are doubly nonsmooth: the loss is nonsmooth and

the regularization too. For example, combining the nuclear norm as regularization with a nonsmooth loss,

54

we get a doubly nonsmooth problem for wich the existing algorithms are not scalable with the size of the

problem. On the other hand, (composite) conditional gradient is scalable for nonsmooth functions that are

“difficult”, as the nuclear norm, but a smooth loss is needed. When the loss is nonsmooth, (composite)

conditional gradient gets stuck at some iterations and does not converge to the optimum.

Our contribution is the creation of two new algorithms based on (composite) conditional gradient. The

first algorithm is adaptive conditional gradient, which optimizes a nonsmooth function with a constraint

represented by the ball of a nonsmooth function. The second algorithm is adaptive composite conditional

gradient, which optimizes the sum of a nonsmooth loss and a nonsmooth regularization.

The main idea is that we use as tool the smoothing techniques: adaptive (composite) conditional

gradient is a combination of adaptive smoothing and (composite) conditional gradient. The convergence

of adaptive (composite) conditional gradient toward the solution of the initial nonsmooth problem is

proved with guaranties.

We run computational experiences on applications to collaborative filtering for movie advertising and

multiclass classification of images.

Related works An extension of conditional gradient, called block-coordinate Frank-Wolfe optimization

for structural SVM, is presented in Lacoste-Julien et al. (2013). This algorithm is adapted to problems

whose constraints are separable into cartesian product. While keeping the same convergence rate of

conditional gradient, the oracle cost at each iteration is cheaper.

Conditional gradient can be seen as an extension of herding algorithm Bach et al. (2012a). The two

algorithms are the same when applied to the problem of estimating the mean of a convex polytope.

In Lacoste-Julien et al. (2015) conditional gradient is used to approximate the integral of functions,

useful in case of expensive estimation of the likelihood. When applied to particle filtering problems, it

gives better performance of random sampling or quasi-Monte Carlo sampling,

Several variants of conditional gradient called ‘away-steps’, ‘pairwise’ and ‘fully-corrective’, are

presented in Lacoste-Julien and Jaggi (2015). These variants keep linear convergence for strongly convex

objectives, avoid the zigzagging problem when the solution is on the boundary of the constraint and in

practice the convergence is improved.

New convergence rates for offline smooth and strongly convex optimization, new online algorithms

and stochastic algorithms for convex optimization are provided in Garber and Hazan (2015), considering

convex problems constrained by polytope. Here the minimization of a linear function on a polytope

is supposed to be easy to compute, e.g. for the matroid polytope, the flow polytope, and the set of

rotations.In these examples the projection over the polytope is not scalable with respect to the size of

55

the space, but the proposed algorithms avoid the projection. Instead, the proposed conditional gradient

requires only one call to the linear optimization oracle per iteration and per game.

56

Chapter 2

Group Schatten norm

2.1 Introduction

The rank function, when properly restricted to a subset of its domain, has a well-known convex enve-

lope: the nuclear norm. We introduce a new norm that can be derived similarly from a rank function of

submatrices.

Regularization is a popular approach in statistics as it leads to sparse models, which have good inter-

pretation in applications such as computer vision, biology and social sciences.

A popular example of regularization is the nuclear norm, which leads to low-rank models, but it does

not allow inclusion of any a priori information about the groups of covariates. We introduce a new norm

for the setting when groups of covariates are given over which the matrix should be of low rank. Our

norm can be viewed as a matrix generalization of the popular group lasso norm (Jacob et al., 2009; Yuan

and Lin, 2006; Zhao et al., 2009).

Used as a penalty function in optimization, the group nuclear norm leads to sparse matrix solutions,

where the sparsity here corresponds to a low rank when restricted to some submatrices. Optimization

problems that enforce low-rank solutions are building blocks of several important applications in machine

learning, including recommender systems and multiclass classification algorithms for a large number of

classes.

The chapter is organized as follows. In Section 2.3 we describe the decomposition of a matrix into

groups and define the group Schatten norm. In Section 2.4 we analyze the properties of the group Schatten

norm from the point of view of convex analysis, and consider it as the convex envelope of the reweighted

group rank function. In Section 2.5 we show how to solve optimization problems regularized by the group

57

nuclear norm, using two popular algorithms: FISTA and composite conditional gradient. In Section 2.6

we illustrate how to recover a matrix by observing some random entries.

2.2 Notation

In a vector space Rd, we use notation ‖ · ‖p, p ≥ 1 for a general ℓp-norm. For a matrix W in Rd×k,

we write σ(W) for the spectrum viewed as a vector of singular values of W. We define the so-called

Schatten p-norm as

‖W‖σ,p := ‖σ(W)‖p .

We obtain the spectral norm by choosing p = ∞, Frobenius norm by choosing p = 2, and the nuclear

norm of the matrix by choosing p = 1. The latter is also called the trace norm, because for positive

definite semidefinite matrices it is equal to the trace. It is popular in machine learning, where it is the

convex surrogate of the rank optimization.

2.3 Group Schatten norm: Definition and examples

Motivated by applications in machine learning, we refer to the rows of matrix W as covariates and

columns as classes. To set up our group norm, we need to introduce the notions of groups of classes and

covariates. Let G denote a finite set of indices, where each index g ∈ G is associated with a set of classes

Yg ⊆ Y := {1, . . . , k} and a set of covariates Dg ⊆ D := {1, . . . , d}. A group is a set of index pairs

Dg × Yg . The groups may overlap, we just assume that the groups cover all the covariates and classes:

⋃

g∈G
Dg × Yg = D × Y .

The groups are known and fixed in advance.

Next, consider the vector space EG defined as the direct sum of spaces R|Dg|×|Yg| across all g,

EG :=
⊕

g∈G
R|Dg|×|Yg| .

Thus, EG is a vector space whose elements, (Wg)g , are tuples of |G| matrices.

In addition to groups G, we fix the positive weights αg , g ∈ G. In EG , we consider a norm which is a

58

weighted sum of p-Schatten norms over the elements of the tuple,

Ω⊕((Wg)g) :=
∑

g∈G
αg‖Wg‖σ,p . (2.1)

Each group g is associated with the following two maps:

• Πg : R
d×k → R|Dg|×|Yg| is the projection such that Πg(W) zeroes out the entries of W not

indexed by Dg and Yg .

• ig : R|Dg|×|Yg| → Rd×k is the natural (injective) embedding of R|Dg|×|Yg| into Rd×k, such that

ig ◦ Πg is the identity function on R|Dg|×|Yg|. Thus, Πg is the adjoint of ig , i.e. for all Z ∈ Rd×k

and all Wg ∈ R|Dg|×|Yg| we have 〈Z, ig(Wg)〉Rd×k = 〈Πg(Z),Wg〉
R
|Dg|×|Yg| .

The mappings ig and Πg allow us to identify the space R|Dg|×|Yg| with its image in Rd×k.

Consider also the linear operator AG : EG → Rd×k defined by

AG((Wg)g) :=
∑

g∈G
ig(Wg).

The group p-Schatten norm associated with a grouping G is defined as

ΩG(W) := min
(Vg)g∈EG

s.t.W=AG((Vg)g)

∑

g∈G
αg‖Vg‖σ,p. (2.2)

The fact that ΩG as defined above is indeed a norm will follow easily from Lemma 1. Many basic

properties of ΩG come from its interpretation as a so-called “image-function”, a standard notion of convex

analysis Hiriart-Urruty and Lemarechal (1996).

For the special case when the groups are disjoint, the decomposition of W is unique with Wg =

Πg(W), i.e.

ΩG(W) =
∑

g∈G
αg‖Πg(W)‖σ,p, (2.3)

and the minimum in (2.2) is attained at a single element of EG .

Some of the examples of the group Schatten norm with p = 1, a.k.a. the group nuclear norm, are the

following:

1. We get the nuclear norm Ωtrace(W) = ‖W‖σ,1 by defining one group that fully covers the matrix,

G = {1}, D1 = {1, . . . , d}, and Y1 = {1, . . . , k}.

59

2. We get the matrix ℓ1 norm Ωlasso(W) =
∑d

j=1

∑
y∈Y |Wjy| by defining d× k groups, each cover-

ing one matrix entry.

3. We get the group lasso Ωgr-lasso(W) =
∑d

j=1 ‖Wj‖2, where Wj denotes the jth column of W,

by defining k groups {1, . . . , d}× {y} for any y ∈ Y , since the nuclear norm of the column Wj is

just ‖Wj‖σ,1 = ‖Wj‖2.

Lemma 1 (Norm). The group Schatten norm ΩG is a norm on Rd×k and the minimum in (2.2) is always

attained on a nonempty compact convex subset of EG .

Proof. (Of Lemma 1) We can write the group Schatten norm as

ΩG(W) = inf
(Vg)g∈EG

s.t. W=AG((Vg)g)

Ω⊕((Vg)g) (2.4)

We recognize now that ΩG is the image-function on the affine space

WΩG
= {(Vg)g ∈ EG |W = AG((Vg)g)} ,

see (Hiriart-Urruty and Lemarechal, 1996, B.2.4.1). From this expression, we deduce first that ΩG is

convex (by (Hiriart-Urruty and Lemarechal, 1996, B.2.4.2)), and we also see that ΩG is indeed a norm

on Rd×k, since so is Ω⊕. Finally, since Ω⊕ is closed convex, the set of minimizers in (2.4) must also be

closed and convex. Since Ω⊕ is moreover a norm, it has bounded sublevel sets and therefore the set of

minimizers in (2.4) is also bounded and thus compact.

2.4 Group nuclear norm as a convex surrogate

A standard nuclear norm acts as a convex surrogate for rank function in various machine learning appli-

cations. Here we show that the group Schatten norm can be similarly viewed as a convex surrogate that

combines the notion of sparsity among different group sparsity and small rank within each group.

The next theorem shows that the group Schatten norm is in fact the convex surrogate of two functions

involving submatrices, defined on Rd×k: the “reweighted group rank" function

Ωrank
G (W) := inf

(Wg)g∈EG

W=AG((Wg)g)

∑

g∈G
αg rank(Wg), (2.5)

60

and the “reweighted rank” function

Ωrank(W) := min
g∈G

αg rank(Πg(W)) + δg(W), (2.6)

where δg is the indicator function of the group g:

δg(W) :=




0 if the nonzero entries of W are all included in the g-th group

+∞ otherwise.

These functions, when used as regularizers in optimization problems, enforce solutions that are low rank

on some groups and zero outside.

Theorem 1 (Convex hull). The group nuclear norm ΩG is the closed convex hull of the two functions

(2.6) and (2.5), when restricted to the convex set

C :=



W ∈ Rd×k

∣∣∣∣∣∣
(Wg)g ∈ EG ,

|G|∑

g=1

σmax(Wg) ≤ 1, AG((Wg)g) = W



 .

Proof. (Of Theorem 1) Note that C is convex by definition, since σmax is a convex function and AG is a

linear operator.

Let us prove now that, for all W in C, we can bound

Ωrank(W) ≥ Ωrank
G (W) ≥ ΩG(W).

That Ωrank ≥ Ω is evident from the the results we introduced in the previous section.

We start to show that Ωrank
G ≤ Ωrank restricted to C. Let us call ĝ the minimizer of the right part of

inequality. Then, if not always infinity, Ωrank(W) = αĝ rank(Πĝ(W)). For the left hand side we can

take a (Wg)g such that Wĝ = W and Wg equal the zero matrix for g 6= ĝ. We observe that this verifies

W = AG((Wg)g). Then the left argument not bigger than αĝ rank(Πĝ(W)).

Now we show that ΩG is the convex hull of Ωrank by showing that ΩG is equal to the double Fenchel

conjugate (Ωrank)∗∗. The first inequality is easy to get by using Ωrank as the minimum of many functions:

Ωrank(W) = ming ψg(W), with

ψg(W) :=




αg rank(W) + δg(W) σmax(W) ≤ 1

+∞ otherwise.

61

We get also that

(Ωrank)∗(V) = max
g

ψ∗
g(V) (2.7)

for any V ∈ Rd×k.

(Ωrank)∗(V) = sup
Z∈Rd×k

〈V,Z〉 − Ωrank(Z)

= sup
Z∈Rd×k

〈V,Z〉 −min
g∈G

αg rank(Πg(W)) + δg(W)

= sup
Z∈Rd×k

〈V,Z〉+max
g∈G
−αg rank(Πg(W))− δg(W)

= max
g∈G

sup
Z∈Rd×k

〈V,Z〉 − αg rank(Πg(W))− δg(W)

= max
g∈G

ψ∗
g(V).

Now we conclude by showing that ΩG is Ωrank conjugated twice.

(Ωrank)∗∗(W) = sup
V∈Rd×k

〈V,W〉 − max
g=1...G

ψ∗
g(V)

= sup
V∈Rd×k

〈V,W〉 − max
βg≥0

∑

g βg=1

∑

g

βgψ
∗(V)

= sup
V∈Rd×k

〈V,W〉+ min
βg≥0

∑

g βg=1

(
−
∑

g

βgψ
∗(V)

)

= sup
V∈Rd×k

min
βg≥0

∑

g βg=1

〈V,W〉 −
∑

g

βgψ
∗(V)

= min
βg≥0

∑

g βg=1

sup
V∈Rd×k

〈V,W〉 −
∑

g

βgψ
∗(V)

= min
βg≥0

∑

g βg=1

(∑

g

βgψ
∗
g

)∗

(W)

Now we use the fact that the conjugate of a sum is the infimal convolution of conjugates Hiriart-Urruty

and Lemarechal (1993).

For any W in C we have

(Ωrank)∗∗(W) = min
βg≥0

∑

g βg=1

inf
Hg∈R

d×k

∑

g Hg=W

∑

g

(βgψ
∗
g)

∗(Hg) (2.8)

62

= min
βg≥0

∑

g βg=1

inf
Hg∈R

d×k

∑

g Hg=W

∑

g

βgψ
∗∗
g

(
Hg

βg

)
(2.9)

= min
βg≥0

∑

g βg=1

inf
∑

g Hg=W

σmax(Hg/βg)≤1

∑

g

βgαg‖Hg

βg
‖σ,1 + δg

(
Hg

βg

)
(2.10)

= min
βg≥0

∑

g βg=1

inf
∑

g Hg=W

σmax(Hg)≤βg

∑

g

αg‖Hg‖σ,1 + δg(Hg) (2.11)

= inf
∑

g Hg=W
∑

g σmax(Hg)≤1

∑

g

αg‖Hg‖σ,1 + δg(Hg) (2.12)

= inf
(Wg)g∈EG

∑

g ig(Wg)=W
∑

g σmax(ig(Wg))≤1

∑

g

αg‖ig(Wg)‖σ,1 (2.13)

= ΩG(W). (2.14)

The equality (2.9) is based on a property of Fenchel conjugate.

In this section we provide a complete convex analysis of the group Schatten norm: computation of

subgradient, dual norm, polar norm, and convex conjugate, by using standard results of convex analysis

Rockafellar (1970), Hiriart-Urruty and Lemarechal (1993).

Let us define the unit-ball of the group p-Schatten norm B = {W : ΩG(W) ≤ 1}. By construction,

the norm is the gauge of its unit-ball

ΩG(W) = inf{λ ≥ 0 : W ∈ λB}. (2.15)

The dual norm of ΩG is defined as

Ω◦
G(V) := sup

ΩG(W)≤1

〈W,V〉. (2.16)

This is the best norm satisfying the Cauchy-Schwarz inequality 〈W,V〉 ≤ ΩG(W)Ω◦
G(V). The dual

norm of p-Schatten norm is (‖ · ‖σ,p)◦ = ‖ · ‖σ,q , for any p ≥ 1, and q s.t. 1/p+ 1/q = 1.

Proposition 2. (Dual norm) The dual norm Ω◦
G , defined by (2.16), satisfies

Ω◦
G(V) = max

g∈G
1
αg
‖Πg(V)‖σ,q.

63

Proof. of proposition 2 . The unit ball of ΩG can be written as

B =
{
W ∈ Rd×k

∣∣ΩG(W) ≤ 1
}
=

{
Ag((Vg)g)

∣∣∣∣∣ (Vg)g ∈ EG ,
∑

g

αg‖Vg‖σ,p ≤ 1

}
(2.17)

We have

Ω◦
G(V) = sup

(Wg)g∈EG

W=A((Wg)g)
∑

g αg‖Wg‖σ,p≤1

〈W,V〉

= sup
(Wg)g∈EG

∑

g αg‖Wg‖σ,p≤1

〈A((Wg)g),V〉

= sup
(Wg)g∈EG

∑

g αg‖Wg‖σ,p≤1

∑

g

〈ig(Wg),V〉

= sup
(Wg)g∈EG

∑

g αg‖Wg‖σ,p≤1

∑

g

〈Wg,Πg(V)〉

= sup
∑

g βg≤1

βg≥0

∑

g

sup
Wg∈R

|Dg|×|Yg|
‖Wg‖σ,p≤βg/αg

〈Wg,Πg(V)〉.

We recognize that the sup over Wg in the previous expression is the dual norm of ‖ · ‖σ,p, which is

‖ · ‖σ,q . Thus we have

sup
Wg∈R

|Dg|×|Yg|
‖Wg‖σ,p≤βg/αg

〈Wg,Πg(V)〉 =
βg

αg
‖Πg(Vg)‖σ,q.

This results in

Ω◦
G(V) = sup

∑

g βg≤1

βg≥0

∑

g

βg

αg
‖Πg(Vg)‖σ,q = max

g

1

αg
‖Πg(Vg)‖σ,q

which is the desired expression.

The duality of norms is perfect: the dual norm of the dual norm is the primal norm itself. This gives

the following variational formulation of the group p-Schatten norm.

Proposition 3. (Group p-Schatten norm as a support function) The group p-Schatten norm ΩG satisfies

ΩG(W) = max
‖Πg(V)‖σ,q≤αg, g∈G

〈V,W〉. (2.18)

64

We also have that the argmax of (2.18) coincide with ∂ΩG(W) by standard subdifferential calculus

rules.

Proof. of proposition 3 . The dual norm of Ω◦
G is ΩG ((Rockafellar, 1970, Ch.15), (Hiriart-Urruty and

Lemarechal, 1996, C.3.2)). Inverting the role of Ω◦
G and ΩG in (2.16) gives the desired expression with

the help of Proposition 2.

The conjugate function of ΩG is defined as

Ω∗
G(V) := sup

W∈Rd×k

〈W,V〉 − ΩG(W) (2.19)

This is the best convex function satisfying 〈W,V〉 ≤ ΩG(W)+Ω∗
G(V). The conjugate of the p-Schatten

norm is the indicator function of the dual ball, i.e. (‖ · ‖σ,p)∗ = δ{X: ‖X‖σ,q}≤1. We generalize this result

in the next proposition.

Proposition 4 (Conjugate function). The conjugate Ω∗
G satisfies

Ω∗
G(V) =





0 ‖σ(Pg(V))‖q ≤ αg for all g ∈ G
+∞ otherwise

Proof. (Of proposition 4 .) This proposition can be proved directly; here we get it as is a direct corollary

of Proposition 3. In general, it is easy to see on the definition that the conjugate of the indicator function

of a closed convex set B is the support function of B. We deduce that the conjugate of support function

of B is the indicator-function of B. Observe that Proposition 3 reads that ΩG is the support-function of

the set of =
{
V ∈ Rd×k

∣∣ ‖Πg(V)‖σ,q ≤ αg for all g ∈ G
}

. Its conjugate is then the indicator of B.

2.5 Algorithms for learning with group p-Schatten norm

2.5.1 Group p-Schatten norm as regularization penalty

Though defined implicitly through a minimization problem, the group Schatten norm can be used effi-

ciently as regularizer for learning optimization problems.

Let us consider a general matrix optimization problem

min
W∈Rd×k

F (W) + λΩG(W), (2.20)

65

where F is convex and smooth and ΩG is the group Schatten norm. Many classical learning problems can

be formulated in this way.

Applying directly standard optimization algorithms on (2.20), such as proximal gradient Nesterov

(2004) or conditional gradient Nemirovski and Yudin (1983), would require computing operators related

to ΩG , such as proximal operator (Hiriart-Urruty and Lemarechal, 1996, Section XV.4) or linear mini-

mization oracle Cox et al. (2014).

When dealing with overlapping groups, instead of solving directly (2.20), we avoid the question of

computing the proximal operator or linear minimization oracle of ΩG by redefining the problem on the

space EG .

Let us add some structure. The vector spaceEG is naturally equipped with the standard scalar product

〈(Wg)g, (Vg)g〉EG
:=
∑

g∈G
〈Wg,Vg〉

R
|Dg|×|Yg|

and with the induced euclidean norm

‖(Wg)g‖2 :=

√∑

g∈G
‖Wg‖22,

where under the square root there is the euclidean norm defined on R|Dg|×|Yg|. When the meaning is

evident, we write 〈·, ·〉 for any scalar product. EG is also equipped with the norm Ω⊕ defined by Eq. (2.1).

Proposition 5. The problem (2.20) can be rewritten with the (Wg)g ∈ EG as

min
(Wg)g∈EG

F (AG((Wg)g)) + λ
∑

g∈G
αg‖Wg‖σ,p. (2.21)

Any solution (W⋆
g)g of (2.21) yields a solution W⋆ = AG((W⋆

g)g) of (2.20). Also, any solution of

(2.20) yields a solution of (2.21) via any decomposition optimizing (2.2).

Proof. (Of Proposition 5) To prove this we observe that the constraint W = AG((Wg)g) disappears

because the minimization is also with respect to W:

min
W∈Rd×k

F (W) + λΩG(W)

= min
W∈Rd×k

F (W) + λ inf
(Wg)g∈EG

s.t. W=AG((Wg)g)

Ω⊕((Wg)g)

= min
(Wg)g∈EG

F (AG((Wg)g)) + λΩ⊕((Wg)g)

66

2.5.2 (Accelerated) proximal-gradient algorithm

Proximal-gradient is an efficient state-of-the-art algorithm to solve the problem (2.21). The key compu-

tation at each iteration t is

proxβ(t)Ω⊕

(
(W(t)

g)g − δ(t)∇(F ◦ AG)
(
(W(t)

g)g
))
.

where δ(t) is the stepsize chosen according to some rules and the prox operator, for a generic vector space

E, a function Ω: E → R and parameter β > 0, is defined as

proxβΩ(W) := argmin
Z∈E

Ω(Z) +
1

2β
‖W − Z‖22 . (2.22)

For nuclear norm ‖ · ‖σ,1, we can derive the explicit expression of the prox operator. Given a matrix

W ∈ Rd×k with the SVD decomposition

W = USV⊤, where S = diag({si}1≤i≤r) ,

we have

proxβ‖·‖σ,1
(W) = UDβ(S)V

⊤, (2.23)

where Dβ is the soft thresholding operator

Dβ(S) = diag({max{si − β, 0}}1≤i≤r).

So, on the space EG , the prox operator for the norm Ω⊕, defined as

proxβΩ⊕
((Wg)g) := argmin

(Vg)g∈EG

Ω⊕((Vg)g) +
1

2β
‖(Wg)g − (Vg)g‖22 ,

can be explicitly computed using the SVD decomposition of each group:

proxβΩ⊕
((Wg)g) =

(
UgDβ(Sg)Vg

⊤
)
g∈G,

(2.24)

where Ug, Sg , and Vg are the SVD decomposition matrices of Wg .

Proof. (Of equation (2.24)) Recall that proxβΩ⊕
is defined on EG and returns values in EG . From the

67

definition, we have

proxβΩ⊕
((Wg)g) = argmin

(Zg)g∈EG

Ω⊕((Zg)g) +
1

2β
‖(Wg)g − (Zg)g‖22

= argmin
(Zg)g∈EG

∑

g∈G
αg‖Zg‖σ,p +

1

2β

∑

g∈G
‖Wg − Zg‖22

= argmin
(Zg)g∈EG

∑

g∈G

(
αg‖Zg‖σ,p +

1

2β
‖Wg − Zg‖22

)

=


 argmin

Zg∈R
|Dg|×|Yg|

αg‖Zg‖σ,p +
1

2β
‖Wg − Zg‖22




g∈G

=
(

proxβαg‖·‖σ,p
(Wg)

)
g∈G.

The result now follows by Eq. (2.23).

2.5.3 Composite conditional gradient

Composite conditional gradient Dudik et al. (2012) is an efficient state-of-the-art algorithm to solve the

problem (2.20), which relies on a linear minimization operator. The linear minimization operator (LMO)

for a generic vector space E and a norm ‖ · ‖ is defined as

LMO‖·‖(W) := argmax
Z∈E | ‖Z‖≤1

〈Z,W〉,

where W is in a vector space E with scalar product 〈·, ·〉.
For nuclear norm ‖ · ‖σ,1, we know the explicit expression of the LMO, described by Dudik et al.

(2012)

argmax
Z∈R

d×k

‖Z‖σ,1≤1

〈Z, W〉 = uv⊤,

where u and v are the top singular vectors of the matrix W.

The key computation, to solve (2.21), at each iteration of composite conditional gradient is

LMOΩG

(
−∇(F ◦ AG)

(
(W(t)

g)g
))
.

68

So, for all (Wg)g ∈ EG , the LMO

LMOΩ⊕
((Wg)g) := argmax

(Zg)g∈EG

Ω⊕((Zg)g)≤1

〈(Zg)g, (Wg)g〉

for the norm Ω⊕ can be explicitly computed by finding the maximum singular vectors of the matrix of

each group. LMOΩ⊕
returns a tuple of zero matrices, except for the group with index ĝ,

LMOΩ⊕
((Wg)g) =

(
0, . . . ,0, 1

αĝ
uĝv

⊤
ĝ ,0, . . . ,0

)
, (2.25)

where, for all g ∈ G, ug and v⊤
g are the top singular vectors of the matrix Wg , and

ĝ = argmax
g∈G

1
αg

(
u⊤
g Wgvg

)
.

We observe also that LMOΩ⊕((Wg)g) is the point where the dual norm (2.16) of Ω⊕ takes the maximum.

Proof. (Of equation (2.25)) We derive the LMO for the norm Ω⊕ on the space EG . Recall that αg > 0.

First, we note that

max
z∈R

|G|
∑

g αg|zg|≤1

∑

g

zgwg = max
g

∣∣∣∣
wg

αg

∣∣∣∣ ,

because

max
z∈R

|G|
∑

g αg|zg|≤1

∑

g

zgwg = max
y∈R

|G|
∑

g|yg|≤1

∑

g

yg
αg
wg = max

‖y‖1≤1

∑

g

yg
wg

αg
.

The maximum of the last equation is attained for an y ∈ {±eg} in the canonical overcomplete base of

R|G|. Therefore,

LMOΩ⊕
((Wg)g) = max

(Zg)g∈EG

Ω⊕((Zg)g)≤1

〈(Zg)g, (Wg)g〉

= max
∑

g αg‖Zg‖σ,1≤1
〈(Zg)g, (Wg)g〉

= max
∑

g αg‖Zg‖σ,1≤1

∑

g

〈Zg,Wg〉

= max
∑

g ‖Yg‖σ,1≤1

∑

g

〈Yg,
1
αg

Wg〉

69

= max
∑

g βg≤1

∑

g

max
‖Yg‖σ,1≤βg

〈Yg,
1
αg

Wg〉

= max
∑

g βg≤1

∑

g

βg

αg

(
u⊤
g Wgvg

)

= max
g

1
αg

(
u⊤
g Wgvg

)
,

so the maximum is attained at an index ĝ, and the matrices Zg corresponding to other indices are zero.

2.6 Illustrations

In this section we illustrate the recovery of a matrix L ∈ Rd×k given its noisy version Aσ = L+εσ . Each

entry of the matrix εσ is sampled independently from a Gaussian with mean 0 and standard deviation σ.

In our experiments we consider several noise levels σ. L is the sum of matrices of rank 2 over each of

the groups. The matrix L is normalized to have mean of 0 and standard deviation of 1. This choice of

normalization is suitable to replicate the experience on true datasets, possibly with unknown structure.

As visible in Fig. 2.1, we chose the overlapping groups {1...1575} × {1...1500}, {1576...2100} ×
{1...2000}, {1...2100}×{1501...2000}, {1156...2100}×{1101...2000}, {772...1021}×{1290...1499},
and added other small sparse groups {1...250}×{542...751}, {272...521}×{166...375}, {345...594}×
{619...828}, {735...984} × {965...1174}, where each group is indicated with {row indices} ×{column

indices}. We added also a “grid shaped" group, visible at the left part of the matrix. On this group we

generated a sinus function.

In a simple generalization of the group lasso norm to matrices, the split would divide only columns

into groups, and keep all the rows together. Our division allows more flexibility in splitting matrix en-

tries into groups, including the group structure of our example. Thus, our setup allows more general

applications, which we will discuss in Section 2.7.

