
HAL Id: tel-01577179
https://theses.hal.science/tel-01577179

Submitted on 25 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Diagnosis and Diagnosability of Complex Discrete Event
Systems Modeled by Labeled Petri Nets

Ben Li

To cite this version:
Ben Li. Diagnosis and Diagnosability of Complex Discrete Event Systems Modeled by Labeled Petri
Nets. Automatic. Ecole Centrale de Lille, 2017. English. �NNT : 2017ECLI0004�. �tel-01577179�

https://theses.hal.science/tel-01577179
https://hal.archives-ouvertes.fr

No d’ordre: 3 1 8

CENTRALE LILLE

THÈSE

présentée en vue d’obtenir le grade de

DOCTEUR

En

Spécialité : Automatique, Génie informatique, Traitement du signal et des images

Par

Ben LI
DOCTORAT DÉLIVRÉ PAR CENTRALE LILLE

Titre de la thèse :

Diagnosis and Diagnosability of Complex Discrete Event Systems Modeled
by Labeled Petri Nets

Diagnostic et Diagnosticabilité des Systèmes à Événements Discrets Complexes
Modélisés par des Réseaux de Petri Labellisés

Soutenue le 3 mai 2017 devant le jury d’examen :

Président Prof. Rochdi MERZOUKI Polytech Lille
Rapporteur Prof. Eric NIEL INSA de Lyon
Rapporteur Prof. Dimitri LEFEBVRE Université du Havre
Examinateur Prof. João Dos Santos BASILIO Université Fédérale de Rio
Examinatrice MCF Ramla SADDEM Université de Reims Champagne Ardennes
Examinateur CR-HDR Mohamed GHAZEL IFSTTAR
Directeur de thèse Prof. Armand TOGUYÉNI Centrale Lille
Encadrante MCF Manel KHLIF-BOUASSIDA Centrale Lille

Thèse préparée dans le Centre de Recherche en Informatique, Signal et Automatique de
Lille, CRIStAL, CNRS UMR 9189

École Doctorale Sciences pour l’Ingénieur (SPI) 072 (Centrale Lille)

To my parents,
to all my family,

to my professors,
and to all my friends.

ACKNOWLEDGEMENTS

This research work has been realized at “Centre de Recherche en Informatique, Signal et
Automatique de Lille (CRIStAL)” in Centrale Lille, with the research team “Modèles et
Outils formels pour des Systèmes à Evénements discrets Sûrs (MOSES)” from March 2014
to May 2017. This work is financially supported by China Scholarship Council (CSC). I
would never have this wonderful living and working experience in France.

First and foremost, I offer my sincerest gratitude to my supervisor Prof. Armand
TOGUYENI and my co-supervisor Dr. Manel KHLIF-BOUASSIDA. They have provided
their supervision, valuable guidance, continuous encouragement as well as given me
extraordinary experiences throughout my working experience.

Besides my supervisors, I would like to thank Prof. Rochdi MERZOUKI for his kind
acceptance to be the president of my PhD Committee. Then, I would like to express my
sincere gratitude to Prof. Eric NIEL and Prof. Dimitri LEFEBVRE, who have kindly ac-
cepted the invitation to be reviewers of my PhD thesis, for their encouragement, insightful
comments and helpful questions. I would also like to give my gratitude to Prof. João
Dos Santos BASILIO, Dr. Ramla SADDEM and Dr. Mohamed GHAZEL for their kind
acceptance to take part in the jury of the PhD defense.

I am very grateful to the staff in Centrale Lille, Mrs. Vanessa FLEURY, Mrs. Brigitte
FONCEZ, Mrs. Christine YVOZ and Mrs. Salima HALITIM have helped me in the admin-
istrative work. Many thanks go also to Mr. Patrick GALLAIS, Mr. Gilles MARGUERITE
and Mr. Jacques LASUE, for their kind help and hospitality in the laboratory. Special
thanks go to Mrs. Christine VION, Mrs. Martine MOUVAUX for their support in my
lodgment life.

My sincere thanks goes to Dr. Baisi LIU, for his useful advices during my study in the
laboratory as well as after his graduation. My sincere thanks also goes to Prof. João Dos
Santos BASILIO, for his kind supervision of my research work.

All my gratitude goes to Ms. Hélène CATSIAPIS, my French teacher, who showed
us the French language and culture. She organized some interesting and unforgettable
voyages in France, which inspired my knowledge and interest in the French culture,
opened my appetite for art, history and cuisine/wine and enriched my life in France.

v

I would like to take the opportunity to express my gratitude and to thank my fellow
workmates in CRIStAL: Hongchang ZHANG, Lijuan ZHANG, Yuchen XIE, Jianxin FANG
and Paul CAZENAVE for the stimulating discussions for the hard teamwork. Many thanks
go to my friends who helped me a lot during the past three years. I mention Jian ZHANG,
Yue Wang, Qi SUN, Yihan LIU, Chen XIA, Daji TIAN, Qi GUO, Xuemei LIU, Abderaouf
Boussif, Rahma Lahyani and many others whose names only by lack of memory I failed
to include in this list.

My acknowledgements to all the professors and teachers in École Centrale de Pékin,
Beihang University. The engineer education there not only gave me solid knowledge but
also made it easier for me to live in France.

A special acknowledgment should be shown to Prof. Zhang REN and Dr. Qingdong
LI at the School of Automation Science and Electrical Engineering, Beihang University,
who enlightened me at the first glance of research. I always benefit from the abilities that I
obtained in his research team.

I would like to offer my gratitude to thank my friend at the table tennis club LYS LILLE
METROPOLE CP: Valentin, Dario, Eric, Frédéric, Jérémy, Dominic, Loic, etc. I spent a lot
of joyful time with them.

Thanks to my parents, Junshan LI and Ling ZHANG, for living in my heart and mind
despite being on the other side of the ocean. Especial thanks to my girl friend Jiaqian YU
for her support accompany, patience, and encouragement.

Villeneuve d’Ascq, France Ben LI

May, 2017

vi

CONTENTS

Contents vii

List of Figures xi

List of Tables xv

1 Introduction 3
1.1 Background . 3
1.2 Contributions . 5
1.3 Manuscript’s structure . 6

2 Problem statement and positioning of the works 9
2.1 Problem statement . 9
2.2 Positioning of the works . 10

2.2.1 Monolithic diagnosability analysis 10
2.2.2 Modular diagnosability analysis . 12

2.3 Basic notions . 13
2.3.1 Automata . 13
2.3.2 Petri Nets (PNs) . 17

3 Monolithic diagnosability analysis using LPN 25
3.1 Literature review . 26

3.1.1 Automata-based approaches . 26
3.1.1.1 Diagnoser approach . 27
3.1.1.2 Twin-plant approach . 31
3.1.1.3 Verifier approach . 33
3.1.1.4 Other automata-based approaches 36

3.1.2 PN-based approaches . 37
3.1.2.1 Diagosability analysis by checking T-invariants 38
3.1.2.2 Diagosability analysis using Minimal explanations 39
3.1.2.3 On-the-fly diagnosability analysis 44
3.1.2.4 Verifier Net (VN) approach 51
3.1.2.5 Other PN-based approaches 55

3.2 Contributions on monolithic diagnosability analysis 56

vii

CONTENTS

3.2.1 Diagnosis and diagnosability analysis using reduction rules 56

3.2.1.1 Reduction rules for regular unobservable transitions . . . 56

3.2.1.2 Reduction rules for observable transitions 62

3.2.1.3 Impact of the reduction rules on the on-line diagnosis . . 67

3.2.2 Sufficient condition of diagnosability for safe and live LPN 69

3.2.3 On-the-fly diagnosability analysis using minimal explanations . . 72

3.2.4 On-the-fly diagnosability analysis using T-invariants 82

3.2.5 On-the-fly diagnosability analysis using VN 91

3.3 Synthesis of the contributions (on monolithic diagnosability analysis) . . . 100

4 Modular diagnosability analysis using LPN 103
4.1 Literature review of decentralized fault diagnosis, modular fault diagnosis

and distributed fault diagnosis . 104

4.1.1 Decentralized diagnosis . 104

4.1.2 Modular diagnosis . 110

4.1.3 Distributed diagnosis . 117

4.1.4 Synthesis of literature review . 121

4.2 Modular diagnosability analysis using LPN model 122

4.2.1 Definition of LPN module, sound decomposition and modular diag-
nosability using LPN . 123

4.2.2 Reduction rules for modular diagnosability 126

4.2.3 Local diagnosability analysis . 128

4.2.4 Incremental modular diagnosability analysis 134

4.2.5 ε−reduction technique to combat combinatorial explosion for mod-
ular diagnosability analysis . 140

4.2.6 Complexity analysis . 146

4.3 Synthesis of the contributions (on modular diagnosability analysis) 147

5 Case study 149
5.1 Manufacturing benchmark . 149

5.1.1 Monolithic diagnosability analysis of the manufacturing benchmark 151

5.1.1.1 Case 1 . 152

5.1.1.2 Case 2 . 154

5.1.1.3 Case 3 . 156

5.1.2 Modular diagnosability analysis of the manufacturing benchmark 160

5.1.2.1 Case 1 . 162

5.1.2.2 Case 2 . 164

5.2 Multi-track level crossing benchmark . 167

5.2.1 Monolithic diagnosability analysis of the LC benchmark 169

5.2.2 Modular diagnosability analysis of the LC benchmark 170

5.3 Synthesis of the two case studies . 174

viii

CONTENTS

6 Conclusions and perspectives 177
6.1 Conclusions . 177
6.2 Perspectives . 179

Bibliography 185

A Literature review on untimed DES-Based Diagnosis 197

B Algorithm for reduction rules 201

C Development of the LC Benchmark [Liu14] 205
C.1 An overview on LC system . 205
C.2 Modeling of the LC subsystems . 206

C.2.1 Railway traffic . 207
C.2.2 LC controller . 208
C.2.3 Barriers subsystem . 210

C.3 Single-track LC model . 210
C.4 n-track LC model . 212

ix

LIST OF FIGURES

2.1 Process of most approaches in literature . 11

2.2 Process of our approaches . 11

2.3 An example of FSM [ZL13] . 14

2.4 Two given automata G1 and G2 . 15

2.5 The product automaton of G1 and G2 . 15

2.6 The parallel composition of G1 and G2 . 16

2.7 The observer Obs(G) of the automaton in Figure 2.3 17

2.8 An example of PN . 18

2.9 An example of LPN . 22

2.10 Two given LPN: LPN1 and LPN2 . 23

2.11 The parallel composition of LPN1 and LPN2: LPN = LPN1||LPN2 23

3.1 An example of automaton G . 27

3.2 The ε−reduced automaton G′ of the automaton G in Figure 3.1 28

3.3 The diagnoser Gd of the automaton G in Figure 3.1 28

3.4 An example of automaton G . 29

3.5 The ε−reduced automaton G′ of the automaton G in Figure 3.1 30

3.6 The diagnoser Gd of the automaton G in Figure 3.4 30

3.7 The label automaton Alabel . 30

3.8 The new version of diagnoser Gd of the automaton G in Figure 3.1 31

3.9 An example of automaton G . 32

3.10 The nondeterministic automaton Go of G in Figure 3.9 32

3.11 The twin-plant of G in Figure 3.9 . 33

3.12 An example of automaton G . 34

3.13 The automata AN and GN of module G . 35

3.14 The automata Al , Gl and GF of module G . 35

3.15 The verifier GV = GN ||GF of module G1 . 36

3.16 An example of LPN model . 39

3.17 An example of LPN . 40

3.18 MBRG of the LPN in Figure 3.17 . 43

3.19 BRD of the LPN in Figure 3.17 . 44

3.20 Principle of on-the-fly diagnosability analysis 47

xi

LIST OF FIGURES

3.21 FM-graph of the LPN in Figure 3.17 . 48
3.22 FM-set tree of the LPN in Figure 3.17 . 49
3.23 An example of LPN . 52
3.24 T′-induced sub-LPN of the LPN in Figure 3.23 52
3.25 VN of the LPN in Figure 3.23 . 53
3.26 CG of the VN in Figure 3.25 . 54
3.27 Reduction rules for regular unobservable transitions 58
3.28 Reduced LPN model of the LPN in Figure 3.17 60
3.29 Reachability graph of the reduced LPN shown in Figure 3.28 61
3.30 Diagnoser of the reduced LPN shown in Figure 3.28 62
3.31 A counter-example for reduction rules of unobservable transitions 63
3.32 Reduction rules for ELOTs . 64
3.33 Further reduced LPN model . 66
3.34 Reachability graph of the further reduced LPN shown in Figure 3.33 66
3.35 Diagnoser of the further reduced LPN shown in Figure 3.33 67
3.36 A counter-example of the sufficient condition in [Wen+05] 70
3.37 BFG of LPN shown in Figure 3.17 . 81
3.38 BFST of LPN shown in Figure 3.17 . 82
3.39 Distribution of tokens after observing label “d” from the initial marking of the

LPN in Figure 3.17 . 84
3.40 Distribution of tokens after observing sequence “da” from the initial marking

of the LPN in Figure 3.17 . 85
3.41 BFG using T-invariants of LPN shown in Figure 3.17 90
3.42 BFST using T-invariants of LPN shown in Figure 3.17 90
3.43 An example of LPN . 93
3.44 T′-induced sub-LPN of the LPN in Figure 3.43 93
3.45 On-the-fly construction of the VN of the LPN in Figure 3.43 97
3.46 On-the-fly construction of CG . 97

4.1 Architecture of decentralized diagnosis approaches [Deb+00] 105
4.2 An example of automaton . 107
4.3 Diagnosers of local sites . 108
4.4 Architecture of Modular diagnosis approaches [Con+06] 110
4.5 Modular diagnosability and monolithic diagnosability 114
4.6 Architecture of Distributed diagnosis approaches 117
4.7 Architecture of the approach in [GL03] . 118
4.8 The model of LPN and its decomposition: LPN1 and LPN2 119
4.9 The model of LPN and its sound decomposition: LPN1 and LPN2 124
4.10 The reduced LPN model LPN′ (LPN) and its sound decomposition: LPN′1

(LPN1) and LPN′2 (LPN2) . 128
4.11 The module LPN1 of the LPN model in Figure 4.10 132

xii

LIST OF FIGURES

4.12 The T′ − induced sub− LPN of LPN1 . 132

4.13 The VN L̃PN1 of LPN1 . 133

4.14 MRG1 of L̃PN1 . 134

4.15 CoAc(MRG1) . 140

4.16 LPN2 . 141

4.17 RG of LPN2 (RG2) . 141

4.18 Cases to avoid while applying ε−reduction . 142

4.19 CoAc(MRG1) and CoAc(MRG1∗) . 144

4.20 RG2 and RG2∗ . 145

4.21 RG1∗||2∗ . 145

5.1 The PN benchmark in [Hos+13] . 150

5.2 Reduced PN benchmark model . 152

5.3 Reduced PN benchmark model in Case 1 . 153

5.4 Reduced PN benchmark model in Case 2 for k = 6 154

5.5 Reduced PN benchmark model in Case 3 . 157

5.6 Reduced PN benchmark model with m = 3 and n = 2 157

5.7 BFG of the PN model in Figure 5.6 . 158

5.8 BFST of the PN model in Figure 5.6 . 159

5.9 The modified model of the PN model in Figure 5.1 160

5.10 The reduced model of the modified model in Figure 5.9 161

5.11 Module j of reduced model . 162

5.12 Module j in Case 1 . 162

5.13 Local diagnoser of module j in Case 1 . 163

5.14 Module h in Case 2 . 164

5.15 VN of the module h . 164

5.16 MRG of the VN in Figure 5.15 . 165

5.17 RG of module j . 166

5.18 CoAc(MRGh∗) and RGj∗ by using ε−reduction 167

5.19 RGh∗||j∗ = CoAc(MRGh∗)||RGj∗ . 167

5.20 The level crossing benchmark [Liu14] . 168

5.21 The modified level crossing benchmark . 170

5.22 The railway traffic module . 171

5.23 The LC controller module . 172

5.24 The barriers module . 172

5.25 Module j of the level crossing benchmark . 174

6.1 Structure of this thesis . 178

B.1 Two examples of LPN . 201

B.2 Reduced LPN of LPN1 . 202

xiii

LIST OF FIGURES

C.1 The construction of a single-track track level crossing (LC) system 206
C.2 The labeled Petri net (LPN) model for a train passing an LC 207
C.3 The LPN model for LC controller . 209
C.4 The Petri net (PN) model for an interlock . 209
C.5 The LPN model for a barrier system . 210
C.6 A single-track LC . 211
C.7 A single-track LC with two classes of faults . 212
C.8 n-track LC benchmark . 213

xiv

LIST OF TABLES

3.1 Markings and e-vectors in MBRG and BRD . 44
3.2 Fault markings in Figure 3.21 and Figure 3.22 49
3.3 Markings in Figure 3.26 . 55
3.4 Markings in Figure 3.29 and Figure 3.30 . 61
3.5 Markings in Figure 3.34 and Figure 3.35 . 67
3.6 Markings and e-vectors in BFG and BFST . 80
3.7 BFMs and e-vectors of the BFG and BFST (Figure 3.41 and Figure 3.42) 90
3.8 Markings in Figure 3.46 . 97
3.9 Comparison of the VN approach in [Cab+12] and the on-the-fly diagnosability

analysis using VN for the diagnosability analysis of the LPN model in Figure 3.43 98
3.10 States numbers comparison . 102

4.1 Application of the naive protocol for the example in Figure 4.1 108
4.2 The MFMs in Figure 4.14 . 133
4.3 The markings in Figure 4.17 . 140

5.1 The experimental result for analyzing initial models 155
5.2 The experimental result for analyzing reduced models 155
5.3 BFMs and e-vectors of the BFG and BFST (Figure 5.7 and Figure 5.8) 159
5.4 Comparison of monolithic diagnosis and modular diagnosis 163
5.5 The MFMs in Figure 5.16 . 165
5.6 The markings in Figure 5.17 . 166

C.1 Some figures about the state space of the various LC models 215

xv

ABBREVIATIONS

BFG Basis Fault Marking graph
BFM Basis Fault Marking
BFS Basis Fault Marking Set
BFST Basis Fault Marking Set Tree
BRD Basis Reachability Diagnoser
CG Coverability Graph
DES Discrete Event System
ELOT Exclusively Labeled Observable Transition
FM Fault Marking
FM-graph Fault Marking graph
FM-set Fault Marking Set
FM-set tree Fault Marking Set Tree
ILP Integer Linear Programming
LPN Labeled Petri Net
MBRG Modified Basis Reachability Graph
MRG Modified Reachability Graph
RG Reachability Graph
VN Verifier Net

1

C
H

A
P

T
E

R

1
INTRODUCTION

Contents
1.1 Background . 3

1.2 Contributions . 5

1.3 Manuscript’s structure . 6

This thesis deals with fault diagnosis of complex discrete event systems (DES) modeled
by labeled Petri nets (LPN). This work is accomplished in the research team MOSES (Mod-
èles et Outils formels pour des Systèmes à Evénements discrets Sûrs) of CRIStAL (Centre
de Recherche en Informatique, Signal et Automatique de Lille, UMR 9189) laboratory,
co-supervised by Prof. Armand Toguyéni and Dr. Manel Khlif-Bouassida.

1.1 Background

At the beginning of this century, with the advancement of new technologies, the com-
petition between companies is increasing quickly to produce powerful automated and
autonomous systems in many fields (manufacturing, transportation, health, space, etc.)
Meanwhile, the complexity of automated and autonomous systems is increasing since
more performance requirements become mandatory. When the operation of a complex
system is related o human life or human safety, the system is called “critical” and it needs
to impose automated fault diagnosis to avoid catastrophes.

A fault is defined as any deviation of system from its specified behavior. The fault
diagnosis is the process that detects and identifies the fault and its type based on the
observable symptoms.

Effective methods for fault diagnosis are required, because the efficiency of these

3

CHAPTER 1. INTRODUCTION

methods enhances the safety, the reliability, the availability and the competitiveness of
systems.

In the literature, fault diagnosis approaches were classified in [Ven+03] as follows:
model-based approaches; knowledge-based approaches; and data-based approaches. In
addition to the nature of the information used to make the diagnosis, the structure of
diagnosis itself is an important factor to be taken into consideration. We distinguish:
monolithic (or centralized) diagnosis; decentralized diagnosis; modular diagnosis; and
distributed diagnosis. Whatever the nature of the system (continuous systems, discrete
event systems (DES) and hybrid systems) and the structure of the diagnosis, the classifica-
tion in [Ven+03] remains valid. This thesis focuses on the model-based fault diagnosis of
DES that is modeled by labeled Petri nets (LPN) and we address monolithic and modular
diagnosis problems.

A DES is informally defined as a discrete-state and event-driven system. In detail, the
definition of DES contains two main points: (1) the state space is discrete, e.g., a lamp has
two states: “ON” and “OFF”; (2) the transition mechanism of states is driven by event e.g.,
the state of the lamp is changed from “OFF” to “ON” by the event: pressing the button
of the lamp. In practice, many systems can be categorized and analyzed as DES such
as embedded systems [Edw+97; Haj+13; ST15; Sch+00], transportation systems [Gha17;
Haj+12; Liu+16; Paq+14] and manufacturing systems [Far+11; NN04; Tog+03; Zho+92].
The behavior of a DES is monitored by observing some events that can be detected by the
sensors. These events are called “observable events”. Nevertheless, there exist also some
events that are undetectable by the sensors and they are called “unobservable events”.
The existence of unobservable events produces the ambiguity of the system, since the state
of the system cannot be determined after the occurrence of an unobservable event. In this
thesis, the faulty behaviors are modeled by unobservable events.

Two main issues of fault diagnosis of DES models are:

1. on-line diagnosis of the system;

2. off-line diagnosability analysis of the system.

The on-line diagnosis is to deduce the occurrence of faults (represented by unobservable
events) and their types by using the observable events, while the system is running. The
diagnosability represents the ability to detect a fault in a finite delay after its occurrence
based on observations. The diagnosability is checked “off-line” (at the design stage of
the system) and must be ensured before implementing the system. The on-line diagnosis
is executable if and only if all the faults are “diagnosable”. The most intuitive method
is to enumerate the entire state space and then to verify certain formal conditions for
diagnosability property. However, if the system is huge and complex, computational
complexity and combinatorial explosion problems prevent the diagnosability analysis.

4

1.2. CONTRIBUTIONS

To overcome these problems, a lot of works have been proposed. An overview of the
DES-based diagnosis in literature is provided in Appendix A.

This thesis proposes efficient approaches for diagnosability analysis of DES modeled by
labeled Petri nets (LPN), dealing with the computational complexity and the combinatorial
explosion to help to develop, in the future, software tools of diagnosability analysis for
industrial use. It is worth noticing that LPN is a powerful formal modeling tool that gives
a compact representation of DES and it is increasingly applied in industry.

1.2 Contributions

This research work focuses on the fault diagnosis of DES using LPN modeling formalism.
Some new approaches for monolithic diagnosability analysis (in Chapter 3) and modular
diagnosability analysis (in Chapter 4) are presented. The contributions are summarized as
follows:

1. Monolithic diagnosability analysis: New diagnosability analysis techniques for
LPN models with different assumptions are proposed. These techniques are based
on structural properties of LPN model, in particular, T-invariants, reduction rules,
minimal explanations.

a) Some reduction rules are proposed to simplify the LPN model of system before
analyzing its diagnosability. Some transitions and places could be suppressed.
It is proved that the diagnosability property is preserved after using these
reduction rules. These rules are strong complement for most of diagnosability
analysis techniques using LPN existing in the literature.

b) A new sufficient condition for the diagnosability of a safe and live LPN is
proposed, which supplements the defect of the sufficient condition in [Wen+05].
A method is proposed by using linear programming technique to check this
sufficient condition.

c) The on-the-fly diagnosability analysis, previously developed in our research
team [Liu+14] is improved using minimal explanations. By using minimal
explanations, the state space of the system and the model for diagnosis are built
in a compact manner to reduce the combinatorial explosion of diagnosability
analysis.

d) The on-the-fly diagnosability analysis is also improved by using T-invariant:
by using the T-invariants, the priorities of investigating branches are defined.
For a non-diagnosable LPN, the efficiency of on-the-fly diagnosability analysis
is particularly improved.

e) The on-the-fly diagnosability analysis using Verifier Nets is proposed, which
can be used for both bounded and unbounded LPN model. The computational

5

CHAPTER 1. INTRODUCTION

complexity is polynomial for diagnosability analysis of bounded LPN. This
contribution achieves a compromise between computation efficiency and com-
binatorial explosion limitation.

2. Modular diagnosability analysis: the strong assumption on liveness in [Con+06] is
removed. An approach with lower computational complexity is proposed.

a) Some reduction rules are applied to simplify the LPN model before analyz-
ing the modular diagnosability. It is proved that the modular diagnosability
property is preserved after using these reduction rules.

b) While analyzing the local diagnosability of local modules, a new approach is
proposed based on the Verifier Net (VN) approach in [Cab+12]. A new structure
called Modified Reachability Graph (MRG) of the VN is developed. A sufficient
and necessary condition for local diagnosability is given. The complexity of
this approach is the same with that of the VN approach.

c) A new approach for modular diagnosability analysis is proposed. The parallel
composition of MRG and the Reachability Graph (RG) of the composed LPN
module is built, in order to check the modular diagnosability property. A
sufficient and necessary condition for modular diagnosability is proposed. The
ε−reduction technique is used to simplify the structures before building the
parallel composition, in order to reduce the combinatorial explosion problem.
The complexity of this approach is polynomial and lower than other approaches
in literature.

1.3 Manuscript’s structure

This thesis is structured as follows:

• In Chapter 2, the problem statement of the diagnosability analysis is provided.
The positioning of our works on monolithic diagnosability analysis and modular
diagnosability analysis in presented. Then, some useful basic notions of this thesis
are given.

• In Chapter 3, the literature review of the approaches for monolithic diagnosability
analysis is given. Some automata-based approaches and PN-based approaches are
analyzed in detail. Thus, some contributions on monolithic diagnosability analysis
are proposed.

• In Chapter 4, the literature review of decentralized diagnosis, modular diagnosis and
distributed diagnosis is presented. A new modular diagnosability analysis approach
is proposed.

6

1.3. MANUSCRIPT’S STRUCTURE

• In Chapter 5, some experimental evaluations are provided to test our proposed ap-
proaches. A manufacturing benchmark [Hos+13] and a n−multi track level crossing
benchmark [Liu+16] are taken into consideration. The monolithic diagnosability and
modular diagnosability of the two benchmarks are analyzed.

• In Chapter 6, the conclusions and some perspectives are given.

7

C
H

A
P

T
E

R

2
PROBLEM STATEMENT AND POSITIONING OF THE

WORKS

Contents
2.1 Problem statement . 9

2.2 Positioning of the works . 10

2.2.1 Monolithic diagnosability analysis 10

2.2.2 Modular diagnosability analysis 12

2.3 Basic notions . 13

2.3.1 Automata . 13

2.3.2 Petri Nets (PNs) . 17

2.1 Problem statement

The first widely accepted DES-based fault diagnosis was proposed in [Sam+95] using
automata. An automaton structure called “Diagnoser” is introduced for both on-line
diagnosis and diagnosability analysis. However, this approach (called “diagnoser” ap-
proach) brings two principle problems for fault diagnosis: computational complexity and
combinatorial explosion. The complexity of building a diagnoser is exponential in the
number of the states of the automaton system. The diagnosability analysis is based on
the enumeration of the state space of the diagnoser, which could lead to a combinatorial
explosion problem. Because of these problems, the “diagnoser” approach is not applicable
while dealing with a large-scale system. Afterwards, researchers focus on the Petri net
(PN), which gives a compact representation of DES. The pioneer work of PN-based fault
diagnosis was proposed in [Ush+98]. However, the computational complexity and combi-
natorial explosion problems still exist to a certain extent. To overcome these problems of

9

CHAPTER 2. PROBLEM STATEMENT AND POSITIONING OF THE WORKS

diagnosability analysis using automata and using PN, many techniques has been proposed
in the literature. A literature review is given in Section 3.1.

Moreover, instead of analyzing the monolithic system, the architectures of decentral-
ized diagnosis, modular diagnosis and distributed diagnosis have been proposed in the
literature, in order to reduce the complexity of diagnosis. The literature review of these
approaches is given in Section 4.1. The main objective is to achieve the same diagnosis
performance with the monolithic approaches without building the monolithic diagnoser.
However, before using these architectures for fault diagnosis, the corresponding diag-
nosability properties need to be verified (codiagnosability for decentralized architecture,
modular diagnosability for modular architecture and monolithic diagnosability for dis-
tributed architecture). There does not exist a best approach for all kinds of DES system and
each architecture has its own problems. This thesis focuses on the modular architecture in
order to deal with computational complexity and combinatorial explosion problems of
modular diagnosis in literature.

2.2 Positioning of the works

This thesis is in the framework of labeled Petri net (LPN) and deals with the diagnosability
analysis of DES. The contributions of this thesis consists of two parts: (1) monolithic
diagnosability analysis; (2) modular diagnosability analysis. The positioning of the works
are discussed separately.

2.2.1 Monolithic diagnosability analysis

The diagnosability property needs to be analyzed at the design stage of the DES. The on-
line diagnosis is executed if and only if the diagnosability of the DES is verified. However,
there is no guaranty that the diagnosability property of system is initially fulfilled. The
aim of this study is to propose some methods of engineering that allow iterating the
diagnosability analysis. When a DES is determined to be non-diagnosable, the model of
DES must be modified and the diagnosability needs to be reanalyzed until the DES is
diagnosable.

Most of the approaches in literature (in Section 3.1) build the whole state space a priori
and then analyze the diagnosability using the entirely constructed state space. The process
of these approaches in shown in Figure 2.1. For most of approaches, the diagnosability
analysis of a given LPN model is transferred to the study of its reachability graph (RG)
or some kinds of modified RG (e.g. MBRG in [Cab+14]). Therefore, the whole RG is
necessarily built. Then, a diagnoser is built based on the RG for the diagnosability analysis.
If the LPN model is non-diagnosable, the model is modified and then the RG and the
diagnoser of the modified model are built once again. The previous process is iterated
until the modified LPN is diagnosable. These approaches are not favorable for industrial

10

2.2. POSITIONING OF THE WORKS

use, because the state space of the monolithic model is rebuilt each time when the system
is modified. For a large-scale LPN, these approaches are not efficient for iterating the
diagnosability analysis and there exists combinatorial explosion problem.

Figure 2.1 – Process of most approaches in literature

Figure 2.2 – Process of our approaches

In this thesis, to overcome the combinatorial explosion problem while iterating the
diagnosability analysis, the process of the proposed technique is different. As it is shown
in Figure 2.2, there are two different points:

11

CHAPTER 2. PROBLEM STATEMENT AND POSITIONING OF THE WORKS

1. Instead of building directly the RG of the given LPN model, the LPN model is simpli-
fied a priori: some reduction rules are proposed with the proof that the diagnosability
property is preserved. By using these reduction rules, some transitions and places
are reduced. The diagnosability analysis using the reduced LPN model leads to the
same result of the diagnosability analysis of the initial LPN model. The state space
of the reduced LPN model is smaller than that of the initial one so as to reduce the
combinatorial explosion problem.

2. The on-the-fly diagnosability analysis is applied. The on-the-fly diagnosability anal-
ysis does not build entirely the state space a priori, nor the model for diagnosis: they
are built on the fly and in parallel with some stop conditions, which stop building
some of their branches. Along with their on-the-fly construction, the diagnosability
is analyzed. When the condition of undiagnosability is satisfied, the result that the
LPN model is not diagnosable, is immediately given. This technique shows that
a part of state space could suffice for diagnosability analysis, particularly when
the system is non-diagnosable, in order to reduce the memory cost and solve the
combinatorial explosion problem. In this work, two structure properties of LPN are
used: the minimal explanation and T-invariant, and the efficiency of the on-the-fly
diagnosability analysis is improved.

2.2.2 Modular diagnosability analysis

For some large-scale systems which are more complex, the monolithic diagnosis is not
feasible because the monolithic diagnoser is required i.e., it is impossible to build a
monolithic diagnoser of the system because of the computational complexity and the
combinatorial explosion problem. Many approaches such as decentralized diagnosis,
modular diagnosis and distributed diagnosis are proposed to achieve the same diagnosis
performance of the monolithic diagnosis without building the monolithic diagnoser.

In literature, the approaches of modular diagnosability are based on the automata
models. For a modularly designed system (it is assumed that the communication between
modules is via common events), if automata are used to model the system, it is not easy to
give directly the monolithic model. Usually, the model of each module is generated, then
the monolithic model can be obtained by building the parallel composition of the modules.
However, for a modularly designed system, it is not favorable to build the monolithic
model and analyze the monolithic diagnosability because of the combinatorial explosion
problem. In this case, if the modular diagnosability of the system is fulfilled, the on-line
diagnosis can be implemented by using only the local diagnoser of each module.

However, if the modularly designed system is modeled by Petri net (PN), the mono-
lithic model may be directly given due to the advantage of PN (the concurrent processes
are well represented by using PN). The monolithic diagnosability remains infeasible. In
this thesis, we focus on system that is modeled by a collection of PN modules or by a

12

2.3. BASIC NOTIONS

monolithic model that can be decomposed under certain conditions into a collection of
PN modules. A new modular diagnosability verification is proposed based on the PN
model by removing some assumptions of the approaches in the literature. The aim of
this approach is to reduce the computational complexity and combinatorial explosion
problem.

2.3 Basic notions

This section recalls some notions that will be used in the rest of this manuscript.

2.3.1 Automata

An automaton is a graphical device that is capable to describe state spaces and state
transtions of a DES. A language according to well-defined rules can be represented by
using an automaton. Particularly, one type of automata is widely used, which is called
Final State Machine (or Final State Automaton).

A deterministic automaton model is denoted as a six-tuple G = (X, Σ, δ, Γ, x0, Xm),
where

– X is the finite set of states;

– Σ is the set of events;

– δ : X× Σ→ X is the transition function. δ(x, e) = y denote that there is a transition
labeled by event e from state x to state y;

– Γ : X → 2Σ is the feasible event function (or active event function). Γ(x) is called the
feasible event set (or active event set) of G at state x. It is the set of all events e for
which δ(x, e) is defined;

– x0 is the initial state;

– Xm ⊆ X is the set of marked states.

The automaton is said to be deterministic because δ is a function from X× Σ to X, namely,
there canont be two transitions with the same event label out of a state. For the sake of
convenience, δ is always extended from domain X× Σ to domain X× Σ∗, where Σ∗ is the
Kleene closure of the set of events Σ.

For the sake of simplicity, unless specifically stated, the feasible event function Γ and
the set of marked states Xm are omitted.

Example 1 Let us consider the automaton G = (X, Σ, δ, x0) shown in Figure 2.3.

13

CHAPTER 2. PROBLEM STATEMENT AND POSITIONING OF THE WORKS

• The set of states is X = {1, 2, 3, 4, 5, 6};

• The set of events is Σ = {a, b, c, f , u};

• The transition mapping is shown by following the arrows, e.g. δ(1, c) = {2}, δ(3, b) = {2}
and δ(6, a) = {6};

• The initial state is 1.

1start

2

3

4

5 6

c

a

u

f

ab b

a a

Figure 2.3 – An example of FSM [ZL13]

The behavior of a DES is described by the prefix-closed language L(G) = {s ∈ Σ∗|
δ(x0, s) is defined}. The language L(G) represents all the directed paths that can be fol-
lowed along the state transition diagram, starting from the initial state. L(G) is a subset of
Σ∗. The post-language of L(G) after s is denoted as L(G)/s = {s′ ∈ Σ∗| ss′ ∈ L(G)}.

The accessible part of an automaton G is obtained by removing all states that are
not accessible from the initial state x0 and their related transitions. This operation is
denoted as Ac(G) = (XAc, Σ, δAc, x0), where XAc = {x ∈ X|(∃s ∈ Σ∗)[δ(x0, s) = x]} and
δAc : XAc × Σ→ XAc is the restricted transition function on XAc.

The coaccessible part of G is obtained by removing all states from which it is not possi-
ble to reach a marked state. This operation is denoted as CoAc(G) = (XCoAc, Σ, δCoAc, x0CoAc ,
Xm), where XCoAc = {x ∈ X|(∃s ∈ Σ∗)[δ(x0, s) ∈ Xm]}, δCoAc : XCoAc × Σ→ XCoAc is the
restricted transition function on XCoAc and x0CoAc = x0 if x0 ∈ XCoAc or x0CoAc is undefined
if x0 /∈ XCoAc.

The product (or completely synchronous composition) of two given automata G1 =

(X1, Σ1, δ1, Γ1, x0,1, Xm,1) and G2 = (X2, Σ2, δ2, Γ2, x0,2, Xm,2) is the automaton G1 × G2 :=
Ac(X1 × X2, Σ1 ∩ Σ2, δ, Γ1×2, (x0,1, x0,2), Xm,1 × Xm,2), where

δ((x1, x2), e)) :=

(δ1(x1, e), δ2(x2, e)) if e ∈ Γ1(x1) ∩ Γ2(x2)

undefined otherwise

14

2.3. BASIC NOTIONS

The parallel composition (or synchronous composition) of G1 and G2 is the automaton
G1||G2 := Ac(X1 × X2, Σ1 ∪ Σ2, δ, Γ1||2, (x0,1, x0,2), Xm,1 × Xm,2), where

δ((x1, x2), e)) :=



(δ1(x1, e), δ2(x2, e)) if e ∈ Γ1(x1) ∩ Γ2(x2)

(δ1(x1, e), x2) if e ∈ Γ1(x1)\Σ2

(x1, δ2(x2, e)) if e ∈ Γ2(x2)\Σ1

undefined otherwise

Example 2 Given two automata (shown in Figure 2.4) G1 = (X1, Σ1, δ1, Γ1, x0,1, Xm,1) and
G2 = (X2, Σ2, δ2, Γ2, x0,2, Xm,2), where X1 = {x, y, z}, Σ1 = {a, b, g}, Xm,1 = {x, z}, X2 =

{0, 1}, Σ2 = {a, b} and Xm,2 = {1}. The product automaton of G1 and G2 is shown in Figure 2.5
and the parallel composition of G1 and G2 is shown in Figure 2.6.

xstart

z

y

a

g

b

a, g

ba

(a) G1

0start 1

b
a

a

b

(b) G2

Figure 2.4 – Two given automata G1 and G2

(x, 0)start (x, 1)
a a

Figure 2.5 – The product automaton of G1 and G2

To deal with the automata-based diagnosis problems, the DES is model by an automa-
ton containing normal and faulty behaviors. The set of events Σ are partitioned into two
sets: Σ = Σo∪̇Σu (the symbol ∪̇ is used to represent that the two sets are disjoint), where
Σo is the set of observable events and Σu is the set of unobservable events. Σ f is denoted
as the set of fault events to be diagnosed. Σ f can be partitioned into different fault classes:
Σ f = Σ f1∪̇Σ f2∪̇ · · ·Σ fk . The partition can be denoted by Π f .

15

CHAPTER 2. PROBLEM STATEMENT AND POSITIONING OF THE WORKS

(x, 0)start

(x, 1)

(z, 0)

(z, 1)

(y, 0)

(y, 1)

a

g

a
g

b

g

a
b

a, g

b

a
b

a

Figure 2.6 – The parallel composition of G1 and G2

The projection operator Po,e : Σ∗ → Σ∗o is defined as follows:

Po,e(ε) = ε (ε is an empty string)

Po,e(e) = ε i f e ∈ Σu

Po,e(e) = e i f e ∈ Σo

Po,e(se) = Po,e(s)Po,e(e) where s ∈ Σ∗ and e ∈ Σ

In other terms, by using the projection operator, the unobservable events in one
sequence are removed and the obtained sequence contains only observable events.

The inverse projection operator P−1
o,e for ∀y ∈ Σ∗o is defined as

P−1
o,e (y) = {s ∈ Σ∗| Po,e(s) = y}

Example 3 Let us consider again the automaton G = (X, Σ, δ, x0) shown in Figure 2.3. Assum-
ing that Σo = {a, b, c} and Σu = {u, f }. For s ∈ L(G) where s = cab f au, Po,e(s) = caba.

Normally, an automaton with ε−transition as introduced before is not necessarily
deterministic, because there exist unobservable events, which cause the uncertainty of
the states reached after firing un observable event. However, for any automaton, we can
build an observer Obs(G) which is a deterministic automaton. An observer is built by
regrouping all the states that can be reached after firing an observable events.

Example 4 Let us consider again the automaton G = (X, Σ, δ, x0) shown in Figure 2.3. The
observer Obs(G) is built in Figure 2.7.

16

2.3. BASIC NOTIONS

{1}start {2, 4} {3, 5, 6} {5, 6} {4}c a a

b

b

a

a

Figure 2.7 – The observer Obs(G) of the automaton in Figure 2.3

2.3.2 Petri Nets (PNs)

Petri nets (PN) were invented in the PhD thesis of Carl Adam Petri in 1962 [Pet62]. The
theory of PNs has been developed in the following years [Sil12]. Comparing to automata,
PNs have some advantages:

1. PNs give a graphical and mathematical representation of DESs. The analysis of PNs
can be proposed by using the graphical structure or mathematical calculation;

2. The states of PNs are represented by the distribution of tokens in places, which gives
a more compact representation of DESs and allows them representing an infinite
state space by a finite graphical structure;

3. The concurrent processes are well represented by using PNs., in order to model a
system with shared resources;

4. The composition and decomposition operations can be more conveniently done
by using PNs. PNs give a more natural structure of systems. The communication
between modules can be modeled by common places or transitions. The process of
decomposing a modular system is more intuitive using PNs

The definition of a PN is given as follows:

Definition 1 A PN is defined as a 4-tuple N = (P, T, Pre, Post), where:

• P is a finite set of places. A place is represented by a circle;

• T is a finite set of transitions. A transition is represented by a bar or box;

• Pre : P× T → N is the pre-incidence matrix that represents the weight of the arcs from
places to transitions in the PN graph;

• Post : P× T →N is the post-incidence matrix that represents the weight of the arcs from
transitions to places in the PN graph.

Example 5 An example of PN is shown in Figure 2.8.

17

CHAPTER 2. PROBLEM STATEMENT AND POSITIONING OF THE WORKS

p1 p2 p3

place

t1

2

t2

t3

22

transition

Figure 2.8 – An example of PN

• The set of places is P = {p1, p2, p3};

• The set of transitions is T = {t1, t2, t3};

• The pre-incidence matrix is:

Pre =


t1 t2 t3

p1 1 0 0
p2 0 1 0
p3 0 0 2

;

• The post-incidence matrix is:

Post =


t1 t2 t3

p1 1 0 0
p2 2 0 2
p3 0 1 0

;

A state of a PN is called a "Marking", which is a vector M ∈ N|P| that assigns a non-
negative integer to each place. A marking is the distribution of tokens in the places of
the PN. The tokens are represented by the dots in the places. We denote that (N, M0) is a
marked PN with the initial marking M0.

The behavior of a PN model is represented by the redistribution after firing a transition.
A transition t ∈ T is enabled at a marking M iff M ≥ Pre(·, t). The set of enabled transitions
is denoted as Tenabled(M) = {t|t ∈ T, M ≥ Pre(·, t)}.

An enabled transition t at a marking M can be fired. The obtained marking M′ is
computed by M′ = M + Post · −→t − Pre · −→t , where

−→
t ∈ {0, 1}|T| is the elementary vector

of transition t, in which only the column associated to the transition t is equal to 1. The
incidence matrix C is denoted as C = Post− Pre. Therefore, the obtained marking M′ can
be computed by M′ = M + C · −→t . The marking M′ is said to be a reachable marking from
M, and it is denoted as M[t > M′.

18

2.3. BASIC NOTIONS

Example 6 In the PN example in Figure 2.8:

• The initial marking is:

M0 =

p1 1
p2 0
p3 0

;

• The incidence matrix is:

C = Post− Pre =


t1 t2 t3

p1 0 0 0
p2 2 −1 2
p3 0 1 −2

;

• At the initial marking, the set of enabled transitions is Tenabled(M0) = {t1}. The elementary
vector of transition t1 is:

−→
t1 =

t1 1
t2 0
t3 0

;

• At the initial marking, after firing the transition t1, the obtained marking is:

M1 = M0 + C · −→t1 =

p1 1
p2 2
p3 0

;

A sequence of transitions σ = t1t2 · · · tk is firable (executable) at marking M, if
M[t1 > M1[t2 > · · ·Mk−1[tk > and it is denoted as M[σ >. σj is the j−th transition
in σ. The reached marking M′ is computed by the state equation: M′ = M + C · π(σ),

where π(σ) =
k

∑
i=1

−→
t i is the firing vector of σ, where π(σ) ∈ N |T| and the value of the

row associated to transition ti is equal to the number of occurrence of ti in σ. For a
firing vector −→y = π(σ), −→y (t) = k means that transition t is contained k times in σ.
TM(−→y) = {t ∈ T : the cardinality o f t in TM(−→y) is −→y (t)} is defined as the multiset
of transitions corresponding to the firing vector −→y . For example, the set of transitions
contained by the firing vector −→y (t) = [1 2 0]τ is TM(−→y) = {t1, t2, t2}. A transition ti ∈ σ,
iff −→y = π(σ) and −→y (ti) 6= 0; otherwise, ti /∈ σ. σλ = σ, ∀σ ∈ T∗, where λ denotes the
empty transition.

A marking M is reachable in (N, M0) iff a sequence σ exists such that M0[σ > M. The set
of all the reachable markings from M0 is denoted by R(N, M0) and called the reachability
set of (N, M0).

19

CHAPTER 2. PROBLEM STATEMENT AND POSITIONING OF THE WORKS

Example 7 In the PN example in Figure 2.8:

• At the initial marking M0, the sequence of transitions σ = t1t2t2 is a firable, i.e., M0[σ >.
The firing vector of σ is:

−→y = π(σ) =

t1 1
t2 2
t3 0

;

• At the initial marking M0, after firing the sequence σ = t1t2t2, the obtained marking is:

M′ = M0 + C · π(σ) =

p1 1
p2 0
p3 2

;

• The marking M′ is reachable in (N, M0), because M0[σ > M′, i.e., M′ ∈ R(N, M0).

A PN (N, M0) is said to be bounded (or m-bounded) if there exists a positive number m
such that ∀M ∈ R(N, M0), ∀p ∈ P, M(p) ≤ m. The reachability space of a bounded PN
is finite and it is represented by a graph called reachability graph (RG). A PN is call safe, if
it is 1-bounded.

If the number of tokens in one or more places can be arbitrarily large, the PN is
unbounded and the coverability graph (CG) is used to represent the infinite state space.

Definition 2 Given a PN (N, M0), a transition t is:

– dead: if there does not exist a reachable marking M ∈ R(N, M0) that enables t;

– semi-live: if there exists at least one reachable marking M ∈ R(N, M0) that enables t;

– live: if for each reachable marking M ∈ R(N, M0), t is semi-live in (N, M);

A PN (N, M0) is live if each transition t ∈ T is live. In other words, a PN is live if, from any
marking in R(N, M0), it is possible to fire any transition by progressing through some further
firing sequences. A deadlock occurs at marking M if no transition can be enabled at M.

A T-invariant of PNs is a positive integer solution of homogeneous equation: C · −→Ω =
−→
0 , where

−→
Ω is a firing vector as defined before.

For two markings Mi, Mj ∈ R(N, M0), Mi > Mj iff ∀p ∈ P, Mi(p) > Mj(p).

20

2.3. BASIC NOTIONS

Definition 3 A sequence σ ∈ T∗ is called repetitive if there exists a marking M1 ∈ R(N, M0)

s.t. M1[σ > M2[σ > · · · , i.e., if it can fire infinite times starting from M1. A repetitive sequence
is called:

– stationary: if Mi+1 = Mi for all i = 1, 2 · · · . A stationary repetitive sequence is associated
to a T-invariant.

– increasing: if Mi+1 > Mi for all i = 1, 2 · · · . If there exists an increasing repetitive
sequence, the PN system is unbounded.

Example 8 In the example of PN in Figure 2.8.

• This PN is unbounded because there exists an increasing repetitive sequence. The number
of tokens in p2 can be infinite if the transition t1 is fired infinite times at M0.

• This PN is live. In addition, each transition is live.

• There exist a T-invariant

−→
Ω =

t1 0
t2 2
t3 1

;

because C · −→Ω =
−→
0

• σ1 = t1 is an increasing repetitive sequence at marking M0, because M0[σ1 > M1 and
M1 > M0. σ2 = t2t2t3 is a stationary repetitive sequence at marking M1 because M1[σ2 >

M1 and this stationary repetitive sequence is associated to the T-invariant
−→
Ω .

Definition 4 An LPN, an extension of PN, is a tuple LPN = (N, M0, Σ,L),

• (N, M0) is a marked PN;

• Σ is a finite set of events;

• L : T → Σ is the transition labeling function which assigns a label to each transition.

In event-based diagnosis of DESs using LPN models, the set of transitions is partitioned
into two disjoint sets, T = To∪̇Tu, where To is the set of observable transitions, and Tu is
the set of unobservable transitions. The label of an observable transition can be observed
when it fires. The fault transitions are unobservable. The set of unobservable transitions
is partitioned into two disjoint sets, Tu = Tf ∪̇Treg, where Tf includes all fault transitions,
while Treg = Tu\Tf is the set of regular unobservable transitions. The set Tf can be further

21

CHAPTER 2. PROBLEM STATEMENT AND POSITIONING OF THE WORKS

p1 p2 p3f1, ε

2

t2, a

ε3, ε

22

observable transition
unobservable transition
faulty transition (unobservable)

Figure 2.9 – An example of LPN

partitioned into k different subsets Ti
f , where i = 1, · · · , k, represents different classes of

faulty transitions.

Po,t : T∗ → T∗o is the projection which removes the unobservable transitions in a
sequence σ ∈ T∗ and Pu,t : T∗ → T∗u is the projection which removes the observable
transitions of σ ∈ T∗.

The set of events is Σ = Σo∪̇{ε}. Σo is the set of observable events that are associated
with observable transitions and the label of all unobservable transitions is ε. The same label
could be shared by different transitions. The labeling function can be extended to L : T∗ →
Σ∗. The inverse projection operator L−1 is defined by L−1(ω) = {σ ∈ T∗ | L(σ) = ω}.
ω = ω1ω2 · · ·ωn is the concatenation of ω1, ω2, · · · , ωn with ω1, ω2, · · · , ωn ∈ Σ∗.

The language generated by LPN is L(LPN) = {L(σ) ∈ Σ∗ | σ ∈ T∗, M0 [σ >}. Let
ω be an observed word, the set of firing sequences of transitions corresponding to ω is
FS(ω) = {σ ∈ L(LPN)|L(σ) = ω}.

Example 9 Let us consider the LPN model LPN = (N, M0, Σ,L) in Figure 2.9.

• The set of events is Σ = Σo∪̇{ε}, where Σo = {a};

• L(f1) = L(ε3) = ε and L(t2) = a.

Definition 5 Given two LPN models LPN1 = (N1, M0,1, Σ1,L1) and LPN2 = (N2, M0,2, Σ2,L2),
where N1 = (P1, T1, Pre1, Post1), N2 = (P2, T2, Pre2, Post2), T1 = To1∪̇Tu1, T2 = To2∪̇Tu2

and (P1 ∪ T1) ∩ (P2 ∪ T2) = ∅. The parallel composition of LPN1 and LPN2 is denoted as
LPN = LPN1||LPN2, where LPN = (N, M0, Σ,L), N = (P, T, Pre, Post) and P = P1 ∪ P2.
The transitions in T are defined as follows:

1. For any pair of transitions ti ∈ To1 and tj ∈ To2 s.t. L1(t1) = L2(t2), add a transition
ti,j ∈ T. For all p ∈ P1, let Pre(p, ti,j) = Pre1(p, ti) and Post(p, ti,j) = Post1(p, ti);

22

2.3. BASIC NOTIONS

for all p′ ∈ P2, let Pre(p′, ti,j) = Pre2(p′, ti) and Post(p′, ti,j) = Post2(p′, ti). Label the
transition ti,j with L1(ti); (The transition ti,j is called a shared transition.)

2. For all the other transitions tk ∈ T1, add a transition t′k ∈ T. For all p ∈ P1, let
Pre(p, t′k) = Pre1(p, tk) and Post(p, t′k) = Post1(p, tk); for all p′ ∈ P2, let Pre2(p′, t′k) =
Post2(p′, t′k) = 0. Label the transition t′k with L1(tk);

3. For all the other transition th ∈ T2, add a transition t′h ∈ T. For all p ∈ P1, let
Pre1(p, t′h) = Post1(p, t′h) = 0; for all p′ ∈ P2, let Pre(p, t′h) = Pre2(p, th) and
Post(p, t′h) = Post2(p, th). Label the transition t′h with L2(th).

Example 10 Given two LPN models in Figure 2.10. The parallel composition of the two LPN is
shown in Figure 2.11.

p1

p2

p3

f1, ε

t2, b t3, a

(a) LPN1

p′1

p′2

p′3

ε′1, ε

t′2, ct′3, a

(b) LPN2

Figure 2.10 – Two given LPN: LPN1 and LPN2

p1

p2

p3 p′3

p′2

p1

f1, ε

t2, b t3,3, a

ε′1, ε

t′2, c

Figure 2.11 – The parallel composition of LPN1 and LPN2: LPN = LPN1||LPN2

23

C
H

A
P

T
E

R

3
MONOLITHIC DIAGNOSABILITY ANALYSIS USING

LPN

Contents
3.1 Literature review . 26

3.1.1 Automata-based approaches . 26

3.1.2 PN-based approaches . 37

3.2 Contributions on monolithic diagnosability analysis 56

3.2.1 Diagnosis and diagnosability analysis using reduction rules . . 56

3.2.2 Sufficient condition of diagnosability for safe and live LPN . . . 69

3.2.3 On-the-fly diagnosability analysis using minimal explanations . 72

3.2.4 On-the-fly diagnosability analysis using T-invariants 82

3.2.5 On-the-fly diagnosability analysis using VN 91

3.3 Synthesis of the contributions (on monolithic diagnosability analysis) . 100

This chapter deals with the monolithic diagnosability analysis, which is the classic
diagnosability analysis as it was originally defined in [Sam+95; Sam+96]. In the literature,
the monolithic diagnosability is analyzed both in the framework of automata and that of
Petri nets (PNs). This thesis focuses on PNs which have advantages for modeling DES.
Precisely, we use Labeled Petri nets (LPN) as input models. This chapter stars with a
literature review of the approaches for diagnosability analysis and then presents new
contributions.

Section 3.2.1 presents some reduction rules that preserve the diagnosability property
of the system (publication on topic [Li+16a; Li+17d]). Section 3.2.2 gives a new sufficient
condition for safe and live LPN. Section 3.2.3 and Section 3.2.4 improve the on-the-fly
diagnosability analysis for bounded LPN by using minimal explanations and T-invariants

25

CHAPTER 3. MONOLITHIC DIAGNOSABILITY ANALYSIS USING LPN

(publications on topic [Li+15a; Li+15b; Li+15c; Li+17a]). Section 3.2.5 proposes the on-
the-fly diagnosability analysis for both bounded and unbounded LPN (publication on topic
[Li+16b; Li+17b]).

3.1 Literature review

The diagnosability was initially defined in the framework of automata and regular lan-
guages. Afterwards, researches focused on PNs which give a more expressive and compact
representation of DESs. The critical problems of diagnosability analysis are combinatorial
explosion and computational complexity. This literature review distinguishes automata-
based approaches and PNs-based approaches and discusses the combinatorial explosion
and computational complexity of the approaches.

3.1.1 Automata-based approaches

The definition of diagnosability is proposed in the framework of automata. It is assumed
that the language of automata is prefix-closed and live.

Definition 6 [Sam+95] A prefix-closed and live language L(G) is said to be diagnosable w.r.t.
the projection Po,e and w.r.t. the partition Π f on Σ f if the following condition holds:

(∀i ∈ Π f)(∃ni ∈N)[∀s ∈ Ψ(ΣFi)][∀r ∈ L(G)/s]

[|r| > ni ⇒ D]

where Ψ(ΣFi) is the set of all the traces in L(G) that end in a faulty event belonging to the class
ΣFi and the condition D is:

ω ∈ [P−1
o,e Po,e(sr)] ∩ L(G)⇒ ΣFi ∈ ω

In other words, the diagnosability requires that after the occurrence of a fault, in a
finite delay (after finite number of observable events), the fault can be detected based on
distinct observations.

Definition 7 [CL07] Unobservable event f is not diagnosable in live language L(G), if there
exist two strings sN and sF, such that:

1. sF contains f and sN does not;

2. sF is arbitrarily long after the occurrence of f ;

3. Po,e(sN) = Po,e(sF).

When no such pair of strings exists, f is said to be diagnosable in L(G).

26

3.1. LITERATURE REVIEW

In other words, the unobservable event f is diagnosable if there is no pair of sequences
with the same observation: one contains a fault and can be arbitrarily long after the fault;
the second one does not contain a fault.

