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AIM2    Absent  melanoma 2 
ASC   Apoptosis-associated speck-like protein containing a CARD 
BCG   Bacille Calmette-Guerin 
Bcl    B-cell lymphoma 
BCR    B cell receptor 
CARD   Caspase activation and recruitment domain 
CCR   CC-chemokine receptor 
CCL   CC-chemokine ligand 
CD   Cluster of differentiation 
cDCs   Conventional dendritic cells 
CLEC    C-type lectin-like receptor 
CM   CD4+ or CD8+ central memory T cells 
CMV   Cytomegalovirus 
CR   Complement receptor 
CTL   Cytotoxic CD8+T cell 
CTLRs   C-type lectin-like receptors 
CXCL   CX-chemokine ligand 
CXCR   CX-chemokine receptor 
DCs   Dendritic cells 
DC-SIGN    DC-specific intercellular adhesion molecule-3-grabbing nonintegrin 
Dectin   DC-associated C-type lectin  
DNA   Deoxyribonucleic acid 
ds or ssRNA/DNA  Double- or single-stranded Ribonucleic acid/Desoxyribonucleic acid 
eQTL   Gene expression quantitative trait loci 
EM   Effector memory T cells 
EMRA   Effector memory CD45RA+ T cells or effector terminal T cells 
FADD   Fas-associated protein with a death domain 
FcγR or FCGR   Fragment c gamma receptor 
FDR    False discovery rate 
γδ T cells   Gamma-delta T cells 
GM-CSF    Granulocyte-macrophage colony-stimulating factor 
GWAS   Genotype wide association study 
HKCA   Heat killed Candida albicans 
HKEC   Heat killed Escherichia coli 
HKHP   Heat killed Helicobacter pilori 
HKSA   Heat killed Staphylococcus aureus 
HLA   Human leukocyte antigen 
HLA-DR   HLA- antigen D related 
IAV   Influenza A virus 
IFN   Interferon 
IFNAR   Interferon alpha receptor 
Ig   Immunoglobulin 
IL   Interleukin 
IL-R   Interleukin-receptor 
ILC   Innate lymphoid cell 
IRF   Interferon regulatory factor 
ISG   Interferon stimulated gene 
ITAM   Immunoreceptor tyrosine-based activatory motif 
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ITIM   Immunoreceptor tyrosine-based inhibitory motif 
JAK   Janus kinase 
KIR   Killer cell immunoglobulin-like receptor 
LBP   Lipopolysaccharide binding protein 
LPS   Lipopolysaccharide 
MAF   Minor allele frequency 
MAPK    Mitogen-activated protein kinase 
MAIT    Mucosal-associated invariant T cell 
MDA    Melanoma differentiation-associated protein 
MFI   Mean fluorescence intensity 
MHC-I or-II   Major histocompatibility complex class-I or class-II 
MI   Milieu Intérieur study 
mRNA   Messenger ribonucleic acid 
MyD    Myeloid differentiation primary response gene 
NETs   Neutrophil extracellular traps 
NF-κB   Nucleofactor-kappaB 
NK   Natural killer 
NKC    Natural killer gene complex 
NLRs   NOD-like receptors 
NLRP3   NACHT, LRR and PYD domains-containing protein 3 
NOD   Nucleotide-binding oligomerization domain proteins 
PAMPs   Pathogen associated moleculare patterns 
PCA   Principal component analysis 
pDCs   Plasmacytoid dendritic cells 
poly I:C    Polyinosinic:polycytidylic acid 
pQTL   Protein expression quantitative trait loci 
PRRs   Pattern recognition receptors 
RAG   Recombination-activating gene 
RIG-I   Retinoic acid-inducible gene I 
RIP   Receptor-interacting protein 
RT-qPCR   Reverse-transcriptase-quantitative polymerase chain reaction 
RNA seq   Ribonucleotide sequencing 
ROS   Reactive oxygen species 
S1PR1   Sphingosine-1-phospate receptor 1 
SEB   Streptococcus enterotoxin B 
SeV   Sendai virus 
SNP   Single nucleotide polymorphism 
STAT   signal transducer and activator of transcription  
STING   Stimulator of interferon genes 
SVM   Support vector machine 
Syc   Spleen tyrosine kinase 
TCR   T cell receptor 
TGF   Tumor growth factor 
Th   CD4+ T cell helper 
TIR   Toll/IL-1 receptor domain 
TLRs   Toll-like receptors 
TNF   Tumor necrosis factor 
TRAF   TNF  receptor-associated factor 
TRIF   TIR domain-containing adapter-inducing interferon-β 
Treg   Regulatory T cell 
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The “Milieu intérieur” : an immune-controlled  equilibrium  

 
The immune system plays a key role in maintaining a healthy state by preventing infection 

and malignant transformation but also by participating in the steady-state tissue homeostasis. 

As early as 1859, Claude Bernard had conceptualized this constantly preserved equilibrium 

and named it the “Milieu Intérieur”.  

Whenever this equilibrium is lost, this leads to the initiation of an inflammation characterized 

by the secretion of a myriad of inflammatory mediators released into the circulation in distinct 

kinetic patterns. However, relatively little is known about the key components that determine 

the strength and/or the resolution of this inflammation and that can impact the ability to return 

to a homeostasis status in certain individuals. 

Those components can be environmental, genetic or of a pathogenic nature, and can lead to 

the loss of equilibrium and to disease pathogenesis. To define the factors responsible for these 

perturbations, an increasing number of studies employ system approaches, thus providing 

datasets that can be explored for new insights into the workings of the immune system.  

These studies aim to capture, at an individual level, high-resolution data across a wide array 

of parameters, whether molecular (genome, transcriptome, proteome or metabolome), 

environmental or behavioral. This approach is required to take into account the natural human 

diversity which results in variability among individuals. 

The increased use of “omics” technologies has changed our comprehension of the complex 

molecular networks involved in cellular signaling pathways, with notable applications for the 

study of immunity and inflammation. Numerous studies using human or animal models, have 

described the pathways involved in different pathological models (e.g., infectious diseases, 

auto-immunity, genetic polymorphism) but few have focused on a deep analysis of healthy 

immune responses. Knowledge of baseline responses in healthy persons is crucial for the 

understanding of the pathologic context as it can be used as a reference. Such baseline data is 

increasingly important as datasets coming from diverse “omics” technologies are integrated. 

Indeed, the diversity of protocols used between studies makes it difficult to directly compare 

between datasets. In order to implement accurate comparisons it becomes increasingly 

important to standardize the different steps of these systemic approaches. Finally, these 

observed signatures strongly depend on the study design, with most approaches using single 
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defined primary cell types or cell lines, without taking into account the importance of cellular 

interactions and/or the microenvironment for a given immune response. 

The Milieu Intérieur (MI) project aims to determine what are the genetic and environmental 

factors that drive the human immune response and to provide a large dataset that can be used 

as reference values by the community. To do so, extended epidemiological and biological 

data was collected from 1,000 healthy donors with a homogeneous ethnic background, 

stratified across gender (50% men/women) and age (20 to 69 years). In order to minimize pre-

analytical biases, a huge effort has been made in the establishment of standardized and robust 

procedures. In this context, a suite of whole blood, syringe-based assay systems have been 

developed, thus permitting reproducible assessment of induced innate and adaptive immune 

responses. The final goal is to define healthy donor reference values for induced inflammatory 

genes and propose an analytical strategy for deconvoluting inter-cellular interactions. This 

approach may help identify new applications for therapeutic inhibition of selected cytokine 

pathways. 

In the context of this collection, my PhD thesis has focused around two main studies.  

The first study was driven by three principal aims:  

i) Development of standardized mRNA expression analysis from whole blood 

syringe based assay stimulations  

ii) Application of specific statistical tools for mRNA analysis to define four 

major inflammatory cytokine induced signatures  

iii) Deconvolution of complex induced immune responses using these restricted 

cytokine induced gene signatures. 

The second study is a multidisciplinary analysis from the consortium that aims to determine 

the genetic factors that drive the immune cell parameters assessed by flow cytometry in the 

MI 1000 healthy donors. Following my contribution to the sample collection and data analysis 

in the French MI study, I took advantage of a student exchange program to perform a smaller 

scale replication MI study in the Cancer immunology department at Genentech, Inc (South 

San Francisco, USA). This replication study will enable a validation of some of the genetic/ 

immune parameter associations that have been identified within the French MI cohort. 

 

As a general introduction to this manuscript, I will present briefly the current consensus about 

the major types of human responses that can be triggered and the major cell populations 

participating to those responses highlighting how we have identified them in ours studies. 



 

After describing what constitutes an inflammation response, I will present the major 

inflammatory molecules and the receptor/associated molecules complexes that trigger 

inflammatory responses. As the number of inflammatory molecules is extensive I will focus 

on those used in our study. I will finish this introduction by presenting how we can monitor 

human immune responses and the rationale of using whole blood stimulation systems for 

human clinical studies. 

In the second chapter, I will present my results describing the development and analysis of the 

first transcriptomic study from the MI collection performed on in vitro stimulated whole 

blood samples from 25 healthy donors.  

In the third chapter, I will present a multidisciplinary analysis from the MI consortium 

associating genetic polymorphisms and flow cytometry parameters on the 1000 healthy 

individuals. I will then present a replication study on 81 healthy donors of Caucasian ancestry 

that aims at validating some of those associations in an independent collection of healthy 

donors. Those results are currently integrated into a manuscript in revision that aims to 

demonstrate that the natural variation in innate immune cell parameters is driven by genetic 

factors. 

In the fourth chapter, I will discuss these results integrating the future perspectives with other 

Milieu Intérieur datasets, but also related to more general clinical applications. 

 

To be able to build a reference dataset in a healthy population, a highly annotated sample 

collection and high quality datasets are key factors.  

I will finish this manuscript by describing the material and methods used for those studies 

highlighting the different tools specifically developed at each step of the “ Milieu Intérieur ” 

sample and epidemiological collection, with a special technical focus on the relevance of our 

syringe-based assay to study induced immune responses and specifically the standardized 

flow cytometry pipeline developed. 
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In all complex organisms, the immune response results from a sophisticated system involving 

several organs, numerous specialized cell types and a multitude of highly regulated 

ligand/receptor interactions.  

The immune cells develop in the bone marrow from pluripotent progenitors and, differenly to 

other cell types, are not tightly associated with a particular organ or tissue. They are able to 

move freely or in the presence of inflammatory signals can interact with all organs to capture 

cellular debris (i.e. dying cells) or invading particles/microorganisms and will potentially 

recirculate through the blood or lymph stream.  

In the two studies presented in this manuscript, the focus of our analysis was on the immune 

response from whole blood samples from healthy individuals.  

In this introduction, I will present the current views about the major type of immune 

responses that can be triggered depending of the pathologic condition and give an overview of 

the major components that participate in the homeostasis of the human immune response. 

This will include a brief presentation of the cell populations involved. I will then focus on the 

inflammation phenomenon first by describing key pro-inflammatory cytokines (interleukin-

1Beta (IL-1β), Tumor Necrosis Factor (TNF), interferon-Beta (IFN-β) and IFN-Gamma (IFN-

γ). Following this I will describe the danger sensors that help the cells to induce this 

inflammation that are triggered by microbial components (pure or more complex) used in our 

study leading to the polarization and trafficking of the immune cells. I will finish this chapter 

by describing how we can monitor human immune responses and the rationale of using whole 

blood stimulation system for clinical related human studies. 

 

 

Since the seminal studies of Mossman and Coffman (Mosmann and Coffman, 1989) the 

immune response has been divided into two types of responses depending on whether T 

helper (Th) type 1 or Th2 cells are induced to coordinate a response against intracellular or 

extracellular pathogens respectively.  

Nonetheless, since these original concepts were proposed the use of single cell technologies 

coupled to multiparametric analysis has challenged this reductionist classification. In the 

adaptive cells (i.e. Th cells) as well as in the innate cell compartment (i.e. 



 

monocytes/macrophages) depending of specific inflammatory conditions, each immune 

population is highly diverse and can be defined by their production of specific 

cytokine/chemokine patterns that are tightly regulated by gene modulation and transcription 

factors.  

Therefore it appears more appropriate to use the latest nomenclature describing different types 

of immune responses and to link them with the innate and adaptive cells involved. 

This recent model (inspired by old concepts) describes that in the homeostatic state, there is a 

balance in the organism between principally four arms of the immune system including cells 

and molecules from the innate and adaptive system. This immune equilibrium is established 

and educated by a primary microbiota acquired during childhood and then maintained or 

shaped by environmental factors (i.e. diet, drugs). When an infection or injury occurs, the 

specific inflammatory environment induced stimulates one specific arm of the immune 

system. Interestingly, this polarization actively represses the other arms until the infection is 

cleared. Recently, Gerard Eberl reviewed these responses re-introducing the concept of 

equilibrium — originally conceptualized by Claude Bernard (1813–1878) and Walter Cannon 

(1871–1945) as the ‘milieu intérieur’ and homeostasis respectively (Eberl, 2016) 

 

Type 1 responses: Intracellular bacteria, viruses and tumor 

During a type 1 response, the secretion of cytokines IL-12, IL-15 and IL-18 by myeloid cells 

such as dendritic cells (DCs) and macrophages and non hematopoeitic cells leads to the 

activation of natural killer (NK) cells and group 1 innate lymphoid cells (ILC1) that will be 

the major innate sources of IFN-γ production. This cytokine will notably increase the 

expression of MHC class II molecules on antigen-presenting cells, activate myeloid cells and 

Th1/cytotoxic CD8+ T cells that will secrete the major type 1 components that have direct or 

indirect anti-microorganism or anti-tumor properties (i.e., IFN-γ, perforin and oxygen 

radicals). In addition Th1 cells can stimulate the production of antibodies (mostly IgG). 

 

Type 2 responses: large organisms (i.e. helminthes). 

These responses are promoted by the production of IL-25, IL-33 and thymic stromal 

lymphopoietin (TSLP) by non-haematopoietic cells. This pattern of cytokine production leads 

to the activation of ILC2s, mast cells, basophils and eosinophils, resulting in the development 

of Th2 cells, production of IL-4, IL-5 and IL-13 and B cell antibody isotype switching to 

IgG1+ or IgE+ memory phenotype and somatic hypermutations. In parallel, induction of 

antibodies helps to target the pathogen for direct neutralization, activates the complement 

system, or mediate local degranulation of mast cells, basophils and eosinophils. 
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Type 3 responses: extracellular microorganisms 

During an extracellular infection DCs and macrophages produce IL-1β and IL-23 leading to 

the activation of ILC3 and Th17 cells. A specific inflammatory environment characterizes the 

effector phase with the presence of IL-1β accompanied by the production of IL-17 and IL-22 

by lymphoid cells, antimicrobial peptides (AMPs) by epithelial cells and the recruitment of 

neutrophils. In the context of strong inflammation and extensive tissue injury, lymphoid cells 

can produce both IFN-γ and IL-17 due to the release of intracellular motifs leading to a mixed 

type 1 and type 3 phenotypes.  

 

Type 4 responses: barrier response 

In the same review, G. Eberl proposes a 4th arm as a system to protect hyper-exposed and/or 

sensitive tissues that can be irreversibly damaged (i.e. eye, mouth, gut). Type 4 immunity 

aims to prevent infection/injury using secretory systems of neutralizing IgA, mucus and anti-

microbial peptides (AMPs) by immune and epithelial cells.  

 

 

The innate immune system comprises the cells and mechanisms that constitute for the host a 

first line of defense from infections or general damage.  In addition to a physical barrier 

protection (epithelium), its main functions are to identify/remove foreign substances and to 

recruit specialized immune cells to sites of infection/injury through the production of 

chemical factors (cytokines, chemokines, alarmins…) and complement cascade activation that 

notably promote clearance of antibody complexes or dead cells. Finally the antigen presenting 

cells from the innate system activates adaptive immunity that will confer long-lasting memory 

immunity to the host. 

A common feature between all innate cells is their extensive patrolling activity due to the 

expression of a myriad of surface or intracellular Patten Recognition Receptors (PRRs) that 

will be described later in this chapter. 

As mentioned previously, access to high throughput molecular tools revealed a large diversity 

of molecular pattern receptors inside each innate population in contrast to what was thought 

before. This diversity has been initially described in models where due to previous 

inflammatory signals (infection or tissue damage), the circulating innate immune cells do not 

present the same inflammatory profile and not express the same molecular pattern at their 



 

surface or at the transcriptional level even in absence of antigens. In addition, due to 

improved methods to study “intact” innate cell populations, it’s now recognized that these 

cells can also have a longer half-life than it was previously thought adding another dimension 

to the importance of a potential long-term “memory” innate signature (Mantovani et al., 

2011). 

 

 

Mast cells, basophils and eosinophils are potent effector cells generally associated with type 2 

and 3 immune responses (see section “Major types of immune responses” and Table 1) and 

also tissue damage in several allergic inflammation contexts. 

Mast cells and basophils are developmentally similar and then express a common set of 

effector molecules, like mast cell-associated proteases (mMCP), vasodilating substances 

(such as histamine), various cytokines and pro-inflammatory chemokines. Many of these 

effector molecules are already stored in cytoplasmic granules allowing a fast release in 

response to activation of the high-affinity receptor for IgE (FcεRI) or other expressed surface 

receptors (i.e. Toll-like receptors- TLRs). (Gilfillan and Beaven, 2011; Voehringer, 2013). 

Human eosinophils present specific granules that store potent toxic proteins and also 

numerous cytokines, enzymes and growth factors. Among the main receptors that define the 

unique biology of the eosinophil are interleukin-5 receptor subunit-α (IL-5Rα) and CC-

chemokine receptor 3 (CCR3), as well as sialic acid-binding immunoglobulin-like lectin 8 

(SIGLEC-8) in humans. The major eosinophils inducers are the cytokine IL-5 and the eotaxin 

chemokines (i.e. CC-chemokine ligand 11 or CCL11) that will allow their recruitment into 

tissues. Other signals like cytokines (i.e. IFNg or CCL11) and pattern-recognition receptors 

(PRRs) activation will promote the eosinophil degranulation (Rosenberg et al., 2013). 
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Neutrophils are the main population composing the PMN cell family. These cells are 

classically characterized by their ability to act as phagocytic cells, to release lytic enzymes 

from their granules, to produce reactive oxygen species (ROS) and antimicrobial peptides 

directly killing or limiting the growth of bacteria and fungi (Boregaard, 2010).  

They normally represent 50 to 60% of the total circulating leukocytes making them the most 

abundant cells of the innate immune system and can be identified notably by their high 

expression of Fc Gamma Receptor IIIA (FcγR3A or CD16) (Table 1). After stimulation they 

induce gene expression of key inflammatory mediators, including complement components, 

Fc receptors, chemokines (i.e. CCX-chemokine ligand 8, CCL20) and cytokines (i.e. IL-1s, 

IFNs) (reviewed in Mantovani et al., 2011). 

More recently, Neutrophil extracellular traps (NETs) were described as an anti-microbial 

mechanism by the extravasation from the cytoplasm of a DNA matrix coated by proteins (i.e. 

neutrophil elastase, matrix metalloproteinase 9) to capture and destroy the microorganism 

(Brinkmann et al., 2004).  

With the recent access of new tools to study “intact” neutrophils, their role have emerged as 

key components of the effector and regulatory circuits of the innate and adaptive immune 

systems in increasing number of inflammatory models (Mantovani et al., 2011). 

  



 

 

Cell type 
% 

of leucocytes 

Protein marker a 
(Hasan et al. 2015) 

Gene marker b Type of 
immune 
response 

Major effector 
functions  and molecules 

Major regulators PRRs 
expression 

Neutrophil
s 

30 – 80% 
 

CD16 hi FCGR3A 
CSF3R 
FPR2 
MME 

Type 1, 
Type 2 

and 
Type 3 

Phagocytosis 
ROS production ++  
Inflammation: i.e. IL-
1α and -1β, CCL2, CXCL9, 
CXCL10, CCL20, TNF 

CXCR1 or 
CXCR2/CXCL8 

TLRs, 
NLRs, 
RLRs, 
CTLRs 

Eosinophils 
0 – 7% 

 

CDw125+

SSChi
IL5RA 

SIGLEC-8 
CCR3 

PTGDR2 
SMPD3 
THBS1 

Type 1, 
Type 2 

and 
Type 3 

Degranulation: 
- Cationic proteins 
degranulation: i.e. MBP 
- Enzyme degranulation: 
i.e. collagenase, histaminase 
Cytokines: i.e. IL4, IL5 

CCR3 /CCL11, 
IL-5R/IL-5, 
IL-25, IL-33 
SIGLEC-8 

TSLP 

TLRs* 
NLRs* 
RLRs* 

CTLRs* 

Basophils 
0 – 2% 

 

FceRI hi 
CD203c lo/hi 
CDw125- 

FCER1A 
ENPP3 
IL5RA 

Type 2 
and 

Type 3 

Degranulation: 
- Proteases: i.e. Mast cells 
associated proteases (mMCP) 
- Histamine 

FcεRI 
IL-25 
IL-33 
TSLP 

TLRs* 
NLRs* 
RLRs* 

CTLRs* 

Monocyte
s 

2 – 12% 
 

CD14hiCD16neg 
(Conventional) 

CD14loCD16 int 
(Intermediaire) 

CD14negCD16pos 
(Inflammatory) 

CD14, APOE, 
CCL7, CD68, 

CHIT1, CXCL5, 
MARCO, MSR1, 

FCGR3A 

Type 1, 
Type 2 

and 
Type 3 

Phagocytosis 
ROS production +++  
Inflammation:  
IL-1α and -1β, TNF, IL-12, 
CXCL10 

CCR2/ CCL2 or 
CCL7 

CX3CR1/CX3CL
1 

TLRs, 
NLRs, 
RLRs, 
CTLRs 

Dendritic 
Cells 

0.3 – 0.9% 
 

HLA-Cl.II+ 
cDC1: BDCA1+ 
cDC3: BDCA3+ 

pDC: 
BDCA2+BDCA4+ 

cDCs:  
CCL13, CCL17, 
CCL22, CD209, 

HSD11B1, CD1A 
pDC:  

IL3RA,THBD, 
CLE4C,NRP1, 

Type 1, 
Type 2 

and 
Type 3 

Phagocytosis 
ROS production + 
MHC-I and -II antigen 
presentation 
- Inflammation:  
IL12, Type I IFNs 
- Anti-inflammatory: IL10 

PAMPs 
TGF-b 
TSLP, 

Type I IFNs 

TLRs, 
NLRs, 
RLRs, 
CTLRs 
(i.e. DC-
SIGN, 

CLEC4C) 

NK Cells 
1 – 6% 

 

NKp46+ 
CD56hiCD16lo/- 
CD16hiCD56lo 

NCR1 
NCAM1 (CD56) 

FCGR3A 

Type 1 Cytolytic proteins:  
i.e. Perforin, Granzymes 
Anti-viral/-tumoral: IFNg, 
TNF-a, CCL3, CCL4 and 
CCL5  

IL-12,, IL-15, , 
IL-18, KIRs, 
MHC , NCRs 

TLRs* 
NLRs* 
RLRs* 

CTLRs* 
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Monocytes are circulating innate cells that can further differentiate into tissue macrophages 

and dendritic cells (see next paragraph) (Auffray, et al., 2009). First described by Elie 

Metchnikoff in the 19th century, it’s now well established that tissue macrophages are the 

most efficient phagocytes. Upon activation, monocytes/macrophages produce a myriad of 

pro-inflammatory molecules (i.e. tumor necrosis factor) and a high production capacity of 

ROS to destroy engulfed elements. 

The subsequent differentiation of bloodstream monocytes is homeostatic or inflammatory 

environment dependent, generating subpopulations differing by their size, trafficking and 

innate immune receptor expression.  

Human monocytes are divided into subsets on the basis of CD14 and CD16 expression (see 

Table 1) with the CD14hiCD16neg monocytes, referred as classical monocytes, being the most 

prevalent subset in human blood and these cells express CCR2 (Ingersoll et al., 2010).  

The distinct trafficking ability in the monocyte subsets involves different chemokine-

chemokine receptor axes depending on the homeostatic or inflammatory environment. 

CC-chemokine ligand 2 (CCL2) and CCL7 bind to CCR2 and are secreted by almost all 

nucleated cells in response to pro-inflammatory cytokines or innate immune receptor 

triggering (i.e. PRRs) by microbial products. CCL8 and CCL12 are also CCR2 ligands but 

their role in the monocyte trafficking is minor compared to CCL2 and CCL7.  

Subsets of monocytes express the CX3-Chemokine receptor 1 (CX3CR1) that modulates their 

patrolling function and survival in response to its ligand CX3CL1. The receptors CCR1 and 

CCR5 and their ligands CCL3 (MIP1-α) and CCL5 (respectively) play also a major role in 

monocyte migration (Shi and Pamer, 2011). 

 

The dendritic cells (DCs), described for the first time by Ralph Steinman in 1973, are the 

most specialized cells in antigen processing thanks to a low rate and controlled degradation of 

the phagocyted particles to allow presentation. Dendritic cells have been extensively studied 

for their large therapeutic potential reflecting their specialized functions in antigen uptake and 

presentation. In the periphery, DCs are present in an immature state with two major types 

usually described. The most abundant are the conventional DCs (cDCs) that can be 

subdivided in three categories depending on surface markers (cDC1, cDC2 and cDC3) and the 

plasmacytoid DCs (pDCs) (see Table 1). The pDCs are the most potent cells in producing 

type I interferons in response to viruses (Perussia et al.,1985; Chehimi et al., 1989). 



 

One of their unique features is the capacity to efficiently present endogenous and exogenous 

antigens through both major histocompatibility complex class-I (MHC-I) and -II (MHC-II) 

pathways. Notably, the unconventional presentation of exogenous antigens on MHC-I by 

cDCs referred to as cross-presentation (Bevan, 1976; Buckwalter and Albert, 2009) is an 

important process as they are the only cells able to prime a T cell response. 

The triggering of PRRs by their ligands activates DCs and induces their migration to 

lymphoid organs for antigen presentation to naïve lymphocytes (Albert et al., 2001; Reis e 

Sousa et al., 2006).  

Activated DCs will normally present high levels of MHC molecules bearing pathogen-derived 

peptides, which can engage T-cell receptors on naïve specific T cells. This delivers the first 

activating signal (‘signal 1’) to the T cell. Activated DCs also express a variety of co-

stimulatory molecules (i.e. CD40, CD80/CD86; ‘signal 2’) that will deliver important signals 

(i.e. proliferation, survival) to T cells, B cells or innate lymphoid cells with the help of CD4+ 

T cell (Th). Finally, activated DCs and Th produce mediators (i.e. IL-12, IL-2) to promote T 

cell differentiation into an effector cell (signal 3). The integration of these three classes of 

signal by the T cell determines its subsequent fate.  

 

NK cells do not have phagocytosis properties to directly target microbes but rather 

spontaneously destroy compromised host cells presenting a pattern known as "missing self" 

due to abnormally low levels of self-identifying proteins such as MHC-I. Without prior 

sensitization, stressed cells can induce NK cell functions like cytotoxicity, cytokine 

production and proliferation.  

In humans, Natural Killer (NK) cells can be divided according to the density of CD56 (Table 

1). Activated NK cells secrete large amount of cytokines (mostly IFNγ), but they can also 

secrete interleukins (i.e. IL 10), TNF, growth factors (i.e GM CSF), chemokines (i.e. CCL3, 

CCL4 and CCL5) and cytotoxic proteins (i.e. perforin, granzymes) (reviewed in Morvan and 

Lanier, 2016). Their activation and function are tightly regulated by the equilibrium between 

activating or inhibitory receptors. Among the numerous receptors described, NKG2D (also 

known as KLRK1), the natural cytotoxicity receptors (NCRs; i.e. NKp46), DNAM1 (or 

CD226) and CD16 are the best-characterized activating NK cell receptors implicated in 

immune responses against cancer for example. The well-studied killer cell immunoglobulin-

like receptor (KIR) family includes numerous members presenting for mostly (but not all) 

inhibitory properties (Bashirova, et al., 2006).  
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It is now well recognized that NK cells are the founding members of the innate lymphoid cell 

(ILC) family. In the absence of adaptive antigen receptors, NK cells and other ILCs react to 

the microenvironment through cytokine receptors. Nonetheless NK cells are still considered 

as the major population presenting specific cytolytic functions (similar to cytotoxic CD8+T 

cells), whereas the ILC1, ILC2 and ILC3 family subtypes are mostly characterized by their 

signature cytokine secretion profiles (Figure 1). Interestingly, ILCs were found to share 

molecular patterns with their adaptive counterpart, the T helper cells (Eberl et al., 2015).  

 

 

 

 



 

 

The hemostatic process comprises the activation/cleavage molecular cascade of the 

complement system leads to blood coagulation and platelet activation. The complement 

cascade in addition to coagulation function results in inflammatory cells recruitment or 

opsonizes pathogens to facilitate their clearance by FcγR phagocytic expressing cells. 

Commonly overlooked, platelets are also active actors in innate immunity. They express 

numerous pattern-recognition molecules including TLR4, TLR2 and TLR9 (Cognasse et al., 

2015), complement and FcγR (such as FcγRII). Platelets act as sentinels in the circulation that 

potentially result in rapid innate resistance to infection. Platelets have anti¬microbial 

activities and can directly kill microbes by releasing defensins for example or kill 

intraerythrocytic malaria parasites via platelet factor 4 (PF4). In the context of bacteria 

contact they become activated and aggregate surrounding the pathogen, leading to engulfment 

of the microbes by a non-killing phagocytosis-like process (see Figure 2). 

Platelets contain a high content of α-granules full of diverse mediators but those can also be 

newly synthesized upon activation thanks to the presence of stable transcripts acquired during 

the partitioning of the progenitor hematopoietic cell. These include some of the main inducers 

of inflammation like IL-1 and CD40L, the ligand for the costimulatory receptor CD40. A 

huge diversity of chemokines are also stored in platelet granules or newly synthesized such as 

CCL5 (RANTES), CCL3 (MIP-1α), CXCL7 (β-thromboglobulin or NAP-2), CXCL4,  

CXCL1 (GRO-α), CXCL5 (ENA-78) and CCL7 (MCP3).. In addition to orchestrating 

leukocyte function during inflammation, platelets also contribute to tissue repair by releasing 

growth factors such as PDGF and TGF-β (Mantovani & Garlanda, 2013). 
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The adaptive immune system is orchestrated by the lymphocytes. The two main classes are 

the humoral responses mediated by the B cells and T cell mediated responses. They constitute 

10–30% of circulating leucocytes. The antigen-specific receptor of B or T cell goes 

individually through secondary and irreversible somatic rearrangements during the lifetime of 

the organism whereas in innate immunity, pathogen-specific receptors are already encoded in 

the germline of each population. The other particular specificity of the adaptive immune 

system is the lifetime persistence of memory cells able to mount quickly an effective response 

in case of new encounter with the same antigen. 

This process of long lasting acquired immunity constitutes the foundation of the concept of 

vaccination developed by Louis Pasteur and others in the 19th century. 

Nevertheless some T cell subsets are designed as 'unconventional' as they possess an invariant 

T cell receptor (TCR) as opposed to CD4+ and CD8+ αβ T cells and share characteristics of 

helper T cells, cytotoxic T cells and natural killer cells. Natural Killer T cells (CD1d-

restricted), Mucosal-associated invariant T (MAIT) and Gamma delta T cells (γδ T cells) 

circulate in a pre-activated status predominantly at epithelium sites. Such properties place 

them at the border between innate and adaptive immunity. For example, large numbers of 

Vγ9/Vδ2 T cells respond within hours to common molecules produced by microbes, and 

highly restricted intraepithelial Vδ1 T cells will respond to stressed epithelial cells 

(Vantourout and Hayday, 2013). 

Like already mentioned before, all immune cells are coming from bone marrow derived 

progenitors. Nonetheless one of the unique futures of adaptive cells is the requirement of a 

maturation process impliying receptor rearrangement that will confere them their powerful 

specificity and specific selection/depletion steps to avoid the presence of autoreactive 

circulating cells (Boehm and Bleul, 2007). 

For B cells, the bone marrow is the primary site for the development of an immature form of 

B cells and the final maturation undergo in lymphoid organs (spleen or lymph nodes). For the 

T cell compartment, the thymus is the unique organ that support the T cell development from 

haematopoietic stem cell (HSC)-derived lymphocyte progenitors. Its specific architecture is 

necessary for T cell lineage commitment and maturation (Zúñiga-Pflücker, 2004; Boehm and 

Swann, 2013). 

In this section, I will focus on αβ T cells and B cells biology like depicted in the Table 2.  
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Cell type 
% 

of leucocytes 

Protein 
marker a 
(Hasan et 
al. 2015)

Gene marker b Type of 
immune 
response 

Major effector 
functions  and 

molecules

Major 
regulators 

PRRs 
expression 

T cells 
7 – 24% 

 

CD3+ CD2 
CD3D, CD3E, CD3G

CD6 

    

CD4+ 
T cells 

(conventional) 
4 – 20% 

CD3+ 
CD4+ 

T helper (Th): 
ANP32B, BATF, NUP107, 

CD28, ICOS
Th1: 
CD38, CSF2, IFNG, IL12RB2, 
LTA, CTLA4, TXB21, STAT4 

Th2: 
CXCR6, GATA3, IL26, LAIR2, 

PMCH, SMAD2, STAT6 
Th17: 

IL17A, IL17RA, RORC
T reg: 

FOXP3 

Type 1, 
Type 2
Type 3 

and 
Type 4 

. T helper function: i.e. 
by the presentaion of co-
stimulatory molecules 
. Immunoregulation by 
cytokine production: 

IL2 
IFNγ/TNF 
IL-4/IL-21 
IL-5/IL-33 

IL-17/ IL-22 
IL-10 

 

MHC-II 
presentation 

IL-2
TGFβ 
IL-12 
IL-6 

Eomes 
T-bet 

GATA3 
RORγt 
FOXP3 

TLRs* 
NLRs*
RLRs* 

CTLRs* 

CD8+ 

T cells 
(conventional) 

2 – 11% 
 

CD3+ 
CD8β+ 

CD8A 
CD8B 

FLT3LG 
GZMM 
PRF1 

Type 1 Effector T cells 
recognizing cognate 
antigen expressing cells 
and promoting their 
apoptosis through: 
. Cytolytic proteins 
(i.e. Perforin, Granzymes) 
- Anti-viral/-tumoral 
molecules: IFNγ, TNF-α, 
CCL3, CCL4 and CCL5 

MHC-I 
presentation 

IFNγ 
TNF 

TLRs* 
NLRs* 
RLRs* 

CTLRs* 

B cells 
1 – 7% 

 

CD19+ BLK, CD19, 
CR2 (CD21), 
HLA-DOB, 

MS4A1 (CD20), 
TNFRSF17 

Type 1, 
Type 2 
Type 3 

and 
Type 4

. Antibody production 
and presentation 
. Cytokine production 
. Lymphoid tissue 
organization 

BCR 
triggering 

 
FcγR 

TLRs 
NLRs 
RLRs 

CTLRs 

  

 
 



 

 

 

CD8+ T cells or cytotoxic T cells (CTL) induce the death of cells that are dysfunctional (i.e. 

tumoral) or infected with intracellular pathogens playing then a critical role in the type 1 

response (Rocha and Tanchot, 2004).  

After thymus selection, the naïve CD8+ T cells circulate constantly from bloodstream to 

lymphoid organs making continuous contact with antigen presenting cells (APC) within the 

lymphoid tissue. As previously described, they get primed (during a pathological condition) 

when they receive the three signals from the APC and antigen-specific helper CD4+ T cells in 

peripheral lymphoid organs to become functionally and phenotypically heterogeneous 

populations. 

Like NK cells, their innate counterpart, effector CTL release newly synthetized cytokines (i.e. 

IFN-γ, TNF-α, MIP-1α) and granules containing pre-synthesized cytotoxic proteins (i.e. 

perforin, granzymes) that can induce the burst or the apoptosis pathway in the target cell 

(Table 2).  

Once primed, CD8+ T cells undergo robust proliferation and differentiate at the same time 

into effector T cells. The expansion phase is followed by contraction, marked by high levels 

of cell death, resulting in a small population of memory CD8+ T cells. 

This pool will subset into “effector memory” (TEM) and “central memory” (TCM) depending 

on their ability to traffic to lymphoid tissues. On a later encounter with the same antigen, 

these memory cells quickly differentiate into effector cells, shortening the time required to 

mount an effective response. 

During neo-priming or reactivation, CD8+ T cells undergo characteristic changes in surface 

molecule expression and intracellular cytokines, chemokines, transcription factors expression 

that will vary depending on their maturation state (Sallusto et al., 2004; Appay et al. 

Cytometry, 2008). The protein pattern and/or gene expression analysis allows a precise 

identification of these subsets and their activation status (De Rosa et al., 2001). 

 

 

As previously mentioned, immature bone marrow T cell progenitors develop in the thymus. 

During this process they are successively programmed and selected to become naive CD8+ T 

cells (see precedent section), naive CD4+ T cells or CD4+CD25+ T-regulatory cells (Tregs). 
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The common future between naïve CD4+ and CD8+ T cells is the expression of a rearranged 

TCR. However instead of MHC- I recognition, TCRs from CD4+ T cells recognize antigen 

bound to MHC-II molecules on APCs that lead to differentiation into distinct types of effector 

T cells, depending on the ‘signal 3’ they receive in the secondary lymphoid organs (see DCs 

and antigen presentation chapter). Like for CD8+ T, naïve CD4+ T-cells (TN) will progress 

through central memory (TCM) T-cells and then to effector memory (TEM) T-cells and 

finally to terminally differentiated effector memory (TEMRA) T-cells. 

As mentioned previously, depending on the specific inflammatory conditions there is a huge 

diversity in the T helper population (Th) defined by their production of specific patterns of 

cytokines/chemokines that will be associated to the different types of responses (see section 

“Major type of responses”). Those patterns of expression are tightly regulated by now well-

defined genes and transcriptions factors. The major subsets described are the Th1, Th2, Th17, 

Th22, Th9 and Tregulators (reviewed in Baranovski et al., 2015).  

In this section, I will describe briefly those specific T helper subsets and their principal 

functions and molecular pattern (see Figure 3 and Table 2). Of note, it’s now well 

established that distinct subsets can regulate each other’s differentiation (Baranovski et al., 

2015). 

Th1 differentiation: IL12 and interferon-γ (IFN-γ) are the critical cytokines initiating the 

signaling cascade to develop Th1 cells (Szabo et al., 1995). Several transcription factors 

induce full differentiation of the Th1 cells with the T-box transcription factor (T-bet) as the 

master regulator, signal transducer and activator of transcription 1 (STAT1), STAT4 and 

Eomesodermin (Eomes).  

Th2 differentiation is favored by IL-4 signaling which will induce IL-5, IL-13 and new IL- 4 

release (Sornasse et al., 1996). The master regulator for full differentiation of Th2 cells is 

GATA3 in coordination with STAT5.  

More recently described, the Th17 cells were found to be induced early in response to 

extracellular bacteria (type 3 response), depending on IL-6 and TGF-β for their differentiation 

and IL-23 for further proliferation, and seem to be involved in stimulating the neutrophil 

response. The retinoic acid receptor-related orphan receptor gamma-T (RORγt) (encoded by 

the gene RORC in human) is the master regulator involved in their differentiation.  

Interestingly, exposure to the same TGF-β but in the absence of IL-6, IFN-γ and IL-12 favors 

the development of CD4+CD25+CTLA4+ Treg cells by the induction of the regulator forkhead 

box P3 (FoxP3). Those Treg are referred as inducible Treg (iTreg) in contrast to the natural 



 

Treg coming from the thymus. This subset will restrain the immune response by producing 

inhibitory cytokines such as IL-10 and TGF-β (Chen et al., 2003). 

 

 

 

Upon activation, B cells differentiate into plasma cells, which proliferate and are able to 

secrete antibodies, themselves driving protective responses through neutralization, 

opsonization and complement activation (humoral response).  

B lymphocytes display three hallmarks not commonly shared by all immune cells: they 

express a unique B-cell receptor (BCR) for antigen on their membranes, falling in the 

adaptive immunity definition; they express CD40 on their surfaces sharing common 

properties with most APCs, but interestingly, they abundantly express PRRs, which is 

considered a hallmark of innate immune cells. Indeed, human B-cell subsets express distinct 

PRRs, including receptors for immunoglobulins (Ig) such as FcγRIIb/CD32 or FcεRII 

(CD23), complement receptors and TLRs. In contrast to T cells, the triggering of those 
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constitutively expressed TLRs induce well described functions as class switching 

recombination or proliferation, differenciation, Ig production depending of the B cell subsets 

targeted (Garraud et al., 2012). 

The capacity of specific B-cell subsets to traffic throughout the body is essential for sampling 

pathogens and for their APC functions. Accordingly, distinct programs of chemokine receptor 

expression were also ascribed to the various B-cell subsets (Bowman et al., 2000; Garraud et 

al., 2012; Nutt et al., 2015).  

  



 

 

 

After tissue injury or infection a rapid inflammatory response is initiated through the 

recognition of molecules shed from the outer membrane of invading pathogens as well as 

danger signals from internal environment (i.e. alarmins from dying cells) by pattern 

recognition receptors (PRR) expressed on both immune and non-immune cells. Engagement 

of these receptors triggers the secretion of cytokines, chemokines and other biologically 

active molecules. The inflammatory cytokines produce changes in the adhesive properties of 

the endothelial cells, in turn causing circulating inflammatory leukocytes to stick and 

transmigrate to the site of infection, thereby initiating the process of inflammation.  

The hallmark of acute inflammation (restricted in time) is the considerable increase (locally 

or systemically) in acute phase serum proteins such as LPS binding protein (LBP), C reactive 

protein (CRP), and serum amyloid A (Gabay et al., 1999). This acute phase generally persists 

only when the stimulus is present. Infected/injured resident cells secrete cytokines that induce 

rapid and short-lived constriction of blood vessels and chemokines to coordinate the 

recruitment of neutrophils to the site of injury to remove the invading pathogen. As 

homeostasis is restored, anti-inflammatory mediators such as IL-4 and lipoxins promote 

resolution by inhibiting the migration of neutrophils as well as inducing the migration of 

monocytes to the site of injury. This influx of monocytes helps to resolve inflammation by 

phagocytosis of apoptotic neutrophils (reviewed by Serhan, 2007). Of note, the time 

restriction of the acute phase definition depends of the pathologic situation. For example in 

the case of a slight injury, acute proteins will arise and decrease within minutes or hours, 

whereas in the case of high antigen concentration during acute phase such as some viral 

infections characterized by high viral replication during primo-infection (i.e. hepatitis C 

(HCV) or human immunodeficiency virus (HIV) infections), the acute phase duration occurs 

during months before leading to the chronic status. 

A controlled inflammation resolves with inconsequential damage to the host. However, the 

loss of control of inflammation can result in chronic disorders commonly observed in clinic 

such as rheumatoid arthritis, inflammatory bowel disease, and septic shock and can ultimately 

lead to irreversible damage to tissues and organs and, even death. 

Chronic inflammation can develop in the case of pathogen persistence (i.e. chronic infection 

(HCV, HIV)), phagocytic cell inability to degrade deleterious substances, or autoimmune 

responses (Serhan, 2007) leading to a persistent inflammatory cascade (Kitchens et al., 2003).  
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In the context of biomarker discoveries and clinical follow-up, many diseases are 

characterized by persistent cytokine expression (i.e. IL-1 and TNF) and measurement of these 

molecules can be helpful for medical intervention. However while cytokines play a similar 

role in many of these diseases, the source and the induced pathogenesis can be extremely 

variable, adding a layer of difficulty in the design of effective therapies to combat 

inflammatory disorders (Forrester et al. 2005; Forrester and Libby, 2007).  

  



 

 

Cytokines are soluble mediators of cell communication that are critical in immune regulation. 

These proteins and glycoproteins can be produced by hematopoietic and non- hematopoietic 

cells and induce specific gene expression programs in responsive cells via autocrine and 

paracrine mechanisms.  

Inflammation results from a complex phenomenon and its understanding requires an analysis 

of its fundamental mediators. . In our whole blood stimulation model, we have used cytokine 

mediators to mimic differentially polarized inflammatory environments to focus on specific 

pathways induced in the whole blood cellular network. In this section I will describe briefly 

the biology of the key pro-inflammatory cytokines and their receptors used in our whole 

blood stimulation model (Table 3). 

TNF, IL-1β, IFN-β and IFN-γ are pro-inflammatory cytokines rapidly induced within minutes 

to hours after an inflammatory insult, followed by a rapid clearance (DeForge and Remick, 

1991). 

 

Cytokine Gene name Main sources Receptor 
Gene Name 

Immune 
Target cell 

Major function 

Interleukins 
IL-1 IL1A, IL1B Macrophages, 

Monocytes, 
Neutrophils, 
Bcells, DCs, 
platelets 

IL1R1, IL1R2, 
IL1RAP, IL1RN 

B cells,  
NK cells, 
 T cells 

Pyrogenic, pro-inflammatory, 
proliferation and differentiation, 
(i.e.  Th17)  

IL-23 IL23A, IL12B Macrophages, 
DCs 

IL23R T cells,  
Neutrophils 

Th17 differentiation 

Tumour necrosis factor 

TNF-α TNF Macrophages, 
monocytes 

TNFRSF1A, 
TNFRSF1B,  

Macrophages,  
Tumour cells 

Phagocyte cell activation, 
endotoxic shock 
Tumour cytotoxicity, cachexia 

Interferons 
IFN-α IFNA1/13, IFNA2 

up to IFN21 
Leukocytes, 
pDCs 

IFNAR1, IFNAR2 Various Anti-viral 

IFN-β IFNB1 Fibroblasts IFNAR1, IFNAR2 Various Anti-viral, anti-proliferative 

IFN-γ IFNG T cells IFNGR1 Various Anti-viral, macrophage activation, 
increases neutrophil and monocyte 
function, MHC-I and -II 
expression 
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Tumor necrosis factor (TNF) is a classic proinflammatory cytokine secreted by a number of 

cells including macrophages/monocytes, mast cells, DCs and tumor cells (Spriggs et al. 1987; 

Kelsa, 1998). TNF is induced in response to a variety of stimuli including bacterial 

endotoxins, oxygen radicals, and viruses. (Chensue et al., 1991; Dubravec et al., 1990). TNF 

induces the anti-microbial function of innate cells but is also a mitogen for T and B cells. This 

pleiotropic cytokine has been described to participate in a myriad of functional activity 

including cell growth modulation, inflammation, apoptosis, tumoregenesis, viral replication, 

septic shock and autoimmunity (Aggarwal et al., 2012). In addition to being produced in 

response to direct stimulation, TNF production can also induce various other cytokines 

including IL-1β and IL-8 (Cassatella et al., 1993; DeForge et al., 1992). 

TNF can bind TNF receptor 1 (TNFR1 encoded by TNFRSF1A) that enhances the respiratory 

burst in neutrophils, increases IL-6 mRNA, and induces NFκB activation (Tartaglia et al., 

1993; Mackay et al., 1993; Kruppa et al., 1992). This receptor is ubiquitously expressed 

explaining is diverse effects. TNFR1 triggering leads to apoptosis pathway engagement by 

activation of the adaptor proteins TNFR1-associated death domain (TRADD) and Fas-

associated death domain (FADD). The second known receptor, TNFR2 (encoded by 

TNFRSF1B) induces a signaling after TNF binding, that relies on TNF receptor associated 

factor 2 (TRAF2) and activation and nuclear entry of NFκB. The TNFR2 expression is more 

limited to certain populations of lymphocytes, including T-regulatory cells (Tregs), 

endothelial cells, some cells from the central nervous system, cardiac myocytes, thymocytes, 

islets of Langerhans and human mesenchymal stemcells (reviewed by Faustman and Davis, 

2013). Depending on the balance between those two receptors expression and triggering by 

TNF, in addition to other factors, the cell fate will be determined leading to apoptosis 

(TNFR1 signaling) or survival (TNFR2 signaling) (Aggarwal et al., 2012; Faustman and 

Davis, 2013; Figure 4). Both receptors can occur in soluble form. Specifically, the membrane 

protease TACE (TNF alpha converting enzyme) can cleave immature, membrane-bound 

TNFR resulting in soluble, biologically active TNFR in the circulation (Locksley et al., 2001). 

 

 

 



 

 

 

Interleukin 1β is a member of the IL-1 family cytokines. The major members of this family 

are IL-1α, IL-1β, IL18, IL33 and IL-1 receptor antagonist (IL-1ra) (reviewed by Netea et al., 
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2015). The IL-1 genes are induced by a wide variety of stimuli including LPS, viruses, and 

TNF (Auron et al., 1984). Like IL-6 and TNF, IL-1 is most prominently produced by 

monocytes/macrophages (Chensue et al., 1991). Upon endotoxin stimulation, for example, IL-

1β is rapidly induced in whole blood (Lang et al. Shock, 2003). Although IL-1α and IL-1β are 

both induced upon stimulation of the inflammatory response, IL-1α remains in the cytosol, 

whereas IL-1β is processed and cleaved into its active form by IL-1β converting enzyme (ICE 

also referred as caspase-1) (Chin et al JI, 1993). Infection with bacteria induces activation of 

caspase-1, which catalyzes the processing of pro-IL-1β to produce the mature cytokine. A 

complex of proteins responsible for these catalytic processes has been purified and designated 

as the inflammasome (Martinon et al., 2002 and see section “NOD-Like receptors” below).  

Direct stimulation with IL-1β can activate the transcription of specific inflammatory genes 

such as TNF and IL-8 (Akira et al., 1990).  

Two IL-1 receptors (IL-1R) can bind IL-1β as well as IL-1α with the same signaling 

properties. The pro-inflammatory IL-1RI (Sims et al., 1993) is found predominantly on T 

cells and fibroblasts and transmits a downstream signaling cascade similar to that observed 

with TLR binding (see Figure 6 on section “PRRs” below; Medzhitov, et al., 1997). 

Interestingly, the IL-1ra acts as an anti-inflammatory cytokine by binding IL-1RI with a high 

avidity but without inducing signal. In addition this high avidity blocks future binding of IL-

1α and IL-1β (Antin et al., 1994; Dinarello, 1994). 

The second receptor IL-1RII on the other hand, acts as a decoy receptor (Symons et al., 1995) 

and is expressed on activated T cells, B cells, monocytes, and neutrophils (Giri et al., 1990). 

IL-1RII occurs as both a membrane-bound and soluble receptor (sIL-1RII) (Sims et al., 1994). 

 

 

Type I interferons (IFNs) are polypeptides secreted by infected cells or upon PRR activation. 

They induce cell-intrinsic antimicrobial factors in infected and neighbouring cells to limit the 

spread of infectious agents, particularly viral pathogens. They also modulate innate immune 

responses by inducing the secretion of IL12 and IL18 to promote antigen presentation and 

natural killer cell functions. This arm aims also to restrain pro-inflammatory pathways and 

cytokine production. Finally, they activate the adaptive immune system, thus promoting the 

development of high-affinity antigen-specific T and B cell responses and immunological 

memory. Type I IFNs are protective in acute viral infections but can have either protective or 

deleterious roles in bacterial infections (Trinchieri, 2010, Ivashkiv and Donlin, 2014). 



 

IFNα and IFNβ bind the ubiquitous IFN-α receptor (IFNAR) a heterodimeric transmembrane 

receptor composed of IFNAR1 and IFNAR2 subunits. Canonical type I IFN signaling 

activates the Janus kinase (JAK)–STAT pathway that will complex with IFN-regulatory 

factor 9 (IRF9) into the nucleus leading to transcription of IFN-stimulated genes (ISGs) (see 

Figure 5 in the next section). 

 

 

Interferon Gamma (IFN-γ, also referred to as a Type II IFN) is induced by a unique set of 

stimuli and is produced by T lymphocytes and natural killer (NK) cells. Interestingly, viral 

infection of these cells does not directly induce IFN-γ production. 

In contrast to type I IFNs, IFN-γ is primarily an immunomodulator that also can exert to a 

lesser extent some antiviral activity. It can be induced by antigen presentation through MHC-I 

or MHC-II for CD8+ T cells or CD4+ T cells respectively. In vitro, a direct TCR stimulation 

by anti-CD3 or mitogen (i.e. Streptococcus Enterotoxin B) can also induce its production. 

One of the major physiologic roles of IFN-γ is its ability to regulate MHC-I and MHC-II 

protein expression (notably on immune cells). It participates also in the inflammatory 

response notably by enhancing TNF production and activity. 

In whole blood, except for the red blood cells, all the cells (including the platelets) express the 

single IFN-γ receptor (IFNGR) (Farrar and Schreiber, 1993; Platanias, 2005). The IFNGR 

triggering by IFN-γ  induces a JAK1/JAK2-STAT1 pathway that will activate IFN-γ  binding 

sites (GAS) in the DNA leading to the transcription of the related IFN stimulated genes (ISG) 

(see Figure 5). 
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An effective innate immune response depends largely on its ability to rapidly detect and react 

against a broad range of foreign pathogens (Janeway, 1989). To distinguish infectious 

nonself- molecules from self-molecules innate immune cells expressed a large variety of 

pattern recognition receptors (PRRs) which bind to conserved molecular structures, found on 

a variety of pathogens, called pathogen-associated molecular patterns (PAMPS) (Medzhitov 

and Janeway, 1997; Akira et al., 2006). PRRs can also recognize immunostimulatory products 

that are derived from damaged tissue or necrotic cells, termed damage-associated molecular 

patterns (DAMPs), and this recognition is crucial for host defence and tissue remodeling 

(Medzitov, 2007).  

Currently, four major families of PRRs have been described— Toll-like receptors (TLRs), 

RIG-I-like receptors (RLRs), NOD-like receptors (NLRs) and C-type lectin-like receptors 

(CTLRRs)—that allow the recognition of a large range of PAMPs, including proteins, nucleic 

acids, lipids and carbohydrates, derived from foreign microorganisms (see Figs. 6 and 7). 

Interinstingly, those receptors can cooperate to act sygernistically or to modulate each others 

against danger signals (Trinchieri and Sher, 2007). 
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Toll-like receptors (TLRs) are evolutionarily conserved transmembrane receptors with a 

leucine-rich extracellular domain involved in ligand recognition and exist as dimeric proteins 

(heterodimers or homodimers). Furthermore, its cytosolic Toll/IL-1 receptor-like (TIR) 

domain transmits the intracellular signal in response to ligand binding (Akira and Takeda, 

2004). This signaling cascade leads to the activation of nuclear factor kB (NF-kB), activator 



 

protein 1 (AP1), IRF3, and other transcription factors, driving the production of 

proinflammatory cytokines, maturation of dendritic cells, and other immunologic responses 

(see Figure 6). 

In human, 11 TLRs have been described so far, commonly divided into two subgroups 

depending on their cellular localization. The first group is composed of TLR1, TLR2, TLR4, 

TLR5, TLR6 and TLRs 10– 13, which are expressed on cell surfaces and recognize mainly 

microbial surface components. The second group includes TLR3, TLR7, TLR8 and TLR9 

that are preferentially expressed in the endoplasmic reticulum in resting cells and rapidly 

traffic to endolysosomes after stimulation by microbial nucleic acids. Ligation of TLRs by 

PAMPs induces a tightly controlled cascade of intracellular signaling molecules, leading to 

the expression of NF-κB-dependent pro-inflammatory cytokines or IRF-dependent type I 

IFNs (DiDonato et al., 2012). 

 

 

RIG-I like receptors (RLRs) are a family of cytoplasmic RNA helicases, including retinoic 

acid-inducible protein I (RIG-I) (Pichlmair et al., 2006) and melanoma differentiation-

associated protein 5 (MDA5; also known as IFIH1) (Kato et al., 2006) that are essential for 

innate recognition of viruses and production of type I IFNs through a STING/IRF3 dependent 

axis to control viral replication and dissemination.  

RIG-I is an IFN-inducible protein containing CARDs and a DExD/H box helicase domain and 

has been identified as a cytoplasmic single (ss) and double (ds) strain RNA detector (Figure 

7) (Yoneyama et al., 2004). 

MDA5, a molecule showing homology to RIG-I, has also been implicated in the recognition 

of viral dsRNA (Andrejeva et al., 2004; Kang et al., 2002). In addition, these proteins bind the 

synthetic form, poly I:C.  

In addition, other molecules or complexes have been recently discovered to sense cellular 

RNA or DNA (Sun et al., 2012). For example, the DNA sensor cyclic guanosine 

monophosphate-AMP synthase (cGAS) induces IFN type I production through the same 

STING/IRF3 dependent axis (Figure 7) (Watson et al., 2015). 
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NLRs consist of a large group of intracellular PRRs, such as nucleotide-binding oligomeri-

zation domain proteins (NODs) and NOD-, LRR- and pyrin domain-containing proteins 

(NLRPs), that are crucial for host defense against bacterial infection (Philpott et al., 2014).  

Among the large number of NOD-LRR family members, NOD1 and NOD2 are the best 

described and both contain N-terminal CARD domains. NOD1 and NOD2 are cytosolic 

proteins that respond to intracellular fragments of bacterial peptidoglycan. A missense point 

mutation in the human NOD2 gene is correlated with susceptibility to Crohn’s disease, an 

inflammatory bowel disease. Ligand binding to NOD1 and NOD2 causes their 

oligomerization and initiates nuclear factor-κB (NF-κB)-dependent and mitogen-activated 

protein kinase (MAPK)-dependent gene transcription through the recruitment of RIP2/RICK, 

a serine/threonine kinase, to the NODs via their respective CARD domains (Figure 7). 

Some of these sensors are associated to specific complexes called inflammasomes. One of the 

most studied is the NOD-like receptor family member NOD-, LRR- and pyrin domain-

containing 3 (NLRP3). NLRPs form multiprotein inflammasome complexes consisting of an 

NLRP (or other PRRs), the adaptor ASC and pro-caspase 1. Activation of inflammasomes 

results in the autocatalytic processing of pro-caspase 1 into its active form, which then cleaves 

pro-IL-1β and pro-IL-18 into IL-1β and IL-18, respectively, which can then be secreted (see 

section IL-1β above). In addition, inflammasome activation can elicit pyroptosis, a specific 

form of cell death, of infected cells. 

 

C-type lectin-like receptors (CTLRs) are a large family of protein receptors (more than 1000 

members) crucial in the recognition of self- and nonself-ligands (i.e. carbohydrates). Ligands 

bind to the conserved C-type lectin-like domains (CTLDs). After triggering, CTLRs can 

mediate diversified downstream responses like uptake of microorganisms, homeostatic 

clearance of apoptotic cells, adaptive immune response polarization through cytokine and 

chemokine expression or cell–cell adhesion (reviewed in Plato et al., 2013). 

CTLRs can signal directly, through integral motifs in their cytoplasmic tails, or indirectly, 

through association with adaptor chains. Most activation receptors associate with ITAM-

bearing adaptor chains. This is the case for the ones included in the well-studied Dectin-1 

cluster (including notably CLEC-1, CLEC-2, Dectin-1 (or CLEC-7A), CLEC-9A) that resides 

within the natural killer gene complex (NKC). These receptors can be found mostly on 



 

myeloid cells such as DCs, macrophages and neutrophils but also on platelets (Suzuki-Inoue 

et al. 2007). Multiple pathways downstream of Dectin-1 rely on Syk (Figure 6) leading to the 

control of several axes such as calcineurin/NFAT; ROS/NLRP3 inflammasome; and the 

phosphorylation of CARD9-Bcl10-Malt1 complex which in turn activates NF-κB. (Tsang et 

al., 2008; Rawlings et al., 2006). 

