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Abstract 

 

 

 

 

Simple structure, low cost, large workspace and mature technology, these 

advantages make the serial manipulators are widely used in many industrial fields. With 

the rapid development of industry and various applications of serial manipulators, new 

strict requirements are proposed, such as high stability, high positioning accuracy and 

high speed operation. 

One of the efficient ways to improve the mentioned performances is the design of 

manipulators with dynamic decoupling. Therefore, the goal in this thesis is to find 

simple structure permitting to carry out complete dynamic decoupling of serial 

manipulators taking into account the changing payload. 

The review, given in Chapter 1, summarizes the known solutions and discloses the 

drawbacks of different techniques permitting a simplification of the dynamics of 

manipulators. It allows an identification of objectives that are of interest and should be 

studied within the framework of this thesis. 

Chapter 2 deals with the design of adjustable serial manipulators with linearized 

and decoupled dynamics. Without payload, the developed method accomplishes the 

dynamic decoupling via opposite rotation of links and optimal redistribution of masses. 

The payload which leads to the perturbation of the dynamic decoupling equations is 

compensated by the optimal control technique. 

Chapter 3 deals with a new dynamic decoupling concept, which involves 

connecting to a serial manipulator a two-link group forming a Scott-Russell mechanism 

with the initial links of the manipulator. The opposite motion of links in the Scott-

Russell mechanism combined with optimal redistribution of masses allows the 

cancellation of the coefficients of nonlinear terms in the manipulator’s dynamic 

equations. Then, by using the control, the dynamic decoupling taking into account the 

changing payload is achieved. 

In chapter 4, robustness properties (parametric uncertainties) of four various 

models of serial manipulators (one coupled manipulator, one decoupled manipulator by 

feedback linearization and the two decoupled manipulators that modeled in chapters 2 
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and 3) are considered. The given comparison performed via simulations is achieved 

with the same optimal control law and the same reference trajectory. Simulation results 

allow one to derive robustness assessments of manipulators described in chapters 2 and 

3. 

The suggested design methodology and control techniques are illustrated by 

simulations carried out using ADAMS and MATLAB software, which have confirmed 

the efficiency of the developed approaches. 
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This nomenclature references the principal variables and abbreviations used in this 

manuscript.  

 

A  the state matrix of the system. 

iA  the state matrix of the ith subsystem. 

B  the input matrix of the system. 

iB  the input matrix of the ith subsystem. 

C  the output matrix of the system. 

( , ) C  the vector of Coriolis and centrifugal effects. 

kc  the centroid of link k. 

d  the constant disturbance. 

d̂  
the estimate of the constant disturbance. 

2Sd  the distance between the center of mass 2S of link 2 and joint center B. 

2Sd  the velocity of center of mass 2S of link 2 relative to joint center B. 

2Sd  the acceleration of center of mass 2S of link 2 relative to joint center B. 

iE  the kinematic energy of the ith component of the manipulator. 

cwE  the kinematic energy of the counterweight. 

f  the vector of performance function. 

cG  the controllability transient gramian. 

iG  the vector of feedback factor of the ith subsystem. 

g  the gravitational acceleration. 

( )g  the torque vector due to gravity. 

jig  the feedback factor of the ith output in the jth subsystem. 

iiH  the i-j element of the manipulator inertia matrix. 

I  the unit matrix. 

SiI  the axial moment of inertia of link i. 
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i  an integer. 

J  the index of performance. 

j  an integer. 

DK  positive, diagonal matrices of derivative gains. 

PK  positive, diagonal matrices of proportional gains. 

L  the Lagrangian factor. 

iL  the length of the ith link of the serial manipulator. 

1ASL  the distance between the centre of mass 1S  of link AB and joint center A. 

2BSL  the distance between the centre of mass 2S  of link BP and joint center B. 

2BS rL  the real center of mass and moment of inertia of the object which is 

constituted by link BP, Scott-Russell mechanism and counterweight 

( )M  the inertia matrix. 

km  the mass tensor of link k. 

SRm  the mass of the Scott Russell mechanism. 

cwm  the mass of the counterweight. 

P  the position of the end-effector. 

iP  the initial end-effector position. 

fP  the final end-effector position. 

,i ckr  the position vector from an arbitrary point on the ith joint axis to the 

centroid. 

Ran  the random value matrix. 

T  the total time for the rotation. 

ccT  the controllability matrix. 

piT  the time when the peak value of the ith subsystem response is achieved. 

cW  the upper triangular Toeplitz matrix. 

n  natural frequency. 

u  an input signal. 

V  the Lyapunov function candidate. 

x  the position of the end-effector along the X-axis of the base frame. 

X  an axis. 
y  the position of the end-effector along the Y-axis of the base frame. 

Y  an axis. 

 i
 the inertia torque generated by the acceleration of the ith joint. 

 gi  the torque terms in the dynamic equation of ith link due to gravity. 

 jwithout  the output torque value of the jth actuator when no payload is added on the 
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end-effector of the serial manipulator. 

 jwith  the output torque value of the jth actuator when taking into account the 

payload on the end-effector of the serial manipulator. 

i  the angular position of the ith link. 

i  the angular velocity of the ith link. 

i  the angular acceleration of the ith link. 

d  a constant reference set-point. 

iR  the reference trajectory of the ith actuator. 

iI  the desired initial angle of the ith actuator. 

iF  the desired final angle of the ith actuator. 

  the angular difference between the renference angle and the real angle. 

 1
 i

j
 the angular position of the ith joint when the initial position of the end-

effector with “elbow down” solution. 

 1
 f

j
 the angular position of the ith joint when the final position of the end-

effector with “elbow down” solution. 

 2
 i

j
 the angular position of the ith joint when the initial position of the end-

effector with “elbow up” solution. 

 2
 f

j
 the angular position of the ith joint when the final position of the end-

effector with “elbow up” solution. 


i  the angular distance between the initial and the final position of the ith joint. 

 i  the payload compensation of the dynamic for the ith actuator when taking 

into account the payload. 

  the state vector of the state equation. 

  the state vector of the controllable canonical form of the state equation 

  the element of the state vector of the second subsystem. 

i  the symmetric matrix of the solution of Riccati equation in the ith subsystem 

 i  the element of the symmetric matrix  . 

 i  the performance index of angular error of the ith joint. 

 P  the performance index of position error of the ith joint. 
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Introduction 

 

 

 

 

With the rapid development of industry and various applications of serial 

manipulators, new strict requirements are proposed, such as high stability, high 

positioning accuracy, high speed operation and etc. It is known that the serial 

manipulator dynamics are highly coupled and nonlinear. The complicated dynamics 

results from varying inertia, interactions between the different joints, and nonlinear 

forces such as Coriolis and centrifugal forces. Nonlinear forces cause errors in position 

response at high speed, and have been shown to be significant even at slow speed. Thus, 

the goal of this thesis is to deal with the problem of dynamic decoupling of the serial 

manipulators. 

The critical review given in the first chapter showed that the known mechanical 

solutions for dynamic decoupling. They are the methods of actuator relocation, 

optimum inertia redistribution and addition of auxiliary links respectively. These 

methods can only be reached by a considerably more complicated design of the initial 

structure of the manipulator. One of the solutions is carried out by the connection of 

gears to the oscillating links. The gears added to the oscillating links of the manipulator 

are sources of shocks between teeth that lead to the perturbation of the operation of the 

manipulator, the noise and other negative effects. It is obvious that mechanical solutions 

for adjustment of nonlinear terms of dynamic equations can be reached by unreasonably 

complicated design. In addition, this problem is more complicated and unpredictable 

when it is necessary to take into account a variable payload. Because the variable 

payload introduce variable load which is nonlinear term on the dynamic models of the 

manipulators. Then the positioning accuracy will be influenced. 

Considering the mentioned problems related to the dynamic decoupling of 

manipulators, in the thesis are proposed new solutions combining both mechanical and 

control solutions. 

Chapter 2 deals with the problem of dynamic decoupling of adjustable serial 

manipulators via a new mechatronic design approach, which is based on the opposite 

motion of manipulator links and the optimal command design. It is carried out in two 

steps. At first, the dynamic decoupling of the serial manipulator with adjustable lengths 

of links is accomplished via an opposite rotation of links and optimal redistribution of 
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masses. Such a solution proposed for the first time allows one to carry out the dynamic 

decoupling without connection of gears to the oscillating links. The elimination of gears 

from design concept is a main advantage of the suggested solution. Thus, the proposed 

mechanical solution allows one to transform the original nonlinear system model into a 

fully linear system without using the feedback linearization technique. In addition, to 

ensure linearized and decoupled dynamics of the manipulator for any payload, an 

optimal control technique is applied. It is shown that the dynamic decoupling of the 

manipulator simplifies the control solution ensuring the dynamic decoupling taking into 

account the changing payload. 

Chapter 3 deals with another dynamic decoupling principle, which involves 

connecting to a serial manipulator a two-link group forming a Scott-Russell mechanism 

with the initial links of the manipulator. It also be carried out in two steps. At first, the 

dynamic decoupling of the serial manipulator is accomplished via the Scott-Russell 

mechanism properties and optimal redistribution of masses. Thus, the modification of 

the mass redistribution allows one to transform the original nonlinear system model into 

a fully linear system without using the feedback linearization technique. However, as it 

mentioned above, the changing payload leads to the perturbation of the dynamic 

decoupling of the manipulator. To ensure decoupled dynamics of the manipulator for 

any payload, an optimal control technique has been applied.  

All suggested design methodologies and control techniques are illustrated by 

simulations carried out using ADAMS and MATLAB software. According to the 

modeling process and the simulation results, the advantages of these two dynamic 

decoupling manipulators are: 

- the dynamic equations are simplified and the controller can be treated as the 

superposition of serial SISO controller. 

- the simplification of the controller based on the linearized input/output 

relationships, hence the computational burden caused by the huge amount of 

iterative calculation is vanished. Thus, the real-time performance can be 

improved. 

- the positioning error can be reduced by the eliminations of the Coriolis and 

centrifugal forces. Therefor the robustness of the serial manipulators is improved. 

- the changing payload can be taken into account based on the dynamic 

decoupling manipulator with simple linear control law. 
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In chapter 4, the tolerance capabilities of these two dynamic decoupling 

manipulators are investigated through the comparison with a coupled manipulator and 

one other manipulator which is decoupled by feedback linearization. In order to make 

the comparison analysis clearer, two kinds of indices are proposed to quantify the 

positioning accuracy of the manipulator. They are angular error of the actuators and the 

position error of the end-effector. And two kinds of simulations are implemented for 

complete analysis. Through the results, it is obvious that, during the whole process, the 

tracking trajectories of the decoupled manipulators are more precise and less sensitive to 

the variable errors. In the aspect of the final positioning accuracy, according to the 

quantitative analysis, it also shows that the tolerance capabilities of the two 

manipulators that dynamic decoupled by the mechatronic method are higher than the 

ones of the coupled model and the dynamic decoupled model by feedback linearization. 

In a result, the simulation results prove that the manipulators that decoupled by the 

mechatronic methods in this thesis are more robust. 

Finally, in the last part of the discussion, the dynamic of serial manipulator with 

prismatic joints is a discussed. In this discussion, an attempt is made to carry out the 

dynamic decoupling of serial manipulators with prismatic joints by introducing the 

rhomboid pantograph mechanism which has the same properties as the Scott-Russell 

mechanism. As result, the added rhomboid pantograph mechanism allows one to carry 

out a partial decoupling. It ensures only the cancellation of the terms related to gravity. 

 

 

 





Chapter 1: Manipulator design for simplified dynamics 

5 

 

Chapter 1 

Manipulator design for simplified dynamics 

 

1.1. The historical evolution of serial manipulators p.6 

1.2. Dynamics and control of serial manipulators p.10 

1.3. Design of manipulators with linear and decoupled dynamics p.20 

1.4. Summary p.29 

 

  

  

To introduce the first chapter, we give a brief overview of the 

serial manipulators. Simple structure, low cost, large workspace and 

mature technology are principal and essential characteristics these 

advantages make the serial manipulators are widely used in many 

industrial fields.  

With the rapid development of industry and various applications of 

serial manipulators, the increase in high stability and positioning 

accuracy were requested. It is known that the dynamics of the 

manipulator in series are strongly coupled and nonlinear. These non-

linear forces cause high-speed position response errors and in certain 

cases to be significant even at slow speed. Thus, the dynamic 

decoupling of manipulators has been in permanent development in 

recent decades. 

Through this review, which summarizes the known solutions, the 

drawbacks of different techniques permitting a simplification of the 

dynamics of manipulators are disclosed. It allows an identification of 

objectives that are of interest and should be studied within the 

framework of this dissertation. 
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1.1. The historical evolution of serial manipulators 

The first industrial robots were created only one half century ago. George Devol 

applied for the first robotics patents in 1954 (granted in 1961) (George C 1961). The 

first company to produce a robot was Unimation. These robots were also called 

programmable transfer machines since their main use at first was to transfer objects 

from one point to another, less than a dozen feet or so apart. They used hydraulic 

actuators and were programmed in joint coordinates. The robotic production has been 

changed radically in the late 1970s when several big Japanese conglomerates began 

producing industrial robots. Nowadays, the robots play an indispensable role in the 

manufacturing. However, for the thinking and imagination of robot, the time necessary 

to develop these possibilities will be certainly very long.  

 

 1.1.1. From automatic machines to robot manipulators 

“If every instrument would accomplish its own work, obeying or anticipating the 

will of others…if the shuttle could weave, and the pick touch the lyre, without a hand to 

guide them, chief workmen would not need servants” wrote by Aristote. 

Actually, through the human history, the tools that be used by human have been 

continually improved and explored in order to accomplish works more convenient and 

more time-saving. In history, the tool which is considered one of the earliest mechanical 

devices is the clepsydra developed by the Babylonians 1400 BCE (Siciliano and Khatib 

2016).  

In 1495, Leonardo Da Vinci designed a clockwork knight. It is designed to sit up, 

wave its arms and move its head. And this design may constitute the first humanoid 

robot. Speaking of the word ‘robot’, it was first used to denote fictional humanoid in a 

1921 play named Rossum’s Universal Robots by the Czech writer, Karel Capek. This 

show described the extreme desire to create a kind of universal tools that can work hard 

for mankind. Since then, this word is known all over the world. According to the 

International Organization for Standardization (standard ISO 8373:2012), a robot is an 

"actuated mechanism programmable in two or more axes with a degree of autonomy, 

moving within its environment, to perform intended tasks."  

In 1956, George Devol and Joseph Engelberger form the world’s first robotics 

company, Unimation and then the first industrial robot called Unimate came out (Nof 

1999). It was installed on the General Motors automotive assembly line to sequence and 
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stack hot pieces of die-casting metal in 1961. This successful example attracted the 

attention of other manufacturers such as Ford, Fiat and Chrysler. Soon, this first 

commercial industrial robot was widely used and it promoted the research on robot 

around the world. 

After several years, in 1978, the Unimation took out a smaller manipulator arm, 

called PUMA (Programmable Universal Machine for Assembly) which is designed by 

Vic Schienman and financed by GM at MIT. It is specifically designed to handle 

smaller parts in the assembly of instruments and engines. According to different 

requirements, PUMA is represented in three categories: 200, 500 and 700 series 

(Gebizlioğlu 2003). The 500 Series is most commonly used in automated spot welding 

application. The model 560c has 6 degrees of freedom (Bejczy et al. 1985). This is a 

typical serial manipulator. Each link of the manipulator is connected to others by a 

rotation joint and driven by a permanent-magnet DC servomotor. And each motor 

contains an incremental encoder and a potentiometer driven through a 116 to 1 gear 

reduction. To achieve maximum strength with minimum weight, the upper arm and 

forearm are monocoque construction. And with the maximum payload of 4 kg, the max 

velocity that can be reached is 470 mm/sec straight line moves (Corke 1991). 

For years, this type of manipulator is widely used in the automotive industry. Even 

now, PUMAs are probably the most common robot in the university laboratories and 

one of the most common assembly robots (Gupta and Guo 1991) (Elgazzar 1985) 

(Leahy 1989). 

 

1.1.2. Industrial applications of serial manipulators 

Advantages such as simple structure, low cost, large workspace and mature 

technology, make the serial manipulators are widely used in many industrial fields such 

as welding, painting, assembly, pick and place (such as packaging, palletizing and 

SMT), product inspection and testing. 

This kind of manipulators also has some drawbacks such as, for example, 

accumulated position errors or low rigidity of links for machining. With the progress of 

these technologies, these drawbacks will become smaller and smaller. Actually, based 

on the PUMA model, lots of improved serial manipulators are designed to suit the 

requirements of different industrial fields that mentioned above (Cheng et al. 1997) 

(Kircanski and Boric 1992) (Armstrong et al. 1986). 
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- the SCARA (for Selective Compliance Assembly Robot Arm) was first 

introduced in Japan for fast pick-and-place operations (Fig. 1.1.a) (Angeles 

2013). It has 4 degrees of freedom with three rotary (R) joints and a prismatic 

(P) joint. This kind of manipulator is characterized by high speed and accuracy.  

- the IRB 460 (Fig. 1.1.b): this is a 4-axis robot with a reach of 2.4 meters and 

110-kilogram capacity. As the smallest member in the palletizing family of 

ABB, it is considered as the world’s fastest palletizing robot. With a payload 

of 60 kilograms, it can reach up to 2190 cycles per hour. 

- FANUC 430i (Fig. 1.1.c) marked a significant change in arm design. It has 6 

axes, three of them are driven by motors that are optimally located. This 

design can better balance the manipulator’s weight and allows the robot to 

move with a great deal of flexibility. This arm design is similar to the KUKA 

design used on the IR360 and then on the KR series. The main difference is 

the sensible use of a mechanical spring to help axis 2 movements, rather than 

the gas spring used by KUKA. The standard version of this kind of 

manipulator can have a payload of 130 kg and a reach of 2643 mm. The 

VA1400 (Fig. 1.1.d): the first 7-axis robotic welder from YASKAWA. 

Innovative 7-axis design dramatically increases freedom of movement and 

maintains proper welding posture at all times. Located in lower arm, the 

seventh axis acts as elbow, providing tremendous additional flexibility. 

Normally, this kind of manipulator has low payload (from 3 kg to 10 kg). As 

the same, the maximum payload of this welder is 3 kg. 

- LBR IIWA (Fig. 1.1.e): a 7-axis manipulator with sensory capabilities for 

safety, fast teaching and simple operator control (Waurzyniak 2015). Opens up 

new areas of application in the vicinity of humans that were previously off-

limits for robots. For the first time, human and robot can work together on 

highly sensitive tasks in close cooperation. 

- Canadarm 2 (Fig. 1.1.f): well-known as a part of the Mobile Servicing System 

which is the robotic system on board the International Space Station. It is 17.6 

m long when fully extended and has 7 motorized joints. It plays a key role in 

station assembly and maintenance. This arm is capable of handling large 

payloads of up to 116,00 kg and is able to assist with docking the space shuttle. 
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(a) the SCARA from ABB (b) the IRB 460 from ABB 

  

(c) FANUC 430i (d) the VA1400 II from YASKAWA 

 

 

(e) LBR IIWA from KUKA (f) Canadarm 2 

 

Figure 1.1. – Serial manipulators applied in various fields. 
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Nowadays, industrial robots rapidly take their niche in the drilling (Zhu et al. 2013) 

(Olsson et al. 2010), milling (Matsuoka et al. 1999) (Vosniakos and Matsas 2010), 

friction stir welding (Guillo and Dubourg 2016) (Mendes et al. 2016) and other 

operations (Leali et al. 2013) (Guo et al. 2016) (Denkena and Lepper 2015). 

Obviously, serial manipulators are widely used in the industrial domains even in 

the space exploration. Until now, they are still the main products of the four leading 

manufacturers of robotic systems worldwide (ABB, KUKA, FANUC and YASKAWA).  

However, as mentioned above, serial manipulators still have some drawbacks, such 

as accumulated position errors. Accumulated position error is caused by the character of 

serial chain. The best way to solve this problem is to improve the processing and 

assembly accuracy. For some technological operations as friction stir welding the serial 

robots have low rigidity. However, it can be solved by using more rigid links. 

Compared with the others, the highly coupled dynamics which is the inherent character 

of the serial manipulator is considered one of the prominent problems that influence the 

trajectory tracking accuracy. 

 

 

1.2. Dynamics and control of serial manipulators 

An effective way to deal with the problem of high complex coupled dynamics is 

the decoupling. In fact, this concept was first proposed by Morgan in 1964 when he 

tried to introduce the design method of the typical control theory into the MIMO (Multi-

Input and Multi-Output) linear system (Descusse et al. 1988). Morgan searches the 

necessary condition in order that the closed-loop transfer function matrix is a full rank 

diagonal rational matrix. 

As known, the form of the dynamic equation of the serial manipulator can be 

written as: 

 ( ) ( , ) ( )        M C g  (1.1) 

where is a 1n  torque vector applied to the joints of the manipulator; ,  and    are 

1n vectors representing the angular positions, velocities and accelerations, respectively; 

( )M  is n n  inertia matrix; ( , ) C  is 1n vector of Coriolis and centrifugal effects; 

( )g  is the torque vector due to gravity. 
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The first term on the right hand side represents the inertia torque. It can be divided 

into two parts: the main diagonal elements of the matrix and the off-diagonal elements 

of the matrix. The first part is generated by the acceleration of the corresponding joint. 

The second part is the interactive inertia torque caused by the accelerations of the 

other joints. This interactive inertia torque is linearly proportional to acceleration. The 

second term represents the nonlinear velocity torques resulting from Coriolis and 

centrifugal effects. Generally, the dependence of the inertia matrix on the arm 

configuration produces these nonlinear velocity torques. 

For an arbitrary arm configuration, the inertia matrix ( )M is reduced to a diagonal 

matrix if the off-diagonal elements of the matrix ( )M  are all zero. Then it is defined as 

decoupled inertia matrix. Hence, the control system can be treated as a set of SISO 

(Single-Input and Single-Output) subsystems. 

When the second term ( , )  C disappears, the inertia matrix is constant for all 

arbitrary arm configurations (the matrix ( ) M M  is independent of joint 

displacements). In this case, the inertia matrix is referred to as configuration invariant 

inertia matrix. The significance of this form is that the linear control methods which are 

much simpler and easier to implement can be adopted. 