3.1.1.1 Diagnoser approach

The classic diagnoser approach is referred as the pioneer study on diagnosability analysis
of DES. For a given automaton G = (X, Σ, δ, x0), a diagnoser is an FSM defined as

Gd = (Qd, Σ0, δd, q0)

where Qd, Σ0, δd and q0 have the usual definition. Each state of the diagnoser qi ∈ Qd is a
subset of X × {N, F}, where N and F are fault tags: N denotes that the state is reached
by firing a sequence without any fault and F denotes that the state is reached by firing
a sequence with a fault (If the fault belongs to the fault class Σi, the tag is denoted as Fi).
The initial state of the diagnoser is q0 = {(x0, N)}.

In order to build the diagnoser of a given automaton G, the generator ([Sam+95]) of
the given automaton G′ = (Xo, Σo, δG′ , x0) must be built by removing transition labeled
by the unobservable event. G′ is the ε−reduced automaton of G.

1start

2 3 4 5

7

8 9 10 6

11 12

f

a b g

d

h
a

f

b g
h

b g

d

Figure 3.1 – An example of automaton G

Example 11 Let us consider the automaton G in Figure 3.1. Σo = {a, b, d, g, h} and Σu = Σ f =

{ f }. The ε−reduced automaton of G is G′ shown in Figure 3.2.

The diagnoser is built based on the structure of G′. From the initial state (x0, N), the
following state of the diagnoser contains all the possible states after firing an observable
event. The principle idea is based on state estimation.

Example 12 The diagnoser of the automaton G in Figure 3.1 is shown in Figure 3.3.

27

CHAPTER 3. MONOLITHIC DIAGNOSABILITY ANALYSIS USING LPN

1start

3 4 5

7

9 10 6

11 12

a

b g

d

h
a b

g
h

b g

d

Figure 3.2 – The ε−reduced automaton G′ of the automaton G in Figure 3.1

{1N}start {3F, 7N} {4F, 9F, 11N}

{5F, 10F, 12N}

{6F}

a b

g
d

h

h

Figure 3.3 – The diagnoser Gd of the automaton G in Figure 3.1

A state in the diagnoser q ∈ Qd is said to be:

– Normal: if ∀(x, l) ∈ q, l = N (e.g. the initial state {1N} of the diagnoser in Fig-
ure 3.3);

– F-certain: if ∀(x, l) ∈ q, l = F (e.g. the state {6F}of the diagnoser in Figure 3.3);

– F-uncertain: if ∃(x, l)(x′, l′) ∈ q, (l = N) ∧ (l′ = F) (e.g. the state {3F, 7N}of the
diagnoser in Figure 3.3).

In the diagnoser of a given automata G, a cycle formed by F-uncertain states is called
an indeterminate cycle (the formal definition is presented in [Sam+95]), if there exists two
corresponding cycles in G′:

– The first one in G′ is formed by the states labeled by N in the F-uncertain cycle;

28

3.1. LITERATURE REVIEW

– The second one is formed by the states labeled by F in the F-uncertain cycle;

The sufficient and necessary condition for diagnosability is:

Theorem 1 A system is diagnosable iff there does not exist any F-indeterminate cycle.

Example 13 According to Theorem 1, the automaton G in Figure 3.1 is not diagnosable, because
there exists an indeterminate cycle. The F-uncertain cycle in Gd is:

3F, 7N b−→ 4F, 9F, 11N
g−→ 5F, 10F, 12N d−→ 3F, 7N · · ·

The two corresponding cycles in G′ are:

Normal cycle : 7 b−→ 11
g−→ 12 d−→ 7 · · ·

Faulty cycle : 3 b−→ 4
g−→ 5 d−→ 3 · · ·

Example 14 Let us consider the automata G in Figure 3.4. The ε−reduced automaton G′ is shown
in Figure 3.5. The diagnoser of G is shown in Figure 3.6. The system is diagnosable, because there
does not exist any indeterminate cycle. There exists an F-uncertain cycle in the diagnoser:

3F, 7N b−→ 4F, 9F, 11N
g−→ 5F, 10F, 12N d−→ 3F, 7N · · ·

However, there is only one corresponding normal cycle in G′:

Normal cycle : 7 b−→ 11
g−→ 12 d−→ 7 · · ·

1start

2 3 4 5 6

7

8 9 10

11 12

f

a b g h

h

a
f

b g

d

b g

d

Figure 3.4 – An example of automaton G

It is worth noticing that there is a new version of diagnoser approach in [CL07]. The
new version is obtained by Gd = Obs(G||Alabel), where Alabel is called a "label automaton"
(shown in Figure 3.7) and denoted as Alabel = ({N, F}, { f }, Σ f , N).

29

CHAPTER 3. MONOLITHIC DIAGNOSABILITY ANALYSIS USING LPN

1start

3 4 5 6

7

9 10

11 12

a

b g h

h

a
b

g

d

b g

d

Figure 3.5 – The ε−reduced automaton G′ of the automaton G in Figure 3.1

{1N}start {3F, 7N} {4F, 9F, 11N}

{5F, 10F, 12N}

{6F}

a b

g
d

h

h

Figure 3.6 – The diagnoser Gd of the automaton G in Figure 3.4

Nstart F
f

f

Figure 3.7 – The label automaton Alabel

Example 15 Let us consider again the automata G in Figure 3.1. The new version of diagnoser
in [CL07] is shown in Figure 3.8. The initial state is not {1N} but {1N, 2F} where 2F is obtained
by firing the unobservable fault f from 1N.

The difference between the two versions of diagnoser is the order to treat the unob-
servable event. The state of diagnoser in [Sam+95] contains only the states reached after
firing an observable event e. The state of diagnoser in [CL07] contains the states reached
by firing an observable event e and the states reached by firing all possible unobservable
events after e.

The diagnoser approach is the first study for diagnosability analysis. The combinatorial
explosion problem exists if the whole diagnoser is built. The complexity of building a

30

3.1. LITERATURE REVIEW

{1N, 2F}start {3F, 7N, 8F} {4F, 9F, 11N}

{5F, 10F, 12N}

{6F}

a b

g
d

h

h

Figure 3.8 – The new version of diagnoser Gd of the automaton G in Figure 3.1

diagnoser is exponential. Assuming that the number of states of the given automaton is
|X| and the number of the fault classes is |Π f |. The complexity of the diagnoser approach

is 2|X|×2|Π f | .

3.1.1.2 Twin-plant approach

In order to reduce the complexity for diagnosability analysis, the twin-plant approach
was proposed [Jia+01]. The main idea is based on building the parallel composition of
the systems. This section introduces the Twin-plant approach for a given automaton
G = (X, Σ, δ, x0) and the projection operator Po,e in the following steps:

– Build a nondeterministic FSM Go = (Xo, Σo, δo, xo
0) with the language L(Go) =

Po,e(L(G)), where:

• Xo = {(x, l)|x ∈ X1 ∪ {xo}, l is the fault tag }. X1 = {x ∈ X|∃(x′, e, x) ∈
δ, Po,e(e) 6= ε} is the set of states in G that can be reached after firing an observ-
able event. l contains the fault information and li denotes the fault tag w.r.t. the
fault class Σi

f ;

• Σo is the set of observable events;

• δo ⊆ Xo × Σo × Xo is the set of transitions;

• x0
o = (x0, ∅) ∈ Xo is the initial state.

– Build the twin-plant Twin(G) = (Go ‖ Go), the parallel composition of Go with itself.
Twin(G) = (XTwin, Σo, δTwin, x0

Twin), where:

• XTwin = {(xo
1, xo

2)|xo
1, xo

2 ∈ Xo} is the set of states;

• Σo is a set of observable events;

• δTwin ⊆ XTwin × Σo × XTwin is the set of transitions;

31

CHAPTER 3. MONOLITHIC DIAGNOSABILITY ANALYSIS USING LPN

• x0
Twin = (xo

0, xo
0) ∈ Xo is the initial state.

– Check whether there exists a cycle in Twin(G), e.g. (x1
Twin, e1, x2

Twin, · · · , xn
Twin, en, x1

Twin),
n ≥ 1, xi

Twin = ((xi
1, li

1)(xi
2, li

2)), i ∈ {1, 2, · · · n} such that li
1 6= li

2. If li
1 6= li

2, the system
is not diagnosable. Otherwise the fault is diagnosable.

The principle idea is that if such a cycle presented above is found (e.g. li
1 6= li

2), this
cycle implies two cycles in Go (in G as will because L(Go) = Po,e(L(G))), such that: one
cycle formed by the states labeled by Fk (the fault in Σk

f has occurred); the other one formed
by the normal states w.r.t. Σk

f . According to the definition of diagnosability, the system is
not diagnosable w.r.t. Σk

f .

1start 2 3

4

5

a
u

f1

f2

f1

b

c

Figure 3.9 – An example of automaton G

1, ∅start 2, ∅

4, F2

4, F1F2

5, F1

a

b

b

c

b

b

c

Figure 3.10 – The nondeterministic automaton Go of G in Figure 3.9

Example 16 Let us consider the automata G in Figure 3.9. Σo = {a, b, c} and Σu = {u, f1, f2}.
Σ f = Σ1

f ∪̇Σ2
f , where Σ1

f = { f1} and Σ2
f = { f2}. The nondeterministic automaton of G is shown

in Figure 3.10. The twin-plant of G is shown in Figure 3.11. The system is not diagnosable regard-
ing the fault class Σ1

f , because there exists a self-loop at the state {(4, F2), (4, F1F2)}. However, the
system is diagnosable regarding Σ2

f .

The main advantage of the twin-plant approach is the reduction of complexity. The
complexity of twin-plant approach is |X|4 × |Σo| × |Π f |, where |X| is the number of states
in the given automaton, |Σo| is the number of observable events and |Π f | is the number of
fault classes.

32

3.1. LITERATURE REVIEW

{(1, ∅), (1, ∅)}start {(2, ∅), (2, ∅)}

{(4, F2), (4, F2)}

{(4, F2), (4, F1F2)}

{(4, F1F2), (4, F1F2)}

{(4, F1F2), (4, F2)}

{(5, F1), (5, F1)}

a

b b

b

b
c

b

b

b

b

c

Figure 3.11 – The twin-plant of G in Figure 3.9

3.1.1.3 Verifier approach

In [YL02], the verifier approach was proposed. The diagnosability of a system is ana-
lyzed based on the construction of a nondeterministic automaton called a verifier. This
approach was improved in [Mor+11; QK06]. In this section, we recall the verifier approach
in [Mor+11], which has a better performance than the others.

In [Mor+11], this approach is proposed for codiagnosability analysis, but it can also be
applied for monolithic diagnosability by considering that the system contains only one
site which is itself.

The algorithm in [Mor+11] for local diagnosability of a module is given as follows:

For a given automata G = (X, Σ, δ, x0). The set of fault events is Σ f ⊂ Σ and the set of
normal events is defined as ΣN = Σ\Σ f .

1. Step 1: Compute the automaton GN that models the normal behavior of G:

– Step 1.1: Build automaton AN that contains a single state N with a self-loop
labeled by all events in ΣN ;

– Step 1.2: Build the normal automaton GN = G× AN = (XN , Σ, δN , ΓN , x0,N);

– Step 1.3: Define function R : Σ→ ΣR as:

R(e) :=

e if e ∈ Σo

eR if e ∈ Σu\Σ f

33

CHAPTER 3. MONOLITHIC DIAGNOSABILITY ANALYSIS USING LPN

(The function R is used to rename the labels of events in Σu\Σ f . e is called the
original event of eR if R(e) = eR.)

– Step 1.4: Redefine the event set of GN , GN = G× AN = (XN , ΣRz, δN , ΓN , x0,N).
ΣRz = {eRz|e ∈ Σ, eRz = R(e)} and for all e ∈ Σ and xN ∈ XN , δ(xN , R(e)) =
δ(xN , e).

2. Step 2: Compute the automaton GF that models the faulty behavior of G:

– Step 2.1: Build automaton Al = (Xl , Σ f , δl , x0,l), where Xl = {N, F}, x0,l = N,
δl(N, f) = F and δl(F, f) = F for all f ∈ Σ f z;

– Step 2.2: Compute Gl = G||Al and mark all the states of Gl whose second
coordinate is F;

– Step 2.3: Compute the faulty automaton GF = CoAc(Gl).

3. Step 3: Compute the verifier automaton GV = GN ||GF = (XV , ΣV , δV , x0,V), where
ΣV = ΣRz ∪ ΣF. For a state xV ∈ XV , xV = (xN , xF), where xF = (x, xl), x ∈ X and
xl ∈ Xl .

4. Step 4: Verify if there exists a cycle

cl := (xk
V , ek, xk+1

V , · · · , xh
V , eh, xk

V)(h ≥ k > 0)

where for all j ∈ {1, · · · , h}, xk+j
V = δV(xk+j−1

V , ej) and xk
V = δV(xh

V , eh), such that:
(a) for each state xr

V (r ∈ {k, k + 1, · · · , h}) in the cycle, xr
l = F; (b) ∃ep ∈ Σ, where

p ∈ {k, k + 1, · · · , h}. If such a cycle exists, the module G is not locally diagnosable;
otherwise, the module is locally diagnosable.

1start

2

3

4

5

6
f

h

h

a

u

a

u

c

d

Figure 3.12 – An example of automaton G

Example 17 Let us consider the automaton G = (X, Σ, δ, x0) in Figure 3.12. Σo = {a, c, d, h},
Σu = {u, f } and Σ f = { f }. To analyze the diagnosability of G, we follow the above algorithm.

34

3.1. LITERATURE REVIEW

Nstart Σ\{ f }

(a) AN

1Nstart 3N 5N
h

a

uR c

(b) GN = G× AN

Figure 3.13 – The automata AN and GN of module G

Nstart F
f

f

(a) Al

1Nstart

2F

3N

4F

5N

6F
f

h

h

a

u

a

u

c

d

(b) Gl = G||Al

1Nstart 2F 4F 6F
f h

a

u

d

(c) GF = CoAc(Gl)

Figure 3.14 – The automata Al , Gl and GF of module G

1. The automaton AN is shown in Figure 3.13(a). Then, the normal behavior of G is modeled by
GN = G× AN shown in Figure 3.13(b). The regular unobservable event u in G is renamed
by R function as uR;

2. The automaton Al is shown in Figure 3.14(a). Then, the automaton Gl = G||Al shown
in Figure 3.14(b). All the faulty states ({2F}, {4F} and {6F}) are marked. The faulty
behavior of G is modeled by GF = CoAc(Gl) shown in Figure 3.14(c).

3. The verifier is built by GV = GN ||GF shown in Figure 3.15.

4. There exists a cycle at state {3N4F} with a self-loop labeled by a. Therefore, G is not
diagnosable.

35

CHAPTER 3. MONOLITHIC DIAGNOSABILITY ANALYSIS USING LPN

1N1Nstart 1N2F 3N4F

5N4N 3N6F

5N6F

f h a

uR

u

u
uR

Figure 3.15 – The verifier GV = GN ||GF of module G1

For the verifier approach in [Mor+11], the complexity is |X|2 × (|Σo| − |Σi
f |)× |Π f |,

where |Σi
f | is the number of faulty events of the fault class i.

The complexity of the twin-plant/verifier approach is polynomial. However, the prob-
lem of these approaches is the combinatorial explosion. Generally, the twin-plant/verifier
is a large scaled structure because they all build the parallel composition of two models
and each one of the model has the same size with the given system in worst case.

3.1.1.4 Other automata-based approaches

In [Bou+15], a new variant of diagnoser was proposed. The variant diagnoser is con-
structed without constructing any intermediate model (i.e., generator). The efficiency of
the verification of the necessary and sufficient condition is improved. For the Sampath’s
approach in [Sam+95], if there exists an F-uncertain cycle in the diagnoser, it needs to
verify the existence of the corresponding normal cycle and faulty cycle in the generator.
However, it is proved in [Bou+15], if there exists an F-uncertain cycle in the diagnoser, the
normal cycle always exists. Therefore, it only needs to verify the existence of faulty cycle
and the authors verify it by using the model of the system. In [Sch10], an abstraction was
proposed to reduce the size of the initial automaton model. The author proposed to project
the model in a subset of the initial set of events. It is demonstrated that if the projection is a
Loop-preserving Observer, it guarantees that the abstracted model preserves the language-
diagnosability property of the initial model. This study is proposed in the language theory
framework. It does not propose a practical method to help designers to define the abstrac-
tion event set. In [PC02], the model checking techniques were applied to diagnosability
analysis. A twin-plant is built by the parallel composition of the given automaton and a
copy of itself. The system is not diagnosable if there exist two same observable sequences
in the given automaton and its copy, such that one sequence contains a fault and the
other one does not contain any fault. In [BG15], the diagnosability issue is reformulated
as a model-checking problem. The diagnosability property is expressed by using CTL
formula while considering extended definitions of diagnosability. The K-diagnosability

36

3.1. LITERATURE REVIEW

is also analyzed in the framework of model-checking. In [Gra09], the author provided
a symbolic-based approach for diagnosability analysis. By using this technique, this ap-
proach avoids exploring the whole state space of the given model. This approach applied
also the decentralized approach for diagnosability. In [Cab+15a], the authors provided
an approach by building a PN diagnoser to detect the fault of an automaton model. The
computational complexity of building this PN diagnoser is O(|Π f | × |X| × |Σ|), where
Π f is the partition of fault classes, X is the set of states and Σ is the set of events. The
complexity is linear on the number of fault classes, the number of states and the number
of events of the system.

3.1.2 PN-based approaches

More recently, Petri nets (PNs) are used for diagnosability analysis and on-line fault
diagnosis, which provide an expressive and compact representation of DES models.
Researchers use PNs in order to tackle the combinatorial explosion.

The classic assumptions for diagnosability analysis using LPN are as following:

1. The LPN does not deadlock after firing any fault transition;

2. No cycle of unobservable transitions exists;

3. Faults are permanent, i.e., when a fault occurs the system remains infinitely faulty;

4. The same observable label may be associated with different transitions;

5. The structure of LPN and the initial marking M0 are well known.

It is worth noticing that the assumptions are varied for different approaches. Precisely,
for the approaches mentioned in the following sections:

– The approach in [Wen+05] assumes that the LPN model is safe and live;

– The approach in [Cab+14; Liu+14] assumes that the LPN model does not deadlock
after firing any fault transition and LPN model is bounded;

– The approach in [Cab+12] assumes that the LPN model does not deadlock after
firing any fault transition and LPN model can be bounded or unbounded;

The definition of diagnosability of a system modeled by an LPN is given as follows

Definition 8 Given a live LPN = (N, M0, Σ,L), LPN is diagnosable w.r.t fault class Ti
f if there

are not two sequences σ1 and σ2, which satisfy the following conditions:

1. ∀t f ∈ Ti
f , t f /∈ σ1;

37

CHAPTER 3. MONOLITHIC DIAGNOSABILITY ANALYSIS USING LPN

2. ∃t f ∈ Ti
f such that t f ∈ σ2 and σ2 can be arbitrarily long after the occurrence of t f ;

3. L(σ1) = L(σ2).

In other words, for a diagnosable LPN system, two sequences of transitions with the
same observation must not be found, such that: one contains a fault transition and can be
arbitrarily long after its occurrence; the other one does not contain a fault transition.

3.1.2.1 Diagosability analysis by checking T-invariants

In [WJ05; Wen+05], an approach was proposed for diagnosability analysis of LPN model.
It is assumed that the LPN model is safe and live. This approach is proposed by checking
the T-invariants of the LPN model. The T-invariant is an important property of LPN.

The definition of T-invariant is given in Section 2.3.2.

Definition 9 A T-invariant
−→
Ω min is a minimal T-invariant, if there is no other T-invariant

−→
Ω

such that
−→
Ω (t) ≤ −→Ω min(t) for all t ∈ T.

The complexity for computing minimal T-invariants is polynomial [DA05]. IF is
defined as the set of minimal T-invariants that contain at least one fault transition and IN

the set of minimal T-invariants that do not contain any fault transition.

For a minimal T-invariant
−→
Ω min (valid as well as for a firing vector), ΣL(

−→
Ω min) is the

multiset of observable labels of
−→
Ω min. For a given

−→
Ω min, ΣL(

−→
Ω min) can be obtained by the

following steps:

1. Initialize ΣL(
−→
Ω min)← ∅;

2. ∀∃ti ∈ To,
−→
Ω min(ti) > 0:

a) ΣL(
−→
Ω min) ← ΣL(

−→
Ω min) ∪ Σti , where Σti consists of

−→
Ω min(ti) number of the

label L(ti).

For example, if ∃t1, t2, s.t.
−→
Ω min(t1) = 1,

−→
Ω min(t2) = 2 and L(t1) = L(t2) = a, there will

be three ’a’ in ΣL(
−→
Ω min).

S(−→Ω min) is defined as the set of imply traces of the minimal T-invariant
−→
Ω min, which

is the set of all the possible firing sequences constructed by the labels in ΣL(
−→
Ω min).

Example 18 Let us consider the LPN model in Figure 3.16. To = {t1, t2, t3, t4, t6, t7, t8}, Treg =

{ε9} and Tf = { f5}. The labels of transitions are shown in Figure 3.16. This LPN is safe
and live. There exist four minimal T-invariants:

−→
Ω min,1 = [1 0 0 0 0 0 0 0 1]τ,

−→
Ω min,2 =

[0 1 1 0 0 0 0 0 1]τ,
−→
Ω min,3 = [0 0 0 1 1 0 0 0 1]τ, and

−→
Ω min,4 = [0 0 0 0 0 1 1 1 1]τ. ΣL(

−→
Ω min,1) =

38

3.1. LITERATURE REVIEW

{d}, ΣL(
−→
Ω min,2) = {b, c}, ΣL(

−→
Ω min,3) = {c}, and ΣL(

−→
Ω min,4) = {a, a, b}. S(−→Ω min,1) =

{d}, S(−→Ω min,2) = {bc, cb}, S(−→Ω min,3) = {c}, and S(−→Ω min,4) = {aab, aba, bba}.

p1

p6

p2 p3

p4

p5

t1, d

t2, b

t3, c

t4, c

f5, ε

t6, a

t7, a

t8, b

ε9, ε

Figure 3.16 – An example of LPN model

A sufficient condition for diagnosability is proposed in [Wen+05]. A safe and live
LPN is diagnosable, if there do not exist two minimal T-invariants,

−→
Ω min,i,

−→
Ω min,j s.t.

ΣL(
−→
Ω min,i) = ΣL(

−→
Ω min,j), i.e., it is not possible to find two arbitrarily long sequences of

events ωi, ωj s.t. ωi = ωj, where ωi ∈ S(
−→
Ω min,i) and ωj ∈ S(

−→
Ω min,j). If two such minimal

T-invariants do not exist, it implies that two sequences with same observation cannot be
found, such that: one contains a fault and can be arbitrarily long after the fault; the other
one does not contain a fault. Therefore, the system is diagnosable.

Example 19 Let us consider again the LPN model in Figure 3.16. The system is diagnosable be-
cause there do not exist two minimal T-invariants,

−→
Ω min,i,

−→
Ω min,j s.t. ΣL(

−→
Ω min,i) = ΣL(

−→
Ω min,j).

The approach in [WJ05; Wen+05] has some drawbacks. The assumption that the LPN
is safe and live, is strong. Hence, the scope of use of this approach is restricted. The author
proposed only a sufficient condition for diagnosability. If two such minimal T-invariants
are found, it needs to use other approaches to check the diagnosability of the LPN model.
Moreover, there are some situations that are not taken into account by this sufficient
condition. This sufficient condition for the diagnosability of a safe and live LPN will be
supplemented in the following section.

3.1.2.2 Diagosability analysis using Minimal explanations

In [Cab+14; JB10], the notion of minimal explanation is used for diagnosability analysis.
This notion reduces the impact of regular unobservable transitions in order to compact
the state space. This section recalls the MBRG/BRD (Modified Basis Reachability Graph/
Basis Reachability Diagnoser) approach in [Cab+14].

39

CHAPTER 3. MONOLITHIC DIAGNOSABILITY ANALYSIS USING LPN

Definition 10 The set of explanations of an observable transition t at a marking M is defined by

Σ(M, t) = {σ ∈ T∗u | M[σ > M′, M′ ≥ Pre(·, t)}

The corresponding e-vectors (explanation vectors) is the set:

Y(M, t) = {π(σ)| σ ∈ Σ(M, t)}

p1

p2

p3

p4

p5

p6

p7 p8

p9

ε1, ε

t2, a ε3, ε

t4, b

t5, c

ε6, ε

t7, d

ε8, ε

f9, ε

t10, e

Figure 3.17 – An example of LPN

Example 20 Let us consider the LPN in Figure 3.17. To = {t2, t4, t5, t7, t10}, Treg = {ε1, ε3, ε6, ε8}
and Tf = { f9}. The labels of transitions are shown in Figure 3.17. The initial marking is
M0 = [2 0 0 0 0 0 0 0 0]τ. Considering the transition t2. After firing σu,1 = ε1 or respectively
σu,2 = ε6ε1, the transition t2 is enabled. Therefore, σu,1 and σu,2 are explanations of t2 at M0. The
explanation vectors of t2 are −→e1 = [1 0 0 0 0]τ and −→e2 = [1 0 1 0 0]τ. Here, for the e-vector,
we keep only the elements of the unobservable transitions. For example, −→e1 = [1 0 0 0 0]τ

means −→e1 (ε1) = 1, −→e1 (ε3) = 0, −→e1 (ε6) = 0, −→e1 (ε8) = 0 and −→e1 (f9) = 0, instead of
−→e1 = [1 0 0 0 0 0 0 0 0 0]T.

Definition 11 The set of minimal explanations of an observable transition t at a marking M is
defined by

Σmin(M, t) = {σ ∈ Σ(M, t)|@σ′ ∈ Σ(M, t) : π(σ′) < π(σ)}.

The corresponding set of minimal e-vectors of t at M is

Ymin (M, t) = {π(σ)|σ ∈ Σmin(M, t)}

Example 21 As it was analyzed in Example 20, σu,1 = ε1 and σu,2 = ε6ε1 are two explanations
of t2 at M0. However, only σu,1 is a minimal explanation of t1 but σu,2 is not one, because
π(σu,2) > π(σu,1). The minimal e-vector is −→e1 = [1 0 0 0 0]τ.

40

3.1. LITERATURE REVIEW

Definition 12 Let Tl be the set of transitions that are labeled by the observable event l. The set of
minimal explanations of l at M is defined by

Σ̂min (M, l) = ∪t∈Tl∪σ∈Σmin(M,t) {σ}

The corresponding set of minimal e-vectors of l at M is

Ŷmin (M, l) = ∪t∈Tl∪−→e ∈Ymin(M,t)
{−→e }

Example 22 According to Example 21, since t1 is the only transition labeled by a, the minimal
explanation of a at M0 is σu,1 and the minimal e-vector of a at M0 is −→e1 .

Definition 13 [Cab+14] Given an LPN = (N, M0, Σ,L) with labeling function L : T → Σ,
where N = (P, T, Pre, Post) and T = To ∪ Tu. Let σ ∈ L(N, M0) be a firable sequence and
ω = L(Po,t(σ)) the corresponding observed word. The set of the justifications of ω is defined as
follows.

Ĵ (ω) = {σu ∈ T∗u | [∃σ ∈ FS(ω) : σu = Pu,t(σ)]

∧ [@σ′ ∈ FS(ω) : σ′u = Pu,t(σ
′) ∧ π(σ′u) < π(σu)]}

(FS(ω) is defined on page 22.)

Moreover, the set of the j-vectors corresponding to Ĵ (ω) is defined as follows.

Ŷmin (M0, ω) = {−→yu ∈N|Tu|| ∃σu ∈ Ĵ (ω) : π(σu) =
−→yu}

Definition 14 Given an LPN and a firing sequence of transitions σ. Let ω ∈ Σ∗o be a given ob-
servation, where ω = L(σo) and σo = Po,t(σ). Let σu ∈ Ĵ (ω) be one of its minimal justification.
Given a marking Mb = M0 + Cu · −→yu + Co · −→yo , where −→yu = π(σu),

−→yo = π(σo), and Cu (resp.
Co) is the restriction of the incidence matrix C, which refers to Tu (resp. To). The marking reached
by firing σo interleaved with σu is called basis marking with its j-vector −→yu .

Example 23 Let us consider again the LPN in Figure 3.17. Assuming that ω = ab. The se-
quence of transition The set of justifications is Ĵ (ω) = {ε1ε3} and the set of j-vectors is
Ŷmin (M0, ω) = {

−→
j1 }, where

−→
j1 = [1 1 0 0 0]τ. Moreover, this j-vector leads to a basis marking

M4 = [1 0 0 0 1 0 0 0 0]τ.

In [Cab+09b], the structure of basis reachability graph (BRG) was introduced as fault
diagnosis approach by using minimal explanations. However, the structure BRG is not suf-
ficient for diagnosability analysis, thus MBRG is then developed [Cab+09a]. In an MBRG,
all faulty transitions are considered as observable transitions, i.e. minimal explanations
are restricted to regular unobservable transitions. Therefore, in general, there are more
markings in MBRG than in BRG. Each node of MBRG contains two elements (M, x), where
M is defined as basis marking that are computed assuming that all faulty transitions are

41

CHAPTER 3. MONOLITHIC DIAGNOSABILITY ANALYSIS USING LPN

observable. x is a row vector in {0, 1}r, where r is the number of fault classes, and x(i) = 1
if the constraint set T (M) in (3.1) as follows is feasible w.r.t the Ti

f , x(i) = 0 otherwise.

T (M) =


M + Cu · −→z ≥

−→
0 ,

∑t f∈Ti
f

−→z (t f) > 0,
−→z ∈N|Tu|

(3.1)

According to MBRG, BRD is constructed to work in addition to MBRG for diagnosabil-
ity analysis. A state in a node of BRD is a triple (M, x, h). M is a basis marking, x is the
row vector as it was presented above and h is the row vector of fault tags. h(i) = F means,
at this marking, a fault in class Ti

f has occurred.

For each node in BRD, a diagnosis label ∆i is associated to each observation ω and
each fault class Ti

f .

• ∆(ω, Ti
f) = 0, if all the sequences with observation ω do not contain any fault

transition in Ti
f ;

• ∆(ω, Ti
f) = 1 if there exist σ ∈ L−1(ω) and t f ∈ Ti

f such that t f ∈ σ, but ∀(σo, σu) ∈
Ĵ (ω) and ∀t f ∈ Ti

f it holds that t f /∈ σu;

• ∆(ω, Ti
f) = 2 if there exist two justifications (σo, σu), (σ′o, σ′u) such that (∃t f ∈ Ti

f s.t
t f ∈ σu) ∧ (∀t f ∈ Ti

f , t f /∈ σ′u);

• ∆(ω, Ti
f) = 3 if ∀σ ∈ L−1(ω), ∃t f ∈ Ti

f s.t t f ∈ σ.

From the initial node (M0, x0, h0) (h0 is set as h0 = Nr, where r is the number of fault
classes), the following nodes are built by using the MBRG. The main idea is the state
estimation which is similar to the construction of a Sampath’s diagnoser. All the indicators
are calculated as they were presented above.

The label ∆i is used to find indeterminate cycles and verify the necessary and sufficient
condition for diagnosability. A cycle in BRD is called an uncertain cycle w.r.t. a fault class
Ti

f if it includes staes with ∆ = 1, or ∆ = 2, or ∆ = 1 and ∆ = 2. If such a cycle exists, it
needs to verify if this uncertain cycle is an indeterminate cycle.

Example 24 Let us consider the LPN in Figure 3.17. The MBRG corresponding to the LPN is
shown in Figure 3.18. The markings and e-vectors are listed in Table 3.1. Here, for e-vectors, only
the elements of the regular unobservable transitions are kept. For example, −→e1 = [1 0 0 0]T means
−→e1 (ε1) = 1, −→e1 (ε3) = 0, −→e1 (ε6) = 0 and −→e1 (ε8) = 0, instead of −→e1 = [1 0 0 0 0 0 0 0 0 0]T. The
BRD corresponding to the MBRG is shown in Figure 3.19. It can be concluded that the system is
not diagnosable because there exists an indeterminate cycle and the states in this cycle are marked
by shadow zone.

42

3.1. LITERATURE REVIEW

M0, 0

M1, 0 M2, 0

M4, 0M3, 0 M5, 1 M6, 1 M7, 0

M8, 0 M10, 0 M9, 1 M11, 1

M12, 0 M13, 0 M14, 0

a(
t 2
),
−→e 1

d(t7), −→e3

a(
t 2
),
−→e 1

b(t4), −→e2

d(t7), −→e3 a(
t 2
),
−→e 1 f9 , −→e4

d(t7), −→e3

b(t4), −→e2 a(t2), −→e1

f9 , −→e4
b(t4), −→e2

a(
t 2
),
−→e 1

e(t10),
−→
0

f9 , −→e4

c(
t 5
),
−→ 0

b(t4), −→e2
e(t10),

−→
0

b(t4), −→e2

c(
t 5
),
−→ 0

f 9
,
−→e 4

e(t10),
−→
0

f 9
,
−→e 4

c(
t 5
),
−→ 0

c(t
5)

,
−→0

e(t10),
−→
0

e(t10),
−→
0

Figure 3.18 – MBRG of the LPN in Figure 3.17

In MBRG, we can notice that the arcs between markings are labeled either by ob-
servable transitions with their corresponding e-vectors (e.g.

(
a (t2) , −→e1

)
from M0) or by

unobservable fault transitions with their corresponding e-vectors (e.g.
(

f9, −→e4
)

from M2).
Besides, only M0, M1, M2, M3, M4, M5, M7, M8, M9 and M12 are basis markings, while
M6, M10, M11, M13, and M14 are reached from basis markings by firing fault transitions.
They are auxiliary markings for diagnosability analysis and they do not appear in BRD.

By using minimal explanations, MBRG gives a more compact representation of reacha-
bility space for diagnosability analysis, especially for an LPN model with many unobserv-
able regular transitions. Note that, in the worst case, if there is no unobservable regular
transition in the LPN model, the number of markings in the MBRG will be equal to the
number of consistent markings. Therefore, the computational complexity in the worst
case of this approach is equal to that of diagnoser approach. This approach can save much
memory so that it reduces the computational cost of diagnosability analysis.

43

CHAPTER 3. MONOLITHIC DIAGNOSABILITY ANALYSIS USING LPN

Table 3.1 – Markings and e-vectors in MBRG and BRD

j Mj j Mj
0 [2 0 0 0 0 0 0 0 0]τ 11 [0 0 0 0 0 0 1 0 1]τ

1 [1 0 1 0 0 0 0 0 0]τ 12 [0 0 0 0 2 0 0 0 0]τ

2 [1 1 0 0 0 0 1 0 0]τ 13 [0 0 0 0 1 0 0 0 1]τ

3 [0 0 2 0 0 0 0 0 0]τ 14 [0 0 0 0 0 0 0 0 2]τ

4 [1 0 0 0 1 0 0 0 0]τ

5 [0 0 1 0 0 0 1 0 0]τ j −→ej
6 [0 0 0 0 0 0 2 0 0]τ 1 [1 0 0 0]
7 [1 0 0 0 0 0 0 0 1]τ 2 [0 1 0 0]
8 [0 0 1 0 1 0 0 0 0]τ 3 [0 0 1 0]
9 [0 0 0 0 1 0 1 0 0]τ 4 [0 0 0 1]

10 [0 0 1 0 0 0 0 0 1]τ

M0, 0, N
∆ = 0

M1, 0, N
∆ = 0

M2, 1, N
∆ = 1

M4, 0, N
∆ = 0

M3, 0, N
∆ = 0

M5, 1, N
∆ = 1

M6, 1, N
∆ = 1

M4, 0, F
∆ = 3

M8, 0, N
∆ = 0

M8, 0, F
∆ = 3

M9, 1, N
∆ = 1

M9, 1, F
∆ = 3

M12, 0, N
∆ = 0

M12, 0, F
∆ = 3

a d

a
b

d a
d

e

b
a e b ea

a b e

c

e

c c

Figure 3.19 – BRD of the LPN in Figure 3.17

3.1.2.3 On-the-fly diagnosability analysis

The on-the-fly model-checking technique ([Bha+95; Fer+92; SE05]) is widely used for
the verification of system properties in order to master the combinatorial explosion. The
state space of a given system is built "on the fly" and the states are made and explored
using depth-first search. The exploration of the state space is immediately stopped when
a specified condition is satisfied. In this dissertation, the on-the-fly technique is used for
diagnosability analysis.

For majority of the diagnosability analysis approaches based on the exploration of
the state space ([Cab+12; Cab+14; Jia+01; Sam+95; Ush+98; YL02]), the entire state space

44

3.1. LITERATURE REVIEW

needs to be built a priori. After building the state space, the entire model for diagnosis
(such as the diagnoser in [Sam+95]; the BRD in [Cab+14]) is built; in [Jia+01] ([YL02]), the
twin-plant (respectively the verifier) is built; in [JB10], the ROF-automaton and F-verifier
are built; in [Cab+12], the verifier net and its reachability graph are built.) Afterwards,
the state space and the model for diagnosis are explored entirely to verify the specified
condition for diagnosability.

In [Liu+14], the on-the-fly diagnosability analysis was proposed to deal with diag-
nosability, K-diagnosability, the minimal K to ensure diagnosability and online diagnosis
using one formalism for a bounded LPN model. With the help of some stopping condi-
tions, it has been shown that a part of state space could suffice for diagnosability analysis
and on-line diagnosis, particularly when the system is non-diagnosable. The on-the-fly
approach intends to avoid building the whole state space for checking diagnosability in
order to reduce the computational cost. The state space and the model for diagnosis are
built on-the-fly and in parallel with some stop conditions, which stop building certain of
their branches. Along with their on-the-fly construction, the verification of diagnosability
is executed. When the condition of undiagnosability is satisfied, the result is immediately
given, that the system is not diagnosable.

Let us recall some basic notations and definitions from [Liu+14].

An FMi-graph is considered as a directed non-deterministic graph relative to the fault
class Ti

f . Without loss of generality, in this section, the diagnosis issue is discussed for
a single class of faults. For the simplicity of representation, the superscript i may be
omitted w.r.t Ti

f . Each node indicates a given fault marking (FM) and each arc indicates
an observable event. An FMi-graph can be treated as an ε-reduced observer automaton
[CL07] with fault tag. For a bounded LPN, the number of states of the complete FMi-graph
w.r.t Ti

f is finite.

Definition 15 An FM upon a sequence σ ∈ T∗ and a fault class Ti
f , is a vector FMi ∈N|P|+1:

FMi =

[
mark(FMi)

f ault(FMi)

]

Where mark(FMi) represents a marking and f ault(FMi) is a fault tag relative to the fault class Ti
f .

M0 [σ > mark(FMi) and f ault(FMi) = 1 if ∃t f ∈ Ti
f , t f ∈ σ, otherwise, f ault(FMi) = 0.

Given two FMs FM and FM′, it is denoted that FM [σ > FM′ iff mark(FM) [σ >

mark(FM′); and f ault(FM′) = f ault(FM) if ∀j, σj 6∈ Ti
f , otherwise, f ault(FM′) = 1.

From the definition of FMs, an FM consists of a marking and a binary tag indicating
the occurrence of fault. Qi is the set of FMs w.r.t Ti

f . Then, for a given PN (N, M0), the
number of FMs is at most twice of the number of markings, i.e., |Qi| ≤ 2|R(N, M0)|
(R(N, M0) is defined on page 20). For the purpose of diagnosis, FM-graph is constructed

45

CHAPTER 3. MONOLITHIC DIAGNOSABILITY ANALYSIS USING LPN

as the structure of state space and is developed to record the FMs that are reachable just
after an observable event.

Definition 16 The FM-graph relative to fault class Ti
f and called FM i-graph is a 4-tuple (N , Σo, δ, FM0),

where:

– N ⊆ Qi (because it is possible that only a part of FM i-graph is built) is a set of FMi nodes
(FMs);

– Σo is a finite set of observable events;

– δ : Qi × Σo → 2Q
i

is the transition function of FM: given FMi
1 ∈ Qi and e ∈ Σo,

δ(FMi
1, e) = {FMi

2 | ∃ σ ∈ T∗ s.t. L(σ) = e, FM1 [σ > FM2}. The algorithm of δ

function is illustrated in [Liu14];

– FM0 = [Mτ
0 , 0]τ is the initial node.

Let the FM power set be FM-set, which is denoted as X = 2Q and the initial FM-set
x0 = {FM0}.

Definition 17 The FM-set transition mapping λ : X × Σo → X is defined as follows: given an
FM-set x ∈ X and an observable event e ∈ Σo, λ(x, e) = {FM′ | ∃ FM ∈ x, u ∈ T∗u , t ∈
To, s.t. L(ut) = e, FM [ut > FM′}.

As a state of “Diagnoser” in [Sam+95], an FM-set can be associated with a tag which
indicates the possibility of fault occurrence.

Definition 18 The tagging function tag : X → {N, F, U} is defined as follows:

tag(x) =


N if ∀ FM ∈ x, f ault(FM) = 0

F if ∀ FM ∈ x, f ault(FM) = 1

U otherwise

An FM-set x is also said to be normal (resp. F-certain, F-uncertain) if tag(x) = N (resp. F, U).
For FM-set x′ reachable from x, if tag(x) ∈ {N, U}, it is possible that tag(x′) ∈ {N, F, U};
whereas if tag(x) = F, then tag(x′) = F, as faults are assumed to be permanent and, therefore,
the F-certain tag is propagated to all the successive FM-sets.

An FM-set tree is a tree-like structure. The root node is the initial FM-set x0 = {FM0}.
The subsequent nodes are the FM-sets reachable from the previous node by using the
idea of state estimation. An FM-set is like a state of diagnoser automaton of [Sam+95].
Consequently, the condition of undiagnosability can be assimilated, as in the case of the

46

3.1. LITERATURE REVIEW

diagnoser approach, to the existence of indeterminate cycles in the FM-tree. A cycle is
said to be indeterminate if all the states reached by the transition of the sequence in this
cycle are F-uncertain and matches with two cycles in FM-graph: one cycle contains a fault,
whereas the other one does not contain a fault. However, the diagnoser automaton must
be built a priori, and all the diagnoser states are entirely enumerated. The FM-graph and
FM-set are built on the fly and the conditions to stop the investigation of a branch of
FM-set tree are as follows:

1. An F-certain FM-set is generated;

2. A new normal FM-set is equal to an existing one;

3. A new F-uncertain FM-set is equal to an existing one (then checking the existence of
indeterminate cycle is necessary).

Figure 3.20 – Principle of on-the-fly diagnosability analysis

The principle of on-the-fly approach is shown in Figure 3.20. This approach is based
on a depth-first search. The algorithm is developed in [Liu+14], which is proved to cover
all the cases while building the FM-set tree on the fly. The main idea of the algorithm is as
follow:

1. For a given FM-set Z (the initial FM-set is {FM0}), Zcon is computed, which is the
set of FMs that are obtained by firing all the possible unobservable transitions from
the FMs in Z ;

2. For a given observable event e (e is given randomly because the prorities in the
investigation of branches are not defined. Moreover, if e has already fired, another
event will be selected), Y is computed, which is the next FM-set after firing e. The
corresponding nodes in FM-graph and FM-set tree are built;

3. a) if Y is F-certain, return Z and go to (1);

47

CHAPTER 3. MONOLITHIC DIAGNOSABILITY ANALYSIS USING LPN

b) if Y is normal and equal to an existing one, let Z be equal to Y and go to (2);

c) if Y is F-uncertain and equal to an existing one, check the existence of inde-
terminate cycle. If there exists an indeterminate cycle, return “the system is
non-diagnosable”. If there does not exist an indeterminate cycle, let Z be equal
to Y and go to (1);

4. If the whole FM-graph and FM-set tree are built and there does not exist an indeter-
minate cycle, return “the system is diagnosable”

FM0

FM2FM1 FM3

· · ·

FM9 FM11 FM12

FM15 FM16 FM17

FM18 FM19 FM20

FM21 FM22 FM23

FM24 FM25

aa a

d
d

d d

a
a

a

a

a
a

b
b

b

b
b

b

a

c

c
c

c c

a a a

Figure 3.21 – FM-graph of the LPN in Figure 3.17

Example 25 For the LPN in Figure 3.17 (page 40), the on-the-fly approach is used for checking
diagnosability. For the priorities of investigating the branch of FM-set tree, the transition labeled a
is chosen a priori before the transition labeled b, then c, d and e. The FM-graph (Figure 3.21) and
FM-set tree (Figure 3.22) are constructed on the fly in parallel. In Figure 3.22, the tag of each FM-
set is indicated beside. The FMs are shown in Table 3.2. It is worth noticing that only "observable"
marking are represented in these models. Markings reached by unobservable transitions are not
integrated but they are exploited to compute the next FM-set that will be reached after an observable

48

3.1. LITERATURE REVIEW

FM0

N FM1
FM2
FM3

N

FM4
FM5

N

FM6
FM7

N

FM8

N

FM9

N

FM6

N
FM2
FM10

N

FM9
FM11
FM12

N

FM0
FM13
FM14

N

FM15
FM16
FM17

N

FM18
FM19
FM20

U

FM21
FM22
FM23

U

FM15
FM24
FM25

U

FM18
FM19
FM20

U

a a

b

b

b

cac

b
a

b

c

d

a

a b c

a

Figure 3.22 – FM-set tree of the LPN in Figure 3.17

Table 3.2 – Fault markings in Figure 3.21 and Figure 3.22

j FMj j FMj
0 [2 0 0 0 0 0 0 0 0 | 0]τ 13 [1 1 0 0 0 0 0 0 0 | 0]τ
1 [0 0 1 0 0 1 0 0 0 | 0]τ 14 [1 0 0 0 0 1 0 0 0 | 0]τ
2 [1 0 1 0 0 0 0 0 0 | 0]τ 15 [1 0 0 0 0 0 1 0 0 | 0]τ
3 [0 1 1 0 0 0 0 0 0 | 0]τ 16 [0 1 0 0 0 0 1 0 0 | 0]τ
4 [0 0 1 1 0 0 0 0 0 | 0]τ 17 [0 0 0 0 0 1 1 0 0 | 0]τ
5 [0 0 2 0 0 0 0 0 0 | 0]τ 18 [0 0 1 0 0 0 1 0 0 | 0]τ
6 [0 0 1 0 1 0 0 0 0 | 0]τ 19 [0 0 1 0 0 0 0 1 0 | 0]τ
7 [0 0 0 1 1 0 0 0 0 | 0]τ 20 [0 0 1 0 0 0 0 0 1 | 1]τ
8 [0 0 0 0 2 0 0 0 0 | 0]τ 21 [0 0 0 0 1 0 1 0 0 | 0]τ
9 [1 0 0 0 1 0 0 0 0 | 0]τ 22 [0 0 0 0 1 0 0 1 0 | 0]τ
10 [1 0 0 1 0 0 0 0 0 | 0]τ 23 [0 0 0 0 1 0 0 0 1 | 1]τ
11 [0 1 0 0 1 0 0 0 0 | 0]τ 24 [1 0 0 0 0 0 0 1 0 | 0]τ
12 [0 0 0 0 1 1 0 0 0 | 0]τ 25 [1 0 0 0 0 0 0 0 1 | 1]τ

event occurrence. The construction of FM-set tree is stopped because a cycle is detected: a new F-
uncertain FM-set is equal to an existing one (the FM-set which contains FM18, FM19 and FM20).
With the help of FM-graph, it is identified that the cycle detected is indeterminate. Therefore, there
is no need to continue the construction of FM-graph and FM-set tree, and it can be concluded that
the system is not diagnosable. The numbering of FM in Figure 3.21 and Figure 3.22 corresponds to
the order of construction of states by the depth-first analysis algorithm. The depth-first analysis is
based on the construction of the FM-set tree. For example, at the initial FM− set0 that contains

49

CHAPTER 3. MONOLITHIC DIAGNOSABILITY ANALYSIS USING LPN

FM0, the next firable event can be a or d. The event a fires because a should be chosen before d.
Then, the nodes FM1, FM2 and FM3 are added to FM-graph and in parallel, FM− set1 is built
which contains FM1, FM2 and FM3. Then, it starts at FM− set1 and the rest of FM-graph and
FM-set tree are built like this way until the indeterminate cycle is found.

From Example 25, it can be observed that the main advantage of this approach is to
avoid building the whole FM-graph and FM-set tree. There are some FMs that will be
built in the whole state space but not in the on-the-fly construction of FM-graph such as
[0 0 0 0 0 0 2 0 0 | 0]τ and [0 0 0 0 1 0 1 0 0 | 1]τ. It is obvious that there are less FM-sets in
the on-the-fly construction of FM-set tree than those in the whole construction of state
space. The FM-graph and FM-set tree are built on the fly in order to make an efficient
diagnosability analysis with the help of stopping conditions. In particular, for a non-
diagnosable LPN, its diagnosability can be identified immediately after an indeterminate
cycle is found, rather than continuing generating other branches. Moreover, if an F-certain
node is found, it is unnecessary to continue the construction of this branch because all the
subsequent nodes will also be faulty, and will be meaningless for diagnosability analysis.
Hence, for the on-the-fly approach, there exist the worst cases that are indicated as follows:

1. The LPN is diagnosable;

2. The LPN is non-diagnosable but the indeterminate cycle is found at the end of the
on-the-fly construction of state space.

In these cases, it is necessary to build the entire FM-graph and FM-set tree for diagnosabil-
ity analysis.

As it is explained in [Bha+95; Fer+92; SE05], the on-the-fly verification technique is able
to reduce the combinatorial explosion but it increases sightly the complexity. The reason
is that on-the-fly verification technique builds on the fly the state space and analyzes
the properties in parallel. Therefore, several times of analysis may be executed while
building the state space. Assuming that the complexity of diagnoser approach in [Sam+95]
is Cdiagnoser. In the worst case, the complexity of on-the-fly diagnosability analysis is
α · (nF−uncertaincycle + 1) · Cdiagnoser, where 0 < α < 1 and nF−uncertaincycle is the number of
F-uncertain cycles which are not F-indeterminate cycles.

However, it is worth noticing that the priorities in the investigation of branches is not
defined. The efficiency of on-the-fly approach depends extremely on the LPN models. For
the Example 25, most of the state space is constructed before finding the indeterminate
cycle. The situation would not be different if the static priorities to the different observable
events are assigned randomly. For example, deciding to process events in the order b, a,
c, d, e would lead to a similar result. Therefore, some heuristics need to be developed
in terms of priority between the branches to be investigated, in order to improve the

50

3.1. LITERATURE REVIEW

efficiency of the approach. These heuristics must be based on structural properties of the
PN model, so the priorities do not depend on the hazard. Moreover, it can be observed
that the number of FMs in FM-graph is bigger than the number of markings in MBRG
because of the unobservable transitions, even though only a part of FM-graph is built.
Therefore, some techniques can be used to improve the on-the-fly diagnosability analysis,
such as minimal explanations and reduction rules.

3.1.2.4 Verifier Net (VN) approach

In [Cab+12], the Verifier Net (VN) approach was proposed for diagnosability analysis
of both bounded and unbounded LPN. The K-diagnosablity is also discussed. The VN (an
LPN) is built starting from the initial PN model. The diagnosability analysis is based on
the construction of Reachability Graph (RG, for bounded PNs)/ Coverability Graph (CG,
for unbounded PNs) of the VN. A sufficient and necessary condition was given for the
diagnosability of system.

To analyze an LPN system with several fault classes, it needs to iterate the VN ap-
proach by building one VN and its RG/CG for each fault class. Therefore, without loss of
generality, in this section, the diagnosability issue is discussed for a single class of faults.
For the simplicity of representation, the superscript i will be omitted w.r.t Ti

f .

Definition 19 Given a Petri net N = (P, T, Pre, Post). T′ ⊆ T is a subset of the transitions in
T. The T′-induced subnet of N is defined as the new Petri net N′ = (P, T′, Pre′, Post′), where
Pre′, Post′ are the restrictions of Pre, Post. In this case, it is denoted that N′ ≺T′ N. The net N′

can be considered as being obtained by removing all transitions in T \ T′ and all related arcs.

The LPN system associated with N′ is called T′ − induced sub − LPN and denoted by
LPN′ = (N′, M′0, Σ′,L′), where M′0 = M0, Σ′ = Σ and the labeling function L′ is defined
as L but restricted to T′.

Example 26 Given an LPN system LPN = (N, M0, Σ,L), where N = (P, T, Pre, Post). Let
N′ = (P′, T′, Pre′, Post′) be the T′-induced subnet, where T′ = T\Tf = To ∪ Treg. P and P′ are
used to distinguish among places of N and N′, and they are disjoint even if they represent the same
places. The T′ − induced sub− LPN of the given LPN is denoted by LPN′ = (N′, M′0, Σ′,L′)

Let us consider the LPN model in Figure 3.23. To = {t3, t4, t5, t6}, Treg = {ε1} and Tf =

{ f2}. The labels of transitions are shown in Figure 3.23. Its T′-induced sub-LPN is shown
in Figure 3.24 by copying the given LPN model and removing the fault transition f2, ε that does
not in T′.

The VN is a LPN system constructed by composing LPN′ with LPN with the synchro-
nization on the observable transition labels. The VN is denoted as L̃PN = (Ñ, M̃o, Σ̃o, L̃).

51

CHAPTER 3. MONOLITHIC DIAGNOSABILITY ANALYSIS USING LPN

p1

p2 p3

p4 p5

f2, εε1, ε

t3, at4, b t5, a t6, b

Figure 3.23 – An example of LPN

p′1

p′2 p′3

p′4 p′5

ε′1, ε

t′3, at′4, b t′5, a t′6, b

Figure 3.24 – T′-induced sub-LPN of the LPN in Figure 3.23

Ñ = (P̃, T̃, P̃re, P̃ost), where P̃ = P′ ∪ P, T̃ = T̃o ∪ (T′reg×{λ})∪ ({λ}× Treg)∪ ({λ}× Tf)

and T̃o = {(t′, t) |t′ ∈ T′o, t ∈ To,L′(t′) = L(t)}. M̃0 =

[
M′0
M0

]
, Σ̃o = {(Σ′o × Σo)∪ {ε}} and

L̃ : T̃ → Σ̃o. The incidence matrix of VN is C̃ = P̃ost− P̃re.

The algorithm of building the VN is given in [Cab+12]. Each transition of VN is
composed either by two transitions (t′o, to) (t′o and to are observable and with the same
label l) or by an unobservable transition t with the empty transition λ. The label of (t′o, to)

is (l, l). The label of the transition composed by t and λ is ε. The observable transitions of
VN are indicated by (t′o, to) where t′o ∈ T′o, to ∈ To and L′(t′o) = L(to) = l. The transition
(t′o, to) are connected to the places in P′ following the column Pre′(·, t′o) and Post′(·, t′o);
and to the places in P following the column Pre(·, to) and Post(·, to). The unobservable
transitions of VN are indicated by (t′, λ) or (λ, t) where t′ ∈ T′reg and t ∈ Tu. For the
transitions indicated by (t′, λ) in VN, the transitions are connected to the places in P′

following the column Pre′(·, t′) and Post′(·, t′); For the transitions indicated by (λ, t) in
VN, the transitions are connected to the places in P following the column Pre(·, t) and

52

3.1. LITERATURE REVIEW

Post(·, t). For a transition t̃ = (t′, t) (one of t′ and t can be λ), P̃re(·, t̃) =

[
Pre′(·, t′)
Pre(·, t)

]
and

P̃ost(·, t̃) =

[
Post′(·, t′)
Post(·, t)

]
.

p1 p′1

p2 p′2 p3 p′3

p4 p′4 p5 p′5

(λ, f2), ε(ε′1, λ), ε(λ, ε1), ε

(t′3, t3), a(t′4, t4), b (t′3, t5), a (t′6, t4), b (t′4, t6), b(t′5, t3), a (t′5, t5), a
(t′6, t6), b

Figure 3.25 – VN of the LPN in Figure 3.23

Example 27 Let us consider the LPN model in Figure 3.23 and its T′-induced sub-LPN is shown
in Figure 3.24. The set of places built in VN is P̃ = P′ ∪ P. The set of transitions built in VN is

T̃ = {(t′3, t3), (t′3, t5), (t′5, t3), (t′5, t5), (t′4, t4), (t′4, t6),

(t′6, t4), (t′6, t4)} ∪ {(ε′1, λ)} ∪ {(λ, ε1)} ∪ {(λ, f2)}

L̃((t′3, t3)) = L̃((t′3, t5)) = L̃((t′5, t3)) = L̃((t′5, t5)) = (a, a), L̃((t′4, t4)) = L̃((t′4, t6)) =

L̃((t′6, t4)) = L̃((t′6, t4)) = (b, b) and L̃((ε′1, λ) = L̃((λ, ε1)) = L̃((λ, f2)) = ε. 11 transitions
are built in the VN. It is worth noticing that there are some constructed transitions that are never
enabled. The transitions (t′5, t3), (t′5, t5), (t′6, t4) and (t′6, t6) can never be enabled, because there is
no token that can enter the places p′3 and p′5, since the fault transition is removed in T′-induced
subnet.

To analyze the diagnosability of an LPN, the VN is constructed at first. Afterwards,
its RG (for bounded LPN)/CG (for unbounded LPN) is built. A sufficient and necessary
condition for diagnosability is proposed. Let F(VN) denote the set of faulty nodes in the
RG/CG of the VN. A node belongs to F(VN), if it can be reached by firing a sequence that
contains a fault transition.

