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Chapter 1

Introduction For Gesture Based Human

Computer Interaction

The ease with which we type a text with keyboard, navigate the web with mouse, com-

mand smart devices by voice comes from the decades of study on Human-computer inter-

action (HCI). The current ubiquitous direct manipulation interface, where visible objects

on the screen are directly manipulated with a pointing device, was �rst demonstrated by

Ivan Sutherland in Sketchpad [Sut63] in 1963. It supported the manipulation of objects

using a light-pen, including grabbing objects, moving them, changing size, and using con-

straints. Nowadays, mouse has been a standard device to replace the light-pen as a virtual

human �nger in the interface. Usually people use two �ngers on mouse, by left and right

click, to achieve the majority of operations.

Figure 1.1: Touch gesture based manipulation interface.

With the development of touch screen devices and techniques, touch gesture interac-

tion becomes more prevalent in Human-computer interaction domain. Comparing to the

mouse, touch gesture is more in line with the natural behavior of human beings. By our

nature, people are used to use �ngers to grab, drag, stretch and manipulate an object.
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Multi-touch screen techniques open a way to let people extend these operations on vir-

tual elements. It provides the users a 2D environment enabling people contacting virtual

objects with full �ngers instead of using two �ngers clicking. This technology has pen-

etrated into common electronic devices around us. The smart phone abandons physical

keyboard and uses virtual keyboard on screen instead. Traditional notebook is replaced

by Touchpad which provides a more convenient writing environment. Large interactive

advertisement board appears on the street so that people can easily �nd the interest they

want.

Since touch gesture has replaced most of the operations of mouse and keyboard on

screen, the question then raises whether we can use touch gestures beyond direct manip-

ulations. In reality, hand gesture can be used as a form of non-verbal communication

between people through sending and receiving wordless clues. An example is American

Sign Language(ASL), which is a natural language that chie�y uses manual gesture to

convey meaning serves for deaf communities. So is it possible to teach computer the

sign language and make people use symbolic gestures to execute commands? Actually,

the current handwritten character recognition is one of these techniques. It teaches the

computers to recognize the input �nger's trajectories and transform the trajectories to

corresponding characters. By the nature of character writing, current studies mostly focus

on the mono-touch trajectories recognition, i.e. the trajectories are always written by a

single �nger. There are few research on the study of multi-touch gesture (like the ASL,

with both hands, ten �ngers) recognition for symbolic command.

In this thesis, we study the multi-touch gesture recognition problem. We explore the

possibility of using multi-touch gesture for not only direct manipulation but also indirect

symbolic command. The main contribution of this work is to provide tools and algorithms,

mainly based from pattern recognition and machine learning theories to enrich User Inter-

face Design solution. Of course, many other contributions that are not addressed in this

work are required to design a global system. Specially, human factors and ergonomics,

user experiences, user interface scenographies are beyond the scopes of this works. Our

goal is to address the complexity of multi-touch gestures and develop a system to well

analyze and recognize multi-touch gestures.

1.1 Organization of the manuscript

The manuscript of this thesis is organized as following:

Chapter 2: There have been years of studies for the usage of touch gestures. We

introduce in this chapter the state-of-the-art research for both direct manipulation and

indirect command. We discuss the di�erent type of underlying recognition methods for

both mono-touch gesture and multi-touch gesture.
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Chapter 3: In this chapter, we propose a graph modeling strategy to characterize

the temporal and motion features of multi-touch gesture. To verify our graph modeling

and recognition strategy, we build a MTGSet which is a multi-touch gesture dataset as

benchmark test.

Chapter 4: The current use of multi-touch gestures is mostly restricted to direct

manipulations. We study the possibility of using multi-touch gesture for both direct

manipulation and indirect command. We propose an early recognition strategy enabling

the systme to recognize a gesture by its beginning part in order to give a feedback to the

user as soon as possible.

Chapter 5: The �nal goal of our research is to provide a real context that includes

di�erent types of gesture commands. As a �rst step towards this target, we develop a

multi-user structured document composition environment where two users can simulta-

neously use gestures to compose a diagram. We build a multi-user gesture dataset and

develop an eager recognition system to recognize the gesture on-the-�y in order to give a

real time feedback to the users.

This project is co-funded by the region of Bretagne and Pay-de-la-Loire. We also

thank Excense company for their support.
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Chapter 2

State Of The Art

2.1 Preamble

This chapter presents an overview of the research and development status of the hand-

written gesture recognition problem. To broaden the scope of the presentation and clarify

some terms related to the domain, in section 2.2, we will �rst give a brief introduction

of the basic concepts used in human computer interaction. Speci�cally, one important

point is to make a distinction between direct manipulations and indirect commands, to

introduce the notions of early recognition or lazy recognition. Each of these activities does

not provide the same service and it is important to understand what can be expected as

outcomes.

Then, in section 2.3, we focus more speci�cally on gesture interaction, and propose

a classi�cation of gestures related to the number of strokes, the number of simultaneous

touch points, and the number of simultaneous users.The reason being that in this work,

one original scope is to address multi-stroke and multi-touch gestures.

When developing a recognition system, the necessity of real-time classi�cation based

upon the principle that users must receive immediate and appropriate visual feedback

about the e�ects of their actions has to be considered. In this context, early recognition

methods are introduced in section 2.4. This strategy aims at recognizing gestures from

their distinctive beginning part and achieves to recognize as soon as possible.

Finally, a global use case is proposed to conclude this chapter through the study of

structured document composition systems. Such systems combine multi-touch interaction

with recognition paradigms to facilitate digital document production. We will review the

general handwritten document recognition methods and discuss the di�culties to associate

them with multi-touch gesture.

9
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2.2 De�nition

Devices enabling touch input have been developed over the last decades providing a more

convenience way for human-computer interaction. In recent years, touch gesture based

applications have been growing considerably due to the prevalence of the smartphone and

touch pad. In this section, we will illustrate some important concepts for handwritten

gestures that help the readers to understand challenging work in this domain.

2.2.1 Direct manipulation & Indirect command

While as presented in the general introduction, many di�erent modalities can be used to

perform interaction, we will introduce the concepts of direct manipulation and indirect

command using touch gesture examples. From the interaction point of view, touch gesture

can be used for two aspects: direct manipulation for (virtual) elements and indirect

symbolic gesture for triggering command. Common examples of direct manipulation

are: using one �nger holding on an element for selecting and dragging the element for

moving. A more comprehensive context for direct manipulation can be found in a map

view application, where users may scroll (pan) the map by dragging, change the zoom

level by using two �ngers for a pinch or stretch gesture, rotate the map by placing two

�ngers on the map and applying a rotate motion. Usually a direct manipulation system

would give a continuous feedback, such as scroll the map, while the users move their

�ngers.

The indirect symbolic gesture is a one-shot operation commonly used in sketch-based

interaction. Users may draw a certain gesture to trigger a corresponding pre-de�ned

command. Such examples can be found in [AZ09], where the stroke gestures are used as

shortcuts to draw prede�ned objects (shown in Fig. 2.1). Another widely used indirect

command example is handwriting, where user input a character by drawing its shape

instead of using keyboard.

Figure 2.1: Handwritten touch gesture for indirect command: (a) Users may input an

icon from the menu. The menu also shows the mapping from strokes to icons. (b) Using

stroke as the shortcut to input the icon instead of selecting from menu. [AZ09]

Since the two interactions o�er di�erent feedback to users, the underlying recognition
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strategies have a clear di�erence. In the following section, we will review the recognition

methods based on di�erent gestures and di�erent interactions.

2.2.2 Touch Gesture

Depending on the di�erent interaction contexts, touch gesture varies from shape, number

of strokes and number of simultaneous touches. In [SW13], authors summarize the di�er-

ent type of touch gestures based on the number of strokes and touches as shown in Fig.

2.2. Here, a stroke is regarded as the trajectory of a touch (�nger, stylus, etc.) during

uninterrupted contact on the sensing surface. The touch number indicates the number

of concurrent contacts involved. For instance, the �single-touch� describes gestures only

using one touch per stroke. This is the simplest touch gesture that can be used for both

direct manipulation and indirect command. Common examples of single touch direct

manipulation could be dragging on a virtual element or scrolling on a map application.

The �multi-stroke� is the gesture which contains at least two strokes by one touch. This

gesture is widely used for inputing sketches or characters which contains complex struc-

tures that can hardly be achieved by one stroke. Usually systems for �multi-stroke� give

respond only after all the strokes are performed. Therefore �multi-strokes� gesture is

only used for indirect command.

(a) (b)

Figure 2.2: (a) A surface gesture taxonomy based on the number of strokes and touches.

[SW13] (b) Examples of di�erent type of gestures.

The term �multi-touch� is a more complex gesture such that more than one concur-

rent touch is involved. Such gestures are mostly used for direct manipulation such as zoom

or rotation, where two or more simultaneous touches are performed on a sensing device.

To the best of our knowledge, there is only a few studies and applications using �multi-

touch� gesture for indirect command. For instance, a Mac's multi-touch trackpad[Sup16]

provide 8 direct and 7 indirect pre-de�ned gesture commands with di�erent number of

touches involved. Fig. 2.3 gives 4 examples of multi-touch indirect gesture commands,

which are used as a shortcut to open Mission Control or show Noti�cation Center. Most of
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the indirect gestures are simply swipe based, which use 2 or more �ngers moving towards

a same direction. Only 'show desktop' and 'launchpad' adopt complex gesture, which

require 4 �ngers spreading or pinching, for indirect commands. Meanwhile, this trackpad

does not support for user-de�ned gesture command so that it is not as convenient as

shortcut from keyboard. Another indirect command use case can be found in [SBMI12],

where `multi-touch' gesture are considered as a remarkable biometric signal for user iden-

ti�cation. In our view multi-touch gestures are supposed to be of special interest as they

involve all degree of freedom. Aiming at the development of a general multi-touch gesture

recognition system, our work focus on using multi-touch gesture as indirect command.

Figure 2.3: Indirect gesture commands supported by Mac's trackpad.

Lastly, the term �Sequential multi-touch� is not a common used gesture type. It refers

to the gesture if it incorporates at least two subsequent strokes and simultaneous touches.

It is de�ned and studied in [SW13], where authors aims to provide a classi�er that covers

all kinds of strokes and touches. Fig. 2.16 gives examples of sequential multi-touch.

In section 2.3, we will review the recognition strategies from the basic single touch

gesture to the most complex multi-touch gesture.

2.2.3 Early Recognition

In general, an indirect gesture recognition system outputs the result after the end of a

gesture. However, since touch trajectories are online data, gestures may have signi�cant

di�erences in their beginning part so that the recognition can be achieved before their end.
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The underlying strategy is named as Early Recognition (ER), which aims at providing

results before input gestures are completed. This strategy is important to develop practical

and intelligent gesture or motion based man-machine interface. For example, motion

based video games allow user to use motion gesture (such as jumping, squatting, hand

waving) to control the game character. If the recognition process is executed after the

gesture, there would be a signi�cant delay between the user and game character. This

delay decreases the usability and user experience of the system. In order to reduce the

delay, early recognition has to be involved so that gestures can be recognized as soon as

possible.

Figure 2.4: Gestures in feature space. (a) Two gestures have no common part. (b) Middle

parts are common. (c) Beginning parts are common. [MUK+06]

Simply, early recognition can be achieved by partial recognition from the gesture's

beginning parts. However, it would be ambiguous if several gestures have a common

beginning part. Fig. 2.4 gives examples of possible relations between two gestures A and

B in feature space. In Fig. 2.4(a) and (b), there is no common beginning part and thus

we can easily expect correct early recognition results. In contrast, gestures in Fig. 2.4(c)

have exactly same beginning part and can only be distinguished near the end. Therefore,

an ideal early recognition algorithm should be able to detect these ambiguous common

parts and �nd a balance between `early' and `accuracy'. In section 2.4, we will review the

state-of-the-art methods for early recognition.

2.3 Handwritten Gesture Recognition

In this section, we discuss the state-of-the-art handwritten gesture recognition methods

for di�erent type of gestures.

2.3.1 Single Touch Gesture

As the simplest gesture, single touch gesture is widely used in many interaction system

for both direct manipulation and indirect command. While used as direct manipulation,

single touch gesture is mostly used for moving a selected virtual element. System need to

measure the touch's movement direction, speed and displacement to give a corresponding
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movement for the virtual element. Most of these movement information can be obtained

directly from the underlying hardware and does not require complex recognition process-

ing.

Figure 2.5: Single touch gesture set for executing commands. [WWL07]

It becomes a symbol recognition problem while gestures are used as indirect commands.

As shown in Fig.2.5, which is a single touch gesture set studied in [WWL07]. Each gesture

can be either linked to trigger a command or used as text input. Basically, there are two

types of recognition strategies for single touch gesture (also named as single stroke, uni-

stroke gesture): 1) sequence matching; 2) statistical recognition based on global feature.

The online touch stroke data consists of a sequence of touch points from the touch down to

the touch up. Dynamic programming algorithms such as dynamic time warping (DTW)

can be employed for performing non-linear sequence matching. Fig. 2.6 shows an example

of DTW matching studied in [NV05]. Each point is represented by its x and y coordinates

as the local feature. In some other works, more elaborate local features are extracted for

each point, such as velocity, pressure, curvature, etc. The DTW is then used to calculate a

distance of the two sequences according to the points matching (as shown in Fig. 2.6(b)).

For more details about DTW, the reader is referred to [VLOK01].

In [WWL07], authors present another competitive sequence matching algorithm named

� $1 recognizer �, for single stroke recognition. Instead of time warping, $1 resamples each

stroke into a �xed number of points. Then a candidate C is compared to each stored

template Ti to �nd the average distance between corresponding points using a point-to-

point matching equation,
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(a) f1(Xi,t, Xi,t−1) = [dx, dy, θ]T (b) f2(Xi,t, Xi,t−1) = di,j

Figure 2.6: Example of a DTW matching. [NV05]

di =

∑N
k=1

√
(C[k]x − Ti[k]x)2 + (C[k]y − Ti[k]y)2

N
(2.1)

where k is the point index for each symbol. x, y is the coordinate of each point. The

template Ti with the least path-distance to C is the result of the recognition.

The sequence matching algorithm is easy, cheap and accurate with only a few loaded

templates on a small dataset. It requires no complex mathematical procedures, yet com-

petes with approaches that use statistical classi�cation. Such algorithms are highly e�-

cient for recognition of speci�c sets of simple gestures but do not tolerate much variation

in the writing style or drawing process. To generalize the gesture representation and

make use of the fast developing statistical recognition method, a tendency of using global

features to characterize a gesture can be noticed for gesture recognition.

Generally global features are chosen according to the following criteria. Each feature

should be meaningful so that it can be used in gesture semantics as well as for recognition.

There should also be enough features to provide di�erentiation between all gestures and

should not be too many for e�ciency reasons. The Rubine 's feature set is a typical global

feature set which has been widely used for recognizing single stroke gestures[Rub91]. It

employs 13 global features which are computed from a complete gesture shape. Fig. 2.7

shows a part of features used by Rubine, where (f3) and (f4) are the length and angle of

the bounding box diagonal, (f5) is the distance between the �rst and the last point. The

full 13 features can be found in [Rub91].

After this feature extraction, each gesture is represented by a feature vector, f =

[f1, ..., f13]. Then classical statistical recognizer or linear/nonlinear machine can be im-

plemented to achieve the classi�cation.

Due to the fact that single touch gestures are chosen to be not ambiguous and simple to
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Figure 2.7: Features used to identify strokes. [Rub91]

be memorized has less variation and writing style, the methods above have been proved

being e�cient and accurate for single touch gesture recognition even though they are

simple and cheap. Unfortunately, they are only moderately successful when applied to

multi-touch/multi-stroke pen input. Shape variation, writing order, number of strokes

have to be taken into account. We will provide a review of multi-stroke gesture recognition

method in next section.

2.3.2 Multi-stroke Gesture

The term multi-stroke gesture here refer to the isolate symbols that contain two or more

strokes, and all strokes are written in a sequence by a single contact (�nger, stylus,

etc.). Obviously multi-stroke gesture is not used for direct manipulation because users

always expect an action after the end of the �nal stroke instead of during the writing

process. Comparing to the single-stroke gesture, multi-stroke gesture contains more stroke

variations and o�er more freedom for the users. Therefore, it has a diversity of usage

such as for drawing characters, pictograms, diagrams, etc. The diversity of patterns

and high variation on stroke number and writing order make the recognition becomes

a more challenging work. Large variety of methods have been proposed to solve this

problem. This section propose to categorize these methods and provides a review of

typical recognition methods for each category. Note that this thesis focus more on multi-
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touch gesture recognition which is more complex but has less studies (shown in next

section). We review the recognition methods for multi-stroke gestures in this section to

re�ect the di�culties for multi-touch gestures recognition and also enlighten us the way

to solve that problem.

2.3.2.1 Trajectory based

Since multi-stroke gesture is also written by a single contact, the trajectory can still

be seen as a sequence of points but containing special pen up/down points. With an

appropriate adjustment or constraint, the sequence matching strategy for single stroke

gesture is still available for multi-stroke cases.

In [WWL07], authors add pseudo strokes to concatenate each two consecutive strokes.

Each pseudo stroke starts at the end point of a previous stroke and ends at the start point

of the following stroke. The multi-stroke gesture is then transformed as a single stroke so

that any single stroke recognition method can be used. A similar strategy can be found

in [NWV08], authors also add the pseudo strokes and implement the traditional DTW

algorithm for gestures comparison. They give the constraints for DTW that each point

in pseudo stroke can only be matched to a point in another pseudo stroke, same for the �

real � point. Classi�cation of a test sample is performed through nearest neighbor criteria

with the DTW distance function.

Even though these methods well transform the multi-stroke problem to the single

stroke problem, the concatenation between two strokes limits the gesture to be written

in a �xed order and direction. To ensure the di�erent stroke orders and directions can

be properly recognized, [AW10] present $N recognizer which is a signi�cant extension to

the $1 unistroke recognizer introduced in previous section. Basically, $N goes further by

recognizing gestures comprising multiple strokes and automatically generalizing from one

multi-stroke to all possible multi-strokes using alternative stroke orders and directions.

The main idea is to generate all permutations of the component strokes. Each permu-

tation represents one possible combination of stroke order and direction. There are 2N

combinations for N strokes. Fig. 2.8(a) shows 8 possible permutations for a two-stroke �

x �. The permutations of possible combinations are then converted to unistroke (shown

in Fig. 2.8(b)) by simply connecting the endpoints of component strokes as presented in

[WWL07] and stored in template set for comparison. At runtime, each candidate multi-

stroke gesture is also connected in the drawn order to form a unistroke and compared to

all unistroke permutation templates using the $1 algorithm.

Obviously, the brute force of creating all permutations to represent a multi-stroke

gesture results in a combinatoric explosion when the stroke number is large. This method

is e�cient for the gestures which contains a few strokes but not suited to recognition

messy drawing such as Chinese characters or sketchy symbols.

These trajectory based methods are simple, require little processing resource, and
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(a) The 8 permutations for a two-stroke � x �. The num-

bered dots indicate stroke order and beginnings.

(b) The 8 unistroke permutations for a two-stroke � x �

generated from (a)

Figure 2.8: Example of all permutations for a two-stroke � x � and its unistroke represen-

tations. [AW10]
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easily extensible to new class because most of them rely on nearest-neighbor classi�cation

paradigm. This simplicity enable easy incorporation of multi-stroke gesture recognition

for user interface prototypes which do not require heavy and complex engine.

2.3.2.2 Structure based

Instead of transforming the multi-stroke into a single sequence, the structure based meth-

ods focus more on each individual stroke and the inner relations between each two strokes.

These methods usually apply to the multi-stroke symbols which contain much more strokes

and are insensitive for the writing order, such as handwritten sketch. Fig. 2.9 shows 2 ex-

amples of handwritten sketch from [MRLSL06] and [LLLW15]. Apparently, these sketch

examples mainly di�er from visual aspect and accord no importance to the online infor-

mation. The main idea of structure based methods is to analyze the geometric relations

between each two strokes and represent a symbol as a semantic network of strokes with

their relations.

(a) (b)

Figure 2.9: (a) Examples of architectural plans in [MRLSL06]. (b) Example of engineering

drawing in [LLLW15].

In [LLLW15], authors present a typical state-of-the-art structure based sketch recog-

nition method which exploits topology relations and graph representation for strokes. In

sketch recognition domain, since the sketches are complex and contain large number of

strokes, raw input of handwritten sketches usually consist of noisy and inaccurate strokes.

As a standard techniques, the strokes are �rstly re�ned and decomposed into a few basic

primitives. Authors adopt the re�nement approach in [XWJS02] which has four steps:

polygonal approximation, agglomerate points �ltering, endpoints re�nement and convex

hull calculation. Details can be referred in [XWJS02]. An example is given in Fig.2.10

where an open ended triangle becomes closed after processing. The re�ned strokes are

then segmented into sub-strokes and �tted to a few primitive shapes. Note that the re-

�nement and segmentation perform well on clean dataset, noisy or highly curved strokes

are still hard to be segmented properly.

There are plenty of ways to de�ne the relations for each pair of primitives. Mas et. al
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Figure 2.10: Example of stroke re�nement.[XWJS02]

[MRLSL06] present an approach to generate a set of adjacency grammars based on �ve

relations (Parallel, Perpendicular, Incident, Adjacent, Intersects). This set determines

the �nal grammatical ruleset to characterize a symbol. [LLLW15] presents a more com-

prehensive topology de�nition according to the type of the involved primitives and the

number of their intersections. Fig. 2.11 shows the examples of topology relations between

primitives.

Figure 2.11: Examples of topology relations between primitives.[LLLW15]

Further more, in order to well illustrate the structure, in [LLLW15] authors use a

topology graph representation to integrate both topology and geometry information as

shown in Fig. 2.12. In graph representation, each vertex is a primitive in the sketch,

each edge indicates a certain topology relation of a pair of primitives. To give a more

precise description of the relations, authors also measure the spatial distance between two

primitives as the complementary feature for the relation. It is shown as the weight on the

edges.
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Figure 2.12: A sketch and its topology graph with the relations and geometry feature on

edges. Rad means adjacency relation for two primitives which have a common endpoint.

Rhc means half-cross relation that one primitive has a endpoint joining some inner point

of another primitive. [LLLW15]

By its nature, graph representation usually has a complex topology structure since it

measures relations for each primitive pair. Due to the fact that di�erent researchers de�ne

di�erent topology relations and features for the primitives, it is di�cult to give a general

recognition strategy for graph representation. Normally, researchers design their speci�c

graph matching and recognition method according to the graph structure and feature

they used. Sousa et al. [SF10] use graph spectra to map graphs into vector descriptor.

