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Abstract

English: Composite materials have been widely used in Electrical Engineering, and they

have stimulated a growing number of scientific research, especially when it comes to

energy savings. Soft Magnetic Composites (SMC) incorporate the attributes of different

constituents. They can be designed to exhibit high permeability and to dissipate low Eddy

Current (EC) losses compared to more conventional structures such as laminated steel.

Nevertheless, electromagnetic properties of SMC are not easily determined. Numerical

tools such as finite element method (FEM) are usually employed to provide a full-field

description of SMC. As the microstructure has to be finely meshed, it brings significant

numerical burden and instabilities. To overcome this restriction, semi-analytical homog-

enization methods are adapted and applied here. They consist in developing a complex

permeability model.

In the complex permeability model for SMC, the static magnetic permeability and EC

losses are integrated respectively as the real and imaginary part of the complex permeability.

Classical estimates are applied to determine the macroscopic effective magnetic permeability.

A correct determination of the effective permeability, i.e. the real part of the complex

permeability, is crucial for the estimate of EC losses. EC losses formulas are derived for

SMC with periodic microstructure in 2D and 3D cases. Furthermore, different approaches

of field averaging are employed to obtain lower and upper bounds on the EC losses in SMC.

The complex permeability model is then applied to analyze a magnetic circuit struc-

ture. The magnetic field and EC losses distribution can be obtained on the equivalent

homogenized magnetic circuit. The results are compared to the full-field calculations on

the heterogeneous magnetic circuit. A good consistency is observed.

Finally, the effect of mechanical stress on the magnetic permeability and loss property

of SMC is studied, which leads to a coupled formula of EC loss density as a function of

macroscopic stress and magnetic field.



vi

Français : L’emploi de matériaux composites dans le domaine du Génie Electrique est

actuellement un sujet de recherche en plein essor, notamment pour des considérations

d’économie d’énergie. Les composites magnétiques doux (SMC - Soft Magnetic Composites)

intègrent les propriétés de leurs différents constituants. Ils sont conçus pour présenter une

perméabilité élevée et avoir une faible densité de pertes par courants de Foucault (EC -

Eddy Current) par comparaison aux structures plus classiques comme l’acier laminé.

Néanmoins, la détermination des propriétés électromagnétiques des SMC n’est pas

aisée. Une approche classique est d’appliquer les outils numériques tels que la méthode

des éléments finis (FEM - Finite Element Method) pour obtenir une description complète

du SMC. Cependant, la microstructure doit être finement maillée, ce qui représente un

fardeau numérique significatif et des instabilités dans l’approche par FEM. Pour surmonter

cette restriction, les méthodes d’homogénéisation semi-analytiques sont appliquées.

Ce travail consiste d’abord à développer un modèle de perméabilité complexe pour SMC.

La perméabilité magnétique et les pertes EC sont intégrées respectivement comme les parties

réelle et imaginaire de la perméabilité complexe. La perméabilité magnétique effective

macroscopique peut s’obtenir par des estimations classiques en homogénéisation. Une

détermination correcte de la perméabilité effective, i.e. la partie réelle de la perméabilité

complexe, est cruciale pour une estimation précise de pertes EC. Les formules de pertes

EC sont dérivées pour des SMC à microstructure périodique dans les cas 2D et 3D. En

outre, différentes approches s’appuyant sur différentes moyennes du champ magnétique

permettent d’obtenir des limites inférieures et supérieures pour l’estimation des pertes EC

dans les SMC.

La perméabilité complexe ainsi obtenue est ensuite appliquée à une structure de circuit

magnétique. Le champ magnétique et la répartition des pertes EC peuvent être obtenus sur

le circuit magnétique équivalent (homogénéisé). Les résultats sont comparés aux calculs

en champ complet du circuit magnétique hétérogène. Un bon accord est observé.

Enfin, on étudie l’effet des contraintes mécaniques sur la perméabilité magnétique et

les pertes EC des SMC, ce qui conduit à une formule couplée de la densité de pertes EC en

fonction de la contrainte mécanique macroscopique et du champ magnétique.
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Résumé en Français

Le développement d’appareils légers, solides et peu énergivores est naturellement préférable.

Dans les applications du génie électrique, les moteurs et les transformateurs utilisent des

noyaux magnétiques afin de canaliser spatialement et de façon optimale le flux magné-

tique. Les performances de telles machines dépendent grandement des propriétés du

noyau magnétique utilisé. Le noyau magnétique est généralement conçu à partir de matéri-

aux ferromagnétiques qui, malheureusement, sont aussi de bons conducteurs électriques.

Lorsqu’un conducteur est placé dans un champ magnétique alternatif, des courants de

Foucault (EC – Eddy Current) naissent, entraînant des pertes Joule dans le matériau. Dans

la conception et l’analyse des machines électriques, la perméabilité magnétique et les

pertes sont les deux caractéristiques dominantes à prendre en considération. Les matériaux

composites permettent de réaliser des matériaux combinant les attributs des différents

constituants pour fournir les caractéristiques souhaitées qui ne peuvent pas être facilement

obtenues à partir de l’un ou l’autre des composants individuels.

Les composites magnétiques doux (SMC – Soft Magnetic Composites), généralement

composés d’inclusions ferromagnétiques intégrées dans une matrice polymère diélectrique,

présentent des pertes EC faibles tout en ayant une perméabilité magnétique relativement

élevée. La matrice diélectrique confine les courants de Foucault dans chaque particule,

réduisant ainsi considérablement les pertes EC du composite. Une autre particularité des

SMC est l’isotropie magnétique et thermique [1, 2], ce qui les rend adaptés à la construction

de dispositifs électriques à structure complexe, avec des flux magnétiques tridimensionnels

- en comparaison avec les structures laminées classiques. Les SMC présentent ainsi un

fort potentiel pour une utilisation dans l’industrie aérospatiale, maritime et automobile en

remplacement des matériaux ferromagnétiques traditionnels [3–9]. La recherche continue

sur les SMC a montré une large gamme d’applications dans la conception de moteurs [10],
tel que les moteurs à aimants permanents à flux transversal [11–13], les moteur à aimants

permanents à flux axial [14] pour les véhicules électriques hybrides ainsi que les moteurs à

induction [15]. Les SMC sont normalement fabriqués à partir de techniques issues de la

métallurgie des poudres [16]. Les inclusions, sous forme de poudre, doivent être revêtues
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d’une matrice diélectrique pour réduire les courants de Foucault globaux et les confiner dans

chaque particule. Les particules de poudre sont généralement de forme irrégulière, avec

un diamètre moyen d’environ 50 à 250 µm. Les matériaux ferromagnétiques généralement

sélectionnés sont du fer pur ou des alliages à base de fer, tels que les alliages Fe-Ni (haute

perméabilité), les alliages Fe-Si (résistivité électrique élevée) et les alliages Fe-Co (haute

saturation magnétique) [3]. Une forte concentration d’inclusions magnétiques donne

une densité plus élevée, une bonne résistance mécanique et une perméabilité magnétique

élevée du composite. Les matériaux de revêtement peuvent être inorganiques ou organiques.

L’époxy est souvent choisi comme matériau matriciel. Une fraction de revêtement plus

élevée réduira considérablement les pertes EC, mais la performance magnétique globale

sera alors diminuée. L’équilibre entre ces caractéristiques (perméabilité versus pertes) doit

donc être pris en compte dans la conception de SMC.

L’étude des propriétés effectives des matériaux composites fait l’objet d’un vaste effort

de recherche [17–25]. L’idée principale est de remplacer la microstructure du compos-

ite par un matériau homogène équivalent, qui peut ensuite être utilisé dans des outils

d’analyse structurale standard, avec une complexité numérique réduite. Différents modèles

analytiques et numériques ont été proposés.

Les techniques d’homogénéisation par la Méthode des éléments finis (FEM) [26–29]
ont été introduites pour aborder ce type de problèmes électromagnétiques à différentes

échelles. Diverses stratégies ont été proposées [30, 31] pour réduire le temps et les

ressources de calcul dans une certaine mesure tout en maintenant la précision. Néanmoins,

ces méthodes numériques ont souvent l’inconvénient d’être peu flexibles, par exemple pour

des études paramétriques nécessitant de multiples calculs numériques. En outre, il est

difficile de considérer les problèmes avec des contrastes élevés en propriété, nécessitant

souvent un maillage raffiné, à moins que des techniques numériques spécifiques ne soient

utilisées [31, 32].

Ainsi, il est crucial de développer de nouveaux modèles pour les pertes EC dans les SMC.

D’autres approches basées sur des formulations analytiques et semi-analytiques ont égale-

ment été étudiées. Les approches en champ moyen ont par exemple été développées pour

déterminer la perméabilité magnétique effective des polycristaux ferromagnétiques [33, 34].
Des stratégies d’homogénéisation analytiques ont également été utilisées pour déterminer

la permittivité effective de composites pour des applications de blindage électromagné-

tique [35–37]. Puisque les échelles de la taille des grains et la taille typique du dispositif

sont bien séparées, ces stratégies d’homogénéisation sont un choix pertinent pour les SMC.

En électromagnétisme, les techniques d’homogénéisation sont utilisées pour déterminer

les propriétés électriques et magnétiques effectives des matériaux. La monographie de Si-
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hvola [23] donne un aperçu utile des techniques d’homogénéisation pour les comportements

des matériaux en régime quasistatique.

Les propriétés effectives sont définies comme le tenseur des propriétés reliant les

champs duaux macroscopiques. A partir de lois de comportements locales (propres à

chaque constituant) reliant les champs duaux locaux (par exemple le champ magnétique

H et l’induction magnétique B, reliés par le tenseur de perméabilité µ), et à travers des

opérations de moyenne volumique, les propriétés effectives d’un matériau composite peu-

vent être obtenues. Une approche simplifiée des problèmes d’homogénéisation peut être

utilisée avec les approches en champs moyens. Celle-ci se contente d’une quantité lim-

itée d’informations sur la microstructure (fractions volumiques et quelques indicateurs

statistiques). Dans les cas pratiques, une connaissance complète de la microstructure des

composites n’est pas nécessairement disponible, et les propriétés effectives pour le matériau

homogène équivelent (EHM – equivalent homogeneous medium) ne peuvent être exacte-

ment déterminées. Néanmoins, les formules d’homogénéisation permettent de fournir des

estimations ou des bornes du comportement effectif à partir des informations connues sur la

microstructure. Considérons par exemple un composite biphasé avec des inclusions placées

dans une matrice. La perméabilité effective d’un tel matériau se situe nécessairement

entre les limites inférieures et supérieures fournies par les bornes de Wiener [19]. Des

limites plus étroites peuvent être obtenues si l’information d’isotropie globale du matériau

est considérée, menant aux bornes de Hashin-Shtrikman [20, 38]. Fournir des bornes du

comportement effectif peut être insuffisant tant l’écart entre les bornes peut parfois être

large. Il est alors utile de fournir une estimation du comportement effectif. Le formalisme

de Maxwell-Garnett (MG) a été présenté en 1904 pour estimer la permittivité effective d’un

EHM diélectrique isotrope pour un matériau composite fabriqué à partir d’une dispersion

de particules sphériques dans un matériau hôte [18]. Ce modèle est particulièrement

valide pour les composites à faible fraction volumique d’inclusions (matériaux dilués).

C’est l’une des méthodes les plus utilisées pour calculer les propriétés macroscopiques des

matériaux non homogènes [39–44]. L’estimation de MG est identique à la limite inférieure

de Hashin-Shtrikman. Un autre modèle, celui de Bruggeman [45] permet de fournir une

estimation plus pertinente pour les matériaux non dilués. Les matériaux constitutifs du

matériau composite sont alors considérés comme jouant des rôles similaires (plus de dis-

tinction matrice/inclusion). En réalité, dans le modèle de Bruggeman, on suppose que les

phases constitutives sont dispersées dans l’EHM lui-même. Les estimations des propriétés

effectives dépendent alors seulement des propriétés des matériaux constitutifs et de leurs

fractions volumiques. Le principal avantage de ces modèles réside dans leur simplicité

relative (modèles analytiques ou quasi-analytiques).
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Dans le cas de microstructures périodiques, la technique d’expansion asymptotique

[26–29, 46] peut être utilisée. Parmi les méthodes alternatives, des expériences sur des SMC

commerciaux ou des prototypes ont été menées pour étudier les propriétés magnétiques et

les caractéristiques des pertes [47–49]. Mais les approches expérimentales ne conviennent

pas aux processus de conception en raison des contraintes de coût et de temps.

Par conséquent, dans la phase de conception, les formules analytiques sont fortement

préférées, permettant de relier de façon directe les propriétés des constituants, la mi-

crostructure et les performances attendues. De ce fait, les stratégies d’homogénéisation

(quasi-)analytiques sont préférables pour les stades de conception.

Une considération supplémentaire est nécessaire pour étudier les SMC de façon perti-

nente. En effet, le comportement magnétique des matériaux ferromagnétiques est générale-

ment sensible à l’application d’une contrainte mécanique [50–52]. Le couplage magnéto-

mécanique peut être principalement décrit par deux aspects. L’un est la magnétostric-

tion [53], décrivant la déformation de matériau sous l’effet d’un champ magnétique.

L’autre est l’effet de la contrainte sur le comportement magnétique [54], représentant

le changement de susceptibilité magnétique en fonction de la contrainte. Ces comporte-

ments peuvent être décrits par des approches phénoménologiques [55, 56] ou des modèles

multi-échelles [57–59]. L’analyse des pertes dans les matériaux ferromagnétiques [60–62]
ainsi que le couplage magnéto-mécanique [58, 63, 64] ont menés à de nombreuses études

sur ces matériaux, tant d’un point de vue expérimental qu’en termes de modélisation. Un

modèle analytique a été proposé pour décrire la dépendance de la susceptibilité magnétique

à la contrainte [65]. Néanmoins, il n’existe pas de modèle précis pour prendre en compte

l’effet des contraintes mécaniques sur les pertes.

Cette thèse est consacrée au développement de modèles analytiques ou semi-analytiques

pour les pertes par courants de Foucault dans les composites magnétiques doux. L’examen

détaillé de la distribution des champs magnétiques et électriques n’est pas la préoccupation

principale. Dans la plupart des cas, on peut se contenter d’approximations raisonnables

sur les champs pour déterminer les pertes par courants de Foucault d’un point de vue

macroscopique. Les propriétés complexes peuvent être utilisées dans des applications

électromagnétiques pour décrire les phénomènes dissipatifs. Un examen approfondi des

modèles d’homogénéisation pour le comportement diélectrique utilisant la permittivité

complexe peut être trouvé dans [42, 66]. Les cas 2D et 3D ont été explorés numériquement

en détails. La permittivité complexe dépend des propriétés de chaque constituant, de leur

fraction de volume et de leur répartition spatiale [67]. De manière analogue, la perméabilité

complexe est un outil utile pour traiter les effets magnétiques à haute fréquence, par exemple

dans les applications de transformateurs [68, 69]. La dissipation peut se refléter directement
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dans la partie imaginaire de la perméabilité complexe [70, 71]. Dans le cas de SMC à

basse fréquence, lorsque le champ magnétique induit peut être négligé, il n’y a pas de

déphasage entre la densité de flux magnétique et le champ magnétique. À cet égard, la

partie imaginaire de la perméabilité complexe doit être considérée comme nulle. Toutefois,

les pertes EC sont présentes - tant que la fréquence n’est pas nulle. Ainsi, une partie

imaginaire peut être introduite dans le tenseur de perméabilité magnétique de manière à

refléter les pertes EC.

Le tenseur de perméabilité complexe peut être utilisé comme un outil mathématique

pour représenter un matériau magnétique dissipatif. Dans cette étude, ce tenseur de

perméabilité complexe est utilisé pour décrire les performances électromagnétiques des

SMC. La partie réelle est la perméabilité effective, et la partie imaginaire reflète les pertes EC.

Les modèles développés se basent sur l’étude de composites à microstructure périodique avec

des inclusions circulaires ou sphériques excités par des champs magnétiques harmoniques.

Si, comme c’est en général le cas, le champ dans l’inclusion n’est pas uniforme, on considère

alors les champs moyens dans les différentes phases. La perméabilité complexe est une

propriété matériaux, indépendante de la géométrie. Elle peut être utilisée comme une

propriété constitutive dans la conception de machines utilisant des SMC. Sur la base de

l’étude d’une seule inclusion dans un milieu infini, on déduit les propriétés de matériaux

hétérogènes dilués et le cas général des composites est extrapolé à partir de cette approche.

La densité de pertes EC dans les SMC est ensuite décrite à l’aide du tenseur de perméabilité

complexe homogénéisé. L’approche est comparée aux résultats obtenus par un modèle

éléments finis et les erreurs observées restent généralement inférieures à 5%. Il convient

de noter que l’approche nécessite des estimations précises du tenseur de perméabilité

magnétique statique efficace du matériau composite. C’est généralement la principale

difficulté d’un tel modèle. On constate que l’approche tend à sous-estimer la densité de

pertes EC par rapport aux résultats éléments finis et que les erreurs sont indépendantes de

la fréquence sous l’hypothèse de basse fréquence.

La densité de pertes EC dans les SMC peut être approchée en estimant le champ

magnétique soit à partir des moments de premier ordre (moyenne classique pour obtenir

le champ moyen) soit à partir des moments du second ordre (moyenne des carrés du

champ magnétique) du champ magnétique. Pour les SMC périodiques avec des inclusions

circulaires ou sphériques, il a été prouvé dans cette étude que les deux approches permettent

de borner les pertes EC. L’approche utilisant la moyenne du champ magnétique sous-estime

la densité de pertes EC dans les SMC, fournissant ainsi une limite inférieure; alors qu’elle est

surestimée dans l’approche utilisant les moments d’ordre deux, fournissant ainsi une limite

supérieure. Les deux estimations sont généralement proches l’une de l’autre, fournissant
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des valeurs précises pour les pertes EC tant que la perméabilité efficace est estimée avec

une bonne précision. Les pertes EC peuvent ainsi être approchées, sans connaissance de la

solution exacte de la distribution d’EC, ce qui simplifie l’approche par rapport à un calcul

FEM complet. Quand la perméabilité effective n’est pas connue mais estimée, les pertes

calculées perdent leur propriété de borne et sont simplement des estimations.

Comme exemple d’application, un circuit magnétique constitué de SMC est homogénéisé

avec la méthode de la perméabilité complexe. Il est composé de SMC à haute concentration

à microstructure périodique. Des calculs FEM ont été effectués sur la structure hétérogène

et sur la structure avec le matériau homogène équivalent. Les répartitions du champ

magnétique et des pertes EC ont été examinées et comparées entre les deux solutions.

Un bon accord est observé entre la densité de pertes EC de référence (obtenue pour le

transformateur hétérogène) et les valeurs calculées avec une perméabilité complexe. Les

calculs montrent que l’erreur globale sur les pertes EC est très faible (moins de 0,5%) et les

erreurs locales ne dépassent pas 3% généralement, sauf pour des zones très localisées du

circuit (angles droits de la géométrie). On conclut alors que la méthode d’homogénéisation

peut fournir une répartition des pertes EC avec une précision très satisfaisante.

En plus de cela, le comportement multi-physique des SMC est exploré. L’effet de la

contrainte mécanique sur la performance magnétique et sur la densité des pertes EC est

étudié pour les SMC à concentration d’inclusions ferromagnétiques élevée. A partir des

perméabilités locales, et en négligeant la magnétostriction, une formule est dérivée pour la

densité de pertes EC en fonction du champ magnétique macroscopique et de la contrainte

mécanique. La contrainte a une influence sur la densité de pertes EC en raison de la

variation du comportement magnétique du matériau ferromagnétique sous contrainte. Il

est montré que la contrainte a peu d’effet sur les pertes EC dans les SMC (tout en affectant

la perméabilité magnétique). On en tire une conclusion intéressante : le comportement

magnétique des SMC semble être moins sensible à la contrainte mécanique que celui des

matériaux ferromagnétiques homogènes habituels. Cette attente doit être confirmée par des

mesures expérimentales. Dans cette étude, les pertes par hystérésis et la non linéarité du

comportement ne sont pas prises en considération. Pour un comportement magnétique non-

linéaire, le modèle serait bien plus complexe à mettre en œuvre. Puisque la perméabilité

magnétique dépend dans ce cas du champ magnétique appliqué, une procédure itérative

devrait être utilisée pour obtenir le champ moyen dans l’inclusion, puis le tenseur de

perméabilité de l’inclusion, et enfin le tenseur de perméabilité effective du composite. En

outre, le champ magnétique harmonique doit être échantillonné au fil du temps afin de

déterminer le champ moyen final et la perméabilité de l’inclusion. La densité de pertes EC

doit ensuite être intégrée sur une période de temps.
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Les modèles développés ici proposent des approches directes pour déterminer les pertes

EC dans les SMC à faible fréquence de travail. La perméabilité complexe contient le

comportement magnétique ainsi que les pertes EC. Les approches menant aux bornes des

pertes EC offrent un moyen simple de se rapprocher des pertes EC dans le composite. L’effet

de la contrainte mécanique est également directement intégré dans la formule de densité de

pertes EC. Les modèles sont adaptés à différents contrastes de perméabilité et sont discutés

pour une gamme complète de fractions volumiques. Ils sont développés pour les SMC

ayant une matrice diélectrique. Lorsque les courants de Foucault globaux dans la matrice

ne peuvent plus être négligés, les modèles doivent être corrigés. Les formules de densité

de pertes EC sont dérivées à partir des SMC à microstructure périodique. Pour des SMC

avec des microstructures aléatoires, des estimations des pertes EC peuvent également être

obtenues. Dans cette étude, la non-linéarité des matériaux ferromagnétiques, l’hystérésis

et les pertes par excès ne sont pas pris en compte.

En conclusion, cette étude fournit une méthodologie pour obtenir une perméabilité

complexe décrivant le comportement de matériaux ferromagnétiques linéaires. Cette

méthodologie donne un accès simple aux pertes par courant de Foucault. Les perspectives à

ces travaux seront de développer un modèle de perméabilité complexe générique intégrant

la non-linéarité du comportement magnétique, ainsi que l’hystérésis et les pertes par

excès. De plus, il serait intéressant d’intégrer un couplage magnétomécanique fort dans

le modèle de la perméabilité magnétique complexe. Des expériences sont nécessaires

pour valider les modèles. Le couplage magnétomécanique est souvent négligé dans les

études sur les SMC, ces travaux montrent néanmoins que les contraintes mécaniques

ont un effet sur le comportement des SMC. L’effet de la température sur les propriétés

électromagnétiques pourrait également être pris en compte. Une formule générique pourrait

être développée pour faire face aux comportements couplés des SMC en utilisant des

techniques d’homogénéisation. Les travaux futurs pourraient également inclure l’application

du modèle de perméabilité complexe dans les outils de dimensionnement de structure pour

concevoir des moteurs et des transformateurs à base de SMC. Les dispositifs prototypes

pourraient être développés et fabriqués et les performances électriques comparées à celles

des machines traditionnelles. Promouvoir l’application de SMC en remplacement de l’acier

stratifié dans les appareils électriques afin d’économiser de l’énergie sera une tâche difficile

mais importante.





