
HAL Id: tel-01578068
https://theses.hal.science/tel-01578068

Submitted on 28 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Recognition and interpretation of multi-touch gesture
interaction
Zhaoxin Chen

To cite this version:
Zhaoxin Chen. Recognition and interpretation of multi-touch gesture interaction. Human-Computer
Interaction [cs.HC]. INSA de Rennes, 2017. English. �NNT : 2017ISAR0005�. �tel-01578068�

https://theses.hal.science/tel-01578068
https://hal.archives-ouvertes.fr

THESE INSA Rennes
sous le sceau de l’Université Bretagne Loire

pour obtenir le titre de
DOCTEUR DE L’INSA RENNES

Spécialité : Informatique

présentée par

Zhaoxin CHEN
ECOLE DOCTORALE : MATISSE
LABORATOIRE : IRISA – UMR6074

Recognition and
interpretation of

multi-touch gesture
interaction

Thèse soutenue le 28.04.2017
devant le jury composé de :

Hubert CARDOT
Professeur des universités, Université François-Rabelais de Tours / Président
Véronique EGLIN
Professeur des universités, INSA de Lyon / Rapporteur
Nicole VINCENT
Professeur des universités, Université Paris Descartes / Rapporteur
Harold MOUCHERE
Maître de conférences, Université de Nantes / Encadrant
Christian VIARD-GAUDIN
Professeur des universités, Université de Nantes / Co-directeur de thèse
Eric ANQUETIL
Professeur des universités, INSA de Rennes / Directeur de thèse

Recognition and interpretation of multi-touch
gesture interaction

Zhaoxin CHEN

En partenariat avec

Document protégé par les droits d’auteur

Avec le soutien de

Table of Content

1 Introduction For Gesture Based Human Computer Interaction 5

1.1 Organization of the manuscript . 6

2 State Of The Art 9

2.1 Preamble . 9

2.2 De�nition . 10

2.2.1 Direct manipulation & Indirect command 10

2.2.2 Touch Gesture . 11

2.2.3 Early Recognition . 12

2.3 Handwritten Gesture Recognition . 13

2.3.1 Single Touch Gesture . 13

2.3.2 Multi-stroke Gesture . 16

2.3.2.1 Trajectory based . 17

2.3.2.2 Structure based . 19

2.3.2.3 Feature based . 21

2.3.3 Multi-touch Gesture . 22

2.4 Early Recognition . 25

2.5 Structured Document Composition and Recognition 30

3 Multi-touch Isolated Gesture Recognition 33

3.1 Introduction . 33

3.2 Graph Modeling with Allen's Relations 34

3.2.1 Graph Modeling . 36

3.2.2 Graph Embedding . 40

3.2.3 Global Shape Representation (GSR) 40

3.2.4 Experiments . 41

3.2.4.1 Dataset . 41

3.2.4.2 Results . 43

3.3 Graph Modeling with Motion Based Features 46

3.3.1 Preprocessing and Stroke Segmentation 47

3.3.2 Gesture to Graph . 48

1

3.3.2.1 Geometry feature . 48

3.3.2.2 Topology relation . 49

3.3.2.3 Graph de�nition . 52

3.3.3 Graph matching and classi�cation 54

3.3.3.1 Subgraph matching for stroke comparison 54

3.3.3.2 Edge matching . 57

3.3.3.3 Graph classi�cation . 58

3.3.4 Experiments . 59

3.3.4.1 Dataset . 59

3.3.4.2 Comparative results . 61

3.4 Conclusion . 63

4 Reject Option Based Early Recognition Algorithm 65

4.1 Introduction . 65

4.2 Multi-classi�er Early Recognition . 68

4.2.1 Segment Classi�er . 68

4.2.2 Rejection Algorithm . 69

4.2.2.1 Ambiguity rejection . 71

4.2.2.2 Outlier rejection . 72

4.2.2.3 Threshold optimization 72

4.3 Experimental Result . 74

4.4 Conclusion . 76

5 Structured Document Composition in Multi-user Context 79

5.1 Introduction . 79

5.2 Multi-user diagram database . 80

5.2.1 Diagram acquisition . 80

5.2.2 Diversity of the content . 81

5.3 Eager interpretation based recognition system 83

5.4 Experiments . 88

5.5 Conclusion . 92

6 Conclusion & Perspectives 93

6.1 Conclusion . 93

6.2 Perspectives . 94

7 Résumé en Français 96

Publications of the author 111

Bibliography 118

Table of �gures 119

4 Chapter 0

Chapter 1

Introduction For Gesture Based Human

Computer Interaction

The ease with which we type a text with keyboard, navigate the web with mouse, com-

mand smart devices by voice comes from the decades of study on Human-computer inter-

action (HCI). The current ubiquitous direct manipulation interface, where visible objects

on the screen are directly manipulated with a pointing device, was �rst demonstrated by

Ivan Sutherland in Sketchpad [Sut63] in 1963. It supported the manipulation of objects

using a light-pen, including grabbing objects, moving them, changing size, and using con-

straints. Nowadays, mouse has been a standard device to replace the light-pen as a virtual

human �nger in the interface. Usually people use two �ngers on mouse, by left and right

click, to achieve the majority of operations.

Figure 1.1: Touch gesture based manipulation interface.

With the development of touch screen devices and techniques, touch gesture interac-

tion becomes more prevalent in Human-computer interaction domain. Comparing to the

mouse, touch gesture is more in line with the natural behavior of human beings. By our

nature, people are used to use �ngers to grab, drag, stretch and manipulate an object.

5

6 Chapter 1

Multi-touch screen techniques open a way to let people extend these operations on vir-

tual elements. It provides the users a 2D environment enabling people contacting virtual

objects with full �ngers instead of using two �ngers clicking. This technology has pen-

etrated into common electronic devices around us. The smart phone abandons physical

keyboard and uses virtual keyboard on screen instead. Traditional notebook is replaced

by Touchpad which provides a more convenient writing environment. Large interactive

advertisement board appears on the street so that people can easily �nd the interest they

want.

Since touch gesture has replaced most of the operations of mouse and keyboard on

screen, the question then raises whether we can use touch gestures beyond direct manip-

ulations. In reality, hand gesture can be used as a form of non-verbal communication

between people through sending and receiving wordless clues. An example is American

Sign Language(ASL), which is a natural language that chie�y uses manual gesture to

convey meaning serves for deaf communities. So is it possible to teach computer the

sign language and make people use symbolic gestures to execute commands? Actually,

the current handwritten character recognition is one of these techniques. It teaches the

computers to recognize the input �nger's trajectories and transform the trajectories to

corresponding characters. By the nature of character writing, current studies mostly focus

on the mono-touch trajectories recognition, i.e. the trajectories are always written by a

single �nger. There are few research on the study of multi-touch gesture (like the ASL,

with both hands, ten �ngers) recognition for symbolic command.

In this thesis, we study the multi-touch gesture recognition problem. We explore the

possibility of using multi-touch gesture for not only direct manipulation but also indirect

symbolic command. The main contribution of this work is to provide tools and algorithms,

mainly based from pattern recognition and machine learning theories to enrich User Inter-

face Design solution. Of course, many other contributions that are not addressed in this

work are required to design a global system. Specially, human factors and ergonomics,

user experiences, user interface scenographies are beyond the scopes of this works. Our

goal is to address the complexity of multi-touch gestures and develop a system to well

analyze and recognize multi-touch gestures.

1.1 Organization of the manuscript

The manuscript of this thesis is organized as following:

Chapter 2: There have been years of studies for the usage of touch gestures. We

introduce in this chapter the state-of-the-art research for both direct manipulation and

indirect command. We discuss the di�erent type of underlying recognition methods for

both mono-touch gesture and multi-touch gesture.

1.1. Organization of the manuscript 7

Chapter 3: In this chapter, we propose a graph modeling strategy to characterize

the temporal and motion features of multi-touch gesture. To verify our graph modeling

and recognition strategy, we build a MTGSet which is a multi-touch gesture dataset as

benchmark test.

Chapter 4: The current use of multi-touch gestures is mostly restricted to direct

manipulations. We study the possibility of using multi-touch gesture for both direct

manipulation and indirect command. We propose an early recognition strategy enabling

the systme to recognize a gesture by its beginning part in order to give a feedback to the

user as soon as possible.

Chapter 5: The �nal goal of our research is to provide a real context that includes

di�erent types of gesture commands. As a �rst step towards this target, we develop a

multi-user structured document composition environment where two users can simulta-

neously use gestures to compose a diagram. We build a multi-user gesture dataset and

develop an eager recognition system to recognize the gesture on-the-�y in order to give a

real time feedback to the users.

This project is co-funded by the region of Bretagne and Pay-de-la-Loire. We also

thank Excense company for their support.

8 Chapter 1

Chapter 2

State Of The Art

2.1 Preamble

This chapter presents an overview of the research and development status of the hand-

written gesture recognition problem. To broaden the scope of the presentation and clarify

some terms related to the domain, in section 2.2, we will �rst give a brief introduction

of the basic concepts used in human computer interaction. Speci�cally, one important

point is to make a distinction between direct manipulations and indirect commands, to

introduce the notions of early recognition or lazy recognition. Each of these activities does

not provide the same service and it is important to understand what can be expected as

outcomes.

Then, in section 2.3, we focus more speci�cally on gesture interaction, and propose

a classi�cation of gestures related to the number of strokes, the number of simultaneous

touch points, and the number of simultaneous users.The reason being that in this work,

one original scope is to address multi-stroke and multi-touch gestures.

When developing a recognition system, the necessity of real-time classi�cation based

upon the principle that users must receive immediate and appropriate visual feedback

about the e�ects of their actions has to be considered. In this context, early recognition

methods are introduced in section 2.4. This strategy aims at recognizing gestures from

their distinctive beginning part and achieves to recognize as soon as possible.

Finally, a global use case is proposed to conclude this chapter through the study of

structured document composition systems. Such systems combine multi-touch interaction

with recognition paradigms to facilitate digital document production. We will review the

general handwritten document recognition methods and discuss the di�culties to associate

them with multi-touch gesture.

9

10 Chapter 2

2.2 De�nition

Devices enabling touch input have been developed over the last decades providing a more

convenience way for human-computer interaction. In recent years, touch gesture based

applications have been growing considerably due to the prevalence of the smartphone and

touch pad. In this section, we will illustrate some important concepts for handwritten

gestures that help the readers to understand challenging work in this domain.

2.2.1 Direct manipulation & Indirect command

While as presented in the general introduction, many di�erent modalities can be used to

perform interaction, we will introduce the concepts of direct manipulation and indirect

command using touch gesture examples. From the interaction point of view, touch gesture

can be used for two aspects: direct manipulation for (virtual) elements and indirect

symbolic gesture for triggering command. Common examples of direct manipulation

are: using one �nger holding on an element for selecting and dragging the element for

moving. A more comprehensive context for direct manipulation can be found in a map

view application, where users may scroll (pan) the map by dragging, change the zoom

level by using two �ngers for a pinch or stretch gesture, rotate the map by placing two

�ngers on the map and applying a rotate motion. Usually a direct manipulation system

would give a continuous feedback, such as scroll the map, while the users move their

�ngers.

The indirect symbolic gesture is a one-shot operation commonly used in sketch-based

interaction. Users may draw a certain gesture to trigger a corresponding pre-de�ned

command. Such examples can be found in [AZ09], where the stroke gestures are used as

shortcuts to draw prede�ned objects (shown in Fig. 2.1). Another widely used indirect

command example is handwriting, where user input a character by drawing its shape

instead of using keyboard.

Figure 2.1: Handwritten touch gesture for indirect command: (a) Users may input an

icon from the menu. The menu also shows the mapping from strokes to icons. (b) Using

stroke as the shortcut to input the icon instead of selecting from menu. [AZ09]

Since the two interactions o�er di�erent feedback to users, the underlying recognition

2.2. De�nition 11

strategies have a clear di�erence. In the following section, we will review the recognition

methods based on di�erent gestures and di�erent interactions.

2.2.2 Touch Gesture

Depending on the di�erent interaction contexts, touch gesture varies from shape, number

of strokes and number of simultaneous touches. In [SW13], authors summarize the di�er-

ent type of touch gestures based on the number of strokes and touches as shown in Fig.

2.2. Here, a stroke is regarded as the trajectory of a touch (�nger, stylus, etc.) during

uninterrupted contact on the sensing surface. The touch number indicates the number

of concurrent contacts involved. For instance, the �single-touch� describes gestures only

using one touch per stroke. This is the simplest touch gesture that can be used for both

direct manipulation and indirect command. Common examples of single touch direct

manipulation could be dragging on a virtual element or scrolling on a map application.

The �multi-stroke� is the gesture which contains at least two strokes by one touch. This

gesture is widely used for inputing sketches or characters which contains complex struc-

tures that can hardly be achieved by one stroke. Usually systems for �multi-stroke� give

respond only after all the strokes are performed. Therefore �multi-strokes� gesture is

only used for indirect command.

(a) (b)

Figure 2.2: (a) A surface gesture taxonomy based on the number of strokes and touches.

[SW13] (b) Examples of di�erent type of gestures.

The term �multi-touch� is a more complex gesture such that more than one concur-

rent touch is involved. Such gestures are mostly used for direct manipulation such as zoom

or rotation, where two or more simultaneous touches are performed on a sensing device.

To the best of our knowledge, there is only a few studies and applications using �multi-

touch� gesture for indirect command. For instance, a Mac's multi-touch trackpad[Sup16]

provide 8 direct and 7 indirect pre-de�ned gesture commands with di�erent number of

touches involved. Fig. 2.3 gives 4 examples of multi-touch indirect gesture commands,

which are used as a shortcut to open Mission Control or show Noti�cation Center. Most of

12 Chapter 2

the indirect gestures are simply swipe based, which use 2 or more �ngers moving towards

a same direction. Only 'show desktop' and 'launchpad' adopt complex gesture, which

require 4 �ngers spreading or pinching, for indirect commands. Meanwhile, this trackpad

does not support for user-de�ned gesture command so that it is not as convenient as

shortcut from keyboard. Another indirect command use case can be found in [SBMI12],

where `multi-touch' gesture are considered as a remarkable biometric signal for user iden-

ti�cation. In our view multi-touch gestures are supposed to be of special interest as they

involve all degree of freedom. Aiming at the development of a general multi-touch gesture

recognition system, our work focus on using multi-touch gesture as indirect command.

Figure 2.3: Indirect gesture commands supported by Mac's trackpad.

Lastly, the term �Sequential multi-touch� is not a common used gesture type. It refers

to the gesture if it incorporates at least two subsequent strokes and simultaneous touches.

It is de�ned and studied in [SW13], where authors aims to provide a classi�er that covers

all kinds of strokes and touches. Fig. 2.16 gives examples of sequential multi-touch.

In section 2.3, we will review the recognition strategies from the basic single touch

gesture to the most complex multi-touch gesture.

2.2.3 Early Recognition

In general, an indirect gesture recognition system outputs the result after the end of a

gesture. However, since touch trajectories are online data, gestures may have signi�cant

di�erences in their beginning part so that the recognition can be achieved before their end.

2.3. Handwritten Gesture Recognition 13

The underlying strategy is named as Early Recognition (ER), which aims at providing

results before input gestures are completed. This strategy is important to develop practical

and intelligent gesture or motion based man-machine interface. For example, motion

based video games allow user to use motion gesture (such as jumping, squatting, hand

waving) to control the game character. If the recognition process is executed after the

gesture, there would be a signi�cant delay between the user and game character. This

delay decreases the usability and user experience of the system. In order to reduce the

delay, early recognition has to be involved so that gestures can be recognized as soon as

possible.

Figure 2.4: Gestures in feature space. (a) Two gestures have no common part. (b) Middle

parts are common. (c) Beginning parts are common. [MUK+06]

Simply, early recognition can be achieved by partial recognition from the gesture's

beginning parts. However, it would be ambiguous if several gestures have a common

beginning part. Fig. 2.4 gives examples of possible relations between two gestures A and

B in feature space. In Fig. 2.4(a) and (b), there is no common beginning part and thus

we can easily expect correct early recognition results. In contrast, gestures in Fig. 2.4(c)

have exactly same beginning part and can only be distinguished near the end. Therefore,

an ideal early recognition algorithm should be able to detect these ambiguous common

parts and �nd a balance between `early' and `accuracy'. In section 2.4, we will review the

state-of-the-art methods for early recognition.

2.3 Handwritten Gesture Recognition

In this section, we discuss the state-of-the-art handwritten gesture recognition methods

for di�erent type of gestures.

2.3.1 Single Touch Gesture

As the simplest gesture, single touch gesture is widely used in many interaction system

for both direct manipulation and indirect command. While used as direct manipulation,

single touch gesture is mostly used for moving a selected virtual element. System need to

measure the touch's movement direction, speed and displacement to give a corresponding

14 Chapter 2

movement for the virtual element. Most of these movement information can be obtained

directly from the underlying hardware and does not require complex recognition process-

ing.

Figure 2.5: Single touch gesture set for executing commands. [WWL07]

It becomes a symbol recognition problem while gestures are used as indirect commands.

As shown in Fig.2.5, which is a single touch gesture set studied in [WWL07]. Each gesture

can be either linked to trigger a command or used as text input. Basically, there are two

types of recognition strategies for single touch gesture (also named as single stroke, uni-

stroke gesture): 1) sequence matching; 2) statistical recognition based on global feature.

The online touch stroke data consists of a sequence of touch points from the touch down to

the touch up. Dynamic programming algorithms such as dynamic time warping (DTW)

can be employed for performing non-linear sequence matching. Fig. 2.6 shows an example

of DTW matching studied in [NV05]. Each point is represented by its x and y coordinates

as the local feature. In some other works, more elaborate local features are extracted for

each point, such as velocity, pressure, curvature, etc. The DTW is then used to calculate a

distance of the two sequences according to the points matching (as shown in Fig. 2.6(b)).

For more details about DTW, the reader is referred to [VLOK01].

In [WWL07], authors present another competitive sequence matching algorithm named

� $1 recognizer �, for single stroke recognition. Instead of time warping, $1 resamples each

stroke into a �xed number of points. Then a candidate C is compared to each stored

template Ti to �nd the average distance between corresponding points using a point-to-

point matching equation,

2.3. Handwritten Gesture Recognition 15

(a) f1(Xi,t, Xi,t−1) = [dx, dy, θ]T (b) f2(Xi,t, Xi,t−1) = di,j

Figure 2.6: Example of a DTW matching. [NV05]

di =

∑N
k=1

√
(C[k]x − Ti[k]x)2 + (C[k]y − Ti[k]y)2

N
(2.1)

where k is the point index for each symbol. x, y is the coordinate of each point. The

template Ti with the least path-distance to C is the result of the recognition.

The sequence matching algorithm is easy, cheap and accurate with only a few loaded

templates on a small dataset. It requires no complex mathematical procedures, yet com-

petes with approaches that use statistical classi�cation. Such algorithms are highly e�-

cient for recognition of speci�c sets of simple gestures but do not tolerate much variation

in the writing style or drawing process. To generalize the gesture representation and

make use of the fast developing statistical recognition method, a tendency of using global

features to characterize a gesture can be noticed for gesture recognition.

Generally global features are chosen according to the following criteria. Each feature

should be meaningful so that it can be used in gesture semantics as well as for recognition.

There should also be enough features to provide di�erentiation between all gestures and

should not be too many for e�ciency reasons. The Rubine 's feature set is a typical global

feature set which has been widely used for recognizing single stroke gestures[Rub91]. It

employs 13 global features which are computed from a complete gesture shape. Fig. 2.7

shows a part of features used by Rubine, where (f3) and (f4) are the length and angle of

the bounding box diagonal, (f5) is the distance between the �rst and the last point. The

full 13 features can be found in [Rub91].

After this feature extraction, each gesture is represented by a feature vector, f =

[f1, ..., f13]. Then classical statistical recognizer or linear/nonlinear machine can be im-

plemented to achieve the classi�cation.

Due to the fact that single touch gestures are chosen to be not ambiguous and simple to

16 Chapter 2

Figure 2.7: Features used to identify strokes. [Rub91]

be memorized has less variation and writing style, the methods above have been proved

being e�cient and accurate for single touch gesture recognition even though they are

simple and cheap. Unfortunately, they are only moderately successful when applied to

multi-touch/multi-stroke pen input. Shape variation, writing order, number of strokes

have to be taken into account. We will provide a review of multi-stroke gesture recognition

method in next section.

2.3.2 Multi-stroke Gesture

The term multi-stroke gesture here refer to the isolate symbols that contain two or more

strokes, and all strokes are written in a sequence by a single contact (�nger, stylus,

etc.). Obviously multi-stroke gesture is not used for direct manipulation because users

always expect an action after the end of the �nal stroke instead of during the writing

process. Comparing to the single-stroke gesture, multi-stroke gesture contains more stroke

variations and o�er more freedom for the users. Therefore, it has a diversity of usage

such as for drawing characters, pictograms, diagrams, etc. The diversity of patterns

and high variation on stroke number and writing order make the recognition becomes

a more challenging work. Large variety of methods have been proposed to solve this

problem. This section propose to categorize these methods and provides a review of

typical recognition methods for each category. Note that this thesis focus more on multi-

2.3. Handwritten Gesture Recognition 17

touch gesture recognition which is more complex but has less studies (shown in next

section). We review the recognition methods for multi-stroke gestures in this section to

re�ect the di�culties for multi-touch gestures recognition and also enlighten us the way

to solve that problem.

2.3.2.1 Trajectory based

Since multi-stroke gesture is also written by a single contact, the trajectory can still

be seen as a sequence of points but containing special pen up/down points. With an

appropriate adjustment or constraint, the sequence matching strategy for single stroke

gesture is still available for multi-stroke cases.

In [WWL07], authors add pseudo strokes to concatenate each two consecutive strokes.

Each pseudo stroke starts at the end point of a previous stroke and ends at the start point

of the following stroke. The multi-stroke gesture is then transformed as a single stroke so

that any single stroke recognition method can be used. A similar strategy can be found

in [NWV08], authors also add the pseudo strokes and implement the traditional DTW

algorithm for gestures comparison. They give the constraints for DTW that each point

in pseudo stroke can only be matched to a point in another pseudo stroke, same for the �

real � point. Classi�cation of a test sample is performed through nearest neighbor criteria

with the DTW distance function.

Even though these methods well transform the multi-stroke problem to the single

stroke problem, the concatenation between two strokes limits the gesture to be written

in a �xed order and direction. To ensure the di�erent stroke orders and directions can

be properly recognized, [AW10] present $N recognizer which is a signi�cant extension to

the $1 unistroke recognizer introduced in previous section. Basically, $N goes further by

recognizing gestures comprising multiple strokes and automatically generalizing from one

multi-stroke to all possible multi-strokes using alternative stroke orders and directions.

The main idea is to generate all permutations of the component strokes. Each permu-

tation represents one possible combination of stroke order and direction. There are 2N

combinations for N strokes. Fig. 2.8(a) shows 8 possible permutations for a two-stroke �

x �. The permutations of possible combinations are then converted to unistroke (shown

in Fig. 2.8(b)) by simply connecting the endpoints of component strokes as presented in

[WWL07] and stored in template set for comparison. At runtime, each candidate multi-

stroke gesture is also connected in the drawn order to form a unistroke and compared to

all unistroke permutation templates using the $1 algorithm.

Obviously, the brute force of creating all permutations to represent a multi-stroke

gesture results in a combinatoric explosion when the stroke number is large. This method

is e�cient for the gestures which contains a few strokes but not suited to recognition

messy drawing such as Chinese characters or sketchy symbols.

These trajectory based methods are simple, require little processing resource, and

18 Chapter 2

(a) The 8 permutations for a two-stroke � x �. The num-

bered dots indicate stroke order and beginnings.

(b) The 8 unistroke permutations for a two-stroke � x �

generated from (a)

Figure 2.8: Example of all permutations for a two-stroke � x � and its unistroke represen-

tations. [AW10]

2.3. Handwritten Gesture Recognition 19

easily extensible to new class because most of them rely on nearest-neighbor classi�cation

paradigm. This simplicity enable easy incorporation of multi-stroke gesture recognition

for user interface prototypes which do not require heavy and complex engine.

2.3.2.2 Structure based

Instead of transforming the multi-stroke into a single sequence, the structure based meth-

ods focus more on each individual stroke and the inner relations between each two strokes.

These methods usually apply to the multi-stroke symbols which contain much more strokes

and are insensitive for the writing order, such as handwritten sketch. Fig. 2.9 shows 2 ex-

amples of handwritten sketch from [MRLSL06] and [LLLW15]. Apparently, these sketch

examples mainly di�er from visual aspect and accord no importance to the online infor-

mation. The main idea of structure based methods is to analyze the geometric relations

between each two strokes and represent a symbol as a semantic network of strokes with

their relations.

(a) (b)

Figure 2.9: (a) Examples of architectural plans in [MRLSL06]. (b) Example of engineering

drawing in [LLLW15].

In [LLLW15], authors present a typical state-of-the-art structure based sketch recog-

nition method which exploits topology relations and graph representation for strokes. In

sketch recognition domain, since the sketches are complex and contain large number of

strokes, raw input of handwritten sketches usually consist of noisy and inaccurate strokes.

As a standard techniques, the strokes are �rstly re�ned and decomposed into a few basic

primitives. Authors adopt the re�nement approach in [XWJS02] which has four steps:

polygonal approximation, agglomerate points �ltering, endpoints re�nement and convex

hull calculation. Details can be referred in [XWJS02]. An example is given in Fig.2.10

where an open ended triangle becomes closed after processing. The re�ned strokes are

then segmented into sub-strokes and �tted to a few primitive shapes. Note that the re-

�nement and segmentation perform well on clean dataset, noisy or highly curved strokes

are still hard to be segmented properly.

There are plenty of ways to de�ne the relations for each pair of primitives. Mas et. al

20 Chapter 2

Figure 2.10: Example of stroke re�nement.[XWJS02]

[MRLSL06] present an approach to generate a set of adjacency grammars based on �ve

relations (Parallel, Perpendicular, Incident, Adjacent, Intersects). This set determines

the �nal grammatical ruleset to characterize a symbol. [LLLW15] presents a more com-

prehensive topology de�nition according to the type of the involved primitives and the

number of their intersections. Fig. 2.11 shows the examples of topology relations between

primitives.

Figure 2.11: Examples of topology relations between primitives.[LLLW15]

Further more, in order to well illustrate the structure, in [LLLW15] authors use a

topology graph representation to integrate both topology and geometry information as

shown in Fig. 2.12. In graph representation, each vertex is a primitive in the sketch,

each edge indicates a certain topology relation of a pair of primitives. To give a more

precise description of the relations, authors also measure the spatial distance between two

primitives as the complementary feature for the relation. It is shown as the weight on the

edges.