Others CTLRs members signal through motifs not matching with ITAM, ITAM-like or ITIM 

sequences and the underlying signaling pathway is poorly understood for most of them with 

some exceptions such as DC-SIGN (Svajger et al., 2010). 

A major general component of a PRR-induced innate immune response is the production of 

proinflammatory cytokines and interferons (IFN). PRR activation also can initiate 

phagocytosis, autophagy, cell death, and cytokine processing (Pichlmair et al., 2006; 

DiDonato et al., 2012).  

In addition to inducing different pro-inflammatory molecules pattern, the PRRs can present 

evolutionary genetic polymorphisms across individuals due to differential pathogen’s 

exposure. These combined factors (among others) can induce heterogeneity across individuals 

in the intensity and/or the quality of the response upon exposure to the same pathogen. 
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To evaluate this heterogeneity across healthy individuals, using our whole blood model, we 

have induced an inflammatory environment by targeting specific PRRs using purified 

molecular patterns (PRRs ligands) or concomitantly several PRRs by using whole microbes to 

be able to deconvolute which pathways were participating to the final induced inflammation. 

In the coming section, I will describe briefly the different components of microbe ‘s that can 

trigger PRRs signaling. The list of the clinically relevant stimuli used in our study with 

associated triggers is summarized in the Table 4 below to help the reader to connect with the 

whole blood model. 



 

 

 

(Adapted from Duffy et al., Immunity 2014) 

 

 

 

The outer membrane of the double membrane envelope of Gram-negative and Gram-positive 

bacteria contains numerous components that bind PRRs.  

The endotoxin LPS, or lipopolysaccharide, is the main component of the outer membrane of 

Gram-negative bacteria (i.e. E.coli) and contains a Lipid A portion recognized by TLRs 

(Miller et al., 2005) which induce an intense immune response that can lead to lethal septic 

shock. Due to this property, LPS is frequently used as an exogenous stimulatory inducer in 

both in vivo and ex vivo model systems (see Table 4). LPS sheds from the bacteria wall, 

associates with LPS binding protein (LBP), an acute-phase protein present in the bloodstream, 

and then binds to CD14, expressed preferentially on the cell surface of monocytes. LPS is 
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then transferred to MD-2, which associates with the extra-cellular portion of TLR4, followed 

by oligomerization of TLR4, a key molecule of LPS signaling (Poltorak et 1998; Shimazu et 

al., 1999). 

Lipoproteins and peptidoglycan (PG) are other strong immunogenic components present in 

both Gram-positive (i.e. S. aureus) and Gram-negative bacteria. TLR2 plays a major role in 

detecting Gram-positive bacteria and is involved in the recognition of a variety of microbial 

components, including lipoteichoic acid (LTA), lipoproteins, and PG. TLR2 forms 

heterodimers with TLR1 or TLR6, which allows the discrimination of subtle changes in the 

lipid portion of lipoproteins (Alexopoulou et al., 2002; Ozinsky et al., 2000; Takeuchi et al., 

2001) that can be mimic by the use of synthetic lipoproteins (Pam3CSK4 and FSL-1 

respectively). NOD1 detects d-glutamyl-meso-diaminopimelic acid (iE-DAP), which is 

primarily found in Gram-negative bacteria PG. NOD2 detects muramyl dipeptide (MDP) that 

is ubiquitously present in bacterial PG (Chamaillard et al., 2003; Girardin et al., 2003 and 

Table 4). 

Flagellin is the major protein constituent of bacteria. TLR5 is responsible for the detection of 

its constant domain D1, is relatively conserved among different species and can be triggered 

using a purified form (FLA-ST from S. typhimurium; Table 4) (Hayashi et al., 2001). Some 

bacteria, such as Helicobacter pylori and Campylobacter jejuni, produce flagellins that lack 

proinflammatory properties and therefore escape the flagellin-specific host immune responses 

(Andersen-Nissen et al., 2005). 

 

Bacterial genomic DNA contains unmethylated CpG dinucleotides in a particular base context 

(referred to as CpG-DNA) that induce strong immunostimulatory activities, such as 

inflammatory cytokine production and Th1 immune responses (Hemmi et al., 2000; Krieg, 

2002). The particular DNA sequences that induce an immune response vary between species. 

Synthetic oligonucleotides containing the CpG motif are commonly used for in vitro 

experiments (i.e. ODN2216; Table 4). Since TLR9 resides in the endosome, bacterial DNA 

must be delivered to this intracellular compartment, for double-stranded DNA degradation 

into multiple single-stranded CpG-motif-containing regions that will interact with TLR9 

(Ahmad-Nejad et al., 2002; Latz et al., 2004).  

The bacterial DNA presents in the cytoplasmic compartment, can bind to cytosolic DNA 

sensors like AIM2 that will induce inflammasome activation, or such as cGAS leading to a 

type I IFN production. 



 

 

Mycobacteria are intracellular bacteria that survive in host macrophages by a number of 

elaborate mechanisms. The mycobacterial cell wall is composed of a thick mixture of lipids 

and polysaccharides. Purified mycobacterial cell-wall components have been shown to 

preferentially activate TLR2 and, to a lesser extent, TLR4. Lipomannan (LM) and 

lipoarabinomannan (LAM) are related powerful immunomodulatory lipoglycans for which 

the purified forms from Mycobacterium smegmatis (LM or LAM-MS) can be used for 

experimental models (see Table 4). Found in slow-growing virulent myco-bacteria (i.e. M. 

tuberculosis, Bacille of Calmette-Guerin or BCG), the mannosyl form of the LAM 

(manLAM) has been described as a powerful anti-inflammatory molecule (reviewed in Akira 

et al., 2006).  

In addition, TLR2 in association with TLR1 can recognize a secreted antigen of M. 

tuberculosis (Thoma-Uszynski et al., 2001), and mycobacterial DNA, released during 

endolysosomal degradation or by the bacterial ESX-1 perforating system, can bind to TLR9 

or intracytoplasmic DNA sensors (i.e. cGAS) respectively (Watson et al., 2015). It has been 

shown that Dectin-1 can recognize an unidentified ligand on mycobacteria, which leads to the 

production of IL-12 (Sancho and Reis e Sousa, 2012). 

 

Several fungal PAMPs located in the cell wall or on the cell surface of fungi are recognized 

by TLR2 or TLR4. 

Dectin-1 binds b-glucan and is the primary receptor on macrophages for phagocytosis of 

various fungi (Brown et al., 2002). The particulate S. cerevisiae b-glucan (WGP) is used to 

specifically trigger Dectin-1 (Li. et al., 2007; see Table 4). It has been demonstrated that 

dectin-1 can collaborate with TLR2 in response to yeast (i.e. C. albicans) to elicit a strong 

inflammatory response via recruitment of the protein tyrosine kinase Syk (Gantner et al., 

2003; Rogers et al., 2005; Underhill et al., 2005). In addition to dectin-1, other CTLRs such as 

the type 3 complement receptor, the mannose receptor, and DC-SIGN are implicated in the 

recognition and phagocytosis of Candida (Takahara et al., 2004). Dectin-1 can orchestrate 

effective antifungal mechanisms through Th1 and Th17 responses, which are defective in 

human patients with homozygous non-functional Dectin-1 (Hardison and Brown, 2012). 
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Various viral structural components, including viral DNA, double-stranded RNA (dsRNA), 

single-stranded RNA (ssRNA), and surface glycoproteins, are recognized as PAMPs by TLRs 

and other PRRs. The recognition of viral components by PRRs commonly induces type I IFN 

production that can activate target cells in both autocrine and paracrine manners. 

Like previously described for bacteria, DNA viruses (i.e. herpes simplex virus) contain 

genomes that are rich in CpG-DNA motifs, which can trigger endosomal TLR9 (Hochrein et 

al., 2004; Krug et al., 2004a, 2004b; Lund et al., 2003; Tabeta et al., 2004). Cytoplasmic Viral 

DNA can bind to cytosolic DNA sensors like AIM2 or cGAS. 

ssRNA can be recognized by TLR7, TLR8 and RIG-I. Many enveloped viruses such as 

influenza, traffic into the cytosol through the endosomal compartment. The phagolysosome is 

a highly acidified environment leading to ssRNA release and recognition by TLR7 or TLR8. 

The RIG-I sensing targets genomic ssRNA directly released in the cytoplasm (i.e. Sendai 

virus) or during the replication step (i.e. Influenza virus). The TLR7 and TLR8 genes show 

high homology to each other. As a consequence, those receptors recognize similar synthetic 

antiviral imidazoquinoline components (i.e. Gardiquimod for TLR7 and R848 for TLR7 and 

TLR8) as well as uridine-rich or uridine/guanosine-rich ssRNA of both viral and host origins 

(Hemmi et al., 2002; Heil et al., 2004; Diebold et al., 2004).  

dsRNA such as synthetic analog, polyinosine-deoxycytidylic acid (poly I:C), can be 

recognized by TLR3 and RLRs members like RIG-I and MDA5 and are potent inducers of 

type I IFNs (Alexopoulou et al., 2001; Table 4). TLR3 is specifically expressed in 

conventional DCs (cDCs) that phagocytes dying cells, but not in pDCs. Immunization with 

virus-infected cells or cells containing synthetic dsRNA leads to a striking increase in CTL 

crosspriming against cell-associated antigens, which is largely dependent on TLR3 expression 

by antigen-presenting cells (Schulz et al. 2005; Yatim and al., 2015). 

Some viral-envelope glycoproteins can be recognized by TLR4 or TLR2 leading then to an 

inflammation by the production of proinflammatory cytokines rather than specific antiviral 

responses. 

 

 

  



 

 

 

Natural selection leaves molecular changes in the genome depending on whether the variant 

was i) advantageous, increasing its frequency through positive selection; ii) deleterious, 

leading to its disappearance by negative selection; or iii) favored in combination with the 

maintenance of allelic diversity, in which case multiple alleles will be maintained at 

intermediate frequencies by balancing selection (Vitti et al., 2013). Genome-wide analysis 

(GWAS) for positive selection have detected thousands of loci displaying signatures 

suggesting that functional polymorphisms in these genes have conferred a selective advantage 

for host survival. These studies have identified a number of biological functions as being 

particularly strongly targeted by selection, including pigmentation, metabolic traits and 

immunity-related genes. Indeed, it seems that immune-related genes have been privileged 

targets of positive and negative selection in human and non-human populations (reviewed in 

Barreiro and Quintana-Murci, 2010).  

This observation is consistent with the massive re-population imposed by infectious disease 

waves throughout time (Casanova et Abel, 2005). A current reflection of this past 

demographic phenomenon is the important observed balancing selection, generally rare in the 

human genome (Andres et al. 2009), observed for human leukocyte antigen (HLA) genes and 

KIR. The high level of diversity at these loci is potentially due to acquired advantage for 

heterozygous individuals to detect a wider variety of microbes (Parham, 2005; Prugnolle et 

al., 2005; Fumagalli et al., 2009). At the level of innate immunity, several recent studies have 

characterized the diverse impact of selection on families of innate immune genes providing 

insights into their relative importance in the human lineage (reviewed in Quintana-Murci and 

Clark, 2013).  

In that context, the aim of the evolutionary genetics approach is to look for the footprints of 

past natural selection in the genome of present populations. 
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Different technological approaches are available to evaluate phenotypic immune variations or 

to understand the mechanisms underlying an immune response. In addition an increasing 

number of high-throughput tools are currently available to measure numerous parameters 

and/or numerous samples helping greatly in designing population-based study. With the help 

of those technologies and depending of the scientific question several models can be used to 

characterize immune response. In this section, I will mentioned the tools available for 

immune monitoring and present the different models that can be used for hypothesis research 

finishing by the rational of using whole blood stimulation system. 

 

 

As depicted in the previous sections, the immune system can be characterized thanks to the 

expression of a myriad of molecules that will be tightly and specifically regulated whenever 

an immune response will be triggered. 

One first level of analysis is the proteomic approach that is routinely used in clinic to detect 

and measure the progression of inflammations by the analysis of clinically approved 

biomarkers (i.e. CRP). To better assess the entire complexity of secreted inflammatory 

proteins in serum or in culture supernatant, multiplex assay can be used to determine the 

underlying pathways and cell types involved.  

The quality and quantity assessment of specific cellular populations based on intracellular or 

extracellular markers is commonly analyzed using multiparameter staining by flow 

cytometry.  

In addition, in vitro functional cellular assays can measure innate or antigen-specific 

responsiveness (i.e. migration, cell death) in cells exposed to immunogenic factors. 

The current model systems commonly used in research laboratory to analyze the immune 

response across time, conditions and tissues, are animal models and cell and tissue based 

systems.  

To go further in the cell regulation analysis, the genomic approach using DNA or RNA 

sequencing can determine potential genetic polymorphisms (i.e. genome-wide association 

studies) or allow gene identification. RNA sequencing, RT-qPCR or hybridization approaches 



 

measure the abundance of gene expression that can be then compared in different conditions 

(homeostasic vs inflammatory) or across tissues/cell types.  

Since the last centuries those approaches have largely contributed in the understanding of 

immunological mechanism/regulation and have been the source of the major discoveries in 

biology and constitute a reference for molecular pathways or general immunological concepts 

commonly accepted. 

 

 

Cell-based assays are widely used and contribute strongly to the understanding of 

mechanisms restricted to singular cell or tissue types and also for drug discovery screening as 

they provide a quite simple, high-throughput and cost-effective system before use in animal 

model.  

To understand at the molecular level the pathways involved in the regulation of a specific cell 

type, the cleanest model is the isolation and in vitro manipulation of the cell of interest. By 

using immunological and molecular technologies, this approach allows to decipher the 

mechanisms implicated in a given population or even at a single cell level. More recently, 

there has been an increased interest for single cell studies that reveal that even in a highly 

purified population (upon same environmental conditions) there exists heterogeneity between 

cells with cyclic gene regulation that modify the level of expression measured at a given 

timepoint adding a new layer of complexity. The major caveat on these observed signatures is 

the strong dependence on the study design (i.e. isolation method, growth factors used) and the 

technology used that caution against general interpretation across studies (Cooper and 

Shedden, 2013; Gawad et al., 2016). Most approaches use single defined primary cell types or 

cell lines, without taking into account the importance of cellular interactions and/or the 

microenvironment for a given immune response. For these reasons the animal model appears 

more adapted to take into account the impact of a complex environment. 

 

 

Since a long time, scientists have conducted experiment on animals to observe and understand 

biological structure and function. Because most of the studies cannot be performed in 
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humans, the animal model has been accepted as an analogical model to conduct and interpret 

physio-pathological experiments. 

One remarkable historical example from the 19th Century was the use by Louis Pasteur and 

Emile Roux of animal models to produce and test the rabies vaccine before the first human 

trial (P. Debre, 2000). 

Since then, following technological advances, numerous models have been developed or 

selected to mimic human diseases (i.e. inducible, spontaneous, genetically modified models) 

contributing in successful human clinical applications.  

Nonetheless, recent comparisons revealed the limitations of using animal models (and cell 

lines) as a way to explore human pathogenic conditions (Editorial, Of men, not mice, 2013). 

Concerning the specific case of transcriptomic studies, the match between inflammatory 

responses in human and mice has been reported to be really poor (Seok et al., 2013). These 

discrepancies can be due to the species differences observed in the innate and adaptive 

immune cell populations. As examples, we can highlight the absence of CLEC2 (a CTLR 

member) expression by mouse neutrophils (Mantovani et al., 2011) or expression of TLR4 

and CD14 (the two canonical ligands for LPS) in mouse B cells in contrast to human B that 

are unresponsive to LPS (Garrault et al., 2012). Those findings caution against extrapolation 

across species and motivate to continue to develop reliable tools for human immune 

explorations that mimic as much as possible physiological conditions. 

 

 

The major limitation in human studies is the access to the relevant tissue(s). In contrast, blood 

sample collection is relatively non-invasive, easy to perform and containing the cells of the 

immune system. As the blood stream system circulates through all the tissues, those cells are 

exposed to stimuli from potential local injury, malignant or infectious sites in addition to the 

systemic factors (i.e. diet, inflammatory molecules). In the previous chapter, we have already 

indicated that innate and adaptive immune cells compose blood cells at different stages of 

differentiation (naïve, memory, activated), recently or anciently educated. For these different 

reasons, the study of whole blood may reflect systemic changes. 

In addition, in contrast to studies examining functional responses of single leukocyte subsets, 

the use of a whole-blood approach enables the examination of the responses of potentially all 

leukocytes simultaneously therefore more closely mimicking in vivo inflammatory responses 

generated by the addition of pro-inflammatory molecules or microbes of interest (Crucian and 



 

Sam, 1999; Deenadayalan et al., 2013). This approach allows also the analysis of early events 

between cells and inflammatory components keeping the complex inter and intra-cellular 

cross-talk (Morris et al., 2012). Supporting this aspect, using whole blood allows the retaining 

of any soluble factors present in serum that influence cell activation. As example, the plasma 

contains glucose, which is an essential source of energy utilized in cellular metabolism, but 

also the proteins of the complement that we have described previously as active partners of 

immune cells functions upon inflammation. Same for lipopolysaccharide (LPS) binding 

protein (LBP), which is necessary for cellular responses to exogenous LPS stimulation 

(Hamann et al., 2005; Alberts, 2005). In the bench side, utilization of a whole-blood assay 

avoids potential bias from cellular stimulation associated with leukocyte subset isolation 

techniques (Nerad et al., 1992; Wilson et al., 1991; Stibenz and Buhrer, 1994) 

Another technical critical aspect that can influence the generation of reproducible data is the 

fact that whole blood assay requires minimal sample manipulation to assess cytokine 

production when compared to other methods that require labor intensive isolation and 

culturing of specific cell populations. 

 

Currently, there is an increasing movement of medicine toward the use of individual therapy 

approach for the cure of different pathological conditions (i.e. autoimmunity, cancer) or to 

improve vaccine campaign efficacy. This implicates a better understanding of the 

physiological cells interplay upon different inflammation conditions taking into account the 

inter-individual variability. In the same manner, there is still a need for accurate analysis of 

the factors (genetic and/or environmental) that can impact intrinsic immune phenotype, from 

the same tissue type, that could be linked to potential differences observed across individuals 

in induced immune responses studies. To that end, the data presented in this thesis aimed to 

gain insight into simplified deconvolution of acute inflammation in a standardized whole 

blood model that can help in the mapping of clinical relevant immunogenic components and 

identify outliers. In order to help in future deeper deciphering of inter-individual variance, the 

impact of genetic and environmental factors on standardized whole blood immune parameters 

was determined. Our aims were: i) develop standardized model of acute inflammation and 

immune phenotype analysis; ii) deconvolute four major inflammation signatures in clinical 

relevant whole blood model; iii) identify parameters that influence immune response and iiii) 

provide interactive reference datasets from highly annotated healthy individuals. 
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The Milieu Intérieur (MI) project aims to determine what are the genetic and environmental 

factors that drive the human immune response and to provide a large dataset that can be used 

as reference values by the community.  

The use of whole blood as a clinical relevant model for human studies is undeniable but still 

presents some technical challenges. In the previous section, we have introduced the key 

elements to consider for the analysis of induced immune responses. The complex cell 

composition and the fact that each cell presents specific inflammatory response properties 

requires development of standardized tools to limit introduction of technical bias that could 

increase external inter-variability. 

In a previous study within the consortium, we have shown that the use of standardized devices 

and protocols able to provide high quality datasets for the analysis of whole blood induced 

immune response in term of protein secretion. In term of transcriptomic analysis, there is still 

some need in the community for standardized protocols and highly annotated datasets that can 

be both transposed in different platforms for the induced immune response monitoring in 

healthy or pathological conditions. 

Using the stimulated cell pellets from 25 donors (30-39 years old) from the Milieu Intérieur 

collection, in this collective study my PhD work has been driven by three principal aims i) 

Development of standardized mRNA expression analysis from whole blood syringe 

based assay stimulations ii) Use and development of specific statistic tools for mRNA 

analysis to define four major inflammatory cytokine induced signatures iii) 

deconvolution of complex induced immune responses using these restricted cytokine 

induced gene signatures. 

The experiments described here were designed to determine if those tools could be useful to 

the community for future whole blood dataset sharing and leads to a publication in Cell 

Reports (Urrutia et al., 2016). 
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The initiation of inflammatory responses is typically triggered by a local event engaging 

sentinel cells, leading to the subsequent recruitment and accumulation of leukocytes. This 

process can result in the elimination of the initial cause of tissue disruption, the clearance of 

dying cells and establishes a path towards tissue resolution.  

Cytokines mediate cell-to-cell communication, acting to recruit immune cells to inflammatory 

microenvironment and drive the required effector mechanisms. Despite the inherent 

complexity of these processes in natura, analyses of inflammation have typically focused on 

the decision-making circuits within cells, and, in most cases, have been restricted to single 

cell types (Amit et al., 2009; Jovanovic et al., 2015; Lee et al., 2014). Several other studies 

have assessed in vivo responses to vaccination, typically performing sampling over time to 

assess induced protein, mRNA expression and seroconversion (Banchereau et al., 2014; Li et 

al., 2014; Tsang et al., 2014).  

While informative, these latter approaches permit the testing of only one stimulation 

condition per individual and are restricted to qualified or experimental vaccines. To properly 

account for inter-individual variability in the deconvolution of complex immune responses 

both simple (synthetic or purified ligand) and complex (live or heat killed microbe), 

stimulations must be performed in the same donor and at the same time, and standardized 

approaches for all steps from sample collection to analysis must be applied.  

To test the hypothesis that responses to Toll-like receptor ligands or whole microbes can be 

captured by the transcriptional signature of key effector cytokines, we employed a 

standardized whole-blood stimulation approach with an automated single step RNA 

extraction, and hybridisation gene array readout. Stimulations were performed at the point-of-

care, using syringe-based medical devices (TruCulture tubes), in a pilot study that consisted 

of 25 well-characterized healthy individuals of European ancestry (Thomas et al., 2015).  

Previously, we reported the testing of protein signatures present in the culture supernatant 

(Duffy et al., 2014). Herein, we used the cell pellets extracted from the TruCulture stimulation 

systems to define the transcriptional response to clinically relevant cytokines; interferon-alpha 

2A (IFNA), interferon-beta 1 (IFNB), interferon-gamma (IFNG), tumor necrosis factor-alpha 

(TNFA), and interleukin 1-beta (IL1B). By defining unique and distinct gene expression 

signatures of cytokine-induced transcription, it was possible to test the clustering and 

classification of responses to Toll-like receptor (TLR) agonists or whole microbes (including 
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heat killed (HK) gram-negative bacteria, HK gram-positive bacteria, HK fungi, live 

mycobacteria and viruses).  

Our results demonstrate the ability to define complex stimuli in terms of the underlying 

cytokine loops. Moreover, we provide reference values that reflect the degree of naturally 

occurring variation of immune responses among healthy individuals originating from a 

homogeneous European background. These data have been made available as a reference for 

the community, accessible through an online R-Shiny application that permits data-mining 

using the analytical methods presented.  

 

 

 

To perform ex vivo stimulation, while preserving physiological cellular interactions, we 

utilized syringe-based medical devices for activating immune cells present in whole-blood. 

Based on initial dose-finding studies, quality assurance, solubility and stability testing (Duffy 

et al., 2014), we prioritized stimuli for development in TruCulture whole-blood collection and 

culture devices (Myriad RBM). After 22-hours stimulation, insertion of a valve separator 

yielded a cell pellet that was stabilized in Trizol LS, and stored at -80oC for subsequent 

mRNA expression analysis utilizing the NanoString nCounter technology (Figure 8). 

 

 

 
Due to the Trizol content in our samples and to minimize pre-analytical biases, we established 

an automated mRNA single-step chloroform-free extraction protocol (Tecan script provided 



 

on-line, see www.milieuinterieur.fr/en). Direct comparison with conventional RNA extraction 

protocols indicated excellent correlation in gene expression counts between the two extraction 

methods (Spearman's Rank-Order Correlation, rs > 0.99, Figure 9).  

 

 

Expression data were normalized with nSolver™ Analysis Software (NanoString), using four 

housekeeping genes: RPL19, TBP, POLR2A, and HPRT (Figure 10A-D). These 4 

housekeeping genes were selected following the application of the geNorm method 

(Vandesompele et al., 2002), an established algorithm for identifying stable housekeeping 

genes. The selection of these genes is supported by their strong correlations pre- and post-

stimulation (rs > 0.9) across the 25 donors, in contrast with those housekeeping genes that 

were discarded (rs < 0.7) (Figure 10B and data not shown). 

The overall rationale for the selection of the NanoString platform, as compared to other 

transcriptional profiling strategies, is presented in Table 5. 

 This choice was validated by the high reproducibility of the data obtained when experiments 

were performed at different times or at separate institutional core facilities (rs > 0.98, Figure 

9). 
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To assess the signatures induced by cytokine stimulation, we analyzed the expression data of 

a total of 572 genes in the 25 donors, using unsupervised principal component analysis (PCA) 

(Figure 11A). The PCA revealed strong clustering of stimuli-specific responses, with the first 

three principal components (PCs) explaining 55% of the total variance; PC1 separated IL-1B 

and TNFA from IFNB and IFNG; and PC2 distinguished TNFA from IL1B, and IFNB from 



 

IFNG. Of note, the response to IFNA was also tested, and found to be similar to that of the 

IFNB response (t-test with q < 0.05, reported no variables as significantly different between 

the 2 stimuli) (Figure 12), and therefore IFNA was excluded from further analyses.  

To reduce the dimensionality of the data and exclude genes that did not contribute to unique 

cytokine induced signatures, we next defined the differential gene expression for each 

stimulus with respect to the null control using linear support vector machine (SVM) 

approaches (Burges, 1998). This enabled us the selection of predictive cytokine gene 

signatures from gene lists ranked according to a paired t-test (individual stimulus vs. null 

condition). Bootstrapping of data in the SVM training phase ensured robust results (details 

provided in the materials and methods). The union of the selected cytokine gene signatures 

yielded a set of 44 genes that separated the four cytokine stimuli (Table 6). The resulting 

PCA projection revealed that the four stimulation conditions could be separated into four 

clearly distinct clusters based on the expression levels of these 44 genes, with PC1 and PC2 

capturing 82% of the total variance (Figure 11B). The 44 genes are represented on a biplot – 

a synchronized dual projection of the variables that drive the loading of the PC vectors 

(Figure 11C). 
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To quantify the improved clustering provided by this approach, we calculated silhouette 

scores, i.e., a measure of the distance between the respective k-means clusters, reported for 

each sample based on the likelihood to fall into one cluster as compared to any of the three 

other defined clusters. Comparison between the scores that were based on the complete 572 

gene set versus the selected 44 gene set, revealed a higher score with reduced dimensionality 

of the feature list and a focus on those most highly discriminating genes (Figure 13). 

 

 

While our analyses revealed specific cytokine gene signatures, there was modest overlap in 

the induced gene lists when the stimulation conditions were compared to the null (Figure 13). 

Hierarchical clustering of the filtered gene list displayed the unique and overlapping gene 

expression for the four cytokine groups (Figure 14). 
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To examine the intersection among cytokine-induced genes, we first analyzed the induction of 

IFNB, IFNG, IL1B and TNFA gene expression. While none of the four cytokines triggered 

high levels of type I or type II IFN expression (Figure 15A), IL-1B and TNFA both induced 

high expression of IL1B mRNA, and all four cytokine stimuli induced modest expression of 

TNFA (Figure 15A).  

These data suggest potential cross-talk among the pathways and highlight a strong feed-

forward inter-cellular spread of IL-1B signaling. While this has been previously shown 

(Dinarello et al., 1987), to our knowledge, there is no mechanistic understanding of how IL-

1B activates the inflammasome and triggers caspase-1 activation. Unexpectedly, this analysis 

revealed two outlier individuals who showed high expression levels of IL-1B-induced IFNG 

(marked by red and blue dots, Figure 15A).  

To establish if the observed high levels of IFNG expression resulted in higher protein 

secretion, we re-analyzed our previously published protein dataset (Duffy et al., 2014) 

generated using samples from the same donors and indeed, the two individuals showed the 

highest levels of IFNG protein in the culture supernatants (Figure 15B).  

The presence of recombinant protein that was used as the stimulus restricted the interpretation 

of potential positive feedback loops for the given protein (these data points are masked by a 

grey box, Figure 15B). 

 

 



 

In addition to the induction of IFNG by the two outlier individuals, we also observed higher 

expression of several IFNG-induced genes, as compared to the other donors studied (Figure 

16A, B, C).  

Together, these data support the concept that the induced innate responses include the 

spreading of signals through cytokine feedback loops and potential cross-talk among the inter-

cellular pathways.

 

 

  



-  

 

During vaccination or acute infection, the immune system is exposed to agonists that 

stimulate Toll-like receptor (TLRs) signaling. In such conditions, small numbers of cells are 

engaged, triggering in turn the production of cytokines that spread the inflammatory response.  

To test this concept, we evaluated whether the induced transcriptional responses to the four 

effector cytokines are capable of capturing the diversity of seven well-defined TLR agonists 

(Duffy et al., 2014): FSL-1 (FSL, also known as Pam2C) that engages the TLR2-TLR6 

heterodimer; poly IC (pIC) that engages TLR3; lipopolysaccharide (LPS) that engages TLR4; 

flagellin (FLA) that engages TLR5; gardiquimod (GARD) that engages TLR7; R848 that 

engages both TLR7 and TLR8; and CpG-2216 oligonucleotide (ODN) that engages TLR9.  

Limiting doses of the respective agonists were selected to more closely reflect in vivo 

responses, and to ensure that we were working within the linear range of physiological 

responses (please refer to Duffy et al. (2014) or www.milieuinterieur.fr/en for details on the 

dose and source of these reagents).  

To assess potential similarity in gene expression, we projected the data from each of the seven 

TLR stimuli onto a fixed PCA coordinate, which was defined by the eigenvectors and 

eigenvalues of the optimized PCA of the four-cytokine induced mRNA expression data (44 

genes defined in Figure 11C).  

Strikingly, two of the TLR stimuli clustered with a defined cytokine – FLA and FSL vectors 

both projected onto the IL-1B cluster (Figure 17A-B). ODN eigenvectors projected into the 

IFNB quadrant, with an inter-donor variance in the intensity of gene expression (Figure 

17A), which was consistent with our previous study of induced proteins.  

This analytical approach can be further explored using the online user interface 

[www.synapse.org/MilieuInterieur; doi:10.7303/syn7059574]. 
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We next represented the data on a correlation circle, as an alternative for visualizing the 

relationships among stimuli (Figure 18), allowing us the projection of all TLR stimulation 

conditions across the four PC axes.  

When two stimulation vectors are close to the unit circle, and are proximal to each other, then 

they are positively correlated (e.g., FLA and FSL). By contrast, if they are orthogonal to each 

other, they are not correlated (e.g., FLA and R848). Alternatively, when a stimulation vector 

is close to the center (e.g., LPS in PC1 vs. PC2), it means that information is carried in the 

other axes (e.g., in the case of LPS almost all variance is carried by PC3 and PC4).  

Collectively these data suggest that FLA and FSL induced transcriptional signatures are 

highly correlated to the IL1B stimulation response; pIC, GARD, R848 and ODN are 

correlated with type I or type II IFN stimulation; and LPS is intermediate between the two. 

 

 

 

These results were consistent with the TLR induced expression of IFNB1, IFNG, IL1B and 

TNFA (Figure 19).  

One unanticipated result was the similarity between FLA and FSL, and the IL1B gene 

expression signature. In the case of FLA, we suggest this may be occurring due to the 

engagement of the intracellular sensor NLRC4, in turn activating caspase-1 (Gay et al., 2014); 

however the mechanisms underlying FSL activation of the inflammasome also remains 

uncharacterized. Notably, these analyses also identified the two outlier individuals discussed 

above, who showed high expression levels of FLA induced IFNG (blue and red dots, Figure 

19). 



 

 

 

 

We applied the same approach to characterize several less well-studied agonists.  

These included whole b-glucan particles (WGP) derived from Saccharomyces cerevisiae, 

known to engage Dectin-1 and lacking TLR-stimulating activity (Li et al., 2007); 

lipoarabamanin (LAM), a component of mycobacterial cell walls and an inducer of TLR2; 

and calcium pyrophosphate dihydrate crystals (CPPD), the etiological agent of pseudogout 

(Martinon et al., 2006), and a stimulator of NLRP3. 

Consistent with inflammasome activation, CPPD mapped to the IL1B cluster, and similar to 

FSL1, we demonstrate that the LAM induced gene expression overlaid the IL1B gene set 

(Figure 17B). By contrast, WGP induced an mRNA expression signature that projected 

between IL1B and TNFA. Extension of this method may support the classification of 

unknown adjuvants or innate stimuli.   

 

Next, we performed unsupervised PCA on the TLR stimulated gene expression data using the 

entire 572-gene set (Figure 20A).  
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The first two PCs, capturing 44% of the total variance, segregated all TLR stimuli with the 

exception of FLA and FSL (shown to have similar gene expression patterns), and to a lesser 

extent LPS and R848.  

The clustering achieved with the entire dataset was then compared to a PCA plot built using 

the 44 gene signature, selected for the four effector cytokines (Table 6). Strikingly, the 

vectors built from the cytokine-gene set fully captured the diversity of responses among the 

TLR stimuli (Figure 20B). 

 

 

 

Moreover, the cytokine-optimized gene set provided improved definition of the clusters, as 

indicated by a higher silhouette scores (Figure 21). This is most evident for the improved 

discrimination of LPS from R848 (Figure 20B, see PC2; and an increase in the median 

silhouette score from 0.26 to 0.46 for LPS, and from 0.11 to 0.35 for R848 samples, Figure 

21).  

These observations support the hypothesis that, in situations of limited agonist concentration 

and heterogeneous cell types, the characteristic TLR gene signatures can be identified by a 

limited set of cytokine-induced genes. From the perspective of population-based studies, this 

introduces the concept that a handful of highly discriminatory gene expression responses are 

sufficient to distinguish the transcriptional landscape activated by TLR pathways.  



 

 

 

To test the robustness of this prediction, we subsequently evaluated the gene expression 

patterns induced by whole microbes, first using the entire 572-gene set (Figure 22A).  

The microbes included heat-killed Escherichia coli O111:B4 (HKEC), Staphylococcus aureus 

(HKSA), Lactobacillus rhamnosus (HKLR), Helicobacter pylori (HKHP), Candida albicans 

(HKCA), a clinical preparation of live bacillus Calmette-Guerin (BCG), H1N1 attenuated 

influenza A/PR8 (IAV) and Sendai virus (SeV). The first three principal components, 

capturing 56% of the total variance, segregated samples from the viral stimuli and HKEC 

from the other microbes in PC1; HKHP was separated by PC2; and the remaining microbes 

falling along PC3 with HKCA being distinguishable from HKLR, HKSA and BCG. 

Again, we demonstrated improved clustering when using the 44-gene set, as defined by the 

response to the four effector cytokines (Fig 11B,C). Strikingly, when using the 44-gene set, 

the variance captured by the first three principle components reached 95% (Figure 22B). 
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Indeed, even with whole microbe stimulation – representing a higher level of biological 

complexity due to the activation of multiple signaling pathways – we obtained an improved 

silhouette scores for k-means clustering across all stimuli when the PCA was based on the 44-

gene set (Figure 23).  

For example, the clustering of HKHP samples improved from a median silhouette score of 

0.27 to 0.52, when applying the selected 44-gene set in place of the complete 572 genes. 

Notably, HKLR, HKSA and BCG were less distinguishable, likely a result of common 

agonist activity and similar levels of induced cytokines. IAV and SeV also co-segregated for 

similar reasons. Nonetheless, a doubling of the median silhouette score indicated that here too 

a focused feature list improved clustering of the data.  

In light of these results, we conclude that a standardized sample collection combined with 

precise measurement of induced gene expression allows to massively reduce the 

dimensionality of the data space, while preserving the ability to discriminate the inflammatory 

trigger as well as the variability among human donors. 



 

 

 

We next extended the concept of correlation among the stimulation conditions to shed lights 

onto possible cytokine loops involved in individual gene expression. This approach provides 

an exploratory analysis of possible cell-to-cell interactions that can be tested in future 

experimental studies.  

Spearman correlation matrices and hierarchical clustering, based on a connected correlation 

dissimilarity metric, were performed for each gene, and results were bootstrapped to ensure 

the identified correlations were robust. Using these outputs, we identified cases where the 

variable responses to TLR or microbe stimulations could be explained by the inter-individual 

gene expression variance observed when using one of the four-cytokine stimuli.  

To illustrate this observation, the dendrogram depicting the clusters of Spearman correlations 

and a table indicating the respective rs coefficients are shown for TNFSF10 (Figure 24A).  
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A cut off value of 2-fold expression change greater than the null condition was utilized for 

inclusion of stimuli in the cluster.  

Interestingly, the viral stimuli clearly clustered with type I IFN stimulation with SeV showing 

a high correlation with IFNB induced TNFSF10 (rs = 0.82); whereas GARD and R848 

clustered with IFNG (rs = 0.7 and 0.75, respectively) (Figure 24A,B). 

 

 

 

 

As a second example IRAK3 is shown, illustrating distinct clustering of bacterial / TLR 

stimuli with TNF or IL1B (Figure 25A,B).  

Schematic depictions of the putative stimulus-induced cytokine-mediated expression of 

TNFSF10 or IRAK3 are shown with dotted line arrows provided for illustrative purposes. This 



 

analytical approach allows us to predict the distinct cytokine loops that drive common gene 

expression following stimulation by TLR agonists or microbes.  

While this modeling approach to population-based data must be experimentally validated, we 

highlight the possibility that inter-individual variance can be utilized as a means to identify 

causal pathways driving gene expression, which will support future experimental inquiry. 
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While the four cytokines studied herein represent major effector pathways in host response 

and disease pathogenesis, we were cognizant of additional upstream factors that help to 

specify the inflammatory reaction.  

To identify other potential effector cytokines, we generated a list of genes upregulated by 

each stimulus as compared to the null condition (stimulus > null, paired t-test q < 10-3), and 

then merged the resulting gene lists for the four cytokines, the seven TLR and the eight 

microbial stimuli.  

A Venn diagram depicts the overlap and intersections in gene expression for these three 

groups, respectively (Figure 26A). Additionally, we calculated the median gene expression 

for each stimulus and generated heat maps, clustering by both genes and samples, using either 

the set of genes that were expressed after microbial but not cytokine stimulation (Figure 

26B); TLR but not cytokine stimulation (Figure 27A); and microbial but not TLR stimulation 

(Figure 27B).  

Strikingly, the complex stimuli induced a subset of genes indicative of lymphocyte activation. 

This subset of genes included: (i) transcription factors such as FoxP3 (highly induced after 

bacterial stimulation), EOMES (induced by HKCA) and GATA3 (induced by BCG); (ii) 

cytolytic effectors such as GZMA (highly induced by HKEC); (iii) anti-microbial genes such 

as NOS2 (induced after bacterial stimulation), DEFB103A (induced by BCG) and HAMP 

(highly induced by HKEC) (Figure 27B).  

Additionally, we detected the differential induction of 18 cytokines, which included IL2 

(induced by HKSA, BCG, HKCA, IAV and SeV), CSF2 (highly induced by HKCA) and IL22 

(induced after bacterial and HKCA stimulation) (Figure 26C).  

As indicated by the comparison with Staphylococcal enterotoxin B (SEB) stimulation and 

consistent with the presence of microbial antigen-specific T cells within the repertoire of 

healthy donors (Becattini et al., 2015; Geiger et al., 2009), these cytokine genes likely reflect 

the activation of lymphocyte subsets (Figure 26C).  

The characterization of these lymphocyte-derived cytokines may further establish the role of 

feed-forward cytokine loops in the deconvolution of microbial-induced gene signatures. 
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In this study, we aimed at testing if standardized whole-blood stimulation systems can support 

the identification of a handful set of genes that are capable of deconvoluting complex 

responses to immune stimulation.  

We utilized medically relevant stimuli to determine their inflammatory signatures and, in 

doing so, established the degree of naturally-occurring variation present in a population of 

well-defined healthy donors of European descent. The definition of host immune responses to 

adjuvants and microbial agents, and subsequent characterization of inter-individual variability 

in the human population, is of major fundamental interest and provides the necessary 

foundation for understanding human health and disease pathogenesis.  

Although functional tests are routinely used in laboratory investigation (Folds and Schmitz, 

2003), the standardization of such assays has been challenging. While whole blood assays are 

more biologically relevant and introduce less experimental bias than, for example, PBMC 

stimulation, they are not without technical challenges in particular due to the high levels of 

globin RNA and enzyme-inhibiting compounds (e.g., heparin interference of reverse 

transcriptase) (Chaussabel et al., 2010).  

Previous efforts have focused on removing the globin RNA before downstream analysis, 

however these processes can introduce, in turn, higher levels of technical variance as 

compared to what was achieved with our data generation pipeline (Shin et al., 2014).  

Specifically, the innovation brought forward in this study is an automated single step RNA 

extraction method from whole blood, which minimized pre-analytic bias and generated highly 

reproducible results when using a gene hybridization read-out. These solutions are essential 

for multicenter population-based studies, as well as for assays with ambitions for clinical 

deployment.  

 

Using the reference data presented herein, we tested the hypothesis that responses to TLR 

ligands or whole microbes can be captured by the transcriptional signature of key effector 

cytokines.  

We tested a total of 23 stimulation systems, all built into whole-blood syringes for point of 

care sampling.  

Using linear SVM learning, it was possible to identify a 44-gene set, selected based on their 

ability to differentially cluster cytokine-induced genes. Strikingly, these same genes, when 
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applied to the stratification of response to TLR or microbes, resulted in improved 

discrimination among the stimuli as indicated by a marked improvement in silhouette scores.  

In the era of an increased use of whole-genome transcriptional profiles, our results suggest 

that limiting the pre-analytical bias introduced by cell separation and non-standardized 

stimulation protocols may be more important than obtaining greater numbers of measured 

genes.  

In addition to sample collection and data analysis standardization, we minimized intrinsic 

variability by the recruitment of donors of Western European ancestry (3rd generation born in 

Metropolitan France). Furthermore, we minimized pre-analytic or environmental sources of 

variability, by applying highly precise inclusion and exclusion criteria (Thomas et al., 2015).  

To restrict other sources of variability, in addition to the standardization of the assay systems, 

all donors were sampled at the same time of day (09.00-11.00), during the same week, and in 

the same location.  

Such a reliable monitoring of induced immune gene expression responses permitted the 

classification of inflammatory and host immune responses based on the variance observed in 

healthy donors.  

 

In addition to defining detailed healthy reference ranges to be considered in future clinical 

studies, this work permitted the identification of a number of outlier responses. This included 

the identification of two individuals that responded to FLA or IL1B by producing IFNG and 

in turn expressing IFNG-stimulated genes.  

Following from this observation, we extended the approach of tracing cytokine loops and 

gene expression pathways, using inter-individual variance and correlation among the 

stimulation signatures as a means to deconvolute complex transcriptional responses. This 

approach may also support the future classification of unknown adjuvants, innate stimuli, new 

pathogenic agents or the stratification of disease and treatment response.  

If extended to the study of disease states, it may be possible to classify, for example, subsets 

of rheumatoid arthritis patients that are responsive to IL1B versus TNFA blockade (Gibbons 

and Hyrich, 2009; McInnes and Schett, 2007).  

 

This reference data set and the applied analytical approach offers an important, useful 

resource to the community, nevertheless, several specific limitations should be highlighted.  

First, some of the employed TLR stimuli may engage secondary receptors in addition to their 

commonly ascribed receptors. Notably, the observation that FLA is highly correlated with the 



 

IL1B-induced gene signature suggests that it may also trigger NLRC4 within the whole-blood 

stimulation systems. This may occur within neutrophils, which express high levels of the 

NLRC4 inflammasome and release IL1B (Chen et al., 2014). If correct, it would also help to 

explain why, despite the high prevalence of dominant negative forms of TLR5 in Europeans 

(Barreiro et al., 2009; Hawn et al., 2003), all twenty-five donors showed an induced response 

after FLA stimulation (Barreiro et al., 2009).  

Alternatively, TLR sensor pathways on platelets and neutrophils may be unique in their 

ability to engage caspase-1 (Hayashi et al., 2003).  

We also observed that IAV and SeV were highly correlated with pIC, suggesting that the 

latter is engaging RIG-I like receptors (RLRs) in addition to TLR3.  

We also acknowledge that, in the natural setting, human immune responses typically occur in 

mucosal tissues and, as such, stromal cells and tissue resident immune populations such as 

macrophages and ILCs may need to be considered to fully apply our dataset to physiologic 

and pathologic responses.  

Lastly, our analyses consider a single analytical time point only, thus capturing a snapshot of 

the complexity inherent in dynamic immune responses.  

 

Finally, it is our aim with this resource paper to highlight the growing need to make data more 

accessible and easier to explore.  

In line with recent efforts (Gorenshteyn et al., 2015; Speake et al., 2015), we have thus 

developed an online R-Shiny application software that will allow readers to fully query the 

data set based on their specific questions. This application software was built as a direct 

companion to the presented analyses with publically available R-scripts and downloading 

options for gene expression data. In sum, the data resource presented here, and the available 

online tools, provide a foundation for association studies, kinetic analyses and in vivo 

mechanistic experimentation.  

For example, it remains to be established how the inter-individual variation in gene 

expression that we identified here is accounted for by host genetic variants (i.e., expression 

quantitative trait loci, eQTLs), specifically in cases where gene expression variation is altered 

upon activation with certain immune stimuli (i.e., response/interaction eQTLs).  

Conceptually, the strategy to trace inter-cellular cytokine driven gene expression may support 

such future eQTL association studies, especially in cases where inter-cellular trans-eQTL are 

identified.  
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From a practical viewpoint, the tools will support a path towards more targeted immune 

monitoring from whole-blood, enabling the use of standardized approaches that capture the 

common variation within the human population as summarized in Figure 28. 

 
 

  
 

 

•  Single-step RNA extraction  
   Transcriptional profiling  

•  Point-of-care whole blood stimulations 

•  Healthy donors  

www.synapse.org/MilieuInterieur  
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As already mentioned, the heart of the Milieu Intérieur study is to identify what are the 

natural genetic and environmental factors that drive the human immune response. To address 

this question 1,000 healthy individuals were genotyped and annotated with extended 

epidemiological data. The collection was designed to generate equilibrated groups with 50% 

men/women and age stratification (20 to 69 years). The circulating immune cells parameters 

have been measured on whole blood for the entire collection. A standardized flow cytometry 

analysis pipeline has been specifically developed to limit technical noise and variability across 

the collection timeline (almost 1 year). 

This multidisciplinary work was primarily lead by E. Patin (geneticist at Institut Pasteur) for 

the dataset accuration and genetic analysis, and M. Hasan (Immunologist at Institut Pasteur) 

for the flow cytometry dataset analysis coordination. During my PhD work, my specific 

contribution in the MI work was i) contribution in the daily automated 8-colors flow staining 

on whole blood (10 panels); ii) analysis of the flow cytometry data files for two panels (DCs 

and B cells populations); iii) leadership and execution of the replication study and iv) 

interpretation of results.  

This analysis aims to demonstrate that the application of standardized procedures associated 

with a statistical significant size collection improves the confidence in the associations 

observed. Nonetheless, the best way to demonstrate this is to be able to replicate those 

findings in an independent collection. Taking advantage of a partnership with the Cancer 

immunology department at Genentech, Inc. (South San Francisco, USA) and their Genotype 

and Phenotype (gGAP) Registry, I have organized a replicative collection in the context of a 

student exchange program in collaboration with different facilities from the company.  

Due to time, logistic and budget considerations the collection size and the parameters 

measured have been restricted. Interestingly, in this registry the volunteers were already 

genotyped. In order to keep the statistical power to confirm some associations found in the MI 

analysis, we have focused the recruitment on volunteers with European origin ancestry, from 

20 to 50 years old to fit with MI range (but avoiding peri-menopausal women), and 
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homogeneously stratified for the most frequent single nucleotide polymorphisms (SNPs) that 

we’ve found associated with immune parameters. This possibility of “artificial SNPs 

enrichment” allowed also the restriction of the flow cytometry analysis to the immune cell 

populations found associated to those genetic polymorphisms. Based on the MI analysis, three 

8-coulour panels were selected to determine the quantitative and qualitative characteristics of 

the main circulative populations (“General” panel), natural killer cells (“NK” panel) and 

polymorphonuclear cell populations (“PMN” panel). Following a power calculation, we 

discovered that a sample size of 150 individuals was sufficient to replicate our top GWAS 

findings.  

Then using the standardized technical pipeline from the MI collection as a template, some 

modifications have been optimized and validated due to local logistic differences.  

 In this chapter of the thesis, I will first present the MI analysis that aims to determine 

genetic and environmental factors that impact the most the natural variance of circulating 

immune cell parameters measured by flow cytometry.  

This will provide a context for my presentation of the preliminary analyses of this replicative 

study. 

  



 

 

The immune system plays an essential role in maintaining homeostasis in individuals 

challenged by microbial infections, a physiological mechanism conceptualized by the French 

physician Claude Bernard in 1859, under the term milieu intérieur. Host-pathogen molecular 

interactions trigger immune responses through the activation of specialized immune cell 

populations, which may eventually result in pathogen clearance.  

The study of immune cell populations circulating in the blood provides a view into innate 

cells that are transiting between the bone marrow and tissues, and adaptive cells that are 

recirculating through lymphoid organs. Past or chronic latent infections have been reported to 

profoundly perturb subsets of circulating immune cells due to altered trafficking, selective 

expansions or attrition (Park and Rehermann, 2014; Altfeld and Gale, 2015; Orme et al., 

2015). Several studies suggested that extensive differences in white blood cell composition 

are also present among healthy individuals (Tollerud et al., 1989; Reichert et al., 1991). 

However, the degree of naturally occurring variation of immune cell parameters, together with 

the environmental and genetic determinants of such variation, remain to be fully 

characterized. 

Standardized flow cytometry in relatively small studies of healthy individuals has highlighted 

the predominant effect of age on several T cell subpopulations (Tollerud et al., 1989; 

Sridharan et al., 2011), which may be due in part to diminished thymic activity (Sauce and 

Appay, 2011) and explain reduced vaccination efficacy in the elderly (Buchholz et al., 2011). 

Latent cytomegalovirus (CMV) infection, detected in 40% to >90% of the general population 

(Boeckh and Geballe, 2011), has been associated with an increased number of effector 

memory T cells (Sylwester et al., 2005; Libri et al., 2011; Wertheimer et al., 2014), which 

could in turn alter immune responses to heterologous infection (Furman et al., 2015).  

These findings illustrate how critical it is to define reference ranges of major white blood cell 

subsets, based on large cohorts of healthy subjects from different age and CMV serological 

status groups. This will support the characterization of pathological states, and ultimately the 

development of personalized strategies for clinical management of patients. Furthermore, 

studies on such cohorts could help to establish how lifestyle habits, such as smoking and diet, 

modify white blood cell subset distribution and provide insights into the way these parameters 

influence immune functions. 
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Recent technological advances in flow cytometry and genome-wide DNA genotyping now 

allow the dissection of the genetic basis of population variation in immune cell parameters.  

A seminal genome-wide association study reported 13 genetic loci strongly associated with 

the proportion of different leukocyte subpopulations in a cohort of 249 Sardinian families, 

including CD39+ activated CD4+ Treg and T cells expressing high levels of CD25 or CD8 

(Orrù et al., 2013).  

More recently, a study reported the deep immunophenotyping of ~1,800 independent traits in 

245 healthy twin pairs, identifying 11 independent genetic loci that accounted for up to 36% 

of the variation of 19 different traits (Roederer et al., 2015).  

Finally, a third study estimated the genetic heritability of 95 different immune cell frequencies 

in 105 healthy twin pairs, and suggested that variation in human immune cells is largely 

explained by non-heritable factors (Brodin et al., 2015).  

Together, these family- and twin-based studies were designed to provide valuable insights 

into the genetic basis of inter-individual differences in adaptive immune cell populations, 

omitting evaluation of several major innate cell types in circulation. As such, an integrated 

evaluation of both genetic and non-genetic factors driving human variation in innate and 

adaptive immunity remains lacking.  

Here, we report the use of semi-automated flow cytometry to comprehensively profile the 

white blood cell composition of 1,000 healthy, unrelated individuals of western European 

ancestry, which compose the Milieu Intérieur cohort.  

We used ten 8-color immunophenotyping panels to quantify the absolute numbers – as well as 

the expression levels of relevant immune cell markers – of a wide range of circulating 

immune cells, yielding a total of 168 confidently measured immunophenotypes. Notably, the 

Milieu Intérieur cohort was designed to identify both non-genetic and genetic factors that 

contribute to the inter-individual variation in human immune cell parameters.  

We confirm that age, gender and CMV seropositivity have major and independent effects on 

white blood cell composition, and characterize the profound impact of smoking on circulating 

numbers of Treg and MAIT cells.  

We identified by genome-wide association study 14 loci associated with parameters of 

circulating leukocyte subpopulations, 11 of which have not been previously described. 

Finally, we established models that quantify the respective contributions of genetic and non-

genetic factors in controlling the characteristics and subset distribution of white blood cells of 

healthy individuals. 

 



 

 

 

Defining standardized ranges of circulating immune cells in a large cohort of healthy 

individuals is a critical step for tailoring clinical strategies to individual patients. The Milieu 

Intérieur cohort includes 500 men and 500 women, stratified across five decades of age from 

20 to 69 years. Subjects were surveyed for a number of demographic and lifestyle variables, 

including nutrition, sleep, smoking, vaccination and medical histories (Table 7). Detailed 

inclusion and exclusion criteria used to define "healthy" subjects recruited into the cohort 

have been previously reported (Thomas et al., 2015). 

 

 

MI

Variable Category Description Coded values and units
Age Demographics Age years
Owns a house Demographics Does the subject own his/her housing? 1=landlord; 2=leaser
Physical activity Demographics Hours per week of physical activity during leisure hours per week
Sex Demographics Clinical sex 1=male; 2=female
Lives with partner Demographics Subject shares or not housing with partner 0=Alone; 1=With a partner
Lives with kids Demographics Subject shares or not housing with children 0=Without children; 1=With children
Born in a city Geographic origin Born in a city with a number of inhabitants larger than 20,000 0=no; 1=yes
BMI Basic physiological measurements BMI kg/m²
Heart rate Basic physiological measurements Heart rate bpm
Temperature Basic physiological measurements Ear temperature °C
Dietary habits Food and nutrition Nutrinet nutritional profiles 1,2,3,4
CMV Laboratory measure CMV serology 0=negative; 1=positive
Flu IgG+ Laboratory measure Log10-transformed ratio of anti-IAV IgG levels and the assay threshold value NA
Metabolic score Laboratory measure Metabolic score, estimated as described in Thomas et al., Clin Immunol 2015 Number of risk factors for the Metabolic Syndrome, ranging from 0 to 5
Smoking Smoking habits Tobacco smoking Non-smoker = 0, Ex-Smoker = 1, Smoker = 2

Cannabis Sleep habits, drug habits, and psychological 
problems Haschich smoking 0 = never, 1 = rarely, 2 = regularly

Low appetite Sleep habits, drug habits, and psychological 
problems Little or too much appetite in last 2 weeks 0, 3, 8, 14 days the last two weeks

Concentration Sleep habits, drug habits, and psychological 
problems

Difficulty concentrating on things like reading newspapers or watching the television, in 
last 2 weeks 0, 3, 8, 14 days the last two weeks

Sleep problems Sleep habits, drug habits, and psychological 
problems Does the subject often find it difficult to fall asleep or to remain asleep? 0,1,2,3 = Never, Sometimes, occasionally, most of the time, all the time

Hours of sleep Sleep habits, drug habits, and psychological 
problems Hours of sleep hours/day

Listless Sleep habits, drug habits, and psychological 
problems Feeling tired or having little energy, last 2 weeks 0, 3, 8, 14 days the last two weeks

Depression score Sleep habits, drug habits, and psychological 
problems

Poor self-image, or lack of interest or pleasure in doing things, or feeling sad, depressed 
or despairing, during last 2 weeks 0, 3, 8, 14 days the last two weeks

Recent crisis Sleep habits, drug habits, and psychological 
problems Major negative life event (e.g., death of a close relative) in last 12 months 0 = no, 1 = yes

Employed Socio-professional information Steady job 0=No; 1=Yes; NA=missing data

Education Socio-professional information Level of education
1=No diploma; 2=Primary school certificate; 3=CAP, BEP, Brevet de colleges; 
4=Baccalaureat; 5=Higher education, cycle 1 (DUT, BTS, DEUG, L2); 6=Higher 
education, cycle 2 and 3 (L3, M1, M2, PhD)

Exposure to dust Socio-professional information Exposure to dust 0=No exposure; 1=Past exposure; 2=Current exposure; NA=Unknown

Income Socio-professional information Net monthly income of the household 1=0-1000€; 2=1001-2000€; 3=2001-3000€; 4=3001-4000€; 5=4001-5000€; 6=5001€ 
and more; NA=missing data

Batch effect Hour at which 25ml blood sample was taken hours
Batch effect Date at which V1 was done days since 09-01-2012

Had measles Medical history Childhood disease: Measles 0=No; 1=Yes
Had rubella Medical history Childhood disease: Rubella 0=No; 1=Yes
Had chicken pox Medical history Childhood disease: Chicken pox 0=No; 1=Yes
Had mumps Medical history Childhood disease: Mumps 0=No; 1=Yes
Tonsillectomy Medical history Tonsillectomy 0=No; 1=Yes
Appendicectomy Medical history Appendicectomy 0=No; 1=Yes
MMR vaccine Vaccination history Vaccination against mumps, rubella and measles 0=No; 1=Yes
Typhoid vaccine Vaccination history Vaccination against typhoid 0=No; 1=Yes
Whooping cough vac. Vaccination history Vaccination against whooping cough 0=No; 1=Yes
Yellow fever vaccine Vaccination history Vaccination against yellow fever 0=No; 1=Yes
HAV vaccine Vaccination history Vaccination against Hepatitis A 0=No; 1=Yes
HBV vaccine Vaccination history Vaccination against hepatitis B 0=No; 1=Yes
Flu vaccine Vaccination history Vaccination against flu 0=No; 1=Yes
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To describe natural variation of both innate and adaptive immune cells in the 1,000 subjects of 

the Milieu Intérieur cohort, we used ten 8-color immunophenotyping flow cytometry panels 

(Figures 56-65 in « Materials & Methods » and Table 8), which allowed us to report a total 

of 168 distinct immunophenotypes (Table 9)  

(Remark for the reader : To facilitate reading, the original Table 9 has been split into 6 

parts. The last section presents the entire list of immunophenotypes used as exclusion 

criterion  reformatted to fit on the same page as two lists aligned and separated by a grey 

column). 