Theorem 2 [Cab+12] A LPN system LPN = (N, M0, Σ,L) is diagnosable iff there does not
exist any cycle associated with a firable repetitive sequence in the VN that is reachable starting
from any node in the set F(VN).

53

CHAPTER 3. MONOLITHIC DIAGNOSABILITY ANALYSIS USING LPN

For a bounded LPN, each cycle in the RG of the VN corresponds to a firable repetitive
sequence. For an unbounded PN, if a cycle in CG is reachable starting from a node in the
set F(VN), it is necessary to check if the cycle is associated with a repetitive sequence, i.e.,
if C̃ · −→y >

−→
0 , where −→y is the firing vector that contains all the transitions of the cycle.

M̃0

M̃1

M̃2

M̃3

M̃4 M̃5

M̃6 M̃7

M̃8 M̃9

M̃10

(λ
, ε 1)

, ε (ε ′1 ,λ
),ε

(λ, f2), ε

(ε ′1 ,λ
),ε (λ

, ε 1)
, ε

(λ, f2), ε

(ε ′1 ,λ
),ε

(t ′3 ,t3),a

(t ′3 ,t5),a

(t
′ 3,

t 3
),

a

(t ′4 ,t4),b

(t ′4 ,t6),b

(t
′ 4,

t 4
),

b (t
′ 3,

t 3
),

a

(t ′3 ,t5),a(t
′ 4,

t 6
),

b

Figure 3.26 – CG of the VN in Figure 3.25

Example 28 The LPN model in Figure 3.23 is unbounded, because after firing the transition ε1,
at the obtained marking, the transition t3 is enabled and can be fired infinite times, which gives
infinitse number of token to place p4. The CG of the VN in Figure 3.25 is shown in Figure 3.25. In
the CG, there exists a cycle

M̃9
(t′3,t5),a−→ M̃10

(t′4,t6),b−→ M̃9 · · ·

Moreover, this cycle corresponds to a firable repetitive sequence, because C̃ · −→y >
−→
0 , where −→y

contains (t′3, t5), a and (t′4, t6), b. Therefor, the LPN is not diagnosable, because there exists a cycle
in CG associated with a firable repetitive sequence in the VN that is reachable after firing a fault.

The computational complexity for the construction of VN is linear in the number of
the places and polynomial in the number of transitions of the initial LPN model. For the

54

3.1. LITERATURE REVIEW

Table 3.3 – Markings in Figure 3.26

j M̃j
0 [1 0 0 0 0 | 1 0 0 0 0]τ

1 [1 0 0 0 0 | 0 1 0 0 0]τ

2 [0 1 0 0 0 | 1 0 0 0 0]τ

3 [1 0 0 0 0 | 0 0 1 0 0]τ

4 [0 1 0 0 0 | 0 1 0 0 0]τ

5 [0 1 0 0 0 | 0 0 1 0 0]τ

6 [0 1 0 ω 0 | 0 1 0 ω 0]τ

7 [0 1 0 1 0 | 0 0 1 0 0]τ

8 [0 ω 0 ω 0 | 0 ω 0 ω 0]τ

9 [0 ω 0 0 0 | 0 0 1 0 0]τ

10 [0 ω 0 1 0 | 0 0 0 0 1]τ

diagnosability analysis of bounded PNs, the complexity of the VN approach is linear in the
sum of the number of states and transitions of the reachability graph (RG) of the VN. For
the diagnosability analysis of unbounded PNs, the complexity of the VN approach is an
open issue. The limitation of the VN approach is the combinatorial explosion. The size
of the VN is larger than the initial LPN model. The size of its RG/CG is increased. There
exists combinatorial explosion problem when checking the diagnosability of a complex
LPN model.

3.1.2.5 Other PN-based approaches

In [Ush+98], the diagnosability analysis has been extended to the framework of PNs.
Based on the assumption that the places are partially observable, a simple ω−diagnoser
and an ω−refined diagnoser were introduced for diagnosability analysis of unbounded
PNs. In [LD07], the faults occurrence has been exactly estimated with the assumption that
places are partially observable. Other approaches are developed with the assumption that
the transitions are partitioned into observable and unobservable transitions and the fault
transitions are unobservable. In [Lef16], the diagnosability analysis has been addressed for
bounded or unbounded PN that are deadlock-free. The necessary and sufficient conditions
for diagnosability have been given. This approach is based on the transformation of the
coverability graph into an observation graph that encodes all observation sequences of
measured markings and events w.r.t. the sensor configuration. The diagnosability is deter-
mined by analyzing the paths and circuits in the observation graph. In [JB10], the authors
proposed an approach by using minimal explanations: a structure called ROF-automaton
is developed, which is smaller than the reachability graph of the PN. Then, the technique
of verifier is applied for diagnosability analysis. In [Dot+09], some integer linear pro-
gramming (ILP) problems are defined for on-line diagnosis: after an observable sequence,
the possible occurred fault transitions or regular unobservable transitions of system are
provided by an efficient algorithm. In [Bas+12], an approach for checking K-diagnosability

55

CHAPTER 3. MONOLITHIC DIAGNOSABILITY ANALYSIS USING LPN

has been developed by using the ILP technique. A necessary and sufficient condition
for K-diagnosabilityof bounded PNs is proposed. In [Lef14b], the on-line fault diagnosis
has been addressed for DES modeled with partially observable Petri nets. The on-line
diagnosis is investigated according to the capture and analysis of observation sequences
that include some observable events and the partial measurement of the successive states
reached by the system. The on-line diagnosis is defined as ILP problem and a forward-
backward algorithm has been proposed, which can provide a diagnosis decision with a
reasonable computation effort. The result has been extended in [Lef14a]. In [Mad+10], the
unfolding technique was applied for diagnosability analysis: the unfolding of a given LPN
is infinite, but if the LPN is bounded, the unfolding will eventually repeat itself. A verifier
is built for checking diagnosability, which compares pairs of paths from the initial model
with the same observation. In [Gou+14], the discriminability of a system was defined,
which is the possibility to detect the exclusive occurrence of a supervision pattern of a
particular behavior of interest: the twin-plant approach is adapted to LPN unfolding in
order to solve the combinatorial explosion problem.

3.2 Contributions on monolithic diagnosability analysis

3.2.1 Diagnosis and diagnosability analysis using reduction rules

This section proposes 7 reduction rules of LPN in order to simplify a priori the initial model
before analyzing the diagnosability. Some transitions and places are suppressed. It will be
proved that the diagnosability property of the reduced model keeps consistent with that
of the initial model.

3.2.1.1 Reduction rules for regular unobservable transitions

The aim of this section is to propose reduction rules to suppress some regular unobservable
transitions.

In [Ber86; Ber87; Mur89], some transformation techniques of PN models have been
proposed to simplify a PN model to facilitate the analysis of a complex PN system. The
PN model is often reduced to a simpler one by using these transformation techniques,
while the considered system properties are preserved.

For the event-based diagnosability analysis of a LPN system, the labels of the transi-
tions in To generate the language of the LPN model, which is the basis of the diagnosability
analysis. The transitions in Tf contain the fault information. However, the transitions in
Treg do not contain the necessary information of diagnosability analysis. Besides, the
existence of regular unobservable transitions increases the size of the state space of the
approaches proposed in [Cab+12; Li+15c; Liu+14; Sam+95]. In this section, some reduction
rules are proposed to remove some regular unobservable transitions and some places

56

3.2. CONTRIBUTIONS ON MONOLITHIC DIAGNOSABILITY ANALYSIS

before generating the state space of the LPN model [Li+16a]. A theorem will be given to
establish that these rules preserve the diagnosability property of the system.

It is worth noticing that the technique of reduction rules is a complement of most
approaches for diagnosability analysis. In this section, the diagnoser approach is used to
compare the diagnosability analysis of the initial LPN model and that of the reduced LPN
model.

In [Ber86; Ber87; Mur89], some reduction rules are proposed, but not all the rules
preserve the diagnosability property. In Figure 3.27, five rules are proposed and it has
been proved that these rules guarantee the preservation of the liveness and boundedness of
the PN model [Mur89]. The algorithms of these reduction rules though incidence matrix
operations have been proposed in [Mm+13] and the computational complexity of these
algorithms is polynomial. These rules are used to suppress the regular unobservable
transitions. Therefore, some of the reduction rules are modified by indicating the type
of transitions. The modified rules do not change the preservation of the liveness and
boundedness of the system:

1. Fusion of Series of Places (FSP) as depicted in Figure 3.27(1). The transition εk is
regular and unobservable, which has one input arc and one output arc. The input
arc of this transition is the only one output arc of its pre-place (pi). The regular
unobservable transition is suppressed and the two places pi and pj are merged;

2. Fusion of Series of Transitions (FST) as depicted in Figure 3.27(2)a and Figure 3.27(2)b.
εh in Figure 3.27(2)a (respectively εk in Figure 3.27(2)b) is regular and unobservable.
Moreover, the place pi does not contain any token, because the language of the LPN
model will be changed, if the token in pi is moved to the pre-places of tk (εk) or the
post-places of εh (th). The place pi has one input arc and one output arc. The output
arc of pi is the only input arc of its post-transition. (Note that in Figure 3.27(2)b, pi is
the only post-place of εk, which means the firing of εk can only enable the transition th

so that it does not change the language of the LPN model.) The place pi is suppressed.
The two transitions are merged by suppressing the regular unobservable transition;

3. Fusion of Parallel Places (FPP) as depicted in Figure 3.27(3). Each of the two places
has one input arc and one output arc. The pre-transition (respectively the post-
transition) of these two places is the same. The two places are merged;

4. Fusion of Parallel Transitions (FPT) as depicted in Figure 3.27(4). εk and εh are all
regular and unobservable. Each of the two transitions has one input arc and one
output arc. The pre-place (respectively the post-place) of these two transitions is the
same. The two regular unobservable transitions are merged;

57

CHAPTER 3. MONOLITHIC DIAGNOSABILITY ANALYSIS USING LPN

pi

pj

piεk

a1 a2

a3

a4
a5 a6

a7 a8

a1 a2a5 a6

a7 a8

(1) FSP

pi

tk

εh

tk

a1 a2

a3 a5

a7 a8

a4

a6

a1 a2

a3 a5

a7 a8

(2)a FST

pi

εk

th

th

a1 a2

a5 a6

a3

a4

a1 a2

a5 a6

(2)b FST

pi pj pi

tk

th

tk

th

a1 a2

a3 a6

a11 a12

a4

a8

a5

a9
a7 a10

a1 a2

a3 a6

a11 a12

a4,5

a8,9
a7 a10

(3) FPP

pi

pj

pi

pj

εk εh εk,h

a1 a2

a3

a4 a5

a6

a7 a8
a9 a10

a11 a12

a1 a2

a3

a4,5

a6

a7,8
a9 a10

a11 a12

(4) FPT

pi tk tk
a1

a2
a3

a4

a5

a6

a2
a3

a5

a6

(5) ESP

Figure 3.27 – Reduction rules for regular unobservable transitions

5. Elimination of Self-loop Places (ESP) as depicted in Figure 3.27(5), the place pi

contains at least one token and it has one input arc and one output arc. The pre-
transition of this place is the same with its post-transition. The place is suppressed;

While using these reduction rules, the initial marking of the reduced LPN model is
defined as follows.

Definition 20 The initial marking of the reduced LPN model M̂0 is calculated from the initial
marking of the initial LPN model M0 by the following steps:

– Initialization of M̂0: M̂0 ← M0. If no rule can be applied, M̂0 = M0;

58

3.2. CONTRIBUTIONS ON MONOLITHIC DIAGNOSABILITY ANALYSIS

– If the rule (1) FSP is used, remove the jth line of M̂0 and M̂0(pi) = M0(pi) + M0(pj),
because the tokens in the two places are all available to be consumed to fire the following
transitions;

– If the rule (2) FST is used, remove the ith line of M̂0. The place does not contain any token as
presented before;

– If the rule (3) FPP is used, remove the jth line of M̂0 and M̂0(pi) = Min(M0(pi), M0(pj)),
where the function Min(M0(pi), M0(pj)) is the minimum of M0(pi) and M0(pj). For
example, without considering the existence of the arc a7 and a10, if M0(pi) = 2 and
M0(pj) = 3, the post-transition (th) can be fired only twice. After using the rule (3),
M̂0(pi) = Min(M0(pi), M0(pj)) = 2 and its post-transition can also be fired twice;

– If the rule (5) ESP is used, remove the ith line of M̂0.

For all the reduction rules shown in Figure 3.27, the left figure and the right figure
of each rule can be treated as two sub-structures of LPN system. The set of input arcs
(respectively output arcs) of the initial sub-structure and the reduced sub-structure is
the same. It means that using these rules, the removing of the regular unobservable
transitions, the places and the arcs has no influence on the firing of the previous transitions
and following transitions. Therefore, by using these reduction rules, the language of the
PN is not modified [Ber87]. These reduction rules have no influence on the firing of the
previous transitions and following transitions of the sub-structures of the PN.

Example 29 For the reduction rule shown in Figure 3.27(1), the set of input arcs of the two
sub-structures is the same: {a1, a2, a5, a6}. The set of output arcs of the two sub-structures is also
the same: {a7, a8}. The results are the same for the other reduction rules. �

In the framework of LPN, the Proposition 1 is given.

Proposition 1 [Li+16a] By using reduction rules (1)-(5), the removing of some regular unobserv-
able transitions, some related places and arcs does not modify the language of the LPN model.

Proof : According to the proposition in [Ber87], by using reduction rules, the language
of the PN model is not modified and the firing of the previous transitions and following
transitions is not affected. For the reduction rule (1), given a firing sequence of transitions
σiε jσk, where the unobservable transition ε j can be suppressed by using reduction rules.
The observation of this sequence is L(σiε jσk) = ω. After eliminating the transition ε j, the
sequence becomes σiσk and it is still firable. The observation is L(σiσk) = L(σiε jσk) = ω.
Therefore, the observation of a firing sequence of transitions does not change after using
the reduction rules. The other rules can be proved in a similar way. �

59

CHAPTER 3. MONOLITHIC DIAGNOSABILITY ANALYSIS USING LPN

Theorem 3 is given to guarantee the correctness of diagnosability analysis using
reduction rules.

Theorem 3 [Li+16a]By using reduction rules (1)-(5), the diagnosability of the reduced LPN
model keeps consistent with the diagnosability of the initial LPN model.

Proof : By proposition 1, it is proved that by using reduction rules, the language of the
LPN model is not modified. According to the definition of diagnosability, if the system
is non-diagnosable, there exist two sequences σ1 and σ2 with the same observation, such
that σ1 does not contain any fault, but σ2 contains a fault and can be arbitrarily long
after the occurrence of the fault. Assuming the σ1 (σ2) contains a regular unobservable
transition ε i that can be removed by using these reduction rules. After removing ε i, the
observation of the reduced sequence σ̂1 (σ̂2) does not change. Therefore, the system is
still non-diagnosable, because σ̂1 (σ̂2) and σ2 (σ1) satisfy the conditions in definition of
diagnosability.

If the system is diagnosable, assuming that the regular unobservable transition ε j can
be removed by using these reduction rules. For any sequence of transitions σi that contains
ε j, the observation of the sequence σ̂i stays the same after removing ε j. The system is
still diagnosable, because it is not possible to find σ̂i and σ̂j that satisfy the conditions of
definition of diagnosability. �

Theorem 3 proves that, by using the reduction rules (1)-(5), the diagnosability property
is preserved. Therefore, before building the state space of the initial LPN system, the
reduction rules can be applied to simplify the LPN system in order to facilitate the
diagnosability analysis.

p1

p3

p5

p7 p9

t2, a t4, b

t5, c

t7, d

f9, ε

t10, e

Figure 3.28 – Reduced LPN model of the LPN in Figure 3.17
(page 40)

Example 30 Considering the LPN model in Figure 3.17 (page 40). By using the reduction rules
FST, the regular unobservable transitions ε1, ε3, ε6 and ε8 are suppressed. Meanwhile, the places p2,

60

3.2. CONTRIBUTIONS ON MONOLITHIC DIAGNOSABILITY ANALYSIS

M̂0

M̂1 M̂2

M̂4M̂3 M̂5 M̂6 M̂7

M̂8 M̂10 M̂9 M̂11

M̂12 M̂13 M̂14

t 2,
a t7 , d

t 2,
a t4 ,b

t7 , d t 2,
a f9

t7 , d

t4 , b

t2 ,a

f9

t4 , b

t 2,
a

t10, e

t7 , d f9

t5 , c

t4 ,b
t10, e

t4 ,b

t5 , c

f 9

t10, e

f 9

t 5
,c

t 5,
c

t10, e

t10, e

Figure 3.29 – Reachability graph of the reduced LPN shown in Figure 3.28

Table 3.4 – Markings in Figure 3.29 and Figure 3.30

j M̂j j M̂j
0 [2 0 0 0 0]τ 8 [0 1 1 0 0]τ

1 [1 1 0 0 0]τ 9 [0 0 1 1 0]τ

2 [1 0 0 1 0]τ 10 [0 1 0 0 1]τ

3 [0 2 0 0 0]τ 11 [0 0 0 1 1]τ

4 [1 0 1 0 0]τ 12 [0 0 2 0 0]τ

5 [0 1 0 1 0]τ 13 [0 0 1 0 1]τ

6 [1 0 0 0 1]τ 14 [0 0 0 0 2]τ

7 [0 0 0 2 0]τ

p4, p6 and p8 are also suppressed. The reduced LPN model is shown in Figure 3.28. The diagnoser
approach is used for the diagnosability analysis of the initial LPN model and the reduced LPN
model. For the initial LPN model in Figure 3.17, the reachability graph contains 44 nodes and the
diagnoser contains 33 nodes. The system is non-diagnosable, because there exist indeterminate
cycles. For the reduced LPN model, the reachability graph (shown in Figure 3.29) contains only

61

CHAPTER 3. MONOLITHIC DIAGNOSABILITY ANALYSIS USING LPN

M̂0, N

M̂1, N
M̂2, N
M̂6, F

M̂4, NM̂3, N
M̂5, N
M̂10, F

M̂7, N
M̂11, F

M̂4, F

M̂8, N M̂8, F
M̂9, N
M̂13, F

M̂9, F
M̂13, F

M̂12, N M̂12, F

a d

a
b

d a
d e

b
a e

b ea

b

c

b e

c

e

c c

Figure 3.30 – Diagnoser of the reduced LPN shown in Figure 3.28

15 nodes and the diagnoser (shown in Figure 3.30) contains 14 nodes. The markings are shown
in Table 3.4. The system is also non-diagnosable and the indeterminate cycle is shown in the shadow
zone.

It is worth noticing that not all the regular unobservable transition can be suppressed.
A counterexample is proposed in Figure 3.31. The regular unobservable transition ε1

in Figure 3.31 cannot be suppressed. Therefore, while analyzing the diagnosability of
a given LPN, our reduction rules are necessarily applied on the regular unobservable
transitions that are possibly reduced.

The reduction rules provide the possibility to facilitate the diagnosability analysis of
a complex system. The state space is much smaller than that of the initial LPN model, if
many regular unobservable transitions are reduced by using these rules. The reduction
rules (1), (2) and (4) suppress some regular unobservable transitions, so the number of
states of the state space is reduced. In addition, The reduction rules (1), (2), (3) and (5)
suppress some places so that it takes less memory cost to store each marking. Therefore, by
using the reduction rules, the memory cost is reduced and the efficiency for diagnosability
analysis is improved.

3.2.1.2 Reduction rules for observable transitions

In this section, we intend to suppress a specific kind of observable transitions in order
to reduce further the combinatorial explosion. A theorem will be given to prove that the
diagnosability of the reduced LPN keeps consistent with the diagnosability of the initial

62

3.2. CONTRIBUTIONS ON MONOLITHIC DIAGNOSABILITY ANALYSIS

p1 p2

p3

p4

p5

ε1, ε t2, a

f3, ε

t4, c

Figure 3.31 – A counter-example for reduction rules of unobservable transitions

LPN model. Afterwards, it will be demonstrated that, by using these rules, the diagnoser
of the reduced LPN model is still valid for on-line diagnosis.

The specific kind of observable transitions that can be suppressed is defined as follows.

Definition 21 A transitions t is called an exclusively labeled observable transition (ELOT) if
t ∈ To and @t′ ∈ To s.t. L(t′) = L(t).

In other words, the label of an ELOT is unique. For some diagnosability analysis
techniques based on the state estimation (such as the approaches in [Cab+14; Li+15b;
Li+15c; Liu+14; Sam+95]), the firing of an ELOT does not cause any ambiguity for the state
estimation. For example, a reachability graph of an LPN model (that contains unobservable
transitions or observable transitions with the same label) is by default a non-deterministic
graph. However, if the transitions of an LPN are all ELOTs, its reachability graph will be a
deterministic graph.

The following reduction rules are proposed in Figure 3.32 to suppress this specific
kind of observable transitions (ELOTs). As it was presented in Section 3.2.1.1, the modified
rules do not change the preservation of the liveness and boundedness of the LPN model:

1. Fusion of Series of ELOTs (FSELOT) as depicted in Figure 3.32(6). tk and th are both
ELOTs. Moreover, the place pi does not contain any token. The place pi has one
input arc and one output arc. The input arc of pi is the only one output arc of its
pre-transition (tk). The output arc of pi is the only one input arc of its post-transition
(th). The ELOT tk and the place pi are suppressed;

2. Fusion of Parallel ELOTs (FPELOT) as depicted in Figure 3.32(7). tk and th are
both ELOTs. Each of the two transitions has one input arc and one output arc. The
pre-place (respectively the post-place) of these two transitions is the same. The
two ELOTs are merged as one ELOT. The merged ELOT is denoted as tk(or)th,

63

CHAPTER 3. MONOLITHIC DIAGNOSABILITY ANALYSIS USING LPN

which means if this transition is fired, tk or th is fired. The label of this transition is
L(tk)(or)L(th);

Remark 1: The condition of using these two rules is that tk and th are ELOTs. After
using these rules, the merged transition is also an ELOT. We can continue applying the
reduction rules on this ELOT.

Remark 2: The first transition (tk) contains only one output arc in rule (6) (similar to
the rule in Figure 3.27(2)b). It means that the firing of transition tk can only enable the
following transition th.

pi

tk

th

th

a1 a2

a3 a5

a4

a6

a1 a2

a3 a5

(6) FSELOT

pi

pj

pi

pj

tk th (tk(or)th)

a1 a2

a3

a4 a5

a6

a7 a8
a9 a10

a11 a12

a1 a2

a3

a4,5

a6

a7,8
a9 a10

a11 a12

(7) FPELOT

Figure 3.32 – Reduction rules for ELOTs

Theorem 4 By using reduction rules (6) and (7), the diagnosability of the reduced LPN model
keeps consistent with the diagnosability of the initial LPN model.

Proof : First of all, as presented in the proof of Proposition 1, it remains true that, by
using the reduction rules (6) and (7), the firing of the previous transitions and following
transitions is not affected. Afterwards, we prove respectively the preservation of the
diagnosability for the rules (6) and (7).

For rule (6) in Figure 3.32(6), it is worth noticing that, in the initial LPN model, the
firing of the transition tk can only enable its following transition th. Rule (6) can be used
only if the intermediary place pi does not contain any token. It means that when the
transition th is fired, it is certain that tk has been fired. Moreover, the place pi is not the
pre-place of any transition except of th. So if the transition th is enabled, it can be fired
after no matter which sequence of transitions.

Let us define the projection operator Ptk : T → T\{tk}.

If the initial system is non-diagnosable, there exist two sequences σ1 and σ2 with the
same observation, such that σ1 does not contain any fault, but σ2 contains a fault and can
be arbitrarily long after the occurrence of the fault. Two cases must be studied:

64

3.2. CONTRIBUTIONS ON MONOLITHIC DIAGNOSABILITY ANALYSIS

1. tk, th /∈ σ1 (respectively σ2): in this case, the language of σ1 and σ2 does not change.
The reduced LPN model is still non-diagnosable.

2. σ1 (respectively σ2)= σitkσjthσm (th /∈ σj, but it is possible that σj = λ): in this
case, because tk and th are ELOTs, it is certain that σ2 (respectively σ1)= σ′i tkσ′j thσ′m
(th /∈ σ′j). Because the place pi is the only post-place of tk and the only pre-place of th,
the transition th can be fired after no matter which sequence of transitions. Therefore,
there exist two sequences of transitions σ′1 = σitkthσjσm and σ′2 = σ′i tkthσ′j σ

′
m that

satisfy the condition for a non-diagnosable system. By using the rule (6), in the
reduced LPN, there exist two sequences σ̃′1 = Ptk(σ

′
1) and σ̃′2 = Ptk(σ

′
2) that satisfy

the condition for a non-diagnosable system. Therefore, the reduced LPN system is
non-diagnosable.

If the initial system is diagnosable, there does not exist two sequences σ1 and σ2 with the
same observation, such that σ1 does not contain any fault, but σ2 contains a fault and can
be arbitrarily long after the occurrence of the fault. By using the rule (6), there does not
exist such two sequences by studying the three cases above. Therefore, by using the rule
(6), the diagnosability property of the reduced model does not change.

For rule (7) in Figure 3.32(7), tk and th are equivalent. It means that if there exists a
sequence of transitions σ = σitkσj, the sequence of transitions σ = σithσj exists (according
to structural properties of PN). Moreover, tk and th are ELOTs, so if L(tk) (respectively
L(th)) is observed, tk (respectively th) is certainly fired. If the system is non-diagnosable,
assuming that the two sequences of transitions σ1 and σ2 contain tk, that satisfy the condi-
tion of non-diagnosable system. By replacing tk by th, the two corresponding sequences
σ′1 and σ′2 satisfy still the condition for a non-diagnosable system. Therefore, by using
the rule (7), there exist two sequences σ̃1 and σ̃2 corresponding to σ1 and σ2 by replacing
tk by (tk(or)th). In a similar way, if the initial LPN model is diagnosable, the reduced
LPN model is also diagnosable by using rule (7). Therefore, by using the rule (7), the
diagnosability property of the reduced model does not change.

Overall, By using the reduction rules (6) and (7), the diagnosability of the reduced LPN
model keeps consistent with the diagnosability of the initial LPN model. �

The Theorem 4 proves that the reduction rules (6) and (7) do not change the diagnos-
ability property of the system. Therefore, they can be applied to simplify further the initial
LPN model so as to reduce the combinatorial explosion problem.

Example 31 Considering the reduced LPN model in Figure 3.28. The transitions t2, t4, t5, t7 and
t10 are all ELOTs. By using the reduction rule (6) FSELOT, the ELOT t2 is suppressed. The reduced
LPN model is called a “further reduced LPN" hereafter (shown in Figure 3.33). To analyze the
diagnosability of the further reduced LPN, the reachability graph (shown in Figure 3.34) contains
10 nodes and the diagnoser (shown in Figure 3.35 (solid part)) contains 10 nodes. The markings

65

CHAPTER 3. MONOLITHIC DIAGNOSABILITY ANALYSIS USING LPN

p1 p5

p7 p9

t4, b

t5, c

t7, d

f9, ε

t10, e

Figure 3.33 – Further reduced LPN model

M̃0

M̃1 M̃2

M̃3 M̃4 M̃5 M̃6

M̃7 M̃8M̃9

t 4,
b t7 , d

t 4,
b

t 5,
c

t7 , d

t 4,
b

t7 ,d

f9

t 5,
c

t 5,
c

f 9
f9

t10 , e

t 4,
b t 7,

d

t10 , e

t5, c

t10 , e

f9t10, e

Figure 3.34 – Reachability graph of the further reduced LPN shown in Figure 3.33

are shown in Table 3.5. The system remains non-diagnosable and the indeterminate cycle is shown
in the shadow zone of Figure 3.35.

By using the reduction rules (6) and (7), the diagnosability property is preserved. The
number of the nodes in the reachability graph in Figure 3.34 (respectively the diagnoser
in Figure 3.35) is further reduced comparing to the reachability graph in Figure 3.29
(respectively the diagnoser in Figure 3.30). Therefore, the combinatorial explosion problem
is reduced for diagnosability analysis.

66

3.2. CONTRIBUTIONS ON MONOLITHIC DIAGNOSABILITY ANALYSIS

M̃0, N

M̃1, N
M̃2, N
M̃6, F

M̃3, N
M̃4, N
M̃7, F

M̃5, N
M̃8, F
M̃9, F

M̃3, F
M̃4, F
M̃7, F

M̃1, F
M̃2, F
M̃6, F

b d

a

b d

c

a

b d

a

c
a

c

e

a

e

a

c

a

c

a

b

a

b
e

a

Figure 3.35 – Diagnoser of the further reduced LPN shown in Figure 3.33

Table 3.5 – Markings in Figure 3.34 and Figure 3.35

j M̃j j M̃j
0 [2 0 0 0]τ 5 [0 0 2 0]τ

1 [1 1 0 0]τ 6 [1 0 0 1]τ

2 [1 0 1 0]τ 7 [0 1 0 1]τ

3 [0 2 0 0]τ 8 [0 0 1 1]τ

4 [0 1 1 0]τ 9 [0 0 0 2]τ

3.2.1.3 Impact of the reduction rules on the on-line diagnosis

By using the rules (1)-(5), the language of the LPN model does not change. Therefore, the
on-line diagnosis by using the diagnoser of the reduced model remains valid for on-line
diagnosis.

By using the rules (6) and (7), some ELOTs with their observable labels are suppressed.
Since some observable labels are removed, the language of the LPN model changes.
However, in this part, the diagnoser of the reduced LPN model remains valid for on-line
diagnosis.

Proposition 2 By using the reduction rules (6) and (7), the diagnoser of the further reduced LPN
remains valid for on-line diagnosis.

Proof : We prove at first that the result for on-line diagnosis is correct by using the rule
(6). For the initial LPN model, when the event L(tk) (tk is the first ELOT in Figure 3.32(6))

67

CHAPTER 3. MONOLITHIC DIAGNOSABILITY ANALYSIS USING LPN

is observed, the only consequence is that the ELOT th is enabled (i.e. the event L(th) can
be observed after that). Assuming that, after observing the event L(tk) by using the initial
LPN model, the diagnoser of initial LPN model changes its state from D to D′. We can
deduce that the labels of the state D and D′ are the same (the 3 labels of the state in the
diagnoser are “Normal", “F-certain" and “F-uncertain" as it is defined in [Sam+95]). If the
transition tk is suppressed by using the rule (6), when L(tk) is observed, the state of the
system does not change. Therefore, by using the reduction rules (6), the result of on-line
diagnosis is correct.

For the rule (7), when L(tk) (respectively L(th)) is observed, we can consider that
L(tk)(or)L(th) is observed. The result of on-line diagnosis is correct.

Overall, it is proved that the diagnoser of the further reduced LPN by using the
reduction rules (6) and (7) is valid for on-line diagnosis.�

Example 32 Considering the diagnoser in Figure 3.30, the labels of the states on the both sides
of event “a” are the same. (e.g. (M̂0, N) a−→ (M̂0, N); (M̂4, F) a−→ (M̂8, F); (M̂2, N|M̂6, F) a−→
(M̂5, N|M̂10, F)).

Assuming the ELOT tk (Figure 3.32(6)) is suppressed by using the rule (6). By using the
diagnoser of the further reduced LPN, when L(tk) is observed, the state of the dignoser
does not change. To make the diagnoser deterministic, we can add a self-loop transition
labeled byL(tk) to every state. For example, since the ELOT (t2, a) of the LPN in Figure 3.28
is suppressed, a self-loop transition labeled by a (dashed part in Figure 3.35) is added to
every state of the diagnoser in Figure 3.35.

Example 33 Assuming that from the initial state of the system, the observed sequence of events is
adb.

By using the diagnoser in Figure 3.30, while adb is observed, the state of diagnoser changes as:
(M̂0, N) a−→ (M̂1, N) d−→ (M̂5, N|M̂10, F) b−→ (M̂9, N|M̂13, F). The diagnosis result is Normal a−→
Normal d−→ F− uncertain b−→ F− uncertain.

By using the diagnoser in Figure 3.35, after observing a, the state of the diagnoser does not
change (dashed self-loops in Figure 3.35). Therefore, while adb is observed, the state of diagnoser
changes as: (M̃0, N) a−→ (M̃0, N) d−→ (M̃2, N|M̃6, F) b−→ (M̃4, N|M̃7, F). The diagnostic result
is Normal a−→ Normal d−→ F − uncertain b−→ F − uncertain, which keeps consistent with the
previous result.

Remark 3: By using the rule (6), the first ELOT tk in Figure 3.32(6) is suppressed because
for on-line diagnosis, when the label L(th) is observed, it can be deduced that the label
L(tk) has been observed before. However, conversely, it is not true.

68

3.2. CONTRIBUTIONS ON MONOLITHIC DIAGNOSABILITY ANALYSIS

Remark 4: Practically, if the rule (6) can be used to reduce the LPN model, the sensor,
that tests the label of the first ELOT (tk in Figure 3.32(6)), is redundant. From diagnostic
viewpoint, this sensor can be removed to reduce the cost for constructing the system.

By using the reduction rules (6) and (7), the size of the diagnoser [Sam+95] for on-line
diagnosis is smaller.

It is worth noticing that by reducing the initial LPN model, this technique is comple-
mentary to most of diagnosability analysis techniques for LPN systems. It does not reduce
the complexity of diagnosability methods, but from a practical point of view, it makes
them more efficient by allowing them to work on reduced state spaces. For example, the
Verifier Net (VN) in [Cab+12] of the reduced model can be much smaller, so as to the
reachability graph (or coverability graph) of the VN. For the on-the-fly and incremental
technique in [Liu+14], the nodes generated by these regular unobservable transitions or
ELOTs can be reduced while executing the state estimation. For the approach using ILP
in [Bas+12], less possibilities of the unobservable sequence of transitions will be produced.
Moreover, if some ELOTs are suppressed, it is sufficient to check the sub-language of the
initial LPN model, so that the efficiency can be improved. Even for the approach using
minimal explanations [Cab+09a; JB10; Li+15b], by using the rules (1)-(5) the efficiency of
the algorithm may be improved, because the regular unobservable transitions are normally
considered and computed several times while calculating the minimal explanations of
observable transitions or fault transitions.

3.2.2 Sufficient condition of diagnosability for safe and live LPN

This section supplements the sufficient condition for diagnosability of a safe and live LPN
given in [Wen+05]. According to [Wen+05], a safe and live LPN is diagnosable, if there do
not exist two minimal T-invariants such that their sets of observable labels are the same
(Section 3.1.2.1 page 38).

There is a defect of this sufficient condition, because the fault information is not
included for the diagnosability analysis. There may exist two minimal T-invariants
−→
Ω min,1 and

−→
Ω min,2 such that: (1) ΣL(

−→
Ω min,1) = ΣL(

−→
Ω min,2); (2)

−→
Ω min,1,

−→
Ω min,2 ∈ IN or

−→
Ω min,1,

−→
Ω min,2 ∈ IF. Such a couple of minimal T-invariants is useless for diagnosabil-

ity analysis. Moreover, there are some situations that are not taken into account in this
sufficient condition. A counter-example is presented in Figure 3.36.

For the LPN in Figure 3.36, there exist four minimal T-invariants:
−→
Ω min,1 = [1 0 0 0 0 0

0 0 1]τ,
−→
Ω min,2 = [0 1 1 0 0 0 0 0 1]τ,

−→
Ω min,3 = [0 0 0 1 1 0 0 0 1]τ, and

−→
Ω min,4 =

[0 0 0 0 0 1 1 1 1]τ. ΣL(
−→
Ω min,1) = {a}, ΣL(

−→
Ω min,2) = {b, c}, ΣL(

−→
Ω min,3) = {c}, and

ΣL(
−→
Ω min,4) = {a, a, b}. According to the sufficient condition in [Wen+05], the system is

diagnosable because there do not exist two minimal T-invariants
−→
Ω min,i and

−→
Ω min,j s.t.

ΣL(
−→
Ω min,i) = ΣL(

−→
Ω min,j).

69

CHAPTER 3. MONOLITHIC DIAGNOSABILITY ANALYSIS USING LPN

p1

p6

p2 p3

p4

p5

t1, a

t2, b

t3, c

t4, c

f5, ε

t6, a

t7, a

t8, b

ε9, ε

Figure 3.36 – A counter-example of the sufficient condition in [Wen+05]

However, the LPN in Figure 3.36 is non-diagnosable: there exist two sequences of
transitions: σ1 = (t1ε9t1ε9t2t3ε9)∗ and σ2 = (t6t7t8ε9t4 f5ε9)∗ s.t. σ1 and σ2 have the same
observation ((aabc)∗) and can be arbitrarily long. Moreover, σ2 contains a fault transition,
but σ1 does not. According to the definition of diagnosability, the LPN is undiagnosable.

Therefore, the sufficient condition for the diagnosability of a safe and live LPN needs to
be supplemented.

Proposition 3 A safe and live LPN is diagnosable, if there do not exist two T-invariants
−→
Ω i and

−→
Ω j, which can be the linear combination of minimal T-invariants, such that:

1. ΣL(
−→
Ω i) = ΣL(

−→
Ω j);

2.
−→
Ω i contains a fault transition but

−→
Ω j does not.

In Figure 3.36, there exist two T-invariants:
−→
Ω1 = 2 · −→Ω min,1 +

−→
Ω min,2 and

−→
Ω2 =

−→
Ω min,3 +

−→
Ω min,4 s.t. ΣL(

−→
Ω 1) = ΣL(

−→
Ω 2).

−→
Ω 2 contains a fault transition but

−→
Ω 1 does not.

Thus, it cannot be said that the system is diagnosable and it is necessary to build the state
space in order to analyze the diagnosability of this LPN.

Linear programing technique can be used to analyze the diagnosability by using the
sufficient conditions.

Let us recall some notions in Section 3.1.2.1. IN is the set of minimal T-invariants that
does not contain any fault transition. IF is the set of minimal T-invariants that contains
a fault transition. The minimal T-invariant in IN is denoted as

−→
Ω N

min,i and the minimal

T-invariant in IF is denoted as
−→
Ω F

min,i.
−→
V (
−→
Ω min) ∈ N|Σo | is called a label vector of the

minimal T-invariant
−→
Ω min). Assuming |Σo| = m, Σo = {l1, · · · , lm}. The label vector of

−→
Ω min is

70

3.2. CONTRIBUTIONS ON MONOLITHIC DIAGNOSABILITY ANALYSIS

−→
V (
−→
Ω min) =


l1

−→
V (
−→
Ω min)

1

l2
−→
V (
−→
Ω min)

2

··· · · ·
lm

−→
V (
−→
Ω min)

m

;

where for j ∈ {1, · · · , m}, −→V (
−→
Ω min)

j = ∑
h

−→
Ω h

min, and ∀h, L(th) = lj. (
−→
V (
−→
Ω min)

j is the

j−th component of
−→
V (
−→
Ω min) and

−→
Ω h

min is the h−th component of
−→
Ω min.)

Example 34 In Figure 3.36, there exists a minimal T-invariant
−→
Ω min,4 = [0 0 0 0 0 1 1 1 1]τ and

ΣL(
−→
Ω min,4) = {a, a, b}. The label vector of

−→
Ω min,4 is

−→
V (
−→
Ω min,4) =

a 2
b 1
c 0



The sufficient condition of diagnosability can be translated into the following con-
straint:



∑
i
(ai ·
−→
V (
−→
Ω N

min,i)) = ∑
i
(a′i ·
−→
V (
−→
Ω N

min,i)) + ∑
r
(br ·
−→
V (
−→
Ω F

min,r))

ai · a′i = 0

∑
i

ai ≥ 1

∑
r

br ≥ 1

ai, a′i, br ∈N

(3.2)

where ai, a′i and br are integer variables.

The first inequality represent two T-invariants (two linear combinations of minimal
T-invariants), such that: ΣL(

−→
Ω i) = ΣL(

−→
Ω j);

−→
Ω i contains a fault transition but

−→
Ω j does

not.

71

CHAPTER 3. MONOLITHIC DIAGNOSABILITY ANALYSIS USING LPN

We can simplify the constraints as follows:



∑
i
(di ·
−→
V (
−→
Ω N

min,i)) = ∑
r
(br ·
−→
V (
−→
Ω F

min,r))

∑
r

br ≥ 1

i f di < 0 ⇒ ai = 0; a′i = di

i f di > 0 ⇒ ai = di; a′i = 0

br ∈N, di ∈ Z

(3.3)

Proposition 4 A safe and live LPN is diagnosable, if the Constraint 3.3 has no solution.

Proof : The proposition can be proved by using directly Proposition 3

It is worth noticing that the Proposition 3 and Proposition 4 are just sufficient conditions
for the diagnosability of an LPN. If there exist two T-invariants as was presented in
Proposition 3 or the Constraint 3.3 has a solution, in this case, the only way to analyze the
diagnosability of the system is to construct the state space in order to verify the existence
of an indeterminate cycle.

3.2.3 On-the-fly diagnosability analysis using minimal explanations

In this section, a new approach is proposed to improve the on-the-fly diagnosability
analysis by using minimal explanations.

In the literature review, the MBRG/BRD approach [Cab+14] and the on-the-fly ap-
proach [Liu+14] are mentioned to solve the combinatorial explosion problem for diag-
nosability analysis. They tackle the combinatorial explosion from different points of view.
The MBRG/BRD approach gives a compact manner to build the state space by using
minimal explanations. The on-the-fly approach generally builds, on the fly, the FM-graph
and FM-set tree in parallel instead of building the whole state space. Both approaches
are proposed to avoid building the whole state space of the system a priori. Compared
with the diagnoser approach [Sam+95], they are both capable to save memory and reduce
combinatorial explosion for diagnosability analysis.

In this section, the basis fault marking (BFM) is introduced, which consists of a marking
and a binary tag indicating the occurrence of a fault. Two structures are developed, namely
basis fault marking graph (BFG) and basis fault marking set tree (BFST). The BFG is similar
to a reachability graph and the BFST works as a diagnoser. However, they are built on
the fly and in parallel with stop conditions. Every node in BFG is a BFM and every node
in BFST is named basis fault marking set (BFS) that is a set of BFMs obtained by firing a
sequence of events, whose last event is regular and observable.

72

3.2. CONTRIBUTIONS ON MONOLITHIC DIAGNOSABILITY ANALYSIS

The unobservable fault transitions are technically treated, while using minimal expla-
nations:

1. All the fault transitions w.r.t Ti
f are processed as "observable" transitions, while

building the BFG, i.e. minimal explanations, as well as justifications, are restricted
to regular unobservable transitions. When a cycle is found in BFST, it is necessary
to verify the existence of two corresponding cycles in BFG with the same observa-
tions: one contains a fault but the other one does not. In order to keep all the fault
propagation information to verify the indeterminate cycle with the help of BFG, the
BFMs obtained by firing the fault transitions are built in BFG. The same idea is used
in [Cab+14] while constructing the MBRG to make up for the insufficiency of BRG
in [Cab+10b] for diagnosability analysis.

2. Since it is important to know the possibility to fire a fault transition from a given
state while constructing the BFG by using minimal explanations, all the branches
labeled by a fault event are exhaustively investigated before the construction of the
branches labeled by a regular observable event. Moreover, it is also necessary to get
the F-uncertain BFS.

According to the above illustration, the notions used in this section are defined as
follows:

Let us consider T = Ti
o∪̇Ti

u where Ti
o = To∪̇Ti

f and Ti
u = Tu\Ti

f . Ci
u (resp. Ci

o) denotes
the restriction of the incidence matrix C, which refers to Ti

u (resp. Ti
o). Moreover, let

Pi
u,t : T∗ → Ti∗

u be the projection which removes the transitions in Ti
o from a sequence

σ ∈ T∗ and Pi
o,t : T∗ → Ti∗

o be the projection which removes the transitions in Ti
u from

σ ∈ T∗. The transition labeling function w.r.t the fault class Ti
f is Li : T → Σ, where

Σ = Σi
o∪̇{ε}. Then, ∀u ∈ Ti

u, Li(u) = ε and ∀ti
f ∈ Ti

f , Li(ti
f) = f i, f i ∈ Σi

o. The
labeling function can be extended to Li : T∗ → Σ∗. It is important to notice that minimal
explanations are restricted to all the transitions in Ti

u which represent the set of regular
unobservable transitions.

The composition of a BFM is the same with an FM in [Liu+14].

Definition 22 A BFM is a vector BFMi ∈N|P|+1 upon a fault class Ti
f :

BFMi =

[
mark(BFMi)

f ault(BFMi)

]
.

The initial BFM is BFMi
0, where mark(BFMi

0) = M0 and f ault(BFMi) = 0. The set of
BFMs is denoted as Qb,i. A BFM BFMi belongs to Qb,i, iff:

73

CHAPTER 3. MONOLITHIC DIAGNOSABILITY ANALYSIS USING LPN

1. ∃σ ∈ T∗, ω ∈ Σi∗
o , s.t., Li(σ) = ω, σi

u = Pi
u,t(σ), σi

u ∈ Ĵ (ω) (defined in Definition 13
(page 41)): mark(BFMi

0) [σ > mark(BFMi);

2. f ault(BFMi) = 1, if ∃t f ∈ Ti
f , t f ∈ σ; otherwise, f ault(BFMi) = 0.

Given two BFMs BFMi
1, BFMi

2 ∈ Qb,i, it is denoted that BFMi
1 [σ > BFMi

2 iff ∃σ ∈
T∗, ω ∈ Σi∗

o , s.t., Li(σ) = ω, σi
u = Pi

u,t(σ), σi
u ∈ Ĵ (ω): mark(BFMi

1) [σ > mark(BFMi
2);

and f ault(BFMi
2) = f ault(BFMi

1) if ∀j, σj 6∈ Ti
f , otherwise, f ault(BFMi

2) = 1.

It is worth noticing that the set of BFMs is a subset of the set of fault markings (FMs)
defined in [Liu+14]: an FM belongs to the set of FMs but not to the set of BFMs, if it is
reached by firing σ′ ∈ T∗, where the last transition of σ′ belongs to Ti

u. The set of BFMs
gives a more compact state space of the system.

A BFG is considered as a directed non-deterministic graph relative to the fault class Ti
f .

Each node indicates a given BFM and each arc indicates a regular observable transition or
a fault transition with its label and its minimal e-vector (Definition 11 page 40).

Definition 23 The BFG relative to a fault class Ti
f and called BFGi is a tuple (N b,i, BFMi

0, Σi
o, η),

where:

– N b,i ⊆ Qb,i is a set of BFM nodes (because the BFG is built on the fly with stop conditions,
N b,i is a subset of Qb,i);

– BFMi
0 = [Mτ

0 , 0]τ is the initial node;

– Σi
o is a finite set of observable events and fault events in Ti

f ;

– η : N b,i × Σi∗
o → N b,i is the transition function of BFM: given BFMi

1 ∈ Qb,i and ω ∈
Σi∗

o , η(BFMi
1, ω) = {BFMi

2 | ∃ σ ∈ T∗ s.t. Li(σ) = ω, BFMi
1 [σ > BFMi

2, σi
u =

Pi
u,t(σ), σi

u ∈ Ĵ (ω)}.

All the BFMs in BFGi can be reached by firing a sequence of transitions σv where v ∈ Ti
o.

The η function in Definition 23 is given in Algorithm 1 (the Algorithm 1 illustrates the
η function and the construction of the nodes in BFG). From the initial BFM, all the branches
labeled by a fault event with its minimal explanation are exhaustively investigated a priori
(line 10-22 of Algorithm 1). All the obtained nodes in the set G are built in BFG (line 19-20
of Algorithm 1). Afterwards, from all these nodes in G, the next nodes are computed by
firing all the possible transitions labeled by a selected observable event with their minimal
explanations (line 24-36 of Algorithm 1). All these obtained nodes are in set F . The sets G
and F store separately the BFM nodes of the two steps for the purpose of the following
construction of the BFS nodes in BFST.

74

3.2. CONTRIBUTIONS ON MONOLITHIC DIAGNOSABILITY ANALYSIS

Algorithm 1 Algorithm for η function in Definition 23

1: Input: a BFM, a regular observable event e and Ti
f ;

2: Output: [G, F] = η(BFM, e, Ti
f);

3: function η(BFM, e, Ti
f)

4: G ← ∅; . G is the set of BFMs reached from BFM just after the occurrence of a
faulty transition in BFG.

5: F ← ∅; . F is the set of BFMs reached from BFM just after the occurrence of e.
6: Gtemp ← {BFM}; . Gtemp is the set of BFMs which is a temporary variable.
7: Ftemp ← ∅; . Ftemp is the set of BFMs which is a temporary variable.
8: Ghist ← ∅; . Ghist is the set of BFMs, which is a temporary variable, to store all the

BFMs in Gtemp that has been calculated.
9: Fhist ← ∅; . Fhist is the set of BFMs, which is a temporary variable, to store all the

BFMs in Ftemp that has been calculated.
10: while Gtemp 6= ∅ do
11: Choose BFM′ ∈ Gtemp;
12: Gtemp ← Gtemp/BFM′;
13: Ghist ← Ghist ∪ BFM′;
14: for all ti

f ∈ Ti
f do

15: for all −→ev ∈ Ymin(mark(BFM′), ti
f) do

16: mark(BFM′′)← mark(BFM′) + Ci
u ·
−→ev + C(·, ti

f);
17: f ault(BFM′′) = 1;
18: G ← G ∪ BFM′′;
19: N b ← N b ∪ BFM′′ . N b (global variable) is the set of the BFG nodes.
20: Aη ← Aη ∪ {(BFM′, (ti

f ,
−→ev), BFM′′)}; . Aη (global variable) is the set

of the BFG arcs.
21: if BFM′′ /∈ Ghist then
22: Gtemp ← Gtemp ∪ BFM′′; end if; end for; end for; end while;

23: Ftemp ← G;
24: while Ftemp 6= ∅ do
25: Choose BFM′ ∈ Ftemp;
26: Ftemp ← Ftemp/BFM′;
27: Fhist ← Fhist ∪ BFM′;
28: for all t ∈ T, s.t. L(t) = e do
29: for all

−→
e′v ∈ Ymin(mark(BFM′), t) do

30: mark(BFM′′)← mark(BFM′) + Ci
u ·
−→
e′v + C(·, t);

31: f ault(BFM′′) = f ault(BFM′);
32: F ← F ∪ BFM′′;
33: N b ← N b ∪ BFM′′; . N b (global variable) is the set of the BFG nodes.

34: Aη ← Aη ∪ {(BFM′, (e,
−→
e′v), BFM′′)}; . Aη (global variable) is the set

of the BFG arcs.
35: if BFM′′ /∈ Fhist then
36: Ftemp ← Ftemp ∪ BFM′′; end if; end for; end for; end while;

37: return [G, F];

The BFST is constructed based on and in parallel with the BFG. Let the basis fault

75

CHAPTER 3. MONOLITHIC DIAGNOSABILITY ANALYSIS USING LPN

marking set (BFS) power set be X b,i = 2Q
b,i

and the initial BFS xb,i
0 = {BFMi

0}.

Definition 24 The BFS transition mapping ψ : X b,i × Σo → X b,i is defined as follows: given
a BFS xb,i ∈ X b,i and event e ∈ Σo, ψ(xb,i, e) = ∪BFMi

1∈xb,i{BFMi
2| ∃σu ∈ T∗u , ∃t ∈

To, s.t. L(σut) = e, BFMi
1 [σut > BFMi

2, σu ∈ Ĵ (e)}.

All the BFSs in BFSTi are reached by firing a sequence of transitions σt where t ∈ To.

Definition 25 [Liu+14] The tagging function tag : X b,i → {N, F, U} is defined as follows:

tag(x) =


N if ∀ BFM ∈ x, f ault(BFM) = 0

F if ∀ BFM ∈ x, f ault(BFM) = 1

U otherwise

A BFS x is also said to be normal (resp. F-certain, F-uncertain) if tag(x) = N (resp. F, U). For
BFS x′ reachable from x, if tag(x) ∈ {N, U}, it is possible that tag(x′) ∈ {N, F, U}; whereas if
tag(x) = F, then tag(x′) = F, as faults are assumed to be permanent and, therefore, the F-certain
tag is propagated to all the successive BFSs.

The formal definition of BFST is defined as follows:

Definition 26 The BFST relative to fault class Ti
f and called BFSTi is a tuple (X b,i, BFSi

0, Σo, ψ),
where:

– X b,i is a set of BFS nodes;

– BFSi
0 = {BFMi

0} is the initial BFS node;

– Σo is a finite set of observable events;

– ψ : X b,i × Σ∗o → X b,i is the transition function of BFS defined in Definition 24.

The ψ function (defined in Definition 24 and used in Definition 26) is developed in
Algorithm 2. The η function is called to compute all the following BFM nodes that are
reached from the BFM nodes in the input BFS. It needs to be noticed that only the BFM
nodes in the set F are contained in the output BFS′ of the ψ function, because according
to Definition 24, only the obtained nodes by firing the possible transitions labeled by a
given observable event with their minimal explanations (i.e. the nodes in F), are built
in a BFS. The nodes in G does not belong to a BFS, because they are obtained by firing a
fault transition.

Without loss of generality, in this section, the diagnosis issue is discussed for a single
class of faults. For the simplicity of representation, the superscript i will be omitted w.r.t
Ti

f .

76

3.2. CONTRIBUTIONS ON MONOLITHIC DIAGNOSABILITY ANALYSIS

Algorithm 2 Algorithm for ψ function of Definition 24

1: Input: a BFS and a regular observable event e;
2: Output: BFS′ which is reached from BFS immediately after e;
3: function ψ(BFS, e)
4: BFS′ ← ∅;
5: for all BFM ∈ BFS do
6: [G,F]← η(BFM, e);
7: BFS′ ← BFS′ ∪ F ; end for;
8: return BFS′;

The principal idea of our approach is implemented in the Algorithm 4 and Algorithm 3.
Algorithm 4 is developed for checking the diagnosability of an LPN model. The diagnos-
ability of the system is given according to the verdict n, which is the output of the DIAG
function of Algorithm 3.

The ψ function is called in DIAG function to compute the child BFS from the input
BFS. DIAG function is a recursive algorithm, but some conditions are given to stop the
investigation of a branch of BFST. The Proposition 5 is given to explain Algorithm 3 and
to prove that Algorithm 3 terminates and the diagnosability verdict is correct.

Proposition 5 For a bounded and live LPN, DIAG function in Algorithm 3 terminates and its
diagnosability verdict is correct.

Proof : First, it needs to prove that the algorithm terminates well for a bounded LPN that
does not deadlock after firing any fault transition. As presented above, the investigation
of a branch of BFST is stopped, when:

1. An F-certain BFS is generated (the investigation of the branch stops immediately,
because all the child nodes of an F-certain BFS are still F-certain) (line 15-17 of
Algorithm 3);

2. A new normal BFS is equal to an existing one (line 13-14 of Algorithm 3);

3. A new F-uncertain BFS is equal to an existing one (then checking the existence of
indeterminate cycle is necessary (line 19-22 of Algorithm 3)).

While building on-the-fly the BFST, for any branch, one of the tree conditions will be
satisfied sooner or later, since the LPN system is bounded and does not deadlock after firing
any fault transition. Therefore, the algorithm terminates well.

It needs to prove that the algorithm covers all the cases while building on-the-fly the
BFST. For a generated BFS node BFS′,

77

CHAPTER 3. MONOLITHIC DIAGNOSABILITY ANALYSIS USING LPN

1. If BFS′ is F-certain, it is not necessary to continue the construction, because all of its
child nodes will be F-certain;

2. If BFS′ is normal and

(a) If there is already an existing node BFS′′ (in X b) s.t. BFS′ = BFS′′, the investi-
gation of this branch is stopped, since BFS′ generates the same branch as BFS′′,
which has already been considered (line 13-14 of Algorithm 3);

(b) Otherwise, the construction of this branch needs to be continued (line 7-12 of
Algorithm 3).

3. If BFS′ is F-uncertain and

(a) If there is already an existing node BFS′′ (in X b) s.t. BFS′ = BFS′′, the investi-
gation of this branch is stopped. Meanwhile, if x′ is in an indeterminate cycle,
LPN is non-diagnosable (line 21-22 of Algorithm 3). According to the Propo-
sition 2, if there exists an indeterminate cycle in the system, a corresponding
indeterminate cycle can be found in BFST;

(b) Otherwise, the construction of this branch needs to be continued by recalling
the DIAG function (line 24-26 of Algorithm 3).

As presented above, all the cases are considered.

In brief, the algorithm terminates well and its diagnosability verdict is correct.�

Proposition 6 [Li+15b] For the same LPN model, if an indeterminate cycle exists in the FM-set
tree (which works as the diagnoser of the approach in [Liu+14]) with observation ω w.r.t fault class
Ti

f , an indeterminate cycle in BFST with observation ω also exists.