2.3. Handwritten Gesture Recognition 21

Figure 2.12: A sketch and its topology graph with the relations and geometry feature on

edges. Rad means adjacency relation for two primitives which have a common endpoint.

Rhc means half-cross relation that one primitive has a endpoint joining some inner point

of another primitive. [LLLW15]

By its nature, graph representation usually has a complex topology structure since it

measures relations for each primitive pair. Due to the fact that di�erent researchers de�ne

di�erent topology relations and features for the primitives, it is di�cult to give a general

recognition strategy for graph representation. Normally, researchers design their speci�c

graph matching and recognition method according to the graph structure and feature

they used. Sousa et al. [SF10] use graph spectra to map graphs into vector descriptor.

The spectrum of a graph G (which consist of n eigenvalues, where n is the number

of nodes) is computed from the eigenvalues of its adjacency matrix. They compute the

similarity between graphs by calculating a distance between the correspondent descriptors.

[LLLW15] de�ne a novel product operation to calculate the element-wise multiplication

of two adjacency matrices. This operation is used to �nd the common structure parts of

two graphs and measure the similarity between two sketches.

The graph based methods are slow because they perform graph matching for each

sketch in the dataset, and their runtime increases with respect to the complexity of graphs.

This makes it hard to directly apply to a large scale database. To accelerate the recognition

process, Bunke et al. [RB10] present a general method of transforming any graph into

vector descriptors. We will detail this method in later section.

2.3.2.3 Feature based

Extracting features to train and feed a statistical classi�er, such as kNN, neural networks,

support vector machine(SVM), is a more popular solution in pattern recognition. A very

close topic which has been widely studied is isolated character recognition [DLJZ07] where

characters can be seen as isolated multi-stroke symbols. In our speci�c case of indirect

multi-stroke gesture recognition, simple features inherited from Rubine's ones can be

extended. A tendency is concerned to induce more and more complex feature based on

both static (stroke number, convex hull, area) and dynamic (average direction, velocity,

curvature) information. In [JZ07a] authors design a 14 features set. In [NWV08] authors

22 Chapter 2

employed Rubine's features and an additional 15 other global features that make it to 28.

In [WNvGV09] authors design 20 new global features and add it to those 28 features that

results to a 48 features set. In [DA13] authors design their own 49 features set.

We will not detail each feature. Most of the features are geometry features as Rubine's

features which describe the appearance of the writing result. The role of a feature set is

to numerically describe symbols and create boundaries between them, so one symbol can

be discriminated from another in the corresponding feature space. It is di�cult to tell

which feature set or individual feature is most discriminative. The recognition result is

also highly related to the recognition method and dataset they used. In [DA13] authors

compare di�erent feature sets on four datasets. There is no evidence to believe that a

more complex feature set can always yield a better result. Some simple and universal

feature sets can also outperform the systems that were designed, tuned and optimized for

recognition of speci�c datasets.

2.3.3 Multi-touch Gesture

The multi-touch gesture interaction become popular with the development of touch screen

display technique in recent years. A common sense for the usage of multi-touch gesture is

to directly manipulate a virtual element on the touch interface. Usually a direct manip-

ulation based system has limited gesture vocabulary such as click for selection, drag for

moving, pinch for zoom, etc. System need to give the correct feedback to the user at very

early stage of a gesture. The recognition for direct manipulation is achieved by analyzing

the spatial displacement of �ngers over time. For instance, in [OIL11] authors allow three

motions for multi-touch direct manipulation: translation, scaling and rotation. Fig.2.13

shows the three motions according to the displacement of touch points.

(a) Translation motion (b) Scaling motion (c) Rotation motion

Figure 2.13: The displacement of three touch points from time t−1 to t can be translation,

scaling and rotation simultaneously. The f1, f2 and f3 are feature functions which are

respectively related to translation, scaling and rotation. [OIL11]

In order to detect the user's intention from the trajectories, they de�ne three motion

parameters, respectively related to the three motions, that calculate the displacement of

2.3. Handwritten Gesture Recognition 23

touch points between each time t − 1 to t. The de�nition of three motion parameters

are shown in Fig.2.14. The system triggers the corresponding motion operation when the

variation of any motion parameter is larger than a certain threshold. Another similar

method can be found in [ORB+15], where authors de�ne three distance functions (swipe,

rotate and zoom) to evaluate the displacement of �ngers. The chosen motion is given by

any of the three distance with the highest value.

(a) f1(Xi,t, Xi,t−1) = [dx, dy, θ]T (b) f2(Xi,t, Xi,t−1) = di,j

(c) f3(Xi,t, Xi,t−1) = θi

Figure 2.14: The motion feature functions: f1 measures the translation vector of ith point

pair between time t − 1 and t. f2 measures the distance di,j between points in a certain

time. f3 measures the rotation angle θi of ith node between time t− 1 and t. [OIL11]

To the best of our knowledge, there is few researches aiming at the development of a

multi-touch gesture recognition system for indirect command as well as the multi-stroke

gesture interaction. Unlike the multi-stroke gesture where strokes are always written

in sequence, the strokes in multi-touch gesture may have complex synchronization or

intersection relations. Two gestures may have the same appearance but contain di�erent

inner-stroke relations. A fundamental issue is the modeling of these relations between

strokes as the key feature for multi-touch gesture recognition.

Some context dependent works use syntactic approaches, i.e. a textual description for

strokes, to describe the movements and temporal progressions of a multi-touch gesture.

For example, Kammer et al. [KWK+10] present the GeForMT (Gesture Formalization for

Multi-touch) where the �nger traces are abstracted to atomic gestures (POINT, LINE,

CIRCLE, SEMICIRCLE, etc.). Then they use respectively symbolic operator and pre�x

elements to denote the temporal progression and relative movement between traces. The

resulting syntax looks like 1F (HOLD) * 1F (SEMICIRCLE), which means one �nger is

24 Chapter 2

holding on the screen while another �nger is performing synchronously a SEMICIRCLE

type gesture. An example is shown in Fig. 2.15. A similar approach can be found

in [KHDA12], where authors specify each gesture as a regular expression over a stream

of touch event. The recognition is involved by matching the event stream to a list of

prede�ned regular expression in order to trigger the operation. These methods abstract

each stroke to a prede�ne atomic gesture and focus more on the dynamic relations between

strokes. Because of lacking of analyzing global geometry features, these method are

believed to apply to simple multi-touch gesture but fail to recognition gestures which

have complex shapes.

Figure 2.15: Rotate gesture described by GeForMT, where 1F means number of �nger,

HOLD and SEMICIRCLE are prede�ne atomic gestures, o means the �nger is focusing

on an object. [KWK+10]

In [SBMI12] [SBMIA14], Sae-Bae et al. consider multi-touch gestures as a remarkable

biometric signal for user identi�cation. The recognition is achieved by comparing the

shape of two gestures stroke by stroke and calculating a distance to measure the similarity.

This system analyzes the geometry feature for each stroke and compares two gesture from

the global point of view. However, it assumes that each gesture has a �xed number of

strokes and all strokes are performed synchronously. This strategy is not general enough

to deal with the various type of multi-touch gestures.

The most related study can be found in [SW13]. They aim at the development of a

multi-touch gesture recognition system for self-de�ned gestures as well as sketch-based

interaction techniques. Fig. 2.16 shows some examples of their gestures set.

Fig. 2.17 provides an overview of their recognition procedure. The main contribution

of the system is the feature extraction of each stroke and a pairwise stroke matching

based classi�er. In feature extraction, they extract not only the local shape features

of each stroke but also the relative structural and temporal features within the gesture.

Based on these features, they independently build a statistical model for each stroke in the

gesture. A gesture template is shown as a set of statistical models of all its strokes. The

classi�er is achieved by comparing an input gesture with every gesture template regarding

each stroke model. This is done by handling strokes separately and computing a matrix

containing pairwise matching likelihoods of template strokes and input strokes. A best

matching likelihood is computed by solving the maximum matching problem formulated

by this matrix. However, a shortage of this research is that all the gestures in this

2.4. Early Recognition 25

Figure 2.16: Examples of indirect command oriented multi-touch gestures presented in

[SW13]. Larger dots are depicting the start of a trajectory (from one touch), the arrows

their movement and dashed smaller dots symbolize their end. Di�erent strokes are colored

di�erently, black elements belong to the �rst stroke, gray ones to the second.

dataset consist of 3 strokes, authors did not study the robustness for varied number

strokes. Moreover, this dataset does contains gestures which have same appearance but

only di�er from written order (e.g. in Fig. 2.16, gesture No. 07 and No. 08 have same

two synchronized strokes, they di�er from the written order of the third stroke). But

there are no two gestures which have same appearance but di�er from the synchronized

strokes. These problems have not been addressed in this state-of-the-art work and they

may limit to recognize the user's self-de�ne gestures. The community still need a more

general multi-touch gesture dataset and more study on multi-touch gesture recognition

problem.

2.4 Early Recognition

As we illustrated in previous section, the recognition for direct manipulation gesture

and indirect command gesture are completely di�erent. The former one use a real-time

strategy which analyze the �ngers'trajectories during each time interval, while the latter

one has to wait until the end of trajectories, and analyze the global structure or shape

of the gesture. Normally, practical applications use either of them for human computer

interaction. However we imagine a certain context which support both of these interaction,

an underlying recognizer may be confused about whether it should interpret the input as

direct manipulation or wait until the end. The co-existence of these two usages requires a

feedback as soon as possible to be consistent with a direct manipulation. Hence, an Early

Recognition (ER) strategy is desirable to cope with these two kinds of commands.

A basic idea of ER is to employ a partial matching method, where the recognition result

of an input pattern is determined by the matching distance of its beginning part from

reference patterns. To the best of our knowledge, Petit et al. [PM13] proposed for the �rst

26 Chapter 2

Figure 2.17: The overview of a multi-touch symbolic gesture classi�er's architecture pre-

sented in [SW13].

2.4. Early Recognition 27

time using mono-touch gesture for both command shortcut and direct manipulation in

the same context. They consider that human gesture can be segmented into a sequence of

motion units, based on velocity, duration, and shape. They provide a real-time description

that interprets every piece of trajectory and either give continuous feedback during gesture

articulation or at the end. Fig. 2.18 gives an example from their work. A �Heart� like

gesture has di�erent interpretations according to the progressing of its trajectory. The

�rst two stage, �Press� and �Start-move� are default for each gesture. While in the stage

3, the trajectory is interpreted as �Drag� , which is a direct manipulation that triggers a

continuous feedback to the interface. With the progressing of this trajectory, in stage 4

the �symbolic pattern� is detected. System cancels the drag e�ect and wait to the end of

gesture to trigger a �Heart� command.

Figure 2.18: An example of early recognition for a gesture, the recognizer give di�erent

feedback according to the progressing of trajectory. [PM13].

This is a typical but imperfect example which well illustrates the strategy and di�-

culty for early recognition. Some gestures may contain very similar beginning part which

confuse the system that gives a incorrect feedback. An ideal early recognition system

should collect enough information before making a decision and avoid the ambiguous be-

ginning part. Unfortunately, there are few ER works for on-line 2D handwritten gesture.

We will review the early recognition method in related domain in the following part to

explore the general idea for early recognition algorithm.

In [MUK+06], Mori et al. use early recognition for motion gesture prediction. The

proposed early recognition algorithm is based on conventional dynamic programming

(DP). Fig. 2.19 gives an overview of their recognition method. Let I = I1, I2, . . . , Iτ be

an input gesture sequence, where Iτ represents its feature vector at frame τ . Similar, let

R = R1, R2, . . . , Rt be a registered reference gesture sequence, where Rt represents its

feature vector at frame t. A conventional DP algorithm for recognizing the input gesture

sequence I is considered as an optimal nonlinear matching algorithm between I and R.

Their algorithm is described as following:

Step 1: For τ = 1, 2, . . . , repeat Step 2-3.

Step 2: For t = 1, calculate the following DP-recurrence equation:

g1(τ) = 3d1(τ). (2.2)

28 Chapter 2

where dt(τ) represents the distance between Iτ and Rt

Step 3: For t = 2, . . . , T , calculate the following DP-recurrence equation:

gt(τ) = min

 gt−1(τ − 1) + 3dt(τ)

gt−1(τ − 2) + 2dt(τ − 1) + dt(τ)

gt−2(τ − 1) + 3dt(τ) + 3dt(τ)

 (2.3)

The non-linear matching distance at input gesture's frame τ is provided as

d(τ) = gT (τ) (2.4)

The above conventional DP algorithm works successfully to matching an input gesture

sequence to entire part of a reference gesture. To achieve the early recognition, authors

slightly modify the above algorithm. Speci�cally, the distance is re-de�ned as

d∗(τ) = arg min
t∗

g∗t (τ) (2.5)

which means that the DP algorithm uses a local minimum distance at t *th frame

of the reference gesture as the partial matching distance (Shown in Fig. 2.19(b)). This

method is simple and provide recognition results with far shorter recognition times than

conventional algorithm. However, a simple distance based recognizer does not have the

ability to identify the common beginning part of di�erent gestures. This ambiguity or

common beginning part strongly degrades the accuracy of the prediction results.

Figure 2.19: (a) Conventional gesture recognition. (b) Early recognition strategy.

[MUK+06].

To deal with the common beginning part problem, in [KSNT11], authors propose to

calculate the distance gap between the most and second most similar gestures. Denoting

the nearest class c1 and the second nearest class c2, the result is determined as the class

c1 when the di�erence of the two classes ful�lls d(c2) − d(c1) > th. The threshold th is

the parameter which determines the timing of early recognition. A large threshold would

result a high recognition accuracy with the price of a high recognition time delay. In the

2.4. Early Recognition 29

worst case, recognizer need to match the entire sequence of the input gesture to make the

decision. In other words, there is a trade o� between recognition time and accuracy, the

earlier decision is made, the less accuracy results.

In [UA08], authors present a general early recognition method using multi-classi�er

strategy. They train a set of frame classi�ers h1(x), . . . , ht(x), . . . , hT (x), where ht(x) is a

frame classi�er prepared at tth frame, x is a set of training pattern. The frame classi�er

ht(x) provides a recognition result by only using the feature vector of the tth frame. The

recognition result at the tth frame will be determined by combining t recognition results

provided by h1(x), . . . , ht(x), i.e.,

Ht(x) = sign(
t∑

τ=1

ατhτ (x)) (2.6)

where ατ is the weight of each individual classi�er computed by the error rate of hτ (x).

One possible de�nition of ατ is

ατ =
1

2
ln(

1− εt
εt

) (2.7)

where εt is the error rate. Moreover, authors optimize this procedure using weight

propagation. When training the frame classi�ers from t = 1 to T , the patterns mis-

recognized by the last classi�er ht−1(x) are largely weighted not to be mis-recognized by

ht(x). Fig. 2.20 illustrates this procedure. We refer readers to their paper for more details.

This multiple frame classi�er strategy achieves a better results than each individual frame

classi�er because the multi-classi�er can form its discrimination boundary in a higher

dimensional feature space (As shown in Fig. 2.20(c)).

Figure 2.20: Three frame classi�ers combined with weight propagation. [UA08].

In a short conclusion, the above methods try to solve the early recognition using dif-

ferent strategies, either partial matching between two sequences or multi-classi�er at each

frame. However, there are few works to explore the intrinsic problem of early recognition,

i.e. how to well identify the ambiguous common beginning part of di�erent gestures and

give a optimal trade o� between recognition time and accuracy. In chapter 4, we will

present our reject option based method for this target.

30 Chapter 2

2.5 Structured Document Composition and Recogni-

tion

By structured document, we refer to the documents that consists of two-dimensions ar-

ranged symbols (e.g. �owchart diagrams, musical scores, electrical circuits). Examples of

a �owchart and a logic circuit are shown in Fig. 2.21. To realize the full diagram recog-

nition, in general two subproblems have to be solved: 1) Detection of elementary units.

2) Retrieval the relations among elements. Unlike the isolated symbol recognition, where

all strokes are known to be a part of one symbol, a stroke in a diagram can have many

di�erent interpretation depending on its context. A stroke could be a one-stroke sym-

bol, a part of multi-stroke symbol or even contains several symbols. The complex stroke

combination problem is so challenging that many existing recognition systems avoid it by

placing constrains on the way user draws. For instance, some authors require users to

draw symbol with only one stroke [LM01], some others require the user to provide explicit

cues, such as making a pause between two symbols[HR07]. These constrains facilitate the

recognition process but fail to match the way people naturally draw.

(a) (b)

Figure 2.21: (a) Examples of diagrams with structure in [BPP+14]. (b) A digital logic

sketch in [PSDA10].

From the interaction point of view, there are two recognition strategies for structured

document recognition, shown in Fig. 2.22. The �rst is lazy interpretation, which uses the

full document as the input and recognize all the symbols and their relations in one shot.

The analysis process ignores the user's creative phase during the document composition

and has full context to make the most sensible decision. Lazy interpretation o�ers the

advantage that every stroke in a completed document is meaningful (despite the noise) for

the nearby context. It means that a stroke is certainly either to be an isolated symbol, or

supposed to be grouped with nearby strokes to form a multi-stroke symbol since full con-

text is presented. The di�culty of detecting elementary units introduced above transforms

2.5. Structured Document Composition and Recognition 31

into a stroke grouping problem based on their spatial and temporal relations. Plenty of

research give their e�ort in this orientation. [AFMVG11] proposed an online handwritten

diagram dataset and generate most of possible segmentations �ltered by some geometric

constraints. The �nal segmentation is the one which maximize the probability of each

symbol recognized by a classi�er. [BPP+14] and [CLC13] use the same dataset but with

di�erent approaches. Bresler et al. [BPH13] estimate a general distance threshold based

on the two closest points from two strokes to determine if they are enough spatially close

to be a symbol candidate. Then the �nal decision is also seen as a max-sum optimiza-

tion considering the symbol probabilities and their relations. In [CLC13] the recognition

process is guided by a grammar base syntactic analysis which parses the full document

structure. Peterson et al. [PSDA10] present a two step solution: �rst isolated strokes

are classi�ed and then a binary stroke grouping classi�er (based one one temporal feature

and 12 spatial features between two strokes) is used to group the strokes.

Another strategy is eager interpretation, which is a real-time recognition solution. It

tries to interpret each stroke as well as their structure during the composition, more

precisely after each input stroke. By eager interpretation, it incrementally updates the

recognized document according to the coming stroke and o�ers a real-time visual feedback

to the users. Comparing to the lazy interpretation, eager interpretation gives a more

naturally way for human-computer interaction that allows immediately validation and

correction from users instead of waiting to the end. However, the di�culties are also

obvious: not every stroke is meaningful for the nearby strokes when it is completed.

A stroke could be a beginning part of a symbol and the full symbol has not yet been

�nished. On the one hand, the system need to be intelligent enough to identify the

un�nished strokes and wait for more information to make the decision. On the other

hand, the analysis process must be e�cient to keep the use'pace that gives feedback as

soon as possible. Eager interpretation still remains a complex and open problem that is

rarely exploited.

(a)

(b)

Figure 2.22: (a) Lazy interpretation of musical score. (b) Eager interpretation of musical

score [MA09].

32 Chapter 2

In our work, we go one step further on structure document composition. We are

interesting in the diagram composed by multiple users, which has never been studied

before. This project allow users to work together to complete a complex diagram by

collaboration. We try to implement the eager interpretation to give a real-time feedback

to the users. This e�ort will be introduced in chapter 5.

Chapter 3

Multi-touch Isolated Gesture

Recognition

3.1 Introduction

Touch gesture interaction is considered as very natural in human computer interaction.

It o�ers a more intuitive and convenient user experience than using a mouse and/or

a keyboard. As a consequence, in recent years, an increasing number of e�orts have

been spent on enhancing computers' capabilities to better interpreting the user's gesture

commands.

Generally, touch gesture is mainly used in two contexts when performing HCI in

Human Computer Interaction (HCI): manipulation and command. The former is an

online mode during which a system analyzes the spatial movements of �ngers on the �y.

Such gestures are mainly object oriented, i.e., two �ngers pinching for zoom out, circling

for rotation, etc. Users may receive a real-time feedback from the system during the

movement of their �ngers. The latter is an o�ine mode and the e�ect is evaluated after

the gesture is completed. The recognition is achieved by analyzing the writing order and

global shape of the trajectories as well as sketch-based interaction, e.g. text recognition.

The system will then trigger a pre-de�ned command based on the recognized gesture.

Currently, multi-touch gestures are mostly used as manipulation mode such as zooming,

panning, rotating, etc. Usually, a local analysis of the gesture is performed based on the

motion relationships between each �nger during short time intervals [OIL11], as illustrated

in previous chapter in Fig. 2.14. On the other hand, command interaction is generally

achieved with mono-touch gestures. Such systems analyze the gesture´s shape, speed,

and writing direction to provide a global interpretation [MMM+12] [WNvGV09]

The problem is much more complex if a multi-touch gesture is used to execute a

command operation. As stated in [SW13], where the term sequential multitouch is used

to subsume multi-stroke and multi-touch gesture, a multi-touch gesture consists, by def-

inition, of a variable number of �nger trajectories and simultaneous touches. Spatial

33

34 Chapter 3

and temporal relations between these trajectories, including synchronicity, are impor-

tant properties to recognize di�erent gestures. Such relations are useful to distinguish

shapes with di�erent writing orders. We described in chapter 2 some State-of-the-art

methods [KHDA12] [LC02] [LLLW15] study these relations and their underlying seman-

tics using individual segment instead of a global point of view. Some other multi-stroke

sketch matching methods [FFJ11] [LLLW15] exploit the topology relations between sketch

primitives and give a global interpretation but obviously the temporal relations are not

concerned.

In this chapter, we present our e�ort for an online multi-touch gesture recognition

system that e�ectively addresses the global interpretation issue. Two graph models will be

introduced to extract the inner stroke spatial and temporal features. In section 3.2 we will

detail our �rst graph model which is based on the features of static strokes relations. We

combine these stroke relation features with classic geometric features, i.e. HBF49 [DA13],

as a supplement to better characterize the multi-touch gesture. To test this graph model

we have designed a new multi-touch gesture dataset with 18 gesture classes. Experimental

results will be detailed and analyzed in section 3.2.4. Furthermore, to introduce more

dynamic motion features into the graph model, we then present in section 3.3 the second

graph model with motion based features. In this model we quantify the motion relations

between strokes with numeric features instead of categorical features comparing to the

�rst approach. A more sophisticated graph matching algorithm is proposed based on this

new graph model in order to calculate the dissimilarity between graphs. To re�ect the

real challenges and complexities in multi-touch gesture domain, we update our gesture

dataset and bring in more multi-touch gestures which have intricate inner stroke relations.

We name this dataset as MTGSet (Multi-Touch Gesture dataset) and make this dataset

freely available1 to constitute a baseline benchmark for the multi-touch gesture recognition

community. We present the experimental results in section 3.3.4.

3.2 Graph Modeling with Allen's Relations

We introduce here our �rst recognition system for multi-touch gestures. Fig. 3.1 shows

the global framework of this recognition system. We will �rst discuss the graph modeling

approach where the strokes and their spatial and temporal relations are respectively repre-

sented by vertices and edges in the graph. We then introduce a graph embedding strategy

to encode the graph into a �xed size vector to feed a vector based classi�er. An external

feature extraction method is used as a complement for the global shape representation.

1www-intuidoc.irisa.fr/category/bases-de-donnees

3.2. Graph Modeling with Allen's Relations 35

Clustering
(Local Shape
Representation)

N Classes
(Default = 9)

Strokes to
vertices

Relations
between
vertices

Allen’s
relations

Graph
embedding

Strokes
labeling

Training
set

Feature Extraction
(Global Shape
Representation)

Training
Classifier

(SVM)

Graph modeling

Gesture
graph

All
strokes

Feature
vector

For each
gesture

Feature
vector

Merge

For each
gesture

Figure 3.1: The graph modeling and classi�er training architecture of gesture recognition

system.

36 Chapter 3

3.2.1 Graph Modeling

A multi-touch gesture modeling should consider three kinds of information: spatial, tem-

poral and shape information. The spatial information shows the relative position of each

single stroke with reference to the others inside the gesture, while a temporal informa-

tion illustrates the written order or synchronization between the di�erent strokes and the

duration of each one. The last information should retain knowledge about the intrinsic

shape of the stroke, allowing to distinguish for instance between a simple straight line

from a more complex curve.

In a �rst step, each stroke is represented by three vertices as presented in Fig. 3.2, i.e.

a begin vertex (Vb), a stroke vertex (Vs) and an end vertex (Ve). Note that the stroke is

not explicitly segmented into three parts to match with the three vertices. These three

vertices are used as reference points for the following stroke relation measurement.

Figure 3.2: A stroke is represented by three vertices in a graph. Vb: begin vertex; Vs:

stroke vertex; Ve: end vertex.

Secondly, the shape information need to be integrated into the graph. With this

�rst solution, to simplify the graph classi�cation, we usea discrete codebook to encode

each stroke as primitive. Here the primitive refers to the low level basic shape (e.g.

line, arc, ellipse) which serves as the abstraction of a stroke. Unlike the other works

[LLLW15] [AMG07] in which strokes are decomposed into pre-de�ned shape primitives,

we implement a clustering method for all the strokes in the training set to de�ne the code

book. We extract the HBF49 features [DA13] to characterize each stroke and use the

standard Euclidean distance based K-means method to achieve the clustering. Each stroke

is then represented by the class of primitives. This class label is stored as an attribute on

each stroke vertex Vs, denoted as ΣVs = {Vc1, . . . , Vcn}, where n is the number of classes.

Since the shape information is measured on each individual stroke, this strategy is named

as Local Shape Representation (LSR) in the following paragraph. Consequently, a

more general denotation of the type of vertex is ΣV = {Vb, Ve, Vc1, . . . , Vcn}, where Vb and
Ve are speci�c for the extreme vertices.

Based on these vertex representation, we then measure the spatial and temporal re-

lations between strokes. We make use of the Allen's relations [All83] which originally

characterized the inferences about time by discrete labels. Fig. 3.3 shows the illustra-

tion and examples of Allen's relations. Such relations enumerate 7 relations between two

events on one-dimension. Based on that, we respectively use Allen's relations on t-axis for

measuring temporal relation and x,y-axis for spatial relation between two strokes, denoted

3.2. Graph Modeling with Allen's Relations 37

as ΣR = {ΣRx , ΣRy , ΣRt} = {Bx, . . . , Fx, By, . . . , Fy, Bt, . . . , Ft}.