However, the most desirable form for the manipulator dynamics is the one with 

decoupled and configuration-invariant inertia matrix where the effects of gravity are 

compensated by mechanical engineering, that is 

   M  (1.2) 

where M  is n n  diagonal inertia matrix. 

In this case, the system is completely decoupled and linearized. This system can be 

treated as SISO systems with constant parameters. 

As the main inherent character of the serial manipulators, the dynamic coupled 

results from varying inertia, interactions between the different joints and nonlinear 

forces such as Coriolis and centrifugal forces have obvious influence on the positioning 

accuracy. This influence exists both at slow speed and high speed, especially for the 

latter. Hence, many researchers devote to achieve the dynamic decoupling and linear 

situation. When this situation is realized: 

- dynamic equation can be simplified and the controller can be treated as the 

superposition of serial SISO controller; 
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- the controller design can be simplified, hence the real-time operational 

performance of the manipulator can be improved because of the reduction of the 

computational burden;  

- positioning error can be reduced by the eliminations of the Coriolis and 

centrifugal forces. Therefor the robustness of the serial manipulators is improved. 

In the part of control, lots methods proposed out to reduce or even to eliminate 

such dynamic complexity of the serial manipulators. 

 

1.2.1. PD control of serial manipulators 

The control of most industrial manipulators in use today is based on the application 

of conventional servo control techniques such as PD (proportional-derivative) or PID 

(proportional-integral-derivative) control (Rocco 1996) (Santibanez and Kelly 1998) 

(Senthil Kumar and Karthigai Amutha 2014) (Su et al. 2007) (Craig 2005) (Kiam 

Heong Ang et al. 2005) (Ouyang et al. 2015). In this kind of method, the tracking errors 

which describe the difference between the desired and real trajectories are multiplied by 

gains, and then contribute as part of input torque to reduce the difference. This 

traditional control method is widely used because of its simple structure, easy 

implementation and robust operation.  

It has been shown that a simple PD control applied at each joint is adequate in most 

position control applications such as spot-welding or palletizing. An independent joint 

PD controller has been shown to be asymptotic stable for rigid manipulators (Asada and 

Slotine 1986b). Consider an equation, without the effects of friction, where the gravity 

is compensated by the control law: 

 ( ) ( , ) ( )         M C g u  (1.3) 

where  

 ( )    P d Du K K  (1.4) 

be an independent joint PD control, where d
represents a constant reference set-point; 

PK and 
DK  are positive, diagonal matrices of proportional and derivative gains, 

respectively. Consider the Lyapunov function candidate 
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1 1

( ) ( ) ( ) 0
2 2
          T T

d P dV M K  (1.5) 

Then a simple calculation using the skew symmetry property shows that: 

 0   T

DV K  (1.6) 

The function V is not negative definite. In this case, the LaSalle’s theorem (Lasalle 

1961), known today as LaSalle’s invariance principle, may be used to prove the 

asymptotic stability. 

 0 0 ( ) ( , ) ( ) 0                     P d D dM C K K  (1.7) 

However, as shown here, the gravity parameters must be known exactly. The other 

limitation is simply due to the inherent “mismatch” between the nonlinear dynamics 

character of the manipulators and the linear regulating behavior of the PID or PD 

controller (Ouyang et al. 2006). Hence, this control method is not satisfactory for 

applications which require high tracking accuracy and high speed performance. 

 

1.2.2. Inverse dynamics control of serial manipulators 

In inverse dynamics control method, the system outputs are assumed as anticipative 

values. Then the corresponding inputs are calculated through the reversed state function. 

So, the inputs are functions of time and state variables. This is an inverse system of the 

original system. Finally, the two systems combine together compose an artificial linear 

system. Based on time-scale separation principle, the system can be separated into an 

inner control loop subsystem and an outer control loop subsystem by time-scale 

(Atashzar et al. 2010). If the inner control loop has already realized decoupling and 

obtained control performance well, the outer control loop can be simplified with 

classical control method. So the crux of inverse dynamics control is the design of the 

inner loop (Fig. 1.2). 

Consider the dynamic model of a manipulator that described by equation (1.1), 

then the nonlinear feedback control law is given as (Levine 1996): 

 ( ) ( , ) ( )       M a C g  (1.8) 

where 
na  is, as yet, undetermined. Since the inertia matrix ( )M is invertible for 

all  , the closed-loop system reduces to the decoupled double integrator. 



Chapter 1: Manipulator design for simplified dynamics 

14 

 

Figure 1.2. – The control scheme of inverse dynamics control. 

   a  (1.9) 

Given a joint space trajectory, ( )d t , an obvious choice for the outer loop term a  

is as a PD plus feedforward acceleration control 

 ( ) ( )         d P d D da K K  (1.10) 

Substituting equation (1.10) into equation (1.9) and defining 

     d  (1.11) 

the linear and decoupled closed-loop system is obtained as 

 0  D PK K    (1.12) 

In the robotics context, feedback linearization is also known as inverse dynamics. 

Although this method is possible in theory, it is difficult to achieve in practice, mainly 

because the coordinate transformation is a function of the system parameters and, hence, 

sensitive to uncertainty. 

 

1.2.3. Control of the double integrator 

The second-order linear and time-invariant dynamical system, called double 

integrator, is one of the most fundamental systems in control applications. It can be 

considered as single-degree-of-freedom translational and rotational motion. So, 

researchers are interested in double integrator since the early days of control theory 

when it was used extensively to illustrate minimum-time and minimum-fuel controllers 

Linearized and decoupled system 

Trajectory 

planner 

Ourter loop 

controller 
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Nonlinear 

manipulator 
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(Hocking 1991) (Yang and Slotine 1994) (Chen and Desrochers 1989). The equations of 

the double integrator are given by (Rao and Bernstein 2001). 

 
 



x Ax Bu

y Cx
 (1.13) 

where 

 
0 1 0

, , , 0 1
0 0 1





     
        

    
x A B C . 

Since the double integrator is unstable but completely controllable and observable, 

closed-loop control strategies can be used to drive the state to the origin in the finite 

time, some researches are carried out based on this kind of model (Bhat et al. 1998). In 

the other aspect, a simple linear double integrator relationship between the output and 

input is better for a tracking controller (Slotine et al. 1991). 

In this thesis, the design of the controller is based on the state and the control law 

given by  u Gx . 

The function of the gain matrix  1 2 G g g  is to stabilize the system by moving 

the closed-loop poles in the left-half complex plane. We seek  u  that minimizes the cost  

 
2 2 2

0 0

      

 

          
T

CJ Ly u dt x Q x u dt  (1.14) 

The matrix  L  is based on the controllability transient gramian defined by 

 
0

(0, )     
 

P
T

T

At T A t

C PG T e BB e dt  (1.15) 

For the matrix
1

 (0, ) ,


   
 

T

P C PL  T CG T C   the matrix
   T

CQ C LC is symmetric and 

semi-definite positive. The parameter pT assume that poles of closed-loop system may 

be placed, in the S plane, at the left or near of the vertical straight with the abscissa

1
 .

PT
 The output equation  u Gx  of the controller is unique, optimal, full state 

feedback control law with  T

CG B  that minimizes the cost J. 
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The matrixC  is the unique, symmetric, positive definite solution to the algebraic 

Riccati equation 0     T T

C C C C CA A BB Q . 

For the double integrator, the matrix G gives: 1 22

3 2 3
  
 
   
  P P

G g g
T T

. 

Then the closed-loop characteristic polynomial is: 
2

2

2 3 3
( )   C

P P

P s s s
T T

. 

If 
2 22  C n nP (s) s ω s ω , we have: 

3
  n

PT
and

2

2
  . 

The closed-loop control law, presented by Fig. 1.3, can be written as 

 1 2[ ] [ ]        R R Ru g g  (1.16) 

 
Figure 1.3. – The closed-loop control law of double integrator system. 

In the case of some characterization of the model uncertainties, we propose a 

robust controller based from estimate state and implicit integral action (Arakelian et al. 

2016b). 

The zero-steady-state error optimal control law is given by ˆˆ( )   u t Gx d . 

The gain matrix G  is given by same manner as previously because feedback and 

observer can be design separately without destroying stability properties for each other. 
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The estimate of the state-vector x  is x̂  and d̂  is an estimate of the constant disturbance 

d  placed in the state equation of the double integrator. 

For obtain the observer, we model the constant disturbance as 0d . 

The steady-state optimal observer which allows estimating  and x d  is 

  1

2

垐x xx̂

垐ˆ       0 1 0 0 ˆ    ( )      1 0  
0 0 1 1垐ˆ       

 

 

 
            
                
                   

 
C

B BA

k
u t d y

k
 (1.17) 

  3

x̂

ˆ  
ˆ( )  1 0  

ˆ  





 
  
   
    
 

C

d t k y  (1.18) 

The state-equations of the observer are: 

 

1 1

2 2

3 3

垐    1 0 0

垐  0 1   1    

ˆ0 0 0ˆ

 

 

   
        

           
        
             

   
EE

E
E

BA K
xx
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k u k y

k kdd

 (1.19) 

where,   1 0 0 

E

E

C

y x . 

The function of the gain matrix  1 2 3
T

K k k k is to stabilize asymptotically the 

observer. The duality between the optimal regulator and the optimal observer (Kalman 

filter) enables us to transfer from the regulator to the observer all important results. The 

Riccati equation can be rephrased as
  0     T T

E O O E O E E O OA A C C Q . 
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The matrix  
1

(0, )



 

O R O RQ  T G T   is based on the observability transient gramian 

defined by 
 

 

0

(0, )     
 

R
T

E E

T

A t A tT

O R E EG T e C C e dt . The parameter  RT  assume that poles of 

the observer may be placed, in the s plane, at the left or near of the vertical straight with 

the abscissa
1

 .
RT

The solution of the Riccati equation is given by: 

 

 

 31 2
1 2 32 3

 
      

 

T

T

O E

R R R

cc c
K C k k k

T T T
 (1.20) 

For 
2

1 22 9 c c  and 
3 12 5c , the values are: 

1 2 37.198; 21.408; 26.83  c c c . 

Then the characteristic polynomial is: 2

2

3.0735 4.1248 8.7303
( )

  
     
  

O

R R R

P s s s s
T T T

. 

If   2 2

1 0 02   OP (s) s ω s ω s ω , we have 0

2.9547
 

RT
and 0.698  . 

The Fig. 1.4 shows the closed-loop control system which accumulates information 

about the double integrator during operation and allows a zero steady-state tracking 

error in spite of constant disturbance  d  defined by 0d . 

 

Figure 1.4. – The closed-loop control system of the double integrator with optimal 

observer block. 

The closed-loop control law can be written as 
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 1 2
ˆ垐           

    R R Ru g g d  (1.21) 

 

1.2.4. The other control methods 

Adaptive control in where the coupled term is treated as measurable disturbance, 

then a self-tuning feed-forward control method is used to response to the changes in the 

dynamics of the manipulator (Kolhe et al. 2013) (Slotine and Li 1987). Thus, the exact 

real-time decoupling can be achieved. This method can deal with the parameter 

uncertainties (Tran et al. 2015) (Tran et al. 2016), however, it requires real-time online 

model identification which causes extensive computational burdens. In addition, since 

the adaptive control generally does not guarantee that the estimated parameters of the 

manipulators converge to their real values, tracking errors will be repeated as the 

manipulators repeat their tasks (Sun and Mills 1999). 

A certain number of control methods are identified as intelligent control, such as 

artificial neural networks (Nawrocka et al. 2016) (Sun et al. 2016), fuzzy logic (Chen 

Ken et al. 1988) (Xu et al. 1991) (Piltan et al. 2011) and expert systems (De Silva and 

MacFarlane 1989). The common character of these control methods is that they usually 

involve learning in some form or another. Like adaptive control method, these 

intelligent controls also can deal well with the non-structural uncertainties. A major 

advantage of using these intelligent controls as compared to conventional adaptive 

system is the lack of necessity to be familiar with the mathematical description of the 

dynamics of the process. However, in common, these methods have no standard system-

theoretic approach to algorithms. 

Besides, there are optimal control (Lin and Brandt 1998) (Bobrow et al. 1985), 

robust control (Kolhe et al. 2013), feedback control, iterative learning control (Kuc et al. 

1991) (Sugie and Ono 1991) and etc. Moreover, the hybrid control which concluding at 

least two or three control methods, such fuzzy PID control (Petrov et al. 2002) (Li et al. 

2001), adaptive fuzzy control (Yoo and Ham 2000) (Jin 1998).  

As known, these control methods really works for improving the performance of 

the serial manipulator. However, if only taking into account the design of controller, its 

algorithm which becomes huger and more complex will be a big computational burden, 

the burden of iterative calculations consumes a lot of memory and also they are 

relatively slow in comparison with nonlinear controllers. The overall high cost of 

practically implementing such controllers made them unattractive to customers’ opinion. 
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1.3. Design of manipulators with linear and decoupled dynamics 

As mentioned above, the dynamics of a manipulator arm depends upon the mass 

properties of individual arm links and the kinematic structure of the arm linkages. 

Hence, usually, the redistribution of mass and modification of the arm structure are used 

to reducing the dynamic complexity of the manipulators. 

Let us consider three main approaches developed for dynamic decoupling of 

manipulators. 

 

1.3.1. Decoupling of dynamic equations via mass redistribution 

The necessary conditions for the decoupled and configuration-invariant inertia of 

the general manipulator are given in (Youcef-Toumi and Asada 1986a). Let us disclose 

the necessary properties of mass distribution to reach this goal. 

Let i  and i , be the joint displacement and torque of the ith joint, respectively, 

then the equation of motion of the manipulator is given by 

 

 
1

2
     

 

  
     

  
 

ij jk

i ii i ij j j k gi

j i j k k i

H H
H H  (1.22) 

where ijH  is the i-j element of the manipulator inertia matrix, and gi  is the torque due 

to gravity. The first term of this equation represents the inertia torque generated by the 

acceleration of the ith joint, while the second term is the interactive inertia torque 

caused by the accelerations of the other joints. The interactive inertia torque is linearly 

proportional to acceleration. The third term represents the nonlinear velocity torques 

resulting from Coriolis and centrifugal effects. In general, the dependence of the inertia 

matrix on the arm configuration produces these nonlinear velocity torques.  

Consider the inertia matrix that reduces to a diagonal matrix for an arbitrary arm 

configuration, then the second term in equation mentioned above vanishes and no 

interactive torques appear. The manipulator inertia matrix in this case is referred to as a 

decoupled inertia matrix. The significance of the decoupled inertia matrix is that the 

control system can be treated as a set of single-input, single-output subsystems 

associated with individual joint motions.  

The equation of motion under these conditions reduces to 
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 ii kk

i ii i j k k gi

k k k

H H
H  (1.23) 

where the second term represents the nonlinear velocity torques resulting from the 

spatial dependency of the diagonal elements of the inertia matrix. Note that the number 

of terms involved in this equation is much smaller than the number of original nonlinear 

velocity torques, because all the off diagonal elements are zero for n ,...,1 . This 

reduces the computational complexity of the nonlinear torques.  

Another significant form of the inertia matrix that reduces the dynamic complexity 

is a configuration-invariant form. The inertia matrix in this case does not vary from an 

arbitrary arm configuration. In other words, the matrix is independent of joint 

displacements, hence the third term in first equation vanishes and the equation of 

motion reduces to 

      i ii i ij j gi

j

H H  (1.24) 

Note that the coefficients iiH  and ijH  are constant for all arm configurations. 

Thus, the equation is linear except the last term, that is, the gravity torque. The inertia 

matrix in this form is referred to as an invariant inertia matrix. The significance of this 

form is that linear control schemes can be adopted, which are much simpler and easier 

to implement.  

When the inertia matrix is both decoupled and configuration invariant, the equation 

of motion reduces to 

    i ii i giH  (1.25) 

The system is completely decoupled and linearized, except the gravity term. Thus, 

we can treat the system as single-input, single-output systems with constant parameters. 

Now let us consider the optimum mass redistribution to ensure a dynamic 

decoupling. 

As shown in Fig. 1.5, the manipulator is assumed to be an open kinematic chain 

consisting of only revolute joints. The joints are numbered 1 through n from the 

proximal joint to the distal joint. The link between joints i and i+1 is called link i. The 
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direction of the axis of joint i is represented by a unit vector ib , and the displacement of 

link i is denoted by i  which is the angle of rotation about the unit vector.  

 
 

Figure 1.5. – An open kinematic chain manipulator with revolute joints.  

The center of mass of link k is shown by point kc  in the figure, the velocity vector 

of the center of mass is denoted by kV  and the angular velocity vector by k . Let km  

and kI  be the mass and the inertia tensor of link k with respect to the O-xyz inertial 

reference frame, then the total kinetic energy stored in the arm links from 1 to n is given 

by 

  
1

1

2
 



 
n

T T

k ck ck k k k

k

T m V V I  (1.26) 

The motion of link k is generated by the preceding joint motions. The angular 

velocity k , for example, is given by 

 
1

 



k

k i i

i

b  (1.27) 

To represent the linear velocity of the center of mass kc , we denote the position 

vector from an arbitrary point on the ith joint axis to the center of mass kc  by vector 

,i ckr . Then, 
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k

ck i i i ck

i

V b r  (1.28) 

Substituting two last equations into equation  
1

1

2
 



 
n

T T

k ck ck k k k

k

T m V V I , we 

obtain 

 
1 1
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n n

ij i j

i j

T H  (1.29) 

where ijH  is the i–j element of the nn  manipulator inertia matrix given by 

  
 

, , , ,

max ,

     
 

n
T T T T T

ij k i j i ck j ck j i ck i j ck i k j

k i j

H m b b r r b r b r b I b  (1.30) 

Note that the inertia matrix is symmetric, hence ij jiH H .  

In order to eliminate the coupling and nonlinear torques, the inertia matrix must be 

diagonalized and made invariant for all the arm configurations. 

Figure 1.6 shows two kinds of structure designs for serial manipulators with 

decoupled and configuration invariant torques. 

 

Figure 1.6. – Two kinds of structure designs for serial manipulators with decoupled and 

configuration invariant torques (Youcef-Toumi and Asada 1987). 

The linearization of the dynamic equations and their decoupling via optimum 

inertia redistribution (Abdel-Rahman and Elbestawi 1991; Arakelian and Dahan 1995; 

(a)                                              (b) 
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Asada and Slotine 1986a; Asada and Youcef-Toumi 1984a; Filaretov and Vukobratović 

1993; Minotti and Pracht 1992; Yang and Tzeng 1985, 1986, Youcef-Toumi and Asada 

1985, 1986), which can be achieved when the inertia tensors are diagonal and 

independent of manipulator configuration. 

 

 
  

Figure 1.7. – Design for a 3 DOF 

manipulator with linear dynamics. 

Figure 1.8. – KUKA robot with mass 

redistribution simplifying its dynamics. 

 

In the research (Yang and Tzeng 1986), a three-link model is considered (Fig. 1.7). 

As shown, the form of the links is modified to achieve the linearization condition. The 

mass centers should be located in the extensions of links AB and BP. Meanwhile, the 

inertia of links is required to be nearly symmetrical in both axial and transverse 

directions. Based on this kind of structure, the complexity of its dynamics is 

significantly reduced. 

Figure 1.8 shows a KUKA robot in which the motor arrangements and the mass 

redistribution are based on the mentioned above design concept simplifying the 

complexity of its dynamics.  

The linearization and dynamic decoupling of 3 DOF manipulators have also been 

considered (Youcef-Toumi and Asada 1987). As shown in Fig. 1.9, axis b1 and b2 are 

perpendicular to each other, that is, these two rotations along axis b1 and b2 are 

decoupled. The axis b2 and b3 are parallel, however, the center mass of link 3 coincide 

with its rotational axis b3, and the total mass center of link 2 and link 3 is right on the 

rotational axis b2. These conditions derive the invariant inertia. In this research, all of 

the arm constructions that yielded the decoupled inertia matrices were determined. The 

approach in this research is applied to serial manipulators in which the axis of joints are 
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not parallel. In the case of parallel axes such an approach allows linearization of the 

dynamic equations but not their dynamic decoupling (Gompertz and Yang 1989). Thus, 

in the case of planar serial manipulators, it cannot be used. 

 

Figure 1.9. – Designs for 3 DOF manipulators with configuration invariant inertia. 

Finally, it should be noted that for serial manipulator arms with an open kinematic 

chain structure, the inertia matrix cannot be decoupled unless the joint axes are 

orthogonal to each other (Fig. 1.6).  

 

1.3.2. Decoupling of dynamic equations via actuator relocation 

A popular configuration for the actuation of robot manipulators with actuated joints 

is to have motors directly attached to the joints. This design does not involve any 

transmission elements between the actuators and the joints. However, in certain cases 

this configuration may not be appropriate and manipulators with remotely-actuated 

joints may be desirable from point of view of the simplified dynamics.  

In this case the dynamic decoupling follows from the kinematic decoupling of 

motion when the rotation of any link is due to only one actuator. It is obvious that it 

must be accompanied by an optimal choose the mass properties of certain links.  

The five-bar-link mechanism shown in Fig. 1.10 (Asada and Youcef-Toumi 1984b) 

is the first structure that achieves the dynamic decoupling. The distance between the two 

motors is zero and fixed on the base. Because of this special motor location, the weight 

of one motor is not a load on the other. Also the reaction torque of one motor does not 
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act directly upon the other. An arm mechanism in which motors are mounted on a 

fixture and the weight and reaction torque of one motor do not affect the other motors 

directly is referred to as a parallel drive mechanism. In this mechanism, the overall 

inertias about the two motor axes are invariant respectively. Furthermore, the interactive 

inertia torques are eliminated by modification of the mass ratio of link 3 and link 4 and 

the ratio of mass center distances of the two links. Thus, the inertia tensor is invariant 

and completely decoupled. 

 

Figure 1.10. - The first structure with dynamic decoupling. 

The review have shown that the design concept with remote actuation is not 

optimal from the point of view of the precise reproduction of the end-effector tasks 

because it accumulates all errors due to the clearances and elasticity of the belt 

transmission mainly used (Fig. 1.11).  

 

Figure 1.11. – A linearization and dynamic decoupling model via actuator relocation 

(Belyanin et al. 1981). 
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Obviously, it is lot better to connect actuators directly with links than to use 

transmission mechanisms. The manufacturing and assembly errors of the added 

transmission mechanisms also have a negative impact to the robot precision. 

