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Résumé 
 
 
 

Les contraintes d’aménagement du territoire, associées à la nécessité de 
développement économique des sites touristiques et industriels côtiers poussent les 
industriels à proposer des structures flottantes de plus en plus ambitieuses. Ces 
structures flottantes sont conçues soit pour protéger des aménagements portuaires, 
lorsque la configuration des fonds marins ne permet l’usage de structures fixes, soit 
pour étendre les surfaces utiles en bordures des côtes. Les structures flottantes de 
protection des effets de la houle offrent de nombreux avantages par rapport aux 
structures fixes. Elles sont plus économiques à construire et facilement 
reconfigurables pour s’adapter aux évolutions des activités portuaires.  

 
La thèse que nous venons de présenter fait apparaître le manque de travaux dans le 

domaine de l’optimisation de la forme et de la topologie de digues flottantes. 
Quelques travaux se rapportent à l’optimisation des digues fixes, mais ne concernent 
pas l’optimisation de la forme et ou de topologie de ces structures et encore moins 
celle des structures flottantes. Le sujet de cette thèse concerne la modélisation et 
l’optimisation d’une digue flottante ; l’étude du mouvement de la digue et sa réponse 
à la houle, l’analyse du comportement hydrodynamique de la digue basé sur une 
analyse paramétrique, et finalement l’amélioration de sa conception et de ses 
performances en utilisant des techniques d’optimisation. L’objectif principal est de 
développer une optimisation de brise-lames flottants (forme et la topologie), afin de 
réduire le poids, ou de chercher une nouvelle forme, conformément aux contraintes 
physiques et mécaniques. 

 
 

C’est une problématique complexe, à caractère multidisciplinaire, mêlant des 
problèmes d’hydrodynamique, d’interaction fluide – structures, et dans une moindre 
mesure de mécanique des structures. Une procédure basée sur un modèle 
bidimensionsionnel a été développée pour former un outil général de conception. Il a 
pour but de déterminer les dimensions optimales d’une digue flottante capable de 
d’atténuer une houle avec une hauteur donnée. Dans cette première approche du 
problème, la digue est assimilée à une géométrie de section rectangulaire creuse. Les 
paramètres géométriques décrivant la section, la masse, l’angle des lignes d’ancrages, 
et la rigidité des ancrages sont pris en compte dans la formulation du problème 
d’optimisation. 

 
 

Nous avons commencé par aborder le problème en étudiant les modèles de 
propagation d’ondes de surface que sont les vagues et la houle pour formuler un 
problème d’optimisation de structures avec des conditions limites issues de 
l’interaction fluide – structures sans prendre en considération le mouvement de la 
structure. Dans cette étape nous avons pu proposer des formulations originales du 
problème d’optimisation de forme et de la topologie de digues flottantes. Deux idées 
originales ont été proposées pour mettre en œuvre cette optimisation. La première est 
basée sur l’utilisation d’un double maillage l’un plus grossier servant à l’optimisation 
de topologie, tandis qu’un second maillage plus fin est utilisé pour le calcul des 
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contraintes mécaniques, celui-ci n’affectant pas la taille de problème d’optimisation. 
La seconde idée utilise une description géométrique avec un polygone dont le nombre 
de côtés varie et augmente au fur et à mesure des calculs d’optimisation. Cette 
méthode donne de très haut degré de flexibilité dans le processus d'optimisation car 
les coordonnées des points constituent les variables du problème conduisant à des 
formes sans aucune restriction. 

 
Afin d’évaluer les performances d’une digue flottante nous avons ensuite élaboré 

un modèle de comportement dynamique (Newmann 1994, 1997). Ce modèle prend en 
compte les effets de diffraction – radiation de la houle, le couplage fluide – structure 
grâce aux concepts de masses additionnelles et de coefficients d’amortissement 
spécifiques, et les conditions limites imposées par la géographie d’un port. Afin de 
rendre compte plus précisemment des effets du port, ce modèle prendre en compte les 
murs comme des éléments réfléchissant associés à un coefficient de réflexion 
spécifique. Cette particularité permet d’appliquer ce modèle à différents sites 
portuaires. Afin de déterminer le coefficient de transmission, une modéle analytique 
du comportement dynamique de la structure est développé en utilisant le modèle 
lagrangien. Les équations des mouvements sont résolues pour évaluer les réponses de 
la digue dans les trois degrés de liberté. A partir de ce modèle, une étude paramétrique 
nous a permis de mettre en évidence le domaine d’utilisation de ces digues flottantes 
amarrées et d’identifier l'influence des paramètres structuraux sur ses performances. 

 
Les résultats de l’analyse paramétrique montrent l’intérêt d’une optimisation de 

forme de la digue avec ce modèle de comportement dynamique, ils mettent en 
évidence que certaines valeurs des paramètres géométriques maximisent les 
performances de la digue. Cette analyse montrent aussi l’existence, de pics de 
résonance répétitifs et corrélés avec certains paramètres structurel. Cette particularité 
montre la nécessité d’envisager une modélisation tridimensionnelle pour vérifier la 
corrélation de ces pics de résonance avec ces paramètres structuraux. 
 

Finalement, en utilisant ce modèle dynamique nous avons formulé un problème 
d’optimisation de forme nous permettant de déterminer les dimensions optimales de la 
digue en fonction des performances (coefficient d’atténuation de la houle) à atteindre. 
En fait, il constitue un problème d'optimisation multidisciplinaire où, pour chaque 
itération du processus d’optimisation, un problème de mécanique des fluides couplé à 
un problème de dynamique du solide et un calcul de structure élastique sont résolus 
séparément puis assemblés pour former les contraintes du problèmes d’optimisation.  
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Abstract 
 

 
The subject of this thesis concerns modelling and optimizing floating 

breakwaters, i.e., the study of the motion of a floating breakwater and its response to 
surface water waves, the analysis of the hydrodynamic behaviour of the floating 
breakwater through a comprehensive parametrical analysis, and finally to improve the 
performance and design of the floating breakwater through an optimization problem. 
It is an interdisciplinary problem, where it addresses the fluid mechanics, mechanical 
resistance, and structural optimization. A two dimensional modelling and optimisation 
process has to be developed to serve as a general design tool to determine the 
dimensions of an optimal floating breakwater capable of surviving in a significant 
wave height. A rectangular floating body with varying width, draft, mass, internal 
geometrical section, mooring line angle, and mooring stiffness constitutes the 
optimization problem. 

 
The hydrodynamic analysis was studied using the diffraction-radiation 

numerical model and extended so as to include the reflective sidewall characterizing 
the port terminal and assimilating a real practical problem for port sites. So it is 
different to the problems of structures oscillation on water surface with unbounded 
domain.  In order to proceed forward and determine the transmission coefficient, an 
analytical modelling for the vibrating structure is developed using the Lagrangian 
mechanics. The equations of motions are solved to evaluate structure responses in the 
three modes of motion, and hence vibrational effects are determined and discussed. 
Finally, a parametrical analysis is developed to identify the influence of the structural 
parameters on the wave attenuating capacity of the moored floating breakwater. 

 
The complexity of the floating breakwater design due to repetitive resonance 

bands and the interference between the structural parameters makes an analytical 
optimal design somehow difficult if not impossible. This forces us to orient the 
problem towards an optimization approach. The main idea in this work is to address 
the optimization of floating breakwaters (shape and topology) in order to reduce its 
weight, or to represent a new resistive form, in accordance to the physical and 
mechanical constraints using various optimization methods.  

 
It starts with a simple approach summarized by optimizing a predefined 

geometry using its geometrical parameters or dimensions. Then, continues towards 
topology optimization, where we have elaborated a new contribution in this field. 
Two types of triangular meshes were used. One for indicating the number of variables 
in the optimization problem, and another refined mesh used for Finite element 
computations. Thus, we can use very fine meshes without affecting the scale of the 
optimization problem. Also, we have elaborated another idea in the domain of shape 
optimization based on arbitrary geometrical shape composed by introducing n 
variable points constituting a valid structure. This method yields to high flexibility in 
the optimization process since the points coordinates constitute the variables of the 
problem leading to unrestricted shapes. All these previously mentioned methods are 
applied for a simplified model for the wave structure interaction. Where we 
considered that to some extent, we can disregard or omit the dynamical vibration of 
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the floating breakwater itself. This has permitted us to go thoroughly in structural 
optimization methods and their developments, where it was very hard to start the 
optimization problem with the complete dynamical model. It consumes an enormous 
computational time and especially for the topology problem. 
 

Finally, the optimisation problem of a real floating breakwater model is treated 
with the predefined geometrical shape method. In fact, it constitutes a 
multidisciplinary optimization problem, where in each iteration a problem of fluid 
mechanics, dynamic motion, and mechanical resistance are to be solved separately 
and then assembled through the imposed constraints. This yields to realistic results 
adaptable with the practical data and experience used in their construction, since it 
concerns the fluid flow propagation (diffraction-radiation), dynamic motion, mooring 
lines, and the structural demands.  
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RESUME ETENDU 
 
 

 
 
 
 
 
 
 
Ⅰ-Introduction 
 

Les contraintes d’aménagement du territoire, associées à la nécessité de 
développement économique des sites touristiques et industriels côtiers poussent les 
industriels à proposer des structures flottantes de plus en plus ambitieuses. Ces 
structures flottantes peuvent être conçues soit pour protéger des aménagements 
portuaires, lorsque la configuration des fonds marins ne permet l’usage de structures 
fixes, soit pour étendre les surfaces utiles en bordures des côtes. 

 
Les digues à talus et les digues verticales sont des structures maritimes destinées à 

la protection des ports. Elles réfléchissent et/.ou dissipent l’énergie des vagues et 
mettent ainsi à l’abri des effets de la houle les installations portuaires. Ces structures 
assurent une protection très efficace pour une large gamme de condition maritime. 
Cependant pour des conditions géographique et bathymétrique spécifiques les 
structures flottantes de protection peuvent offrir de nombreux avantages par rapport 
aux structures fixes. Elles se révèlent plus économiques à construire et facilement 
reconfigurables pour s’adapter aux évolutions des activités portuaires. 

 
Ces digues flottantes réfléchissent une partie de l’énergie des vagues et 

absorbent partiellement l’autre partie de cette énergie. La partie absorbée met en 
mouvement la structure créant ainsi des « anti-vagues », d’où leur capacité à atténuer 
la hauteur de la houle sans toutefois pourvoir l’annihiler. Plusieurs types des digues 
flottantes ont été développés, comme décrit par McCartney (1985), mais les plus 
utilisées sont les digues rectangulaires, amarrées au fond de mer par des câbles ou des 
chaînes. Ce sera la configuration retenue comme sujet de ce travail de thèse. 

 
La difficulté d’établir des similitudes acceptables avec des maquettes à échelle 

réduite (1/100ième), pour concevoir au mieux ces structures de grande dimension, rend 
indispensable l’usage de modèle numérique permettant de prévoir les performances de 
ces structures (Bougis 1996). C’est une problématique complexe, à caractère 
multidisciplinaire, mêlant des problèmes d’hydrodynamique, le couplage fluide – 
structures, et dans une moindre mesure de mécanique des structures. 
 

La compréhension de la physique et le calcul de l’interaction houle-structure 
est l’un des plus importants processus hydrodynamiques dans l’ingénierie côtière et 
offshore. Il est crucial pour estimer l’impact de houle sur les structures et la réponse 
structurelle sous l’effet de la houle. 

 



 

xvi xvi

Dans le domaine de l’interaction fluide-structure et plus précisément pour 
celui de l’interaction houle-structure l’estimation des effets de la houle sur la structure 
peut être obtenue de deux manières : par une approche empirique (ex: Morison 
equation Sainflou, Hiroi, Goda, Svendson…) ou par une approche numérique (G. 
Gruhan, 2005). Les formules empiriques sont simples mais ne peuvent pas fournir des 
informations détaillées et précises sur la distribution de la pression sur la structure. 
L’approche numérique peut être scindées entre deux types : 

 
- La résolution de l’équation de Laplace pour le potentiel de vitesse de 

la houle (D.Jeng, 2005). 
- La résolution de l’équation de Navier Stockes pour un fluide 

visqueux, où cette dernière est utilisée pour la simulation de 
l’interaction houle-structure, où les phénomènes de turbulence et de 
vortex peuvent apparaître. 

La résolution de l’équation de Laplace en imposant les conditions aux limites sera la 
base de la modélisation de la houle dans notre étude.  

 
Les concepts de modélisation pouvant s’appliquer à ces structures flottantes 

sont issus des modèles d’interaction fluide  structure développés pour l’étude des 
navires et des plateformes offshores (Newman 1977). Les phénomènes de diffraction 
de la houle (houle réfléchie par la structure), de radiation (houle créée par les 
oscillations de la structure) et les particularités induites par les dimensions finies du 
domaine, ont été abordés dans ces travaux. Des modèles de comportement dynamique 
de la structure (corps rigide, oscillations harmoniques de petite amplitude) ont été 
proposés. Afin de rendre compte des effets de l’eau lors des oscillations, ces modèles 
utilisent des « masses additionnelles » et des coefficients d’amortissement 
spécifiques. 
 

L’optimisation des digues flottantes n’a pas encore été abordée dans la 
littérature. Quelques travaux se rapportent à l’optimisation des digues fixes (Ryu 
2005, Castillo 2006) mais ne concernent pas l’optimisation de la forme et ou de 
topologie de ces structures et encore moins celle des structures flottantes. Cette 
absence de travaux d’optimisation de digues flottantes motive donc en grande partie 
cette étude. 
 
Dans ce travail nous avons commencé par aborder le problème en étudiant les 
modèles de propagation d’ondes de surface que sont les vagues et la houle pour 
formuler un problème d’optimisation de structures avec des conditions limites issues 
de le couplage fluide – structures indépendantes du temps. Dans cette étape nous 
avons pu proposer des formulations originales du problème d’optimisation de forme 
et de la topologie de digues flottantes.  
 
Pour évaluer les performances d’une digue flottante nous avons ensuite élaboré un 
modèle de comportement dynamique. Ce modèle prend en compte: 
 

• Les effets de diffraction – radiation de la houle. 
• Le couplage fluide – structure grâce aux concepts de masses additionnelles et 

de coefficients d’amortissement spécifiques. 
• Les conditions limites imposées par la géographie d’un port. 
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A partir de ce modèle dynamique, une étude paramétrique nous a permis de mettre en 
évidence le domaine d’utilisation de ces digues. En utilisant ce modèle dynamique, 
nous avons formulé un problème d’optimisation de forme nous permettant de 
déterminer les dimensions optimales de la digue en fonction des performances 
(coefficient d’atténuation de la houle) à atteindre. 
 
Finalement, la méthodologie suivie dans cette thèse est premièrement identifiée par 
une modélisation de la houle (analytique et numérique) et leurs pressions induites 
exercées sur la digue verticale et puis la modélisation du comportement de la digue 
flottante due à l’interaction houle-structure. Il est intéressant de considérer le cas 
d’une digue verticale qui apparaît dans la construction des ports  loin de la cote, à une 
profondeur constante, et à un point fixe. Alors, les problèmes des propagations des 
houles sur un bathymétrie et les conséquences de l’eau de faible profondeur sont 
éliminés. Et puis, nous établissons le problème d’optimisation qui résoudre  un 
problème non linéaire pour minimiser le poids en respectant tous les contraintes 
physiques et mécaniques (flottaison, stabilité, hauteur minimum de la houle dans le 
port, comportement mécanique de la structure). 
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Ⅱ-Modélisation de la houle 
 
Nous avons développé des modèles analytiques et numériques pour décrire la 
propagation de la houle. Dans le première cas, les oscillations de la structure sont 
considèrées faibles où ils peuvent être négliges. Cette simplification nous donne la 
possibilité d’étendre la partie d’optimisation pour explorer et appliquer différentes 
méthodes de forme et de topologie. Où nous avons inclus dans le modèle numérique 
le comportement de la digue et les effets de diffraction – radiation de la houle pour 
bien approcher le cas réel. 
 
 
1- Modèle  Analytique 
 

Considérons le cas d’une onde se propageant dans un volume de fluide dont une 
dimension est infinie. Dans le système de coordonnée cartésienne Oxy de la figure 1 
on considère l’onde incidente se propageant dans une direction parallèle à l’axe Ox. 
Dans ce cas l’onde frappe perpendiculairement la digue et on  obtient ainsi la pression 
maximale appliquée par les ondes sur la digue, le cas le plus dangereux. 

      
Figure 1     Notations de la houle 

 
Le mouvement du fluide est défini comme suit: soit t le temps, x et z les 

coordonnées horizontale et verticale respectivement, et η l’élévation de la surface 
libre au-dessus du niveau de l’eau calme. Les valeurs élevées de la densité et de la 
vitesse du son dans l’eau rendent les effets de la compressibilité négligeables dans  
l’eau de mer, donc on la considère incompressible. Le fluide sera également considéré 
irrotationnel, on peut alors caractériser le mouvement du fluide par un potentiel de 
vitesse,Φ , reliée a sa vitesse ),( wuU

r
. 

 
Une fois que les paramètres caractérisant les ondes de mer sont connus (longueur 

de l’onde L, période T, hauteur H), un modèle est nécessaire pour étudier les 
propagations des ondes et en déduire les charges exercées sur la digue. C’est une 
étude basée sur le principe physique fondamental de la conservation de la quantité de 
mouvement et de la masse. La combinaison entre l’équation de la conservation de la 
force et celle de la conservation de la masse, conduit à une équation bien connue, dite 
de Bernoulli-Lagrange, qui constitue l’équation fondamentale pour déterminer le 
champ de la pression dans le fluide. 

( ) ( ) ( )tQgztzxPgrad
t

=++Φ+
∂
Φ∂

ρ
,,

2
1 2  

 
Si Φ est connue partout dans le fluide, les quantités physiques (pression et vitesse) 
peuvent être déterminées ou obtenues à partir de l’équation de Bernoulli. Le problème 
aux limites vérifié par le potentiel Φ  s’écrit 
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02 =∆Φ=Φ∇  l’équation de Laplace dans le domaine du fluide. 
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η   L’équation dynamique sur la surface libre. 

 
L’équation de Laplace exprime la conservation de la masse, la condition écrite au 
fond de la mer exprime l’imperméabilité du fond où la composante normal de la 
vitesse est nulle. La condition cinétique sur le frontière solide (brise-lame, x=0), 
exprime la condition statique du brise-lame (réflexion de l’onde) ou n

r  est la direction 
normal à la frontière solide dirigée vers l’extérieur; la condition cinétique sur la 
surface, η=z , exprime qu’une particule du fluide sur la surface doit conserver sa 
place tout le temps, alors que la condition dynamique exprime que la pression sur la 
surface libre est nulle.  
 
En utilisant un modèle classique de houle de Stockes, modèle non linéaire du second 
ordre nous avons déterminé l’expression analytique de la pression dynamique due à la 
houle. Finalement, la pression exercé par le fluide sur la digue  s’exprime avec la 
relation : 
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Figure 2    Distribution de la pression hydrodynamique sur la digue 

La figure 2 montre une répartition typique de cette pression et nous permet de 
conclure sur l’intérêt d’une digue flottante puisque le pic de pression est situé dans le 
tiers supérieur de la hauteur d’eau. La pression hydrodynamique (Fig. 2) est exercée 
sur la surface extérieure de la digue est du à l’hypothèse que toutes les ondes se 
propageant de l’océan sont totalement réfléchies vers l’extérieur du port (pas de 
transmission); On peut également en déduire qu’il n’existe pas de pression dynamique 
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exercée sur la surface intérieure de la digue en supposant l’absence de propagation 
d’ondes a l’intérieur du port (cas simplifié). Cette pression dynamique peut être 
exprimée comme suit:  
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Elle est réduite en une équation avec une fonction hyperbolique de z (altitude), où les 
autres variables indépendantes de l’altitude sont regroupées ensemble suivant les 
termes ,a ,b et f .  
 
2- Modélisation numérique  
 
Dans cette partie, la modélisation de la houle est réalisée numériquement en se basant 
sur une approche linéaire. Seule une modélisation du comportement dynamique de la 
digue permet d’évaluer la performance de cette dernière, c'est-à-dire le coefficient 
d’atténuation de la houle (rapport entre la hauteur de la houle coté port et la hauteur 
de la houle coté mer). Le modèle que nous avons développé prendre en compte : 
 

• Les effets de diffraction (houle réfléchie par la digue) et de radiation 
(houle créée par les mouvements de digue). 

• Des conditions limites traduisant les limites du domaine fluide (profondeur 
et limite du port). 

• Les effets de l’eau sur le mouvement d’oscillation de la digue au travers 
des coefficients de masse et de frottement additionnels calculés à partir des 
efforts hydrodynamiques du potentiel de radiation du champ de vitesse. 

 

 
Figure 3  Notations d’un modèle numérique 

 
Cette linéarisation nous permet de séparer la potentiel total en potentiel incident 
réfléchi, et un potentiel de radiation qui est relie a la dynamique de la digue. Pour 
résoudre le problème d’interaction on découpler le problème de diffraction et 
radiation, car la diffraction ne dépend pas de la dynamique de la digue. Pour chaque 
potentiel, on résout l’équation de Laplace avec 5 conditions aux limites linéaires 
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correspondante aux  surfaces libres, au corps de digue, au fond, aux frontières de 
radiation et au mur du port. 
 
Problème de Diffraction  
 
Le potentiel de diffraction Dφ  peut être exprimer en fonction du potentiel incident Iφ  
et du potentiel de réflexion Sφ . Le problème aux limites qui vérifie le potentiel Dφ  
s’écrit: 
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où rk  caractérise le coefficient de réflexion du mur  
 
Problème de Radiation  
 
Le potentiel de radiation, jϕ , vérifie les conditions aux limites suivantes : 
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Pour le potentiel de radiation, jϕ , 3,2,1=j , les conditions de couplage fluide – 
structure peut être écrit comme : 
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Où 1n et 2n sont les composantes de la normale à la digue, et 123 )()( nzznxxn cc −−−= , 
où ),( cc zx sont les coordonnées de la centre de rotation de la digue flotttante. 
 
Le problème diffraction - radiation est résolu numériquement par éléments finis sous 
en utilisant la boite à outils « PDE : équation aux dérivées partielles » (PDE) de 
MATLAB™, Dans ce cas, l’équation de Laplace est vue comme une forme 
particulière d’une l’équation elliptique. Il faut alors écrire tous les conditions aux 
limites précédentes suivant dans la forme de Newman ou de Dirichlet, créer un 
maillage du domaine de calcul pour pouvoir résoudre le potentiel de radiation et 
diffraction. (Figure 4) 
 

   
 

  
Figure4  Houle de diffraction et de radiation crées par le mouvement de la digue 

De gauche a droite: Diffraction - Heave – Sway – Roll 
 
Dans la deuxième étape, il faut résoudre l’équation de mouvement pour étudier le 
comportement dynamique de la digue. Cette dernière est mise en oscillation par les 
forces d’excitation venant de la houle incidente ( )e

jF . Bien que la digue flottante 
puisse être assimilée à un système mécanique masse ressort, et donc avoir les mêmes 
caractéristiques dynamiques, il y a une différence importante qui affecte son 
comportement dynamique. L’eau entourant la structure joue le rôle « d’amortisseur 
hydrodynamique ». Cette particularité est gérée avec le concept de masse 
additionnelle ( µ ) et de coefficients d’amortissement spécifiques (λ ). D’après le 
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théorème de Lagrange, on peut déterminer les matrices de masse ( M ) et de raideur 
( K ).  L’équation de mouvement dans la forme des matrices  s’exprime comme : 

)(][ ''' tFKXXXM e
j=+++ λµ  

Il faut résoudre l’équation de mouvement pour déterminer le vecteur du mouvement 
( X ) de la digue qui donne le potentiel de radiation et pour déterminer le potentiel 
total et sa dérivée, l’élévation de la surface. 
 
Les coordonnées Langrangienne ),,( 321 qqq  représentent les trois degré de liberté de la 
structure ,, cc yx et θ  (et décrivent le mouvement du centre de gravité de la digue 
flottante). Le comportement du système digue flottante avec les lignes d’ancrages est 
modélisé par un système de trois équations différentielles du deuxième ordre. 
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Figure 5  Représentation hydrodynamique et mécanique d’un système mass-ressort 

 
L’équation du mouvement de la digue est formulée après linéarisation autour de la 
position d’équilibre sous l’hypothèse d’oscillations de petites amplitudes. A cause de 
la type des forces d’excitation que supposerons de forme sinusoïdale )( tie

j
e
j efF ω−= , 

nous pouvons écrire l’équation de mouvement dans la forme suivante :  
e
jj fKiM =+−+− δωλµω ])([ 2       (3.35) 

Où jδ  est l’amplitude complexe de la réponse de mouvement,  ti
jj eX ωδ −=  

 
La Figure 6 présente le synoptique de résolution du modèle pour déterminer le 
paramètre indicateur de la performance de la digue, le coefficient d’atténuation de la 
houle. Cette figure met en évidence les paramètres d’entrée suivant : 
 

• Les paramètres structuraux définissant la masse et la forme de la digue ainsi 
que ceux des lignes d’ancrages 

• Les paramètres relatifs  à la houle à atténuer. 
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Forme :
Paramètres structuraux

Dimensions extérieures, Masse
Lignes d’ancrages (raideur, 

position)

Paramètres Hydrodynamiques
Masse additionnelle

Ceof. Frot. hydrodynamique

Mouvement de la digue

Paramètres de houle :
Hauteur, fréquence.

Coefficient
d’atténuation

Tirant d’eau

Forme :
Paramètres structuraux

Dimensions extérieures, Masse
Lignes d’ancrages (raideur, 

position)

Paramètres Hydrodynamiques
Masse additionnelle

Ceof. Frot. hydrodynamique

Mouvement de la digue

Paramètres de houle :
Hauteur, fréquence.

Coefficient
d’atténuation

Tirant d’eau

 
 

Figure 6  Synoptique du calcul du coefficient d’atténuation. 
 
A partir de ce modèle de comportement dynamique, une étude paramétrique nous a 
permis de déterminer l’influence des paramètres d’entrée du modèle sur le coefficient 
d’atténuation. Cette analyse montre aussi l’existence, de pics de résonance répétitifs et 
corrélés avec certains paramètres structurels.  Les conclusions essentielles que nous 
en tirons sont : 
 

• Pour une géométrie donnée il existe, pour les lignes d’ancrage, un 
intervalle de valeur d’angle (10° - 20°) qui produit un pic de résonnance et 
donc une très mauvaise valeur du coefficient d’atténuation. En effet dans 
cette situation la digue n’attenue pas la hauteur des vagues mais l’amplifie 
par effet de résonnance. 

 
• La largeur de la digue joue un rôle important, il existe une plage de valeurs 

permettant d’obtenir les meilleures performances d’atténuation. 
 
 

  
Figure 7 : Etude paramétrique, influence de la rigidité et de l’angle des lignes d’ancrage 
sur le coefficient d’atténuation. 
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Figure 8 : Etude paramétrique, influence de la profondeur et de la largeur de la digue sur 
le coefficient d’atténuation. 
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Ⅲ-Optimisation d’un Digue Flottante 
 
L’objectif principal est de développer une optimisation de brise-lames flottants (forme 
et la topologie), afin de réduire le poids, ou de chercher une nouvelle forme, 
conformément aux contraintes physiques et mécaniques. Une digue flottante doit être 
bien conçue pour assurer : 

- La réduction effective de l’énergie transmise, garantissant une 
protection adéquate pour la zone située en arrière du système flottant. 

- La non détérioration de la digue flottante elle-même. 
- La tenue des lignes d’ancrages, qui maintiennent en place la digue. 

La satisfaction de ces trois conditions traduit la performance totale attende. La non 
détérioration des lignes d’ancrages a été discutée et amplement étudiée 
(Loukogeorgaki and Angelides -2005) , par conséquent nos efforts dans cette étude se 
porteront vers les deux premières conditions.  
 
Etant donné les densités des matériaux de constructions usuels (béton armé), il est 
évident que de bonnes capacités de flottaison pour une digue s’obtiennent pour des 
structures creuses, de type caisson par exemple. Cette particularité complique 
l’écriture du problème d’optimisation. Les paramètres géométriques décrivant la 
section, la masse, l’angle des lignes d’ancrages, et la rigidité des ancrages sont pris en 
compte dans la formulation du problème d’optimisation. 
 
 

 
Figure 10     Caractéristique de la digue flottante 

 
L’amélioration de la performance d’une digue flottante, de façon qu’elle peut 
supporter plus des charges et encore fournir une protection peu adéquat, ouvre 
plusieurs possibilités parce que la digue flottante, contrairement à la digue fixe, 
possède plusieurs paramètres caractérisant  sa géométrie et  définit sa forme.  Le 
problème d’optimisation est posé comme un problème de minimisation de dimension 
finies avec contraintes, il est symboliquement écrit comme: 
 
Trouver un vecteur variable x ; 
Pour minimiser le fonction de poids )(xfob  
Soumis à n contraintes 0)( <xf i  
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1- Optimisation avec un modèle de comportement statique  
 
Le problème d’optimisation s’exprime sous la forme d’un problème d’optimisation 
non linéaire avec fonctions contraintes. 
 
a- Fonction objectif :, le but est ici de minimiser  le poids de la digue, tout en 
respectant les contraintes du problème d’optimisation. 