Figure 3.3: Examples of seven Allen's relations.

Considering a two strokes gesture as an example, Fig. 3.4 shows a general graph

prototype with all potential relations that need to be measured. These relations are

represented by edges as Es(x, y), Est(x, y, t) and Ast(x, y, t) between two corresponding

vertices in the graph. The de�nition of these notations is shown as follows.

Figure 3.4: An example of a general graph modeling for a two strokes gesture.

1) Edge between stroke vertices (Ast(x, y, t)): Ast ⊆ ΣR means that the full set

of Allen's relations are used to measure the relationships with respect to time, x-axis

position and y-axis position between two stroke vertices Vs, where the subscript st means

both spatial and temporal relation need to be measured. Note that since we measure

the relation from time, x-axis and y-axis, the edge Ast has a set of three relations as its

features.

2) Edges between extreme vertices (Es(x, y) and Est(x, y, t)): Because the ex-

treme vertices represent each of the �nger-down or �nger-up positions, only Equal time,

38 Chapter 3

x-axis or y-axis relation is measured between extreme vertices. Est(x, y, t) ⊆ {Ex, Ey, Et}
is the edge which has a set of Equal time, x-axis or y-axis property as its features. It

is used to represent the relation between begin vertices pair or end vertices pair. Unlike

the edge between stroke vertices which has a �xed number of three relations, relations

between extreme vertices may not satisfy any of an Equal property. Therefore, edge Est
can have a varied number of relations from 1 to 3. If none of an Equal property is sat-

is�ed, edge between corresponding extreme vertices would not be generated. The edge

Es(x, y) ⊆ {Ex, Ey} is simpli�ed from Est(x, y, t). It is used to represent the relation

between a begin vertex and a end vertex. Obviously the Equal time is not satis�ed in this

case. It may also have a varied number of relations either 1 or 2, as de�ned for Est(x, y, t).

We note that the relations (edges) between extreme vertices service as a comple-

mentary measurement for Allen's relations. Even though some Equal relations between

extreme vertices are also implied in Allen's relations between stroke vertices, we keep

these redundant representation in the graph to ensure a rich structure layout. Otherwise,

gestures which have a same number of strokes will always have a same graph structure.

In the following we will give two examples and their full graphs to intuitively demon-

strate the graph modeling process.

Flick x

y

௫ሻܧ௫ሺ݈ܽݑݍܧ

݁ܤ
݋݂
݁ݎ

௬
ሺܤ

௬
ሻ Spatial	relation

t
௧ሻܧ௧ሺ݈ܽݑݍܧ

Time	duration

Str1

Str2

Str1

Str2

Primitive set from
clustering

C1

C2

C3

⁞

௕ܸ
ଵ

௖ܸଵ
ଵ

௘ܸ
ଵ

௕ܸ
ଶ

௖ܸଵ
ଶ

௘ܸ
ଶ

௦௧ܣ ൌ
௫ܧ
௬ܤ
௧ܧ

௦௧ܧ ൌ
௫ܧ
௧ܧ

௦௧ܧ ൌ
௫ܧ
௧ܧ

௦ܧ ൌ ௬ܧ

௦ܧ ൌ ௬ܧ

(a) (b) (c)

(d) (e)

Figure 3.5: a) A �ick gesture. b) Spatial relationship between strokes. c) Temporal

relationship between strokes. d) Primitive set from clustering. e) Graph model with

labels.

Fig. 3.5(a) shows a Flick gesture where two strokes are written simultaneously. The

3.2. Graph Modeling with Allen's Relations 39

spatial and temporal relations between strokes are depicted in 3.5(b) and (c). According

to the Allen's relations, the attribute Equalx(Ex), Beforey(By) and Equalt(Et) are as-

sociated to the edge Ast as shown in Fig. 3.5(e). The edge Est = {Ex, Et} between V 1
b

and V 2
b indicates the two starting points are written in the same region on x-axis and

in the same time. Same property will also be found between the two Ve vertices. The

edge Es = {Ey} for {V 1
b ,V

1
e } pair and {V 2

b ,V
2
e } pair means that the extreme points are

written in the same region on y-axis. Comparing to the general case in Fig. 3.4, the edges

between V 1
b and V 2

e , V 2
b and V 1

e in Fig. 3.5(e) are removed because the corresponding

two points are not located at the same position on neither x-axis nor y-axis. According to

the primitive set shown in Fig. 3.5(d) (A real primitive set should be acquired from the

clustering of all strokes. Here we use an arti�cial set to demonstrate the LSR process),

both of the two strokes are classi�ed to C1. Therefore, each stroke vertex Vs is set to Vc1.

Anchor	rotate x

y

௫ሻܤ௫ሺ݁ݎ݋݂݁ܤ

ݐܵ
ݎܽ
ݐ ௬
ሺܵ
௬
ሻ

Spatial	relation

t
௧ሻܨ௧ሺ݄ݏ݅݊݅ܨ

Time	duration

Str1
Str2 Str1

Str2

Primitive set from
clustering

C1

C2

C3

⁞

௕ܸ
ଵ

௖ܸଷ
ଵ

௘ܸ
ଵ

௕ܸ
ଶ

௖ܸଶ
ଶ

௘ܸ
ଶ

௦௧ܣ ൌ
௫ܤ
ܵ௬
௧ܨ

௦௧ܧ ൌ ௦௧ܧ௧ܧ ൌ ௬ܧ

௦ܧ ൌ ௬ܧ

(a) (b) (c)

(d) (e)

௦ܧ ൌ
௫ܧ
௬ܧ

Figure 3.6: a) A anchor rotate gesture. b) Spatial relationship between strokes. c)

Temporal relationship between strokes. d) Primitive set from clustering. e) Graph model

with labels.

Fig. 3.6(a) gives another example of an Anchor rotation gesture. This gesture is writ-

ten by two �ngers following a semi-synchronous way in time domain (as shown in 3.6(c)).

The corresponding full graph is shown in Fig. 3.6(e). Consequently, comparing to the

Flick gesture above, the two graphs have di�erent structure and attached attributes on

edges and vertices. Therefore, our graph model retains rich structure and attribute infor-

mation of multi-touch gesture and well capture the temporal relations between strokes.

40 Chapter 3

It is discriminative and informative for multi-touch gesture recognition.

3.2.2 Graph Embedding

A graph embedding method aims to transform the graph structure into a feature vector

for the bene�t of using statistical classi�cation method. In this paper, we adopt a graph

embedding approach introduced by Sidere et al.[SHR09]. The basic idea of this approach

is to build a matrix where each row is relative to a label of vertices or edges while each

column corresponds to a sub structures Pj of the graph. The value of the matrix at [Li,

Pj] is the number of occurrences of the label Li in each sub graph Pk which is isomorphic

to the sub structures Pj. The construction of the vectorial representation can then be

performed by transforming the matrix into vector feature space. Fig. 3.7 gives a graph

embedding example of the graph in 3.5(e).

Pattern

Extreme
vertex
(2)

௕ܸ 2 4 6

௘ܸ 2 4 6

Stroke	
vertex
(N)

௖ܸଵ 2 2 0

⁞ ⁞ ⁞ ⁞

௖ܸ௡ 0 0 0

Edge
(7x3)

௫ܧ 0 3 4

⁞ ⁞ ⁞ ⁞

௫ܨ 0 0 0

௧ܧ 0 3 4

⁞ ⁞ ⁞ ⁞

௕ܸ
ଵ

௖ܸଵ
ଵ

௘ܸ
ଵ

௕ܸ
ଶ

௖ܸଵ
ଶ

௘ܸ
ଶ

௦௧ܣ ൌ
௫ܧ
௬ܤ
௧ܧ

௦௧ܧ ൌ
௫ܧ
௧ܧ

௦௧ܧ ൌ
௫ܧ
௧ܧ

௦ܧ ൌ ௬ܧ

௦ܧ ൌ ௬ܧ

Figure 3.7: Vectorial representation of the graph in 3.5(e).

In our case, we empirically choose three sub structures which are one vertex, two

vertices with one edge and three vertices with two edges for the column of the matrix.

The row involves cluster number N (typically 9), labels of begin and end for the vertex,

and the seven Allen's relations for three aspects (time, x-axis and y-axis). On the whole,

32 labels will be related to the rows. Accordingly, a graph feature vector with a length of

96 will be generated after the graph embedding.

3.2.3 Global Shape Representation (GSR)

The above LSR helps to integrate the stroke's shape information into the graph. It is

generally believed that the global shape information of a full gesture is implied by the LSR

3.2. Graph Modeling with Allen's Relations 41

and graph topology. For our purpose, this global shape information need to be explicitly

described and used for graph classi�cation. To combine the global shape information and

graph representation, we extract the HBF49 features on a full gesture and concatenate

its feature vector to the graph feature vector achieved above. Note that the HBF49 is a

static feature set for charactering mono-touch gesture. It has been proved to achieve a

strong result on many mono-stroke or multi-stroke datasets. However, it doesn't contain

the temporal relation feature between strokes. Therefore, we make use of this feature set

as a complementary description for our graph modeling and enhance the robustness of the

recognition system. In the experimental section, we will compare the recognition result

with and without this feature set.

3.2.4 Experiments

We conducted experimental evaluation of our proposed recognition system over a multi-

touch gesture dataset. We will �rst introduce this multi-touch gesture dataset and then

report the experimental results.

3.2.4.1 Dataset

There are few standard common dataset for multi-touch gesture recognition. This is

because in a common sense multi-touch gestures are used for direct manipulation instead

for inputing symbolic command. Therefore, we design a multi-touch gesture dataset which

re�ects the possibility of using multi-touch gestures for indirect symbolic commands. This

dataset contains a total of 1,800 multi-touch gesture samples, written by 10 persons. There

are 18 di�erent multi-touch gestures which are initially designed for indirect command

(Fig. 3.8). These gestures are composed of points, linear segments and arcs with a varying

number of strokes. Note that most of them have an apparent distinction according to their

shape except two pairs, Command C-1 versus Command C-2 and Flick versus Flick-twice.

In gesture C-1, user performs �rstly the 'dot' on the left side, then the 'C' shape on the

right side. On the contrary, in gesture C-2 the 'dot' is done after the 'C' shape. For the

second pair of gesture, the di�erence is not in the sequence but in the synchronization :

the Flick gesture is performed with two �ngers �icking simultaneously, whereas the Flick-

twice gesture is done by one �nger but �icking twice. These two pairs of gestures have the

same shape respectively but are di�erent from a temporal point of view. We introduce

them in the dataset to re�ect the real challenge of multi-touch gesture characterize and

evaluate the capability of our recognition method to discriminate gestures from temporal

information.

Fig. 3.9 gives a screen shot of the data acquisition tool we used. Note that we record

some basic information (Fig. 3.9(a)) of each user i.e. sex, age and handedness (The name

is erased due to a law.....). Although these information are not used in our experiment,

42 Chapter 3

Figure 3.8: Multi-touch gestures prototypes in our experimental dataset.

we believe that they can be useful for a future work for human behavior analyzing. Since

multi-touch gesture have complex dynamic variations, di�erent gestures may have a same

appearance but di�er from writing order. Therefore, we give an animation of each gesture

to explicitly show the writing order of touches instead of using a static image (Fig. 3.9(b)).

(a) (b)

Figure 3.9: (a) We record some basic information from the users. (b) Data acquisition

tool. In the top right, a animation is used to show the groundtruth of a multi-touch

gesture.

3.2. Graph Modeling with Allen's Relations 43

3.2.4.2 Results

Since the graph features have been embedded in a vector features, we chose LIBSVM as

the classi�er. The LIBSVM with a Gaussian kernel and default parameters appeared to

provide adequate capability for gesture classi�cation.

From the architecture of our gesture recognition system shown in Fig. 4.4, the graph

modeling procedure can be roughly segmented into three modules: 1. Basic graph (Strokes

to vertices and Relations between vertices); 2. LSR for stroke labeling; 3. GSR by

feature extraction. To fully evaluate the importance and in�uence of these modules, �ve

experiments were conducted with di�erent modules or module combinations respectively.

Experiment 1 (Basic Graph): this experiment uses basic graph to characterize the

multi-touch gesture without LSR andGSR. Only spatial and temporal relations between

strokes were integrated in the graph as features. It is regarded as a baseline system for

comparison.

Experiment 2 (GSR): the HBF49 has been tested on di�erent mono-touch gesture

datasets and proven to be a powerful feature set. In this strategy, we directly use HBF49

on our multi-touch gesture dataset without graph modeling and embedding to test its

competence of characterizing multi-touch gesture. In other words, this experiments takes

into account only the shapes of gestures.

Experiment 3 (Graph+GSR): in this trial, we combine the above two representa-

tions. The feature vector of GSR is concatenated after the graph features from the �rst

experiment to achieve a conjoint feature vector.

Experiment 4 (Graph(LSR)): the fourth experiment evaluates the performance of

integrating the LSR into the graph. As explained in section 3.2.1, the LSR is based on

a non supervised clustering to quantify the stroke shapes, the optimal number of cluster

K is set experimentally to 9. The comparison of di�erent values of K will be presented

below.

Experiment 5 (Graph(LSR)+GSR): �nally, we combine the graph with both

global and local shape information. It was achieved by concatenating the feature vector

of GSR after the vector obtained in the fourth experiment. This experiment correspond

to the full recognition procedure as shown in Fig. 3.1.

All the experiments adopted a 5-cross-validation (CV) scheme for testing writer-

independent (WI) performance.

Fig. 3.10 summarizes the recognition rates obtained by di�erent methods or their com-

bination. The results show that the graph strategy, containing only spatial and temporal

information, obtains 87.50% recognition rate which is lower than the HBF49 based GSR

method (90.44 %). With a deeper investigation from the confusion matrix in Fig. 3.11,

most of the mis-classi�cations by graph strategy happens between the gestures Command

C-1, Command C-2 and Command X because they have similar spatial relationships be-

tween strokes (Fig. 3.11(a)). We can note that GSR is able to classify the majority of

44 Chapter 3

Method Length of	
features

Accuracy rate	
(%) Std.	Deviation

Graph 87 87.50 0.037

GSR 49 90.44 0.034

Graph	+	GSR 136 90.11 0.035

Graph(LSR) 96 92.56 0.013

Graph(LSR)+GSR 145 94.50 0.020

Figure 3.10: Recognition rate obtained by di�erent modules.

multi-touch but fails to make a distinction between Command C-1 versus Command

C-2 and Flick versus Flick-twice since they are similar in shape, respectively (Fig.

3.11(b)).

The Graph+GSR method results in 90.11% which is slightly lower than Experiment

2. However, when we integrate the shape information of each stroke inside the graph

by using clustering method, the recognition rate of Graph (LSR) rises to 92.56%. In

accordance to what can be expected, the �nal experiment, Graph (LSR) + GSR which

integrates all the information together achieves the best recognition rate, 94.50%, that

is signi�cantly better than others. Meanwhile, by evaluating the standard deviation of

5-cross-validation, the two strategies with LSR inside produce smaller variations than

the other three strategies in the writer independent situation.

The cluster number K used in the clustering process is also a factor of great concern

for the recognition. The comparison results of the recognition rate under di�erent values

of K are illustrated in Fig. 3.12.

It shows that the same trend in the relationship between cluster number K and recog-

nition rate can be observed from both methods. The peak appears when K is chosen to

9. Neither too large nor too small cluster number are able to well perform. The compar-

ison also proves that the Graph (LSR) + method is always better than the Graph (LSR)

method.

We have investigated a method to recognize the multi-touch gestures. Unlike many

other works, we study this problem from a new perspective considering a multi-touch

gesture as an indirect command. We believe that three kinds of information, spatial,

temporal and shape information, of the gesture should be processed for the recognition.

We �rst proposed a graph modeling method which measures the spatial and temporal

relationships between strokes of the gesture. In order to integrate the shape information

into the graph, a clustering method is employed to label the shape of the stroke inside

the graph as a local shape feature. Another globe shape feature is extracted with our

previous baseline method HBF49 features. Using global shape information extracted

through HBF49 features allows to improve these results.

3.2. Graph Modeling with Allen's Relations 45

Figure 3.11: Confusion matrix of some typical misclassi�ed gestures of di�erent classi�-

cation methods. The row relates to the ground truth.

46 Chapter 3

Figure 3.12: Performance evaluation of di�erent values of cluster number K used for

LSR.

However, in this model we characterize the inner stroke features by simply discrete

and static relations. To give a more precise measurement for spatial and temporal inner

stroke relations, we explore to quantify these relations and use numerical features to better

describe a multi-touch gesture. A more complex graph model will be introduced in next

section.

3.3 Graph Modeling with Motion Based Features

The previous graph modeling measures spatial and temporal relations mainly according

to the strokes' pen-up and pen-down points. This modeling doesn't explicitly describe the

relations on the middle part of the strokes. Meanwhile, the modeling uses only symbolic

descriptions (Allen's relations and stroke shape labels) as features in the graph. These

discrete descriptions are not precise enough to quantify the relation and shape features.

To rectify the shortcoming of the modeling, in this section we present a new graph model

embedding scalar attributes which allows a more smooth representation. Furthermore, we

segment each stroke into small substrokes so that the relation measurement can be allowed

on every part of a stroke. Fig. 3.13 gives an overview of our second multi-touch gesture

analyzing system. Firstly the �nger trajectories will be broken down into substrokes to

decrease the redundancy and computation complexity for graph matching. This step will

be described in section 3.3.1. We then introduce the new gesture graph in section 3.3.2 to

characterize the multi-touch gesture. A set of static shape features is extracted for each

3.3. Graph Modeling with Motion Based Features 47

substroke. Furthermore, spatial and temporal relations between substrokes are identi�ed

to model their relative motion and position. All these information are integrated into the

gesture graph. We then, in section 3.3.3 introduce the graph matching algorithm, based

on graph edit distance involving dynamic time warping (DTW) algorithm, to measure

the similarity between two graphs. A new distance based graph embedding algorithm is

�nally presented to transform the graph into feature vector for classi�cation.

Preprocessing

Stroke
segmentation

Gesture to Graph

Shape feature on
substroke
(vertex)

Motion relation
between substroke

(edge)

Graph Classification

Graph embedding
(To vector)

Train and
classification

Graph matching
algorithm

Figure 3.13: Overview of the graph based gesture recognition in three stages.

3.3.1 Preprocessing and Stroke Segmentation

An on-line handwriting signal is a sequence of points recording the coordinates (x, y), and

time stamp (t) for each input event. For the study of a multi-touch gesture, the most

important feature is the dynamic motion relations between its strokes such as closing,

spreading, etc. Because these dynamic motion relations changes over time during the

writing, it is hard to describe the motion relations between two full strokes. On the other

hand, extracting motion relation based on each point-pair is not necessary since it will

generate much more redundant information and will signi�cantly increase the computation

cost. Therefore, one solution is to segment the strokes into substrokes and use substrokes

as the basic elements to build the graph model. The segmentation is performed by point

resampling with a pre-de�ned spatial step/length ∆. The term �substroke� is de�ned as

the link between two consecutive re-sampled points. Instead of using a linear interpolation

algorithm as in [WWL07] we choose to keep the original points available on the trajectory,

as long as they ful�ll the space displacement constraints. So we can preserve accurate time

information, but the length of each segment may not exactly be equal to ∆. Note that

we preserve at least the �rst and last point, a stroke will generate at least one substroke

even if a stroke is just one point. The algorithm is detailed in Algorithm 1 and depicted

in 3.14.

At the end of this step, each original stroke is substitute with new re-sampled segments,

which are regarded as its substrokes. We will study the spatial and temporal relation for

every substroke pair in the graph model.

48 Chapter 3

Algorithm 1 Stroke resampling in a length of ∆

Input: original trace Porg(p0, . . . , pn)

Output: new trace Pnew(p0, . . . , pm)

1: Pnew ← p0

2: D ← 0

3: for all pi(i ≥ 1) in Porg do

4: d← Distance (pi−1, pi)

5: if (D + d) ≥ ∆ then

6: (Pnew ← pi)

7: D ← 0

8: else

9: D ← D + d

10: end if

11: end for

12: Pnew ← pn

13: return Pnew

3.3.2 Gesture to Graph

Basically, a gesture symbol is represented as a set of substrokes computed by algorithm

1 described in the previous section. In this section we will extract two important infor-

mation : the shape of each substroke and topology relations for each substroke pair. The

information and the substroke set are represented by a graph.

3.3.2.1 Geometry feature

1

݈ଷ 	ൌ 0.60
ଷߠ ൌ 0.83
ܿଷ ൌ ሺ0.9,0.7ሻ

݈ସ 	ൌ 0.60
ସߠ ൌ 0.67
ܿସ ൌ ሺ0.9,0.3ሻ

݈ଵ 	ൌ 0.60
ଵߠ ൌ 0.67
ܿଵ ൌ ሺ0.1,0.7ሻ

݈ଶ 	ൌ 0.60
ଶߠ ൌ 0.83
ܿଶ ൌ ሺ0.1,0.3ሻ

1

ሺbሻሺaሻ

Figure 3.14: Stroke segmentation and substroke representation. (a) a raw bracket like

gesture; (b) the gesture is segmented into four substrokes and normalized inside a unit

square bounding box. Each substroke has a feature vector composed of its length (l),

angle (θ) and centroid (c).

We characterize each substroke by four geometric features including length (l), angle

3.3. Graph Modeling with Motion Based Features 49

(θ) and its centroid coordinates (cx, cy).

F = (l, θ, cx, cy) (3.1)

The angle θ is measured using the starting and ending points of the stroke and normal-

ized between 0 and 1, i.e. θ = 1
2π
tan−1((y1− y0)/(x1− x0)). Fig. 3.14 illustrates an angle

bracket like gesture. It composes of two trajectories decomposed into two substrokes for

each. All features are equally weighted by being measured under the unity bounding box

to have the same di�erence between their possible maximum and minimum values.

3.3.2.2 Topology relation

Unlike a mono-touch gesture, whose strokes are written in sequence and delimited by a

�nger (stylus)-up event, the strokes in a multi-touch gesture could have complex syn-

chronization relations. Fig. 3.15 illustrates a possible temporal behavior of a set of 3

strokes.

(a)

(c)

Substrokes in time
domain

S11

S21 S22

S31 S32

t

simultaneous touches 1 0 2 2 0

S11

S21

S22

S31
S32

(b)

Figure 3.15: Example of temporal activity of substrokes in a multi-touch interaction. (a)

A three strokes gesture. (b) The substroke representation, Sij indicates the jth substroke

of stroke i. (c) Temporal activity of substrokes.

To represent the comprehensive temporal progression and relative movement of sub-

strokes, we de�ne three types of relations between two sub-strokes: adjacent(a), syn-

chronous(s) and consecutive(c), denoted as ΣR = {Ra, Rs, Rc}.

50 Chapter 3

Relation 1 (Adjacent, Ra) . Substrokes Sij and Skl are adjacent when they belong

to the same stroke and are consecutive in time.

Ra (Sij, Skl) = 1 i� (k = i and l = j + 1) (3.2)

With the example of Fig. 3.15 (c), we have: Ra(S21, S22) = 1; Ra(S31, S32) = 1; for all

other pairs Ra(Sij, Skl) = 0. This relation will preserve the sequential information of the

substrokes belonging to the same stroke in the model.

Relation 2 (Synchronous, Rs) . Two substrokes Sij and Skl are synchronous when

they belong to di�erent strokes and are written at the same time.

This relation indicates that the two substrokes are written by two �ngers in a syn-

chronous manner which is a typical property for a multi-touch gesture. Since two sub-

strokes cannot have precisely the same starting and ending times, we compute the degree

of synchronicity ts to set the Rs relation:

Rs(Sij, Skl) = 1 i� (ts(Sij, Skl) > tλ), (3.3)

where

ts(Sij, Skl) =
to(Sij, Skl)

min(t(Sij), t(Skl))
. (3.4)

to is the overlapping time of two substrokes, and t(Sij) is the duration of the corre-

sponding substroke. With Fig. 3.15(c), we can evaluate ts(S21, S31) = ts(S22, S32) = 1;

For the synchronous relation, we associate a feature vector as the attribute to de-

scribe the relative motion between these substroke pair. A popular technique [OIL11] for

encoding the motion of two �ngers is based on the relative motion of the starting and

ending points of each substrokes. We use here translation, scaling and rotation motions

(mt,ms,mr, respectively) to encode the relative movement of two synchronous substrokes.

Fig. 3.16 illustrates the de�nition of these three motions.

Figure 3.16: Motion features of two synchronous substrokes Sij, Skl. Translation motions

(dx, dy) are based on cs and ce, the centroids of starting point pair and ending point pair,

respectively. Scaling motions (ds, de) are the distance of starting and ending point pairs,

respectively. Rotation motion is the θ from the starting point pair to the ending point

pair.

Based on the features de�ned in Fig. 3.16, a motion feature vector can be computed

as follows:

3.3. Graph Modeling with Motion Based Features 51

M(Sij, Skl) =

 mt

ms

mr

 =


√
dx2 + dy2

de − ds
θ/2π

 (3.5)

This feature vector will be weighted with the degree of synchronicity ts so that the

attribute ws of a synchronous relation is valuated by

ws(Rs) = ws(Sij, Skl) = ts(Sij, Skl) ·M(Sij, Skl) (3.6)

Relation 3 (Consecutive, Rc) . Strokes Si and Sk are written in sequence when

there is no synchronous relation between any of their substrokes Sij and Skl.

This relation captures sequential dependencies between two strokes. Since we model

the relations at the substroke level, this relation is built only from the last substroke of

the �rst stroke to the �rst substroke of the successive one. To measure the time elapse

between two substrokes, an attribute wc is computed relating to the time delay td between

the two substrokes

wc(Rc) = wc(Sij, Skl) = td/T (3.7)

This feature is normalized by the duration of the gesture T so that it is scaled to [0,1].

Considering Fig. 3.15, the following substrokes are connected with a Rc relation-ships:

(S11, S21); (S11, S31).

Consequently, the full substroke relations of the example Fig. 3.15 are shown in 3.17

(a). The corresponding adjacency matrix is given in Fig. 3.17 (b).

S21 S22 S31 S32

S11 Rc ‐ Rc ‐

S21 Ra Rs ‐

S22 ‐ Rs

S31 Ra

S32

S11

S21
S22

S31
S32

(a) (b)

Figure 3.17: (a) Illustration of the substroke relationships from example of Fig. 3.15. (b)

The corresponding adjacency matrix.

52 Chapter 3

3.3.2.3 Graph de�nition

Based on the geometry feature and topology relation we introduced above, we propose

a Multi-Touch-Stroke Graph (MTSG) representation to integrate all the information as

follow,

De�nition 1 (Multi-touch-stroke graph). A MTSG is a four-element tuple G =

(V,E, µ, ω).

