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Introduction

General presentation

In this introduction, I describe most of my research contributions starting from 2012.
The presentation is mostly chronological and represents the evolution of my research
topics throughout the last five years or so.

Image denoising, a specific task of image processing, was the main topic of my Ph.D.
thesis (at Université Paris-Diderot Paris 7), as well as of my post-doctorate (at Duke
University). Along with this line of work, I also focused on non-parametric statistics, in
particular minimax estimation and (sparse) oracle inequalities. The main focus was on
patch based methods, on exponentially weighted aggregates and on dictionary learning.
Such contributions are not described here, as most of it could be found in [Ph.D. Thesis].

My main contributions during the last five years have been in the field of inverse
problems and linear regressions, especially when the number of observations n, is small
with respect to the number of features p. This is the so called n < p context that be-
came popular in the 1990’s, notably as a suitable framework to address problems in
bio-statistics: gathering many patients is a difficult task, though recording many phys-
iological and genetics elements on them could be simple and cheap. In such a context,
the statistical analysis is badly impacted by the curse of dimensionality, meaning that
without further structural information it is non-realistic to hope for accurately estimat-
ing the (many) parameters of the model, due to a lack of observations. Several lines of
research have emerged to tackle this kind of statistical problems, often referred as "high
dimensional" context. One of the most popular one is based on relying on sparsity as-
sumptions of the underlying signal the scientist aims at recovering. To enforce such a
structural property, regularized methods have been proved to be very handy. The first
natural choice is to add to the likelihood term a regularization term enforcing only few
meaningful coefficients to be non-zero. Unfortunately, a direct attempt that penalizes the
number of active coefficients (i.e., the `0 pseudo-norm) to be small, leads to a combinato-
rial problem, and cannot be computed for more than a few tens of variables1. Following
the introduction of the Lasso (Tibshirani, 1996) and the Basis Pursuit (Chen, Donoho, and

1though it is to be noted that recent advances in mixed integer programing seems to be pushing this limit
a bit further (Bertsimas, King, and Mazumder, 2016)
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Saunders, 1998), convex relaxation of the previous problem have led to focus on the `1-
norm as a standard candidate for the regularization. The benefit is that the optimization
formulation of the estimator is still convex, though with a non-smooth part: hence more
complex algorithms are required than vanilla gradient descent. Among the family of
algorithms considered to compute the solutions of such optimization problems, several
approaches have proved their efficiency depending on the structure of the feature matrix
X. On the one hand, when X is an unstructured matrix, as is often the case in statistics or
in machine learning, coordinate descent approaches have become the standard choice for
solving `1-regularized type problems following Friedman, Hastie, and Tibshirani, (2010).
In cases where X is sparse, such algorithms, often referred to as block coordinate descent
in the optimization literature, can easily leverage this property. On the other hand, when
X is implicitly encoded (e.g., as an operator), or when matrix vector multiplications by
X can be performed efficiently, proximal algorithms, also known as forward-backward,
see for instance (Parikh et al., 2013), are typical candidates for solving `1-regularized
problems. Such algorithms are particularly adapted to signal or image processing where
the operations required relies on the Fast Fourier Transform or fast wavelet transforms.
Recently, I have mostly worked on (block) coordinate descent approaches and provided
some improvements that have proved to be helpful in practice to speed-up such family
of algorithms for high dimensional regression.

Safe Screening Rules for sparsity inducing regularization

Though such algorithms are well understood practically as well as in theory, recent
developments helped improving the numerical efficiency one step further. In particular,
since such methods build sparse models, leveraging the aimed sparsity of the solution
can help reducing the computational burden. Technically, this relies heavily on the dual
formulation of the optimization problem as well as on the properties of the KKT condi-
tions for `1 type problems. A popular approach was introduced by El Ghaoui, Viallon,
and Rabbani, (2012) under the name "safe screening rules"2. The name reflects that one
can build numerical tests that allow to identify exactly the active / non-active coordinates
of the targeted solution. Hence discarding them early can reduce the cost of each pass
over the dataset, since the associated features can be discarded once for all. Such strate-
gies have also been used in a context where the screening tests can be “unsafe”, in the
sense that it can produce mistakes. The most famous example in the literature is the case
of "strong rules", as it is a key step in the standard glmnet R implementation of the Lasso,
see (Tibshirani et al., 2012). Unfortunately, such rules require an additional verification
step to check that no relevant variable was lost in the process and are not particularly
efficient when only a few tuning parameters are needed (they are sequential by nature as

2Note that such methods bear some similarities with correlation screening well known in statistics, see
for instance (Fan and Lv, 2008)
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described later on).
During the last couple of years I have been working extensively with my co-authors

on extending and improving the safe rules previously described. Our first contribution
on the subject [JS-Conf19] was specific to the Lasso case and relied on geometric (mostly
Euclidean) properties of the dual formulation. The main idea was to use safe screening
rules in a unified way for all previously considered strategies: static, sequential and
dynamic ones.

The static and sequential points of views where developed in the seminal paper by El
Ghaoui, Viallon, and Rabbani, (2012). They consist in screening variables either prior any
computation (static case) or leveraging computation done for solving similar problems
with a slightly changed tuning parameter (sequential case). In particular, the later can be
seen as a warm start strategy for the screening step.

The third point of view, called dynamic screening has recently been introduced by
Bonnefoy et al., (2014, 2015). It consists in performing the screening along the iterates of
an algorithmic optimization solver. In our contribution, we have shown that screening
can be performed in a unified manner for the three strategies, by considering duality gap
computations. Such an approach was generalized to various sparsity inducing penalties,
including multi-task/group Lasso and generalized linear model [JS-Preprint1] (with a
special focus on the logistic regression case) as well as for the Sparse Group Lasso [JS-
Conf23]. The later is particularly challenging due to the possibility to consider two levels
of screening: a feature level and a group level. Extensions of our framework to multi-level
could be easily adapted following Wang and Ye, (2015), though we have not followed this
road (due to increased technicalities and little practical interest for cases with more than
three levels of sparsity). A journal version synthesizing our recent results in this field is
currently under review [JS-Preprint1].

This work is the subject of Eugene Ndiaye’s Ph.D. thesis that I co-supervise with
Olivier Fercoq. A contribution with the same flavor, but oriented toward inverse prob-
lems for neuro-imaging is also investigated in the Ph.D. of Mathurin Massias, a student
I co-supervised with Alexandre Gramfort and Olivier Cappé. In particular, we have re-
cently proposed for the multi-task Lasso [JS-Preprint3] “aggressive screening” strategies,
inspired by the Blitz algorithm (Johnson and Guestrin, 2015, 2016) that have proved to
be helpful for practical inverse magnetoencephalography (MEG) imaging3.

Bias reduction in high dimensional regularized models

Another aspect of my work has been the understanding and improvement of convex
regularized methods, especially to try limiting the bias they introduced. Indeed, for
methods such as the Lasso or total variation (TV) denoising, an inherent contraction of

3MEG being brain imaging modality that allow to localize active regions in the brain
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the large coefficients (or a reduction of jumps in the TV case) towards zero is usually
observed.

Several standard techniques have been proposed to reduce this kind of artifacts such
as least-square refitting on the model identified (e.g., least squares with support con-
straints or jump constraints), or considering non convex approaches. In a series of work
with Charles-Alban Deledalle, Nicolas Papadakis and Samuel Vaiter, we have proposed
a framework and algorithms to decrease the bias in this context with specific emphasize
on the Lasso and on TV [JS-Conf17],[JS-Conf18]. In particular we provided algorithms
to perform the de-biasing step along the algorithm instead of simply performing a two
step methods. Though, of limited interest for the Lasso when the support is small (a
least squares step with a determined small support is numerically easy to obtain), in the
TV case, numerical instabilities can damage the quality of the restoration, and standard
refitting would perform poorly (see e.g., Figure 2.4).

More recently [JS-Journal9], we have extended this contribution and provided a
framework generalizing refitting to a broader class of estimators, without relying on
non-convex solutions, that might be harder to approximate.

It is also to be noted that least-square refitting after a Lasso step was also a key
element in a new automatic tuning strategy we have studied with Didier Chételat and
Johannes Lederer [JS-Journal8]. Another alternative we have worked on with P. Bellec
and S. Vaiter [JS-Preprint5] includes weighted `1 norm following recent results from
Bellec, Lecué, and Tsybakov, 2016; Bogdan et al., 2015 on Slope.

Variants with more refined conic constraints (instead of linear ones) are currently
the subject of a joint work with Evgenii Chzhen, a Ph.D. student I co-supervised with
Mohamed Hebiri (Université Paris-Est – Marne-la-Vallée). Preliminary elements are de-
scribed in Section 2.2.

Handling the noise in high dimensional regression

In many high dimensional regression models, the noise level has some impact on
the performance as well as on the choice of the tuning parameter, for instance when
considering the Lasso. Following the seminal works on concomitant estimation (Hu-
ber, 1981; Owen, 2007), I have considered the estimator analyzed by Antoniadis, (2010),
Belloni, Chernozhukov, and Wang, (2011), and Sun and Zhang, (2010, 2012) under the
name Square-root Lasso and Scaled Lasso4. Along with my colleagues, I have investi-
gated methods to jointly estimate the noise level and the underlying (sparse) parameter
in linear models.

We have also provided a new fast solver for the Concomitant Lasso [JS-Conf27],
relying on coordinate descent, as well as on a smoothing step “à la” Nesterov, (2005); see

4beware this is a different method from the Scaled Lasso introduced by Städler, Bühlmann, and van de
Geer, (2010) that is based on penalized joint likelihood optimization.
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also the inf-convolution developed by Beck and Teboulle, (2012). Interestingly, we have
reached a computing time of the same order as standard Lasso solvers5; hopefully this
might help disseminating its usage.

With Claire Boyer and Yohann De Castro, we have also generalized this kind of con-
comitant estimators for super-resolution models, were instead of a vector, the underlying
object one aims at reconstructing is a (positive) measure. Reconstruction guarantees were
provided as well as a numerical procedure to compute the estimator, relying on an SDP
(Semi-Definite Program) formulation of the dual problem [JS-Journal10].

With a similar motivation, we have addressed with Arnak Dalalyan, Mohamed Hebiri
and Katia Meziani, the case of heteroscedastic regression, where the noise amplitude can
vary across the observations [JS-Conf10]. Our point of view was inspired by a prelimi-
nary work by Dalalyan, (2012). The proposed estimator combined ideas from the Dantzig
Selector (Candès and Tao, 2007) and the Scaled-Lasso “à la Städler, Bühlmann, and van
de Geer, (2010)”: the one with a penalized joint likelihood optimization, and not the
one from proposed by Sun and Zhang, (2012). The proposed estimator was solution of
a Second Order Cone Program (SCOP) and flexible enough to handle group structures
as well. More recently we propose with Mathurin Massias, Olivier Fercoq and Alexan-
dre Gramfort another formulation better suited for coordinate descent optimization for
simple heteroscedastic models [JS-Preprint4], with a particular emphasis on block-wise
homoscedastic models encountered in neuro-imaging.

Decentralized learning on graphs with U-statistics

Machine learning has recently gained much attention in the context of distributed
resources. This is particularly the case in telecommunication networks as well as for
the Internet of Things, but this has also emerged from privacy constraints imposed by
the consumers or by the legislator. Estimation and optimization in such a context are
particularly challenging tasks, both in theory and in practice, since no central unit can
handle globally the information.

Advances in Gossip methods (Boyd et al., 2006), have shown impressive results in
the context where the agents in the network aim at reconstructing statistics that can be
written as empirical means. This has been adapted in optimization and in learning by
Duchi, Agarwal, and Wainwright, (2012), where the optimization of an empirical risk
extends naturally such methods (and the averaging is over gradients).

Yet, for estimation and optimization that rely on U-statistics of order two, i.e., on
pairs of observations (such as dispersion estimation, inertia minimization, metric learn-
ing, AUC optimization, etc.) direct extensions of former Gossip methods are not adapted.
Hence, with Igor Colin, Aurélien Bellet and Stéphan Clemençon, we have proposed new

5note that it is a difficult task to compare Lasso and Concomitant Lasso solvers due to stopping criteria
(e.g., duality gaps) with different scales.
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algorithms based on a specific handling of the pair-wise structure. After a first contri-
bution on estimation [JS-Conf16], we have extended to optimization some of our results
[JS-Conf24]. The optimization algorithm extended the standard dual averaging method
(Nesterov, 2009) to this distributed scenario with pair-wise constraints.

On top of a theoretical guarantee on the proposed algorithm, practical improvements
over naive Gossip strategies were shown on simulated networks. This work was the
subject of Igor Colin’s Ph.D. thesis (defense: Nov. 2016), that I co-supervised with
Stephan Clémençon, and whose Ph.D. was supported by the telecommunication com-
pany Streamwide.

Matrix completion with trace norm regularization

While working on high dimensional regression, I became aware of the similarities of
the theoretical tools used for controlling the performance of convex methods for matrix
completion. Matrix completion became popular at the end of the 2000’s for recommender
systems (Koren, Bell, and Volinsky, 2009), thanks to the Netflix prize, where the objective
was to improve movie ratings prediction for this company. A one million dollar prize was
offered to the first team that improved the RMSE by more than 10% upon the company’s
algorithm. In such a context it is customary to replace sparsity assumption by a low rank
one, i.e., going from `1 norm to trace norm. Adapting concentration results for the non-
commutative case, the theoretical analysis of standard least square regularized by the
trace norm (or Schatten 1-norm), was statistically analyzed by Candès and Plan, (2010).
Later on, Koltchinskii, Lounici, and Tsybakov, (2011) have provided a more refined anal-
ysis, proving sharp oracle inequalities under a low rank assumption. Extensions similar
to the concomitant point of view were also adapted to trace norm regularization prob-
lems (Gaïffas and Klopp, 2017). Leveraging such results, we proved with Jean Lafond,
Éric Moulines and Olga Klopp that such an analysis could be extended to cases with
discrete models (with a strong emphasis on the binary case), and not only for cases with
a Gaussian assumption on the noise [JS-Conf14],[JS-Journal7]. Doing so, we improved
on previously known bounds for the binary cases (Davenport et al., 2014), showing that
a trace-norm regularized estimator could achieve the minimax rate up to logarithmic fac-
tors. Our work was latter extended by Lafond, (2015) for case where the data-fitting term
belongs to the exponential family.

Algorithmically, solving this type of optimization problems is more involved than
for standard vectorial models. In particular, naive applications of proximal methods
require computing a full Singular Value Decomposition (SVD) at each step of the gradient
descent step, leading to a heavy computational burden. To overpass this difficulty, we
have instead chosen a conditional gradient variant introduced by Dudík, Harchaoui, and
Malick, (2012), following a road advertised by Jaggi, (2013), that only requires computing
top singular vector pairs instead of a full SVD at each iteration. This work was the subject
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of J. Lafond’s Ph.D. thesis (defense: Dec. 2016), that I co-supervised with É. Moulines.

Older contributions in image processing and non-parametric statistics

During my Ph.D. thesis [Ph.D. Thesis] and my post-doctorate I worked mostly on
image processing and applications of non-parametric statistics to this field. Among my
contributions in image processing, I investigated some variants of the Non Local Means
algorithm (Buades, Coll, and Morel, 2005), a key method for denoising images corrupted
by additive with Gaussian noise. In particular, on top of an extensive numerical study
[JS-Journal1], I proposed a simple strategy for combining various estimators produced by
overlapping patches [JS-Conf3], [JS-Journal2] as well as a variant leveraging shape/size
in an adaptive way [JS-Conf5],[JS-Journal3]. Later on, during my post-doctorate at Duke
University, we proved with Ery Arias-Castro and Rebecca Willett minimax results for the
Non Local Means and some simple variants [JS-Journal5], [JS-Conf9] for some imaging
models.

In parallel, I also worked on dictionary learning for image processing tasks [JS-
Conf6], with a special emphasis on cases with strong Poisson noise, i.e., with photon
limited emissions [JS-Conf8], [JS-Journal6].

Last but not least, my attempts to understand sparse models in the context of high di-
mensional regression started in 2010, with a special focus on exponentially weighted ag-
gregation. In a series of work with Arnak Dalalyan [JS-Conf4], [JS-Conf7], [JS-Journal4],
we proved sparse oracle inequalities for a more general family of estimators and noise
models, generalizing the seminal contribution by Leung and Barron, (2006) and the series
of papers by Dalalyan and Tsybakov, (2008, 2009, 2012a,b) to a class of affine methods.
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Chapter 1

Computational aspects of sparsity
enforcing regularization

Recent contributions on efficiently solving regression problems with sparsity enforc-
ing regularization are presented in this part.

Sparsity-promoting regularization has had a considerable impact on high dimensional
statistics both in terms of applications and on the theoretical side: finite sample results
as well as asymptotic ones involving potentially exponentially more features than the
underlying sparsity index (Bickel, Ritov, and Tsybakov, 2009), see also several books
synthesizing the understanding in this field (Bühlmann and van de Geer, 2011; Giraud,
2014; Hastie, Tibshirani, and Wainwright, 2015). Yet these methods come with a cost, as
inferring parameters for such sparse estimators requires solving high-dimensional con-
strained or non-smooth optimization problems, for which dedicated advanced solvers
are necessary (Bach et al., 2012).

While sparsity can come to the rescue of statistical theory, it can also be exploited
to come up with faster solvers. Various optimization strategies have been proposed to
accelerate the solvers for problems such as Lasso or sparse logistic regression involving
`1 regularization, multi-task Lasso, multinomial logistic or group-Lasso involving `1/`2

mixed-norms (Friedman et al., 2007; Koh, Kim, and Boyd, 2007; Osborne, Presnell, and
Turlach, 2000). We will refer to these problems as Lasso-type problems (Bach et al., 2012).
For statistical machine learning, as opposed to fields such as signal processing which
often involve implicit operators (e.g., FFTs, wavelets), design matrices, which store feature
values, are explicit sparse or dense matrices. For Lasso-type problems, this fact has led to
the massive success of so-called (block) coordinate descent (BCD) techniques (Friedman
et al., 2007; Shalev-Shwartz and Zhang, 2016; Tseng, 2001; Wu and Lange, 2008), which
consist in updating one coordinate (or block of coordinates) at a time. Different BCD
strategies exist depending on how one iterates over coordinates: it can be a cyclic rule
as used by Friedman et al., (2007), a random one (Shalev-Shwartz and Zhang, 2016) or
a greedy one, which means that the next updated coordinate is the one that leads to
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the best improvement on the objective (or a surrogate) (Shevade and Keerthi, 2003; Wu
and Lange, 2008). The later rule, recently studied by Nutini et al., (2015), Peng et al.,
(2016), and Tseng and Yun, (2009), is historically known as the Gauss-Southwell (GS) rule
(Southwell, 1941).