General Introduction

Industrial development relies a lot on lighter, stronger and more energy efficient devices.

Motors and transformers are widely used in Electrical Engineering applications. The

fundamental component of a static or rotating device is its magnetic core, designed to

amplify and to control the direction of the magnetic flux that in turn determines a machine’s

performance. This function requires a high saturation magnetization. The magnetic

core is designed with ferromagnetic materials, which, unfortunately, are generally highly

conductive. When a conductor experiences an alternative magnetic field, eddy currents (EC)

circulate, resulting in losses. In the design and analysis of electrical machines, magnetic

performance and losses are the two dominant points to be taken into consideration.

Composite materials offer a balance between the two points. Composites combine the

attributes of constituents to provide desired features which cannot readily be obtained

from either of the individual components. Soft Magnetic Composites (SMC), typically

composed of ferromagnetic inclusions embedded in a dielectric polymer matrix, possess

the characteristics of low level of EC losses when they are subjected to electromagnetic

loadings. SMC have the potential for widespread usage in aerospace, naval and automotive

industries as a perspective replacement to traditional metal materials owing to designable

magnetic and thermal properties and comparatively low EC losses [3–9].

In order to design electrical machines using SMC as the magnetic material, the opti-

mization of material properties is crucial. First, a high magnetic permeability is required.

Pure iron or Fe-alloys are then good candidates for the particle material. Second, low EC

losses are needed and can be achieved thanks to the dielectric coating which significantly

cuts down the induced EC. Epoxy is often chosen as the matrix material. These constituents

exhibit a very high contrast both in electric conductivity and magnetic permeability. This

high property contrast is a serious challenge for homogenization techniques developed

in order to deduce the effective properties of heterogeneous materials. However, these

homogenization techniques are required to design optimal electromagnetic devices based

on SMC.
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The study of the effective property of composite has been a large area of research [17–

25]. Analytical and numerical models were proposed. Powerful computing capacity enabled

the rapid development of numerical strategies. One of the most commonly employed is

the Finite Element Method (FEM). FEM provides a full-field approach to electromagnetic

problems. Effective properties and losses can then be post-processed. But in the case of

SMC, the microstructure has to be finely meshed, which brings significant numerical burden

and instabilities in FEM approach. FEM homogenization techniques [26–29] have been

introduced to tackle electromagnetic problems with different scales. The main idea is to

replace periodic microstructures of the composite by an equivalent homogeneous material,

which can then be used in standard structural analysis tools, with a reduced numerical

complexity. Various strategies derived from standard FEM have been proposed [30, 31].
These methods reduce the computational time and resources to a certain extent while

maintaining accuracy. Nevertheless, these numerical methods still have the drawback of

being not very flexible, for instance for parametric studies that require multiple numerical

computations. Also, it is difficult to address the problem of high property contrast unless

specific numerical techniques are used [31, 32]. Thus, it is crucial to develop new models

for EC losses in SMC.

On the other hand, analytical and semi-analytical approaches are widely studied. Mean

field methods have for instance been developed for the determination of the effective

magnetic permeability of ferromagnetic polycrystals [33, 34]. Analytical homogenization

strategies have also been used for the determination of the effective permittivity of com-

posites for shielding applications [35–37]. These analytical or semi-analytical models pour

attention only on the effective constitutive properties and do not provide an insight into

losses characteristics of composites.

Among alternative methods, experiments on commercial SMC or prototypes have

been conducted to study the magnetic properties and lossy characteristics [72–74]. But

experimental approaches are not suitable for design processes due to the cost and time

constraints.

Therefore, in the phase of design, analytical formulas are greatly required, by which

the selection of constituents can be easily realized for the desired performance. Thus a

constitutive study of SMC is critically important. In addition, at this stage, the overall

performance and the balance between properties are the utmost concerns. Therefore

homogenization strategy is thus a preferable choice for this constitutive study.

In addition, the magnetic behavior of ferromagnetic materials is usually sensitive to the

application of mechanical stress [50–52]. Ferromagnetic material loss analysis [60–62] and

magnetomechanical behavior [58, 63, 64] have attracted widely research attention in their
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respective branches. An analytical model has been proposed to describe the dependence of

the magnetic susceptibility to stress [65]. Still, there is no accurate model to take care of

the loss characteristics under mechanical stress applications. For SMC, since the matrix

is nonmagnetic and dielectric, the magneto-mechanical coupling in the ferromagnetic

inclusion is of concern.

This thesis is devoted to developing analytical or semi-analytical models for eddy

current loss in soft magnetic composites. Detailed examinations of the magnetic and

electric field distributions are not the most crucial concern, and in most cases, some

reasonable approximations of the field are enough to determine the eddy current loss

from a macroscopic point of view. In this thesis, homogenization techniques are applied to

determine the magnetic permeability and EC losses of SMC.

Outline of the manuscript

This present thesis is elaborated in five chapters:

The first chapter introduces Maxwell’s equations, constitutive relations, the concept

and characteristics of Soft Magnetic Composites, and homogenization strategies.

In chapter 2, a complex permeability is proposed to characterize both the magnetic

behavior (real component) and loss characteristic (imaginary component). This complex

permeability is deduced based on an average field approach.

In chapter 3, EC loss bounds are analytically derived for simple geometries.

Chapter 4 provides an application example. A transformer made of high concentration

SMC is considered. The complex permeability model is applied to the calculation of the

transformer.

Chapter 5 consists in a discussion of the effect of stress on the magnetic performance

and EC losses of SMC. EC loss density as a function of macroscopic stress and magnetic

field is presented.

In the end, some concluding remarks and perspectives are given.
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In order to understand the electromagnetic behavior of Soft Magnetic Composites

(SMC), it is necessary to take into consideration the constitutive behavior of different

phases of the composites.

The aim of this chapter is to synthesize the theoretical formulas to model the electromag-

netic behavior of SMC. Maxwell’s equations are first introduced. The boundary conditions

are derived at the interface, which express the continuity of electromagnetic fields across

the boundary between two media. Material constitutive relations are introduced in sec-

tion 1.2. The eddy current (EC) loss density is then defined for conductive materials.

Formulas for EC loss density are deduced for simple homogeneous structures and simplified

at low frequency in section 1.3. An introduction on Soft Magnetic Composites is given in

section 1.4. The final section presents homogenization techniques for the determination of

effective properties of composite materials.

1.1 Maxwell’s Equations

Electromagnetic (EM) theory can be regarded as the study of fields produced by electric

charges at rest and in motion. Dynamic or time-varying fields are usually due to accelerated

charges or time-varying currents [75]. Electromagnetism studies the coupling phenomenon

between the electric field and magnetic field. The pioneering physicists, Ampère and

Faraday, among others, conducted experiments on electricity and magnetism. These

experimental observations were summed up by James Clerk Maxwell in four mathematical

formulas [76–78]:

∇× E= −
∂ B
∂ t

Maxwell-Faraday

∇×H= J+
∂D
∂ t

Maxwell-Ampère

∇ ·D= ρ Gauss electric

∇ ·B= 0 Gauss magnetic

(1.1a)

(1.1b)

(1.1c)

(1.1d)

where ρ (C/m3) represents the volume density of free electric charges. The four fields E, H,

B, and D are respectively the electric field (V/m), the magnetic field (A/m), the magnetic

flux density (T) and the displacement flux density (C/m2). J (A/m2) is the electric current

density. Maxwell’s equations are first-order linear coupled differential equations relating

the vector field quantities to each other. They unify the four fields E, H, B, and D in a

system of partial differential equations. The charge density ρ and the current density J
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comply with the continuity equation,

∇ · J+
∂ ρ

∂ t
= 0 (1.2)

which expresses the conservation of the electric charge. Equations (1.1a)–(1.1d) are solved

in a bounded subdomain Ω of the Euclidean space R3.

Ω2 

Ω1 Γ 

Fig. 1.1 Boundary condition at the interface between two material domains Ω1 and Ω2

The interface Γ separates two different materials Ω1 and Ω2, shown in Fig. 1.1. Elec-

tromagnetic fields can be discontinuous at the interface. The fields in Ω1 and Ω2 are

distinguished by the subscript 1 and 2, respectively. A unit normal vector n is directed from

Ω1 to Ω2. Denote the surface current density vector K and surface charge density ρS on

the interface Γ . The boundary conditions can be easily deducted from the integral form of

Maxwell equations. They are [75, 77]

on Γ ,























(E1 − E2)× n= 0

(H1 −H2)× n= K

(D1 −D2) · n= ρS

(B2 −B1) · n= 0

(1.3a)

(1.3b)

(1.3c)

(1.3d)

These equations show the continuity of the tangential component of E (1.3a) and of the

normal component of B (1.3d) whereas the tangential component of H (1.3b) and the

normal component of D (1.3c) are discontinuous respectively by K and ρS on the boundary.

1.2 Constitutive Relations

The distribution of electromagnetic fields also depend on the medium properties character-

ized by the constitutive parameters: magnetic permeability µ (H/m), electric conductivity
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σ (S/m) and dielectric permittivity ε (F/m). These properties are generally in the form of

second order tensor. These tensors are symmetric and therefore can be expressed with 6

coefficients:

µ=





µ11 µ12 µ13

µ12 µ22 µ23

µ13 µ23 µ33



 (1.4)

for the magnetic permeability tensor (the same form for the conductivity and permittivity

tensors). For the isotropic case, the magnetic behavior is described by a scalar µ:

µ= µ I (1.5)

where I is the second order identity tensor.

The constitutive laws are the formulas that link the fields through the material properties:

B= µ ·H

D= ε · E

J= σ · E

(1.6a)

(1.6b)

(1.6c)

These relations together with Maxwell equations (1.1) and well-posed boundary condi-

tions close the electromagnetic problems.

1.2.1 Magnetic Behavior

In vacuum the constitutive magnetic law is:

B= µ0 H (1.7)

with µ0 = 4π× 10−7 (H/m) the vacuum permeability. For linear magnetic materials with

magnetic susceptibility tensor χ, the degree of magnetization M is proportional to the

magnetic field H by:

M= χ ·H (1.8)

so that the magnetic constitutive relation is:

B= µ0(M+H) = µ0(I+ χ) ·H= µ ·H (1.9)
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In the case of isotropic materials, the magnetic susceptibility does not depend on the

direction of the external field. Thus it becomes a scalar quality (χ = χI). In vacuum,

χ = 0. Materials with small positive susceptibility are called paramagnetic. In this case, the

magnetic field in the material is strengthened by the induced magnetization. On the other

hand, if χ < 0, the material is diamagnetic. In this case, the magnetic field in the material

is weakened by the induced magnetization. The susceptibility values of the paramagnetic

and diamagnetic materials are small [52, 79, 80].
Ferromagnetic materials have a large positive susceptibility to an external magnetic

field. They exhibit nonlinear behavior (susceptibility depends on the applied magnetic

field) and possible hysteretic behavior, shown in Fig. 1.2.

Br

Hc

Bs

H

B

Fig. 1.2 Hysteresis loop (red curve) for a nonlinear irreversible magnetic material (the blue
curve is the anhysteretic curve).

When a ferromagnetic material is magnetized in one direction, it will not relax back

to zero magnetization when the imposed field is removed. The remaining flux density is

called remanent induction Br . It must be driven back to zero by the coercive magnetic

field Hc in the opposite direction. As the imposed magnetic field increase, the flux density

reaches saturation Bs. According to the values of their coercive magnetic field, ferromagnetic

materials can be classified into two categories. Materials which maintain their magnetization

and are difficult to demagnetize are called hard magnetic materials. These materials find

their greatest use in permanent magnets. On the contrary, soft ferromagnetic materials

have a small coercive magnetic field (typically less than 103A/m), which results in low

amount of hysteresis loss. The constitutive relation for soft magnetic materials is roughly

approximated by the anhysteretic curve [81, 82]. For low level of magnetic field, the soft

magnetic material can be further approximated as linear, as shown in Fig. 1.3. In this

manuscript, the magnetic materials will be considered linear.
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B

H

linear

nonlinear

Fig. 1.3 BH curves for linear (red line) or nonlinear (blue curve) reversible magnetic
material.

1.2.2 Mechanical Behavior

The mechanical behavior that links the strain tensor S (second-order) and the stress tensor

T (second-order) has the form:

T=C : S (1.10)

whereC is a fourth-order stiffness (elasticity) tensor. Using Einstein notation, (1.10) writes:

Ti j = Ci jklSkl . The stiffness tensor C is a material property to represent the resistance to

deformation in response to an applied force. It is constant in a linear elastic material. The

stress tensor T is the force per unit area on a body [83].The intensity of distortion is known

as strain tensor S. It is a dimensionless tensor of rank 2.

Due to the inherent symmetries of C (Ci jkl = C jikl = Ci jlk = C jilk = Ckli j), the stiffness

tensor can be represented by a symmetric second order tensor. For orthotropic materials

which have three orthogonal planes of symmetry, the stiffness tensor can be described by 9

independent parameters:

Corth =



















C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66



















(1.11)

For isotropic media (which have the same physical properties in any direction), the stiffness

tensor C can be reduced to only two independent numbers, the bulk modulus κ and the

shear modulus G, that quantify the material’s resistance to changes in volume and to
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shearing deformations, respectively.

Ciso =



















κ+ 4
3 G κ− 2

3 G κ− 2
3 G 0 0 0

κ− 2
3 G κ+ 4

3 G κ− 2
3 G 0 0 0

κ− 2
3 G κ− 2

3 G κ+ 4
3 G 0 0 0

0 0 0 2G 0 0

0 0 0 0 2G 0

0 0 0 0 0 2G



















(1.12)

In this work, the elastic property of material will be considered isotropic.

1.2.3 Magneto-Mechanical Behavior

The magneto-mechanical coupling can be principally described by two aspects:

• Magnetostriction [53]: strain induced by magnetization.

• Effect of stress [54]: change of the magnetic susceptibility of a material when sub-

jected to a mechanical stress.

The corresponding behaviors are generally described by phenomenological approaches

[55, 56] or multi-scales models [57–59]. The magnetic behavior of ferromagnetic material

is sensitive to the application of mechanical stress [51, 52]. Fig. 1.4 gives an example of mag-

−0.5 0 0.5 1

−1

−0.5

0

0.5

1

x 10
6

H (kA/m)

M
 (

A
/m

)

σ = 0

 −50 MPa

 −100 MPa

Fig. 1.4 Magnetization curves for a nonoriented Iron-Silicon alloy subjected to a uniaxial
compression applied in the direction parallel to the magnetic field [84].
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netization curves for a nonoriented Iron-Silicon alloy subjected to a uniaxial compression

applied in the direction parallel to the magnetic field [84].

Consider a ferromagnetic material that is subjected to a magnetic field H in the direction

x (H= H x) and simultaneously a stress state T:

T=





T11 T12 T13

T12 T22 T23

T13 T23 T33



 (1.13)

An analytical magneto-elastic model has been proposed in [65]. The magnetization of the

ferromagnetic core can be written in the form:

M=
A1 sinh (κH)

A1 cosh (κH) + A2 + A3
Msx (1.14)

with

Ai = exp (αTii) , i = {1,2, 3} (1.15)

where Ms is the saturation of magnetization of the material. α and κ are material constants.

1.3 Eddy Current Losses

1.3.1 EC Loss Density Definition

Once the Maxwell’s equations are solved with constitutive laws and boundary conditions,

the distribution of electric field E and magnetic field H can be obtained. In a conductor Ω

of conductivity σ there arises eddy current Jeddy = σ · E, which results in EC losses in the

material. In a harmonic electromagnetic problem, the EC loss density U is defined as the

Joule losses dissipated per unit volume during a wave period:

U =
〈E∗ · σ · E〉

2 f
(1.16)

where f is the working frequency. The superscript “*” refers to the conjugate transpose

operator and the operator 〈·〉 denotes a volume average over the domainΩ by 〈·〉 = 1
V

∫

V
·dV ,

where V is the volume of Ω.

The EC losses increase the temperature of the magnetic material. On the one hand, EC

can be used in the case of induction heating. On the other hand, the heat represents a

major source of energy loss in AC machines like transformers, generators, and motors. The
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heat must be safely dissipated otherwise it would deteriorate the working performance or

cause a risk of failure due to local overheating or thermal cycling.

1.3.2 EC Loss Density of Homogeneous Structures

Consider an isotropic, homogeneous and linear material of permeability µ, electric con-

ductivity σ, and permittivity ε. The material is submitted to a harmonic magnetic field

H of frequency f (angle frequency: ω = 2π f ). Combining Maxwell’s equations with

constitutive laws of material, the problem becomes a Poisson equation,

∇×∇×H= − jωµ( jωε+σ)H (1.17)

The definition of EC loss density in (1.16) is a general one. It applies for any frequency.

Nevertheless, in the following formula derivation, quasistatics is assumed meaning that the

frequency is low enough so that the induced magnetic field generated by the electric field

can be ignored.

When a structure is homogeneous, Maxwell’s equations (1.1) can be analytically solved

for some basic 2D shapes, for instance, a plate, a circle, and a square, as shown in Fig. 1.5.

L

y

x

(a) Plate

y

x

R

ρ 

ϕ 

O

(b) Circle

L

y

x

(c) Square

Fig. 1.5 Sketch of homogeneous structures

Since the domain is cut from 3D structure with infinite dimension along the z-axis, the

magnetic field and the induced electric field are z-invariant,

∂H
∂ z
= 0 and

∂ E
∂ z
= 0 (1.18)
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Let’s apply a magnetic field H = [0,0, Hz]t on the domain Ω, where the superscript t
indicates a matrix transpose, and consider a low frequency such that ωε≪ σ. Denoting

k2 = − jωµσ, the Poisson equation (1.17) becomes,

∇2 H + k2 H = 0 (1.19)

subject to the Dirichlet boundary condition H|∂Ω = Hz with ∂Ω denoting the boundary of

the domain. According to the boundary condition and z-invariance, and considering null

current flow in the fiber, we have,

Ez = 0 and Jz = 0 (1.20)

To solve (1.19) in a domain of one of the basic shapes, shown in Fig. 1.5, the magnetic

field and electric field can be obtained. Therefore, the eddy current density has the form:

Uplate =
1
6
π2 f σµ2 H2

z L2

U circle =
1
4
π2 f σµ2 H2

z R2

(1.21a)

(1.21b)

See Appendix A for detailed derivations. As for the square-shaped material, a simple form

as (1.21) can not be directly obtained. Nevertheless, since the proportional relationship

holds [85, 86]:

U∝ f σµ2 H2
z L2, (1.22)

the EC loss density of a square-shaped material can be approximated as:

U square =
9

128
π2 f σµ2 H2

z L2 (1.23)

See the detailed steps and the errors of this approximation in Appendix A.

1.4 Soft Magnetic Composites

Soft Magnetic Composites (SMC) consist of ferromagnetic inclusions embedded in a dielec-

tric polymer matrix, as shown in Fig. 1.6. The unique properties of SMC materials include

magnetic and thermal isotropy [1, 2], making them suitable for constructions of electrical

devices with complex structure and three-dimensional magnetic flux path. SMC have the

advantages of low core losses and high magnetic permeability at various frequency ranges.
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(a) SMC sketch
(b) Ferromagnetic inclusion
(Courtesy of Höganäs)

Fig. 1.6 Schematic diagram of SMC and a ferromagnetic inclusion

Continuous research on SMC has shown a wide range of applications in motor design [10],
such as PM transverse flux motor [11–13], axial flux PM motor [14] for hybrid electric

vehicles, and induction motor [15]. An example of the benefits by switching laminated

steel to SMC is indicated in Fig. 1.7. It is a BDC-motor for Anti-lock Braking Systems (ABS).

Fig. 1.7 Commercial ABS motor: (left) original laminated motor; (right) improved new
SMC design (Courtesy of Aisin Seiki Co Ltd). The application of SMC core brings 17% in
weight reduction and a more compact design (36% shorter in length) [87].

SMC are normally fabricated by conventional Power Metallurgy (P/M) techniques

combined with secondary operations followed by an annealing procedure to control grain

size and to increase the magnetic permeability [16]. The powder cores have to be coated

with a dielectric matrix to reduce global eddy currents and to confine them within each

particle. The powder particles are generally in irregular shapes but roughly globular

particles ranging in an average diameter from about 50 to 250µm. The commonly selected

ferromagnetic materials are pure iron or iron-based alloys, such as Fe-Ni alloys (high

permeability), Fe-Si alloys (high electrical resistivity) and Fe-Co alloys (high magnetization

saturation) [3]. High concentration of magnetic inclusions yields higher density, mechanical

strength, and magnetic permeability of the composite. The coating materials can be

inorganic or organic. Higher volume fraction of coatings will significantly decrease the
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EC losses, whereas the density and overall magnetic performance will be simultaneously

sacrificed. The balance of these properties should be considered in designing SMC.

1.4.1 EC Loss Density of SMC

Eddy currents occur in the ferromagnetic inclusions when the applied magnetic field changes

with time. Since the matrix is dielectric, EC occurs only in the inclusions, the macroscopic

EC (flowing in the matrix) being negligible. Denote U inc the EC loss density of the inclusions.

From the perspective of the whole composite materials, the EC loss density USMC is then

USMC = ξincU inc (1.24)

with ξinc the volume fraction of the inclusions.

1.5 Homogenization Techniques

In mathematical terms, a material is homogeneous if its constitutive parameters are inde-

pendent of space variables. Homogenization theory is a mathematical formalism widely

applied in the study of composite materials. The aim of homogenization is to replace the

highly heterogeneous material by an Equivalent Homogeneous Material (EHM), as shown

in Fig. 1.8. The EHM should provide the same macroscopic response as the composite when

Composite

Homogenization

Equivalent 
Homogeneous material

Fig. 1.8 Homogenization principle

the macroscopic loadings are the same. In electromagnetics, homogenization techniques

are used to determine the effective electric and magnetic properties of materials. Sihvola’s

monograph [23] gives a useful overview of homogenization techniques in quasistatics.

Constitutive relations (1.6) are local, meaning that each equality holds at each point

in space. The material can be homogeneous but not the field inside it. The effective
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magnetic permeability, µ̃, is defined to build the relationship between the macroscopic

average magnetic field, H and flux density, B,

B= µ̃ ·H (1.25)

Likewise, effective conductivity and effective permittivity can be defined. The effective prop-

erties can be obtained by homogenization strategy with a limited quantity of microstructure

information.

In the general case, a complete knowledge of the microstructure of composites is not

provided, so that exact effective properties for EHM cannot be determined. In that case,

certain bounds can be derived for the effective properties. Consider a biphase composite

with inclusions of permeability µ2 embedded in a matrix of permeability µ1. Denote ξ

the filling factor of the inclusion and a tilde symbol indicates the effective property of the

composite. The effective permeability µ̃ necessarily lies between Wiener lower and upper

bounds [19]:

µ̃W− =
1

ξ
µ2
+ 1−ξ

µ1

µ̃W+ = ξµ2 + (1− ξ)µ1

(1.26a)

(1.26b)

Tighter bounds on µ̃ for isotropic composites are given by the Hashin–Shtrikman bounds.