(1) vertex V : each substroke is represented by a vertex v.

(2) edge E ⊆ V × V : each edge E(vi, vj) connects a pair of vertices (vi, vj) that has a

certain substroke relation Ra, Rs, Rc.

(3) attribute function µ on vertex: the attribute of a vertex is the geometry feature of

the substroke µ(vi) = F (vi).

(4) attribute function w on edge: according to the type of relationship that de�nes the

edge we associate the following attribute:

wa(vi, vj) = 1, when R = Ra

ws(vi, vj) = ts ·Ms, when E(vi, vj) = Rs

wc(vi, vj) = td/T , when E(vi, vj) = Rc

Using the above graph de�nition, the gesture in 3.15(a) is represented in the form

of weighted graph, which characterize both geometric and topological features as shown

in Fig. 3.18(b). The comparison of two gestures is transformed into a graph matching

problem.

Another example is shown in Fig. 3.19. In this example, we show that gestures which

have a same appearance may generate di�erent graphs. If the two strokes are written in a

synchronous manner, the corresponding graph is shown in Fig. 3.19(b). In another case,

if two strokes are written in sequence, the graph representation is shown in Fig. 3.19(c).

It proves that our graph modeling can well capture the stroke temporal relations and give

out di�erent representation even if gestures have a same appearance. It is discriminative

for gesture recognition.

While many other sketching matching works [LLLW15] [FFJ11] [LC02] use more com-

prehensive topology relation to capture the geometry or structural information between

strokes such as Cross, Half-Cross, Parallelism, our de�nition focuses more on their tem-

poral and motion relation which contains the main semantic intention of a multi-touch

gesture. Meanwhile, a gesture which performed by multiple �ngers would not have a

complex structural relation between strokes. Therefore, our graph preserves the position

and geometry information of each substroke on vertex and uses edge to describe their

temporal relations which has never been done before. It is discriminative and informative

for multi-touch gesture matching.

3.3. Graph Modeling with Motion Based Features 53

S11

S21
S22

S31
S32

(a)

v1

v2

v4

v3

v5

(b)

Vertex

ሺݒଵ, … , ହሻݒ
ܨ ଵݒ ൌ ሺ0.25,0.8,0.1,0.8ሻ

Defined by Equ. 3.1

⁞

Edge

Adjacent edge
ሺܧସ, ଺ሻܧ

ସܧ ൌ ௔ݓ ,ଶݒ ଷݒ ൌ 1;
଺ܧ ൌ ௔ݓ ,ସݒ ହݒ ൌ 1; Defined by Equ. 3.2

Synchronous
edge ሺܧଷ, ହሻܧ

ଷܧ ൌ ௦ݓ ,ଶݒ ସݒ ൌ ሺ0.25, 0, 0ሻ;
ହܧ ൌ ௦ݓ ,ଷݒ ହݒ ൌ ሺ0.25, 0, 0ሻ; Defined by Equ. 3.4 and 3.5

Consecutive
edge ሺܧଵ, ଶሻܧ

ଵܧ ൌ ௖ݓ ,ଵݒ ଶݒ ൌ 0.25;
ଶܧ ൌ ௖ݓ ,ଵݒ ସݒ ൌ 0.25; Defined by Equ. 3.7

(c)

Figure 3.18: (a) Substrokes and their relations as depicted in Fig. 3.17(a). (b) The graph

representation of the gesture. (c) The attributes associated to the vectices and edges.

Figure 3.19: Two graph representations of a gesture. (a) The original gesture which is

also shown in Fig. 3.14. (b) The graph representation if two strokes are written in a

synchronous manner, i.e. (s11 synchronizes to s21, s12 synchronizes to s22). (c) The graph

representation if the stroke s21, s22 is written after the stroke s11, s12.

54 Chapter 3

3.3.3 Graph matching and classi�cation

The work presented gives a full graph representation for multi-touch gesture. Due to

the fact that gesture may contain di�erent number of strokes, it is di�cult to extract

a �xed length global feature set for classi�cation. Therefore we propose to measure the

similarity between two graphs to achieve the graph classi�cation. A traditional way is

to calculate the graph edit distance for the di�erence between two graph. Generally, the

problem of searching the optimal graph matching and the corresponding edit operations is

known to be NP-hard. But since we preserve the vertices adjacent relations, the vertices

which connected with adjacent edge can be treated as a subgraph. Therefore, instead of

performing a global matching algorithm between the two entire graphs such as in [RB09]

[RNB07], we �rstly �nd the optimal subgraph matching between two gesture graphs and

then extend the optimization at the global level. Note that the subgraph matching is

achieved only according to vertex matching, the edge matching is then implied by the

alignment of the vertices.

3.3.3.1 Subgraph matching for stroke comparison

As we denoted in section 3.3.2.2, the adjacent relation/edge indicates that the two con-

nected vertices belong to a same original stroke. These vertices can be regarded as a

subgraph vertices set. Given two subgraphs Vs = (v1, . . . , vn) and Us = (u1, . . . , um). We

use DTW algorithm to compute the minimal matching cost of the vertices, the minimal

matching cost is de�ned as

c(Vs, Us) = DΦ[d](Vs, Us) =
1

N

N∑
n=1

d(vφv(n), uφu(n)) (3.8)

where the DTW distance DΦ[d](Vs, Us) is the alignment distance according to the

Viterbi path de�ned as

Φ = (φ(1), . . . , φ(N)), (3.9)

with the alignment pair

φ = (φv, φu) : 1, . . . , N → {v1, . . . , vn} × {u1, . . . , um}, (3.10)

which denotes an alignment of vertex pair in corresponding regions in Vs and Us. The

DTW �nds the optimal alignment path in the sense that it minimizes the distance between

two sequences. The local distance function d of two vertices is the Euclidean distance of

their feature vectors F as described in section 3.3.2.1.

We may easily deduce the vertex matching from the Viterbi path Φ. For two subgraphs

which contain di�erent number of vertices, three standard edit operations are considered

in order to compute the edit cost. We denote the substitution of two elements u and v by

3.3. Graph Modeling with Motion Based Features 55

(u→ v), the deletion of element u by (u→ ε) and the insertion of element v by (ε→ v).

Note that in the Viterbi path Φ a vertex can be aligned to multiple vertices under the

DTW procedure. In this case, we keep the closest two vertices as matching pair and leave

the remaining of multiple matched vertices as delete/insert vertices. Thus, we denote the

vertex matching of two subgraphs as Φ∗ with

φ∗ =


(φ∗v → φ∗u) for V

∗
c × U∗c

(φ∗v → ε) for Vc\V ∗c
(ε→ φ∗u) for Uc\U∗c

(3.11)

where (φ∗v → φ∗u) is the set of matching pair deduced from Φ. In this set, each vertex in

V ∗c is uniquely matched to a vertex in U∗c , vice versa. The remained non-matched vertices

in Vc and Uc will be regarded as deletion (φ∗v → ε) and insertion (ε → φ∗u) vertices,

respectively.

We then deduce the optimal subgraph assignment by computing a matrix containing all

pairwise subgraph matching. Given two graphs V = {V 1
s , . . . , V

n
s } and U = {U1

s , . . . , U
m
s }.

A cost matrix C is de�ned as

C =

c1,1 · · · c1,m

...
. . .

...

cn,1 · · · cn,m

 (3.12)

where ci,j denotes the assignment cost of a subgraph-to-subgraph matching c(V i
s , U

j
s).

The subgraph assignment problem can be reformulated as �nding a permutation p =

p1, . . . , pn that minimizes the cost
∑n

i=1 ci,pi . This is a Linear Sum Assignment Problem

that can be e�ciently solved by Munkres' algorithm [Mun57] in polynomial time. We refer

the readers to [RNB07] [RB09] for more details about this algorithm. In this approach,

it �rst �nds the subgraph matching permutation that minimize the total cost. Then

the remained non-matched subgraphs will be labeled as deletion (φ∗v → ε) or insertion

(ε→ φ∗u). An example of the full vertices matching process is shown in Fig. 3.20

Consequently, the global subgraph-to-subgraph matching is obtained by solving the

cost matrix C. We can easily deduce the global vertex matching, denoted as Φ∗all, from the

optimal subgraph-to-subgraph matching. Note that all vertices in a deletion or insertion

subgraph are labeled as deletion or insertion vertices, respectively. In another words,

the Φ∗all indicates the edit operation of all the vertices from graphs G1 to G2. The cost

of vertex edit operation is composed of the cost of substitution, deletion and insertion

denoted as

Cv(G1, G2) =

N1∑
n=1

d(vφ∗v(n), uφ∗u(n)) +

N2∑
n=1

c(vφ∗v(n), ε) +

N3∑
n=1

c(ε, uφ∗u(n)), φ
∗ ∈ Φ∗all (3.13)

56 Chapter 3

S11

S21
S22

S31
S32

(a)

S11

S12

S21

S21
S22

Rs

௦ܸ
ଵ

v1

v1

v1

v2

v2

௦ܸ
ଷ

௦ܸ
ଶ

u1

u1

u1

u2

௦ܷ
ଵ

௦ܷ
ଷ

௦ܷ
ଶ

u2

(b)

௦ܸ
ଵ

௦ܸ
ଶ

௦ܸ
ଷ

௦ܷ
ଵ

௦ܷ
ଶ

௦ܷ
ଷ

(c)

DTW distance:
ܿ ௦ܸ

௡, ௦ܷ
௠ ൌ ஍ܦ ݀ ௦ܸ

௡, ௦ܷ
௠

Matching Solver
(Munkres’

Algorithem)

X

X

X

Optimal matching

Φଵ
∗ ൌ ሼ ଵݒ → ଵݑ , ߝ → ଶݑ ሽ

Φଶ
∗ ൌ ሼ ଵݒ → ଵݑ , ଶݒ → ߝ ሽ

Φଷ
∗ ൌ ሼ ଵݒ → ଵݑ , ଶݒ → ଶݑ ሽ

Φ௔௟௟
∗

Figure 3.20: (a) Two gestures represented by substrokes and substroke relations. (b) The

graph representation of two gestures. The vertices which belong to a same original stroke

are grouped into a subgraph V n
s ,U

m
s . (c) The DTW distance matrix is solved by Munkres'

Algorithm to �nd the optimal vertices matching between two graphs. Consequently, the

vertices edit operation set Φ∗all can be deduced from the DTW alignment.

3.3. Graph Modeling with Motion Based Features 57

where d is the Euclidean distance of the vertices' feature vectors, c is the cost of

insertion and deletion operation. Note that the deletion and insertion operations indicate

a missing information in either graph. Therefore, we de�ne the cost of deletion/insertion

operation of each vertex as the value of its length feature.

v1

v2

v4

v3

v5

u1

u3

u4
u5

u2

Edge edit operation

Substitution

ଵሻܧଵሺܩ → ଶሻܧଶሺܩ
ଵܩ ଶܧ → ଶܩ ଷܧ
ଵܩ ଷܧ → ଶܩ ସܧ
଺ሻܧଵሺܩ → ହሻܧଶሺܩ

Cost is computed by
Euclidean distance

Deletion
ସሻܧଵሺܩ → ߝ
ହሻܧଵሺܩ → ߝ Cost is a constant value

Insertion N/A Cost is a constant value

Figure 3.21: The edge matching and edit operation of the two gestures in Fig. 3.20. The

edge matching is implied by the vertices edit operation set Φ∗all.

3.3.3.2 Edge matching

Once we obtained the vertex edit operation, the edit operations on edges are implied by

edit operation on their adjacent vertices. Let v1, v2 ∈ G1 and u1, u2 ∈ G2, there are edges

e1 = (v1, v2) ∈ G1 and e2 = (u1, u2) ∈ G2, the edge matching/substitution (e1 → e2)

is implied if two vertex matching (v1 → u1) and (v2 → u2) exist. Note that our graph

contains three types of edge ω : E → ΣR : Ra, Rs, Rc. Since each type has its unique

attribute function, edge matching (e1 → e2) could be assigned if both edges are same type.

Otherwise they will be labeled as edge deletion (e1 → ε) or edge insertion (ε→ e2). Note

that the Ra edge only indicate the adjacent relation of the vertices without attributes and

58 Chapter 3

has been processed in the subgraph matching step. Therefore, in this step the edge edit

operation cost is calculated from the attribute function ws(Rs) and wc(Rc) of Rs and Rc,

respectively. The edit operation cost for both Rs and Rc are de�ned as same as equation

3.13, where d is replaced by the Euclidean distance of ws(Rs) and wc(Rc). The cost of

deletion/insertion operation of edge is set to a constant value. Consequently, we obtain

two costs of edit operation denoted as Cs, Cc.

3.3.3.3 Graph classi�cation

Based on the graph edit distance, our work explore three strategies for graph classi�cation.

Strategy 1: So far, we have obtained three terms of edit operation cost, one vertex

operation cost Cv and two edge operations Cs, Cc. Traditionally, the graph edit distance

is de�ned as the summation of all the costs of edit operations [RB09] as

d(G1, G2) = (Cv + Cs + Cc). (3.14)

In such a case, the simplest way for clustering the graph is using a distance based

classi�er such as K-nearest-neighbor.

Strategy 2: A better option regarding graph classi�cation is to use the graph embedding

algorithm. We refer to the graph embedding method presented by Kapsar and Horst

[RB10]. The key idea of this approach is to use the distances of an input graph to a

number of prototype graphs as a vectorial description of the graph. The de�nition is

detailed as follow:

De�nition 2. Graph Embedding. Let us assume G is an input graph, P = p1, . . . , pn

is a prototype set with n graphs, the mapping ϕPn : G→ Rn is de�ned as the function

ϕPn (G) = (d(G, p1), . . . , d(G, pn)), (3.15)

where d(G, pi) is any graph dissimilarity measure between graph G and i-th prototype

graph.

It means that each axis of the vector space ϕPn (G) is associated with a prototype

graph pi and the coordinate values of an embedded graph G are the distances of G to

the prototypes. In this way we can represent any graph as a vector of real numbers with

the help of prototype graphs. Hence, the vector ϕPn (G) can be regarded as the feature

vector of graph G. Note that prototypes are normally selected from the training graph set

under a certain criteria. The selection of the n prototypes is also a critical issue since not

only the prototypes but also their number n a�ect the graph mapping ϕPn . The prototype

selection method is k-means clustering for each class. We refer the readers to [RB10] for

more details about the graph embedding and prototype selection.

The problem now is reformulated as �nding a pattern recognition way using the vec-

torial description of distances. We use SVM as the classi�er in the experiment part.

3.3. Graph Modeling with Motion Based Features 59

Strategy 3: As Strategy 2 introduces a way to extract a feature vector for an input

graph, a more precise feature set, obtained by assumption that the edit operation costs are

independent (in contrast to the summation for the graph edit distance), is investigated.

Similar to Strategy 2, the feature set is computed by graph embedding. However, the

distance between two graphs is de�ned as a three dimensions feature vector:

d(G1, G2) = (Cv, Cs, Cc). (3.16)

By this way the local shape and structural/relation information is handled separetely.

But the new feature vector after the graph embedding will be in a length as three times

of the number of the prototypes, which would signi�cantly increase the classi�cation

complexity. We will compare these three strategies in the experiment part.

3.3.4 Experiments

We conducted experimental evaluation to verify the capability of our graph method. We

�rstly introduce our new multi-touch gesture dataset and three common used datasets.

The results are then presented and compared with other result reported in the literature.

3.3.4.1 Dataset

As de�ned in [SW13], most common used datasets contain mono-stroke or multi-stroke

symbols. To the best of our knowledge, there are few benchmark datasets for multi-

touch and sequential multi-touch gesture recognition. To re�ect the real challenges and

complexity in multi-touch gesture recognition, we design more comprehensive multi-touch

gesture and update our previous dataset. The new dataset is named asMTGSetB which

contains more multi-stroke, multi-touch and sequential multi-touch classes. This section

will give a �rst result baseline to address this new challenge.

Figure 3.22: The multi-touch gesture templates in MTGSet.

60 Chapter 3

The dataset consists of 31 classes, with 27 multi-touch gestures and 4 multi-stroke

mono-touch gesture. Fig. 3.22 shows the pictograms we provide to the participants.

A stroke indicates a �nger movement and a dot means a �nger holding on the screen.

The textural description under each gesture illustrates how a gesture is performed. For

instance, 2F*1F denotes a gesture is performed by two �ngers in one hand and one �nger

in other hand. nF (n > 1) indicates the number of �nger involved while the asterisk (*)

speci�es the synchronous movement of the two hands. Meanwhile, if a gesture contains

sequential stroke, a plus (+) is used to describe the order of the strokes. Note that the last

column in Fig. 3.22 consists of 4 sequential mono-touch gestures. Each two of them have

the same shape but with di�erent written order (either from left to right or right to left).

These gestures are also performed in a synchronous manner as multi-touch gesture in our

dataset. We introduce these gestures to verify that our graph modeling and matching

method are able to distinguish the gestures which have the same shape but di�erent

writing sequence. We invited 33 participants using a 27 inch touch screen for the data

acquisition. In addition of these pictograms, participants are also provided with a short

animation of each gesture for understanding the written order and direction (We use the

same tool in Fig. 3.9). Each participant is asked to perform gestures from the �rst one

to the last one and repeat for 6 times instead of repeating a same gesture 6 times. 6138

gestures are collected after discarding some mistaken gestures. The dataset is partitioned

that 2790 gestures from 15 users are used for training, the remaining 3348 gestures from

18 users for testing. Fig. 3.23 presents a part of examples and their variations.

Figure 3.23: Samples and their variations in MTGSet.

Meanwhile, we also test our method on three common used online symbol datasets,

LaViola, ILG and NicIcon. Note that these three datasets contain only mono-touch

gestures which are not the cases we focus on. We make use of these datasets for the reason

of evaluating the capability of our graph method on mono-touch symbols and comparing

to other benchmark gesture classi�cation methods.

The LaViola dataset [JZ07b] contains 11,160 digits, characters and symbols acquired

from 11 users. This dataset has a high number of classes (48). Mono-stroke symbols

3.3. Graph Modeling with Motion Based Features 61

constitute the majority of samples while only a few classes contain two or three strokes

samples. The data is clean and style-consistent. Results on this dataset have been re-

ported in [DA13] [SKC08]

The ILG dataset [RFLDA12] is a collection of mono-stroke pen-based gesture. 38

users were asked to perform gestures for triggering 21 di�erent commands in a simulated

image edition software. The dataset is partitioned to 3 groups. Note that the �rst two

groups contain user-de�ned gestures (user is allowed to design own gesture to trigger

command, see the details in [RFLDA12]). Obviously, this two groups can only be used

for writer-dependent experiments since it only o�ers few training samples for each class.

To obtain a more general result, we select the third group (1926 samples) which has more

classical properties: users all performed the same 21 gestures.

The last NicIcon dataset [NWV08] contains 26,163 pen-based symbols from 34 writ-

ers. Users were asked to draw the sketch of 14 special icons that are important in the

domain of crisis management and incident response system. This dataset is more chal-

lenging because the samples are quite noisy and varying number and order of strokes.

3.3.4.2 Comparative results

The �rst experiment aims to evaluate the meta parameter and the three types of classi-

�cation for our approach. Since our approach mainly targets on the multi-touch gesture

problem, this experiment is only conducted on the MTGSet. For Strategy 1, we choose the

1-nearest-neighbor algorithm for classi�cation. Obviously, it is costly to search the entire

training set to �nd the nearest neighbor. We implement the same prototype selection

algorithm in Strategy 2 and Strategy 3, and compare their accuracy rate under di�erent

number of prototypes. Table 3.1 shows the accuracy rate according to di�erent number

of prototypes.

Table 3.1: Recognition accuracy as the function of prototype number per class.

Prototype number per class

1 3 5 10 20 30 50

Strategy 1 74.97% 81.33% 81.48% 85.48% 87.14% 86.43% 85.21%

Strategy 2 96.35% 97.34% 97.51% 98.22% 98.39% 98.29% 98.22%

Strategy 3 97.64% 97.91% 98.02% 98.59% 98.97% 98.29% 98.22%

Not surprisingly, the accuracy rate increases accordingly with the increasing of the

prototype number per class for all three classi�ers. They reach at the peak at 20 prototypes

per class and slightly decrease for more prototypes. It is remarkable that the Strategy 2

62 Chapter 3

and Strategy 3 show more stable results comparing to Strategy 1. They achieve a good

performance even with a small prototype set by the help of graph embedding and SVM

classi�er. Generally, the Strategy 2 and Strategy 3 outperform the Strategy 1, but are very

close between each other.

We note that there are few recognition systems which globally analyze and recognize

the multi-touch gestures as symbolic gestures. We can hardly compare our method to

other's work. Therefore, we make use of our previous work HBF49 [DA13] as the bench-

mark result for the symbol recognition task. We implement both method on all four

datasets to compare the accuracy rate. In this experiment we choose the Strategy 3 with

20 prototypes per class since it achieves the best results in the previous experiment. Table

3.2 shows the results.

Table 3.2: Recognition accuracy of di�erent methods.

Mono-touch gestures Multi-touch gestures

La viola ILG NicIcon MTGSet

HBF49+SVM 93.64% 93.54% 97.44% 91.36%

Strategy 3(20 prototypes) 93.18% 91.30% 93.17% 98.97%

By comparing these datasets, it can be seen that the HBF49 feature set performs

better on the three mono-touch gesture sets. The reasons are that these three datasets

do not need the synchronization relation between strokes and the features for a single

stroke in our approach are far simpler than in the HBF49. Therefore, our approach is less

powerful on the shape analysis aspect comparing to the HBF49. But the results of our

approach are still competitive. On la viola and ILG sets, it shows close results compared

with the HBF49. On the other hand, on MTGSet our graph modeling and matching

method (98.97%) signi�cantly outperforms the HBF49 (91.36%). This is mainly because

the MTGSet contains gestures which are similar in shape but have di�erent inner strokes

temporal relations.

The comparison between HBF49 features and our graph modeling proves that our

method has the ability to capture the synchronous and asynchronous writing relations

between strokes. It is therefore dedicated to the multi-touch gesture recognition problem.

That is why we o�er a freely available multi-touch gesture database as a �rst baseline to

multi-touch gesture recognition problems.

3.4. Conclusion 63

3.4 Conclusion

In this chapter, we report two graph models with two recognition systems for multi-touch

gesture recognition problem. Comparing to the existent symbol recognition method, our

graph models focus more on the feature extraction for inner stroke relations including

spatial and temporal relations. In other words, our methods analyze the multi-touch ges-

tures not only from their shape but also from their writing order and synchronism. As

the �rst trial, the �rst system helped us to verify the e�ectiveness of graph modeling and

graph embedding for feature extraction and gesture recognition. To better characterize

the motion relations for multi-touch gestures, we then propose the second system based

on quanti�ed motion features. With the graph embedding and SVM classi�cation meth-

ods, our system is proved to be able to distinguish the multi-touch gesture from global

interpretation. Meanwhile, we make e�ort to create a challenge and comprehensive multi-

touch gesture dataset (MTGSet). We have made it available online and hope it could be

used as a benchmark dataset in community for further multi-touch gesture studies.

64 Chapter 3

Chapter 4

Reject Option Based Early Recognition

Algorithm

4.1 Introduction

In the previous section, we propose to use multi-touch gestures as indirect commands

and introduce a classi�cation method to recognize the gestures after their completion.

However, in a common sense multi-touch gestures have widely been used for direct ma-

nipulation. One problem is that whether both of the two interactions can coexist in a

same application, i.e. users can use multi-touch gestures for both interface/virtual el-

ement manipulation and executing commands. An example can be found in [PM13],

authors use mono-touch gesture to achieve scrolling, rotation as manipulation and text

input as command. A con�ict is that these two interactions o�er completely di�erent

feedback to the users. The direct manipulation need to give an instant feedback along

with the �nger's trajectory, whereas the indirect command need to wait until the end

of a gesture. Obviously it is not possible to distinguish the user's intention at the very

beginning of a gesture. In Fig. 4.1 we illustrate this con�ict with an example in [PM13].

Therefore, the problem becomes to whether we can correctly recognize a gesture by a

short beginning part so that we can quickly �nd the user's intention and choose a correct

feedback. How much information we need to recognize a gesture from a gesture set and

how fast we can achieve. With these questions, we explore the Early Recognition (ER)

strategy for multi-touch gestures.

Fig. 4.2 illustrates the general di�culties of ER. Since these three gestures have a

common beginning part, there is no evidence to distinguish the gestures before λ1. The

ER is actually a tradeo� between `earliness' and `accuracy', the more time/trajectory

it waits for, the more distinctive information it would have for decision. An ideal ER

system should be able to learn the common part and avoid making a decision before λ1.

Meanwhile, it should also be able to distinguish the gesture A from B and C soon after

λ1. Moreover, gestures have di�erent common parts between each other, e.g. gesture B

65

66 Chapter 4

Figure 4.1: Early recognition for a �Heart� gesture. In stage 3, the trajectory is recognized

as �Drag� manipulation which gives an instant feedback along with the trajectory. In stage

4, the trajectory is recognized as a �Symbolic-pattern�, i.e. an indirect command. System

need to wait until the end of the trajectory to interpret it as a �Heart� symbol. [PM13].

and C have a longer common part than gesture A and B. Each gesture need to have an

independent ER template against other gestures.

Gesture A

Gesture B
Common part

Gesture C

Common part

λ1
λ2

Figure 4.2: The common part ambiguity for early recognition. Three gestures have dif-

ferent common parts between each other.

From the state-of-the-art, the ER works have been mostly developed for motion pre-

diction problems [MUK+06] [KSNT11]. A basic idea is to employ a partial matching

method, where the recognition result of an input pattern is determined by the match-

ing distance of its beginning part from reference patterns. The Dynamic Time Warping

(DTW) algorithm is a widely used method to search for an optimal partial alignment.

Another approach is combination of classi�ers {h1,...,ht,...,hT}[ISS10][UA08], where ht is a

weak frame classi�er at tth frame (i.e., time t). The recognition result at the tth frame will

be determined by combining t recognition results provided by {h1, ..., ht}. This method

assumes the input pattern having the same performing speed as the reference pattern.

4.1. Introduction 67

The time frame based ER works have a pre-de�ned context that every gesture is

written in a same velocity. In our opinion, the gesture trajectory on each time frame is

just an external representation, the substantive information is the motion's variation, i.e.

the length of the trajectory. For instance, a gesture which moves very slowly contains less

information frame by frame. Therefore, We propose that the early recognition should be

investigated based on length of the motion's trajectory rather than the time frame. Note

that this strategy excludes the factor of writing velocity variation, but meanwhile it loses

the capacity to distinguish two gestures which have same shape but only di�er in writing

velocity.