To recover L, we solve the regularized problem

min
W∈Rd×k

1

2dk
‖MI(W −Aσ)‖2 + λΩG(W),

where I is a set of indices that covers 10% of the matrix and MI is a linear operator that selects the

entries of the set I.

The coefficients for the group Schatten norm ΩG were set to αg = 1. We also experimented with

choosing the coefficients αg based on the size of each corresponding group, but did not observe consistent

improvements in the matrix recovery, so we leave adaptive choices of αg open for future study.

70

500 1000 1500 2000

200

400

600

800

1000

1200

1400

1600

1800

2000

-3

-2

-1

0

1

2

Figure 2.1: Initial matrix L to recover. It is generated as the sum of matrices of rank two, each defined

over its respective group of indices. The groups overlap.

For each value of σ, we tuned the regularization parameter λ to minimize the error and report the

best performance. The quality of the resulting solution Ŵ is evaluated according to the recovery error

1
dk‖Ŵ − L‖2. In Fig. 2.2 we plot the noisy matrix Aσ with σ = 0.2, where only 10% of its entries are

observed, as well as the solution Ŵ. The all-zeros solution would achieve the recovery error of 1. Our

solution recovers A0.2 with an error of 0.0051.

2.7 Proposed applications: Initial steps

We have seen that the regularization with group nuclear norm forces the solution of an optimization

problem to be (1) low rank on each group and (2) nonzero on only few groups. In this section, we overview

possible applications that benefit from these properties, including robust models for collaborative filtering,

image classification, feature aggregation and database compression.

We focus on the group nuclear norm instead of the more general group Schatten norm, because we are

interested in low-rank solutions. We will highlight the characteristics that make the group nuclear norm

useful in applications when the groups can overlap.

2.7.1 Multiclass classification

We describe now in short the linear model for classification with k classes. We call “model” a matrix

W ∈ Rd×k, “example” the vector of features x ∈ Rd and “response” an index y ∈ {1 . . . k} that

indicates the class. The dataset to learn W consists of N pairs (x(j), y(j)), j = 1, . . . , N . We define the

71

observations

500 1000 1500 2000

500

1000

1500

2000

-3

-2

-1

0

1

2

500 1000 1500 2000

200

400

600

800

1000

1200

1400

1600

1800

2000

-3

-2

-1

0

1

2

Figure 2.2: (Left) Noisy matrix A0.2, where only 10% of matrix entries are observed. Unknown entries

are white. (Right) Solution matrix Ŵ recovered with λ = 3.6 · 10−6. This gives an error of 0.0067. We

see that both the big overlapping groups and the small ones are recovered. The group on the left side,

which consists of a grid with different spacing in rows and columns, and that has sinusoidal values, is

also well recovered.

classifier

ŷ(x) := argmax
i=1...k

(W⊤x)i . (2.26)

The predicted class of a generic x is then ŷ(x).

The nuclear norm regularization for support vector machines has already been proposed for classi-

fication Amit et al. (2007). The small rank of W is justified by the fact that the examples x(j) are, in

practice, embedded to a low dimension subspace of Rd.

A toy example of a hierarchically structured dataset We build a toy example to illustrate how to

define the groups for a hierarchical dataset. In addition, we will show how to use our groupings to

represent attributes of classes, which are not easily expressed in a hierarchy. Our examples are motivated

by the dataset of images ImageNet Deng et al. (2009), where the image classes are within a tree-structured

taxonomy. Apart from its position in the taxonomy, each class can have zero, one or more attributes that

describe it, and the number of attributes may differ from class to class.

To make this more concrete, consider the taxonomy in Fig. 2.3, defined over four ground classes. We

begin by defining the singleton groups of classes corresponding to the four ground classes: Y1 = {1}
for catamaran, Y2 = {2} for trimaran, Y3 = {3} for catboat, Y4 = {4}, for galleon. We

then create additional groups corresponding to the inner nodes of the taxonomy tree: Y5 = {1, 2, 3} for

sailboat and Y6 = {1, 2, 3, 4}, for sailing vessel. And finally, we add a group for the attribute

made of wood Y7 = {3, 4}, present in the classes catboat and for galleon. These groups split

72

2

0

Sailboat

1 1

Catamaran

Trimaran

1

Catboat

Sailing vessel

2

Galleon

2

Figure 2.3: Hierarchical organisation of images in ImageNet dataset. Figure adapted from Deng

et al. (2010). We see that the classes catamaran, trimaran, catboat, sailboat, galleon,

sailing vessel are organized in a tree graph.

only the columns of W, i.e. D1 = D2 = . . .D9 = {1, . . . , d}. We notice that the group 7 is defined

across the hierarchy: potentially the same attribute could be added to any class, independently of the tree

structure.

Local features, constellation models In some applications of image classification, the pictures are

divided into “sectors.” We can imagine that a physical object has a different meaning if its position is in

the center of the picture or below or on the top.

Each sector of the image has then its features and the object to recognize is placed only into one of

the sectors of the image.

For our toy example, we split the image into 4 sectors: top-left, top-right, bottom-left, bottom-right.

The feature vectors x1, x2, x3, x4, each of size a, are extracted from each sector and then concatenated

into a single vector x = [x1 x2 x3 x4] ∈ Rd. We then build 4 groups: D1 = {1, . . . , a}, D2 = {a +

1, . . . , 2a}, D3 = {2a+ 1, . . . , 3a}, D4 = {3a+ 1, . . . , 4a} and Y1 = Y2 = Y3 = Y4 = {1, . . . , k}.
As we defined a group for each sector of image, the resulting model favors sparsity over sectors and a

low-rank model in each sector. So, for instance, if one of the sectors always contains the relevant object,

our model will be non-zero only on the parameters related to that sector and within that group will be of

low rank.

Some interesting data for this application can be found in Rogez et al. (2014), where the images are

73

Figure 2.4: We see the observable volume that is projected into the depth image, which is dark gray for

close objects, e.g. a hand grasping something, and light grey for far objects. Picture from Rogez et al.

(2014)

taken from the point of view of an egocentric camera placed at the chest of the person that observes. These

data are used to classify the pose of hands while they interact with objects. The data images include also

depth maps, see Figure 2.7.1, that can be used to create more groups and enhance the classification. In

fact, the distance from the camera is related to the activity of the hand. So, we propose to discretize

the distance into three layers, and to build four groups per layer. Thus, x1, x2, x3, x4 are the features

extracted in the four sectors, if they contain an object at short distance, x5, x6, x7, x8 for the medium

distance, and x9, x10, x11, x12 when the object is far from the camera. With this definition, many features

will be zero. For example, if the object(s) in the top-left sector are far from the camera, then x1 = x5 = 0

and x9 will be the only top-sector layer with nonzero features.

A similar approach can be used to build groups for constellation models. For instance, consider image

recognition for faces. Here the sectors of the image are the mouth, the nose, one eye, etc., each of them

giving a separate vector of features that are concatenated similarly as in the previous example.

2.7.2 Collaborative filtering with attributes

Collaborative filtering, when modeled as matrix completion, can be implemented using algorithms that

rely on the nuclear norm regularization Candès and Plan (2010); Srebro et al. (2004); Lafond et al. (2014);

Hummel et al. (2007). Here we show how it can benefit from the group nuclear norm.

74

We consider the regularized matrix completion problem of the form

min
W∈Rd×k

1

N

∑

(i,j)∈I
(Wij −Xij)

2 + λΩG(W),

where the data are represented with a sparse matrix X, each column representing the item j, each row

a customer i, and the entries (i, j) corresponding to the rating of the item j by the customer i. The set

of observed ratings is I. The aim of collaborative filtering is to predict any unknown entry Xij , with

(i, j) /∈ I.

In real-world applications, the items are naturally grouped into types, possibly hierarchically, i.e. we

can assign items to the leafs of a tree hierarchy and each item can have one or more attribute, similar to

our treatment of classes in Section 2.7.1.

One possible group design is as follows. First, we introduce a single group for the entire matrix,

to obtain the low-rank matrix factorization behavior of state of art models, with D1 = {1, . . . , d} and

Y1 = {1, . . . , k}. Then, for g = 2 . . . T + 1, where T is the number of attributes, we define one group

consisting of all the items that hshare a given attribute, i.e.

Yg = {i ∈ {1, . . . , k} | i-th item has the g-th attribute}

and Dg = {1, . . . , d}.

2.7.3 Compression of a structured database

We next consider a lossy compression of a huge dataset, by using composite conditional gradient Dudik

et al. (2012). The input is a full matrix X ∈ Rd×k containing the dataset, where each column is the

feature vector xj ∈ Rd of the example j.

For instance, consider the data described in Section 2.7.1 and Fig. 2.3. Suppose that there are nc

images for catamaran, nt for trimaran, nb for catboat and ng for galleon. In total we have

k = nc + nt + nb + ng examples with d features.

We model the problem as

min
W∈Rd×k

1
2‖W −X‖2 + λΩG(W). (2.27)

Here we could define one group per each node: Y1 = {1, . . . , nc} for the catamaran node, Y2 =

{nc + 1, . . . , nt} for the trimaran node, Y3 = {nt + 1, . . . , nb} for the catboat node, Y4 =

{nb + 1, . . . , ng} for the galleon node. We add also one group Y4 = {1, . . . , nc + nt + nb} for all

75

sailboat and one for sailing vessel Y5 = {1, . . . , k}. Dg = {1, . . . , d}.
For each block g we can choose a (small) rank rg > 0, possibly identical for all groups. The compos-

ite conditional gradient algorithm takes advantage of the groups and produces a sequence of factorized

matrices M := {UgV
⊤
g }g∈G , where Ug ∈ R|Dg|×rg and Vg ∈ R|Yg|×rg

The compressed dataset M will then only require the storage of

∑

g

rg(|Dg|+ |Yg|)

floating point numbers.

2.7.4 Feature concatenation

Suppose we have a signal and several sets of features (e.g. Fourier transform of the signal, wavelet trans-

form, etc.), and suppose we want to find a linear (and low rank) model for each feature set, i.e. ŷ =

W⊤
Dg

xDg
. To train all the models together, we could concatenate the feature vectors into a single one,

concatenate the matrices of the model parameters, and define groups associated with individual feature

sets. In this example only the rows of the matrix W are split into different groups.

This construction is particularly effective when the feature vectors are concatenations of different

types of features. The sparsity-promoting properties of the group nuclear norm can then select the

group(s) corresponding to most important feature sets, and zero out the less informative feature sets.

More formally, each example is represented by its feature vector x ∈ Rn. The feature indices i ∈ D are

divided into groups Dg according to the type of feature.

In this way the linear model W is forced to be of small rank with respect to each feature group, tries

to select one group and keep zeroes on the coefficients of all the other groups.

2.7.5 Combinations

While we chose to described various approaches to the group construction separately, all the previous

examples of groupings are mutually compatible and can be applied simultaneously. Thus the set G can

contain groups that are based on the tree hierarchy, attributes, as well as features concatenation, as illus-

trated in Fig. 2.2, where we defined several different types of groups.

76

2.7.6 Object cosegmentation

The cosegmentation problem Kim et al. (2011) Rother et al. (2006) Vicente et al. (2011) is the task of

finding the regions of images or videos that contain the same object. Here the group Schatten norm can

impose the constraint that regions with the same object in different images should have similar visual

feature distributions. The images can be segmented into parts, possibly of different shapes, that define

the groups for the group Schatten norm.

2.7.7 Unsupervised learning

All of our applications of the group Schatten norm assume that the groups are known ahead of time.

Nevertheless, one could also embed the optimization with group Schatten norm in a bigger algorithm.

For example, we could imagine an algorithm that, in each iteration, finds groups with some criteria and

then optimizes with respect to the current choice of groups.

2.7.8 Issue of groups that are unions of other groups

Let A1 be the concatenation of two matrices, i.e. A1 = [A2 A3], and we introduce three groups for each

matrix Ag .

As rank(A1) ≤ rank(A2) + rank(A3), the two smaller groups (g = 2, 3) might have no effect

on the optimization problem. If this happens while running numerical experiments, one could force

the regularization ΩG to consider the small groups by choosing the corresponding weights α2 and α3

sufficiently larger than α1.

77

Chapter 3

Smoothing techniques for first-order

optimization

3.1 Introduction

3.1.1 Smoothing in optimization

A general methodology for solving nonsmooth optimization problems is to solve instead a sequence of

smooth problems approaching the original nonsmooth optimization problem. The main idea behind this

methodology is each smooth problem can be solved efficiently. In contrast to smooth optimization algo-

rithms, nonsmooth optimization algorithms such as subgradient optimization or bundle methods typically

converge slowly to the solution in worst-case theoretical analysis Hiriart-Urruty and Lemarechal (1996).

Various smoothing techniques have been proposed in the mathematical optimization literature. Some

are problem-dependent, others are generic for analytic classes of functions; see e.g. the pioneering pa-

pers Moreau (1965) and Bertsekas (1973). We build in this chapter upon the general approach of Beck

and Teboulle (2012). The central concept is a smoothable function, which allows to combine generic

smoothing approximations with fast first-order algorithms for solving nonsmooth convex optimization

problems.

As far as optimization is concerned, the existence of a gradient and a local smoothing around the

minimum would be enough. However, in order to use smooth approximations for the first-order oracles

called by first-order algorithms, a stronger smoothness and a uniform approximations are required to

control the convergence of iterates produced by the algorithms. More precisely, we say in this chapter

78

that f is a smooth approximation of g if

i) f is differentiable with Lipschitz continuous gradient;

ii) f approximates uniformly g.

The Lipschitz constant of the gradient and the uniform approximation constant will have special roles in

the speed of convergence of the methods.

3.1.2 Contributions and outline of this chapter

In this chapter we aim at unifying the design and analysis of smoothing techniques combined with first

order optimization algorithms. The chapter can be viewed as a natural companion to Beck and Teboulle

(2012). A preliminary version of this work was presented in a conference Pierucci et al. (2014), focusing

on a problem where smoothing is particularly useful: machine learning problems leading to “doubly”

nonsmooth objectives, namely robust collaborative filtering or and multiclass classification.Our contribu-

tions are the following:

1. We present a simple and general framework to construct smooth approximations by inf-convolution

(the classic smoothing in optimization) and by product convolution (the classical smoothing in

analysis). We follow the construction of Beck and Teboulle (2012) and complements it with the

one of Bertsekas (1973); Duchi et al. (2012). We make them as accessible as possible by simplify

the general framework of Beck and Teboulle (2012), adopting a uniform presentation of the two

smoothing techniques, and illustrate them by simple examples.

2. We develop examples of smoothing approximations for the top-k function, a nonsmooth function

appearing machine learning applications Harchaoui et al. (2012a); Yager (1988). This is our main

technical contribution.

3. We show how to combine smooth with optimization algorithm, extending the approach for proxi-

mal algorithms of Nesterov (2007b) and Beck and Teboulle (2012) to other popular algorithms in

machine learning (conditional gradient algorithms and minimization-majorization algorithms).

We refer the reader to the above references for more details, analysis, and applications on smoothing

approaches, especially for numerical illustrations.

The outline of this chapter is then as follows. After finishing the introduction by recalling some

basic notions and notation, Section 3.2 presents the generic smoothing by inf-convolution and illustrates

it on a simple example (the ℓ1-norm) and on a sophisticated example (the top-k function). Section 3.3

79

follows the same structure and presents the generic smoothing by convolution and illustrates it on the

ℓ1-norm. Finally Section 3.4 develops the combination of smoothing with first-order methods for doubly

nonsmooth optimization learning problems.

3.1.3 Recalls in convex analysis

In this chapter we make a basic but constant use of standard definitions and concepts of convex analysis:

we briefly recall them here for the convenience of a non-expert reader, and we refer the classical text-

books Rockafellar (1970) and Hiriart-Urruty and Lemarechal (1993) for a comprehensive exposition of

these concepts.

We recall that the conjugate of the indicator function of a set Z is called the support function of Z

g(x) = (iZ)
∗(x) = max

z∈Z
〈x, z〉 . (3.1)

In particular, positive homogeneous functions, that is, satisfying

f(tx) = tf(x) for all x ∈ E, and all t > 0 , (3.2)

can be naturally written as support functions. Recall also that, in general, we have that (f∗)∗ = f for a

closed and convex function f Hiriart-Urruty and Lemarechal (1993). Finally, we recall the definition of

infimal convolution (inf-convolution) of two convex functions

(f�h)(x) := inf
z∈E

(f(x− z) + h(z)) (3.3)

and the property regarding its interplay with Fenchel conjugation

(f�g)∗ = f∗ + g∗ . (3.4)

3.2 Smoothing by infimal convolution

In this section, we briefly review the ideas of the smoothing by inf-convolution, insisting on the special

case of the so-called smoothing by saddle-point representation. We refer mostly on the general treatment

of Beck and Teboulle (2012) which encompasses many previous techniques. We also develop an orig-

inal application of the smoothing by saddle-point representation to a function used in machine learning

applications.

80

3.2.1 General construction and special cases

A classical smoothing technique in optimization is based on inf-convolution operations (3.3). The essence

of this technique can be traced back to Moreau (1965). The chapter showed how to inter-twin this tech-

nique with first-order methods Nesterov (2007b) to get optimal rates of convergence.

Let g be a convex function; we can construct a smooth approximation of g with convolution with

smooth convex function ω. More precisely, we have the following definition from Beck and Teboulle

(2012). Note that, in contrast to Beck and Teboulle (2012), we do not look for generality here, as our

main goal is to illustrate the technique for machine learning problems. Therefore we slightly simplify the

framework of Beck and Teboulle (2012) by restricting to the convex function in Euclidean space to keep

the assumptions and the developments as simple as possible.

Definition 6. For a given L-smooth closed convex function ω, we define the “inf-conv γ-approximation"

of the function g by the infimal convolution of g with ω rescaled by a parameter γ > 0

gicγ (x) :=

(
g�γω

(·
γ

))
(x) = inf

z∈E
g(x− z) + γω

(
z

γ

)
(3.5)

The function gicγ is thus defined implicitly by the result of a minimization problem parameterized by

γ > 0. Note that if g is positively homogeneous (3.2), the role of the parameter γ is transparent, since

with a mere change of variable

gicγ (x) = γ inf
z∈E

1

γ
g(x− z) + ω

(
z
γ

)
= γ inf

z∈E
g
(

x
γ − z

)
+ ω(z) = γgic1

(
x

γ

)
, (3.6)

so that gicγ can simply expressed from gic1 .

The next theorem states that gicγ is indeed a smooth approximation of g, under a mild assumption on

the sub-differential of ω. The proof of this result, based on standard convex analysis properties Hiriart-

Urruty and Lemarechal (1993), follows directly from results stated in Beck and Teboulle (2012). A

refined version of it is given in (Beck and Teboulle, 2012, Corollary 4.1).

Theorem 3.2.1. For a given L-smooth convex function ω, the function gicγ defined by (3.5) satisfies the

properties of smooth approximation of g:

i) The function gicγ is L/γ-smooth and its gradient can be expressed as

∇gicγ (x) = ∇ω
(
x− z⋆(x)

γ

)
, (3.7)

where z⋆(x) minimize (3.5).

81

ii) If there exists a constant M such that ω∗(s) ≤M for all x ∈ E and all s ∈ ∂g(x), then we have the

uniform bound
∣∣g(x)− gicγ (x)

∣∣ ≤ γm, for all x ∈ E (3.8)

with m := max{−M,ω(0)}.

Proof. The differentiability of gicγ follows from the basic properties of inf-convolution (Beck and Teboulle,

2012, Theorem 4.1). The same holds for the expression of ∇gicγ and its Lipschitz continuity. Now (Beck

and Teboulle, 2012, Lemma 4.2) gives that

g(x)− γω∗(s) ≤ gicγ (x) ≤ g(x) + γω(0), for all s ∈ ∂g(x) .

This gives property (ii) with the help of the boundedness assumption.

It is worth noting that the Lipschitz constant of gicγ depends only on ω and γ, which can be both

appropriately chosen for our purpose. This explains the interest of combining such smoothing with first-

order optimization methods since the theoretical rate of convergence typically depends on the Lipschitz

constant of the function to be minimized (see forthcoming Section 3.4 and Beck and Teboulle (2012)).

We also observe that the practical computational cost to evaluate the value of the function (3.5) and its

gradient (3.7) is the same and boils down to computing a solution of (3.5).

The above construction of smooth approximation is generic enough to recover many well-known

classical approximations: Moreau-Yosida smoothing Moreau (1965), asymptotic smoothing Ben-Tal and

Teboulle (1989), and Nesterov or smoothing by saddle-point representation Nesterov (2007b).

Example 7 (Moreau-Yosida smoothing). Let g be any nonsmooth convex function. Recall that the

Moreau-Yosida approximation of g (Hiriart-Urruty and Lemarechal, 1993, Section E.2) is defined by

gpxγ (x) := inf
z∈E

g(z) + 1
2γ ‖z− x‖2 .

By taking ω = 1
2 ‖·‖

2
in (3.5), we see easily that the Moreau-Yosida approximation is a special instance

of inf-conv approximation (3.5).

Example 8 (Asymptotic smooth approximation). Let g be an asymptotic function Ben-Tal and Teboulle

(1989), defined by the pointwise limit of ω rescaled by γ, more precisely

g(x) = lim
γ→0+

γω

(
x

γ

)
for all x. (3.9)

82

In this case, gasγ := γω
(

·
γ

)
itself is a smooth approximation of g, see Ben-Tal and Teboulle (1989) and

(Beck and Teboulle, 2012, Theorem 4.2 and Lemma 4.3). By taking (3.9) in (3.5), we see that gasγ can

also be interpreted as a special instance of inf-conv smooth γ-approximation, because there also holds

(
g� γω

(·
γ

))
= gasγ . (3.10)

To prove the above equation, use first (Beck and Teboulle, 2012, Lemma 4.3) states that g∗ = δcl dom ω∗

in the case (3.9), and then write using (3.4) and the closedness of gasγ :

g�gasγ = (g∗ + (gasγ)∗)∗ = (δcl dom ω∗ + (gasγ)∗)∗ = (gasγ
∗)

∗
= gasγ

Thus the inf-conv smoothing is not used here to produce smooth approximation, but this natural smooth-

ing in this context can be a posteriori interpreted as inf-conv smoothing.

Example 9 (Saddle-point representation). Let g be the Fenchel conjugate of the sum of a closed convex

function φ and the indicator function of compact convex set Z ⊂ E

g = (φ+ iZ)
∗. (3.11)

Recall that the saddle-point representation of g Cox et al. (2014), which underlies the so-called Nesterov

smoothing technique Nesterov (2005), is defined by

gftγ (x) := max
z∈Z
〈Ax, z〉 − φ(z)− γd(z) , (3.12)

where A is an affine function and d is a strongly convex function (known in literature as the proximity

function, or the distance generating function Nesterov (2005)).

By taking ω = d∗ in (3.5), we see that (3.12) is in fact constructed from an inf-conv smooth γ-

approximation, as follows. For all x, we first observe that by simple algebra

γω

(·
γ

)
= (γd)∗ (3.13)

83

and then we write

(
g� γω

(
·
γ

))
(Ax)

= ((φ+ iZ)∗ � (γd)∗) (Ax)

= (φ+ iZ + γd)∗(Ax)

= maxz∈E〈Ax, z〉 − φ(z)− iZ(z)− γd(z)
= gftγ (x)

[by (3.11) and (3.13)]

[by (3.4)]

[by definition of the conjugate]

[by definition of gγ]

Thus gftγ is a inf-conv approximation composed with A.

Example 10 (smoothing by saddle-point representation of support function with squared norm). Let us

instantiate the previous example with φ ≡ 0 and the squared function as proximity function

ω(·) = d(·) = 1

2
‖·‖22 .

The smooth approximation then simply writes as follows

gftγ (x) =

〈
x, πZ

(
x

γ

)〉
− γ

2

∥∥∥∥πZ
(
x

γ

)∥∥∥∥
2

(3.14)

where πZ is projector operator onto the convex set Z . For γ = 1 this comes from

argmax
z∈Z

〈x, z〉 − 1
2 ‖z‖

2
= argmin

z∈Z
‖x− z‖2 = πZ(x),

This yields (3.14) with the help of (3.6).

3.2.2 A simple example of smoothing by saddle-point representation: absolute

value

Several interesting examples are developed in (Beck and Teboulle, 2012, Section 4.6). Here we illustrate

the versatility of smoothing by saddle-point representation on a simple one-dimensional example: the

absolute value function. We write the absolute value function as the support function of Z = [−1, 1] ⊂ R

g(x) = |x| = max
z∈[−1,1]

zx (3.15)

The Fenchel-type approximation of this function at Example 9 have the following expressions

84

• using the squared norm d(z) = 1
2z

2, we have

gγ(x) =





1
2γx

2 if |x| ≤ γ

|x| − γ
2 if |x| > γ

(3.16)

• using the symmetric entropy

d(z) =




(1− |z|) ln(1− |z|) + |z| if |z| < 1

1 if |z| = 1,

we have

gγ(x) = γe−| xγ | + |x| − γ (3.17)

• using d(y) = 1−
√
1− y2, we have

gγ(x) =
√
x2 + γ2 − γ (3.18)

The proof (3.16) is a straightforward application of (3.14). For (3.17), we observe first that the

symmetric entropy function is strongly convex (since the second derivative d′′(z) ≥ 1), and second

we compute (for γ = 1)

z⋆(x) = max
z∈[−1,1]

zx− d(z) =




1− e−x if x ≥ 0

ex − 1 if x < 0

Plugging this expression in the definition and using (3.6) gives easily (3.17). Similar calculus gives (3.18).

3.2.3 An advanced example of smoothing by saddle-point representation: the

top-k function

In this subsection, we illustrate the smoothing by saddle-point representation on an example coming from

machine learning and computer vision. The top-k accuracy is a popular measure of performance for

applications involving multi-class classification Harchaoui et al. (2012a) or ranking Usunier et al. (2009);

Weimer et al. (2007); Yager (1988). The convex top-k error function is the support function

g(x) = max
z∈Ztk

〈x, z〉 (3.19)

85

of the “reduced simplex" in Rn

Ztk :=

{
z ∈ Rn : 0 ≤ zi ≤

1

k
,

n∑

i=1

zi ≤ 1

}
.

When k = 1, the top-1 error is well-known as the multi-dimension hinge function, written as

g(x) = max
∑

i zi≤1,zi≥0
〈x, z〉 = max

i=1,...,n
{xi, 0} . (3.20)

Except for this case k = 1, the non-smoothness of top-k error function for any k makes its use non-

straightforward when using gradient-based optimization algorithms for training machine learning models.

We develop here tractable smooth approximations of it, which makes its use easier for these machine

learning problems. The next theorem gives the general smoothing by saddle-point representation of top-k

error function. The following example describes further a special case. The third result finally shows that

in the case k = 1, we retrieve a smooth surrogate widely used in machine learning.

Theorem 3.2.2. Consider a strongly convex function d(z) :=
∑n

i=1 d
(i)(zi) defined on [0, 1/k]n. Then

the Fenchel-type smooth approximation of the top-k function (3.19) can be written as

gγ(x) = max
z∈Ztk

〈z,x〉 − γd(z) = −λ⋆(x, γ) +
n∑

i=1

H(i)
γ (xi + λ⋆(x, γ)). (3.21)

In the above equation, H
(i)
γ is the following smooth approximation of d(i)

H(i)
γ (t) := max

0≤r≤1/k
〈t, r〉 − d(i)(r) for any t ∈ R , (3.22)

and λ⋆(x, γ) ∈ R+ is an optimal solution of the minimization of

Θ(λ) = −λ+

n∑

i=1

H(i)
γ (xi + λ) .

We plot an illustration of (3.21) in Figures 3.1 and 3.2.

Proof. Let us dualize the linking constraint
∑n

i=1 zi ≤ 1 in the definition of the smooth approxima-

tion (3.12). We define the associated Lagrange function for z ∈ [0, 1k] and λ ≥ 0

L(λ, z) := 〈x, z〉 − γd(z) + λ

(
n∑

i=1

zi − 1

)
= −λ+

n∑

i=1

(
zixi − γd(i)(zi) + λzi

)
.

86

Smooth function and gradient

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

Smooth conjugate and gradient

−10 −5 0 5 10
−10

−5

0

5

10

Figure 3.1: Smoothed gγ(x) of equation (3.21) and its gradient, x ∈ R2 for top-k error. Top with k = 1,

bottom with k = 2. The color lines represent level sets and the arrows are the gradients of the smooth

surrogate.

and the associated convex dual problem

Θ(λ) := max
∀i, zi∈[0, 1

k
]
L(λ, z).

For simplicity the dependence of Θ and L on x and γ is implicit. Developing the expression of Θ, we get

Θ(λ) = −λ+
n∑

i=1

max
zi∈[0, 1

k
]

(
zi(xi + λ)− γd(i)(zi)

)
= −λ+

n∑

i=1

H(i)
γ (xi + λ).