To further scale up generic BCD solvers, one recurrent idea in the literature has been
to limit the size of the problems. Again, this is a natural idea as the solution is expected to
be sparse, meaning that many features will have no influence on the model predictions.
This idea is at the heart of the so-called strong rules introduced by Tibshirani et al., (2012)
and at the heart of the popular glmnet R package. Similar ideas can be found earlier in the
Lasso literature (Kowalski et al., 2011; Roth and Fischer, 2008) and also more recently for
example in the Blitz method (Johnson and Guestrin, 2015, 2016) or SDCA variants with
(locally) affine losses (Vainsencher, Liu, and Zhang, 2015). In parallel to these Working
Set (WS) approaches where a BCD solver is run many times, first on a small subproblem
then on growing ones, it has been proposed by El Ghaoui, Viallon, and Rabbani, (2012) to
employ the so called safe rules. While a WS algorithm starts a BCD solver using a subset
of features, possibly ignoring good ones that shall be later considered, safe rules discard
(once and for all) from the full problem some features that are guaranteed to be inactive
at convergence.

A number of variants of safe rules have been proposed since their introduction, in-
cluding for SVM-type problems (Ogawa, Suzuki, and Takeuchi, 2013) and we refer to
(Xiang, Wang, and Ramadge, 2016) for a concise introduction. The most recent variants,
called Gap Safe rules, have been applied to a wide range of Lasso-type problems [JS-
Conf19],[JS-Conf21] and [JS-Preprint1]. Such rules have the unique property of being
convergent, meaning that when the solver reaches convergence, only features that map
to saturated (dual) constraints remain.

Here, our proposed framework is presented in the multi-task regression settings. Note
that this approach has already been generalized to more general data-fitting terms than
a plain quadratic term, in particular for multi-label logistic regression (see for instance
[JS-Preprint1]), but we stick to the regression framework for simplicity.

1.1 Model and notation

We denote by JdK the set {1, . . . , d} for any integer d ∈N, and similarly Jd1, d2K for the
set {d1, . . . , d2} for any integers d1 < d2 For any vector u ∈ Rd and C ⊂ JdK, the support
of u is denoted by Su = {i ∈ JdK : ui 6= 0}, (u)C is the vector composed of elements of u
whose indices lie in C, and C̄ is the complementary set of C in JdK. We denote by S r

B ⊂ JpK
the row support of a matrix B ∈ Rp×q (i.e., the indices of non-zero rows of B). Let n and
p ∈N be respectively the number of observations and features and X ∈ Rn×p the design
matrix. Let Y ∈ Rn×q be the observation matrix, where q stands for the number of tasks
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or classes considered: q = 1 refers to simple regression models. The Euclidean (resp.
Frobenius) norm on vectors (resp. matrices) is denoted by ‖·‖ (resp. ‖·‖F), and the jth

row (resp. kth column) of B by Bj,: (resp. B:,k), for B ∈ Rp×q. The row-wise separable
`r,1 group-norm of a matrix B is written ‖B‖r,1 = ∑j∈JpK‖Bj,:‖r, for any r ≥ 1. For Ω a
generic norm over Rp×q, we write Ω∗ its dual norm; for instance for the ‖·‖2,1 norm this
is the `∞/`2 norm ‖B‖2,∞ = maxj∈JpK ‖Bj,:‖. For simplicity in what follows we will mostly
focus on the simplest ‖·‖2,1 case, though row-decomposable could be handled similarly,
i.e., norms of the form:

Ω(B) = ∑
j∈JpK

Ωj(Bj,:) . (1.1)

One can easily check that for such norms, their dual norms can be written Ω∗(B) =

maxj∈JpK Ωj∗(Bj,:) and the sub-differential (see Definition 5.1 and Proposition 5.1 for more
details on dual norms and their sub-differential) reads ∂Ω(B) = Πj∈JpK∂Ωj(Bj,:), where
the product sign refers to the Cartesian product. We denote by ‖B‖2,0 the number of
non-zero rows of B, i.e., the cardinality of S r

B.
The penalized multi-task regression estimator that we consider from now on is de-

fined as a solution of the (primal) problem

B̂(λ) ∈ arg min
B∈Rp×q

1
2
‖Y− XB‖2

F + λΩ(B)︸ ︷︷ ︸
P (λ)(B)

. (1.2)

Remark 1.1. We sometimes simply call this estimator the multi-task Lasso when considering
Ω(·) = ‖·‖2,1 in Equation (1.2). Our algorithms will be presented only for this case.

Here, the non-negative λ is the regularization parameter controlling the trade-off be-
tween data fitting and regularization. The associated dual problem reads (see for instance
[JS-Conf21])

Θ̂(λ) = arg max
Θ∈∆X

1
2
‖Y‖2

F −
λ2

2

∥∥∥∥Θ− Y
λ

∥∥∥∥2

F︸ ︷︷ ︸
D(λ)(Θ)

. (1.3)

where ∆X = {Θ ∈ Rn×q : Ω∗(X>Θ) ≤ 1} is the (rescaled) dual feasible set. The duality
gap for (1.2) is defined by G(λ)(B, Θ) := P (λ)(B)−D(λ)(Θ). When the dependency on X
is needed, we write B̂(X,λ) (resp. Θ̂(X,λ), P (X,λ)(B), D(X,λ)(Θ) and G(X,λ)(B, Θ)) for B̂(λ)

(resp. Θ̂(λ),P (λ)(B),D(λ)(Θ) and G(λ)(B, Θ)). Note that primal and dual solutions are
linked by Θ̂(λ) = Y−XB̂(λ)

λ , and moreover the Fermat rule (see Proposition 5.2) states that:

X>Θ̂(λ) ∈ ∂Ω(B̂(λ)) =

{
{B ∈ Rp×q : Ω∗(B) ≤ 1} = BΩ∗ , if B̂(λ) = 0
{B ∈ Rp×q : Ω∗(B) = 1 & tr(B>B̂(λ)) = Ω(B̂(λ))}, otherwise

.

(1.4)
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Our aim is to provide an approximate solution of Equation (1.2). We will consider a
stopping criterion based on duality gaps to stop the algorithm. Indeed, if G(λ)(B, Θ) :=
P (λ)(B) − D(λ)(Θ) ≤ ε then P (λ)(B) − P (λ)(B̂(λ)) ≤ ε, whenever strong duality holds;
this is the case for our problems, see for instance (Borwein and Lewis, 2006, Th.3.3.5).
Hence, stopping an algorithm when the duality gap is smaller than ε ensures that the
output solution is an ε-solution of Problem (1.2).

1.2 Block coordinate descent

A standard family of methods for solving problems such as Lasso or multi-task Lasso
is (block) coordinate descent. Such methods consist in solving sub-problems over small
blocks (in the multi-task setting a block is simply a row of B) or even over one single
variable, the others remaining fixed. When no fast algorithm (such as the FFT or the Fast
Wavelet Transforms) is available to compute operations of the form R 7→ X>R or B 7→ XB,
(block) coordinate descent is the current state-of-the-art strategy to address high dimen-
sional scenarios. When fast operations of this kind are available, plain proximal methods
would be preferred, as is often the case in signal and image processing (Combettes and
Pesquet, 2011; Parikh et al., 2013).

In our context the function we aim at optimizing has the following form: P (λ)(B) =
‖Y− XB‖2

F /2 + λ ∑j∈JpK Ωj(Bj), where in this section we simply write Bj ∈ R1×q to refer
to the row Bj,:. When considering a block coordinate descent algorithm, one sequentially
updates at step k, a single block (here row) jk of B. Various BCD strategies to choose jk
are discussed in [JS-Preprint3], and for simplicity we only consider the standard cyclic
choice here:

Pick jk = (k mod p) + 1 . (1.5)

This rules can be easily modified by permuting the visiting order of the blocks after each
epoch1, see the work by Beck, Pauwels, and Sabach, (2015) and Beck and Tetruashvili,
(2013) for a theoretical analysis.

For our problem, the block update rule proceeds as follows:

Bk
jk = Tjk ,Ljk

(Bk−1) , (1.6)

where for instance for all j ∈ JpK, Lj =
∥∥X:,j

∥∥2
2,

Tj,L(B) := prox λ
L ·Ωj

(
Bj −

1
L

X>:,j(XB−Y)
)

, (1.7)

1where an epoch refers to a pass over the p features
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Algorithm 1: BCD: One Block Coordinate Descent Epoch for multi-task Lasso

input : X, Y, λ

param: B = 0p×q, ∀j ∈ JpK, Lj =
∥∥X:,j

∥∥2
2

for j = 1, . . . , p do

Bj ← BST
(

Bj −
1
Lj

X>:,j(XB−Y),
λ

Lj

)
// Block soft-thresholding update

return B

with for any z ∈ Rq and µ > 0,

proxµ·Ωj
(z) = arg min

x∈Rq

1
2
‖z− x‖2 + µ ·Ωj(x) . (1.8)

For multi-task problems the proximal computation is simply a block soft-thresholding
step, see Parikh et al., (2013, p. 65):

proxµ·Ωj
(z) :=

(
1− µ

Ωj(z)

)
+

z . (1.9)

where for any real number a, (a)+ = max(0, a) refers its positive part. In particular, when
considering Ωj = ‖·‖, we write the Block Soft-Thresholding operator

proxµ·‖·‖(z) := BST(z, µ) =

(
1− µ

‖z‖

)
+

z . (1.10)

We summarize one single pass over the features in Algorithm 1. Of course, such a step
needs to be repeated many times to obtain convergence. The way this is incorporated in
an efficient global solver is detailed in the next section.

1.3 Safe Screening rules

Following the seminal work by El Ghaoui, Viallon, and Rabbani, (2012) screening
techniques have emerged as a way to exploit the expected sparsity of the solution by
discarding features prior to starting a sparse solver. In the literature such techniques
are referred to as safe rules when they screen out coefficients guaranteed to be zero in
the targeted optimal solution. Zeroing those coefficients allows to focus more precisely
on the non-zero ones (likely to represent signal) and helps reducing the computational
burden.

We consider three types of screening:

• Static screening: where the screening is performed prior to any computation.
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• Sequential screening: where the screening is performed thanks to computation
done for a different value of λ (in particular when one needs B̂(λ) for λ ∈
{λ1, . . . , λK})

• Dynamic screening: where the screening is performed along with the iterations of
an iterative solver.

One well known extreme is the following: for λ > 0 large enough, 0 is the unique
solution of Problem (1.2). Indeed,

From now on, we will only focus on the case where λ < λmax := Ω∗(X>Y) 2

Screening rules rely on a direct consequence of Fermat’s rule (1.4) for row-
decomposable norms. If B̂(λ)

j,: 6= 0, then Ωj∗(X>:,jΘ̂
(λ)) = 1. Since Θ̂(λ) ∈ ∆X, it implies, by

contraposition, that if Ωj∗(X>:,jΘ̂
(λ)) < 1 then B̂(λ)

j,: = 0. This relation means that the jth

row can be discarded whenever Ωj∗(X>:,jΘ̂
(λ)) < 1. However, since Θ̂(λ) is unknown —

unless λ ≥ λmax, in which case Θ̂(λ) = Y/λ — this rule is of limited use. Fortunately, it
is often possible to construct a set R ⊂ Rn×q, called a safe region, that contains Θ̂(λ). This
observation leads to the following result.

Proposition 1.1 (Safe screening rule (El Ghaoui, Viallon, and Rabbani, 2012)). Let R ⊂
Rn×q s.t. Θ̂(λ) ∈ R, then for any j ∈ JpK:

max
Θ∈R

Ωj∗(X>:,jΘ) < 1 =⇒ Ωj∗(X>:,jΘ̂
(λ)) < 1 =⇒ B̂(λ)

j,: = 0 . (1.11)

Safe screening rules consist in removing the jth feature (i.e., the jth column of X) from
the problem whenever the previous test is satisfied, since B̂(λ)

j,: is then guaranteed to
be zero. If R is small enough to screen many features, one can observe considerable
speed-ups in practice as long as the testing can be performed efficiently. Now, a practical
objective is to find safe regions as narrow as possible. To have useful screening procedures
one needs:

• the safe region R to be as small as possible (and to contain Θ̂(λ)),

• the computation of the quantity max
Θ∈R

Ωj∗(X>:,jΘ) to be cheap.

Regarding the last point, it means that safe regions should be simple geometric objects,
since otherwise, evaluating the test could lead to a computational burden limiting the
benefits of screening. Various shapes have been considered in practice for R, such as
balls (El Ghaoui, Viallon, and Rabbani, 2012), domes [JS-Conf19] or more refined sets,
see (Xiang, Wang, and Ramadge, 2016) for a survey. Numerical experiments have not
shown much benefit by considering complex shapes, and here we simply consider balls.

2since for any λ > 0, the following holds: 0 ∈ arg min
B∈Rp×q

P (λ)(B)⇐⇒ λ ≥ λmax := Ω∗(X>Y).
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Finding a center

To create a useful center for a safe ball, one needs to be able to create dual feasible
points, i.e., points in the dual feasible set ∆X. The point Θmax := Y/λmax leads to the
original (static) safe rules proposed by El Ghaoui, Viallon, and Rabbani, (2012). A more
generic way of creating a dual point consists in rescaling the residual matrix Y − XB in
such a way that it belongs to the dual set ∆X. This choice is motivated by the primal-dual
link equation obtained at optimality Θ̂(λ) = (Y − XB̂(λ))/λ. So for any primal point
B ∈ Rp×q,

Θ(B) :=
Y− XB

max(λ, Ω∗(X>(Y− XB))
(1.12)

is a choice that guarantees Θ(B) ∈ ∆X.
Algorithmically the main cost of screening lies in the evaluation of Ω∗(XT(Y− XB)).

This computation is easy when Ω is the `1 norm or the `1/`2 norm, since the previous
computation simply consists in computing the `∞ norm and the `∞/`2 norm respectively.
For the Sparse Group Lasso, this computation is more involved and relies on a sorting
algorithm (see [JS-Conf23] for more details).

Finding a radius

We have seen how to create a center candidate for the sphere. We now need to find a
proper radius, that would allow the associated sphere to be safe. The following theorem
proposes a way to obtain a radius using the duality gap (see [JS-Preprint1] for a proof):

Theorem 1.1 (Gap Safe sphere). We have

∀B ∈ Rp×q, ∀Θ ∈ ∆X,
∥∥∥Θ̂(λ) −Θ

∥∥∥
F
≤
√

2(P (λ)(B)−D(λ)(Θ))

λ2 =: r(λ)(B, Θ) . (1.13)

Hence R = B(Θ, r(λ)(B, Θ)) :=
{

Θ′ ∈ Rn×q : ‖Θ−Θ′‖F ≤ r(λ)(B, Θ)
}

is a safe region for
any B ∈ Rn and Θ ∈ ∆X.

In particular, one can use a simple upper bound, thanks to the triangle inequality

max
Θ′∈B(Θ,r)

Ωj∗(X>:,jΘ
′) ≤ Ωj∗(X>:,jΘ) + max

Θ′∈B(Θ,r)
Ωj∗(X>j,:(Θ

′ −Θ)) (1.14)

≤ Ωj∗(X>:,jΘ) + Ωj∗(X:,j) max
Θ′∈B(Θ,r)

∥∥Θ′ −Θ
∥∥

F . (1.15)

where Ωj∗(X:,j) := maxΘ′ 6=0 Ωj∗

(
X>j,:Θ

′

‖Θ′‖F

)
. Hence, the gap safe rule eliminates the jth

feature when:
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Ωj∗(X>:,jΘ) + Ωj∗(X>:,j)

√
2

λ2G(λ)(B, Θ) < 1 . (1.16)

In the context where Ω = ‖ · ‖2,1 the screening test simplifies to:∥∥∥X>:,jΘ
∥∥∥+ ∥∥X:,j

∥∥√ 2
λ2G(λ)(B, Θ) < 1 . (1.17)

The practical algorithm is given in Algorithm 2: it consists in identifying a sure set
SW on which Fce block coordinate descent epochs are performed. Then, the duality gap
is computed, and if the stopping criterion is not met, a safe screening step is performed
to reduce the size of the problem to be solved.

Note that when using the BCD step, warm start can be performed by starting the
algorithm at the previous value obtained, restricted to the safe working set, i.e., start with
(Bt−1)SWt . Since the discarded variables were proved to be zeros, this guarantees that the
associated coordinates in the targeted solution are zeros, hence no information is lost.

Remark 1.2. Sequential safe screening can be easily inserted in our approach, by using a simple
warm start step. Indeed, consider the context where one needs to compute B̂(λ) on a grid λ ∈
{λ1, . . . , λK} (often the λ’s are taken on a geometric grid starting from λmax

3). If one has already
obtained approximated solutions for B̂(λ1), . . . , B̂(λk) then one can initialize B0 in Algorithm 2
as the (last) approximation available for B̂(λk) to obtain a decent approximation of B̂(λk+1). The
screening step can be triggered before any computation is done, so if two consecutive B̂(λk) and
B̂(λk+1) are close, then sequential screening could be highly efficient. This is especially the case for
a grid with many parameters.

1.4 Working set strategies

Other alternatives have been derived to speed-up standard solvers for Lasso, multi-
task Lasso and other variants, and adapt similar screening ideas. In particular the most
promising directions consist in relaxing the “safe” property, but using similar screening
strategies to build small active sets. This was for instance proposed under the name strong
rules in Tibshirani et al., (2012), and later extended in the Blitz framework (Johnson and
Guestrin, 2015, 2016), or as aggressive screening rules [JS-Preprint3].