The spectrum of a graph G (which consist of n eigenvalues, where n is the number

of nodes) is computed from the eigenvalues of its adjacency matrix. They compute the

similarity between graphs by calculating a distance between the correspondent descriptors.

[LLLW15] de�ne a novel product operation to calculate the element-wise multiplication

of two adjacency matrices. This operation is used to �nd the common structure parts of

two graphs and measure the similarity between two sketches.

The graph based methods are slow because they perform graph matching for each

sketch in the dataset, and their runtime increases with respect to the complexity of graphs.

This makes it hard to directly apply to a large scale database. To accelerate the recognition

process, Bunke et al. [RB10] present a general method of transforming any graph into

vector descriptors. We will detail this method in later section.

2.3.2.3 Feature based

Extracting features to train and feed a statistical classi�er, such as kNN, neural networks,

support vector machine(SVM), is a more popular solution in pattern recognition. A very

close topic which has been widely studied is isolated character recognition [DLJZ07] where

characters can be seen as isolated multi-stroke symbols. In our speci�c case of indirect

multi-stroke gesture recognition, simple features inherited from Rubine's ones can be

extended. A tendency is concerned to induce more and more complex feature based on

both static (stroke number, convex hull, area) and dynamic (average direction, velocity,

curvature) information. In [JZ07a] authors design a 14 features set. In [NWV08] authors
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employed Rubine's features and an additional 15 other global features that make it to 28.

In [WNvGV09] authors design 20 new global features and add it to those 28 features that

results to a 48 features set. In [DA13] authors design their own 49 features set.

We will not detail each feature. Most of the features are geometry features as Rubine's

features which describe the appearance of the writing result. The role of a feature set is

to numerically describe symbols and create boundaries between them, so one symbol can

be discriminated from another in the corresponding feature space. It is di�cult to tell

which feature set or individual feature is most discriminative. The recognition result is

also highly related to the recognition method and dataset they used. In [DA13] authors

compare di�erent feature sets on four datasets. There is no evidence to believe that a

more complex feature set can always yield a better result. Some simple and universal

feature sets can also outperform the systems that were designed, tuned and optimized for

recognition of speci�c datasets.

2.3.3 Multi-touch Gesture

The multi-touch gesture interaction become popular with the development of touch screen

display technique in recent years. A common sense for the usage of multi-touch gesture is

to directly manipulate a virtual element on the touch interface. Usually a direct manip-

ulation based system has limited gesture vocabulary such as click for selection, drag for

moving, pinch for zoom, etc. System need to give the correct feedback to the user at very

early stage of a gesture. The recognition for direct manipulation is achieved by analyzing

the spatial displacement of �ngers over time. For instance, in [OIL11] authors allow three

motions for multi-touch direct manipulation: translation, scaling and rotation. Fig.2.13

shows the three motions according to the displacement of touch points.

(a) Translation motion (b) Scaling motion (c) Rotation motion

Figure 2.13: The displacement of three touch points from time t−1 to t can be translation,

scaling and rotation simultaneously. The f1, f2 and f3 are feature functions which are

respectively related to translation, scaling and rotation. [OIL11]

In order to detect the user's intention from the trajectories, they de�ne three motion

parameters, respectively related to the three motions, that calculate the displacement of
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touch points between each time t − 1 to t. The de�nition of three motion parameters

are shown in Fig.2.14. The system triggers the corresponding motion operation when the

variation of any motion parameter is larger than a certain threshold. Another similar

method can be found in [ORB+15], where authors de�ne three distance functions (swipe,

rotate and zoom) to evaluate the displacement of �ngers. The chosen motion is given by

any of the three distance with the highest value.

(a) f1(Xi,t, Xi,t−1) = [dx, dy, θ]T (b) f2(Xi,t, Xi,t−1) = di,j

(c) f3(Xi,t, Xi,t−1) = θi

Figure 2.14: The motion feature functions: f1 measures the translation vector of ith point

pair between time t − 1 and t. f2 measures the distance di,j between points in a certain

time. f3 measures the rotation angle θi of ith node between time t− 1 and t. [OIL11]

To the best of our knowledge, there is few researches aiming at the development of a

multi-touch gesture recognition system for indirect command as well as the multi-stroke

gesture interaction. Unlike the multi-stroke gesture where strokes are always written

in sequence, the strokes in multi-touch gesture may have complex synchronization or

intersection relations. Two gestures may have the same appearance but contain di�erent

inner-stroke relations. A fundamental issue is the modeling of these relations between

strokes as the key feature for multi-touch gesture recognition.

Some context dependent works use syntactic approaches, i.e. a textual description for

strokes, to describe the movements and temporal progressions of a multi-touch gesture.

For example, Kammer et al. [KWK+10] present the GeForMT (Gesture Formalization for

Multi-touch) where the �nger traces are abstracted to atomic gestures (POINT, LINE,

CIRCLE, SEMICIRCLE, etc.). Then they use respectively symbolic operator and pre�x

elements to denote the temporal progression and relative movement between traces. The

resulting syntax looks like 1F (HOLD) * 1F (SEMICIRCLE), which means one �nger is
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holding on the screen while another �nger is performing synchronously a SEMICIRCLE

type gesture. An example is shown in Fig. 2.15. A similar approach can be found

in [KHDA12], where authors specify each gesture as a regular expression over a stream

of touch event. The recognition is involved by matching the event stream to a list of

prede�ned regular expression in order to trigger the operation. These methods abstract

each stroke to a prede�ne atomic gesture and focus more on the dynamic relations between

strokes. Because of lacking of analyzing global geometry features, these method are

believed to apply to simple multi-touch gesture but fail to recognition gestures which

have complex shapes.

Figure 2.15: Rotate gesture described by GeForMT, where 1F means number of �nger,

HOLD and SEMICIRCLE are prede�ne atomic gestures, o means the �nger is focusing

on an object. [KWK+10]

In [SBMI12] [SBMIA14], Sae-Bae et al. consider multi-touch gestures as a remarkable

biometric signal for user identi�cation. The recognition is achieved by comparing the

shape of two gestures stroke by stroke and calculating a distance to measure the similarity.

This system analyzes the geometry feature for each stroke and compares two gesture from

the global point of view. However, it assumes that each gesture has a �xed number of

strokes and all strokes are performed synchronously. This strategy is not general enough

to deal with the various type of multi-touch gestures.

The most related study can be found in [SW13]. They aim at the development of a

multi-touch gesture recognition system for self-de�ned gestures as well as sketch-based

interaction techniques. Fig. 2.16 shows some examples of their gestures set.

Fig. 2.17 provides an overview of their recognition procedure. The main contribution

of the system is the feature extraction of each stroke and a pairwise stroke matching

based classi�er. In feature extraction, they extract not only the local shape features

of each stroke but also the relative structural and temporal features within the gesture.

Based on these features, they independently build a statistical model for each stroke in the

gesture. A gesture template is shown as a set of statistical models of all its strokes. The

classi�er is achieved by comparing an input gesture with every gesture template regarding

each stroke model. This is done by handling strokes separately and computing a matrix

containing pairwise matching likelihoods of template strokes and input strokes. A best

matching likelihood is computed by solving the maximum matching problem formulated

by this matrix. However, a shortage of this research is that all the gestures in this
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Figure 2.16: Examples of indirect command oriented multi-touch gestures presented in

[SW13]. Larger dots are depicting the start of a trajectory (from one touch), the arrows

their movement and dashed smaller dots symbolize their end. Di�erent strokes are colored

di�erently, black elements belong to the �rst stroke, gray ones to the second.

dataset consist of 3 strokes, authors did not study the robustness for varied number

strokes. Moreover, this dataset does contains gestures which have same appearance but

only di�er from written order (e.g. in Fig. 2.16, gesture No. 07 and No. 08 have same

two synchronized strokes, they di�er from the written order of the third stroke). But

there are no two gestures which have same appearance but di�er from the synchronized

strokes. These problems have not been addressed in this state-of-the-art work and they

may limit to recognize the user's self-de�ne gestures. The community still need a more

general multi-touch gesture dataset and more study on multi-touch gesture recognition

problem.

2.4 Early Recognition

As we illustrated in previous section, the recognition for direct manipulation gesture

and indirect command gesture are completely di�erent. The former one use a real-time

strategy which analyze the �ngers'trajectories during each time interval, while the latter

one has to wait until the end of trajectories, and analyze the global structure or shape

of the gesture. Normally, practical applications use either of them for human computer

interaction. However we imagine a certain context which support both of these interaction,

an underlying recognizer may be confused about whether it should interpret the input as

direct manipulation or wait until the end. The co-existence of these two usages requires a

feedback as soon as possible to be consistent with a direct manipulation. Hence, an Early

Recognition (ER) strategy is desirable to cope with these two kinds of commands.

A basic idea of ER is to employ a partial matching method, where the recognition result

of an input pattern is determined by the matching distance of its beginning part from

reference patterns. To the best of our knowledge, Petit et al. [PM13] proposed for the �rst
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Figure 2.17: The overview of a multi-touch symbolic gesture classi�er's architecture pre-

sented in [SW13].



2.4. Early Recognition 27

time using mono-touch gesture for both command shortcut and direct manipulation in

the same context. They consider that human gesture can be segmented into a sequence of

motion units, based on velocity, duration, and shape. They provide a real-time description

that interprets every piece of trajectory and either give continuous feedback during gesture

articulation or at the end. Fig. 2.18 gives an example from their work. A �Heart� like

gesture has di�erent interpretations according to the progressing of its trajectory. The

�rst two stage, �Press� and �Start-move� are default for each gesture. While in the stage

3, the trajectory is interpreted as �Drag� , which is a direct manipulation that triggers a

continuous feedback to the interface. With the progressing of this trajectory, in stage 4

the �symbolic pattern� is detected. System cancels the drag e�ect and wait to the end of

gesture to trigger a �Heart� command.

Figure 2.18: An example of early recognition for a gesture, the recognizer give di�erent

feedback according to the progressing of trajectory. [PM13].

This is a typical but imperfect example which well illustrates the strategy and di�-

culty for early recognition. Some gestures may contain very similar beginning part which

confuse the system that gives a incorrect feedback. An ideal early recognition system

should collect enough information before making a decision and avoid the ambiguous be-

ginning part. Unfortunately, there are few ER works for on-line 2D handwritten gesture.

We will review the early recognition method in related domain in the following part to

explore the general idea for early recognition algorithm.

In [MUK+06], Mori et al. use early recognition for motion gesture prediction. The

proposed early recognition algorithm is based on conventional dynamic programming

(DP). Fig. 2.19 gives an overview of their recognition method. Let I = I1, I2, . . . , Iτ be

an input gesture sequence, where Iτ represents its feature vector at frame τ . Similar, let

R = R1, R2, . . . , Rt be a registered reference gesture sequence, where Rt represents its

feature vector at frame t. A conventional DP algorithm for recognizing the input gesture

sequence I is considered as an optimal nonlinear matching algorithm between I and R.

Their algorithm is described as following:

Step 1: For τ = 1, 2, . . . , repeat Step 2-3.

Step 2: For t = 1, calculate the following DP-recurrence equation:

g1(τ) = 3d1(τ). (2.2)
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where dt(τ) represents the distance between Iτ and Rt

Step 3: For t = 2, . . . , T , calculate the following DP-recurrence equation:

gt(τ) = min

 gt−1(τ − 1) + 3dt(τ)

gt−1(τ − 2) + 2dt(τ − 1) + dt(τ)

gt−2(τ − 1) + 3dt(τ) + 3dt(τ)

 (2.3)

The non-linear matching distance at input gesture's frame τ is provided as

d(τ) = gT (τ) (2.4)

The above conventional DP algorithm works successfully to matching an input gesture

sequence to entire part of a reference gesture. To achieve the early recognition, authors

slightly modify the above algorithm. Speci�cally, the distance is re-de�ned as

d∗(τ) = arg min
t∗

g∗t (τ) (2.5)

which means that the DP algorithm uses a local minimum distance at t *th frame

of the reference gesture as the partial matching distance (Shown in Fig. 2.19(b)). This

method is simple and provide recognition results with far shorter recognition times than

conventional algorithm. However, a simple distance based recognizer does not have the

ability to identify the common beginning part of di�erent gestures. This ambiguity or

common beginning part strongly degrades the accuracy of the prediction results.

Figure 2.19: (a) Conventional gesture recognition. (b) Early recognition strategy.

[MUK+06].

To deal with the common beginning part problem, in [KSNT11], authors propose to

calculate the distance gap between the most and second most similar gestures. Denoting

the nearest class c1 and the second nearest class c2, the result is determined as the class

c1 when the di�erence of the two classes ful�lls d(c2) − d(c1) > th. The threshold th is

the parameter which determines the timing of early recognition. A large threshold would

result a high recognition accuracy with the price of a high recognition time delay. In the
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worst case, recognizer need to match the entire sequence of the input gesture to make the

decision. In other words, there is a trade o� between recognition time and accuracy, the

earlier decision is made, the less accuracy results.

In [UA08], authors present a general early recognition method using multi-classi�er

strategy. They train a set of frame classi�ers h1(x), . . . , ht(x), . . . , hT (x), where ht(x) is a

frame classi�er prepared at tth frame, x is a set of training pattern. The frame classi�er

ht(x) provides a recognition result by only using the feature vector of the tth frame. The

recognition result at the tth frame will be determined by combining t recognition results

provided by h1(x), . . . , ht(x), i.e.,

Ht(x) = sign(
t∑

τ=1

ατhτ (x)) (2.6)

where ατ is the weight of each individual classi�er computed by the error rate of hτ (x).

One possible de�nition of ατ is

ατ =
1

2
ln(

1− εt
εt

) (2.7)

where εt is the error rate. Moreover, authors optimize this procedure using weight

propagation. When training the frame classi�ers from t = 1 to T , the patterns mis-

recognized by the last classi�er ht−1(x) are largely weighted not to be mis-recognized by

ht(x). Fig. 2.20 illustrates this procedure. We refer readers to their paper for more details.

This multiple frame classi�er strategy achieves a better results than each individual frame

classi�er because the multi-classi�er can form its discrimination boundary in a higher

dimensional feature space (As shown in Fig. 2.20(c)).

Figure 2.20: Three frame classi�ers combined with weight propagation. [UA08].

In a short conclusion, the above methods try to solve the early recognition using dif-

ferent strategies, either partial matching between two sequences or multi-classi�er at each

frame. However, there are few works to explore the intrinsic problem of early recognition,

i.e. how to well identify the ambiguous common beginning part of di�erent gestures and

give a optimal trade o� between recognition time and accuracy. In chapter 4, we will

present our reject option based method for this target.



30 Chapter 2

2.5 Structured Document Composition and Recogni-

tion

By structured document, we refer to the documents that consists of two-dimensions ar-

ranged symbols (e.g. �owchart diagrams, musical scores, electrical circuits). Examples of

a �owchart and a logic circuit are shown in Fig. 2.21. To realize the full diagram recog-

nition, in general two subproblems have to be solved: 1) Detection of elementary units.

2) Retrieval the relations among elements. Unlike the isolated symbol recognition, where

all strokes are known to be a part of one symbol, a stroke in a diagram can have many

di�erent interpretation depending on its context. A stroke could be a one-stroke sym-

bol, a part of multi-stroke symbol or even contains several symbols. The complex stroke

combination problem is so challenging that many existing recognition systems avoid it by

placing constrains on the way user draws. For instance, some authors require users to

draw symbol with only one stroke [LM01], some others require the user to provide explicit

cues, such as making a pause between two symbols[HR07]. These constrains facilitate the

recognition process but fail to match the way people naturally draw.

(a) (b)

Figure 2.21: (a) Examples of diagrams with structure in [BPP+14]. (b) A digital logic

sketch in [PSDA10].

From the interaction point of view, there are two recognition strategies for structured

document recognition, shown in Fig. 2.22. The �rst is lazy interpretation, which uses the

full document as the input and recognize all the symbols and their relations in one shot.

The analysis process ignores the user's creative phase during the document composition

and has full context to make the most sensible decision. Lazy interpretation o�ers the

advantage that every stroke in a completed document is meaningful (despite the noise) for

the nearby context. It means that a stroke is certainly either to be an isolated symbol, or

supposed to be grouped with nearby strokes to form a multi-stroke symbol since full con-

text is presented. The di�culty of detecting elementary units introduced above transforms
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into a stroke grouping problem based on their spatial and temporal relations. Plenty of

research give their e�ort in this orientation. [AFMVG11] proposed an online handwritten

diagram dataset and generate most of possible segmentations �ltered by some geometric

constraints. The �nal segmentation is the one which maximize the probability of each

symbol recognized by a classi�er. [BPP+14] and [CLC13] use the same dataset but with

di�erent approaches. Bresler et al. [BPH13] estimate a general distance threshold based

on the two closest points from two strokes to determine if they are enough spatially close

to be a symbol candidate. Then the �nal decision is also seen as a max-sum optimiza-

tion considering the symbol probabilities and their relations. In [CLC13] the recognition

process is guided by a grammar base syntactic analysis which parses the full document

structure. Peterson et al. [PSDA10] present a two step solution: �rst isolated strokes

are classi�ed and then a binary stroke grouping classi�er (based one one temporal feature

and 12 spatial features between two strokes) is used to group the strokes.

Another strategy is eager interpretation, which is a real-time recognition solution. It

tries to interpret each stroke as well as their structure during the composition, more

precisely after each input stroke. By eager interpretation, it incrementally updates the

recognized document according to the coming stroke and o�ers a real-time visual feedback

to the users. Comparing to the lazy interpretation, eager interpretation gives a more

naturally way for human-computer interaction that allows immediately validation and

correction from users instead of waiting to the end. However, the di�culties are also

obvious: not every stroke is meaningful for the nearby strokes when it is completed.

A stroke could be a beginning part of a symbol and the full symbol has not yet been

�nished. On the one hand, the system need to be intelligent enough to identify the

un�nished strokes and wait for more information to make the decision. On the other

hand, the analysis process must be e�cient to keep the use'pace that gives feedback as

soon as possible. Eager interpretation still remains a complex and open problem that is

rarely exploited.

(a)

(b)

Figure 2.22: (a) Lazy interpretation of musical score. (b) Eager interpretation of musical

score [MA09].
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In our work, we go one step further on structure document composition. We are

interesting in the diagram composed by multiple users, which has never been studied

before. This project allow users to work together to complete a complex diagram by

collaboration. We try to implement the eager interpretation to give a real-time feedback

to the users. This e�ort will be introduced in chapter 5.
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Multi-touch Isolated Gesture

Recognition

3.1 Introduction

Touch gesture interaction is considered as very natural in human computer interaction.

It o�ers a more intuitive and convenient user experience than using a mouse and/or

a keyboard. As a consequence, in recent years, an increasing number of e�orts have

been spent on enhancing computers' capabilities to better interpreting the user's gesture

commands.

Generally, touch gesture is mainly used in two contexts when performing HCI in

Human Computer Interaction (HCI): manipulation and command. The former is an

online mode during which a system analyzes the spatial movements of �ngers on the �y.

Such gestures are mainly object oriented, i.e., two �ngers pinching for zoom out, circling

for rotation, etc. Users may receive a real-time feedback from the system during the

movement of their �ngers. The latter is an o�ine mode and the e�ect is evaluated after

the gesture is completed. The recognition is achieved by analyzing the writing order and

global shape of the trajectories as well as sketch-based interaction, e.g. text recognition.

The system will then trigger a pre-de�ned command based on the recognized gesture.

Currently, multi-touch gestures are mostly used as manipulation mode such as zooming,

panning, rotating, etc. Usually, a local analysis of the gesture is performed based on the

motion relationships between each �nger during short time intervals [OIL11], as illustrated

in previous chapter in Fig. 2.14. On the other hand, command interaction is generally

achieved with mono-touch gestures. Such systems analyze the gesture´s shape, speed,

and writing direction to provide a global interpretation [MMM+12] [WNvGV09]

The problem is much more complex if a multi-touch gesture is used to execute a

command operation. As stated in [SW13], where the term sequential multitouch is used

to subsume multi-stroke and multi-touch gesture, a multi-touch gesture consists, by def-

inition, of a variable number of �nger trajectories and simultaneous touches. Spatial

33



34 Chapter 3

and temporal relations between these trajectories, including synchronicity, are impor-

tant properties to recognize di�erent gestures. Such relations are useful to distinguish

shapes with di�erent writing orders. We described in chapter 2 some State-of-the-art

methods [KHDA12] [LC02] [LLLW15] study these relations and their underlying seman-

tics using individual segment instead of a global point of view. Some other multi-stroke

sketch matching methods [FFJ11] [LLLW15] exploit the topology relations between sketch

primitives and give a global interpretation but obviously the temporal relations are not

concerned.

In this chapter, we present our e�ort for an online multi-touch gesture recognition

system that e�ectively addresses the global interpretation issue. Two graph models will be

introduced to extract the inner stroke spatial and temporal features. In section 3.2 we will

detail our �rst graph model which is based on the features of static strokes relations. We

combine these stroke relation features with classic geometric features, i.e. HBF49 [DA13],

as a supplement to better characterize the multi-touch gesture. To test this graph model

we have designed a new multi-touch gesture dataset with 18 gesture classes. Experimental

results will be detailed and analyzed in section 3.2.4. Furthermore, to introduce more

dynamic motion features into the graph model, we then present in section 3.3 the second

graph model with motion based features. In this model we quantify the motion relations

between strokes with numeric features instead of categorical features comparing to the

�rst approach. A more sophisticated graph matching algorithm is proposed based on this

new graph model in order to calculate the dissimilarity between graphs. To re�ect the

real challenges and complexities in multi-touch gesture domain, we update our gesture

dataset and bring in more multi-touch gestures which have intricate inner stroke relations.

We name this dataset as MTGSet (Multi-Touch Gesture dataset) and make this dataset

freely available1 to constitute a baseline benchmark for the multi-touch gesture recognition

community. We present the experimental results in section 3.3.4.

3.2 Graph Modeling with Allen's Relations

We introduce here our �rst recognition system for multi-touch gestures. Fig. 3.1 shows

the global framework of this recognition system. We will �rst discuss the graph modeling

approach where the strokes and their spatial and temporal relations are respectively repre-

sented by vertices and edges in the graph. We then introduce a graph embedding strategy

to encode the graph into a �xed size vector to feed a vector based classi�er. An external

feature extraction method is used as a complement for the global shape representation.