)()( poidsMinxf iob =  
 
b- Contrainte de Pression Dynamique:  
Le concept du mur fixe d’eau permet de déterminer la hauteur de la digue en 
accordance avec une faible pression dynamique agissante sur le mur. La figure 11 
montre une répartition typique de cette pression et nous permet de conclure sur 
l’intérêt d’une digue flottante puisque le pic de pression est situé dans le tiers 
supérieur de la hauteur d’eau. Donc, la hauteur de la digue peut être limitée jusqu'à ce 
que la pression soit approximativement invariable correspondant à une valeur 
approximative de 0max05.0 =− PP , où  )0(max == zPP .  
 
 
Finalement, la hauteur peut être considérée mL 8= , où cette hauteur est vraiment 
suffisante pour une houle forte, où il constitue environ H2  ( H est la hauteur de la 
houle). 

 
Figure 11        Modélisation de la pression de la houle 

 
Cette contrainte est indépendante des autres contraintes, et alors la hauteur de la digue 
est seulement déterminée a partir de celle la, et  puis on  n’a pas besoin de considérer 
la hauteur comme une variable pour  la partie restante dans le processus 
d’optimisation  
 
c- Contrainte de Flottaison:  
Cette contrainte est une application directe du théorème d’Archimède. Alors, la 
contrainte de flottaison s’écrit comme suit: 

0)(1 ≤+−= gVgVxC Temmi ρρ  
mρ et eρ désigne les masses volumiques du matériau de la digue et l’eau de la mer 

respectivement,    
mV  désigne le volume de la matière à l’intérieur de la digue  
TV désigne le volume de la partie immerge de la digue 
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d- Contrainte de stabilité:  
Dans le cas des objets flottants, on définit ici la stabilité par la capacité de retour à une 
position d’équilibre stable de la digue après perturbation de cet équilibre par les effets 
de la houle sur la structure de la digue. Le retour à l’équilibre est assuré par le 
moment du poids de la digue par rapport au centre de poussée de la digue. 
   
Il y a plusieurs paramètres qui déterminent ensemble la stabilité de digue flottante : 
1-Equilibre horizontale initiale, 2- Angle d’inclinaison ,3-Tension des  lignes 
d’ancrages.  
 
La digue flottante peut avoir une forme non symétrique, alors initialement (avant 
toute perturbation) il est nécessaire pour maintenir une position d’équilibre 
horizontale. Il est nécessaire de calculer la nouvelle position du centre de gravite en 
fonction des variables et  en l’alignant avec le centre  de flottabilité (centre de 
pression) de la digue flottante (figure 12) qui repose sur le centre géométrique du 
volume d’eau déplacée ( 2/Tw ). 

0
2

)( =−= w
Gieq

TxxC  

 

 
Figure 12   Stabilité d’une digue flottante 

 
Quand la digue est perturbée par une houle, le centre de pression bouge de B à B1 
(figure 12) car la forme du volume immergé a changée ; donc le poids et la force de 
pression (force de flottaison) crée une couple pour retenir la digue à sa position 
initiale. En plus, la distance GM, bien connue comme la hauteur métacentrique,  
illustre le principe fondamental de stabilité, où il doit être toujours positif pour créer  
un couple redresseur et maintenir la stabilité. 
 
L’équation de mouvement est écrit comme suit:∑ = θ&&IM ⇒ à 
l’équilibre 0=−− BF MMMp , où Mp est le moment de perturbation provenant de la 
houle, MF  est le moment de la tension dans les lignes d’ancrages,  MB est le moment 
de la force de flottabilité (couple de redressement), la contrainte de stabilité est 
finalement écrit comme suit: 
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α est l’angle entre les lignes d’ancrages et la verticale (α=20°), et θ  l’angle de 
perturbation (angle de virage) ; réellement il est fixé par  le (designer) et   puisque la 
digue doit être rigide et stable pour protéger les ports, il est considéré comme 
1.2°.(pente 2%) 
 
e- Contraintes structurelle: Ces contraintes constituent une analyse structurelle pur de 
la digue flottante, où une étude structurelle compréhensive est demandée pour 
déterminer les contraintes mécaniques qui doivent être restreintes à  une certaine 
limites. 
 

 
Figure 13  Digue flottante soumis a des pressions hydrostatiques et hydrodynamiques 

 
Lorsque le béton est caractérisé  par différent limites de traction et compression, il 
faut appliquer un critère spécifique appelle Critère Parabolique, (Garrigues.J, 2001) 
au lieu de la critère de Von Mises.   
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1σ , 2σ  représentant les contraintes principales de la structure, et tσ , cσ  représentant 
les contraintes limites des matériaux utilisées.  
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1.1 – Optimisation topologique 
 
L’optimisation de structures mécaniques est un domaine très important du point de 
vue des applications qui a connu récemment de nombreux progrès. A coté des 
méthodes classiques de variation de frontière est apparue une autre méthode 
d’optimisation, dite topologique, basée sur la théorie de ‘bittarray’ en utilisant 
l’algorithme évolutionnaire (Algorithme génétique). Ces algorithmes d’optimisation 
stochastiques inspirés – grossièrement – de l’évolution naturelle des populations. 
Méthodes globales d’ordre zéro, leur robustesse et leur souplesse leur permettent 
d’attaquer la résolution numérique de problèmes difficiles à résoudre autrement. Mais 
c’est leur capacité à travailler sur des espaces de recherche non standard qui leur offre 
les perspectives les plus originales. 
 
Normalement, la représentation ‘bittarray’ est associée à un maillage particulier du 
domaine – celui qui est utilisé pour calculer le comportement mécanique de la 
structure et déterminer la performance. A chaque élément du maillage on attribue une 
valeur 1 si il contient de la matière, et 0 sinon. Malgré son succès dans la résolution 
de problèmes d’optimisation topologique de formes, la représentation “bitarray” 
souffre d’un profonde limitation liée à la dépendance de la complexité de l’algorithme 
avec celle du maillage associe. En effet, la taille d’un individu (le nombre de bits 
nécessaires pour décrire un individu) est égale à la taille du maillage. 
Malheureusement, les résultats théoriques comme les constatations empiriques 
indiquent que la taille critique de population nécessaire pour atteindre la convergence 
augmente au moins linéairement avec la taille de chaque individu. De plus, les 
populations plus nombreuses nécessitent souvent un plus grand nombre de 
générations pour converger. Il est donc clair que cette approche doit restreindre son 
domaine d’application à de grossiers maillages bidimensionnels, alors que les 
ingénieurs ont besoin de fins maillages tridimensionnels. Ces considérations 
conduisent à la recherche de représentations plus compactes, dont la complexité ne 
dépend pas de celle de la discrétisation. 
 

 
Figure 14: Optimisation topologique : principe du double maillage. 
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Nous avons proposé d’utiliser un maillage relativement grossier pour décrire la 
distribution de matériau dans la digue. Chaque élément de ce maillage est associé à 
une variable binaire déterminant la densité de matériau affectée à chaque élément. On 
notera sur la l’utilisation d’un second maillage, plus fin, pour le calcul du champ des 
contraintes mécaniques dans le matériau et pour résoudre le problème de liaison entre 
le maillage de partitions de domaine et le maillage de calcul mécanique (Fig 14 et 15). 
Aussi, nous avons résolu le problème d’extraction des frontières par la modification 
du vecteur de densité pour les éléments correspondantes aux frontières.     
 
 
 

 
 

Figure 15   Contrôle des frontières 
 
 
Comme présentée précédemment, le problème d’optimisation topologique se formule 
de la manière suivante : 

• Minimiser le poids de la digue 
 
Sous les contraintes : 

• Assurer la flottaison 
• Assurer la condition de stabilité statique (position du centre de poussée par 

rapport au centre de gravité) 
• Assurer la résistance statique du matériau de la digue. 
• Assurer le non basculement sous l’effet de la pression due à la houle. 

 
Ce problème d’optimisation non linéaire en nombre entier, avec 4 fonctions 
contraintes et comportant autant de variables que d’éléments de maillage (quelques 
centaines) est résolu efficacement avec un algorithme génétique (résultats dans la 
figure 16 ). 
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Figure 16  Exemple de topologie optimale avec le maillage de calcul mécaniques 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

xxxiii xxxiii

1.2 – Optimisation de forme avec des points variables 
 
Le problème d’optimisation de forme est traité à partir d’une description particulière 
de la géométrie de la digue, utilisant un polygone dont le nombre de cotés est 
variable. Le problème d’optimisation se formule de la même manière que 
précédemment, sauf pour les variables d’optimisation en nombre plus restreint, 
puisqu’il s’agit des coordonnées ),( yx  des sommets du polygone. Les contraintes 
mécaniques dans le matériau sont calculées par éléments finis comme précédemment. 
La Figure 17 montre l’évolution de la solution optimale obtenue par un algorithme 
déterministe de type « SQP » lorsque le nombre de sommets du polygone augmente. 
 
 

Configuration initiale et maillage

Contraintes mécaniques σyyEvolution du nombre de points de description
yr

xr

Configuration initiale et maillage

Contraintes mécaniques σyyEvolution du nombre de points de description
yr

xr

yr

xr

Figure 17: Optimisation de forme avec description évolutive de la géométrie. 
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2- Optimisation avec un modèle de comportement dynamique 
 
Les résultats de l’analyse paramétrique montrent l’intérêt d’une optimisation de forme 
de la digue avec un modèle de comportement dynamique. Dans cette première 
approche nous avons envisagé une optimisation de forme s’appuyant sur une 
description géométrique simple définie par la Figure 18. Par conséquent le problème 
d’optimisation s’écrira avec les 6 variables Txxx },....,{ 61=  de la Figure 18.  
 

 
Figure 18  Définitions des variables d’optimisation 

 
Pour chaque « évaluation » du problème deux analyses éléments finis sont requises, 
l’une pour déterminer le potentiel de vitesse dans le fluide et l’autre pour déterminer 
les contraintes mécaniques dans la structure de la digue. 
Le problème d’optimisation que nous avons formulé consiste à : 
 

• Minimiser la masse de la digue sous les contraintes suivantes : 
 

Sous les fonctions contraintes : 
• Limite sur la hauteur maximale de la houle côté port (résolution de modèle 

dynamique). 
• Condition de flottaison de la digue. 
• Condition d’équilibre (position du centre de poussée par rapport au centre 

de gravité). 
• Limite sur les contraintes maximales du matériau de la digue. 

 
En fait, il constitue un problème d'optimisation multidisciplinaire où, pour chaque 
itération du processus d’optimisation, un problème de mécanique des fluides couplé à 
un problème de dynamique du solide et un calcul de structure élastique sont résolus 
séparément puis assemblés pour former les contraintes du problèmes d’optimisation. 
(Figure 19) 
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Figure 19 Organigramme pour l’optimisation avec un modèle dynamique 

 
Comme nous l’avons vu dans l’étude paramétrique, la largeur de la digue joue un rôle 
important, plus celle-ci est importante meilleur sera le coefficient d’atténuation. Pour 
des hauteurs de houle importante (> 2m), l’obtention d’un bon coefficient 
d’atténuation (<0.1) nécessite des largeurs importantes. Dans ce cas de figure le 
problème d’optimisation n’admet pas de solution car la limite de résistance du 
matériau est atteinte avant que la limite sur la hauteur maximale de la houle ne soit 
satisfaite. Il faut alors envisager un autre matériau pour la digue, comme par exemple 
les matériaux composites époxy / fibre de verre qui offrent une meilleure résistance 
mécanique que le béton, mais sont plus onéreux. 
 

 
Figure 20  Modélisation de la houle pour une digue optimale 
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Figure 21 Optimisation de forme à partir du modèle de comportement dynamique : description 
géométrique et solution optimale (pour le béton et une hauteur de houle de 2m). 
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Ⅳ-Conclusions et principaux apports 
 
A partir d’un modèle de houle de Stockes nous avons établi l’expression analytique de 
la pression dynamique. Nous avons ensuite utilisé cette pression dynamique comme 
condition limite dans un problème d’optimisation de forme et de topologie. Deux 
idées originales ont été proposées pour mettre en œuvre cette optimisation, l’une 
basée sur un double maillage avec un maillage plus grossier servant à l’optimisation, 
tandis qu’un second maillage plus fin est utilisé pour le calcul des contraintes 
mécaniques. La seconde idée utilise une description géométrique avec un polygone 
dont le nombre de côtés varie et augmente au fur et à mesure des calculs 
d’optimisation. 
Bien qu’intéressant, les résultats obtenus ne sont pas satisfaisants car un modèle de 
comportement statique ne permet pas de traduire le phénomène d’atténuation de la 
houle. Seul un modèle dynamique est capable d’en rendre compte. Le modèle 
dynamique que nous avons proposé représente une avancée car c’est le premier qui 
prend en compte les effets de diffraction, dans un domaine fluide de dimension finie 
et des effets de l’eau sur le mouvement de la digue. Ce modèle est résolu par éléments 
finis en utilisant la boîte à outil « PDE Tools » de MATLAB™. Nous avons ensuite 
conduit une étude paramétrique pour identifier l’opportunité d’optimiser la géométrie. 
Le modèle dynamique que nous avons développé constitue sans doute l’apport 
scientifique le plus significatif de ce travail. 
 
 
 
Perspectives 
A court terme les perspectives de ce travail concernent : 

• L’optimisation de forme et/ou de topologie avec le modèle dynamique. 
Cette optimisation pourra s’envisager dans un premier dans le cas d’un 
modèle bidimensionnel. Il faudra toutefois considérer un modèle 
tridimensionnel afin de rendre compte plus précisément de l’interaction 
avec le port. Ces modèles devront limiter la forme de la digue au cas des 
formes parallélépipédiques car cela simplifie grandement les calculs du 
potentiel de vitesse (pas d’interaction due aux formes complexes, des 
vagues diffractés entre elles). 

• L’optimisation du positionnement de la digue dans l’espace du port. En 
utilisant le modèle dynamique que nous avons développé nous avons fait 
quelques essais qui montrent qu’il serait intéressant de rechercher le 
meilleur emplacement de la digue compte tenu d’une géométrie du port. 
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Introduction 

 
 
 

 

 

This thesis considers modelling and optimizing floating breakwaters, one of numerous 

types of floating structures. This involves a fluid-structure interaction problem, and a 

comprehensive study of dynamical and mechanical behaviour of the floating 

breakwater itself. In this chapter the general introduction, literature survey and 

problem definition and objectives of thesis are given. First, a general overview of 

various floating structures and their worldwide applications are presented. Then, the 

floating breakwaters background, their concept and development, and their various 

possible applications are described. A literature survey then gives the information 

about problems studied by researchers and engineers, methods developed, and results 

derived. Next, the general problem, theories used, the main objectives, and the 

methodology of our study are given.  

 

1.1-The need for space 

 

Seen from space, the Earth looks like a blue coloured planet with constantly 

moving swirls of clouds of Earth's ever changing weather. The Earth is mostly blue 

because the main part of its surface is covered by oceans, seas, lakes, rivers, etc. The 

Earth's land surface measures 148,300,000 square kilometers, while the total area of 

the Earth's surface is 510,083,000 square kilometers. Thus the water surface area 

takes up 70 percent of the Earth's total surface area; the land only 30 percent, less than 

one third of the entire surface. We have only a very small part of the Earth to live on. 

 

In the twentieth century, humanity ran into a new problem: lack of land. Now, 

in the beginning of the third millennium, this problem is becoming serious, with the 

fast growth of the Earth's population and corresponding expansion of industrial 

development and urban agglomeration. Countries such as Japan, China, Korea, the 

Netherlands, and Belgium have a very high population density. Many other countries 

in Europe and Asia are approaching the same density.  

 

Many developed island countries and countries with long coastlines in need of 

land have for some time now been successfully reclaiming land from the sea to create 



new space and, correspondingly, to ease the pressure on their heavily-used land space. 

The Netherlands, Japan, Singapore and other countries have expanded their areas 

significantly through the land reclamation works. Such works are, however, subject to 

constraints, such as the negative environmental impact on the coastlines of the 

country and neighbouring countries and marine ecological system, as well as huge 

economic costs in reclaiming land from deep coastal waters, especially when the sand 

for reclamation has to be bought from other countries [143 Watanabe et al 2004]. 

Also, land reclamation is a good solution only for rather shallow waters with a depth 

of no more than 20 m.  

 

In response to the aforementioned needs and problems, researchers and 

engineers have proposed an interesting and attractive solution: the construction of 

floating structures. These offshore structures can be located near the shore as well as 

rather far into the open sea. They have the following advantages over traditional land 

reclamation: 

 They are easy and fast to construct (components may be made at shipyards 

and then be transported to and assembled at the site), thus, the sea space can 

be quickly exploited; 

 They can easily be relocated (transported), removed, or expanded; 

 They are cost effective when the water depth is large; 

 Their construction is not greatly affected by the depth of the water, sea bed 

profile, etc.; 

 Their position with respect to the water surface is constant; hence they can be 

used for airports, piers, etc.; 

 They are environmentally friendly as they do not damage the marine 

ecological system, or silt up deep harbours or disrupt the ocean/sea currents; 

 The structures and people on VLFSs are protected from seismic shocks since 

the energy is dissipated by the sea. 

 The lifetime of floating structures of the proposed concepts is about 100 years 

(at least 50 years), so the structure can be used for a very long time (with 

maintenance if any is needed). 

 

Consequently, developing floating structures for all kind of purposes has become 

more interesting in the past decade since the demand fur such structures increased 

significantly. They can be constructed to create floating airports, bridges, piers and 

docks, storage facilities (for instance for oil), wind and solar power plants, for military 

purposes, to create industrial space, emergency bases, entertainment facilities, 

recreation parks, mobile offshore structures and even for habitation. Actually, the last 

could become reality sooner than one may expect: already different concepts have 

been proposed for building floating cities or huge living complexes. The largest 

offshore structure built so far is the Mega-Float, a floating runway prototype 

constructed in Tokyo Bay in the end of year 1999 (Figure 1.1) with the following 

characteristics: length 1000 m, breadth 60 m (121 m maximum), depth 3 m, draft 1 m, 

deck area 84,000 m2, weight of steel materials used 40,000 t, deck strength 6 t in 

distributed load. It is the world's largest floating object ever built, in particular the 

largest artificial floating island. Another interesting floating structure is the Yumemai 

floating bridge, Osaka, Japan, which is shown in figure 1.1. The bridge is a movable 

floating arch bridge standing on two floating pontoons, which can swing around the 

pivot with the assistance of tugboats. It has a total length of 940 meters with a floating  

part length of 410 meters and a width of 38.8 meters for six traffic lanes. 



   
Figure 1.1: floating airport (left), Yumemai floating bridge (right) 

 

Certainly, floating structures can also be used for floating entertainment 

facilities. Large floating structures (LFS) of different dimensions and design are and 

can be used for hotels, restaurants, shopping centres, amusement and recreation parks, 

exhibition centres, theatres, cinemas, fishing piers, etc (Figures 1.2 and 1.3). LFSs 

having been or being constructed are for example the Aquapolis exhibition centre in 

Okinawa (1975, already removed), the Floating Island near Onomichi, and another 

one resembling the Parthenon near Hiroshima, all in Japan, and floating hotels in 

Australia, Vietnam and North Korea, floating restaurants in Japan, Hong Kong, 

Russia, Ukraine and other countries. An attractive panoramic view is one of the 

advantages floating entertainment facilities offer.  

    
Figure 1.2   Floating homes and hotels 

    
Figure 1.3   Floating marinas and docks 

 

Also, offshore petroleum platforms have been widely spread in the last 30 years, 

yielding to new applied technologies in such huge floating structures. (Figure 1.4)  



    
Figure 1.4     Floating Oil Platform, Gulf of Mexico 

 

Another application for floating structures with a military type is the rapidly 

installed breakwaters (RIB), specifically designed to address problems associated with 

the efforts of U.S. armed forces to offload ships during Logistics. The RIB system 

consists of a V-shaped structure in plan view, with rigid vertical curtains extending 

from the surface of the water toward the bottom for a distance sufficient to preclude 

excessive wave energy from penetrating beneath the structure. When deployed, the tip 

of the V is oriented into approaching waves, and works by spreading and reflecting 

incoming waves. Incident waves are 'trained' away from the interior of the V, 

providing a sheltered area inside the V and in the lee of the structure. Ships and 

lighterage are moored in the lee of the V for offloading. (Figure 1.5) 

 

    
Figure 1.5     RIB used in logistics, US armed forces 

 

In addition to the cited types, an important and viable application of floating 

structures is floating breakwaters installed in ports to shelter the port area form sea 

waves. Floating piers have been constructed in Hiroshima, Japan, and Vancouver, 

Canada. In Valdez, Alaska, a floating pier was designed for berthing the 50000-ton 

container ships. The main advantage of a floating pier is its constant position with 

respect to the waterline. Thus, floating piers allow smooth loading and unloading of 

cargo. Floating docks have been constructed in the USA and other countries. In case 

of rather deep water, floating structures are a good alternative to traditional harbour 

facilities. Research on floating harbour facilities, their design and analysis is going on 

in many countries [Watanabe et al (2004)]. It is an interesting structure in this 

business from a practical as well as an economical point of view: 

 Due to the size of the modern container vessels, it is important to create 

harbours deep and wide enough able to serve these kinds of vessels. 



 The number of harbour calls can be reduced when container terminals can be 

placed at strategic locations. 

  
Figure 1.6  Floating breakwaters 

 

From previous studies it appeared that the efficiency of floating harbours is affected 

by wave attack. A floating breakwater is necessary to increase the efficiency rate and 

to create a safe haven for vessels when the weather conditions become bad. Thus, we 

can conclude from the different applications of floating structures, that the floating 

breakwater is an essential structure mainly used to protect the ports that are increasing 

their numbers and also their areas due to the developing business and commerce 

between the countries. Also, it is used as a secondary structure in the projects of 

floating airports, floating homes, floating hotels, floating oil storage tanks, military 

logistics, ……etc. Finally, this particular type of floating structures, the floating 

breakwater, constitutes the topic of this thesis. 

1.2- Floating breakwaters 

 

Ever since progressive engineers came up with the idea of creating floating 

structures into the sea, many studies and model tests were performed to develop a 

floating breakwater. Although the first engineers used the trial-and-error approach to 

test their creations (Mr.Thuillard-Froideville in 1884 to protect the harbour of Le 

Havre), research on this topic professionalized soon after the Second World War. A 

lot of designs were laboratory tested and checked with numerical calculations. In this 

section, a short review will be given of the floating breakwaters that have been built 

and the possibilities for future floating breakwaters. Past model testing will be 

discussed in this section in order to describe the problems that have been encountered 

in the past. 

1.2.1- Breakwaters in a nutshell 

 
Many coastal activities require protection from waves, and breakwaters are 

widely used in order to provide such protection. The oldest and most common 

breakwaters are the bottom founded structures. These generally provide excellent 

protection from waves. However, they may become uneconomical for large water 

depths, and limited water circulation behind such breakwaters may lead to problems 

associated with sedimentation and increased pollutant concentrations within protected 

areas. Floating breakwaters have proven to be an attractive and economical alternative 

at locations where water depths are relatively large and the wave climate is not too 



severe. They have also been used at locations where temporary or seasonal protection 

is required. 

 

Since time immemorial, harbours played a deciding role in the extent of 

prosperity for entire populations. In the early history, naturally sheltered locations 

(like bays and estuaries) were used as a haven for ships. Soon these sheltered 

locations, where little wave attack was encountered, became the centres of trade. 

When the economical importance of harbours increased further more, these harbours 

became the centres of society as well. Nowadays, space has become very scarce in 

coastal zones and around harbour areas in particular. However, technological 

developments made it possible to extend the harbours into the ocean. Often, artificial 

breakwaters are used to create the sheltered area where harbour activities take place. 

The primary function of a breakwater is to attenuate waves to an acceptable level or 

eliminate their effects altogether. It creates a sheltered region in order to prevent 

damage to shorelines, harbours, and other natural or man-made structures. Although 

there are several types of breakwater structures, one can roughly distinguish three 

main types of breakwaters (Figure 1.7), which are: 

 

Conventional (mound) type of breakwaters 

Mound types of breakwaters are actually no more than large heaps of loose elements, 

such as gravel and quarry stone or concrete blocks. 

Monolithic type of breakwaters 

Monolithic types of breakwaters have a cross section designed in such a way that the 

structure acts as one solid block. In practice, one may think of a caisson, a block wall, 

or a masonry structure. Generally this kind of structure is used when space is scarce 

and local water depths are relatively large. 

Composite type of breakwaters 

A composite type of breakwater is a combination of the conventional and monolithic 

type of breakwater. When water depths get larger, this kind of structures is often 

preferred from an economical point of view. 

 
Figure 1.7: Several breakwater structures. 

From left to right, top to bottom: Rubble mound breakwater, Caisson breakwater, Composite 

breakwater, Floating breakwater. 



Although the designs of the breakwaters (Figure 1.7) differ form one another, 

a lot of similarities can be distinguished. They are all built to block the incoming 

waves and to dissipate or reflect the wave energy. They are all fixed structures, 

designed for a specific location. Bottom-founded structures are limited to a certain 

maximum water depth since these structures are impossible in deep water 

environments from a technical as well as an economical point of view. From a 

military, a humanitarian, a technical and an economical point of view, a new type of 

breakwater is needed to overcome the restrictions that are associated with fixed 

breakwaters. This new type of breakwater has to be rapidly installed, transportable, 

(re-) usable at several locations with different wave conditions and applicable in deep 

water areas. Several types of unconventional breakwaters have been developed in the 

past in order to meet these demands, including the floating breakwater. 

 

Even though a lot of (theoretical and practical) research has been done on a 

wide variety of floating breakwater concepts, the appliance of floating breakwaters in 

real situations is very limited. The complex contribution of the dynamic response to 

the total wave transmission is the main reason for this. This dynamic response makes 

a floating breakwater only suitable for a small frequency range. Figure 1.7 shows the 

phenomena that contribute to the two-dimensional wave transmission for several 

types of breakwaters. In contrast to a normal harbour, where only ship motions occur, 

a floating harbour will be completely influenced by the wave conditions. Lots of 

structural and hydraulic factors influence the hydrodynamic behaviour of the different 

elements in a floating harbour. Determining the relations and the influence of these 

factors on the wave attenuating capacity of the floating breakwater is thoroughly 

discussed in this thesis. 

1.2.2-Technical and economical arguments 

 
The main reasons to apply unconventional types of breakwaters, and floating 

breakwaters in particular, are the technical and economic restrictions related to the 

monolithic and conventional types of breakwaters. Besides these restrictions, there are 

other arguments that are encouraging the development of floating breakwaters such as 

the spatial availability, structural limits, and reliability.  

 

Technical arguments 

Costs are not the only reason why conventional breakwaters are not preferable when 

water gets too deep. Local soil conditions and structural stability do also influence the 

limits of design. A huge structure will result in tremendous pressures on the subsoil as 

well as stability problems when the slopes become too steep. A floating breakwater 

can be more feasible in poor soil conditions than a heavy fixed breakwater since the 

subsoil pressure is virtually non-existent, however, the floating breakwater does have 

to be anchored to the sea bottom. Floating breakwaters can be easily moved and 

rearranged due to their transportability, reusability and flexibility in design. Due to 

this quality, a floating harbour can be adapted and rearranged easily when needed. 
 

Economic arguments 

The advantages and disadvantages of the use of floating breakwaters have a common 

origin: economics.  To illustrate this assumption, a construction cost calculation was 

made to determine the optimal breakwater construction for several water depths. This 

primary study only involves the construction costs. These constructional costs of the 



conventional, the caisson and the composite breakwater are based on the studies done 

by [Schepers 1998] and [Lenting 2003]. Figure 1.8 shows the relation between 

construction costs and water depth. In previous reports [d’Angremond 1998], it was 

already stated that the conventional breakwater, from an economic point of view, will 

only be preferable until a water depth of around 8m. In depths ranging from 8m to 

20m, a caisson breakwater will be the best solution. And after that, up to a depth of 

30m, the composite type of breakwater is preferable, which shows agreeable results 

with Figure 1.8. At this stage, the cost of the floating breakwater is unknown. Since 

the construction costs of a floating breakwater will hardly increase with increasing 

depths, the line in the figure will be an almost horizontal line. 

 

 
Figure 1.8     Comparison of construction cost /m depending on the water depth. 

 

For real situations, specific site conditions may alter the results drastically. 

Construction costs depend on the rate of downtime due to wave climate and tidal 

height conditions. Construction costs are largely depending on the available weather 

window determined by wave and tidal conditions. Moreover, the feasibility of a 

caisson solution depends largely on the stability of the foundation and, in particular, 

the sensitivity of the subsoil to liquefaction. 

1.2.3 Past Performance 

The development of floating, transportable breakwaters got a real boost when 

the necessity arose to land men and materials during the Normandy invasion of Wold 

War II. Two types of breakwaters were used for that purpose. The first types were 

concrete barges, transported from Great Britain. These barges were positioned just 

off-shore and were sunken down in order to create a bottom-founded breakwater. The 

second types of breakwaters were floating structures with a cruciform cross section. 

