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Introduction

Biometric systems have invaded our daily lives as many applications have now replaced the tra-
ditional badges and passwords. As time goes by, new biometric solutions have emerged going
from voice and face recognition to fingerprint, iris and veins recognition. In this thesis, we are
interested in face biometric solutions which cover a wide range of applications [Parmar14] such as
face identification, access control, border control, surveillance and general identity verification. For
instance, face recognition technology is used in the Fresno Yosemite International airport to alert
the authorities if a known terrorist is recognized by the system. Another example concerns the
elimination of duplicates during the voter registration procedure as each voting member is assigned
a unique ID number only if no match is found among already registered individuals. Otherwise
manual inspection is conducted. The most common use of face biometric solution concerns access
control applications where the face replaces the traditional password and login for many use-cases
such as banking, room and facility access, computer and smart-phone login. The success of secu-
rity solutions based on face biometrics is based on the fact that face is a unique biological identity
marker (except for twins) which establishes a connection between the identification number and
password contrary to conventional security systems. Hence, multiple face biometric commercial
systems have conquered the security market [Gorodnichy14] and more than a hundred companies
are referenced on the internet including large groups such as NEC 1 or Google 2. Beyond the com-
petition for improving face recognition performance, new challenges have emerged regarding the
security of biometric solutions in general. Major security weaknesses have been unveiled to the gen-
eral public through real spoofing attempts on breakthrough systems such as airport security scans
3 or commercial laptops [Duc09]. Even spoofing demonstrations are available online on Youtube 4.
The biometric community has addressed these security issues for a decade now with the support
of two European projects BEAT 5 and TABULA-RASA 6. The development of diverse spoofing
attacks has been studied in the context of the TABULA-RASA Spoofing Challenge in 2013. Along
the way, the construction of public databases and the development of protection measures against
spoofing attacks have been encouraged by the the two ICB competitions in 2011 [Chakka11] and
2013 [Chingovska13b]. In this context, multiple anti-spoofing countermeasures have been intro-
duced bringing together different research fields such as computer vision, texture analysis, motion
analysis and optic physics.

0.1 Face recognition system’s vulnerabilities

A face recognition system and more generally any biometric system comprise two stages: the
enrolment and the authentication. The first step enables an unknown user to register on the
system’s database by following the standard authentication procedure. A template of the user in the
form of face images or any other face representations is stored in the database. In the authentication
phase, two different matching strategies are implemented depending on the operating instructions of
the face recognition system. The identification mode searches the identity in the system’s database

1http://www.nec.com
2http://www.pittpatt.com
3http://edition.cnn.com/2010/WORLD/americas/11/04/canada.disguised.passenger/
4https://www.youtube.com/watch?v=KSHV23aPm2s
5https://www.beat-eu.org/
6https://www.tabularasa-euproject.org/
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that best matches the input face and a one-versus-all comparison procedure is conducted. The
verification mode corresponds to the case where the user claims his identity and the system simply
checks that his face matches with his corresponding template using a one-versus-one comparison
procedure. The latter case is what we focus on in this thesis and in face anti-spoofing in general.
The general architecture of a face biometric system comprises a sensor (RGB camera in our case),
a feature extractor module and a matcher in communication with an off-line or on-site database.
Ratha et al. [Ratha01a, Ratha01b] have identified eight basic weaknesses in a biometric system as
depicted in figure 1.

Figure 1: Weaknesses of biometric systems in general according to [Ratha01a].

These points of attacks are grouped into four categories in [Jain08] as follows:

• attacks at the user interface (1): the impostor presents a fake face (photo, video or masks)
of a valid user in front of the sensor.

• attacks at the interfaces between modules (2,4,7,8): communication channels between mod-
ules are intercepted and tampered to simulate a valid access such as hill climbing attacks
[Soutar02, Galbally10, Gomez-Barrero12].

• attacks on the modules (3,5): the behaviour of modules can be altered so they produce a
specific response, these attacks are known as Trojan-horse attacks.

• attacks on the template database (6): an impostor can gain access to the system by replacing
the template of a valid user in the database with his own template.

The last three types of attacks are out of the scope of this work as they are not specific
to biometric systems but rather to any security system. The term spoofing commonly used in
the biometric community designates attacks at the sensor by presentation of a fake face. This
vulnerability is very specific to biometric systems and is particularly problematic for face biometric
solutions as manufacturing a fake face is very easy and low cost compared to other biometrics.
Videos or pictures can be easily stolen, either by taking a picture directly without the targeted
person’s consent or directly on the internet as social networks are gathering all this kind of data.
Therefore, someone’s face is no longer a secure information and can be hijacked to spoof face
recognition systems directly by presenting a stolen photo or video. Not every picture can spoof
such a system because it must fulfil certain matching criteria based on the enrolment process.
However, by testing a few pictures/videos with different lightning conditions, points of view and
backgrounds (easy to do with image processing tools) one can spoof a recognition system quite
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easily. In [Duc09], Duc and Minh demonstrate the vulnerability of three face verification systems
from commercial laptops against photo-spoofing. This vulnerability has been known for a long time
and has drawn a lot of attention this last decade.

0.2 Context: the BIOFENCE project

The evaluation and certification of spoofing resistance are two of the major issues concerning
biometrics technologies in their present and future implementations. The ANR BIOFENCE project
proposes a systematic study of the spoofing resistance of face, iris and vein patterns biometrics in
order to come up with a suitable evaluation methodology for certification.

The first part of BIOFENCE concerns the technical analysis of existing spoofing attacks as
well as the creation or development of new fakes we could foresee for face, iris and vein biometrics.
If the literature reports several cases of attacks to fingerprint biometric sensors by fake fingers,
information regarding face recognition are rarer, and even more for iris and vein modalities. This
is naturally due to the fact that biometric sensors using the fingerprint are more prevalent in
the world and to some extent it is this type of sensors that have laid the foundations of modern
biometrics. The project aims to draw up an exhaustive inventory of spoofing attacks aiming at
spoofing these modalities (status of technical and scientific advances, patents, publications) and to
design scenarios in order to assess them in terms on ease of implementation, ease of use, impact,
etc.

The second objective of this project is to provide a comprehensive and innovative study of
countermeasures. From an industrial point of view, a biometric provider wanting to certify a
product will aim for the maximum security level, i.e. will rely on the implementation of innovative
protection techniques. These countermeasures intend to improve resistance to attacks using spoof
of the state of the art but also ideally new fakes that will be proposed during this project. Therefore,
based on a review of existing countermeasures or liveness detection techniques, the BIOFENCE
project will have to deal with a bunch of problems ranging from relatively explored to unexplored.
The solutions can be hardware or software and each solution must then be evaluated in terms of
cost, complexity and skills required to implement it.

The third objective is to lean on the Common Criteria (CC) standard to establish the assessment
methodology of robustness for face, iris and veins biometric sensors. The adaptation of this norm
to face, iris and vein biometrics will ensure reliable and robust evaluation criteria. CC standard is
internationally recognized and this work aims to support the set up of an international standard
for security evaluation of biometric systems.

A particular attention is paid to the compliance of the developments in terms of ethics and
respect of privacy as well as to the societal impacts of the project. The consortium is composed of
one industrial (Safran) and multiple research labs to cover all the biometrics technologies as well
as ethical aspects as illustrated in figure 2.

In summary, multiple scientific advances and results are expected from this project:

• Better understanding/knowledge and inventory of present and future (anticipated) spoofing
attacks to face, iris and venous network biometrics.

• Enhancement of biometric acquisition systems and software processing techniques enabling
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Figure 2: Consortium description: contribution of each partner.

an improved robustness to fakes. This will lead to better security of FIV biometrics to ensure
a high level of resistance to attacks for the future products.

• Define a standardized framework for evaluating these systems and propose an adaptation
of the Common Criteria norm aiming to set up an international certification standard for
security of face, iris and vein pattern biometric products.

• Studying the societal impacts of the project and ensuring privacy.

Our contribution in the BIOFENCE project focuses on 2D face biometric technology and is
articulated in three parts. The first challenge is to evaluate the resistance of unprotected face
recognition systems against state of the art spoofing techniques and possibly anticipate and de-
velop new attack scenarios. The second objective is to develop new protection measures to improve
the resistance of face biometric systems against these treats. Finally, the certification methodology
based on the Common Criteria developed for fingerprint technology is applied for 2D face recog-
nition systems security evaluation. Tests are carried out in order to evaluate if the methodology
reflects the resistance of protected 2D face recognition systems against spoofing attacks correctly.

0.3 Anti-spoofing challenges

The protection of face biometric systems against spoofing attacks raises a number of challenges
as fake faces are easy to forge with minimum equipment. At the moment, numerous anti-spoofing
methods exist and most of them work under very restrictive specifications including the authentica-
tion protocol, the acquisition conditions, the type of attack considered and even the way the attack
is performed. The anti-spoofing problem suffers from many sources of variability that sometimes
overcomes the differences between real and fake faces. In a sense, the anti-spoofing problem can
be seen as the dual task of the face recognition task. On the one hand, face recognition algorithms
strive for a face embedding that expands the interpersonal variabilities (differences between two
individuals) while reducing the intra-personal variance generated by illumination, pose and facial
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expressions. On the other hand, anti-spoofing countermeasures search for a face representation
that reduces the interpersonal variance while increasing the intra-personal variance in a way that
limits the variability due to pose and illumination changes but expands the variability due to the
forged nature of fake faces. The main difficulty is to determine discriminant cues for all types of
attacks and acquisition conditions. At first, liveness based countermeasures have been proposed
to solve the photo attack problem. However, as spoofing techniques keep evolving, more complex
countermeasures need to be developed to remain one step ahead. The arrival of video attacks and
mask attacks have added another level of complexity to the problem at hand. Hence, some coun-
termeasures aim to control certain sources of variability to make them discriminant. For example,
head movements (pose variability) or facial expressions such as blinking or smiling can be specified
during authentication in a challenge/response procedure to assess liveness. Other methods focus
on background or scene context information and are likely to fail against mask attacks. Besides,
anti-spoofing performance drops significantly when only the face region is considered.

In this work, we focus on the face region only with controlled illumination conditions (that are
consistent between training and testing the system) and under a non-cooperative authentication
protocol. We exploit intrinsic differences between natural and unusual characteristics of the face
only and study their consistency between different types of attacks and acquisition conditions.

0.4 Main contributions

Several methods combine multiple complementary cues such as motion and texture information
from the face region to deal with all sorts of attacks but the contribution of each component is
not always clearly specified. Our goal is to isolate and study motion and texture independently to
assess their strengths and limitations.

Our first contribution is the review of state of the art methods to draw out the current limitations
of protection methods. We limit our focus to software-based methods in this work and survey a
large range of methods although only texture-based and motion-based methods are discussed in
this document.

Our second contribution is the development of an unified evaluation framework based on the
study of the popular LBP descriptor for the evaluation of state of the art texture-based counter-
measures. Then, we propose two different approaches to improve the classic LBP descriptor for
deriving discriminant features. We propose to extend the LBP operator to embed contrast and
color information in the texture characterization. The proposed HSI-LBP color texture descrip-
tor obtains significant improvements compared to state of the art texture-based methods on the
ReplayAttack, CASIA and MSU databases.

Our third contribution is the development of a new motion-based countermeasure based on
the constrained local neural fields framework of [Baltrusaitis13]. The face is modelled by a de-
formable shape composed of 68 landmarks. Rigid and non-rigid motions are directly extracted
from this convenient face tracking framework and features are obtained using Fisher vector encod-
ing which transforms variable length low-level motion features to a mid-level representation that
is more discriminant similarly to bag-of-words approaches. Contrary to countermeasures based on
face/background motion consistency, the proposed method focuses only on face motion and can be
applied for spoofing attacks that do not fake the whole view. We evaluate the robustness of the
proposed method on the three databases (ReplayAttack-DB, CASIA-FASD and MSU-MFSD) and
highlight the main limitations of non-cooperative motion-based countermeasures. Particularly, the
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evaluation of motion-based countermeasures is new for the MSU database and we demonstrate that
good detection is achieved despite of camera shakes when a mobile sensor is employed.

Our fourth contribution investigates the recapturing process and proposes a parametric model
to describe the different mechanisms involved between a real face and its recaptured version. In
this model, we consider radiometric and blur distortions specifically and propose two techniques
to recover the different distortions between real faces and fake ones using enrolment samples as a
reference. The estimated parameters are directly used as features for classification and we prove
that both distortions can be a great help for fake face detection provided that the sensor quality is
good enough and that acquisition conditions between enrolment and testing are similar. However,
our real motive is to investigate the consistency of these distortions from one individual to the
other and we take a first step toward the synthesis of spoofing attacks for new individuals.

Finally, our contribution to the BIOFENCE project is presented. The direct application of
the certification methodology based on the Common Criteria originally developed for fingerprint
technology on face biometric systems does not reflect the resistance of face biometric systems
against spoofing attacks as it is. Hence, propositions for the adaptation of the methodology to face
anti-spoofing are made.

0.5 Thesis outline

The main objective of this thesis is the evaluation of the resistance of 2D face recognition biometric
systems against spoofing attacks. After a review of spoofing techniques and protection measures, we
take advantage of the available public databases and make a complete evaluation of texture-based
and motion-based countermeasures on the most recent ReplayAttack, CASIA and MSU spoofing
databases. We focus on non-cooperative software methods which consider the face region only in
anticipation of mask attacks. Then, we explore radiometric and blur distortions in a model-based
approach and take a first step toward the synthesis of spoofing attacks. This document is organised
as follows.

In chapter 1, we describe the state of the art of spoofing techniques along with the recent public
databases implementing these attacks. We present in detail the selected databases for this study
along with their respective evaluation protocols. Then, we prove the vulnerability of unprotected
2D face recognition systems against photo, video and mask attacks. Protection measures are
essential and we provide a general overview of state of the art protection methods. A particular
effort is provided to highlight useful cues to detect spoofing attacks and software countermeasures
are discussed in more details under the light of these discriminant cues.

In chapter 2, a detailed review of texture-based methods is presented. In a second part, an
unified framework for the evaluation of texture-based countermeasures is presented and a fair
evaluation of different state of the art texture descriptors on the ReplayAttack, CASIA and MSU
databases is provided. At last, improvements of the traditional LBP descriptor are proposed using
color and feature selection.

In chapter 3, a detailed review of motion-based countermeasures is presented. Then, we propose
a novel motion-based countermeasure using rigid and non-rigid motions and perform exhaustive
evaluations on the ReplayAttack, CASIA and MSU databases.

In chapter 4, a model-based approach to the anti-spoofing problem is adopted. The recapturing
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process is modelled as a combination of blurring and radiometric transformations and two methods
are proposed to recover these distortions using enrolment samples. In a second attempt, attack
synthesis is explored using sparse coding.

In chapter 5, a draft of the certification methodology designed for fingerprint technology is
presented. This methodology is then evaluated in the context of face anti-spoofing and propositions
for improvements are given.
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State of the art
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Since the first [Chakka11] and second [Chingovska13a] IJCB competitions on face anti-spoofing,
the development of new public spoofing databases and protection solutions have escalated. In this
chapter, we first provide a general overview of existing spoofing attacks. Then, we highlight the
main ideas used for the development of protection methods against attacks using software tech-
niques. Finally, we discuss existing databases and evaluation standards employed in the literature.

1.1 Spoofing attack forgery

Spoofing stratagems keep evolving and present new treats for in-place anti-spoofing countermea-
sures. In this section, we present how spoofing attempts are implemented in real situations. The
first step toward designing a fake face is to obtain the face biometry of a target user. This infor-
mation takes several forms and condition the type of fake face that can be made. Fake faces are
classified into three categories: photos, videos and masks. The easiest way to perform an attack is
to steal a photo or video of a valid client with or without his/her consent. It can be done directly
by filming discretely the target client or indirectly via social networks or any on-line media sharing
services in which the client is registered. This data can then be utilized to manufacture a fake face.
When the user’s cooperation is possible, high-quality acquisitions are obtained to manufacture a

8
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realistic fake face. In particular, realistic masks can only be achieved by obtaining a high quality
3D scan of the client face so the client’s cooperation is required. The second step is the fake face
manufacturing:

• Photo and video attacks Photo attacks use either printed photographs or digital photos.
To manufacture print attacks, the hijacked picture is printed using a high-end consumer
printer on matte photo paper in order to render a realistic fake face. The quality of the
reproduction is dependent of the printer, ink and paper characteristics. In practice, standard
A4 printouts are able to spoof unprotected face recognition systems. For digital photo attacks,
the quality of the attack is often limited by the screen characteristics. Actual digital photo
attacks use the latest smartphones and iPads as displays for practicability. Similarly, video
attacks are performed using smartphones or iPads. Usually video acquisitions have a lower
quality than photo captures as automatic exposure and focus are set differently. The next
generation of photo and video attacks are likely to use high-contrast monitors and HDR
acquisitions for more realistic rendering. Figure 1.1 illustrates different photo and video
attacks.

Photo / video attacks on iPadPrint attacks

Full view

Face only

Figure 1.1: Exemplars of photo and video attacks. The first row shows examples of full view print
attacks with eye-cut, basic print attacks and video attacks. The second row contains their face
only counterparts.

• Mask attacks Various techniques exist to manufacture face masks at a wide price range.
With the arrival of 3D printers on the consumer market, affordable masks can be obtained
quite easily from online services like "ThatsMyFace.com" which specializes in custom face
mask sculptures. Only two pictures (one frontal and one profile) of the face are needed
to reconstruct a reliable 3D face model. The face sculpture takes different forms from cheap
paper-craft masks (30$) to expensive real-size resin-based masks (300$) as illustrated in figure
1.2. With the target user cooperation, it is possible to manufacture a more realistic mask
using a 3D scan of the face. Another technique requiring artistic skills consists in painting a
silicone mould of the face.

The last step designates the way the attack is performed in front of the authentication sensor.
From a given type of fake face, multiple attack scenarios are possible. In the case of mask attacks,
if real size masks are employed then the impostor just needs to wear the mask and act normally
in front of the sensor following the authentication procedure. When miniature masks are used, the
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Paper-craft
    mask Miniature mask Life mask Wearable mask

Hard resin composite

Figure 1.2: Exemplars of masks from ThatsMyFace.com. From left to right, pictures represent a
real size paper-craft mask, a miniature mask, a real size decoration mask and a wearable mask.

impostor must hold the mask in front of the sensor and may try to simulate real face behaviour by
manipulating the mask (stretching, bending, moving, ...). The displaying manner is as important
as the quality of the fake face when mimicking a real face realistically. In the case of print attacks,
similar manipulations are performed to simulate liveness. Another way consists in cutting some
face parts such as eyes and mouth to simulate motion through the holes. For video attacks, ideally
the screen is fixed so only the replayed motion is visible. In practical situations however, the screen
is hand-hold in front of the sensor with more or less hand motion.

Another key aspect must be considered when referring to photo and video attacks. Full view
attacks correspond to attacks that cover the whole sensor view and include a fake background
in addition to the fake face region as illustrated in figure 1.1 (first row). This way, the spoofing
medium is no longer visible making the attack much more difficult to detect for a real person. Face
only attacks designate distant attacks that cover only the face of the impostor. In this case, the
face occupies the whole support (paper or screen) and has a better resolution due to the inverse
zooming effect.

The whole spoofing attack forgery pipeline is illustrated in figure 1.3. We clearly distinguish the
attack type which refers to the type of fake face and the attack scenarios referring to the use of the
fake face. Even though fake faces are limited to three types, progress in multimedia technologies
(cameras, printers and screens) provides the impostors with new means to make more realistic fake
faces. In particular, real size realistic masks become affordable with the development of 3D printers
and are bound to pose new treats in a near future.

This review of spoofing attack forgery answer the first objective of the BIOFENCE project. In
the case of 2D face recognition systems, spoofing attacks are already well known and the imple-
mentation of new spoofing attacks is directed toward expensive mask spoofing. Real size masks are
manufactured within the BIOFENCE framework, otherwise no other breakthrough face spoofing
attacks have been developed in this work. We assume that the latest public face spoofing databases
are already covering a wide range of spoofing attack scenarios and we concentrate on the latest
ones to evaluate the treat to 2D face recognition systems. The next section describes the evolution
of public databases and their evaluation protocols.
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     data
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Figure 1.3: Design of face spoofing attacks.

1.2 Public databases and evaluation standards

In this section, we present the public databases used for the development of software-based face
anti-spoofing countermeasures. Also, we define some mainstream evaluation schemes and connect
them with current standards in the biometric community.

1.2.1 History

Fake face detection has been an active research field in the past few years and several public
databases have been released for testing new anti-spoofing algorithms. In 2010, Tan and al.
[Tan10a] developped the NUAA Imposter database to test 5 photo-attack scenarios with low and
medium quality printed pictures under different lightning conditions. Different types of movements
(translations, rotations, wrapping, bending) are recorded to test all displaying configurations in
photo spoofing. Soon after, the YALE-Recaptured database complicates the detection problem
with illumination variations and new attacks using digital photos displayed on LCD screens. In
2011, the Print-Attack database was released by Anjos and Marcel [Anjos11]. It provides a larger
set of high resolution printed photos and real accesses along with a licit testing protocol for a fair
comparison of anti-spoofing countermeasures. Photos are either hand-hold or fixed to test motion
based counter-measures and videos are collected instead of pictures unlike previous databases. In
2012, the Replay-Attack database [Chingovska12] was designed as an extension to the Print-Attack
database. It gathers photo and video attacks (fixed or hand-hold attacks) on different mediums
(iPhone and iPad) under controlled or complex backgrounds. At the same time, a more complex
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database named CASIA-FA DB [Zhang12] includes warped photo attacks to simulate facial mo-
tion, eye-cut photo attacks to simulate blink and videos attacks using an Ipad. In 2013, IDIAP
researchers created the public 3D mask Attack Database [Erdogmus13]. It contains depth maps
and 2D face images. Spoofing attemps were conducted with real-size masks and paper-cut masks
from "ThatsMyFace.com". They also provided an update to the "Print Attack" database by adding
digital photograph spoofing attacks on low and high resolution displaying mediums (see "Photo
Attack" database [Anjos14]).

Table 1.1: Timeline of anti-spoofing public databases release.

2010 · · · · · ·• NUAA Imposter DB
[Tan10a].

2010 · · · · · ·• YALE-Recaptured DB
[Peixoto11].

2011 · · · · · ·• PrintAttack DB [Anjos11].

2012 · · · · · ·•
CASIA-FA DB [Zhang12] &
ReplayAttack
[Chingovska12].

2013 · · · · · ·• 3D-Mask DB [Erdogmus13].

2014 · · · · · ·• MSU-MFS DB [Wen15].

The mentioned public databases cover all known spoofing attacks under a user-friendly authen-
tication protocol where the client tries to remain still and natural in front of the camera. Several
self-collected databases have been created for the evaluation of interaction-based countermeasures.
Especially, multiple motion-based countermeasures impose yaw and pitch head motion to assess
the three dimensionality of the face during authentication. The release of these public databases
has considerably boosted the development of software-based countermeasures.

1.2.2 Evaluation schemes

Recent anti-spoofing evaluation methodologies [Chingovska13b] grow toward a joint evaluation
of the anti-spoofing module and face recognition/verification module, transforming the traditional
two class spoofing detection problem (real accesses and attacks) into a pseudo-ternary classification
problem that includes genuine access, zero-effort impostors and spoofing attempts. This type of
evaluation better reflects the real performance of the biometric system in real applications as the
anti-spoofing module affects the final performance of the system. In this thesis, we stick with
the traditional binary classification evaluation of anti-spoofing countermeasures as it enables fair
comparisons with state of the art methods.

Although some unifying efforts have been proposed in [Marcel14], multiple evaluation strate-
gies and conventions exist in different publications. We present the main evaluation conventions
associated with existing public databases.
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Validation schemes Binary classification systems are evaluated using samples from real accesses
and samples from spoofing attacks using a training set and a testing set of non-overlapping iden-
tities. A common practice is to further divide the testing set into a development set for model
parameter tuning and a test set for reporting results. When a small amount of data is available,
cross-validation evaluation strategies are employed to improve generalization.

Performance metrics Anti-spoofing methods are subject to two types of errors. Either a real
access is classified as a spoofing attempt (False Rejection or False Negative) or a spoofing attack is
considered as a real access (False Acceptance or False Positive). The terminology adopted in most
of the publications is the following:

• False Acceptance Rate (FAR): ratio of incorrectly accepted spoofing attacks for a given thresh-
old.

• False Rejection Rate (FRR): ratio of incorrectly rejected real accesses for a given threshold.

Performance of anti-spoofing methods is evaluated in terms of error rates (FAR and FRR). Graphi-
cal representations of error rates include Receiver Operating Curves (ROC), Detection Error Trade-
off (DET) curves and Expected Performance Curve (EPC). To report quantitative results, several
metrics are proposed by selecting a given operating point. Popular metrics are:

• Equal Error Rate (EER): designates the error rate at operating point t0 (classification thresh-
old) where FAR equals FRR.

• Half Total Error Rate (HTER): corresponds to the mean between FAR and FRR at a given
operating point. The HTER depends on the classifier threshold which is set using a cross
validation set (development set). A common practice is to set this threshold so that FAR =
FRR on the development set.

Industrial applications follow strict security specifications and must not exceed a maximum FAR
(generally FAR < 0.5%). To evaluate the performance of countermeasures according to industrial
standards, the FRR at FAR = 0.1% is sometimes reported.

1.2.3 Selected databases and evaluation protocols

As discussed in the previous chapter, the number of public databases have exploded since 2010
and exhaustive experiments are now possible to assess the real potential of the proposed coun-
termeasures. In this chapter, we describe the databases considered in this work. Experiments
are conducted on ReplayAttack-DB [Chingovska12], CASIA-FAS DB [Zhang12], MSU-MFS DB
[Wen15] and Morpho-MA DB [Kose13a]. These datasets have complementary characteristics. The
ReplayAttack database deals with static full view close-up replay attacks whereas CASIA-FAS DB
focuses on face only mid-range replay attacks with simulated motion. The MSU-MFS DB com-
plements the ReplayAttack dataset by adding better quality print attacks and by using a mobile
sensor. Finally, real-size mask attacks are tackled using the Morpho-MA DB.
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1.2.3.1 IDIAP Replay-Attack Database (ReplayAttack-DB)

Using a standard web-cam, the Replay-Attack database aims to evaluate the performance of anti-
spoofing countermeasures against different types of replay attacks with an increasing quality. The
Replay-Attack database [Chingovska12] is publicly available at the IDIAP Research Institute web-
site1.

Recordings The database contains videos of both real-access and spoofing attack attempts of
50 different subjects. Attacks are performed at close-range and cover the whole sensor’s view (full
view attacks). The authentication process requires the users to face the sensor and to remain still
for about 10 seconds. The acquisitions were carried out with a 320*240 resolution webcam of a
MacBook Laptop during about 10 seconds at a frame rate of 25 fps, under two different lightning
conditions. Both uniform background with artificial lighting and non-uniform background under
natural illumination have been considered. Three different types of attacks were considered with
an increasing level of resolution. First, mobile attacks are performed using photos and videos taken
with the iPhone 3GS displayed in 480*320p on iPhone screen. Second, print attacks use plain A4
printed photos taken from a 12.1 mega pixels Canon camera. The same camera is used to record
videos in 720p (HD). Both photos and videos are displayed on an iPad in 720p to perform highdef
attacks. Those attacks are performed in two manners, hand-hold and fixed. An illustration is given
in figure 1.4. Because full view attacks are performed, photo and videos used to manufacture the
attacks are captured in the same conditions as real accesses.

Protocols The database is split into three sets for evaluation. A training set containing 20
subjects is provided to train the spoofing detector (binary classification). Reporting results is
done by setting the detector threshold on the EER of the development set (15 subjects) and by
computing the corresponding HTER on the test set (15 subjects). To investigate the efficiency of
anti-spoofing countermeasures against diverse spoofing attacks, six protocols are designed:

• print Only print attacks are considered.

• mobile Photo and video attacks performed by iPhone are considered.

• highdef Photo and video attacks performed by iPad are considered.

• photo Photo attacks performed by iPhone and iPad are considered.

• video Video attacks performed by iPhone and iPad are considered.

• overall All attacks are considered.

1.2.3.2 CASIA Face Anti Spoofing Database (CASIA-FASD)

The CASIA database investigates two aspects: the impact of the sensor quality (low, medium and
high resolution sensors are used) and the impact of simulated motion when detecting high quality
print and video attacks. The CASIA Face Anti-Spoofing DB [Zhang12] is publicly available from
the Chinese Academy of Sciences Center for Biometrics and Security Research (CASIA-CBSR)2.

1http://www.idiap.ch/dataset/replayattack
2http://www.cbsr.ia.ac.cn/english/FaceAntiSpoofDatabases.asp
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Figure 1.4: Raw exemplars of authentication attempts using client 022 identity from ReplayAttack
DB. The left figure corresponds to raw samples and right figure corresponds to the corresponding
face region. Top line shows acquisitions under natural illumination while bottom line display
recordings under artificial lighting. From top to bottom, real accesses, print attacks, mobile attacks
and Ipad attacks are displayed respectively. Only digital photo attacks are illustrated as video
attacks look similar (when a single frame are displayed).

Recordings CASIA-FASD contains videos of real-accesses and replay attack attempts of 50 dif-
ferent subjects. The authentication process requires the users to face the sensor for about 10
seconds and movements are tolerated as long as the client looks at the camera. Photos and videos
used to create fake faces are acquired with a Sony NEX-5 digital camera which produces 1080p
(full HD) videos. The attacks fake only the face region and are performed at mid-range. Printed
photos are made from a frame of the recorded videos and A4 copper paper for better quality. Print
attacks are performed in two manners: the attacker deliberately warps an intact photo, trying to
simulate facial motion (warped photo attack) or the photo is cut along the eyes and the attacker
wears it like a mask while exhibiting blinking through the holes (Papercut photo attack). For video
attacks, an iPad is used to display the fake faces just like the Replay-Attack database. To evaluate
the impact of the sensor quality used for authentication on anti-spoofing performance, three devices
with different resolutions are tested. First an old low resolution USB webcam produces low quality
640*480p video samples with faces averaging 210*190 pixels. Second, a modern USB webcam with
medium resolution captures faces at about 230*200 pixels. Last the Sony NEX-5 digital camera
serves as the high resolution sensor producing 710*620 face samples. Typical samples are shown in
figure 1.5.

Protocols The database is split into a training set (20 subjects) and a test set (30 subjects).
Results should be reported using DET curves [Martin97] and EER on the test scores. Seven
scenarios are defined to evaluate the effect of imaging quality and attack types on anti-spoofing
countermeasures.

• LD : Low quality test using samples captured by the low cost webcam
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• MD : Medium quality test using samples captured by the modern webcam

• HD : High quality test using samples captured by the Sony Nex-5 camera

• Warped : Acquisitions of warped photo attacks are considered (from all three sensors).

• Cut : Acquisitions of cut-photo attacks are considered (from all three sensors).

• Video: Video attacks are considered (from all three sensors).

• Overall : All attacks are considered.