1www-intuidoc.irisa.fr/category/bases-de-donnees
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Figure 3.1: The graph modeling and classi�er training architecture of gesture recognition

system.
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3.2.1 Graph Modeling

A multi-touch gesture modeling should consider three kinds of information: spatial, tem-

poral and shape information. The spatial information shows the relative position of each

single stroke with reference to the others inside the gesture, while a temporal informa-

tion illustrates the written order or synchronization between the di�erent strokes and the

duration of each one. The last information should retain knowledge about the intrinsic

shape of the stroke, allowing to distinguish for instance between a simple straight line

from a more complex curve.

In a �rst step, each stroke is represented by three vertices as presented in Fig. 3.2, i.e.

a begin vertex (Vb), a stroke vertex (Vs) and an end vertex (Ve). Note that the stroke is

not explicitly segmented into three parts to match with the three vertices. These three

vertices are used as reference points for the following stroke relation measurement.

Figure 3.2: A stroke is represented by three vertices in a graph. Vb: begin vertex; Vs:

stroke vertex; Ve: end vertex.

Secondly, the shape information need to be integrated into the graph. With this

�rst solution, to simplify the graph classi�cation, we usea discrete codebook to encode

each stroke as primitive. Here the primitive refers to the low level basic shape (e.g.

line, arc, ellipse) which serves as the abstraction of a stroke. Unlike the other works

[LLLW15] [AMG07] in which strokes are decomposed into pre-de�ned shape primitives,

we implement a clustering method for all the strokes in the training set to de�ne the code

book. We extract the HBF49 features [DA13] to characterize each stroke and use the

standard Euclidean distance based K-means method to achieve the clustering. Each stroke

is then represented by the class of primitives. This class label is stored as an attribute on

each stroke vertex Vs, denoted as ΣVs = {Vc1, . . . , Vcn}, where n is the number of classes.

Since the shape information is measured on each individual stroke, this strategy is named

as Local Shape Representation (LSR) in the following paragraph. Consequently, a

more general denotation of the type of vertex is ΣV = {Vb, Ve, Vc1, . . . , Vcn}, where Vb and
Ve are speci�c for the extreme vertices.

Based on these vertex representation, we then measure the spatial and temporal re-

lations between strokes. We make use of the Allen's relations [All83] which originally

characterized the inferences about time by discrete labels. Fig. 3.3 shows the illustra-

tion and examples of Allen's relations. Such relations enumerate 7 relations between two

events on one-dimension. Based on that, we respectively use Allen's relations on t-axis for

measuring temporal relation and x,y-axis for spatial relation between two strokes, denoted
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as ΣR = {ΣRx , ΣRy , ΣRt} = {Bx, . . . , Fx, By, . . . , Fy, Bt, . . . , Ft}.

Figure 3.3: Examples of seven Allen's relations.

Considering a two strokes gesture as an example, Fig. 3.4 shows a general graph

prototype with all potential relations that need to be measured. These relations are

represented by edges as Es(x, y), Est(x, y, t) and Ast(x, y, t) between two corresponding

vertices in the graph. The de�nition of these notations is shown as follows.

Figure 3.4: An example of a general graph modeling for a two strokes gesture.

1) Edge between stroke vertices (Ast(x, y, t)): Ast ⊆ ΣR means that the full set

of Allen's relations are used to measure the relationships with respect to time, x-axis

position and y-axis position between two stroke vertices Vs, where the subscript st means

both spatial and temporal relation need to be measured. Note that since we measure

the relation from time, x-axis and y-axis, the edge Ast has a set of three relations as its

features.

2) Edges between extreme vertices (Es(x, y) and Est(x, y, t)): Because the ex-

treme vertices represent each of the �nger-down or �nger-up positions, only Equal time,
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x-axis or y-axis relation is measured between extreme vertices. Est(x, y, t) ⊆ {Ex, Ey, Et}
is the edge which has a set of Equal time, x-axis or y-axis property as its features. It

is used to represent the relation between begin vertices pair or end vertices pair. Unlike

the edge between stroke vertices which has a �xed number of three relations, relations

between extreme vertices may not satisfy any of an Equal property. Therefore, edge Est
can have a varied number of relations from 1 to 3. If none of an Equal property is sat-

is�ed, edge between corresponding extreme vertices would not be generated. The edge

Es(x, y) ⊆ {Ex, Ey} is simpli�ed from Est(x, y, t). It is used to represent the relation

between a begin vertex and a end vertex. Obviously the Equal time is not satis�ed in this

case. It may also have a varied number of relations either 1 or 2, as de�ned for Est(x, y, t).

We note that the relations (edges) between extreme vertices service as a comple-

mentary measurement for Allen's relations. Even though some Equal relations between

extreme vertices are also implied in Allen's relations between stroke vertices, we keep

these redundant representation in the graph to ensure a rich structure layout. Otherwise,

gestures which have a same number of strokes will always have a same graph structure.

In the following we will give two examples and their full graphs to intuitively demon-

strate the graph modeling process.
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Figure 3.5: a) A �ick gesture. b) Spatial relationship between strokes. c) Temporal

relationship between strokes. d) Primitive set from clustering. e) Graph model with

labels.

Fig. 3.5(a) shows a Flick gesture where two strokes are written simultaneously. The
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spatial and temporal relations between strokes are depicted in 3.5(b) and (c). According

to the Allen's relations, the attribute Equalx(Ex), Beforey(By) and Equalt(Et) are as-

sociated to the edge Ast as shown in Fig. 3.5(e). The edge Est = {Ex, Et} between V 1
b

and V 2
b indicates the two starting points are written in the same region on x-axis and

in the same time. Same property will also be found between the two Ve vertices. The

edge Es = {Ey} for {V 1
b ,V

1
e } pair and {V 2

b ,V
2
e } pair means that the extreme points are

written in the same region on y-axis. Comparing to the general case in Fig. 3.4, the edges

between V 1
b and V 2

e , V 2
b and V 1

e in Fig. 3.5(e) are removed because the corresponding

two points are not located at the same position on neither x-axis nor y-axis. According to

the primitive set shown in Fig. 3.5(d) (A real primitive set should be acquired from the

clustering of all strokes. Here we use an arti�cial set to demonstrate the LSR process),

both of the two strokes are classi�ed to C1. Therefore, each stroke vertex Vs is set to Vc1.
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Figure 3.6: a) A anchor rotate gesture. b) Spatial relationship between strokes. c)

Temporal relationship between strokes. d) Primitive set from clustering. e) Graph model

with labels.

Fig. 3.6(a) gives another example of an Anchor rotation gesture. This gesture is writ-

ten by two �ngers following a semi-synchronous way in time domain (as shown in 3.6(c)).

The corresponding full graph is shown in Fig. 3.6(e). Consequently, comparing to the

Flick gesture above, the two graphs have di�erent structure and attached attributes on

edges and vertices. Therefore, our graph model retains rich structure and attribute infor-

mation of multi-touch gesture and well capture the temporal relations between strokes.
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It is discriminative and informative for multi-touch gesture recognition.

3.2.2 Graph Embedding

A graph embedding method aims to transform the graph structure into a feature vector

for the bene�t of using statistical classi�cation method. In this paper, we adopt a graph

embedding approach introduced by Sidere et al.[SHR09]. The basic idea of this approach

is to build a matrix where each row is relative to a label of vertices or edges while each

column corresponds to a sub structures Pj of the graph. The value of the matrix at [Li,

Pj] is the number of occurrences of the label Li in each sub graph Pk which is isomorphic

to the sub structures Pj. The construction of the vectorial representation can then be

performed by transforming the matrix into vector feature space. Fig. 3.7 gives a graph

embedding example of the graph in 3.5(e).
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Figure 3.7: Vectorial representation of the graph in 3.5(e).

In our case, we empirically choose three sub structures which are one vertex, two

vertices with one edge and three vertices with two edges for the column of the matrix.

The row involves cluster number N (typically 9), labels of begin and end for the vertex,

and the seven Allen's relations for three aspects (time, x-axis and y-axis). On the whole,

32 labels will be related to the rows. Accordingly, a graph feature vector with a length of

96 will be generated after the graph embedding.

3.2.3 Global Shape Representation (GSR)

The above LSR helps to integrate the stroke's shape information into the graph. It is

generally believed that the global shape information of a full gesture is implied by the LSR
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and graph topology. For our purpose, this global shape information need to be explicitly

described and used for graph classi�cation. To combine the global shape information and

graph representation, we extract the HBF49 features on a full gesture and concatenate

its feature vector to the graph feature vector achieved above. Note that the HBF49 is a

static feature set for charactering mono-touch gesture. It has been proved to achieve a

strong result on many mono-stroke or multi-stroke datasets. However, it doesn't contain

the temporal relation feature between strokes. Therefore, we make use of this feature set

as a complementary description for our graph modeling and enhance the robustness of the

recognition system. In the experimental section, we will compare the recognition result

with and without this feature set.

3.2.4 Experiments

We conducted experimental evaluation of our proposed recognition system over a multi-

touch gesture dataset. We will �rst introduce this multi-touch gesture dataset and then

report the experimental results.

3.2.4.1 Dataset

There are few standard common dataset for multi-touch gesture recognition. This is

because in a common sense multi-touch gestures are used for direct manipulation instead

for inputing symbolic command. Therefore, we design a multi-touch gesture dataset which

re�ects the possibility of using multi-touch gestures for indirect symbolic commands. This

dataset contains a total of 1,800 multi-touch gesture samples, written by 10 persons. There

are 18 di�erent multi-touch gestures which are initially designed for indirect command

(Fig. 3.8). These gestures are composed of points, linear segments and arcs with a varying

number of strokes. Note that most of them have an apparent distinction according to their

shape except two pairs, Command C-1 versus Command C-2 and Flick versus Flick-twice.

In gesture C-1, user performs �rstly the 'dot' on the left side, then the 'C' shape on the

right side. On the contrary, in gesture C-2 the 'dot' is done after the 'C' shape. For the

second pair of gesture, the di�erence is not in the sequence but in the synchronization :

the Flick gesture is performed with two �ngers �icking simultaneously, whereas the Flick-

twice gesture is done by one �nger but �icking twice. These two pairs of gestures have the

same shape respectively but are di�erent from a temporal point of view. We introduce

them in the dataset to re�ect the real challenge of multi-touch gesture characterize and

evaluate the capability of our recognition method to discriminate gestures from temporal

information.

Fig. 3.9 gives a screen shot of the data acquisition tool we used. Note that we record

some basic information (Fig. 3.9(a)) of each user i.e. sex, age and handedness (The name

is erased due to a law.....). Although these information are not used in our experiment,
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Figure 3.8: Multi-touch gestures prototypes in our experimental dataset.

we believe that they can be useful for a future work for human behavior analyzing. Since

multi-touch gesture have complex dynamic variations, di�erent gestures may have a same

appearance but di�er from writing order. Therefore, we give an animation of each gesture

to explicitly show the writing order of touches instead of using a static image (Fig. 3.9(b)).

(a) (b)

Figure 3.9: (a) We record some basic information from the users. (b) Data acquisition

tool. In the top right, a animation is used to show the groundtruth of a multi-touch

gesture.
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3.2.4.2 Results

Since the graph features have been embedded in a vector features, we chose LIBSVM as

the classi�er. The LIBSVM with a Gaussian kernel and default parameters appeared to

provide adequate capability for gesture classi�cation.

From the architecture of our gesture recognition system shown in Fig. 4.4, the graph

modeling procedure can be roughly segmented into three modules: 1. Basic graph (Strokes

to vertices and Relations between vertices); 2. LSR for stroke labeling; 3. GSR by

feature extraction. To fully evaluate the importance and in�uence of these modules, �ve

experiments were conducted with di�erent modules or module combinations respectively.

Experiment 1 (Basic Graph): this experiment uses basic graph to characterize the

multi-touch gesture without LSR andGSR. Only spatial and temporal relations between

strokes were integrated in the graph as features. It is regarded as a baseline system for

comparison.

Experiment 2 (GSR): the HBF49 has been tested on di�erent mono-touch gesture

datasets and proven to be a powerful feature set. In this strategy, we directly use HBF49

on our multi-touch gesture dataset without graph modeling and embedding to test its

competence of characterizing multi-touch gesture. In other words, this experiments takes

into account only the shapes of gestures.

Experiment 3 (Graph+GSR): in this trial, we combine the above two representa-

tions. The feature vector of GSR is concatenated after the graph features from the �rst

experiment to achieve a conjoint feature vector.

Experiment 4 (Graph(LSR)): the fourth experiment evaluates the performance of

integrating the LSR into the graph. As explained in section 3.2.1, the LSR is based on

a non supervised clustering to quantify the stroke shapes, the optimal number of cluster

K is set experimentally to 9. The comparison of di�erent values of K will be presented

below.

Experiment 5 (Graph(LSR)+GSR): �nally, we combine the graph with both

global and local shape information. It was achieved by concatenating the feature vector

of GSR after the vector obtained in the fourth experiment. This experiment correspond

to the full recognition procedure as shown in Fig. 3.1.

All the experiments adopted a 5-cross-validation (CV) scheme for testing writer-

independent (WI) performance.

Fig. 3.10 summarizes the recognition rates obtained by di�erent methods or their com-

bination. The results show that the graph strategy, containing only spatial and temporal

information, obtains 87.50% recognition rate which is lower than the HBF49 based GSR

method (90.44 %). With a deeper investigation from the confusion matrix in Fig. 3.11,

most of the mis-classi�cations by graph strategy happens between the gestures Command

C-1, Command C-2 and Command X because they have similar spatial relationships be-

tween strokes (Fig. 3.11(a)). We can note that GSR is able to classify the majority of
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Method Length of	
features

Accuracy rate	
(%) Std.	Deviation

Graph 87 87.50 0.037

GSR 49 90.44 0.034

Graph	+	GSR 136 90.11 0.035

Graph(LSR) 96 92.56 0.013

Graph(LSR)+GSR 145 94.50 0.020

Figure 3.10: Recognition rate obtained by di�erent modules.

multi-touch but fails to make a distinction between Command C-1 versus Command

C-2 and Flick versus Flick-twice since they are similar in shape, respectively (Fig.

3.11(b)).

The Graph+GSR method results in 90.11% which is slightly lower than Experiment

2. However, when we integrate the shape information of each stroke inside the graph

by using clustering method, the recognition rate of Graph (LSR) rises to 92.56%. In

accordance to what can be expected, the �nal experiment, Graph (LSR) + GSR which

integrates all the information together achieves the best recognition rate, 94.50%, that

is signi�cantly better than others. Meanwhile, by evaluating the standard deviation of

5-cross-validation, the two strategies with LSR inside produce smaller variations than

the other three strategies in the writer independent situation.

The cluster number K used in the clustering process is also a factor of great concern

for the recognition. The comparison results of the recognition rate under di�erent values

of K are illustrated in Fig. 3.12.

It shows that the same trend in the relationship between cluster number K and recog-

nition rate can be observed from both methods. The peak appears when K is chosen to

9. Neither too large nor too small cluster number are able to well perform. The compar-

ison also proves that the Graph (LSR) + method is always better than the Graph (LSR)

method.

We have investigated a method to recognize the multi-touch gestures. Unlike many

other works, we study this problem from a new perspective considering a multi-touch

gesture as an indirect command. We believe that three kinds of information, spatial,

temporal and shape information, of the gesture should be processed for the recognition.

We �rst proposed a graph modeling method which measures the spatial and temporal

relationships between strokes of the gesture. In order to integrate the shape information

into the graph, a clustering method is employed to label the shape of the stroke inside

the graph as a local shape feature. Another globe shape feature is extracted with our

previous baseline method HBF49 features. Using global shape information extracted

through HBF49 features allows to improve these results.
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Figure 3.11: Confusion matrix of some typical misclassi�ed gestures of di�erent classi�-

cation methods. The row relates to the ground truth.
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Figure 3.12: Performance evaluation of di�erent values of cluster number K used for

LSR.

However, in this model we characterize the inner stroke features by simply discrete

and static relations. To give a more precise measurement for spatial and temporal inner

stroke relations, we explore to quantify these relations and use numerical features to better

describe a multi-touch gesture. A more complex graph model will be introduced in next

section.

3.3 Graph Modeling with Motion Based Features

The previous graph modeling measures spatial and temporal relations mainly according

to the strokes' pen-up and pen-down points. This modeling doesn't explicitly describe the

relations on the middle part of the strokes. Meanwhile, the modeling uses only symbolic

descriptions (Allen's relations and stroke shape labels) as features in the graph. These

discrete descriptions are not precise enough to quantify the relation and shape features.

To rectify the shortcoming of the modeling, in this section we present a new graph model

embedding scalar attributes which allows a more smooth representation. Furthermore, we

segment each stroke into small substrokes so that the relation measurement can be allowed

on every part of a stroke. Fig. 3.13 gives an overview of our second multi-touch gesture

analyzing system. Firstly the �nger trajectories will be broken down into substrokes to

decrease the redundancy and computation complexity for graph matching. This step will

be described in section 3.3.1. We then introduce the new gesture graph in section 3.3.2 to

characterize the multi-touch gesture. A set of static shape features is extracted for each
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substroke. Furthermore, spatial and temporal relations between substrokes are identi�ed

to model their relative motion and position. All these information are integrated into the

gesture graph. We then, in section 3.3.3 introduce the graph matching algorithm, based

on graph edit distance involving dynamic time warping (DTW) algorithm, to measure

the similarity between two graphs. A new distance based graph embedding algorithm is

�nally presented to transform the graph into feature vector for classi�cation.

Preprocessing

Stroke 
segmentation

Gesture to Graph

Shape feature on 
substroke
(vertex)

Motion relation 
between substroke

(edge)

Graph Classification

Graph embedding
(To vector)

Train and 
classification

Graph matching 
algorithm

Figure 3.13: Overview of the graph based gesture recognition in three stages.

3.3.1 Preprocessing and Stroke Segmentation

An on-line handwriting signal is a sequence of points recording the coordinates (x, y), and

time stamp (t) for each input event. For the study of a multi-touch gesture, the most

important feature is the dynamic motion relations between its strokes such as closing,

spreading, etc. Because these dynamic motion relations changes over time during the

writing, it is hard to describe the motion relations between two full strokes. On the other

hand, extracting motion relation based on each point-pair is not necessary since it will

generate much more redundant information and will signi�cantly increase the computation

cost. Therefore, one solution is to segment the strokes into substrokes and use substrokes

as the basic elements to build the graph model. The segmentation is performed by point

resampling with a pre-de�ned spatial step/length ∆. The term �substroke� is de�ned as

the link between two consecutive re-sampled points. Instead of using a linear interpolation

algorithm as in [WWL07] we choose to keep the original points available on the trajectory,

as long as they ful�ll the space displacement constraints. So we can preserve accurate time

information, but the length of each segment may not exactly be equal to ∆. Note that

we preserve at least the �rst and last point, a stroke will generate at least one substroke

even if a stroke is just one point. The algorithm is detailed in Algorithm 1 and depicted

in 3.14.

At the end of this step, each original stroke is substitute with new re-sampled segments,

which are regarded as its substrokes. We will study the spatial and temporal relation for

every substroke pair in the graph model.
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Algorithm 1 Stroke resampling in a length of ∆

Input: original trace Porg(p0, . . . , pn)

Output: new trace Pnew(p0, . . . , pm)

1: Pnew ← p0

2: D ← 0

3: for all pi(i ≥ 1) in Porg do

4: d← Distance (pi−1, pi)

5: if (D + d) ≥ ∆ then

6: (Pnew ← pi)

7: D ← 0

8: else

9: D ← D + d

10: end if

11: end for

12: Pnew ← pn

13: return Pnew

3.3.2 Gesture to Graph

Basically, a gesture symbol is represented as a set of substrokes computed by algorithm

1 described in the previous section. In this section we will extract two important infor-

mation : the shape of each substroke and topology relations for each substroke pair. The

information and the substroke set are represented by a graph.

3.3.2.1 Geometry feature

1
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Figure 3.14: Stroke segmentation and substroke representation. (a) a raw bracket like

gesture; (b) the gesture is segmented into four substrokes and normalized inside a unit

square bounding box. Each substroke has a feature vector composed of its length (l),

angle (θ) and centroid (c).

We characterize each substroke by four geometric features including length (l), angle
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(θ) and its centroid coordinates (cx, cy).

F = (l, θ, cx, cy) (3.1)

The angle θ is measured using the starting and ending points of the stroke and normal-

ized between 0 and 1, i.e. θ = 1
2π
tan−1((y1− y0)/(x1− x0)). Fig. 3.14 illustrates an angle

bracket like gesture. It composes of two trajectories decomposed into two substrokes for

each. All features are equally weighted by being measured under the unity bounding box

to have the same di�erence between their possible maximum and minimum values.

3.3.2.2 Topology relation

Unlike a mono-touch gesture, whose strokes are written in sequence and delimited by a

�nger (stylus)-up event, the strokes in a multi-touch gesture could have complex syn-

chronization relations. Fig. 3.15 illustrates a possible temporal behavior of a set of 3

strokes.

(a)

(c)

Substrokes in time 
domain

S11

S21 S22

S31 S32

t

simultaneous touches 1 0 2 2 0

S11

S21

S22

S31
S32

(b)

Figure 3.15: Example of temporal activity of substrokes in a multi-touch interaction. (a)

A three strokes gesture. (b) The substroke representation, Sij indicates the jth substroke

of stroke i. (c) Temporal activity of substrokes.

To represent the comprehensive temporal progression and relative movement of sub-

strokes, we de�ne three types of relations between two sub-strokes: adjacent(a), syn-

chronous(s) and consecutive(c), denoted as ΣR = {Ra, Rs, Rc}.
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Relation 1 (Adjacent, Ra) . Substrokes Sij and Skl are adjacent when they belong

to the same stroke and are consecutive in time.

Ra (Sij, Skl) = 1 i� (k = i and l = j + 1) (3.2)

With the example of Fig. 3.15 (c), we have: Ra(S21, S22) = 1; Ra(S31, S32) = 1; for all

other pairs Ra(Sij, Skl) = 0. This relation will preserve the sequential information of the

substrokes belonging to the same stroke in the model.

Relation 2 (Synchronous, Rs) . Two substrokes Sij and Skl are synchronous when

they belong to di�erent strokes and are written at the same time.

