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Introduction

The area of microscopy imaging has gained great relevance since the invention of the microscope, as a tool for studying the microscopic and nanoscopic world. Medicine, biology and live-cell imaging benefit from the many imaging techniques that provide different types of information from the same scene. Among the most popular techniques are dark-field, bright-field, polarizing, confocal, fluorescence, phase contrast and differential interference contrast (DIC) microscopy.

Confocal and fluorescence microscopy are among the most used for real time live-cell imaging, but that does not mean that the others are not useful at all.

The observation of biological structures is a challenging task, especially in live-cell imaging.

In fact, optical microscopes are limited by the diffraction of light, and imaging is affected by the optical properties of the object, such as spatial variations in refractive index which introduce aberrations as the light traverses the object [START_REF] Booth | Adaptive optical microscopy, the ongoing quest for a perfect image[END_REF]. Consequently, since most of the cell components are transparent to visible light [START_REF] Frigault | Livecell microscopy, tips and tools[END_REF] and because of the high content of water, traditional light microscopy may suffer from a lack of contrast, reason why staining is often used to produce contrast by light absorption [80]. Unfortunately, such a process can deteriorate the living cells. An alternative solution consists in reducing the condenser numerical aperture, which however worsens dramatically the resolution of the image.

Motivation

The technique of our interest is DIC microscopy, designed by Allen, David and Nomarski [START_REF] Allen | The Zeiss-Nomarski differential interference equipment for transmitted-light microscopy[END_REF] to overcome the inability to image unstained transparent biological specimens, which is typical of bright-field microscopes, while avoiding at the same time the halo artifacts of other techniques designed for the same purpose, such as phase contrast. DIC microscopes are able to provide contrast to images by exploiting the phase shifts in light induced by the transparent specimens (also called phase objects) while passing through them. This phenomenon is not detected by the human eye, neither by an automatic visual system, and occurs because of the interaction of light with different refractive indexes of both the specimen and its surrounding medium.

In DIC microscopy, such phase shifts are converted into artificial black and white shadows in the image, which correspond to changes in the spatial gradient of the specimen's optical path length. Furthermore, this technique has been widely recognized for its possibility to use full numerical apertures in the objective, which results in high contrast images at high lateral resolution of approximately 240 nm in the range of visible light (400-700 nm) and around 30 nm in the range of x-ray radiation (0.01-10 nm) [START_REF] Bertilson | Compact high-resolution differential interference contrast soft x-ray microscopy[END_REF]. One disadvantage of DIC microscopy is that the observed images cannot be easily used for topographical and morphological interpretation, because the changes in phase of the light are hidden in the intensity image. It is then of vital importance to recover the specimen's phase function from the observed DIC images.

The problem of phase estimation in optical imaging has been widely studied, as shown in the review made in [START_REF] Shechtman | Phase Retrieval with Application to Optical Imaging[END_REF]. Previous work for reconstructing the DIC phase function has been done by Munster et al [START_REF] Van Munster | Reconstruction of optical pathlength distributions from images obtained by a wide-field differential interference contrast microscope[END_REF], who retrieve the phase information by deconvolution with a Wiener filter; line integration of DIC images is proposed by Kam in [START_REF] Kam | Microscopic differential interference contrast image processing by line integration (LID) and deconvolution[END_REF], supposing that the line integration along the shear angle yields a positive definite image, which is not always the case since the intensity image is a nonlinear relation between the transmission function of the specimen and the point spread function of the microscope. Kou et al [START_REF] Kou | Transport-of-Intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging[END_REF] introduced the use of transport of intensity equation to retrieve the phase function; Bostan et al [START_REF] Bostan | Phase retrieval by using transport-of-intensity equation and differential interference contrast microscopy[END_REF] also used this approach, including a total variation regularization term to preserve the phase transitions. Finally, in the work of Preza [START_REF] Preza | Image reconstruction for three-dimensional transmitted-light DIC microscopy[END_REF][START_REF] Preza | Theoretical development and experimental evaluation of imaging models for differential interference contrast microscopy[END_REF][START_REF] Preza | Rotational-diversity phase estimation from differential interference contrast microscopy images[END_REF][START_REF] Preza | Algorithms for extracting true phase from rotationally-diverse and phase-shifted DIC images[END_REF], the phase estimation in DIC microscopy has been addressed by considering the minimization of a Tikhonov regularized discrepancy term, which is performed by means of a modified nonlinear conjugate gradient (CG) method.

Goal

The goal of the work included in this dissertation is to provide efficient methods for the nonlinear, non-convex inverse problem of phase estimation in Differential Interference Contrast (DIC) microscopy. To accomplish this we have chosen to solve the minimization of a functional formed by a least-squares discrepancy term and a regularization term, by the following two approaches:

• Unconstrained approximation, on which we consider two different regularization terms, the first one being the total variation (TV) functional which is suitable for piecewise constant images, while the second is the hypersurface (HS) potential [START_REF] Charbonnier | Deterministic edgepreserving regularization in computed imaging[END_REF], which is a smooth generalization of the TV able to reconstruct both sharp and smooth variations of the unknown phase. Since the latter choice leads to the minimization of a smooth functional, we consider a limited memory gradient method, in which suitable adaptive steplength parameters are chosen to improve the convergence rate of the algorithm. As concerns the TV-based model, we address the minimization problem by means of a recently proposed linesearch-based forward-backward method able to handle the nonsmoothness of the TV functional [START_REF] Bonettini | Variable metric inexact line-search based methods for nonsmooth optimization[END_REF].

• Constrained approximation, on which we do a change of variable into the complex set C, and introducing a constraint of variables of module 1 by means of a projection operator. We implemented two algorithms, one based on Gradient Descent with projection and another one using Conjugate Gradient with projection. We implemented the computation of the gradient using Wirtinger derivatives [START_REF] Candès | Phase Retrieval via Wirtinger Flow: Theory and Algorithms[END_REF].

Contributions

The major contributions in this dissertation are:

1. Extension of the original imaging formation model to polychromatic light, under partially coherent illumination.

2. A novel compact formulation of the gradient allowing fast computation in the Fourier domain for the phase estimation functional.

3. A phase retrieval method by minimizing a discrepancy term with Total Variation (smoothed and nonsmoothed) regularization term, along with a study of the functional regarding to the existence of minimizers.

4. Implementation and evaluation of minimization algorithms with phantom objects and synthetic realistic images, and comparison with state-of-the-art gradient methods, as well as a phase retrieval method by minimizing a functional depending on complex variable with modulus constraint.

Organization of the dissertation

The organization of this dissertation is as follows. In Chapter 2 we start with a brief review of physical-optical concepts related to the nature of light and the elements of the microscope, necessary to understand the way the DIC system works for transmitted coherent light. It also The constrained approximation approach is presented in Chapter 4, in which is described the reformulation of the inverse problem in terms of the complex variable, and the use of the Wirtinger derivatives to that end. It also includes the numerical tests on synthetic data for comparing the performance with the unconstrained approach.

Finally, general conclusions and perspectives of future work are presented in Chapter 5.

Chapter 2

Differential Interference Contrast (DIC) Microscopy

Since their invention, microscopes have been a powerful tool in different disciplines such as biology, medicine and the study of materials. In medicine, the acquisition of images of microorganisms has given birth to new subjects as bacteriology, immunology, virology, cell pathology, and others [START_REF] Chen | Optical and digital microscopic imaging techniques and applications in pathology[END_REF]. On those cases as well as in biology and live-cell imaging, the emergent challenge is the observation of cell components which are transparent to visible light [START_REF] Frigault | Livecell microscopy, tips and tools[END_REF]. Cells have high content of water and show low contrast, reason for which dyes are used to stain different cell structures to produce contrast as the visible light absorbs the dye [80]. In other cases, like in fluorescence microscopy, fluorochrome stains are used to label specific tissue components. This produces fluorescing areas to shine brightly against a dark background with sufficient contrast to permit detection 1 . However, this procedures can damage the cells and specimen can be lost.

Microscopists then, choose to use light microscopes with special optical configurations that avoid the fixing or freezing of the cells [START_REF] Johnson | Molecular Biology of the Cell. 4th[END_REF]. Microscopy is also a category of characterization techniques in materials science to analyze the surface and subsurface structure of a material [START_REF] Brandon | Microstructural Characterization of Materials[END_REF].

Another challenge faced by optical microscopy is the limitation by diffraction of light, which directly affects the spatial resolution to properly observe and image the specimen. The quality of resolution is determined by the objective numerical aperture and by the wavelength of light used to illuminate the specimen.

One of the most used techniques for imaging transparent unstained biological specimens is Differential Interference Contrast (DIC) microscopy. This technique appeared in the decade of 1950s as an alternative to overcome the limitation of bright-field microscopes to image this type of specimens, and to obtain images free of the halo artifact introduced by phase contrast microscopes. DIC has been widely recognized by its possibility to use full numerical apertures in the objective, which results in high contrast images at high lateral resolution of approximately 240 nm 2 . However, one disadvantage is that the observed images cannot be easily used for topographical and morphological interpretation.

The purpose of this chapter is to introduce the reader to optical principles such as polarization, birefringence and interference, as well as acquisition details and optical configuration Using Rayleigh criterion where resolving power is given by R = 0.61λ/NA, if λ = 550 nm and NA=1.4, then R = 240 nm. Specifications of this type of objective lens are found in https://www.micro-shop.zeiss.com/?p= us&f=o&a=v&m=s&id=440762-9904-000 used by DIC microscopy. For the reader interested only in the image formation model can go directly to section 2.3.

Optical microscopy

To present the functional principles of DIC microscopes it is important to mention first that, according to their observation method, they belong to the family of optical (light) microscopes (Figure 2.1), and depending on their lighting method they can be of two types: transmission (the light passes through transparent objects) and reflection (the light source illuminates nontransparent objects, and the reflected light is collected by the objective lens) [START_REF] Chen | Optical and digital microscopic imaging techniques and applications in pathology[END_REF]. Optical microscopes are limited by the diffraction of light3 , and imaging is affected by the optical properties of the object, such as spatial variations in refractive index which introduces aberrations as the light traverses the object [START_REF] Booth | Adaptive optical microscopy, the ongoing quest for a perfect image[END_REF]. If light passes through an object but does not become absorbed or diffracted, it remains invisible. Diffraction also limits the optical resolution of the microscope as it is explained in more detail in section 2.3. Table 2.1 shows a brief comparison of the advantages and disadvantages of different optical microscopy techniques according to the interaction of light with the observed specimen. Because of this interaction, objects (specimens) in optical microscopy can be divided into two groups: amplitude objects and phase objects. Amplitude objects produce amplitude differences in the image that are detected by the eye as differences in the intensity. Phase objects cause a phase shift (advanced or retarded) in the rays of light passing through them [START_REF] Murphy | Fundamentals of Light Microscopy and Electronic Imaging[END_REF]. In Figure 2.2 there is an example of the change of behavior of light waves passing through an amplitude (stained) specimen and a phase (unstained) specimen. Related to these phenomena is the capability of the objective lens to collect more light and to produce brighter images [START_REF] Pedrotti | Introduction to Optics[END_REF]. For this, the cone of rays diffracted by the specimen should be as large as possible. Such angular aperture is defined in terms of the numerical aperture (NA) as

NA = n sinα
where n is the refractive index of the medium between the lens and the specimen, and α is the half angle of the cone of specimen light accepted by the objective lens (see Figure 2.3). This also applies for the condenser lens. The numerical apertures of both objective and condenser are related to the effective spatial resolution given by the microscope. As it is explained by Murphy [START_REF] Murphy | Fundamentals of Light Microscopy and Electronic Imaging[END_REF], in Figure 2.4 can be seen the role of the condenser diaphragm in determining the effective numerical aperture. Closing the front aperture diaphragm of the condenser from position b to a limits the angle α of the illumination cone reaching the objective, and thus the effective numerical aperture. Having recalled some of the basic principles of optical microscopy, now we describe the wave nature of light, which is the fundamental concept to explain how polarized light is generated, as well as the property of birefringence of some optical materials. After this we will revisit the phenomenon of interference5 .

The wave nature of light

A wave is any repeating and periodic disturbance which propagates energy through a medium.

The propagation can be harmonic, which means that the particles in the medium will be in different states of oscillation at different times. Therefore, the displacement of a particle in the medium is a function of space coordinates and time, denoted as y = f (x, t), where y is the displacement.

Consider the displacement as a function of time, at a fixed position x = 0. Since the oscillations are sinusoidal, this can be denoted as

y = A sin(ωt + ϕ) = A sin(2πνt + ϕ) (2.1)
where A is the amplitude or maximum displacement of a waveform, ω is the angular frequency measured in radians per unit time and ν is the ordinary frequency measured in Hertz, such that ν = ω 2π or ν = 1 T , where T is the period of the oscillation. The angle (ωt + ϕ) is called the phase of the oscillation; ϕ indicates a shift in the phase at any given time. Phase represents the state of the oscillation of the particles in the medium by specifying the position and direction of the motion. It is useful when comparing the motion of two particles.

Each time the source of disturbance vibrates once, the wave moves forward a distance λ (known as wavelength). If there are ν vibrations in one second, the wave moves forward a distance of νλ. Then, the velocity of the wave is denoted as υ = νλ. If the wave travels with velocity υ, after time t, the wave has moved x = υt. The displacement at x is calculated as

y = f (x -υt) (2.2)
since υ = νλ, and υ = x t , therefore, ν = x λt . Using this relation, equation 2.1 is rewritten as

y = A sin 2π x λ + ϕ (2.3)
and this describes the displacement in terms of space.

Using equations 2.1 and 2.3, we can describe the displacement of any point on a harmonic wave in both terms of space and time as

y = A sin 2π λ (x -υt) + ϕ (2.4)
which can be rewritten as

y = A sin(kx -ωt + ϕ) (2.5)
where k = 2π λ , known as the propagation constant or wave number. Equation 2.5 can be made independent of the coordinate system by converting it into vector form. Let vector k have a magnitude equal to the wave number k, and a direction parallel to the positive direction of x-axis. We can replace x by any arbitrary direction r and write

y = A sin(k • r -ωt + ϕ) (2.6)
Before proceeding to describe the phenomena of polarization and interference, it is important to define the coherence of light, when the phase of a wave field varies identically in time and in space, that is, there exist two types of coherence:

• Spatial coherence: when phase varies in identical fashion at two points in space.

• Temporal coherence: when phase varies in identical fashion at two points in time.

Laser light is an example of totally coherent light, while white light is an example of incoherent light. However, since coherence is required for producing diffraction and interference, incoherent light sources (like incandescent filament lamps) are partially coherent; this is because "the wave bundle comprising each minute ray emanating from a point on the filament vibrate in phase with each other" [START_REF] Murphy | Fundamentals of Light Microscopy and Electronic Imaging[END_REF].

There exist a classification of waves related to the source that generates them, in which appear the electromagnetic (EM) waves, such as visible light, radio waves and x-rays.

EM waves consist of electric ( -→ E ) and magnetic ( -→ B) fields (see Figure 2.5) which oscillate in mutually perpendicular planes, also perpendicular to the direction of propagation, and do not require material medium for their propagation. They all travel in free space with the same speed c. In optics convention, EM waves are described in terms of the electric vector variations in space [START_REF] Schnars | Digital Holography and Wavefront Sensing: Principles, Techniques and Applications[END_REF], as seen in the top part of Figure 2.6. Recalling equation 2.6, the wave equation for light can be written as

E y = E 0 sin(kx -ωt + ϕ) (2.7)
this equation has a constant amplitude E 0 , therefore is called a planar wave, which means that the field vector -→ E lies confined in a plane at each point in space, and the planes at any two different points are parallel to each other, as shown at the bottom part of Figure 2.6. From this we observe that light waves vibrate in a preferential direction normal to the wave propagation.

This preference of direction leads to the phenomenon called polarization. 

Polarization

The polarization7 of an EM wave refers to the orientation of its electric field vector -→ E . The direction of oscillation of the electric field vector in an ordinary light beam occurs in all the possible planes perpendicular to the beam direction. A light wave in which -→ E -vector oscillates in more than one plane, is referred to as unpolarized light, while polarized light is the light that contains waves that only fluctuates in one specific plane.

We can distinguish three types of polarization: i) Plane polarized light. The oscillations of the -→ E vector occur in a single plane perpendicular to the direction of propagation. As the direction of the field vector at some point in space and time lies along a line in a plane perpendicular to the direction of wave propagation, a plane-polarized light is also known as a linearly-polarized wave.

With linear polarization, the orientation of the are out of phase by an arbitrary angle ∆φ. The magnitude of the resultant E-vector varies at each point in space and the overall rotation has the appearance of a flattened helix. Figure 2.9 is an overview of the three types of light polarization. The O-ray and E-ray are linearly polarized in mutually perpendicular planes. The -→ E vector of E-ray vibrates parallel to the optical axis whereas the vibrations of the -→ E vector of O-ray are perpendicular to the optical axis. As the opposite faces of the crystal are parallel, the rays emerge out parallel to the incident ray.

The O-ray travels through the crystal without deviation while the E-ray is refracted at some angle. This means that the velocity of propagation of O-ray is the same in all directions, while that of e-ray changes with direction. Therefore, the refractive index corresponding to O-ray is a constant and is designed by n o , while the one of E-ray varies and is designed by n e . If n e > n o , the birefringence is said to be positive (like in quartz). Conversely, if n e < n o , the birefringence is said to be negative (like in calcite) [START_REF] Wang | Biomedical Optics: Principles and Imaging[END_REF].

The are three scenarios of the behavior of incident light on an anisotropic crystal [START_REF] Murphy | Fundamentals of Light Microscopy and Electronic Imaging[END_REF]:

1. When light is incident at an angle to the optical axis, it splits into O-and E-rays, which travel in different directions with different velocities.

2. When light is incident at a direction perpendicular to the optical axis, O-and E-ray propagate in the same direction but with different velocities.

3. When light is incident at a direction parallel to the optical axis, it does not split into Oand E-rays.

The distinction of O-and E-ray exists only within the crystal. Once they emerge from the crystal, they travel with the same velocity. The rays outside the crystal differ only in their direction of travel and plane of polarization.

When any wave advances in space, its phase changes continuously. At a fixed time, the points at x 1 and x 2 on the wave differ in phase by an amount ∆φ = φ 2 -φ 1

where φ 1 = (kx 1 -ωt) and φ 2 = (kx 2 -ωt), are the respective wave phases at points x 1 and x 2 as established in equation 2.5. Then, the difference in phase is

∆φ = k(x 2 -x 1 ) = 2π λ L
where L = x 2 -x 1 is the geometric path between points x 1 and x 2 . It implies that a displacement by one complete wavelength (L = λ) leaves the waveform unchanged.