We study in this work early recognition for handwritten touch gestures. Unlike the

previous works that investigate the early recognition based on time frame, we believe that

the time frame does not represent the motion information, e.g. a gesture which moves very

slowly contains less information frame by frame. We propose that the early recognition

should be investigated based on di�erence of the motion rather than di�erence of the

time.

For the practice of ER system in a real application, another di�culty is the gesture size

normalization. In training process, usually a classi�cation system need to normalize each

gesture to a �xed size bounding box before feature extraction so that the value of features

can be uni�ed to a �xed scale. However, in a gesture size free context, it is di�cult to

normalize the early part of a gesture without knowing the size of the full gesture. Fig. 4.3

shows an example of this problem. Fig. 4.3(a) is a normalized gesture which is assumed to

be a template. Fig. 4.3(b) (c) are two unknown gestures with di�erent size. Assume that

we need to achieve the early recognition by partial matching with the partial trajectories

in a length of l. Without normalization, a trajectory with a length l could be a small part

of a large gesture or a large part of small gesture. Apparently, it is di�cult to achieve

the matching with their original size since they have di�erent appearance. However, it is

also di�cult to normalize the partial trajectories in (b) and (c) into a same scale as in (a)

because the potential size of the full gestures is unknown at this early stage. Therefore,

the problem can be depicted as how to achieve the partial matching in a size free context.

l
l l

(a) (b) (c)

Figure 4.3: (a) A normalized gesture as a template. (b) (c) In a size free context, due to

the input gestures having a variety of the size, a trajectory with a length of l may cover

di�erent parts of a same type gesture.

In this work, we propose to build an early recognition system being able to deal with

68 Chapter 4

ambiguous common parts under free drawing context for handwriting gesture recognition.

We control the progress of the gesture using its length instead of time duration. A

reject option is proposed to postpone the decision until enough con�dence is achieved.

The rest of the paper is organized as follows. Section 4.2 presents the structure of the

multi-classi�er method and the reject option strategy. Next in section 4.3, we report the

experimental result to show the earliness and accuracy of the system. Experiments are

conducted on two freely available dataset ILG [RFLDA12] and MGSet [CAMVG15] 1.

The ILG dataset contains common mono-touch gestures which are assumed for abstract

command while the MGSet contains special multi-touch gestures which can be both used

for abstract command and direct manipulation. Finally, we conclude this work and discuss

the perspectives in section 4.4.

4.2 Multi-classi�er Early Recognition

To deal with the size normalization problem for ER in a size free context, we propose a

multi-classi�er recognition system as shown in Fig. 4.4. Each classi�er is trained by a

�xed length of partial gesture so that di�erent classi�er is responsible to recognize di�erent

length of coming incomplete gesture. However, as we explain in the previous section, a

trajectory with a length l could be a small part of a large gesture or a large part of small

gesture. In other words, a coming incomplete gesture (i.e. an incomplete trajectory) can

not be explicitly sent to a certain classi�er according to its length because we can not

estimate the size of its potential full gesture. Therefore, the incomplete trajectory will be

recognized by all classi�ers. The recognition result is determined by a fusion of the results

from all classi�ers. Details will be described in section 4.2.1. To deal with the ambiguous

beginning parts shown in Fig. 4.2, the result is �ltered by a reject option, i.e. a result

with low con�dence value will be rejected so that system will wait for enough information

to make a decision. The rejection algorithm and fusion of classi�ers will be proposed in

section 4.2.2.

4.2.1 Segment Classi�er

Consider a set of N training gestures xi|i = 1, ..., N , each gesture xi is a sequence of points

x = p0, ..., pe normalized and centered in the unit square bounding box. As we discussed

in section 4.1, users may perform a same gesture at di�erent velocity. In other words,

during a �xed time interval ∆t, the length of the gestures performed by di�erent users

may be di�erent. Therefore, our early recognition is based on the curvilinear distance

segmentation rather than a time segmentation, i.e. each classi�er is trained by �xed

length partial trajectories. Fig. 4.5(a) illustrates the segmentation of a gesture based on

1https://www-intuidoc.irisa.fr/en/category/bases-de-donnees/

4.2. Multi-classi�er Early Recognition 69

Figure 4.4: The structure of multi-classi�er early recognition system.

a interval l∆. The interval l∆ is an empirical length depending on the number of classi�ers

and the size of bounding box.

From all the training gestures, we build N segment sets Si, with i = 1, ..., N , where

each Si set represents all the segments of Segi whose length is equal or less than il∆. Fig.

4.5(b) shows the training procedure of each classi�er and its corresponding segment set.

Note that although the normalization step normalize the size of each gesture into a �xed

bounding box, the trajectory length of di�erent gestures are still di�erent. Consequently, a

long trajectory can generate more segments to feed the segment sets while a short one may

generate only one segment. Therefore, the number of training segments in di�erent set

Si may be di�erent. S1 will always cover the beginning part of all the training gestures,

while SN only contains the gestures which are longer than (N − 1)l∆. We denote the

segment classi�ers as {h1,...,hi,...,hN}, each classi�er hi is trained by the feature vectors

of the ith segment set Si.

In the recognition step, as we explained in Fig. 4.3 an arbitrary input gesture x at

length l ((i − 1)lI < l < ilI) can not be speci�cally recognized by classi�er hi because

of the size free context. Therefore, an arbitrary gesture x should be processed by all the

classi�ers and determined by the one giving the highest probability value. Let hj(x, ci) be

the probability of the best class ci obtained by the classi�er hj, the result of multi-classi�er

is

H(x, ci) = max
j=1,...,N

hj(x, ci) (4.1)

4.2.2 Rejection Algorithm

Referring to the work in [ZSHN10] [MA06], our reject option is designed from two aspects:

ambiguity and outlier. Fig.4.6 illustrates reject option boundary based on a classi�cation

space. The ambiguity refers to the patterns which are near the pair-wise classi�cation

hyperplane. These patterns re�ects the common part ambiguity as depicted in Fig. 4.2.

The outlier refers to the patterns which are far away from the class center. Because of

the size free context that an input pattern can not be speci�ed to a certain classi�er, the

70 Chapter 4

(a)

Segmentation

Classifier
h1

Classifier
h2

Classifier
hn

Gesture Sets

Train with
reject option

(b)

Figure 4.5: (a) Trajectory of an example gesture. p0 and pe are the starting and ending

point, respectively. pk1 is the keypoint where the length of seg1 (from p0 to pk1)is l∆. pk2

represents the point at 2l∆. Since the total length is less than 3l∆, this trajectory will

o�er three segments for training. (b) Classi�ers are trained with di�erent segments.

4.2. Multi-classi�er Early Recognition 71

outlier rejection is used by each classi�er to explicitly reject the pattern which does not

belong to the scope this classi�er.

B
C

Ambiguous patterns

Classification plane
Ambiguity boundary

Outlier boundary

Outlier patterns

A

Figure 4.6: Ambiguous patterns and outlier patterns in multi-class recognition rejection

problem. The dotted straight lines represent the pair-wise hyperplanes to separate two

classes. The curves are ambiguity rejection boundaries for each class.

4.2.2.1 Ambiguity rejection

We deduce from Fig.4.6 that a good ambiguity rejection solution is to de�ne a class-pair

dependent threshold which rejects the ambiguous pattern close to the pair-wise hyper-

plane. However, it is ine�cient to maintain the entire class pair space when the class

number is large. A trade-o� is to use class dependent threshold that de�nes an ambiguity

boundary against all the other classes. We de�ne as in [MA06] the reliability function

ψAmbi to well interpret the ambiguity condition. The ambiguity determines if a shape is

near the decision boundaries. So let S = (s1, s2, ..., sk) be the con�dence or distance scores

for each class output by the classi�er. We can use the di�erence between the best class

C1 and the second one C2 to form the reliability function as:

ψAmbi =
si − sj
si

, (4.2)

where i = C1, j = C2. And we have the rejection decision as:

rAmb = ψAmbi < TAmbi . (4.3)

TAmbi is the class dependent threshold that the result will be rejected if ψAmbi < TAmbi .

72 Chapter 4

4.2.2.2 Outlier rejection

Since each classi�er is trained by a set of segments of a certain length, a classi�er should

be able to reject a gesture which is not similar to any of the training data. It ensures that

in the multi-classi�er structure, only the relative classi�er will give response to an input

gesture while others would make rejection.

Shown in Fig.4.6, the outlier samples locate far from the center of each class. There-

fore, the most important information for this rejection option is the intrinsic description

of the learned data.Depending of the used classi�er, this information is not always di-

rectly available [MA06]. If the classi�er outputs approximate the probability density of

the learned data as in classi�ers like RBFNN, Mixture of Gaussian, then the reliability

function can be de�ned as equation 4.4.

ψOuti = si (4.4)

In our case, we use SVM classi�er based on the distance to graph prototypes representing

the di�erent classes (see graph embedding in section 3.3). So by construction, the distance

to these prototypes is a good feature to extract the intrinsic description of the training

data. Thus in the experiments we use the equation 4.5 to compute the minimum distance

of sample x to the set of prototype Pi of class i using the distance d as de�ned in equation

3.14.

di(x) = min
pj∈Pi

d(x, pj) (4.5)

Then the reliability function ψOuti can be de�ned with equation 4.6 and used in the

rejection decision as equation 4.7.

ψOuti = e
− (di−µi)

2

2σ2
i (4.6)

where µi and σi are the mean distance and deviation for each class i learned from the

validation set.

rOut = ψOuti < TOuti (4.7)

where si is the output score of the best class. TOi ut is the class dependent threshold that

the result will be rejected if ψOuti < TOuti .

4.2.2.3 Threshold optimization

We �rstly de�ne some notations to better explain the result of the reject option. Consid-

ering a set of N training samples, Table 4.1 shows the notations to represent the number

of samples in di�erent condition after recognition and reject option.

4.2. Multi-classi�er Early Recognition 73

Table 4.1: Notations to represent the number of samples in di�erent conditions. With

these notations: N = NA +NR = Ncor +Nerr = NT
A +NF

A +NF
R +NT

R

Sample set (N)
Reject option

Accept (NA) Reject(NR)

Correctly classi�ed (Ncor) True Accept (NT
A) False Reject (NF

R)

Mis-classi�ed (Nerr) False Accept (NF
A) True Reject (NT

R)

To evaluate the threshold, we compute the False Accept Rate (FAR), and False Reject

Rate (FRR) as:

FAR =
NF
A

N
(4.8)

FRR =
NF
R

N
(4.9)

For ambiguity rejection, NF
R are the training samples which are correctly classi�ed but

wrongly rejected by reject option while the NF
A are wrongly classi�ed but accepted. Note

that it is better to prepare a validation dataset since the high precision in training data

makes NF
A close to 0, which leads to unavailable optimization. For outlier rejection, since

each classi�er is trained with a set of segments in certain length, the positive samples

are the classi�er's training set while the negative samples are the training sets for other

classi�ers. The acceptance of negative samples will be count for NF
A and the rejection of

positive samples will be NF
R .

In rejection, the aim is to obtain the lowest error rate while rejecting least correct

results. Intuitively, the optimization of the threshold is to �nd a trade-o� between the

FAR and FRR. Therefore, the optimal threshold for class i is de�ned as:

T opti = arg min
Ti

√
αeFAR2

i (Ti) + αrFRR2
i (Ti) (4.10)

where the weights αe and αr are used to balance the impact of each rate. In general

case, these parameters are set to 1. Since we use the class-wise threshold, we measure

the FARi and FRRi based on each class i to learn the threshold. The two thresholds are

learned independently.

Finally, the rejection of an input gesture is made if it is rejected by either reject option.

r = max(rAmb, rOut) (4.11)

If the input gesture is accepted, the probability hj(x, ci) of the class i, as shown in

(4.1), is the conjunction of both reliability function:

hj(x, ci) = ψAmbi ∗ ψOuti (4.12)

74 Chapter 4

With the reject option, the equation (4.1) will be changed to

H(x, ci) =


Reject, if

j∏
rj,i(x) = 1

max
j

(rj,i(x) ∗ hj(x, ci)) , otherwise

(4.13)

4.3 Experimental Result

The evaluation experiment has been conducted on the MTGSetB and ILG datasets as

referred in section 3.3.4.1. Note that for both datasets, we partition 20% of the data from

the training set as a validation set to learn the ambiguity threshold.

The number of classi�ers in our experiment is set to 3. Before training, each gestures

is normalized into a 500x500 pixels bounding box and segmented to 3 partial gestures

with length 250, 500, 750 pixels to feed for the 3 classi�ers, respectively. The classi�er

we used for each hi is Graph + LibSVM as described in 3.3. The con�dence scores for

ambiguity threshold learning are the probabilities from LibSVM. For outlier threshold, we

use clustering algorithm to �nd three centers for each class, and compute the distances of

a input gesture to the centers. The minimum distance is used as si in (4.4) to learn the

outlier threshold. These can be replaced by any classi�ers which give output con�dence

score for each class.

For the early recognition, each input gesture is recognized on every 50 pixels of its

incremental length. We �rstly evaluate the early recognition with regarding to the di�erent

length of input gestures. Referring to the notations in table 4.1, we measure the False

Accept Rate (FAR = NF
A /N) and Reject Rate (RR = NR/N) when using the reject

option and compare them with the traditional Error Rate (ER = Nerr/N) without reject

strategy. The results are shown in Fig. 4.7.

Both results show that without the rejection algorithm, the ER is very high at the be-

ginning since gestures are still ambiguous to take a distinction. Accordingly, the rejection

algorithm is e�ective to reject most of the gestures at beginning. The RR decreases along

with the decreasing of ER (without reject) which means that it well rejects the ambiguous

gestures but accept the gesture as soon as it has enough distinctive information. This

strategy leads to a good performance of FAR which is very low at the beginning and

always lower than ER at any input length. Meanwhile, the RR is always higher than ER

in the ending part, which means that some correctly classi�ed gestures are rejected. This

is the negative e�ect of the reject option; a low error rate is obtained at the cost of a high

reject rate.

In operational use case, a reasonable strategy to prevent noisy decisions consists in

�ltering the decision by considering several consecutive outputs of the classi�er. Conse-

quently, a decision is �nally accepted when the classi�er gives n consecutive times the

4.3. Experimental Result 75

(a) (b)

Figure 4.7: Recognition results with respect to the length of input gesture on two datasets.

FAR and RR are obtained using the reject option while ER is the traditional mis-classi�ed

rate.

same output. Results on the two datasets are shown in Table 4.2 from n = 1 to 6. Re-

ferring to the notation of Table 4.1, TAR is True Accept Rate (TAR = NT
A/N), FAR is

False Accept Rate, RR is Reject Rate which represent the percentage of gestures which

are rejected at every length until their completion, CR is correct rate (CR = Ncor/N).

The earliness means the average percentage of the a gesture being written at the time it

is recognized. Since the ILG data does not contain the time label, the average decision

time (Avg.T) is only measured on MTGSet.

Table 4.2: Recognition rate with consistence checking.

Dataset n
Reject Option No Reject Option

TAR FAR RR Earliness Avg. T(ms) CR ER Earliness Avg. T(ms)

MGSet

1 81.89% 14.56% 3.54% 37.04% 456.21 24.88% 75.12% 8.13% 297.23

2 83.44% 10.85% 5.71% 46.82% 523.34 48.78% 51.22% 21.32% 368.07

3 82.38% 8.85% 8.77% 55.89% 591.33 67.60% 32.40% 33.98% 437.85

4 82.20% 6.06% 11.73% 66.16% 669.86 79.59% 20.41% 45.44% 518.21

5 80.35% 4.60% 15.05% 71.03% 738.17 85.83% 14.17% 54.93% 598.04

6 77.42% 3.41% 19.17% 77.54% 811.38 88.62% 11.38% 62.34% 660.90

ILG

1 30.65% 67.15% 2.20% 34.81% N/A 21.22% 78.78% 18.03% N/A

2 64.15% 26.42% 9.43% 75.53% N/A 42.85% 57.15% 56.17% N/A

3 73.98% 11.22% 14.80% 92.24% N/A 68.29% 31.71% 82.16% N/A

4 77.72% 6.26% 16.02% 97.62% N/A 79.51% 20.49% 92.67% N/A

5 77.80% 4.88% 17.32% 99.19% N/A 85.45% 14.55% 97.27% N/A

6 77.72% 4.55% 17.72% 99.68% N/A 87.56% 12.44% 99.08% N/A

It shows an acceptable result on MGSet dataset that the accuracy rate of �rst time

decision is 81.89% which is obtained with an average of 37.04% length of gestures. Com-

76 Chapter 4

paring to the third result with no reject option, where the decision is also achieved around

33.98% length by 3 consecutive same results, the FAR is less than half of the ER. With

the increasing of the time for consistence checking, the decision is postponed to obtain

less errors. The FAR decreases from 14.56% to 3.41% while the RR increases from 3.54%

to 19.17%. It indicates that we have to �nd a trade-o� between the error rate and the

reject rate. The result by n = 2 may be considered as an acceptable one where the FAR is

10.85% and RR is 5.71%. The comparable result from no reject option is shown at n = 4

where the CR is 79.59% (3.85% lower than TAR:83.44%) and ER is 20.41% (9.56% higher

than FAR:10.85%). In other words, the reject options minimize the error rate by o�ering

reject Although there are 5.71% samples are rejected during the recognition, we believe

that in a real practice it is better to reject an input and provide some ambiguous options

to select than giving a wrong result. By this way, user only need to make a selection

instead of removing the wrong input and re-draw it again.

However, the result on ILG shows not as good as MGSet. The accuracy rate is only

30.65% for the �rst decision. From the Fig. 4.7(b), the FAR is around 20% to 30% from

50 to 200 points. Decisions made on this stage cause much more errors than MGSet.

Therefore, the �rst time decision may not be acceptable in this situation. The accuracy

rate on ILG dataset shows a great improvement using consistence checking. With n = 2,

the TAR is 33.5% higher than n = 1 while the FAR decreases 52.73% comparing to

n = 1. A higher time of consistence checking seems not useful since the corresponding

Avg. length is over 90%.

4.4 Conclusion

In this chapter, we focus on the di�culties of involving both direct manipulation and

indirect command gesture in a same context. To resolve the con�ict of these two inter-

actions, we propose a reject option based multi-classi�er system for handwritten gesture

early recognition. The principle is to recognize gestures as soon as possible from their

beginning part but also avoid the recognition if gestures contain similar beginning parts.

We propose a multi-classi�er structure that di�erent classi�ers are responsible to recog-

nize di�erent part of partial gestures. Since our system is considered to be used in a large

screen and gesture size free context, taking into account the gesture size normalization

inconsistence between training and testing, the early recognition result is determined by

the fusion of all classi�ers. The reject option for each classi�er is designed to deal with

the ambiguous early parts between gestures. The experiment gives a promising result

on MTGSet. The system achieve 83.44% accuracy rate with 46.82% earliness of input

gestures. Comparing to the no reject option system, the error rate is very low at the

beginning part which proves that our reject algorithm works well to reject the ambiguous

gestures.

4.4. Conclusion 77

Our future work will focus on investigating the automatic selection of the optimal

number of classi�ers and segment length for training instead of using empirical selection

as in our experiment. Meanwhile, we will develop a application to mix the usage of

direct manipulation and command shortcut for multi-touch gestures and better analyze

the usability of early recognition for handwritten gestures. In the next section we develop

a structure document composition context as a �rst prototype which involves multi-touch

gestures for complex commands.

78 Chapter 4

Chapter 5

Structured Document Composition in

Multi-user Context

5.1 Introduction

A large multi-touch display allows multiple users to simultaneously interact in the same

context and work together. Indeed, many researches and commercial products propose

tangible interfaces which support simultaneous participation of multiple users. However,

most of these interfaces only allow users to interact with virtual elements which need only

simple direct manipulation. To the best of our knowledge, there are no research focusing

on the freely-drawn sketch or indirect commands for multiple users.

In this chapter we study the di�culties of multi-user freely-drawn sketch context. This

work is supported by Excense company who dedicates to design a handwriting diagram

context that make people propose and exchange their idea between each other. We choose

the use case of sketch drawing to illustrate the complexity of multiple users composing

a structured document. Indeed sketches as mind map or �owchart need lot of di�erent

gestures to draw a various type of symbols as nodes and arrows. Fig. 5.1 shows a prototype

of the multi-user interface, it allows two users to simultaneously input symbolic elements

in a mind map context. Generally, an ideal mind map diagram composition interface

should consists roughly of the following features [Blo96]:

1) Stroke segmentation/grouping, to isolated symbols.

2) Symbol recognition.

3) Identi�cation of spatial and logical relations among symbols.

4) Direct manipulation or indirect command gesture to interact with the existed ele-

ments.

5) Text separation.

6) Text recognition.

Our current study focuses on the �rst two features. The rests stand as future perspec-

tive. In a multi-user context, it becomes more di�cult to make a clear stroke segmen-

79

80 Chapter 5

tation/grouping since there are no clear spatial or temporal boundaries between isolated

symbols from the stroke stream. Meanwhile, to provide a freely-drawn context, users

are allowed to input a symbol by multi-touch gestures. Therefore, the challenges of our

study can be described as: how to recognize the multi-stroke and multi-touch gestures in

a multi-user composition context.

In section 5.2, we introduce the dataset we acquired to support our study. We will

describe the data acquisition procedure and discuss the multi-user features compared

to a traditional diagram dataset. In section 5.3, we present our �rst strategy for stroke

grouping and gesture recognition method based on eager interpretation. The experimental

results are given in section 5.4. Finally the last section concludes with the perspectives

to improve the results and go further in the process.

Figure 5.1: The diagram data acquisition procedure on a 80" touch screen. Two users are

drawing the diagram together using stylus.

5.2 Multi-user diagram database

Since there are few works on multi-user handwritten analyzing, it is essential to begin

with a representative multi-user handwritten document dataset. In order to be closely

engaged with a practical application, we propose to use mind map diagram as the multi-

user scenario. In this section we present the data acquisition procedure and the multi-user

features of the dataset. This dataset is achieved with the help of Excense company.

5.2.1 Diagram acquisition

A mind map is a diagram used to visually organize information. It is often created

around a single concept to which associated representation of ideas such as words, images,

symbols are added. The ideas are usually connected by lines, arrows or grouped by shapes,

5.2. Multi-user diagram database 81

boundaries. An example of a mind map diagram is shown in Fig. 5.2 (a). As a �rst step

towards a more complex dataset, we focus more on the graphical symbols and their links

rather than the text. We o�er the users a white board scenario with all descriptive texts

on it. Each time we ask two users (standing side by side) to draw the correct graphical

symbols around the texts and connect them using lines, double-lines or arrows using either

�ngers or styluses. An example of the collected handwritten diagram is shown in Fig.5.2

(b). We designed two layouts of this mind map for more diversity in the data acquisition.

A total of 21 people partitioned half to half into two groups participated. Each pair

of participants was asked to switch their position after completing a map and drew again.

As each couple draw also the two layouts, it means that each couple of users generate

4 diagram samples. Consequently, 42 handwritten diagrams have been collected. 10

participants of group 1 were asked to draw the symbols on a 27" touch screen by �ngers.

To record the way people naturally draw, participants were given all the freedom to draw

the symbols in any way or order they prefer. Since users in this group draw symbols

by �ngers, some participants tend to use multi-touch manner to draw the multi-stroke

symbols such as `bracket' and `double line'. Users from group 2 made the acquisition on

a 80" touch screen by stylus. In this case they have more free space to draw the symbols

and may simultaneously draw di�erent symbols very close to each other. Since all the

symbols are drawn by stylus, the multi-touch case does not exist in this group. Fig. 5.1

shows the data acquisition scenario from group 2. The stroke grouping and groundtruth

labeling tasks were achieved manually after data acquisition with a dedicated application.

5.2.2 Diversity of the content

The prede�ned symbols can be classi�ed into 9 categories shown in Fig. 5.3. In observing

the collected data, users may draw a same symbol with di�erent number of strokes.

Examples of rectangle symbols are displayed in Fig. 5.4. Note that one of the examples

shows a very special broken straight stroke case. The User intends to draw a straight

stroke, but his �nger accidentally lifted up because of the unstable friction on the screen.

This situation causes some symbols containing an unusual large number of strokes.

As we introduced in the previous section, some `bracket' and `double line' symbols may

be drawn by multi-touch manner, which means the two strokes of the symbol are drawn

simultaneously. Some `arrow' symbols are written by one stroke, while some others are

�rstly written as a `line' and waited after a long time delay the head added. If the head of

an `arrow' is drawn within the same stroke or immediately added just after the straight

line stroke, we group the strokes and label them as `arrow'. If the head is added after a

signi�cant long time delay, during which the body of arrow is supposed to be processed

as the `line', we would make an independent `direction' class for the head. The heads of

double ways arrows are also labeled as `direction'. Table 5.1 shows the distribution of the

symbols in the dataset with also the average and max number of strokes used to draw

82 Chapter 5

(a)

(b)

Figure 5.2: Example of a mind map diagram and the corresponding handwritten diagram

without text.

5.3. Eager interpretation based recognition system 83

Figure 5.3: Samples of isolated symbols in diagram.

Figure 5.4: Variability of the rectangle symbol.

them.

The most important feature of this dataset is the mixture of multi-touch and multi-

stroke symbols by multiple users in the same time. A key problem is how to correctly

group the strokes under this complicated context. The Fig. 5.5 (a) shows an example

where a 'rectangle' and an 'arrow' symbol are drawn simultaneously. The diagram in the

right describes the temporal activity of their strokes. Obviously, the alternately emerging

of the strokes from two users makes it more di�cult to group the strokes. Meanwhile,

since the symbol is allowed to be written in multi-touch manner, the synchronized strokes

(as shown in Fig. 5.5 (b)) can hardly be determined whether they belong to one user or

two. Approximately 65% strokes are simultaneously written in this dataset.

5.3 Eager interpretation based recognition system

From the practice point of view, a multi-user document composition system aims at

providing a real-time feedback context so that users can easily exchange their ideas. We

exploit eager interpretation, which updates the analyzed document after each input stroke

and providing an instant corresponding feedback as illustrated in section 2.4. Ideally, a

84 Chapter 5

Table 5.1: Symbols' distribution and their average and maximum stroke number in the

complete dataset composed of 20 diagrams drawn by �ngers and 22 drawn with stylus.

Symbols Av. #strokes Max. #strokes

Bracket 140 2.05 3

Ellipse 278 1.02 2

Rectangle 158 1.89 7

Triangle 88 1.39 5

Diamond 92 1.48 4

Line 446 1.00 2

Double line 140 2.02 3

Arrow 424 1.86 4

Direction 242 1.19 2

(a) A two strokes `rectangle' synchronizes with a three strokes `arrow'.