 

1.3.3. Decoupling of dynamic equations via addition of auxiliary links 

The linearization of the dynamic equations and their decoupling via redesign of the 

manipulator by adding auxiliary links has also been developed (Arakelian et al. 2011) 

(Arakelian and Sargsyan 2012) (Coelho et al. 2004) (Moradi et al. 2010). The dynamic 

decoupling via redesign of the manipulator by adding auxiliary links is a promising new 

approach in the robotics.  

Figure 1.12 shows a modified 2-DOF serial manipulator with two added gears 

(Coelho et al. 2004). 

 

Figure 1.12. – A 2 DOF manipulator with addition of two gears. 

Ensuring condition 

 2 2' 1' S S SI I I  (1.31) 

the dynamic equations of the manipulator are decoupled: 

  2 2 2

1 1 1 2 2' 1 1' 1 1' 2 2' 1          AS AC S S S Sm l m m l m l I I I I  (1.32) 

  2 2 2' 1' 2   S S SI I I  (1.33) 
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where, 1 2,l l  are the lengths of links 1 and 2; 1ASl  is the distance between the centre of 

mass 1S  of link 1 and joint centre A; ACl  is the distance between the centre of joint A 

and joint centre C; 1 2,m m  are the masses of links 1 and 2; 1SI  is the axial moment of 

inertia of link 1 relative to the centre of mass S1 of link 1; 2SI  is the axial moment of 

inertia of link 2 relative to the centre of mass S2 of link 2; 1'SI  is the axial moment of 

inertia of gear 1’; 2'SI  is the axial moment of inertia of gear 2’; 1  is the angular 

acceleration of link 1 relative to the base; 2  is the angular acceleration of link 2 

relative to link 1. 

However, the design methodology proposed in (Coelho et al. 2004), which claims 

that it is the first time the added links have been used for dynamic decoupling, leads to 

the unavoidable increase of the total mass of the manipulator. This is due to the 

disposition of the added elements in the end of each link.  

In (Arakelian and Sargsyan 2012) a solution has been proposed permitting the 

dynamic decoupling of the serial manipulators with a relatively small increase in the 

total mass of the moving links (Fig. 1.13).  

 

Figure 1.13. – A 3 DOF manipulator with addition of gear group. 

In (Arakelian et al. 2016a), epicyclic gear train has been used to carry out the 

dynamic decoupling of the exoskeleton arm.  
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Nevertheless, it should be noted that such a technique has a major disadvantage: 

the need for the connection of gears to the oscillating links. The gears added to the 

oscillating links of the manipulator are sources of shocks between teeth that will lead to 

the perturbation of the operation of the manipulator, and to noise and other negative 

effects.  

 

 

1.4. Summary 

In this chapter, a brief review of serial manipulators with simplified dynamics has 

been presented. Simple structure, low cost, large workspace and mature technology, 

these advantages make the serial manipulators are widely used in many industrial fields. 

With the rapid development of industry, some new strict requirements are proposed, 

such as high stability, high positioning accuracy, high speed operation and etc. 

One of the ways to improve the mentioned requirements is the design of 

manipulators with dynamic decoupling. As was mentioned above it can be reached by 

control or design solutions. 

The dynamic decoupling via mass redistribution is simple and it found practical 

applications. However, as was mentioned above this solution can be used for dynamic 

decoupling of serial manipulators with orthogonal dispositions of joint axes. In the case 

of serial manipulators with parallel axes actuator relocation or auxiliary mechanisms are 

used. 

However, from the above review can be concluded that all known mechanical 

solutions can only be reached by a considerably more complicated design of the initial 

structure via adding gears to the oscillating links leading to the unavoidable drawbacks. 

The gears added to the oscillating links of the manipulator are sources of shocks 

between teeth that will lead to the perturbation of the operation of the manipulator, and 

to noise and other negative effects. 

Thus, it becomes evident that it is more optimal to carry out the dynamic 

decoupling via adding simple linkages ensuring an opposite motion of links without 

using gears. Therefore, one of the goals is to find simple linkages permitting to carry out 

complete dynamic decoupling of serial manipulators. 
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The review has shown that the influence of the payload on the dynamic coupling 

remains lightly studied. It is obvious that mechanical solutions for adjustment of 

nonlinear terms of dynamic equations due to the changing payload can be reached by 

very complicated design solutions. It is not attractive for practical applications. 

Therefore, it becomes evident that it is necessary to find new more simple solutions 

permitting to take into account the changing payload in the problems of dynamic 

decoupling. 

On the other hand, dynamic decoupling via optimal control of a manipulator with a 

nonlinear system model and a changing payload is also rather complex task. That is why, 

this work will propose new approaches of dynamic decoupling, which are a symbiosis 

of mechanical and control solutions. To reach this purpose, the dynamic decoupling 

may be carried out in two steps. 

In the first step, the dynamic decoupling of serial manipulator will achieved via the 

opposite rotation of links and their optimal redistribution of masses. Such a solution will 

eliminate the need for the connection of gears to the oscillating links. This is the first 

main advantage of the suggested mechatronic approach. Thus, the proposed mechanical 

solution will allow one to transform the original nonlinear system model into a fully 

linear system without using the feedback linearization technique. 

It is obvious that the changing payload leads to the perturbation of the dynamic 

decoupling of the manipulator and it must be eliminated. 

Therefore, in second step, the dynamic decoupling of the equation of motion due to 

the changing payload will be carried out using control techniques. 

Such an approach is promising because it combines the advantages of two different 

principles: mechanical and control. As mentioned above the mechanical solutions, 

which can be used for dynamic decoupling of motion equations taking into account the 

changing payload, can only be reached with any undue complication of the design. 

Divers actuated counterweights should be applied. Such an approach is not viable. 

However, the linearized dynamic of the manipulator via opposite rotation of 

manipulator’s links leads to the relatively simple equations, which are easier to analyze 

for further dynamic decoupling taking into account the changing payload. In other terms, 

the mechanical solution to be developed will lead to the linearized equations of the 

manipulator, which then facilitate the optimal control design for decoupling of dynamic 

equations taking into account the changing payload. This is the second main advantage 

of the mechatronic design to be developed. 
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These mechatronic solutions will certainly improve the known design concepts 

permitting the dynamic decoupling of serial manipulators with a relatively small 

increase in to total mass of the moving links and it takes into account the changing 

payload. 
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In this chapter, a new approach for dynamic decoupling of serial 

planar manipulators, which is a symbiosis of mechanical and control 

solutions is proposed. It is based on the opposite motion of 

manipulator links and the optimal command design. The opposite 

motion of links with optimal redistribution of masses allows the 

cancellation of the coefficients of nonlinear terms in the 

manipulator’s kinetic and potential energy equations.  

Then, based on this completely linearized and decoupled 

manipulator, the simple linear control method is used. Furthermore, 

the changing payload is taken into account as a forward 

compensation in the controller. Finally, in order to stabilize the 

manipulator linearized and decoupled, a full state feedback is set up.  

The suggested design methodology is illustrated by simulations 

carried out using ADAMS and MATLAB software, which have 

confirmed the efficiency of the developed approach. 
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 2.1. Design concept of manipulators with adjustable links  

As mentioned in the previous chapter, the inherent character of coupled dynamics 

is the prominent factor that impacts the operation accuracy and velocity performances of 

the serial manipulators. In this chapter, a mechatronic method is proposed to achieve the 

dynamic decoupling. The advantages of the suggested solution are： 

- a simple linkage is added for achieving the dynamic decoupling of the serial 

planar manipulators. It allows a dynamic decoupling of manipulators without 

connection of gears to the oscillating links of the manipulator having leading to 

imperfections reviewed in chapter 1. 

- the simplification of the controller based on the linearized input/output 

relationships, hence the computational burden caused by the huge amount of 

iterative calculation is vanished. The real-time performance can be improved. 

- the feasibility of the linear control method that used in this kind of manipulator. 

- the changing payload can be taken into account based on the dynamic 

decoupling manipulator. 

Figure 2.1 shows the proposed adjustable serial manipulator for ensuring the 

dynamic decoupling of motion equations.  

 

Figure 2.1. – Design concept of dynamically decoupled planar serial manipulator with 

adjustable links. 
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It is composed of link 1 with elements 1a, 1b and link 2 with elements 2a, 2b. The 

adjustable links of the manipulator allow an optimal selection of the lengths 1  ABL L  

and 2  BPL L of links 1 and 2, which ensures an identical and opposite rotation of links. 

It can also be seen that the proposed manipulator is provided with a double Scott–

Russell mechanism, which ensures the static balancing of link 2 for any position of 

element 2b. 

To disclose the operation of the proposed adjustable manipulators, let's first 

consider the dynamic decoupling of an arbitrary serial manipulator. 

 

2.1.1. Dynamic decoupling modeling of an arbitrary serial manipulator 

So let’s start by the dynamic decoupling of a serial planar manipulator with two 

degrees of freedom shown in Fig. 2.2. 

 

Figure 2.2. – An arbitrary planar serial manipulator. 

According to Lagrangian dynamics, the equations of motion can be written as 

 
2

1 11 12 111 122 112 121 11 1 1 2

2
2 21 22 211 222 212 221 22 2 1 2

  
    

    

              
                 

              

D D D D D D D

D D D D D D D
 (2.1) 

with 

2 2 2

11 1 1 2 1 2 2 2 1 2 2 1 22 cos       AS BS BS S SD m L m L m L m L L I I  (2.2) 
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2

12 21 2 2 2 1 2 2 2cos   BS BS SD D m L m L L I   (2.3) 

2

22 2 2 2 BS SD m L I   (2.4) 

111 0D    (2.5) 

122 2 1 2 2sin  BSD m L L   (2.6) 

211 2 1 2 2sin BSD m L L   (2.7) 

222 0D   (2.8) 

112 121 2 1 2 2sin   BSD D m L L   (2.9) 

212 221 0 D D   (2.10) 

   1 1 1 2 1 1 2 2 1 2cos cos     AS BSD m L m L g m gL  (2.11) 

 2 2 2 1 2cos   BSD m gL   (2.12) 

where 1  and 2  are respectively the actuator torques in A and B; 1 2,L L  are the lengths 

of links AB and BP; 1  is the angular displacement of link AB relative to the base; 2  

is the angular displacement of link BP relative to link AB; 1  is the angular velocity of 

link AB relative to the base; 2  is the angular velocity of link BP relative to link AB; 

1 2,m m  are the masses of links AB and BP; 1  is the angular acceleration of link AB 

relative to the base; 2  is the angular acceleration of link BP relative to link AB; 1 2,m m  

are the masses of links AB and BP; 1ASL  is the distance between the center of mass 1S  

of link AB and joint center A; 2BSL  is the distance between the center of mass 2S  of link 

BP and joint center B; 1SI  is the axial moment of inertia of link AB relative to the center 

of mass 1S  of link AB; 2SI  is the axial moment of inertia of link BP relative to the 

center of mass 2S  of link BP; g is the gravitational acceleration. 

As known, this is a typical dynamic coupled and nonlinear model. In order to 

reduce or even eliminate the influence that cased by the coupling, the dynamic model 

must be improved further. 
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Now, let us consider that the second link is statically balanced, i.e. 2 0BSL  and the 

gravitational forces are perpendicular to the motion plane xOy , i.e. 1 2 0 D D . 

With the conditions above, the equation (2.1) can be rewritten as 

 
1 1

2 2

 
 

 

    
     
    

a b a

a a
 (2.13) 

where, 2; Sa I  
2 2

1 1 1 2 1.  S ASb I m L m L  

Obviously, this is linearized dynamic model but still uncoupled.  

To ensure the dynamic decoupling, it is necessary to ensure the condition 1 2 =  . 

Then the equation (2.13) can be simplified as 

 
1 1

2 0

b 



 



 (2.14) 

Thus, we obtain a completely decoupled and linearized model. 

Next step is the geometric synthesis of the mechanical structure which should 

ensure two identical motions of links in opposite directions for any given initial and 

final positions of the end-effector. 

 

2.1.2. Adjustment lengths of links for ensuring opposite rotations 

According to the inverse kinematics of the planar serial manipulator shown in Fig. 

2.1, the joint angles can be expressed as 

 
 

 
1 2 2 2 21

1

1 2 2 2 2

cos sin
tan

cos sin

 


 


  

  
  

y L L xL

x L L yL
 (2.15) 

 
2 2 2 2

1 1 2
2

1 2

cos
2

     
   

 

x y L L

L L
 (2.16) 

where x and y are the coordinates of the end-effector in Fig.2.2.  
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Figure 2.3. – Two configurations of the serial manipulator corresponding to the initial 

and final end-effector positions.  

The given expressions show that for the same end-effector position there are two 

possible configurations of the manipulator called “elbow down” (configuration noted 

(1)) and “elbow up” (configuration noted (2)). The fact that a manipulator has multiple 

solutions would be used for ensuring the dynamic decoupling. Two configurations of 

the manipulator corresponding to the initial end-effector position i
P  and the final end-

effector position 
f

P  are shown in Fig. 2.3. As it has been mentioned above, the initial 

position of the end-effector can be found by the following solutions:    1 1 2 1
, i i

 “elbow 

down” solution,    1 2 2 2
, i i

 “elbow up” solution (not shown) and the final position of the 

end-effector by    1 1 2 1
, f f

 “elbow down” solution (not shown),    1 2 2 2
, f f

 “elbow up” 

solution. Thus, the links of the manipulator move in such a manner that in the initial 

end-effector position ( )iP , where the configuration of the manipulator will correspond 

to the “elbow down” solution; and, in the final end-effector position ( )fP , where the 

configuration of the manipulator will correspond to the “elbow up” solution.  

This choice of initial and final end-effector configurations of the manipulator with 

an optimal selection of lengths 1
L  and 2

L  allows equal ( 1 2    ) and opposite 

( 1 2   ) rotations of links AB and BP, i.e.        1 2 1 1 2 2 2 1
          f i f i

. These 

conditions lead to 1 2    and consequently to equations (2.14).  
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Now consider the selection of lengths 1
L  and 2

L  of links 1 and 2 for any given 

trajectory. To limit the variables in the specified conditions, suppose that the following 

parameters are given: 

- the initial position i
P  of the end-effector: ,i ix y ; 

- the final position 
f

P  of the end-effector: ,f fx y ; 

- the initial angular position of the second link:  2 1
 i

; 

- the rotating angle of the first link: 1 1(2) 1(1)    f i
. 

The geometrical equations of the manipulator with the mentioned conditions lead 

to the following expressions: 

 

2 2 2 2

1

2 2(2) 2(1)2 (cos cos ) 

  




f f i i

f i

x y x y
L

L
 (2.17) 

 

1 2
2 1 2

2

( 4 )

2

     
  
 

L  (2.18) 

where 

 

2
2 2 2 2

2(2) 2(1)2(cos cos )


 

   
  

  

f f i i

f i

x y x y
 (2.19) 

 
1 2 2 2

212( ) cos    i

i ix y  (2.20) 

 2(2) 1 2(1)( )     f i
 (2.21) 

Thus, for any initial and final positions of the end-effector, the lengths 1
L  and 2

L  

determined from equations (2.17) and (2.18) will ensure an equal ( 1 2    ) and 

opposite ( 1 2   ) rotations of links AB and BP. 

Let us now consider the Scott-Russell mechanism. 
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The Scott-Russell mechanism is usually used as a straight line generator, so it is 

also called exact straight line mechanism (Fig. 2.4). In this mechanism, the point C on 

the connecting rod copies the line traced by the slider B in a perpendicular direction OC, 

if OA=AB=AC. It should be noticed that the straight-line or linear path exhibits great 

potential for high-speed pick and place operations in many manufacturing sectors(Liao 

2011). 

 

Figure 2.4. – Scott-Russell mechanism (Dukkipati 2007). 

As shown in Fig. 2.5, a pair of Scott-Russell mechanism is added. Thus, the 

proposed structure ensures the complete static balancing for any arbitrary configuration 

of the adjustable link BP. 

 

Figure 2.5. – Adjustable link BP with added Scott-Russell mechanisms. 

 

 

2.2. Motion generation and dynamic decoupling of the adjustable 

manipulators 

In previous sections, we studied the kinematics and dynamics of the adjustable 

manipulator. This means that using the obtained equations of motion of the manipulator, 

we can determine the manipulator’s positions.  

B 
P 



2.2. Motion generation and dynamic decoupling of the adjustable manipulators 

41 

The present section relates to the way the adjustable manipulator is moved from 

initial position to the final position, as well as the conditions of dynamic decoupling 

during the generated motions. 

 

2.2.1. Motion generation via fifth-order polynomial trajectory planning 

For motion generation between initial and final positions, a fifth-degree and 

secondary derivative polynomial is used 

 

5

0

( 1,...,5)


  i

i

i

c t i  (2.22) 

Thus,we have 
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2 3

2 3 4 5( ) 2 6 12 20    t c c t c t c t  (2.25) 

The initial and final conditions are given by 
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F
T

T
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, 

where T is the total time for the rotation. I  and F are the initial and final positions in 

the joint space, respectively. 

Substituting these conditions into equations (2.23)-(2.25). Then, we obtain that 
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To ensure the opposite rotation of links, the actuators generate the same motions. 

Hence, for joint A, we get 

 

3 2

1 1 1 1

2 2

1 1 1
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1 1 1 2
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 (2.29) 

for joint B, we get 
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 (2.30) 

 

2.2.2. Dynamic decoupling without payload 

For the dynamic decoupling of the model, the Scott-Russell mechanism should be 

added. In consequence, the second link will be characterized by the link BP with the 

Scott-Russell mechanism and the counterweight. 

The kinematic energies of all parts of the manipulator are: 

 
2 2 2

1 1 1 1 1 1

1 1

2 2
  AS SE m L I  (2.31) 
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 (2.33) 

where, 2 , ,SR cwm m m are the masses of link BP, Scott-Russell mechanism and 

counterweight, respectively; 2BS rL  is referred to as the real distance between joint center 

B and center of mass of the object which is constituted by link BP, Scott-Russell 

mechanism and counterweight; 2S SR cwI    is referred to as the moment of inertia of this 

new combined object. In addition, the friction effect and gravity force are ignored here.  

Thus, according to the Lagrangian equations, the torques of the manipulator 

without payload are: 
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where, 1 without  and 2 without  are torques of the manipulator without any payload. 

Introducing the static equilibrium equations considered above, the dynamic 

equations can be simplified as 
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 (2.36) 

where, 
2 2 2

2 2 2 2
     S SR BS SR BS cw cwa I I m L m L m L  ; 

2 2

1 1 1 2 1 
   AS S SR cwb m L I m L . 

With the condition of opposite rotations ( 2 1   ), the equation (2.36) can be 

simplified as 

 
1 1

2 0

without

without

b 



 



 (2.37) 

 

 

2.3. Closed-loop control 

As known, an open-loop system cannot correct any errors that it could make. And 

it will also not compensate for disturbances during the process. A closed-loop control 

system, also known as a feedback control system is a control system which uses the 

concept of an open-loop system as its forward path but has one or more feedback loops 

between its output and its input. A closed-loop control system is necessary when the 

open-loop system is unstable (double integrator). 

Closed-loop systems are designed to automatically achieve and maintain the 

desired output trajectory by compensating an error signal which is the difference 

between the actual output and the reference input. Meanwhile, it can be used for 

compensating the disturbance during the while process. 

According to the inverse calculation of the equation (2.36), the state equation of the 

MIMO model can be obtained with the state vector 1 1 2 2[ ] T      

 

1 1

12 2

3 23

4
4

0 0

0 1 0 0 1 1

0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 1 1

 
     
     

                      
         

    

without

without

A

B

b b

b a b






 

 

 



 (2.38) 
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Before the further research, the controllable canonical form of the state equation 

should be built by the following transformation: 

  cc cT W   (2.39) 

where, ccT  is the controllability matrix, and it is formed as 

1 1
0 0

1 1
0 0

[ | ]
1 1 1

0 0

1 1 1
0 0

cc

b b

b b
T B AB

b a b

b a b

 
  

 
 
  

   
  

   
 
  

   

 

Wc, is the upper triangular Toeplitz matrix, and it is formed by characteristic 

equation of matrix A: 
4 3 2 4

3 2 1 0|sI-A|=s a s a s a s a s     . So, 

3 2 1

3 2

3

1 1 0 0 0

0 1 0 1 0 0

0 0 1 00 0 1

0 0 0 10 0 0 1

c

a a a

a a
W I

a

   
   
     
   
   

  

 

As known,  

 
withoutA B     (2.40) 

Substituting the equation (2.39) into equation (2.40), we obtain  

      
1 1

cc cc cc withoutT A T T B  
 

   (2.41) 

Hence, the controllable canonical form is given by  

 

1 1

12 2

3 23

4
4

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

      
      

                        
       

without

without

 

 

 



 (2.42) 
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and the sate vector 

 

1 1 2

2 1 1 2

3 1 2

4 1 2

( )

[ ]
( )

cc

a b a

a a
T

a b a

a a

  

  


  

  



     
  

     
      
  

     

 (2.43) 

It is obviously that, the system that described by state equation (2.42) can be 

divided into two independent subsystems: 

 

1 1

1

33

2 2

2

44

0 0 1

1 0 0

0 0 1

1 0 0

       
        
        


      

       
       

without
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 (2.44) 

Hence, when taking into account the feedback control, the closed-loop can be 

added firstly on each simple subsystem, then combine them together for the whole 

system. Obviously, both of these two subsystems are simple double integrator structures. 

Hence, the linear control method can be employed. 

 

2.3.1. Command of the first double integrator 

According to the first double integrator, we can deduce: 

 
1 1

3 1

 




without 

 
 (2.45) 

Assuming that 
3

1






 

 
 

Then the state equation of the double integrator is given by 

 

11

1

0 1 0

0 0 1
without

BA

 


 

       
        

       
 (2.46) 
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Obviously, this is a simple double integrator structure. For the closed-loop control, 

the control law can be written as 

 1 1 11 12  without g g     (2.47) 

Substituting this control law in the equation (2.46), then the state equation of the 

double integrator can be rewritten as 

 1

12 11

0 1 0

1

      
              g g

 


 
 (2.48) 

Assuming that 

 1 1 11 12  g g     (2.49) 

then 

 1

0 1 0

0 0 1

       
        

       

 


 
 (2.50) 

hence, 1   . It can be found that 

 1 11 12  g g     (2.51) 

It is concluded that a balance position of the double integrator is given by the 

conditions about   and its continual derivatives. Hence, if a trajectory R  which is 

secondary derivable over a range [0, T] is given, we can deduce: 

 1 11 12  R R R Rg g     (2.52) 

Finally, the control law of the closed-loop double integrator is  

 1 11 12[ ] [ ]    without R R Rg g       (2.53) 

As known, 1 2( )      a b a , the control law can be rewritten as 

 

1 1 2

11 1 1 2 2

12 1 1 2 2

( )

[( )[ ] [ ]]

[( )[ ] [ ]]

    

      

      

without R R

R R

R R

a b a

g a b a

g a b a

  

   

   

 (2.54) 
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2.3.2. Feedback parameters of the first double integrator 

According to the last section, the double integration state equation of the first 

double integrator is obtained. 