If a ray of light travels a geometric path L in a medium of refractive index n in a certain interval of time, then it would travel a greater distance ∆ in air during the same interval of time, therefore

∆ L = ct υt = n
this means that the optical path length ∆ is defined as the product of refractive index and the geometric path length (∆ = nL).

Path differences between two waves may arise if they propagate in a medium along two different paths. Their relationship is defined with the help of their phase difference, which may be expressed in terms of the path difference as follows

∆φ = 2π λ nL = 2π λ ∆
For a material (like an anisotropic crystal) with two refractive indexes n e and n o , the optical path difference is

D = (n o -n e )L
This quantity is also known as relative retardation since O-ray and E-ray are retarded relative to each other, because of the difference in velocities produced by the different refractive indexes. Retardation can also be expressed as the mutual phase shift between the two waves,

∆φ = 2π λ (n o -n e )L = 2π λ D
In order to understand how this quantities relate to each other, we are going to refer to an example given by R. The optical axes of the prisms are orthogonal. The Wollaston prism mode of operation can be understood considering the trajectory of a ray which falls on the prism at normal incidence. As shown in Figure 2.12(a), this ray is split by the birefringence of the material. In the first prism both O-and E-rays travel in the same direction, since for normal incidence no change in the ray direction is produced, but have different phase velocities and polarizations, as was already described in subsection 2.1.1.

In the second element of the prism this ray becomes extraordinary. Just to be clear in the Figure 2.12: Wollaston and Nomarski prisms notation, we call ordinary rays those which are ordinary in the first prism, and extraordinary those which are extraordinary also in the first prism. After splitting, O-and E-rays are separated by a shear distance denoted as 2∆x, which is the same for all O-and E-ray pairs across the face of the prism. We consider that the direction of shear can be in angle with respect to the x-axis, denoted as the shear angle τ .

The Nomarski prism is a modified Wollaston prism. One of the wedges is identical to a conventional Wollaston wedge and has the optical axis oriented parallel to the surface of the prism (Figure 2.12(b)). The second wedge of the prism is modified by cutting the crystal in such a manner that the optical axis is oriented obliquely with respect to the flat surface of the prism. The Nomarski modification causes the light rays to come to a focal point outside the body of the prism, and allows greater flexibility so that when setting up the microscope the prism can be actively focused 9 (see Figure 2.12).

Interference of light waves

The phenomenon needed from the wave nature of light to actually generate a contrast image is interference. It is an important consequence of the principle of superposition of waves which states that, if two or more waves are propagating through the space, the resultant is given by the sum of wave functions of the individual waves. Thus, if y 1 (x, t) and y 2 (x, t) are the wave functions characterizing two waves traveling in space, the resultant is given by

y(x, t) = y 1 (x, t) + y 2 (x, t)
When harmonic waves of identical frequency propagating in a medium meet each other, they produce the phenomenon of interference. Assume two sinusoidal waves of the same frequency 9 The Nomarski prism (https://en.wikipedia.org/wiki/Nomarski_prism)

propagate through different paths and meet in a point P. Let the waves be represented as

E A = E 1 sin(ωt -kx 1 + φ 1 ) E B = E 2 sin(ωt -kx 2 + φ 2 )
such that the phase difference ∆φ is calculated as

∆φ = (-kx 1 + φ 1 ) -(-kx 2 + φ 2 ) = k(x 2 -x 1 ) + (φ 1 -φ 2 ) = 2π λ nL + (φ 1 -φ 2 ) = 2π λ ∆ + (φ 1 -φ 2 ) (2.8)
Following the development done in [START_REF] Avadhanulu | A Textbook of Engineering Physics[END_REF] (chapter 5, page 155), the resultant electric field is

given by

E 2 = E 2 1 + E 2 2 + 2E 1 E 2 cos(∆φ) interference term (2.9)
The intensity of a wave of light is proportional to the square of its amplitude, I ∝ E 2 , which means that from equation 2.9 we obtain

I = I 1 + I 2 + 2 I 1 I 2 cos(∆φ) I = I 1 + I 2 + 2 I 1 I 2 cos 2π λ ∆ + (φ 1 -φ 2 ) (2.10)
Assuming that the pair of waves are in phase, φ 1 = φ 2 , and that have the same amplitude,

I 1 = I 2 , I = 4I 1 cos 2 π λ ∆ (2.11)
If cos 2 π λ ∆ = 1, implies that I = 4I 1 = I max , which is called constructive interference, and this happens when ∆ = 0, λ, 2λ, • • • , mλ. Otherwise, if cos 2 π λ ∆ = 0, implies that I = 0, which is called destructive interference, and this happens when

∆ = λ 2 , 3 λ 2 , • • • , (2m + 1)λ, where m = 0, 1, 2, • • • .

Interference under polarized light and birefringence

As will be presented in section 2.2, DIC imaging is accomplished from the interference of two polarized waves that have a lateral differential displacement (shear) and are phase shifted relative one to each other [START_REF] Bautista | Phase estimation in differential-interference-contrast (DIC) microscopy[END_REF]. The displacement and phase shifting is operated by the birefringent Nomarski prism. In section 2.1.1 was explained that the O-and E-rays coming out the prism vibrate in mutually perpendicular planes, because of that they cannot interfere to produce a resultant wave with an altered amplitude but, if the prism is positioned between two crossed polarizers (polarizer and analyzer as in Figure 2.10), it is possible to observe the In fact, only the components of the -→ E vector of both O-and E-rays that vibrate parallel to the transmission axis of the analyzer will emerge. Therefore, after passing the analyzer there is either constructive or destructive interference of coplanar components that are phase shifted.

Depending on the amplitude of the resulting wave and its phase differences, the resultant wave will be either linearly, circularly or elliptically polarized (see section 2.1.1 and Figure 2.9).

DIC microscopy under transmitted light

In the last section we presented the fundamental concepts of polarization, birefringence and interference, which are important to continue with a detailed explanation of the optical components of a DIC microscope, and how the alignment of these components, along their interaction with light, permits to produce a high contrast image of transparent specimens. to the condenser that O-and E-rays exit as in-phase beams (phase shift ∆φ = 0). As they are approaching the specimen it can be seen that pair A and pair C experience no optical path differences, whereas for pair B the E-ray experience an optical path difference relative to the the O-ray, and for pair D happens the contrary. Suppose that the specimen introduces a phase retardation of π/2 radians, and that the second Nomarski prism also introduces π/2 radians of phase retardation (O-ray is retarded relative to E-ray). Here we describe three scenarios: pass through regions where there are no differences in the optical path length) will be π/2 radians out-of-phase after they are recombined by the second prism. The resultant wave will be circularly polarized and these regions will appear gray in the image.

(ii) Pair B (E-ray experiences a phase shift as it passes through the specimen) will be 0 radians out-of-phase after being recombined by the second prism. The resultant wave will be linearly polarized parallel to the transmission axis of the polarizer and this region will be dark.

(iii) Pair D (O-ray experiences a phase shift as it passes through the specimen) will be π radians out-of-phase after being recombined by the second prism. The resultant wave will be linearly polarized parallel to the transmission axis of the analyzer and this region in the image will be bright. 

Image Formation Model

For any imaging system, image formation occurs when a sensor registers radiation that has interacted with a physical object [START_REF] Ballard | Computer Vision[END_REF]. In section 2.2 this was explained from the radiometric (ray tracing) point of view, which was firstly introduced by Walter Lang between 1968 and 1969 for Carl Zeiss Inc. [START_REF] Lang | Nomarski differential interference contrast microscopy II. Formation of the interference image[END_REF]. In this section we are going to present the mathematical model that formally describes the process of encoding the changes in the gradient of the phase of the beams of light illuminating the specimen, to obtain the observed intensity image. Although DIC microscopy is a widely used technique in biology and chemestry (see [START_REF] Kamiokaa | A three-dimensional distribution of osteocyte processes revealed by the combination of confocal laser scanning microscopy and differential interference contrast microscopy[END_REF][START_REF] Alexopoulos | A method for quantifying cell size from differential interference contrast images: validation and application to osmotically stressed chondrocytes[END_REF][START_REF] Keevil | Rapid detection of biofilms and adherent pathogens using scanning confocal laser microscopy and episcopic differential interference contrast microscopy[END_REF][START_REF] Sun | Endocytosis of a single mesoporous silica nanoparticle into a human lung cancer cell observed by differential interference contrast microscopy[END_REF][START_REF] Wang | Resolving Rotational Motions of Nano-objects in Engineered Environments and Live Cells with Gold Nanorods and Differential Interference Contrast Microscopy[END_REF]), not much has been written regarding to its imaging model and eventual design of computational methods for image and phase reconstruction. In order to give some background to the model we have used, we first present a review of the related work in chronological order for the computational model as follows.

Related work of DIC imaging models

Most of the literature references in DIC microscopy coincide to mention that the first computational simulation was proposed by Galbraith and David in 1976 [START_REF] Galbraith | An aid to understanding differential interference contrast microscopy : computer simulation[END_REF]. Taking as point of departure the references of Allen, Nomarski [START_REF] Allen | The Zeiss-Nomarski differential interference equipment for transmitted-light microscopy[END_REF] and Lang [START_REF] Lang | Nomarski differential interference contrast microscopy II. Formation of the interference image[END_REF], they suggested that it was necessary to produce a simulation that could support the experimental work of microscopists who were starting to use the DIC microscope, and probably misunderstanding its utilities and giving wrong interpretations of the observed images. This was an educational tool and it was not based on any mathematical ground, reason for which their demonstrations were not accurate.

Several years after appeared another approach combining signal processing and Fourier optics, proposed by Holmes and David in [START_REF] Holmes | Signal-processing characteristics of differential-interferencecontrast microscopy[END_REF] and [START_REF] Holmes | Signal-processing characteristics of differential-interference-contrast microscopy. 2: Noise considerations[END_REF]. In their model, the pair of beams splitted by the Wollaston prism were represented as signals, which were affected by the objective lens that was modeled as a low-pass filter, whose kernel is a linear space-invariant system defined by the pupil function of the objective, and cut-off frequency equal to the relation N A λ . The model was used to simulate synthetic data but it was not verified with observed data. From this model they proposed a method for phase reconstruction following the Gerchberg-Saxton [START_REF] Gerchberg | A practical algorithm for the determination of phase from image and diffraction plane pictures[END_REF] iterative algorithm, obtaining promising results. DIC microscopy has been recognized for high lateral resolution as a consequence of acquisitions at high numerical apertures; recently it has been also improved axial resolution of less than 20 nm by adjusting the amount of photons in the illumination source [START_REF] Ono | An entanglement-enhanced microscope[END_REF]. Even though, it has a drawback when imaging thick specimens. For this reason, Cogswell and Sheppard [START_REF] Cogswell | Confocal differential interference contrast (DIC) microscopy: including a theoretical analysis of conventional and confocal DIC imaging[END_REF] designed a confocal DIC microscope. Their goal was to take advantage of convential DIC microscopy to capture phase information at high lateral resolution, while improving its axial resolution through a confocal microscope. They stated that convential DIC works under partially coherent illumination, while the confocal DIC case is purely coherent, which provides easier and fast computations. However, the use of confocal DIC had not been spread because of the difficulty to align the DIC optical components into a confocal configuration as it was corroborated by Cody et al in [START_REF] Cody | A simple method allowing DIC imaging in conjunction with confocal microscopy[END_REF].

Following another method, Kagalwala and Kanade [START_REF] Kagalwala | Computational Model of Image Formation Process in DIC Microscopy[END_REF] proposed a vectorial representation for the image formation in DIC microscopy. This approach is based on polarization ray-tracing, on which Jones vectors and Jones matrices are used to represent the interaction of light with each one of the optical components of the microscope. In this work they modeled the specimen as a 3-D grid of voxels, and the interaction of rays at multiple surface boundaries.

One characteristic that plays an important role in DIC microscopy, is that the image formation is dependent on the orientation of shear in order to detect properly the changes on the gradients of the phase, as well as to improve contrast. C. Preza et al. [START_REF] Preza | Theoretical development and experimental evaluation of imaging models for differential interference contrast microscopy[END_REF], [START_REF] Preza | Rotational-diversity phase estimation from differential interference contrast microscopy images[END_REF], presented the Rotational Diversity Model that have become the most important reference in DIC microscopy; for this reason it was taken as the starting point for the purposes of the present thesis. In the following subsection are presented the details of this model.

As is going to be explained later, the intensity image of DIC microscope is originated from a nonlinear relation between the point-spread function of the microscope and the phase function of light. This nonlinearity makes computations not simple, reason why Arnison et al. [START_REF] Sheppard | Linear phase imaging using differential interference contrast microscopy[END_REF] proposed to combine different techniques in order to transform the model as a linear one. They proposed to acquire images at two shear directions (as proposed by Preza in [START_REF] Preza | Rotational-diversity phase estimation from differential interference contrast microscopy images[END_REF]) and then use phase shifting algorithm with four different bias orientations to extract the gradient of the phase function for each of the shear directions. From there, it is possible to apply Fourier space integration and its inverse to obtain an estimation of the phase function.

In order to overcome the shear orientation dependence of DIC images, Shribak and Inoué [START_REF] Shribak | Orientation-independent differential interference contrast microscopy[END_REF] designed a new model to compute the magnitude and azimuth of the optical path gradients. For this they did calculations using three different configurations: i) Four images at different shear orientations (steps of 90°) with fixed bias and 2 images without bias; ii) Four images at different shear orientations (steps of 90°) with fixed bias; iii) Two images at different shear orientations (steps of 90°) with fixed bias and 2 images without specimen.

At each of these configurations they combined the different measurements of magnitude and azimuth of the gradient of the phase, to finally deduce a more general analytical expression that does not depend on the shear orientation. They found a drawback when using only 2 images.

All of these models had been developed assuming coherent light under Köhler illumination. However, later in 2008, Mehta and Sheppard [START_REF] Mehta | Partially coherent image formation in differential interference contrast (DIC) microscope[END_REF] developed another model considering the case of partially coherent light and not perfect Köhler illumination. They also proposed a methodology for callibrating the acquisition paramaters of the DIC microscope in [START_REF] Mehta | Sample-less calibration of the differential interference contrast microscope[END_REF].

Later, Mehta and Oldenbourg [START_REF] Mehta | Image simulation for biological microscopy: microlith[END_REF] developed a library called Microlith, for biological imaging simulation, considering different optical microscopy techniques, included DIC, and introducing optical and chromatic aberrations.

After this review we have determined to follow the inverse problems approach to recover the phase from DIC images. In order to do so, we have chosen the model proposed by Preza et al. in [START_REF] Preza | Rotational-diversity phase estimation from differential interference contrast microscopy images[END_REF], as the forward model to generate the phantom objects and synthetic data.

Polychromatic DIC model

According to what was explained in section 2.2, the most important parameters to produce a DIC image are: the shear direction, the shear distance (2∆x) and the bias retardation (2∆θ).

The shear direction is crucial for detecting the directional derivatives of the specimen. The shear distance is determined by the optical characteristics of the prism, and it is desirable to be less than the resolution of the microscope. The quality of the contrast of the image is adjusted by the lateral displacement of the second prism which is called the bias retardation.

In the model presented by Preza in [START_REF] Preza | Rotational-diversity phase estimation from differential interference contrast microscopy images[END_REF], called the "Rotational diversity" model, in order to retrieve the optical path length of the specimen, it is necessary to simulate the acquisition of at least two images with a shear angle difference of π/2, which in practical terms means the mechanical rotation of the specimen stage. For the purpose of mathematical modeling, "the specimen rotation can be modeled as a rotation of the point spread function by an angle, τ k , defined as the angle that the shear direction makes with the horizontal axis". Hence, this model assumes that K (K ≥ 2) images are acquired by rotating the specimen K times with respect to the shear axis, which results in K rotations of the amplitude point spread function (PSF). This model was developed for monochromatic illumination as is shown in equations 2 and 4 in [START_REF] Preza | Rotational-diversity phase estimation from differential interference contrast microscopy images[END_REF] that we recall here i(x, y) = a 1 h k (x, y) ⊗ e -iφ(x,y) 2

(2.12)

h k (x, y) = 1 2 e -i∆θ k(x -∆x, y) -e i∆θ k(x + ∆x, y) (2.13)
Since recent technology of DIC microscopes are equipped to acquire images under white illumination, here we have extended the rotational diversity model to polychromatic illumination (RGB color model), which we have called the "Polychromatic Rotational-Diversity" model, already presented in [START_REF] Bautista | Phase estimation in differential-interference-contrast (DIC) microscopy[END_REF]. In this configuration, the relation between the acquired images and the unknown true phase φ is given by

(o k,λ ) j = a 1 (h k,λ ⊗ e -iφ/λ ) j 2 + (η k,λ ) j , (2.14) for k = 1, . . . , K, = 1, 2, 3, j ∈ χ, where
• k is the index of the angles τ k that the shear direction makes with the horizontal axis [START_REF] Preza | Rotational-diversity phase estimation from differential interference contrast microscopy images[END_REF], is the index denoting one of the three RGB channels and j = (j 1 , j 2 ) is a 2D-index varying in the set χ = {1, . . . , M } × {1, . . . , P }, M and P meaning the size of the acquired image, which is determined by the resolution of the CCD detector of the microscope, with typical value of 1388 × 1040 pixels.

• λ is the -th illumination wavelength. The object is illuminated with white light, whose wavelengths range from 400 nm to 700 nm. The digital acquisition system of the microscope comprises a color bandpass filter which isolates the RGB wavelengths, acquired separately by the CCD detector [START_REF] Murphy | Fundamentals of Light Microscopy and Electronic Imaging[END_REF]. Since it is selected a narrow band for each color, we use the mean wavelength at each band. Since it is selected a narrow band for each color, we use the mean wavelength λ e ll at each band.

• o k,λ ∈ R M P is the -th color component of the k-th discrete observed image o k = (o k,λ 1 , o k,λ 2 , o k,λ 3 ) ∈ R M P ×3 ;
• φ ∈ R M P is the unknown phase vector and e -iφ/λ ∈ C M P stands for the vector defined by (e -iφ/λ ) j = e -iφ j /λ ;

• h k,λ ∈ C M P is the discretization of the continuous DIC point spread function [START_REF] Preza | Theoretical development and experimental evaluation of imaging models for differential interference contrast microscopy[END_REF][START_REF] Goodman | Statistical Optics[END_REF] corresponding to the illumination wavelength λ and rotated by the angle τ k , i.e.,

h k,λ (x, y) = 1 2 e -i ∆θ λ p λ R k • (x -∆x, y) T -e i ∆θ λ p λ R k • (x + ∆x, y) T , (2.15)
where p λ (x, y) is the coherent PSF of the microscope's objective lens for the wavelength λ , which is given by the inverse Fourier transform of the disk support function P λ (m, n)

of amplitude 1 and radius equal to the cutoff frequency f c = NA/λ [START_REF] Preza | Theoretical development and experimental evaluation of imaging models for differential interference contrast microscopy[END_REF], being NA the numerical aperture of the objective lens, 2∆θ is the DIC bias retardation, 2∆x is the shear distance and R k is the rotation matrix which rotates the coordinates according to the shear angle τ k . In the frequency domain it is defined as

H k,λ (m, n) = -i sin 2πR k • m∆x + ∆θ λ P λ (m, n) (2.16)
where m, n are the frequency axes with limits in the intervalfs 2 , fs 2 , with f s being the sampling Nyquist frequency, such that f s > 2f c .