The idea behind safe screening rules is to be able to safely discard features from the
optimization process as it is possible to guarantee that the associated regression coeffi-
cients will be zero at convergence. The Gap Safe rules proposed first in [JS-Conf19] and
later extended in [JS-Conf21] for the multi-task regression considered here read as fol-
lows. For simplicity of the presentation, we now assume that Ω = ‖·‖2,1 (other row-wise

3see for instance (Bühlmann and van de Geer, 2011, page 38) for a description of the standard grid
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Algorithm 2: Gap Safe Screening (for multi-task Lasso)
input : X, Y, λ
param: B0 = 0p×q, ε = 10−6, Fce = 10
for t = 1, . . . , T do

if t mod Fce = 0 then
Compute Θt−1 = Θ(Bt−1) with Equation (1.12)
Compute gt = G(X,λ)(Bt−1, Θt−1) // global duality gap evaluation

if gt ≤ ε then
Break

Compute SWt =

{
j ∈ SWt−1 :

∥∥∥X>:,jΘt−1

∥∥∥
2
+
∥∥X:,j

∥∥√ 2gt
λ2 < 1

}
Compute B̃t = BCD(X:,SWt , Y, λ) // Block Coordinate Descent pass

Set Bt ∈ Rp×q s.t.(Bt)SWt,: = B̃t and (Bt) ¯SW t,: = 0
return Bt

separable norms could be handled similarly). For a pair of feasible primal-dual variables
B and Θ, it is safe to discard feature j in the optimization problem (1.2) if:∥∥∥X>:,jΘ

∥∥∥+ ∥∥X:,j
∥∥√ 2

λ2G(λ)(B, Θ) < 1 , (1.18)

or equivalently, it is necessary to consider the feature j iff:

dj(Θ) :=
1−

∥∥∥X>:,jΘ
∥∥∥∥∥X:,j

∥∥ ≤
√

2
λ2G(λ)(B, Θ) . (1.19)

In other words, the duality gap value allows to define a threshold that shall be compared
to dj(Θ) in order to safely discard features, and ultimately accelerate solvers. A natural
idea to further reduce running time consist in reducing even further the sub-problem
sizes handled. This is to the prize of sacrificing safety. Also, a natural way to prioritize
the features to include in the active set by sorting the dj’s. One way to formalize this is
to introduce a scalar r ∈ [0, 1] and to (momentarily) exclude from computation features
whose dj’s values are not high enough:

dj(Θ) ≤ r

√
2

λ2G(λ)(B, Θ) . (1.20)

Let us consider now this in an iterative strategy. Starting from an initial value of
B0 (e.g., 0 ∈ Rp×q or an approximate solution obtained for a close λ′), one can obtain
a feasible point Θ0 ∈ ∆X, either by using 0 ∈ Rn×q or by residual normalization [JS-
Conf21]. Assuming B0 = 0, this normalization boils down to scaling Y/λ by a constant
α ∈ [0, 1] such that

∥∥αX>Y/λ
∥∥

2,∞ = 1, i.e., choosing α = λ/λmax, where we write λmax =

Ω∗(X>Y).
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Algorithm 3: Agressive screening w. working set

input : X, Y, λ
param: p0 = 100, ξ0 = Y/λ, Θ0 = 0n,q, B0 = 0p,q,

ε = 10−6, ε = 0.3
for t = 1, . . . , T do

αt = max {α ∈ [0, 1] : (1− α)Θt−1 + αξt−1 ∈ ∆X}
Θt = (1− αt)Θt−1 + αtξt−1
gt = G(X,λ)(Bt−1, Θt) // global gap

if gt ≤ ε then
Break

for j = 1, . . . , p do
Compute dt

j = (1− ‖X>:,jΘt‖)/‖X:,j‖
// safe screening:

Remove jth column of X if dt
j >

√
2gt/λ2

Set (dt)S r
Bt−1

= −1 // keep active features

pt = max(p0, min(2 ‖Bt−1‖2,0 , p)) // clipping

Wt =
{

j ∈ [p] : dt
j among pt smallest values of dt

}
// Approximately solve sub-problem :

Get B̃t, ξt ∈ Rpt×q×∆X:,Wt
s.t. G(X:,Wt ,λ)(B̃t, ξt)≤εgt

Set Bt ∈ Rp×q s.t.(Bt)Wt,: = B̃t and (Bt)W̄t,: = 0.
return Bt

Given the primal-dual pair (B0, Θ0) one can compute dj for all features and select the
ones to be added to the working setW1. Then, what we will refer to as an inner solver can
be started onW1. The iteration for this procedure is as follows: assuming the inner solver
returns a primal-dual pair (B̃t, ξt) ∈ Rpt×q ×Rn×q, where pt is the size of Wt, one can
obtain a pair (Bt, ξt) ∈ Rp×q ×Rn×q by considering that (Bt)Wt,: = B̃t and (Bt)W̄t,: = 0.

While ξt was dual feasible for the subproblem D(λ,XWt ,:), it is not feasible for the
original problem D(λ,X).

To obtain a good candidate for Θt it was proposed by Johnson and Guestrin, 2015 to
find Θt as a convex combination of Θt−1 and ξt−1:{

αt = max {α ∈ [0, 1] : (1− α)Θt−1 + αξt−1 ∈ ∆X}
Θt = (1− αt)Θt−1 + αtξt−1

If Θ0 = 0 and B0 = 0, the computation of αt is equivalent to the residual nor-
malization approach mentioned earlier. Otherwise, αt = minj∈JpK αj with αj =

max
{

α′ ∈ [0, 1] :
∥∥∥X>:,j(α

′ξt−1 + (1− α′)Θt−1)
∥∥∥ ≤ 1

}
. The computation of αj has a closed

form solution provided in [JS-Conf26].
So far, we have omitted to detail the strategy to decide which features shall enter the

working set at iteration t. A first strategy is to set a parameter r and then consider all
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features that satisfy (1.20). Yet this strategy does not offer a good control of the size ofWt

which is obviously problematic. A second strategy which we employ here, is to limit the
number of features that shall enter Wt. Constraining the size of Wt to be at most twice
the size of S r

Bt−1
, one shall keep in Wt the blocks with indexes in S r

Bt−1
and add to it the

ones in S̄ r
Bt−1

with the smallest dj(Θt). The iterative working set strategy is summarized
in Algorithm 3.

When q = 1 and one considers only `1 regularized problems the strategy just de-
scribed recovers the Blitz algorithm by Johnson and Guestrin, (2015, 2016). Indeed, in
the `1 case, the dj’s boil down to the computation of the distance to the constraints for
the dual problem (Johnson and Guestrin, 2015). For the `2,1 norm considered here the
computation of the distance from Θt to the set {Θ ∈ Rn×q :

∥∥∥X>:,jΘ
∥∥∥ = 1} involves pro-

jection on ellipsoids for which no closed-form solution exist4. However, viewing Blitz

as an aggressive Gap Safe screening strategy allows for immediate adaptation of (1.20) to
more generic sparse penalties for which Gap Safe rules have been derived. We illustrate
this here with the multi-task Lasso. Following [JS-Conf21], the quantity dj reads:

dj(Θt) =
1−

∥∥∥X>:,jΘt

∥∥∥∥∥X:,j
∥∥ , (1.21)

for the `2,1 regularization.
Now that we have detailed the WS strategy we perform. The choice of the inner solver

that minimizes (1.2) restricting X to the features in the set Wt is detailed in [JS-Conf26].
Note in particular that for such small sub-problems, one can apply Gram matrix pre-
computation (i.e., computing and storing Gt = X>Wt

XWt ). This helps standard coordinate
approaches but also leads to the possibility of using Greedy (block) coordinate descent
variants (Nutini et al., 2015; Shi et al., 2016; Southwell, 1941; Tseng and Yun, 2009).

An illustration of the speed-ups w.r.t. the standard multi-task Lasso from
scikit-learn (Pedregosa et al., 2011) is provided in Figure 1.1.

4Note that for general norms, such projections would become even more intricate
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Figure 1.1: Duality gap as a function of time for the multi-task Lasso on MEG data
(n = 302, p = 7498, q = 181) using λ = 0.1

∥∥X>Y
∥∥

2,∞. The cyclic BCD from scikit-learn

is compared to the WS approach combined with the GS-rB rule (Greedy BCD method
with batches of size B = 10) with precomputation of the Gram matrix. The proposed
WS approach clearly outperforms the plain BCD solver despite its use of conditional
coordinate updates to avoid unnecessary computations.
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Chapter 2

Bias reduction in high dimensional
regularized models

2.1 Standard non-smooth convex estimators

Regularity properties such as sparsity or gradient sparsity of an image are difficult to
enforce in general, and notably lead to combinatorial and non-convex problems. When
one is willing to guarantee such properties, convex relaxation is a popular road. This
is typically done using the `1 norm instead of the `0 pseudo-norm, as for the Lasso
(Tibshirani, 1996) or the total variation (Rudin, Osher, and Fatemi, 1992). Nevertheless,
such relaxations are well known to create solutions with a larger bias.

Typically, for the Lasso estimator defined below,

β̂
(λ)
L ∈ arg min

β∈Rp

1
2n
‖y− Xβ‖2 + λ ‖β‖1︸ ︷︷ ︸

P (λ)
L (β)

, (2.1)

using the `1 convex relaxation of the `0 pseudo-norm shrinks large coefficients towards
zero. In such context n represents the number of observations, p the number of features
in the design matrix X.

For the anisotropic total variation (AnisoTV) the formulation is similar1:

β̂
(λ)
AnisoTV ∈ arg min

β∈Rp

1
2n
‖y− Xβ‖2 + λ

∥∥∥D>β
∥∥∥

1︸ ︷︷ ︸
P (λ)

AnisoTV(β)

, (2.2)

where D> is the incidence matrix associated to a graph G = (V, E) with n vertices,
V = JnK, and m edges, E = JmK. Note that D> = D>G (we drop the reference to G when

1in statistics this estimator is sometimes referred to as the generalized Lasso (Tibshirani and Taylor, 2011)
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no ambiguity is possible) is defined as

(D>)e,v =


+1, if v = min(i, j) ,
−1, if v = max(i, j) ,
0, otherwise ,

(2.3)

where e = {i, j}. Remark that L = DD> is the so-called graph Laplacian of G. In par-
ticular for the case of (2D) images, each pixel2 is linked to its four neighbors (east, west,
north, south). Similar extensions are also common for videos (3D). In the context of im-
age processing, p if often seen as the number of pixels, and X is an operator transforming
the true underlying signal into a degraded version: standard cases include blurring fil-
ters, down-sampling or specific transforms such as the Radon transform. Note that in
the 1D case, this estimator has long been investigated by statisticians (Dalalyan, Hebiri,
and Lederer, 2017; Harchaoui and Lévy-Leduc, 2010; Mammen and van de Geer, 1997).

For the isotropic total variation (IsoTV) (Rudin, Osher, and Fatemi, 1992) in Rd, one
can write

β̂
(λ)
IsoTV ∈ arg min

β∈Rp

1
2n
‖y− Xβ‖2 + λ

∥∥∥Γ>β
∥∥∥

2,1︸ ︷︷ ︸
P (λ)

IsoTV(β)

, (2.4)

where β ∈ Rp can be identified to a b-dimensional signal (for images b = 2, for videos
b = 3, etc.) for which Γ> = ∇ : Rp → Rp×b and ‖∇x‖2,1 = ∑

p
i=1 ‖(∇x)i‖2 is the discrete

gradient. Like AnisoTV, it promotes solutions with large constant regions, but some
transition regions can be smooth, typically those with high curvature in the input image,
see Figure 2.4.(c)-(e). A major difference is that the `1 − `2 norm induces an isotropic
effect by favoring rounded like structures rather than squared ones.

2.2 De-biasing convex regularized regression in high dimension

We have presented three standard methods from statistics and image processing. In
this section we illustrate similar drawbacks they share, due to the usage of non-smooth
convex regularizers.

2.2.1 Bias visualization with non-smooth regularizations

It is a fact observed by practitioners that methods relying on convex non-smooth
regularization often suffer from a specific bias. For instance in the Lasso case, the large
estimated coefficients are shrunk toward zero, cf. Figure 2.1 for a visualization on a simple
simulated example.

2except boundary ones
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Figure 2.1: Comparisons between Lasso, LSLasso (i.e., CLEAR, defined in (2.2), applied to
Lasso) and SignLSLasso in a regression settings, with n = 100, p = 100. The design matrix
X is drawn according to a Gaussian distribution with equi-correlation design (ρ = 0.5),
and additive white Gaussian noise with standard deviation σ = 0.5 has been added. The
true underlying signal has for support the first 30 coordinates, and β1 = · · · = β30 = 1.
(a) Lasso, LSLasso and true signal (b) LSLasso and Sign-LSLasso.

For AnisoTV or IsoTV a similar drawback appears: the estimated jumps tend to be
badly estimated, with a systematic bias towards the averaged signal. Though, as in the
Lasso, their position is often rather accurate. Such phenomena are visible in the 1D case,
where the AnisoTV and IsoTV coincide, see Figure 2.2, but also in the 2D case, where a
loss of contrast is particularly clear on this toy example, see Figure 2.4.

Such drawbacks have long been well known by practitioners, and simple remedies
have been proposed on a case by case analysis. In the Lasso case, the most popular
solution is a re-fitting scheme that consists in performing a posteriori a least-square re-
estimation of the non-zero coefficients of the solution, i.e., a least-square step over the
support estimated by the Lasso procedure. This post re-fitting technique has become
popular under various names in the literature: Hybrid Lasso (Efron et al., 2004), Lasso-
Gauss (Rigollet and Tsybakov, 2011), OLS post-Lasso (Belloni and Chernozhukov, 2013),
Debiased Lasso, see (Belloni and Chernozhukov, 2013; Lederer, 2013) for extensive details
on the subject. We refer to this estimator as the LSLasso in what follows, and define it by:

β̂
(λ)
LSL ∈ arg min

β∈Rp,supp(β)⊆supp(β̂
(λ)
L )

‖y− Xβ‖2 , (2.5)

where supp(β) = {j ∈ JpK : β j 6= 0} is the support of β.
The LSLasso has the benefit w.r.t. the Lasso that when choosing the regularization

parameter by cross-validation, a better model is found if the refitting step is also incor-
porated in the cross-validation (as is illustrated in Figure 2.3). Indeed, otherwise, it is
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Figure 2.2: Example of a TV denoising on a 1D signal (i.e., n = p and X = Idn). The
contraction of the jumps is well illustrated on this example. The impact of refitting on
the space with supp(D>β) ⊆ supp(D> β̂

(λ)
AnisoTV) is illustrated by the contraction towards

the mean of the recovered signal for the version without refitting (TV). The version with
refitting (LSTV), does not suffer as much of this effect.

empirically observed that the support identified by Lasso tends to be too large (Lederer,
2013), adding irrelevant features that help reducing the cross-validation score (usually
the MSE). This is illustrated on a simulated example in Figure 2.3. When combined with
tuning schemes, such benefits were also investigated in [JS-Journal8] in designing a new
way to select the regularization parameter. The method proposed was build using a Lep-
ski’s type procedure (Lepski, 1990, 1992; Lepski, Mammen, and Spokoiny, 1997) in the
context of high dimensional regression.

For AnisoTV, the same post re-fitting approach can be performed to re-estimate the
amplitudes of the jumps, provided their locations have been correctly identified. This can
be formulated as follows

β̂
(λ)
LSAnisoTV ∈ arg min

β∈Rp,supp(D>β)⊆supp(D> β̂
(λ)
AnisoTV)

‖y− Xβ‖2 . (2.6)

In particular, such a post-processing step is highly relevant when considering under-
lying piece-wise constant signals. Visual impact of such a step is provided in Figure 2.2
for 1D as well as in Figure 2.4 for 2D cases. One can check in that case that the re-fitting
would coincide with the original estimator on “staircase” sub-signal, using the terminol-
ogy introduced by (Vaiter et al., 2013).
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Figure 2.3: Prediction error with λ varying for Lasso and LSLasso in a regression setting
(n = 100, p = 100) on a simulated example. The true underlying signal has support the
first 30 coordinates, and β1 = · · · = β30 = 1. The design matrix is drawn according to
a Gaussian distribution with equi-correlation design (Bühlmann and van de Geer, 2011,
p. 42) (with ρ = 0.5), and an additive Gaussian noise with standard deviation σ = 0.5
is added. The parameter λ is chosen by 5-fold cross-validation for prediction (l2 error).
Note that the supports recovered are of size 58 (Lasso) and 45 (LSLasso).

For IsoTV, a refitting on the set where jumps agree with the initial solution leads to
solve

β̂
(λ)
LSIsoTV ∈ arg min

β∈Rp,supp(Γ>β)⊆supp(Γ> β̂
(λ)
IsoTV)

‖y− Xβ‖2 . (2.7)

Though this seems to be a natural idea, the recovered signal using such a choice has
poor performance, see Figure 2.4.(d) in particular. Such drawbacks was the starting point
of the CLEAR (Covariant LEAst-square Re-fitting) approach [JS-Conf17],[JS-Conf18],[JS-
Journal9]: our general re-fitting technique aims at re-enhancing the estimation towards
the data without altering the desired properties imposed by the penalty (e.g., sparsity).

Though this method was originally elaborated with `1 analysis problems in mind, it
has the ability to generalize to a wider family, while in simple cases such as the Lasso
or the AnisoTV, it recovers the classical post re-fitting solution described earlier. For
instance, our methodology successfully applies to the IsoTV, but also to various image
processing estimator such as the non-local means (Buades, Coll, and Morel, 2005), the
block matching 3D (BM3D) (Dabov et al., 2007) and the Dual Domain Image Denoising
(DDID) (Knaus and Zwicker, 2013).

A preliminary attempt to suppress the bias emerging from the choice of the method
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Algorithm 4: CD: Coordinate Descent Epoch for CLEAR Lasso (or LSLasso)
input : X, y, λ

param: β = 0p, β̃ = 0p, ∀j ∈ JpK, Lj =
∥∥X:,j

∥∥2
2

for j = 1, . . . , p do

β̃ j ←
(

β̃ j −
1
Lj

X>:,j(Xβ̃− y)
)
1|β j|> λ

Lj
// refitting part

β j ← ST
(

β j −
1
Lj

X>:,j(Xβ− y),
λ

Lj

)
// soft-thresholding update

return β

(in particular for the `1 penalty) , while leaving unchanged the bias due to the choice of
the model was proposed in [JS-Conf17]. This approach – hereafter referred to as invariant
re-fitting – provides interesting results, but is limited to a class of restoration algorithms
that satisfy restrictive local properties. In particular, the invariant re-fitting cannot handle
IsoTV. In this case, the invariant re-fitting is unsatisfactory as it removes some desired
aspects enforced by the prior, such as smoothness, and suffers from a significant increase
of variance in practice. A simple illustration of this phenomenon for iso-TV is provided
in Figure 2.4.(d) where artificial oscillations are wrongly amplified near the boundaries.

While the covariant and the invariant re-fitting both correspond to the least-square
post re-fitting step in the case of AnisoTV, the two techniques do not match for iso-
TV. Indeed, CLEAR outputs a more relevant solution than the one from the invariant
re-fitting. Figure 2.4.(e) shows the benefit of our proposed solution w.r.t. the (naive)
invariant re-fitting displayed in Figure 2.4.(d).

2.2.2 General refitting schemes

Let us introduce first the invariant re-fitting. It relies on the model subspace, a model
that captures what is linearly invariant through β̂ w.r.t. small perturbations of y. Typically,
for the Lasso case, it encodes the set of signals sharing the same support.