This relation indicates that the two substrokes are written by two �ngers in a syn-

chronous manner which is a typical property for a multi-touch gesture. Since two sub-

strokes cannot have precisely the same starting and ending times, we compute the degree

of synchronicity ts to set the Rs relation:

Rs(Sij, Skl) = 1 i� (ts(Sij, Skl) > tλ), (3.3)

where

ts(Sij, Skl) =
to(Sij, Skl)

min(t(Sij), t(Skl))
. (3.4)

to is the overlapping time of two substrokes, and t(Sij) is the duration of the corre-

sponding substroke. With Fig. 3.15(c), we can evaluate ts(S21, S31) = ts(S22, S32) = 1;

For the synchronous relation, we associate a feature vector as the attribute to de-

scribe the relative motion between these substroke pair. A popular technique [OIL11] for

encoding the motion of two �ngers is based on the relative motion of the starting and

ending points of each substrokes. We use here translation, scaling and rotation motions

(mt,ms,mr, respectively) to encode the relative movement of two synchronous substrokes.

Fig. 3.16 illustrates the de�nition of these three motions.

Figure 3.16: Motion features of two synchronous substrokes Sij, Skl. Translation motions

(dx, dy) are based on cs and ce, the centroids of starting point pair and ending point pair,

respectively. Scaling motions (ds, de) are the distance of starting and ending point pairs,

respectively. Rotation motion is the θ from the starting point pair to the ending point

pair.

Based on the features de�ned in Fig. 3.16, a motion feature vector can be computed

as follows:
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M(Sij, Skl) =

 mt

ms

mr

 =


√
dx2 + dy2

de − ds
θ/2π

 (3.5)

This feature vector will be weighted with the degree of synchronicity ts so that the

attribute ws of a synchronous relation is valuated by

ws(Rs) = ws(Sij, Skl) = ts(Sij, Skl) ·M(Sij, Skl) (3.6)

Relation 3 (Consecutive, Rc) . Strokes Si and Sk are written in sequence when

there is no synchronous relation between any of their substrokes Sij and Skl.

This relation captures sequential dependencies between two strokes. Since we model

the relations at the substroke level, this relation is built only from the last substroke of

the �rst stroke to the �rst substroke of the successive one. To measure the time elapse

between two substrokes, an attribute wc is computed relating to the time delay td between

the two substrokes

wc(Rc) = wc(Sij, Skl) = td/T (3.7)

This feature is normalized by the duration of the gesture T so that it is scaled to [0,1].

Considering Fig. 3.15, the following substrokes are connected with a Rc relation-ships:

(S11, S21); (S11, S31).

Consequently, the full substroke relations of the example Fig. 3.15 are shown in 3.17

(a). The corresponding adjacency matrix is given in Fig. 3.17 (b).

S21 S22 S31 S32

S11 Rc ‐ Rc ‐

S21 Ra Rs ‐

S22 ‐ Rs

S31 Ra

S32

S11

S21
S22

S31
S32

(a) (b)

Figure 3.17: (a) Illustration of the substroke relationships from example of Fig. 3.15. (b)

The corresponding adjacency matrix.
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3.3.2.3 Graph de�nition

Based on the geometry feature and topology relation we introduced above, we propose

a Multi-Touch-Stroke Graph (MTSG) representation to integrate all the information as

follow,

De�nition 1 (Multi-touch-stroke graph). A MTSG is a four-element tuple G =

(V,E, µ, ω).

(1) vertex V : each substroke is represented by a vertex v.

(2) edge E ⊆ V × V : each edge E(vi, vj) connects a pair of vertices (vi, vj) that has a

certain substroke relation Ra, Rs, Rc.

(3) attribute function µ on vertex: the attribute of a vertex is the geometry feature of

the substroke µ(vi) = F (vi).

(4) attribute function w on edge: according to the type of relationship that de�nes the

edge we associate the following attribute:

wa(vi, vj) = 1, when R = Ra

ws(vi, vj) = ts ·Ms, when E(vi, vj) = Rs

wc(vi, vj) = td/T , when E(vi, vj) = Rc

Using the above graph de�nition, the gesture in 3.15(a) is represented in the form

of weighted graph, which characterize both geometric and topological features as shown

in Fig. 3.18(b). The comparison of two gestures is transformed into a graph matching

problem.

Another example is shown in Fig. 3.19. In this example, we show that gestures which

have a same appearance may generate di�erent graphs. If the two strokes are written in a

synchronous manner, the corresponding graph is shown in Fig. 3.19(b). In another case,

if two strokes are written in sequence, the graph representation is shown in Fig. 3.19(c).

It proves that our graph modeling can well capture the stroke temporal relations and give

out di�erent representation even if gestures have a same appearance. It is discriminative

for gesture recognition.

While many other sketching matching works [LLLW15] [FFJ11] [LC02] use more com-

prehensive topology relation to capture the geometry or structural information between

strokes such as Cross, Half-Cross, Parallelism, our de�nition focuses more on their tem-

poral and motion relation which contains the main semantic intention of a multi-touch

gesture. Meanwhile, a gesture which performed by multiple �ngers would not have a

complex structural relation between strokes. Therefore, our graph preserves the position

and geometry information of each substroke on vertex and uses edge to describe their

temporal relations which has never been done before. It is discriminative and informative

for multi-touch gesture matching.
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S11

S21
S22

S31
S32

(a)

v1

v2

v4

v3

v5

(b)

Vertex

ሺݒଵ, … , ହሻݒ
ܨ ଵݒ ൌ ሺ0.25,0.8,0.1,0.8ሻ

Defined by Equ. 3.1

⁞

Edge

Adjacent edge 
ሺܧସ, ଺ሻܧ

ସܧ ൌ ௔ݓ ,ଶݒ ଷݒ ൌ 1;
଺ܧ ൌ ௔ݓ ,ସݒ ହݒ ൌ 1; Defined by Equ. 3.2

Synchronous
edge ሺܧଷ, ହሻܧ

ଷܧ ൌ ௦ݓ ,ଶݒ ସݒ ൌ ሺ0.25, 0, 0ሻ;
ହܧ ൌ ௦ݓ ,ଷݒ ହݒ ൌ ሺ0.25, 0, 0ሻ; Defined by Equ. 3.4 and 3.5

Consecutive
edge ሺܧଵ, ଶሻܧ

ଵܧ ൌ ௖ݓ ,ଵݒ ଶݒ ൌ 0.25;
ଶܧ ൌ ௖ݓ ,ଵݒ ସݒ ൌ 0.25; Defined by Equ. 3.7

(c)

Figure 3.18: (a) Substrokes and their relations as depicted in Fig. 3.17(a). (b) The graph

representation of the gesture. (c) The attributes associated to the vectices and edges.

Figure 3.19: Two graph representations of a gesture. (a) The original gesture which is

also shown in Fig. 3.14. (b) The graph representation if two strokes are written in a

synchronous manner, i.e. (s11 synchronizes to s21, s12 synchronizes to s22). (c) The graph

representation if the stroke s21, s22 is written after the stroke s11, s12.
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3.3.3 Graph matching and classi�cation

The work presented gives a full graph representation for multi-touch gesture. Due to

the fact that gesture may contain di�erent number of strokes, it is di�cult to extract

a �xed length global feature set for classi�cation. Therefore we propose to measure the

similarity between two graphs to achieve the graph classi�cation. A traditional way is

to calculate the graph edit distance for the di�erence between two graph. Generally, the

problem of searching the optimal graph matching and the corresponding edit operations is

known to be NP-hard. But since we preserve the vertices adjacent relations, the vertices

which connected with adjacent edge can be treated as a subgraph. Therefore, instead of

performing a global matching algorithm between the two entire graphs such as in [RB09]

[RNB07], we �rstly �nd the optimal subgraph matching between two gesture graphs and

then extend the optimization at the global level. Note that the subgraph matching is

achieved only according to vertex matching, the edge matching is then implied by the

alignment of the vertices.

3.3.3.1 Subgraph matching for stroke comparison

As we denoted in section 3.3.2.2, the adjacent relation/edge indicates that the two con-

nected vertices belong to a same original stroke. These vertices can be regarded as a

subgraph vertices set. Given two subgraphs Vs = (v1, . . . , vn) and Us = (u1, . . . , um). We

use DTW algorithm to compute the minimal matching cost of the vertices, the minimal

matching cost is de�ned as

c(Vs, Us) = DΦ[d](Vs, Us) =
1

N

N∑
n=1

d(vφv(n), uφu(n)) (3.8)

where the DTW distance DΦ[d](Vs, Us) is the alignment distance according to the

Viterbi path de�ned as

Φ = (φ(1), . . . , φ(N)), (3.9)

with the alignment pair

φ = (φv, φu) : 1, . . . , N → {v1, . . . , vn} × {u1, . . . , um}, (3.10)

which denotes an alignment of vertex pair in corresponding regions in Vs and Us. The

DTW �nds the optimal alignment path in the sense that it minimizes the distance between

two sequences. The local distance function d of two vertices is the Euclidean distance of

their feature vectors F as described in section 3.3.2.1.

We may easily deduce the vertex matching from the Viterbi path Φ. For two subgraphs

which contain di�erent number of vertices, three standard edit operations are considered

in order to compute the edit cost. We denote the substitution of two elements u and v by
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(u→ v), the deletion of element u by (u→ ε) and the insertion of element v by (ε→ v).

Note that in the Viterbi path Φ a vertex can be aligned to multiple vertices under the

DTW procedure. In this case, we keep the closest two vertices as matching pair and leave

the remaining of multiple matched vertices as delete/insert vertices. Thus, we denote the

vertex matching of two subgraphs as Φ∗ with

φ∗ =


(φ∗v → φ∗u) for V

∗
c × U∗c

(φ∗v → ε) for Vc\V ∗c
(ε→ φ∗u) for Uc\U∗c

(3.11)

where (φ∗v → φ∗u) is the set of matching pair deduced from Φ. In this set, each vertex in

V ∗c is uniquely matched to a vertex in U∗c , vice versa. The remained non-matched vertices

in Vc and Uc will be regarded as deletion (φ∗v → ε) and insertion (ε → φ∗u) vertices,

respectively.

We then deduce the optimal subgraph assignment by computing a matrix containing all

pairwise subgraph matching. Given two graphs V = {V 1
s , . . . , V

n
s } and U = {U1

s , . . . , U
m
s }.

A cost matrix C is de�ned as

C =

c1,1 · · · c1,m

...
. . .

...

cn,1 · · · cn,m

 (3.12)

where ci,j denotes the assignment cost of a subgraph-to-subgraph matching c(V i
s , U

j
s ).

The subgraph assignment problem can be reformulated as �nding a permutation p =

p1, . . . , pn that minimizes the cost
∑n

i=1 ci,pi . This is a Linear Sum Assignment Problem

that can be e�ciently solved by Munkres' algorithm [Mun57] in polynomial time. We refer

the readers to [RNB07] [RB09] for more details about this algorithm. In this approach,

it �rst �nds the subgraph matching permutation that minimize the total cost. Then

the remained non-matched subgraphs will be labeled as deletion (φ∗v → ε) or insertion

(ε→ φ∗u). An example of the full vertices matching process is shown in Fig. 3.20

Consequently, the global subgraph-to-subgraph matching is obtained by solving the

cost matrix C. We can easily deduce the global vertex matching, denoted as Φ∗all, from the

optimal subgraph-to-subgraph matching. Note that all vertices in a deletion or insertion

subgraph are labeled as deletion or insertion vertices, respectively. In another words,

the Φ∗all indicates the edit operation of all the vertices from graphs G1 to G2. The cost

of vertex edit operation is composed of the cost of substitution, deletion and insertion

denoted as

Cv(G1, G2) =

N1∑
n=1

d(vφ∗v(n), uφ∗u(n)) +

N2∑
n=1

c(vφ∗v(n), ε) +

N3∑
n=1

c(ε, uφ∗u(n)), φ
∗ ∈ Φ∗all (3.13)
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DTW distance:
ܿ ௦ܸ

௡, ௦ܷ
௠ ൌ ஍ܦ ݀ ௦ܸ

௡, ௦ܷ
௠

Matching Solver
(Munkres’ 

Algorithem)

X

X

X

Optimal matching

Φଵ
∗ ൌ ሼ ଵݒ → ଵݑ , ߝ → ଶݑ ሽ

Φଶ
∗ ൌ ሼ ଵݒ → ଵݑ , ଶݒ → ߝ ሽ

Φଷ
∗ ൌ ሼ ଵݒ → ଵݑ , ଶݒ → ଶݑ ሽ

Φ௔௟௟
∗

Figure 3.20: (a) Two gestures represented by substrokes and substroke relations. (b) The

graph representation of two gestures. The vertices which belong to a same original stroke

are grouped into a subgraph V n
s ,U

m
s . (c) The DTW distance matrix is solved by Munkres'

Algorithm to �nd the optimal vertices matching between two graphs. Consequently, the

vertices edit operation set Φ∗all can be deduced from the DTW alignment.
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where d is the Euclidean distance of the vertices' feature vectors, c is the cost of

insertion and deletion operation. Note that the deletion and insertion operations indicate

a missing information in either graph. Therefore, we de�ne the cost of deletion/insertion

operation of each vertex as the value of its length feature.

v1

v2

v4

v3

v5

u1

u3

u4
u5

u2

Edge edit operation

Substitution

ଵሻܧଵሺܩ → ଶሻܧଶሺܩ
ଵܩ ଶܧ → ଶܩ ଷܧ
ଵܩ ଷܧ → ଶܩ ସܧ
଺ሻܧଵሺܩ → ହሻܧଶሺܩ

Cost is computed by 
Euclidean distance

Deletion
ସሻܧଵሺܩ → ߝ
ହሻܧଵሺܩ → ߝ Cost is a constant value

Insertion N/A Cost is a constant value

Figure 3.21: The edge matching and edit operation of the two gestures in Fig. 3.20. The

edge matching is implied by the vertices edit operation set Φ∗all.

3.3.3.2 Edge matching

Once we obtained the vertex edit operation, the edit operations on edges are implied by

edit operation on their adjacent vertices. Let v1, v2 ∈ G1 and u1, u2 ∈ G2, there are edges

e1 = (v1, v2) ∈ G1 and e2 = (u1, u2) ∈ G2, the edge matching/substitution (e1 → e2)

is implied if two vertex matching (v1 → u1) and (v2 → u2) exist. Note that our graph

contains three types of edge ω : E → ΣR : Ra, Rs, Rc. Since each type has its unique

attribute function, edge matching (e1 → e2) could be assigned if both edges are same type.

Otherwise they will be labeled as edge deletion (e1 → ε) or edge insertion (ε→ e2). Note

that the Ra edge only indicate the adjacent relation of the vertices without attributes and
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has been processed in the subgraph matching step. Therefore, in this step the edge edit

operation cost is calculated from the attribute function ws(Rs) and wc(Rc) of Rs and Rc,

respectively. The edit operation cost for both Rs and Rc are de�ned as same as equation

3.13, where d is replaced by the Euclidean distance of ws(Rs) and wc(Rc). The cost of

deletion/insertion operation of edge is set to a constant value. Consequently, we obtain

two costs of edit operation denoted as Cs, Cc.

3.3.3.3 Graph classi�cation

Based on the graph edit distance, our work explore three strategies for graph classi�cation.

Strategy 1: So far, we have obtained three terms of edit operation cost, one vertex

operation cost Cv and two edge operations Cs, Cc. Traditionally, the graph edit distance

is de�ned as the summation of all the costs of edit operations [RB09] as

d(G1, G2) = (Cv + Cs + Cc). (3.14)

In such a case, the simplest way for clustering the graph is using a distance based

classi�er such as K-nearest-neighbor.

Strategy 2: A better option regarding graph classi�cation is to use the graph embedding

algorithm. We refer to the graph embedding method presented by Kapsar and Horst

[RB10]. The key idea of this approach is to use the distances of an input graph to a

number of prototype graphs as a vectorial description of the graph. The de�nition is

detailed as follow:

De�nition 2. Graph Embedding. Let us assume G is an input graph, P = p1, . . . , pn

is a prototype set with n graphs, the mapping ϕPn : G→ Rn is de�ned as the function

ϕPn (G) = (d(G, p1), . . . , d(G, pn)), (3.15)

where d(G, pi) is any graph dissimilarity measure between graph G and i-th prototype

graph.

It means that each axis of the vector space ϕPn (G) is associated with a prototype

graph pi and the coordinate values of an embedded graph G are the distances of G to

the prototypes. In this way we can represent any graph as a vector of real numbers with

the help of prototype graphs. Hence, the vector ϕPn (G) can be regarded as the feature

vector of graph G. Note that prototypes are normally selected from the training graph set

under a certain criteria. The selection of the n prototypes is also a critical issue since not

only the prototypes but also their number n a�ect the graph mapping ϕPn . The prototype

selection method is k-means clustering for each class. We refer the readers to [RB10] for

more details about the graph embedding and prototype selection.

The problem now is reformulated as �nding a pattern recognition way using the vec-

torial description of distances. We use SVM as the classi�er in the experiment part.
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Strategy 3: As Strategy 2 introduces a way to extract a feature vector for an input

graph, a more precise feature set, obtained by assumption that the edit operation costs are

independent (in contrast to the summation for the graph edit distance), is investigated.

Similar to Strategy 2, the feature set is computed by graph embedding. However, the

distance between two graphs is de�ned as a three dimensions feature vector:

d(G1, G2) = (Cv, Cs, Cc). (3.16)

By this way the local shape and structural/relation information is handled separetely.

But the new feature vector after the graph embedding will be in a length as three times

of the number of the prototypes, which would signi�cantly increase the classi�cation

complexity. We will compare these three strategies in the experiment part.

3.3.4 Experiments

We conducted experimental evaluation to verify the capability of our graph method. We

�rstly introduce our new multi-touch gesture dataset and three common used datasets.

The results are then presented and compared with other result reported in the literature.

3.3.4.1 Dataset

As de�ned in [SW13], most common used datasets contain mono-stroke or multi-stroke

symbols. To the best of our knowledge, there are few benchmark datasets for multi-

touch and sequential multi-touch gesture recognition. To re�ect the real challenges and

complexity in multi-touch gesture recognition, we design more comprehensive multi-touch

gesture and update our previous dataset. The new dataset is named asMTGSetB which

contains more multi-stroke, multi-touch and sequential multi-touch classes. This section

will give a �rst result baseline to address this new challenge.

Figure 3.22: The multi-touch gesture templates in MTGSet.
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The dataset consists of 31 classes, with 27 multi-touch gestures and 4 multi-stroke

mono-touch gesture. Fig. 3.22 shows the pictograms we provide to the participants.

A stroke indicates a �nger movement and a dot means a �nger holding on the screen.

The textural description under each gesture illustrates how a gesture is performed. For

instance, 2F*1F denotes a gesture is performed by two �ngers in one hand and one �nger

in other hand. nF (n > 1) indicates the number of �nger involved while the asterisk (*)

speci�es the synchronous movement of the two hands. Meanwhile, if a gesture contains

sequential stroke, a plus (+) is used to describe the order of the strokes. Note that the last

column in Fig. 3.22 consists of 4 sequential mono-touch gestures. Each two of them have

the same shape but with di�erent written order (either from left to right or right to left).

These gestures are also performed in a synchronous manner as multi-touch gesture in our

dataset. We introduce these gestures to verify that our graph modeling and matching

method are able to distinguish the gestures which have the same shape but di�erent

writing sequence. We invited 33 participants using a 27 inch touch screen for the data

acquisition. In addition of these pictograms, participants are also provided with a short

animation of each gesture for understanding the written order and direction (We use the

same tool in Fig. 3.9). Each participant is asked to perform gestures from the �rst one

to the last one and repeat for 6 times instead of repeating a same gesture 6 times. 6138

gestures are collected after discarding some mistaken gestures. The dataset is partitioned

that 2790 gestures from 15 users are used for training, the remaining 3348 gestures from

18 users for testing. Fig. 3.23 presents a part of examples and their variations.

Figure 3.23: Samples and their variations in MTGSet.

Meanwhile, we also test our method on three common used online symbol datasets,

LaViola, ILG and NicIcon. Note that these three datasets contain only mono-touch

gestures which are not the cases we focus on. We make use of these datasets for the reason

of evaluating the capability of our graph method on mono-touch symbols and comparing

to other benchmark gesture classi�cation methods.

The LaViola dataset [JZ07b] contains 11,160 digits, characters and symbols acquired

from 11 users. This dataset has a high number of classes (48). Mono-stroke symbols
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constitute the majority of samples while only a few classes contain two or three strokes

samples. The data is clean and style-consistent. Results on this dataset have been re-

ported in [DA13] [SKC08]

The ILG dataset [RFLDA12] is a collection of mono-stroke pen-based gesture. 38

users were asked to perform gestures for triggering 21 di�erent commands in a simulated

image edition software. The dataset is partitioned to 3 groups. Note that the �rst two

groups contain user-de�ned gestures (user is allowed to design own gesture to trigger

command, see the details in [RFLDA12]). Obviously, this two groups can only be used

for writer-dependent experiments since it only o�ers few training samples for each class.

To obtain a more general result, we select the third group (1926 samples) which has more

classical properties: users all performed the same 21 gestures.

The last NicIcon dataset [NWV08] contains 26,163 pen-based symbols from 34 writ-

ers. Users were asked to draw the sketch of 14 special icons that are important in the

domain of crisis management and incident response system. This dataset is more chal-

lenging because the samples are quite noisy and varying number and order of strokes.

3.3.4.2 Comparative results

The �rst experiment aims to evaluate the meta parameter and the three types of classi-

�cation for our approach. Since our approach mainly targets on the multi-touch gesture

problem, this experiment is only conducted on the MTGSet. For Strategy 1, we choose the

1-nearest-neighbor algorithm for classi�cation. Obviously, it is costly to search the entire

training set to �nd the nearest neighbor. We implement the same prototype selection

algorithm in Strategy 2 and Strategy 3, and compare their accuracy rate under di�erent

number of prototypes. Table 3.1 shows the accuracy rate according to di�erent number

of prototypes.

Table 3.1: Recognition accuracy as the function of prototype number per class.

Prototype number per class

1 3 5 10 20 30 50

Strategy 1 74.97% 81.33% 81.48% 85.48% 87.14% 86.43% 85.21%

Strategy 2 96.35% 97.34% 97.51% 98.22% 98.39% 98.29% 98.22%

Strategy 3 97.64% 97.91% 98.02% 98.59% 98.97% 98.29% 98.22%

Not surprisingly, the accuracy rate increases accordingly with the increasing of the

prototype number per class for all three classi�ers. They reach at the peak at 20 prototypes

per class and slightly decrease for more prototypes. It is remarkable that the Strategy 2
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and Strategy 3 show more stable results comparing to Strategy 1. They achieve a good

performance even with a small prototype set by the help of graph embedding and SVM

classi�er. Generally, the Strategy 2 and Strategy 3 outperform the Strategy 1, but are very

close between each other.