Figure 1.5: Raw exemplars of authentication attempts using client 5 identity from CASIA database.
Samples are captured with low (green box), medium (blue box) and high definition (red box) sensors
respectively. In each box, samples represent real access, warped photo attack, cut-photo attack and
Ipad attack respectively.

1.2.3.3 MSU Mobile Face Spoofing Database (MSU-MFSD)

The MSU database [Wen15] investigates the problem of face spoofing in mobile phone applications
(mobile phone unlock) using high quality full view replay attacks. This database was produced
at the Michigan State University Pattern Recognition and Image Processing (PRIP) Lab and is
publicly available on demand3.

Recordings MSU-MFS DB contains videos of real-accesses and replay attacks of 35 different
subjects. The authentication process requires the users to face the sensor and to remain still for at
least 9 seconds. Attacks are performed at close-range and cover the whole sensor’s view similarly
to those in ReplayAttack DB. Two types of sensors are used for authentication, the built-in camera
of a MacBook Air 13" and the front facing camera of the Google Nexus 5 smartphone. Three types
of attacks are conducted using different supports. Photographs are printed on A3 paper using a
HP Color Laserjet CP6015xh printer from 18Mp photographs recorded using a Canon PowerShot
550D SLR camera. The same camera also captures 1080p video clips that are displayed on an
iPad Air screen (2048*1536 pixels) to generate iPad video attacks. Another type of video attack
is conducted using an iPhone 5S, with screen resolution 1136*640, for capturing and displaying
1080p fake face videos. Attacks are performed using a fixed support. Examples are shown in figure
1.6. Because full view attacks are performed, photo and videos used to manufacture the attacks
are captured in the same conditions as real accesses.

3http://www.cse.msu.edu/rgroups/biometrics/Publications/Databases/MSUMobileFaceSpoofing/index.html
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Protocols The database is divided into a training set of 15 subjects and a test set of 20 subjects.
Seven scenarios are defined to evaluate the effect of image quality and attack types on anti-spoofing
countermeasures.

• Android : Samples captured by the Google Nexus 5 smartphone.

• Laptop: Samples captured by the built-in webcam of a MacBook Air 13".

• Print : Acquisitions of print attacks are considered (from both sensors).

• iPhone: Acquisitions of video attacks displayed on iPhone are considered (from both sensors).

• iPad : Acquisitions of video attacks displayed on iPad are considered (from both sensors).

• Video: Acquisitions of cut-photo attacks are considered (from both sensors).

• Overall : All attacks are considered.

Figure 1.6: Raw exemplars of authentication attempts of one of the clients in the MSU-MFS
database. Samples are captured using Google Nexus 5 smartphone (first row) and a MacBook Air
13" laptop camera (second row). Columns corresponds to: (a) real accesses, (b) iPad video attacks,
(c) iPhone video attacks and (d) printed photo attacks.

1.2.3.4 Morpho Mask Attack Database (MorphoMAD)

MORPHO-MAD investigates the problem of mask attack detection using high quality real-size
masks more realistic from a texture standpoint than those from the 3DMask Attack database.
This database is a proprietary database accessible only to partners of MORPHO4.

These masks are colorless and were designed for spoofing 3D face recognition systems. It
contains 2D IR acquisitions (gray-scale photos) of both real-access and mask attack attempts of 20
different subjects for whom 16 masks have been manufactured. The remaining 4 subjects without
mask complete the database to have more real-access samples. For a given mask, 12 attack attempts
are carried in total by making several subjects wear the mask under different poses including the
owner of the mask. To obtain realistic masks, a 3D scanner which uses a structured light technology
captures face shape characteristics of the target person. Then the 3D mesh is derived from the
projection of the acquisition into a polygon 3D model and sent to the 3D printer. Masks were
manufactured by Sculpteo 3D Printing. Some examples are given in figure 1.7.

4http://www.morpho.com/en
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(a) (b) (c)

Figure 1.7: Raw exemplars of authentication attempts of one subject in the MORPHO-MAD
database. (a) Genuine user, (b) Attack performed by the owner of the mask, (c) Attack performed
by an impostor.

1.2.4 Evaluation schemes

The public databases have their own evaluation protocols. For Replay-Attack database, three data
subsets are provided for training, tuning and testing. The classification threshold is obtained from
the development set at the EER then, using this threshold, results are reported in terms of HTER
on the test set. For CASIA and MSU databases, only two sets are provided for training and testing
and results are reported using DET or ROC curves and EER.

1.2.5 Summary

The recent multiplication of public databases has boosted the development of a large panel of
countermeasures. The present work falls within this context and new software-based methods are
developed on three of the most challenging spoofing databases publicly available: ReplayAttack-
DB, CASIA-FASD, MSU-MFSD. We highlighted the complementarity between each dataset. Table
1.2 summarizes relevant properties of each database. Unfortunately, the Morpho-MAD contains
photo acquisitions in near infra-red as the masks are in black and white. Consequently, it is incon-
sistent with RGB video recordings of the considered public databases for which we have proposed
motion and color-aware countermeasures. For this reason, mask attacks are only considered to
demonstrate their versatility against 2D face recognition systems and experiments on RGB mask
attack recordings are left to future work.
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Table 1.2: General properties of the selected databases.

Databases
Replay-Attack DB
[Chingovska12]

CASIA-FASD
[Zhang12]

MSU-MFSD
[Wen15]

MorphoMAD
[Kose13a]

# subjects 50 50 35 20

# samples 1200 600 280 392

Authentication
protocol

still
slight movements

(expression changes,
pose variations)

still
little pose variations

but eye-closed

Illumination
adverse

controlled
adverse adverse controlled

Sensor
Built-in webcam
MacBook 13"
(320*240)

• Low cost webcam
(640*480)

• Standard webcam
(480*640)

• Sony NEX-5
(1920*1080)

• Built-in camera in
MacBook Air 13"
(640*480)
• Nexus 5 Android

phone (720*480)

NIR camera
(480*640)

Impostor camera

Canon PowerShot
SX150:

- 12.1 Mp photos
- 720p video at 30

fps

Sony NEX-5:
- 1080p video at 25

fps

• Canon PowerShot
550D SLR:
- 18 Mp photos
- 1080p videos
• iPhone 5S:

- 1080p videos

3D scanner

Attack type

• print photo
• photo on iPhone
• photo on iPad
• video on iPhone
• video on iPad

• warped photo
• cut photo
• video on iPad

• print photo
• video on iPad

silicone mask

Attack distance close-up, full view mid-range, face only close-up, full view mid-range

Display manner hand-held & fixed
hand-held with
simulated motion

fixed
wearing the mask
with closed eyes

1.3 Vulnerability of 2D face recognition systems against fake faces

In order to evaluate the vulnerability of unprotected 2D face recognition systems against spoofing
attacks, we investigate multiple face verification use-cases under the treat of state of the art spoofing
attacks. Intrinsically, face recognition systems are resistant to spoofing attacks to some degree.
For instance, if the fake face is too different from the enrolled real access sample due to geometric
distortions or low quality recapture the authentication attempt is viewed as belonging to a different
identity and is rejected. Our goal is to assess how easy it is to fool a face verification system using
state of the art spoofing attacks. First, the face recognition algorithm used in our experiments is
described. Then, the evaluation of its resistance against various spoofing attacks is investigated
under several use-cases.
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1.3.1 Face recognition algorithm

The architecture of the face recognition algorithm is presented in figure 1.8. First, faces extrac-
tion is performed using the Pittpat 5.0.2 SDK. Eyes are located and a face registration procedure
geometrically aligns the face so that eyes are horizontal. Extracted faces are cropped and resized
to 128*128 pixels. Then, face images are converted into gray-scale before performing illumination
corrections using Tan and Triggs preprocessing scheme [Tan10b]. A baseline face recognition algo-
rithm based on Gabor features and Principal component analysis is used to represent face images
into a suitable space for matching. The matching is performed using a nearest neighbours classifier
and the cosine Mahalanobis distance. In our experiments, the system is used in verification mode
meaning that a one-to-one matching procedure compares the input sample with the claimed iden-
tity template registered in the system during the enrolment phase. The implementation is based
on the Matlab toolbox5 provided by Vitomir Struc [Štruc10].

Figure 1.8: Face recognition pipeline.

1.3.2 Evaluation of the resistance of 2D face recognition towards spoofing at-
tacks

Our goal is to assess the permeability of unprotected systems against fake faces. Attacks from the
ReplayAttack, CASIA and Morpho databases are considered to investigate most of existing attack
scenarios. First, experiments on close-up replay attacks are conducted using the ReplayAttack
database. Second, mid-range attacks from the CASIA database are considered. Finally, mask
attacks from the MorphoMAD are evaluated. Because different acquisition conditions are used to
capture the face from one database to the other, the face recognition algorithm is tuned on the
training set (gallery) for each database. Only one image per identity is used to build the gallery
in our experiments and also a single query image per identity is considered during the deployment
phase (verification phase). For each identity claim, three different cases occur:

• the real client corresponding to the claimed identity checks in (real access).

• an impostor checks in (zero-effort attack).

• an impostor checks in with a fake face corresponding to the claimed identity (spoofing attack).

Hence, we analyse the matching score for each of these scenarios. Only one real access attempt
and one spoofing attack attempt are tested for one identity claim whereas N-1 zero-effort attacks
are tested where N denotes the number of clients enrolled in the face recognition system database.

5https://fr.mathworks.com/matlabcentral/fileexchange/35106-the-phd-face-recognition-toolbox

https://fr.mathworks.com/matlabcentral/fileexchange/35106-the-phd-face-recognition-toolbox
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(a) ReplayAttack-DB (b) CASIA-FASD (c) MORPHO-MAD

Figure 1.9: Distribution of face recognition scores. The vertical line corresponds to the matcher
threshold.

The decision threshold to accept or reject an authentication attempt is set so that there is the same
error rate between false rejections and false acceptances with respect to real access and zero-effort
attacks.

Use-case1: close-up attacks from ReplayAttack-DB The ReplayAttack database contains
video recordings of real accesses and close-up replay attacks which cover the whole view hiding
the spoofing medium borders. Only one frame is extracted from the video to perform the face
verification. This database contains a specific set for building the gallery of identity templates
during the enrolment phase. The distribution of the matching scores for real access, impostor
attempts (also referred as zero-effort attacks) and spoofing attacks are reported in figure 1.9a.
The face recognition system obtains almost perfect recognition performance as the EER = 0.01%.
However, the spoofing attack success rate is very high with 98% for print attacks, 94% for mobile
attacks and 96% for iPad attacks.

Use-case2: mid-range attacks from CASIA-FASD The CASIA database contains video
recordings of real accesses and mid-range replay attacks which hide the face of the impostor. Only
one frame is extracted from the video to perform face verification. As this database does not contain
an enrolment set, another frame is extracted to build the gallery. The distribution of the matching
scores for real access, impostor attempts (also referred as zero-effort attacks) and spoofing attacks
are reported in figure 1.9b. Similarly to the ReplayAttack case-study, the face recognition system
obtains perfect recognition performance as the EER = 0.01% and the spoofing attack success rate
is very high with 98% for print attacks, 98% for print eye-cut attacks and 100% for video iPad
attacks.

Use-case3: Mask attacks from Morpho-MAD This database contains pictures of authen-
tication attempts of real access and realistic mask attacks using a near infra-red camera. The
distribution of the matching scores for real access, impostor attempts (also referred as zero-effort
attacks) and mask attacks are reported in figure 1.9c. The system recognizes perfectly each indi-
vidual but fails to detect efficiently mask attacks as 26% of them bypass the system.
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1.3.3 Discussion

Photo, video and mask attacks present a real treat to unprotected face recognition systems. Espe-
cially, photo and video attacks are very easy to implement both in terms of skills and resources.
Mid-range attacks and close-up ones obtain more than 94% chances of success and demonstrate
the urgent need of protection measures against spoofing attacks. Mask attacks are more difficult to
manufacture and the success rate is not as good as photo and video attacks but they are expected
to raise challenging problems from an anti-spoofing perspective in the near future as they become
more and more realistic with the rapid development of 3D printing technology.

1.4 State-of-the art in face anti-spoofing

Face recognition has been an active field for a long time but face anti-spoofing research has only
captured the attention of the biometric community until the last decade following the success of
fingerprint biometrics. Nonetheless, extensive work has addressed the problem of securing face
authentication systems and main research directions have been established.

1.4.1 General taxonomy of anti-spoofing strategies

The general classification of anti-spoofing strategies is depicted in figure 1.10. Countermeasures
are divided into hardware-based and software-based methods.

• Software-based methods process the data collected from the authentication sensor. Dy-
namic approaches detect voluntary or involuntary motions of the face region to discriminate
real and fake faces while static approaches focus on texture analysis and image quality as-
sessment.

• Hardware-based methods use extra hardware for the anti-spoofing task in addition to the
sensor used for recognition. These methods are further divided into liveness measurements,
attack specific detection and challenge-response approaches. Liveness measurements category
regroups techniques that employ a specific sensor to detect particular attributes of living bod-
ies such as body temperature, blood flow, electric pulse or skin reflectance. It also includes
multi-biometric approaches which rely on the verification of the identity from multiple bio-
metrics (face, voice, fingerprints, iris, ...). Attack specific detection refers to methods designed
against a particular type of spoofing attack. For example, photo and video attacks can be
detected from depth measurements obtained with a depth camera, stereo vision or multiple
focus measurements. Challenge-response approaches designate methods that rely on the co-
operation of the user for answering a random request during authentication. For example,
the system may request the user to move his/her head following a motion pattern generated
randomly during the authentication. The fact that the request is unpredictable makes it hard
to spoof.

General comparisons of different classes of methods are drawn from main criteria:

• Performance: the system must match industrial specifications in terms of security. Depending
on the application, a maximum false acceptance rate is imposed (usually below 0.5%) to make
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Figure 1.10: General classification of anti-spoofing strategies.

sure that almost all the attacks are detected. The anti-spoofing module must satisfy this
constraint while maintaining good recognition performance for practicability.

• Cost: deployment of the anti-spoofing solution and the recognition system must stay in the
range of reasonable cost for the considered application.

• User friendly: interaction with the system should be easy and fast enough.

• Genericness: the system must be applicable to many use-cases. It is robust to acquisition
conditions such as scene context and illumination changes but also can cope with unseen
attacks.

While hardware-based methods offer the best security guarantees in general, extra costs are
generated by adding new equipment for the anti-spoofing task. Besides, hardware-based solutions
are usually not user friendly and generic as it requires specific settings to work properly. For
example, challenge-based methods involve user-system interactions during a significant amount of
time. Also, methods relying on multi-spectral and infra-red acquisitions need specific illumination
conditions and are sensitive to make-up. On the other hand, software-based approaches usually
achieve lower performance than hardware-based methods but remain cheaper as no extra equipment
is needed. Their integration into existing recognition systems is easier and more generic as they
apply to standard RGB sensors. In this work, we focus on software-based methods to take advantage
of existing spoofing databases presented in section 1.2.3.

1.4.2 Discriminant cues

To understand the motivations behind the exhaustive set of software-based countermeasures, we
first identify the underlying cues behind each method. Going through the literature, eight types
of cues have been exploited so far. The diagram in figure 1.11 depicts the nomenclature of cues
considered for software-based anti-spoofing. Static cues are displayed in green and dynamic cues
are shown in red.

• Quality loss refers to perceived image degradation due to the recapturing process of a spoof-
ing attack. It takes several forms and we identify three main incarnations. First, exposure
and color shifts can be observed as different sensors are employed for fake face manufactur-
ing and authentication. Second, as printers and screens have limited performance, limited
resolution of fake faces induces a noticeable lack of details when the authentication sensor is
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Figure 1.11: Taxonomy of discriminant cues. Static cues are displayed in green and dynamic cues
are shown in red.

of good enough quality. Last, image artefacts are present due to the different procedures of
capturing, compressing, manufacturing (printing or displaying) and recapturing. This type
of cues is very specific to a given authentication set-up (sensor and acquisition conditions
dependent) but also to particular attack scenarios.

• Face size difference happens when performing full view attacks for photo and video attacks.
As papers or screens have limited size, usually fake faces appear bigger from the sensor point
of view as the spoofing medium gets closer to hide its borders. This can be circumvented easily
by selecting the right view when manufacturing the attack as it is possible to anticipate the
distance to the sensor required to display the attack and maintain the same face size between
real accesses and spoofing attempts.

• Specular reflections are different between real faces and fake ones for several reasons as the
displaying support (paper, screen, mask) used for spoofing inherits different optical properties
than skin. Besides, photos and screens can have additional ambient reflections due to their
planar glossy surface. This type of cue is present regardless of the attack type but it highly
depends on illumination conditions.

• Spoofing medium borders are visible when mid-range face only photo or video attacks
are performed.
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o Unnatural motion designates uncanny movements of the face region when performing photo
or video attacks. When holding the fake face or the camera, some characteristic hand-shaking
motion may be captured. Conversely, attacks can be displayed on a fixed support and the
absence of motion indicates that photo attacks are probably attempted. Another type of
unnatural motion stems from the planar geometry of photo attacks that limits out-of-plane
head movements such as yaw and pitch head motions. Unfortunately, this type of discriminant
cue depends on the attack scenario and can be partly countered by scenarios where the user
manages to mimic real head movements successfully through training.

o Subconscious movements correspond to the counterpart of the previous cue as the focus is
on natural motion instead of unnatural aspects. Living faces express involuntary movements
routinely such as eye-blinking, facial expression changes and subtle head movements due to
the respiratory rhythm. These movements are subtle yet highly discriminant against photo
attacks. The advantage of this type of cues is that it is independent to acquisition settings
(sensor type, illumination conditions, authentication protocol) but it is weak against video
and mask attacks.

o Blood pulse can be measured by single video acquisitions of the face using photoplethysmog-
raphy. This type of cue is very generic and discriminate real faces from all type of spoofing
attacks. However, fixed illumination conditions and a long authentication time ( > 8s) is
required for a good estimation as multiple heart beats are required. Recent advances in
this field has led to real-time commercial solutions6 for heart rate estimation but its use for
real-time liveness detection is yet to be demonstrated.

o Face-background motion consistency is observed on full view photo attacks as the face
region and the background are part of the same physical image. It is robust to varying
acquisition settings but it is very specific to this type of attack scenario and can no longer be
used against mid-range or mask attacks.

1.4.3 Taxonomy of software-based methods

Software-based methods are divided into static and dynamic approaches in [Galbally14b]. In
[Tirunagari15], the authors suggest another taxonomy of software-based countermeasures to con-
nect with the underlying cues behind each countermeasure. Software-based methods are divided
into model-based (cue-based) and data-driven methods. The first category relies on the aforemen-
tioned set of cues to detect real and fake faces. These cues are determined either by observation or
intuition when analysing fake/real faces and they are not always consistent between two different
spoofing scenarios. Besides, the precise identification of robust discriminant cues is difficult and
most of the works in the literature resort to data-driven methods for texture and motion analysis.
This second class of methods rely on low level differences between real and fake faces that are
extracted using generic descriptors and supervised classification. The separation between the two
classes is not well defined and can be seen as the line between high-level methods relying on strong
priors about the differences between real and fake faces (cue-based) compared to low-level methods
motivated by blind assumptions on the existence of differences at texture level or motion level. This
categorization facilitates the comprehension of the motivations and assumptions behind existing
countermeasures to better assess their strengths, their limitations and their complementarity.

A general categorization of software-based countermeasures following this taxonomy is presented
6http://www.i-virtual.fr/

http://www.i-virtual.fr/
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in figure 1.12. Pioneer works proposed countermeasures relying on either motion aspects (in green)
or texture aspects (in red). Since the first IJCB competition [Chakka11] on face anti-spoofing,
system experts have been introduced by combining motion and texture cues. In parallel, another
type of approaches (in yellow) jointly considers dynamic and static cues and proposes spatio-
temporal descriptors for extracting discriminant features.
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Figure 1.12: High level classification of software-based anti-spoofing strategies.

The implementation of software-based countermeasures is usually independent of the face recog-
nition algorithm. It is often placed before the face recognition stage because in the case of a
detected fake face the recognition stage is irrelevant. In this set-up, both anti-spoofing and recog-
nition performance are assessed independently and may not reflect the true performance of the
joint system. Indeed, the joint task of anti-spoofing and recognition (verification) is a ternary
classification problem where real clients, impostors (zeros-effort attack) and spoofing attacks must
be properly labelled. In [Chingovska13b], the authors investigate the fusion of the recognition
and anti-spoofing modules at decision-level and score-level to handle correctly the discordant re-
sponses of both modules (the recognition phase rejects impostors but the anti-spoofing module
accept them). In [Chingovska15], the same authors propose to first perform the recognition and
then use client-specific anti-spoofing detection based on the claimed identity to handle spoofing at-
tacks. Perfect recognition performance is assumed as fake face detection is relevant only in this case
anyway. In this thesis, we suppose that this assumption holds as recent face recognition systems
outperform humans for the verification task with the development of deep learning architectures.
Consequently, we can reasonably assume that spoofing attacks represent the only source of failure
of face biometric systems and only the performance of the anti-spoofing module is relevant. We
consider the anti-spoofing task only after identification and the anti-spoofing module is placed after
the recognition module.
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1.5 Conclusion

In this chapter, we described the general methodology to forge fake faces and invent different
spoofing scenarios. We proved that a large variety of spoofing attacks are already implemented in
existing public spoofing databases and we demonstrated their high versatility towards unprotected
2D face recognition systems.

A brief overview of anti-spoofing strategies has been presented along with some insights on dis-
criminant cues between real accesses and spoofing attacks. The way the attack is performed greatly
influence the realism of the attack from a motion and image quality standpoint, especially close-up
and mid-range attacks raises different challenges when designing countermeasures as discriminative
cues are specific to each attack type and scenario. This work focuses on software based methods and
takes advantages of the recent release of ReplayAttack, CASIA and MSU spoofing databases pub-
licly available. These databases are selected for the evaluation of new countermeasures developed
in the course of this work.

In order to cope with the large variety of attack scenarios and in view of more advanced mask
attacks, only the face region can be considered for fake face detection. Both static and dynamic
cues must be exploited. Radiometric and blur distortions associated with quality loss and specular
reflections discriminant cues are the most consistent among various spoofing attacks and are key
to the development of new countermeasures proposed in this thesis. Dynamic cues are incapable of
dealing with video or mask attacks except blood pulse estimation. Nonetheless, the use of dynamic
cues can help to increase the robustness of texture-based countermeasures to deal with certain type
of attack scenarios. For this reason, we investigate the potential of motion-based countermeasures
on a complete set of attack scenarios to draw out their strengths and limitations.
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Following the two IJCB competitions in 2011 and 2013 [Maatta11] [Chingovska13a] many coun-
termeasures have been proposed. Recent methods have converged toward the fusion of complemen-
tary cues involving motion and texture aspects. The contribution presented in this chapter is three-
fold. First, a complete state of the art of static texture-based methods is provided to get a deep
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understanding of existing countermeasures for the development of new ones. Second, this study
aims to unify existing results on texture-based anti-spoofing methods across the recent databases
under a common evaluation framework that deals with face region only and which takes advantage
of high resolution acquisitions. Third, given the success of LBP-based methods in anti-spoofing,
texture classification and face recognition tasks we investigate two LBP variants. Motivated by our
analysis of the recapturing process presented in chapter 4, we propose to use contrast and color
information to improve the classic LBP features. We demonstrate that the color texture counter-
measure based on HSI-LBP features outperforms current data-driven texture-based methods when
only the face region is considered and fair well against recent cue-based methods based on image
quality assessment (IQA) [Galbally14a] or image distortions analysis (IDA) [Wen15].

2.1 State of the art of texture-based countermeasures

Methods based on texture analysis are key methods in video anti-spoofing as they do not require any
user-cooperation during the authentication process nor any additional equipment to detect photo
and videos attacks. Furthermore they are usually low computational and they can be computed
on a frame by frame basis for a fast response. With the arrival of video and mask attacks, these
methods became essential in the development of recent countermeasures. Following the proposed
nomenclature of anti-spoofing strategies in Chapter 1, we present a complete review of texture-
based countermeasures in two parts: cue-based and data-driven methods. The frontier between
cue-based methods and data-driven methods is not absolute and some countermeasures can be
viewed from both aspects. We chose to group generic texture analysis methods relying on generic
texture descriptors under the data-driven class of methods. In that regard, methods such as Local
Binary Patterns (LBP) are discussed as belonging to the data-driven category although they are
also used to characterize noise cues (banding effects, printing artefacts, ...). First, we describe
the main discriminant cues coming out from the literature and from our expertise. Then, cue-
based and data-driven countermeasures are presented. The proposed review is quite incomplete as
dynamic approaches are not discussed in this work, apart from a few exceptions, although most
recent countermeasures (in 2014 and 2015) tend to exploit spatio-temporal information.

2.1.1 Discriminant texture-cues

As mentioned in Chapter 1, discriminant static cues that are addressed in the literature are: quality
loss, face size difference, specular reflections and visible support borders. We believe that face size
differences between real and fake faces and the visibility of the spoofing medium are cues that
are not consistent enough with the recent advances in spoofing attack forgery. Full view attacks
hiding the medium borders outside the sensor view are easily performed and with proper expertise
one can make sure that the recaptured face has the same size as its real version by adjusting the
viewing distance and size of the fake face. For these reasons, we only focus on specular reflections
and quality loss cues in this work.

2.1.1.1 Specular reflections

Spoofing attacks use a 2-D planar support either photo paper or digital screens. As a consequence,
some uncanny specular reflections are sometimes observed on fake faces (see figure 2.1). Besides,
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captured digital attacks manifest some saturation effects at specular highlights due to some over-
exposure as screens are direct light sources.

2.1.1.2 Quality loss

Quality loss is a perceptual term designating all sorts of image degradations. We categorize these
distortions into three categories.

Exposure and color-shifts The recapturing process generates some exposure and color changes
between a real face and its recaptured version under the same illumination conditions. A complete
study of the recapturing process is presented in Chapter 4.

Lack of details and blur Blurriness is observed on close-up spoofing attack scenarios for two
main reasons. First, the limited size of screens act as a low pass filter when resizing the high resolu-
tion face data for display. Besides, the smaller the screen the closer it is from the sensor to perform
full view attacks (covering the whole scene to mask the support boundaries) and acquisitions tend
to be out of focus.

Noise Also, the generation of spoofing attacks involves several procedures of capturing, compress-
ing, displaying and recapturing. Capturing refers to the process of conversion of photons arriving
at the camera sensor into electrical charges. Those charges are then transformed into digital in-
formation to form the final image. This procedure generates two types of noise in images that
can be identified and used for camera identification in [Luka06]: the fixed pattern noise (FPN)
and the noise resulting from the photo-responsiveness of non-uniform light-sensitive cells (PRNU).
So recaptured scenes have peculiar noise compared to natural ones. Furthermore, digital contents
are usually stored into a lossy format such as JPEG or Bitmap that introduces additional noise.
Furthermore, in case of print-attacks, printing generates image artefacts such as banding, jitter
and ghosting as described in [Eid11]. For digital attacks, monitor screens also produce undesirable
effects such as distortion, flickering and Moiré patterns during the recapturing process.

Figure 2.1 illustrates the aforementioned distortions with exemplars extracted from public
databases.

2.1.2 Cue-based methods

Only 3 works tackle the anti-spoofing problem from a cue-based approach. First, the work of
Wen and al. [Wen15] proposed to detect three types of image distortion characterized by abnormal
specular highlights, additional blurriness and color distortions. They propose four different features
to account for these unnatural effects. Specular reflection features are derived from the specular
reflection removal method of [Tan05] which was already used in the general image recapture detec-
tion method of [Gao10]. Even though the extraction of the specular component has a hard time
separating the diffuse part and the specular part on face images, informative features can still be
derived for the detection task. Blur features are derived from two blind (no-reference) perceptual
blur metrics that were proposed in [Crete07] and [Marziliano02]. Finally, the last two color features
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Figure 2.1: Illustration of different distortions between a real face and a fake one. Moiré patterns
and specular reflections are highlighted on an exemplar from CASIA database. Abnormal specular
highlights with saturated values are illustrated on an exemplar from the MSU database. Note the
overall exposure color distortions between real and fake faces. Blur is difficult to perceive due to
different colors.

characterize the color distribution of the face in terms of histogram moments (in the HSV color
space) and color diversity.

Second, Pinto and al. [Pinto12] used visual rhythm and GLCM on the Fourier spectrum of
the noise residual video to capture noise generated by fake face. Particularly, Moiré patterns are
considered so the whole image is taken into account as major artefacts occur in flat regions outside
the face. Visual rhythm consists in reorganising the 3D video content into a 2D image to have
a compact representation for which classic image processing can detect noise in both space and
time. To extract the noise information, a Gaussian filter is employed on each frame of the video to
produce a noise free video from which a simple frame by frame difference with the original video
provides a noise residual video containing discriminative noise information. Then, the noise pattern
is extracted from the low-band in the Fourier spectrum of the video for each direction (horizontal
and vertical) as notable differences between real and fake face are observed. Thus, central horizontal
lines and central vertical lines are extracted to represent each frame in the visual rhythm procedure.
GLCM computed on this 2D noise signature signal is performed and features are fed to an SVM
for classification. This method works perfectly on their private database containing LCD screen
photo and video spoofing attempts on controlled environment because strong Moiré patterns are
present in recaptured images. Lower results are obtained on the Replay-attack database as they
achieved HTER = 15.62% because less distortions are perceptible for this database.

Third, the method proposed by Galbally and al. in [Galbally14c] investigates general image
quality assessment (IQA) metrics chosen for the face anti-spoofing problem. Quality properties
have already been explored for liveness detection in fingerprints and iris applications. Human can
feel the difference between recaptured face and genuine ones. The goal of IQA in this case is to
quantify with objective metrics a reliable estimation of "appearance" perceived by humans. A lot
of metrics exist in order to measure the degree of sharpness, color and luminance levels, entropy,
structural distortions, contrast, level of digital compression, ect. IQA techniques designed for anti-
spoofing must combine several of those to capture effectively the appearance differences between
real and fake faces. Metrics have been selected from broadly used methods that revealed good
performance for different applications and sustain complementary properties of the image such as
contrast, texture (entropy), sharpness. Only low complexity metrics have been used. A total of 25
quality metrics have been investigated by team ATVS in the face anti-spoofing TABULA RASA
challenge on the Replay-attack database [Galbally14c],[Chingovska13b].
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2.1.3 Data-driven methods

Texture-based data-driven methods employ texture analysis approaches to characterize the differ-
ences between real and fake faces and learn a discriminative model in a supervised manner. We
distinguish two broad classes of texture-based countermeasures. The first one uses spectral texture
analysis methods and the second one statistical approaches.

2.1.3.1 Spectral approaches in texture analysis

Spectral approaches refer to the frequency domain where features are related to statistics of filter
responses. Evidence shows that a tuned bandpass filter bank resembles the structure of the neural
receptive field in the human visual system. Feature extraction in spatial frequency domain has
several advantages. First, a filter is selective as it enhances only certain features while suppresses
others. Second, the periodic structure of a texture can be explicitly represented in the spectral
domain.

Spectral methods usually use filter banks or image pyramids to convert an image from the spatial
domain into the frequency domain and vice-versa. Like in statistical methods, the distribution of
feature measures (e.g., wavelength coefficients for a wavelet transform) provides a sparse texture
description which can be used directly as input for further classification. However, the resulting
description is over-complete, because it contains an increase and thus redundancy in information
content.