Proof : If an indeterminate cycle exists in the FM-set tree with observation ω w.r.t fault
class Ti

f , then there exist at least one normal cycle and one faulty cycle with the same
observation ω in FM-graph. First, for the normal cycle, it is assumed that the sequence
of transitions is σ with L(σ) = ω. It is denoted that σi

o = Pi
o,t(σ) and σi

u = Pi
u,t(σ). One

σi′
u ∈ T∗ui can be found, s.t. π(σi′

u) ≤ π(σi
u), (σi

o, σi′
u) ∈ Ĵ (ω). It is noticed that there exists

a sequence of transitions σ′ with σi
o = Pi

o,t(σ
′) and σi′

u = Pi
u,t(σ

′). σ′ constructs also a
normal cycle in FM-graph. Moreover, it is certain that this cycle exists in BFG. Therefore, a
normal cycle is found in BFG. Then, for the faulty cycle, it is assumed that the sequence
of transitions is υ such that L(υ) = ω. It is denoted that ρ = Li(υ), υi

o = Pi
o,t(υ) and

υi
u = Pi

u,t(υ). One υi′
u ∈ T∗ui can be found, s.t. π(υi′

u) ≤ π(υi
u), (υi

o, υi′
u) ∈ Ĵ (ρ). It is

noticed that there exists a sequence of transitions υ′ with υi
o = Pi

o,t(υ
′) and υi′

u = Pi
u,t(υ

′).
υ′ constructs also a faulty cycle in FM-graph. Moreover, it is certain that this cycle exists in
BFG. Therefore, a faulty cycle is found in BFG. Thus, if an indeterminate cycle exists in the

78

3.2. CONTRIBUTIONS ON MONOLITHIC DIAGNOSABILITY ANALYSIS

Algorithm 3 DIAG(): Checking diagnosability by on-the-fly building of BFG and BFST

1: Input: X b,Aψ, a BFS and n;
2: Output: n′ is the diagnosability verdict;
3: function DIAG(X b,Aψ, BFS, n)
4: n′ ← 1;
5: for all e ∈ Σo do
6: BFS′ ← ψ(BFS, e); . BFS′ is the child node of BFS;
7: if (BFS′ 6= ∅) ∧ [tag(BFS′) = N] then
8: if BFS′ /∈ X b then
9: X b ← X b ∪ BFS′; . X b is the set of the BFST nodes.

10: Aψ ← Aψ ∪ (BFS, e, BFS′); . Aψ is the set of the BFST arcs.
11: n′ ← DIAG(X b,Aψ, BFS′, n);
12: if n′ 6= 1 then
13: return n′; end if;
14: else
15: Aψ ← Aψ ∪ (BFS, e, BFS′); end if;
16: else if (BFS′ 6= ∅) ∧ [tag(BFS′) = F] then
17: X b ← X b ∪ BFS′;
18: Aψ ← Aψ ∪ (BFS, e, BFS′);
19: else if (BFS′ 6= ∅) ∧ [tag(BFS′) = U] then
20: if (∃BFS′′ ∈ X b)(BFS′ = BFS′′) then
21: Aψ ← Aψ ∪ (BFS, e, BFS′);
22: if BFS′ is in an indeterminate cycle then
23: return n′ ← 0; end if; . n′ = 0 denotes that LPN is undiagnosable

due to the indeterminate cycle.
24: else
25: X b ← X b ∪ BFS′;
26: Aψ ← Aψ ∪ (BFS, e, BFS′);
27: n′ ← DIAG(X b,Aψ, BFS′, n);
28: if n′ 6= 1 then
29: return n′; end if; end if; end if; end for;
30: return n′; . n′ = 1 denotes that LPN is diagnosable.

FM-set tree with observation ω w.r.t fault class Ti
f , a corresponding indeterminate cycle is

found in BFST. �

The Proposition 6 proves that although, by using minimal explanations, the number of
states in BFG and BFST becomes smaller than that in FM-graph and FM-set tree [Liu+14],
the necessary fault propagation information is kept w.r.t fault class Ti

f for diagnosability
analysis.

Example 35 Let us consider again the LPN model Figure 3.17 (page 40). We define the priorities
of investigating branches as a− b− c− d− e, which is the same with that of Example 25. The
Algorithm 1 and the Algorithm 2 are used to build the nodes and arcs in BFG and BFST. The BFG
and BFST are built on-the-fly and in parallel. The numeration of BFMs is based on the order of the

79

CHAPTER 3. MONOLITHIC DIAGNOSABILITY ANALYSIS USING LPN

Algorithm 4 MAIN(): algorithm for checking the diagnosability of LPN

1: Input: the LPN system LPN, To, Treg and Tf ;
2: Output: Diagnosability of LPN;
3: function MAIN(LPN, To, Tu, Tf)
4: N b ← {BFM0}; . N b is the set of the BFG nodes.
5: Aη ← ∅; . Aη is the set of the BFG arcs.
6: BFS0 ← {BFM0};
7: X b ← {BFS0}; . X b is the set of the BFST nodes.
8: Aψ ← ∅; . Aψ is the set of the BFST arcs.
9: . N b,Aη ,X b and Aψ are global variables.

10: n← DIAG(X b,Aψ, BFS0, 1); . n indicates the diagnosability of LPN.
11: if n = 1 then
12: "LPN is diagnosable";
13: else if n = 0 then
14: "LPN is undiagnosable"; end if;

construction.

Every arc in BFG is labeled by the firing transition (observable transition or fault transition), its
label and its e-vector (e.g. a(t2),

−→e1). The fault transition f9 is processed as an observable transition
and it has a higher priority than the other observable transitions. For example, after firing the
transition d(t7),

−→e3 at BFM0, BFM6 is obtained. From BFM6, BFM7 is built a priori by firing
the fault transition f9,−→e4 before the construction of BFM8 by firing a(t2),

−→e1 . The construction is
stopped when An indeterminate cycle is found (shown in Figure 3.38). Therefore, the system is not
diagnosable.

Table 3.6 – Markings and e-vectors in BFG and BFST

j Mj j Mj
0 [2 0 0 0 0 0 0 0 0| 0]τ 10 [0 0 0 0 1 0 1 0 0| 0]τ
1 [1 0 1 0 0 0 0 0 0| 0]τ 11 [0 0 0 0 1 0 0 0 1| 1]τ
2 [0 0 2 0 0 0 0 0 0| 0]τ
3 [0 0 1 0 1 0 0 0 0| 0]τ j −→ej
4 [0 0 0 0 2 0 0 0 0| 0]τ 1 [1 0 0 0]
5 [1 0 0 0 1 0 0 0 0| 0]τ 2 [0 1 0 0]
6 [1 0 0 0 0 0 1 0 0| 0]τ 3 [0 0 1 0]
7 [1 0 0 0 0 0 0 0 1| 1]τ 4 [0 0 0 1]
8 [0 0 1 0 0 0 0 0 1| 0]τ
9 [0 0 1 0 0 0 0 0 1| 1]τ

Comparing to Example 25, fewer nodes are built in BFG and BFST (Figure 3.37 and
Figure 3.38) than that of FM-graph and FM-set tree (Figure 3.21 and Figure 3.22). By using
minimal explanations, the size of FM-graph and FM-set tree is reduced. The BFG and
BFST contain fewer states than the corresponding FM-graph and FM-set tree, especially

80

3.2. CONTRIBUTIONS ON MONOLITHIC DIAGNOSABILITY ANALYSIS

BFM0 BFM1 BFM2 BFM3

BFM4BFM5

BFM6

BFM7

BFM8

BFM9

BFM10

BFM11

a(t2),
−→e1

d
(t7), −→e3

a(t2),
−→e1

b(t4), −→e2

b(t4),
−→e2

b(t4), −→e2

a(t2),
−→e1

c(t5),
−→
0

a(
t 2)

,
−→e 1c(t5), −→0

a(t2),
−→e1

f9 , −→e4

a(t2),
−→e1

b(t4),
−→e2

b(t4),
−→e2

c(t5),
−→
0

c(t5),
−→
0

Figure 3.37 – BFG of LPN shown in Figure 3.17

when the LPN contains many regular unobservable transitions. Meanwhile, the necessary
information is still kept w.r.t fault class Ti

f for diagnosability analysis. By using minimal
explanations, this approach can reduce the combinatorial explosion problem of the on-
the-fly diagnosability analysis in [Liu+14], especially when the LPN model contains many
regular unobservable transitions. However, its complexity in the worst case is not reduced.
The worst cases are as follows

1. There does not exist any regular unobservable transition. Each F− certain BFS is
found at the end of a branch. The system is diagnosable;

2. There does not exist any regular unobservable transition. Each F− certain BFS is
found at the end of a branch. The system is not diagnosable but the indeterminate
cycle is found at the end of a branch.

In these cases, the whole state space are built, so the complexity of this approach is
equal to that of the on-the-fly diagnosability analysis in [Liu+14].

Moreover, the priorities of the investigation of the branches is still not defined. The
result of the approach depends on the LPN models because the priorities are defined
on the hazard. For example, if we can define the priorities by following the sequence
of d(abc)∗, we can obtain directly the indeterminate cycle in Figure 3.38. Therefore, we

81

CHAPTER 3. MONOLITHIC DIAGNOSABILITY ANALYSIS USING LPN

BFM0

N

BFM1

N

BFM2

N

BFM3

N

BFM4

N

BFM5

N

BFM6
BFM7

U

BFM8
BFM9

U

BFM10
BFM11

U

BFM6
BFM7

U

a

d

a

b

b

b

a

c

ac

a b c

equivalent

Figure 3.38 – BFST of LPN shown in Figure 3.17

propose an approach to define the priorities in order to find quickly the indeterminate
cycle.

3.2.4 On-the-fly diagnosability analysis using T-invariants

In this section, the priorities in the investigation of branches will be defined by us-
ing T-invariants. This approach can be applied to the on-the-fly diagnosability analy-
sis in [Liu+14] and the on-the-fly diagnosability analysis using minimal explanations
in Section 3.2.3. We will apply this approach to the latter in this section. This approach is
developed to orient the investigation of branches, so it does not impact the correctness of
the two approaches.

In [Li+15c], we have proposed an approach to define the priorities for the on-the-fly
diagnosability analysis of a bounded and live LPN. In this section, we propose a new
approach to remove the strict assumption that the LPN is live. It is assumed that, in this
section, the LPN is bounded and does not deadlock after firing any fault transition.

In this section, only minimal T-invariants (in Definition 9 page 38) are taken into
account, because the set of all minimal T-invariants is a basis for all the T-invariants.
Moreover, the cycles in reachability graph corresponding to minimal T-invariants are
elementary cycles. Therefore, only minimal T-invariants are studied. If there exists a cycle
in the reachability graph of a PN, there exists a T-invariant of the PN. The cycle in the
reachability graph is really significant for the diagnosability analysis of a LPN system.
Therefore, T-invariants of LPNs are likely to be used to give priorities in the investigation

82

3.2. CONTRIBUTIONS ON MONOLITHIC DIAGNOSABILITY ANALYSIS

of branches in order to improve the on-the-fly approach and find quickly an existent
indeterminate cycle.

To check the indeterminate cycle, it can be observed that all the macro-states in a
diagnoser that construct the indeterminate cycle are F-uncertain and the sequence of
events in the indeterminate cycle is ω where ω ∈ S(−→Ω) and

−→
Ω ∈ IN (Recall that

−→
Ω is a

minimal T-invariant, S(−→Ω) is the set of all the possible firing sequences constructed by
the labels in ΣL(

−→
Ω) and IN is the set of T-invariants that do not contain a fault transition

(page 38)).

Definition 27 The set of paths of a transition t from a marking M is defined as follows:

Path(M, t) = {σ ∈ T∗| M[σ > M′, M′ ≥ Pre(·, t)}

The corresponding p-vectors (path vectors) is the set:

V(M, t) = {π(σ)| σ ∈ Path(M, t)}

.

A path of transition t from a marking M is a sequence of transitions that can be fired, at
marking M, in order to enable the transition t. The definition of a path is different from
the definition of an explanation in Definition 10 (page 40). An explanation is a sequence
of unobservable transitions. However, if σ is a path, σ belongs to T∗. In other words, an
explanation of a transition t from a marking M is also a path of transition t from a marking
M, but the converse proposition is not true.

Example 36 Let us consider the LPN in Figure 3.17 (page 40). The initial marking is M0 =

[2 0 0 0 0 0 0 0 0]τ. Considering the transition t2. After firing σu,1 = ε1 or respectively σu,2 = ε6ε1,
the transition t2 is enabled. Since σu,1, σu,2 ∈ T∗u , they are explanations of t2 at M0 as analyzed
in Example 20 (page 40). Meanwhile, it can be obtained that σu,1, σu,2 are also paths of t2 at M0.

Moreover, after firing σ1 = ε6t7ε1, the transition t2 is enabled. σ1 is not a explanation of t2 at
M0, because σ1 /∈ T∗u . However, σ1 is a paths of t2 at M0, because σ1 ∈ T∗. The p-vector of σ1 is
−→v1 = [1 0 0 0 0 1 1 0 0 0]T.

Definition 28 The set of minimal paths of a transition t from a marking M is defined as follows:

Pathmin(M, t) = {σ ∈ Path(M, t)| @σ′ ∈ Path(M, t)s.t., π(σ′) < π(σ)}

The corresponding minimal p-vectors is the set:

Vmin(M, t) = {π(σ)| σ ∈ Pathmin(M, t)}

.

83

CHAPTER 3. MONOLITHIC DIAGNOSABILITY ANALYSIS USING LPN

Example 37 Let us consider the LPN in Figure 3.17 (page 40). The initial marking is M0 =

[2 0 0 0 0 0 0 0 0]τ. Considering the transition t5. Since at M0, after firing σ1 = ε1t2ε3t4,
σ2 = ε6t7ε8 f9t10, or respectively σ3 = ε6ε1t2ε3t4, the transition t5 are enabled. σ1, σ2 and σ3 are
paths of t5 at M0. However, only σ1 and σ2 are minimal paths, because π(σ3) > π(σ1). The
p-vector of σ1 is −→v1 = [1 1 1 1 0 0 0 0 0 0]T and The p-vector of σ2 is −→v2 = [0 0 0 0 0 1 1 1 1 1]T.

Definition 29 For a minimal path σ of a transition t at marking M, the firing sequence of events
of the minimal path is L(σ).

Example 38 For the minimal path σ1 in Example 37, the firing sequence of events of the minimal
path is L(σ1) = ab.

Based on the notion of minimal path, the principle idea of the on-the-fly approach
using T-invariants is as follows:

– Step 1: For a given normal BFS (the initial BFS is BFS0 = {BFM0}) and for BFM ∈
BFS, compute a minimal path of a chosen fault transition t f at mark(BFM). Build
the BFG and BFST by following the firing sequence of events ω1 of the minimal
path (Algorithm 5). A minimal path of t f is computed by Algorithm 8 (MODE=F).
The lastly obtained BFS is BFS′. After that, the next BFS is F-uncertain (since t f is
enabled but is not certainly fired, at least one normal BFM and one faulty BFM can
be obtained).

p1

p2

p3

p4

p5

p6

p7 p8

p9

ε1, ε

t2, a ε3, ε

t4, b

t5, c

ε6, ε

t7, d

ε8, ε

f9, ε

t10, e

Figure 3.39 – Distribution of tokens after observing label “d” from the initial marking of
the LPN in Figure 3.17

Example 39 Let us consider the LPN in Figure 3.17 (page 40). The initial BFM is BFM0 =

[2 0 0 0 0 0 0 0 0 | 0]τ. A minimal path to firing the fault transition is σ1 = ε6t7ε8, computed by

84

3.2. CONTRIBUTIONS ON MONOLITHIC DIAGNOSABILITY ANALYSIS

Algorithm 8 (MODE=F). The sequence of events of the minimal path is ω1 = d. After observing
“d” from BFM0, two BFMs can be obtained: BFM1 = [1 0 0 0 0 0 1 0 0 | 0]τ by firing the transition
t7 and its minimal explanation ε6 from BFM0; and BFM2 = [1 0 0 0 0 0 0 0 1 | 1]τ by firing the
fault transition f9 and its minimal explanation ε8 from BFM1. An ambiguity is generated because
the fault transition is enabled and can be fired or not. As it is shown in Figure 3.39, after observing
label “d”, there is one token in p1 (black one) but the other token can be in p7 (green one) or in p9

(red one).

It is worth noticing that after observing “d”, BFM1 and BFM2 are all built in the BFG
(see Figure 3.41). However, in the BFST (see Figure 3.42), the BFS after observing “d” contains
only BFM1, because BFM2 is obtained by firing a fault transition (explained in Algorithm 1 and
Algorithm 2). The obtained BFS remains normal, but the next BFS can be F-uncertain. For example,
the label “a” is observed after “d”, two BFMs can be obtained: BFM3 = [0 0 1 0 0 0 1 0 0 | 0]τ by
firing the transition t2 and its minimal explanation ε1 from BFM1; BFM4 = [0 0 1 0 0 0 0 0 1 | 1]τ

by firing the transition t2 and its minimal explanation ε1 from BFM2. Therefore, the obtained BFS
that contains BFM3 and BFM4, is F-uncertain.

– Step 2: From the obtained BFS′, at a BFM in BFS′, compute a firing sequence of
events ω2 of a minimal path of a transition labeled by an observable event in a
T-invariant

−→
Ω N ∈ IN (Algorithm 6). Noticing that the tokens that are used to

enable the fault transition, will not be used to compute the minimal path (line 9
of Algorithm 8). Build the BFG and BFST by following the firing sequence of events.

p1

p2

p3

p4

p5

p6

p7 p8

p9

ε1, ε

t2, a ε3, ε

t4, b

t5, c

ε6, ε

t7, d

ε8, ε

f9, ε

t10, e

Figure 3.40 – Distribution of tokens after observing sequence “da” from the initial marking
of the LPN in Figure 3.17

Example 40 As presented in Example 39, after observing “d”, the obtained BFS contains BFM1.
The Step 2 is used to enable an observable transition of a normal minimal T-invariant. The token that

85

CHAPTER 3. MONOLITHIC DIAGNOSABILITY ANALYSIS USING LPN

used to enable the fault transition to generate the ambiguity, will not be used to generate the minimal
path of the observable transition. The set of normal T-invariants is IN= {

−→
Ω 1 = [1 1 1 1 1 0

0 0 0 0]τ}. If t4 is chosen to be enabled, the minimal path of t4 at BFM1 is σ2 = ε1t2ε3. The firing
sequence of the minimal path is L(σ2) = a. After observing “a” the obtained BFMs and BFS have
given in Example 39. The distribution of tokens (shown in Figure 3.40) is that there is one token in
p3 (black one) but the other token can be in p7 (green one) or in p9 (red one).

– Step 3: Afterwards, from the lastly obtained F-uncertain BFS′′, the Algorithm 7 is
used to find if there exists an indeterminate cycle by firing a sequence ω3 where
ω3 ∈ S(

−→
Ω N).

Example 41 After Step 1 and Step 2, the ambiguity is carried by the token that enables the fault
transition. The other token is used to find if an imply trace of the normal T-invariant can be fired
or not. From Figure 3.40, the token in p3 (black one) can be used to firing an imply trace of the
normal T-invariant

−→
Ω 1, which is “bca”. Therefore, an indeterminate cycle is founded by building

the BFG (see Figure 3.41) and BFST (see Figure 3.42) following the sequence bca from the third
BFS in BFST (Figure 3.42) that contains BFM3 and BFM4.

Algorithm 5 Algorithm for α1 function: generate the sequence of events to find an F-
uncertain BFS

1: Input: a BFS, a fault trantion t f and the set of minimal T-invariants without fault
transitions IN ;

2: Output: a sequence of observable events ω1;
3: function α1(BFS, t f , IN)
4: if IN 6= ∅ then
5: for all BFM ∈ BFS do
6: σ1 ← P(BFM, t f , t f , F); . P is in Algorithm 8, MODE = F.
7: if σ1 6= ∅ then
8: return ω1 ← L(σ1); end if; end for; end if;

Algorithm 6 Algorithm for α2 function: generate a firng sequence of events to enable an
observable transition in a T-invariant

1: Input: a BFS, a fault trantion t f and the set of minimal T-invariants without fault
transitions IN ;

2: Output: a sequence of events ω2;
3: function α2(BFS, t f , IN)
4: for all BFM ∈ BFS do
5: for all

−→
Ω ∈ IN do

6: for all t ∈ To s.t
−→
Ω (t) > 0 do

7: σ2 ← P(BFM, t f , t, T); . P is in Algorithm 8, MODE = T.
8: if σ2 6= ∅ then
9: return ω2 ← L(σ2); end if; end for; end for; end for;

86

3.2. CONTRIBUTIONS ON MONOLITHIC DIAGNOSABILITY ANALYSIS

Algorithm 7 Algorithm for α3 function: generate an imply trace of a T-invariant in IN

1: Input: a BFS and a minimal T-invariant
−→
Ω ∈ IN ;

2: Output: a sequence of events ω3;
3: function α3(BFS,

−→
Ω)

4: for all BFM ∈ BFS do
5: σ3 ←FiringSeq(BFM, λ, TM(

−→
Ω)); . The function FiringSeq is in Algorithm 9.

6: if σ3 6= λ then
7: return ω3 ← L(σ3); end if; end for;

To compute a minimal path to enable a selected transition (a fault transition or an
observable transition in a T-invariant), the Algorithm 8 is developed. This algorithm is
inspired by the procedure proposed in [MS82] for the computation of minimal P-invariant
and the procedure proposed in [GS05] for the computation of minimal explanation. The
algorithm is used for two purposes: to compute a minimal path to enable a fault transition
(MODE = F, called in Algorithm 5); to compute a minimal path to enable an observable
transition belonging to a T-invariant (MODE = T, called in Algorithm 6). The difference
between two modes is the initialization of the vector A and the matrix C̃ (line 5-7 and
8-10 of Algorithm 8). It is worth noticing that, for MODE = T, A ← (Mark(BFM) −
Pre(·, t f)− Pre(·, t))τ. It means that the token(s), that is (are) used to enable the chosen
fault transition t f , will not be used to generate the path to enable t. In other words, after
firing the sequence of the obtained path, there exists an obtained BFM that can enable t
and t f at the same time.

The Algorithm 9 is called in function P (line 25 of Algorithm 8). This algorithm is
applied to get a firing sequence of transitions form a given firing vector.

The Example 42 is given to illustrate the algorithm of the function P. In this example,
for the LPN in Figure 3.17 (page 40), the algorithm is applied to find a minimal path from
the initial marking BFM0 to enable the fault transition f9.

Example 42 Let us consider the LPN in Figure 3.17 (page 40). Let BFS = {BFM0 = [2 0 0 0 0 0 0 0 0 | 0]τ}
and t f = f9. Then C/ f9 is obtained by removing the column of f9.

C̃τ = Cτ
/ f9

=

P1 P2 P3 P4 P5 P6 P7 P8 P9

ε1 −1 1 0 0 0 0 0 0 0
t2 0 0 0 −1 1 0 0 0 0
ε3 0 0 −1 1 0 0 0 0 0
t4 0 0 0 −1 1 0 0 0 0
t5 1 0 0 0 −1 0 0 0 0
ε6 −1 0 0 0 0 1 0 0 0
t7 0 0 0 0 0 −1 1 0 0
ε8 0 0 0 0 0 0 −1 1 0
t10 0 0 0 0 1 0 0 0 −1

87

CHAPTER 3. MONOLITHIC DIAGNOSABILITY ANALYSIS USING LPN

Algorithm 8 Algorithm for P function

1: Input: a BFM, a fault transition t f , a transition t to be enabled and a enumerated
variable MODE = {F, T} to indicate the using mode of the function, where F (short
for FAULT) indicates that the function is used to find a minimal path to enable a fault
transition and T (short for T − INVARIANT) indicates that the function is used to
find a minimal path to enable a transition in a T-invariant;

2: Output: a firing sequence of transitions σ;
3: function P(Mark(BFM), t f , t, MODE)
4: U ← ∅;
5: if MODE = F then
6: A← (Mark(BFM)− Pre(·, t f))

τ;
7: C̃ ← C/t f ; . C/t f is the matrix obtained by removing the column t f of the

incidence matrix C;
8: else if MODE = T then
9: A← (Mark(BFM)− Pre(·, t f)− Pre(·, t))τ;

10: C̃ ← C/t; end if; . C/t is the matrix obtained by removing the column t of the
incidence matrix C;

11: Let Γ =
C̃τ I(n−1)×(n−1)
A B

12: where B :=
−→
0 τ

n−1;
13: while A has negative integers do
14: choose an element A(i∗, j∗) < 0;
15: letH+ = {i|C̃τ(i, j∗) > 0};
16: for all i ∈ H+ do
17: Add to [A|B] a new row [A(i∗, ·) + C̃τ(i, ·)|B(i∗, ·) +−→n τ

i],
18: where −→n i is the i-th canonical basis vector; end for;
19: Remove the row [A(i∗, ·)|B(i∗, ·)]; end while;
20: Remove from B any row that covers other rows and any row containing a fault

transtion;
21: for all

−→
k is a row of B do

22: U ← U ∪
−→
k τ; end for;

23: for all −→y ∈ U do
24: σ← FiringSeq(BFM, λ, TM(−→y)); . The function FiringSeq is in Algorithm 9.
25: if σ 6= ∅ then
26: return σ; end if; end for;

Pre(·, f9) = [0 0 0 0 0 0 0 1 0]τ, so A = (Mark(BFM0)− Pre(·, f9))τ = [2 0 0 0 0 0 0

−1 0]. B = [0 0 0 0 0 0 0 0 0] then Γ =
C̃τ I(n−1)×(n−1)

A B
. There is a negative element of A,

namely A(1, 8). It can be observed that H+ = {8} (line 14-15 of Algorithm 8). By using the
Algorithm 8 (line 17 to 18), the new row [2 0 0 0 0 0 − 1 0 0| 0 0 0 0 0 0 0 1 0] is added to Γ
and the row Γ(10, ·) is removed. Repeat the steps above until that there does not exist negative
element of the new A (line 13-20 of Algorithm 8). Finally, the last new row that is added to Γ, is
[1 0 0 0 0 0 0 0 0| 0 0 0 0 0 1 1 1 0]. The vector in U is [0 0 0 0 0 1 1 1 0]. It means that, in order to
enable f9, it needs to fire ε6, t7 and ε8. By using the Algorithm 9, at BFM0 only ε6 is enabled (line

88

3.2. CONTRIBUTIONS ON MONOLITHIC DIAGNOSABILITY ANALYSIS

6-7 of Algorithm 9). The reached marking BFM′ is calculated. At BFM′, t7 is enabled an so on
(repeat line 6-16 of Algorithm 9). The obtained firing sequence of transitions is σ = ε6t7ε8 that is a
minimal path (without any fault transition) to enable f9.

Algorithm 9 Algorithm for FiringSeq function: generate a firing sequence of transitions at
a BFM from a firing vector

1: Input: a BFM, a sequence of transition σ and T(−→y) the multiset of transitions corre-
sponding to the firing vector −→y ;

2: Output: a firing sequence of transition σ′;
3: function FiringSeq(BFM, σ, TM(−→y))
4: Tenabled ← ∅;
5: for all t ∈ TM(−→y) do . TM(−→y) is the multiset of transitions in the firing vector −→y .
6: if t is enabled at BFM then
7: Tenabled ← Tenabled ∪ t; end if; end for;
8: if Tenabled 6= ∅ then
9: for all t ∈ Tenabled do

10: mark(BFM′)← mark(BFM) + C(·, t);
11: σ′ ← σt;
12: T′M(−→y)← TM(−→y)/t;
13: if T′M(−→y) = ∅ then
14: return σ′;
15: else
16: FiringSeq(BFM′, σ′, T′M(−→y)); end if; end for; end if;

17: return λ;

Example 43 For the LPN in Figure 3.17, there are two minimal T-invariants and IN= {
−→
Ω 1 =

[1 1 1 1 1 0 0 0 0 0]τ}. First, the Algorithm 5 is applied to generate a firing sequence of events to
enable the fault transition f9. Using Algorithm 8 (MODE = F), it is found out that the firing
sequence of transitions ε6t7ε8 needs to be fired in order to enable f9 (Example 42), so the firing
sequence of events of the path is L(ε6t7ε8) = d. After that, it is possible to obtain an F-uncertain
BFS. The Algorithm 1 and the Algorithm 2 are used to build the nodes and arcs in BFG and BFST.
Every arc in BFG is labeled by the firing transition, its label and its minimal e-vector (e.g. d(t7),

−→e3).
Afterwards, the Algorithm 6 is applied to generate a firing sequence of events to enable an observable
transition in a T-invariant in IN . For example, if the transition t4 is chosen to be fired, by using
the Algorithm 8 (MODE = T), it is found out that the firing sequence of transitions ε1t2ε3 needs
to be fired in order to enable t4. Thus, the next firing sequence of events is L(ε1t2ε3) = a. However,
according to the Algorithm 1, the fault transition f9 is processed observable and the node in BFG
(BFM2) is built in BFG by firing f9 before the firing of t2. After that, the nodes obtained by firing
t2 labeled by “a” (BFM3 and BFM4) are built. The obtained BFS (BFS2 = {BFM3, BFM4},
BFM2 is not in BFS2 because it is obtained by firing a fault transition) is F-uncertain. Then,
using Algorithm 7, the firing sequence of

−→
Ω 1 at BFS2 is ε3t4t5ε1t2. Therefore, the firable imply

trace of
−→
Ω 1 is ω = L(ε3t4t5ε1t2) = bca is found. The output of Algorithm 7 is “bca”. After the

89

CHAPTER 3. MONOLITHIC DIAGNOSABILITY ANALYSIS USING LPN

construction of BFG (Figure 3.41) and BFST (Figure 3.42) by firing the sequence of events “bca”,
it is found out that there exists an indeterminate cycle, so the system is non-diagnosable.

BFM0 BFM1

BFM2

BFM3

BFM4

BFM5

BFM6

d(t7),
−→e3

f9 , −→e4

a(t2),
−→e1

a(t2),
−→e1

b(t4),
−→e2

b(t4),
−→e2

c(t5),
−→
0

c(t5),
−→
0

Figure 3.41 – BFG using T-invariants of LPN shown in Figure 3.17

BFM0

N

BFM1

N
BFM3
BFM4

U

BFM5
BFM6

U

BFM1
BFM2

U

BFM3
BFM4

U

d a

b

ca

Figure 3.42 – BFST using T-invariants of LPN shown in Figure 3.17

Table 3.7 – BFMs and e-vectors of the BFG and BFST (Figure 3.41 and Figure 3.42)

j BFMj j −→ej

0 [2 0 0 0 0 0 0 0 0 | 0]τ 1 [1 0 0 0]
1 [1 0 0 0 0 0 1 0 0 | 0]τ 2 [0 1 0 0]
2 [1 0 0 0 0 0 0 0 1 | 1]τ 3 [0 0 1 0]
3 [0 0 1 0 0 0 1 0 0 | 0]τ 4 [0 0 0 1]
4 [0 0 1 0 0 0 0 0 1 | 1]τ
5 [0 0 0 0 1 0 1 0 0 | 0]τ
6 [0 0 0 0 1 0 0 0 1 | 1]τ

From the example, the priorities in the investigation of branches are defined by using
T-invariants. For a non-diagnosable LPN, an existent indeterminate cycle is found quickly
so that fewer nodes are generated before finding the indeterminate cycle. The result
of on-the-fly diagnosability analysis does not totally depend on the LPN model. The
construction of the BFG and BFST (FM-graph and FM-set tree) is oriented to find quickly
the existing indeterminate cycle and the combinatorial explosion problem is reduced.
By using T-invariant, only the order of investigating the branches is changed, so the
complexity is not reduced.

90

3.2. CONTRIBUTIONS ON MONOLITHIC DIAGNOSABILITY ANALYSIS

3.2.5 On-the-fly diagnosability analysis using VN

In this section, a new approach is developed for the on-the-fly diagnosability analysis
using VN. It is proposed to reduce the combinatorial explosion of the VN approach. A new
algorithm, which is based on the depth-first search, is given for the on-the-fly construction
and analysis of the VN and its reachability graph/coverability graph (RG/CG).

In Section 3.1.2.4, we recalled the Verifier Net (VN) approach in [Cab+12], which was
proposed for both bounded and unbounded LPN. For a bounded LPN, the complexity of this
approach is linear in the sum of the number of states and transitions of the reachability
graph (RG) of the VN. The problem is the combinatorial explosion, because of the scale
of VN and its RG is usually large. In [Cab+12], the author said that this approach is not
favorable for diagnosability analysis of bounded LPN because it is less efficient than the
MBRG/BRD approach in [Cab+14].

For a given LPN model, the LPN LPN′ = (N′, M′0, Σ′,L′) associated with the T′-
induced subnet (Definition 19) of the considered LPN system LPN = (N, M0, Σ,L) is
built as presented in Section 3.1.2.4. (In order to save the memory, there is no need to build
exactly the PN N′. Only the Pre′ and Post′ are useful for the following algorithm.)

In order to distinguish from the symbols of VN in Section 3.1.2.4, the partial VN
is denoted as L̂PN = (N̂, M̂o, Σ̂o, L̂), where N̂ = (P̂, T̂, P̂re, P̂ost). The set of places is

P̂ = P ∪ P′ and the initial marking is M̂0 =

[
M′0
M0

]
. The transitions of the VN T̂ are built

on-the-fly.

Proposition 7 [Li+16b] At a marking M̂ =

[
M′

M

]
of the VN, a transition t̂ is enabled iff one of

the following conditions is satisfied

1. t̂ = (λ, t f), the transition t f ∈ Tf is enabled in N at the marking M;

2. t̂ = (λ, treg), the transition treg ∈ Treg is enabled in N at the marking M;

3. t̂ = (t′reg, λ), the transition t′reg ∈ T′reg is enabled in N′ at the marking M′;

4. t̂ = (t′o, to), the transition t′o ∈ T′o is enabled in N′ at the marking M′ and the transition
to ∈ To is enabled in N at the marking M. Meanwhile, L′(t′o) = L(to);

Proof : (If) Given a transition t̂ = (t′, t) (one of t′ and t can be λ). According the

construction of transitions in VN [Cab+12], P̂re(·, t̂) =

[
Pre′(·, t′)
Pre(·, t)

]
.

For the conditions (1), t̂ = (λ, t f), t f ∈ Tf and t f is enabled in N at the marking M i.e.,

M ≥ Pre(·, t f). Therefore,

[
M′

M

]
≥
[

Pre′(·, λ)

Pre(·, t f)

]
(where Pre′(·, λ) =

−→
0), i.e., M̂ ≥ P̂re(·, t̂).

91

CHAPTER 3. MONOLITHIC DIAGNOSABILITY ANALYSIS USING LPN

The transition t̂ = (λ, t f) is enabled at M̂. The conditions (2) and (3) can be proved in the
same way.

For the conditions (4), t̂ = (t′o, to), the transition t′o ∈ T′o is enabled in N′ at the marking
M′ and the transition to ∈ To is enabled in N at the marking M, i.e., M′ ≥ Pre′(·, t′0)

and M ≥ Pre(·, t0). Therefore,

[
M′

M

]
≥
[

Pre′(·, t′o)
Pre(·, to)

]
, i.e., M̂ ≥ P̂re(·, t̂). The transition

t̂ = (t′o, to) is enabled at M̂.

(Only if) Assuming that, in VN, a transition t̂ = (t′, t) (one of t′ and t can be λ) is

enabled. M̂ ≥ P̂re(·, t̂) i.e.,

[
M′

M

]
≥
[

Pre′(·, t′)
Pre(·, t)

]
. It can be deduced that M′ ≥ Pre′(·, t′)

and M ≥ Pre(·, t). Therefore, the transition t′ ∈ T′ is enabled in N′ at the marking M′ and
the transition t ∈ T is enabled in N at the marking M. �

The Algorithm 10 is given to calculate the enabled transition at a marking M̂ according
to the Proposition 7. This algorithm is called in Algorithm 12 for the on-the-fly construction
of VN and its RG/CG.

Algorithm 10 Algorithm for EnabledT function: find the enabled transitions at a marking
M̂

1: Input: N, N′ and M̂ =

[
M′

M

]
;

2: Output: (T̂f , T̂reg, T̂′reg, T̂o);
3: function EnabledT(N, N′, M̂)
4: T̂f , T̂reg, T̂′reg, T̂o ← ∅;
5: T′con,o, Tcon,o ← ∅; . Local variables
6: for all t′ ∈ T′ do
7: if t′ is enabled at M′ then
8: if t′ ∈ T′reg then
9: T̂′reg ← T̂′reg ∪ {(t′, λ)}; end if;

10: else
11: T′con,o ← T′con,o ∪ {t′}; end if; end if; end for;

12: for all t ∈ T do
13: if t is enabled at M then
14: if t ∈ Treg then
15: T̂reg ← T̂reg ∪ {(λ, t)}; end if;
16: else if t ∈ Tf then
17: T̂f ← T̂f ∪ {(λ, t)}; end if;
18: else
19: Tcon,o ← Tcon,o ∪ {t}; end if; end if; end for;
20: for all t′o ∈ T′con,o and to ∈ Tcon,o s.t. L(t′o) = L′(to) do
21: T̂o ← T̂o ∪ {(t′o, to)}; end for;
22: return (T̂f , T̂reg, T̂′reg, T̂o);

92

3.2. CONTRIBUTIONS ON MONOLITHIC DIAGNOSABILITY ANALYSIS

p1

p2 p3

p4 p5

f2, εε1, ε

t3, at4, b t5, a t6, b

Figure 3.43 – An example of LPN

p′1

p′2 p′3

p′4 p′5

ε′1, ε

t′3, at′4, b t′5, a t′6, b

Figure 3.44 – T′-induced sub-LPN of the LPN in Figure 3.43

Example 44 For the LPN system LPN in Figure 3.43, its T′-induced sub-LPN LPN′ is built
in Figure 3.44 (We repeat the LPN models in Figure 3.23 and Figure 3.24 for the convenience
of readers). The initial marking of LPN is M0 = [1 0 0 0 0]τ and the initial marking of LPN′

is M′0 = [1 0 0 0 0]τ. At M0, ε1 and f2 are enabled. At M′0, only the transition ε′1 is enabled.

According to the Proposition 7, at the initial marking of VN M̂0 =

[
M′0
M0

]
, (λ, f2) (condition (1)),

(λ, ε1) (condition (2)) and (ε′1, λ) (condition (3)) are enabled. Therefore, the output of the function
EnabledT(N, N′, M̂0) is (T̂f , T̂reg, T̂′reg, T̂o), where T̂f = {(λ, f2)}, T̂reg = {(λ, ε1)}, T̂′reg =

{(ε′1, λ)} and T̂o = ∅.

If the entire VN is built [Cab+12], the transitions, which are never enabled, are also
built such as (t′5, t3), (t′5, t5), (t′6, t4) and (t′6, t6). However, since these transitions are never
enabled, they will never be generated by the Algorithm 10.

Proposition 8 [Li+16b] The set of transitions built by using Algorithm 10, Algorithm 11 and
Algorithm 12 is a subset of that of VN approach in [Cab+12], i.e. T̂ ⊆ T̃.

93

CHAPTER 3. MONOLITHIC DIAGNOSABILITY ANALYSIS USING LPN

Proof : If the remove of the fault transitions deadlocks some transitions in T-induced sub-
LPN, it is certain that the transitions in T̃, which are composed by the blocked transitions,
will not be enabled by Algorithm 1 and will not be built by Algorithm 3. Hence, these
transitions do not belong to T̂. In this case, T̂ ⊂ T̃. However, if the remove of the fault
transitions does not deadlock any transition, it is deduced that T̂ = T̃. Overall, T̂ ⊆ T̃. �

The Algorithm 11 and the Algorithm 12 are developed for the on-the-fly diagnosability
analysis of LPN systems.

Algorithm 11 Algorithm for MainVN function

1: Input: LPN;
2: Output: Diagnosability analysis of the LPN;
3: function MainVN(LPN)
4: N̂ ← ∅; . N̂ is the set of RG/CG nodes;
5: Â ← ∅; . Â is the set of RG/CG arcs;
6: F(VN)← ∅; . F(VN) is the set of fault nodes;
7: . N̂ , Â and F(VN) are global variables;
8: n← 1; . n is the tag to indicate the diagnosability of the system;
9: build LPN′ =< N′, M′0, Σ′,L′ >;

10: initialize L̂PN, where P̂ = P′ ∪ P, M̂0 =

[
M′0
M0

]
and the incidence matrix Ĉ is

initially empty.
11: N̂ ← N̂ ∪ M̂0;
12: (L̂PN′, M̂′, n′)← DIAG(LPN, LPN′, Ĉ, M̂0, n);
13: if n′ = 1 then
14: assert (The LPN system LPN is diagnosable);
15: else if n′ = 0 then
16: assert (The LPN system LPN is undiagnosable); end if;

Proposition 9 For an LPN system, the DiagVN function in Algorithm 12 terminates and its
diagnosability verdict is correct.

Proof : In Algorithm 12, the DiagVN function is presented, step by step, to build the
VN and its RG/CG on-the-fly.

First, we prove that the algorithm terminates for both bounded and unbounded
LPN. The investigation of a branch of the RG/CG is stopped, when one of the following
conditions is satisfied:

1. There exists a deadlock at the new node (Line 8 of Algorithm 12);

2. A new node in RG/CG is equal to a previous one (Line 50-57 of Algorithm 12).

In an unbounded case, the unbounded places are treated in the Line 39-42 of Algo-
rithm 12.

94

3.2. CONTRIBUTIONS ON MONOLITHIC DIAGNOSABILITY ANALYSIS

Algorithm 12 Algorithm for DiagVN function
1: Input: (LPN, LPN′ , Ĉ, M̂, n);
2: Output: (L̂PN′ , M̂′ , n′);
3: function DiagVN(LPN, LPN′ , L̂PN, M̂, n)
4: . N̂ , Â and F(VN) are global variables defined in Algorithm 2.
5: (T̂con, f , T̂con,reg , T̂′con,reg , T̂con,o)← EnabledT(LPN, LPN′ , M̂);
6: T̂con ← T̂con, f ∪ T̂con,reg ∪ T̂′con,reg ∪ T̂con,o ;
7: n′ ← 1; . Local variable
8: if T̂con = ∅ then . There is no enabled transition at M̂.
9: return (L̂PN, M̂, 1);

10: else
11: for all t̂ ∈ T̂con do
12: if (t̂ = (λ, t f) ∈ T̂con, f) ∧ (t̂ /∈ T̂) then
13: for all p ∈ P′ do
14: P̂re(p, t̂) = P̂ost(p, t̂) = 0; end for;
15: for all p ∈ P do
16: P̂re(p, t̂) = Pre(p, t f), P̂ost(p, t̂) = Post(p, t f); end for;
17: L̂(t̂) = ε;
18: else if (t̂ = (λ, treg) ∈ T̂con,reg) ∧ (t̂ /∈ T̂) then
19: for all p ∈ P′ do
20: P̂re(p, t̂) = P̂ost(p, t̂) = 0; end for;
21: for all p ∈ P do
22: P̂re(p, t̂) = Pre(p, treg), P̂ost(p, t̂) = Post(p, treg); end for;
23: L̂(t̂) = ε;
24: else if (t̂ = (t′reg , λ) ∈ T̂′con,reg) ∧ (t̂ /∈ T̂) then
25: for all p ∈ P′ do
26: P̂re(p, t̂) = Pre′(p, t′reg), P̂ost(p, t̂) = Post′(p, t′reg); end for;

27: for all p ∈ P do
28: P̂re(p, t̂) = P̂ost(p, t̂) = 0; end for;
29: L̂(t̂) = ε;
30: else if (t̂ = (t′o , to) ∈ T̂con,o) ∧ (t̂ /∈ T̂) then
31: for all p ∈ P′ do
32: P̂re(p, t̂) = Pre′(p, t′o), P̂ost(p, t̂) = Post′(p, t′o); end for;
33: for all p ∈ P do
34: P̂re(p, t̂) = Pre(p, to), P̂ost(p, t̂) = Post(p, to); end for;
35: L̂(t̂) = (l, l); end if; . L(to) = L′(t′o) = l
36: T̂ ← T̂ ∪ t̂;
37: Ĉ′ ←(add the column P̂ost(·, t̂)− P̂re(·, t̂) to Ĉ);
38: M̂′ ← M̂ + Ĉ′(·, t̂);
39: Let M̂α be the first node met on the backward path from M̂′ to the initial marking M̂0 s.t. M̂α < M̂′ ; . As it was presented

in [KM69]
40: if M̂α exists then
41: for p ∈ P̂ s.t. M̂α(p) < M̂′(p) do
42: M̂′(p) = ω; end for; end if;

. Line 39-42 are only applied for an unbounded LPN to treat the unbounded places.
43: if (∀M̂∗ ∈ N̂ , M̂∗ 6= M̂′) then
44: if (M̂ ∈ F(VN)) ∨ (t̂ ∈ T̂con, f) then
45: F(VN)← F(VN) ∪ M̂′ ; end if;
46: N̂ ← N̂ ∪ M̂′ ;
47: Â ← Â ∪ (M̂, L̂(t̂), M̂′);
48: (L̂PN′′ , M̂′′ , n′′)← DIAG(LPN, LPN′ , Ĉ′ , M̂′ , n′);
49: if n′′ = 0 then return (L̂PN′′ , M̂′′ , n′′); end if;
50: else if (∃M̂∗ ∈ N̂ , M̂∗ = M̂′) then
51: Â ← Â ∪ (M̂, L̂(t̂), M̂∗);
52: if ((M̂ ∈ F(VN)) ∨ (t̂ ∈ T̂con, f)) ∧ (M̂∗ /∈ F(VN)) then
53: F(VN)← F(VN) ∪ M̂∗

54: for all M̂o can be reached from M̂∗ do
55: F(VN)← F(VN) ∪ M̂o ; end for; end if;
56: if There exists a cycle associated with a firable repetitive sequence from a node in F(VN) then . path_exists from the

library digraph (Rushton, 2012).
57: return (L̂PN′ , M̂′ , 0); end if; end if; end for;
58: return (L̂PN′ , M̂′ , 1); end if; . 1 denotes that LPN is diagnosable.

In the on-the-fly construction of the RG/CG, for any branch, these two conditions will
be met sooner of later, therefore, the algorithm terminates well.

95

CHAPTER 3. MONOLITHIC DIAGNOSABILITY ANALYSIS USING LPN

Second, when an above stop condition is satisfied, the following three cases can occur.

1. A deadlock is found;

2. The cycle is reachable starting from a node in the set F(VN);

3. The cycle is not reachable starting from any node in the set F(VN).

In case (1), if there exists a deadlock, the investigation of this branch is stopped.
However, the diagnosability of the LPN system cannot be determined. The construction
needs to be continued. The construction restarts from its previous node (backtracking
from the recursive call of Line 48, Algorithm 12), and the other branches are investigated
(iteration of Line 11, Algorithm 12). In case (2), if the cycle corresponds to a firable repetitive
sequence, the result that the LPN system is non-diagnosable, can be obtained immediately
according to the Theorem 2 (Line 56, 57 of Algorithm 12). Otherwise, it needs to investigate
other branches. In case (3), the construction needs to be continued.

If the LPN system is diagnosable or a cycle is reachable starting from a node in the set
F(VN) at the end of the construction, all the semi-live and live transitions (Line 11-36 of
Algorithm 12) of VN are built and the whole RG/CG is built.

Since all the possible cases are considered, it can be sure that Algorithm 12 terminates
well and its diagnosability verdict is correct. �

The Proposition 9 guarantees the correctness of this approach. When a cycle corre-
sponding to a firable repetitive sequence is found, and it is reachable starting from any
node in the set F(VN), the LPN is determined immediately as non-diagnosable.

Here, it is assumed that the transitions in T̂f have higher priorities, because, according
to the Theorem 2 (page 53), the diagnosability analysis is based on finding the cycle
after firing a fault transition. For the transitions in T̂reg, T̂′reg and T̂o, the priorities cannot
be defined reasonably. To analyze the example in this paper, the priorities between the
branches to be investigated are heuristically defined as follows:

T̂f > T̂reg > T̂′reg > T̂o

The priorities of the transitions in the same set are defined by numerical order of the
transitions. For example, for the transition in T̂o, (t′2, t2) > (t′2, t7) > (t′7, t2) > (t′7, t7).

Example 45 Let us consider again the LPN LPN = (N, M0, Σ,L) in Figure 3.43. (we study
an unbounded LPN system, because a bounded LPN is a special case of unbounded LPN.) The
T′-induced sub-LPN LPN′ = (N′, M′0, Σ′,L′) is built in Figure 3.44. The places of VN are built

as P̂ = P ∪ P′ and the initial marking is M̂0 =

[
M′0
M0

]
.

96

3.2. CONTRIBUTIONS ON MONOLITHIC DIAGNOSABILITY ANALYSIS

p1 p′1

p2 p′2 p3 p′3

p4 p′4 p5 p′5

(λ, f2), ε(ε′1, λ), ε

(t′3, t5), a (t′4, t6), b

Figure 3.45 – On-the-fly construction of the VN of the LPN in Figure 3.43

M̂0 M̂1 M̂2 M̂3

M̂4M̂5

(λ, f2), ε (ε′1, λ), ε (t′3, t5), a

(t ′4 ,t6),b(t′3, t5), a

(t′4, t6), b

Figure 3.46 – On-the-fly construction of CG

Table 3.8 – Markings in Figure 3.46

j M̂j
0 [1 0 0 0 0 | 1 0 0 0 0]τ

1 [1 0 0 0 0 | 0 0 1 0 0]τ

2 [0 1 0 0 0 | 0 0 1 0 0]τ

3 [0 1 0 1 0 | 0 0 0 0 1]τ

4 [0 ω 0 0 0 | 0 0 1 0 0]τ

5 [0 ω 0 1 0 | 0 0 0 0 1]τ

At the initial marking M̂0 = [1 0 0 0 0 | 1 0 0 0 0]τ, (λ, ε1), ε, (ε′1, λ), ε and (λ, f2), ε are
enabled (Algorithm 10). The transition (λ, f2), ε is built in the VN (Line 12-18, Algorithm 12)
and is fired because of its higher priority. The next node M̂1 = [1 0 0 0 0 | 0 0 1 0 0]τ is generated
and built in the CG (Line 50-51, Algorithm 12). The set of fault nodes F(VN) is updated (Line 49,
Algorithm 12).

At M̂1 (Line 52, Algorithm 12), only (ε′1, λ), ε is enabled. This transition is built and by firing

97

CHAPTER 3. MONOLITHIC DIAGNOSABILITY ANALYSIS USING LPN

this transition, the next node in CG is M̂2 = [0 1 0 0 0 | 0 0 1 0 0]τ. The set of fault nodes F(VN)

is updated.

At M̂2, only (t′3, t5), a is enabled according to the Condition (4) in Proposition 7. This transition
is built and the next node in CG is M̂3 = [0 1 0 1 0 | 0 0 0 0 1]τ. The set of fault nodes F(VN) is
updated.

At M̂3, only (t′4, t6), b is enabled. This transition is built. By firing this transition, the computed
marking is M̂′4 = [0 2 0 0 0 | 0 0 1 0 0]τ. Since on the backward path, the marking M̂2 can be
found s.t. M̂′4 > M̂2. Therefore, the number of the token in place p′2 is set as ω (Line 43-46,
Algorithm 12). The next node in CG is M̂4 = [0 ω 0 0 0 | 0 0 1 0 0]τ and it is put into F(VN).

At M̂4, only (t′3, t5), a is enabled and M̂5 = [0 ω 0 1 0 | 0 0 0 0 1]τ is built in CG. The node is
put into F(VN).

At M̂5, only (t′4, t6), b is enabled. The computed node is [0 ω 0 0 0 | 0 0 1 0 0]τ, which
is equal to M̂4 (Line 54-61, Algorithm 12). Therefore, a cycle from a node in F(VN) is found.
Since Ĉ′ · ←−y =

←−
0 (where Ĉ′ is the updated incidence matrix;←−y is the firing count vector that

contains (t′3, t5) and (t′4, t6), i.e.←−y ((t′3, t5)) =
←−y ((t′4, t6)) = 1 and for all other transition t̂ ∈ T̂,

←−y (t̂) = 0), the cycle is associated with a stationary repetitive sequence. Therefore, the construction
of VN and its CG is stopped and the result is immediately given, that the unbounded LPN system
is non-diagnosable (Line 57, Algorithm 12).

A comparison of the VN approach in [Cab+12] and our approach is given for the
diagnosability analysis of the LPN system in Figure 3.43. For the diagnosability analysis of
this LPN system, our approach generates fewer transitions in the on-the-fly construction
of VN and fewer nodes in CG. The result that the system is not diagnosable, is immedi-
ately given, when a cycle associated with a firable repetitive sequence is found which is
reachable starting from a node in the set F(VN).

Table 3.9 – Comparison of the VN approach in [Cab+12] and the on-the-fly diagnosability
analysis using VN for the diagnosability analysis of the LPN model in Figure 3.43

Name of approaches |P̃|/|P̂| |T̃|/|T̂| Number of
nodes in CG

VN approach [Cab+12] 10 11 11
the on-the-fly diagnosability

analysis using VN
10 4 6

If the remove of the fault transitions deadlocks some transitions in T′-induced sub-
LPN, fewer transitions will be built in our approach comparing to the VN approach
in [Cab+12], because it is presented in Proposition 8 that T̂ ⊆ T̃. Even for a diagnosable
system, only the semi-live and live transitions are built in VN.

The on-the-fly diagnosability analysis using VN avoids building, a priori, the whole

98

3.2. CONTRIBUTIONS ON MONOLITHIC DIAGNOSABILITY ANALYSIS

VN and its RG/CG. The VN structure and its RG/CG are built on-the-fly and in parallel
with stop conditions. When a cycle corresponding to a firable repetitive sequence is found
which is reachable by firing a fault, there is no need to continue the construction and the
LPN system is determined as non-diagnosable.

Afterwards, we analyze the complexity of the on-the-fly diagnosability analysis using
VN. We analyze at first the complexity of the VN approach in [Cab+12], because it is not
done in [Cab+12], in order to compare the complexity of the VN approach in [Cab+12]
and that of our approach.

(1) For bounded LPN

Let us denote n1 = |P| the number of

the places of the initial LPN model LPN, n2 = |T| the number of the transitions of
LPN and n3 = |NRG| the number of the nodes in the RG of LPN.

Theorem 5 The complexity of VN approach in [Cab+12] is O(n1n2
2 + n2

3n2
2).

Proof : The complexity of the VN approach in [Cab+12] contains three parts: (1) con-
struction of VN; (2) construction of the RG of VN; (3) verification of the cycle that is
reachable starting from a node in the set F(VN).

(1) The number of the places in VN is |P̃| = |P′|+ |P| = 2 · n1. The number of the
transitions in VN is |T̃| 6 |T|2 = n2

2. Besides, the arcs built in VN between the places and
transitions is at most 2 · |T̃| · |P̃| 6 2 · (n2

2) · (2 · n1). Therefore, the complexity of building
the VN is O(n1n2

2);

(2) N VN
RG denotes the set of the nodes in RG of VN and the AVN

RG denotes the set of
the arcs in RG of VN. The number of N VN

RG is at most n2
3. The arcs in the RG of VN is

|AVN
RG | 6 |N VN

RG | · |T̃| 6 (n2
3) · (n2

2). Therefore, the complexity of building the RG of the VN
is O(n2

3n2
2).

(3) Deciding if there is a cycle that is reachable starting from a node in the set F(VN)

takesO(|F(VN)|+ |AF(VN)|) [Cor+90], whereAF(VN) is the set of arcs between the nodes
in F(VN). In the worst case (all nodes belong to F(VN), |AF(VN)| = |AVN

RG |), it can be
decided in O(n2

3n2
2).

Therefore, the complexity of VN approach in [Cab+12] is O(n1n2
2 + n2

3n2
2).�

Theorem 6 The complexity of the diagnosability analysis of LPN using Algorithms 1, 2 and 3
w.r.t a given fault class is O(n1n2

2n2
3 + n4

3n4
2).

Proof : First, the complexity of Algorithm 1 isO(|T̂|) = O(n2
2) (Line 26 of Algorithm 10).

Algorithm 10 is called in Algorithm 3 but not in any iteration. Algorithm 12 contains one

99

CHAPTER 3. MONOLITHIC DIAGNOSABILITY ANALYSIS USING LPN

main iteration that is indicated by Line 11-59 of Algorithm 12 (in the worst case, the
number of iterations is O(|T̂|)). The complexity of building a transition of VN is O(|P|)
(Line 12-39 of Algorithm 12). To verify the condition in Line 43, the complexity isO(|N̂RG|).
The verification of a cycle from a node in F(VN) (Line 56 of Algorithm 12) has a complexity
as O(n2

3n2
2). The other steps in the main iteration can be neglected, because of their lower

complexity. In the worst case, the Algorithm 12 is call |N̂RG| times (Line 48). Therefore, the
entire complexity is O(|N̂RG| · (|T̂|+ |T̂| · (|P|+ |N̂RG|+ n2

3n2
2))) = O(n1n2

2n2
3 + n4

3n4
2).�

(2) For unbounded LPN

In [Cab+12], the authors have explained that the complexity of the VN approach for
unbounded LPN cannot be given because the complexity of the construction of the CG is
still an open issue. In the worst case, the on-the-fly diagnosability analysis using VN needs
to build the whole VN and its CG. Moreover, the on-the-fly diagnosability analysis using
VN builds the transitions in VN and the nodes in its CG and analyze at the same time
when a cycle in CG is found. Assuming that |F(VN)| is the number of nodes in F(VN),
AF(VN) the number of arc between these nodes and the complexity of the VN approach for
unbounded LPN is CVN . Deciding if there is a cycle that is reachable starting from a node
in the set F(VN) takes O(|F(VN)|+ |AF(VN)|). In the worst case (i.e. all the nodes belong
to F(VN)), O(|F(VN)|+ |AF(VN)|) ≤ CVN . Therefore, the complexity of the on-the-fly
diagnosability analysis using VN is (ncycle + 1) · CVN , where ncycle is the number of cycles
in CG, which do not correspond to repetitive sequences.