(b) A two strokes `arrow' synchronizes with a two strokes `double line'.

Figure 5.5: Example of temporal activity of strokes under 2 users condition. Sij indicates

the jth stroke from user i.

recognition result should be given on the screen in a short delay after the completion of

each symbol. However, since the dataset contains multi-stroke gestures, the ending of a

stroke is not exact the ending of a gesture. Therefore, the system need to adopt early

recognition strategy to detect if input strokes can form a meaningful shape or need to wait

for more strokes. On the other hand, the most important feature of this dataset is the

mixture of multi-touch and multi-stroke symbols by multiple users in the same time. The

alternately emerging of the strokes in the stroke stream from two users is so complex that

two strokes concatenated in time domain may not even belong to a same user. Moreover,

the existence of multi-touch gesture makes it more di�cult that two synchronized strokes

can belong to either a multi-touch gesture or two gestures from two users. Therefore,

5.3. Eager interpretation based recognition system 85

instead of designing an explicit stroke grouping method, we use brute force grouping

technique as a �rst attempt to recognize all combinations of strokes and let the classi�er

take the decision of selection the correct gesture thanks to a dedicated training. Although

the computation cost would become very high when the number of candidate strokes

is large, due to the fact that the eager interpretation system gives feedback in a short

delay, the number of strokes in a short time window will not be so large for brute force

computation.

Fig. 5.6 shows the global framework of our proposed eager interpretation system.

After each end of a stroke, this stroke will be �rstly stored in a stroke list. Then system

will generate all combination of strokes if there exists multiple strokes in the list. A

classi�er is then used for each stroke combination to detect if any of them can form a

concrete symbol. If not, strokes will keep in the stroke list and wait for more strokes from

users.

Figure 5.6: The framework of eager interpretation system.

Note that the classi�er is responsible to not only recognize the correct symbol, but also

need to reject the wrong combination and un�nished partial gesture. We therefore train

the classi�er with wrong combination sample and un�nished sample as negative symbol in

addition to the original isolated symbol set. These two negative sample sets are generated

as following:

Wrong Combination: a wrong combination is a stroke set whose strokes come from

di�erent gestures. Given a training gesture set G = {g1, g2, ..., gn} where the subscript

index follows the input stream of the gestures, each one composed of 1 or more strokes.

86 Chapter 5

To generate this negative sample set, we extract random number of strokes among the

strokes belonging to two consecutive gestures gi and gi+1. As a negative set, obviously

it can not cover all the negative possibility. However, di�erent size of this negative set

can be generated to balance the ratio of positive (correct gestures) and negative (wrong

segmentation) samples.

Un�nished Gesture: an un�nished gesture is a sub-stroke set of a completed gesture.

Given a n stroke gesture g = {s1, s2, ..., sn}, we extract all its sub-stroke set following the
input sequence as {s1},{s1, s2},...,{s1, s2, ..., sn−1}. As the size of this set is comparable to

the number of positive gestures (depending of the average number of strokes per gesture),

we use them all. However, subsampling is possible to better balance the training set.

As shown in Fig.5.6, strokes which are recognized as wrong combination or un�nished

gesture will be restored into the stroke list and wait for new strokes. We di�er them as

two independent negative classes because of a special situation: an un�nished gesture can

be comparable to an isolated full symbol (shape and synchronization). Take a straight

line for example, without context information, it can be recognized as either an isolated

line symbol or the beginning part of a potential rectangle as un�nished gesture (Shown in

Fig. 5.7).

line part of a rectangle

A line symbol has a similar shape as
the part of a rectangle

Figure 5.7: The decision for some shape should be postponed in case of forming another

potential gesture.

From the classi�er point of view, it is di�cult to distinguish these two cases since they

have the same appearance. From the practice point of view, it is reasonable to postpone

the decision after the end of a stroke in case of forming another potential gesture with

following strokes. To take into account this principle in the decision process, we can not

use only the classi�er outputs (as done in the previous chapter with reject option). Indeed,

the stroke itself will not change in time, so if a potential con�ict is detected thanks to

the class scores (e.g. `line' score and `un�nished' score are close), this con�ict will remain

the same in future. If a symbol is completed by new strokes, then the new symbol can

have a strong score and its strokes will be removed from the stroke list. If the partial

symbol is never completed, it means that it is a full symbol and after a certain period the

next decision should be used instead of `un�nished'. That is why we propose to use the

�age� of the symbol's strokes to weight the �un�nished� class score. By this way, young

5.3. Eager interpretation based recognition system 87

strokes are more likely to be un�nished symbols and then the possibility for a symbol to

stay un�nished decrease in time. The possibility then decreases with time elapsing. If

the stroke can not be combined with others after a long time delay, the stroke itself is an

isolated symbol that a decision has to be made for it. Therefore, we add a weight to the

output of un�nished gesture class as:

p′un(td) = λ(1− td
tf

) ∗ pun (5.1)

where pun is the con�dence value of un�nished gesture class output by classi�er. λ

is a constant value determining the increased mount of possibility at beginning. We

empirically set λ = 1.5. td is the time delay between the stroke ending time and the

recognition time. tf is the �nal decision time at when the possibility will be decreased

to 0 so that any other result of isolated symbol will be larger than the un�nished gesture

class. An example is shown in Fig. 5.8.

No stroke is written around it in a certain time delay

Unfinished
0.51

Line
0.3

Unfinished
0.51

Rectangle
0.4

A straight line
recognized at
its ending

The score for unfinished class
deceases with time elapsing Final decision

Combined with other strokes

Figure 5.8: The score of un�nished class is manually increased at the ending time of a

stroke and decreased with time elapsing.

A problem is how to select an appropriate tf for the �nal decision time. A small tf
may force the system to make an early decision while the rest part of the symbol is still

in writing. A larger one will postpone the decision and cause the stroke list to store too

many strokes which makes more expensive to compute all combinations and increase the

risk of generating false positive gestures. In the following experiment section we evaluate

the recognition results with di�erent values of tf .

Fig. 5.9 gives a full view of stroke combination and recognition process. Taking 3

strokes for example, the �gure shows all the 7 possible stroke combinations (candidates)

and their corresponding recognition scores. Among all the 7 candidates, 5 possible groups

88 Chapter 5

(shown in round squares) can be deduced. The score of the group is the average of all its

candidates.

Score[group] =
1

N

N∑
i

Score[Candidatei] (5.2)

The �nal decision is the group which has a largest average score of all its candidates.

Note that the group whose all candidates are �Wrong Segment� will be discarded if there

exists any other solid decision. Consequently, the Diamond and Un�nished gesture are

chosen as the most con�dent results.

Independent 3 strokes:

2 strokes combinations:

3 strokes combinations:

Unfinished: 0.63 Direction: 0.32 Direction: 0.37

Arrow: 0.14Diamond: 0.85

Wrong segment: 0.91

Wrong segment: 0.72

3 strokes in stroke list:

Figure 5.9: An example of 3 strokes in the stroke list. All the 7 possible stroke's combi-

nations are shown in the �gure. The round square shows the 5 possible decisions made

for the 3 strokes. According to their score, an un�nished gesture and a Diamond gesture

are chosen as the �nal decision. This un�nished stroke will be restored in the stroke list

again.

5.4 Experiments

The multi-user diagram database is partitioned into two parts. 1346 gestures from 30

diagrams are used for training. 665 gestures from 12 diagrams are used for testing. Note

that in a real testing environment for eager interpretation, users may be in�uenced by

5.4. Experiments 89

the feedback such as mis-recognition or long recognition delay. Since the dataset are

collected without giving any recognition feedback to the users, there is no noise in the

stroke stream. We evaluate the performance of system in terms of correct stroke grouping

rate and recall rate based on di�erent values of parameter tf . The underlying classi�er

is the Graph Modeling with Motion Based Features classi�er illustrated in section 3.3 in

order to well recognize the multi-touch gestures. The results are presented in Table 5.2.

Table 5.2: Correct stroke grouping and recognition rate

tf (ms) 300 500 1000 2000

Segment Number 691 687 675 649

Correct Segments 592 596 593 578

Segment Recall Rate 89.43% 90.03% 89.58% 87.31%

Symbol Recall Rate 75.68% 76.28% 76.13% 74.77%

The performances in terms of stroke grouping rate are around 90%. It means that

system makes 1 mis-grouping every 10 multi-stroke gestures and leads to a de�nite mis-

recognition. The global recall rates are around 75% which is signi�cantly lower the

grouping rate. It means that with the correct stroke grouping, system results around

15% mis-recognition rate. As we illustrated in section 3.3.4.2, our Graph Modeling with

Motion Based Features classi�er is specially designed for multi-touch gestures. With the

additional complex negative sample sets, it gives out an even low result.

As far as �nal decision time tf is concerned, the result at 500ms gives the best per-

formance. It proves that neither too fast nor too slow could achieve a better result. An

early decision may cause a partial gesture being recognized as a isolated symbol, while a

later decision may cause a large stroke waiting list that leads to more mis-grouping.

Fig. 5.10 shows a screen shot of two full example diagrams. The green gestures are

correctly grouped and recognized. Oranges are mis-grouped gestures. Most of them are

multi-stroke gestures that wrongly being segmented into several parts. The reds ones are

mis-recognized by classi�er.

Fig. 5.11 shows the detail of the drawing of Fig. 5.10 (b) after 50 strokes drawn.

Fig. 5.11 (b) shows the current stroke list and their decisions at each step. The group of

strokes recognized as un�nished stay in the stroke list for next step. The group recognized

as concrete symbol are removed from current list. We can notice that the stroke drawn

at step 51 is recognized as un�nished for two steps until step 53 where it recognized as

line. This illustrates the impact of �age� of the stroke on the decision (see equation 5.1).

At step 55 the triangle is mis-segmented into two parts as a line and later (step 57) a

direction.

90 Chapter 5

(a) Example of recognition results of layout 1.

(b) Example of recognition results of layout 2.

Figure 5.10: Recognition result for two example diagrams. Gestures in green are correctly

recognized. Oranges are mis-grouped gestures. Reds are correctly grouped but mis-

recognized gestures.

5.4. Experiments 91

(a) Start context at step 50.

unfinished

unfinished

unfinished

line

unfinished

diamond unfinished

unfinished

line

unfinished diamond

direction
unfinished

Step 51

Step 52

Step 53

Step 54

Step 55

Step 56

Step 57

(b) Stroke stream between steps 51 and 57.

(c) Final context at step 57.

Figure 5.11: Stroke stream and their recognition results between steps 50 and 57 from

Fig. 5.10 (b). The recognition decisions of each step are bounded in dashed rectangles.

92 Chapter 5

5.5 Conclusion

We have presented a new dataset of multi-user handwritten diagram. The dataset contains

a large quantity of graphic symbols drawn by 21 users. The most important feature is

that each diagram is drawn by the collaboration of two users. The multi-user freely-drawn

handwritten recognition is a challenging problem that few recognition systems attempt

it. Our dataset opens a new frontier for the diagram recognition research. We present the

di�culties to achieve a real-time stroke grouping and symbol recognition in multi-user

context. Therefore, new questions are opened: How we can e�ectively group the strokes

into distinct symbols? How we can give a real-time recognition feedback to the user?

To solve these problems, our �rst attempt is developing an eager interpretation system

which launch the recognition at each end of a stroke. Instead of designing a explicit

stroke grouping method to cope with the complex stroke relation for multi-stroke and

multi-touch gestures, we employ the brute force stroke grouping method to traverse all

stroke combinations in a short time window. The underlying classi�er is trained with

negative samples so that it can reject the wrong segmentation and un�nished gestures.

A postponed parameter is employed for un�nished gesture class so that a partial stroke

can wait for enough time before recognition in case of forming another potential gesture

with following strokes. First experimental results shows that system can well recognize

majority of gestures from the stroke stream.

There are several perspectives about this work. The �rst one is to exploit the complex

stroke relations so that an explicit stroke grouping module can be achieved before gesture

recognition. It would therefore simplify the classi�er with less negative sample to detect.

The second perspective is to involve di�erent gestures command and manipulation such

as Erase, Translation or even zooming, etc. i.e. to mix direct and indirect command in

the gesture stream. To deal with direct command, the eager gesture recognition strategy

should be merged in our global strategy, for example by not waiting the end of a stroke to

try to recognize the gestures. The goal is to design an application that all commands and

manipulations are achieved by gestures. As illustrated in section 5.1, more future work

should be done following the features 3-6 involving context grammar and text recognition

to achieve a complete application.

Chapter 6

Conclusion & Perspectives

6.1 Conclusion

The development of touch gesture operation facilities human computer interaction. Cur-

rently, multi-touch gestures have been mainly used and studied for direction manipulation

such zooming, rotating, etc. There is few research studying to use multi-touch gesture

to execute indirect commands. The work of this thesis aims at expanding the usage of

multi-touch gestures and focuses more on the techniques of multi-touch gesture modeling

and recognition.

To globally analyze and characterize a multi-touch gesture, the core problem is the

synchronization relations, in both temporal and spatial domains, between touch trajec-

tories. The main contribution of our work is the proposal of di�erent graph modeling

to integrate the shape information with temporal and motion relations between trajecto-

ries. The �rst graph-based approach extracts static shape feature on each trajectory and

uses Allen's relations as temporal description between the trajectories. We demonstrated

that this modeling is simple and e�cient to characterize and recognize multi-touch ges-

tures. However it is not precise enough to capture the dynamic motion relations between

trajectories.

We then progress to the second graph modeling which segments trajectories into small

pieces and extracts synchronization features and dynamic motion features between each

piece pair. To achieve the graph recognition, based on this gesture graph we studied

the graph matching algorithm which �nds the optimal vertex to vertex and edge to edge

matching so that the cost of edit distance between two graphs can be calculated. Based on

this edit distance, a graph embedding algorithm is then employed to transform the graph

into a vectorial description to allow the use of classical pattern recognition classi�ers.

To evaluate this graph modeling and recognition system for multi-touch gestures, we

found that there is few available multi-touch gesture dataset for a benchmark test in the

community. We therefore designed and collected the MTGSet which is a multi-touch

gesture dataset containing di�erent type of gestures in terms of di�erent stroke number

93

94 Chapter 6

and complex inner-stroke relations. This dataset is fully annotated and free available on

the website. We demonstrate that our graph modeling recognition method can better

recognize these multi-touch gestures comparing to other reference systems based on static

features.

The second phase of our work concerns the development of using multi-touch gestures

for commands. Due to the fact that usually multi-touch gestures are regularly used for

direct manipulation, we extend the study of the mixed usage of multi-touch gestures, i.e.

using multi-touch gestures for both direct manipulation and indirect command in a same

context. We propose an early recognition system, which is based on a multi-classi�er, able

to recognize a gesture as soon as possible, so that the user can have a suitable feedback.

Considering the ambiguous common part between gestures, classi�ers are designed with a

reject option so that it can detect these ambiguous beginning parts and avoid making an

ambiguous decision without enough information. The system achieves 83.44% accuracy

rate with 46.82% earliness of input gestures on MTGSet.

The �nal phase of our work is to design a structured document composition context.

This work is supposed to develop a real application so that all the touch gesture interaction

techniques can be veri�ed in this context. In an ideal context, it allows multiple users

to compose structured diagrams using multi-stroke gestures and manipulate the diagram

using multi-touch gestures. At the beginning step of this research, we �rstly collected a

multi-user diagram composition dataset. We designed an eager recognition system aiming

at recognizing gestures at every ending of a trajectory and providing a real-time feedback

to the user. We achieved a promising result but still have a long way to go to use it for

practice.

6.2 Perspectives

There is a signi�cant tendency that large touch screens or even touch screen walls become

more prevalent in our daily life. The goal of our research is to provide more freedom to the

user to control the interaction system with di�erent type of gestures. From the current

study, we can suggest some perspectives to be achieved in a future work.

- The graph modeling need to involve more shape feature for a gesture. Our graph

modeling is originally designed for multi-touch gestures which contain many dynamic

features between strokes. According to the results on mono-touch gesture set, the involved

shape features are too weak to recognize mono-touch gesture comparing to others. From

the current graph modeling, one solution is to generate more substrokes for each stroke

so that the shape will be represented more precisely. However, it will also signi�cantly

increase the scale of a graph that results in a more expensive graph matching.

- In early recognition, we empirically select the number of classi�ers and each corre-

sponding training segment length. In an ideal case, an early recognition system need to

6.2. Perspectives 95

automatically learn these parameters from training dataset so that it can �nd the opti-

mal early decision time for each gesture. Our future work will focus on investigating an

adaptive system to learn these information.

- Last but not least, the eager interpretation system for multi-user structured document

composition need more improvements. On the one hand, a better stroke grouping strategy

need to be explored. Instead of using brute force stroke combination, a spatial feature

based preprocess is required to prune the number of stroke combination. On the other

hand, as discussed above a more powerful isolated symbol classi�er is essential to the

current system. Moreover, with a better early recognition system, we will try to engage

both direct manipulations and indirect commands into this application.

Résumé en Français

1.	Introduction	
Les interactions gestuelles tactiles font parties des interactions personne‐machine les plus naturelles.

Elles permettent une expérience utilisateur plus intuitive et plus appropriées que l’usage du clavier et

de la souris. Avec le développement des écrans tactiles, un nombre croissant d’usagers se familiarise

avec ce type d’interactions gestuelles.

D’un point de vue interaction, les gestes tactiles sont utilisables selon deux modalités : la

manipulation directe de certains éléments de l’interface et de façon complémentaire le

déclenchement a posteriori d’une commande résultant de l’interprétation d’un geste symbolique

que l’on qualifiera de commande indirecte. Un usage explicite d’une commande directe peut être

donné en considérant le cas de la manipulation d’un plan cartographique où l’utilisateur pourra

déplacer la carte par des glissements du doigt ou encore changer le zoom en écartant ou en

resserrant deux doigts, faire pivoter la carte en appliquant une rotation d’un doigt autour d’un autre.

Dans un cas général, une telle commande directe produit un retour continu au fur et à mesure de la

production du geste initiateur. Ainsi, avec l’exemple du glissement de doigt (scroll) sur la carte, le

déplacement de celle‐ci se produit concomitamment avec celui‐ci.

A l’inverse, les gestes de commandes indirectes produisent un effet unique, comme c’est le cas par

exemple, avec la reconnaissance de l’écriture manuscrite. Des exemples de telles interactions sont

proposés dans [AZ09] pour permettre de dessiner des icônes à partir de raccourcis gestuels. Un autre

exemple classique est celui de la saisie manuscrite de caractères, dans ce cas l’utilisateur dessine la

forme du caractère en place de le taper sur le clavier. Une fois le tracé effectué, le système de

traitement l’interprète et produit un résultat associé, tel que l’affichage d’une lettre.

 (a) Commande indirecte (b) Manipulation directe

Figure 1. Deux types d’interaction tactile

De nos jours, les gestes tactiles mono‐points (un seul point de contact à chaque instant) sont

largement utilisés et étudiés à la fois pour de la manipulation directe et pour des commandes

indirectes. Les utilisateurs ont même la possibilité de spécifier leurs propres gestes et de les associer

aux commandes de leurs choix. Par contre, concernant les interactions multipoints, il existe de

nombreuses limitations qui les contraignent à de la manipulation directe, telle que zoomer avec deux

doigts. Le travail proposé dans cette thèse étend l’usage des gestes multipoints pour les rendre

utilisable dans un cadre de commande indirecte (tel que copier, coller, etc.) et pour élargir les

manipulations directes envisageables. Un des enjeux de notre problématique est de proposer des

modèles d’analyse et de reconnaissance aptes à traiter les gestes multipoints, comme il en existe

aujourd’hui pour les gestes mono‐points.

Pour modéliser les gestes multipoints, nous avons privilégié une approche basée graphe (section 2).

Les caractéristiques du geste multipoint telles que sa forme, les relations spatiales et temporelles

entre les trajectoires des doigts vont être prises en compte pour construire le graphe de

représentation. Une description vectorielle du graphe (graph embedding) couplée à un classifieur

SVM permettra d’assurer la reconnaissance du geste. Afin de mettre au point, d’entrainer et de

tester nos différents systèmes, nous avons conçu, collecté et annoté une base d’exemples, MTGSet,

qui réunit 7 938 gestes de 41 classes différentes. Pour traiter les problèmes d’ambigüités entre

manipulation directe et commande indirecte sans connaissance du contexte, nous proposons une

stratégie de reconnaissance précoce pour des gestes multipoints (section 3). L’objectif est de

reconnaitre le geste en considérant le début du tracé pour permettre un retour utilisateur avant la

fin du tracé. Nous proposons également des stratégies d’implémentation pour traiter une

application effective. Finalement, nous abordons les difficultés spécifiques de la composition

multiutilisateurs de documents dans un contexte multipoints (section 4). Dans ce cas, il s’agit pour

reconnaitre les gestes de chaque utilisateur de pourvoir distinguer les traces respectives produites

par chacun.

2.	Reconnaissance	de	gestes	multipoints		

A la différence des gestes mono‐points où les tracés sont produits en séquence, dans le cas des

gestes multipoints, les différents tracés ont des relations temporelles beaucoup plus complexes.

Deux gestes ayant le même rendu visuel final peuvent avoir été produits de façon très différente.

Nous chercherons à modéliser les relations inter‐tracés telles qu’elles ont été produites afin de

pouvoir distinguer ces différents types de geste. Compte‐tenu du nombre variable de points de

contacts, il est difficile d’extraire un nombre fixe de caractéristiques pour décrire les relations

spatiales et temporelles entre les tracés. Pour cela, nous proposons d’utiliser un modèle à base de

graphes pour représenter ces relations spatiales et temporelles, ainsi que l’aspect de chaque élément

du tracé. Dans cette section, nous proposons deux types de graphes avec la méthode de

classification associée pour permettre la reconnaissance du geste correspondant.

Modèle	de	graphe	utilisant	les	relations	d’Allen		
La figure 2 présente le synoptique général de l’approche proposée.

Construction	du	graphe		
La figure 3 montre le graphe pour un geste composé de deux traits. Chaque trait est représenté par

trois nœuds, un nœud associé à chaque extrémité, Vb (begin) et Ve (end), et un nœud central Vs. Ces

trois nœuds serviront pour introduire les relations entre les traits grâce aux arêtes qui en seront

issues.

Ensuite, l’information de forme du trait est encodée dans le graphe. Nous utilisons pour cela un

dictionnaire de formes élémentaires (ligne, arc, ellipse, …) pour décrire de façon discrète chaque trait.

À la différence d’autres travaux [LLLW15] [AMG07] où ces formes sont prédéfinies de façon

empirique, nous avons construit le dictionnaire par un algorithme de clustering non supervisé à partir

d’une base d’apprentissage. Pour cela, l’algorithme des K‐means avec la distance Euclidienne dans

l’espace des caractéristiques HBF49 [DA13] est utilisé. Chaque trait est alors associé au représentant

du cluster auquel il appartient. Dans la mesure, où seules des informations de formes locales à

chaque trait sont utilisées, cette stratégie est appelée Local Shape Représentation (LSR).

Figure 2. Structure générale de la construction du graphe et de sa reconnaissance.

Nous mesurons ensuite les relations spatiales et temporelles entre les différents traits. À titre

d’exemple, considérons un geste avec deux traits dont le graphe général est donné figure 3. Sur ce

Clustering
(Local Shape
Representation)

N Classes
(Default = 9)

Strokes to
vertices

Relations
between
vertices

Allen’s
relations

Graph
embedding

Strokes
labeling

Training
set

Feature Extraction
(Global Shape
Representation)

Training
Classifier

(SVM)

Graph modeling

Gesture
graph

All
strokes

Feature
vector

For each
gesture

Feature
vector

Merge

For each
gesture

graphe, toutes les relations potentielles figurent et devront être évaluées. Ces relations sont

représentées par les arêtes Es, Est and Ast entre deux nœuds du graphe. Nous avons choisi les

relations d’Allen [All83] initialement utilisées pour quantifier 7 relations temporelles entre deux

évènements. Sur ce principe, nous étendons les relations d’Allen à la fois sur l’axe du temps et sur les

axes x et y pour évaluer des relations spatiales entre deux traits.

Figure 3. Structure générale d’un graphe d’un geste avec deux traits.

1) Arête entre les nœuds centraux (Ast): Le jeu complet des relations d’Allen est utilisé pour établir

les relations vis‐à‐vis du temps, de la position en x et de la position en y entre deux traits Vs. L’indice

st signifie que les relations spatiales et temporelles sont considérées. Il en résulte que l’arc Ast

contient un triplet de relations comme attribut.

2) Arêtes entre les nœuds extrémités (Es and Est): Ces arêtes modélisent les relations existantes

entre les extrémités des traits. A la différence des arêtes entre les nœuds centraux qui avaient un

nombre fixe de trois relations, ici un nombre variable de 1 à 3 relations peuvent exister. Enfin, quand

l’on considère une paire de nœuds extrémités opposés, seules les relations spatiales sont étudiées et

l’arc se réduit à Es. Cet arc porte alors les relations spatiales en x et en y entre un nœud début et un

nœud fin de trait.

Il est à noter que les relations portées par les arêtes entre les nœuds extrémités renforcent les

mesures établies par les relations d’Allen. Bien que certaines de ces relations soient déjà présentes

implicitement dans les arêtes des nœuds centraux associés aux traits, nous choisissons de conserver

cette redondance. Ainsi, des gestes avec le même nombre de traits pourront avoir des structures de

graphe différentes.

Plongement	de	graphe	
La méthode de « graph embedding » cherche à ramener dans un espace vectoriel de dimension fixe

un graphe de topologie variable afin de pouvoir utiliser des méthodes classiques de classification

statistique. Dans ce travail, nous avons adopté l’approche proposée par by Sidere et al. [SHR09].

L’étape initiale consiste à construire une matrice dont chaque ligne représente une étiquette

possible d’un sommet ou d’une arête du graphe tandis que chaque colonne correspond à une sous‐

structure choisie du graphe. Cette matrice sert d’accumulateur pour dénombrer les occurrences des

labels dans les sous‐graphes iso‐morphiques aux sous‐structures. Ensuite, la concaténation des lignes

de la matrice permet d’obtenir la représentation vectorielle.

Pour les colonnes de la matrice, nous avons choisi de considérer trois sous‐structures : un seul

sommet, deux sommets reliés par une arête et trois sommets reliés par deux arêtes. Nous aurons un

total de 32 lignes, représentant les 9 (par défaut) symboles de forme issus du clustering attribuables

au sommet Vs, le label début et fin et pour les sommets extrémités Vb et Ve et les 7 relations d’Allen

pour les trois relations Est (temps, x et y). Conséquemment, un vecteur de taille 3x32 = 96 sera

disponible à la suite de cette opération.