We note that there are few recognition systems which globally analyze and recognize

the multi-touch gestures as symbolic gestures. We can hardly compare our method to

other's work. Therefore, we make use of our previous work HBF49 [DA13] as the bench-

mark result for the symbol recognition task. We implement both method on all four

datasets to compare the accuracy rate. In this experiment we choose the Strategy 3 with

20 prototypes per class since it achieves the best results in the previous experiment. Table

3.2 shows the results.

Table 3.2: Recognition accuracy of di�erent methods.

Mono-touch gestures Multi-touch gestures

La viola ILG NicIcon MTGSet

HBF49+SVM 93.64% 93.54% 97.44% 91.36%

Strategy 3(20 prototypes) 93.18% 91.30% 93.17% 98.97%

By comparing these datasets, it can be seen that the HBF49 feature set performs

better on the three mono-touch gesture sets. The reasons are that these three datasets

do not need the synchronization relation between strokes and the features for a single

stroke in our approach are far simpler than in the HBF49. Therefore, our approach is less

powerful on the shape analysis aspect comparing to the HBF49. But the results of our

approach are still competitive. On la viola and ILG sets, it shows close results compared

with the HBF49. On the other hand, on MTGSet our graph modeling and matching

method (98.97%) signi�cantly outperforms the HBF49 (91.36%). This is mainly because

the MTGSet contains gestures which are similar in shape but have di�erent inner strokes

temporal relations.

The comparison between HBF49 features and our graph modeling proves that our

method has the ability to capture the synchronous and asynchronous writing relations

between strokes. It is therefore dedicated to the multi-touch gesture recognition problem.

That is why we o�er a freely available multi-touch gesture database as a �rst baseline to

multi-touch gesture recognition problems.
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3.4 Conclusion

In this chapter, we report two graph models with two recognition systems for multi-touch

gesture recognition problem. Comparing to the existent symbol recognition method, our

graph models focus more on the feature extraction for inner stroke relations including

spatial and temporal relations. In other words, our methods analyze the multi-touch ges-

tures not only from their shape but also from their writing order and synchronism. As

the �rst trial, the �rst system helped us to verify the e�ectiveness of graph modeling and

graph embedding for feature extraction and gesture recognition. To better characterize

the motion relations for multi-touch gestures, we then propose the second system based

on quanti�ed motion features. With the graph embedding and SVM classi�cation meth-

ods, our system is proved to be able to distinguish the multi-touch gesture from global

interpretation. Meanwhile, we make e�ort to create a challenge and comprehensive multi-

touch gesture dataset (MTGSet). We have made it available online and hope it could be

used as a benchmark dataset in community for further multi-touch gesture studies.
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Chapter 4

Reject Option Based Early Recognition

Algorithm

4.1 Introduction

In the previous section, we propose to use multi-touch gestures as indirect commands

and introduce a classi�cation method to recognize the gestures after their completion.

However, in a common sense multi-touch gestures have widely been used for direct ma-

nipulation. One problem is that whether both of the two interactions can coexist in a

same application, i.e. users can use multi-touch gestures for both interface/virtual el-

ement manipulation and executing commands. An example can be found in [PM13],

authors use mono-touch gesture to achieve scrolling, rotation as manipulation and text

input as command. A con�ict is that these two interactions o�er completely di�erent

feedback to the users. The direct manipulation need to give an instant feedback along

with the �nger's trajectory, whereas the indirect command need to wait until the end

of a gesture. Obviously it is not possible to distinguish the user's intention at the very

beginning of a gesture. In Fig. 4.1 we illustrate this con�ict with an example in [PM13].

Therefore, the problem becomes to whether we can correctly recognize a gesture by a

short beginning part so that we can quickly �nd the user's intention and choose a correct

feedback. How much information we need to recognize a gesture from a gesture set and

how fast we can achieve. With these questions, we explore the Early Recognition (ER)

strategy for multi-touch gestures.

Fig. 4.2 illustrates the general di�culties of ER. Since these three gestures have a

common beginning part, there is no evidence to distinguish the gestures before λ1. The

ER is actually a tradeo� between `earliness' and `accuracy', the more time/trajectory

it waits for, the more distinctive information it would have for decision. An ideal ER

system should be able to learn the common part and avoid making a decision before λ1.

Meanwhile, it should also be able to distinguish the gesture A from B and C soon after

λ1. Moreover, gestures have di�erent common parts between each other, e.g. gesture B

65
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Figure 4.1: Early recognition for a �Heart� gesture. In stage 3, the trajectory is recognized

as �Drag� manipulation which gives an instant feedback along with the trajectory. In stage

4, the trajectory is recognized as a �Symbolic-pattern�, i.e. an indirect command. System

need to wait until the end of the trajectory to interpret it as a �Heart� symbol. [PM13].

and C have a longer common part than gesture A and B. Each gesture need to have an

independent ER template against other gestures.

Gesture A

Gesture B
Common part

Gesture C

Common part

λ1
λ2

Figure 4.2: The common part ambiguity for early recognition. Three gestures have dif-

ferent common parts between each other.

From the state-of-the-art, the ER works have been mostly developed for motion pre-

diction problems [MUK+06] [KSNT11]. A basic idea is to employ a partial matching

method, where the recognition result of an input pattern is determined by the match-

ing distance of its beginning part from reference patterns. The Dynamic Time Warping

(DTW) algorithm is a widely used method to search for an optimal partial alignment.

Another approach is combination of classi�ers {h1,...,ht,...,hT}[ISS10][UA08], where ht is a

weak frame classi�er at tth frame (i.e., time t). The recognition result at the tth frame will

be determined by combining t recognition results provided by {h1, ..., ht}. This method

assumes the input pattern having the same performing speed as the reference pattern.
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The time frame based ER works have a pre-de�ned context that every gesture is

written in a same velocity. In our opinion, the gesture trajectory on each time frame is

just an external representation, the substantive information is the motion's variation, i.e.

the length of the trajectory. For instance, a gesture which moves very slowly contains less

information frame by frame. Therefore, We propose that the early recognition should be

investigated based on length of the motion's trajectory rather than the time frame. Note

that this strategy excludes the factor of writing velocity variation, but meanwhile it loses

the capacity to distinguish two gestures which have same shape but only di�er in writing

velocity.

We study in this work early recognition for handwritten touch gestures. Unlike the

previous works that investigate the early recognition based on time frame, we believe that

the time frame does not represent the motion information, e.g. a gesture which moves very

slowly contains less information frame by frame. We propose that the early recognition

should be investigated based on di�erence of the motion rather than di�erence of the

time.

For the practice of ER system in a real application, another di�culty is the gesture size

normalization. In training process, usually a classi�cation system need to normalize each

gesture to a �xed size bounding box before feature extraction so that the value of features

can be uni�ed to a �xed scale. However, in a gesture size free context, it is di�cult to

normalize the early part of a gesture without knowing the size of the full gesture. Fig. 4.3

shows an example of this problem. Fig. 4.3(a) is a normalized gesture which is assumed to

be a template. Fig. 4.3(b) (c) are two unknown gestures with di�erent size. Assume that

we need to achieve the early recognition by partial matching with the partial trajectories

in a length of l. Without normalization, a trajectory with a length l could be a small part

of a large gesture or a large part of small gesture. Apparently, it is di�cult to achieve

the matching with their original size since they have di�erent appearance. However, it is

also di�cult to normalize the partial trajectories in (b) and (c) into a same scale as in (a)

because the potential size of the full gestures is unknown at this early stage. Therefore,

the problem can be depicted as how to achieve the partial matching in a size free context.

l
l l

(a) (b) (c)

Figure 4.3: (a) A normalized gesture as a template. (b) (c) In a size free context, due to

the input gestures having a variety of the size, a trajectory with a length of l may cover

di�erent parts of a same type gesture.

In this work, we propose to build an early recognition system being able to deal with
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ambiguous common parts under free drawing context for handwriting gesture recognition.

We control the progress of the gesture using its length instead of time duration. A

reject option is proposed to postpone the decision until enough con�dence is achieved.

The rest of the paper is organized as follows. Section 4.2 presents the structure of the

multi-classi�er method and the reject option strategy. Next in section 4.3, we report the

experimental result to show the earliness and accuracy of the system. Experiments are

conducted on two freely available dataset ILG [RFLDA12] and MGSet [CAMVG15] 1.

The ILG dataset contains common mono-touch gestures which are assumed for abstract

command while the MGSet contains special multi-touch gestures which can be both used

for abstract command and direct manipulation. Finally, we conclude this work and discuss

the perspectives in section 4.4.

4.2 Multi-classi�er Early Recognition

To deal with the size normalization problem for ER in a size free context, we propose a

multi-classi�er recognition system as shown in Fig. 4.4. Each classi�er is trained by a

�xed length of partial gesture so that di�erent classi�er is responsible to recognize di�erent

length of coming incomplete gesture. However, as we explain in the previous section, a

trajectory with a length l could be a small part of a large gesture or a large part of small

gesture. In other words, a coming incomplete gesture (i.e. an incomplete trajectory) can

not be explicitly sent to a certain classi�er according to its length because we can not

estimate the size of its potential full gesture. Therefore, the incomplete trajectory will be

recognized by all classi�ers. The recognition result is determined by a fusion of the results

from all classi�ers. Details will be described in section 4.2.1. To deal with the ambiguous

beginning parts shown in Fig. 4.2, the result is �ltered by a reject option, i.e. a result

with low con�dence value will be rejected so that system will wait for enough information

to make a decision. The rejection algorithm and fusion of classi�ers will be proposed in

section 4.2.2.

4.2.1 Segment Classi�er

Consider a set of N training gestures xi|i = 1, ..., N , each gesture xi is a sequence of points

x = p0, ..., pe normalized and centered in the unit square bounding box. As we discussed

in section 4.1, users may perform a same gesture at di�erent velocity. In other words,

during a �xed time interval ∆t, the length of the gestures performed by di�erent users

may be di�erent. Therefore, our early recognition is based on the curvilinear distance

segmentation rather than a time segmentation, i.e. each classi�er is trained by �xed

length partial trajectories. Fig. 4.5(a) illustrates the segmentation of a gesture based on

1https://www-intuidoc.irisa.fr/en/category/bases-de-donnees/
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Figure 4.4: The structure of multi-classi�er early recognition system.

a interval l∆. The interval l∆ is an empirical length depending on the number of classi�ers

and the size of bounding box.

From all the training gestures, we build N segment sets Si, with i = 1, ..., N , where

each Si set represents all the segments of Segi whose length is equal or less than il∆. Fig.

4.5(b) shows the training procedure of each classi�er and its corresponding segment set.

Note that although the normalization step normalize the size of each gesture into a �xed

bounding box, the trajectory length of di�erent gestures are still di�erent. Consequently, a

long trajectory can generate more segments to feed the segment sets while a short one may

generate only one segment. Therefore, the number of training segments in di�erent set

Si may be di�erent. S1 will always cover the beginning part of all the training gestures,

while SN only contains the gestures which are longer than (N − 1)l∆. We denote the

segment classi�ers as {h1,...,hi,...,hN}, each classi�er hi is trained by the feature vectors

of the ith segment set Si.

In the recognition step, as we explained in Fig. 4.3 an arbitrary input gesture x at

length l ((i − 1)lI < l < ilI) can not be speci�cally recognized by classi�er hi because

of the size free context. Therefore, an arbitrary gesture x should be processed by all the

classi�ers and determined by the one giving the highest probability value. Let hj(x, ci) be

the probability of the best class ci obtained by the classi�er hj, the result of multi-classi�er

is

H(x, ci) = max
j=1,...,N

hj(x, ci) (4.1)

4.2.2 Rejection Algorithm

Referring to the work in [ZSHN10] [MA06], our reject option is designed from two aspects:

ambiguity and outlier. Fig.4.6 illustrates reject option boundary based on a classi�cation

space. The ambiguity refers to the patterns which are near the pair-wise classi�cation

hyperplane. These patterns re�ects the common part ambiguity as depicted in Fig. 4.2.

The outlier refers to the patterns which are far away from the class center. Because of

the size free context that an input pattern can not be speci�ed to a certain classi�er, the
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(a)

Segmentation

Classifier
h1

Classifier
h2

Classifier
hn

Gesture Sets

Train with 
reject option

(b)

Figure 4.5: (a) Trajectory of an example gesture. p0 and pe are the starting and ending

point, respectively. pk1 is the keypoint where the length of seg1 (from p0 to pk1)is l∆. pk2

represents the point at 2l∆. Since the total length is less than 3l∆, this trajectory will

o�er three segments for training. (b) Classi�ers are trained with di�erent segments.
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outlier rejection is used by each classi�er to explicitly reject the pattern which does not

belong to the scope this classi�er.

B
C

Ambiguous patterns

Classification plane
Ambiguity boundary

Outlier boundary

Outlier patterns

A

Figure 4.6: Ambiguous patterns and outlier patterns in multi-class recognition rejection

problem. The dotted straight lines represent the pair-wise hyperplanes to separate two

classes. The curves are ambiguity rejection boundaries for each class.

4.2.2.1 Ambiguity rejection

We deduce from Fig.4.6 that a good ambiguity rejection solution is to de�ne a class-pair

dependent threshold which rejects the ambiguous pattern close to the pair-wise hyper-

plane. However, it is ine�cient to maintain the entire class pair space when the class

number is large. A trade-o� is to use class dependent threshold that de�nes an ambiguity

boundary against all the other classes. We de�ne as in [MA06] the reliability function

ψAmbi to well interpret the ambiguity condition. The ambiguity determines if a shape is

near the decision boundaries. So let S = (s1, s2, ..., sk) be the con�dence or distance scores

for each class output by the classi�er. We can use the di�erence between the best class

C1 and the second one C2 to form the reliability function as:

ψAmbi =
si − sj
si

, (4.2)

where i = C1, j = C2. And we have the rejection decision as:

rAmb = ψAmbi < TAmbi . (4.3)

TAmbi is the class dependent threshold that the result will be rejected if ψAmbi < TAmbi .
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4.2.2.2 Outlier rejection

Since each classi�er is trained by a set of segments of a certain length, a classi�er should

be able to reject a gesture which is not similar to any of the training data. It ensures that

in the multi-classi�er structure, only the relative classi�er will give response to an input

gesture while others would make rejection.

Shown in Fig.4.6, the outlier samples locate far from the center of each class. There-

fore, the most important information for this rejection option is the intrinsic description

of the learned data.Depending of the used classi�er, this information is not always di-

rectly available [MA06]. If the classi�er outputs approximate the probability density of

the learned data as in classi�ers like RBFNN, Mixture of Gaussian, then the reliability

function can be de�ned as equation 4.4.

ψOuti = si (4.4)

In our case, we use SVM classi�er based on the distance to graph prototypes representing

the di�erent classes (see graph embedding in section 3.3). So by construction, the distance

to these prototypes is a good feature to extract the intrinsic description of the training

data. Thus in the experiments we use the equation 4.5 to compute the minimum distance

of sample x to the set of prototype Pi of class i using the distance d as de�ned in equation

3.14.

di(x) = min
pj∈Pi

d(x, pj) (4.5)

Then the reliability function ψOuti can be de�ned with equation 4.6 and used in the

rejection decision as equation 4.7.

ψOuti = e
− (di−µi)

2

2σ2
i (4.6)

where µi and σi are the mean distance and deviation for each class i learned from the

validation set.

rOut = ψOuti < TOuti (4.7)

where si is the output score of the best class. TOi ut is the class dependent threshold that

the result will be rejected if ψOuti < TOuti .

4.2.2.3 Threshold optimization

We �rstly de�ne some notations to better explain the result of the reject option. Consid-

ering a set of N training samples, Table 4.1 shows the notations to represent the number

of samples in di�erent condition after recognition and reject option.
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Table 4.1: Notations to represent the number of samples in di�erent conditions. With

these notations: N = NA +NR = Ncor +Nerr = NT
A +NF

A +NF
R +NT

R

Sample set (N)
Reject option

Accept (NA) Reject(NR)

Correctly classi�ed (Ncor) True Accept (NT
A ) False Reject (NF

R )

Mis-classi�ed (Nerr) False Accept (NF
A ) True Reject (NT

R )

To evaluate the threshold, we compute the False Accept Rate (FAR), and False Reject

Rate (FRR) as:

FAR =
NF
A

N
(4.8)

FRR =
NF
R

N
(4.9)

For ambiguity rejection, NF
R are the training samples which are correctly classi�ed but

wrongly rejected by reject option while the NF
A are wrongly classi�ed but accepted. Note

that it is better to prepare a validation dataset since the high precision in training data

makes NF
A close to 0, which leads to unavailable optimization. For outlier rejection, since

each classi�er is trained with a set of segments in certain length, the positive samples

are the classi�er's training set while the negative samples are the training sets for other

classi�ers. The acceptance of negative samples will be count for NF
A and the rejection of

positive samples will be NF
R .

In rejection, the aim is to obtain the lowest error rate while rejecting least correct

results. Intuitively, the optimization of the threshold is to �nd a trade-o� between the

FAR and FRR. Therefore, the optimal threshold for class i is de�ned as:

T opti = arg min
Ti

√
αeFAR2

i (Ti) + αrFRR2
i (Ti) (4.10)

where the weights αe and αr are used to balance the impact of each rate. In general

case, these parameters are set to 1. Since we use the class-wise threshold, we measure

the FARi and FRRi based on each class i to learn the threshold. The two thresholds are

learned independently.

Finally, the rejection of an input gesture is made if it is rejected by either reject option.

r = max(rAmb, rOut) (4.11)

If the input gesture is accepted, the probability hj(x, ci) of the class i, as shown in

(4.1), is the conjunction of both reliability function:

hj(x, ci) = ψAmbi ∗ ψOuti (4.12)
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With the reject option, the equation (4.1) will be changed to

H(x, ci) =


Reject, if

j∏
rj,i(x) = 1

max
j

(rj,i(x) ∗ hj(x, ci)) , otherwise

(4.13)

4.3 Experimental Result

The evaluation experiment has been conducted on the MTGSetB and ILG datasets as

referred in section 3.3.4.1. Note that for both datasets, we partition 20% of the data from

the training set as a validation set to learn the ambiguity threshold.

The number of classi�ers in our experiment is set to 3. Before training, each gestures

is normalized into a 500x500 pixels bounding box and segmented to 3 partial gestures

with length 250, 500, 750 pixels to feed for the 3 classi�ers, respectively. The classi�er

we used for each hi is Graph + LibSVM as described in 3.3. The con�dence scores for

ambiguity threshold learning are the probabilities from LibSVM. For outlier threshold, we

use clustering algorithm to �nd three centers for each class, and compute the distances of

a input gesture to the centers. The minimum distance is used as si in (4.4) to learn the

outlier threshold. These can be replaced by any classi�ers which give output con�dence

score for each class.

For the early recognition, each input gesture is recognized on every 50 pixels of its

incremental length. We �rstly evaluate the early recognition with regarding to the di�erent

length of input gestures. Referring to the notations in table 4.1, we measure the False

Accept Rate (FAR = NF
A /N) and Reject Rate (RR = NR/N) when using the reject

option and compare them with the traditional Error Rate (ER = Nerr/N) without reject

strategy. The results are shown in Fig. 4.7.

Both results show that without the rejection algorithm, the ER is very high at the be-

ginning since gestures are still ambiguous to take a distinction. Accordingly, the rejection

algorithm is e�ective to reject most of the gestures at beginning. The RR decreases along

with the decreasing of ER (without reject) which means that it well rejects the ambiguous

gestures but accept the gesture as soon as it has enough distinctive information. This

strategy leads to a good performance of FAR which is very low at the beginning and

always lower than ER at any input length. Meanwhile, the RR is always higher than ER

in the ending part, which means that some correctly classi�ed gestures are rejected. This

is the negative e�ect of the reject option; a low error rate is obtained at the cost of a high

reject rate.

In operational use case, a reasonable strategy to prevent noisy decisions consists in

�ltering the decision by considering several consecutive outputs of the classi�er. Conse-

quently, a decision is �nally accepted when the classi�er gives n consecutive times the
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(a) (b)

Figure 4.7: Recognition results with respect to the length of input gesture on two datasets.

FAR and RR are obtained using the reject option while ER is the traditional mis-classi�ed

rate.

same output. Results on the two datasets are shown in Table 4.2 from n = 1 to 6. Re-

ferring to the notation of Table 4.1, TAR is True Accept Rate (TAR = NT
A/N), FAR is

False Accept Rate, RR is Reject Rate which represent the percentage of gestures which

are rejected at every length until their completion, CR is correct rate (CR = Ncor/N).

The earliness means the average percentage of the a gesture being written at the time it

is recognized. Since the ILG data does not contain the time label, the average decision

time (Avg.T) is only measured on MTGSet.

Table 4.2: Recognition rate with consistence checking.

Dataset n
Reject Option No Reject Option

TAR FAR RR Earliness Avg. T(ms) CR ER Earliness Avg. T(ms)

MGSet

1 81.89% 14.56% 3.54% 37.04% 456.21 24.88% 75.12% 8.13% 297.23

2 83.44% 10.85% 5.71% 46.82% 523.34 48.78% 51.22% 21.32% 368.07

3 82.38% 8.85% 8.77% 55.89% 591.33 67.60% 32.40% 33.98% 437.85

4 82.20% 6.06% 11.73% 66.16% 669.86 79.59% 20.41% 45.44% 518.21

5 80.35% 4.60% 15.05% 71.03% 738.17 85.83% 14.17% 54.93% 598.04

6 77.42% 3.41% 19.17% 77.54% 811.38 88.62% 11.38% 62.34% 660.90

ILG

1 30.65% 67.15% 2.20% 34.81% N/A 21.22% 78.78% 18.03% N/A

2 64.15% 26.42% 9.43% 75.53% N/A 42.85% 57.15% 56.17% N/A

3 73.98% 11.22% 14.80% 92.24% N/A 68.29% 31.71% 82.16% N/A

4 77.72% 6.26% 16.02% 97.62% N/A 79.51% 20.49% 92.67% N/A

5 77.80% 4.88% 17.32% 99.19% N/A 85.45% 14.55% 97.27% N/A

6 77.72% 4.55% 17.72% 99.68% N/A 87.56% 12.44% 99.08% N/A

It shows an acceptable result on MGSet dataset that the accuracy rate of �rst time

decision is 81.89% which is obtained with an average of 37.04% length of gestures. Com-
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paring to the third result with no reject option, where the decision is also achieved around

33.98% length by 3 consecutive same results, the FAR is less than half of the ER. With

the increasing of the time for consistence checking, the decision is postponed to obtain

less errors. The FAR decreases from 14.56% to 3.41% while the RR increases from 3.54%

to 19.17%. It indicates that we have to �nd a trade-o� between the error rate and the

reject rate. The result by n = 2 may be considered as an acceptable one where the FAR is

10.85% and RR is 5.71%. The comparable result from no reject option is shown at n = 4

where the CR is 79.59% (3.85% lower than TAR:83.44%) and ER is 20.41% (9.56% higher

than FAR:10.85%). In other words, the reject options minimize the error rate by o�ering

reject Although there are 5.71% samples are rejected during the recognition, we believe

that in a real practice it is better to reject an input and provide some ambiguous options

to select than giving a wrong result. By this way, user only need to make a selection

instead of removing the wrong input and re-draw it again.