Methods based on the Fourier transform In [Li04], Li et al. addressed the print attack
issue by analysing high frequency of face images and its frequency dynamics with 2D Fourier
transform. Small size fake images have less high frequency components compared to real face
images. The authors built the high frequency descriptor (HFD) defined as the ratio of the energy
of high frequency bands over the total energy of the face image. Also, frequency variability is
lower in case of photo attacks because expressions and poses of the face remain invariant even
with a moving picture. Therefore another discriminative descriptor can be derived by computing
the standard deviation of the HFD for a short video sequence. This method works well on their
self-collected database which contains down-sampled printed photo attacks but is likely to fail for
high quality pictures.

Reflectance analysis with band-pass filters In [Tan10a], Tan et al. discard the specular
reflection and assume that face images are made solely of diffuse light. By using the Lambertian
model, Tan is able to extract the reflectance and the illumination components by using either a
Logarithm Total Variation method (LTV) or a Difference of Gaussian (DoG) approach. Their
intuition is that reflectance of 2D fake faces must be uniform compared to 3D real faces as it
depends exclusively on the surface orientation. Then, classification is achieved with a Sparse
Low Rank Bilinear Logistic Regression directly on the reflectance component derived from DoG
or LTV. Their method works well even on gray images acquired from a standard webcam. In
[Peixoto11], Peixoto and al. (Unicamp) extended Tan and al. algorithm to deal with images
under challenging illumination conditions on the same database and improved the classification
accuracy by 6.6%. They suggest a pre-processing step using CLAHE (Contrast Limited Adaptative
Histogram Equalization) to reduce illumination changes.



2.1. State of the art of texture-based countermeasures 33

The variational retinex framework is also used in [Kose13b] by Kose and Dugelay to detect
mask attacks on Morpho database. Unlike Tan and al, Kose used the variational retinex algorithm
[Gross03] [Kimmel03] process to derive the reflectance component. They proved that reflectance is
a better discriminative feature than the most popular LBP texture descriptor on this database.

In [Zhang12], Zhang et al. introduced the CASIA database together with a baseline method
using Dog filtering along with an SVM classifier.

Reflectance-based methods extract the discriminative information from the high middle fre-
quency band. Several methods have been investigated such as LTV (logarithmic total variation),
DoG (difference of gaussian), AS (anisotropic smoothing) and MSR (multiscale retinex). Both
DoG and AS give promising results while being simple and fast to compute. The main drawback is
the lack of robustness to illumination variations, CLAHE preprocessing is able to correct this flaw
partially.

Exploiting the specular component structure Inspired by the work of Yu and al. [Yu08],
Bai et al. detect high definition photos attacks (digital and printed ones) by analysing the spec-
ular component of an image in [Bai10]. The authors use the bidirectional reflectance distribution
function (BRDF) and the dichromatic reflection model to extract the specular component and the
diffuse one from color images with Tan’s algorithm [Tan05]. They prove that displaying mediums
used in photo attacks have different specular responses depending on their surface texture. For
print-attacks, paper granular structure and ink deposition patterns are visible in the specular com-
ponent. For LCD photo-attacks, pixel grid and image encoding differ from genuine face images.
Instead of comparing directly specular values, the authors propose to normalize the specular compo-
nent with intensity values to enforce invariance to exposure changes. The histogram of the gradient
of the normalized specular component follows a Rayleigh distribution whose shape is characteristic
of a recaptured texture and a real capture. The distribution parameters are used as features and
fed to an SVM classifier. Great performance is achieved on their self collected database but their
method only applies to high-resolution acquisitions that can resolve fine texture patterns. Also,
specular decomposition is sensitive to illumination conditions.

2.1.3.2 Statistical approaches in texture analysis

Statistical approaches collect image signal statistics from the spatial domain as feature descriptors.
Usually lower-order image statistics, particularly first- and second-order statistics, are exploited
in texture analysis. First-order statistics, such as the mean, standard deviation and higher-order
moments of the histogram, relate to the distribution of pixels whereas second-order statistics also
account for the spatial inter-dependency or co-occurrence of two pixels at specific relative posi-
tions. Grey level co-occurrence matrices (GLCM), grey level differences, autocorrelation function,
and local binary pattern (LBP) operator are the most popular second-order statistics for texture
description. Higher than second-order statistical features have also been investigated, but the com-
putational complexity increases exponentially with the order of statistics and are less popular for
this reason.

LBP-based methods The generalized definition of LBP from [Ojala02] is used. To encode neigh-
bourhood relationships around a given pixel pc, N samples points pi with i ∈ {1, N} distributed
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evenly on a radius R around pc are used to compute the associated lbp code as:

lbpN,R(pc) =

N∑
i=1

s(pi − pc)2i , where s(p) =

1, if p > 0

0, otherwise
(2.1)

The normalized histogram of the lbp codes forms the classic LBP features:

LBPN,R = hist(lbpN,R)/N

where N is the number of pixels in the LBP image.

LBP-based methods are the most popular and the most successful texture-based countermea-
sures for anti-spoofing. In face anti-spoofing, many authors chose to use only the uniform patterns
as it provides a good trade-off between efficiency and cost. Non uniform patterns are grouped into
a single bin of the histogram. Uniform patterns are LBP codes with at most 2 bitwise transitions
1-0 or 0-1 in their bit representation. It was shown in [Ojala02] that most of the patterns in natural
images are uniform and considering only uniform patterns adds statistical robustness while reduc-
ing significantly the number of possible patterns from 2N to N(N − 1) + 3. It is also possible to
compute a spatial version of LBP refereed as LBPN,R,b∗b features by dividing the image into b ∗ b
blocks and concatenating LBP features from each block into a single feature vector.

Multiple works use the LBP descriptor combined with an SVM classifier with a radial basis
function (RBF) kernel for fake face detection. The first authors to popularize this approach for
fake face detection are Maata and al. in [Maatta11]. They argue that better results are achieved
by extending the classic LBP approach to a multi-scale representation (MS-LBP) and using a 3*3
multi-block LBP scheme leading to a 833 feature vector. On the NUAA database, they demonstrate
the superiority of LBP over spectral methods such as Gabor features or Tan and al. approach
[Tan10a] and this method becomes a baseline for later public databases. The LBP descriptor has
been successfully employed to detect print attacks from the ReplayAttack corpus and achieved
perfect detection on the first IJCB face anti-spoofing challenge [Chakka11]. The face region and its
surroundings are considered for better success as full view print attacks are evaluated (the whole
image is fake).

Later, Kose and al. implemented MS-LBP as a baseline method for 3D mask antispoofing on
their self-collected mask attack database (Morpho-MAD) in [Kose13a, Kose13c]. Also, Chingovska
and al. evaluated the performance of MS-LBP on the face region only for the recent Replay-Attack
database and CASIA database in [Chingovska12]. Their study draw out two main observations.
First, non linear SVM classification outperforms the traditional ξ2 Nearest Neighbour classifier and
the Linear Discriminant Analysis classifier (LDA) on both ReplayAttack and CASIA databases.
Second, multi-block LBP computation obtains similar results compared to traditional LBP on the
ReplayAttack database and using the high dimensional MS-LBP approach yields only little improve-
ments for this database and for CASIA database. Also, a set of extended LBP was investigated:
transitional (tLBP), direction-coded (dLBP) and modified LBP (mLBP) as described in [Trefny10]
but no significant improvement was obtained. Finally, the traditional LBP countermeasure serves
as a baseline on the 3D Mask attack database by Erdogmus [Erdogmus13].

In [Kose12], Kose and Dugelay took advantage of contrast and texture information using rotation
invariant local binary patterns variance (LBPV) to detect fake faces. They prove the superiority
of LBPV compared to LBP on the NUAA database. They also proposed DoG filtering as a viable
pre-processing step to reduce misleading information such as noise due to illumination variations.
This preprocessing step is similar to the retina-based filter presented by Ngoc Son Vu in [Son Vu10].
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The Local Binary Patterns from the Three orthogonal Planes (LBP-TOP) is the natural ex-
tension of LBP to spatio-temporal texture analysis. By taking into account temporal variations,
significant improvement is achieved compared to static LBP features. We mention this descriptor
as it defines the new baseline for anti-spoofing evaluations. In [Komulainen13], the authors evaluate
the LBP-TOP features when only the face region is considered and obtain almost perfect results
on the CASIA database and perfect results on the print attacks from the ReplayAttack database.
Complementary experiments are conducted on the ReplayAttack database in [Freitas Pereira13]
where the face region is rescaled to 64*64 pixels. Performance is slightly worse than those of the
previous study on the CASIA database.

Low level image descriptors In [Tronci11], Tronci and al. used low level visual features usually
employed for content based image retrieval to detect print attacks from the ReplayAttack database
and have obtained perfect detection during the first IJCB challenge. Numerous features are em-
ployed to have a dense description at different visual levels covering texture to color aspects. A
multi-classifier system provides a score for each type of feature and a dynamic score combination
methodology is used to combine all these scores into a final decision. Their method takes advantage
of the whole image and additional motion and liveness countermeasures.

In [Schwartz11], Schwartz and al. also use low level descriptors including color frequency,
histogram of oriented gradients (HOG), GLCM features and histograms of shearlet coefficients. An
extended face region is considered and faces are resized to 110*140 pixels for their experiments on
the PrintAttack database. All these features are fed to a partial least square discriminant analysis
(PLS-DA) for classification. The proposed low level features perform well individually except for
HOG and their combination yields slight performance improvements with an EER decrease of
around 3− 4%.

2.1.4 Fusion of statistical and spectral methods

In [Waris13], the authors evaluated three well known texture features, namely LBP riu216,2 , Gabor
features and GLCM Haralick’s features on the ReplayAttack database. The whole face is considered
and per-frame features are averaged to form a single vector for each video. Gabor features are
obtained using the mean and the standard deviation of the magnitude of the transform coefficients
(4 scales and 6 orientations). Classification is performed using an SVM classifier and a Partial
Least Square discriminant analysis method (PLS-DA). Better results are actually obtained with
the PLS-DA and LBP riu216,2 and Gabor features outperform GLCM features. They proposed to
concatenate both features and achieve perfect detection on the ReplayAttack database.

Kim proposed to exploit frequency and texture information to detect print-attacks in [Kim12].
He proposed a 1D power spectral density feature vector by sampling the 2D power spectrum
(|FFT |2) into 32 concentric rings. Texture features are derived from the popular LBP8,1 descriptor.
Both feature vectors are then concatenated and fed to an SVM classifier.

In [Yang13], Yang and al. proposed a component-based method to resolve the scaling issue
inherent in texture analysis. Using the local parts in the H-face representation enables a better focus
on discriminative texture patterns. The framework consists in 4 steps: locating the components of
face, coding the low-level features (Local Phase Quantization, Local Binary Patterns, Histogram of
Oriented Gradients) respectively for all the components, deriving the high-level face representation
by pooling the codes with weights derived from Fisher criterion and concatenating the histograms
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from all components into a classifier for identification. Top results were achieved on NUAA, Print-
attack and CASIA database.

2.1.5 Overview

From this dense state of the art on texture-based countermeasures, we draw out some relevant
observations that guide our work. On the one hand, cue-based methods are easier to interpret
and generalizes better on other databases compared to data-driven methods. However, finding
consistent discriminant cues with respect to attack scenarios and sensors is not an easy task and
most cues are very sensitive to illumination variations. On the other hand, data-driven methods
handle multiple static cues blindly directly by learning a discriminative model from generic texture
descriptors but has the disadvantage to be data specific (bad generalization to other database).
Tables 2.1 and 2.2 recapitulate texture-based countermeasures.

Another point of emphasis is the success of LBP features across public databases. MS-LBP and
LBP-TOP variants have proved to be powerful tools to extract discriminant texture information
between real and fake faces. Along this line, non linear SVM is also widely used for classification
although linear classifiers such as PLS and LDA demonstrated similar performance when high
dimensional features are employed.

Besides, it appears that the region of interest for exploiting texture information is crucial.
While perfect detection is achieved when the whole scene is considered, detection performance
drops significantly when only the face region is used. Various face extraction and preprocessing
schemes have been explored but, to the best of our knowledge, no study has really discussed the
impact of these procedures on the detection performance.

Additionally, recent works combine multiple texture descriptors but also complementary motion
or liveness cues. While significant improvements are achieved using this type of strategy, it becomes
harder to evaluate the contribution of its canonical constituents for further improvements. The
general methodology in this thesis is to isolate texture and motion-based countermeasures and to
build on novel strategies to improve on both aspects separately. This strategic bias contrasts with
the recent line of research where development of spatio-temporal countermeasures is investigated.
However we believe that it allows a better understanding of discriminant information for fake face
detection.
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Table 2.1: Summary of texture-based anti-spoofing countermeasures. The column ’Attacks’ cor-
responds to the spoofing attack scenarios handled by the proposed countermeasures. Column
’ROI’ indicates which part in the image is considered for the countermeasure. Column ’Database’
mentions the name of the database used to validate the countermeasures. For specific works, we
mention in parenthesis the name of the team during the first or second IJCB competition that are
associated.

Cue-based

Reference Methodology ROI Attacks Databases

2012, Pinto and al.
[Pinto12, Pinto15b, Pinto15a]

(Unicamp)

Exploit noise residuals (Moiré patterns)
in the spectral domain

face +
background

photo and
video

ReplayAttack
DB,

Proprietary
DB

2014, Galbally and al.
[Galbally14a] (ATVS)

Use general image quality assessment
metrics

face +
background

photo and
video

ReplayAttack
DB, CASIA

DB

2015, Wen and al. [Wen15]
Exploit specular distortions, blur and

color distortions
face only

photo and
video

ReplayAttack
DB, CASIA
DB, MSU DB
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Table 2.2: Summary of texture-based anti-spoofing countermeasures. The column ’Attacks’ corre-
sponds to the spoofing attack scenarios handled by the proposed countermeasures. Column ’ROI’
indicates which part in the image is considered for the countermeasure. Column ’Database’ men-
tions the name of the database used to validate the countermeasures. We mention in parenthesis
the name of the team under which the authors have participated in the first or second IJCB
competition.

Data-driven methods

Reference Methodology ROI Attacks Databases

2004, Li and al. [Li04]
Exploit high frequency energy and its
variation over time using the FFT

face only print Proprietary

2010, Tan and al. [Tan10a]
Exploit the reflectance component

extracted with LTV and use SLRBLR for
classification

face only print NUAA DB

2010, Peixoto and al.
[Peixoto11]

Use Tan and al. method with CLAHE as
preprocessing to deal with bad

illumination conditions
face only print NUAA DB

2013, Kose and al. [Kose13b]
Exploit the reflectance component

extracted with the variational retinex
algorithm + linear SVM

face only masks MorphoMAD

2010, Bai and al. [Bai10]
Analyse the gradient distribution of the

specular component
face only print Proprietary

2011, Schwartz and al.
[Schwartz11]

A dense set of low-level descriptors is fed
to a PLS-DA classifier

extended face
region

print
PrintAttack
DB, NUAA

DB

2011, Tronci and al.
[Tronci11] (AMILAB and

PRALAB)

Low-level texture-based countermeasures
are combined using a dynamic score

combination scheme

face +
background

photo and
video

ReplayAttack

2011, Maatta and al.
[Maatta11]

Study MS-LBP, LPQ and Gabor features
with SVM-RBF classification

face only print NUAA DB

2012, Chingovska and al.
[Chingovska12]

Study LBP variants with SVM-RBF,
LDA and χ2 classification

face only
photo and

video
ReplayAttack

2013, Kose and al.
[Kose13a, Kose13c]

Use of MS-LBP with linear SVM face only masks MorphoMAD

2012, Kose and al. [Kose12]
Use of LBPV on preprocessed image via
DoG with global matching for rotation

invariance and χ2 classification
face only print NUAA DB

2013, Freitas and al.
[Freitas Pereira13]

Use of LBP-TOP and SVM-RBF face only
photo and

video
ReplayAttack

2014, Komulainen and al.
[Komulainen13]

Use of LBP-TOP and SVM-RBF extended face
photo and

video

PrintAttack
DB, CASIA

DB

2013, Yang and al. [Yang13]
Exploit the face structure and use

codewords derived from LBP, LPQ and
HOG features

extended face
region

photo and
video

NUAA,
CASIA,

PrintAttack
DB

2014, Waris and al. [Waris13]
(MUVIS)

Use Gabor, GLCM and LBP features
with SVM or PLS-DA classifier

face +
background

photo and
video

ReplayAttack
DB

2.2 Definition of an unified framework for texture-based counter-
measures design

Multiple strategies have been adopted for the design of texture-based countermeasures. First,
several regions of interest (ROI) have been considered for extracting texture features. Sometimes,



2.2. Definition of an unified framework for texture-based countermeasures design 39

the whole scene is considered for the detection of full view attacks from the ReplayAttack database
in [Tronci11, Pinto12, Waris14, Galbally14a] but in most cases only the face region is used. In
[Yang13], the authors use a holistic face description based on the face contour region together with
the eyes, nose and mouth regions. Besides, as far as face region is concerned various rescaling values
are considered throughout the literature. Commonly, faces are geometrically normalized to 64*64
pixels but a few works chose to either keep the original face size [Komulainen13] or use a higher
scale [Yang13].

Second, static texture descriptors are computed in a frame per frame basis but more stable re-
sults can be obtained by using multiple frames when video samples are available. In [Chingovska12],
all video frames are considered as independent samples for classification whereas 50 per-frame fea-
tures are accumulated to form one feature vector per video in [Komulainen13]. In [Wen15], the
authors use a majority vote procedure to obtain a final decision from per-frame classification scores.
Only one frame per video is used in [Yang13].

Third, classification schemes are divided into general classification and multi-attack classifica-
tion. General classification use one classifier to detect all types of attacks whereas in multi-attack
classification, an ensemble of classifiers is employed to detect each type of attacks and the resulting
classification score is obtained by combining the response of each classifier as in [Wen15].

Due to this large panel of countermeasure designs, the comparison of texture descriptors is
difficult. In this thesis, we propose to evaluate texture descriptors under an unified evaluation
framework to assess which properties are relevant for fake face detection.

Background information represents a great help for fake face detection as it can be used either
to detect directly the spoofing medium when visible or to discriminate the real background from
its copy when the scene is known. However, depending on the context of use, the background may
change randomly making texture unpredictable. It is also easy to imagine people doing attacks
where the background is no longer informative like with mid-range attacks, cut-photos, masks
or make-up. Hence, to deal with all kinds of attack scenarios in this comparison framework, we
consider that the only information available for fake face detection is the face area. In this section,
we investigate the different evaluation strategies using the LBP descriptor and propose a consistent
framework to evaluate texture-based countermeasures exploiting the face region only. The general
processing pipeline of texture-based methods focusing on the face region is illustrated in figure 2.2.

  Face extraction:
- Frame selection
- Face alignement

  Face preprocessing:
- geometric normalization
- color conversion
- filtering (DoG, ...)

  ROI selection:
- Extended face
- Face only
- Face parts

Feature
extraction

Classification
and model selection

 Video
stream

Fake

Real

Feature
preprocessing

Figure 2.2: General architecture of texture-based countermeasures focusing on the face region only.

The following points are investigated to determine the best evaluation framework from a texture
standpoint:

• Which face region should be considered for texture analysis?

• How to geometrically normalize extracted faces to bring out discriminant texture information?
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• Is one frame enough to exploit texture information considering that texture is a static cue?

• Which feature normalization and classification settings are best?

To answer these questions, we use an advanced face tracking technique from the Openface toolkit
based on facial landmarks to extract the face region. The main benefits of using this advanced face
tracker are:

• Face regions are extracted at the same scale defined by the interocular distance.

• Faces are aligned to a frontal face template which corrects slight pose variations during
authentication. This reduces the texture variability from one frame to another and encourages
texture analysis on a single frame.

• A useful face representation is available enabling an easy segmentation of face parts.

2.2.1 Presentation of the face extraction procedure

The main problem to be tackled here is: can we derive a robust texture-based countermeasure
using a single frame? The main advantage of such a design is the fast response of the counter-
measure for real time authentication. Also, it reduces significantly the computation overload for
our experimentations to answer the aforementioned questions. To this end, we take advantage of
recent advances on facial landmark detection to extract the face region using the Openface toolkit
1. This procedure has been used to derive motion features in chapter 3 and we propose to use it
for our texture-based countermeasure design.

2.2.1.1 Face registration using the Openface toolkit

The main goal of face registration is to limit the texture variability due to pose variations (to a
certain degree) and to make sure that the extracted face region is identical from one identity to
the other. The rigid transformations between a standard frontal face and the observed face are
computed using the Constrained Local Neural Fields (CLNF) framework for facial landmark track-
ing (for more details please refer to the original paper [Baltru16]). Hence, face alignment is easily
performed by inverting the rotations and translations estimated by the CLNF algorithm. The
scaling factor is kept to one to maintain the original face resolution unchanged. Face extraction is
then performed by cropping an extended face region as defined in figure 2.3. The bounding box
(in green) containing the facial landmarks is extended to make sure that face contours are encap-
sulated inside the extended face region. In [Yang13], the authors demonstrate that discriminant
texture is localized near face boundaries. As most attack scenarios use a rectangular fake face,
the immediate background region is still part of the fake face and contains discriminant texture
cues. The advantage of detecting facial landmarks is that it is possible to segment only the face
region efficiently by computing the convex hull of the set of facial landmarks. Exemplars of the
face registration procedure with only the face region are shown in figure 2.4. Another advantage
of this face extraction procedure is that face resolution can be measured in a robust manner from
the inter pupillary distance (IPD) easily obtained from eye landmarks positions.

1https://github.com/TadasBaltrusaitis/OpenFace/wiki
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H

0.1*H

0.1*H

0.05*W + W + 0.05*W

Figure 2.3: Face region extraction procedure

L1 L2 L3 L4

N1 N2 N3 N4

H1 H2 H3 H4

Figure 2.4: Extracted faces from the CASIA database. Aligned faces are resized for display pur-
poses.

2.2.1.2 Frame selection

Static texture analysis is performed on a per-frame basis. Variations in the face texture between
frames are very limited if the face stays with the same pose so only one frame per authentication
acquisition is used to derive texture features in this work. The selected frame is picked to meet the
following requirements in a hierarchical order:

• Face landmarks are correctly detected

• Eyes are opened

• Face is in frontal position

• Face motion is limited

• Face resolution is maximum

Using a single frame allows a fast response for the fake face detection and can be implemented for
authentication systems working with still images.

2.2.1.3 Limitations

The face detector is not error free. Table 2.3 shows the number of wrong detections for ReplayAt-
tack, CASIA and MSU databases. Some miss detections occur when the face covers the whole scene
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and gets too close to the image boundaries. This problem can be managed partially by padding the
video with border values. Another error factor is the face geometric deformation when performing
attacks which lead to wrongly detected landmarks as shown in figure 2.5. Those video samples are
considered as irrelevant attacks because they don’t even bypass the face extraction module and
they are discarded.

Table 2.3: Face detection errors

Nb of errors real fake

ReplayAttack 0 56/1000

CASIA 0 1/450

MSU 0 0

Figure 2.5: Exemplars of face detection errors from the ReplayAttack database

2.2.2 Face geometric normalization

Here we want to determine the best image resolution for fake face detection using texture. The
point is to define the right spatial level for texture analysis using the LBP case study.

2.2.2.1 Motivations

Face normalization is used to standardize the scale under which texture features are computed
to get rid of face size variability between two authentications. Although face size differences can
be discriminant between real and fake faces especially in the case of full view close-up attacks
which tend to have a larger size, this cue is highly inconsistent between two attack scenarios and
is discarded in this study. To highlight this observation, the distributions of face sizes for both real
and fake faces for the ReplayAttack, CASIA and MSU databases are reported in figure 2.6 and
2.7. Full view attacks from the ReplayAttack database tend to have greater sizes than real faces to
cover the sensor whole view properly. The same observation can be made for laptop acquisitions
from the MSU database. However, the impostor can manufacture a fake face with the correct zoom
so that the face region occupies the same space as a real face on the sensor view as in CASIA
recordings. Besides, in practice, variable acquisition distance makes this cue non discriminant as
intra-class variability increases. For example, real and fake face android acquisitions from the MSU
database have similar distributions.

2.2.2.2 Experiments: LBP scaling versus image scaling

The most common practice is to normalize cropped faces (square bounding box) to 64*64 pixels
before computing LBP features. This normalization is inherited from pioneer works on the NUAA
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Figure 2.6: Face size distribution of ReplayAttack and MSU databases.
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Figure 2.7: Face size distribution of CASIA database. From left to right, low quality acquisitions
(LD), medium quality acquisitions (MD) and high quality acquisitions (HD).

database and existing baselines are evaluated under this evaluation framework. In [Komulainen13],
the authors avoid geometric normalization to keep the original texture quality when high resolution
sensors are employed. In [Wen15], faces are aligned and normalized to 144*120 pixels with an inter
pupillary distance (IPD) of 60 pixels. Existing works on texture-based methods did not address
explicitly the impact of geometric normalization when computing texture features. In particular, we
believe that resizing the face to 64*64 pixels leads to a significant loss of information and dismisses
some of the benefits of using high quality acquisitions. For this reason, we evaluate the impact
of the geometric normalization with respect to the quality of the authentication sensor through
experiments using the LBP features.

We investigate two strategies for the geometric normalization procedure. The first one simply
normalizes face images to the average resolution of faces to globally preserve the original image
quality of faces. The optimal neighbourhood configuration (radius and number of sampling points)
for the LBP computation is determined by grid search. The second strategy directly resizes face
images to an optimal size determined by exhaustive search beforehand and computes LBP features
using the classic 3*3 neighbourhood configuration. Both strategies search for the optimal scale for
describing texture to capture discriminant cues between real and fake faces.

Optimal radius strategy Experiments are conducted on the CASIA database using LBP fea-
tures and an SVM classifier with a Gaussian kernel and default parameters (C =1). The three
subsets corresponding to low, medium and high quality recordings are considered to evaluate how
the image resolution impacts the detection. Faces are geometrically normalized so that the inter
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pupillary distance (IPD) equals 80, 75 and 262 pixels for low, medium and high quality acquisitions
respectively which corresponds to the average face size of each data subset. We search for the best
LBP radius parameter r from the following set of values: R ∈ [1, .., 5]. When a larger radius is
employed, the number of sampling points N should be increased for a detailed description of the
texture but we limit the maximum number of sampling points to 16 due to the high computation
overload attached. Results are reported in table 2.4. The best performance for all three subsets
is achieved using N = 16 and R = 5 suggesting that coarse scales are better than fine scales for
extracting discriminant LBP codes especially for high resolution acquisitions.

Table 2.4: EER results (in %) for fake face detection based on LBP features for different radius
and sampling parameters on CASIA database.

N R CASIA LD (EER) CASIA MD (EER) CASIA HD (EER)

8 1 21 17 13

16 2 23 20 17

16 3 23 20 13

16 4 26 17 7

16 5 21 17 7

Rescaling strategy Faces are geometrically normalized so that the IPD ranges from 30 pixels
to 270 pixels then classic LBP codes are computed within a 3x3 neighbourhood. Detection results
are reported in function of the IPD values in figure 2.8. EER varies significantly in function of
the IPD reinforcing the idea that correct geometric normalization is essential for the evaluation of
texture-based countermeasures. The EER for the low quality sensor increases when up-sampling
the face images with cubic interpolation (IPD > 80 pixels) showing that texture becomes less
discriminant at finer scales due to the limited resolution. Surprisingly, this effect does not appear
for medium quality acquisitions (IPD > 75 pixels) and the EER remains constant close to the
minimum value. Reversely, when down-sampling the face image, better performance is achieved
close to 54 IPD value for all three sensors. This goes along with the previous observation where
coarser texture is more discriminant than fine texture details. Nevertheless, having a high resolution
sensor helps with the detection as the minimum EER gets lower when a better sensor is used. Even
though the full resolution of the high quality acquisitions is not exploited when deriving LBP
features, the appropriate scale for texture countermeasures is fixed around IPD = 54 pixels. We
also experiment on the MSU and ReplayAttack database to complete our analysis of the proposed
rescaling strategy and similar observations are drawn. Good performance is achieved when the IPD
is around 54 pixels. The optimal face rescaling value is fixed to IPD = 54 pixels when computing
LBP codes within a 3*3 neighbourhood.

Table 2.5 recapitulates the average face dimensions of different subsets of the ReplayAttack,
CASIA and MSU databases.

2.2.2.3 Discussion

Both experiments have led to the same conclusion: coarser scales are more discriminant than finer
scales when analysing the facial texture for anti-spoofing purposes regardless of the resolution of
the sensor. We believe that fine texture details are highly identity specific and attack specific
which increases the intra-class variance in the binary detection problem. We now compare the
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Figure 2.8: Performance of LBP features in function of the face scaling for the CASIA, ReplayAttack
and MSU datasets. The IPD mentioned in the legend corresponds to the average IPD for the
corresponding dataset.

Table 2.5: Average face size for the considered datasets.

Datasets IPD Width Height

CASIA LD 80 190 210

CASIA MD 75 180 200

CASIA HD 262 640 700

ReplayAttack 55 120 140

MSU laptop 80 190 210

MSU android 85 210 230

results from both strategies in table 2.6. Both strategies obtain comparable results on low quality
recordings. The rescaling strategy performs slightly better on medium quality acquisitions and
reversely the radius tuning strategy achieves better results on high quality recordings. We retain
the rescaling strategy for the rest of our experiments as the computation cost decreases thanks to
the down-sampling of face images. Furthermore, this strategy set the face size to a fix empirical
value regardless of the sensor used for authentication and no parameter tuning is required.

Table 2.6: Comparison of the rescaling strategy and the optimal radius strategy.

EER (in %) CASIA LD CASIA MD CASIA HD

Rescaling strategy + LBP(8,1,u2) 20 14 10

Radius tuning strategy + LBP(16,5,u2) 21 17 7

In conclusion, face texture must be computed at the same scale for all faces to ensure that
the differences between two texture features reflect the quality deterioration of the recapturing
process instead of the face size variability. Geometric normalization is performed on registered
faces to compare properly the same facial structures from one face to the other. This procedure
improves the discriminative power of LBP features in two manners. First, the standardization of
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face sizes improves the consistency of features between two attempts and reduces the intra-class
variance. Second, discriminant texture information is well captured at IPD = 54 pixels regardless
of the sensor quality even when it leads to important down-sampling. If too much down-sampling
occurs, fake face detection performance starts to degrade. In that regard, existing evaluations of
texture based methods using a normalized 64*64 face image are not optimal and new evaluations
are necessary.

2.2.3 Component-based face representation

The main question to be answered is: are some facial regions more relevant than others in order to
detect fake faces? Should we consider the face as a whole or as a series of discriminative regions?