 

Panel Dye Specificity Clone (Company) Panel Dye Specificity Clone (Company)
Panel 1 (T cells) Panel 6 (B cells)

eF450 CD3 SK7 (eBio) V450 IgM G20-127 (BD)
V500 HLA-DR L243/G46-6 (BD) V500 IgD IA6-2 (BD)
FITC CD45RA L48 (BD) FITC IgG IS11 3B2,2,3 (Miltenyi)
PE  CD8α BW135/80 (Miltenyi) PE CD38 1B6 (Miltenyi)

PerCP-eF710 CD27 O323 (eBio) PerCP-eFluor710 CD27 O323 (eBio)
PE-Cy7 CD8β SIDI8BEE (eBio) PE-Cy7 CD21 B-ly4 (BD)

APC CCR7 FR11-11E8 (Miltenyi) APC CD19 SJ25C1 (BD)
APC-H7 CD4 SK3 (BD) APC-eF780 CD24 SN3 (eBio)

Panel 2 (Treg) Panel 7 (PMN cells)
eF450 ICOS ISA-3 (eBio) eF450 CD62L Dreg 56 (BD)
eF506 FVD eF 506 NA (eBio) eF506 FVD eF 506 NA (eBio)
FITC CD45RA L48 (BD) FITC FCεRIα AER-37 CRA1 (eBio)
PE CD25 NA (Miltenyi) PE CDw125 A14 (BD)

PerCP-Cy5.5 HLA-DR L243/G46-6 (BD) PerCP-Cy5.5 CD16 3G8 (BD)
PE-Cy7 CD8β SIDI8BEE (eBio) PE-Cy7 CD32 FLI8.26 (BD)

APC CD127 MB15-18C9 (Miltenyi) APC CD203c FR3-16A11 (Miltenyi)
APC-H7 CD4 SK3 (BD) APC-eF780

Panel 3 (MAIT/NKT cells) Panel 8 (Dendritic cells)
eF450 CD3 SK7 (eBio) VioBlue CD14 TUK4 (Miltenyi)
V500 HLA-DR L243 G46-6 (BD) eF506 FVD eF 506 NA (eBio)
FITC Vα7.2 3C10 (BioLegend) VioGreen CD19 LT19  (Miltenyi)
PE γδTCR 11F2 (BD) VioGreen CD3 BW264/56 (Miltenyi) 

PerCP-Cy5.5 CD161 HP-3G10 (eBio) FITC BDCA1 AD5-8E7 (Miltenyi)
PE-Cy7 CD8b SIDI8BEE (eBio) PE BDCA2 AC144 (Miltenyi)

APC Vα24 6B11 (eBio) PerCP HLA-DR AC122 (Miltenyi)
APC-H7 CD4 SK3 (BD) PE-Vio770 CD86  FM95 (Miltenyi)

Panel 4 (NK cells) APC BDCA4 AD5-17F6 (Miltenyi)
eF450 CD3 SK7 (eBio) APCVio770 BDCA3 AD5-14H12 (Miltenyi)

VioBlue CD14 TUK4 (Miltenyi) Panel 9 (T helper cells)
525/50BP FVD eF 506 NA (eBio) V450 CCR4 (CD194) 1G1 (BD)

FITC CD69 L78 (BD) VioGreen CRTH2 (CD294) BM16 (Miltenyi)
PE CD335 (NKp46) 9E2/NKp46 (BD) AF488 CXCR5 (CD185) RF8B2 (BD)

PerCP-Cy5.5 HLA-DR L243/G46-6 (BD) PE γδTCR 11F2 (BD)
PE-Cy7  CD8α SK1 (BD) PerCP-Cy5.5 CCR6 (CD196) 11A9 (BD)

APC CD16 B73.1 (BD) PE-Cy7 CD8β SIDI8BEE (eBio)
APC-eF780 CD56 CMSSB (eBio) APC CXCR3 (CD183) 1C6/CXCR3 (BD)

Panel 5 (Lineage) APC-H7 CD4 SK3 (BD)
eF450 CD3 SK7 (eBio) Panel 10 (ILC)
V500 CD14 M5E2 (BD) eF450 CD3 SK7 (eBio)
FITC CD56 NCAM16.2 (BD) VioBlue CD14 TUK4 (Miltenyi)
PE CD45 HI30 (BD) eF506 FVD eF506 NA (eBio)

PerCP-Cy5.5 CD16 3G8 (BD) FITC CD127 eBioRDR5 (eBio)
PE-Cy7 CD8b SIDI8BEE (eBio) PE CD294 BM16 (Miltenyi)

APC CD19 SJ25C1 (BD) PerCP-Cy5.5 CD161 HP-3G10 (eBio) 
APC-H7 CD4 SK3 (BD) PE-Cy7 CD117 104D2 (eBio)

AF647 NKp44 P44-8.1(BD)
APC-eF780 CD56 CMSSB (eBio)
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These include 77 and 91 immunophenotypes obtained in innate and adaptive immune cells, 

respectively. Innate cells were defined as those lacking somatic recombination of the genome 

(Vivier et al., 2011), and included granulocytes (neutrophils, basophils and eosinophils), 

monocytes, natural killer (NK) cells, dendritic cells and innate lymphoid cells (ILCs) (Figure 

29). Adaptive cells were defined by their dependence on RAG1/2 activity and included T cells 

(γδ T, MAIT, NKT, Treg and Th cells) and B cells. The immunophenotypes in both innate 

and adaptive immune cells included 76 absolute counts of circulating cell numbers, 89 

expression levels of cell-surface protein markers (quantified by the mean fluorescence 

intensity, or MFI), and 3 ratios of cell counts or MFI (Figures 29 and 30 and Table 9). 
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To reduce technical variation introduced by sample temperature fluctuations and pre-

analytical procedures, we strictly followed a standardized protocol for tracking and processing 

samples (Hasan et al., 2015). We verified that measured immunophenotypes were highly 

reproducible using technical replicates (Figures 31 and 32 and Table 9), demonstrating the 

high accuracy of the data. 
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We nevertheless identified two technical batch effects that impacted flow cytometric analyses. 

One effect corresponded to the hour at which the blood sample was drawn from fasting 

subjects (Figure 33), which may possibly be explained by the spike in cortisol at the time of 

waking (Patterson et al., 2013). The second batch effect corresponded to variation of 

immunophenotypes over the one-year sampling period, which primary affected MFI measures 

(Figure 34). We corrected for these batch effects in all subsequent analyses (Figure 35; 

Materials & Methods). We provide the distribution, ranges and statistics of all batch-corrected 

immune cell counts (Table 9), thereby facilitating comparisons with cytometry data collected 

as part of routine clinical practice. Values can be accessed through a user-friendly web 

application  

(http://104.236.137.56:3838/LabExMICytometryBrowser_ShinyApp/, draft Shiny application 

available for review), which can be queried based on personal characteristics such as age or 

gender. 
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Owing to the hierarchical structure of immune cell differentiation (i.e., cellular lineages 

emerge from common progenitor cells), a substantial portion of the immune cell counts 

measured in this study are highly correlated (Figure 36). These correlations were not directly 

attributable to the influence of non-genetic factors such as age or gender, which were 

regressed out in this analysis. Interestingly, we observed correlations between circulating 

levels of ILC and NK populations, reflecting their common developmental pathway and 

dependence on γc cytokines (Serafini et al., 2015). We also observed a correlation between 

MAIT cells and CCR6+ CD8+ T cells, a result of the former being the major subset of CCR6+ 

T cells in circulation (Dusseaux et al., 2011). An appreciable correlation was detected among 

T and B lymphocytes, highlighting their origin from a common lymphoid progenitor and an 

interdependence in response to antigenic challenge. Finally, we identified a strong correlation 

between the number of Treg and conventional CD4+ T cells, validating previous experimental 

work that defined an interleukin-2 (IL-2) driven self-regulatory circuit that integrates the 

homeostasis of these cell populations (Amado et al., 2013).  
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Prior studies have suggested that environmental exposures are responsible for inter-individual 

differences in white blood cell composition, in particular for T cell subpopulations, which are 

impacted by factors such as age, gender and CMV seropositivity (Tollerud et al., 1989; 

Sridharan et al., 2011; Pennell et al., 2012; Griffiths et al., 2013). We used multiple linear 

regression to quantify the impact of each of these non-genetic factors on human variation in 

white blood cell composition. We observed a substantial effect of age on both innate and 

adaptive immune cells, affecting 30% of immunophenotypes (Figures 37A and 38). We 

detected a general decline in the number of innate lymphoid and dendritic cells as a function 

of increasing age (Figure 37A). Contrary to previous studies, we find a modest increase in 

the number of memory T cells in elderly subjects, which may stem from the reliance of these 

studies on frequency analyses, as compared to our implementation of absolute cell count 

measurements. Our analyses also show that naïve CD8+ T cells decrease more than twice as 

rapidly with age as compared to naïve CD4+ T cells (3.5% and 1.5% per year, respectively; 

Figure 37A-C), which supports the view that CD8+ T cells are more susceptible to 

concentrations of homeostatic cytokines and/or that the production of CD4+ T cells is 

preferentially enhanced in the human thymus (Vrisekoop et al., 2008). 
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We observed a profound effect of latent CMV infection on several immune cell parameters 

(Figures 37D and 38). We confirm that CMV triggers a major change in the number of 

memory T cells, which is independent from age effects (Griffiths et al., 2013). In particular, 

CMV seropositivity associated with a 12- and 4.5-times higher number of CD4+ and CD8+ 

TEM and TEMRA cells (Figure 37D-F). However, we did not observe evidence that CMV 

infection impacts the number of naïve T cells or the TCM compartments. Supporting this 

observation, the total number of CD8+ and CD4+ T cells increased in parallel with the 

expanded number of memory T cells, thus suggesting independent regulation of the naïve and 

EM/EMRA T cell pools. Finally, CMV seropositive donors presented lower numbers of 

circulating NKT and MAIT cells  (Figure 37D), suggesting that latent CMV infection may 

result in competition for cytokine growth factors with the expansion of conventional effector 

memory T cells and the subsequent reduced numbers of ILC and invariant T cell populations.  

Although sex differences have been previously reported for various immune responses and 

diseases (Whitacre, 2001; Pennell et al., 2012), previous studies examining circulating cellular 

parameters have reported inconsistent results, owing to differences between flow cytometry 

procedures and small, underpowered or poorly-stratified study cohorts. We report a 

significant impact of sex on 16% of measured immunophenotypes (Figures 37G and 38). 

Most notably, we find a higher number of CD14hi monocytes and activated NK cells in men, 

as compared to women. By contrast, MAIT cells were systematically increased in women 

across all age decades (Figure 37H-I). These results suggest a lasting effect of early hormonal 

differences on immune cell development and biology. 

 

 

Capitalizing on the lifestyle and demographic data available for the Milieu Intérieur cohort, 

we evaluated the influence of additional non-genetic factors on immune cell parameters, 

controlling for the defined effects of age, gender and CMV serological status. A total of 40 

variables were chosen for analysis and tested for each immunophenotype. These include 

socio-economic characteristics, dietary habits, past infections, and surgery and vaccination 

history (Figure 39 and Table 7).  
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We identified a unique environmental factor that significantly alters circulating levels of 

human immune cells: active tobacco cigarette smoking, which affects 27% of measured 

immunophenotypes (Figures 40 and 41). 

 



 -   

 

We observed a 21% increase in the number of circulating CD45+ cells, and a 25% increase in 

the number of conventional lymphocytes in smokers as compared to non-smokers (Figure 

40B).  



-  

 

(A) Significant multiplicative effects of 40 non-genetic factors on protein levels of immune cell markers (i.e., 
MFIs) in healthy individuals. Colors represent levels of association (i.e., –log10 (q-values)) between the 40 non-
genetic factors and protein levels of immune cell markers, at a false discovery rate (FDR) < 1%. Unless when 
specifically measured, immunophenotypes were regressed for age, gender, CMV status, batch effects and 
genome-wide significant SNPs (Table 10). (B) Significant effect sizes of active smoking on protein levels of 
immune cell markers in 1,000 healthy individuals while controlling for age, gender, CMV status, batch effects 
and genome-wide significant SNPs . The confidence intervals are false coverage-adjusted and calculated using 
sandwich estimated standard errors. Effect sizes in past smokers are shown, for comparison purposes 

 

Previous studies suggested that smokers have alterations in circulating cell populations due to 

diminished adherence of leukocytes to blood vessel walls, possibly as a result of lower 

antioxidant concentrations (Tsuchiya et al., 2002).  

In addition, we found in active smokers a significant increase of 61%, 65% and 72% of naïve, 

memory and activated Treg cells, respectively, which was also visible to a lesser extent in past 

smokers (Figure 40B-D). This increase may reflect the need to counter-balance inflammation 

and immune activation triggered by cigarette smoke-induced damage to the lung epithelium. 

Increased numbers of Treg cells may also contribute to the diminished Th1 immunity 

observed in smokers (Vassallo et al., 2005), and the increased susceptibility to bacterial 

infection (Bagaitkar et al., 2008). 

Active smokers also showed decreased numbers of NK cells, ILCs, γδ T cells and all subsets 

of MAIT cells (Figure 40B). These findings are consistent with a recent study showing that 

smoking triggers local release of interleukin (IL)-33 by the lung epithelium (Kearley et al., 

2015), in turn engaging the IL-33 receptor, ST2, on both innate and non-classical lymphocytes 

(Monticelli et al., 2011). This likely accounts for the activation and retention of ST2 positive 

cells in the lung, with an associated decrease in the number of circulating cells. Alternatively, 

smoking may increase the number of sub-acute bacterial infections in the lung, leading to an 

attrition of circulating MAIT and ILC subsets via their preferential homing to the lung.
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To identify common genetic variants affecting immunophenotypes, the Milieu Intérieur 

cohort was genotyped at 945,213 SNPs, enriched in exonic SNPs (Materials & Methods). 

After quality control filters (Figure 42), genotype imputation was performed and yielded a 

total of 5,699,237 highly accurate SNPs, which were tested for association with all immune 

cell measurements.  

 

 

Genetic relatedness and structure in the MI cohort. 
 

We first confirmed our power to identify large-effect genotype-phenotype associations by 

replicating in the cohort well-known genetic associations with non-immune traits, such as eye 

and hair color or uric acid and cholesterol levels (Materials & Methods).  

Genome-wide association analyses were then conducted on the 168 immunophenotypes, using 

linear mixed models (Zhou and Stephens, 2014). The models were adjusted for the genetic 

relatedness among subjects and any non-genetic variable identified as associated with each 

specific immunophenotype by stability selection based on elastic net regression (Table 9; 

Materials & Methods). 



-  

 

 

 

We found 14 independent genetic loci associated with 42 out of 168 immunophenotypes 

(25%), at a conservative genome-wide significant threshold of P < 1.0x10-10 (Figure 43A, 

Tables 10 and 11).  



 -   

We then conducted conditional GWAS for these 42 immunophenotypes by adjusting on the 

genotypes of genetic variants associated in the main analyses (Table 10) and found seven 

additional signals, of which six were located in close vicinity of the main signal (Figure 45 

and Table 12).  

We validated all genome-wide significant associations (validation P-values < 10-3 ; Table 10), 

by measuring corresponding immunophenotypes in a new blood draw taken in 500 of the 

1,000 subjects of the Milieu Intérieur cohort, sampled 7 to 44 days after the initial visit. We 

also provide a list of 26 suggestive association signals (P < 5.0x10-8), including a number of 

biologically relevant candidate genes (Table 12). 
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Of the 42 immunophenotypes for which a significant genetic association was detected, 36 

(86%) were MFI, which measures the cell-specific expression of protein markers 

conventionally used to determine the differentiation or activation state of leukocytes. 

Strikingly, for 29 of these 36 MFI measurements (81%), genetic association was observed 

between the protein MFI and SNPs located in the vicinity of the gene encoding the 

corresponding protein (Figure 44), i.e., local protein QTLs (herein referred to as local-

pQTLs). For instance, genetic variation close to the ENPP3 gene was associated with 

CD203c MFI in basophils (rs138925115, P = 3.5x10-29), CD24 with CD24 MFI in marginal 

zone B cells (rs12529793, P = 5.9x10-22) and CD8A with the MFI of CD8a in CD69+ CD16hi 

NK cells (rs71411868, P = 1.6x10-50). 

 

We identified three independent local-pQTLs in the FCGR gene cluster (Table 10), which 

encodes the most important Fc receptors for inducing phagocytosis of opsonized microbes. 

Two of them were previously reported; genetic variation close to FCGR3A (Orru et al., 2013) 

and in FCGR2A (Roederer et al., 2015) were associated here with the MFI of CD16 in 

CD16hi NK cells (rs3845548, P = 2.6x10-66) and the MFI of CD32 in eosinophils (rs1801274, 

P = 9.8x10-233), respectively.  

The latter variant corresponds to the CD32a R/H amino acid-altering variant, which has been 

strongly associated with different auto-immune disorders, such as systemic lupus 

erythematosus, inflammatory bowel disease, Kawasaki disease and ulcerative colitis (Table 

11).  

The third signal associated FCGR2B variation with the MFI of CD32 in basophils 

(rs61804205, P = 1.6x10-34). Consistently, it is known that the anti-CD32 antibody used in 

this study can recognize both FCGR2A and FCGR2B gene products (CD32a and CD32b, 

respectively), and that basophils express both CD32a and CD32b proteins, while eosinophils 

and neutrophils predominantly express CD32a (Cassard et al., 2012). 
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A number of other local-pQTLs were cell-specific; we identified a local-pQTL at the SELL 

gene associated with CD62L MFI in eosinophils and neutrophils (rs2223286, P = 9.2x10-35 

and 4.6x10-14, respectively), but not in basophils (Figure 43B-C).  

Similarly, three different association signals were found in the HLA-DR gene region, with the 

MFI of HLA-DR in pDCs and CD14hi monocytes (rs114973966, P = 2.5x10-59), in cDC1 

(rs2760994, P = 1.8x10-39) and in cDC3 cells (rs143655145, P = 2.6x10-11).  

To verify if these signals are independent from each other, we conducted omnibus association 

tests on imputed HLA alleles (Jia et al., 2013). We found that the association signals in 

CD14hi monocytes, pDCs and cDC1 actually resulted from different amino acid-altering 

variants at the same multi-allelic position 13 of the HLA-DRβ1 protein (P = 2.0x10-47, 

7.0x10-90 and 5.3x10-41 in CD14hi monocytes, pDC and cDC1, respectively; Tables 13 and 

14), recently shown to explain a large part of the association signal in the HLA locus for type 

2 diabetes (Hu et al., 2015).  

A different amino-acid variant, at position 67 of HLA-DRβ1, was identified in cDC3 (P = 

3.9x10-13).  

Conditional analyses also revealed independent associations of HLA-DR cell-surface 

expression with two residues in class I HLA-B gene (position 97 and 194; P = 3.8x10-17 and 

1.3x10-18; Tables 13 and 14).  

Collectively, these results show that cell-specific protein levels of markers that play an 

important role in immune cell differentiation and activation can be affected by common 

genetic variants, of which some are known to be implicated in human pathogenesis. 

 

 

 



 
 

P-
va

lu
e

Va
l. 

P-
va

l
Ph

e 
(f

=1
2.

0%
)

G
ly

 (f
=4

.3
%

)
H

is 
(f=

17
.8

%
)

A
rg

 (f
=1

4.
8%

)
Se

r (
f=

39
.2

%
)

Ty
r (

f=
12

.1
%

)

M
FI

 o
f H

LA
-D

R
 in

 c
D

C
1

5.
3x

10
-4

1
1.

8x
10

-1
6

-0
.1

1 
   

   
   

 
(-0

.1
4 

- -
0.

08
)

0.
09

   
   

   
 

(0
.0

5 
- 0

.1
4)

0.
01

   
   

   
  

(-0
.0

1 
- 0

.0
4)

-0
.0

6 
   

   
   

(-0
.0

9 
- -

0.
04

)
0.

10
   

   
   

 
(0

.0
8 

- 0
.1

1)
-0

.0
9 

   
   

   
 

(-0
.1

1 
- -

0.
06

)
rs

27
60

99
4

5.
1 

x 
10

-3
9

0.
04

9
13

.8
0%

M
FI

 o
f H

LA
-D

R
 in

 p
D

C
7.

0x
10

-9
0

1.
0x

10
-3

9
-1

67
.8

   
   

   
 

(-2
20

.2
 - 

-1
15

.5
)

-7
9.

2 
   

   
   

(-1
63

.9
 - 

5.
4)

34
3.

6 
   

   
   

(3
03

.8
 - 

38
3.

5)
35

.2
   

   
   

  
(-1

2.
3 

- 8
2.

6)
-1

.7
   

   
   

 
(-3

6.
5 

- 3
3.

0)
-3

04
.3

   
   

   
 

(-3
52

.8
 - 

-2
55

.8
)

rs
11

49
73

96
6

2.
8 

x 
10

-5
8

1.
0

28
.5

0%

M
FI

 o
f C

D
86

 in
 p

D
C

4.
2x

10
-2

2
6.

9x
10

-8
-6

.6
3 

   
   

   
 

(-9
.6

5 
- -

3.
62

)
-2

.9
8 

   
   

   
(-7

.8
1 

- 1
.8

5)
11

.2
0 

   
   

   
(8

.7
1 

- 1
3.

68
)

-0
.7

9 
   

   
   

(-3
.5

0 
- 1

.9
2)

0.
70

   
   

   
 

(-1
.2

8 
- 2

.6
8)

-8
.0

2 
   

   
   

 
(-1

0.
95

 - 
-5

.0
9)

rs
14

08
72

66
8b

2.
1x

10
-1

9
3.

2x
10

-4
6.

00
%

M
FI

 o
f H

LA
-D

R
 in

 C
D

14
hi

 m
on

oc
yt

es
2.

0x
10

-4
7

2.
9x

10
-3

0
0.

44
   

   
   

   
(-0

.0
1 

- 0
.8

9)
-0

.1
8 

   
   

   
(-0

.8
9 

- 0
.5

3)
2.

41
   

   
   

  
(2

.0
6 

- 2
.7

6)
-0

.8
8 

   
   

   
(-1

.2
7 

- -
0.

48
)

-0
.3

9 
   

   
  

(-0
.6

8 
- -

0.
10

)
-1

.6
3 

   
   

   
 

(-2
.0

6 
- -

1.
20

)
rs

11
60

18
92

2b
4.

5x
10

-4
0

1.
0

17
.1

0%

M
FI

 o
f H

LA
-D

R 
in

 c
D

C3
-

-
-

-
-

-
-

-
rs

11
41

76
37

3c
2.

8 
x 

10
-1

2
3.

2x
10

-4
6.

20
%

N
um

be
r o

f H
LA

-D
R+

 C
D

56
hi

 N
K

 c
el

ls
-

-
-

-
-

-
-

-
rs

28
38

33
22

5.
4 

x 
10

-1
4

2.
0x

10
-3

5.
70

%

P-
va

lu
e

Va
l. 

P-
va

l
Ph

e 
(f

=1
4.

7%
)

Ile
 (f

=4
2.

1%
)

Le
u 

(f=
43

.2
%

)
M

FI
 o

f H
LA

-D
R 

in
 c

D
C1

-
-

-
-

-
rs

27
60

99
4

5.
1 

x 
10

-3
9

0.
04

9
13

.8
0%

M
FI

 o
f H

LA
-D

R 
in

 p
D

C
-

-
-

-
-

rs
11

49
73

96
6

2.
8 

x 
10

-5
8

1.
0

28
.5

0%
M

FI
 o

f C
D

86
 in

 p
D

C
-

-
-

-
-

rs
14

08
72

66
8b

2.
1x

10
-1

9
3.

2x
10

-4
6.

00
%

M
FI

 o
f H

LA
-D

R 
in

 C
D

14
hi

 m
on

oc
yt

es
-

-
-

-
-

rs
11

60
18

92
2b

4.
5x

10
-4

0
1.

0
17

.1
0%

M
FI

 o
f H

LA
-D

R 
in

 c
D

C3
-

-
-

-
-

rs
11

41
76

37
3c

2.
8 

x 
10

-1
2

3.
2x

10
-4

6.
20

%

N
um

be
r 

of
 H

LA
-D

R
+ 

C
D

56
hi

 N
K

 c
el

ls
5.

4x
10

-1
4

8.
7x

10
-6

0.
18

   
   

   
   

(0
.1

0 
- 0

.2
7)

-0
.2

3 
   

   
   

(-0
.2

8 
- -

0.
17

)
0.

14
   

   
   

  
(0

.0
8 

- 0
.1

9)
rs

28
38

33
22

5.
4 

x 
10

-1
4

2.
0x

10
-3

5.
70

%

P-
va

lu
e

Va
l. 

P-
va

l
A

rg
 (f

=1
1.

2%
)

A
la

 (f
=6

7.
7%

)
G

ln
 (f

=1
2.

1%
)

Le
u 

(f=
2.

7%
)

G
lu

 (f
=6

.4
%

)
M

FI
 o

f H
LA

-D
R 

in
 c

D
C1

-
-

-
-

-
-

-
rs

27
60

99
4

5.
1 

x 
10

-3
9

0.
04

9
13

.8
0%

M
FI

 o
f H

LA
-D

R 
in

 p
D

C
-

-
-

-
-

-
-

rs
11

49
73

96
6

2.
8 

x 
10

-5
8

1.
0

28
.5

0%
M

FI
 o

f C
D

86
 in

 p
D

C
-

-
-

-
-

-
-

rs
14

08
72

66
8b

2.
1x

10
-1

9
3.

2x
10

-4
6.

00
%

M
FI

 o
f H

LA
-D

R 
in

 C
D

14
hi

 m
on

oc
yt

es
-

-
-

-
-

-
-

rs
11

60
18

92
2b

4.
5x

10
-4

0
1.

0
17

.1
0%

M
FI

 o
f H

LA
-D

R
 in

 c
D

C
3

3.
9x

10
-1

3
1.

1x
10

-7
5.

29
   

   
   

   
(2

.4
8 

- 8
.1

0)
-1

.0
6 

   
   

   
(-3

.0
0 

- 0
.8

9)
-7

.4
0 

   
   

   
 

(-1
0.

13
 - 

-4
.6

8)
15

.5
6 

   
   

   
(1

0.
06

 - 
21

.0
7)

1.
25

   
   

   
 

(-2
.5

3 
- 5

.0
3)

rs
11

41
76

37
3c

2.
8 

x 
10

-1
2

3.
2x

10
-4

6.
20

%

N
um

be
r o

f H
LA

-D
R+

 C
D

56
hi

 N
K

 c
el

ls
-

-
-

-
-

-
-

rs
28

38
33

22
5.

4 
x 

10
-1

4
2.

0x
10

-3
5.

70
%

P-
va

lu
e

Va
l. 

P-
va

l
A

sn
 (f

=3
.3

5%
)

A
rg

 (f
=5

3.
5%

)
Se

r (
f=

24
.3

%
)

Th
r (

f=
12

.7
%

)
Va

l (
f=

2.
0%

)
Tr

p 
(f

=4
.1

%
)

M
FI

 o
f H

LA
-D

R 
in

 c
D

C1
-

-
-

-
-

-
-

-
rs

27
60

99
4

5.
1 

x 
10

-3
9

0.
04

9
13

.8
0%

M
FI

 o
f H

LA
-D

R
 in

 p
D

C
3.

8x
10

-1
7

1.
7x

10
-1

2
-1

7.
4 

   
   

   
 

(-9
2.

9 
- 5

8.
2)

31
.5

   
   

   
 

(3
.1

 - 
59

.9
)

-4
7.

6 
   

   
   

 
(-8

2.
1 

- -
13

.1
)

22
.4

   
   

   
  

(-1
9.

2 
- 6

3.
9)

-7
1.

1 
   

   
  

(-1
72

.7
 - 

30
.5

)
-1

1.
7 

   
   

   
 

(-8
3.

0 
- 5

9.
5)

rs
11

49
73

96
6

2.
8 

x 
10

-5
8

1.
0

28
.5

0%

M
FI

 o
f C

D
86

 in
 p

D
C

-
-

-
-

-
-

-
-

rs
14

08
72

66
8b

2.
1x

10
-1

9
3.

2x
10

-4
6.

00
%

M
FI

 o
f H

LA
-D

R 
in

 C
D

14
hi

 m
on

oc
yt

es
-

-
-

-
-

-
-

-
rs

11
60

18
92

2b
4.

5x
10

-4
0

1.
0

17
.1

0%
M

FI
 o

f H
LA

-D
R 

in
 c

D
C3

-
-

-
-

-
-

-
-

rs
11

41
76

37
3c

2.
8 

x 
10

-1
2

3.
2x

10
-4

6.
20

%
N

um
be

r o
f H

LA
-D

R+
 C

D
56

hi
 N

K
 c

el
ls

-
-

-
-

-
-

-
-

rs
28

38
33

22
5.

4 
x 

10
-1

4
2.

0x
10

-3
5.

70
%

P-
va

lu
e

Va
l. 

P-
va

l
Ile

 (f
=8

3.
2%

)
Va

l (
f=

16
.9

%
)

In
de

l (
f=

0.
1%

)
M

FI
 o

f H
LA

-D
R 

in
 c

D
C1

-
-

-
-

-
rs

27
60

99
4

5.
1 

x 
10

-3
9

0.
04

9
13

.8
0%

M
FI

 o
f H

LA
-D

R
 in

 p
D

C
1.

3x
10

-1
8

1.
2x

10
-9

-3
0.

9 
   

   
   

 
(-7

3.
2 

- 1
1.

3)
30

.9
   

   
   

 
(-1

1.
3 

- 7
3.

2)
-1

67
.4

   
   

   
(-7

86
.5

 -4
51

.7
)

rs
11

49
73

96
6

2.
8 

x 
10

-5
8

1.
0

28
.5

0%

M
FI

 o
f C

D
86

 in
 p

D
C

-
-

-
-

-
rs

14
08

72
66

8b
2.

1x
10

-1
9

3.
2x

10
-4

6.
00

%
M

FI
 o

f H
LA

-D
R 

in
 C

D
14

hi
 m

on
oc

yt
es

-
-

-
-

-
rs

11
60

18
92

2b
4.

5x
10

-4
0

1.
0

17
.1

0%
M

FI
 o

f H
LA

-D
R 

in
 c

D
C3

-
-

-
-

-
rs

11
41

76
37

3c
2.

8 
x 

10
-1

2
3.

2x
10

-4
6.

20
%

N
um

be
r o

f H
LA

-D
R+

 C
D

56
hi

 N
K

 c
el

ls
-

-
-

-
-

rs
28

38
33

22
5.

4 
x 

10
-1

4
2.

0x
10

-3
5.

70
%

O
m

ni
bu

s t
es

t 
Be

ta
 (9

5%
 C

I) 
of

 a
m

in
o-

ac
id

 su
bs

tit
ut

io
ns

O
m

ni
bu

s t
es

t 

O
m

ni
bu

s t
es

t 
Be

ta
 (9

5%
 C

I) 
of

 a
m

in
o-

ac
id

 su
bs

tit
ut

io
ns

Be
ta

 (9
5%

 C
I) 

of
 a

m
in

o-
ac

id
 su

bs
tit

ut
io

ns

O
m

ni
bu

s t
es

t 
Im

m
un

op
he

no
ty

pe
Pr

op
or

tio
n 

of
 

va
ri

an
ce

 e
xp

la
in

ed
 

by
 H

LA
 a

m
in

o 
ac

id
 

po
sit

io
ns

Be
ta

 (9
5%

 C
I) 

of
 a

m
in

o-
ac

id
 su

bs
tit

ut
io

ns
Be

st
 S

N
Pa

Be
st

 S
N

P 
   

P-
va

lu
ea

Be
st

 S
N

P 
P-

va
lu

e 
co

nd
iti

on
in

g 
on

 
as

so
ci

at
ed

 H
LA

 
am

in
o-

ac
id

 p
os

iti
on

s

O
m

ni
bu

s t
es

t 
Be

ta
 (9

5%
 C

I) 
of

 a
m

in
o-

ac
id

 su
bs

tit
ut

io
ns

 

M
I



    

Im
mu

no
ph

en
oty

pe
Ri

sk 
HL

A 
all

ele
Co

nd
itio

nin
g o

n…
P-

va
lue

Va
lid

ati
on

 
P-

va
lue

Be
ta 

(95
% 

CI
)

Be
st 

SN
Pa

Be
st 

SN
P P

-
va

lue
a

Be
st 

SN
P P

-va
lue

 
co

nd
itio

nin
g o

n H
LA

 al
lel

e
HL

A-
DQ

A1
*0

5:0
1

-
1.4

x1
0-24

1.2
x1

0-12
0.1

1 (
0.0

9 -
 0.

13
)

rs2
76

09
94

5.1
 x 

10
-39

3.2
x1

0-22

HL
A-

DQ
B1

*0
5:0

1
HL

A-
DQ

A1
*0

5:0
1

2.6
x1

0-9
2.7

x1
0-3

-0.
08

 (-
0.1

1 -
 -0

.06
)

HL
A-

DQ
A1

*0
3:0

1
-

1.6
x1

0-56
1.9

x1
0-28

33
6.6

 (2
97

.6 
- 3

75
.6)

rs1
14

97
39

66
2.8

 x 
10

-58
2.5

x1
0-5

HL
A-

DQ
A1

*0
2:0

1 /
 H

LA
-

DR
B1

*0
7:0

1
HL

A-
DQ

A1
*0

3:0
1

2.9
x1

0-28
2.4

x1
0-12

-25
3.8

 (-
29

7.3
 - -

21
0.2

)

HL
A-

DQ
A1

*0
1:0

1
HL

A-
DQ

A1
*0

3:0
1, 

HL
A-

DQ
A1

*0
2:0

1
4.4

x1
0-10

3.1
x1

0-4
-13

0.9
 (-

17
1.7

 - -
90

.2)

HL
A-

DQ
A1

*0
3:0

1
-

4.1
x1

0-18
8.2

x1
0-8

11
.0 

(8.
6 -

 13
.4)

rs1
40

87
26

68
b

2.1
x1

0-19
4.4

x1
0-5

HL
A-

DQ
A1

*0
2:0

1 /
 H

LA
-

DR
B1

*0
7:0

1
HL

A-
DQ

A1
*0

3:0
1

2.2
x1

0-5
9.4

x1
0-3

-6.
2 (

-9.
1 -

 -3
.4)

HL
A-

DQ
A1

*0
3:0

1
-

2.9
x1

0-36
5.0

x1
0-24

2.3
 (2

.0 
- 2

.6)
rs1

16
01

89
22

b
4.5

x1
0-40

1.6
x1

0-3

HL
A-

DQ
A1

*0
2:0

1 /
 H

LA
-

DR
B1

*0
7:0

1
HL

A-
DQ

A1
*0

3:0
1

5.8
x1

0-10
1.4

x1
0-7

-1.
3 (

-1.
7 -

 -0
.9)

MF
I o

f H
LA

-D
R 

in 
cD

C3
HL

A-
DQ

B1
*0

2:0
2

-
5.6

x1
0-8

1.8
x1

0-4
15

.65
 (1

0.0
4 -

 21
.25

)
rs1

14
17

63
73

c
5.4

 x 
10

-14
1.8

x1
0-13

Nu
mb

er 
of 

HL
A-

DR
+ C

D5
6hi  N

K 
cel

ls
HL

A-
DQ

B1
*0

4:0
2

-
2.7

x1
0-7

1.6
x1

0-1
-0.

26
 (-

0.3
6 -

 -0
.17

)
rs2

83
83

32
2

2.8
 x 

10
-12

1.8
x1

0-10

MF
I o

f H
LA

-D
R 

in 
cD

C1

MF
I o

f H
LA

-D
R 

in 
pD

C

MF
I o

f C
D8

6 i
n p

DC

MF
I o

f H
LA

-D
R 

in 
CD

14
hi  m

on
oc

yte
s

 



Alejandra	  Urrutia	  –	  Thèse	  de	  doctorat	  -‐	  2017	  

 - 133	  -‐ 

2.6. Novel	  trans-‐acting	  genetic	  associations	  with	  immune	  cell	  

parameters	  

We detected five novel associations that involve SNPs acting in trans on immunophenotypes 

(Figure 44). These SNPs include variants that are genetically independent from the genes 

encoding immune cell markers with which they are associated, or that are associated with 

immune cell counts.  

Variants close to the S1PR1 gene were associated with the MFI of CD69 in CD16hi NK cells 

(P = 3.8x10-30). CD69 is known to downregulate cell-surface expression of the sphingosine-1-

phosphate receptor-1 (S1P1) on lymphocytes, a mechanism that elicits egress from the 

thymus and secondary lymphoid organs (Garris et al., 2014).  

The second association signal lies in an intron of the ACOXL gene, close to BCL2L11, and is 

associated with the absolute count of CD56hi NK cells (P = 9.1x10-20). BCL2L11 (also known 

as BIM) is an important regulator of lymphocyte apoptosis (Pellegrini et al., 2004) and is 

associated with chronic lymphocytic leukemia and total blood cell number (van der Harst et 

al., 2012).  

The third trans-acting association correlates genetic variants close to the ACTL9 gene with the 

ratio of CD16 MFI in CD16hi and CD56hi NK cells (P = 2.0x10-24). While little is known 

about the function of the ACTL9 gene, the most strongly associated SNPs at the locus were 

recently shown to be associated with atopic dermatitis (Table 11) (Paternoster et al., 2015), 

thereby suggesting a possible involvement of NK cells in this pathology (von Bubnoff et al., 

2010).  

The fourth signal locates in the TMEM8A gene and is associated with the MFI of CCR7 in 

CD4+ and CD8b+ naïve T cells (P = 2.4x10-20). TMEM8A is expressed on the surface of 

resting T cells and is down-regulated after cell activation (Motohashi et al., 2000), suggesting 

a possible functional association and/or co-regulation with CCR7.  

Finally, conditional GWAS identified a fifth trans-acting association, between HLA-DR MFI 

in cDC1 and the CD83 gene (P = 1.0x10-11, Figure 45 and Table 12). These results suggest 

that CD83, an early activation marker of human DCs, upregulates HLA-DR expression in 

activated dendritic cells. 
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Figure	  45	  :	  Local	  association	  signals	  for	  the	  7	  genome-‐wide	  significant	  hits	  identified	  by	  conditional	  GWAS	  of	  the	  14	  

immunophenotypes	  showing	  strong	  genetic	  association	  in	  the	  MI	  cohort.	  
Each	  point	   is	  a	  SNP,	  whose	  color	   represents	   its	   level	  of	   linkage	  disequilibrium	  (r2)	  with	  the	  best	  hit	   (in	  purple).	  Blue	   lines	   indicate	  

local	  recombination	  rates.	  These	  association	  signals	  were	  identified	  when	  conditioning	  on	  main	  signals	  (Materials	  &	  Methods).	  
	  
	  

	  
	  

Figure	  46	  :	  Local	  association	  signals	  detected	  by	  multi-‐trait	  GWAS	  of	  immunophenotypes	  measured	  in	  the	  MI	  cohort.	  	  
(A)	   Local	   association	   signals	   at	   loci	   influencing	   principal	   components	   of	   a	   PCA	   of	   all	   innate	   cell	   immunophenotypes.	   No	  
suggestive	  signal	  (P	  <	  5x10-‐8)	  was	  observed	  for	  PCs	  of	  a	  PCA	  of	  adaptive	  cell	  immunophenotypes.	  	  

(B)	   Local	   association	   signal	  with	   the	   absolute	   numbers	   of	   HLA-‐DR+	   CM,	   EM	   and	   EMRA	   T	   cells,	   either	   CD4+	   or	   CD8+.	   The	   six	  
corresponding	  immunophenotypes	  were	  analyzed	  altogether	  using	  a	  multivariate	  GWAS (Materials and Methods) 
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2.7. Genetic	  control	  of	  mRNA	  expression	  explains	  association	  with	  

protein	  levels	  of	  immune	  cell	  markers	  

While three of the 14 genome-wide significant associations are probably explained by amino 

acid-altering variants in surrounding genes (H/R polymorphism in FCGR2A, position 13 in 

HLA-DR; Tables 11 and 13), the remaining signals do not present obvious candidate causal 

variants. To better understand these associations, we tested if corresponding SNPs were 

associated with mRNA levels of nearby genes (i.e., gene expression QTL, eQTL).  

We quantified the expression of immunity-related genes located close to each associated 

locus, using mRNA extracted from whole blood of all 1,000 Milieu Intérieur subjects 

(Materials & Methods).  

Three of the pQTLs that we identified were strongly associated with the mRNA levels of a 

surrounding immunity-related gene (Tables 11 and 12). The SNPs controlling CD62L MFI in 

eosinophils, CD32 MFI in basophils and HLA-DR MFI in cDC1 were strongly associated 

with SELL mRNA levels (P = 1.9x10-21; Figure 43D), FCGR2B mRNA levels (P = 4.1x10-22; 

Table 11) and CD83 mRNA levels (P = 3.2x10-22; Table 12), respectively.  

Together, our analyses indicate that several genetic variants associated with 

immunophenotypes affect the expression of genes encoding markers of immune cells in 

whole blood.  

This suggests that the intersection of eQTL and pQTL mapping in different immune cell 

compartments can greatly improve our knowledge of the genetic factors controlling human 

inter-individual variation in immune cell parameters.  

 

2.8. The	  natural	  variance	  of	  innate	  immune	  cell	  parameters	  is	  driven	  by	  

genetic	  factors	  

A large proportion of both MFI and cell number immunophenotypes that presented a genome-

wide association (34/42, 81%) were measured in innate immune cells, including granulocytes, 

monocytes, NK and dendritic cells (Table 10), while 47% of all immunophenotypes were 

measured in innate cells (Table 9). Also, of the adaptive cell immunophenotypes showing 

genetic associations, 3 of the 8 hits (38%) were related to naïve T or B cells, while naïve 

adaptive cell parameters represented <10% of all adaptive cell measurements. These 
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observations suggested a stronger effect of genetic variants on innate and naïve adaptive cell 

subpopulations, as compared to differentiated or experienced adaptive immune cells.  

In accordance with these observations, the presence of HLA-DR molecules, which was 

assessed at the surface of both innate and adaptive immune cells, was strongly associated with 

HLA-DR genetic variation in monocytes, NK and dendritic cells (Table 10), while it showed 

no significant association in memory CD4+ or CD8+ T cells (including CM, EM and EMRA T 

cells; P > 1.0x10-6). Because HLA-DR+ memory T cell numbers were modestly correlated (r² 

~ 0.3-0.4, Figure 36), we assumed they were at least partly controlled by the same genetic 

factors, which we further examined using a multivariate GWAS (Materials & Methods). This 

refined approach indeed detected a suggestive genetic association close the HLA-DRB1 gene 

(rs35743245, P = 1.0x10-8; r² = 0.92 with rs114973966) in strong linkage disequilibrium with 

that detected in pDCs, monocytes and NK cells (r² = 0.92; Figure 46).  

This finding provides a proof-of-concept that immunophenotypes in both innate and adaptive 

cells can be controlled by the same genetic factors, but their weaker effects in experienced 

adaptive cells may require greater power to be reliably detected.  

 

Following these observations, we next systematically quantified the impact of genetic and 

non-genetic factors on innate and adaptive cells, by establishing for each immunophenotype a 

linear regression model that included all significant variables (Figures 29, 37, 40 and 43), and 

by estimating their respective contribution to the total variance (Materials & Methods).  

We indeed observed that a larger proportion of the variance of innate cell immunophenotypes 

was explained by genetic factors (Figures 47A and 47C), as compared to adaptive cell 

immunophenotypes (Figures 47B and 47D). Inversely, the variance in adaptive cell numbers 

was dominated by non-genetic factors such as age and CMV serostatus (Figure 47D).  

To formally test if these differences were significant, we used a generalized least squares 

model that accounts for correlations among immunophenotypes (Materials & Methods). 

Conclusively, the increase in the proportion of variance explained by genetics for innate cell 

measurements was strongly significant (9.4% ± 0.2%; P = 1.2x10-12), a result that was further 

supported by a non-parametric test (Wilcoxon signed rank test P = 2.4x10-5).  

Because CD32a is a receptor for the Fc-domain of IgG antibodies, we were concerned that the 

strong association detected between the CD32a R/H amino acid-altering variant (rs1801274, 

Table 10) and CD32 MFI in eosinophils and neutrophils was due to genotype-dependent non-

specific interactions with the antibody used for detecting its expression. For this reason, we 
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repeated our analyses after excluding the two associations observed between the CD32a R/H 

variant and CD32 expression. 

 

 

Figure	  47	  :	  Proportion of variance of innate and adaptive cell parameters explained by non-genetic and 
genetic factors. 

Flow	  cytometry	  measurements	  were	  separated	  into	  (A,	  B)	  expression	  levels	  of	  cell	  surface	  markers	  (mean	  
fluorescence	  intensity,	  MFI)	  and	  (C,	  D)	  absolute	  counts	  of	  circulating	  immune	  cells.	  The	  total	  variance	  R²	  of	  each	  
innate	  (A,	  C)	  or	  adaptive	  (B,	  D)	  cell	  immunophenotype	  was	  decomposed	  into	  proportions	  explained	  by	  non-‐genetic	  
factors	  (i.e.,	  age,	  gender,	  CMV	  infection	  and	  smoking;	  Figure	  40A)	  and	  genetic	  factors	  (i.e.,	  GWAS	  hits,	  Tables	  10	  and	  
12)	  
	  

Conclusively, the larger proportion of variance explained by genetics for innate cell 

measurements was still strongly significant (P = 1.8x10-12; PWilcoxon = 5.7x10-5). In sum, we 
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find that genetic factors account for a substantial fraction of human variation in immune cell 

parameters, and their influence is stronger in innate immune cells, as compared to adaptive 

immune cell phenotypes. 

 

2.9. Design	  and	  preliminary	  results	  from	  first	  replicative	  study	  

In order to validate some of the findings from the Milieu Intérieur collection, an independent 

collection has been organized in partnership with Genentech company (Cancer Immunology 

department), where I spent a portion of my PhD training. Due to differences between the two 

sites in term of donor recruitment, instrument facilities and reagent availability, some 

modifications to the protocol were performed. While requiring some additional methods 

development, I saw this as a true opportunity to pressure-test the robustness of our findings. 

 

2.9.1. Donor	  collection	  

Using the Genentech genotyped and phenotyped (gGAP) registry, a first evaluation was 

performed by a geneticist of our group to determine the minor allele frequency (MAF) 

distribution for the genes for which the most significant associations were found in the MI 

analysis. The donors presenting those SNPs (i.e. homozygote for the minor allele) were 

prioritized as well as donors presenting the corresponding haplotypes (heterozygotes and 

homozygotes for the major allele). This selection aims to assure a statiscally sufficient 

number of donors presenting a specific MAF to be able to perform correlations with 

phenotypic immune parameters.  

Thus far 81 donors have been recruited with 65% of men and a median of age of 39 years old. 

The range was between 25 to 50 years old with only one active and 4 former smokers (Table 

15). 

 

 

Table	  15	  :	  Demographic	  parameters	  of	  the	  replicative	  collection	  
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We have indicated that a primary donor selection has been performed in term of genetic 

background. Nevertheless, the analysis of the allele distribution frequency for the genes of 

interest in this preliminary collection was concordant with the ones observed in the MI 

collection. This indicates the absence of a massive genetic bias within the donors included 

which allows a broad genotype/phenotype comparison (Table 16 and data not shown).  

 

 

 

Table	  16:.	  Examples	  of	  allele	  frequency	  distribution	  within	  the	  replicative	  collection.	  

 

2.9.2. Immune	  cell	  type	  assesment	  	  

This « artificial » SNPs enrichment allowed also focusing on the parameters measured by 

flow cytometry to the ones found associated to those genetic polymorphisms.  

As described in the previous section, using the MI cohort dataset, the majority of genetic 

associations were found within the innate cells compartment whereas the variance observed 

within the adaptive cells compartment was preferentially associated to environmental factors. 

Based on this MI analysis, three « innate » 8-coulour panels (out of the 10 used for the MI 

collection; Figures 56-65 in « Materials & Methods » and Table 8) were selected to assess 

quantitative and qualitative immune phenotypes (Figure 49). Those three selected panels 

aimed to measure the (i) general immune cell populations or « lineage » panel, for the 

assessment of the major innate and adaptive immune cells ; (ii) the natural killer cell 

phenotypes or « NK » panel ; (iii) the polymorphonuclear cell population phenotypes  or 

« PMN » panel, allowing the analysis of neutrophils, eosinophils and basophils populations. 

In order to validate the standardized flow cytometry analysis pipeline developed for the MI 

collection we applied the same strategy except for some modifications due to local logistic 

differences. I will indicate those changes whenever necessary in the next sections. 
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2.9.2.1. 	  Antibodies 

At the pre-collection stage of the MI study, a huge effort in term of antibody selection (clone 

and supplier), staining protocol and titration has been done to guaranty the dataset quality 

(Hasan et al., 2015).  

In collaboration with the clinical cytometry platform from Genentech, we applied the same 

antibody mix and the same protocol. Nonetheless, a new antibody titration was necessary due 

to change of individual antibody batch and cytometer instrument (Figure 48).  

 

	  
	  

	  
Figure	  48	  :	  Antibody	  titration	  for	  flow	  cytometry	  analysis	  of	  the	  replicative	  study	  	  

Titration	   of	   the	   CD45	   PE	   antibody	   (Ab)	   before	   inclusion	   in	   the	   lineage	   panel	   using	   10µl,	   5µl	   or	   2.5µl	   per	  
100µl	  of	  blood	   (from	   left	   to	   right).	   The	   facs	   plots	   represent	   the	   CD45	   staining	   (x	   axis)	   against	   the	   granularity	  
parameter	   (SSC)	   on	   the	   y	   axis	   	   allowing	   the	   detection	   of	   the	   three	   main	   immune	   circulating	   populations	  :	   PMN	  
(CD45loSSChi),	  monocytes	  (CD45intSSCint)	  and	  lymphocytes	  (CD45hiSSClo).	  The	  CD45+	  frequency	  and	  mean	  fluorescence	  
intensity	   (MFI)	   are	   indicated	   for	   each	   condition	   (purple).Whereas	   the	   overall	   frequency	   do	   not	   change,	   the	   MFI	  
decrease	   in	   parallel	   to	   Ab	   quantity.	   The	   condition	   5µl	   has	   been	   finally	   selected	   as	   the	   CD45	   staining	  within	   PMN	  
population	   was	   sufficiently	   bright	   (half	   distance	   between	  !03	   to	  !04	   log	   scale)	   and	   not	   too	   saturated	   within	  
lymphocyte	  population	  (MFI	  at	  !05	  log	  scale	  maximum).	  In	  the	  MI	  collection	  10µl	  per	  mix	  of	  this	  antibody	  was	  used.	  

In addition, due to a customized coupling of the anti-CD32 (FcγRIIa) to the PE-Cy7 

fluorochrome (specially performed for the MI study by the company Becton Dickinson), this 

antibody (included in the PMN panel) was not anymore available for this study. As a 

consequence, we replaced the original reagent by an anti-CD32 from the same clone but 

coupled to allophycocyanin (APC) from the same supplier and commercially available. In 

parallel, the anti-CD203c APC (Miltenyi Biotech) originally used in this panel was replaced 

by the corresponding anti-CD203c PE-Vio770 (same clome and supplier). 

 We have titrated those antibodies and validated this new mix in term of population 

identification and frequency (Figure 49 and data not shown). 

 

                 10 µl                        5 µ l           2.5 µl 
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	  Figure	  49:	  Modified	  flow	  cytometry	  panels	  used	  for	  the	  replicative	  study.	  	  
From	  the	  left	  to	  the	  right	  the	  lineage,	  Natural	  killer	  (NK)	  and	  polymorphonuclear	  (PMN)	  cell	  panels	  are	  described.	  	  
The	  tables	  indicate	  for	  each	  panel	  the	  markers	  used	  with	  the	  fluorochrome	  and	  supplier	  associated.	  The	  two	  human	  
antibodies	  (anti-‐CD32	  and	  anti-‐CD203c)	  modified	  in	  the	  PMN	  panel	  are	  highlighted	  in	  green.	  
	  

2.9.2.2. Instrument	  and	  cell	  count	  assessment	  

The assessment of immunophenotypes for the Milieu Intérieur cohort has been performed on 

two MacsQuant instruments (Miltenyi Biotech) specifically selected, calibrated and dedicated 

to the collection (Hasan et al., 2015; Materials & Methods).  

In order to replicate our previous findings, we organized this replicative study in collaboration 

with the clinical flow cytometry facility at Genentech for the immune cell phenotyping. Our 

interest for this platform was driven by their capability to offer daily-calibrated instruments. 

Despite an impressive armaterium of flow cytometers proposed by this platform, the 

MacsQuant instrument was not one of them. Nonetheless, I considered this as a real 

opportunity to test the robustness of our previous phenotype/genotype associations.  

The cytometer BDFacsCantoII (Becton Dickinson) has been selected as the most similar to 

the MacsQuant in term of fluorescent parameter detection and for its clinical grade fluidic 

system. However, the laser and optic system remain differents. Other major difference 

between those two instruments is the absence of a direct cell count measurement for the 

BDFacsCantoII. 

 In order to optimize the immune cell count, we compared for 9 donors the TruCount bead 

method (Becton Dickinson) associated to the Lineage panel with a clinical grade white blood 

cells count (WBC) and differential performed in parallel by the clinical grade Quest 

Diagnostics laboratory (Figure 50). 
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Figure	  50	  :	  Method	  comparison	  for	  cell	  count	  assessment.	  	  
The	  cell	  count	  measurement	  (expressed	  per	  microliter	  of	  blood)	  has	  been	  assessed	  for	  9	  donors	  using	  a	  clinical	  grade	  
white	   blood	   cells	   count	   (WBC)	   	   and	   differential	   and	   the	   TruCount	   beads	   included	   in	   the	   Lineage	   panel	   tube	   and	  
acquired	  in	  the	  BDFacsCantoII.	  	  

(A)	   The	   leukocyte	   counts	   given	   by	   the	  WBC	   and	   differential	   (left)	   or	   after	   calculation	   using	   the	   frequency	   of	   CD45+	  	  
normalized	  with	  the	  TruCount	  beads	  	  (CD45+	  TruCount)	  included	  in	  the	  same	  tube	  (right)	  are	  plotted.	  	  

(B)	   Same	   analysis	   for	   different	   population	   subsets:	   neutrophil	   counts	   (WBC	   and	   differential)	   versus	   CD16hi	   frequency	  
normalized	  with	   the	   TruCount	   beads	   (top	   left);	   lymphocyte	   counts	   versus	   CD3+	   plus	   CD19+	   TruCount	   (top	   right);	  
monocyte	   counts	   versus	   of	   CD14hi	   (conventional)	   plus	   CD14lo	   (intermediate)	   plus	   CD14hi	   (inflammatory)	   TruCount	  
(bottom	   left);	   eosinophil	   counts	   versus	   of	   CDw125+CD32+SSChi	   TruCount	   (bottom	   right).	   Non-‐parametric	  Wilcoxon	  
test	  *p<0.05.	  

 

The CD45+ TruCount calculation was performed as follow:  

(N_CD45+/N_Measured Beads) x (48650 (TruCount Beads Lot 15341= 48650 target beads) / 50µl of 

blood). 

Using those two methods simultaneously, we constantly observed a significant lower 

hematopoietic CD45+ TruCount compared to the clinical leucocyte count (WBC) with 4 to 

40% decrease observed across donors (average of 22.7%) (Figure 50A). This difference 

highlight probably technical differences between the two methods where one relies on light 

and electronic captors measuring the size and granularity to identify the populations (WBC 

and differential) whereas the other technology detects fluorescent parameters (TruCount). 

To validate this hypothesis, we next extended this analysis by the comparison of the cell count 

by those two approaches on population subsets presenting different abundances. We 

performed a comparison on the populations provided by the WBC and differential 
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(neutrophils, eosinophils, basophils, monocytes and lymphocytes) to the assigned equivalent 

populations in our gating strategies for this panel (Figure 60), analyzed after fluorescent 

immunostaining coupled with the Trucount beads.  

The calculated population counts using the TruCount beads were obtained using the following 

formula: (% population of interest gated in CD45+) X (CD45+ TruCount).  

We confirmed significant higher counts from the clinical-grade assessment compared to our 

flow approach for neutrophils (p=0.0039), monocytes (p=0.0039), eosinophils (p=0.0078), but 

not for lymphocytes for which the counts measured in both methods were very similar (n.s., 

p= 0.3008). (Figure 50B). These results indicated that the lower count observed using the 

Trucount was independent of the population frequency as the neutrophils (the most abundant) 

and the eosinophils (the less abundant) presented the same pattern whereas the lymphocytes 

(the second most frequent population) were not impacted by the method used. In addition, 

those results suggested that the technical differences between both methods did not explain 

entirely these discrepancies.  

Due to those observations and in order to reduce pre-analytical bias potentially introduced by 

the addition of Trucount beads within our antibody mix, we decided to request a systematic 

WBC and differential in parallel to our sample process by flow cytometry. Those clinical data 

will be used as hematopoietic cell reference count to normalize the counts of all the subsets 

extracted from the three panels for the entire collection.  

 

2.9.2.3. Comparison	  between	  Milieu	  Intérieur	  and	  replicative	  collection	  

The same gating strategies as previously described were applied to analyze the NK cells, 

lineage and PMN cell panels (Figures 59, 60 and 62 in « Materials & Methods » section) for 

the 81 donors included. Those analysis provided the frequencies and mean fluorescence 

intensity (MFI) for the same immunophenotypes than in the MI cohort analysis (see Table 9).  

As mentioned before, this is an on going analysis and the dataset still need to be curated 

notably by controlling and correcting for the potential batch effects.  

In the coming section, I will briefly present some preliminary comparative analysis between 

both studies to give a first overview of what can be expected from the future dataset. 

The comparison of the major circulating population frequencies showed similar ranges 

between the values measures in both collections. As an example, for the circulating monocyte 

populations, the median of total monocytes (CD14hi, CD14lo and CD16hi) frequency of CD45+ 
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was 4.9% (from 1.0 to 9.8 %) for the replicative study compared to a median of 4.7% (range 

of 1.43 to 18%) for the MI study (Figure 51A). 

This was also true for the less frequent inflammatory monocyte population (CD16hi) with a 

median of 0.69% and 0.81% for the replicative and the MI study respectively (Figure 51A). 

We observed the same pattern for the PMN and NK cells (data not shown). 

 

 

 

Figure	  51:	  Comparison	  of	  monocyte	  and	  lymphoid	  population	  frequency	  across	  studies.	  
The	   box	   plots	   show	   the	   comparison	   between	   the	   frequencies	   measured	   within	   the	   81	   donors	   included	   in	   the	  
replicative	   study	   using	   the	  WBC	  and	   differential	   (dark	   blue)	   or	   the	   flow	   panels	   (light	   blue,	   green	   and	   brown)	   and	  
compared	  to	  the	  frequencies	  measured	  for	  the	  1,000	  donors	  from	  the	  Milieu	  Intérieur	  cohort	  (“MI”;	  grey	  box	  plots).	  

(A) Total	  monocyte	   frequency	   (including	   the	  CD14hi,	   CD14intCD16intand	  CD14loCD16hi)	  within	   the	   CD45+	   gate	   using	   the	  
Lineage	  panel.	  The	  inflammatory	  monocyte	  frequencies	  (CD14loCD16hi)	  were	  indicated	  the	  right	  for	  both	  studies.	  

(B) Lymphoid	  population	  frequencies	  frequency	  (including	  the	  CD14hi,	  CD14intCD16intand	  CD14loCD16hi)	  within	  the	  CD45+	  
gate	  using	   the	   Lineage	  panel.	   The	   inflammatory	  monocyte	   frequencies	   (CD14loCD16hi)	  were	   indicated	   the	   right	   for	  
both	  studies.	  

 

The same analysis was performed within the lymphoid compartment. We observed similar 

median frequencies for the B cells (CD19+) with 4.2% for the replicative collection vs 3.54% 
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in the MI study. For the T cells, the median frequency was slightly increased within the 

replicative collection than within the MI cohort (28.1% versus 21.9% respectively). This was 

accompanied by a preferential decrease of the ratio CD4+/CD8+ within the CD3+ T cell subset 

in the replicative study (Figure 51B). 