However, the result on ILG shows not as good as MGSet. The accuracy rate is only

30.65% for the �rst decision. From the Fig. 4.7(b), the FAR is around 20% to 30% from

50 to 200 points. Decisions made on this stage cause much more errors than MGSet.

Therefore, the �rst time decision may not be acceptable in this situation. The accuracy

rate on ILG dataset shows a great improvement using consistence checking. With n = 2,

the TAR is 33.5% higher than n = 1 while the FAR decreases 52.73% comparing to

n = 1. A higher time of consistence checking seems not useful since the corresponding

Avg. length is over 90%.

4.4 Conclusion

In this chapter, we focus on the di�culties of involving both direct manipulation and

indirect command gesture in a same context. To resolve the con�ict of these two inter-

actions, we propose a reject option based multi-classi�er system for handwritten gesture

early recognition. The principle is to recognize gestures as soon as possible from their

beginning part but also avoid the recognition if gestures contain similar beginning parts.

We propose a multi-classi�er structure that di�erent classi�ers are responsible to recog-

nize di�erent part of partial gestures. Since our system is considered to be used in a large

screen and gesture size free context, taking into account the gesture size normalization

inconsistence between training and testing, the early recognition result is determined by

the fusion of all classi�ers. The reject option for each classi�er is designed to deal with

the ambiguous early parts between gestures. The experiment gives a promising result

on MTGSet. The system achieve 83.44% accuracy rate with 46.82% earliness of input

gestures. Comparing to the no reject option system, the error rate is very low at the

beginning part which proves that our reject algorithm works well to reject the ambiguous

gestures.
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Our future work will focus on investigating the automatic selection of the optimal

number of classi�ers and segment length for training instead of using empirical selection

as in our experiment. Meanwhile, we will develop a application to mix the usage of

direct manipulation and command shortcut for multi-touch gestures and better analyze

the usability of early recognition for handwritten gestures. In the next section we develop

a structure document composition context as a �rst prototype which involves multi-touch

gestures for complex commands.
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Chapter 5

Structured Document Composition in

Multi-user Context

5.1 Introduction

A large multi-touch display allows multiple users to simultaneously interact in the same

context and work together. Indeed, many researches and commercial products propose

tangible interfaces which support simultaneous participation of multiple users. However,

most of these interfaces only allow users to interact with virtual elements which need only

simple direct manipulation. To the best of our knowledge, there are no research focusing

on the freely-drawn sketch or indirect commands for multiple users.

In this chapter we study the di�culties of multi-user freely-drawn sketch context. This

work is supported by Excense company who dedicates to design a handwriting diagram

context that make people propose and exchange their idea between each other. We choose

the use case of sketch drawing to illustrate the complexity of multiple users composing

a structured document. Indeed sketches as mind map or �owchart need lot of di�erent

gestures to draw a various type of symbols as nodes and arrows. Fig. 5.1 shows a prototype

of the multi-user interface, it allows two users to simultaneously input symbolic elements

in a mind map context. Generally, an ideal mind map diagram composition interface

should consists roughly of the following features [Blo96]:

1) Stroke segmentation/grouping, to isolated symbols.

2) Symbol recognition.

3) Identi�cation of spatial and logical relations among symbols.

4) Direct manipulation or indirect command gesture to interact with the existed ele-

ments.

5) Text separation.

6) Text recognition.

Our current study focuses on the �rst two features. The rests stand as future perspec-

tive. In a multi-user context, it becomes more di�cult to make a clear stroke segmen-
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tation/grouping since there are no clear spatial or temporal boundaries between isolated

symbols from the stroke stream. Meanwhile, to provide a freely-drawn context, users

are allowed to input a symbol by multi-touch gestures. Therefore, the challenges of our

study can be described as: how to recognize the multi-stroke and multi-touch gestures in

a multi-user composition context.

In section 5.2, we introduce the dataset we acquired to support our study. We will

describe the data acquisition procedure and discuss the multi-user features compared

to a traditional diagram dataset. In section 5.3, we present our �rst strategy for stroke

grouping and gesture recognition method based on eager interpretation. The experimental

results are given in section 5.4. Finally the last section concludes with the perspectives

to improve the results and go further in the process.

Figure 5.1: The diagram data acquisition procedure on a 80" touch screen. Two users are

drawing the diagram together using stylus.

5.2 Multi-user diagram database

Since there are few works on multi-user handwritten analyzing, it is essential to begin

with a representative multi-user handwritten document dataset. In order to be closely

engaged with a practical application, we propose to use mind map diagram as the multi-

user scenario. In this section we present the data acquisition procedure and the multi-user

features of the dataset. This dataset is achieved with the help of Excense company.

5.2.1 Diagram acquisition

A mind map is a diagram used to visually organize information. It is often created

around a single concept to which associated representation of ideas such as words, images,

symbols are added. The ideas are usually connected by lines, arrows or grouped by shapes,
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boundaries. An example of a mind map diagram is shown in Fig. 5.2 (a). As a �rst step

towards a more complex dataset, we focus more on the graphical symbols and their links

rather than the text. We o�er the users a white board scenario with all descriptive texts

on it. Each time we ask two users (standing side by side) to draw the correct graphical

symbols around the texts and connect them using lines, double-lines or arrows using either

�ngers or styluses. An example of the collected handwritten diagram is shown in Fig.5.2

(b). We designed two layouts of this mind map for more diversity in the data acquisition.

A total of 21 people partitioned half to half into two groups participated. Each pair

of participants was asked to switch their position after completing a map and drew again.

As each couple draw also the two layouts, it means that each couple of users generate

4 diagram samples. Consequently, 42 handwritten diagrams have been collected. 10

participants of group 1 were asked to draw the symbols on a 27" touch screen by �ngers.

To record the way people naturally draw, participants were given all the freedom to draw

the symbols in any way or order they prefer. Since users in this group draw symbols

by �ngers, some participants tend to use multi-touch manner to draw the multi-stroke

symbols such as `bracket' and `double line'. Users from group 2 made the acquisition on

a 80" touch screen by stylus. In this case they have more free space to draw the symbols

and may simultaneously draw di�erent symbols very close to each other. Since all the

symbols are drawn by stylus, the multi-touch case does not exist in this group. Fig. 5.1

shows the data acquisition scenario from group 2. The stroke grouping and groundtruth

labeling tasks were achieved manually after data acquisition with a dedicated application.

5.2.2 Diversity of the content

The prede�ned symbols can be classi�ed into 9 categories shown in Fig. 5.3. In observing

the collected data, users may draw a same symbol with di�erent number of strokes.

Examples of rectangle symbols are displayed in Fig. 5.4. Note that one of the examples

shows a very special broken straight stroke case. The User intends to draw a straight

stroke, but his �nger accidentally lifted up because of the unstable friction on the screen.

This situation causes some symbols containing an unusual large number of strokes.

As we introduced in the previous section, some `bracket' and `double line' symbols may

be drawn by multi-touch manner, which means the two strokes of the symbol are drawn

simultaneously. Some `arrow' symbols are written by one stroke, while some others are

�rstly written as a `line' and waited after a long time delay the head added. If the head of

an `arrow' is drawn within the same stroke or immediately added just after the straight

line stroke, we group the strokes and label them as `arrow'. If the head is added after a

signi�cant long time delay, during which the body of arrow is supposed to be processed

as the `line', we would make an independent `direction' class for the head. The heads of

double ways arrows are also labeled as `direction'. Table 5.1 shows the distribution of the

symbols in the dataset with also the average and max number of strokes used to draw
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(a)

(b)

Figure 5.2: Example of a mind map diagram and the corresponding handwritten diagram

without text.
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Figure 5.3: Samples of isolated symbols in diagram.

Figure 5.4: Variability of the rectangle symbol.

them.

The most important feature of this dataset is the mixture of multi-touch and multi-

stroke symbols by multiple users in the same time. A key problem is how to correctly

group the strokes under this complicated context. The Fig. 5.5 (a) shows an example

where a 'rectangle' and an 'arrow' symbol are drawn simultaneously. The diagram in the

right describes the temporal activity of their strokes. Obviously, the alternately emerging

of the strokes from two users makes it more di�cult to group the strokes. Meanwhile,

since the symbol is allowed to be written in multi-touch manner, the synchronized strokes

(as shown in Fig. 5.5 (b)) can hardly be determined whether they belong to one user or

two. Approximately 65% strokes are simultaneously written in this dataset.

5.3 Eager interpretation based recognition system

From the practice point of view, a multi-user document composition system aims at

providing a real-time feedback context so that users can easily exchange their ideas. We

exploit eager interpretation, which updates the analyzed document after each input stroke

and providing an instant corresponding feedback as illustrated in section 2.4. Ideally, a
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Table 5.1: Symbols' distribution and their average and maximum stroke number in the

complete dataset composed of 20 diagrams drawn by �ngers and 22 drawn with stylus.

Symbols Av. #strokes Max. #strokes

Bracket 140 2.05 3

Ellipse 278 1.02 2

Rectangle 158 1.89 7

Triangle 88 1.39 5

Diamond 92 1.48 4

Line 446 1.00 2

Double line 140 2.02 3

Arrow 424 1.86 4

Direction 242 1.19 2

(a) A two strokes `rectangle' synchronizes with a three strokes `arrow'.

(b) A two strokes `arrow' synchronizes with a two strokes `double line'.

Figure 5.5: Example of temporal activity of strokes under 2 users condition. Sij indicates

the jth stroke from user i.

recognition result should be given on the screen in a short delay after the completion of

each symbol. However, since the dataset contains multi-stroke gestures, the ending of a

stroke is not exact the ending of a gesture. Therefore, the system need to adopt early

recognition strategy to detect if input strokes can form a meaningful shape or need to wait

for more strokes. On the other hand, the most important feature of this dataset is the

mixture of multi-touch and multi-stroke symbols by multiple users in the same time. The

alternately emerging of the strokes in the stroke stream from two users is so complex that

two strokes concatenated in time domain may not even belong to a same user. Moreover,

the existence of multi-touch gesture makes it more di�cult that two synchronized strokes

can belong to either a multi-touch gesture or two gestures from two users. Therefore,
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instead of designing an explicit stroke grouping method, we use brute force grouping

technique as a �rst attempt to recognize all combinations of strokes and let the classi�er

take the decision of selection the correct gesture thanks to a dedicated training. Although

the computation cost would become very high when the number of candidate strokes

is large, due to the fact that the eager interpretation system gives feedback in a short

delay, the number of strokes in a short time window will not be so large for brute force

computation.

Fig. 5.6 shows the global framework of our proposed eager interpretation system.

After each end of a stroke, this stroke will be �rstly stored in a stroke list. Then system

will generate all combination of strokes if there exists multiple strokes in the list. A

classi�er is then used for each stroke combination to detect if any of them can form a

concrete symbol. If not, strokes will keep in the stroke list and wait for more strokes from

users.

Figure 5.6: The framework of eager interpretation system.

Note that the classi�er is responsible to not only recognize the correct symbol, but also

need to reject the wrong combination and un�nished partial gesture. We therefore train

the classi�er with wrong combination sample and un�nished sample as negative symbol in

addition to the original isolated symbol set. These two negative sample sets are generated

as following:

Wrong Combination: a wrong combination is a stroke set whose strokes come from

di�erent gestures. Given a training gesture set G = {g1, g2, ..., gn} where the subscript

index follows the input stream of the gestures, each one composed of 1 or more strokes.
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To generate this negative sample set, we extract random number of strokes among the

strokes belonging to two consecutive gestures gi and gi+1. As a negative set, obviously

it can not cover all the negative possibility. However, di�erent size of this negative set

can be generated to balance the ratio of positive (correct gestures) and negative (wrong

segmentation) samples.

Un�nished Gesture: an un�nished gesture is a sub-stroke set of a completed gesture.

Given a n stroke gesture g = {s1, s2, ..., sn}, we extract all its sub-stroke set following the
input sequence as {s1},{s1, s2},...,{s1, s2, ..., sn−1}. As the size of this set is comparable to

the number of positive gestures (depending of the average number of strokes per gesture),

we use them all. However, subsampling is possible to better balance the training set.

As shown in Fig.5.6, strokes which are recognized as wrong combination or un�nished

gesture will be restored into the stroke list and wait for new strokes. We di�er them as

two independent negative classes because of a special situation: an un�nished gesture can

be comparable to an isolated full symbol (shape and synchronization). Take a straight

line for example, without context information, it can be recognized as either an isolated

line symbol or the beginning part of a potential rectangle as un�nished gesture (Shown in

Fig. 5.7).

line part of a rectangle

A line symbol has a similar shape as 
the part of a rectangle

Figure 5.7: The decision for some shape should be postponed in case of forming another

potential gesture.

From the classi�er point of view, it is di�cult to distinguish these two cases since they

have the same appearance. From the practice point of view, it is reasonable to postpone

the decision after the end of a stroke in case of forming another potential gesture with

following strokes. To take into account this principle in the decision process, we can not

use only the classi�er outputs (as done in the previous chapter with reject option). Indeed,

the stroke itself will not change in time, so if a potential con�ict is detected thanks to

the class scores (e.g. `line' score and `un�nished' score are close), this con�ict will remain

the same in future. If a symbol is completed by new strokes, then the new symbol can

have a strong score and its strokes will be removed from the stroke list. If the partial

symbol is never completed, it means that it is a full symbol and after a certain period the

next decision should be used instead of `un�nished'. That is why we propose to use the

�age� of the symbol's strokes to weight the �un�nished� class score. By this way, young
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strokes are more likely to be un�nished symbols and then the possibility for a symbol to

stay un�nished decrease in time. The possibility then decreases with time elapsing. If

the stroke can not be combined with others after a long time delay, the stroke itself is an

isolated symbol that a decision has to be made for it. Therefore, we add a weight to the

output of un�nished gesture class as:

p′un(td) = λ(1− td
tf

) ∗ pun (5.1)

where pun is the con�dence value of un�nished gesture class output by classi�er. λ

is a constant value determining the increased mount of possibility at beginning. We

empirically set λ = 1.5. td is the time delay between the stroke ending time and the

recognition time. tf is the �nal decision time at when the possibility will be decreased

to 0 so that any other result of isolated symbol will be larger than the un�nished gesture

class. An example is shown in Fig. 5.8.

No stroke is written around it in a certain time delay

Unfinished
0.51

Line
0.3

Unfinished
0.51

Rectangle
0.4

A straight line 
recognized at 
its ending

The score for unfinished class 
deceases with time elapsing Final decision

Combined with other strokes

Figure 5.8: The score of un�nished class is manually increased at the ending time of a

stroke and decreased with time elapsing.

A problem is how to select an appropriate tf for the �nal decision time. A small tf
may force the system to make an early decision while the rest part of the symbol is still

in writing. A larger one will postpone the decision and cause the stroke list to store too

many strokes which makes more expensive to compute all combinations and increase the

risk of generating false positive gestures. In the following experiment section we evaluate

the recognition results with di�erent values of tf .

Fig. 5.9 gives a full view of stroke combination and recognition process. Taking 3

strokes for example, the �gure shows all the 7 possible stroke combinations (candidates)

and their corresponding recognition scores. Among all the 7 candidates, 5 possible groups
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(shown in round squares) can be deduced. The score of the group is the average of all its

candidates.

Score[group] =
1

N

N∑
i

Score[Candidatei] (5.2)

The �nal decision is the group which has a largest average score of all its candidates.

Note that the group whose all candidates are �Wrong Segment� will be discarded if there

exists any other solid decision. Consequently, the Diamond and Un�nished gesture are

chosen as the most con�dent results.

Independent 3 strokes:

2 strokes combinations:

3 strokes combinations:

Unfinished: 0.63 Direction: 0.32 Direction: 0.37

Arrow: 0.14Diamond: 0.85

Wrong segment: 0.91

Wrong segment: 0.72

3 strokes in stroke list:

Figure 5.9: An example of 3 strokes in the stroke list. All the 7 possible stroke's combi-

nations are shown in the �gure. The round square shows the 5 possible decisions made

for the 3 strokes. According to their score, an un�nished gesture and a Diamond gesture

are chosen as the �nal decision. This un�nished stroke will be restored in the stroke list

again.

5.4 Experiments

The multi-user diagram database is partitioned into two parts. 1346 gestures from 30

diagrams are used for training. 665 gestures from 12 diagrams are used for testing. Note

that in a real testing environment for eager interpretation, users may be in�uenced by
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the feedback such as mis-recognition or long recognition delay. Since the dataset are

collected without giving any recognition feedback to the users, there is no noise in the

stroke stream. We evaluate the performance of system in terms of correct stroke grouping

rate and recall rate based on di�erent values of parameter tf . The underlying classi�er

is the Graph Modeling with Motion Based Features classi�er illustrated in section 3.3 in

order to well recognize the multi-touch gestures. The results are presented in Table 5.2.

Table 5.2: Correct stroke grouping and recognition rate

tf (ms) 300 500 1000 2000

Segment Number 691 687 675 649

Correct Segments 592 596 593 578

Segment Recall Rate 89.43% 90.03% 89.58% 87.31%

Symbol Recall Rate 75.68% 76.28% 76.13% 74.77%

The performances in terms of stroke grouping rate are around 90%. It means that

system makes 1 mis-grouping every 10 multi-stroke gestures and leads to a de�nite mis-

recognition. The global recall rates are around 75% which is signi�cantly lower the

grouping rate. It means that with the correct stroke grouping, system results around

15% mis-recognition rate. As we illustrated in section 3.3.4.2, our Graph Modeling with

Motion Based Features classi�er is specially designed for multi-touch gestures. With the

additional complex negative sample sets, it gives out an even low result.

As far as �nal decision time tf is concerned, the result at 500ms gives the best per-

formance. It proves that neither too fast nor too slow could achieve a better result. An

early decision may cause a partial gesture being recognized as a isolated symbol, while a

later decision may cause a large stroke waiting list that leads to more mis-grouping.

Fig. 5.10 shows a screen shot of two full example diagrams. The green gestures are

correctly grouped and recognized. Oranges are mis-grouped gestures. Most of them are

multi-stroke gestures that wrongly being segmented into several parts. The reds ones are

mis-recognized by classi�er.

Fig. 5.11 shows the detail of the drawing of Fig. 5.10 (b) after 50 strokes drawn.

Fig. 5.11 (b) shows the current stroke list and their decisions at each step. The group of

strokes recognized as un�nished stay in the stroke list for next step. The group recognized

as concrete symbol are removed from current list. We can notice that the stroke drawn

at step 51 is recognized as un�nished for two steps until step 53 where it recognized as

line. This illustrates the impact of �age� of the stroke on the decision (see equation 5.1).

At step 55 the triangle is mis-segmented into two parts as a line and later (step 57) a

direction.
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(a) Example of recognition results of layout 1.

(b) Example of recognition results of layout 2.

Figure 5.10: Recognition result for two example diagrams. Gestures in green are correctly

recognized. Oranges are mis-grouped gestures. Reds are correctly grouped but mis-

recognized gestures.
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(a) Start context at step 50.

unfinished

unfinished

unfinished

line

unfinished

diamond unfinished

unfinished

line

unfinished diamond

direction
unfinished

Step 51

Step 52

Step 53

Step 54

Step 55

Step 56

Step 57

(b) Stroke stream between steps 51 and 57.

(c) Final context at step 57.

Figure 5.11: Stroke stream and their recognition results between steps 50 and 57 from

Fig. 5.10 (b). The recognition decisions of each step are bounded in dashed rectangles.
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5.5 Conclusion

We have presented a new dataset of multi-user handwritten diagram. The dataset contains

a large quantity of graphic symbols drawn by 21 users. The most important feature is

that each diagram is drawn by the collaboration of two users. The multi-user freely-drawn

handwritten recognition is a challenging problem that few recognition systems attempt

it. Our dataset opens a new frontier for the diagram recognition research. We present the

di�culties to achieve a real-time stroke grouping and symbol recognition in multi-user

context. Therefore, new questions are opened: How we can e�ectively group the strokes

into distinct symbols? How we can give a real-time recognition feedback to the user?

To solve these problems, our �rst attempt is developing an eager interpretation system

which launch the recognition at each end of a stroke. Instead of designing a explicit

stroke grouping method to cope with the complex stroke relation for multi-stroke and

multi-touch gestures, we employ the brute force stroke grouping method to traverse all

stroke combinations in a short time window. The underlying classi�er is trained with

negative samples so that it can reject the wrong segmentation and un�nished gestures.

A postponed parameter is employed for un�nished gesture class so that a partial stroke

can wait for enough time before recognition in case of forming another potential gesture

with following strokes. First experimental results shows that system can well recognize

majority of gestures from the stroke stream.

There are several perspectives about this work. The �rst one is to exploit the complex

stroke relations so that an explicit stroke grouping module can be achieved before gesture

recognition. It would therefore simplify the classi�er with less negative sample to detect.

The second perspective is to involve di�erent gestures command and manipulation such

as Erase, Translation or even zooming, etc. i.e. to mix direct and indirect command in

the gesture stream. To deal with direct command, the eager gesture recognition strategy

should be merged in our global strategy, for example by not waiting the end of a stroke to

try to recognize the gestures. The goal is to design an application that all commands and

manipulations are achieved by gestures. As illustrated in section 5.1, more future work

should be done following the features 3-6 involving context grammar and text recognition

to achieve a complete application.
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Conclusion & Perspectives

6.1 Conclusion

The development of touch gesture operation facilities human computer interaction. Cur-

rently, multi-touch gestures have been mainly used and studied for direction manipulation

such zooming, rotating, etc. There is few research studying to use multi-touch gesture

to execute indirect commands. The work of this thesis aims at expanding the usage of

multi-touch gestures and focuses more on the techniques of multi-touch gesture modeling

and recognition.