These ‘Bombardon’ floating breakwaters were steel structures arranged in lines along 

the Normandy coast. The ‘Bombardon’ floating breakwaters served their purpose 

during the invasion but failed after 9 days during a storm which created stresses eight 

times higher than what they were designed for. After this experience, the faith in the 

reliability of the floating breakwater was gone for many years. In the 1950’s, the US 



navy saw the potential of these structures to protect small craft and marine structures 

against open-ocean waves. A manageable, transportable, reusable floating breakwater 

was investigated that would provide a sheltered environment during several military 

or humanitarian operations. Serious development of this type of floating breakwater 

lasted until the 1980’s, when several rapidly installed floating breakwaters (RIBS) 

were tested at full scale. These breakwaters, developed for military purposes were 

designed to attenuate wave heights in a certain part of the wave spectrum to an 

acceptable level. Besides the military-orientated floating breakwaters, some 

commercial breakwaters have been developed as well. Small-structured floating 

breakwaters, designed to protect small scale marinas against short crested waves, are 

already in wide use. These kinds of structures are used all around the world in 

relatively moderate wave conditions. Although these structures are quite successful, 

the appliance of large-scale floating breakwaters is not yet that common. One of the 

few interesting examples, designed to defend a large harbour, is the pier extension of 

Port Hercule in Monaco. In 2002 ‘La digue semi-flottante’ was installed as a pier 

extension in Monaco, in approximately 55 m of deep water. An enormous caisson, 

352 meters long, with a main body 28 m wide, a total depth of 19 m and a draft of 16 

m was installed. It is multifunctional and, as a permanent structure, it has to withstand 

design storm conditions during its expected lifetime of 100 years. The importance of 

the immerged or the hollow volume appears in constructing 360 parking places over 4 

stages and 25 000 m3 stock capacity over 2 stages (Figure 1.9). 

 

 
Figure 1.9  Pier extension at Port Hercule, Monaco, France. 

 

Floating breakwaters, as they have been applied in real situations, can be split into 

three categories: 

- Light-weight floating breakwaters which are easy to reuse and to transport. Service 

times vary from several hours to a couple of days. Example: Rapidly Installed 

Breakwater System (RIBS) as it is used by the US Navy to load and unload troops 

into small landing vessels. 



- Light-weight floating breakwaters with a semi-permanent character. Service time 

can take up to 30 years. This type of floating breakwater is very common in small-

scale marinas. Example: U-block, which is used to defend several marinas in Greece. 

The U-block floating breakwater consists of concrete caissons, filled with 

polystyrene, that are connected to one another by cables. This type of floating 

breakwater can be transported very easily if wave conditions exceed the design 

conditions or when it has to be reused at another location. 

 

- Heavy-weight floating breakwaters with a permanent character. Service time can 

take up to 100 years. This type of floating breakwater is only applied if water depth or 

soil conditions do not allow a fixed breakwater and the wave conditions are moderate. 

Example: Monaco semi-floating breakwater. The structural dimensions of this pier 

extension are of such a level that the structure can cope with the Mediterranean wave 

spectrum very easily. However, the structure becomes less transportable and reusable 

due to these structural dimensions.  

1.2.4 Possible applications in the near future 

 

In the previous section it became clear that there is a wide range of sources 

with a maritime origin that emphasize the need to develop a floating breakwater. 

International container shipping is one of the most dynamic economic sectors of the 

past few years. Between 1990 and 2005 the container trade at the world’s ports 

expanded by less than 10% on average (Heymann 2006). The expected annual growth 

of the international container shipping will be around 9% up to 2015. The reason for 

this growth is twofold. On the demand side, the increasing division of welfare in the 

world gives a rise in importance of goods, eminently suited to transport by container. 

Higher efficiency of the loading and unloading processes and the increase in size of 

container vessels contributed to the growth at the supply side. 

 

 
Figure 1.10  Maximum ship size by year of construction (until October 2006). 

 

The increase of container handling in the world makes the development of 

container terminals necessary. Existing harbours already increased their container 

handling capacity or transferred their general cargo terminals into container terminals. 

The introduction of the mega vessel as well as the increasing efficiency of shipping 

lines demands for deep water container terminals. An increase of efficiency is gained 



when container vessels are able to reduce their number of port calls. This is achieved 

with the ‘terminal-feeder’ system.  

 

Feeder vessels are container ships with an average capacity of carrying 300-

500 TEU (The abbreviation TEU stands for Twenty feet Equivalent Unit. 1 TEU is a 

20 ft container). Feeders collect containers from different ports and transport them to 

central (deep-water) container terminals where they are loaded to bigger vessels. On 

the way back, the feeders are loaded with other containers that have to be transported 

to a certain port. Throughout the years so-called feeder lines were created on which 

ship-owners are transporting containers over a predefined route on a regular basis. 

 

An example of such a terminal-feeder system, and the feeder routes involved 

with it, is shown in figure 1.11 (European Container Terminals ECT, www.ect.nl). In 

this case, the terminal is the port of Rotterdam. From Rotterdam, feeder vessels 

transport the containers to ports all over Europe. The necessity of deep water 

container terminals, combined with the technical and economical limitations as they 

were mentioned in the previous section, gave rise to the development of the Floating 

breakwaters.  

 

 
Figure 1.11 Container feeder transport system for the port of Rotterdam9 

1.3-Literature survey 

 

This survey covers books, papers, reports and abstracts that both give the basic 

theory for wave propagation, diffraction, radiation; and study the interaction between 

water waves and floating breakwater and the influence of the mooring lines in 

addition to the structural optimisation. Also, we review what has been done already, 

what is currently being investigated and the future directions to study for the problem 

of interaction between the water waves and floating breakwaters.  

The numerous publications reported in the offshore structures’ conference 

proceedings, journals, books and websites confirm the interest in and importance of 

these structures to engineers and scientists. Many papers on the analysis of floating 

structures were published in the following international journals: Applied Ocean 

Research, Engineering Structures, Journal of Engineering Mathematics, Journal of 



Fluid Mechanics, Journal of Fluids and Structures, Marine Structures, Ocean 

Engineering, Wave Motion; in the Proceedings of the International Workshops on 

Water Waves and Floating Bodies (IWWWFB), International Offshore and Polar 

Engineering Conferences (ISOPE), International Offshore Mechanics and Arctic 

Engineering Conference (OMAE) and other conferences, workshops and seminars. 

Also, many publications have been published in non-scientific or scientific-popular 

journals and newspapers and on the internet. Thus, the attention to and interest in the 

problems of the behaviour of floating breakwaters in waves has recently increased. 

1.3.1 Fluid structure interaction 

 

Fluid-structure interaction is not a new problem of hydrodynamics. In fact, 

there are two categories of this problem: the interaction between floating structures 

and water waves, and the interaction between large ice fields and surface waves. Ice-

water interaction problems can be solved with the use of the approaches applied for 

floating structures analysis, using the physical properties of ice instead of those of the 

structure. The physical understanding and computation of wave–structure interaction, 

one of the most important hydrodynamic processes in both coastal and offshore 

engineering, are crucial to assess wave impacts on structures as well as structural 

responses to wave attacks. Traditionally, the estimation of wave loads on a structure is 

often done by either empirical approach (ex: Morison equation Sainflou, Hiroi, Goda, 

Svendson…) or a computational approach. The empirical formulas are simple but 

crude and will not be able to provide detailed and accurate information about pressure 

distribution on a structure. The computational approach can be further divided into 

two types: the Laplace equation solver for potential flows and the Navier–Stokes 

Equations (NSE) solver for viscous flows, where the latter is used for simulation of 

wave–structure interaction during which both vortices and turbulence may be present. 

Solving the Laplace equation by imposing the boundary conditions constitutes the 

wave modelling part in this study for both analytical and numerical approaches.  

 

Surveys of the design of floating breakwaters include those by Jones (1971), 

McLaren (198l), McCartney (1985), Werner (1988), and lsaacson (1993a). 

Comprehensive bibliographies related to analytical formulations and experiences with 

particular designs have been compiled by Western Canada Hydraulics Laboratory 

(1981) and Cammaert et al. (1994). General design criteria and related considerations 

relevant to floating docks and small craft harbour facilities have been summarized by 

Cox (1989), Gaythwaite (1990), the ASCE Ports and Harbours Task Committee 

(1994), and Tsinker (1995). 

 

1.3.2 Hydrodynamic Analysis 

 

Numerical models of floating breakwater response to waves have originated 

largely from ship hydrodynamics and reference may be made to Wehausen (1971) and 

Newman (1977) for the theoretical approaches generally used. In a linear analysis, the 

structure is assumed rigid and to oscillate harmonically in six degrees of freedom, 

corresponding to three translational (surge, sway and heave) and three rotational (roll, 

pitch and yaw) motions. The fluid is assumed incompressible and inviscid and the 

flow irrotational so that potential theory is used to solve for the fluid flow associated 

with a specified incident wave motion. The velocity potential relating to the flow is 



considered to be made up of components due to the incident waves, scattered waves 

associated with the structure in its equilibrium position, and forced waves associated 

with each mode of motion of the floating structure. If the floating breakwater is 

reasonably long, a two-dimensional analysis may be carried out in place of a three-

dimensional analysis. General discussions of potential theory and the hydrodynamics 

of floating breakwaters are presented in the texts by Sarpkaya and Isaacson (1981), 

Chakrabarti (1987), Faltinsen (1990) and Rahman (1994).  

 

The hydrodynamic analysis is generally carried out numerically by a wave 

source method. In a linear analysis, the wave diffraction problem (wave interactions 

with a fixed structure) and the wave radiation problem (waves generated by an 

oscillating structure) are uncoupled and may be solved separately. The resulting 

hydrodynamic forces may then be applied to equations of motion of the structure to 

determine its motion. As examples of this general approach, Adee (1975) developed a 

two-dimensional, linear, theoretical model to predict the performance of catamaran 

type FBWs in deep water and compared the results with measurements in a model 

tank and from a prototype installation in the field. Yamamoto et al. (1980) solved the 

problems of wave transformation and motions of elastically moored floating objects 

by direct use of Green's identity formula, and validated their solutions with 

experimental investigations. Isaacson and Byres (1988) reported the development of a 

numerical model, based on linear diffraction theory, to investigate FBW motions, 

transmission coefficients and mooring forces, in obliquely incident waves. Drimer et 

al. (1992) presented a simplified analytical model for a floating rectangular 

breakwater in water of finite depth. Williams (1994) analyzed the Froude–Krylov 

force coefficients for the case when a rectangular body is located close to the free 

surface or sea bed based on the linear diffraction theory. Lee (1995) presented an 

analytical solution to the heave radiation problem of a rectangular structure, and by 

use of the solution, he calculated the generated waves, added mass, damping 

coefficients and the hydrodynamic effect of the submergence, width of the structure. 

Wu et al. (1995) used the eigen function expansion-matching method to analyze the 

wave-induced responses of an elastic floating plate. Cheong et al. (1996) extended the 

eigen function expansion method to analyze a submerged platform breakwater. 

 

 Hsu and Wu (1997) developed the boundary element method and applied it to 

study the heave and sway problem in a bounded domain (floating breakwater with a 

sidewall in the leeward side), which describes the real problem of breakwaters 

appearing in ports. Williams and Abul-azm (1997) studied the case of a dual pontoon 

floating breakwater and investigated the effects of the various wave and structural 

parameters on the efficiency of a dual breakwater. Sannasiraj et al. (1998) adopted a 

two-dimensional finite element model to study the behaviour of pontoon-type floating 

breakwaters in beam waves. Also Sannasiraj et al. (2000) used again the finite 

element method to study the diffraction– radiation of multiple floating structures in 

directional waves. Williams et al. (2000) investigated the hydrodynamic properties of 

a pair of long floating pontoon breakwaters of rectangular section. Lee and cho (2003) 

developed a numerical analysis using the element free Galerkin method and mainly 

concerning the influence of mooring line condition on the performance of FBWs. 

Zheng et al (2004) continued the problem of Hsu and Wu, by considering the three 

modes of radiation and also the diffraction problem. Shen et al (2004) studied the 

effects of the bottom sill or simply changing the topography on the hydrodynamic and 

transmission coefficients by a semi analytical method. Loukogeorgaki and Angelides 



(2005) focused on a three dimensional modelling of the floating body coupled with a 

static and dynamic model of the mooring lines. Gesraha (2006) investigated the 

reflection and transmission of incident waves interacting with long rectangular 

floating breakwater with two thin sideboards protruding vertically downward, having 

the shape of the Greek letter ∏. 

1.3.3 Mooring Analysis 

 
Apart from a hydrodynamic analysis, the design of moored floating 

breakwaters also requires a mooring analysis in order to determine motion responses 

and mooring system loads. Mooring systems are generally made up of uniform cables 

with or without concentrated loads at various points along each cable. The behaviour 

of most cables tends to be planar (two dimensional) because of the predominance of 

dead weight loading on flexible cable segments. A mooring analysis is generally 

comprised of three steps: (a) the calculation of initial line configuration and 

equilibrium, (b) a static analysis, and (c) a dynamic analysis. Leonard (1988) has 

presented the elastic catenary equations and describes a procedure to arrive at 

principal loads in the initial equilibrium configuration due to the self weight of the 

line. A static analysis is carried out to obtain the steady offset of the floating 

breakwater due to wave current and wind loads. This involves the development of a 

stiffness model of the mooring system about the initial configuration. Various 

approximate expressions for stiffness are given in Faltinsen (1990). The dynamic 

response of the breakwater system about its steady displaced position is computed to 

provide the extreme displacements of the mooring line attachment points, maximum 

anchor forces, and mooring line tensions. A detailed review of the dynamics of 

mooring lines with an emphasis on the mechanism of dynamic amplification is given 

by Triantafyllou (1994).  

 

Several studies have reported on different analysis procedures to obtain the 

dynamic response of a breakwater. Yamamoto and Takahashi (1974) carried out an 

experimental study to investigate the influence of various design parameters such as 

cross-sectional area, moment of inertia, and mooring arrangements on the 

performance of a floating breakwater. Carver (1979) reported that uncrossing the 

anchor chains had a negligible effect and adding a vertical barrier-plate has little 

effect on wave-attenuation characteristics. Yamamoto et al. (1982) developed a two-

dimensional model of a floating body with linear elastic springs. They found that if 

the mooring system is properly arranged, the wave attenuation by a small draft 

breakwater can be improved several times compared to the same FBW conventionally 

moored. Yamamato (1982) then applied this model to study floating breakwater 

response to regular and irregular waves. Skop (1988) solved for the dynamic response 

of the system by assuming the mooring lines as inertialess springs. Patel (1989) 

reported that the effects of wave and current loading on mooring lines may be 

negligible for situations relating to floating breakwaters for which dynamic 

amplification in the mooring line is small. 

1.3.4 Optimisation  

 

Structural optimization is a subject which has attracted the interest of the 

researches for many years. It refers to the optimal design of the structure under certain 

loadings, in order to have minimum weight, or uniformly distributed equivalent 



stresses or even to control the deflections of the structural components; and is of great 

importance in structural and mechanical engineering. The optimization procedure is 

an iterative process in which repeated improvements are carried out over successive 

designs until the optimal design is acceptable. It is divided into shape and topology 

optimization. The usual shape optimization procedures start from the given initial 

design, where the inward or (and) outward boundary of the structure is described and 

parameterized using a set of simple segments such as straight lines, splines, or nodal 

coordinates, and the boundary is varied iteratively using the information from the 

shape design sensitivity to achieve the optimal shape of the structure for a given 

purpose. On the other side, some of the methods used in determining optimal 

topology search the optimal values of the densities of finite elements, in which a fixed 

feasible domain is meshed (homogenisation approaches); in other methods elements 

are removed from design domain or added to this one, depending on stress values and 

on the basis of rules. In fact, in many cases it is opportune to perform a shape 

optimisation just after the topology one (Cappello and Mancuso(2002)), in order to 

smooth out the rough boundaries obtained in the first step, due to the coincidence of 

the latter with the discontinuous edges of the elements. 

 

In the analysis procedures of a reliable and effective optimization approach, a 

problem can be divided into three main tasks. The first step is to represent the 

changeable geometry of the model during the optimization process. Zienkiewicz and 

Campbell (1973) defined nodal coordinates of the discrete finite element model as 

design variables. Yang et al (1992), Chang and Choi (1992), Tortorelli et al (1993) 

used a set of key points or master nodes to define the geometry entities. Belengundu 

and Rajan (1988) introduced the natural design method. The geometric modeling can, 

alternatively, be carried out by using predefined shapes (rectangle, polygon, circle,..), 

straight lines, Splines: Herskovits et al (2000), Annicchiarico et al (1999), Cerrolaza 

et al (2000), etc. Secondly, it is necessary to provide a structural analysis technique, 

which can give sufficiently accurate displacement and stress solutions for the 

continuous changing boundaries during the optimization process. As well known, 

great efforts have been devoted to use FEM (Finite Element Method) and BEM 

(Boundary Element Method) in the structural optimization fields for a long history 

and these two methods have been applied in various engineering fields: Herskovits 

and Dias (2000), Holzleitner and Mahmoud (1999), Schleupen et al (2000), Woon & 

Querin (2001). Mackerle (2003) presented a detailed list of papers on the application 

of FEM and BEM to topology and shape optimizations from 1999 to 2001. Finally, 

we must select an appropriate optimization algorithm to achieve the whole 

optimization process in an effective and reliable way.  

 

There are two types of optimization algorithms mainly, i.e., traditional 

gradient- based method and stochastic zero-order search method. As demonstrated by 

the previous investigations the conventional gradient-based optimization techniques 

are reliable and effective, such as Sequential Quadratic Programming (SQP) 

(Holzleitner (1999)) and Interior Point Non-linear Programming (Herskovits (2000)). 

The SQP method, one of numerous methods used in non linear programming (NLP), 

provides a tool to find the minimum of an objective function which depends on a set 

of optional free variables and is subjected to arbitrary constraints. In fact, nonlinear 

programming has many applications in todays engineering practice; particularly in 

structural design, NLP is successfully used reducing steel weight and cost of marine 

structures. Among the stochastic zero-order search methods, Genetic Algorithms 



(GAs), as a kind of Evolutionary Algorithm represented by Holland, have attracted 

great attentions from the scientific community as a powerful optimization tool during 

recent decades. GAs have been successfully used in the structural optimization 

problems combined with FEM and BEM, and some of the recent works can be found 

in Cerrolazaa et al (2000), Kovacs and Szabo (2001), Woon et al (2001), Wang and 

Tai (2005), where they are really recommended to be used especially in topology 

optimization where there are no available data on the possible solution. The main 

interest of stochastic methods in engineering sciences is to break the limits of the 

standard deterministic methods in many optimization problems: when the search 

space involves both discrete and continuous domains; when the objective function or 

the constraints lack regularity; or when the objective function admits a huge number 

of local optima. Therefore, GA is able not only to improve the solution close to a local 

optimum, but also to explore a larger extension of the design space and to direct the 

search toward relatively prospective regions in the search space.  

 

1.4-Problem definition & objectives 

1.4.1 General 

 
A floating breakwater is not a real breakwater. In fact, this simple but on the 

other hand complex statement contains the whole floating breakwater problem. A 

conventional, fixed breakwater reflects and absorbs the wave energy in order to create 

a sheltered area behind it. A floating breakwater on the other hand, reflects and 

generates wave energy in order to obtain the same results as the fixed breakwater. In 

other words: the fixed breakwater tries to diminish the energy of the incoming wave, 

while the floating breakwater uses this same incoming wave to generate anti-waves.  

The main problem of this whole thesis is how to create an area where harbour 

activities can take place in deep, unprotected water conditions. The problems that 

have to be solved, the objectives of this research, and the methodology of modelling 

and optimising the floating breakwater, are discussed in this chapter.  

1.4.2 Objectives 

A floating structure has to be developed that is capable of attenuating the 

incoming waves to such a level that a floating harbour can become an efficient 

alternative. The dynamic behaviour of floating structures in waves depends on a lot of 

factors. It is important to understand the effect of the hydrodynamic as well as the 

structural factors that are involved. With this knowledge, a model can be created to 

state the optimal structural dimensions at severe wave conditions. The model can be 

used as a design tool to determine a theoretical-based design. The main objective of 

this thesis is therefore twofold: 

 

 Determine the influence of the several structural elements on the dynamic 

behaviour of the floating breakwater and create a model that proves the 

influence of these elements.  

 Create an optimal constructional design, based on this model to prove that a 

floating breakwater is possible from a constructive point of view.  

 

Although many studies were performed to determine the performance of floating 

breakwaters with various designs and with mild wave environment conditions, yet 



none of these studies have been discussing their structural design or more even 

optimizing its shape and topology. On the other hand, optimization of fixed 

breakwaters has been previously discussed by Ryu et al (2005) but focused on 

minimizing the cost function imposed to structural failure constraints, and also by 

Castillo et al (2006) for composite breakwater types and similarly concerning the 

minimization of initial/construction costs subjected to yearly failure rate bounds for 

failure modes. Therefore, in this thesis the study is directed towards optimization of 

floating breakwaters to reduce its weight, or to represent a new resistive form capable 

of attenuating strong waves and surviving in difficult environmental conditions, in 

accordance to the physical and mechanical constraints to satisfy the port demands.  

 

  It is noticed that applications related to hydrodynamic aspects of marine 

structures are rarely reported. This may result from several severe problems related to 

the hydrodynamic analysis and evaluation of such structures and mainly summarized 

in the difficulty of hydrodynamic analysis for their arbitrarily shapes. Nevertheless, 

there is some work spent on shape optimization in ocean field but for offshore 

structures only. For example, Akagi & Ito (1984) optimized the heave motion of a 

hydrodynamic transparent semi submersible using a quadratic programming 

technique, Kagemoto (1992) optimized the arrangement of vertical floating cylinders 

in waves, Clauss & Birk (1996) focused on hydrodynamic shape optimization for 

large offshore structures (oil platforms) based on non linear programming algorithms. 

 

Another novelty in our work appears in the fluid domain definition that 

approaches the reality in ports. From the researches of the scholars above, we find 

most of them focus attention on floating structures oscillation with periodic motion on 

water surface of deep water with unbounded domain, and almost very few researches 

attempt to study the problem of floating structures oscillation on water surface of 

finite deep water and one side of the boundary with vertical sidewall; which 

assimilates a real practical model for port sites. When a ship is parked in the port, the 

waves are reflected due to a vertical sidewall. So it is different to the problems of 

structures oscillation on water surface with unbounded domain. In fact, this 

constitutes advanced steps for the previous studies, where Zheng et al (2004) have 

developed only an analytical solution for a freely floating breakwater, and did not 

continue their study to compromise the effect of the diffraction problem, neither the 

effect of the mooring lines stiffness and their angle of inclination. But, they limited 

their study on the influence of structural parameters on the hydrodynamic coefficients 

only; where the diffraction seems to play an important factor in magnifying the 

resonant peaks beside the wave’s radiation in the bounded domain. Moreover, neither 

Zheng et al (2004) nor Hsu and Wu (1997) have analyzed the dynamic motion of the 

breakwater.  

1.4.3 Problem Methodology 

 
In order to take into account wave interaction with floating breakwaters we 

formulate a multidisciplinary problem, where a combination of fluid mechanics, 

dynamic behaviour of mechanical systems, the vibration theory, and the structural 

mechanics (mechanical resistance) are introduced to perform a complete analysis 

capable to develop a representative design of the structure. The interference of these 

phenomena together with resonance bands occurring in the port side due to the 

reflective sidewall, and the influence of the structural parameters on the performance 



of breakwaters causing mass variation and hence affecting the natural frequencies; 

demonstrate the complexity of a floating breakwater design, and yields to orient the 

problem towards an optimization approach that can consider all the relevant 

consequences together. Therefore, due to the complexity and the interference of these 

phenomena, the problem is carried out on two stages. The first one eliminates the 

dynamic behaviour of the floating structure by considering small or negligible 

oscillations; while the second part develops a complete and thorough formulation of 

the floating breakwater. 

 

The methodology followed in the fist part is identified by an analytical 

modelling of waves and their induced pressures on the floating breakwater. After this, 

physical and mechanical constraints concerning the floating breakwater are imposed 

to be introduced in the optimization problem. Concerning the optimization procedure, 

three different methods are elaborated considering the shape and topology. The first 

method concerns the optimization with a predefined rectangular geometrical shape 

based on the SQP method, which constitutes a direct approach in the optimization 

world. This can be done only if the type of the problem permits to create a prospective 

image for the final shape. The second, concerns topology optimization based on 

element extraction using genetic algorithms; where topology generates the optimal 

shape of a mechanical structure by representing a new mass distribution. We built this 

method on the density distribution process of the discretized domain, and then each 

element is reserved or removed due to its relative value in the density vector that 

represents the design variable vector in the GA. We have elaborated a new 

contribution in this field, where two types of triangular meshes were used. One for 

indicating the number of variables in the optimization problem, and another refined 

mesh used for Finite element computations. Thus, we can use very fine meshes 

without affecting the scale of the general problem.  

 

 The third method constitutes a new idea in this field mainly relating topology 

and shape optimization under a single algorithm by using a variable number of points 

which create an arbitrary initial valid domain. The coordinates of these points 

represent the variables for the optimization problem, by this way it is possible to 

enlarge or extend the expected solution due the achieved shape by connecting 

multiple points without any restriction to their motion.  In other words, a limited 

number of points (4,7,..) yields the topological representation of the problem, while 

increasing the number of these points (10,15,20….) will surely yields to smooth the 

rough surfaces and donates an optimal shape design. This work compose a new 

evolution in two subjects: the first by combining the shape and topology optimization 

in one algorithm and the other by widening the usage of points coordinates in the 

optimization domain; where previous methods (Zienkiewicz and Campbell (1973), 

Cappello et al (2002)) select key points from existing geometries or some nodal points 

deduced from the meshing procedure of this existing geometry to constitute the design 

variables of the optimization. Finally, a comparison between these methods is 

performed to demonstrate the capability of this approach in optimization among the 

previous methods. 

 

In the second part, the simulation of the floating breakwater performance is 

complicated by the importance of the mutual interaction between fluid and rigid body. 

Indeed its displacement is caused by the wave load and the wave propagation is 

influenced in turn by the floating breakwater kinematics, so that the most interesting 



phenomenon, the wave transmission, can only be found if the fully coupled 

interaction problem is solved. Thus, the fluid flow can be described by a potential 

which is the sum of an incident, scattered, and radiated fields. The advantage of this 

decomposition is that the diffraction (scattering) hydrodynamic problem does not 

involve the floating breakwater dynamics and can be solved first. The radiation 

hydrodynamic problem, describing the effect of a forced motion, is solved separately. 

The actual periodic motion of the structure is solved at last by an analytical 

vibrational model, deriving the hydrodynamic forces from the diffraction problem and 

the added mass and damping from the radiated potential. This composes a 

comprehensive study of the sea waves-breakwater interaction, and is capable to 

implicate the wave height in the fluid domain and especially inside the port region. 

Second, the optimization problem is introduced by an objective function and its 

relevant imposed constraints. These latter are enumerated by the floating condition, 

stability, minimum wave height in the port, and the mechanical resistance. The last 

constraint demands a finite element formulation to compute the mechanical 

constraints; while, the wave height constraint is derived from the hydrodynamic 

problem in the first part. All these constraints are expressed in terms of the 

geometrical parameters of the design shape, in order to be introduced into the 

optimization problem. Therefore, we have to solve three main models for each 

iteration of the optimization procedure: 

 

1-Fluid Mechanics  2-Dynamic Motion  3- Mechanical Resistance 

 

Moreover, the resonance phenomenon plays an important role in such 

problems, where a structure oscillating in presence of an incoming wave that has its 

own periodic frequency may enter the resonance bands, and destructive results 

appear. Then, it must be clear that we are facing two sources of resonance, one being 

represented by any coincidence between the oscillating frequency of the structure and 

that of the wave; where the other kind is the wave itself inside the port region. In 

presence of the sidewall, that really describes a real port problem, it seems to create a 

bounded domain from the port side or simply an enclosed area. Thus, any wave may 

be forced to resonance in port side due to specific value of the clearance distance 

between the sidewall and the breakwater.  

 

For the problem of fluid-structure interaction, it is interesting to consider in 

the whole thesis the case of a breakwater appearing in ports far from the shore, at a 

constant depth, and at a fixed point. Then, the problems of waves’ propagation over a 

varying bathymetry and shallow water consequences are eliminated. 

 

 

Finally, the structure of the report is as follows: 

 

Chapter 2: A short overview of the numerical tools used in modelling and 

optimisation. 

 

Chapter 3: Analytical and numerical modelling of the sea waves. Dynamical 

modelling of the floating breakwater. Evaluation and structural parametrical analysis. 

Analytical and numerical modelling of the mechanical behaviour of the floating 

breakwater. 

 



Chapter 4: Various methods for shape and topology optimisation of floating 

breakwaters. Assumptions, calculations parameters and evaluation of the results. 

 

Finally, conclusions will be drawn and recommendations on further research will be 

given. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
2 

Numerical Tools 

 
 

 

 

 

This chapter presents the general theory of the numerical tools utilised in the 

modelling and optimization of floating breakwaters. The first section considers the 

numerical modelling using the finite element method. It is applied for both wave 

(fluid) and breakwater (structure) models. The second section illustrates the basics of 

the optimization algorithms and methods. It covers the deterministic and stochastic 

methods with some examples to clarify the mathematical formulation of the 

algorithms. 

 

 

 

2.1 General 

Engineering consists of a number of well established activities, including 

analysis, design, fabrication, sales, research, and the development of systems. The 

process of designing and fabricating systems has been developed over centuries. The 

existence of many complex and multidisciplinary systems, such as floating 

breakwaters, ships, bridges, automobiles, airplanes, space vehicles, and others, is an 

excellent testimonial for this process. However, the evolution of these systems has 

been slow. The entire process has been both time-consuming and costly, requiring 

substantial human and material resources. Therefore, the procedure has been to 

design, fabricate, and use the system regardless of whether it was the best one. 

Improved systems were designed only after a substantial investment had been 

recovered. These new systems performed the same or even more tasks, cost less, and 

were more efficient; where several systems can usually accomplish the same task, and 

that some are better than others.   