As observed for the counts in the precedent section, the frequencies of monocytes were 

constantly lower if measured by flow cytometry rather than by WBC and differential (median 

of 6.95% compared to 4.9% for the flow approach). Again, this could be probably explained 

by different technical properties. The flow cytometry approach requires a fluorophore 

excitation with fluorescence detection and restricts the population measurement to the ones 

identified by the expression of our selected marker(s). By contrast, the clinical WBC and 

differential measure their size (front scatter) and light refraction and/or electrical impedance 

properties (side scatter) without staining and wash step.  

Nonetheless, the lymphoid cell frequencies, as observed previously for the counts, showed 

similar results between both methods when we compared the sum of B cells and T cells 

frequencies to the clinical lymphocytes frequency (32.3% versus 33.5%; Figure 51B). This 

suggest potential biological differences 

 

In order to check the accuracy of our immune parameter measurements and taking advantage 

of the genetic/phenotype associations found in the MI analysis, we compared within the same 

populations the MFI of specific surface proteins with genetic variants loci. 

The preliminary analysis was encouraging with an overall increase of the activation marker 

CD69 MFI within the CD16hi NK cells subset when the genetic variation of the gene S1PR1 

was present (rs6693121) (Figure 52A) or a decrease of the CD56hi NK cell subset frequency 

alleles in presence of the BCL2L11 gene variant (rs875063) (Figure 52B). Those 

observations were in concordance with the associations observed within the MI collection for 

rs6693121 (p-value = 3.8x10-30, SE= 7.01) and rs875063 (p-value = 9.1x10-20, SE= -0.95).  
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Figure	  52	  :	  SNPs	  controlling	  circulating	  immune	  cell	  parameters.	  	  

Box	  plots	  with	  the	  individual	  donors	  indicated	  (green	  points)	  representing	  the	  (A)	  MFI	  of	  CD69	  in	  the	  CD16hi	  NK	  cell	  
subset	  (measured	  with	  the	  NK	  cell	  panel),	  across	  the	  different	  variants	  of	  the	  gene	  S1PR1	  (minor	  allele	  rs6693121);	  
(B)	  frequency	  of	  CD56hi	  NK	  cells	  in	  the	  NKp46+	  NK	  cell	  population	  (measured	  with	  the	  NK	  cell	  panel),	  across	  the	  
different	  variants	  of	  the	  gene	  BCL2L11	  (minor	  allele	  rs875063).	  	  
 	  



Alejandra	  Urrutia	  –	  Thèse	  de	  doctorat	  -‐	  2017	  

 - 147	  -‐ 

3. Discussion	  

Over the last two decades, research in immunology has employed multi-parametric cytometry 

to enumerate and assess the activation state of human immune cells in healthy and disease 

conditions. Although such immune cell parameters vary in the general population, the genetic 

and non-genetic factors that explain this variance remain largely unexplored. Powerful 

genome-wide association studies have identified genetic factors that contribute to the risk of 

developing chronic infectious or auto-immune diseases, but little is known about the specific 

tissues or immune cell compartments where susceptibility alleles are phenotypically 

expressed. Such precise information is critical in the context of translational research and 

clinical immune monitoring. 

Here we combined standardized flow cytometry with genome-wide DNA genotyping in a 

demographically-well defined cohort of 1,000 healthy unrelated subjects, to identify non-

genetic and genetic factors that modulate human immune cell parameters. We confirm the 

strong and independent impacts of age and CMV infection on naïve and memory T cell 

populations, respectively, and provide robust evidence for sex differences in innate and 

adaptive cell numbers. We also show that active cigarette smoking, and to a lesser extent past 

smoking, elicit a decline in innate immune cells and MAIT cells and an increase in the levels 

of activated and memory Treg cells, which may predispose healthy individuals to infection. 

Furthermore, human genetic variation considerably impacts immune cell parameters in 

healthy individuals, particularly the cell-surface expression of markers conventionally used to 

identify leukocyte differentiation or activation. Overall, our analyses strongly suggest that 

individual non-genetic and genetic features should be taken into consideration when 

interpreting parameters of circulating white blood cells of patients. For instance, HLA-DR 

expression on monocytes is routinely measured by flow cytometry in clinics to predict 

mortality in septic shock and identify patients who should benefit from immunoadjuvant 

therapies (Venet et al., 2013). We identified a strong effect of HLA-DRβ1 coding variation on 

HLA-DR expression in CD14hi monocytes, which suggests that prognostic tools of fatal 

outcome in sepsis should be tailored to patient’s genetic makeup. 

The most striking result of our study is the disproportionate number of genetic associations 

found in innate immune cells. The virtual absence of genetic associations detected in memory 

T and B cells, even after adjusting for age and CMV infection, could be attributed to their 

strong dependence on individual past infections. Notably, adaptive immune cells are known to 
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possess a much longer half-life as compared to myeloid innate cells, in mice and humans 

(Kolaczkowska and Kubes, 2013; Macallan et al., 2005; Vrisekoop et al., 2008; Wen et al., 

2013). Additionally, stimulus-induced differentiation and expansions may result in the 

possible masking of genetic associations for adaptive cell types. In agreement with this 

conclusion, strong genetic associations in adaptive immune cells were primarily observed for 

immunophenotypes of naïve adaptive cells.  

A previous study of the immune system of 105 pairs of healthy twins concluded that less than 

15% of immune cell parameters are controlled by genetic factors (Brodin et al., 2015). At 

odds with this estimation, we find that more than 36% of measured immunophenotypes are 

dominated by genetics (Figure 47). This discrepancy stems mainly from the fact that this 

previous study considered only a fraction of innate myeloid and lymphoid populations 

(Casanova and Abel, 2015), and possibly because of a limited power due to restricted sample 

size (Martin et al., 1978).  

This hypothesis is strongly supported by the preliminary results observed from our replicative 

study that suggests similar genetic association with innate cells (NK) phenotype changes. 

Innate immune cells represent more than 70% of circulating white blood cells and are 

involved in a number of disease conditions (Bot, 2014). Importantly, genetic variants found to 

modulate innate immune cell parameters, in our study and in previous studies (Orrù et al., 

2013; Roederer et al., 2015), have been directly implicated in the aetiology of several 

autoimmune disorders, such as inflammatory bowel disease, ulcerative colitis and atopic 

dermatitis. These findings illustrate the value of our approach, which mapped novel genetic 

associations to specific cell populations and cellular states, providing new insights into 

disease pathogenesis.  

Further evaluations of normal ranges of leukocytes and their key environmental and genetic 

determinants will improve the utility of cellular immunophenotyping in the development of 

personalized clinical management strategies, and will facilitate a detailed dissection of 

immune cell populations implicated in disease.  

The replication of those measurements by mounting an independent donor collection 

constitutes a first step in that direction. In order to assess the immune cell parameters we used 

standardized flow cytometry procedures as previously applied (Hasan et al., 2015) with some 

modifications to fit with the local site configuration. The key points that we have focused on 

to limit pre-analytic variation were the sample processing, the reagent selection and the 

instrument parameters. Due to the absence of an automated platform, the potential variations 

that can be introduced at the step of the sample processing were limited by restricting the 
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number of trained users (two) for the entire collection and the use of an antibody mix per day 

for each panel to limit inter-donor variability due to multiple pipetting.  

This technical variability has been measured by repeatability testing (three donors processed 

three times within the same day) that showed a coefficient of variation <10% (data not 

shown).  We selected the same reagents as for the MI collection and used the same 

protocol/volume except for the antibodies that were newly titrated. This is of particular 

importance as we purchased new batches what can impact greatly the ratio of antibody-

fluorochrome tandem and then the fluorescence intensity (one of the key parameters 

associated with genetic polymorphisms). In addition, each flow cytometer presents specific 

optical configuration (laser power, filter band pass...), which requires instrument-dependent 

optimization. Of note, for some of the antibodies we reduced the antibody volume by 10 times 

in this replicative study compared to the MI study (data not shown). One important 

configuration distinguishing both studies was the instrument used. We have seen that this 

change was impacting the method for the cell counts assessment as the MacsQuant (Miltenyi; 

used in the French collection) allows a direct cell count by aspirating a determined volume of 

blood whereas the FacCanto II (Becton Dickinson) used in the replicative study, not. We have 

shown that the use of a clinical grade white blood cell count from the same day was able to 

compensate this lack.  

Nonetheless, we also observed a constant higher frequency and cell count for different innate 

cell types (neutrophils, monocytes and eosinophils) whereas the lymphoid cells assessment 

was not affected by the method used. Even if a technical dissimilarity could easily explain 

these differences, we cannot exclude that the markers included in our panel do not cover the 

potential high heterogeneity of those populations. An alternative (or cumulative) explanation 

could be that those populations are more sensitive to the staining procedure than the 

lymphocytes even if we limit as much as possible pre-analytical bias by using whole blood, 

with a processing within the 4 hours post-sampling using standardized protocol. 

Importantly, despite those differences between cell count assessments, the hierarchical 

proportion between populations was perfectly preserved in all donors (Figures 50 and 51). 

This aspect will be further explored to determine if some cell specific corrections are required. 

As for the MI study, the cytometer stability has been controlled across time, prior and during 

the study. Those tests included the use of Rainbow beads (Becton Dickinson) to check 

instrument fluorescence detection stability and to determine the application settings to apply 

daily for a given instrument to allow mean fluorescence intensity comparison across samples 

during the duration of the entire collection (around 6 months). Those settings have been 
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validating by reproducibility testing (three repeated draws for 3 donors across time) that 

showed a CV <25%. The preliminary analysis of the range of the cell frequency revealed 

similar ranges that the one observed within the MI collection. Interestingly, some outliers 

within specific populations have been also detected (data not shown).  

Indeed, even if deeper statistical analysis have to be performed, we observed encouraging 

trends in term of genotype/phenotype associations within the innate compartment that 

replicate those observed in the MI collection confirming the value of our standardized 

approach. 

 

In summary, we find that, in a thorough examination of numerous innate and adaptive cell 

parameters of 1,000 healthy subjects, inter-individual variation of innate immune cell 

parameters is dominated by genetic factors, while that of adaptive cell parameters is strongly 

influenced by non-genetic factors, in which genetic effects are probably masked by adaptation 

and reaction to environmental exposures. 
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CHAPTER	  IV:	  Discussion	  and	  Perspectives	  

 
 

 The overall aims of this PhD work was to provide to the community reference datasets 

and analytical strategies to decipher the natural variance in the immune response at the level 

of population-based studies. This work has been performed in the context of the Milieu 

Intérieur (MI) project that thanks to a highly annotated 1000 donor collection, aims to 

determine what are the genetic and environmental factors that drive the healthy human 

immune response. 

The findings presented in the first study of this manuscript include i) a robust and 

reproducible transcriptomic analysis pipeline for in vitro stimulated whole blood samples and 

ii) a robust identification of a restricted set of genes that are capable of deconvoluting 

complex responses to immune stimulation. Those tools and analytical approaches can be used 

to map inflammatory signature from new adjuvant/drug candidates or to determine the natural 

variance of induced immune responses in population-based studies (healthy or pathogenic 

condition) that can predict responses to treatment or vaccination for example. 

The latest is of particular interest for clinical decision and can be even more powerful if 

coupled with other phenotypic and/or genetic analysis like the one presented in the second 

study of this manuscript. The major findings from our study are the confirmation of 

environmental factors associations with adaptive immune phenotype (i.e. CMV infection and 

increase of highly differentiated T cells) whereas the majority of genetic associations were 

found within innate immune cells compartment. 

Those approaches are particularly powerful when performed on the same time on the same 

individual (system biology) with reproducible tools to lead to the field of the personalized 

medicine. 

At the end of the second chapter, we have already discussed the advantages and specific 

limitations of our induced immune response exploration. But some other considerations can 

be discussed in the context of the entire collection. 
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Deconvolution	  of	  blood	  tissue	  induced	  signatures	  

In this manuscript we have shown that the standardized characterization of immune response 

in whole blood generate a powerful dataset that reflect the immune profile of a single 

individual in steady state condition as well as on pathological conditions (that we can mimic 

by in vitro stimulations). Blood is a complex tissue (as described in the first chapter) and 

differences across individuals in transcript abundance can be attributed to either genetic 

transcriptional regulation and/or relative changes in composition or expression patterns of 

leukocyte populations. The deciphering of these two factors can be next addressed by 

extensive isolation and profiling of individual blood cell populations (with potential 

associated technical bias) or by computational deconvolution analysis to deduce cellular 

composition or cell-specific levels of gene expression using statistical methodologies (Abbas 

et al., 2009). These whole blood “deconvolution” is now commonly used in studies with RNA 

sequencing datasets (Chaussabel and Baldwin., 2014).  

In our study however, the use of the Human Immunology v2 codeset from Nanostring 

technology allows the analysis of a limited number of genes that restrict robust creation of 

those modules as numerous “lineage” genes are shared by multiple cell types depending of 

stimulation condition. Moreover, some populations are Nonetheless, a cell deconvolution 

approach could be validated in the future by combination with the cell counts obtain by flow 

cytometry. 

 

It is interesting to note that despite the numerous deep transcriptional profiling studies, there 

is still no general consensus for data mining analysis. This is in part due to the use of different 

technological approaches at each step of the sample preparation/processing. Those differences 

impact greatly the analysis pipeline required for final validation. In addition, the increase use 

of high throughput approaches allows the generation of big datasets without prior precise 

scientific hypothesis (also referred as discovery research). As a consequence, there is more 

and more public datasets that can be used and compared for our own hypothesis research. The 

primary caveat of this approach is the bioinformatic skill required or an efficient bridge to 

build between bioinformaticians and immunologists. In addition, again due to technical 

differences or not equivalent sample annotation, those datasets are not always easy to 

reproduce or to use for multi-study comparison.  

At each step of the MI collection, the aim was to limit the technical bias to provide 

reproducible datasets and web-based analytical tools to help the scientists to perform data 
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mining with their own biological hypotheses. In this manuscript, we have demonstrated that 

by using those specific tools, we were able to detect some extreme phenotypes that are 

interesting for further mechanistic explorations.  

One example is the IL-1α non-secretor phenotype observed upon whole blood bacterial 

stimulation (LPS or E. coli). First identified in 4 to 8% of a set of 25 healthy donors (Duffy et 

al., 2014), we have confirmed this phenotype in a set of 400 MI donors with a frequency 

increasing up to 35% in the oldest group (unpublished data) and also in 15% of the healthy 

individuals included in the gGAP replicative study (data not shown). Interestingly, the IL1A 

mRNA expression analysis (Nanotring codeset) performed on the 1000 MI donors for the null 

and whole bacteria conditions (on going analysis in the consortium), reveals normal level of 

induced transcripts on these donors. This indicates that the absence of detectable protein in 

the supernatant following stimulation is potentially impacted by differences in post-

translational modifications and/or cell death pathways (implicated in the IL-1α release) rather 

than by protein synthesis. This latest hypothesis is supported by the observation of the same 

level of intracellular IL-1 α in the monocyte population since 3 hours post-stimulation by LPS 

between non-secretor and secretor donors from the replicative study (data not shown). This is 

an on going exploration in our laboratory with potential clinical interest concerning inter-

individual variability in term of cell death pathway-related inflammatory mechanisms. 

 

Characterization	  of	  new	  adjuvants	  

The analytical tools developed in this study allow defining a restricted set of genes specific 

for the signature of four clinical relevant pro-inflammatory cytokines that reflect distinct 

inflammatory origins. This list of genes if considered as biomarkers could be of particular 

interest for clinical profiling of unknown diseases or follow-up without going trough RNA 

sequencing that can be more expensive and requires bioinformatic resources. For example 

those approaches could be of particular interest for medical decision concerning autoimmune 

inflammatory diseases as spondyloarthritis or Lupus where additional factors (genetic, 

environmental) can impact the disease outcome or the response to the treatment (Banchereau 

et al., 2016).  Other interesting application could be the classification of new adjuvants/drugs 

in term of immune perturbation but also the classification of donors/patients depending of 

their response to those unknown components that would help to predict potential non-

responders before starting expensive and/or toxic treatments. 
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Phenotype/Genotype	  associations	  

From our genotype/phenotype analysis, we have been able first to confirm some already 

described associations (i.e. eye color/) demonstrating the robustness of our dataset and allow 

us to find new hits associated within the innate compartment. Those findings are the first step 

that will need then to be validated by functional explorations. A first approach would be the 

analysis of RNA expression associated with gene polymorphism. 

 At the end of the chapter two we already evoked that it remains to be established how the 

inter-individual variation in gene expression that we identified is accounted for by host 

genetic variants (i.e., expression quantitative trait loci, eQTLs), specifically in cases where 

gene expression variation is altered upon activation with certain immune stimuli (i.e., 

response/interaction eQTLs). This analysis can be enlarged to other phenotypes already (or 

soon) available from MI collection like the secreted proteins from the same stimulated 

samples (pQTLs). This will give other layer of understanding in individual immune profiling. 

The transcriptomic analysis indeed is the first step of immune regulation but do not take into 

account the post-transcriptional regulation neither potential post-traductional events that can 

impact protein expression and then impact immune effect. In addition, those events can be 

genetically or epigenetically regulated. 

In this manuscript I have described the assessment of immunophenotypes in genetically 

annotated donors in a replicative study. This dataset has shown encouraging results and will 

be important in order to validate our findings but also to describe a potential variability due to 

a different genetic and/or environmental background. One of the major parameters impacting 

the immune phenotypes in the MI cohort was the tobacco. However, we will not be able to 

address this question in this replicative “healthy” study as only one active and 4 former 

smokers were included. Some other explorations still need to be extended like serologies for 

latent infections (i.e. CMV).  

In parallel of immune phenotype assessment, for each donor included in the replicative study 

we performed TruCulture stimulation during 24 hours for 5 conditions: Null, LPS, SEB, 

HKEC and HKSA. The stimulated supernatants were frozen and the stimulated pellets were 

stabilized in Trizol LS before storage at -80C. This collection will give the opportunity to 

performed eQTLs and pQTLs analysis like in the MI study in order to validate or complete 

our findings. Using this new reference dataset, we will be able to apply the same analytical 

tool pipeline providing a new step to the community toward the personalized medicine 

approach.  
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Personalized	  medicine	  

We have to keep in mind that even if it is a good approach, the use of blood tissue does not 

give the entire picture of an individual immune profile. Characterization of other 

compartments can complete the system biology profiling and help to understand other factors 

that can influence the immune response.  One first interesting compartment (not so difficult to 

reach) is the stroma. In our collection, we have addressed this by banking the fibroblasts 

generated after skin biopsy. Interestingly they represent cells from the connective tissue (and 

the comparison may be enlarged to many cells), are genetically pre-defined and constitute a 

first line in contact with local inflammatory inducers. Like all the other cells, fibroblasts 

express PRRs to be able to sense the danger and trigger immune response and/or participate in 

its amplification. This innate defense can be explored and associated to others phenotypes and 

genotypes. Differences in circulating immune response observed between donors/patients 

could be due to differences in the first steps of inflammation triggered by those cells. 

 An other important compartment that has now been demonstrated to impact the immune 

response behavior and composition, is the commensal microbiota (Pasparakis et al.,2014). 

This flora is present in all the epitheliums (skin and mucosal epitheliums like gut, airways and 

uro-genital tract) and is composed by different bacteria (bacteriome), viruses (viriome), fungi 

(mycobiome) species that can vary depending of the individuals and are localization specific. 

The composition of this microbiota shapes the immune response “education” since the 

childhood and understanding the relation between its composition and immune response 

profiles in healthy individuals could greatly help in associating a lost of this equilibrium with 

pathogenesis (Honda and Littman., 2016). In the context of the Milieu Intérieur collection, the 

gut bacteriome profiling has been recently achieved on the 1,000 donors and a preliminary 

analysis indicates three clusters of donors depending of their bacteria composition. An 

ongoing similar bacteriome based on 16s sequencing from the nasal swabs samples is 

performed. The future association of those datasets with the immune profiling will be a great 

value to define key parameters that impact natural variation of immune response. Those 

datasets would be then enlarged to others microbiome analysis i.e. the mycobiome that 

Hoarau et al. have recently associated to a microbial dysbiosis in familial Crohn’s disease 

(Hoarau et al., 2016). Those microbial analyses are of particular interest in the cancer field 

(but not restricted to) as it has been shown that the efficacy of checkpoint inhibitors are 
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correlated to gut microbiota in mice and could explain the discrepancy between patients to 

respond to immunotherapies (Vetizou et al., 2015; Sivan et al.,2015). 

 

For all those reasons, using those standardized integrative approaches and render public the 

related annotated dataset (accompanied by visualization tools) would be highly valuable to the 

scientific community to move faster to personalized medicine decision. 
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MATERIALS	  AND	  METHODS	  
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MATERIAL	  AND	  METHODS:	  

Technical	  challenges	  -‐	  How	  to	  build	  a	  reference	  dataset?	  

In the context of a French Laboratoire d'Excellence (LabEx) research program, the Milieu 

Intérieur Consortium was developed with the objective to define the determinants (genetic or 

environmental) of human immune variance in healthy individuals. 

With this objective in mind, the environmental factors were assessed thanks to an extensive 

questionnaire allowing the collection of the every-day life habits, a serological status 

assessment for a myriad of microbe infections/vaccines and a sample collection for the 

characterization of the metagenomic diversity based on sequence analysis of bacterial, fungal 

and viral populations in fecal and nasal samples whereas the genomic variability has been 

assessed using genome-wide SNP genotyping. To determine the immune variance, we’ve 

measured the levels and quality of circulating immune cell populations based on standardized 

flow cytometry procedures and the induced transcriptional and protein signatures in response 

to medically relevant immune inducers.  

In parallel, the establishment of a cell bank from those genetically annotated donors, 

including EBV-transformed B cell lines and fibroblasts will allow mechanistic studies. 

In the context of this collection, one of the goals of this thesis was to build a reference dataset 

for induced gene expression from human whole blood samples.  

In this section, I’ll detail how the Milieu Intérieur collection aims to serve as a reference 

highlighting the efforts put to standardized each aspect/tools used for the data/sample 

collection. I’ll then focused on the development of the induced gene expression analysis and 

the analytical tools used to provide robust biological analysis. 

Additional information can be found at: http://www.pasteur.fr/labex/milieu-interieur 
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1. Donor	  collections	  

1.1. 	   The	  Milieu	  Intérieur	  cohort	  

1.1.1. Healthy	  donors’	  recruitment	  

All subjects provided informed consent prior to enrollment in the study. Taking advantage of 

a pre-existing donor database used for pre-screening, final 1,000 donors stratified by gender 

(i.e., 500 women and 500 men) and age (i.e., 200 individuals from each decade of life, 

between 20 and 70 years of age) were recruited in accordance with the study criteria 

(extensively depicted in the « Additional publication » : Thomas et al., 2015). 

To maximize our ability to associate genetic and epigenetic variation with individual 

phenotypes, a detailed list of inclusion and exclusion criteria were defined mainly to avoid 

major perturbed immune system. In example, donors could not have evidence/report of 

neurological, psychiatric disorders or severe/chronic/recurrent pathological conditions. Same 

for history or evidence of alcohol abuse, recent use of illicit drugs, vaccine administration and 

use of immune modulatory agents. Only pre- or post-menopausal women were included to 

avoid the influence of hormonal fluctuations. After initial evaluation for recruitment criteria, 

additional physical examination and clinical laboratory testing were performed at visit V0 

(Figure 53). 

 After this visit the others considered criteria were a BMI restricted to ≥18.5 and ≤32 kg/m2, 

an absence of urinary human chorionic gonadotropin (hCG) test for female donors, of urinary 

toxicology screens for cannabinoid use, proteinuria and glycosuria on all donors.  

To avoid highly variable genetic backgrounds due to different ancestry, the study was 

restricted to French citizens (European-descent), from Metropolitan French origin for three 

generations. 

 

1.1.2. Clinical	  and	  epidemiological	  collection	  

An independent sampling of 20 mL of blood has been collected at V0 and V2 (for repeat) and 

used for clinical chemistry, hematologic and serologic assessments. In order to obtain clinical 

grade results, all the assessments were performed in a certified Laboratoire de biologie 

médicale, Centre Eugene Marquis (Rennes, France) (Figure 53). 
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During this first pre-visit (V0), an epidemiological collection has been performed with the 

record of detailed medical histories and questionnaires. Those questionnaires included general 

information about socio-demographic, lifestyle and family health history that were recorded 

in an electronic case report form. For example, the donors were asked to provide their family 

status, income, occupational status and educational level to integrate these information as 

social-demographic variables; smoking habits, alcohol intake, sleeping habits, depressive 

symptoms, nutritional behavior and habits were recorded as lifestyle variables.  

 

 

	  
 

Figure	  53	  :	  Schematic	  representation	  of	  donor	  recruitment	  for	  the	  Milieu	  Intérieur	  study.	  
To	  include	  1000	  healthy	  persons	  stratified	  according	  to	  sex	  (500	  men,	  500	  women)	  and	  age	  (200	  donors	  per	  decade	  
of	  life,	  20–69	  years	  of	  age),	  we	  enrolled	  a	  total	  of	  1238	  individuals	  at	  visit	  0	  (Enrollment).	  Of	  those	  screened,	  226	  
donors	  were	  considered	  non-‐eligible	  for	  reasons	  of	  consent	  withdrawal	  (n	  =	  54),	  past	  medical	  history	  (n	  =	  67),	  
identification	  of	  an	  exclusion	  criteria	  during	  the	  onsite	  physical	  examination	  (n	  =	  54),	  or	  during	  laboratory	  testing	  
(n	  =	  51).	  An	  additional	  16	  donors	  withdrew	  consent	  in	  the	  course	  of	  the	  study.	  During	  visit	  1,	  whole	  blood,	  fecal	  
samples	  and	  nasal	  swabs	  were	  collected.	  Punch	  biopsies	  of	  the	  skin	  were	  obtained	  from	  340	  of	  these	  donors.	  Half	  of	  
the	  subjects	  were	  randomly	  selected	  (stratified	  by	  age	  and	  sex)	  to	  return	  for	  a	  visit	  2,	  when	  repeat	  sampling	  of	  whole	  
blood,	  fecal	  samples	  and	  nasal	  swabs	  was	  performed.	  Detailed	  medical	  histories	  and	  questionnaires	  were	  completed	  
from	  all	  donors,	  recorded	  by	  medical	  personnel	  using	  an	  electronic	  case	  report	  form.	  
	  
	  

1.1.3. Biological	  collection	  

During the first visit after inclusion (V1), blood, nasal swabs and stool samples were collected 

from all donors (1000) according to established protocols. For 500 individuals, the same 

samples were collected during a second visit (V2) – 14 to 42 days later– in order to provide 

biological replicates that can be used to validate final phenotypic studies (Figure 53).  

For 340 randomized donors, a skin biopsy has been performed at V1 in order to generate 

fibroblast primary cell lines.  
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The blood sampling (up to 12 donors per day) included 20 mL of blood into Na Heparin tubes 

for Flow Cytometry study on whole blood, plasma and PBMC banking. In addition, a 5mL 

EDTA tube was collected for DNA banking. The tubes were maintained at 18–25 °C during 

transport and processed within 6 h of collection. A standardized whole blood staining protocol 

has been developed for 10 panels (8 colors each) and adapted to an automated platform 

(EVOWare, Tecan). The samples were then acquired in a Macs Quant instrument (Hasan et 

al., 2015). 

For the induced immune response study, 60 mL of blood were collected. Within 15 min of 

collection, 1mL of blood was distributed into 40 different TruCulture® tubes at the collection 

site (Rennes). Those tubes were specifically developed and adapted to this study to induce 

reproducible innate or adaptive immune responses (more details about the development will 

be described in the next paragraph). After thawing to room temperature, the collection 

syringes were filled with 1ml whole blood at the collection site within 15 minutes maximum 

after drawing, and incubated for 22 hours (±10 min) in room air at 37_C (±1_C), utilizing a 

bench-top heating block (VLMH GmbH). The specific media included allows tube’s 

incubation at 37C directly in a bench-top heating block without need of CO2 exchange 

incubator. After incubation, the immune cell activation was stopped by insertion of a valve 

separator (provided with the syringe device) until reaching 1 mm above the pellet and the 

culture supernatant was collected, aliquoted and stored at -80°C. At the end of the incubation 

period, the supernatants were aliquoted, and the nucleic acid content from the cell pellet 

stabilized in Trizol. Both samples were stored immediately at −80 °C at the collection site. 

For the gut microbiota analysis, the volunteers were asked to produce fecal specimen at their 

home using the GENbag Anaer atmosphere generator (Aerocult, Biomerieux). This system 

maintains anaerobic conditions (validated by an anaerobic indicator strip) to preserve 

anaerobic bacteria species. The stools samples were aliquoted into cryotubes and stored at 

−80 °C upon arrival at the clinical site.  

To assess the airways microbiota, nostrils were sampled for each individual using dry flocked 

swabs (FLOQSwab™) which were stored in stabilization media provided in the kit and frozen 

at −80 °C. 

Finally, in order to generate a randomized collection of human fibroblast cell lines, skin 

punch biopsies were performed on 340 individuals at the clinical collection site (Rennes) 

under local anesthesia. The same day, the sample was shipped at 4 °C to Genethon (Evry, Ile 

de France, France) where the fibroblast cell lines were generated and aliquots stored in liquid 

Nitrogen. 
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All the samples stored at −80°C were weekly transported in dry ice to Institut Pasteur (Paris) 

and all the fibroblast cell lines were transported in dry shipper at the end of the collection. 

 

1.2. 	   The	  Genentech	  Genotype	  and	  Phenotype	  Registry	  collection	  

In order to validate the genome-wide association analysis observed within the Milieu Interieur 

cohort, we have put in place a replicative study using volunteers from the Genotype and 

Phenotype (gGAP) Registry (Genentech, Inc., South San Francisco). So far 81 healthy 

individuals were recruited and integrated into a preliminary analysis. The individuals are 

regular blood donors tested seronegative for most non-cured chronic infections (i.e. HIV, 

HCV, HBV). Donors with Caucasian ancestry were recruited (validated by genotyping 

analysis) with a median of 39 years of age (range: 25 to 50 years old) and 62% are men. The 

donors were asked not to have intense physical exercise 12h before the sampling and were 

clinically examined to determine their healthy status.  The day of the visit a clinically 

approved white blood cells (WBC) differential count was performed to confirm the absence 

of inflammation. 

 

2. Focus	  on	  the	  study	  of	  induced	  immune	  responses	  

As mentioned before, the study of whole blood allows the preservation of physiological 

cellular interactions and is an interesting snapshot of an individual whole immune status, as 

the tissue specific immune cell subtypes tend to recirculate through blood stream. 

Nevertheless, even the study of an “untouched” tissue requires the establishment of 

standardized and reproducible in vitro assay systems to be able to measure biological variance 

instead of technical variance. 

In that aim, we have used the TruCulture tubes to reproducibly stimulate 1mL of whole blood. 

Series of repeatability and reproducibility tests were performed showing coefficients of 

variance (CVs) ranging from 5 to 14%, demonstrating a low technical and biological variance 

(Duffy et al., 2014). 

In close partnership with the company Myriad RBM, a first list of fifty-four stimuli including 

microbial, viral, fungi components (purified or complex), cytokines, superantigens were 

considered for study and evaluated. To validate the clinical grade of the stimulation system, 
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each component was evaluated in term of sterility, solubility, dose response, short and long-

term stability, and reproducibility. All those evaluations and the description of the exclusion 

criteria are fully described in the first manuscript published by the consortium (« Additional 

publication » : Duffy et al., 2014). Dose concentrations were selected for the stimuli that 

maximized the ability to detect low-expressed proteins, without exceeding the upper limit of 

the biologic range for highly expressed proteins. 

To summarize, final 27 stimuli were selected, dissolved in 2 ml of proprietary TruCulture 

medium and included in TruCulture syringe devices (Myriad RBM) (Table 17). The devices 

were then frozen and stored at -20oC until use.  

In order to validate the robustness and the sensitivity of the TruCulture whole blood 

stimulation system at the level of a population-based analysis, the protein signature upon 28 

conditions (including Null) was performed in a first study including 25 donors from the group 

aged 30–39 years old, stratified by gender (13 women, 12 men).  

A standardized multiplex protein immunoassay platform (Myriad RBM) was used for protein 

detection and the panel design included low and highly induced protein analytes. This study 

has demontrated that using this serynge-based system, we are able to capture unique induced 

signature at the protein level and also to detect some extreme phenotypes interesting to follow 

for further exploration. Representative data for one microbe, TLR agonist, and cytokine 

stimulus is shown (Figure 54), and the selected dose for all assays can be found in Table 17.  

	  

Figure	  54	  :	  Distinct	  	  protein	  inflammatory	  signatures	  for	  whole	  microbe,	  TLR	  and	  cytokine	  stimulation	  	  
(A) Principal component analysis (PCA) was performed on the data set obtained from 25 healthy donors. Blue circle represents samples 
stimulated with heat killed Candida albicans (blue circles), IFN-γ (grey circles) and Poly I:C (yellow circles). The PCA was run with data 
obtained from the analysis of 33 proteins. The PCA plot shown captures 71% of the total variance within the selected data set (PCA1, 48%; 
PCA2, 16%; PCA3, 7%). 
(B) The induced responses to whole-blood stimulations with HKCA, Poly I:C and IFN-γ were compared and the 20 first differentially 
expressed proteins were identified (ANOVA q value < 0.05). 
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Table	  17	  :	  Innate	  and	  adaptive	  immune	  stimuli	  used	  for	  development	  of	  whole-‐blood	  stimulation	  system.	  
Abbreviations	  are	  as	  follows	  :	  HK,	  heat	  Killed	  ;	  HAU,	  hemagglutinin	  units	  ;	  IU,	  international	  units.	  
The	  28	  stimulation	  conditions	  used	  for	  the	  preparation	  of	  TruCulture	  tubes	  are	  listed,	  with	  the	  indicated	  dose	  and	  
commercial	  supplier.	  Stimuli	  are	  ordered	  based	  on	  four	  categories	  :	  whole	  microbes,	  MAMP,	  cytokine	  and	  T	  cell	  
agonist.	  
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3. Standardized	  gene	  expression	  quantification	  from	  

stimulated	  whole	  blood	  

Having demonstrated that our in vitro whole blood stimulation system was able to capture 

unique stimulation protein signature, the next step was to measure this signature at the gene 

expression level. 

As mentioned before, after a given stimulation for a given whole blood sample, in parallel to 

the supernatant collection for the proteomic study, the stimulated cell pellet was stabilized and 

stored with Trizol LS® directly in the TruCulture tube. 

In the introduction section of this manuscript, I have already briefly mentioned what are the 

different technologies available for gene expression analysis. Nonetheless, depending of the 

biological question and most importantly depending of the sample source (i.e. single 

population versus whole blood; heparin vs other anticoagulant tube) there is no general 

consensus across studies in the pipeline to apply from the RNA purification to the gene 

expression analysis. 

In this next methodological section, I will describe first the development of our single-step 

mRNA purification, the gene expression measurement platform used and finally described the 

statistical and visualization tools applied for the transcriptomic analysis. 

 

3.1. Development	  of	  a	  high	  throughput	  single-‐step	  RNA	  isolation	  

protocol	  

3.1.1. Challenge	  of	  Trizol®	  stabilized	  whole	  blood	  samples	  

The reference protocol to isolate RNA from Trizol® lyzed samples requires a first step of 

chloroform extraction. The addition of chloroform followed by centrifugation separates the 

solution into an upper aqueous phase containing RNA and a lower organic phase. This 

aqueous phase need to be collected and transferred before purification. This step is really 

challenging to automatize into a high throughput platform (due to the centrifugation’s step) 

and is highly susceptible to user variability (due to the requirement of a precise pipetting 

step). To be able to process a large number of samples (60000 tubes in our entire collection) 
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in addition to minimize pre-analytical biases, we established an mRNA single-step 

chloroform-free extraction protocol in collaboration with the Macherey-Nagel Company 

(detailed below).  

To validate the protocol, direct comparison with conventional RNA extraction protocols 

(following manufacturer’s instruction) indicated an extremely high correlation in gene 

expression counts (Nanostring Technologies hybridization) between the two extraction 

methods (Spearman's Rank-Order Correlation, rs > 0.99, Figure 9 « section Study 1 »). 

 

3.1.2. High-‐throughput	  standardized	  RNA	  extraction	  

Samples were randomized and extracted in groups of 95. Cell pellets were thawed on ice 30 - 

60 min prior to initiating processing. To complete the thawing and the RNA release, the tubes 

were vortexed twice for 5 min at 2000 rpm. Before processing, a centrifugation (3000 g for 5 

min at 4°C) of the thawed samples was performed to pellet the cellular debris generated 

during the Trizol® lysis. The barcoded tubes were loaded in the rack module of the Freedom 

EVO® platform (TECAN, Switzerland) and scanned for sample traceability. For extraction, 

the modified protocol of the NucleoSpin® 96 RNA tissue kit (Macherey-Nagel, Germany) 

was adapted to the Freedom EVO® integrated vacuum system. Briefly, 600µl of clarified 

phase of the Trizol® lysate was transferred to a deep well plate preloaded with 900µl of 100% 

Ethanol. The binding mixture was transferred into the silica membrane plate. The columns 

were washed with Buffers MW1 and MW2 (x2), and RNA eluted into 0.5ml 2D barcoded 

tubes (ThermoScientific) using 60µl RNase-free water. As an internal control of the extraction 

process a tube containing a defined quantity of spiked RNA was included in each run.  

To avoid unnecessary freeze and thaw of the RNA, distinct aliquots for quality control and 

gene expression analysis were prepared, and all aliquots frozen at -80°C until the time of use. 

 

3.1.3. RNA	  quality	  

RNA concentration was estimated using Qubit® RNA HS Assay Kit (Life Technologies, 

USA) according to the protocol provided by the manufacturer.  

An automated and high throughput RNA integrity assessment was performed using the 

Standard RNA Reagent Kit on a LabChip®GX (Perkin Elmer, USA). The RNA Quality Score 
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(RQS) was calculated using the LabChip® System software, and all samples with a RQS > 4 

were processed for gene expression analysis. 

 

3.2. mRNA	  quantification:	  direct	  hybridization	  assay	  

After comparison with other transcriptional profiling strategies, we have selected the 

NanoString platform (Table 5 « section Study 1 »). This choice was validated by the high 

reproducibility of the data obtained when experiments were performed at different times or at 

separate institutional core facilities (rs > 0.98, Figure 9 « section Study 1 »). 

The Human Immunology v2 gene code set was selected as it covers 25 immunology-related 

gene networks, including the major cytokine and TLR induced gene expression pathways as 

illustrated by the use of KEGG charts (Figure 55). The codeset contains a total of 594 probes 

including 15 housekeeping gene candidates. 
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Figure	  55	  :	  Gene	  expression	  pathways	  used	  to	  select	  NanoString	  Immunology	  panel.	  
KEGG	  database	  pathway	  analysis	  of	  (A)	  NF-‐κB,	  (B)	  TNFA,	  (C)	  Cytokine-‐Cytokine	  Receptor,	  and	  (D)	  TLR	  signaling	  
pathways,	  with	  genes	  included	  in	  NanoString	  analysis	  colored	  green,	  and	  effector	  cytokines	  (IFNB,	  IFNG,	  IL1B,	  TNFA)	  
studied	  herein	  colored	  yellow.	  Genes	  in	  white	  were	  not	  represented	  on	  the	  NanoString	  codeset	  
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3.2.1. nCounter	  codeset	  by	  Nanostring	  Technologies	  

The first step consists of direct mRNA hybridization with color-barcoded probe pairs (around 

50 bases length). The reporter probe carries the fluorescent signal, while the capture probe 

(coupled to a biotin) allows the complex to be immobilized in a streptavidin-coated glass slide 

for data collection. Each color-coded barcode is attached to a single target-specific probe 

corresponding to a gene of interest. The color codes carry six positions and each position can 

be one of four colors, thus allowing for a large diversity of tags that can be mixed together in 

a single well for direct hybridization to target. 

Total mRNA prepared as described above, were diluted with RNase-free water at 20ng/µl 

directly in the 12-strip provided by NanoString. 100ng (5µl) of total RNA from each sample 

were hybridized with massive excess of pair probes set provided by the Human Immunology 

kit v2 according to the manufacturer’s instructions. 

 

3.2.2. Automated	  sample	  processing	  and	  analysis	  

The specific formed complexes are then purified and immobilized in a complete automated 

manner by the nCounter® Prep Station instrument and certified reagents into a cartridge (for 

up to 12 samples per run) as described below. 

After 16 h of hybridization, excess probes are washed away using a two steps magnetic bead-

based purification. Magnetic beads coated with short nucleic acid sequences that are 

complementary to the capture probe and the reporter probes are used sequentially. 

Intermediate wash steps allow the removal of excess reporter probes and capture probes 

respectively. Finally, the purified Target/Probe complexes are eluted and immobilized in the 

cartridge for data collection.  

Data Collection is then performed by the nCounter® Digital Analyzer that will collect the 

fields of view (FOV) per flow cell using a microscope objective and a CCD camera yielding 

data of hundreds of thousands of target molecule counts. Digital images are processed on the 

nCounter Digital Analyzer and the barcode counts are tabulated in a comma separated value 

(CSV) format. 
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3.3. Technical	  validation	  	  

3.3.1. Imaging	  quality	  control	  

From the csv output file given by the digital analyzer quality control (QC) metrics can be 

calculated and used to validate the sample. 

The first one refers to the percentage of fields of view (FOVs) successfully counted by scan of 

a lane and reflects the quality of the camera imaging. The second refers to the binding density 

per lane. When too many probes are present, the instrument is not able to distinguish each and 

every probe present in the lane indicating that the count results may not be accurate. 

In the case of flags for those parameters, the sample was re-scanned or re-hybridized in the 

case of flag persistence. 

 

3.3.2. Internal	  positive	  probes	  

Each nCounter assay contains a variety of positive control probes targeting molecules added 

at pre-determined concentration by NanoString during production of the CodeSet. A positive 

control linearity QC performs a correlation analysis in log2 space between the concentrations 

of added targets and the resulting counts. Low correlation values may indicate an issue with 

the hybridization reaction (i.e. due to the presence of inhibitors, volume pipetting issue) 

and/or instrument performance. 

 

3.3.3. Internal	  negative	  probes	  

Like the positive control probes, each nCounter assay contains negative control probes that 

should not match with any target gene from the sample processed. Those External RNA 

Controls Consortium (ERCC) developed by an ad-hoc group of academic, private, and public 

organizations hosted by the National Institute of Standards and Technology (NIST) are 

commonly used by different technology platforms. Then a limit of detection QC can be 

calculated by using the positive and negative control probes for each nCounter assay.  

In our study, the eight negative probes used were: 

NEG_A, ERCC_00096.1 NEG_B, ERCC_00041.1 NEG_C, ERCC_00019.1 

NEG_D, ERCC_00076.1 NEG_E, ERCC_00098.1 NEG_F, ERCC_00126.1 
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NEG_G, ERCC_00144.1 NEG_H, ERCC_00154.1 

Negative control analysis was performed to determine the background for each sample. Of 

note, we observed variable expression of two negative control probes (NEG B, NEG F), 

which cross-reacted with bacterial nucleic acid present in two of the TruCulture stimulation 

systems (HKSA and BCG, respectively, Figure 10C-D « section Study 1 »), and thus these 

probes were excluded from use in data analysis. 

 

3.4. mRNA	  content	  normalization	  

3.4.1. Criteria	  for	  housekeeping	  gene	  selection	  	  

The ultimate goal of gene expression analysis is to reliably determine changes in transcript 

abundance across all our donors and under our different stimulation conditions. Whole blood 

is a complex tissue that does not allow the control of cell number and composition across 

donors. In addition, the mRNA content can change independently across stimulations. Even if 

the fixed amount of total RNA used in each experiment reduces errors, the normalization to 

internal reference (housekeeping) genes help correct for these differences in numbers of cells, 

absolute mRNA content and sample preparation (i.e. pipetting variability). 

Usually one or more housekeeping genes are chosen as reference. In our Nanostring panel 15 

candidate genes were provided. In our context, the challenge was to select the ones that 

display uniform expression across the immune cell types (i.e. lymphocytes, neutrophils) and 

under all stimulation conditions (i.e. bacteria, viruses). 

	  

3.4.2. Housekeeping	  gene	  selection	  using	  gNorm	  R	  package	  

To identify by an unbiased and reproducible way stable internal genes responding to the 

criteria cited above, we have apply the established geNorm method (Vandesompele et al., 

2002) in our entire dataset. I want to emphasize the fact that this calculation has to be done for 

each final dataset to be normalized as each candidate housekeeping genes will not be 

impacted in the same manner by experimental conditions or cell sources.  

Over the 15 proposed housekeeping genes, four have been selected (RPL19, TBP, POLR2A, 

and HPRT1) for final mRNA content normalization (Figure 10A-B « section Study 1 »). 
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3.5. Final	  data	  normalization	  pipeline	  using	  the	  nSolver®	  software	  

Data was imported into nSolver™ analysis software (version 2.5) for quality checking and 

normalization of data according to NanoString® analysis guidelines.  

A first step of technical normalization using the internal positive controls permits to correct 

potential sources of variation associated to the platform. To do so, we calculated for each 

sample the geometric mean of the positive probe counts. A scaling factor for a sample was a 

ratio of the average across all geometric means and the geometric mean of the sample. For 

each sample, we multiplied all gene counts by the corresponding scaling factor. 

Next, for each sample we calculated the background level as the median +2 SD across the 6 

negative probe counts. For each gene in a sample we subtracted the background level. Then 

the content normalization was performed with nSolver™ Analysis Software that calculates 

the geometric means over the four housekeeping genes selected as described above in the 

entire dataset. 

	  

4. Selection	  criteria	  for	  gene	  expression	  analysis	  

The codeset contains a total of 594 probes (15 correspond to suggested housekeeping genes), 

of which 572 probes were included in downstream analysis after removing probes mapping to 

multiple genes and probes aligning to polymorphic regions with greater than two SNPs 

(Table 18). To this end, the probes were mapped against the human genomic sequence 

(GRCh37/hg19) with GSNAP (Wu and Nacu, 2010), a splice-aware aligner. To detect splice 

junctions GSNAP was applied with two criteria: (1) detection of novel splice sites, and (2) 

detection of known splice sites. 573 out of 594 probes mapped with 100% identity to the 

genome. 12 probes mapped with 1-2 mismatches in the middle of the sequence, 8 probes were 

misaligned in the first/last 1-9 bp, and 1 probe did not map at all (PECAM1 located on 

HG183_PATCH). The misaligned probes were realigned manually using BLASTN against 

Ab-initio cDNAs database. Of the 594 probes 15 mapped to more than one genomic location 

(see Table 18). We removed from further analysis KIR_Activating_Subgroup_1 probe, which 

mapped to 3 different genomic locations, as well as three other KIR probes that mapped to 

multiple locations: KIR_Activating_Subgroup_2, KIR_Inhibiting_Subgroup_1, and 

KIR_Inhibiting_Subgroup_2. Next, we used Bioconductor biomaRt package (Durink et al., 

2005)  version 2.24.0 to query Ensembl (release 75) (Ficek et al., 2014) and to retrieve exonic 
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variants that mapped to the same regions as the NanoString probes. We considered only the 

SNPs with minor allelic frequency (MAF) > 0.05 (in all individuals from phase 1 dataset of 

1000 Genomes project). 48 probes showed the presence of 1-2 SNPs in their sequence. HLA-

DRB1, HLA-DQA1 and HLA-DQB1 probes contained 4, 9, and 13 SNPs, respectively, and 

were therefore removed from further analysis (Table 18).  
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Whole blood samples were collected from the 1,000 healthy, fasting donors from Milieu 

Interieur on Li-heparin, every working day from 8 to 11AM, from September 2012 to August 

2013, in Rennes, France. Tracking procedures were established in order to ensure delivery to 

Institut Pasteur, Paris, within 6 h of blood draw, at a temperature between 18°C and 25°C. To 

check the stability of our flow cytometry measures through time, a second blood sample was 

drawn for half of the cohort during a second visit, ~17 days on average after the first visit 

(range: 7 to 44 days). After receipt, samples were kept at room temperature prior to sample 

staining. Details on staining protocols can be found elsewhere (Hasan et al., 2015). 

The same procedure has been followed for the replicative study (for a single visit) on a period 

going from March 2016 to June 2016 in South San Francisco, USA. 

 

 

For optimization studies and panel development, whole blood samples were collected from 

healthy volunteers enrolled at the Institut Pasteur Platform for Clinical Investigation and 

Access to Research Bioresources (ICAReB) within the Diagmicoll cohort. The biobank 

activity of ICAReB platform is NF S96-900 certified. The Diagmicoll protocol was approved 

by the French Ethical Committee (CPP) Ile-de-France I, and the related biospecimen 

collection was declared to the Research Ministry under the code N° DC 2008-68. The 

reproducibility tests were performed as detailed elsewhere (Hasan et al., 2015). 

 

Ten 8-color flow cytometry panels were developed. Details on staining antibodies can be 

found in Table 8 and gating strategies are described in Figures 56-65. The acquisition of cells 

was performed using two MACSQuant analyzers (Serial numbers 2420 & 2416), each fit with 

identical three lasers and ten detector optical racks (FSC, SSC and eight fluorochrome 

channels). Calibration of instruments was performed using MacsQuant calibration beads 

(Miltenyi, ref. 130-093-607). Flow cytometry data were generated using MACSQuantify™ 
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software version 2.4.1229.1 and saved as .mqd files (Miltenyi). The files were converted to 

FCS compatible format and analyzed by FlowJo software version 9.5.3. A total of 313 

immunophenotypes were exported from FlowJo. These included 110 cell proportions, 107 

cell counts, 89 MFI and 8 ratios. We excluded from subsequent analyses all cell proportions 

and 35 immunophenotypes that were measured several times on different panels and were 

exported for quality controls (Table 9). A total of 168 flow cytometry measurements were 

thus analysed, including 76 cell counts, 89 MFI and 3 ratios (Table 9). Problems in flow 

cytometry processing, such as abnormal lysis or staining were systematically flagged by 

trained experimenters, which resulted in 8.67% missing data among the 168,000 measured 

immunophenotype values.  

For the replicative study, a preliminary set of three out of the 10 panels have been performed. 

The panels selected were for the characterization of Natural Killer cells (panel 4), of general 

populations (panel 5) and of polymorphonuclear cells (panel 7). The same protocol has been 

applied with some modifications due to differences in the instrumentation setting or reagent 

availability. First, due to non-commercially available anti-CD32 antibody coupled with the 

PE-Cy7 (custom tagging for the Milieu Intérieur study from Becton Dickinson, USA), in the 

panel 7, the anti-CD32-PE-Cy7 has been replaced by the same clone, same provider in APC 

and the anti-CD203c-APC has been replaced by the same clone coupled with PE-Vio770 

(Miltenyi Biotech, Germany). All the antibodies were titrated on the instrument dedicated to 

the study (FacsCantoII, Becton Dickinson) and the new panel validated to identify the 

population of interest (i.e. eosinophils). At the difference of the MacsQuant instrument used 

for the French study, the cell count could not be directly assessed on the FacsCantoII. In this 

order, the clinical WBC differential total count was used as total cell number reference to 

calculate the children population counts. The analysis has been then performed using the same 

gating strategies and then exported in csv tables previously described using FlowJo 10.2. 
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The following method sections have been applied on the Milieu Interieur dataset only. 



 

 

Despite the exclusion of flagged problematic values, a limited number of outlier values were 

observed. As the goal of this study was to identify common non-genetic and genetic factors 

controlling immune cell levels, we removed these outlier values. Outliers were detected using 

a distance-based algorithm, chosen based on the high skewness of the distributions of flow 

cytometry measurements. A value was considered an outlier if the distance to the closest point 

in the direction of the mean of the distribution were more than 20% of the total range of the 

sample. All points more distant from the mean than these points were also considered as 

outliers. A total of 127 singleton values were removed using this method. 

 

 

Linear regression and visual inspection were used to evaluate the impact of batch effects on 

immunophenotypes. Two batch effects were considered: the day at which samples were 

processed (8 to 12 samples per day, from September 2012 to august 2013) and the hour at 

which blood samples were drawn (from 8h to 11h in the morning). We observed that sample 

processing day has a substantial impact on MFIs, while hour of blood draw impacts a limited 

number of cell counts, mainly CD16hi NK cells (Figure 33). We adjusted all cell counts for 

the effect of the hour of blood draw using linear regression, and adjusted MFIs for the effect 

of processing days using the ComBat non-parametric Bayesian framework (Johnson and Li, 

2007). This algorithm adjusts for batch effects by leveraging multivariate correlations among 

response variables. We did not include variables of interest in the ComBat model, because 

none was significantly different across sample processing days, with the exception of 

smoking (P = 0.002). To ensure the highest precision, we imputed MFI immunophenotypes 

prior to ComBat correction, using the random forest based missForest R package (Stekhoven 

and Bühlmann, 2012). 
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Principal Component Analysis (PCA) or Singular Value Decomposition (SVD) are commonly 

used method for identifying the smallest number of uncorrelated variables (principal 

components) that explain the maximum amount of variance where the eigenvalues are the 

variances of the principal components. 

For a comprehensive overview of PCA and the exploratory analysis using dual PCA and the 

accompanying PCA biplots we refer to Fontes (Fontes, 2012).  Before applying PCA, the 

variables (mRNA expression levels) were log transformed, mean centered per donor, to avoid 

inter-donor variability obscuring inter-stimuli responses, and finally the variables were scaled 

to unit variance. The mean centering per donor is in accordance with the paired structure in 

the data and paired t-tests or ANOVA were performed throughout. Scaling to unit variance 

prevents large variances in the data from obscuring the correlation structure in the data. Q 

values, which are defined as false discovery rate (FDR) adjusted p values (Benjamini et al., 

1995), were used to define statistical significance. Plots were exported from the software 

Qlucore Omics Explorer 3.1. 

 

 

The goal in factor analysis is to explain the covariance between the variables for example 

using a correlation matrix from a separate analysis. This approach allows to standardize the 

variables measured by different scales or if the variances differ widely between variables. 

Correlation circles were generated by computing the median value across the 25 donors, for 

each of the considered 44 genes; we then transposed the data matrix so as to consider the four 

stimulation conditions as the four PCA dimensions; finally, the vectors representing the TLR 

stimuli (generated accordingly) were projected onto the four-dimensional PCA. The 

respective 2D PCA projection plots were made with the R package ‘FactoMineR’ (version 

1.28) to compute PCA scores and projected coordinates.  



 

Silhouette analysis was used to study the separation distance among the TLR and microbial 

simuli. The k-means clustering was performed using the Open CV library (Bradski and 

Kaehler, 2008); with settings equal to 100 iterations and 500 attempts and the silhouette 

scores were computed (Steinhaus, 1956 ; Bradski and Kaehler, 2008). Cluster number was 

selected based on the number of stimuli represented in the PCA (k=7 for TLR, k=8 for 

microbes). Note, silhouette coefficients near +1 indicate that the sample is far away from the 

neighboring clusters; a value of 0 indicates that the sample is on or very close to the decision 

boundary between two neighboring clusters and negative values indicate that those samples 

might have been assigned to the wrong cluster.  

 

Bootstrapped hierarchical clustering analysis was performed using the ‘pvclust’ R package 

(version 1.3-2) using a Spearman-based dissimilarity metric. 1000 trees were sampled to 

evaluate the robustness of each cluster. Correlation matrices were plotted using the R graphics 

package ggplot2 (version 1.0.0) on the R platform (version 3.1.1). 

 

 

The goal of linear support vector machines is to try to differentiate two groups of points using 

a hyperplane. Once the algorithm is performed, we can identify the most important variables 

that help the most for the differentiation of both groups, using the normal vector that defines 

the obtained hyperplane: the variables with highest loadings (in absolute value) are the most 

importants. 

Stimulus signatures, consisting of gene lists specific for each of the 4 cytokines, were created 

by training a SVM for each individual stimulus vs. null. This approach was used to define 

stimulus signatures set by a discrete number of variables. In order to discover reasonably 

complex gene interaction networks among the 4 stimuli, the SVMs were optimized from 12-

57 gene subsets (approximately 2%-10% of the total number of genes). For all 4 cytokine 
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stimuli the optimal classifier determined by the SVM cross validation scheme corresponded to 

the smallest gene set size. The identified gene lists had perfect accuracy upon 10 repeated 

complete SVM test runs. This shows that a small number of selected variables can predict the 

specific stimulus used. The small overlap between the established stimulus signatures 

indicates that the selection strikes a reasonable balance between capturing the complexity in 

the data and at the same time identifying those important individual genes. The open source 

C++ software library OpenCV was used to build and evaluate the SVMs (Burges, 1998; 

Chang and Lin, 2011). For comparison, a kNN classifier was also tested, using the 

implementation in the OpenCV library with default parameter settings, which gave exactly 

the same stimulus signatures. 

 

 

 

 

The correlation matrix among cell counts (Figure 35) was estimated using the sample 

correlation matrix on the residuals of the immunophenotypes from a regression model that 

included non-genetic covariates selected using the stability selection algorithm (described 

below) on the 40 demographic covariates, together with the batch variables. The cell counts 

were modeled using a log-normal distribution. 

 

 

A total of 147 variables were chosen from the demographic variables available in the MI 

cohort (Thomas et al., 2015), based on their relevance to the immune traits. These included, 

among others, variables related to smoking, CMV infection, vaccination history, childhood 

diseases, nutrition and lifestyle, clinically related variables, and sociological variables such as 

income and education. Of these, 40 variables were chosen for confirmatory cross-sectional 

analysis (Table 7). These variables were selected based on their distribution (i.e., categorical 

variables with only rare levels, such as infrequent vaccines, were excluded) and on their levels 

of correlation with other demographic variables (e.g., height and BMI). 



The dependency matrix among the 40 demographic variables (Figure 39) was obtained based 

on the generalized R2 measures for pairwise fitted generalized linear models. If the response 

was a continuous variable we used a Gaussian linear model. If the response was binary, we 

used logistic regression. Categorical variables were used only as predictors. 

 

 

We ran an ANOVA for each of the 40 non-genetic treatment variables and each 

immunophenotype. Thus, a total of 6,720 models were fitted, and tests were performed. 

Models were fitted to complete cases. We considered all of the tests as one multiple testing 

family and we used the false discovery rate (FDR) as error rate. We did not attempt to make a 

causal model for all variables and we thus kept the amount of controls small to ensure 

interpretability of the study, and to make it easier to reproduce. We included age, sex and 

CMV seropositivity as controls for all models (Figure 40), except when they were the 

treatment variable to be tested (Figure 37). Age and gender were included as covariates 

because they affect many of the other non-genetic variables and because it is reasonable to 

assume that they are not affected by any of the other non-genetic variables, and their inclusion 

will thus not give rise to any spurious correlation. CMV seropositivity was included because 

it has been shown to strongly affect some immunophenotypes in the literature. We also 

included as covariates genome-wide significant SNPs for corresponding immunophenotypes 

(Table 10). We assume that the genetic variables (i.e., genome-wide significant SNPs) do not 

affect the non-genetic variables, and are not affected by the non-genetic variables or the 

immunophenotypes, and were thus included to reduce the residual variance of the models. 