For the case of three-dimensional composite, the bounds have the forms (assuming µ1 <

µ2) [20, 38]:

µ̃HS− =
(1+ 2ξ)µ2 + 2(1− ξ)µ1

ξµ2 + (2+ ξ)µ1
µ1

µ̃HS+ =
2ξµ2 + (3− 2ξ)µ1

(3− ξ)µ2 + ξµ1
µ2

(1.27a)

(1.27b)

which were derived on the basis of energy considerations, using a variational method for

isotropic composites.

For composites with fiber inclusions, the composite can be viewed as two-dimensional.

The perpendicular (to the cross-section) component of the effective permeability tensor

can be obtained by Wiener upper bound:

µ̃z = µ̃W+ = ξµ2 + (1− ξ)µ1 (1.28)

This model works for fiber inclusion case (the length is much greater than the cross-section

size) and provides an exact effective permeability value.
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Maxwell-Garnett (MG) formalism was presented in 1904 to estimate the effective

permittivity of an isotropic dielectric EHM for a composite material made from a dispersal

of spherical particles in a host material [18]. This model is suitable for composites with low

volume fraction ξ. It is one of the most widely used methods for calculating the macroscopic

properties of inhomogeneous materials [39–44]. The effective permeability has the form:

µ̃MG = µ1 +
ξµ1 (µ2 −µ1)

µ1 + N(1− ξ) (µ2 −µ1)
(1.29)

where N is depolarization coefficient: N = 1
3 for spherical inclusion. In this case, MG

estimate is equivalent to Hashin–Shtrikman lower bound. MG model can also be applied to

retrieve the parallel component (in-plane) of effective permeability tensor of composite

with fiber inclusion, using a depolarization coefficient N = 1
2 , and even the perpendicular

component with N = 0.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100
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volume fraction ξ

µ̃
/µ

0

Fig. 1.9 Effective permeability estimated by Wiener bounds (W+ and W-), Hashin– Shtrik-
man bounds (HS+ and HS-) and Bruggeman’s model (Br). Parameters: µ1 = µ0, µ2 =
100µ0.

Bruggeman’s model [45] is not limited to low concentration of inclusions. The two

constituent materials in a composite material play the same role and they are symmetrically

treated either as the inclusion or the matrix. Actually, in the Bruggeman’s model, particles

of all constituent materials are assumed to be dispersed in the EHM itself. The formula for

spherical scatters has the form:
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ξ
µ2 − µ̃
µ2 + 2 µ̃

+ (1− ξ)
µ1 − µ̃
µ1 + 2 µ̃

= 0 (1.30)

The effective property estimates (bounds) depend on the constitutive properties of the

constituent materials and their volume fractions. The main advantage of these models lies

in their relative simplicity. Calculations of effective permeability by these estimates as a

function of volume fraction are plotted in Fig. 1.9.

In addition to these analytical homogenization approaches, numerical homogeniza-

tion techniques [26–29, 46] have been introduced to tackle electromagnetic problems

with different scales. In the case of periodic microstructures, the asymptotic expansion

technique [47–49] can also be used.

1.6 Conclusion

The Maxwell’s equations and constitutive relations presented in this chapter characterize

the electromagnetic problem. When boundary conditions are imposed on a SMC, the

electromagnetic behavior in SMC can theoretically be determined. However, the complexity

of such an approach is usually too high. Homogenization approaches can provide solutions

analytically with reasonable approximations. The effective properties and loss features can

be obtained, which allow for the optimization in the design of structures using SMC.
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This chapter presents a homogenization technique to estimate EC losses in composite

materials with high contrast in constituent properties. It is based on the use of a complex

magnetic permeability. It reflects magnetic behavior including EC losses (through the

imaginary part of the permeability). The work focuses on the estimate of EC losses for SMC

with linear behavior. Other components of losses such as hysteresis losses and excess losses

are not considered.

In this chapter, the equations of EC loss density are first derived for a single cylindrical

or spherical inclusion in free space with initially uniform magnetic field. In such case,

the magnetic field in the inclusion being uniform, there exist simple equations for EC loss

density. In SMC, the magnetic field in each inclusion is disturbed by the surrounding ones.

The EC loss density cannot readily be deduced into the same simple equations as in single

inclusion cases. Nevertheless, it is assumed that the EC loss density can still be obtained

by the same equations by replacing the uniform field in the single inclusion case with the

average field in the inclusion of SMC.

The working condition is quasi-statics. The frequency of applied field is low such that

the skin effect is negligible. The effect of induced magnetic field upon the exciting field is

also ignored.

2.1 EC Loss Density of Single Inclusion

If a magnetic ellipsoidal inclusion is placed in an infinite free space with initially uniform

magnetic field, the magnetic field inside the ellipsoid is also uniform [78]. A cylinder can

be viewed as an ellipsoid with an infinite axis. When the magnetic field in the domain is

uniform, for certain shapes of inclusions such as an ellipsoid and a cylinder with circular

or square cross-section, it is possible to obtain analytically the equations of eddy current

density in the inclusion. EC loss density can be further deduced.

The cylindrical particle is assumed to have infinite length. Thus the problem is reduced

to two-dimensional (2D). Two conditions of magnetic field loading are deduced separately.

One case is the exciting field normal to the domain (along cylinder axis); the other is the

exciting field in-plane. Finally, a generic formula combines these two cases.

As for the case of spherical inclusion, an exciting field along one axis is first derived.

Further, a general formula is generated with arbitrary magnetic field loading.

In the end, a general EC loss density formula is given with a shape factor distinguishing

the different shapes.
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2.1.1 Cylindrical Inclusion

Consider that a cylindrical inclusion is placed in infinite space. Set up Cartesian coordinates

Ox yz by putting the cylinder axis along the z direction and centering the cross-section of

the cylinder at O. The cross-section Ω is a disk of radius R, as shown in Fig. 2.1.

y

xOz

Ω 

Hz Hx

Hy
H

Fig. 2.1 A 2D sketch of cylindrical inclusion.

Because the cylinder length is infinite, the problem has the property of z-invariance, for

instance, ∂zE= 0 and ∂zH= 0.

The magnetic field in the inclusion, H= [Hx , H y , Hz]t , can be firstly decomposed into

two components: in-plane one, [Hx , H y , 0]t , and perpendicular one, [0, 0, Hz]t , where the

superscript t is the transpose operator.

In-plane field

Consider the field is exclusively in-plane, i.e., Hz = 0. Solving Maxwell-Ampère (1.1b) in

Cartesian coordinates and applying z-invariance leads to,











Jx =
∂ Hz

∂ y
−
∂ H y

∂ z
= 0

Jy =
∂ Hx

∂ z
−
∂ Hz

∂ x
= 0

(2.1)

so that,
¨

Ex = 0

Ey = 0
(2.2)
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Therefore, the induced electric field only has a normal component. Substituting (2.2) and

Hz = 0 into Maxwell-Faraday (1.1a), by imposing the boundary condition, Ez(0,0) = 0,

gives

Ez(x , y) = jωµ(H y · x −Hx · y) (2.3)

Since the inclusion is isotropic, substituting (2.3) into the EC loss density definition (1.16)

results in

U x ,y =
π2

2
f R2σµ2
�

H2
x +H2

y

�

(2.4)

Perpendicular field

The previous configuration is kept, but the loading field is now normal to the plane (along

the z-axis). The magnetic field H = [0, 0, Hz]t inside the circle is still uniform. The equation

∇× E= − jωµH is solved in the circle to obtain the following expression for the electric

field:

E(ρ,φ, z) = −
1
2

jωµHzρu⃗φ (2.5)

where u⃗φ represents the unit vector in the φ direction in the cylindrical coordinates. Hence,

the loss density is

U z =
〈σE∗ · E〉

2 f
=
π2

4
R2 f σµ2H2

z (2.6)

In brief, if the magnetic field in the inclusion is uniform and denoted as H = [Hx , H y , Hz]t ,
by combining (2.4) and (2.6), the EC loss density is,

U = π2 f R2σµ2H∗ ·





1
2 0 0

0 1
2 0

0 0 1
4



 ·H. (2.7)

2.1.2 Spherical Inclusion

The magnetic field is applied along the z-axis. The magnetic field in the inclusion is uniform,

noted H = [0,0, Hz]t . It is supposed that the sphere consists of disks of varying radii as

shown in Fig. 2.2.

The electromagnetic problem is solved first in the domain Ω based on cylindrical

coordinates (ρ,φ, z), as shown in Fig. 2.3.
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z
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y

Ω 

H

Fig. 2.2 A cross-section Ω in the spherical inclusion.

z

x

ρ 

O
y

θ  

Fig. 2.3 Cylindrical coordinates (ρ,φ, z) and spherical coordinates (r,θ ,φ).

The Maxwell-Faraday equation (1.1a) becomes,

1
ρ

∂ (ρEφ)

∂ ρ
= − jωµHz (2.8)

Then, considering Eφ = 0 at the center of Ω, the electric field in the domain has the form,

Eφ(ρ,φ, z) = −
1
2

jωµHz ρ (2.9)
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This field E(ρ,φ, z) is then transformed from the cylindrical coordinates to the spherical

coordinates (r,θ ,φ) as indicated in Fig. 2.3. The electric field is then expressed as,

E(r,θ ,φ) = −
1
2

jωµHz r sinθ u⃗φ (2.10)

Therefore, the loss density can be expressed as

U z =
〈σE∗ · E〉

2 f
=
π2

5
R2 f σµ2 H2

z (2.11)

Because of symmetry, for arbitrary magnetic field excitation H= [Hx , H y , Hz]t , the EC loss

density has the form,

U =
π2

5
R2 f σµ2 H2 (2.12)

where H2 = H∗ ·H. This result can also be found in [51].

To summarize from both the cylindrical and the spherical inclusion cases, the EC loss

density is proportional to the loading frequency, conductivity of the inclusion, and the

squared magnitude of the magnetic flux density (B= µH), and also depends on the size

and shape of the inclusion.

To synthesize both the cylindrical and spherical cases, a shape factor tensor K is defined

as

K=











































1
2 0 0

0 1
2 0

0 0 1
4



 (cylindrical)





1
5 0 0

0 1
5 0

0 0 1
5



 (spherical)

(2.13)

so that

U = π2 R2 f σµ2H∗ ·K ·H (2.14)

is the generic formula for the EC loss density of a single inclusion with uniform magnetic

field.

2.2 EC Loss Density of SMC

SMC can be viewed microscopically as a periodical layout of inclusions embedded in a

dielectric host matrix. Consider now the SMC material as a representative elementary
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cell containing an inclusion and its surrounding matrix. This cell is supposed to have

spatial periodicity. The properties of the inclusion are denoted with the subscript 2 and the

properties of the matrix with the subscript 1.

For periodic SMC containing cylindrical or ellipsoidal inclusions, when the filling factor

of the inclusion is sufficiently low, each inclusion can be regarded as a single one in the

previous section. For biphasic composite, given the effective permeability, µr , the average

field in the inclusion is given by (2.15) [88],

〈H〉2 =
1

ξ2(µ2 −µ1)
(µr −µ1I) · 〈H〉 (2.15)

where 〈H〉 is the average magnetic field over the whole cell. I is the second order identity

tensor. And ξ2 is the volume fraction (filling factor) of the inclusions.

The EC loss density U2 in the inclusion can be written as a function of the ‘uniform’

magnetic field in the inclusion (H2 = 〈H〉2):

U2 = π
2 R2 f σ2µ

2
2H∗2 ·K ·H2 (2.16)

Since the matrix is dielectric, EC occurs only in the inclusion, the macroscopic EC

(flowing in the matrix) being negligible. From the perspective of the whole composite

material, the EC loss density U is then

U = ξ2U2 (2.17)

As the filling factor increases, the magnetic field in the inclusion becomes nonuniform.

Equation (2.16) cannot be readily deduced as in the single inclusion case. Nevertheless,

the assumption that (2.16) is still applicable is made, replacing H2 with the average 〈H〉2
within the inclusions. Therefore, the EC loss density estimate for the whole composite

becomes:

U = ξ2π
2 R2 f σ2µ

2
2 〈H〉

∗
2 ·K · 〈H〉2 (2.18)

Equation(2.15) still holds to calculate 〈H〉2. Therefore, the EC loss density of SMC is

linked to the macroscopic average magnetic field by (2.19),

U =
π2 R2 f σ2µ

2
2

ξ2(µ2 −µ1)2
〈H〉∗ · (µr −µ1I)

∗ ·K · (µr −µ1I) · 〈H〉 (2.19)

According to (2.19), it is clear that an accurate estimate of the effective magnetic perme-

ability µr is a key requirement for the approximation of EC losses of SMC.
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2.3 Effective Permeability of SMC

The effective permeability of SMC is critical in EC losses modeling. Various approaches

are introduced in the previous chapter(1.5). In the following discussion, Maxwell-Garnett

(MG) estimate and Series Expansions are used.

2.3.1 MG Estimate

The Maxwell-Garnett(MG) approximation is useful when one of the components can be

considered as a host in which inclusions of the other components are embedded. For dilute

SMC where the volume fraction of inclusion is sufficiently small, the effective magnetic

permeability obtained with MG estimate has the tensor form [23],

µr = µ1I+ ξ2µ1(µ2 −µ1) [µ1I+ (1− ξ2)(µ2 −µ1)N]
−1 (2.20)

where N is the depolarization tensor:

N=











































1
2 0 0

0 1
2 0

0 0 0



 (cylindrical)





1
3 0 0

0 1
3 0

0 0 1
3



 (spherical)

(2.21)

There is a special case of cylindrical inclusion with loading field along length (for instance,

in z-direction). The corresponding depolarization factor is N = 0. MG estimate is equivalent

to the Wiener upper bound (see 1.28 and 1.29). In such case, the magnetic field in the

domain is always uniform so long as the frequency is low,

〈Hz〉2 = 〈Hz〉= Hz (2.22)

The effective permeability formula by MG is simple and straightforward. Nevertheless,

it is only valid when the volume fraction is low. As the volume fraction ξ2 increases, MG

estimate brings unacceptable inaccuracy for the definition of the effective permeability (see

Fig. 2.7 later in this chapter). This definition must then be revisited. In other cases, µr

has to be calculated either by FEM computation or, if the structure is periodic, by series
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expansions [22, 25]. The latter provides a high precision estimate if sufficiently high order

terms are computed.

2.3.2 Series Expansion Estimate

For cubic lattice of spherical inclusions or square lattice of circular inclusions, the effective

magnetic permeability can be accurately determined using series expansions. The accuracy

depends on the order of the terms of the series used for the practical calculation. In the case

of spherical or circular inclusions, because of spatial symmetries, the effective magnetic

permeability is isotropic. It is denoted µr . The approximation used in this chapter leads to

the following expressions for µr:

µr
sphere =
�

1+
3ξ2

γ(ξ2)

�

µ1

µr
circle =

1+λ(ξ2)ξ2

1−λ(ξ2)ξ2
µ1

(2.23a)

(2.23b)

where
γ(ξ2) =− 1/R1 − ξ2 + 1.3045R3ξ

10/3
2 + 0.0723R5ξ

14/3
2

− 0.5289R2
3ξ

17/3
2 + 0.1526R7ξ

6
2 +O(ξ7

2)
(2.24)

with

Rn =
n(µ1 −µ2)

(n+ 1)µ1 + nµ2
(2.25)

and

λ(ξ2) =α+ 0.305827α3ξ4
2 +α

3
�

0.0935304α2 + 0.0133615
�

ξ8
2

+α3
�

0.0286042α4 + 0.437236α2 + 0.000184643
�

ξ12
2 +O(ξ16

2 )
(2.26)

with
α=

µ2 −µ1

µ2 +µ1
(2.27)

The theoretical foundations for these expressions can be found in references [22] and

[25].

2.4 Complex Permeability Definition

Complex properties can be used in electromagnetic applications to describe dissipation. A

thorough review of homogenization models for dielectric behavior using complex permit-
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tivity can be found in [42, 66]. 2D and 3D cases have been numerically explored in details.

The complex effective permittivity depends on the properties of each constituent, on their

volume fraction and on their spatial arrangement [67]. In an analogous way, complex

permeability is a useful tool to handle high frequency magnetic effects, for instance in

transformer applications [68, 69]. Power dissipation is directly reflected in the imaginary

part of the complex permeability [70, 71]. In the case of SMC at low frequency, when the

induced magnetic field can be neglected, there is no time lag between magnetic flux density

and magnetic field. In this respect, the imaginary part of complex permeability should be

considered as zero. However, EC losses are present - as long as the frequency is not zero.

Thus, an imaginary part, noted µi, can be introduced into the magnetic permeability tensor

so as to reflect EC losses.

The complex permeability tensor µ̃ (µ̃ = µr − jµi) can be used as a mathematical tool to

represent a dissipative magnetic material. In this study, this complex permeability tensor

is used to describe the effective properties of SMC. The real part is the usual magnetic

permeability, and the imaginary part reflects the EC losses. In what follows, µ̃ denotes the

(effective) complex permeability while µr is still called the effective permeability.

Consider a homogeneous and linear material of permeability tensor µ̃ excited by a

harmonic magnetic field H(t) = H0e jωt (H0 is the magnetic field magnitude and ω the

angle frequency). The induction flux is B(t) = µ̃H0e jωt . As in the case of transformers at

high frequency range [71], the energy loss density in a period of time T is,

S =
1
2
ℜ

�

∫ T

0

H∗(t) ·
dB(t)

dt
dt

�

(2.28)

where the operatorℜ(·) is the real part of a complex number. This equation can be simplified

into,

S = πH∗0 · µ
i ·H0 (2.29)

Proof of this equation is detailed in Appendix B.

Applying successively the magnetic field in different directions, and U = S, the com-

ponents of tensor µi can be obtained. Thus heterogeneous anisotropic materials can be

homogenized as a virtual homogeneous material. This material has a complex permeability

tensor containing effective magnetic behavior and lossy features of SMC. In the next section,

the tensor µi is built for single inclusion and for SMC.
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2.4.1 Complex Permeability of Single Inclusion

Consider that the magnetic field is uniform in the single inclusion: H = Hinc e jωt . The EC loss

density can be obtained by the shape-related equation (2.14) or by complex permeability

(2.29). Equaling the Setting U = S gives,

πH∗inc · µ
i
inc ·Hinc = π

2 R2 f σµ2 H∗inc ·K ·Hinc

=⇒ µi
inc = πR2 f σµ2K

(2.30)

Therefore, the complex permeability has the form,

µ̃inc = µ I− jπR2 f σµ2K (2.31)

which depends on the material properties, working frequency, shape and size (radius).

2.4.2 Complex Permeability of SMC

Applying successively the magnetic field in different directions, each element of tensor µi

can be obtained. Equaling (2.29) to (2.19), tensor µi can be deduced as,

µi =
πR2 f σ2µ

2
2

ξ2(µ2 −µ1)2
(µr −µ1I)

∗ ·K · (µr −µ1I) (2.32)

Tensor µi is proportional to the frequency f , to the inclusion conductivity σ2 and depends

also on the magnetic permeabilities µ1 and µ2 of the constituents, on the volume fraction

ξ2, and the shape factor tensor K of the inclusions.

Finally, the complex permeability tensor µ̃ for a SMC material is defined as

µ̃= µr − j
πR2 f σ2µ

2
2

ξ2(µ2 −µ1)2
(µr −µ1I)

∗ ·K · (µr −µ1I) (2.33)

The real part represents the magnetic behavior of the composite, and the imaginary

part offers an immediate approach to the EC loss density, by (2.29). It must be noticed

that an accurate estimate of the effective magnetic permeability µr is required to define the

effective complex permeability tensor µ̃.

In order to determine the EC losses with the complex permeability (imaginary part),

a precise estimate of the effective permeability (real part) is essential. The analytical

approaches for the effective property of composites with elliptic or ellipsoidal inclusions

prove to be arduous. But simple inclusion shapes such as circular cylinder or sphere have



2.5 Validation using FEM computations 33
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Fig. 2.4 (a) 2D sketch of cubic lattice of spherical inclusions or square lattice of fiber
inclusions. The domain confined by dashed lines 1-4 forms an elementary cell of periodic
pattern. (b) 3D view of cubic lattice of spherical inclusions (case 1). (c) 3D view of square
lattice of fiber inclusions (case 2).

been widely studied [17, 21, 22, 25]. Thus, in the following, focus is limited on SMC

with circular cylindrical or spherical inclusions to verify the application of the complex

permeability model with the average field assumption.

2.5 Validation using FEM computations

2.5.1 Microstructure

SMC consists of inclusions surrounded by an insulating film. In this work, attention is

focused on two simple microstructures: cubic lattice of spherical inclusions and square

lattice of fiber inclusions, as shown in Fig. 2.4. The fiber inclusion problem can be reduced

to 2D. Only circular cross-section of fiber is considered.

The problem of 2D SMC with a magnetic field applied in the normal direction has been

discussed in the Appendix A as well as in [86]. At low frequency, the magnetic field is

uniform in the domain, so that (2.19) is an exact formula for EC losses. In that simple case,

the effective magnetic permeability (real part) is obtained from the Wiener estimate, which

also provides in that case an exact value. Therefore, the required validations concern the

spherical inclusion case (later referred to as case 1), and the case of cylindrical inclusions

with in-plane loading (later referred to as case 2). These two cases are associated to more

complex field distributions, and require more advanced homogenization techniques.
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2.5.2 Parameters

To carry out this validation, FEM simulations have been performed on a unit cell of SMC as

described in Fig. 2.4a for different volume fractions ξ2 at different frequencies. The cell

size L1 (lattice length) is fixed to 50µm. The average flux density over a cell is imposed at

B0 = 1 T. Vector magnetic potential A is employed here to impose the flux density.

B=∇×A (2.34)

For case 1 computations, as denoted in Fig. 2.4a, a rotating vector potential is imposed

on the four surfaces of the cube cell to form a flux density in one direction, for instance, in

the z-direction.

A1 = −A0u⃗y , A2 = A0u⃗x , A3 = A0u⃗y , A4 = −A0u⃗x (2.35)

A 2D sketch of the boundary condition is plotted in Fig. 2.5.

z
x

O

y

L1

A3A1

A2

A4

Fig. 2.5 Rotating vector potential to generate a flux density in the z direction.

The remaining two horizontal surfaces are imposed by Perfect Magnetic Conductor

(PMC),
¨

n×H= 0

n · J= 0
(2.36)

Therefore, the flux density is,

Bz =

∮

A · dl⃗

S
=

4 A0 L1

L2
1

=
4 A0

L1
(2.37)
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In order to maintain Bz = B0 = 1T and given L1 = 50µm, then A0 = 1.25× 10−5 Wb/m.

For symmetry reasons, only half of the unit cell is modeled. The magnetic field is directed

along the z-axis. A 3D mesh made of hexahedral elements has been used. The mesh is

constituted of approximately one million elements and the computation time is about 300

seconds.