Definition 2.1. The invariant re-fitting associated to an a.e. differentiable estimator y 7→ β̂(y)
is given for almost all y ∈ Rn by

Rinv
β̂
(y) = β̂(y) + J(XJ)+(y− Xβ̂(y)) ∈ arg min

β∈Mβ̂(y)
‖Xβ− y‖2

2 , (2.8)

where J = Jβ̂(y) is the Jacobian matrix of β̂ at the point y, and the model (affine) space is

Mβ̂(y) = y + Im
[

Jβ̂(y)
]
.

Note that though we have only considered `2 data-fitting terms, extensions to general
terms would be easy to formalize with the model spaceMβ̂(y) defined earlier.
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Figure 2.4: (a) A piece-wise constant signal. (b) Its noisy version. (c) Solution of IsoTV
with λ = 10 on the noisy signal. (d) Solution of the invariant re-fitting of IsoTV. (e)
Solution of the covariant re-fitting of IsoTV. (f) Solution of AnisoTV. (g) Solution of the
invariant (=covariant) re-fitting of AnisoTV. Red points indicate locations where the dis-
crete gradient is non-zero.

For the Lasso case, this recovers the definition of the LSLasso. A detailed list of cases
can be found in [JS-Journal9], Section 3 for the interested reader.

Definition 2.2 (CLEAR). The Covariant LEast-square Re-fitting associated to an a.e. differ-
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entiable estimator y 7→ β̂(y) is, for almost all y ∈ Rn, given by

Rβ̂(y) = β̂(y) + ρJ(y− Xβ̂(y)) with ρ =

{ 〈XJδ, δ〉
‖XJδ‖2

2
if XJδ 6= 0 ,

1 otherwise ,
(2.9)

where δ = y− Xβ̂(y) is the residual and J = Jβ̂(y) is the Jacobian matrix of β̂ at the point y.

Note that for Lasso and AnisoTV, CLEAR simply reads Rβ̂(y) = Jy and for Iso-TV
Rβ̂(y) = (1− ρ)β̂(y) + ρJy (see [JS-Journal9], Section 4 for more elementary properties
of the proposed method).

Computational benefits An interesting benefit of our approach, is that one can estimate
Jy on the fly to evaluate Rβ̂(y). Consider an iterative algorithm to evaluate β̂(y) with the
following recursion at step k: {

βk+1 = Ψ(βk, y) . (2.10)

Then to estimate the quantity Jy, the chain rule advocates to adapt the recursion{
βk+1 = Ψ(βk, y) ,
gk+1 = ∂Ψ

∂β (βk, y) · gk + ∂Ψ
∂y (βk, y) · y .

(2.11)

Note that for simple examples such as for proximal algorithms using the soft-
thresholding operator, for instance with ISTA (Daubechies, Defrise, and De Mol, 2004),
the previous algorithm reads

Ψ(β, y) = ST
(

β− 1
L

X>(Xβ− y),
λ

L

)
(2.12)

for a well chosen L > 0, and leads to consider as approximation of Jy iterates of the form:

∀j ∈ JpK, gk+1
j =

{
0 if |βk

j | > λ
L ,

gk
j − 1

L X>j (Xgk − y) otherwise ,
(2.13)

where we remind that formulation of the soft-thresholding is

ST(z, µ) = sign(z) (|z| − µ)+ . (2.14)

A simple illustration is provided for a coordinate descent Lasso solver in Algorithm 4,
leading to compute the LSLasso along with the Lasso solutions.

In common convex regularized regression problem, e.g., `1 − `2 analysis (Elad, Mi-
lanfar, and Rubinstein, 2007) (encompassing the Lasso, the group Lasso (Lin and Zhang,
2006; Yuan and Lin, 2006), the Aniso and IsoTV), we show that our re-fitting technique
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can be performed with a complexity overload of about twice that of the original algorithm
only, relying on Equation (2.11).

While our covariant re-fitting technique recovers the classical post re-fitting solution in
most cases, the proposed algorithm helps to get more stable solutions in practice. Unlike
the LSLasso (usually obtained by a least squares step after the Lasso support has been
identified), our algorithm does not require identifying the support of the solution (nor
does it require identifying the jump locations for AnisoTV solutions). Since the Lasso or
the AnisoTV are usually obtained through iterative algorithms stopped at a prescribed
convergence accuracy, numerically identifying supports or jumps might be imprecise.
Such wrong support identifications lead to results that can strongly deviate from the
sought re-fitting.

Our covariant re-fitting jointly estimates the re-enhanced solution during the itera-
tions of the original algorithm and, as a by product, produces solutions that are more
stable in practice.

Connections with prior works The covariant re-fitting is also strongly related to boost-
ing methods re-injecting useful information remaining in the residual. Such approaches
can be traced back to twicing (Tukey, 1977) and have recently been thoroughly investi-
gated: boosting (Bühlmann and Yu, 2003), Bregman iterations and nonlinear inverse scale
spaces (Burger et al., 2006; Osher et al., 2005, 2016; Xu and Osher, 2007), ideal spectral
filtering in the analysis sense (Gilboa, 2014), SAIF-boosting (Milanfar, 2012; Talebi, Zhu,
and Milanfar, 2013) and SOS-boosting (Romano and Elad, 2015) being some of the most
popular ones. Most of these methods are performed iteratively, leading to an additional
parameter: the number of steps to consider in practice. Our method has the noticeable
advantage that it is by construction a two-step one. Iterating more would not be benefi-
cial. Unlike re-fitting, these later approaches aim at improving the overall signal quality
by authorizing the re-enhanced result to deviate strongly from the original biased solu-
tion. In particular, they do not recover the aforementioned post re-fitting technique in
the Lasso case. Our scheme also presents some similarities with the classical shrinking
estimators introduced in (Stein, 1956). Indeed, the step performed by CLEAR, is similar
to a shrinkage step with a data-driven residual correction weight, see also (George, 1986,
Section 3.1)

Limits It is well known that bias reduction is not always favorable in terms of mean
square error (MSE) because of a bias-variance trade-off. It is important to highlight that a
re-fitting procedure is expected to re-inject part of the variance, therefore it could lead to
an increase of residual noise. Hence, the MSE is not expected to be improved by re-fitting
techniques (unlike the aforementioned boosting-like methods that attempt to improve the
MSE). Our numerical experiments illustrate that re-fitting is beneficial when the signal of
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interest fits well the model imposed by the prior.
In other scenarios, when the model mismatches the sought signal, the original biased

estimator remains favorable in terms of MSE. Re-fitting is nevertheless essential in the
latter case for applications where the image intensities have a physical sense and critical
decisions are taken from their values.

Also, in the Lasso case, it could be unnatural that after a refitting step the coefficient
could change sign, meaning that the influence of some variable may be reverse after the
LS-refitting step. Note that sign inversions exist in Figure 2.1 between Lasso and LSLasso.
They are removed though by considering the Sign-LSLasso defined below:

β̂
(λ)
Sign−LSL ∈ arg min

β∈Rp,sign(β)·sign(β̂
(λ)
L )≥0

‖y− Xβ‖2 , (2.15)

Appearance of the Sign-LSLasso formulation could be traced back to (Osher et al.,
2016) or (Brinkmann et al., 2016). In the later, the authors have proposed a refitting step
based on Bregman divergence constraints (Brinkmann et al., 2016). This point has also
emerged in the work by E. Chzhen during his 2016 internship, currently unpublished.
Note that the Sign-LSLasso also bears some similarities with the Nonnegative Garrote
(Breiman, 1995).
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Chapter 3

Joint estimation of the noise level

In the context of high dimensional regression where the number of features is greater
than the number of observations, standard least-squares need some regularization to both
avoid over-fitting and ease the interpretation of discriminant features. Among the least-
squares with sparsity inducing regularization, the Lasso (Tibshirani, 1996), using the `1

norm as a regularizer, is the most popular one. Its success mostly relies on the convex
nature of its formulation, and on the guarantees that have been proved under various
design and signal assumptions. Though this estimator is well understood theoretically,
the choice of the tuning parameter remains an open and critical question in theory as
well as in practice. Moreover, the noise level is of practical interest since it is required in
the computation of model selection criteria such as AIC, BIC, SURE or in the construction
of confidence sets.

For the Lasso, statistical guarantees (Bickel, Ritov, and Tsybakov, 2009) (or see
(Bühlmann and van de Geer, 2011) for a thorough review) rely on choosing the tun-
ing parameter proportional to the noise level, a quantity that is usually unknown to
practitioners. Moreover, automatic tuning (e.g., using cross-validation) can not always
be performed as it is time consuming. This is in particular the case for contexts where
many Lasso-type estimators need to be computed. We can mention two cases where this
is relevant.

The first one is in dictionary learning, where a Lasso fit is required at each step of an
alternate minimization procedure. In practice, this parameter is often set once and for all
(Mairal et al., 2010) for simplicity, and a good calibration is then of high interest.

The second one is when computing the de-sparsified Lasso (see for instance
(Bühlmann, 2017; van de Geer et al., 2014), a method tailored to construct confidence
intervals in high dimension. For this computation, the authors rely on computing p
Lasso estimators to provide a sparse estimator of the precision matrix, i.e., the inverse of
the Gram matrix. The computation of a potentially sparse precision matrix (the inverse
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of the feature correlation matrix) is required1. Evaluating such estimators is still a chal-
lenge, and current methods perform brute force evaluation of p Lasso estimators, one for
each column of the matrix (van de Geer et al., 2014), see also (Dezeure et al., 2015) for
empirical comparisons. This would require tuning p (Concomitant) Lasso estimator. In
particular due to this amount of computation it is non-realistic to investigate more than
one global parameter: hence the crucial need for its calibration. So for simplicity, only a
single fixed λ value is often considered by practical solvers.

A natural statistical way to estimate both the regression coefficient and the noise
level is to perform a joint estimation, for instance by performing a penalized maximum
likelihood of the joint distribution. Unfortunately, a direct approach leads to a non-convex
formulation, though one can recover a jointly convex formulation through a change of
variable (Städler, Bühlmann, and van de Geer, 2010).

Another road for this joint estimation was inspired by the robust theory developed
by Huber, (1981), particularly in the context of location-scale estimation. Indeed, Owen,
(2007) extended it to handle sparsity inducing penalty, leading to a jointly convex opti-
mization formulation. Since then, his estimator has appeared under various names, and
we coined it the Concomitant Lasso. Indeed, as far as we know Owen, (2007) was the
first to propose such a formulation in the context of sparse regularization.

Later, the same formulation was mentioned in Antoniadis, 2010, in a response to the
paper by Städler, Bühlmann, and van de Geer, (2010), and was extensively analyzed in
(Sun and Zhang, 2012), under the name Scaled-Lasso. Similar results were indepen-
dently obtained by Belloni, Chernozhukov, and Wang, (2011) for the same estimator,
though with a different formulation. While investigating pivotal quantities, Belloni, Cher-
nozhukov, and Wang, (2011) proposed to solve the following convex program: modify
the standard Lasso by removing the square in the data fitting term. Thus, they termed
their estimator the Square-root Lasso, see also Chrétien and Darses, (2011). A second ap-
proach leading to this very formulation, was proposed by Xu, Caramanis, and Mannor,
2010 to account for noise in the design matrix, in an adversarial scenario. Interestingly
their robust construction led exactly to the Square-root Lasso formulation.

Under standard design assumption (Bickel, Ritov, and Tsybakov, 2009), it is proved
that the Scaled/Square-root Lasso reaches optimal rates for sparse regression, with the
additional benefit that the regularization parameter is independent of the noise level
(Belloni, Chernozhukov, and Wang, 2011; Sun and Zhang, 2012). Moreover, a practical
study (Reid, Tibshirani, and Friedman, 2016) has shown that the Concomitant Lasso
estimator, or its debiased version (Belloni and Chernozhukov, 2013; Lederer, 2013), is
particularly well suited for estimating the noise level in high dimension.

Theoretical controls for such estimators were proposed independently by Belloni,
Chernozhukov, and Wang, (2011) and Sun and Zhang, (2012). Sun and Zhang, (2012) have

1alternative formulation with the same flavor were also proposed by Javanmard and Montanari, (2014)
and Zhang and Zhang, (2014)
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proved fast-rates for the prediction error under standard restricted eigen value proper-
ties (Bickel, Ritov, and Tsybakov, 2009). This is in particular summarized in (van de
Geer, 2016, Thereom 3.1) and (Giraud, 2014, Theorem 5.3). Estimation bounds are also
provided by similar techniques.

A similar analysis was extended in (Dalalyan, Hebiri, and Lederer, 2017) for the
Lasso, and provides the current state-of-the-art sharp oracle inequalities for the Lasso-
type methods2.

3.1 Concomitant estimation: various definitions

Concomitant Lasso formulation: Let us start by recalling the formulation given by
Owen, (2007) and later analyzed by Sun and Zhang, (2012).

Definition 3.1. For λ > 0, the Concomitant Lasso estimator β̂(λ) is defined as a solution of the
primal optimization problem

(β̂
(λ)
CL , σ̂

(λ)
CL ) ∈ arg min

β∈Rp,σ>0

1
2nσ
‖y− Xβ‖2 +

σ

2
+ λ ‖β‖1︸ ︷︷ ︸

P (λ)
CL (β,σ)

, (3.1)

The motivation originally proposed by Huber, (1981) (though without using any reg-
ularization), relies on a perspective point of view. Indeed, one can think of the objective
function in Equation (3.1) as

P (λ)
CL (β, σ) = σ · P (λ)

L

(
β

σ

)
. (3.2)

where P (λ)
L is the primal objective of the Lasso defined Equation (2.1).

As defined in (3.1), the Concomitant Lasso estimator is ill-defined. Indeed, the set over
which we optimize is not closed and the optimization problem may have no solution. We
circumvent this difficulty by considering instead the Fenchel biconjugate of the objective
function (see Section 5.2.1 for more details). The actual objective function accepts σ ≥ 0
as soon as y = Xβ. We often write (3.1) instead of the minimization of the biconjugate as
a slight abuse of notation.

Similarly to the Lasso, one can provide dual formulation and first order necessary
condition for this convex problem:

Theorem 3.1 ([JS-Conf27]). Denoting ∆X,λ =
{

θ ∈ Rn : ‖X>θ‖∞ ≤ 1, λ
√

n‖θ‖ ≤ 1
}

, the
dual formulation of the Concomitant Lasso reads

θ̂(λ) ∈ arg max
θ∈∆X,λ

〈y, λθ〉︸ ︷︷ ︸
D(λ)

CL (θ)

. (3.3)

2the first result of this kind for the Lasso can be traced back to Koltchinskii, Lounici, and Tsybakov, (2011)
for a more general matrix completion model
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For an optimal primal vector β̂(λ), σ̂(λ) = ‖y− Xβ̂(λ)‖/√n. Moreover, the Fermat’s rule reads

y = nλσ̂(λ)θ̂(λ) + Xβ̂(λ) (link-equation), (3.4)

X>(y− Xβ̂(λ)) ∈ nλσ̂(λ)∂ ‖·‖1 (β̂(λ)) (sub-differential inclusion). (3.5)

It is interesting to note that there are links between the way the Concomitant Lasso is
introduced and an algorithmic trick to solve `1 regularized problems. Indeed the same
ingredient is used to optimize such non-smooth problem using quadratic surrogate in
(Daubechies et al., 2010; Gorodnitsky and Rao, 1997). Such an approach leads to solve
re-weighted least-square problems. Moreover, this was considered to design generalized
regularization as proposed by (Micchelli, Morales, and Pontil, 2010). There, the authors
leveraged the fact that the `1 norm can be approximated from above in the following way
(where again the Fenchel biconjugate could be substituted to define a valid optimization
problem):

‖β‖1 =
p

∑
j=1
|β j| =

1
2

min
(λ1,...,λp)∈R

p
+

p

∑
j=1

(
β2

j

λj
+ λj

)
. (3.6)

This road was also recently investigated by Sankaran, Bach, and Bhattacharyya, (2017)
to provide alternatives to the standard ordered `1 norms (Zeng and Figueiredo, 2014)
regularizations such as Oscar (Bondell and Reich, 2008) or SLOPE (Bogdan et al., 2015).
In particular the later has some appealing properties to control the False Discovery Rates
in support identification (Bogdan et al., 2015), and has been shown to satisfy sharper
sparse oracle inequalities than Lasso.

Square-root Lasso formulation: This formulation was proposed by Belloni, Cher-
nozhukov, and Wang, (2011) and is expressed as

Square-root Lasso: β̂
(λ)√

L
∈ arg min

β∈Rp

1√
n
‖y− Xβ‖+ λ ‖β‖1︸ ︷︷ ︸

P (λ)√
L

. (3.7)

Note that it can be checked that
(

β̂
(λ)√

L
, σ̂(λ)

)
is a solution of the Concomitant Lasso for-

mulation (3.1) for σ̂(λ) = ‖y− Xβ̂
(λ)√

L
‖/√n,

Remark 3.1. The whole path of solutions are equivalent for the Lasso and the Concomitant Lasso,
though a one-one mapping cannot be computed prior to enumerating the whole set for one of the
two methods: indeed the link β̂

(λ)
L = β̂

(λ′)
CL , where λ′ = λ

σ̂ with σ̂ = ‖y− Xβ̂
(λ)
L ‖/

√
n requires

exact knowledge of one side to get the other one. Note also that if the full solution path is available,
the need to compute the Concomitant Lasso is less important, since then it would be easy to create
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a noise estimate from the standard Lasso solutions, for instance by cross-validation. Such an
approach is for instance proposed in the scalreg R-package https: // cran. r-project. org/
web/ packages/ scalreg/ . Yet, this is unrealistic for large p since the number of Lasso kinks
could be as large as (3p + 1)/2 (Mairal and Yu, 2012).

Robust formulation of the Square-root Lasso: The Square-root Lasso (or the Concomi-
tant Lasso) formulations do not seem quite natural at first glance. Indeed, in a Gaussian
settings penalized log-likelihood optimization would rather lead to the Scaled-Lasso for-
mulation by Städler, Bühlmann, and van de Geer, 2010 presented in Section 3.3.1. In-
terestingly, a robust point of view can shed some light on its usage. This is based on a
formulation given in (Xu, Caramanis, and Mannor, 2010), though the authors did not em-
phasize the Square-root Lasso formulation, but rather the Lasso similarity. In particular
they proved the following proposition:

Proposition 3.1. The Square-root Lasso estimator β̂
(λ)√

L
defined in Equation (3.7) also solves

min
β∈Rp

 max
∆X∈Rn×p

‖∆X‖2,∞≤λ
√

n

‖y− (X + ∆X)β‖2

 , (3.8)

where ‖·‖2,∞ is the column-wise norm, i.e., ‖∆X‖2,∞ = max
j∈JpK

∥∥(∆X):,j
∥∥

2.