Représentation	Globale	de	la	Forme	(Global	Shape	Representation,	GSR)	
Nous avons ci‐dessus intégré la description locale (LSR) des traits à la représentation globale définie

par le graphe. Une alternative à l’utilisation du graphe serait d’extraire directement du geste complet

un vecteur de représentation global (GSR). À cet effet, nous extrayons globalement les

caractéristiques HBF49 du geste complet, ces dernières pourront être considérées soit de façon

isolée, soit en étant adjointes à celles provenant de la modélisation par graphe.

Expériences	
Ces expériences mettent en œuvre la base MTGSetA, qui contient 1 800 gestes multipoints,

représentant 18 classes et provenant de 10 personnes différentes. La figure 4 illustre les 18 classes

de gestes.

Figure 4. Pictogrammes des gestes de la base

Dans la mesure où les gestes tactiles ont été traduits par des vecteurs de caractéristiques, tous les

classifieurs statistiques sont envisageables. Nous avons retenu pour cette expérience un classifieur

SVM issu de la librairie LIBSVM en retenant un noyau gaussien et les méta‐paramètres par défaut.

Trois séries d’expériences sont proposées pour évaluer ce premier système.

Expérience 1 (GSR): seules les caractéristiques HBF49 en mode global sont utilisées. Celles‐ci ont

prouvé être très performantes dans des contextes mono‐points. Nous les utilisons directement sur

les tracés multipoints sans prendre en compte le modèle de graphe. En d’autres termes, dans cette

expérience les conditions de synchronisation des tracés sont perdues.

Expérience 2 (Graph(LSR)): ici, nous utilisons le graphe pour modéliser le tracé puis sa description

par un vecteur de taille fixe. Comme nous l’avons expliqué dans la section 3.2.1, l’approche LSR est

basée sur un clustering non supervisé pour quantifier la forme des traits, le nombre optimal de

cluster a été fixé empiriquement à 9.

Expérience 3 (Graph(LSR)+GSR): Finalement, nous concaténons les deux représentations

précédentes pour intégrer à la fois les descripteurs de formes locaux et globaux.

Toutes ces expériences sont faites avec un protocole de validation croisée (5‐cross‐validation) pour

permettre d’être indépendant des utilisateurs.

Tableau 1. Résultats de reconnaissance sur la base MTGSetA

Méthode Taille	du	vecteur Taux	de	reconnaissance	(%) Ecart	type	(%)

GSR 49 90.44 0.034

Graph(LSR) 96 92.56 0.013

Graph(LSR)+GSR 145 94.50 0.020

Le tableau 1 résume les taux de reconnaissance obtenus avec les deux approches et leur

combinaison. Les résultats montrent que l’approche structurelle par modèle de graphe, contenant

des informations spatiales, temporelles et de formes locales, obtient un taux de reconnaissance de

92,56% ce qui est meilleur que celui obtenu avec les caractéristiques globales HBF49 (90,44 %). Cela

montre que la modélisation proposée sous forme de graphe est bien apte à capter des informations

importantes pour ces gestes multipoints. De façon complémentaire, la troisième expérience qui

intègre les deux jeux de caractéristiques précédents obtient les meilleurs résultats avec un taux de

94,50 %, ce qui est significativement supérieur.

Modélisation	par	graphe	avec	des	caractéristiques	de	déplacement	
Le graphe précédent comporte certaines limitations. Les dépendances spatiales et temporelles ne

sont prises en compte qu’aux extrémités des traits. De plus, le modèle ne retient que des

descriptions symboliques (les relations d’Allen et les labels des traits) en tant qu’attribut du graphe.

Ces descriptions discrètes ne sont sans doute pas suffisamment précises pour décrire les formes et

les relations entre ces formes. Pour circonvenir à ces limitations, nous proposons dans cette section

une nouvelle approche qui intègre des attributs scalaires permettant une représentation plus

continue de l’espace des caractéristiques. La figure 5 présente le schéma général de l’approche.

Figure 5. Approche de reconnaissance basée graphe en trois étapes

Prétraitement	et	découpage	des	traits		
Il faut trouver un bon compromis entre extraire un mouvement global entre deux traits, ce qui est

trop réducteur de la diversité des situations rencontrées, et extraire un mouvement local entre

chaque point du tracé, ce qui serait très lourd et inutilement bruité. La solution proposée consiste à

ré‐échantillonner les traits avec un pas spatial prédéfini, et travailler avec les sous‐traits ainsi définis

entre chaque paire de points.

Du	geste	au	graphe	
A ce stade, de façon élémentaire, un geste est disponible sous la forme d’un ensemble de sous‐traits.

Dans cette section, nous verrons comment extraire deux informations importantes : la forme de

chaque sous‐trait et les relations topologiques entre paire de sous‐traits. Ces informations sont

portées par un graphe.

Figure 6. Segmentation des traits et diagramme d’activité des sous‐traits.

Chaque sous‐trait est défini par quatre paramètres géométriques, sa longueur (݈), son inclinaison,

l’angle (ߠ) et son centre de gravité (ܿ௫, ܿ௬)

Pour représenter l’évolution temporelle des sous‐traits et leur mouvement relatif, nous introduisons

trois types de relations entre deux sous‐traits : les relations d’adjacence (a), de synchronicité (s) et de

consécutivité (c).

Relation 1 (Adjacence, Ra). Les sous‐traits Sij et Skl sont adjacents s’ils appartiennent au même trait et

sont temporellement consécutifs.

Avec l’exemple de la figure 6(c), nous avons : RୟሺSଶଵ, Sଶଶሻ ൌ 1; RୟሺSଷଵ, Sଷଶሻ ൌ 1. Cette relation

permet d’identifier les sous‐traits consécutifs d’un même trait.

Relation 2 (Synchronicité, Rs). Deux sous‐traits Sij et Skl sont synchrones s’ils appartiennent à des

traits différents et ont été tracés en même temps.

Cette relation indique que deux sous‐traits ont été tracés simultanément par deux doigts, cela

correspond à un cas typique pour une interaction multipoints. Un vecteur de caractéristiques va

mesurer le mouvement relatif entre ces deux sous‐traits. Une méthode classique [OIL11] pour

caractériser le mouvement de deux doigts s’appuie sur les points de départ et d’arrivée de chaque

sous‐traits. On calculera les mouvements de translation, rotation et homothétie pour passer des

points de départ aux points d’arrivée. La figure 7 illustre la définition de ces trois mouvements.

Figure 7. Caractéristiques de mouvement entre deux sous‐traits synchrones Sij, Skl. Le vecteur de

translation (dx, dy) est basé sur les centres de gravité cs et ce, des paires des points de départ et

d’arrivée respectivement. Le facteur d’échelle (ds, de) mesure les distances entre les points de départ

et d’arrivée. L’angle θ définit la rotation permettant de passer de la direction du couple de points de

départ au couple de points d’arrivée.

A partir de ces grandeurs, telles que définies par la figure 7, on construit le vecteur de mouvement

suivant:

൫ܯ ௜ܵ௝, ܵ௞௟൯ ൌ ሺට݀௫ଶ ൅ ݀௬ଶ, ݀௘ െ ݀௦, ሻߨ2/ߠ

Relation 3 (Consécutivité, Rc). Deux traits Si et Sk sont dits consécutifs, soit tracés en séquence quand

ils ne partagent pas de sous‐traits synchrones.

Dans la mesure où le modèle est construit au niveau des sous‐traits, cette relation va être établie

entre le dernier sous‐trait d’un trait et le premier sous‐trait d’un trait consécutif. Un attribut

mesurant le retard temporel td entre les deux sous‐traits est calculé

௖ሺܴ௖ሻݓ ൌ ௖൫ݓ ௜ܵ௝, ܵ௞௟൯ ൌ ܶ/ௗݐ

Cette grandeur est normalisée par la durée totale du geste pour la ramener dans l’intervalle [0,1].

Globalement, l’ensemble des relations de l’exemple de la figure 6 est présenté sur la figure 8 (a). En

utilisant les caractéristiques géométriques et les relations définies ci‐dessus, nous pouvons construire

un graphe, appelé Multi‐Touch‐Stroke Graph (MTSG), tel que présenté à la figure 8(b).

Mise	en	correspondance	de	graphes		
Nous proposons de calculer une distance d’édition pour obtenir une mesure de (di‐)similarité entre

deux graphes représentatifs de deux gestes. Au lieu de réaliser une mise en correspondance globale

sur les deux graphes entiers comme dans [RB09][RB10], nous cherchons d’abord une mise en

correspondance optimale de sous‐graphes en ne considérant que les sommets, les arêtes seront

ensuite automatiquement ajoutées.

Nous commençons par grouper les sommets qui appartiennent au même trait pour former des

ensembles de sous‐graphes qui sont en fait dans ce cas des chaines. L’algorithme DTW est utilisé

pour calculer le coût d’association de deux de ces sous‐graphes. Une matrice de coût C récapitule

l’ensemble des coûts d’association des différentes paires possibles de sous‐graphes. Puis l’algorithme

de Munkres [Mun57] permet de trouver en temps polynomial l’ensemble optimal des assignations de

sous‐graphes. Il est possible alors de déduire la fonction de mise en correspondance entre chaque

sommet des deux graphes. La distance d’édition se calcule alors simplement comme la distance

euclidienne entre les vecteurs des sommets associés. La figure 9 présente la mise en correspondance

des sous‐graphes et la matrice de coûts C.

Figure 8. (a) Sous‐traits correspondant à la figure 6(a) et leurs relations. (b) Le graphe correspondant.

(c) Les attributs associés aux sommets et aux arêtes.

Une fois que la distance entre les sommets est calculée, le calcul est étendu en prenant en compte

les arêtes adjacentes. Comme il y a trois types d’arêtes avec chacune des attributs différents, les

coûts d’association ne sont faits que sur les arêtes de même type.

Classification		basée	graphe		
Nous proposons une alternative à l’utilisation directe de la distance précédente par une méthode de

K‐ppv en reprenant l’idée proposée par Kapser and Horst [RB10] proposant une représentation

vectorielle du graphe qui utilise la distance disponible. L’idée de base est d’utiliser la distance du

graphe à plusieurs formes prototypes pour construire un descripteur sous forme de vecteur. Un

classifieur de type SVM est ensuite utilisée pour l’étape de classification du graphe.

Figure 9. (a) Deux gestes avec les sous‐traits et leurs relations. (b) Le graphe représentatif de chaque

geste. Les sommets qui appartiennent au même trait sont regroupés dans les sous‐graphes ௦ܸ
௡, ௦ܷ

௠.

(c) L’assignation optimale de la matrice de coûts DTW solutionnée par l’algorithme de Munkres, et la

mise en correspondance des sommets Φୟ୪୪
∗ .

Expérimentations	

Nous effectuons les expérimentations sur la base MTGSetB, qui est une extension de MTGSetA. Nous

ajoutons des classes plus complexes et étendons donc l'ensemble à 6138 échantillons et 31 classes.

Dans le même temps, nous utilisons trois jeux de symboles mono‐touch standard : LaViola, ILG et

NicIcon, pour évaluer la performance de notre méthode sur les symboles mono‐point. Nous

comparons dans le Tableau 2 notre modélisation de graphe + plongement de graphe avec

l'utilisation du jeu de caractéristiques HBF49 [4], qui est une approche statique conçue à l'origine

pour le geste mono‐point.

Tableau 2. Taux de reconnaissance pour les 4 bases de test

 LaViola ILG NicIcon MTGSetB
HBF49 93.64% 93.54% 97.44% 91.36%

Graph modeling 93.18% 91.30% 93.17% 98.97%

Nous constatons que l'ensemble de caractéristiques HBF49 fonctionne mieux sur les trois jeux de

gestes mono‐point. Les raisons sont que ces trois ensembles de données n'ont pas de relation de

synchronisation complexe entre les traits et que les caractéristiques extraites pour chaque trait dans

notre approche sont beaucoup plus simples que celles de HBF49. Par conséquent, notre approche est

moins puissante sur l'aspect analyse de la forme par rapport à HBF49. Cependant, notre méthode de

modélisation et d'appariement de graphes surpasse de manière significative le HBF49 sur MTGSetB.

Principalement parce que le MTGSetB contient des gestes qui sont de forme similaire mais qui ont

des relations temporelles internes différentes. Notre méthode est donc dédiée au problème de

reconnaissance gestuelle multi‐point.

3.	Reconnaissance	précoce	basée	sur	l'utilisation	du	rejet		
Dans la section précédente, nous avons proposé une méthode de classification pour reconnaître

après leur achèvement les gestes multi‐point de commandes indirectes. Si dans une même

application, les utilisateurs doivent pouvoir utiliser des gestes multi‐point en commande directe et

aussi indirecte, un conflit entre ces deux interactions apparaît. En effet elles offrent une rétroaction

complètement différente pour les utilisateurs. La manipulation directe doit donner une rétroaction

instantanée pendant la trajectoire du doigt, tandis que la commande indirecte peut attendre la fin

d'un geste, alors que le début des deux gestes peut être très similaire. Dans cette section, nous

explorons une stratégie de reconnaissance précoce visant à reconnaître un geste dès le début afin de

prendre une décision dès que possible.

Figure 10. Deux gestes avec une partie commune ambigue pour la reconnaissance précoce.

Reconnaissance	précoce	par	combinaison	de	classifieurs		
Nous proposons une structure multi‐classifieur pour la reconnaissance précoce des gestes, comme le

montre la figure 11. Chaque classifieur est entraîné sur une sous‐partie du geste de sorte que les

différents classifieurs sont responsables de différentes phases du geste. Dans un cas idéal, un geste

d'entrée incomplet à venir (d'une longueur de l) est d'abord affecté au classificateur h1. S'il ne peut

pas être distingué avec un autre geste en raison de leur début commun, on attendra une autre

longueur de trajectoire et l’assignera au classificateur h2. Le même processus est utilisé pour les

classificateurs suivants jusqu'à ce qu'un classificateur trouve suffisamment de différences pour faire

une reconnaissance. Cependant, nous n'imposons pas de taille minimale ou maximale à un geste, il

est impossible à partir d'un geste en cours de formation de savoir quelle proportion du geste est

réalisée. Il peut donc y avoir conflit entre un début de geste et un autre geste complet. Par

conséquent, dans notre système multi‐classifieur, nous assignons chaque geste incomplet à tous les

classifieurs et laissons un module de fusion pour décider si le geste peut être accepté ou non.

Figure 11. Architecture du système multi‐classifieur pour la reconnaissance précoce.

Option	de	rejet		
Sur la base de la structure multi‐classifieur, nous mettons en œuvre deux options de rejet pour

chaque classificateur: le rejet d'ambiguïté et le rejet de distance. Le premier est utilisé pour détecter

la partie commune entre les gestes en conflits et permettre au système d'attendre plus de trajectoire.

Le second est utilisé pour rejeter un geste partiel qui n'est pas compatible avec un des classifieurs et

laisser les autres prendre une décision. La figue. 12 illustre la différence entre ces deux options de

rejet.

Figure 12. Différence entre le rejet d'ambiguïté et le rejet de distance.

Nos options de rejet sont basées sur les scores triés par ordre décroisant de chaque classe donnés

par chaque classifieur. Les fonctions de confiance pour le rejet d'ambiguïté et le rejet de distance

sont données par :

߰௜஺௠௕ ൌ
௜ݏ െ ௝ݏ
௝ݏ

߰௜ை௨௧ ൌ ௜ݏ

Ces scores de confiance sont alors comparés à des seuils pour décider de l'acceptation ou non de la

forme. Ces seuils sont appris sur une base de validation en minimisant le taux de fausse acceptation

(FAR) et le taux de faux de rejet (FRR).

Expérimentations	

Nous évaluons notre système sur la base MTGSetB qui contient 3589 gestes d'entraînement et 2549

gestes pour l'ensemble de test. Nous utilisons 20% des échantillons de l'ensemble d'entraînement

comme un ensemble de validation pour l'apprentissage des seuils. Le nombre de classifieurs est fixé

à 3. Avant l'apprentissage, chaque geste est normalisé dans un cadre de 500x500 pixels et segmenté

en 3 gestes partiels de longueur 250, 500, 750 pixels pour alimenter respectivement les 3 classifieurs.

Notez que chaque geste n'a pas plus de 750 pixels. Si un geste est inférieur à 500 pixels, il ne sera

segmenté que sur deux gestes partiels et alimentera les deux premiers classifieurs. Lors du test, un

geste est tenté d'être reconnu tous les 50 pixels de sa trajectoire. Dans le cas d'utilisation réelle, une

stratégie raisonnable consiste à filtrer les décisions en considérant plusieurs sorties consécutives du

classificateur (i.e. à différentes longueurs). Par conséquent, une décision est finalement acceptée

lorsque le classificateur donne n fois consécutives la même sortie. Dans le tableau 3 nous comparons

la précision de reconnaissance avec une stratégie sans rejet pour n = 1 à 6.

Tableau 3. Résultat pour la reconnaissance précoce de gestes avec ou sans utilisation du rejet pour n

décisions identiques consécutives.

n
Avec Rejet Sans Rejet

Taux vrai
acceptation

Taux fausse
acceptation

Taux de
Rejet

Précocité
Taux de

Reconnaissance

Taux
d'Erreur

Précocité

1 81.89% 14.56% 3.54% 37.04% 24.88% 75.15% 8.13%

2 83.44% 10.85% 5.71% 46.82% 48.78% 51.22% 21.32%

3 82.38% 8.85% 8.77% 55.89% 67.60% 32.40% 33.98%

4 82.20% 6.06% 11.73% 66.16% 79.59% 20.36% 45.44%

5 80.35% 4.60% 15.05% 71.03% 85.83% 13.72% 54.93%
6 77.42% 3.41% 19.17% 77.54% 88.62% 11.39% 62.34%

Ici, le taux de rejet signifie que le geste partiel n'a pas n fois consécutives le même résultat ou a été

rejeté par les trois classificateurs jusqu'à la fin. La précocité signifie le pourcentage moyen d'un geste

qui est écrit au moment où il est reconnu. Le résultat pour n = 3 peut être considéré comme optimal

lorsque les taux de fausse acceptation et de rejet sont équilibrés autour de 8,8% et la décision est

prise en moyenne à 55,89% du tracé. Sans option de rejet, il faut monter à n = 5 pour un résultat

comparable en terme de précocité (à 54,93%). Par contre, le taux d'erreur (13,72%) est supérieur de

55% au taux de fausse acceptation (8,85%) obtenu avec notre stratégie d'option de rejet.

4.	Composition	de	document	structurés	dans	le	cadre	multi‐utilisateur	
Dans cette dernière partie nous nous sommes intéressés à la problématique de la composition de

documents lorsque plusieurs utilisateurs participent à cette tâche. Le point fondamentale qui change

par rapport aux contextes des chapitres précédents est que plusieurs gestes peuvent être composés

simultanément. Lorsqu'il y a plusieurs contacts en même temps, il n'est pas possible a priori de

décider si ces traits composent un seul geste ou sont dessinés par deux utilisateurs. En plus de la

tâche de reconnaissance il y a donc une tache de segmentation de la séquence en gestes. De plus,

pour garder une fluidité d'utilisation, il faut reconnaitre un geste dès qu'il est terminé.

Base	de	diagrammes	multi‐utilisateurs	
Pour réaliser cette étude, nous avons commencé par collecter une nouvelle base de gestes réalisés

en condition multi‐utilisateurs. Des diagrammes de type "cartes mentales" ont été recopiés (sans

texte) par deux utilisateurs simultanément. 21 utilisateurs ont participé à collecter 42 diagrammes

composés de 2011 gestes de 9 classes différentes. Certains symboles sont multi‐points, d'autres

multi‐traits ou encore mono‐traits. La Figure 13 donne un exemple de diagramme saisi.

Figure 13. Exemple de diagramme multi‐utilisateur composé de 9 gestes différents : crochets, ellipse,

rectangle, triangle, losange, ligne simple, double ligne, flèche et pointe de flèche.

Système	de	reconnaissance	
La figure 14 illustre le fonctionnement global du système. À chaque fin de trait saisi par un des

utilisateurs, ce dernier est ajouté à une liste de trait. À partir de cette liste, nous allons générer tous

les gestes possibles. Chaque hypothèse de geste est évaluée par un classifier . Il y a trois types

d'hypothèses qui peuvent être rencontrés : les gestes complets qui doivent être renvoyés à

l'utilisateur ; les gestes incomplets qui doivent attendre d'être complétés ; et les mauvaises

compositions de traits qui doivent être rejetées.

Les gestes détectés par le système sont renvoyés à l'utilisateur et leur traits sont retirés de la liste de

traits en attente. Les traits restants seront ré‐utilisés lorsqu'un nouveau trait sera saisi.

Figure 14. Architecture du système de reconnaissance multi‐utilisateur.

Pour prendre ces trois types de décision, le classifieur est entrainé en utilisant une base de symboles

valides, une base de symboles incomplets et une base de mauvaises combinaisons de traits. Comme

évoqué dans la section précédente, certains gestes complets peuvent correspondre au début d'un

geste plus long. Dans ce cas un conflit entre la classe du geste court et la classe "geste incomplet"

bloque la reconnaissance du geste court. Pour éviter cette situation, nous proposons une

pondération de la classe "geste incomplet" grâce à l'âge du trait concerné. En effet les traits

composant un symbole complexe sont généralement dessinés dans un laps de temps assez court,

donc un trait qui vient juste d'être saisi sera sûrement complété pour composer un symbole plus

complexe, alors qu'un trait qui reste en attente depuis trop longtemps doit être utilisé.

Résultats	
La tableau 4 montre les résultats obtenus en fonction de ts l'âge maximum d'un trait non utilisé. Plus

ts est long, plus les gestes simples en conflit restent en attente longtemps. Si les traits sont utilisés

trop tôt, certaines compositions sont manquées, si les gestes sont conservés trop longtemps, certains

mauvais regroupements sont pris pour ces gestes. Le meilleur compromis est obtenu pour 500ms

avec un taux de reconnaissance de 90%.

Tableau 4. Taux de bonne segmentation et taux de reconnaissance en fonction de ts.

ts(ms) 300 500 1000 2000

Segment Number 691 687 675 649

Correct Segment 592 596 593 578

Segment Recall Rate 89.43% 90.03% 89.58% 87.31%

Symbol Recall Rate 75.68% 76.28% 76.13% 74.77%

5.	Conclusion			
Notre travail explore la possibilité d'utiliser le geste multi‐point pour la manipulation directe et la

commande indirecte. Nous avons développé un système de reconnaissance utilisant une

modélisation par graphes pour reconnaître une commande multi‐point comme un symbole isolé.

Pour évaluer la performance de notre système, nous avons construit un jeu de données MTGSet, qui

contient 6138 gestes multi‐point avec des relations spatiales et temporelles internes complexes.

Nous avons atteint 98,97% de taux de reconnaissance sur ce jeu de données et montré que notre

système de reconnaissance peut bien capturer les propriétés des gestes multi‐point en le comparant

à d'autres approches classiques. Pour explorer la possibilité d'utiliser un geste multi‐point pour la

manipulation directe et la commande indirecte dans un même contexte, nous avons proposé une

stratégie de reconnaissance précoce visant à reconnaître un geste à partir de sa partie initiale. Nous

avons proposé une structure multi‐classifieur avec option de rejet. Le résultat expérimental montre

que nous avons atteint un taux de reconnaissance de 82,38% avec une précocité moyenne de 55,89%

en conservant un taux d'erreur est inférieur au système sans option de rejet.

Enfin nous avons proposé une architecture de reconnaissance adaptée à la saisie de gestes tactiles

multi‐points par plusieurs utilisateurs simultanément. La solution proposée est entièrement

entrainable à partir d'une base de gestes saisis en conditions réelles (une base dédiée a été collectée).

Les résultats avec 9 classes de symboles pour la saisie de cartes mentales sont très stables, autour de

90% avec tous les gestes reconnus au plus tard après 500ms.

Publications of the author

Zhaoxin Chen, Eric Anquetil, Christian Viard-Gaudin, Harold Mouchère. Analyzing

and recognizing multi-touch gestures using graph models. Pattern Recognition, submitted

in November 2016.

Zhaoxin Chen, Eric Anquetil, Harold Mouchère, Christian Viard-Gaudin. A graph

modeling strategy for multi-touch gesture recognition. 14th International Conference on

Frontiers in Handwriting Recognition (ICFHR-2014), pp. 259-264, Sep 2014, Crete island,

Greece.

Zhaoxin Chen, Eric Anquetil, Harold Mouchère, Christian Viard-Gaudin. Recognize

multi-touch gestures by graph modeling and matching. 17th Biennial Conference of the

International Graphonomics Society, pp. 51-54 Jun 2015, Pointe-à-Pitre, France.

Zhaoxin Chen, Eric Anquetil, Harold Mouchère, Christian Viard-Gaudin. The MUMTDB

dataset for evaluating simultaneous composition of structured documents in a multi-user

and multi-touch environment. 15th International Conference on Frontiers in Handwriting

Recognition (ICFHR 2016), pp. 379-383, Oct 2016, Shenzhen, China.

Zhaoxin Chen, Eric Anquetil, Harold Mouchère, Christian Viard-Gaudin. Early Recog-

nition of Handwritten Gesture based on Multi-classi�er Reject Option. 14th International

Conference on Document Analysis and Recognition (ICDAR 2017), submitted in March

2017.

111

112 Chapter 7

Bibliography

[AFMVG11] Ahmad-Montaser Awal, Guihuan Feng, Harold Mouchère, and Christian

Viard-Gaudin. First experiments on a new online handwritten �owchart

database. In Document Recognition and Retrieval XVIII, pages 7874 �

78740A, San Fransisco, United States, Jan 2011.

[All83] James F. Allen. Maintaining knowledge about temporal intervals. Commun.

ACM, 26(11):832�843, November 1983.

[AMG07] Thierry Artières, Sanparith Marukatat, and Patrick Gallinari. Online hand-

written shape recognition using segmental hidden markov models. IEEE

Trans. Pattern Anal. Mach. Intell., 29(2):205�217, 2007.

[AW10] Lisa Anthony and Jacob O. Wobbrock. A lightweight multistroke recognizer

for user interface prototypes. In Proceedings of Graphics Interface 2010,

pages 245�252, 2010.

[AZ09] Caroline Appert and Shumin Zhai. Using strokes as command shortcuts:

Cognitive bene�ts and toolkit support. In Proceedings of the SIGCHI Con-

ference on Human Factors in Computing Systems, CHI '09, pages 2289�

2298, New York, NY, USA, 2009. ACM.