In the literature, multiple facial regions have been considered for texture feature extraction. To
have a dense texture representation which handles various discriminant abilities of scene regions,
two strategies have been investigated. The first one "spatialize" low-level features using a block
processing approach while the second one takes into account the canonical structure of faces with a
component-based coding. In [Yang13], the authors demonstrate that the face contour region holds
important discriminant texture information compared to inside regions. Unfortunately, even near
background information should be discarded to have a background independent countermeasure.
The proposed face detection algorithm allows a semantic segmentation of the face and enables us
to investigate texture in different coherent face regions as shown in figure 2.9a. Experiments are
conducted on the ReplayAttack, CASIA and MSU databases to evaluate the discriminative power
of face parts. In addition, we compare the case where the whole face is considered and the case
where features from each face part are concatenated forming a component-based LBP feature.

(a) Face parts (b) Face region

Figure 2.9: Face extraction

Detection results are reported in table 2.7. The discriminative power of certain face parts
depends on the image quality. For instance, cheeks are highly discriminant for low and medium
quality acquisitions but not so much for high quality acquisitions. Reversely, the forehead and eye
regions are discriminant for high quality samples but not for lower quality samples. Overall, the
best performance is obtained using the whole face directly. Experiments using component-based
LBP features on high quality acquisitions obtain EER = 20% which is 4% less than when using
the whole face. The high dimensionality of the component-based LBP features probably requires
more training data for better generalization. In conclusion, the whole face should be considered
when deriving texture features.
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Table 2.7: EER results (in %) for different face parts on CASIA database

Face parts CASIA LD CASIA MD CASIA HD

forehead 46 37 26

cheeks 23 17 29

mouth+upper-mouth 23 30 36

nose 26 33 36

eyes+eyebrows 46 36 26

chin 26 27 39

whole face 23 17 16

component-based - - 20

2.2.4 Support Vector Machine for classification purpose

Fake face detection is assimilated as a binary classification problem. Multiple supervised learning
techniques have been investigated in the literature including χ2 classifier (nearest neighbours with
χ2 distance), Partial least square (PLS-DA) discriminant analysis, Linear discriminant analysis
(LDA) and the most popular Support Vector Machines (SVMs). In this work, we choose the SVM
classifier as it has demonstrated state of the art performance in recent works. The concepts behind
SVM classification and its use for the problem of fake face detection are detailed in the next section.

2.2.4.1 Support vector machines (SVM)

The SVM binary classification algorithm searches for an optimal hyperplane that separates the
labelled training samples into two classes. Let (xi)i=1:n be the set of training samples and (yi)i=1:n

their corresponding labels (yi ∈ −1, 1), the goal of SVM is to learn a decision function (or scoring
function) that maps any input sample xi to a real value ŷi close to its original label yi. This
function corresponds to the projection of the input sample xi on the orthogonal vector to the
optimal hyperplane parametrized by its direction w and offset from the origin b:

ŷi = wtxi + b (2.2)

For separable classes, the optimal hyperplane maximizes a margin (space that does not contain
any observations) surrounding itself, which creates boundaries for the positive and negative classes
as illustrated in figure 2.10. The SVM margin is equal to 2/‖w‖ and the objective is to minimize
the following optimization problem:

minimize
w,b

1

2
wtw

subject to yt(w
txt + b) ≥ 1

(2.3)

For inseparable classes, the objective is the same, but the algorithm imposes a penalty on the
length of the margin (soft margin) using a slack variable ξ for every observation that is on the
wrong side of its class boundary. Besides, the dual form of this optimization problem is preferred
as it benefits from the kernel trick for non-linearly separable data. The kernel trick is employed to
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Figure 2.10: Large margin separating hyperplane for linearly separable positive class (blue) and
negative class (red).

map the input data to a higher dimensional space where it becomes linearly separable without an
explicit expression for the mapping (only dot products). The dual problem is formulated as:

maximize
α

n∑
t=1

αi −
1

2

n∑
k,l=1

αkαjykylK(xk.xl)

subject to 0 ≤ αi ≤ C and
n∑
i=1

αiyi = 0 , i = 1, .., n and KKT complementarity conditions.

(2.4)
where K is the kernel function and C is the cost parameter associated to the soft margin penalty
term. The Karush-Khun-Tucker complementary (KKT) conditions implies that Lagrange multi-
pliers α can be non-zero only for training points on the margin (Support Vectors). Greater C
leads to fewer support vectors and can reduce over-fitting but at the same time can degrade the
performance. Quadratic programming solvers are used to solve this dual problem. Most commonly
used kernels are the following:

• linear kernel: K(xi, xj) = xtixj .

• Radial Basis kernel (RBF): K(xi, xj , σ) = exp(−(xi − xj)t(xi − xj)/σ2) .

• Polynomial kernel: K(xi, xj , p) = (1 + x′ixj)
p.

• Histogram intersection kernel: K(xi, xj) =
∑k

i=1min(xi(k), xj(k)).

2.2.4.2 Feature scaling and model selection

Hsu and al. insist on the importance of scaling the features into a fixed dynamic range in [Hsu03]
and recommend linearly scaling each attribute in the range of [-1,1] or [0,1] when using the libSVM
package [Chang11]. The advantage of feature scaling is to avoid that attributes with large values
dominate those in smaller range and also avoid numerical difficulties when computing kernel dot
products. Scaling parameters are determined from training data attributes only to avoid prediction
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bias. The Matlab SVM implementation of SVM prescribes feature standardization so that training
attributes have zero mean and unit variance. The proposed standardization procedure takes into
account the class distribution in the training set by weighting each sample with their class prior
probability to handle unbalanced classification data. It is also common to perform Principal com-
ponent analysis (PCA) to reduce the feature dimension so that 98% of the variance of the training
data is retained.

Furthermore, SVM offers multiple kernels for mapping low dimensional data to higher dimen-
sional space for non linearly separable data. The penalty cost C and kernel parameters are tuned
on a development dataset when available otherwise a cross-validation procedure is performed on
the training set. The most common parameter tuning technique uses the grid search algorithm
where an exhaustive list of C and kernel parameters values are tested and those who achieve the
highest classification accuracy are retained. The final model is learned using those optimal values.

2.2.4.3 SVM design for fake face LBP-based detection

We investigate the impact of feature normalization techniques and model selection on the classifi-
cation stage for the LBP case study. The face region is extracted and geometrically normalized to
maintain a 54 pixels inter pupillary distance. The following classification configurations are tested:

• configuration 1: LBP histogram is normalized to sum to one and a linear kernel is considered.

• configuration 2: LBP histogram is normalized to sum to one and a RBF kernel is considered.

• configuration 3: LBP histogram is normalized to sum to one and a histogram intersection
kernel is considered.

• configuration 4: features are rescaled between [-1,1] and a RBF kernel is considered.

• configuration 5: features are standardized (0 mean and unit variance) and a RBF kernel is
considered (Matlab default).

• configuration 6: features are standardized (0 mean and unit variance) and PCA is applied so
that 98% of the variance is retained, the RBF kernel is used.

Experiments are conducted on CASIA and ReplayAttack databases. Table 2.8 reports the
classification results in terms of EER for CASIA samples and HTER for ReplayAttack samples. No
particular configuration stands out and the best configuration depends on the considered dataset.
Feature scaling and model selection impact greatly the performance of the LBP countermeasures as
performance can vary up to 100% depending on the considered data. Note that PCA normalization
obtains the best EER on low quality samples and can prove to be efficient on larger features.
Nonetheless, we select as best configuration the default Matlab configuration as it achieves the
best results overall.
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Table 2.8: Performance results (in %) for different feature normalizations and kernels.

CASIA LD CASIA MD CASIA HD ReplayAttack

(EER in %) (EER in %) (EER in %) (HTER in %)

config 1 30 16 22 21

config 2 26 10 29 25

config 3 30 16 19 23

config 4 26 10 29 25

config 5 33 16 16 18

config 6 23 23 23 19

2.2.5 Comparison with multi-frame evaluation frameworks

We compare our LBP countermeasure design with the implementations of Freitas [Freitas Pereira13]
and Komulainen [Komulainen13]. Results are reported in table 2.9. The proposed face registration
procedure is not competitive with existing LBP countermeasure designs. It appears that averaging
LBP features from multiple frames is essential and aligning faces does not compensate the need
for multi-frame computation and may generate interpolation noise. Also, we believe that the
traditional face detection procedure is sensitive to possible face size bias between real and fake face
which generates different bounding box sizes around the face and therefore transfers this disparity
to the feature extraction stage. Besides, when training the system, the missing fake faces (wrongly
detected, ie section 2.2.1.3) can have a negative impact on the SVM classifier leading to worse
performance.

Consequently, we adopt a simpler face extraction procedure similarly to Komulainen and al.
[Komulainen13] but using the Matlab face detector based on ENCARA 2 [Castrillón07] to com-
pete with other LBP-based countermeasure implementations. The cropping window is adjusted to
contain the whole face while limiting the amount of background. All faces are detected and we
display some cropped face examples resulting from this alternative face extraction procedure in
figure 2.11. A multi-frame procedure is employed where a feature vector per video is obtained by
averaging features from the first 2 seconds of video (50 frames at 25 fps). Although better results
are obtained using more frames, we limit the time required for authentication to 2 seconds for
practicability. Despite changing the face extraction procedure, the optimal face geometric normal-
ization and classification settings holds so the whole face region is normalized to 150*135 pixels
(corresponds to IPD = 54) and features are standardized before classification with an SVM-RBF
classifier. With this evaluation framework, decent detection is obtained on ReplayAttack and on
high quality acquisitions from CASIA database.

Figure 2.11: Exemplars of extracted faces from one client of the CASIA database.
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Table 2.9: LBP performance comparisons on CASIA and ReplayAttack databases under the pro-
posed evaluation framework.

CASIA LD CASIA MD CASIA HD ReplayAttack

(EER in %) (EER in %) (EER in %) (HTER in %)

LBP(8,1,u2) 1 - - - 15.16

LBP(8,1,u2) 2 11 17 13 -

LBP(8,1,u2) 3 4 10 0 -

LBP(8,1,u2) 4 33 16 16 18

LBP(8,1,u2) 5 26.6 13.9 6.67 10.6
1 LBP results reported from [Chingovska12]. Faces are normalized to 64*64
pixels with an IPD = 33 pixels and every video frame is considered as inde-
pendent samples.
2 LBP results reported from [Freitas Pereira13]. Faces are normalized to
64*64 pixels with IPD = 33 pixels and 75 frames per video are averaged to
obtain a single feature vector per video.
3 LBP results are reported from [Komulainen13]. An extended face region
is considered and no geometric normalization is performed. 50 frames are
averaged to obtain a single feature vector per video.
4 Our LBP results obtained using normalized faces with IPD = 54 pixels
and only one frame is selected per video.
5 Our LBP results obtained with the first 50 frames and using the whole face
region normalized so that the inter pupillary distance is equal to 54 pixels.

2.2.6 Conclusion

Our goal is to define a processing pipeline adapted for texture-based countermeasures. First, a
single frame approach relying on an advanced face registration procedure for robust face extraction
is presented. This procedure has the advantage of low computational cost and extensive experiments
on face geometric normalization, selection of interest regions and classification procedures could be
conducted.

• Geometric normalization has a central role when examining texture information as it impacts
the original quality of the recordings. Conceptually, high quality acquisitions allow texture
analysis at finer scales. However, our experiments demonstrate that coarser scales provide
a better texture description. Resizing face images to 54 pixels of inter pupillary distance
achieves good performance while limiting the cost for computing LBP codes regardless of the
sensor resolution.

• Texture from multiple face parts is analysed and we demonstrate that some parts are more
or less discriminant depending on the quality of the recordings. Simply combining LBP
histograms from multiple face parts does not improve the detection so the whole face is
considered. Note: more complex fusion strategies based on Fisher criterion [Yang13] and
[Benlamoudi15] are required to exploit correctly the different texture contributions of face
parts.



2.3. Evaluation of state of the art texture-based countermeasures under a unified
framework 52

• The question of feature scaling and model selection is addressed. We show that these pro-
cedures are of strong importance as performance varies significantly with the classifier con-
figuration from one database to the other. Simple feature standardization (0 mean and unit
variance) with RBF kernel is retained for all the experiments although better results can be
obtained with normalization and kernel tuning on each dataset.

Comparison with existing LBP-based countermeasure designs proved that multi-frame pro-
cessing provides better performance as texture variability from consecutive frames has a positive
impact on fake face detection. In fact, recent studies using dynamic texture descriptors such as
LBP-TOP exploit this aspect. As a result, the whole registration process is replaced by a simpler
face detection method and LBP features from multiple frames are simply averaged to form more
discriminant texture features. This implementation obtains competitive results compared to state
of the art LBP-based countermeasure design and is retained for the rest of this study.

2.3 Evaluation of state of the art texture-based countermeasures
under a unified framework

The objective of this study is to evaluate state of the art texture-based methods under the proposed
framework to obtain a fair comparison of each method on the ReplayAttack, CASIA and MSU
databases. We briefly present state of the art texture-descriptors employed for face anti-spoofing.

2.3.1 Description of texture descriptors

We recapitulate the different state of the art texture descriptors encountered in the literature. The
comparative study will consider those state of the art texture descriptors only.

2.3.1.1 LBP and Multi-scale LBP

For clarity, the LBP formulation is briefly reminded here although already presented in section
2.1.3.2. To encode neighbourhood relationships around a given pixel pc, N samples points pi with
i ∈ {1, N} distributed evenly on a radius R around pc are used to compute the associated lbp code
as:

lbpN,R(pc) =
N∑
i=1

s(pi − pc)2i , where s(p) =

1, if p > 0

0, otherwise

The normalized histogram of the lbp codes forms the traditional LBP features:

LBPN,R = hist(lbpN,R)/N

where N is the number of pixel in the LBP image.

Non uniform patterns are grouped into a single bin of the histogram. Uniform patterns are
LBP codes with at most 2 bitwise transitions 1-0 or 0-1 in their bit representation. It was shown
in [Ojala02] that most of the patterns in natural images are uniform and considering only uniform
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patterns adds statistical robustness while reducing significantly the number of possible patterns
from 2N to N(N − 1) + 3.

The multi-scale LBP approach of Maatta and al. [Maatta11], denoted by MS-LBP in this thesis,
combines LBP u28,1,3∗3, LBP u28,1 and LBP u216,2 where LBPN,R,b∗b denotes multi-block LBP features by
dividing the image into b ∗ b blocks and concatenating LBP features from each block into a single
feature vector.

2.3.1.2 Local binary patterns variance (LBPV)

LBPV has been introduced in [Guo10b] for texture classification tasks. It is closely related to LBP,
the only difference lies in the computation of the histogram which accumulates the variance from
the local region of the corresponding LBP code as follows:

V arN,R(pc) =
1

N

N∑
i=1

(pi − u)2, where u =
1

N

N∑
i=1

pi (2.5)

where pi designate the neighbouring pixels circularly distributed around pc. Next, the computation
of LBPV features is given by:

LBPVN,R(k) =
∑
p∈Im

V arN,R(p).δ(lbpN,R(p), k), where δ(i, j) =

1, if i = j

0, otherwise
(2.6)

In [Kose12], Kose and al. used this scheme together with global matching to enforce rotation
invariance and DoG filtering as preprocessing. They obtained satisfactory results on the NUAA
database. In this article, only the simple LBPV scheme is used in order to evaluate if discriminant
texture patterns have high variance like in texture classification.

2.3.1.3 Gabor features

A 2D Gabor filter consists of a sinusoidal wave modulated by a Gaussian envelope defined by:

G(x, y) =
F 2

πγη
exp(−F 2[(

x′

γ
)2 + (

y′

η
)2])exp(i2πFx′) ,with

x′ = xcos(θ) + ysin(θ)

y′ = −xsin(θ) + ycos(θ)

F is the central frequency of the filter, θ is the angle between the direction of the sinusoidal wave
and the x-axis of the spatial domain, γ and η are the standard deviations of the Gaussian envelope
in the direction of the wave and perpendicular respectively. These last two parameters determine
the shape and size of the Gaussian surface and are often referred to as smoothing parameters.
The design of Gabor filter bank consists in selecting a set of filters spanning all the directions
with a regular angular step at different frequencies varying with a constant ratio usually set to√

2. For texture classification, the highest central frequency Fm is computed so that the half-peak
magnitude iso-curve of the filter at the highest frequency touches the value of 0.5 pixels−1 (Nyquist
frequency) as suggested in [Bianconi07]:

Fm =
γ

2(γ +
√
log(2)/π
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According to the authors, the number of frequencies nf and the number of orientations no have
little effect on texture classification whereas the smoothing parameters γ and η have a significant
impact. In our work, we fix nf = 4 and no = 6 as in [Waris14] while smoothing parameters are
chosen with grid search. Gabor features are obtained by convolving the image with each filter of
the set of Gabor filters and then first and second order statistics on response coefficients are derived
to form the final feature vector as:

GFγ,η = [µ11, σ11, µ12, σ12, ..., µnonf
, σnonf

]

2.3.1.4 GLCM features

Fisrt introduced by Haralick et al. in [Haralick73], gray-level co-occurrence matrices (GLCMs)
are widely used in texture analysis. Considering a pairing rule between pixels, GLCM counts the
number of different combinations of gray levels occurring for all pair of pixels in the image. Given
a quantization factor q and a relation operator parametrized by the distance d and the direction
u ∈ {−→, −→ , −→, −→}, glcm is a q*q matrix where glcm(i,j) is the probability of having a pair of
gray levels (i, j) ∈ [1, .., q]2 for pixels satisfying the relation operator. Second order statistics are
computed from this matrix to form the feature vector. In this work, we use 19 texture features as
defined in [Haralick73, Soh99, Clausi02] corresponding to: Autocorrelation, Cluster Prominence,
Cluster ShadeContrast, Correlation , Difference entropy, Difference variance, Dissimilarity, Energy
, Entropy, Information measure of correlation1 , Information measure of correlation2 , Inverse
difference (Homogeneity in matlab) , Maximum probability , Sum average, Sum entropy , Sum
of squares (variance), Sum variance. The Matlab implementation of these features is provided by
Patrik Brynolfsson 2.

2.3.2 Experimental protocol

Faces are extracted using the ENCARA2 [Castrillón07] face detector. Then, cropped faces are
normalized to 150*135 pixels to maintain an interocular distance of 54 pixels. Features from the
first 50 frames (2 seconds of video) are accumulated to form texture features for each video. Features
are then standardized before classification based on an SVM classifier with RBF kernel.

Grid search is used to determine the best parameters for each descriptor on each database. To
limit the computation time, we only use one frame during the grid search procedure. Also, some
optimal parameters can vary between different databases so we try to selected the same parameters
for different databases when performance is close to the optimum for simplicity. The list of selected
parameters are reported in table 2.10.

Table 2.10: List of parameters

descriptor parameters CASIA ReplayAttack MSU

LBP,LBPV (N,R) (8,1) (8,1) (8,1)

Gabor (γ, η) (4,4) (4,4) (6,6)

GLCM (d, q) (1,32) (1,32) (1,32)

2https://fr.mathworks.com/matlabcentral/fileexchange/55034-glcmfeatures-glcm-/content/
GLCMFeatures.m

https://fr.mathworks.com/matlabcentral/fileexchange/55034-glcmfeatures-glcm-/content/GLCMFeatures.m
https://fr.mathworks.com/matlabcentral/fileexchange/55034-glcmfeatures-glcm-/content/GLCMFeatures.m
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The evaluation follows the public protocols associated with each database as described in sec-
tion 1.2.3. EER is reported for both MSU and CASIA databases whereas HTER is reported for
the ReplayAttack database. The countermeasure is trained on each data subset defined by the
evaluation protocol.

2.3.3 Results on CASIA database

The performance of the aforementioned descriptors on the CASIA database is reported in table
2.11 in terms of EER. The best overall performance is achieved by the MS-LBP features. The
traditional LBP descriptor is slightly behind in terms of overall EER and both methods clearly
outperform LBPV, Gabor and GLCM based countermeasures.

Impact of sensor quality Acquisitions from three different sensors are available in the CASIA
database which allows us to evaluate the robustness of countermeasures over multiple acquisition
devices. Except the LBPV based countermeasure, good detection is achieved on high quality
acquisitions with an EER between 6.6% and 10%. For low quality and normal quality recordings,
MS-LBP features clearly outperform other countermeasures and achieve 10% and 9.4% respectively.
A significant drop in performance is observed for normal and lower quality acquisitions for the other
state of the art texture descriptors which highlights the superiority of MS-LBP for this database.
Different texture patterns are discriminant for various sensors and MS-LBP is able to capture
them. However, learning a general classifier which is able to discriminate features from multiple
sensors at once is more difficult and performance decreases to 14.2% like with traditional LBP
countermeasures.

Impact of attack scenarios Robustness to different spoofing attack scenarios is also investigated
with separate experiments on warped, cut and video attacks. Recordings from the three sensors
are considered in the evaluation as described in the public protocol. The MS-LBP descriptor
outperforms other descriptors for each of these attack scenarios, particularly against iPad video
attacks with almost perfect detection (EER = 5.5%).

Table 2.11: EER (in %) results on CASIA database.

low quality normal quality high quality warped cut video overall

LBP 26.6 13.8 6.6 14.4 18.8 14.4 14.4

MS-LBP 10 9.4 7.2 10 12.2 5.5 14.2

LBPV 22.7 19.4 23.3 24.4 23.3 21.1 24.6

Gabor 19.4 33.3 7.2 23.3 20 18.8 18.8

GLCM 16.1 23.3 10 17.7 17.7 25 25

2.3.4 Results on ReplayAttack database

The results on the ReplayAttack database are reported in table 2.12 in terms of HTER. Once
again, the best overall performance is achieved by the MS-LBP features but decent detection is also
obtained using LBP, LBPV, Gabor and GLCM features. Similarly to CASIA results, video attacks
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are easier to detect compared to photo attacks as HTER reaches 11.4% and 4.6% respectively.
In this experiment, the impact of the quality of the spoofing attacks is investigated using three
different devices to perform the attacks going from the use of simple printed photos to digital photos
displayed on iPhone and iPad. Experiments on the print attacks and iPhone yield almost perfect
detection with HTER = 3.1% and HTER = 4% respectively. However, significant performance
decrease is observed on iPad attacks as the screen size is big enough to render a good fake face
relatively to the sensor quality.

Table 2.12: HTER (in %) results on ReplayAttack database.

print mobile iPad photo video overall

LBP 4.3 3.4 20.9 16.0 6.8 10.6

MS-LBP 3.1 4 12.8 11.4 4.6 8.7

LBPV 13.7 4.7 12.8 12.5 6.2 9.0

Gabor 6.8 3.1 17.1 11.4 10 12.2

GLCM 5.6 5.3 15.9 12.2 12.5 12.8

2.3.5 Results on MSU database

Table 2.13 reports the performance of the texture-based countermeasures on the MSU database.
Unlike the previous databases, the best overall performance is achieved using the GLCM features
with EER = 17.5%.

Impact of sensor quality Interestingly, GLCM features perform well for the android sensor with
EER = 10.8% and fail to detect attacks from the laptop acquisitions. Reversely, MS-LBP features
obtain great detection performance on laptop acquisitions with EER = 5.8% but is inefficient
when a laptop sensor is employed. This proves that the type of sensor has a significant impact
on the detection capabilities of state of the art texture-based countermeasures. This huge gap in
performance between the two sensors can be partly explained by the face size bias between real
and fake faces as laptop acquisitions tend to produce larger fake faces when performing a full view
attack. Both ReplayAttack samples and MSU laptop samples have different face size distributions
as shown in figure 2.6a and 2.6b and despite the geometric normalization texture differences are
emphasized by this property.

Impact of attack type Similarly to ReplayAttack database, three different attack scenarios are
considered using print, iPhone and iPad attacks except that only video attacks are displayed on
screen. Decent detection is obtained against iPad and iPhone video attacks with EER = 10%.
Looking at the DET curves, we observe that better performance is achieved on iPhone attacks
compared to iPad ones in accordance with the empirical fake face quality. However, poor detection
of print attacks is achieved with EER = 15% only.
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Table 2.13: EER results on MSU database.

android laptop iPad iPhone print overall

LBP 20.8 29.1 22.5 17.5 15 27

MS-LBP 25 5.8 10 10 15 20.4

LBPV 25.8 15 25 15 31 27

Gabor 30 15 17.5 17.5 27.5 27.5

GLCM 10.8 20 10 10 20 17.5

2.3.6 Discussion

The real challenge in face anti-spoofing is to find features that are capable to capture discriminant
information that are consistent over multiple sensors and over different attack types. When a sin-
gle sensor is used, the multi-scale LBP approach of [Maatta11] outperforms other state of the art
methods and decent detection is obtained despite the variety of attacks, except for the android
mobile sensor of MSU database. Experiments on the ReplayAttack database showed that the type
of spoofing attack has a real impact on the performance and hopefully video attacks are well de-
tected. Performance on photo attack detection varies a lot between one attack scenario to the other.
Although print attacks from the ReplayAttack database are well detected, those using high quality
printouts (MSU print attacks) and performed at mid-range (CASIA print attacks) are still chal-
lenging. Besides, sensor variability adds another difficulty to the problem. The above evaluations
have revealed some severe limitations of current state of the art texture-based countermeasures as
significant decrease in performance is observed when multiple sensors are employed. It appears
that each sensor and each attack type have inconsistent texture cues and a unique discriminative
model (classifier) is not able to cope with all this variability.

Then, two directions for the improvement of texture-based methods are interesting. One could
investigate a multi-classification approach to deal with each type of attack separately and then
infer the right decision or one could look into other ways to characterize texture. We chose to focus
on the last option and investigated relevant variants of LBP for improving the detection.

2.4 Improvement of LBP countermeasures

Considering the success of LBP-based methods in the literature, we investigate LBP variants to
improve the current state of the art on texture-based countermeasures. Various LBP-based schemes
have been developed to best serve multiple computer vision tasks such as object detection, face
recognition and texture classification but only the MS-LBP has been designed for fake face detec-
tion. A review of LBP-based countermeasures is provided in [Pietikäinen11]. Multiple strategies
have been adopted to improve the performance of the traditional LBP by handling properties such
as scale invariance, rotation invariance, illumination invariance, blur robustness, noise robustness.
In this work, we chose to improve texture description using color and contrast information to have
a texture descriptor capable of capturing the radiometric transformations occurring during the
recapturing process.
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2.4.1 Enhancement with contrast information: Complete Local Binary Pattern
(CLBP)

LBP naturally enjoys robustness against illumination shifts in terms of intensity but it is highly
sensitive to illumination direction changes. Experiments on the ReplayAttack database revealed
that detection performance drops significantly when the countermeasure is trained under controlled
conditions and tested under complex lightning. So, we investigate if handling contrast information
is a better way to capture discriminant texture information despite increasing illumination sensi-
tivity because texture-based methods are more likely used under controlled illumination conditions
anyway.

We select the CLBP descriptor [Guo10a] which had a lot of success in texture classification
tasks. The idea of CLBP is to encode both the sign and magnitude of the local difference between
the center pixel and its N neighbours. The sign part corresponds to the classic LBP codes while
the magnitude part CLBP_M encodes contrast information. The magnitude codes are computed
as follows:

clbp_mN,R(pc) =

N∑
i=1

f(pi − pc)2i , where f(x) =

1, if |x| > t

0, otherwise

t is set to the average of the absolute local difference value for the whole image. Additionally, the
image gray level also has discriminant information for texture analysis. This information is encoded
into an additional bit denoted clbp_c in clbp_mN,R computed as follows:

clbp_c(pc) =

1, if |pc| > g

0, otherwise

where g is the average grayscale value of the image. Let us denote this feature CLBP_MC.

In [Guo10a], there are two ways to fuse the sign part with the magnitude part. CLBP_SMC is
obtained after joint 2D histogram computation while CLBP_S_MC is the result of the concatena-
tion of lbp and clbp_mc histograms. In our early experiments, we observed that CLBP§_M offers
the best trade off between complexity and performance. Hence, CLBP refers to the concatenation
of sign and magnitude LBP components in this work.

2.4.2 Enhancement with color: HSI-LBP

We propose to improve the discriminative power of texture features by using color information. Sev-
eral color texture descriptors have been combined with other low level texture features in [Tronci11].
Originally developed for Image retrieval, CEED [Chatzichristofis08a], FCTH [Chatzichristofis08b],
MPEG-7 descriptors, RGB and HSV histograms have been used to synthesize the visual content
of images with a good computation efficiency. In [Schwartz11], Color frequency (CF) is used to
add color information to the classic HOG descriptor. One drawback of these methods for face
anti-spoofing is that absolute color information is used together with texture features to describe
the image, although skin color or illumination color are not discriminative between real and fake
faces.

In this work, we introduce a novel texture descriptor which encodes color shifts between neigh-
bouring pixels making it invariant to skin or illumination color shifts. Inspired from [Zhu10], we
derive an LBP-based color texture descriptor from the HSI color space. LBP features are computed
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from all three channels and concatenated to form the HSI-LBP features. When computing LBP on
the Hue channel, the local differences between the center pixel and its N neighbours is handled so
that it is comprised in [−π, π] in order to characterise if the difference in Hue is counter-clockwise
(bit to 1) or clockwise (bit to 0). This coding is relevant as only small local color shifts occur in
homogeneous regions. We tried different color spaces and HSI obtained the best results.

2.4.3 Experimental results

Experiments are conducted on CASIA ,ReplayAttack and MSU databases and results are compared
to the traditional LBP countermeasure and the MS-LBP countermeasure.

2.4.3.1 Experiments on CASIA

Both CLBP and HSI-LBP achieve better results than state of the art countermeasures as shown
in table 2.14. Especially, video attacks are well detected as recaptured faces appear over-exposed
because of the screen direct light source. While moderate overall improvement is obtained using
the CLBP features, the use of color significantly boost the detection in both single and multiple
sensor cases.

Table 2.14: EER results on CASIA database.

low quality normal quality high quality warped cut video overall

LBP 26.6 13.8 6.6 14.4 18.8 14.4 14.4

MS-LBP 10 9.4 7.2 10 12.2 5.5 14.2

CLBP 23.3 10 3.3 13.3 16.6 8.9 12

HSI-LBP 6.1 3.8 3.3 7.7 11.1 6.7 6.8

2.4.3.2 Experiments on ReplayAttack

Similarly to results on CASIA database, decent improvement is observed on digital attacks from
the ReplayAttack database when contrast and color information is taken into account.

Table 2.15: HTER results on ReplayAttack database.

print mobile iPad photo video overall

LBP 4.3 3.4 20.9 16.0 6.8 10.6

MS-LBP 3.1 4 12.8 11.4 4.6 8.7

CLBP 5.6 0.9 12.8 7.5 2.8 5.3

HSI-LBP 3.1 0.6 5.3 4.7 0.3 3.7

2.4.3.3 Experiments on MSU

Detection results on MSU database are reported in table 2.16. For this database, the contrast
information is not valuable for the fake face detection as worse results are obtained using the CLBP
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features compared to state of the art methods. Color information yields the best performance with
EER = 15% but it is still unsatisfactory for reliability.

Table 2.16: EER results on MSU database.

android laptop iPad iPhone print overall

LBP 20.8 29.1 22.5 17.5 15 27

MS-LBP 25 5.8 10 10 15 20.4

CLBP 30 24 15 12.5 15 25

HSI-LBP 20 10 10 12.5 7.5 15

2.4.4 Comparison with recent cue-based methods

We have proposed two variants of LBP features to better capture the differences between real
and fakes faces. While CLBP obtains mitigated results, HSI-LBP features demonstrate superior
anti-spoofing capabilities on all three databases. Over-exposure and faded colors, characteristic
of fake faces, are well captured by the proposed method on ReplayAttack and CASIA databases.
Acquisitions from the MSU databases are still challenging especially those acquired using the Google
Nexus mobile.