 

The design of complex systems requires data processing and a large number of 

calculations. In the recent past, a revolution in computer technology and numerical 

computations has taken place. Today’s computers can perform complex calculations 

and process large amounts of data rapidly. The engineering design and optimization 

processes benefit greatly from this revolution because they require a large number of 

calculations. Better systems can now be designed by analyzing and optimizing various 



options in a short time. This is highly desirable because better designed systems cost 

less, have more capability, and are easy to maintain and operate. 

 

The design of systems can be formulated as problems of optimization in which 

a measure of performance is to be optimized while satisfying all constraints. Many 

numerical methods of optimization have been developed and used to design better 

systems. Any problem in which certain parameters need to be determined to satisfy 

constraints can be formulated as an optimization problem. Therefore, the optimization 

techniques are quite general, having a wide range of applicability in diverse fields.  

 

In fact, it is a challenge for engineers and scientists to design efficient and 

cost-effective systems without compromising the integrity of the system. The 

conventional design process depends on the designer’s intuition, experience, and skill. 

This presence of a human element can sometimes lead to erroneous results in the 

synthesis of complex systems. Scarcity and the need for efficiency in today’s 

competitive world have forced engineers to evince greater interest in economical and 

better designs. The computer-aided design optimization process can help in this 

regard. The main advantage in the conventional design process is that the designer’s 

experience and intuition can be used in making conceptual changes in the system or to 

make additional specifications in the procedure. For example, the designer can choose 

the type and the shape of the structure, add or delete certain components of it, and so 

on. But, when it comes to detailed design, however, the conventional design process 

has some disadvantages. These include the treatment of complex constraints (such as 

limits on vibration frequencies) as well as inputs (for example, when the structure is 

subjected to a variety of loading conditions). In these cases, the designer would find it 

difficult to decide whether to increase or decrease the size of a particular structural 

element to satisfy the constraints. Furthermore, the conventional design process can 

lead to uneconomical designs and can involve a lot of calendar time. The optimum 

design process forces the designer to identify explicitly a set of design variables, an 

objective function to be optimized, and the constraint functions for the system. Proper 

mathematical formulation of the design problem is a key to good solutions. First it 

starts by a real and comprehensive modelling of the system, and then it moves 

forward towards imposing an optimization problem 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2.2 Numerical Modelling 

         
The numerical analysis of the mechanical and dynamical behaviour of the 

floating breakwater is based on the finite element method (FEM) using the software 

Matlab. In fact, Matlab solve the problems of (FEM) under the partial differential 

equations toolbox (PDE Tool). The elliptic equation, one of the various types of 

differential equations, satisfies the requirements of the mechanical and dynamical 

problem. Thus, the attention in this section is concentrated on the specific type of 

partial differential equations summarized by the elliptic form. 

 

The solutions of simple PDEs on complicated geometries can rarely be 

expressed in terms of elementary functions. You are confronted with two problems: 

First we need to describe a complicated geometry and generate a mesh on it. Then we 

need to discretize the PDE on the mesh and build an equation for the discrete 

approximation of the solution. Then, the mesh structures and the discretization 

functions can be accessed and incorporated into specialized applications. 

The basic elliptic equation is represented as follows: (expressed in  ). 

  fuauc  ..         (2.1) 

where   is a bounded domain in the plane. fac ,,  and the unknown solution u  are 

complex functions defined on  . The boundary conditions specify a combination of 

u  and its normal derivative on the boundary. We can differentiate three types of 

boundary conditions: 

Dirichlet: ruh . on the boundary   

Newmann: guqucn  .).(


on   

Mixed: Only applicable to systems. A combination of Dirichlet and generalized   

Neumann. 

where     is the boundary of  , n


is the outward unit normal. ,,, hgq g,and r  are 

functions defined on  . 

 

The approximate solution to the elliptic PDE is found in three steps: 

1- Describe the geometry of the domain  and the boundary conditions.  

2- Build a triangular mesh on the domain . A mesh is described by three matrices of 

fixed format that contain information about the mesh points, the boundary segments, 

and the triangles. 

3-Discretize the PDE and the boundary conditions to obtain a linear system Ku = F. 

The unknown vector u contains the values of the approximate solution at the mesh 

points, the matrix K is assembled from the coefficients c, a, h, and q and the right-

hand side F contains, essentially, averages of f around each mesh point and 

contributions from g. Once the matrices K and F are assembled, the required 

information is at our disposal to solve the linear system and further process the 

solution. 

 

Starting with the boundary conditions and without restricting the generality, 

we assume generalized Neumann conditions on the whole boundary. Since Dirichlet 

conditions can be approximated by generalized Neumann conditions. In the simple 

case of a unit matrix h , setting rqg .  and then letting q yields the Dirichlet 

condition because division with a very large q  cancels the normal derivative terms.  

 



Assume that u  is a solution of the differential equation. Multiply the equation with an 

arbitrary test function  and integrate on  : 

 

   
 

 dxfdxuauc .......        (2.2) 

 

Integrate by parts (i.e., use Green’s formula) to obtain 

      
  

 dxfdsucndxuauc ...... 


     (2.3) 

The boundary integral can be replaced by the boundary condition: 

      
  

 dxfdsguqdxuauc ......      (2.4) 

Replace the original problem with find u  such that: 

     
 

 0.... dsguqdxfuauc      (2.5) 

This equation is called the variational, or weak, form of the differential equation. 

Obviously, any solution of the differential equation is also a solution of the variational 

problem. The reverse is true under some restrictions on the domain and on the 

coefficient functions. The solution of the variational problem is also called the weak 

solution of the differential equation. 

 

The solution u  and the test functions   belong to some function space V . The 

next step is to choose an 
p

N  dimensional subspace VV
pN
  . Project the weak form of 

the differential equation onto a finite-dimensional function space simply means 

requesting u  and   to lie in 
pN

V  rather than V . The solution of the finite dimensional 

problem turns out to be the element of 
pN

V that lies closest to the weak solution when 

measured in the energy norm. Convergence is guaranteed if the space 
pN

V tends to V  

as 
p

N . Since the differential operator is linear, we demand that the variational 

equation is satisfied for 
p

N  test-functions 
i  that form a basis, i.e, 

     
 

 0.... dsguqdxfuauc iiii   ,  
p

Ni ....,,.........1   (2.6) 

Expand u in the same basis of 
pNV  

 


Np

j jj
xUxu

1
)()(          (2.7) 

And obtain the system of equations: 

     
  









 dsgdxfUdsqdxac

j

Np

j
ijijijij

........
1

  

 
p

Ni ....,,.........1        (2.8) 

Using the following notations: 

 


 dxcK ijji ..
,

         (2.9) 

 




 dxaM ijji 
,

        (2.10) 

 




 dsqQ ijji 
,

         (2.11) 

 






 dxfF ii           (2.12) 

 




 dsgG ii           (2.13) 

 

and rewrite the system in the form (K + M + Q)U = F + G. 

K, M, and Q are Np-by-Np matrices, and F and G are Np-vectors. When it is not 

necessary to distinguish K, M, and Q or F and G, we collapse the notations to KU = F. 

 

When the problem is self-adjoint and elliptic in the usual mathematical sense, the 

matrix K + M + Q becomes symmetric and positive definite. Many common problems 

have these characteristics, most notably those that can also be formulated as 

minimization problems. For the case of a scalar equation, K, M, and Q are obviously 

symmetric. If   0)( xc , 0)( xa  and 0)( xq  with 0)( xq  on some part of  , 

then, if  0U . 

  0)( 222
 



dsqudxauucUQMKU T  if 0U   (2.14) 

UT(K + M + Q)U is the energy norm. There are many choices of the test-function 

spaces. The toolbox uses continuous functions that are linear on each triangle of the 

mesh. Piecewise linearity guarantees that the integrals defining the stiffness matrix K 

exist. Projection onto  
pN

V is nothing more than linear interpolation, and the evaluation 

of the solution inside a triangle is done just in terms of the nodal values. If the mesh is 

uniformly refined , 
pN

V approximates the set of smooth functions on  . 

 

A suitable basis 
pN

V for is the set of “tent” or “hat” functions 
i . These are linear on 

each triangle and take the value 0 at all nodes 
j

x  except for 
ix . Requesting 1)( 

ii
x  

yields the very pleasant property 

 

i

Np

j ijji
UxUxu  1

)()(         (2.15) 

That is, by solving the FEM system we obtain the nodal values of the approximate 

solution. Finally note that the basis function i vanishes on all the triangles that do not 

contain the node xi. The immediate consequence is that the integrals appearing in Ki,j, 

Mi,j, Qi,j, Fi and Gi only need to be computed on the triangles that contain the node xi. 

Secondly, it means that Ki,j and Mi,j are zero unless xi and xj are vertices of the same 

triangle and thus K and M are very sparse matrices. Their sparse structure depends on 

the ordering of the indices of the mesh points. 

 

The integrals in the FEM matrices are computed by adding the contributions 

from each triangle to the corresponding entries (i.e., only if the corresponding mesh 

point is a vertex of the triangle). The assembling routines scan the triangles of the 

mesh. For each triangle they compute the so-called local matrices and add their 

components to the correct positions in the sparse matrices or vectors. (The local 3-by-

3 matrices contain the integrals evaluated only on the current triangle. The 

coefficients are assumed constant on the triangle and they are evaluated only in the 

triangle barycentre.) The integrals are computed using the mid-point rule. This 

approximation is optimal since it has the same order of accuracy as the piecewise 



linear interpolation. Consider a triangle given by the nodes P1, P2, and P3 as in the 

following figure. 

 
 

The simplest computations are for the local mass matrix m: 

 
jicji

PPP

cji

PPParea
PadxxxPam

,

321

,
1

12

)(
)()()()(

321

 


 


   (2.16) 

Where 
c

P  is the centre of mass of  
321 PPP , i.e, 

3

321 PPP
Pc


          

The contribution to the right side F is just: 

 

3

)(
)( 321 PPParea

Pff ci


        (2.17) 

For the local stiffness matrix we have to evaluate the gradients of the basis functions 

that do not vanish on P1P2P3. Since the basis functions are linear on the triangle 

P1P2P3, the gradients are constants. Denote the basis functions ,,
21
 and 

3
 such that 

1)( iP . If  TyxPP ],[
1132

 then we have that 

 













1

1

321
)(2

1
1

x

y

PPParea
        (2.18) 

 

And after integration  (taking c as a constant matrix on the triangle) 

 

  














1

1

321

, )(,
)(4

1

x

y
Pcxy

PPParea
k cjjji      (2.19) 

The toolbox can also handle systems of N partial differential equations over the 

domain , where the elliptic system is expressed by: 

fuauc  ).(         (2.20) 

Where 

c is a 2-by-2 matrix function on   

 

A direct application of the elliptic equation is the mechanical and dynamical equations 

of the floating breakwater. For example, in structural mechanics the main problem is 

concentrated in solving the equilibrium equation  


 0vfdiv  in a determined 

structural domain exposed to different boundary loadings (forces and displacements). 

To solve this classical equilibrium equation under the elliptic family of equations, the 



elliptic coefficients u, c, a ,f  are defined in terms of their equivalence substitutes in a 

mechanical problem.  

The second basic partial differential equation in this thesis is the Laplace equation 

describing the wave propagation through the diffraction and radiation theory yielding 

to study the dynamical behaviour of the floating breakwater. For the wave modelling 

problem, the state of the fluid can be completely described by the velocity potential. 

The time independent complex of the latter ),( zx satisfies the Laplace equation. 

0),(2  zx     
Thus, this simplified form of the elliptic equation is expressed by substituting the 

elliptic coefficients by their relevant values from the Laplace equation: 1c , 0a , 

0f , and the u represents the velocity potential of waves. 

 

After defining the elliptic system of both equations, boundary conditions are required 

to solve the numerical problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2.3 Optimization 

2.3.1-General: 

 

This section describes the basic concepts of optimization methods and their 

applications to the design of engineering systems. Optimization theory, numerical 

methods, and modern computer software can be used as tools to improve the 

performance of these systems. 

 

The foregoing distinction between the conventional and optimum design 

indicates that the conventional design process is less formal. An objective function 

that measures the performance of the system is not identified. Trend information is 

not calculated to make design decisions for improvement of the system. Most 

decisions are made based on the designer’s experience and intuition. In contrast, the 

optimization process is more formal, using trend information to make decisions. 

However, the optimization process can substantially benefit from the designer’s 

experience and intuition in formulating the problem and identifying the critical 

constraints. Thus, the best approach would be an optimum design process that is aided 

by the designer’s interaction. There are mainly two types of optimization algorithms, 

i.e., gradient- based method (deterministic methods) and stochastic search method  

(Genetic Algorithms). 

2.3.2 Deterministic Methods 

 
Optimization techniques are used to find a set of design parameters, 

 
nxxxx ..,........., 21 , that can in some way be defined as optimal. In a simple case this 

might be the minimization or maximization of some system characteristic that is 

dependent on x . In a more advanced formulation the objective function, )(xf , to be 

minimized or maximized, might be subject to constraints in the form of equality 

constraints, 0)( xCi
, 

emi ,,.........1 ; inequality constraints, 0)( xCi
, 

mmi e .,,.........1 ; and/or parameter bounds, 
l

x ,
u

x  

 

A General Problem (GP) description is stated as: 

 

x
Minimize )(xf  

Subject to 

 

0)( xCi
, 

emi ,,.........1  

0)( xCi
, mmi e .,,.........1        (2.21) 

 

where x is the vector of length n design parameters, f(x) is the objective function, 

which returns a scalar value, and the vector function C(x) returns a vector of length m 

containing the values of the equality and inequality constraints evaluated at x .  

 

An efficient and accurate solution to this problem depends not only on the size 

of the problem in terms of the number of constraints and design variables but also on 

characteristics of the objective function and constraints. When both the objective 

function and the constraints are linear functions of the design variable, the problem is 



known as a Linear Programming (LP) problem. Quadratic Programming (QP) 

concerns the minimization or maximization of a quadratic objective function that is 

linearly constrained. For both the LP and QP problems, reliable solution procedures 

are readily available. More difficult to solve is the Nonlinear Programming (NP) 

problem in which the objective function and constraints can be nonlinear functions of 

the design variables. Numerical methods for nonlinear optimization problems are 

needed because the analytical methods for solving some of the problems are too 

cumbersome to use. There are two basic reasons why the methods are inappropriate 

for many engineering design problems: 

 

1. The numbers of design variables and constraints can be large. In that case, the 

necessary conditions give a large number of nonlinear equations, which can be 

difficult to solve. Numerical methods must be used to find solutions of such equations 

in any case. Therefore it is appropriate to use the numerical methods directly to solve 

the optimization problems. Even if the problem is not large, these equations can be 

highly nonlinear and cannot be solved in a closed form. 

 

2. In many engineering applications, cost and/or constraint functions are implicit 

functions of the design variables; that is, explicit functional forms in terms of the 

independent variables are not known. These functions cannot be treated easily in the 

analytical methods for solution of optimality conditions. 

 

For these reasons, we must develop systematic numerical approaches for the 

optimum design of engineering systems. In such approaches, we estimate an initial 

design and improve it until optimality conditions are satisfied. Many numerical 

methods have been developed for NLP (Non Linear Programming ) problems. Some 

are better than others and research in the area continues to develop still better 

techniques. Detailed derivations and theory of various methods are beyond the scope 

of the present text. However, it is important to understand a few basic concepts, ideas, 

and procedures that are used in most algorithms for unconstrained and constrained 

optimization.  

Many numerical solution methods are described by the following iterative 

prescription: 
)()()1( kkk xxx   

The change in design )(kx is further decomposed into two parts: 
)()( k

k

k dx   
)(kd the search direction in the design space 

k
  step size (positive scalar) in that direction 

 

 
Fig 2.2   Conceptual diagram for iterative steps of an optimization method 



In summary, the basic idea of numerical methods for nonlinear optimization 

problems is to start with a reasonable estimate for the optimum design. Cost and 

constraint functions and their derivatives are evaluated at that point. Based on them, 

the design is moved to a new point. The process is continued until either optimality 

conditions or some other stopping criteria are met. This iterative process represents an 

organized search through the design space for points that represent local minima. 

Thus, the procedures are often called the search techniques or direct methods of 

optimization. The iterative process is summarized as a general algorithm that is 

applicable to both constrained and unconstrained problems: 

 

Step 1: Estimate a reasonable starting design )0(x . Set the iteration counter k = 0. 

 

Step 2: Compute a search direction )(kd  in the design space. This calculation generally 

requires a cost function value and its gradient for unconstrained problems and, in 

addition, constraint functions and their gradients for constrained problems. 

 

Step 3: Check for convergence of the algorithm. If it has converged, stop; otherwise, 

continue. 

 

Step 4: Calculate a positive step size 
k

  in the direction )(kd . 

 

Step 5: Update the design as follows, set k = k + 1 and go to Step 2: 
)()()1( k

k

kk dxx   

In the remaining sections of this chapter, we shall present some methods for 

calculating the step size 
k

  and the search direction )(kd  for unconstrained and 

constrained optimization problems. 

 
A-Unconstrained optimization 
 

Although a wide spectrum of methods exists for unconstrained optimization, methods 

can be broadly categorized in terms of the derivative information that is, or is not, 

used. Search methods that use only function evaluations (e.g., the simplex search of 

Nelder and Mead 1965) are most suitable for problems that are very nonlinear or have 

a number of discontinuities. Gradient methods are generally more efficient when the 

function to be minimized is continuous in its first derivative. Higher order methods, 

such as Newton’s method, are only really suitable when the second order information 

is readily and easily calculated, because calculation of second order information, 

using numerical differentiation, is computationally expensive. Gradient methods use 

information about the slope of the function to dictate a direction of search where the 

minimum is thought to lie. The simplest of these is the method of steepest descent in 

which a search is performed in a direction, )(xf , where )(xf is the gradient of the 

objective function  )( kk xfd  . This method is very inefficient when the function 

to be minimized has long narrow valleys as, for example, is the case for Rosenbrock’s 

function 
2

1

22

12
)1()(100)( xxxxf         (2.22) 

The minimum of this function is at ]1,1[x , where 0)( xf . A contour map of this 

function is shown in Figure 2.1, Steepest Descent Method on Rosenbrock’s Function 

(Eq. 2.22), along with the solution path to the minimum for a steepest descent 



implementation starting at the point [-1.9,2]. The optimization was terminated after 

1000 iterations, still a considerable distance from the minimum. The black areas are 

where the method is continually zigzagging from one side of the valley to another. 

Note that toward the centre of the plot, a number of larger steps are taken when a 

point lands exactly at the centre of the valley. 

 

 
Figure 2.1   Steepest Descent Method on Rosenbrock’s Function 

 

This type of function (Equation 2.22), also known as the banana function, is notorious 

in unconstrained examples because of the way the curvature bends around the origin. 

Equation (2.22) is used throughout this section to illustrate the use of a variety of 

optimization techniques. The contours have been plotted in exponential increments 

because of the steepness of the slope surrounding the U-shaped valley. 

 

In the upper text, the steepest descent method was described. Some of the 

drawbacks of that method were pointed out. It was noted that the method has a poor 

rate of convergence because only first-order information is used. This flaw was 

corrected with Newton’s method where second-order derivatives were used. Newton’s 

method has very good convergence properties. However, the method can be 

inefficient because it requires calculation of n(n + 1)/2 second-order derivatives to 

generate the Hessian matrix (recall that n is the number of design variables). For most 

engineering design problems, calculation of second-order derivatives may be tedious 

or even impossible. Also, Newton’s method runs into difficulties if the Hessian of the 

function is singular at any iteration. The methods presented in this section overcome 

these drawbacks by generating an approximation for the Hessian matrix or its inverse 

at each iteration. Only the first derivatives of the function are used to generate these 

approximations. Therefore the methods have desirable features of both the steepest 

descent and the Newton’s methods. They are called quasi-Newton methods.  

 

Quasi-Newton Methods 

 

Of the methods that use gradient information, the most favoured are the quasi-Newton 

methods. These methods build up curvature information at each iteration to formulate 

a quadratic model problem of the form 



bxcHxx TT

x


2

1
min         (2.23) 

where the Hessian matrix, )(2 xfH  , is a positive definite symmetric matrix, c is a 

constant vector, and b is a constant. The optimal solution for this problem occurs 

when the partial derivatives of x go to zero, i.e., 
0**)(  cHxxf  

 

The optimal solution *x  can be written as: 

cHx 1*           (2.24) 

 

Newton-type methods (as opposed to quasi-Newton methods) calculate H directly and 

proceed in a direction of descent to locate the minimum after a number of iterations. 

Calculating H numerically involves a large amount of computation. Quasi-Newton 

methods avoid this by using the observed behaviour of f(x) and )(xf to build up 

curvature information to make an approximation to H using an appropriate updating 

technique. A large number of Hessian updating methods have been developed. 

However, the formula of (BFGS) Broyden, Flether, Goldfarb, and Shanno (1970) is 

thought to be the most effective for use in a General Purpose method. 

The formula given by BFGS is 
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As a starting point 
0

H , can be set to any symmetric positive definite matrix, for 

example, the identity matrix I. To avoid the inversion of the Hessian H, you can 

derive an updating method that avoids the direct inversion of H by using a formula 

that makes an approximation of the inverse Hessian 1H  at each update. A well-

known procedure is the DFP formula of Davidon (1959), Fletcher, and Powell (1963). 

This uses the same formula as the BFGS method (Equation 2.25) except that 
k

q  is 

substituted for 
k

s .  

The gradient information is either supplied through analytically calculated gradients, 

or derived by partial derivatives using a numerical differentiation method via finite 

differences. This involves perturbing each of the design variables, x, in turn and 

calculating the rate of change in the objective function. 

 

At each major iteration, k, a line search is performed in the direction 
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The quasi-Newton method is illustrated by the solution path on Rosenbrock’s function 

(Equation 2.22) in Figure 2.2, BFGS Method on Rosenbrock’s Function. The method 

is able to follow the shape of the valley and converges to the minimum after 140 

function evaluations using only finite difference gradients. 

 



 
Figure 2.2   BFGS Method on Rosenbrock’s Function 

 

Line Search 

 

Line search is a search method that is used as part of a larger optimization algorithm. 

At each step of the main algorithm, the line-search method searches along the line 

containing the current point, 
k

x , parallel to the search direction, which is a vector 

determined by the main algorithm. That is, the method finds the next iterate 
1kx of the 

form 

kkkk dxx 1
 

 

where 
k

x denotes the current iterate, 
k

d is the search direction, and alpha   is a scalar 

step length parameter. The line search method attempts to decrease the objective 

function along the line 
kkk dx  by repeatedly minimizing polynomial interpolation 

models of the objective function. The line search procedure has two main steps: 

 The bracketing phase determines the range of points on the line 

kkkk dxx 1
to be searched. The bracket corresponds to an interval 

specifying the range of values of α. 

 The sectioning step divides the bracket into subintervals, on which the 

minimum of the objective function is approximated by polynomial 

interpolation. 

The resulting step length α satisfies the Wolfe conditions: 
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Where c1 and c2 are constants with 10 21  cc  

 

The first condition (Equation2.27) requires that 
k

  sufficiently decreases the 

objective function. The second condition (Equation 2.28) ensures that the step length 

is not too small. Points that satisfy both conditions are called acceptable points. 

 

 

 

 

 



B-Constrained Optimisation 
 

In constrained optimization, the general aim is to transform the problem into an easier 

subproblem that can then be solved and used as the basis of an iterative process. A 

characteristic of a large class of early methods is the translation of the constrained 

problem to a basic unconstrained problem by using a penalty function for constraints 

that are near or beyond the constraint boundary. In this way the constrained problem 

is solved using a sequence of parameterized unconstrained optimizations, which in the 

limit (of the sequence) converge to the constrained problem. These methods are now 

considered relatively inefficient and have been replaced by methods that have focused 

on the solution of the Kuhn-Tucker (KT) equations. The KT equations are necessary 

conditions for optimality for a constrained optimization problem. If the problem is a 

so-called convex programming problem, that is, )(xf and )(xC
i

, mi ,.......,1 , are 

convex functions, then the KT equations are both necessary and sufficient for a global 

solution point. 

Referring to General Problem (Equation 2.21), the Kuhn-Tucker equations can be 

stated as 
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in addition to the original constraints in Equation (2.21) 

 

The first equation describes a cancelling of the gradients between the objective 

function and the active constraints at the solution point. For the gradients to be 

cancelled, Lagrange multipliers  mii ,......1,   are necessary to balance the deviations 

in magnitude of the objective function and constraint gradients. Because only active 

constraints are included in this cancelling operation, constraints that are not active 

must not be included in this operation and so are given Lagrange multipliers equal to 

zeros.  

 

The solution of the KT equations forms the basis to many nonlinear 

programming algorithms. These algorithms attempt to compute the Lagrange 

multipliers directly. Constrained quasi-Newton methods guarantee superlinear 

convergence by accumulating second-order information regarding the KT equations 

using a quasi-Newton updating procedure. These methods are commonly referred to 

as Sequential Quadratic Programming (SQP) methods, since a QP subproblem is 

solved at each major iteration (also known as Iterative Quadratic Programming, 

Recursive Quadratic Programming, and Constrained Variable Metric methods). 

 

Sequential Quadratic Programming (SQP) 

 

SQP methods represent the state of the art in nonlinear programming methods. 

Schittkowski (1985), for example, has implemented and tested a version that 

outperforms every other tested method in terms of efficiency, accuracy, and 

percentage of successful solutions, over a large number of test problems. 

 

Based on the work of Biggs (1975), Han (1977), and Powell (1978), the 

method allows you to closely mimic Newton’s method for constrained optimization 



just as is done for unconstrained optimization. At each major iteration, an 

approximation is made of the Hessian of the Lagrangian function using a quasi-

Newton updating method. This is then used to generate a QP subproblem whose 

solution is used to form a search direction for a line search procedure. An overview of 

SQP is found in Fletcher (1987), Gill et. al. (1981), Powell (183), and Hock-

Schittkowski (1983). The general method, however, is stated here. 

 

Given the problem description in general problem (Equation 2.21), the 

principal idea is the formulation of a QP subproblem based on a quadratic 

approximation of the Lagrangian function. 
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Here you simplify Equation (2.21) by assuming that bound constraints have 

been expressed as inequality constraints. You obtain the QP subproblem by 

linearizing the nonlinear constraints. Then the Quadratic Programming (QP) 

Subproblem is expressed as: 
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This subproblem can be solved using any QP algorithm. The solution is used to form 

a new iterate 

kkkk dxx 1
 

 

The step length parameter 
k

 is determined by an appropriate line search 

procedure so that a sufficient decrease in a merit function is obtained (see “Updating 

the Hessian Matrix”). The matrix 
k

H is a positive definite approximation of the 

Hessian matrix of the Lagrangian function (Equation 2.30). 
k

H can be updated by any 

of the quasi-Newton methods, although the BFGS method (see “Updating the Hessian 

Matrix”) appears to be the most popular. 

 

A nonlinearly constrained problem can often be solved in fewer iterations than an 

unconstrained problem using SQP. One of the reasons for this is that, because of 

limits on the feasible area, the optimizer can make informed decisions regarding 

directions of search and step length. Consider Rosenbrock’s function (Equation 2.2) 

with an additional nonlinear inequality constraint, )(xc  

05.12
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This was solved by an SQP implementation in 96 iterations compared to 140 for the 

unconstrained case. SQP Method on Nonlinear Linearly Constrained Rosenbrock’s 

Function (Eq. 2.22) shows the path to the solution point ]8228.0,9072.0[x ,starting at 

]2,9.1[x . 

 

 

 



 
Figure 2.3   SQP Method on Nonlinear Linearly Constrained Rosenbrock’s Function 

 

The SQP implementation consists of three main stages, which are discussed briefly in 

the following subsections: 

 “Updating the Hessian Matrix” of the Lagrangian function 

  “Quadratic Programming Solution”  

  “Line Search and Merit Function”  

 

Updating the Hessian Matrix 

At each major iteration a positive definite quasi-Newton approximation of the Hessian 

of the Lagrangian function, H, is calculated using the BFGS method, where 

 mii ...,.........1 is an estimate of the Lagrange multipliers. 

kk

T

k

k

T

k

k

T

k

T

kk

kk
sHs

HH

sq

qq
HH 

1
      , where 

kkk xxs  1
 

  







 





 )(.)(.)(

1
1

1
1 ki

n

i
ikki

n

i
ikk xCxfxCxfq     (2.32) 

Powell [35] recommends keeping the Hessian positive definite even though it 

might be positive indefinite at the solution point. A positive definite Hessian is 

maintained providing k

T

k
sq is positive at each update and that H is initialized with a 

positive definite matrix. When k

T

k
sq  is not positive, k

q is modified on an element-by-

element basis so that 0
k

T

k
sq . The general aim of this modification is to distort the 

elements of k
q , which contribute to a positive definite update, as little as possible. 

Therefore, in the initial phase of the modification, the most negative element of kk
sq  

is repeatedly halved. This procedure is continued until k

T

k
sq  is greater than or equal to 

a small negative tolerance. If, after this procedure, k

T

k
sq  is still not positive, modify 

k
q by adding a vector   multiplied by a constant scalar , that is, 

 qkqk   ,   where 
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0i , otherwise increase   systematically until k

T

k
sq becomes positive 



Quadratic Programming Solution 

At each major iteration of the SQP method, a QP problem of the following form is 

solved, where 
i

A refers to the ith row of the m-by-n matrix A . 
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The method used in the Optimization Toolbox is an active set strategy (also known as 

a projection method) similar to that of Gill et. al.(1981). It has been modified for both 

Linear Programming (LP) and Quadratic Programming (QP) problems. The solution 

procedure involves two phases. The first phase involves the calculation of a feasible 

point (if one exists). The second phase involves the generation of an iterative 

sequence of feasible points that converge to the solution. In this method an active 

set, k
A , is maintained that is an estimate of the active constraints (i.e., those that are on 

the constraint boundaries) at the solution point. Virtually all QP algorithms are active 

set methods. This point is emphasized because there exist many different methods that 

are very similar in structure but that are described in widely different terms. 