[Blo96] Dorothea Blostein. General diagram-recognition methodologies, pages 106�

122. Springer Berlin Heidelberg, Berlin, Heidelberg, 1996.

[BPH13] Martin Bresler, Daniel Prusa, and Václav Hlavác. Modeling �owchart struc-

ture recognition as a max-sum problem. In International Conference on

Document Analysis and Recognition, pages 1215�1219. IEEE Computer So-

ciety, 2013.

[BPP+14] Martin Bresler, Truyen Van Phan, Daniel Prusa, Masaki Nakagawa, and

Václav Hlavác. Recognition system for on-line sketched diagrams. In 14th

International Conference on Frontiers in Handwriting Recognition, , Crete,

Greece, September 1-4, pages 563�568, 2014.

113

114 Chapter 7

[CAMVG15] Zhaoxin Chen, Eric Anquetil, Harold Mouchère, and Christian Viard-

Gaudin. Recognize multi-touch gestures by graph modeling and match-

ing. In 17th Biennial Conference of the International Graphonomics Society,

Pointe-à-Pitre, France, June 2015.

[CLC13] Cérès Carton, Aurélie Lemaitre, and Bertrand Coüasnon. Fusion of statis-

tical and structural information for �owchart recognition. In 12th Interna-

tional Conference on Document Analysis and Recognition, Washington, DC,

USA, August 25-28, pages 1210�1214, 2013.

[DA13] Adrien Delaye and Éric Anquetil. Hbf49 feature set: A �rst uni�ed baseline

for online symbol recognition. Pattern Recognition, 46(1):117�130, 2013.

[DLJZ07] Kai Ding, Zhibin Liu, Lianwen Jin, and Xinghua Zhu. A comparative

study of gabor feature and gradient feature for handwritten chinese charac-

ter recognition. In 2007 International Conference on Wavelet Analysis and

Pattern Recognition, volume 3, pages 1182�1186, Nov 2007.

[FFJ11] Manuel J. Fonseca, Alfredo Ferreira, and Joaquim A. Jorge. Sketch-based

Interfaces and Modeling, chapter Sketch-based Retrieval of Vector Drawings,

pages 181�201. Springer London, London, 2011.

[HR07] Suyu Hou and Karthik Ramani. Calligraphic interfaces: Classi�er combi-

nation for sketch-based 3d part retrieval. Comput. Graph., 31(4):598�609,

August 2007.

[ISS10] Katsuhiko Ishiguro, Hiroshi Sawada, and Hitoshi Sakano. Multi-class

boosting for early classi�cation of sequences. In Proceedings of the

British Machine Vision Conference, pages 24.1�24.10. BMVA Press, 2010.

doi:10.5244/C.24.24.

[JZ07a] J. J. LaViola Jr. and R. C. Zeleznik. A practical approach for writer-

dependent symbol recognition using a writer-independent symbol recog-

nizer. IEEE Transactions on Pattern Analysis and Machine Intelligence,

29(11):1917�1926, Nov 2007.

[JZ07b] Joseph J. LaViola Jr. and Robert C. Zeleznik. A practical approach for

writer-dependent symbol recognition using a writer-independent symbol rec-

ognizer. IEEE Trans. Pattern Anal. Mach. Intell., 29(11):1917�1926, 2007.

[KHDA12] Kenrick Kin, Björn Hartmann, Tony DeRose, and Maneesh Agrawala. Pro-

ton++: a customizable declarative multitouch framework. In The 25th An-

nual ACM Symposium on User Interface Software and Technology, UIST

'12, Cambridge, MA, USA, October 7-10, 2012, pages 477�486, 2012.

Bibliography 115

[KSNT11] M. Kawashima, A. Shimada, H. Nagahara, and R. I. Taniguchi. Adaptive

template method for early recognition of gestures. In Frontiers of Computer

Vision (FCV), 2011 17th Korea-Japan Joint Workshop on, pages 1�6, Feb

2011.

[KWK+10] Dietrich Kammer, Jan Wojdziak, Mandy Keck, Rainer Groh, and Severin

Taranko. Towards a formalization of multi-touch gestures. In ACM In-

ternational Conference on Interactive Tabletops and Surfaces, ITS 2010,

Saarbrücken, Germany, November 7-10, 2010, pages 49�58, 2010.

[LC02] Wing Ho Leung and Tsuhan Chen. Retrieval of sketches based on spatial

relation between strokes. In ICIP (1), pages 908�911, 2002.

[LLLW15] Shuang Liang, Jun Luo, Wenyin Liu, and Yichen Wei. Sketch matching

on topology product graph. IEEE Trans. Pattern Anal. Mach. Intell.,

37(8):1723�1729, 2015.

[LM01] James A. Landay and Brad A. Myers. Sketching interfaces: Toward more

human interface design. IEEE Computer, 34(3):56�64, 2001.

[MA06] H. Mouchere and E. Anquetil. A uni�ed strategy to deal with di�erent na-

tures of reject. In Pattern Recognition, 2006. ICPR 2006. 18th International

Conference on, volume 2, pages 792�795, 2006.

[MA09] Sébastien Macé and Eric Anquetil. Eager interpretation of on-line hand-

drawn structured documents: The dali methodology. Pattern Recogn.,

42(12):3202�3214, December 2009.

[MMM+12] Sriganesh Madhvanath, Dinesh Mandalapu, Tarun Madan, Naznin Rao, and

Ramesh Kozhissery. Gecco: Finger gesture-based command and control

for touch interfaces. In 4th International Conference on Intelligent Human

Computer Interaction, IHCI 2012, Kharagpur, India, December 27-29, 2012,

pages 1�6, 2012.

[MRLSL06] Joan Mas Romeu, Bart Lamiroy, Gemma Sánchez, and Josep Lladós. Auto-

matic Adjacency Grammar Generation from User Drawn Sketches. In 18th

International Conference on Pattern Recognition - ICPR 2006, volume 2,

pages 1026 � 1029. IAPR, August 2006.

[MUK+06] A. Mori, S. Uchida, R. Kurazume, R. Taniguchi, T. Hasegawa, and H. Sakoe.

Early recognition and prediction of gestures. In Pattern Recognition, 2006.

ICPR 2006. 18th International Conference on, volume 3, pages 560�563,

2006.

116 Chapter 7

[Mun57] James R. Munkres. Algorithms for the Assignment and Transportation

Problems. Journal of the Society for Industrial and Applied Mathematics,

5(1):32�38, March 1957.

[NV05] Ralph Niels and Louis Vuurpijl. Dynamic time warping applied to tamil

character recognition. 2005.

[NWV08] R. Niels, D.J.M. Willems, and L. Vuurpijl. The nicicon database of hand-

written icons. In Proceedings of the 1st International Conference on Fron-

tiers in Handwriting Recognition, pages 296�301, Montreal, Canada, 2008.

[OIL11] Chi-Min Oh, Md Zahidul Islam, and Chil-Woo Lee. Mrf-based particle �lters

for multi-touch tracking and gesture likelihoods. In 11th IEEE International

Conference on Computer and Information Technology, CIT 2011, Pafos,

Cyprus, 31 August-2 September 2011, pages 144�149, 2011.

[ORB+15] Francisco R. Ortega, Naphtali Rishe, Armando Barreto, Fatemeh Abyarjoo,

and Malek Adjouadi. Innovations and Advances in Computing, Informat-

ics, Systems Sciences, Networking and Engineering, chapter Multi-Touch

Gesture Recognition Using Feature Extraction, pages 291�296. Springer

International Publishing, Cham, 2015.

[PM13] Eric Petit and Christophe Maldivi. Unifying gestures and direct manipula-

tion in touchscreen interfaces. December 2013.

[PSDA10] Eric Je�rey Peterson, Thomas F. Stahovich, Eric Doi, and Christine Al-

varado. Grouping strokes into shapes in hand-drawn diagrams. In Pro-

ceedings of the Twenty-Fourth AAAI Conference on Arti�cial Intelligence,

pages 974�979, 2010.

[RB09] Kaspar Riesen and Horst Bunke. Approximate graph edit distance com-

putation by means of bipartite graph matching. Image Vision Comput.,

27(7):950�959, 2009.

[RB10] Kaspar Riesen and Horst Bunke. Graph Classi�cation and Clustering Based

on Vector Space Embedding. World Scienti�c Publishing Co., Inc., River

Edge, NJ, USA, 2010.

[RFLDA12] Ney Renau-Ferrer, Peiyu Li, Adrien Delaye, and Eric Anquetil. The ILGDB

database of realistic pen-based gestural commands. In ICPR2012 - 21st In-

ternational Conference on Pattern Recognition, pages 3741�3744, Tsukuba,

Japan, 2012.

Bibliography 117

[RNB07] Kaspar Riesen, Michel Neuhaus, and Horst Bunke. Graph-Based Represen-

tations in Pattern Recognition: 6th IAPR-TC-15 International Workshop,

GbRPR 2007, Alicante, Spain, June 11-13, 2007. Proceedings, chapter Bi-

partite Graph Matching for Computing the Edit Distance of Graphs, pages

1�12. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[Rub91] Dean Rubine. Specifying gestures by example. In Proceedings of the 18th

Annual Conference on Computer Graphics and Interactive Techniques, SIG-

GRAPH '91, pages 329�337, New York, NY, USA, 1991. ACM.

[SBMI12] Napa Sae-Bae, Nasir Memon, and Katherine Isbister. Investigating multi-

touch gestures as a novel biometric modality. In Biometrics: Theory, Ap-

plications and Systems (BTAS), 2012 IEEE Fifth International Conference

on, pages 156�161. IEEE, 2012.

[SBMIA14] Napa Sae-Bae, Nasir D. Memon, Katherine Isbister, and Kowsar Ahmed.

Multitouch gesture-based authentication. IEEE Transactions on Informa-

tion Forensics and Security, 9(4):568�582, 2014.

[SF10] Pedro Sousa and Manuel J. Fonseca. Sketch-based retrieval of drawings

using spatial proximity. J. Vis. Lang. Comput., 21(2):69�80, April 2010.

[SHR09] Nicolas Sidere, Pierre Héroux, and Jean-Yves Ramel. Vector Representation

of Graphs: Application to the Classi�cation of Symbols and Letters. In

ICDAR, pages 681�685. IEEE Computer Society, 2009.

[SKC08] Fotini Simistira, Vassilis Katsouros, and George Carayannis. A Template

Matching Distance for Recognition of On-Line Mathematical Symbols. In

Fotini Simistira; Vassilis Katsouros; George Carayannis, editor, 11th In-

ternational Conference on Frontiers in Handwriting Recognition (ICFHR

2008), Quebec, Canada, 2008.

[Sup16] https://support.apple.com/en-us/ht204895, 2016.

[Sut63] Ivan E. Sutherland. Sketchpad: A man-machine graphical communication

system. In Proceedings of the May 21-23, 1963, Spring Joint Computer

Conference, AFIPS '63 (Spring), pages 329�346, New York, NY, USA, 1963.

ACM.

[SW13] Michael Schmidt and Gerhard Weber. Template based classi�cation of

multi-touch gestures. Pattern Recogn., 46(9):2487�2496, September 2013.

[UA08] S. Uchida and K. Amamoto. Early recognition of sequential patterns by

classi�er combination. In Pattern Recognition, 2008. ICPR 2008. 19th In-

ternational Conference on, pages 1�4, Dec 2008.

118 Chapter 7

[VLOK01] V. Vuori, J. Laaksonen, E. Oja, and J. Kangas. Experiments with adaptation

strategies for a prototype-based recognition system for isolated handwritten

characters. International Journal on Document Analysis and Recognition,

3(3):150�159, 2001.

[WNvGV09] Don Willems, Ralph Niels, Marcel van Gerven, and Louis Vuurpijl. Iconic

and multi-stroke gesture recognition. Pattern Recognition, 42(12):3303�

3312, 2009.

[WWL07] Jacob O. Wobbrock, Andrew D. Wilson, and Yang Li. Gestures without

libraries, toolkits or training: A $1 recognizer for user interface prototypes.

In Proceedings of the 20th Annual ACM Symposium on User Interface Soft-

ware and Technology, UIST '07, pages 159�168, New York, NY, USA, 2007.

ACM.

[XWJS02] Jin Xiangyu, Liu Wenyin, Sun Jianyong, and Zhengxing Sun. On-line

Graphics Recognition. In Proceedings of the 10th Paci�c Conference on

Computer Graphics and Applications, pages 256�264, 2002.

[ZSHN10] Yuanping Zhu, Jun Sun, Yoshinobu Hotta, and Satoshi Naoi. Rejection

optimization based on threshold mapping for o�ine handwritten chinese

character recognition. In ICFHR, pages 72�77. IEEE Computer Society,

2010.

List of Figures

1.1 Touch gesture based manipulation interface. 5

2.1 Handwritten touch gesture for indirect command: (a) Users may input an

icon from the menu. The menu also shows the mapping from strokes to

icons. (b) Using stroke as the shortcut to input the icon instead of selecting

from menu. [AZ09] . 10

2.2 (a) A surface gesture taxonomy based on the number of strokes and touches.

[SW13] (b) Examples of di�erent type of gestures. 11

2.3 Indirect gesture commands supported by Mac's trackpad. 12

2.4 Gestures in feature space. (a) Two gestures have no common part. (b)

Middle parts are common. (c) Beginning parts are common. [MUK+06] . . 13

2.5 Single touch gesture set for executing commands. [WWL07] 14

2.6 Example of a DTW matching. [NV05] . 15

2.7 Features used to identify strokes. [Rub91] 16

2.8 Example of all permutations for a two-stroke � x � and its unistroke repre-

sentations. [AW10] . 18

2.9 (a) Examples of architectural plans in [MRLSL06]. (b) Example of engi-

neering drawing in [LLLW15]. 19

2.10 Example of stroke re�nement.[XWJS02] 20

2.11 Examples of topology relations between primitives.[LLLW15] 20

2.12 A sketch and its topology graph with the relations and geometry feature

on edges. Rad means adjacency relation for two primitives which have a

common endpoint. Rhc means half-cross relation that one primitive has a

endpoint joining some inner point of another primitive. [LLLW15] 21

2.13 The displacement of three touch points from time t− 1 to t can be trans-

lation, scaling and rotation simultaneously. The f1, f2 and f3 are feature

functions which are respectively related to translation, scaling and rotation.

[OIL11] . 22

119

120 Chapter 7

2.14 The motion feature functions: f1 measures the translation vector of ith

point pair between time t− 1 and t. f2 measures the distance di,j between

points in a certain time. f3 measures the rotation angle θi of ith node

between time t− 1 and t. [OIL11] . 23

2.15 Rotate gesture described by GeForMT, where 1F means number of �nger,

HOLD and SEMICIRCLE are prede�ne atomic gestures, o means the

�nger is focusing on an object. [KWK+10] 24

2.16 Examples of indirect command oriented multi-touch gestures presented in

[SW13]. Larger dots are depicting the start of a trajectory (from one touch),

the arrows their movement and dashed smaller dots symbolize their end.

Di�erent strokes are colored di�erently, black elements belong to the �rst

stroke, gray ones to the second. 25

2.17 The overview of a multi-touch symbolic gesture classi�er's architecture pre-

sented in [SW13]. 26

2.18 An example of early recognition for a gesture, the recognizer give di�erent

feedback according to the progressing of trajectory. [PM13]. 27

2.19 (a) Conventional gesture recognition. (b) Early recognition strategy. [MUK+06]. 28

2.20 Three frame classi�ers combined with weight propagation. [UA08]. 29

2.21 (a) Examples of diagrams with structure in [BPP+14]. (b) A digital logic

sketch in [PSDA10]. 30

2.22 (a) Lazy interpretation of musical score. (b) Eager interpretation of musical

score [MA09]. 31

3.1 The graph modeling and classi�er training architecture of gesture recogni-

tion system. 35

3.2 A stroke is represented by three vertices in a graph. Vb: begin vertex; Vs:

stroke vertex; Ve: end vertex. 36

3.3 Examples of seven Allen's relations. 37

3.4 An example of a general graph modeling for a two strokes gesture. 37

3.5 a) A �ick gesture. b) Spatial relationship between strokes. c) Temporal

relationship between strokes. d) Primitive set from clustering. e) Graph

model with labels. 38

3.6 a) A anchor rotate gesture. b) Spatial relationship between strokes. c)

Temporal relationship between strokes. d) Primitive set from clustering.

e) Graph model with labels. 39

3.7 Vectorial representation of the graph in 3.5(e). 40

3.8 Multi-touch gestures prototypes in our experimental dataset. 42

3.9 (a) We record some basic information from the users. (b) Data acquisition

tool. In the top right, a animation is used to show the groundtruth of a

multi-touch gesture. 42

List of Figures 121

3.10 Recognition rate obtained by di�erent modules. 44

3.11 Confusion matrix of some typical misclassi�ed gestures of di�erent classi-

�cation methods. The row relates to the ground truth. 45

3.12 Performance evaluation of di�erent values of cluster number K used for

LSR. 46

3.13 Overview of the graph based gesture recognition in three stages. 47

3.14 Stroke segmentation and substroke representation. (a) a raw bracket like

gesture; (b) the gesture is segmented into four substrokes and normalized

inside a unit square bounding box. Each substroke has a feature vector

composed of its length (l), angle (θ) and centroid (c). 48

3.15 Example of temporal activity of substrokes in a multi-touch interaction.

(a) A three strokes gesture. (b) The substroke representation, Sij indicates

the jth substroke of stroke i. (c) Temporal activity of substrokes. 49

3.16 Motion features of two synchronous substrokes Sij, Skl. Translation mo-

tions (dx, dy) are based on cs and ce, the centroids of starting point pair

and ending point pair, respectively. Scaling motions (ds, de) are the dis-

tance of starting and ending point pairs, respectively. Rotation motion is

the θ from the starting point pair to the ending point pair. 50

3.17 (a) Illustration of the substroke relationships from example of Fig. 3.15.

(b) The corresponding adjacency matrix. 51

3.18 (a) Substrokes and their relations as depicted in Fig. 3.17(a). (b) The

graph representation of the gesture. (c) The attributes associated to the

vectices and edges. 53

3.19 Two graph representations of a gesture. (a) The original gesture which

is also shown in Fig. 3.14. (b) The graph representation if two strokes

are written in a synchronous manner, i.e. (s11 synchronizes to s21, s12

synchronizes to s22). (c) The graph representation if the stroke s21, s22 is

written after the stroke s11, s12. 53

3.20 (a) Two gestures represented by substrokes and substroke relations. (b)

The graph representation of two gestures. The vertices which belong to a

same original stroke are grouped into a subgraph V n
s ,U

m
s . (c) The DTW dis-

tance matrix is solved by Munkres' Algorithm to �nd the optimal vertices

matching between two graphs. Consequently, the vertices edit operation

set Φ∗all can be deduced from the DTW alignment. 56

3.21 The edge matching and edit operation of the two gestures in Fig. 3.20.

The edge matching is implied by the vertices edit operation set Φ∗all. . . . 57

3.22 The multi-touch gesture templates in MTGSet. 59

3.23 Samples and their variations in MTGSet. 60

122 Chapter 7

4.1 Early recognition for a �Heart� gesture. In stage 3, the trajectory is recog-

nized as �Drag� manipulation which gives an instant feedback along with

the trajectory. In stage 4, the trajectory is recognized as a �Symbolic-

pattern�, i.e. an indirect command. System need to wait until the end of

the trajectory to interpret it as a �Heart� symbol. [PM13]. 66

4.2 The common part ambiguity for early recognition. Three gestures have

di�erent common parts between each other. 66

4.3 (a) A normalized gesture as a template. (b) (c) In a size free context, due

to the input gestures having a variety of the size, a trajectory with a length

of l may cover di�erent parts of a same type gesture. 67

4.4 The structure of multi-classi�er early recognition system. 69

4.5 (a) Trajectory of an example gesture. p0 and pe are the starting and ending

point, respectively. pk1 is the keypoint where the length of seg1 (from p0 to

pk1)is l∆. pk2 represents the point at 2l∆. Since the total length is less than

3l∆, this trajectory will o�er three segments for training. (b) Classi�ers

are trained with di�erent segments. 70

4.6 Ambiguous patterns and outlier patterns in multi-class recognition rejec-

tion problem. The dotted straight lines represent the pair-wise hyperplanes

to separate two classes. The curves are ambiguity rejection boundaries for

each class. 71

4.7 Recognition results with respect to the length of input gesture on two

datasets. FAR and RR are obtained using the reject option while ER is

the traditional mis-classi�ed rate. 75

5.1 The diagram data acquisition procedure on a 80" touch screen. Two users

are drawing the diagram together using stylus. 80

5.2 Example of a mind map diagram and the corresponding handwritten dia-

gram without text. 82

5.3 Samples of isolated symbols in diagram. 83

5.4 Variability of the rectangle symbol. 83

5.5 Example of temporal activity of strokes under 2 users condition. Sij indi-

cates the jth stroke from user i. 84

5.6 The framework of eager interpretation system. 85

5.7 The decision for some shape should be postponed in case of forming another

potential gesture. 86

5.8 The score of un�nished class is manually increased at the ending time of a

stroke and decreased with time elapsing. 87

List of Figures 123

5.9 An example of 3 strokes in the stroke list. All the 7 possible stroke's com-

binations are shown in the �gure. The round square shows the 5 possible

decisions made for the 3 strokes. According to their score, an un�nished

gesture and a Diamond gesture are chosen as the �nal decision. This un-

�nished stroke will be restored in the stroke list again. 88

5.10 Recognition result for two example diagrams. Gestures in green are cor-

rectly recognized. Oranges are mis-grouped gestures. Reds are correctly

grouped but mis-recognized gestures. 90

5.11 Stroke stream and their recognition results between steps 50 and 57 from

Fig. 5.10 (b). The recognition decisions of each step are bounded in dashed

rectangles. 91

Résumé

La montée en puissance des écrans tactiles offre de nouvelles

possibilités d’interactions gestuelles de plus en plus riches. De

nos jours, les utilisateurs se contentent souvent de gestes mono-

point ou multipoints simples pour exécuter des manipulations

telles que la rotation, le déplacement ou la mise à l'échelle

d’objets graphiques, la plupart du temps dans un contexte

mono-utilisateur. Le travail décrit ici concerne l'utilisation

avancée des gestes multipoints, comportant à la fois plus de

commandes de raccourci (appelées commandes indirectes) et

de commandes de manipulation (appelées commandes directes)

dans un contexte d'utilisateurs multiples sur le même écran.

Pour cela, nous analysons la forme des trajectoires composant

le geste multipoints et les relations temporelles et spatiales

entre ces trajectoires afin de caractériser ce geste. Nous

proposons une modélisation par graphes et développons un

système complet d'analyse et de reconnaissance. Pour résoudre

le conflit entre la reconnaissance des gestes de manipulation et

ceux de commande (directes versus indirectes), nous proposons

une stratégie de reconnaissance précoce pour les gestes

multipoints basée sur une option de rejet combinant plusieurs

classifieurs pour reconnaître ces gestes au plus tôt.

Pour valider nos approches, nous avons construit la base

MTGSet composée de 7 938 gestes isolés multipoints de 41

classes différentes et MUMTDB une base de gestes collectés

dans un contexte réel d'interaction multiutilisateurs pour

l’édition de diagrammes. Les résultats expérimentaux attestent

que nos approches peuvent reconnaître les gestes multipoints

dans ces différentes situations

N° d’ordre : 17ISAR 10 / D17 -10
Institut National des Sciences Appliquées de Rennes
20, Avenue des Buttes de Coësmes - CS 14315 - F-35043 Rennes Cedex
Tél : 02 23 23 82 00 – Fax : 02 23 23 83 96

Abstract

Due to the popularization of the touch screen devices,

nowadays people are used to conduct the human-computer

interactions with touch gestures. However, limited by current

studies, users can use only simple multi-touch gestures to

execute only simple manipulations such as rotation, translation,

scaling, with most of time one user even if adapted devices are

now available. The work reported here concerns the expanding

usage of multi-touch gestures, that make them available at the

same time for more shortcut commands (called indirect

commands, as copy, past, ...), more manipulation commands

(called direct commands like zoom or rotation) and in the

context of multiple users on the same screen.

For this purpose, we analyze the shape of the gesture’s motion

trajectories and the temporal and spatial relations between

trajectories in order to characterize a multi-touch gesture. We

propose a graph modeling to characterize these motion features

and develop a graph based analysis and recognition system. To

resolve the conflict between interface manipulation and

shortcut command inputs, we study and validate an early

recognition strategy for multi-touch gesture. We built a reject

option based multi-classifier early recognition system to

recognize multi-touch gestures in early stage.

To set-up, train and validate our systems, we built MTGSet, a

multi-touch gesture dataset formed by 7938 gestures from 41

different classes collected in isolated contexts and MUMTDB a

dataset of gestures collected in a real multi-user usage case of

diagram drawing. The experimental results prove that our

system can well recognize multi-touch gestures in these

different situations.

	Introduction For Gesture Based Human Computer Interaction
	Organization of the manuscript

	State Of The Art
	Preamble
	Definition
	Direct manipulation & Indirect command
	Touch Gesture
	Early Recognition

	Handwritten Gesture Recognition
	Single Touch Gesture
	Multi-stroke Gesture
	Trajectory based
	Structure based
	Feature based

	Multi-touch Gesture

	Early Recognition
	Structured Document Composition and Recognition

	Multi-touch Isolated Gesture Recognition
	Introduction
	Graph Modeling with Allen's Relations
	Graph Modeling
	Graph Embedding
	Global Shape Representation (GSR)
	Experiments
	Dataset
	Results

	Graph Modeling with Motion Based Features
	Preprocessing and Stroke Segmentation
	Gesture to Graph
	Geometry feature
	Topology relation
	Graph definition

	Graph matching and classification
	Subgraph matching for stroke comparison
	Edge matching
	Graph classification

	Experiments
	Dataset
	Comparative results

	Conclusion

	Reject Option Based Early Recognition Algorithm
	Introduction
	Multi-classifier Early Recognition
	Segment Classifier
	Rejection Algorithm
	Ambiguity rejection
	Outlier rejection
	Threshold optimization

	Experimental Result
	Conclusion

	Structured Document Composition in Multi-user Context
	Introduction
	Multi-user diagram database
	Diagram acquisition
	Diversity of the content

	Eager interpretation based recognition system
	Experiments
	Conclusion

	Conclusion & Perspectives
	Conclusion
	Perspectives

	Résumé en Français
	Publications of the author
	Bibliography
	Table of figures
	空白页面