Since they are smooth approximations (recall Example 9), the functions H
(i)
γ are differentiable, and so is

Θ. Its derivative is moreover

Θ′(λ) = −1 +
n∑

i=1

∇H(i)
γ (xi + λ). (3.23)

87

−2

0

2

−2−1012
0

0.5

1

1.5

2

2.5

3

Figure 3.2: Smoothed gγ(x) of equation (3.21) for k = 1, between the nonsmooth bounds g (below) and

g + γm (above). Compare with equation 3.8.

From (3.22), we see that∇H(i)
γ takes all the values in]0, 1k [. Since∇H(i)

γ is increasing and n > k, we get

that Θ′(λ) = 0 has always a solution, that we denote λ̃. Therefore we have that the optimal dual solution

is λ⋆(x, γ) = max{0, λ̃}. By convexity and primal compactness, there is no duality gap (Hiriart-Urruty

and Lemarechal, 1996, Chap.XII), gγ(x) = Θ(λ⋆(x, γ)), which gives the desired expression.

In practice, minimizing Θ over R+ amounts to compute a solution of Θ′(λ) = 0, which can be made

by a mere bisection algorithm, for example. For special cases, we have refined procedures as in the next

example, or even explicit expressions as in forthcoming Corollary 3.2.3.

Practical computation of top-k smooth surrogate

Squared norm By choosing d(i)(zi) = 1
2z

2
i , we have more specific expressions of the objects of

Theorem 3.2.2, as follows. First we obtain directly H
(i)
γ (t) = π[0, 1

k
](t) and then

Θ′(λ) = 1−
∑

i

pi(λ) with pi(λ) := π[0, 1
k
](xi + λ).

Then we introduce, for a given x, the set

P :=

{
xi, xi −

1

k
: i = 1 . . . n

}

and a as the largest element of P such that Θ′(λ) ≤ 0, and similarly b as the smallest such that Θ′(λ) ≥ 0.

Note that each pi is constant (equal to 0) when λ is lower than a point x̂i in P , constant also (equal to 1/k)

88

when λ is larger than another point x̃i in P , and affine in-between. Thus Θ′ is increasing and piecewise

affine with kinks on P . By definition of a and b in P , Θ′ has its zero λ̃ on [a, b]. Since Θ′ is affine in [a, b],

its slope is given by (Θ′(b)−Θ′(a))/(b− a), and then its zero can be expressed by λ̃ = a− Θ′(a)(b−a)
Θ′(b)−Θ′(a) .

This yields

λ⋆(x, γ) = max

{
0, a− Θ′(a)(b− a)

Θ′(b)−Θ′(a)

}
,

Thus the smooth approximation of the top-k function is given by (3.21) with the above expressions of

H
(i)
γ (t) and λ⋆(x, γ). The main computation consists in finding a and b by dichotomy in time O(log(n))

by evaluating the sign of Θ′(xi).

Entropy and k = 1 When k = 1 and d(i)(zi) = zi ln(zi) − zi, we obtain the following smooth

approximation of (3.20)

gγ(x) =





γ

(
1 + ln

∑n
i=1 e

xi

γ

)
if

∑n
i=1 e

xi

γ > 1,

γ
∑n

i=1 e
xi

γ if
∑n

i=1 e
xi

γ ≤ 1.

(3.24)

A common application in machine learning for this function is in support vector machines (SVM), used

for instance for multi-class classification. Surprisingly, we see that choosing γ = 1, we obtain the multi-

nomial logistic loss, which is usually motivated from the generalized linear models framework Hastie

et al. (2008).

To prove the above formula, we start by the smooth approximation (3.22) which follows from calcu-

lations as

H(i)
γ (t) =




γe

t
γ if t < 0,

t+ γ if t ≥ 0

Following from (3.23) we find

Θ′(λ) = −1 +
n∑

i=1




e
xi+λ
γ if λ < −xi,

1 if λ ≥ −xi.

We notice that to have Θ′(λ) = 0, it must be λ < −xi for all indices i, otherwise it would be Θ′(λ) > 0.

We emphasize that this argument rely on k = 1. Then

Θ′(λ) = 0 ⇐⇒ −1 +
n∑

i=1

e
xi+λ
γ = 0 ⇐⇒ λ = −γ ln

(
n∑

i=1

e
xi

γ

)

89

We obtain the optimal nonnegative

λ⋆(x) =





−γ ln
(∑n

i=1 e
xi

γ

)
if
∑n

i=1 e
xi

γ < 1,

0 if
∑n

i=1 e
xi

γ ≥ 1.

We substitute b :=
∑n

j=1 e
xj

γ and obtain after simplifications

Θ(λ⋆(x)) = −λ⋆(x) +
n∑

i=1

Hγ(xi + λ⋆(xi)) =




γ ln (b) + γ if b > 1,

γb if b ≤ 1.

This yields (3.24).

Entropy and k ≥ 1 When k is larger than 1, the tricks of the previous example cannot be applied, and

we need to proceed by dichotomy to have an exact solution. This technique is suitable also for k = 1.

Let the proximity function be defined as ω(z) =
∑n

i=1 zi ln(kzi). Then the dual objective is

Θ(λ) = −λ+

n∑

i=1

hγ(xi + λ), (3.25)

where h(t) := t ln(kt), and its gradient is

Θ′(λ) = −1 +
n∑

i=1

∇hγ(xi + λ) = −1 +
∑

λ≤γ−xi

1

k
e

xi+λ

γ
−1 +

∑

λ>γ−xi

1

k
, (3.26)

that we illustrated in Figure 3.3.

We use here proposition 3.2.3. We look for λ⋆ such that Θ′(λ⋆) = 0. First we sort x in decreasing

order. From now on we have x0 ≥ x1 ≥ · · · ≥ xn. The nondifferentiable points of Θ′ are γ − xi. By

dichotomy we find an index i⋆ such that Θ′(γ − xi⋆) < 0 and Θ′(γ − xi⋆+1) ≥ 0.

Then now the indices of the sums don’t depend on λ ∈ [γ − xi⋆ , γ − xi⋆+1]

Θ′(λ) = −1 +
n∑

i=i⋆+1

1

k
e

xi+λ

γ
−1 +

i⋆∑

i=1

1

k

= −1 + e
λ
γ
1

k

n∑

i=i⋆+1

e
xi
γ
−1 + i⋆

1

k

= −1 +De
λ
γ + E

90

−20 −10 0 10 20
−1

0

1

2

3
∇Θ (λ)

Figure 3.3: Illustration of the derivative of the dual function Θ, for γ = 1/2, smooth surrogate of top-

k error. Red: points without second derivative; black: point of minimum of Θ; green: bounds of the

’segment’ (with second derivative) that contains the minimum of Θ. The xi are randomly sampled.

where D :=
∑n

i=i⋆+1
1
ke

xi
γ
−1 =

∑n
i=i⋆+1∇gγ(xi) and E := i⋆

1
k =

∑i⋆
i=1∇gγ(xi), if i⋆ = n we

consider the second sum equal to zero. We conclude −1 + De
λ⋆
γ + E = 0 ⇔ e

λ⋆
γ = 1−E

D ⇔ λ⋆ =

γ ln(1−E
D).

We obtained an explicit formula to compute the surrogate, but computationally this is not accurate,

due to exponential of big quantities or logarithms of small quantities, in particular when γ approaches 0.

The dichotomy has complexity O(ln(n)), to sort x takes O(n ln(n)). Then the evaluation of the

surrogate is O(n ln(n)).

Proposition 3.2.3. Let us define on R the function h(t) := t ln(nt), where n > 0 is any real number.

Then its conjugate over the segment [0, τ] is

hγ(t) =





γ
ne

t
γ
−1 if t

γ < ln (nτ) + 1

τt− γτ ln (nτ) if t
γ ≥ ln (nτ) + 1.

(3.27)

and the gradient of conjugate

∇h(t, γ) =





1
ne

t
γ
−1 if t

γ < ln (nτ) + 1

τ if t
γ ≥ ln (nτ) + 1

91

Proof. with γ = 1 we have h1(t) = maxy∈[0,τ] ty − y ln(ny). The derivative is d
dy (ty − y ln(ny)) =

t− ln(ny)− 1 = 0⇔ ln(ny) = t− 1⇔ y = 1
ne

t−1. Then the point of maximum is

y⋆(t) =





0 if 1
ne

t−1 < 0

1
ne

t−1 if 1
ne

t−1 ∈ [0, τ]

τ if 1
ne

t−1 > τ,

i.e.

y⋆(t) =





1
ne

t−1 if t < ln (nτ) + 1

τ if t ≥ ln (nτ) + 1 .

Then

∇h1(t) =





1
ne

t−1 if t < ln (nτ) + 1

τ if t ≥ ln (nτ) + 1

and

h1(t) =





1
ne

t−1 if t < ln (nτ) + 1

τt− τ ln (nτ) if t ≥ ln (nτ) + 1.

To conclude we use ∇hγ(t) = ∇h1(t
γ) and hγ(t) = γh1(

t
γ)

3.3 Smoothing by product convolution

3.3.1 General construction

A classical smoothing technique in analysis in a broad sense is based on convolution with probability

density. In the context of optimization, this smoothing technique can be traced back to Bertsekas (1973).

We recall the general definition and we particularize it for two densities that give birth to smooth approx-

imations as in the previous section on inf-convolution.

Definition 11. For a given probability density function µ on Rn, we define the “convoluted smooth γ-

approximation" of the convex function g by the convolution of g with µ rescaled by a concentration

parameter γ:

gcγ(x) :=

∫

Rn

g(x− z)
1

γ
µ

(
z

γ

)
dz =

∫

Rn

g(x− γz)µ(z)dz. (3.28)

It is the same definition as in (3.5) replacing ω by µ and the inf-convolution operation by the convo-

lution operation. As previously, we also notice that the parameter γ > 0, controlling the concentration of

92

the distribution, has a simple role when g is positive homogeneous:

gcγ(x) =

∫

Rn

γg(xγ − y)µ(y)dy = γ gc1

(
x

γ

)
. (3.29)

The convexity of the integral within (3.28) comes easily by definition; differentiability and expression

of the gradient is obtained with a well-known result Bertsekas (1973) with a simple assumption on the

measure. Restricting to µ∞ the uniform distribution on the ℓ∞ unit ball or µ2 the Gaussian distribution

(centered and with the identity as covariance matrix)

µ∞(z) =
1

2n
δ{‖·‖∞≤1}(z) and µ2(z) =

1

(
√
2π)n

e−
‖z‖2

2 ,

we obtain moreover the Lipschitz-continuity of the gradient, as formalized in the next theorem. In the

proof of this theorem, we use technical results presented in Duchi et al. (2012).

Theorem 3.3.1. Let g : Rn → R be a convex and Lipschitz continuous function. For the distributions

µ∞ and µ2, the function gcγ defined by (3.28) satisfies the properties of smooth approximation of g:

i) The function gcγ is differentiable and its gradient is

∇gcγ(x) =
∫

Rn

s(x− γz)µ(z)dz,

where s(x) is a subgradient of g at x. In addition ∇gcγ is Lipschitz continuous with constant Lγ =

L/γ, where L depends on the dimension of the space and the Lipschitz constant of g.

ii) We have moreover
∣∣g(x)− gcγ(x)

∣∣ ≤ γL0K, (3.30)

where K depends on the distribution µ.

Proof. By (Bertsekas, 1973, Proposition 2.4), we know that gcγ is differentiable if the subset of non-

differentiability of the nonsmooth function g has measure zero for µ. In our situation, the convexity of

g implies that the subset where g is not differentiable has zero measure for the Lebesgue measure, and

then for µ∞ and µ2 as well. The equation for∇gcγ is described in (Bertsekas, 1973, Proposition 2.2). We

obtain the Lipschitz continuity of the gradient we apply a couple of technical lemmas from Duchi et al.

(2012). First, we introduce L0 the Lipschitz constant of g and we use (Duchi et al., 2012, Lemma 11) to

93

obtain

∥∥∇gcγ(x)−∇gcγ(y)
∥∥ ≤L0

∫ ∣∣∣ 1γµ(z−x
γ)− 1

γµγ(
z−y

γ)
∣∣∣ dz

=L0

∫ ∣∣∣µ(z− x
γ)− µγ(z− y

γ)
∣∣∣ dz,

Second, (Duchi et al., 2012, Lemma 12) yields

∫ ∣∣∣µ(z− x
γ)− µ(z−

y

γ)
∣∣∣ dz ≤ 1

γ ‖x− y‖1 ≤
√
n
γ ‖x− y‖ .

for the uniform measure. Combining this with the first inequality we obtain that the gradient is Lipschitz-

continuous with constant L0
√
n/γ.

We follow similar arguments for the Gaussian measure to obtain

∆z,x,y :=

∫ ∣∣∣µ(z− x
γ)− µ(z−

y

γ)
∣∣∣ dz ≤ 1

γ
‖x− y‖2 (3.31)

and then a Lipschitz constant of L0/γ. This comes from results found in Duchi et al. (2012) (more

precisely see the end of proof of lemma 11 and equation (40) of Duchi et al. (2012)) given there without

proofs or details. For completeness, we provide here a quick proof of the inequality. First we need the

following inequality, for a ≥ 0 and σ > 0,

∫ ∞

−∞

∣∣∣∣ 1√
2πσ

e−
(t−a)2

2σ2 − 1√
2πσ

e−
(t+a)2

2σ2

∣∣∣∣ dt ≤
4a√
2πσ

≤ 2a

σ
. (3.32)

This inequality comes from easy calculus as follows:

1

2

∫ ∞

−∞

∣∣∣∣e
− (t−a)2

2σ2 − e−
(t+a)2

2σ2

∣∣∣∣ dt =
∫ ∞

0

e−
(t−a)2

2σ2 − e−
(t+a)2

2σ2 dt

=

∫ ∞

−a

e−
t2

2σ2 dt−
∫ ∞

a

e−
t2

2σ2 dt

=

∫ a

−∞
e−

t2

2σ2 dt−
(

1√
2πσ

−
∫ a

−∞
e−

t2

2σ2 dt

)

=2

∫ 0

−∞
e−

t2

2σ2 dt+ 2

∫ a

0

1√
2π
e−

t2

2σ2 dt− 1√
2πσ

=2

∫ a

0

e−
t2

2σ2 dt ≤ 2

∫ a

0

1dt = 2a.

Second we rewrite the left-hand side of 3.31 by two changes of variables: the translation z → z − x+y

2γ

94

followed by z = tv+w, where t ∈ R, v := y−x

2 and w is in the vector space orthogonal to v. We obtain

∆z,x,y =

∫

Rn

1

(
√
2π)n

∣∣∣∣e−
‖v(t−1)+w‖2

2 − e−
‖v(t+1)+w‖2

2

∣∣∣∣ dw ‖v‖ dt

We can then develop and bound with the help of (3.32) (with a = 1 and σ = 1) as follows

∆z,x,y =

∫

Rn

1

(
√
2π)n

∣∣∣∣e−
‖v‖2(t−1)2+‖w‖2

2 − e−
‖v‖2(t+1)2+‖w‖2

2

∣∣∣∣ dw ‖v‖ dt

= e−
‖v‖2

2

∫

R

1√
2π

∣∣∣∣e−
(t−1)2

2 − e−
(t+1)2

2

∣∣∣∣
(∫

Rn−1

1

(
√
2π)n−1

e−
‖w‖2

2 dw

)
‖v‖ dt

≤ e−
‖v‖2

2 2 ‖v‖ ≤ 2 ‖v‖ = 2

∥∥∥∥
y − x

2γ

∥∥∥∥ = 1
γ ‖y − x‖

We finally turn to (ii). Using the fact that
∫
µ(z)dz = 1 and the Lipschitz continuity of g, we write

∣∣g(x)− gcγ(x)
∣∣ =

∣∣∣∣
∫
g(x)µ(z)dz−

∫
g(x− γz)µ(z)dz

∣∣∣∣

≤
∫
|g(x)− g(x− γz)|µ(z)dz ≤ γL0

∫
‖z‖µ(z)dz.

In our two cases µ2 and µ∞, the last integral is well-defined and finite, which ends the proof.

The above result has the same form as Theorem 3.2.1. The assumptions giving the uniform approxi-

mation are also similar: a bounded assumption of the subgradients of g for Theorem 3.2.1 vs a Lipschitz

assumption of g for Theorem 3.3.1. The main difference between the two results is that the Lipschitz

constant of gγ depends on the one of g here. We notice that the Lipschitz constant also depends on the

dimension n of the space.

3.3.2 Simple examples in R and Rn

As a first example in R, we pursue section 3.2.2 on absolute value. We derive here the smooth approxi-

mations of g(x) = |x| by convolution with Gaussian and uniform distributions:

• For the Gaussian density, we get

gγ(x) = −xF (−x
γ)−

√
2√
π
γe

− x2

2γ2 + xF (xγ), (3.33)

95

where F is the cumulative distribution function of the Gaussian distribution

F (x) :=
1√
2π

∫ x

−∞
e−

t2

2 dt;

• For the uniform density, we get the so-called huberized ℓ1

gγ(x) =





1
2γx

2 + γ
2 if |x| ≤ γ

|x| if |x| > γ.

(3.34)

We observe that the eq. (3.34) is a generalzation of the Huber function

h(t) =





1
2 t

2 + 1
2 if |t| ≤ 1

|t| if |t| > 1.

(3.35)

In view of (3.29), we just prove these two expressions for γ = 1. For (3.33), we split the integral and

find

g1(x) =
1√
2π

∫ ∞

−∞
|x− z| e−

z2

2 dz

=
1√
2π

∫ x

−∞
(x− z)e−

z2

2 dz − 1√
2π

∫ ∞

x

(x− z)e−
z2

2 dz

= xF (x)− 1√
2π

∫ x

−∞
ze−

z2

2 dz − xF (−x) + 1√
2π

∫ ∞

x

ze−
z2

2 dz

=xF (x)− 1√
2π
e−

x2

2 − xF (−x)− 1√
2π
e−

x2

2 .

For (3.35), we distinguish 3 cases (x ≤ −1 , −1 < x < 1, x ≥ 1). For example when −1 < x < 1, we

write

1
2

∫ 1

−1

|x− t| dt =
∫ x

−1

(x− t) dt +

∫ 1

x

(−x+ t) dt =

[
−1

2
t2 + xt

]x

−1

+

[
1

2
t2 − xt

]1

x

= x2 + 1;

the two other cases are similar.

In Rn, it is usually more complicated to come up with explicit expressions of the integrals. In general,

numerical integration or Monte Carlo sampling could be envisioned, but numerical stability would then be

an issue in view of integrating the smoothing techniques within algorithms (see section 3.4). Some special

cases of integration are tractable tough, as the case of decomposable function smoothed by uniform

96

97

Figure 3.4: Level sets of smooth surrogates obtained with product convolution technique, through uniform

random sampling, instead of using an exact formula. Gradients are represented by arrows. First column

Smoothing of hinge; second column Smoothing of ‖·‖1 ; third column Smoothing of ‖·‖∞ . First row

Gaussian distribution with mean 0 and standard deviation 1; second row uniform distribution on norm

∞ ball, with radius r = 1; third row uniform distribution on norm 1 ball, with radius r = 1.

distribution that boils down to an integration in one dimension.

Proposition 3.3.2. Let a nonsmooth function be decomposed as

g(x) =

n∑

i=1

g(i)(xi) ; (3.36)

then its smooth approximation for the uniform distribution µ∞ is

gγ(x) =

n∑

i=1

g(i)γ (xi) (3.37)

where g
(i)
γ is the smoothing of g(i) with the uniform distribution on [−1, 1].

Proof. We derive the expression for the case γ = 1 as follows

g1(x) =
1

2n

∫

{‖z‖∞≤1}

n∑

i=1

g(i)(xi − zi)dz =
1

2n

n∑

i=1

∫

{‖z‖∞≤1}
g(i)(xi − zi)dz

=
1

2n

n∑

i=1

2n−1

∫

{|z|i≤1}
g(i)(xi − zi)dzi =

n∑

i=1

1

2

∫

{|z|i≤1}
g(i)(xi − zi)dzi

which gives (3.37) for γ = 1. The general case follows easily.

We apply the above result to get the smooth approximation by µ∞ of the ℓ1-norm g(x) = ‖x‖1,

where h is defined by (3.35)

gγ(x) = γ
k∑

i=1

h
(

xi

γ

)
. (3.38)

3.4 Smoothing-based first-order methods for doubly nonsmooth learn-

ing problems

In this section, we consider “doubly nonsmooth" optimization problems, that is, composite optimization

problems of the form

min
x∈E

F (x) := R(x) + λΩ(x), (3.39)

where both R and Ω are convex and nonsmooth. More specifically, we consider the case of learning

optimization problems where Ω is a nonsmooth regularizer enforcing “low-complexity" structure, and R

98

is an empirical risk function featuring a nonsmooth loss function g

R(x) :=
1

N

N∑

i=1

g(Aix+ bi). (3.40)

This framework covers many generic optimization models used in image processing and machine learn-

ing. Let us briefly illustrate this with two models in image classification and collaborative filtering,

involving nuclear norm as regularization. We recall that the nuclear norm denoted ‖·‖σ,1 (or trace-norm)

is defined by the sum of the singular values of a matrix. It is a popular regularizer in machine learning

enforcing low-rank solutions and suitable for large-scale applications (by allowing efficient storage of

matrices); see e.g. Bach (2008) and Candès and Recht (2009).

Example 12 (Collaborative filtering). Collaborative filtering is a basic problem of machine learning (see

e.g. Ekstrand et al. (2011)) and it can be formulated in various ways, for example as a matrix completion

problem: Observing only some entries with index (j, k) ∈ I of a matrix X, the aim is to guess any

unknown entry Xjk, with (j, k) /∈ I. Some problems require modeling with nuclear norm regularization

and absolute value as loss function, so that the collaborative filtering problem is written as

min
W∈Rd×k

1

N

∑

(j,k)∈I
|Wjk −Xjk| + λ ‖W‖σ,1 ,

where the optimizing variable is W. By choosing

AiW + bi := Wjiki
−Xjiki

, g(s) = |s| ,

this problem is a particular case of our general problem (3.39).

Example 13 (Multiclass classification). Multiclass classification is a second basic learning problems. The

observed data are pairs (xi, yi) ∈ Rd×Rk (objects, labels) and the aim is to predict the class y of a new

example x. One way to model this problem is to use a linear support vector machine, which leads to the

optimization problem

min
W∈Rd×k

1

N

N∑

i=1

max{0, 1 + max
r s.t. r 6=yi

{W⊤
r xi −W⊤

yi
xi}+ λ ‖W‖σ,1 ,

where the j-th column of W here is indicated with Wj ∈ Rd. By choosing

AiW + bi := W⊤xi − yi + 1− 〈yi,W
⊤xi〉, g(s) = max{0,max

r
{sr}}.

99

this problem is a particular case of our general problem (3.39).

When g is smooth, there exist efficient first-order methods to solve learning optimization problem

(3.39). For our situation, where g is nonsmooth, an approach is to apply these first-order methods on a

“partially smoothed version" of the problem, smoothing the least possible to preserve the desired struc-

tural properties on the solutions. With a smooth γ-approximation gγ of the nonsmooth loss function g,

we define the partially smoothed problem

min
x∈E

Fγ(x) :=
1

N

N∑

i=1

gγ(Aix+ bi) + λΩ(x), (3.41)

that we solve with a first-order method. The question is now if this approach can give approximate

solutions of the initial problem (3.39).

The celebrated result of (Nesterov, 2005, Th X) has exactly this form answering positively for the

accelerated proximal gradient algorithm and the smoothing by saddle-point representation. This result is

generalized in (Beck and Teboulle, 2012, Th 3.1) for any fast first-order methods for specific structured

problems and for generic smoothing techniques. We derive here similar results in the context of this

chapter for three first-order methods popular in the machine learning community. The theorems show

that we can control γ and the number of iterations of the algorithm to obtain ε-solution to the initial

doubly nonsmooth problem. This control depends on the following constants:

• the uniform approximation bound m which depends on the smoothing technique (see (3.8) for

inf-convolution and (3.30) for convolution), and may depend also on the dimension of the space;

• the Lipschitz constant L depending on the chosen smoothing auxiliary function (ω or µ); by Theo-

rems 3.2.1 and 3.3.1) we have that ∇gγ is L/γ-smooth;

• the distance from the initial iterate to the optimal solution D := ‖x0 − x⋆‖2;

• the average

A :=
1

N

∑

i

‖Ai‖ ‖A†
i‖ (3.42)

of the operator norm of matrices Ai and its adjoint A†
i . We recall that the operator norm of Ai

defined through the euclidean norm is

‖Ai‖ := sup
x

‖Aix‖2
‖x‖2

and correspond to the square-root of the largest singular value of Ai.

100

Each of the following three subsections is devoted to an algorithm and follows the same presentation

pattern. The common key calculation in the proofs of convergence results is formalized in the following

lemma.

Lemma 3.4.1. Let a > 0, c ≥ 0 and p > 0. For b small enough, the minimum

t(γ) = p

√
a

γ(b− γ) − c.

over all positive t(γ) is p
√
4a/b2 − c obtained for γ = b/2.

Proof. Minimizing t(γ) boils down to maximizing γ(b− γ) subject to the constraint t(γ) > 0. Thus the

solution is b/2 as soon as t(b/2) > 0 which reads 4a/b2 > cp. This last equation is satisfied when b is

small enough.

3.4.1 Composite conditional gradient

We consider the case when the regularization Ω admits an easy-to-compute linear minimization oracle,

that is, when minimizing a linear function over the “unit ball" associated to Ω is not expensive

argmin
Ω(y)≤1

〈y,x〉 . (3.43)

For example, linear minimization oracle of the nuclear norm regularization for a matrix W consists in

computing the largest singular value of W Dudik et al. (2012); Harchaoui et al. (2014).

In this situation, the composite conditional gradient algorithm is a method of choice, especially in

large-scale settings. The key computation at each iteration of this algorithm is

argmin
Ω(y)≤1

〈y,∇R(xt)〉.

See Harchaoui et al. (2014); Pierucci et al. (2014) for a complete description of the algorithm.

However, the algorithm cannot be used directly for our doubly-nonsmooth machine learning problem

(3.39), as it requires differentiability of R. See Pierucci et al. (2014) for a counter-example. We show

here that applied to a smooth surrogate of R, the algorithm does bring a solution of (3.39).

Theorem 3.4.2. For any ε > 0; the composite conditional gradient algorithm applied to the partially

smoothed problem (3.41) with γ = ε
4m produces an ε-solution of the initial nonsmooth problem (3.39)

101

after

64mLAD2

ε2
iterations.

Proof. (Of Theorem 3.4.2) The proof is based on the following splitting into 3 parts:

F (xt)−min
x
F (x) ≤ |F (xt)− Fγ(xt)| (3.44)

+
∣∣∣Fγ(xt)−min

x
Fγ(x)

∣∣∣ (3.45)

+
∣∣∣min

x
Fγ(x)−min

x
F (x)

∣∣∣ (3.46)

Let us bound each of these three terms in our case. The first term is bounded with the help of the uniform

approximation of the smoothing function, thanks to (3.8), as follows:

|F (xt)− Fγ(xt)| = |R(xt) + λΩ(xt)−Rγ(xt)− λΩ(xt)| = |R(xt)−Rγ(xt)|

≤ 1

N

N∑

i=1

|g(Aixt + bi)− gγ(Aixt + bi)| ≤ γm .

The second term (3.45) is the difference between the current iteration to the minimum for the smooth

problem; this difference is controlled by the convergence result for composite conditional gradient of (Har-

chaoui et al., 2014, Theorem 3)

Fγ(xt)−min
x
Fγ(x) ≤

8LRγ
D2

t+ 14
,

where LRγ
is the Lipschitz constant of∇Rγ . We have

∇Rγ(x) =
1

N

N∑

i=1

A†
i∇gγ(Aix+ bi) .

We obtain

LRγ
= LA/γ ,

where A is defined at (3.42).

Finally using again the uniform approximation of smoothed function, (3.8), we get a bound for (3.46),

as follows. For all x ∈ E and all i ∈ 1, . . . , N , we have

|gγ(Aix+ bi)− g(Aix+ bi)| ≤ γm .

102

Summing over i, we get

g(Aix+ bi)− γm ≤ gγ(Aix+ bi) ≤ g(Aix+ bi) + γm

and then

Rγ(x) + λΩ(x)− γm ≤ Rγ(x) + λΩ(x) ≤ Rγ(x) + λΩ(x) + γm .

Minimizing over x, we therefore get

min
x
F (x)− γm ≤ min

x
Fγ(x) ≤ min

x
F (x) + γm .