To globally analyze and characterize a multi-touch gesture, the core problem is the

synchronization relations, in both temporal and spatial domains, between touch trajec-

tories. The main contribution of our work is the proposal of di�erent graph modeling

to integrate the shape information with temporal and motion relations between trajecto-

ries. The �rst graph-based approach extracts static shape feature on each trajectory and

uses Allen's relations as temporal description between the trajectories. We demonstrated

that this modeling is simple and e�cient to characterize and recognize multi-touch ges-

tures. However it is not precise enough to capture the dynamic motion relations between

trajectories.

We then progress to the second graph modeling which segments trajectories into small

pieces and extracts synchronization features and dynamic motion features between each

piece pair. To achieve the graph recognition, based on this gesture graph we studied

the graph matching algorithm which �nds the optimal vertex to vertex and edge to edge

matching so that the cost of edit distance between two graphs can be calculated. Based on

this edit distance, a graph embedding algorithm is then employed to transform the graph

into a vectorial description to allow the use of classical pattern recognition classi�ers.

To evaluate this graph modeling and recognition system for multi-touch gestures, we

found that there is few available multi-touch gesture dataset for a benchmark test in the

community. We therefore designed and collected the MTGSet which is a multi-touch

gesture dataset containing di�erent type of gestures in terms of di�erent stroke number

93
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and complex inner-stroke relations. This dataset is fully annotated and free available on

the website. We demonstrate that our graph modeling recognition method can better

recognize these multi-touch gestures comparing to other reference systems based on static

features.

The second phase of our work concerns the development of using multi-touch gestures

for commands. Due to the fact that usually multi-touch gestures are regularly used for

direct manipulation, we extend the study of the mixed usage of multi-touch gestures, i.e.

using multi-touch gestures for both direct manipulation and indirect command in a same

context. We propose an early recognition system, which is based on a multi-classi�er, able

to recognize a gesture as soon as possible, so that the user can have a suitable feedback.

Considering the ambiguous common part between gestures, classi�ers are designed with a

reject option so that it can detect these ambiguous beginning parts and avoid making an

ambiguous decision without enough information. The system achieves 83.44% accuracy

rate with 46.82% earliness of input gestures on MTGSet.

The �nal phase of our work is to design a structured document composition context.

This work is supposed to develop a real application so that all the touch gesture interaction

techniques can be veri�ed in this context. In an ideal context, it allows multiple users

to compose structured diagrams using multi-stroke gestures and manipulate the diagram

using multi-touch gestures. At the beginning step of this research, we �rstly collected a

multi-user diagram composition dataset. We designed an eager recognition system aiming

at recognizing gestures at every ending of a trajectory and providing a real-time feedback

to the user. We achieved a promising result but still have a long way to go to use it for

practice.

6.2 Perspectives

There is a signi�cant tendency that large touch screens or even touch screen walls become

more prevalent in our daily life. The goal of our research is to provide more freedom to the

user to control the interaction system with di�erent type of gestures. From the current

study, we can suggest some perspectives to be achieved in a future work.

- The graph modeling need to involve more shape feature for a gesture. Our graph

modeling is originally designed for multi-touch gestures which contain many dynamic

features between strokes. According to the results on mono-touch gesture set, the involved

shape features are too weak to recognize mono-touch gesture comparing to others. From

the current graph modeling, one solution is to generate more substrokes for each stroke

so that the shape will be represented more precisely. However, it will also signi�cantly

increase the scale of a graph that results in a more expensive graph matching.

- In early recognition, we empirically select the number of classi�ers and each corre-

sponding training segment length. In an ideal case, an early recognition system need to
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automatically learn these parameters from training dataset so that it can �nd the opti-

mal early decision time for each gesture. Our future work will focus on investigating an

adaptive system to learn these information.

- Last but not least, the eager interpretation system for multi-user structured document

composition need more improvements. On the one hand, a better stroke grouping strategy

need to be explored. Instead of using brute force stroke combination, a spatial feature

based preprocess is required to prune the number of stroke combination. On the other

hand, as discussed above a more powerful isolated symbol classi�er is essential to the

current system. Moreover, with a better early recognition system, we will try to engage

both direct manipulations and indirect commands into this application.



Résumé en Français 

1.	Introduction	
Les interactions gestuelles tactiles font parties des interactions personne‐machine les plus naturelles. 

Elles permettent une expérience utilisateur plus intuitive et plus appropriées que l’usage du clavier et 

de la souris. Avec le développement des écrans tactiles, un nombre croissant d’usagers se familiarise 

avec ce type d’interactions gestuelles. 

D’un  point  de  vue  interaction,  les  gestes  tactiles  sont  utilisables  selon  deux  modalités :  la 

manipulation  directe  de  certains  éléments  de  l’interface  et  de  façon  complémentaire  le 

déclenchement  a  posteriori  d’une  commande  résultant  de  l’interprétation  d’un  geste  symbolique 

que  l’on qualifiera de  commande  indirecte. Un usage explicite d’une commande directe peut être 

donné  en  considérant  le  cas  de  la  manipulation  d’un  plan  cartographique  où  l’utilisateur  pourra 

déplacer  la  carte  par  des  glissements  du  doigt  ou  encore  changer  le  zoom  en  écartant  ou  en 

resserrant deux doigts, faire pivoter la carte en appliquant une rotation d’un doigt autour d’un autre. 

Dans un cas général, une telle commande directe produit un retour continu au fur et à mesure de la 

production du geste  initiateur. Ainsi, avec  l’exemple du glissement de doigt  (scroll)  sur  la carte,  le 

déplacement de celle‐ci se produit concomitamment avec celui‐ci. 

A  l’inverse,  les gestes de commandes  indirectes produisent un effet unique, comme c’est  le cas par 

exemple, avec  la reconnaissance de  l’écriture manuscrite. Des exemples de  telles  interactions sont 

proposés dans [AZ09] pour permettre de dessiner des icônes à partir de raccourcis gestuels. Un autre 

exemple classique est celui de  la saisie manuscrite de caractères, dans ce cas  l’utilisateur dessine  la 

forme  du  caractère  en  place  de  le  taper  sur  le  clavier. Une  fois  le  tracé  effectué,  le  système  de 

traitement l’interprète et produit un résultat associé, tel que l’affichage d’une lettre. 

                    

  (a) Commande indirecte       (b) Manipulation directe 

Figure 1.  Deux types d’interaction tactile 

De  nos  jours,  les  gestes  tactiles  mono‐points  (un  seul  point  de  contact  à  chaque  instant)  sont 

largement  utilisés  et  étudiés  à  la  fois  pour  de  la  manipulation  directe  et  pour  des  commandes 

indirectes. Les utilisateurs ont même la possibilité de spécifier leurs propres gestes et de les associer 

aux  commandes  de  leurs  choix.  Par  contre,  concernant  les  interactions  multipoints,  il  existe  de 

nombreuses limitations qui les contraignent à de la manipulation directe, telle que zoomer avec deux 

doigts.  Le  travail  proposé  dans  cette  thèse  étend  l’usage  des  gestes  multipoints  pour  les  rendre 

utilisable  dans  un  cadre  de  commande  indirecte  (tel  que  copier,  coller,  etc.)  et  pour  élargir  les 

manipulations directes envisageables. Un des enjeux de notre problématique est   de proposer des 



modèles d’analyse et de  reconnaissance aptes à  traiter  les gestes multipoints,  comme  il en existe 

aujourd’hui pour les gestes mono‐points.  

Pour modéliser les gestes multipoints, nous avons privilégié une approche basée graphe (section 2). 

Les  caractéristiques du geste multipoint  telles que  sa  forme,  les  relations  spatiales et  temporelles 

entre  les  trajectoires  des  doigts    vont  être  prises  en  compte  pour  construire  le  graphe  de 

représentation. Une description  vectorielle du  graphe  (graph  embedding)  couplée  à un  classifieur 

SVM  permettra  d’assurer  la  reconnaissance  du  geste.  Afin  de  mettre  au  point,  d’entrainer  et  de 

tester nos différents systèmes, nous avons conçu, collecté et annoté une base d’exemples, MTGSet, 

qui  réunit  7 938  gestes  de  41  classes  différentes.  Pour  traiter  les  problèmes  d’ambigüités  entre 

manipulation directe et  commande  indirecte  sans  connaissance du  contexte, nous proposons une 

stratégie  de  reconnaissance  précoce  pour  des  gestes  multipoints  (section  3).  L’objectif  est  de 

reconnaitre  le geste en considérant  le début du tracé pour permettre un retour utilisateur avant  la 

fin  du  tracé.    Nous  proposons  également  des  stratégies  d’implémentation  pour  traiter  une 

application  effective.  Finalement,  nous  abordons  les  difficultés  spécifiques  de  la  composition 

multiutilisateurs de documents dans un contexte multipoints  (section 4). Dans ce cas,  il s’agit pour 

reconnaitre  les gestes de chaque utilisateur de pourvoir distinguer  les  traces  respectives produites 

par chacun.  

2.	Reconnaissance	de	gestes	multipoints		

A  la  différence  des  gestes mono‐points  où  les  tracés  sont  produits  en  séquence,  dans  le  cas  des 

gestes  multipoints,  les  différents  tracés  ont  des  relations  temporelles  beaucoup  plus  complexes. 

Deux gestes ayant  le même  rendu visuel  final peuvent avoir été produits de  façon  très différente. 

Nous  chercherons  à  modéliser  les  relations  inter‐tracés  telles  qu’elles  ont  été  produites  afin  de 

pouvoir  distinguer  ces  différents  types  de  geste.  Compte‐tenu  du  nombre  variable  de  points  de 

contacts,  il  est  difficile  d’extraire  un  nombre  fixe  de  caractéristiques  pour  décrire  les  relations 

spatiales et temporelles entre  les tracés. Pour cela, nous proposons d’utiliser un modèle à base de 

graphes pour représenter ces relations spatiales et temporelles, ainsi que l’aspect de chaque élément 

du  tracé.  Dans  cette  section,  nous  proposons  deux  types  de  graphes  avec  la  méthode  de 

classification associée pour permettre la reconnaissance du geste correspondant.  

Modèle	de	graphe	utilisant	les	relations	d’Allen		
La figure 2 présente le synoptique général de l’approche proposée.  

Construction	du	graphe		
La figure 3 montre le graphe pour un geste composé de deux traits. Chaque trait est représenté par 

trois nœuds, un nœud associé à chaque extrémité, Vb (begin) et Ve (end), et un nœud central Vs. Ces 

trois nœuds  serviront pour  introduire  les  relations  entre  les  traits  grâce  aux  arêtes qui  en  seront 

issues. 

Ensuite,  l’information  de  forme  du  trait  est  encodée  dans  le  graphe. Nous  utilisons  pour  cela  un 

dictionnaire de formes élémentaires (ligne, arc, ellipse, …) pour décrire de façon discrète chaque trait.  

À  la  différence  d’autres  travaux  [LLLW15]  [AMG07]  où  ces  formes  sont  prédéfinies  de  façon 

empirique, nous avons construit le dictionnaire par un algorithme de clustering non supervisé à partir 

d’une base d’apprentissage. Pour cela,  l’algorithme des K‐means avec  la distance Euclidienne dans 



l’espace des caractéristiques HBF49 [DA13] est utilisé. Chaque trait est alors associé au représentant 

du  cluster  auquel  il  appartient.  Dans  la  mesure,  où  seules  des  informations  de  formes  locales  à 

chaque trait sont utilisées, cette stratégie est appelée Local Shape Représentation (LSR).  

 

 

Figure 2. Structure générale de la construction du graphe et de sa reconnaissance.  

Nous  mesurons  ensuite  les  relations  spatiales  et  temporelles  entre  les  différents  traits.  À  titre 

d’exemple, considérons un geste avec deux traits dont  le graphe général est donné figure 3. Sur ce 
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graphe,  toutes  les  relations  potentielles  figurent  et  devront  être  évaluées.  Ces  relations  sont 

représentées  par  les  arêtes  Es,  Est  and  Ast  entre  deux  nœuds  du  graphe.  Nous  avons  choisi    les 

relations  d’Allen  [All83]  initialement  utilisées  pour  quantifier  7  relations  temporelles  entre  deux 

évènements. Sur ce principe, nous étendons les relations d’Allen à la fois sur l’axe du temps et sur les 

axes x et y pour évaluer des relations spatiales entre deux traits.  

 

Figure 3. Structure générale d’un graphe d’un geste avec deux traits.  

1) Arête entre  les nœuds centraux (Ast): Le jeu complet des relations d’Allen est utilisé pour établir 

les relations vis‐à‐vis du temps, de la position en x et de la position en y entre deux traits Vs. L’indice 

st  signifie  que  les  relations  spatiales  et  temporelles  sont  considérées.  Il  en  résulte  que  l’arc  Ast 

contient un triplet de relations comme attribut.  

2) Arêtes  entre  les  nœuds  extrémités  (Es  and  Est):  Ces  arêtes modélisent  les  relations  existantes 

entre  les extrémités des  traits. A  la différence des arêtes entre  les nœuds centraux qui avaient un 

nombre fixe de trois relations, ici un nombre variable de 1 à 3 relations peuvent exister. Enfin, quand 

l’on considère une paire de nœuds extrémités opposés, seules les relations spatiales sont étudiées et 

l’arc se réduit à Es. Cet arc porte alors les relations spatiales en x et en y entre un nœud début et un 

nœud fin de trait. 

Il  est  à  noter  que  les  relations  portées  par  les  arêtes  entre  les  nœuds  extrémités  renforcent  les 

mesures établies par  les relations d’Allen. Bien que certaines de ces relations soient déjà présentes 

implicitement dans les arêtes des nœuds centraux associés aux traits, nous choisissons de conserver 

cette redondance. Ainsi, des gestes avec le même nombre de traits pourront avoir des structures de 

graphe différentes.  

Plongement	de	graphe	
La méthode de « graph embedding » cherche à ramener dans un espace vectoriel de dimension fixe 

un  graphe de  topologie  variable  afin de pouvoir utiliser des méthodes  classiques de  classification 

statistique. Dans  ce  travail, nous  avons  adopté  l’approche  proposée par by  Sidere  et  al.  [SHR09]. 

L’étape  initiale  consiste  à  construire  une  matrice  dont  chaque  ligne  représente  une  étiquette 

possible d’un sommet ou d’une arête du graphe tandis que chaque colonne correspond à une sous‐

structure choisie du graphe. Cette matrice sert d’accumulateur pour dénombrer les occurrences des 

labels dans les sous‐graphes iso‐morphiques aux sous‐structures. Ensuite, la concaténation des lignes 

de la matrice permet d’obtenir la représentation vectorielle. 



Pour  les  colonnes  de  la  matrice,  nous  avons  choisi  de  considérer  trois  sous‐structures :  un  seul 

sommet, deux sommets reliés par une arête et trois sommets reliés par deux arêtes. Nous aurons un 

total de 32 lignes, représentant les 9 (par défaut) symboles de forme issus du clustering attribuables 

au sommet Vs, le label début et fin et pour les sommets extrémités Vb et Ve et les 7 relations d’Allen 

pour  les  trois  relations  Est  (temps,  x  et  y).  Conséquemment,  un  vecteur  de  taille  3x32  =  96  sera 

disponible à la suite de cette opération. 

Représentation	Globale	de	la	Forme	(Global	Shape	Representation,	GSR)	
Nous avons ci‐dessus intégré la description locale (LSR) des traits à la représentation globale définie 

par le graphe. Une alternative à l’utilisation du graphe serait d’extraire directement du geste complet 

un  vecteur  de  représentation  global  (GSR).  À  cet  effet,  nous  extrayons  globalement  les 

caractéristiques  HBF49  du  geste  complet,  ces  dernières  pourront  être  considérées  soit  de  façon 

isolée, soit en étant adjointes à celles provenant de la modélisation par graphe.  

Expériences	
Ces  expériences  mettent  en  œuvre  la  base  MTGSetA,  qui  contient  1 800  gestes  multipoints, 

représentant 18 classes et provenant de 10 personnes différentes. La figure 4  illustre  les 18 classes 

de gestes. 

 

Figure 4. Pictogrammes des  gestes de la base  

Dans  la mesure où  les gestes tactiles ont été traduits par des vecteurs de caractéristiques, tous  les 

classifieurs statistiques sont envisageables. Nous avons retenu pour cette expérience un classifieur 

SVM  issu de  la  librairie LIBSVM en retenant un noyau gaussien   et  les méta‐paramètres par défaut. 

Trois séries d’expériences sont proposées pour évaluer ce premier système. 

Expérience  1  (GSR):  seules  les  caractéristiques HBF49  en mode  global  sont utilisées. Celles‐ci ont 

prouvé être très performantes dans des contextes mono‐points. Nous  les utilisons directement sur 

les tracés multipoints sans prendre en compte le modèle de graphe. En d’autres termes, dans cette 

expérience les conditions de synchronisation des tracés sont perdues. 

Expérience 2  (Graph(LSR)):  ici, nous utilisons  le graphe pour modéliser  le  tracé puis sa description 

par un vecteur de taille fixe. Comme nous  l’avons expliqué dans  la section 3.2.1,  l’approche LSR est 



basée  sur  un  clustering  non  supervisé  pour  quantifier  la  forme  des  traits,  le  nombre  optimal  de 

cluster a été fixé empiriquement à 9.  

Expérience  3  (Graph(LSR)+GSR):  Finalement,  nous  concaténons  les  deux  représentations 

précédentes pour intégrer à la fois les descripteurs de formes locaux et globaux. 

Toutes ces expériences sont faites avec un protocole de validation croisée (5‐cross‐validation) pour 

permettre d’être indépendant des utilisateurs. 

Tableau 1. Résultats de reconnaissance sur la base MTGSetA 

Méthode Taille	du	vecteur Taux	de	reconnaissance	(%) Ecart	type	(%) 

GSR 49 90.44 0.034 

Graph(LSR) 96 92.56 0.013 

Graph(LSR)+GSR 145 94.50 0.020 

 

Le  tableau  1  résume  les  taux  de  reconnaissance  obtenus  avec  les  deux  approches  et  leur 

combinaison. Les  résultats montrent que  l’approche  structurelle par modèle de graphe, contenant 

des  informations spatiales, temporelles et de formes  locales, obtient un taux de reconnaissance de 

92,56% ce qui est meilleur que celui obtenu avec les caractéristiques globales HBF49 (90,44 %). Cela 

montre que la modélisation proposée sous forme de graphe est bien apte à capter des informations 

importantes  pour  ces  gestes  multipoints.  De  façon  complémentaire,  la  troisième  expérience  qui 

intègre  les deux  jeux de caractéristiques précédents obtient  les meilleurs résultats avec un taux de 

94,50 %, ce qui est significativement supérieur. 

Modélisation	par	graphe	avec	des	caractéristiques	de	déplacement	
Le graphe précédent  comporte  certaines  limitations.  Les dépendances  spatiales et  temporelles ne 

sont  prises  en  compte  qu’aux  extrémités  des  traits.  De  plus,  le  modèle  ne  retient  que  des 

descriptions symboliques (les relations d’Allen et les labels des traits) en tant qu’attribut du graphe. 

Ces descriptions discrètes ne sont sans doute pas suffisamment précises pour décrire  les formes et 

les relations entre ces formes. Pour circonvenir à ces limitations, nous proposons dans cette section 

une  nouvelle  approche  qui  intègre  des  attributs  scalaires  permettant  une  représentation  plus 

continue de l’espace des caractéristiques. La figure 5 présente le schéma général de l’approche.  

 

Figure 5. Approche de reconnaissance basée graphe en trois étapes  



Prétraitement	et	découpage	des	traits		
Il faut trouver un bon compromis entre extraire un mouvement global entre deux traits, ce qui est 

trop  réducteur  de  la  diversité  des  situations  rencontrées,  et  extraire  un  mouvement  local  entre 

chaque point du tracé, ce qui serait très lourd et inutilement bruité. La solution proposée consiste à 

ré‐échantillonner les traits avec un pas spatial prédéfini, et travailler avec les sous‐traits ainsi définis 

entre chaque paire de points. 

Du	geste	au	graphe	
A ce stade, de façon élémentaire, un geste est disponible sous la forme d’un ensemble de sous‐traits. 

Dans  cette  section,  nous  verrons  comment  extraire  deux  informations  importantes :  la  forme  de 

chaque  sous‐trait  et  les  relations  topologiques  entre  paire  de  sous‐traits.  Ces  informations  sont 

portées par un graphe. 

 

Figure 6. Segmentation des traits et diagramme d’activité des sous‐traits. 

Chaque  sous‐trait est défini par quatre paramètres géométriques,  sa  longueur  (݈),  son  inclinaison, 

l’angle (ߠ) et son centre de gravité (ܿ௫, ܿ௬) 

Pour représenter l’évolution temporelle des sous‐traits et leur mouvement relatif, nous introduisons 

trois types de relations entre deux sous‐traits : les relations d’adjacence (a), de synchronicité (s) et de 

consécutivité (c). 

Relation 1 (Adjacence, Ra). Les sous‐traits Sij et Skl sont adjacents s’ils appartiennent au même trait et 

sont temporellement consécutifs. 

Avec  l’exemple  de  la  figure  6(c),  nous  avons  : RୟሺSଶଵ, Sଶଶሻ ൌ 1; RୟሺSଷଵ, Sଷଶሻ ൌ 1.  Cette  relation 

permet d’identifier les sous‐traits consécutifs d’un même trait.  

Relation  2  (Synchronicité, Rs). Deux  sous‐traits  Sij et  Skl  sont  synchrones  s’ils  appartiennent  à des 

traits différents et ont été tracés en même temps.  



Cette  relation  indique  que  deux  sous‐traits  ont  été  tracés  simultanément  par  deux  doigts,  cela 

correspond  à  un  cas  typique  pour  une  interaction multipoints. Un  vecteur  de  caractéristiques  va 

mesurer  le  mouvement  relatif  entre  ces  deux  sous‐traits.  Une  méthode  classique  [OIL11]  pour 

caractériser  le mouvement de deux doigts s’appuie sur  les points de départ et d’arrivée de chaque 

sous‐traits. On  calculera  les mouvements  de  translation,  rotation  et  homothétie  pour  passer  des 

points de départ aux points d’arrivée. La figure 7 illustre la définition de ces trois mouvements. 