The response variables analyzed consisted of immune cell counts, ratios of immune cell 

counts, and cell marker mean fluorescence intensities (MFI). For the immune cell counts, we 

considered two types of error distributions: log-normal and negative binomial. We chose the 

log-normal distribution based on residual plots and AIC measures. Values less than or equal 

to zero were considered to be missing. This excluded 1,208 points, 990 of which came from 

only three immunophenotypes: HLA-DR+ CD56hi NK cells, HLA-DR+ CD4- CD8- MAIT 

cells and the number of HLA-DR+ CD4- CD8- NKT cells. For the ratio of cell counts and 

MFIs we considered normally- and log-normally distributed residuals errors. We chose to 

model the residuals errors as being normally distributed, also based on AIC measures and 

residual plots. We considered a test as significant if the FDR was less than 1%. If a test was 
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significant, we estimated the standard errors of the tested parameter using robust sandwich 

estimation and we constructed false coverage rate adjusted confidence intervals. Sandwich 

estimation was performed using the sandwich package in R. 

 

 

The 1,000 subjects of the Milieu Intérieur cohort were genotyped at 719,665 SNPs by the 

HumanOmniExpress-24 BeadChip (Illumina, California). SNP call rate was higher than 97% 

in all donors. To increase coverage of rare and potentially functional variation, 966 of the 

1,000 donors were also genotyped at 245,766 exonic SNPs by the HumanExome-12 

BeadChip (Illumina, California). 

HumanExome SNP call rate was lower than 97% in 11 donors, which were thus removed 

from this dataset. We filtered out from both datasets SNPs that: (i) were unmapped on 

dbSNP138, (ii) were duplicated, (iii) presented a low genotype clustering quality (GenTrain 

score < 0.35), (iv) presented a call rate < 99%, (v) were monomorphic, (vi) were on sex 

chromosomes and (vii) were in Hardy-Weinberg disequilibrium (HWE P < 10-7). These SNP 

quality-control filters yielded a total of 661,332 and 87,960 SNPs for the HumanOmniExpress 

and HumanExome BeadChips, respectively. The two datasets were then merged, after 

excluding triallelic SNPs, SNPs with discordant alleles between arrays (even after allele 

flipping), SNPs with discordant chromosomal position, and SNPs shared between arrays that 

presented a genotype concordance rate < 99%. Average concordance rate for the 16,753 SNPs 

shared between the two genotyping platforms was 99.9925%, and individual concordance 

rates ranged from 99.80% to 100%, validating that no problem occurred during DNA sample 

processing. The final dataset included 732,341 QC-filtered genotyped SNPs. 

 

 

Possible pairs of genetically related subjects were detected using an estimate of the kinship 

coefficient and the proportion of SNPs that are not identical-by-state between all possible 

pairs of subjects, obtained with KING (Manichaikul et al., 2010). Genetic structure was 

estimated with the Principal Component Analysis (PCA) implemented in EIGENSTRAT 



(Patterson et al., 2006). For comparison purposes, the analysis was performed on 261,827 

independent SNPs and 1,723 individuals, which include the 1,000 Milieu Intérieur subjects 

together with a selection of 723 individuals from 36 populations of North Africa, the Near 

East, western and northern Europe (Behar et al., 2010). 

 

 

Prior to imputation, we phased the final SNP dataset with SHAPEIT2 (Delaneau et al., 2013) 

using 500 conditioning haplotypes, 50 MCMC iterations, 10 burn-in and 10 pruning 

iterations. SNPs and allelic states were then aligned to the 1,000 Genomes Project imputation 

reference panel (Phase1 v3.2010/11/23). We removed SNPs that have the same position in 

our data and in the reference panel but incompatible alleles, even after allele flipping, and 

ambiguous SNPs that have C/G or A/T alleles. Genotype imputation was performed by 

IMPUTE v.2 (Howie et al., 2009), considering 1-Mb windows and a buffer region of 1 Mb. 

Out of the 37,895,612 SNPs obtained after imputation, 37,164,442 were imputed. We 

removed 26,005,463 imputed SNPs with information ≤ 0.8, 43,737 duplicated SNPs, 955 

monomorphic SNPs, and 449,903 SNPs with missingness >5% (individual genotype 

probabilities < 0.8 were considered as missing data). After quality control filters, a total of 

11,395,554 high-quality SNPs were further filtered for minor allele frequencies >5%, yielding 

a final set of 5,699,237 SNPs for association analyses. 

 

 

Prior to genome-wide association analyses we imputed all missing values of cell count 

immunophenotypes using the random forest-based missForest R package. MFI 

immunophenotypes were already imputed prior to batch correction. We included as a 

covariate in the GWAS any non-genetic variable that was confidently identified as associated 

with a specific immunophenotype. These covariates were imputed prior to this analysis to 

reduce the large loss of sample size, which would have occurred if individuals with missing 

samples was removed for all 40 covariates.  

To select non-genetic variables, we used stability selection (Meinshausen and Buhlmann, 

2010; Shah and Samworth, 2013) with elastic net regression as support estimator. For each 

immunophenotype, we considered a linear model including each of the 40 variables (Table 
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7). We estimated for each variable the probability of the parameter corresponding to that 

variable being zero when optimizing the elastic net cost function. The variables were then 

chosen to be controls in the GWAS by thresholding this probability. It has been shown that 

this procedure, with the right threshold, controls the false discovery rate of selected variables 

(Shah and Samworth, 2013). We assumed that no covariate is affected by individual 

genotypes and the purpose of this control is thus to increase the power of the GWAS by 

reducing the residual variance. 

To reduce the risk of false positives, we transformed immunophenotypes to normality 

conditional on the selected non-genetic covariates. Immunophenotypes with non-positive 

values were transformed using a Yeo-Johnson transformation and immunophenotypes with 

only positive values were transformed using a Box-Cox transformation. The transformations 

were performed using modifications of the functions in the car package in R. 

Univariate genome-wide association study was conducted for each imputed, transformed 

immunophenotype using the linear mixed model implemented in GEMMA (Zhou et al. 2014). 

Genetic relatedness matrices (GRM) were estimated for each chromosome separately, using 

the 21 other chromosomes, to exclude from the GRM potentially associated SNPs (i.e., 

"leave-one-chromosome" approach; see Yang et al., 2014). A conditional GWA analysis was 

also carried out for each of the 14 immunophenotypes that showed the strongest genome-wide 

significant signals (“main immunophenotypes” in Table 10), by including as a covariate the 

genotypes of the most strongly associated SNP. A multivariate GWAS was conducted on a set 

of 6 candidate immunophenotypes (i.e., number of HLA-DR+ memory T cells), using 

GEMMA linear mixed model adjusted with covariates that were selected for all the six traits. 

For all genome-wide association analyses, a conservative genome-wide significant threshold 

of P < 10-10 was used, to account for testing multiple SNPs and immunophenotypes. 

We confirmed the power to identify large-effect genotype-phenotype associations in the 

Milieu Intérieur cohort by replicating well-known genetic associations with non-immune 

traits, including OCA2/HERC2 genes with eye and hair color (rs12913832, P = 6.7x10-138 

and 8.5x10-18, respectively), SLC45A2 with hair color (rs16891982, P = 3.2x10-9), UGT1A 

gene cluster with bilirubin levels (rs6742078, P = 2.6x10-75), SLC2A9 with uric acid levels 

(rs6832439, P = 4.3x10-14), and CETP with HDL levels (rs711752, P = 4.5x10-8). 

We included as a covariate in the GWAS any non-genetic variable that was confidently 

identified as associated with a specific immunophenotype. To select these non-genetic 

variables, we used stability selection (Meinshausen and Bühlmann, 2010; Shah and 

Samworth, 2013) with elastic net regression as support estimator. Immunophenotypes with 



non-positive values were transformed using a Yeo-Johnson transformation and 

immunophenotypes with only positive values were transformed using a Box-Cox 

transformation, implemented in the car R package. Univariate genome-wide association study 

was conducted for each imputed, transformed immunophenotype using the linear mixed 

model implemented in GEMMA (Zhou and Stephens, 2014). A conditional GWAS analysis 

was then carried out for each of the 14 immunophenotypes that showed a genome-wide 

significant signal, by including as a covariate the genotypes of the most strongly associated 

SNP. A multivariate GWAS was conducted on a set of 6 candidate immunophenotypes (i.e., 

number of HLA-DR+ memory T cells), using GEMMA linear mixed model adjusted with 

covariates that were selected for all the six traits. For all genome-wide association analyses, a 

conservative genome-wide significant threshold of P < 10-10 was used, to account for testing 

multiple SNPs and immunophenotypes. 

 

 

Four-digit classical alleles and variable amino acid positions in the HLA class I and II 

proteins were imputed with SNP2HLA v 1.03 (Jia et al., 2013). 104 HLA alleles and 738 

amino acid residues (at 315 positions) with MAF >1% were included in the analysis. 

Conditional haplotype-based association tests were performed using PLINK v. 1.07 (Purcell 

et al., 2007), as well as multivariate omnibus tests used to test for association at multi-allelic 

amino acid positions. 

 

The nCounter® Human Immunology v2 gene code set (NanoString technologies) was used to 

measure gene expression in non-stimulated whole blood of the 1,000 Milieu Intérieur 

subjects. The Human Immunology v2 gene code set was selected, as it covers most of the 

immunity-related genes found in the genomic regions identified by our genome-wide 

association study. This data will be described in details in a separate work (B.P., A.U., L.Q.-

M., M.L.A., unpublished data). As previously indicated, expression probes that bind to 

cDNAs in which at least 3 known common SNPs segregate in humans were removed from the 

analyses (including HLA-B, HLA-DRB1, HLA-DQA1 and HLA-DQB1). 
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After quality control filters described previously, mRNA levels were available for 984 

individuals at 52 candidate genes, i.e., immunity-related genes in a 1-Mb window around the 

14 genome-wide significant associations identified in this study. For each sample, probe 

counts were log2 transformed, normalized and adjusted for batch effects (data not shown). For 

the 52 candidate genes, expression quantitative trait loci (eQTL) mapping was performed in a 

1-Mb window around corresponding association signals, using the linear mixed model 

implemented in GEMMA (Zhou and Stephens, 2014), in the same conditions as for 

immunophenotypes. 

 

For each immunophenotype, we included all significant non-genetic factors (Figure 40A) and 

both genome-wide significant (P < 10-10) and suggestive (P < 5x10-8) genetic factors in a 

unique linear model. The contribution of each significant variable was calculated by 

averaging over the sums of squares in all orderings of the variables in the linear model, using 

the lmg metric in the relaimpo R package. The difference in contribution to explained 

variance between innate and adaptive MFIs was tested using a generalized least squares 

model, where we used overall genetic contribution to explained variance per MFI as response 

variable, and had an indicator variable for if the MFI variable was innate or adaptive. The 

covariance matrix between the response variables was estimated using the sample covariance 

among the MFI immunophenotypes. 

 

To complement this work interactive web applications are provided that allows an extensive 

exploration of the dataset presented in these studies.  

Concerning the transcriptomic analysis, the application presents four different types of 

analytical visualizations: PCA, boxplots, hierarchical clustering and a searchable reference 

table. Each visualization contains default settings that match the figures presented in the 

manuscript. Visualization controls enable the user to navigate the entire dataset following 



their own scientific interests. The interactive table provides reference values, based on the 25 

healthy donors, which can be directly browsed using a selected method (median expression 

values, coefficient of variations or q-values from paired t-tests as compared to the Null 

condition). More details about each data visualization tool can be found within the web 

application. The application was implemented using the Open Source R platform. It makes 

use of its Shiny package (version 0.12.2), ggplot2 package (version 1.0.0), dplyr package 

(version 0.4.3) and tinyr package (version 0.3.1). All visualization and analysis methods are 

accessible through a web browser, without the need to install any additional software, or 

possess knowledge of a programming language. The application is available at: https:// 

www.synapse.org/MilieuInterieur (http://dx.doi.org/10.7303/syn7059574).  

For the second study, we provide the distribution, ranges and statistics of all batch-corrected 

immune cell counts (Table 9), thereby facilitating comparisons with cytometry data collected 

as part of routine clinical practice. Values can be accessed through a user-friendly web 

application (http://104.236.137.56:3838/LabExMICytometryBrowser_ShinyApp/, draft Shiny 

application available for review), which can be queried based on personal characteristics such 

as age or gender. 
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SUMMARY

Systems approaches for the study of immune
signaling pathways have been traditionally based
on purified cells or cultured lines. However, in vivo re-
sponses involve the coordinated action of multiple
cell types, which interact to establish an inflamma-
tory microenvironment. We employed standardized
whole-blood stimulation systems to test the hypoth-
esis that responses to Toll-like receptor ligands or
whole microbes can be defined by the transcriptional
signatures of key cytokines. We found 44 genes,
identified using Support Vector Machine learning,
that captured the diversity of complex innate immune
responses with improved segregation between
distinct stimuli. Furthermore, we used donor vari-
ability to identify shared inter-cellular pathways and
trace cytokine loops involved in gene expression.
This provides strategies for dimension reduction of
large datasets and deconvolution of innate immune
responses applicable for characterizing immuno-
modulatory molecules. Moreover, we provide an
interactive R-Shiny application with healthy donor
reference values for induced inflammatory genes.

INTRODUCTION

The initiation of inflammatory responses is typically triggered by

a local event engaging sentinel cells, leading to the subsequent

recruitment and accumulation of leukocytes. This process can

result in the elimination of the initial cause of tissue disruption,

the clearance of dying cells, and establishes a path toward tissue

resolution. Cytokinesmediate cell-to-cell communication, acting

to recruit immune cells to inflammatory microenvironment and

drive the required effector mechanisms. Despite the inherent

complexity of these processes in natura, analyses of inflamma-

tion have typically focused on the decision-making circuits within

cells, and, inmost cases, have been restricted to single cell types

(Amit et al., 2009; Jovanovic et al., 2015; Lee et al., 2014). Several

other studies have assessed in vivo responses to vaccination,

typically performing sampling over time to assess induced pro-

tein, mRNA expression, and seroconversion (Banchereau

et al., 2014; Li et al., 2014; Tsang et al., 2014). While informative,

these latter approaches permit the testing of only one stimulation

condition per individual and are restricted to qualified or experi-

mental vaccines. To properly account for inter-individual vari-

ability in the deconvolution of complex immune responses,

both simple (synthetic or purified ligand) and complex (live or

heat-killed microbe), stimulations must be performed in the

same donor and at the same time, and standardized approaches

for all steps from sample collection to analysis must be applied.

To test the hypothesis that responses to Toll-like receptor li-

gands or whole microbes can be captured by the transcriptional

signature of key effector cytokines, we employed a standardized

whole-blood stimulation approach with an automated single-

step RNA extraction and hybridization gene array readout.

Stimulations were performed at the point-of-care, using sy-

ringe-based medical devices (TruCulture tubes), in a pilot study

that consisted of 25 well-characterized healthy individuals of Eu-

ropean ancestry (Thomas et al., 2015). Previously, we reported

the testing of protein signatures present in the culture superna-

tant (Duffy et al., 2014). Herein, we used the cell pellets extracted
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from the TruCulture stimulation systems to define the transcrip-

tional response to clinically relevant cytokines; interferon-

alpha 2A (IFN-a), interferon-beta 1 (IFN-b1), interferon-gamma

(IFN-g), tumor necrosis factor alpha (TNF-a), and interleukin

1-beta (IL-1b). By defining unique and distinct gene expression

signatures of cytokine-induced transcription, it was possible to

test the clustering and classification of responses to Toll-like re-

ceptor (TLR) agonists or whole microbes (including heat killed

[HK] gram-negative bacteria, HK gram-positive bacteria, HK

fungi, live mycobacteria and viruses). Our results demonstrate

the ability to define complex stimuli in terms of the underlying

cytokine loops. Moreover, we provide reference values that

reflect the degree of naturally occurring variation of immune

responses among healthy individuals originating from a homoge-

neous European background. These data have been made

available as a reference for the community, accessible through

an online R-Shiny application that permits data-mining using

the analytical methods presented.

RESULTS

Distinct Transcriptional Signatures Induced by the
IFN-b, IFN-g, IL-1b, and TNF-a Cytokines
To perform ex vivo stimulation while preserving physiological

cellular interactions, we utilized syringe-based medical devices

for activating immune cells present in whole blood. Based on

initial dose-finding studies, quality assurance, solubility, and

stability testing8, we prioritized stimuli for development in

TruCulture whole-blood collection and culture devices (Myriad

RBM). After 22 hr stimulation, insertion of a valve separator

yielded a cell pellet that was stabilized in Trizol LS and stored

at �80�C for subsequent mRNA expression analysis utilizing

the NanoString nCounter technology (Figure S1A). Due to the Tri-

zol content in our samples and to minimize pre-analytical biases,

we established an automatedmRNA single-step chloroform-free

extraction protocol (Tecan script provided on-line, see http://

www.pasteur.fr/labex/milieu-interieur). Direct comparison with

conventional RNA extraction protocols indicated excellent cor-

relation in gene expression counts between the two extraction

methods (Spearman’s rank-order correlation, rs > 0.99, Fig-

ure S1B). Expression data were normalized with nSolver Analysis

Software (NanoString), using four housekeeping genes: RPL19,

TBP, POLR2A, andHPRT (Figures S1C–S1F). These four house-

keeping genes were selected following the application of the

geNorm method (Vandesompele et al., 2002), an established

algorithm for identifying stable housekeeping genes. The selec-

tion of these genes is supported by their strong correlations pre-

and post-stimulation (rs > 0.9) across the 25 donors, in contrast

with those housekeeping genes that were discarded (rs < 0.7)

(Figure S1D and data not shown). The overall rationale for the se-

lection of the NanoString platform, as compared to other tran-

scriptional profiling strategies, is presented in Table S1. This

choice was validated by the high reproducibility of the data ob-

tained when experiments were performed at different times or

at separate institutional core facilities (rs > 0.98, Figure S1B).

To assess the signatures induced by cytokine stimulation, we

analyzed the expression data of a total of 572 genes in the 25 do-

nors, using unsupervised principal component analysis (PCA)

(Figure 1A). The PCA revealed strong clustering of stimuli-spe-

cific responses, with the first three principal components (PCs)

explaining 55% of the total variance; PC1 separated IL-1b and

TNF-a from IFN-b and IFN-g, and PC2 distinguished TNF-a

from IL-1b and IFN-b from IFN-g. Of note, the response to

IFN-a was also tested and found to be similar to that of the

IFN-b response (t test with q < 0.05 reported no variables as

significantly different between the two stimuli) (Figure S3), and

therefore, IFN-a was excluded from further analyses.

To reduce the dimensionality of the data and exclude genes

that did not contribute to unique cytokine-induced signatures,

we next defined the differential gene expression for each stim-

ulus with respect to the null control using linear support vector

machine (SVM) approaches (Burges, 1998). This enabled us

the selection of predictive cytokine gene signatures from gene

lists ranked according to a paired t test (individual stimulus

versus null condition). Bootstrapping of data in the SVM training

phase ensured robust results (details provided in the Experi-

mental Procedures). The union of the selected cytokine gene sig-

natures yielded a set of 44 genes that separated the four cytokine

stimuli (Table 1). The resulting PCA projection revealed that the

four stimulation conditions could be separated into four clearly

distinct clusters based on the expression levels of these 44

genes, with PC1 and PC2 capturing 82% of the total variance

(Figure 1B). The 44 genes are represented on a biplot—a syn-

chronized dual projection of the variables that drive the loading

of the PC vectors (Figure 1C). To quantify the improved clus-

tering provided by this approach, we calculated silhouette

scores, i.e., a measure of the distance between the respective

k-means clusters, reported for each sample based on the likeli-

hood to localize into one cluster as compared to any of the three

other defined clusters. Comparison between the scores that

Figure 1. Distinct Gene Expression Signature Induced by Cytokine Stimulation

Whole-blood stimulation was performed on 25 healthy donors using TruCulture systems pre-loaded with IFN-b (pale green), IFN-g (gray), IL-1b (purple), and

TNF-a (turquoise). Principle component analysis (PCA) was used to project mRNA expression data from 572 genes employing Qlucore Omics Explorer v3.1. Prior

to applying PCA, values for each of the 572 mRNA were log transformed, centered to a mean value of zero across each donor, and scaled to unit variance. The

four cytokine stimuli are indicated by the colored circles and the vector position of each of the 25 donors is represented.

(A) Left: PC1 versus PC2. Right: PC2 versus PC3. The percentage of variance captured by each PC is indicated.

(B) PCA on filtered gene expression data; first for differential gene expression (paired t test comparing each cytokine with null and a q value cut-off of 10�3);

followed by the classification of samples using linear support vector machine (SVM) approaches, and genes ranked according to a paired t test, yielding a union

gene set of 44 genes.

(C) A bi-plot of the 44 gene set variable PCA is depicted.

(D) Silhouette scores for each cytokine IFN-b (green), IFN-g (gray), IL-1b (purple), and TNF-a (turquoise) based on the complete 572-gene set and the selected

44-gene set.

(E) Hierarchical clustering of the donors based on the filtered gene list and four cytokine stimuli andNull condition showing the unique and overlapping expression.
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were based on the complete 572 gene set versus the selected 44

gene set revealed a higher score with reduced dimensionality of

the feature list and a focus on those most highly discriminating

genes (Figure 1D). While our analyses revealed specific cytokine

gene signatures, there was modest overlap in the induced gene

lists when the stimulation conditions were compared to the null

(Figure 1E). Hierarchical clustering of the filtered gene list dis-

played the unique and overlapping gene expression for the

four cytokine groups (Figure 1E).

To examine the intersection among cytokine-induced genes,

we first analyzed the induction of IFN-b, IFN-g, IL-1b and

TNF-a gene expression. While none of the four cytokines trig-

gered high levels of type I or type II IFN expression (Figure 2A),

IL-1b and TNF-a both induced high expression of IL-1b mRNA,

and all four cytokine stimuli induced modest expression of

TNF-a (Figure 2A). These data suggest potential cross-talk

among the pathways and highlight a strong feed-forward inter-

cellular spread of IL-1b signaling. While this has been previously

shown (Dinarello et al., 1987), there is no mechanistic under-

standing of how IL-1b activates the inflammasome and triggers

caspase-1 activation. Unexpectedly, this analysis revealed two

outlier individuals who showed high expression levels of IL-

1b-induced IFN-g (marked by red and blue dots, Figure 2A).

To establish if the observed high levels of IFN-g expression re-

sulted in higher protein secretion, we re-analyzed our previously

published protein dataset (Duffy et al., 2014) generated using

samples from the same donors and indeed, the two individuals

showed the highest levels of IFN-g protein in the culture

supernatants (Figure 2B). The presence of recombinant protein

that was used as the stimulus restricted the interpretation of

potential positive feedback loops for the given protein (these

data points are masked by a gray box, Figure 2B). In addition

to the induction of IFN-g by the two outlier individuals, we also

observed higher expression of several IFN-g-induced genes,

as compared to the other donors studied (Figures 2C–2E).

Together, these data support the concept that the induced

innate responses include the spreading of signals through cyto-

kine feedback loops and potential cross-talk among the inter-

cellular pathways.

Variable Responses to TLR andMicrobe Stimulation Are
Captured by Induced Cytokine Response
During vaccination or acute infection, the immune system is

exposed to agonists that stimulate Toll-like receptor (TLRs)

signaling. In such conditions, small numbers of cells are

engaged, triggering in turn the production of cytokines that

spread the inflammatory response. To test this concept, we eval-

uated whether the induced transcriptional responses to the four

effector cytokines are capable of capturing the diversity of seven

well-defined TLR agonists (Duffy et al., 2014): FSL-1 (FSL, also

known as Pam2C) that engages the TLR2-TLR6 heterodimer;

poly IC (pIC) that engages TLR3; lipopolysaccharide (LPS) that

engages TLR4; flagellin (FLA) that engages TLR5; gardiquimod

(GARD) that engages TLR7; R848 that engages both TLR7 and

TLR8; and CpG-2216 oligonucleotide (ODN) that engages

TLR9. Limiting doses of the respective agonists were selected

to more closely reflect in vivo responses and to ensure that we

were working within the linear range of physiological responses

Table 1. Cytokine Gene Signature that Defines Transcriptional

Response to IFN-b, IFN-g, IL-1b, and TNF-a

Gene

Name

Associated

Cytokine

q Value

(Stim versus Null)

q Value (ANOVA on

Four Cytokine Stimuli)

BST2 IFN-b 4.3 3 10�43 4.6 3 10�43

C3 TNF-a 1.6 3 10�64 2.3 3 10�64

CCL2 IL-1b 3.1 3 10�21 2.7 3 10�21

CCL20 IL-1b 6.3 3 10�62 1.6 3 10�61

CCL4 TNF-a 4.1 3 10�57 7.9 3 10�57

CCL8 IFN-b 8.8 3 10�53 9.6 3 10�53

CCR1 IFN-b 8.8 3 10�33 9.0 3 10�33

CD44 TNF-a 3.2 3 10�58 5.8 3 10�58

CD83 TNF-a 1.4 3 10�59 2.4 3 10�59

CDKN1A IFN-g 1.2 3 10�41 1.3 3 10�41

CXCL10 IFN-b 5.3 3 10�51 5.7 3 10�51

CXCL2 IL-1b 8.4 3 10�39 7.5 3 10�39

CXCL9 IFN-g 4.0 3 10�43 4.0 3 10�43

HLA-DMB IFN-g 3.8 3 10�61 2.5 3 10�61

HLA-DPA1 IFN-g 4.2 3 10�51 3.5 3 10�51

HLA-DPB1 IFN-g 3.5 3 10�51 2.7 3 10�51

HLA-DRA IFN-g 4.0 3 10�45 3.9 3 10�45

IDO1 IFN-g 2.2 3 10�61 1.2 3 10�61

IFI35 IFN-b 3.4 3 10�55 2.7 3 10�55

IFIH1 IFN-b 2.3 3 10�54 2.2 3 10�54

IFITM1 IFN-b 5.7 3 10�49 6.1 3 10�49

IL1A IL-1b 1.1 3 10�59 2.0 3 10�59

IL1B IL-1b 7.8 3 10�83 2.9 3 10�82

IL6 IL-1b 1.9 3 10�67 6.9 3 10�67

IRAK2 TNF-a 4.8 3 10�62 9.8 3 10�62

IRF7 IFN-b 3.4 3 10�56 2.3 3 10�56

JAK2 IFN-g 5.8 3 10�51 5.0 3 10�51

LILRB1 IL-1b 1.6 3 10�37 1.5 3 10�37

MX1 IFN-b 1.4 3 10�61 6.3 3 10�62

NFKB1 IL-1b 8.7 3 10�52 1.0 3 10�51

NFKB2 TNF-a 2.0 3 10�64 3.6 3 10�64

NFKBIA TNF-a 2.6 3 10�67 3.2 3 10�67

NFKBIZ IL-1b 2.1 3 10�61 3.5 3 10�61

POU2F2 IL-1b 1.8 3 10�70 6.6 3 10�70

RARRES3 IFN-g 2.2 3 10�49 2.1 3 10�49

RELB TNF-a 1.8 3 10�40 1.9 3 10�40

SLAMF7 IFN-g 9.0 3 10�62 2.5 3 10�62

SOCS1 IFN-g 1.6 3 10�42 1.6 3 10�42

SOCS3 TNF-a 9.0 3 10�62 3.6 3 10�55

SRC TNF-a 2.3 3 10�57 4.3 3 10�57

STAT2 IFN-b 4.3 3 10�55 3.8 3 10�55

TNFAIP3 TNF-a 2.7 3 10�59 4.9 3 10�59

TNFSF10 IFN-b 2.3 3 10�58 9.9 3 10�59

TNFSF13B IFN-b 1.7 3 10�57 1.0 3 10�57

Theunion set of 44genes asselected for eachcytokine stimulususing linear

support vectormachine (SVM)approachesandpaired t testswith respect to

the null control. The q values for each cytokine as compared to the Null

(paired t tests)andwithin the fourcytokines (multi-groupANOVA)areshown.
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(please refer to Duffy et al., 2014 or http://www.milieuinterieur.

fr/en for details on the dose and source of these reagents). To

assess potential similarity in gene expression, we projected the

data from each of the seven TLR stimuli onto a fixed PCA coor-

dinate, which was defined by the eigenvectors and eigenvalues

of the optimized PCA of the four cytokine-induced mRNA

expression data (44 genes defined in Figure 1C). Strikingly, two

of the TLR stimuli clustered with a defined cytokine—FLA and

FSL vectors both projected onto the IL-1B cluster (Figures S4A

and S4B). ODN eigenvectors projected into the IFN-b quadrant,

Figure 2. Interactions and Outlier Responses among the Cytokine-Induced Gene Expression Signatures

(A–D) Whole blood from 25 healthy donors was stimulated using the Null, IFN-b, IFN-g, IL-1b, and TNF-a stimulation conditions. mRNA gene expression (A),

absolute nCounts, or induced protein expression (B) are plotted for each of the four genes or gene products: IFN-b1, IFN-g, IL-1b, and TNF-a (N.T. signifies not

tested for IFN-b protein; gray shaded boxes mask those protein assays that are detecting the input stimulus in the TruCulture tube). mRNA expression for the

most differentially expressed gene is shown (C), one per cytokine stimulus as reported in Table 1 gene list. Top IFN-g-induced gene expression is shown for the

Null (gray) and IL-1b (purple) stimuli (D). Data are represented as box-whisker Tukey plots. Dotted lines indicate the median value for the Null stimulation. Two

individual outliers (identified by their induction of IFN-g expression in response to IL-1b stimulation) are indicated using blue and red circles, respectively.

(E) Cytokine stimulation does not induce expression of IFN-a genes. Box-whisker Tukey plots of IFN-a2 and IFN-a1/13 mRNA expression following stimulation

with NULL, IFN-b, IFN-g, IL-1b, and TNF-a. Dotted line indicates median null value.

Cell Reports 16, 2777–2791, September 6, 2016 2781



with an inter-donor variance in the intensity of gene expression

(Figure S4A), which was consistent with our previous study of

induced proteins. This analytical approach can be further

explored using the online user interface (http://www.synapse.

org/MilieuInterieur, http://dx.doi.org/10.7303/syn7059574).

We next represented the data on a correlation circle, as an

alternative for visualizing the relationships among stimuli (Fig-

ure 3A), allowing us the projection of all TLR stimulation condi-

tions across the four PC axes. When two stimulation vectors

are close to the unit circle and are proximal to each other, then

they are positively correlated (e.g., FLA and FSL). By contrast,

if they are orthogonal to each other, they are not correlated

(e.g., FLA and R848). Alternatively, when a stimulation vector is

close to the center (e.g., LPS in PC1 versus PC2), it means that

information is carried in the other axes (e.g., in the case of LPS

almost all variance is carried by PC3 and PC4). Collectively,

these data suggest that FLA- and FSL-induced transcriptional

signatures are highly correlated to the IL-1b stimulation

response; pIC, GARD, R848, and ODN are correlated with

type I or type II IFN stimulation; and LPS is intermediate between

the two. These results were consistent with the TLR induced

expression of IFN-b1, IFN-g, IL-1b, and TNF-a (Figure 3B). One

unanticipated result was the similarity between FLA and FSL

and the IL-1b gene expression signature. In the case of FLA,

Figure 3. TLR-Induced Gene Expression Can Be Represented as a Function of Cytokine-Induced Gene Signatures

(A) Correlation circles of unit length were constructed using the 44 gene set and PCA loadings were obtained using the gene expression dataset from the four

cytokine stimuli (as defined in Table 1). The vectors for TLR-induced gene expression signatures were generated from the median value for the 25 donors,

projected onto the correlation circles across the four PC.

(B) IFN-b1, IFN-g, TNF-a, and IL-1b gene expression nCounts are shown for the Null and TLR stimulation conditions. Data are represented as box-whisker Tukey

plots. Dotted lines indicate the median value for the Null stimulation. Two individual outliers (identified by their induction of IFN-g expression in response to IL-1b

stimulation, Figure 2A) are indicated using blue and red circles, respectively.
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we suggest this may be occurring due to the engagement of the

intracellular sensor NLRC4, in turn activating caspase-1 (Gay

et al., 2014); however, the mechanisms underlying FSL activa-

tion of the inflammasome also remains uncharacterized.

Notably, these analyses also identified the two outlier individuals

discussed above, who showed high expression levels of FLA-

induced IFN-g (blue and red dots, Figure 3B).

We applied the same approach to characterize several less

well-studied agonists. These included whole b-glucan particles

(WGP) derived from Saccharomyces cerevisiae, known to

engage Dectin-1 and lacking TLR-stimulating activity (Li et al.,

2007); lipoarabamanin (LAM), a component of mycobacterial

cell walls and an inducer of TLR2; and calcium pyrophosphate

dihydrate crystals (CPPD), the etiological agent of pseudogout

(Martinon et al., 2006), and a stimulator of NLRP3. Consistent

with inflammasome activation, CPPD mapped to the IL-1b clus-

ter, and similar to FSL1, we demonstrate that the LAM-induced

gene expression overlaid the IL-1b gene set (Figure S4B). By

contrast, WGP induced an mRNA expression signature that pro-

jected between IL-1b and TNF-a. Extension of this method may

support the classification of unknown adjuvants or innate stimuli.

Next, we performed unsupervised PCA on the TLR-stimulated

gene expression data using the entire 572-gene set (Figure 4A).

The first two PCs, capturing 44% of the total variance, segre-

gated all TLR stimuli with the exception of FLA and FSL (shown

to have similar gene expression patterns), and to a lesser extent

LPS and R848. The clustering achieved with the entire dataset

was then compared to a PCA plot built using the 44-gene signa-

ture, selected for the four effector cytokines (Table 1). Strikingly,

the vectors built from the cytokine-gene set fully captured the

diversity of responses among the TLR stimuli (Figure 4B). More-

over, the cytokine-optimized gene set provided improved defini-

tion of the clusters, as indicated by a higher silhouette scores

(Figure 4C). This is most evident for the improved discrimination

of LPS from R848 (Figure 4B, see PC2; and an increase in the

median silhouette score from 0.26 to 0.46 for LPS and from

0.11 to 0.35 for R848 samples, Figure 4C). These observations

support the hypothesis that, in situations of limited agonist

concentration and heterogeneous cell types, the characteristic

TLR gene signatures can be identified by a limited set of

cytokine-induced genes. From the perspective of population-

based studies, this introduces the concept that a handful of

highly discriminatory gene expression responses are sufficient

to distinguish the transcriptional landscape activated by TLR

pathways.

To test the robustness of this prediction, we subsequently

evaluated the gene expression patterns induced by whole

microbes, first using the entire 572-gene set (Figure 4D).

The microbes included heat-killed Escherichia coli O111:B4

(HKEC), Staphylococcus aureus (HKSA), Lactobacillus rhamno-

sus (HKLR), Helicobacter pylori (HKHP), Candida albicans

(HKCA), a clinical preparation of live bacillus Calmette-Guerin

(BCG), H1N1 attenuated influenza A/PR8 (IAV), and Sendai virus

(SeV). The first three principal components, capturing 56%of the

total variance, segregated samples from the viral stimuli and

HKEC from the other microbes in PC1; HKHP was separated

by PC2; and the remaining microbes falling along PC3 with

HKCAbeing distinguishable fromHKLR, HKSA, andBCG. Again,

we demonstrated improved clustering when using the 44-gene

set, as defined by the response to the four effector cytokines

(Figure 1B,C). Strikingly, when using the 44-gene set, the vari-

ance captured by the first three principle components reached

95% (Figure 4E). Indeed, even with whole microbe stimula-

tion—representing a higher level of biological complexity due

to the activation of multiple signaling pathways—we obtained

improved silhouette scores for k-means clustering across all

stimuli when the PCA was based on the 44-gene set (Figure 4F).

For example, the clustering of HKHP samples improved from a

median silhouette score of 0.27 to 0.52, when applying the

selected 44-gene set in place of the complete 572 genes.

Notably, HKLR, HKSA, and BCGwere less distinguishable, likely

a result of common agonist activity and similar levels of induced

cytokines. IAV and SeV also co-segregated for similar reasons.

Nonetheless, a doubling of themedian silhouette score indicated

that, here too, a focused feature list improved clustering of the

data. In light of these results, we conclude that a standardized

sample collection combined with precise measurement of

induced gene expression supports a massive reduction in the

dimensionality of the data space, while preserving the ability to

discriminate the inflammatory trigger as well as the variability

among human donors.

Inter-individual Variable Gene Expression Supports
Tracing of Cytokine Loops
We next extended the concept of correlation among the stim-

ulation conditions to shed light onto possible cytokine loops

Figure 4. Distinct and Variable Response to TLR Agonist and Microbial Stimulation Can Be Captured Using the Cytokine-Induced 44-Gene

Signature

(A and B)Whole-blood stimulation was performed on 25 healthy donors using TruCulture systems pre-loaded with FSL (maroon), pIC (green), LPS (light blue), FLA

(dark blue), GARD (orange), R848 (brown), and ODN (pink). Principle component analysis (PCA) was used to project mRNA expression data from 572 genes (A),

PC1 versus PC2 (the percentage of variance captured by each PC is indicated). A parallel PCAwas constructed using themRNA expression data from the filtered

set of 44 cytokine-induced genes (from gene lists reported in Table 1) (B), PC1 versus PC2 (the percentage of variance captured by each PC is indicated).

(C) Silhouette scores were determined for each sample based on kmeans clustering (k = 7). Samples are plotted according to TLR stimulus. The red-line indicates

a silhouette score of 0.2 (considered a strong fit). The median silhouette score for 572-gene set was 0.19; and for the 44-gene set it was 0.45.

(D and E) Whole-blood stimulation was also preformed using HKHP (gray), HKLR (brown), HKSA (blue), HKEC (purple), HKCA (gray-green), BCG (orange), IAV

(yellow), and SeV (red). PCA was used to project mRNA expression data from 572 genes (C); and the parallel PCA was constructed using the mRNA expression

data from 44 genes.

(F) Silhouette scores were determined for each sample based on k means clustering (k = 8). Samples are plotted according to microbial stimulus. Note that IAV

and SeV were mixed among two clusters (not depicted); and two samples were misclustered using the 572-gene set versus five samples misclustered using the

44-gene set (not depicted). The red-line indicates a silhouette score of 0.2 (considered a strong fit). Themedian silhouette score for 572-gene set was 0.18; and for

the 44-gene set it was 0.26.
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involved in individual gene expression. This approach provides

an exploratory analysis of possible cell-to-cell interactions that

can be tested in future experimental studies. Spearman correla-

tion matrices and hierarchical clustering, based on a connected

correlation dissimilarity metric, were performed for each gene,

and results were bootstrapped to ensure the identified correla-

tions were robust. Using these outputs, we identified cases

where the variable responses to TLR or microbe stimulations

could be explained by the inter-individual gene expression vari-

ance observed when using one of the four cytokine stimuli. To

illustrate this observation, the dendrogram depicting the clusters

of Spearman correlations and a table indicating the respective rs
coefficients are shown for TNFSF10 (Figure 5A). A cut-off value

of 2-fold expression change greater than the null condition was

utilized for inclusion of stimuli in the cluster. Interestingly, the

viral stimuli clearly clustered with type I IFN stimulation, with

SeV showing a high correlation with IFN-b-induced TNFSF10

(rs = 0.82); whereas GARD and R848 clustered with IFN-g

(rs = 0.7 and 0.75, respectively) (Figures 5A and 5B). As a second

example, IRAK3 is shown, illustrating distinct clustering of

bacterial/TLR stimuli with TNF or IL-1b (Figures 5C and 5D).

Schematic depictions of the putative stimulus-induced cyto-

kine-mediated expression of TNFSF10 or IRAK3 are shown

with dotted line arrows provided for illustrative purposes. This

analytical approach allows us to predict the distinct cytokine

loops that drive common gene expression following stimulation

by TLR agonists or microbes. While this modeling approach to

population-based data must be experimentally validated, we

highlight the possibility that inter-individual variance can be uti-

lized as a means to identify causal pathways driving gene

expression, which will support future experimental inquiry.

Microbial Gene Expression Is Defined by Lymphocyte-
Derived Cytokines
Although the four cytokines studied herein represent major

effector pathways in host response and disease pathogenesis,

we were cognizant of additional upstream factors that help

to specify the inflammatory reaction. To identify other poten-

tial effector cytokines, we generated a list of genes upregu-

lated by each stimulus as compared to the null condition

(stimulus > null, paired t test q < 10�3) and then merged the re-

sulting gene lists for the four cytokines, the seven TLR, and the

eight microbial stimuli. A Venn diagram depicts the overlap and

intersections in gene expression for these three groups, respec-

tively (Figure 6A). Additionally, we calculated the median gene

expression for each stimulus and generated heat maps, clus-

tering by both genes and samples, using either the set of genes

that were expressed after microbial but not cytokine stimulation

(Figure 6B); TLR but not cytokine stimulation (Figure S6A); and

microbial but not TLR stimulation (Figure S6B). Strikingly, the

complex stimuli induced a subset of genes indicative of lympho-

cyte activation. This subset of genes included: (1) transcription

factors such as FoxP3 (highly induced after bacterial stimula-

tion), EOMES (induced by HKCA) and GATA3 (induced by

BCG); (2) cytolytic effectors such as GZMA (highly induced by

HKEC); and (3) anti-microbial genes such asNOS2 (induced after

bacterial stimulation), DEFB103A (induced by BCG) and HAMP

(highly induced by HKEC) (Figure 6B). Additionally, we detected

the differential induction of 18 cytokines, which included IL2

(induced by HKSA, BCG, HKCA, IAV, and SeV), CSF2 (highly

induced by HKCA), and IL22 (induced after bacterial and

HKCA stimulation) (Figure 6C). As indicated by the comparison

with Staphylococcal enterotoxin B (SEB) stimulation and consis-

tent with the presence of microbial antigen-specific T cells within

the repertoire of healthy donors (Becattini et al., 2015; Geiger

et al., 2009), these cytokine genes likely reflect the activation

of lymphocyte subsets (Figure 6C). The characterization of these

lymphocyte-derived cytokines may further establish the role of

feed-forward cytokine loops in the deconvolution of microbial-

induced gene signatures.

DISCUSSION

In this study, we aimed at testing if standardized whole-blood

stimulation systems can support the identification of a handful

of genes that are capable of deconvoluting complex responses

to immune stimulation. We utilized medically relevant stimuli to

determine their inflammatory signatures and, in doing so, estab-

lished the degree of naturally occurring variation present in a

population of well-defined healthy donors of European descent.

The definition of host immune responses to adjuvants andmicro-

bial agents, and subsequent characterization of inter-individual

variability in the human population, is of major fundamental inter-

est and provides the necessary foundation for understanding hu-

man health and disease pathogenesis. Although functional tests

are routinely used in laboratory investigation (Folds and Schmitz,

2003), the standardization of such assays has been challenging.

While whole-blood assays are more biologically relevant and

introduce less experimental bias than, for example, PBMC stim-

ulation, they are not without technical challenges in particular

due to the high levels of globin RNA and enzyme-inhibiting com-

pounds (e.g., heparin interference of reverse transcriptase)

(Chaussabel et al., 2010). Previous efforts have focused on

removing the globin RNA before downstream analysis, however,

these processes can introduce, in turn, higher levels of technical

variance as compared to what was achieved with our data gen-

eration pipeline (Shin et al., 2014). Specifically, the innovation

brought forward in this study is an automated single-step RNA

extraction method from whole blood, which minimized pre-

analytical bias and generated highly reproducible results when

Figure 5. Correlation among Variable Stimulus-Induced Gene Expression Helps to Trace Cytokine Loops

Gene expression data from all 23 stimulation conditions were used to generate Spearman correlation matrices and hierarchical cluster analysis followed by

bootstrapping. The dendrograms shown depict clustering of stimuli based on Spearman correlations for TNFSF10 (A) or IRAK3 (C) and the associated triangular

matrix indicates the respective pairwise rs coefficients. Scatter plots for indicated stimulation pairs are shown. Each dot represents the absolute nCount for a

single individual of the 25 healthy donors tested for TNFSF10 (B) or IRAK3 (D). Red numbers at the intersection of the dendrogram branches indicate approx-

imately unbiased (au) p values, reported as percentage for 1,000 sampled dendrograms. Color scale on tables indicates strength of correlation. Proposed

schematics for stimulus-driven cytokine-induced gene expression is proposed using indicated cut-off for rs.
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using a gene hybridization read-out. These solutions are essen-

tial for multicenter population-based studies, as well as for as-

says with ambitions for clinical deployment.

Using the reference data presented herein, we tested the

hypothesis that responses to TLR ligands or whole microbes

can be captured by the transcriptional signature of key effector

cytokines. We tested a total of 23 stimulation systems, all built

into whole-blood syringes for point of care sampling. Using

linear SVM learning, it was possible to identify a 44-gene

set, selected based on their ability to differentially cluster

cytokine-induced genes. Strikingly, these same genes, when

applied to the stratification of responses to TLR ligands or mi-

crobes, resulted in improved discrimination among the stimuli

as indicated by a marked improvement in silhouette scores.

In the era of an increased use of whole-genome transcrip-

tional profiles, our results suggest that limiting the pre-analyt-

ical bias introduced by cell separation and non-standardized

stimulation protocols may be more important than obtaining

greater numbers of measured genes. In addition to sample

collection and data analysis standardization, we minimized

intrinsic variability by the recruitment of donors of Western

European ancestry (third generation born in Metropolitan

France). Furthermore, we minimized pre-analytic or environ-

mental sources of variability by applying highly precise inclu-

sion and exclusion criteria (Thomas et al., 2015). To restrict

other sources of variability, in addition to the standardization

of the assay systems, all donors were sampled at the same

time of day (09:00–11:00), during the same week, and in the

same location. Such a reliable monitoring of induced immune

gene expression responses permitted the classification of in-

flammatory and host immune responses based on the variance

observed in healthy donors.

In addition to defining detailed healthy reference ranges to be

considered in future clinical studies, this work permitted the

identification of a number of outlier responses. This included

two individuals that responded to FLA or IL-1b by producing

IFN-g and in turn the induction of IFN-g-stimulated genes.

Following from this observation, we extended the approach of

tracing cytokine loops and gene expression pathways, using in-

ter-individual variance and correlation among the stimulation

signatures as a means to deconvolute complex transcriptional

responses. This approachmay also support the future classifica-

tion of unknown adjuvants, innate stimuli, new pathogenic

agents or the stratification of disease and treatment response.

If extended to the study of disease states, it may be possible

to classify, for example, subsets of rheumatoid arthritis patients

that are responsive to IL-1b versus TNF-a blockade (Gibbons

and Hyrich, 2009; McInnes and Schett, 2007).

This reference dataset and the applied analytical approach

offers a useful resource to the community, nevertheless, several

specific limitations should be highlighted. First, some of the em-

ployed TLR stimuli may engage secondary pathways in addition

to their commonly ascribed receptors. Notably, the observation

that FLA is highly correlated with the IL-1b-induced gene signa-

ture suggests that it may also trigger NLRC4 within the whole-

blood stimulation systems. This may occur within neutrophils,

which express high levels of the NLRC4 inflammasome and

release IL-1b (Chen et al., 2014). If correct, it would also help

to explain why, despite the high prevalence of dominant-nega-

tive forms of TLR5 in Europeans (Barreiro et al., 2009; Hawn

et al., 2003), all 25 donors showed an induced response after

FLA stimulation (Barreiro et al., 2009). Alternatively, TLR sensor

pathways on platelets and neutrophils may be unique in their

ability to engage caspase-1 (Hayashi et al., 2003). We also

observed that IAV and SeV were highly correlated with pIC, sug-

gesting that the latter is engaging RIG-I like receptors (RLRs) in

addition to TLR3. We also acknowledge that, in the natural

setting, human immune responses typically occur inmucosal tis-

sues and, as such, stromal cells and tissue resident immune

populations such as macrophages and ILCs may need to be

considered to fully apply our dataset to physiologic and patho-

logic responses. Lastly, our analyses consider a single analytical

time point only, thus capturing a snapshot of the complexity

inherent in dynamic immune responses.

Finally, it is our aim with this resource paper to highlight the

growing need to make data more accessible and easier to

explore. In line with recent efforts (Gorenshteyn et al., 2015;

Speake et al., 2015), we have thus developed an online R-Shiny

application software that will allow readers to fully query the da-

taset based on their specific questions. This application software

was built as a direct companion to the presented analyses with

publically available R-scripts and downloading options for

gene expression data. In sum, the data resource presented

here and the available online tools provide a foundation for asso-

ciation studies, kinetic analyses, and in vivo mechanistic exper-

imentation. For example, it remains to be established how the

inter-individual variation in gene expression that we identified

here is accounted for by host genetic variants (i.e., expression

quantitative trait loci [eQTLs]), specifically in cases where gene

expression variation is altered upon activation with certain im-

mune stimuli (i.e., response/interaction eQTLs). Conceptually,

the strategy to trace inter-cellular cytokine driven gene expres-

sion may support such future eQTL association studies, espe-

cially in cases where inter-cellular trans-eQTL are identified.

From a practical viewpoint, the tools will support a path toward

more targeted immune monitoring from whole blood, enabling

Figure 6. Microbial-Induced Lymphokines Are Absent from TLR and Cytokine Gene Expression Signatures

(A) Gene expression data from all 23 stimulation conditions were used to generate stimulus-induced signatures (stimulus > null, paired t test with q value cut-off of

10�3). The union sets of cytokine (IFN-b, IFN-g, IL-1b, TNF-a); TLR (FSL, pIC, LPS, FLA, GARD, R848, ODN); and microbes (HKHP, HKLR, HKSA, HKEC, HKCA,

BCG, IAV, SeV) were generated. The Venn diagram indicates the number of shared and unique genes among the three groups of stimuli.

(B) Hierarchical clustering of the donors and genes based on the 105 genes present in the union set of microbes but not cytokines was performed. The median

gene expression value was used for each stimulus, with variables log-transformed, mean-centered per donor, and scaled to unit variance. NB, the dendrogram

for clustering of genes not shown.

(C) Representative gene expression data are shown for IL2, CSF2, and IL22 for each stimuli, as well as Staphylococcal enterotoxin B (SEB) stimulation for

reference. Data are represented as box-whisker Tukey plots. Dotted lines indicate the median value for the Null stimulation.
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the use of standardized approaches that capture the common

variation within the human population.

EXPERIMENTAL PROCEDURES

Donors

Samples were obtained as part of the Milieur Intérieur Healthy Donor Cohort

(https://www.clinicaltrials.gov/; NCT01699893). The study protocol was de-

signed and conducted in accordance with the ethical principles of the Decla-

ration of Helsinki and Good Clinical Practices as outlined in the ICH Guideline

for Good Clinical Practices. The data were collected under pseudo-anony-

mized conditions: the identity of the subject is coded in a way that does not

allow third-party persons to detect the identity of the person. All subjects (12

male, 13 female) aged 30–39 years old, gave informed consent and were

considered as healthy based on medical history, clinical examination, labora-

tory results, and electrocardiography (ECG). More specific details on criteria to

define healthy can be found in previously published work (Thomas et al., 2015).

TruCulture Stimulation

TruCulture tubes were prepared in batch with the indicated stimulus, resus-

pended in a volume of 2 ml buffered media and maintained at �20�C until

use. Blood was obtained from the antecubital vein using a 60 ml syringe

containing sodium-heparin (50 IU/ml final concentration). Within 15 min of

collection, 1 ml of whole blood was distributed into pre-warmed TruCulture

tubes, inserted into a dry block incubator, and maintained at 37�C (+/� 1�C),
room air for 22 hr (+/� 15 min). After incubation, a valve was inserted to sepa-

rate cells from the supernatant and to stop the stimulation reaction. Upon

removal of the liquid supernatant, cell pellets were resuspended in 2 ml Trizol

LS (Sigma), vortexed for 2 min, and rested for 10 min at room temperature (RT)

before �80�C storage.

High-Throughput Standardized RNA Extraction

Samples were randomized and extracted in groups of 95. Cell pellets in Trizol

LS were thawed on ice 60 min prior to processing. To complete thawing and

RNA release, tubes were vortexed twice for 5 min at 2,000 rpm. Before pro-

cessing, a centrifugation (3,000 3 g for 5 min at 4�C) of the thawed samples

was performed to pellet the cellular debris generated during the Trizol lysis.

The barcoded tubes were loaded in the rack module of the Freedom EVO plat-

form (TECAN) and scanned for sample traceability. For extraction, a modified

protocol of the NucleoSpin 96RNA tissue kit (Macherey-Nagel) was developed

and adapted to the Freedom EVO integrated vacuum system. The detailed

script for the operation of the TECAN system is provided online (http://www.

milieuinterieur.fr/en). In brief, 600 ml of clarified phase of the Trizol lysate was

transferred to a deep well plate preloaded with 900 ml of 100% ethanol. The

binding mixture was transferred into the silica membrane plate. The columns

were washed with buffers MW1 and MW2 (32) and RNA eluted into 0.5 ml

2D barcoded tubes (ThermoScientific) using 60 ml RNase-free water. As an in-

ternal control of the extraction process, a tube containing a defined quantity of

spiked RNA was included in each run. To avoid unnecessary freeze and thaw

of the RNA, distinct aliquots for quality control and gene expression analysis

were prepared, and all aliquots were frozen at �80�C until use.

RNA Quality Controls

RNA concentration was estimated using Qubit RNA HS Assay Kit (Life Tech-

nologies) according to the protocol provided by the manufacturer. An auto-

mated RNA integrity assessment was performed using the Standard RNA

Reagent Kit on a LabChipGX (Perkin Elmer). The RNA quality score (RQS)

was calculated using the LabChip System software, and all samples with a

RQS greater than four were processed for gene expression analysis.

Selection Criteria for Gene Expression Analysis

NanoString nCounter, a hybridization-based multiplex assay, was selected

after comparison with multiple gene expression technologies (microarray,

qPCR-based methods) (Table S1). All assays were performed at the genomic

platform (Institut Curie), with the exception of the cross platform control com-

parison performed at Institut Pasteur, Paris. The Human Immunology v2 gene

code set was selected as it covers 25 immunology-related gene networks as

illustrated by the use of KEGG charts (Figure S2). The code set contains a total

of 594 probes (15 correspond to housekeeping genes), of which 572 probes

were included in downstream analysis after removing probes mapping to mul-

tiple genes and probes aligning to polymorphic regions with greater than two

SNPs (Table S2). To this end, the probes were mapped against the human

genomic sequence (GRCh37/hg19) with GSNAP (Wu and Nacu, 2010), a

splice-aware aligner. A total of 573 out of 594 probes were mapped with

100% identity to the genome. Twelve probes mapped with one to two mis-

matches in the middle of the sequence, eight probes were misaligned in the

first/last 1–9 bp, and one probe did not map at all (PECAM1 located on

HG183_PATCH). The misaligned probes were realigned manually using

BLASTN against Ab-initio cDNAs database. Of the 594 probes, 15 mapped

to more than one genomic location (see Table S2). We removed from further

analysis KIR_Activating_Subgroup_1 probe, which mapped to three different

genomic locations, as well as three other KIR probes that mapped to mul-

tiple locations: KIR_Activating_Subgroup_2, KIR_Inhibiting_Subgroup_1, and

KIR_Inhibiting_Subgroup_2. Bioconductor biomaRt package (Durinck et al.,

2005) version 2.24.0 was used to query Ensembl (release 75) (Flicek et al.,

2014) and retrieve exonic variants that mapped to the same regions as

the NanoString probes. We considered only SNPs with minor allelic fre-

quency >0.05 (1000 Genomes Project). Forty-eight probes showed the pres-

ence of one to two SNPs in their sequence. HLA-DRB1, HLA-DQA1, and

HLA-DQB1 probes contained 4, 9, and 13 SNPs, respectively, and were there-

fore removed from further analysis.

Gene Expression Analysis

Total mRNA were diluted with RNase-free water at 20 ng/ml in the 12-strip pro-

vided by NanoString. We analyzed 100 ng (5 ml) of total RNA from each sample

using the Human Immunology kit v2 according to manufacturer’s instructions.

Each sample was analyzed in a separate multiplexed reaction including in

each, eight negative probes and six serial concentrations of positive control

probes. Negative control analysis was performed to determine the back-

ground for each sample. Of note, we observed variable expression of two

negative control probes (NEG B, NEG F), which cross-reacted with bacterial

nucleic acid present in two of the TruCulture systems (HKSA and BCG, respec-

tively, Figures S1D and S1E), and thus these probes were not used for data

normalization. Data was imported into nSolver analysis software (version

2.5) for quality checking and normalization of data. A first step of normalization

using the internal positive controls permitted correction of potential sources of

variation associated with the technical platform. To do so, we calculated for

each sample the geometric mean of the positive probe counts. A scaling factor

for a sample was a ratio of the average across all geometric means and the

geometric mean of the sample. For each sample, wemultiplied all gene counts

by the corresponding scaling factor. Next, for each sample we calculated the

background level as the median +2 SD across the six negative probe counts.

For each gene in a sample, we subtracted the background level. Finally, to

normalize for differences in RNA input we used the samemethod as in the pos-

itive control normalization, except that geometric means were calculated over

four housekeeping genes (RPL19, TBP, POLR2A, and HPRT1). These genes

were selected using geNorm method (Vandesompele et al., 2002), an estab-

lished approach for identification of stable housekeeping genes, from the 15

candidate genes provided by NanoString.

Statistical Analysis, Data Visualization, and Software

Principal component analysis (PCA) or singular value decomposition (SVD)was

used to decompose the data matrix in a way that is amenable for dimension

reduction (Alter et al., 2000). The decompositionwas used to orthogonally proj-

ect both the rows and the columns of the data matrix into lower dimensional

space in an optimal way—optimal signifying the retention of as much of the

original variance in the dataset as possible. For a comprehensive overview of

PCA and the exploratory analysis using dual PCA and the accompanying

PCA biplots, we refer to Fontes (2012). Before applying PCA, the variables

(mRNA expression levels) were log-transformed, mean-centered per donor,

to avoid inter-donor variability obscuring inter-stimuli responses, and finally

the variables were scaled to unit variance. The mean-centering per donor is

in accordance with the paired structure in the data and paired t tests or
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ANOVA were performed throughout. Scaling to unit variance prevents large

variances in the data from obscuring the correlation structure in the data. Q

values, which are defined as false discovery rate (FDR)-adjusted p values (Ben-

jamini and Hochberg, 1995), were used to define statistical significance.

Correlation circles were generated by computing themedian value across the

25 donors, for each of the considered 44 genes; we then transposed the data

matrix to consider the four stimulation conditions as the four PCA dimensions;

finally, the vectors representing the TLR stimuli were projected onto the four-

dimensional PCA. The respective 2D PCA projection plots were made with the

R package ‘‘FactoMineR’’ (version 1.28) to compute PCA scores and projected

coordinates. Silhouette analysis was used to study the separation distance

among the TLR and microbial stimuli. K means clustering was performed using

the Open CV library (Bradski and Kaehler, 2008); with settings equal to 100 iter-

ations and 500 attempts and the silhouette scores were computed (Bradski and

Kaehler, 2008; Steinhaus, 1956). Cluster number was selected based on the

number of stimuli represented in the PCA (k = 7 for TLR, k = 8 for microbes).

Note, silhouette coefficients near +1 indicate that the sample is far away from

the neighboring clusters; a valueof 0 indicates that the sample is on or very close

to the decisionboundary between twoneighboring clusters, and negative values

indicate that those samples might have been assigned to the wrong cluster.