Similarly, for case 2 computations, a rotating vector potential directing z-axis is necessary

to form a flux density, for example, in y direction. The two boundary lines are imposed

with vector potential,

A1 = A0u⃗z, A3 = −A0u⃗z (2.38)

and the remaining two boundary lines (2 and 4) are imposed with PMC by (2.36), shown

in Fig. 2.6.
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Fig. 2.6 Vector potential boundary condition to generate a flux density in the y direction.

Therefore, the average flux density imposed on the cell is:

By =

∮

A · dl⃗

S
=

2 A0

L1
(2.39)

In order to maintain By = B0 = 1T and given L1 = 50µm, then A0 = 2.5× 10−5 Wb/m.

For case 2 computations, the magnetic field is applied along the y-axis. A 2D mesh made

of triangular elements has been used. The mesh is constituted of approximately 3× 104

elements and the computation time is about 2 seconds.

The material properties used for the constituents are given in Table 2.1.
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Table 2.1 Material parameters used in the calculations for SMC

Conductivity (S/m) Relative Permeability Relative Permittivity

Iron 1.12× 107 4000 1

Epoxy 1.7× 10−13 1 9

2.5.3 Effective Permeability Comparison

As stated before, the Wiener estimate provides an exact effective permeability for cylinder

inclusion with normal magnetic loading. Therefore, only in-plane effective permeability

is examined, which can be degenerated to be a scalar, as well as for the case of spherical

inclusion. This scalar effective permeability is denoted µr . To be consistent with the

notation of EC loss density, µr
FEM, µr

SE and µr
MG are the effective permeability obtained from

FEM, series expansion and MG estimate, respectively. The value µr
SE is calculated to the

order ξ6
2 in (2.24) for the case 1 and to the order ξ12

2 in (2.26) for the case 2.
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Fig. 2.7 Effective permeability obtained from FEM (blue squares), series expansion (red
dashed line) and MG estimate (black line). (a) case 1: Cubic lattice of spheres: magnetic
field loading along z-direction, (b) case 2: Square lattice of fibers: in-plane loading field
along y-direction. For all calculations: lattice size L1 = 50µm, µ2 = 4000µ0, µ1 = µ0,
σ2 = 1.12× 107 S/m, average flux density B0 = 1T.

Fig. 2.7 indicates that the effective permeability increases with the volume fraction of

the inclusion. That is because the inclusion permeability is bigger than the matrix one. The

plots also show that series expansion provides a better estimate of the effective permeability

than MG estimate.
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In order to check the discrepancies, using the FEM results as the reference values, errors

are defined,














η
µ
SE =

µr
SE −µ

r
FEM

µr
FEM

× 100%

η
µ
MG =

µr
MG −µ

r
FEM

µr
FEM

× 100%
(2.40)

The plots of the effective permeability errors are shown in Fig. 2.8.
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Fig. 2.8 Errors of the effective permeability generated by series expansion and MG estimate
by comparing with the reference values (FEM). Configuration: the same as Fig. 2.7.

Fig. 2.8 shows that series expansion and MG estimate invariably underestimate the

effective permeability both in case 1 and case 2. When the filling factor is low, series

expansion and MG estimate agree well with FEM results. As the filling factor increases,

errors grow for both estimates. To conclude from cases 1 and 2, series expansion provides

a better approximation than MG estimate. In addition, theoretically, the series expansion

has the potential of arriving at the exact value if all the infinite series are calculated.

2.5.4 EC Loss Density Comparison

The total EC loss density UFEM, and the average value 〈HFEM〉2 of the magnetic field in the

inclusion are post-processed. 〈HFEM〉2 is substituted into (2.18) to get the EC loss density

approximation, noted U a.

U a = ξ2π
2 R2 f σ2µ

2
2 〈HFEM〉

∗
2 ·K · 〈HFEM〉2 (2.41)
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The comparison between U a and UFEM indicates the validity of the average field assumption

in (2.18).

SMC is homogenized by the complex permeability. The effective permeability (real part)

is determined by series expansion. The EC loss density estimated by the homogenization

model is noted USE. It is obtained analytically from (2.29) after the complex permeability

model has been used. The comparison between UFEM and USE indicates the validity of

the proposed model. This comparison has been performed for different concentrations of

inclusions and different values of magnetic permeability for the inclusions.

Fig. 2.9 plots the EC loss density as a function of the volume fraction ξ2 of the inclusions,

in both case 1 (spherical inclusions) and case 2 (fiber inclusions and in-plane magnetic

field).
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Fig. 2.9 EC loss density as a function of inclusion volume fraction evaluated by full FEM
computation (squares), by approximation (2.18) using the average magnetic field obtained
by FEM (circles) and by the proposed analytical formulation (line). (a) case 1: Cubic
lattice of spheres: magnetic field loading along z-direction, (b) case 2: Square lattice of
fibers: in-plane loading field along y-direction. For all calculations: frequency f = 100 Hz,
lattice size L1 = 50µm, µ2 = 4000µ0, µ1 = µ0, σ2 = 1.12× 107 S/m, average flux density
B0 = 1 T.

As expected - since the flux is imposed - EC losses increase when the volume fraction

of inclusions becomes higher. At low volume fraction, the average field assumption, and

the analytical formulation are consistent with the FEM results. As the volume fraction

increases, the discrepancy arises. These discrepancies can be attributed to two main causes.

The first is the assumption used in relation (2.18) that the average magnetic field within

the inclusions can be used to estimate the EC losses. The second is the definition of the

complex permeability µ̃ based on the proposed homogenization model. These causes can
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be studied separately by considering successively the estimates U a and USE for EC losses in

the following.

2.5.5 EC Loss Density by Average Field Assumption

The error related to the average field assumption is defined as

ηa =
U a − UFEM

UFEM
× 100% (2.42)

Fig. 2.11 plots the evolution of ηa as a function of the volume fraction ξ2 for the two

studied cases at frequencies from 10Hz to 10kHz. According to the low frequency criterion

discussed in Appendix A, using (A.28), the low frequency range is f < 5 kHz. Below this

value, the results are frequency independent. When the frequency is greater than 5 kHz, the

skin effect cannot be neglected. The case of frequency 10 kHz is calculated as an example

of higher frequency.

The error level increases with the volume fraction ξ2. At low volume fraction, the errors

tend towards zero, which is consistent with the dilute approximation with quasi-uniform

field inside the inclusions. On the other hand, as the volume fraction increases, the field

distortion in the inclusions becomes severe, and the error ηa increases. Fig. 2.11 also shows

that for the studied cases, (2.18) underestimates the losses. At low frequency (lower than 5

kHz), the error does not depend on frequency. For higher frequencies, the induced magnetic

field cannot be neglected anymore. The induced magnetic field reduces the level of the

whole magnetic field leading to a reduction of the losses in the numerical computation. This

reduces the difference between U a and UFEM because the average field approximation tends

to underestimate the loss level. This effect explains the reduction of the error observed at

high frequency.

Overall, the average field approximation brings errors lower than 5% on the EC losses

estimate for the proposed volume fractions, which validates the applicability of (2.18).

2.5.6 EC Loss Density by Effective Complex Permeability Tensor

Another source of error in the full homogenization approach is the definition of the complex

permeability, which adds up to the error discussed in the previous section. The total error

of the model is defined as

ηSE =
USE − UFEM

UFEM
× 100% (2.43)
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Errors versus Volume Fraction
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Fig. 2.10 Errors on EC losses of the proposed homogenization model as a function of
volume fraction ξ2 for different frequencies. (a) case 1: Cubic lattice of spheres: magnetic
field loading along z-direction, (b) case 2: Square lattice of fibers: in-plane loading field
along y-direction. For all calculations: lattice size L1 = 50µm, µ2 = 4000µ0, µ1 = µ0,
σ2 = 1.12× 107 S/m, average flux density B0 = 1T .
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Fig. 2.11 Errors on EC losses attributed to the average field assumption in equation (2.18)
as a function of volume fraction ξ2 for different frequencies. (a) case 1: Cubic lattice
of spheres: magnetic field loading along z-direction, (b) case 2: Square lattice of fibers:
in-plane loading field along y-direction. For all calculations: lattice size L1 = 50µm,
µ2 = 4000µ0, µ1 = µ0, σ2 = 1.12× 107 S/m, average flux density B0 = 1T.

Fig. 2.10 plots the evolution of ηSE as a function of the volume fraction ξ2 for the two

studied cases at frequencies from 10Hz to 10kHz.
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The trend on the error ηSE is very similar to that of ηa. The definition of the effective

complex permeability just increases the general level of error, approximately by a factor 2.

This increase in the error level could be reduced to almost zero by increasing the order of

the series expansion used to calculate the effective permeability. But this comes to a higher

computation cost.

Errors from Effective Permeability

Since only certain terms are employed in the series expansion calculations, there exist

discrepancies in estimating the effective permeability. These discrepancies give rise to

errors for the effective complex permeability, which further add up to the approximations

of the EC loss estimates.

If we only consider the spherical case and circular case with in-plane excitation, SMC

would have isotropic effective magnetic property, µr . Substituting the magnetic constitutive

relationship 〈B〉= µr 〈H〉 into (2.19), the EC loss density leads to:

U = π2 R2 f σ2

µ2
2 (µ

r −µ1)
2

ξ2 (µr)2 (µ2 −µ1)2
〈B〉∗ ·K · 〈B〉 (2.44)

Since the flux density 〈B〉 is a constant, the EC loss density has the relationship with µr :

U∝
�

1−
µ1

µr

�2

(2.45)

The EC loss density is a monotonically increasing function of µr as indicated in (2.45).

The effective permeability by series expansion (to the order ξ6
2 in (2.24) for the case 1

and to the order ξ12
2 in (2.26) for the case 2) is underestimated, as shown in Figs. 2.7

and 2.8: µr
SE ≤ µ

r
FEM. It gives rise to: USE ≤ U a. From the previous section, the average

field assumption always underestimates the EC loss density at low frequency: U a ≤ UFEM.

Therefore,

USE ≤ U a ≤ UFEM (2.46)

It leads to ηSE ≥ ηa. That clarifies the difference between Fig. 2.11 and 2.10 at low

frequency ( f < 5 kHz).

Errors versus Permeability Contrast

The level of error is also a function of the permeability contrast between matrix and

inclusions. The matrix magnetic permeability is kept at µ0. The error being frequency-
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independent at low frequency (see Fig. 2.11 and 2.10), the frequency is fixed at f = 100

Hz. The radius R for the inclusions is also fixed at R= 24µm corresponding to a volume

fraction of 46.3% for spherical inclusions (case 1) and 72.4% for cylindrical inclusions

(case 2).

The EC loss density as a function of the permeability contrast between matrix and

inclusions is given in Fig. 2.12. The corresponding error ηSE is given in Fig. 2.13. The EC

loss density increases with the permeability of the inclusions. It reaches a saturation value

when the permeability contrast is greater than 100. For this level of contrast, the magnetic

flux is fully concentrated in the inclusions. A further increase of the permeability contrast

then causes only slight variation of the magnetic flux distribution, which can be neglected.

For the same reasons, EC losses also reach a saturation value.
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Fig. 2.12 EC loss density USE evaluated with the proposed approach (lines) for cases 1 and
2 and corresponding FEM results UFEM (dots) as a function of the permeability contrast
between matrix and inclusions. For all calculations: f = 100Hz, lattice size L1 = 50µm,
R= 24µm, µ1 = µ0, σ2 = 1.12× 107 S/m, average flux density B0 = 1T.

These results show that, when the permeability contrast is high, greater than a few

hundreds, the error remains at a very stable level, lower than 6 % and 3 % for case 1

and case 2, respectively. As the contrast decreases, the error decreases, which is expected

because the distortion of the magnetic field inside the inclusions is higher when the contrast

is higher. In other words, the average field assumption is getting more and more appropriate

when the contrast is low.
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Fig. 2.13 Errors on EC losses of the proposed homogenization model as a function of the
permeability contrast between matrix and inclusions for cases 1 and 2. Configuration: the
same as Fig. 2.12.

Errors versus Inclusion Size

If the filling factor is fixed, there is a proportional relationship between the elementary cell

size and the radius of the inclusion. Meanwhile, the permeability of each component is

kept constant. The effective permeability would remain, in principle, invariable.

It is known that the EC loss density increases with the inclusion size. Therefore, in

designing SMC, in order to reduce EC loss density, small inclusion size is desired. By (2.44)

the relationship between the EC loss density and the inclusion size is:

U∝ R2 (2.47)

It explains the parabolic curves of EC loss density in Fig. 2.14. The corresponding errors

are plotted in Fig. 2.15. It is clear from Fig. 2.15 that the errors are independent of the

inclusion size. The errors come from the average field assumption and the definition of

the effective permeability. When the filling factor and magnetic property are fixed, the

effective permeability is invariable according to (2.23). It is not affected by the inclusion

size. Moreover, by (2.15) the average field in the inclusion does not rely on the inclusion

size.
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Fig. 2.14 EC loss density versus different inclusion size. The filling factor is fixed for
each case: 46.32 % for case 1 and 72.38% for case 2. For all calculations: f = 100Hz,
µ1 = µ0, µ2 = 4000µ0, σ2 = 1.12× 107 S/m, average flux density B0 = 1T.
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Fig. 2.15 Errors on EC losses of the proposed homogenization model as a function of the
inclusion size for cases 1 and 2. Configuration: the same as Fig. 2.14.

2.6 Discussion

The microstructures considered in this study are not fully representative for real SMC, and

limit the filling factors that can be achieved. Higher filling factors hence more complex

shapes for the inclusions must be considered. The same approach remains applicable,

the key-point lying in the determination of the effective magnetic permeability and of the

average magnetic field in the inclusion.
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For SMC with high concentration of inclusions (greater than 90%), the magnetic field in

the inclusion can also be viewed uniform. MG estimate provides acceptable approximation

for the effective magnetic permeability of the composite (The higher inaccuracies for the

MG estimate arise for mid-range filling factors).1

In order to realize high concentration of inclusions, SMC with fiber or cubic inclusions are

considered. The fiber particle is assumed to have infinite length and a square cross-section.

This problem can be simplified as two-dimensional, denoted as ‘square microstructure’.

Similarly, the problem of SMC with cubic inclusion is denoted as ‘cube microstructure’.

2.6.1 Square Microstructure

Perpendicular Field

The applied magnetic field is perpendicular to the square domain. Substituting the EC

loss density in the domain (A.24) in Appendix A into (2.17), the EC loss density of square

microstructure has the form,

U z =
9π2

128
ξ2 f σ2µ

2
2 〈Hz〉

2
2 L2

2
(2.48)

where L2 is the size of the inclusion.

In-plane Field

Now the magnetic field is applied in-plane. Denote 〈H〉2 the ‘uniform’ magnetic field in

the inclusion. Neglecting the induced fields and considering there is no initial current flow

through the fiber, the electric field in the inclusion can be solved from Maxwell-Faraday

equation which further leads to the EC loss density of SMC,

U x y =
1
6
π2ξ2 f L2

2σ2µ
2
2

�

〈Hx〉
2
2 +



H y

�2

2

�

(2.49)

To combine both the perpendicular and in-plane field discussions, a shape factor tensor can

be determined as,

K=





1
6 0 0

0 1
6 0

0 0 9
128



 (2.50)

1An example of comparison between MG estimate and FEM results is given later in Fig. 4.4 for 2D case
and in Fig. 5.6 for 3D case.
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The complete EC loss density formula is,

U = ξ2π
2 L2

2 f σ2µ
2
2 〈H〉

∗
2 ·K · 〈H〉2 (2.51)

2.6.2 Cube Microstructure

If the magnetic field H in the cube-shaped inclusion can be considered uniform, the EC

losses of the cube can be determined from the cross-section perpendicular to the field.

According to the discussion of the square case in Appendix A, the EC loss density formula

of SMC with cubic inclusions has the form:

U =
9

128
π2ξ2 f L2

2σ2µ
2
2 〈H〉

2
2 (2.52)

where L2 is the size of the cubic inclusion. A shape factor tensor can be determined as (see

Appendix A),

K=
9

128
I (2.53)

so that the EC loss density formula is,

U = ξ2π
2 L2

2 f σ2µ
2
2 〈H〉

∗
2 ·K · 〈H〉2 (2.54)

2.6.3 Complex Permeability

The effective magnetic permeability µr is obtained by MG estimate (2.20). According to

Inclusion Based Problem (IBP) approaches [34, 89], the shape of the inclusion placed in

the infinite medium for the inclusion problem is only related to the spatial distribution

of the phase in the composite. It is not determined by the shape of the phase in the real

microstructure. Therefore, the depolarization tensor (2.21) defined previously remains

valid for high concentration SMC with square-shaped inclusions or with cubic inclusions.

Similar to (2.32), the imaginary component of complex permeability has the form

µi =
π L2

2 f σ2µ
2
2

ξ2 (µ2 −µ1)2
(µr − µ1I) ·K · (µr − µ1I) (2.55)

Finally, the complex permeability is determined,

µ̃= µr − jµi (2.56)
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The discussion on the complex permeability of high concentration SMC is expanded in

the following chapters.

2.7 Conclusion

In this chapter, a homogenization strategy for Soft Magnetic Composites is proposed. The

purpose is to define an effective complex permeability tensor representative for the behavior

of the material. The real part of this tensor reflects the quasi-statics magnetic behavior

of the composite, while the imaginary part reflects the eddy current losses. The latter is

proportional to the loading frequency and depends on the material properties. It also relies

on the spatial arrangement of inclusions, which eventually determines the magnetic field

distribution within the structure.

Based on the study of a single inclusion in an infinite medium, the case of dilute

heterogeneous materials is deduced, and the general case of composites is extrapolated

from this approach. It is crucial to determine the effective permeability, which leads to the

determination of the average field in the inclusions. As a result, EC loss density in SMC is

described using a homogenized complex permeability tensor. The approach is compared to

finite element results and the observed errors are of the order of 5%. It is worth noting

that the approach requires accurate estimates of the effective static magnetic permeability

tensor of the composite material. That is usually the main difficulty of such a model. It

is found that the approach tends to underestimate the EC loss density compared to finite

element results and that the errors are frequency-independent for low frequency ranges.
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In this chapter, upper and lower bounds for eddy current loss density are analytically

deduced for SMC periodic pattern of circular fibers or spherical particles. First and sec-

ond order moment of the magnetic field in the inclusions are used to build the bounds.

Homogenization strategy is applied to determine the effective permeability which links

the microscopic field to the macroscopic one. Series expansion can provide an exact for-

mula for the effective permeability, which leads to the determination of first and second

order moment of the magnetic field within the inclusions. In the cases where the effective

permeability is approximated, bounds approaches are used to estimate the EC loss den-

sity. The bounds estimates are compared with Finite Element calculations and then with

experimental data from the literature.

3.1 EC Loss Density in SMC

Magnetic field H can be mathematically split into two contributions H = Hqs +HEC . Hqs

represents the magnetic field in quasistatics and HEC denotes the induced magnetic field

due to EC. At low frequency, HEC can be neglected, simplifying Maxwell’s equations (1.1)

into:

∇× E= − jωµHqs (3.1)

As shown in Fig. 2.4, consider a periodic layout of biphasic SMC with linear, isotropic

constituents. Cylindrical (fiber) or spherical inclusions with conductivity σ2 and permeabil-

ity µ2 are considered. The fiber inclusion problem can be reduced to a 2D study and only

circular cross-section for fibers is considered.

If the magnetic field H2 in the inclusion is uniform, as is discussed in the previous

chapter, the EC loss density has the form,

U = ξ2π
2 R2 f σ2µ

2
2 Kt ·







H2
2x

H2
2y

H2
2z






(3.2)

where ξ2 is the volume fraction of the inclusion (filling factor) and R is the radius of cylinder

or sphere. Shape factor vector K value depends on the shape of the inclusion,

Kt =











�

1
2

,
1
2

,
1
4

�

(cylindrical inclusion)
�

1
5

,
1
5

,
1
5

�

(spherical inclusion)
(3.3)
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For SMC, the magnetic field in the inclusion is usually nonuniform and (3.2) is not valid

anymore. Then, EC loss density cannot be expressed as a function of the magnetic field

distribution in such a simple manner. The norm of the magnetic field, [H2
2x , H2

2y , H2
2z]

t , in

the inclusion in (3.2) is replaced by first or second order moment of the magnetic field:

H2
2m ≃ 〈Hm〉

2
2 with m= x , y, z (3.4)

or

H2
2m ≃



H2
m

�

2
with m= x , y, z (3.5)

where 〈·〉2 is the average operator over the inclusion. It leads to the following two estimates

for EC loss density:

U− = ξ2π
2 R2 f σ2µ

2
2 Kt ·









〈Hx〉
2
2



H y

�2

2

〈Hz〉
2
2









(3.6)

and

U+ = ξ2π
2 R2 f σ2µ

2
2 Kt ·












H2
x

�

2
¬

H2
y

¶

2



H2
z

�

2









(3.7)

The following section provides the proof that the exact value of EC loss density lies

between these two estimates for square lattice of cylinders or cube lattice of spheres.

3.2 Bounds

Under the low frequency assumption, the magnetic field distribution can be deduced

similarly to magnetostatics conditions. EC loss density bounds are discussed separately for

SMC in cylinder microstructure and sphere microstructure.

3.2.1 Cylinder Microstructure

The case of cylinder Microstructure can be simplified into a 2D problem. Magnetic field

can be decomposed into two parts. One is the tangent component (in-plane part); the

other is the normal component. As discussed in the previous chapter, when the field is

imposed perpendicularly to the domain, at low frequency, the magnetic field in the domain
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is uniform so (3.2) still holds:

U z =
1
4
ξ2π

2 R2 f σ2µ
2
2 H2

z (3.8)

The effective magnetic permeability can also be exactly determined by the upper Wiener

bound (1.28).

Consider now only the in-plane magnetic field loading, as indicated in Fig. 3.1. The

problem is solved in polar coordinates (r,θ ) and Cartesian coordinates (x , y).

µ2 x

y

σ2 

µ1 

L1

Fig. 3.1 Sketch of SMC in a 2D problem with in-plane magnetic field loading.

For a square lattice of circular inclusions excited by an average magnetic field H (with

Hz = 0) over the cell (and denoting H = ∥H∥), the general magnetic scalar solution for

the potential Φ (with H = −∇Φ) in the inclusion can be determined from the following

equation in polar coordinates [25],

Φ2(r,θ ) =H R
∞
∑

n=0

(An cos [(2n+ 1)θ] + Bn sin [(2n+ 1)θ])
� r

R

�2n+1

(3.9)

where An, Bn are real dimensionless coefficients depending on the applied magnetic field

direction, constituent properties and relative size of the inclusion. The magnetic field in
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the inclusion in polar coordinates is then,

H2(r,θ ) =−H
∞
∑

n=0

(An cos [(2n+ 1)θ] + Bn sin [(2n+ 1)θ])(2n+ 1)
� r

R

�2n
u⃗r

+H
∞
∑

n=0

(An sin [(2n+ 1)θ]− Bn cos [(2n+ 1)θ])(2n+ 1)
� r

R

�2n
u⃗θ

(3.10)

where u⃗r and u⃗θ indicate unit vectors in polar coordinates.