Finally, putting the three bounds together, we end up with

F (xt)−min
x
F (x) ≤ 2γm+

8LAD2

γ(t+ 14)
.

The iterate xt is thus guaranteed to be a ε-solution when

2γm+
8LAD2

γ(t+ 14)
≤ ε i.e. γ +

4LAD2

m

γ(t+ 14)
≤ ε

2m
. (3.47)

Apply now Lemma 3.4.1 with a = 4LAD2

m , b = ε/2m, p = 1, c = 14 and to get the optimal γ⋆ = ε/4m.

Substituting back in (3.47), we obtain

2 ε
4mm+

8LAD2

ε
4m (N + 14)

≤ ε ⇐⇒ 64mLAD2

ε2
− 14 ≤ N .

which ends the proof.

3.4.2 Accelerated proximal gradient algorithm

We now consider the case when the regularization Ω admits a proximal setup, which means that it is

possible to compute in an efficient way the proximal operator

proxkΩ(x) := argmin
z

{
Ω(z) +

1

2k
‖z− x‖2

}
(3.48)

related to Ω. For example, proximal point of (block) ℓ1 regularization can be computed in closed

form Bach et al. (2012b).

In this situation, the (accelerated) proximal gradient algorithms are the method of choice; among them

103

we consider the celebrated Fast Iterative Thresholding Algorithm (FISTA) algorithm Beck and Teboulle

(2012). The key computation at each iteration of this algorithm is

proxδtΩ(xt − δt∇R(xt)),

where δt is the stepsize chosen according to some rules and depends on a constant α ≥ 1, which is 1 or

the backtracking constant of FISTA (Beck and Teboulle, 2012, Algorithms at Section 4); we refer to this

chapter for a complete description of the algorithm. We show here that applied to a smooth surrogate of

R, the algorithm does bring a solution of (3.39).

Theorem 3.4.3. For ε > 0 small enough; the accelerated proximal gradient algorithm applied the

partially smoothed problem (3.41) with γ = ε
4m produces an ε-solution of the initial nonsmooth problem

(3.39) after

4D
√
mαLA

ε
− 1 iterations.

Proof. (Of Theorem 3.4.3) As for Theorem 3.4.2, the proof is based on the splitting (3.44)-(3.45)-(3.46),

and the bounds for (3.44) (3.46) depending on the smoothing are the same. The bound for (3.45) depends

on the algorithm and we get here:

Fγ(xt)−min
x
Fγ(x) ≤

2αLAD2

γ(t+ 1)2
,

by applying the convergence result of FISTA (Beck and Teboulle, 2009, Theorem 4.4) for the smoothRγ .

Thus we have

F (xt)−min
x
F (x) ≤ 2γm+

2αLAD2

γ(t+ 1)2
.

The iterate xt is thus guaranteed to be an ε-solution of (3.39) when

2γm+
2αLγD

2

(t+ 1)2
≤ ε i.e. γ +

αLAD2

m

γ(t+ 1)2
≤ ε

2m
. (3.49)

Apply now Lemma 3.4.1 with a = αLAD2

m , b = ε/2m, p = 2, c = 1 to get the optimal γ = ε/4m when

ε is small enough so that 4αLAD2

m > ε2

4m2 . Substituting back in (3.49), we obtain

2
ε

4m
m+

8mαLAD2

ε(N + 1)2
≤ ε ⇐⇒ 4D

√
mαLA

ε
− 1 ≤ N.

which ends the proof.

104

3.4.3 Incremental gradient

In this section, we consider an incremental gradient algorithm assuming a finite-sum structure of R.

The algorithm called MISO (for Minimization by Incremental Surrogate Optimization) (Mairal, 2013,

Algorithm 5) is an algorithm of this kind, tailored for minimizing large finite sums of convex objectives.

This algorithm uses strongly convex surrogates for the terms of the sum of (3.40). We explain here how

we can combine them with smoothing.

After an initialization phase, the iterations of the MISO algorithm has two steps. First it picks up

randomly one index j, it chooses a strongly convex surrogate hjt near xt−1, by keeping unchanged all the

other surrogates hit := hit−1 for i 6= j. The next iterate is computed by solving a subproblem, where the

key computation is

argmin
x∈E

1

N

N∑

i=1

hit(x). (3.50)

We refer to (Mairal, 2013, Algorithm 5) for a more precise description of the algorithm.

In our situation with a nonsmooth loss function, we combine the construction of the surrogate of

MISO with smoothing to be able to apply this algorithm. Hence we build a local surrogate hit of f i(x) :=

gγ(Aix+ bi)+λΩ(x) satisfying the two required properties: first, the surrogates hit are (local) majorants

near the iterate xt−1

hi(x) ≥ gγ(Aix+ bi) for x near x̄,

and second the function hit − f i is smooth and strongly convex.

We define for all x near x̄

hi(x) := gγ(Aix̄+ bi) + 〈A†
i∇gγ(Aix̄+ bi),x− x̄〉+ LB

2γ
‖x− x̄‖22 + λΩ(x), (3.51)

where B := maxi=1...N ‖Ai‖2 is a bound on the Lipschitz constants of all the gradients∇gγ(Aix+ bi).

We observe that hi satisfies the two properties above (see also (Mairal, 2013, First paragraph of Section

2.2)). Moreover all the surrogates hi have the same Lipschitz constant as their gradients, that is also

requested for convergence result of (Mairal, 2013, Proposition 6.2). We now apply the MISO algorithm

to get a solution for the initial nonsmooth problem. The following convergence result is similar to the two

previous ones up to an additional expectation, since MISO is a random algorithm.

Theorem 3.4.4. For any ε > 0; the MISO algorithm applied the partially smoothed problem (3.41) with

105

γ = ε
4m is expected to produces an solution of the initial nonsmooth problem (3.39) such that

E[F (xt)− F (x⋆)] ≤ ε (3.52)

after

4mBLMD2

ε2
iterations.

Proof. (Of Theorem 3.4.4) We repeat the same splitting as in the proof of Theorem 3.4.3, with addition

expectation. The difference is in the second term which is controlled by the convergence result of (Mairal,

2013, Proposition 6.2):

E[gγ(xt)−min
x
gγ(x)] ≤

BLMD2

2t

which gives

E

[
F (xt)−min

x
F (x)

]
≤ 2γm+

BLND2

2γt
.

The iterate xt is thus guaranteed to satisfy (3.52) when

2γm+
BLMD2

2γt
≤ ε i.e. γ +

BLMD2

4m

γt
≤ ε

2m
.

Apply now Lemma 3.4.1 with a = BLMD2

4m , b = ε/2m, p = 1, c = 0 we get γ⋆ = ε/4m. Substituting

back we obtain

2
ε

4m
m+

4mBLMD2

2εN
≤ ε ⇐⇒ 4mBLMD2

ε2
≤ N.

which ends the proof.

3.5 Algebraic calculus

In the next two sections we introduce some useful rules that can be used as tools to combine and generate

new smooth surrogates.

3.5.1 Fenchel-type approximation

It is useful to have some calculus rules to construct the approximations gγ . In this section we deal with

the operator T (·) that generates a Fenchel-type γ-approximation:

T (d) (x) := max
z∈Z
〈x, z〉 − d(z)

106

with a fixed Z and d a convex function. With this definition we get again the smooth approximation

gγ(x) = T (γd) (x).

For all γ > 0, b ∈ R and k ∈ Rn, α ∈ [0, 1], we get the next rules for scaling, translation, minimum

and two properties of the operator T (·) :

T (γd) (x) = γT (d)

(
x

γ

)
(3.53)

T (d+ 〈·,k〉+ b) (x) = T (d) (x− k)− b. (3.54)

min
z∈Z

d(z) = −T (d) (0) (3.55)

f > g on Z =⇒ T (γf) < T (γg) on Rn anti-monotonicity (3.56)

T (αf + (1− α)g) ≤ αT (f) + (1− α)T (g) convexity (3.57)

By deriving the (3.53), we obtain the gradient

∇gγ(x) = ∇g1
(

x
γ

)
. (3.58)

Proof. (Of equation (3.53)) We just develop from the definitions:

T (γd) (x) = max
z∈Z

〈x, z〉 − γd(z) = γmax
z∈Z

1
γ
〈x, z〉 − d(z) = γT (d)

(

x

γ

)

Proof. (Of equation (3.54)) Addition of an affine map to the function d.

T (d+ 〈·,k〉+ b) (x) = max
z∈Z

〈x, z〉 − d(z)− 〈z,k〉 − b

= max
z∈Z

〈x− k, z〉 − d(z)− b

= T (d) (x− k)− b.

Proof. (Of equation (3.55))

m := min
z∈Z

d(z) = −max
z∈Z

−d(z) = −max
z∈Z

〈0, z〉 − d(z) = −T (d) (0)

107

Proof. (Of equation (3.56))

f(z) > g(z) ⇒ γf(z) > γg(z)

⇒ −〈x, z〉+ γf(z) > −〈x, z〉+ γg(z)

⇒ 〈x, z〉 − γf(z) < 〈x, z〉 − γg(z)

⇒ max
z∈Z

〈x, z〉 − γf(z) < max
z∈Z

〈x, z〉 − γg(z)

⇒ T (γf) (x) < T (γg) (x)

Proof. (Of equation (3.57)) The results come easily from the definitions:

T (αf + (1− α)g) = max
z∈Z

〈z,x〉 − αf(z)− (1− α)g(z)

= max
z,y∈Z,z=y

α(〈z,x〉 − f(z)) + (1− α)(〈y,x〉 − g(y))

≤ max
z,y∈Z

α(〈z,x〉 − f(z)) + (1− α)(〈y,x〉 − g(y))

= αmax
z∈Z

{〈z,x〉 − f(z)}+ (1− α)max
y∈Z

{〈y,x〉 − g(y)}

= αT (f) + (1− α)T (g)

3.5.2 Product convolution approximation

Here we consider the generation of a smooth surrogate of g as a transform:

S (g) (x) :=
∫
g(x− z)µ(z)dz,

which is the same definition of (3.28), but with a more comfortable notation to see this properties.

Then we have

S (g + τ) = S (g) + S (τ) (3.59)

S (kg) = kS (g) for k > 0 (3.60)

S (〈·,k〉+ b) = 〈·,k〉+ b (3.61)

S (max{g1, g2}) = S (g1iU1
) + S (g2iU2

) (3.62)

where Ur :=
{
x ∈ Rn

∣∣ r = argmaxj{gj(x)}
}

and Eq. (3.61) is the invariance on affine functions

(symmetric µ). To prove (3.59) and (3.60) is immediate, we show here only the next proofs.

108

Proof. (Of equation (3.61)) Under the hypothesis of symmetry

∀k ∈ R
n

∫

Rn

〈z,k〉µ(z)dz = 0

we get

S (〈·,k〉+ b) =

∫

(〈x− z,k〉+ b)µ(z)dz

=

∫

〈x− z,k〉µ(z)dz+ b

∫

µ(z)µ(z)dz

=

∫

〈x,k〉µ(z)dz−

∫

〈z,k〉µ(z)dz+ b

= 〈x,k〉

∫

µ(z)dz+ b

= 〈x,k〉+ b

Proof. (Of equation (3.62)) We just separate the integral into the two subsets where max{g1, g2} is maximized.

S (max{g1, g2}) (x) =

∫

Rn

max{g1(x− z), g2(x− z)}µ(z)dz

=

∫

x−z∈U1

max{g1, g2}(x− z)µ(z)dz+

∫

x−z∈U2

max{g1, g2}(x− z)µ(z)dz

=

∫

x−z∈U1

g1(x− z)µ(z)dz+

∫

x−z∈U2

g2(x− z)µ(z)dz

=

∫

x−z∈U1

g1(x− z)iU1(x− z)µ(z)dz+

∫

x−z∈U2

g2(x− z)iU2(x− z)µ(z)dz

=

∫

Rn

g1(x− z)iU1(x− z)µ(z)dz+

∫

Rn

g2(x− z)iU2(x− z)µ(z)dz

= S (g1iU1) + S (g2iU2)

3.6 Smoothing of SVM with reject option

This section is motivated by a version of support vector machine for binary classification. This type of

SVM is particular because, when the classification is ambiguous, the prediction is rejected, instead of

returning one of the two classes. The management of ambiguity is motivated when a wrong prediction

leads to dangerous consequences. For example, suppose that in a clinical test it is ambiguous if the patient

is ill. A classifier that rejects to classify and that advises the doctor to make more detailed analysis is then

safer for the patient.

We notice that this is not a 3-class classification, in fact the label reject is not an observation. In

this section we present a way to find a smooth γ-approximation of the loss for SVM with reject option

Grandvalet et al. (2009). This loss is a piecewise affine convex function (PAC), therefore we are going to

show in the next sections how to write a PAC as combination of support functions and how to smooth it.

109

3.6.1 Smoothing of piecewise affine convex functions

The aim of these sections is to find smooth γ-approximations of any piecewise affine convex function

(PAC).

We define now a general form of a PAC. Let us take the real points

{t−m, . . . , t−1, t1, . . . , rn}

in R, where t−1 ≤ t+1 and for the other indices i < j we have ti < tj ; possibly t−1 = t1.

| | | |
a
−
2 x

+
b−

2
a
−
1 x

+
b
−
2

b0 a 1
x
+
b 1

a 2
x
+
b 2

t−2 t−1 t1 t2 x

f(x)

−b0

Figure 3.5: Piecewise affine function

Any PAC f : R→ R has a general form

f(x) :=





a−mx+ b−m x < t−m

aix+ bi ti−1 ≤ x < ti i = (−m+ 1), . . . ,−1

b0 t−1 ≤ x ≤ t1

aix+ bi ti < x ≤ ti + 1 i = 1, . . . , (n− 1)

anx+ bn tn < x,

(3.63)

where we suppose that all the coefficients ai and bi are such that f is continuous.

When a−m ≤ · · · ≤ ai ≤ · · · ≤ an this function f is also convex. When t−1 = t1 then f is strictly

convex.

We observe that even if t−1 = t1, there are N = m + n pieces with nonzero steepness, and the

minimum of f is b0. Represented in Figure 3.5 an example with n = m = 2.

In the next we see two ways to smooth a PAC: the first decomposing it as max of affine functions and

110

using the inf-conv smoothing technique, second way by decomposing it as sum of hinge functions and

using Fenchel-type smooth γ-approximation .

A way to write a convex PAC (3.63) is as the maximum of affine functions

f(x) = max{a−mx+ b−m, . . . , b0, . . . , anx+ bn} (3.64)

with a0 = 0. The proof of (3.64) is evident because f is convex and defined on R.

Smoothing of a PAC via infimal convolution (IC)

Let a convex PAC f be written as (3.64), then

fγ(x) = γ log

(
n∑

i=−m

e
1
γ (aix+bi)

)
(3.65)

is a Fenchel-type Lγ-smooth γ-approximation of g, with Lipschitz constant

Lγ = 1
γ max

i=−m...n
|ai| . (3.66)

The proof of (3.65) follows the route of Sec. 3.2.3 extended for x ∈ Rn. For the value of L one can see

Example 4.5 in Beck and Teboulle (2012).

We saw that a way to smooth a PAC is to write it as max of affine functions. Despite this result is

general, it hides the nondifferentiable points ti. Writing a PAC in a form where the points ti are explicit

is useful to be applied for SVM with reject. As explained in Grandvalet et al. (2009), the values of ti are

used to tune the objective function. We propose an additional decomposition for a PAC that leads to a

smoothing and keeps explicit the values of ti.

Proposition 3.6.1. Let the PAC defined at (3.63) be convex. Then it can be written as a sum of supports

functions compound by affine functions

f(x) = b0 +

−m∑

i=−1

σ((ai − ai+1)(x− ti)) +
n∑

i=1

σ((ai − ai−1)(x− ti)) (3.67)

where σ is the support function of the interval [0, 1] which is the hinge function

σ(x) := max
y∈[0,1]

yx =




0 x ≤ 0

x x > 0.

(3.68)

111

With the new notation we rewrite (3.67) as

f(x) = b0 +
n∑

i=−m

fi(x),

where we defined

fi(x) := σ(Aix) := σ((ai − ai−sign(i))(x− ti)).

An immediate consequence is that the fi have smooth γ-approximation fγi with properties

(i) the Lipschitz constant of∇fγi is

Lγ
i := 1

γ

∣∣ai − ai−sign(i)

∣∣ , (3.69)

(ii) the bounds for fγi are

γmi ≤ fi(x)− fγi (x) ≤ γMi,

where mi and Mi are finite.

The next proposition shows how it is possible to find a smoothing fγ of a convex PAC f using the

Fenchel-type smooth γ-approximation of each sub-unit fi.

Proposition 3.6.2. The function

fγ(x) := b0 +

n∑

i=−m

fγi (x) (3.70)

is a Lγ-smooth γ-approximation of f , with Lipschitz constant

Lγ =
n∑

i=−m

Lγ
i =
|a−m|+ |an|

γ
. (3.71)

Proof. (Of Proposition 3.6.2) For each fi we have

γmi ≤ fi(x)− fγi (x) ≤ γMi.

By summing up we obtain

∑

i

γmi ≤
∑

i

fi(x)−
∑

i

fγi (x) ≤
∑

i

γMi

γ
∑

i

mi ≤ b0 +
∑

i

fi(x)− b0 −
∑

i

fγi (x) ≤ γ
∑

i

Mi.

112

We define m̄ :=
∑

imi and M̄ :=
∑

iMi and then

γm̄ ≤ f(x)− fγ(x) ≤ γM̄.

In addition fγ is differentiable by construction. We find now the Lipschitz constant (3.71).

‖∇fγ(x)−∇fγ(y)‖ =
∥∥∥∥∥
∑

i

∇fγi (x)−
∑

i

∇fγi (y)
∥∥∥∥∥

≤
∑

i

‖∇fγi (x)−∇f
γ
i (y)‖

≤
∑

i

Lγ
i ‖x− y‖ .

We get that Lγ =
∑n

i=−m Lγ
i . Now we use (3.69) and consider that ai − ai−sign(i) is positive for i > 0

and negative for i < 0. Then

γ

n∑

i=−m

Lγ
i =

n∑

i=−m

∣∣ai − ai−sign(i)

∣∣

=

0∑

i=−m

−ai + ai+1 +

n∑

i=0

ai − ai−1

= −a−m + an

= |a−m|+ |an| .

3.6.2 Smoothing the SVM with reject

In the previous section we have seen how to find two smooth γ-approximation of a piecewise affine

function. In this section we apply this results to the loss used for SVM with reject.

The binary SVM with reject is introduced to take care of the points that are close to the decision

boundary between positive examples and negative examples. Instead of predicting always +1 or −1, the

classifier may abstain to classify ambiguous observations and alert the user. To reject some examples can

be useful to avoid expensive misclassifications. “For instance, in clinical trials it is important be able to

reject a tumor diagnostic classification since the consequences of misdiagnosis are severe and scientific

expertise is required to make reliable determination” Bartlett and Wegkamp (2008).

It has been proposed a double hinge loss Bartlett and Wegkamp (2008) and a generalization to arbi-

113

t+1 t+2 ξ

ℓ(ξ,+1)

t−1 t−2 ξ

ℓ(ξ,−1)

Figure 3.6: SVM with reject loss. Left for label +1; Right for label −1. We notice that the positions of

t1 and t2 are different in the 2 cases. In addition t+1 = t−2 .

trary asymmetric misclassification and reject costs Grandvalet et al. (2009).

Piecewise affine loss For examples with label −1

ℓ(ξ,−1) =





0 ξ ≤ t−1

p−ξ +H(p−) t−1 < ξ ≤ t−2

p+ξ +H(p+) t−2 < ξ,

where H(p) = −p log(p)− (1− p) log(1− p).
For examples with label +1

ℓ(ξ,+1) =





(p+ − 1)ξ +H(p+) ξ ≤ t+1

(p− − 1)ξ +H(p−) t+1 < ξ ≤ t+2

0 t+2 < ξ

We use here the same notation of Grandvalet et al. (2009) When the predicted labels are +1 or −1,

the costs of misclassification are c− > 0 and c2 > 0. When on the other hand the classifier decide to

abstain and reject the example, the costs r+ > 0 and r− > 0. This problem become interesting where the

costs c+ and c− are expensive, such as in medical decision making. In these processes it might be better

to alert the user and abstain from prediction Grandvalet et al. (2009).

The costs of reject r+ and r− are supposed to be smaller than the misclassification costs c+ and c−;

this is described in the assumption c−r+ + c+r− < c−c+ .

114

With these definitions

p+ =
c− − r−

c− − r− + r+

p− =
r−

c+ − r+ + r−

f+ = log(p+)− log(1− p+)

f− = log(p−)− log(1− p−)

we have

t−1 =
−H(p−)

p−
(3.72)

t−2 =
H(p+)−H(p−)

p− − p+
(3.73)

t+1 =
H(p+)−H(p−)

p− − p+
(3.74)

t+2 =
H(p−)

1− p−
, (3.75)

where t−1 and t−2 are for label=−1, and t+1 and t+2 are for label=+1.

Proof. (Of equation (3.72))

p−ξ +H(p−) = 0 ⇐⇒ p−ξ = −H(p−) ⇐⇒ ξ =
−H(p−)

p−
.

Proof. (Of equation (3.73))

p−ξ +H(p−) = p+ξ +H(p+) ⇐⇒ (p− − p+)ξ = H(p+)−H(p−)

⇐⇒ ξ =
H(p+)−H(p−)

p− − p+
.

Proof. (Of equation (3.74))

(p+ − 1)ξ +H(p+) = (p− − 1)ξ +H(p−)

⇐⇒ ((p+ − 1)− (p− − 1))ξ = H(p−)−H(p+)

⇐⇒ ξ =
H(p−)−H(p+)

p+ − p−
.

Proof. (Of equation (3.75))

(p− − 1)ξ +H(p−) = 0 ⇐⇒ ξ =
−H(p−)

p− − 1
.

115

Decomposition through support functions For label=−1.

ℓ(ξ,−1) = σ(p−(ξ − t−1)) + σ((p+ − p−)(ξ − t−2))

For label =+1

ℓ(ξ,+1) = σ((p− − p+)(ξ − t+1)) + σ((p− − 1)(ξ − t+2))

Smoothed loss Now just take a smooth γ-approximation σγ of σ.

116

Chapter 4

Conditional gradient algorithms for

doubly non-smooth learning

4.1 Introduction

The conditional gradient algorithm, a.k.a. Frank-Wolfe, perform smooth optimization over a compact

convex set and only requires i) a first-order oracle and ii) a linear minimization oracle over that compact

convex set. This historical algorithm and its recent extensions to different optimization formulations Har-

chaoui et al. (2014); Hazan and Kale (2012); Jaggi and Sulovský (2010); Lacoste-Julien et al. (2013);

Zhang et al. (2012) are increasingly popular due to their relevance for large-scale applications. Appli-

cations include collaborative filtering on the Netflix dataset or image categorization on the ImageNet

dataset Harchaoui et al. (2012a); Jaggi and Sulovský (2010); Shalev-Shwartz et al. (2011). Related works

also include greedy or forward selection algorithms Shalev-Shwartz et al. (2011), which can be consid-

ered as cousins to conditional gradient algorithms.

Indeed, conditional gradient algorithms stands in contrast to proximal algorithms for first-order op-

timization. For composite smooth optimization, proximal algorithms Bach et al. (2012b) require a first-

order oracle that returns objective and gradient evaluations (for the smooth part), and a proximal operator

oracle associated with the nonsmooth part of the objective. Such algorithms are particularly attractive

when the proximal operator is cheap to compute, as e.g. for the vector ℓ1-norm, and they enjoy an

O(1/t2) convergence rate for their accelerated versions Juditsky and Nemirovski (2010). However, they

could turn out to be prohibitive when the proximal operator is expensive if not impossible to compute, e.g.

for the nuclear-norm of matrices when these matrices are high-dimensional, as it arises in the large-scale

117

applications mentioned above. On the other hand, in place of the proximal operator oracle, conditional

gradient algorithms (CGAs) require instead a linear minimization oracle (LMO), which is much cheaper

to compute, e.g. for the nuclear-norm of matrices (maximal pair of singular vectors, in place of full SVD

for the proximal operator).

Composite conditional gradient algorithms, that is first-order optimization algorithms for compos-

ite objectives that decompose into a smooth part and a nonsmooth part for which a LMO is available,

have been proposed Dudik et al. (2012); Harchaoui et al. (2014); Zhang et al. (2012). Composite objec-

tives correspond to learning problems with smooth loss functions and nonsmooth regularization penalty.

Convergence rates with rate O(1/t) were recently proven for such algorithms Harchaoui et al. (2014).

However, in a machine learning context, these algorithms assume smooth loss functions, whereas for sev-

eral applications nonsmooth loss functions would be preferable Amit et al. (2007); Weimer et al. (2007).

Smoothing strategies were recently proposed for nonsmooth counterparts of the “historical” conditional

gradient algorithm, that is for nonsmooth objectives (instead of smooth in the original Jaggi (2013)) with

a compact convex constraint Garber and Hazan (2013); Lan (2013).

We propose here a smoothed version of the composite conditional gradient algorithm, using the

smoothing technique from Nesterov (2005). We give a detailed study of smoothing of nonsmooth loss

functions in a machine learning context, and give theoretical grounding for several popular smoothed

counterpart of nonsmooth loss functions. We prove a theoretical guarantee on the accuracy of the solu-

tion given by our algorithm and present promising experimental results on collaborative filtering.

4.2 Smooth optimization with atomic-decomposition regularization

In this section, we recall the main properties of atomic-decomposition norms, and then describe composite

conditional gradient algorithms Dudik et al. (2012); Harchaoui et al. (2014); Zhang et al. (2012), which

are tailored for learning problems with these norms, as regularizers.

4.2.1 Learning with atomic-decomposition norms

Consider a sequence of i.i.d. examples u1, . . . , uN , and a loss function ℓ(W,u). Denote the corresponding

empirical risk

R(W) :=
1

N

N∑

i=1

ℓ(W,ui) .

118

In this chapter, we consider regularized learning problems that write as

min
W

g(W) := λ‖W‖A +R(W) (4.1)

where ‖ · ‖A is a so-called atomic-decomposition norm Chandrasekaran et al. (2012); Dudik et al. (2012).

Atomic-decomposition norms (or atomic norm, in short) can be defined by the following simple varia-

tional description with respect to a compact set A (the “atoms”). Assume that the elements of A are the

extreme points of conv(A) (the convex hull of A), we have

‖W‖A = inf

{∑

i∈I

θi : θi > 0, W =
∑

i∈I

θiai

}
(4.2)

where I is an index set spanning the elements of A, and where (ai)i∈I ∈ A. Such characterization

leverages the property that norms belong to the larger family of “gauges”, that are convex and positively

homogeneous functions, centered in the origin. The support function of the collection of atoms A writes

as

‖W‖∗A = sup
a∈A
〈W,a〉. (4.3)

We can recognize that ‖·‖∗A is the dual (or polar) norm associated with ‖ · ‖A.

Many useful atomic norms enjoy collections of atoms A that are simple to describe, and whose

support functions are computationally easy to compute. Examples include the ℓ1-norm in Rd, where A
is the canonical basis of Rd, and the trace-norm (or nuclear-norm) in the space of rectangular matrices

Rd×m, where A = {uv⊤, ‖u‖2 = ‖v‖2 = 1}. We refer to Jaggi (2013) for a review of popular atomic

norms.

Conditional gradient algorithms, which we shall describe in the next paragraph, take advantage of this

attractive feature: they make progress using an (approximated) optimal solution of (4.3).

4.2.2 Conditional gradient for smooth risk

Assume that the empirical riskR(·) is a convex function with Lipschitz continuous gradient with Lipschitz

constant L. Under suitable assumptions Harchaoui et al. (2014), the composite conditional gradient

algorithm with infinite memory enjoys the following theoretical guarantee

g(Wt)−min g ≤ O
(
1

t

)
.

119

The composite conditional gradient algorithm works by making calls to a first-order oracle, that returns

R(W) and ∇R(W) for any W , and to a linear minimization oracle, that is a subroutine that returns for

any W

LMO(W) := argmin
Z∈A

〈Z −W,∇R(W)〉 . (4.4)

This is in contrast to proximal algorithms, which make progress by making calls to a proximal operator

oracle. Proximal operators are computationally expensive to compute in several large-scale learning

problems. Typical examples are matrix completion with noise, or multi-class classification with nuclear-

norm penalty, where the proximal operator associated with the nuclear-norm corresponds to a full singular

value decomposition of the current iterate, which is prohibitive in large-scale applications. Moreover,

recent results from Guzman and Nemirovski (2013) show that conditional gradient algorithm is almost

optimal (up to a log factor) for large-scale optimization problems.