Proof. First note that for any β ∈ Rp

max
‖∆X‖2,∞≤λ

√
n
‖y− (X + ∆X)β‖2 ≤ max

∀j∈JpK:‖δj‖2
≤λ
√

n

∥∥y− (X + [δ1, . . . , δp])β
∥∥

2 (3.9)

≤ ‖y− Xβ‖2 + λ
√

n
p

∑
j=1
|β j| . (3.10)

Then to show that the opposite inequality also holds, one needs to choose the δj’s achiev-
ing the equalities in the previous bound. This is obtained considering the normalized
residuals:

z ∈
{{ y−Xβ

‖y−Xβ‖2

}
, if y 6= Xβ,

B2, otherwise .
(3.11)

where B2 is the `2 unit ball, and then choosing each j ∈ JpK according to

δj =

{
−λ
√

n sign(β j)z, if β j 6= 0,
−λ
√

nz, otherwise .
(3.12)

The interpretation of the result is the following. If one knows that the design matrix
follows (possibly adversarial) columns-wise corruption, with an `2 maximal deterioration
on each column, then a min-max strategy would lead to the Square-root Lasso estimator.
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3.2 Efficient solver for the Concomitant Lasso

Despite the appealing properties listed above, among which the superiority of the the-
oretical results is the most striking, no consensus for an efficient solver has yet emerged
for the Concomitant Lasso. Among the solutions to compute the Concomitant Lasso, two
roads have been pursued so far.

On the one hand, considering the Square-root Lasso formulation, Belloni, Cher-
nozhukov, and Wang, (2011) have leaned on second order cone programming solvers,
e.g., TFOCS (Becker, Candès, and Grant, 2011). Such methods are possibly interesting
in signal and image processing (where the operator β → Xβ and r → X>r can often be
computed more efficiently than by a standard matrix-vector multiplication), but they are
too slow to be applied in large scale scenarios.

On the other hand, considering the Scaled-Lasso formulation, Sun and Zhang, (2010,
2012) have proposed an iterative procedure that alternates Lasso steps and noise estima-
tion steps. Their alternate strategy leads to rescale the Lasso tuning parameter iteratively
after each Lasso computation, proportionally to the (empirical) standard-deviation of the
residuals. A similar approach to solve this jointly convex (of the form smooth + separa-
ble) problem is to apply a coordinate descent approach. To the best of our knowledge
this was first proposed for the Square-root Lasso formulation by Calafiore, El Ghaoui,
and Novara, 2014, though our approach in [JS-Conf27] is slightly different. More re-
cently, this was extended to an Elastic-net formulation by Raninen and Ollila, 2017 with
a similar flavor. The updates obtained are given in Algorithm 6 (where σ0 = 0 in the sim-
ple Concomitant Lasso case). An interesting point is that the noise update is cheap and
could be performed after each coordinate update, since in standard coordinate descent
implementation the residuals y− Xβ are maintained. This was proposed in [JS-Conf27]
and is more natural than performing this noise update only after each full epoch.

3.2.1 Critical parameters for the Concomitant Lasso

As for the Lasso, the null vector is optimal for the Concomitant Lasso problem as soon
as the regularization parameter becomes too large, as detailed in the next proposition.

Proposition 3.2. We have β̂(λ) = 0 for all

λ ≥ λmax := ‖X>y‖∞/(‖y‖
√

n).

However, for the Concomitant Lasso, there is another extreme. Indeed, there exists a
critical parameter λmin such that the Concomitant Lasso is equivalent to the Basis Pursuit
for all λ ≤ λmin and gives an estimate σ̂(λ) = 0. We recall that the Basis Pursuit and its
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dual are given by

β̂BP ∈ arg min
β∈Rp :y=Xβ

‖β‖1 , (3.13)

θ̂BP ∈ arg max
θ∈Rn :‖X>θ‖∞

≤1

〈y, θ〉. (3.14)

Proposition 3.3. For
θ̂BP ∈ arg max

θ∈Rn :‖X>θ‖∞≤1
〈y, θ〉

and any λ ≤ λmin := 1/(‖θ̂BP‖√n), (β̂BP, 0) is optimal for P (λ) and θ̂BP
CL is optimal for D(λ)

CL .

Proof. Technical details for this proposition can be found in [JS-Conf27]

We can guarantee the existence of minimizers to the Concomitant Lasso (see Sec-
tion 5.2.1), even if σ̂(λ) = 0, but the problem becomes more and more ill-conditioned for
smaller and smaller λ. In particular, the smooth part of the objective function P (λ)

CL in
Equation (3.1) does not have a Lipschitz gradient: this prevents the standard convergence
guarantees to hold for most iterative algorithms.

The previous proposition shows that for too small λ’s, a Basis Pursuit solution will
always be found, though numerically it might be challenging to evaluate the stopping
criterion, when choosing the dual gap. Indeed, when λ approaches λmin, one encounters
trouble when performing dual gap computations. This is because we estimate the dual
variable by a ratio having both denominator and numerator of the order of σ, which is
problematic when σ → 0. Indeed, the dual point variable is build for any primal value
β ∈ Rp as

θ =
y− Xβ

λn ‖X>(y− Xβ)‖∞ ∨ λ
√

n ‖y− Xβ‖ . (3.15)

A solution could be to pre-compute λmin to prevent the user from requesting com-
putation involving λ’s too close from the critical value. Nevertheless, solving the Basis
Pursuit problem first, to obtain λmin, is not realistic. For instance, the split Bregman algo-
rithm (Goldstein and Osher, 2009) involves a sequence of Lasso problems to solve. This
step is thus the most difficult one to solve on the path of λ’s, and in such a case one
would loose the benefits usually obtained by performing warm start.

3.2.2 Smoothed Concomitant Lasso

We have addressed this challenge following Nesterov, (2005)’s regularization scheme
to the noise level part. Hence, adding a constraint in the primal problem helps to exclude
(small or) 0 as a valid noise level estimator. This is done by adding a constraint σ ≥ σ0 in
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the primal formulation, leading to what we coined the Smoothed Concomitant Lasso

(β̂
(λ,σ0)
SCL , σ̂

(λ,σ0)
SCL ) ∈ arg min

β∈Rp, σ≥σ0

1
2nσ
‖y− Xβ‖2 +

σ

2
+ λ ‖β‖1︸ ︷︷ ︸

P (λ,σ0)
SCL

, (3.16)

Note that this is equivalent to a adding a quadratic regularization term in the dual.

Theorem 3.2. For λ > 0 and σ0 > 0, the Smoothed Concomitant Lasso estimator β̂
(λ,σ0)
SCL and its

associated noise level estimate σ̂
(λ,σ0)
SCL are defined as solutions of the primal optimization problem

With ∆X,λ =
{

θ ∈ Rn : ‖X>θ‖∞ ≤ 1, ‖θ‖ ≤ 1/(λ
√

n)
}

, the dual formulation of the Smoothed
Concomitant Lasso reads

θ̂
(λ,σ0)
SCL = arg max

θ∈∆X,λ

〈y, λθ〉+ σ0

(
1
2
− λ2n

2
‖θ‖2

)
︸ ︷︷ ︸

D(λ,σ0)
SCL (θ)

. (3.17)

For an optimal primal vector β̂
(λ,σ0)
SCL , we must have σ̂

(λ,σ0)
SCL = σ0 ∨ (‖y− Xβ̂

(λ,σ0)
SCL ‖/

√
n). We

also have the link-equation between primal and dual solutions: y = nλσ̂
(λ,σ0)
SCL θ̂

(λ,σ0)
SCL + Xβ̂

(λ,σ0)
SCL .

To produce a dual feasible point, an alternative to Equation (3.15), becomes

θ =
y− Xβ

σ0 ∨ λn ‖X>(y− Xβ)‖∞ ∨ λ
√

n ‖y− Xβ‖ . (3.18)

This has the benefit that the denominator in the previous display cannot be smaller than
the prescribe noise level threshold σ0. Moreover, this helps stabilizing dual gap evalua-
tions.

As a link, note that the scheme underlying the Smoothed Concomitant Lasso formu-
lation could be interpreted as a special case of the regularization schemes proposed in
(Micchelli, Morales, and Pontil, 2010, with a = σ0 and b = +∞ in Example 3.1). Hence,
when considering the Square-root Lasso formulation (3.7), this smoothing schemes would
lead to solve a formulation equivalent to a “Huberized” version of the Square-root Lasso

‖y− Xβ‖√
n

+
1

2σ0

(
σ0 −

‖y− Xβ‖√
n

)2

+

=


‖y−Xβ‖√

n , if 1√
n ‖y− Xβ‖ ≥ σ0,

‖y−Xβ‖2

2nσ0
+ σ0

2 , otherwise .
(3.19)

In particular this point of view was recently and independently proposed by Li et al.,
(2016) and inspired by Beck and Teboulle, (2012). The major difference with their ap-
proach though, is that the authors did not investigate a coordinate descent algorithm,
though this is notoriously a better strategy than iterative (fast) soft-thresholding algo-
rithms when addressing high dimensional settings. Note also that the coordinate descent
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Algorithm 5: Coordinate Descent Epoch for Smoothed Concomitant Lasso

input : X, y, λ, σ0

param: β = 0p, ∀j ∈ JpK, Lj =
∥∥X:,j

∥∥2
2, σ = σ0 ∨ ‖y− Xβ‖/√n

for j = 1, . . . , p do

β j ← ST
(

β j −
1
Lj

X>:,j(Xβ− y),
nσλ

Lj

)
// soft-thresholding: coef. update

σ← σ0 ∨ (‖y− Xβ‖ /
√

n) // residual norm evaluation: std. update

return β, σ

approach we propose in Algorithm 5, take the benefit of storing the residual to update
the noise level after each coordinate update, and not after a full epoch as in (Raninen and
Ollila, 2017).

Another benefit with adding the σ0 penalty is to alleviate an algorithmic drawback.
Indeed, convergence of (proximal) gradient descent variants rely on the fact that the
smooth part has a Lipschitz gradient. Though this is not the case for the Concomitant
Lasso due to the part 1/σ in the objective function. Hence, the convergence is not al-
ways guaranteed: in particular when an iterative algorithm finds (or start from) a point
satisfying Xβ = y, it will remain stuck to this state. Indeed, in such a case, the iterates
in Algorithm 6 (with σ = 0) would maintain σ and β unchanged, and instead of solving
the Basis Pursuit problem, the algorithm would not move away from this choice of β, a
choice that might be sub-optimal. The same would happen for algorithms such as ISTA
(Daubechies, Defrise, and De Mol, 2004) or FISTA (Beck and Teboulle, 2009). However,
this would not happen when adding the constraint σ0 > 0, since then a thresholding step
would be performed that would modify the residual and update β accordingly. In terms
of convergence the smooth part is then with gradient Lipschitz and the convergence of
the algorithm toward a minimizer is guaranteed.

A last important motivation for our introduced noise constraint is that we can show
that we still will recover an ε-solution of the original problem by choosing a well suited
value for σ0 (e.g., for σ0 = ε). Indeed, Proposition 3.4 links the duality gap of Lasso,
Concomitant Lasso and Smoothed Concomitant Lasso. In particular, when one chooses
σ0 = ε, the theory of smoothing (Nesterov, 2005) tells us that any ε/2-solution3 to the
Smoothed Concomitant Lasso problem (3.16) is an ε-solution to the Concomitant Lasso
problem (3.1). Thus we obtain the “same” solutions, but as an additional benefit we have
a control on the conditioning of the problem.

3by this we mean any β such that for some σ > 0 P (λ,σ0)
SCL (β, σ)−P (λ,σ0)

SCL (β̂(λ), σ̂(λ)) ≤ ε/2
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Proposition 3.4. ∀β ∈ Rp, θ ∈ ∆X,λ, σ ≥ σ0,

D(σλ)
L (θ)−P (σλ)

L (β) ≤ σ
(
D(λ,σ0)

SCL (θ)−P (λ,σ0)
SCL (β, σ)

)
, (3.20)

D(λ,σ0)
CL (θ)−P (λ,σ0)

CL (β, σ) ≤ D(λ,σ0)
SCL (θ)−P (λ,σ0)

SCL (β, σ) +
σ0

2
. (3.21)

Hence, this proposition emphasizes the optimization impact of the parameter σ0. In
particular, it can be fixed to the targeted accuracy in the original Concomitant Lasso
formulation (up to a small constant factor).

A last interesting point with our new formulation is that it allows to apply screening
rules (safe or aggressive, see Chapter 1) based on duality gap computations for this
method. The additional speed-ups is possible thanks to the strongly concave nature of
the dual formulation. More details on computing times can be found in [JS-Conf27].

3.3 Variants for heteroscedastic cases

3.3.1 Scaled Lasso “à la Städler et al.”

In particular, Städler, Bühlmann, and van de Geer, (2010) have remarked that a joint
estimation of the noise level could be provided. Though, a naive approach consisting in
solving an `1 penalty problem rescaled by the noise level:

arg min
β∈Rp,σ>0

(
1

2nσ2 ‖y− Xβ‖2 + log(σ) +
λ

σ
‖β‖1

)
, (3.22)

lead to a non-convex problem, and to a non-equivariant estimator4.
The authors then proposed the simple remedy of performing the re-parametrization

φj =
β j

σ
, ρ =

1
σ

, (3.23)

that leads to

Definition 3.2. For λ > 0, the Scaled-Lasso estimator φ̂(λ) is defined as a solution of the primal
optimization problem

(φ̂(λ), ρ̂(λ)) ∈ arg min
φ∈Rp,ρ>0

(
1

2n
‖ρy− Xφ‖2 − log(ρ) + λ ‖φ‖1

)
(3.24)

In this context a predictor is obtained by defining ŷ = X φ̂(λ)

ρ̂(λ)
. In particular, one can

realize that at optimality one has

ρ̂(λ) = SI(Xφ̂(λ), y, p) :=
y>Xφ̂(λ) +

√
(y>Xφ̂(λ))2 + 4n ‖y‖2

2 ‖y‖2 , (3.25)

4an equivariant estimator is an estimator transformed as β̂′ = αβ̂ and σ̂′ = ασ̂ when β̂′ and σ̂′ are based
on y′ = αy, β′ = αβ and σ′ = ασ in the true model
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Algorithm 6: Coordinate Descent Epoch for the Generalized Scaled-Lasso

input : X, y, λ, α

init : φ = 0p, ∀j ∈ JpK, Lj =
∥∥X:,j

∥∥2
2, ρ =

√
n/‖y‖

for j = 1, . . . , p do

φj ← ST
(

φj −
1
Lj

X>:,j(Xφ− ρy),
nλ

Lj

)
// soft-thresholding for coef. update

ρ← SI(Xφ, y, α) // inverse standard deviation update

return β = φ/ρ, σ = 1/ρ

where

SI(z, y, α) =
y>z +

√
(y>z)2 + 4(n + p− α) ‖y‖2

2 ‖y‖2 . (3.26)

Note that this is linked to proximal computation (cf. Combettes and Pesquet, 2011, Ta-
ble 10.2).

This Scaled-Lasso formulation also allows to design a standard coordinate descent
approach that is given in Algorithm 6. It also requires alternating soft-thresholding steps
and noise estimation steps. We remind that the soft-thresholding operator is defined by
Equation (2.14).

It is to be noted that coordinate descent algorithm for the (smooth-)Concomitant Lasso
estimator and for the Scaled-Lasso estimator differ only in the way the noise level is
estimated. Hence, a more general family of estimators could be obtained by changing
the way the noise level is estimated (e.g., one could use a MAD type estimator for this
purpose).

Another extensions was proposed by Dalalyan, (2012), and consists in modifying the
standard deviation estimator. It leads to solve the following optimization problem:

Definition 3.3. For λ > 0, α > 0, the Generalized Scaled-Lasso estimator φ̂(λ) is defined as a
solution of the primal optimization problem

(φ̂(λ,α), ρ̂(λ,α)) ∈ arg min
φ∈Rp,ρ>0

(
1
2
‖ρy− Xφ‖2 + (n + p− α) log(ρ) + nλ ‖φ‖1

)
(3.27)

Note that one recovers the Scaled-Lasso defined in (3.24) by choosing α = p in (3.27).
The introduction of the parameter α can be understood as a prior on σ when considering
a Bayesian point of view (Kyung et al., 2010), or simply the amount of regularization one
is willing to enforce on σ.

For visualization, we have provided simple experiments in the simple (centered)
Gaussian case with direct observation (i.e., y = ε) where one only aims at estimating
the standard-deviation. Note that the difference mostly matters when the number of
observation is small.
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Figure 3.1: Noise level estimators distribution in simple centered Gaussian case with
varying values of noise level σ = 1 (on the left) or σ = 10 (on the right) and number of
observations n = 20, 50, 200. Simulations are replicated 5000 times.
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3.3.2 Heteroscedastic variant

We have analyzed in [JS-Conf10] the extension of the aforementioned estimator to a
context of heteroscedastic noise. As a modification, we have rather adopted a Dantzig
selector (Candès and Tao, 2007) point of view, where we remind that this estimator is

β̂
(λ)
DS ∈ arg min

β∈Rp,‖X>(y−Xβ)‖∞
≤λ

‖β‖1 . (3.28)

To limit the number of noise parameters (σ1, . . . , σn) = (1/ρ1, . . . , 1/ρn) to estimate
(potentially there could be up to n different parameter without any restriction), we have
considered a model where the inverse noise vector could be sparsely approximated by
convenient features, e.g., by periodic signal, with few temporal dynamics. This can be
modeled with the following assumption:

∀i ∈ J1, nK, ρi = Ri,:γ⇔ ρ = Rγ , (3.29)

where R ∈ Rn×q contains noise features column-wise and γ ∈ Rq.

Definition 3.4. Let λ > 0 be a tuning parameter. We call the Scaled Heteroscedastic Dantzig
selector (ScHeDs) the pair (φ̂, γ̂), where (φ̂, γ̂, v̂) is a minimizer w.r.t. (φ, γ, v) ∈ Rp×Rq×Rn

+

of the cost function
p

∑
j=1

∣∣φj
∣∣

subject to the constraints

|X>:,j
(

diag(y)Rγ− Xφ
)
| ≤ λ, ∀j ∈ JpK , (3.30)

R>v ≤ R> diag(y)(diag(y)Rγ− Xφ) , (3.31)

1/vi ≤ Ri,:γ, ∀i ∈ JnK , (3.32)

with v = (v1, . . . , vn)>.