The on-the-fly diagnosability analysis using VN is proposed to reduce the combina-
torial explosion problem for the diagnosability analysis of both bounded and unbounded
LPN systems. The VN and its RG/CG are built on-the-fly and in parallel with stop con-
ditions. As soon as the counterexample of diagnosability is found, the construction and
the analysis are stopped immediately. The computational complexity of this approach is
slightly increased by using the on-the-fly analysis technique [Fer+92; SE05]. This approach
achieves a compromise between computation efficiency and combinatorial explosion
limitation.

3.3 Synthesis of the contributions (on monolithic
diagnosability analysis)

In this chapter, we have reviewed the existing studies on diagnosability analysis. We
have recalled the automata-based approaches and the PN-based approaches. The critical
problems for diagnosability analysis are combinatorial explosion and computational
complexity.

Afterward, we have proposed our contributions of diagnosability analysis using LPN
model.

100

3.3. SYNTHESIS OF THE CONTRIBUTIONS (ON MONOLITHIC DIAGNOSABILITY
ANALYSIS)

Section 3.2.1 proposed some reduction rules that can be applied to simplify the ini-
tial LPN model before analyzing the diagnosability. By using these rules, some regular
unobservable transitions, some specific observable transitions (ELOT) and some places
can be removed. We have proved that by using these rules, the diagnosability property
is preserved. This approach is a strong complement for most of diagnosability analysis
techniques.

Section 3.2.2 proposed a new sufficient condition for the diagnosability of a safe and
live LPN. This sufficient condition supplemented the defect of the sufficient condition
in [Wen+05]. We have developed a method to check this sufficient condition by using
linear programing technique.

Section 3.2.3 proposed the on-the-fly diagnosability analysis using minimal explana-
tions. By using minimal explanations, the on-the-fly diagnosability analysis is improved.
The BFG/BFST is a compact version of FM-graph/FM-set tree. Fewer nodes are built for
analyzing the diagnosability of an LPN model.

Section 3.2.4 proposed the on-the-fly diagnosability analysis using T-invariant. By using
the T-invariants, the priorities of investigating branches is defined. For a non-diagnosable
LPN, the existing indeterminate cycle can be found quickly. The combinatorial explosion
problem is then reduced.

We compare the results for diagnosability analysis of the LPN model in Figure 3.17 by
using different approaches. Table 3.10 shows the comparison between different approaches
based on states numbers. The approaches 1©- 3© use neither minimal explanations nor
reduction rules. The approaches 4©- 6© use minimal explanations. The approaches 7©- 9©
use reduction rules (1)-(5). The approaches 10©-12© use reduction rules (1)-(7). By using the
techniques mentioned above, the combinatorial explosion problem is reduced. However,
the approaches proposed in Section 3.2.1 - Section 3.2.4 do not reduce the complexity for
diagnosability analysis.

Section 3.2.5 proposed the on-the-fly diagnosability analysis using Verifier Nets, which
can be used for both bounded and unbounded LPN model. This approach achieves a com-
promise between computation efficiency and combinatorial explosion limitation. The
computational complexity of this approach is slightly increased by using the on-the-fly
analysis technique but it remains polynomial for diagnosability analysis of bounded LPN.

We have proposed these approaches in order to give a synthetic solution for diagnos-
ability analysis of different types of LPN models. For a given LPN model, we can apply
the reduction rules a priori to simplify the LPN model. The memory cost is lower by using
the reduced LPN model. For a safe and live LPN, we can use the sufficient condition to
check the diagnosability analysis. For a bounded LPN that does not deadlock after the
occurrence of a fault, the on-the-fly diagnosability analysis using minimal explanations
and T-invariants can be applied for diagnosability analysis (if the sufficient condition for

101

CHAPTER 3. MONOLITHIC DIAGNOSABILITY ANALYSIS USING LPN

Table 3.10 – States numbers comparison

Name of approaches
State space

(Reachability graph)

Model for
diagnosis

W
it

ho
ut

m
in

im
al

ex
pl

an
at

io
ns

or
re

du
ct

io
n

ru
le

s 1©Diagnoser approach [Sam+95]
(Reachability graph/Diagnoser)

44 33

2©On-the-fly and incremental
diagnosis technique [Liu+14]

(FM-graph/FM-set tree)

36 14

3©On-the-fly diagnosability
analysis using T-invariants [Li+15c]

(FM-graph/FM-set tree)

12 5

W
it

h
m

in
im

al
ex

pl
an

at
io

ns

4©MBRG/BRD 15 14
5©On-the-fly diagnosability

analysis using minimal explanations [Li+15b]
(BFG/BFST)

12 10

6©On-the-fly diagnosability
analysis using T-invariants

and minimal explanations [Li+15a]
(BFG/BFST)

7 5

W
it

h
re

du
ct

io
n

ru
le

s
(1

)-
(5

)

7©Diagnoser approach
after reduction rules (1)-(5)

(Reachability graph/Diagnoser)

15 14

8©On-the-fly diagnosability
analysis using reduction rules (1)-(5)

(FM-graph/FM-set tree)

12 10

9©On-the-fly diagnosability
analysis using T-invariants
after reduction rules (1)-(5)

(FM-graph/FM-set tree)

7 5

W
it

h
re

du
ct

io
n

ru
le

s
(1

)-
(7

)

10©Diagnoser approach
after reduction rules (1)-(7)

(Reachability graph/Diagnoser)

10 10

11©On-the-fly diagnosability
analysis using reduction rules (1)-(7)

(FM-graph/FM-set tree)

7 6

12©On-the-fly diagnosability
analysis using T-invariants
after reduction rules (1)-(7)

(FM-graph/FM-set tree)

5 4

the diagnosability of a safe and live LPN is not fulfilled, we can use this approach to check
the diagnosability); For an unbounded LPN, the on-the-fly diagnosability analysis using
VN can be applied for diagnosability analysis. We propose these approaches in order to
give a solution for industrial use that allows iterating the diagnosability analysis for a
system at design stage.

102

C
H

A
P

T
E

R

4
MODULAR DIAGNOSABILITY ANALYSIS USING LPN

Contents
4.1 Literature review of decentralized fault diagnosis, modular fault diag-

nosis and distributed fault diagnosis . 104

4.1.1 Decentralized diagnosis . 104

4.1.2 Modular diagnosis . 110

4.1.3 Distributed diagnosis . 117

4.1.4 Synthesis of literature review . 121

4.2 Modular diagnosability analysis using LPN model 122

4.2.1 Definition of LPN module, sound decomposition and modular
diagnosability using LPN . 123

4.2.2 Reduction rules for modular diagnosability 126

4.2.3 Local diagnosability analysis . 128

4.2.4 Incremental modular diagnosability analysis 134

4.2.5 ε−reduction technique to combat combinatorial explosion for
modular diagnosability analysis 140

4.2.6 Complexity analysis . 146

4.3 Synthesis of the contributions (on modular diagnosability analysis) . . 147

This chapter deals with the modular diagnosability analysis, which was formally de-
fined in [Con+06]. The modular diagnosability is less strict than monolithic diagnosability,
but it provides another solution for diagnosis in practice.

We give at first a literature review of the decentralized diagnosis, modular diagno-
sis and distributed diagnosis which can get the same diagnosis performance with the
monolithic diagnosis. Then, we focus on the modular diagnosis, especially the modular

103

CHAPTER 4. MODULAR DIAGNOSABILITY ANALYSIS USING LPN

diagnosability analysis. We propose a new approach for modular diagnosability analysis
using LPN model. The initial idea is published in [Li+17c].

4.1 Literature review of decentralized fault diagnosis, modular
fault diagnosis and distributed fault diagnosis

In the previous chapter, the monolithic (or centralized) diagnosis was discussed. The
main advantage of monolithic diagnosis is the conceptual simplicity. However, the main
disadvantage is the computational complexity and the combinatorial explosion problem.
With the growth of industrial system, plants have become spread throughout a wide
physical area. In order to deal with this new configuration, the monolithic approach is
no longer suitable and to overcome that, decentralized diagnosis architecture [Deb+00],
modular diagnosis architecture [Con+06] and distributed diagnosis architecture [GL07]
were proposed. The main objective is similar to the monolithic approach i.e., to achieve
the same diagnosis performance without building the whole monolithic diagnoser. We
emphasize that these architectures are not mutually exclusive, having each one its own
scope of use based on different assumptions and different types of models.

This chapter introduces:

• a literature review of decentralized, modular and distributed fault diagnosis;

• the contribution of the thesis on modular diagnosability using LPN.

4.1.1 Decentralized diagnosis

In [Deb+00], the pioneer work of decentralized diagnosis is proposed in the framework of
automata. The main objective is to develop a fault diagnosis method without building the
global diagnoser, which causes the combinatorial explosion problem. The architecture of
decentralized approaches is shown in Figure 4.1. The system is partitioned into several
sites. Each site has a full knowledge of the global model but has only local observation of
the system. A local diagnoser is built, for each site, based on the local observation of the
whole system. Local diagnosers cannot communicate directly with each other, but they
provide their diagnostic decisions to a coordinator, using a communication protocol. The
coordinator provides the global final diagnostic decision.

In the framework of [Deb+00], the global model is observed by two sites. Each site
has its own observation module and its diagnosis module. The site i, i ∈ {1, 2} has its
local observation which is a subset of the set of the global observable events Σo. Assuming
that Σoi is the set of observable events of site i. Note that Σo1 and Σo2 are not necessarily
disjoint, but they need to cover Σo, i.e., ∪{1,2}

i=1 Σoi = Σo. The projection Pi : Σ∗ → (Σoi)
∗ is

defined on the set of observable events Σoi. The two sites generate their own diagnosis
information and communicate via the coordinator. The way to communicate is defined by

104

4.1. LITERATURE REVIEW OF DECENTRALIZED FAULT DIAGNOSIS, MODULAR
FAULT DIAGNOSIS AND DISTRIBUTED FAULT DIAGNOSIS

Figure 4.1 – Architecture of decentralized diagnosis approaches [Deb+00]

the protocol which is the key point for decentralized approaches. The protocol defines:
the rules of communication between the local sites and the coordinator; the decision rules
applied at the coordinator.

The decentralized diagnosis approaches are studied under the following assumptions:

1. The system is live;

2. The system has no cycle of unobservable events w.r.t. either site 1 or site 2;

3. The system is not diagnosable w.r.t. Pi, i ∈ {1, 2} and the partition of fault classes Π f

(If the system is diagnosable (as in a monolithic case) w.r.t. one of the projections and
the fault partition, the system would still be diagnosable by using the decentralized
architecture.);

4. The communication between local sites and the coordinator is reliable and the
communicated messages are received in the same order of the sent messages;

5. Each site knows the set of observable events of each site.

Definition 30 The diagnostic information of the coordinator C is said to be Fi − certain if the
coordinator is certain that a fault in class Fi has occurred.

Similarly, if the coordinator is certain that no fault has occurred, the diagnostic information
is said to be Normal. Otherwise, it is said to be Fi − uncertain w.r.t. the fault class Fi.

105

CHAPTER 4. MODULAR DIAGNOSABILITY ANALYSIS USING LPN

Based on this notion, the diagnosability under a given protocol can be defined as
follows:

Definition 31 A prefix-closed and live language L is diagnosable under a protocol w.r.t. a set of
projection and a fault partition, if the following condition holds:

(∀i ∈ Π f)(∃ni ∈N)(∀s ∈ Ψ(Σ f i))(∀t ∈ L/s)(|t| ≥ ni ⇒ C is Fi − certain)

where Ψ(Σ f i) is the set of sequences that end with a fault in Σ f i.

The diagnosability, under a given protocol, is achieved by the coordinator. By using the
given protocol, the coordinator is capable to detect any fault and its class, within a finite
delay after the occurrence of the fault. The protocol is the key point of the decentralized
approaches, which defines the communication rules and the decision rules. In order to
illustrate the functionality of the protocol, let us consider a simple protocol called “naive
protocol” as follows:

When an event e ∈ Σi, i ∈ {1, 2} is observed, the diagnoser of site i computes its state
and communicates with the coordinator. If Gdi, the diagnoser of site i, knows that the
observed event “e” belongs equally to the set of observable events of the other sites and
the new state of these sites have not been computed, then the site i sets its flag SBi to 1
(otherwise, SBi = 0) to declare that the coordinator needs to wait for the communication
with the other site before giving its diagnostic decision. The coordinator stores three
types of data: D1, D2 and SB. Di contains the last state computed by Gdi. SB indicates the
behaviors of the coordinator. If SB = 0, the coordinator computes directly its new state
which is the intersection of the current states of the two diagnoser i.e., C = D1 ∩D2, where
C denotes the state given by the coordinator. If SB = 1, the coordinator needs to wait the
communication of the other site. The new value of SB is computed by SB = SB⊕ SBi. The
initial value of Di is the initial state of the diagnoser of site i and initially, SB = SBi = 0.

Example 46 Considering the automaton in Figure 4.2. The set of observable events is Σo =

{a, b, c, d, e} and the set of fault event is Σ f = { f }. Assuming that two sites are developed to
diagnose the fault. The set of events observed by site 1 is Σo1 = {a, c, d, e} and that of site 2 is
Σo2 = {b, d, e}. Σo = Σo1 ∪Σo2. Note that the event b cannot be observed by site 1 and a, c cannot
be observed by site 2. Based on the local observations, the local diagnosers of the two sites Gd1 and
Gd2 are built in Figure 4.3.

Let us assume that the sequence of observable events ’bacded’ is generated by the system. The
diagnostic result by using ’naive protocol’ is given in Table 4.1. The initial states of site 1 and site
2 are all 1N. Therefore, the initial state given by the coordinator is D1 ∩ D2 = {1N}. The first
event “b” is only observed by the site 2. The diagnoser of site 2 updates its state as {3N, 4N}.
The coordinator computes directly its state D1 ∩ D2 = {1N} ∩ {3N, 4N} = ∅. The diagnostic

106

4.1. LITERATURE REVIEW OF DECENTRALIZED FAULT DIAGNOSIS, MODULAR
FAULT DIAGNOSIS AND DISTRIBUTED FAULT DIAGNOSIS

1start

2 3

4 5

6 7

8 9

10

11

12

a
b

b a

c c

d

d fe

de

ed

Figure 4.2 – An example of automaton

results are given in the same way after observing “a” and “c”, because “a” and “c” are observed
only by site 1. The coordinator gives directly the diagnostic result.

When the event “d” is observed, the diagnoser of site 1 updates its state and its flag SB1 is set
as 1 (because the site 1 knows that the event “d” can also be observed by site 2). The flag of the the
coordinator is set as SB = SB⊕ SB1 = 0⊕ 1 = 1, which means that the coordinator needs to
wait for communication with site 2 before giving the diagnostic result. After the communication
with site 2, the diagnostic result is D1 ∩ D2 = {8N, 10F} ∩ {8N, 10F, 11N} = {8N, 10F}. The
diagnostic results after the rest of events of the sequence (“e” and “d”) are computed in the same
way.

In Example 46, the “naive protocol” is used for fault diagnosis in order to explain
the functionality of decentralized approach. The main advantage of this protocol is that
the communication rules and decision rules are simple, so that the protocol is easy to
implement. However, the diagnostic performance is not really accurate. In certain cases,
the diagnostic result given by the decision rules is empty as it is shown in Table 4.1.
Moreover, if we use a monolithic diagnoser, it can be deduced that the fault f has occurred
after observing the sequence “bacd”. It shows that a decentralized approach using a “naive
protocol” does not perform as well as a monolithic approach. In [Deb+00], three protocols
are developed for decentralized fault diagnosis. The fundamental issue is the tradeoff

107

CHAPTER 4. MODULAR DIAGNOSABILITY ANALYSIS USING LPN

1Nstart

2N, 5N

6N, 7N 11N

8N, 10F 12N

6N, 9F

a

c
d

d e

e

d

d

(a) Gd1\Σo1 = {a, c, d, e}

1Nstart

3N, 4N

8N, 10F, 11N

6N, 9F, 12N

b

d

ed

(b) Gd2\Σo2 = {b, d, e}

Figure 4.3 – Diagnosers of local sites

Table 4.1 – Application of the naive protocol for the example in Figure 4.1

Event Site D1 SB1 D2 SB2 SB C Updated SB
(Start) 1,2 1N 0 1N 0 0 1N 0

b 2 1N 0 3N, 4N 0 0 ∅ 0
a 1 2N, 5N 0 3N, 4N 0 0 ∅ 0
c 1 6N, 7N 0 3N, 4N 0 0 ∅ 0

d
1 8N, 10F 1 3N, 4N 0 0 ∅ 1
2 8N, 10F 0 8N, 10F, 11N 1 1 8N, 10F 0

e
2 8N, 10F 0 6N, 9F, 12N 1 0 ∅ 1
1 6N, 9F 1 6N, 9F, 12N 0 1 6N, 9F 0

d
1 8N, 10F 1 3N, 4N 0 0 ∅ 1
2 8N, 10F 0 8N, 10F, 11N 1 1 8N, 10F 0

between performance and complexity: if a protocol performs better than the others, it is
certain that this protocol uses more memory and requires more computation power.

Based on the decentralized architecture, some works are proposed. In [Pen00], the
decentralized approach is applied to on-line diagnosis of telecommunication networks.
A local diagnoser is built for each component of the system and a strategy for coordi-
nation is proposed to minimize the on-line computation. Nevertheless, a crucial issue is
the efficient update of the states by merging the local diagnostic information of all sites.
In [Cab+10a], two protocols are proposed using Petri nets (PN). The notion of minimal

108

4.1. LITERATURE REVIEW OF DECENTRALIZED FAULT DIAGNOSIS, MODULAR
FAULT DIAGNOSIS AND DISTRIBUTED FAULT DIAGNOSIS

explanations is applied, in order to reduce the complexity for decentralized fault diag-
nosis. The decentralized diagnosability under the two protocols is also addressed. The
advantages and disadvantages of these two protocols are similarly discussed, in terms of
the tradeoff between performance and complexity. In [BS02], the authors discussed the
decentralized fault diagnosis with costly communication between diagnosers. The ap-
proach supposes that the capacity of the communication channel between two diagnosers
is limited. Therefore, the fault should be diagnosed by the two diagnosers with a low cost
of communication.

To apply the decentralized approaches for on-line diagnosis, the codiagnosability
property of the system needs to be ensured. The definition of codiagnosability is given as
follows:

Definition 32 A live and prefix-closed language L(G) is codiagnosable w.r.t. Pi, i ∈ IN =

{1, 2, · · · , N} and Σ f , iff:

(∃n ∈N)(∀s ∈ Ψ(Σ f))(∀t ∈ L(G)/s, |t| ≥ n)⇒

(∃i ∈ IN)(∀ω ∈ P−1
i (Po(st)) ∩ L(G))(∃ f ∈ Σ f , f ∈ ω)

A language L(G) is codiagnosable if it is possible to detect in a finite delay any failure
occurrence by at least one local diagnoser. Hence, the codiagnosability is stronger than the
diagnosability property in the monolithic framework.

In [Mor+11; Mor+16; QK06; Wan+07], different approaches are proposed for codiag-
nosability analysis of automata based on the verifier approach. The approach in [Mor+11]
has the lowest computational complexity. In [Cab+11], the decentralized diagnosability
analysis is discussed in the framework of PN, by using a particular net called Modified
Verifier Net (MVN): regardless of the protocol, the authors have proposed an approach by
detecting the presence of particular strings called “failure ambiguous strings”. A failure
ambiguous string is a sequence containing some fault transitions w.r.t. a set of sites and
a given fault class, such that the word of this sequence can also be explained by a non
faulty sequence w.r.t. the given fault class. Assuming that the system is diagnosable in the
monolithic framework, if there is no failure ambiguous strings for the considered set of
sites, the system is diagnosable in the decentralized framework.

Overall, the decentralized approaches avoid building the monolithic diagnoser which
could be too large for a large-scale system. The objective is to achieve the same diagnosis
performance with the monolithic diagnoser, but the tradeoff between the performance
and the complexity need to be considered to define the protocols used in the coordinator.
Another problem of the decentralized approach is that the way of distributing the set of
observable events into two local sets is not clearly defined. With different distributions, the
performance may be different under the same protocol. From a practical viewpoint, the

109

CHAPTER 4. MODULAR DIAGNOSABILITY ANALYSIS USING LPN

communication between the diagnosers and the coordinator takes memory and time costs
and there is a need to make sure that the order of the occurrence of events respects the order
of their execution by the system. Moreover, for a large-scale system, the architecture needs
to be extended to m sites. Hence, the implementation of a protocol for the coordinator is
more complicated.

4.1.2 Modular diagnosis

In [Con+06], a modular approach is developed to diagnose the unobservable faults of a
large and complex system modeled by parallel composition of automata. The architecture
of modular diagnosis approaches is shown in Figure 4.4. Different from the decentralized
approaches, the modular approaches are applied on a system physically modeled by a
collection of modules. Hence, a local diagnoser is built using the model of its module, but
not the global model as it is used in decentralized approach. Moreover, there does not exist
a coordinator. If certain diagnosability property (e.g. modular diagnosability in [Con+06])
of system is fulfilled, the on-line diagnosis is achieved using only local diagnosers, i.e.,
a local diagnoser is capable to diagnose a considered fault of the corresponding module
without communication with a coordinator or other diagnosers.

Figure 4.4 – Architecture of Modular diagnosis approaches [Con+06]

The modular diagnosability needs to be ensured so that the modular architecture can
be applied for on-line diagnosis. Let us recall some basic notions in order to introduce the
definition of modular diagnosability [Con+06].

Let ΣX and ΣY be any sets of events. P{ΣX ,ΣY} : Σ∗X → Σ∗Y denotes the natural projection
and P−1

{ΣY ,ΣX} : Σ∗Y → 2Σ∗X is the inverse projection operator. P{ΣX ,ΣY} is defined as follows:

110

4.1. LITERATURE REVIEW OF DECENTRALIZED FAULT DIAGNOSIS, MODULAR
FAULT DIAGNOSIS AND DISTRIBUTED FAULT DIAGNOSIS

1. P{ΣX ,ΣY}(ε) := ε

2. P{ΣX ,ΣY}(e) :=

e if e ∈ ΣY

ε if e /∈ ΣY

3. P{ΣX ,ΣY}(se) := P{ΣX ,ΣY}(s)P{ΣX ,ΣY}(e) (for s ∈ Σ∗X, e ∈ ΣX.)

The inverse projection operator is denoted as P−1
{ΣY ,ΣX}(s) = {t ∈ Σ∗X|P{ΣX ,ΣY}(t) = s}.

With respect to particular languages L ⊆ Σ∗Y and L′ ⊆ Σ∗X, the natural projection
is defined as PL

{ΣX ,ΣY}(s) = {t ∈ L|P{ΣX ,ΣY}(s) = t} and the inverse projection operator

P−1,L′
{ΣY ,ΣX}(s) = {t ∈ L′|P{ΣX ,ΣY}(t) = s}.

Let H := {1, 2, · · · , m} ⊂ N be an index set. Every element j ∈ H is called a module
hereafter. In [Con+06], the system to be diagnosed is modeled as a collection of automaton
modules {Gi∈H} and a set of corresponding languages {L(Gj∈H)}. Each module Gj∈H is
called a local model with its local language. The monolithic model can be obtained by the
parallel composition of local models GH :=‖j∈H Gj and the monolithic language is defined
by L(GH) :=‖j∈H L(Gj).

Given S ⊆ H. Let GS = (XS, ΣS, δS, x0S) denote the automaton system with the state
space XS, the set of the event ΣS, the transition function δS and the initial state x0S. When
S = {j}, GS denotes the individual local module j. When S = H, GS denotes the monolithic
model. When S ⊂ H, S 6= ∅, S 6= {j}, j ∈ H, GS denotes the partial system composed by
the modules contained in S. GS :=‖z∈S Gz is obtained by the parallel composition of the
modules Gz with z ∈ S.

Let ΣoS and ΣuS be the set of observable and unobservable events, where ΣS =

ΣoS∪̇ΣuS. Σ f S is the set of fault events and Σ f S ⊂ ΣuS.

The event set ΣS can also be partitioned as ΣS = ΣCMS ∪̇ΣPVS , where ΣCMS = ΣS ∩
[∪z∈H/SΣz] is the set of common events in GS and ΣPVS = ΣS\ΣCMS represents the set of
private events.

The principle two assumptions are given as follows:

1. ∀S ⊆ H, L(GS) is assumed to be live, i.e., GS cannot reach a point at which no event
can be fired;

2. For each module j ∈ H, the common events of module j are observable, i.e., ΣCMj ⊂
Σoj.

The Assumption 1 is strong. It requires that not only each module j is live, but also
each composed module GS, S ⊆ H is live. It implies also that the occurrence of any fault
does not bring the system, or any module, to a deadlock.

111

CHAPTER 4. MODULAR DIAGNOSABILITY ANALYSIS USING LPN

The Assumption 2 implies that all the unobservable events including faults are private
events.

For a system modeled by a collection of modules, the Local Diagnosability is considered
as the "monolithic diagnosability" of a local module. The approaches for monolithic
diagnosability analysis can be applied for the local diagnosability analysis of each module.

The definition of Modular Diagnosability extends the definition of modular Diagnosability,
which is given as follows:

Definition 33 (Modular Diagnosability [Con+06]) Let H := {1, 2, · · · , m}, S ⊆ H, GS :=‖j∈S

Gj and S− ⊆ S. The language L(GS) is modularly diagnosable w.r.t (Σoj:j ∈ S) and (Σ f z:z ∈ S−),
if ∀z ∈ S−, ∀ f ∈ Σ f z, ∀v ∈ L(GS) ends with f , ∃n ∈ N s.t. ∀t ∈ L(GS)/v, |P{ΣS,Σoz}(t)| ≥
n⇒ D(vt) = 1, where

D(vt) :=

1 if ω ∈ P−1,L(GS)
{ΣoS,ΣS}

[P{ΣS,ΣoS}(vt)]⇒ f ∈ ω

0 otherwise

In other terms, if a set of modules S ⊆ H is modularly diagnosable w.r.t. the set of
faults in each module, the fault in each module is capable to be detected in a finite delay
by using only the local observation of each module.

To analyze the modular diagnosability of a system, the definition of FMz -indeterminate
cycle is proposed in [Con+06] as follows.

Definition 34 Let H := {1, 2, · · · , m}, S ⊆ H, GS :=‖z∈S Gz. G′S = (QoS , ΣoS, δoS , q0) is the
non-deterministic automaton built from GS by eliminating unobservable events and the diagnoser
of GS can be defined as GdS = (QdS , ΣoS, δdS , q0).

A set of F-uncertain states q1, q2, · · · , qn ∈ QdS is said to form an FMz−indeterminate cycle if

1. q1, q2, · · · , qn ∈ QdS form a cycle in GdS with δdS(qv, ev) = qv+1, v = 1, · · · , n −
1, δdS(qn, en) = q1,where ev ∈ ΣoS, v = 1, · · · , n− 1 and ∃j ∈ 1, · · · , n s.t. ej ∈ Σoz.

2. ∃(xk
v, lk

v), (yr
v, l̃r

v) ∈ qv, v = 1, · · · , n, k = 1, · · · , m, and r = 1, · · · , m′ such that:

a) [(F ∈ lk
v) ∧ (F /∈ l̃r

v)], where F represents the label associated with the fault event
f ∈ Σ f z, z ∈ S

b) the sequence of states {xk
v}, v = 1, · · · , n, k = 1, · · · , m, and {yr

v}, v = 1, · · · , n, r =
1, · · · , m′, form cycles in the observer G′S with

i. (xk
v, ev, xk

v+1) ∈ δoS , v = 1, · · · , n, k = 1, · · · , m, (xk
n, en, xk+1

1) ∈ δoS , k =

1, · · · , m− 1, (xm
n , en, x1

1) ∈ δoS

ii. (yr
v, ev, yr

v+1) ∈ δoS , v = 1, · · · , n, r = 1, · · · , m′, (yr
n, en, yr+1

1) ∈ δoS , k =

1, · · · , m′ − 1, (ym′
n , en, y1

1) ∈ δoS

112

4.1. LITERATURE REVIEW OF DECENTRALIZED FAULT DIAGNOSIS, MODULAR
FAULT DIAGNOSIS AND DISTRIBUTED FAULT DIAGNOSIS

Here, the symbol Mz of “FMz -indeterminate cycle” represents the Module z. The notion
of “FMz -indeterminate cycle” is slightly different from the notion of “F-indeterminate
cycle”. If the fault label in 2(a) of Definition 34 corresponds to the fault f in module z, i.e.,
f ∈ Σ f z, it requires that there exists at least one observable event from module z in the
cycle of the diagnoser GdS . In other words, for an FMz -indeterminate cycle, the considered
fault and at least one observable event of the cycle belong to the same module. Based on
the notion of FMz -indeterminate cycle, the sufficient and necessary condition of modular
diagnosability is proposed as follows:

Theorem 7 Consider the language L(GS) generated by GS :=‖z∈S Gz, L(GS) is modularly
diagnosable w.r.t. (Σoz:z ∈ S) and (Σ f z: z ∈ S), if there is no FMz−indeterminate cycle in the
diagnoser GdS .

According to the definition of FMz -indeterminate cycle, it can be deduced that an
FMz -indeterminate cycle is an F-indeterminate cycle, but the inverse proposition is not
true. Therefore, the modular diagnosability is less strict than monolithic diagnosability.
The relationship between monolithic, local and modular diagnosability is given in the
following proposition:

Proposition 10 1. Let H := {1, 2, · · · , m}, S ⊆ H, GS :=‖z∈S Gz. If the language L(GS)

is monolithically diagnosable w.r.t. (Σoz:z ∈ S) and (Σ f z:z ∈ S) then the language L(GS) is
modularly diagnosable w.r.t (Σoz:z ∈ S) and (Σ f z:z ∈ S).

2. Let H := {1, 2, · · · , m}, S ⊆ H, GS :=‖j∈S Gj. If the language L(Gz) of each module
z ∈ S is locally diagnosable w.r.t Σoz and Σ f z then the language L(GS) is modularly
diagnosable w.r.t (Σoj:j ∈ S) and Σ f z.

The inverse propositions of these two propositions are not true. (1) If the language
L(GS) is modularly diagnosable, it cannot be deduced that the language L(GS) is mono-
lithically diagnosable; (2) if the language L(GS) is modularly diagnosable, it cannot be
deduced that each module z ∈ S is locally diagnosable. The following example is given to
further explain the difference between monolithic diagnosability and modular diagnos-
ability.

Proposition 11 [Con+06] Let H := {1, 2, · · · , m}, S ⊂ H, GS :=‖z∈S Gz. If the language
L(GS) is modularly diagnosable w.r.t. (Σoj: j ∈ S) and Σ f z (z ∈ S), then the language L(GH) is
modularly diagnosable w.r.t. (Σoj: j ∈ H) and Σ f z.

According to Proposition 11, in order to check the modular diagnosability GH (H :=
{1, 2, · · · , m}) w.r.t. (Σoj: j ∈ H) and Σ f z (z ∈ H), it is not necessary to build directly the
parallel composition of the local diagnoser Gdz (which contains an FMz−indeterminate

113

CHAPTER 4. MODULAR DIAGNOSABILITY ANALYSIS USING LPN

1start

2

3

4

5

6

7

8

f1

a

c

a

d

a

d

f2

a

a

d

a

a

Module G1

1Nstart

4F1

2F1, 3N

5N

8F2

6F2, 7N

d

a

c

d

a

d

d

a

d

a

d

Local diagnoser of module G1

1start

2

3

4
x

b

y

b

a, c

Module G2

1start

2

3

4
y

b

x

b

a, c

Module G3

1start

2 3

4 5 6

f1

b

d

b

d

b

b

f1

b

d

d

b

Monolithic system GH

1Nstart

3F1

4N, 5F1

6F1

d

b

d

b

b

d

d

b

Monolithic diagnoser GdH

Figure 4.5 – Modular diagnosability and monolithic diagnosability

114

4.1. LITERATURE REVIEW OF DECENTRALIZED FAULT DIAGNOSIS, MODULAR
FAULT DIAGNOSIS AND DISTRIBUTED FAULT DIAGNOSIS

cycle) with the diagnoser GdSc
, where Sc ⊆ H\{z}. If the FMz−indeterminate cycle does

not survive in Gdz ||GdSc
, i.e., L(GS) (S = Sc ∪ {z}) is modularly diagnosable, then it can be

deduced that L(GH) is modularly diagnosable.

Example 47 Considering the system in Figure 4.5 modeled by a collection of modules: G1, G2

and G3. For module G1, Σ1 = Σo1 ∪ Σu1, where Σo1 = {a, c, d} and Σu1 = Σ f 1 = { f1, f2}.
f1, f2 belong to different fault classes, i.e., f1 ∈ Σ1

f 1 and f2 ∈ Σ2
f 1. For module G2, Σ2 =

Σo2 ∪ Σu2, where Σo2 = {a, b, c, x, y} and Σu2 = ∅. For module G3, Σ3 = Σo3 ∪ Σu3, where
Σo3 = {a, b, c, x, y} and Σu3 = ∅. First, the local diagnosability of the three modules is
analyzed (module G2 and module G3 are locally diagnosable because of no existence of fault). The
diagnoser of module G1 is built. Module G1 is not locally diagnosable w.r.t. Σ1

f 1 and Σ2
f 1, because

an F1-indeterminate cycle and an F2-indeterminate cycle are found.

Afterwards, the monolithic system GH is built by the parallel composition, i.e., GH :=‖j∈H

Gj, H = {1, 2, 3}. The monolithic diagnoser GdH is built. Since there exist an F1-indeterminate
cycle, the monolithic system is not monolithically diagnosable. However, the system GH is modu-
larly diagnosable. The F1-indeterminate cycle is not an FM1

1 -indeterminate cycle, because the fault
f1 belongs to module G1 but there is no observable event of this cycle that belongs to Σo1 (b /∈ Σo1).

From a practical viewpoint, if the system is modularly diagnosable, i.e., there is no FMz -
indeterminate cycle, it is sufficient to use local diagnoser for on-line diagnosis. Even though
there exist an F-indeterminate cycle in the local diagnoser, the modular diagnosability
property ensures that the module will not stay forever in the states of the F-indeterminate
cycle when the complete system is operating. If a local diagnoser indicates that the module
reaches a state of F-indeterminate cycle, in a finite number of observable events of the
module, the state of the local diagnoser will be out of the indeterminate cycle, because
the indeterminate cycle will be blocked while considering the behavior of the complete
system.

In [Con+06], an approach is developed to analyze the modular diagnosability of a
system, which is modeled as a collection of modules {Gj∈H}. The main idea is presented
as follows:

1. For all j ∈ H, build the diagnoser Gdj of each module based on its automaton model
Gj;

2. If all the modules are locally diagnosable, the system is modularly diagnosable.
Otherwise, for each locally non-diagnosable module z ∈ H:

a) For all Sc ⊆ H/{z} s.t. GS has common events with Gz:

i. Build the parallel composition of Gdz and GdSc
;

ii. Verify if there exists an FMz−indeterminate cycle:

115

CHAPTER 4. MODULAR DIAGNOSABILITY ANALYSIS USING LPN

A. If the answer is yes, continue;

B. Else, output “The system is modularly diagnosable w.r.t. (Σoj:j ∈ S)
and Σ f z", where S = Sc ∪ {z} and break;

iii. Output “The system is not modularly diagnosable w.r.t. (Σoj:j ∈ S) and
Σ f z", where S = Sc ∪ {z}.

The main advantage of the modular approach in [Con+06] is that if the modular
diagnosability is fulfilled, it is sufficient to use the local diagnoser of each module to
diagnose all faults without any communication. It is an easy solution to implement, in
practice, for on-line diagnosis. However, if the system model is provided by a set of module
models, the assumption that ∀S ⊆ H, L(GS) is live, is strong. For S = H, it needs to build
the composed modules and the monolithic model to check the assumption, because the
monolithic model may deadlock even thought each module is live. It violates the original
idea of the modular architecture (to diagnose the fault without building the monolithic
system and the monolithic diagnoser). Moreover, the operation of parallel composition
may cause the combinatorial explosion problem.

In [Pen04], the diagnosability is analyzed for a system modeled by a set of commu-
nicating components. The local diagnosability of each component is studied in order to
provide more accurate information than the monolithic diagnosability. In [MP13], the
authors redefine the local diagnosability and modular diagnosability in a specification-
based manner. A new approach for specification-based modular diagnosability analysis
using verifier is proposed. In [Zho+08], the modular architecture is investigated in a
decentralized setting. A new architecture, namely, “decentralized modular architecture” is
proposed. The diagnostic decisions are given locally by the diagnosers of the modules,
but it requires that each fault can be detected by at least one local diagnoser based on its
own observation. A method is proposed for modular diagnosability analysis by reducing
this property to an instance of a codiagnosability property. In [Sch13], an approach for
verification of modular diagnosability with local specifications is proposed. This approach
extends the abstraction-based language-diagnosability analysis to a modular architecture.
The assumption of the liveness in [Con+06] is released, i.e., there can be a deadlock in
modules or monolithic model. However, if there is a deadlock just after firing a fault, this
method can neither be applied for the diagnosis. The methodology to find the proper
Loop-preserving Observer (LPO) is not systematically provided. A method to decompose
a failure specification into multiple local specifications needs to be developed to apply
this approach. In [Pen+15], a colored Petri net (CPN) diagnoser is developed for fault
diagnosis using a modular architecture in the framework of PN. The CPN diagnoser is
exactly equivalent to the diagnoser in [Sam+95] but with a reduced graphical represen-
tation, so that it can be used to implement a modular diagnoser of a large-scale system.
In [Cab+15b], the modular architecture is applied for on-line diagnosis. This approach
is based on the construction of a PN diagnoser named synchronized Petri net diagnoser

116

4.1. LITERATURE REVIEW OF DECENTRALIZED FAULT DIAGNOSIS, MODULAR
FAULT DIAGNOSIS AND DISTRIBUTED FAULT DIAGNOSIS

(SPND). The synchronous diagnosability is defined and studied w.r.t. the language of
modules.

The modular architecture is easy to implement in practice for on-line diagnosis. It is
sufficient to use the local diagnoser of each module, if the modular diagnosability property
is fulfilled. However, the scope of use is limited because of the strong assumption of live-
ness. Moreover, the verification of modular diagnosability may still cause computational
complexity and combinatorial explosion problem.

4.1.3 Distributed diagnosis

Similar to the modular approach, the distributed approaches achieve the fault diagnosis
using a set of local diagnosers without building a global diagnoser. The distributed
architecture is shown in Figure 4.6. Each local model knows only its partial model and a
local diagnoser is built based on the local model in order to perform the fault diagnosis.
Additionally, the diagnostic information is communicated between the local diagnosers
under a defined communication protocol. The protocol ensures the consistency among the
diagnosers, to avoid the possible inconsistent fault information given by different local
diagnosers.

Figure 4.6 – Architecture of Distributed diagnosis approaches

In [GL03], a distributed approach is proposed for fault diagnosis of a system modeled
by labeled Petri net (LPN). The architecture of this approach is shown in Figure 4.7. The
input model of this approach is a monolithic LPN model and under some conditions, it is
decomposed into several place-bordered LPN modules. Based on local observations, the
local diagnosers are built. The communication channel is via the set of common places
between modules. The variety of the number of tokens in the common places is considered

117

CHAPTER 4. MODULAR DIAGNOSABILITY ANALYSIS USING LPN

as the message generated by a local model. The other local models get the message and
update their states. Each local diagnoser is capable to give its diagnostic decision after
communicating with the other local diagnosers.

Figure 4.7 – Architecture of the approach in [GL03]

Let us consider a LPN model LPN = (N, M0, Σ,L). By using the approach in [GL03],
the LPN is decomposed into two local LPN models: LPN1 = (N1, M01, Σ1,L1) and LPN2 =

(N2, M02, Σ2,L2), where N1 = (P1, T1, pre1, post1) and N2 = (P2, T2, pre2, post2). Σo =

Σo1 ∪ Σo2 and Σo1 ∩ Σo2 = ∅. Moreover, for a fault transition f ∈ T1 (respectively, T2) and
f ∈ Ti

f , there does not exist a fault transition f ′ ∈ T2 (respectively, T1) s.t. f ′ ∈ Ti
f . The two

local LPN models are defined by the following conditions:

1. ∀t ∈ To, if L(t) ∈ Σo1 (respectively, Σo2), t ∈ T1 (respectively, T2);

2. ∀ f ∈ Tf , if f ∈ Tk
f and f ∈ T1 (respectively, T2), there does not exist f ′ ∈ Tk

f and
f ′ ∈ T2 (respectively, T1);

3. Denote Pc = P1 ∩ P2 the set of common places. ∀t ∈ T, if the firing of t puts tokens
into Pc or removes tokens from Pc, then t ∈ To.

The communication protocol needs to be defined, because if the local diagnosers do not
inform their change of markings to each other, the state estimation of the local diagnosers
is incomplete or wrong. The defined protocol is simple, which allows the local diagnosers
to send to each other the change of tokens’ number in common places. Hence, the state of
local diagnoser i, i ∈ {1, 2}can be defined as:

Di =



· · · Mi
j · · ·

− − −
· · · li

f ,j · · ·
− − −
· · · li

m,j · · ·


118

4.1. LITERATURE REVIEW OF DECENTRALIZED FAULT DIAGNOSIS, MODULAR
FAULT DIAGNOSIS AND DISTRIBUTED FAULT DIAGNOSIS

Figure 4.8 – The model of LPN and its decomposition: LPN1 and LPN2

where, Mi
j is the marking of local model and the markings in a diagnoser state are com-

puted in the same way with the diagnoser approach in [Sam+95]. li
f ,j is the tag to indicate

the occurrence of the fault (it is defined in the same way with the fault tag in [Sam+95]
and because of the Assumption 2, there is no need to distinguish the fault tags in different
local diagnosers). li

m,j is the message label for the purpose of communication. If t ∈ To

(we consider only that t is observable because of the Assumption 3) is fired at Mi with
its message label li

m, the obtained marking is Mi′ = Mi + C(·, t), where C is the incidence
matrix. The new message label is computed by the message label function MLP as follows:

li′
m = MLP(li

m, t) =

[
li
m

CPc(·, t)

]

where CPc is obtain by remove the rows corresponding to all the places p /∈ Pc of the

119

CHAPTER 4. MODULAR DIAGNOSABILITY ANALYSIS USING LPN

incidence matrix C. By exchanging the message label, local diagnosers can compute the
exact state and provide the correct diagnostic decision. It is proved that the state of
monolithic diagnoser can be obtained by merging the states of local diagnosers.

Example 48 Considering the LPN model in Figure 4.8. For the monolithic model LPN, To =

{t3, t5, t6, t7, t8, t9, t10, t12, t14, t15, t16, t17}, Treg = {ε1, ε4} and Tf = T1
f ∪ T2

f , where T1
f = { f2}

and T2
f = { f11, f13}. L(t3) = L(t5) = L(t6) = L(t8) = a, L(t7) = L(t9) = L(t10) =

L(t12) = e, L(t14) = L(t15) = g, L(t16) = L(t17) = h and the label of all the unobservable
transition is ε. Under the above assumptions, the LPN can be decomposed into LPN1 and LPN2

as it is shown in Figure 4.8. Σo1 = {a} and Σo2 = {e, g, h}. Tf 1 = T1
f = { f2} and Tf 2 =

T2
f = { f11, f13}. The set of common places is Pc = {p6, p8, p9, p11} (shown with dashed lines).

Assuming that the sequence of observable events “aeh” is observed. The initial states of the two
local diagnosers can be obtained by using the same idea of the diagnoser approach in [Sam+95]:

D1
0 =


p1 p2 p3 p4 p5 p6 p7 p8 p9 p11 |l1

f

1 1 1 0 0 0 0 0 0 0 |0
0 1 1 1 0 0 0 0 0 0 |0
0 0 1 0 1 0 0 0 0 0 |1
0 1 1 0 0 0 1 0 0 0 |1

,

D2
0 =

[
p3 p6 p8 p9 p10 p11 p12 p13 p14 p15 p16 |l2

f

1 0 0 0 0 0 0 0 0 0 0 |0

]
.

After observing ‘a’, the states of the two local diagnosers are computed that contain the message
labels.

D1
1 =



p1 p2 p3 p4 p5 p6 p7 p8 p9 p11 |l1
f | l1

m(p3 p6 p8 p9 p11)

1 0 0 0 0 1 0 0 0 0 |0| −1 1 0 0 0
0 0 0 1 0 1 0 0 0 0 |0| −1 1 0 0 0
0 1 1 0 0 0 0 1 0 0 |0| 0 0 1 0 0
0 1 1 0 0 0 0 0 1 0 |1| 0 0 0 1 0
0 0 0 0 0 1 1 0 0 0 |1| −1 1 0 0 0
0 1 1 0 0 0 0 0 0 1 |1| 0 0 0 0 1


,

D2
1 =


p3 p6 p8 p9 p10 p11 p12 p13 p14 p15 p16 |l2

f | l2
m(p3 p6 p8 p9 p11)

0 1 0 0 0 0 0 0 0 0 0 |0| −1 1 0 0 0
1 0 1 0 0 0 0 0 0 0 0 |0| 0 0 1 0 0
1 0 0 1 0 0 0 0 0 0 0 |0| 0 0 0 1 0
1 0 0 0 0 1 0 0 0 0 0 |0| 0 0 0 0 1

.

Similarly, the states after observing “g” and “h” are

D1
2 =


p1 p2 p3 p4 p5 p6 p7 p8 p9 p11 |l1

f | l1
m(p3 p6 p8 p9 p11 p3 p6 p8 p9 p11)

1 0 0 0 0 0 0 0 0 0 |0| −1 1 0 0 0 0 −1 0 0 0
0 0 0 1 0 0 0 0 0 0 |0| −1 1 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 1 0 0 0 |1| −1 1 0 0 0 0 −1 0 0 0
0 1 1 0 0 0 0 0 0 0 |0| 0 0 1 0 0 0 0 −1 0 0
0 1 1 0 0 0 0 0 0 0 |1| 0 0 0 1 0 0 0 0 −1 0
0 1 1 0 0 0 0 0 0 0 |1| 0 0 0 0 1 0 0 0 0 −1

,

120

4.1. LITERATURE REVIEW OF DECENTRALIZED FAULT DIAGNOSIS, MODULAR
FAULT DIAGNOSIS AND DISTRIBUTED FAULT DIAGNOSIS

D2
2 =


p3 p6 p8 p9 p10 p11 p12 p13 p14 p15 p16 |l2

f | l2
m(p3 p6 p8 p9 p11 p3 p6 p8 p9 p11)

0 0 0 0 1 0 0 0 0 0 0 |0| −1 1 0 0 0 0 −1 0 0 0
1 0 0 0 0 0 1 0 0 0 0 |0| 0 0 1 0 0 0 0 −1 0 0
1 0 0 0 0 0 0 1 0 0 0 |0| 0 0 0 1 0 0 0 0 −1 0
1 0 0 0 0 0 0 0 0 1 0 |0| 0 0 0 0 1 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 |1| −1 1 0 0 1 0 −1 0 0 0
1 0 0 0 0 0 0 0 0 0 1 |1| 0 0 1 0 0 0 0 −1 0 0

.

D1
3 = D1

2,

D2
3 =

[
p3 p6 p8 p9 p10 p11 p12 p13 p14 p15 p16 |l2

f | l2
m(p3 p6 p8 p9 p11 p3 p6 p8 p9 p11)

1 0 0 0 0 0 0 0 0 1 0 |0| 0 0 0 0 1 0 0 0 0 −1
1 0 0 0 0 0 0 0 0 0 1 |1| 0 0 1 0 0 0 0 −1 0 0

]
.

It is worth noticing that it take lots of memory to store the message labels. Therefore,
in [GL07], the communication messages between modules are simplified by using an
encoding-based method. Moreover, the approach in [GL03] is improved by releasing the
Assumption 2.

In [SW02; SW04], a distributed approach with communication is developed. Each local
module has its own local diagnoser for diagnosis. Local diagnosers communicate with
each other via undamaged communication channels for refinement purposes. In [JB05],
the distributed diagnosis for large interacting systems is developed. This study works
on the LPN systems that consist of a set of place-bordered LPN. It assumes that the
interactions between modules are modeled by tokens that can unobservably pass from
one module to another via common places. After the occurrence of an observable event,
each module computes a set of minimal explanations of an observable sequence and
estimate the number of tokens that could have been produced at the output places of a
local model. The main idea is to use the notion of minimal explanations to explain the
observable system behavior. In [Fan+13], the Integer Linear Programming (ILP) technique
is applied for distributed diagnosis of place-bordered LPN system. A comparison between
monolithic and distributed diagnosers is presented. Comparing to the study in [GL07], no
off-line computation is necessary and there is no need for the redesign of local diagnosers.
The distributed diagnosis is improved by few communications among local diagnosers.

The advantage of distributed architecture is the scalability and robustness of fault
diagnosis. The communication between local diagnosers ensures the correctness of fault
diagnostic decision. Nevertheless, the approaches are proposed with different assump-
tions and the assumptions sometimes reduces the scope of use in practice. Moreover,
there is no method to analyze the diagnosability property of the system. Consequently,
the monolithic approaches is applied to ensure that all faults can be detected by using
distributed architecture.

4.1.4 Synthesis of literature review

In this section, a brief literature review is given about three diagnosis architectures: de-
centralized architecture, modular architecture and distributed architecture. Their main

121

CHAPTER 4. MODULAR DIAGNOSABILITY ANALYSIS USING LPN

distinguishing features are as follows:

Decentralized architecture: The input system model is the monolithic system model,
which is partitioned into several sites. Each site has full knowledge of the global model
but has only local observation of the system. A local diagnoser is built based on the local
observation of the whole system. Local diagnosers cannot communicate directly with each
other, but they are able to provide their local decision to a coordinator. The coordinator
gives the final diagnostic decision based on a communication protocol.

Modular architecture: The input system model is a collection of module models. The
different modules are allowed to have common events, and the monolithic model can
be obtained by building the parallel composition of all modules. Local diagnosers are
built based on each module model. If the modular diagnosability property is fulfilled,
the local diagnoser is capable of giving the diagnostic decisions w.r.t. the faults of its
own local module without any communication with other local diagnosers. The whole
system diagnosability (modular diagnosability) is introduced by taking into account
the fault sequence which, although locally indistinguishable in one module, becomes
distinguishable due to concurrency with other modules.

Distributed architecture: The distributed architecture can be reviewed as a mix of
the two previous architectures. The diagnostic decisions corresponding to the faults in
local models are given by local diagnosers. There is no coordinator, but the diagnostic
information can be communicated between each of the local diagnosers under a defined
communication protocol.

These architectures are not mutually exclusive and the differences between them are
sometimes vague. It is meaningless to discuss independently which architecture is better.
Each architecture has its own scope of use based on different assumptions and different
types of models. It is suggested to use the suitable diagnosis architecture for each specific
diagnostic problem.

4.2 Modular diagnosability analysis using LPN model

This section focuses on the modular diagnosability analysis. We use the notion of mod-
ular diagnosability defined in [Con+06], but we provide a new approach for modular
diagnosability analysis. The system is modeled by LPN, which gives a more compact
representation of DES as it was presented before. In [Con+06], the system is modeled
directly by a collection of automaton modules and the model of each module is given.
However, this thesis starts from the global LPN model of the system. Under certain condi-
tions, the global LPN model is decomposed into several modules. Afterwards, we propose
an approach for modular diagnosability analysis in order to reduce the computational
complexity.

122

4.2. MODULAR DIAGNOSABILITY ANALYSIS USING LPN MODEL

4.2.1 Definition of LPN module, sound decomposition and modular
diagnosability using LPN

In this section, the LPN module is defined at first. Then, the definition of sound decom-
position is provided. The definition of modular diagnosability using LPN is introduced
finally.

First, let us define the notion of an LPN module.

Definition 35 Given a global LPN model LPN = (N, M0, Σ,L). An LPN module is a part of
LPN. LPNi = (Ni, M0i, Σi,Li) (Ni = (Pi, Ti, prei, posti)) is a module such that:

1. Pi ⊆ P;

2. Ti ⊆ T s.t. ∀t ∈ Ti, •t ∩ Pi 6= ∅ and t • ∩Pi 6= ∅, where •t (t•) is the pre-places
(post-places) of t;

3. Σi = {l| (∃t ∈ Ti) ∧ (L(t) = l)};

4. M0i is defined as: ∀pj ∈ Pi, M0i(pj) = M0(pj) and ∃pk ∈ Pi s.t. M0i(pk) > 0.

It is worth noticing that there exists at least one token in a place of each module.
Therefore, each module is capable to model independently its local behaviors. In order to
analyze modular diagnosability of the global LPN model, a decomposition is required,
which covers the global LPN. Furthermore, the communication between two modules is
via synchronized events. It means that only transitions can be shared between different
modules. Toi and Tui denotes respectively the set of observable transitions and the set of
unobservable transitions in module LPNi. The set of fault transitions in LPNi is denoted
as Tf i = ∪n

j=1T j
f i.

Since PN is more powerful for modeling DES than automaton and the concurrent
process is well represented, a system is favorably modeled by a monolithic PN even its
function is modularly designed. For example, the multi-track level crossing benchmark
in [Liu+16] (it will be analyzed in Section 6.2) consists of railway traffic, LC controller
and barriers. It is modularly designed but a monolithic PN is obtained considering the
concurrent processes. In order to apply the modular diagnosis, it is necessary to decompose
the monolithic model into modules. Therefore, the definition of sound decomposition is
given as follows:

Definition 36 ([Pen+15]) Given the global LPN model LPN = (N, M0, Σ,L) (N = (P, T, pre, post)).
A set of modules LPN1, · · · , LPNm (H = {1, · · · , m}) is a sound decomposition if:

1. Any place in P belongs to one and only one module LPNi;

123

CHAPTER 4. MODULAR DIAGNOSABILITY ANALYSIS USING LPN

2. Any transition in T belongs to at least one module LPNi;

3. For each observable event l, if l belongs to several sets of observable events {Σoi1 , · · ·Σoin}
(n ≤ m), then for any transition t ∈ T s.t. L(t) = l, •t ⊆ ∪n

j=1Pij and for j ∈
{1, · · · , n}, •t ∩ Pij 6= ∅;

According to Condition 1 and Condition 2 of Definition 36, there is no place or tran-
sition that is not in any modules, i.e., the decomposition covers the global LPN model.
Condition 1 states that the sets of places {P1, · · · , Pm} are disjoint, i.e., each module does
not share resources with any other module (each module has its own places). Condition 2
states that a transition can be shared by different modules. Condition 3 states that if an ob-
servable event l belongs to a set of modules, i.e., l ∈ Σoij , then for all (t ∈ T) ∧ (L(t) = l),
at least one pre-place of the transition t, belongs to Pij .

Figure 4.9 – The model of LPN and its sound decomposition: LPN1 and LPN2

Example 49 Let us consider the LPN model in Figure 4.9. The LPN model LPN = (N, M0, Σ,L)
can be decomposed as LPN1 = (N1, M01, Σ1,L1) and LPN2 = (N2, M02, Σ2,L2), which is a
sound decomposition. P = P1 ∪ P2, and T = T1 ∪ T2. T1 ∩ T2 = {tc1, tc2}, where tc1 and tc2 are
shared observable transitions labeled by c and d. Only LPN1 contains a fault transition f1,1.

Based on Definition 35 and Definition 36, the main assumptions of this study is given
as follows:

1. The global LPN model is bounded and can be decomposed into a set of modules,
which is a sound decomposition;

124

4.2. MODULAR DIAGNOSABILITY ANALYSIS USING LPN MODEL

2. The transitions shared by several modules are observable (the unobservable transi-
tion including the fault transition are not shared);

3. The classes of fault transitions in one module is different from the classes of any
other modules. Without loss of generality, there is at most one fault class in each
module (if there are several fault classes, we can analyze one by one);

4. There could be deadlocks in one module;

5. There could be cycles of unobservable transitions.

The Assumption 2 implies that the communication between modules is via synchro-
nization of observable transitions having the same label. The Assumption 3 implies that
there do not exist two fault transitions that belong to different modules, such that the two
fault transitions are in the same fault class. It means that if a module is locally diagnosable
w.r.t. its fault classes, the faults in these fault classes can be detected in a finite delay
by only using the local observation of this module. The strong assumption of liveness
in [Con+06] is released. It is worth noticing that if ∃S ⊆ H, s.t. L(LPNS) is not live, then
there must exist a marking at which no transition is enabled (i.e. the tokens in places
will never move). L(LPNS) can become live by adding a regular unobservable transition
whose pre-place and post-place is the same place that contains a token that does not move.