The induced electric field in the inclusion can be determined. Considering null current

flow through the cylinder:

Ez(r,θ ) = jωµ2 H R
∞
∑

n=0

(An sin [(2n+ 1)θ]− Bn cos [(2n+ 1)θ])
� r

R

�2n+1

(3.11)

with ω the working angular frequency: ω= 2π f . The in-plane electric field is zero (with

Er = Eθ = 0).

Applying the definition of EC loss density U = 〈σE2〉
2 f , the exact value can be determined

(while considering no loss in the dielectric matrix surrounding the inclusion):

U x ,y =
1
2
ξ2π

2 R2 f σ2µ
2
2 H2

∞
∑

n=0

1
n+ 1

(A2
n + B2

n) (3.12)

Now, let consider the two estimates for EC loss density given by (3.6) and (3.7). Using

(3.10), the first and second order moment in the inclusion are respectively:











〈H〉2 = −H(A0u⃗x + B0u⃗y)




H2
�

2
= H2

∞
∑

n=0

(2n+ 1)(A2
n + B2

n)
(3.13)

Substituting them into (3.6) and (3.7) leads to the following EC loss density estimates:















U−x ,y =
1
2
ξ2π

2 R2 f σ2µ
2
2 H2(A2

0 + B2
0)

U+x ,y =
1
2
ξ2π

2 R2 f σ2µ
2
2 H2

∞
∑

n=0

(2n+ 1)(A2
n + B2

n)
(3.14)

Comparing (3.12) to (3.14), the two estimates clearly define bounds for EC loss density:

U−x ,y ≤ U x ,y ≤ U+x ,y . (3.15)
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When the magnetic field in the inclusion is uniform, H2(r,θ) in (3.10) should be

r-independent, which gives ,

An = 0, Bn = 0 ∀n ∈ N+. (3.16)

Substituting (3.16) into (3.12) to (3.14) lead to the equality in (3.15). This is the case of

dilute approximation.

EC loss density is also exact for the component of the magnetic field in z-direction, that

is,

U−z = U z = U+z (3.17)

Combining the cases of perpendicular field and in-plane field, the following generic bound-

ing equation holds for SMC with cylinder microstructure:

U− ≤ U ≤ U+ (3.18)

3.2.2 Sphere Microstructure

For cubic lattice of spherical inclusions, magnetic field is applied along z-direction first.

The general case can be obtained using symmetries (see Appendix C for detailed proof).

In spherical coordinates (r,θ ,φ), shown in Fig. 3.2, the magnetic scalar potential Φ (with

x

y

z

θ

Fig. 3.2 Spherical coordinates (r,θ ,φ).

H = −∇Φ) can be solved by Laplace’s equation ∇2Φ = 0. The general solution has the

form [77]:

Φ(r,θ ,φ) =
∞
∑

l=0

l
∑

m=−l

�

Almr l + Blmr−(l+1)
�

Ylm(θ ,φ) (3.19)
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where Alm and Blm are coefficients to be determined by the boundary conditions and also

depend on R. Ylm(θ ,φ) is the normalized spherical harmonic function:

Ylm(θ ,φ) =

√

√2l + 1
4π

(l −m)!
(l +m)!

Pm
l (cosθ )e jmφ (3.20)

with Pm
l (cosθ ) the Legendre polynomials.

If it concerns only the sphere (the inclusion), Blm = 0. In addition, l is restricted to odd

integers (l = 1, 3, 5, . . . ) and m to non-negative integer multiples of 4 (m = 0, 4, 8, . . . ) [22,

90]. Denote H = ∥H∥. The potential equation can be rewritten as:

Φ2(r,θ ,φ) = H R
∞
∑

n=0

⌊ 2n+1
4 ⌋
∑

m=0

C2n+1,4m

� r
R

�2n+1
Y2n+1,4m(θ ,φ) (3.21)

with ⌊·⌋ representing the floor operator. Cn,m are real dimensionless coefficients.

Apply

H= −∇Φ= −
∂Φ

∂ r
u⃗r −

1
r
∂Φ

∂ θ
u⃗θ −

1
r sinθ

∂Φ

∂ φ
u⃗φ (3.22)

where u⃗r , u⃗θ and u⃗φ are unit vectors in spherical coordinates. And then the magnetic field

distribution in the inclusion can be obtained.

Given the magnetic field distribution in the sphere, the induced electric field can be

analytically deduced. Numerical calculations show that azimuthal induced electric field is

negligible. This is also discussed in [21]. Finally, the expression for Eφ is:

Eφ(r,θ ,φ) = − jωµH R
∞
∑

n=0

C2n+1,0

2n+ 2

� r
R

�2n+1 ∂

∂ θ
Y2n+1,0(θ ,φ) (3.23)

with Er = Eθ = 0.

Substituting (3.23) into the definition U = 〈σE2〉
2 f leads to the exact EC loss density

formula:

U z =
3
4
ξ2πR2 f σ2µ

2
2 H2

∞
∑

n=0

2n+ 1
(n+ 1)(4n+ 5)

C2
2n+1,0. (3.24)

The average magnetic field 〈H〉2 and the second order moment



H2
�

2
in the sphere are

obtained from (3.22):


















〈H〉2 = −

√

√ 3
4π

H C1,0




H2
�

2
=

3
4π

H2
∞
∑

n=0

(2n+ 1)C2
2n+1,0

(3.25)
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Substituting them into (3.6) and (3.7) leads to:















U−z =
3

20
ξ2πR2 f σ2µ

2
2 H2C2

1,0

U+z =
3

20
ξ2πR2 f σ2µ

2
2 H2

∞
∑

n=0

(2n+ 1)C2
2n+1,0

(3.26)

Again, comparing to (3.24), it can be concluded that:

U−z ≤ U z ≤ U+z (3.27)

Due to symmetry, the inequality also holds when the magnetic field is applied along

x- or y-axis separately. The corresponding EC loss density is U x or U y , respectively.

As discussed in Appendix C, the final EC loss density can be directly obtained by the

addition:U = U x + U y + U z. The same for the first and second order moment of the

magnetic field. Therefore, if the magnetic field is in arbitrary direction, we still have:

U− ≤ U ≤ U+ (3.28)

which demonstrates that estimates for EC loss density using average magnetic field and

second order moment ((3.6) and (3.7)) are bounds in the case of cubic lattice of spheres.

3.2.3 Extension to More Generic Microstructures

It has been proved that, for periodic SMC with circular or spherical inclusions, first and

second order moment of magnetic field provide bounds for EC loss density. Consider that

the constituents of a biphasic composite are linear and isotropic and the domain is excited

by a macroscopic flux density ∥B∥ = B0. Given the effective permeability µ̃, the average

magnetic field 〈H〉2 and the second order moment of magnetic field



H2
�

2
in the inclusion

can be retrieved [88],

〈H〉2 =
µ̃−µ1

ξ2(µ2 −µ1)
H=

µ̃−µ1

ξ2 µ̃(µ2 −µ1)
B (3.29)

and



H2
�

2
=

1
ξ2

∂ µ̃

∂ µ2
H

2
=

1
ξ2 µ̃2

∂ µ̃

∂ µ2
B

2
(3.30)

where µ1 is the permeability of the dielectric matrix.
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For an arbitrary composite, if enough geometry information, noted Ξ, is given, the

effective permeability can be obtained as a function of the geometry information and

the properties of the constituents: µ̃(µ1,µ2,Ξ). The shape factor K(Ξ) can be obtained

analytically, as in Appendix A, or semi-analytically [86], with the geometries of the inclusion

simplified as basic simple shapes. Substituting µ̃(µ1,µ2,Ξ) into (3.29) and (3.30), the

first and second order moment of magnetic field can be obtained, which lead to the upper

and lower EC loss density bounds (U+ and U−), respectively. The bounds as a function

of volume fraction of inclusions ξ2 is plotted in Fig. 3.3 in a schematic way. The EC loss

density values are normalized by the value at ξ2 = 1. At very low or very high volume
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Fig. 3.3 A schematic plot of EC loss density bounds as a function of volume fraction of the
inclusion.

fraction, the magnetic field in the inclusion can be considered uniform, so that,




H2
�

2
≈ 〈H〉22 (3.31)

At the middle range of volume fraction, the magnetic field in the inclusion is distorted, so

that,



H2
�

2
> 〈H〉22 (3.32)

Therefore, there is a gap between the two bounds.

The EC loss density bounds depend on the permeability contrast, as shown in Fig. 3.4.

At low permeability contrast, the magnetic field in the inclusion can be considered uniform,

so that the two bounds have the same value. As the permeability contrast increases, the

magnetic field become distorted. The two bounds separate. When the permeability contrast

is big enough, the change of the field distribution brought by the increase of the permeability
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Fig. 3.4 A schematic plot of EC loss density bounds as a function of permeability contrast.

is negligible. Therefore, the space between the two bounds remains unchanged when the

permeability contrast is high enough.

The EC loss density bounds also vary as a function of frequency, as shown in Fig. 3.5.

At low frequency, the contribution of the induced magnetic field is neglected. The field
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Fig. 3.5 A schematic plot of EC loss density bounds as a function of frequency.

distribution is independent of frequency. The two bounds are proportional to frequency

just as the EC loss density. Therefore, the gap between the two bounds is also proportional

to frequency.
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To conclude, if the effective permeability µ̃(µ1,µ2,Ξ) and the shape factor K(Ξ) are

correctly determined, the upper and lower bounds for EC loss density can be obtained.

Nevertheless, in most cases, the microstructure information is not sufficiently provided.

Usually, with limited geometry information, the effective permeability can only be estimated

and the form of the inclusions can be approximated into basic shapes. If an estimate for

effective permeability is used, then, U− and U+ cannot be considered as bounds anymore.

3.3 EC Loss Density Estimates

The upper and lower bounds depend greatly on the determination of the effective per-

meability of the composite. In most cases, the effective permeability cannot be exactly

obtained; the value has to be approximated. The upper and lower bounds approaches can

only be used as estimates.

Maxwell Garnett (MG) estimate is a simple and popular approach for the effective

property of composite. The effective permeability is obtained by MG estimate (1.29).

Substituting (1.29) into (3.29) and (3.30) leads to




H2
�

2
= 〈H〉22 (3.33)

Therefore, there is only one EC loss density estimate, denoted as UMG. MG estimate

provides a satisfying approximation for dilute SMC with circular or spherical inclusions. An

alternative effective permeability estimate can be obtained using series expansions [22, 25],
which can attain high precision by calculating high order terms even for high volume

fractions ξ2. Therefore, (3.29) and (3.30) can be determined and provide EC loss density

bounds estimates by substitution into (3.6) and (3.7). It should be noted that series

expansion is carried out to compute the infinite sum of coefficients. In principle, for

composite with square lattice of circular inclusion or with cubic lattice spherical inclusions,

the effective permeability can be exactly determined and exact values of average magnetic

field and second order moment are obtained.

In the following, EC loss density estimates for periodic SMC with circular inclusion

or spherical inclusions are obtained with series expansions. For SMC with high volume

fraction of inclusions (greater than 78.54% for 2D case, or greater than 52.36% for 3D

case), the inclusions cannot be considered circular or spherical without overlapping. The

inclusions are then taken as squares or cubes. The estimates are compared with numerical

simulations. Finite Element Method (FEM) calculations have been performed on a unit

cell of SMC as described in Fig. 2.4a for different volume fractions at different frequencies.
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Thus, EC loss density UFEM, is post-processed in FEM calculations and is considered as a

reference value.

The cell size L1 (lattice length) is fixed to 50µm. The average flux density over a cell

B0 is fixed to 1 T. The material properties used for the constituents are given in Table 2.1 in

the previous chapter. In the following calculations, only one parameter can vary at a time.

3.3.1 Cylinder Microstructure

The effective permeability can be determined by MG estimate, denoted as µ̃MG2
1. µ̃MG2 as

a function of volume fraction is plotted in Fig. 2.7b. µ̃MG2 is used to obtain EC loss density

estimate, UMG (because



H2
�

2
= 〈H〉22, the two estimates have the same value).

On the other hand, for circular inclusions, as shown in Fig.2.7b, series expansion

approaches provide more accurate approximations of effective properties than the MG

estimates. The effective permeability is obtained using series expansion with the Godin’s

formula (2.23b).

In the following results, U−G and U+G are determined by using the effective permeability

given by Godin’s formula (2.23b). The effective permeability is calculated to the order ξ12
2

in (2.26).

EC Loss Density as a Function of the Filling Factor

Numerical EC loss density UFEM and analytical bounds U−G and U+G varying according to

the filling factor ξ2 of cylinders are plotted in Fig. 3.6. In the plots, the ‘cir’ indicates the

results for cylinders with circular cross section, while the ‘squ’ for cylinders with square

cross section.

This figure indicates that EC losses increase when the volume fraction of inclusions

becomes higher. For square-shaped inclusions, the EC loss density estimate writes,

U squ
MG =

1
6
ξ2π

2 L2
2 f σ2µ

2
2 〈H〉

2
2

=
1
6
π2 L2

1 f σ2 B2
0

�

2µ2ξ2

µ1 +µ2 + (µ2 −µ1)ξ2

�2 (3.34)

U squ
MG is a monotonically increasing function of ξ2.

For the case of circular inclusions, given µ2 > µ1, (2.27) satisfies 0 < α < 1, which

results in µ̃G in (2.23b) being a monotonically increasing function of ξ2. The EC loss density

1‘MG2’ refers to the 2D case in (1.29).
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Fig. 3.6 EC loss density as a function of filling factor of the inclusion. For all calculations:
f = 100 Hz, lattice size L1 = 50µm, µ2 = 4000µ0, µ1 = µ0, σ2 = 1.12× 107 S/m, average
flux density B0 = 1 T.

estimate from the average magnetic field approach has the form,

U−G =
1
2
ξ2π

2 R2 f σ2µ
2
2 〈H〉

2
2

=
1
2
π L2

1 f σ2 B2
0

�

1
1−µ1/µ2

�2 �

1−
µ1

µ̃

�2 (3.35)

Therefore, U− increases monotonically with the volume fraction ξ2, which was expected.

At low volume fraction, the bounds approximations ( U−G and U+G) and MG estimate

(UMG) agree very well with the FEM results. The reason is that, at low volume fraction, the

magnetic field in the inclusion is uniform (dilute approximation). The uniformity of the

magnetic field provides the condition of equality in (3.15). Also for a given low volume

fraction, the numerical results and estimates are the same no matter the cross section is a

circle or square.

At the middle range of volume fraction (0.5< ξ2 < 0.75), the bounds approximations (

U−G and U+G) still work for circle-shaped inclusions. And the space between the two bounds

is getting bigger with the volume fraction, which is physically meaningful. That is because

the magnetic field is distorted severely as the volume fraction increases. MG estimate is
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not valid for the circular case at high volume fraction. Nevertheless, for the case of SMC

with square-shaped inclusions, MG estimate can provide acceptable approximations.

For high volume fraction (ξ2 > 0.79), the inclusion shapes cannot be circular without

overlapping. But square inclusions can reach these high volume fractions. MG estimate

still provides reliable approximations of EC loss density.

It can also be observed that, using MG estimate, SMC with circular inclusion have nearly

the same level of EC losses as SMC with square inclusions for the same volume fraction.

According to (2.4) and (2.49), we have,

U squ
MG

U cir
MG

=
π

3
(3.36)

As a summary, for SMC with circular inclusions, Godin’s formula is used to bound the EC

losses. For SMC with square-shaped inclusions, MG estimate is a good choice to obtain the

EC losses. It is expected that for high volume fraction inclusion-matrix type composites,

the MG estimate is a good approximation for the effective permeability as long as the

distribution of the inclusions can be considered random. In the following discussion on

the effect of permeability contrast, MG estimate is examined for SMC with square-shaped

inclusions.

EC Loss Density as a Function of Permeability Contrast

EC loss density also depends on the permeability contrast, cµ = µ2/µ1. The matrix material

is nonmagnetic, that is, µ1 = µ0. Results are plotted in Fig. 3.7. For all the calculations,

the filling factor of inclusions is fixed to ξ2 = 72.38%. For circular inclusions, the radius is

R= 24µm and for square-shaped inclusions, the size is L2 = 42.5µm.

When the permeability contrast is high (greater than a few hundred), EC loss density

values saturate. Actually, if µ2≫ µ1, then (2.27) becomes α≈ 1, which results in λ and µ̃G

roughly independent of µ2. For the case of circular inclusion, the bounds estimates have

the forms,

U−G =
1
2
ξ2π

2 R2 f σ2 B2
0

�

1
1−µ1/µ2

�2� 2
1+λξ2

�2

λ2

≈
1
2
ξ2π

2 R2 f σ2 B2
0

�

2
1+λξ2

�2

λ2 as µ2≫ µ1

(3.37)
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Fig. 3.7 EC loss density as a function of the permeability contrast. Parameters: f = 100 Hz,
lattice size L1 = 50µm, ξ2 = 72.38%, µ1 = µ0, σ2 = 1.12× 107 S/m, average flux density
B0 = 1 T.

and

U+G =
1
2
ξ2π

2 R2 f σ2 B2
0

�

1
1+µ1/µ2

�2� 2
1+λξ2

�2
�

1+ 0.9175α2ξ4
2 + . . .
�

≈
1
2
ξ2π

2 R2 f σ2 B2
0

�

2
1+λξ2

�2
�

1+ 0.9175α2ξ4
2 + . . .
�

as µ2≫ µ1

(3.38)

so that U− and U+ are also cµ-independent and the inequality U− < U+ holds.

For the case of square-shaped inclusions, the effective permeability is determined by

MG estimate, the EC loss density formula writes,

UMG =
1
6
π2 L2

1 f σ2 B2
0

�

2ξ2 cµ
1− ξ2 + (1+ ξ2)cµ

�2

≈
1
6
π2 L2

1 f σ2 B2
0

�

2ξ2

1+ ξ2

�2

as cµ≫ 1

(3.39)

For low contrast, the differences between estimates and the reference values are very

low. It was expected since the magnetic field is almost uniform in the inclusions for low

permeability contrast even for high filling factors. Because the volume fraction is fixed,

when cµ ≫ 1, µ̃ approaches a constant (judging either from series expansion (2.23) or

from MG estimate (2.20)). Thus, the variation of the magnetic field distribution can be

neglected. Finally the discrepancy between the MG approach and the FEM results remains
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constant as cµ increases (when cµ > 100 in Fig. 3.7). This discrepancy is attributed to the

approximation on the effective permeability estimate.

3.3.2 Sphere Microstructure

Similar to the case of cylinder microstructure, for cubic inclusions, µ̃MG3 (‘MG3’ means the

3D case in (1.29), see the plot of µ̃MG3 as a function of volume fraction in Fig. 2.7a) is used

to obtain EC loss density estimate, UMG. For spherical inclusions, the effective permeability

is obtained using series expansion with Lam’s formula (2.23a). In the following results,

U−Lam and U+Lam are determined by using the effective permeability given by Lam’s formula

(2.23a). The effective permeability is calculated to the order ξ6
2 in (2.24).

EC Loss Density as a Function of the Filling Factor

EC loss density varying with filling factor ξ2 of inclusions is plotted in Fig. 3.8. In the plots,

the superscript ‘sph’ represents the case of SMC with ‘spherical’ inclusions, and ‘cub’ stands

for ‘cubic’.

Similar conclusions can be drawn for SMC with spherical inclusions as for SMC with

cylindrical inclusions. At low volume fraction (dilute assumption), MG estimate provides

a reliable approximation for EC loss density. That is because the magnetic field can be

considered uniform. At middle volume fraction, when the inclusions are assumed spherical

and the microstructure periodic, MG estimate is unacceptable, while the bounds estimates

(U−Lam and U+Lam) are valid. And the space between two bounds is getting bigger with the

volume fraction.

By comparison, when the inclusions are cube-shaped, MG estimate provides relatively

good approximation of EC loss density for all the volume fraction range.

Combining (2.12) with (2.52) for the same volume fraction leads to,

U cub
MG

U sph
MG

≈ 0.91 (3.40)

The ratio in (3.40) does not depend on the volume fraction. When the inclusions are

spherical, and therefore the filling factor small, Lam’s approach is a better option. If the

inclusions are cubic, MG estimate gives acceptable results. For any microstructure, if the

filling factor is high, MG estimate seems a good option if the distribution of the inclusions

can be considered random. In the following permeability contrast discussion, MG estimate

is calculated for SMC with cubic inclusions.



66 Bounds and Estimates on EC Losses in SMC

0 0.2 0.4 0.6 0.8 1
0

1

2

3

U−
Lam

U+
Lam

U sph
MG

U cub
MG

volume fraction ξ2

E
C

lo
ss

d
en

si
ty

(J
/m

3
)

U sph
FEM U cub

FEM

Fig. 3.8 EC loss density as a function of the filling factor of the inclusions. Parameters:
f = 100 Hz, lattice size L1 = 50µm, µ2 = 4000µ0, µ1 = µ0, σ2 = 1.12× 107 S/m , average
flux density B0 = 1T.

EC Loss Density as a Function of Permeability Contrast

EC loss density depends also on the permeability contrast,cµ. The matrix material is

nonmagnetic, that is, µ1 = µ0. Fig. 3.9 presents EC loss density as a function of permeability

contrast for a fixed filling factor ξ2 = 46.32%. For spherical inclusions, the radius is

R= 24µm and for cubic inclusions, the size is L2 = 38.69µm.

Again, similar conclusions can be drawn for SMC with spherical inclusions (see conclu-

sions for cylindrical inclusions). A similar formula can be obtained for U− which is shown

to be cµ-independent at high permeability contrast:

U−Lam =
1
5
ξ2π

2 R2 f σ2 B2
0

�

1
1−µ1/µ2

�2� 3
γ+ 3ξ2

�2

ξ2
2

≈
1

5ξ2
π2 R2 f σ2 B2

0

�

3
γ+ 3ξ2

�2

as µ2≫ µ1

(3.41)
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Fig. 3.9 EC loss density as a function of the permeability contrast. For all calculations:
f = 100 Hz, lattice size L1 = 50µm, ξ2 = 46.32%, µ1 = µ0, σ2 = 1.12× 107 S/m, average
flux density B0 = 1T.

For the case of cubic inclusions, the effective permeability is determined by MG estimate,

the EC loss density writes,

UMG =
9

128
π2 L2

1 f σ2 B2
0

�

3ξ2 cµ
2(1− ξ2) + (1+ 2ξ2)cµ

�2

≈
9

128
π2 L2

1 f σ2 B2
0

�

3ξ2

1+ 2ξ2

�2

as cµ≫ 1

(3.42)

3.4 Discussion

3.4.1 Numerical Calculations on EC Losses Estimates

EC losses bounds hold for composite with square lattice of cylinders or cubic lattice of

spheres. In this section, the possibility to extend these bounds to other microstructures is

explored. In the following, microstructures are generated from randomly located cylinders

which cannot overlap.