 

k
A is updated at each iteration k, and this is used to form a basis for a search direction 

kd
^

. Equality constraints always remain in the active set k
A . The notation for the 

variable kd
^

 is used here to distinguish it from 
k

d  in the major iterations of the SQP 

method. The search direction kd
^

 is calculated and minimizes the objective function 

while remaining on any active constraint boundaries. The feasible subspace for kd
^

is 

formed from a basis 
k

Z whose columns are orthogonal to the estimate of the active set 

k
A  (i.e., 0

kk
ZA  ). Thus a search direction, which is formed from a linear summation 

of any combination of the columns of 
k

Z , is guaranteed to remain on the boundaries 

of the active constraints. 

 

The matrix 
k

Z  is formed from the last m-l columns of the QR decomposition of the 

matrix T

k
A , where l is the number of active constraints and l < m. That is, 

k
Z  is given 

by: 
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Once 
k

Z is found, a new search direction kd
^

 is sought that minimizes )(dq  where kd
^

 

is in the null space of the active constraints. That is, kd
^

is a linear combination of the 

columns of pZdZ kkk 
^

:  for some vector p. Then if you view the quadratic as a 

function of p, by substituting for kd
^

, you have 
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Differentiating with respect to p 
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)( pq is referred to as the projected gradient of the quadratic function because it is the 

gradient projected in the subspace defined by 
k

Z . The term k

T

k
HZZ  is called the 

projected Hessian. Assuming the Hessian matrix H is positive definite (which is the 

case in this implementation of SQP), then the minimum of the function q(p) in the 

subspace defined by 
k

Z  occurs when gradient of 0)(  pq  , which is the solution of 

the system of linear equations 
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A step is taken of the form   
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(The step length 
k

 is chosen in a manner to minimize the function in the direction kd
^

) 

At each iteration, because of the quadratic nature of the objective function, there are 

only two choices of step length   . A step of unity along kd
^

 is the exact step to the 

minimum of the function restricted to the null space of k
A . If such a step can be taken, 

without violation of the constraints, then this is the solution to QP (Equation 2.34). 

Otherwise, the step along kd
^

 to the nearest constraint is less than unity and a new 

constraint is included in the active set at the next iteration. The distance to the 

constraint boundaries in any direction kd
^

 is given by 
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which is defined for constraints not in the active set, and where the direction kd
^

is 

towards the constraint boundary, i.e., 0.
^

ki dA , mi ....,,.........1 .  

When n independent constraints are included in the active set, without location of the 

minimum, Lagrange multipliers, 
k
 , are calculated that satisfy the non singular set of 

linear equations 
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If all elements of 
k
  are positive, 

k
x is the optimal solution of QP (Equation 3-30). 

However, if any component of 
k
 is negative, and the component does not correspond 

to an equality constraint, then the corresponding element is deleted from the active set 

and a new iterate is sought. 



 

Line Search and Merit Function 

The solution to the QP subproblem produces a vector 
k

d , which is used to form a new 

iterate 
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The step length parameter 
k

  is determined in order to produce a sufficient decrease 

in a merit function. The merit function used by Han (1977) and Powell (1978) of the 

following form is used in this implementation. 
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This allows positive contribution from constraints that are inactive in the QP solution 

but were recently active. In this implementation, the penalty parameter 
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r is initially 

set to 
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where represents the Euclidean norm. 

This ensures larger contributions to the penalty parameter from constraints with 

smaller gradients, which would be the case for active constraints at the solution point. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2.3.2 Stochastic Methods 

 
The GA is a stochastic global search method that mimics the metaphor of 

natural biological evolution (Holland 1975). Based on the Darwinian survival-of-

fittest principle, GAs operate on a population of potential solutions to produce better 

and better approximations to the optimal solution (Goldberg 1989). The population is 

a set of configurations called chromosomes and the basic GA operators are selection, 

crossover and mutation. It produces new individuals that have some parts of both 

parents genetic material. At each generation, a new set of approximations is created 

by the process of selecting individuals according to their level of fitness in the 

problem domain and breeding them together using crossover and mutation operators 

which are borrowed from natural genetics. This process leads to the evolution of 

populations of individuals that are better suited to their environment than the 

individuals that they were created from. You can apply the genetic algorithm to solve 

a variety of optimization problems that are not well suited for standard optimization 

algorithms, including problems in which the objective function is discontinuous, non 

differentiable, stochastic, or highly nonlinear. 

 

The main interest of stochastic methods in engineering sciences is to break the 

limits of the standard deterministic methods in many optimization problems: when the 

search space involves both discrete and continuous domains; when the objective 

function or the constraints lack regularity; or when the objective function admits a 

huge number of local optima. Moreover, GA employs a random, yet directed, search 

for locating the globally optimal solution. Therefore, GA is able not only to improve 

the solution close to a local optimum, but also to explore a larger extension of the 

design space and to direct the search toward relatively prospective regions in the 

search space. The following example shows how to find the minimum of Rastrigin’s 

function, to prove the robustness of genetic algorithms. Its many local minima make it 

difficult for standard, gradient-based methods to find the global minimum. For two 

independent variables, the Rastrigin’s function is defined as: 
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Figure 2.3   Plot of Rastrigin’s function 



As Fig 2.3 shows, Rastrigin’s function has many local minima—the “valleys” in the 

plot. However, the function has just one global minimum, which occurs at the point 

[0,0] in the x-y plane, as indicated by the vertical line in the plot, where the value of 

the function is 0. At any local minimum other than [0,0], the value of Rastrigin’s 

function is greater than 0. The farther the local minimum is from the origin, the larger 

the value of the function is at that point. The following contour plot (Figure 2.4) of 

Rastrigin’s function shows the alternating maxima and minima. 

 

 
Figure 2.4  Contour Plot of Rastrigin’s function 

 

The outline of the genetic algorithm is summarized by the following steps: 

1-  The algorithm begins by creating a random initial population. 

2- The algorithm then creates a sequence of new populations. At each step, the 

algorithm uses the individuals in the current generation, called parents, who 

contribute their genes—the entries of their vectors—to their children in order to create 

the next population. To create the new population, the algorithm performs the 

following steps: 

 

 Scores each member of the current population by computing its fitness value. 

 Scales the raw fitness scores to convert them into a more usable range of 

values. 

 Selects members, called parents, based on their fitness. 

 Some of the individuals in the current population that have lower fitness are 

chosen as elite. These elite individuals are passed to the next population. 

 Produces children from the parents. Children are produced either by making 

random changes to a single parent—mutation—or by combining the vector 

entries of a pair of parents—crossover. 

 Replaces the current population with the children to form the next generation. 



 
 

In fact, the reproduction process of the genetic algorithm creates three types of 

children for the next generation: 

 Elite children are the individuals in the current generation with the best fitness 

values. These individuals automatically survive to the next generation. 

 Crossover children are created by combining the vectors of a pair of parents. 

 Mutation children are created by introducing random changes, or mutations, to 

a single parent. 

 
 

Returning to the example of Rastrigin’s function, the following figure shows the 

children of the initial population, that is, the population at the second generation, and 

indicates whether they are elite, crossover, or mutation children. 



 
Then, the following figures show the populations at iterations 60, 80, 95, and 100; 

demonstrating that as the number of generations increases, the individuals in the 

population get closer together and approach the minimum point [0,0]. 

 

 
 

Description of the nonlinear constraint solver 

The genetic algorithm uses the Augmented Lagrangian Genetic Algorithm (ALGA) to 

solve nonlinear constraint problems. The optimization problem solved by the ALGA 

algorithm is 
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where C(x) represents the nonlinear inequality and equality constraints, m is the 

number of nonlinear inequality constraints, and mt is the total number of nonlinear 

constraints. 

 

The Augmented Lagrangian Genetic Algorithm (ALGA) attempts to solve a 

nonlinear optimization problem with nonlinear constraints, linear constraints, and 

bounds. In this approach, bounds and linear constraints are handled separately from 

nonlinear constraints. A subproblem is formulated by combining the fitness function 

and nonlinear constraint function using the Lagrangian and the penalty parameters. A 

sequence of such optimization problems are approximately minimized using the 

genetic algorithm such that the linear constraints and bounds are satisfied. 

A subproblem formulation is defined as 
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where the components λi of the vector λ are nonnegative and are known as Lagrange 

multiplier estimates. The elements si of the vector s are nonnegative shifts, and ρ is 

the positive penalty parameter. The algorithm begins by using an initial value for the 

penalty parameter (Initial Penalty). The genetic algorithm minimizes a sequence of 

the subproblem, which is an approximation of the original problem. When the 

subproblem is minimized to a required accuracy and satisfies feasibility conditions, 

the Lagrangian estimates are updated. Otherwise, the penalty parameter is increased 

by a penalty factor (Penalty Factor). This results in a new subproblem formulation and 

minimization problem. These steps are repeated until the stopping criteria are met. 

 

Reproduction is a process of selecting a set of designs from the current population and 

carrying them into the next generation. The selection process is biased toward more fit 

members of the current design set (population). Using the fitness value fi for each 

design in the set, its probability of selection is calculated as:  
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Np= number of designs in a population; also called the population size. 

 

It is seen that the members with higher fitness value have larger probability of 

selection. To explain the process of selection, let us consider a roulette wheel with a 

handle shown in Fig. 2.4. The wheel has Np segments to cover the entire population, 

with the size of the ith segment proportional to the probability Pi. Now a random 

number w is generated between 0 and 1. The wheel is then rotated clockwise, with the 



rotation proportional to the random number w. After spinning the wheel, the member 

pointed to by the arrow at the starting location is selected for inclusion in the next 

generation. In the example shown in Fig. 2.4, member 2 is carried into the next 

generation. Since the segments on the wheel are sized according to the probabilities 

Pi, the selection process is biased toward the more fit members of the current 

population. Note that a member copied to the mating pool remains in the current 

population for further selection. Thus, the new population may contain identical 

members and may not contain some of the members found in the current population. 

This way, the average fitness of the new population is increased. 

 

 
Figure 2.4   Roulette wheel process for selection of designs for new generation (reproduction). 

 

Once a new set of designs is determined, crossover is conducted as a means to 

introduce variation into a population. Crossover is the process of combining or mixing 

two different designs (chromosomes) in the population. Although there are many 

methods for performing crossover, the most common ones are the one-cut-point and 

two-cut-point methods. A cut point is a position on the genetic string. In the one-cut 

method a position on the string is randomly selected that marks the point at which two 

parent designs (chromosomes) split. The resulting four halves then are exchanged to 

produce new designs (children). The process is illustrated in Fig. 2.5 where the cut 

point is determined as 4 digits from the right end. The new designs produced x1’and 

x2’and replace the old designs (parents). Similarly, the two-cut-point method is 

illustrated in Fig.2.6. Selecting how many or what percentage of chromosomes 

crossover and at what points the crossover operation occurs are part of the heuristic 

nature of genetic algorithms. There are many different approaches, and most are based 

on random selections. 

 



 
Figure 2.5  Crossover operation with one-cut point 

 

 

 
Figure 2.6    Crossover operation with two-cut point 

 

Mutation is the next operation on the members of the new design set 

(population). The idea of mutation is to safeguard the process from a complete 

premature loss of valuable genetic material during reproduction and crossover steps. 

In terms of a genetic string, this step corresponds to selecting a few members of the 

population, determining a location on each string randomly, and switching 0 to 1 or 

vice versa. The number of members selected for mutation is based on heuristics, and 

the selection of location on the string for mutation is based on a random process. Let 

us select a design as “10 1110 1001” and the location #7 from the right end on its 

string. The mutation operation involves replacing the current value of 1 at the seventh 

location with 0 as “10 1010 1001”. 

 

Finally, the number of the reproduction operations is always equal to the size of the 

population, the amount of crossover and mutation can be adjusted to fine-tune the 

performance of the algorithm.  
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Modelling of Waves and Floating 
Breakwaters  

 
 

 

This chapter presents the sea waves modelling and their relative interaction with the 

floating breakwaters based on both analytical and numerical approaches. Second, the 

dynamical behaviour of the floating breakwater is introduced by an analytical model 

applying Lagrange’s theorem. Next, the elaborated model is used to identify the 

influence of the structural parameters on the wave attenuating capacity of the moored 

floating breakwater through a comprehensive parametrical analysis. Also a 

comparison with the case of partial reflective sidewalls is introduced. Finally, the 

mechanical behaviour of the floating breakwater is studied through analytical and 

numerical models. 

 

3.1-Wave modelling 

 

The mathematical formulation of the water wave problem is derived from 

fundamental conservation laws. It consists of equations which are valid in the fluid 

domain and of equations which are valid on the boundaries. Together they define the 

wave problem in which an analytical solution and a numerical one are presented. For 

the analytical approach, we consider the oscillating motion of the structure small 

enough that can be neglected. This constitutes a simple approach that can be easily 

applied in the optimization chapter, and allows us to elaborate new contributions in 

the optimization methods with such simplified model. Also, the analytical study is 

extended towards the non linear theory of waves to improve the results in order to 

have good agreement with the experimental data. The second one, numerical 

approach, represents the real model of a floating breakwater that takes into 

consideration the radiation and the transmission effects together.  

3.1.1 Analytical model 

 

Models for propagating free-surface gravity waves are usually based on the 

potential-flow model. The high values of the density and sound velocity in water 

render the compressibility effects negligible in sea water. Then, in these models the 



fluid is assumed to be incompressible and inviscid and the flow irrotational. Thus, the 

fluid motion can be described by a velocity potential, , related to the velocity 

),( wuU
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.  

  0
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Urot    gradU
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where  
x

u
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
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z
w




 . 

 

A cartesian coordinate system Oxyz is employed, where Oxy coincide with 

plane of the free surface at rest, Oz directed positive upwards, and Ox directed 

positive in the direction of propagation of the waves. The incident wave propagates in 

a straight line in the direction defined by the angle  , formed with the Ox axe. In this 

study, it is supposed that the waves can strike the breakwater in a perpendicular 

direction to obtain the maximum pressure applied by the waves on the breakwater, in 

order to study the dangerous case in the construction of a breakwater. Then, the angle 

is taken as 0  (incident wave normal to the breakwater) and the movement is 

reduced to two dimensions as in figure 3.1. The fluid motion is defined as follows: 

Let t denote time, x and z the horizontal and vertical coordinates, respectively, and   

the free-surface elevation above the still water level. 

 
Figure 3.1      Wave notations 

 

Once the parameters characterizing the sea waves are   known (Length of 

wave L, Period T, Height H), a model  is  needed  to study the waves’ propagations 

and transforms their evolution into loads on the breakwater. It is a strict study based 

on the fundamental physical principles of the conservation of momentum and mass 

(reduced to Laplace equation). The combination of the equation of momentum 

conservation and that of mass, yields to the well known equation, Bernoulli-Lagrange, 

which constitutes the essential equation to determine the field of wave’s pressure. 
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In general, the study of marine structures’ behaviours due to waves’ 

propagations is mostly made as part of a linear theory (Molin 2004), where the 

interest in this part is to orient the work towards the non linear approximation (Stokes 

2nd order expansion), which yields to a clarified view of the efforts in an enlarged 

domain of frequencies to have outstanding agreement with the real and experimental 

data (especially when neglecting the oscillating motion of the breakwater). It is clear 

that if   is known throughout the fluid, the physical quantities pressure and velocity) 

can be obtained from Bernoulli's equation. Because the free surface is a moving 



boundary, we need more than one condition to complete the potential flow model. 

The first condition is called the kinematic condition where the second one is the 

dynamic condition. Then, the boundary value problem is then defined as follows: 
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   Dynamic equation at the free surface;  

 

The equation of Laplace expresses the mass conservation; the sea bottom 

condition expresses the impermiability of the sea bed where the normal component of 

the velocity is zero; the kinematic condition at the solid boundary (breakwater, 0x ), 

expresses the static condition of the breakwater (wave reflection) where n


 is the 

outward normal direction of the solid boundary; the kinematic condition on surface, 

z , expresses that a fluid particle at the surface should remain there at all times, 

while the dynamic condition expresses that the pressure on the free surface is zero. 

The used method for the nonlinear theory (Stockes 2nd order expansion), called 

perturbation method [5], consists of developing the different variables into power 

series depending on a parameter 
L

H
 , where the linear theory constitutes the first 

order yielding exact solutions only for waves with infinitesimal amplitudes.  
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By considering the amplitudes of the oscillations of the free surface to be small, the 

terms are then evaluated on the free surface depending on   tx,  due to Taylor series. 
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The developments are limited to the second order of the camber   so: 21

2    

and  21

2  . It is convenient to determine   tzx ,,2  and  tx,2   knowing 

1 and 
1

 (linear case), Then the boundary conditions for the free surface for z=  tx, , 

are transformed into perturbation series. Solving for the 1st order expansion (linear 

theory)  
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(Where Lk /2 designates the wave number and   the frequency). The nonlinear 

approximation is achieved by substituting for the first order in the perturbation series: 
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  (3.6) 

This expression of velocity potential describes the physical properties of the waves in 

the absence of any structure, where the reflection phenomenon must be taken into 

consideration during the collision of the waves by the breakwater. Then, a reflected 

wave identical to the incident one is created but in the opposite sense.  

  ),,(,, tzxrtzx ir   

Where r designates the reflection coefficient (coefficient of amplitude reduction), the 

superposition of the incident and reflected velocity potentials creates a global wave 

system (Goda 1985) whose velocity potential is defined as: 
riT  .  

Moreover, the extremity of the breakwater involves the diffraction of the waves and 

hence concentric circles are formed around its extremity. Considering a semi-infinite 

breakwater, eliminates this phenomenon and keeps the problem in the domain of 

wave reflection only; where the global potential velocity describing the problem is 

maintained as expressed above. The substitution of this value for the velocity 

potential )( T  in the Bernoulli-Lagrange equation implies the expression of the 

pressure distribution (pressure at any point in the fluid domain.) in the case of wave-

breakwater interaction, where all the waves are reflected by the breakwater (no 

diffraction or transmission).  
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Hydrodynamic pressure 

The exerted pressure by waves on the vertical breakwater is deduced from the 

computed fluid problem in the first section. This hydrodynamic pressure has a 

complicated expression different from the hydrostatic one that is linear, its   

repartition over the breakwater has a curved shape (obtained using  Matlab); where its 

maximum is around the still water level and it decreases to zero at the top of the 

breakwater (with the wave height) and also decreases with water depth (figure 2). 

Fixing 0x  (exterior breakwater surface), and the phase angle 0  (vertical 

impermeable wall, Tadjbkhsh and Keller 1960), the pressure distribution over the 

vertical breakwater is obtained. 

 

The hydrodynamic pressure exerted by the waves on the breakwater is acting 

on the exterior surface of the breakwater due to the assumption that all the waves 

propagating from the ocean side are totally reflected outside the port and the radiated 



waves are neglected. Hence, it can be simply deduced that there are no dynamic 

pressure acting on the interior surface of the breakwater due to the absence of waves’ 

propagations inside the port. It can be written as follows: 

    fdzkbdzkaP  2coshcosh    (3.8) 

 
)cos(

1

2
t

chkd

rgH
a 

 
 , 











 1

)2cos()333(

24 2

22

r
kdsh

trr

kdLsh

Hg
b


 

    trHrtrr
kdLsh

Hg
f 


2cos1)2cos(1

24

222
2

  

 

 
Figure 3.2    Hydrodynamic pressure distribution over the breakwater 

 

It is reduced to an equation with hyperbolic functions of z (height), where the other 

variables independent of the altitude are collected together in the terms ,,ba and f . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3.1.2 Numerical model 

 

A floating harbour has a complex dynamic behaviour. In contrast to a normal 

harbour, where only ship motions occur, a floating harbour will be completely 

influenced by the wave conditions. Lots of structural and hydraulic factors influence 

the hydrodynamic behaviour of the floating breakwater. Determining the relations and 

the influence of these factors on the wave attenuating capacity of the floating 

breakwater is the main objective of this study. 

 

With this knowledge a model can be developed that can be used as a design 

tool to determine the magnitude of the floating breakwater elements in an early stage 

of the design process. It is therefore important to structuralize the problem to be a 

base for later, more detailed assessment and model testing. The dynamic behaviour of 

a floating breakwater is influenced by many factors. The influence factors that can be 

distinguished are shown in Figure 3.3 and can roughly be divided into two parts: 

 The interference of the floating breakwater with the environment 

 The interference of the floating breakwater with the mooring system 

 

The symbols, used in figure 3.3 are: 

m
k : Spring stiffness of the mooring system (N/m) 

w
L : Length of the floating breakwater element (m) 

b  : Draft of the floating section of the breakwater. (m) 

a  : Width of the floating section of the floating breakwater (m) 

a
 : Incoming wave amplitude (m) 

R
  : Radiated / reflected wave amplitude to the sea side of the floating breakwater (m) 

T
 : Radiated / transmitted wave amplitude to the harbour side of the floating    

breakwater (m) 

 

 
Figure 3.3    Structural and hydrodynamic factors 



The interference of the floating breakwater with the environment is mainly 

related to the movement of the sea waves. These local waves produce the forces that 

will put the floating breakwater into motion. Since the largest part of the floating 

breakwater will be submerged, the influence of the wave forces will be large. The 

dynamic behaviour of a mass-spring system, like a floating body, is affected by the 

mass of the structure and the hydrodynamic parameters. The magnitude of the 

hydrodynamic parameters, as they will be discussed later, depends on the frequency 

of motion and the structural dimensions. The shape and the dimensions do affect the 

structural behaviour and are the factors that determine the performance of the floating 

breakwater. 

 

Regarding the second type of interference, the anchoring of the floating 

breakwater is necessary to keep the structure at the position where it is supposed to 

be. Besides the station keeping property, the mooring system is an important 

parameter that determines the dynamic behaviour of the mass-spring system. There 

are two types of restraint are generally adopted to keep a floating breakwater at a 

designated location: either piles or mooring lines. Piles have the advantage of 

restricting sway and roll motions almost completely, resulting in lower transmission 

coefficients. However, they have the disadvantage of wear problems at the points of 

contact with the breakwater. And their use may be limited by large water depths and 

poor soil conditions at the seabed. On the other hand, mooring lines may be more 

suitable in deeper water, but may give rise to problems related to connection points to 

the breakwaters lifting or dragging anchors and they may not limit sufficiently the 

breakwater motions leading to increased transmission coefficients. Thus, the choice of 

the mooring lines is selected in all the optimization problems to hold the structure at 

its position.  

 

The concept of wave interaction with floating breakwaters constitutes a 

multidisciplinary problem, where a combination of fluid mechanics, dynamic 

behaviour of mechanical systems, and the vibration theory are introduced to perform a 

complete analysis capable to clarify the interference between the design parameters. 

In fact, the simulation of the floating breakwater performance is complicated by the 

importance of the mutual interaction between fluid and rigid body. Indeed its 

displacement is caused by the wave load and the wave propagation is influenced in 

turn by the floating breakwater kinematics, so that the most interesting phenomenon, 

the wave transmission, can only be found if the fully coupled interaction problem is 

solved. Thus, the fluid flow can be described by a potential which is the sum of an 

incident, scattered, and radiated fields. The advantage of this decomposition is that the 

diffraction (scattering) hydrodynamic problem does not involve the FB dynamics and 

can be solved first. The radiation hydrodynamic problem, describing the effect of a 

forced motion, is solved separately. The actual periodic motion is solved at last by a 

vibration model, deriving the hydrodynamic forces by the diffraction problem and the 

added mass and damping by the radiated potential.  

 

Formulation of boundary value problem 

 

Fluid is assumed to be ideal, flow is considered as irrotational, so we can apply a 

linear wave theory. The body is assumed to be rigid. It is assumed that no flow of 

energy takes place through the bottom surface or the free surface. Energy is gained or 

lost by the system only through waves arriving or departing at infinity or due to the 



external forces acting on the body. The motions are assumed to be small, so that the 

body boundary conditions are satisfied very close to the equilibrium position of the 

body. The fluid domain of calculation is defined in Fig 3.4, it is bounded by an 

artificial radiation boundary at the ocean side and by the reflective sidewall, 

representing the port terminals, from the right side. A Cartesian coordinate system is 

used, with the origin at the mean free surface, Oz directed positive upwards and Ox 

directed positive in the direction of propagation of waves. The state of the fluid can be 

completely described by the velocity potential, ]),(Re[),,( tiezxtzx   , where Re 

denotes the real part of the complex expression 1i  and t  is the time. For the two-

dimensional problem considered here, the time independent complex velocity 

potential ),( zx satisfies the Laplace equation. 

0),(2  zx          (3.9) 

 

The general configuration of an infinitely long floating structure interacting 

with a monochromatic linear wave of height, H, and wave angular frequency, 

T/2   is shown in Fig.3.4, where both the diffraction (waves incident on fixed 

structure) and radiation (structure oscillating in otherwise calm fluid) problems have 

been treated. It is generally convenient to separate the total velocity potential into 

incident potential, I , scattered potential, S , radiation potentials, j , j = 1, 2, 3 in 

three modes, heave, sway and roll. This is mathematically represented as 
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Where jjj X '  in which, 
j

  is the radiation potential per unit body velocity, '

jX . 

 

 
Fig.3.4  Definition sketch for theoretical analysis with a sidewall 

 

It is well known that the incident velocity potential of linear waves propagating from 

x to the positive direction is represented by: 
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where g is the gravitational acceleration, d is the water depth, A is the amplitude of 

wave and k is the wave number satisfying the dispersion relation, 



)tanh(2 kdgk          (3.12) 

 

Since numerical models based on the linear potential theory have proven to be 

efficient tools to predict the sea keeping behaviour of floating breakwaters; it is useful 

to apply it for the diffraction-radiation model and then to use it in evaluating the 

hydrodynamic coefficients and wave exciting forces. 

 

Diffraction problem 

 

The boundary value problem for the diffracted potential ( D ) can be defined by the 

governing Laplace equation and the boundary conditions as defined below: 
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 at the radiation boundary, 

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The infinite boundary   is fixed at a finite distance, Rxx  . The position of the 

radiation boundary relative to the characteristic dimension of the structure and water 

depth is described in detail by Bai (1977). In the diffraction problem the rigid body is 

restrained from all its degrees of freedom, the kinematic boundary condition on the 

body can be expressed as follows: 
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where 1rk : corresponds to total reflective sidewall 

3.0rk : corresponds to partial reflective sidewall 

 

Radiation problem 

 
The wave radiation problem can also be described by a radiated potential represented 

as 

),(),( zxXizx
jjj

         (3.21) 

The linear radiation boundary value problem is defined by the Laplace equation as a 

governing equation, and the boundary conditions are as given below: 
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For the radiation potentials, j , 3,2,1j , the kinematic body boundary condition or 

the body-fluid interface may be written as:  
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Where 
1n and 

2
n are the x and z components of the unit inward normal to the body and 

123 )()( nzznxxn cc  , in which ),( cc zx are the coordinates of the centre of rotation. 

 

The numerical model for water waves can be divided into two parts. On the 

one hand we have boundary conditions describing the evolution of the boundaries and 

the potential on the boundaries in time. On the other hand we have an elliptic problem 

(Laplace's equation) in a domain whose boundaries change in time. These two parts 

are handled alternately by the numerical model. The boundary conditions are the 

demanded information to solve the basic equation of wave propagation presented by 

Laplace equation. This latter is solved using the finite element method described in 

chapter 2. In more detail, it can be described as follows. At t = 0 we have an initial 

configuration described by a domain 
0

  and initial conditions for   or 
n


 on the 

boundary 
0

 of the domain. For the free surface we specify  and for the bottom we 

specify
n


(=0).  Then Laplace's equation is solved in this domain in which all parts of 

the boundary can be specified as either a Dirichlet boundary (if  is specified) or a 

Neumann boundary (if
n


is specified).  

Returning again to chapter 2, we can assimilate the relative values of the elliptic 

coefficients in Eq. 2.1.   fuauc  ..   

where the Laplace equation describing the wave propagation is 0),(2  zx , 

and u stands for the velocity potential of waves  . Substituting the relative values of 

the elliptic coefficients, we obtain the complete form of our specific type of elliptic 

equation : 1c , 0a , and 0f . Moreover, the entire boundary conditions Eqs. 

3.15, 3.16, 3.17, 3.18, 3.19, 3.20, 3.23, 3.24, 3.25, 3.26, and 3.27 are expressed in 

terms of Dirichlet ( ruh . ) or Newmann condition ( guqucn  .).(


) to solve the 

finite element problem. 

 

A practical application can be considered to explain the phenomenon of 

floating breakwaters and to show how the radiated waves are an important factor that 

plays an essential role in the breakwater performance beside the diffraction theory. 

The wave forces will put the floating breakwater in a harmonic oscillation. The 

oscillating floating breakwater will produce waves, the so called radiation waves in 

the three directions (heave- sway-roll). The heights of these radiated waves are 

directly related to the shape and mass of the structure. These latter are computed with 

respect to structure velocity as described in Eq. 3.27. As deduced from Fig. 3.5, it is 

clear that such waves can have high amplitudes that must be minimized by sufficient 



mooring system. Thus, reducing the wave heights can be managed by reducing the 

velocity or simply the breakwater motion along the three directions. (The white area 

corresponds to the floating breakwater). 