For realize the control law:  1 1

T

without G    , the matrix of state feedback 

parameter 1 12 11[ ]G g g  should be obtained. It is calculated by minimizing the index of 

performance J below: 

   1 1 1 1

0

T

without withoutJ Q R dt


   


   
   

  
  (2.55) 

where 
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1
4 3

1 1

1 1 1 1

0
3 2

1 1

1 0

12 6

0
6 4

p
T

T

p pA AT

p

p p

R

T T
Q T e B B e d

T T

  



 

 
   

     
        

 


 

Assuming that the symmetric matrix Σ1 is the solution of Riccati equation 
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where 
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It is known that, the matrix will be positive if : 
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we obtain 

 

2

2 2 32 2 2

1 1 1

2 3 33

1 1
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4 2 3 4(1 3)
2 0

6 2 1 3
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 (2.57) 

Hence, the expression of matrix Σ1 is obtained 

 

3 2

1 1

1

2

1 1

6 4 3 1 3 2 3

2 3 2 1 3
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T T



  
 
 

  
 

 
 

 (2.58) 

As known, the matrix G1 is noted as 

 
1

1 1 1 1

TG R B   (2.59) 

Then, 

 1 2

1 1

2 3 2 1 3

p p

G
T T

 
  
  

 (2.60) 

As result, we obtain 

12 2

1

2 3


p

g
T

 

and 11

1

2 1 3


p

g
T

. 

The state model of the closed-loop system is written as follows 

  1 1 1

2

1 1

0 1

2 3 2 1 3

p p

A B G

T T

  

  

 
      

         
       
 

 (2.61) 
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The characteristic polynomial P(s) is given by 

 
2

1 1 1 2

1 1

2 1 3 2 3
( ) | |

p p

P s sI A B G s s
T T


       (2.62) 

If 
2 2( ) 2   n nP s s s , we obtain 

1

2 3
 n

pT
and 

1 3
0.89

2 3



  . 

As shown in equation (2.44), the two subsystems have the same state equations. 

Hence, the control law and feedback parameters of the first double integrator that 

obtained above are also suitable for the second double integrator: 

 

2 1 2

21 1 1 2 2

22 1 1 2 2

[ [ ] [ ]]

[ [ ] [ ]]

  

    

    

without R R

R R

R R

a a

g a a

g a a

  

   

   

 (2.63) 

where, 

22 2

2

2 3


p

g
T

 

and 21

2

2 1 3


p

g
T

. 

 

 

2.4. Dynamic decoupling taking into account the payload 

The introduction of the payload leads to new loads on the actuators which are also 

nonlinear. Here, consider the payload also as one part of link BP. The energies of both 

of the two links are described as 

 

2 2 2

1 1 1 1 1 1

2 2 2 2

2 2 1 1 2 1 2

2

1 2 2 1 1 2 2 1 2
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AS S

BS r

BS r S SR cw p

E m L I

E M L L

L L I

 (2.64) 

where, 
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2 2 2 2

2 2 2
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2 2 2

; ;

( ) ( )

( ) ( ) .

 

  

  
  

     

   

BS SR BS cw cw p

SR cw p BS r

S SR cw P S SR BS BS r SR BS BS r

cw cw BS r p BS r

m L m L m L m L
M m m L

M

I I I m L L m L L

m L L m L L

 

According to the Lagrangian, the dynamic equations are 
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 (2.65) 
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M L L I

 (2.66) 

where, 1 with  and 2 with  are the output torque values of the first actuator and the second 

actuator respectively when taking into account the payload on the end-effector of the 

serial manipulator. 

Substituting the equation (2.33) into these dynamic equations, then they can be 

simplified as 

2 2
1 11 1 1 2 1 2 2

2 2 2 2

2 2 2 2

2 2 2 2 1

2 2 2 2

2 2 2 2 2
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( ) ( )

 

 





       
    

        

     
   

         



with AS S S SR S SR

with S SR S SR

SR BS cw cw SR BS cw cw

SR BS cw cw SR BS cw cw

p

m L I M L I I I I

I I I I

m m L m L m m L m L

m m L m L m m L m L

m L2 2

2 1 2 2 2 1 2 2 1

2 2

2 1 2 2 2 2

1 2 2 2 1 2 2 2 1

1 2 2 1 2

2 cos( ) cos( )

cos( )

2 sin( ) sin( )

sin( ) 0

  

 

    

  

    
   

     

    
    
     

p p p

p p p

p p

p

m L L m L m L L

m L m L L m L

m L L m L L

m L L

 (2.67) 
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Introducing the condition of opposite rotations ( 2 1   ), then  
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 (2.68) 

Compare equation (2.68) with equation (2.37), the torques that caused by the 

introduction of the payload can be found 
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 (2.69) 

Hence, the dynamic equation with payload can be rewritten as 

 
1 1 1

2 2 2

  

  

  


  

with without

with without

 (2.70) 

This part is referred to as payload compensation. Extracting the payload 

compensation from the dynamic equation of the model taking into account the payload, 

then the model can be treated still as a dynamic decoupling model. This is another 

advantage that building a dynamic decoupling model taking into account the changing 

payload. 

Under this mechatronic method, the dynamic model can be greatly simplified and 

meanwhile achieve the dynamic decoupling. In addition, the changing payload is also 

considered. As a result, no matter there is payload or not, the simple linear control law 

can always be used. 
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2.5. Illustrative example with the SIMULINK block of MATLAB 

In this section, a simulation model will be built in the SIMULINK block of the 

MATLAB. The performance of the proposed technique is examined. First, the inverse 

transformation of the dynamic model with payload must be found. Rewritten the 

equation (2.64) as fellows 
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The inverse dynamic equations of the system are: 
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where  
22

2 1 2 2 1 2 2( ) ( ) 0        SM L I . 
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2.5.1. Simulation model of open-loop control system 

In order to demonstrate the influence of the payload compensation, an open-loop 

control system is built. In the simulation model, it mainly contains two blocks, a 

controller block and a manipulator block, shown as Fig. 2.6. The controller block is 

used to provide the desired trajectories and the payload compensation. The manipulator 

block is used to simulate the real planar serial manipulator: 

 

Figure 2.6. – The schema of the open-loop control system. 

The simulation parametric values are obtained by using the ADAMS software. It 

should note that, this software is good at dynamic simulation and the model that built in 

this software is the same with the model in real word. Thus, these parametric values in 

(Tab. 2.1) can be considered as the real parametric values of a real manipulator.  

As shown, they can be divided into three mainly categories: mass parameter, length 

parameter and moment of inertia parameter. 

Table 2.1. – The parametric values of the open-loop control system. 

mass 

( kg ) 
length 

( m ) 

moment of inertia 

(
2kg m ) 

1m  13.193 1 1ASL L  0.8 0.4  
1SI  0.77754 

2m  8.477 2 2BSL L  0.5 0.25  
2SI  0.20744 

SRm  0.811 BSRL  0.25 SRI  0.01717 

cwm  9.288 cwL  0.25   

pm  5     
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It should be noted that, for simplify the calculation, the parametric values of 

counterweight are given by 

 
2

2

 



cw SR

cw BS

m m m

L L
 (2.74) 

Until now, a whole simulation model of the open-loop control system can be built. 

For the operation of the model, the desired trajectories that described by the equations 

(2.29) and (2.30) are used, and the initial and final positions of the manipulator are 

given as (Tab. 2.2). Here, the total operation time 1T s . 

 

Table 2.2. – The initial and final values of the desired trajectories. 

Angle 

(  ) 

Velocity 

( m s ) 

Acceleration 

(
2m s ) 

1I  33 1I  0 1I  0 

1F  110 1F  0 1F  0 

2 I  0 2 I  0 2 I  0 

2F  -77 2F  0 2F  0 

 

According to the equations (2.29) and (2.30), the desired trajectories, velocities and 

accelerations of the two actuators are shown in Fig. 2.7. Fig. 2.7(a1)-(a3) are the curves 

of the angular trajectory, angular velocity and angular acceleration of the first actuator 

respectively. As the same, Fig. 2.7(b1)-(b3) are the curves of the angular trajectory, 

angular velocity and angular acceleration of the second actuator respectively. It is 

obvious that these two trajectories are totally opposite. 

As proposed, this is a dynamic decoupling manipulator. The torque of each motor 

is only influence by one kind of parameter. Especially for the second actuator, its output 

torque is completely cancelled (Fig. 2.8). 
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Figure 2.7. – Desired trajectories, velocities and accelerations of the two actuators. 

 

(a1) (b1) 

(a2) (b2) 

(a3) (b3) 
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Figure 2.8. – Torques with payload compensation (solid line) and without it (dashed 

line) for the open-loop system. 

In the controller of this system, the payload is considered as a forward 

compensation based on the linear and dynamic decoupling model. With payload 

compensation, both links of the manipulator can rotate exactly to the target angles, 

shown as the solid line in Fig. 2.9, because that the controller model reflects precisely 

the structure of the manipulator. 

However, there are always some disturbances that can influence the precision. One 

of the extremely examples is cancellation of the payload compensation, shown as the 

dashed line in Fig. 2.9. Under this situation, the errors of angular displacements of link 

AB and BP are, respectively, 12.34% and 40.87%. 

 

Figure 2.9. – Angular displacements of links with load compensation (solid line) and 

without it (dashed line) for the open-loop system. 
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2.5.2. Simulation model of closed-loop control system 

In order to reduce the impact of disturbance on tracking accuracy, the closed-loop 

is added. The closed-loop control law can be written as 

 

1 1 1

11 1 1 2 2

12 1 1 2 2

2 2 2

21 1 1 2 2

22 1 1 2 2

[( )[ ] [ ]]

[( )[ ] [ ]]

[ [ ] [ ]]
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without

R R

R R

without

R R

R R

g a b a

g a b a

g a a

g a a

 (2.75) 

where, 1 2 1, ,  without without and 2  are given by equations (2.37) and (2.69). The 

simulation diagram  in SIMULINK of MATLAB is shown in Fig. 2.10, and the detailed 

information is shown in Appendix A. 

 

Figure 2.10. - The schema of the open-loop control system. 

As in the case of open-loop system, the dashed curves show the torques and the 

angular displacements of the manipulator without payload compensation and the solid 

curves show the simulation results of the model with payload compensation in Fig.2.11 

and Fig. 2.12, respectively.  
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Figure 2.11. – Torques with payload compensation (solid line) and without it (dashed 

line) for the closed-loop system. 

Comparing the torque curves of closed-loop control system with the ones of open-

loop control system, it is obviously that, the two torque curves of the simulation with 

and without payload compensation are closer in the closed-loop control system, 

especially for the second actuator (Fig. 2.11). In aspect of tracking accuracy, in this 

closed-loop control system, the payload compensation allows an exact reproduction of 

manipulator motions. However, it should note that, the closed-loop can reduce the 

influence of absence of payload compensation, shown in Fig. 2.12. The errors of 

angular displacements of link AB and link BP are 1.43% and 1.18%. 

 

Figure 2.12. – Angular displacements of links with payload compensation (solid line) 

and without it (dashed line) for the closed-loop system. 
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2.6. Summary 

This chapter deals with the design concept of adjustable serial manipulators with 

linearized and decoupled dynamics taking into account the changing payload. It is 

achieved by using links with adjustable lengths connected to the double Scott-Russell 

mechanism and by means of an optimal control technique. Such a dynamic decoupling 

is a symbiosis of mechanical and control solutions. It is carried out in two steps. At first, 

the dynamic decoupling of the serial manipulator with adjustable lengths of links is 

accomplished via an opposite rotation of links and optimal redistribution of masses. 

Such a solution proposed for the first time allows one to carry out the dynamic 

decoupling without connection of gears to the oscillating links. The elimination of gears 

from design concept is a main advantage of the suggested solution. Thus, the proposed 

mechanical solution allows one to transform the original nonlinear system model into a 

fully linear system without using the feedback linearization technique. 

However, it is obvious that the changing payload leads to the perturbation of the 

dynamic decoupling of the manipulator. To ensure linearized and decoupled dynamics 

of the manipulator for any payload, an optimal control technique is applied. It is shown 

that the dynamic decoupling of the manipulator simplifies the control solution ensuring 

the dynamic decoupling taking into account the changing payload. The perturbation of 

required motions of the manipulator with payload compensation and without it is shown 

via ADAMS and MATLAB simulations. Two kinds of simulations are carried out with 

open-loop control system which is a non-feedback system and closed-loop control 

system. The obtained results showed the efficiency of the proposed solution. 
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This chapter deals with a new dynamic decoupling principle, 

which involves connecting to a serial manipulator with revolute joints 

a two-link group forming a Scott-Russell mechanism with the initial 

links of the manipulator. The opposite motion of links in the Scott-

Russell mechanism combined with optimal redistribution of masses 

allows the cancellation of the coefficients of nonlinear terms in the 

manipulator’s kinetic and potential energy equations. Then, by using 

the optimal control design, the dynamic decoupling due to the 

changing payload is achieved. The suggested design methodology is 

illustrated by simulations carried out using ADAMS and MATLAB 

software, which have confirmed the efficiency of the developed 

approach. 
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3.1. Dynamic decoupling modeling via adding a two-link group 

Fig.3.1 shows a serial planar manipulator with two degrees of freedom, which 

consists of two principal links 1, 2 and a sub-group with links 3 and slider 4. The 

movements of this manipulator are planar motions which are perpendicular to the 

vertical plane, and therefore, not subjected to gravitational forces. The slider 4 can slide 

freely along the link 1, and it’s connected with link 3 by revolute joint D. 

 

Figure 3.1. - The 2-dof planar serial manipulator with added two-link group. 

Thus, the added sub-group with links 2 forms a Scott-Russell mechanism. As said 

above, the Scott-Russell mechanism has been developed to generate a rectilinear motion. 

Here, another property of this mechanism is used. The Scott-Russell linkage generates 

also rotations of links by identic angular accelerations, i.e. the angular accelerations of 

links 2 and 3 are similar. 

Let us consider the equations of motion of the unbalanced mechanism. In this case, 

the Lagrangian of the system is equal to the total kinetic energy. The kinetic energy 

expressions of all parts of the structure are: 

2 2 2

1 1 1 1 1 1

1 1

2 2
AS SE m L I      (3.1) 

2 2 2 2 2

2 2 1 1 2 1 2 1 2 2 1 1 2 2 1 2

1 1
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2 2
BS BS SE m L L L L I                (3.2) 
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 (3.3) 

2 2 2 2 2 2

4 4 3 2 1 1 3 2 2 4 1

1 1
[(2 cos( ) ) 4 sin ( ) ]

2 2
SE m L L L I         (3.4) 

Here, 1 2 3, ,E E E  and 4E are the kinetic energy of link 1, link 2, link 3 and slider 4 

respectively. Then the dynamic equation of the serial planar manipulator can be 

obtained 

 
2

1 11 12 1 111 122 1 112 121 1 2

2
2 21 22 211 222 212 2212 2 1 2

D D D D D D

D D D D D D

    

    

            
              

                 

 (3.5) 

with 

2 2 2 2

11 1 1 1 2 1 2 2 2 1 2 2 2 3 1

2 2

3 3 3 3 3 1 3 2 3 1 3 2

2

3 3 3 2 3 4 3 2 1 4

2 cos

2 cos ) 2 cos

2 cos(2 ) (2 cos )



 

 

      

   

    

AS S BS BS S

CS CS

CS S S

D m L I m L m L m L L I m L

m L m L m L L m L L

m L L I m L L I

 (3.6) 

2 2 2

12 21 2 2 2 1 2 2 2 3 3 3 3 3 1 3 2

3 1 3 2 3

cos cos

cos

 



      

 

BS BS S CS

CS S

D D m L m L L I m L m L m L L

m L L I
 (3.7) 

2 2 2 2 2

22 2 2 2 3 3 3 3 3 3 3 2 3 4 3 22 cos(2 ) 4 sin       BS S CS CS SD m L I m L m L m L L I m L  (3.8) 

111 0D    (3.9) 

122 2 1 2 2 3 1 3 2 3 1 3 2sin sin sin     BS CSD m L L m L L m L L  (3.10) 

211 2 1 2 2 3 1 3 2 3 1 3 2 3 3 3 2

4 3 3 2 1 2

sin sin sin 2 sin(2 )

2 (2 cos )sin

   

 

   

 

BS CS CSD m L L m L L m L L m L L

m L L L
 (3.11) 

2

222 3 3 3 2 4 3 22 sin(2 ) 2 sin(2 )  CSD m L L m L   (3.12) 

112 2 1 2 2 3 1 3 2 3 1 3 2

2

3 3 3 2 4 3 2 4 1 3 2

2 sin 2 sin 2 sin

4 sin(2 ) 4 sin(2 ) 4 sin( )

  

  

   

  

BS CS

CS

D m L L m L L m L L

m L L m L m L L
 (3.13) 

121 212 221 0D D D     (3.14) 
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where, 1 2, ,m m 3 ,m  and 4m are the masses of link 1, link 2, link 3 and slider 4 

respectively; 1 2 3, ,S S SI I I  and 4SI are the moments of inertia of link 1, link 2, link 3 and 

slider respectively; 1 2 3, ,L L L  are the lengths of link 1, link 2 , link 3 respectively, and 

3L  also the distance between centers of revolute joints B and C; 1ASL is the distance 

between the center of mass 1S of link 1 and joint center A; 2BSL  is the distance between 

the center of mass 2S of link 2 and joint center B; 3CSL
 
is the distance between the center 

of joint C and center of mass of link 3; 1  is angular displacement of link 1 relative to 

the base; 2  is angular displacement of link 2 relative to link 1; 
1  is angular velocity of 

link 1 relative to the base; 
2 is angular velocity of link 2 relative to link 1; 

1 is the 

angular acceleration of link 1relative to the base; 
2  is the angular acceleration of link 2 

relative to link 1. 

In order to further simplify this dynamic equation, two balancing conditions are 

applied 

 3 3 4 3 0 CSm L m L  (3.15) 

 3 4 3 2 2( ) 0  BSm m L m L  (3.16) 

Substituting these two equations into the dynamic equation (3.5), then it can be 

simplified as 

 
1 1 2

2 1 2

d b

b c

  

  

  


 

 (3.17) 

where 

2 2
2 2 23 4 3 4

1 2 3 4 1 1 2 3 4 1 3

2 3

2 2 2
23 4 3 4

2 3 3

2 3

2 2
23 4 3 4

2 3 3

2 3

( ) ( )
( )

( )

( ) ( )

  
          

 

  
    

 

  
    

 

S S S S AS

S S

S S

m m m m
d I I I I m L m m m L L

m m

m m m m
b I I L

m m

m m m m
c I I L

m m

 

Obviously, we obtain linear dynamic equations. 
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Furthermore, if  

 
2 2 2

23 4 3 4
3 2 3

2 3

( )  
   

 
S S

m m m m
I I L

m m
 (3.18) 

then we get b=0. 

Thus, the complete dynamic decoupling of the serial planar manipulator without 

payload is achieved: 

 1 1

2 2

 

 

 




without

without

d

c
 (3.19) 

where, 

2 2

1 2 4 1 1 2 3 4 1

23 4 2 3 4
3

2

23 4 2 3 4
2 3

2

2 ( )

( )( )
2

( )( )
2[ ]

       

  


  
  

S S S AS

S

d I I I m L m m m L

m m m m m
L

m

m m m m m
c I L

m

 

 

3.2. Closed-loop control 

The main goal of the closed-loop control is actually to stabilize this serial planar 

manipulator which is instable. The feedback design allows good tracking properties. 

Define the state vector as 
1 1 2 2[ ]     T . 

According to the inverse calculation of the equation (3.19), the state equation of the 

MIMO model can be obtained 

 

1 1

12 2

3 23

4
4

0 0

0 1 0 0 1
0

0 0 0 0

0 0 0 1 0 0

0 0 0 0 1
0



 

 

 



 
     
     

                     
       

  

without

without

A

B

d

c

 (3.20) 
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The controllable canonical form of the state equation should be built for the further 

research. It needs to use the following transformation: 

    cc cT W  (3.21) 

where, ccT  is the controllability matrix, and it is formed as 

1
0 0 0

1
0 0 0

[ | ]
1

0 0 0

1
0 0 0

 
 
 
 
 

   
 

 
 
 

 

cc

d

d
T B A B

c

c

 

Wc, is the upper triangular Toeplitz matrix, and it is formed by characteristic 

equation of matrix A: 4 3 2 4

3 2 1 0|sI-A|=s a s a s a s a s     . So, 

3 2 1

3 2

3

1 1 0 0 0

0 1 0 1 0 0
=

0 0 1 00 0 1

0 0 0 10 0 0 1

   
   
    
   
   

  

c

a a a

a a
W I

a
 

As known,  

    A B  (3.22) 

Substituting the equation (3.39) into equation (3.40), we obtain  

      
1 1

  
 

 cc cc ccT A T T B  (3.23) 

Hence, the controllable canonical form is given by  

 

1 1

12 2

3 23

4
4

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

      
      

                        
       

without

without

 

 

 



 (3.24) 
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and the state vector 

 

1 1

2 1 2

3 1

4 2

[ ] ( )

 

 


 

 



  
  
    

   
  
    

cc

d

c
T t

d

c

 (3.25) 

It is obviously that, the system that described by state equation (3.42) can be 

divided into two independent subsystems: 

 

1 1

1

33

2 2

2

44

0 0 1

1 0 0

0 0 1

1 0 0

without

without

 




 




       
        

        

      

       
       

 (3.26) 

Hence, when taking into account the feedback control, the closed-loop can be 

added firstly on each simple subsystem, then combine them together for the whole 

system. Obviously, both of these two subsystems are simple double integrator structures. 