The introduction of this estimator is motivated by considering the first order con-
straints of

arg min
φ∈Rp,γ∈Rq

n

∑
i=1

(
− log(Ri,:γ) +

1
2
(yiRi,:γ− Xi,:φ)

2
)
+ λ ‖φ‖1 . (3.33)

Prediction error bounds were obtained for the SCOP formulation; details can be found
in [JS-Conf10].
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3.4 Extension to super-resolution

The Concomitant Lasso approach was recently extended to the context of super-
resolution in a collaboration with C. Boyer and Y. De Castro [JS-Journal10]. Sparse
deconvolution over the space of complex-valued Borel measures has recently attracted
a lot of attention in the “Super-Resolution” community. In this framework, one aims at
recovering fine scale details of a signal from few low frequency measurements, where
ideally the observation is given by a low-pass filter. The novelty in this body of work
relies on new theoretical guarantees of the `1-type minimization over the space of dis-
crete measures in a grid-less manner. Recent works on this topic (in dimension one)
can be found in (Azaïs, De Castro, and Gamboa, 2015; Bendory, Dekel, and Feuer, 2016;
Bredies and Pikkarainen, 2013; Candès and Fernandez-Granda, 2013, 2014; De Castro
and Gamboa, 2012; Duval and Peyré, 2015a; Fernandez-Granda, 2013; Tang et al., 2013)
and references therein.

More precisely, pioneering works were proposed in (Bredies and Pikkarainen, 2013)
treating inverse problems on the space of Borel measures and in (Candès and Fernandez-
Granda, 2013), where the Super-Resolution problem was investigated via Semi-Definite
Programming and a groundbreaking construction of a “dual certificate”. Exact recovery
(in the noiseless case), minimax prediction and localization (in the noisy case) have been
performed using the Beurling Lasso (BLasso) estimator (Azaïs, De Castro, and Gamboa,
2015; Fernandez-Granda, 2013; Tang, Bhaskar, and Recht, 2015; Tang et al., 2013) which
minimizes the total variation norm over complex-valued Borel measures. Noise robust-
ness (as the noise level tends to zero) has been thoroughly investigated by Duval and
Peyré, (2015a); the reader may also consult (Denoyelle, Duval, and Peyré, 2016; Duval
and Peyré, 2015b,c) for more details. Change point detection and grid-less spline de-
composition are studied in (Bendory, Dekel, and Feuer, 2014b; De Castro and Mijoule,
2015). Several interesting extensions, such as deconvolution over spheres, have been also
recently provided in (Bendory, Dekel, and Feuer, 2014a, 2015, 2016). For more general
settings, we refer to the work by Koltchinskii and Minsker, (2014).

Our proposed estimator is an adaptation to the Super-Resolution framework of the
Concomitant Lasso presented earlier. We adopt the terminology of “Concomitant Beurl-
ing Lasso" in reference to the seminal paper by Owen, (2007). Our theoretical contribu-
tions borrows some ideas from the stimulating lecture notes (van de Geer, 2016).

3.4.1 Model and contributions

Model and notation

Denote E := (C(T,C), ‖ · ‖∞) the space of complex-valued continuous functions over
the one dimensional torus T (obtained by identifying the endpoints on [0, 1]) equipped
with the `∞-norm and E∗ := (M(T,C), ‖ · ‖TV) its dual topological space. Namely, E∗
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is the space of complex-valued Borel measures over the torus endowed with the total
variation norm, defined by

∀µ ∈ E∗, ‖µ‖TV := sup
‖ f ‖∞≤1

R

(∫
T

f̄ dµ

)
, (3.34)

where R(·) denotes the real part and f̄ the complex conjugate of a continuous function f .
Our observation vector is y ∈ Cn (where n = 2 fc + 1) and our sampling scheme is mod-
eled by the linear operator Fn that maps a Borel measure to its n first Fourier coefficients
as

∀µ ∈ E∗ , Fn(µ) := (ck(µ))|k|≤ fc , where ck(µ) :=
∫
T

exp(−2πıkt)µ(dt) =
∫
T

ϕkdµ ,

and ϕk(·) = exp(2πık·). The statistical model we consider is formulated as follows

y = Fn(µ
0) + ε , (3.35)

with ε is a complex valued centered Gaussian random variable defined by ε
d
= ε(1) + ıε(2)

where the real part ε(1) = R(ε) and the imaginary part ε(2) = I(ε) are i.i.d. Nn(0, σ2
0 Idn)

random vectors with an unknown standard deviation σ0 > 0, where Idn is the identity
matrix of size n × n. Moreover, we assume that the target measure µ0 admits a sparse
structure, namely it has finite support and can be written

µ0 =
s0

∑
j=1

a0
j δt0

j
, (3.36)

where s0 ≥ 1, δt0
j

is the Dirac measure at position t0
j ∈ T and with amplitudes a0

j ∈ C.
We can now introduce our Concomitant Beurling Lasso (CBLasso) estimator, that jointly
estimates the signal and the noise level as the solution of the convex program

(µ̂(λ), σ̂(λ)) ∈ arg min
(µ,σ)∈E∗×R++

1
2nσ
‖y−Fn(µ)‖2

2 +
σ

2
+ λ‖µ‖TV , (3.37)

where R++ denotes the set of positive real numbers and λ > 0 is a tuning parameter.
This formulation, by using a suitable rescaling of the data fitting and adding a penalty on
the noise level, leads to a jointly convex formulation that can be theoretically analyzed.
The division by σ is used for homogeneity reasons, while the σ/2 term helps avoiding
degenerate solutions and plays the role of regularization.

When the solution is reached for σ̂(λ) > 0, one can check that our estimator satisfies
the identity σ̂(λ) = ‖y − Fn(µ̂(λ))‖2/

√
n and µ̂(λ) ∈ arg minµ∈E∗ ‖y − Fn(µ)‖2/

√
n +

λσ̂(λ)‖µ‖TV, which is in our framework, the analogous version of the Square-root Lasso
formulation from (Belloni, Chernozhukov, and Wang, 2011) (while the one from (3.37) is
inspired by Owen, (2007) and Sun and Zhang, (2012)).
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Remark 3.2. As defined in (3.37), the CBLasso estimator suffers from the same ambiguity (ac-
cording to the constraint set on which the optimization is performed) as the Concomitant Lasso
estimator. Hence, we adapt the same Fenchel biconjugate implicit usage.

For the resolution one can rely on an Semi-Definite Program (SDP) formulation of the
dual problem. Indeed,

Proposition 3.5. Denoting ∆X =
{

c ∈ Cn; ‖F ∗n (c)‖∞ ≤ 1, nλ2‖c‖2 ≤ 1
}

, the dual formu-
lation of the CBLasso reads

ĉ(λ) ∈ arg max
c∈∆X

λ 〈y, c〉 . (3.38)

Then, we have the link-equation between primal and dual solutions

y = nλ̂ĉ(λ) +Fn(µ̂) . (3.39)

where we define λ̂ = λσ̂(λ), as well as a link between the coefficient and the polynomial

F ∗n (ĉ(λ)) = p̂(λ) . (3.40)

The polynomial p̂(λ) is said to be the dual polynomial of Problem (3.37).

This new estimator can be efficiently computed using Fenchel-Legendre duality and
a semi-definite representation of non-negative trigonometric polynomials. The dual pro-
gram estimates the coefficients of a non-constant trigonometric polynomial (that we refer
to as “dual polynomial”) and the support of the estimated measure µ̂(λ) is included in
the roots of the derivative of the dual polynomial.

We write A < 0 when a symmetric matrix A is semi-definite positive. Let us recall
a classical property expressing the CBLasso as a semi-definite program (SDP), see (Du-
mitrescu, 2007, Sec. 4.3) or (Candès and Fernandez-Granda, 2014; Tang, Bhaskar, and
Recht, 2015) for instance.

Proposition 3.6. For any c ∈ Cn, the following holds

‖F ∗n c‖2
∞ ≤ 1⇔ ∃Λ ∈ Cn×n s.t. Λ∗ = Λ and


(

Λ c
c∗ 1

)
< 0 ,

∑
n−j+1
i=1 Λi,i+j−1 = δj,1, ∀j ∈ JnK .

(3.41)

where δk,l is the standard Kronecker symbol.

Remark that A < 0 and B < 0 is equivalent to
(

A 0
0 B

)
< 0. From properties of the Schur

complement (cf. Boyd and Vandenberghe, 2004, p. 651) a block matrix
(

A B
B∗ C

)
< 0 ⇔

A < 0 and C− B∗A−1B < 0.
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Applying this, one can represent the dual feasible set ∆X, as an SDP condition and
the dual problem can be cast as follows

max
c∈Cn

Λ∈Cn×n

λ 〈y, c〉 such that



(
Λ c
c∗ 1

)
< 0 ,

∑
n−j+1
i=1 Λi,i+j−1 = δj,1, ∀j ∈ JnK ,(

Idn λ
√

nc
λ
√

nc∗ 1

)
< 0,

Λ∗ = Λ.

(3.42)

The resulting procedure to compute the CBLasso can be summarized as follows:

1. Set λ > 0

2. Solve Problem (3.42) to find the coefficients ĉ of the dual polynomial p̂. For this
step, we use the cvx toolbox (Grant and Boyd, 2008, 2014);

3. Identify supp(µ̂) =
{

t̂j, j = 1, . . . , ŝ
}

using the roots of 1− | p̂|2 and construct the
matrix X ∈ Rn×ŝ, defined by Xk,j = ϕk(t̂j) ;

4. recover (β̂(λ), σ̂(λ)) with Algorithm 6 for (X, y, λ) (optionally choose a small σ0)

5. Output µ̂(λ) = ∑ŝ
j=1 β̂(λ)δt̂j

Contributions

By tackling the simultaneous estimation of the noise level and the target measure, we
revisit the state-of-the-art results in Super-Resolution theory. In particular, the “near”
minimax prediction (i.e., “fast rate” of convergence) is achieved by our new CBLasso es-
timator. We have adapted the proof by Tang, Bhaskar, and Recht, (2015) to our estimator
and finely controlled the noise level dependency in their bounds. This latter task has been
carried out thanks to the Rice method for a non-Gaussian process which provides new
results in this context, whose interest could go beyond the context of Super-Resolution.
Though standardly proved as in (Azaïs, De Castro, and Gamboa, 2015; Fernandez-
Granda, 2013; Tang, Bhaskar, and Recht, 2015), spike localization errors are amended
by the Rice method as well. In particular, it allows us control the “no-over-fitting” event5.
We would like to emphasize that our contribution provides the first result on simultane-
ous estimation of both the noise level and the the target measure in spike deconvolution.
On the numerical side, (i) the root-finding search can still be adapted to our method;
(ii) the constructed “dual polynomial” is never constant proving the applicability of our
method.

5this event is simply {‖y−Fn(µ̂(λ))‖2/
√

n > 0}

57



Chapter 4

Gossip algorithms for decentralized
data and pairwise functions

This project was developped while surpevising the Ph.D. thesis of Colin, (2016) to-
gether with S. Clémençon. Part of our joint work was previously published in [JS-Conf16]
and [JS-Conf24]. We refer to these references for the proofs of the results in this chapter.
The focus is on estimation and optimization for learning tasks in a context where the
data is decentralized over a network. We considered the adaptation of recent techniques
well suited for M-estimators, to the more challenging U-statistics ones, with a focus on
pairwise-functions.

4.1 Motivation

The increasing popularity of large-scale and fully decentralized computational ar-
chitectures, fueled for instance by the advent of the “Internet of Things”, motivates the
development of efficient optimization algorithms adapted to this setting. An important
application is machine learning in wired and wireless networks of agents (sensors, con-
nected objects, mobile phones, etc.), where the agents seek to minimize a global learning
objective which depends of the data collected locally by each agent. In such networks, it
is typically impossible to efficiently centralize data or to globally aggregate intermediate
results: agents can only communicate with their immediate neighbors (e.g., agents within
a small distance), often in a completely asynchronous fashion.

Decentralized computation and estimation have many applications in sensor and
peer-to-peer networks as well as for extracting knowledge from massive information
graphs such as interlinked Web documents and on-line social media. Algorithms running
on such networks must often operate under tight constraints: the nodes forming the net-
work cannot rely on a centralized entity for communication and synchronization, cannot
be aware of the global network topology and/or have limited resources (computational
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power, memory, energy). Gossip algorithms (Dimakis et al., 2010; Shah, 2009; Tsitsiklis,
1984), where each node exchanges information with at most one of its neighbors at a
time, have emerged as a simple yet powerful technique for distributed computation in
such settings. Given a data observation on each node, gossip algorithms can be used to
compute averages or sums of functions of the data that are separable across observations
(see for example (Boyd et al., 2006; Karp et al., 2000; Kempe, Dobra, and Gehrke, 2003;
Kowalczyk and Vlassis, 2004; Mosk-Aoyama and Shah, 2008) and references therein). Un-
fortunately, these algorithms cannot be used to efficiently compute quantities that take
the form of an average over pairs of observations, also known as U-statistics (Lee, 1990).
Among classical U-statistics used in machine learning and data mining, one can mention,
among others: the sample variance, the Area Under the Curve (AUC) of a classifier on
distributed data, the Gini mean difference, the Kendall tau rank correlation coefficient,
the within-cluster point scatter and several statistical hypothesis test statistics such as
Wilcoxon Mann-Whitney (Mann and Whitney, 1947).

We propose in Section 4.2 randomized synchronous and asynchronous gossip algo-
rithms to efficiently compute a U-statistic, in which each node maintains a local estimate
of the quantity of interest throughout the execution of the algorithm. Our methods rely
on two types of iterative information exchange in the network: propagation of local obser-
vations across the network, and averaging of local estimates. Hence, we first considered
in [JS-Conf16] the problem of estimating the following quantity, known as a degree two
U-statistic (Lee, 1990):1

ûn( f ) =
1
n2

n

∑
i,j=1

f (xi, xj) , (4.1)

where (x1, . . . , xn) represents observation samples.
We show that the local estimates generated by our approach converge in expectation

to the value of the U-statistic at rates of O(1/t) and O(log t/t) for the synchronous and
asynchronous versions respectively, where t is the number of iterations. These conver-
gence bounds feature data-dependent terms that reflect the hardness of the estimation
problem, and network-dependent terms related to the spectral gap of the network graph
(Chung, 1997), showing that our algorithms are faster on well-connected networks. The
proofs rely on an original reformulation of the problem using “phantom nodes”, i.e., on
additional nodes that account for data propagation in the network. Our results largely
improve upon those presented by Pelckmans and Suykens, (2009): in particular, with our
new algorithm, we achieve faster convergence together with lower memory and commu-
nication costs.

Standard distributed optimization and machine learning algorithms (implemented
for instance using MapReduce/Spark) require a coordinator node and/or to maintain

1We point out that the usual definition of U-statistic differs slightly from (4.1) by a factor of n/(n− 1).
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synchrony, and are thus unsuitable for use in decentralized networks. In contrast, gossip
algorithms (Boyd et al., 2006; Kempe, Dobra, and Gehrke, 2003; Shah, 2009; Tsitsiklis, 1984)
are tailored to this setting because they only rely on simple peer-to-peer communication:
each agent only exchanges information with one neighbor at a time. Various gossip algo-
rithms have been proposed to solve the flagship problem of decentralized optimization,
namely to find a parameter vector θ which minimizes an average of convex functions
(1/n)∑n

i=1 f (θ; xi), where the data xi is only known to agent i. The most popular al-
gorithms are based on (sub)gradient descent (Bianchi and Jakubowicz, 2013; Johansson,
Rabi, and Johansson, 2010; Nedić and Ozdaglar, 2009; Ram, Nedić, and Veeravalli, 2010),
ADMM (Iutzeler et al., 2013; Wei and Ozdaglar, 2012, 2013) or dual averaging (Duchi,
Agarwal, and Wainwright, 2012; Nedić, Lee, and Raginsky, 2015; Tsianos, Lawlor, and
Rabbat, 2015; Yuan et al., 2012), some of which can also accommodate constraints or
regularization on θ. The main idea underlying these methods is that each agent seeks
to minimize its local function by applying local updates (e.g., gradient steps) while ex-
changing information with neighbors to ensure a global convergence to the consensus
value.

We also tackle the problem of minimizing an average of pairwise functions of the
agents’ data:

min
θ

1
n2 ∑

1≤i,j≤n
f (θ; xi, xj). (4.2)

This problem finds numerous applications in statistics and machine learning, e.g., AUC
maximization (Zhao et al., 2011), distance/similarity learning (Bellet, Habrard, and Seb-
ban, 2015), ranking (Clémençon, Lugosi, and Vayatis, 2008), supervised graph inference
(Biau and Bleakley, 2006) and multiple kernel learning (Kumar et al., 2012), to name a
few. As a motivating example, consider a mobile phone application which locally col-
lects information about its users. The provider could be interested in learning pairwise
similarity functions between users in order to group them into clusters or to recommend
them content without having to centralize data on a server (which would be costly for
the users’ bandwidth) or to synchronize phones.

The main difficulty in Problem (4.2) comes from the fact that each term of the sum
depends on two agents i and j, making the local update schemes of previous approaches
impossible to apply unless data is exchanged between nodes. Although gossip algorithms
have recently been introduced to evaluate such pairwise functions for a fixed θ, see (Pel-
ckmans and Suykens, 2009) and [JS-Conf16], to the best of our knowledge, efficiently
finding the optimal solution θ in a decentralized way remains an open challenge. Our con-
tributions towards this objective are as follows. We propose new gossip algorithms based
on dual averaging (Nesterov, 2009; Xiao, 2010) to efficiently solve Problem (4.2) and its
constrained or regularized variants. Central to our methods is a light data propagation
scheme which allows the nodes to compute biased estimates of the gradients of functions
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in (4.2). We then propose a theoretical analysis of our algorithms both in synchronous
and asynchronous settings establishing their convergence under an additional hypothesis
that the bias term decreases fast enough over the iterations (and we have observed such
a fast decrease in all our experiments). Finally, we present some numerical simulations
on AUC maximization and metric learning problems. These experiments illustrate the
practical performance of the proposed algorithms and the influence of network topology,
and show that in practice the influence of the bias term is negligible as it decreases very
fast with the number of iterations.