Bootstrappedhierarchical clusteringanalysiswasperformedusing the ‘‘pvclust’’

R package (version 1.3-2) using a Spearman-based dissimilarity metric. One

thousand treeswere sampled to evaluate the robustness of each cluster. Corre-

lation matrices were plotted using the R graphics package ggplot2 (version

1.0.0). Plotswere exported from theQlucoreOmicsExplorer 3.1 or created using

the ggplot2 package (version 1.0.0) on the R platform (version 3.1.1).

Stimulus signatures, consisting of gene lists specific for each of the four

cytokines, were created by training a support vector machine (SVM) for each

individual stimulus versus null. This approach was used to define stimulus sig-

natures set by a discrete number of variables. In order to discover reasonably

complex gene interaction networks among the four stimuli, SVMs were opti-

mized from 12–57 gene subsets (�2%–10% of the total gene number). For

all four cytokine stimuli, the optimal classifier determined by the SVM cross

validation scheme corresponded to the smallest gene set size. The identified

gene lists had perfect accuracy upon ten repeated complete SVM test runs.

This shows that a small number of selected variables can predict the specific

stimulus used. The small overlap between the established stimulus signatures

indicates that the selection strikes a reasonable balance between capturing

the complexity in the data and at the same time identifying those important in-

dividual genes. The open source C++ software library OpenCV was used to

build and evaluate the SVMs (Burges, 1998; Chang and Lin, 2011). For com-

parison, a kNN classifier was also tested, using the implementation in the

OpenCV library with default parameter settings, which gave exactly the

same stimulus signatures.

R Shiny (Interactive Web Application) Development

To complement thismanuscript, we provide an interactive web application that

allows exploration of the dataset presented in this study. The application

presents four different types of analytical visualizations: PCA, boxplots, hierar-

chical clustering, and a searchable reference table. For each visualization, we

provide default settings that match figures presented in the manuscript. Visu-

alization controls enable the user to navigate the entire dataset following their

own scientific interests. The interactive table provides reference values, based

on the 25 healthy donors, which can be directly browsed using a selected

method (median expression values, coefficient of variations or q values from

paired t tests as compared to the Null condition). The application was imple-

mented using the Open Source R platform, Shiny package (version 0.12.2),

ggplot2 package (version 1.0.0), dplyr package (version 0.4.3), and tinyr

package (version 0.3.1). All visualization and analysis methods are accessible

through a web browser, without the need to install any additional software or

possess knowledge of a programming language and is available at https://

www.synapse.org/MilieuInterieur (http://dx.doi.org/10.7303/syn7059574).

ACCESSION NUMBERS

The accession number for the expression profiling by array data reported in

this paper is GEO: GSE85176.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, and two tables and can be found with this article online at http://

dx.doi.org/10.1016/j.celrep.2016.08.011.

CONSORTIUM

The members of the Milieu Intérieur Consortium are Laurent Abel, Andres Al-

cover, Kalla Astrom, Philippe Bousso, Pierre Bruhns, Ana Cumano, Caroline

Demangel, Ludovic Deriano, James Di Santo, Françoise Dromer, Gérard Eberl,

Jost Enninga, Jacques Fellay, Antonio Freitas, Odile Gelpi, Ivo Gomperts-

Boneca, Serge Hercberg, Olivier Lantz, Claude Leclerc, Hugo Mouquet, San-

dra Pellegrini, Stanislas Pol, Lars Rogge, Anavaj Sakuntabhai, Olivier

Schwartz, Benno Schwikowski, Spencer Shorte, Vassili Soumelis, Frédéric

Tangy, Eric Tartour, Antoine Toubert, Marie-Noëlle Ungeheuer, Lluis Quin-

tana-Murci, and Matthew L. Albert.

AUTHOR CONTRIBUTIONS

A.U. performed experiments, analyzed data, and wrote the paper. V.R.,

G.I., and B.P. analyzed data. C.P., R.D., V.L., B.A., D.G., and M.H. per-

formed experiments. D.D., M.F., L.Q.-M., and M.L.A. designed the study,

analyzed data, and wrote the paper. M.F., L.Q.-M., and M.L.A. contributed

equally.

ACKNOWLEDGMENTS

This work benefited from support of the French government’s Invest in the

Future program managed by the Agence Nationale de la Recherche (ANR,

reference 10-LABX-69-01). We thank Stéphanie Thomas for management of
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Supplementary Figure Legends 

 

Table S1. Comparison of different gene expression profiling technologies for whole 

blood analysis. 

 

Table S2. Gene expression probes. List of genes analyzed by Nanostring nCounter 

technology including chromosome number, probe map position, SNPs in probe, Ensemble 

gene IDs, and probe sequence 

 

Figure S1. Quality control measures for gene expression analysis. (A) Schematic 

overview of workflow from blood draw to gene expression analysis. (B) Comparison between 

mRNA counts for single step extraction protocol and standard extraction protocol utilizing 

chloroform step, for nCounter analysis at 2 separate time point (75 days apart), and at 2 

different locations (Institut Curie, Paris and Institut Pasteur, Paris) (Representative examples 

are shown and rs
2 is reported, based on a Spearman correlation). (C) Mean of mRNA counts 

(log scale) for the 4 selected house keeping genes  (HPRT1, POLR2A, RPL19, TBP) across 

the different stimulation conditions for the 25 donors included in the study. (D) Comparison 

of mRNA counts (linear scale) for two geNorm selected genes (left plots) versus two 

candidate house keeping genes (right plots) upon TNFA and SeV stimulation (E) Box-

whisker Tukey plots for the negative control probe counts. (F) Example of Neg B and Neg_F 

probes from TruCulture stimuli LPS, HKSA, and BCG. 

 

Figure S2. Gene expression pathways used to select NanoString Immunology panel. 

KEGG database pathway analysis of (A) NF-κB, (B) TNFA, (C) Cytokine-Cytokine 

Receptor, and (D) TLR signaling pathways, with genes included in NanoString analysis 

colored green, and effector cytokines (IFNB, IFNG, IL1B, TNFA) studied herein colored 

yellow. Genes in white were not represented on the NanoString codeset.  

 

Figure S3. IFNA and IFNB show overlapping gene expression profiles. (A) Whole-blood 

stimulation was performed on 25 healthy donors using TruCulture systems pre-loaded with 

IFNA (red), IFNB (pale green), IFNG (grey), IL1Β (purple), and TNFA (turquoise). Principle 

component analysis (PCA) was used to project mRNA expression data from 572 genes (the 

percentage of variance captured by each PC is indicated). (B-C) Hierarchical cluster analysis 

of the donors and gene expression following stimulation with IFNA, IFNB, and NULL 

control (black) identified 58 genes commonly down regulated (B) and 212 genes commonly 



upregulated (C) (ANOVA test, q value < 10-3). Each donor is color-coded revealing that in 

most instances, individual donors clustered for IFNA / IFNB responses. 

 

Figure S4. Projection of TLR stimuli onto PCA analysis as defined by 4 effector 

cytokines. 

(A) PCA defined by the eigenvectors and eigenvalues as based on the four-cytokine induced 

mRNA expression data of the 44 genes defined in Table 1. Ellipses representing 95% 

confidence interval (CI) were constructed and replaced the individual samples. Projected 

sample vectors of TLR stimuli (shown in red) for each of the 25 donors (FSL, pIC, LPS, 

FLA, GARD, R848, ODN), individually projected onto the first 3 PC vectors, using the 44 

selected genes (B) Projection of different synthetic ligands (WGP, LAM, CPPD) onto the 

PCA as defined by four-cytokine induced mRNA expression. 

 

Figure S5. Projection of microbial stimuli onto fixed PCA analysis defined by 4 effector 

cytokines. 

PCA defined by the eigenvectors and eigenvalues and optimized based on the four-cytokine 

induced mRNA expression data (44 genes defined in Table 1). Ellipses representing 95% 

confidence interval (CI) were constructed and replaced the individual samples. Projected 

sample vectors (shown in red) for microbial stimuli for each of the 25 donors (HKHP, HKSA, 

HKLR, HKEC, BCG, HKCA), individually, projected onto the first 3 PC vectors, using the 

44 selected genes.  

 

Figure S6. Gene expression patterns not captured by four effector cytokine induced 

changes. Hierarchical cluster analysis of donors and gene expression based on genes 

expressed after microbial stimulation but not cytokine stimulation (A), and TLR but not 

cytokine stimulation (B) as defined by firstly by a paired T test for all stimuli versus null (q < 

10-3) and merging the gene lists.  
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Abstract TheMilieu Intérieur Consortium has established a 1000-person healthy population-based
study (stratified according to sex and age), creating an unparalleled opportunity for assessing the
determinants of human immunologic variance. Herein, we define the criteria utilized for participant
enrollment, and highlight the key data that were collected for correlative studies. In this report, we
analyzed biological correlates of sex, age, smoking-habits, metabolic score and CMV infection. We
characterized and identified unique risk factors among healthy donors, as compared to studies that
have focused on the general population or disease cohorts. Finally, we highlight sex-bias in the
thresholds used for metabolic score determination and recommend a deeper examination of current
guidelines. In sum, our clinical design, standardized sample collection strategies, and epidemio-
logical data analyses have established the foundation for defining variability within human immune
responses.
© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Susceptibility to infections, disease severity, and response to
medical therapies or vaccines are highly variable from one
individual to another. Medical practices and public health
policies typically take a ‘one size fits all’ model for disease
management and drug development. This approach ignores
individual heterogeneity in immune responses that likely
impacts the response to therapy or the efficiency and
development of side effects secondary to vaccine or treatment
administration. Due to the complexity of immune responses at

the individual and population level, it has been challenging
thus far to define the borders of a healthy immune system as
well as the parameters (genetic, epigenetic, and environmen-
tal) that drive its naturally-occurring variability. In particular,
such assessments require large sample sizes, consensus for
defining “healthy”, and standardized protocols for sample
recruitment. In this context, the Milieu Intérieur Consortium
initiated in September 2012 a cross-sectional healthy
population-based study called “Genetic & Environmental
Determinants of Immune Phenotype Variance: Establishing
a Path Towards Personalized Medicine (ID-RCB Number:
2012-A00238-35)”.

The overall aim of the Milieu Intérieur study is to assess
the factors underlying immunological variance within the
general healthy population. The primary objective is to

§ co-coordinators of the Milieu Intérieur Consortium. Additional
information can be found at: http://www.pasteur.fr/labex/milieu-
interieur.

278 S. Thomas et al.



define genetic and environmental factors that contribute to the
observed heterogeneity in immune responses. This will be
realized by characterizing and integrating (i) every-day life
habits through an extensive questionnaire; (ii) genomic vari-
ability using genome-wide SNP genotyping and whole-exome
sequencing; (iii) metagenomic diversity based on sequence
analysis of bacterial, fungal and viral populations in fecal
and nasal samples; (iv) induced transcriptional and protein
signatures by whole microbes, microbial-associated molecular
pattern (MAMP) agonists, medically relevant cytokines, or
stimulators of the T cell response; and (v) variability in levels
of circulating immune cell populations based on flow
cytometry. The secondary objective is to establish a cell
bank, including EBV-transformed B cell lines and fibroblasts
from genetically annotated healthy individuals for use in
mechanistic studies. To achieve the above-mentioned objec-
tives, a total of 1000 healthy volunteers, descendants of
mainland French persons for at least three generations, split
equally by sex (1:1 sex ratio) and stratified across five-decades
of life were recruited.

Herein, we present the socio-demographic and biological
parameters that define our healthy donor cohort. Through
unbiased statistical approaches, we identified known sex-
and age-associated phenotypes, thus confirming the overall
integrity of the data and validating our population sample as
a reference for the healthy French population. Additional
analyses provided new insight into the definition and
risk factors of metabolic syndrome. Finally, we identified
dependent and independent variables among the collected
meta-data, results that will be applied to future association
studies. This unique healthy donor population study may
ultimately serve as a control reference sample for future
disease based studies.

2. Materials and methods

2.1. Study objectives

In the context of a French scientific initiative, financed
through the Investissement d'Avenir as part of a Laboratoire
d'Excellence (LabEx) research program, the Milieu Intérieur
Consortium was developed with the objective to define the
determinants of human immune variance.

2.2. Clinical protocol and implementation

The clinical study was approved by the Comité de Protection
des Personnes — Ouest 6 (Committee for the protection of
persons) on June 13th, 2012 and by the French Agence
nationale de sécurité du médicament (ANSM) on June 22nd,
2012. The study is sponsored by the Institut Pasteur (Pasteur
ID-RCB Number: 2012-A00238-35), and was conducted as a
single center study without any investigational product.
The protocol is registered under ClinicalTrials.gov (study#
NCT01699893).

Our strategy to define the parameters of a healthy
population included the gathering of a working group
composed of experts representing different clinical (medical
biology, regenerative medicine, allergy, pediatrics, nutrition,
psychiatry, lab medicine) and scientific (immunology, genet-
ics, epidemiology, methodology, sociology, gut microbiota)

specialties to help establish the criteria for qualifying an
individual as a “healthy” donor while preserving the feasibility
of recruitment and permitting robust statistical analysis.
Specifically, this working group discussed the general eligibil-
ity criteria to pre-screen subjects (age, sex, BMI, self-reported
ancestry, relatedness with the other subjects) and identified
specific exclusion criteria thatmay impact the immune system
and/or study procedures (e.g., chronic diseases known to
involve the immune system, subjects with skin disorders that
would compromise skin biopsy, etc.). Known medical, physi-
ological, and behavioral factors with potential to affect
immune cell activities or the microbiota environment were
thoroughly reviewed and retained on the basis of their impact
on the objective of our project, while preserving the
feasibility of enrollment. We further considered the preva-
lence of donor characteristics, excluding those phenotypes
that are below 1% in the population (e.g., peanut allergy), to
ensure sufficient power for association studies. Efforts were
made to avoid the selection of individuals following too
conservative criteria (i.e., “super healthy” population), as
this would compromise the underlying purpose of the study. A
Scientific Advisory Board helped to develop and refine the
study protocol, donor information and consent forms. They
also provided oversight for ensuring consistency in screening,
enrollment, body site sampling, and compliance with regula-
tory and data management requirements.

Laboratory protocols were standardized and staff mem-
bers were trained in sample preparation protocols. Two risk
assessments audits were conducted during the training
period to refine sample handling and technical protocols.
The clinical study opened at the investigator site (Biotrial,
Rennes, France) on September 7th, 2012 and the first
sample was collected on September 17th, 2012. All subjects
provided informed consent prior to enrollment in the study.
Subjects received compensation for their participation.

2.3. Subject screening and recruitment

A pre-existing donor database composed of ~110,000 donors
was used for pre-screening potential participants in accor-
dance with the study criteria. Additional advertising and
website recruitment campaigns were launched in order to
complete strata not sufficiently represented in the donor
database. Eligibility was assessed by telephone interview
and confirmed during a preliminary information meeting
about the objectives of the research. Interested participants
that met pre-screening criteria returned for the enrollment
visit (referred to as V0). During V0, eligibility criteria were
assessed in two stages: first, based on demographical data
and clinical examination; and second, by analysis of blood
and urine samples that were sent for clinical laboratory
testing (Table S1). During the course of their participation in
the Milieu Intérieur project, subjects were informed and
encouraged to participate in a non-interventional French
nutritional survey, Etude Nutrinet-Santé (www.etude-
nutrinet-sante.fr) [25].

Upon receiving the clinical laboratory results, and
confirming that all inclusion and exclusion criteria were
respected, all subjects were invited to return for the inclusion
visit (referred to as V1). Based on a defined randomization
strategy, 500 subjects participated in a second visit (referred
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to as V2) for repeat sampling (Fig. 1). V0 and V1were scheduled
with a 4–14 day interval; and V2 took place 14–42 days after
V1. Of those that were randomized for repeat collections, 340
donors consented for a skin biopsy at V1 (n.b. the number of
subjects with skin biopsy at V1 was restricted due to technical
constraints). The financial compensation for participating in V0
was 50€, 150€ for V1, 100€ for V2 and 50€ for the skin biopsy.

2.4. Cross-sectional study

The Milieu Intérieur sample is composed of 1000 healthy
volunteers, descendants of mainland French persons for at
least three generations, stratified according to sex with a
1:1 ratio (500 subjects by sex); and age (5 decades of age:
[20–29], [30–39], [40–49], [50–59] and [60–69] years, with
200 subjects per stratum). Subjects were randomized for a
single or repeated collection (50% per stratum returned for
V2). All donors were recruited by Biotrial Inc., a clinical
research organization (CRO) based in Rennes, France. From
September 17th, 2012 to August 8th, 2013, a total of 1238
donors were screened and 1012 healthy donors were
enrolled. Twelve donors withdrew, so the final sample
collection was composed of 1000 persons.

2.5. Inclusion/exclusion criteria

The study design concerned the definition of “healthy” in
accordance with the goal to maximize our ability to
associate genetic and epigenetic variation with defined
phenotypes. This was achieved by establishing a detailed list
of inclusion and exclusion criteria that ensured the recruit-
ment of volunteers with a minimally perturbed immune

system. Briefly, donors could not have evidence of, or report
a history of neurological or psychiatric disorders, or severe/
chronic/recurrent pathological conditions. Other exclusion
criteria included: history or evidence of alcohol abuse,
recent use of illicit drugs (including cannabis), recent
vaccine administration, and recent use of immune modula-
tory agents. To avoid the influence of hormonal fluctuations
in women during the peri-menopausal phase, only pre- or
post-menopausal women were included. To avoid the
presence of population structure in our study population
(i.e., highly variable genetic backgrounds due to different
ancestry), which would impact upon the power to detect
genotype-to-phenotype associations, we restricted our study
to individuals of European-descent, i.e., French citizens
whose ancestry for three generations was of Metropolitan
French origin (i.e., the subject's parents and grandparents
were born in continental France).

2.6. Physical and clinical laboratory testing

After initial evaluation for recruitment criteria, additional
physical examination and clinical laboratory testing were
performed at visit V0 in order to fully include the donors.
Donor BMI was restricted to ≥18.5 and ≤32 kg/m2. 20 mL of
blood sample (collected at V0 and V2, for repeat sampling)
was used for clinical chemistry, hematologic and serologic
assessments. A urinary human chorionic gonadotropin (hCG)
test was performed on female donors, and urine toxicology
screens for cannabinoid use, proteinuria and glycosuria were
conducted on all donors. All clinical laboratory assessments
were performed at the certified Laboratoire de biologie
médicale, Centre Eugene Marquis (Rennes, France).

Figure 1 Schematic representation of donor recruitment for the Milieu Intérieur study. To include 1000 healthy persons stratified
according to sex (500 men, 500 women) and age (200 donors per decade of life, 20–69 years of age), we enrolled a total of 1238
individuals at visit 0 (Enrollment). Of those screened, 226 donors were considered non-eligible for reasons of consent withdrawal
(n = 54), past medical history (n = 67), identification of an exclusion criteria during the onsite physical examination (n = 54), or during
laboratory testing (n = 51) (see Fig. S1). An additional 16 donors withdrew consent in the course of the study. During visit 1, whole
blood, fecal samples and nasal swabs were collected. Punch biopsies of the skin were obtained from 340 of these donors. Half of the
subjects were randomly selected (stratified by age and sex) to return for a visit 2, when repeat sampling of whole blood, fecal samples
and nasal swabs was performed. Detailed medical histories and questionnaires were completed from all donors, recorded by medical
personnel using an electronic case report form.
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Biochemistry tests, immunological analysis, and viral
serologies were performed on serum-separator tubes using
AU 400 Olympus, DXC 660 I, Advanced 2020, DXI (Beckman
Coulter), UF 50 Sysmex (Biomérieux) and Modular E170
(Roche) analyzers; Modular E170 (Roche), IRMA (Immunotech),
RIA (Labodia), and Hydrasys (Sebia) systems; and DXI immu-
noassay system (Beckman Coulter), respectively. Hematology
analysis were performed on EDTA tubes and coagulation tests
were performed on citrate tubes using LH750 (Beckman
Coulter) and STA-R (Stago) analyzers respectively.

2.7. Sample collections and storage

Blood, nasal swabs and stool samples were collected from all
donors according to established protocols. For 500 individuals,
samples were collected at V1 only; and for the remaining 500
donors, samples were collected at V1 and V2 – separated by
14–42 days – thus providing validation samples to be used in
phenotypic studies. For donors randomized for two sample
collections, biopsies of the skin were performed once at V1, in
340 donors.

From each volunteer, 20 mL of blood was collected into 2
Na Heparin tubes, and 5 mL of blood into 1 EDTA tubes for
cytometric studies and banking of DNA, respectively. These
tubes were maintained at 18–25 °C, during daily transport
to Institut Pasteur (Paris), and processed within 6 h of
collection. An additional 50 mL of blood was collected using
a pre-heparinized large-bore syringe. This sample was
aliquoted into 40 — 1 mL TruCulture® tubes within 15 min
of collection. The TruCulture® systems were developed to
provide reproducible induction of innate or adaptive
immune responses and are described elsewhere [26]. After
stimulation, the liquid supernatants from the TruCulture®
tubes were aliquoted, and the cell pellet was stabilized in
Trizol. Both samples were stored at −80 °C.

Stool samples were collected in a double-lined sealable
bag with the outer bag containing a GENbag Anaer
atmosphere generator (Aerocult, Biomerieux), used to
maintain anaerobic conditions, and an anaerobic indicator
strip (Anaerotest®, Merck Millipore) to record maintenance
of the anaerobic atmosphere. Subjects were asked to
produce the fecal specimen at their home within 24 h
before their scheduled visits (V1, V2). Upon reception at the
clinical site, the specimen was aliquoted into cryotubes and
stored at −80 °C.

Nasal swabs were obtained with sterile, dry flocked swabs
(FLOQSwab™). Right and left nostrils were sampled sepa-
rately. All swabs were stored in stabilization media and
frozen at −80 °C.

Skin punch biopsies were performed under local anesthe-
sia. The biopsy was taken using a sterile single use biopsy
punch (7 mm * 3 mm round dermal punch). The material
collected was shipped the same day of the collection at 4 °C
to Genethon (Evry, Ile de France, France) where human
fibroblast cell lines were generated and aliquots stored.

The processing of each donor involved the production and
registration of more than 180 tubes. To ensure effective
traceability of all samples, a customized software system
was developed for managing 2D barcoded tubes. A central
sample database has been established to aggregate all
sample information for each donor, visit, and sample type.

2.8. Case report forms

Detailed medical histories and questionnaires collecting
general information about socio-demographic, lifestyle and
family health history were recorded in an electronic case
report form. For example, the questionnaire collected
information concerning family status, income, occupational
status and educational level, smoking habits, alcohol intake,
sleeping habits, depressive symptoms, family medical
history and nutritional behavior and habits (for details, see
supplementary material: case report forms).

2.9. Statistical analyses

Statistical analysis was performed using the Open Source R
Software, version 3.0.1 [27]. All statistical graphics were
generated using the ‘ggplot2’ package, version 0.97 [28].
The hierarchical clustering of our continuous explanatory
variables was based on the Spearman's correlation score (Rs)
using the ‘hclust’ function available from the base functions.
Random Forest (RF) models [2] were built using the
‘randomForest’ package (version 4.6–7). For each RF
model built (sex, age categories, smoking status) a forest
of 1000 trees was computed, and the ‘mtry’ parameter was
set to be the square root of the number of available
explanatory variables. When investigating outliers in our
sample, we used a z-score based criterion. For a given
metric, we considered a donor as an outlier if its measure-
ment was 3 standard deviations away for the mean of the
whole sample. Principal component analysis (PCA) on the
outlier cases of our dataset was performed with the
‘FactoMineR’ package version 1.25. Regression analyses were
conducted using the glm function in R. Levels of immunoglob-
ulins were log-transformed and standardized, prior to regres-
sion analyses. The representative nature of the cohort was
assessed by stratified sampling: 500 individuals were
sampled 10,000 times among all cohort participants, in
order to match the proportions of males and females and of
10-decades age groups observed in the general population.
Public data from the Institut National de la Statistique et
des Etudes Economiques (INSEE; National Institute of
Statistics and Economic Studies) were retrieved for the
entire Ille-et-Vilaine French department and the city of
Rennes (http://www.insee.fr/en/default.asp).

3. Results

3.1. Sample and data overview

From September 17th, 2012 to August 8th, 2013, a total
of 1238 donors were screened and 1012 healthy donors
were enrolled (Fig. 1). The reasons for excluding the 226
pre-screened donors included withdrawal of consent (n = 54),
as well as medical history (n = 67), physical exam findings
(n = 54) or laboratory test results (n = 51) that were not in
accordance with the defined inclusion or non-exclusion
criteria (Fig. S1, Table S1). Questionnaires were completed
and clinical laboratory testing was performed at visit V0
(Tables 1–2, Tables S1–3). Among those enrolled, 12 donors
withdrew consent during the collection phase of the protocol.
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This resulted in a final set of 1000 subjects, with all donors
having completed an evaluation at visit V1 and 50% of them
(500 subjects) returning for evaluation at visit V2. During V1,
340 had a skin biopsy.

Donor recruitment was conducted in the vicinity of the
city of Rennes, in the Ille-et-Vilaine French region. We first
compared the socio-economic characteristics of the Milieu
Intérieur cohort to those of the general population of this
region (Table S4), after adjustment to match regional age
and sex stratification (see Methods section). We observed
~10% higher unemployment levels in the Milieu Intérieur
cohort (16.9% with 95% confidence interval (CI) [14.7%–
19.1%]), when compared to the Ille-et-Vilaine region or the

city of Rennes (6.0% and 8.2%, respectively) (Table S5). The
cohort also contained a higher proportion of retired persons
(16.6% [15.1%–17.9%] versus 8.1% and 4.9%) (Table S5).
Among employed people, socio-professional categories of
the Milieu Intérieur donors were biased towards more
employees and fewer laborers. We also observed that the
educational level of the Milieu Intérieur donors was
generally higher. Finally, 42.5% [39.5%–45.4%] of partici-
pants were renters, a value that is intermediate between
those of the Ille-et-Vilaine region and the city of Rennes
(33.1% and 59.5%, respectively) (Table S5), consistent with
the fact that donors reside in Rennes as well as in
surrounding areas.

Table 1 Sample collections obtained from study subjects.

Visit 0 Visit 1 Visit 2

Whole blood collection 20 mL 87 mL 83 mL

CLT a Complete blood count: RBC count, HCT, HGB, MCV, MCH, WBC count, NEUTRO, MONO,
LYMPHO, EOS, BASO, PLT count

X X

CLT Blood electrolytes: Na, K, Ca, P, Cl, HCO3 X
CLT Liver function tests: HSA, ALP, AST, ALT, GGT, BILI, TPROT X
CLT Inflammation: CRP X X
CLT Renal function tests: BUN, CREAT, UA X
CLT Lipids/metabolism: GLUC, TCHOL, LDL, HDL, TRIGLY X
CLT Serology: HBV (HBs Ag), HCV (anti HCV IgG, viral load if Ab+), HIV (anti-HIV IgM, IgG), CMV

(anti-CMV IgG), HTLV-1 (anti-HTLV-1 IgG), influenza (anti-Influenza IgG)
X

CLT Immunoglobulin electrophoresis: serum immunoglobulin concentrations (IGM, IGG, IGA,
IGE)

X

R b Immunophenotyping (Na Heparin tube): cytometric analysis for major subsets of immune
cells in circulation

X X

R Functional immune stimulation (Na Heparin syringe): TruCulture tubes ×40 X X
R Genetic tests (EDTA tube): TruCulture tubes ×40 X

Urine collection N5 mL N5 mL

CLT Biochemistry: proteinuria, glycosuria (dipstick) X
CLT Pregnancy test: bHCG concentration (women only) X X
CLT Toxicology: cannaboids X

Fecal sample collection N100 g N100 g

R Enterotyping: bacterial, viral, fungal strains X X

Nasal swab 2 swabs 2 swabs

R Enterotyping: bacterial, viral, fungal strains X X

Biopsy 7 mm punch

R Punch biopsy of skin X (n = 340)
a CLT, clinical laboratory test; RBC, red blood cell; HCT, hematocrit; HGB, hemoglobin; MCV, mean corpuscular volume; MCH, mean

corpuscular hemoglobin; WBC, white blood cell, NEUTRO, neutrophil; LYMPHO, lymphocyte; EOS, eosinophil; BASO, basophil; PLT,
platelet; Na, sodium; K, potassium; Ca, calcium; P, phosphorus; Cl, chloride; HCO3, bicarbonate; HSA, human serum albumin; ALP,
alkaline phosphate; AST, aspartate aminotransferase; ALT, alanine aminotransferase; GGT, gamma-glutamyl transpeptidase; BILI,
bilirubin; TPROT, total protein; CRP, C-reactive protein; BUN, blood urea nitrogen; CREAT, creatinine; UA, urinalysis; GLUC, glucose;
TCHOL, total cholesterol; LDL, low density lipoprotein; HDL, high density lipoprotein; TRIGLY, triglycerides; HBV, hepatitis B virus; HCV,
hepatitis C virus; HIV, human immunodeficiency virus; CMV, cytomegalovirus; HTLV, human T cell lymphotropic virus; βHCG,
beta-human chorionic gonadotropin.
b R, Research tests.
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Table 2 Socio-demographic information for study subjects.

Total
(n = 1000)

Male
(n = 500)

Female
(n = 500)

20–29
years
(n = 200)

30–39
years
(n = 200)

40–49
years
(n = 200)

50–59
years
(n = 200)

60–69
years
(n = 200)

Donor characteristics n % n % n % n % n % n % n % n %

BMI ⁎
18 b BMI ≤ 25 635 63.5 283 56.6 352 70.4 160 80 135 67.5 128 64 111 55.5 101 50.5
25 b BMI ≤ 30 300 30 181 36.2 119 23.8 34 17 55 27.5 54 27 72 36 85 42.5
30 b BMI ≤ 32 65 6.5 36 7.2 29 5.8 6 3 10 5 18 9 17 8.5 14 7
Total 1000 100 500 100 500 100 200 100 200 100 200 100 200 100 200 100

Education §
No diploma 38 3.8 20 4 18 3.6 6 3 4 2 10 5 10 5 8 4
Primary school certificate only 46 4.6 22 4.4 24 4.8 0 0 1 0.5 1 0.5 11 5.5 33 16.5
CAP, BEP, apprenticeship
certificate, BEPC (High school
diploma equivalent)

332 33.2 170 34 162 32.4 34 17 47 23.5 84 42 84 42 83 41.5

Baccalaureate or technician’s
certificate

268 26.8 130 26 138 27.6 64 32 65 32.5 44 22 50 25 45 22.5

Higher education (no professional
degree)

156 15.6 75 15 81 16.2 49 24.5 36 18 31 15.5 26 13 14 7

Higher education (Masters, PhD,
engineer’s diploma, MD, etc.)

160 16 83 16.6 77 15.4 47 23.5 47 23.5 30 15 19 9.5 17 8.5

Total 1000 100 500 100 500 100 200 100 200 100 200 100 200 100 200 100

Employment
Steady job 510 51 247 49.4 263 52.6 75 37.5 148 74.0 155 77.5 118 59 14 7
Unemployed 158 15.8 91 18.2 67 13.4 38 19 43 21.5 37 18.5 34 17 6 3
Student 74 7.4 41 8.2 33 6.6 71 35.5 3 1.5 0 0 0 0 0 0
Looking for first job 16 1.6 5 1.0 11 2.2 14 7 1 0.5 1 0.5 0 0 0 0
Housewife/househusband 21 2.1 2 0.4 19 3.8 2 1 4 2.0 5 2.5 8 4 2 1
Retired 215 21.5 114 22.8 101 20.2 0 0 0 0.0 2 1 40 20 173 86.5
NA 6 0.6 0 0.0 6 1.2 0 0 1 0.5 0 0 0 0 5 2.5
Total 1000 100 500 100 500 100 200 100 200 100 200 100 200 100 200 100
Full-time 406 40.6 219 43.8 187 37.4 65 32.5 115 57.5 122 61 96 48 8 4
Part-time 135 13.5 38 7.6 97 19.4 28 14 38 19 36 18 24 12 9 4.5
Not answered 459 45.9 243 48.6 216 43.2 107 53.5 47 23.5 42 21 80 40 183 91.5
Total 1000 100 500 100 500 100 200 100 200 100 200 100 200 100 200 100
Exclusively during the day 369 36.9 155 31 214 42.8 59 29.5 102 51 110 55 86 43 12 6
Exclusively during the night 36 3.6 12 2.4 24 4.8 7 3.5 10 5 10 5 8 4 1 0.5
Without fixed hours 135 13.5 90 18 45 9 27 13.5 41 20.5 37 18.5 26 13 4 2
Not answered 460 46 243 48.6 217 43.4 107 53.5 47 23.5 43 21.5 80 40 183 91.5
Total 1000 100 500 100 500 100 200 100 200 100 200 100 200 100 200 100

Socio-professional category
Farmer 10 1 6 1.2 4 0.8 1 0.5 2 1 1 0.5 2 1 4 2
Artisans. tradesman or company
director

46 4.6 36 7.2 10 2 4 2 11 5.5 10 5 7 3.5 14 7

Senior executive or independent
profession

42 4.2 29 5.8 13 2.6 1 0.5 15 7.5 4 2 7 3.5 15 7.5

Middle management 113 11.3 59 11.8 54 10.8 3 1.5 16 8 27 13.5 28 14 39 19.5
Employee 507 50.7 197 39.4 310 62 82 41 116 58 115 57.5 106 53 88 44
Labourer 100 10 76 15.2 24 4.8 11 5.5 19 9.5 19 9.5 27 13.5 24 12
Other categories (e.g. artist.
clergy. soldier. police officer)

60 6 48 9.6 12 2.4 7 3.5 11 5.5 18 9 15 7.5 9 4.5

Not answered 122 12.2 49 9.8 73 14.6 91 45.5 10 5 6 3 8 4 7 3.5

(continued on next page)

283The Milieu Intérieur study — An integrative approach for study of human immunological variance



Table 2 (continued)

Total
(n = 1000)

Male
(n = 500)

Female
(n = 500)

20–29
years
(n = 200)

30–39
years
(n = 200)

40–49
years
(n = 200)

50–59
years
(n = 200)

60–69
years
(n = 200)

Donor characteristics n % n % n % n % n % n % n % n %

Total 1000 100 500 100 500 100 200 100 200 100 200 100 200 100 200 100

Monthly income of the household
0 b salary ≤1000 158 15.8 75 15 83 16.6 78 39 16 8 21 10.5 23 11.5 20 10
1000 b salary ≤ 2000 340 34 160 32 180 36 73 36.5 75 37.5 70 35 60 30 62 31
2000 b salary ≤ 3000 256 25.6 134 26.8 122 24.4 27 13.5 59 29.5 50 25 59 29.5 61 30.5
3000 b salary ≤ 4000 164 16.4 82 16.4 82 16.4 12 6 41 20.5 43 21.5 34 17 34 17
4000 b salary ≤ 5000 59 5.9 35 7 24 4.8 8 4 4 2 12 6 17 8.5 18 9
5000 b salary 17 1.7 11 2.2 6 1.2 1 0.5 2 1 4 2 6 3 4 2
Not answered 6 0.6 3 0.6 3 0.6 1 0.5 3 1.5 0 0 1 0.5 1 0.5
Total 1000 100 500 100 500 100 200 100 200 100 200 100 200 100 200 100

Family status
Single with no children 320 32 155 31 165 33 108 54 45 22.5 42 21 56 28.0 69 34.5
Single with children 87 8.7 30 6 57 11.4 4 2 23 11.5 29 14.5 25 12.5 6 3
In couple but no children 259 25.9 142 28.4 117 23.4 58 29 22 11 27 13.5 48 24.0 104 52
In couple with children 328 32.8 172 34.4 156 31.2 24 12 110 55 102 51 71 35.5 21 10.5
Not answered 6 0.6 1 0.2 5 1 6 3 0 0 0 0 0 0 0 0
Total 1000 100 500 100 500 100 200 100 200 100 200 100 200 100 200 100

Housing
Owner 584 58.4 286 57.2 298 59.6 30 15 116 58 140 70 144 72 154 77
Renter 401 40.1 209 41.8 192 38.4 157 78.5 83 41.5 59 29.5 56 28 46 23
Not answered 15 1.5 5 1 10 2 13 6.5 1 0.5 1 0.5 0 0 0 0
Total 1000 100 500 100 500 100 200 100 200 100 200 100 200 100 200 100

Sport activities
Little or no physical activity 274 27.4 124 24.8 150 30 71 35.5 67 33.5 54 27 52 26 30 15
Moderate physical activity 656 65.6 314 62.8 342 68.4 110 55 115 57.5 133 66.5 139 69.5 159 79.5
Intensive physical activity
(competitions)

70 7 62 12.4 8 1.6 19 9.5 18 9 13 6.5 9 4.5 11 5.5

Total 1000 100 500 100 500 100 200 100 200 100 200 100 200 100 200 100

Smoking (cigarettes)
Non smoker 526 52.6 233 46.6 293 58.6 112 56 96 48 94 47 109 54.5 115 57.5
Former smoker 265 26.5 151 30.2 114 22.8 20 10 48 24 65 32.5 59 29.5 73 36.5
Smoker 209 20.9 116 23.2 93 18.6 68 34 56 28 41 20.5 32 16 12 6
Total 1000 100 500 100 500 100 200 100 200 100 200 100 200 100 200 100

Alchool
Never 91 9.1 43 8.6 48 9.6 12 6 24 12 26 13 16 8 13 6.5
Occasionally 523 52.3 220 44 303 60.6 96 48 104 52 108 54 111 55.5 104 52
Once per week 196 19.6 110 22 86 17.2 58 29 39 19.5 29 14.5 40 20 30 15
Several times per week 154 15.4 100 20 54 10.8 34 17 31 15.5 34 17 24 12 31 15.5
Everyday 36 3.6 27 5.4 9 1.8 0 0 2 1 3 1.5 9 4.5 22 11
Total 1000 100 500 100 500 100 200 100 200 100 200 100 200 100 200 100

Feeding at birth
Breastfed milk 286 28.6 137 27.4 149 29.8 66 33 47 23.5 49 24.5 61 30.5 63 31.5
Formula milk 465 46.5 199 39.8 266 53.2 82 41 113 56.5 108 54 87 43.5 75 37.5
Not known 246 24.6 163 32.6 83 16.6 52 26 40 20 42 21 51 25.5 61 30.5
Not answered 3 0.3 1 0.2 2 0.4 0 0 0 0 1 0.5 1 0.5 1 0.5
Total 1000 100 500 100 500 100 200 100 200 100 200 100 200 100 200 100
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3.2. Analysis of sex-, age-, and smoking
habit- associated biological parameters

A total of 328 variables were obtained from the study
questionnaire (see Case Report Form). The physical exam-
ination and clinical laboratory analyses were assembled into
a data warehouse using LabKey [1]. To validate the data
collected in our study, we first tested our ability to identify
known biological correlates of sex, age or smoking-habits. To
achieve this, we utilized a discovery-based approach. With
the initial aim of reducing the complexity of the biochem-
ical, hematologic and serologic data – thereby increasing
the power of our association studies – we correlated all
quantitative values from clinical laboratory data for the
1000 donors to each of the other variables using a
Spearman's correlation matrix. Results were clustered and
plotted using a dendrogram to represent the relationships
between variables, with height (ordinate axis) being
inversely related to the correlation coefficient (Fig. 2A).
For pairs or groups of variables that showed high correlation
(height b 0.3, equivalent to rs N 0.67), we selected one
representative variable (indicated by red star). Next, we
utilized the standard machine learning Random Forest (RF)
approach [2], applied to the dataset in order to identify the
variables that are most important to correctly classify
donors based on sex (Fig. 2B) or age (Fig. 2C). Of note,
bootstrap aggregation (also referred to as bagging) of data
was selected due to its stability and accuracy in statistical
classification and regression. This approach, which reduces
variance and avoids overfitting, can be applied to a variety
of binary data (e.g., male vs. female) and continuous
variables (e.g., age). Using this method, we found that
serum creatinine (CREAT) concentration, hematocrit (HCT)
and height are the features that are most predictive of sex;
and lower glomerular filtration rate (GFR), higher plasma
low density lipoprotein (LDL) concentration and higher
systolic blood pressure (SYSBP1) to be most associated with

age. These results were validated using univariate tests
(Table S3) and representative box-plots are shown for the
most significant variables (Figs. 2D, E).

To assess other determinants, while controlling for sex-
and age-associated effects on clinical laboratory data, we
used a linear regression model, considering sex and age as
independent covariates. This permitted us to examine the
features predictive of smoking habits, again employing
Random Forest analysis to segregate non-smokers, not
exposed to second-hand smoke (n = 394) from active
smokers (n = 208) present in our sample (Fig. 3A). Validating
prior findings [3–6], we report that serum IgG and bilirubin
concentrations were lower in smokers as compared to
non-smokers (Figs. 3A, B); whereas monocyte, neutrophil
and lymphocyte numbers were higher in smokers as
compared to non-smokers (Figs. 3A, C). These observations
may be related to lower antioxidant concentrations [7], and
a diminished adherence of leucocytes to blood vessel walls
[8]. Interestingly, a comparison of non-smokers and prior
smokers present in our sample (n = 251) indicates that
smoking cessation restores the biochemical and immunolog-
ical phenotypes associated with non-smokers (Figs. 3B, C).
Together, these data highlight that our sample population
can be used to study associations in the general French
population and can be compared to prior study cohorts.

3.3. Smoking habits confer increased risk for
metabolic syndrome among healthy donors

Over the past two decades, there has been increasing concern
about the prevalence of obesity and its association with
diabetes and cardiovascular disease (CVD), and their link to
metabolic syndrome [9]. While several assessment scores have
been established, the metabolic syndrome score is now a
widely applied measure. Metabolic syndrome is most common-
ly defined by six variables: increased abdominal circumference

Table 2 (continued)

Total
(n = 1000)

Male
(n = 500)

Female
(n = 500)

20–29
years
(n = 200)

30–39
years
(n = 200)

40–49
years
(n = 200)

50–59
years
(n = 200)

60–69
years
(n = 200)

Donor characteristics n % n % n % n % n % n % n % n %

Contraception †
Intrauterine device (IUD) 72 14.4 7 7 29 29 29 29 7 7 0 0
Oral Contreception 117 23.4 55 54 37 37 20 20 5 5 0 0
Male or female condomn 94 18.8 29 28 26 26 32 32 7 7 0 0
Tubal ligation 7 1.4 0 0 2 2 5 5 0 0 0 0
Other method of contraception 14 2.8 7 7 3 3 2 2 2 2 0 0
None 13 2.6 4 4 3 3 5 5 1 1 0 0
Not answered (or not asked) 183 36.6 0 0 0 0 7 7 78 78 100 100
Total 500 100 102 100 100 100 100 100 100 100 100 100

⁎ Study inclusion criteria set limits for BMI.
§ The certificat d'études primaires (CEP) was a diploma awarded at the end of elementary primary education in France (from 11 to 13

years inclusive until 1936) and certifying that the student had acquired basic skills in writing, reading, mathematics, history, geography
and applied sciences. It was officially discontinued in 1989.
† Questions were posed to pre-menopausal women only. Multiple choice was allowed.
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(AbdoCM N 94cm European men, N 80cm European women),
elevated systolic blood pressure (SYSBP ≥ 130mmHg), elevated
diastolic blood pressure (DYSBP ≥ 85mmHg), elevated
triglyceride levels (TG ≥ 1.7mM), diminished levels of high

density lipoprotein (HDL b 1 mM men, b 1.3 mM women) and
glucose concentration (≥ 6.1 mM) [10]. We thus analyzed
donors for these six criteria, using accepted cut-values for
European men and women, and for each criterion, data was
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Figure 3 Tobacco use associatedwith lower IgG, bilirubin concentrations and higher number of circulatingmonocytes, neutrophils and
lymphocytes. (A) The same variables selected from Fig. 2A were regressed for sex and age, then subjected to Random Forest analysis to
identify variables that discriminate active smokers (n = 208) from non-smokers with no reported passive smoking (n = 394). The random
forest classification had an estimated error rate of 24.5% on the out-of-bag error. Variables are reported according to their impact on the
out-of-bag error (percentage of mean decrease accuracy). (B, C) The top variables found to be lower (B) or higher (C) in smokers as
compared to non-smokers are shown, with the inclusion of ex-smokers with no reported passive smoking (n = 201) as an additional group.
Variables that measured importance through permutation are depicted: serum IgG concentration (IGG, g/L); bilirubin concentration
(BILI, μM); the absolute number of monocytes (MONO, ×103/μL), neutrophils (NEUTR, ×103/μL) and lymphocytes (LYMPH, ×103/μL).
Individual donors are represented by an open black circle. The data is overlaid by boxplots that represent the set of donors tested; the
median value is indicated by the black bar, the lower and upper edges correspond to the first and third quartiles (the 25th and 75th
percentiles), respectively, and the whiskers extend to the highest/lowest value that is within 1.5x interquartile range (IQR). A student
t-test was used to determine statistical differences between two groups for the given variables (p-value indicated and bracket defining
the two groups being compared, *, p b 0.05; ***, p b 0.001; ns, not significant).

Figure 2 Unbiased assessment of the clinical laboratory data revealed expected sex-, and age-associations. (A) Biological
measurements from the electronic case report forms (eCRF) and clinical laboratory data were evaluated using Spearman's correlation
matrix and plotted using a dendrogram. For subsequent data mining, representative variables were selected (red star) from pairs or
groups of factors showing high correlation (height b 0.3, indicated by dotted red line). (B, C) Random Forest method was employed to
identify variables that discriminate men and women (B) or age, used as a continuous variable (C). The random forest classification on
sex indicated an estimated error rate of 2.4% based on the out-of-bag error, while the random forest regression on age had a mean of
squared residuals of 95.1, with 54% variance explained. Variables are reported according to their impact on the out-of-bag error
(percentage of mean decrease accuracy). (D, E) The top two variables for sex (D) or age (E) that measured importance through
permutation are depicted: creatinine concentration (Creat, μM); hematocrit (HCT, %); glomerular filtration rate (GFR, mL/min); and
low density lipoprotein concentrations (LDL, mM). Individual donors are represented by an open circle (blue, men; red, women). The
data is overlaid by boxplots that represent the set of donors tested; the median value is indicated by the black bar, lower and upper
edges correspond to the first and third quartiles (the 25th and 75th percentiles), respectively, and the whiskers extend to the
highest/lowest value that is within 1.5x interquartile range (IQR); and a student t-test was used to determine statistical differences
between men and women for the given variables (p-value indicated at the top of each graph) (D). Regression lines indicate the
respective curve for men and women and results of univariate statistical analyses can be found in Table S2 (E).
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reported in relation to sex and age (Fig. 4A). Notable
differences in the diastolic, systolic blood pressure, triglycer-
ide and glucose levels were observed, with men having
significantly higher levels than women (n.b., comparisons
were made for those criteria in which reference values were
similar between men and women). In all instances, biologic
measures showed a significant increase with advancing age.
Quantitative laboratory data were again regressed out for sex
and age effects, and the component variables were evaluated
among smokers, ex-smokers and non-smokers (Fig. 4A).

To generate a composite metabolic score, 1 point was
assigned for each of the assessed variables, taking blood
pressure elevation as a single value (i.e., elevated SYSBP
and/or DIASBP = 1 point) [11]. The index value for the
metabolic score indicated that 400 individuals (40%) had at
least one positive criterion, 155 donors (15.5%) had a score
of 2, and 53 donors (5.3%) had a score of ≥ 3, despite
meeting all criteria for being a healthy donor (Fig. 4B).
Notably, women had a higher probability of scoring ≥ 1 due
to the low threshold for abdominal circumference for
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European women (299 women vs. 135 men being above the
respective abdominal circumference cut value) (Table S6).
Indeed all variables that constitute the metabolic score,
with the exception of HDL, showed a sex bias (Fig. S2). As a
result, we observed a significant association between sex
and the metabolic index (χ2 = 43.1, degrees of freedom
(df) = 3, p = 2.3 × 10−9; Fig. 4B); and there was a significant
increase in median age when donors were stratified based on
metabolic index (χ2 = 87.9, df = 12, p = 2.3 × 10−13,
Fig. 4C). While smoking habits did not impact each of the
individual variables, there was a significant relative risk
increase associated with smoking as compared to
non-smokers, after regressing out sex and age (Fig. 4D,
χ2 = 13.1, df = 3, p b 0.005; Table S6). Thus, smoking habits
are an independent risk factor for the metabolic syndrome,
distinct from its known association with CVD.

3.4. Sex, age and relationship status are risk factors
for altered immunological status

Common infections and abnormal levels of immunoglobulins
are conditions that may alter the immunological state of
individuals. In our study population, circulating levels of
immunoglobulins (i.e., IgM, IgG, IgE and IgA) were quantified,
as well as influenza- and cytomegalovirus (CMV)- specific IgG
antibodies (Table S3). We investigated association of demo-
graphic, socio-economic variables and/or lifestyle habits with
these serological parameters (Table 2). Regression analyses
were used to identify independent predictors among the 73
available variables.

Using univariate regression analysis, we found that positive
detection of anti-influenza virus IgG was significantly associ-
ated with higher stature (p = 5.7 × 10−4), sex (incidence of
86.1% and 77.8% in men and women; p = 1.0 × 10−3), a higher
weight (p = 2.1 × 10−3) and a younger age (p = 2.3 × 10−2).
However, only sex and age remained significantly associated
with influenza specific IgG when multiple regression analyses
were performed, including sex, age, height and weight
predictors (p = 1.1 × 10−3, 2.4 × 10−2, 0.85 and 0.17,
respectively). Similarly, when stratifying by sex, parameters
such as height and weight were no longer associated with

anti-influenza virus IgG (p N 0.05). More interestingly, a
younger age was found to be associated with infection only
in women (pwomen = 7.8 × 10−3 vs. pmen = 0.91). Indeed, the
sex ratio in IgG-samples was 0.90 in individuals between 20
and 39 years, while it dropped to 0.53 in people between 40
and 69 years. Together, and in accordance with previous
findings [12], our analyses support the notion that men are at
higher risk of being positive for anti-influenza IgG, and
suggests a female-specific influence of age on influenza
infection.

Conversely, factors associated with positive detection of
anti-CMV IgG were an older age (p = 7.6 × 10−7), the
consumption of raw fruits and vegetables (p = 4.0 × 10−4 and
p = 1.6 × 10−4, respectively), being female (p = 1.7 × 10−3),
a shorter sleep duration (p = 1.5 × 10−3), single status (p =
5.8 × 10−3) and a lower stature (p = 1.0 × 10−2), by univariate
regression analysis. All these factors remained significantly
associated in a multiple regression analysis, with the excep-
tion of height and the consumption of raw fruits (Table S7).
While age was consistently associated with CMV infection in
both men and women (pmen = 2.1 × 10−2 and pwomen =
3.8 × 10−3), consumption of raw vegetables (pmen = 0.59 and
pwomen = 8.2 × 10−3), relationship status (pmen = 0.48 and
pwomen = 4.6 × 10−3) and hours of sleep (pmen = 0.13 and
pwomen = 7.7 × 10−2) were significant (or trended towards
significance) in women only. By contrast, the association of
CMV infection with being single in men was restored when
restricting the analysis to men who have children (pmen =
1.9 × 10−2; Fig. S2).

Next, the different classes of immunoglobulins were
evaluated for their association with available demographic
data, using multiple regression of the most significant
univariate predictors. Elevated IgG levels were associated
with smoking (p = 1.2 × 10−13; Fig. 3), influenza virus
infection (p = 5.2 × 10−4), multivitamins consumption (p =
8.2 × 10−3) and being a woman (p = 3.1 × 10−2). The three
former factors remained significant (or trended towards
significance) in males and females, when considered
separately. Elevated IgM levels were associated with being
a woman (p = 5.0 × 10−4) and with lower BMI (p = 1.8 × 10−2).
Elevated IgE levels were associated with being a man (p =
1.4 × 10−6), younger age (p = 1.4 × 10−3), exposure to silica

Figure 4 Among healthy donors, being a male, increasing age and tobacco use are independent risk factors for higher metabolic
score index value. (A) Variables that are used for determining an individual's metabolic score are plotted individually, representing
differences between men and women; across age, as a continuous variable; or among non-smokers, ex-smokers and smokers. The
variables included abdominal circumference (AbdCM, cm), systolic blood pressure (SysBP, mm Hg), diastolic blood pressure (DysBP,
mm Hg), glucose levels (mM), high density lipoprotein concentration (HDL, mM), and triglyceride concentrations (Trigly, mM). For
depiction of sex and age associations, individual donors are represented by an open circle (blue, men; red, women). For smoking habit
associations, data was regressed for sex and age, data is plotted as relative units for respective plots, and individual donors are
represented by an open black circle. Dotted black lines indicate reference values for European population; and where relevant
sex-dependent reference indicators are used (blue dotted line, men; red dotted line, women). (B) The metabolic score was
calculated for each donor and plotted to represent number of donors having indicated index values. Bar graphs indicate men (blue)
and women (red). (C) Age association with metabolic score index values is shown, indicating men (blue circles) in the top plot, and
women (red circles) in the bottom plot. (D) Contingency tables are shown for indicated comparisons and results from χ2 testing are
reported. The data is overlaid by boxplots that represent the set of donors tested; the median value is indicated by the black bar, the
lower and upper edges correspond to the first and third quartiles (the 25th and 75th percentiles), respectively, and the whiskers
extend to the highest/lowest value that is within 1.5x interquartile range (IQR) (A, C). Where indicated a student t-test was used to
determine statistical differences between two groups for the given variables (p-value indicated and bracket defining the two groups
being compared, *, p b 0.05; **, p b 0.01; ns, not significant).

289The Milieu Intérieur study — An integrative approach for study of human immunological variance



(p = 1.0 × 10−2), smoking (p = 4.7 × 10−2), and a familial
history of atopy (p = 5.0 × 10−2). When stratifying these
analyses by sex, exposure to silica was significant in men

only (pmen = 4.6 × 10−3 and pwomen = 0.48). Finally, elevated
IgA levels were associated with an older age (p = 5.3 × 10−5),
being aman (p = 5.5 × 10−3) and non-smoking (p = 2.1 × 10−2).

Fig. 5 Outlier data maps primarily to liver function tests and complete blood count measurements, yet shows now underlying
structure based on measured variables. (A) For each donor, and for each measurement, an outlier status was assessed based on a
z-score criteria. An aggregated score was computed for each donor to represent the number of times a given donor had been flagged
as an outlier. The distribution of aggregated outlier cases among our cohort is shown. Colors indicate sex (men, blue; women, red).
(B, C) A Principal Component Analysis (PCA) on 62 donors presenting N2 outlier cases has been performed. The scatterplot shows the
projection of the donors onto the plane composed of the first 2 principal components, capturing 18.8% of the variance (B). The
cumulative variance from the principal components is represented (C). (D) For each measurement considered in our analysis, we
represented the number of donors that had been flagged as an above-the-range (on the right), or below-the-range outlier (on the
left). (E) The absolute number of eosinophils is represented for V1 and V2, shown as representative data for the measured variables.
Values have been regressed-out to take into consideration age and sex effects. Individual donors are represented by a black dot. A
dotted line depicts the theoretical ideal correlation between the 2 visits. Dotted blue and red lines show the lower and upper
threshold, respectively, as defined by our z-score based outlier detection. The green line shows the mean measurement. (F) The
relationship between the eosinophil count and IgE level is shown. Both values have been regressed-out to take into consideration age
and sex effects. Individual donors are represented by a black dot. Blue and red dotted lines show the lower and upper threshold,
respectively, as defined by our z-score based outlier detection. The green line shows the mean measurement.
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3.5. Outlier phenotypes showed independence
among the measured variables

Despite the stringent criteria used for the recruitment of
healthy donors (Table S1), we observed donors presenting
extreme values within the observed range of biological
measures. We identified 241 donors (24.1%) with clinical
laboratory values that were outliers with respect to at least
one variable, as defined by z-score based criteria (Fig. 5A).
In only 66 individuals (6.6%), we observed two or more
outlier events (Fig. 5A). To assess possible structure among
the outlier events, we analyzed the data from those 66
individuals with outlier values for one or more laboratory
tests, and projected the data using principal component
analysis (PCA) (Fig. 5B). The dataset showed a lack of
structure, which could also be observed by the broad
distribution of variance across the top 35 component axes
(Fig. 5C).

To interrogate the variables for which donors had outlier
events, we plotted the number of donors per feature
(Fig. 5C). Interestingly, liver function tests (e.g., ALT,
GGT, BILI) and circulating immune cell counts (e.g., EOS,
NEUTR, BASO) were highly represented among the feature
space. We also observed higher numbers of donors (N15)
with outlier TRIGLY and IGE levels. Selected variables were
re-tested in the 500 donors sampled at V2, allowing the
evaluation of repeatability. As shown, 4 of 8 (50%) of the
donors with elevated numbers of EOS during V1 also showed
higher levels at V2 (Fig. 5E). These data reinforce the added
value of repeat testing for spurious outlier clinical labora-
tory data, but may also indicate the impact of environmen-
tal determinants on transient biochemical or cell number
elevations. Finally, we investigated a possible association
between EOS and IgE concentrations, as both are associated
with allergic phenotypes. In support of the conclusions of the
PCA, EOS count and IgE concentrations showed no correla-
tion among healthy donors.

Our findings collectively help to define and validate the
constitution of a healthy reference population, which will
serve as a foundation for understanding and quantify the
extent to which phenotypic variation in immune responses is
under genetic or environmental control.

4. Discussion

The immune system is responsible for maintaining a healthy
state, preventing infection and maintaining homeostasis.
For some individuals, however, immune dysfunction can
occur and results in increased susceptibility to infections,
inflammation, autoimmunity, allergy or even cancer. More-
over, such individual heterogeneity in the immune response
may have a major impact on the likelihood to respond to
therapy or the development of side effects secondary to
vaccine administration. Most prior studies aiming to under-
stand the extent to which variation in immune responses is
associated with immunopathology sensu lato have taken a
disease-based approach, from which considerable insight
into immune mechanisms have been obtained. Nonetheless,
to utilize this information in diagnosis and disease manage-
ment, the definition of the baseline parameters for immune
function across the human “healthy” population is required.

To achieve this goal, the Milieu Intérieur Project aims to
provide a foundation for defining perturbations in an
individual's immune system responses.

The Milieu Intérieur clinical study was designed and
performed in healthy volunteers to develop a diverse sample
collection with wide ranging associated meta-data. Ultimate-
ly, the generation of genetic data (based on genome-wide
genotyping and whole exome sequencing) and multiple
phenotypes (molecular, cellular and organismal) in available
samples of the study cohort will produce a rich data
warehouse. This will allow datamining studies for associations
and consequently increase our knowledge of the different
factors involved in the regulation of immune responses. During
the design of the clinical study, we encountered the challenge
of defining the genuine meaning of being “healthy” according
to rational and measurable parameters. As such, strict criteria
for enrolling donors were established, taking into consider-
ation both recruitment feasibility, and the statistical power
provided by a 1000-persons study, covering 10 strata (segre-
gated across sex and age, by decade). While some exclusion
factors were easy to apply, such as chronic infections (e.g.,
HCV) or severe disease (e.g., cancer, autoimmunity, etc.),
others were more challenging, such as the boundary for
allergic individuals, those that are exposed to known toxins
(e.g., cigarettes), and persons with presyndromic signs (e.g.,
hypertension). Although the use of reference values for
hematological, biochemical and serology parameters, com-
monly accepted in the clinic to define the healthiness of an
individual, was considered as inclusion/exclusion criteria,
there was a concern about the potential loss of extreme
phenotypes. We thus chose cut off values that might indicate
the requirement for medical follow-up (e.g., liver enzyme
concentrations N 3 × ULN). Factors affecting the immune
system and/or the composition of microbiota were also
considered, including pre-term birth, current and prior
exposure to medical treatments (e.g., aspirin), or the use of
homeopathic medicaments (e.g., essential oils). Ultimately,
we settled on the allowance of parameters expected to be
present in N5% of the sampled individuals, and excluded any
condition that necessitated past or current medical treat-
ment. Detailed personal and family medical histories were
systematically recorded, and associated meta-data will be
used to define genetic, immunologic, and enterotype associ-
ations; and/or to regress out potential confounding factors.
We hope that this set of criteria will help the international
community taking steps towards a consensus definition of a
healthy status for immunologic studies.