In this Chapter, we have focused on data-driven texture-based methods focusing on the face
region only. To put our work in perspective, we compare the proposed HSI-LBP features to recent
cue-based methods based on image quality assessment (IQA) [Galbally14a] and image distortions
analysis (IDA) [Wen15]. Both methods exploit contrast and color information as well. Table
2.17 shows that the proposed HSI-LBP descriptor is competitive against recent cue-based methods
focusing on the face region only overall.

Table 2.17: EER results on MSU database.

CASIA (H protocol) ReplayAttack MSU

IDA 13.3 7.4 8.58

IQA 5.6 15.2 -

HSI-LBP 3.3 3.7 15

2.5 Conclusion

Methods based on texture analysis are key in video anti-spoofing or mask attacks as they don’t
require user-cooperation during authentication nor any additional equipment. Two non exclusive
categories of texture-based countermeasures are investigated in the literature. After a thorough
review of state of the art countermeasures, we have highlighted a number of grey areas concerning
evaluations of countermeasures based on texture only. particularly, the various evaluation frame-
works and the multiple combinations of static or dynamic countermeasures make it difficult to
compare texture-based methods fairly.

Hence, a unified evaluation framework that takes into account the face region only is proposed.
This restriction is necessary to handle varying backgrounds and different types of attacks ( photos,
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videos and masks) and attack scenarios (full view attacks and mid-range ones). An exhaustive
study of the LBP countermeasure is conducted for the design of this framework and the influence
of the different processing stages occurring in the fake face detection pipeline is investigated. Three
main points have been highlighted. First, the face region must include the whole head. Second,
texture features have to be extracted on multiple frames and then averaged to increase the detection
performance. Third, face geometric normalization is necessary regardless of the sensor resolution
and the optimal value is around 54 inter pupillary distance (in pixels).

Then, a fair comparison of state of the art texture-based methods (data-driven) is conducted
under this unified framework for the ReplayAttack, CASIA and MSU databases. Evaluated coun-
termeasures include LBP, MS-LBP, Gabor , GLCM and LBPV features. Overall, the MS-LBP
approach obtains the best detection results but performance is still unsatisfactory for industrial
specifications which require FAR < 1% for a FRR = 0.5%. Sensor and attack type variabilities
complicate the problem of fake face detection from a texture standpoint and additional information
is required to characterize differences between real and fake faces.

Consequently, two variants of LBP features are proposed where contrast and color information is
taken into account. Color texture captured by the HSI-LBP features outperforms existing methods
under the proposed evaluation framework and is able to compete with recent cue-based methods.
Poor detection is obtained on the recent MSU database especially on mobile acquisitions.

In conclusion, texture-based countermeasures are essential for the detection of spoofing attacks
and good performance is achieved on both CASIA and ReplayAttack. Further effort needs to be
paid for mobile acquisitions as results on MSU are not as good as those obtained on the other
two databases. Nevertheless, we were able to assess the strength and limitations of data-driven
texture-based countermeasures.
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Motion-based countermeasures have demonstrated great potential in face anti-spoofing espe-
cially against photo attacks. Multiple strategies have been investigated going from interaction-free
approaches to challenge/response methods. Appealing properties make motion-based countermea-
sures attractive. First, low quality sensors such as standard webcams can be used efficiently with
this type of methods. Second, these methods are robust to illumination changes between two au-
thentication attempts and are scene independent. However, motion-based countermeasures suffer
from a lack of robustness against attack scenarios involving simulated motion or replayed motion.
As a consequence, motion-based methods have been developed to detect photo attacks primarily
and complementary texture or liveness counter-measures are employed to detect video or mask
attacks. We believe that the current state of the art lacks experiments on exclusive motion-based
countermeasures against different replay attack scenarios. After a complete review of exclusive
motion-based countermeasures in photo and video attack detection, key motion cues are discussed
and we argue that replay-attacks can be efficiently detected using motion-based countermeasures
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in many cases. A novel data-driven motion-based countermeasure is presented and extensive ex-
periments are conducted on ReplayAttack, CASIA and MSU databases. The proposed method
takes advantage of the Conditional Local Neural Fields (CLNF) face tracking algorithm to extract
rigid and non-rigid face motions in real time. Similarly to the bag-of-words feature encoding, a
vocabulary of motion sequences is constructed to derive discriminant mid-level motion features
using the Fisher vector framework. Finally, we investigate the impact of camera motion on the
proposed countermeasure for mobile applications.

3.1 State of the art of motion-based countermeasures

In the literature, motion-based methods are primarily designed to detect photo attacks whereas
additional countermeasures based on other cues are implemented to cope with video or mask
attacks. In that regard, works mentioned in this review may be incomplete as only the motion
related parts are discussed. Following our general classification of anti-spoofing methods in chapter
1, motion-based countermeasures are broken down as cue-based methods and data-driven methods.
A general overview of existing motion-based countermeasures is laid out in table 3.1. A detailed
analysis of each method is presented below.

3.1.1 Cue-based motion countermeasures

Existing motion-cue-based methods rely essentially on three types of cues for photo attack detection:
planar effect, liveness (natural movements) and face-background motion correlation. These methods
are very specific to the attack scenario and authentication protocol. Planar effect is observed when
out-of-plane head rotations are simulated by photo warping or photo rotations so countermeasures
based on this cue need yaw and pitch head motion during authentication. Liveness-based methods
fail against spoofing scenarios where eyes and mouth motions are simulated. Face-background
motion correlation is relevant only when both the face and the background are fake in close-up
attack scenarios. Despite these limitations, multiple methods have been proposed in the literature.

Methods based on planar effect The 3D structure of real faces can be revealed from mo-
tion. Three main ideas have been exploited for face 3D assessment: face part motion consistency,
geometric invariants and structure from motion.

• Face part motion consistency: In [Kollreider07a], Kollreider and al. analyse the trajec-
tories of face parts to detect photo attacks. They propose a robust face detection procedure
relying on fast optical flow estimation called Optical Flow of Lines (OFL). Both vertical and
horizontal motions are encoded into a complex optical flow image denoted OFim = vx + i vy.
This map is exploited for both face detection (face center) and anti-spoofing. A model-based
local Gabor decomposition together with SVM experts are employed to detect left and right
ears for more robustness. Region of interests (ROIs) are defined at face center and ears loca-
tions and average velocity in each ROI is computed from pixels that exhibit sufficient motion
(greater than half its maximum value). Only the maximum of horizontal or vertical velocity
is retained when computing the average velocities to focus on primary movements. Left and
right liveness ratios (cl and cr) compare the velocities of the face center and those of left or
right ear. Values greater than 1 indicates a real face as real faces exhibit higher velocity near
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Table 3.1: Summary of motion-based anti-spoofing countermeasures. The column ’attack’ cor-
responds to the spoofing attack scenarios handled by the proposed countermeasure. Column
’Database’ mentions the name of the database used to validate the countermeasure. Column
’Protocol’ indicates which type of movement is present during authentication and reflects the level
of interaction required by the countermeasure.

Cue-based

Reference Motion cues Methodology Attack Database Protocol

2007, Pan and al. [Pan07] liveness Eyeblink detection warped print Proprietary neutral pose

2007, Kollreider and al.
[Kollreider07a]

planar effect
Comparison of face
center (nose) and ears
motion

warped print Proprietary yaw + pitch

2007, Kollreider and al.
[Kollreider07b]

planar effect
+ liveness

Comparison of face
center (nose) and ears
motion + lip reading

warped print,
video

Proprietary challenge response

2008, Kollreider and al.
[Kollreider07b]

planar effect
+ liveness

rasterflow + eyeflow
warped print,
eye-cut print

Proprietary yaw + pitch

2009, Bao and al. [Bao09] planar effect
Detection of basic
planar object motion
using OFF

warped print Proprietary yaw + pitch

2011, Anjos and al. [Anjos11] FBC
FBC from frame
difference intensity
measure

print PrintAttack DB neutral pose

2011, Tronci and al.
[Chakka11, Tronci11]

(AMILAB)

FBC
+ liveness

FBC estimated from
foreground extraction
method + eyeblink
detection

print PrintAttack DB neutral pose

2011, Yan and al. [Chakka11,
Yan12, Chingovska13a]
(CASIA) (LNMIIT)

FBC
+ liveness

Non-rigid motion +
OFR

photo ReplayAttack DB neutral pose

2012, De Marsico and al.
[De Marsico12]

planar effect Geometric invariants warped print HONDA + NUAA yaw + pitch

2013, Wang and al. [Wang13] planar effect
3D face structure
recovery from motion

print Proprietary yaw

2014, Anjos and al. [Anjos14] FBC FBC from OF photo PhotoAttack DB neutral pose

Data-driven

2011, Lorenzo and al.
[Chakka11] (SIANI)

Face parts location and difference image print PrintAttack DB neutral pose

2013, Bharadwaj and al.
[Bharadwaj13, Bharadwaj14]

HOOF photo, video
ReplayAttack DB
+ CASIA DB

neutral pose

2013, Warris and al.
[Waris14]

STACOG photo, video ReplayAttack DB neutral pose

the nose compared to ears when the head follows yaw and pitch movements. Also, center and
sides move in opposite directions so the sign of left and right ratios are liveness indicators.
Thus, a liveness score is obtained as follows:

L =
1

4
((|cr| > τ) + (|cl| > τ) + (sign(cr) < 0) + (sign(cl) < 0)) (3.1)

In [Kollreider08], the same authors propose another face parts motion consistency counter-
measure using a face segmentation made of 5 vertical stripes instead of semantic face parts
(ears and face center). Face parts detection errors are no longer an issue and the average mo-
tion (optical flow magnitude) in each stripe (rasterflow) forms a wedge-pattern (’Λ’ reflecting
the depth of the face) as side motion is lower than the central one for live faces.

• Geometric invariants: In [Bao09], Bao and al. focus on the regularity of the optical flow
field to detect photograph spoofing attempts. Their intuition is that 3D object optical flow
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field (OFF) is irregular and more complex compared to planar object OFF. Six quantities
are computed from the OFF as features to characterize rigid planar object motion as a
combination of four basic movements: translation, rotation, moving forward and moving
backward. One major drawback is the illumination sensitivity and the high computing cost
related to the optical flow computation. Furthermore, sufficient motion is required as Anjos
and al. obtained poor results on the PhotoAttack database in their review of motion-based
countermeasures in [Anjos14].

In [De Marsico12], De Marsico and al. exploit geometric invariants for detecting replay at-
tacks through a user-cooperative authentication process. A combination of the Viola-Jones’
algorithm with an Extended Active Shape Model (STASM) is used to detect facial landmarks.
Six subsets of these landmarks are selected to compute 2D image geometric invariants (cross
ratios). Two types of cross ratios are employed: cross ratios of four collinear points and
cross ratio of five coplanar points. Those cross ratios are invariant to rotations provided that
the points satisfy collinearity/coplanarity constraints. Hence, one can assess if the moving
face is a 2D rigid solid object by inspecting if the cross ratios remain constant over time.
Experiments showed perfect results on the combined HONDA [Lee05] and NUAA [Tan10a]
databases when fast yaw and pitch movements of the head are observed. The method requires
obvious movement to work well as performance drops significantly when the motion is too
slow. Also, pitch motion is not enough to detect photo attacks.

• Structure from motion: Another method using facial landmarks is proposed by Wang and
al. [Wang13]. Facial landmarks are tracked by the CLM algorithm of Saragih [Saragih10]
in order to recover the sparse 3D structure of the face. Their method estimates the camera
projection matrix P = K[R, t] from two views where K is the camera intrinsic matrix and
[R,t] is the relative pose (camera extrinsic matrix relating to rotation and translation for the
second view). Then, a triangulation algorithm estimates the 3D structure of the detected
face by minimizing the reprojection errors in both images with a soft constraint forcing the
solution to remain close to a 3D face model acquired experimentally. Multiple views are
selected to refine the estimation of the above parameters. Features are derived by aligning
the recovered 3D structure upfront using the previous face model to compare the 3D face
structure of faces under the same view point. An SVM classifier is then trained to distinguish
the genuine and fake faces. Perfect detection is achieved on warped photo attacks regardless
of the sensor used for the experiment.

These methods yield outstanding results regardless of simulated motion such as warping, trans-
lation and rotations of the spoofing photos. However, one limitation is the high-level of interaction
required during authentication as sufficient out-of-plane motion such as yaw or pitch head motions
are necessary.

Methods based on face-background motion correlation Face-background motion correla-
tion approaches address the problem of close-up photo attack detection where the picture covers
the whole view in order to hide the spoofing medium. The whole scene is fake so background and
face regions follow the same motion (highly correlated).

• Motion intensity correlation: In 2011, Anjos and Marcel [Anjos11] introduced a motion-
based method relying on the high correlation between background and face motion to de-
tect photo-attacks. The motion intensity is calculated in both regions of interest (face and
background) by a simple gray-scaled frame-difference. An area-based normalization is then



3.1. State of the art of motion-based countermeasures 66

performed in order to compare the motion in both RoIs and check if they are decorre-
lated. In [Chakka11, Tronci11], Tronci and al. use foreground object detection to detect
face moving pixels. The face/background motion correlation measure is obtained by di-
viding the number of moving face pixels over the total number of pixels in the image. In
[Chakka11, Yan12, Chingovska13a], Yan and al. use a similar face/background motion con-
sistency measure. Foreground detection is performed and motion entropy is measured from
the ratio of foreground pixels over the total number of pixels. Additionally, another con-
sistency measure is defined as the χ2 square distance between the motion trend of the face
(number of foreground pixels in the face region relative to the number of face pixels over
time) and the motion trend of the background.

• Motion orientation correlation: In 2014, the authors improved their previous strategy by
computing foreground/background motion correlation with Optical Flow [Anjos14] instead
of motion intensity. Almost perfect result (HTER = 1.5%) is achieved on photo attacks of
the ReplayAttack database corpus.

Compared to methods relying on planar effect, methods based on face-background motion
correlation apply even when limited motion is available as the user remains still with a neutral
facial expression in front of the sensor during authentication. No interaction between the user and
the authentication system is required assuring a user-friendly utilisation. However, this cue is very
specific to close-up attack scenarios and no longer applies if only the face is fake as in mid-range
attacks. Simple close-up photo attack variant which consists in superposing a background image
and a cut out face picture can bypass such countermeasures.

Methods based on liveness cues Liveness cues refer to subconscious motions of a live face
such as eye blink, mouth movement and expression changes. Indeed, humans naturally exhibit
head and facial movements related to breathing.

• Eye blink: In [Pan07], Pan developed a real-time eye-blink detector for liveness detection
from a generic web-cam for photograph anti-spoofing purpose. A discriminative measure
of eye closure is derived from the adaptive boosting algorithm for computational efficiency
and embedded into the contextual model to achieve high detection accuracy. The proposed
two-eye detection method is robust as it achieves 91% accuracy with black frame glasses and
98% without them on the ZJU eye-blink database [Pan07]. Furthermore, perfect detection is
achieved against photo attacks on their self-collected database despite simulated live move-
ment by moving/bending the photograph. This method has been used in [Kollreider07a]
and [Tronci11] as a complementary countermeasure. Another eye-blink measure is proposed
in [Kollreider08] which computes the average magnitude of the optical flow field at eye re-
gions and divides it by the average motion magnitude of the face region. This way, only the
contribution of eye motion is measured.

• Lips movements In [Kollreider07b], the authors employ a lip reading detector in addition
to their face parts motion consistency countermeasure to cope with video attacks. A chal-
lenge/response countermeasure checks if uttered digits match the requested digits from lip
movements to cope with photo and video attacks.

• Facial expressions In [Yan12], non rigid motion cues are computed from the residual of batch
image alignment. The ratio between eye and face non-rigid motions is used to measure the
contribution of non-rigid movement at the eye regions. The proposed motion features obtain
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high detection accuracy (over 90%) against print attacks from the ReplayAttack database
and 81.67% against print attacks from CASIA database.

While the presence of liveness cues indicates that a real access is attempted, the absence of
liveness cues only gives a high probability that a picture is being displayed as even real faces can have
low vitality signs during certain authentication attempts. Although low interaction is necessary
during authentication, a relatively long time is required (> 5s) to accumulate enough vitality signs
to have a reliable liveness measure. Besides, these countermeasures are easily circumvented by
simulated movements through cut out eye and mouth regions of the printed fake face. For that
reason, existing works often employ liveness-based countermeasures as complementary measures to
increase the robustness against photo attacks of their anti-spoofing countermeasure based on other
cues.

3.1.2 Data-driven motion-based countermeasures

Data-driven motion-based countermeasures focus on motion analysis to reveal differences between
natural face movements and fake ones. Dense features are used to characterize movements of the
face and a classifier is trained to discriminate real and fake faces. As such, these methods handle
multiple discriminative motion cues blindly and deal with a wider range of attack scenarios provided
that some training data is available for each scenario.

Face parts locations and difference image In the first IJCB competition on 2D face anti-
spoofing countermeasures [Anjos11], Lorenzo and al. (SIANI research team) proposed a method
based on the face part locations and the difference image. Face, eyes, nose and mouth are detected
by the ENCARA2 software and basic statistics (mean and variance) are computed from each face
element position over time. These features detect possible face distortions (unnatural face part
locations) and the amount of motion at each face region. In addition, a measure based on the
difference image in face, non-face , eyes and mouth regions is computed to detect face appearance
changes. Finally, a Bayesian Network classifier is used to distinguish genuine face from fake ones.
Low performance is achieved on the Print-Attack database with HTER = 10.63% but better
detection may be achieved with an interaction based authentication protocol where yaw and pitch
head movement are present.

Histogram of oriented optical flow (HOOF) In [Bharadwaj13], Bharadwaj and al. use
Eulerian video magnification (EVM) [Wu12] as preprocessing and Histograms of Oriented Optical
Flow features (HOOF) [Chaudhry09] to detect micro-facial expressions. Their method densely
describes the motion of each face local block as a time series and classification is performed using
linear discriminant analysis (LDA) to handle high dimensional data. They achieved state of the
art results on the "Print attack" and "Replay attack" database with almost perfect detection. One
key aspect of this approach is that feature dimension depends on the length of the acquisition.
To avoid constraint on video length, the authors proposed to segment the video into videolets
(short sequences of 25 frames) and aggregate the classification scores obtained on each videolet
[Bharadwaj14]. Perfect detection is achieved on ReplayAttack but low performance is obtained on
CASIA database. Surprisingly, motion magnification preprocessing has no impact on the HOOF
countermeasure.
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Space-time auto-correlation of gradients (STACOG) In [Waris14], the authors also em-
ploy motion magnification as preprocessing. They use space-time auto-correlation of gradients
(STACOG) [Kobayashi12] features computed on the whole scene to characterize movements. Frame-
based features are extracted from spatio-temporal volume of D time duration every N frames.
Features are then fed to a discriminant classifier to detect photo and video attacks and manage
HTER = 9.12% on the ReplayAttack database using only half the training data. This method
is reminiscent of LBP-TOP countermeasure as both dynamic and static components are captured.
Nonetheless, we mention this work in this study as it was originally introduced for motion recog-
nition purposes in [Kobayashi12] and as a motion-based countermeasure in [Waris14].

3.1.3 Overview

Both data-driven and cue-based methods have demonstrated great results for photo attack de-
tection. Countermeasures based on planar effect are robust to any photo attack scenarios at
the expense of high interaction-based authentication. Methods based on face-background motion
correlation and liveness cues lack robustness against attack scenarios with simulated or replayed
motion. While limitations of existing cue-based methods are clear, understanding the success or
failure of data-driven methods is more challenging. Close-range video attacks from the ReplayAt-
tack database can be well detected using data-driven motion based-methods [Bharadwaj13] but
poor detection results are obtained on mid-range video attacks from CASIA-FASD. To the best
of our knowledge, no convincing explanation has been given to explain this disparity and more
generally we believe that the current state of the art lacks a deep analysis of the strengths and limi-
tations of recent motion-based countermeasures since they are usually combined with texture-based
countermeasures and more effort is dedicated to the assessment of the whole method.

For this reason, we propose a novel motion-based countermeasure halfway between data-driven
and cue-based approaches which exploits natural and unnatural motion cues using data-driven
techniques without any assumption on the attack type and without any cooperation of the user
during authentication. Compared to fully data-driven methods relying on generic motion descrip-
tors, the proposed method takes advantage of the fact that the face is a 3D deformable object to
derive rigid and non-rigid facial movements allowing an easier interpretation of the results. This
motion characterization enables the detection of:

• Natural motion cues: rigid movements associated with head rotations and translations and
non-rigid facial movements related to expression changes.

• Unnatural motion cues: rigid and non-rigid unnatural motion due to simulated movements
or hand-shaking movements.

3.2 Description of a new motion-based countermeasure

Distinct face movements (macro-movements) of real faces are composed of facial action units
(FACS) [P. Ekman78] and natural head movements such as yaw and pitch and subtle movements
due to respiration. Reversely, typical fake face movements are shaking motion, translation or warp-
ing of the face region (for warped print attacks) and any other unnatural movements generated
when performing the attack. As it is difficult to identify clearly which movement is natural or not, a
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data-driven approach is adopted to learn the distribution of fake and real face movements from mo-
tion features derived from the automatic behaviour analysis framework. Constrained Local Model
(CLM) face tracking algorithms are now capable of facial landmark detection, pose estimation and
facial action unit recognition [Baltru16] in addition to face extraction as illustrated in figure 3.1.
Originally designed for automatic facial behaviour analysis, these extra features are also helpful
for anti-spoofing purposes. The proposed approach is halfway between face parts motion analysis
and dense optical flow analysis which offers a better trade-off between efficiency and complexity
compared to existing motion-based countermeasures.

Figure 3.1: OpenFace behaviour analysis pipeline [Baltru16].

The proposed method takes advantage of the face detection based on the Constrained Local
Neural Fields framework of Baltrusaitis [Baltrusaitis13] to jointly extract the face and its shape
characteristics over time. Rigid and non-rigid shape parameters are computed in real time for each
frame. Rigid and non-rigid low level motion parameters are derived by simple time derivation.
At this point, these low level motion parameters form a two dimensional signal where the first
dimension corresponds to the number of shape parameters and the second dimension is the time
axis. A classical way to handle this type of signal for classification tasks is to map the low-
level motion parameters into a more discriminative high-level representation using a codebook. In
our case, words represent the underlying micro-movements at the foundation of recognizable face
movements (such as hand-shaking motion). They are made of short sequences of low-level motion
parameters either selected randomly among training data or derived from a clustering procedure.
We adopt the Fisher kernel framework to derive discriminant mid-level motion features from short
sequences of motion parameters (low-level motion features) which are then fed to a linear SVM
classifier with default parameters. The full pipeline of the proposed countermeasure is illustrated
in figure 3.2.

3.2.1 Extraction of low level motion features

Low-level motion features extraction consists in two steps as illustrated in figure 3.2 (blue box).
First, facial landmark detection and tracking are performed using the CLNF algorithm from the
OpenFace toolkit publicly available1. Then, motion sequences are computed throughout the whole
video.

Shape parameters extraction Rigid and non-rigid shape parameters p are computed for
each frame. They result from the Constrained Local Neural Fields (CLNF) landmark detection
framework. Shape parameters control the transformations required to fit the observed face shape

1https://github.com/TadasBaltrusaitis/OpenFace/wiki
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Figure 3.2: Diagram of the proposed method.

X = {xi}i=1:68 (set of 68 facial landmarks) to a reference shape X̄ = {x̄i}i=1:68 (corresponding to
the average set of facial landmarks for multiple identities) via a point distribution model (PDM).
They are made of 6 rigid shape parameters including a scaling term s, translation t = [tx, ty] and
rotation θ = [θx, θy, θz] terms and 34 non-rigid parameters q controlling local shape deformations.
The 2D location of the ith landmark xi = [xi, yi]

t is controlled by the parameters p = [s, t,θ, q]

through the PDM:
xi = s.R2D.(x̄i + Φiq) + t (3.2)

where R2D corresponds to the first two rows of the rotation matrix associated with Euler angles
θ, x̄i = [x̄i, ȳi, z̄i] is the mean value of the ith landmark 3D location and Φi is a 3*34 principal
component matrix. For details on the estimation of p, please refer to the original publications of
Baltrusaitis [Baltru16, Baltrusaitis13].

Motion sequences extraction From these shape parameters, rigid and non-rigid motion pa-
rameters are directly computed by using the first temporal derivative of p. Then, short sequences
of N frames are extracted with maximum overlapping between successive sequences (N − 1 frames
in common) to form the final low-level motion features. The selection of N is discussed in section
3.3.1.
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3.2.2 Fisher kernel framework

The second step is inspired by the work of Perronin and al. [Perronnin07] in image categorization,
but the Fisher kernel framework is applied on motion sequences instead of image patches. Fisher
vectors can be seen as a generalization of Bag-of-Visterms (BOV) which map a given input (fixed
dimensionality but variable length) into a fixed size feature vector which can then be fed to a linear
classifier for classification tasks. Extending the description of the word distribution over the input
from simple word count (0 order statistic) to higher order statistics (first and second) enable a
more complete embedding and the use of a more compact dictionary. Fisher kernel classification
framework has three stages: codebook generation, Fisher vector encoding of the input signals and
classification.

• Codebook generation: A Gaussian Mixture Model (GMM) composed of K Gaussians
is learned to model the distribution of motion sequences in a video regardless of class in-
formation. The GMM parameters Θ = {µk,Σk, πk} are estimated using the Expectation
Maximization (EM) algorithm with random initialization (select K data points at random
for each mode means, initialize the individual covariances as the covariance of the data, and
assign equal prior probabilities to the modes). The selection of K is discussed in section 3.3.1.

• The actual encoding corresponds to the improved version of Fisher vectors (IFV) proposed
in [Perronnin10]. Let X = (x1, ..., xT ) ∈ <D×T be the set of T overlapping motion sequences
extracted from a given input video. Let qtk denote the posterior probability of the sequence
xt to belong to class k, the normalized gradient of the log-likelihood with respect to the mean
and covariance parameters is given by vectors uk and vk respectively:

qtk =
exp[−0.5(xt − µk)tΣ−1k (xt − µk)]∑K
k=1 exp[−0.5(xt − µk)tΣ−1k (xt − µk)]

uk =
1

T
√
πk

T∑
t=1

qtkΣ
−1
k (xt − µk)

vk =
1

T
√

2πk

T∑
t=1

qtk[(Σ
−1
k (xt − µk))2 − 1]

The IFV is the concatenation of all D dimensional vectors uk and vk for k = 1, ..,K leading
to a 2*D*K feature vector. Signed square rooting is employed to obtain a less sparse FV
which is better handled by dot-product or L2 distance generally used by the linear classifier.
Also, L2 normalization is performed to remove the dependence of the proportion of (class)
specific and independent (natural) motion.

• Classification is performed using a linear SVM classifier with C = 1.

The derivation of Fisher vectors supposes the independence of each sequence xt which is not
satisfied in our case as overlapping sequences are used. We show that even without this assumption,
IFV still provides a discriminant representation for anti-spoofing tasks.

3.3 Experimental setup

In this section, we discuss parameter tuning and implementation choices for the proposed coun-
termeasure. First, dictionary size and sequence duration are discussed. Next, the fusion strategy
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of rigid and non-rigid motion cues is presented. Then, dictionary construction is investigated. Fi-
nally, the influence of video duration on the discriminative power of the improved Fisher vector is
discussed.

3.3.1 Parameters selection

The choices of the sequence of motion duration N and the number of dictionary elements K are
crucial to obtain discriminative mid-level features representation. As both rigid and non-rigid low-
level motions are different by nature, parameters are tuned with respect to each type of motion.
We select the best parameters for all three databases (ReplayAttack, CASIA and MSU) using a
grid search strategy with N ∈ {1, 5, 10, 15, 20} and K ∈ {20, 30, 40, 50, 60}. In this experiment, the
motion vocabulary is learned in an unsupervised manner on the training set for each database as
suggested in [Perronnin07].

• Influence of vocabulary size: To isolate the influence of K on the detection, performance
results are marginalized with respect to N . Figure 3.3 plots the performance of IFV based
on rigid and non-rigid motions for each database as a function of the vocabulary size. The
HTER is reported for the ReplayAttack database whereas the EER is used for MSU and
CASIA databases. The dictionary size has little influence on the overall performance of the
IFV. The number of atoms is fixed to 50 for both rigid and non-rigid motion cues to ensure
a good trade off between performance and complexity.
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Figure 3.3: Influence of K

• Influence of time window: To isolate the influence of N on the detection, results are
marginalized with respect to K. Figure 3.4 plots the performance of IFV based on rigid and
non-rigid motions for each database as a function of the sequence length. The time window
has a significant impact on the discriminative power of rigid motion features. Short sequences
of 5 frames obtain the best results for CASIA and ReplayAttack databases whereas 10 frames
are the best for MSU database arguably because videos are captured at a higher frame rate
(30 fps for MSU compared to 25 fps for CASIA and ReplayAttack).

The time window has little effect on non-rigid motion for ReplayAttack and MSU databases
as the maximum and minimum HTERs (EER) do not exceed 4% whereas it has a significant
impact for CASIA database. This observation reflects the specificity of CASIA database which
includes frowning, talking and smiling motions in real accesses and print attacks involve photo
bending and warping, leading to more complex non-rigid motions. In comparison, both MSU
and ReplayAttack databases contain limited non-rigid motions such as slight pose variations
and eye-blinks.
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In the end, the sequence length of rigid and non-rigid motion features are fixed to 5 frames
for both ReplayAttack and CASIA databases while 10 frames are used for MSU database.
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Figure 3.4: Influence of N (in frame number)

3.3.2 Fusion of rigid and non-rigid motion cues

To take advantage of both rigid and non-rigid motion cues, multiple fusion strategies are investi-
gated. As selected sequence duration is identical for both types of motion, the first option is to
concatenate both rigid and non-rigid motion sequences and to learn a single dictionary to compute
the improved Fisher vectors. The second option consists in concatenating the Fisher vectors based
on rigid motion and those based on non-rigid motion (mid-level) before classification. The last
option combines both motion cues at score level using the average score.

Table 3.2: Fusion of rigid and non-rigid cues

HTER / EER (%) rigid non-rigid Fusion

low-level mid-level score-level

ReplayAttack 4.6 13.7 5.0 3.6 4.5

CASIA 20 17 18.7 19.1 19.1

MSU 20 19 10 12 20

Table 3.2 reports classification results for each fusion scheme on ReplayAttack, CASIA and
MSU databases. First, we observe that feature fusion obtains better results compared to single
features except for the CASIA database where non-rigid motion features yield EER = 17% and the
best fusion result is EER = 18.7%. Slight improvement is obtained on the ReplayAttack database
using the mid-level fusion strategy as HTER drops from HTER = 4.6% when rigid motion features
only are used to HTER = 3.6%. Greater improvement is achieved on the MSU database using
low-level (or mid-level fusion) as EER drops from 19% to 10% (or 12% respectively). The best
fusion scheme is different from one database to the other as the discriminative power of rigid and
non-rigid motion features also vary. For simplicity, we choose low-level feature fusion for all the
experiments because this method obtains the best performance on CASIA and MSU and it is very
simple.