Different distributions of cylinders will lead to different EC losses since field distribution

highly depends on microstructure. A square structure of length L1 = 200µm is considered,

containing 16 inclusions of the same radius. The following constraints have been used

to generate the microstructures: the distance from a cylinder to the boundary satisfies

D1 ≥ 1µm and the distance between two cylinders respects D2 ≥ 2µm. One realization of

random microstructure is shown in Fig. 3.10.
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Fig. 3.10 An example of SMC with random distribution of same-size cylinders.

One thousand realizations of microstructures have been generated for each filling factor

and the average magnetic field in the inclusions have been post-processed
�
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as well as second order moment of the magnetic field
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loss density values of the structure UFEM.

(3.6) and (3.7) have then been computed using the post-processed average and second

order moment of magnetic field in order to build numerical estimates for EC loss density:
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(3.43)

Each realization has been checked independently and it has been found that the follow-

ing inequality was verified every time:

U−FEM ≤ UFEM ≤ U+FEM (3.44)

One hundred of copies of EC loss density and the corresponding bounds for R = 18µm are

plotted in Fig.3.11 as an example. This plot shows that the EC loss density (red line) lies

well in between the upper and lower bounds for each of the 100 calculations.

For a composite with a matrix-inclusion microstructure, and supposing the effective

permeability is known (or estimated with a certain accuracy), EC loss density can be easily



3.4 Discussion 69

0 20 40 60 80 100

1.6

1.8

2

2.2

Number

E
C

lo
ss

d
en
si
ty

(J
/
m

3
)

U+
FEM

UFEM

U−
FEM

Fig. 3.11 EC loss density and the corresponding bounds. Disk size: R = 18µm, Disk count:
16. L1 = 200µm, f = 100Hz,µ2 = 4000µ0, µ1 = µ0, σ2 = 1.12× 107 S/m, average flux
density B0 = 1T

estimated at the same time (using (3.43) with (3.29) and (3.30)). The two estimates

may even bound the real EC loss density as long as the effective permeability µ̃ and the

derivative ∂ µ̃

∂ µ2
are determined.

3.4.2 Model Validation

In this section, the EC loss density estimates are compared with (semi-)analytical models

and experimental approaches from the literature. In [91], O. de la Barrière et al. conducted

experiments on two types of commercial SMCs. EC losses were separated from the total

losses. And then they developed a (semi-)analytical model to predict the EC losses [73, 86].
The microscopic view of the two SMCs are shown in Fig. 3.12. The material parameters are

detailed in Tab. 3.1. The mean size represents the size of particles assuming the grains as

square. The ferromagnetic inclusion material is pure iron, with density δFe = 7870 Kg/m3

and conductivity σFe = 9.93× 106 S/m.

The above parameters are put in the EC losses estimates. In calculating, the volume

fraction is calculated from the density ratio δ/δFe, ξA ≈ 94.7% and ξB ≈ 92.3%. Since the

volume fraction is high, the inclusions are considered as cubic and the effective permeability

is determined using MG estimate. The corresponding EC loss density estimate is denoted

UMG. The results are plotted in Fig. 3.13.
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(a) Type A SMC [73] (b) Type B SMC [91]

Fig. 3.12 Cross-sectional microscopic view of SMCs

Table 3.1 Parameters for SMC A and B [73, 91]

SMC A SMC B

Relative permeability µr 450 110

Electrical resistivity ρ(Ω ·m) 280× 10−6 7600× 10−6

Density δ(Kg/m3) 7450 7260

Mean size 〈s〉 (µm) 114 29.5

0 2 4 6 8 10
0

50

100

Frequency (kHz)

E
C

lo
ss

d
en

si
ty

(m
J
/
K
g
) UMG

Distribution
Experimental

(a) Type A SMC

0 2 4 6 8 10
0

2

4

6

8

10

Frequency (kHz)

E
C

lo
ss

d
en

si
ty

(m
J
/
K
g
) UMG

Distribution
Experimental

(b) Type B SMC

Fig. 3.13 Comparison of EC loss density from different models with experimental results.
(Sinusoidal polarization, peak value: 1 T). ‘Experimental’ results are from [91]; ‘distribution’
results are the prediction from [73] considering the distributions of cross sections.

From the comparisons, the EC loss estimate model is validated. The advantage of this

model lies in the simplification. For geometry information, this model does not require a
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detailed microstructure analysis. The EC losses can be directly calculated with a simple for-

mula. Besides, this model considers the inclusions from the viewpoint of three-dimensions

and thus has the potential to correctly predict the EC losses at low volume fractions. The

model proposed in [73] uses statistical tools to deal with the micrographs. It considers only

the two-dimensional view of the composite. An image software has to be used to carry out

an extensive micrographic analysis and to find out experimental distribution functions on

the geometry information, which requires more time for data acquisition and processing.

3.5 Conclusion

It is demonstrated in this chapter that average and second order moment of magnetic field

can be used to bound EC losses in composite materials with square lattice of cylindrical

inclusions or cubic lattice of spherical inclusions, for low frequencies. Generic bounds are

predicted from the average and second order moment of magnetic field approaches.

A generalization attempt for a random distribution of (non-overlapping) cylinders shows

that average and second order moment of the magnetic field seem to still provide bounds

on EC losses.

The key point for evaluating these bounds is to know accurately the effective permeability

which enables to retrieve easily the average and second order moment of the magnetic field.

However, this effective permeability is usually estimated only. It means that the estimated

values for average and second order moment of the magnetic field can only be considered

as estimates for EC losses in that case.

A useful feature of this model is that EC distribution is not needed to estimate EC

losses which makes this model very simple since it only relies on a homogenization model

for the effective permeability. The two bounds estimates obtained in the case of periodic

microstructures of spherical (3D) or circular (2D) inclusions are usually close to each other,

providing accurate values for EC losses as long as the effective permeability is estimated

with good accuracy.

The model presented in this chapter has been first examined by comparison to FEM

results. It was then validated by comparing with models and experimental results from the

literature.
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As discussed in Chapter 2, the complex permeability of SMC contains both the magnetic

behavior and lossy characteristics of SMC. The two features can be approximated through an

equivalent material with the complex permeability. The model has been comprehensively

discussed on SMC with circular or spherical inclusions. It has been found that if the

real component of the effective permeability is well estimated, the imaginary part would

approximate the EC losses correctly. For high concentration SMC which can be considered

as square lattice of square inclusions, MG estimate provides a good approximation of the

real component of the complex effective permeability.

In this chapter, the complex permeability model is firstly extended to high filling factor

SMC. Secondly, a magnetic circuit made of high concentration SMC is homogenized. Field

and loss distributions are examined on an equivalent homogeneous magnetic circuit. And

the results are compared with the heterogeneous one.

4.1 EC Loss Density of High Concentration SMC

SMC have 3D microstructures, and when the length of the inclusion grains is much greater

than the size of the cross-section, SMC problems can be solved from the viewpoint of a 2D

structure. High concentration SMC are simplified as periodic and square-shaped inclusions.

The sketch of SMC is shown in Fig. 4.1. Because of periodicity, an elementary cell containing

an inclusion and its corresponding matrix is enough to represent the whole structure.

2

1 3

4

x

y
z

Fig. 4.1 Sketch of periodic high concentration SMC. The domain confined by dashed lines
1-4 forms an elementary cell of the periodic pattern.

This sketch represents both the 2D SMC and a cut plane of 3D SMC (for instance, cutting

through the middle of an inclusion from the viewpoint of z direction).

For 2D SMC with perpendicular magnetic field excitation, at low frequency, the magnetic

field in the inclusion as well as in the matrix is uniform. The EC loss density has been

derived as in appendix A. On the other hand, for SMC with in-plane magnetic field, the
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magnetic field in the inclusion is not uniform. Nevertheless, when the filling factor is big

enough, an approaching uniformity can be observed in the inclusion.

In order to check the variance of flux density over the inclusion, a standard deviation is

introduced as a function of the field and the domain studied:

ς(B,Ω) =



∥B− 〈B〉Ω∥
2
�

1
2

Ω
(4.1)

where 〈·〉Ω is the averaging operator over the domain Ω as 〈·〉Ω =
1
Ω

∫

Ω
·dΩ.

The 2D SMC problem can then be separated into two different cases depending on

the direction of the magnetic field excitation. The first case considers the magnetic field

perpendicular to the cell. The second case considers in-plane magnetic field.

4.1.1 Perpendicular field

When the magnetic field is applied perpendicular to the domain, the magnetic field is

uniform all over the domain, both in the inclusion and in the insulating matrix. As discussed

in Appendix A, EC loss density formula is recalled as,

U =
9

128
π2ξ2 f L2

2σ2µ
2
2 H2

z (4.2)

where ξ2, L2, σ2, µ2 are the volume fraction, the length of the inclusion, its electrical

conductivity and magnetic permeability respectively.

4.1.2 In-plane field

When the magnetic field is applied in-plane, for instance, along y direction, the magnetic

field and the eddy current density distribution in the inclusion are shown in the Fig. 4.2.

For different filling factors, the average flux density in the inclusion, 〈B〉2, and the

standard deviation of flux density in the inclusion, ς(B, 2), are post-processed from a FEM

calculations (see chapter 2). The ratio, ς(B, 2)/∥ 〈B〉2 ∥, as a function of the filling factor is

plotted in Fig. 4.3.

By comparing the value of standard deviation with the average value, it is justified to

conclude that the variance is negligible. In other words, the flux density can be globally
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(a) By (b) ∥J∥

Fig. 4.2 Flux density and eddy current density norm distribution in the inclusion. Lattice
size L1 = 50µm, volume fraction ξ2 = 97.6%, µ2 = 4000µ0, µ1 = µ0, σ2 = 1.12×107 S/m,
average flux density B0 = 1 T, frequency f = 100Hz.
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Fig. 4.3 Ratio of standard deviation of flux density to the average flux density norm in the
inclusion as a function of the filling factor. Lattice size L1 = 50µm, µ2 = 4000µ0, µ1 = µ0,
σ2 = 1.12× 107 S/m, average flux density B0 = 1T, frequency f = 100 Hz.

considered uniform over the inclusion. Denote B2 the ‘uniform’ flux density in the inclusion,

B2 =





B2x

B2y

0



 (4.3)
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Neglecting the induced fields and considering null current flow through the fiber, the

electric field in the inclusion can be solved from Maxwell-Faraday equation as:

E2 = j2π f (B2y x − B2x y)u⃗z (4.4)

where u⃗z is the unit vector in the direction z for the chosen coordinate system.

Substituting (4.4) into the EC loss density definition (1.16) and considering that EC

losses occur only in the inclusion, the EC loss density of SMC becomes,

U =
1
6
π2ξ2 f L2

2σ2 B2
2 (4.5)

To combine both the perpendicular and in-plane field discussions, for 2D SMC with

arbitrary field excitation, the average field in the inclusion writes,

B2 =





B2x

B2y

B2z



 (4.6)

The complete EC loss density formula is,

U = ξ2π
2 L2

2 f σ2 B∗2 ·K ·B2

= ξ2π
2 L2

2 f σ2µ
2
2H∗2 ·K ·H2

(4.7)

with the shape factor tensor K,

K=





1
6 0 0

0 1
6 0

0 0 9
128



 (4.8)

4.1.3 Complex permeability for SMC

Using the definition of complex permeability in Chapter 2, setting πH
∗
· µi ·H = U leads to

the imaginary component of complex permeability.

Homogenization strategy can be applied to build the relationship between the macro-

scopic field excitation, H, and the (average) field in the inclusion, H2:

H2 =
1

ξ2 (µ2 −µ1)
(µr −µ1I) ·H (4.9)
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where µr is the effective magnetic permeability (real component).

For SMC with high filling factor of inclusions, Maxwell-Garnett (MG) estimate provides a

reliable effective permeability of SMC. µr is determined by the formula (2.20). Furthermore,

effective complex permeability can be determined accordingly.

Because the tensors K, N and µr are diagonal, µi is also diagonal and writes,

µi =
π L2

2 f σ2µ
2
2

ξ2 (µ2 −µ1)2
(µr − µ1I) ·K · (µr − µ1I) (4.10)

And the complex permeability is determined,

µ̃= µr − jµi (4.11)

For the case of 2D SMC with a perpendicular field, the real effective permeability is an

exact determination. The effective permeability (real component) of 2D SMC (in-plane)

from MG estimate is examined by comparing with FEM calculations. In this case, the

effective permeability is isotropic. The results are plotted in Fig. 4.4.
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Fig. 4.4 Effective permeability (real component) from MG estimate by comparing to FEM
results, and the corresponding discrepancy. (2D SMC, cross-section magnetic permeability).
Lattice size L1 = 50µm, µ2 = 4000µ0, µ1 = µ0, magnetostatics.

The plots show that as the filling factor increases, the discrepancy between MG estimate

and the FEM result decreases. This trend is well correlated with the phenomena of field

distribution: higher filling factor of the inclusion gives better uniformity of magnetic field

in the inclusion.

By comparison, it is worth noting that SMC with circular or spherical inclusions have

better uniformity of magnetic field in the inclusion when the volume fraction is lower. The
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lower the volume fraction of the inclusion, the better of approximation of the effective

permeability and EC loss density.

The EC loss density for an equivalent virtual material with complex permeability is,

UMG = πH
∗
· µi ·H (4.12)
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Fig. 4.5 EC loss density from complex permeability (MG) by comparing to FEM results,
and the corresponding discrepancy. Lattice size L1 = 50µm, µ2 = 4000µ0, µ1 = µ0,
σ2 = 1.12 × 107 S/m. The applied field is along y-axis, and the average flux density
B0 = 1 T, frequency f = 100 Hz.

The EC loss density obtained by (4.12) is compared with FEM results, as in Fig. 4.5.

High concentration periodic SMC with square-shaped inclusions can be homogenized into

an equivalent virtual material with a complex permeability. The EC loss density determined

by the complex permeability attains high accuracy. The discrepancies are below 0.6%

comparing to numerical reference results from FEM calculations.

The size of the device made of SMC is usually much greater than the size of inclusions.

The spatial periodicity of inclusion can be assumed from the perspective of the whole

structure. Therefore, devices made of SMC can be designed and analyzed with this complex

permeability. A magnetic circuit made of high concentration SMC is taken as an application

example.

4.2 Magnetic Circuit Application

A schematic magnetic circuit is drawn in Fig. 4.6. It is made of periodic SMC with square-

shaped inclusions. Pure Iron is selected as the magnetic inclusion and Epoxy as the insulating
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matrix. The Copper coils are wound to provide magnetic field input to the magnetic circuit.

The developed complex permeability is designed as a constitutive property of material.

It does not rely on the geometric structure of the devices. For simplicity, the example is

thereby performed only for the two-dimensional configuration.
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cell

Fig. 4.6 Sketch of a schematic magnetic circuit made of SMC with square inclusions. The
domain confined by red dashed lines forms an elementary cell of periodic pattern.

FEM calculations are conducted with the commercial software COMSOL Multiphysics®.

The software runs on a workstation equipped with 4-core Intel®Xeon®CPU @ 3.7GHz and

128GB memory. The size of the magnetic circuit and the number of inclusion are chosen

according to the capacity of the workstation.

In the calculations, the dimensions of the magnetic circuit are L01 = 3 mm, L02 = 1 mm.

The width of the air gap is L03 = 0.1 mm. The length of the inclusion square is L2 = 49µm

and the filling factor of the inclusions is ξ2 = 96.04%.

Because of symmetry, only half the magnetic circuit is calculated, as shown in Fig. 4.7.

The size of the air box is L00 = 8 mm. The boundary condition on the symmetry line (green

SMC

C
o

p
p

er

Air

L01

L02

Air

L00

Symmetry

Fig. 4.7 Geometry of the heterogeneous magnetic circuit calculated.
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line Fig. 4.7) is Perfect Magnetic Conductor (n × H = 0 and n · J = 0). Based on this

configuration, there are 1580 inclusions in the heterogeneous magnetic circuit. A 2-D mesh

made of triangular elements has been used. The mesh is constituted of approximately

3× 105 elements. The computation time is about 200s.

The effective permeability of SMC can be obtained by MG estimate. Given inclusion

size, filling factor, material properties, and frequency, the complex permeability can be

determined. The heterogeneous magnetic circuit can be homogenized by an equivalent

virtual material (EVM). The material has the properties of complex permeability and zero

conductivity. Field and EC losses distribution for the heterogeneous magnetic circuit can

be approximated through the homogeneous one with the same structure geometry, as in

Fig. 4.8 and subjected to the same boundary conditions (in this case, the same surface

density on the Copper coils).

A cut line (red line in Fig. 4.8) is plotted in the middle of the air gap so as to examine

the field distribution in both cases.
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Fig. 4.8 Geometry of equivalent virtual material (EVM) calculated. The red line in the gap
is the cutline to examine the magnetic field distribution.

As for the magnetic circuit made of EVM, based on the configuration of the heterogeneous

magnetic circuit, by (4.11), the permeability (in-plane) of the EVM is a function of frequency,

µ̃( f ) = 48.9µ0 − j4.2× 10−5µ0 f (4.13)

and the electric conductivity of the EVM is set to zero. It takes only 6s to complete the

calculation.
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4.2.1 Magnetic Behavior

The magnetic field distributions in the homogeneous magnetic circuit are plotted in Fig. 4.9.

Fig. 4.9a draws the streamline of the magnetic field. In Fig. 4.9b, magnetic field norm

distribution is plotted. The unit of ∥H∥ is A/m.

(a) Streamline

(b) Field norm (A/m)

Fig. 4.9 Magnetic field distributions on the homogeneous magnetic circuit. Relative Perme-
ability: 48.9− j4.2× 10−3, electric conductivity: 0. Frequency: 100 Hz.

It can be observed that the most intense magnetic field is around the inner corners of

the magnetic circuit.

The magnetic behavior of the homogeneous magnetic circuit is also examined on the

cut line in the middle of the air gap, as the red line shown in Fig. 4.8. Because of symmetry,

Hx on the cutline is zero. H y distribution is compared on the cut lines from the two

magnetic circuits. The comparison is carried out from the perspective of the real part and

imaginary part of the magnetic field, in Fig. 4.10. The real part and the imaginary part of

H y distributions on the cutline of EVM magnetic circuit are consistent with those of the

SMC magnetic circuit. The steady discrepancy of EVM is of the order of 1.0% for the real

part and 1.7% for the imaginary part.
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Fig. 4.10 H y distribution comparison for magnetic circuit made of SMC (blue dashed line)
and the homogeneous one (red line) and the corresponding errors. Parameters: same as
the Fig. 4.9.

4.2.2 EC Loss Density

In the heterogeneous magnetic circuit, there are 1580 square-shaped inclusions. Therefore

there are the same amount of elementary cells with each containing one inclusion and its

surrounding matrix. The average EC loss density is calculated in each cell. Denote Um,n the

EC loss density in the cell indexed (m, n). According to the EC loss density definition,

Um,n =




σE2
�

m,n

2 f
(4.14)

where 〈·〉m,n means the surface average operator over the cell indexed (m, n). The EC loss

distribution on heterogeneous magnetic circuit is plotted in Fig. 4.11. The EC loss density

is in unit (mJ/m3). The EC losses dissipate greatly around the inner corners, especially the

Fig. 4.11 EC loss density (mJ/m3) distribution on the heterogeneous magnetic circuit.
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one near the input electrical sources. By comparing this figure (Fig. 4.11) with Fig. 4.9, as

expected, the EC loss density in the heterogeneous magnetic circuit can be reflected by the

magnetic field norm distribution in the homogeneous one.

The EC loss density in the homogeneous magnetic circuit is obtained with the magnetic

field. In the corresponding cell (m, n), two types of EC loss density are calculated in the

homogeneous magnetic circuit:

Vm,n = πµ̃
i 〈∥H∥〉2m,n (4.15)

and

Wm,n = πµ̃
i



∥H∥2
�

m,n (4.16)

Vm,n and Wm,n are generated from the arithmetic mean and quadratic mean of the magnetic

field norm, respectively.

Define the errors,

ηV
m,n =

Vm,n − Um,n

Um,n
× 100% (4.17)

and

ηW
m,n =

Wm,n − Um,n

Um,n
× 100% (4.18)

The distribution of the errors over the magnetic circuit cells is plotted in histogram,

as shown in Fig. 4.12. The histograms are normalized. It can be observed that the errors
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0
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0.25

Errors, ηV (%)

(a) Distribution of ηV

−7.2 −3 0 3 10 16.2
0

0.1

0.2

0.28

Errors, ηW (%)

(b) Distribution of ηW

Fig. 4.12 Distribution of the errors on the EC losses over the magnetic circuit cells, obtained
by comparison between homogenization results and full field FEM calculation.

mainly (more than 98% of cells) lie in the range of (-3%, 3%). The errors ηV
m,n and ηW

m,n are
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(a) ηV
m,n

(b) ηW
m,n

Fig. 4.13 EC loss error distribution of homogeneous magnetic circuit by comparing with
the heterogeneous one. The color bar indicates the error values (%). The labels of the map
are the dimensions of the magnetic circuit (in unit: µm)

plotted in Fig. 4.13. The most severe discrepancies (both positive and negative ones) occur

at the inner corners. By comparing the data, ηV
m,n ≤ η

W
m,n holds for a given cell. On average,

the error on the whole magnetic circuit is less than 0.5% for the two calculation methods.

The homogeneous magnetic circuit can capture the EC distribution of the heterogeneous

one with the complex permeability model.

4.3 Conclusion

A complex permeability is designed for high concentration periodic SMC with square-shaped

inclusions. The effective permeability (real part) is determined by MG estimate with high

accuracy. The EC loss density is predicted through the complex permeability. This complex

permeability is applied to homogenize a heterogeneous magnetic circuit made of periodic

SMC.

Full-field FEM calculations have been conducted on the heterogeneous magnetic circuit

and its corresponding homogeneous one. Magnetic field distribution has been compared
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and examined especially on a cutline in the air gap. A good consistence is observed. EC

loss density distributions can be easily plotted on the homogenized magnetic circuit. By

comparing to the heterogeneous magnetic circuit, the EC loss density error distributions

are also plotted. It can be observed that the overall error on the EC losses is very small

(less than 0.5%) and the local errors don’t exceed 3% except for very localized areas at

the inner corners of the magnetic circuit. It is then concluded that the homogenization

method can provide EC losses distribution with very satisfying accuracy. Of course local

fluctuations are smoothed by the approach.
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This chapter presents a homogenization model that enables to estimate both the mag-

netic permeability and Eddy Current (EC) Losses of Soft Magnetic Composites (SMC)

subjected to a stress state. The model is applied to periodic SMC microstructures with cubic

inclusions. It is shown that stress can be used to adjust the compromise between magnetic

performance and EC losses.