The composite conditional gradient algorithm with conic-hull acceleration, is summarized below (see

Algo. 1).

Algorithm 11 Composite Conditional Gradient, with conic-hull acceleration

Inputs: λ, ǫ
Initialize W0 = 0, t = 1
for k = 0 . . .K do

Call the linear minimization oracle: ai ← LMO(Wk)
Compute

min
θ1,...,θt≥0

λ

t∑

i=1

θi +R

(
t∑

i=1

θiai

)

Increment t← t+ 1
end for

Return W =
∑

i θiai

Algorithm 12 Conditional gradient algorithm: Frank-Wolfe

Input

Initialize W0 = 0, t = 1
for k = 0 . . .K do

Call linear minimization oracle ak ← LMO(Wt)
Set step-size αk = 2/(2 + k)
Update Wk+1 ← (1− αk)Wk + αkak

end for

Return WK

120

4.2.3 Extension to non-smooth empirical risk

Composite conditional gradient assumes that the empirical risk in the objective function g is smooth.

Indeed, at each iteration, the algorithm requires to compute ∇R(W). Should we consider nonsmooth

loss functions, such as the ℓ1-loss or the hinge-loss, the convergence of the algorithm is unclear if we

replace the gradient by a subgradient in ∂R(W). In fact, we can produce a simple counterexample

showing that the corresponding algorithm can get stuck in a suboptimal point.

Let us describe a counterexample in two dimensions (generalization to higher dimension is straight-

forward). We consider the ℓ1-norm with its four atoms {(1, 0), (0, 1), (−1, 0), (0,−1)} and a convex

function of the type of a translated weighted ℓ1-norm

f(w1, w2) = |w1 + w2 − 3/2|+ 4 |w2 − w1| .

level sets of Remp

w1

w2

atoms of A

algorithm stuck at (0, 0)

Figure 4.1: Drawing of a situation where the algorithm using a subgradient of a nonsmooth empirical risk

does not converge.

We observe that the four directions given by the atoms go from (0, 0) towards level-sets of R with

larger values. This yields that, for small λ, the minimization of the objective function on these directions

returns (0, 0). Thus, if we simply replace ∇R(W) by any subgradient in ∂R(W) in Algorithm 1, then

the algorithm would get stuck to the initial iterate (0, 0), while the optimal solution is (1/2, 1/2).

We are interested in the smoothing of the only empirical risk because smoothing the regularizer leads

to loose its fundamental properties.

121

4.3 Motivating examples

We present here motivating examples for designing a composite conditional gradient algorithm for matrix

learning problems with nonsmooth loss functions. In all applications, the nonsmooth regularization is the

nuclear-norm, the sum of singular values of the matrix, which has an atomic-decomposition form ‖·‖A
with

A =
{
uv⊤ ∈ Rd×m

∣∣ ‖u‖2 = ‖v‖2 = 1
}
.

4.3.1 Collaborative filtering

Collaborative filtering, or matrix completion, consists in the generation of a low-rank matrix from few

known approximate entries. The loss ℓ(w, x) = |w − x|, based on ℓ1 norm Huber (1981) ensures robust-

ness to outliers. We have (4.1)

min
W∈Rd×m

1

N

∑

(i,j)∈Ω

|Wij −Xij |+ λ ‖W‖A (4.5)

where Ω is the subset of {1, . . . , d} × {1, . . . ,m} denoting pairs of ratings. The size of Ω is N and

{xij}(i,j)∈Ω are the known entries.

4.3.2 Multiclass learning

Let p1 = (x1, y1), . . . , pN = (xN , yN) be labeled training data examples, where xi ∈ Rd are feature

vectors, m is the number of classes and yi ∈ Rm are the associated class labels. A (linear) classifier is

specified by a separate weight vector Wy ∈ Rd: for a given test example x ∈ Rd, the predicted class is

ŷ = argmaxr=1...mW⊤
r x. The weight vectors are kept in columns in a matrix W = [W1, . . . ,Wm] ∈

Rd×m.

Here we are interested in predicting k classes instead of only one. This could seem surprising, but the

main assumptions are that: 1) Any image contains more than only one object: even if there is a central

big one, several other small objects appear; 2) Speaking of a dataset, the ground truth, i.e. the true label

of each image, is subjective and depends on the personal choice of the human. The function we learn

associates to each image a list of k labels ordered by relevancy, instead of having only the best one as in

top-1 classification.

One motivation to use the prediction function (1.49) is when two objects A and B are very similar, for

example two types of trees. It is acceptable that (1.49) predicts both of them among the first k results and

does not take care too much of the subjective choice of the ground truth. On the other hand, the top-1 can

122

predict A when the true is B, and we would get the same error as predicting any other object. An example

of subjective labeling is an image with a bee on a flower. It could have the label bee, but the classifier

gives the top score to the class flower and the second top score to bee. While the top-1 accuracy would

accept only flower and consider this a misclassification, a top-k accuracy (here k ≥ 2) would consider

it as a good classification.

Another motivation is to use top-k inside a flow of actions. For example we could find the best k

“candidate” classes for the given image, then we apply object detection to identify bounding boxes of

different objects and hereafter apply filters to find the most relevant class. For large scale number of

classes m it is considered good to have the true class predicted among the first k of highest score. We

assume that k is much smaller than m, for example k = 5 or k = 10. Top-k accuracy is commonly used

to evaluate the performance of a classifier. The top-k error is defined as

W 7→ 1

N

N∑

i=1




0 if yi ∈ top k among{W⊤

r xi}r=1...m

1 if yi /∈ top k among{W⊤
r xi}r=1...m

(4.6)

and corresponds to 1 minus top-k accuracy. This gives an error of 0 when the good class y is among the

first k predicted and 1 otherwise.

We want to solve the nonsmooth classification problem

min
W∈Rd×m

1

N

N∑

i=1

ℓ(W, (xi, yi)) + λ ‖W‖A , (4.7)

where the loss ℓ is a convex nonsmooth upper bound of the top-k error. We will define it later, now we

just observe that for k = 1 the loss ℓ is the hinge loss.

4.4 Smoothed Conditional Gradient algorithms

We present Smoothed Conditional Gradient algorithms to minimize large-scale doubly nonsmooth op-

timization problems. We consider a family of smooth convex functions f(·, γ) parameterized by the

smoothing parameter γ. More precisely, f(·, γ) is differentiable with Lipschitz continuous gradient, with

Lipschitz constant Lγ = 1/(cγ) for c > 0. We assume that f(·, γ) approximates f up a global constant

linear in γ:

f(W,γ) ≤ f(W) ≤ f(W,γ) + γM. (4.8)

As we explained in the previous section, a direct application of conditional gradient methods for

123

nonsmooth loss functions would not converge to an optimal solution. Inspired by smoothing approaches

in other contexts (see in particular Nesterov (2005)), we propose in this chapter to apply, in an original

way, conditional gradient algorithms to an adaptive smoothing approximation of f .

We could apply the conditional gradient method to minimize the smooth f(W,γ): the algorithm

would generate a sequence (Wt) such that

f(Wt, γ)− f(W ⋆, γ) ≤ O(1/
√
t)

where f(W ⋆, γ) = minW∈X f(W,γ). Even if f(W ⋆, γ) tends to f(W ⋆) as γ vanishes (by (4.8)), we

do not have any guarantee on the speed of convergence, as the Lipschitz constant tends to infinity. So our

proposed algorithm depends on a sequence of positive smoothing parameters (γt)t, that we will specialize

to get guarantees. These algorithms are generic with respect to the family f(·, γ) the choice of γt, and

the way we compute Wt+1.

4.4.1 Smoothed Conditional Gradient algorithm

Algorithm 13 (Generic) Smoothed Conditional Gradient Algorithm

Initialize W = 0, t = 1
for t = 1, . . . do

Set αt = 2/(t+ 1) and compute f(Wt, γt)
Call the linear minimization oracle:

W+
t = argminW∈X 〈∇f(Wt, γt),W 〉

Compute Wt+1 such that f(Wt+1, γt) ≤ f(W̃t+1, γt) where W̃t+1 =Wt + αt(W
+
t −Wt)

end for

At each iteration t, the algorithm produces the linearization of the convex f(·, γt) given by the gradient

W 7→ f(Wt, γt) + 〈∇f(Wt, γt),W −Wt〉. This linearization gives in turn a lower bound on f(W ⋆, γt)

f low
t = min

W∈X
f(Wt, γt) + 〈∇f(Wt, γt),W −Wt〉 (4.9)

= f(Wt, γt) +
〈
∇f(Wt, γt),W

+
t −Wt

〉
. (4.10)

Since γt is non-increasing, the previous f low
k for k ≤ t are also lower bounds for f(W ⋆, γt). At

iteration t, we record the best of the lower bounds found so far

f rec
t = max

1≤k≤t
f low
k ≤ min

W∈X
f(W,γt) ≤ min

W∈X
f(W). (4.11)

124

Notice that we consider here the maximum of the minimum of the linearizations whereas cutting-plane

based algorithms as bundle methods uses the minimum of the maximum of the linearizations. The reason

is that the lower bound (4.11) is a direct output of the algorithm while the other may be expensive to

compute. The lower bound allows us to defined the current observed criteria

∆obs
t = f(Wt, γt)− f rec

t .

Convergence of ∆obs
t controls the quality of the current iterate Wt, as formalize in the next lemma.

Lemma 4.4.1 (Gap by observed criteria). At iteration t, the smoothed conditional gradient algorithm

returns Wt and ∆obs
t such that

f(Wt)− min
W∈X

f(W) ≤ γtM +∆obs
t . (4.12)

We can choose a vanishing smoothing parameter γt, but this lemma says that we should moreover

pay attention to the resulting behavior of ∆obs
t . The following lemma is the key technical lemma in our

derivations.

Lemma 4.4.2 (Decrease of ∆obs
t). For the smoothed conditional gradient algorithm, we have the follow-

ing bound on ∆obs
t , for all t ≥ 2,

∆obs
t ≤

1

(t− 1)t

t−1∑

k=1

k(k + 1)
(
(γk − γk+1)M +

2D2

cγk(k + 1)2

)
(4.13)

where D is the diameter of X defined by

D = max
W,W ′∈X

‖W −W ′‖2 .

For example, if X =
{
W ∈ Rd×m

∣∣∣ ‖W‖σ,1 ≤ r
}

, then D = 2r.

Proof. Let us find a recurrence between ∆obs
t+1 and ∆obs

t . Since the lower-bound f rec
t is non-decreasing by

construction, we have

∆obs
t+1 = f(Wt+1, γt+1)− f ref

t+1 ≤ f(Wt+1, γt+1)− f rec
t

≤ f(Wt+1, γt) + (γt − γt+1)M − f rec
t . (4.14)

The usual inequality for differentiable function with Lipschitz gradient for f(·, γt) (with Lipschitz con-

125

stant Lγt
= 1/(γtc)) gives

f(Wt+1, γt) ≤ f(Wt, γt) + αt

〈
∇f(Wt, γt),W

+
t −Wt

〉
+ α2

t

∥∥W+
t −Wt

∥∥2 /(2γtc). (4.15)

We notice that f rec
t ≥ f low

t gives

〈
∇f(Wt, γt),W

+
t −Wt

〉
≤ f rec

t − f(Wt, γt)

Thus, (4.15) can be rewritten

f(Wt+1, γt) ≤ f(Wt, γt) + αt(f
rec
t − f(Wt, γt)) + α2

tD
2/(2γtc). (4.16)

Plugging this in (4.14) gives

∆obs
t+1 ≤ ∆obs

t (1− αt) + (γt − γt+1)M + α2
tD

2/(2γtc).

By induction, we end up with

∆obs
t+1 ≤ ∆obs

1

t∏

k=1

(1− αk) (4.17)

+

t∑

k=1

(
(γk − γk+1)M +

α2
kD

2

2γkc

) t∏

i=k+1

(1− αi) (4.18)

We use now the choice of stepsize αk = 2/(k + 1) which zeroes the first term and allows us to explicit

the second as follows
t∏

i=k+1

(1− αi) = k(k + 1)/(t(t+ 1)).

This yields (4.13).

We can study the consequence of the above bound on the decrease of ∆obs
t in two cases: (1) for γt

fixed and (2) for γt of order of 1/
√
t+ 1. This results in the following theorems on the convergence of

the algorithm.

Theorem 4.4.3 (Case 1: fixed smoothing parameter). For the smooth generic conditional gradient algo-

rithm with a constant smoothing parameter γt = γ0, we have for all t ≥ 2

f(Wt)− f(W ⋆) ≤ γ0M +
2

γ0

1

t+ 1
. (4.19)

126

The above proposition can be interpreted as follows. Given a target accuracy ǫ, the optimal amount

of smoothing γ(ǫ) can be computed so that after some number of iterations T (ǫ) an ǫ-optimal minimum

of the objective function of interest is reached.

Up to our knowledge, the parameter γ is often considered fixed as above in theory. In practice, it is

either chosen empirically from first numerical experiments, or reduced gradually for better computational

performances by continuation techniques Becker et al. (2011).

One might also consider a sequence of decreasing γt to get theoretical guarantees which do not depend

on a priori choice for the total number of iterations, as in the previous theorem.

Theorem 4.4.4 (Case 2: smoothing parameter in 1/
√
t+ 1). For the smooth generic conditional gradient

algorithm where

γt =
γ0√
t+ 1

with γ0 = D/
√
cM,

we have for all t ≥ 2 and C = 2
√
M/c(1 +

√
2D)/3

f(Wt)− f(W ⋆) ≤ C√
t− 1

(4.20)

4.4.2 Smoothed Composite Conditional Gradient Algorithm

We now turn to a smoothed version of the composite conditional gradient algorithm (CCG). We start by

stating a simpler version of the composite conditional gradient algorithm for solving

min
W

f(W) + λ‖W‖

where f is convex, Lipschitz-continuous with constant L and λ is non-negative.

The generic conditional gradient algorithm naturally generates a sequence of lower bounds f rec
t along

the iterations which act as a certificate on the theoretical convergence of the algorithm. In order to equip

the composite conditional gradient algorithm with a similar property, we make the following assumption.

We assume that we have an upper-bound D of the norm at the minimum

‖W ⋆‖ ≤ D .

and therefore restrict X to this ball. We are then solving the equivalent optimization problem

min
W∈X

f(W) + λ‖W‖ . (4.21)

127

We use the construction outlined in Sec. 5 of Harchaoui et al. (2014). Introducing the change of vari-

able V := [W, r] and the set Z := X × [0, D], and rewriting Eq. 4.21 in epigraph form (Boyd and

Vandenberghe, 2004), we now have

min
V ∈Z

F (V) := {f(W) + λr} . (4.22)

The composite conditional gradient algorithm generates a sequence of iterates (Vt), where Vt := [Wt, rt],

which satisfy

F (Vt)− min
V ∈Z

F (V) ≤ 8LD2

t+ 14
, for all t = 2, 3, . . .

We summarize this generic composite conditional algorithm below.

Algorithm 14 Generic Composite Conditional gradient algorithm

Input

Initialize V0 = [0, D], t = 1
for t = 0 . . . T do

Call linear minimization oracle V +
t = [W+

t , D] where W+
t = argminW∈X 〈∇f(Wt, γt),W 〉

Vt+1 = argmin
β≥0, δ≥0, β+δ≤1

F (βVt + δV +
t)

end for

Get [Wt, rt] = Vt and return Wt.

At each iteration t, the algorithm produces a partial linearization of the convex function F (·, γt), that is

performs a linearization of f(·, γt). The partial linearization gives the lower bound on F (V ⋆, γt)

F low
t = min

V ∈Z
F (Vt, γt) + 〈[∇f(Wt, γt), λ], V − Vt〉 (4.23)

= F (Vt, γt) +
〈
[∇f(Wt, γt), λ], V

+
t − Vt

〉
(4.24)

where V +
t = [W+

t , D] and W+
t = argminW∈X 〈∇f(Wt, γt),W 〉. Note that, owing to the a priori

upper-bound D, we have ‖W‖ ≤ D and 0 ≤ r ≤ D, hence the lower-bound is well-defined.

At iteration t, we record the best of the lower bounds found so far

F rec
t = max

1≤k≤t
F low
k ≤ min

V ∈Z
F (V, γt) ≤ min

V ∈Z
F (V) , (4.25)

yielding the observable criterion

∆obs
t = F (Vt, γt)− F rec

t .

Lemma 4.4.5 (Gap by observed criteria). At iteration t, the smoothed composite conditional gradient

128

algorithm returns Vt and ∆obs
t such that

F (Vt)− min
V ∈Z

F (V) ≤ γtM +∆obs
t . (4.26)

The smoothed composite conditional gradient algorithm satisfies the following theoretical guarantee

when the smoothing sequence is fixed and constant.

Theorem 4.4.6 (Case 1: fixed smoothing parameter). For the smooth generic composite conditional

gradient algorithm with a constant smoothing parameter γt = γ0, we have for all t ≥ 2

f(Wt)− f(W ⋆) ≤ γ0M +
2

γ0

1

t+ 14
. (4.27)

We may also consider a sequence of varying γt which do not depend on an apriori choice for the total

number of iterations. We have

∆obs
t+1 =≤ F (Wt+1, γt) + (γt − γt+1)M − F rec

t . (4.28)

Invoking the Lipschitz-continuity of f(·, γt), whose Lipschitz constant is Lγt
= 1/(γtc), we get the

partial linearization upper-bound on F (·, γt) for all 0 ≤ α ≤ 1

F (Vt+1) ≤ F ((1−α)Vt+αV +
t , γt) ≤ F (Vt, γt)+α

〈
[∇f(Wt, γt), λ], V

+
t − Vt

〉
+α2

∥∥W+
t −Wt

∥∥2

2γtc
.

Denote

αt := argmin
0≤α≤1

F (Vt, γt) + α
〈
[∇f(Wt, γt), λ], V

+
t − Vt

〉
+ α2

∥∥W+
t −Wt

∥∥2

2γtc
. (4.29)

We can see that the appropriate amount of smoothing γt is proportional to
√
αt.

When αt = 2/(t+ 1) for all t ≥ 1, then

∆obs
t ≤

1

(t− 1)t

t−1∑

k=3

k(k + 1)
(
(γk − γk+1)M +

2D2

cγk(k + 1)2

)
(4.30)

Theorem 4.4.7 (Case 2: smoothing parameter in 1/(t+1)). For the smooth generic composite conditional

gradient algorithm, when αt = 2/(t+ 1) and

γt =
γ0√
t+ 1

with γ0 = D/
√
cM,

129

we have for all t ≥ 3 and C = 4
√
M/cD

f(Wt)− f(W ⋆) ≤ C√
t+ 16

(4.31)

In practice, we shall also explore variants of the smoothed composite conditional gradient, where the

smoothing parameter is varying according to γt := γ0/(t+ 1)p with p ∈ {0; 0.5; 1; 1.5; 2}; see Sec. 4.5.

4.4.3 Smoothing the empirical risk - Application to the motivating examples

We showed in Chapter 3 that the Nesterov smoothing technique Nesterov (2005) consists in performing

an infimal convolution on a saddle-point representation. We illustrate here on several examples of interest

how this smoothing technique can be successfully applied.

In all the examples we consider, the empirical riskR(W) is an empirical average over all the examples

of some nonsmooth loss function:

R(W) =
1

N

N∑

i=1

ℓ(W, pi)

where we wrote the loss function in a compact abstract form that can be instantiated in our motivating

examples.

In our notation the loss for each example p is the composition of a support function

σ(ξ) := max
z∈Z
〈ξ, z〉

and an affine map W 7→ ApW + bp: ℓ(W, p) := σ(ApW + bp). The support function we chose is related

to the type of error we intend minimize and the map function is related to the type of data.

Thanks to the smoothing technique, we can now design a smoothed version of the empirical risk:

R(W,γ), parametrized by a smoothing parameter γ that controls the amount of smoothing

R(W,γ) =
1

N

N∑

i=1

ℓγ(W, pi)

R(·, γ) is differentiable with Lipschitz continuous gradient.

Then, in our notation, we have surrogates ℓγ(W, p) := σ(ApW+bp, γ) and σ(ξ, γ) := maxz∈Z〈ξ, z〉−
γω(z). We will see later the properties for the function ω and how to find smooth surrogates of the nons-

mooth empirical losses for the motivating examples.

130

4.4.4 Collaborative filtering

For collaborative filtering with noise, we approximate the absolute value in the empirical risk of problem

(4.5), with two different smoothing functions ω.

The size of Ω isN . The empirical risk of this problem is now smooth and we have a explicit expression

of its gradient by (4.32). For any (i, j) ∈ Ω

(∇Rγ(W))ij = ∇Wij
ℓγ(Wij , Xij). (4.32)

We observe that we need only the gradient corresponding to the observations when we run the algorithm.

4.4.5 Multiclass learning

The aim of this section is to present the smoothing of the top-k misclassification error. We start with an

upper bound called Ordered Weighted Averaging, and then we show how we find smooth surrogates of it.

We are interested in a particular nonsmooth convex function

owa(ξ) :=
1

k

k∑

j=1

ξβ(j), (4.33)

where β is the permutation that sorts ξ in decreasing order, that is one of the Ordered Weighted Averaging

loss functions, introduced in Yager (1988) and defined in Usunier et al. (2009) for multiclass classifica-

tion. In applications to classification the values of the vector ξ correspond to the positive part of the linear

operator, i.e they minimize W 7→ owa(max{0, AW + b}). The affine mapping for classification related

to the example p = (x, y) is

Ax,yW + b := {1− δ(r, y) + (Wr −Wy)
⊤ x}mr=1,

where δ(a, b) := 0, if a 6= b, 1 otherwise.

Convex upper bound for the top-q misclassification We show that the top-k empirical risk which

we will smooth is an upper bound of the top-k misclassification error (4.6). We start showing that the

Ordered Weightd Average (4.33) is an upper bound of the top-k misclassification.

Proof. We have W ∈ Rd×m, y is the true class associated to the feature vector x ∈ Rd, r ∈ {1 . . .m} is

131

a class index. Let us define a permutation β on the indices such that W⊤
β(1)x ≥ · · · ≥W⊤

β(m)x. Then

owa(AW + b)+ =

k∑

r=1

(AW + b)+ ≥
1

k

k∑

r=1

max{0, 1−∆(β(y), β(r))−W⊤
β(y)x+W⊤

β(r)}

≥ 1

k

k∑

r=1, r 6=y

max{0, 1−W⊤
β(y)x+W⊤

β(r)}

≥ 1

k

k∑

r=1, r 6=y

1(W⊤
β(y)x ≤W⊤

β(r)x)

≥ 1(β(y) ≥ k + 1)

The latter is 1 when the score of the true class is smaller than the scores of at least other k classes and

corresponds to the top-k error for the example (x, y).

Writing owa as support function In order to apply the smoothing technique, we show that owa can be

expressed as support function.

We define three sets: the discrete set

Zd :=

{
z ∈ Rn

∣∣∣∣∣ zi ∈
{
0, 1k

}
,

n∑

i=1

zi = 1

}
= {Pek ∈ Rn |P ∈ P} ,

where P is the set of permutation matrices, the “flat” ball

Zf :=

{
z ∈ Rn

∣∣∣∣∣ 0 ≤ zi ≤
1

k
,

n∑

i=1

zi = 1

}
(4.34)

and the “full” ball

Z :=

{
z ∈ Rn

∣∣∣∣∣ 0 ≤ zi ≤
1
k ,

n∑

i=1

zi ≤ 1

}
, (4.35)

The equivalence for Zd is evident because Pek is just a reordering of the vector ek. We also notice

that the cardinality of Zd corresponds to the combinations of k elements from n: #Zd = Ck
n =


n
k


.

We observe that the convex hull of Zd is Zf , because the extremal points of Zf are elements of Zd

Hiriart-Urruty and Lemarechal (1993).

We want to show that owa and σtop,k (·) are the same when applied to classification, where we want

to optimize the nonsmooth empirical risk W 7→ σtop,k (AW + b) .

Proposition 4.4.8. The function owa of (4.33) corresponds to the support function of the set Z defined

132

at (4.35), which we call σtop,k (·):

owa(ξ+) = σtop,k (ξ) := max
z∈Z
〈z, ξ〉

Proof. We start by claim that owa can be expressed as support function of Zf :

owa(ξ) = max
z∈Zf

〈z, ξ〉.

Suppose ξ sorted in decreasing order. Then supz∈Zf
〈z, ξ〉 = supz∈Zf

∑n
i=1 ziξi = supz∈Zf

(
∑k

i=1 ziξi+∑n
i=k+1 ziξi) =

1
k

∑k
i=1 ξi. The z that maximizes in this case is ek. For any ξ we deduce supz∈Zf

〈z, ξ〉 =
1
k

∑k
i=1 ξσ(i) = owa(ξ) . Using the previous claim we can conclude owa(ξ+) = owa(max{0, ξ}) =

maxz∈Zf
〈z,max{0, ξ}〉 = maxz∈Z〈z, ξ〉 = σtop,k (ξ), where the third equality is proven at appendix

A.4.1.

4.5 Experiments

The general form of the smoothed generic conditional gradient algorithm (SCCG) is summarized in

Algo. 2. The SCCG algorithm works by making calls to a first-order oracle, that returns R(W,γt) and

∇R(W,γt) for any W , for the smoothing parameter γt, and to a linear minimization oracle, that is a

subroutine that returns for any W .

Algorithm 15 Smoothed Composite Conditional Gradient (general smoothing sequence (γt))

Inputs: λ
Initialize W = 0, t = 1
for t = 1, 2, . . . do

Call the linear minimization oracle:

at = argmina∈A 〈a,∇R(Wt, γt)〉
Compute

min
θ1,...,θt≥0

λ

t∑

i=1

θi +Rγt

(
t∑

i=1

θiai

)

end for

Return W =
∑

i θiai

We now present the experimental results of the proposed composite conditional gradient algorithm for

learning problems with nonsmooth loss functions. We consider two problems: i) collaborative filtering

with noise, on the MovieLens datasets; ii) multi-class learning, on ImageNet datasets, with nuclear-norm

penalty. The experiences are launched on two disjoint sets for train and validation.

We run SCCG with smoothing based on squared euclidean norm proximity function. We remind that

133

at each iteration the algorithm SCCG optimize the family of surrogates of empirical risk Rγt . We chose

as smoothing parameter

γt := γ0/(t+ 1)p with p ∈ {0; 0.5; 1; 1.5; 2}

and with γ0 ranging between 0.01 and 1000, and with λ ranging between 10−2 and 10−12.

For the experiment with SCCG, the possible combinations of parameters to define γt is quite large. To

represent the results of convergence in plots we chose just some values of γ0 and p. On the other hand we

plot all the experiments at a fixed iteration to compare the objective function for all the used parameters

γ0 and p.

4.5.1 Implementation details

To deal with large scale data we need to keep small the RAM memory used during the computations. Here

we show some techniques for our experiments, but the main one is to keep the iterate Wt decomposed as

a weighted combination of matrices of rank 1.

Conic hull acceleration using quasi-Newton optimization We implement our algorithm SCCG in

Matlab. We use the quasi-Newton solver L-BFGS-B Byrd et al. (1995) (via a Matlab interface) to perform,

at each iteration of our algorithm, the minimization over the fixed set of t atoms. Where t can be smaller

than the number of iterations due to the elimination of atoms with zero coefficient θi. In the particular

case of image classification, where the computing time to compute the objective function and its gradient

is significant since there are large number of examples, we choose then to sample 10% each time we run

the subspace optimization. At each iteration, we find the new descent direction using all the dataset, then

we sample to optimize the parameters θi. The classes in the sample have the same proportion as in the

whole dataset.

Efficient computation of top-k A great improvement for the computation of top-k is the vectorization

of operations instead of for loops. This take advantage of Matlab efficient matrix multiplication. We

have N nondecreasing functions fj : R → R and N vectors di ∈ Rn with nondecreasing entries, i.e

∀j = 1 . . . N , d
(1)
j ≤ d

(2)
j ≤ · · · ≤ d

(n)
j . For each j we want to find an index i such that fj(d

(i)
j) ≤

0 ≤ fj(d
(i)
j). The simplest way to implement is with a loop on i, but we want to avoid it. Instead we

put all this vectors in columns of the matrix D ∈ Rn×N . Dij := d
(i)
j and define an indexing with the

array of indices I ∈ NN , which takes from each column of D one entry. DI := (DI1,1, . . . , DIN ,N), We

134

define a function F : RN → RN such that F = (f1, . . . , fN). Then we look for row indices I such that

F (DI) ≤ 0 ≤ F (DI+1) In practice we do dichotomic search on each column of D, but all the columns

are treated at the same time. We start with Imin = 1 and Imax = n. The new candidate vector of indices

is Ic ← floor(1/2(I + J)). On columns k where the sign of F (DIC) is positive we assign Iimax ← Iic,

otherwise we assign Iimin ← Iic. Until Imax − Imin = 1. The length of the loop on rows is log2(n). In our

dataset we need only log2(4096) = 12 computation of the function F which is parallelized by Matlab.