3.3. Experimental setup 74

3.3.3 Design of the Motion Vocabulary

In [Perronnin07], the authors demonstrate that Fisher vectors trained in an unsupervised manner
(class unaware) achieve similar performance as those obtained from a supervised approach in image
classification. To check this property for motion-based anti-spoofing, a simple supervised vocab-
ulary construction is designed by learning one vocabulary per category. In our experiment, the
categories correspond to real accesses, photo attacks and video attacks. Class specific vocabularies
are then concatenated to form the final dictionary used to derive the Fisher vectors. Table 3.3
compares both supervised and unsupervised approaches. Little improvement is observed on Re-
playAttack database as HTER decreases to 4.4% whereas worse results are achieved on CASIA and
MSU databases. Additionally, the dictionary size (and feature size) for the supervised approach is
three times bigger than the unsupervised one leading to longer computation time. Therefore, the
unsupervised approach is retained.

Table 3.3: Class aware dictionary learning

HTER / EER (%) unsupervised supervised

ReplayAttack 5 4.4

CASIA 18.7 20.2

MSU 10 15.4

3.3.4 Minimum video duration

Face recognition system specifications limit the duration of authentication as a matter of prac-
ticality. In this context, we investigate the minimum authentication duration to obtain decent
anti-spoofing detection with the proposed countermeasure. Experiments on ReplayAttack, CASIA
and MSU databases are conducted with increasing duration for each authentication attempt. Re-
sults are reported in figure 3.5. Non-rigid motion features require at least 4 seconds of accumulation
to reach the minimum error rate whereas a longer period is necessary for rigid motion features.
Although better results can be achieved by imposing longer authentication duration, the proposed
countermeasure still yields decent performance when limited authentication duration is specified
(≈ 2 seconds is usually the time required for authentication) and can be employed in real world
face recognition systems.

3.3.5 Discussion

In this section, we have determined the best time window (N = 10 frames for MSU-MFSD, N =
5 frames for ReplayAttack-DB and CASIA-FASD) and vocabulary size (K = 50) to capture both
rigid and non-rigid discriminant movements. Experiments over various fusion strategies showed
that low-level feature fusion performs well and is selected for the rest of this study. Also, we have
evaluated the influence of the authentication duration on the proposed method and demonstrated
decent results in real world situations. For the rest of this study however, the full video is re-
tained to compute the improved Fisher vectors for comparison with state of the art motion-based
countermeasures. Experiments in the next sections are conducted using this optimal configuration.
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Figure 3.5: Performance of the proposed countermeasure in function of the authentication duration.
The red curve corresponds to the HTER measured on the ReplayAttack database. The blue and
green curves correspond to the EER measured on the CASIA and MSU databases.

3.4 Experimental validation

In this section, experiments are conducted on ReplayAttack, MSU and CASIA databases to cover a
large variety of attack scenarios. A detailed evaluation of the proposed countermeasure is conducted
on photo attacks and video attacks. Then, we compare our method with state of the art motion-
based countermeasures. Finally, we discuss the robustness of the proposed method with respect to
the sensor choice.

3.4.1 Evaluation of the proposed countermeasure against photo attacks

In this section we investigate the contribution of both rigid and non-rigid motion cues to detect
photo attacks when no interaction during the authentication phase is enforced. Photo attacks
include printed and digital face pictures. Two different scenarios of photo attacks are distinguished
in this study as they raise different challenges from a motion standpoint: (i) still photo attacks
and (ii) photo attacks with simulated motion. The first case comprises photo attacks displayed at
close-range in order to hide the borders of the spoofing medium contained in ReplayAttack and
MSU databases. Because background is also part of the spoofing, simulating real face motion is
more difficult and the considered scenarios only hold still the photo in front of the sensor either by
hand or using a fixed support. The second case refers to mid-range photo attacks from the CASIA
database where only the face region is printed allowing impostors to simulate liveness by moving
around, warping or cutting out the eye regions of the printed face.

3.4.1.1 Still photo attacks

The easiest way to perform a photo attack is by holding still the picture in front of the sensor by hand
or using a fixed support. The presence of uncanny hand-shaking motions or the complete absence
of movements are key discriminant cues that are captured by the proposed method. Experiments
on ReplayAttack and MSU databases are conducted to determine if the proposed method is able to
separate these unnatural motion cues from natural movements. Three subsets of the ReplayAttack
database are considered:
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• hand: photo attacks (print and digital) performed by holding the picture by hands.

• fixed: photo attacks (print and digital) performed using a fixed support.

• both: includes hand-held and fixed photo attacks.

For the MSU database, attacks are displayed on a fixed support only but extra camera motion
is present when the android sensor is used for authentication. For this reason, acquisitions made
with the android sensor and those made with the fixed laptop sensor are considered separately
during the evaluation in order to assess the impact of camera motion on the proposed method.

The vocabulary is learned from the whole training set for each database but a specific classifier
is trained for each photo attack scenario. Table 3.4 reports the performance of the proposed
countermeasure against photo attacks without voluntary movements from ReplayAttack and MSU
databases.

Table 3.4: Performance of the proposed countermeasure against photo attacks without voluntary
movements.

HTER/EER(%) ReplayAttack MSU

hand fixed both android laptop both

rigid 3.3 1.6 3.1 0 0 2.5

non-rigid 10 4.9 6.8 30 10 35

fusion 1.4 1.0 4.0 15 10 7.5

Analysis of non-rigid motion The absence of facial expression variations is used as a discrimi-
native motion cue between real and fake faces and it is measured by the proposed non-rigid motion
features. Experiment on photo attacks from the ReplayAttack database obtains HTER = 6.8%.
Errors come from the real accesses that exhibit almost no motion as clients remain still (neutral
expression) in front of the camera. Even worse results are achieved on similar photo attacks from
the MSU database with EER = 35% for the same reason. Under such authentication protocols,
liveness cues are too subtle compared to the estimation noise of the CLM-parameters and poor
results are achieved.

Analysis of rigid motion To cope with limited expression changes during authentication, global
head motion is used as a complementary cue to discriminate between natural head movement
and fake one. The global face movement can be identified depending on the way the picture is
displayed in front of the sensor, ie fixed on a support or holding by hands. In the first case, the
picture is fixed and no motion is detected whereas real faces are usually not strictly immobile.
Almost perfect detection is obtained against this attack scenario on both ReplayAttack and MSU
databases with HTER = 1.6% and EER = 2.5% respectively. Looking closer at photo attacks
from MSU database, both real accesses and attack attempts recorded by the mobile android sensor
exhibit shaking motion due to camera movement whereas samples acquired using the fixed laptop
webcam for authentication only present shaking motion on attack attempts. In the second case,
hand-held photo attacks are more or less easy to detect depending on the presence of extra hand-
shaking motion. Sufficient hand-shaking movements are present on ReplayAttack samples and good
performance is achieved with HTER = 3.3%.
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Fusion Performance degrades when both rigid and non-rigid motion features are combined com-
pared to the proposed method based on rigid motion only. In the end, rigid motions are more
discriminant than non-rigid motion under non-cooperative authentication protocols due to the lack
of vitality of certain real accesses as they maintain a neutral face. In this situation, the only
remaining discriminant cue corresponds to extra hand-shaking motion measured by rigid motion
features.

3.4.1.2 Photo attacks with simulated liveness

To simulate liveness, impostors try new ways to perform photo attacks by simulating natural
facial expressions such as eye-blinking and head movements. This type of attack represents a new
challenge for motion-based countermeasures and experiments are conducted on CASIA database
to cope with this type of attack. Unlike ReplayAttack and MSU databases, CASIA recordings
exhibit more freedom during authentication where the user is allowed to smile and talk adding
slight expression variations. Impostors either warp/bend/move around printed photos to simulate
liveness (’warp’) or wear them like a mask to simulate eye-blinks (’eye-cut’). Table 3.5 reports the
performance of the proposed countermeasure against photo attacks with simulated liveness from
CASIA-FASD.

Table 3.5: Performance of the proposed countermeasure against photo attacks

HTER/EER(%) CASIA

warped eye-cut both

rigid 12.3 15.8 15.5

non-rigid 6.7 9.0 8.7

fusion 2.2 6.7 9.0

Non-rigid motion features are able to detect non-rigid deformations of the face region due
to unnatural bending movements and yield EER = 6.7% against warped photo attacks. Also,
the absence of mouth movements helps with the detection of photo attacks for this use-case as
EER = 9.0% for eye-cut photo attacks. Failing samples correspond to the situation where almost no
movement is present for both attacks and real accesses. When simulated movement is incorporated,
rigid movements only achieve 15.5% as no extra hand-shaking movement is noticeable when holding
the picture particularly when the impostor is wearing the picture like a mask and rigid motion
becomes very similar to real head movements. Nonetheless, unnatural simulated motion is correctly
characterized by both rigid and non-rigid motion parameters jointly as increased performance
is obtained on warped and eye-cut photo attack detection respectively with EER = 2.2% and
EER = 6.7%. Overall, comparable results are obtained for the method based on non-rigid motion
only and the one combining both rigid and non-rigid motion with EER = 8.7% and EER = 9.0%.

3.4.1.3 Discussion

This evaluation highlights the various nature of discriminant motion cues related to the attack
scenario in place and reveals the strengths and limitations of the proposed countermeasure. On the
one hand, non-rigid motion features are efficient only for authentication protocols where the client
expresses sufficient liveness cues such as eye-blinks and mouth motion. In this configuration, the
proposed method is able to detect photo attacks performed with simulated liveness quite well on
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CASIA database. On the other hand, rigid motion is discriminant mainly for close-up attacks as
shaking motion is amplified as the distance to the sensor decreases. Despite limited movements from
certain real accesses, the proposed method based on rigid motion yields almost perfect detection
on both ReplayAttack and MSU databases against still photo attacks (no voluntary movements).
Besides, the type of sensor (fixed or mobile) used for authentication has almost no impact on the
detection and almost perfect detection is obtained on MSU database.

3.4.2 Evaluation of the proposed method against video attacks

To carry out a video attack, the impostor must acquire a video clip of a real client. This can be
done directly by installing a hidden camera or by hijacking an online video clip of the targeted
client as video sharing services become more and more popular. In practice, the video clip is
acquired using a different sensor than the one belonging to the face recognition system. Especially,
most of the time video clips are obtained from a hand-held camera whereas authentication is done
with a fixed sensor leading to some extra camera motions when performing the video attack. If
the impostor uses his/her hands to hold the displaying medium in front of the sensor, additional
shaking movement is present. Another motion factor is related to the camera motion introduced
during authentication for mobile applications. Consequently, the resulting motion is likely to be
different between real accesses and video attack attempts in practice.

3.4.2.1 Experiments on MSU database

Experiments are conducted on video attacks coming from the MSU database. These attacks are
displayed on a fixed support but different sensors are used for authentication and for acquiring
videos used for spoofing. We consider four different video attack scenarios with an increasing level
of difficulty. Fisher encoding is learned from the whole training set whereas a specific classifier is
learned to detect video attacks from each of the following scenarios.

• Scenario 1: A fixed camera is used for authentication while spoofing video clips are obtained
from a hand-held camera (MSU laptop-iphone).

• Scenario 2: A hand-held camera is used for authentication while spoofing video clips are
obtained with a fixed camera (MSU android-ipad).

• Scenario 3: A hand-held camera is used for authentication and spoofing (MSU android-
iphone).

• Scenario 4: A fixed camera is used for authentication and spoofing (MSU laptop-ipad).

Table 3.6: Performance of the proposed countermeasure against video attacks from the MSU
database.

EER (%) Scenario 1 Scenario 2 Scenario 3 Scenario 4

rigid 0 0 10 35

non-rigid 10 20 20 10

fusion 10 10 20 10
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Performance is reported in table 3.6. Rigid motion features outperform non-rigid features except
for scenario 4. Perfect results are achieved on scenarios 1 and 2 as extra camera motion is present in
either attacks or real accesses. The proposed method manages to identify rigid movements due to
camera shake from rigid movements due to natural head movements. Also, only two miss classified
attack attempts are obtained in scenario 3 although extra camera shake is present in both real
accesses and attacks. Camera shaking movements are amplified on attack recordings due to the
proximity between the sensor and the display medium used for spoofing, which is handled by the
proposed method. Rigid movements are unable to separate real accesses from fixed video attacks
when both recordings are obtained from a fixed sensor (scenario 4 obtains EER = 35%) as natural
movement and replayed natural movements are identical.

Unexpectedly, non-rigid motion features yield decent results on data acquired with the laptop
sensor in scenarios 1 and 4 with EER = 10%. One possible explanation is that the difference in face
size between real and fake faces impacts the estimation of non-rigid motion parameters. Otherwise,
non-rigid motion are only generated by natural expression changes which are also present in video
attack attempts and should not constitute reliable motion cues. The fusion of both rigid and
non-rigid motion features do not improve the detection overall and only rigid features should be
considered for video attack detection.

3.4.2.2 Experiments on CASIA and ReplayAttack databases

To complete our study, additional experiments are conducted on ReplayAttack and CASIA datasets.
Performance is reported in table 3.7. Video attack recordings from ReplayAttack DB are similar to
scenario 1. Almost perfect detection is achieved (HTER = 2.5%) with rigid motion features. In this
experiment, non-rigid motion features yield only HTER = 18.5% and fusion obtains HTER = 6%.
This confirms that non-rigid motions are usually not fitted to detect video attacks.

Experiment on CASIA recordings is similar to scenario 4 but with mid-range video attacks.
This attack scenario is the most challenging from a motion perspective because no extra motion is
present when recording and displaying the fake face. Poor detection is obtained with EER = 21.1%

for both rigid and non-rigid motion.

Table 3.7: Performance of the proposed countermeasure against video attacks from ReplayAttack
and CASIA datasets.

HTER / EER (%) ReplayAttack CASIA

rigid 2.5 27.8

non-rigid 18.5 28.9

fusion 6.0 21.1

3.4.2.3 Discussion

In this section, different video attack scenarios are identified along with the associated discriminant
motion cues. The difference between the motion of the sensor used for authentication and the
motion of the camera used to capture the face for spoofing is crucial for the detection of video
attacks. In particular, extra camera motion happen to be very helpful for the detection task. The
proposed method based on rigid motion is capable of detecting video attacks almost perfectly when
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the sensor used for authentication is fixed whereas the camera used for spoofing is mobile or the
other way around. Additionally, decent results are obtained when mobile camera and sensor are
used for spoofing and authentication respectively.

The detection of video attacks acquired by a fixed camera and recaptured by a fixed sensor
remains a major limitation of the proposed method and motion-based countermeasure in general.

3.4.3 Robustness of the proposed method using different sensors

Experiments on CASIA database are conducted to confirm the robustness of the proposed method
to different sensors. IFV are computed on the whole training set but different classifiers are learned
to detect photo and video attacks with respect to the low (LD), medium (MD) and high (HD)
definition sensors. Performance is reported in table 3.8. Surprisingly, performance varies between
the three datasets (one for each sensor) especially for video attacks. After further investigations,
it appears that video attacks for both LD and HD datasets are performed using a fixed support to
limit the hand motion when holding the iPad. Hand-shake motion itself is too weak to be highly
discriminant and only EER = 26.7% is achieved. Better performance is obtained for the MD
dataset with EER = 10% as no support is used when performing the video attacks. Furthermore,
another difference is highlighted by the drop of performance on photo attacks for the HD dataset
to EER = 13.6%. This data has been cropped to suppress useless background information and
reduce the volume of the data. As a consequence some artificial camera motion is present adding
unnatural motion on real accesses. Although this experiment is not able to prove the robustness
of the proposed method relatively to the sensor choice, we are able to highlight the extent of the
proposed method to detect unnatural motion.

Table 3.8: Impact of the sensor on the proposed countermeasure performance

HTER / EER (%) photo video

CASIA (LD) 6.8 26.7

CASIA (MD) 3.3 10

CASIA (HD) 13.6 26.7

3.4.4 Overall evaluation and comparison with state of the art motion-based
countermeasures

Additional experiments on the PrintAttack and PhotoAttack database (subsets of ReplayAttack)
are carried out for comparison with state of the art motion-based countermeasures. Results are
reported in table 3.9. Only two methods outperform the proposed countermeasure on the Pho-
toAttack database. Perfect detection is achieved by Bharadwaj and al [Bharadwaj13] using HOOF
features and HTER = 1.5% is obtained by Anjos [Anjos14] using face/background motion corre-
lation. However, both methods are computationally expensive due to optical flow computations
compared to our method. On the contrary, our method outperforms existing countermeasures
on CASIA database with EER = 18.7%. One advantage of the proposed countermeasure over
face/background consistency methods is that it can be used for close-up (fake face and background)
or mid-range (face only) attacks as background motion is not taken into account. Furthermore,
with additional feature normalization schemes (ie: feature normalization between [−1, 1] or PCA),
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almost perfect detection can be achieved on ReplayAttack with HTER = 1.5%. In conclusion, the
proposed method is highly competitive with state of the art motion-based countermeasures.

Table 3.9: Comparison of motion-based countermeasures on PrintAttack, PhotoAttack, Replay-
Attack and CASIA databases. Performance is reported in terms of EER for CASIA database and
HTER is used on the other databases.

Reference Algorithm PrintAttack PhotoAttack ReplayAttack CASIA MSU

2011, Lorenzo and al.
[Chakka11] (SIANI)

Face parts motion 10.63 - - - -

2011, Anjos and al. [Anjos11,
Freitas Pereira13]

Face/background mo-
tion correlation

8.98 7.2 11.79 26.65 -

2013, Bharadwaj and al.
[Bharadwaj13, Bharadwaj14]

(EVM) + HOOF 0 0 0 21.11 -

2013, Warris and al. [Waris14] EVM + STACOG - - 9.12 1 - -

2014, Anjos and al. [Anjos14]

Face/background mo-
tion correlation

- 1.5 - - -

Face parts motion 2 - 39.4 - - -

Optical Flow Field 3 - 75 - - -

IFV based on rigid mo-
tion

7.5 3.3 4.6 20 20

Proposed method IFV based on non-rigid
motion

7.5 6.8 13.7 17 19

IFV based on rigid and
non-rigid motion

3.1 4 5 18.7 10

1 System trained with half the training set
2 System inspired from [Kollreider07a]
3 System inspired from [Bao09]

3.4.5 Discussion

Unlike anti-spoofing methods based on face-background motion correlation, the proposed method
detects unnatural rigid face motions and extends to video attacks provided that extra shaking
motion is introduced by camera motion or by hand-holding the spoofing medium. The proposed
method is able to differentiate shaking motion induced by camera motion during authentication
and hand-shaking motion introduced when holding the displaying medium. Only rigid motion cues
are helpful against video attacks whereas non-rigid motion cues are necessary to detect mid-range
photo attacks with simulated motion. For this reason, we proposed a fusion scheme to exploit both
type of movements as no prior information on the type of attack is available to select one type of
movement over another for testing.

3.5 Conclusion

In this chapter, a complete review of exclusive motion-based countermeasures is provided. A novel
motion-based countermeasure is introduced. Rigid and non-rigid motion sequences contain discrim-
inative information for photo and video attack detection. The Fisher framework has demonstrated
its ability to build discriminant mid-level features from variable length video sequences as Fisher
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vectors are able to characterize unnatural motion by learning an unsupervised codebook of micro
movements (short motion sequences).

A detailed analysis of spoofing attacks and their associated discriminant motion cues is given
throughout extensive evaluations on the latest public anti-spoofing databases. The way an attack
is performed has a significant impact on motion-based countermeasures as extra movements like
shaking motion, warping and moving constitute discriminant motion cues. Sufficient vitality signs
in real accesses and sufficient hand-shaking motions in attacks are needed for good detection. These
conditions are generally satisfied in close-up attack scenarios as demonstrated by experiments on
ReplayAttack and MSU databases. Conversely, mid-range attacks are difficult to detect especially
when limited movement is available as natural and simulated motion become ambiguous. Certain
instances of video attacks are impossible to detect using motion only unless shaking motion is
present. Having said that, the proposed method is robust to extra camera motion when using a
mobile sensor and is competitive with state of the art methods.

In conclusion, motion-based countermeasures are not able to cope with all attack scenarios
but should still be implemented as an additional safety measure in addition to texture based
countermeasures to consolidate the fake face detection against replay attacks. The fusion of motion
and texture based countermeasures are left to future works.
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In this chapter, the problem of anti-spoofing is addressed by modelling the radiometric and
spatial distortions involved in the recapturing process. The primary objective is to understand
the transformations between a single face capture and its recaptured version and to look for some
consistency from one identity to the other. The second part deals with the application of the
measured distortions to discriminate between real and fake faces. Finally, experiments on the
synthesis of spoofing attacks for new identities are conducted.
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4.1 Related work

Although several works have exploited colour and blur information to detect spoofing attacks
[Schwartz11, Tronci11, Galbally14a], Wen et al. are the first that explicitly modelled the distortions
involved in the recapturing process as a combination of a low-pass filtering process (blur distortion)
and an histogram transformation (colour distortions) of the reflectance component. They proposed
three features to account for the blurriness, colour diversity and chromatic distribution between real
and fake faces. They also exploited the specular reflections to complete their method. Following
their analysis, we demonstrate that the recapturing process can be modelled as a combination of
blurring and exposure transformations and we propose a parametric model for both distortions.
To estimate the different transformations, enrolment data is used as prior. A similar problem has
been addressed by Joshi and al. [Joshi10] who use good quality face exemplars to enhance low
quality face pictures using both global image corrections and face specific patch-based corrections.
Their global procedure involves deblurring and colour adjustments using a Bayesian framework
with prior constraints derived from the good quality exemplars and resemble at what we are trying
to do, to model the recapturing process. In their case however, multiple good quality exemplars
spanning different pose and illumination conditions are available. In our case, we suppose that the
authentication procedure requires a frontal pose with no facial mimics and occurs in a controlled
environment with known lightning so only one exemplar is sufficient for recognition and is available
for our anti-spoofing countermeasure. Otherwise, only few works involve the use of face recognition
enrolment samples for face anti-spoofing. Among them, Chingovska and al. [Chingovska15] propose
to build person specific classifiers for every enrolled client to leverage identity specific discriminant
information during the classification stage. They prove that common features (LBP , LBP −TOP ,
motionfeatures) hold client-specific information even though they are designed to capture spoofing
artefacts. Yang and al. [Yang15] also use additional enrolment samples to train person-specific
classifiers. Their approach consists in synthesizing virtual features corresponding to the fake face
class for each client when no actual attack samples are available. They assume that the relation
between two subjects features is a translation plus a linear transformation whereas the relation
between real and fake samples for each client is identical. A classifier is then trained for each client
using those real and virtual fake face features.

4.2 Capturing versus recapturing processes

In this section we describe the recaptured image formation pipeline and propose a reliable model
to measure the radiometric and spatial distortions observed between a real and a fake face. The
replay attack face spoofing is illustrated in figure 4.1. First, the impostor needs a first high quality
capture of the target real face to manufacture a fake face. Then, this high quality sample is printed
or displayed onto the spoofing medium (paper or screen). It is aligned with the camera sensor
plane at a certain distance so that the recaptured face maintains a similar size as the real access.
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Camera (C)

Sensor (S)

Display
medium (D)

Real face Captured real face

Captured fake face

Figure 4.1: Pipeline of the recapturing process

4.2.1 Image capture pipeline

Let us review the main procedures occurring in the image formation pipeline related to optics and
exposure camera settings. We break down the analysis from a radiometric standpoint and from an
optical standpoint.

4.2.1.1 Radiometry

The complete image sensing pipeline from a radiometric perspective is illustrated in figure 4.2.

linear transform

camera-dependent

white balance
 and

 color-space transform

Color rendering
and

Gamma compression

camera-dependent and scene-dependent

 Raw
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    I

 JPEG
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      L

Figure 4.2: Image formation from radiometric perspective.

From a radiometric standpoint, a digital camera RAW output I results from the linear transform
of the luminance L of a scene into discrete pixel values depending on the camera settings as described
in [Hiscocks11].

Iraw = α(
tS

f2s
)L (4.1)

where each term refers to: RAW digital image (Iraw), calibration constant for the camera (α),
exposure time (t), aperture number ( fs f-stop), ISO Sensitivity (S) and luminance of the scene L.
Those parameters control the overall exposure of the scene and are usually set automatically using
different camera modes (’portrait’, ’landscape’,’auto’). Then, this raw image follows different digital
post processing operations such as demosaicing, sharpening, white balancing and colour rendering
before JPEG compression. Following the digital camera model proposed in [Chakrabarti09], pre-
processing operations such as flare, noise removal, dark current compensation, quantization, filling
marking of dead pixels and compression artefacts are considered as noise and are discarded in first
approximation. White balance and internal colour-space transformation used for colour rendering
are modelled by a 3*3 orthogonal matrix W . Colour rendering modifies the tristimulus values
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(usually in XYZ colour space) so that they fit within the limited gamut and dynamic range of
the output colour space (usually sRGB) in a way that is visually pleasant. It differs from one
manufacturer to the other and is modelled by a non-linearity transformation g : R3 → R3. The
final model is given in equation (4.2):

I = g(WIraw) (4.2)

White balance and colour rendering are not only camera-dependent but scene-dependent as well.
These aspects are exploited to detect the disparities between a real face acquisition and a recaptured
face which has been first captured by a different camera under the same illumination conditions.

4.2.1.2 Point Spread Function (PSF)

From an optical standpoint, the image formation maps a real point in 3D space to a 2D pixel. A
series of geometric transformations and blurring operations transform a sharp ideal image into a
digital image as illustrated in figure 4.3. For this study, we neglect geometric distortions such as
chromatic aberrations and vignetting as they appear only on certain occasions and we focus on
blur sources only via the point spread function (PSF) model.

Figure 4.3: Image formation from an optical perspective

Digital cameras capture images by integrating incoming light on their imaging chip. Camera
properties such as the fill factor, shutter speed (exposure time), aperture size and lens focal length
affect the PSF. The fill factor corresponds to the active sensing area size as a fraction of the
theoretically available sensing area. It controls the aliasing effect due to pixel sampling. An anti-
aliasing filter (low pass) is usually added to avoid aliasing effects and is responsible for blur observed
due to a lack of resolution. Shutter speed and aperture control the amount of light measured by
the sensor by adjusting the integration time and aperture size. Both affect the resulting motion
blur (long integration time increases motion blur) and depth of field (small aperture leads to a large
depth of field). In the end, the resulting blur is a combination of sensor anti-aliasing blur, motion
blur and defocus blur.

All blur sources between an ideal high resolution sharp image I0 and the camera output I is
modelled as a global blur kernel K following equation (4.3).

I = q(K ∗ I0) + n (4.3)

where I0 is a super-resolved sharp image, q is a point-sampling operator that matches the size of
I0 with I and n models the noise.

4.2.2 Radiometric distortions involved in the recapturing process

Based on the presented image formation model, we now describe the main procedures involved
when capturing a fake face. Some image artefacts such as aliasing, banding effects, vignetting and
any compression artefacts are not considered at first approximation because they are inconsistent
between attack scenarios.
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4.2.2.1 Luminance produced by fake faces

In addition to exposure adjustments made by each capturing device (high definition camera and
authentication sensor), the colorimetry of the recaptured face is determined by the optical properties
of the medium used for spoofing. Each medium has a different display mechanism to convert a
digital image back to luminance.

• Digital display Digital screens are calibrated so that colours are represented accurately on
the monitor. The luminance output Ls of a given digital image I is determined by three
major settings namely ’brightness control (b)’, ’contrast control (c)’ and ’gamma control (γ)’
following equation (4.4):

Ls = cIγ + b+ rA (4.4)

where rA corresponds to the reflected ambient light on the screen. b has a minimum value
corresponding to residual light still emitted from the screen (0 pixel value) as individual liquid
crystals cannot completely block all light from passing through. Maximum value is determined
by the power of the backlight system. LCD screens act as direct light sources compared to
reflected light from real scenes. When performing an attack, contrast and brightness values
must be adjusted so that no on screen reflections are visible that is cIγ + b >> rA

• Print copy Perceived luminance Ls of a printed digital image I is the result of ambient
light A (uniform on the paper surface) reflected upon the paper surface with reflectance
R = r ∗ I+ r0 where r and r0 embed the reflective properties of the paper. r0 ∗A accounts for
the minimum reflected light corresponding to pure black ink in a given ambient illumination
A. Higher image contrast can be obtained by using good quality paper such as copper/mate
paper. Equation (4.5) gives the observed luminance:

Ls = (rI + r0)A (4.5)

The same model can be applied to masks as they follow the same light diffusion mechanisms
but with different optical properties.

The above equations are given for gray scaled images and can be extended to colour images as
both equations apply on each colour channel independently. Combining (4.4) and (4.5), a general
formulation of the conversion of pixel values in luminance values for each colour channel by both
photo paper and digital displays is given by:

Ls|r,g,b = s|r,g,bI
γ|r,g,b + b|r,g,b (4.6)

where s|r,g,b is a colour scaling factor, b|r,g,b accounts for the colour bias (minimum brightness)
and γ|r,g,b encodes the non-linearity (γ|r,g,b = 1 for print attacks) on colour channel R,G or B. To
simplify the notations, we drop the colour index in the rest of the manuscript.

4.2.2.2 Recaptured luminance

The face luminance L is first captured by a high definition camera giving a digital image. Then
this sample is printed or displayed on screen and acquired by the authentication sensor leading to
the recaptured image If as illustrated in figure 4.1. The resulting transfer function between L and
If is given by:

If = gs(Ws.s.(gc(WcL))γ + b) (4.7)
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where s denotes the colour scaling (3x1 vector), b corresponds to the colour bias (3*1 vector) and
γ models gamma correction (3*1 vector) from the spoofing medium. The non-linearity transforms
from the authentication sensor (S) and the high definition camera (C) are modelled by gs and gc
respectively. Ws andWc account for the white balance and colour-space transform by both sensors.

To identify the radiometric transformations between a real face sample Ir and its recaptured
version If , we first simplify the camera model by approximating the general linear colour trans-
form W to be diagonal and the non linearity as a simple gamma function on all three channels
g(xr, xg, xb) = [xγrr , x

γg
g , x

γb
b ]. After some basic derivations, equation 4.6 can be rewritten to link Ir

and If in a per-channel form as:
If i = (ciIr

γi
i + bi) (4.8)

In this simplified modelling, we have demonstrated that the colour distribution of real accesses and
recaptured faces varies in terms of contrast, brightness and white balance. To detect if a face is
real or fake, we propose to estimate those radiometric distortions in section 4.3.