 

 

Figure 7. Caractéristiques de mouvement entre deux  sous‐traits  synchrones  Sij,  Skl.    Le  vecteur de 

translation  (dx, dy) est basé  sur  les  centres de  gravité  cs et  ce, des paires des points de départ et 

d’arrivée respectivement. Le facteur d’échelle (ds, de) mesure les distances entre les points de départ 

et d’arrivée. L’angle θ définit la rotation permettant de passer de la direction du couple de points de 

départ au couple de points d’arrivée. 

A partir de ces grandeurs, telles que définies par  la figure 7, on construit  le vecteur de mouvement 

suivant: 

൫ܯ ௜ܵ௝, ܵ௞௟൯ ൌ ሺට݀௫ଶ ൅ ݀௬ଶ, ݀௘ െ ݀௦,  ሻߨ2/ߠ

Relation 3 (Consécutivité, Rc). Deux traits Si et Sk sont dits consécutifs, soit tracés en séquence quand 

ils ne partagent pas de sous‐traits synchrones.  

Dans  la mesure où  le modèle est construit au niveau des sous‐traits, cette  relation va être établie 

entre  le  dernier  sous‐trait  d’un  trait  et  le  premier  sous‐trait  d’un  trait  consécutif.  Un  attribut 

mesurant le retard temporel td entre les deux sous‐traits est calculé 

௖ሺܴ௖ሻݓ ൌ ௖൫ݓ ௜ܵ௝, ܵ௞௟൯ ൌ  ܶ/ௗݐ

Cette grandeur est normalisée par la durée totale du geste pour la ramener dans l’intervalle [0,1]. 

Globalement, l’ensemble des relations de l’exemple de la figure 6 est présenté sur la figure 8 (a). En 

utilisant les caractéristiques géométriques et les relations définies ci‐dessus, nous pouvons construire 

un graphe, appelé Multi‐Touch‐Stroke Graph (MTSG), tel que présenté à la figure 8(b). 

Mise	en	correspondance	de	graphes		
Nous proposons de calculer une distance d’édition pour obtenir une mesure de (di‐)similarité entre 

deux graphes représentatifs de deux gestes. Au lieu de réaliser une mise en correspondance globale 

sur  les  deux  graphes  entiers  comme  dans  [RB09][RB10],  nous  cherchons  d’abord  une  mise  en 

correspondance  optimale  de  sous‐graphes  en  ne  considérant  que  les  sommets,  les  arêtes  seront 

ensuite automatiquement ajoutées. 



Nous  commençons  par  grouper  les  sommets  qui  appartiennent  au  même  trait  pour  former  des 

ensembles de  sous‐graphes qui  sont en  fait dans  ce  cas des  chaines.  L’algorithme DTW est utilisé 

pour calculer  le coût d’association de deux de ces  sous‐graphes. Une matrice de coût C  récapitule 

l’ensemble des coûts d’association des différentes paires possibles de sous‐graphes. Puis l’algorithme 

de Munkres [Mun57] permet de trouver en temps polynomial l’ensemble optimal des assignations de 

sous‐graphes.  Il est possible alors de déduire  la fonction de mise en correspondance   entre chaque 

sommet  des  deux  graphes.  La  distance  d’édition  se  calcule  alors  simplement  comme  la  distance 

euclidienne entre les vecteurs des sommets associés. La figure 9 présente la mise en correspondance 

des sous‐graphes et la matrice de coûts C. 

 

Figure 8. (a) Sous‐traits correspondant à la figure 6(a) et leurs relations. (b) Le graphe correspondant. 

(c) Les attributs associés aux sommets et aux arêtes. 

Une fois que  la distance entre  les sommets est calculée,  le calcul est étendu en prenant en compte 

les arêtes adjacentes. Comme  il  y a  trois  types d’arêtes avec  chacune des  attributs différents,  les 

coûts d’association ne sont faits que sur les arêtes de même type.  

Classification		basée	graphe		
Nous proposons une alternative à l’utilisation directe de la distance précédente par une méthode de 

K‐ppv  en  reprenant  l’idée  proposée  par  Kapser  and  Horst  [RB10]  proposant  une  représentation 

vectorielle du graphe qui utilise  la distance disponible.  L’idée de base est d’utiliser  la distance du 



graphe  à  plusieurs  formes  prototypes  pour  construire  un  descripteur  sous  forme  de  vecteur.  Un 

classifieur de type SVM est ensuite utilisée pour l’étape de classification du graphe.  

 

Figure 9. (a) Deux gestes avec les sous‐traits et leurs relations. (b) Le graphe représentatif de chaque 

geste. Les sommets qui appartiennent au même trait sont regroupés dans les sous‐graphes  ௦ܸ
௡, ௦ܷ

௠. 

(c) L’assignation optimale de la matrice de coûts DTW solutionnée par l’algorithme de Munkres, et la 

mise en correspondance des sommets Φୟ୪୪
∗ . 

Expérimentations	

Nous effectuons les expérimentations sur la base MTGSetB, qui est une extension de MTGSetA. Nous 

ajoutons des classes plus complexes et étendons donc l'ensemble à 6138 échantillons et 31 classes. 

Dans  le même  temps, nous utilisons  trois  jeux de  symboles mono‐touch  standard  : LaViola,  ILG et 

NicIcon,  pour  évaluer  la  performance  de  notre  méthode  sur  les  symboles  mono‐point.  Nous 

comparons  dans  le  Tableau  2    notre  modélisation  de  graphe  +  plongement  de  graphe  avec 

l'utilisation du  jeu de  caractéristiques HBF49  [4], qui est une approche  statique  conçue à  l'origine 

pour le geste mono‐point.  

 

 

Tableau 2. Taux de reconnaissance pour les 4 bases de test  

  LaViola  ILG  NicIcon  MTGSetB 
HBF49  93.64%  93.54%  97.44%  91.36% 

Graph modeling  93.18%  91.30%  93.17%  98.97% 



Nous  constatons que  l'ensemble de  caractéristiques HBF49  fonctionne mieux  sur  les  trois  jeux de 

gestes mono‐point. Les  raisons  sont que  ces  trois ensembles de données n'ont pas de  relation de 

synchronisation complexe entre les traits et que les caractéristiques extraites pour chaque trait dans 

notre approche sont beaucoup plus simples que celles de HBF49. Par conséquent, notre approche est 

moins puissante sur l'aspect analyse de la forme par rapport à HBF49. Cependant, notre méthode de 

modélisation et d'appariement de graphes surpasse de manière significative le HBF49 sur MTGSetB. 

Principalement parce que  le MTGSetB contient des gestes qui sont de forme similaire mais qui ont 

des  relations  temporelles  internes  différentes.  Notre  méthode  est  donc  dédiée  au  problème  de 

reconnaissance gestuelle multi‐point.  

3.	Reconnaissance	précoce	basée	sur	l'utilisation	du	rejet		
Dans  la  section  précédente,  nous  avons  proposé  une méthode  de  classification  pour  reconnaître 

après  leur  achèvement  les  gestes  multi‐point  de  commandes  indirectes.  Si  dans  une  même 

application,  les utilisateurs doivent pouvoir utiliser des gestes multi‐point en commande directe et 

aussi indirecte, un conflit entre ces deux interactions apparaît. En effet elles offrent une rétroaction 

complètement différente pour  les utilisateurs. La manipulation directe doit donner une rétroaction 

instantanée pendant  la trajectoire du doigt, tandis que  la commande  indirecte peut attendre  la  fin 

d'un  geste,  alors  que  le  début  des  deux  gestes  peut  être  très  similaire. Dans  cette  section,  nous 

explorons une stratégie de reconnaissance précoce visant à reconnaître un geste dès le début afin de 

prendre une décision dès que possible.  

 

Figure 10. Deux gestes avec une partie commune ambigue pour la reconnaissance précoce. 

Reconnaissance	précoce	par	combinaison	de	classifieurs		
Nous proposons une structure multi‐classifieur pour la reconnaissance précoce des gestes, comme le 

montre  la  figure 11. Chaque  classifieur est entraîné  sur une  sous‐partie du geste de  sorte que  les 

différents classifieurs sont responsables de différentes phases du geste. Dans un cas  idéal, un geste 

d'entrée incomplet à venir (d'une longueur de l) est d'abord affecté au classificateur h1. S'il ne peut 

pas  être  distingué  avec  un  autre  geste  en  raison  de  leur  début  commun,  on  attendra  une  autre 

longueur  de  trajectoire  et  l’assignera  au  classificateur h2.  Le même processus  est utilisé  pour  les 

classificateurs suivants jusqu'à ce qu'un classificateur trouve suffisamment de différences pour faire 

une reconnaissance. Cependant, nous n'imposons pas de taille minimale ou maximale à un geste,  il 

est  impossible à partir d'un geste en  cours de  formation de  savoir quelle proportion du geste est 

réalisée.  Il  peut  donc  y  avoir  conflit  entre  un  début  de  geste  et  un  autre  geste  complet.  Par 

conséquent, dans notre système multi‐classifieur, nous assignons chaque geste incomplet à tous les 

classifieurs et laissons un module de fusion pour décider si le geste peut être accepté ou non.   



 

Figure 11. Architecture du système multi‐classifieur pour la reconnaissance précoce. 

Option	de	rejet		
Sur  la  base  de  la  structure  multi‐classifieur,  nous  mettons  en  œuvre  deux  options  de  rejet  pour 

chaque classificateur: le rejet d'ambiguïté et le rejet de distance. Le premier est utilisé pour détecter 

la partie commune entre les gestes en conflits et permettre au système d'attendre plus de trajectoire. 

Le second est utilisé pour rejeter un geste partiel qui n'est pas compatible avec un des classifieurs et 

laisser  les autres prendre une décision. La figue. 12  illustre  la différence entre ces deux options de 

rejet.  

 

Figure 12.  Différence entre le rejet d'ambiguïté et le rejet de distance. 

Nos options de rejet sont basées sur  les scores triés par ordre décroisant de chaque classe donnés 

par chaque classifieur. Les  fonctions de confiance pour  le  rejet d'ambiguïté et  le  rejet de distance 

sont données par : 

߰௜஺௠௕ ൌ
௜ݏ െ ௝ݏ
௝ݏ

 

߰௜ை௨௧ ൌ  ௜ݏ

Ces scores de confiance sont alors comparés à des seuils pour décider de l'acceptation ou non de la 

forme. Ces seuils sont appris sur une base de validation en minimisant le taux de fausse acceptation 

(FAR) et le taux de faux de rejet (FRR).   



Expérimentations	

Nous évaluons notre système sur la base MTGSetB qui contient 3589 gestes d'entraînement et 2549 

gestes pour  l'ensemble de  test. Nous utilisons 20% des échantillons de  l'ensemble d'entraînement 

comme un ensemble de validation pour l'apprentissage des seuils. Le nombre de classifieurs est fixé 

à 3. Avant l'apprentissage, chaque geste est normalisé dans un cadre de 500x500 pixels et segmenté 

en 3 gestes partiels de longueur 250, 500, 750 pixels pour alimenter respectivement les 3 classifieurs. 

Notez que chaque geste n'a pas plus de 750 pixels. Si un geste est  inférieur à 500 pixels,  il ne sera 

segmenté que sur deux gestes partiels et alimentera  les deux premiers classifieurs. Lors du test, un 

geste est tenté d'être reconnu tous les 50 pixels de sa trajectoire. Dans le cas d'utilisation réelle, une 

stratégie raisonnable consiste à filtrer les décisions en considérant plusieurs sorties consécutives du 

classificateur  (i.e.  à  différentes  longueurs).  Par  conséquent,  une  décision  est  finalement  acceptée 

lorsque le classificateur donne n fois consécutives la même sortie. Dans le tableau 3 nous comparons 

la précision de reconnaissance avec une stratégie sans rejet pour n = 1 à 6. 

Tableau 3. Résultat pour la reconnaissance précoce de gestes avec ou sans utilisation du rejet pour n 

décisions identiques consécutives.  

n 
Avec Rejet  Sans Rejet 

Taux vrai 
acceptation 

Taux fausse 
acceptation 

Taux de 
Rejet 

Précocité 
Taux de 

Reconnaissance

Taux 
d'Erreur 

Précocité 

1  81.89%  14.56%  3.54%  37.04%  24.88%  75.15%  8.13% 

2  83.44%  10.85%  5.71%  46.82%  48.78%  51.22%  21.32% 

3  82.38%  8.85%  8.77%  55.89%  67.60%  32.40%  33.98% 

4  82.20%  6.06%  11.73%  66.16%  79.59%  20.36%  45.44% 

5  80.35%  4.60%  15.05%  71.03%  85.83%  13.72%  54.93% 
6  77.42%  3.41%  19.17%  77.54%  88.62%  11.39%  62.34% 

 

Ici, le taux de rejet signifie que le geste partiel n'a pas n fois consécutives le même résultat ou a été 

rejeté par les trois classificateurs jusqu'à la fin. La précocité signifie le pourcentage moyen d'un geste 

qui est écrit au moment où il est reconnu. Le résultat pour n = 3 peut être considéré comme optimal 

lorsque les taux de fausse acceptation et de rejet sont équilibrés autour de 8,8% et la décision est 

prise en moyenne à 55,89% du tracé. Sans option de rejet, il faut monter à n = 5 pour un résultat 

comparable en terme de précocité (à 54,93%). Par contre, le taux d'erreur (13,72%) est supérieur de 

55% au taux de fausse acceptation (8,85%) obtenu avec notre stratégie d'option de rejet. 

4.	Composition	de	document	structurés	dans	le	cadre	multi‐utilisateur	
Dans cette dernière partie nous nous sommes intéressés à la problématique de la composition de 

documents lorsque plusieurs utilisateurs participent à cette tâche. Le point fondamentale qui change 

par rapport aux contextes des chapitres précédents est que plusieurs gestes peuvent être composés 

simultanément. Lorsqu'il y a plusieurs contacts en même temps, il n'est pas possible a priori de 

décider si ces traits composent un seul geste ou sont dessinés par deux utilisateurs. En plus de la 

tâche de reconnaissance il y a donc une tache de segmentation de la séquence en gestes. De plus, 

pour garder une fluidité d'utilisation, il faut reconnaitre un geste dès qu'il est terminé. 



Base	de	diagrammes	multi‐utilisateurs	
Pour réaliser cette étude, nous avons commencé par collecter une nouvelle base de gestes réalisés 

en condition multi‐utilisateurs. Des diagrammes de type "cartes mentales" ont été recopiés (sans 

texte) par deux utilisateurs simultanément. 21 utilisateurs ont participé à collecter 42 diagrammes 

composés de 2011 gestes de 9 classes différentes. Certains symboles sont multi‐points, d'autres 

multi‐traits ou encore mono‐traits. La Figure 13 donne un exemple de diagramme saisi. 

 

Figure 13. Exemple de diagramme multi‐utilisateur composé de 9 gestes différents : crochets, ellipse, 

rectangle, triangle, losange, ligne simple, double ligne, flèche et pointe de flèche. 

Système	de	reconnaissance	
La figure 14 illustre le fonctionnement global du système. À chaque fin de trait saisi par un des 

utilisateurs, ce dernier est ajouté à une liste de trait. À partir de cette liste, nous allons générer tous 

les gestes possibles. Chaque hypothèse de geste est évaluée par un classifier . Il y a trois types 

d'hypothèses qui peuvent être rencontrés : les gestes complets qui doivent être renvoyés à 

l'utilisateur ; les gestes incomplets qui doivent attendre d'être complétés ; et les mauvaises 

compositions de traits qui doivent être rejetées.  

Les gestes détectés par le système sont renvoyés à l'utilisateur et leur traits sont retirés de la liste de 

traits en attente. Les traits restants seront ré‐utilisés lorsqu'un nouveau trait sera saisi. 

 

Figure 14. Architecture du système de reconnaissance multi‐utilisateur. 



Pour prendre ces trois types de décision, le classifieur est entrainé en utilisant une base de symboles 

valides, une base de symboles incomplets et une base de mauvaises combinaisons de traits. Comme 

évoqué dans la section précédente, certains gestes complets peuvent correspondre au début d'un 

geste plus long. Dans ce cas un conflit entre la classe du geste court et la classe "geste incomplet" 

bloque la reconnaissance du geste court. Pour éviter cette situation, nous proposons une 

pondération de la classe "geste incomplet" grâce à l'âge du trait concerné. En effet les traits 

composant un symbole complexe sont généralement dessinés dans un laps de temps assez court, 

donc un trait qui vient juste d'être saisi sera sûrement complété pour composer un symbole plus 

complexe, alors qu'un trait qui reste en attente depuis trop longtemps doit être utilisé. 

Résultats	
La tableau 4 montre les résultats obtenus en fonction de ts l'âge maximum d'un trait non utilisé. Plus 

ts est long, plus les gestes simples en conflit restent en attente longtemps. Si les traits sont utilisés 

trop tôt, certaines compositions sont manquées, si les gestes sont conservés trop longtemps, certains 

mauvais regroupements sont pris pour ces gestes. Le meilleur compromis est obtenu pour 500ms 

avec un taux de reconnaissance de 90%. 

Tableau 4. Taux de bonne segmentation et taux de reconnaissance en fonction de ts. 

ts(ms)  300  500  1000  2000 

Segment Number  691  687  675  649 

Correct Segment  592  596  593  578 

Segment Recall Rate  89.43%  90.03%  89.58%  87.31% 

Symbol Recall Rate  75.68%  76.28%  76.13%  74.77% 

 

5.	Conclusion			
Notre  travail explore  la possibilité d'utiliser  le geste multi‐point pour  la manipulation directe et  la 

commande  indirecte.  Nous  avons  développé  un  système  de  reconnaissance  utilisant  une  

modélisation  par  graphes  pour  reconnaître  une  commande multi‐point  comme  un  symbole  isolé. 

Pour évaluer la performance de notre système, nous avons construit un jeu de données MTGSet, qui 

contient  6138  gestes  multi‐point  avec  des  relations  spatiales  et  temporelles  internes  complexes. 

Nous avons atteint 98,97% de  taux de  reconnaissance sur ce  jeu de données et montré que notre 

système de reconnaissance peut bien capturer les propriétés des gestes multi‐point en le comparant 

à d'autres approches  classiques. Pour explorer  la possibilité d'utiliser un geste multi‐point pour  la 

manipulation directe et  la  commande  indirecte dans un même  contexte, nous avons proposé une 

stratégie de reconnaissance précoce visant à reconnaître un geste à partir de sa partie initiale. Nous 

avons proposé une structure multi‐classifieur avec option de rejet. Le résultat expérimental montre 

que nous avons atteint un taux de reconnaissance de 82,38% avec une précocité moyenne de 55,89% 

en conservant un taux d'erreur est inférieur au système sans option de rejet.   

Enfin nous avons proposé une architecture de reconnaissance adaptée à  la saisie de gestes tactiles 

multi‐points  par  plusieurs  utilisateurs  simultanément.  La  solution  proposée  est  entièrement 

entrainable à partir d'une base de gestes saisis en conditions réelles (une base dédiée a été collectée). 

Les résultats avec 9 classes de symboles pour la saisie de cartes mentales sont très stables, autour de 

90% avec tous les gestes reconnus au plus tard après 500ms. 
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Résumé 
 

La montée en puissance des écrans tactiles offre de nouvelles 

possibilités d’interactions gestuelles de plus en plus  riches. De 

nos jours, les utilisateurs se contentent souvent de gestes mono-

point ou multipoints simples pour exécuter des manipulations 

telles que la rotation, le déplacement ou la mise à l'échelle 

d’objets graphiques, la plupart du temps dans un contexte 

mono-utilisateur. Le travail décrit ici concerne l'utilisation 

avancée des gestes multipoints, comportant à la fois plus de 

commandes de raccourci (appelées commandes indirectes) et 

de commandes de manipulation (appelées commandes directes) 

dans un contexte d'utilisateurs multiples sur le même écran. 

Pour cela, nous analysons la forme des trajectoires composant 

le geste multipoints et les relations temporelles et spatiales 

entre ces trajectoires afin de caractériser ce geste. Nous 

proposons une modélisation par graphes et développons un 

système complet d'analyse et de reconnaissance. Pour résoudre 

le conflit entre la reconnaissance des gestes de manipulation et 

ceux de commande (directes versus indirectes), nous proposons 

une stratégie de reconnaissance précoce pour les gestes 

multipoints basée sur une option de rejet combinant plusieurs 

classifieurs pour reconnaître ces gestes au plus tôt. 

Pour valider nos approches, nous avons construit la base 

MTGSet composée de 7 938 gestes isolés multipoints de 41 

classes différentes et MUMTDB une base de gestes collectés 

dans un contexte réel d'interaction multiutilisateurs pour 

l’édition de diagrammes. Les résultats expérimentaux attestent 

que nos approches peuvent reconnaître les gestes multipoints 

dans ces différentes situations 

N° d’ordre : 17ISAR 10 / D17 -10 
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20, Avenue des Buttes de Coësmes  -  CS 14315 -  F-35043  Rennes Cedex  
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Abstract 
 

Due to the popularization of the touch screen devices, 

nowadays people are used to conduct the human-computer 

interactions with touch gestures. However, limited by current 

studies, users can use only simple multi-touch gestures to 

execute only simple manipulations such as rotation, translation, 

scaling, with most of time one user even if adapted devices are 

now available. The work reported here concerns the expanding 

usage of multi-touch gestures, that make them available at the 

same time for more shortcut commands (called indirect 

commands, as copy, past, ...), more manipulation commands 

(called direct commands like zoom or rotation) and in the 

context of multiple users on the same screen.  

For this purpose, we analyze the shape of the gesture’s motion 

trajectories and the temporal and spatial relations between 

trajectories in order to characterize a multi-touch gesture.  We 

propose a graph modeling to characterize these motion features 

and develop a graph based analysis and recognition system. To 

resolve the conflict between interface manipulation and 

shortcut command inputs, we study and validate an early 

recognition strategy for multi-touch gesture. We built a reject 

option based multi-classifier early recognition system to 

recognize multi-touch gestures in early stage.  

To set-up, train and validate our systems, we built MTGSet, a 

multi-touch gesture dataset formed by 7938 gestures from 41 

different classes collected in isolated contexts and MUMTDB a 

dataset of gestures collected in a real multi-user usage case of 

diagram drawing. The experimental results prove that our 

system can well recognize multi-touch gestures in these 

different situations. 
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