Memory storage of iterates during optimization In all applications, we manage the size of the mem-

ory and we avoid to store all the iterations Wt generated by the algorithm. Each Wt is represented as a

pair of matrices U , V containing the vectors ut, vt on columns and a vector θ of coefficients. Neverthe-

less we want to keep some partial iterations to keep partial models and plot whatever without relaunching

everything. We decided to save power of 2 iterations number 0, 1, 2, 4, . . . , T . To save an iteration t the

needed RAM is less than 8(dt +mt + 1) Bytes. Summing up we need 16(dT +mT + log2(T)) Bytes

for T iterations. Besides, to increase the sparsity, we applied hard thresholding to uj and vj with constant

ε = 10−6.

In the particular case of collaborative filtering, even though each Wt is a dense matrix of dimension

d×m, when we optimize we are interested only in its observed entries. So, Wt is never created as matrix

object, but we keep only a representation of it with a vector of entries and a vector of indices of length n.

So we use only n doubles instead of dm. The only time we need a matrix of size d ×m is to compute

the descent direction, but this matrix corresponds to the gradient of the loss and is sparse. So also here

the memory needed is O(n). We have a trade-off between computing time and memory. We decided for

each past iteration i to keep in memory also the values of observed entries in uiv
⊤
i . So for T iterations

we need memory of size O(T). The time to compute this is constant. For instance, in the MovieLens

dataset, for T = 256 iterations we need 107 ∗ 256 ∗ 8B ≃ 20.5GB to store iterations. The alternative is

to recompute all the uiv
⊤
i at each iteration, we need to add a time of size O(T). In this case we estimate

the computing time for 256 iterations in 1000 days, while we used just 4 days for a grid with 4 values of

λ, 3 of p and 5 of γ0.

In the particular case of image classification, the use of RAM memory is concentrated in the dataset,

which takes 5.9GB, and the iterations decomposed always into U, θ, v. This takes t ∗ 34KB where t is

the iteration number. This is quite good because the memory needed increases very slowly with iterations.

135

4.5.2 Collaborative filtering

First iteration The chosen initial iteration corresponds to a constant matrix that contains the average

value of ratings. We observed that this choice is better than to start with an all-zero matrix. With all-zero

matrix the initial empirical risk is higher and the first iterations are wasted to find a modelW that predicts

worse than the constant average.

MovieLens dataset We test our approach on the MovieLens1 dataset for collaborative filtering, de-

scribed in Miller et al. (2003). This dataset contains evaluations of movies made by customers, repre-

sented by the sparse matrix X ∈ Rd×m. As every customer evaluated only a small number the movies,

X is sparse. Here to complete X means predict how a customer would evaluate a movie which he hasn’t

seen. Entries of X are normalized dividing by the max entry of X which is 5. We split the dataset into

a training, validation and test sets with respectively 60%, 20% and 20% of the entries. In the MovieLens

dataset there are

71 567 users,

10 681 movies,

10 000 054 ratings,

then the sparsity of the resulting matrix is 1.3%. All users selected had rated at least 20 movies.

4.5.3 Multi-class classification

We considered multi-class classification with large number of classes and nuclear-norm penalty, as in Har-

chaoui et al. (2012a). We perform experiments on a subset of ImageNet.

ImageNet dataset

The dataset is a group of all leaf nodes that descend from the parent node “fungus” in the ImageNet

hierarchy, described in Deng et al. (2010). We have 134 classes and 100 images per class, i.e. 13 400

image examples. Each example is a vector of 4096 features and has a unique associated class. The model

is learned on the train set. The aim is to predict classes of images present in the test set. We split the

dataset in train (37.5%), validation (12.5%), test (50%). The image features are Fisher vectors, each one

is normalized with ℓ2 norm. We observe also that “fungus” is considered a ‘difficult’ dataset because the

classes are very similar. It is possible to compare our results with Akata et al. (2014) and Harchaoui et al.

(2012a).

We call j the current number of atoms. In the end we delete empty atoms, i.e. when θi = 0 we delete

it and the corresponding columns of U and V .

1http://grouplens.org

136

http://grouplens.org

10
0

10
1

10
2

0.123

0.1314

0.1404

0.1499

0.1602

0.1711
Train set

iterations

N
o

n
s
m

o
o

th
 E

m
p

.
R

is
k

10
0

10
1

10
2

0.1387

0.1446

0.1509

0.1574

0.1641

0.1712
Validation set

iterations

N
o

n
s
m

o
o

th
 E

m
p

.
R

is
k

10
0

10
1

10
2

0.1387

0.1447

0.1509

0.1573

0.1641

0.1711
Test set

iterations

N
o

n
s
m

o
o

th
 E

m
p

.
R

is
k

γ
0
=0.01 p=1

γ
0
=0.1 p=1

γ
0
=1 p=1

γ
0
=10 p=1

γ
0
=100 p=1

γ
0
=0.01 p=0.5

γ
0
=0.1 p=0.5

γ
0
=1 p=0.5

γ
0
=10 p=0.5

γ
0
=100 p=0.5

γ=0.1 non ad.

10
0

0.123

0.1314

0.1404

0.1499

0.1602

0.1711
Train set

time

N
o

n
s
m

o
o

th
 E

m
p

.
R

is
k

10
0

0.1387

0.1446

0.1509

0.1574

0.1641

0.1712
Validation set

time

N
o

n
s
m

o
o

th
 E

m
p

.
R

is
k

10
0

0.1387

0.1447

0.1509

0.1573

0.1641

0.1711
Test set

time

N
o

n
s
m

o
o

th
 E

m
p

.
R

is
k

γ
0
=0.01 p=1

γ
0
=0.1 p=1

γ
0
=1 p=1

γ
0
=10 p=1

γ
0
=100 p=1

γ
0
=0.01 p=0.5

γ
0
=0.1 p=0.5

γ
0
=1 p=0.5

γ
0
=10 p=0.5

γ
0
=100 p=0.5

γ=0.1 non ad.

Figure 4.2: Nonsmooth empirical risk, λ = 10−6. (left) Train set, (center) validation set, (right) test

set. (Top) plot versus iteration number, (bottom) plots versus time. We see that some launches with

adaptive smoothing perform better than the best non-adaptive algorithm, represented by the continuous

line. Collaborative filtering.

10
0

0.123

0.1314

0.1404

0.1499

0.1602

0.1711
Train set

time

N
o
n
s
m

o
o
th

 E
m

p
.
R

is
k

γ
0
=0.01 p=1

γ
0
=0.1 p=1

γ
0
=1 p=1

γ
0
=10 p=1

γ
0
=100 p=1

γ
0
=0.01 p=0.5

γ
0
=0.1 p=0.5

γ
0
=1 p=0.5

γ
0
=10 p=0.5

γ
0
=100 p=0.5

γ=0.1 non ad.

Figure 4.3: Nonsmooth empirical risk versus time, for λ = 10−6 on train set. Collaborative filtering.

137

10
−8

10
−7

10
−6

10
−5

10
−4

0.1389

0.1454

0.1519

0.1583

0.1648

0.1712

λ

N
o
n
s
m

o
o
th

 E
m

p
.
R

is
k

Last iteration

γ
0
 =10

−3
, p=0.5

γ
0
 =10

−3
, p=1

γ
0
 =0.01, p=0

γ
0
 =0.01, p=0.5

γ
0
 =0.01, p=1

γ
0
 =0.1, p=0

γ
0
 =0.1, p=0.5

γ
0
 =0.1, p=1

γ
0
 =1, p=0

γ
0
 =1, p=0.5

γ
0
 =1, p=1

γ
0
 =10, p=0

γ
0
 =10, p=0.5

γ
0
 =10, p=1

Figure 4.4: choice of λ - Nonsmooth empirical risk at last iteration on validation set. Here we chose the

best lambda for regularization and the best γ0 non adaptative, i.e. with p = 0. Collaborative filtering.

10
−2

10
−1

10
0

10
1

10
2

0.1389

0.1454

0.1519

0.1583

0.1648

0.1712
Validation set

γ
0

N
o
n
s
m

o
o
th

 E
m

p
.
R

is
k

Non adaptative

p=0.5

p=1

Figure 4.5: Nonsmooth empirical risk at last iteration for λ = 10−6 on train set. We see on the train set

that the best optimization if for p = 0.5. Collaborative filtering.

4.5.4 Competing approaches

A direct approach to solve out problem (4.1) would be to use standard nonsmooth optimization al-

gorithms, namely bundle-like methods (see Hiriart-Urruty and Lemarechal (1993)) or subgradient-like

methods (see Nesterov (2004), including proximal methods interpreted as implicit subgradient methods).

Each iteration of these methods requires the knowledge of a subgradient of the entire objective function

g (or at least an approximation of a subgradient). For many standard empirical losses, as the ones used in

this chapter, a subgradient is readily available. There also exists an explicit expression of the subdifferen-

138

139

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

0.75

0.8

0.85

0.9

0.95

1

λ

M
is

c
la

s
s
if
ic

a
ti
o

n
 e

rr
o

r

Validation set

γ
0
=0.01

γ
0
=0.1

γ
0
=1

γ
0
=10

γ
0
=100

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

λ

M
is

c
la

s
s
if
ic

a
ti
o

n
 e

rr
o

r

Validation set

γ
0
=0.01

γ
0
=0.1

γ
0
=1

γ
0
=10

γ
0
=100

Figure 4.6: Top-k misclassification error on validation set for non adaptive algorithm. Here we choose

the best λ and γ. Imagenet dataset. ω = squared norm. (left) top-5, (right) top-10.

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

0.88

0.9

0.92

0.94

0.96

0.98

1

M
is

c
la

s
s
if
ic

a
ti
o

n
 e

rr
o

r

λ

Validation set

γ
0
=0.01

γ
0
=0.1

γ
0
=1

γ
0
=10

γ
0
=100

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

M
is

c
la

s
s
if
ic

a
ti
o

n
 e

rr
o

r

λ

Validation set

γ
0
=0.01

γ
0
=0.1

γ
0
=1

γ
0
=10

γ
0
=100

Figure 4.7: Top-kmisclassification error on validation set for non adaptive algorithm. Here we choose the

best λ and γ. Imagenet dataset. ω = entropy. (left) top-5, (right) top-10.

140

1 2 4 8 16 32 64 128 256
0.7791

0.8131

0.8487

0.8857

0.9244

0.9648
Validation set

iterations

M
is

c
la

s
s
if
ic

a
ti
o

n
 e

rr
o

r

1 2 4 8 16 32 64 128 256
0.6054

0.6589

0.7172

0.7806

0.8496

0.9248
Validation set

iterations

M
is

c
la

s
s
if
ic

a
ti
o

n
 e

rr
o

r

γ
0
=0.01 p=1

γ
0
=0.1 p=1

γ
0
=1 p=1

γ
0
=10 p=1

γ
0
=100 p=1

γ
0
=0.01 p=0.5

γ
0
=0.1 p=0.5

γ
0
=1 p=0.5

γ
0
=10 p=0.5

γ
0
=100 p=0.5

γ=1 non ad.

65 385 1646 12002
0.7791

0.8131

0.8487

0.8857

0.9244

0.9648
Validation set

time

M
is

c
la

s
s
if
ic

a
ti
o

n
 e

rr
o

r

365 1528 7726 56019
0.6054

0.6589

0.7172

0.7806

0.8496

0.9248
Validation set

time

M
is

c
la

s
s
if

c
a
ti
o
n
 e

rr
o
r

γ
0
=0.01 p=1

γ
0
=0.1 p=1

γ
0
=1 p=1

γ
0
=10 p=1

γ
0
=100 p=1

γ
0
=0.01 p=0.5

γ
0
=0.1 p=0.5

γ
0
=1 p=0.5

γ
0
=10 p=0.5

γ
0
=100 p=0.5

γ=1 non ad.

Figure 4.8: Top-k misclassification error on validation set versus iterations (top) and versus time (bottom).

(left) top-5, (right) top-10. Time is in seconds. We observe that all the adaptive launches (dot lines)

perform better or in a comparable way than the best non-adaptive launch (the blue line at the bottom of

the legend). So it is better to use the adaptive algorithm because we don’t need to launch several times to

find the best initial smoothing parameter γ0.

tial of the trace-norm: we get a subgradient of the trace-norm at W from an SVD decomposition of W ,

see Lewis (1999). This is a bottleneck in scaling such approach to large dimension: for the large-scale

learning problems we consider, even computing a single SVD (then a single iteration of a nonsmooth

optimization algorithm) is out-of-reach in a reasonable amount of time.

To illustrate this fact on collaborative filtering problems, we compare the SCCG algorithm with fixed

γ with a tailored basic nonsmooth optimization: truncated subgradient optimization. An iteration of this

algorithm iteration writes Wk+1 = Wk + tkGk with Gk approximates a subgradient in ∂g(Wk), and we

start from zero. We compute only the 100 largest singular values to construct Gk to save computing time.

Being the stepsize tk = δ
t+1 , the subgradient algorithm is sensitive to the initial stepsize δ.

The comparison of the decrease of the nonsmooth empirical risk is plotted in Figure 4.11. We see

that for the medium dataset the decrease of the subgradient method is better with respect of iterations and

time, but that the situation is reversed for the large-scale problems. This confirms the discussion above

about the prohibitive cost of computing a (even a poorly approximate of a) subgradient.

Again, more efficient algorithm as bundle methods would suffer from the same drawback: even

though the algorithms are well-performing, they use information given by an oracle which over-costly

for the problems we consider.

Comparison with non-adaptive We compare with fixed smoothing γt = γ. As shown in Pierucci et al.

(2014), the optimal smoothing parameter γ has to be chosen accordingly to the accuracy ε.

Results on classification on Imagenet are at Figures 4.5.4 and 4.9. We can compare with Figure 4.8,

where the choice of initial step does not appear relevant.

Other results on collaborative filtering, appeared on Pierucci et al. (2014), are at Figures 4.8 and 4.8.

Comparison with subgradient optimization algorithm We compared SCCG with subgradient opti-

mization. In Fig. 4.11 we see that the subgradient has a better performance on the medium Movielens

dataset. But when the size of the problem increases, as with the large Movielens dataset, the com-

putational time of the singular value decomposition used for the subgradient of trace norm makes the

algorithm non scalable from the point of view of the problem size.

4.6 Conclusion

We proposed a composite conditional gradient algorithm that is suitable for regularized learning problems

with nonsmooth loss functions, and showed promising experimental results. The framework we used al-

141

142

0 100 200 300
0

0.2

0.4

0.6

0.8

1

iterations

γ = 0.001

γ = 0.01

γ = 0.1

γ = 0.5

γ = 1

γ = 5

γ = 10

γ = 50

γ = best

0 100 200 300
0.9

0.92

0.94

0.96

0.98

1

iterations

γ = 0.001

γ = 0.01

γ = 0.1

γ = 0.5

γ = 1

γ = 5

γ = 10

γ = 50

γ = best

0 100 200 300

0.92

0.94

0.96

0.98

1

iterations

γ = 0.001

γ = 0.01

γ = 0.1

γ = 0.5

γ = 1

γ = 5

γ = 10

γ = 50

γ = best

Figure 4.9: Imagenet data - fixed smoothing parameter γt = γ - Misclassification error versus iterations.

The best smoothing γ is chosen as the one that minimizes the misclassification error on the validation set.

We see that a too small γ correspond to slower convergence, due to a large Lipschitz constant; a too large

γ correspond to slower convergence, due to bad approximation of the loss.

143

0 0.5 1 1.5 2 2.5

x 10
4

0

0.5

1

time

γ = 0.001

γ = 0.01

γ = 0.1

γ = 0.5

γ = 1

γ = 5

γ = 10

γ = 50

γ = best

0 0.5 1 1.5 2 2.5

x 10
4

0.9

0.95

1

time

γ = 0.001

γ = 0.01

γ = 0.1

γ = 0.5

γ = 1

γ = 5

γ = 10

γ = 50

γ = best

0 0.5 1 1.5 2 2.5

x 10
4

0.95

1

time

γ = 0.001

γ = 0.01

γ = 0.1

γ = 0.5

γ = 1

γ = 5

γ = 10

γ = 50

γ = best

Figure 4.10: Imagenet data - fixed smoothing parameter γt = γ - Misclassification error versus time

(in seconds). The best smoothing γ is chosen as the one that minimizes the misclassification error on

the validation set. We see that a too small γ correspond to slower convergence, due to a large Lipschitz

constant; a too large γ correspond to slower convergence, due to bad approximation of the loss.

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time

O
b

je
c
ti
v
e

subgradient

SCCG

0 200 400 600 800
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time

O
b

je
c
ti
v
e

subgradient

SCCG

Figure 4.11: Comparison of nonsmooth objective vs time, in seconds. γt = 1/
√
t+ 1, λ = 10−6 , on

MovieLens datasets: (left) the medium dataset with 106 ratings, (right) the large dataset with 107 ratings,

for the two on the right-hand side. The results for subgradient are dependent on the initial step size

δ = 500.

lows to build smoothed counterparts of nonsmooth loss functions in a principled manner, with theoretical

guarantees on the accuracy with respect to the original doubly non-smooth objective.

4.7 Proofs

In this section, we give the proofs of the results stated in the chapter.

Proof. (of lemma 4.4.1)

By (4.11), we have that f(Wt)− f(W ⋆) ≤ f(Wt)− f rec
t . We have by construction for all W

0 ≤ f(W)− f(W,γ) ≤ γM. (4.36)

where M is an upper bound of ω on the (bounded) set domφ:

0 ≤ ω(z) ≤M for all z ∈ domφ.

Splitting the right-hand side with f(Wt, γt), we get

f(Wt)− f(W ⋆) ≤ f(Wt)− f(Wt, γt) + ∆obs
t

which yields (4.12) by (4.36).

144

Proof. (of theorem 4.4.3)

For constant γt = γ0, the first term depending of γt in (4.13) collapses and the whole formula simplifies

by factorizing out γ0. Then we get (4.19) by combining with Lemma 4.12.

Proof. (of theorem 4.4.4)

We can bound in (4.13) the two terms depending on γt as follows: First,

(γk − γk+1)M ≤ 2D

√
M

c

1√
k + 1−

√
k + 2

≤ D
√
M

c

1

(k + 1)
√

(k + 2)
≤ D

√
M

c

1

(k + 1)3/2

and second,

2D2

cγk(k + 1)2
≤ D

√
M

c

1

(k + 1)3/2

Thus, (4.13) yields

∆obs
t p ≤ 2

√
M

c

1

(t+ 1)t

t∑

k=1

k√
k + 1

.

Observe that since
√
t+1
t ≤ 1√

t−1
we have

t∑

k=1

k√
k + 1

≤ 2

3
(t+ 1)

√
t+ 1.

We get finally

∆obs
t p ≤ 4D

3

√
M

c

1√
t− 1

(4.37)

To conclude we combine the above bound with Lemma 4.12.

Lemma 4.7.1 (Example: dual smoothing by the squared norm). Let γ > 0 and Z convex compact set in

Rd×m.

Consider a function f admitting a (non-unique) Fenchel-type representation defined through the con-

vex conjugate of φ (see (Hiriart-Urruty and Lemarechal, 1993, Chap.E)) as

f(W) = φ∗(AW + b) = sup
z∈domφ

〈AW + b, z〉 − φ(z), (4.38)

where φ is a continuous convex function such that its (closed) domain domφ is bounded and domφ ⊂
domω. Then this structure gives an easy, constructive and controllable way to approximate f by smooth

functions.

145

Nonsmooth σ(ξ) Ball Z Proximity ω(z) Smooth surrogate σ(ξ, γ)

|ξ| [−1, 1] 1
2
|·|2

{

1
2γ

ξ2 if |ξ| ≤ γ

|ξ| − γ

2
if |ξ| > γ

|ξ| [−1, 1] (1− |z|) ln(1− |z|) + |z| f(ξ, γ) = γe
−

∣

∣

∣

ξ
γ

∣

∣

∣

+ |ξ| − γ

maxi{ξi, 0} co(∆n ∪ {0}) 1
2
‖·‖2

〈

ξ, πZ

(

ξ

γ

)〉

− γ

2

∥

∥

∥
πZ

(

ξ

γ

)
∥

∥

∥

2

maxi{ξi, 0} co(∆n ∪ {0}) 1 +
n
∑

i=1

zi log(zi)− zi















γ

(

−1 +
n
∑

i=1

exp (ξi/γ)

)

if ξ

γ
∈ C

γ log

(

n
∑

i=1

exp (ξi/γ)

)

if ξ

γ
∈ B

1
k

∑k

i=1 ξα(i)

{

z
∣

∣

∑

zi ≤ 1; zi ∈
[

0, 1
k

]}

1
2
‖·‖2

〈

ξ, πZ

(

ξ

γ

)〉

− γ

2

∥

∥

∥
πZ

(

ξ

γ

)
∥

∥

∥

2

1
k

∑k

i=1 ξα(i)

{

z
∣

∣

∑

zi ≤ 1; zi ∈
[

0, 1
k

]}
∑n

i=1 zi ln(nzi) Θ(λ⋆(ξ, γ)) (solve dual problem)

Table 4.1: On the first line we obtain the Huber function, third and fourth lines we have the smoothing of

the multiclass hinge, 5th and 6th line: smoothing of the top-k error. C := {s ∈ Rn |∑n
i=1 exp (si) ≤ 1}

and B := {s ∈ Rn |∑n
i=1 exp (si) > 1} . We assume that 0 log 0 = 1. α is the permutation that orders

in decreasing order: xα(1) = maxi xi.

Indeed, consider the support function of Z , where φ = iZ is the indicator function of Z . If ω(·) =
1
2 ‖·‖

2
2 and the projection πZ(s) = argminv∈Z ‖v − s‖ , then

f(W,γ) = 〈πZ ((AW + b)/γ) , (AW + b)〉 − γ

2
‖πZ((AW + b)/γ)‖22 .

The gradient ∇W f(W,γ) = A†πZ ((AW + b)/γ) has Lipschitz constant L = 1/γ. In practice, such a

function is interesting only if the projection πZ is fast to compute.

Proof. We consider all the cases that share in common the use of squared norm as proximity function.

We start with γ = 1:

∇σ(ξ, 1) = argmax
z∈Z

〈z, ξ〉 − ω(z) = argmin
z∈Z

1
2 ‖z‖

2 − 〈ξ, z〉

= argmin
z∈Z

‖ξ − z‖2 − 1
2 ‖ξ‖

2
= argmin

z∈Z
‖ξ − z‖2 = πZ(ξ),

from which we get σ(ξ, 1) = 〈z(ξ, 1), ξ〉 − 1
2 ‖z(ξ, 1)‖

2
= 〈πZ(ξ), x〉 − 1

2 ‖πZ(ξ)‖
2
.

Obviously ω = 1
2 ‖·‖

2
2 is strongly convex with modulus 1. The gradient of f(·, 1) at ξ coincides with

z(ξ), and is Lipschitz continuous with Lipschitz constant is L = 1. We can also this property directly

from the above expression of the gradient and the properties of the projection (which is 1-Lipschitz).

Lemma 4.7.2. Let A be the function defined on [a, b] compound of two segments such that Aa = Ab = 0

146

and A(a+b
2) = 1. Let h(t) := At(ln(At) − 1). Then h is strongly convex in [a, b] with constant

α = 4
(b−a)2 .

Proof. We define t⋆ := (a + b)/2. For t 6= t⋆ we define the derivative |A′t| =: v and observe that v =

2
b−a . We claim that h is twice differentiable. For t 6= t⋆ we compute the derivative h′(t) = A′t(lnAt −
1) + A′(t) = A′t lnAt. limt→t⋆ A

′t lnAt = 0. Then h is differentiable in]a, b[and h′(t) = A′t lnAt.

For t 6= t⋆ we compute the second derivative h′′(t) = A′t
At A

′t. limt→t⋆
(A′t)2

At = limt→t⋆
v2

At = v2

At⋆ .

Then h is twice differentiable in]a, b[and h′′(t) = v2

At . We claim h is strongly convex. We have

At ≤ 1 ⇒ 1
At ≥ 1 ⇒ v2

At ≥ v2. Then h′′(t) ≥ v2. Then h is strongly convex with constant α = v2 in

]a, b[. Because h is bounded this property is preserved to the limits, and then h is strongly convex also in

[a, b].

Lemma 4.7.3. Let h(t) :=




(1− |2t− 1|) ln(1− |2t− 1|) + |2t− 1| if t ∈]0, 1[

1 if t ∈ {0, 1}.
Then the derivative is

h′(t) =




2 ln 2t if t ∈]0, 12 [

−2 ln(2− 2t) if t ∈ [12 , 1[.

and h′′ ≥ 4 in]0, 1[.

Proof.

h(t) :=




(1− |2t− 1|) ln(1− |2t− 1|) + |2t− 1| if t ∈]0, 1[

1 if t ∈ {0, 1}

=





2t ln(2t) + 1− 2t if t ∈]0, 12 [

(2− 2t) ln(2− 2t) + 2t− 1 if t ∈ [12 , 1[

1 if t ∈ {0, 1}

h′(t) =




2 ln 2t if t ∈]0, 12 [

−2 ln(2− 2t) if t ∈ [12 , 1[.

h′′(t) =





2
t if t ∈]0, 12 [
2

1−t if t ∈ [12 , 1[.

In addition h′′ has minimum in 1
2 . Then h′′(t) ≥ h′′(12) = 4.

147

Lemma 4.7.4. The function ω(z) =
∑n

i=1 h(zi), z ∈ Rn , where we define the entropy-like function

h(t) :=




(1− |2t− 1|) ln(1− |2t− 1|) + |2t− 1| if t ∈]0, 1[

1 if t ∈ {0, 1}

is strongly convex with constant α = 4.

Proof. We use Lem. 4.7.3 on each component of the sum.

4.8 Additional results

Proposition 4.8.1. (If the proximity function is not differentiable on the boundary of B , i.e.) If the norm

of all subgradients of ω have limit to infinity for y approaching the boundary, then the minimizer y⋆ is in

the interior of the ball, i.e. if this condition is valid:

∀ȳ ∈ fr(B) ∀gy ∈ ∂ω(y) lim
y→ȳ
‖gy‖ =∞

(euclidean norm in Rn)

then the maximizer is in the interior of the ball:

y⋆ ∈
◦
B

Proof. Let as reduce to absurd and suppose that y⋆ is in the boundary of the ball. For an optimal ȳ we

have 0 ∈ ∂y(〈x, ·〉 − ω)(ȳ) ⇔ 0 ∈ x − ∂ω(ȳ) ⇔ x ∈ ∂ω(ȳ) . As x ∈ Rn and x ∈ ∂ω(y⋆) we deduce

that ∂ω(y⋆) is bounded. Absurd.

Entropy on polytopes We want to show here how to define a proximity function based on the entropy

for any polytope. The given polytope P is defined as the convex envelope of the set {ai}i∈I in Rm.

We can express z ∈ Rm with barycentric coordinates in a “lifted” space

z =
∑

i∈Ĩ

θiai

where Ĩ ⊂ I is the finite set of indices corresponding to nozero θi, and the vector containing θi is on a

simplex of dimension

∣∣∣Ĩ
∣∣∣, i.e.

∑
i∈Ĩ θi = 1 and θi ≥ 0. This decomposition is not unique. In practice

148

we can build a linear continuous map from the simplex to the polytope P

zθ := ψ(θ) :=
∑

i∈I
θiai (4.39)

See Dudik et al. (2012) for more details. We define the proximity function

ω(zθ) :=
∑

i∈I
(1− θi) ln(1− θi) + θi (4.40)

We show now the convexity of ω using the Fenchel conjugate, showing ω∗∗ = ω. We suppose here

P has a finite number of corners.

ω(θ) :=
∑

i

θi log(Kθi) (4.41)

If we define h(θi) := ξiθi − θi log(Kθi), then the derivative h′(θi) = ξi − log(Kθi) − 1 and the

optimality conditions correspond to h′(θi) = 0⇔ θi⋆ = 1
K e

ξi−1 > 0.

ω∗(ξ) = max
θi≥0
〈ξ, θ〉 − ω(θ) (4.42)

= max
θi≥0
〈ξ, θ〉 −

∑

i

θi log(Kθi) (4.43)

= max
θi≥0

∑

i

ξiθi − θi log(Kθi) (4.44)

=
∑

i

max
θi≥0

ξiθi − θi log(Kθi) (4.45)

=
∑

i

ξiθi⋆ − θi⋆ log(Kθi⋆) (4.46)

=
∑

i

ξi
1
K e

ξi−1 − 1
K e

ξi−1(ξi − 1) (4.47)

=
1

K

∑

i

eξi−1 (4.48)

(4.49)

Now we find the double conjugate.