In considering selection biases linked to cross-sectional
population-based studies [13], we consider several potential
sources. The primary sources of selection bias are selective
survival with fixed exposure in time (e.g., older donor survival
effect); and non-fixed exposure in time (e.g., smoking, diet,
alcoholic intake, professional exposure are variable in time).
With respect to the survival effect bias, we in fact see this as
an opportunity, as evidence for an age-associated narrowing
of immunologic, genetic and enterotype variation may point
towards a core signature of healthy status. To address
non-fixed exposure, we highlight that our complete question-
naires provide an overview of both current and past
exposures/habits. An additional caveat is that the healthy
volunteers were selected from a pre-existing donor database,
curated by a Clinical Research Organization. These volunteers
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may bemore “health-conscious” than one-off volunteers. This
recruitment strategy may also explain the higher percentage
of out-of-work persons, and the higher level of education as
compared to the local Ille-et-Vilaine population.

Following our initial validation of known associations of
health and clinical laboratory/immunological parameters,
we investigated correlates with the metabolic syndrome
index score. Among the general adult population, it is
estimated that 20–25% meet the criteria for having
metabolic syndrome (index score ≥ 3), so the identification
of risk factors is central to establishing public health
initiatives. While metabolic syndrome has been carefully
evaluated in the context of disease settings, few studies
have investigated healthy donors for risk factors. Interest-
ingly, in a “healthy” setting, our study revealed that sex
(i.e., being a man), aging and active cigarette smoking are
each independent risk factors for an elevated metabolic
score index. While epidemiological data support our findings
for men and age as associated risk factors, the evidence for
smoking as an independently associated variable (i.e.,
measured after regressing out sex and age) has been so
far controversial. Our data indicate that four of the six
individual component biologic variables are not statistically
different for smokers as compared to non-smokers, however
the global score supported its association with metabolic
syndrome. Previous published studies, focusing primarily on
individuals presenting overweight and obesity, showed an
additive effect for smoking as an associated risk factor [14].
Conversely, other studies have failed to detect such
associations and at least one study conducted among Turkish
women found a protective effect of smoking on metabolic
syndrome [15]. This has been attributed in part to the use of
different definitions of metabolic syndrome. A recent
meta-analysis evaluated data from 13 prospective studies for
which primary data was available (n = 56,691 participants
overall), and in a dose-response analysis, active smoking
habits was positively associated with risk of metabolic
syndrome (pooled relative risk [RR] = 1.26, 95% CI: 1.1–1.44)
[16]. Our results, which differ from previous studies in that
they are based on healthy donors, provide additional
support for their findings and are consistent with experi-
mental data indicating that cigarette smoking modifies
hormone levels (e.g., cortisol), which in turn may result in
the establishment of a more “insulin-resistant” state or
the increase in waist circumference, a result of deposition
visceral fat mass [17].

Our investigations of the metabolic syndrome score in
healthy donors also revealed a troubling sex-bias. With the
sole exception of HDL levels, the reference values for women
and men have differing cut-values. For abdominal circumfer-
ence, the effects are dramatic with nearly 60% women being
considered above the threshold value as compared to 27% for
men. Given the wide application of the metabolic syndrome
score since 2001 [18], we suggest that the threshold values be
adjusted for sex-associated differences. Notably, this has
been done in USA populations, however it must be considered
whether the adjusted thresholds have been set based on a
shared definition of health, or instead due to the epidemic of
obesity that is currently raging in first-world countries. Indeed
these indicators impact public health initiatives and treat-
ment endpoints, and therefore must be properly calibrated
and correlated to real endpoints of health and disease. It is

our hope that the Milieu Intérieur project will contribute to
the identification of genetic, enterotype and immune re-
sponse associations to metabolic score and other health
indicators, possibly leading to the innovation of personalized
algorithms.

Cytomegalovirus (CMV) infection is one of the most
common infections of the general population [19], with a
seroprevalence of 43% in Europe [20] and 50% in the US [21].
CMV is known to be transmitted through direct contact with
infected bodily fluids, including urine, saliva, tears, but also
blood and semen. A large number of studies have evaluated
risk factors for CMV infection among pregnant women, but
few have studied CMV incidence in a well-defined healthy
donor population. We confirm that being single is an
important risk factor for men and women, due to an
increased number of partners [22], while having children
has no direct impact. This challenges the notion that CMV
transmission often occurs from children to adults and we
suggest instead that adult-to-adult transmission is more
common. Longitudinal studies will be required to confirm
these observations, and to confirm that exposure to children
varies with marital status. We identified another factor
of interest: the consumption of raw vegetables. To our
knowledge, this habit has not been previously described as
a risk factor for CMV infection, and challenges the view that
CMV is mainly transmitted by direct contact. Interestingly,
recommendations to prevent infection usually include the
avoidance of food sharing with young children [23]. While
this might suggest that indirect contact is a risk factor,
there had been little evidence to support this public health
measure. One study has evaluated the duration of CMV
viability on environmental surfaces and found that the virus
could remain viable for 6 h on wet surfaces, including
crackers [24]. Together, our observation supports that CMV
transmission from food sharing has been underestimated
and should be thoroughly evaluated in order to adapt
preventive behaviors.

Interestingly elderly donors in our cohort showed a higher
percentage (44%) of CMV negative individuals than previously
reported studies (20–30% CMV- for N60 years old) [20]. This
likely reflects the “healthy” status of our donors, as defined by
stringent inclusion criteria, in contrast with previous studies
that were performed on the general population. This is also
reflected across the entire cohort, which was 64.8% CMV-,
higher than other reported studies in both Europe (43%) [20]
and the US (50%) [21]. Identifying host and environmental
factors that may lead to increased resistance to CMV infection
throughout life could have major implications for cardiovas-
cular disease, sepsis and healthy aging.

To summarize, our study outlined herein provides an
initial overview of the Milieu Intérieur cohort, which we
believe constitutes a rich source of information and
materials that will ultimately help to characterize and
define topics relating to immunity, genetics, environment
and lifestyle behaviors.

Supplementary data to this article can be found online at
http://dx.doi.org/10.1016/j.clim.2014.12.004.
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SUMMARY

Standardization of immunophenotyping procedures
has become a high priority. We have developed a
suite of whole-blood, syringe-based assay systems
that can be used to reproducibly assess induced
innate or adaptive immune responses. By eliminating
preanalytical errors associated with immune moni-
toring, we have defined the protein signatures
induced by (1) medically relevant bacteria, fungi,
and viruses; (2) agonists specific for defined host
sensors; (3) clinically employed cytokines; and (4)
activators of T cell immunity. Our results provide an
initial assessment of healthy donor reference values
for induced cytokines and chemokines andwe report
the failure to release interleukin-1a as a common
immunological phenotype. The observed naturally
occurring variation of the immune response may
help to explain differential susceptibility to disease
or response to therapeutic intervention. The imple-
mentation of a general solution for assessment of
functional immune responses will help support
harmonization of clinical studies and data sharing.

INTRODUCTION

The immune system is responsible for maintaining a healthy

state, ensuring beneficial cohabitation with microbiota, and pre-

venting infection. Immune system dysfunction is often associ-

ated with increased susceptibility to infection, inflammation,

autoimmunity, or even development of cancer. Moreover, indi-

vidual heterogeneity in the immune response can have important

medical consequences, such as the likelihood to respond to

anti-infectious therapy, the efficiency of vaccine administration,

or the development of side effects secondary to treatment.

Because of the complexity of immune responses at both the in-

dividual and population level, it has not been possible, thus far, to

define the boundaries of a ‘‘healthy immune response’’ or its

naturally occurring variability. Most studies have taken a dis-

ease-based approach, from which considerable insight into

immune mechanisms has been obtained. Nonetheless, to utilize

this information in diagnosis and disease management, the

assessment of a healthy functional immune response within

the human population is required. Specifically, there is an

unmet need for reliable and reproducible assay systems for

studying human immune responsiveness. In other words, we

must overcome technical challenges and preanalytical error in

order to assess the true variability in functional immune re-

sponses. Only then will immunologists be positioned to

contribute to the promises of personalized medicine, applying

simple-to-use technologies that provide in-depth understanding

of the phenotypic variance of immune responses in the human

population.

Human innate or adaptive immune responsiveness is typically

studied in vitro, thereby permitting the evaluation of multiple

stimulation conditions in parallel. Standard laboratory practice

is to transport collected blood to a centralized facility, thereby

allowing isolation of peripheral blood mononuclear cells

(PBMCs) by Ficoll-Hypaque gradient centrifugation by trained
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personnel (Folds and Schmitz, 2003). Stimulation can be per-

formed immediately, but often cells are cryopreserved in order

to batch test samples (Maecker et al., 2012). In addition to this

process being labor intensive, there is a risk of sample contam-

ination by microbial components (e.g., bacterial endotoxin).

Moreover, sample handling results in variable loss of cells and

cryopreservation diminishes functional responsiveness, also in

a nonlinear and/or nonreproducible way (Chen et al., 2010).

Although whole-blood human lymphocyte assays were first

innovated in 1975 (Eskola et al., 1975), they have not been

widely used in scientific research or clinical evaluation of func-

tional immune responses. Notably, direct measurements made

in whole blood have the advantages of minimizing contamina-

tion and sample handling. Moreover, maintaining total leuko-

cytes (e.g., polymorphonuclear cells) and platelets in a plasma

matrix may provide a more accurate reflection of natural respon-

siveness to immune stimuli (Chen et al., 2010; De Groote et al.,

1992; Ida et al., 2006; Kirchner et al., 1982; Schmolz et al.,

2004).

Herein, we report the development of 27 whole-blood stimu-

lation systems, built into syringe-based medical devices that

may be utilized in point-of-care approaches and tested in 25

ethnically well-defined individuals of European ancestry. With

these stimulation conditions, we define the boundaries of

a healthy immune response to complex stimuli (i.e., whole

microbes), including gram-negative bacteria, gram-positive

bacteria, mycobacteria, fungi, and live viruses (Krishna and

Miller, 2012; Miettinen et al., 2008; Stuyt et al., 2003; Stuyt

et al., 2001; Zhao et al., 2007). In addition, we developed assay

systems to study the response to purified or synthetic ligands

for the major innate host response pathways, including those

triggered by the Toll-like receptors (TLRs) (Alexopoulou et al.,

2001; Diebold et al., 2004; Gantner et al., 2003; Godaly and

Young, 2005; Hayashi et al., 2001; Hemmi et al., 2000, 2002;

Jurk et al., 2002; Liu-Bryan et al., 2005; Takeuchi et al., 1999;

Zhao et al., 2007), nucleotide-binding domain and leucine-rich

repeat containing molecules (NLRs) (Allen et al., 2009; Ichinohe

et al., 2009), and C-type lectin-like receptors (CLRs) (Brown

et al., 2003). To directly evaluate the variable responses after

cytokine receptor signaling, we also tested several clinically

employed cytokines such as interferon-alpha (IFN-a), inter-

feron-beta (IFN-b), interferon-gamma (IFN-g), tumor necrosis

factor-alpha (TNF-a), interleukin 1-beta (IL-1b), and interleukin

23 (IL-23) (Dinarello, 2012; González-Navajas et al., 2012; Opp-

mann et al., 2000; Platanias, 2005; Zheng et al., 2013). Finally,

we utilized direct T cell receptor cross-linking (anti-CD3+anti-

CD28) and super-antigen stimulation as two distinct mecha-

nisms for eliciting T cell activation (Smith-Garvin et al., 2009).

By quantifying the stimulus-induced production of cytokines,

chemokines, and growth factors, it was possible to establish

specific protein signatures for each stimulation system and we

establish reference values as well as an estimate of variation

among healthy individuals originating from a homogeneous

ethnic background. These tools and the data set provided will

be a valuable resource for the immunologic community. More-

over, we propose that through coordinated use of validated

assay systems and open sharing of data sets, it will be possible

to rapidly implement measures of functional immune respon-

siveness into clinical studies and medical practice.

RESULTS

Reproducible Whole-Blood Assays for Assessing Innate
and Adaptive Immune Responses
To establish in vitro assay systems that preserve physiological

cellular interactions, we developed syringe-based medical de-

vices that can be used for activating immune cells present in

whole blood. Fifty-four stimuli were considered for study and

evaluated for sterility, solubility, dose response, short and

long-term stability, and reproducibility (exclusion criteria are

detailed in Supplemental Experimental Procedures available on-

line). Based on initial testing, we prioritized 27 stimuli for devel-

opment in TruCulture whole-blood collection and culture devices

(Myraid RBM) (Table 1). In brief, during the manufacturing

process (certified according to ISO 13845) of the TruCulture

collection syringes, the indicated stimuli were dissolved in the

proprietary TruCulture cell medium (2 ml per tube). These

TruCulture systems were then frozen and stored at �20�C until

use. After thawing to room temperature, the collection syringes

were filled with 1 ml whole blood and incubated for 22 hr

(±10min) in room air at 37�C (±1�C), utilizing a bench-top heating

block (VLMH GmbH). After immune stimulation, insertion of a

valve separator (an integral part of the TruCulture system)

yielded a culture supernatant that was aliquoted and stored

at�80�C for subsequent multiplex protein immunoassay testing

(Figure S1A).

For all stimuli, we selected low and highly induced protein

analytes that could be measured and used for dose-finding

studies. We selected dose concentrations for the stimuli that

maximized the ability to detect low-expressed proteins, while

taking precautions not to exceed the upper limit of the biologic

range for highly expressed proteins. Representative data for

one microbe, MAMP, and T cell stimulus is shown (Figure S1B),

and the selected dose for all assays can be found in Table 1. We

further validated our assay systems by serially testing individual

responsiveness to immune stimulation, repeating the measure-

ments four times at the same time point (Figure S1C) and four

times over a 25-day time period (Figure S1D). As represented

by the data of lipopolysaccharide (LPS)-induced responses, 25

of the 27 stimuli induced protein signatures with intraindividual

coefficients of variance (CVs) ranging from 5 to 14 (Figure 1D,

Table S1, and data not shown). The two exceptions were calcium

pyrophosphate dihydrate crystals (CPPD) and whole glutan par-

ticles (WGPs), both of which are particulate agonists that were

difficult to homogenize in liquid suspension and resulted in

higher technical variation (Table S1). Regarding the response

to LPS (Figure S1D), substantial variability could be observed

among the three donors tested. Donor G showed high levels of

IL-6 but intermediate induction of IFN-g. By contrast, donor H

showed the highest production of IFN-g but the lowest induction

of IL-6. Additional quality-control data, including selection of

anticoagulant used, can be found in the Supplemental Experi-

mental Procedures and Table S2.

Quantitative and Qualitative Differences in Healthy
Donor Responses to Immune Stimulation
To demonstrate the utility of our whole-blood stimulation sys-

tems, we recruited 25 healthy volunteers of European ancestry,

aged 30–39 and stratified by gender (13 women, 12 men).
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Samples were collected, processed, and analyzed as described

(Figure S1A). Luminex assays employed in the study are listed

and the lower limit of quantification (LLOQ) and least detectable

doses (LLD) for each assay are indicated (Table S3). In order to

assess the overall signatures induced in the 28 conditions, we

plotted the concentration of the measured analytes across all

donors (four representative stimulation systems are shown:

HKEC, LPS, IL-1b, and CD3+CD28, with the null response over-

layed in each graph; Figure 1). Notably, we achieved a range of

induced biologic responses, spanning, in some instances,

greater than 1,000-fold as compared to the null condition (e.g.,

IL-6, MIP-1a). Importantly, the stimulations achieved by the

assay systems did not exceed the measured biologic limit (as

defined by a plateau in the response of selected analytes), and

a broad range of induced protein responses were observed.

Several protein analytes remained unchanged across all stimula-

tion systems (i.e., IL-7, MMP-3, and sICAM-1) and were there-

fore removed from further analysis.

Table 1. Innate and Adaptive Immune Stimuli Used for Development of Whole-Blood Stimulation Systems

Stimulus Abbreviation Concentration Supplier Sensor or Receptor Reference

Null Ø NA

Microbe

HK E. coli 0111:B4 HKEC 107 bacteria Invivogen complex Takeuchi et al., 1999

HK S. aureus HKSA 107 bacteria Invivogen complex Krishna and Miller, 2012

HK L. rhamnosus HKLR 107 bacteria Invivogen complex Miettinen et al., 2008

BCG (Immucyst) BCG 3 3 105 bacteria Sanofi Pasteur complex Means et al., 1999; Godaly and Young,

2005; Randhawa et al., 2011

HK H. pylori HKHP 107 bacteria Invivogen complex Zhao et al., 2007

HK C. albicans HKCA 107 bacteria Invivogen complex Brown et al., 2003; Gantner et al., 2003

Influenza A virus (live) IAV 100 HAU Charles Rivers complex Diebold et al., 2004; Kato et al., 2006;

Ichinohe et al., 2009; Allen et al., 2009

Sendai virus (live) SeV 10 HAU Charles Rivers Rig-I and Mda/5 Yoneyama et al., 2005; Kato et al., 2005

MAMP

C12-iE-DAP DAP 4 mg/ml Invivogen NOD1 Chamaillard et al., 2003

CPPD CPPD 100 mg/ml Invivogen NLRP3 and TLR2 Liu-Bryan et al., 2005; Martinon et al.,

2006

FSL-1 FSL 2 mg/ml Invivogen TLR2/6 Shibata et al., 1997; Okusawa et al.,

2004

Poly I:C pIC 20 mg/ml Invivogen TLR3 Alexopoulou et al., 2001

LPS-EB (ultrapure) LPS 10 ng/ml Invivogen TLR4 Poltorak et al., 1998; Shimazu et al.,

1999

Flagellin-ST FLA 0.25 mg/ml Invivogen TLR5 Hayashi et al., 2001

Gardiquimod GARD 3 mM Invivogen TLR7 Hemmi et al., 2002

R848 R848 1 mM Invivogen TLR7 and TLR8 Jurk et al., 2002

ODN 2216 ODN 25 mg/ml Invivogen TLR9 Hemmi et al., 2000; Krieg, 2002

lipoarabinomannan LAM 10 mg/ml Invivogen Mannose R, CD36 Józefowski et al., 2011; Sieling et al.,

1995

WGP WPG 40 mg/ml Invivogen Dectin-1 Goodridge et al, 2011

Cytokines

IFN-a2b (Intron A) IFN-A 1,000 IU/ml Merck IFNAR González-Navajas et al., 2012

IFN-b (Betaseron) IFN-B 1,000 IU/ml Bayer IFNAR González-Navajas et al., 2012

IFN-g (Imukin) IFN-G 1,000 IU/ml Boehringer Ingelheim IFNgR Platanias, 2005

TNF-a TNF-A 10 ng/ml Miltenyi Biotech TNFR Kolb and Granger, 1968

IL-1b IL-1B 25 ng/ml Peprotec IL1R March et al., 1985

IL-23 IL-23 50 ng/ml Miltenyi Biotech IL23R Oppmann et al., 2000

T Cells

a-CD3 +

a-CD28

CD3+CD28 0.4 mg/ml +

0.33 mg/ml

RND Systems +

Beckman Coulter

TCR Smith-Garvin et al., 2009

Enterotoxin SEB SEB 0.4 mg/ml Bernhard Nocht

Institute

TCR and MHC II Fleischer and Schrezenmeier, 1988

Abbreviations are as follows: HK, heat killed; HAU, hemaggluttanin units; IU, international units.

The 28 stimulation conditions used for the preparation of TruCulture tubes are listed, with the indicated dose and commercial supplier. Stimuli are

ordered based on four categories: whole microbe, MAMP, cytokine, and T cell agonist. See also Figure S1 and Tables S1, S2, S3, and S4.

Immunity

Defining Boundaries of a Healthy Immune Response

438 Immunity 40, 436–450, March 20, 2014 ª2014 Elsevier Inc.



We next analyzed the data by unsupervised principal compo-

nent analysis (PCA), employing Qlucore Omics Explorer 2.3

(Andersson et al., 2005). Prior to applying PCA, values for each

of the 29 protein analytes were centered to a mean value of

zero and scaled to unit variance. The 27 stimuli and null control

are indicated by the filled circles and the vector position of

Figure 1. Dynamic Range of Stimulation

Systems

Box-whisker plots indicate the induced protein

response for 25 healthy donors for 4 representative

stimuli: HKEC (A), LPS (B), IL-1b (C), and

CD3+CD28 (D). Induced responses are in red, and

the null response is overlaid in gray. Protein analy-

tes are reported in pg/ml and listed alphabetically.

The median is represented by the horizontal line,

the interquartile range (IQR) by the box, and the

whiskers represent 1.53 IQR.Databeyond theend

of the whiskers are outliers and plotted as points.

each of the 25 donors is represented (Fig-

ure 2A). The PCA revealed strong stimuli-

specific clusters, with the first three

principal component (PC) vectors ex-

plaining 57%of the total variance (Figures

2A and 2B). Highlighting the presence of a

common, core signature for the induced

innate response, we found that PC1 is

composed by the contribution of chemo-

kines and cytokines: MIP-1a, MIP-1b,

TNF-a, IL-6, IL-8, IL-10, IL-1RA, and

MCP-1. Interestingly, PC2 separated

stimuli that induced an adaptive immune

signature and was mainly driven by IL-5,

IL-2, GM-CSF, and IL-4. Stimuli that

were directed toward the second prin-

cipal component axis included

CD3+CD28, SEB, and to a lesser extent

Candida albicans (HKCA), bacillus Calm-

ette-Guerin (BCG), and Staphylococcus

aureus (HKSA). PC3 was composed of

IL-12p70 and IP-10 as induced analytes

and Factor-VII as a suppressed factor.

The signature achieved by pIC stimula-

tion could be easily separated across

this third principal component axis. Illus-

trating how the calculated vectors relate

to the overall PCA, we superimposed

expression data for the top analyte of

each vector on the PCA plot (Figure 2C).

To further validate our approach and

to explore the underlying architecture

of the PCA, we focused on the two T cell

stimulation systems: CD3+CD28 and

SEB stimulation. When analyzed sepa-

rately, the two stimulation conditions

could be easily distinguished with a

PCAplot that was based on 12 protein an-

alytes that showed statistical differences

(CD3+CD28 versus SEB, MW q value < 0.05) (Figures 3A–3C

Interestingly, CD3+CD28 and SEB induced similar amounts of

T cell cytokines (e.g., IL-4, IL-5); however, the distinct mecha-

nisms of activation—unique action on the TCR signaling pathway

as compared to cross-linking ofMHCII and the TCR, respectively

(Fleischer and Schrezenmeier, 1988)—accounted for higher
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Figure 2. Distinct Inflammatory Signatures for Stimulation Systems

(A) Principal component analysis (PCA) was performed on the data set obtained from 25 healthy donors. Each colored circle represents one of the 28 different

whole-blood stimulation conditions, and the PCA was run with data obtained from the analysis of 29 proteins. The PCA plot shown captures 57% of the total

variance within the selected data set (PCA1, 36%; PCA2, 13%; PCA3, 8%).

(B) The contribution of each protein analyte to the three principal component axes of the PCA plot are shown. (The positioning of the bars is arbitrary and is not

considered negative or positive except in relation to the other analytes.)

(C) The protein analyte contributing most strongly to each of the three principal component axes was overlaid on the PCA plot. A heat map indicates the relative

expression of the indicated protein analyte (red indicating high levels of expression, green indicating low levels of expression).
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concentrations of SEB-induced IL-6, IL-8, MCP-1, and IL-1b

(Figure 3D). This was confirmed experimentally by intracellular

flow cytometry staining, which showed that after SEB, but not

CD3+CD28 stimulation, the MHCII-expressing monocytes were

induced to express IL-8, MCP-1, and IL-1b protein (Figure S2).

Interestingly, we observed that 6 of the 25 donors failed to pro-

duce IFN-g, IL-2, IL-4, or IL-6 in response to CD3+CD28 stimula-

tion, whereas all donors were capable of responding to SEB (Fig-

ures 3D and 3E). These data highlight the ability to reliably

measure cell-cell interactions within the whole-blood stimulation

conditions. Moreover, this approach permitted the identification

of healthy donors that were unable to respond fully to anti-CD3

(clone UCHT1) stimulation, despite the binding of the antibody

to donor T cells as confirmed by flow cytometry (Figure 3F).

Distinct Inflammatory Signatures Induced by Whole
Microbes, Microbe-Associated Agonists, or Cytokine
Stimulation
Complex stimuli used in our stimulation systems included

heat-killed Escherichia coli O111:B4 (HKEC), Staphylococcus

Figure 3. CD3+CD28 and SEB Induce

Distinct Inflammatory Signatures

(A) Principal component analysis (PCA) was per-

formed on the data set obtained from 25 healthy

donors for the response to CD3+CD28 (green

circles) and SEB (blue circles) stimulation systems,

and discriminating protein analytes (q value

[ANOVA FDR adjusted p value] < 0.05) were

incorporated in the analysis. The PCA plot shown

captures 90% of the total variance within the

selected data set.

(B) The induced responses to whole-blood stimu-

lations with CD3+CD28 and SEB were compared

and the 12 differentially expressed proteins were

identified (ANOVA q value < 0.05).

(C) The contribution of each protein analyte to the

three principal component axes of the PCA plot are

shown. (The positioning of the bars is arbitrary and

is not considered negative or positive except in

relation to the other analytes.)

(D) Correlation plots highlight differentially and

similarly expressed proteins after whole-blood

stimulations with CD3+CD28 (open green circles)

or SEB (closed blue circles).

(E) Pairwise comparison for IL-6 and IL-4 con-

centration is shown after whole-blood stimulations

with CD3+CD28 and SEB. Black lines indicate

individual donors. Red star highlights non-

responders to CD3+CD28 stimulation.

(F) The number of CD3+ T cells per ml of whole

blood in CD3+CD28-positive and -negative re-

sponders.

See also Figure S2.

aureus (HKSA), Lactobacillus rhamnosus

(HKLR), Helicobacter pylori (HKHP), and

Candida albicans (HKCA). Additionally,

we utilized the clinical preparation of live

bacillus Calmette-Guerin (BCG) and live

stocks of H1N1 attenuated influenza

A/PR8 (IAV) and Sendai virus (SeV)

(Table 1). The E. coli used was derived from a strain that causes

acute diarrhea in babies (Viljanen et al., 1990). H. pylori is also a

human pathogen and is the main cause of ulcer disease and

stomach cancer in humans (Wroblewski et al., 2010). Healthy

donors may be carriers for S. aureus or C. albicans, but in

some instances these agents may be the cause of human dis-

ease (e.g., in immunologically compromised individuals) (Gow

et al., 2012; Otto, 2009). BCG is used as a vaccine in order to pro-

tect humans from childhood tuberculosis and is the standard of

care for treatment of bladder cancer (NB: all donors received

BCG vaccination) (Kawai et al., 2013; Romano and Huygen,

2012). L. rhamnosus is considered to be a transient inhabitant

of humans and is present in some yogurt preparations (Borriello

et al., 2003).Most humans are exposed toH1N1 IAV as a result of

seasonal epidemics or through vaccination; and to serve as a

contrast to IAV, we selected SeV, which does not infect humans

yet triggers an innate inflammatory response (Kato et al., 2005;

Norrby et al., 1992).

To characterize the patterns of protein analytes induced by

such complex stimuli, we performed hierarchical clustering and
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focused on the 18most highly discriminating read-outs, all with a

q value < 10�30 (Figures 4A and 4B). This approach separated

IAV and SeV from the other stimuli, based on the induction of

high IP-10 levels. HKEC was the most potent stimulus, marked

by the highest levels of the pyrogenic cytokines TNF-a, IL-6,

and IL-1b, as well as high levels of IL-12p40 and IL-23 (Figures

4A and S3). There was some overlap among the donor re-

sponses to HKCA, HKSA, HKLR, and BCG, but distinct patterns

could be discerned. HKCA induced high amounts of GM-CSF in

20 of 25 donors, significantly higher than any other microbial

stimulus (KW p < 1 3 10�7). As observed in the overall PCA

plot (Figure 2), we could discriminate HKSA, BCG, and HKCA

based on their induction of IL-2, possibly a reflection of our donor

population having been previously exposed to these microbial

agents (Figures 4A and S3). We also noted an interesting pattern

of expression for IL-12p40, IL-12p70, and IL-23; most stimuli

triggered IL-12p40, but only HKEC triggered IL-12p70 in a large

number of donors (16 of 25) (Figure S3). Additionally, for some

stimuli there appeared to be a bimodal pattern of induced

responses, in particular the HKHP-, IAV-, and SeV-induced

TNF-a and IL-12p40 and the HKEC-, HKLR-, HKCA-, IAV-, and

SEV-induced IL-2 response (Figure S3).

We next selected the TLR agonists for analysis, because we

achieved extensive coverage of this class of host sensors

(Table 1). With the exception of the TLR1-TLR2 heterodimer,

we were able to validate stimulation systems for the known

TLR receptors expressed by humans (NB: Pam3CSK4 was eval-

uated, but failed short-term stability testing). FSL-1 (FSL, and

also known as Pam2C) is a synthetic diacylated lipoprotein

mimicking an agonist present in Mycoplasma salivarium (Oku-

sawa et al., 2004). A high-molecular-weight, vaccine-grade

poly IC (pIC) was used to activate TLR3. Ultrapure lipopolysac-

charide (LPS) derived from E. coli O111:B4was used to stimulate

TLR4. For TLR5, we selected ultrapure flagellin (FLA), extracted

from Salmonella Typhimurium. To uniquely stimulate TLR7, we

utilized the vaccine-grade preparation of Gardiquimod (GARD),

an imidazoquinoline compound, and we used a related mole-

cule, R848 (also vaccine-grade) as a stimulator with mixed

agonist activity for TLR7 and TLR8. The TLR9 agonist selected

was the class A CpG-2216 oligonucleotide (ODN), a fully syn-

thetic oligonucleotide that contains unmethylated CpG dinucle-

otides within a particular sequence.

As shown in the PCA plot, it was possible to segregate the TLR

stimuli based on the induced protein signatures. We selected the

11 most significant proteins (identified by ANOVA, q value <

10�60), which allowed us to capture 93% of the measured vari-

ance in the response to TLR stimulation (Figure 5A). The notable

exception was the overlap between FSL and FLA, which may be

explained by the similar cellular expression of TLR2/6 and TLR5

on circulating monocytes (Mäkelä et al., 2009) and the use of a

common MyD88-dependent signaling pathway (Takeda et al.,

2003). R848 and GARD also showed a similar signature, yet

the two could be segregated based on the overall higher levels

of induced cytokines/chemokines and the increased number of

donors that produced IL-12p70 to GARD (Figure S4A), a likely

reflection of TLR8 engagement on monocytes (Bekeredjian-

Ding et al., 2006). LPS triggered the strongest inflammatory

response, as shown by the significantly higher levels of pyro-

genic cytokines induced (TNF-a, IL-1b, and IL-6 higher for LPS

as compared to the other stimuli, KW p < 13 10�7, Figure S4A).

One caveat was a sampling bias in the selection of analytes

measured, because the Luminex panels were oriented toward

LPS-induced responses. We also highlight the relatively weak

response induced by ODN, which we believe results from the

agonist being quenched by the whole-blood matrix. Alterna-

tively, it could be a reflection of the low numbers of plasmacytoid

dendritic cells that are present within 1 ml of whole blood. How-

ever, upon removal of ODN from the analysis, the remaining TLR

ligands kept their unique position (apart from FSL and FLA) within

the PCA and a similar level of variance (94%) was captured

(Figure S4B). In addition, we were able to distinguish ODN

from the null condition based on eight analytes (ODN versus

null, MW q < 0.05; Figures S4C and S4D), with the most induced

protein being IP-10, a reflection of type I IFN being produced as a

result of TLR9 stimulation (Krug et al., 2004). From the initial PCA

plot (Figure 2), pIC stimulation could be distinguished by its

unique inflammatory signature. This is recapitulated when pIC

is compared to the other TLR agonists; the pattern of protein

expression being remarkable for the high levels of IL-12p70

and the complete absence of induced IL-10. A bimodal distribu-

tion was again seen for some cytokines; in particular, a certain

number of donors failed to produce IL-12p40 after FSL, FLA,

or ODN and others did not produce IL-12p70 after LPS or

R848 (Figure S4A).

To provide insight into the variable response to stimulation

via cytokine receptors, we exposed cells to IFN-a2a, IFN-b,

IFN-g, TNF-a, IL-1b, or IL-23. The latter four cytokines were

also measured as one of the proteins assessed in the multiplex

luninex assays. As such, we had an internal control that donors

were stimulated with similar cytokine concentrations; addition-

ally, it was important to exclude the measured variable from

the stimulation signature (Figures S5). As expected because

of their use of the same IFN-a/b receptor, the signatures for

IFN-a2a and IFN-b were identical and also similar to that seen

for IFN-g, which induces a common set of interferon-stimulated

genes (ISGs) and proteins (Der et al., 1998). These data also

permit deconvolution of some of the more complex signatures.

For example, we highlight that pIC results in the induction of

both TNF-a and IL-1b (Figure S4), both of which can induce

IL-10 when they are used as stimuli (Figures S5); yet there

was a clear absence of IL-10 induction upon pIC stimulation

(Figure S4). Although this may be a reflection of lower levels

Figure 4. Unique Inflammatory Signatures Induced by Complex Microbial Stimulation

(A) Hierarchical clustering was performed on the data set obtained from 25 healthy donors, restricting the analysis to whole-blood stimulation by heat-killed (HK)

E. coli (HKEC), HK S. aureus (HKSA), HK L. rhamnosus (HKLR), bacillus Calmette-Guérin (BCG), HK H. pylori (HKHP), HK C. albicans (HKCA), influenza A virus

(IAV), and Sendai virus (SeV). A heat map is shown, based on the 18 most differentially induced proteins as defined by ANOVA q values.

(B) The 18 most differentially expressed proteins that were used to define microbe stimulation-specific signatures are listed in order of statistical significance

(cutoff value was determined by ANOVA, q value < 10�30).

See also Figure S3.
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Figure 5. Segregation of TLR Agonists Based on Their Induced Protein Signatures

(A) Principal component analysis (PCA) was performed on the data set obtained from 25 healthy donors. Analysis was restricted to the 7whole-blood stimulations

that contained TLR agonists (FSL, pIC, LPS, FLA, GARD, R848, ODN). Each colored circle represents a different whole-blood stimulation condition, and

the PCA was run with the 11 most differentially induced proteins (cutoff value was determined by ANOVA, q value < 10�60). The PCA plot shown captures

85% of the total variance within the selected data set. Expression levels for each of the 11 protein analytes was overlaid on the PCA plot. A heat map indicates

(legend continued on next page)
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of pIC-induced TNF-a and IL-1b, we favor the interpretation

that TRIF activation or perhaps the high levels of STAT1 sig-

naling results in suppression of IL-10 expression (Saraiva and

O’Garra, 2010).

Characterization of Naturally Occurring Variance to
Immune Stimulation
The development of reliable stimulation systems for monitoring

immune responses permits the establishment of reference

ranges for healthy individuals. Moreover, it permits the classifi-

cation of inflammatory and host immune responses based on

the variability among healthy donors as well as the identification

of responses outside the defined reference range. To rapidly

visualize variance among our 25 donors, we plotted the induced

responses on a radar plot (Figure 6): absolute concentrations of

the induced proteins are plotted along the spokes of the plot;

lines trace the induced protein signature from individual donors;

the shaded gray polygon indicates the median value of the null

condition; and the black circles mark the induced fold change

over the median null value. Data have been sorted so the least

induced protein is at the top of the radar plot, with increasing

fold change plotted in a clockwise manner. Analytes were

excluded from the signature if the absolute value of the median

fold change (stimulation/null) was <1.3. Data from the LPS stim-

ulation system are shown and all plots can be found as an online

Excel file (Document S2).

For the LPS-induced signature, we highlight that several

induced cytokines and chemokines showed limited interindi-

vidual variance (CV < 50%). By contrast, other analytes showed

high variance; for example, IL-12p70 and IFN-g showed a

range that spanned more than two orders of magnitude with

CVs of 106% and 132%, respectively (Table S4). Additionally,

this representation permitted the identification of two individ-

uals that were outliers in their failure to produce measurable

amounts of IL-1a in response to LPS (red star, Figure 6A).

Notably, the rest of the signature was intact. To explore this

finding further, we studied induced IL-1a across the entire stim-

ulation space. Data from four consecutive donors are shown

(including one of the outlier individuals identified), and we

compared the response for three proteins that showed a high

correlation (IL-1a, IL-1b, and IL-6). Expression of the IL-1 re-

ceptor antagonist (IL-1Ra) is also shown, because it is involved

in the IL-1 pathway. Strikingly, none of the stimuli used trig-

gered detectable levels of IL-1a production by donor 203 (or

donor 312, not shown); this was in contrast to the induction

of IL-1b and IL-6, which was within the range of values reported

for the other donors tested (Figure 6B and Table S4). Given the

importance of IL-1a in sterile inflammation and disease patho-

genesis, we believe that our findings will be of general interest.

Moreover, we highlight the value of utilizing standardized mea-

sures for host immune responses, thus enabling the identifica-

tion of interindividual variance and extreme phenotypes among

human populations.

DISCUSSION

The definition of host immune responses tomicrobial agents is of

major interest and facilitates an increased understanding of hu-

man health and disease pathogenesis. Although functional tests

are routinely used in laboratory investigation (Folds and Schmitz,

2003), the standardization of assays has been challenging.

Indeed, there exist few examples of standardized systems for

measuring induced immune response in human population-

based studies or clinical practice. This study aimed at testing

whole-blood stimulation systems for medically relevant stimuli

to determine the inflammatory signature and characterize the

naturally occurring variation present in a population of healthy

donors of European descent. The robust definition of the bound-

aries of a healthy immune response at the population level is an

indispensable prerequisite to subsequently understand how per-

turbations in these responses correlate and in some instances

account for a pathologic state. Our approach utilizes a practical

solution to monitoring induced immune responses and requires

only 1 ml of blood per stimulation system and a 37�C heating

block, maintained in room air. Additionally, there is minimal

sample handling and specialized technical experience is not

required.

The concept of utilizing whole-blood assays for assessing

leukocyte function was first introduced by Ruuskanene and col-

leagues in 1975 (Eskola et al., 1975), used at that time for moni-

toring PHA and ConA-induced lymphocyte proliferation. Digel

and colleagues extended this approach to the study of cytokines

in 1983 (Digel et al., 1983), reporting the use of whole-blood stim-

ulation with SEA and anti-CD3 antibodies, followed by the mea-

surement of type I and type II interferons. Over the last three

decades, whole-blood cultures have been utilized for probing

various aspects of the immune response (Chen et al., 2010; De

Groote et al., 1992; Ida et al., 2006; Kirchner et al., 1982; Nerad

et al., 1992; Pott et al., 2009). However, several problems have

persisted, including the ill-defined period of time between blood

draw and cell culture and the requirements for specialized lab

equipment (e.g., tissue culture hoods, CO2 incubators). One

notable exception has been the clinical development of the

QuantiFERON TB Gold In-Tube (QFT-G IT) assay (Santin et al.,

2012), which has been approved for the diagnosis of latent

tuberculosis infection. QFT-G IT measures the induction of

IFN-g production in whole blood after in vitro stimulation with

Mycobacteria tuberculosis antigens.

In this study, we report the development and testing of 27

stimulation systems, built into whole-blood syringes. We aimed

to test our assay system via a broad array of immune stimuli,

including bacteria, fungi, and viruses; agonists specific for

defined innate immunity sensors; clinically employed cytokines;

and activators of T cell immunity. With the exception of two

assay systems (CPPD and WGP), the coefficient of variance

was low, in the range of 5%–14%, with long-term stability of

up to 12 months. The endpoints chosen for evaluating the

the relative expression of the indicated protein analyte (red indicating high levels of expression, green indicating low levels of expression). ANOVA p and q values

are reported.

(B) The contribution of each protein analyte to the three principal component axes of the PCA plot are shown. (The positioning of the bars is arbitrary and is not

considered negative or positive except in relation to the other analytes.)

See also Figure S4.
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inflammatory signature consisted of a selection of inducible cy-

tokines, chemokines, and growth factors. Importantly, dose-

finding studies ensured that the induced responses did not

exceed the biologic limit, as indicated by the broad range of an-

alyte concentrations observed across the different stimulation

conditions. Unique, specific signatures were identified for most

stimulation systems. As an initial validation of lymphocyte activa-

tion, we observed an expected T cell signature (e.g., induction of

IL-5, IL-2, GM-CSF, IL-4) when using anti-CD3 and anti-CD28 or

SEB stimulation. These two signatures were clearly separated

from the other stimuli in the global analysis and could be distin-

guished from each other, a result of SEB activation of MHCII-ex-

pressing cells. We also identified six healthy donors who failed to

respond to CD3+CD28 stimulation despite binding of the CD3

antibody to T cells. This confirmed earlier reported findings

and might be due to polymorphisms in the FcgRII expressed

by monocytes (Ceuppens et al., 1985; Tax et al., 1983) that

bind mouse IgG1 (the subclass of the UCHT-1 anti-CD3 clone

used), or it might be due to other as yet unidentified common

genetic variants. Interestingly, we also observed a modest

‘‘lymphocyte’’ signature when we utilized BCG, HKSA, and

HKCA stimulation. Specifically, these three stimuli induced low

levels of IL-2, which was not observed when we used HKEC,

HKLR, or HKHP.

When directly comparing whole microbes, we could identify

clear signatures for HKEC (strong induction of pyrogenic cyto-

kines and high expression of both IL-12p70 and IL-23), HKCA

(based on the stimulation of GM-CSF expression), and the two

viral stimuli, IAV and SeV (triggering the highest levels of IP-10).

Notably, the interindividual variance was highest for microbial-

induced IL-2 and IFN-g (CV in range of 78%–165%, 60%–

183%, respectively), HKEC-induced IL-12p70 (CV = 155%),

HKHP-induced IL-10 (CV = 216%), and BCG or HKCA-induced

GM-CSF (CV = 175% and 216%, respectively). These differ-

ences are presumed to be due to a combination of host genetic

factors and environmental, both internal and external, exposures

(Newport et al., 2004). We may also consider that prior exposure

and/or carrier state (e.g., colonization by HKCA) might account

for differential memory responses (e.g., lymphocyte activation

or antibody opsonization of the microbe) (Zielinski et al., 2012),

in turn impacting the magnitude of the inflammatory response.

We also highlight the relatively weak response to HKHP stimula-

tion, which is probably due to the bacterium harboring an exten-

sivelymodified lipid Amoiety as part of its LPS,which reduces by

>1,000-fold its TLR4 agonist activity (Cullen et al., 2011) and a

flagellin that is poorly recognized by TLR5 (Gewirtz et al., 2004;

Lee et al., 2003). Furthermore, stimulation of TLR2 by H. pylori

mediates a tolerogenic response (Sun et al., 2013), potentially

contributing to the weak response induced by HKHP.

To capture amore precisemeasure of the innate response, we

also utilized purified or synthetic MAMPs known to engage the

TLR, NLR, or CLR families of microbial sensors. These pathways

have been heavily investigated over the past two decades and

efforts are underway to establish some of the selected ligands

as adjuvants for vaccine formulation. For NF-kB-induced cyto-

kines (e.g., TNF-a, IL-1b, IL-6, MIP-1a, MIP-1b, IL-8, and IL-

12p40), we found a similar pattern of expression across the

different stimuli. LPSwas unique in its induction of IL-23,whereas

pIC induced the highest levels of IL-12p70. Although our xMAP

testing did not evaluate many interferon-induced proteins, the

levels of IP-10 were consistent with the endosomal TLRs being

more robust stimulators of IRF3 than the surface receptors (Bla-

sius and Beutler, 2010). DAP was a relatively weak stimulus,

possibly because of poor membrane permeability, though we

were able to observe a consistent induction of NF-kB-dependent

chemokines or cytokines. Although they were less reliable than

other stimulation systems, we were able to detect strong signa-

tures by using CPPD and WGP, both of which showed high in-

duction of IL-1b and measureable levels of IL-18, a likely result

of inflammasome activation. Of note, the interindividual variance

for many of the induced proteins was greater than the intraindi-

vidual variance of the assay systems. The LAM signature was

notable for the highest interindividual variance in IL-10 among

the different stimuli used (range 2.7–1,100 pg/ml; CV = 158%

for LAM-induced IL-10). Our data are consistent with mRNA

and protein expression patterns that have been evaluated via

transcriptional profiling, ELISA, or Luminex on specific stimu-

lated cell types, such as human monocytes and dendritic cells

(Huang et al., 2001; Kwissa et al., 2012; Torri et al., 2010). Our

study, however, represents a systematic evaluation of pattern

recognition receptor (PRR) activation that takes into consider-

ation the complex cellular interactions occurring in whole blood

and serummatrix components, which might be closer to the nat-

ural conditions in which immune responses are provided.

One of the most interesting results of our study was the identi-

fication of 2 of 25 donors who did not release IL-1a after stimula-

tion with any of the 27 different stimuli. Despite the failure to

detect IL-1a, all remaining chemokine and cytokine signatures

were intact for these donors, including the production of IL-1b.

Two distinct but related genes, IL1A and IL1B, encode for IL-1a

and IL-1b, respectively (Dinarello, 2009). Both bind the same

surface receptor, and both are antagonized by the soluble

protein IL-1Ra. Notably, IL-1 blockade, by means of IL-1RA

or neutralizing antibodies, has become central to the clinical

management of rheumatologic diseases and hereditary systemic

autoinflammatory disorders (Dinarello et al., 2012). IL-1a is

expressed by most cells and because of the lack of a signal

peptide it is not readily secreted. Intracellular IL-1a is preformed

Figure 6. Interindividual Variance in the Response to LPS Stimulation

(A) Radar plot representation of the LPS-induced response obtained from 25 healthy donors. Analytes are represented as picograms per milliliter (pg/ml) and

ordered clockwise in increasing fold change (as compared to null). Each donor is represented by a colored line, connecting the concentration of measured protein

analytes. The gray polygon depicts the median value of the null response for the 25 donors. Black dots indicate the fold change as compared to the median value

of the null response. Analytes with amedian fold change (stimulation/null) >1.3 or <�1.3 were included. A red asterisk highlights the identification of two donors in

which IL-1a was not induced above background.

(B) Histogram plots representing the IL-1a, IL-1b, IL-1Ra, and IL-6 response for 4 consecutive donors are shown for the Null condition and 26 whole-blood stimuli

(NB: the IL-1b stimulation tube was omitted from analysis because it confounds the measurement of IL-1b).

See also Figure S5.
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and bioactive; as such, its release from damaged cells is consid-

ered to be one of the first steps in the initiation of so-called sterile

inflammation. In our study, we detected measurable amounts of

IL-1a in the culture supernatant after whole-blood stimulation

with HKEC, HKSA, HKLR, BCG, HKCA, SeV, CPPD, LPS,

R848, and WPG (defined by median fold change over null stimu-

lation > 1.3). Future studies will be required in order to identify

how the geneticmakeup of the host, including commonpolymor-

phisms in the European population,may account for the failure of

the two donors to release IL-1a in the setting of multiple immune

stimulations.

In summary, the whole-blood collection stimulation systems

presented allow the definition of induced inflammatory signa-

tures for a broad range of innate and adaptive stimuli, helping

to address the urgent need for monitoring of functional immune

responses in a reliable and reproducible manner. Moreover, we

have identified preliminary boundaries for the natural variation

in the induced immune protein phenotypes, setting the basis

for a better understanding of the meaning of a healthy immune

response. These tools will support integrative and systems-level

human population-based studies (Braga-Neto and Marques,

2006) aimed at defining the genetic and/or environmental

determinants of natural or disease-induced variation in immune

responsiveness.

EXPERIMENTAL PROCEDURES

Donors

Samples were obtained as part of the Milieur Intérieur Healthy Donor Cohort.

Details are provided in Supplemental Experimental Procedures and can found

at http://www.clinicaltrials.gov (identifier NCT01699893).

Whole-Blood Stimulation

TruCulture tubes were prepared in batch with the indicated stimulus, resus-

pended in a volume of 2 ml buffered media, and maintained at �20�C until

time of use. Blood was obtained from the antecubital vein by a 60 ml syringe

containing sodium-heparin (50 IU/ml final concentration). Within 15 min of

collection, 1 ml of whole blood was distributed into each of the prewarmed

TruCulture tubes, inserted into a dry block incubator, and maintained at

37�C (±1�C) room air for 22 hr (±15 min). At the end of the incubation period,

tubes were opened and a valve was inserted in order to separate the

sedimented cells from the supernatant and to stop the stimulation reaction.

Liquid supernatants were aliquoted and immediately frozen at �80�C until

the time of use.

Multianalyte Profiling and Identification of Inflammatory Signatures

Supernatants from whole-blood stimulation systems were analyzed with

Luminex xMAP technology. Samples were measured according to CLIA

guidelines (validated by guidelines set forth by the USA Clinical and Labora-

tory Standards Institute). The 32 measured analytes were organized on three

multiplex arrays, and a single batch of reagents was used for testing all

samples. The least detectable dose (LDD) for each assay was derived by

averaging the values obtained from 200 runs with the matrix diluent and

adding 3 standard deviations to the mean. The lower limit of quantification

(LLOQ) is determined based on the standard curve for each assay and is

the lowest concentration of an analyte in a sample that can be reliably de-

tected and at which the total error meets CLIA requirements for laboratory

accuracy. For analytes tested, the LDD and LLOQ can be found in Table

S3. The lower assay limit (LAL) is the lowest value read out after application

of the standard curve and use of curve-fitting algorithms. In most instances,

the LAL is less than the LDD and the LLOQ. For data mining, individual values

below the LAL were replaced with a value that is 50% of the lowest value

measured in the data set.

Statistical Analysis and Data Visualization

Principal component analysis (PCA), agglomerative hierarchical clustering,

and ANOVA testing were performed with Qlucore Omics Explorer, v.2.3

(Qlucore). We report ANOVA-based p values, and to correct for multiple

testing we report false discovery rate (FDR)-adjusted ANOVA p values, called

q values. Dot plot graphs and two-way correlation plots were compiled with

GraphPad Prism v.6.0. Correlation matrices and bar graphs were calculated

with R v.2.15.1 and drawn with graphical package ggplot2 v.0.9.3.

SUPPLEMENTAL INFORMATION
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Automation highlighting the standardized and automated procedures used for immunophenotyping of human
Standardization whole blood samples. We optimized eight-color antibody panels and procedures for staining and lysis

of whole blood samples, and implemented pre-analytic stepswith a semi-automatedworkflow using a
robotic system. We report on four panels that were designed to enumerate and phenotype major
immune cell populations (PMN, T, B, NK cells, monocytes and DC). This work establishes a
foundation for defining reference values in healthy donors. Our approach provides robust protocols
for affordable, semi-automated eight-color cytometric immunophenotyping that can be used in
population-based studies and clinical trial settings.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Multiparametric flow cytometry is widely used for pheno-
typing immune cell populations in human blood samples.
The abundance of reagents and growing technical innova-
tions in the field of cytometry (e.g., mass cytometry, imaging
cytometry and spectral analyzers) has further enhanced the
enthusiasm for applying these approaches to the management
of patients and the phenotyping of healthy individuals. Flow
cytometric techniques have been used for more than two
decades in clinical laboratories for the enumeration of CD4+

and CD8+ T cells, in the diagnosis of AIDS [1,2], and also in the
characterization of lymphoma and leukemic immune cell
expansions [3,4]. However, the implementation of standard-
ized procedures within academic research laboratories has
recently become a concern for the community, as the absence
of such standardization has precluded comparison between
studies and experimental settings. Indeed, greater attention
is now placed on the requirement for optimized approaches
and harmonization of methods [5,6]. Several international
initiatives have supported increased standardization of flow
cytometry protocols and applications across multiple labora-
tories that share common scientific or clinical interests. These
include the EuroFlow Consortium, which focuses on laboratory
procedures for the phenotyping of malignant leukocytes
[7,8]; the Human Immunology Project Consortium (HIPC)
and European Network for Translational Immunology Re-
search and Education (ENTIRE), which are working together
to develop panels for the phenotyping healthy donors [5,6,9];
the ONE study consortium, which is addressing cellular
phenotyping in the setting of transplantation [10]; and the
Association for Cancer Immunotherapy (CIMT), which have
established proficiency panels for different cell populations
[11].

The reproducibility of cytometric data depends on five
principle criteria: sample type, sample handling, choice of
reagents, instrument selection and qualification, and data
analysis. In three coordinated reports, we detail the steps that
have been taken by theMilieu Intérieur Consortium to control
for the pre-analytic aspects of cellular phenotyping (reported
here), to optimize the analysis of multi-dimensional data
[Chen et al. co-submission], which applied together have
allowed the characterization of immune phenotype variation
in a population of healthy donors [Urrutia et al., in prepara-
tion]. Our approach to immune cell phenotyping supports our
Consortium's long-term efforts in utilizing cytometric data as a
quantitative intermediate phenotype for association studies.

Only with accurate and reproducible methodologies can we
begin to establish, integrate and share large data-warehouses
of phenotypic and genetic data.

Several prior and ongoing efforts have contributed to the
challenge of harmonizing methods in academic research
laboratories. Particular attention has been given to sample
type, with comparative assessments of fresh or frozen
purified peripheral blood mononuclear cells (PBMCs) and
whole blood [12–14]. Additional parameters that have been
considered include panel design [6,8,10], the use of liquid,
lyophilized or freeze-dried reagents [15] and the calibration
and settings for the optical bench of multi-laser cytometers
that permit longitudinal, multi-user or inter-laboratory
standardization [7]. In academic studies, however, there is
less attention given to the variability introduced by sample
handling. In many instances, sample collection is not proximal
to core facilities and despite the use of standard operating
procedures (SOPs), studies have not evaluated the impact of
manual sample handling on the measured cellular phenotypes
such as size, granularity and activation state.

In this report, we detail the steps that were taken to
establish a robust protocol for immunophenotyping from
100 μl of fresh whole blood, using four eight-color cytom-
etry panels. We present the design of cytometry panels
used for phenotyping and quantifying major cell populations
present in human blood — T cells, B cells, NK cells, monocytes,
dendritic cells, neutrophils, basophils and eosinophils. These
data establish the foundation for the analysis of six hundred
healthy donors, analyzed over a six-month time interval.

2. Materials and methods

2.1. Human subject materials, reagents and instru-
mentation used

For optimization studies and panel development, whole blood
samples were collected from healthy volunteers enrolled at
the Institut Pasteur Platform for Clinical Investigation and
Access to Research Bioresources (ICAReB) within the
Diagmicoll cohort. The biobank activity of ICAReB platform is
NF S96-900 certified. The Diagmicoll protocol was approved by
the French Ethical Committee (CPP) Ile-de-France I, and the
related biospecimen collection was declared to the Research
Ministry under the code N° DC 2008-68. Samples collected as
part of the Milieu Intérieur population based study were
procured by investigators working at BioTrial, Rennes [Thomas
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et al., in preparation], and tracking procedures were
established in order to ensure temperature controlled delivery
to Institut Pasteur, Paris within 6 h of blood draw (Supple-
mentary Protocol #1). In all cases, whole blood was collected
using Li-heparin as an anti-coagulant and maintained at room
temperature (18–25°) until processing. The cells were
stained using commercially available monoclonal antibodies
(Table S1), according to the operating procedure developed
as described herein. The standardized protocol is provided
(Supplementary Protocol #2). We evaluated three red blood
cell lysis reagents to optimize the staining protocol: BD
FACS lysing solution (BD Biosciences, ref. 349202), Red
Blood Cell lysis (Miltenyi Biosciences, ref. 130-094-183) and
RBC lysis buffer (eBioscience Inc., ref. 00-4333-57). Fc-receptor
blocking antibodies were used (eBioscience ref. 14-9161).
Dead cells were excluded using the Fixable Viability Dye
(FVD) eFluor 506 (eBioscience, ref. 65-0866) in the PMN and
DC panels. For establishing compensation matrices, Mouse
(BD CompBead Set Anti-mouse Ig, k ref. 552843) and Rat (BD
CompBead Set Anti-rat/hamster Ig, k ref. 552845) compen-
sation beads were employed. The acquisition of cells was
performed using two MACSQuant analyzers (Serial numbers
2420 & 2416), each fit with identical three lasers and ten
detector (FSC, SSC and eight fluorochrome channels) optical
racks. Calibration of instruments was performed using
MacsQuant calibration beads (Miltenyi, ref. 130-093-607). The
semi-automated staining was performed using the Evo-150
liquid handling system (Tecan). A detailed script for the
semi-automated sample processing is provided in (Online
Supplementary Data File #1, http://www.milieuinterieur.
fr/en).

2.2. Staining protocol for cytometric analysis

Whole blood (2 mL) was washed by mixing fresh whole blood
and PBS at a 1:1 ratio, followed by centrifugation at 500g for
5 min at 18–22 °C (room temperature). Washed blood and
pre-mixed liquid reagents were loaded onto the Freedom
Evo 150 liquid handling system. The supernatant was
aspirated and discarded, followed by the addition of fresh
PBS taking it to the same final volume as input whole blood.
Antibody premixes were prepared, shortly spun (about 20 s)
and 100 μl of the resuspended cells was aliquoted into tubes
containing the pre-mixed antibody cocktail. The samples
were shortly vortexed and incubated 20 min in the dark at
room temperature (RT). In samples stained with the PMN and
DC panels 1 mL of 1x viability dye solution was added,
followed by incubation for 30 min in the dark at 4 °C.
Thereafter, 1 ml of cold PBS (4 °C) was added to the tubes,
which were centrifuged for 5 min at 500g and the superna-
tant was aspirated. All samples, irrespective of the panel
used, were resuspended in 2000 μl of 1x RBC lysing solution,
shortly vortexed and incubated 15 min at RT protected from
light. After centrifugation for 5 min at 500g, the supernatant
was aspirated, the samples were resuspended in 240 μl PBS
and immediately acquired on the cytometer.

2.3. Data analysis and statistical methods

Flow cytometry data were generated using MACSQuantify™
software version 2.4.1229.1 and saved as .mqd files

(Miltenyi). The files were converted to FCS compatible
format and analyzed by FlowJo software version 9.5.3.
Statistical graphs were prepared with the R Software version
3.0.1 (Ref.: R Core Team (2013). R: A language and
environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. URL http://www.R-
project.org/), using the ggplot2 graphical package version
0.9.3.1 [16].