Hence, the linear control method can be employed. 

 

3.2.1. Command of the first double integrator 

According to the first double integrator, we can deduce: 

 
1 1

3 1

 




without 

 
 (3.27) 

Assuming that 
3

1






 

 
 

Then the state equation of the double integrator is given by 

 

11

1

0 1 0

0 0 1

 


 

       
        

       
without

BA

 (3.28) 

Obviously, this is a simple double integrator structure. For the closed-loop control, 

the control law can be written as 

 1 1 11 12  without g g     (3.29) 
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Sustituting this control law in the equation (3.28), then the state equation of the 

double integrator can be rewritten as 

 1

12 11

0 1 0

1

      
              g g

 


 
 (3.30) 

Assuming that 

 1 1 11 12  g g     (3.31) 

then 

 1

0 1 0

0 0 1

       
        

       

 


 
 (3.32) 

hence, 1   . It can be found that 

 1 11 12  g g     (3.33) 

It is concluded that a balance position of the double integrator is given by the 

conditions about  and its continual derivatives.  

Hence, if a trajectory R  which is secondary derivable over a range [0, T] is given, 

we can deduce: 

 1 11 12  R R R Rg g     (3.34) 

Finally, the control law of the closed-loop double integrator is  

 1 11 12[ ] [ ]    without R R Rg g       (3.35) 

As known, 1  d , the control law can be rewritten as 

 1 1 11 1 1 12 1 1[ ] [ ]           without R R Rd g d g d  (3.36) 

 

3.2.2. Determination of the feedback parameters for the first double integrator 

In order to realize the control law:  1 1( ) ( ) ( )   
T

t G t t , the matrix of state 

feedback parameter 1 12 11[ ]G g g  should be obtained. 
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It is calculated by minimizing the index of performance J below: 

   1 1 1 1

0

( )
( ) ( ) ( ) ( )

( )

T
t

J t t Q t R t dt
t


   



   
   

  
  (3.37) 

where 

1

1 1

1

1
4 3

1 1

1 1 1 1

0
3 2

1 1

1 0

12 6

0
6 4

p
T

T

p pA AT

p

p p

R

T T
Q T e B B e d

T T

  



 

 
   

     
        

 


 

Assuming that the symmetric matrix Σ1 is the solution of Riccati equation 

 
1

1 1 1 1 1 1 1 1 1 1 0T TA A B R B Q        (3.38) 

where 
1 2

1

2 3

 


 

 
  
 

 must be positive-definite, i.e. 
1

2

1 3 2

0

0



  




 
 

thus 

1 2 3 3

1

2

2 24 2

1 1

2

3 2 2

1

6
0;

12 2 3
;

4
2 0.

  

 

 


  




   


   


p

p p

p

T

T T

T

 

we obtain 

 

2

2 2 32 2 2

1 1 1

2 3 33

1 1

1 2 3 3 3

1 1

4 2 3 4(1 3)
2 0

6 2 1 3
0

6 6 4 3 1 3

p p p

p p

p p

T T T

T T

T T

  

  

  

 
     





   




    



 (3.39) 
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Hence, the expression of matrix 1  is 

 

3 2

1 1

1

2

1 1

6 4 3 1 3 2 3

2 3 2 1 3

p p

p p

T T

T T



  
 
 

  
 

 
 

 (3.40) 

As known, the matrix 1G  is noted as 

 
1

1 1 1 1

TG R B   (3.41) 

Then, 

 1 2

1 1

2 3 2 1 3

p p

G
T T

 
  
  

 (3.42) 

As result, we obtain 12 2

1

2 3

p

g
T

  and 11

1

2 1 3

p

g
T


 . 

The state model of the closed-loop system is written as follows 

  1 1 1

2

1 1

0 1

2 3 2 1 3

p p

A B G

T T

  

  

 
      

         
       
 

 (3.43) 

The characteristic polynomial P(s) is given by 

 
2

1 1 1 2

1 1

2 1 3 2 3
( ) | |

p p

P s sI A B G s s
T T


       (3.44) 

If 
2 2( ) 2   n nP s s s , we obtain 

1

2 3
n

pT
  and

1 3
0.89

2 3



  . 

According to these results, the control law and feedback parameters of the second 

double integrator can be written as 



3.2. Closed-loop control 

71 

 2 2 21 2 2 22 2 2[ ] [ ]           without R R Rc g c g c  (3.45) 

where, 22 2

2

2 3


p

g
T

 

and 21

2

2 1 3


p

g
T

. 

 

3.3. Dynamic analysis taking into account the payload 

Based on the assumption above, we consider the link 2 and the payload as one 

object. Then, 

 
2 2  pM m m  (3.46) 

 2
2 2

2 2

 
p

BS r BS BP

mm
L L L

M M
 (3.47) 

 2 2

2 2 2 2 2 2 2( ) ( )     p BS BS r p BS rI I m L L m L L  (3.48) 

where, 2M is the total mass of link 2 and the payload; 2BS rL is the distance between the 

mass center of 2M  and the joint center B; BPL  is the distance between the joint center B 

and the end-effector; 
2 pI  is the total moment of inertia of link 2 and the payload. 

Thus, according to the Lagrangian dynamics, the dynamic equations with payload 

are: 

1

1 1

2 2 2

1 1 1 1 2 1 2 2 2 1 2 2 2

2 2 2

3 1 3 3 3 3 3 1 3 2 3 1 3 2

2

3 3 3 2 3 4 3 2 1 4
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cos( )

cos( ) cos( ) ]

[ 2 sin( ) 2 sin( ) 2 sin( )

4 sin(2 ) 4 (2 cos( ) )sin( )]
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BS r P CS
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CS
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L I m L m L

m L L m L L I

M L L m L L m L L

m L L m L L L

M L L m L L3 2 3 1 3 2sin( ) sin( )]  CSm L L

 (3.49) 
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2
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[ 2 cos( )

cos( ) cos( ) ]

[ 2 cos(2 )

4 sin ( )]

[


 

 

 

 









  
  

  

    

  

     





with

BS r BS r p CS

CS S

BS r p CS CS S

BS r

d L L

dt

M L M L L I m L m L
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CS

m L L m L L

m L L m L L L

m L L m L

 (3.50) 

where, 
1 with

 and
2 with

 are the output torque values of the first actuator and the second 

actuator respectively when taking into account the payload on the end-effector of the 

serial manipulator. 

From equations (3.15), (3.16) and (3.47), we can obtain that 

 4
3 3

3

 CS

m
L L

m
 (3.51) 

 3 4
2 3

2 2

( )
 

p

BS r BP

mm m
L L L

M M
 (3.52) 

Substituting these two equations into the dynamic equations (3.49) and (3.50), then 

they can be simplified as 

2 2 2 2

1 1 1 2 3 4 1 1 2 1 3 1 4 1

2 2
3 4 3 23 4

3 1 2
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p S
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 (3.53) 
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2 2 2
3 4 3 23 4

2 1 2 3 3
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3 4 3 23 4

2 2 3 3
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M m
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 (3.54) 

Finally, replace the parameter
3SI  and 

2 pI by the equations (3.18) and (3.48), the 

dynamic equation with payload can be rewritten as 

 3 4 2 3 42 2 2

1 1 1 2 4 1 1 2 3 4 1 3
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 (3.55) 

Compare equation (3.55) with equation (3.19), the torques related to the payload 

can be found 
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 (3.56) 
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Hence, the dynamic equation with payload can be rewritten as 

 
1 1 1

2 2 2

  

  

  


  

with without

with without

 (3.57) 

As noted in the previous chapter, this part is referred as payload compensation. 

Extracting the payload compensation from the dynamic equation of the model taking 

into account the payload, then the model can be treated still as a dynamic decoupling 

model. Also, no matter there is payload or not, the simple linear control law can always 

be used. 

 

 

3.4. Illustrative example with the SIMULINK block of MATLAB 

For verifying the performance of this proposed dynamic decoupling method, a 

simulation model will be built in the SIMULINK block of MATLAB. We note that 
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a m L L

a m L L

a m L L ]

 (3.58) 

then, the dynamic equations (3.49) and (3.50) can be rewritten as 

2

1 0 1 1 2 5 6 2 1 1 2

2 3 4 2 2 5 2 1 2 2 5 6 2

2
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 (3.59) 
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2 1 3 4 1 2 5 2
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 (3.60) 

According to the form Aq Cq   ,we can obtain the dynamic model equation as  
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where 
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As the matrix A  is positive and invertible, we deduce 
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a a a a a
A

a a a
 (3.62) 

where 

    
2

2 0 1 2 1 2 3 4 7 1 2 3 4 1 2( ) 2 ( ) 4 ( ) 2 4 ( ) ( )                 a a a a a a  

Finally, the serial planar manipulator is modeled in MATLAB by using the 

following equations: 
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 (3.63) 
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 (3.64) 

 

3.4.1. Simulation model of open-loop control system 

First, the open-loop control system of the serial planar manipulator is built. It is 

constituted mainly by two parts, the controller part and the manipulator part. The 

controller part is described by the equations (3.19) and (3.56). And the manipulator part 

is described by equations (3.63) and (3.64), as shown in Fig. 3.2. 

 

Figure 3.2. - The schema of the open-loop control system. 
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The parametric values of all the parts of the system is given in Tab. 3.1. It should 

be noted that the value of the length parameter 3CSL is negative. That is because a 

counterweight is added on the inverse extension line of link 3, when consider link 3 and 

the payload as one object, the total mass center moves along the inverse extension line 

of link 3 and finally located on the side of the joint C. 

Table 3.1. - The parametric values of all the parts of the system. 

mass 

( kg ) 
length 

( m ) 

moment of inertia 

(
2kg m ) 

1m  13.193 1 1ASL L  0.8 0.4  
1SI  0.77754 

2m  10.472 2 2BSL L  0.8 0.1738  
2SI  1.415 

3m  5.374 3 3CSL L  0.3 0.0386  
3SI  2.2069 

4m  0.692 BPL  0.5  4SI  47.2 10  

pm  5     

 

As discussed above, in order to simplify the dynamic model, link 2 and the payload 

are treated as one object. The parametric values of the composite object are shown in 

Tab. 3.2. 

Table 3.2. - The composite parametric values of the system. 

mass 

( kg ) 
length 

( m ) 

moment of inertia 

(
2kg m ) 

2M  15.472 2BS rL  0.2792 2 pI  1.7751 

 

The initial and final simulation angles are given in Tab. 3.3. 

Table 3.3. - The initial and final values of the desired trajectories. 

Angle 

(  ) 

Velocity 

( m s ) 

Acceleration 

(
2m s ) 

1I  0 1I  0 1I  0 

1F  40 1F  0 1F  0 

2 I  30 2 I  0 2 I  0 

2F  80 2F  0 2F  0 
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Different from the decoupled model that proposed in last chapter, there is no 

special requirement for choosing these angles, i.e. they can be arbitrary values. Here, for 

the desired trajectories, velocities and accelerations, the same expressions that described 

by equations (2.29) and (2.30) are used. 

 

 

 

 

Figure 3.3. - Desired trajectories, velocities and accelerations of the two actuators. 

(a1) (b1) 

(a2) (b2) 

(a3) (b3) 
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As a result, they are shown in Fig. 3.3. Fig.3.3(a1)-(a3) are the curves of angular 

trajectory, angular velocity and angular acceleration of the first actuator. Fig.3.3(b1)-(b3) 

are the curves of angular trajectory, angular velocity and angular acceleration of the 

second actuator. It should be note that, the operation time is assumed as T=1s. 

With all these conditions, the simulations of the open-loop system with a payload 

of 5 kg can be done. During the simulation, the required torque values are calculated 

firstly. As mentioned above, the controller can be divided into two parts: the dynamic 

decoupled model of the manipulator without payload and the payload compensation 

shown in Fig. 3.2. With the payload compensation, the expressions of the torques are 

derived exactly by the model of the manipulator. Thus, the desired torque values can be 

obtained, shown as the solid lines in Fig. 3.4. Meanwhile, the desired trajectories are 

achieved, shown as the solid lines in Fig. 3.5. 

 

Figure 3.4. - Torques with payload compensation (solid line) and without it (dashed 

line) for the open-loop system. 

 

Figure 3.5. - Angular displacements of links with load compensation (solid line) and 

without it (dashed line) for the open-loop system. 
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When without the payload compensation, the torque expressions in the controller 

won’t precisely reflect the model of the manipulator. Thus, under this situation, the 

torque values are different with the desired ones, shown as the dashed lines in Fig. 3.4. 

In other aspect, the payload compensation can be treated as the compensation of the 

inaccurate modeling of the manipulator. As known, the inaccurate modeling part is 

always exists more or less. Hence, without the payload compensation, a great difference 

will appear during the desired and the real trajectories (Fig. 3.5). The errors of angular 

displacements of link AB and BP are, respectively, 35.3% and 52.92%. 

 

3.4.2. Simulation model of closed-loop control system 

To deal with the unexpected disturbances or situations, such as the lack of the 

payload compensation, the closed-loop is added, shown in Fig. 3.6. 

 

Figure 3.6. – The schema of the closed-loop control system. 

The feedback factors are already obtained above, according to the schema of the 

closed-loop control system, the closed-loop control law can be written as 
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 (3.65) 

where, 1 without  and 2 without  are given in equation (3.19); 1  and 2  are given in 

equation (3.56). 

The simulation diagram in SIMULINK of MATLAB is shown in Appendix B. As 

known, the feedback loop works only when there is difference between the desired and 
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real trajectories. With the payload compensation, the desired torques allows an exact 

reproduction of the desired manipulator motions, i.e. the tracking curves overlaps 

completely with the desired trajectories, shown as the solid lines in Fig. 3.7 and Fig. 3.8. 

If the payload compensation is absent in the controller, it will lead to inaccurate torques, 

hence the incorrect tracking trajectories will be obtained. However, such a tracking 

error can be reduced because of the self-correcting performance of the feedback loop. It 

is obvious that, the tracking curves without payload compensation (the dashed lines in 

Fig. 3.8) are closer with the desired trajectories than the ones in open-loop system (the 

dashed lines in Fig. 3.5). As a result, the errors of angular displacements of link AB and 

BP are, respectively, 2.68% and 2.96%. Obviously, they are greatly diminished. 

 

Figure 3.7. - Torques with payload compensation (solid line) and without it (dashed 

line) for the closed-loop system. 

 

Figure 3.8. - Angular displacements of links with load compensation (solid line) and 

without it (dashed line) for the closed-loop system. 
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3.5. Summary 

This chapter proposed a new dynamic decoupling principle, which involves 

connecting to a serial manipulator a two-link group forming a Scott-Russell mechanism 

with the initial links of the manipulator.  

It has been carried out in two steps. At first, the dynamic decoupling of the serial 

manipulator is accomplished via the Scott-Russell mechanism properties and optimal 

redistribution of masses. Thus, the modification of the mass redistribution allows one to 

transform the original nonlinear system model into a fully linear system without using 

the feedback linearization technique. However, as it mentioned above, the changing 

payload leads to the perturbation of the dynamic decoupling of the manipulator. To 

ensure decoupled dynamics of the manipulator for any payload, an optimal control 

technique has been applied.  

The perturbation of required motions of the manipulator with payload 

compensation and without has been illustrated via simulations. Two kinds of 

simulations are carried out with open-loop control system which is a non-feedback 

system and closed-loop control system. The obtained results showed the efficiency of 

the proposed solution. 

Finally, it should be noted that the developed approach of dynamic decoupling can 

also be applied to the design of planar serial manipulators with three degrees of freedom. 
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Chapter 4  

Tolerance analysis of serial manipulators with 

decoupled and coupled dynamics 

 

4.1. Performance indices of the serial manipulators p.84 

4.2. The dynamic models of manipulators for tolerance capability comparison p.85 

4.3. Tolerance capability comparison p.96 

4.4. Summary p.106 

 

 

 

This chapter deal with the robustness properties of serial 

manipulators with decoupled and coupled dynamics derived by 

tolerance analysis. 

After having introduced some performance indices of the 

manipulators, the tolerance capabilities of four manipulators are 

analyzed. In order to quantify the influencing degree, two kinds of the 

indices are defined. They are angular error and position error. 

Two kinds of simulation are designed here. The first kind of 

simulation is implemented by fixed parametric error. Then, the 

influencing degrees of all variables on the positioning accuracy of the 

manipulators are analyzed respectively.  

In order to obtain the models closer to the practical situation, the 

random parametric errors are introduced in the second kind of 

simulation. Furthermore, the parametric errors of all the variables 

are added at the same time during one simulation.  

The simulation results prove that the manipulators that decoupled 

by the mechatronic methods are more robust. 
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4.1. Performance indices of the manipulators 

The performances of the manipulators such as the dexterity, load capacity, force 

transmission from the joint to the end-effector, and dynamic responsiveness etc. are 

investigated for optimize the design of the manipulators. Usually, in these researches, 

the performances are quantified by using some indices. 

The dexterity indices for planar and spatial manipulators are presented in(Gosselin 

1990). (Asada 1983) proposed the generalized inertia ellipsoid (GIE) as a quantitative 

method to measure the capability of changing end-effector’s velocity in different 

directions for fixed kinetic energy. In the research of (Yoshikawa 1985), the dynamic 

manipulability ellipsoid (DME) is introduced for measuring the ease of changing the 

end-effector’s configuration by a set of joint torques with fixed magnitude. Both of the 

two indices (GIE and DME) are based on the relationship between the generalized 

inertia force of the end-effector and the generalized inertia torques of joints. The 

dynamic conditioning index (DCI) which is defined as the least-square difference 

between the generalized inertia matrix and an isotropic matrix is used to measure the 

dynamic performance of a manipulator (Ma and Angeles 1990). 

Besides the analysis of the performances above, the error tolerance analysis is also 

important for a manipulator. For applications in remote and/or hazardous environments 

where repair is not possible, the fault tolerance of the manipulators is necessary. Cause 

once the components failure, it will result in a robot’s joint becoming immobilized, i.e., 

a locked joint failure mode (Ben-Gharbia et al. 2015). Hence, lots of researches such as 

to increase manipulator reliability (Cheng and Dhillon 2011) and to improve failure 

detection (Dixon et al. 2000).(Ben-Gharbia et al. 2011) are proposed. However, these 

applications are extreme ones. In normal application of the manipulators where repair is 

possible, there is another performance referred as error tolerance corresponds to fault 

tolerance needs to be considered. 

Positioning inaccuracy can stem from a number of sources such as the dimensional 

error of the components, the assembly error, the deflection error, the clearance in the 

kinematic pair, the elastic deformation error, the friction and wear error and the 

measurement and control error etc. In addition, during the actual operation, the variation 

of the payload, acceleration and deceleration of the manipulator may cause the 

geometric deviation and the movement deviation of the manipulator. All of these can 

affect the positioning accuracy of the serial manipulators. 

The error of serial manipulator can be divided into systematic error and random 

error. System error is the error in the manufacturing and assembly process of the 
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components. Usually, this kind of error is in the form of cumulative error, reverse error 

or periodic error. The error follows a certain mathematical model and can be 

compensated by control algorithm. Random error is the error that caused by uncertainty 

of the unpredictable disturbances, and therefore it is impossible to build a precise 

mathematical model for this error. The current effective way is to estimate the statistical 

processing of multiple measurements. 

Considerable researches have been proposed for error analysis, error model 

derivation and calibration (Veitschegger and Wu 1986) (Wu 1983) (Veitschegger and 

Wu 1988). For the error model, some researches focus on the effects of manipulator 

joint errors (Waldron and Kumar 1979) (Benhabib et al. 1987), as well as the effects of 

link dimensional errors (Vaishnav and Magrab 1987) (Ferreira and Liu 1986). For 

instance, in the research of (Caro et al. 2005), two dimensional variations are discussed 

for a 2-DOF serial manipulator model. 

 

 

4.2. The dynamic models of manipulators for tolerance capability 

comparison 

The method mentioned in (Caro et al. 2005) is an efficient tolerance synthesis 

method. However, not just the length parameters, but also the parameters of mass and 

inertia are needed to be considered for tolerance analysis of the manipulators. 

Hence, six main parameters of the serial manipulators are used here, they are: 

- 1 2,m m : the mass parameters of the two main links 1 and 2 respectively; 

- 1 2,S SI I : the inertia parameters of the two main links 1 and 2 respectively; 

- 1ASL : the distance between the center of mass of link 1 and joint A; 

- 2BSL : the distance between the center of mass of link 2 and joint B. 

In addition, four serial planar manipulators with two degrees of freedom are 

considered. They are: 
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- manipulator_0: a serial planar manipulator with non-decoupled dynamics, 

shown in Fig. 4.1.The simulation diagram in SIMULINK of MATLAB is shown 

in Appendix C. 

- manipulator_1: a serial planar manipulator with decoupled dynamics (chapter 2), 

shown in Fig. 4.2.The simulation diagram in SIMULINK of MATLAB is shown 

in Appendix A. 

- manipulator_2: the decoupled 2-DOF serial planar manipulator that proposed in 

chapter 3, shown in Fig. 4.3. The simulation diagram in SIMULINK of 

MATLAB is shown in Appendix B. 

- manipulator_3: a decoupled 2-DOF serial planar manipulator that decoupled by 

feedback linearization (Fig. 4.4). The control schema of inverse dynamics 

control is shown in Fig. 4.5. And the simulation diagram in SIMULINK  of 

MATLAB is shown in Appendix D. 

 

Figure 4.1. – The structure model of manipulator_0. 

The dynamic equation of manipulator_0 without payload can be expressed as 
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where 
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Thus the structure model of manipulator_0 for the simulation is given as 
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where,  
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To establish the closed-loop control system, all the nonlinear terms in equation (4.1) 

are cancelled first, shown as equation (4.3). 
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Then, we obtain 
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According to the same derivation process in chapter 2, the closed-loop control law 

of manipulator_0 can be deduced as 
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where, the feedback factors are: 11 21

2 1 3
 

p

g g
T

 and 
12 22 2

2 3
 

p

g g
T

. 

 

Figure 4.2. – The structure model of manipulator_1. 