 

In the first figure (diffraction), we notice the wave height reduction between 

the ocean side (right side of the breakwater) and the port side (left side of the 

breakwater) due to the presence of the floating breakwater. Where, the underflow 

(The part of the wave energy that is not influenced by the presence of the floating 

breakwater) presenting the wave energy underneath the floating breakwater 

propagates to the leeward protected side. In the rest figures (heave-sway-roll), we can 

clearly notice the effect of the breakwater oscillations. Radiated waves are generated 

on the two sides of the breakwater, where the performance of the breakwater is 

achieved by optimal shape, mass, and mooring system that is capable to reduce the 

heights of these waves to a minimum.  In addition, it can be stated that a structure that 

performs less sway and roll motions will radiate less wave energy. Because of these 

arguments, the shape of the floating breakwater is taken rectangular for the rest of this 

thesis.  

  

   
 

  
Figure 3.5   Diffracted and radiated waves generated from a floating breakwater 

From left to right: Diffraction – Heave – Sway - Roll 



3.2-Dynamical behaviour of the floating breakwater 

 

After applying the diffraction-radiation model, the hydrodynamic forces are 

derived by the hydrodynamic forces and the added mass and damping by the radiated 

potential. In order to proceed forward and determine the transmission coefficient, an 

analytical modelling for the vibrating structure is developed. The equations of 

motions are solved to evaluate structure responses in the three modes of motion, and 

hence vibrational effects are determined and discussed. 

 

Hydrodynamic forces 

 

The hydrodynamic pressure at any point in the fluid can be expressed as, 




 i
t

tzxP 



),,(        (3.28) 

Where  is mass density of fluid. The hydrodynamic forces can be determined by 

integrating the pressure over the wetted body surface 
0
 . 





0

),,( dnitzxF jj          (3.29) 

The hydrodynamic forces thus calculated can be separated into wave exciting forces 

governed by the diffraction problem and the hydrodynamic restoring forces governed 

by the radiation problem. The wave exciting forces, 
e

jF
 due to the diffracted potential 

can be expressed as 





0

)(),,( dnitzxF jSI

e

j         (3.30) 

Where 3,2,1j correspond to heave, sway, and roll modes respectively.  

Concerning the hydrodynamic restoring forces, a chain of progressive outgoing waves 

is generated on the free surface from an oscillating floating body. The energy of these 

waves is that taken away from the energy supplied to the body to sustain its motion. 

The energy loss to the surrounding fluid is characterized as hydrodynamic damping of 

the body. This wave damping force constitutes a harmonic conjugate to the added 

mass force for the oscillating floating body. Then from the radiation potential, the 

hydrodynamic restoring forces, h

jF  can be evaluated as: 

  '"'

kjkkjkjkk

h

j XXdnXiF        (3.31) 

Where 
jk

 is the added mass coefficient proportional to the body acceleration and 

jk
 is the damping coefficient proportional to the body velocity. Then, 

jk
 and 

jk
 are 

evaluated from  the real and imaginary parts of the complex radiation potential, 

respectively: 

]Re[
0




 dn
jkjk

         (3.32) 

]Im[
0




 dn jkjk          (3.33) 

Numerical models based on the linear potential theory have proven to be efficient 

tools to predict the sea keeping behaviour of floating breakwaters; hence, it is useful 

to apply it to solve the diffraction-radiation problem. The numerical model is based on 

the finite element method, and then all the integrals defining the hydrodynamic 

coefficients are also computed numerically. 

 



Structural Dynamic Response 

 

Considering that the floating breakwater will not produce any waves by itself 

due to structural movements when floating in still water, the only hydro mechanical 

reaction will occur after the structure is loaded with exciting forces deduced from the 

incoming waves. These exciting forces and motions will put the floating breakwater 

in a harmonic oscillation. Once the floating breakwater has been put into oscillation 

by the incoming waves, it generates radiated waves on its two sides and moreover its 

motion is affected by the stiffness of the mooring lines and its natural frequency.  

 

Although a floating body seems to have the same dynamic characteristics as a 

mechanic mass-spring system, there is an important difference that affects the 

dynamic behaviour. The water, surrounding the oscillating floating breakwater will 

determine the total mass and the damping of the system (Fig. 3.6). Since the 

magnitude of the so-called added mass and hydrodynamic damping parameters 

depend on the motion amplitude and frequency, these parameters are never constant. 

Therefore, the linear analysis procedure used to analyze the breakwater’s motion is 

similar to the free vibration theory in air (Fig. 3.6). However, three new elements are 

introduced here. The motions are forced due to the waves passing over the structure, 

damping due to the fluid structure interaction is included, and the added mass term is 

included to account for the decreased response of the structure due to the presence of 

the external water. Then, the equation of motion, in matrix form, that describes the 

motion of the floating breakwater is given as: 

)(][ ''' tFKXXXM e

j         (3.34) 

Where the matrices of additional mass,  , the damping matrix,  , and the exciting 

forces, e

jF , are determined from the previous parts. The resting terms or matrices 

M and K  (body mass matrix and rigidity matrix) are derived from the Lagrange 

equations for the oscillating system considered in air and having three degrees of 

freedom. In the frequency domain, and due to the harmonic type of exciting forces 

)( tie

j

e

j efF  , the response of the structure in waves can be found by: 

e

jj fKiM   ])([ 2       (3.35) 

j
 is the complex amplitude of the motion response, ti

jj eX   . 

 
Fig.3.6  Representation of a hydrodynamic and a mechanic mass-spring system 



The structural response will be analyzed by assuming that the breakwater behaves as a 

two dimensional rigid body undergoing small amplitude heave, surge, and pitch 

motions. The Lagrange expression is: 
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              (3.36) 

To trace the rotational motion of the body and likewise any point on the body other 

than the centre of gravity, the Euler angles will be used. And then the points of 

connection ( e  and b ) of body to the mooring lines of length )(l  can be expressed in 

terms of translation of the centre of gravity and the body angle of rotation as follows: 

 sincos 21 eexx ce   

 sincos 21 eezz ce   

Hence, the three equation of motion based on Lagrange equation can be expressed in 

terms of the three degrees of freedom ),,( cc yx : 

0
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d
        (3.37) 

This formulation yields to nonlinear equations, which can be linearized by assuming 

small perturbations around the equilibrium positions. 
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Finally, the equations of motions of the breakwater acted upon by the waves may be 

written as: 

 

0)]()([

][]2[

1

2

2

2/32/1

222

2/1

1

2

2

2/3

2

2/32/32/122/32/122/3"









uvbublHHlbbelGsrerelGek

uvlHrslGkzlHulHlGrlGkxMx

new

cnewcnewcnew


       (3.38) 

 

0)]()([

]2[][

2

12

2/32/1

111

2/12

12

2/3

1

2/122/32/122/32/32/3"









vbuvblHHlbbelGserselGek

lHvlHlGslGkzuvlHrslGkxMz

new

cnewcnewcnew


         (3.39) 

 

   
   

0)]()(

)()([

][

][

2

2

11

2

2

2/12

12

2/3

1

2

21

2

22

2

12

2

11

2

2

2/12

1

2/3

2

2

1

2/1

1

2/1

11

2

12

2/32

12

2/3

1

2/1

2

2/1

221

2

2

2/3

1

2

2

2/3

2

"

















vbbubblHvbublH

ubbreevbbseereelGserelGseek

HlbGlebvbuvblHserselGekz

HlbGlebuvbublHrserelGekxI

enew

cnew

cnewnew





   (3.40) 

 

Where: 
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And,  
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These three equations of motion are assembled in matrix form in order to directly 

substitute the elements of the K and M matrices in the principal equation (Eq. 3.34). 
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Now, the response amplitude can be directly derived from Eq. 3.35, and the total 

velocity potential (Eq. 3.10) can be simply calculated. Thus, the surface elevation for 

any point in the fluid domain can be derived by: 

 tzx
g

i
tx ,,),( 


          (3.41) 

And the transmission coefficient is given by 

I

T
T

H

H
C  ,          (3.42) 

where 
T

H ,
I

H are the transmitted and the incident wave heights respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3.3 Parametrical Analysis 

 

A lot of research has been done on the hydrodynamic behaviour of floating 

breakwaters. The main focus of all these studies has always been to obtain 

transmission coefficients that are as small as possible. The transmission coefficient is 

the ratio between the wave height at the leeward (harbour) side of the floating 

breakwater relative to the wave height of the incident wave. In order to obtain 

satisfactory results, many designs were model-tested. Although the tested models do 

vary in design, the common research topics can be split into the influence of the 

structural design and the structural dynamics on the wave attenuating capacity of the 

structure. The novelty in this study is the inclusion of the reflective sidewall of the 

port in the domain of computation. When a ship is parked in the port, the waves are 

reflected due to a vertical sidewall. So it is different to the problems of structures 

oscillation on water surface with unbounded domain. Moreover, in presence of this 

sidewall, that really describes a real port problem, it seems to create a bounded 

domain from the port side or simply an enclosed area (Fig 3.4). Thus, any wave may 

be forced to resonance in port side due to specific value of the clearance distance 

between the sidewall and the breakwater. Finally, it must be clear that we are facing 

two sources of resonance, one being represented by any coincidence between the 

oscillating frequency of the structure and that of the wave; where the other kind is the 

wave itself inside the port region. Thus, the resonance phenomenon plays an 

important role in such problems, especially when a structure oscillating in presence of 

an incoming wave that has its own periodic frequency may enter the resonance bands, 

and destructive results appear. The major aspects of the structural design that have 

been tested and that really influence the (hydro)dynamic behaviour of the floating 

breakwater: 

 

 Shape 

 Width of the floating section of the structure 

 Draft of the structure 

 Mass of the structure 

 Mooring system 

 

The model that was discussed in the previous section is used to verify the 

influence of the structural variables on the wave attenuating capacity of the floating 

breakwater.  The transmitted wave height depends on width, draft, stiffness, mooring 

angle, wave period or frequency, incident wave height, and finally the clearance 

distance; hence it can be expressed as: ),,,,,,( DHTkbafH IT  . The table below 

(Table 3.1) summarises the different types of structures and their relevant properties 

considered during the analysis study. The grey spaces correspond to the varying 

parameters in the various type of analysis listed in column1. The influence of the 

motion and the structural parameters on the total wave transmission is determined in 

presence of the reflective sidewall, where resonance peaks and high transmission 

coefficients are obtained due to its presence.  In order to reduce this phenomenon, we 

have tried to change the characteristics of this wall by proposing it as partial 

reflective  3.0rk . This surely contributes to scatter the waves in all the directions 

instead of reflecting it in the same path and also to reduce the quantity of reflected 

one, and hence wave energy is diffused. Finally, its influence on the wave 

transmission is studied and compared to the totally reflective wall. 



Parameters 

Analysis 

Width 

(m) 

Draft 

(m) 

Clearance 

Distance 

(m) 

Wave 

Period 

(s) 

Mooring 

stiffness 

(N/m) 

Mooring 

angle 

(º) 

Floating 

Mass 

(kg) 

1-Clearance (D) 16 12 [40-300] [4-14] 5x106 30 1.9x105 

2-Draft         (b) 16 [2-20] 180 [4-18] 5x106 30  

3-Width        (a) [2-26] 12 180 [4-18] 5x106 30  

4-Angle        () 16 12 180 9 [2-7]x106 [0-90] 1.9x105 

5-Stiffness    (k) [2-30] 12 180 9 [3-8]x106 30  

Table 3.1    Different configuration structures and their relevant parameters 

 

Sidewall Clearance Distance 

 

The important effect of the clearance on the transmitted wave height is examined in 

detail. It is found that the transmitted wave height has great change over certain 

values of the parameter D. This is called the resonance, and is mainly caused by 

energy accumulation in enclosed domain or the interference between the reflected 

waves from the sidewall and the incident waves (radiation waves) in the port side 

regardless from the oscillation frequency of the structure itself. 

 
Fig.3.7 Effect of clearance distance on the transmitted wave height (kr=1,left ;  kr=0.3, right) 

 

In Figure 3.7, the effect of the clearance distance on the transmission coefficient is 

studied for different wave periods, and we can conclude the following: 

1 Repetition of resonance peaks over a distance of 2/LD  as Hsu and Wu 

(1996) have concluded ( L denotes the wavelength). 

2 The problem of resonance cannot be avoided but can be dominated by varying 

the distance D. 

3 There is an influence of the partial reflection coefficient  
r

k  on the 

transmitted wave height. Sharp resonance peaks for the waves 

( sec6T , sec10T ) have disappeared, where we can notice exceptionally an 

increase in the value for sec4T . 

 

Finally, we can deduce that the effect of the clearance distance can be controlled by a 

partial sidewall for a two dimensional model to reduce the energy accumulation in the 

bounded region of the port. Also, this approaches it from the real case of a three 

dimensional port, where the clearance distance varies from point to other (Fig. 3.8). 

Hence, this will automatically diffuse the energy waves inside the port even though 

total reflective walls are considered.   



 
Figure 3.8 Variation of clearance distance in a real port 

 

Draft 

 

The influence of the draft on the transmission coefficient of the floating breakwater is 

presented in Figure 3.9; a variable draft with different wave periods is considered. 

The mass automatically changes when the draft is changed and the width is kept 

constant, this causes a change in the natural frequency of the body and influences also 

the hydrodynamic coefficients. 

 

 
Figure 3.9  Effect of breakwater draft on the transmission coefficient (kr=1,left ;  kr=0.3, right) 

 

From Fig.3.9, we can deduce the following: 

 

1 Resonance peaks mainly occurring at 6 and 16 sec, this return to the 

considered value of clearance distance D (Fig.3.7). 

2 Increasing the draft yields to decrease the transmission coefficient and 

especially in the resonance bands, since a heavier structure is hard to put it 

into oscillation. Therefore optimal solution exists. 

3 A draft of 2m is the worse over all the range of wave periods. 



4 Decreasing the value of kr will decrease the values of the transmission 

coefficients over all the range. Transmission values decreased from [0-3.5] to 

[0-0.6]. 

5 Moreover, the importance of increasing the draft appears clearly with 

decreasing the reflection coefficient. (Fig.3.9 right) 

6 At longer periods, all the curves intersect around a value of 60%. This is due 

to the small variation of the incident potential inside the fluid domain over the 

vertical direction, and hence the major part of the underflow is being 

transmitted to the port side. This verifies that the floating breakwaters are less 

efficient for long wave periods. 

 

Width 

 

The influence of the width on the wave transmission depends on the draft and the 

weight of the structure. When the structural width is increased while the draft is kept 

constant, the mass will increase too. Although the horizontal wave force on the 

structure will not change, the increase of the mass is the reason why the motion 

amplitude decreases. The decrease of the resonance peak for structures with a large 

width is due to the large hydrodynamic damping. Similar to draft analysis, important 

reductions in the transmission values and resonance limitations are obtained by 

reducing the reflection coefficient (Fig.3.10).  

 
Fig.3.10 Effect of breakwater width on the transmission coefficient (kr=1,left ;  kr=0.3, right) 

 

Angle of inclination of mooring lines 

 

The angle of inclination of mooring line  (Fig. 3.6) constitutes an important effect in 

determining the natural frequency of the breakwater. Its value is introduced in the 

elements of the stiffness matrix K , through the coordinates of the points a and f  

(Fig.3.6). In Fig.3.11, the study is elaborated for the effect of the line angle and the 

stiffness on the structural motions of the breakwater for a given wave characteristics. 

1 It is observed at an inclination angle range (10°-20°), sharp resonance peaks 

occur, and then the transmission coefficient stabilise whatever the value of the 

mooring stiffness.  

2 The mooring lines with high stiffness values have the lowest resonance peaks. 

3 Therefore, we can conclude that a useful domain of inclination angle can be 

taken from (30°-80°), but surely the 30° angle will be the optimal value for an 

inclination angle from the economic point also, since higher angles yields to 

longer cables.  



4 Normally, the reflection coefficient has no visible effect on the mooring angles 

for a given breakwater, since it will affect neither the stiffness nor the mass. 

5  

 
Fig.3.11 Effect of the mooring line inclination angle on the transmission coefficient 

(kr=1,left ;  kr=0.3, right) 

 

Mooring stiffness 

The mooring stiffness plays an important role in structure stability and its vibrational 

effects. All the wave generating factors change when the mooring stiffness is 

changed. 

 

  
Fig.3.12 Effect of the mooring line stiffness on the transmission coefficient (kr=1,left ;  

kr=0.3, right) 

 

From Fig.3.12 we can conclude: 

1 For a total reflective sidewall, the curves are almost the same, thus the 

stiffness does not constitute an important factor in wave attenuation.  This is 

due to the reflected waves that put the structure in a motion opposite to that 

derived from the incoming waves which is dominating over the stiffness 

values. 

2 For a partial reflective sidewall, the stiffness holds its natural role in 

stabilizing the structure. Thus, higher stiffness yields to reduce the structure 

oscillations and hence lower transmission coefficients. 

3 Also, it is noticed that the width plays an important role in structure stability 

or simply in reducing the movement of the oscillating structure. Therefore, the 

larger the width, the lower the transmission coefficient regardless of the 

stiffness values. 



4 A shift of the resonance peak is achieved when the mass or the spring stiffness 

of the system is changed.  This is due to the fact that a change of mass or 

spring stiffness results in a different natural frequency. 

 

Finally, this parametrical analysis demonstrates the complexity of a floating 

breakwater design due to repetitive resonance bands and the interference between the 

structural parameters. Thus, it is very important to orient the problem towards an 

optimization approach that can consider all the dangerous regions. Also, we have 

considered here the variation of the structural parameters without taking into 

consideration the mechanical resistance of this proposed structure. Then, an additional 

constraint would be introduced in the optimization problem, holding the mechanical 

constraints of the structure into account. This may yields to mass variation due to the 

variation of the internal rectangular section causing changes in the natural frequency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3.4 Mechanical Modelling 

 

This part is also based on analytical and numerical models. For the first part, 

the breakwater is divided into four beams and the traditional method of calculating the 

moments and stresses are applied for each beam. The second part covers the 

numerical analysis by applying the finite element method. This constitutes a pure 

structural analysis of the floating breakwater that must be included in the optimization 

constraints. It yields to compute the mechanical stresses that must be restricted to a 

certain limit in the optimal design.  

 

Analytical model 

 

The floating breakwater is modelled as a frame structure fixed on two simple 

supports at its bottom, where it can be simply divided into four beams with 

assimilating the upper rectangular wall as a concentrated force on the upper beam.  

 
Figure 3.13     Floating breakwater with an additional wall 

 

Each beam is equilibrated by the internal reactions and moments generated 

from frame division, and hence the equilibrium conditions can be applied for each 

beam alone to determine the internal efforts and moments yielding to the deflection 

and stress calculations, (Fig.7) 0,0,0  MFF yx . All the forces are 

distinguished from each other by different colours and are well explained in the figure 

below. 

 

This constitutes a problem of 12 variables ( ,Ni ,Vi and Mi where 4,3,2,1i ) 

with 12 equations, but in fact there is only 9 effective equations (equilibrium 

conditions for beam 1-4, 1-2, 2-3) and the last 3 equations (beam 3-4) are linearly 

dependant and will not help to solve the system of 12 variables. 

 

This problem is of the hyper-elastic type, where the number of equations is not 

sufficient to determine the corresponding variables [11], and it is necessary to include 

three other relations deduced from applying Castigliano’s theorem on the fixed nodes 

(beam 1-4 and 1-2).  
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applied, and M  the distribution of moment along the beam.  



 
Fig. 3.13    Forces and moments distributions 

 

The bending moments along each beam is determined by the traditional way of beam 

theory,  0 IM : 

Applying the global equilibrium conditions for the whole frame: 

0,0,0  MFF yx
, the support reactions are expressed in terms of the 

variable vector x by: 
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Applying the local equilibrium conditions for each beam: 
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Beam 1-4: 
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Castigliano’s theorem is applied in beam 1-4 on the node1 and on the node 4, and 

beam 1-2 on the node 1; which  give 3 new equations to complete the system. (The 

vertical displacement of the nodes 1 and 4 are equal to zero since it simply supported) 
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Finally, it ends up with a system of 12 variables with 12 equations, where these 12 

variables ( ,Ni ,Vi and Mi ) are determined in terms of the breakwater geometrical 

dimensions
54321 ,,,, xxxxx . 

The next step in this structural part, after determining the internal efforts and 

moments, is to develop the expressions of the bending stresses, and the deflections, in 

order to present them as new constraints needed to be respected in design. Having the 

bending moments calculated before in terms of ,Ni ,Vi and Mi ; the vertical 

displacements and the bending stresses can be easily deduced based on the following: 

)(xMyEI  , where y  is the second derivative of the beam deflection, E is the Young 

Modulus of the inside material, I is the moment of Inertia of the corresponding beam.  

I

Me

2
  , where e is the beam thickness 

The deflections’ constraints are expressed as follows:  
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The bending stresses’ constraints are expressed as follows:  
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Numerical model 

 

        The numerical analysis of the mechanical behaviour of this floating breakwater 

is based on the finite element method (FEM) using the software Matlab. In fact, 

Matlab solve the problems of (FEM) under the partial differential equations toolbox 

(PDE Tool), where the mechanical problem is assimilated to an elliptic equation 

under the form: fuaugradcdiv  ))((  in  , where   is a bounded domain in 

the plane, u is the solution vector, c, a ,f are complex functions defined on  . In 

structural mechanics the main problem is concentrated in solving the equilibrium 

equation  


 0vfdiv  in a determined structural domain exposed to different 

boundary loadings (forces and displacements).  

          To solve this classical equilibrium equation under the elliptic family of 

equations, the elliptic coefficients u, c, a ,f  are defined in terms of their equivalence 

substitutes in a mechanical problem. The u represents the nodal displacement vector 

in the two directions, a equals to zero, f represents the volume forces or simply the 

weight )( gm  , and c stands for the matrix deduced from the stress-strain relation, 

assuming isotropic and isothermal conditions. 
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where
x

  and 
y

 are the stresses in the x and y directions, and 
xy
  is the shear stress. 

The material properties are expressed as a combination of E, the elastic modulus or 

Young’s modulus, and  Poisson’s ratio. The basic finite element procedure starts by   

describing the geometry of the domain   and the boundary conditions. The boundary 

conditions specify a combination between u and its normal derivative on the 

boundary, and are defined either under the Dirichlet form (defining displacement) or 

under the Neumann form (defining forces). Second, a triangular mesh is built up on 

the domain ; and finally the structure is discretized into many subregions and for 

each subregion the displacement field is written in terms of nodal values. The total 

potential energy is then minimized with respect to the nodal values to give the 

equilibrium relation: 

     ukF    ,  where {u} is the vector of nodal displacements, {F} is the vector of 

element nodal forces, and [k ] is the element stiffness matrix. Once the displacement 

vector u is computed, it is easy to move deeper and calculate the mechanical stresses 

and finally the principal stresses, where these latter stresses are the one substituted in 

the structural constraint expression.  
 

 

 

 

 



3.5 Conclusion 

 

Although a lot of theoretical and practical research has been done, no practical 

solution has been found for the general problem of creating an optimal floating 

breakwater, able to attenuate strong waves. The floating breakwaters that have been 

built in real situations were designed to serve at specific locations with mild wave 

conditions. This resulted in huge and expensive constructions, like the Monaco 

floating breakwater (Fig 1.9), or cheap and temporary structures like the RIBS 

floating breakwater (Fig 1.5). From the model tests, it can be concluded that there 

seems to be an optimal floating breakwater design for every wave frequency. The 

structural appearance of the floating breakwater might change whenever the 

frequency of the incoming wave train changes in order to attenuate the wave optimal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
4 

Optimization of Floating 
Breakwaters 

 
 
 

Several optimization problems of floating breakwaters are studied in this chapter. It is 

divided into two parts: The first one considers a simplified model of the interaction 

waves-breakwater, where the motion of the latter is neglected; therefore no radiating 

waves are generated. It constitutes from shape optimization with a predefined shape, 

then a topology optimization, and the last method concerns the shape optimization 

with a variable number of points forming a geometrical shape. The second part, takes 

into consideration the dynamical behaviour of the floating breakwater. Thus, it 

compromise a complete model of the floating breakwater and its shape optimization is 

an important problem where the dimensions, shape, mass, and mooring system plays 

an effective role in the design. Moreover, the optimal shape is also affected by the 

resonance phenomenon that also must be included.  

 

4.1 General 

 

Structural optimization is a subject which has attracted the interest of the 

researches for many years. It refers to the optimal design of the shape or topology of 

structural components and is of great importance in structural and mechanical 

engineering. The problem consists in finding the best design of a structural 

component under certain loading, in order to have minimum weight, or uniformly 

distributed equivalent stresses. It consists of an iterative process in which repeated 

improvements are carried out over successive designs until the optimal design is 

acceptable. In this chapter, we consider the problem of determining the optimal shape 

and topology of a floating breakwater, which constitutes an ascending type of coastal 

structures. 

 

Current designs of floating breakwaters are reasonably effective at attenuating 

moderate to high frequency waves. Although most of the energy in a deep-water wave 

is concentrated near the surface, some of it is contained in the water at depth. 

Breakwaters of practical dimensions can therefore intercept only a part of the total 

wave energy. Typically, floating breakwaters have been used at locations where the 

wave period ranges up to about 5 sec and wave heights up to about 1 m. Moreover, 



the present practice relating to floating breakwater designs is often based on 

experience with past designs. The large number of variables involved and the variety 

of existing breakwaters have made it difficult for empirical relationships to be 

derived. For most large scale applications, it has therefore been necessary to reason to 

site-specific physical model tests before a particular breakwater design is adopted. 

Therefore, an optimal design is an essential demand in order to achieve a satisfactory 

floating breakwater with a minimum weight, or simply to represent a new resistive 

form, in accordance to the physical and mechanical constraints. 

 

A moored floating breakwater should be properly designed in order to ensure: 

(a) effective reduction of the transmitted energy, hence adequate protection of the area 

behind the floating system, (b) non-failure of the floating breakwater itself and (c) 

non-failure of the mooring lines. The satisfaction of these 3 requirements represents 

the overall desired performance of the floating breakwater. The reduction of the 

transmitted energy is achieved by satisfactory dimensions and mass of the floating 

structure itself, which are important parameters that can be used to optimize its 

performance. On the other side, the anchoring of the floating breakwater is necessary 

to keep the structure at the appropriate position. Besides the station keeping property, 

the mooring system is an important parameter that determines the dynamic behaviour 

of the mass-spring system. The non-failure analysis of these mooring lines is mainly 

included in the hydrodynamic behaviour study. Moreover, for a breakwater to float it 

is obviously designed with a hollow form to reduce the total weight of the structure; 

where such form complicates the problem and implicates more constraints to be 

considered during the design. 

 

This study will concentrate on several aspects in order to design a floating 

breakwater that is capable of attenuating strong waves to satisfy the harbour demands. 

Both analytical and numerical model will be used as a design tool to optimize the 

shape and topology of these floating breakwaters that must meet or satisfy the 

requirements needed in ports. This demonstrate the contribution of the most basic 

design elements such as draft, width, weight and mooring line stiffness to the 

performance of the floating breakwater. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4.2 Optimization without dynamical behaviour 

 

In this section, the dynamical behaviour of the floating breakwater is excluded 

from our study. Thus, we can consider that there are no radiated waves in the port 

side. 

4.2.1 Optimization problem 

The reduction of the transmitted energy is achieved by the floating breakwater 

itself due to a considerable depth and by the fixed seawall concept under the 

breakwater for the rest underwater region. Moreover, for a breakwater to float, it is 

obviously designed with a hollow form to reduce the total weight of the structure; 

where such form complicates the problem and implicates more constraints to be 

considered during the design. 

 

          
Fig.4.1     Characteristics of floating breakwater 

Thus, improving the performance of floating breakwaters could open up multiple of 

possible cases and this because the floating breakwater has many parameters 

characterizing its geometry (Fig.4.1). Some of these parameters are related to the 

same physical constraint where the rest are determined from other independent 

constraints, and therefore determining its topology or inward shape cannot be 

performed as an ordinary calculation problem but it needs an optimisation process in 

order to compute these parameters taking into consideration their effects on each 

other. Therefore, the optimisation problem is assumed to be finite dimensional 

constrained minimization problem, which is symbolically expressed as:    

     Find a design variable vector x ; 

to minimize the weight function )(xfob
 

     subjected to the n constraints 0)( xCi
,   ni ,....,1  

          0)( xGi
,   mi ,....,1  

Objective function 

 
The optimal solution is to design a breakwater respecting all the constraints with a  

minimum  volume,   hence  the  objective is to minimize the weight of the breakwater.  

)min(Weightfob   

 

Dynamic pressure constraint 

The concept of the fixed seawall permits to determine the height of the breakwater in 

accordance with low hydrodynamic pressure acting on this seawall. The dynamic 



wave pressure is mainly concentrated near the free surface and its induced 

perturbation is low under a certain height (Fig.4.2); then the height of the breakwater 

can be limited to where the pressure is approximately unvarying corresponding to an 

approximate value of 0max1.0  PP , where )0(max  zPP . Finally, the height can 

be considered to be mL 4 , where this height is indeed satisfactory for a strong 

wave )2( mH  . 

 
Fig.4.2        Wave Pressure Modelling 

This constraint is independent of the other constraints, and then the height of the 

breakwater is determined only from it and no need to still consider the height as a 

variable for the rest of the optimization process. 