3. Results

3.1. Panel design

To enable detection, enumeration and phenotyping of major
leukocyte populations present in circulation — PMNs, T cell,
B cells, NK cells, monocytes and DCs — we designed four
8-color cytometry panels. The “lineage” panel covered the
major cell populations, providing a reference for comparison
with other consortia and served as an internal control for
other panels (Fig. 1A). The “PMN” panel enabled the
classification of neutrophils (CD16+FcεRIα− cells), basophils
(FcεRIα+CD16−) and eosinophils (CDw125+) (Fig. 1B). Activa-
tion status of neutrophils was assessed by CD62L expression,
and used as a marker of healthy donor status. The “T cell”
panel was designed to classify CD4+ and CD8+ naïve (Tnaive),
central memory (TCM), effector memory (TEM) and EMRA+ T
cell (TEMRA) subsets, utilizing the relative expression levels
of CD27, CD45RA and CCR7 (Fig. 1C) [17]. By combining
anti-CD8α and anti-CD8β antibodies within the same panel,
we were able to distinguish CD8αα, CD8αβ and CD4 CD8αα T
cells [18] (Fig. 1C). Information on the activation status of T
cells was obtained by surface expression of HLA-DR. The
“DC” panel delineates three principle subsets of dendritic
cells in peripheral blood: plasmacytoid dendritic cells (pDCs),
BDCA-1+ and BDCA-3+ conventional dendritic cells (herein
referred to as cDC1 and cDC3, respectively) (Fig. 1D).

3.2. Selection of reagents and optimization of semi-
automated staining procedure

Careful selection of antibody clones and optimal combinations
of compatible fluorochromes is key to establish robust flow
cytometry panels. We worked with three antibody suppliers
(BD Biosciences, eBioscience and Miltenyi), who provided us
with several clones and fluorochrome combinations for each
antigen of interest. As previously reported by others [6],
significant differences were observed between the different
reagents despite their targeting the same cell surface protein.
Our selection criteria were (i) specificity of the signal, as
based on the staining index that is defined as the difference
between the positive and the negative populations and the
spread of the negative population [19]; (ii) signal resolution;
(iii) availability of desired fluorochrome; (iv) fluorochrome
stability (tandemdyes); (v) price and availability of single lot of
reagents for cohort study; and, when possible, (vi) availability
of CE-IVD format. A complete list of tested antibodies and
notable observations concerning their staining performance
are reported in Table S1. Two examples (anti CD14 and anti
CD8β) are shown to illustrate our testing and selection
procedures (Figure S1).
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3.3. Gating strategies

3.3.1. The lineage panel
For the characterization of major leukocyte populations,

we first identified CD45+ hematopoietic cells, followed by
exclusion of doublets (Fig. 2A). Subsequently, B cells were
gated as CD19+CD16−, and T cells were identified as CD19−

cells followed by CD3+ staining, then analyzed for the
expression of CD4 and CD8 (Fig. 2B). Within the CD3− cells,
NK cells were identified as CD56+ and analyzed for their
expression of CD16 and CD56. In the population of CD56−

cells, CD16hiSSClow cells were selected in order to segregate
monocytes from neutrophils. Further gating identified
CD14+CD16int monocytes and CD14lowCD16hi monocytes.
Neutrophils were defined as CD16hiSSChi (Fig. 2B).

3.3.2. The PMN panel
To characterize granulocytes populations, doublets were

first excluded (Fig. 3A) and neutrophils were identified as

CD16hiCDw125− live cells. We also assessed the expression of
CD62L within this cell population as a marker of activation
(Fig. 3B). Basophils and eosinophils were gated within the
CD16low/− cells as FcεRIα+CD203c+ and CDw125+, respective-
ly (Fig. 3C). Of note, we highlight a difference in the staining
of different subpopulations of PMN for Fixable Viability Dye
(FVD) (Fig. 3A–C), using saponin treated cells as a positive
control for dead cells (Fig. 3D).

3.3.3. The T cell panel
T cells were identified as CD3+ cells (Fig. 4A). Upon

exclusion of doublets (Fig. 4A), CD4+ and CD8β+ were gated
and analyzed. We characterized naïve (TN), central memory
(TCM), effector memory (TEM) and effector memory express-
ing RA (TEMRA) subpopulations of both T cell subsets, based
on their expression of CD45RA and CD27 [17,20] (Fig. 4B). TN
and TCM cells have also been defined by the expression of
CCR7 [21]. We therefore assessed the expression of CCR7 by
these cell populations. The activation status was determined

C

A

D

B

Figure 1 Organization of panels for whole blood immunophenotyping. Four eight-color panels were established in order to quantify
and characterize the major leukocyte populations in circulation. (A) The lineage panel consisted of markers for T cell, B cell, NK cell and
monocyte populations. (B) The polymorphonuclear cells (PMN) permitted classification of neutrophils, basophils and eosinophils. (C) The
T cell panel assessed CD4+ and CD8+ naïve, central memory (Tcm), effector memory (TEM) and effector memory RA+ (TEMRA) subsets. (D)
The dendritic cell (DC) panel classified the three major DC subsets— pDCs, cDC1 and cDC3. Selection of fluorochrome, clone, vendor and
optimal dilution for 100 μl of whole blood used in the study is indicated. FVD, fixed viability dye, was used at a 1:1000 dilution.
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by HLA-DR expression. In addition, the CD4+ T cell popula-
tion expressing CD8αα was identified (Fig. 4B).

3.3.4. The DC panel
To characterize DCs, we first gated on HLA-DR+CD14− and

excluded dead cell doublets, and CD3+, CD19+ or CD14+

lineage positive cells using a cocktail of reagents (Fig. 5A).
pDC, cDC1 and cDC3 populations were identified as
BDCA4+BDCA2+ (CD304+CD303+), BDCA1+ (CD1c+) and
BDCA3+ (CD141+), respectively (Fig. 5B). The activation
status of the three DC subsets was assessed by their
expression of HLA-DR and the costimulatory molecule CD86
(Fig. 5C). The position of gates to define cDC subsets was
determined using HLA-DR−CD14− cells as a negative control
(Fig. 5D).

3.4. Standard operating procedures

To optimize the pre-analytical steps of immunophenotyping,
we evaluated different conditions for each step of the protocol
(Supplementary Protocol #2). We focused in particular on the
temperature and duration of blood storage, as well as on red
blood cell lysis and the staining protocol. Finally, to make the
procedure amenable to a large cohort study, we implemented
a semi-automated procedure using liquid handling robotics.

3.4.1. Sample
The treatment of blood samples has a large impact on

cytometry data [15]. One of the biggest considerations was
analysis of fresh blood as compared to freezing samples and
batching analysis. To assess potential differences in results
obtained by immunophenotyping of fresh whole blood versus
thawed PBMC in our experimental conditions, we compared
results from eighteen healthy donors. We did not observe a
major difference in B cell frequencies (Figure S2A, upper
panel) or of CD19 mean fluorescence intensity (MFI) values
(Figure S2A, lower panel). Lower frequencies of CD3+

lymphocytes and a significantly lower expression level of
CD3 were observed in frozen/thawed PBMCs compared to
whole blood (Figure S2A). While the frequency of CD4+ and
CD8+ lymphocytes was similar in thawed PBMC and whole
blood (Figure S2A, upper panels), we noted higher and more
variable MFI values of CD4, and lower expression of CD8β in
PBMCs as compared to fresh whole blood samples (Figure
S2B, lower panels). Analysis of thawed PBMCs revealed lower
CD56 expression, but no alteration in frequencies of NK cells
(Figure S2B). Other differences were also noted, again with
the observation that freeze/thaw introduced variance,
especially in monocyte and DC populations (Figure S2C and
S2D, lower panels). Based on these data, and the experience

of other consortia [4,6], we utilized fresh whole blood
samples for our study.

To assess the impact of time between blood draw and
staining, we analyzed blood from three healthy donors at
four different time-points: immediately after blood draw,
and 2 h, 7 h and 24 h post-blood draw. The aliquots were
kept at room temperature (18–25 °C) until the analysis.
Staining patterns of the analyzed immune cell populations
did not change within the first 7 h. However, further delay
in time of sample staining and analysis (24 h) had a non-
negligible impact on the size and granularity of cells, with an
additional population of FCShigh/SSClow cells appearing 24 h
after collection (Fig. 6). Furthermore, there was a striking
impact on the activation status of dendritic cells after 24 h,
as observed by an increased expression of HLA-DR on the
surface of cDC3 cells (Fig. 6).

We also evaluated the impact of the time between
sample collection and processing on the cell numbers of
selected immune populations. No differences were observed
in the T cell, B cell, neutrophil or dendritic cell numbers
(Fig. 7). The notable exception was the number of
neutrophils in one of the three donors. Together, our data,
based on cell phenotyping and enumeration studies, clearly
showed that 6 h post-blood draw is the maximum permitted
delay.

3.4.2. Staining protocol
Fresh whole blood samples were washed to eliminate

soluble antibodies and other molecules that may interfere
with staining. The duration of antibody incubation and
staining temperature was evaluated (data not shown). Since
blocking of FcR did not have a significant impact on the
results (data not shown), it was not included in the staining
protocol. The staining was followed by red blood cell lysis.
We tested three red blood cell lysis solutions and identified
the BD solution to be the most efficient, with reagents from
other suppliers being either less efficient (Miltenyi) or
slower in achieving RBC lysis (eBioscience) (data not
shown). Additionally, we tested different criteria that
impact lysis conditions and the reproducibility of the results:
duration of incubation in lysis solution, use of mixing and the
implementation of a wash step. We highlight that an
additional wash step was introduced after red blood cell
lysis to ensure complete elimination of the lysis solution,
which also showed better preservation of size and granular-
ity characteristics of leukocytes. The staining protocol,
established for immunophenotyping of 100 μl of fresh
whole blood, is detailed in Supplementary Protocol #2. All
tested antibodies were titrated to fit the experimental
conditions described in the protocol. To minimize variation
of fluorescent signal intensity, only one lot of each antibody
was used for staining throughout the whole study.

Figure 3 Gating strategy for the PMN panel. (A) Doublets were excluded from the analysis using FSC-W/FSC-H and SSC-A/SSC-H
parameters. (B) Neutrophils were identified based on their high expression of CD16 (green gate), with hierarchical gating to select
cells with low levels of CDw125 expression, low levels of FVD and high expression of CD62L. (C) CD16low/− cells were independently
valuated for high FcεRIα expression and intermediate CD203c expression (blue gate), a phenotype characteristic of basophils; or
intermediate expression of CDw125 and CD16 (red gate), hallmarks of eosinophils. (D) Whole blood was incubated with 1% saponin for
1 min, washed with PBS and stained with FVD. Granulocytes and lymphocytes were gated based on their size and granularity. The
different levels of auto-fluorescence of lymphocytes and granulocytes used to set the gates in (B) and (C) are shown.
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While we were finalizing our study a comprehensive report
by Kalina et al. described the efforts of the EuroflowConsortium
to standardize cytometry protocols. We noted that our

independently established procedures were very similar to the
ones described by Kalina et al. and further emphasized the
importance of reagent selection and staining conditions [7].
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3.4.3. Automation
All clinical laboratory tests use automation in sample

processing and attempts have been made to implement
automation in genomic assays (DNA/RNA extractions,
genotyping, microarray assays, etc.). We decided to take
advantage of automation in sample preparation for cellular
immunophenotyping. To achieve this, we implemented our
protocol using the EVO150 liquid handling platform (Tecan).
The premix of antibodies was prepared manually on a daily
basis, and all other steps for the staining protocol were
performed using the liquid handling platform, with the
exception of centrifugation. The pipetting scripts for the
platform were created to enable staining of 4 to 12 samples,
in parallel, in 96-deep well plates (Online Supplementary
Data File #1, http://www.milieuinterieur.fr/en).

3.4.4. Setting of pre-acquisition parameters
Our study complies with the MIFlowCyt requirements

[22]. Dead cells were excluded using FVD in the PMN and
DC panels, in which either rare populations needed to be
identified, or a high autofluorescence of target cells was
expected. A dump channel was included in the DC panel to
exclude CD19+, CD3+, NKp46+, or CD14+ cells to further improve
specificity, and in accordance to prior studies [23]. For
antibodies that showed weak signals and did not enable
clear separation of positive from negative cell populations
(e.g., CCR7), we used FMO (fluorescenceminus one) staining to
set the positive/negative cell gates. During the first two
months of the study, compensation controls were run every
day, using automatic hardware compensation on MACSQuant.
The compensation beads were used to calculate the
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compensation matrix for all antibodies, except for those
labeled with Horizon V500 (BD) and dead cell marker
(FVD eF506, eBio). For these reagents, cells were used as
recommended by the suppliers. Consistent with EuroFlow
consortium results [7], our compensation matrices did not

change (PMT values varied b+/−5 V, data not shown). We
thus decided to run compensation controls bi-weekly, unless
the PMT voltage values reported by the cytometer after the
daily set-up varied for N+/−5 V from the values obtained
during the prior compensation run. In order to control for
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cross-contamination, samples were plated with PBS filling
every other well in the 96-well plates. None of the negative
wells showed positive cells for any of the four panels (not
shown).

3.4.5. Cytometer
Initial testing of panels was performed using an LSRII

cytometer (BD) equipped with 4 lasers (488 nm, 405 nm and
630 nm and 658 nm). The design of our study (four 8-color

cytometry panels) required an instrument that enables auto-
matic acquisition from 96-well plates, the acquisition of
absolute cell counts and at least 3-lasers. We compared two
cytometers that corresponded to these criteria and that were
commercially available at the beginning of the study (initiated
in 2012): the BD FACSVerse and Miltenyi MACSQuant. The
cytometers were evaluated based on their hardware, sample
acquisition performance, software robustness, quality control
and post-installation support provided by the suppliers
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(Supplementary Table 2). Although the hardware characteris-
tics, quality control and the concept of the software were
comparable between the two systems, MACSQuant showed
significant advantages concerning the software robustness and
performance. In addition, its cell counting feature was
reproducible and easy to assess. The MACSQuant's SOP requires
a daily quality control check using control beads to monitor the
performance of instrument. The cytometer enables identifica-
tion of “bank settings” for up to 5 different panels. These
settings store the target values of MFI for five combinations of
up to eight antibodies/fluorochromes (5 eight-color panels). On
each occasion that the control beads are run the system
automatically sets the PMT values so that the intensity of signal
matches predefined MFI values, and thus overcomes fluctua-
tions or decrease of laser power ensuring data reproducibility.
Two MACSQuant cytometers were installed with a distinct bank
settings programmed on the instruments for the panels used in
the study.

3.5. Data analysis

We selected the FlowJo software to analyze data. In order to
improve standardization of analysis, we created analysis

templates for each panel. A template consists of the gating
strategy specific for the given panel, including a pre-defined
table with parameters selected for statistical analysis.
Magnetic gates were applied for the brightest and most
clearly defined antigens to minimize bias introduced by
manual repositioning of gates. Identical gate coordinates
were selected to gate on the same cell populations across
the four panels. The results obtained for each of the samples
were verified by an operator prior to final validation. In
order to minimize bias introduced by subjective analysis by
different individuals, a given panel was analyzed by the
same individual for all samples. The statistical parameters
selected for the analysis included absolute cell number of
each cell population of interest, its percentage in respect to
relevant parent populations, gate coordinates to monitor
fluorescence intensity and spread of fluorescent signal, and
MFI values for cell populations in which activation markers
were included (e.g., HLA-DR, CD86).

The bank settings programmed on the selected
cytometers enable standardization of fluorescent signal,
but do not enable standardization of cell size or granularity,
features that vary based on sample handling (Supplementary
Fig. 3). In order to take advantage of the standardization
procedures of the newest cytometers, we omitted the

Table 1 Test of repeatability — technical replicates ⁎.

Cell type Parameter Stat Panel Donor

1 2 3 4 5 6

T cells CD3+ Median (CV) T 1019 (9.2) 527 (14.4) 271 (9.2) 537 (5.8) 736 (13.0) 623 (4.1)
Lin 1020 (9.8) 530 (09.0) 260 (4.0) 536 (4.2) 694 (09.7) 603 (3.9)

CD8+ Median (CV) T 165 (9.0) 127 (14.7) 66 (8.1) 194 (6.2) 149 (14.9) 151 (5.6)
Lin 175 (9.8) 135 (10.1) 63 (3.8) 209 (3.9) 157 (09.8) 160 (4.0)

CD4+ Median (CV) T 768 (14.6) 359 (14.6) 170 (9.5) 768 (5.7) 516 (14.3) 347 (4.1)
Lin 757 (09.6) 357 (08.3) 161 (4.1) 284 (4.5) 473 (09.6) 413 (3.9)

Monocytes CD14+ Median (CV) Lin 334 (10.0) 96 (16.1) 216 (02.7) 220 (3.5) 284 (11.3) 149 (7.8)
DC 283 (06.4) 85 (16.3) 228 (10.5) 227 (7.6) 154 (22.9) 144 (7.4)

DC pDC Median (CV) DC 3 (09.9) 2 (15.2) 2 (8.7) 5 (11.2) 4 (21.5) 2 (11.8)
NK cells CD56+ Median (CV) Lin 152 (11.1) 95 (10.9) 96 (5.1) 122 (04.2) 142 (10.4) 100 (03.4)
Granulocytes Neutrophils Median (CV) Lin 2040 (4.4) 650 (11.1) 797 (6.2) 1060 (7.1) 1770 (06.0) 1590 (5.8)

PMN 2652 (6.3) 1247 (08.4) 1135 (3.0) 1643 (5.5) 2052 (10.3) 1802 (7.4)

⁎ Fresh blood samples from six healthy donors were divided in five aliquots each and immediately stained. Shown are absolute cell
numbers (median value) of selected cell populations per 1 μl of blood. For each immune cell population identified, the intra-panel
coefficient of variation (CV) was calculated. In instances where cell populations could be identified by two different panels, both data are
reported. The cell numbers of each indicated cell population obtained by PMN, T and DC panels were calculated upon normalization of the
total cell number obtained by each panel to the total cell number as quantified by the lineage (Lin) panel.

Figure 8 Repeatability studies, longitudinal studies and panel-to-panel correlations illustrate assay stability. (A) Fresh blood
samples from six individual donors were divided in five aliquots for repeatability study each and immediately stained using defined
semi-automated procedures. The immune cell populations were identified and absolute cell numbers obtained using above-indicated
gating strategies. The graphs show inter-panel comparison of the indicated cell populations as obtained by two different panels
(lineage vs. DC panel, lineage vs. T cell and lineage vs. PMN panel). Each dot represents the median value of the five replicate tests
for a given donor. Data from individual donors are represented by distinct colors. Standard deviation (SD) between the median values
obtained by two panels is indicated. (B, C) Stabilized human blood samples (Eurocell) were analyzed in six independent experiments.
Cells were stained using the lineage panel cocktail and labeled by the semi-automated procedure. The percentages of lymphocytes
(B) and absolute cell counts per μl of blood (C) are shown for the indicated cell subsets. The target value range determined by the
manufacturer on BD and Beckman Coulter flow cytometers is indicated by the red triangles. The CVs for serial measurements are
indicated for each analyzed immune cell population. (D) Whole blood samples from six individual donors were collected and stained
by the lineage panel cocktail using the semi-automated procedure. Serial measurements were performed at five different time-points
over five months. Each dot represents the absolute cell number of indicated cell types during serial measurements. Individual donors
are represented by distinct colors.
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typical starting gates of FSC/SSC, and directly queried
fluorescent markers, using FSC/SSC when needed to exclude
doublets or dead cells (Figs. 2–5). The FlowJo templates
created for and used in the study are provided (Online
Supplementary Data File #2, http://www.milieuinterieur.
fr/en).

3.6. Assay validation: technical replicates and
robustness of the staining procedures

To define the variance in our immunophenotyping proce-
dures, we performed experiments to assess repeatability
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and reproducibility. To assess repeatability, we analyzed the
same sample, in independent runs, by a single operator and
run on a single cytometer. In our experimental setting, fresh
blood samples from six healthy donors were separated into
five aliquots and stained using each of the four panels and
run on the liquid handling platform, followed by acquisition
on the corresponding MACSQuant cytometer. The results
were highly reproducible, with intra-panel CVs below 15% for
most of the analyzed cell subsets, irrespective of their
absolute counts (Table 1). Higher CVs were observed
for pDCs in one of the six donors (21.5%) and for CD14+

monocytes in two panels in two donors (16% and 23%). The
higher variance observed for monocytes may result from the
fact that CD14 can be expressed on other cell types, such as
neutrophils [24].

Most of the immune cell populations (CD3+, CD4+, CD8+ T
cells, CD14+ monocytes) were assessed independently using
twodifferent panels, and as such cross-panel comparisons were
possible (Table 1 and Fig. 8A). We normalized the total cell
counts of PMN, DC and T cell panels to those obtained by the
lineage panel because it identifies all “core” cell populations
and does not include an additional washing step that was used
during the staining of dead cells in PMN and DC panels.

To assess reproducibility, we evaluated the stability of
staining over time, an important consideration for large
cohort studies. To provide a stable reference, we utilized
commercially available stabilized blood, analyzed over a
period of one month. These data showed reproducible
results with CVs in the range of 2.0–5.3% (Fig. 8B and C).
The percentage of each analyzed cell population was within
the range of values indicated by the manufacturer (Fig. 8B).
The total cell numbers obtained, however, were under the
expected value, and consequently so were the total numbers
of each analyzed cell populations (Fig. 8C). This difference
may be explained by additional washing steps included in our
protocol, which are not used to set the reference values
indicated by the supplier of the stabilized blood. Another
factor contributing to the difference may be the utilization
of different cytometric platforms or the use of beads for cell
enumeration, as compared to a volume based calibrator
built into the cytometer itself. Finally, we analyzed blood
samples from six donors across five different time points. As
shown in Fig. 8D, the counts of most cell populations were
stable over time. The differences observed for NK and
monocyte cell number may be due to biological variation and
intra-individual variance can be factored into the interpre-
tation of our future population-based results.

4. Discussion

Delivering on the promise of personalized medicine requires
tools and techniques that allow both robust and reliable
assessment of the immune status of individuals and compar-
isons between studies. Specifically, the adoption of univer-
sal, robust cytometric protocols will allow cross-population
comparisons and the evaluation of the extent to which the
proportion of different cell populations in patients present-
ing immunopathology deviate from “healthy” expectations.
Flow cytometry is likely to play a key role due to recent
technological advances in instrument design, and the
availability of a large arsenal of reagents targeting specific
molecules. Indeed, these two factors now permit low-cost,

real-time and deep phenotyping of immune cell popula-
tions. A notable concern for comparative studies is the
pre-analytic variation (sample processing, reagent selec-
tion, and instrument parameters). Although several inter-
national consortia have begun to tackle this issue, additional
efforts need to be taken in order to establish flow cytometry
as a tool applicable in routine clinical laboratories.

We report our advances in standardizing pre-analytic
procedures for flow cytometry for the Milieu Intérieur
Consortium, a single-center study aiming to defining reference
values of immune parameters in healthy individuals. Our
challenge was to establish a standardized procedure for flow
cytometry allowing the analysis of 15,000 samples by one
operator in a single center. In this context, we considered
automation as a solution to facilitate the workflow and to
standardize the pre-analytic procedures for flow cytometry.
Since clinical studies with large sample numbers involve
repetitive work, implementation of automated procedures
also eliminates possible error or variation caused by fatigued
technical personnel. Perhaps most importantly, an automated
procedure allows full traceability at each step (e.g., distribution
of antibodies, wash solutions). This is of particular importance if
flow cytometry is to be used in a quality-controlled environ-
ment, such as a clinical laboratory.

Our work revealed that implementation of automated
procedures for flow cytometry is time-consuming and
requires extensive testing. Automation also inevitably drives
up costs because of expensive consumables and increased
reagent use (e.g., dead-volumes in the robotic system).
Although the robotic system used in our study operated
without technical problems, we acknowledge that a certain
amount of daily and weekly maintenance was required. The
investment, however, was considered worthwhile based on
the quality of the data obtained and it is our hope that
others can benefit from the standardization of pre-analytic
approaches for sample handling. We have provided complete
access to our scripts, and encourage other Consortia to make
such procedures available to the community in order to
facilitate future improvements in the standardization of
flow cytometry procedures.

Our study was inspired by the work of H. Maecker and the
FOCIS Human Immunophenotyping Consortium, who identi-
fied technical variables in flow cytometric procedures
requiring standardization [5,6]. Here and in the accompa-
nying article [Chen et al., co-submission], we present
our efforts to optimize staining procedures, selection of
reagents, instrument set-up and data analysis. Based on the
results of extensive antibody testing (Table S1) we selected
reagents from different suppliers and thus have opted not to
use the preconfigured lyophilized reagents, as suggested by
Maecker et al. [6,15]. To rank the performance of the
antibodies of the same specificity, we assessed the staining
index and the fluorochrome stability. We observed a
significant difference in the performance of different
clones from different suppliers, results that reinforce the
need to follow MIATA guidelines [25].

Studies involving large-scale or longitudinal immuno-
phenotyping projects analyze either fresh whole blood
samples directly at the recruitment site, or PBMCs that are
separated from whole blood, frozen and shipped to the
analysis laboratory for centralized analysis. Both approaches
have advantages and inconveniences. Several studies have
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demonstrated that the Ficoll purification can alter the
composition and frequency of leucocyte population and the
expression of certain surface markers [6,15,26]. The
advantage of analyzing frozen PBMCs is the possibility to
perform the phenotyping of the entire cohort in the
centralized laboratory, eliminating possible errors resulting
from all preanalytical steps (reagent preparation, fluoro-
chrome stability, staining protocol, instrument set-up and
performance, etc.). We compared these two approaches by
analyzing fresh whole blood and comparing it to a portion of
the sample that was used for PBMC isolation, frozen and
later thawed for comparative analysis. Although several
markers showed no observable differences (cell number and
MFI), a considerable number of cell surface molecules were
affected by the isolation and freezing/thawing procedures.
In line with other studies, we support the use of whole blood
for immune phenotyping studies when possible.

Our gating strategy builds on the characteristics of the
new generation of cytometers that allow precise standard-
ization of the fluorescent signals (voltage-dependent set-
tings). The FSC/SSC gates that are commonly used as a first
step in gating strategy were omitted due to variance that
could not be controlled. This approach facilitated the
rational setting of gates and permitted batch-analysis using
FlowJo. As a result of these efforts, only minimal gate
positions adjustment was required for a small number of cell
populations. Additional standardization of post-analytic
gating procedures is addressed in an accompanying manu-
script [Chen et al., co-submission].

In conclusion, our efforts are in line with several
international consortia, with high coherence in the staining
protocols reported by the EuroCell Consortium [7]. These
independent approaches converge on the use of whole blood
and not frozen PBMCs, procedures for sample handling, and
criteria for reagent selection. The new generation of flow
cytometers, if properly set up and calibrated, allow precise
standardization of fluorescent signals, thus enabling reliable
results in longitudinal studies. We believe that the approach
and protocols described here provide a rational basis to
establish internationally standard operating procedures for
immunophenotying. This attention to standardized cytomet-
ric analysis is of paramount importance and will enable
inter-institutional comparative studies in healthy and dis-
eased populations.
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Abstract Multi-parametric flow cytometry is a key technology for characterization of immune
cell phenotypes. However, robust high-dimensional post-analytic strategies for automated data
analysis in large numbers of donors are still lacking. Here, we report a computational pipeline,
called FlowGM, which minimizes operator input, is insensitive to compensation settings, and can
be adapted to different analytic panels. A Gaussian Mixture Model (GMM)-based approach was
utilized for initial clustering, with the number of clusters determined using Bayesian Information
Criterion. Meta-clustering in a reference donor permitted automated identification of 24 cell
types across four panels. Cluster labels were integrated into FCS files, thus permitting

Abbreviations: BIC, Bayesian Information Criterion; CV, coefficient of variation; DC, dendritic cell; EM, Expectation Maximization; FSC,
forward scatter; GMM, Gaussian Mixture Model; MFI, mean fluorescent intensity; SSC, side scatter
⁎ Correspondence to: M. L. Albert, Unit of Dendritic Cell Immunobiology, Inserm U818, Institut Pasteur, 25, Rue du Dr. Roux, 75724 Paris

Cedex 15, France. Fax: +33 1 45 68 85 48.
⁎⁎ Correspondence to: B. Schwikowski, Systems Biology Lab, Institut Pasteur, 25, rue du Dr. Roux, 75724 Paris Cedex 15, France. Fax: +33 1 40
61 37 01.

E-mail addresses: albertm@pasteur.fr (M.L. Albert), benno@pasteur.fr (B. Schwikowski).

http://dx.doi.org/10.1016/j.clim.2014.12.009
1521-6616/© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

ava i l ab l e a t www.sc i enced i r ec t . com

C l i n i ca l Immuno logy

www.e l sev i e r . com / l oca te / y c l im

Clinical Immunology (2015) 157, 249–260



comparisons to manual gating. Cell numbers and coefficient of variation (CV) were similar between
FlowGM and conventional gating for lymphocyte populations, but notably FlowGM provided improved
discrimination of “hard-to-gate” monocyte and dendritic cell (DC) subsets. FlowGM thus provides
rapid high-dimensional analysis of cell phenotypes and is amenable to cohort studies.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Flow cytometry is a key technology for the characterization
of the cellular component of the immune system. Flow
cytometers are able to simultaneously quantify different
surface markers of single cells, allowing the identification
and quantification of different immune cell subpopulations.
In recent years, improvements in measurement speed and
experimental automation have enabled comprehensive
immunoprofiling of larger cohorts [1].

The gold standard for the analysis of raw flow cytometry
data has until now remained “hand gating” (i.e., analysis
through computer-assisted procedures for the classification of
cells into single cell types using software tools such as FlowJo
[2]). Each sample is analyzed by successively separating cell
types by successive “gating” in a series of one- or
two-dimensional projections. However, the manual operation
is laborious and subject to biased visual inspection and gate
adjustment. These concerns grow with increased numbers of
measured phenotypic markers. Moreover, there is a major
limitation in that information critical for accurate gating may
not be present in the selected two-dimensional projections.

Here, we report a new method for analyzing multi-
parametric flow cytometry, the need for which was motivated
by the Milieu Intérieur study. This project aims at defining the
genetic and environmental determinants of variable immuno-
logic phenotypes in a healthy population [Thomas et al.,
co-submission]. Cell phenotyping constitutes one of the major
data sets to be integrated into the data warehouse, and as such
efforts were made to standardize each step of the sample
collection, technical procedures and data analysis. A Compan-
ion paper highlights the pre-analytical semi-automated mea-
sures put in place for labeling and data generation [Hasan et al.,
co-submission]. This manuscript details the automated analytic
workflow developed for the identification and analysis of 24 cell
types across four 8-color cytometry panels.

Our work follows from a large number of computational
approaches that have been developed for automated flow
cytometry analysis. Recently, the FlowCAP study evaluated
a range of approaches [13]. In all cases, however, the
datasets used by these investigators were of a smaller scale
than the ones in our study, in terms of samples studied
(FlowCAP: up to 30 samples; here: 115 samples × 4 panels),
and the number of events per experiment (FlowCAP: up to
approximately 100,000 events; here: on average 300,000
events per FCS file). Due to these differences, we found that
top-ranked FlowCAP approaches were inadequate to address
the needs of our data sets. For example, the ADICyt
approach [4] required more than 6 h for the analysis of a
single sample. The FlowMeans software [5] was faster, but
required manual assignment of cell types to each cluster in

every single sample. The recent X-Cyt approach [3] was
designed explicitly to efficiently address the problem of
larger numbers of samples. However, X-Cyt still requires the
definition of a “partitioning scheme”, a series of mixture
models whose sequence and parameters have to be manually
configured and calibrated for each cell type of interest in
any given analytic panel.

To support the analysis of the Milieu Intérieur cohort
dataset, we developed a novel high-dimensional data
analysis approach, which we refer to as FlowGM, utilizing
fast algorithms that enable the standardized analysis of
large numbers of samples. We describe its application to two
representative 8-color panels with up to 11 cell populations
classified per panel. Its principal feature is that, after the
definition of global parameters in a reference sample (i.e., a
one-time manual assignment of cell type labels to clusters),
it is possible to automatically position and identify cell
populations across the entire dataset. This approach will
enable analysis of our large healthy donor cohort.

2. Materials and methods

2.1. Dataset

Four 8-color cytometry panels targeting major leukocyte
populations across 115 individuals from different age groups
and genders were designed to characterize the major
immune cell populations (T cells, B cells, NK cells and
monocytes), as well as subpopulations of T cells, dendritic
cells (DC) and polymorphonuclear leukocytes (PMN). The
standardized procedure of collection and treatment of the
whole blood sample is described in [Hasan et al., co-
submission]. For each of the four panels, technical replicates
performed by five parallel blood samples obtained from
three donors (“repeatability” studies from [Hasan et al.,
co-submission]) were generated to examine robustness of
the experimental and computational protocols.

2.2. FlowGM cluster model

The input to FlowGM is a set of m sets of n quantitative
measurements (“events”), formally, m n-dimensional vec-
tors. Clustering is based on a multivariate Gaussian Mixture
Model (GMM) [6], which has the form

p xjθð Þ ¼
Xk

j¼1

α j N x μ j;R j

��� �

A GMM thus corresponds to a set of k clusters, each
described by a cluster weight αj and an n-dimensional
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Gaussian (normal) probability distribution, whose parame-
ters θ are its centroid μj, and its extent and orientation, ∑j

in n dimensions. The weight of each cluster corresponds to
the proportion of all cells assigned to it. Gaussian mixture
models have been used for flow cytometry, but a particu-
larity of FlowGM is that several such clusters can be used to
model cells of one type that may not adequately be modeled
by a single normal distribution.

2.3. Clustering cells using Expectation Maximization
(EM)

Starting from an initial configuration, the degree of fit
between the clusters and the data is quantified by a
likelihood function. Each stage of an iterative optimization
process (Expectation Maximization, EM) improves the
likelihood in two steps [7]. In an E (Expectation) step,
each event is assigned to (potentially, multiple) clusters
whose location is close to the event. In an M (Maximization)
step, the cluster parameters are optimized to fit the events
assigned to it.

2.4. FlowGM workflow

Step 1 Define pre-processing parameters (manual)
To initialize automatic processing of Phase I, FlowGM
requires the input of a few parameters, such as the
choice of a reference sample, and the selection of
potential pre-filtering and post-filtering parameters.

Step 2 Perform pre-filtering (automatic)
Automated pre-filtering helps eliminate noise (such as
doublets) and/or “uninteresting” cells (i.e., Dump
populations), which is of importance when the cell
types of interest are rare. Two filters have been
pre-configured: A doublet filter and a filter that
eliminates cells that are negative relative to
user-definable markers (based on two-component one-
or two-dimensional GMMs). The filter eliminates the
95th percentile of the cluster corresponding to the
“uninteresting” cells.

Step 3 Determine the number of clusters (automatic)
The number of clusters (k) used to model the reference
sample is determined by minimizing the Bayesian
Information Criterion (BIC) [8]. The BIC represents a
tradeoff maximizing the degree of fit between the
cluster model and the data on the one hand (expressed
by the likelihood p(x|θ)), and, minimizing, on the other
hand, model complexity (based on the number of
clusters k):

BICk ¼ −2 ln p xjθð Þð Þ þ k ln mð Þ:

Specifically, we choose k that minimizes the average of
BICk under 20 EM runs starting with random initial
configurations.

Step 4 Establish the reference clustering (automatic)
Once the number k of clusters has been determined,
FlowGM determines 100 random initial configurations of
k clusters as starting points, and performs clustering
using Expectation Maximization, as described in
Section 2.4. The resulting clustering with the highest

likelihood is selected as the reference clustering in the
second FlowGM phase.

Step 5 Label reference clusters with cell types (manual)
An operator defines the cell types of interest, and
assigns one or more corresponding clusters to each such
cell type (labeling). Thus, each cell type of interest
corresponds to a set of clusters (meta-cluster).

Step 6 Perform post-filtering (automatic, optional)
This optional step offers the possibility of eliminating
additional “uninteresting” events that remain in the
clusters determined in Step 5 (analogous to a “dump”
gate for conventional approaches and useful in focusing
the clustering analysis). Two filters have been
pre-configured: A dead cell filter (based on the Viability
channel), and a “dump” filter that eliminates selected
cells in specified meta-clusters. In both instances, the
cells above or below a defined threshold are removed.
This threshold is automatically determined as the 95th/
99th percentiles of a fitted one-dimensional Gaussian
distribution of a reference population along a
pre-defined channel. The reference population may
either be the meta-cluster itself, or a negative control
that has been removed in the pre-filtering (Step 2).

Step 7 Cohort samples: pre-filter and cluster by adjusting
labeled reference clustering (automated)
After the reference sample has been processed in
Steps 1–5, FlowGM processes all other samples in a
fully automated manner. Pre-filtering proceeds as
described for the reference donor (Step 2). FlowGM
then determines the clustering using EM, as described
in Section 2.4, starting with the labeled reference
clustering (from Step 5) as the initial configuration.
Finally, post-filtering is applied (if selected), as in
Step 6.

2.5. Visualization of the resulting clusters in FlowJo

One innovation incorporated into FlowGM included the
embedding of labels for each cluster and meta-cluster as
additional attributes (numerical identifiers) for each cell in
the FCS data file. This allows inspection of the different
clusters in FlowJo [2] or other software that can analyze FCS
data files.

2.6. Software implementation

FlowGM was implemented using Matlab and Statistics
Toolbox Release 2012b [9] and R (version 3.0.1) [10]
flowCore package [11]. The visualization graphs were
prepared with FlowJo software version 9.7.5.

3. Results

3.1. FlowGM workflow

Motivated by the need for high-quality analysis of a large flow
cytometry data set, we developed the novel, and largely
automated FlowGM data analysis approach. Its computational
high-dimensional clustering approach avoids the limitations
inherent to analysis based on two-dimensional projections
(Fig. 1A). Experimental data is modeled as a mixture of

251Automated flow cytometric analysis across large numbers of samples and cell types



normal distributions (See Materials and methods, Section 2.3)
and employs Expectation Maximization (EM) to iteratively
adapt model parameters (Fig. 1B and Materials and methods,
Section 2.4).

The overall operation of the FlowGM workflow can be
understood on the basis of its similarities and differences
relative to the current ‘gold standard’ manual FlowJo
workflow (Fig. 1C). For both approaches, two phases can

A

B

C

Figure 1 Analytic approach for multidimensional clustering of multi-parameter cytometric data. (A) Four simulated clusters in 3D
space that cannot be separated in any 2D projection. (B) Illustration of the expectation–maximization (EM) clustering algorithm using
Gaussian mixture model (GMM) clusters, when applied to this data. Points are colored according to their posterior likelihood, the
ellipsoid reflects cluster shape, ‘+’ indicates the cluster centroid, transparency of each ellipsoid reflects cluster weight. Five phases
are shown: initial random parameter values, updated parameters after the first M-step, after two iterations, after ten iterations, and
final solution. (C) FlowJo and FlowGM workflows.
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be distinguished. In the first phase, method parameters are
calibrated on selected reference samples. In a second phase,
all other samples are processed on the basis of the calibrated

parameters. To be suitable for large cohort studies, FlowGM
was designed to minimize the manual per-sample effort in
the second phase.

A

B

C

Figure 2 Number of clusters and mapping to cell types. (A) The number of clusters k is determined with the minimum average
Bayesian Information Criterion (BIC) when evaluated on 20 random initial solutions for each choice of k. For the lineage panel, k = 36
is optimal. (B) User-based aggregation of FlowGM clusters into meta-clusters for immune cell type characterization with cluster
centroid heat map (normalized coordinates). B cells are identified as CD19+, T cells are identified as CD3+ with two subsets: CD4+

(T-1) and CD8β+ (T-2), NK cells are identified as CD56+ with two subsets: CD16hi (NK-1) and CD56hi (NK-2), monocytes are identified as
three subsets: CD14hi (Mono-1), CD14hiCD16hi (Mono-2) and CD14loCD16hi (Mono-3). The manually assigned cell types are indicated on
the right. (C) Distribution of CD45 intensity for different cell types of interest in the reference donor.
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3.2. Identification of the major cell lineages by
FlowGM

We first applied FlowGM to the lineage panel dataset [Hasan et
al., co-submission]. Cells were stained with the markers CD45,
CD3, CD4, CD8β, CD14, CD16, CD19, and CD56. Following the
approach of the manual analysis by Hasan et al., we used
forward and side scatter (FSC/SSC) solely to exclude doublets;
the remainder of our data analysis is performed on the
dimensions of the indicated eight markers. The number of
events in the data files ranged from 106,000 to 787,000. After
filtering out doublets, FlowGM estimated the optimal number
of clusters k to be 36, using the BIC (see Materials andmethods,
Section 2.4) on the reference donor (Fig. 2A).

Once k was determined, FlowGM performed EM clustering
100 times, starting with different random initial configurations
of k clusters. The clustering solution with the highest likelihood
p(x|θ) constitutes the reference clustering, whose clusters
were then manually labeled with the different cell types of
interest (i.e., leukocyte subpopulations). The corresponding
cluster centroids are represented as a heat map, with the
assigned cell types indicated (Fig. 2B).

Note that only 24 of the 36 clusters corresponded to cell
types of interest, and the color coding is chosen indepen-
dently for each marker to resolve the entire spectrum of
expression across these cell types (using the Matlab HeatMap
function). For example, as CD45− cell populations were not
of interest in this study, all selected cells were CD45+ and as
indicated by the normalization, the lowest and highest levels
of CD45 expression were observed in monocytes and T cells,
respectively (Figs. 2B, C).

To facilitate the understanding of our findings and permit
user cross-validation, FlowGM allows the embedding of
cluster IDs and meta-cluster IDs as additional channels
(designated “C-ID” and “MC-ID”, respectively) into the FCS
input file, permitting importation of all data into FlowJo (or
other FCS-compatible software). FlowJo visualizations of the
labeled FlowGM lineage clusters confirmed our GMM-based
assignments (Fig. 3). By gating on MC-ID to select one
FlowGM meta-cluster, it is possible to view the clustered
cells in 2D projections that correspond to manual gating
strategies. FlowJo visualizations of all 36 FlowGM clusters
are shown in Fig. S1. Backgating is also possible: starting
with manual gated data and examining where the captured
events cluster in C-ID or MC-ID space (data not depicted).

3.3. Pre-filtering supports clustering of rare
dendritic cell subsets

We next evaluated the performance of the method on rare
subsets of cells (b1% of the total cell events). In addition to the
elimination of doublets early in the analysis, we identified the
need for pre-filtering of cells considered by the user as
uninteresting – similar to the use of a “Dump” gate – only in
the case of FlowGM the procedure is automated and thus

removes operator bias. Pre-filtering of the DC panel was based
on a two-component, two-dimensional GMM that utilized data
from CD14 and HLA-DR markers. Thresholds were automati-
cally set at the 95th percentiles of the CD14/HLA-DR
double-negative population (represented by the red line,
Fig. 4A). The resultant cells were investigated using the FCS
embedding feature of FlowGM, and inspection of representa-
tive files revealed accurate retention of desired HLA-DR+ and/
or CD14+ cells (Fig. 4B).

Next, we estimated k using the BIC and defined a clustering
solution using data from a reference donor (Fig. S2). Of the 40
clusters defined as the optimal fit, 22 were of interest and
manual labeling of the meta-clustered data captured five
myeloid cell subsets: cDC1, identified by their high BDCA2 MFI
and low expression of CD14; pDCs, identified by the highest
BDCA2 and BDCA4 MFIs; cDC3, identified by their expression of
BDCA3; CD14lo monocytes, identified by the intermediate
expression of CD14; and CD14hi monocytes, by the high CD14
MFI (Fig. S2B). Again, we highlight that the data represented in
the heat map has been normalized, and in instances where all
cell populations are positive for a givenmarker (i.e., HLA-DR),
the normalization will scale values to span the range of marker
expression. To illustrate the distributions of HLA-DR intensity,
histogram plots for DCs and monocytes are shown (Fig. S2C).

Next, an initial post-filter removed dead cells from each
meta-cluster, based on the Dump channel. A second post-filter
removed cells from cDC1 and cDC3 populations based on
expression of BDCA1 and BDCA3 respectively, of the CD14/
HLA-DR double-negative population that was previously
filtered out.

As a final validation step, we compared the level of marker
expression between retained cells and events that were
removed by the filtering process. Across all dimensions of
the data set, we confirmed the efficacy of the pre-filtering
approach (Figs. 4C, D). Additional visual confirmation can be
found in the FlowJo-projected data, where meta-clustered
data is overlaid on the total cell events in a representative file
(Fig. S3).

3.4. FlowGM is robust to selection of reference
donor and may be applied to uncompensated data

One potential concern with the FlowGM approach is the
sensitivity of the clustering result to the choice of the
reference sample in Step 1 (cf. Section 2.4). This is an
important issue, as the resulting reference clustering will be
used as the basis to cluster the data from all other samples.
While practitioners may have a good intuition about which
one of the input samples is “representative”, the degree of
sensitivity to this choice could, in principle, be large.

We therefore investigated whether a more representative
reference clustering based on a larger group of samples would
be needed. To this end, we constructed 11 different cluster-
ings: the originally chosen reference clustering (which we
denote here by 1*), and ten alternative reference clusterings

Figure 3 Visualization of labeled meta-clusters in FlowJo Cluster IDs is incorporated into the FlowJo input file. Shown are
meta-clusters with all principal manual gating steps, starting with SSC-A/Meta-Cluster ID (MC-ID). (A) The identified CD19+ B cells
(red) and CD4+ (green) and CD8β+ (yellow) subsets of CD3+ T cells. (B) CD56hi (light blue) and CD16hi (dark blue) NK cell
sub-populations. (C) CD14hi, monocytes (Mono-1, mauve) CD14hiCD16hi monocytes (Mono-2, lavender) and CD14loCD16hi monocytes
(Mono-3, light purple).
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(1, … 10) of increasing complexity, which were obtained by
selecting a series of 10 samples from randomly chosen donors,
and then merging the samples 1, …, i for each i = 1, …, 10.
Merging different samples without alignment can be expected
to create reference clusterings that contain technical shifts,
and thus could translate into significant variation in the
clustering result.

For each possible pair of these 11 reference clusterings, we
then determined the similarity of the two outcomes after
clustering, using the F-measure [11,12] (Fig. 5A). Notably, the
F-measure values were close to 1, independently, for all pairs of
reference clusterings, indicating that the different reference
clusterings did not translate into significantly different cluster-
ing outcomes. The locations of the resulting cell types for the

different reference clusterings were further represented in
parallel coordinate plots (Fig. 5B). Except for the Mono-2 and
Mono-3 populations, all coordinates match extremely well
among the different reference clusterings across all dimensions.
Together, these observations suggest that the choice of the
initial reference clustering may not have a large impact on the
resulting outcome.

We also investigated the impact of compensation. Routinely,
automatic hardware compensation [Hasan et al., co-
submission] is employed. Here, we compare the results of our
approach on the same input data in an uncompensated state;
machine-compensated; or machine-compensated and FlowJo-
corrected. The computational analyses on these three datasets
were initialized with the re-estimated parameters from the

A

B

C D

Figure 4 Pre-filtering for analysis of rare cell populations. (A) Pre-filtering in dendritic cells (DC) by low expression of CD14 and
HLA-DR. Red lines indicate the thresholds that were automatically determined using GMM. (B) Validation of pre-filtering using FlowJo
visualization. (C) MFI of filtered (gray) and remaining (red) cells. Pre-filtered cells display a lower MFI in all channels except Dump.
(C) Standard deviation of fluorescence intensity for the same cell population. Filtered cells display less variation.
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reference clustering onmachine-compensated data. The counts
for three repeatability samples obtained from different dataset
are shown (Fig. S4), and indicate that FlowGM is insensitive to
instrument compensation, and therefore resistant to potential
compensation error in the context of large datasets.

3.5. Benchmarking of FlowGM demonstrates its
reliability and utility

To directly compare FlowGM clusters to manually gated
data sets, we first calculated, for each hand-gated cluster

in the reference donor, the percentage of its events present
in every other FlowGM cluster (Fig. 6A). The values
indicated that, overall, the two approaches group events
similarly. The one exception were monocytes, where
FlowGM supported easy segregation of the CD14hiCD16hi

sub-population of monocytes (Mono-2) from CD14loCD16hi

sub-monocytes (Mono-3), despite the lack of additional
monocyte-specific markers (e.g., MCSF-1, CX3CR1, CCR2
PMID: 20832340).

We also studied the variability of manual and FlowGM-
derived cell counts across the repeatability samples studied
in Hasan et al. (Fig. 6B). We find that FlowGM results showed

A

B

Figure 5 Differences in reference clustering do not impact cell type identification Different reference clusterings are generated by
merging data from one to ten randomly selected donors; solutions are then applied to 115 cohort donors. (A) Pairwise average
similarity (F-measure) of solutions over 115 cohort donors after using different reference clusterings. (B) Mean fluorescence intensity
(MFI) of each identified cell population from different reference clusterings.
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good agreement with the results from manual analyses. The
slight bias for higher numbers from FlowGM may stem from
the need for high-dimensional information to confidently
assign certain events to cell types (as in the schematic

example shown, Fig. 1A). Coefficients of variation (CVs),
which represent variation of data analysis and experimental
variation, were at similar levels, further indicating the high
accuracy of FlowGM analysis.

A

B

C

Figure 6 Comparison of manually gated data and FlowGM analysis. (A) Performance on reference donor: percentage of events in
FlowJo cluster present in FlowGM clusters. (B) Performance on repeatability data: counts of each cell type for three donors with five
replicates. The FlowGM results show a comparable CV with manually gated data. (C) Performance on 115 cohort donors: manually
gated data and FlowGM analysis highly agree (r = 0.944) on 115 cohort donors.
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Absolute counts and CVs for the repeatability data from
all four panels are provided (Table 1). The estimation of the
number of clusters and the resulting cluster positions, and
assignments to cell types for the T cell and PMN panels are
shown in Figs. S5 and S6 respectively. For the observed cell
types, absolute counts were highly reproducible, with most
CVs b15%. Compared to results of Hasan et al. [co-
submission], the level of reproducibility of FlowGM was
similar to the manual gating results across all four panels.

Finally, we used FlowGM-generated absolute cell counts
of the lineage panel across 115 donors from the Milieu
Intérieur cohort [Thomas et al., co-submission], comparing
results to those obtained by manual gating. Again, results
were highly concordant (Fig. 6C). The running time of the
computational analysis for a single panel depends on the
number n of measured events in each sample and the
number k of clusters. For the panels analyzed here, the
computation required 0.5 h (DC panel) and ~4 h (lineage
panels) on a standard laptop PC.

4. Discussion

The FlowGM flow cytometry approach was developed to
address the need for fast, robust and high-quality analysis for

the Milieu Intérieur Consortium study. Our comprehensive
validation study has shown that FlowGM has produced
user-validated results whose quality is on par with, and in
some cases, exceeds, the hand-gating approach. This is an
exciting finding, as its simple computational approach does
not require the expert knowledge and experience that is
available to human operators. One important difference lies in
the systematically higher number of events assigned to cell
types by FlowGM, which suggests that the full dimensionality
of the data, instead of two-dimensional views, allows for
assigning cells that are unassigned in manual two-dimensional
analysis due to the lacking dimensionality and user-bias.
Another facet of this fundamental difference may be the
observed ability of FlowGM to segregate subpopulations of
monocytes without the need for an additional specific marker.
Notably, separation of CD14loCD16hi monocytes from NK cells
and other cell populations was achieved by integrating
information from all eight dimensions.

When comparing the design of FlowGM workflow to other
computational clustering approaches, a characteristic
difference lies in the choice to computationally model
single cell types as mixtures of Gaussians, as opposed to
single Gaussians, or other distributions, coupled with the
incorporation of knowledge and experience of a human
operator to define which clusters belong to the same cell

Table 1 Repeatability.

Donor a: #1 #2 #3

Lineage CD4+ T cells 16870 (4.4) b 77306 (9.9) 28838 (4.4)
CD8β+ T cells 6986 (3.8) 19408 (10.6) 21416 (4.0)
CD19+ B cells 5983 (5.3) 23679 (9.8) 3325 (4.1)
Monocytes 27615 (3.0) 42233 (11.0) 26894 (3.5)

CD14hiCD16lo mono 22269 (3.2) 34969 (10.9) 22872 (3.2)
CD14hiCD16hi mono 3196 (4.2) 3759 (11.7) 1436 (8.9)
CD14loCD16hi mono 2058 (3.3) 3505 (10.9) 2907 (5.3)

NK cells 9803 (5.1) 15989 (12.9) 12534 (4.0)
CD16hi NK 8633 (4.9) 15424 (13.0) 11632 (3.7)
CD56hi NK 1171 (7.4) 565 (11.2) 902 (8.9)

T cell CD4+ T cells 13172 (4.5) 64809 (16.4) 23450 (0.7)
CD4+ TN 3043 (4.8) 23398 (13.8) 8961 (8.1)
CD4+ TCM 8973 (4.4) 39350 (18.2) 13044 (3.6)
CD4+ TEM 1044 (6.7) 3329 (18.3) 1250 (11.4)

CD8β+ T cells 5245 (5.7) 14847 (16.8) 15283 (3)
CD8β + TN 553 (8.2) 5692 (16.8) 5903 (2.3)
CD8β+ TCM 2297 (6.2) 5737 (13.6) 5996 (7.7)
CD8β+ TEM 548 (10.2) 1181 (15) 1092 (21.2)
CD8β+ TEMRA 717 (5.1) 1206 (46.8) 954 (16)
CD8β+ 27int 1036 (8.7) 1096 (23.3) 1516 (11.7)

CD4+ CD8α+ T cells 153 (11.4) 770 (19.3) 539 (28)
DC CD14+ monocytes 25232 (12.2) 29764 (4.4) 21287 (8.4)

pDC 304 (18.5) 409 (4.1) 438 (5.0)
cDC1 2159 (12.1) 5188 (3.9) 1677 (10.4)
cDC3 42 (30) 87 (16) 44 (8.1)

PMN Neutrophils 96062 (14.3) 188428 (13.0) 119529 (12.0)
Basophils 1751 (11.4) 5878 (7.2) 2323 (11.6)
Eosinophils 10483 (13.2) 18539 (10.6) 22329 (6.2)

a Fresh blood samples from three healthy donors were divided into five aliquots each and immediately stained using four antibody
panels.
b Median absolute cell counts per 1 mL of blood in five independent analyses is represented for each cell population, as well as the

corresponding coefficient of variation (CV).
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type (referred to herein as meta-clusters). This design may
constitute a ‘sweet spot’ in cytometry workflow design: A
fast and efficient overall workflow, combined with a
mathematical model that is flexible enough to model
experimental data well, the solution of a hard core problem
(the assignment of cell types to clusters) using operator
intervention, and the limitation of this intervention to a
single reference sample, as the transposition of this
knowledge to all other samples can be automated with
high accuracy.

The minimization of operator intervention means not only
significant savings in terms of manual effort, but also the
elimination of variability between different samples introduced
by subjective decisions, and a considerable improvement in
transparency and reproducibility of the path from the samples
to the absolute and relative cell counts. Furthermore, the
facility with which results are accessible for human inspection
using conventional tools, and the relative simplicity of the
FlowGM approach itself imply a high level of accessibility to
non-specialists that – we believe – will continue to play an
important role in the evolution of the approach.

We believe that the FlowGM workflow is applicable to
most other flow cytometry datasets, and anticipate that the
need for fast, robust, and high-quality analysis of large
cytometry datasets will only increase. Adaptations of the
method may be required for heterogeneous samples, in
which no single reference sample may be representative for
all others, or in cases where certain subpopulations may be
activated (e.g., disease populations). We believe that there
are relatively straightforward approaches to extend FlowGM
to automatically detect cases of inadequate fit, for
example, through the introduction of additional reference
donors (with recursive iteration of the manual Step 5). The
increased availability of experimental datasets that have
been acquired under standardized conditions may facilitate
comparison and integration, which may lead to the neces-
sary insights and technical developments to fully automate
flow cytometry data analysis.
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-  

Le projet Milieu Intérieur a pour but d’identifier quels sont les facteurs génétiques et environnementaux qui 
ont un impact sur la variabilité immunitaire naturelle à l’échelle d’une population. Cette analyse 
multiparamètrique requière néanmoins d’utiliser des outils standardisés  
Afin d’étudier la réponse immune induite, nous avons utilisé un système optimisé de seringue prête à 
l’emploi pour une stimulation ex vivo du sang et développé un protocole unique de quantification de l’ARN 
afin d’étudier la signature transcriptionnelle en réponse à des immuno-modulateurs. Par cette analyse nous 
avons testé l’hypothèse que la réponse à des composants complexes peut être définie par la signature ARN 
de cytokines clefs. En utilisant une méthode statistique robuste, nous avons identifié 44 gènes capables 
d’optimiser la capture de la réponse à des stimulations plus complexes. Cette approche pourrait aider à la 
réduction dimensionnelle de larges données et la décomposition de réponses immunes innées et ainsi 
caractériser de nouvelles molécules immuno-modulatrices. 
Dans une seconde étude, nous avons cherché à identifier les facteurs génétiques et environnementaux 
influençant le phénotype des cellules immunitaires circulantes. Pour cela, nous avons associé une étude 
semi-automatisée par cytomètrie en flux des cellules du sang à une analyse du génotype pour les 1,000 
donneurs inclus dans la cohorte. Nous avons observé que le tabac, l’âge, le genre et l’infection latente par le 
cytomégalovirus sont les facteurs impactant le plus la variabilité immunitaire. Cette étude a montré que les 
paramètres des cellules innées sont contrôlés par des facteurs génétiques alors que ceux des cellules 
adaptatives le sont plutôt par des expositions environnementales tout au long de la vie. 
Des outils interactifs incluant ces nouvelles données de références accompagnent ces études. 
L’ensemble de ces analyses montre que nous avons developpé des outils performants pour une étude 
intégrative du système humain constituant une approche innovante vers une médecine personnalisée. 

Mots clés: Immunophénotypage, Réponse ARN aux cytokines, Dissection de réponses complexes, Cytomètrie 
en flux, Immunité innée, Association génétique. 
 

The project Milieu Intérieur aims to study the genetic and environmental factors that can have a major 
impact on occurring immunological variance in healthy human population. This characterization requires 
the use of standardized immunophenotyping technologies for integrating diverse, complex datasets. With 
this goal in mind, we used an optimized suite of standardized whole-blood stimulation systems to study the 
human induced immune response in physiological condition and developed a unique standardized protocol 
to analyze the ARN signatures upon whole-blood stimulation to test the hypothesis that responses to 
complex stimuli can be defined by the transcriptional signatures of key cytokines. We found 44 genes, 
identified using Support Vector Machine learning, which captured the diversity of complex innate immune 
responses with improved segregation between distinct stimuli. This provides new strategies for dimension 
reduction of large datasets and for deconvolution of innate immune responses, applicable for characterizing 
novel immunomodulatory molecules. 
In a second related study, we aimed to identify the environmental and genetic factors driving innate and 
adaptive immune cell parameters in homeostatic conditions. To do so, we combined semi-automated flow 
cytometric analysis of blood leukocytes and genome-wide DNA genotyping in the 1,000 healthy donors 
included in the collection. We show that smoking, age, gender and latent cytomegalovirus infection, are 
main drivers of human variation (i.e. numbers of Treg and MAIT cells). These results demonstrated that 
innate cell parameters are strongly controlled by genetic factors, whereas adaptive cells are driven by life-
long environmental exposures.  
In addition, to help on the public data mining, we developed interactive R-Shiny application including 
healthy donor reference values for both studies. 
All together, these results indicate that we developed powerful tools for human system biology approaches 
to support personalized medecine.  

Keywords: Immune phenotyping, Cytokine gene signatures, Deconvoluting complex responses, Flow 
cytometry, Innate immunity, Genome-wide association study 