If we define g(ξi) := ξiθi − 1
K e

ξi−1, then the derivative is g′(ξi) = θi − 1
K e

ξi−1 and the optimality

conditions correspond to g′(ξi) = 0⇔ ξi⋆ = log(Kθi) + 1.

149

ω∗∗(θ) = max
ξ∈Rn
〈θ, ξ〉 − ω∗(ξ) (4.50)

= max
ξ∈Rn
〈θ, ξ〉 − 1

K

∑

i

eξi−1 (4.51)

= max
ξ∈Rn

∑

i

ξiθi −
1

K
eξi−1 (4.52)

=
∑

i

max
ξi∈R

ξiθi −
1

K
eξi−1 (4.53)

=
∑

i

ξi⋆θi −
1

K
eξi⋆−1 (4.54)

=
∑

i

(log(Kθi) + 1)θi − θi (4.55)

=
∑

i

θi log(Kθi) (4.56)

= ω(θ) (4.57)

We have also minθ ω(θ) = −max
θi≥0
〈0, θ〉 − ω(θ) = −ω∗(0) = − 1

K

∑n
i=1 e

−1 = − n
Ke

Strong convexity.

We show that (4.41) is strongly convex with constant c = 1. The function t 7→ t log(Kt), for t ∈ [0, 1]

is strongly convex with constant c = 1. In fact (t log(Kt))′ = log(Kt)+1 and (t log(Kt))′′ = 1
t , which

has minimum 1. This is equivalent to s log(Ks) ≥ t log(Kt) + (log(Kt) + 1)(s− t) + 1
2 (s− t)2.

We sum up and obtain

∀i yi log(Kyi) ≥ xi log(Kxi) + (log(Kyi) + 1)(yi − xi) +
1

2
(yi − xi)2

⇒
∑

i

yi log(Kyi) ≥
∑

i

xi log(Kxi) +
∑

i

(log(Kyi) + 1)(yi − xi) +
1

2

∑

i

(yi − xi)2

⇒ ω(y) ≥ ω(x) + 〈∇ω(x), y − x〉+ 1

2
‖y − x‖2

Then also ω is strongly convex with constant c = 1.

150

151

Train set Validation set Test set

M
ov
.
sm

a
ll

0 50 100 150 200 250

0.1585

0.3162

0.631

time

Empirical risk on train set , λ=1e−06

γ = 0d001

γ = 0d01

γ = 0d1

γ = 0d5

γ = 1

γ = 5

γ = 10

γ = 50

γ = best

0 50 100 150 200 250

0.2512

0.3981

0.631

time

Empirical risk on validation set , λ=1e−06

γ = 0d001

γ = 0d01

γ = 0d1

γ = 0d5

γ = 1

γ = 5

γ = 10

γ = 50

γ = best

0 50 100 150 200 250

0.2512

0.3981

0.631

time

Empirical risk on test set , λ=1e−06

γ = 0d001

γ = 0d01

γ = 0d1

γ = 0d5

γ = 1

γ = 5

γ = 10

γ = 50

γ = best

M
ov
.
m
ed
iu
m

0 500 1000 1500
0.1585

0.3162

0.631

time

Empirical risk on train set , λ=1e−12

γ = 0.001

γ = 0.01

γ = 0.1

γ = 0.5

γ = 1

γ = 5

γ = 10

γ = 50

γ = best

0 500 1000 1500

0.1995

0.631

time

Empirical risk on validation set , λ=1e−12

γ = 0.001

γ = 0.01

γ = 0.1

γ = 0.5

γ = 1

γ = 5

γ = 10

γ = 50

γ = best

0 500 1000 1500
0.7124

0.7125

time

Empirical risk on test set , λ=1e−12

γ = 0.001

γ = 0.01

γ = 0.1

γ = 0.5

γ = 1

γ = 5

γ = 10

γ = 50

γ = best

M
ov
.
la
rg
e

0 2000 4000 6000 8000 10000 12000

0.2512

0.3981

0.631

time

Empirical risk on train set, λ=1e−12

γ = 0.001

γ = 0.01

γ = 0.1

γ = 0.5

γ = 1

γ = 5

γ = 10

γ = 50

γ = best

0 2000 4000 6000 8000 10000 12000

0.2512

0.3981

0.631

time

Empirical risk on validation set, λ=1e−12

γ = 0.001

γ = 0.01

γ = 0.1

γ = 0.5

γ = 1

γ = 5

γ = 10

γ = 50

γ = best

0 2000 4000 6000 8000 10000 12000

0.7016

0.7016

time

Empirical risk on test set, λ=1e−12

γ = 0.001

γ = 0.01

γ = 0.1

γ = 0.5

γ = 1

γ = 5

γ = 10

γ = 50

γ = best

Figure 4.12: Movielens data - non-adaptive algorithm - Empirical risk versus time. Related to all γ for

the best choice of λ.

152

Train set Validation set Test set

M
o
v
.
sm

a
ll

10
0

10
2

0.0113

0.0259

0.0592

0.1352

0.3089

0.7057

iterations

Emp. risk on train set, λ=10
−6

γ = 0.001

γ = 0.01

γ = 0.1

γ = 0.5

γ = 1

γ = 5

γ = 10

γ = 50

γ = best

10
0

10
2

0.191

0.248

0.3221

0.4183

0.5433

0.7056

iterations

Emp. risk on validation set, λ=10
−6

γ = 0.001

γ = 0.01

γ = 0.1

γ = 0.5

γ = 1

γ = 5

γ = 10

γ = 50

γ = best

10
0

10
2

0.2037

0.2613

0.3351

0.4298

0.5513

0.7072

iterations

Emp. risk on test set, λ=10
−6

γ = 0.001

γ = 0.01

γ = 0.1

γ = 0.5

γ = 1

γ = 5

γ = 10

γ = 50

γ = best

M
o
v
.
m
ed
iu
m

10
0

10
2

0.1451

0.1997

0.2748

0.3782

0.5204

0.7162

iterations

Emp. risk on train set, λ=10
−6

γ = 0.001

γ = 0.01

γ = 0.1

γ = 0.5

γ = 1

γ = 5

γ = 10

γ = 50

γ = best

10
0

10
2

0.188

0.2457

0.3211

0.4196

0.5484

0.7167

iterations

Emp. risk on validation set, λ=10
−6

γ = 0.001

γ = 0.01

γ = 0.1

γ = 0.5

γ = 1

γ = 5

γ = 10

γ = 50

γ = best

10
0

10
2

0.1883

0.246

0.3214

0.4198

0.5484

0.7164

iterations

Emp. risk on test set, λ=10
−6

γ = 0.001

γ = 0.01

γ = 0.1

γ = 0.5

γ = 1

γ = 5

γ = 10

γ = 50

γ = best

M
o
v
.
la
rg
e

10
0

10
1

0.2284

0.2859

0.358

0.4482

0.5611

0.7025

iterations

Emp. risk on train set, λ=10
−9

γ = 0.001

γ = 0.01

γ = 0.1

γ = 0.5

γ = 1

γ = 5

γ = 10

γ = 50

γ = best

10
0

10
1

0.2372

0.2947

0.3662

0.455

0.5654

0.7025

iterations

Emp. risk on validation set, λ=10
−9

γ = 0.001

γ = 0.01

γ = 0.1

γ = 0.5

γ = 1

γ = 5

γ = 10

γ = 50

γ = best

10
0

10
1

0.237

0.2945

0.366

0.4548

0.5652

0.7023

iterations

Emp. risk on test set, λ=10
−9

γ = 0.001

γ = 0.01

γ = 0.1

γ = 0.5

γ = 1

γ = 5

γ = 10

γ = 50

γ = best

Figure 4.13: Movielens data - non-adaptive algorithm - Empirical risk versus iterations.

Chapter 5

Conclusion

In our work we have explored three interconnected parts, that are aspects of nonsmooth optimization,

statistical learning, and structured matrix regularization. We have reviewed existing approaches and pre-

sented our contributions. In this section we summarize our contributions and propose possible future

directions of research.

5.1 Summary of contributions

Group Schatten norm As first contribution, we introduced a new mathematical object, the group

Schatten norm. This is an extension of the Schatten norm to matrices that are composed into blocks.

As a central result, we proved that this norm is the convex envelope of the re-weighted group rank func-

tion. We studied then its properties from the point of view of convex analysis and we analyzed one

particular instance, called group nuclear norm. This new norm used as regularizer in an optimization

problem has the potential to aggregate into one object several low rank models. The potential applica-

tions of the group nuclear norm include collaborative filtering, database compression, and multi attribute

image classification.

Smoothing techniques for first-order optimization In our second contribution, we described several

smoothing techniques building surrogates to approximate non-smooth functions. We applied these tech-

niques to several machine learning models resp. for collaborative filtering for movie recommendation

and multi-class image classification. We also derived a smoothed counterpart of the top-k misclassifica-

tion error, popular in ranking and multi-class classification. We outlined three algorithms for non-smooth

153

problems, by combining state of art algorithms - composite conditional gradient, FISTA, and MISO -

with these smoothing techniques.

Adaptive smoothing conditional gradient algorithms As our third contribution, we proposed two

new algorithms for learning problems where the non-smoothness lies both in the convex empirical risk

and in the regularization penalty. The corresponding doubly non-smooth optimization problems prevents

the use of efficient first-order optimization algorithms. The main idea for our algorithms is that we

combine the smoothing techniques with the conditional gradient algorithm. We proved the convergence

of the proposed adaptive conditional gradient algorithms toward the solution of the initial non-smooth

problem. We presented promising experimental results on applications to collaborative filtering for movie

recommendation and multi-class classification of images.

5.2 Potential future research topics

Quantitative finance We have developed non-smooth optimization algorithms with structured matrix

regularization, with applications to multi-class classification and collaborative filtering. Another potential

application for which our algorithm could be used is quantitative finance. Portfolio management, based on

Markowitz portfolio theory Markowitz (1952), boils down to modeling the covariance matrix between the

assets by solving an optimization problem over the set of positive semi-definite matrices with constraints

encoding the structure, see e.g. Brodie et al. (2009). The group nuclear-norm could be used to derive

convex relaxation counterparts of portfolio optimization problems where the assets can be divided into

groups of assets, in which a dependence is suspected. Group nuclear-norm could here lead to finer models

than a “flat” (without group-structure) nuclear-norm constraint.

Learning with hierarchies and feature concatenation Applications in computer vision, as instance

object classification and object identification, can take advantage of rich high-dimensional feature vectors.

A common way to deal the issue of the size of features is to first reduce the feature dimension with a PCA

for example, and then to run the learning algorithm. A drawback is that the dimension reduction deletes

part of information present in the examples and, by consequence, the accuracy of the obtained model is

reduced.

The group Schatten norm could be used here to regularize learning problems for multiclass classi-

fication and feature concatenation with various learning tasks and huge feature vectors. Two cases for

multi-class classification could be considered : (i) the classes are organized in a hierarchical way, with

154

possibly more than one hierarchy at the same time, and (ii) there are attributes assigned the examples,

independently from the hierarchy. When concatenating features, the group Schatten norm could keep the

features divided into groups, and we could use this information to build more robust models. For in-

stance, in action recognition, local features in an image can be combined to obtain a model that localizes

automatically the part of the image with the action.

Real-time systems The computational power and memory of current devices, as instance the smart-

phones, are small and need light learning tools. By ‘embedded’ we mean that the optimization algo-

rithm is part of a larger, fully automated system, that executes automatically with newly arriving data

or changing conditions, and without any human intervention or action. By ‘real-time’ we mean that the

optimization algorithm executes much faster than a typical or generic method with a human in the loop,

in times measured in milliseconds or microseconds for small and medium size problems, and (a few) sec-

onds for larger problems Mattingley and Boyd (2009, 2010). The optimization algorithms we proposed

produce sequence of iterates that are sparse, hence allowing low-memory (e.g. RAM) requirements to

run the algorithms. Furthermore, the number of floating point operations at test time is reduced. There-

fore, the algorithms could potentially be run efficiently on CPU of common devices. Conditional gradient

algorithms could potentially be run real-time in embedded systems, for instance for recommendation and

classification.

155

Index

Accuracy, 19

Atom, 20

Atomic norm, 20

Black-box algorithm, 26

Certificate, 27

Class of functions, 25

Complexity, 24

Complexity bound, 28

Compression, 39

Conditional gradient, 42

Constrained optimization problem, 18

Convergence, 25

rate of, 25

Convex

conjugate, 17

function, 16

Convex function, 16

Descent direction, 31

Dictionary, 20

Easy to compute, 24

Empirical risk, 14

Fast iterative algorithm, 34

Feasible

direction, 40

point, 40

Fenchel conjugate, 17

First order algorithm, 30

Frank-Wolfe, 42

Gauge function, 20

Greedy

algorithm, 36

step, 36

Hinge function, 111

Ill-posed optimization problem, 14

Indicator function, 18

Iterate, 25

Learning machine, 13

Line search, 31

Linear rate, 32

Lower bound, 26

Minkowski functional, 20

Non-anticipating rule, 30

Objective, 18

Operator

Linear minimization operator , 22

Moreau-type proximal operator, 21

Optimal

156

algorithm, 27

solution, 19

Optimal algorithm, 27

Optimality conditions, 19

Oracle, 20

Overfitting, 15

Performance, 24

Predictor function, 13

Projection operator, 21

Regularization, 15

Scalable algorithm, 28

Smooth function, 16

Solve a problem, 20

Step size, 31

Strongly convex function, 17

Subgradient, 16

Sublinear rate, 31

Support, 44

Support function, 17

Termination criterion, 29

Test set, 16

Train set, 14

Unconstrained optimization problem, 18

Upper bound, 25

Validation set, 15

157

List of Figures

1.1 Two predictor functions F(·,W1) and F(·,W2) based on data (xi,yi). 13

1.2 The optimal solution x⋆ and an ε-optimal solution x̃⋆ for the optimization of f 19

1.3 Prox of g(x) = λ ‖x‖1. Axis represent x1, x2 . Each arrow represents proxγg(x) and is

placed at x. 22

1.4 Linear minimization operator on a closed convex set Q with respect to the direction s.

d = LMO(xt). The dashed lines are orthogonal to s. It is possible to see that the descent

direction d is not aligned with s, but is directed to a corner ofQ. This corner corresponds

to the element of the dictionary that will be added to the sequence of atoms that compose

the next iterate xt+1. 23

1.5 Conditional gradient. At xt the algorithm finds the gradient, then builds the tangent r.

The minimum of r over Q is dt, the output of the linear minimization operator. The

certificate at iteration t is Gt . 42

1.6 View of first 200 rows and columns of Movielens data. (Left) the input matrix of ob-

servations Y, where the non observed ratings are drawn in white, (right) the low rank

solution W obtained running SCCG. The highest ratings are black, then red. The more

poor ratings are and yellow and white. 49

1.7 The matrix on the left is composed by the matrices on the right, that we call ‘groups’. . . 52

2.1 Initial matrix L to recover. It is generated as the sum of matrices of rank two, each defined

over its respective group of indices. The groups overlap. 71

2.2 (Left) Noisy matrix A0.2, where only 10% of matrix entries are observed. Unknown

entries are white. (Right) Solution matrix Ŵ recovered with λ = 3.6 · 10−6. This gives

an error of 0.0067. We see that both the big overlapping groups and the small ones are

recovered. The group on the left side, which consists of a grid with different spacing in

rows and columns, and that has sinusoidal values, is also well recovered. 72

158

2.3 Hierarchical organisation of images in ImageNet dataset. Figure adapted from Deng

et al. (2010). We see that the classes catamaran, trimaran, catboat, sailboat,

galleon, sailing vessel are organized in a tree graph. 73

2.4 We see the observable volume that is projected into the depth image, which is dark gray

for close objects, e.g. a hand grasping something, and light grey for far objects. Picture

from Rogez et al. (2014) . 74

3.1 Smoothed gγ(x) of equation (3.21) and its gradient, x ∈ R2 for top-k error. Top with

k = 1, bottom with k = 2. The color lines represent level sets and the arrows are the

gradients of the smooth surrogate. 87

3.2 Smoothed gγ(x) of equation (3.21) for k = 1, between the nonsmooth bounds g (below)

and g + γm (above). Compare with equation 3.8. 88

3.3 Illustration of the derivative of the dual function Θ, for γ = 1/2, smooth surrogate of

top-k error. Red: points without second derivative; black: point of minimum of Θ; green:

bounds of the ’segment’ (with second derivative) that contains the minimum of Θ. The

xi are randomly sampled. 91

3.4 Level sets of smooth surrogates obtained with product convolution technique, through

uniform random sampling, instead of using an exact formula. Gradients are represented

by arrows. First column Smoothing of hinge; second column Smoothing of ‖·‖1 ; third

column Smoothing of ‖·‖∞ . First row Gaussian distribution with mean 0 and standard

deviation 1; second row uniform distribution on norm∞ ball, with radius r = 1; third

row uniform distribution on norm 1 ball, with radius r = 1. 97

3.5 Piecewise affine function . 110

3.6 SVM with reject loss. Left for label +1; Right for label −1. We notice that the positions

of t1 and t2 are different in the 2 cases. In addition t+1 = t−2 114

4.1 Drawing of a situation where the algorithm using a subgradient of a nonsmooth empirical

risk does not converge. 121

4.2 Nonsmooth empirical risk, λ = 10−6. (left) Train set, (center) validation set, (right) test

set. (Top) plot versus iteration number, (bottom) plots versus time. We see that some

launches with adaptive smoothing perform better than the best non-adaptive algorithm,

represented by the continuous line. Collaborative filtering. 137

4.3 Nonsmooth empirical risk versus time, for λ = 10−6 on train set. Collaborative filtering. 137

159

4.4 choice of λ - Nonsmooth empirical risk at last iteration on validation set. Here we chose

the best lambda for regularization and the best γ0 non adaptative, i.e. with p = 0. Col-

laborative filtering. 138

4.5 Nonsmooth empirical risk at last iteration for λ = 10−6 on train set. We see on the train

set that the best optimization if for p = 0.5. Collaborative filtering. 138

4.6 Top-k misclassification error on validation set for non adaptive algorithm. Here we

choose the best λ and γ. Imagenet dataset. ω = squared norm. (left) top-5, (right)

top-10. 139

4.7 Top-kmisclassification error on validation set for non adaptive algorithm. Here we choose

the best λ and γ. Imagenet dataset. ω = entropy. (left) top-5, (right) top-10. 139

4.8 Top-k misclassification error on validation set versus iterations (top) and versus time (bot-

tom). (left) top-5, (right) top-10. Time is in seconds. We observe that all the adaptive

launches (dot lines) perform better or in a comparable way than the best non-adaptive

launch (the blue line at the bottom of the legend). So it is better to use the adaptive al-

gorithm because we don’t need to launch several times to find the best initial smoothing

parameter γ0. 140

4.9 Imagenet data - fixed smoothing parameter γt = γ - Misclassification error versus iter-

ations. The best smoothing γ is chosen as the one that minimizes the misclassification

error on the validation set. We see that a too small γ correspond to slower convergence,

due to a large Lipschitz constant; a too large γ correspond to slower convergence, due to

bad approximation of the loss. 142

4.10 Imagenet data - fixed smoothing parameter γt = γ - Misclassification error versus time (in

seconds). The best smoothing γ is chosen as the one that minimizes the misclassification

error on the validation set. We see that a too small γ correspond to slower convergence,

due to a large Lipschitz constant; a too large γ correspond to slower convergence, due to

bad approximation of the loss. 143

4.11 Comparison of nonsmooth objective vs time, in seconds. γt = 1/
√
t+ 1, λ = 10−6

, on MovieLens datasets: (left) the medium dataset with 106 ratings, (right) the large

dataset with 107 ratings, for the two on the right-hand side. The results for subgradient

are dependent on the initial step size δ = 500. 144

4.12 Movielens data - non-adaptive algorithm - Empirical risk versus time. Related to all γ for

the best choice of λ. 151

4.13 Movielens data - non-adaptive algorithm - Empirical risk versus iterations. 152

160

List of Tables

1 Summary table of notation, that is defined step by step in the text. 11

1.1 First column first order algorithms for unconstrained optimization, second column first

order algorithms for constrained optimization, third column magnitude of analytical

complexity. 46

1.2 Summary of the notation used in the sections related to applications. We remind that here

x and y are related to the dataset and have a completely different meaning of the x and y

used in the sections about optimization. We do not minimize with respect to x or y, but

we minimize with respect to W. 47

4.1 On the first line we obtain the Huber function, third and fourth lines we have the smooth-

ing of the multiclass hinge, 5th and 6th line: smoothing of the top-k error. C :=

{s ∈ Rn |∑n
i=1 exp (si) ≤ 1} and B := {s ∈ Rn |∑n

i=1 exp (si) > 1} . We assume

that 0 log 0 = 1. α is the permutation that orders in decreasing order: xα(1) = maxi xi. . 146

161

Bibliography

Akata, Z., Perronnin, F., Harchaoui, Z., and Schmid, C. (2014). Good practice in large-scale learning for

image classification. IEEE.

Amit, Y., Fink, M., Srebro, N., and Ullman, S. (2007). Uncovering shared structures in multiclass classi-

fication. In ICML.

Bach, F. (2008). Consistency of trace norm minimization. The Journal of Machine Learning Research.

Bach, F., Lacoste-Julien, S., and Obozinski, G. (2012a). On the equivalence between herding and condi-

tional gradient algorithms. In Proceedings of the 29th International Conference on Machine Learning

(ICML-12), ICML ’12.

Bach, F. R., Jenatton, R., Mairal, J., and Obozinski, G. (2012b). Optimization with sparsity-inducing

penalties. Foundations and Trends in Machine Learning, 4(1):1–106.

Bartlett, P. and Wegkamp, M. (2008). Classification with a reject option using a hinge loss. The Journal

of Machine Learning Research.

Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse

problems. SIAM Journal on Imaging Sciences.

Beck, A. and Teboulle, M. (2012). Smoothing and first order methods: a unified framework. SIAM

Journal on Optimization.

Becker, S., Bobin, J., and Candès, E. J. (2011). Nesta: a fast and accurate first-order method for sparse

recovery. SIAM Journal on Imaging Sciences.

Ben-Tal, A. and Teboulle, M. (1989). A smoothing technique for nondifferentiable optimization prob-

lems. In Optimization, pages 1–11. Springer.

162

Bertsekas, D. (1973). Stochastic optimization problems with nondifferentiable cost functionals. Journal

of Optimization Theory and Applications, 12(2):218–231.

Bertsekas, D. (2004). Nonlinear Programming (2nd ed.). Athena Scientific.

Boyd, S. and Vandenberghe, L. (2004). Convex optimization. Cambridge Univ Pr.

Brodie, J., Daubechies, I., De Mol, C., Giannone, D., and Loris, I. (2009). Sparse and stable markowitz

portfolios. Proceedings of the National Academy of Sciences, 106(30):12267–12272.

Bruck, R. (1977). On the week convergence of an ergodic iteration for the solution of variational inequal-

ities for monotone operators in hilbert space. J. math. Anal. appl.

Bubeck, S. (2014). Theory of convex optimization for machine learning. arXiv preprint arXiv:1405.4980.

Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C. (1995). A limited memory algorithm for bound constrained

optimization. SIAM Journal on Scientific Computing, 16(5):1190–1208.

Candès, E. J. and Plan, Y. (2010). Matrix completion with noise. Proceedings of the IEEE.

Candès, E. J. and Recht, B. (2009). Exact matrix completion via convex optimization. Foundations of

Computational mathematics.

Chandrasekaran, V., Recht, B., Parrilo, P. A., and Willsky, A. S. (2012). The convex geometry of linear

inverse problems. FOCM, 12(6):805–849.

Combettes, P. and Pesquet, J. (2011). Proximal splitting methods in signal processing. In Fixed-point

algorithms for inverse problems in science and engineering, pages 185–212. Springer.

Combettes, P. and Wajs, V. (2005). Signal recovery by proximal forward-backward splitting. Multiscale

Modeling & Simulation, 4(4):1168–1200.

Cox, B., Juditsky, A., and Nemirovski, A. (2014). Dual subgradient algorithms for large-scale nonsmooth

learning problems. Mathematical Programming.

Cullum, J., Willoughby, R., and Lake, M. (1983). A lanczos algorithm for computing singular values and

vectors of large matrices. SIAM Journal on Scientific and Statistical Computing.

Demyanov, V. and Rubinov, A. (1970). Approximate methods in optimization problems, volume 32.

Elsevier Publishing Company.

163

Deng, J., Berg, A. C., Li, K., and Fei-Fei, L. (2010). What does classifying more than 10,000 image

categories tell us? In Computer Vision. ECCV 2010.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). ImageNet: A Large-Scale

Hierarchical Image Database. In CVPR09.

Devolder, O., Glineur, F., and Nesterov, Y. (2014). First-order methods of smooth convex optimization

with inexact oracle. Mathematical Programming.

Duchi, J., Shalev-Shwartz, S., Singer, Y., and Chandra, T. (2008). Efficient projections onto the l 1-

ball for learning in high dimensions. In Proceedings of the 25th international conference on Machine

learning, pages 272–279. ACM.

Duchi, J. C., Bartlett, P., and Wainwright, M. J. (2012). Randomized smoothing for stochastic optimiza-

tion. ArXiv.

Dudik, M., Harchaoui, Z., and Malick, J. (2012). Lifted coordinate descent for learning with trace-

norm regularization. Proceedings of the 15th International Conference on Artificial Intelligence and

Statistics (AISTATS).

Ekstrand, M. D., Riedl, J. T., and Konstan, J. A. (2011). Collaborative filtering recommender systems.

Foundations and Trends in Human-Computer Interaction, 4(2):81–173.

Frank, M. and Wolfe, P. (1956). An algorithm for quadratic programming. Naval research logistics

quarterly.

Garber, D. and Hazan, E. (2013). A Linearly Convergent Conditional Gradient Algorithm with Applica-

tions to Online and Stochastic Optimization. ArXiv e-prints, 1301.4666.

Garber, D. and Hazan, E. (2015). Faster rates for the frank-wolfe method over strongly-convex sets. In

Proceedings of the 32nd International Conference on Machine Learning.

Grandvalet, Y., Rakotomamonjy, A., Keshet, J., and Canu, S. (2009). Support vector machines with a

reject option. In Advances in neural information processing systems, pages 537–544.

Guzman, C. and Nemirovski, A. (2013). On Lower Complexity Bounds for Large-Scale Smooth Convex

Optimization. ArXiv e-prints, 1307.5001.

Harchaoui, Z., Douze, M., Paulin, M., Dudik, M., and Malick, J. (2012a). Large-scale image classification

with trace-norm regularization. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE

Conference on.

164

Harchaoui, Z., Juditsky, A., and Nemirovski, A. (2012b). Conditional gradient algorithms for machine

learning. In NIPS Workshop on Optimization for ML.

Harchaoui, Z., Juditsky, A., and Nemirovski, A. (2014). Conditional gradient algorithms for norm-

regularized smooth convex optimization. Mathematical Programming, Series A, pages 1–30.

Hastie, T., Tibshirani, R., and Friedman, J. (2008). The Elements of Statistical Learning (2nd Ed.).

Springer Series in Statistics. Springer.

Hazan, E. (2008). Sparse approximate solutions to semidefinite programs. In LATIN 2008: Theoretical

Informatics, Lecture Notes in Computer Science, pages 306–316. Springer Berlin Heidelberg.

Hazan, E. and Kale, S. (2012). Projection-free online learning. In ICML.

Hiriart-Urruty, J. and Lemarechal, C. (1993). Fundamentals of Convex Analysis. Springer Verlag.

Hiriart-Urruty, J. and Lemarechal, C. (1996). Convex Analysis and Minimization Algorithms II

(Grundlehren Der Mathematischen Wissenschaften). Springer Verlag.

Huber, P. (1981). Robust statistics. Wiley Series in Probability and Mathematical Statistics. J. Wiley.

Hummel, H. G., Van Den Berg, B., Berlanga, A. J., Drachsler, H., Janssen, J., Nadolski, R., and Koper, R.

(2007). Combining social-based and information-based approaches for personalised recommendation

on sequencing learning activities. International Journal of Learning Technology.

Jacob, L., Obozinski, G., and Vert, J. (2009). Group lasso with overlap and graph lasso. In Proceedings

of the 26th annual international conference on machine learning, pages 433–440. ACM.

Jaggi, M. (2013). Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In ICML, pages

427–435.

Jaggi, M. and Sulovský, M. (2010). A Simple Algorithm for Nuclear Norm Regularized Problems. ICML

2010: Proceedings of the 27th international conference on Machine learning.