Floating constraint 

 

It is obvious to mention that the floating breakwater must be designed with a hollow 

form to equilibrate the total weight of the breakwater with the submerged volume, 

where this yields to an important constraint relating the external dimensions to that of 

the hollow form. It is a direct application of Archimedes principle where the 

equilibrium equation for floating can be written as: 0 gVgV Temm  , where 

m and  designates the densities of the material (concrete) and the sea water 

respectively, 
m

V designates the volume of the inside material of the whole breakwater, 

where 
T

V designates the volume of the submerged part of the breakwater. In fact, for a 

moored structure the floating law can be expressed in an inequality in order to 

minimize the weight, where the difference between the buoyancy force and the weight 

can be compensated by the tension in the mooring lines. 

)3(0)(1  gVgVxC Temm   

 

Stability constraint 

Stability is defined as the ability of the breakwater to right itself after being 

heeled over. This ability is achieved by developing moments that tend to restore the 

breakwater to its initial position. There are a number of calculated values that together 

determine the stability of a floating breakwater: 1- Initial horizontal equilibrium, 2- 

Heeled angle, 3- Tension in mooring lines. 

 

First of all, this floating breakwater has a rectangular shape with an arbitrary 

core, so initially (before any disturbance) it is necessary to maintain a horizontal 



equilibrium position. The calculation is based on the basic formula of determining the 

centre of gravity (G) for a structure composed from different well known determined 

geometrical shapes  and then aligning it with the centre of buoyancy (B) of the 

floating breakwater (Fig.4) which lies at the geometric centre of volume of the 

displaced water ( 2/D ). 
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i
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ix are respectively the area and the centre of gravity of 

the composing geometries. Therefore, the horizontal equilibrium constraint is 

expressed as follows: 

0
2

)(
1


D

xxG
g  

Second, when the breakwater is disturbed by a wave, the centre of buoyancy moves 

from B to B1 (Fig.4.3) because the shape of the submerged volume is changed; then 

the weight and the buoyancy force form a couple capable to restore the breakwater to 

its original position. Moreover, the distance GM known as the metacentric height 

illustrates the fundamental law of stability, where it must be always positive to create 

a restoring couple and maintain stability 0MG .   

 
Fig.4.3   Stability of floating breakwater 

Finally, stability is achieved by the restoring couple (weight-buoyancy) and by the 

tension in the mooring lines. This stability is determined around the centre of gravity, 

hence the moments developed by the restoring couple and the tension in cables must 

equilibrate the moment derived from the incoming waves.  

0
BF

MMMp , where Mp is the moment of the disturbing force (wave), MF  is the 

moment of the tension in the mooring lines, and MB is the moment of the buoyant fore 

(restoring couple). The absolute value of the disturbing moment guarantees the 

flexibility of the stability relation in the two senses of rotation. Hence, the stability 

constraint can be expressed by an inequality: 
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h is the height of the breakwater portion above the still water, α being the angle 

formed by the mooring lines and the vertical (α=20°), and  is the angle of 

disturbance (heeled angle); in fact it is fixed by the designer, and since the breakwater 

must be very rigid and stable in order to protect the ports from waves, it is taken 

1.2°.(slope of 2%) 



 
Structural constraints 
The main purpose of this constraint is to compute the mechanical stresses in order to 

be restricted to a certain limit. It constitutes a pure structural analysis of the floating 

breakwater. For the case of analytical modelling, the equations of section 3.4 are 

applied; while, for the case of numerical analysis a finite element method is requested 

in order to determine the mechanical stresses. In general, it can be summarized by 

maximizing the stiffness of the structure having a given shape. The floating 

breakwater is subjected to the hydrostatic forces on its sides and also the 

hydrodynamic forces exerted by the incoming waves. The forces in the anchoring 

system are also introduced, which equilibrates the difference between the weight and 

the pressure exerted on the bottom of the breakwater (Fig.5). 

 

 
Fig.5    Floating breakwaters subjected to hydrostatic and hydrodynamic forces 

 

It is well known that the concrete have different compression and traction limits due 

to its nature, and so the well known formula of Von Mises for elastic materials cannot 

be used. A special criterion, named the Parabolic Criteria, (Garrigues.J, 2001) mainly 

used for concrete is introduced in terms of the principal stresses of the breakwater and 

the limit stresses for the material, and is written directly in the form of optimization 

constraint:  
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where
1

 ,
2

  represent the principal stresses of the structure and 
t

 ,
c

 represent the 

limiting stresses for the material constituting the studied structure (hardened concrete: 

MPat 6 , MPac 60 ). This constraint as the others must be computed in each 

iteration, which yields to solve the FEM problem in each iteration and for each new 

defined geometry in order to define the principal stresses.  

 

Finally, the optimization problem defined atop, by the objective function and 

the related constraints, constitutes the theory of the floating breakwater optimization 

problem. An application of various methods concerning shape and topology 

optimization are applied and thoroughly discussed. In fact, all the preceding 

optimization constraints are theoretically reserved through out the different methods, 

but what is altering is the representation manner of these latter who are directly 

related to the type of representation of the optimization method itself.   



4.2.1- Shape optimization with a predefined geometry 

 

Analytical 

All the constraints are expressed in long and complicated equations in terms of the 

four geometrical parameters
5432 ,,, xxxx , characterising the floating breakwater. 

Finally, the optimization problem is summarized as follows: 

The objective function 
ob

f , establishing the minimum weight of the floating 

breakwater, has been minimized to design relative breakwater dimensions according 

to the following non linear constraints: 

Objective function: 

HcxxLxLxxxxxfMin ob  )(),,,( 43215432  
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Aside from the constraints of stability, structural, and floating, it was also necessary to 

establish some additional geometrical constraints: 
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Using the Matlab optimization toolbox and mainly the function fmincon; which is 

based on the SQP method (sequential quadratic programming), the problem can be 

solved to determine the variables Fxxxx ,,,, 5432
. (same sea wave and material 

parameters applied for the fixed bottom breakwater) 
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In order to validate this analytical calculation, a comparison is realized with a 

numerical approach using the ABAQUS software, one of the leading softwares in the 

domain of finite element calculation. 

The comparison comprises the deflections and the bending stresses of the most 

affected and most feeble beams (1-4 and 2-3), where in fact the lower beam is holding  

the weight and the vertical displacement of all the structure, and the upper beam  (2-3) 

is mainly exposed to the horizontal effort (displacement) and its induced moments 

caused by the sea waves. Using the Matlab, all the preceding equations (moments, 

deflections, stresses) can be programmed to yield to explanatory curves defining the 

real state of the floating breakwater when exposed to sea waves.  



The upper and lower beam deflections are described by the below curves, showing 

good agreement with the ABAQUS results. First, the upper beam (2-3) has a 

decreasing-increasing deflection, where it is obviously explained by the subjected 

moment of the hydrodynamic pressure on the left side of the breakwater causing the 

decreasing part (-8x10-5m) and moreover due to the weight of the vertical wall fixed 

on the left side of the floating breakwater; where the compression stresses derived 

form the hydrodynamic pressure on both sides causes a positive deflection attaining a 

maximum of        4.8x10-4m. The same trace has been drawn by ABAQUS with a 

close maximum deflection of 5.7x10-4m. 

The lower beam is supporting all the weight and also the hydrostatic pressure applied 

at its bottom which is strong enough to cause an upper deflection (9.28x10-4m) 

towards the hollow section and very close to the results given ABAQUS (1.1x10-3m), 

except for the position of the upward maximum deflection where it is approximately 

located in the middle of the beam in our analytical calculation and shifted smoothly 

towards the right in ABAQUS. 

 
 

 
 

Concerning the bending stresses, a similar comparison to the deflection is realized. 

The bending stress in the upper beam (2-3) is increasing from 0.9 MPa on the left side 

to a value of 2.7MPa on the right side where it is reaching 2.51 MPa in ABAQUS. 

For the lower beam it is decreasing from 3.4 MPa to a minimum of -1.7 MPa and then 

increasing again. In fact the only value not being respected in the constraints is the 

bending stress at the node1 and 4, and this is due to the calculation manner of 
)),,,(max( 54326 xxxxf , where the maximum is located due to the derivative of the function. 

Despite this, it is normal to have always the large bending stresses located at the fixed 

supports. In ABAQUS, we can notice that the bending stress is decreasing from 4.34 

MPa to  -1.14 MPa and then increasing again. 

 



 
 

 
 

 

Numerical 

A moored floating breakwater should be properly designed in order to ensure: (a) 

effective reduction of the transmitted energy, hence adequate protection of the area 

behind the floating system, (b) non-failure of the floating breakwater itself and (c) 

non-failure of the mooring lines. The satisfaction of these 3 requirements represents 

the overall desired performance of the floating breakwater. The non-failure of the 

mooring lines has been widely studied and discussed, so the efforts in this paper are 

directed towards the first two issues.    

        The reduction of the transmitted energy is achieved by the floating breakwater 

itself due to a considerable depth and by the fixed seawall concept under the 

breakwater for the rest underwater region. Moreover, for a breakwater to float it is 

obviously designed with a hollow form to reduce the total weight of the structure; 

where such form complicates the problem and implicates more constraints to be 

considered  during  the design. Also,  an  additional  rectangular  wall (Fig.4.4) can be 

used to protect the sheltered regions from high waves; where it is sufficient to place it 

only from the ocean side since it has non sense to construct a rectangular breakwater 

with its height over the free surface level equals to a strong wave height. Then, it can 

be simply deduced that a floating breakwater can be assimilated to two parts: the main 

rectangular body possessing sufficient dimensions considering the fixed seawall 

concept, and a second part formed by a small rectangular wall fixed on the ocean side 

of the breakwater to attenuate the high waves. The dimensions of the second part are 

easily determined, where its height is equal to the wave height H, and its width c is 

taken to be 0.8 m (Bonnefille 1976). 



 
Fig.4.4     Characteristics of floating breakwater 

 

         In fact, the problem of shape optimization has been widely explored in the 

structural optimization area along with the rapid development of fast digital 

computers and numerical methods such as the finite element method. The usual shape 

optimization procedures start from the given initial design, where the boundary of the 

structure is described and parameterized using a set of simple segments such as 

straight lines, and then the shape is varied iteratively using the information from the 

shape design sensitivity to achieve finally the optimal shape design. Therefore, 

improving the performance of floating breakwaters could open up multiple of possible 

uses and this because the floating breakwater, in contrary to the fixed one (the only 

parameter to calculate is the width being deduced from the stability condition), has 

many parameters characterizing its geometry and defining its shape 
54321 ,,,,, xxxxxL  

(Fig.3). Some of these parameters are related to the same physical constraint where 

the rest are determined from other independent constraints, and therefore determining 

its geometrical dimensions cannot be performed as an ordinary calculation problem 

but it needs an optimisation process in order to compute these parameters taking into 

consideration their effects on each other. Hence, the optimisation problem is assumed 

to be finite dimensional constrained minimization problem, which is symbolically 

expressed as:    

 

     Find a design variable vector x ; 

     to minimize the weight function )(xf  

     subject to the n constraints 0)( xCi
 

The design variable vector represents a one row vector whose elements 

54321 ,,,,, xxxxxL , (constitute the geometrical dimensions of the breakwater) are to be 

determined by the optimization procedure. This section commences by a brief 

definition of the optimization methodology of the SQP, and then moves forward 

towards introducing the optimization problem. 

 

Optimization Problem 

     The optimization problem is summarized by the objective function and the related 

imposed constraints including both physical and mechanical constraints. 

 



1-Objective Function: The optimal solution is to design a breakwater respecting all 

the constraints with a minimum volume, hence the objective is to minimize the weight 

of the breakwater,  

 

HcxxLxLxxxxxxfob  )(),,,,( 432154321
                     )(3  

 

2-Floating Constraint: The floating of the breakwater is a direct application of 

Archimedes principle where the equilibrium equation for floating can be written as: 

0)(  gVgVV Termm  , where 
m and

e
 designates the densities of the material 

(concrete) and the sea water respectively, 
m

V designates the volume of the inside 

material of the whole breakwater without the upper rectangular wall, 
o

V designates the 

volume of the hollow part (atmospheric pressure inside), 
r

V designates the volume of 

the upper rectangular part, where 
T

V designates the volume of the submerged part of 

the breakwater ,  and then      
Tom VVV   

      A relation between the hollow volume and the submerged volume can be simply 

deduced:        
rT
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em
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The floating constraint can be expressed as follows: 
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But, really the floating constraint yields to a simple relation between the variables that 

can be used to reduce the number of variables in the optimization. 

 

3-Stability Constraint: Stability is defined as the ability of the breakwater to right 

itself after being heeled over. This ability is achieved by developing moments that 

tend to restore the breakwater to its original condition. There are a number of 

calculated values that together determine the stability of a floating breakwater: 1- 

Initial horizontal equilibrium, 2- Heeled angle, 3- Tension in mooring lines. 

      First of all, this floating breakwater has a non-symmetrical shape, so initially 

(before any disturbance) it is necessary to maintain a horizontal equilibrium position. 

In this case, it can be benefited from the numerical analysis of the structure to 

calculate in an interesting method the new centre of gravity and then aligning it with 

the centre of buoyancy for the floating breakwater (Fig.6) which lies at the geometric 

centre of volume of the displaced water ( 2/
1

x ). It is based on calculating the centre of 

gravity of each triangle in the whole mesh triangulation process and its corresponding 

area instead of dividing the structure into five rectangles and writes the analytical 

equations of their centres (Fig.5). In fact, it is based on the basic formula of 

determining the centre of gravity for a structure composed from different well known 

determined geometrical shapes and applied for each triangle in the meshed domain. 
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where n is the number of triangles in the meshed domain.(Fig.5)         

 

 

 
                    Fig. 5    Determination of centre of gravity 

 

Moreover, the distance GM known as the metacentric height illustrates the 

fundamental law of stability, where it must be always positive to create a restoring 

couple and maintain stability 0MG . 

 The equation of motion can be written as:   IM  at equilibrium 

0
BF

MMMp , where Mp is the moment of the disturbing force (wave), MF  is the 

moment of the tension in the mooring lines, and MB is the moment of the buoyant fore 

(restoring couple). The absolute value of the disturbing moment guarantees the 

flexibility of the stability relation in the two senses of rotation; that is the couple 

produced by the weight must also be in opposite sense of the disturbing moment to be 

capable to right the structure to its initial position. Hence, the stability constraint can 

be expressed as: (where ix represents the variables, i=1,2,3,4,5) 
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h is the height of the breakwater portion above the still water, α being the angle 

formed by the mooring lines and the vertical (α=20°), and   

is the angle of disturbance (heeled angle); in fact it is fixed by the designer, and since 

the breakwater must be very rigid and stable in order to protect the ports from waves, 

it is taken  1.2°.(slope of 2%) 

 

5-Structural constraint: The real applied forces (pressures) on the floating breakwater 

are modelled as five separate forces divided as follows: 2 hydrostatic forces on the left 

and right sides, one hydrostatic force on the bottom, one hydrodynamic force exerted 

by the wave motion on the left side (Eq.2), and finally the atmospheric pressure 

exerted on the upper part. (Fig.7) 



 
           Fig.7    Modelling of various pressures on the floating breakwater 

 

 

Application and Results 

 

       Without any further doubt, the applied method will produce a floating breakwater 

with a new shape providing an idea of an efficient breakwater. In this section a 

numerical application is developed and results are obtained based on the following 

numerical setup for the waves and the breakwater:    
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     The optimization problem, outlining the whole environmental conditions in 

floating breakwater design, is solved by the SQP method in Matlab, leading to the 

following results (Fig.8):   

 
                Fig.8     Floating breakwater using shape optimization 
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       As mentioned before, these constraints (physical and mechanical) 

are obviously written in form  of mathematical  equations  in  order to  

be introduced in the optimization problem. But in fact, it is not a classical 

optimization problem where all the constraints are only defined in terms of 

mathematical equations without affecting the physical or geometrical significance of 

the latter whatever is the response in each iteration. So, in such problems that handle 



in addition to the physical constraints, a mechanical problem where the mechanical 

stresses has to be calculated for a new defined geometry in each iteration, any non 

logical iteration response will yield to arrest the optimization procedure directly 

without any solution. We can simply summarize our problem as optimizing a void 

surface translating or moving inside another geometrical shape that also needs to be 

optimized. Hence, errors can occur when an iteration produces the void geometry 

partially outside the other geometry or intersecting with it, leading to a non 

meaningful geometry lacking off course the capability of meshing a non sensible 

geometry.  

     In Matlab, it is possible to overcome such difficulties by introducing a conditional 

algorithm in the programming to sustain the execution of the rest of the optimization 

iterations although one of them or more falls in such error. This is done by providing 

a large stress tensor value )9( MPa  for this failure case; forcing the optimization 

procedure to skip directly to the next iteration without executing the rest of the finite 

element procedure in the previous one. 

    
Figure 9   Mechanical stresses 

x
 (left) and 

y
 (right) 

 

In consequence to our applied method, it is apparent that we ended up with a very 

logical and accepted solution to our problem considering an overall breakwater 

problem. In fact, it is not only a problem of volume consuming, but also a structural 

advantage where the floating breakwater is working approximately in the same stress 

domain (Fig.9); while in the case of a fixed bottom breakwater (filled material 

breakwater) the stress domain is largely varying between the points inside the 

breakwater. This is an additional advantage for the floating breakwater, since the 

more the inside points are working on closer stresses values the more the extended life 

of the structure is expected and vice versa. Moreover, we can notice (Fig. 9) the 

respected limits of the mechanical stresses due to the imposed structural constraints, 

where the concrete has its traction and compression limits as follows: MPat 4 , 

MPac 40 . 

 

 

 

 

 

 

 

 

 



4.2.2 Topology Optimization 

 

Topology optimization is one of the most important subset approaches of 

structural optimization which aims to find the best possible structure that meets 

different multidisciplinary requirements such as functionality and manufacturing. 

Generally, structural topology optimization is a powerful tool which can help the 

designer select suitable initial structural topologies and more importantly, it is 

identified as economically the most rewarding task in structural design. Structural 

topology optimization as a generalized shape optimization problem has received 

considerable attention recently. Various families of structural topology optimization 

methods have been extensively developed. One of the most established families of 

methods is the one based on the homogenization approach proposed by Bendsøe and 

Kikuchi (1988), in which the structural form is represented by a sponge-like material 

with infinite micro-scale cells with voids and the material throughout the structure is 

redistributed by using an optimality criteria procedure. As an important alternative 

approach within this family, the power-law approach, which is also called the SIMP 

(Solid Isotropic Micro-structure with Penalization) method (Sigmund-2001) and 

originally introduced by Bendsøe (1989), has got a fairly general acceptance in recent 

years. It adopts the element relative density as the design variable and assumes that 

the material properties within each element are uniform, which are modelled as the 

relative material density raised to some power times the material properties of solid 

material. A more recent development is the one based on implicit functions such as 

the regularization method (Belytschko et al, 2003) and level-set methods (Allaire et 

al. 2002, 2003) It is shown that the regularization method is a dual of the 

homogenization method and the level-set methods can be as efficient as the 

homogenization method with a good initialization.  

 

Another well-developed family of structural optimization methods is the one 

based on the evolutionary structural optimization (ESO) approach proposed by Xie 

and Steven (1993), in which the material in a design domain which is not structurally 

active is considered as inefficiently used and can thus be removed by using some 

element rejection criteria. Both the homogenization method and the ESO method have 

been further developed by a large number of researchers, leading to the extensive 

exposition and exploration of these two families of methods. Although 

computationally effective, both cannot perform a global search and thus do not 

necessarily converge to the global optimal solution for the given objective function 

and constraints (Rozvany, 2001 - Zhou and Rozvany, 2001). Another emerging family 

of structural topology optimization methods is the one using Genetic Algorithms 

(GA), which are based on the Darwinian survival-of-the-fittest principle to mimic 

natural biological evolution. GAs have been gradually recognized as a kind of 

powerful and robust stochastic global search method (Jenkins, 2001- Kane and 

Schoenauer, 1996) since the seminal work of Holland (1975) and the comprehensive 

study of Goldberg (1989). More recently, GAs have been increasingly employed in 

the structural topology optimization field in order to perform a global search in the 

design domain (Jensen 1992, Schoenauer 1995, Schoenauer 1996, Tai et al. 2002, 

Fanjoy and Crossley 2002 ,Wang and Tai, 2004).  

 

It is well known that for the GAs, the choice of a representation method (the 

definition of the search space) is of vital importance. Currently, the bit-array or 

binary-string representation method has been widely adopted. The bit-array 



representation method  (Schoenauer 1995, Kane and Schoenauer-1996,  Hamda et 

al.2002), which is similar to the binary-string representation method adopted by 

Chapman et al (1994), Chapman and Jakiela (1996), Jakiela et al. (2000), as well as 

Fanjoy and Crossley (2002), is an intuitive and straightforward method to represent 

the two-dimensional topology for the optimum design problems using the GAs. A bit 

array or binary string is mapped into the two-dimensional design domain discretized 

by a fixed regular mesh, where each of the small, square elements contains either 

material or void, where not intermediate densities are allowed, and is thus treated as a 

binary design variable. It was also pointed out that since the design domain is 

discretized by a regular finite element mesh, the complexity of the resulting topology 

is dependent on that of the given mesh and thus high computational cost may be 

required for a fine mesh. In spite of its success in solving topology optimization 

design problems, bitarray representation suffers from a strong limitation due to the 

dependency of its complexity on that of the underlying mesh. Indeed the size of the 

individual (the number of codes used to encode a structure) is the size of the mesh.  

Unfortunately according to both the theoretical results and empirical considerations, 

the critical population size required for convergence should be increased at least 

linearly with the size of the individuals. Moreover, larger populations generally 

require a greater number of generations to converge. Hence it is clear that the bitarray 

approach will not scale up when using very fine meshes. This greatly limits the 

practical application of this approach to coarse 2D meshes and obviously fine 3D 

meshes. These considerations appeal for some more compact representations whose 

complexity does not depend on a fixed discretization.  

 

An attempt to overcome such problems is the Voronoi-based representation 

(Schoenauer 1995, Schoenauer 1996, Kane and Schoenauer 1996, ) first introduced by 

Schoenauer, where a finite number of Voronoi sites being labeled 0 or 1 are used to 

define the Voronoi diagram and to represent a partition of the design domain into two 

subsets and thus the Voronoi representation of shapes and topologies does not depend 

on the mesh that will be used to compute the behavior of the shapes. These 

representations do not involve exactly components, but do require some elementary 

alleles to be defined by the programmer; such alleles can be viewed as some sort of 

variable components: due to the high degree of epistasis of those representations, the 

phenotypic expression of each allele strongly depends on the other alleles. 

Consequently, the basic blocks that build the structure had to be designed by the 

programmer, and wrong choices can bias the search in a wrong direction. Moreover, 

just as in the case of bit-array or binary-string representation, the problem of design 

connectivity and some boundary control problems still exists. In fact, the Vornoi–

based representation allows one to push further the limits of Evolutionary Topological 

Optimization but doesn’t solve the imposed problems. Another relatively new 

representation method is the morphological representation proposed by Tai and Chee 

(2000). Simple parametric curves (Bezier curves) with varying thickness to connect 

the input/output (I/O) regions are used to represent the topology and shape in the two 

dimensional design domain, but really the morphological representation is essentially 

an intuitive method without a strong mathematical or theoretical background. Then, 

the morphological representation method is further developed into a graph-theoretic 

representation method based on graph theory and cubic Bezier curves with varying 

thickness (S.Y. Wang, K.Tai) and mainly developed to overcome the problem of 

design connectivity. The main disadvantage in such methods is that the complexity of 



the resulting topology would greatly rely on the complexity of the connection curves, 

and it is difficult to be applied in complicated mechanical problems. 

 

The objective of this section is to further address the representation form using 

an ordinary triangular mesh. In fact, this work combines the concept of the traditional 

bitarray representation from the point of view of the relation between the structure 

itself and its regular partition, and that of the Vornoi representation in differentiating 

between the geometrical detection and the FEM computation. In this manner, the 

structural domain is decomposed into small partitions due to a triangular mesh that is 

totally different from the mesh used in the FEM computation (Fig 1). Therefore, this 

triangular mesh is utilized just to determine the geometrical shape or more clearly to 

define the void and present material inside this studied domain, and then any meshing 

type might be used for the rest of the problem. This, it is just a technical operation for 

dividing the geometrical shape into small finite shapes to be easily defined in the 

optimization process.  The mesh used for representing the structure is shown in the 

left figure, while a refined mesh is applied after the new representation (structure with 

void domain) in the finite element method to compute the mechanical stresses. (right 

figure).  

 

 
Figure 1  Differentiating between meshes for triangular representation and those for 

mechanical computations 

 

This new type of representation holds up many advantages when compared to 

the others. First of all, the triangular mesh is much better than the particular 

rectangular mesh, used in traditional bitarray representation, in discretizing 

complicated and non rectangular geometries. The meshing generation process is also 

better when compared to Voronoi partition due to the latter irregularity and its high 

dependence on the predefined Voronoi sites (points), where this can be clearly 

observed from the obtained geometrical results after decoding.  Second, each element 

in the triangular mesh is defined by its geometrical location, so it is easy now to 

escape from the problems of fine tuning of the domain boundary by reserving all the 



elements adjacent to the boundaries. Third, a density vector is introduced having a 

length equals to the total number of meshing triangles and holding only the values 0 

or 1 corresponding to filled or void triangles, describing the density distribution inside 

the geometrical domain. This density vector establish a relation between the 

geometrical identification of each triangle, its location inside the domain, and its value 

in the density vector, yielding to a full control on the boundaries in each iteration 

ignoring the mutation and crossover operations in specific and undesirable regions 

through the Genetic Algorithm procedure. Thus, the optimal shape can be reached in 

reasonable time since the algorithm is able to precisely control the boundaries of the 

individuals in the population. Moreover, the initial population is given in a very 

comprehensive form, where it is not combination of arbitrary void and filled triangles 

like the preceding methods, but it describes void and filled geometrical forms which 

will also increase the velocity of convergence towards the optimal shape. Finally, a 

practical example, discussing the optimization of floating breakwaters, is considered 

with nonlinear physical and mechanical constraints. In contrary to the preceding 

studies and methods that were applied only on a simple mechanical problem (the 

cantilever beam) to optimize its weight under displacement constraints, the objective 

function and all the constraints here are formulated in terms of this density vector. 

The implementation of this new contribution in the bitarray representation is 

introduced through several steps: 

 

a-Triangular representation 

 

The method relies on dividing the design domain into a finite number of 

unequal random triangles. This discretization operation is executed by an arbitrary 

triangular mesh generation for the design domain based on the Delaunay 

Triangulation method. The number of triangles indicates the total number of variables 

for the optimization problem; where the latter is initially indicated and controlled by 

us upon choosing the appropriate triangular mesh form (Fig. 4). It is important to note 

that this triangular mesh is not the same one used for computing the mechanical 

stresses, but it is just a technical operation for dividing the geometrical shape into 

small finite shapes to be easily defined in the optimization process. This importance 

appears in differentiating between the size of the individuals (the density vector used 

to encode a structure) and the size of the mesh for the mechanical computation, and 

by this way we can use very fine meshes without affecting the scale of the general 

problem. In fact, the triangular meshing is the best way to discretize any geometrical 

domain, since the regular rectangular mesh which constitutes the subject of previous 

bitarray representations is used only for particular rectangular domains. This is mainly 

due to the simplicity in determining the weight of the optimized structure, since all the 

finite rectangles are equally sized. By this representation, one can deal with any 

mechanical problem holding an arbitrary geometrical domain; and the weight can be 

formulated by a numerical calculation of the area of each triangle alone since the 

latter is expressed in terms of its nodes’ coordinates.  

 

Another benefit from such triangular representation, is the regular description 

of the final shape when compared to that deduced from Vornoi representation. In fact, 

it can be clearly observed in (Fig.1) the great difference in domain partition when 

describing the same geometry (square divided into 100 repartition); moreover another 

huge difference also in describing the geometry after a topology optimization process 

(Fig.2). For example, if it is decided to extract all the elements of a square except 



those that are adjacent to the square boundaries (the control of this procedure is 

explained after); the triangular representation will produce a very smooth shape and 

nearly a rectangular one, where the voronoi representation is clearly irregular and not 

accepted at all in practical applications. It is important to note that when using a 

refined mesh for the same problem it will lead up to more comfortable results, but in 

the figures below, we demonstrate the capability of triangular mesh in describing and 

expressing the same problem and with the same number of divisions. 

 

 
Figure 1      Comparison between triangular and voronoi representation 

 
Figure 2     Comparison after topology optimization 

 

Thus, it will be very difficult to obtain symmetrical shapes when using the voronoi 

representation, especially for problems in ocean fields where the floating condition of 

the structure and its stability around the centre of gravity are essential constraints in 

an optimization problem.  