• h 1 ⊗ h 2 denotes the 2D convolution between the two M × P images h 1 , h 2 , extended with periodic boundary conditions;

• η k,λ ∈ R M P is the noise corrupting the data, which is assumed to be a realization of a Gaussian random vector with mean 0 ∈ R M P and covariance matrix σ 2 I (M P ) 2 , where I (M P ) 2 is the identity matrix of size (M P ) 2 ;

• a 1 ∈ R is a constant which corresponds to closing the condenser aperture down to a single point.

We already mentioned that DIC microscopy is diffraction limited by the action of the pupil function of the system, as can be verified in equation (2.15). In the following subsection we present a detailed analysis of the point spread function h k,λ (x, y), since it models the sheared phase-shifted beams that go through the specimen, and the additional retardation they suffer because of the bias introduced by the Nomarski prism before arriving to the image plane of the microscope.

Point spread function for DIC microscopy

Here we want to state the main characteristics of the polychromatic PSF defined in equations (2.15) and (2.16). The parameters for simulations are: Since DIC microscopy is sensible to the shear direction, we did the same analysis of the PSF in the case when the shear angle is equal to 0 and π/2. The results are included in Appendix A.

NA = 0.3 τ 1 = -π/4 λ 1 = 0.65 µm 2∆x = 0.68 µm τ 2 = π/4 λ 2 = 0.55 µm 2∆θ 1 = 0 2∆θ 2 = π/2 λ 3 = 0.45 µm

Influence of the numerical aperture

DIC microscopy has been recognized by its capability of allowing high numerical apertures in order to provide more illumination to the specimen and therefore, to produce high resolution images. To verify this fact, we have done the same analysis of the PSF with a different value of the numerical aperture set to 0.9; we have maintained the same values for the microscope parameters. 

Observed DIC images

Now that we have presented the details of the DIC PSF, we can discuss the output of the imaging model in Equation (2.14). For this we can assume a theoretical phase object with a cross shape as in Figure 2.26; the dark areas correspond to zero phase values, and the maximum value in the light area corresponds to a phase value of 0.14 radians. 

Summary

In this chapter we introduced some of the physical and optical concepts needed to understand DIC microscopy. We also described the image formation model for this technique, and we presented the polychromatic model in order to have into account information provided by three different wavelengths. There were also described the main characteristics of the DIC point spread function under different microscope parameters configuration, in both spatial and frequency domains. At the end it was also presented a comparison of the resulting observed images for the possible configurations we studied for the PSF, leaving as a conclusion to take advantage of the high numerical aperture capacity of DIC microscope to produce better resolved images. In this order of ideas, we have chosen as proper configuration for simulation of phantom objects the following parameters: NA = 0.9; shear distance 2∆x = 0.68 µm; shear angle {-π/4, π/4};

bias retardation 2∆θ = π/2.

Chapter 3

Phase Estimation in DIC microscopy

DIC microscopy lacks the ability to provide morphological analysis of the observed object, This problem can be addressed by means of the maximum likelihood (ML) approach. Assuming that the 3K images o k,λ are corrupted by Gaussian noise, then the negative log likelihood of each image is a least-squares measure, which is nonlinear due to the presence of the exponential inside the modulus square in (2.14). If we assume white Gaussian noise, statistically independent of the data, the negative log likelihood of the problem is the sum of the negative log likelihoods of the different images, namely the following fit-to-data term

J 0 (φ) = 3 =1 K k=1 j∈χ (o k,λ ) j -a 1 (h k,λ ⊗ e -iφ/λ ) j 2 2 . (3.1)
Then the ML approach to the phase reconstruction problem consists in the minimization of the function in (3.1):

min φ∈R M P J 0 (φ). (3.2) 
Another approaches have been proposed to solve the problem of phase reconstruction from images obtained with model (2.14), such as phase-shifting interferometry [START_REF] Malacara | Phase shifting interferometry[END_REF][START_REF] Creath | Phase-measurement Interferometry Techniques[END_REF], phase retrieval [START_REF] Shechtman | Phase Retrieval with Application to Optical Imaging[END_REF][START_REF] Gerchberg | A practical algorithm for the determination of phase from image and diffraction plane pictures[END_REF][START_REF] Evgeniou | Phase retrieval algorithms: a comparison[END_REF][START_REF] Candès | PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming[END_REF], transport-of-intensity equation [START_REF] Kou | Transport-of-Intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging[END_REF][START_REF] Bostan | Phase retrieval by using transport-of-intensity equation and differential interference contrast microscopy[END_REF], and iterative methods [START_REF] Preza | Rotational-diversity phase estimation from differential interference contrast microscopy images[END_REF][START_REF] Preza | Algorithms for extracting true phase from rotationally-diverse and phase-shifted DIC images[END_REF].

In the following section we present a brief review of these methods. In section 3.2 we prove the properties of existence and non-uniqueness of problem 3.2. Section 3.4 is devoted to describe two iterative approaches we proposed to assure fast convergence to the solution of this problem.

The results of this chapter have been collected into an article entitled "A comparison of edge-preserving approaches for differential interference contrast microscopy", accepted to the Inverse Problems Journal (article reference IP-101183.R3). This was done in collaboration with

Dr. Luca Zanni, Dr. Marco Prato and PhD student Simone Rebegoldi, from the department of

Physics, Computer Science and Mathematics of the University of Modena and Reggio Emilia in

Italy.

Review of existing methods

Phase-shifting interferometry

This technique originated as a mean to test and characterize perfect optical surfaces [START_REF] Malacara | Phase shifting interferometry[END_REF],

on which several interferograms are taken with different phase shifts (bias retardation). The accuracy in the setup for the acquisition at different biases is controlled by a piezo-electric transducer. In the DIC microscope this happens at the second Nomarski prism, which is translated laterally in order to induce the bias retardation. In commercial microscopes such as the Carl Zeiss Axio Imager z11 , this can be adjusted automatically by software or manually by rotating a knob as illustrated in Figure 2.13.

In section 2.2 it was explained that the specimen is traversed by a pair of orthogonally polarised beams with the following complex amplitudes:

b 1 = a 1 e i(φ 1 -∆θ) b 2 = a 2 e i(φ 2 +∆θ)
where φ 1 -φ 2 = ∆φ is the phase difference caused by the specimen phase gradient and 2∆θ is the bias retardation. The observed intensity image is the result of the interference of the two beams, which is computed as

I = |b 1 + b 2 | 2 = a 2 1 + a 2 2 + 2a 1 a 2 cos (∆φ + 2∆θ)
On this equation there are four variables, where we want to retrieve the unknown ∆φ. In order to build a linear system, it is necessary to acquire four images such that 2∆θ is incremented by π/2 radians each time. This is known as the 4-step algorithm:

I 0 = a 2 1 + a 2 2 + 2a 1 a 2 cos (∆φ) I π 2 = a 2 1 + a 2 2 + 2a 1 a 2 cos ∆φ + π 2 = a 2 1 + a 2 2 + 2a 1 a 2 sin (∆φ) I π = a 2 1 + a 2 2 + 2a 1 a 2 cos (∆φ + π) = a 2 1 + a 2 2 -2a 1 a 2 cos (∆φ) I 3π 2 = a 2 1 + a 2 2 + 2a 1 a 2 cos ∆φ + 3π 2 = a 2 1 + a 2 2 -2a 1 a 2 sin (∆φ)
where the phase difference is computed as ∆φ = tan -1

I π 2 -I 3π 2 I 0 -I π
This algorithm has been previously used for DIC microscopy by Cogswell et al in [START_REF] Cogswell | Quantitative DIC microscopy using a geometric phase shifter[END_REF] and Arnison et al in [START_REF] Sheppard | Linear phase imaging using differential interference contrast microscopy[END_REF]. From this works it has been explored the method of Fourier phase integration and the Hilbert transform [START_REF] Smith | Using the Hilbert transform for 3D visualization ofdifferential interference contrast microscope images[END_REF] to retrieve the exact phase function.

Phase-shifting interferometry have the drawback of sensitivity to noise and the inherent ambiguity of the arctangent function which wraps the phase variations with phase jumps, which is a recurrent problem for most of the phase retrieval algorithms. Another drawback is the need to do at least three acquisitions, which depends on the mechanic characteristics of the working microscope.

Phase retrieval by partial differential equations

On this category appears the variational method of Transport-of-Intensity, which has been already applied to DIC microscopy by Kou et al [START_REF] Kou | Transport-of-Intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging[END_REF] and Bostan et al [START_REF] Bostan | Phase retrieval by using transport-of-intensity equation and differential interference contrast microscopy[END_REF]. "The transport-ofintensity equation (TIE) links the phase image to the variations in the intensity induced by wave propagation along the optical axis". This allows to formulate a second-order differential equation with a unique solution as follows

∂I(x, y, z) ∂z = - λ 2π ∇ ⊥ • [I(x, y, 0)∇ ⊥ φ(x, y)]
where ∇ ⊥ = (∂/∂x, ∂/∂y) denotes the two-dimensional gradient operator in the x -y plane.

The algorithm developed in [START_REF] Kou | Transport-of-Intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging[END_REF] applied an inverse operator to the solution of the differential equation, which introduced noisy artifacts; instead, Bostan in [START_REF] Bostan | Phase retrieval by using transport-of-intensity equation and differential interference contrast microscopy[END_REF] proposed a forward model with a Total Variation (TV) regularizer to deal with the abrupt changes in the phase function.

The reconstruction algorithm was designed to produce an equivalent constrained problem with Augmented Lagrangian which was solved using an Alternating Direction Method of Multipliers (ADMM). Although TIE is computationally efficient, it is highly sensitive to noise.

Phase retrieval by functional minimization

The problem of phase estimation has been studied by means of the phase retrieval problem, whose objective is to recover the phase function given the magnitude of its Fourier transform.

In the recent review paper by Shechtman et al [START_REF] Shechtman | Phase Retrieval with Application to Optical Imaging[END_REF], they state that the Fourier phase-retrieval problem belongs to the following general problem:

min x∈C N K k=1 y k -| a k , x | 2 2 (3.3)
where x ∈ C N is the unknown signal, y k ∈ R N is the observations vector and a k ∈ R N denotes the measurements vector.

The first algorithm to solve problem (3.3) was proposed by Gerchberg and Saxton [START_REF] Gerchberg | A practical algorithm for the determination of phase from image and diffraction plane pictures[END_REF] which used an alternating projections approach. The projections are done between the real-plane constraint |x| and the Fourier-plane constraint |X|. This algorithm was improved after by J.R.

Fienup [START_REF] Evgeniou | Phase retrieval algorithms: a comparison[END_REF] by adding more constraints in terms of nonnegativity and the signal support. As many of iterative-type algorithms for solving non-convex problems, the approximation could only converge to a local minimum.

In [START_REF] Shechtman | Phase Retrieval with Application to Optical Imaging[END_REF] it is also mentioned the use of semidefinite programming (SDP) to convexificate the phase retrieval problem. SDP is a generalization of linear programming, which enables to specify a semidefinite constraint in addition to a set of linear constraints. The PhaseLift algorithm proposed by Candès et al [START_REF] Candès | PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming[END_REF] was designed under this approach and their previous work on matrix completion [START_REF] Candès | Exact Matrix Completion via Convex Optimization[END_REF]. The idea behind PhaseLift is to uplift the unknown vector by replacing it with a higher dimension matrix, that is, X = xx * , where rank(X) = 1. This means that

| a k , x | 2 = Tr(x * a k a * k x) = Tr(a k a * k xx * ) := Tr(A k X)
This converts the problem into a low-rank matrix completion optimization problem where the objective is to find the positive semidefinite matrix X. The restriction of this algorithm is that it increases the dimension of the original problem, which affects the computational time when the input problem is of high dimension.

Phase functional by least-squares minimization

This approach was used in the Rotational diversity model proposed by Preza et al in [START_REF] Preza | Rotational-diversity phase estimation from differential interference contrast microscopy images[END_REF]. The objective was to obtain an estimation of the phase functional "by minimizing the least-squares discrepancy measure between the measured images and the model predictions" as in (3.2). In order to do so, they used the Conjugate Gradient method, on which the direction of descent was calculated with the Polak-Ribiere formulation, and the steplength parameter was updated with a polynomial-based linesearch strategy. They also used a Tikhonov penalty to deal with the discontinuities at the pixel approximations. One of the drawbacks of this approach is the computational time, since at every iteration is needed to compute the gradient of the functional, which in that case was of the order of O(N 4 ); another one is the fact that the Tikhonov penalty does not deal very well to preserve edges and strong jumps in the values of the gradient of the phase.

Properties of J 0

Before describing the optimization methods implemented to solve problem (3.2), we present the properties of function J 0 .

Periodicity, additive invariance, smoothness

Lemma 1 Let J 0 : R M P → R be defined as in (3.1). Then we have the following: (i) Periodicity. There exists T > 0 such that J 0 is periodic of period T with respect to each variable, i.e. for any j ∈ χ, where χ = {1, . . . , M } × {1, . . . , P }, M and P meaning the size of the acquired image, defining e j = (δ j,r ) r∈χ = (0, . . . , 0, 1, 0, . . . , 0) ∈ R M P where δ j,r is the Kronecker delta, it holds

J 0 (φ + T e j ) = J 0 (φ), ∀ φ ∈ R M P . (3.4) (ii) Additive constant-invariance. J 0 (φ + c1) = J 0 (φ), ∀ c ∈ R
, where 1 ∈ R M P is the vector of all ones.

(iii) Smoothness. J 0 is an analytic function on R M P and therefore J 0 ∈ C ∞ (R M P ).

Proof. (i) Fix j ∈ χ, ∈ {1, 2, 3} and consider the exponential in (3.1). Then for all r ∈ χ e -i(φ+2πλ e j )/λ r = e -iφr/λ , r = j e -i[(φ j /λ )+2π] = e -iφr/λ , r = j = (e -iφ/λ ) r , (

where the equality inside the curly bracket is due to the periodicity of the complex exponential.

Then, for a fixed ∈ {1, 2, 3}, the expression given in (3.1) without the sum in is 2πλ periodic w.r.t. the variable φ j . This means that J 0 is the sum of three periodic functions of variable φ j whose periods are 2πλ 1 , 2πλ 2 and 2πλ 3 respectively. By recalling that the sum of two periodic functions is periodic if the ratio of the periods is a rational number, we can conclude that J 0 is periodic, as we have λ λ rational for all , ∈ {1, 2, 3}. Without loss of generality, we make this assumption since each R,G,B wavelength value represents a mean value of the wavelengths selected by an optical color bandpass in the actual microscope.

(ii) Set J ,k,j (φ) = (h k,λ ⊗ e -iφ/λ ) j 2 = r∈χ (h k,λ ) r e -i(φ j-r )/λ 2 . If the thesis holds for J ,k,j , then it holds also for J 0 . We have

J ,k,j (φ + c1) = r∈χ (h k,λ ) r e -i(φ j-r +c)/λ 2 = e -ic/λ r∈χ (h k,λ ) r e -i(φ j-r )/λ 2 = e -ic/λ 2 r∈χ (h k,λ ) r e -i(φ j-r )/λ 2 = J ,k,j (φ). (3.6) 
(iii) If J ,k,j is an analytic function on R M P , then J 0 is given by sums and compositions of analytic functions and thus it is itself analytic [53, Propositions 1.6.2 and 1.6.7]. Hence we focus on J ,k,j . Since (h k,λ ) r ∈ C, it can be expressed in its trigonometric form (h k,λ ) r = ρ r e iθr , with

ρ r ∈ R ≥0 , θ r ∈ [0, 2π
). Then we can rewrite J ,k,j as follows

J ,k,j (φ) = r∈χ ρ r e i[θr-(φ j-r /λ )] 2 = = r∈χ ρ r cos(θ r -(φ j-r /λ )) + i r∈χ ρ r sin(θ r -(φ j-r /λ )) 2 = =   r∈χ ρ r cos(θ r -(φ j-r /λ ))   2 +   r∈χ ρ r sin(θ r -(φ j-r /λ ))   2 .
We now observe that the function J ,k,j contains sin(θ r -(φ j-r /λ )) and cos(θ r -(φ j-r /λ )), which are both analytic functions with respect to the single variable φ j-r and thus also with respect to φ, and the square function (•) 2 , which is also analytic. Since J ,k,j is given by sums and compositions of these functions, it is analytic.

Existence and non-uniqueness

Problem (3.2) admits infinitely many solutions, as stated in the following theorem.

Theorem 1 J 0 admits at least one global minimum point. Furthermore, if ψ ∈ R M P is a global minimizer of J 0 , then also {ψ + c1 : c ∈ R} ∪ {ψ + mT e j : j ∈ χ, m ∈ Z} are global minimizers of J 0 .

Proof. Let Ω = [0, T ] M P ⊂ R M P . Point (iii) of Lemma 1 ensures that J 0 is continuous on Ω, thus from the extreme value theorem J 0 admits at least one minimum point ψ on Ω. Now let's show that ψ is a global minimizer of J 0 on R M P . By contradiction, assume that there exists Therefore, we have found a point φ ∈ Ω such that J 0 ( φ) < J 0 (ψ), where ψ is a minimum point on Ω. This is absurd, hence ψ is a global minimizer for J 0 . The second part of the thesis follows from points (i)-(ii) of Lemma 1.

φ ∈ R M P \ Ω such that J 0 (φ) < J 0 (ψ). Let I ⊂ χ

Gradient of J 0

In order to solve problem (3.2) using any gradient-based optimization method it is necessary to have a compact computation of the gradient of the functional. Here we present the general expression of the gradient for functional (3.1).