Juditsky, A. and Nemirovski, A. (2010). First order methods for nonsmooth convex large-scale optimiza-

tion. Optimization for Machine Learning,(Sra, Nowozin, Wright, Eds), MIT Press, 2012.

Kim, G., Xing, E. P., Fei-Fei, L., and Kanade, T. (2011). Distributed cosegmentation via submodular

optimization on anisotropic diffusion. In 2011 International Conference on Computer Vision, pages

169–176. IEEE.

165

Kuczynski, J. and Wozniakowski, H. (1992). Estimating the largest eigenvalue by the power and Lanczos

algorithms with a random start. SIAM journal on matrix analysis and applications.

Lacoste-Julien, S. and Jaggi, M. (2015). On the global linear convergence of frank-wolfe optimization

variants. In Advances in Neural Information Processing Systems.

Lacoste-Julien, S., Jaggi, M., Schmidt, M., and Pletscher, P. (2013). Block-Coordinate Frank-Wolfe

Optimization for Structural SVMs. In ICML 2013.

Lacoste-Julien, S., Lindsten, F., and Bach, F. R. (2015). Sequential kernel herding: Frank-wolfe opti-

mization for particle filtering. In AISTATS.

Lafond, J., Klopp, O., Moulines, E., and Salmon, J. (2014). Probabilistic low-rank matrix completion on

finite alphabets. In Advances in Neural Information Processing Systems 27. Curran Associates, Inc.

Lan, G. (2013). The Complexity of Large-scale Convex Programming under a Linear Optimization

Oracle. ArXiv e-prints, 1302.2325.

Lanczos, C. (1961). Linear differential operators. SIAM.

Lewis, A. (1999). Nonsmooth analysis of eigenvalues. Mathematical Programming, 84(1):1–24.

Mairal, J. (2013). Optimization with first-order surrogate functions. In Proceedings of The 30th Interna-

tional Conference on Machine Learning, pages 783–791.

Mallat, S. (2009). A wavelet tour of signal processing: the sparse way. Academic press, 3rd edition.

Markowitz, H. (1952). Portfolio selection. The journal of finance.

Mattingley, J. and Boyd, S. (2009). Automatic code generation for real-time convex optimization. Convex

optimization in signal processing and communications.

Mattingley, J. and Boyd, S. (2010). Real-time convex optimization in signal processing. IEEE Signal

processing magazine.

Miller, B., Albert, I., Lam, S. K., Konstan, J., and Riedl, J. (2003). Movielens unplugged: Experiences

with a recommender system on four mobile devices. In ACM SIGCHI Conference on Human Factors

in Computing Systems.

Moreau, J. (1965). Proximité et dualité dans un espace hilbertien. Bulletin de la Société Mathématique

de France, 93:273–299.

166

Nemirovski, A. and Yudin, D. (1983). Information-based complexity of mathematical programming.

Izvestia AN SSSR, Ser. Tekhnicheskaya Kibernetika (the journal is translated to English as Engineering

Cybernetics. Soviet J. Computer & Systems Sci.), 1.

Nesterov, Y. (1983). A method of solving a convex programming problem with convergence rate

O(1/k2). In Soviet Mathematics Doklady, volume 27, pages 372–376.

Nesterov, Y. (2004). Introductory lectures on convex optimization: A basic course. Springer.

Nesterov, Y. (2005). Smooth minimization of non-smooth functions. Mathematical Programming, 103.

Nesterov, Y. (2007a). Gradient methods for minimizing composite objective function. CORE DISUSSION

PAPER 2007/76.

Nesterov, Y. (2007b). Smoothing technique and its applications in semidefinite optimization. Math.

Program., 110(2):245–259.

Nesterov, Y. (2013). Gradient methods for minimizing composite functions. Mathematical Programming.

Orabona, F., Argyriou, A., and Srebro, N. (2012). Prisma: Proximal iterative smoothing algorithm.

Passty, G. (1979). Ergodic convergence to a zero of the sum of monotone operatorsin hilbert space. J.

Math. Anal. Appl.

Pierucci, F., Harchaoui, Z., and Malick, J. (2014). A smoothing approach for composite conditional

gradient with nonsmooth loss. CAP Conference d’Apprentissage Automatique.

Rockafellar, R. T. (1970). Convex analysis (princeton mathematical series). Princeton University Press.

Rogez, G., Khademi, M., Supančič III, J., Montiel, J., and Ramanan, D. (2014). 3d hand pose detection

in egocentric rgb-d images. In Computer Vision-ECCV 2014 Workshops. Springer.

Rother, C., Minka, T., Blake, A., and Kolmogorov, V. (2006). Cosegmentation of image pairs by his-

togram matching-incorporating a global constraint into mrfs. In 2006 IEEE Computer Society Confer-

ence on Computer Vision and Pattern Recognition (CVPR’06). IEEE.

Schmidt, M., Roux, N. L., and Bach, F. R. (2011). Convergence rates of inexact proximal-gradient

methods for convex optimization. In Advances in neural information processing systems.

Shalev-Shwartz, S., Gonen, A., and Shamir, O. (2011). Large-Scale Convex Minimization with a Low-

Rank Constraint. In ICML.

167

Srebro, N., Rennie, J., and Jaakkola, T. S. (2004). Maximum-margin matrix factorization. In Advances

in neural information processing systems. NIPS.

Temlyakov, V. (2012). Greedy approximation in convex optimization. Constructive Approximation.

Tomioka, R. and Suzuki, T. (2013). Convex tensor decomposition via structured schatten norm regular-

ization. In Advances in neural information processing systems.

Turlach, B., Venables, W., and Wright, S. (2005). Simultaneous variable selection. Technometrics.

Usunier, N., Buffoni, D., and Gallinari, P. (2009). Ranking with ordered weighted pairwise classification.

In Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009.

Vapnik, V. (2005). The nature of statistical learning theory. Springer Science & Business Media.

Vapnik, V. N. and Chervonenkis, A. J. (1974). Theory of pattern recognition.

Vicente, S., Rother, C., and Kolmogorov, V. (2011). Object cosegmentation. In Computer Vision and

Pattern Recognition (CVPR), 2011 IEEE Conference on. IEEE.

Weimer, M., Karatzoglou, A., Le, Q. V., and Smola, A. J. (2007). Cofi rank - maximum margin matrix

factorization for collaborative ranking. In NIPS.

Yager, R. (1988). On ordered weighted averaging aggregation operators in multicriteria decisionmaking.

Systems, Man and Cybernetics, IEEE Transactions on.

Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped variables.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49–67.

Zhang, X., Yu, Y., and Schuurmans, D. (2012). Accelerated training for matrix-norm regularization: A

boosting approach. In NIPS.

Zhao, P., Rocha, G., and Yu, B. (2009). The composite absolute penalties family for grouped and hierar-

chical variable selection. The Annals of Statistics, pages 3468–3497.

168

Appendix A

Useful results

A.1 Computing the top pair of singular vectors

The maximum singular value and the corresponding pair of singular vectors can be computed using the

Lanczos algorithm (Algorithm 16) Kuczynski and Wozniakowski (1992).

We show that it is possible to find the maximum singular value and singular vectors of a matrix A by

computing eigenvectors with Lanczos algorithm. The idea to build Algorithm 17 is from Lanczos (1961)

andCullum et al. (1983).

Algorithm 16 Lanczos algorithm λLan(B,b, t)

Input B ∈ Rn×n, b ∈ Rn, iterations number is t

(λ⋆, z⋆) = λLan(B,b, t) := max
{

〈Bz,z〉
〈z,z〉

∣∣∣ z ∈ span{b,Bb,B2b, . . . ,Bt−1b}, z 6= 0
}

maximized

at z⋆
output λ⋆, z⋆

Algorithm 17 Lanczos algorithm - adaptation for singular values σLS(B,b, t)

Input A ∈ Rd×k, b ∈ Rd+k, iterations number is t

B =

(
0 A

A⊤ 0

)

(σ⋆, z) = σLS(A,b, t) := λLan(B,b, t)
u⋆ = [z1, . . . , zd]
v⋆ = [zd+1, . . . , zd+k]
output σ⋆, u⋆,v⋆

Let suppose that A ∈ Rd×k is decomposed with two orthonormal matrices U ∈ Rd×r, V ∈ Rk×r

169

and a diagonal matrix S ∈ Rr×r that contains on its diagonal the singular values si

A = USV⊤. (A.1)

We claim that the decomposition (A.1) implies

B = ZΛZ⊤, (A.2)

where

B =


 0 A

A⊤ 0


 ∈ Rn×n,

with n = d+ k,

Λ :=


 S 0

0 −S


 ,

Z :=
1√
2


 U U

V −V


 .

The decomposition (A.2) means that an eigenvector base for B is Z and the eigenvalues of B are

s1, . . . , sr,−s1, . . . ,−sr. It is then possible to find an approximation of the largest singular value s1

of A by looking for the largest eigenvalue Λ1,1 of B with Algorithm 16, where z⋆ is the first column of

Z, with Algorithm 17.

Proof. (Of (A.1) =⇒ (A.2)) With few calculus is evident that Z is orthonormal because U and V are

orthonormal (just assert Z⊤Z = ZZ⊤ = In). We compute

ZΛ =
1√
2


 U U

V −V




 S 0

0 −S


 =

1√
2


 US −US

VS VS


 ;

BZ =


 0 A

A⊤ 0


 1√

2


 U U

V −V


 =

1√
2


 AV −AV

A⊤U A⊤U


 .

Then

ZΛ = BZ ⇐⇒




US = AV

VS = A⊤U.

The equation on the left implies (A.2) and the one on the right is equivalent to to (A.1).

170

We define the relative error

E =
|σLS(A,b, t)− s1(A)|

s1(A)
.

Algorithm 16 does not converge when b is orthogonal to the maximum eigenvector of B Kuczynski

and Wozniakowski (1992), i.e it is possible that E > ε even with a lot of iterations, but this happens only

when b is on a subset of E of (Lebesgue) measure zero. We are going to define another type of error

that considers b a random variable with uniform distribution on the unit sphere. We define the average

relative error

Eav(σ,A, t) :=

∫

‖b‖=1

∣∣∣∣
σ(A,b, t)− s1(A)

s1(A)

∣∣∣∣µ(db),

where µ is the Lebesgue measure and σ is Algorithm 16 or 17.

Theorem A.1.1. Let σLS(A,b, t) obtained using the extensionded Algorithm 17. Then for any A ∈ Rd×k

Eav(σLS,A, t) = 0 t ≥ 2m;

Eav(σLS,A, t) ≤ O
(
log(d+ k)

t− 1

)
t ∈ [4, 2m− 1].

where m is the number of distinct singular values of A. In addition the complexity in space is O(dk), for

a general case, and can shrink to O((d+ k)t) if A is sparse.

Proof. (Of Theorem A.1.1)

Power algorithm has accuracy O(log(n)/(t − 1)). Lanczos algorithm has accuracy upper bound

O((log(n)/(t − 1))2) for t ∈ [4, n − 1], and the relative error is zero when t > n. For large sale prob-

lems the exact solution is normally not attained because the number of iterations is much smaller than

the dimension, which implies that conditional gradient algorithms have cheaper iterations than proximal

methods, when the regularizer is the nuclear norm.

In addition we notice that to compute only the biggest singular vectors, or just an approximation of

them, is much more cheap than find the whole singular value decomposition.

The complexity in space, i.e the memory needed to run the algorithm, is O(dk). In fact B needs a

memory of 2dk, b and z need d + k. To find the base {b,Bb,B2b, . . . ,Bt−1b} just start from b and

then multiply each time by B to obtain the next vector. Then the subspace needs just (d + k) · t, where

the iteration number t is much smaller than d+ k. Then we get O(dk). Nevertheless it could be possible

to have O((d+ k) · t), which cannot be further improved, if for some reason B is sparse.

171

Proof. (Of equation (1.24)) We need to solve the problem

max
‖x‖σ,1≤1

〈y,x〉.

The maximum singular value and related vectors of the matrix y are

(u1, s1,v1) := svdmax(y).

First we show that 〈y,x〉 ≤ s1. Any x ∈ Q can be written as x =
∑r

h=1 chūhv̄
⊤
h with ch ≥ 0 and

∑r
h=1 ch ≤ 1.

〈y,x〉 =
∑

i

∑

j

yijxij

=
∑

i

∑

j

yij
∑

h

chū
i
hv̄

j
h

=
∑

h

ch
∑

i

∑

j

ūi
hy

ij v̄
j
h

=
∑

h

chūhyv̄
⊤
h

≤
∑

h

chs1 ‖ūh‖ ‖v̄h‖

= s1
∑

h

ch

≤ s1

We used that a bilinear form xAy⊤ is not larger than the maximum singular value of A, with x and y of

norm 1.

Now we show that the maximum singular value is attained at x⋆ = u1v
⊤
1 . The singular values

decomposition is y =
∑r

k=1 skukv
⊤
k , with

〈y,x⋆〉 = 〈y,u1v
⊤
1 〉

=
∑

i

∑

j

yijui
1v

j
1

=
∑

i

∑

j

(∑

k

sku
i
kv

j
k

)
ui
1v

j
1

172

=
∑

k

sk
∑

i

∑

j

ui
kv

j
ku

i
1v

j
1

=
∑

k

sk
∑

i

∑

j

ui
ku

i
1v

j
kv

j
1

=
∑

k

sku
⊤
k u1v

⊤
k v1

=
∑

k

skδk1δk1

= s1.

The last part is because {uk} and {vk} are two orthonormal bases.

Proof. (Of equation (1.23)) The proof follows the same scheme used to prove (1.24). We need to solve

the problem

max
x�0, tr(x)=1

〈y,x〉.

The maximum eigenvalue and related vector of the matrix y are (λ1,v1) := eigsmax(y).

First we show that 〈y,x〉 ≤ λ1. Any x ∈ Q can be written as x =
∑r

h=1 chv̄hv̄
⊤
h with ch ≥ 0 and

∑r
h=1 ch = 1.

〈y,x〉 =
∑

i

∑

j

yijxij

=
∑

i

∑

j

yij
∑

h

chv̄
i
hv̄

j
h

=
∑

h

ch
∑

i

∑

j

v̄i
hy

ij v̄
j
h

=
∑

h

chv̄hyv̄
⊤
h

≤
∑

h

chλ1 ‖v̄h‖ ‖v̄h‖

= λ1
∑

h

ch

= λ1

Now we show that the maximum λ is attained at x⋆ = v1v
⊤
1 . The decomposition into eigenvalues is

y =
∑r

k=1 λkvkv
⊤
k , with

〈y,x⋆〉 = 〈y,v1v
⊤
1 〉

173

=
∑

i

∑

j

yijvi
1v

j
1

=
∑

i

∑

j

(∑

k

λkv
i
kv

j
k

)
vi
1v

j
1

=
∑

k

λk
∑

i

∑

j

vi
kv

j
kv

i
1v

j
1

=
∑

k

λk
∑

i

∑

j

vi
kv

i
1v

j
kv

j
1

=
∑

k

λkv
⊤
k v1v

⊤
k v1

=
∑

k

λkδk1δk1

= λ1.

A.2 Projection on a norm-ball

A.2.1 Examples of norm-balls

Given a closed convex ball Q ⊂ E, the problem of projecting onto Q a point x ∈ E is defined as

πQ(x) := argmin
y∈Q

1

2
‖x− y‖2 .

We see several algorithms and their complexity for different choices of Q

Euclidean ball {
x ∈ E

∣∣∣∣∣
n∑

i=1

(xi)2 ≤ 1

}
(A.3)

Then the projection on (A.3) is

πQ(x) =





x ‖x‖ ≤ 1

x
‖x‖ ‖x‖ > 1

(A.4)

The complexity is O(n) , where n is he dimension of E. This result is valid also when x is a matrix.

Proof. (Of equation (A.4) Let us change variable: y = ru and x = tv, with r, t ≥ 0, ‖u‖ = ‖v‖ =

1. This notation implies that v = x
‖x‖ . Let us notice that 〈u,v〉 is maximized when u⋆ = v and

174

max‖u‖=1〈u,v〉 = 1.

min
y∈B
‖x− y‖2 = min

0≤r≤1,‖u‖=1
‖tv − ru‖2

= min
0≤r≤1,‖u‖=1

‖tv‖2 − 2〈rvu, tv〉+ ‖ru‖2

= min
0≤r≤1,‖u‖=1

t2 − 2rt〈u,v〉+ r2

= min
0≤r≤1

t2 − 2rt+ r2

= min
0≤r≤1

(t− r)2.

Then the optimal is r⋆ =




r t ≤ 1

1 t > 1

and considering πQ(x) = y⋆ = r⋆u⋆ we conclude the proof.

Positive simplex and ‖·‖1 ball

{
x ∈ E

∣∣∣∣∣
n∑

i=1

xi ≤ 1, xi ≥ 0

}
(Positive simplex) (A.5)

{
x ∈ E

∣∣∣∣∣
n∑

i=1

∣∣xi
∣∣ ≤ 1

}
(L1 ball) (A.6)

Efficient algorithms for the projection on (A.5) and (A.6) are described at Duchi et al. (2008). A Python

implementation is at https://gist.github.com/daien/1272551 As these algorithms involve

the sorting of x, their complexity is O(n log n).

Nuclear norm ball

{x ∈ E | ‖x‖∗ ≤ 1} (A.7)

where ‖x‖∗ is the sum of singular values of x.

A.2.2 Proximal operator of quadratic function

We suppose to know how to compute the proximal operator

p(x) = argmin
y∈Rn

‖y‖2 + 1

2
‖x− y‖2

175

https://gist.github.com/daien/1272551

of the squared norm. In the next proposition we show how to compute the proximal operator

pγQ(x) = argmin
y∈Rn

y⊤Qy +
1

2γ
‖x− y‖2

of a quadratic function y⊤Qy.

Proposition A.2.1. Let Q ∈ Rn×n a positive definite matrix, γ > 0. This implies that also 1
3 (2γQ+ I)

is positive definite. We define M and Λ through the eigenvalue decomposition M⊤ΛM = 1
3 (2γQ + I).

Then

pγQ(x) = Ap (Ax) (A.8)

where A := (
√
Λ)−1M⊤.

We verify that if Q is the identity and γ = 1, then A = I and the two operators coincide

pI(x) = p(x).

In fact 1
3 (2γQ+ I) = 1

3 (2I+ I) = I, M = I, Λ = I.

Proof. (Of equation (A.8)) We make a constructive proof to find the transformation A. We remind that

M is an orthogonal operator, and M−1 = M⊤. The matrix Λ has diagonal elements λi,
√
Λ has diagonal

elements
√
λi, and (

√
Λ)−1 has diagonal elements 1/

√
λi.

pγQ(x) = argmin
y

y⊤Qy +
1

2γ
‖x− y‖2

= argmin
y

2γy⊤Qy + ‖x− y‖2

= argmin
y

2γy⊤Qy + ‖y‖2 − 2y⊤x+ ‖x‖2

= argmin
y

2γy⊤Qy + y⊤Iy − 2y⊤x

= argmin
y

y⊤(2γQ+ I)y − 2y⊤x

= argmin
y

y⊤(23 (2γQ+ I))y + y⊤(13 (2γQ+ I))y − 2y⊤x

= argmin
y

2y⊤M⊤ΛMy + 2y⊤M⊤ΛMy − 2y⊤x

= argmin
y

2(
√
ΛMy)⊤(

√
ΛMy) +

∥∥∥(
√
ΛMy)

∥∥∥
2

− 2y⊤x.

176

We look for a quadratic expression of the right part. We need to find a and b to have

∥∥∥(
√
ΛMy)

∥∥∥
2

− 2y⊤x =
∥∥∥
√
ΛMy + ax

∥∥∥
2

+ b

where a is a constant and b may depend on x. This is equivalent to

∥∥∥(
√
ΛMy)

∥∥∥
2

− 2y⊤x =
∥∥∥(
√
ΛMy)

∥∥∥
2

+ 2〈
√
ΛMy, ax〉+ ‖ax‖2 + b.

We need b = −‖ax‖2 and a must verify

−2y⊤x = 2〈
√
ΛMy, ax〉

for any y ∈ Rn. Then a = (
√
Λ)−1M. We get

pγQ(x) = argmin
y

2(
√
ΛMy)⊤(

√
ΛMy) +

∥∥∥
√
ΛMy + ax

∥∥∥
2

+ b

= argmin
y

2(
√
ΛMy)⊤(

√
ΛMy) +

∥∥∥
√
ΛMy + (

√
Λ)−1Mx

∥∥∥
2

.

Let us change variable with ȳ :=
√
ΛMy. The inverse is y = (

√
Λ)−1M⊤ȳ =: Ay. Then we substitute

ȳ and obtain

pγQ(x) = A(argmin
ȳ

2ȳ⊤ȳ + ‖ȳ +Ax‖2)

= A(argmin
ȳ

‖ȳ‖2 + 1

2
‖ȳ +Ax‖2)

= Ap(Ax).

A.3 Proofs of chapter 1

Proof. (Of equation (1.19)) It is straight forward from the definitions of prox and projection

proxγiQ(x) = argmin
y∈E

iQ(y) +
1

2γ
‖x− y‖2 = argmin

y∈Q

1

2γ
‖x− y‖2 = πQ(y)

177

Proof. (Of equation (1.20)) We separate the coordinates, which are independent and

min
y∈E
‖y‖1 +

1

2γ
‖x− y‖2 = min

y

∑

i

∣∣yi
∣∣+ 1

2γ
(xi − yi)2

=
∑

i

min
yi

∣∣yi
∣∣+ 1

2γ
(xi − yi)2.

Then, for all i = 1 . . . n,

min
yi∈R

∣∣yi
∣∣+ 1

2γ
(xi − yi)2 (A.9)

=min

{
min
yi<0
−yi + 1

2γ
(xi − yi)2, 1

2γ
(xi)2, min

yi>0
yi +

1

2γ
(xi − yi)2

}
(A.10)

=min

{∣∣xi + γ
∣∣+ 1

2
γ,

1

2γ
(xi)2,

∣∣xi − γ
∣∣+ 1

2
γ

}
(A.11)

=





∣∣xi + γ
∣∣+ 1

2γ xi ≤ −γ
1
2γ (x

i)2 −γ < xi ≤ γ
∣∣xi − γ

∣∣+ 1
2γ γ < xi

(A.12)

=





−xi − 1
2γ xi ≤ −γ

1
2γ (x

i)2 −γ < xi ≤ γ

xi − 1
2γ γ < xi.

(A.13)

The points of maximum for the three components at equation (A.11) are

yi⋆ = argmin
yi∈R

∣∣yi
∣∣+ 1

2γ
(xi − yi)2 =





xi + γ xi ≤ −γ

0 −γ < xi ≤ γ

xi − γ γ < xi.

Proof. (Of equation (1.19))

proxγiQ(x) = argmin
y∈E

iQ(y) +
1

2γ
‖x− y‖2 (A.14)

= argmin
y∈Q

1

2γ
‖x− y‖2 (A.15)

= πQ(x) (A.16)

178

A.4 Computation of a support function without projection

In the next lemma we show that adding the zero on the ball we can compute the support function without

the need to use the projection on the positive orthant.

Lemma A.4.1. Let Zf be a compact set in the positive orthant

R+n

:=
{
z ∈ Rn

∣∣ zi ≥ 0
}

and Z be the set of points between 0 and Zf , with respect to the lexicographic order:

Z :=
{
ξ = k ⊙ z

∣∣ z ∈ Zf , 0 ≤ ki ≤ 1
}
=
⋃

z∈Zf

{
x ∈ Rn

∣∣ ∀i 0 ≤ ξi ≤ zi
}
.

Then

max
z∈Zf

〈z,max{0, ξ}〉 = max
z∈Z
〈z, ξ〉,

Proof. (of lemma A.4.1) Let the function P be the projection on R+n

:

Pξ := max{0, ξ}

and P o be the projection on the polar cone of R+n

:

P oξ = min{0, ξ}.

To prove the lemma we show first maxz∈Z〈z, ξ〉 ≤ maxz∈Zf
〈z, P ξ〉 and then maxz∈Zf

〈z, P ξ〉 ≤
maxz∈Z〈z, ξ〉. First:

max
z∈Z
〈z, ξ〉 = max

z∈Z
〈z, P ξ〉+ 〈z, P oξ〉 ≤ max

z∈Z
〈z, P ξ〉+max

z∈Z
〈z, P oξ〉

= max
z∈Z
〈z, P ξ〉+ 0 = max

z∈Zf ,t∈[0,1]
〈tz, P ξ〉

= max
t∈[0,1]

tmax
z∈Zf

〈z, P ξ〉 = max
z∈Zf

〈z, P ξ〉.

The second equality is because z and P oξ belong to two polar cones. Then the scalar product is non

179

positive. But the max is 0 because 0 ∈ Z . Second: We have

〈z, P ξ〉 =
∑

i

zi




ξi, ξi ≤ 0

0, ξi > 0

=
∑

i

ziξi




1, ξi ≤ 0

0, ξi > 0

=
∑

i

ξi




zi, ξi ≤ 0

0, ξi > 0

= 〈Qξz, ξ〉,

where the (non surjective) function Qξ : Z → Z depends on ξ, which is a fixed parameter for all the

proof. Then

max
z∈Z
〈z, P ξ〉 = max

z∈Z
〈Qξz, ξ〉 ≤ max

z∈Z
〈z, ξ〉.

We have the inclusion Zf ⊂ Z , then

max
z∈Zf

〈z, Px〉 ≤ max
z∈Z
〈z, P ξ〉

and we conclude the second part of the proof.

é

180

	First-order optimization for machine learning: context and contributions
	Elements of statistical learning
	Predictor functions
	Find the model in theory
	Find the model in practice
	Regularized problems
	Parameter tuning

	Elements of convex optimization
	Basic elements for convex analysis
	Convex optimization problems
	Gauges and atomic norms
	Oracle
	Optimization algorithms

	First order algorithms for convex optimization - unconstrained case
	Gradient descent algorithm
	Proximal gradient algorithm
	Accelerated proximal gradient algorithm
	Accelerated gradient descent algorithm
	Composite conditional gradient algorithm
	Lagrangian matching pursuit algorithm

	First order algorithms for convex optimization - constrained case
	Projected subgradient algorithm
	Projected gradient algorithm
	Conditional gradient algorithm
	Matching pursuit algorithm
	Orthogonal matching pursuit algorithm
	Randomized incremental algorithm

	Machine learning applications
	Collaborative filtering for movie advertising
	Multiclass image classification

	Contributions in this context
	Group Schatten norm
	Smoothing techniques for learning with first-order optimization
	Conditional gradient algorithms for doubly non-smooth learning

	Group Schatten norm
	Introduction
	Notation
	Group Schatten norm: Definition and examples
	Group nuclear norm as a convex surrogate
	Algorithms for learning with group p-Schatten norm
	Group p-Schatten norm as regularization penalty
	(Accelerated) proximal-gradient algorithm
	Composite conditional gradient

	Illustrations
	Proposed applications: Initial steps
	Multiclass classification
	Collaborative filtering with attributes
	Compression of a structured database
	Feature concatenation
	Combinations
	Object cosegmentation
	Unsupervised learning
	Issue of groups that are unions of other groups

	Smoothing techniques for first-order optimization
	Introduction
	Smoothing in optimization
	Contributions and outline of this chapter
	Recalls in convex analysis

	Smoothing by infimal convolution
	General construction and special cases
	A simple example of smoothing by saddle-point representation: absolute value
	An advanced example of smoothing by saddle-point representation: the top-k function

	Smoothing by product convolution
	General construction
	Simple examples in R and Rn

	Smoothing-based first-order methods for doubly nonsmooth learning problems
	Composite conditional gradient
	Accelerated proximal gradient algorithm
	Incremental gradient

	Algebraic calculus
	Fenchel-type approximation
	Product convolution approximation

	Smoothing of SVM with reject option
	Smoothing of piecewise affine convex functions
	Smoothing the SVM with reject

	Conditional gradient algorithms for doubly non-smooth learning
	Introduction
	Smooth optimization with atomic-decomposition regularization
	Learning with atomic-decomposition norms
	Conditional gradient for smooth risk
	Extension to non-smooth empirical risk

	Motivating examples
	Collaborative filtering
	Multiclass learning

	Smoothed Conditional Gradient algorithms
	Smoothed Conditional Gradient algorithm
	Smoothed Composite Conditional Gradient Algorithm
	Smoothing the empirical risk - Application to the motivating examples
	Collaborative filtering
	Multiclass learning

	Experiments
	Implementation details
	Collaborative filtering
	Multi-class classification
	Competing approaches

	Conclusion
	Proofs
	Additional results

	Conclusion
	Summary of contributions
	Potential future research topics

	Useful results
	Computing the top pair of singular vectors
	Projection on a norm-ball
	Examples of norm-balls
	Proximal operator of quadratic function

	Proofs of chapter 1
	Computation of a support function without projection