According to the results in chapter 2, the dynamic equation of manipulator_1 

without payload is expressed as 
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The structure model of manipulator_1 for the simulation is given as 

 

 

   

 

2 22 2 2
1 1 2 1 2

2 2 2

2 2 2 2 2 2
1 1 2 2

2 2

2 2 2 2 22
2 1 2 1 2

2 2 2

2 2 222 2
1

2 2

( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )

( ) ( )( ) ( )
   (

( ) ( )

     
    

  

       
   

 

        
    

  

       


 


  
  


  

 

 
   

  


 

 
1 2 2)  













 


 (4.7) 

where 
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To establish the closed-loop system of manipulator_1, the equation (4.6) is 

reformed as 
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According to the results in chapter 2, the closed-loop control law of manipulator_1 

can be written as 
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Figure 4.3. – The structure model of manipulator_2. 

According to the results in chapter 3, the dynamic equation of manipulator_2 

without payload is expressed as 
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where, 
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Thus the structure model of manipulator_2 can be described as equations (4.11) 

and (4.12). 
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As the same, to establish the closed-loop control of manipulator_2, the equation 

(4.10) is reformed as 
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According to the results in chapter 3, the closed-loop control law of manipulator_2 

can be written as 
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where, the feedback factors are: 11 21

2 1 3
 

p

g g
T

 and 
12 22 2

2 3
 

p

g g
T

. 

The manipulator_3 has the same structure as manipulator_0 (Fig. 4.4), however, it 

is linearized and decoupled by feedback linearization which is shown in Fig 4.5. 
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Figure 4.4. – The structure model of manipulator_3. 

The dynamic model of manipulator_3 can be expressed as 

 ( ) ( , )      A C  (4.15) 

The decoupling law is written as 

 垐( ) ( , )     A v C  (4.16) 

where, ˆ( )A  is referred to as the inertia matrix that be formed by nominal parameters; 

ˆ ( , ) C  is referred to as Coriolis and centrifugal effects that be formed by nominal 

parameters. 

 

Figure 4.5. – The control schema of inverse dynamics control for manipulator_3. 
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If ˆ( ) ( ) A A  and ˆ( , ) ( , )   C C , then we obtain 

 ( ) ( )  A v A  (4.17) 

In addition, the inertia matrix ( )A  is reversible, thus 

 ( ) ( )v t t  (4.18) 

Substituting equations (4.15) and (4.18) into equation (4.1), then the equation of 

the torque can be rewritten as 
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Replacing 1  and 2  of the equation (4.1) by equation (4.19), finally, we can 

obtain 
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Now, as shown in Fig. 4.5, the nonlinear manipulator which is described by 

equation (4.2) becomes linearized and decoupled. 

Based on this linear and decoupled model, the closed-loop control system can be 

furthermore established. Because that this model is similar to manipulator_2, according 

to the same derivation process, the closed-loop control law and the feedback factors can 

be obtained 
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where, the feedback factors are: 11 21
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Through the comparisons among the closed-loop control law of these four 

manipulators, it is found that, the manipulator_0 is similar to manipulator_1, and the 

manipulator_2 is similar to manipulator_3. However, in the aspect of the structure 

model, the manipulator_1 and manipulator_2 are much simpler than manipulator_0 and 

manipulator_3. 

Next, in order to compare the robustness of these manipulators, the error tolerance 

capability analysis is introduced. In addition, to make meaningful comparisons between 

different manipulators, it is useful to quantify the system capability in terms of a 

representative numerical index. This also allows one to optimize the design with respect 

to the physical parameters such as the mass distribution, actuator location or link 

dimensions. Hence, here in order to quantitatively describe the tolerance capability 

against the parametric variation, two kinds of indices referred as angular error and 

position error are identified.  

The angular error is defined as the ratio of the absolute angular variation to the 

desired overall angular displacement i . It is calculated as 

 100% ( 1,2)





  


i
i

i

i  (4.22) 

where,     i iF iI . iI  represents the desired initial angle of the ith actuator , iF  

represents  the desired final angle of the ith actuator. 

According to the kinematic of the manipulators, the position vector of the end-

effector of the serial manipulator in the Cartesian coordinate that attached on the first 

joint can be written as 

 
11 1 2

1 1 2 2

cos cos( )

sin sin( )

  

  

   
   

   

L
P

L
 (4.23) 

where, 
 

  
 

P

P

x
P

y
. 

The position error is defined as the norm of the position vector variation that 

caused by the variation of the angular displacement of the actuators. The expression is 

described as 
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 2 2 ( )P P Px y mm     (4.24) 

with, 

 
1 1 2 1 2 1 1 2 1 2

1 1 2 1 2 1 1 2 1 2

cos cos( ) cos cos( )

sin sin( ) sin sin( )

P N N N N N R R R R R

P N N N N N R R R R R

x L L L L

y L L L L

      

      

     

     
 (4.25) 

where, , P Px y  are the components of the position vector variation on the x axis and y 

axis of the Cartesian coordinate respectively; 1 2 1 2, , ,N N N NL L    are the nominal 

parameters ; 1 2 1 2, , ,R R R RL L    are the real parameters. 

 

 

4.3. Tolerance capability comparison among the manipulators 

For the comparison, the main parameters are needed to be uniformed, shown as in 

(Tab. 4.1). As the special condition of reverse rotations of the two main links is 

necessary for the dynamic decoupling of manipulator_1, the initial and final angular 

positions of the manipulators are given as in (Tab. 4.2).  

Table 4.1. – The parametric values of the open-loop control system. 

mass 

( kg ) 
length 

( m ) 

moment of inertia 

(
2kg m ) 

1m  13.193  1 1ASL L  0.8 0.4  
1SI  0.77754  

2m  8.477  2 2BSL L  0.5 0.25  
2SI  0.20744  

 

Table 4.2. – The initial and final values of the desired trajectories. 

Angle 

(  ) 

Velocity 

( m s ) 

Acceleration 

 (
2m s ) 

1I  60  1I  0  1I  0  

1F  0  1F  0  1F  0  

2 I  20  2 I  0  2 I  0  

2F  80  2F  0  2F  0  
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The desired trajectories of the two links are produced by equation (2.29) and (2.30). 

With these simulation conditions, two kinds of comparison methods are designed, they 

are implemented by the introduction of fixed and random parametric errors respectively. 

All the simulations are taken under the close-loop systems. 

 

4.3.1. Tolerance capability comparison by introducing the fixed parametric error 

In this section, to provide insight to the tolerance capability, a set of simulations are 

designed for the main independent variables. In each simulation, the error is added to 

one and only one parameter, the value of error is assumed to vary from -20% to 20% in 

step of 5%. Here, δm1, δm2, δIS1, δIS2, δLAS1 and δLBS2 are noted as the diviation of the 

variables m1, m2, IS1, IS2 and LAS1 respectivily. 

During these simulations, the angular error  i  and the position error  P  are 

calculated according to the equations (4.22) and (4.24). 

The simulations with 20% parametric errors of the variables are shown in Fig. 4.6 

to compare the tracking accuracy among the four manipulators during the whole process. 

Each figure shows the influence on the angular accuracy of one link by introducing one 

kind of variable error for the four manipulators. 

Fig. 4.6(a1) shows the curves of absolut deviation of θ1 that influenced by δm1 

during the whole process. Obviously, for the coupled manipulator_0, there are three 

peaks of wave, for all the three dynamic decoupled models (manipulator_1, 

manipulator_2, manipulator_3,), there are two peaks of wave. Moreover, they are much 

lower than the peaks of wave in the coupled manipulator_0. It should be noted that, 

during the coupled manipulators, the angular error curves of manipulator_1 and 

manipulator_2 are similar and both of theirs peaks of wave are lower than the ones of 

manipulator_3 which is dynamic decoupled by the control method. However, with the 

increase of operation time, for all the manipulators, the difference between the desired 

trajectory and the real trajectory became smaller and smaller, and then became a 

constant. 

From this aspect, the rates of convergence of the decoupled manipulators are 

similar and faster than the coupled manipulator_0. The similar phenomenon also exists 

in Fig. 4.6(a2) and Fig. 4.6(a3). The robust of the decoupled manipulators for tracking 

the desired trajectory also displayed in Fig. 4.6(a5) and Fig. 4.6(a6), especially in Fig. 

4.6(a4). It shows that, during the whole process, the parametric error of variable IS2 has 

no influence on the tracking accuracy of link 1.  



Chapter 4: Tolerance analysis of serial manipulators with decoupled and coupled 

dynamics 

98 

 

  

  

Figure 4.6. – The absolut deviation of the two links that influenced by introducing 20% 

parametric errors of the variables during the whole process of the four manipulators. 

(a1)-(a6) show the angular errors of link 1 that influenced by δm1, δm2, δIS1, δIS2, δLAS1, 

δLBS2, respectively. (b1)-(b6) show the angular errors of link 2 that influenced by δm1, 

δm2, δIS1, δIS2, δLAS1, δLBS2 respectively. 

(a1) (b1) 

(a2) (b2) 

(a3) (b3) 
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Figure 4.6. – The absolut deviation of the two links that influenced by introducing 20% 

parametric errors of the variables during the whole process of the four manipulators. 

(a1)-(a6) show the angular errors of link 1 that influenced by δm1, δm2, δIS1, δIS2, δLAS1, 

δLBS2, respectively. (b1)-(b6) show the angular errors of link 2 that influenced by δm1, 

δm2, δIS1, δIS2, δLAS1, δLBS2 respectively. (Continued). 

(a4) (b4) 

(a5) (b5) 

(a6) (b6) 
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Figure 4.6(b1)-(b6) show the curves of angular error of link 2 that influenced by 

δm1, δm2, δIS1, δIS2, δLAS1, δLBS2 during the whole process respectively. All of them strongly 

proved that the decoupled manipulators can track the desired trajectory more precise and less 

sensitive to the variable errors during the whole process. In addition, it also can be found that, 

the tracking accuracies of manipulator_1 and manipulator_2 are higher than the ones of 

manipulator_3. 

Moreover, according to the final tracking results, the highter robust performance of 

the decoupled also been proved (Tab. 4.3, Tab.4.4, Tab. 4.5 and Tab. 4.6). 

Table 4.3 shows the influence on the positioning accuracy of manipulator_0. As 

mentioned above, in order to establish the closed-loop control, all the nonlinear terms in 

the dynamic equations are cancelled. This causes the discordance between the control 

model and the real manipulator. The result is that, even not any parametric error is 

introduced, the positioning error still exists. For all kinds of variables, along with the 

increase of the parametric error, both the angular error and the position error become 

larger. 

 

Table 4.3. – The influence on the positioning accuracy of manipulator_0 by introducing 

fixed errors. 

   -20% -15% -10% -5% 0 5% 10% 15% 20% 

δm1 

εθ1 0,000246 0,000239 0,000236 0,000238 0,000243 0,000252 0,000265 0,000281 0,000299 

εθ2 0,000748 0,000823 0,000892 0,000955 0,001012 0,001063 0,001109 0,001148 0,001183 

εp 0,005916 0,006228 0,006550 0,006879 0,007212 0,007548 0,007885 0,008223 0,008562 

δm2 

εθ1 0,000313 0,000270 0,000249 0,000242 0,000243 0,000244 0,000239 0,000220 0,000183 

εθ2 0,001112 0,000516 0,000048 0,000563 0,001012 0,001376 0,001638 0,001782 0,001797 

εp 0,004534 0,002403 0,002807 0,004988 0,007212 0,009068 0,010363 0,010955 0,010744 

δIS1 

εθ1 0,000237 0,000237 0,000239 0,000241 0,000243 0,000246 0,000250 0,000253 0,000258 

εθ2 0,000926 0,000949 0,000971 0,000992 0,001012 0,001032 0,001050 0,001068 0,001085 

εp 0,006723 0,006844 0,006966 0,007089 0,007212 0,007335 0,007459 0,007583 0,007707 

δIS2 

εθ1 0,000308 0,000292 0,000276 0,000260 0,000243 0,000226 0,000209 0,000191 0,000173 

εθ2 0,000477 0,000629 0,000769 0,000897 0,001012 0,001115 0,001203 0,001278 0,001339 

εp 0,005219 0,005777 0,006302 0,006783 0,007212 0,007581 0,007887 0,008124 0,008290 

δLAS1 

εθ1 0,001533 0,000893 0,000463 0,000252 0,000243 0,000390 0,000629 0,000911 0,001290 

εθ2 0,002217 0,001119 0,000195 0,000521 0,001012 0,001285 0,001380 0,001364 0,001290 

εp 159,996477 119,998832 80,001383 40,003990 0,007212 39,991362 79,989642 119,988269 159,986697 

δLBS2 

εθ1 0,000309 0,000317 0,000312 0,000289 0,000243 0,000168 0,000057 0,000092 0,000281 

εθ2 0,001955 0,001206 0,000411 0,000361 0,001012 0,001408 0,001379 0,000730 0,000730 

εp 99,997451 74,997385 49,997426 24,997614 0,007212 25,001386 50,000473 74,999237 99,997679 
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Table 4.4. – The influence on the positioning accuracy of manipulator_1 by introducing 

fixed errors. 

   -20% -15% -10% -5% 0 5% 10% 15% 20% 

δm1 

εθ1 0,000053 0,000041 0,000029 0,000015 0 0,000016 0,000034 0,000053 0,000073 

εθ2 0,000053 0,000041 0,000029 0,000015 0 0,000016 0,000034 0,000053 0,000073 

εp 0,000440 0,000348 0,000243 0,000127 0 0,000138 0,000286 0,000445 0,000613 

δm2 

εθ1 0,000084 0,000079 0,000063 0,000036 0 0,000045 0,000098 0,000158 0,000224 

εθ2 0,000024 0,000011 0,000003 0,000001 0 0,000004 0,000011 0,000020 0,000030 

εp 0,000983 0,000876 0,000675 0,000381 0 0,000464 0,001004 0,001614 0,002287 

δIS1 

εθ1 0,000022 0,000017 0,000011 0,000006 0 0,000006 0,000012 0,000018 0,000025 

εθ2 0,000022 0,000017 0,000011 0,000006 0 0,000006 0,000012 0,000018 0,000025 

εp 0,000183 0,000140 0,000095 0,000048 0 0,000050 0,000101 0,000153 0,000207 

δIS2 

εθ1 0 0 0 0 0 0 0 0 0 

εθ2 0 0 0 0 0 0 0 0 0 

εp 0 0 0 0 0 0 0 0 0 

δLAS1 

εθ1 0,001302 0,000576 0,000107 0,000083 0 0,000317 0,000796 0,001365 0,002036 

εθ2 0,001302 0,000576 0,000107 0,000083 0 0,000317 0,000796 0,001365 0,002036 

εp 160,000000 120,000000 80,000000 40,000000 0 40,000000 80,000000 120,000001 160,000001 

δLBS2 

εθ1 0,000003 0,000001 0,000001 0 0 0 0,000001 0,000002 0,000003 

εθ2 0,000169 0,000126 0,000083 0,000042 0 0,000042 0,000084 0,000128 0,000173 

εp 99,999979 74,999988 49,999995 24,999999 0 25,000001 50,000006 75,000013 100,000022 

 

 

Table 4.5. – The influence on the positioning accuracy of manipulator_2 by introducing 

fixed errors. 

   -20% -15% -10% -5% 0 5% 10% 15% 20% 

δm1 

εθ1 0,000045 0,000035 0,000024 0,000013 0 0,000013 0,000028 0,000043 0,000059 

εθ2 0 0 0 0 0 0 0 0 0 

εp 0,000475 0,000371 0,000257 0,000133 0 0,000142 0,000294 0,000454 0,000622 

δm2 

εθ1 0,000087 0,000084 0,000068 0,000040 0 0,000051 0,000112 0,000183 0,000262 

εθ2 0,000087 0,000085 0,000070 0,000042 0 0,000055 0,000124 0,000205 0,000298 

εp 0,000732 0,000704 0,000570 0,000333 0 0,000424 0,000933 0,001518 0,002172 

δIS1 

εθ1 0,000018 0,000014 0,000009 0,000005 0 0,000005 0,000010 0,000015 0,000020 

εθ2 0 0 0 0 0 0 0 0 0 

εp 0,000193 0,000147 0,000099 0,000050 0 0,000051 0,000104 0,000158 0,000213 

δIS2 

εθ1 0 0 0 0 0 0 0 0 0 

εθ2 0 0 0 0 0 0 0 0 0 

εp 0 0 0 0 0 0 0 0 0 

δLAS1 

εθ1 0,000507 0,000172 0,000030 0,000087 0 0,000219 0,000544 0,000942 0,001389 

εθ2 0 0 0 0 0 0 0 0 0 

εp 160,002617 120,000886 79,999848 39,999552 0 39,998872 79,997197 119,995142 159,992838 

δLBS2 

εθ1 0,000008 0,000006 0,000005 0,000002 0 0,000003 0,000005 0,000008 0,000012 

εθ2 0,000034 0,000026 0,000018 0,000010 0 0,000010 0,000021 0,000033 0,000044 

εp 100,000065 75,000052 50,000037 25,000020 0 25,000022 50,000045 75,000070 100,000096 
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Table 4.6. – The influence on the positioning accuracy of manipulator_3 by introducing 

fixed errors. 

   -20% -15% -10% -5% 0 5% 10% 15% 20% 

δm1 

εθ1 0,000079 0,000067 0,000049 0,000027 0 0,000031 0,000066 0,000105 0,000147 

εθ2 0,000124 0,000103 0,000075 0,000040 0 0,000046 0,000098 0,000155 0,000217 

εp 0,000664 0,000557 0,000409 0,000223 0 0,000258 0,000549 0,000871 0,001222 

δm2 

εθ1 0,000033 0,000076 0,000083 0,000056 0 0,000083 0,000190 0,000317 0,000461 

εθ2 0,000072 0,000057 0,000043 0,000026 0 0,000043 0,000111 0,000214 0,000364 

εp 0,000311 0,000657 0,000754 0,000522 0 0,000763 0,001714 0,002802 0,003987 

δIS1 

εθ1 0,000038 0,000029 0,000020 0,000010 0 0,000011 0,000022 0,000034 0,000047 

εθ2 0,000058 0,000044 0,000030 0,000016 0 0,000016 0,000034 0,000052 0,000070 

εp 0,000316 0,000244 0,000168 0,000086 0 0,000091 0,000187 0,000287 0,000392 

δIS2 

εθ1 0 0 0 0 0 0 0 0 0 

εθ2 0 0 0 0 0 0 0 0 0 

εp 0 0 0 0 0 0 0 0 0 

δLAS1 

εθ1 0,001144 0,000497 0,000080 0,000085 0 0,000305 0,000774 0,001353 0,002063 

εθ2 0,001345 0,000594 0,000106 0,000093 0 0,000354 0,000903 0,001584 0,002423 

εp 159,998964 119,999496 79,999870 40,000044 0 40,000251 80,000666 120,001192 160,001856 

δLBS2 

εθ1 0,000010 0,000008 0,000006 0,000004 0 0,000004 0,000008 0,000011 0,000011 

εθ2 0,000294 0,000083 0,000030 0,000052 0 0,000089 0,000156 0,000110 0,000170 

εp 99,999920 74,999931 49,999948 24,999971 0 24,999966 49,999932 74,999908 99,999907 

 

Table 4.4, 4.5 and 4.6 shows the influences on the positioning accuracies of 

manipulator_1, manipulator_2 and manipulator_3 respectively. They are all linearized 

and decoupled models. Through the comparison between the linear model and the 

nonlinear model, the biggest difference is that, there is no positioning error in the 

simulations of the linear models with the nominal parametric values.  

In addition, compared with the values of both angular error and position error 

which are caused by introducing δm1, δm2, δIS1, and δIS2 respectively in the coupled 

manipulator_0, the values of the corresponding ones in the decoupled manipulators are 

an order of magnitude. Especially, the positioning errors that caused by δIS2 in the 

manipulator_1, manipulator_2 and manipulator_3 are all zero, that is, the inertia 

deviation of link 2 has no influence on the positioning error in the decoupled 

manipulators. Moreover, it can be found that, the angular accuracy of link 2 can’t be 

affected by the variable deviations of link 1 (δm1, δIS1, δLAS1), this is also confirmed in 

Fig. 4.6(4a) and 4.6(4b) above. 

Compared with other kinds of variables, the parametric errors of the length 

variables lead to the biggest influences on the positioning accuracy. It seems that the 

control system here cannot compensate the position error that caused by the variation of 

length variable. Besides, the effects of the mass variables are weaker. And the third 

impact factor for positioning accuracy is the inertia variable. 
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4.3.2. Tolerance capability comparison by introducing the random parametric 

error 

In last section, the influencing degrees on the angular error and position error that 

caused by the six variables are analyzed respectively. In order to closer the practical 

situation, the variations of all the variables are added to the nominal models at the same 

time. As the control method cannot compensate the positon errors that caused by the 

length variables, only the mass diviations (δm1, δm2) and inertia diviations (δIS1, δIS2) 

are investigated in this section. 

Thus, the positioning accuracy of the manipulator is influenced by the parametric 

errors of all the variables together.  

There are totally eleven simulations for each manipulator. One of them is 

implemented with nominal parametric values. The rest ten simulations are implemented 

by adding the parametric errors of the four variables in the same time. In order to let the 

parametric values closer to the practical situation, ten sets of random values are created 

in MATLAB first, shown as 

 

0,814724 0,157613 0,655741 0,706046

0,905792 0,970593 0,035712 0,031833

0,126987 0,957167 0,849129 0,276923

0,913376 0,485376 0,933993 0,046171

0,632359 0,80028 0,678735 0,097132

0,09754 0,141886 0,75774 0,823458

0,27849

Ran

8 0,421761 0,743132 0,694829

0,546882 0,915736 0,392227 0,317099

0,957507 0,792207 0,655478 0,950222

0,964889 0,959492 0,171187 0,034446

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 (4.26) 

In order to make sure that the variation range of the variable is still from -20% to 

20%. the equations (4.27)-(4.30) are used to calculate the real parametric values for all 

the simulations. 

 1 1 (0.8 0.4 ( ,1))   r nm m Ran i  (4.27) 

 2 2 (0.8 0.4 ( ,2))   r nm m Ran i  (4.28) 

 1 1 (0.8 0.4 ( ,3))   S r S nI I Ran i  (4.29) 
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 2 2 (0.8 0.4 ( ,4))   S r S nI I Ran i  (4.30) 

where, 1rm , 2rm 1S rI  and 2S rI  represent the real parametric values ; 1nm , 2nm 1S nI  and 

2S nI  represent the nominal parametric values. 