Let us introduce the residual image r k,λ = (h k,λ ⊗ e -iφ/λ )

2

-o k,λ and fix s ∈ χ; the partial derivative of J 0 with respect to φ s is given by

∂J 0 (φ) ∂φ s = 3 =1 K k=1 j∈χ 4 λ (r k,λ ) j Im e -iφs/λ (h k,λ ) j-s (h k,λ ⊗ e -iφ/λ ) j , ( 3.8) 
which can be written in a compact way as

∂J 0 (φ) ∂φ s = 3 =1 K k=1 4 λ Im (r k,λ . * (h k,λ ⊗ e iφ/λ )) ⊗ hk,λ s e -iφs/λ , ( 3.9) 
where Im(•) denotes the imaginary part of a complex number, h 1 . * h 2 denotes the componentwise product between two images h 1 , h 2 and ( hk,λ ) j = (h k,λ ) -j for all j ∈ χ. Details of the development are found in Appendix B.1.

It is important to remark that the complexity of this gradient computation is of the order of O(MP log MP), which is better to the one previously proposed by Preza in [START_REF] Preza | Rotational-diversity phase estimation from differential interference contrast microscopy images[END_REF] of the order of O((MP) 2 ).

Smooth Regularized DIC Phase Estimation

Theorem 1 asserts that the solution to problem (3.2) is not unique and it may be determined only up to an unknown real constant or to multiples of the period T w.r.t. any variable φ j .

Furthermore, since J 0 is periodic, it is a nonconvex function of the phase φ, thus it may admit several local minima as well as saddle points. In the light of these considerations, we can conclude that (3.2) is a severely ill-posed problem, which requires regularization in order to impose some a priori knowledge on the unknown phase. In particular, we propose to solve the following regularized optimization problem min

φ∈R M P J(φ) ≡ J 0 (φ) + J T V (φ), (3.10) 
where J 0 is the least-squares distance defined in (3.1) and J T V is the smooth total variation functional (also known as hypersurface potential -HS) defined as [START_REF] Acar | Analysis of bounded variation penalty methods for ill-posed problems[END_REF][START_REF] Bertero | A discrepancy principle for Poisson data[END_REF][START_REF] Charbonnier | Deterministic edgepreserving regularization in computed imaging[END_REF]]

J T V (φ) = µ j∈χ ((Dφ) j ) 2 1 + ((Dφ) j ) 2 2 + δ 2 , ( 3.11) 
where µ > 0 is a regularization parameter, the discrete gradient operator D : R M P -→ R 2M P is set through the standard finite difference with periodic boundary conditions

(Dφ) j 1 ,j 2 = ((Dφ) j 1 ,j 2 ) 1 ((Dφ) j 1 ,j 2 ) 2 = φ j 1 +1,j 2 -φ j 1 ,j 2 φ j 1 ,j 2 +1 -φ j 1 ,j 2 , φ M +1,j 2 = φ 1,j 2 , φ j 1 ,P +1 = φ j 1 ,1
and the additional parameter δ ≥ 0 plays the role of a threshold for the gradient of the phase, that is, "it tunes the value of the gradient above which a discontinuity is detected" [START_REF] Charbonnier | Deterministic edgepreserving regularization in computed imaging[END_REF].

Obviously J T V reduces to the standard TV functional [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF] by setting δ = 0. The choice of this kind of regularization term instead of the first-order Tikhonov one used e.g. in [START_REF] Preza | Rotational-diversity phase estimation from differential interference contrast microscopy images[END_REF][START_REF] Preza | Algorithms for extracting true phase from rotationally-diverse and phase-shifted DIC images[END_REF] lies in the capability of the HS regularizer to behave both as a Tikhonov-like regularization in regions where the gradient assumes small values (w.r.t. δ), and as an edge-preserving regularizer in regions where the gradient is very large, as it happens in the neighborhood of jumps in the values of the phase.

Properties of J(φ)

Problem (3.10) is still a difficult nonconvex optimization problem and, when δ = 0, it is also nondifferentiable. Some properties of the objective function J are now reported.

Constant-invariance and Gradient Lipschitz continuous

Lemma 2 Let J : R M P → R be defined as in (3.10) for δ ≥ 0. Then:

• J(φ + c1) = J(φ), ∀ c ∈ R. • If δ > 0, then J ∈ C ∞ (R M P
) and ∇J is Lipschitz continuous, namely there exists L > 0 such that

∇J(φ) -∇J(ψ) 2 ≤ L φ -ψ 2 , ∀φ, ψ ∈ R M P . (3.12)
Proof. (i) We have already proved in point (ii) of Lemma 1 that the property holds for J 0 . Since it is immediate to check that (D(φ + c1)) j 1 ,j 2 = (Dφ) j 1 ,j 2 , the property is true also for J T V and thus for J.

(ii) Point (iii) of Lemma 1 states that J 0 ∈ C ∞ (R M P ) and the same property holds for J T V when δ > 0, hence J is the sum of two C ∞ (R M P ) functions.

It is known that

∇J T V is L T V -Lipschitz continuous with L T V = 8µ/δ 2 [30]
. We prove that also ∇J 0 is Lipschitz continuous and defined in equation (3.8). As concerns the entries of the Hessian ∇ 2 J 0 , the second derivative w.r.t. φ s , φ t (s, t ∈ χ) is given by (see Appendix B.2)

∂ 2 J 0 (φ) ∂φ t ∂φ s = 4 3 =1 K k=1 j∈χ 2 λ 2 Im{ϑ s } Im{ϑ t } + (r k,λ ) j λ 2 Re e i(φt-φs)/λ (h k,λ ) j-s (h k,λ ) j-t -δ s,t ϑ s , (3.13) 
where ϑ p = e -iφp/λ (h k,λ ) j-p (h k,λ ⊗ e -iφ/λ ) j (p ∈ χ), Re(•) denotes the real part of a complex number and δ s,t is the Kronecker delta. By using the triangle inequality and the fact that |e -iφr/λ | = 1, the following inequality hold: 

|ϑ p | ≤ |(h k,λ ) j-p | r∈χ |(h k,λ ) r |. ( 3 
∂ 2 J 0 (φ) ∂φ t ∂φ s ≤ 4 3 =1 K k=1 j∈χ 2 λ 2 |(h k,λ ) j-s ||(h k,λ ) j-t |   r∈χ |(h k,λ ) r |   2 + |(r k,λ ) j | λ 2    |(h k,λ ) j-s ||(h k,λ ) j-t | + |(h k,λ ) j-s | r∈χ |(h k,λ ) r |    . (3.15) Set H k, = r∈χ |(h k,λ ) r |.
Taking the sum of (3.15) over s ∈ χ and picking the maximum over t ∈ χ, a bound on the ∞ -norm of the Hessian ∇ 2 J 0 is obtained:

∇ 2 J 0 (φ) ∞ = max t∈χ s∈χ ∂ 2 J 0 (φ) ∂φ t ∂φ s ≤ 4 3 =1 K k=1 j∈χ H k, λ 2 2 max t∈χ |(h k,λ ) j-t |H 2 k, + |(r k,λ ) j | max t∈χ |(h k,λ ) j-t | + H k, = L 0 , ∀ φ ∈ R M P . From relation A 2 ≤ A 1 A ∞ and the fact that ∇ 2 J(φ) 1 = ∇ 2 J(φ) ∞ (∇ 2 J 0 (φ) is a symmetric matrix), it follows that ∇ 2 J 0 (φ) 2 ≤ L 0 for all φ ∈ R M P . Fix φ, ψ ∈ R M P
. By the mean value theorem for vector-valued functions, we have

∇J 0 (φ) -∇J 0 (ψ) 2 ≤ sup θ∈(0,1) ∇ 2 J 0 (ψ + θ(φ -ψ)) 2 φ -ψ 2 ≤ L 0 φ -ψ 2 . (3.16)
Then ∇J 0 is L 0 -Lipschitz continuous and consequently also ∇J is Lipschitz continuous with

constant L = L 0 + L T V .
Remark: bound L 0 is pessimistic and it is not explicitly used in the algorithm implementation; because of this, it does not need to be sharp.

Existence and uniqueness of a solution

Point (i) of Lemma 2 makes clear that, if a solution to problem (3.10) exists, then it is not unique and it can be determined only up to a real constant. This is a common feature shared with the unregularized problem (3.2). However, unlike in (3.2), the objective function J is not periodic and, in addition, none of the two terms J 0 and J T V are coercive, therefore we can not prove the existence of a minimum point of J neither as in Theorem 1 nor by coercivity. A specific proof of existence of the solution for problem (3.10) is now presented. (3.17)

Thanks to part (i) of Lemma 2, for any φ ∈ R M P the point φ Π = φ -

r arφr+b r ar 1 ∈ Π is such that J(φ Π ) = J(φ).
Consequently, if ψ is a minimum point of J on Π, then it is also a minimum point on R M P , because J(ψ) ≤ J(φ Π ) = J(φ) for all φ ∈ R M P . Hence we restrict the search of the minimum point on Π and we denote with J| Π the restriction of J to Π. Since S = arg min φ∈R M P J T V (φ) and Π intersects S only in φ S , J T V is a convex function with a unique minimum point on Π, which implies that J T V is coercive on Π. Furthermore, being J 0 periodic and continuous, it is a bounded function on Π. Then J| Π is the sum of a coercive term and a bounded one, therefore it is itself coercive. This allows to conclude that J admits a minimum point on Π and thus also on R M P . The second part of the thesis follows from Lemma 2, part (i).

Note that the above proof of existence holds also for the regularized DIC problem proposed in [START_REF] Preza | Rotational-diversity phase estimation from differential interference contrast microscopy images[END_REF][START_REF] Preza | Algorithms for extracting true phase from rotationally-diverse and phase-shifted DIC images[END_REF], in which the Tikhonov-like regularizer used instead of the TV functional is also noncoercive.

Optimization approach for phase estimation in DIC microscopy

In previous works [START_REF] Preza | Rotational-diversity phase estimation from differential interference contrast microscopy images[END_REF][START_REF] Preza | Algorithms for extracting true phase from rotationally-diverse and phase-shifted DIC images[END_REF][START_REF] Preza | Image reconstruction for three-dimensional transmitted-light DIC microscopy[END_REF], the problem of DIC phase reconstruction had been addressed

with the nonlinear conjugate gradient method [START_REF] Nocedal | Numerical optimization. 2nd[END_REF]. However, as it is explained in Subsection For sake of simplicity, from now on we assume that each monochromatic image is treated as a vector in R N (being N = M P ) obtained by a lexicographic reordering of its pixels.

LMSD: Gradient method

In this subsection we describe the first proposed algorithm to address problem (3.10) when δ > 0. In this case the objective function is differentiable and we exploit the limited memory steepest descent (LMSD) method proposed by Fletcher [START_REF] Fletcher | A limited memory steepest descent method[END_REF] and outlined in Algorithm 1.

The LMSD method is a standard gradient method equipped with a monotone Armijo linesearch and variable steplengths approximating the inverse of some eigenvalues of the Hessian matrix ∇ 2 J(φ (n) ) in order to improve the convergence speed. Unlike the classical Barzilai-Borwein (BB) rules [START_REF] Barzilai | Two-Point Step Size Gradient Methods[END_REF] and its generalizations (see e.g. [START_REF] Dai | Alternate minimization gradient method[END_REF][START_REF] De Asmundis | On spectral properties of steepest descent methods[END_REF][START_REF] Zhou | Gradient Methods with Adaptive Step-Sizes[END_REF]) which tries to approximate (∇ 2 J(φ (n) )) -1 with a constant diagonal matrix, the idea proposed by Fletcher for quadratic objective functions is based on a Lanczos iterative process applied to the Hessian matrix of the objective function. Some algebra shows that this can be practically performed without the explicit knowledge of the Hessian itself but exploiting only a set of back gradients and steplengths (see steps 6-10 of Algorithm 1). Generalization to nonquadratic functions can be obtained by computing the eigenvalues of the matrix Φ in step 10 instead of Φ (we remark that for quadratic J the two matrices coincide).

Some practical issues have to be addressed in the implementation of Algorithm 1:

• The first loop (step 1 to 5) build a matrix

G = ∇J(φ (n-m) ) ∇J(φ (n-m+1) ) . . . ∇J(φ (n-1) )
of size M P × m. The initial values for the first m steplengths can be provided by the user (e.g. by computing the BB ones) or can be chosen with the same approach described in steps 6-10 but with smaller matrices. For example, one can fix α (0) 0 , compute G = ∇J(φ (0) ) and use steps 6-10 to compute α (0) 1 . At this point, defining G = [∇J(φ (0) ) ∇J(φ (1) )] one can compute α (0) 2 and α (0) 3 and repeat the procedure until a whole set of m back gradients is available.

• The same procedure can be adopted when step 10 provides only m < m positive eigenvalues. In this case, all columns of G are discarded, G becomes the empty matrix and the algorithm proceeds with m instead of m until a whole set of m back gradients is computed.

If m = 0, a set of m "safeguard" steplengths, corresponding to the last set of m positive steplengths values provided by step 10, is exploited for the next m iterations.

• If G T G in step 7 is not positive definite, then the oldest gradient of G is discarded and a new matrix G T G is computed. This step is repeated until G T G becomes positive definite.

• The stopping criterion can be chosen by the user and be related to the decrease of J or to the distance between two successive iterates. In our tests we decided to arrest the iterations when the norm of the gradient ∇J goes below a given threshold κ:

∇J(φ (n) ) ≤ κ. (3.18)
Concerning the computational costs of LMSD, the heaviest tasks at each iteration are the computation of ∇J(φ (n) ) at step 1 and J(φ

(n) -α n ∇J(φ (n) )) at step 2. Considering step 1,
we focus on ∇J 0 . As it is written in (3.8), due to the product between e -iφs/λ and (h k,λ ) j-s , ∇J 0 can be performed with O(N 2 ) complexity; this is how the gradient is computed in [START_REF] Preza | Rotational-diversity phase estimation from differential interference contrast microscopy images[END_REF].

However, if we take the sum over j of the residuals into the argument of Im(•), then we can conveniently rewrite (3.8) as From a practical point of view, we have already shown that the LMSD method is an effective tool for DIC imaging, especially if compared to more standard gradient methods equipped with the BB rules [START_REF] Bautista | Phase estimation in differential-interference-contrast (DIC) microscopy[END_REF]. From a mathematical point of view, one can prove, in the same way as in [START_REF] Bonettini | A scaled gradient projection method for constrained image deblurring[END_REF], that every limit point of the sequence generated by Algorithm 1 is a stationary point for problem (3.10). In addition, the convergence of Algorithm 1 can be asserted whenever the objective function J satisfies the Kurdyka-Łojasiewicz (KL) property [START_REF] Łojasiewicz | Une propriété topologique des sous-ensembles analytiques réels[END_REF][START_REF] Kurdyka | On gradients of functions definable in o-minimal structures[END_REF] at each point of its domain.

∂J 0 (φ) ∂φ s = 3 =1 K k=1 4 λ Im (r k,λ . * (h k,λ ⊗ e iφ/λ )) ⊗ hk,λ s e -iφs/
More precisely, as shown in a number of recent papers [START_REF] Attouch | Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods[END_REF][START_REF] Frankel | Splitting methods with variable metric for Kurdyka-Łojasiewicz functions and general convergence rates[END_REF][START_REF] Bonettini | On the convergence of variable metric line-search based proximal-gradient method under the Kurdyka-Lojasiewicz inequality[END_REF], one can prove the convergence of a sequence {φ (n) } n∈N to a limit point (if any exists) which is stationary for J if the following three conditions are satisfied:

(H1) ∃ a > 0 : J(φ (n+1) ) + a φ (n+1) -φ (n) 2 ≤ J(φ (n) ) (H2) ∃ b > 0 : ∇J(φ (n+1) ) ≤ b φ (n+1) -φ (n)
(H3) J satisfies the KL property.

This scheme applies to the LMSD method. First of all, condition (H3) is satisfied for the DIC functional defined in (3.10). Indeed J 0 is an analytic function (Lemma 1, part (iii)) and J T V is a semialgebraic function, which means that its graph is defined by a finite sequence of polynomial equations and inequalities (see [START_REF] Xu | A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion[END_REF] for a definition). Hence J is the sum of an analytic function and a semialgebraic one and for this reason it satisfies the KL property on R N (see [86, p. 1769] and references therein). Conditions (H1) -(H2) follows from step 2 and 3, combined with the fact that ∇J is Lipschitz continuous (Lemma 2, part (ii)), provided that the sequence of steplengths α (0) n defined at step 11 is bounded from above. Therefore we can state the following result: Theorem 3 Let J be defined as in (3.10), {φ (n) } n∈N the sequence generated by Algorithm 1 and assume that α

(0) n ≤ α max , where α max > 0. If φ * is a limit point of {φ (n) } n∈N , then φ * is a stationary point of J and φ (n) converges to φ * .

Algorithm 1 Limited memory steepest descent (LMSD) method

Choose ρ, ω ∈ (0, 1), m ∈ N >0 , α (0) 0 , . . . , α (0) m-1 > 0, φ (0) ∈ R N and set n = 0. While True For l = 1, . . . , m 1. Define G(:, l) = ∇J(φ (n) ).

Compute the smallest non-negative integer

i n such that α n = α (0) n ρ in satisfies J(φ (n) -α n ∇J(φ (n) )) ≤ J(φ (n) ) -ωα n ∇J(φ (n) ) 2 .
(3.20)

3. Compute φ (n+1) = φ (n) -α n ∇J(φ (n) ).
If "Stopping Criterion" is satisfied 

× m matrix Γ =         α -1 n-m -α -1 n-m . . . . . . α -1 n-1 -α -1 n-1         . 7. Compute the Cholesky factorization R T R of the m × m matrix G T G.
8. Solve the linear system R T r = G T ∇J(φ (n) ). 

EndWhile

Proof. We start by proving condition (H1).

Step 3 of Algorithm 1 can be rewritten in the following way:

-α n ∇J(φ (n) ) = φ (n+1) -φ (n)
from which we have n ≤ α max , we obtain

α n ∇J(φ (n) ) 2 = 1 α n φ (n+1) -φ (n) 2 . ( 3 
J(φ (n+1) ) ≤ J(φ (n) ) - ω α n φ (n+1) -φ (n) 2 ≤ J(φ (n) ) - ω α max φ (n+1) -φ (n) 2 . (3.22)
Then (H1) holds with a = ω/α max . Regarding condition (H2), we can rewrite again step 3 as:

∇J(φ (n) ) = 1 α n (φ (n) -φ (n+1) ). (3.23)
Recall that the Lipschitz continuity of ∇J implies that there is α min > 0 such that the linesearch parameter α n ≥ α min (see [START_REF] Bonettini | Variable metric inexact line-search based methods for nonsmooth optimization[END_REF]Proposition 4.2] for a proof). Then

∇J(φ (n+1) ) ≤ ∇J(φ (n+1) ) -∇J(φ (n) ) + ∇J(φ (n) ) ≤ L φ (n+1) -φ (n) + 1 α n φ (n+1) -φ (n) ≤ L + 1 α min φ (n+1) -φ (n) .
This concludes the proof of (H2) with b = L + 1/α min . The thesis follows from [5, Theorem 2.9].