4.2 Estimation in decentralized settings

4.2.1 Definitions and Notation

For any integer p > 0, we denote by [p] the set {1, . . . , p} and by |F| the cardinality of
any finite set F. We represent a network of size n > 0 as an undirected graph G = (V, E),
where V = [n] is the set of vertices and E ⊆ V ×V the set of edges. We denote by A(G)

the adjacency matrix related to the graph G, that is for all (i, j) ∈ V2, [A(G)]ij = 1 if and
only if (i, j) ∈ E. For any node i ∈ V, we denote its degree by di = |{j : (i, j) ∈ E}|.
We denote by L(G) the graph Laplacian of G, defined by L(G) = D(G)− A(G) where
D(G) = diag(d1, . . . , dn) is the matrix of degrees. A graph G = (V, E) is said to be
connected if for all (i, j) ∈ V2 there exists a path connecting i and j; it is bipartite if there
exist S, T ⊂ V such that S ∪ T = V, S ∩ T = ∅ and E ⊆ (S× T) ∪ (T × S).

A matrix M ∈ Rn×n is nonnegative (resp. positive) if and only if for all (i, j) ∈ [n]2,
[M]ij ≥ 0, (resp. [M]ij > 0). We write M ≥ 0 (resp. M > 0) when this holds. The
transpose of M is denoted by M>. A matrix P ∈ Rn×n is stochastic if and only if P ≥ 0
and P1n = 1n, where 1n = (1, . . . , 1)> ∈ Rn. The matrix P ∈ Rn×n is bi-stochastic if and
only if P and P> are stochastic. We denote by In the identity matrix in Rn×n, (e1, . . . , en)

the standard basis in Rn, 1{E} the indicator function of an event E and ‖ · ‖ the usual `2

norm.
For θ ∈ Rd and g : Rd → R, we denote by ∇g(θ) the gradient of g at θ. Finally, given

a collection of vectors u1, . . . , un, we denote by ūn = (1/n)∑n
i=1 ui its empirical mean.

4.2.2 Problem Statement

Let X be an input space and (x1, . . . , xn) ∈ X n a sample of n ≥ 2 points in that
space. We assume X ⊆ Rd for some d > 0, but our results straightforwardly extend
more general settings. We denote as X = (x1, . . . , xn)> ∈ Rn×d the design matrix. Let
f : X × X → R be a measurable function, symmetric in its two arguments and with
f (x, x) = 0, ∀x ∈ X . We also write F ∈ Rn×n for the matrix with general term Fi,j =

f (xi, xj).
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We illustrate the interest of U-statistics on two applications, among many others.
The first one is the within-cluster point scatter (Clémençon, 2011), which measures the
clustering quality of a partition P of X as the average distance between points in each
cell C ∈ P . It is of the form (4.1) with

fP (x, x′) = ‖x− x′‖ · ∑
C∈P

1{(x,x′)∈C2}. (4.3)

We also study the AUC measure (Hanley and McNeil, 1982). For a given sample
(x1, `1), . . . , (xn, `n) on X × {−1,+1}, the AUC measure of a linear classifier θ ∈ Rd

is given by:

AUC(θ) =
∑1≤i,j≤n(1− `i`j)1{`i(θ>xi)>−`j(θ>xj)}
4
(
∑1≤i≤n 1{`i=1}

) (
∑1≤i≤n 1{`i=−1}

) . (4.4)

This score is the probability for a classifier to rank a positive observation higher than a
negative one.

We focus here on the decentralized setting, where the data sample is partitioned across
a set of nodes in a network. For simplicity, we assume V = [n] and each node i ∈ V only
has access to a single data observation xi, though our results generalize to the case where
each node holds a subset of the observations.

4.2.3 Related Work

Gossip algorithms have been extensively studied in the context of decentralized aver-
aging in networks, where the goal is to compute the average of n real numbers (X = R):

x̄n =
1
n

n

∑
i=1

xi =
1
n

X>1n. (4.5)

One of the earliest work on this canonical problem is due to Tsitsiklis, (1984), but more ef-
ficient algorithms have recently been proposed, see for instance (Boyd et al., 2006; Kempe,
Dobra, and Gehrke, 2003). Of particular interest to us is the work by Boyd et al., (2006),
which introduces a randomized gossip algorithm for computing the empirical mean (4.5)
in a context where nodes wake up asynchronously and simply average their local es-
timate with that of a randomly chosen neighbor. The communication probabilities are
given by a stochastic matrix P, where pij is the probability that a node i selects neighbor
j at a given iteration. As long as the network graph is connected and non-bipartite, the
local estimates converge to (4.5) at a rate O(e−ct) where the constant c can be tied to the
spectral gap of the network graph (Chung, 1997), showing faster convergence for well-
connected networks 2. Such algorithms can be extended to compute other functions such
as maxima and minima, or sums of the form ∑n

i=1 f (xi) for some function f : X → R,

2an analysis of this algorithm is provided in [JS-Conf16]
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Algorithm 7: GoSta-sync: synchronous gossip algorithm for estimating pair-
wise functions

Each node k holds observation xk
each node k initializes its auxiliary observation yk = xk and its estimate zk = 0
for t = 1, 2, . . . do

for p = 1, . . . , n do
set zp ← t−1

t zp +
1
t f (xp, yp)

Draw (i, j) uniformly at random from E
Set zi, zj ← 1

2 (zi + zj)
Swap auxiliary observations of nodes i and j: yi ↔ yj

see for instance (Mosk-Aoyama and Shah, 2008)). Some work has also gone into develop-
ing faster gossip algorithms for poorly connected networks, assuming that nodes know
their (partial) geographic location (Dimakis, Sarwate, and Wainwright, 2008; Li, Dai, and
Zhang, 2010). For a detailed account of the literature on gossip algorithms, we refer the
reader to (Dimakis et al., 2010; Shah, 2009).

Existing gossip algorithms cannot be used to efficiently compute (4.1) as it depends
on pairs of observations. To the best of our knowledge, this problem has only been inves-
tigated in (Pelckmans and Suykens, 2009). Their algorithm, coined U2-gossip, achieves
O(1/t) convergence rate but has several drawbacks. First, each node must store two
auxiliary observations, and two pairs of nodes must exchange an observation at each
iteration. For high-dimensional problems (large d), this leads to a significant memory
and communication burden. Second, the algorithm is not asynchronous as every node
must update its estimate at each iteration. Consequently, nodes must have access to a
global clock, which is often unrealistic in practice. In the next section, we introduce new
synchronous and asynchronous algorithms with faster convergence as well as smaller
memory and communication cost per iteration.

4.3 GoSta algorithms for synchronous estimation problem

Here, we introduce gossip algorithms for computing pair wise functions of the form
(4.1). Our approach is based on the observation that ûn( f ) = 1/n ∑n

i=1 f i, with f i =

1/n ∑n
j=1 f (xi, xj), and we write f = ( f 1, . . . , f n)

>. The goal is thus similar to the usual
distributed averaging problem (4.5), with the key difference that each local value f i is
itself an average depending on the entire data sample. Consequently, our algorithms will
combine two steps at each iteration: a data propagation step to allow each node i to
estimate f i, and an averaging step to ensure convergence to the desired value ûn( f ).
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4.3.1 Synchronous Setting estimation

In the synchronous setting, we assume that the nodes have access to a global clock
so that they can all update their estimate at each time instance. We stress that the nodes
need not to be aware of the global network topology as they will only interact with their
direct neighbors in the graph.

Let us denote by zk(t) the (local) estimate of ûn( f ) by node k at iteration t. In order
to propagate data across the network, each node k maintains an auxiliary observation yk,
initialized to xk. Our algorithm, coined GoSta, goes as follows. At each iteration, each
node k updates its local estimate by taking the running average of zk(t) and f (xk, yk).
Then, an edge of the network is drawn uniformly at random, and the corresponding
pair of nodes average their local estimates and swap their auxiliary observations. The
observations are thus each performing a random walk (albeit coupled) on the network
graph.

The full procedure is described in Algorithm 7 and we control its convergence pre-
cisely in the next theorem.

Theorem 4.1. Let G be a connected and non-bipartite graph with n nodes, X ∈ Rn×d a design
matrix and (z(t)) the sequence of estimates generated by Algorithm 7. For all k ∈ [n], we have:

lim
t→+∞

E[zk(t)] =
1
n2 ∑

1≤i,j≤n
f (xi, xj) = ûn( f ) .

Moreover, for any t > 0,

‖E[z(t)]− ûn( f )1n‖ ≤
1
ct

∥∥∥f− ûn( f )1n

∥∥∥+( 2
ct

+ e−ct
)∥∥∥F− f1>n

∥∥∥ , (4.6)

where c = c(G) := 1− λ2(2) and λ2(2) is the second largest eigenvalue of W2 (G), where

W2(G) =
1
|E| ∑

(i,j)∈E

(
Idn−

1
2
(ei − ej)(ei − ej)

>
)

. (4.7)

Theorem 4.1 shows that the local estimates generated by Algorithm 7 converge to
ûn( f ) at a rate O(1/t). Furthermore, the constants reveal the rate dependency on the
particular problem instance. Indeed, the two norm terms are data-dependent and quantify
the difficulty of the estimation problem itself through a dispersion measure. In contrast,
c(G) is a network-dependent term since 1− λ2(2) = βn−1/|E|, where βn−1 is the second
smallest eigenvalue of the graph Laplacian L(G) (see [JS-Conf16]). The value βn−1 is
also known as the spectral gap of G and graphs with a larger spectral gap typically have
better connectivity (Chung, 1997).
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Comparison to U2-gossip. To estimate ûn( f ), U2-gossip (Pelckmans and Suykens, 2009)
does not use averaging. Instead, each node k requires two auxiliary observations y(1)k and

y(2)k which are both initialized to xk. At each iteration, each node k updates its local esti-

mate by taking the running average of zk and f (y(1)k , y(2)k ). Then, two random edges are
selected: the nodes connected by the first (resp. the second) edge swap their first (resp.
the second) auxiliary observations. The U2-gossip algorithm has several drawbacks com-
pared to GoSta: it requires initiating communication between two pairs of nodes at each
iteration, and the amount of communication and memory required is higher (especially
when data is high-dimensional). Furthermore, applying our convergence analysis to U2-
gossip, we obtain the following refined rate:

‖E[Z(t)]− ûn( f )1n‖ ≤
√

n
t

(
2

1− λ2(1)

∥∥∥f− ûn( f )1n

∥∥∥+ 1
1− λ2(1)2

∥∥∥F− f1>n
∥∥∥) , (4.8)

where 1− λ2(1) = 2(1− λ2(2)) = 2c(G) and λ2(1) is the second largest eigenvalue of
W1(G) = 1

|E| ∑(i,j)∈E
(
Idn−(ei − ej)(ei − ej)

>). The advantage of propagating two obser-
vations in U2-gossip is seen in the 1/(1− λ2(1)2) term, however the absence of averaging
leads to an overall

√
n factor. Intuitively, this is because nodes do not benefit from each

other’s estimates. In practice, λ2(2) and λ2(1) are close to 1 for reasonably-sized net-
works (for instance, λ2(2) = 1− 1/n for the complete graph), so the square term does
not provide much gain and the

√
n factor dominates in (4.8).

4.3.2 Asynchronous setting for the estimation problem

In practical settings, nodes may not have access to a global clock to synchronize the
updates. In this section, we remove the global clock assumption and propose a fully
asynchronous algorithm where each node has a local clock, ticking at a rate 1 Poisson
process. Yet, local clocks are i.i.d. so one can use an equivalent model with a global
clock ticking at a rate n Poisson process and a random edge draw at each iteration, as
in synchronous setting (one may refer to (Boyd et al., 2006) for more details on clock
modeling). However, at a given iteration, the estimate update step now only involves the
selected pair of nodes. Therefore, the nodes need to maintain an estimate of the current
iteration number to ensure convergence to an unbiased estimate of ûn(h). Hence for all
k ∈ [n], let pk ∈ [0, 1] denote the probability of node k being picked at any iteration. With
our assumption that nodes activate with a uniform distribution over E,

pk =
2dk

|E| . (4.9)

Moreover, the number of times a node k has been selected at a given iteration t > 0
follows a binomial distribution with parameters t and pk. Let us define mk(t) such that
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Algorithm 8: GoSta-async: an asynchronous gossip algorithm for estimating

pairwise functions

input : Each node k holds observation xk and pk = 2dk/|E|
Initiatilization: Each node k initializes yk = xk, zk = 0 and mk = 0
for t = 1, 2, . . . do

Draw (i, j) uniformly at random from E
Set mi ← mi +

1
pi

and mj ← mj +
1
pj

Set zi, zj ← 1
2 (zi + zj)

Set zi ← (1− 1
pimi

)zi +
1

pimi
f (xi, yi)

Set zj ← (1− 1
pjmj

)zj +
1

pjmj
f (xj, yj)

Swap auxiliary observations of nodes i and j: yi ↔ yj
return Each node k has zk, for k = 1, . . . , n

mk(0) = 0 and for t > 0:

mk(t) =

{
mk(t− 1) + 1

pk
, if k is picked at iteration t ,

mk(t− 1), otherwise .
(4.10)

For any k ∈ [n] and any t > 0, one has E[mk(t)] = t · pk · 1/pk = t. Therefore, given that
every node knows its degree and the total number of edges in the network, the iteration
estimates are unbiased. We can now give an asynchronous version of GoSta, as stated in
Algorithm 8.

Theorem 4.2. Let G be a connected and non bipartite graph with n nodes, X ∈ Rn×d a design
matrix and (z(t)) the sequence of estimates generated by Algorithm 8. For all k ∈ [n], we have:

lim
t→+∞

E[zk(t)] =
1
n2 ∑

1≤i,j≤n
f (xi, xj) = ûn( f ) .

Moreover, there exists a constant c′(G) > 0 such that, for any t > 1,

‖E[z(t)]− ûn( f )1n‖ ≤ c′(G) · log t
t
‖F‖ .

4.4 Optimization of pairwise function in decentralized settings

Given d > 0, let f : Rd × X × X → R a differentiable and convex function with
respect to the first variable. We assume that for any (x, x′) ∈ X 2, there exists L f > 0
such that f (·; x, x′) is L f -Lipschitz (with respect to the `2-norm). Let ψ : Rd → R+ be a
non-negative, convex, possibly non-smooth, function such that, for simplicity, ψ(0) = 0.
We aim at solving the following optimization problem:

min
θ∈Rd

1
n2 ∑

1≤i,j≤n
f (θ; xi, xj) + ψ(θ). (4.11)
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Algorithm 9: Stochastic dual averaging in the centralized setting

param: Step size (γ(t))t≥0 > 0
Initialization: θ = 0, θ̄ = 0, z = 0
for t = 1, . . . , T do

Update z← z + g(t), where E[g(t)|θ] = ∇ f̄ n(θ)
Update θ ← πt(z)
Update θ̄ ←

(
1− 1

t

)
θ̄ + 1

t θ

return θ̄

In a typical machine learning scenario, Problem (4.11) is a (regularized) empirical risk
minimization problem and θ corresponds to the model parameters to be learned. The
quantity f (θ; xi, xj) is a pairwise loss measuring the performance of the model θ on the
data pair (xi, xj), while ψ(θ) represents a regularization term penalizing the complexity
of θ. Common examples of regularization terms include indicator functions of a closed
convex set to model explicit convex constraints, or norms enforcing specific properties
such as sparsity (a canonical example being the `1-norm).

Many machine learning problems can be cast as Problem (4.11). For instance, in AUC
maximization (Zhao et al., 2011), binary labels (`1, . . . , `n) ∈ {−1, 1}n are assigned to the
data points and we want to learn a (linear) scoring rule x 7→ x>θ which hopefully gives
larger scores to positive data points than to negative ones. One can use the logistic loss

f (θ; xi, xj) = 1{`i>`j} log
(

1 + exp((xj − xi)
>θ)

)
,

in this context, and the regularization term ψ(θ) can be the square `2-norm of θ (or the `1-
norm when a sparse model is desired). Other popular instances of Problem (4.11) include
metric learning (Bellet, Habrard, and Sebban, 2015), ranking (Clémençon, Lugosi, and
Vayatis, 2008), supervised graph inference (Biau and Bleakley, 2006) and multiple kernel
learning (Kumar et al., 2012).

For notational convenience, we write fi(θ) = (1/n)∑n
j=1 f (θ, xi, xj) for i ∈ [n] and

f̄ n(θ) = (1/n)∑n
i=1 fi(θ). Problem (4.11) can then be recast as:

min
θ∈Rd

Rn(θ) := f̄ n(θ) + ψ(θ) . (4.12)

Note that the function f̄ n is L f -Lipschitz, since all the fi are L f -Lipschitz.

4.4.1 Reminder on centralized dual averaging

In this section, we review the stochastic dual averaging optimization algorithm (Nes-
terov, 2009; Xiao, 2010) to solve Problem (4.11) in the centralized setting (where all data
lie on the same machine). To explain the motivation behind dual averaging, let us start
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with a reminder on Stochastic Gradient Descent (SGD), assuming ψ ≡ 0 for simplicity:

θ(t + 1) = θ(t)− γ(t)g(t) ,

where E[g(t)|θ(t)] = ∇ f̄ n(θ(t)), and (γ(t))t≥0 is a non-negative non-increasing step size
sequence. For SGD to converge to an optimal solution, the step size sequence must
satisfy γ(t) −→

t→+∞
0 and ∑∞

t=0 γ(t) = ∞. As noticed in (Nesterov, 2009), an undesirable

consequence is that new gradient estimates are given smaller weights than old ones. Dual
averaging aims at integrating all gradient estimates with the same weight.

Let (γ(t))t≥0 be a positive and non-increasing step size sequence. The dual averaging
algorithm maintains a sequence of iterates (θ(t))t>0, and a sequence (z(t))t≥0 of “dual”
variables which collects the sum of the unbiased gradient estimates seen up to time t. We
initialize to θ(1) = z(0) = 0. At each step t > 0, we compute an unbiased estimate g(t)
of ∇ f̄ n(θ(t)). The most common choice is to take g(t) = ∇ f (θ; xit , xjt) where it and jt are
drawn uniformly at random from [n]. We then set z(t + 1) = z(t) + g(t) and generate the
next iterate with the following rule:

θ(t + 1) = π
ψ
t (z(t + 1)) ,

π
ψ
t (z) := arg min

θ∈Rd

{
−z>θ +

‖θ‖2

2γ(t)
+ tψ(θ)

}
.

We drop the dependence in ψ and write πt(z) = π
ψ
t (z) when no ambiguity is possible.

Remark 4.1. Note that πt(·) is related to the proximal operator of a function φ : Rd → R defined
by proxφ(x) = arg minz∈Rd

(
‖z− x‖2/2 + φ(x)

)
. Indeed, one can write:

πt(z) = proxtγ(t)ψ (γ(t)z) .