 

b-Density vector 

 

After defining the triangular representation for a geometrical domain, a 

density vector is created having the same length as the number of meshing triangles in 

the design domain and holding only the values 0 or 1 corresponding to filled or void 

triangles; where this latter describes the density distribution inside the studied domain. 
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The index associated to each element in the density vector,  , represents the density 

of the triangle having the same index, where it creates the relation between the 

geometrical identification of this triangle, its location inside this domain, and its value 

in the density vector. This labelling or numbering is an arbitrary process where 



adjacent bits in the bit string representation do not necessarily correspond to 

neighbour elements of the domain. The number of triangles indicates the total number 

of variables for the optimization problem; where this number is initially indicated and 

controlled by us upon choosing the appropriate triangular mesh form (Fig. 4). The 

interest in this problem lies in the geometry description where it can be written or 

expressed in terms of triangles, which in their term are expressed in terms of their 

corresponding densities giving them the ability of presence or absence. In fact, this 

significance is not only limited to the expression of complicated and arbitrary 

geometries in mathematical formulas, but also in the control of keeping or removing 

boundary segments in the problem. For example, this density vector signifies the 

capability of this representation by controlling the presence or absence of all the 

triangular elements by the corresponding values in it (Fig.3). The control over this 

vector is deduced only from the geometrical coordinates of the triangle nodes and not 

from their numbers, since this labelling or numbering is an arbitrary process where 

adjacent bits in the bit string representation do not necessarily correspond to 

neighbour elements of the domain (Fig.3) 

 

 
Figure 3          Representation with and without density control 

 

As afore-mentioned, the bit-array representation is adopted as the chromosome 

representation method to define the distribution of material and void of the design 

domain. To translate such a bit-array genotype into a phenotypic topology, the 

chromosome is directly mapped into the design domain, where elements with allele 

values of 1 become material while those with allele values of 0 become void, as 

shown in Fig. 3. However, this representation method does not prevent the formation 

of unanalyzable structures, checkerboard patterns, and boundary problems. Additional 

strategies must be taken to prevent the biases resulting in the formation of invalid 

structures during the GA iterations to finally improve the GA performance. The 

example illustrated in (Fig.3) clarifies the main difference between the traditional 

representation and the triangular one with density control. The rectangular domain is 

subjected to various forces from the four sides and it also has fixed supports at its 

bottom edges. However, numerous design problems have no connected individuals 

and boundary problems existing in the population in the early generations [31]. For 

example, if the one of the generations during the GA procedure produces a bitarray 



giving the red pointed elements in Fig.3  the values of zeros, it is obvious that the 

such unviable structures may lead to the failure of the convergence of the GA, since 

part of the boundaries are eliminated, and the node where the fixed support is applied 

is also extracted. Including the control of the density vector in the GA procedure, will 

definitely solves the problem of unanalyzable structures by reserving all the triangular 

elements adjacent to the boundary giving them the values 1 whatever was their 

original values in the preceding iteration. Whatever was the bitarray produced after 

mutation and crossover operations, the control on the density vector will always fix 

the boundary problem before evaluating the objective function, finite element 

computation for each new structure in each iteration, and the rest of the constraints 

imposed in the optimization problem. Mathematically, it is expressed as follows:  

          If 












by

andor

ax

ki

ki

,

,

)(               1
i

  

            for ni ,,.........1  ,  and  3,2,1k  

where n is the total number of triangles or simply it is the total number of variables in 

the GA, k represents the number of node in each triangle; kix ,  represents the x 

coordinates of the node k in the triangle number i; kiy , stands for the y coordinates, 

finally a and b stands for the boundary coordinates that needs to be conserved in all 

the optimization problem (they can take positive or negative values or even linear 

equations). Furthermore, it is possible now to favour the occurrence of valid designs 

from those invalid designs and the problem of representation degeneracy are not 

ignored like the previous bitarray representations.  

 

c- Population Initialization 

 

Usually, population initialization is achieved by generating the required 

number of individuals using a random number generator that uniformly distributes 

numbers in the desired range [19]. However, by using this initialization method on the 

bit-array representation, it is often found that there is no viable structure in the initial 

and early generations and the GA may sometimes fail to converge if the mesh is not 

too coarse or if the problem involves long narrow design domains [30]. To guarantee 

the existence of analyzable structures in the population for such problems, an identical 

population initialization method is proposed. The initial individuals will obviously 

hold the values 0 and 1, but in a comprehensive manner. That is, each individual in 

the initial population will represent a void domain in the structure and not arbitrary 

filled and void material elements. Thus, an algorithm is developed to create void 

domains in the basic design domain as follows: 
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where h1,h2,h3,h4 represents correspondingly the x and y limits of this void domain. 

For better performance of the GA, each individual in the initial population stands for a 

different domain. Hence, the design domain validity can be guaranteed. It is important 

to note here that also these initial individuals will be passé under the density control to 

confirm the boundary reservation before any computation.  Furthermore, with the 



appropriately selected GA operators, the convergence of this GA can also be obtained, 

since the diversity of the population in the early generations can be achieved mainly 

through mutation operations.  

 

d-Crossover and Mutation 

 

Crossover (recombination) is the main GA operator to produce new 

individuals that have some parts of both parents genetic material. Handling the bit-

array representation as a bit string, Specific two-dimensional crossover operators have 

been proposed to overcome this drawback [22,31]. Nevertheless, the scattered 

crossover method is adopted in the present work to maintain complete combination 

between the parents which are initially reproduced in the initial population. 

Physically, it will combine different void domains and not void elements, and so 

reduces any form of bias associated with the bit-array representation. Mutation is 

usually used as a background GA operator to enforce a random walk in the design 

domain so that the probability of searching any given point in this domain will never 

be zero and the diversity in the population will thus be increased. In the present study, 

mutation operation is chosen as adaptive feasible to respect the limit bounds of the 

density vector. 

 

Finally, after defining the new representation procedure, a Matlab program is 

developed to define in each iteration a new density vector defining a new 

corresponding geometrical structure. This new structure is the one passed for the 

mechanical behaviour study, based on the finite element method, and the rest of the 

optimization constraints. This program is developed in conjunction of the GA 

(Genetic Algorithm) toolbox and the PDE (Partial Differential Equation) toolbox in 

Matlab. 

 



The optimization problem for the case of topology study is defined as follows:  

 
Objective function 

Since the geometry of the structure is expressed in terms of the density 

distribution or mesh triangulation, the weight will be expressed in terms of the latter. 
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where n  is the number of triangles,
i

 and 
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A  are the densities  and  areas of the 

corresponding triangles. In this way the complicated geometrical form or its arbitrary 

distribution is simply expressed by this simple formula, since the presence or absence 

of each triangle in the weight calculation is guaranteed by its corresponding density 

value in the density vector. 
 

Floating constraint 

A relation between the hollow volume (area) and the submerged volume can 

be directly expressed, in terms of the densities of the meshing triangles, as the floating 

constraint. (
T

S designates the submerged area of breakwater) 
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Stability constraint 

In such problems where the geometry is taking different shapes and varying its 

topology in each iteration, it will be impossible to calculate the centre of gravity in the 

traditional or analytical methods. Benefiting from various numerical tools, the centre 

of gravity and area of each triangle are calculated in the whole mesh triangulation 

domain including both filled and void triangles. Then, we multiply their product by 

the density vector excluding in this manner all the void triangles from the real 

calculation of the centre of gravity.     
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where 
ix  and 

i
y  are the coordinates of the centre of gravity of each triangle. Then, the 

relevant horizontal stability constraint )2/( Dx
g
  is written as follows: 
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Application and results 

 

The problem is reduced to the optimal design of the inward domain of the floating 

breakwater, since the height is indicated only from the pressure constraint and then it 

is eliminated from the optimization problem, also the width must be fixed due to 

topological problems, D=8m deduced from the previous results. 

 

 



The main properties of the GA are as follows: 

     Individual length =480,      
4801 ..,,.........    

Population type: Bit String 

Crossover fraction:  0.5 

Mutation: Adaptive feasible 

Crossover: Scattered  

 
Fig. 8      Fitness function versus number of generations 

 

By this formulation we can reproduce half of the individuals by mutation and 

half by scattering in each population. This constitutes a reasonable setup in the GA 

since scattering or mutation alone is ineffective at all; and by specifying the 

population type to Bit String, each density element will conserve its binary 

representation during mutation. Once again, in optimization problems the initial 

population plays an important role in drawing a general view for the final solution and 

speeding its convergence (Fig.8). In our method, we can control the initial population 

or solution; that is we define the latter through an algorithm that generates density 

vectors representing an extracted or void group of triangles that can be accumulated in 

a void domain. By this way, we avoid falling in trivial solutions when the initial 

population is representing only arbitrary void triangles. Finally, we obtain the 

following solution or mass representation for our floating breakwater regarding its 

conserved external dimensions (rectangle 8*6).             

 

Fig. 9    Mechanical stresses x (upper) and y (lower) 

We can notice (Fig. 8) the respected limits of the mechanical stresses due to 

the imposed structural constraints. Finally, it is important to note that the obtained 



results, with such complicated section and with sharp edges, is certainly not so good 

than a smooth section. But, the importance of this method of density distribution lies 

in two important actualities. The first being a step on the road in topology 

optimization of marine structures and more particularly opens a gap for its 

applications to complicated external shapes used in this domain; where it will be very 

helpful in drawing an initial structural design which will be latterly followed by a 

shape optimization to smooth such sharp edges. The second fact is that any success of 

this method on practical applications will open up a new methodology to be benefited 

from it in inclusion of different materials inside the structure. For example, new 

applications can be implemented for floating breakwaters made up from concrete and 

polystyrene by detecting the distribution of these layers inside it based on the density 

distribution methodology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4.2.3 Optimization with variable points 

 

This method constitutes a new idea mainly relating topology and shape 

optimization under a single algorithm by using a variable number of points which 

create an arbitrary initial valid domain; where the coordinates of these points 

represent the variables for the optimization problem. The novelty of this work appears 

in two subjects: the first in combining the shape and topology optimization in one 

algorithm and the other by widening the usage of points in the optimization domain; 

where previous methods (Zienkiewicz and Campbell 1973, Cappello and Mancuso 

2002) select key points from existing geometries or some nodal points deduced from 

the meshing procedure of this existing geometry to constitute the design variables of 

the optimization. 

 

Usually, the changeable geometry is represented by the nodal coordinates of 

the discrete finite element model or by choosing a set of key points or master nodes to 

define the geometry entities. This method allow us to go thoroughly in shape and 

topology optimization; where the topology is detected by an initial number of points, 

and then their increase will assure the shape optimization or in other words smooth 

the rough boundaries and minimize the objective function until no improvements are 

achieved. Then, these points are not selected from the meshed domain, but they 

themselves create this new domain. In optimization it is very important to initialize 

with a significant initial solution since it plays an important role in drawing a general 

view for the final solution and yielding to speed its convergence toward the optimal 

solution; therefore the n points must create an initial valid domain and not just a set of 

arbitrary points in a domain.  

 

 
Figure 10   Initialization of a valid domain 

 

There are two different ways to treat this problem: the first one is based on 

initialization of the geometric domain for every new number of points n, where the 

other is based on benefiting from the previous results and proceeding ahead by 

introducing new points to the obtained shape for the new value of n. For the first one, 

in order to guarantee the existence of analyzable structures in the initial solution, and 

especially when considering high values of n, a mathematical trick is implemented. It 

is based on selecting the n points on a fictitious circle (Fig.10), where each point 

holds a value between [0,2]. )2,0( fl  ,  where f represents a function giving 

spaced points in this interval consequently,   
11   iii lll  , then 
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ni ...........,.........1  

Moreover, these points are connected by straight lines in an ordered manner: 

 11.....................21  nni  

 

After, assembling the polygon of n sides, the problem is treated in a similar 

manner to other optimization problems; but in this method the shape is not predefined 

like the first method. Therefore, by introducing a polygonal shape there is a wide 

range of shape variation due to the location of the moving points.  Finally, the 

geometry of the structure is varying for a determined number of points during the 

iterations of the optimization problem, and it is also varying in correspondence with 

the number of points. In such problems it is very useful to build a numerical work 

benefiting from the meshing process in order to perform the mathematical 

computations, so we commence by meshing the geometrical valid domain and then 

calculate the centre of gravity and the area of each triangle in this meshing process. 

(Fig. 13). It is important to note that the mesh used in the numerical calculations id 

totally different from another refined mesh applied for the stresses calculation. 

  
                           Figure 13   Calculation of geometrical properties 

 

Then, the objective function and the constraints are defined in terms of the meshing 

triangles: 

 

Objective function 

 

The objective function can be directly expressed in terms of the numerical method as 

follows: 
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A corresponds to the area of each triangle in the meshed domain; and the index 

it corresponds to the number of the triangle, where it varies from 1 till the total 

number of triangles nt . 

 

Floating constraint 

 

The occupied volume of the breakwater can be simply expressed in terms of the areas 

of the meshing triangles (transform the volume notations into surface notations per 

1m length).  
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Stability constraint 

 

Similarly to the objective function, the coordinates of the centre of gravity are 

expressed in terms of the centres of gravity of the meshing triangles: 
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it

x  and 
it

y  are the coordinates of the centre of gravity of each triangle. Then, 

the relevant horizontal stability constraint )2/( Dx
g
  is written as follows: 
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Application and results 

 

The objective function will vary directly with any change in the number of points. 

Considering different values for the variable n, it is very logical to terminate with 

such results (Fig.11); that is the increase in the number of points representing the 

geometrical domain will yield to a decrease in the objective function until a certain 

limiting value where no improvement can be achieved after it. Moreover, introducing 

additional points to the obtained results from a previous n (benefit from the results of 

each n), have ameliorated the values of the objective function in comparison to those 

obtained by re-initializing the problem for each n (Fig.11). 

 

 
Figure 11   Variation of objective function versus 

 



 
Figure 12   Optimization with variable number of points 

 

Considering the optimization results based on the profit of the value of 

previous design variables (Fig.12), it is obvious to start with the 4 or 5 points solution 

and then to go forward until no shape improvement is noticed or obtained. In 

consequence, when moving from 5 points to 7,11,15,20 (Fig.12) there is a visible 

amelioration in the shape and the weight, where the locations of these points are also 

plotted on the same figures in order to understand the behaviour or the movement of 

these variables during the optimization process. But, this optimization method does 

not comprise an infinite number of solutions for the shape improvement; it is a 

deterministic optimization where after a certain number of points no shape 

improvement can be achieved and hence we can say that an optimal solution is found. 



Finally, it is good to expose the optimal shape )20( n  and its relevant mechanical 

stresses distribution on each point inside the studied domain (Fig.13). 

 

 
Figure 13   Mechanical stresses 

x
 (left) and 

y
 (right) 

 

In order to compare these various methods, an additional application will be 

considered to the same structure considered here. It lies in applying the shape 

optimization using a predefined geometrical form. It constitutes a direct approach in 

optimization where it can be applied only if the type of the problem permits to create 

a prospective image for the final shape. Hence the problem is initialized by a specific 

geometrical form (rectangle, square, circle,….) and finally the optimal  form will 

reserve the same shape but with different dimensions and location inside the outward 

boundary of the floating breakwater; where the variables are reduced to 

4321 ,,, xxxx (Fig.5).  The height of the breakwater is divided into two parts (with 

respect to the calm water level): a lower part, L, deduced from the dynamic pressure 

constraint, and an upper part, h, equals to the height of a strong wave (H=2m). 

Because, the optimization problem is dealing with a predefined geometry, then all 

physical and mechanical constraints can be directly expressed in terms of the 

geometrical dimensions of the breakwater in form of mathematical equations and then 

they are assembled in a sophisticated program leading to the optimization algorithm.  

 

 
Fig.5    Predefined shape inside the floating breakwater 

 

The numerical application yields to the following results:       
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Replacing the variables by their corresponding values, it is capable to draw the 

optimized shape and its mechanical stresses distribution. 

 

 
Fig.6   Mechanical stresses 

x
 (upper) and 

y
 (lower) 

 

Discussions and conclusions 

 

As a conclusion, the second method proved its robustness in combining the two 

previous methods and probably it will prove high capability of solving problems of 

irregular shapes. Moreover, another type of comparison between these methods is 

introduced and based on the numerical values of the objective function and the cost 

calculation of these methods (Table 1).  

 

  Table  1 Method 1 Method 2 Method 3 

fob/m 12.1 m2 7.76 m2 11.278 m2 

f-count 11800 819 173 

 

Surely, the second method will produce the best objective function since the n points 

can freely move in the domain without any restrictions. The third method produce a 

larger objective function when compared with the previous due to its predefined 

geometry that cannot be altered but only vary in dimensions. On the other side, 

method 1 as we have commented on it earlier cannot be compared to values of shape 

optimization rather than it is very effective in problems with irregular geometries and 

domain helping to draw an initial image on the mass distribution in this structure to be 

passed later to a shape optimization problem to ameliorate its shape and weight. But, 

what is interesting in this method is the new type of control and representation in 

topology problems summarized by the triangular mesh. Moreover, topology 

optimization is a much more flexible design tool than classical structural shape 

optimization, where in the latter only a selected part of the boundary is varied without 

any chance to generate a lightness hole, for example. Also, in topology all the domain 

is under optimization, and hence a wide range of solutions can be expected.  

 

 Moreover, it is very logical to obtain higher mechanical stresses in the second 

method (Fig.16) when compared to those compared in the third one (Fig.7) and this is 



due to difference in the obtained volume for the two cases; where surely the structure 

with less material volume will hold up higher mechanical stresses. But in the first one 

(Fig.12), high mechanical stresses are caused by the rough surfaces related to the 

applied method in triangular elements extraction. Finally, the second method seems to 

have an accepted computational cost (Tab.1) in comparison with the others and also 

due to the optimal shapes and results derived from it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4.3- Optimization including dynamical behaviour 

 

The performance of a floating breakwater is primarily characterized by the 

transmission coefficient, which is the ratio of transmitted to incident wave height. 

Other aspects of a floating breakwater's design include a consideration of the 

breakwater motions and the possibilities of structural failure of the breakwater and its 

restraint or mooring system. Possible difficulties that a satisfactory design should 

overcome include a breakwater's inability to provide adequate wave protection, 

excessive breakwater motions, and damage or failure. The dimensions and the mass of 

the rectangular structure however are important parameters that are used to optimize 

the floating breakwater performance. The influences of the following structural 

dimensions are investigated during the numerical calculations: 

 

- Structural width  

- Draft of the floating section  

- Mass of the structure (m) 

- Mooring system 

 

 
Figure 4.10  Factors and relations in the wave transmission calculation process 

 

The influence of the structural variables on the hydrodynamic behaviour as 

well as the attenuating capacity has been discussed in the parametrical analysis 

section (section 3.3). The relations of the parameters and requirements and their 

influence on the wave transmission is presented in Fig 4.10. In addition, the motions 



of the breakwater itself generate waves that propagate outward, contributing to the 

transmitted wave height. Under certain wave conditions, the breakwater may undergo 

resonance and become less effective at attenuating waves. Moreover, the resonance 

phenomenon plays an important role in such problems, where a structure oscillating in 

presence of an incoming wave that has its own periodic frequency may enter the 

resonance bands, and destructive results appear. Finally, it must be clear that we are 

facing two sources of resonance, one being represented by any coincidence between 

the oscillating frequency of the structure and that of the wave; where the other kind is 

the wave itself inside the port region. In presence of the sidewall, that really describes 

a real port problem, it seems to create a bounded domain from the port side or simply 

an enclosed area. Thus, any wave may be forced to resonance in port side due to 

specific value of the clearance distance between the sidewall and the breakwater. This 

implies that knowledge not only of expected design wave conditions is required but 

also an understanding of the response of the floating body under that sea state. 

 

In order to take into account wave interaction with floating breakwaters we 

formulate a multidisciplinary problem, where a combination of fluid mechanics, 

dynamic behaviour of mechanical systems, the vibration theory, and the structural 

mechanics (mechanical resistance) are introduced to perform a complete analysis 

capable to develop a representative design of the structure. The interference of these 

phenomena together with resonance bands occurring in the port side due to the 

reflective sidewall, and the influence of the structural parameters on the performance 

of breakwaters causing mass variation and hence affecting the natural frequencies; 

demonstrate the complexity of a floating breakwater design, and yields to orient the 

problem towards an optimization approach that can consider all the relevant 

consequences together. 

 

First, the hydrodynamic behaviour of the floating breakwater is solved. It 

constitutes from a numerical modelling of the diffraction – radiation problem 

combined with an analytical modelling for the dynamical behaviour of the vibrating 

breakwater. This composes a comprehensive study of the sea waves-breakwater 

interaction, and is capable to implicate the wave height in the fluid domain and 

especially inside the port region. Second, the optimization problem is introduced by 

an objective function and its relevant imposed constraints. These latter are enumerated 

by the floating condition, stability, minimum wave height in the port, and the 

mechanical resistance. The last constraint demands a finite element formulation to 

compute the mechanical constraints; while, the wave height constraint is derived from 

the hydrodynamic problem in the first part. All these constraints are expressed in 

terms of the geometrical parameters of the design shape, in order to be introduced into 

the optimization problem. Therefore, we have to solve three main models for each 

iteration of the optimization procedure: 

 

1-Fluid Mechanics  2-Dynamic Motion  3- Mechanical Resistance 

 

Due to the complexity of such optimization problem, it is sufficient to consider the 

predefined shape geometrical shape. (The breakwater height above the calm water 

level )(h is taken to be a constant value equal to 2m). 

 



 
Fig.3    Defining the geometrical parameters of the floating breakwater 

 

Objective function 

 

It is expressed in terms of the geometrical dimensions as:  

 )()(),,,,,( 542312654321 xxhxxxhxxxxxxxf mob        (34) 

 

Floating constraint 

 

In fact, for a moored structure the floating condition can be expressed in an inequality 

in order to minimize the weight, where the difference between the buoyancy force and 

the weight can be equilibrated by the tension in the mooring lines. 
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It can be expressed in terms of the geometrical dimensions as follows: 
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Stability constraint 

 

The initial horizontal equilibrium and the stability of the floating breakwater depend 

on the calculation of the centre of gravity. This is performed by dividing the 

breakwater into 4 rectangles and calculating the new position of the centre of gravity 

G
x (Fig. 4) in terms of the variables and then aligning it with the centre of buoyancy 

for the floating breakwater which lies at the geometric centre of volume of the 

displaced water )2/(
1

x . 

 
Fig.4 Centre of Gravity and centre of buoyancy 
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The horizontal equilibrium constraint is defined by  
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Minimum wave height in the port side 

 

The floating breakwater will loose its efficiency when the wave conditions 

transmitted to the harbour area reach a maximum. This transmitted energy to the 

leeward side is mainly deduced from the underflow (wave energy not influenced by 

the floating breakwater presence) and the radiated waves created by the oscillating 

structure. Moreover, handling containers in a harbour is not possible when ship 

motions get too large. Also, in a floating harbour, motions will cause even more 

problems, since both ship and floating harbour will react on the waves. To guarantee 

optimal harbour efficiency, the mutual motions of vessel and harbour may not exceed 

a certain maximum. 

 

This is the heaviest constraint in the optimization process, where the structural 

parameters and mainly the draft and width must vary in order to attenuate most of the 

incoming wave energy. Also these parameters must deviate the structure from 

resonance bands deduced from the clearance distance (distance between the 

breakwater and the reflective sidewall in the port) or from any coincidence between 

the structure natural frequency and the wave frequency. Hence, this demands a 

complete resolution of the hydrodynamic problem of the floating breakwater. The 

maximum wave allowable height in the port side is limited to 20cm and can be 

expressed as: 
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Structural constraints 

 

This constraint reserves its form also in this formulation:  
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Application and results 

 

The essential characteristics of the waves, anchoring system, and port characteristics 

are defined by the following: 
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The optimisation procedure above was applied for a floating breakwater 

constructed from concrete. The most important is the consistency between the 



hydrodynamic performance and the structural resistance of the breakwater. Thus, a 

floating breakwater meeting the structural requirements will have the best attenuating 

performance. For strong waves (H=2m), it is difficult to design an optimal shape 

capable of totally attenuating the waves (allowable wave height=0.2) and respecting 

the resistance criteria at the same time. This reverts to the large width preferred by the 

hydrodynamic constraint and the inability of achieving resistive structure with such 

width especially when considering the floating constraint. This latter constraint plays 

an important role in resistance failure due to the small thickness given to the 

horizontal beams of the structure. Hence, we have two possibilities to surpass such a 

problem: 

 

1- Designing a dual pontoon floating breakwater  

2- Changing the material type 

 

The first solution seems to be an interesting idea in the case of very strong waves. A 

dual pontoon floating breakwater consisting of a pair of floating cylinders of 

rectangular sections connected by a rigid deck or totally separated, attenuates the 

waves on two stages (Fig.6). Thus, the concrete choice is still valid, and the 

optimisation problem is reintroduced again but with a small variation in Eq. 37 which 

becomes: (maximum allowable wave elevation is 0.5 instead of 0.2) 

05.0),(),,,,,( 6543213  txxxxxxxC   
 

This yield to determine an optimal design of a concrete floating breakwater that is 

widespread utilised in moderate wave conditions and then introduces a second similar 

one to constitute the dual pontoon. The first one can totally protect the ports from 

normal waves or simply it can attenuate half of the strong waves. Thus, the remaining 

energy in such strong waves is totally arrested by the second stage of the dual floating 

breakwater.   

 
Fig 6  Dual pontoon floating breakwater 

 

The numerical application for concrete and with a relatively high allowable wave 

height at the leeward side yields to the following results:   
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Replacing the variables by their corresponding values, it is capable to draw the 

optimized shape and its mechanical stresses distribution (Fig.7). 



 
 

 
Fig. 7   Mechanical Stress Distribution for concrete 
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Another possibility to overcome the failure of the resistance constraint with 

large width is to orient the interest towards a more effective and lighter material than 

the concrete. Then, it will be conceivable to design a single floating breakwater 

surviving with strong waves. This opens up a large choice between various types of 

materials. But, the accumulated experience proved that the employing of composite 

materials permit, with equal performance, a gain of mass varying from 10 % to 50 % 

over the same component in concrete, and with a cost of 10% to 20% less. Moreover, 

they are widely applied in the ocean field, mainly in hull ships superstructure 

construction, due to the demand for lighter materials to improve the floating condition 

and to ensure the mechanical resistance in structures. The following properties are 

given for a composite material fabricated from glass/epoxy: 

    Density 1700 3/ mKg  

    Elasticity Module  3104.12 E MPa  

    Tensile strength  90 MPa  

The numerical application for composite materials that is capable of totally 

attenuating the waves in the port side yields to the following results:  
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Through the optimization process of the two cases, we can clearly observe the 

priority for enlarging the width over the draft due to several advantages. When the 



structural width in increased, the mass will increase too. Although the horizontal wave 

force on the structure will not change (for a determined draft), the increase of the 

mass is the reason why the sway motion amplitude decreases. Also, a wide and heavy 

structure is hard to put into rotation. Moreover, a wide structure is not able to move 

along the relative short period waves. Therefore, the wider the structure, the longer 

the wave period on which the structure will resonate. Finally, the increase in the width 

will enlarge the hydrodynamic damping.  

 

Due to these facts, a wide structure is en effective solution to be applied in the 

case of ports influenced by strong waves. In Fig.8, a simulation of the wave 

propagation, in the same vertical plane of the breakwater, is applied to exhibit the 

performance of such structures. The fluid domain is taken from a 500m in the ocean 

side and 180m in the port side and with a water depth of -40m, where the floating 

breakwater constitutes a relatively small white domain in the upper boundary. The 

diffraction of waves due to wide structure is more effective due to the increasing 

contact surface or the intersection domain of fluid-structure. Then, almost a great part 

of the wave energy is being attenuated by the reflected waves. Also, the sway and roll 

radiations, due to the oscillation or dynamic behavior of the floating breakwater, are 

small due to cited reasons above. The last type of radiation caused by the heave 

motion maybe will be valuable in comparison with the other two, but it is playing a 

positive roll in attenuating totally the sea waves in the port domain (Fig.8). This 

vertical oscillation of the breakwater is producing waves out of phase from the 

diffraction, sway, and roll, thus yielding to a high protection of the port side. 

Therefore, it is easy to observe the small waves in the port side, which are under the 

allowable wave height value (0.2m). This also confirms the main purpose of floating 

breakwater which seeks to minimize the wave height in the port side in the contrary to 

the fixed breakwaters that are capable of completely annulling the waves. 

 
Fig.8   Wave elevation inside and outside (ocean) the port 

 

Concerning the structure resistance, it is clear that the optimization iterations 

for the two types of materials are following the same methodology, which enlarges 

the width over the draft. The two problems yield to a similar design (enlarging width 

over draft with the remaining variables mainly not varying) and for two different 

wave height limitations inside the port (transmission coefficient=0.2 for composite 



and 0.5 for concrete). These results support or demonstrate the robustness of the 

problem methodology producing similar answers to two different problems. For the 

case of concrete, the resistance constraint failed to insure a width bigger than 12m; 

this is the main problem causing the incapability of designing a single concrete 

floating breakwater that can go forward toward a larger width and therefore a higher 

port protection. Where, we can figure out an analogous structure with a larger width 

computed for the composite materials. These materials have a large band to overpass 

the high mechanical constraints reverting from small thickness of the beams. The two 

horizontal beams (upper and lower) for the two materials are mainly subjected to 

bending stresses. The two deflections are opposite in sense and are oriented towards 

the core of the breakwater. The upper deflection is due to the weight of the material, 

while the lower one is resulting from the water pressure acting on the bottom. (Fig.9)  

 

 
Fig. 9   Mechanical Stress Distribution for composite materials 
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We can clearly notice (Fig.7 and 9) the respected limits of the mechanical 

stresses due to the imposed structural constraints. (Traction and compression limits 

for concrete and composite materials). Twin-pontoon breakwaters may be particularly 

advantageous with respect to breakwater motions and lower transmission coefficients 

compared to single-pontoon breakwaters (Fig. 1.3). Moreover, they generally have a 

relatively high stiffness with respect to roll motions. Each unit may be relatively small 

and light compared to other single unit breakwaters and this allows flexibility relating 

to fabrication and installation procedures. This may open up multiple choices for 

future designs of floating breakwaters orienting it towards the twin pontoons. 
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