ILA: Proximal-Gradient method

We now turn to the algorithm we used to address the nonsmooth case when δ = 0. In particular, we considered a simplified version of a recently proposed proximal-gradient method called VMILA (Variable Metric Inexact Linesearch Algorithm) [START_REF] Bonettini | Variable metric inexact line-search based methods for nonsmooth optimization[END_REF]. In its general form, this method exploits a variable metric in the (possibly inexact) computation of the proximal point at each iteration and a backtracking loop to satisfy an Armijo-like inequality. Effective variable metrics can be designed for specific objective functions by exploiting suitable decompositions of the gradient of the smooth part of the objective function itself [START_REF] Bonettini | A scaled gradient projection method for constrained image deblurring[END_REF][START_REF] Lantéri | Penalized maximum likelihood image restoration with positivity constraints: multiplicative algorithms[END_REF][START_REF] Bonettini | Scaling techniques for gradient projection-type methods in astronomical image deblurring[END_REF][START_REF] Bonettini | A scaled gradient projection method for Bayesian learning in dynamical systems[END_REF]. However, since in the DIC problem the gradient of J 0 does not lead to a natural decomposition in the required form, in our tests we used the standard Euclidean distance (we will denote with ILA this simplified version of VMILA). The main steps of ILA are detailed in Algorithm 2.

At each iteration n, given the point φ (n) ∈ R N and the parameters α n > 0, γ ∈ [0, 1], we define the function

h (n) γ (φ) = ∇J 0 (φ (n) ) T (φ -φ (n) ) + γ 2α n φ -φ (n) 2 + J T V (φ) -J T V (φ (n) ). (3.24)
We observe that h

(n) γ is strongly convex for any γ ∈ (0, 1]. By setting h (n) = h (n) 1
and

z (n) = φ (n) -α n ∇J 0 (φ (n)
), we define the unique proximal point

ψ (n) := prox αnJ T V (z (n) ) = arg min φ∈R N h (n) (φ). (3.25)
In step 2 of Algorithm 2, an approximation ψ(n) of the proximal point ψ (n) is defined by means of condition (3.29). Such a point can be practically computed by remarking that J T V can be written as

J T V (φ) = g(Dφ), g(t) = µ N j=1 t 2j-1 t 2j , t ∈ R 2N .
Then considering the dual problem of (3.25)

max v∈R 2N Γ (n) (v), (3.26) 
the dual function Γ (n) has the following form

Γ (n) (v) = - α n D T v -z (n) 2 2α n -g * (v) -J T V (φ (n) ) - α n 2 ∇J 0 (φ (n) ) 2 + z (n) 2 2α n (3.27)
where g * is the convex conjugate of g, namely the indicator function of the set B 2 0,µ N , being B 2 0,µ ⊂ R 2 the 2-dimensional Euclidean ball centered in 0 with radius µ.

Condition (3.29) is fulfilled by any point ψ(n) = z (n) -α n A T v with v ∈ R 2N satisfying [17] h (n) ( ψ(n) ) ≤ ηΓ (n) (v), η = 1/(1 + τ ). (3.28)
Such a point can be found by applying an iterative method to problem (3.26) and using (3.28) as stopping criterion.

Similarly to LMSD, any limit point of the sequence generated by ILA is stationary for problem (3.10) [17, Theorem 4.1] and, under the assumption that a limit point exists, the convergence of ILA to such a point holds when J satisfies the Kurdyka-Łojasiewicz property, the gradient of the smooth part ∇J 0 is Lipschitz continuous and the proximal point ψ(n) is computed exactly [START_REF] Bonettini | On the convergence of variable metric line-search based proximal-gradient method under the Kurdyka-Lojasiewicz inequality[END_REF]. Whether and when ILA converges when the proximal point is computed inexactly is still an open problem, therefore all we can say for Algorithm 2 applied to the DIC problem is that all its limit points are stationary.

Nonlinear conjugate gradient methods

We compare the performances of LMSD and ILA with several nonlinear conjugate gradient methods, including some standard CG methods [START_REF] Nocedal | Numerical optimization. 2nd[END_REF][START_REF] Fletcher | Practical methods of optimization[END_REF] and the heuristic CG method previously used for DIC problems [START_REF] Preza | Image reconstruction for three-dimensional transmitted-light DIC microscopy[END_REF][START_REF] Preza | Rotational-diversity phase estimation from differential interference contrast microscopy images[END_REF]. The general scheme for a CG method is recalled in Algorithm 3 and some classical choices for the parameter β n+1 are shown in n is chosen as in Algorithm 1.

Let h (n)

γ , h (n) and ψ (n) be defined as in (3.24)- (3.25). Compute ψ(n) ∈ R N and n ≥ 0 such that

h (n) ( ψ(n) ) -h (n) (ψ (n) ) ≤ n ; n ≤ -τ h (n) γ ( ψ(n) ). (3.29) 3. Set d (n) = ψ(n) -φ (n) .
4. Compute the smallest non-negative integer i n such that λ n = ρ in satisfies

J(φ (n) + λ n d (n) ) ≤ J(φ (n) ) + ωλ n h (n) γ ( ψ(n) ).
(3.30)

Compute the new point as

φ (n+1) = φ (n) + λ n d (n) .
If "Stopping Criterion" is satisfied 6. Return Else 7. Set n = n + 1.

EndIf EndWhile

In order to ensure the global convergence of the FR and FR-PR methods, the steplength parameter α n in step 1 must comply with the strong Wolfe conditions [START_REF] Gilbert | Global convergence properties of conjugate gradient methods for optimization[END_REF][START_REF] Nocedal | Numerical optimization. 2nd[END_REF] J(φ

(n) + α n p (n) ) ≤ J(φ (n) ) + c 1 α n ∇J(φ (n) ) T p (n) |∇J(φ (n) + α n p (n) ) T p (n) | ≤ c 2 |∇J(φ (n) ) T p (n) | (3.31)
where 0 < c 1 < c 2 < 1 2 . Concerning the PR methods, one can prove convergence if β n+1 is chosen according to the PR + rule and α n satisfies both (3.31) and the following additional condition [START_REF] Gilbert | Global convergence properties of conjugate gradient methods for optimization[END_REF][START_REF] Nocedal | Numerical optimization. 2nd[END_REF] 

∇J(φ (n) ) T p (n) ≤ -c 3 ∇J(φ (n) ) 2 , 0 < c 3 ≤ 1. (3.32)

Algorithm 3 Conjugate gradient (CG) method

Choose φ (0) ∈ R N and set n = 0, p (0) = -∇J(φ (0) ).

While True

1. Compute α n and set φ (n+1) = φ (n) + α n p (n) .
2. Choose the scalar parameter β n+1 according to the CG strategy used.

Define p

(n+1) = -∇J(φ (n+1) ) + β n+1 p (n) .
If "Stopping Criterion" is satisfied Since in the DIC problem the evaluation of the gradient ∇J is computational demanding and its nonlinearity w.r.t. α requires a new computation for each step of the backtracking loop, in [START_REF] Preza | Image reconstruction for three-dimensional transmitted-light DIC microscopy[END_REF][START_REF] Preza | Rotational-diversity phase estimation from differential interference contrast microscopy images[END_REF] a heuristic version of the FR and PR methods is used exploiting a linesearch based on a polynomial approximation method. The resulting scheme for the choice of α n is detailed in Algorithm 4, even if we recognize that our routines might differ from those used in [START_REF] Preza | Image reconstruction for three-dimensional transmitted-light DIC microscopy[END_REF][START_REF] Preza | Rotational-diversity phase estimation from differential interference contrast microscopy images[END_REF] due to the lack of several details crucial for reproducing their practical implementation. As we will see in the next Section, this linesearch is quite sensitive to the choice of the parameter t. Moreover, since the strong Wolfe conditions are not imposed, there is no guarantee that the FR or PR methods endowed with this choice for α n converges, nor that p (n+1) is a descent direction for all n. In the following, the CG methods equipped with the FR and PR rule, together with the linesearch described in Algorithm 4, will be indicated as FR-PA and PR-PA respectively, where PA stands for polynomial approximation.

4. Return Else 5. Set n = n + 1. EndIf EndWhile CG algorithm β n+1 FR β FR n+1 = ∇J(φ (n+1) ) T ∇J(φ (n+1) ) ∇J(φ (n) ) T ∇J(φ (n) ) PR β PR n+1 = ∇J(φ (n+1) ) T (∇J(φ (n+1) ) -∇J(φ (n) )) ∇J(φ (n) ) T ∇J(φ (n) ) PR + β PR + n+1 = max(β PR n+1 , 0) FR-PR β FR-PR n+1 =    β PR n+1 if |β PR n+1 | ≤ β FR n+1 β FR n+1 otherwise

Algorithm 4 Linesearch based on polynomial approximation

Let ψ(α) := J(φ (n) + αp (n) ) and set t > 0, a = 0, b = t.

Compute ψ(a) and ψ(b). 

Numerical experiments

In this section we test the effectiveness of the algorithms previously described in some synthetic problems. All the numerical results have been obtained on a PC equipped with an INTEL Core i7 processor 2.60GHz with 8GB of RAM running Matlab R2013a with its standard settings. For each test we will report the number of function evaluations, the number of gradient evaluations and the computational time needed by each algorithm to provide the reconstructed phase. With this information the reader should be able to estimate the complexity of the different approaches independently of the environment in which the algorithms are implemented and run. The LMSD and ILA routines for the DIC problem together with an illustrative example can be downloaded at the webpage http://www.oasis.unimore.it/site/home/software.html.

Comparison with state-of-the-art methods

Since in the DIC problem the evaluation of the gradient ∇J is computational demanding and its nonlinearity w.r.t. α requires a new computation for each step of the backtracking loop, in [START_REF] Preza | Image reconstruction for three-dimensional transmitted-light DIC microscopy[END_REF][START_REF] Preza | Rotational-diversity phase estimation from differential interference contrast microscopy images[END_REF] a heuristic version of a nonlinear conjugate gradient (CG) is used exploiting a gradient-free linesearch based on a polynomial approximation method. Although this formulation has practical advantages, the resulting scheme is not guaranteed to converge, and in our tests we experienced very different behaviours w.r.t. to the choice of some initial parameters of the linesearch procedure. For this reason, we also implemented several standard CG methods [START_REF] Nocedal | Numerical optimization. 2nd[END_REF][START_REF] Fletcher | Practical methods of optimization[END_REF], namely the Fletcher-Reeves (FR), Polak-Ribière (PR), PR with nonnegative values (PR + ) and PR constrained by the FR values (FR-PR) strategies [START_REF] Gilbert | Global convergence properties of conjugate gradient methods for optimization[END_REF]. For these algorithms, the global convergence is ensured by computing the steplength parameter by means of the strong Wolfe conditions [START_REF] Nocedal | Numerical optimization. 2nd[END_REF][START_REF] Gilbert | Global convergence properties of conjugate gradient methods for optimization[END_REF].

The evaluations of the optimization methods have been carried out on two phantom objects (see Figure 3.1), which have been computed by using the formula for the phase difference between two waves travelling through two different media

φ s = 2π(n 1 -n 2 )t s , (3.33) 
where n 1 and n 2 are the refractive indices of the object structure and the surrounding medium, respectively, and t s is the thickness of the object at pixel s ∈ χ. The first phantom, denominated "cone" and reported at the top row of • shear: 2∆x = 0.6 µm;

• bias: 2∆θ = π/2 rad;

• numerical aperture of the objective: NA = 0.9.

For each phantom, a dataset consisting of K = 2 polychromatic DIC images acquired at shear where φ * is the mean value of the true object and σ is the standard deviation of noise. The As far as the regularization parameter µ and the threshold δ in (3.11) are concerned, these have been manually chosen from a fixed range in order to obtain a visually satisfactory reconstruction. Note that the parameters were first set in the differentiable case (δ > 0) for the LMSD and the nonlinear CG methods and then the same value of the parameter µ was used also in the nondifferentiable case (δ = 0) for the ILA method. The values reported below have been used for each simulation presented in this section. The resulting values have been µ = 10 -2 , δ = 10 -2 for the cone and µ = 4 • 10 -2 , δ = 10 -3 for the cross. Some details regarding the choice of the parameters involved in the optimization methods of Section 3.4 are now provided. The linesearch parameters ρ, ω of the LMSD and ILA methods have been respectively set to 0.5, 10 -4 . These are the standard choices for the Armijo parameters, however it is known that the linesearch algorithm is not so sensible to modifications of these values [START_REF] Bonettini | A scaled gradient projection method for constrained image deblurring[END_REF][START_REF] Prato | Efficient deconvolution methods for astronomical imaging: algorithms and IDL-GPU codes[END_REF]. The parameter γ in the Armijo-like rule (3.30) has been fixed equal to 1, which corresponds to the mildest choice in terms of decrease of the objective function J. The parameter m in Algorithm 1 is typically a small value (m = 3, 4, 5), in order to avoid a significant computational cost in the calculation of the steplengths α at each iteration of ILA, by means of algorithm FISTA [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF] which is stopped by using criterion (3.28) with η = 10 -6 . This value represents a good balance between convergence speed and computational time per iteration [START_REF] Bonettini | Variable metric inexact line-search based methods for nonsmooth optimization[END_REF]. Concerning the nonlinear CG methods equipped with the strong Wolfe conditions, we use the same parameters as done in [START_REF] Gilbert | Global convergence properties of conjugate gradient methods for optimization[END_REF] and we initialize the related backtracking procedure as suggested in [66, p. 59]. Regarding the CG methods endowed with the polynomial approximation, a restart of the method is performed by taking a steepest descent step, whenever the search direction fails to be a descent direction. Finally, the constant phase object φ (0) = 0 is chosen as initial guess for all methods.

In order to evaluate the performance of the phase reconstruction methods proposed in Section 3.4, we will make use of the following error distance

E(φ (n) , φ * ) = min c∈R φ (n) -φ * -c1 φ * = φ (n) -φ * -c1 φ * (3.35)
where φ * is the phase to be reconstructed and c = j∈χ (φ

(n) j -φ * j ) N
. Unlike the usual root mean squared error, which is recovered by setting c = 0 in (3.35), the error distance defined in (3.35) is invariant with respect to phase shifts, i.e.

E(φ + c1, φ * ) = E(φ, φ * ), ∀φ ∈ R N , ∀c ∈ R. (3.36)
That makes the choice of (3.35) well-suited for problem (3.10), whose solution might be recovered only up to a real constant.

The methods have been run for the cone and cross phantoms with the parameters setting previously outlined. On one hand, the iterations of the LMSD and the CG methods have been arrested when the following stopping criterion based on the decrease of the gradient norm

∇J(φ (n) ) ≤ κ (3.37)
was met with κ = 4 • 10 -2 for the cone and κ = 10 -3 for the cross. On the other hand, the ILA method has been stopped when the error up-to-a-constant between two successive iterates was lower than a prefixed κ > 0, that is

φ (n+1) -φ (n) -φ (n+1) -φ (n) 1 φ (n+1) ≤ κ, (3.38)
where φ (n+1) -φ (n) is the mean value of the difference between the two objects. The tolerance κ in (3.38) was set equal to 5 • 10 -5 for the cone and 10 -4 for the cross.

In Figure 3.2 we show the reconstruction error provided by the different methods as a function of the computational time. Among the CG methods, we report only the results obtained by the PR algorithm combined with a polynomial-approximation-based linesearch (PR-PA) and the FR-PR one in which the linesearch parameter is computed with the SW conditions (FR-PR-SW), since they always outperformed the other possible choices. From the plots of Figure 3.2, it can be drawn that each method is quite stable with respect to the noise level on the DIC images. However, in terms of time efficiency, LMSD outperforms the CG methods in both tests, showing a time reduction of at least 50% to satisfy the stopping criterion. Furthermore, what emerges by looking at Tables 3.2 and 3.3 is that the CG methods are much more computationally demanding than LMSD. For instance, in the case of the cone (Table 3.2), LMSD evaluates the function less than 2 times per iteration. By contrast, the backtracking procedure exploited in the FR-PR-SW method requires an average of 4 evaluations per iteration of both the function and gradient to satisfy the strong Wolfe conditions, whereas the PR-PA method, despite evaluating the gradient only once, need on average 12 evaluations of the function before detecting the correct three-points-interval (see [START_REF] Preza | Rotational-diversity phase estimation from differential interference contrast microscopy images[END_REF]). One could reduce the number of evaluations in PR-PA by properly tuning the initial parameters of the linesearch. However, as mentioned before, this method is quite sensitive to this choice, and little variations might result in a great increase of the number of restarts and, eventually, in the divergence of the algorithm. In addition, it seems that the optimal value of these parameters strictly depends on the object to be reconstructed.

Comparison between LMSD and ILA

We now compare the performance of LMSD and ILA. On one hand, ILA reconstructs the cross object slightly better than LMSD. Indeed, ILA provides the lowest reconstruction error in Table 3.3 for each SNR value and the corresponding phase estimates have better preserved edges, as clearly depicted in Figure 3.3, where we consider the following "up-to-a-constant" residual to measure the quality of the reconstructions provided by the two methods. This result was expected, since ILA addresses problem (3.10) with the standard TV functional (δ = 0 in (3.11)), which is more suited than HS regularization (δ > 0) when the object to be reconstructed is piecewise constant. On the other hand, ILA may be computationally more expensive since, unlike LMSD, it requires to iteratively solve the inner subproblem (3.26) at each outer iteration.

R j = φ j -φ * j -φ -φ * , ∀j ∈ χ (3.
Indeed, looking at Table 3.3 we notice that, although the number of function evaluations per iteration in LMSD and ILA is quite similar (on average around 1.4 for LMSD and 1.8 for ILA)

and the ILA iterations are stopped way before the LMSD ones, the computational time in ILA is always higher. For instance, in the case SNR = 9 dB, the methods require approximately the same time, although the number of iterations of ILA is more than halved. This fact is explained if we look at the average number of inner iterations required by ILA to compute the approximate proximal point: 21.3, 10.11 and 13.43 for SNR = ∞, 9, 4.5 dB respectively.

Analogous conclusions on the costs per iteration can be drawn by considering the results on the cone object (see Table 3.2). In this case, LMSD is able to achieve a lower reconstruction error w.r.t. ILA in very few iterations, providing a remarkable gain in the computational time needed.