Before giving the definition of modular diagnosability for LPN model, some notions
are given as follows:

Let TX and TY be any sets of events. P{TX ,TY} : T∗X → T∗Y denotes the natural projection
and P−1

{TY ,TX} : T∗Y → 2T∗X is the inverse projection operator. P{TX ,TY} is defined as follows:

1. P{TX ,TY}(λ) := λ

2. P{TX ,TY}(t) :=

t if t ∈ TY

λ if t /∈ TY

3. P{TX ,TY}(σt) := P{TX ,TY}(σ)P{TX ,TY}(t) (for σ ∈ T∗X, t ∈ TX)

The inverse projection operator is denoted as P−1
{TY ,TX}(s) = {t ∈ T∗X|P{TX ,TY}(t) = s}.

Definition 37 (Modular Diagnosability of LPN) Given the LPN model LPN. Let H := {1, 2, · · · ,
m} and LPN1, · · · , LPNm a sound decomposition of LPN. S ⊆ H, LPNS :=‖j∈S LPNj and
S− ⊆ S. The language L(LPNS) is modularly diagnosable w.r.t (Σoj:j ∈ S) and (Tf j:j ∈ S−), if
∀z ∈ S−, ∀t f ∈ Tf z there do not exist two sequences of transitions σ1, σ2 ∈ T∗S , which satisfy the
following conditions:

1. LS(σ1) = LS(σ2);

125

CHAPTER 4. MODULAR DIAGNOSABILITY ANALYSIS USING LPN

2. ∀t f ∈ Tf z, t f /∈ σ1 and ∃t f ∈ Tf z such that t f ∈ σ2;

3. Assuming that σ2 = σ2,1t f σ2,2, where σ2,1, σ2,2 ∈ T∗S . |P{TS,Tz}(σ2,2)| is infinite.

In other terms, the language L(LPNS) is modularly diagnosable w.r.t (Σoj:j ∈ S) and
(Tf j:j ∈ S−) if there do not exist two sequences with the same observation on ΣoS, s.t.
one does not contain any fault transition in Tf z (∀z ∈ S−); the other one contains a fault
transition in Tf z and after the occurrence of the fault transition, the faulty sequence can be
arbitrarily long w.r.t. the projection on Tz. If there does not exist such pair of sequences, it
implies that the fault transition can be distinguished w.r.t. Σoz, while the transitions in Tz

occur continuously after the fault transition.

It is worth noticing that this definition is not equivalent to Definition 33 (page 112):

1. According to the assumption of liveness in [Con+06] and there is no unobservable
cycle, each module (or composed module) continues generate observable events
after firing the fault of this module. Therefore, in Definition 33, for the post language
t after firing the fault, |P{ΣS,Σoz}(t)| ≥ n ⇒ D(vt) = 1, i.e., in a finite number of
observable events in Σoz, it can be deduced that the fault has occurred.

2. In this thesis, the assumption of liveness in [Con+06] is removed and we assume
that there can be cycles of unobservable transitions. Therefore, in Definition 37,
for the fault sequence σ2 = σ2,1t f σ2,2, where σ2,1, σ2,2 ∈ T∗S , |P{TS,Tz}(σ2,2)| can be
infinite, instead of |P{TS,Toz}(σ2,2)|. The Definition 37 is equivalent to Definition 33, if
we replace |P{TS,Tz}(σ2,2)| by |P{TS,Toz}(σ2,2)|.

In the following sections, the reduction rules for modular diagnosability is intro-
duced at first. The local diagnosability analysis and modular diagnosability analysis are
addressed afterwards.

4.2.2 Reduction rules for modular diagnosability

In this section, some reduction rules will be proposed for modular diagnosability analysis.

Similar to the monolithic diagnosability analysis, the given LPN model can be simpli-
fied before modular diagnosability analysis by using some reduction rules. The aim is to
reduce the state space for modular diagnosability analysis.

The reduction rules in Section 3.2.1 can be applied to simplify the given LPN model
for modular diagnosability analysis. However, we need to restrict the scope of use of these
rules.

Constraint 1: The reduction rules in Section 3.2.1 can only be applied to the uncommon
transitions.

126

4.2. MODULAR DIAGNOSABILITY ANALYSIS USING LPN MODEL

Actually, the communication between modules is made via common transitions. If the
common transitions are reduced, the information of the communication is lost and the
modular diagnosability property may not be preserved.

Theorem 8 By using reduction rules (1)-(7) in Section 3.2.1 under Constraint 1, the modular
diagnosability of the reduced LPN model keeps consistent with the modular diagnosability of the
initial LPN model.

Proof : The proof is similar to the proof of Theorem 3 (page 60) and Theorem 4 (page 64).
The Definition 37 of modular diagnosability is used instead of the definition of monolithic
diagnosability.

Given the global LPN model LPN = (N, M0, Σ,L) (N = (P, T, pre, post)). A set of
modules LPN1, · · · , LPNm (H = {1, · · · , m}) is a sound decomposition. For S ⊆ H and
z ∈ S, if LPNS is not modularly diagnosable w.r.t. (Σoj : j ∈ S) and Tf z (z ∈ S), assuming
that there exist two sequences of transitions σ1 and σ2 such that the three conditions
in Definition 37 are satisfied. We denoted σ1 and σ2 as a couple of troubled sequences for
modular diagnosability.

According to Constraint 1, the common transitions cannot be reduced. Considering
a firing sequence of transitions σ ∈ T∗ such that σ = σitcσj where σi, σj ∈ T∗ and tc

is a common transition. If the reduction rules (1)-(7) can be applied on σ, the reduced
sequence of σ is σ′ = σ′i tcσ′j and σ̂ is a firing sequence of the reduced LPN model, according
to Proposition 1.

Considering the pair of troubled sequences σ1 and σ2. If the rules (1)-(5) are applied,
the reduced sequences σ′1 and σ′2 are still a pair of troubled sequences for modular diag-
nosability according to the proof of Theorem 3. If the rules (6) and (7) are applied, we need
to consider the two situations in the proof of Theorem 4 and the reduced sequences σ′′1
and σ′′2 are still a couple of troubled sequences for modular diagnosability.

Otherwise, if LPNS is modularly diagnosable w.r.t. (Σoj : j ∈ S) and Tf z (z ∈ S), there
does not exist a pair of troubled sequences for modular diagnosability. After using the
reduction rules (1)-(7), there is still no pair of troubled sequences. The reduced LPN model
is modularly diagnosable.

Therefore, By using reduction rules (1)-(7) in Section 3.2.1 under Constraint 1, the
modular diagnosability of the reduced LPN model keeps consistent with the modular
diagnosability of the initial LPN model. �

According to Theorem 8, we can apply reduction rules to reduce the initial LPN model
before decomposing the model and analyzing the modular diagnosability. The Theorem 8
guarantees that after using these rules, the modular diagnosability property is preserved.

127

CHAPTER 4. MODULAR DIAGNOSABILITY ANALYSIS USING LPN

Example 50 Let us consider again the LPN model in Figure 4.9. By using the reduction rules
(1), the unobservable transitions ε1,5 and ε2,5 are suppressed. By using the reduction rule (6), the
transitions t1,3, t1,6, t2,3 and t2,4 are suppressed. The reduced model LPN′ is shown in Figure 4.10.
LPN′ can be decomposed as LPN′1 and LPN′2, which is a sound decomposition. To analyze the
modular diagnosability of the LPN model in Figure 4.9, it is sufficient to analyze the modular
diagnosability of the reduced LPN model LPN′.

Figure 4.10 – The reduced LPN model LPN′ (LPN) and its sound decomposition: LPN′1
(LPN1) and LPN′2 (LPN2)

Without abuse of notations, in the following section, when we analyze the reduced
LPN model, we denote the reduced LPN model as LPN and its modules as LPN1 and
LPN2.

4.2.3 Local diagnosability analysis

In this section, we propose an approach based on the Verifier Net (VN) approach.

To analyze the modular diagnosability of a given LPN model, the first step is to get the
reduced LPN model by using the reduction rules. Once the reduced LPN is obtained, the
LPN is decomposed as a sound decomposition. Afterwards, it is necessary to analyze the
local diagnosability of each module. According to Proposition 10, if each module is locally
diagnosable, the whole system is considered modularly diagnosable.

The local diagnosability of an LPN module is given as follows:

Definition 38 (Local diagnosability) Given the LPN model LPN. Let H := {1, 2, · · · , m} and
LPN1, · · · , LPNm a sound decomposition of LPN. For z ∈ H, LPNz = (Nz, M0z, Σz,Lz), where

128

4.2. MODULAR DIAGNOSABILITY ANALYSIS USING LPN MODEL

Nz = (Pz, Tz, prez, postz). LPNz is locally diagnosable w.r.t. the fault class Tf z if there are not
two sequences σz1, σz2 ∈ T∗z , which satisfy the following conditions:

1. Lz(σz1) = Lz(σz2);

2. ∀t f ∈ Tf z, t f /∈ σz1;

3. ∃t f ∈ Tf z such that t f ∈ σz2 and σz2 can be arbitrarily long after the occurrence of t f .

It is worth noticing that the definition of Local Diagnosability w.r.t. a module LPNz is
similar to Definition 8 by considering the monolithic LPN model as an LPN module, except
that there can be unobservable cycles in Definition 38. If the LPN model contains only the
unobservable cycle that is added to deal with the deadlock, most techniques for monolithic
diagnosability presented in Chapter 3 are valid for local diagnosability. However, if the
system contains initially unobservable cycles, the diagnoser-based techniques [Cab+14;
Liu+14; Sam+95] cannot be applied for local diagnosaiblity analysis. In this case, the
verifier-based approach [Cab+12; Jia+01; YL02] can be applied.

The VN of the considered LPN module is built, but a modified reachability graph
(MRG) is built for the local diagnosability analysis instead of the reachability graph (RG)
(it is assumed that the LPN model is bounded). Moreover, the MRG will be used for
modular diagnosability analysis in the following section.

Before giving the algorithm of building the MRG, let us give some basic notions:

For an LPN module, LPNz = (Nz, M0z, Σz,Lz) where Nz = (Pz, Tz, prez, postz) and
Tz = Toz∪̇Tregz∪̇Tf z. The T′ − induced sub− LPN of LPNz is denoted by LPN′z =
(N′z, M′0z, Σ′z,L′z), where N′z = (P′z, T′z, pre′z, post′z) and T′z = Tz\Tf z = Toz∪̇Tregz. We denote
T′z = T′oz∪̇T′regz.

The VN of a local LPN module LPNz is denoted as L̃PNz = (Ñz, M̃oz, Σ̃oz, L̃z), where
Ñz = (P̃z, T̃z, P̃rez, P̃ostz). T̃z = T̃oz∪̇T̃′regz∪̇T̃regz∪̇T̃f z = T̃oz∪̇(T′regz×{λ})∪̇({λ}×Tregz)∪̇({λ}×
Tf z) and T̃oz = {(t′, t) |t′ ∈ T′oz, t ∈ Toz,L′z(t′) = Lz(t)}. The incidence matrix is C̃z.

The state in MRG is the marking of VN associated with a fault tag, which is called an
MFM (Modified Fault Marking) and is defined as follows:

Definition 39 An MFM upon a sequence σ̃ ∈ T̃∗z is

MFMz =

[
Mark(MFMz)

Tag(MFMz)

]

Mark(MFMz) is a marking of L̃PNz and Tag(MFMz) ∈ {N, F}, where M̃0z [σ̃ >

Mark(MFMz) and Tag(MFMz) = F if ∃t f ∈ T̃f z, t f ∈ σ̃; otherwise, Tag(MFMz) = N.

129

CHAPTER 4. MODULAR DIAGNOSABILITY ANALYSIS USING LPN

Given two MFMs MFM1 and MFM2, it is denoted that MFM1 [σ̃ > MFM2 iff
Mark(MFM1) [σ̃ > Mark(MFM2); and Tag(MFM1) = Tag(MFM2) if ∀j ∈ N , σ̃j /∈ T̃f z,
otherwise, Tag(MFM2) = F.

From the definition of MFM, an MFM consists of a marking of the VN and a binary tag
indicating the occurrence of fault. For a given VN, the number of MFMs is at most twice
of the number of nodes in the RG of the VN.

Definition 40 The MRGz w.r.t. the VN L̃PNz is a tuple (XMRGz, ΣMRGz, δMRGz, MFM0z),
where

– XMRGz is the set of MFMs;

– ΣMRGz is a finite set of events. It is worth noticing that the event in ΣMRGz is actually a
transition in T̃z;

– δMRGz : XMRGz × ΣMRGz → XMRGz is the transition function: δMRGz(MFMz1, t̃) =

{MFMz2|MFMz1 [t̃ > MFMz2};

– MFM0z = [M̃τ
0z, N]τ is the initial node.

Hereafter, without abuse of notations, the “transition” of an automaton structure (e.g.
MRG) is denoted as “transition∗”. For instance, the transition∗ in MRG is labeled by the
transition of VN.

The algorithm of building MRGz w.r.t. the VN L̃PNz is as follows:

Definition 41 A cycle in MRG of the VN L̃PNz is called un F−confused cycle, if the following
conditions are satisfied:

1. The tags of all the nodes in this cycle are F;

2. At least one transition of this cycle belong to T̃oz∪̇T̃regz∪̇T̃f z.

The sufficient and necessary condition of local diagnosability is given as follows

Theorem 9 An LPN module LPNz is locally diagnosable, iff in the MRG of the VN L̃PNz, there
does not exist any F−confused cycle.

Proof : The proof of this theorem is similar to the proof of Theorem 2. Since we assume
that the LPN model is bounded, the cycle in MRG is associated with a firable repetitive
sequence in the VN and we do not need to check if it is associated with a repetitive
sequence. Verifying the existence of cycles in the RG after firing a fault transition is

130

4.2. MODULAR DIAGNOSABILITY ANALYSIS USING LPN MODEL

Algorithm 13 Algorithm for building MRGz

1. Step 1: Label the root node q0 with initial node MFM0z and mark it NEW.

2. Step 2: While a node marked NEW exists do

a) Step 2.1: Select a node q marked NEW and let MFMz be its label;

b) Step 2.2: If (Tag(MFMz) = N) ∧ (∀t f ∈ T̃f z,
P(Mark(MFMz), t f , t f , FAULT) = ∅) (the P function is presented in Al-
gorithm 8 (page 88))
Continue;
Else

i. Step 2.2.1: For all t̃ ∈ T̃z enabled at Mark(MFMz), i.e., such that
Mark(MFMz) ≥ P̃rez(·, t):
A. Step 2.2.1.1: Let MFMz[t̃ > MFM′z, where Mark(MFM′z) =

Mark(MFMz) + C̃z(·, t̃) and Tag(MFM′z) = Tag(MFMz) if t̃ /∈ T̃f z,
otherwise, Tag(MFM2) = F;

B. Step 2.2.1.2: Add a new node q′ and label it MFM′z;

C. Step 2.2.1.3: add an arc labeled t̃ (or (t̃, L̃z(t̃))) from q to q′;
D. Step 2.2.1.4: If there already exists a node with label MFM′z, then fusing

this node with q′; else mark it NEW;

c) Step 2.3: Unmark node q.

equivalent to verifying the existence of cycles in the MRG, whose nodes are all with a fault
tag F.

Since it is assumed that there can be unobservable cycles, the Condition 2 of Defini-
tion 41 is added. If there exist a cycle whose nodes are all with a fault tag F but all the
transitions of this cycle belong to T̃′regz, i.e., all the transitions of this cycle belong to the
T′ − induced sub− LPN LPN′z, the existence of such a cycle does not violate the modular
diagnosability property in Definition 38. LPN′z does not contain any fault transition. The
existence of such a cycle does not satisfy the condition 2 of Definition 38, i.e., it does not
imply that after the occurrence of a fault transition, the sequence can be arbitrarily long.�

The Algorithm 13 is based on the algorithm of construction of RG. It is worth noticing
that the condition in Step 2.2 is a stop condition to stop the investigation of a branch.
For a selected node labeled MFMj with the fault tag Tag(MFMj) = N and ∀t f ∈ T̃f z,
P(Mark(MFMj), t f , t f , FAULT) = ∅) implies that there is no path to fire any fault
transition at Mark(MFMj) and all the following nodes are normal nodes. According
to Theorem 9, checking the local diagnosability consists of verifying the existence of the
F−confused cycle whose nodes are with a tag F. Therefore, there is no need to continue
the construction of the following normal nodes.

131

CHAPTER 4. MODULAR DIAGNOSABILITY ANALYSIS USING LPN

To verify the local diagnosability of an LPN module, we build at first its VN. After-
wards, we build its MRG instead of RG. The reasons are:

1. A cycle in RG of the VN can be reached at the same time by firing a sequence with a
fault transitions and by firing a sequence without any fault transition. To verify the
modular diagnosability, we need to focus on the sequence with a fault transition and
the cycle that is reached by firing this sequence, i.e., the F−confused cycle in MRG.

2. Each node in MRG is associated with a fault tag. We use this tag as an indicator for
modular diagnosability.

p1,1

p1,2 p1,3

p1,5

f1,1, ε ε1,2, ε

t1,4, b tc1, c tc2, d

Figure 4.11 – The module LPN1 of the LPN model in Figure 4.10

p′1,1

p′1,2 p′1,3

p′1,5

ε′1,2, ε

t′1,4, b t′c1, c t′c2, d

Figure 4.12 – The T′ − induced sub− LPN of LPN1

132

4.2. MODULAR DIAGNOSABILITY ANALYSIS USING LPN MODEL

p′1,1 p1,1

p′1,2 p1,2 p′1,3 p1,3

p′1,5 p1,5

(λ, f1,1), ε (ε′1,2, λ), ε (λ, ε1,2), ε

(t′1,4, t1,4), b (t′c1, tc1), c (t′c2, tc2), d

Figure 4.13 – The VN L̃PN1 of LPN1

Table 4.2 – The MFMs in Figure 4.14

j MFMj j MFMj

0 [2 0 0 0 |2 0 0 0, N]τ 10 [1 0 1 0 |0 2 0 0, F]τ

1 [2 0 0 0 |1 1 0 0, F]τ 11 [1 0 1 0 |0 1 1 0, F]τ

2 [2 0 0 0 |1 0 1 0, N]τ 12 [0 0 2 0 |1 1 0 0, F]τ

3 [1 0 1 0 |2 0 0 0, N]τ 13 [1 0 1 0 |0 0 2 0, N]τ

4 [2 0 0 0 |0 2 0 0, F]τ 14 [0 0 2 0 |1 0 1 0, N]τ

5 [2 0 0 0 |0 1 1 0, F]τ 15 [0 0 2 0 |0 2 0 0, F]τ

6 [1 0 1 0 |1 1 0 0, F]τ 16 [1 0 0 1 |0 1 0 1, F]τ

7 [2 0 0 0 |0 0 2 0, N]τ 17 [0 0 2 0 |0 1 1 0, F]τ

8 [1 0 1 0 |1 1 0 0, N]τ 18 [0 0 2 0 |0 0 2 0, N]τ

9 [0 0 2 0 |2 0 0 0, N]τ 19 [0 0 1 1 |0 1 0 1, F]τ

Example 51 Let us consider the LPN model in Figure 4.10. Since only LPN1 contains a fault,
it needs only to analyze the local diagnosability of LPN1 that is shown in Figure 4.11. The
T′− induced sub− LPN of LPN1 is shown in Figure 4.12. The VN L̃PN1 is shown in Figure 4.13.
Afterwards, we build the MRG1 of L̃PN1 (shown in Figure 4.14) and the MFMs are shown
in Table 4.2. LPN1 is not locally diagnosable, because there exist two F−confused cycles shown
with the shadow zone.

The investigation of the branches after MFM7, MFM13 and MFM18 are stopped, because the
tag of these MFM is N and after firing two times the transition (λ, ε1,2), ε, the fault transition
(λ, f1,1), ε is never enabled. There is no need to continue the construction of these branches.

133

CHAPTER 4. MODULAR DIAGNOSABILITY ANALYSIS USING LPN

MFM0

MFM2MFM1 MFM3

MFM5MFM4 MFM6

MFM7

MFM8 MFM9

MFM10 MFM11 MFM12

MFM13

MFM14

MFM15 MFM16 MFM17 MFM18

MFM19

(λ
, f 1,1

), ε

(λ
,ε1,2),ε

(ε ′
1,2 , λ), ε

(λ
, f 1,1

), ε

(λ
,ε1,2),ε (ε ′

1,2 , λ), ε

(λ
, f 1,1

), ε

(λ
, ε 1,2

), ε

(ε ′
1,2 , λ), ε

(λ
, f 1,1

), ε

(λ
,ε1,2),ε

(ε ′
1,2 , λ), ε

(ε ′1,2 ,λ
),ε

(ε ′1,2 ,λ
),ε

(λ
, f 1,1

), ε

(ε ′1,2 ,λ
),ε

(λ, f 1,1)
, ε

(λ
, ε 1,2

), ε
(ε ′1,2 ,λ

),ε

(λ, f 1,1)
, ε

(λ
, ε 1,2

), ε

(ε ′1,2 ,λ
),ε (ε ′

1,2 , λ), ε

(t
′ c1

, t
c1
),

c

(λ, f 1,1)
, ε

(λ
,ε1,2),ε

(λ
, f 1,1

), ε

(λ
,ε1,2),ε

(ε ′
1,2 , λ), ε

(t
′ c2

, t
c2
),

d

(t ′c1 , tc1), c(t
′ c2

, t
c2
),

d

Figure 4.14 – MRG1 of L̃PN1

The MRG contains 20 nodes but if we build the RG of L̃PN1, it contains 25 nodes.
Theoretically, the number of nodes in MRG is twice the number of nodes in RG. However,
the MRG can have fewer nodes than RG for the VN of some LPN model (as it is shown
in Example 51).

In terms of the complexity, it can be proved that the complexity of building MRG is
equal to that of build RG but the proof is omitted.

4.2.4 Incremental modular diagnosability analysis

This section introduces a new approach for modular diagnosability analysis using LPN.
This approach is based on an incremental algorithm. The objectives are to develop an
approach with a low computational complexity and to extend the proposition in [Con+06].

134

4.2. MODULAR DIAGNOSABILITY ANALYSIS USING LPN MODEL

Indeed, by removing the assumption of liveness in [Con+06], the scope of use for modular
diagnosability analysis is less limited.

After analyzing the local diagnosability of each module, if all modules are locally
diagnosable, the system is modularly diagnosable. Otherwise, we concentrate on the
modules that are not locally diagnosable to find out if the modular diagnosability property
is verified or not, when these modules are coupled with the rest of the system.

Assuming that the module LPNz (z ∈ H and H = {1, 2, · · · , m}) is not locally diagnos-
able i.e., there exist F−confused cycles in the MRG of the VN L̃PNz. Afterwards, we need
to check these F−confused cycle to determine if they still survive while coupling with the
other modules.

Similar to the approach in [MP13], by using LPN model, we can build the VN of
LPNz||LPNSc (Sc ⊆ H\{z}), then build its RG or MRG to check the modular diagnosabil-
ity.

However, in this section, we will not build the VN of LPNz||LPNSc and its RG, but we
will take advantage of the already constructed MRG of L̃PNz.

For the module LPNz, its VN is L̃PNz and the MRG is MRGz. Assuming that LPNz

is not locally diagnosable, i.e., there exist an F−confused cycle. We mark all the nodes
that belong to the F−confused cycles in order to build CoAc(MRGz) (we only need to
focus on the F−confused cycles, so it is reasonable to keep only the states from which
the F−confused cycles can be reached. We will illustrate it afterwards). For the com-
posed module LPNSc (Sc ⊆ H\{z}), we build the RG of LPNSc that is denoted as RGSc .
Afterwards, we build the parallel composition RGz||Sc = CoAc(MRGz)||RGSc . If for all
Sc ⊆ H\{z}, the F−confused cycle survives, the system is not modularly diagnosable.
Otherwise, the composed module built by LPNz||LPNSc is modularly diagnosable. Before
proposing the algorithm of our approach, we will prove the correctness of our approach
and give the sufficient and necessary condition of modular diagnosability.

Remark: The parallel composition RGz||Sc = CoAc(MRGz)||RGSc is made on the set of
common observable labels of the transitions in L̃PNz and LPNS. For example, (t′c1, tc1), c
is a label of the transition∗ in CoAc(MRGz) and tc1, c is a label of a transition∗ in RGSc .
They should be synchronized, because the label of the two transitions is the same. For
the simplicity of notations, we use the label of transition∗ in CoAc(MRGz) as the label of
synchronized transition∗ in RGz||Sc . T̃cz = {t̃ ∈ T̃z|∃t ∈ TSc , L̃z(t̃) = LSc(t)} is defined as
the set of common transitions.

Let us consider the module LPNz (z ∈ H and H = {1, 2, · · · , m}). Assuming that LPNz

is not locally diagnosable, i.e., there exist F−confused cycles in the MRGz of the VN L̃PNz.

Definition 42 FMz−confused cycle in RGz||Sc

135

CHAPTER 4. MODULAR DIAGNOSABILITY ANALYSIS USING LPN

Let us denote RGz||Sc = (Xz||Sc , Σz||Sc , δz||Sc , xz||Sc). For xz||Sc ∈ Xz||Sc , xz||Sc = (MFMz, xSc),
where MFMz is a state in MRGz and xSc = (xi1 , · · · , xiq) (i1, · · · , iq ∈ S and q is the cardinality
of S) is a state in RGSc .

The cycle in RGz||Sc

cl := (xk
z||Sc

, tk, xk+1
z||Sc

, · · · , xh
z||Sc

, th, xk
z||Sc

)(h ≥ k > 0)

where for all j ∈ {1, · · · , h}, xk+j
z||Sc

= δz||Sc(xk+j−1
z||Sc

, tj) and xk
z||Sc

= δz||Sc(xh
z||Sc

, th), is called an
FMz−confused cycle, if the following conditions are satisfied:

1. For each state xr
z||Sc

(r ∈ {k, k + 1, · · · , h}) in the cycle, Tag(MFMr
z) = F;

2. ∃tp ∈ T̃oz ∪ T̃regz ∪ T̃f z, where p ∈ {k, k + 1, · · · , h};

The FMz−confused cycle (the symbol “Mz" stands for “Module LPNz") requires that
each state contains the tag F w.r.t. Tf z and at least one transition∗ of the cycle labeled by a
transition in T̃oz ∪ T̃regz ∪ T̃f z.

Theorem 10 Let H := {1, 2, · · · , m}, S ⊆ H, LPNS :=‖j∈S Gj. The language L(LPNS) is
modularly diagnosable w.r.t. (Σoj: j ∈ S) and Tf z (z ∈ S), if and only if ∀Sc ⊆ S\{z}, there is no
FMz−confused cycle in RGz||Sc = CoAc(MRGz)||RGSc .

Proof : (Necessity) We prove by contradiction. Assuming that there exists an FMz−confused
cycle in RGz||Sc . Denote xz||Sc = (MFMz, xSc) the state in the FMz−confused cycle, where
Tag(MFMz) = F. It can be deduced that there exist two firing sequences of transitions in
LPNS σ1 and σ2, such that:

1. LS(σ1) = LS(σ2);

2. ∀t f ∈ Tf z, t f /∈ σ1; ∃t f ∈ Tf z such that t f ∈ σ2 and σ2 can be arbitrarily long after the
occurrence of fault.

Moreover, in the FMz−confused cycle, at least one transition belongs to T̃oz ∪ T̃regz ∪
T̃f z. Denote σ1z = P{TS,Tz}(σ1) and σ2z = P{TS,Tz}(σ2). σ1z and σ2z satisfy the following
conditions:

1. Condition 1: Lz(σ1z) = Lz(σ2z);

2. Condition 2: σ1z does not contain any fault in Tf z; σ2z contains a fault transition in
Tf z and can be arbitrarily long after the fault transition.

136

4.2. MODULAR DIAGNOSABILITY ANALYSIS USING LPN MODEL

Because σ1z and σ2z cannot be distinguished in a finite number of transitions in Tz,
neither σ1 nor σ2 can be distinguished in a finite number of transitions in Tz. Therefore,
the definition of modular diagnosability (in Definition 37) is violated and L(LPNS) is not
modularly diagnosable.

Remark: It is possible that a cycle exists in RGz||Sc , and each state in this cycle denoted
as xz||Sc = (MFMz, xSc), where Tag(MFMz) = F. For each transition∗ t̃ in this cycle,
t̃ /∈ T̃oz ∪ T̃regz ∪ T̃f z but there exist t̃′ in this cycle s.t. t̃′ ∈ T̃′regz. The existence of this
cycle does not violate the definition of modular diagnosability in Definition 37. This cycle
implies that there exist two sequences s.t. the Condition 1 is satisfied but the Condition 2
is not satisfied. It can not be deduced that the faulty sequence can be arbitrarily long after
the occurrence of fault transition, since the original transition of t̃′ belongs to T′reg and the
T′ − induced sub− LPN LPN′z does not contain any fault transition. The two sequences
may be distinguished after the occurrence of transitions in Tz following the sequence that
contains a fault.

(Sufficiency) Assuming that there is no FMz−confused cycle in RGz||Sc . We have three
cases to consider:

1. there is no cycle in RGz||Sc ;

2. there is a cycle in RGz||Sc , but there exists a state in this cycle xz||Sc = (MFMz, xSc),
where Tag(MFMz) = N;

3. there is a cycle in RGz||Sc , and each state in this cycle denoted as xz||Sc = (MFMz, xSc),
where Tag(MFMz) = F. However, for each transition∗ labeled t in this cycle, t /∈
T̃oz ∪ T̃regz ∪ T̃f z;

Case (1): Each sequence that contains a fault can be distinguished in a finite number of
transitions in Tz. Therefore, L(LPNS) is modularly diagnosable.

Case (2): If there exists a state in the cycle that the coordinate Tag(MFMz) of the state
xz||Sc is equal to N, it can be deduced that the coordinate Tag(MFMz) of all the other states
in this cycle is also N. This cycle indicates two sequences that do not contain any fault
transition. The modular diagnosability is not violated.

Case (3): There exists a cycle and the coordinate Tag(MFMz) of all the states in this cycle
is F. However, there is no label of transition∗ in this cycle that belongs to T̃oz ∪ T̃regz ∪ T̃f z.
The faulty sequences can alway be distinguished after finite number of labels following
the fault transition in Tf z. It is worth noticing that if there exist a transition t̃′ ∈ T̃′regz in
this cycle, it does not violate the modular diagnosability because the original transition
of t̃′ belongs to T′reg and the T′ − induced sub − LPN LPN′z does not contain any fault
transition.. According to Definition 33, L(LPNS) is modularly diagnosable. �

137

CHAPTER 4. MODULAR DIAGNOSABILITY ANALYSIS USING LPN

The Theorem 10 proposes a sufficient and necessary condition of the modular diagnos-
abiliy of the system. One can check the modular diagnosability of a system by verifying
the existence of FMz−confused cycle w.r.t. Tf z (z ∈ S).

Remark: If there exists a cycle in MRGz but not in CoAc(MRGz), it can be deduced that
the tag of all the MFMs in this cycle is N. There is no FMz−confused cycle corresponding
to this cycle according to the Condition (1) of Definition 42 even if we build MRGz||RGSc .
Therefore, we focus only on CoAc(MRGz) and we build RGz||Sc = CoAc(MRGz)||RGSc to
check the modular diagnosability in order to reduce combinatorial explosion problem.

Proposition 12 Let H := {1, 2, · · · , m}, S ⊂ H, LPNS :=‖z∈S LPNz. If the language
L(LPNS) is modularly diagnosable w.r.t. (Σoj: j ∈ S) and Tf z (z ∈ S), then the language
L(LPNH) is modularly diagnosable w.r.t. (Σoj: j ∈ H) and Tf z.

Proof : We prove the contrapositive: if language L(GH) is not modularly diagnosable
w.r.t. (Σoj: j ∈ H) and Tf z (z ∈ I), then the language L(LPNS) is not modularly diagnosable
w.r.t. (Σoj: j ∈ S) and Tf z (z ∈ S).

If language L(LPNH) is not modularly diagnosable w.r.t. (Σoj: j ∈ H) and Tf z (z ∈ S),
there exist an FMz−confused cycle in RGz||Hc = CoAc(MRGz)||RGHc , where Hc = H\{z}.
It can be deduced that there exist an FMz−confused cycle in RGz||Sc = CoAc(MRGz)||RGSc ,
where Sc = S\{z}, because RGz||Hc can be obtained by (RGz||Sc)||j∈Hc\Sc RGj. �

According to Proposition 12, in order to check the modular diagnosability GH (H :=
{1, 2, · · · , m}) w.r.t. (Σoj: j ∈ H) and Tf z (z ∈ H), it is not necessary to build directly the par-
allel composition of CoAc(MRGz) with all the RGs of other modules in H\{z}. If there ex-
ists S ⊂ H and z ∈ S s.t. there is no FMz−confused cycle in RGz||Sc = CoAc(MRGz)||RGSc

(Sc = S\{z}), i.e., L(LPNS) is modularly diagnosable, then it can be deduced that
L(LPNH) is modularly diagnosable.

Based on Theorem 10 and Proposition 12, we develop Algorithm 14 for modular
diagnosability analysis as follows:

Remark: While building RGSc (Sc ⊆ H\{z}), one can build directly the RG of LPNSc

or build RGSc =‖j∈Sc RGj as it is presented in Step 3.2.1. We choose the latter because if
RGz||S′c = CoAc(MRGz)||RGS′c (S′c ⊂ Sc) is already built, we can obtain RGz||Sc by building
RGz||Sc = (RGz||S′c)||RGSc\S′c , where RGSc\S′c =‖j∈Sc\S′c RGj. It implies that the proposed
algorithm is incremental.

Remark: If there are several fault classes in module LPNz, it needs to build one VN and
one MRG for each fault class. Then, we analyze the modular diagnosability by using the
MRGs w.r.t. different fault classes.

138

4.2. MODULAR DIAGNOSABILITY ANALYSIS USING LPN MODEL

Algorithm 14 Modular diagnosability algorithm

1. Step 1: Initialize the modular diagnosability verdict vector −→v := {0}|H|, where
H := {1, 2, · · · , m} and component vz of −→v is the verdict w.r.t. the fault in module
LPNz (Tf z);

2. Step 2: For H := {1, 2, · · · , m}, analyze the local diagnosability of each module LPNz
(z ∈ H) by using Algorithm 13 and if LPNz is locally diagnosable, set vz as 1;

3. Step 3: For all z ∈ H such that LPNz is not locally diagnosable;

– Step 3.1: Mark all the states that belongs to the F−confused cycles of the MRGz
and build CoAc(MRGz);

– Step 3.2: For all Sc ⊆ H\{z}, s.t. LPNS has shared transitions with LPNz:

i. Step 3.2.1: Build RGz||Sc = CoAc(MRGz)||RGSc , where RGSc =‖j∈Sc RGj;

ii. Step 3.2.2: if there does not exist an FMz -confused cycle in RGz||Sc :
• Set vz as 1 and break; (if there does not exist an FMz -confused cycle in
RGz||Sc , there is no need to continue the iteration of the Step 3.2 and the
result is given that the system is modular diagnosable w.r.t. (Σoj: j ∈ H)
and Tf z.)

4. Step 4: For all z ∈ H:
• If vz = 0, assert “The system is not modular diagnosable w.r.t. (Σoj: j ∈ H) and
Tf z";
• else if vz = 1, assert “The system is modular diagnosable w.r.t. (Σoj: j ∈ H) and
Tf z";

Example 52 Let us consider again the LPN model in Figure 4.10. We only need to analyze the
local diagosability of the module LPN1, because the module LPN2 does not contain any fault
transition. The local diagnosability of LPN1 is analyzed for Example 51. We mark all the nodes
in F−confused cycle of MRG1 and build the CoAc(MRG1) that is shown in Figure 4.15. The
module LPN2 and its RG RG2 are shown in Figure 4.16 and Figure 4.17. The markings are shown
in Table 4.3. Afterwards, RG1||2 = CoAc(MRG1)||RG2 is built, which contains 38 nodes. We
will not show the graph of RG1||2 is not illustrated because of its large scale. In RG1||2, we can find
two cycles

{MFM11, M1}
c−→ {MFM16, M3}

d−→ {MFM11, M1}
c−→ · · ·

{MFM17, M1}
c−→ {MFM19, M3}

d−→ {MFM17, M1}
c−→ · · ·

The two cycles are both FM1-confused cycles according to Definition 42. Therefore, the system
LPNH (H = {1, 2}) is not modularly diagnosable.

139

CHAPTER 4. MODULAR DIAGNOSABILITY ANALYSIS USING LPN

MFM0

MFM2MFM1 MFM3

MFM5 MFM6 MFM8 MFM9

MFM11 MFM12 MFM14

MFM16 MFM17

MFM19

(λ
, f 1,1

), ε

(λ
,ε1,2),ε

(ε ′
1,2 , λ), ε

(λ
,ε1,2),ε

(ε ′
1,2 , λ), ε (λ

, f 1,1
), ε

(ε ′
1,2 , λ), ε (λ

, f 1,1
), ε

(λ
,ε1,2),ε

(ε ′
1,2 , λ), ε

(ε ′1,2 ,λ
),ε

(λ
, f 1,1

), ε

(ε ′1,2 ,λ
),ε

(λ, f 1,1)
, ε

(ε ′1,2 ,λ
),ε

(λ, f 1,1)
, ε

(λ
, ε 1,2

), ε
(ε ′

1,2 , λ), ε

(t ′c1 , tc1), c

(λ
,ε1,2),ε

(λ
, f 1,1

), ε

(ε ′
1,2 , λ), ε

(t
′ c2

, t
c2
),

d

(t ′c1 , tc1), c(t
′ c2

, t
c2
),

d

Figure 4.15 – CoAc(MRG1)

Table 4.3 – The markings in Figure 4.17

j Mj

0 [1 0 0 0]τ

1 [0 1 0 0]τ

2 [0 0 1 0]τ

3 [0 0 0 1]τ

4.2.5 ε−reduction technique to combat combinatorial explosion for modular
diagnosability analysis

To analyze the local diagnosability of each module, we use the VN and MRG in order to
reduce the computational complexity. Afterwards, we build the parallel composition of
MRGz and RGSc of a composed module. However, from Example 52, it can be noticed
that the combinatorial explosion problem exists (especially when we build the parallel
composition). Therefore, it is necessary to propose a method to reduce the combinatorial

140

4.2. MODULAR DIAGNOSABILITY ANALYSIS USING LPN MODEL

p2,1

p2,2 p2,3

p2,4

t2,1, g ε2,2, ε

t2,6, xtc1, c tc2, d

Figure 4.16 – LPN2

M0

M1 M2

M3

t 2,1
, g

ε2,2 , ε

t c
1,

c

t2,6 ,x

tc2 , d

Figure 4.17 – RG of LPN2 (RG2)

explosion.

While building RGz||Sc = CoAc(MRGz)||RGSc (Sc ⊆ H\{z}), the FMz−confused cycle
and the common transitions between LPNz and LPNSc (i.e., common event between
CoAc(MRGz) and RGSc) are the most important information, because we need to verify if
the F−confused cycle in MRGz survives or not after the parallel composition. Therefore,
we can use some techniques (such as ε−reduction) to reduce the sizes of MRGz and RGSc

before building the parallel composition in order to reduce the combinatorial explosion
problem.

Proposition 13 Given an LPN model LPN. LPN1, · · · , LPNm, H = {1, · · · , m} is a sound
decomposition of LPN. Assuming that the module LPNz, z ∈ H is not locally diagnosable w.r.t. a
fault transition t f ∈ Tf z. The MRG of the VN L̃PNz is MRGz. From the initial node of MRGz,
the sequence of transitions that leads to the F-confused cycle is σ̃ = t̃a,1 · · · t̃a,p(t̃b,1 · · · t̃b,q)

∗

(the sequence belong to (T̃z)∗). Assuming a composed module LPNSc (Sc ⊆ H\{z}) has shared
transitions with LPNz and there exists an FMz -confused cycle in RGz||Sc = CoAc(MRGz)||RGSc

corresponding to the F−confused cycle.

Let us consider all the transitions∗ labeled by uncommon transitions in TSc as ε−transitions.

141

CHAPTER 4. MODULAR DIAGNOSABILITY ANALYSIS USING LPN

RGS∗c is obtained from RGSc by using the ε−reduction to reduce the ε−transitions. We build
RGz||S∗c = CoAc(MRGz)||RGS∗c . From the initial node of RGz||S∗c , the sequence of transitions
that leads to the F-confused cycle is σ̃ = t̃a,1 · · · t̃a,p(t̃b,1 · · · t̃b,q)

∗.

Proof : If there exist an FMz -confused cycle in RGz||Sc = CoAc(MRGz)||RGSc , corre-
sponding to this cycle, there exist an FMz -confused cycle in RGz||S∗c = CoAc(MRGz)||RGS∗c .
While building the parallel composition RGz||S∗c = CoAc(MRGz)||RGS∗c , the synchroniza-
tion is on the shared transitions that are preserved in RGS∗c . Therefore, it is intuitive that
each FMz -confused cycle in RGz||S∗c corresponds to an FMz -confused cycle in RGz||Sc . Since
only the shared transitions are preserved in RGS∗c and all the ε−transitions are reduced,
the sequence that leads to the FMz -confused cycle in RGz||S∗c is equal to the sequence that
leads to the FMz -confused cycle in RGz||Sc . �

MFM0(Tag(MFM0) = N)

MFM1(Tag(MFM1) = F)

MFM2(Tag(MFM2) = F)

ε((λ
,f))

(t ′c1 ,tc1),l1(t
′ c2

,t
c2
),

l 2

(b) Case 1

MFM0(Tag(MFM0) = N)

MFM1(Tag(MFM1) = F)

MFM2(Tag(MFM2) = F)

ε((λ
,f))

εε

(b) Case 2

Figure 4.18 – Cases to avoid while applying ε−reduction

Similarly, the uncommon transitions∗ in CoAc(MRGz) can also be considered as
ε−transitions∗ and be reduced by ε−reduction technique. While using the ε−reduction
technique for modular diagnosability analysis, there are two cases that need to avoid.

Case 1 A node MFMj of the FMz -confused cycle in CoAc(MRGz) (Tag(MFMj) = F) is
suppressed because of the reduction of an ε−transition∗ from a node MFMk, where
Tag(MFMk) = N. In this case, we may find the FMz -confused cycle contains a node
MFMk with Tag(MFMk) = N, which violate the definition of FMz -confused cycle.
(As shown in Figure 4.18(a), if the ε transition∗ is reduced, the FMz -confused cycle
will contain the node MFM0 with Tag(MFM0) = N.)

Case 2 In the FMz -confused cycle of CoAc(MRGz), there does not exist any transition∗

labeled by a common transition. The FMz -confused cycle may disappear and the
verdict of modular diagnosability may not be correct. (As shown in Figure 4.18(b), if
all the ε transitions∗ are reduced, the FMz -confused cycle will disappear.)

142

4.2. MODULAR DIAGNOSABILITY ANALYSIS USING LPN MODEL

To ensure the correctness by using ε−reduction technique, two constraints are pro-
posed as follows:

Constraint 1 An ε−transition∗ in CoAc(MRGz) will not be reduced, if it is from a node
MFMk with Tag(MFMk) = N to a node MFMj with Tag(MFMj) = F.

Constraint 2 If in the FMz -confused cycle of CoAc(MRGz), there does not exist any
transition∗ labeled by a common transition, choose one transition∗ in the FMz -
confused cycle and do not consider this transition∗ as ε−transition∗.

Algorithm 15 Modular diagnosability algorithm using ε−reduction

1. Step 1: Initialize the modular diagnosability verdict vector −→v := {0}|H|, where
H := {1, 2, · · · , m} and component vz of −→v is the verdict w.r.t. the fault in module
LPNz (Tf z);

2. Step 2: For H := {1, 2, · · · , m}, analyze the local diagnosability of each module LPNz
(z ∈ H) by using Algorithm 13 and if LPNz is locally diagnosable, set vz as 1;

3. Step 3: For all z ∈ H such that LPNz is not locally diagnosable;

– Step 3.1: Mark all the states that belongs to the F−confused cycles of the MRGz
and build CoAc(MRGz);

– Step 3.2: Rename all the uncommon transitions in CoAc(MRGz) as
ε−transition∗;

– Step 3.3: Build CoAc(MRGz∗) which is obtained from CoAc(MRGz) by using
the ε−reduction to reduce the ε−transitions∗ w.r.t. the two constraints;

– Step 3.4: For all Sc ⊆ H\{z}, s.t. LPNS has shared transitions with LPNz:

i. Step 3.4.1: Build RGSc =‖j∈Sc RGj;
ii. Step 3.4.2: Rename all the uncommon transitions in RGSc as ε−transition∗;

iii. Step 3.4.3: Build RGS∗c which is obtained from RGSc by using the
ε−reduction to reduce the ε−transitions∗;

iv. Step 3.4.4: Build RGz∗||S∗c = CoAc(MRGz∗)||RGS∗c ;

v. Step 3.4.5: If there does not exist an FMz -confused cycle in RGz∗||S∗c :
• Set vz as 1 and break;

4. Step 4: For all z ∈ H:
• If vz = 0, assert “The system is not modular diagnosable w.r.t. (Σoj: j ∈ H) and
Tf z";
• else if vz = 1, assert “The system is modular diagnosable w.r.t. (Σoj: j ∈ H) and
Tf z";

Proposition 14 Assuming there exists an F-confused cycle in RGz||S∗c = CoAc(MRGz)||RGS∗c

(RGS∗c is obtained from RGSc by using the ε−reduction to reduce the ε−transitions∗). The sequence
of transitions that leads to the F-confused cycle is σ̃ = t̃a,1 · · · t̃a,p(t̃b,1 · · · t̃b,q)

∗ (the sequence

143

CHAPTER 4. MODULAR DIAGNOSABILITY ANALYSIS USING LPN

belong to (T̃z)∗). The transition in T̃z whose label is the same with that of a transition in TSc are
denoted as the common transition. T̃cz ⊂ T̃z denotes the set of common transitions.

Let us consider the transitions∗ in CoAc(MRGz) labeled by uncommon transitions in T̃z as
ε−transitions and CoAc(MRGz∗) is obtained from CoAc(MRGz) by using the ε−reduction to re-
duce the ε−transitions w.r.t. the two constraints above. We build RGz∗||S∗c = CoAc(MRGz∗)||RGS∗c .
From the initial node of RGz∗||S∗c , the sequence of transitions that leads to the F-confused cycle is
σ̃′ = P{T̃z,T̃cz∪T̃α}(σ̃) (where if there exists an F−confused cycle that does not contain any common
transitions T̃α contains the transition that is not considered as ε−transitions∗ in the cycle as it
was presented in constraint 2; otherwise, T̃α = ∅).

Proof : The proof is similar to the proof of Proposition 13. By considering all the
transitions∗ in CoAc(MRGz) labeled by uncommon transitions in T̃z as ε−transitions, each
FMz -confused cycle in RGz∗||S∗c = CoAc(MRGz∗)||RGS∗c corresponds to an FMz -confused
cycle in RGz||S∗c = CoAc(MRGz)||RGS∗c . Since only the shared transitions are preserved
in CoAc(MRGz∗) and all the ε−transitions are reduced,the sequence that leads to the
FMz -confused cycle in RGz∗||S∗c is σ̃′ = P{T̃z,T̃cz∪T̃α}(σ̃). �

MFM0

MFM2MFM1 MFM3

MFM5 MFM6 MFM8 MFM9

MFM11 MFM12 MFM14

MFM16 MFM17

MFM19

ε ε
ε

ε
ε ε ε ε

ε

ε
ε

ε

ε

ε

ε

ε

ε

ε

(t ′c1 , tc1), c

ε

ε

ε

(t
′ c2

, t
c2
),

d

(t ′c1 , tc1), c(t
′ c2

, t
c2
),

d

(a) CoAc(MRG1) with ε−transitions

MFM0

MFM11

MFM16

ε

(t ′c1 , tc1), c(t
′ c2

, t
c2
),

d

(b) CoAc(MRG1∗) by using ε−reduction

Figure 4.19 – CoAc(MRG1) and CoAc(MRG1∗)

According to Proposition 13 and Proposition 14, while check modular diagnosability,
we can build RGz∗||S∗c instead of RGz||Sc . By using the ε−reduction techniques, all the

144

4.2. MODULAR DIAGNOSABILITY ANALYSIS USING LPN MODEL

M0

M1 M2

M3

ε ε

t c
1,

c

ε

tc2 , d

(a) RG2 with ε−transitions

M0

M3

tc1 ,ct c
2,

d

(b) RG2∗ by using ε−reduction

Figure 4.20 – RG2 and RG2∗

MFM0, M0

MFM11, M0

MFM16, M3

ε

(t ′c1 , tc1), c(t
′ c2

, t
c2
),

d

Figure 4.21 – RG1∗||2∗

uncommon transitions∗ are reduced in oder to deal with the combinatorial explosion
problem. The new algorithm is presented in Algorithm 15.

Example 53 Let us consider the CoAc(MRG1) shown in Figure 4.15 and RG2 shown in Fig-
ure 4.17. The labels of common transitions∗ in CoAc(MRG1) are {((t′c1, tc1), c), ((t′c2, tc2), d)}.
The labels of common transitions in RG2 are {(tc1, c), (tc2, d)}. The other transitions are con-
sidered as ε−transitions shown in Figure 4.19(a) and Figure 4.20(a). By using the ε−reduction
technique, the CoAc(MRG1∗) and RG2∗ are shown in Figure 4.19(b) and Figure 4.20(b). After-
wards, we build RG1∗||2∗ = CoAc(MRG1∗)||RG2∗ that is shown in Figure 4.21. There exists an
FM1-confused cycle shown in the shadow zone. Therefore, the system is not modular diagnosable.

From Example 53, By using the ε−reduction technique, the combinatorial explosion
problem is reduced. CoAc(MRG1) and RG2 are simplified before building the parallel com-
position. RG1∗||2∗ = CoAc(MRG1∗)||RG2∗ is built to verify the existence of FM1-confused
cycle in order to check the modular diagnosability.

145

CHAPTER 4. MODULAR DIAGNOSABILITY ANALYSIS USING LPN

4.2.6 Complexity analysis

In this section, we analyze at first the computational complexity of the approaches for
modular diagnosability analysis in the literature and then the computational complexity
of our approach.

Assuming an automaton system GH modeled by a collection of automaton modules
(H =: {1, · · · , m}, GH :=‖j∈H Gj). For the approach in [Con+06], the local diagnosability
of each module is analyzed by using the diagnoser approach. For each module z ∈
H that is not locally diagnosable w.r.t. its set of fault events Σ f z (i.e., there exists an
F−indeterminate cycle [Sam+95] in the local diagnoser Gdz), the parallel composition of
this diagnoser Gdz and the local diagnosers of other modules are built in order to verify
if the F−indeterminate cycle survives. Assuming that |Xz| is the maximal number of
states of one module and |Π f z| is the maximal number of fault classes in one module.

The complexity of constructing the local diagnoser is O(2|Xz|×2|Π f z |
). In the worst case of

this approach, the parallel composition of all the local diagnosers are built. Therefore, the

complexity of the approach in [Con+06] is O((2|Xz|×2|Π f z |
)m), i.e., O(2m|Xz|×2|Π f z |

). Thus,
the complexity is exponential.

In [MP13], the idea is similar to the approach in [Con+06], but the verifier approach
in [YL02] is applied. In the worst case, the verifier of the monolithic system is built. The
number of states of the monolithic model is |Xz|m, the number of the events is at most
|Σ| = | ∪z∈H Σz|, the number of fault classes of the monolithic system is |Π f H |. The
complexity of the approach in [MP13] is O(|Xz|2m × |Σ| × |Π f H |).

In [Sch13], the module models are simplified by using an abstraction-based technique
before analyzing the modular diagnosability. In the worst case, the complexity to analyze
an event-based modular diagnosability is linear in the number of states and second order
polynomial in the number of transition of monolithic model. Therefore, the complexity of
this approach is O(|Xz|m × (|Xz|m × |Σ|)2), i.e., O(|Xz|3m × |Σ|2).

Afterwards, let us analyze the complexity of our approach for modular diagnosability
analysis using LPN model. Given an LPN model. A set of modules LPN1, · · · , LPNm

(H = {1, · · · , m}) is a sound decomposition. To analyze the local diagnosability of an LPN
module, by building the VN and MRG, the complexity is equal to that of the VN approach
in [Cab+12], which is analyzed in Section 3.2.5. Assuming that the module LPNz contains
the maximum number of states in the RG, which is denoted as |Xz|. The complexity to
analyze the local diagnosability of module LPNz isO(|Pz| × |Tz|2 + |Xz|2|Tz|2), where |Pz|
is number of the places of LPNz, |Tz| is the number of the transitions of LPNz and |Xz| the
number of the nodes in the RG of LPNz. To analyze the modular diagnosability, in the
worst case, we need to build the parallel composition of the MRG MRGz with the RGs of
all elementary LPN modules. To build the parallel composition RGz||H′ (H′ = H\{z}), the
complexity is O(|Xz|m+1 × |T|), where |T| is the number of transitions of the monolithic

146

4.3. SYNTHESIS OF THE CONTRIBUTIONS (ON MODULAR DIAGNOSABILITY
ANALYSIS)

system (the complexity of using ε−reduction technique is linear on the number of the
transitions of the automaton and it can be neglected w.r.t. the complexity of building the
parallel composition). Overall, the complexity of our approach is O(|Pz| × |Tz|2 × |Π f H |+
|Xz|m+1 × |T| × |Π f H |), where |Π f H | is the number of fault classes in the monolithic
system. The complexity of our approach is polynomial. Regardless of the complexity
for the construction of VN, the complexity of our approach is less than that of the other
approaches for modular diagnosability analysis using LPN model.

4.3 Synthesis of the contributions (on modular diagnosability
analysis)

In Chapter 4, we introduce the architectures of decentralized diagnosis, modular diagnosis
and distributed diagnosis. The three architectures aim at dealing with the combinatorial
explosion problem, because they all avoid building the diagnoser of monolithic systems.
We present the way that we make the classification of the three architectures. The literature
review of these architectures is given.

Afterwards, we focus on the modular diagnosis architecture, especially the modular
diagnosability analysis. Different from the approaches in literature, we analyze the mod-
ular diagnosability of system modeled by LPN. The originalities of our approach are as
follows:

1. For the approaches in [Con+06; MP13; Sch13], the system is modeled by a collection
of automaton modules. However, the input model of our approach is the monolithic
LPN model. We use the definition of LPN module (in Definition 35) to decompose
the monolithic LPN into a sound decomposition (in Definition 36). We also release
the liveness assumption in [Con+06]

2. We apply the reduction rules to simplify the monolithic LPN model before the
decomposition. We prove that the modular diagnosability property is preserved
after using these reduction rules. Indeed, the memory cost for analyzing the reduced
model is lower.

3. While analyzing the local diagnosability of local modules, we propose a new ap-
proach based on the VN approach in [Cab+12]. The VN and its MRG are built and a
sufficient and necessary condition for local diagnosability is given. The complexity
of this approach is the same with that of the VN approach. However, the MRG is
specially designed for modular diagnosability analysis.

4. A new approach for incremental modular diagnosability analysis is proposed. We
take advantage of the structural property of MRG and we build the parallel compo-
sition of the MRG and the RG of the composed LPN module in order to check the
modular diagnosability property. A sufficient and necessary condition for modular

147

CHAPTER 4. MODULAR DIAGNOSABILITY ANALYSIS USING LPN

diagnosability is proposed. We also use the ε−reduction technique to reduce the
combinatorial explosion problem. The complexity of our approach is polynomial.

148

C
H

A
P

T
E

R

5
CASE STUDY

Contents
5.1 Manufacturing benchmark . 149

5.1.1 Monolithic diagnosability analysis of the manufacturing bench-
mark . 151

5.1.2 Modular diagnosability analysis of the manufacturing benchmark160

5.2 Multi-track level crossing benchmark . 167

5.2.1 Monolithic diagnosability analysis of the LC benchmark 169

5.2.2 Modular diagnosability analysis of the LC benchmark 170

5.3 Synthesis of the two case studies . 174

In order to evaluate the proposed approach of this thesis, we provide some experimen-
tal results. The manufacturing benchmark in [Hos+13] and the multi-track level crossing
benchmark in [Liu+16] are analyzed.

5.1 Manufacturing benchmark

In this section, the diagnosability property of the benchmark proposed in [Hos+13] is
analyzed. In [Giu08], the author describes a manufacturing benchmark for fault diagnosis
to test different diagnosis approaches. In [Hos+13], a new version of the manufacturing
benchmark in [Giu08] is proposed. This benchmark in [Hos+13] describes a manufacturing
system characterized by three parameters: n, m and k, where:

1. n is the number of production lines;

2. m is the number of units of the final product that can be produced and each unit of
product is composed of n parts (produced in parallel\ simultaneously);

149

CHAPTER 5. CASE STUDY

3. k is the number of operations that each part must undergo in each line.