Finally, the real parametric values for all the simulations can obtained, shown in 

Tab. 4.7. In this table, Sim_i means the ith simulation. It should be note that, all the 

parametric values are nominal value in the first simulation (Sim_1). In the rest 

simulations (from Sim_2 to Sim_11), the parametric values are all added with errors. 

Based on these simulations, the total tolerance capability of all the models can be 

compared. Fig. 4.7 shows the angular errors of the link 1. It shows that, in Sim_1, all the 

angular errors of link 1 of the decoupled manipulators (manipulator_1, manipulator_2 

and manipulator_3) are zero. On the contrary, for the coupled manipulator_0, there is  

the angular error. As discussed in the last section, this is because the ‘mismatch’ 

between the control model and the actual model in coupled manipulator_0. This 

phenomenon also exists for the angular error of link 2 and the positioning error of the 

end-effector, shown in Fig. 4.8 and Fig.4.9. 

When the parametric errors are added, the angular errors appear. It shows that the 

angular errors of link 1 of manipulator_1 and manipulator_2 are close and smaller than 

the ones of manipulator_0 and manipulator_3. Meanwhile the range of variation of the 

angular errors of link 1 are also smaller than the ones in manipulator_0 and 

manipulator_3. 

Table 4.7. – The real parametric values for the 10 simulations. 

 m1r m2r IS1r IS2r 

Sim_1 13.193 8.477 0.77754 0.20744 

Sim_2 14,85386 7,316034 0,825978 0,224537 

Sim_3 15,33445 10,07269 0,633139 0,168593 

Sim_4 11,22453 10,02716 0,886125 0,18893 

Sim_5 15,37447 8,427412 0,912519 0,169783 

Sim_6 13,89149 9,495191 0,833129 0,174012 

Sim_7 11,06914 7,262708 0,857701 0,234279 

Sim_8 12,02409 8,211708 0,853158 0,223606 

Sim_9 13,4404 9,886676 0,744021 0,192264 

Sim_10 15,60736 9,467817 0,825896 0,244798 

Sim_11 15,64631 10,03505 0,675274 0,16881 
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The angular errors of link 2 that caused by the parametric errors of all the variables 

together are shown in Fig. 4.8. Obviously, the angular error of the coupled 

manipulator_0 is much higher than the ones of the decoupled manipulators. Among the 

three coupled manipulator, it is difficult to say which is better. This is difference with 

the phenomenon in Fig. 4.7.  

 

Figure 4.7. – The angular error of link 1 with the parametric errors of all the variables. 

 

 

Figure 4.8. – The angular error of link 2 with the parametric errors of all the variables. 
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Figure 4.9. – The position error of the end-effector with the parametric errors of all the 

variables. 

In Fig. 4.9, the position errors of the end-effector of all the models are represented. 

A clear tendency appears that the position error of the end-effector in the coupled 

manipulator_0 is the highest. In addition, the position errors of the end-effectors in 

manipulator_1 and manipulator_2 are close and they are smaller than the ones in 

manipulator_3. In other words, the tolerance capability of manipulator_1 and 

manipulator_2 which are decoupled by the mechatronic methods that proposed in this 

thesis are similar. And these two manipulators are more robust than manipulator_3 

which is decoupled by the control method. Of course, all these three decoupled 

manipulators are much more robust than the coupled manipulator. 

 

 

4.4. Summary 

In this chapter, the tolerance capabilities of four models are analyzed. Two kinds of 

indices are proposed to quantify the positioning accuracy of the manipulator. They are 

angular error of the actuators and the position error of the end-effector. 

First, in order to analysis the influencing degree of each variable of the manipulator 

on the positioning accuracy, the fixed parametric errors are introduced. According to the 

quantitative analysis, it shows that the positioning accuracy is more sensitive with the 
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variation of the length variables. The second influencing factors are the mass parameters. 

And the influences of the inertia parameters on the positioning accuracy are the lowest. 

In addition, it can be also found that, during the whole process, the tracking 

trajectories of the decoupled manipulators, especially in manipulator_1 and 

manipulator_2, are more precise and less sensitive to the variable errors. 

Then, in order to obtain the models closer to the practical situation, the random 

parametric errors are introduced. Furthermore, the parametric errors of all the variables 

are added at the same time during one simulation. According to the results, the 

advantages of the coupled manipulators (manipulator_1 and manipulator_2) appear. The 

tolerance capabilities of these two manipulators are higher than the ones of 

manipulator_3 which is decoupled by feedback linearization and the coupled 

manipulator. 
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Discussion 

Serial manipulators are principally designed by revolute or prismatic joints. In the 

chapters above, the serial manipulators with revolute joints has been discussed. The 

dynamic decoupling of serial manipulator with prismatic joints is a very complicated 

problem. In this discussion, an attempt is made to carry out the dynamic decoupling of 

serial manipulators with prismatic joints by using the same approaches, which was 

applied to serial manipulators with revolute joints.  

The Scott-Russell mechanism has been successfully used in previous chapters for 

achieving the dynamic decoupling of the serial manipulators with revolute joints. In the 

present section, the rhomboid pantograph mechanism having the same properties as the 

Scott-Russell mechanism is considered for the simplification of dynamic equations of 

the serial manipulators with prismatic joints. 

First, a proper manipulator model with a prismatic joint is examined. Then, the 

rhomboid pantograph mechanism is introduced. Finally, the dynamics of the model is 

analyzed. 

 

Figure 5.1. – Planar serial manipulator with a prismatic joint. 

Let us consider a planar serial manipulator with two degrees of freedom shown in 

(Fig. 5.1). This is a planar serial manipulator with revolute and prismatic joints. Link 1 

of the manipulator is connected with the base of the manipulator by a revolute joint and 

link 2 is connected with link 1 by a prismatic joint.  
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As in the previous cases, the Lagrangian formalism is still used for the dynamic 

modeling. 

First, the Lagrangian is calculated as 

 1 2 1 2     L E P E E P P  (5.1) 

where, 

2 2 2

1 1 1 1 1 1
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Thus, the Lagrangian dynamic equations of the manipulator can be obtained as 
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Rewriting these equations, we obtain 
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where, 1 2,m m are the masses of link 1 and 2, respectively; 1 2,S SI I are the moments of 

inertia of links 1 and 2, respectively; 1 2,L L are the lengths of links 1 and 2, respectively;

1ASL is the distance between the center of mass 1S of link 1 and joint center A; 2Sd is the 

distance between the center of mass 2S of link 2 and joint center B; 1  is angular 

displacement of link 1 relative to the base; 1  is angular velocity of link 1 relative to the 

base; 
2Sd is velocity of center of mass 2S of link 2 relative to joint center B; 1 is the 

angular acceleration of link 1 relative to the base; 
2Sd is acceleration of center of mass 

2S of link 2 relative to joint center B;  is the input torque and F is the input force, g is 

the gravity acceleration. 

Obviously, this is a coupled and nonlinear dynamic model. Now, the rhomboid 

pantograph mechanism will be added in order to examine the decoupling conditions in 

such a structure. 

Figure 5.2 shows the examined serial manipulator with the added rhomboid 

pantograph mechanism having the same properties as the Scott-Russell mechanism. 

 

Figure 5.2. – Serial manipulator with the added rhomboid pantograph mechanism. 

In the modified structure, one end of the added mechanism is attached on the center 

of mass of link 2. The other end of the mechanism is connected with the counterweight 

CW2. Thus the counterweight CW2 copies the movement of the center of mass 2S in the 

opposite direction. 
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Assuming that 

 2 2 2 2CW CW Sm L m d  (5.5) 

where, 2CWm is the mass of the counterweight CW2 that attached on one end of the 

rhomboid pantograph mechanism, 2CWL is the distance between the mass of the 

counterweight CW2 and the center of joint B.  

Further, in order to simply the following calculation, we will consider that the 

loops of the rhomboid pantograph mechanism are similar, i.e.  

 
2 2

2 2





CW

CW S
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 (5.6) 

Now, let us rewrite the Lagrangian factor taking into account the added structure 

 1 2 3 1 2 3     L E E E P P P  (5.7) 

where, 
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Rewriting these equations, we obtain 
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 (5.10) 

From equation (5.10) it can be seen that the gravity terms in the second equation is 

cancelled. To cancel the gravity term in the first equation, another counterweight should 

be added to link 1. 

The static moment of the added counterweight CW1 can be found by the 

expression 

 1 1 1 1 2 1 2 2 1 2( ) ( )    CW CW AS S Sm L m L m L d m L d  (5.11) 

where, 1CWm is the mass of the added counterweight CW1 mounted on the link 1, 1CWL is 

the distance between the center of mass of the counterweight CW1 and the center of the 

revolute joint A. 

Finally, we obtain 
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 (5.12) 

It is obvious that, the added rhomboid pantograph mechanism allows one to carry 

out a partial decoupling. It ensures only the cancellation of the terms related to gravity. 

In conclusion, it should be noted that the application of the rhomboid pantograph 

mechanism having the same properties as the Scott-Russell mechanism on the serial 

planar manipulator with a prismatic joint allows a partial cancellation of the coupled 

terms of the dynamic equations. The given analysis showed that only terms due to 

gravity have been cancelled. The problem of dynamic decoupling of serial manipulators 

with prismatic joints remains quite complicated. 
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Conclusion 

 

 

The critical review given in the first chapter showed that the known mechanical 

solutions can only be reached by a considerably more complicated design of the initial 

structure of the manipulator. The complexity of mechanical solutions is in the fact that 

the dynamic decoupling can be achieved via the opposite rotation of links and their 

optimal redistribution of masses. In the known design concepts such a solution is 

carried out by the connection of gears to the oscillating links. The gears added to the 

oscillating links of the manipulator are sources of shocks between teeth that lead to the 

perturbation of the operation of the manipulator, the noise and other negative effects. It 

is obvious that mechanical solutions for adjustment of nonlinear terms of dynamic 

equations due to the changing payload can be reached by unreasonably complicated 

design. 

On the other hand, dynamic decoupling via optimal control of a manipulator with a 

nonlinear system model and a changing payload is also rather complex task. A number 

of procedures for the synthesis of control systems ensuring high quality control of 

manipulators have been elaborated. Applicability of these approximation solutions 

depends on the neglected interaction dynamics, which can be viewed as modeling errors. 

It is obvious that the robustness analysis can be applied to determine their impact. This 

problem is more complicated and unpredictable when it is necessary to take into 

account a variable payload. In this case, the nonlinearity due to the variable load adds to 

the nonlinearity of the manipulator structure. 

Considering the mentioned problems related to the dynamic decoupling of 

manipulators, in the thesis are proposed new solutions combining both mechanical and 

control solutions.  

Chapter 2 deals with the design concept of adjustable serial manipulators with 

linearized and decoupled dynamics taking into account the changing payload. The 

novelty of the developed method consist in the fact that the opposite rotation for 

dynamic decoupling is achieved not by including gears in the existing system but by 

opposite rotation of the links themselves. At first, the dynamic decoupling of the serial 

manipulator with adjustable lengths of links is accomplished via an opposite rotation of 

links and optimal redistribution of masses. Thus, the proposed mechanical solution 

allows one to transform the original nonlinear system model into a fully linear system 

without using the feedback linearization technique. However, as mentioned above, the 
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changing payload creates the variable forces on the actuators, which are also nonlinear. 

Thus, the changing payload leads to the perturbation of the dynamic decoupling of the 

manipulator. To ensure linearized and decoupled dynamics of the manipulator for any 

payload, an optimal control technique is applied. It should be noted that the linearized 

dynamic of the manipulator via opposite rotation of manipulator’s links leads to 

relatively simple equations, which are easier to analyze for further dynamic decoupling 

taking into account the changing payload. 

Chapter 3 deals with a new dynamic decoupling principle, which involves 

connecting to a serial manipulator a two-link group forming a Scott-Russell mechanism 

with the initial links of the manipulator. The opposite motion of links in the Scott-

Russell mechanism combined with optimal redistribution of masses allows the 

cancellation of the coefficients of nonlinear terms in the manipulator’s kinetic and 

potential energy equations. Then, by using the optimal control design, the dynamic 

decoupling due to the changing payload is achieved. The proposed approach, which is a 

symbiosis of mechanical and control solutions, improves the known design concepts 

permitting the dynamic decoupling of serial manipulators.  

In chapter 4, the tolerance capabilities of the two dynamic decoupling manipulators 

(referred to as manipulator_1 and manipulator_2) are investigated through the 

comparison with a coupled manipulator (referred to as manipulator_0) and one other 

manipulator which is decoupled by command (referred to as manipulator_3). Two kinds 

of indices are proposed to quantify the positioning accuracy of the manipulator. They 

are angular error of the actuators and the position error of the end-effector. And two 

kinds of simulations are implemented for complete analysis. Through the results, it is 

obvious that, during the whole process, the tracking trajectories of the decoupled 

manipulators, especially in manipulator_1 and manipulator_2, are more precise and less 

sensitive to the variable errors. In the aspect of the final positioning accuracy, according 

to the quantitative analysis, it also shows that the tolerance capabilities of the two 

manipulators that dynamic decoupled by the mechatronic method are higher than the 

ones of the coupled model and the dynamic decoupled model by command. In brief, no 

matter the behavior during the whole process or the final positioning accuracy, both of 

these aspects prove that the manipulators that decoupled by the mechatronic method in 

this thesis are more robust. 

All suggested design methodologies and control techniques are illustrated by 

simulations carried out using ADAMS and MATLAB software, which have confirmed 

the efficiency of the developed approaches. 
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Finally, it should be noted that in the thesis an attempt is made to carry out the 

dynamic decoupling of serial manipulators with prismatic joints by using the same 

approaches, which was applied to serial manipulators with revolute joints. The obtained 

results showed that only terms due to gravity has been cancelled. The problem of 

dynamic decoupling of serial manipulators with prismatic joints remains quite 

complicated. 

We would like to mention that these works have been presented in several articles that 

listed in Appendix E. 
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Résumé étendu en Français  

 

 

CONCEPTION ET ETUDE DES MANIPULATEURS 

SERIELS A DYNAMIQUE DECOUPLEE PRENANT 

EN COMPTE LA CHARGE EMBARQUEE 

Les manipulateurs sériels composés de chaines cinématiques ouvertes sont des systèmes 

multi entrées et multi sorties représentés par des équations différentielles couplées et non 

linéaires. Ces équations différentielles se complexifient si l’on tient compte de la charge 

embarquée. Dans ce contexte, l’utilisation d’une commande classique de type PID, pour des 

applications nécessitant des mouvements rapides et précis, n’est pas efficace. En effet, les 

forces non linéaires qui interviennent dans les manipulateurs sériels induisent des erreurs de 

réponse en position lors de mouvements très rapides. Même à vitesse lente, les erreurs en 

position ne sont pas négligeables. 

Afin d’améliorer la précision de positionnement de ces manipulateurs, il a été proposé à 

partir des années 90 d’appliquer une commande par découplage non linéaire (nommée 

« feedback linearization », « inverse dynamics » ou « computer torque control »). Cette 

commande, envisageable suite au développement fulgurant des technologies des 

microprocesseurs, consiste à obtenir un système découplé et linéarisé par compensation des 

termes non linéaires couplés issus du modèle dynamique du manipulateur grâce à une boucle 

de retour dite interne. Une condition préalable à l’utilisation de la commande par découplage 

non linéaire est l’identification du modèle dynamique issu du lagrangien dont l’inverse doit être 

calculé dans un intervalle de temps inférieur au pas d’acquisition des mesures nécessaires à la 

commande du système découplé et linéarisé grâce à une boucle de retour dite externe. La figure 

suivante présente la structure de commande par découplage non linéaire. 

 

Structure de commande par découplage non linéaire. 
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Sans l’utilisation de microprocesseurs puissants, la contrainte de temps est difficile à 

satisfaire lorsque le modèle dynamique du robot est complexe. Ce type de commande conduit 

généralement à une solution coûteuse qui est peu attractive d’un point de vue industriel. 

Pour satisfaire le temps de calcul nécessaire à la boucle de commande dite externe, il est 

proposé dans ce mémoire une recherche de solutions mécaniques susceptibles de simplifier le 

modèle dynamique du manipulateur sériel. Dans le cadre de ce travail, l’objectif fixé est le 

découplage total des équations de la dynamique du manipulateur par des solutions combinées 

au niveau de la mécanique et de la commande en tenant compte de la charge embarquée. Le cas 

ultime du découplage total conduit à la suppression de la boucle dite interne. Sur le plan 

mécanique, les solutions envisagées pour simplifier les modèles dynamiques ne doivent pas 

conduire à augmenter considérablement les masses en mouvement et à ajouter des complexités 

structurelles supplémentaires trop importantes. 

 

Chapitre 1 : Conception des manipulateurs à dynamique simplifiée 

Après un bref historique de l’évolution des manipulateurs sériels et des 

applications industrielles, ce chapitre est dédié d’une part, aux méthodes mécaniques 

actuelles de linéarisation et de découplage des équations dynamiques et d’autre part, à la 

synthèse de la loi de commande, issue de la commande optimale à horizon infini, du 

modèle simplifié obtenu par découplage non linéaire (avec la boucle dite interne). 

Au niveau de la mécanique, les méthodes consacrées à la linéarisation et au 

découplage des équations dynamiques des robots sériels peuvent s’inscrire dans l’une 

des trois tendances principales suivantes : 

 

Figure 1.1. - Linéarisation et découplage par délocalisation de l'actionneur. 

1) La linéarisation et le découplage des équations dynamiques par la délocalisation 

de l'actionneur. Cela consiste à découpler la cinématique du mouvement quand 

la rotation de chaque élément est due à un seul actionneur. En d'autres termes, on 
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doit s’assurer que les déplacements de l’actionneur correspondent à un ensemble 

de coordonnées généralisées indépendantes qui permettent de localiser sans 

aucune ambiguïté le manipulateur. La figure 1.1 montre l’exemple présenté en 

1981 par Belyanin, Konstantin, Aron et Alfred. 

Ce principe de conception n'est pas optimal du point de vue de la 

reproduction précise du mouvement car il accumule les erreurs dues aux jeux et 

à l’élasticité de la courroie de transmission utilisée habituellement pour le 

découplage, ainsi que les erreurs dues à la fabrication. 

2) La linéarisation et le découplage des équations dynamiques par la redistribution 

optimale des inerties. Cela consiste à obtenir des tenseurs d’inertie diagonaux 

qui doivent être indépendants de la configuration du manipulateur. La figure 1.2 

montre un robot KUKA avec telle redistribution des masses afin de simplifier les 

équations dynamiques. 

 

Figure 1.2. - Robot KUKA avec redistribution des masses. 

Une telle approche est efficace pour les manipulateurs sériels si les axes des 

liaisons ne sont pas parallèles. 

3) La linéarisation et le découplage des équations dynamiques par la mise en place 

d’éléments auxiliaires. La figure 1.3 montre l’exemple présenté en 2012 par 

Arakelian et Sargsyan. 

 

Figure 1.3. - Manipulateur découplé par un groupe d’engrenages. 
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La modification de la structure du manipulateur permet d’atteindre le découplage 

dynamique. Cette nouvelle tendance, dans la conception de robots sériels, est 

certainement prometteuse. Elle devrait aboutir au développement de nouveaux 

manipulateurs découplés sans grande difficulté. Cependant, la méthodologie de 

conception proposée dans diverses études conduit inévitablement à l'augmentation de la 

masse totale du manipulateur suite aux éléments ajoutés au niveau de chaque lien. 

Les solutions connues sur le plan mécanique conduisent souvent à une conception 

compliquée et à une augmentation inévitable de la masse totale du manipulateur. En 

conséquence, les couples à appliquer deviennent importants et ils ne tiennent pas 

compte de la charge embarquée. 

Au niveau de la commande, le chapitre 1 présente les commandes par retour d’état 

statique et par retour d’état dynamique (rejet asymptotique d’une perturbation constante) 

d’un double intégrateur. En effet, que ce soit par découplage non linéaire par la 

commande ou par découplage du manipulateur par la mécanique, on aboutit toujours à 

des doubles intégrateurs (par obtention de la forme canonique, si nécessaire). La figure 

1.4 présente la commande par retour d’état statique du double intégrateur. 

 

Figure 1.4. - Commande par retour d’état statique. 

Si l’on se donne une trajectoire  R , 2 fois dérivable sur un intervalle   0 T , 

vérifiant les conditions initiales et finales, la loi de commande s’écrit : 

1 2[ ] [ ]        R R Ru g g  

Le retour statique ( 1g  et 2 g ) est déterminé de telle manière que la commande  u  

minimise le critère de performance à horizon infini suivant : 

   
1

2

0

0,  p RC pJ T G T u dt
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où   0,RC pG T  est le grammien transitoire de commandabilité sur un horizon de 

poursuite  PT  capable de régler les modes dominants du système en boucle fermée. 

En ce qui concerne la commande robuste par retour d’état dynamique du double 

intégrateur, un reconstructeur est mis en place dans la boucle afin d’obtenir 垐 ? ,   et d   

(estimation de la perturbation fictive constante  d  qui permet de générer de l’intégration 

implicite). La figure 1.5 présente la commande par retour d’état dynamique du double 

intégrateur où les gains
1g  et

2 g  sont identiques à ceux déterminés précédemment 

(principe de séparation). La loi de commande est : 1 2
ˆ垐 [ ] [ ]         R R Ru g g d . 

 

Figure 1.5. - Commande par retour d’état dynamique. 

La synthèse du reconstructeur est basée sur le grammien transitoire 

d’observabilité sur un horizon de régulation  RT  capable de régler les modes du 

reconstructeur. 

Dans les chapitres 2 et 3 de la thèse, les solutions proposées permettent 

d'améliorer la conception des manipulateurs sériels découplés, par une augmentation 

relativement faible de la masse totale des éléments en mouvement et, en prenant en 

compte la charge embarquée afin d’obtenir une bonne précision de positionnement. 
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Chapitre 2 : Manipulateur sériel reconfigurable à dynamique découplée 

La structure du manipulateur reconfigurable à dynamique découplée, sans charge 

embarquée, est présentée à la figure 2.1. Le manipulateur est composé de deux bras et 

de deux liaisons rotoïdes motorisées. Les effets de la gravité sont compensés par 

construction mécanique. 