In a first part, the stress-dependent magnetic susceptibility model is recalled in the case

of homogeneous material. In a second part, a homogenization strategy is employed to find

the average fields (stress, magnetic field) within the inclusions based on a homogenization

technique. EC loss density as a function of macroscopic stress and field is deduced. Finally,

the influence of stress on EC losses in SMC is studied.

5.1 Basic Constitutive Equations

5.1.1 EC Loss Density in a Cube-shaped Inclusion

A cube-shaped homogeneous isotropic magnetic material is placed in Cartesian coordinates

x yz with its surfaces perpendicular to the axes. Consider a harmonic magnetic field of

such low frequency f that the skin effect is negligible. If the magnetic field H in the cube

is uniform along one axis, for instance, x (H = Hx), the EC losses of the cube can be

determined from the cross-section perpendicular to the field. Electromagnetic problem

based on rectangle core with perpendicular field loading has been solved [86, 92]. For

a square core, the EC loss density has been accurately approximated at low frequency

(Appendix A), which further leads to the simple eddy current loss density formula of a

cube:

U =
9

128
π2 f L2σ (µH)2 (5.1)

where L is the size of the cube. σ and µ are the electric conductivity and magnetic

permeability of the core, respectively.

5.1.2 Stress-dependent Magnetic Permeability

The stress state is described by a symmetric second order tensor T:

T=





T11 T12 T13

T12 T22 T23

T13 T23 T33



 (5.2)
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The magnetic susceptibility as a function of stress can be expressed as [65]

χ(T) =
3χo

A1 + A2 + A3





A1 0 0

0 A2 0

0 0 A3



 (5.3)

where Am = exp(α Tmm) with m = {1, 2, 3}. χo is the magnetic susceptibility of the material

under no applied stress. α is a material parameter linked to the saturation magnetization

Ms and saturation magnetostriction constant λs [65]:

α=
9χo λs

2µ0 M2
s

. (5.4)

The magnetic constitutive law can then be written

B= µ(T) ·H (5.5)

where µ(T) = µ0(I+ χ(T)) and I is the second order identity tensor.

5.1.3 EC Losses In a Cube Subjected To Stress

In this chapter, the effect of magnetostriction and elastoresistance is not considered. Given

the constitutive equation (5.3), and the expression of the EC losses (5.1), the EC loss density

in a cube subjected to a uniform magnetic field and stress is

U =
9

128
π2 f L2σ (µ(T) ·H)2 . (5.6)

The effect of stress is incorporated into EC loss density through the permeability tensor

µ(T).

5.2 Loss Density in SMC

SMC consist of electrically insulated ferromagnetic inclusions. In quasi-magneto-statics,

global eddy current flowing between inclusions can be neglected. For a periodic pat-

tern of cubic inclusions, as shown in Fig. 5.1, the magnetic field in the inclusion can be

approximated as uniform if the filling factor is high.
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Fig. 5.1 Sketch of cubic lattice of cubic inclusions. The domain confined by its surrounding
matrix (in red cube) forms an elementary cell of periodic pattern.

When the magnetic field is applied, for instance, along z direction, the magnetic field

distribution is shown in Fig. 5.2. Because of symmetry, only half of the elementary cell is

modeled and calculated in order to save computation time and memory.

Fig. 5.2 Magnetic flux density distribution in the inclusion. Lattice size: 50µm, volume
fraction ξ = 96%, µi = 4000µ0, σi = 1.12 × 107 S/m, average flux density B0 = 1T,
frequency f = 100Hz.

The standard deviation introduced as a function of the field and the domain studied is

examined:

ς(B,Ω) =



∥B− 〈B〉Ω∥
2
�

1
2

Ω
(5.7)

For different filling factors, the average flux density in the inclusion, 〈B〉i, and the standard

deviation of flux density in the inclusion, ς(B, i), are post-processed in the calculations.

The ratio, ς(B, i)/∥ 〈B〉i ∥, as a function of the filling factor is plotted in Fig. 5.3.
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Fig. 5.3 Ratio of standard deviation of flux density to the average flux density norm
in the inclusion as a function of the filling factor. Lattice size: 50µm, µi = 4000µ0,
σi = 1.12× 107 S/m, average flux density B0 = 1 T, frequency f = 100Hz.

It can be concluded from Fig. 5.3 that, as expected, the higher the concentration of the

inclusion, the better the uniformity of the field.

The average field 〈H〉i in the inclusions can be used in (5.6) as an estimate for H. Since

the matrix is dielectric, EC occurs only in the inclusion, the macroscopic EC (flowing in the

matrix) being negligible. From the perspective of the whole composite material, the EC

loss density U is then:

U =
9

128
ξπ2 f L2

i σi (µi · 〈H〉i)
2 (5.8)

where 〈·〉i is the averaging operator over the inclusions. Li is the size of the inclusion as

depicted in Fig. 5.1. ξ is the volume fraction of inclusions (filling factor) and σi the electric

conductivity. In order to make use of (5.8) to calculate the EC losses in SMC, the average

magnetic field and stress inside inclusions are required. They differ from the macroscopic

loading due to the heterogeneity of the material. In order to obtain these quantities, a

homogenization technique can be applied.

5.2.1 Homogenization Technique

The purpose of the homogenization strategy is to find the localization operators establishing

the relationship between the average local quantities (stress, magnetic field) and the
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macroscopic loading. Mechanical homogenization is first applied and then magnetic

homogenization is used. The flow chart of the modeling strategy is shown in Fig. 5.4, and the

homogenization process is explained hereafter. In this study, the effect of magnetostriction

is neglected, so that there is no loop required in the strategy.

Input: T, H

〈T〉i = Lmech : T

µi(〈T〉i) = µ0I + µ0χi(〈T〉i)

〈H〉i
(
〈T〉i ,H

)
= Lmagn (µi(〈T〉i)) ·H

U
(
T,H

)
=

9
128 ξ π

2 f L2
i σi (µi · 〈H〉i)

2

Mechanical Localization

Magnetomechanical Behavior

Magnetic Localization

EC Loss Density

Fig. 5.4 Flow chart for the modeling scheme

Mechanical Homogenization

The relationship between the macroscopic stress T and the average stress in the inclusion

〈T〉i is built through a 4-th order localization tensor Lmech.

〈T〉i =Lmech : T (5.9)

Mori-Tanaka(MT) homogenization strategy [93] is used here to determine the mechani-

cal localization tensor (see Appendix D for the detailed equations). Other homogenization

strategies could be chosen depending on the material microstructure [89].
Here, as a validation illustration, we apply a 1D stress T 11 along the x-direction. The

average stress 〈T11〉i in the inclusion is calculated by MT using (5.9). The results are

compared to FEM calculations, as shown in Fig. 5.5.

Figure. 5.5 shows that the average stress in the inclusions is greater than that of the

macroscopic stress (as expected because the inclusions are stiffer than the matrix). As the

volume fraction of the inclusion increases, the average stress in the inclusions gradually
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Fig. 5.5 Average stress in the inclusion from MT estimate (5.9) by comparison to FEM
results, and corresponding discrepancy. Lattice size: 50µm. T 11 = 1 MPa The mechanical
parameters are listed in Tab. 5.1.

approaches the macroscopic stress. MT estimate provides acceptable approximation (errors

less than 1%), and as the volume fraction increase, the errors decrease.

The average stress in the inclusion is substituted into (5.3) to obtain the susceptibility

tensor χi(〈T〉i) of the inclusion, which further leads to the permeability tensor

µi(〈T〉i) = µ0I+µ0χi(〈T〉i) (5.10)

Since the material is assumed to exhibit linear magnetic behavior, the permeability

tensor is only a function of the applied stress.

Magnetic Homogenization

Similar to the mechanical case, the magnetic localization operation reads:

〈H〉i = Lmagn ·H (5.11)

where Lmagn is a second order magnetic localization operator. Given the effective perme-

ability µ̃ of the SMC, the magnetic localization tensor Lmagn [94] has the form

Lmagn =
1
ξ
(µ̃−µmI) · (µi −µmI)

−1 (5.12)

where µm is the permeability of the matrix. The effective property relies on a static

homogenization approach built from basic Inclusion Problem [34, 89]. The choice of MG
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estimate (Hashin and Shtrikman lower bound) provides a good estimate of the effective

property for this type of microstructure. The effective permeability has the form,

µ̃ (〈T〉i) = µmI+ ξµm (µi −µmI) · [µmI+ (1− ξ)N · (µi (〈T〉i)−µmI)]
−1 (5.13)

where N is the depolarization tensor and N= 1
3 I for the configuration of cubic lattice of

cubic inclusions.

The effective permeability (real component) from MG estimate is examined by com-

paring to FE calculations (reference values). Without stress, the effective permeability is

isotropic. The results are plotted in Fig. 5.6. The error is less than 1% for high concentration
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Fig. 5.6 Effective permeability (real component) from MG estimate by comparing to FEM
results, and the corresponding discrepancy. Lattice size: 50µm, µi = 4000µ0.

composite. The higher the concentration, the less the error of the MG estimate. Combining

(5.11)-(5.13), the average field in the inclusion has the form,

〈H〉i
�

T,H
�

= µm

�

µmI+
1
3
(1− ξ) (µi (〈T〉i)−µmI)

�−1

·H (5.14)

The average field in the inclusion depends on both the macroscopic magnetic field and

the macroscopic stress. This average field (5.14) and the permeability tensor (5.10) is

substituted into (5.8) to obtain the EC loss density in SMC.

In the following section, specific materials (see material parameters in Tab. 5.1) are

chosen to illustrate the relationship between EC loss density and the applied stress and

field.
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5.3 Model Prediction and Results

The proposed model is fully multiaxial. However, for the sake of simplicity, the analysis

will be mostly performed for 2D-stress configuration.

5.3.1 Material Parameters

Iron is selected as the ferromagnetic inclusion material and epoxy as the insulating matrix.

The material parameters are listed in Tab. 5.1. Inclusions are cubic and the length of the

Table 5.1 Material parameters used in the calculations for SMC [51, 58]

Iron Epoxy

Conductivity (S/m) 1.12× 107 1.7× 10−13

Relative Permeability 2500 1

Saturation Magnetization (A/m) 1.71× 106 -

Saturation Magnetostriction constant 6.1× 10−6 -

Young Modulus (Pa) 110× 109 3.5× 109

Poisson Ratio 0.23 0.32

α (Pa−1) 1.86× 10−8 -

elementary cell is fixed at 50µm for all the FEM calculations. In the following calculations,

the magnetic field stands along the x-direction. The working frequency is f = 100 Hz.

The magnetic behavior is regarded as linear and no saturation is considered. Denote µo
i

the original magnetic permeability of the isotropic inclusion under no applied mechanical

stress. When the stress is applied, the permeability becomes a diagonal second order tensor

µi. According to (5.3), µi is a diagonal matrix, which writes,

µi =





µi,11 0 0

0 µi,22 0

0 0 µi,33



 (5.15)

Now that the magnetic field is applied in the x-direction, the average magnetic field in the

inclusion in other direction should be null, namely,




H y

�

i
= 0 and 〈Hz〉i = 0 (5.16)
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Substituting (5.15) and (5.16) into (5.8) yields,

U =
9

128
ξπ2 f L2

i σi

�

µi,11 〈Hx〉i
�2

(5.17)

For the permeability tensor µi, only the component parallel to applied field is critical to the

EC losses of SMC and the other two components do not contribute to the EC losses. In the

following, denote µi,∥ the parallel component of the permeability tensor µi.

5.3.2 Stress Effect

One classic multiaxial stress is the hydrostatic stress state (THdS),

THdS = T11





1 0 0

0 1 0

0 0 1



 (5.18)

Calculations show that the macroscopic hydrostatic applied on the structure does not

influence the magnetic permeability on the inclusion, and therefore does not affect the EC

loss density. The non-effect of applied hydrostatic stress on the magnetic behavior has been

discussed in [95, 96].

A general 2D stress reads

Ta =





T11 T12 0

T12 T22 0

0 0 0



 (5.19)

When the stress Ta is applied macroscopically on the SMC, the parallel (to the magnetic

field) component of the magnetic permeability of the inclusion as a function of (T11, T22) is

shown in Fig. 5.7. The trace of tensor Ta (a square matrix) is the sum of the elements on

the main diagonal,

trace(Ta) = T11 + T22. (5.20)

Therefore, the label of the horizontal axis in Fig. 5.7b, trace(Ta), represents either T11 when

T22 = 0 or T22 when T11 = 0.

The permeability of the inclusion is increased by the parallel tensile stress or perpendic-

ular compressive stress. It attains to saturation at large stress values. The permeability of

the inclusion is decreased by the parallel compressive stress or the perpendicular tensile

stress. It vanishes at large stress values.
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Fig. 5.7 Parallel component of the permeability of the inclusion as a function of macro-
scopic stress Ta. Lattice length = 50µm, volume fraction of inclusion ξ= 99%. Material
parameters as in Tab. 5.1.

The parallel (to the magnetic field) component of the effective permeability of the

composite as a function of (T11, T22) is shown in Fig. 5.8.

The effective permeability varies because the permeability of the inclusion is influenced

by the stress. Fig. 5.8 shows that tensile stress along the magnetic field improves the

magnetic performance of the composite. For instance, when the parallel tensile stress

reaches 200MPa (T22 = 0), the effective permeability value increases by 7%. Greater stress
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Fig. 5.8 Parallel component of the effective relative permeability as a function of macro-
scopic stress Ta. Lattice length = 50µm, volume fraction of inclusion ξ= 99%. Material
parameters as in Tab. 5.1.

is not necessary because the effective permeability saturates. The compressive stress along

the magnetic field decreases the effective permeability. The stress perpendicular to the

magnetic field has the opposite effect comparing with the one along the field. To sum

up, mechanical stress can be applied to improve the magnetic property of SMC. Since the

magnetic behavior of the inclusion material is assumed to be linear magnetic behavior, µi,∥

goes up when the mechanical stress is applied. However, in practice, the improvement of

the magnetic permeability with stress has some limitations, when the nonlinearity is taken

into consideration [51, 95], as presented in Fig. 5.9. The secant susceptibility increases

first when mechanical stress is applied, but then decreases as the stress is reaching high

amplitudes.

The EC loss density is examined under different mechanical stress. In the following EC

loss density plots, the EC loss density values are normalized by setting U = 1 when there

is no stress applied (T11 = T22 = 0). The normalized EC loss density of SMC varying as a

function of (T11, T22) is plotted in Fig. 5.10.

In Fig. 5.10, the difference between the maximum value and the minimum one is 1.35%.

It means that stress does not affect the EC loss density if the average flux density is kept

constant.
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Fig. 5.9 Experimental secant susceptibility under mechanical loadings [95].

Fig. 5.10 Normalized EC loss density as a function of macroscopic stress Ta. (Fixed flux
density B0). Parameters: the same as Fig. 5.7

Substituting (5.14) into (5.8) in view of the constitutive magnetic law (5.5), the EC

loss density has the form,

U =
9

128
ξπ2 f L2

i σi B2
0

�

3µi,∥

2(1− ξ)µm + (1+ 2ξ)µi,∥

�2

(5.21)

With large parallel compressive stress (e.g. T11 ≈ −200 MPa, T22 = 0 ) or large perpen-

dicular tensile stress (e.g. T11 = 0, T22 ≈ 200MPa ) as shown in Fig. 5.7, the magnetic



5.3 Model Prediction and Results 103

permeability vanishes µi,∥→ µ0, so that

lim
µi,∥→µ0

U =
9

128
ξπ2 f L2

i σiB
2
0 (5.22)

On the other hand, with large parallel tensile stress (T11 ≈ 200 MPa, T22 = 0 ) or large

perpendicular compressive stress (T11 = 0, T22 ≈ −200 MPa ) as shown in Fig. 5.7, the

magnetic permeability attains saturation, denoted as µs. Judging by the choices of materials

(µo
i = 2500µ0, µm = µ0) and high concentration of inclusion ξ = 99%, the relationship

(1+ 2ξ)µi,∥≫ (1− ξ)µm holds, so that (5.21) turns:

lim
µi,∥≫µm

U =
9

128
ξπ2 f L2

i σi B2
0

�

3
1+ 2ξ

�2

(5.23)

Comparing (5.22) with (5.23), in view of the volume fraction of the inclusion ξ = 99%,

there is little difference for the EC loss density values no matter how much stress is applied.

It can be concluded that, given a constant average flux density, mechanical stress can

be applied to change the effective permeability of SMC without altering the EC losses.

The effect of multiaxial stress is analyzed in the following section. This discussion focuses

on stress in a 2D state. The magnetic field is kept constant and along the x-direction.

Multiaxial Stress

Define β as the proportional coefficient between T22 and T11 in Ta: T22 = β T11. Equibiaxial

stress is a special example of stress Ta when β = 1. When β = −1, it is the case of pure

shear stress state.

The magnetic permeability varying as a function of the mechanical stress is plotted in

Fig. 5.11 for different proportional coefficients β . The pure shear stress greatly decreases

the magnetic permeability when T11 < 0 and increases it when T11 is positive. As for the

case where β ≥ 0, when the stress is compressive (T22 < 0, T11 < 0), the perpendicular

compressive stress (T22) prevents slightly the deteriorating effect on the magnetic behavior

of the parallel stress (T11). As β gets bigger (β > 1), the perpendicular one modifies

significantly the permeability for a given tensile stress. For instance, when β = 2, the

improving effect of the parallel tensile stress (T11 > 0) disappears.

From (5.3), the parallel component of permeability of inclusion can be approximated

as:

µi,∥ =
3χoµ0 exp(α 〈T 〉i,11)

1+ exp(αβ 〈T 〉i,11) + exp(α 〈T 〉i,11)
+µ0 (5.24)
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Fig. 5.11 Parallel component of the permeability of the inclusion as a function of Ta for
certain proportional coefficients. Parameters: the same as Fig.5.7

This function has to be discussed in view of β . When β ≤ 1, µi,∥ is a monotonically

increasing function of 〈T 〉i,11. On the other hand, when β > 1, at high stress values,

magnetic permeability approaches µ0,

lim
β>1

T11→±∞

µi,∥ = µ0 (5.25)

The corresponding effective permeability and EC loss density results are plotted in

Fig. 5.12.

The same trend can be observed in Fig. 5.12 when there is stress applied on the

composite. By comparing Fig. 5.12 to Fig. 5.11, it can be seen that the composite is less

sensitive to the mechanical stress than the ferromagnetic materials.

It is worth noting that symmetry over the axis T11 = 0 can be observed from Figs 5.11–

5.12 when β = 2. The average stress on the inclusion would have the same proportional

relationship: 〈T 〉i,22 = 2 〈T 〉i,11, which gives rise to the magnetic permeability function,

µi,∥ =
3χoµ0

1+ exp(α 〈T 〉i,11) + exp(−α 〈T 〉i,11)
+µ0 (5.26)

The magnetic permeability is an even function of 〈T 〉i,11, and so an even function of the

macroscopic stress.
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Fig. 5.12 Effective permeability (parallel component) as a function of Ta for certain propor-
tional coefficients. Parameters: the same as Fig. 5.11

5.4 Conclusion

Macroscopic stress and magnetic field are integrated into EC loss density formula by

localizing stress and magnetic field with homogenization strategy. It is found that the

mechanical stress can be applied to improve the magnetic performance of SMC. The

effective permeability reaches saturation as the stress increases. As for the EC loss density,

when flux density is given, the mechanical stress affects the permeability of the inclusion but

does not change the EC losses of SMC. Therefore an optimal stress value can be determined

for the best magnetic performance without causing more EC loss dissipation.

An interesting conclusion is that the magnetic behavior of SMC seems to be less sensi-

tive to mechanical stress than that of usual homogeneous ferromagnetic materials. This

expectation would have to be confirmed by experimental measurements.

The linear magnetic material is assumed in this chapter to explore the effect of stress

on the EC losses. The magneto-elastic model is simplistic. The magnetic nonlinearity and

hysteresis losses are not considered. As for nonlinear magnetic material, the model would

be more complicated. Still, the effect of magnetic field on the stress can be neglected. Since

the magnetic permeability depends on the applied field, an iterative procedure has to be

employed to retrieve the average field in the inclusion, the permeability tensor and the

effective permeability tensor of the composite. Besides, the harmonic magnetic field has to

be sampled over time in order to determine the final average field and permeability of the

inclusion. And the EC loss density has to be integrated over a period of time.





Conclusion and Perspectives

Conclusion

In this thesis, a model based on a complex permeability is proposed to study Soft Magnetic

Composites (SMC). In the model, the real and imaginary parts of the complex permeability

are respectively employed to denote the magnetic behavior and the eddy current (EC)

losses of the composites. The model originates from periodic SMC with circular or spherical

inclusions under arbitrary magnetic field excitation. The distorted field in the inclusion

is averaged. This complex permeability is independent of the structure as long as the

periodicity is maintained. Thus, it can be used as a constitutive property in designing tools

for machines using SMC.

The EC loss density in SMC can be approximated through the field averaging operations

in the inclusions. The usual averaging manipulations are the first and second order moments

of the magnetic field. For periodic SMC with circular or spherical inclusions, it is proved

that the two approaches bound the EC loss density in SMC. The average field approach

underestimates the EC loss density in SMC, thus providing a lower bound; whereas it

is overestimated by the approach of the second order moment, thus providing an upper

bound. Both the averaging approaches depend strongly on the determination of the effective

permeability of the composite. The bound estimates are usually close, providing accurate

values for EC losses as long as the effective permeability is estimated with good accuracy.

EC loss can be approximated without the exact solution of the EC distribution thereby it

relies only on a homogenization model for the effective permeability, which simplifies the

approach compared to a full FEM computation.

As an application example, a magnetic circuit made of SMC is homogenized with

complex permeability. It is made of high concentration periodic SMC. FEM computations

were carried out on the heterogeneous magnetic circuit and the corresponding homogenized

one. Magnetic field and EC losses distribution have been examined and compared between

the two magnetic circuits. Good accordance has been obtained between the reference EC
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loss density (generated from heterogeneous magnetic circuit) and the values calculated

with complex permeability from the homogeneous one.

Moreover, the multi-physical behavior of SMC is explored. The effect of mechanical

stress on the magnetic performance and on the EC loss density is studied on high concen-

tration SMC. Property contrast (permeability, conductivity) is high for the constituents

of SMC. Considering linear permeability and neglecting the effects of magnetostriction

and elastoresistance, a formula is derived for the EC loss density as a function of the

macroscopic magnetic field and the mechanical stress. The stress influences the EC loss

density because the magnetic behavior of the ferromagnetic inclusion is sensitive to the

stress. It is shown that stress has little effect on EC losses in SMC (while affecting the

magnetic permeability).

The proposed models provide straightforward approaches to determine the EC losses of

SMC at low working frequency. The complex permeability contains the magnetic behavior

and links directly to the EC losses. The EC bounds approaches offer a simple way to

approximate the EC losses in composites. The effect of the mechanical stress is directly

integrated into the EC loss density formula. The models are suitable for different perme-

ability contrasts and are discussed for a full range of volume fractions. They are developed

for SMC with dielectric matrix. When the global eddy current in the matrix cannot be

neglected, the models have to be revisited. The formulas of EC loss density are derived on

SMC with periodic microstructure. But for SMC with randomly distributed microstructures,

EC loss estimates could be obtained. In these models, the nonlinearity of the ferromagnetic

materials is not considered, the hysteresis and excess losses are not taken into account.