4.2.3 Blur involved in the recapturing process

During the spoofing process, a high definition face sample is either printed on a given paper or
displayed on a given screen. In both cases, cropping or re-sampling the image is required to match
the limited paper size or screen size. Hence, the spatial definition of the displayed face corresponds
to the definition of the screen (ppi) or the printer (dpi). This down-sampling can be modelled as
a combination of low pass filtering and point-sampling. At last, we approximate the recapturing
process as a combination of the different blur sources as follows:

If = q(Ks2 ∗G ∗Ks1) ∗ I) + n ≈ q(Ks2 ∗G) ∗ I) + n (4.9)

where Ks1 and Ks2 are the PSFs of the high definition camera and the authentication sensor
respectively, G is the Gaussian blur due to down-sampling, n models the noise, I is a super-resolved
ideal acquisition of the face and q is the point sampling operator which matches the size of I with
If ’s. In practice, limited motion is observed during the authentication as the person holds still in
front of the camera so the high definition camera blur is totally masked by the lower definition
display medium. Similarly, when the resolution of the authentication sensor is higher than those of
the spoofing medium, the resulting blur mainly comes from the screen anti-aliasing and the motion
of the medium during the acquisition. Real accesses and recaptured samples exhibit different
motion blurs particularly in close-up attack scenarios as shaking motion and defocus are magnified
as we get closer to the sensor. In order to determine if a sample is a real access or an attack, we
propose to recover its blur kernel and to extract its magnitude and shape as it contains information
about the type of movement and the eventual low pass filtering due to the limited definition of
printers or screens.

4.2.4 Summary

First, we proved that radiometric distortions exist between real faces and fake ones even though the
face data used for manufacturing the fake face is captured under the same illumination conditions
as real authentication attempts.

Second, we have analysed the different blur sources present in replay attacks. Blur results from
a combination of defocus, motion blur and screen down-sampling. When manufacturing the attack,
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the impostor is able to obtain a high quality face picture of a valid user to manufacture a fake face.
Hence, the blur source comes from the screen or printer anti-aliasing filter to fit the digital image
on the physical support, from motion and from defocus during authentication.

4.3 Application to anti-spoofing

In the previous section, the recapturing process involved when performing a replay attack has been
studied and discriminative cues have been highlighted. We now present how to estimate these
distortions and how they can be applied for anti-spoofing purposes. The problem of anti-spoofing
comes down to recovering the blur kernel from equation (4.9) and the radiometric transform from
equation (4.7). In practice, both equations are solved using heuristic methods because the true
luminance of the scene and the ideal sharp image are unknown. In this work, we take advantage of
prior information on each client thanks to available enrolment samples. The proposed anti-spoofing
countermeasure is placed after the face recognition system and is designed to detect attacks once
the identity of the client is checked. We suppose that the matching works perfectly so that for each
client we can pair up the actual face acquisition with the enrolled face sample contained in the face
recognition database. Under these assumptions, for each authentication attempt a pair of images
is formed using the observed image and the enrolment image corresponding to this client. The
radiometric and spatial transformations between both images are computed and used as features
for detection. We focus on the face region exclusively mainly to maintain background independence
as much as possible. Faces are registered using eyes locations to compensate for head rotations
and cropped using a bounding box determined by the interocular distance. The general pipeline is
presented in figure 4.4.

Figure 4.4: Pipeline of the proposed method

4.3.1 Radiometric distortions estimation

The radiometric transformations between a fake face and its real counterpart involve a combination
of colour scaling, colour offset and gamma non linearity in the case of spoofing attacks as described
by equation (4.8). This equation relies on simplifying assumptions and more complex transfor-
mations are likely to be missed. Hence, we consider two parametric models for the radiometric
transformations between an authentication attempt and its corresponding enrolment sample with
an increasing level of complexity:



4.3. Application to anti-spoofing 90

• per-channel Gamma model: the radiometric distortion f is modelled by a per-channel
gamma transform followed by an affine transform. This model yields 3 parameters per colour
channel for a total of 9 coefficients.

fi(x) = αix
γi + βi , i = [r, g, b] (4.10)

• coupled Gamma model: the radiometric distortion function f is modelled by a per-channel
gamma transform followed by a general affine transform. This model yields a total of 15
coefficients. This model allows the coupling of colour channels and is better suited to account
for colour-space and white-balance transformations.

f([xr, xg, xb]) = [rγr , gγg , bγb ] ∗ C + [βr, βg, βb] (4.11)

The first model is an easy one where each coefficient relates to color transformations identified
in the recapturing process. The second model is more general.

The estimation of the model parameters is done in three steps. First, the global colour transfer
approach proposed in [Pitie05] is employed to produce an auxiliary image A that has the texture
of the reference image Iref with the colour distribution of the observed sample Itest. To estimate
the color distortions between the two, only low frequencies are necessary so we extract the base
layer of both images. Finally, the radiometric transformation f is estimated using non-linear least
square regression.

Color transfer

Guided filter Regression f

I_ref

I_test

A_base
f(I_ref_base)

A

I_ref_base

Figure 4.5: Pipeline of the proposed method to recover radiometric distortions between a test
sample Itest and its reference Iref .

4.3.1.1 Colour transfer

The colour transfer method of Pitie et al [Pitie05] consists in transforming the original colour
pdf into the target colour pdf by breaking down the 3-dimensional problem into a succession of
1-dimensional pdf transfers for which a simple solution is available (see equation (4.12)).

t(x) = C−1Y (CX(x)) (4.12)

where CX and CY denote the cumulative histograms of grayscale image X and grayscale image Y
respectively. Random projections are used to improve the pdf transfer iteratively by analogy with
Radon transform. After 30 iterations, the algorithm converges and we obtain an auxiliary image
that has the same texture as the enrolment sample but with the colours of the observed sample.
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4.3.1.2 Illumination component extraction

By nature, color and contrast information corresponds to low frequency image components. We
adopt a texture/base layer image decomposition to separate image details from the illumination
component. Only the base layer is retained to estimate the color transformations between the
original reference image Iref and the color-transferred image A following equation:

Abase = f(Irefbase) (4.13)

This way, undesirable effects generated by the colour transfer procedure (high frequency arte-
facts) are avoided and a reliable estimation of the colour transformations is achieved. The base
layer extraction is performed using a low pass edge preserving filter. The Guided Filter (GF) [He13]
is employed in this work to extract the base layer of both Iref and A by using Iref as the guidance
image to preserve the original image texture. Two critical parameters control the filter design, the
radius of the filter neighbourhood r and the smoothing index ε. The patches with variance much
smaller than ε are smoothed, whereas those with variance much larger than ε are preserved. These
two parameters are selected experimentally, the values of r = 2 and ε = 0.01 provide good results
and are kept for all the experiments.

4.3.1.3 Non-linear regression

The second step then consists in the estimation of f’s parameters using non-linear regression tech-
niques. The gamma model is solved using an iterative approach by minimizing the fitting error in
the mean square sense using the "lsqcurvefit" function from Matlab. This function uses the trust-
region reflective algorithm with full finite differencing to approximate the gradient of the objective
function so we don’t need to explicitly provide the Jacobian.

4.3.1.4 Classification

Those nine parameters (three for each colour channel) are used for fake/non fake classification.
The coefficient of determination r2 associated with the regression on each colour channel is also
added in the feature set to account for the goodness of fit of the proposed model. Indeed, many
complex recapturing mechanisms have been omitted especially specular reflections which generates
some fitting errors especially in high intensity regions. We recall the definition of the r2 coefficient
in least square regression. Let (yi)i=1..n represent the set of image values for data (xi)i=1..n and
(fi)i=1..n the estimated values of yi using least square regression. The R2 coefficient can be seen as
the fraction of unexplained variance defined by:

r2 = 1−
∑n

i=1(fi − yi)2∑n
i=1(yi − ȳ)2

with ȳ =
1

n

n∑
i=1

yi (4.14)

In the end, 12 parameters constitute the proposed colour features, 9 model parameters and 3
r2 coefficient on each channel. We also define the R2 coefficient as the average of r2 on all three
color channels.
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4.3.2 Blur estimation

Recovering the blur kernel from equation (4.9) is a classic problem in blind deconvolution. A
sharp estimate of the observed (blurred) sample is required to recover the blur kernel. In our case,
enrolment samples are used to approximate the sharp version of the observed samples. Inspired
by the method of [Pan14] for blind deconvolution with exemplars, we recover the blur kernel K in
an iterative minimization procedure. Their idea is to use exemplars to estimate salient edges ∇sE
accurately from which a first estimation of the PSF is achieved by solving (4.15)(replacing ∇S by
∇sE). This estimation is then refined using alternate minimization between a latent sharp image
S (4.16) and the blur kernel K in the gradient domain (4.15). A conjugate gradient method is used
to solve (4.15) while a half quadratic splitting L0 minimization method is required for (4.16).

min
k
‖∇S ∗K −∇I‖22 + λ1‖K‖22 (4.15)

min
S
‖S ∗K −∇I‖22 + λ2‖∇S‖0 (4.16)

where λ1 and λ2 are two regularization constants. We set the blur kernel size at 15*15 pixels. To
have a compact set of features, the blur kernel is approximated by a 2D Gaussian function. The
amplitude, the standard deviation along x, the standard deviation along y and the orientation of
the Gaussian constitute the proposed 4-length blur feature vector. These blur features are fed to
an SVM classifier for classification.

4.4 Evaluation of the radiometric distortion model

First, the validity of the proposed method for the estimation of the radiometric distortions is veri-
fied. Then, anti-spoofing experiments are conducted on ReplayAttack, CASIA and MSU databases.

4.4.1 Model validation

The estimation of the radiometric distortions between a real face and its fake counterpart is a three
step process involving color transfer, low pass filtering and regression. Experiments on the Replay-
Attack, CASIA and MSU databases are conducted to validate each process and to select between
the per-channel Gamma model and the coupled Gamma model. The coefficient of determination
R2 is used to measure the goodness of fit for both models (here the R2 corresponds to the average
of r2 on each channel to have a single coefficient per video). We display the distribution of R2 for
the ReplayAttack, CASIA and MSU databases in figure 4.6. Both models are able to characterize
the radiometric distortions generated by the recapturing process as the average R2 is close to one
for all three databases. We also observe that higher R2 is achieved using the coupled Gamma model
as it has more parameters and thus better fit the data.

To illustrate that the proposed method provides a good estimation of the radiometric distortions
between real and fake faces, samples with the lowest R2 coefficient are shown in figure 4.7 in columns
(d) and (e). The first two columns represent the corresponding real and fake faces respectively. The
column (c) displays intermediate results corresponding to the output of the color transfer between
the real face and its fake counterpart. First of all, these exemplars provide qualitative proof of the
discriminative power of the radiometric distortions generated by the recapturing process. Secondly,
these distortions are transferred efficiently to the real face image using the color transfer procedure
of Pitie and al. [Pitie05]. Looking at CASIA exemplars in detail, specular reflection artefacts
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Figure 4.6: Distribution of the R2 coefficient for the per-channel Gamma model and the coupled
Gamma model on the ReplayAttack, CASIA and MSU databases.

present during the attack are also transferred to the new coloured real face image. The next step
estimates the parameters of the distortion model using least square regression between the original
real face image (a) and the new coloured image (c). In the second and third rows, we observe
that regression errors can result from unexpected image artefacts due to the recapturing process
such as light reflections (second row) or color fading effects (third row). For this reason, we also
consider the R2 coefficient as an extra feature. A slight color bias is observed on the first and third
rows between the color transfer output (c) and the regression result using the per-channel Gamma
model (d) showing the limitations of the per-channel model. On the contrary, the coupled Gamma
model is able to fit almost perfectly the radiometric distortions.

(a) (b) (c) (d) (e)

Figure 4.7: Regression results corresponding to attacks with the lowest regression coefficient (R2)
from ReplayAttack (first row), CASIA (second row) and MSU (last row) databases. From left to
right: (a) enrolled samples, (b) attack samples, (c) color transfer outputs, (d) regression results
using the per-channel Gamma model, (e) regression results using the coupled Gamma model.

4.4.2 Analysis of model parameters

The complex radiometric transformations between real and fake faces are approximated by a combi-
nation of colour scaling α, colour bias β and γ non-linearity on each colour channel when considering
the per-channel Gamma model. This simple model allows a good understanding of the recapturing
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process and is used to describe the exposure and color modifications specific to print attacks and
projected attacks (using screen). This model is used to investigate the consistency of radiometric
transformations for each type of attacks and for multiple identities. For a given database, the
probability density functions (PDFs) of each model parameter is derived per attack type. Results
on ReplayAttack, CASIA and MSU databases are shown in figures 4.8, 4.9 and 4.10 respectively.
Three general observations are drawn out from these plots:

• The offset parameters β = [βr, βg, βb] are inferior to 1/255 = 0.039 except for very few samples
so it is neglected and set to zero.

• The consistency of radiometric transformations between real and fake faces depends on the
attack type. Colour changes generated by print recaptures are more consistent then fake
faces displayed on screens as the PDFs of the model parameters follow narrower distributions.
Especially, the non-linearity parameters γ follow a Gaussian centred between 0.5 and 1 which
confirms the low contrast impression when looking at print attack samples. Radiometric
changes for digital attacks (using screens) induce color scaling α to be greater than one as
they often appear brighter (screens are direct light sources).

• The radiometric transformations involved in the recapturing process are not consistent be-
tween identities especially for digital attacks as indicated by the large PDFs of the model
parameters. It appears that face skin color has a significant impact on the radiometric trans-
formations due to the recapture. This is in line with the image formation pipeline presented
in section 4.2.1 as scene-dependent transformations such as white balance occurs. Nonethe-
less, these parameters can be used as classification features as they are highly discriminant
overall.

Looking at parameters from the coupled Gamma model, we notice that the C matrix can
vary significantly between similar samples. From a classification perspective, this variability is a
serious problem as we want features that are consistent between two similar samples. After further
investigation, it appears that the high correlation between the three channels leads to an ill-posed
estimation problem. Further constraints are required to regularize the solution, one way is to force
some orthogonality constraints on C and add a diagonal matrix D that embeds color scaling on
each channel independently. For these reasons, we consider only the per-channel Gamma model
for the rest of the experiments.
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Figure 4.8: PDFs of the per-channel Gamma model parameters across the ReplayAttack database
for real faces, print attacks, mobile attacks and iPad attacks.

Figure 4.9: PDFs of the per-channel Gamma model parameters across the CASIA database for real
faces, print attacks, cut attacks and iPad attacks.
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Figure 4.10: PDFs of the per-channel Gamma model parameters across the MSU database for real
faces, print attacks, mobile attacks and iPad attacks.

4.4.3 Classification results

Four different experiments are conducted to study four use-cases that are more or less restrictive
in terms of implementation.

Experiment A The first experiment investigates the case where acquisition conditions are fixed
so enrolment and authentication are performed under the same conditions. In that case, color vari-
ations between the authentication attempt and the corresponding enrolled sample directly reflects
the radiometric distortions due to the recapturing process. Evaluations on the ReplayAttack, MSU
and CASIA (HD) datasets are performed and classification results based on the proposed colour
features are reported in table 4.1.

Table 4.1: Detection results of experiment A.

Experiment A MSU (EER) CASIA (EER) Replay-Attack (HTER)

android laptop HD camera LD camera

print 0 0 3.3 1.9

mobile 0 0 - 0.3

iPad 0 0 6.7 1.9

overall 0 0 3.3 0.7

Almost perfect results are obtained on ReplayAttack and CASIA databases withHTER = 0.7%

and EER = 3.3% respectively while perfect results are obtained on MSU database. Looking at
the errors on CASIA, only one real access is completely miss classified and should be considered
as an outlier. Errors on ReplayAttack are caused by one iPad photo attack and one print attack
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that have similar exposure as their real counterparts. Because enrolment data for MSU and CASIA
are made from the same video as real accesses, the results are overly optimistic. Nonetheless, this
experiment shows that radiometric distortions are highly discriminant regardless of the quality of
the sensor and regardless the type and quality of attacks. However, this setting is very restrictive
and is hardly applicable in real world applications because illumination are likely to change from
one authentication attempt to another.

Experiment B The second experiment supposes that faces are enrolled under several illumina-
tion conditions that corresponds to typical authentication use-cases. For a given authentication
attempt, the system first retrieves the enrolled sample from the claimed identity and this sample
matches the actual illumination conditions of the authentication attempt. Although the system has
not been trained under these new illumination conditions because manufacturing fake faces under
multiple illuminations is costly, the proposed method can cope with new lightning settings pro-
vided that the retrieved enrolled sample presents similar illumination as the actual authentication
attempt. For this purpose, the ReplayAttack database is selected for the evaluation. Evaluation is
conducted by training the system on samples acquired under the ’controlled’ lightning and by test-
ing on samples obtained in ’adverse’ lightning. The pairing of the authentication attempt and the
corresponding enrolled sample satisfies the illumination correspondence assumption. The proposed
method yields perfect detection in this testing configuration. This indicates that the relative color
distortions between a real and fake face are consistent between two illumination conditions. This
result is overly optimistic because in practice there are slight variations in illumination between
enrolment conditions and authentication ones.

Experiment C The third experiment investigates how performance degrades when there is a
mismatch between illumination of enrolment samples and the actual illumination conditions. We
consider the low quality and high quality datasets from the CASIA database for this experiment.
Enrolment samples and fake face samples are acquired under controlled illumination conditions
using the real accesses acquired from the high quality sensor. However, authentication is performed
under uncontrolled illumination using samples captured by the low quality sensor and the anti-
spoofing system is trained and tested using this data. Using the ideal case where enrolment samples
match the illumination of authentication attempts (experiment A), we obtain EER = 3.3%. When
enrolment and authentication have different illumination conditions, the EER drops to 20%. In this
case, the classifier misinterprets color variations due to the recapturing process and color variations
due to illumination changes. Looking at the resubstitution results (training with all the data), the
EER reaches 2%. This suggests that both types of color variations can be discriminated using the
proposed features.

Experiment D Generalization to new types of attacks is a major quality for anti-spoofing coun-
termeasures. Indeed, spoofing attacks evolve step by step and new ways to break through any
security system are to be found sooner or later. Thus, the capability of the proposed countermea-
sure to detect attacks that have not been considered during the training process is investigated.
To evaluate the robustness to future attacks, cross-protocol evaluations are performed on Replay-
Attack and MSU databases. We investigate three scenarios where the system is trained using two
out of the three available types of attacks, while the third one serves for testing. The scenarios
descriptions are as follows:

• Scenario 1: train with mobile and iPad attacks, test on printed photographs.
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• Scenario 2: train with printed photographs and iPad attacks, test on mobile attacks.

• Scenario 3: train with printed and mobile attacks, test on iPad attacks.

Table 4.2 shows the efficiency of the proposed method to generalize on unseen attacks. Mobile
and iPad attacks are well detected even without training the classifiers with either one. This
comes from the fact that both mobile and iPad attacks are similar by nature (attack on screen)
so training with either one is good enough. For the print attack scenario (1), the detection error
increases significantly because features are very different between print and digital attacks as the
recapturing mechanisms are also different as explained in section 4.2. Nonetheless, the proposed
method achieves encouraging results.

Table 4.2: Generalization of the proposed method to unseen types of attacks

colour features MSU (EER) Replay-Attack (HTER)

android laptop LD camera

scenario 1 15 5 8.1

scenario 2 0 0 3.1

scenario 3 0 0 5.9

4.4.4 Overview

First, we have demonstrated that the recapturing process produces exposure and color changes
compared to a single image capture even when spoofing face data is obtained in the exact same
illumination conditions as authentication. These radiometric transformations are well modelled
by the proposed per-channel and coupled Gamma models which are good approximations of the
radiometric transformations generated by the recapturing process. The per-channel Gamma model
is retained for its parameter estimation consistency although the coupled-model offers slightly
better fitting properties. It is generic enough to embed different color transformations related to
the variety of spoofing attacks. Also, the r2 coefficient is used as an extra feature as it reflects
fitting errors due to specular reflections or other non-modelled artefacts.

Second, the implementation the proposed method in a real application is only limited by the
amount of enrolment data. A dense set of enrolment samples that spans the set of illumination con-
ditions encountered during authentication is required. The system is able to discriminate between
a real face and a fake one only if the associated enrolled sample and real access are close enough
which should be the case if the enrolment set is dense enough. In this case, the proposed method
provides a good metric to assess if the authentication attempt comes from a real access or from an
attack by modelling the radiometric differences in terms of scaling, color offset and non-linearity.

4.5 Evaluation of the PSF model

In addition to radiometric distortions, the recapturing process also generates blur distortions as
mentioned in section 4.2.3. In this section, we study the different blur sources found in Replay-
Attack, CASIA and MSU databases for different sensors and different types of spoofing attacks.
First, the estimation of the PSF is discussed. Then, classification results are presented.
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4.5.1 Model validation

In equation 4.9, we have identified the different blur sources involved in the recapturing process
as a combination of three PSFs (the authentication sensor, the sensor used for spoofing and some
Gaussian blur generated when fitting the digital image on the displaying support). For both
sensors, the PSF results from defocus, motion blur and sensor anti-aliasing (limited resolution). In
practice, the impostor can easily obtain a high quality picture of the face to spoof. The quality of
the reproduction is then limited by the displaying medium size. For example, when displaying a 12
Mp image (4000*3000) on an iPhone, the screen automatically down-samples the digital image to
the screen resolution (480*320). Similar down-sampling occurs when printing a picture as printer
and paper quality have limitations in the number of pixels it can reproduce per inch (ppi). For
a given paper size, the professional standard uses a printing setting of 300 ppi which forces the
resolution of digital images to a given resolution to fit in the paper so the printer software re-samples
digital images to this size before printing. Table 4.3 shows examples of required image resolution
for printing on standard paper format. The authentication sensor needs sufficient resolution power
to detect this additional blur source. Defocus blur can also reinforce the overall blur as close-up
attacks may get out of focus. Also, motion blur adds up and may mask out the other discriminant
blur sources if motion is too important. Nonetheless, we believe that motion blur can also be
discriminant as typical fake face motion such as shaking or warping may generate different motion
blurs from real face motions.

Table 4.3: Examples of image resolutions for printing at 300 ppi.

Paper format required image size

A3 3456*5184 (18Mp)

A4 2400*3300 (8Mp)

A5 1740*2460 (4.2Mp)

Note: pixel per inch is often confused with dot-per-inch (dpi) to characterize the printing
resolution. The dpi denomination is a term used by manufacturers to advertise their product
as more dpi is assimilated as a quality factor although it depends on the printing technology (two
printers with the same printing resolution (ppi) can have different dpi in function of the technology).

Synthetic blur To investigate if the PSF is correctly recovered by the method of [Pan14], ex-
periments are conducted on synthetic blurred image samples. We select one typical image from the
CASIA database and apply a series of Gaussian blurs with increasing size going from σ = 0.5, 1, 2.
To recover the PSF, salient edges are manually obtained from the original image which is used as
the reference image for the de-blurring process. The PSF size, sparsity prior weight λ and the num-
ber of iterations are set empirically to 15, 0.002 and 10 respectively. We approximate the recovered
PSF by a 2D general Gaussian (asymmetric) to assess the similarity between the original Gaussian
blur and the recovered PSFs in terms of blur strength. A toy example with a more complex blur
simulating shaking motion is also presented. PSFs results are illustrated in false color in figure
4.11.

The retrieved PSF approximately captures the general form of the synthetic blur kernel but
strong horizontal and vertical artefacts are present leading to a slight over estimation of the blur
strength. These examples reveal some severe limitations of the method for a reliable estimation of
complex blurs. Nonetheless, this method is used in anti-spoofing detection for exploratory purposes
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(a) (b) (c)

Figure 4.11: Blur estimation on synthetic images. From left to right: column (a) depicts the
original blur source, column (b) shows the recovered PSFs and column (c) displays the Gaussian
approximation of (b). From top to bottom: Gaussian blur with σ = 0.5, Gaussian blur with σ = 1,
Gaussian blur with σ = 2 and complex blur.

as the method is still able to recover the blur strength. Features are extracted from the Gaussian
approximation of the kernel. The amplitude, the blur strength (σ) in both principal directions and
the residual error R2 of the Gaussian fitting procedure are retained.

4.5.2 Classification results

Quantitative evaluations are performed on Replay-Attack, MSU and CASIA databases to assess
the discriminative power of the blur features. Table 4.4 reports anti-spoofing performance of the
proposed method using the proposed blur features.

Table 4.4: Performance of blur features

colour features MSU (EER) CASIA (EER) Replay-Attack (HTER)

android laptop HD camera LD camera

print 25 40 36.7 14.4

mobile 15 30 - 15.3

iPad 35 10 6.7 34.7

overall 30 40 30 44.1

The best performance achieves EER = 6.7% and is obtained for video attacks using a high
definition camera from the CASIA database. For this scenario, the gap between the resolution
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of the screen and the resolution of the authentication sensor is large enough to reveal the screen
down-sampling blurring effects. Interestingly, the proposed method is not working well on printed
attacks. Even though print attacks have few details, the remaining ones are sharp and the recovered
PSF is similar to those of real faces. An example is given in figure 4.12.

Figure 4.12: Blur kernels estimated by the proposed method on CASIA examples. From left to
right, real access, print attack , print eye-cut attack and iPad attack are displayed.

Decent results are obtained on the ReplayAttack database for both printed (HTER = 14.4%)
and mobile attacks (HTER = 15.3%). For this database, attacks fake the full scene (face and
background) and are performed closer to the sensor. The low quality of the sensor masks out
the down-sampling blur. However mobile attacks are performed really close to the sensor due to
the small screen size so that defocus blur is observed and captured by the proposed method. On
the contrary, the recovered PSFs of printed attacks are narrower than the PSF of real accesses in
average. The proximity of the fake face to the sensor when performing a full view attack leads to
a better fake face resolution compared to real accesses. In addition, printed faces exhibit texture
details due to printing artefacts (banding effects) which makes them look sharper than real accesses.
An illustration is given in figure 4.13.

Figure 4.13: Blur kernels estimated by the proposed method on ReplayAttack examples. From left
to right, real access, printed attack, mobile attack and iPad attack are displayed.

Results from the MSU database are inconsistent and harder to interpret as both sensors have
totally different results. After looking at the image samples, it appears that there are a lot of
scaling variations during the authentication process as shown in figure 4.14. As blur is scale
sensitive, inconsistent blur kernels are obtained across each authentication attempt.
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Figure 4.14: Face size distribution for the laptop acquisitions of MSU database

4.5.3 Overview

Even though the proposed blur kernel estimation method only provides a rough estimation of the
PSF, general observations can be drawn out. Motion blur is very subtle for both real accesses and
replay attacks as video acquisitions are taken (short exposure time and motion compensation) and
limited motion is allowed during authentication. Defocus blur mainly occurs when replay attacks
are performed really close to the sensor to fake the whole scene using small screens (smartphone
screens) but can easily be circumvented using larger screens. At proper distance, actual sensors
manage a good focus and the only blur present is the one generated by screens when the resolution
of the authentication sensor is superior to the screen resolution. Print attacks are usually sharp
and the lack of details is perceived as a texture difference rather than a blurring effect.

Finally, the proposed blur features are efficient under three requirements. First, face acquisitions
must have a fixed size for each authentication attempt which requires the user to stand at a
fixed distance from the sensor. Second, the sensor needs a sufficient resolution to resolve the blur
generated by the screen down-sampling as motion blur and defocus blur are very limited in practice.
Third, enrolment samples must have equal or superior resolution compared to the authentication
sensor.

A better blur estimation technique is needed to solve for an accurate PSF and exploit subtle
motion blur. Even though results are far worse compared to the proposed colour features, blur
contains discriminant information to detect digital replay attacks provided that a high quality
sensor is employed.

4.6 Synthesis of spoofing attacks

One of the major problem in anti-spoofing is inter-person variability. Despite extensive efforts to
find features that are stable from one identity to the other, popular features in anti-spoofing contain
client specific information. To take advantage of this aspect, authors in [Chingovska15] propose to
learn a client specific classifier using attacks from clients in the training set for new clients (in test
set). Authors in [Yang15] go one step further and propose to directly synthesize LBP features for
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unseen clients (out of the training set) from enrolment data. Inspired by these works, we look into
a new way to synthesize spoofing attacks from enrolment samples. Motivated by the success of the
color transfer procedure [Pitie05] in transferring radiometric distortions to enrolled faces, we try
to forge artificial fake faces in terms of radiometry. Hence, we focus on the synthesis of the base
layer component of face images. Further work is required for the synthesis of the texture layer of
spoofing samples and is not treated in this work.

4.6.1 Motivations

Radiometric transformations are client specific distortions as skin color has a significant impact on
white balance and image corrections involved in the recapture process. From one identity to the
other, the distortions model varies significantly for a given sensor and a given attack type as shown
in the analysis of model parameters in section 4.4.2. Our goal is to predict these transformations
for new identities based on a limited training set. Let f represent the mapping between a real face
and its fake counterpart for a given attack type. This mapping is highly non-linear across different
identities with different skin color but if two identities have similar color distributions we expect to
have similar distortion transformations. Hence, our idea is to find a local coordinate system such
that any new identity can be expressed as a linear combination of similar identities whose spoofing
attacks are known. These known identities can be seen as anchor points and the spoofing attack
of the new identity is approximated by the linear combination of the spoofing attacks of anchor
points. For this, we make use of the color transfer procedure to build a dictionary of anchor points
that has the color distributions of known identities for real and spoofing attacks with the spatial
texture of the new identity. Then, sparse coding with positivity constraints is employed to find the
local representation.

4.6.2 Base layer synthesis pipeline

For a given type of attack and acquisition conditions, the goal is to predict the fake face associated
to an enrolled client based on a limited set of training identities (only the base layer is considered
in the context of this thesis). Let X = [x1, .., xn] and Y = [y1, .., yn] represent the set of vectorized
face images (base layer) of real accesses and attacks associated to the n identities of the training set.
Let x be the enrolment sample corresponding to a new identity. The color transfer procedure of
[Pitie05] allows us to transfer the color distribution of training identities to x forming a set of new
images Dx = [dx1, .., dxn] and Dy = [dy1, .., dyn]. Then, sparse codes α are computed to reconstruct
x using the dictionary Dx following the minimization problem:

minimize
α

||x−Dxα||22

subject to 0 ≤ ||α||1 ≤ λ
(4.17)

Positivity constraint is added to enforce positive contributions from anchor points. This avoid
situations where compensation phenomenon occurs and some anchor points contributions cancel
each other. This problem is solved using a modified version of the LARS algorithm to handle the
positive constraint using the SPAMS1 toolbox [Mairal09]. The synthesis of the spoofing attack y
corresponding to the client in x is straightforward using the reconstruction with Dy:

y = Dyα (4.18)
1http://spams-devel.gforge.inria.fr/

http://spams-devel.gforge.inria.fr/
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The full pipeline is illustrated in figure 4.15. Face images are normalized to 100*100 pixels for
fast computation as we are only interested in the base layer of face images and the regularization
parameter λ is set to 0.1.

Color
transfer

Sparse
coding

Reconstruction

Enrolled face

Training samples

Dx

Dy

Synthesized face

Real

Fake

Figure 4.15: Pipeline of the synthesis method

4.6.3 Qualitative Evaluations on CASIA database

Qualitative evaluations are conducted on high resolution acquisitions from the CASIA database
only as the same illumination conditions are satisfied between each acquisition only for this subset.
In MSU database, background varies between acquisitions of different clients which affects the
overall color balance of face samples in an uncontrolled manner. In ReplayAttack, unusual orange
color shifts are observed on a few samples acquired under controlled conditions and some fake faces
are not detected by the OpenFace toolkit as mentioned in Chapter 2. Consequently, we decided
not to experiment on both ReplayAttack and MSU databases.