Les longueurs 1  ABL L  et 2  BPL L  des bras 1 (composé de 1a et 1b) et 2 

(composé de 2a et 2b) sont variables et peuvent être modifiées selon la trajectoire 

désirée pour le préhenseur. La présence de deux mécanismes Scott-Russel permet 

d’obtenir l’équilibrage statique du bras 2 pour toutes les configurations possibles du 

manipulateur (en fonction de 2b). Le modèle géométrique inverse du manipulateur 

permet d’obtenir les angles 1  et 2  en fonction de la trajectoire du préhenseur ( , )P x y  : 

 

 

2 2 2 2
1 11 2 2 2 2 1 2

1 2

1 2 2 2 2 1 2

cos sin
tan  et cos

cos sin 2

y L L xL x y L L

x L L yL L L

 
 

 

 
      

     
    

 

 

Figure 2.1. - Structure du manipulateur. 

Deux solutions sont possibles et correspondent à deux postures différentes 

nommées « coude bas », notée avec l’index (1) sur la figure 2.2, et coude haut, notée 

avec l’index (2). En effet, la figure 2.2 montre deux configurations du manipulateur 

pour une position initiale iP  (« coude bas ») et une position finale fP  (« coude haut ») 

du préhenseur. L’autre solution, pour une position initiale iP  (« coude haut ») et une 

position finale fP  (« coude bas ») du préhenseur, n’apparait pas sur la figure 2.2. 
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Figure 2.2. - Les configurations initiale et finale du manipulateur. 

Le manipulateur étant statiquement équilibré (le centre de masse du bras 2 est en 

B), le modèle dynamique devient linéaire mais est couplé, c’est-à-dire : 

2 2
1 2 1 1 1 2 1 2 1

2 2 2 2

 S S AS S

S S

I I m L m L I

I I

 

 

     
    

     
 

où 1  et 2  : les couples en A et B ; 1SI  et 2SI  : les moments d’inertie des bras 1 et 2 ; 

1m  et 2m  : les masses des bras 1 et 2 ; 1  et 2  : les accélérations angulaires en A et B ; 

1ASL  : la distance du centre de masse du bras 1 par rapport au point A. 

Pour découpler le modèle linéaire, il faut assurer les rotations opposées des bras 1 

et 2 avec les accélérations angulaires telles que : 1 2.    Dans ce cas, on obtient : 

 2 2

1 2 1 1 1 2 1 1 2  ;   0S S ASI I m L m L        

Les conditions qui conduisent à 1 2    , consiste à calculer les longueurs 1L  et 

2L  en fonction des conditions initiales et finales des angles 1 2   et   qui doivent 

vérifier : 

       1 2 1 1 2 2 2 1
    f i f i        

A partir des équations géométriques du manipulateur et pour les positions initiale 

(coude bas)  ,i

i iP x y  et finale (coude haut)  ,f

f fP x y  et pour 1 1(2) 1(1) f f     , on 

en déduit : 
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2 2 2 2
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où 

1 2 2 2
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2
2 2 2 2
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f f i i
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 ; 2(2) 1 2(1)( )f i       

En tenant compte de la charge embarquée (masse  pm ), les équations 

différentielles couplées et non linéaires du manipulateur à l’étude se complexifient. Ces 

équations complexes seront utilisées, après inversion, pour créer le modèle du 

manipulateur sous l’environnement MATLAB/SIMULINK. 

Sous l’hypothèse des rotations opposées  1 2    , les équations se simplifient 

et deviennent alors exploitables pour compenser par anticipation la charge embarquée. 

Dans ce cas, on obtient : 

     

   

2 2
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+ cos( ) sin( )

0 cos( ) sin( )
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Si  0pm   (pas de charge embarquée), on retrouve les équations des couples 1  et 

2  déterminées précédemment. 

Pour les simulations, les trajectoires angulaires de 1R  et 2R  sont construites par 

interpolation polynômiale (polynômes du cinquième ordre qui vérifient les conditions 

initiales et finales). Pour les valeurs nominales du manipulateur, quatre simulations 

(avec et sans compensation de la charge embarquée) sont effectuées. 

La première simulation, en boucle ouverte avec compensation de la charge, 

fournit des résultats identiques aux trajectoires désirées qui sont présentées à la figure 

2.3. La deuxième simulation, en boucle ouverte sans compensation de la charge, fournit 

des résultats qui divergent car le système est instable. Il ne peut pas rejeter la 

perturbation (charge embarquée). 

La troisième simulation, en boucle fermée avec compensation de la charge, fournit 

des résultats identiques aux trajectoires désirées qui sont présentées à la figure 2.3. La 

quatrième simulation, en boucle fermée sans compensation de la charge, fournit des 

résultats qui convergent car le système est asymptotiquement stable mais présente des 

écarts en régime permanent pour 1  et 2  qui sont liés à la charge embarquée. 
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Figure 2.3. - Les trajectoires désirées pour 1  et 2 . 

Les résultats obtenus attestent de l’efficacité et de la pertinence de la solution 

proposée dans ce chapitre 2 qui tient compte de la charge embarquée. 

 

Chapitre 3 : Découplage des manipulateurs sériels à liaisons rotoïdes 

Le manipulateur sériel à dynamique découplée, sans charge embarquée, est 

présenté à la figure 3.1. Le manipulateur est composé de deux bras principaux (1 et 2), 

de deux liaisons rotoïdes (A et B) motorisées (deux degrés de liberté) et d’un bras 

auxiliaire (3) connecté à un glisseur (4) par l’intermédiaire d’une liaison pivot glissant 

en D et au bras 2 grâce à une liaison pivot (rotoïde) en C. 

Le mécanisme Scott-Russel, constitué des éléments BC, CD et du glisseur, permet 

un mouvement rectiligne parallèle au bras 1 et génère des accélérations angulaires 

identiques des bras 2 et 3. 

 

Figure 3.1. - Structure du manipulateur. 
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Le manipulateur est statiquement équilibré si l’on vérifie les relations suivantes : 

3 3 4 3 0 CSm L m L  ; 3 4 3 2 2( ) 0  BSm m L m L  

où 
2m , 3m  et 

4m  : les masses des bras 2 et 3 et du glisseur 4 ; 
3L  : longueur du bras 3 ; 

2BSL  : la distance du centre de masse du bras 2 par rapport au point B ; 3CSL  : la 

distance du centre de masse du bras 3 par rapport au point C. 

Ces deux conditions permettent d’obtenir un modèle dynamique linéaire couplé. 

Pour effectuer le découplage, le moment d’inertie du bras 3 doit être égal à : 

2 2 2
23 4 3 4

3 2 3

2 3

( )  
   

 
S S

m m m m
I I L

m m
 

où 2SI  et 3SI  : les moments d’inertie des bras 2 et 3. 

Dans ce cas, on obtient : 
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où 1  et 2  : les couples en A et B ; 1SI  et 4SI  : les moments d’inertie du bras 1 et du 

glisseur 4 ; 1m  : la masse du bras 1 ; 1L  : la longueur du bras 1 ; 1ASL  : la distance du 

centre de masse du bras 1 par rapport au point A. 

En tenant compte de la charge embarquée (masse  pm ), les équations 

différentielles couplées et non linéaires du manipulateur à l’étude se complexifient 

terriblement. Ces équations très complexes seront utilisées, après inversion, pour créer 

le modèle du manipulateur sous l’environnement MATLAB/SIMULINK. 

Sous l’hypothèse des deux conditions réalisées, les équations se simplifient et 

deviennent alors exploitables pour compenser par anticipation la charge embarquée. Les 

couples à appliquer deviennent : 
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où BPL  : la distance du préhenseur par rapport au point B. 

Si  0pm   (pas de charge embarquée), on retrouve les équations des couples 1  et 

2  déterminées précédemment. 

Pour les simulations, les trajectoires angulaires de 1R  et 2R  sont construites par 

interpolation polynômiale (polynômes du cinquième ordre qui vérifient les conditions et 

finales). Pour les valeurs nominales du manipulateur, quatre simulations (avec et sans 

compensation de la charge embarquée) sont effectuées. 

La première simulation, en boucle ouverte avec compensation de la charge, 

fournit des résultats identiques aux trajectoires désirées qui sont présentées à la figure 

3.2. La deuxième simulation, en boucle ouverte sans compensation de la charge, fournit 

des résultats qui divergent car le système est instable. Il ne peut pas rejeter la 

perturbation (charge embarquée). 

La troisième simulation, en boucle fermée avec compensation de la charge, fournit 

des résultats identiques aux trajectoires désirées qui sont présentées à la figure 3.2. La 

quatrième simulation, en boucle fermée sans compensation de la charge, fournit des 

résultats qui convergent car le système est asymptotiquement stable mais présente des 

écarts en régime permanent pour 1  et 2  qui sont liés à la charge embarquée. 

 

Figure 3.2. - Les trajectoires désirées pour 1  et 2 . 
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Les résultats obtenus attestent de l’efficacité et de la pertinence de la solution 

proposée dans ce chapitre 3 qui tient compte de la charge embarquée. 

 

Chapitre 4 : Analyse de la tolérance des manipulateurs sériels à 

dynamique couplée et découplée 

Le chapitre 4 est dédié à deux études qualitatives, par simulation, sur la robustesse 

de quatre modèles de manipulateurs planaires et sériels, à deux degrés de liberté, pour la 

même loi de commande en boucle fermée (la boucle de retour externe). Il s’agit de 

simuler les comportements en régime transitoire et en régime permanent des quatre 

systèmes, sans charge embarquée, lorsque les paramètres des modèles des 

manipulateurs varient par rapport à leurs valeurs nominales. Les manipulateurs sont les 

suivants : 

- Le manipulateur_0 à dynamique non découplée, présenté à la figure 4.1. 

- Le manipulateur_1 du chapitre 2 (figure 2.1) à dynamique découplée. 

- Le manipulateur_2 du chapitre 3 (figure 3.1) à dynamique découplée. 

- Le manipulateur_3 à dynamique découplée par la commande par l’intermédiaire 

de la boucle de retour interne (obtention des doubles intégrateurs). 

 

Figure 4.1. - Structure du manipulateur. 

Pour établir la loi de commande du manipulateur_0 de la figure 4.1, le modèle 

linéaire et découplé est obtenu en négligeant les forces centrifuges, de Coriolis et les 

influences mutuelles de la matrice d’inertie pour la rendre constante et diagonale. 

La première étude qualitative consiste à observer les valeurs absolues des erreurs, 

dans le plan articulaire, en régime transitoire. Les paramètres variables concernent les 

masses 1m  (bras 1) et 2m  (bras 2), les moments d’inertie 1SI  (bras 1) et 2SI  (bras 2) et 
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les distances 1ASL (centre de masse du bras 1 par rapport au point A) et 2BSL  (centre de 

masse du bras 2 par rapport au point B). Pour chaque simulation, un seul des six 

paramètres définis est modifié (variation de 20%  par pas de  5% ). La figure 4.2 

présente les résultats pour une variation de 20%  de la masse 1 m . 

 

Figure 4.2. - Valeurs absolues des erreurs sur 1  et 2 . 

Tous les autres résultats présentés dans le mémoire sont en concordance avec ceux 

de la figure 4.2 et permettent d’en tirer la conclusion suivante : les amplitudes des 

variations des valeurs absolues des erreurs sur 1  et 2  sont nettement plus faibles pour 

les manipulateurs des chapitres 2 et 3 à dynamique linéarisée et découplée que celles du 

manipulateur_3 (découplage par la boucle interne) et surtout celles du manipulateur_0 à 

dynamique non découplée. 

La deuxième étude qualitative consiste à observer les écarts en régime permanent 

dans les plans articulaire et cartésien. Les paramètres variables concernent les masses 

1m  (bras 1) et 2m  (bras 2), les moments d’inertie 1SI  (bras 1) et 2SI  (bras 2) et les 

distances 1ASL (centre de masse du bras 1 par rapport au point A) et 2BSL  (centre de 

masse du bras 2 par rapport au point B). Pour chaque simulation, les six paramètres 

définis précédemment sont tous modifiés en même temps par tirage des valeurs, à l’aide 

d’un générateur pseudo-aléatoire, dans une plage de 20%  de leurs valeurs nominales. 

La figure 4.3 présente les résultats des écarts en régime permanent dans le plan cartésien. 

Les résultats en régime permanent, dans le plan articulaire, qui sont présentés dans 

le mémoire sont en concordance avec ceux de la figure 4.3 et permettent d’en tirer la 

conclusion suivante : les écarts en position sur 1  et 2 , dans l’espace articulaire et les 

écarts en position du préhenseur, dans l’espace cartésien, sont beaucoup plus faibles 

pour les manipulateurs des chapitres 2 et 3 à dynamique linéarisée et découplée que 

ceux du manipulateur_3 (découplage par la boucle interne) et surtout ceux du 

manipulateur_0 à dynamique non découplée. 
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Figure 4.3. - Ecarts en régime permanent du préhenseur. 

En conclusion, les résultats de simulation montrent (pour une même loi de 

commande en boucle fermée) une meilleure robustesse (vis-à-vis des variations des 

paramètres) des modèles des manipulateurs planaires et sériels, développés aux 

chapitres 2 et 3. Ceci est dû à la pertinence des modèles utilisés, proches des modèles 

réels, pour générer la loi de commande. 

 

Discussion : 

En général, les manipulateurs sériels font apparaitre des liaisons rotoïdes et des 

liaisons prismatiques. Dans les chapitres 2 et 3, les manipulateurs développés possèdent 

uniquement des liaisons rotoïdes et aucune liaison prismatique. Dans le cadre des 

liaisons rotoïdes, c’est l’utilisation du mécanisme Scott-Russel qui a permis le 

découplage partiel et total des équations dynamiques des manipulateurs étudiés. 

Dans le cadre d’une simple discussion, le découplage dynamique d’un 

manipulateur sériel, soumis à la gravitation, avec une liaison rotoïde et une liaison 

prismatique est mis à l’étude. Le modèle est non linéaire et couplé. Pour examiner les 

conditions de découplage des équations du manipulateur présenté à la figure 5.1, un 

pantographe rhomboïdal est mis en place. Ce type de mécanisme présente les mêmes 

propriétés que le mécanisme Scott-Russel. Une extrémité du pantographe rhomboïdal 

est attachée au centre de masse 2S  du bras 2 qui est connecté au bras 1 par une liaison 

prismatique. L’autre extrémité du pantographe est connectée au contrepoids 2CW  qui 

copie le mouvement du centre de masse 2S  dans la direction opposée. Enfin, le bras 1 

est connecté à la base du manipulateur par une liaison rotoïde. 
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Figure 5.1. - Structure du manipulateur. 

Si l’on rajoute un contrepoids au niveau du bras 1, les équations du couple   et de 

la force F  se simplifient mais restent non linéaires et couplées. Cependant les termes 

dus à la gravité  n’apparaissent plus dans les équations finales. 

Cet exemple simple montre la difficulté très importante à surmonter lorsque l’on 

souhaite découpler un manipulateur sériel avec  une liaison prismatique. 

 

Conclusion : 

Les solutions originales, développées aux chapitres 2 et 3, pour linéariser et 

découpler la dynamique d’un manipulateur planaire et sériel à deux degrés de liberté 

sont très prometteuses. Elles permettent de mettre en place une commande optimale qui 

tient compte de la charge embarquée (très utile dans le cadre d’opérations du type « pick 

and place »). La pertinence des solutions retenues confère une très bonne robustesse vis-

à-vis des variations des paramètres des modèles. Enfin, travailler sur un modèle linéaire 

permet d’envisager, par exemple, la mise en place de lois de commande à énergie 

minimale, à temps minimal, etc. 

Par rapport à la commande par découplage non linéaire, les commandes proposées 

s’affranchissent de la boucle interne et autorisent des cadences élevées (réduction du 

temps de calcul). La précision est également améliorée car elles permettent un calcul 

précis des couples nécessaires au mouvement du manipulateur. 

L’ensemble du travail réalisé est illustré par les simulations réalisées sur les 

progiciels ADAMS et MATLAB. 

Pour l’avenir, des démonstrateurs seraient évidemment les bienvenus pour valider 

les résultats obtenus. De même, une ouverture vers les manipulateurs parallèles est à 

considérer. 
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Appendix A 

 

 

The closed-loop simulation diagram of the dynamic 

decoupling model in chapter 2 

 

Figure A.1. – The general system of the dynamic decoupling model in chapter 2. 

 

 

Figure A.2. – The controller diagram of the dynamic decoupling model in chapter 2. 
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Figure A.3. – The closed-loop diagram of the dynamic decoupling model in chapter 2. 

 

 

Figure A.4. – The manipulator diagram of the dynamic decoupling model in chapter 2. 
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The closed-loop simulation diagram of the dynamic 

decoupling model in chapter 3 

 

Figure B.1. – The general system of the dynamic decoupling model in chapter 3. 

 

Figure B.2. – The controller diagram of the dynamic decoupling model in chapter 3. 
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Figure B.3. – The closed-loop diagram of the dynamic decoupling model in chapter 3. 

 

Figure B.4. – The manipulator diagram of the dynamic decoupling model in chapter 3. 
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The closed-loop simulation diagram of the coupled model 

 

Figure C.1. – The general system of the coupled model. 

 

 

Figure C.2. – The controller diagram of the coupled model. 
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Figure C.3. – The closed-loop diagram of the coupled model. 

 

Figure C.4. – The manipulator diagram of the coupled model. 
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The closed-loop simulation diagram of the decoupled model 

by feedback linearization 

 

Figure D.1. – The general system of the decoupled model by feedback linearization. 

 

Figure D.2. – The controller diagram of the decoupled model by feedback linearization. 
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Figure D.3. – The closed-loop diagram of the decoupled model by feedback 

linearization. 

 

 

Figure D.4. – The manipulator diagram of the decoupled model by feedback 

linearization. 
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Résumé 

 

Structure simple, faible coût, grand espace de travail et 

technologie mature, ces avantages font que les manipulateurs 

sériels sont largement utilisés dans de nombreux domaines 

industriels. Avec le développement rapide de l'industrie et les 

diverses applications des manipulateurs sériels, de nouvelles 

exigences strictes sont souhaitées, telles que la stabilité 

robuste, la grande précision de positionnement et la cadence 

élevée. 

 

Un des moyens efficaces pour améliorer les performances 

mentionnées est la conception de manipulateurs sériels à 

découplage dynamique. Dans ce cadre, l’objectif de cette thèse 

est de valider une structure simple permettant de réaliser un 

découplage dynamique complet des manipulateurs sériels en 

tenant compte de la charge embarquée. 

 

Le chapitre 1 présente les solutions connues et décrit les 

inconvénients liés aux différentes techniques permettant une 

simplification de la dynamique des manipulateurs. L’étude de la 

bibliographie a permis d’affiner les objectifs à atteindre. Le 

chapitre 2 traite de la conception de manipulateurs sériels 

réglables à dynamique linéarisée et découplée. Sans la charge 

embarquée, la méthode développée réalise le découplage 

dynamique par rotation inverse des bras et par redistribution 

optimale des masses. La charge embarquée qui conduit à une 

perturbation au niveau des équations dynamiques de 

découplage est compensée par la commande. 

 

Le chapitre 3 envisage un nouveau concept de découplage 

dynamique qui consiste à relier aux bras initiaux d’un 

manipulateur sériel, deux bras additionnels pour réaliser un 

mécanisme Scott-Russell. Les mouvements opposés des bras 

du mécanisme Scott-Russell associés à une redistribution 

optimale des masses permettent de supprimer les termes non 

linéaires des équations dynamiques du manipulateur. Le 

modèle linéaire et découplé ainsi obtenu permet de tenir 

compte de la charge embarquée. 

 

Dans le chapitre 4, on considère les propriétés de robustesse 

(incertitudes paramétriques) de quatre modèles de 

manipulateurs sériels (un manipulateur couplé, un manipulateur 

découplé par la commande et les deux manipulateurs 

découplés qui sont issus des chapitres 2 et 3). Les études 

qualitatives sont effectuées par simulation en utilisant la même 

loi de commande optimale et la même trajectoire de référence. 

Les résultats des simulations permettent de conclure sur la 

robustesse des manipulateurs décrits aux chapitres 2 et 3 par 

rapport au manipulateur couplé et au manipulateur découplé 

par la commande. 

 

La méthodologie de conception et les techniques de commande 

proposées sont illustrées par des simulations réalisées à l'aide 

des logiciels ADAMS et MATLAB. Les simulations ont confirmé 

l’efficacité des approches développées. 
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Abstract 

 

Simple structure, low cost, large workspace and mature 

technology, these advantages make the serial manipulators are 

widely used in many industrial fields. With the rapid 

development of industry and various applications of serial 

manipulators, new strict requirements are proposed, such as 

high stability, high positioning accuracy and high speed 

operation. 

 

One of the efficient ways to improve the mentioned 

performances is the design of manipulators with dynamic 

decoupling. Therefore, the goal in this thesis is to find simple 

structure permitting to carry out complete dynamic decoupling 

of serial manipulators taking into account the changing payload. 

 

The review, given in Chapter 1, summarizes the known 

solutions and discloses the drawbacks of different techniques 

permitting a simplification of the dynamics of manipulators. It 

allows an identification of objectives that are of interest and 

should be studied within the framework of this thesis. 

 

Chapter 2 deals with the design of adjustable serial 

manipulators with linearized and decoupled dynamics. Without 

payload, the developed method accomplishes the dynamic 

decoupling via opposite rotation of links and optimal 

redistribution of masses. The payload which leads to the 

perturbation of the dynamic decoupling equations is 

compensated by the optimal control technique. 

 

Chapter 3 deals with a new dynamic decoupling concept, which 

involves connecting to a serial manipulator a two-link group 

forming a Scott-Russell mechanism with the initial links of the 

manipulator. The opposite motion of links in the Scott-Russell 

mechanism combined with optimal redistribution of masses 

allows the cancellation of the coefficients of nonlinear terms in 

the manipulator’s dynamic equations. Then, by using the 

control, the dynamic decoupling taking into account the 

changing payload is achieved. 

 

In chapter 4, robustness properties (parametric uncertainties) of 

four various models of serial manipulators (one coupled 

manipulator, one decoupled manipulator by feedback 

linearization and the two decoupled manipulators that modeled 

in chapters 2 and 3) are considered. The given comparison 

performed via simulations is achieved with the same optimal 

control law and the same reference trajectory. Simulation 

results allow one to derive robustness assessments of 

manipulators described in chapters 2 and 3. 

 

The suggested design methodology and control techniques are 

illustrated by simulations carried out using ADAMS and 

MATLAB software, which have confirmed the efficiency of the 

developed approaches. 
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