Perspectives

The present work focuses on modeling the classical losses in Soft Magnetic Composites

(SMC). The contributions open up new horizons for future improvements.

The present work builds a complex permeability by considering linear ferromagnetic

materials. The coming contributions would begin to develop a generic complex permeability

model which contains the magnetic non-linearity and furthermore the hysteresis and excess

losses. Besides, it would be interesting to integrate the magnetomechanical coupling

behavior of SMC into the complex magnetic model. Experiments are needed to verify the

models.

The magnetomechanical model is the premier multi-physical attempt for the SMC.

A follow up work could consider the effect of magnetostriction, elastoresistance, and

magnetoresistance. The effect of temperature on electromagnetic properties could further
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be taken into account. A generic formula could be developed to deal with the coupled

behavior of SMC using homogenization techniques [51, 64, 94].
The EC loss bounds in the present work are analytically derived for SMC with circular

or spherical inclusions. The future work will be devoted to EC loss bounds for SMC with

randomly distributed inclusions through the bounds on the effective permeability of the

composite [88].
Future works could also include the application of the complex permeability model

to design motors and transformers with SMC. Prototype devices could be developed and

fabricated. Electrical performance need to be examined and compared to that of traditional

machines. Promoting the application of SMC in replacement of laminated steel in electrical

devices in order to save energy will be a challenging and meaningful task.
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Appendix A

EC Loss Density For Basic Shapes

Consider an isotropic, homogeneous and linear material of permeability µ, electric con-

ductivity σ and permittivity ε. The material is submitted to a harmonic magnetic field

H of frequency f (angle frequency: ω = 2π f ). Combining Maxwell’s equations with

constitutive laws of material, the problem becomes a Poisson equation,

∇×∇×H= − jωµ( jωε+σ)H (A.1)

Since the domain is cut from 3D structure with infinite dimension along the z-axis, the

magnetic field and the induced electric field are z-invariant,

∂H
∂ z
= 0,

∂ E
∂ z
= 0 (A.2)

Apply a magnetic field H= [0, 0, H]t , where the superscript t indicates a matrix transpose.

Consider a low frequency such that that ωε ≪ σ. Denoting k2 = − jωµσ, the Poisson

equation (A.1) becomes,

∇2 H + k2 H = 0 (A.3)

subject to the Dirichlet boundary condition H|∂Ω = Hz with ∂Ω denoting the boundary

of the domain. According to the boundary condition and z-invariance, and consider null

current flow in the fiber,

Ez = 0, Jz = 0 (A.4)

To solve (A.3) in a domain of a basic shape, shown in Fig. A.1, the magnetic field and

electric field can be obtained. The eddy current density formulas can be determined.
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Fig. A.1 Sketch of homogeneous structure

A.1 Homogeneous Plate

Since the domain is assumed to be infinite in the y direction, magnetic and electric field

will be y-invariable.

In Cartesian coordinates, the Laplace operator is given by:

∇2H =
∂ 2H
∂ x2

+
∂ 2H
∂ y2

+
∂ 2H
∂ z2

(A.5)

Applying the y- and z-invariable (∂y = 0 and ∂z = 0), the partial differential equation

(PDE) (A.3) turns,
d2H
dx2

+ k2 H = 0 (A.6)

By applying the boundary condition H(−L/2) = H(L/2) = Hz, the solution to (A.6) is,

H(x) =
cos(kx)

cos(kL/2)
Hz (A.7)

The solution to the Maxwell-Ampère equation J=∇×H in the circle domain Ω is,

J(x) =
sin(kx)

cos(kL/2)
kHz (A.8)



A.2 Homogeneous Circle 121

At low frequency, the skin effect can be considered negligible, so that |kL/2| → 0, which

leads to cos(kL/2)≈ 1 and sin(kx)≈ kx . Thus, from (A.8) and considering the direction,

J≈ k2 Hz x u⃗y = − jωµσHz x u⃗y (A.9)

where u⃗y is a unit vector in the y direction.

Substituting the eddy current density (A.9) into the EC loss density definition (1.16) in

view of Ohm’s law (J= σE) yields:

U =
ω2σµ2 H2

z

∫ L/2

−L/2
x2 dx

2 f L
=
π2

6
f σµ2 H2

z L2. (A.10)

If magnetic constitutive law is applied, B = µHz, the EC loss density is a function of

magnetic flux density,

U =
π2

6
f σ B2 L2. (A.11)

A.2 Homogeneous Circle

In cylindrical coordinates,

∇2H =
1
ρ

∂

∂ ρ

�

ρ
∂ H
∂ ρ

�

+
1
ρ2

∂ 2H
∂ φ2

+
∂ 2H
∂ z2

(A.12)

Applying the cylindrical symmetry (∂φ = 0 and ∂z = 0), PDE (A.3) becomes:

ρ2∂
2H
∂ ρ2

+ρ
∂ H
∂ ρ
+ (kρ)2 H = 0 (A.13)

The solution to (A.13) is a Bessel function. The problem is viewed in polar coordinates

Oρφ. The magnetic field in the circle domain Ω is,

H(ρ,φ) = Hz
J0(kρ)
J0(kR)

(A.14)

where Jn(·) is the first kind Bessel function of order n.

By J=∇×H, the current density in the circle domain Ω is,

J(ρ,φ) = k Hz
J1(kρ)
J0(kR)

u⃗φ. (A.15)
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Bessel functions have asymptotic forms, for instance, when |kρ| ≪ 1, J0(kρ)≈ 1 and

J1(kρ)≈
kρ
2 . Thus the current density (A.15) simplifies as,

J(ρ,φ) = −
1
2

jωσµHz ρ u⃗φ. (A.16)

Substituting the eddy current density (A.9) into the EC loss density definition (1.16)

with respect to Ohm’s law (J= σE) gives,

U =
π2

4
R2 f σµ2 H2

z
(A.17)

If magnetic constitutive law is applied, B = µHz, the EC loss density is a function of

magnetic flux density,

U =
π2

4
f σ B2R2. (A.18)

A.3 Homogeneous Square

The PDE (A.3) for a square domain in a Cartesian coordinate system is,

∂ 2H
∂ x2

+
∂ 2H
∂ y2

+ k2 H = 0 (A.19)

Using the Fourier series expansion for (A.19), the solution has the form,

H(x , y) = Hz

∞
∑

p=1

4
nπ

sin
�nπ

2

�

�

cos
�nπ

L
x
� cosh(ζn y)

cosh
�

ζn L
2

� + cos
�nπ

L
y
� cosh(ζn x)

cosh
�

ζn L
2

�

�

(A.20)

for x , y ∈ [−L/2, L/2] where

ζn =

√

√
�nπ

L

�2
− k2

n= 2p− 1, p ∈ N+
(A.21)

The distribution of eddy current density in the homogeneous core can be found by

substituting (A.20) into Maxwell-Ampère equation (1.1b), so that the EC loss density can
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therefore be developed as:

U =
16
π2

H2
zωµL

∞
∑

p=1

ℑ(ζn) sinh(ℜ(ζn)L)−ℜ(ζn) sin(ℑ(ζn)L)
n2|ζn|2[cosh(ℜ(ζn)L) + cos(ℑ(ζn)L)]

(A.22)

where ℜ(·),ℑ(·) denote respectively the real and imaginary part of a complex number.

A detailed deduction for a rectangle-shaped inclusion can be found in [92] to model

the EC losses in laminated materials.

Equation (A.22) is a general EC loss density working for full frequency range. This

equation is complicated to simplify and the relationship between the EC loss density and

the field, frequency and the size is not clearly observed. At low frequency range for a

homogeneous square, a formula as simple as (A.11) and (A.18) is expected. Numerical

approach is applied to find the corresponding coefficient.
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Fig. A.2 EC loss density in a homogeneous square as a function of frequency. σ = 1.12×107

S/m, permeability µ= 4000µ0; Average flux density: 1 T.

Since the proportional relationship holds [85, 86]:

U∝ f σ B2 L2 (A.23)

For instance, perfect linearity of U − f can be observed from Fig. A.2. When the working

frequency is low such that the skin effect can be ignored, (A.22) can be approximated by

linear fitting,
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U fit =
9π2

128
f σ B2 L2 (A.24)

Define the discrepancies

ηfit =
U fit − U

U
× 100% (A.25)

to examine the accuracy of (A.24) comparing with the reference values from (A.22). The

results are plotted in Fig. A.3.
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Fig. A.3 Discrepancies between EC loss density by the linear fitting equation (A.24) and the
reference values from (A.22).

It can be seen from Figs. A.3a–A.3c that at low frequency, the errors are below 0.05%.

The discrepancies are independent of the flux density. At higher frequency (greater than

100 Hz), the errors increase with the size or the electric conductivity. The formula of skin
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depth δ is given by:

δ =

√

√ 1
πµσ f

(A.26)

Skin depth δ does not depend on the flux density so long that the permeability does not

change. Calculations reveal that for a certain ratio between the skin depth and the size, the

discrepancy ηfit remains unvaried. The ηfit as a function of δ/L is plotted in Fig. A.3d. The

ηfit decreases with δ/L . The ηfit curve becomes shallow when the ratio is high enough

(for instance, greater than 5).

A.4 Validity Range of Frequency

In the previous sections, the simple formulas are obtained under the condition of low

frequency. At higher frequency, because of skin effect, the current is restricted to a very

thin layer near the conductor surfaces, as indicated in Fig. A.4. The EC density distribution

is examined on a cut-line along a radius. For each frequency, the EC density values are

normalized by setting the maximum value to unit. The blue line in Fig. A.4 shows that, at
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Fig. A.4 Distribution of normalized eddy current density of a circle along a radius (red cut
line in (b)). Radius: R= 25µm

frequency f = 1 kHz, EC density is linear along the radius. Equation (A.16) describes this

relationship. While the frequency rises to f = 1MHz, shown by the red curve in Fig. A.4,

EC density mainly occurs along the border. Equation (A.16) is not suitable to describe

this phenomenon. When the low-frequency assumption is not valid anymore, the current
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distribution has to be described from Fourier series or Bessel functions, for instance, as in

(A.14).

Denote U ref the EC loss density reference values from the full formulas (using (A.22) for

the square domain; for the circle, substituting the full expression of EC density (A.15) into

the EC loss density definition (1.16)). Uana represents the EC loss density values from the

simplified formulas, for instances, of (A.18) and (A.24) for the square and circle domain,

respectively. U ref and Uana are normalized by the maximum of U ref.

The normalized EC loss density values as a function of the ratio between skin depth and

size (for a circle domain, L is the diameter, L = 2 R) are plotted in Fig. A.5a and Fig. A.5b

for the square and the circle domain, respectively. It can be seen from Figs. A.5a and A.5b
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Fig. A.5 Normalized eddy current density (and the corresponding errors) as a function of
the ratio between skin depth and size.

that EC loss density reaches its maximum at δ/L ≈ 0.28. The discrepancies between the
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analytical results and their corresponding references values are drawn in Fig. A.5c. The

errors decrease with the ratio. When δ/L ≥
p

2
2 , the errors are below 5%. A skin depth

threshold is introduced:

δTH =
p

2
2

L (A.27)

Substituting (A.27) into (A.26), the frequency threshold has the form:

fTH =
1

πµσδ2
TH

=
2

πµσ L2 (A.28)

The frequency range: f ≤ fTH provides a criterion for what is assumed ‘low frequency’

in this manuscript.





Appendix B

Energy Density

This appendix is the proof of (2.29), recalled hereafter, giving the energy loss density for a

homogeneous and linear magnetic material under sinusoidal excitation.

S = πH∗0 · µ
i ·H0 (B.1)

Consider a homogeneous and linear material of permeability µ excited by a harmonic

magnetic field H(t) = H0e jωt (H0 is the magnetic field magnitude and ω the angle fre-

quency). Locally, the magnetic behavior of the material is given by B(t) = µ ·H(t). There

is no hysteresis loss in magnetic linear materials. For quasi-static magnetic fields, the

phase shift between B(t) and H(t) is negligible. If we introduce an imaginary part in the

permeability tensor, B(t) and H(t) now exhibit a phase shift, as shown in Fig. B.1.

H

B

t

B

H

Fig. B.1 Phase shift between B and H, forming an ellipse in a period time. The area of this
ellipse is the energy density during one time-period.

In a period of time, B(t) and H(t) form an ellipse. The area of this ellipse is the energy

density during one period. We can make use of this energy density to represent the EC loss

density. Let consider a complex magnetic permeability µ̃= µr − jµi, where µr is the usual
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material magnetic permeability. The area of the B-H ellipsoid is directly connected to the

imaginary part of permeability so that µi can be dedicated to the description of the EC loss

density.

To obtain the area of the ellipse, a classical integration is performed over a period of

time T :

S =
1
2
ℜ

�

∫ T

0

H∗(t) ·
dB(t)

dt
dt

�

=
1
2
ℜ

�

∫ T

0

�

H∗0e− jωt
�

· µ̃ ·
�

jωH0e jωt
�

dt

�

=
1
2
ℜ
�

2πH∗0 · ( jµ
r + µi) ·H0

�

= πH∗0 · µ
i ·H0

(B.2)

Equation (2.29) is finally retrieved. This result can also be found in [71].



Appendix C

Spherical Symmetry

This appendix aims at proving that the EC loss density due to a magnetic field can be

decomposed as the addition of EC loss densities generated separately from the normal

decompositions of the magnetic field.

The microstructure is a cubic lattice of spherical inclusions, shown in Fig. C.1. Because

of spatial periodicity, the whole structure can be represented by an elementary cubic cell.

It contains a sphere and its surrounding matrix.

2

x

y

z

1
3

4

R

Fig. C.1 Sketch of the cubic lattice of spherical inclusions.

Magnetic field HI is imposed along x-direction on the cell: HI = [H1, 0, 0]t with the

superscript t the transpose operator. At a point P(x) with x = (x , y, z), denote HI, EI

receptively the magnetic field and the electric field at that point.
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The matrix is dielectric, so the eddy current in the matrix is negligible. According to

the definition, the eddy current loss density of the cell writes:

U I =




σE2
�

2 f
= ξ2σ2




E2
I

�

sphere

2 f
(C.1)

where f is the working frequency. ξ2 is the volume fraction of the sphere. σ2 denotes the

electric conductivity of the sphere. 〈·〉sphere indicates the volume average operator over the

sphere:

〈·〉sphere =
1

Vsphere

∫

sphere

·dV (C.2)

Because of symmetry, the average magnetic field in the inclusion will be in the x-

direction:

〈HI〉sphere = β HI (C.3)

where β is a coefficient depending on the volume fraction and properties of materials. β is

scalar since the constituent materials are isotropic.

Magnetic field HII is imposed along y-direction: HII = [0, H2, 0]t . Denote HII(x), EII(x)
receptively the magnetic field and the electric field at the point P. Similarly, the average

magnetic field in the sphere is:

〈HII〉sphere = β HII (C.4)

and the EC loss density is,

U II = ξ2σ2




E2
II

�

sphere

2 f
(C.5)

It is clear that:

HI ⊥ HII =⇒ HI ⊥ HII and EI ⊥ EII (C.6)

and

HI ⊥ HII =⇒ 〈HI〉sphere ⊥ 〈HII〉sphere (C.7)

The perpendicular relationship between EI and EII is indicated in Fig. C.2.

Now the magnetic field HI and HII are imposed simultaneously, noted HIII. HIII =
[H1, H2, 0]t .

The electric field at point P will be the addition of EI and EII:

EIII = EI + EII (C.8)
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Fig. C.2 Induced electric field.

The EC loss density of the cell writes:

U III = ξ2σ2




E2
III

�

sphere

2 f
(C.9)

Because EI ⊥ EII, then

E2
III = E2

I + E2
II (C.10)

so that

U III = U I + U II (C.11)

The magnetic field at point P will be the addition of HI and HII:

HIII = HI +HII (C.12)

The average magnetic field in the sphere is:

〈HIII〉sphere = 〈HI +HII〉sphere = 〈HI〉sphere + 〈HII〉sphere = β(HI +HII) (C.13)

which leads to the relationship:

�

〈HIII〉sphere

�2
=
�

〈HI〉sphere

�2
+
�

〈HII〉sphere

�2
(C.14)
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Because HI ⊥ HII, then

H2
III = H2

I +H2
II (C.15)

so that



H2
III

�

sphere
=



H2
I

�

sphere
+



H2
II

�

sphere
(C.16)

The discussion is based on the two components of applied magnetic field. If the third

component is not zero, the EC loss density generated by this component can be added

directly to the final value. It is the same for the first (average field, vector) and second

order moment of the magnetic field.



Appendix D

Mechanical Localization Tensor

This appendix provides the formula of the mechanical localization tensor from Mori-Tanaka

homogenization scheme.

According to Inclusion Based Problem (IBP) [89], each phase of a composite can be

treated as an inclusion embedded in an infinite reference medium. The shape of the

inclusion is determined by the spatial distribution of the phase in the composite. Consider

a composite containing n constituents, the stiffness localization tensorAi is defined as,

Ai =
�

I +Ni :C −1
re f : (Ci −Cre f )

�−1
:

�

n
∑

j=1

ξ j(I +N j :C −1
re f : (C j −Cre f ))

−1

�−1

(D.1)

where C is the material stiffness tensor and I denotes the 4th order identity tensor. ξ

represents the volume fraction of the constituent and the subscript i is the index of each

constituent. N j is the so-called Eshelby tensor of the phase j [97].

For the bi-phase composite, to achieve homogenization by Mori-Tanaka [93], the matrix

material is chosen as the infinite material, that is, Cre f =C1, so that,

A1 =
�

ξ1I + ξ2

�

I +N2 :C −1
1 : (C2 −C1)
�−1�−1

A2 =
�

I + ξ1N2 :C −1
1 : (C2 −C1)
�−1

(D.2)

The effective stiffness tensor of the composite reads,

C̃ = ξ1C1 :A1 + ξ2C2 :A2

=C1 + ξ2(C2 −C1) :
�

I + ξ1N2 :C −1
1 : (C2 −C1)
�−1 (D.3)
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The stress localization tensor Lmech has the form,

Lmech =C2 :A2 : C̃ −1 (D.4)

Only the N2 exists for bi-phase composite, therefore the subscript is removed in the

following. The Eshelby tensor N depends on the shape of the inclusion and the stiffness

tensor of the infinite medium Cre f . In this case, the field in the inclusion can be considered

uniform so the virtual inclusion in the IBP is sphere [89]. And the selection of the infinite

reference medium is the matrix material. The elements of the Eshelby tensor N are [98]



























N1111 = N2222 = N3333 =
7− 5ν1

15(1− ν1)

N1122 = N2233 = N3311 = N1133 = N2211 = N3322 =
5ν1 − 1

15(1− ν1)

N1212 = N1221 = N2112 = · · ·=
4− 5ν1

15(1− ν1)

(D.5)

where ν1 is the Poisson ratio of the matrix.

Practically, because of symmetry, the 4th order tensor degenerates into 2nd order by

Voigt notation. Denote material Young modulus Y , and Poisson ratio ν. The bulk modulus,

κ, and shear modulus, G, can be determined by:











κ=
Y

3(1− 2ν)

G =
Y

2(1+ ν)

(D.6)

The material stiffness tensor in matrix form is,

C=



















κ+ 4
3 G κ− 2

3 G κ− 2
3 G 0 0 0

κ− 2
3 G κ+ 4

3 G κ− 2
3 G 0 0 0

κ− 2
3 G κ− 2

3 G κ+ 4
3 G 0 0 0

0 0 0 2G 0 0

0 0 0 0 2G 0

0 0 0 0 0 2G



















(D.7)

According to the material properties listed in Tab. 5.1, the material stiffness tensor is

obtained as well as the Eshelby tensor. As a result, the mechanical localization tensorLmech

can be determined.
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Titre : Modélisation semi-analytique des pertes par courants de Foucault dans les

matériaux composites
Mots clefs : Homogénéisation, Matériaux hétérogènes, Modélisation, Pertes par courants induits, SMC

Résumé : Ce travail consiste à développer un modèle

de perméabilité complexe pour composites magné-

tiques doux (SMC - Soft Magnetic Composites). La

perméabilité magnétique et les pertes par courants

de Foucault (EC - Eddy Current) sont intégrées re-

spectivement comme les parties réelle et imaginaire

d’une perméabilité complexe. La perméabilité mag-

nétique effective macroscopique peut s’obtenir par

des estimations classiques en homogénéisation. Une

détermination correcte de la perméabilité effective,

i.e. la partie réelle de la perméabilité complexe, est

cruciale pour une estimation précise de pertes EC. Les

formules de pertes EC sont dérivées pour des SMC

à microstructure périodique dans les cas 2D et 3D.

En outre, différentes approches s’appuyant sur dif-

férentes moyennes du champ magnétique permettent

d’obtenir des limites inférieures et supérieures pour

l’estimation des pertes EC dans les SMC.

La perméabilité complexe ainsi obtenue est ensuite

appliquée à une structure de circuit magnétique. Le

champ magnétique et la répartition des pertes EC

peuvent être obtenus sur le circuit magnétique équiv-

alent (homogénéisé). Les résultats sont comparés

aux calculs en champ complet du circuit magnétique

hétérogène. Un bon accord est observé.

Enfin, on étudie l’effet des contraintes mécaniques sur

la perméabilité magnétique et les pertes EC des SMC,

ce qui conduit à une formule couplée de la densité

de pertes EC en fonction de la contrainte mécanique

macroscopique et du champ magnétique.

Title: Classical Losses in Soft Magnetic Composites using Homogenization Tech-

niques
Keywords: Homogenization, Heterogeneous Materials, Modeling, Eddy Current Losses, SMC

Abstract: This work consists in developing a com-

plex permeability model for soft magnetic composites

(SMC). The static magnetic permeability and eddy

current (EC) losses are integrated respectively as the

real and imaginary part of the complex permeabil-

ity. Classical estimates are applied to determine the

macroscopic effective magnetic permeability. A cor-

rect determination of the effective permeability, i.e.

the real part of the complex permeability, is crucial for

the estimate of EC losses. EC losses formulas are de-

rived for SMC with periodic microstructure in 2D and

3D cases. Furthermore, different approaches of field

averaging are employed to obtain lower and upper

bounds on the EC losses in SMC.

The complex permeability model is then applied to

analyze a magnetic circuit structure. The magnetic

field and EC losses distribution can be obtained on

the equivalent homogenized magnetic circuit. The re-

sults are compared to the full-field calculations on the

heterogeneous magnetic circuit. A good consistency

is observed.

Finally, the effect of mechanical stress on the mag-

netic permeability and loss property of SMC is studied,

which leads to a coupled formula of EC loss density as

a function of macroscopic stress and magnetic field.
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