The proposed method supposes that we can find samples with similar color distributions from
the training set. For this reason, we augment the size of the training set compared to the public
protocol to make sure that our approximation is valid by selecting 40 individuals out of the 50
available. Images resulting from the synthesis of print attacks (base layer only) are illustrated
in the last row of figure 4.16. The first two rows correspond to enrolled samples from clients in
the test set and their associated print fake face (ground truth) respectively. The proposed color
synthesis method obtains a good approximation of the illumination component (base layer) of
spoofing attacks except for a few examples in columns 4 and 9. Besides, specular reflections are not
synthesized as seen from exemplars in columns 1 and 3. These specular reflections are generated
when photos are bent creating highlights at certain viewing angles and are not consistent from one
photo attack to the other and the impostor can avoid them easily. Similar observations are made
on the synthesis of eye-cut photo attacks and video attacks in figures 4.17 and 4.18. It appears
that radiometric distortions involved when performing video attacks are more consistent from one
identity to the other and nice results are achieved.
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Figure 4.16: Results of the synthesis of print attacks corresponding to high quality acquisitions
from the CASIA database. First row corresponds to enrolled faces from the testing set. Second
row corresponds to spoofing attacks ground truth. Third row displays synthesized fake faces using
the proposed method.

Figure 4.17: Results of the synthesis of eye-cut printed attacks corresponding to high quality
acquisitions from the CASIA database. First row corresponds to enrolled faces from the testing
set. Second row corresponds to spoofing attacks ground truth. Third row displays synthesized fake
faces using the proposed method.

Figure 4.18: Results of the synthesis of iPad video attacks corresponding to high quality acquisitions
from the CASIA database. First row corresponds to enrolled faces from the testing set. Second
row corresponds to spoofing attacks ground truth. Third row displays synthesized fake faces using
the proposed method.
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4.6.4 Limitations

Additional experiments have been conducted on low quality samples from the CASIA database
without much success because illumination conditions vary randomly between two real access sam-
ples on the one hand, and even for a given identity between real accesses and attacks on the other
hand. This inconsistency in illumination conditions disrupt the consistency of radiometric distor-
tions for identities with similar skin color. In addition, as mid-range attacks are performed, the
changing background also affects the overall image color balance. As a consequence, inconsistent
radiometric transformations occur from one identity to the other. Figure 4.19 illustrates this prob-
lem on the synthesis of print attacks for the low quality acquisitions of CASIA database. This
highlights that the synthesis of spoofing attacks for new identities for a given sensor requires fixed
illumination conditions.

Similar face skin color examplars

Inconsistent radiometric distortions for corresponding spoofing attacks

Variability in illumination
          conditions

Bad synthesis of spoofing attacks

Figure 4.19: Results of the synthesis of print attacks corresponding to low quality acquisitions
from the CASIA database. First row corresponds to enrolled face from the testing set. Second row
corresponds to spoofing attacks ground truth. Third row displays synthesized fake faces using the
proposed method.

4.6.5 Discussion

One of the difficulty of in face anti-spoofing is the high variability between different identities.
Although state of the art methods strive for client independent discriminant features such as tex-
ture, quality loss, blur or motion information, client-specific information is usually retained and
generalization to new identities is difficult. For this reason, a per-client classification approach
is advertised and spoofing attacks are required for all clients of the face recognition system. In
this section, we have investigated if color distortions generated by the recapturing process can be
predicted for new identities regardless of their skin color. For a given sensor and under fixed illu-
mination conditions, we have presented a method capable of synthesizing radiometric distortions
on new identities based on color transfer and sparse coding. Although additional experiments on
datasets including a wider variety of ethnic groups are needed, the encouraging results on high
quality acquisitions from the CASIA database prove the potential of the proposed approach. The
key requirement is that some consistency between acquisitions is respected. Not only illumination
conditions must stay the same but a complete control over the sensor settings is necessary to have
consistent image formation mechanisms especially color balance. Having access to raw images can
alleviate some context variability due to rendering operations embedded in the image formation
pipeline.

The next step is to synthesize high frequency details of fake faces. Our first trials based on
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semi-coupled dictionary learning were unsuccessful and further development are required to make
it work. In addition, this study has leveraged two other interesting research directions. First, for a
given identity is it possible to predict spoofing attacks under new illumination conditions? Second,
is it possible to adapt spoofing attacks to different sensors? These are open questions which should
be addressed in future works.

4.7 Conclusions

A detailed analysis of the recapturing process is presented in order to better understand differ-
ences between real and fake faces. In first approximation, we demonstrate that radiometric and
blur distortions are induced by the recapturing process and we propose a parametric model for
both distortions. A novel approach based on the use of enrolment samples to estimate blur and
radiometric distortions is proposed. Recovered parameters are used as discriminant features for
classification.

• A compact set of 16 features that directly embeds the radiometric differences between real
and fake faces is derived. Obtained features relate to physical mechanisms involved in the
recapturing process which makes them highly discriminant. The proposed method reliably
recovers the radiometric differences between real and fake faces and achieves almost perfect
detection on the ReplayAttack, CASIA and MSU databases. It is robust to unseen attacks
and is able to cope with slight illumination variations between enrolment and testing.

• The estimation of the blur distortion is not precise enough to exploit subtle blurs. Nonetheless,
the proposed blur features obtain decent results on mobile attacks from the ReplayAttack
database and on iPad attacks from CASIA high quality dataset as the anti-aliasing blur
generated by the displays are resolved by the respective sensors of both databases. Two main
requirements are highlighted:

- the gap between the face resolution from the sensor pixel grid and the face resolution
from the screen pixel grid should be wide enough.

- faces are acquired at the same viewing distance for each authentication to limit face size
variability.

In addition, the success of the radiometric distortion model leds us toward the synthesis of
spoofing attacks. We proposed a method for predicting the radiometric distortions for new identities
under fixed acquisition conditions. Encouraging results are obtained in this direction but further
investigations are necessary to completely synthesize a fake face in terms of texture details.
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Biometric systems today are widely used in areas that require a certain level of security and
assurance about the used technology. Classical examples for such applications include access control
systems to high security areas (like power plants or data centers) and border control systems. Those
areas usually require a high degree of assurance in that the used technology is operating as specified
and as needed to obtain a secure system. In order to achieve this assurance, independent evaluations
and certifications are carried out for the important components of a system or the whole system.
The de facto standard for evaluations and certification of components and systems in the area of
Information Security are the Common Criteria for Information Security evaluation. A methodology
has been developed for the certification of fingerprint biometric systems in 2007. Our contribution
within the BIOFENCE project is to apply this methodology to 2D face recognition systems and to
assess if this methodology reflects correctly their resistance against spoofing attacks. Eventually,
new propositions to adapt this methodology to grade protected 2D face biometric systems with
anti-spoofing countermeasures against spoofing attacks.

First, the existing certification methodology designed for the evaluation of fingerprint based
systems is presented. Then, we describe how this methodology applies to face anti-spoofing systems.
Finally, a practical use-case scenario is investigated where protected and unprotected 2D face
recognition systems are rated following the Common Criteria methodology.

5.1 Description of the certification methodology

This section describes the rating approach for the resistance of biometrics systems. This approach
is based on the Vulnerabilities Analysis according to Common Criteria Methodology, defined in the
3.0 version of supporting document guidance of Fingerprint Evaluation Mechanism [CCN11]. The
evaluation of the vulnerabilities of a biometric system is conducted in two phases:

• Identification phase: corresponds to the effort required to create the attack, and to demon-
strate that it can be successfully applied to the biometric system (including setting up or

108
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building any necessary test equipment). The demonstration that the attack can be success-
fully applied needs to consider any difficulties in expanding a result shown in laboratory to
create a useful attack. One of the outputs from Identification could be a script that gives a
step-by-step description of how to carry out the attack – this script is assumed to be used in
the exploitation part.

• Exploitation phase: corresponds to achieving the attack on a given face biometric system
in its exploitation environment using the techniques defined in the identification part. The
technique (and relevant background information) could be available for the exploitation in
the form of a script or set of instructions and could be performed by a different attacker than
the one in the Identification phase. This type of script is assumed to identify the necessary
equipment and, for example, mathematical techniques used in the analysis.

In each phase, Common Criteria are rated to quantify the vulnerability of biometric systems
against attacks in terms of time, expertise, general knowledge on the system, equipment and ac-
cessibility. The ratings of each factor is summarized into table 5.1.

1. Elapsed Time: In the Identification phase, it corresponds to the time required to create the
attack, and to demonstrate that it can be successfully applied to biometrics system. Applied
to spoofing attacks, elapsed time in identification corresponds to the time spent to find the
so called “golden fake” and to define a way to build it. For example, for a spoofing attack on
fingerprints, it corresponds to the time required to create a spoof from an image of a print
(and not the acquisition of this image which is taken into account in the ’Access to biometrics
characteristics’ factor) obtained with or without the collaboration of the user. “Golden fake”
is defined as the best spoof having the best chances to be accepted by the system. In the
exploitation phase, Elapsed Time corresponds to the time necessary to apply the “script”
to a specific biometrics. For example, the number of trials required to spoof the system
contributes to the time rating. Potential difficulties to have an access to the face biometric
system in exploitation environment are taken into account in the ’Window of opportunity’
factor.

2. Expertise: This factor refers to the level of proficiency required by the attacker. A suggested
rating for this metric is:

• Layman: no real expertise needed, any person with a regular level of education is capable
of performing the attack.

• Proficient: some advanced knowledge in certain specific topics (biometrics) is required
as well as good knowledge of the state-of-the-art of attacks. The person is capable of
adapting known attack methods to his/her needs.

• Expert: a specific preparation in multiple areas such as pattern recognition, computer
vision or optimization is needed in order to carry out the attack. The person is capable
of generating his/her own new attacking algorithms.

• Multiple experts: the attack needs the collaboration of several people with high level
expertise in different fields (e.g., electronics, cryptanalysis, physics, etc.). It has to be
noticed that a specific competence in biometrics is not considered as “multiple expertise”.

3. Knowledge of the face biometric system: This factor refers to the amount of knowledge
required about the system to perform the attack. For instance, format of the acquired samples,
size and resolution of acquisition systems, specific format of templates, but also specifications
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and implementation of countermeasures are knowledge that could be required to set up an
attack. This information could be publicly available at the website of the sensor manufacturer
or protected (distributed to stakeholders under NDA or even classified inside the company).
Ratings are:

• Public: information is fairly easy to obtain (e.g., on the web).

• Restricted: information is only shared by the developer and organizations which are
using the system, usually under a non-disclosure agreement.

• Confidential: information is only available within the organization that develops the
system and is in no case shared outside it.

• Critical: information is only available to certain people or groups within the organization
which develops the system.

Note: Special attention should be paid in this point to possible countermeasures that may
be implemented in the system and whether it is necessary or not to have knowledge of their
existence in order to be successful in a given attack.

4. Window of opportunity: This factor refers to the level of accessibility to the biometric
system. In identification, it assesses the difficulty to access the system and experiment attack
trials in order to find a successful breach in the system. For instance, restricted distribution
of the face biometric system to institutions (no distribution to individuals) complicates the
design of successful attacks. In exploitation, it reflects the degree of freedom for performing
the attack by taking into account:

- the authentication protocol: multiple trials may be required in a challenge-response
authentication protocol.

- environment: operating conditions related to specific use-cases influence the difficulty
to perform an attack such as the presence of a surveillance system, a third party user,
and so on.

- system architecture: the design of the system can facilitate or not physical access to the
system for hacking.

The associated ratings are:

• Unlimited access

• Easy

• Moderate

• Difficult

5. Equipment: This factor quantifies the quality of the equipment required to perform an
attack. The corresponding ratings are:

• None

• Standard

• Specialized

• Bespoke

• Multiple Bespoke
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6. Access to biometrics characteristics: This factor corresponds to the difficulty to obtain
the biometric information required to make a fake face. For instance, in the case of fingerprint,
the fingerprint of a valid user can be recovered directly on the sensor after his authentication
attempt using an adhesive film or plastic bag full of water on the scanner. Another possible
scenario considers the complicity of the client which helps with the generation of a gummy
finger. Because this criteria is very difficult to evaluate objectively as it depends on many
external parameters, this criterion is out of the scope of this document and is not taken
into account during the application of the certification methodology and we suppose that an
impostor is able to obtain the biometric information necessary for the manufacturing of fake
face.

Table 5.1: Ratings of the security level of biometric systems

Criteria Ratings Identification Exploitation

Elapsed Time

≤ one day 0 2

≤ one week 1 4

≤ one month 3 6

≤ 3 months 5 8

≤ six months 7 10

> six months 10 ∞

Expertise

Layman 0 0

Proficient 2 2

Expert 5 4

Multiples experts 7 6

Knowledge of the system

Public 0 0

Restricted 2 1

Sensitive 4 3

Critical 6 5

Window of Opportunity

Unlimited access 0 0

Easy 1 4

Moderate 3 6

Difficult 5 8

None ∞ ∞

Equipment

None 0 0

Standard 1 2

Specialized 3 4

Bespoke 5 6

Multiple Bespoke 7 8

In order to restrict the number of attacking possibilities which largely depends on a great
amount of external factors that may influence the success chances of a given attack, all the ratings
and descriptions given in this document are made under the assumption of the worst case scenario.
For instance, in the case of attacks with gummy fingers we will consider the existence of a “golden
fake”, manufactured with a specific material, which, once identified (in the identification phase), is
able to break a given scanner/system with very few attempts for almost all the cases. Following the
same principle, we will consider fingerprints as public data which can be obtained in a fairly easy
manner. This way the rating will start when the attacker has already acquired (by some means)
the fingerprint of the user.

The case of attacks involving direct threats to the legitimate user of a given system (e.g.,
access gained at gunpoint), or violent acts (e.g., attacking a fingerprint verification system with
a dismembered finger), falls out of the scope of this document as these actions do not reflect the
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security level of a given technology, but rather depend on the willpower of the attacker and are not
considered by the CC norm.

5.2 Application to 2D face recognition systems

The main goal is to determine if the certification methodology firstly defined for fingerprint based
recognition systems can be used for face recognition system certification. The direct application of
the certification methodology is presented on two representative use-cases as examples. The first
use-case evaluates the resistance of a non-protected face verification system against video attacks
whereas the second use-case considers a system with motion and texture-based countermeasures.

5.2.1 Certification criteria adaptation for face based system assessment

Table 5.2 details the adaptation of each criterion in the identification phase. In this case, the
evaluation is impacted by the type of attack and the considered face verification "use-case". For
the exploitation phase, the certification methodology is simplified because ratings are identical for
all types of spoofing attacks as no particular skill is required to present the fake face correctly with
respect to the authentication protocol. Table 5.3 presents the adapted criteria for the exploitation
phase. The ratings associated to the Common Criteria during the exploitation phase tend to
low security values against face spoofing attacks regardless of the level of protection of 2D face
recognition systems. Only the window of opportunity criteria contributes to the security level in
the exploitation phase but it depends mainly on the context of use of the face biometric system.
In the end, the final security rating of 2D face recognition systems comes from the identification
phase and depends on the context of use, the type of attack and the protection measures.

Table 5.2: Identification phase: adapted Common Criteria.

Criteria Description

Elapsed time
• Time to manufacture fake faces (we suppose that face data from valid clients are already

retrieved)
• Time to identify a successful attack sample (golden fake face) from experiments

Expertise
• Expertise to manufacture the fake face
• Expertise to find the golden fake face

Knowledge of
the system

• Information on the sensor (traditional camera, infra-red camera, ...)
• Information on the authentication protocol
• Information on countermeasures

Window of
opportunity

Level of accessibility to the system (is it a commercial product easy to obtain?)

Equipment Equipment for manufacturing a fake face
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Table 5.3: Exploitation phase: adapted Common Criteria.

Criteria Description Rating

Elapsed time
Time required to present the fake face
correctly, following the authentication protocol

Presenting the fake face is immediate so the
rating is "less than 1 day"

Expertise Level of expertise to use the fake face

Some acting job may be required to mimic real
face motion in case of motion-countermeasures
but no special skills are required so the rating
is "Layman".

Knowledge of the
system

Knowledge on the system for authentication
Only the authentication protocol is required to
use the fake face so the rating is "Public".

Window of
opportunity

Level of access to present the fake face

This criteria depends heavily on the use-case
and the rating varies from "unlimited access"
for face verification on laptop to "difficult" in
an airport security check point.

Equipment Equipment for performing the attack
No additional equipment except the fake face is
needed so the rating is "None"

5.2.2 Application to protected and unprotected face recognition systems

The second goal of that study is to evaluate if the proposed certification is able to quote face
recognition systems equipped with countermeasures. To this end, we consider a practical use-case
scenario for outdoor building access control. Every user must authenticate himself/herself using
his/her security badge and face verification is performed to authorize the access to the building. A
standard RGB sensor is used for capturing the face and state of the art face recognition software
without anti-spoofing countermeasures performs the verification. It is easy to acquire the biometric
data to make a fake face by acquiring a video or picture of a real client without his/her complicity
using standard commercial cameras. For print and video attacks, we consider the worst case
scenario where the impostor hides a high definition camera near the recognition sensor to capture
the user during an authentication attempt. The impostor already possesses the necessary biometric
data to manufacture video attacks. We evaluate the resistance of protected and unprotected face
recognition systems against replay attacks (photo and video) by using the certification methodology
previously presented.

5.2.2.1 Use-case1: face verification without anti-spoofing countermeasures.

No anti-spoofing countermeasures are implemented in this first use-case so a very few trials are
required to find a fake face capable of bypassing the system as demonstrated in chapter 1. The
evaluation of the security level of this system against video attacks are reported in table 5.4.

Elapsed Time: The manufacturing of several fake faces is very easy and fast as printing face
pictures takes at most one hour. Printed fake faces or digital ones must be as realistic as possible
to have a chance to bypass the system. Multiple trials are conducted on a substitute face recogni-
tion system to determine if the manufactured fake faces are working. After experimentation, the
impostor manages to bypass the system 8 times over 10 trials. In the end, the manufacturing of a
golden fake face takes about 2 days.

To perform the attack, the attacker just need to show the picture/video in front of the sensor
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which takes about 3 seconds.

Expertise: The expertise level is layman as no special skills are required to make a golden fake
face or to use it.

Knowledge of TOE: The attacker must be aware of the type of sensor used for recognition as
well as the acquisition conditions during the authentication process. These information are public
as they can be retrieved on site directly with an open access. To perform the attack, only the
identification protocol is required which is a public information.

Window of opportunity: The attacker needs to install a hidden camera to get the face data
required to manufacture a golden fake face. Therefore an unlimited or easy access is required.
In this use-case, the system controls the entrance of a building so people have an open access to
it which complies with the requirements to make the attack. When performing the attack, the
impostor has to make sure that no one is looking which is quite easy in the considered context.

Equipment: The tools used to implement the full attack are standard: digital camera to retrieve
the face data and plain paper with an office printer to make print attacks. A smartphone or iPad
are needed for video attacks.

As a result, the rating of the system against photo and video attacks is 10. According to the
draft of methodology [CCN11], the rating value is between 0 and 19 so the system fails any level
of evaluation. The system is deemed highly vulnerable to video attacks as expected.

5.2.2.2 Use-case2: outdoor building access control with anti-spoofing countermea-
sures.

The same situation is considered but now motion and texture based anti-spoofing countermeasures
are implemented. The evaluation of the security level of this system against video attacks obtains
the ratings in table 5.5.

Elapsed Time: The manufacturing of several fake faces is very easy and fast as printing face
pictures takes at most one hour. Printed fake faces or digital ones must be as realistic as possible to
have a chance to bypass the system. Multiple trials are conducted on a substitute face recognition
system to determine if the manufactured fake faces are working. After experimentation, the impos-
tor manages to bypass the system 1 time over 100 trials. In the end, the manufacturing of a golden
fake face takes about one month as multiple identities are tested with different video montages. To
perform the attack, the attacker just needs to show the picture/video in front of the sensor which
takes about 3 seconds.

Expertise, Knowledge of TOE, Window of opportunity, Equipment: Same as before.

The rating in this case is 12, according to the draft of methodology, the rating value is between
0 and 19 so the system fails any level of evaluation. As a result, the face recognition system with
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Table 5.4: Security ratings of an unprotected face recognition system.

countermeasures is assessed in the same way as the system without countermeasures. The rating
granularity does not allow a clear distinction between protected and unprotected systems as the
only factor impacted in the evaluation is the time necessary to find a golden fake face.

5.3 Conclusion

This study exhibits the limitations of the proposed methodology. The problem is that both pro-
tected and unprotected systems obtain similar ratings. The success rate of an attack largely de-
creases when anti-spoofing countermeasures are implemented and more trials are required to man-
age a successful spoofing attempt. The anti-spoofing performance is somehow taken into account
in the Elapsed time criterion to reflect the difficulty to determine the ’golden fake face’ but its
impact on the final score is negligible. Besides, multiple trials require the manufacturing of several
fake faces which becomes costly as the number of trials rises but this factor is overlooked in the
evaluation. To take into account these aspects in the certification process, we propose two measures
in terms of time and cost. Given the success rate of an attack SR, the average time required to
find a golden fake face is given by t = t0 ∗ 1/SR where t0 is the time to manufacture one fake face.
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Table 5.5: Security ratings of a protected face recognition system.

The associated cost is c = c0 ∗ 1/SR where c0 corresponds to the cost related to the fabrication of
one fake face. A special rating of both measures is needed so that the final rating reflects properly
the resistance of a face verification system against spoofing attacks.

Furthermore, the difficulty to acquire the biometric data to manufacture a realistic fake face
is overlooked. We assumed that the acquisition of the face negative was possible via a hidden
HD camera. However, this scenario is unlikely to happen in high security use-cases and the most
realistic way is to find videos or pictures of a valid user on the internet. Some image processing
may be needed to transform the image into a successful attack. The difficulty to find a successful
attack using internet pictures/videos has to be taken into account into the ratings.



Conclusion and perspectives

Conclusions

The development of public spoofing databases has boosted significantly the activity on face anti-
spoofing research and a large panel of countermeasures have been developed since 2010. This
doctoral dissertation is motivated by the evaluation of these protection measures for certification.
A large part of this work is about assessing the vulnerabilities of 2D face biometric systems against
spoofing attacks. Taking advantage of recent release of public databases, we focussed our study on
software-based anti-spoofing methods implemented on standard face identification systems relying
on RGB video acquisitions of the face.

The development of new spoofing attacks and new anti-spoofing countermeasures are closely
related and both aspects have been explored throughout this work with a complete review of
state of the art in fake face forgery and anti-spoofing countermeasure design. The most recent
spoofing strategies have been identified and a special effort has been brought to redefine a suitable
taxonomy of software-based countermeasures highlighting the type of discriminant cues they rely
upon. Although evaluation on mask attacks are missing in this study, the line of work followed
for the development of new countermeasures anticipates these attacks and concentrates on the face
region only.

We proposed three different approaches to tackle the anti-spoofing problem. In the second
chapter, data-driven methods based on texture are investigated. As texture information is highly
dependent on acquisition conditions, a complete study of the well-known LBP countermeasure is
conducted to derive a unified framework to deal with multiple sensors and multiple databases. We
have demonstrated that the face region is of great importance when exploiting texture cues as
well as is the face geometric normalization. Especially, it appears that normalizing faces with a
54 pixels interocular distance is sufficient to extract discriminant texture information regardless of
the sensor resolution. Also, better results are obtained by averaging features over time. Under this
framework, state of the art texture-based methods are re-evaluated along with two new variants of
the traditional LBP descriptor, namely CLBP and HSI-LBP. Taking advantage of contrast and color
information, both approaches yield improvements over the traditional LBP countermeasure. In
particular, the proposed HSI-LBP feature demonstrates state of the art results on the ReplayAttack,
CASIA and MSU databases with respect to texture methods focusing on only the face region only.

In the third chapter, a novel motion-based countermeasure based on rigid and non-rigid face
movements is proposed. Using face tracking CLNF framework, face motion is captured into a
set of 5 rigid parameters and 34 non-rigid parameters. Discriminant features are computed using
the Fisher framework by encoding short motion sequences into a mid-level representation. The
proposed method demonstrates very good photo attack detection even when limited motion is
imposed by the authentication protocol and it allows real time detection. Video attacks are well
detected provided that sufficient hand-shaking motion is present when presenting the fake face in
front of the sensor. Hence, competitive results are obtained on ReplayAttack and CASIA databases
compared to state of the art methods using optical flow. Besides, the proposed method is robust
to camera shake as verified by experiments on MSU database.

In the fourth chapter, a model-based approach based on the recapturing process involved when
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performing a spoofing attack is proposed. The proposed recapturing model considers radiometric
and blur distortions to explain the disparity between real and fake faces. Using enrolment samples,
both distortions are estimated separately and recovered model parameters are used for classification.
Radiometric distortions are modelled by color scaling, color offset and gamma non-linearity. Under
known illumination conditions, the radiometric features are able to detect almost perfectly fake
faces on ReplayAttack, CASIA (H protocol) and MSU databases. In parallel, the blur kernel is
estimated by a blind deconvolution technique. Unfortunately, the selected debluring method is not
able to estimate precisely the blur distortions but decent detection performance is achieved for high
quality acquisitions. Also, a short investigation about the synthesis of spoofing attacks for new
identities have obtained promising results in predicting color distortions.

Finally, the last chapter shows the limitations of the certification methodology originally devel-
oped for fingerprint technology as unprotected and protected face biometrics systems obtain almost
the same security ratings. Ratings need to be adapted and we proposed a few changes to better
reflect the resistance of systems against face spoofing attacks.

Future works

Fake face detection is a difficult problem as it suffers from many sources of variability:

• large diversity of face profiles

• various attack types and attack scenarios

• pose and facial expression variations

• illumination variations

• image quality

To tackle these problems, multiple databases have been considered. In the course of this thesis,
we have supposed that acquisition conditions are consistent between training and testing the anti-
spoofing countermeasures. However, for certain types of applications such as face identification on
laptops or mobile, these assumptions are no longer verified and further development is required in
that regard and cross-database experiments must be considered.

Additionally, experiments on mask attacks have not been considered despite having access to
the public 3D mask attack database or the MORPHO mask attack database (provided by Safran)
because the format of the recordings are inconsistent with the color video acquisitions required to
extract the proposed texture and motion features. Mask spoofing datasets are rather designed for
evaluations of 3D face recognition systems and acquisitions of realistic masks with decent quality
RGB sensors are lacking for further development of 2D face anti-spoofing countermeasures.

This work has open diverse interesting research directions for further developments. We list
below a few ideas that are considered in perspective:

• In chapter 2, improvements of LBP countermeasures are proposed based on color and con-
trast information. Combining the multi-scale LBP computation strategy, color and contrast
information simultaneously is the next step.
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• In chapter 3, rigid and non-rigid motion sequences are transformed into discriminant mid-level
features using the Fisher framework. Another approach is to consider the motion signatures
as time series and to extract discriminant information using signal processing tools from this
domain.

• In chapter 4, the estimation of radiometric distortions is done by the simpler per-channel
Gamma model as unstable parameter estimation is obtained when considering the coupled
Gamma model. Further constraints are required to regularize the solution for practical use
of the more flexible coupled Gamma model. Also, the proposed blur kernel estimation is
not good enough to capture motion blur and anti-aliasing blur generated by the recapturing
process. Faces have a limited amount of edges to guide the estimation, another blur metric
should be used instead. One interesting research direction is to use edge profiles obtained
from the face structure used in the face tracking phase (68 facial landmarks) and to estimate
the blur magnitude for each edge profile. Another focal point of future work is the synthesis
of spoofing attacks for new identities. We believe that semi-coupled dictionary learning
techniques have potential for synthesizing the texture components of spoofing attacks. The
synthesis is not limited to face images and can be extended to features. The final goal is to
perform a person-specific fake face detection to better handle the diversity of face profiles.

• In chapter 5, the current certification methodology is not satisfactory as no anti-spoofing
countermeasures validate the security ratings. Strong connections with the BEAT European
project is evident and a collaboration is to look out for in the future.

• Additionally, the fusion of the proposed methods must be considered to exploit fully all the
complementary cues presented in this work. As discriminant cues vary from one attack type
to the other, an ensemble of classifiers is potentially a good way to integrate multiple cues
for fake face detection.
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Résumé — Les systèmes d’identification faciale sont en plein essor et se retrouvent de plus en
plus dans des produits grand public tels que les smartphones et les ordinateurs portables. Cepen-
dant, ces systèmes peuvent être facilement bernés par la présentation par exemple d’une photo
imprimée de la personne ayant les droits d’accès au système. Cette thèse s’inscrit dans le cadre du
projet ANR BIOFENCE qui vise à développer une certification des systèmes biométriques veine,
iris et visage permettant aux industriels de faire valoir leurs innovations en termes de protection.
L’objectif de cette thèse est double, d’abord il s’agit de développer des mesures de protection des
systèmes 2D d’identification faciale vis à vis des attaques connues à ce jour (photos imprimées,
photos ou vidéos sur un écran, masques) puis de les confronter à la méthodologie de certification
développée au sein du projet ANR. Dans un premier temps, un état de l’art général des attaques
et des contremesures est présenté en mettant en avant les méthodes algorithmiques (« software
») par rapport aux méthodes hardware. Ensuite, plusieurs axes sont approfondis au cours de ce
travail. Le premier concerne le développement d’une contremesure basée sur une analyse de texture
et le second concerne le développement d’une contre-mesure basée sur une analyse de mouvement.
Ensuite, une modélisation du processus de recapture pour différencier un faux visage d’un vrai
est proposée. Une nouvelle méthode de protection est développée sur ce concept en utilisant les
données d’enrolment des utilisateurs et un premier pas est franchi dans la synthèse d’attaque pour
un nouvel utilisateur à partir de sa donnée d’enrolment. Enfin, la méthodologie de certification
développée pour les systèmes à empreintes digitales est évaluée pour les systèmes d’identification
facial.

Mots clés : Biométrie visage, contre-mesures, faux visages, analyse du mouvement, analyse
de texture.

Abstract — Face identification systems are growing rapidly and invade the consumer market
with security products in smartphones, computers and banking. However, these systems are easily
fooled by presenting a picture of the person having legitimate access to the system. This thesis
is part of the BIOFENCE project which aim to develop a certification of biometric systems in
order for industrials to promote their innovations in terms of protection. Our goal is to develop
new anti-spoofing countermeasures for 2D face biometric systems and to evaluate the certification
methodology on protected systems. First, a general state of the art in face spoofing attack forgery
and in anti-spoofing protection measures is presented. Then texture-based countermeasures and
motion-based countermeasures are investigated leading to the development of two novel counter-
measures. Then, the recapturing process is modelled and a new fake face detection approach is
proposed based on this model. Taking advantage of enrolment samples from valid users, a first step
toward the synthesis of spoofing attacks for new users is taken. Finally, the certification method-
ology originally developed for fingerprint technology is evaluated on face biometric systems.

Keywords: Biometrics, face anti-spoofing, fake faces, motion analysis, texture analysis.
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