The manufacturing benchmark provided in [Hos+13] is shown in Figure 5.1. The fault
transitions are represented by red boxes. The other transitions are normal transitions.They
can be observable or unobservable depending on different experimental conditions and
they are represented by blue boxes.

Some experimental simulations using this benchmark, were executed in [Bou16;
Hos+13] by using different approaches, such as the diagnoser approach [Sam+95], verifier
approach [YL02], MBRG/BRD approach [Cab+14] and variant diagnoser approach [Bou16].

p0

m

· · ·p2,1p1,1 pn−1,1 pn,1

p1,2

...

p1,k

p1

p2,2 · · ·

...

p2,k · · ·

p2 · · ·

pn−1,2

...

pn−1,k

pn−1

pn,2

...

pn,k

pn

t0

t1,1

t1,2

f1 t1,k

t2,1

t2,2

f2 t2,k

tn−1,1

tn−1,2

fn−1 tn−1,k

tn,1

tn,2

fn tn,k

t1

Figure 5.1 – The PN benchmark in [Hos+13]

In order to analyze the diagnosability property of the benchmark in [Hos+13], the
following assumptions are proposed:

1. t0 and t1 are exclusively labeled observable transitions (ELOTs);

2. ∀i ∈ {1, · · · , n} and ∀j ∈ {1, · · · , k}, the transition ti,j is either a regular unobserv-
able transition or an ELOT. It means that each sensor monitors uniquely the behavior
of one production line.

150

5.1. MANUFACTURING BENCHMARK

The experimental results in [Bou16; Hos+13] are obtained with these two assumptions.
These assumptions could be released, but we use them in order to well explain the
application of reduction rules.

5.1.1 Monolithic diagnosability analysis of the manufacturing benchmark

For the given model in Figure 5.1, as it is assumed, there exist some unobservable tran-
sitions and ELOTs. In order to simplify the LPN model, the reduction rules (1) and (6),
proposed in Section 3.2.1, can be applied to reduce the transitions ti,j (i ∈ {1, · · · , n} and
j ∈ {1, · · · , k− 1}) which are regular unobservable transitions or ELOTs.

Thus, one can apply the reduction rules proposed in Section 3.2.1 to simplify at first
the LPN model. The reduction rules (1) and (6) can be applied to reduce the transition ti,j

(i ∈ {1, · · · , n} and j ∈ {1, · · · , k− 1}) which is a regular unobservable transition or an
ELOT.

By using the reduction rules:

1. For the production line i, if ti,1, · · · ti,k−1 are all regular unobservable transitions, all
these transitions and corresponding places can be reduced;

2. For the production line i, if ∃j ∈ {1, · · · , k− 1} s.t. ti,j is an ELOT, all the transitions
and corresponding places can be reduced except for ti,h (h ∈ {1, · · · , k− 1}), which
is the last ELOT in this production line.

In the following experimental test, ∀i ∈ {1, · · · , n}, ti,k−1 is considered as an ELOT.
The reduced PN model is shown in Figure 5.2.

We implement the reduction rules using MATLAB. We correct the error of the algorithm
proposed in [Mm+13]. Instead of working on the incidence matrix of the PN model, we use
the pre-incidence matrix and post-incidence matrix (An illustration and a new algorithm
is provided in Appendix B). The algorithm is efficient. For example, when k = 6 and n = 8,
it takes less than 0.1 second to get the pre-incidence matrix and post-incidence matrix of
the reduced PN model. The test is performed with a 64-bit PC (CPU: Intel Core i7, 2.4
GHz, RAM: 8GB).

Since the reduction rules is a complementary technique for all the diagnosability
analysis approaches, the diagnosability property is preserved by using the reduction rules.
Hence, the reduced model can be analyzed for diagnosability analysis, instead of the
initial model, in order to improve the efficiency.

In order to evaluate our proposed techniques, three cases of the benchmark are dis-
cussed:

• Case 1: m = 1 and ∀i ∈ {1, · · · , n}, all the transitions ti,k are ELOTs;

151

CHAPTER 5. CASE STUDY

p0

m

· · ·p2,1p1,1 pn−1,1 pn,1

p1,k

p1

p2,k · · ·

p2 · · ·

pn−1,k

pn−1

pn,k

pn

t0

t1,k−1

f1 t1,k

t2,k−1

f2 t2,k

tn−1,k−1

fn−1 tn−1,k

tn,k−1

fn tn,k

t1

Figure 5.2 – Reduced PN benchmark model

• Case 2: m = 1 and ∀i ∈ {1, · · · , n}, all the transitions ti,k are regularly unobservable;

• Case 3: m ≥ 2 and ∀i ∈ {1, · · · , n} all the transitions ti,k are ELOTs or all the
transitions ti,k are regularly unobservable.

5.1.1.1 Case 1

In this case, m = 1 and ∀i ∈ {1, · · · , n}, all the transitions ti,k are ELOTs. The reduced PN
model is shown in Figure 5.3.

It is worth noticing that if m = 1, the PN model is safe and live. The sufficient condition
proposed in Section 3.2.2 is used to analyze the diagnosability.

In this case, the Constraint 3.3 (Section 3.2.2 page 72) has no solution. For facility of
readers, let us recall the Constraint 3.3 as follows:



∑
i
(di ·
−→
V (
−→
Ω N

min,i)) = ∑
r
(br ·
−→
V (
−→
Ω F

min,r))

∑
r

br ≥ 1

i f di < 0 ⇒ ai = 0; a′i = di

i f di > 0 ⇒ ai = di; a′i = 0

br ∈N, di ∈ Z

First, each minimal T-invariant contains the transitions t0 and t1 and they are ELOTs.

152

5.1. MANUFACTURING BENCHMARK

p0

· · ·p2,1p1,1 pn−1,1 pn,1

p1,k

p1

p2,k · · ·

p2 · · ·

pn−1,k

pn−1

pn,k

pn

t0

t1,k−1

f1 t1,k

t2,k−1

f2 t2,k

tn−1,k−1

fn−1 tn−1,k

tn,k−1

fn tn,k

t1

Figure 5.3 – Reduced PN benchmark model in Case 1

Therefore, ∑
i

di = ∑
r

br. The set of normal minimal T-invariant IN contains only one mini-

mal T-invariant
−→
Ω N

min,1.
−→
Ω N

min,1 contains the transitions {t0, t1,k−1, t1,k, · · · , tn,k−1, tn,k, t1}.
For a faulty minimal T-invariant, if it contains just one fault transition fh, then this minimal
T-invariant contains {t0, t1,k−1, t1,k, · · · , th,k−1, fh, · · · , tn,k−1, tn,k, t1}. If a minimal T-
invariant contains two fault transitions fp and fq, it contains {t0, t1,k−1, t1,k, · · · , tp,k−1, fp,
· · · , tq,k−1, fq, · · · , tn,k−1, tn,k, t1}. By analogy, if a minimal T-invariant contains several
fault transitions, one can also obtain its set of transitions.

The constraint 3.3 is rewritten as:



d1 ·
−→
V (
−→
Ω N

min,1) = ∑
r
(br ·
−→
V (
−→
Ω F

min,r))

d1 = ∑
r

br

∑
r

br ≥ 1

br ∈N, d1 ∈N

t1,k, · · · , tn,k are ELOTs. For the faulty minimal T-invariant that contains a fault transi-
tion fh, it does not contain the transition th,k which is an ELOT. Hence, the constraint has
no solution. Therefore, the PN model is diagnosable.

153

CHAPTER 5. CASE STUDY

5.1.1.2 Case 2

In this case, m = 1 and ∀i ∈ {1, · · · , n}, all the transitions ti,k are regularly unobservable.
The reduced model is shown in Figure 5.4. The PN model is still safe and live.

It is worth noticing that ∀h ∈ {1, · · · , n}, the pre-place and post-place of th,k and fh

are the same. Assuming that th,k is regularly unobservable. In this case, the constrain has
a solution. Note that

−→
Ω N

min,1 is the normal minimal T-invariant and
−→
Ω F

min,h is the fault
minimal T-invariant that contains {t0, t1,k−1, t1,k, · · · , th,k−1, fh, · · · , tn,k−1, tn,k, t1}. We
have

−→
V (
−→
Ω N

min,1) =
−→
V (
−→
Ω F

min,h)

Hence, we need to use other approaches such as the diagnoser approach to check the
diagnosability.

p0

· · ·p2,1p1,1 pn−1,1 pn,1

p1,6

p1

p2,6 · · ·

p2 · · ·

pn−1,6

pn−1

pn,6

pn

t0

t1,5

f1 t1,k

t2,5

f2 t2,k

tn−1,5

fn−1 tn−1,k

tn,5

fn tn,k

t1

Figure 5.4 – Reduced PN benchmark model in Case 2 for k = 6

In order to evaluate the difference between analyzing the initial model and the reduced
model, the following configuration of the benchmark is considered:

• The parameters are defined as m = 1, k = 6 and n = 3, 4, · · · , 7. Moreover, transitions
t0, t1 and th,1, th,3, th,5 for h ∈ {1, · · · , n} are ELOTs. The transitions fh for h ∈
{1, · · · , n} are fault transitions and the other transitions are regularly unobservable.

We use the diagnoser approach [Sam+95] and verifier approach [YL02] to analyze
respectively the initial models and reduced models.

The reachability graph of the considered PN model is generated with the help of the PN
analysis tool TINA [Ber+04]. The file format is “.aut” and it is transformed into a “.fsm” file.

154

5.1. MANUFACTURING BENCHMARK

Afterwards, we use the dcycle.exe, diag_UR.exe, verifier_dia.exe functions
of UMDES Library [Laf00] to get the experimental results of diagnosability analysis. The
experiments are executed with a 64-bit PC (CPU: Intel Core i7, 2.4 GHz, RAM: 8GB). We
set 5 hours as the time limit for the analysis.

The experiment result for analyzing the initial model is shown in Table 5.1 and that for
analyzing the reduced model is shown in Table 5.2, where:

– |P| and |T| are respectively the number of places and transitions of the PN model;

– |RGS| and |RGT| are respectively the number of states and transitions of the reacha-
bility graph;

– |XD| and |TD| are obtained by using the diagnoser approach in [Sam+95]. |XD| is the
number of states of the diagnoser and |TD| is the time for generating the diagnoser
and analyzing the diagnosability;

– |XV | and |TV | are obtained by using the verifier approach in [YL02]. |XV | is the
number of states of the verifier and |TV | is the time for generating the verifier and
analyzing the diagnosability;

– “Diag” is the diagnosability verdict.

Table 5.1 – The experimental result for analyzing initial models

LPN RG Diagnoser approach Verifier approach
Diag

n |P| |T| |RGS| |RGT| |XD| |TD| |XV | |TV |
3 22 23 344 1031 130 0.2s 3147 0.4s

N
on

-d
ia

gn
os

ab
le

4 29 30 2402 9606 514 107s 32337 45s
5 36 37 16808 84037 2050 3650s * o.t.
6 43 44 117650 705896 * o.t. * o.t.
7 50 51 823544 5764803 * o.t. * o.t.

*: No result obtained in 5 hours. o.t.: out of time (simulation time ≥ 5 hours).

Table 5.2 – The experimental result for analyzing reduced models

LPN RG Diagnoser approach Verifier approach
Diag

n |P| |T| |RGS| |RGT| |XD| |TD| |XV | |TV |
3 10 11 28 83 18 ≈0s 213 0.1s

N
on

-d
ia

gn
os

ab
le

4 13 14 82 326 34 0.1s 881 0.2s
5 16 17 244 1217 66 0.6s 3645 0.8s
6 19 20 730 4376 130 69s 14993 12s
7 22 23 2188 15311 258 4h44m15s * o.t.

*: No result obtained in 5 hours. o.t.: out of time (simulation time ≥ 5 hours).

155

CHAPTER 5. CASE STUDY

By using the reduction rules, some transitions and places are suppressed. For the same
n, the reduced PN model contains fewer places and transitions. It is reasonable that for
the same number of m (m = 1), the reachability graph of the reduced PN model contains
fewer states and transitions. Analogously, the diagnoser and the verifier of the reduced
PN model contain also fewer states. The memory cost and time cost for diagnosability
analysis are lower by using the reduced PN model.

The technique of reduction rules is a strong complement for the diagnosability analysis
approaches. By simplifying a priori the given PN model, it becomes feasible for the
approaches to analyze a large-scale system. For example, for n ≥ 6 (n ≥ 5 for the verifier
approach), the diagnoser approaches cannot get any simulation result in 5 hours by using
the initial model. However, by using the reduced model, the analysis using diagnoser
approach can be terminated in 5 hours for n = 6, 7 (n = 5, 6 for the verifier approach).
Moreover, the result shows that the diagnosability property of the reduced PN model
keeps consistent with that of the reduced model.

5.1.1.3 Case 3

When m ≥ 2, the states space of PN model explodes very quickly w.r.t. the increase of
k and n. Even for the reduced PN model, when m = 2 and n = 5, no result is obtained
in 5 hours by using diagnoser approach and verifier approach. It is not feasible to check
the diagnosability property by using most of the approaches mentioned before. How-
ever, we can use the on-the-fly diagnosability analysis using T-invariants to analyze the
diagnosability.

In this case, one assumes that ∀i ∈ {1, · · · , n}, all the transitions ti,k are ELOTs. (Since in
Case 2, when m = 1 and ∀i ∈ {1, · · · , n}, all the transitions ti,k are regularly unobservable,
the PN model is not diagnosable. If we increase the number of tokens, the system is still
not diagnosable. However, the on-the-fly diagnosability analysis using T-invariants is also
valid when all the transitions ti,k are regularly unobservable.) The reduced model is shown
in Figure 5.5.

As it was analyzed in Case 1, there is only one minimal T-invariant
−→
Ω N

min,1 which
contains the transitions {t0, t1,k−1, t1,k, · · · , tn,k−1, tn,k, t1}. Let us consider the fault
transition f1. The processes (Section 3.2.4) of this approach are as follows:

- Step 1: From the initial marking, the Algorithm 5 (page 86) is applied to generate a
minimal path to enable the fault transition f1. By using the Algorithm 8 (MODE = F)
(page 88), it is found out that the firing sequence of transitions t0t1,k−1 needs to be
fired in order to enable f1. After that it is possible to obtain an F-uncertain state. The
current distribution of the tokens is that there are m− 1 tokens in p0 and there is one
token in each place of p1,k, p2,1, p3,1, · · · , and pn,1.

156

5.1. MANUFACTURING BENCHMARK

p0

m

· · ·p2,1p1,1 pn−1,1 pn,1

p1,k

p1

p2,k · · ·

p2 · · ·

pn−1,k

pn−1

pn,k

pn

t0

t1,k−1

f1 t1,k

t2,k−1

f2 t2,k

tn−1,k−1

fn−1 tn−1,k

tn,k−1

fn tn,k

t1

Figure 5.5 – Reduced PN benchmark model in Case 3

p0

p1,1 p2,1

p1,k

p1

p2,k

p2

t0

t1,k−1

f1 t1,k

t2,k−1

f2 t2,k

t1

Figure 5.6 – Reduced PN benchmark model with m = 3 and n = 2

- Step 2: Afterwards, the Algorithm 6 (page 86) is applied to generate a minimal
path to enable an observable transition in the normal minimal T-invariant

−→
Ω N

min,1.
No matter which observable transition is chosen, the result does not change. For
example, we chose the transition t1,k−1. By using the Algorithm 8 (MODE = T), it
is found out that the firing sequence of transitions t0 needs to be fired in order to
enable t1,k−1. The current distribution of the tokens is that there are m− 2 tokens in

157

CHAPTER 5. CASE STUDY

p0; there is one token in each place of p1,1 and p1,k; there are two tokens in each place
of p2,1, p3,1, · · · , and pn,1.

- Step 3: Then, the Algorithm 7 (page 87) is applied to find a firing sequence of
−→
Ω N

min,1.
At the current state, one of the firing sequence is t1,k−1t1,k · · · tn,k−1tn,kt1t0. We will
get an indeterminate cycle corresponding to f1.

BFM0

BFM1

BFM2 BFM3

BFM4 BFM5

BFM6 BFM7

BFM8 BFM9

BFM10 BFM11BFM12 BFM13

BFM14 BFM15

L
(t0), −→0

L
(t1,k−

1), −→0

f1,
−→
0

L
(t0), −→0

L
(t0), −→0

L
(t1,k−

1), −→0

L
(t1,k−

1), −→0

L
(t1,k), −→0

L
(t1,k), −→0

L
(t2,k−

1), −→0

L
(t2,k−

1), −→0

L
(t2,k), −→0

f2,
−→
0

L
(t2,k), −→0

f2,
−→
0

L
(t

1
),
−→ 0

L
(t

1
),
−→ 0

Figure 5.7 – BFG of the PN model in Figure 5.6

Example 54 In this example, we assume that m = 3 and n = 2. The PN model is shown
in Figure 5.6. Let us consider f1 and f2 belong to the same fault class. The initial marking is

M0 =
[p0 p1,1 p1,k p1 p2,1 p2,k p2

3 0 0 0 0 0 0
]
τ

158

5.1. MANUFACTURING BENCHMARK

BFM0

N

BFM1

N

BFM2

N
BFM4
BFM5

U

BFM6
BFM7

U

BFM8
BFM9

UBFM10
BFM11
BFM12
BFM13

U

BFM14
BFM15

U

BFM2
BFM3

U

BFM4
BFM5

U

L(t0) L(t1,k−1) L(t0)

L
(t1,k−

1)

L(t1,k)L(t2,k−1)L(t2,k)

L
(t1)

L(t0)

eq
uivq

len
t

Figure 5.8 – BFST of the PN model in Figure 5.6

Table 5.3 – BFMs and e-vectors of the BFG and BFST (Figure 5.7 and Figure 5.8)

j BFMj j BFMj

0 [3 0 0 0 0 0 0 | 0]τ 9 [1 0 0 2 2 0 0 | 1]τ
1 [2 1 0 0 1 0 0 | 0]τ 10 [1 0 1 1 1 1 0 | 0]τ
2 [2 0 1 0 1 0 0 | 0]τ 11 [1 0 0 2 1 1 0 | 1]τ
3 [2 0 0 1 1 0 0 | 1]τ 12 [1 0 1 1 1 0 1 | 1]τ
4 [1 1 1 0 2 0 0 | 0]τ 13 [1 0 0 2 1 0 1 | 1]τ
5 [1 1 0 1 2 0 0 | 1]τ 14 [1 0 1 1 1 0 1 | 0]τ
6 [1 0 2 0 2 0 0 | 0]τ 15 [1 0 0 2 1 0 1 | 1]τ
7 [1 0 1 1 2 0 0 | 1]τ 16 [2 0 1 0 1 0 0 | 0]τ
8 [1 0 1 1 2 0 0 | 0]τ 17 [2 0 0 1 1 0 0 | 1]τ

The only normal minimal T-invariant is

−→
Ω N

min,1 =
[t0 t1,k−1 t1,k f1 t2,k−1 t2,k f2 t1

1 1 1 0 1 1 0 1
]
τ

By following the above processes, we can build the BFG and BFST of the PN model, which are
shown in Figure 5.7 and Figure 5.8.

Step 1: Considering the fault transition f1. From the initial BFM0, the sequence t0t1,k−1 needs
to be fired to enable f1. The sequence of events is L(t0t1,k−1). Then, after the BFS that contains
BFM2, it is possible that the next BFS is F-uncertain.

Step 2: We choose transition t1,k−1 which belongs to the normal T-invariant. By using Algo-
rithm 8 (MODE = T), t0 needs to be fired in order to enable t1,k−1. Therefore, the following BFS
is built by firing the event L(t0) and we get the BFS that contains BFM4 and BFM5.

Step 3: From the current BFS, there exists a firing sequence which is t1,k−1t1,kt2,k−1t2,kt1t0.

159

CHAPTER 5. CASE STUDY

The other nodes of BFST are built by following the sequence of event L(t1,k−1t1,kt2,k−1t2,kt1t0).
Afterwards, an F-indeterminate cycle is found, so the PN model is not diagnosable.

By using this approach, the efficiency of the depth-first search algorithm is improved,
because the priority of the investigation is defined. We orient the path to find quickly the
indeterminate cycle. For this manufacturing PN model, even when we increase m and
n, we can still get the result that the PN model is not diagnosable by building only the
relative part of the indeterminate cycle.

5.1.2 Modular diagnosability analysis of the manufacturing benchmark

In this section, the manufacturing benchmark is analyzed by using the modular diagnosis
architecture.

p2,0p1,0 pn−1,0 pn,0

mm m m· · ·

· · ·p2,1p1,1 pn−1,1 pn,1

p1,2

...

p1,k

p1

p2,2 · · ·

...

p2,k · · ·

p2 · · ·

pn−1,2

...

pn−1,k

pn−1

pn,2

...

pn,k

pn

t0

t1,1

t1,2

f1 t1,k

t2,1

t2,2

f2 t2,k

tn−1,1

tn−1,2

fn−1 tn−1,k

tn,1

tn,2

fn tn,k

t1

Figure 5.9 – The modified model of the PN model in Figure 5.1

Let us consider the manufacturing benchmark in Figure 5.1. The most intuitive idea is
to decompose the model as n PN modules. Each module represents a production line and
the shared transitions of the n modules are t0 and t1. In this section, we assume that t0 and
t1 are ELOTs.

160

5.1. MANUFACTURING BENCHMARK

Afterwards, we need to verify if the PN model can be decomposed as a sound decom-
position. According to Definition 36 (page 123) of sound decomposition, the transition t1

can be decomposed, because there is a pre-place of t1 in each production line module.
However, t0 cannot be decomposed, because it has only one pre-place (p0). Therefore, we
need to modify the PN model in order to apply the modular diagnosability analysis. The
modification should not change the behavior of the system, i.e., the language of the PN
model should not be changed.

The idea of modifying the initial model is to add places such that each production line
module can have one pre-place of t0. The modified model is shown in Figure 5.9. This
PN model is equivalent to the initial model by considering the places p1,0, · · · , pn,0 as the
place p0 in Figure 5.1.

For the PN model Figure 5.1, the firing of t0 consumes one token from the place
p0 and the firing of t1 gives one token to the place p0. It is equivalent that for the PN
model Figure 5.9, the firing of t0 consumes one token of each place of p1,0, · · · , pn,0 and
the firing of t1 gives one token to each place of p1,0, · · · , pn,0.

From the practical point of view, the modified model in Figure 5.9 considers the
product as a collection of n components (one token from each place of p1,0, · · · , pn,0),
instead of one entire product (one token in p0) for the initial model in Figure 5.1.

p2,0p1,0 pn−1,0 pn,0

mm m m· · ·

· · ·p2,1p1,1 pn−1,1 pn,1

p1,k

p1

p2,k · · ·

p2 · · ·

pn−1,k

pn−1

pn,k

pn

t0

t1,k−1

f1 t1,k

t2,k−1

f2 t2,k

tn−1,k−1

fn−1 tn−1,k

tn,k−1

fn tn,k

t1

Figure 5.10 – The reduced model of the modified model in Figure 5.9

By modifying the model, we can decompose the PN model as a sound decomposition.
Assuming that ∀i, j ∈ {1, · · · , n}, fi and f j belong to different fault classes. The monolithic
system is decomposed into n PN modules. Each module represents one production line

161

CHAPTER 5. CASE STUDY

pj,0

m
pj,1 pj,k pjt0 tj,k−1

f j

tj,k

t1

Figure 5.11 – Module j of reduced model

that products one component and each module has similar structure shown in Figure 5.11.
(If ∃i, j ∈ {1, · · · , n}, fi and f j belong to the same fault classes, we can consider the
production line i and j as one module.)

Assuming that ∀i ∈ {1, · · · , n}, ti,k−1 is an ELOT. The reduced model is shown in Fig-
ure 5.10.

By the sound decomposition, the model of the module j is shown in Figure 5.11.

Let us consider two cases as follows:

• Case 1: m = 1 and ∀i ∈ {1, · · · , n}, all the transitions ti,k are ELOTs;

• Case 2: m = 1, h ∈ {1, · · · , n}, the transition th,k is regularly unobservable and
∀i ∈ {1, · · · , n}\{h}, all the transitions ti,k are ELOTs.

5.1.2.1 Case 1

Above all, the local diagnosability of each module needs to be analyzed. According
to Proposition 10, if each module is locally diagnosable, the result can be given that
the system is modularly diagnosable. Since each module has the similar structure, it is
sufficient to analyze the local diagnosability of one module.

If m = 1 and ∀i ∈ {1, · · · , n}, all the transitions ti,k are ELOTs, the model of module j
is shown in Figure 5.12. According to the analysis in Section 5.1.1.1 (m = 1 and n = 1),
for ∀j ∈ {1, · · · , m}, the module j is locally diagnosable. Therefore, the whole system is
modularly diagnosable.

pj,0 pj,1 pj,k pjt0 tj,k−1

f j

tj,k

t1

Figure 5.12 – Module j in Case 1

162

5.1. MANUFACTURING BENCHMARK

[1 0 0 0]τ , Nstart

[0 1 0 0]τ , N

[0 0 1 0]τ , N
[0 0 0 1]τ , F

[0 0 0 1]τ , N

[1 0 0 0]τ , F

[0 1 0 0]τ , F

[0 0 1 0]τ , F

[0 0 0 1]τ , F

L(t0)

L(tj,k−1)

L(tj,k)

L(
t 1)

L
(t

1)

L(t0)

L(tj,k−1)

L(tj,k)

L
(t

1)

Figure 5.13 – Local diagnoser of module j in Case 1

In this case, for on-line diagnosis of a modularly diagnosable system, it is sufficient
to build the local diagnoser to diagnose the fault in each module, instead of building
the monolithic diagnoser. The local diagnoser of module j is shown in Figure 5.13. The
on-line diagnosis of the fault transition f j can be executed by using the local diagnoser.
The fault can be diagnosed, because if the label L(t1) is observed just after the occurrence
of L(tj,k−1), then it is deduced that the fault has occurred.

Table 5.4 – Comparison of monolithic diagnosis and
modular diagnosis

Monolithic Diagnosis Modular diagnosis
n |RG| |XD| |RG| |XD|
3 28 56 4×3 8×3
4 82 164 4×4 8×4
5 244 488 4×5 8×5
6 730 1460 4×6 8×6
7 2188 * 4×7 8×7

*: No result obtained in 5 hours.

The memory cost for modular diagnosis is lower than that of monolithic diagnosis
for this PN model. In stead of building the monolithic diagnoser, n local diagnoser is
built. A comparison of the memory cost of monolithic diagnosis and modular diagnosis
is provided in Table 5.4 (|RG| is the number of the states of the state space; |XD| is the
number of the states of the diagnoser). By using a modular diagnosis, the combinatorial
explosion problem is reduced.

163

CHAPTER 5. CASE STUDY

5.1.2.2 Case 2

If m = 1, h ∈ {1, · · · , n}, the transition th,k is regularly unobservable and ∀i ∈ {1, · · · , n}\{h},
all the transitions ti,k are ELOTs, all the modules except for the module h are all locally diag-
nosable. For module h in Figure 5.14, we use the approach of VN and MRG in Section 4.2.3
to analyze its local diagnosability.

ph,0 ph,1 ph,k pht0 th,k−1

fh

th,k

t1

Figure 5.14 – Module h in Case 2

The VN and its MRG (denoted as MRGh) are built in Figure 5.15 and Figure 5.16.

ph,0 p′h,0

ph,1 p′h,1

ph,k p′h,k

ph p′h

(t′0, t0)

(t′h,k−1, th,k−1)

(λ, th,k) (λ, fh) (t′h,k, λ)

(t′1, t1)

Figure 5.15 – VN of the module h

164

5.1. MANUFACTURING BENCHMARK

MFMh,0

MFMh,1

MFMh,2

MFMh,4MFMh,3 MFMh,5

MFMh,6 MFMh,7

MFMh,8

MFMh,9

MFMh,10

MFMh,11 MFMh,12

(t ′0 ,t0)
(t ′h,k−

1 ,th,k−
1)

(λ
, t h,k

) (λ
,fh)

(t ′
h,k , λ)

(t ′h,k ,λ
)

(t ′h,k ,λ
)

(λ
, t h,k

)

(λ
, f h)

(t
′ h,

k
,λ
)

(t ′1 ,t1)

(t ′0 ,t0)
(t ′h,k−

1 ,th,k−
1)

(λ
,th,k)

(λ
,fh)

(t ′
h,k , λ)

(t
′ h,

k,
λ
)

(λ, th,k)

(λ, fh)

Figure 5.16 – MRG of the VN in Figure 5.15

Table 5.5 – The MFMs in Figure 5.16

i MFMh,i i MFMh,i

0 [1 0 0 0 |1 0 0 0, N]τ 7 [0 0 0 1 |0 0 0 1, F]τ

1 [0 1 0 0 |0 1 0 0, N]τ 8 [1 0 0 0 |1 0 0 0, F]τ

2 [0 0 1 0 |0 0 1 0, N]τ 9 [0 1 0 0 |0 1 0 0, F]τ

3 [0 0 1 0 |0 0 0 1, N]τ 10 [0 0 1 0 |0 0 1 0, F]τ

4 [0 0 1 0 |0 0 0 1, F]τ 11 [0 0 1 0 |0 0 0 1, F]τ

5 [0 0 0 1 |0 0 1 0, N]τ 12 [0 0 0 1 |0 0 1 0, F]τ

6 [0 0 0 1 |0 0 0 1, N]τ

165

CHAPTER 5. CASE STUDY

Since there exist F−confused cycles shown with the shadow zone, the module h is not
locally diagnosable. We mark all the states of F−confused cycles. Afterwards, we build the
parallel composition of CoAc(MRGh) and RG of another module. Since the other modules
have the similar structure. We build the RG (denoted as RGj) of module j which is shown
in Figure 5.17.

Mj,0

Mj,1

Mj,2

Mj,3

t0
th,k−

1

th,kfh

t 1

Figure 5.17 – RG of module j

Table 5.6 – The markings in Figure 5.17

i Mj,i

0 [1 0 0 0]τ

1 [0 1 0 0]τ

2 [0 0 1 0]τ

3 [0 0 0 1]τ

All the transitions except for the shared transitions (t′0, t0) (t0) and (t′1, t1) (t1) are
considered as ε transitions. We can use the ε-reduction technique to reduce MRGh and
RGj before building the parallel composition.

MRGh and RGj are built by using ε−reduction, which are shown in Figure 6.1

Afterwards, we build RGh∗||j∗ = CoAc(MRGh∗)||RGj∗ that is shown in Figure 5.19.
There exists an FMh -confused cycle shown in the shadow zone. Therefore, the system
composed by the module h and j is not modularly diagnosable.

Since there is an FMh -confused cycle, we need to verify if the confused cycle still
survives while building the parallel composition of the MRGh with the RG of other
composed modules. However, since each module has the similar structure, the RG of the
composed module has the same structure after using ε−reduction. After building the

166

5.2. MULTI-TRACK LEVEL CROSSING BENCHMARK

MFMh,0

MFMh,7

MFMh,8

(t ′0 ,t0)
(t ′1 ,t1)(t

′ 0,
t 0
)

(b) CoAc(MRGh∗)

Mj,0

Mj,1

t0t 1

(b) RGj∗

Figure 5.18 – CoAc(MRGh∗) and RGj∗ by using ε−reduction

MFMh,0, Mj,0

MFMh,7, Mj,1

MFMh,8, Mj,0

(t ′0 ,t0)
(t ′1 ,t1)(t

′ 0,
t 0
)

Figure 5.19 – RGh∗||j∗ = CoAc(MRGh∗)||RGj∗

parallel composition of the MRGh with the RG of any composed modules, there exists
still an FMh -confused cycle. Therefore, the manufacturing PN model in this case is not
modularly diagnosable. Hence, we cannot use the local diagnoser of each module for
modular diagnosis of the fault.

In this case, the initial PN model needs to be modified in order to obtain a modularly
diagnosable manufacturing system which can be used in practice. One solution is to add a
sensor to observe the occurrence of th,k (th,k becomes an ELOT). Hence, the system of Case
2 becomes a modularly diagnosable manufacturing system, as the one analyzed in Case 1
in Section 5.1.2.1.

5.2 Multi-track level crossing benchmark

This section deals with the diagnosability analysis of a multi-track level crossing system
which is modeled by LPN.

A level crossing (LC) is an intersection where a railway line crosses a road or path at

167

CHAPTER 5. CASE STUDY

the same level. LC safety is a critical issue, because level crossing accidents often generate
serious problems, such as devices destruction, traffic disturbances and human damages.

The monolithic model of the LC is shown in Figure 5.20. The LPN model is live and
bounded. It can be considered as a composition of railway traffic, LC controller and barriers.

p1,1 p1,2 p1,3 p1,4

pn,1 pn,2 pn,3 pn,4

t1,5, ig

tn,5, ig

t1,4, aw1

tn,4, awn

p1 np2 p3 p4

p5 n p6

t1, cr t2, or

t1,1, ap1

tn,1, apn

p7, up

p8, down

p9

tn,3, lvn

t1,3, lv1

t6, bf

t1,2, in1

tn,2,inn

t4, lwt3, kd t5, rs

n n

railway traffic

· · · · · ·
· · · · · ·
· · · · · ·

LC controller

barriers

Figure 5.20 – The level crossing benchmark [Liu14]

In this LC benchmark, two classes of faults are modeled by unobservable transitions.
The first one is modeled by transition (t6, “bf") (here “bf" denotes “barrier fault") and
t6 ∈ T1

f , which indicates a barrier failure that results in a premature barrier raising.
The other one is modeled by transition (ti,5, ig) (here “ig" denotes “ignore") and ∀i ∈

168

5.2. MULTI-TRACK LEVEL CROSSING BENCHMARK

{1, · · · , n}, ti,5 ∈ T2
f , which indicates that the train may enter the LC crossing zone before

the barriers are ensured to be lowered. Each of these two classes of faults can lead to
accidents .

This LC model can be extended to a n railway track in order to obtain a large system.
The introduction of the LC benchmark is given in Appendix C. For more details for the
LC benchmark, readers can refer to the work in [GL16; Liu14; Liu+16].

5.2.1 Monolithic diagnosability analysis of the LC benchmark

In [Bou16; Liu14; Liu+16], some experimental tests were executed for monolithic diagnos-
ability analysis by using different approaches. Readers can refer to these works for the
simulation results.

Our approach proposed for monolithic diagnosability analysis can also be applied
for analyzing this LC benchmark. Since we have not implemented our algorithms, the
experimental test will be a perspective for this work. The theoretical analysis of the
monolithic diagnosability is as follows:

• For the fault transition t6 ∈ T1
f , in the case of n−track LC (n ≥ 1), t6 can be fired or

not right after firing the sequence ti,1t1t4. The system can remain F1-uncertain (F1

represents the first fault class T1
f) for as long as 6 steps during the firing of sequence

ti,2ti,3ti,4ti,1t2t1. Afterwards, the system will be normal if t4 is fired; otherwise the
firing of t3 implies that the fault t6 has occurred.

• For the fault transition t1,5 in T2
f , in the case n = 1, the system is normal if t1,2 and t1,3

are fired alternatively in any sequence of transitions. Otherwise, the fault transitions
t5 must have been fired. Therefore, the system is diagnosable according to the order
of t1,2 and t1,3.

• For the fault transitions in T2
f , in the case n ≥ 2, ∃i, j ∈ {1, · · · , n} and i 6= j, such

that:
The fault transition ti,5 can be fired or not right after ti,1. For both cases, the sequence
(t1t4tj,1tj,2tj,3tj,4t2t5)∗ can be fired, which corresponds to an indeterminate cycle.
Therefore, the system is not diagnosable.

However, it is worth noticing that the diagnoser of LC benchmark can be too large
to use with the increase of the track number. No matter which approach is used for the
diagnosability analysis, a monolithic diagnoser is still required for on-line diagnosis. As
it was presented in [Liu14; Liu+16], for n = 9, it is already out of memory to build the
reachability graph, not to mention the construction of the monolithic diagnoser.

169

CHAPTER 5. CASE STUDY

5.2.2 Modular diagnosability analysis of the LC benchmark

In this section, the LC benchmark will be analyzed in the framework of modular diagnosis.
The first step is to verify if one can decompose the monolithic model as a sound decompo-
sition. Since in the part of barriers model, the fault transition t6 belongs to the fault class
T1

f and in the part of railway traffic model, the fault transitions t1,5, · · · , tn,5 belong to the
fault class T2

f , the intuitive idea is to decompose the monolithic model as three modules:
railway traffic module, LC controller module and barriers module.

p1,1 p1,2 p1,3 p1,4

pn,1 pn,2 pn,3 pn,4

t1,5, ig

tn,5, ig

t1,4, aw1

tn,4, awn

p1np′0

np2 p3 p4

p5 n p6

t1, cr t2, or

t1,1, ap1

tn,1, apn

p7, up

p8, down

p9

tn,3, lvn

t1,3, lv1

t6, bf

t1,2, in1

tn,2,inn

t4, lwt3, kd t5, rs

n n

railway traffic

· · · · · ·
· · · · · ·
· · · · · ·

LC controller

barriers

Figure 5.21 – The modified level crossing benchmark

The shared transitions between the modules (transitions t1,1, t1,2, t1,3, · · · , tn,1, tn,2, tn,3

170

5.2. MULTI-TRACK LEVEL CROSSING BENCHMARK

between railway traffic module and LC controller module; transitions t3, t4, t5 between LC
controller module and barriers module) are all observable. The only problem to decompose
the model is that the transitions t1,1, · · · , tn,1 have no pre-place in the LC controller module
to suffice the sound decomposition, so the model needs to be modified.

One can add a place p′0 as a pre-place of the transitions t1,1, · · · , tn,1, with M(p′0) = n.
When a train arrives in track j of LC, the transition tj,1 is fired, which consumes one token
from pj,1 and one token from p′0. In order to make the LC model live and bounded, when
the train leaves the LC system, we need to put one token into p′0. Therefore, we make the
place p′0 as a post-place of the transitions t1,3, · · · , tn,3. The place p′0 works as a counter of
the trains in the LC system. One token in p′0 is taken away when a train arrives and one
token is put back when a train leaves. Hence, for a n−track LC system, the initial number
of tokens in p′0 is n. The modified model is shown in Figure 5.21.

For a n−track LC system, there are at most n trains in the railway traffic at the same
time. Therefore, if a train arrives in track j i.e., there is one token in place pj,1, there exists
at least one token in place p′0 to enable the transition tj,1. Hence, by adding the place p′0,
the behavior of the LC system does not change.

p1,1 p1,2 p1,3 p1,4

pn,1 pn,2 pn,3 pn,4

t1,5, ig

tn,5, ig

t1,4, aw1

tn,4, awn

t1,1, ap1

tn,1, apn tn,3, lvn

t1,3, lv1t1,2, in1

tn,2,inn

railway traffic

· · · · · ·
· · · · · ·
· · · · · ·

Figure 5.22 – The railway traffic module

By modifying the initial model, it becomes feasible to decompose the monolithic
model as a sound decomposition. The monolithic model is decomposed into railway traffic
module in Figure 5.22 (Module 1), LC controller module in Figure 5.23 (Module 2) and
barriers module in Figure 5.24 (Module 3). It is worth noticing that each module is live
and bounded; all the shared transitions are observable; the fault transitions in each module
belong to the same fault classes. Therefore, the modular diagnosability analysis approach
proposed in Chapter 4 is applicable, as well as the approach proposed in [Con+06].

The local diagnosability of each module is analyzed a priori. There is no fault transition

171

CHAPTER 5. CASE STUDY

p1np′0

np2 p3 p4

p5 n p6

t1, cr t2, or

t1,1, ap1

tn,1, apn

p9

tn,3, lvn

t1,3, lv1t1,2, in1

tn,2,inn

t4, lwt3, kd t5, rs

n n

LC controller

Figure 5.23 – The LC controller module

p7, up

p8, down

t6, bft4, lwt3, kd t5, rs

barriers

Figure 5.24 – The barriers module

in the LC controller module, so it is locally diagnosable. The barriers module is locally
diagnosable w.r.t. the fault transition t6. The normal behavior of the barriers module is rep-
resented by the sequence of events (lw(kd)∗rs)∗. If the fault transition t6 occurs, between
two adjacent transition t4 (event lw), there is no transition t5 (event rs). It means that if we
observe a sequence (lw(kd)∗rs)∗lw(kd)∗lw, we are sure that the fault has occurred.

• If n = 1 (only one track), the railway traffic module is locally diagnosable, w.r.t. the

172

5.2. MULTI-TRACK LEVEL CROSSING BENCHMARK

fault transition t1,5, because if we observe the event ap1 (t1,1) followed by the event
lv1 (t1,3), we are sure that the fault has occurred. Therefore, in this case, since all
modules are locally diagnosable, the LC system is modularly diagnosable.

• If n ≥ 2 (more that 2 tracks), the railway traffic module is not locally diagnosable
w.r.t. the class of fault transitions T2

f = {t1,5, · · · , tn,5}. ∃i, j ∈ {1, · · · , n} and i 6= j,
the fault transition ti,5 can be fired or not right after ti,1. For both cases, the sequence
(tj,1tj,2tj,3tj,4)

∗ can be fired, which corresponds to an FM1−indeterminate cycle. In
another way, there exist two sequences of transitions σ1 = ti,1(tj,1tj,2tj,3tj,4)

∗ and
σ2 = ti,1ti,5(tj,1tj,2tj,3tj,4)

∗, such that σ1 and σ2 has the same observation; σ1 is normal
but σ2 contains a faulty transition and can be arbitrarily long after its occurrence.
Therefore, the system is not locally diagnosable.

Afterwards, we need to check if the FM1−indeterminate cycle still survives while
analyzing the composed module constructed by module 1 and other modules. By
taking advantage of the result in Section 5.2.1, while analyzing the monolithic model,
there exists an indeterminate cycle w.r.t. the fault transition ti,5 corresponding to
the sequence of transitions (t1t4tj,1tj,2tj,3tj,4t2t5)∗. The transitions tj,1, tj,2, tj,3 and
tj,4 belong to the railway traffic module (Module 1). According to Definition 34
(page 112), there exists an FM1−indeterminate cycle while analyzing the monolithic
model. Based on Theorem 7 (page 110, Section 4.1.2), the LC system is not modularly
diagnosable.

It is worth noticing that if n ≥ 2, the railway traffic module is composed by n indepen-
dent components. Each one models one track of the railway traffic. However, we cannot
consider one track model as one module while analyzing the modular diagnosability,
because the fault transitions {t1,5, · · · , tn,5} belong to the same fault class (According to
the assumptions to apply the modular diagnosability analysis, the fault transitions in each
module belong to the same fault class).

• Considering that for n ≥ 2, let us redefine the fault transitions {t1,5, · · · , tn,5} belong
to n different fault classes i.e., for j ∈ {1, · · · , n}, the fault transition tj,5 belongs
to the fault class T2,j

f . In this case, the railway traffic module in Figure 5.22 can be
further decomposed into n modules and each module j (j ∈ {1, · · · , n}) pertains to
the jth track shown in Figure 5.25.

The monolithic model in Figure 5.21 is decomposed into n + 2 modules. As it was
analyzed before, the LC controller module and the barriers module are locally diagnosable.
The n tracks have the same structure, so it is sufficient to analyze the local diagnosability
of one track module. Since the module j (jth track) is locally diagnosable, all the modules
are locally diagnosable. Hence, the LC system is modularly diagnosable.

173

CHAPTER 5. CASE STUDY

pj,1 pj,2 pj,3 pj,4

tj,5, ig

tj,1, apj tj,3, lvjtj,2, inj

tj,4, awj

Figure 5.25 – Module j of the level crossing benchmark

Since the LC system becomes modularly diagnosable by redefining the fault classes,
the construction of a monolithic diagnoser is not necessary for on-line diagnosis. We can
build n + 2 local diagnosers and each local diagnoser is sufficient to diagnose the fault
of its module. As it was shown in [Liu14; Liu+16], when n is large (n ≥ 7), building
a monolithic diagnoser is not feasible because of the combinatorial explosion problem.
However, theoretically, with the increase of n, it is always doable by building the local
diagnosers for on-line diagnosis of the modularly diagnosable LC system.

5.3 Synthesis of the two case studies

In this chapter, the diagnosability properties of manufacturing benchmark and multi-track
level crossing benchmark are analyzed. We apply our proposed approaches for monolithic
diagnosability analysis and modular diagnosability analysis.

While analyzing the manufacturing benchmark, we apply the reduction rules to
simplify the initial model a priori. The experimental test shows that by using the same
approach, the time cost and memory cost of analyzing the reduced model is lower than
that of analyzing the initial model. The technique of reduction rules is a complement of
most approaches for diagnosability analysis. We apply the sufficient condition for the
diagnosability of safe and bounded PN and the on-the-fly diagnosability analysis using
T-invariant to analyze the manufacturing benchmark under different configurations.

Moreover, we analyze the modular diagnosability of the manufacturing benchmark
and the multi-track level crossing benchmark. Since the initial models cannot be decom-
posed as a sound decomposition, we modify a priori the given model in order to fulfill
the assumptions to apply the modular diagnosability analysis. Afterwards, we use our
approach (proposed in Section 4.2) to analyze the modular diagnosability of the two
benchmarks.

Comparing to the monolithic analysis, if the modular diagnosis can be applied to a
large-scale system, the time cost and memory cost are much lower than that of monolithic
diagnosis. Moreover, the modular diagnosis (by using the local diagnoser of each module)
is sufficient to diagnose all the faults of a modularly diagnosable system.

174

5.3. SYNTHESIS OF THE TWO CASE STUDIES

It is worth noticing that different classification of faults leads to a different decompo-
sition of the monolithic model, as well as a different result for modular diagnosability
analysis. It is an open issue to define some rules for the module decomposition and the
fault classification. However, for a system (such as the two benchmarks) that contains
repeating structures, it is favorable to consider each structure as one module, because all
repeating structures are analyzed by analyzing only one of them.

175

C
H

A
P

T
E

R

6
CONCLUSIONS AND PERSPECTIVES

Contents
6.1 Conclusions . 177

6.2 Perspectives . 179

6.1 Conclusions

This thesis deals with the fault diagnosis of discrete event systems (DES) modeled by
labeled Petri nets (LPN). Particularly, the monolithic diagnosability and modular diagnos-
ability issues are studied. Some approaches exploiting the structural properties of LPN
are proposed to cope with the computational complexity and combinatorial explosion.

• For monolithic diagnosability analysis: (1) we have first proposed some reduction
rules to simplify the given LPN model before analyzing the diagnosability property
and we have proved that the diagnosability of reduced LPN model keeps consistent
with that of initial LPN model; (2) we have proposed a new sufficient condition for
the diagnosability of a safe and live LPN. We have developed an approaches based on
checking the T-invariants to verify this sufficient condition by using linear program-
ing technique; (3) the on-the-fly diagnosability analysis for bounded LPN in [Liu+14]
has been improved by using minimal explanations, which provides a compact man-
ner to build the state space; (4) the T-invariants are applied to define the priorities
of investigating branches in order to find quickly the existing indeterminate cycle;
(5) the on-the-fly diagnosability analysis using Verifier Nets has been proposed for
diagnosability analysis of both bounded and unbounded LPN model, which achieves a
compromise between computation efficiency and combinatorial explosion limitation.
By using these approaches, we have proposed a synthetic solution for diagnosability

177

CHAPTER 6. CONCLUSIONS AND PERSPECTIVES

Chapter 1
Introduction

Chapter 2
Problem statement and

positioning of the works

Chapter 3 Monolithic diagnosability
analysis using LPN
− Reduction rules
− Sufficient condition for
safe and live LPN
− On-the-fly analysis using
minimal explanantions
− On-the-fly analysis using T-invarints
− On-the-fly analysis using VN

Chapter 4 Modular diagnosability
analysis using LPN
− Reduction rules
− Local diagnosability analysis
with VN and MRG
− Incremental modular
diagnosability analysis
− ε−reduction to reduce
combinatorial explosion

Chapter 5
Case study

Chapter 6
Conclusions and perspectives

Figure 6.1 – Structure of this thesis

analysis of different types of LPN models. For a given LPN model, we can apply the
reduction rules a priori to simplify the LPN model. The sufficient condition for diag-
nosability analysis of a safe and live LPN; the on-the-fly diagnosability analysis using
minimal explanations and T-invariants can be applied for diagnosability analysis of
a bounded LPN that does not deadlock after the occurrence of a fault; the on-the-fly
diagnosability analysis using VN can be applied for diagnosability analysis of an
unbounded LPN.

• A new approach is presented for modular diagnosability analysis by releasing the
strong assumption of liveness in [Con+06]. We have applied the reduction rules and
have proved that by using these rules, the modular diagnosability of reduced system
is preserved. Then we decompose a given LPN model as a sound decomposition,
which is a collection of LPN modules. The local diagnosability of each module is ana-
lyzed by building Verifier Net (VN) and its Modified Reachability Graph (MRG). For
each model that is not locally diagnosable, the parallel composition of its MRG and
the Reachability Graph (RG) of a composed module is built. The ε−reduction tech-
nique is used to reduce the combinatorial explosion. The computational complexity
of this approach is lower than that of the approaches in literature.

178

6.2. PERSPECTIVES

6.2 Perspectives

In the future, this work on fault diagnosis of DES could be extended on the following
perspectives:

1. For monolithic diagnosability analysis:

• More reduction rules could be proposed with the proof that the diagnosability
property is preserved. Some observable transitions that are not ELOT may also
be suppressed;

• A software tool needs to be developed for the on-the-fly diagnosability analysis
using minimal explanations and T-invariants, in order to compare the perfor-
mance with other approaches for diagnosability analysis of large-scale LPN
models;

• For the on-the-fly diagnosability analysis using VN, the priorities of investi-
gating branches could be defined even for an unbounded LPN model. It can
be defined if we can develop some efficient methods to obtain the repetitive
sequences.

2. For modular diagnosability analysis:

• The assumptions considering that the shared transitions are observable tran-
sitions, could be removed and the approaches need to be developed under
the assumptions: (i) some share transitions are unobservable; (ii) the shared
transition is observable to several modules but is unobservable to the others;

• New approaches for on-line modular diagnosis need to be developed. The
diagnoser-based approach has an important computational complexity and in
certain cases, these approaches are no longer applicable.

179

Résumé

Cette thèse porte sur le diagnostic des systèmes à événements discrets (SED)

complexes, modélisés par des réseaux de Petri labellisés (RdP-L). Ce travail est

accompli au sein de l’équipe de recherche MOSES (Modèles et Outils formels

pour des Systèmes à Evénements discrets Sûrs) du laboratoire CRIStAL (Centre

de Recherche en Informatique, Signal et Automatique de Lille, UMR 9189), sous

la direction du Prof. Armand Toguyéni et le co-encadrement de Dr. Manel Khlif-

Bouassida.

Avec le progrès des nouvelles technologies, les systèmes sont de plus en plus

performants et leur complexité est, par conséquent, en augmentation continue.

Lorsque au cours d’exploitation, un système peut être soumis à des défaillances

critiques voire catastrophiques, il est nécessaire de mettre en œuvre un diagnostic

en ligne afin de réagir rapidement pour confiner ces défaillances.

Ce travail de thèse concerne le diagnostic en ligne des SED. Deux propriétés

principales caractérisent le fonctionnement d’un SED : (1) le mécanisme de tran-

sition d’un état à un autre est déclenché par un événement ; (2) l’espace d’états

est discret. Les deux outils formels les plus utilisés, dans le cadre des SED, sont

les automates et les réseaux de Petri (RdP). En pratique, de nombreux systèmes

peuvent être modélisés en tant que SED : tels que les systèmes de télécommu-

nication, les systèmes de transport, les systèmes d’alimentation ou les systèmes

de production manufacturière. Le comportement d’un SED est surveillé par des

événements observables, qui peuvent être générés par des capteurs. Néanmoins,

il existe également des événements non observables qui ne sont pas directement

générés par des capteurs. Dans le cadre de cette thèse, les comportements fautifs

sont modélisés par des événements non observables. Le diagnostic est fait en ligne

180

et l’analyse de la diagnosticabilité est fait hors ligne. Le diagnostic en ligne consiste

à déduire l’occurrence de fautes (représentés par des événements non observables)

et leur classe en utilisant les événements observables, au cours du fonctionnement

du système. La diagnosticabilité représente la capacité du système à détecter une

faute dans un délai fini après son occurrence, basée sur des observations. La diag-

nosticabilité est vérifiée hors ligne (au stade de la conception du système) et doit

être garantie avant la mise en œuvre du système.

Dans la littérature, les chercheurs ont proposé des approches pour le diagnostic

en ligne et l’analyse de la diagnosticabilité. La première approche proposée est celle

du “Diagnostiqueur” proposé par Sampath en 1995. Cette approche est introduite

pour le diagnostic et aussi l’analyse de la diagnosticabilité d’un SED modélisé par

un automate. La complexité de calcul exponentielle et l’explosion combinatoire

sont les problèmes majeurs de cette approche. Par la suite, afin de combattre

l’explosion combinatoire, certains chercheurs se sont intéressé à l’exploitation des

réseaux de Petri (RdP) qui modélisent des manière plus naturelle le parallélisme

et la synchronisation. Cependant, les problème de la complexité de calcul et de

l’explosion combinatoire existent encore dans une certaine mesure. Pour faire face

à ces problèmes d’analyse de la diagnosticabilité, de nombreuses techniques ont

été proposées dans la littérature.

D’autre alternatives ont été proposées pour combattre la complexité. Ainsi, au

lieu d’analyser le système monolithique, les architectures de diagnostic décentral-

isé, de diagnostic modulaire et de diagnostic distribué ont été proposées dans la lit-

térature, afin de réduire la complexité de l’analyse de la diagnosticabilité. L’objectif

principal est d’obtenir la même qualité de diagnostic monolithique qu’avec les

approches monolithiques sans construire le diagnostiqueur monolithique. Cette

181

thèse s’intéresse au architecture modulaire, afin de traiter la complexité de calcul

et l’explosion combinatoire.

Les contributions de cette thèse consistent en deux parties : une partie sur

l’analyse de la diagnosticabilité monolithique et l’autre partie sur l’analyse de la

diagnosticabilité modulaire des SED modélisés par les RdP-L.

En ce qui concerne l’analyse de la diagnosticabilité monolithique pour des

RdP-L, de nouvelles techniques sont proposées cette thèse, sous des hypothèses

différentes :

1. Certaines règles de réduction sont proposées pour simplifier le modèle RdP-L

initial avant d’analyser sa diagnosticabilité. En effet, certaines transitions et

places pourraient être supprimées sous certaines conditions. Il est prouvé que

la diagnosticabilité est préservée après l’utilisation de ces règles de réduction.

Ces règles sont un complément pour la plupart des approches existantes

d’analyse de la diagnosticabilité basée sur les RdP-L. Le coût de mémoire est

plus faible pour analyser le modèle réduit.

2. Une nouvelle condition suffisante de la diagnosticabilité d’un RdP-L sauf et

vivant est proposée, ce qui améliore la condition suffisante de Wen en 2005.

Nous avons proposé une méthode basée sur la technique de la programma-

tion linéaire pour vérifier cette condition suffisante. Si la condition suffisante

n’est pas vérifiée, il faut construire l’espace d’états et le modèle de diagnostic

afin de vérifier l’existence d’un cycle indéterminé.

3. L’analyse à-la-volée de Liu est améliorée en utilisant la technique des expli-

cations minimales. Cette technique permet de construire un espace d’états

du système et le modèle de diagnostic d’une manière compacte pour réduire

182

l’explosion combinatoire. Les nouveaux algorithmes sont proposés pour

construire à-la-volée et en parallèle le BFG (Basis Fault Marking Graph, en

français graphe des marquages étendus basiques) et le BFST (Basis Fault

Marking Set Tree, en français arbre d’ensembles de marquages étendus

basiques). Il est prouvé que les algorithmes se terminent bien et le verdict de

la diagnosticabilité est correct.

4. L’analyse à-la-volée est également améliorée en utilisant des T-semiflows.

En utilisant des T-semiflows, les priorités d’exploration des branches sont

définies. Des nouveaux algorithmes sont proposés afin de chercher rapide-

ment un cycle indéterminé. Pour un RdP-L non-diagnosticable, l’efficacité de

l’analyse à-la-volée est particulièrement améliorée.

5. L’analyse à-la-volée utilisant des Verifier Nets (VN) a également été proposée.

Elle peut être utilisée pour les RdP-L bornés et non-bornés. La complexité

de calcul est polynomiale pour l’analyse de la diagnosticabilité d’un RdP-L

borné. Cette contribution permet d’obtenir un compromis entre l’efficacité

du calcul et la limitation d’explosion combinatoire.

En ce qui concerne l’analyse de la diagnosticabilité modulaire, nous avons

proposé une nouvelle méthode. Cette méthode peut être utilisée pour analyser la

diagnosticabilité modulaire d’un RdP-L qui peut être décomposé sainement.

1. La décomposition modulaire d’un RdP-L est d’abord proposée. Basé sur cette

notion, la définition de la diagnosticabilité modulaire d’un modèle de RdP-L

est proposée. De plus, l’hypothèse de vivacité dans l’approche de Contant en

2006 est relâchée. Nous supposons qu’il peut exister des blocages dans un

module.