For many functions of practical interest, πt(·) has a closed form solution. For instance, when
ψ = ‖ · ‖2, πt(·) corresponds to a simple scaling, and when ψ = ‖ · ‖1 it is a soft-thresholding
operator. If ψ is the indicator function of a closed convex set C, then πt(·) is the projection on C.

The dual averaging method is summarized in Algorithm 9. If γ(t) ∝ 1/
√

t then for
any T > 0: ET

[
Rn(θ̄(t)) − Rn(θ∗)

]
= O(1/

√
t), where θ∗ ∈ arg minθ∈Rd Rn(θ), θ̄(t) =

1
t ∑t

i=1 θ(i) is the averaged iterate and Et is the expectation over all possible sequences
(g(t))t≥0.

Notice that dual averaging cannot be easily adapted to a decentralized setting. In-
deed, a node cannot compute an unbiased estimate of its gradient: this would imply
access to the entire set of data points, which violates the communication and storage
constraints. Therefore, data points have to be appropriately propagated during the opti-
mization procedure, as made clearer in the following section.
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Algorithm 10: Synchronous gossip dual averaging for pairwise functions

param: Step size (γ(t))t≥1 > 0
Each node i initializes yi = xi, zi = θi = θ̄i = 0
for t = 1, . . . , T do

Draw (i, j) uniformly at random from E
Set zi, zj ← zi+zj

2
Swap auxiliary observations: yi ↔ yj

for k = 1, . . . , n do
Update zk ← zk +∇θ f (θk; xk, yk)
Compute θk ← πt(zk)
Average θ̄k ←

(
1− 1

t

)
θ̄k +

1
t θk

return Each node k has θ̄k, for k = 1, . . . , n

4.4.2 Decentralized synchronous setting

We now turn to our main goal, namely to develop efficient gossip algorithms for
solving Problem (4.11) in the decentralized setting.

The methods we propose rely on dual averaging (see Section 4.4.1). This choice is
guided by the fact that the structure of the updates makes dual averaging much eas-
ier to analyze in the distributed setting than sub-gradient descent when the problem is
constrained or regularized. This is because dual averaging maintains a simple sum of
sub-gradients, while the (non-linear) smoothing operator πt is applied separately.

Our work builds upon the analysis by Duchi, Agarwal, and Wainwright, (2012),
who proposed a distributed dual averaging algorithm to optimize an average of uni-
variate functions f (·; xi). In their algorithm, each node i computes unbiased estimates
of its local function ∇ f (·; xi) that are iteratively averaged over the network. Unfor-
tunately, in our setting, the node i cannot compute unbiased estimates of ∇ fi(·) =

∇(1/n)∑n
j=1 f (·; xi, xj): the latter depends on all data points while each node i ∈ [n]

only holds xi. To go around this problem, we rely on a gossip data propagation step
(Pelckmans and Suykens, 2009) and [JS-Conf16] so that the nodes are able to compute
biased estimates of ∇ fi(·) while keeping the communication and memory overhead to a
small level for each node.

In the synchronous setting, we assume that each node has access to a global clock
such that every node can update simultaneously at each tick of the clock. Although not
very realistic, this setting allows for simpler analysis. We assume that the scaling se-
quence (γ(t))t≥0 is the same for every node. At any time, each node i has the following
quantities in its local memory register: a variable zi (the gradient accumulator), its origi-
nal observation xi, and an auxiliary observation yi, which is initialized at xi but will change
throughout the algorithm as a result of data propagation.

The algorithm goes as follows. At each iteration, an edge (i, j) ∈ E of the graph is
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drawn uniformly at random. Then, nodes i and j average their gradient accumulators zi

and zj, and swap their auxiliary observations yi and yj. Finally, every node of the net-
work performs a dual averaging step, using their original observation and their current
auxiliary one to estimate the partial gradient. The procedure is detailed in Algorithm 10,
and the following proposition adapts the convergence rate of centralized dual averaging
under the hypothesis that the contribution of the bias term decreases fast enough over
the iterations.

Theorem 4.3. Let G be a connected and non-bipartite graph with n nodes, and let θ∗ ∈
arg minθ∈Rd Rn(θ). Let (γ(t))t≥1 be a non-increasing and non-negative sequence. For any
i ∈ [n] and any t ≥ 0, let zi(t) ∈ Rd and θ̄i(t) ∈ Rd be generated according to Algorithm 10.
Then for any i ∈ [n] and T > 1, we have:

ET[Rn(θ̄i)− Rn(θ
∗)] ≤ C1(T) + C2(T) + C3(T),

where 

C1(T) =
1

2Tγ(T)
‖θ∗‖2 +

L2
f

2T

T−1

∑
t=1

γ(t),

C2(T) =
3L2

f

T
(

1−
√

λ2(2)
) T−1

∑
t=1

γ(t),

C3(T) =
1
T

T−1

∑
t=1

Et[(ω(t)− θ∗)>ε̄n(t)],

for ε̄n(t) = 1
n ∑n

k=1(∇θ f (θk(t), xk, yk(t))− gk(t)) and λ2(2) < 1 is the second largest eigen-
value of the matrix W2(G) = In − 1

|E|L(G), defined in Equation (4.7).

The rate of convergence in Proposition 4.3 is divided into three parts: C1(T) is a
data dependent term which corresponds to the rate of convergence of the centralized dual
averaging, while C2(T) and C3(T) are network dependent terms since 1− λG

2 = βG
n−1/|E|,

where βG
n−1 is the second smallest eigenvalue of the graph Laplacian L(G), also known

as the spectral gap of G. The convergence rate of our algorithm thus improves when
the spectral gap is large, which is typically the case for well-connected graphs (Chung,
1997). Note that C2(T) corresponds to the network dependence for the distributed dual
averaging algorithm of Duchi, Agarwal, and Wainwright, (2012) while the term C3(T)
comes from the bias of our partial gradient estimates. In practice, C3(T) vanishes quickly
and has a small impact on the rate of convergence.

4.4.3 Decentralized asynchronous setting

For any variant of gradient descent over a network with a decreasing step size, there
is a need for a common time scale to perform the suitable decrease. In the synchronous
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Algorithm 11: Asynchronous gossip dual averaging for pairwise functions

param: Step size (γ(t))t≥0 > 0, probabilities (pk)k∈[n]
Each node i initializes yi = xi, zi = θi = θ̄i = 0, mi = 0
for t = 1, . . . , T do

Draw (i, j) uniformly at random from E
Swap auxiliary observations: yi ↔ yj for k ∈ {i, j} do

Set zk ← zi+zj
2

Update zk ← 1
pk
∇θ f (θk; xk, yk)

Increment mk ← mk +
1
pk

Compute θk ← πmk(zk)

Average θ̄k ←
(

1− 1
mk pk

)
θ̄k

return Each node k has θ̄k, for k = 1, . . . , n

setting, this time scale information can be shared easily among nodes by assuming the
availability of a global clock. This is convenient for theoretical considerations, but is
unrealistic in practical (asynchronous) scenarios. In this section, we place ourselves in a
fully asynchronous setting where each node has a local clock, ticking at a Poisson rate of
1, independently from the others. This is equivalent to a global clock ticking at a rate n
Poisson process which wakes up an edge of the network uniformly at random (see Boyd
et al., 2006, for details on clock modeling).

With this in mind, Algorithm 10 needs to be adapted to this setting. First, one cannot
perform a full dual averaging update over the network since only two nodes wake up
at each iteration. Also, as mentioned earlier, each node needs to maintain an estimate
of the current iteration number in order for the scaling factor γ to be consistent across
the network. For k ∈ [n], let pk denote the probability for the node k to be picked at
any iteration. If the edges are picked uniformly at random3, then one has as before
pk = 2dk/|E|.

Let us define an activation variable (δk(t))t≥1 such that for any t ≥ 1,

δk(t) =

{
1 if node k is picked at iteration t,
0 otherwise.

One can immediately see that (δk(t))t≥1 are i.i.d. random variables, Bernoulli distributed
with parameter pk. Let us define (mk(t)) ≥ 0 such that mk(0) = 0 and for t ≥ 0,
mk(t + 1) = mk(t) +

δk(t+1)
pk

. Since (δk(t))t≥1 are Bernoulli random variables, mk(t) is an
unbiased estimate of the time t.

Using this estimator, we can now adapt Algorithm 10 to the fully asynchronous case,
as shown in Algorithm 11. The update step slightly differs from the synchronous case: the

3For simplicity, we focus only on this case, although our analysis holds in a more general setting.
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partial gradient has a weight 1/pk instead of 1 so that all partial functions asymptotically
count in equal way in every gradient accumulator. In contrast, uniform weights would
penalize partial gradients from low degree nodes since the probability of being drawn is
proportional to the degree. This weighting scheme is essential to ensure the convergence
to the global solution. The model averaging step also needs to be altered: in absence of
any global clock, the weight 1/t cannot be used and is replaced by 1/(mk pk), where mk pk

corresponds to the average number of times that node k has been selected so far.
The following result is the analogous of Theorem 4.3 for the asynchronous setting.

Theorem 4.4. Let G be a connected and non bipartite graph. Let (γ(t))t≥1 be defined as γ(t) =
c/t1/2+α for some constant c > 0 and α ∈ (0, 1/2). For i ∈ [n], let (di(t))t≥1, (gi(t))t≥1,
(εi(t))t≥1, (zi(t))t≥1 and (θi(t))t≥1 be generated as described in Algorithm 11. Then, there
exists some constant C < +∞ such that, for θ∗ ∈ arg minθ′∈Rd Rn(θ′), i ∈ [n] and T > 0,

Rn(θ̄i(T))− Rn(θ
∗) ≤C max(T−α/2, Tα−1/2) +

1
T

T

∑
t=2

Et[(ω(t)− θ∗)>εn(t)].

Remark 4.2. In the asynchronous setting, no convergence rate was known even for the distributed
dual averaging algorithm of Duchi, Agarwal, and Wainwright, (2012), which deals with the
problem of minimizing univariate functions. The proof of Theorem 4.4 can be adapted to get a
convergence rate (without the bias term) for an asynchronous version of their algorithm.

Our methods can be extended to the situation where nodes contain multiple obser-
vations: when drawn, a node will pick a random auxiliary observation to swap. Similar
convergence results are achieved by splitting each node into a set of nodes, each contain-
ing only one observation and new edges weighted judiciously.
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Chapter 5

Appendix

5.1 Reminder on norms and subdifferential

Definition 5.1. For a norm Ω over Rd, its dual norm is written Ω∗ and is defined for any u ∈ Rd

by

Ω∗(u) = max
Ω(z)≤1

〈z, u〉 . (5.1)

Definition 5.2. The subdifferential of a function f : Rd → R at x is the set of vector s ∈ Rd,
such that

f (y) ≥ f (x) + 〈s, y− x〉 for all y ∈ Rd , (5.2)

and is written ∂ f (x).

Proposition 5.1 (Subdifferential of a norm). (Bach et al., 2012, Prop. 1.2) The sub-differential
of a norm Ω at x, is given by

∂Ω(x) =

{
{z ∈ Rd : Ω∗(z) ≤ 1} = BΩ∗ , if x = 0,
{z ∈ Rd : Ω∗(z) = 1 and z>x = Ω(x)}, otherwise.

(5.3)

Proposition 5.2 (Fermat’s rule). (Bauschke and Combettes, 2011, Proposition 26.1) For any
convex function f : Rd → R:

x? ∈ arg min
x∈Rd

f (x)⇐⇒ 0 ∈ ∂ f (x?). (5.4)

5.2 Reminder on the Fenchel-Legendre conjugate

We recall the definition of the Fenchel-Legendre transformation, often referred to as
the convex conjugate or as the Fenchel-Legendre conjugate.

Definition 5.3. For any convex function f : Rd → R, we denote f ∗ the Fenchel-Legendre
conjugate of f , f ∗(z) = supw∈Cd〈w, z〉 − f (w).
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5.2.1 Perspective of a function

The Concomitant Lasso estimator is related to the perspective of a function defined
for a convex function f : Rn → R∪ {+∞} as the function persp f : Rn ×R→ R∪ {+∞}
such that

persp f (r, σ) =

{
σ f
( r

σ

)
, if σ > 0,

+∞, if σ ≤ 0.

This function is not lower semi-continuous in general. However, lower semi-continuity is
a very desirable property. Together with the fact that the function is infinite at infinity,
this guarantees the existence of minimizers (Peypouquet, 2015, Theorem 2.19). Hence
we consider instead its biconjugate, which is always lower semi-continuous (Bauschke
and Combettes, 2011, Theorem 13.32). One can show (Bauschke and Combettes, 2011,
Example 13.8) that the Fenchel conjugate of persp f is

persp∗f (θ, ν) =

{
0, if ν + f ∗(θ) ≤ 0,
+∞, otherwise.

Hence a direct calculation shows that

Proposition 5.3.

persp∗∗f (r, σ) =


σ f ∗∗

( r
σ

)
, if σ > 0,

sup
θ∈dom f ∗

〈θ, r〉, if σ = 0,

+∞, otherwise.

Proof. Let us define g = persp∗f for simplicity.
First case: σ > 0.

persp∗∗f (r, σ) = sup
θ∈Rn,ν∈R

〈θ, r〉+ σν− g(θ, ν) = sup
θ∈Rn,ν∈R

{〈θ, r〉+ σν : ν + f ∗(θ) ≤ 0}

As σ > 0, for a given θ, one should take ν the largest possible, hence ν = − f ∗(θ).

persp∗∗f (r, σ) = sup
θ∈Rn
〈θ, r〉 − σ f ∗(θ) = σ sup

θ∈Rn
〈θ, r/σ〉 − f ∗(θ) = σ f ∗∗(r/σ)

Second case: σ = 0.

persp∗∗f (r, 0) = sup
θ∈Rn,ν∈R

〈θ, r〉 − g(θ, ν) = sup
θ∈Rn,ν∈R

{〈θ, r〉 : ν + f ∗(θ) ≤ 0}.

As ν has no influence on the value of the objective, we can choose it as small as we want
and so the only requirement on θ is that it should belong to the domain of f ∗. We get

persp∗∗f (r, 0) = sup
θ∈dom f ∗

〈θ, r〉
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Third case: σ < 0. If σ < 0, we can let ν go to −∞ in the formula of persp∗∗f (r, σ) which
leads to persp∗∗f (r, σ) = +∞.

In our case, f (r) = 1
2n‖r‖2

2 +
1
2 and so f ∗∗ = f and dom f ∗ = Rn. Hence, we get

persp∗∗f (r, σ) =


1

2nσ ‖r‖
2
2 +

σ
2 , if σ > 0,

0, if σ = 0 and r = 0,
+∞, otherwise.

Taking this lower semi-continuous function leads to a well defined Concomitant Lasso
estimator thanks to the following formulation

(β̂(λ), σ̂(λ)) ∈ arg min
β∈Rp,σ∈R

persp∗∗f (y− Xβ, σ) + λ ‖β‖1 . (5.5)

The only difference with the original one is that we take σ̂(λ) = 0 if y− Xβ̂(λ) = 0.
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Conclusion and Perspectives

Among the future directions of my research I plan to investigate the following ones.
First, I am interested in extending my understanding of the sparse regression prob-

lems by considering more advanced uncertainty information. In particular, so far the
current methods proposed are computationally heavy because they either rely on re-
sampling strategies (Bach, 2008; Meinshausen and Bühlmann, 2010) or on the feature
(Gram) matrix correlation (Javanmard and Montanari, 2014; Zhang and Zhang, 2014; van
de Geer et al., 2014).

Second, I have recently started a project on robustness in high dimension to tackle the
difficulties occurring when the features are themselves (badly) corrupted. For this kind
of problems various directions have been proposed for instance extending the LARS
(Efron et al., 2004) approach (Khan, Van Aelst, and Zamar, 2007) or using trimmed-
mean when computing inner products in the Lasso formulation (Chen, Caramanis, and
Mannor, 2013). Note that the second one requires to estimate the full feature (Gram)
matrix correlation.

Last but not least, I have started focusing on extreme classification scenarios. In a
context where the number of label is large, as well as the number of observations and
feature, new methods need to be investigated to get meaningful prediction. Of particu-
lar interest is the interplay between the sparsity of the labels and the classification task:
indeed in such scenarios only a few label (for instance in an image) are active together.
Leveraging such structural information has so far been the subject of very few contribu-
tions (Jain, Prabhu, and Varma, 2016), though it seems of high interest for modern large
learning problems. Preliminary work on this road has started [JS-Preprint2], and is the
subject of E. Chzhen Ph.D. program (jointly supervised with M. Hebiri).
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Résumé

Ce mémoire couvre essentiellement les travaux menés par l’auteur depuis son arrivée comme
“Maître de Conférences” au Laboratoire de Traitement et Communication de l’Information (LTCI),
à Télécom ParisTech, c’est-à-dire depuis décembre 2012. Durant cette période, l’auteur à ren-
forcé ses contributions à la statistique en grande dimension et exploré de nouveaux champs de
recherche autour des problèmes de régression parcimonieuse (comme le Lasso). En particulier
sont considérés dans ce travail les aspect computationnels pour accélérer les algorithmes de réso-
lution, ainsi que des moyens de mieux prendre en compte le manque d’information sur le niveau
de bruit des modèles, et des corrections contre le biais des méthodes convexes non-lisses. Ce
manuscrit ne cherche pas à présenter de manière exhaustive les résultats développés par l’auteur
mais plutôt un point de vue synthétique sur ces contributions. La/le lectrice/lecteur est invité-e
à consulter les articles cités pour plus de détails et un traitement mathématique plus précis des
sujets présentés ici.

Mots clefs : Statistique en grandes dimensions; (Multi-task) Lasso; Sélection de Modèles;
Optimisation convexe; Règles de dépistage sûres, Dé-biaisage et Lasso, Estimation concomittante,
Algorithme de type Gossip;

Abstract

This dissertation essentially covers the work done by the author as a “Maître de Conférences”
at the Laboratoire de Traitement et Communication de l’Information (LTCI), at Télécom Paris-
Tech, since December 2012. During this period, the author strengthened his contributions to
high-dimensional statistics and in particular sparse regression methods. In particular, the main
focus of the dissertation is on computational aspects and to speed-up algorithms for Lasso-type
problems, on means to better take into account the unknown noise and on corrections against
the bias non-smooth convex regression methods suffer from. This report is not meant to present
comprehensive description of the results developed by the author, but rather a synthetic view of
his main contributions. The interested reader may consult the referenced articles for additional
details and more precise treatment of the topics presented here.

Keywords : High dimensional statistics; (Multi-task) Lasso; Model selection; Convex Opti-
mization; Safe Screening Rules, Lasso de-biasing, Concomitant estimation, Gossip Algorithms;
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