In order to deepen the analysis between the differentiable TV approximation and the original nondifferentiable one, we compared the LMSD and ILA methods in one further realistic simulation. In particular, we considered the "grid" object in Figure 3.4, which is a 1388 × 1040 image emulating the phase function of a multi-area calibration artifact2 , which measures 1.212 rad inside the black regions and 2.187 rad inside the white ones. The setup of the two methods is identical to that of the previous tests (with the exception of the numerical aperture of the objective NA which has been set equal to 0.8), and the parameters µ (for both models)

and δ (for the smooth TV functional) have been set equal to 2 • 10 -1 and 10 -1 , respectively.

Instead of three levels of noise, here we only considered a SNR equal to 9 dB. In Figure 3 The grid dataset confirms the remarks previously done, since ILA takes almost twice as long compared to LMSD to provide an estimate of the phase. This is again due to the number of inner iterations, which starts to oscillatory increase after the first 20 iterations (see Figure 3.5). To conclude, we reckon that the LMSD method is generally preferable since, unlike ILA, it does not require any inner subproblem to be solved and thus it is generally less expensive from the computational point of view. However, the ILA method should be considered as a valid alternative when the object to be reconstructed is piecewise constant.

Influence of color and bias retardation on phase reconstruction

Another analysis of our interest was to observe how color information and bias retardation in the observations affect the behavior of phase reconstruction. We set four scenarios for The lines show the average error over the 100 observations. It is noticed that for 0 rad bias retardation, the reconstruction for polychromatic observations behave better than for the monochromatic ones, even though the amount of error is not promising of a good reconstruction.

For π/2 rad bias retardation the algorithm stops before the maximum number of iterations (500) is reached. In this case, for both levels of noise, the performance of the reconstruction with polychromatic light is quite comparable with monochromatic light. Another interesting finding about the convergence for monochromatic light, is that for all cases, it happens in the order red-green-blue; this is due to the fact that the amplitude PSF for blue light has the bigger frequency support, thus provides more information for reconstruction.

Summary

In this chapter we provided both theoretical and practical contributions to the inverse problem of phase estimation from polychromatic DIC images. First of all, we studied the analytical properties of the LS data fidelity function arising from a maximum likelihood approach, showing its periodicity, shift-invariance and analyticity. Secondly, we analyzed the minimization problem of the functional given by the sum of the discrepancy term and an edge-preserving regularizer, proving the existence of minimum points. Finally, we proposed two recent optimization strategies for the case of both smooth and nonsmooth regularizers, and compared their performance with state-of-the-art conjugate gradient methods. In particular, for the HS regularizer we considered the LMSD method while in the case of the nonsmooth TV functional we proposed to exploit the ILA approach.

From the analysis we performed we drive the conclusions that an edge-preserving regularizer combined with an effective optimization tool can rapidly provide a good reconstruction of the phase. Of course the LMSD method has a much simpler structure than ILA and, in general, it should converge faster since ILA depends on two cycles of iterations (the outer defining the sequence and the inner computing the proximal point). However, in our tests the differences in time are not so significant, therefore a possible user might prefer to avoid the choice of a further parameter (the δ defining the HS term) and adopt the standard LS+TV model.

We highlight that the efficiency in the computational time is accomplished by the 3.6. Summary compact and faster calculation of the gradient in Equation (3.8). We reformulated this expression into a convolution-based operator which allows a complexity of O (MP log MP) for an image of size M × P, instead of O MP 2 initally reported in the literature by Preza et al [START_REF] Preza | Rotational-diversity phase estimation from differential interference contrast microscopy images[END_REF].

A final remark is given to the fact that for the case when the bias retardation is π/2 rad, the phase reconstruction is invariant to the color information. This means that if there are available observations done with a single wavelength, the reconstruction will be as good as if it is done with polychromatic observations. Chapter 4

Constrained Phase Estimation for DIC Microscopy

In this chapter we propose to follow another approach to deal with the non-linearity and non-convexity of the DIC phase estimation problem. In the previous chapter we presented two optimization methods for an unconstrained cost function. Here we introduce a constraint by doing a change of the optimization variable and we fix the observations to a single wavelength λ , for ∈ {1, 2, 3}, according to the results obtained in Chapter 3 that show that it is possible to reconstruct the phase with only one wavelength.

Let us define u ∈ C M P , such that u j = e -i φ j λ and |u j | = 1, φ j ∈ R for all j ∈ χ (where χ = {1, . . . , M } × {1, . . . , P }). For the sake of simplicity, u j is the complex number (u r + iu i ) j , with real part u r and imaginary part u i . According to this, and recalling models (

the fit-to-data term under the variable u is expressed as

J 0 (u) = K k=1 j∈χ (o k ) j -a 1 (h k ⊗ u) j 2 2 (4.1)
and the inverse problem becomes min

u∈C M P J 0 (u) (4.2) 
subject to |u j | = 1, for all j ∈ χ Once an optimal solution û to problem (4.2) is found, we compute the searched phase as φj = λ . arctan ûi ûr j (4.3) Functional J 0 in (4.1) makes a mapping from C MP to R which gives its non-holomorphic nature and hence, not C-derivable. As it is expressed according to a complex variable u but not according to the phase variable φ, it has no explicit properties such as the ones stated in Lemma 1. J 0 holds the smoothness property as long as it is expressed in terms of real variables as follows

J 0 : R MP × R MP -→ R (4.4) (u r , u i ) j -→ J 0 (u r , u i ) j
for all j ∈ χ. In order to compute in a straight forward way the derivatives of J 0 with respect to u = (u r , u i ), we use the Wirtinger derivatives formalism as introduced by Adali et al [2] and Candès et al [START_REF] Candès | Phase Retrieval via Wirtinger Flow: Theory and Algorithms[END_REF], which we present in section 4.1.

Problem (4.2) is also a severely ill-posed problem, which also requires to add a regularization function as we did previously for problem (3.10). This transforms our optimization model as follows min

u∈C M P J(u) ≡ J 0 (u) + J T V (u) (4.5) 
subject to |u j | = 1, for all j ∈ χ where J T V is the smooth total variation functional

J T V (u) = µ j∈χ |((Du) j ) 1 | 2 + |((Du) j ) 2 | 2 + δ 2 , ( 4.6) 
with µ > 0 the regularization parameter, δ ≥ 0 the smoothness parameter, and the discrete gradient operator D : C M P -→ C 2M P is set through the standard finite difference with periodic boundary conditions

(Du) j 1 ,j 2 = ((Du) j 1 ,j 2 ) 1 ((Du) j 1 ,j 2 ) 2 = u j 1 +1,j 2 -u j 1 ,j 2 u j 1 ,j 2 +1 -u j 1 ,j 2 , u M +1,j 2 = u 1,j 2 , u j 1 ,P +1 = u j 1 ,1

Wirtinger Derivatives

Before going further in our optimization problem, we present a short review of the concept of Wirtinger derivatives in order to develop the computation of the gradient of functional (4.1).

Let us start by defining a real-valued function

f : C -→ R z -→ f (z) (4.7) 
As it maps C into R it is a non-holomorphic function, hence it is not C-derivable. However, as we are interested in optimizing f , we can consider this function as

f : R × R -→ R (z r , z i ) -→ f (z r , z i ) = f (z) (4.8)
and run a gradient descent algorithm on the real and imaginary components of f as follows

z (n+1) r = z (n) r -α n ∂f (z (n) r , z (n) i ) ∂z r z (n+1) i = z (n) i -α n ∂f (z (n) r , z (n) i ) ∂z i (4.9)
When dealing with high dimensional complicated funcional as computing ∂f (z r , z i ) ∂z r and ∂f (z r , z i ) ∂z i can be tedious, that is why we have chosen to use the Wirtinger derivatives (denoted with the subscript W), which are defined as follows

∂ W f (z) ∂z 1 2 ∂f (z) ∂z r -i ∂f (z) ∂z i and ∂ W f (z) ∂ z 1 2 ∂f (z) ∂z r + i ∂f (z) ∂z i (4.10)
There exists an important property of the Wirtinger derivatives explained by Adali in [2] and Candès in [START_REF] Candès | PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming[END_REF] (see Appendix C.1), which leads to the following identity

∂ W f ∂z := ∂f (z, z) ∂z z=constant ∂ W f ∂ z := ∂f (z, z) ∂ z z=constant (4.11)
Hence, Algorithm (4.9) is rewritten as

z (n+1) = z n -α n • 2 • ∂ W f ∂ z (4.12)
where ∂ W f ∂ z is easily computed by the second identity in (4.11)

n-dimensional Wirtinger derivatives

Since we are dealing with a 2-dimensional complex variable, it is pertinent to present the notation of Wirtinger derivatives in the n-dimensional case (see Appendix C.2 for details).

Define the n-dimensional column vector z by z = (z 1 , . . . , z n ) T ∈ C n , where z = z r + iz i for = 1, . . . , n, or equivalently z = z r + iz i with z r = (z r 1 , . . . , z rn ) and z i = (z i 1 , . . . , z in ). The corresponding conjugate vector of z is z = (z 1 , . . . , zn ) T ∈ C n . This allows us to define the following real-valued function

f : C n -→ R z -→ f (z) (4.13) with complex conjugate coordinates z z ∈ C n × C n .
As in the one-dimensional case in (4.10), the n-dimensional Wirtinger derivatives are defined as The gradient vector is defined as

∂ W f
∇ W f (z) ∂f (z, z) ∂z * = ∂ W f (z) ∂z * 1 2 ∂f (z) ∂z r + i ∂f (z) ∂z i (4.16)
where * represents the conjugate transpose.

In conclusion, Wirtinger derivatives provide us with a compact notation in order to obtain the gradient of our non-holomorphic optimization problem. In the following section we present the development of the gradient following that notation.

Gradient of J 0 (u)

Now we consider again problem (4.1)

J 0 (u) = K k=1 j∈χ (o k ) j -a 1 (h k ⊗ u) j 2 2
which can be stated as the mapping J 0 :

C M P -→ R u -→ J 0 (u) .
According to the Wirtinger theory previously described, and because of the complex coordinates, we can reformulate problem (4.1) in the following way J0 :

C M P × C M P -→ R (u, ū) -→ J0 (u, ū) = K k=1 j∈χ (o k ) j -(h k ⊗ u) j • hk ⊗ ū j 2 (4.17)
where the gradient of J 0 and the gradient of J0 relates to each other as ∇ J0 = (∇ 1 J 0 , . . . , ∇ M P J 0 ).

If we take the partial derivative of J0 with respect to any element u s for all s ∈ χ we have

∂ J0 (u, ū) ∂u s = K k=1 j∈χ 2 |(h k ⊗ u) j | 2 -(o k ) j • ∂ |(h k ⊗ u) j | 2 ∂u s (4.18) where ∂ |(h k ⊗ u) j | 2 ∂u s = ∂ (h k ⊗ u) j • ( hk ⊗ ū) j ∂u s = (h k ⊗ u) j • h k j-s then, ∂ J0 (u, ū) ∂u s = K k=1 j∈χ 2 |(h k ⊗ u) j | 2 -(o k ) j • (h k ⊗ u) j • h k j-s = 2 K k=1 j∈χ |(h k ⊗ u) j | 2 -(o k ) j • (h k ⊗ u) j ⊗ h -t k
where (•) -t represents the matrix transpose in arrows and columns.

According to the identity (4.16), we can conclude that ∇J 0 (u) = ∂ J0 (u, ū) ∂u s *

, where * represents the conjugate transpose. This finally lead us to

∇J 0 (u) = 2 K k=1 j∈χ |(h k ⊗ u) j | 2 -(o k ) j • (h k ⊗ u) j ⊗ h-t k (4.19)

Projected DIC Phase Estimation

Now we proceed to develop the solution to problem 4. Wirtinger theory and Equations (4.9) and (4.12) we find that each iteration for J 0 (u) is computed in the following way

u (n+1) = u (n) -α n • 2 • ∇J 0 (u) (4.21)
where ∇J 0 (u) is defined in equation (4.19).

With this result it is possible to compute the feasible solution at that iteration applying the projection operator P C as follows û(n+1)

j = P C u (n+1) j = u (n+1) j u (m+1) j (4.22)
The numerical implementation of this gradient descent method is described in Algorithm 5, which has a polynomial linesearch strategy for controlling the steplength parameter α n presented in Algorithm 6. Further details about Algorithm 6 can be found in [START_REF] Kelley | Iterative Methods for Optimization[END_REF].

Algorithm 6 Polynomial linesearch

Let d (n) = -∇J P (u (n) ) be the current search direction. Set [β low , β high ] ⊂ (0, 1).

Let ξ(α) = J P (u (n) + αd (n) ) and set initial data: ξ(0) = J P (u (n) ); ξ (0) = ∇J P (u (n) ) T d (n) ;

ξ(1) = J P (u (n) + d (n) ). If n = 0 1. Set α n = 1.
2. Approximate ξ(α) by the quadratic polynomial

q(α) = ξ(0) + ξ (0)α + [ξ(1) -ξ(0) -ξ (0)]α 2
whose global minimum is given by Although the shape of the specimen and the phase function are very well recovered, by observing the residual images for the specimen ((c) and (d)), there is a considerable difference with respect to the expected result. If we focus on the estimated phase ((e)) and the residual in (f), we corrobarate that its solution is recovered up to a real constant, as is observed in (g)

α t = -ξ (0) 2[ξ(1) -ξ(0) -ξ (0)] 3. Assign α + =            β low α n , α t ≤ β low α n α t , β low α n < α t < β high α n β high α n , α t ≤ β high α n 4. Update α n = α + Else 5. Set initial data ξ(0) = J P (u (n) ); ξ (0) = ∇J P (u (n) ) T d (n) ; ξ(α -); ξ(α n ),
where we calculate a more precise residual by giving up that constant. It is evident that there is no big difference in the estimations whether having or not the projection operator. However, if we analyze the performance of both algorithms in terms of their convergence, evolution of the norm of the gradient and error along the iterations, we observe that the projection operator provides more stability and gives more preference to the Gradient Descent method, see Figures In Figure 4.13 we present the true cross object with color bars dynamic adjusted to the results for this initial guess without projection and in Figure 4.15 adjusted to the results with projection.

In general, we observe the same behavior as for the cone, in terms that the sharp shape is very well reconstructed, but the values of the specimen and phase functions are distant from the expected ones. In terms of the curves of performance of the algorithms, it is also more favorable the projection operator for the Gradient Descent method. Due to the square modulus in operator A, this is a non-linear non-convex problem. The PhaseLift idea is to reformulate this quadratic measurements by lifting them up and interpreting them as linear measurements of the rank-one matrix U = uū. This is based on the fact that we have

| a j , u | 2 = T r(ūa j a * j u) = T r(a j a * j uū) := T r(A j U ) (4.25)
where A j (respectively U ) is the rank-one matrix a j a * j (respectively uu * ). Then the problem (4.25) can be reformulated as min

U ∈C n ×C n U 0 rank(U )=1 A(U ) -b 2 = min U ∈C n ×C n U 0 rank(U )=1 m j=1 (T r(A j U ) -b j ) 2 (4.26)

Application to the DIC problem

Our main concern is to reformulate the original DIC phase estimation problem (4.5), as a phase retrieval problem in order to apply PhaseLift to it. We start by considering first problem (4.2)

min u∈C M P , |u j |=1 J 0 (u) = K k=1 j∈χ (o k ) j -(h k ⊗ u) j 2 2
which can be rewritten as follows min

u∈C M P , |u j |=1 J 0 (u) = K k=1 j∈χ (o k ) j -(H k • u) j 2 2 = K k=1 j∈χ (o k ) j -H k j , u j 2 2 (4.27)
where H k j is the MP × 1 vector containing the j th line of matrix H k . Then the problem (4.27) can be reformulated as in (4.26):

min

U ∈C M P ×C M P rank(U )=1 U 0 U ii =1,∀j K k=1 H k (U ) -b 2 = min U ∈C M P ×C M P rank(U )=1 U 0 U ii =1,∀j K k=1 j∈χ T r( Hk j U ) -b j 2 (4.28)
where Hk j = H k j • H * k j . Problem (4.28) can be also written as min

U ∈C M P ×C M P K k=1 H k (U ) -b 2 + 1 {X∈C M P ×C M P /rank(X)≤1} (U ) + (4.29) 1 {X∈C M P ×C M P /X 0} (U ) + 1 {X∈C M P ×C M P /X ii =1} (U )
This is a low-rank matrix optimization problem, also known as semi-definite problem (SDP), on which the non-convex constraint |u j | = 1 is now linearized. We plan to use recent results on low-rank optimization obtained in [START_REF] Carlsson | On convexification/optimization of functionals including an l2-misfit term[END_REF]. In this work, the author proposes results on convexifica-4.6. Summary tion of low-rank matrix estimation problem, as well as numerical ways to compute the proximal operator of this term. Such results will be useful to solve the more complex problem (4.29).

Summary

In this chapter we provided a constrained formulation for the DIC phase estimation problem.

We proposed a change of variable for the objective variable, transforming the search space from R M P to C M P . We made use of the Wirtinger derivatives in order to implement the computation of the gradient for the iterative algorithms, maintaining the compact and fast calculation of it.

The change of variable obliged us to impose a module 1 constraint and with this we could introduce a projection operator which was implemented into the LMSD and Conjugate Gradient PR-PA algorithms already discussed in section 3.4. Because of the change of variable, most of the properties described in section 3.2 were lost. We could observe numerically that the methods behave slow and less accurate in retrieving the phase.

In order to overcome this drawback, we propose as future work to make use of more challenging methods like the PhaseLift algorithm which can deal better with the non-convexity of the optimization problem in the objective variable.

Chapter 5

Conclusions and Future Work

The goal of this dissertation was to provide efficient methods for the phase estimation problem in Differential Interference Contrast (DIC) microscopy. We made emphasis in three aspects: 1, the definition of an image formation model having into account polychromatic light; 2, phase retrieval algorithms based on regularized inversion that offer accuracy and stability in the estimation; 3, a constrained approximation approach by changing the search space and imposing certain structure to the estimation. In the following we discuss the results we obtained, contributions and suggestions for future work.

The polychromatic image formation model

In chapter 2 a polychromatic image formation model was originated as an extension of the well known Rotational diversity model proposed by Preza et al in [START_REF] Preza | Rotational-diversity phase estimation from differential interference contrast microscopy images[END_REF]. We had into account properties of partially coherent and polarized light that produce the inteference phenomena, which is the main optical principle that produces the images in a DIC microscope. We studied the characteristics of the image formation model in terms of the interaction of the RGB wavelengths and how they adjust the quality of resolution in addition to the numerical aperture of the microscope. For that we presented a detailed analysis of the different configurations of the point spread function (PSF), under the influence of parameters such as shear direction, shear angle and bias retardation.