183

2. Certaines règles de réduction sont appliquées pour simplifier le RdP-L avant

d’analyser la diagnosticabilité modulaire. Il est prouvé que la propriété de la

diagnosticabilité modulaire est préservée après l’utilisation de ces règles de

réduction.

3. En analysant la diagnosticabilité locale des modules locaux, une nouvelle

approche est proposée basée sur l’approche de VN. Une nouvelle structure

appelée le graphe d’accessibilité modifié (GAM) du VN a été définie. Une

condition suffisante et nécessaire de la diagnosticabilité locale est donnée. La

complexité de cette approche est la même que celle de l’approche du VN.

4. Une nouvelle approche pour l’analyse de la diagnosticabilité modulaire est

proposée. La composition parallèle de GAM et le graphe d’accessibilité d’un

module composé est construit, afin de vérifier la diagnosticabilité modulaire.

Une condition suffisante et nécessaire de la diagnosticabilité modulaire est

proposée. La technique de ε−réduction est utilisée pour simplifier les struc-

tures, avant de faire la composition parallèle, afin de réduire le problème

d’explosion combinatoire. La complexité de cette approche est polynomiale

et plus faible que d’autres approches dans la littérature.

Certaines évaluations expérimentales sont fournies pour évaluer nos différentes

approches proposées. Elle sont basées sur l’utilisation de deux benchmarks de

la littérature : un système de production manufacturière et un passage à niveau

ferroviaire. La diagnosticabilité monolithique et la diagnosticabilité modulaire

des deux modèles sont analysées. Pour conclure, les résultats montrent que les

techniques proposées dans cette thèse, sont capables d’analyser efficacement la

diagnosticabilité monolithique ou la diagnosticabilité modulaire des SED com-

plexes.

184

BIBLIOGRAPHY

[Bas+12] F. Basile, P. Chiacchio, and G. De Tommasi. “On K-diagnosability of Petri Nets
via Integer Linear Programming”. In: Automatica 48.9 (2012), pp. 2047–2058
(pages 55, 69, 197).

[Ber86] G. Berthelot. “Checking Properties of Nets Using Transformation”. In: Ad-
vance in Petri Nets. Springer, 1986, pp. 19–40 (pages 56, 57).

[Ber87] G. Berthelot. “Transformations and Decompositions of Nets”. In: Petri Nets:
Central Models and Their Properties Vol. 254 (1987), pp. 359–376 (pages 56, 57,
59).

[Ber+04] B. Berthomieu, P. Ribet, and F. Vernadat. “The Tool TINA Construction of
Abstract State Spaces for Petri Nets and Time Petri Nets”. In: International
Journal of Production Research 42.14 (2004), pp. 2741–2756 (pages 154, 215).

[Bha+95] G. Bhat, R. Cleaveland, and O. Grumberg. “Efficient On-the-Fly Model Check-
ing for CTL”. In: Logic in Computer Science, 1995. LICS’95. Proceedings., Tenth
Annual IEEE Symposium on. IEEE. 1995, pp. 388–397 (pages 44, 50).

[BS02] R. Boel and J. van Schuppen. “Decentralized Failure Diagnosis for Discrete-
Event Systems with Costly Communication Between Diagnosers”. In: WODES’02:
Sixth International Workshop on Discrete Event Systems, 2002. 2002, pp. 175–181
(pages 109, 197).

[Bou16] A. Boussif. “Contributions to Model-based Diagnosis of Discrete-Event Sys-
tems”. PhD thesis. 2016 (pages 150, 151, 169).

[BG15] A. Boussif and M. Ghazel. “Diagnosability Analysis of Input/Output Discrete-
Event Systems using Model-checking”. In: 5th International Workshop on De-
pendable Control of Discrete Systems - DCDS’2015. Elsevier Ltd., 2015, pp. 71–78
(pages 36, 197).

185

[Bou+15] A. Boussif, M. Ghazel, and K. Klai. “Combining Enumerative and Symbolic
Techniques for Diagnosis of Discrete-Event Systems”. In: 9th nternational
Workshop on Evaluation of Computer and Communication Systems. 2015 (pages 36,
197).

[Cab+09a] M. Cabasino, A. Giua, and C. Seatzu. “Diagnosability of Bounded Petri Nets”.
In: Proc. of the 48th IEEE Conf. on decision and control. Shanghai, China. December.
2009, pp. 1254–1260 (pages 41, 69, 197).

[Cab+09b] M. Cabasino, A. Giua, and C. Seatzu. “Diagnosis of Discrete Event Systems
Using Labeled Petri Nets”. In: DCDS09: 2nd IFAC Workshop on Dependable
Control of Discrete Systems (Bari, Italy). 2009 (pages 41, 197).

[Cab+10a] M. Cabasino, A. Giua, A. Paoli, and C. Seatzu. “Decentralized diagnosis of
Petri nets”. In: 2010 American Control Conference, IEEE. 2010, pp. 3371–3377
(pages 108, 197).

[Cab+10b] M. Cabasino, A. Giua, and C. Seatzu. “Fault Detection for Discrete Event
Systems Using Petri Nets with Unobservable Transitions”. In: Automatica 46.9
(2010), pp. 1531–1539 (page 73).

[Cab+11] M. Cabasino, A. Giua, A. Paoli, and C. Seatzu. “Decentralized Diagnosability
Analysis of Discrete Event Systems using Petri Nets”. In: 18th IFAC World
Congress. Milano, Italy, 2011, pp. 6060–6066 (pages 109, 197).

[Cab+12] M. Cabasino, A. Giua, S. Lafortune, and C. Seatzu. “A New Approach for Di-
agnosability Analysis of Petri Nets Using Verifier Nets”. In: IEEE Transactions
Automatic Control 57.12 (2012), pp. 3104–3117 (pages 6, 37, 44, 45, 51–53, 56,
69, 91, 93, 98–100, 129, 146, 147, 197).

[Cab+14] M. Cabasino, A. Giua, and C. Seatzu. “Diagnosis of Discrete Event Systems
Using Labeled Petri Nets”. In: IEEE Transactions on Automation Science and
Engineering 11.1 (2014), pp. 144–153 (pages 10, 37, 39, 41, 44, 45, 63, 72, 73, 91,
129, 150, 198).

[Cab+15a] F. Cabral, M. Moreira, O. Diene, and J. Basilio. “A Petri Net Diagnoser for Dis-
crete Event Systems Modeled by Finite State Automata”. In: IEEE Transactions
on Automatic Control 60.1 (2015), pp. 59–71 (pages 37, 197).

[Cab+15b] F. Cabral, M. Moreira, and O. Diene. “Online Fault Diagnosis of Modular
Discrete-Event Systems”. In: IEEE 54th Annual Conference on Decision and
Control (CDC) (2015), pp. 4450–4455 (pages 116, 198).

186

[CL07] C. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Springer,
2007 (pages 26, 29, 30, 45).

[ĆP13] G. Ćirović and D. Pamučar. “Decision Support Model for Prioritizing Railway
Level Crossings for Safety Improvements: Application of the Adaptive Neuro-
fuzzy System”. In: Expert Systems with Applications 40.6 (2013), pp. 2208–2223
(page 205).

[Con+06] O. Contant, S. Lafortune, and D. Teneketzis. “Diagnosability of Discrete
Event Systems with Modular Structure”. In: Discrete Event Dynamic Systems
16 (2006), pp. 9–37 (pages 6, 103, 104, 110–113, 115, 116, 122, 125, 126, 134, 135,
146, 147, 171, 178, 198).

[Cor+90] T. Cormen, C. Leiserson, and R. Rivest. Introduction of Algorithms. Cambridge,
MA: MIT Press, 1990 (page 99).

[DA05] R. David and H. Alla. Discrete, Continuous,and Hybrid Petri Nets. Springer,
2005 (page 38).

[Deb+00] R. Debouk, S. Lafortune, and D. Teneketzis. “Coordinated Decentralized
Protocols for Failure Diagnosis of Discrete Event Systems”. In: Discrete Event
Dynamic Systems 10.1 (2000), pp. 33–86 (pages 104, 105, 107, 198).

[Dot+09] M. Dotoli, M. Fanti, A. Mangini, and W. Ukovich. “On-line Fault Detection in
Discrete Event Systems by Petri Nets and Integer Linear Programming”. In:
Automatica 45.11 (2009), pp. 2665–2672 (pages 55, 198).

[Edw+97] S. Edwards, L. Lavagno, E. Lee, and A. Sangiovanni-Vincentelli. “Design of
Embedded Systems: Formal Models, Validation, and Synthesis”. In: Proceed-
ings of the IEEE 85.3 (1997), pp. 366–387 (page 4).

[Fan+13] M. Fanti, A. Mangini, and W. Ukovich. “Fault Detection by Labeled Petri
Nets in Centralized and Distributed Approaches”. In: IEEE Transactions on
Automation Science and Engineering 10.2 (2013), pp. 392–404 (pages 121, 198).

[Far+11] G. Faraut, L. Piétrac, and E. Niel. “Process Tracking by Equivalent States in
Modal Supervisory Control”. In: IEEE International Conference on Emerging
Technologies and Factory Automation, ETFA (2011) (page 4).

[Fer+92] J. Fernandez, L. Mounier, C. Jard, and T. Jéron. “On-the-fly Verification of
Finite Transition Systems”. In: Formal Methods in System Design 1.2-3 (1992),
pp. 251–273 (pages 44, 50, 100).

187

[GL03] S. Genc and S. Lafortune. “Distributed Diagnosis of Discrete-Event Systems
Using Petri Nets”. In: International Conference on Application and Theory of Petri
Nets. 2003, pp. 316–336 (pages 117, 118, 121, 198).

[GL07] S. Genc and S. Lafortune. “Distributed Diagnosis of Place-Bordered Petri
Nets”. In: IEEE Transactions on Automation Science and Engineering 4.2 (2007),
pp. 206–219 (pages 104, 121, 198).

[Gha17] M. Ghazel. “A Control Scheme for Automatic Level Crossings under the
ERTMS/ETCS Level 2/3 Operation”. In: IEEE Transactions on Intelligent Trans-
portation Systems (2017) (page 4).

[GE07] M. Ghazel and E.-M. El Koursi. “Automatic Level Crossings : From Informal
Functional Requirements ’ Specifications to the Control Model Design”. In:
IEEE International Conference on Systems Engineering. 2007 (page 205).

[GEK14] M. Ghazel and E.-M. El-Koursi. “Two-Half-Barrier Level Crossings Versus
Four-Half-Barrier Level Crossings : A Comparative Risk Analysis Study”. In:
IEEE Transactions on Intelligent Transportation Systems 15.3 (2014), pp. 1123–
1133 (page 205).

[GL16] M. Ghazel and B. Liu. “A Customizable Railway Benchmark to Deal with
Fault Diagnosis Issues in DES”. In: 2016 13th International Workshop on Discrete
Event Systems, WODES 2016. Vol. 1. 2016, pp. 177–182 (page 169).

[Gha09] M. Ghazel. “Using Stochastic Petri Nets for Level-Crossing Collision Risk
Assessment”. In: IEEE Transactions on Intelligent Transportation Systems 10.4
(2009), pp. 668–677 (page 205).

[Giu08] A. Giua. “A Benchmark for Diagnosis”. In: 9th International Workshop on
Discrete Event Systems, WODES 2008. 2008, pp. 1–2 (page 149).

[GS05] A. Giua and C. Seatzu. “Fault Detection for Discrete Event Systems Using
Petri Nets with Unobservable Transitions”. In: Proc. 44th IEEE Conf. on Decision
and Control, and the European Control Conference. 2005, pp. 6323–6328 (page 87).

[Gou+14] H. E. Gougam, A. Subias, and Y. Pencolé. “Discriminability Analysis of Su-
pervision Patterns by Net Unfoldings”. In: 12th IFAC International Workshop
on Discrete Event Systems-WODES’14. Vol. 12. 2. IFAC, 2014, pp. 459–464
(pages 56, 198).

[Gra09] A. Grastien. “Symbolic Testing of Diagnosability”. In: 20th International Work-
shop on Principles of Diagnosis (DX-09). 2009, pp. 131–138 (pages 37, 198).

188

[Haj+12] S. Hajjar, E. Dumitrescu, and E. Niel. “A Component-based Safe Design
Method for Train Control Systems”. In: 6th European Congress on Embedded
Real-Time Software and Systems. 2012 (page 4).

[Haj+13] S. Hajjar, E. Dumitrescu, and E. Niel. “Safe Design Method of Embedded
Control Systems. Case Study”. In: ournal Européen des Systèmes Automatisés
(JESA) 47 (2013), pp. 403–421 (page 4).

[Hos+13] M. Hosseini, B. Lennartson, M. Cabasino, and C. Seatzu. “A Survey on Effi-
cient Diagnosability Tests for Automata and Bounded Petri Nets”. In: IEEE In-
ternational Conference on Emerging Technologies and Factory Automation, (ETFA).
2013, pp. 1–6 (pages 7, 149–151).

[Jia+01] S. Jiang, Z. Huang, V. Chandra, and R. Kumar. “A Polynomial Algorithm for
Testing Diagnosability of Discrete Event Systems”. In: IEEE Transactions on
Automatic Control 46.8 (2001), pp. 1318–1321 (pages 31, 44, 45, 129, 198).

[JB05] G. Jiroveanu and R. Boel. “Distributed Diagnosis for Petri Nets Models with
Unobservable Interactions via Common places”. In: IEEE 44th IEEE Conference
on Decision and Control. 2005, pp. 6305–6310 (pages 121, 198).

[JB10] G. Jiroveanu and R. Boel. “The Diagnosability of Petri Net Models Using
Minimal Explanations”. In: IEEE Transactions on Automatic Control 55.7 (2010),
pp. 1663–1668 (pages 39, 45, 55, 69, 198).

[KM69] R. Karp and R. Miller. “Parallel Program Schemata: a Mathematical Model for
Parallel Computation”. In: Journal of Computer and system Sciences 3.2 (1969),
pp. 147–195 (page 95).

[KG09] L. Khoudour and M. Ghazel. “Towards Safer Level Crossings: Existing Rec-
ommendations , New Applicable Technologies and a Proposed Simulation
Model”. In: European transport research review 1.1 (2009), pp. 35–45 (page 205).

[Laf00] S. Lafortune. UMDES Software Library. 2000 (page 155).

[Lef14a] D. Lefebvre. “Fault Diagnosis and Prognosis With Partially Observed Petri
Nets”. In: IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS:
SYSTEMS 44.10 (2014), pp. 1413–1424 (pages 56, 198).

[Lef14b] D. Lefebvre. “On-Line Fault Diagnosis With Partially Observed Petri Nets”.
In: IEEE Transactions on Automatic Control 59.7 (2014), pp. 1919–1924 (pages 56,
198).

189

[Lef16] D. Lefebvre. “Diagnosability of Petri Nets with Observation Graphs”. In:
Discrete Event Dynamic Systems: Theory and Applications 26.3 (2016), pp. 539–
559 (pages 55, 198).

[LD07] D. Lefebvre and C. Delherm. “Diagnosis of DES With Petri Net Models”. In:
IEEE Transactions on Automation Science and Engineering 4.1 (2007), pp. 114–118
(pages 55, 198).

[LS85] N. G. Leveson and J. Stolzy. “Analyzing Safety and Fault Tolerance using
Time Petri Nets”. In: International Joint Conference on Theory and Practice of
Software Development. 1985, pp. 339–355 (pages 206, 209).

[Li+15a] B. Li, M. Khlif-bouassida, and A. Toguyéni. “Diagnosticabilité de Réseaux
de Petri Labellisés basée sur les Explications Minimales et les T-semiflots”.
In: 10ème Colloque sur la Modélisation des Systèmes Réactifs (MSR 2015). 2015
(pages 26, 102).

[Li+15b] B. Li, B. Liu, and A. Toguyéni. “On-the-fly Diagnosability Analysis of Labeled
Petri Nets Using Minimal Explanations”. In: 9th IFAC Symposium on Fault
Detection, Supervision and Safety for Technical Processes - SAFEPROCESS’2015.
2015, pp. 326–331 (pages 26, 63, 69, 78, 102, 198).

[Li+15c] B. Li, M. Khlif-bouassida, and A. Toguyéni. “On-the-fly Diagnosability Analy-
sis of Labeled Petri Nets Using T-invariants”. In: 5th International Workshop on
Dependable Control of Discrete Systems - DCDS’2015. 2015, pp. 64–70 (pages 26,
56, 63, 82, 102, 198).

[Li+16a] B. Li, M. Khlif-bouassida, and A. Toguyéni. “Diagnosis and Diagnosability
Analysis of Labeled Petri Nets Using Reduction Rules”. In: 13th International
Workshop on Discrete Event Systems, WODES’2016. 2016, pp. 171–176 (pages 25,
57, 59, 60, 198).

[Li+16b] B. Li, M. Khlif-bouassida, and A. Toguyéni. “On-the-fly Diagnosability Anal-
ysis of LPN Using Verifier Nets”. In: 3rd International Conference on Control
and Fault-Tolerant Systems-SYSTOL’16. 2016, pp. 305–312 (pages 26, 91, 93).

[Li+17a] B. Li, M. Khlif-bouassida, and A. Toguyéni. “Diagnosability of Labeled Petri
Nets using Minimal Explanations and T-invariants”. In: Discrete Event Dy-
namic Systems, (second review) (2017) (page 26).

190

[Li+17b] B. Li, M. Khlif-bouassida, and A. Toguyéni. “On-the-fly Diagnosability AN-
nalysis of Bounded and Unbounded LPN using Verifier Nets”. In: Interna-
tional Journal of Applied Mathematics and Computer Science, (submitted) (2017)
(page 26).

[Li+17c] B. Li, J. C. Basilio, M. Khlif-bouassida, and A. Toguyéni. “Polynomial Time
Verification of Modular Diagnosability of Discrete Event Systems”. In: IFAC2017
World Congress. 2017 (page 104).

[Li+17d] B. Li, M. Khlif-bouassida, and A. Toguyéni. “Reduction Rules for Diagnos-
ability Analysis of Complex Systems Modeled by Labeled Petri Nets”. In:
IEEE Transactions on Automation Science and Engineering, (submitted) (2017)
(page 25).

[Liu14] B. Liu. “An Efficient Approach for Diagnosability and Diagnosis of DES
Based on Labeled Petri Nets - Untimed and Timed Contexts”. PhD thesis.
Ecole Centrale de Lille, 2014 (pages 46, 168, 169, 174, 205).

[Liu+14] B. Liu, M. Ghazel, and A. Toguyéni. “Toward an Efficient Approach for
Diagnosability Analysis of DES Modeled by Labeled Petri Nets”. In: 13th
European Control Conference - ECC’2014. 2014, pp. 1293–1298 (pages 5, 37, 45,
47, 56, 63, 69, 72–74, 76, 78, 79, 81, 82, 102, 129, 177, 198).

[Liu+16] B. Liu, M. Ghazel, and A. Toguyéni. “Model-Based Diagnosis of Multi-Track
Level Crossing Plants”. In: IEEE Transactions on Intelligent Transportation Sys-
tems 17.2 (2016), pp. 546–556 (pages 4, 7, 123, 149, 169, 174).

[Mad+10] A. Madalinski, F. Nouioua, and P. Dague. “Diagnosability Verification with
Petri Net Unfoldings”. In: International Journal of Knowledge-Based and In-
telligent Engineering Systems 2 (2010), pp. 49–55 (pages 56, 198).

[MS82] J. Martínez and M. Silva. “A Simple and Fast Algorithm to Obtain All Invari-
ants of a Generalized Petri Net”. In: Informatik-Fachberichte 52: Application and
Theory of Petri Nets. 1982, pp. 301–310 (page 87).

[Mm+13] J. Medina-marin, J. Seck-tuoh mora, N. Hernandez-romero, J. Quezada-
quezada, and P. Soto. “Petri Net Reduction Rules Through Incidence Matrix
Operations”. In: Proc. of the European Modeling and Simulation Symposium. 2013,
pp. 496–503 (pages 57, 151, 201, 202).

191

[Mek+12] A. Mekki, M. Ghazel, and A. Toguyéni. “Validation of a New Functional
Design of Automatic Protection Systems at Level Crossings with Model-
Checking Techniques”. In: IEEE Transactions on Intelligent Transportation Sys-
tems 13.2 (2012), pp. 714–723 (page 205).

[Mor+11] M. Moreira, T. Jesus, and J. Basilio. “Polynomial Time Verification of Decen-
tralized Diagnosability of Discrete Event Systems”. In: IEEE Transactions on
Automatic Control 56.7 (2011), pp. 1679–1684 (pages 33, 36, 109, 198).

[Mor+16] M. Moreira, J. Basilio, and F. Cabral. ““Polynomial Time Verification of De-
centralized Diagnosability of Discrete Event Systems” versus “Decentralized
Failure Diagnosis of Discrete Event Systems”: A critical Appraisal”. In: IEEE
Transactions on Automatic Control 61.1 (2016), pp. 178–181 (pages 109, 198).

[Mur89] T. Murata. “Petri Nets: Properties, Analysis and Applications”. In: Proceedings
of the IEEE 77.4 (1989), pp. 541–580 (pages 56, 57).

[MP13] D. Myadzelets and A. Paoli. “Virtual Modules in Discrete-Event Systems:
Achieving Modular Diagnosability”. In: arXiv preprint arXiv:1311.2850. 2013.
arXiv: 1311.2850 (pages 116, 135, 146, 147, 198).

[NN04] M. Nourelfath and E. Niel. “Modular Supervisory Control of an Experimen-
tal Automated Manufacturing System”. In: Control Engineering Practice 12.2
(2004), pp. 205–216 (page 4).

[Paq+14] D. Paquereau, L. Pietrac, E. Niel, and L. Bouresche. “Determining of Critical
and Dreaded States Achieved during Metro Line Supervision”. In: 22nd
Mediterranean Conference on Control and Automation, MED 2014. 2014, pp. 224–
230 (page 4).

[PC02] C. Pecheur and A. Cimatti. “Formal Verification of Diagnosability via Sym-
bolic Model Checking”. In: Workshop on Model Checking and Artificial Intelli-
gence. 2002 (pages 36, 198).

[Pen00] Y. Pencolé. “Decentralized Diagnoser Approach : Application to Telecom-
munication Networks”. In: International Workshop on Principles of Diagnosis
(DX’00). 2000, pp. 185–192 (pages 108, 198).

[Pen04] Y. Pencolé. “Diagnosability Analysis of Distributed Discrete Event Systems”.
In: International Workshop on Principles of Diagnosis (DX’04). 2004, pp. 173–178
(pages 116, 199).

192

http://arxiv.org/abs/1311.2850

[Pen+15] Y. Pencolé, R. Pichard, and P. Fernbach. “Modular Fault Diagnosis in Discrete-
Event Systems with a CPN Diagnoser”. In: 9th IFAC Symposium on Fault
Detection, Supervision and Safety for Technical Processes - SAFEPROCESS’2015.
2015, pp. 470–475 (pages 116, 123, 199).

[Pet62] C. Petri. “Kommunikation Mit Automaten”. PhD thesis. 1962 (page 17).

[QK06] W. Qiu and R. Kumar. “Decentralized Failure Diagnosis of Discrete Event Sys-
tems”. In: IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems
and Humans 36.2 (2006), pp. 384–395 (pages 33, 109, 199).

[ST15] R. Saddem and A. Toguyéni. “A Modeling Method for the Diagnosis of
Embedded Systems based on a Discrete Behavior”. In: 15th IFAC Symposium
on Information Control Problems in Manufacturing - INCOM 2015. Vol. 48. 3.
2015, pp. 755–760 (page 4).

[Sam+95] M. Sampath, R. Sengupta, and S. Lafortune. “Diagnosability of Discrete-Event
Systems”. In: IEEE Transactions Automatic Control 40.9 (1995), pp. 1555–1575
(pages 9, 25–28, 30, 36, 44–46, 50, 56, 63, 68, 69, 72, 102, 116, 119, 120, 129, 146,
150, 154, 155, 199, 215).

[Sam+96] M. Sampath, R. Sengupta, S. Lafortune, and K. Sinnamohideen. “Failure
Diagnosis Using Discrete-Event Models”. In: IEEE Transactions Automatic
Control 4.2 (1996), pp. 105–124 (pages 25, 199).

[Sch10] K. Schmidt. “Abstraction-based Failure Diagnosis for Discrete Event Sys-
tems”. In: Systems & Control Letters 59.1 (2010), pp. 42–47 (pages 36, 199).

[Sch13] K. Schmidt. “Verification of Modular Diagnosability with Local Specifications
for Discrete-Event Systems”. In: IEEE Transactions on Systems, Man, and Cyber-
netics Part A:Systems and Humans 43.5 (2013), pp. 1130–1140 (pages 116, 146,
147, 199).

[Sch+00] S. Schulz, T. Ewing, and J. Rozenblit. “Discrete Event System Specification
(DEVS) and StateMate StateCharts Equivalence for Embedded Systems Mod-
eling”. In: Proceedings Seventh IEEE International Conference and Workshopon the
Engineering of Computer Based Systems, 2000. (ECBS 2000) (2000), pp. 308–316
(page 4).

[SE05] S. Schwoon and J. Esparza. “A Note on On-The-Fly Verification Algorithms”.
In: Tools and Algorithms for the Construction and Analysis of Systems (2005),
pp. 174–190 (pages 44, 50, 100).

193

[Sil12] M. Silva. “50 Years after the PhD Thesis of Carl Adam Petri : A Perspective”.
In: 11th IFAC Workshop on Discrete Event Systems. 2012, pp. 13–20 (page 17).

[SW02] R. Su and W. Wonham. “Distributed Diagnosis for Qualitative Systems”. In:
2002 IFAC International Workshop on Discrete Event Systems, WODES’02. 2002,
pp. 169–174 (pages 121, 199).

[SW04] R. Su and W. Wonham. “Hierarchical Distributed Diagnosis under Global
Consistency”. In: 2004 IFAC International Workshop on Discrete Event Systems,
WODES’04. 2004, pp. 157–162 (pages 121, 199).

[Tog+03] A. Toguyéni, P. Berruet, and E. Craye. “A Petri Net based Decentralized
Synthesis Approach for the Control of Flexible Manufacturing Systems I-Lb”.
In: International Journal of Flexible Manufacturing Systems 15.1 (2003), pp. 57–85
(page 4).

[Ush+98] T. Ushio, I. Onishi, and K. Okuda. “Fault Detection Based on Petri Net Mod-
els”. In: Proc. of the 1998 IEEE Conf. on systems, man, and cybernetics. San Diego,
CA, USA. October. 1998, pp. 113–118 (pages 9, 44, 55, 199).

[Ven+03] V. Venkatasubramanian, R. Rengaswamy, K. Yin, and S. N. Kavuri. “A Review
of Process Fault Detection and Diagnosis Part I: Quantitative Model-based
Methods”. In: Computers and Chemical Engineering 27.3 (2003), pp. 293–311
(page 4).

[Wan+07] Y. Wang, T. Yoo, and S. Lafortune. “Diagnosis of Discrete Event Systems using
Decentralized Architectures”. In: Discrete Event Dynamic Systems 17.2 (2007),
pp. 233–263 (pages 109, 199).

[WJ05] Y. Wen and M. Jeng. “Diagnosability Analysis Based on T-invariants of Petri
Nets”. In: Networking, Sensing and Control. 2005, pp. 371–376 (pages 38, 39,
199).

[Wen+05] Y. Wen, C. Li, and M. Jeng. “A Polynomial Algorithm for Checking Diagnos-
ability of Petri Nets”. In: Proc. SMC05: IEEE Int. Conf. on systems, Man and
Cybernetics. 2005, pp. 2542–2547 (pages 5, 37–39, 69, 70, 101, 199).

[YL02] T. Yoo and S. Lafortune. “Polynomial-Time Verification of Diagnosability of
Partially Observed Discrete-Event Systems”. In: IEEE Transactions Automatic
Control 47.9 (2002), pp. 1491–1495 (pages 33, 44, 45, 129, 146, 150, 154, 155,
199).

194

[ZL13] J. Zaytoon and S. Lafortune. “Overview of Fault Diagnosis Methods for
Discrete Event Systems”. In: Annual Reviews in Control 37.2 (2013), pp. 308–
320 (page 14).

[Zho+08] C. Zhou, R. Kumar, and R. Sreenivas. “Decentralized Modular Diagnosis of
Concurrent Discrete Event Systems”. In: 9th International Workshop on Discrete
Event Systems, WODES 2008. 2008, pp. 388–393 (pages 116, 199).

[Zho+92] M. Zhou, F. Dicesare, and D. Rudolph. “Design and Implementation of a Petri
Net based Supervisor for a Flexible Manufacturing System”. In: Automatica
28.6 (1992), pp. 1199–1208 (page 4).

195

A
P

P
E

N
D

I
X

A
LITERATURE REVIEW ON UNTIMED DES-BASED

DIAGNOSIS

R
ef

er
en

ce

A
ut

om
at

a

PN D
ia

gn
os

ab
ili

ty

O
n-

lin
e

di
ag

no
si

s

M
on

ol
it

hi
c

ar
ch

it
ec

tu
re

D
ec

en
tr

al
iz

ed
ar

ch
it

ec
tu

re

M
od

ul
ar

ar
ch

it
ec

tu
re

D
is

tr
ib

ut
ed

ar
ch

it
ec

tu
re

D
ia

gn
os

er
-b

as
ed

Ve
ri

fie
r-

ba
se

d

IL
P

O
th

er
te

ch
ni

qu
es

[Bas+12] • • • •
[BS02] • • • •
[BG15] • • • •
[Bou+15] • • • • •
[Cab+15a] • • • •
[Cab+09a] • • • •
[Cab+09b] • • • •
[Cab+10a] • • • •
[Cab+11] • • • •
[Cab+12] • • • •

197

Table A.1 continued
R

ef
er

en
ce

A
ut

om
at

a

PN D
ia

gn
os

ab
ili

ty

O
n-

lin
e

di
ag

no
si

s

M
on

ol
it

hi
c

ar
ch

it
ec

tu
re

D
ec

en
tr

al
iz

ed
ar

ch
it

ec
tu

re

M
od

ul
ar

ar
ch

it
ec

tu
re

D
is

tr
ib

ut
ed

ar
ch

it
ec

tu
re

D
ia

gn
os

er
-b

as
ed

Ve
ri

fie
r-

ba
se

d

IL
P

O
th

er
te

ch
ni

qu
es

[Cab+14] • • • •
[Cab+15b] • • • •
[Con+06] • • • •
[Dot+09] • • • •
[Deb+00] • • • •
[Fan+13] • • • •
[Gou+14] • • • •
[Gra09] • • • •
[GL03] • • • •
[GL07] • • • •
[Jia+01] • • • •
[JB05] • • • •
[JB10] • • • •
[LD07] • • • •
[Lef14b] • • • •
[Lef14a] • • • •
[Lef16] • • • •
[Li+15c] • • • •
[Li+15b] • • • •
[Li+16a] • • • • •
[Liu+14] • • • • •
[Mad+10] • • • •
[Mor+16] • • • •
[Mor+11] • • • •
[MP13] • • • •
[PC02] • • • •
[Pen00] • • • •

198

Table A.1 continued
R

ef
er

en
ce

A
ut

om
at

a

PN D
ia

gn
os

ab
ili

ty

O
n-

lin
e

di
ag

no
si

s

M
on

ol
it

hi
c

ar
ch

it
ec

tu
re

D
ec

en
tr

al
iz

ed
ar

ch
it

ec
tu

re

M
od

ul
ar

ar
ch

it
ec

tu
re

D
is

tr
ib

ut
ed

ar
ch

it
ec

tu
re

D
ia

gn
os

er
-b

as
ed

Ve
ri

fie
r-

ba
se

d

IL
P

O
th

er
te

ch
ni

qu
es

[Pen04] • • • •
[Pen+15] • • • •
[QK06] • • • •
[Sam+95] • • • • •
[Sam+96] • • • • •
[Sch10] • • • • •
[Sch13] • • • •
[SW02] • • • •
[SW04] • • • •
[Ush+98] • • • •
[Wen+05] • • • •
[WJ05] • • • •
[Wan+07] • • • •
[YL02] • • • •
[Zho+08] • • • •

199

A
P

P
E

N
D

I
X

B
ALGORITHM FOR REDUCTION RULES

In [Mm+13], the algorithms of the reduction rules used in Section 3.2.1 were proposed.
The algorithms are based on the operations of incidence matrix. There exists a problem,
while determining whether a transition (or a place) can be reduced or not by using the
incidence matrix, because the structure of a PN is consistent with its pre-incidence and
post-incidence matrices, but not the incidence matrix. In this section, the reduction rule
Fusion of Series Transitions (FST) is used to illustrate this problem.

p1 p2

p3

t1, a

ε2, εt3, a

(1) LPN1

p1 p2

p3

t1, a

ε2, εt3, a

(2) LPN2

Figure B.1 – Two examples of LPN

Example 55 Let us consider the two LPN in Figure B.1. The incident matrix of LPN1 and that of

201

LPN2 are the same:

C =


t1 ε2 t3

p1 0 0 1
p2 1 −1 0
p3 0 1 −1

;

According to the algorithm in [Mm+13], for both LPN models, the transition ε2 can be suppressed
by using the reduction rule FST. However, only the ε2 in LPN1 can be suppressed. The ε2 in LPN2

cannot be suppressed, because it is the pre- and post-transition of p1.

Consequently, the determination condition to apply the reduction rules should be
provided by using the pre-incidence and post-incidence matrix.

For a transition th, which is a regular unobservable transition er an ELOT, the reduction
FST can be applied if the pre-incidence and post-incidence matrices are as follows:

Pre =



t1 ··· th ··· tn

p1 · · · · · · 0 · · · · · ·
··· · · · · · · 0 · · · · · ·
pi i1 · · · 1 · · · in

··· · · · · · · 0 · · · · · ·
pj j1 · · · 0 · · · jn
··· · · · · · · 0 · · · · · ·
pm · · · · · · 0 · · · · · ·


; Post =



t1 ··· th ··· tn

p1 · · · · · · 0 · · · · · ·
··· · · · · · · 0 · · · · · ·
pi i1 · · · 0 · · · in

··· · · · · · · 0 · · · · · ·
pj j1 · · · 1 · · · jn
··· · · · · · · 0 · · · · · ·
pm · · · · · · 0 · · · · · ·


;

The new algorithm for the reduction rule FST is presented in Algorithm 16.

p1 p2

t1, a

t3, a

Figure B.2 – Reduced LPN of LPN1

Example 56 Let us consider the LPN in Figure B.1(1). The pre-incidence and post-incidence
matrices are as follows:

Pre =


t1 ε2 t3

p1 1 0 0
p2 0 1 0
p3 0 0 1

; Post =


t1 ε2 t3

p1 1 0 1
p2 1 0 0
p3 0 1 0

.

202

Algorithm 16 Algorithm for the reduction rule FST
Input: pre-incidence matrix Pre and post-incidence matrices Post of LPN that contains
m places and n transitions; Output: reduced pre-incidence matrix Prer and reduced post-
incidence matrices Postr;

1. Step 1: For a transition th ∈ T, which is a regular unobservable transition er an ELOT:

2. Step 2: If (∃i, Pre(i, h) = 1 and ∀x ∈ {1, · · · , m}\{i}, Pre(i, x) = 0) ∧
(∃j, Post(j, h) = 1 and ∀y ∈ {1, · · · , m}\{j}, Pre(j, y) = 0) ∧ (i 6= j);

– Step 2.1: Delete the h column of Pre and Post:

• A1 = Pre[1 · · ·m, 1 · · · h− 1], B1 = Post[1 · · ·m, 1 · · · h− 1];
• A2 = Pre[1 · · ·m, h + 1 · · · n], B1 = Post[1 · · ·m, h + 1 · · · n];
• Ad = [A1 A2], Bd = [B1 B2];

– Step 2.2: Sum the row i and the row j:

• A3 = Ad[i, 1 · · · n− 1], B3 = Bd[i, 1 · · · n− 1];
• A4 = Ad[j, 1 · · · n− 1], B4 = Bd[j, 1 · · · n− 1];
• A34 = A3 + A4, B34 = B3 + B4;

– Step 2.3: Replace the row i by A34 and remove the row j from Ad:

• A5 = Ad[1 · · · i− 1, 1 · · · n− 1], B5 = Bd[1 · · · i− 1, 1 · · · n− 1];
• A6 = Ad[i + 1 · · · j− 1, 1 · · · n− 1], B6 = Bd[i + 1 · · · j− 1, 1 · · · n− 1];
• A7 = Ad[j− 1 · · ·m, 1 · · · n− 1], B7 = Bd[j− 1 · · ·m, 1 · · · n− 1];
•

Prer =


A5
A34
A6
A7

, Postr =


B5
B34
B6
B7

.

According to the condition in Step 2 of Algorithm 16, the transition ε2 can be suppressed,
because

Pre(·, ε2) =


ε2

p1 0
p2 1
p3 0

; Post(·, ε2) =


ε2

p1 0
p2 0
p3 1

.

Using Algorithm 16, the reduced pre-incidence and post-incidence matrices are:

203

Prer =

[t1 t3

p1 1 0
p2 0 1

]
; Postr =

[t1 t3

p1 1 1
p2 1 0

]
.

The reduced LPN is shown in Figure B.2.

The algorithms for other reduction rules used in Section 3.2.1 are developed similarly,
but they are omitted in this thesis.

204

A
P

P
E

N
D

I
X

C
DEVELOPMENT OF THE LC BENCHMARK [LIU14]

A level crossing (LC), is an intersection where a railway line (or multiple railway lines)
crosses a road or path at the same level, as opposed to the railway line crossing over or
under using a bridge or a tunnel.

C.1 An overview on LC system

In France, there are more than 18,000 LCs. Every day they are traversed by an average of
16,000,000 vehicles and nearly 450,000 closing cycles take place for the passage of trains.
LCs are identified as critical safety points in both road and railway infrastructures [Gha09].
On average, 400 people are killed every year in the European Union (EU) [ĆP13]. Therefore,
safety of LCs always attracts great attention in railway operation and also in the research
area [GE07; KG09; Mek+12].

In this section, we apply our diagnosis techniques to an LC system. We consider a
bidirectional multi-track LC (or unidirectional single-track LC for the simple case) and a
bidirectional road. Generally, an LC plant is composed of train sensors set on the railway
infrastructure, local control system, sound alarm, road lights and barriers, as shown
in Figure C.1 [GEK14]. The LC global dynamics can be depicted while considering three
subsystems, namely the railway traffic, the LC controller and the barriers, which will be
detailed in Appendix C.2.

The logic of a single-track track LC is as follows: when a train approaching the LC is

205

Figure C.1 – The construction of a single-track track LC system

detected by the sensors, the barriers are lowered and the road lights show red. The LC
is reopened to road traffic as soon as the train is detected (also by train sensors) out of
the crossing zone. As for a multi-track LC, the control on barriers depends on the railway
traffic on each line:

• The LC is closed when a train approaching the LC from any line is detected by the
train sensors;

• The LC is reopened to road traffic only if no train is still in the crossing zone.

The LC dynamics will be depicted by means of PN models in the next section.

C.2 Modeling of the LC subsystems

This section presents the modeling of the LC subsystems, namely the railway traffic, the
LC controller and the barriers. The n-track LC benchmark will be built based on the
single-track LC model [LS85] with some modifications. We will give their corresponding
LPN models and operating principles. Note that, as the first step, only the normal behavior
will be modeled; some failures will be introduced afterward.

206

pi,1 pi,2 pi,3 pi,4

ti,1, api ti,2, eni ti,3, lvi

ti,4, awi

(a) the train is approaching the LC

pi,1 pi,2 pi,3 pi,4

ti,1, api ti,2, eni ti,3, lvi

ti,4, awi

(b) the train is before the LC

pi,1 pi,2 pi,3 pi,4

ti,1, api ti,2, eni ti,3, lvi

ti,4, awi

(c) the train is within the LC

pi,1 pi,2 pi,3 pi,4

ti,1, api ti,2, eni ti,3, lvi

ti,4, awi

(d) the train has left the LC

Figure C.2 – The LPN model for a train passing an LC

C.2.1 Railway traffic

Railway traffic can be modeled as an LPN composed of 4 places and 4 transitions as shown
in Figure C.2, where:

207

• Marked place pi,1 (here the subscript i denotes the track index) denotes that a train
is approaching the LC, as shown in Figure C.2(a);

• Marked place pi,2 denotes that the train has come into the section before the LC,
which can be detected by sensor (ti,1, api) (here “ap” denotes “approaching”), as
shown in Figure C.2(b);

• Marked place pi,3 denotes that the train has entered the LC, which can be detected
by sensor (ti,2, eni) (here “en” denotes “entering”), as shown in Figure C.2(c);

• Marked place pi,4 denotes that the train has left the LC, which can be detected by
sensor (ti,3, lvi) (here “lv” denotes “leaving”), as shown in Figure C.2(d). The zone
delimited by transition ti,1 and ti,3 will be called the crossing zone;

• Finally, place pi,4 is linked with pi,1 through transition (ti,4, aw4) (here “aw” denotes
that the train is “away” from the LC), which implies that the next train can approach
the LC (when pi,1 is marked) only if the previous train has left the LC crossing zone
(when pi,4 is marked). In other words, there is no overlapping between successive
train passages.

C.2.2 LC controller

The LC controller is equipment to collect trains position information from the sensors
along the track (in the railway traffic subsystem) and send controlling commands to the
barriers and the road lights. The road lights will be omitted in the model as their status can
be directly deduced from that of the barriers. It is a processing subsystem between railway
traffic and the protection subsystem. The LPN model pertaining to the LC controller is
shown in Figure C.3 and the operating principles are explained below:

• When a train enters the LC crossing zone, an alert signal is sent from sensor ti,1 to
the LC controller (place p1 will be marked). Then (t1, cr) (here “cr” denotes “closing
request”) is fired and a token is added into place p5, which means that the condition
for closing barriers is satisfied. A token is also added to place p3 upon t1 firing, to
store the information about the train arrival.

• When a train has left the LC crossing zone, its position is detected by sensor ti,3 and
this information is sent to the LC controller (place p4 will be marked). Then (t2, or)
(here “or” denotes “open request”) can be fired and a token is added into place p6,
which means that the condition for reopening barriers is satisfied.

208

p1 p2 p3 p4

p5 p6

t1, cr t2, or

ti,1, api ti,3, lvi

LC controller

Figure C.3 – The LPN model for LC controller

The LC controller holds, among others, a component called interlock [LS85]. An in-
terlock can be a hardware or a software mechanism for ensuring correct sequences of
events.

The LPN model for an interlock is shown in Figure C.4. In order to make sure that t1

has to fire before t2, a new place p5 is added as an output place of t1 and as an input place
of t2, as shown in Figure C.4(b). In other words, the introduction of the interlock (place p5

and its input/output arcs) ensures that the firing of t2 is conditioned by the firing of t1.

p1

p2

p3

p4

t1 t2

(a) without interlock

p1

p2

p3

p4

p5

t1 t2

(b) an interlock

Figure C.4 – The PN model for an interlock

In a given system, multiple interlocks may exist for ensuring the order of events in
some sequences. For example, two interlocks in the LC controller module exist, as shown
in Figure C.3: the one is formed by t1 → p3 → t2 ensuring the firing priority of t1 over
t2; and the other by t2 → p2 → t1 ensuring the firing priority of t2 over t1 after t1 has
been first fired. Such a double-interlock can make sure that t1 and t2 fire alternatively. In

209

practice, this means that the LC may be closed only if it was open and reopened only if it
was closed.

C.2.3 Barriers subsystem

The barriers are a subsystem passively responding to the commands from the LC controller.
The barrier state switches between “up” (place p7 is marked) and “down” (place p8 is
marked), i.e., the intermediary positions are ignored. The barriers can be set to “down”
(resp. “up”) to prevent (resp. permit) vehicles from crossing only if the closing (resp.
reopening) condition is satisfied. Here p7 and p8 are mutually exclusive, i.e., they cannot
be marked at the same time, since a barrier can be only up or down. The LPN model for
the barrier system is given in Figure C.5, where the labels of t7 and t8 transitions denote
“lower” and “raise” respectively.

p7, up

p8, down

other closing conditions other reopening conditions

t7, lw t8, rs

Figure C.5 – The LPN model for a barrier system

C.3 Single-track LC model

After having set up the models for the three LC subsystems, let us now establish the global
single-track LC model depicted in Figure C.6.

The railway traffic subsystem “communicates” with the LC controller through the
train sensors which send train position information. The LC controller sends “close” or
“open” command to switch the “up” and “down” states of the barriers. Place p9, together
with transitions t4 and ti,2, forms an interlock ensuring that normally the barriers must be
well lowered (transition t4 has been fired) before the train enters the LC (transition ti,2 is
fired).

In the LC, there are two classes of faults which are denoted by red colored transitions
in Figure C.7: the first one is modeled by transition (ti,5, ig) (here “ig” denotes “ignore”)

210

pi,1 pi,2 pi,3 pi,4

ti,4, awi

p1 p2 p3 p4

p5 p6

t1, cr t2, or

ti,1, api ti,3, lvi

p7, up

p8, down

p9

ti,2, ini

t4, lw t5, rs

railway traffic

LC controller

barriers

Figure C.6 – A single-track LC

indicating that the train may enter the LC crossing zone before the barriers are ensured
to be lowered; the other modeled by transition (t6, bf) (here “bf” denotes “barrier fault”)
indicating a barrier failure that results in a premature barrier raising. Each of these two
faults can induce a train-car collision.

Note that compared with the model shown in Figure C.3, there are two more arcs into
and out of place p9: the arc from ti,2 to p9 ensures that p9 is remarked after the firing of
ti,2; the other arc from p9 to ti,3 takes p9 as one of the conditions for firing ti,3. Both of
the two arcs ensure the boundedness of the LPN model. More precisely, the LPN here is
1-bounded (or n-bounded for the n-track LC model afterward).

In the following section, we will introduce a more general LPN model for the LC

211

pi,1 pi,2 pi,3 pi,4

ti,5, ig

ti,4, awi

p1 p2 p3 p4

p5 p6

t1, cr t2, or

ti,1, api

p7, up

p8, down

p9

ti,3, lvi

t6, bf

ti,2, ini

t4, lw t5, rs

n

railway traffic

LC controller

barriers

Figure C.7 – A single-track LC with two classes of faults

system, while taking into account n railway lines.

C.4 n-track LC model

Figure C.7 describes a global LPN model for a unidirectional signle-track LC. Based on this
model, a more general model is given in Figure C.8 – involving n railway tracks, which
can be obtained from the single-track LC model while fulfilling the following controlling
rules under a nominal situation:

• The LC must be closed if any approaching train is detected in any line;

212

• The LC can be reopened if there is no train in the “within” or “before” sections in
any line.

p1,1 p1,2 p1,3 p1,4

pn,1 pn,2 pn,3 pn,4

t1,5, ig

tn,5, ig

t1,4, aw1

tn,4, aw4

p1 np2 p3 p4

p5 n p6

t1, cr t2, or

t1,1, ap1

tn,1, apn

p7, up

p8, down

p9

tn,3, lvn

t1,3, lv1

t6, bf

t1,2, in1

tn,2,inn

t4, lwt3, kd t5, rs

n n

railway traffic

· · · · · ·
· · · · · ·
· · · · · ·

LC controller

barriers

Figure C.8 – n-track LC benchmark

213

In other terms, the above rules eliminate all the possibilities that the collision between
railway and road traffic may take place.

Compared with the single-track LC (cf. Figure C.7), there are several changes when
generating the n-track LC model:

• Transition t3 is newly added. In the n-track LC model, t3 can be fired if both places p5

and p8 are marked. This means that if there is an LC closing request from one of the n
lines (place p5 is marked), whereas the barriers are already in the low position (place
p8 is marked) due to a previous closing command from any other line. Then the
barriers shall remain down (transition t3 fires for clearing the request from marked
place p5 while keeping the token in p8).

• Place p2 is marked with n tokens to ensure that at most n closing requests can be
proceeded by the LC controller (place p1 is n-bounded).

• Place p6 is also marked with n tokens and denotes the reopening condition. Each
firing of t1 removes a token from p6 and puts a token into p3, meaning that the
LC cannot be reopened when at least one closing request is proceeded by the LC
controller. The LC can be reopened only if p6 is n-marked, i.e., all the trains have
passed the LC and their closing LC requests have already been treated by the LC
controller.

• The two arcs linking t5 and p6 have a weight of n. t5 can be fired only if p6 holds the
reopening condition (n tokens), i.e., no train is still in the crossing zone. The firing
of t5 also returns n tokens to p6 to indicate that at most n closing requests can be
treated (as no train is still crossing on any of n tracks).

• The arcs linking ti,2 to p9 and p9 to ti,3 ensure that, whether the train passes the
LC normally (ti,2 is fired) or upon a fault “ig” (ti,5 is fired), the token in p9 will
be removed when the train leaves the LC. This ensures the boundedness of the
LPN model, since, without these two arcs, the LPN will be unbounded due to the
unbounded place p9.

In order to obtain sufficiently large LC models for analysis, one can add as many
“railway traffic” blocks as necessary and connect them with the “LC controller” and
“barriers” blocks in the same way.

In this global model, all the transitions are observable, but the faulty transitions, i.e.,
To = T\Tu and Tu = Tf = {t6} ∪ (∪i{ti,5}).

214

The n-track LPN model can be rather big when n takes great values. The state space of
the corresponding LPN models for the various values of n can be calculated by the TINA
tool [Ber+04], as shown in Table C.1, where:

• n denotes the number of tracks in the n-track LC;

• |P| denotes the number of places in the LPN;

• |T| denotes the number of transitions in the LPN;

• |A| denotes the number of arcs in the reachability graph (RG), i.e., the number of
automaton arcs in the diagnoser approach [Sam+95].

• |R| denotes the number of nodes in the RG, i.e., the number of automaton states
when analyzing diagnosability with the diagnoser approach;

• TT denotes the time used for computing the RG (here the value of |R| and |A|) of
the PN by means of TINA on an Inter Mac (CPU: 2.8 GHz, RAM: 16 GB).

Table C.1 – Some figures about the state space of the various LC models

n |P| |T| |A| |R| TT

1 13 11 28 24 <1s
2 17 16 540 216 <1s
3 21 21 6,256 1,632 <1s
4 25 26 56,704 11,008 <1s
5 29 31 442,880 68,608 2s
6 33 36 3,126,272 403,456 11s
7 37 41 20,500,480 2,269,184 140s
8 41 46 127,074,304 12,320,768 29m
9 45 51 o.m. o.m. o.m.
Note: o.m. = out of memory

Recall here that not the whole state space will be generated while using our on-the-fly
technique. However, the RGs are generated in order to transform them into the input files
(language-equivalent automata) for UMDES.

As shown in Table C.1, the size of the RG grows very quickly as n increases, since
places p2 and p6 can hold as many as n tokens, due to which so many markings exist.

215

Titre: Diagnostic et Diagnosticabilité des Systèmes à Événements Discrets Complexes Modélisés par des
Réseaux de Petri Labellisés

Cette thèse porte sur le diagnostic des systèmes à événements discrets modélisés par des Réseaux de Petri labellisés
(RdP-L). Les problèmes de diagnostic monolithique et de diagnostic modulaire sont abordés. Des contributions sont
proposées pour résoudre les problèmes d’explosion combinatoire et de complexité de calcul.

Dans le cadre de l’analyse de la diagnosticabilité monolithique, certaines règles de réduction sont proposées
comme un complément pour la plupart des techniques existantes de l’analyse de la diagnosticabilité, qui simplifient
le modèle RdP-L tout en préservant sa propriété de diagnosticabilité. Pour un RdP-L sauf et vivant, une nouvelle
condition suffisante pour la diagnosticabilité est proposée. Pour un RdR-L borné et non bloquant après l’occurrence
d’une faute, l’analyse à-la-volée est améliorée en utilisant la notion d’explications minimales qui permettent de
compacter l’espace d’état ; et en utilisant des T-semiflots pour trouver rapidement un cycle indéterminé. Une analyse
à-la-volée utilisant Verifier Nets (VN) est proposée pour analyser à la fois les RdP-L bornés et non-bornés, ce qui permet
d’obtenir un compromis entre efficacité du calcul et limitation des explosions combinatoires.

Dans le cadre de l’analyse de la diagnosticabilité modulaire, une nouvelle approche est proposée pour les RdP-Ls
décomposés. Les règles de réduction, qui préservent la propriété de la diagnosticabilité modulaire, sont appliquées pour
simplifier le modèle initial. La diagnosticabilité locale est analysée en construisant le VN et le Graphe d’Accessibilité
Modifié (MAG) du modèle local. La diagnosticabilité modulaire est vérifiée en construisant la composition parallèle
du MAG et des graphes d’accessibilités d’autres modules du système. La complexité de calcul est inférieure à celles
des autre approches dans la littérature. D’autre part, l’explosion combinatoire est également réduite en utilisant la
technique de ε−réduction.

Mots clés : Diagnostic de fautes, Systèmes à événements discrets (SED), Réseaux de Petri labellisés (RdP-L),
Diagnosticabilité monolithique, Diagnosticabilité modulaire, Diagnostic des SED.

Title: Diagnosis and Diagnosability of Complex Discrete Event Systems Modeled by Labeled Petri Nets

This thesis deals with fault diagnosis of discrete event systems modeled by labeled Petri nets (LPN). The monolithic
diagnosability and modular diagnosability issues are addressed. The contributions are proposed to reduce the
combinatorial explosion and the computational complexity problems.

Regarding monolithic diagnosability analysis, some reduction rules are proposed as a complement for most
diagnosability techniques, which simplify the LPN model and preserve the diagnosability property. For a safe and live
LPN, a new sufficient condition for diagnosability is proposed. For a bounded LPN that does not deadlock after a fault,
the on-the-fly diagnosability analysis is improved by using minimal explanations to compact the state space; and by
using T-invariants, to find quickly an indeterminate cycle. An on-the-fly diagnosability analysis using Verifier Nets
(VN) is proposed to analyze both bounded and unbounded LPN, which achieves a compromise between computation
efficiency and combinatorial explosion limitation.

Regarding modular diagnosability analysis, a new approach is proposed for decomposed LPNs model. Reduction
rules, that preserve the modular diagnosability property, are applied to simplify the model. The local diagnosability
is analyzed by building the VN and the Modified Reachability Graph (MRG) of the local model. The modular
diagnosability is verified by building the parallel composition of the MRG and the reachability graphs of other
modules of the system. We prove in this study that the computational complexity of our approach is lower than
existing approaches of literature. The combinatorial explosion is also reduced by using the ε−reduction technique.

Keywords: Fault diagnosis, Discrete event systems (DES), Labeled Petri nets (LPN), Monolithic diagnosability,
Modular diagnosability, DES diagnosis.

	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Contributions
	Manuscript's structure

	Problem statement and positioning of the works
	Problem statement
	Positioning of the works
	Monolithic diagnosability analysis
	Modular diagnosability analysis

	Basic notions
	Automata
	Petri Nets (PNs)

	Monolithic diagnosability analysis using LPN
	Literature review
	Automata-based approaches
	Diagnoser approach
	Twin-plant approach
	Verifier approach
	Other automata-based approaches

	PN-based approaches
	Diagosability analysis by checking T-invariants
	Diagosability analysis using Minimal explanations
	On-the-fly diagnosability analysis
	Verifier Net (VN) approach
	Other PN-based approaches

	Contributions on monolithic diagnosability analysis
	Diagnosis and diagnosability analysis using reduction rules
	Reduction rules for regular unobservable transitions
	Reduction rules for observable transitions
	Impact of the reduction rules on the on-line diagnosis

	Sufficient condition of diagnosability for safe and live LPN
	On-the-fly diagnosability analysis using minimal explanations
	On-the-fly diagnosability analysis using T-invariants
	On-the-fly diagnosability analysis using VN

	Synthesis of the contributions (on monolithic diagnosability analysis)

	Modular diagnosability analysis using LPN
	Literature review of decentralized fault diagnosis, modular fault diagnosis and distributed fault diagnosis
	Decentralized diagnosis
	Modular diagnosis
	Distributed diagnosis
	Synthesis of literature review

	Modular diagnosability analysis using LPN model
	Definition of LPN module, sound decomposition and modular diagnosability using LPN
	Reduction rules for modular diagnosability
	Local diagnosability analysis
	Incremental modular diagnosability analysis
	-reduction technique to combat combinatorial explosion for modular diagnosability analysis
	Complexity analysis

	Synthesis of the contributions (on modular diagnosability analysis)

	Case study
	Manufacturing benchmark
	Monolithic diagnosability analysis of the manufacturing benchmark
	Case 1
	Case 2
	Case 3

	Modular diagnosability analysis of the manufacturing benchmark
	Case 1
	Case 2

	Multi-track level crossing benchmark
	Monolithic diagnosability analysis of the LC benchmark
	Modular diagnosability analysis of the LC benchmark

	Synthesis of the two case studies

	Conclusions and perspectives
	Conclusions
	Perspectives

	Bibliography
	Literature review on untimed DES-Based Diagnosis
	Algorithm for reduction rules
	Development of the LC Benchmark ThesisBaisi2014
	An overview on LC system
	Modeling of the LC subsystems
	Railway traffic
	LC controller
	Barriers subsystem

	Single-track LC model
	n-track LC model