Regularized inversion for phase reconstruction

In chapter 3, we focused first on the theoretical properties of the non-linear and non-convex inverse problem of DIC phase estimation. We stated and proved its periodicity, shift-invariance and analyticity, as well as the existence of minimum points when an edge-preserving regularizer is introduced. That allowed us to explore from the practical point of view, the use of efficient optimization methods such as LMSD (smoothed functional) and ILA (non-smoothed functional).

We were able to compare their performance with state-of-the-art algorithms such as Conjugate Gradient with its variants of Fletcher-Reeves, Polak-Ribiere and Polynomial Approximation.

We made special attention to the fast and compact computation of the gradient compared to the one that was previously reported on the literature. This work has been made in collaboration with colleagues at the University of Modena and Reggio Emilia in Italy; as a result, a paper is in second review at the Inverse Problems Journal.

Constrained approximation

In an attempt to manage differently the non-linearity and non-convexity of this inverse problem, in chapter 4 we proposed a different approach by including a non-convex constraint to the original problem. We transformed the optimization space from R MP to C MP which imposed a different structure to the problem. This also meant that some of the properties found in chapter 3 were not maintained under the new inverse problem. We followed again the regularized inversion approach adjusted for the new structure and we compared the performance of a gradient descent method versus a conjugate gradient method.

Future work

We think that an interesting alternative way to solve the DIC phase reconstruction problem is to build an algorithm able to compute the reformulated PhaseLift problem, as it was presented in (4.29). It is also recommended to use the results presented in [START_REF] Carlsson | On convexification/optimization of functionals including an l2-misfit term[END_REF], on convexification of low-rank matrix approximation, as well as numerical algorithms to solve the associated proximal operator.

It is important to make a validation of the methods we have proposed using experimental images. Along the development of this dissertation we did acquisitions in collaboration with the Laboratory of Microscopy at the Universidad Industrial de Santander (UIS) in Colombia. We used a Carl Zeiss Axio Imager z1 microscope, equipped with a technique called C-DIC (stands for Circular-DIC), which works under circularly polarized light and in reflection mode (not in transmission like the model we presented in Chapter 2). The main difficulty that this imposed in our approach was that the acquired images could not be represented accurately by the model we proposed. For this, we value to continue with a very close collaboration with the physicists at UIS, in order to reconsider the image formation model from a deeper optical point of view of the microscopy system. 

B.2 Hessian of J 0 (φ)

Here we present the calculation of Equation (3.13) which is the second partial derivative of J 0 (φ) with respect to elements φ t and φ s , for all s, t ∈ χ. The Cauchy-Riemann equations can simply be stated as ∂f ∂ z = 0. This means, an analytic function cannot depend on z. For real-valued f (z), we have

∂f ∂z = ∂f ∂ z (A)
i.e., the derivative and the conjugate derivative are complex conjugates of each other, then we only need to compute one or the other. As a consequence, a sufficient and necessary condition 

C.2 n-dimensional Wirtinger derivatives

In this section we retake the general ideas presented in subsection 4.1.1 and present them in more detail to understand the development in n dimensions.

Define the n-dimensional column vector z by z = (z 1 , . . . , z n ) T ∈ C n , where z = z r + iz i for = 1, . . . , n, or equivalently z = z r + iz i with z r = (z r 1 , . . . , z rn ) and z i = (z i 1 , . . . , z in ).

The corresponding conjugate vector of z is z = (z 1 , . . . , zn ) T ∈ C n . This allow us to define the C.2. n-dimensional Wirtinger derivatives following three real-valued functions

f : C n -→ R f : C n × C n -→ R f : R n × R n -→ R z -→ f (z) (z, z) -→ f (z, z) (z r , z i ) -→ f (z r , z i ) (C.8)
Following the same reasoning to obtain relations (C.2) and (C.4), we can obtain the same equivalence in the n-dimensional case:

f (z) = f (z, z) = f (z r , z i ) = v(z r , z i ) + iw(z r , z i ) (C.9)

The complex conjugate coordinates are then defined as z

z ∈ C n × C n .
In the same way we can describe the generalized complex derivatives The n-dimensional case also holds the Cauchy-Riemann condition with respect to the complex conjugate variable, that is, ∂f ∂z = 0, as well as the conditions for a stationary point at z 0 which are: ∂f (z 0 , z0 ) ∂z = 0 and ∂f (z 0 , z0 ) ∂z = 0.

∂f
Finally, the gradient vector is defined as

∇f (z) ∂ f (z, z) ∂z * = ∂f (z) ∂z * 1 2 ∂f (z) ∂z r + i ∂f (z) ∂z i (C.12)
where * represents the conjugate transpose.

In conclusion, Wirtinger derivatives provide us with a compact notation in order to obtain the gradient of our non-holomorphic optimization problem. In the following section we present the development of the gradient following that notation. 
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 1 Choice of the parameter β n+1 in CG methods. From top to bottom: Fletcher-Reeves (FR), Polak-Ribière (PR), Polak-Ribière with nonnegative β n+1 (PR + ), Polak-Ribière constrained by the FR method (FR-PR). . . . . . . . . . . . . . . 3.2 Cone tests. From left to right: number of iterations required to meet the stopping criteria, number of function and gradient evaluations, execution time, objective function value and error achieved at the last iteration. . . . . . . . . . . . . . . . 3.3 Cross tests. From left to right: number of iterations required to meet the stopping criteria, number of function and gradient evaluations, execution time, objective function value and error achieved at the last iteration. . . . . . . . . . . . . . . .

  includes a literature review of previous imaging models for DIC microscopy. It is also described the polychromatic image formation model and a detailed analysis of the DIC point spread function under this model. Chapter 3 is devoted to the unconstrained approximation of the DIC phase estimation problem. It contains a literature review of related work on phase estimation; the statement and corresponding proofs of the analytical properties of the nonlinear inverse problem, such as the existence of minimum points; the iterative optimization algorithms designed to address the phase reconstruction problem, as well as the numerical simulations on synthetic images are presented in order to evaluate efficiency and robustness of the considered approaches.
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 21 Figure 2.1: Types of microscopes
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 23 Figure 2.3: Objective lens numerical aperture for n = 1 (air)
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 24 Figure 2.4: Objective and condenser numerical aperture (taken from [65])

Figure 2 . 5 :

 25 Figure 2.5: Electromagnetic wave
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 26 Figure 2.6: Electric vector of light and planar wave 6

Figure 2 . 9 :

 29 Figure 2.9: Types of polarized light
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 210 Figure 2.10: Polarizer and Analyzer with crossed transmission axes

Figure 2 . 11 :

 211 Figure 2.11: Geometry and optical characteristics of calcite

  Wayne in [84] (Chapter 7, page 144). Imagine putting a positively birefringent specimen, such that n e = 1.4805, n o = 1.4555, thickness L = 5000 nm, on a rotating stage in a microscope whose optic axis is +45°(NE-SW) relative to the azimuth of maximal transmission of the polarizer (0°, E-W). Illuminate the specimen with linearly polarized light with a wavelength of λ = 500 nm. The birefringent specimen resolves the incident linearly polarized light into two orthogonal linearly polarized waves, the O-and E-waves. The E-wave vibrates linearly along the NE-SW axis, and the O-wave vibrates linearly along the SE-NW axis. Then, D = (1.4805 -1.4555) • 5000 nm = 125 nmThis means the O-wave will be ahead of the E-wave by 125 nm, and the E-wave will be retarded relative to the O-wave by 125 nm. This is equivalent to the extraordinary wave being DIC microscopes use an special birefringent prism, called the Wollaston prism, made of two wedge-shaped slabs of birefringent material (generally calcite) cemented along their hypotenuses.

2. 2 .

 2 DIC microscopy under transmitted light interference of the O-and E-rays.
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 213 Figure 2.13: Transmitted-light Nomarski DIC microscope

Figure 2 .

 2 Figure 2.14 presents four possible paths that light can follow across the specimen. For this we use an example presented in [84] (Chapter 9, page 192). Consider four pairs of waves (labeled A, B, C, D) produced by the first Nomarski prism. The prism is placed in such a way with respect

Figure 2 . 14 :

 214 Figure 2.14: Light path across the specimen

Figure 2 . 15 :

 215 Figure 2.15: Phase functions of two phantom specimens and corresponding noiseless DIC color images: (a) phase function of the "cone" object, (b) DIC image of the cone, (c) phase function of the "cross" object, (d) DIC image of the cross.

Figure 2 .

 2 Figure 2.16 shows the real (Real{}) and imaginary (Imag{}) parts of the PSF, each one calculated for shear angles τ 1 and τ 2 , and a fixed bias retardation 2∆θ 1 = 0.Figure 2.17shows

  Figure 2.17 shows the corresponding to bias retardation 2∆θ 2 = π/2. In all plots is observed the diffraction effect of each pupil function, which increases from the largest to the shortest wavelength. The two bright spots on the imaginary parts represent the two sheared and phase-shifted beams. The dark band in the middle of the two spots is the shear distance 2∆x established by the Nomarski prism. Although the real parts seem to be quite similar for both bias retardation values, it is more evident the difference by observing the imaginary parts.
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 42164217 Figure 2.16: Effect of shear angle, bias retardation and wavelength values on polychromatic PSF. Case 1: 2∆θ 1 = 0
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 4218242194220 Figure 2.18: Frequency domain support of polychromatic PSF. (a)-(b) 2∆θ 1 = 0; (c)-(d) 2∆θ 2 = π/2
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 242214222 Figure 2.21: Effect of NA = 0.9 on polychromatic PSF. Case 1: 2∆θ 1 = 0
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 4223242244225 Figure 2.23: Frequency domain support of polychromatic PSF. (a)-(b) 2∆θ 1 = 0; (c)-(d) 2∆θ 2 = π/2

  Figures 2.27and 2.28 show the results after convolving the true phase object with the PSF, under different configurations of numerical aperture, shear angle and bias retardation. The simulations were done with noise level of 4.5 dB. Further results for shear angle in {0, π/2} are in Figures A.9 and A.10.
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 2264227244228 Figure 2.26: Simulated true phase object

  since the information regarding to refractive indexes and optical path length differences of light is encoded into the exponential function of the nonlinear relationship established in model(2.14). The argument of the exponential represents the phase of the light beams traversing the physical object. Then, in order to obtain morphological information from a DIC image, it is needed to recover the phase function φ(x, y) from the K observed RGB images o 1,λ , . . . , o K,λ .

  be the subset of indices such that {φ s } s∈I is the set of all components of φ which belong to R \ [0, T ] and{m s } s∈I ⊂ Z \ {1} is the set of integers such that φ s ∈ [(m s -1)T, m s T ]. Define φ = φ -s∈I (m s -1)T e s ∈ Ω. By periodicity of J 0 w.r.t. the variables φ s , s ∈ I, we obtain J 0 ( φ) = J 0 (φ) < J 0 (ψ).(3.7)

. 14 )

 14 By applying again the triangle inequality, the fact that |e -iφr/λ | = 1, |Im(z)| ≤ |z| and |Re(z)| ≤ |z| for any z ∈ C and inequality (3.14) to (3.13), we obtain the following bound on the second derivative of J 0 :

Theorem 2

 2 The objective function J admits at least one global minimum point. Furthermore, if ψ ∈ R M P is a global minimizer of J, then also {ψ + c1 : c ∈ R} are global minimizers of J. Proof. Let S = {φ ∈ R M P : φ = c1, c ∈ R} be the line in R M P of all constant images and Π any hyperplane intersecting S in one point φ S , i.e. Π = {φ ∈ R M P : r∈χ a r φ r + b = 0}, r∈χ a r = 0, b ∈ R.

3. 5 . 1 ,

 51 these methods require in practice several evaluations of the objective function and possibly its gradient in order to compute the linesearch parameter. What we propose instead is to tackle problem (3.10) with a gradient descent algorithm in the differentiable case (δ > 0) and a proximal-gradient method in the nondifferentiable case (δ = 0). The key ingredients of both methods are the use of an Armijo linesearch at each iteration, which ensures convergence to a stationary point of problem (3.10), and a clever adaptive choice of the steplength in order to improve the speed of convergence.

6 .

 6 Define the (m + 1)

9 .

 9 Define the m × m matrix Φ = [R, r]ΓR -1 . 10. Compute the eigenvalues θ 1 , . . . , θ m of the symmetric and tridiagonal approximation Φ of Φ defined as Φ = diag(Φ) + tril(Φ, -1) + tril(Φ, -1) T , being diag(•) and tril(•, -1) the diagonal and the strictly lower triangular parts of a matrix. 11. Define α (0) n+i-1 = 1/θ i , i = 1, . . . , m.

. 21 )

 21 By substituting(3.21) in step 2 and since α n ≤ α (0)

Algorithm 2 1 .

 21 Inexact Linesearch based Algorithm (ILA) Choose 0 < α min ≤ α max , ρ, ω ∈ (0, 1), γ ∈ [0, 1], τ > 0, φ (0) ∈ R N and set n = 0. While True Set α n = max min α (0)n , α max , α min , where α (0)

1 .

 1 Find a point c ∈ [a, b] such that ψ(a) > ψ(c) < ψ(b) as follows If ψ(b) < ψ(a) Set c = 2b and compute ψ(c). While ψ(c) ≤ ψ(b) Set a = b, b = c, c = 2c and compute ψ(c). EndWhile Else Set c = b 2 and compute ψ(c). While ψ(c) ≥ ψ(a) Set b = c, c = c 2 and compute ψ(c). EndWhile EndIf 2. Compute α n as the minimum point of the parabola interpolating the points (a, ψ(a)), (b, ψ(b)), (c, ψ(c)).

Figure 3 . 1 ,

 31 is a 64 × 64 phase function representing a truncated cone of radius r = 3.2 µm with n 1 = 1.33, n 2 = 1 and maximum value φ max = 1.57 rad attained at the cone vertex. The "cross" phantom, shown at the bottom row of Figure 3.1, is another 64×64 phase function of two crossing bars, each one of width 5 µm, measuring 0.114 rad inside the bars and 0 in the background. For both simulations, the DIC microscope parameters were set as follows:

angles τ 1 =

 1 -π/4 rad and τ 2 = π/4 rad was created, as in model (2.14), by convolving the true phase function with the accordingly rotated DIC PSFs and then by corrupting the result with white Gaussian noise at different values of the signal-to-noise ratio SNR = 10 log 10 φ * σ (3.34)

Figure 3 . 1 :

 31 Figure 3.1: Data and results for the cone (top row) and cross (bottom row) objects. From left to right: true object, noisy DIC color image taken at shear angle π 4 rad and corrupted with white Gaussian noise at SNR = 4.5 dB, and reconstructed phase with the LMSD method from observations at shear angles equal to -π/4 rad and π/4 rad.

n

  ; here we let m = 4. The same choice for m is done in Algorithm 2, where the values α (0) n are constrained in the interval [α min , α max ] with α min = 10 -5 and α max = 10 2 . The dual problem (3.26) is addressed,

Figure 3 . 2 :

 32 Figure 3.2: Error versus computational time plots for the cone (top row) and cross (bottom row) objects. From left to right: noise-free data, SNR = 9 dB and SNR = 4.5 dB.

Figure 3 . 3 :

 33 Figure 3.3: Cross test. The residuals defined in (3.39) for the reconstructions provided by LMSD and ILA, respectively, when the acquired images are corrupted with SNR = 9 dB.

  .5 we report the behaviour of the error (3.35) as a function of time and the number of inner iterations needed by ILA to address problem (3.26)-(3.28).
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 343536 Figure 3.4: Data and results for the grid object. From left to right: true object, noisy DIC color image taken at shear angle π 4 rad and corrupted with white Gaussian noise at SNR = 9 dB, and reconstructed phase with the LMSD method from observations at shear angles equal to -π/4 rad and π/4 rad.
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 37 Figure 3.7: Average error comparison between monochromatic and polychromatic reconstructions. SNR = 9 dB. Left: bias 0 rad; right: bias π/2 rad.

5 .

 5 In order to meet the constraint |u| = 1, we introduce the projection operator P C , where C = u ∈ C M P : |u j | = 1, for all j ∈ χ . Thus, we rewrite the problem as follows min u∈C J P (u) := J 0 (u) + J T V (u) (4.20) We obtain the numerical solution to problem (4.20) by means of a standard gradient descent algorithm, such that each feasible solution meets the modulus 1 constraint. Having into account

6 .

 6 where α -and α n are the most recent values of α to fail to satisfy (3.20). Approximate ξ(α) by the cubic polynomial q(α) = ξ(0) + ξ (0)α + c 2 α 2 + c 3 α 3 whose local minimum is at α t = -c 2 + c 2 2 -3c 3 ξ (0) 3c 3 7. Assign α + as in step 3. 8. Update α n = α +
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 41 Figure 4.1: Cone object. True values for phase and specimen functions (a) Phase function φ, (b) Re {ǔ}, (c) Im {ǔ}

Figure 4 . 2 :

 42 Figure 4.2: Cross object. True values for phase and specimen functions (a) Phase function φ, (b) Re {ǔ}, (c) Im {ǔ}

Figures 4 .Figure 4 . 3

 443 Figure 4.3 the true cone objects with color bars dynamic adjusted to the ones obtained in the results in Figures 4.4and 4.5.
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 43 Figure 4.3: Cone object. True values for phase and specimen functions (a) Phase function φ, (b) Re {ǔ}, (c) Im {ǔ}. (Same as in Figure 4.1, color bar adjusted to results in Figures 4.4and 4.5).
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 44 Figure 4.4: Estimation of Gradient Descent method without projection, initial guess u 01 = (1, i0). (a) Re {û}, (b) Im {û}, (c) Re {|û -ǔ|}, (d) Im {|û -ǔ|}, (e) φ, (f) φφ , (g) φjφjφφ
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 45 Figure 4.5: Estimation of Gradient Descent method with projection, initial guess u 01 = (1, i0). (a) Re {û}, (b) Im {û}, (c) Re {|û -ǔ|}, (d) Im {|û -ǔ|}, (e) φ, (f) φφ , (g) φjφjφφ
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 46 Figure 4.6: Methods comparison without projection, initial guess u 01 = (1, i0). (a) Convergence, (b) Norm of gradient, (c) Error

Figure 4 . 7 : 1 √ 2 , i 1 √ 2

 471212 Figure 4.7: Methods comparison with projection, initial guess u 01 = (1, i0). (a) Convergence, (b) Norm of gradient, (c) Error
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 48 Figure 4.8: Cone object. True values for phase and specimen functions (a) Phase function φ, (b) Re {ǔ}, (c) Im {ǔ}

Figure 4 . 9 : 1 √ 2 , i 1 √ 2 .

 491212 Figure 4.9: Estimation of Gradient Descent method without projection, initial guess u 02 = 1 √ 2 , i 1 √ 2 . (a) Re {û}, (b) Im {û}, (c) Re {|û -ǔ|}, (d) Im {|û -ǔ|}, (e) φ, (f) φφ , (g) φjφjφφ

Figure 4 . 10 : 1 √ 2 , i 1 √ 2 .Figure 4 . 11 : 1 √ 2 , i 1 √ 2 .Figure 4 . 12 : 1 √ 2 , i 1 √ 2 .

 410121241112124121212 Figure 4.10: Estimation of Gradient Descent method with projection, initial guess u 02 = 1 √ 2 , i 1 √ 2 . (a) Re {û}, (b) Im {û}, (c) Re {|û -ǔ|}, (d) Im {|û -ǔ|}, (e) φ, (f) φφ , (g) φjφjφφ

Figure 4 .

 4 14 presents the results without projection and Figure 4.16 with projection, both for initial guess u 01 = (1, i0).
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 415 Figure 4.15: Cross object. True values for phase and specimen functions (a) Phase function φ, (b) Re {ǔ}, (c) Im {ǔ}
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 416417418 Figure 4.16: Estimation of Gradient Descent method with projection, initial guess u 01 = (1, i0). (a) Re {û}, (b) Im {û}, (c) Re {|û -ǔ|}, (d) Im {|û -ǔ|}, (e) φ, (f) φφ , (g) φjφjφφ

Figures 4 . 1 √ 2 , i 1 √ 2

 41212 Figures 4.20to 4.24 present the results when used initial guess u 02 = ( 1 √ 2 , i 1 √ 2 ).Figure 4.19 shows the true values without projection and Figure 4.21 with projection, both with dynamic

Figure 4 .

 4 [START_REF] Bostan | Phase retrieval by using transport-of-intensity equation and differential interference contrast microscopy[END_REF] shows the true values without projection and Figure4.21 with projection, both with dynamic adjusted to this initial guess. It can be observed that as in the previous case, the estimations are affected by having or not the projection operator. However, for the Conjugate Gradient PR-PA method there was better estimation with the projection operator (see Figures D.19 and D.20).
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 4194201212421 Figure 4.19: Cross object. True values for phase and specimen functions (a) Phase function φ, (b) Re {ǔ}, (c) Im {ǔ}

Figure 4 . 22 : 1 √ 2 , i 1 √ 2 )

 4221212 Figure 4.22: Estimation of Gradient Descent method with projection, initial guess u 02 = ( 1 √ 2 , i 1 √ 2 ). (a) Re {û}, (b) Im {û}, (c) Re {|û -ǔ|}, (d) Im {|û -ǔ|}, (e) φ, (f) φφ , (g) φjφjφφ
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 423 Figure 4.23: Methods comparison without projection. (a) Convergence, (b) Norm of gradient, (c) Error
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 2223214152627229210244112441212222222342 Figure A.2: Effect of shear angle, bias retardation and wavelength values on polychromatic PSF. Case 1: 2∆θ 2 = π/2
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 2222222 Set (r k,λ ) j = (h k,λ ⊗ e -iφ/λ ) j (o k,λ ) j = m∈χ (h k,λ ) m e -iφ/λ (o k,λ ) j for all j ∈ χ Let ϑ s = (h k,λ ⊗ e -iφ/λ ) j • (h k,λ ) j-s • e -iφs/λ for all s ∈ χ. From (B.1) we have ∂J 0 (φ) ,λ ⊗ e -iφ/λ ) j (o k,λ ) j • Im {ϑ s } ∂ 2 J 0 (φ) ∂φ s ∂φ t k,λ ) j ∂t Im {ϑ s } + (r k,λ ) j Im ∂ϑ s ∂t ∂(r k,λ ) j ∂t = ∂ ∂t (h k,λ ⊗ e -iφ/λ ) j ∂ ∂t (h k,λ ⊗ e -iφ/λ ) j (h k,λ ⊗ e -iφ/λ ) j = (h k,λ ⊗ e -iφ/λ ) j ∂ ∂t h k,λ ⊗ e -iφ/λ j + (h k,λ ⊗ e -iφ/λ ) j ∂ ∂t h k,λ ⊗ e -iφ/λ j Recall the fact that if z = a + ib then z + z = 2a = 2Re {z} ∂(r k,λ ) j ∂t = 2 Re (h k,λ ⊗ e -iφ/λ ) j ∂ ∂t h k,λ ⊗ e -iφ/λ j Re (h k,λ ⊗ e -iφ/λ ) j • -i λ (h k,λ ) j-t • e -iφt/λ = Re (-i) (h k,λ ⊗ e -iφ/λ ) j (h k,λ ) j-t e -iφt/λRecall that if z = a + ib then (-i)z = b -ia. Therefore Re {(-i)z} = b = Im {z} ∂(r k,λ ) j ∂t = Im (h k,λ ⊗ e -iφ/λ ) j (h k,λ ) j-t e -iφt/λ

=

  

  for real-valued f to have a stationary point is ∂f ∂z = 0. An equivalent necessary and sufficient condition is ∂f ∂ z = 0. With all this, the complex gradient is defined as Let us consider f (z) = |z| 2 = z 2 r + z 2 i = z • z. If we derive with respect to the real and imaginary components we have ∂f (z) ∂z r = 2z r and ∂f (z) ∂z i = 2z i which takes two computations, while if we use (C.5) we have
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 1234 Figure D.1: Cone object. True values for phase and specimen functions (a) Phase function φ, (b) Re {ǔ}, (c) Im {ǔ}
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 567121281212912121012121112131415 Figure D.5: Methods comparison with projection, initial guess u 01 = (1, i0). (a) Convergence, (b) Norm of gradient, (c) Error

Table 2 .1: Comparison of optical microscopy techniques (taken from [85] http

 2 In addition to the specimen characteristics, it is also considered the type of medium through which light propagates. It can be of three types: transparent if it readily transmits light, translucent if it transmits part of light and scatters most of it, and opaque if not transmit it at all. When light travels through any medium its velocity reduces. This dependence of light on the medium is characterized by the refractive index of the optical medium 4 , defined as

	Technique	Application	Pros	Cons
				Biological samples are often
				low contrast with little
	Brigth field	Viewing live or stained cells	Simple setup with very little preparation required	natural pigmentation, so samples usually need to be stained. Staining may
				destroy or introduce
				artifacts
			Simple setup. Provides	The tissue needs to be
	Dark field	Viewing live, unstained samples	contrast to unstained tissues so living cells can be	strongly illuminated, which may damage delicate
			observed	samples
	Phase contrast	Most useful for observing transparent, unstained, live cells	Superior to bright-field optics. Fine details which are invisible under bright-field optics show up in high contrast	Not ideal for thick samples that may appear distorted Halo effects or 'phase artifacts' may be present distorting details around the perimeter of the sample
		Similar to phase contrast, it	Free of the artifacts	
	DIC	provides contrast to transparent, unstained live	sometimes seen with phase-contrast Produces	Not suitable for thick samples
		cells	quasi-3D images	
			Has numerous applications,	The fluorescence is not
			including: Biological	permanent. As the samples
			molecules can be	are viewed photobleaching
	Fluorescence	Used to visualize the location or pattern of fluorescence in cells or tissues that have been stained with fluorescent molecules	fluorescently stained. Immunofluorescence. Cells can be genetically modified so that a protein of interest carries a fluorescent reporter molecule. The location of a protein can	occurs and the fluorescence fades. Antibody-labeled samples need to be chemically fixed and often the cells also need treatment with detergents to permeabilize cell
			then be traced via the	membranes. Both
			fluorescent signal in a living	procedures can introduce
			organism	artifacts

://www.nature. com/nprot/journal/v7/n9/fig_tab/nprot.2012.096_T1.html) Figure 2.2: Amplitude and phase objects. Middle: amplitude object. Bottom: phase object.

Table 3

 3 

.1, namely the Fletcher-Reeves (FR), Polak-Ribière (PR), PR with nonnegative values (PR + ) and PR constrained by the FR values (FR-PR) strategies [41].

Table 3 .

 3 Section 3.5], while for the addition of condition (3.32) see[START_REF] Gilbert | Global convergence properties of conjugate gradient methods for optimization[END_REF] Section 6]. In Section 3.5, the CG methods equipped with the FR, FR-PR, PR + rules for the parameter β n+1 , together with conditions (3.31) for the linesearch parameter α n , will be denominated FR-SW, FR-PR-SW and PR + -SW respectively, where SW stands for Strong Wolfe conditions.

	For a practical implementation of a backtracking method to satisfy (3.31) see e.g. [66,

1: Choice of the parameter β n+1 in CG methods. From top to bottom: Fletcher-Reeves (FR), Polak-Ribière (PR), Polak-Ribière with nonnegative β n+1 (PR + ), Polak-Ribière constrained by the FR method (FR-PR).

Table 3 .

 3 2: Cone tests. From left to right: number of iterations required to meet the stopping criteria, number of function and gradient evaluations, execution time, objective function value and error achieved at the last iteration.

	39)

Table 3 .

 3 3: Cross tests. From left to right: number of iterations required to meet the stopping criteria, number of function and gradient evaluations, execution time, objective function value and error achieved at the last iteration.

  ⊗ e -iφ/λ ) j (h k,λ ) j-s e -iφs/λ = ∂ ∂t (h k,λ ⊗ e -iφ/λ ) j (h k,λ ) j-s e -iφs/λ ) j-t e iφt/λ (h k,λ ) j-s e -iφs/λ Recall that if z = a + ib then iz = -b + ia, therefore, Im(iz) = a = Re(z) ) j-s (h k,λ ) j-s -ϑ s Re (h k,λ ) j-s (h k,λ ) j-s e

	∂ϑ s ∂t Finally we replace the formulas for = ∂ ∂t which lead to the derivatives ∂f ∂z := ∂f (z, z) ∂z (h k,λ = i λ These generalized complex derivatives can be written in terms of the real z r = ∂(r k,λ ) j ∂t and Im ∂ϑ s ∂t inside the expression of z=constant ∂f ∂ z := ∂f (z, z) ∂ z z=constant z + ∂ 2 J 0 (φ) ∂s∂t (C.5) . z and 2 (h k,λ = i i φ t -φs λ imaginary z i = z -z parts of the complex variable z as follows 2i (h k,λ ) j-t (h k,λ ) j-s e λ Im ∂ϑ s ∂t = Im i λ (h k,λ ) j-t (h k,λ ) j-s e i φ t -φs λ ∂f ∂z 1 2 ∂f ∂z r -i ∂f ∂z i and ∂f ∂ z 1 2 ∂f ∂z r + i ∂f ∂z i (C.6)
	Im Re (h ∂ϑ s ∂ϑ s ∂t = 1 λ ∂t = ∂ϑ s ∂s = ∂ ∂s i     (h = λ   		ϑs	      
	= (h k,λ Im i λ ∂ϑ s ∂s = Im i λ (h k,λ ) -i φs-φs λ	-ϑ s
	Comparing the quantities Im	∂ϑ s ∂t	for t = s and Im	∂ϑ s ∂s	for t = s, the difference is in
	the parameter ϑ s in the second case. Then we can give a unique formula which include both
	expressions as follows:		
	For all t ∈ χ, Im	∂ϑ s ∂t	=	1 λ	Re e
	 	1 if t = s	is the Kronecker delta.
		0 otherwise	

2 λ

Im {ϑ t } For calculating ∂ϑ s ∂t we can distinguish two cases:

1. Suppose t ∈ χ; t = s. Then we have:

k,λ ) j-t (h k,λ ) j-s e i φ t -φs λ 2. Suppose t = s, then we have: k,λ ⊗ e -iφ/λ ) j (h k,λ ) j-s e -iφs/λ = ∂ ∂s e -iφs/λ (h k,λ ⊗ e -iφ/λ ) j (h k,λ ) j-s = -i λ e -iφs/λ (h k,λ ⊗ e -iφ/λ ) j + i λ (h k,λ ) j-s (h k,λ ) j-s (h k,λ ) j-s (h k,λ ) j-s -(h k,λ ⊗ e -iφ/λ ) j (h k,λ ) j-s e -iφs/λ j-s (h k,λ ) j-s -ϑ s = 1 λ Re (h k,λ ) j-s (h k,λ ) j-s -ϑ s = 1 λ i φ t -φs λ (h k,λ ) j-s (h k,λ ) j-t -δ s,t ϑ s

where δ s,t =

Diffraction. It refers to the spreading of light that occurs when a beam of light interacts with an object.

c = 3 × 10 8 m/s in vacuum

The review of concepts for section 2.1.1 was based on the textbook of Avadhanulu and Kshirsagar[START_REF] Avadhanulu | A Textbook of Engineering Physics[END_REF] 

Modified from https://en.wikipedia.org/wiki/Polarizer#Circular_polarizers

For a deep study on the polarization ellipse, please refer to[START_REF] Goldstein | Polarized Light. 3rd[END_REF], Chapter 4,pages 48-59.

The optical axis is an imaginary line that defines the path along which light propagates through the system. For a system composed of simple lenses and mirrors, the axis passes through the center of curvature of each surface, and coincides with the axis of rotational symmetry[68].

https://www.zeiss.com/microscopy/int/products/light-microscopes/axio-imager-2-for-biology. html

Bruker AFM Probes-Product description APCS-0099. http://www.brukerafmprobes.com/a-3472-apcs-0099.aspx

Chapter A -PSF for shear angle in {0, π/2}
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Algorithm 5 Gradient descent method with projection

Choose ω ∈ (0, 1), [β low , β high ] ⊂ (0, 1),m ∈ N >0 , u (0) ∈ C M P , α 0 = 1 and set n = 0.

While True

For l = 1, . . . , m 1. Compute J P (u (n) ) and ∇J P (u (n) ).

2. Beginning with α 0 = 1, repeatedly reduce α using any strategy that satisfies (3.20) holds. 

Compute u

Numerical Experiments

In this section we test the behavior of the projected gradient descend method described in Algorithm 5 and the Conjugate Gradient (Algorithm 3) with polynomial approximation (PR-PA), which was modified to do the projection over the modulus constraint, for solving problem (4.20). We have used the same objects as for the tests in section 3.5; parameter ω in (3.20) was set to 10 -4 . The extreme values for the polynomial linesearch were set to β low = 0.1 and β high = 0.5

We have chosen two constant complex functions of module 1 as initial guesses, say

far from the true value. The stopping criteria were the tolerance for the norm of the gradient at each iteration set to 10 -2 and a maximum of 5000 iterations for both objects.

The true phase ( φ) and specimen (ǔ) functions for the cone object are shown in In comparison with the cone, for the cross object using this initial guess, there is a considerable difference in the estimations according to the range of values for either the phase and the specimen, with respect to the use of the projection operator. It is also noticed that the values inside the bars are closer to the expected ones, specially for the imaginary part of the reconstructed û; however it is not possible to achieve it for the background areas. With respect to the Conjugate Gradient PR-PA method with projection, there is a better estimation as can be observed in Figures D. [START_REF] Bonettini | A scaled gradient projection method for Bayesian learning in dynamical systems[END_REF] In comparison to the results obtained for the unconstrained problem in section 3.5, the projected approach is not as efficient as it was expected. We could think that the constrained problem is more difficult to optimize and sensitive to the initial guess, leading the output to be stuck in a local minimum.

Towards uplifting the phase

Given the non-linearity and non-convexity of problem 4.20, we have considered the use of another novel approaches leading to the linearization of the problem. One of the most known methods in that direction, designed for the phase retrieval problem is the PhaseLift method proposed by Candès et al in [START_REF] Candès | PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming[END_REF], which we shortly described in section 3.1.3. We present the main principle in the abstract level.

Here we consider the problem of finding u ∈ C n , given a vector of observations

In the phase retrieval problem a j is the vector of size n containing the j th line of the Fourier transform matrix such that a j , u is the j th frequency of u. We have the quadratic measurements 

Detailed Wirtinger Derivatives

In this Appendix we present the most important facts about Wirtinger derivatives for both one-dimensional and n-dimensional cases.

C.1 One-dimensional Wirtinger derivatives

Let us start by defining three real-valued functions as follows

When optimizing f with respect to the complex variable z = z r + iz i , it is possible to work with the equivalent gradient of the function defined as the mapping f . This means that

When f (z) is C-valued, it is also possible to define it as

where v(z r , z i ) and w(z r , z i ) are real-valued functions related to each other by the Cauchy-

As it is expressed in [2] and [START_REF] Candès | PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming[END_REF], finding f (z) requires f (z) to be C-derivable. However, by exploiting the structure of R 2 vector space, the partial derivatives with respect to the real components can be calculated.

Function f (z) can also be written in terms of its complex and complex-conjugate components, that is,

where they are holomorphic in z for fixed z and holomorphic in z for fixed z.

The core of Wirtinger calculus is the definition of a new conjugate coordinate system, whose conjugate coordinates are defined as 

Phase Estimation for Differential Interference Microscopy

Abstract: In this dissertation we address the problem of estimating the phase from color images acquired with differential-interference-contrast (DIC) microscopy. This technique has been widely recognized for producing high contrast images at high lateral resolution. One of its disadvantages is that the observed images cannot be easily used for topographical and morphological interpretation, because the changes in phase of the light, produced by variations in the refractive index of the object, are hidden in the intensity image. We present an image formation model for polychromatic light, along with a detailed description of the point spread function (PSF). As for the phase recovery problem, we followed the inverse problem approach by means of minimizing a non-linear least-squares (LS)-like discrepancy term with an edge-preserving regularizing term, given by either the hypersurface (HS) potential or the total variation (TV) one. We investigate the analytical properties of the resulting objective non-convex functions, prove the existence of minimizers and propose a compact formulation of the gradient allowing fast computations. Then we use recent effective optimization tools able to obtain in both the smooth and the non-smooth cases accurate reconstructions with a reduced computational demand. We performed different numerical tests on synthetic realistic images and we compared the proposed methods with both the original conjugate gradient method proposed in the literature, exploiting a gradient-free linesearch for the computation of the steplength parameter, and other standard conjugate gradient approaches. The results we obtained in this approach show that the performances of the limited memory gradient method used for minimizing the LS+HS functional are much better than those of the CG approaches in terms of number of function/gradient evaluations and, therefore, computational time. Then we also consider another formulation of the phase retrieval problem by means of minimization with respect to a complex variable under constraint of modulus one. However, standard projected gradient descent algorithms appear to be inefficient and sensitive to initialization. We conclude by proposing in this case a reformulation by optimization on low-rank matrices.

Keywords: DIC microscopy, phase estimation, nonlinear optimization methods